Page MenuHomeFreeBSD

D15919.diff
No OneTemporary

D15919.diff

Index: head/include/complex.h
===================================================================
--- head/include/complex.h
+++ head/include/complex.h
@@ -109,6 +109,10 @@
float complex conjf(float complex) __pure2;
long double complex
conjl(long double complex) __pure2;
+float complex cpowf(float complex, float complex);
+double complex cpow(double complex, double complex);
+long double complex
+ cpowl(long double complex, long double complex);
float complex cprojf(float complex) __pure2;
double complex cproj(double complex) __pure2;
long double complex
Index: head/lib/msun/Makefile
===================================================================
--- head/lib/msun/Makefile
+++ head/lib/msun/Makefile
@@ -56,6 +56,7 @@
imprecise.c \
k_cos.c k_cosf.c k_exp.c k_expf.c k_rem_pio2.c k_sin.c k_sinf.c \
k_tan.c k_tanf.c \
+ polevll.c \
s_asinh.c s_asinhf.c s_atan.c s_atanf.c s_carg.c s_cargf.c s_cargl.c \
s_cbrt.c s_cbrtf.c s_ceil.c s_ceilf.c s_clog.c s_clogf.c \
s_copysign.c s_copysignf.c s_cos.c s_cosf.c \
@@ -98,7 +99,7 @@
COMMON_SRCS+= catrigl.c \
e_acoshl.c e_acosl.c e_asinl.c e_atan2l.c e_atanhl.c \
e_coshl.c e_fmodl.c e_hypotl.c \
- e_lgammal.c e_lgammal_r.c \
+ e_lgammal.c e_lgammal_r.c e_powl.c \
e_remainderl.c e_sinhl.c e_sqrtl.c \
invtrig.c k_cosl.c k_sinl.c k_tanl.c \
s_asinhl.c s_atanl.c s_cbrtl.c s_ceill.c \
@@ -115,6 +116,7 @@
s_ccosh.c s_ccoshf.c s_cexp.c s_cexpf.c \
s_cimag.c s_cimagf.c s_cimagl.c \
s_conj.c s_conjf.c s_conjl.c \
+ s_cpow.c s_cpowf.c s_cpowl.c \
s_cproj.c s_cprojf.c s_creal.c s_crealf.c s_creall.c \
s_csinh.c s_csinhf.c s_ctanh.c s_ctanhf.c
@@ -134,7 +136,7 @@
MAN= acos.3 acosh.3 asin.3 asinh.3 atan.3 atan2.3 atanh.3 \
ceil.3 cacos.3 ccos.3 ccosh.3 cexp.3 \
- cimag.3 clog.3 copysign.3 cos.3 cosh.3 csqrt.3 erf.3 \
+ cimag.3 clog.3 copysign.3 cos.3 cosh.3 cpow.3 csqrt.3 erf.3 \
exp.3 fabs.3 fdim.3 \
feclearexcept.3 feenableexcept.3 fegetenv.3 \
fegetround.3 fenv.3 floor.3 \
@@ -172,6 +174,7 @@
MLINKS+=copysign.3 copysignf.3 copysign.3 copysignl.3
MLINKS+=cos.3 cosf.3 cos.3 cosl.3
MLINKS+=cosh.3 coshf.3 cosh.3 coshl.3
+MLINKS+=cpow.3 cpowf.3 cpow.3 cpowl.3
MLINKS+=csqrt.3 csqrtf.3 csqrt.3 csqrtl.3
MLINKS+=erf.3 erfc.3 erf.3 erff.3 erf.3 erfcf.3 erf.3 erfl.3 erf.3 erfcl.3
MLINKS+=exp.3 expm1.3 exp.3 expm1f.3 exp.3 expm1l.3 exp.3 pow.3 exp.3 powf.3 \
Index: head/lib/msun/Symbol.map
===================================================================
--- head/lib/msun/Symbol.map
+++ head/lib/msun/Symbol.map
@@ -274,10 +274,10 @@
log1pl;
log2l;
logl;
+ powl;
sinhl;
tanhl;
/* Implemented as weak aliases for imprecise versions */
- powl;
tgammal;
};
@@ -297,6 +297,9 @@
clog;
clogf;
clogl;
+ cpow;
+ cpowf;
+ cpowl;
sincos;
sincosf;
sincosl;
Index: head/lib/msun/ld128/e_powl.c
===================================================================
--- head/lib/msun/ld128/e_powl.c
+++ head/lib/msun/ld128/e_powl.c
@@ -0,0 +1,443 @@
+/*-
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* powl(x,y) return x**y
+ *
+ * n
+ * Method: Let x = 2 * (1+f)
+ * 1. Compute and return log2(x) in two pieces:
+ * log2(x) = w1 + w2,
+ * where w1 has 113-53 = 60 bit trailing zeros.
+ * 2. Perform y*log2(x) = n+y' by simulating muti-precision
+ * arithmetic, where |y'|<=0.5.
+ * 3. Return x**y = 2**n*exp(y'*log2)
+ *
+ * Special cases:
+ * 1. (anything) ** 0 is 1
+ * 2. (anything) ** 1 is itself
+ * 3. (anything) ** NAN is NAN
+ * 4. NAN ** (anything except 0) is NAN
+ * 5. +-(|x| > 1) ** +INF is +INF
+ * 6. +-(|x| > 1) ** -INF is +0
+ * 7. +-(|x| < 1) ** +INF is +0
+ * 8. +-(|x| < 1) ** -INF is +INF
+ * 9. +-1 ** +-INF is NAN
+ * 10. +0 ** (+anything except 0, NAN) is +0
+ * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
+ * 12. +0 ** (-anything except 0, NAN) is +INF
+ * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
+ * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
+ * 15. +INF ** (+anything except 0,NAN) is +INF
+ * 16. +INF ** (-anything except 0,NAN) is +0
+ * 17. -INF ** (anything) = -0 ** (-anything)
+ * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+ * 19. (-anything except 0 and inf) ** (non-integer) is NAN
+ *
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <float.h>
+#include <math.h>
+
+#include "math_private.h"
+
+static const long double bp[] = {
+ 1.0L,
+ 1.5L,
+};
+
+/* log_2(1.5) */
+static const long double dp_h[] = {
+ 0.0,
+ 5.8496250072115607565592654282227158546448E-1L
+};
+
+/* Low part of log_2(1.5) */
+static const long double dp_l[] = {
+ 0.0,
+ 1.0579781240112554492329533686862998106046E-16L
+};
+
+static const long double zero = 0.0L,
+ one = 1.0L,
+ two = 2.0L,
+ two113 = 1.0384593717069655257060992658440192E34L,
+ huge = 1.0e3000L,
+ tiny = 1.0e-3000L;
+
+/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
+ z = (x-1)/(x+1)
+ 1 <= x <= 1.25
+ Peak relative error 2.3e-37 */
+static const long double LN[] =
+{
+ -3.0779177200290054398792536829702930623200E1L,
+ 6.5135778082209159921251824580292116201640E1L,
+ -4.6312921812152436921591152809994014413540E1L,
+ 1.2510208195629420304615674658258363295208E1L,
+ -9.9266909031921425609179910128531667336670E-1L
+};
+static const long double LD[] =
+{
+ -5.129862866715009066465422805058933131960E1L,
+ 1.452015077564081884387441590064272782044E2L,
+ -1.524043275549860505277434040464085593165E2L,
+ 7.236063513651544224319663428634139768808E1L,
+ -1.494198912340228235853027849917095580053E1L
+ /* 1.0E0 */
+};
+
+/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
+ 0 <= x <= 0.5
+ Peak relative error 5.7e-38 */
+static const long double PN[] =
+{
+ 5.081801691915377692446852383385968225675E8L,
+ 9.360895299872484512023336636427675327355E6L,
+ 4.213701282274196030811629773097579432957E4L,
+ 5.201006511142748908655720086041570288182E1L,
+ 9.088368420359444263703202925095675982530E-3L,
+};
+static const long double PD[] =
+{
+ 3.049081015149226615468111430031590411682E9L,
+ 1.069833887183886839966085436512368982758E8L,
+ 8.259257717868875207333991924545445705394E5L,
+ 1.872583833284143212651746812884298360922E3L,
+ /* 1.0E0 */
+};
+
+static const long double
+ /* ln 2 */
+ lg2 = 6.9314718055994530941723212145817656807550E-1L,
+ lg2_h = 6.9314718055994528622676398299518041312695E-1L,
+ lg2_l = 2.3190468138462996154948554638754786504121E-17L,
+ ovt = 8.0085662595372944372e-0017L,
+ /* 2/(3*log(2)) */
+ cp = 9.6179669392597560490661645400126142495110E-1L,
+ cp_h = 9.6179669392597555432899980587535537779331E-1L,
+ cp_l = 5.0577616648125906047157785230014751039424E-17L;
+
+long double
+powl(long double x, long double y)
+{
+ long double z, ax, z_h, z_l, p_h, p_l;
+ long double yy1, t1, t2, r, s, t, u, v, w;
+ long double s2, s_h, s_l, t_h, t_l;
+ int32_t i, j, k, yisint, n;
+ u_int32_t ix, iy;
+ int32_t hx, hy;
+ ieee_quad_shape_type o, p, q;
+
+ p.value = x;
+ hx = p.parts32.mswhi;
+ ix = hx & 0x7fffffff;
+
+ q.value = y;
+ hy = q.parts32.mswhi;
+ iy = hy & 0x7fffffff;
+
+
+ /* y==zero: x**0 = 1 */
+ if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
+ return one;
+
+ /* 1.0**y = 1; -1.0**+-Inf = 1 */
+ if (x == one)
+ return one;
+ if (x == -1.0L && iy == 0x7fff0000
+ && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
+ return one;
+
+ /* +-NaN return x+y */
+ if ((ix > 0x7fff0000)
+ || ((ix == 0x7fff0000)
+ && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
+ || (iy > 0x7fff0000)
+ || ((iy == 0x7fff0000)
+ && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
+ return x + y;
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if (hx < 0)
+ {
+ if (iy >= 0x40700000) /* 2^113 */
+ yisint = 2; /* even integer y */
+ else if (iy >= 0x3fff0000) /* 1.0 */
+ {
+ if (floorl (y) == y)
+ {
+ z = 0.5 * y;
+ if (floorl (z) == z)
+ yisint = 2;
+ else
+ yisint = 1;
+ }
+ }
+ }
+
+ /* special value of y */
+ if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
+ {
+ if (iy == 0x7fff0000) /* y is +-inf */
+ {
+ if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
+ p.parts32.lswlo) == 0)
+ return y - y; /* +-1**inf is NaN */
+ else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
+ return (hy >= 0) ? y : zero;
+ else /* (|x|<1)**-,+inf = inf,0 */
+ return (hy < 0) ? -y : zero;
+ }
+ if (iy == 0x3fff0000)
+ { /* y is +-1 */
+ if (hy < 0)
+ return one / x;
+ else
+ return x;
+ }
+ if (hy == 0x40000000)
+ return x * x; /* y is 2 */
+ if (hy == 0x3ffe0000)
+ { /* y is 0.5 */
+ if (hx >= 0) /* x >= +0 */
+ return sqrtl (x);
+ }
+ }
+
+ ax = fabsl (x);
+ /* special value of x */
+ if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
+ {
+ if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
+ {
+ z = ax; /*x is +-0,+-inf,+-1 */
+ if (hy < 0)
+ z = one / z; /* z = (1/|x|) */
+ if (hx < 0)
+ {
+ if (((ix - 0x3fff0000) | yisint) == 0)
+ {
+ z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+ }
+ else if (yisint == 1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+ }
+
+ /* (x<0)**(non-int) is NaN */
+ if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
+ return (x - x) / (x - x);
+
+ /* |y| is huge.
+ 2^-16495 = 1/2 of smallest representable value.
+ If (1 - 1/131072)^y underflows, y > 1.4986e9 */
+ if (iy > 0x401d654b)
+ {
+ /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
+ if (iy > 0x407d654b)
+ {
+ if (ix <= 0x3ffeffff)
+ return (hy < 0) ? huge * huge : tiny * tiny;
+ if (ix >= 0x3fff0000)
+ return (hy > 0) ? huge * huge : tiny * tiny;
+ }
+ /* over/underflow if x is not close to one */
+ if (ix < 0x3ffeffff)
+ return (hy < 0) ? huge * huge : tiny * tiny;
+ if (ix > 0x3fff0000)
+ return (hy > 0) ? huge * huge : tiny * tiny;
+ }
+
+ n = 0;
+ /* take care subnormal number */
+ if (ix < 0x00010000)
+ {
+ ax *= two113;
+ n -= 113;
+ o.value = ax;
+ ix = o.parts32.mswhi;
+ }
+ n += ((ix) >> 16) - 0x3fff;
+ j = ix & 0x0000ffff;
+ /* determine interval */
+ ix = j | 0x3fff0000; /* normalize ix */
+ if (j <= 0x3988)
+ k = 0; /* |x|<sqrt(3/2) */
+ else if (j < 0xbb67)
+ k = 1; /* |x|<sqrt(3) */
+ else
+ {
+ k = 0;
+ n += 1;
+ ix -= 0x00010000;
+ }
+
+ o.value = ax;
+ o.parts32.mswhi = ix;
+ ax = o.value;
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = one / (ax + bp[k]);
+ s = u * v;
+ s_h = s;
+
+ o.value = s_h;
+ o.parts32.lswlo = 0;
+ o.parts32.lswhi &= 0xf8000000;
+ s_h = o.value;
+ /* t_h=ax+bp[k] High */
+ t_h = ax + bp[k];
+ o.value = t_h;
+ o.parts32.lswlo = 0;
+ o.parts32.lswhi &= 0xf8000000;
+ t_h = o.value;
+ t_l = ax - (t_h - bp[k]);
+ s_l = v * ((u - s_h * t_h) - s_h * t_l);
+ /* compute log(ax) */
+ s2 = s * s;
+ u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
+ v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
+ r = s2 * s2 * u / v;
+ r += s_l * (s_h + s);
+ s2 = s_h * s_h;
+ t_h = 3.0 + s2 + r;
+ o.value = t_h;
+ o.parts32.lswlo = 0;
+ o.parts32.lswhi &= 0xf8000000;
+ t_h = o.value;
+ t_l = r - ((t_h - 3.0) - s2);
+ /* u+v = s*(1+...) */
+ u = s_h * t_h;
+ v = s_l * t_h + t_l * s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u + v;
+ o.value = p_h;
+ o.parts32.lswlo = 0;
+ o.parts32.lswhi &= 0xf8000000;
+ p_h = o.value;
+ p_l = v - (p_h - u);
+ z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l * p_h + p_l * cp + dp_l[k];
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (long double) n;
+ t1 = (((z_h + z_l) + dp_h[k]) + t);
+ o.value = t1;
+ o.parts32.lswlo = 0;
+ o.parts32.lswhi &= 0xf8000000;
+ t1 = o.value;
+ t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
+
+ /* s (sign of result -ve**odd) = -1 else = 1 */
+ s = one;
+ if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
+ s = -one; /* (-ve)**(odd int) */
+
+ /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
+ yy1 = y;
+ o.value = yy1;
+ o.parts32.lswlo = 0;
+ o.parts32.lswhi &= 0xf8000000;
+ yy1 = o.value;
+ p_l = (y - yy1) * t1 + y * t2;
+ p_h = yy1 * t1;
+ z = p_l + p_h;
+ o.value = z;
+ j = o.parts32.mswhi;
+ if (j >= 0x400d0000) /* z >= 16384 */
+ {
+ /* if z > 16384 */
+ if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
+ o.parts32.lswlo) != 0)
+ return s * huge * huge; /* overflow */
+ else
+ {
+ if (p_l + ovt > z - p_h)
+ return s * huge * huge; /* overflow */
+ }
+ }
+ else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
+ {
+ /* z < -16495 */
+ if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
+ o.parts32.lswlo)
+ != 0)
+ return s * tiny * tiny; /* underflow */
+ else
+ {
+ if (p_l <= z - p_h)
+ return s * tiny * tiny; /* underflow */
+ }
+ }
+ /* compute 2**(p_h+p_l) */
+ i = j & 0x7fffffff;
+ k = (i >> 16) - 0x3fff;
+ n = 0;
+ if (i > 0x3ffe0000)
+ { /* if |z| > 0.5, set n = [z+0.5] */
+ n = floorl (z + 0.5L);
+ t = n;
+ p_h -= t;
+ }
+ t = p_l + p_h;
+ o.value = t;
+ o.parts32.lswlo = 0;
+ o.parts32.lswhi &= 0xf8000000;
+ t = o.value;
+ u = t * lg2_h;
+ v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
+ z = u + v;
+ w = v - (z - u);
+ /* exp(z) */
+ t = z * z;
+ u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
+ v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
+ t1 = z - t * u / v;
+ r = (z * t1) / (t1 - two) - (w + z * w);
+ z = one - (r - z);
+ o.value = z;
+ j = o.parts32.mswhi;
+ j += (n << 16);
+ if ((j >> 16) <= 0)
+ z = scalbnl (z, n); /* subnormal output */
+ else
+ {
+ o.parts32.mswhi = j;
+ z = o.value;
+ }
+ return s * z;
+}
Index: head/lib/msun/ld80/e_powl.c
===================================================================
--- head/lib/msun/ld80/e_powl.c
+++ head/lib/msun/ld80/e_powl.c
@@ -0,0 +1,616 @@
+/*-
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* powl.c
+ *
+ * Power function, long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, z, powl();
+ *
+ * z = powl( x, y );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Computes x raised to the yth power. Analytically,
+ *
+ * x**y = exp( y log(x) ).
+ *
+ * Following Cody and Waite, this program uses a lookup table
+ * of 2**-i/32 and pseudo extended precision arithmetic to
+ * obtain several extra bits of accuracy in both the logarithm
+ * and the exponential.
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ * The relative error of pow(x,y) can be estimated
+ * by y dl ln(2), where dl is the absolute error of
+ * the internally computed base 2 logarithm. At the ends
+ * of the approximation interval the logarithm equal 1/32
+ * and its relative error is about 1 lsb = 1.1e-19. Hence
+ * the predicted relative error in the result is 2.3e-21 y .
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ *
+ * IEEE +-1000 40000 2.8e-18 3.7e-19
+ * .001 < x < 1000, with log(x) uniformly distributed.
+ * -1000 < y < 1000, y uniformly distributed.
+ *
+ * IEEE 0,8700 60000 6.5e-18 1.0e-18
+ * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
+ *
+ *
+ * ERROR MESSAGES:
+ *
+ * message condition value returned
+ * pow overflow x**y > MAXNUM INFINITY
+ * pow underflow x**y < 1/MAXNUM 0.0
+ * pow domain x<0 and y noninteger 0.0
+ *
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <float.h>
+#include <math.h>
+
+#include "math_private.h"
+
+/* Table size */
+#define NXT 32
+/* log2(Table size) */
+#define LNXT 5
+
+/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
+ * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
+ */
+static long double P[] = {
+ 8.3319510773868690346226E-4L,
+ 4.9000050881978028599627E-1L,
+ 1.7500123722550302671919E0L,
+ 1.4000100839971580279335E0L,
+};
+static long double Q[] = {
+/* 1.0000000000000000000000E0L,*/
+ 5.2500282295834889175431E0L,
+ 8.4000598057587009834666E0L,
+ 4.2000302519914740834728E0L,
+};
+/* A[i] = 2^(-i/32), rounded to IEEE long double precision.
+ * If i is even, A[i] + B[i/2] gives additional accuracy.
+ */
+static long double A[33] = {
+ 1.0000000000000000000000E0L,
+ 9.7857206208770013448287E-1L,
+ 9.5760328069857364691013E-1L,
+ 9.3708381705514995065011E-1L,
+ 9.1700404320467123175367E-1L,
+ 8.9735453750155359320742E-1L,
+ 8.7812608018664974155474E-1L,
+ 8.5930964906123895780165E-1L,
+ 8.4089641525371454301892E-1L,
+ 8.2287773907698242225554E-1L,
+ 8.0524516597462715409607E-1L,
+ 7.8799042255394324325455E-1L,
+ 7.7110541270397041179298E-1L,
+ 7.5458221379671136985669E-1L,
+ 7.3841307296974965571198E-1L,
+ 7.2259040348852331001267E-1L,
+ 7.0710678118654752438189E-1L,
+ 6.9195494098191597746178E-1L,
+ 6.7712777346844636413344E-1L,
+ 6.6261832157987064729696E-1L,
+ 6.4841977732550483296079E-1L,
+ 6.3452547859586661129850E-1L,
+ 6.2092890603674202431705E-1L,
+ 6.0762367999023443907803E-1L,
+ 5.9460355750136053334378E-1L,
+ 5.8186242938878875689693E-1L,
+ 5.6939431737834582684856E-1L,
+ 5.5719337129794626814472E-1L,
+ 5.4525386633262882960438E-1L,
+ 5.3357020033841180906486E-1L,
+ 5.2213689121370692017331E-1L,
+ 5.1094857432705833910408E-1L,
+ 5.0000000000000000000000E-1L,
+};
+static long double B[17] = {
+ 0.0000000000000000000000E0L,
+ 2.6176170809902549338711E-20L,
+-1.0126791927256478897086E-20L,
+ 1.3438228172316276937655E-21L,
+ 1.2207982955417546912101E-20L,
+-6.3084814358060867200133E-21L,
+ 1.3164426894366316434230E-20L,
+-1.8527916071632873716786E-20L,
+ 1.8950325588932570796551E-20L,
+ 1.5564775779538780478155E-20L,
+ 6.0859793637556860974380E-21L,
+-2.0208749253662532228949E-20L,
+ 1.4966292219224761844552E-20L,
+ 3.3540909728056476875639E-21L,
+-8.6987564101742849540743E-22L,
+-1.2327176863327626135542E-20L,
+ 0.0000000000000000000000E0L,
+};
+
+/* 2^x = 1 + x P(x),
+ * on the interval -1/32 <= x <= 0
+ */
+static long double R[] = {
+ 1.5089970579127659901157E-5L,
+ 1.5402715328927013076125E-4L,
+ 1.3333556028915671091390E-3L,
+ 9.6181291046036762031786E-3L,
+ 5.5504108664798463044015E-2L,
+ 2.4022650695910062854352E-1L,
+ 6.9314718055994530931447E-1L,
+};
+
+#define douba(k) A[k]
+#define doubb(k) B[k]
+#define MEXP (NXT*16384.0L)
+/* The following if denormal numbers are supported, else -MEXP: */
+#define MNEXP (-NXT*(16384.0L+64.0L))
+/* log2(e) - 1 */
+#define LOG2EA 0.44269504088896340735992L
+
+#define F W
+#define Fa Wa
+#define Fb Wb
+#define G W
+#define Ga Wa
+#define Gb u
+#define H W
+#define Ha Wb
+#define Hb Wb
+
+static const long double MAXLOGL = 1.1356523406294143949492E4L;
+static const long double MINLOGL = -1.13994985314888605586758E4L;
+static const long double LOGE2L = 6.9314718055994530941723E-1L;
+static volatile long double z;
+static long double w, W, Wa, Wb, ya, yb, u;
+static const long double huge = 0x1p10000L;
+#if 0 /* XXX Prevent gcc from erroneously constant folding this. */
+static const long double twom10000 = 0x1p-10000L;
+#else
+static volatile long double twom10000 = 0x1p-10000L;
+#endif
+
+static long double reducl( long double );
+static long double powil ( long double, int );
+
+long double
+powl(long double x, long double y)
+{
+/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
+int i, nflg, iyflg, yoddint;
+long e;
+
+if( y == 0.0L )
+ return( 1.0L );
+
+if( x == 1.0L )
+ return( 1.0L );
+
+if( isnan(x) )
+ return( x );
+if( isnan(y) )
+ return( y );
+
+if( y == 1.0L )
+ return( x );
+
+if( !isfinite(y) && x == -1.0L )
+ return( 1.0L );
+
+if( y >= LDBL_MAX )
+ {
+ if( x > 1.0L )
+ return( INFINITY );
+ if( x > 0.0L && x < 1.0L )
+ return( 0.0L );
+ if( x < -1.0L )
+ return( INFINITY );
+ if( x > -1.0L && x < 0.0L )
+ return( 0.0L );
+ }
+if( y <= -LDBL_MAX )
+ {
+ if( x > 1.0L )
+ return( 0.0L );
+ if( x > 0.0L && x < 1.0L )
+ return( INFINITY );
+ if( x < -1.0L )
+ return( 0.0L );
+ if( x > -1.0L && x < 0.0L )
+ return( INFINITY );
+ }
+if( x >= LDBL_MAX )
+ {
+ if( y > 0.0L )
+ return( INFINITY );
+ return( 0.0L );
+ }
+
+w = floorl(y);
+/* Set iyflg to 1 if y is an integer. */
+iyflg = 0;
+if( w == y )
+ iyflg = 1;
+
+/* Test for odd integer y. */
+yoddint = 0;
+if( iyflg )
+ {
+ ya = fabsl(y);
+ ya = floorl(0.5L * ya);
+ yb = 0.5L * fabsl(w);
+ if( ya != yb )
+ yoddint = 1;
+ }
+
+if( x <= -LDBL_MAX )
+ {
+ if( y > 0.0L )
+ {
+ if( yoddint )
+ return( -INFINITY );
+ return( INFINITY );
+ }
+ if( y < 0.0L )
+ {
+ if( yoddint )
+ return( -0.0L );
+ return( 0.0 );
+ }
+ }
+
+
+nflg = 0; /* flag = 1 if x<0 raised to integer power */
+if( x <= 0.0L )
+ {
+ if( x == 0.0L )
+ {
+ if( y < 0.0 )
+ {
+ if( signbit(x) && yoddint )
+ return( -INFINITY );
+ return( INFINITY );
+ }
+ if( y > 0.0 )
+ {
+ if( signbit(x) && yoddint )
+ return( -0.0L );
+ return( 0.0 );
+ }
+ if( y == 0.0L )
+ return( 1.0L ); /* 0**0 */
+ else
+ return( 0.0L ); /* 0**y */
+ }
+ else
+ {
+ if( iyflg == 0 )
+ return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
+ nflg = 1;
+ }
+ }
+
+/* Integer power of an integer. */
+
+if( iyflg )
+ {
+ i = w;
+ w = floorl(x);
+ if( (w == x) && (fabsl(y) < 32768.0) )
+ {
+ w = powil( x, (int) y );
+ return( w );
+ }
+ }
+
+
+if( nflg )
+ x = fabsl(x);
+
+/* separate significand from exponent */
+x = frexpl( x, &i );
+e = i;
+
+/* find significand in antilog table A[] */
+i = 1;
+if( x <= douba(17) )
+ i = 17;
+if( x <= douba(i+8) )
+ i += 8;
+if( x <= douba(i+4) )
+ i += 4;
+if( x <= douba(i+2) )
+ i += 2;
+if( x >= douba(1) )
+ i = -1;
+i += 1;
+
+
+/* Find (x - A[i])/A[i]
+ * in order to compute log(x/A[i]):
+ *
+ * log(x) = log( a x/a ) = log(a) + log(x/a)
+ *
+ * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
+ */
+x -= douba(i);
+x -= doubb(i/2);
+x /= douba(i);
+
+
+/* rational approximation for log(1+v):
+ *
+ * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
+ */
+z = x*x;
+w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) );
+w = w - ldexpl( z, -1 ); /* w - 0.5 * z */
+
+/* Convert to base 2 logarithm:
+ * multiply by log2(e) = 1 + LOG2EA
+ */
+z = LOG2EA * w;
+z += w;
+z += LOG2EA * x;
+z += x;
+
+/* Compute exponent term of the base 2 logarithm. */
+w = -i;
+w = ldexpl( w, -LNXT ); /* divide by NXT */
+w += e;
+/* Now base 2 log of x is w + z. */
+
+/* Multiply base 2 log by y, in extended precision. */
+
+/* separate y into large part ya
+ * and small part yb less than 1/NXT
+ */
+ya = reducl(y);
+yb = y - ya;
+
+/* (w+z)(ya+yb)
+ * = w*ya + w*yb + z*y
+ */
+F = z * y + w * yb;
+Fa = reducl(F);
+Fb = F - Fa;
+
+G = Fa + w * ya;
+Ga = reducl(G);
+Gb = G - Ga;
+
+H = Fb + Gb;
+Ha = reducl(H);
+w = ldexpl( Ga+Ha, LNXT );
+
+/* Test the power of 2 for overflow */
+if( w > MEXP )
+ return (huge * huge); /* overflow */
+
+if( w < MNEXP )
+ return (twom10000 * twom10000); /* underflow */
+
+e = w;
+Hb = H - Ha;
+
+if( Hb > 0.0L )
+ {
+ e += 1;
+ Hb -= (1.0L/NXT); /*0.0625L;*/
+ }
+
+/* Now the product y * log2(x) = Hb + e/NXT.
+ *
+ * Compute base 2 exponential of Hb,
+ * where -0.0625 <= Hb <= 0.
+ */
+z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */
+
+/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
+ * Find lookup table entry for the fractional power of 2.
+ */
+if( e < 0 )
+ i = 0;
+else
+ i = 1;
+i = e/NXT + i;
+e = NXT*i - e;
+w = douba( e );
+z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
+z = z + w;
+z = ldexpl( z, i ); /* multiply by integer power of 2 */
+
+if( nflg )
+ {
+/* For negative x,
+ * find out if the integer exponent
+ * is odd or even.
+ */
+ w = ldexpl( y, -1 );
+ w = floorl(w);
+ w = ldexpl( w, 1 );
+ if( w != y )
+ z = -z; /* odd exponent */
+ }
+
+return( z );
+}
+
+
+/* Find a multiple of 1/NXT that is within 1/NXT of x. */
+static long double
+reducl(long double x)
+{
+long double t;
+
+t = ldexpl( x, LNXT );
+t = floorl( t );
+t = ldexpl( t, -LNXT );
+return(t);
+}
+
+/* powil.c
+ *
+ * Real raised to integer power, long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, powil();
+ * int n;
+ *
+ * y = powil( x, n );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns argument x raised to the nth power.
+ * The routine efficiently decomposes n as a sum of powers of
+ * two. The desired power is a product of two-to-the-kth
+ * powers of x. Thus to compute the 32767 power of x requires
+ * 28 multiplications instead of 32767 multiplications.
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ *
+ * Relative error:
+ * arithmetic x domain n domain # trials peak rms
+ * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
+ * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
+ * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
+ *
+ * Returns MAXNUM on overflow, zero on underflow.
+ *
+ */
+
+static long double
+powil(long double x, int nn)
+{
+long double ww, y;
+long double s;
+int n, e, sign, asign, lx;
+
+if( x == 0.0L )
+ {
+ if( nn == 0 )
+ return( 1.0L );
+ else if( nn < 0 )
+ return( LDBL_MAX );
+ else
+ return( 0.0L );
+ }
+
+if( nn == 0 )
+ return( 1.0L );
+
+
+if( x < 0.0L )
+ {
+ asign = -1;
+ x = -x;
+ }
+else
+ asign = 0;
+
+
+if( nn < 0 )
+ {
+ sign = -1;
+ n = -nn;
+ }
+else
+ {
+ sign = 1;
+ n = nn;
+ }
+
+/* Overflow detection */
+
+/* Calculate approximate logarithm of answer */
+s = x;
+s = frexpl( s, &lx );
+e = (lx - 1)*n;
+if( (e == 0) || (e > 64) || (e < -64) )
+ {
+ s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
+ s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
+ }
+else
+ {
+ s = LOGE2L * e;
+ }
+
+if( s > MAXLOGL )
+ return (huge * huge); /* overflow */
+
+if( s < MINLOGL )
+ return (twom10000 * twom10000); /* underflow */
+/* Handle tiny denormal answer, but with less accuracy
+ * since roundoff error in 1.0/x will be amplified.
+ * The precise demarcation should be the gradual underflow threshold.
+ */
+if( s < (-MAXLOGL+2.0L) )
+ {
+ x = 1.0L/x;
+ sign = -sign;
+ }
+
+/* First bit of the power */
+if( n & 1 )
+ y = x;
+
+else
+ {
+ y = 1.0L;
+ asign = 0;
+ }
+
+ww = x;
+n >>= 1;
+while( n )
+ {
+ ww = ww * ww; /* arg to the 2-to-the-kth power */
+ if( n & 1 ) /* if that bit is set, then include in product */
+ y *= ww;
+ n >>= 1;
+ }
+
+if( asign )
+ y = -y; /* odd power of negative number */
+if( sign < 0 )
+ y = 1.0L/y;
+return(y);
+}
Index: head/lib/msun/man/complex.3
===================================================================
--- head/lib/msun/man/complex.3
+++ head/lib/msun/man/complex.3
@@ -24,7 +24,7 @@
.\"
.\" $FreeBSD$
.\"
-.Dd June 6, 2018
+.Dd June 19, 2018
.Dt COMPLEX 3
.Os
.Sh NAME
@@ -101,6 +101,7 @@
catanh arc hyperbolic tangent
ccos cosine
ccosh hyperbolic cosine
+cpow power function
csin sine
csinh hyperbolic sine
ctan tangent
@@ -120,7 +121,3 @@
.In complex.h
functions described here conform to
.St -isoC-99 .
-.Sh BUGS
-The power functions
-.Fn cpow
-are not implemented.
Index: head/lib/msun/man/cpow.3
===================================================================
--- head/lib/msun/man/cpow.3
+++ head/lib/msun/man/cpow.3
@@ -0,0 +1,63 @@
+.\" Copyright (c) 2011 Martynas Venckus <martynas@openbsd.org>
+.\"
+.\" Permission to use, copy, modify, and distribute this software for any
+.\" purpose with or without fee is hereby granted, provided that the above
+.\" copyright notice and this permission notice appear in all copies.
+.\"
+.\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+.\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+.\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+.\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+.\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+.\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+.\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+.\" $FreeBSD$
+.\"
+.Dd $Mdocdate: June 5 2013 $
+.Dt CPOW 3
+.Os
+.Sh NAME
+.Nm cpow ,
+.Nm cpowf ,
+.Nm cpowl
+.Nd complex power functions
+.Sh SYNOPSIS
+.In complex.h
+.Ft double complex
+.Fn cpow "double complex x" "double complex z"
+.Ft float complex
+.Fn cpowf "float complex x" "float complex z"
+.Ft long double complex
+.Fn cpowl "long double complex x" "long double complex z"
+.Sh DESCRIPTION
+The
+.Fn cpow ,
+.Fn cpowf
+and
+.Fn cpowl
+functions compute the complex number
+.Fa x
+raised to the complex power
+.Fa z ,
+with a branch cut along the negative real axis for the first argument.
+.Sh RETURN VALUES
+The
+.Fn cpow ,
+.Fn cpowf
+and
+.Fn cpowl
+functions return the complex number
+.Fa x
+raised to the complex power
+.Fa z .
+.Sh SEE ALSO
+.Xr cexp 3 ,
+.Xr clog 3
+.Sh STANDARDS
+The
+.Fn cpow ,
+.Fn cpowf
+and
+.Fn cpowl
+functions conform to
+.St -isoC-99 .
Index: head/lib/msun/src/e_pow.c
===================================================================
--- head/lib/msun/src/e_pow.c
+++ head/lib/msun/src/e_pow.c
@@ -57,6 +57,7 @@
* to produce the hexadecimal values shown.
*/
+#include <float.h>
#include "math.h"
#include "math_private.h"
@@ -307,3 +308,7 @@
else SET_HIGH_WORD(z,j);
return s*z;
}
+
+#if (LDBL_MANT_DIG == 53)
+__weak_reference(pow, powl);
+#endif
Index: head/lib/msun/src/imprecise.c
===================================================================
--- head/lib/msun/src/imprecise.c
+++ head/lib/msun/src/imprecise.c
@@ -50,14 +50,6 @@
__weak_reference(imprecise_## x, x);\
WARN_IMPRECISE(x)
-long double
-imprecise_powl(long double x, long double y)
-{
-
- return pow(x, y);
-}
-DECLARE_WEAK(powl);
-
#define DECLARE_IMPRECISE(f) \
long double imprecise_ ## f ## l(long double v) { return f(v); }\
DECLARE_WEAK(f ## l)
Index: head/lib/msun/src/math_private.h
===================================================================
--- head/lib/msun/src/math_private.h
+++ head/lib/msun/src/math_private.h
@@ -48,10 +48,51 @@
#define IEEE_WORD_ORDER BYTE_ORDER
#endif
+/* A union which permits us to convert between a long double and
+ four 32 bit ints. */
+
#if IEEE_WORD_ORDER == BIG_ENDIAN
typedef union
{
+ long double value;
+ struct {
+ u_int32_t mswhi;
+ u_int32_t mswlo;
+ u_int32_t lswhi;
+ u_int32_t lswlo;
+ } parts32;
+ struct {
+ u_int64_t msw;
+ u_int64_t lsw;
+ } parts64;
+} ieee_quad_shape_type;
+
+#endif
+
+#if IEEE_WORD_ORDER == LITTLE_ENDIAN
+
+typedef union
+{
+ long double value;
+ struct {
+ u_int32_t lswlo;
+ u_int32_t lswhi;
+ u_int32_t mswlo;
+ u_int32_t mswhi;
+ } parts32;
+ struct {
+ u_int64_t lsw;
+ u_int64_t msw;
+ } parts64;
+} ieee_quad_shape_type;
+
+#endif
+
+#if IEEE_WORD_ORDER == BIG_ENDIAN
+
+typedef union
+{
double value;
struct
{
@@ -786,5 +827,8 @@
long double __kernel_sinl(long double, long double, int);
long double __kernel_cosl(long double, long double);
long double __kernel_tanl(long double, long double, int);
+
+long double __p1evll(long double, void *, int);
+long double __polevll(long double, void *, int);
#endif /* !_MATH_PRIVATE_H_ */
Index: head/lib/msun/src/polevll.c
===================================================================
--- head/lib/msun/src/polevll.c
+++ head/lib/msun/src/polevll.c
@@ -0,0 +1,105 @@
+/*-
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* polevll.c
+ * p1evll.c
+ *
+ * Evaluate polynomial
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * int N;
+ * long double x, y, coef[N+1], polevl[];
+ *
+ * y = polevll( x, coef, N );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Evaluates polynomial of degree N:
+ *
+ * 2 N
+ * y = C + C x + C x +...+ C x
+ * 0 1 2 N
+ *
+ * Coefficients are stored in reverse order:
+ *
+ * coef[0] = C , ..., coef[N] = C .
+ * N 0
+ *
+ * The function p1evll() assumes that coef[N] = 1.0 and is
+ * omitted from the array. Its calling arguments are
+ * otherwise the same as polevll().
+ *
+ *
+ * SPEED:
+ *
+ * In the interest of speed, there are no checks for out
+ * of bounds arithmetic. This routine is used by most of
+ * the functions in the library. Depending on available
+ * equipment features, the user may wish to rewrite the
+ * program in microcode or assembly language.
+ *
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <math.h>
+
+#include "math_private.h"
+
+/*
+ * Polynomial evaluator:
+ * P[0] x^n + P[1] x^(n-1) + ... + P[n]
+ */
+long double
+__polevll(long double x, void *PP, int n)
+{
+ long double y;
+ long double *P;
+
+ P = (long double *)PP;
+ y = *P++;
+ do {
+ y = y * x + *P++;
+ } while (--n);
+
+ return (y);
+}
+
+/*
+ * Polynomial evaluator:
+ * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
+ */
+long double
+__p1evll(long double x, void *PP, int n)
+{
+ long double y;
+ long double *P;
+
+ P = (long double *)PP;
+ n -= 1;
+ y = x + *P++;
+ do {
+ y = y * x + *P++;
+ } while (--n);
+
+ return (y);
+}
Index: head/lib/msun/src/s_cpow.c
===================================================================
--- head/lib/msun/src/s_cpow.c
+++ head/lib/msun/src/s_cpow.c
@@ -0,0 +1,74 @@
+/*-
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* cpow
+ *
+ * Complex power function
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double complex cpow();
+ * double complex a, z, w;
+ *
+ * w = cpow (a, z);
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Raises complex A to the complex Zth power.
+ * Definition is per AMS55 # 4.2.8,
+ * analytically equivalent to cpow(a,z) = cexp(z clog(a)).
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -10,+10 30000 9.4e-15 1.5e-15
+ *
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <complex.h>
+#include <float.h>
+#include <math.h>
+
+double complex
+cpow(double complex a, double complex z)
+{
+ double complex w;
+ double x, y, r, theta, absa, arga;
+
+ x = creal (z);
+ y = cimag (z);
+ absa = cabs (a);
+ if (absa == 0.0) {
+ return (0.0 + 0.0 * I);
+ }
+ arga = carg (a);
+ r = pow (absa, x);
+ theta = x * arga;
+ if (y != 0.0) {
+ r = r * exp (-y * arga);
+ theta = theta + y * log (absa);
+ }
+ w = r * cos (theta) + (r * sin (theta)) * I;
+ return (w);
+}
Index: head/lib/msun/src/s_cpowf.c
===================================================================
--- head/lib/msun/src/s_cpowf.c
+++ head/lib/msun/src/s_cpowf.c
@@ -0,0 +1,73 @@
+/*-
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* cpowf
+ *
+ * Complex power function
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * float complex cpowf();
+ * float complex a, z, w;
+ *
+ * w = cpowf (a, z);
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Raises complex A to the complex Zth power.
+ * Definition is per AMS55 # 4.2.8,
+ * analytically equivalent to cpow(a,z) = cexp(z clog(a)).
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -10,+10 30000 9.4e-15 1.5e-15
+ *
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <complex.h>
+#include <math.h>
+
+float complex
+cpowf(float complex a, float complex z)
+{
+ float complex w;
+ float x, y, r, theta, absa, arga;
+
+ x = crealf(z);
+ y = cimagf(z);
+ absa = cabsf (a);
+ if (absa == 0.0f) {
+ return (0.0f + 0.0f * I);
+ }
+ arga = cargf (a);
+ r = powf (absa, x);
+ theta = x * arga;
+ if (y != 0.0f) {
+ r = r * expf (-y * arga);
+ theta = theta + y * logf (absa);
+ }
+ w = r * cosf (theta) + (r * sinf (theta)) * I;
+ return (w);
+}
Index: head/lib/msun/src/s_cpowl.c
===================================================================
--- head/lib/msun/src/s_cpowl.c
+++ head/lib/msun/src/s_cpowl.c
@@ -0,0 +1,73 @@
+/*-
+ * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* cpowl
+ *
+ * Complex power function
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double complex cpowl();
+ * long double complex a, z, w;
+ *
+ * w = cpowl (a, z);
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Raises complex A to the complex Zth power.
+ * Definition is per AMS55 # 4.2.8,
+ * analytically equivalent to cpow(a,z) = cexp(z clog(a)).
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE -10,+10 30000 9.4e-15 1.5e-15
+ *
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <complex.h>
+#include <math.h>
+
+long double complex
+cpowl(long double complex a, long double complex z)
+{
+ long double complex w;
+ long double x, y, r, theta, absa, arga;
+
+ x = creall(z);
+ y = cimagl(z);
+ absa = cabsl(a);
+ if (absa == 0.0L) {
+ return (0.0L + 0.0L * I);
+ }
+ arga = cargl(a);
+ r = powl(absa, x);
+ theta = x * arga;
+ if (y != 0.0L) {
+ r = r * expl(-y * arga);
+ theta = theta + y * logl(absa);
+ }
+ w = r * cosl(theta) + (r * sinl(theta)) * I;
+ return (w);
+}

File Metadata

Mime Type
text/plain
Expires
Sat, Jan 18, 7:54 PM (8 h, 50 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
15888043
Default Alt Text
D15919.diff (41 KB)

Event Timeline