Index: head/cddl/contrib/opensolaris/common/ctf/ctf_create.c =================================================================== --- head/cddl/contrib/opensolaris/common/ctf/ctf_create.c (revision 367762) +++ head/cddl/contrib/opensolaris/common/ctf/ctf_create.c (revision 367763) @@ -1,1558 +1,1579 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013, Joyent, Inc. All rights reserved. */ #include #include #include #include #include /* * This static string is used as the template for initially populating a * dynamic container's string table. We always store \0 in the first byte, * and we use the generic string "PARENT" to mark this container's parent * if one is associated with the container using ctf_import(). */ static const char _CTF_STRTAB_TEMPLATE[] = "\0PARENT"; /* * To create an empty CTF container, we just declare a zeroed header and call * ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new container r/w * and initialize the dynamic members. We set dtstrlen to 1 to reserve the * first byte of the string table for a \0 byte, and we start assigning type * IDs at 1 because type ID 0 is used as a sentinel. */ ctf_file_t * ctf_create(int *errp) { static const ctf_header_t hdr = { { CTF_MAGIC, CTF_VERSION, 0 } }; const ulong_t hashlen = 128; ctf_dtdef_t **hash = ctf_alloc(hashlen * sizeof (ctf_dtdef_t *)); ctf_sect_t cts; ctf_file_t *fp; if (hash == NULL) return (ctf_set_open_errno(errp, EAGAIN)); cts.cts_name = _CTF_SECTION; cts.cts_type = SHT_PROGBITS; cts.cts_flags = 0; cts.cts_data = (void *)&hdr; cts.cts_size = sizeof (hdr); cts.cts_entsize = 1; cts.cts_offset = 0; if ((fp = ctf_bufopen(&cts, NULL, NULL, errp)) == NULL) { ctf_free(hash, hashlen * sizeof (ctf_dtdef_t *)); return (NULL); } fp->ctf_flags |= LCTF_RDWR; fp->ctf_dthashlen = hashlen; bzero(hash, hashlen * sizeof (ctf_dtdef_t *)); fp->ctf_dthash = hash; fp->ctf_dtstrlen = sizeof (_CTF_STRTAB_TEMPLATE); fp->ctf_dtnextid = 1; fp->ctf_dtoldid = 0; return (fp); } static uchar_t * ctf_copy_smembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); ctf_member_t ctm; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name) { ctm.ctm_name = soff; soff += strlen(dmd->dmd_name) + 1; } else ctm.ctm_name = 0; ctm.ctm_type = (ushort_t)dmd->dmd_type; ctm.ctm_offset = (ushort_t)dmd->dmd_offset; bcopy(&ctm, t, sizeof (ctm)); t += sizeof (ctm); } return (t); } static uchar_t * ctf_copy_lmembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); ctf_lmember_t ctlm; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name) { ctlm.ctlm_name = soff; soff += strlen(dmd->dmd_name) + 1; } else ctlm.ctlm_name = 0; ctlm.ctlm_type = (ushort_t)dmd->dmd_type; ctlm.ctlm_pad = 0; ctlm.ctlm_offsethi = CTF_OFFSET_TO_LMEMHI(dmd->dmd_offset); ctlm.ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO(dmd->dmd_offset); bcopy(&ctlm, t, sizeof (ctlm)); t += sizeof (ctlm); } return (t); } static uchar_t * ctf_copy_emembers(ctf_dtdef_t *dtd, uint_t soff, uchar_t *t) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); ctf_enum_t cte; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { cte.cte_name = soff; cte.cte_value = dmd->dmd_value; soff += strlen(dmd->dmd_name) + 1; bcopy(&cte, t, sizeof (cte)); t += sizeof (cte); } return (t); } static uchar_t * ctf_copy_membnames(ctf_dtdef_t *dtd, uchar_t *s) { ctf_dmdef_t *dmd = ctf_list_next(&dtd->dtd_u.dtu_members); size_t len; for (; dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name == NULL) continue; /* skip anonymous members */ len = strlen(dmd->dmd_name) + 1; bcopy(dmd->dmd_name, s, len); s += len; } return (s); } /* * Only types of dyanmic CTF containers contain reference counts. These * containers are marked RD/WR. Because of that we basically make this a no-op * for compatability with non-dynamic CTF sections. This is also a no-op for * types which are not dynamic types. It is the responsibility of the caller to * make sure it is a valid type. We help that caller out on debug builds. * * Note that the reference counts are not maintained for types that are not * within this container. In other words if we have a type in a parent, that * will not have its reference count increased. On the flip side, the parent * will not be allowed to remove dynamic types if it has children. */ static void ctf_ref_inc(ctf_file_t *fp, ctf_id_t tid) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); if (dtd == NULL) return; if (!(fp->ctf_flags & LCTF_RDWR)) return; dtd->dtd_ref++; } /* * Just as with ctf_ref_inc, this is a no-op on non-writeable containers and the * caller should ensure that this is already a valid type. */ static void ctf_ref_dec(ctf_file_t *fp, ctf_id_t tid) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, tid); if (dtd == NULL) return; if (!(fp->ctf_flags & LCTF_RDWR)) return; ASSERT(dtd->dtd_ref >= 1); dtd->dtd_ref--; } /* * If the specified CTF container is writable and has been modified, reload * this container with the updated type definitions. In order to make this * code and the rest of libctf as simple as possible, we perform updates by * taking the dynamic type definitions and creating an in-memory CTF file * containing the definitions, and then call ctf_bufopen() on it. This not * only leverages ctf_bufopen(), but also avoids having to bifurcate the rest * of the library code with different lookup paths for static and dynamic * type definitions. We are therefore optimizing greatly for lookup over * update, which we assume will be an uncommon operation. We perform one * extra trick here for the benefit of callers and to keep our code simple: * ctf_bufopen() will return a new ctf_file_t, but we want to keep the fp * constant for the caller, so after ctf_bufopen() returns, we use bcopy to * swap the interior of the old and new ctf_file_t's, and then free the old. * * Note that the lists of dynamic types stays around and the resulting container * is still writeable. Furthermore, the reference counts that are on the dtd's * are still valid. */ int ctf_update(ctf_file_t *fp) { ctf_file_t ofp, *nfp; ctf_header_t hdr; ctf_dtdef_t *dtd; ctf_sect_t cts; uchar_t *s, *s0, *t; size_t size; void *buf; int err; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (!(fp->ctf_flags & LCTF_DIRTY)) return (0); /* no update required */ /* * Fill in an initial CTF header. We will leave the label, object, * and function sections empty and only output a header, type section, * and string table. The type section begins at a 4-byte aligned * boundary past the CTF header itself (at relative offset zero). */ bzero(&hdr, sizeof (hdr)); hdr.cth_magic = CTF_MAGIC; hdr.cth_version = CTF_VERSION; if (fp->ctf_flags & LCTF_CHILD) hdr.cth_parname = 1; /* i.e. _CTF_STRTAB_TEMPLATE[1] */ /* * Iterate through the dynamic type definition list and compute the * size of the CTF type section we will need to generate. */ for (size = 0, dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ctf_list_next(dtd)) { uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) size += sizeof (ctf_stype_t); else size += sizeof (ctf_type_t); switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: size += sizeof (uint_t); break; case CTF_K_ARRAY: size += sizeof (ctf_array_t); break; case CTF_K_FUNCTION: size += sizeof (ushort_t) * (vlen + (vlen & 1)); break; case CTF_K_STRUCT: case CTF_K_UNION: if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) size += sizeof (ctf_member_t) * vlen; else size += sizeof (ctf_lmember_t) * vlen; break; case CTF_K_ENUM: size += sizeof (ctf_enum_t) * vlen; break; } } /* * Fill in the string table offset and size, compute the size of the * entire CTF buffer we need, and then allocate a new buffer and * bcopy the finished header to the start of the buffer. */ hdr.cth_stroff = hdr.cth_typeoff + size; hdr.cth_strlen = fp->ctf_dtstrlen; size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen; if ((buf = ctf_data_alloc(size)) == MAP_FAILED) return (ctf_set_errno(fp, EAGAIN)); bcopy(&hdr, buf, sizeof (ctf_header_t)); t = (uchar_t *)buf + sizeof (ctf_header_t); s = s0 = (uchar_t *)buf + sizeof (ctf_header_t) + hdr.cth_stroff; bcopy(_CTF_STRTAB_TEMPLATE, s, sizeof (_CTF_STRTAB_TEMPLATE)); s += sizeof (_CTF_STRTAB_TEMPLATE); /* * We now take a final lap through the dynamic type definition list and * copy the appropriate type records and strings to the output buffer. */ for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ctf_list_next(dtd)) { uint_t kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); uint_t vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); ctf_array_t cta; uint_t encoding; size_t len; if (dtd->dtd_name != NULL) { dtd->dtd_data.ctt_name = (uint_t)(s - s0); len = strlen(dtd->dtd_name) + 1; bcopy(dtd->dtd_name, s, len); s += len; } else dtd->dtd_data.ctt_name = 0; if (dtd->dtd_data.ctt_size != CTF_LSIZE_SENT) len = sizeof (ctf_stype_t); else len = sizeof (ctf_type_t); bcopy(&dtd->dtd_data, t, len); t += len; switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: if (kind == CTF_K_INTEGER) { encoding = CTF_INT_DATA( dtd->dtd_u.dtu_enc.cte_format, dtd->dtd_u.dtu_enc.cte_offset, dtd->dtd_u.dtu_enc.cte_bits); } else { encoding = CTF_FP_DATA( dtd->dtd_u.dtu_enc.cte_format, dtd->dtd_u.dtu_enc.cte_offset, dtd->dtd_u.dtu_enc.cte_bits); } bcopy(&encoding, t, sizeof (encoding)); t += sizeof (encoding); break; case CTF_K_ARRAY: cta.cta_contents = (ushort_t) dtd->dtd_u.dtu_arr.ctr_contents; cta.cta_index = (ushort_t) dtd->dtd_u.dtu_arr.ctr_index; cta.cta_nelems = dtd->dtd_u.dtu_arr.ctr_nelems; bcopy(&cta, t, sizeof (cta)); t += sizeof (cta); break; case CTF_K_FUNCTION: { ushort_t *argv = (ushort_t *)(uintptr_t)t; uint_t argc; for (argc = 0; argc < vlen; argc++) *argv++ = (ushort_t)dtd->dtd_u.dtu_argv[argc]; if (vlen & 1) *argv++ = 0; /* pad to 4-byte boundary */ t = (uchar_t *)argv; break; } case CTF_K_STRUCT: case CTF_K_UNION: if (dtd->dtd_data.ctt_size < CTF_LSTRUCT_THRESH) t = ctf_copy_smembers(dtd, (uint_t)(s - s0), t); else t = ctf_copy_lmembers(dtd, (uint_t)(s - s0), t); s = ctf_copy_membnames(dtd, s); break; case CTF_K_ENUM: t = ctf_copy_emembers(dtd, (uint_t)(s - s0), t); s = ctf_copy_membnames(dtd, s); break; } } /* * Finally, we are ready to ctf_bufopen() the new container. If this * is successful, we then switch nfp and fp and free the old container. */ ctf_data_protect(buf, size); cts.cts_name = _CTF_SECTION; cts.cts_type = SHT_PROGBITS; cts.cts_flags = 0; cts.cts_data = buf; cts.cts_size = size; cts.cts_entsize = 1; cts.cts_offset = 0; if ((nfp = ctf_bufopen(&cts, NULL, NULL, &err)) == NULL) { ctf_data_free(buf, size); return (ctf_set_errno(fp, err)); } (void) ctf_setmodel(nfp, ctf_getmodel(fp)); (void) ctf_import(nfp, fp->ctf_parent); nfp->ctf_refcnt = fp->ctf_refcnt; nfp->ctf_flags |= fp->ctf_flags & ~LCTF_DIRTY; nfp->ctf_data.cts_data = NULL; /* force ctf_data_free() on close */ nfp->ctf_dthash = fp->ctf_dthash; nfp->ctf_dthashlen = fp->ctf_dthashlen; nfp->ctf_dtdefs = fp->ctf_dtdefs; nfp->ctf_dtstrlen = fp->ctf_dtstrlen; nfp->ctf_dtnextid = fp->ctf_dtnextid; nfp->ctf_dtoldid = fp->ctf_dtnextid - 1; nfp->ctf_specific = fp->ctf_specific; fp->ctf_dthash = NULL; fp->ctf_dthashlen = 0; bzero(&fp->ctf_dtdefs, sizeof (ctf_list_t)); bcopy(fp, &ofp, sizeof (ctf_file_t)); bcopy(nfp, fp, sizeof (ctf_file_t)); bcopy(&ofp, nfp, sizeof (ctf_file_t)); /* * Initialize the ctf_lookup_by_name top-level dictionary. We keep an * array of type name prefixes and the corresponding ctf_hash to use. * NOTE: This code must be kept in sync with the code in ctf_bufopen(). */ fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; nfp->ctf_refcnt = 1; /* force nfp to be freed */ ctf_close(nfp); return (0); } void ctf_dtd_insert(ctf_file_t *fp, ctf_dtdef_t *dtd) { ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); dtd->dtd_hash = fp->ctf_dthash[h]; fp->ctf_dthash[h] = dtd; ctf_list_append(&fp->ctf_dtdefs, dtd); } void ctf_dtd_delete(ctf_file_t *fp, ctf_dtdef_t *dtd) { ulong_t h = dtd->dtd_type & (fp->ctf_dthashlen - 1); ctf_dtdef_t *p, **q = &fp->ctf_dthash[h]; ctf_dmdef_t *dmd, *nmd; size_t len; int kind, i; for (p = *q; p != NULL; p = p->dtd_hash) { if (p != dtd) q = &p->dtd_hash; else break; } if (p != NULL) *q = p->dtd_hash; kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); switch (kind) { case CTF_K_STRUCT: case CTF_K_UNION: case CTF_K_ENUM: for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = nmd) { if (dmd->dmd_name != NULL) { len = strlen(dmd->dmd_name) + 1; ctf_free(dmd->dmd_name, len); fp->ctf_dtstrlen -= len; } if (kind != CTF_K_ENUM) ctf_ref_dec(fp, dmd->dmd_type); nmd = ctf_list_next(dmd); ctf_free(dmd, sizeof (ctf_dmdef_t)); } break; case CTF_K_FUNCTION: ctf_ref_dec(fp, dtd->dtd_data.ctt_type); for (i = 0; i < CTF_INFO_VLEN(dtd->dtd_data.ctt_info); i++) if (dtd->dtd_u.dtu_argv[i] != 0) ctf_ref_dec(fp, dtd->dtd_u.dtu_argv[i]); ctf_free(dtd->dtd_u.dtu_argv, sizeof (ctf_id_t) * CTF_INFO_VLEN(dtd->dtd_data.ctt_info)); break; case CTF_K_ARRAY: ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); break; case CTF_K_TYPEDEF: ctf_ref_dec(fp, dtd->dtd_data.ctt_type); break; case CTF_K_POINTER: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: ctf_ref_dec(fp, dtd->dtd_data.ctt_type); break; } if (dtd->dtd_name) { len = strlen(dtd->dtd_name) + 1; ctf_free(dtd->dtd_name, len); fp->ctf_dtstrlen -= len; } ctf_list_delete(&fp->ctf_dtdefs, dtd); ctf_free(dtd, sizeof (ctf_dtdef_t)); } ctf_dtdef_t * ctf_dtd_lookup(ctf_file_t *fp, ctf_id_t type) { ulong_t h = type & (fp->ctf_dthashlen - 1); ctf_dtdef_t *dtd; if (fp->ctf_dthash == NULL) return (NULL); for (dtd = fp->ctf_dthash[h]; dtd != NULL; dtd = dtd->dtd_hash) { if (dtd->dtd_type == type) break; } return (dtd); } /* * Discard all of the dynamic type definitions that have been added to the * container since the last call to ctf_update(). We locate such types by * scanning the list and deleting elements that have type IDs greater than * ctf_dtoldid, which is set by ctf_update(), above. Note that to work properly * with our reference counting schemes, we must delete the dynamic list in * reverse. */ int ctf_discard(ctf_file_t *fp) { ctf_dtdef_t *dtd, *ntd; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (!(fp->ctf_flags & LCTF_DIRTY)) return (0); /* no update required */ for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { ntd = ctf_list_prev(dtd); if (CTF_TYPE_TO_INDEX(dtd->dtd_type) <= fp->ctf_dtoldid) continue; /* skip types that have been committed */ ctf_dtd_delete(fp, dtd); } fp->ctf_dtnextid = fp->ctf_dtoldid + 1; fp->ctf_flags &= ~LCTF_DIRTY; return (0); } static ctf_id_t ctf_add_generic(ctf_file_t *fp, uint_t flag, const char *name, ctf_dtdef_t **rp) { ctf_dtdef_t *dtd; ctf_id_t type; char *s = NULL; if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT) return (ctf_set_errno(fp, EINVAL)); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (CTF_INDEX_TO_TYPE(fp->ctf_dtnextid, 1) > CTF_MAX_TYPE) return (ctf_set_errno(fp, ECTF_FULL)); if ((dtd = ctf_alloc(sizeof (ctf_dtdef_t))) == NULL) return (ctf_set_errno(fp, EAGAIN)); if (name != NULL && (s = ctf_strdup(name)) == NULL) { ctf_free(dtd, sizeof (ctf_dtdef_t)); return (ctf_set_errno(fp, EAGAIN)); } type = fp->ctf_dtnextid++; type = CTF_INDEX_TO_TYPE(type, (fp->ctf_flags & LCTF_CHILD)); bzero(dtd, sizeof (ctf_dtdef_t)); dtd->dtd_name = s; dtd->dtd_type = type; if (s != NULL) fp->ctf_dtstrlen += strlen(s) + 1; ctf_dtd_insert(fp, dtd); fp->ctf_flags |= LCTF_DIRTY; *rp = dtd; return (type); } /* * When encoding integer sizes, we want to convert a byte count in the range * 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function * is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */ static size_t clp2(size_t x) { x--; x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return (x + 1); } static ctf_id_t ctf_add_encoded(ctf_file_t *fp, uint_t flag, const char *name, const ctf_encoding_t *ep, uint_t kind) { ctf_dtdef_t *dtd; ctf_id_t type; if (ep == NULL) return (ctf_set_errno(fp, EINVAL)); if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); dtd->dtd_data.ctt_size = clp2(P2ROUNDUP(ep->cte_bits, NBBY) / NBBY); dtd->dtd_u.dtu_enc = *ep; return (type); } static ctf_id_t ctf_add_reftype(ctf_file_t *fp, uint_t flag, ctf_id_t ref, uint_t kind) { ctf_dtdef_t *dtd; ctf_id_t type; if (ref == CTF_ERR || ref < 0 || ref > CTF_MAX_TYPE) return (ctf_set_errno(fp, EINVAL)); if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ ctf_ref_inc(fp, ref); dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, 0); dtd->dtd_data.ctt_type = (ushort_t)ref; return (type); } ctf_id_t ctf_add_integer(ctf_file_t *fp, uint_t flag, const char *name, const ctf_encoding_t *ep) { return (ctf_add_encoded(fp, flag, name, ep, CTF_K_INTEGER)); } ctf_id_t ctf_add_float(ctf_file_t *fp, uint_t flag, const char *name, const ctf_encoding_t *ep) { return (ctf_add_encoded(fp, flag, name, ep, CTF_K_FLOAT)); } ctf_id_t ctf_add_pointer(ctf_file_t *fp, uint_t flag, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, ref, CTF_K_POINTER)); } ctf_id_t ctf_add_array(ctf_file_t *fp, uint_t flag, const ctf_arinfo_t *arp) { ctf_dtdef_t *dtd; ctf_id_t type; ctf_file_t *fpd; if (arp == NULL) return (ctf_set_errno(fp, EINVAL)); fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && ctf_dtd_lookup(fp, arp->ctr_index) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, flag, 0); dtd->dtd_data.ctt_size = 0; dtd->dtd_u.dtu_arr = *arp; ctf_ref_inc(fp, arp->ctr_contents); ctf_ref_inc(fp, arp->ctr_index); return (type); } int ctf_set_array(ctf_file_t *fp, ctf_id_t type, const ctf_arinfo_t *arp) { ctf_file_t *fpd; ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL || CTF_INFO_KIND(dtd->dtd_data.ctt_info) != CTF_K_ARRAY) return (ctf_set_errno(fp, ECTF_BADID)); fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_contents) == NULL && ctf_dtd_lookup(fp, arp->ctr_contents) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); fpd = fp; if (ctf_lookup_by_id(&fpd, arp->ctr_index) == NULL && ctf_dtd_lookup(fp, arp->ctr_index) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_contents); ctf_ref_dec(fp, dtd->dtd_u.dtu_arr.ctr_index); fp->ctf_flags |= LCTF_DIRTY; dtd->dtd_u.dtu_arr = *arp; ctf_ref_inc(fp, arp->ctr_contents); ctf_ref_inc(fp, arp->ctr_index); return (0); } ctf_id_t ctf_add_function(ctf_file_t *fp, uint_t flag, const ctf_funcinfo_t *ctc, const ctf_id_t *argv) { ctf_dtdef_t *dtd; ctf_id_t type; uint_t vlen; int i; ctf_id_t *vdat = NULL; ctf_file_t *fpd; if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 || (ctc->ctc_argc != 0 && argv == NULL)) return (ctf_set_errno(fp, EINVAL)); vlen = ctc->ctc_argc; if (ctc->ctc_flags & CTF_FUNC_VARARG) vlen++; /* add trailing zero to indicate varargs (see below) */ if (vlen > CTF_MAX_VLEN) return (ctf_set_errno(fp, EOVERFLOW)); fpd = fp; if (ctf_lookup_by_id(&fpd, ctc->ctc_return) == NULL && ctf_dtd_lookup(fp, ctc->ctc_return) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); for (i = 0; i < ctc->ctc_argc; i++) { fpd = fp; if (ctf_lookup_by_id(&fpd, argv[i]) == NULL && ctf_dtd_lookup(fp, argv[i]) == NULL) return (ctf_set_errno(fp, ECTF_BADID)); } if (vlen != 0 && (vdat = ctf_alloc(sizeof (ctf_id_t) * vlen)) == NULL) return (ctf_set_errno(fp, EAGAIN)); if ((type = ctf_add_generic(fp, flag, NULL, &dtd)) == CTF_ERR) { ctf_free(vdat, sizeof (ctf_id_t) * vlen); return (CTF_ERR); /* errno is set for us */ } dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, flag, vlen); dtd->dtd_data.ctt_type = (ushort_t)ctc->ctc_return; ctf_ref_inc(fp, ctc->ctc_return); for (i = 0; i < ctc->ctc_argc; i++) ctf_ref_inc(fp, argv[i]); bcopy(argv, vdat, sizeof (ctf_id_t) * ctc->ctc_argc); if (ctc->ctc_flags & CTF_FUNC_VARARG) vdat[vlen - 1] = 0; /* add trailing zero to indicate varargs */ dtd->dtd_u.dtu_argv = vdat; return (type); } ctf_id_t ctf_add_struct(ctf_file_t *fp, uint_t flag, const char *name) { ctf_hash_t *hp = &fp->ctf_structs; ctf_helem_t *hep = NULL; ctf_dtdef_t *dtd; ctf_id_t type; if (name != NULL) hep = ctf_hash_lookup(hp, fp, name, strlen(name)); if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) dtd = ctf_dtd_lookup(fp, type = hep->h_type); else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, flag, 0); dtd->dtd_data.ctt_size = 0; return (type); } ctf_id_t ctf_add_union(ctf_file_t *fp, uint_t flag, const char *name) { ctf_hash_t *hp = &fp->ctf_unions; ctf_helem_t *hep = NULL; ctf_dtdef_t *dtd; ctf_id_t type; if (name != NULL) hep = ctf_hash_lookup(hp, fp, name, strlen(name)); if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) dtd = ctf_dtd_lookup(fp, type = hep->h_type); else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, flag, 0); dtd->dtd_data.ctt_size = 0; return (type); } ctf_id_t ctf_add_enum(ctf_file_t *fp, uint_t flag, const char *name) { ctf_hash_t *hp = &fp->ctf_enums; ctf_helem_t *hep = NULL; ctf_dtdef_t *dtd; ctf_id_t type; if (name != NULL) hep = ctf_hash_lookup(hp, fp, name, strlen(name)); if (hep != NULL && ctf_type_kind(fp, hep->h_type) == CTF_K_FORWARD) dtd = ctf_dtd_lookup(fp, type = hep->h_type); else if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, flag, 0); dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int; return (type); } ctf_id_t ctf_add_forward(ctf_file_t *fp, uint_t flag, const char *name, uint_t kind) { ctf_hash_t *hp; ctf_helem_t *hep; ctf_dtdef_t *dtd; ctf_id_t type; switch (kind) { case CTF_K_STRUCT: hp = &fp->ctf_structs; break; case CTF_K_UNION: hp = &fp->ctf_unions; break; case CTF_K_ENUM: hp = &fp->ctf_enums; break; default: return (ctf_set_errno(fp, ECTF_NOTSUE)); } /* * If the type is already defined or exists as a forward tag, just * return the ctf_id_t of the existing definition. */ if (name != NULL && (hep = ctf_hash_lookup(hp, fp, name, strlen(name))) != NULL) return (hep->h_type); if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, flag, 0); dtd->dtd_data.ctt_type = kind; return (type); } ctf_id_t ctf_add_typedef(ctf_file_t *fp, uint_t flag, const char *name, ctf_id_t ref) { ctf_dtdef_t *dtd; ctf_id_t type; ctf_file_t *fpd; fpd = fp; if (ref == CTF_ERR || (ctf_lookup_by_id(&fpd, ref) == NULL && ctf_dtd_lookup(fp, ref) == NULL)) return (ctf_set_errno(fp, EINVAL)); if ((type = ctf_add_generic(fp, flag, name, &dtd)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dtd->dtd_data.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, flag, 0); dtd->dtd_data.ctt_type = (ushort_t)ref; ctf_ref_inc(fp, ref); return (type); } ctf_id_t ctf_add_volatile(ctf_file_t *fp, uint_t flag, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, ref, CTF_K_VOLATILE)); } ctf_id_t ctf_add_const(ctf_file_t *fp, uint_t flag, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, ref, CTF_K_CONST)); } ctf_id_t ctf_add_restrict(ctf_file_t *fp, uint_t flag, ctf_id_t ref) { return (ctf_add_reftype(fp, flag, ref, CTF_K_RESTRICT)); } int ctf_add_enumerator(ctf_file_t *fp, ctf_id_t enid, const char *name, int value) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, enid); ctf_dmdef_t *dmd; uint_t kind, vlen, root; char *s; if (name == NULL) return (ctf_set_errno(fp, EINVAL)); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL) return (ctf_set_errno(fp, ECTF_BADID)); kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); if (kind != CTF_K_ENUM) return (ctf_set_errno(fp, ECTF_NOTENUM)); if (vlen == CTF_MAX_VLEN) return (ctf_set_errno(fp, ECTF_DTFULL)); for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) { if (strcmp(dmd->dmd_name, name) == 0) return (ctf_set_errno(fp, ECTF_DUPMEMBER)); } if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) return (ctf_set_errno(fp, EAGAIN)); if ((s = ctf_strdup(name)) == NULL) { ctf_free(dmd, sizeof (ctf_dmdef_t)); return (ctf_set_errno(fp, EAGAIN)); } dmd->dmd_name = s; dmd->dmd_type = CTF_ERR; dmd->dmd_offset = 0; dmd->dmd_value = value; dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); ctf_list_append(&dtd->dtd_u.dtu_members, dmd); fp->ctf_dtstrlen += strlen(s) + 1; fp->ctf_flags |= LCTF_DIRTY; return (0); } int ctf_add_member(ctf_file_t *fp, ctf_id_t souid, const char *name, ctf_id_t type) { ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, souid); ctf_dmdef_t *dmd; ssize_t msize, malign, ssize; uint_t kind, vlen, root; char *s = NULL; if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); if (dtd == NULL) return (ctf_set_errno(fp, ECTF_BADID)); kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); root = CTF_INFO_ISROOT(dtd->dtd_data.ctt_info); vlen = CTF_INFO_VLEN(dtd->dtd_data.ctt_info); if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) return (ctf_set_errno(fp, ECTF_NOTSOU)); if (vlen == CTF_MAX_VLEN) return (ctf_set_errno(fp, ECTF_DTFULL)); if (name != NULL) { for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) { if (dmd->dmd_name != NULL && strcmp(dmd->dmd_name, name) == 0) return (ctf_set_errno(fp, ECTF_DUPMEMBER)); } } if ((msize = ctf_type_size(fp, type)) == CTF_ERR || (malign = ctf_type_align(fp, type)) == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) return (ctf_set_errno(fp, EAGAIN)); if (name != NULL && (s = ctf_strdup(name)) == NULL) { ctf_free(dmd, sizeof (ctf_dmdef_t)); return (ctf_set_errno(fp, EAGAIN)); } dmd->dmd_name = s; dmd->dmd_type = type; dmd->dmd_value = -1; if (kind == CTF_K_STRUCT && vlen != 0) { ctf_dmdef_t *lmd = ctf_list_prev(&dtd->dtd_u.dtu_members); ctf_id_t ltype = ctf_type_resolve(fp, lmd->dmd_type); size_t off = lmd->dmd_offset; ctf_encoding_t linfo; ssize_t lsize; if (ctf_type_encoding(fp, ltype, &linfo) != CTF_ERR) off += linfo.cte_bits; else if ((lsize = ctf_type_size(fp, ltype)) != CTF_ERR) off += lsize * NBBY; /* * Round up the offset of the end of the last member to the * next byte boundary, convert 'off' to bytes, and then round * it up again to the next multiple of the alignment required * by the new member. Finally, convert back to bits and store * the result in dmd_offset. Technically we could do more * efficient packing if the new member is a bit-field, but * we're the "compiler" and ANSI says we can do as we choose. */ off = roundup(off, NBBY) / NBBY; off = roundup(off, MAX(malign, 1)); dmd->dmd_offset = off * NBBY; ssize = off + msize; } else { dmd->dmd_offset = 0; ssize = ctf_get_ctt_size(fp, &dtd->dtd_data, NULL, NULL); ssize = MAX(ssize, msize); } if (ssize > CTF_MAX_SIZE) { dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(ssize); dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(ssize); } else dtd->dtd_data.ctt_size = (ushort_t)ssize; dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, root, vlen + 1); ctf_list_append(&dtd->dtd_u.dtu_members, dmd); if (s != NULL) fp->ctf_dtstrlen += strlen(s) + 1; ctf_ref_inc(fp, type); fp->ctf_flags |= LCTF_DIRTY; return (0); } /* * This removes a type from the dynamic section. This will fail if the type is * referenced by another type. Note that the CTF ID is never reused currently by * CTF. Note that if this container is a parent container then we just outright * refuse to remove the type. There currently is no notion of searching for the * ctf_dtdef_t in parent containers. If there is, then this constraint could * become finer grained. */ int ctf_delete_type(ctf_file_t *fp, ctf_id_t type) { ctf_file_t *fpd; ctf_dtdef_t *dtd = ctf_dtd_lookup(fp, type); if (!(fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(fp, ECTF_RDONLY)); /* * We want to give as useful an errno as possible. That means that we * want to distinguish between a type which does not exist and one for * which the type is not dynamic. */ fpd = fp; if (ctf_lookup_by_id(&fpd, type) == NULL && ctf_dtd_lookup(fp, type) == NULL) return (CTF_ERR); /* errno is set for us */ if (dtd == NULL) return (ctf_set_errno(fp, ECTF_NOTDYN)); if (dtd->dtd_ref != 0 || fp->ctf_refcnt > 1) return (ctf_set_errno(fp, ECTF_REFERENCED)); ctf_dtd_delete(fp, dtd); fp->ctf_flags |= LCTF_DIRTY; return (0); } static int enumcmp(const char *name, int value, void *arg) { ctf_bundle_t *ctb = arg; int bvalue; return (ctf_enum_value(ctb->ctb_file, ctb->ctb_type, name, &bvalue) == CTF_ERR || value != bvalue); } static int enumadd(const char *name, int value, void *arg) { ctf_bundle_t *ctb = arg; return (ctf_add_enumerator(ctb->ctb_file, ctb->ctb_type, name, value) == CTF_ERR); } /*ARGSUSED*/ static int membcmp(const char *name, ctf_id_t type, ulong_t offset, void *arg) { ctf_bundle_t *ctb = arg; ctf_membinfo_t ctm; return (ctf_member_info(ctb->ctb_file, ctb->ctb_type, name, &ctm) == CTF_ERR || ctm.ctm_offset != offset); } static int membadd(const char *name, ctf_id_t type, ulong_t offset, void *arg) { ctf_bundle_t *ctb = arg; ctf_dmdef_t *dmd; char *s = NULL; if ((dmd = ctf_alloc(sizeof (ctf_dmdef_t))) == NULL) return (ctf_set_errno(ctb->ctb_file, EAGAIN)); if (name != NULL && (s = ctf_strdup(name)) == NULL) { ctf_free(dmd, sizeof (ctf_dmdef_t)); return (ctf_set_errno(ctb->ctb_file, EAGAIN)); } /* * For now, dmd_type is copied as the src_fp's type; it is reset to an * equivalent dst_fp type by a final loop in ctf_add_type(), below. */ dmd->dmd_name = s; dmd->dmd_type = type; dmd->dmd_offset = offset; dmd->dmd_value = -1; ctf_list_append(&ctb->ctb_dtd->dtd_u.dtu_members, dmd); if (s != NULL) ctb->ctb_file->ctf_dtstrlen += strlen(s) + 1; ctb->ctb_file->ctf_flags |= LCTF_DIRTY; return (0); } /* * The ctf_add_type routine is used to copy a type from a source CTF container * to a dynamic destination container. This routine operates recursively by * following the source type's links and embedded member types. If the * destination container already contains a named type which has the same * attributes, then we succeed and return this type but no changes occur. */ ctf_id_t ctf_add_type(ctf_file_t *dst_fp, ctf_file_t *src_fp, ctf_id_t src_type) { ctf_id_t dst_type = CTF_ERR; uint_t dst_kind = CTF_K_UNKNOWN; const ctf_type_t *tp; const char *name; uint_t kind, flag, vlen; ctf_bundle_t src, dst; - ctf_encoding_t src_en, dst_en; + ctf_encoding_t src_en, main_en, dst_en; ctf_arinfo_t src_ar, dst_ar; ctf_dtdef_t *dtd; ctf_funcinfo_t ctc; ssize_t size; ctf_hash_t *hp; ctf_helem_t *hep; if (dst_fp == src_fp) return (src_type); if (!(dst_fp->ctf_flags & LCTF_RDWR)) return (ctf_set_errno(dst_fp, ECTF_RDONLY)); if ((tp = ctf_lookup_by_id(&src_fp, src_type)) == NULL) return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); name = ctf_strptr(src_fp, tp->ctt_name); kind = LCTF_INFO_KIND(src_fp, tp->ctt_info); flag = LCTF_INFO_ROOT(src_fp, tp->ctt_info); vlen = LCTF_INFO_VLEN(src_fp, tp->ctt_info); switch (kind) { case CTF_K_STRUCT: hp = &dst_fp->ctf_structs; break; case CTF_K_UNION: hp = &dst_fp->ctf_unions; break; case CTF_K_ENUM: hp = &dst_fp->ctf_enums; break; default: hp = &dst_fp->ctf_names; break; } /* * If the source type has a name and is a root type (visible at the * top-level scope), lookup the name in the destination container and * verify that it is of the same kind before we do anything else. */ if ((flag & CTF_ADD_ROOT) && name[0] != '\0' && (hep = ctf_hash_lookup(hp, dst_fp, name, strlen(name))) != NULL) { dst_type = (ctf_id_t)hep->h_type; dst_kind = ctf_type_kind(dst_fp, dst_type); } /* * If an identically named dst_type exists, fail with ECTF_CONFLICT * unless dst_type is a forward declaration and src_type is a struct, * union, or enum (i.e. the definition of the previous forward decl). */ if (dst_type != CTF_ERR && dst_kind != kind) { if (dst_kind != CTF_K_FORWARD || (kind != CTF_K_ENUM && kind != CTF_K_STRUCT && kind != CTF_K_UNION)) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); else dst_type = CTF_ERR; } /* * If the non-empty name was not found in the appropriate hash, search * the list of pending dynamic definitions that are not yet committed. * If a matching name and kind are found, assume this is the type that * we are looking for. This is necessary to permit ctf_add_type() to * operate recursively on entities such as a struct that contains a * pointer member that refers to the same struct type. * * In the case of integer and floating point types, we match using the * type encoding as well - else we may incorrectly return a bitfield * type, for instance. */ if (dst_type == CTF_ERR && name[0] != '\0') { for (dtd = ctf_list_prev(&dst_fp->ctf_dtdefs); dtd != NULL && CTF_TYPE_TO_INDEX(dtd->dtd_type) > dst_fp->ctf_dtoldid; dtd = ctf_list_prev(dtd)) { if (CTF_INFO_KIND(dtd->dtd_data.ctt_info) != kind || dtd->dtd_name == NULL || strcmp(dtd->dtd_name, name) != 0) continue; if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT) { if (ctf_type_encoding(src_fp, src_type, &src_en) != 0) continue; if (bcmp(&src_en, &dtd->dtd_u.dtu_enc, sizeof (ctf_encoding_t)) != 0) continue; } return (dtd->dtd_type); } } src.ctb_file = src_fp; src.ctb_type = src_type; src.ctb_dtd = NULL; dst.ctb_file = dst_fp; dst.ctb_type = dst_type; dst.ctb_dtd = NULL; /* * Now perform kind-specific processing. If dst_type is CTF_ERR, then * we add a new type with the same properties as src_type to dst_fp. * If dst_type is not CTF_ERR, then we verify that dst_type has the * same attributes as src_type. We recurse for embedded references. */ switch (kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: if (ctf_type_encoding(src_fp, src_type, &src_en) != 0) return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); + + /* + * This could be a bitfield, and the CTF library assumes + * intrinsics will appear before bitfields. Therefore, + * try to copy over the intrinsic prior to copying the + * bitfield. + */ + if (dst_type == CTF_ERR && name[0] != '\0' && + (hep = ctf_hash_lookup(&src_fp->ctf_names, src_fp, name, + strlen(name))) != NULL && + src_type != (ctf_id_t)hep->h_type) { + if (ctf_type_encoding(src_fp, (ctf_id_t)hep->h_type, + &main_en) != 0) { + return (ctf_set_errno(dst_fp, + ctf_errno(src_fp))); + } + if (bcmp(&src_en, &main_en, sizeof (ctf_encoding_t)) && + ctf_add_type(dst_fp, src_fp, + (ctf_id_t)hep->h_type) == CTF_ERR) + return (CTF_ERR); /* errno is set for us */ + } if (dst_type != CTF_ERR) { if (ctf_type_encoding(dst_fp, dst_type, &dst_en) != 0) return (CTF_ERR); /* errno is set for us */ if (bcmp(&src_en, &dst_en, sizeof (ctf_encoding_t))) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); } else if (kind == CTF_K_INTEGER) { dst_type = ctf_add_integer(dst_fp, flag, name, &src_en); } else dst_type = ctf_add_float(dst_fp, flag, name, &src_en); break; case CTF_K_POINTER: case CTF_K_VOLATILE: case CTF_K_CONST: case CTF_K_RESTRICT: src_type = ctf_type_reference(src_fp, src_type); src_type = ctf_add_type(dst_fp, src_fp, src_type); if (src_type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dst_type = ctf_add_reftype(dst_fp, flag, src_type, kind); break; case CTF_K_ARRAY: if (ctf_array_info(src_fp, src_type, &src_ar) == CTF_ERR) return (ctf_set_errno(dst_fp, ctf_errno(src_fp))); src_ar.ctr_contents = ctf_add_type(dst_fp, src_fp, src_ar.ctr_contents); src_ar.ctr_index = ctf_add_type(dst_fp, src_fp, src_ar.ctr_index); src_ar.ctr_nelems = src_ar.ctr_nelems; if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR) return (CTF_ERR); /* errno is set for us */ if (dst_type != CTF_ERR) { if (ctf_array_info(dst_fp, dst_type, &dst_ar) != 0) return (CTF_ERR); /* errno is set for us */ if (bcmp(&src_ar, &dst_ar, sizeof (ctf_arinfo_t))) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); } else dst_type = ctf_add_array(dst_fp, flag, &src_ar); break; case CTF_K_FUNCTION: ctc.ctc_return = ctf_add_type(dst_fp, src_fp, tp->ctt_type); ctc.ctc_argc = 0; ctc.ctc_flags = 0; if (ctc.ctc_return == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dst_type = ctf_add_function(dst_fp, flag, &ctc, NULL); break; case CTF_K_STRUCT: case CTF_K_UNION: { ctf_dmdef_t *dmd; int errs = 0; /* * Technically to match a struct or union we need to check both * ways (src members vs. dst, dst members vs. src) but we make * this more optimal by only checking src vs. dst and comparing * the total size of the structure (which we must do anyway) * which covers the possibility of dst members not in src. * This optimization can be defeated for unions, but is so * pathological as to render it irrelevant for our purposes. */ if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { if (ctf_type_size(src_fp, src_type) != ctf_type_size(dst_fp, dst_type)) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); if (ctf_member_iter(src_fp, src_type, membcmp, &dst)) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); break; } /* * Unlike the other cases, copying structs and unions is done * manually so as to avoid repeated lookups in ctf_add_member * and to ensure the exact same member offsets as in src_type. */ dst_type = ctf_add_generic(dst_fp, flag, name, &dtd); if (dst_type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ dst.ctb_type = dst_type; dst.ctb_dtd = dtd; if (ctf_member_iter(src_fp, src_type, membadd, &dst) != 0) errs++; /* increment errs and fail at bottom of case */ if ((size = ctf_type_size(src_fp, src_type)) > CTF_MAX_SIZE) { dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size); dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size); } else dtd->dtd_data.ctt_size = (ushort_t)size; dtd->dtd_data.ctt_info = CTF_TYPE_INFO(kind, flag, vlen); /* * Make a final pass through the members changing each dmd_type * (a src_fp type) to an equivalent type in dst_fp. We pass * through all members, leaving any that fail set to CTF_ERR. */ for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) { if ((dmd->dmd_type = ctf_add_type(dst_fp, src_fp, dmd->dmd_type)) == CTF_ERR) errs++; } if (errs) return (CTF_ERR); /* errno is set for us */ /* * Now that we know that we can't fail, we go through and bump * all the reference counts on the member types. */ for (dmd = ctf_list_next(&dtd->dtd_u.dtu_members); dmd != NULL; dmd = ctf_list_next(dmd)) ctf_ref_inc(dst_fp, dmd->dmd_type); break; } case CTF_K_ENUM: if (dst_type != CTF_ERR && dst_kind != CTF_K_FORWARD) { if (ctf_enum_iter(src_fp, src_type, enumcmp, &dst) || ctf_enum_iter(dst_fp, dst_type, enumcmp, &src)) return (ctf_set_errno(dst_fp, ECTF_CONFLICT)); } else { dst_type = ctf_add_enum(dst_fp, flag, name); if ((dst.ctb_type = dst_type) == CTF_ERR || ctf_enum_iter(src_fp, src_type, enumadd, &dst)) return (CTF_ERR); /* errno is set for us */ } break; case CTF_K_FORWARD: if (dst_type == CTF_ERR) { dst_type = ctf_add_forward(dst_fp, flag, name, CTF_K_STRUCT); /* assume STRUCT */ } break; case CTF_K_TYPEDEF: src_type = ctf_type_reference(src_fp, src_type); src_type = ctf_add_type(dst_fp, src_fp, src_type); if (src_type == CTF_ERR) return (CTF_ERR); /* errno is set for us */ /* * If dst_type is not CTF_ERR at this point, we should check if * ctf_type_reference(dst_fp, dst_type) != src_type and if so * fail with ECTF_CONFLICT. However, this causes problems with * typedefs that vary based on things like if * _ILP32x then pid_t is int otherwise long. We therefore omit * this check and assume that if the identically named typedef * already exists in dst_fp, it is correct or equivalent. */ if (dst_type == CTF_ERR) { dst_type = ctf_add_typedef(dst_fp, flag, name, src_type); } break; default: return (ctf_set_errno(dst_fp, ECTF_CORRUPT)); } return (dst_type); }