Index: head/sbin/ifconfig/ifclone.c =================================================================== --- head/sbin/ifconfig/ifclone.c (revision 366916) +++ head/sbin/ifconfig/ifclone.c (revision 366917) @@ -1,179 +1,207 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1983, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include "ifconfig.h" +typedef enum { + MT_PREFIX, + MT_FILTER, +} clone_match_type; + static void list_cloners(void) { ifconfig_handle_t *lifh; char *cloners; size_t cloners_count; lifh = ifconfig_open(); if (lifh == NULL) return; if (ifconfig_list_cloners(lifh, &cloners, &cloners_count) < 0) errc(1, ifconfig_err_errno(lifh), "unable to list cloners"); ifconfig_close(lifh); for (const char *name = cloners; name < cloners + cloners_count * IFNAMSIZ; name += IFNAMSIZ) { if (name > cloners) putchar(' '); printf("%s", name); } putchar('\n'); free(cloners); } struct clone_defcb { - char ifprefix[IFNAMSIZ]; + union { + char ifprefix[IFNAMSIZ]; + clone_match_func *ifmatch; + }; + clone_match_type clone_mt; clone_callback_func *clone_cb; SLIST_ENTRY(clone_defcb) next; }; static SLIST_HEAD(, clone_defcb) clone_defcbh = SLIST_HEAD_INITIALIZER(clone_defcbh); void -clone_setdefcallback(const char *ifprefix, clone_callback_func *p) +clone_setdefcallback_prefix(const char *ifprefix, clone_callback_func *p) { struct clone_defcb *dcp; dcp = malloc(sizeof(*dcp)); strlcpy(dcp->ifprefix, ifprefix, IFNAMSIZ-1); + dcp->clone_mt = MT_PREFIX; dcp->clone_cb = p; SLIST_INSERT_HEAD(&clone_defcbh, dcp, next); } +void +clone_setdefcallback_filter(clone_match_func *filter, clone_callback_func *p) +{ + struct clone_defcb *dcp; + + dcp = malloc(sizeof(*dcp)); + dcp->ifmatch = filter; + dcp->clone_mt = MT_FILTER; + dcp->clone_cb = p; + SLIST_INSERT_HEAD(&clone_defcbh, dcp, next); +} + /* * Do the actual clone operation. Any parameters must have been * setup by now. If a callback has been setup to do the work * then defer to it; otherwise do a simple create operation with * no parameters. */ static void ifclonecreate(int s, void *arg) { struct ifreq ifr; struct clone_defcb *dcp; clone_callback_func *clone_cb = NULL; memset(&ifr, 0, sizeof(ifr)); (void) strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name)); if (clone_cb == NULL) { /* Try to find a default callback */ SLIST_FOREACH(dcp, &clone_defcbh, next) { - if (strncmp(dcp->ifprefix, ifr.ifr_name, - strlen(dcp->ifprefix)) == 0) { + if ((dcp->clone_mt == MT_PREFIX) && + (strncmp(dcp->ifprefix, ifr.ifr_name, + strlen(dcp->ifprefix)) == 0)) { + clone_cb = dcp->clone_cb; + break; + } + if ((dcp->clone_mt == MT_FILTER) && + dcp->ifmatch(ifr.ifr_name)) { clone_cb = dcp->clone_cb; break; } } } if (clone_cb == NULL) { /* NB: no parameters */ if (ioctl(s, SIOCIFCREATE2, &ifr) < 0) err(1, "SIOCIFCREATE2"); } else { clone_cb(s, &ifr); } /* * If we get a different name back than we put in, update record and * indicate it should be printed later. */ if (strncmp(name, ifr.ifr_name, sizeof(name)) != 0) { strlcpy(name, ifr.ifr_name, sizeof(name)); printifname = 1; } } static DECL_CMD_FUNC(clone_create, arg, d) { callback_register(ifclonecreate, NULL); } static DECL_CMD_FUNC(clone_destroy, arg, d) { (void) strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name)); if (ioctl(s, SIOCIFDESTROY, &ifr) < 0) err(1, "SIOCIFDESTROY"); } static struct cmd clone_cmds[] = { DEF_CLONE_CMD("create", 0, clone_create), DEF_CMD("destroy", 0, clone_destroy), DEF_CLONE_CMD("plumb", 0, clone_create), DEF_CMD("unplumb", 0, clone_destroy), }; static void clone_Copt_cb(const char *optarg __unused) { list_cloners(); exit(exit_code); } static struct option clone_Copt = { .opt = "C", .opt_usage = "[-C]", .cb = clone_Copt_cb }; static __constructor void clone_ctor(void) { size_t i; for (i = 0; i < nitems(clone_cmds); i++) cmd_register(&clone_cmds[i]); opt_register(&clone_Copt); } Index: head/sbin/ifconfig/ifconfig.8 =================================================================== --- head/sbin/ifconfig/ifconfig.8 (revision 366916) +++ head/sbin/ifconfig/ifconfig.8 (revision 366917) @@ -1,3112 +1,3121 @@ .\" Copyright (c) 1983, 1991, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" From: @(#)ifconfig.8 8.3 (Berkeley) 1/5/94 .\" $FreeBSD$ .\" .Dd September 17, 2020 .Dt IFCONFIG 8 .Os .Sh NAME .Nm ifconfig .Nd configure network interface parameters .Sh SYNOPSIS .Nm .Op Fl f Ar type:format Ns Op Ar ,type:format .Op Fl L .Op Fl k .Op Fl m .Op Fl n .Ar interface .Op Cm create .Ar address_family .Oo .Ar address .Op Ar dest_address .Oc .Op Ar parameters .Nm .Ar interface .Cm destroy .Nm .Fl a .Op Fl L .Op Fl d .Op Fl [gG] Ar groupname .Op Fl m .Op Fl u .Op Fl v .Op Ar address_family .Nm .Fl l .Op Fl d .Op Fl u .Op Ar address_family .Nm .Op Fl L .Op Fl d .Op Fl k .Op Fl m .Op Fl u .Op Fl v .Op Fl C .Nm .Op Fl g Ar groupname .Sh DESCRIPTION The .Nm utility is used to assign an address to a network interface and/or configure network interface parameters. The .Nm utility must be used at boot time to define the network address of each interface present on a machine; it may also be used at a later time to redefine an interface's address or other operating parameters. .Pp The following options are available: .Bl -tag -width indent .It Ar address For the .Tn DARPA Ns -Internet family, the address is either a host name present in the host name data base, .Xr hosts 5 , or a .Tn DARPA Internet address expressed in the Internet standard .Dq dot notation . .Pp It is also possible to use the CIDR notation (also known as the slash notation) to include the netmask. That is, one can specify an address like .Li 192.168.0.1/16 . .Pp For the .Dq inet6 family, it is also possible to specify the prefix length using the slash notation, like .Li ::1/128 . See the .Cm prefixlen parameter below for more information. .\" For the Xerox Network Systems(tm) family, .\" addresses are .\" .Ar net:a.b.c.d.e.f , .\" where .\" .Ar net .\" is the assigned network number (in decimal), .\" and each of the six bytes of the host number, .\" .Ar a .\" through .\" .Ar f , .\" are specified in hexadecimal. .\" The host number may be omitted on IEEE 802 protocol .\" (Ethernet, FDDI, and Token Ring) interfaces, .\" which use the hardware physical address, .\" and on interfaces other than the first. .\" For the .\" .Tn ISO .\" family, addresses are specified as a long hexadecimal string, .\" as in the Xerox family. .\" However, two consecutive dots imply a zero .\" byte, and the dots are optional, if the user wishes to (carefully) .\" count out long strings of digits in network byte order. .Pp The link-level .Pq Dq link address is specified as a series of colon-separated hex digits. This can be used to, for example, set a new MAC address on an Ethernet interface, though the mechanism used is not Ethernet specific. Use the .Pq Dq random keyword to set a randomly generated MAC address. A randomly-generated MAC address might be the same as one already in use in the network. Such duplications are extremely unlikely. If the interface is already up when this option is used, it will be briefly brought down and then brought back up again in order to ensure that the receive filter in the underlying Ethernet hardware is properly reprogrammed. .It Ar address_family Specify the address family which affects interpretation of the remaining parameters. Since an interface can receive transmissions in differing protocols with different naming schemes, specifying the address family is recommended. The address or protocol families currently supported are .Dq inet , .Dq inet6 , and .Dq link . The default if available is .Dq inet or otherwise .Dq link . .Dq ether and .Dq lladdr are synonyms for .Dq link . When using the .Fl l flag, the .Dq ether address family has special meaning and is no longer synonymous with .Dq link or .Dq lladdr . Specifying .Fl l Dq ether will list only Ethernet interfaces, excluding all other interface types, including the loopback interface. .It Ar dest_address Specify the address of the correspondent on the other end of a point to point link. .It Ar interface This parameter is a string of the form .Dq name unit , for example, .Dq Li em0 . .It Ar groupname List the interfaces in the given group. .El .Pp The output format of .Nm can be controlled using the .Fl f flag or the .Ev IFCONFIG_FORMAT environment variable. The format is specified as a comma separated list of .Sy type:format pairs. See the .Sx EXAMPLES section for more information. The .Sy types and their associated .Sy format strings are: .Bl -tag -width ether .It Sy addr Adjust the display of inet and inet6 addresses .Bl -tag -width default .It Sy default Display inet and inet6 addresses in the default format, .Sy numeric .It Sy fqdn Display inet and inet6 addresses as fully qualified domain names .Pq FQDN .It Sy host Display inet and inet6 addresses as unqualified hostnames .It Sy numeric Display inet and inet6 addresses in numeric format .El .It Sy ether Adjust the display of link-level ethernet (MAC) addresses .Bl -tag -width default .It Sy colon Separate address segments with a colon .It Sy dash Separate address segments with a dash .It Sy default Display ethernet addresses in the default format, .Sy colon .El .It Sy inet Adjust the display of inet address subnet masks: .Bl -tag -width default .It Sy cidr Display subnet masks in CIDR notation, for example: .br 10.0.0.0/8 or 203.0.113.224/26 .It Sy default Display subnet masks in the default format, .Sy hex .It Sy dotted Display subnet masks in dotted quad notation, for example: .br 255.255.0.0 or 255.255.255.192 .It Sy hex Display subnet masks in hexadecimal, for example: .br 0xffff0000 or 0xffffffc0 .El .It Sy inet6 Adjust the display of inet6 address prefixes (subnet masks): .Bl -tag -width default .It Sy cidr Display subnet prefix in CIDR notation, for example: .br ::1/128 or fe80::1%lo0/64 .It Sy default Display subnet prefix in the default format .Sy numeric .It Sy numeric Display subnet prefix in integer format, for example: .br prefixlen 64 .El .El .Pp The following parameters may be set with .Nm : .Bl -tag -width indent .It Cm add Another name for the .Cm alias parameter. Introduced for compatibility with .Bsx . .It Cm alias Establish an additional network address for this interface. This is sometimes useful when changing network numbers, and one wishes to accept packets addressed to the old interface. If the address is on the same subnet as the first network address for this interface, a non-conflicting netmask must be given. Usually .Li 0xffffffff is most appropriate. .It Fl alias Remove the network address specified. This would be used if you incorrectly specified an alias, or it was no longer needed. If you have incorrectly set an NS address having the side effect of specifying the host portion, removing all NS addresses will allow you to respecify the host portion. .It Cm anycast (Inet6 only.) Specify that the address configured is an anycast address. Based on the current specification, only routers may configure anycast addresses. Anycast address will not be used as source address of any of outgoing IPv6 packets. .It Cm arp Enable the use of the Address Resolution Protocol .Pq Xr arp 4 in mapping between network level addresses and link level addresses (default). This is currently implemented for mapping between .Tn DARPA Internet addresses and .Tn IEEE 802 48-bit MAC addresses (Ethernet, FDDI, and Token Ring addresses). .It Fl arp Disable the use of the Address Resolution Protocol .Pq Xr arp 4 . .It Cm staticarp If the Address Resolution Protocol is enabled, the host will only reply to requests for its addresses, and will never send any requests. .It Fl staticarp If the Address Resolution Protocol is enabled, the host will perform normally, sending out requests and listening for replies. .It Cm broadcast (Inet only.) Specify the address to use to represent broadcasts to the network. The default broadcast address is the address with a host part of all 1's. .It Cm debug Enable driver dependent debugging code; usually, this turns on extra console error logging. .It Fl debug Disable driver dependent debugging code. .It Cm promisc Put interface into permanently promiscuous mode. .It Fl promisc Disable permanently promiscuous mode. .It Cm delete Another name for the .Fl alias parameter. .It Cm description Ar value , Cm descr Ar value Specify a description of the interface. This can be used to label interfaces in situations where they may otherwise be difficult to distinguish. .It Cm -description , Cm -descr Clear the interface description. .It Cm down Mark an interface .Dq down . When an interface is marked .Dq down , the system will not attempt to transmit messages through that interface. If possible, the interface will be reset to disable reception as well. This action does not automatically disable routes using the interface. .It Cm group Ar groupname Assign the interface to a .Dq group . Any interface can be in multiple groups. .Pp Cloned interfaces are members of their interface family group by default. For example, a PPP interface such as .Em ppp0 is a member of the PPP interface family group, .Em ppp . .\" The interface(s) the default route(s) point to are members of the .\" .Em egress .\" interface group. .It Cm -group Ar groupname Remove the interface from the given .Dq group . .It Cm eui64 (Inet6 only.) Fill interface index (lowermost 64bit of an IPv6 address) automatically. .It Cm fib Ar fib_number Specify interface FIB. A FIB .Ar fib_number is assigned to all frames or packets received on that interface. The FIB is not inherited, e.g., vlans or other sub-interfaces will use the default FIB (0) irrespective of the parent interface's FIB. The kernel needs to be tuned to support more than the default FIB using the .Va ROUTETABLES kernel configuration option, or the .Va net.fibs tunable. .It Cm tunnelfib Ar fib_number Specify tunnel FIB. A FIB .Ar fib_number is assigned to all packets encapsulated by tunnel interface, e.g., .Xr gif 4 and .Xr gre 4 . .It Cm maclabel Ar label If Mandatory Access Control support is enabled in the kernel, set the MAC label to .Ar label . .\" (see .\" .Xr maclabel 7 ) . .It Cm media Ar type If the driver supports the media selection system, set the media type of the interface to .Ar type . Some interfaces support the mutually exclusive use of one of several different physical media connectors. For example, a 10Mbit/s Ethernet interface might support the use of either .Tn AUI or twisted pair connectors. Setting the media type to .Cm 10base5/AUI would change the currently active connector to the AUI port. Setting it to .Cm 10baseT/UTP would activate twisted pair. Refer to the interfaces' driver specific documentation or man page for a complete list of the available types. .It Cm mediaopt Ar opts If the driver supports the media selection system, set the specified media options on the interface. The .Ar opts argument is a comma delimited list of options to apply to the interface. Refer to the interfaces' driver specific man page for a complete list of available options. .It Fl mediaopt Ar opts If the driver supports the media selection system, disable the specified media options on the interface. .It Cm mode Ar mode If the driver supports the media selection system, set the specified operating mode on the interface to .Ar mode . For IEEE 802.11 wireless interfaces that support multiple operating modes this directive is used to select between 802.11a .Pq Cm 11a , 802.11b .Pq Cm 11b , and 802.11g .Pq Cm 11g operating modes. .It Cm txrtlmt Set if the driver supports TX rate limiting. .It Cm inst Ar minst , Cm instance Ar minst Set the media instance to .Ar minst . This is useful for devices which have multiple physical layer interfaces .Pq PHYs . .It Cm name Ar name Set the interface name to .Ar name . .It Cm rxcsum , txcsum , rxcsum6 , txcsum6 If the driver supports user-configurable checksum offloading, enable receive (or transmit) checksum offloading on the interface. The feature can be turned on selectively per protocol family. Use .Cm rxcsum6 , txcsum6 for .Xr ip6 4 or .Cm rxcsum , txcsum otherwise. Some drivers may not be able to enable these flags independently of each other, so setting one may also set the other. The driver will offload as much checksum work as it can reliably support, the exact level of offloading varies between drivers. .It Fl rxcsum , txcsum , rxcsum6 , txcsum6 If the driver supports user-configurable checksum offloading, disable receive (or transmit) checksum offloading on the interface. The feature can be turned off selectively per protocol family. Use .Fl rxcsum6 , txcsum6 for .Xr ip6 4 or .Fl rxcsum , txcsum otherwise. These settings may not always be independent of each other. .It Cm tso If the driver supports .Xr tcp 4 segmentation offloading, enable TSO on the interface. Some drivers may not be able to support TSO for .Xr ip 4 and .Xr ip6 4 packets, so they may enable only one of them. .It Fl tso If the driver supports .Xr tcp 4 segmentation offloading, disable TSO on the interface. It will always disable TSO for .Xr ip 4 and .Xr ip6 4 . .It Cm tso6 , tso4 If the driver supports .Xr tcp 4 segmentation offloading for .Xr ip6 4 or .Xr ip 4 use one of these to selectively enabled it only for one protocol family. .It Fl tso6 , tso4 If the driver supports .Xr tcp 4 segmentation offloading for .Xr ip6 4 or .Xr ip 4 use one of these to selectively disable it only for one protocol family. .It Cm lro If the driver supports .Xr tcp 4 large receive offloading, enable LRO on the interface. .It Fl lro If the driver supports .Xr tcp 4 large receive offloading, disable LRO on the interface. .It Cm txtls Transmit TLS offload encrypts Transport Layer Security (TLS) records and segments the encrypted record into one or more .Xr tcp 4 segments over either .Xr ip 4 or .Xr ip6 4 . If the driver supports transmit TLS offload, enable transmit TLS offload on the interface. Some drivers may not be able to support transmit TLS offload for .Xr ip 4 and .Xr ip6 4 packets, so they may enable only one of them. .It Fl txtls If the driver supports transmit TLS offload, disable transmit TLS offload on the interface. It will always disable TLS for .Xr ip 4 and .Xr ip6 4 . .It Cm nomap If the driver supports unmapped network buffers, enable them on the interface. .It Fl nomap If the driver supports unmapped network buffers, disable them on the interface. .It Cm wol , wol_ucast , wol_mcast , wol_magic Enable Wake On Lan (WOL) support, if available. WOL is a facility whereby a machine in a low power state may be woken in response to a received packet. There are three types of packets that may wake a system: ucast (directed solely to the machine's mac address), mcast (directed to a broadcast or multicast address), or magic (unicast or multicast frames with a ``magic contents''). Not all devices support WOL, those that do indicate the mechanisms they support in their capabilities. .Cm wol is a synonym for enabling all available WOL mechanisms. To disable WOL use .Fl wol . -.It Cm vlanmtu , vlanhwtag, vlanhwfilter, vlanhwcsum, vlanhwtso +.It Cm vlanmtu , vlanhwtag , vlanhwfilter , vlanhwcsum , vlanhwtso If the driver offers user-configurable VLAN support, enable reception of extended frames, tag processing in hardware, frame filtering in hardware, checksum offloading, or TSO on VLAN, respectively. Note that this must be configured on a physical interface associated with .Xr vlan 4 , not on a .Xr vlan 4 interface itself. -.It Fl vlanmtu , vlanhwtag , vlanhwfilter , vlanhwtso +.It Fl vlanmtu , vlanhwtag, vlanhwfilter, vlanhwtso If the driver offers user-configurable VLAN support, disable reception of extended frames, tag processing in hardware, frame filtering in hardware, or TSO on VLAN, respectively. .It Cm vxlanhwcsum , vxlanhwtso If the driver offers user-configurable VXLAN support, enable inner checksum offloading (receive and transmit) or TSO on VXLAN, respectively. Note that this must be configured on a physical interface associated with .Xr vxlan 4 , not on a .Xr vxlan 4 interface itself. The physical interface is either the interface specified as the vxlandev or the interface hosting the vxlanlocal address. The driver will offload as much checksum work and TSO as it can reliably support, the exact level of offloading may vary between drivers. .It Fl vxlanhwcsum , vxlanhwtso If the driver offers user-configurable VXLAN support, disable checksum offloading (receive and transmit) or TSO on VXLAN, respectively. .It Cm vnet Ar jail Move the interface to the .Xr jail 8 , specified by name or JID. If the jail has a virtual network stack, the interface will disappear from the current environment and become visible to the jail. .It Fl vnet Ar jail Reclaim the interface from the .Xr jail 8 , specified by name or JID. If the jail has a virtual network stack, the interface will disappear from the jail, and become visible to the current network environment. .It Cm polling Turn on .Xr polling 4 feature and disable interrupts on the interface, if driver supports this mode. .It Fl polling Turn off .Xr polling 4 feature and enable interrupt mode on the interface. .It Cm create Create the specified network pseudo-device. If the interface is given without a unit number, try to create a new device with an arbitrary unit number. If creation of an arbitrary device is successful, the new device name is printed to standard output unless the interface is renamed or destroyed in the same .Nm invocation. .It Cm destroy Destroy the specified network pseudo-device. .It Cm plumb Another name for the .Cm create parameter. Included for .Tn Solaris compatibility. .It Cm unplumb Another name for the .Cm destroy parameter. Included for .Tn Solaris compatibility. .It Cm metric Ar n Set the routing metric of the interface to .Ar n , default 0. The routing metric is used by the routing protocol .Pq Xr routed 8 . Higher metrics have the effect of making a route less favorable; metrics are counted as additional hops to the destination network or host. .It Cm mtu Ar n Set the maximum transmission unit of the interface to .Ar n , default is interface specific. The MTU is used to limit the size of packets that are transmitted on an interface. Not all interfaces support setting the MTU, and some interfaces have range restrictions. .It Cm netmask Ar mask .\" (Inet and ISO.) (Inet only.) Specify how much of the address to reserve for subdividing networks into sub-networks. The mask includes the network part of the local address and the subnet part, which is taken from the host field of the address. The mask can be specified as a single hexadecimal number with a leading .Ql 0x , with a dot-notation Internet address, or with a pseudo-network name listed in the network table .Xr networks 5 . The mask contains 1's for the bit positions in the 32-bit address which are to be used for the network and subnet parts, and 0's for the host part. The mask should contain at least the standard network portion, and the subnet field should be contiguous with the network portion. .Pp The netmask can also be specified in CIDR notation after the address. See the .Ar address option above for more information. .It Cm prefixlen Ar len (Inet6 only.) Specify that .Ar len bits are reserved for subdividing networks into sub-networks. The .Ar len must be integer, and for syntactical reason it must be between 0 to 128. It is almost always 64 under the current IPv6 assignment rule. If the parameter is omitted, 64 is used. .Pp The prefix can also be specified using the slash notation after the address. See the .Ar address option above for more information. .It Cm remove Another name for the .Fl alias parameter. Introduced for compatibility with .Bsx . .Sm off .It Cm link Op Cm 0 No - Cm 2 .Sm on Enable special processing of the link level of the interface. These three options are interface specific in actual effect, however, they are in general used to select special modes of operation. An example of this is to enable SLIP compression, or to select the connector type for some Ethernet cards. Refer to the man page for the specific driver for more information. .Sm off .It Fl link Op Cm 0 No - Cm 2 .Sm on Disable special processing at the link level with the specified interface. .It Cm monitor Put the interface in monitor mode. No packets are transmitted, and received packets are discarded after .Xr bpf 4 processing. .It Fl monitor Take the interface out of monitor mode. .It Cm pcp Ar priority_code_point Priority code point .Pq Dv PCP is an 3-bit field which refers to the IEEE 802.1p class of service and maps to the frame priority level. .It Fl pcp Stop tagging packets on the interface w/ the priority code point. .It Cm up Mark an interface .Dq up . This may be used to enable an interface after an .Dq Nm Cm down . It happens automatically when setting the first address on an interface. If the interface was reset when previously marked down, the hardware will be re-initialized. .El .Pp The following parameters are for ICMPv6 Neighbor Discovery Protocol. Note that the address family keyword .Dq Li inet6 is needed for them: .Bl -tag -width indent .It Cm accept_rtadv Set a flag to enable accepting ICMPv6 Router Advertisement messages. The .Xr sysctl 8 variable .Va net.inet6.ip6.accept_rtadv controls whether this flag is set by default or not. .It Cm -accept_rtadv Clear a flag .Cm accept_rtadv . .It Cm no_radr Set a flag to control whether routers from which the system accepts Router Advertisement messages will be added to the Default Router List or not. When the .Cm accept_rtadv flag is disabled, this flag has no effect. The .Xr sysctl 8 variable .Va net.inet6.ip6.no_radr controls whether this flag is set by default or not. .It Cm -no_radr Clear a flag .Cm no_radr . .It Cm auto_linklocal Set a flag to perform automatic link-local address configuration when the interface becomes available. The .Xr sysctl 8 variable .Va net.inet6.ip6.auto_linklocal controls whether this flag is set by default or not. .It Cm -auto_linklocal Clear a flag .Cm auto_linklocal . .It Cm defaultif Set the specified interface as the default route when there is no default router. .It Cm -defaultif Clear a flag .Cm defaultif . .It Cm ifdisabled Set a flag to disable all of IPv6 network communications on the specified interface. Note that if there are already configured IPv6 addresses on that interface, all of them are marked as .Dq tentative and DAD will be performed when this flag is cleared. .It Cm -ifdisabled Clear a flag .Cm ifdisabled . When this flag is cleared and .Cm auto_linklocal flag is enabled, automatic configuration of a link-local address is performed. .It Cm nud Set a flag to enable Neighbor Unreachability Detection. .It Cm -nud Clear a flag .Cm nud . .It Cm no_prefer_iface Set a flag to not honor rule 5 of source address selection in RFC 3484. In practice this means the address on the outgoing interface will not be preferred, effectively yielding the decision to the address selection policy table, configurable with .Xr ip6addrctl 8 . .It Cm -no_prefer_iface Clear a flag .Cm no_prefer_iface . .It Cm no_dad Set a flag to disable Duplicate Address Detection. .It Cm -no_dad Clear a flag .Cm no_dad . .El .Pp The following parameters are specific for IPv6 addresses. Note that the address family keyword .Dq Li inet6 is needed for them: .Bl -tag -width indent .It Cm autoconf Set the IPv6 autoconfigured address bit. .It Fl autoconf Clear the IPv6 autoconfigured address bit. .It Cm deprecated Set the IPv6 deprecated address bit. .It Fl deprecated Clear the IPv6 deprecated address bit. .It Cm pltime Ar n Set preferred lifetime for the address. .It Cm prefer_source Set a flag to prefer address as a candidate of the source address for outgoing packets. .It Cm -prefer_source Clear a flag .Cm prefer_source . .It Cm vltime Ar n Set valid lifetime for the address. .El .Pp The following parameters are specific to cloning IEEE 802.11 wireless interfaces with the .Cm create request: .Bl -tag -width indent .It Cm wlandev Ar device Use .Ar device as the parent for the cloned device. .It Cm wlanmode Ar mode Specify the operating mode for this cloned device. .Ar mode is one of .Cm sta , .Cm ahdemo (or .Cm adhoc-demo ) , .Cm ibss , (or .Cm adhoc ) , .Cm ap , (or .Cm hostap ) , .Cm wds , .Cm tdma , .Cm mesh , and .Cm monitor . The operating mode of a cloned interface cannot be changed. The .Cm tdma mode is actually implemented as an .Cm adhoc-demo interface with special properties. .It Cm wlanbssid Ar bssid The 802.11 mac address to use for the bssid. This must be specified at create time for a legacy .Cm wds device. .It Cm wlanaddr Ar address The local mac address. If this is not specified then a mac address will automatically be assigned to the cloned device. Typically this address is the same as the address of the parent device but if the .Cm bssid parameter is specified then the driver will craft a unique address for the device (if supported). .It Cm wdslegacy Mark a .Cm wds device as operating in ``legacy mode''. Legacy .Cm wds devices have a fixed peer relationship and do not, for example, roam if their peer stops communicating. For completeness a Dynamic WDS (DWDS) interface may marked as .Fl wdslegacy . .It Cm bssid Request a unique local mac address for the cloned device. This is only possible if the device supports multiple mac addresses. To force use of the parent's mac address use .Fl bssid . .It Cm beacons Mark the cloned interface as depending on hardware support to track received beacons. To have beacons tracked in software use .Fl beacons . For .Cm hostap mode .Fl beacons can also be used to indicate no beacons should be transmitted; this can be useful when creating a WDS configuration but .Cm wds interfaces can only be created as companions to an access point. .El .Pp The following parameters are specific to IEEE 802.11 wireless interfaces cloned with a .Cm create operation: .Bl -tag -width indent .It Cm ampdu Enable sending and receiving AMPDU frames when using 802.11n (default). The 802.11n specification states a compliant station must be capable of receiving AMPDU frames but transmission is optional. Use .Fl ampdu to disable all use of AMPDU with 802.11n. For testing and/or to work around interoperability problems one can use .Cm ampdutx and .Cm ampdurx to control use of AMPDU in one direction. .It Cm ampdudensity Ar density Set the AMPDU density parameter used when operating with 802.11n. This parameter controls the inter-packet gap for AMPDU frames. The sending device normally controls this setting but a receiving station may request wider gaps. Legal values for .Ar density are 0, .25, .5, 1, 2, 4, 8, and 16 (microseconds). A value of .Cm - is treated the same as 0. .It Cm ampdulimit Ar limit Set the limit on packet size for receiving AMPDU frames when operating with 802.11n. Legal values for .Ar limit are 8192, 16384, 32768, and 65536 but one can also specify just the unique prefix: 8, 16, 32, 64. Note the sender may limit the size of AMPDU frames to be less than the maximum specified by the receiving station. .It Cm amsdu Enable sending and receiving AMSDU frames when using 802.11n. By default AMSDU is received but not transmitted. Use .Fl amsdu to disable all use of AMSDU with 802.11n. For testing and/or to work around interoperability problems one can use .Cm amsdutx and .Cm amsdurx to control use of AMSDU in one direction. .It Cm amsdulimit Ar limit Set the limit on packet size for sending and receiving AMSDU frames when operating with 802.11n. Legal values for .Ar limit are 7935 and 3839 (bytes). Note the sender may limit the size of AMSDU frames to be less than the maximum specified by the receiving station. Note also that devices are not required to support the 7935 limit, only 3839 is required by the specification and the larger value may require more memory to be dedicated to support functionality that is rarely used. .It Cm apbridge When operating as an access point, pass packets between wireless clients directly (default). To instead let them pass up through the system and be forwarded using some other mechanism, use .Fl apbridge . Disabling the internal bridging is useful when traffic is to be processed with packet filtering. .It Cm authmode Ar mode Set the desired authentication mode in infrastructure mode. Not all adapters support all modes. The set of valid modes is .Cm none , open , shared (shared key), .Cm 8021x (IEEE 802.1x), and .Cm wpa (IEEE WPA/WPA2/802.11i). The .Cm 8021x and .Cm wpa modes are only useful when using an authentication service (a supplicant for client operation or an authenticator when operating as an access point). Modes are case insensitive. .It Cm bgscan Enable background scanning when operating as a station. Background scanning is a technique whereby a station associated to an access point will temporarily leave the channel to scan for neighboring stations. This allows a station to maintain a cache of nearby access points so that roaming between access points can be done without a lengthy scan operation. Background scanning is done only when a station is not busy and any outbound traffic will cancel a scan operation. Background scanning should never cause packets to be lost though there may be some small latency if outbound traffic interrupts a scan operation. By default background scanning is enabled if the device is capable. To disable background scanning, use .Fl bgscan . Background scanning is controlled by the .Cm bgscanidle and .Cm bgscanintvl parameters. Background scanning must be enabled for roaming; this is an artifact of the current implementation and may not be required in the future. .It Cm bgscanidle Ar idletime Set the minimum time a station must be idle (not transmitting or receiving frames) before a background scan is initiated. The .Ar idletime parameter is specified in milliseconds. By default a station must be idle at least 250 milliseconds before a background scan is initiated. The idle time may not be set to less than 100 milliseconds. .It Cm bgscanintvl Ar interval Set the interval at which background scanning is attempted. The .Ar interval parameter is specified in seconds. By default a background scan is considered every 300 seconds (5 minutes). The .Ar interval may not be set to less than 15 seconds. .It Cm bintval Ar interval Set the interval at which beacon frames are sent when operating in ad-hoc or ap mode. The .Ar interval parameter is specified in TU's (1024 usecs). By default beacon frames are transmitted every 100 TU's. .It Cm bmissthreshold Ar count Set the number of consecutive missed beacons at which the station will attempt to roam (i.e., search for a new access point). The .Ar count parameter must be in the range 1 to 255; though the upper bound may be reduced according to device capabilities. The default threshold is 7 consecutive missed beacons; but this may be overridden by the device driver. Another name for the .Cm bmissthreshold parameter is .Cm bmiss . .It Cm bssid Ar address Specify the MAC address of the access point to use when operating as a station in a BSS network. This overrides any automatic selection done by the system. To disable a previously selected access point, supply .Cm any , none , or .Cm - for the address. This option is useful when more than one access point uses the same SSID. Another name for the .Cm bssid parameter is .Cm ap . .It Cm burst Enable packet bursting. Packet bursting is a transmission technique whereby the wireless medium is acquired once to send multiple frames and the interframe spacing is reduced. This technique can significantly increase throughput by reducing transmission overhead. Packet bursting is supported by the 802.11e QoS specification and some devices that do not support QoS may still be capable. By default packet bursting is enabled if a device is capable of doing it. To disable packet bursting, use .Fl burst . .It Cm chanlist Ar channels Set the desired channels to use when scanning for access points, neighbors in an IBSS network, or looking for unoccupied channels when operating as an access point. The set of channels is specified as a comma-separated list with each element in the list representing either a single channel number or a range of the form .Dq Li a-b . Channel numbers must be in the range 1 to 255 and be permissible according to the operating characteristics of the device. .It Cm channel Ar number Set a single desired channel. Channels range from 1 to 255, but the exact selection available depends on the region your adaptor was manufactured for. Setting the channel to .Li any , or .Cm - will clear any desired channel and, if the device is marked up, force a scan for a channel to operate on. Alternatively the frequency, in megahertz, may be specified instead of the channel number. .Pp When there are several ways to use a channel the channel number/frequency may be appended with attributes to clarify. For example, if a device is capable of operating on channel 6 with 802.11n and 802.11g then one can specify that g-only use should be used by specifying ``6:g''. Similarly the channel width can be specified by appending it with ``/''; e.g., ``6/40'' specifies a 40MHz wide channel, These attributes can be combined as in: ``6:ht/40''. The full set of flags specified following a ``:'' are: .Cm a (802.11a), .Cm b (802.11b), .Cm d (Atheros Dynamic Turbo mode), .Cm g (802.11g), .Cm h or .Cm n (802.11n aka HT), .Cm s (Atheros Static Turbo mode), and .Cm t (Atheros Dynamic Turbo mode, or appended to ``st'' and ``dt''). The full set of channel widths following a '/' are: .Cm 5 (5MHz aka quarter-rate channel), .Cm 10 (10MHz aka half-rate channel), .Cm 20 (20MHz mostly for use in specifying ht20), and .Cm 40 (40MHz mostly for use in specifying ht40). In addition, a 40MHz HT channel specification may include the location of the extension channel by appending ``+'' or ``-'' for above and below, respectively; e.g., ``2437:ht/40+'' specifies 40MHz wide HT operation with the center channel at frequency 2437 and the extension channel above. .It Cm country Ar name Set the country code to use in calculating the regulatory constraints for operation. In particular the set of available channels, how the wireless device will operation on the channels, and the maximum transmit power that can be used on a channel are defined by this setting. Country/Region codes are specified as a 2-character abbreviation defined by ISO 3166 or using a longer, but possibly ambiguous, spelling; e.g., "ES" and "Spain". The set of country codes are taken from .Pa /etc/regdomain.xml and can also be viewed with the ``list countries'' request. Note that not all devices support changing the country code from a default setting; typically stored in EEPROM. See also .Cm regdomain , .Cm indoor , .Cm outdoor , and .Cm anywhere . .It Cm dfs Enable Dynamic Frequency Selection (DFS) as specified in 802.11h. DFS embodies several facilities including detection of overlapping radar signals, dynamic transmit power control, and channel selection according to a least-congested criteria. DFS support is mandatory for some 5GHz frequencies in certain locales (e.g., ETSI). By default DFS is enabled according to the regulatory definitions specified in .Pa /etc/regdomain.xml and the current country code, regdomain, and channel. Note the underlying device (and driver) must support radar detection for full DFS support to work. To be fully compliant with the local regulatory agency frequencies that require DFS should not be used unless it is fully supported. Use .Fl dfs to disable this functionality for testing. .It Cm dotd Enable support for the 802.11d specification (default). When this support is enabled in station mode, beacon frames that advertise a country code different than the currently configured country code will cause an event to be dispatched to user applications. This event can be used by the station to adopt that country code and operate according to the associated regulatory constraints. When operating as an access point with 802.11d enabled the beacon and probe response frames transmitted will advertise the current regulatory domain settings. To disable 802.11d use .Fl dotd . .It Cm doth Enable 802.11h support including spectrum management. When 802.11h is enabled beacon and probe response frames will have the SpectrumMgt bit set in the capabilities field and country and power constraint information elements will be present. 802.11h support also includes handling Channel Switch Announcements (CSA) which are a mechanism to coordinate channel changes by an access point. By default 802.11h is enabled if the device is capable. To disable 802.11h use .Fl doth . .It Cm deftxkey Ar index Set the default key to use for transmission. Typically this is only set when using WEP encryption. Note that you must set a default transmit key for the system to know which key to use in encrypting outbound traffic. The .Cm weptxkey is an alias for this request; it is provided for backwards compatibility. .It Cm dtimperiod Ar period Set the DTIM period for transmitting buffered multicast data frames when operating in ap mode. The .Ar period specifies the number of beacon intervals between DTIM and must be in the range 1 to 15. By default DTIM is 1 (i.e., DTIM occurs at each beacon). .It Cm quiet Enable the use of quiet IE. Hostap will use this to silence other stations to reduce interference for radar detection when operating on 5GHz frequency and doth support is enabled. Use .Fl quiet to disable this functionality. .It Cm quiet_period Ar period Set the QUIET .Ar period to the number of beacon intervals between the start of regularly scheduled quiet intervals defined by Quiet element. .It Cm quiet_count Ar count Set the QUIET .Ar count to the number of TBTTs until the beacon interval during which the next quiet interval shall start. A value of 1 indicates the quiet interval will start during the beacon interval starting at the next TBTT. A value 0 is reserved. .It Cm quiet_offset Ar offset Set the QUIET .Ar offset to the offset of the start of the quiet interval from the TBTT specified by the Quiet count, expressed in TUs. The value of the .Ar offset shall be less than one beacon interval. .It Cm quiet_duration Ar dur Set the QUIET .Ar dur to the duration of the Quiet interval, expressed in TUs. The value should be less than beacon interval. .It Cm dturbo Enable the use of Atheros Dynamic Turbo mode when communicating with another Dynamic Turbo-capable station. Dynamic Turbo mode is an Atheros-specific mechanism by which stations switch between normal 802.11 operation and a ``boosted'' mode in which a 40MHz wide channel is used for communication. Stations using Dynamic Turbo mode operate boosted only when the channel is free of non-dturbo stations; when a non-dturbo station is identified on the channel all stations will automatically drop back to normal operation. By default, Dynamic Turbo mode is not enabled, even if the device is capable. Note that turbo mode (dynamic or static) is only allowed on some channels depending on the regulatory constraints; use the .Cm list chan command to identify the channels where turbo mode may be used. To disable Dynamic Turbo mode use .Fl dturbo . .It Cm dwds Enable Dynamic WDS (DWDS) support. DWDS is a facility by which 4-address traffic can be carried between stations operating in infrastructure mode. A station first associates to an access point and authenticates using normal procedures (e.g., WPA). Then 4-address frames are passed to carry traffic for stations operating on either side of the wireless link. DWDS extends the normal WDS mechanism by leveraging existing security protocols and eliminating static binding. .Pp When DWDS is enabled on an access point 4-address frames received from an authorized station will generate a ``DWDS discovery'' event to user applications. This event should be used to create a WDS interface that is bound to the remote station (and usually plumbed into a bridge). Once the WDS interface is up and running 4-address traffic then logically flows through that interface. .Pp When DWDS is enabled on a station, traffic with a destination address different from the peer station are encapsulated in a 4-address frame and transmitted to the peer. All 4-address traffic uses the security information of the stations (e.g., cryptographic keys). A station is associated using 802.11n facilities may transport 4-address traffic using these same mechanisms; this depends on available resources and capabilities of the device. The DWDS implementation guards against layer 2 routing loops of multicast traffic. .It Cm ff Enable the use of Atheros Fast Frames when communicating with another Fast Frames-capable station. Fast Frames are an encapsulation technique by which two 802.3 frames are transmitted in a single 802.11 frame. This can noticeably improve throughput but requires that the receiving station understand how to decapsulate the frame. Fast frame use is negotiated using the Atheros 802.11 vendor-specific protocol extension so enabling use is safe when communicating with non-Atheros devices. By default, use of fast frames is enabled if the device is capable. To explicitly disable fast frames, use .Fl ff . .It Cm fragthreshold Ar length Set the threshold for which transmitted frames are broken into fragments. The .Ar length argument is the frame size in bytes and must be in the range 256 to 2346. Setting .Ar length to .Li 2346 , .Cm any , or .Cm - disables transmit fragmentation. Not all adapters honor the fragmentation threshold. .It Cm hidessid When operating as an access point, do not broadcast the SSID in beacon frames or respond to probe request frames unless they are directed to the ap (i.e., they include the ap's SSID). By default, the SSID is included in beacon frames and undirected probe request frames are answered. To re-enable the broadcast of the SSID etc., use .Fl hidessid . .It Cm ht Enable use of High Throughput (HT) when using 802.11n (default). The 802.11n specification includes mechanisms for operation on 20MHz and 40MHz wide channels using different signalling mechanisms than specified in 802.11b, 802.11g, and 802.11a. Stations negotiate use of these facilities, termed HT20 and HT40, when they associate. To disable all use of 802.11n use .Fl ht . To disable use of HT20 (e.g., to force only HT40 use) use .Fl ht20 . To disable use of HT40 use .Fl ht40 . .Pp HT configuration is used to ``auto promote'' operation when several choices are available. For example, if a station associates to an 11n-capable access point it controls whether the station uses legacy operation, HT20, or HT40. When an 11n-capable device is setup as an access point and Auto Channel Selection is used to locate a channel to operate on, HT configuration controls whether legacy, HT20, or HT40 operation is setup on the selected channel. If a fixed channel is specified for a station then HT configuration can be given as part of the channel specification; e.g., 6:ht/20 to setup HT20 operation on channel 6. .It Cm htcompat Enable use of compatibility support for pre-802.11n devices (default). The 802.11n protocol specification went through several incompatible iterations. Some vendors implemented 11n support to older specifications that will not interoperate with a purely 11n-compliant station. In particular the information elements included in management frames for old devices are different. When compatibility support is enabled both standard and compatible data will be provided. Stations that associate using the compatibility mechanisms are flagged in ``list sta''. To disable compatibility support use .Fl htcompat . .It Cm htprotmode Ar technique For interfaces operating in 802.11n, use the specified .Ar technique for protecting HT frames in a mixed legacy/HT network. The set of valid techniques is .Cm off , and .Cm rts (RTS/CTS, default). Technique names are case insensitive. .It Cm inact Enable inactivity processing for stations associated to an access point (default). When operating as an access point the 802.11 layer monitors the activity of each associated station. When a station is inactive for 5 minutes it will send several ``probe frames'' to see if the station is still present. If no response is received then the station is deauthenticated. Applications that prefer to handle this work can disable this facility by using .Fl inact . .It Cm indoor Set the location to use in calculating regulatory constraints. The location is also advertised in beacon and probe response frames when 802.11d is enabled with .Cm dotd . See also .Cm outdoor , .Cm anywhere , .Cm country , and .Cm regdomain . .It Cm list active Display the list of channels available for use taking into account any restrictions set with the .Cm chanlist directive. See the description of .Cm list chan for more information. .It Cm list caps Display the adaptor's capabilities, including the operating modes supported. .It Cm list chan Display the list of channels available for use. Channels are shown with their IEEE channel number, equivalent frequency, and usage modes. Channels identified as .Ql 11g are also usable in .Ql 11b mode. Channels identified as .Ql 11a Turbo may be used only for Atheros' Static Turbo mode (specified with . Cm mediaopt turbo ) . Channels marked with a .Ql * have a regulatory constraint that they be passively scanned. This means a station is not permitted to transmit on the channel until it identifies the channel is being used for 802.11 communication; typically by hearing a beacon frame from an access point operating on the channel. .Cm list freq is another way of requesting this information. By default a compacted list of channels is displayed; if the .Fl v option is specified then all channels are shown. .It Cm list countries Display the set of country codes and regulatory domains that can be used in regulatory configuration. .It Cm list mac Display the current MAC Access Control List state. Each address is prefixed with a character that indicates the current policy applied to it: .Ql + indicates the address is allowed access, .Ql - indicates the address is denied access, .Ql * indicates the address is present but the current policy open (so the ACL is not consulted). .It Cm list mesh Displays the mesh routing table, used for forwarding packets on a mesh network. .It Cm list regdomain Display the current regulatory settings including the available channels and transmit power caps. .It Cm list roam Display the parameters that govern roaming operation. .It Cm list txparam Display the parameters that govern transmit operation. .It Cm list txpower Display the transmit power caps for each channel. .It Cm list scan Display the access points and/or ad-hoc neighbors located in the vicinity. This information may be updated automatically by the adapter with a .Cm scan request or through background scanning. Depending on the capabilities of the stations the following flags can be included in the output: .Bl -tag -width 3n .It Li A Channel agility. .It Li B PBCC modulation. .It Li C Poll request capability. .It Li D DSSS/OFDM capability. .It Li E Extended Service Set (ESS). .It Li I Independent Basic Service Set (IBSS). .It Li P Privacy capability. The station requires authentication. .It Li R Robust Secure Network (RSN). .It Li S Short Preamble. Indicates that the station is doing short preamble to optionally improve throughput performance with 802.11g and 802.11b. .It Li c Pollable capability. .It Li s Short slot time capability. .El .Pp By default interesting information elements captured from the neighboring stations are displayed at the end of each row. Possible elements include: .Cm WME (station supports WME), .Cm WPA (station supports WPA), .Cm WPS (station supports WPS), .Cm RSN (station supports 802.11i/RSN), .Cm HTCAP (station supports 802.11n/HT communication), .Cm ATH (station supports Atheros protocol extensions), .Cm VEN (station supports unknown vendor-specific extensions). If the .Fl v flag is used all the information elements and their contents will be shown. Specifying the .Fl v flag also enables display of long SSIDs. The .Cm list ap command is another way of requesting this information. .It Cm list sta When operating as an access point display the stations that are currently associated. When operating in ad-hoc mode display stations identified as neighbors in the IBSS. When operating in mesh mode display stations identified as neighbors in the MBSS. When operating in station mode display the access point. Capabilities advertised by the stations are described under the .Cm scan request. The following flags can be included in the output: .Bl -tag -width 3n .It Li A Authorized. Indicates that the station is permitted to send/receive data frames. .It Li E Extended Rate Phy (ERP). Indicates that the station is operating in an 802.11g network using extended transmit rates. .It Li H High Throughput (HT). Indicates that the station is using HT transmit rates. If a .Sq Li + follows immediately after then the station associated using deprecated mechanisms supported only when .Cm htcompat is enabled. .It Li P Power Save. Indicates that the station is operating in power save mode. .It Li Q Quality of Service (QoS). Indicates that the station is using QoS encapsulation for data frame. QoS encapsulation is enabled only when WME mode is enabled. .It Li S Short GI in HT 40MHz mode enabled. If a .Sq Li + follows immediately after then short GI in HT 20MHz mode is enabled as well. .It Li T Transitional Security Network (TSN). Indicates that the station associated using TSN; see also .Cm tsn below. .It Li W Wi-Fi Protected Setup (WPS). Indicates that the station associated using WPS. .It Li s Short GI in HT 20MHz mode enabled. .El .Pp By default information elements received from associated stations are displayed in a short form; the .Fl v flag causes this information to be displayed symbolically. .It Cm list wme Display the current channel parameters to use when operating in WME mode. If the .Fl v option is specified then both channel and BSS parameters are displayed for each AC (first channel, then BSS). When WME mode is enabled for an adaptor this information will be displayed with the regular status; this command is mostly useful for examining parameters when WME mode is disabled. See the description of the .Cm wme directive for information on the various parameters. .It Cm maxretry Ar count Set the maximum number of tries to use in sending unicast frames. The default setting is 6 but drivers may override this with a value they choose. .It Cm mcastrate Ar rate Set the rate for transmitting multicast/broadcast frames. Rates are specified as megabits/second in decimal; e.g.,\& 5.5 for 5.5 Mb/s. This rate should be valid for the current operating conditions; if an invalid rate is specified drivers are free to chose an appropriate rate. .It Cm mgtrate Ar rate Set the rate for transmitting management and/or control frames. Rates are specified as megabits/second in decimal; e.g.,\& 5.5 for 5.5 Mb/s. .It Cm outdoor Set the location to use in calculating regulatory constraints. The location is also advertised in beacon and probe response frames when 802.11d is enabled with .Cm dotd . See also .Cm anywhere , .Cm country , .Cm indoor , and .Cm regdomain . .It Cm powersave Enable powersave operation. When operating as a client, the station will conserve power by periodically turning off the radio and listening for messages from the access point telling it there are packets waiting. The station must then retrieve the packets. Not all devices support power save operation as a client. The 802.11 specification requires that all access points support power save but some drivers do not. Use .Fl powersave to disable powersave operation when operating as a client. .It Cm powersavesleep Ar sleep Set the desired max powersave sleep time in TU's (1024 usecs). By default the max powersave sleep time is 100 TU's. .It Cm protmode Ar technique For interfaces operating in 802.11g, use the specified .Ar technique for protecting OFDM frames in a mixed 11b/11g network. The set of valid techniques is .Cm off , cts (CTS to self), and .Cm rtscts (RTS/CTS). Technique names are case insensitive. Not all devices support .Cm cts as a protection technique. .It Cm pureg When operating as an access point in 802.11g mode allow only 11g-capable stations to associate (11b-only stations are not permitted to associate). To allow both 11g and 11b-only stations to associate, use .Fl pureg . .It Cm puren When operating as an access point in 802.11n mode allow only HT-capable stations to associate (legacy stations are not permitted to associate). To allow both HT and legacy stations to associate, use .Fl puren . .It Cm regdomain Ar sku Set the regulatory domain to use in calculating the regulatory constraints for operation. In particular the set of available channels, how the wireless device will operation on the channels, and the maximum transmit power that can be used on a channel are defined by this setting. Regdomain codes (SKU's) are taken from .Pa /etc/regdomain.xml and can also be viewed with the ``list countries'' request. Note that not all devices support changing the regdomain from a default setting; typically stored in EEPROM. See also .Cm country , .Cm indoor , .Cm outdoor , and .Cm anywhere . .It Cm rifs Enable use of Reduced InterFrame Spacing (RIFS) when operating in 802.11n on an HT channel. Note that RIFS must be supported by both the station and access point for it to be used. To disable RIFS use .Fl rifs . .It Cm roam:rate Ar rate Set the threshold for controlling roaming when operating in a BSS. The .Ar rate parameter specifies the transmit rate in megabits at which roaming should be considered. If the current transmit rate drops below this setting and background scanning is enabled, then the system will check if a more desirable access point is available and switch over to it. The current scan cache contents are used if they are considered valid according to the .Cm scanvalid parameter; otherwise a background scan operation is triggered before any selection occurs. Each channel type has a separate rate threshold; the default values are: 12 Mb/s (11a), 2 Mb/s (11b), 2 Mb/s (11g), MCS 1 (11na, 11ng). .It Cm roam:rssi Ar rssi Set the threshold for controlling roaming when operating in a BSS. The .Ar rssi parameter specifies the receive signal strength in dBm units at which roaming should be considered. If the current rssi drops below this setting and background scanning is enabled, then the system will check if a more desirable access point is available and switch over to it. The current scan cache contents are used if they are considered valid according to the .Cm scanvalid parameter; otherwise a background scan operation is triggered before any selection occurs. Each channel type has a separate rssi threshold; the default values are all 7 dBm. .It Cm roaming Ar mode When operating as a station, control how the system will behave when communication with the current access point is broken. The .Ar mode argument may be one of .Cm device (leave it to the hardware device to decide), .Cm auto (handle either in the device or the operating system\[em]as appropriate), .Cm manual (do nothing until explicitly instructed). By default, the device is left to handle this if it is capable; otherwise, the operating system will automatically attempt to reestablish communication. Manual mode is used by applications such as .Xr wpa_supplicant 8 that want to control the selection of an access point. .It Cm rtsthreshold Ar length Set the threshold for which transmitted frames are preceded by transmission of an RTS control frame. The .Ar length argument is the frame size in bytes and must be in the range 1 to 2346. Setting .Ar length to .Li 2346 , .Cm any , or .Cm - disables transmission of RTS frames. Not all adapters support setting the RTS threshold. .It Cm scan Initiate a scan of neighboring stations, wait for it to complete, and display all stations found. Only the super-user can initiate a scan. See .Cm list scan for information on the display. By default a background scan is done; otherwise a foreground scan is done and the station may roam to a different access point. The .Cm list scan request can be used to show recent scan results without initiating a new scan. .It Cm scanvalid Ar threshold Set the maximum time the scan cache contents are considered valid; i.e., will be used without first triggering a scan operation to refresh the data. The .Ar threshold parameter is specified in seconds and defaults to 60 seconds. The minimum setting for .Ar threshold is 10 seconds. One should take care setting this threshold; if it is set too low then attempts to roam to another access point may trigger unnecessary background scan operations. .It Cm shortgi Enable use of Short Guard Interval when operating in 802.11n on an HT channel. NB: this currently enables Short GI on both HT40 and HT20 channels. To disable Short GI use .Fl shortgi . .It Cm smps Enable use of Static Spatial Multiplexing Power Save (SMPS) when operating in 802.11n. A station operating with Static SMPS maintains only a single receive chain active (this can significantly reduce power consumption). To disable SMPS use .Fl smps . .It Cm smpsdyn Enable use of Dynamic Spatial Multiplexing Power Save (SMPS) when operating in 802.11n. A station operating with Dynamic SMPS maintains only a single receive chain active but switches to multiple receive chains when it receives an RTS frame (this can significantly reduce power consumption). Note that stations cannot distinguish between RTS/CTS intended to enable multiple receive chains and those used for other purposes. To disable SMPS use .Fl smps . .It Cm ssid Ar ssid Set the desired Service Set Identifier (aka network name). The SSID is a string up to 32 characters in length and may be specified as either a normal string or in hexadecimal when preceded by .Ql 0x . Additionally, the SSID may be cleared by setting it to .Ql - . .It Cm tdmaslot Ar slot When operating with TDMA, use the specified .Ar slot configuration. The .Ar slot is a number between 0 and the maximum number of slots in the BSS. Note that a station configured as slot 0 is a master and will broadcast beacon frames advertising the BSS; stations configured to use other slots will always scan to locate a master before they ever transmit. By default .Cm tdmaslot is set to 1. .It Cm tdmaslotcnt Ar cnt When operating with TDMA, setup a BSS with .Ar cnt slots. The slot count may be at most 8. The current implementation is only tested with two stations (i.e., point to point applications). This setting is only meaningful when a station is configured as slot 0; other stations adopt this setting from the BSS they join. By default .Cm tdmaslotcnt is set to 2. .It Cm tdmaslotlen Ar len When operating with TDMA, setup a BSS such that each station has a slot .Ar len microseconds long. The slot length must be at least 150 microseconds (1/8 TU) and no more than 65 milliseconds. Note that setting too small a slot length may result in poor channel bandwidth utilization due to factors such as timer granularity and guard time. This setting is only meaningful when a station is configured as slot 0; other stations adopt this setting from the BSS they join. By default .Cm tdmaslotlen is set to 10 milliseconds. .It Cm tdmabintval Ar intval When operating with TDMA, setup a BSS such that beacons are transmitted every .Ar intval superframes to synchronize the TDMA slot timing. A superframe is defined as the number of slots times the slot length; e.g., a BSS with two slots of 10 milliseconds has a 20 millisecond superframe. The beacon interval may not be zero. A lower setting of .Cm tdmabintval causes the timers to be resynchronized more often; this can be help if significant timer drift is observed. By default .Cm tdmabintval is set to 5. .It Cm tsn When operating as an access point with WPA/802.11i allow legacy stations to associate using static key WEP and open authentication. To disallow legacy station use of WEP, use .Fl tsn . .It Cm txpower Ar power Set the power used to transmit frames. The .Ar power argument is specified in .5 dBm units. Out of range values are truncated. Typically only a few discreet power settings are available and the driver will use the setting closest to the specified value. Not all adapters support changing the transmit power. .It Cm ucastrate Ar rate Set a fixed rate for transmitting unicast frames. Rates are specified as megabits/second in decimal; e.g.,\& 5.5 for 5.5 Mb/s. This rate should be valid for the current operating conditions; if an invalid rate is specified drivers are free to chose an appropriate rate. .It Cm wepmode Ar mode Set the desired WEP mode. Not all adapters support all modes. The set of valid modes is .Cm off , on , and .Cm mixed . The .Cm mixed mode explicitly tells the adaptor to allow association with access points which allow both encrypted and unencrypted traffic. On these adapters, .Cm on means that the access point must only allow encrypted connections. On other adapters, .Cm on is generally another name for .Cm mixed . Modes are case insensitive. .It Cm weptxkey Ar index Set the WEP key to be used for transmission. This is the same as setting the default transmission key with .Cm deftxkey . .It Cm wepkey Ar key Ns | Ns Ar index : Ns Ar key Set the selected WEP key. If an .Ar index is not given, key 1 is set. A WEP key will be either 5 or 13 characters (40 or 104 bits) depending on the local network and the capabilities of the adaptor. It may be specified either as a plain string or as a string of hexadecimal digits preceded by .Ql 0x . For maximum portability, hex keys are recommended; the mapping of text keys to WEP encryption is usually driver-specific. In particular, the .Tn Windows drivers do this mapping differently to .Fx . A key may be cleared by setting it to .Ql - . If WEP is supported then there are at least four keys. Some adapters support more than four keys. If that is the case, then the first four keys (1-4) will be the standard temporary keys and any others will be adaptor specific keys such as permanent keys stored in NVRAM. .Pp Note that you must set a default transmit key with .Cm deftxkey for the system to know which key to use in encrypting outbound traffic. .It Cm wme Enable Wireless Multimedia Extensions (WME) support, if available, for the specified interface. WME is a subset of the IEEE 802.11e standard to support the efficient communication of realtime and multimedia data. To disable WME support, use .Fl wme . Another name for this parameter is .Cm wmm . .Pp The following parameters are meaningful only when WME support is in use. Parameters are specified per-AC (Access Category) and split into those that are used by a station when acting as an access point and those for client stations in the BSS. The latter are received from the access point and may not be changed (at the station). The following Access Categories are recognized: .Pp .Bl -tag -width ".Cm AC_BK" -compact .It Cm AC_BE (or .Cm BE ) best effort delivery, .It Cm AC_BK (or .Cm BK ) background traffic, .It Cm AC_VI (or .Cm VI ) video traffic, .It Cm AC_VO (or .Cm VO ) voice traffic. .El .Pp AC parameters are case-insensitive. Traffic classification is done in the operating system using the vlan priority associated with data frames or the ToS (Type of Service) indication in IP-encapsulated frames. If neither information is present, traffic is assigned to the Best Effort (BE) category. .Bl -tag -width indent .It Cm ack Ar ac Set the ACK policy for QoS transmissions by the local station; this controls whether or not data frames transmitted by a station require an ACK response from the receiving station. To disable waiting for an ACK use .Fl ack . This parameter is applied only to the local station. .It Cm acm Ar ac Enable the Admission Control Mandatory (ACM) mechanism for transmissions by the local station. To disable the ACM use .Fl acm . On stations in a BSS this parameter is read-only and indicates the setting received from the access point. NB: ACM is not supported right now. .It Cm aifs Ar ac Ar count Set the Arbitration Inter Frame Spacing (AIFS) channel access parameter to use for transmissions by the local station. On stations in a BSS this parameter is read-only and indicates the setting received from the access point. .It Cm cwmin Ar ac Ar count Set the CWmin channel access parameter to use for transmissions by the local station. On stations in a BSS this parameter is read-only and indicates the setting received from the access point. .It Cm cwmax Ar ac Ar count Set the CWmax channel access parameter to use for transmissions by the local station. On stations in a BSS this parameter is read-only and indicates the setting received from the access point. .It Cm txoplimit Ar ac Ar limit Set the Transmission Opportunity Limit channel access parameter to use for transmissions by the local station. This parameter defines an interval of time when a WME station has the right to initiate transmissions onto the wireless medium. On stations in a BSS this parameter is read-only and indicates the setting received from the access point. .It Cm bss:aifs Ar ac Ar count Set the AIFS channel access parameter to send to stations in a BSS. This parameter is meaningful only when operating in ap mode. .It Cm bss:cwmin Ar ac Ar count Set the CWmin channel access parameter to send to stations in a BSS. This parameter is meaningful only when operating in ap mode. .It Cm bss:cwmax Ar ac Ar count Set the CWmax channel access parameter to send to stations in a BSS. This parameter is meaningful only when operating in ap mode. .It Cm bss:txoplimit Ar ac Ar limit Set the TxOpLimit channel access parameter to send to stations in a BSS. This parameter is meaningful only when operating in ap mode. .El .It Cm wps Enable Wireless Privacy Subscriber support. Note that WPS support requires a WPS-capable supplicant. To disable this function use .Fl wps . .El .Pp The following parameters support an optional access control list feature available with some adapters when operating in ap mode; see .Xr wlan_acl 4 . This facility allows an access point to accept/deny association requests based on the MAC address of the station. Note that this feature does not significantly enhance security as MAC address spoofing is easy to do. .Bl -tag -width indent .It Cm mac:add Ar address Add the specified MAC address to the database. Depending on the policy setting association requests from the specified station will be allowed or denied. .It Cm mac:allow Set the ACL policy to permit association only by stations registered in the database. .It Cm mac:del Ar address Delete the specified MAC address from the database. .It Cm mac:deny Set the ACL policy to deny association only by stations registered in the database. .It Cm mac:kick Ar address Force the specified station to be deauthenticated. This typically is done to block a station after updating the address database. .It Cm mac:open Set the ACL policy to allow all stations to associate. .It Cm mac:flush Delete all entries in the database. .It Cm mac:radius Set the ACL policy to permit association only by stations approved by a RADIUS server. Note that this feature requires the .Xr hostapd 8 program be configured to do the right thing as it handles the RADIUS processing (and marks stations as authorized). .El .Pp The following parameters are related to a wireless interface operating in mesh mode: .Bl -tag -width indent .It Cm meshid Ar meshid Set the desired Mesh Identifier. The Mesh ID is a string up to 32 characters in length. A mesh interface must have a Mesh Identifier specified to reach an operational state. .It Cm meshttl Ar ttl Set the desired ``time to live'' for mesh forwarded packets; this is the number of hops a packet may be forwarded before it is discarded. The default setting for .Cm meshttl is 31. .It Cm meshpeering Enable or disable peering with neighbor mesh stations. Stations must peer before any data packets can be exchanged. By default .Cm meshpeering is enabled. .It Cm meshforward Enable or disable forwarding packets by a mesh interface. By default .Cm meshforward is enabled. .It Cm meshgate This attribute specifies whether or not the mesh STA activates mesh gate announcements. By default .Cm meshgate is disabled. .It Cm meshmetric Ar protocol Set the specified .Ar protocol as the link metric protocol used on a mesh network. The default protocol is called .Ar AIRTIME . The mesh interface will restart after changing this setting. .It Cm meshpath Ar protocol Set the specified .Ar protocol as the path selection protocol used on a mesh network. The only available protocol at the moment is called .Ar HWMP (Hybrid Wireless Mesh Protocol). The mesh interface will restart after changing this setting. .It Cm hwmprootmode Ar mode Stations on a mesh network can operate as ``root nodes.'' Root nodes try to find paths to all mesh nodes and advertise themselves regularly. When there is a root mesh node on a network, other mesh nodes can setup paths between themselves faster because they can use the root node to find the destination. This path may not be the best, but on-demand routing will eventually find the best path. The following modes are recognized: .Pp .Bl -tag -width ".Cm PROACTIVE" -compact .It Cm DISABLED Disable root mode. .It Cm NORMAL Send broadcast path requests every two seconds. Nodes on the mesh without a path to this root mesh station with try to discover a path to us. .It Cm PROACTIVE Send broadcast path requests every two seconds and every node must reply with a path reply even if it already has a path to this root mesh station. .It Cm RANN Send broadcast root announcement (RANN) frames. Nodes on the mesh without a path to this root mesh station with try to discover a path to us. .El By default .Cm hwmprootmode is set to .Ar DISABLED . .It Cm hwmpmaxhops Ar cnt Set the maximum number of hops allowed in an HMWP path to .Ar cnt . The default setting for .Cm hwmpmaxhops is 31. .El .Pp The following parameters are for compatibility with other systems: .Bl -tag -width indent .It Cm nwid Ar ssid Another name for the .Cm ssid parameter. Included for .Nx compatibility. .It Cm stationname Ar name Set the name of this station. The station name is not part of the IEEE 802.11 protocol though some interfaces support it. As such it only seems to be meaningful to identical or virtually identical equipment. Setting the station name is identical in syntax to setting the SSID. One can also use .Cm station for .Bsx compatibility. .It Cm wep Another way of saying .Cm wepmode on . Included for .Bsx compatibility. .It Fl wep Another way of saying .Cm wepmode off . Included for .Bsx compatibility. .It Cm nwkey key Another way of saying: .Dq Li "wepmode on weptxkey 1 wepkey 1:key wepkey 2:- wepkey 3:- wepkey 4:-" . Included for .Nx compatibility. .It Cm nwkey Xo .Sm off .Ar n : k1 , k2 , k3 , k4 .Sm on .Xc Another way of saying .Dq Li "wepmode on weptxkey n wepkey 1:k1 wepkey 2:k2 wepkey 3:k3 wepkey 4:k4" . Included for .Nx compatibility. .It Fl nwkey Another way of saying .Cm wepmode off . Included for .Nx compatibility. .El .Pp The following parameters are specific to bridge interfaces: .Bl -tag -width indent .It Cm addm Ar interface Add the interface named by .Ar interface as a member of the bridge. The interface is put into promiscuous mode so that it can receive every packet sent on the network. .It Cm deletem Ar interface Remove the interface named by .Ar interface from the bridge. Promiscuous mode is disabled on the interface when it is removed from the bridge. .It Cm maxaddr Ar size Set the size of the bridge address cache to .Ar size . The default is 2000 entries. .It Cm timeout Ar seconds Set the timeout of address cache entries to .Ar seconds seconds. If .Ar seconds is zero, then address cache entries will not be expired. The default is 1200 seconds. .It Cm addr Display the addresses that have been learned by the bridge. .It Cm static Ar interface-name Ar address Add a static entry into the address cache pointing to .Ar interface-name . Static entries are never aged out of the cache or re-placed, even if the address is seen on a different interface. .It Cm deladdr Ar address Delete .Ar address from the address cache. .It Cm flush Delete all dynamically-learned addresses from the address cache. .It Cm flushall Delete all addresses, including static addresses, from the address cache. .It Cm discover Ar interface Mark an interface as a .Dq discovering interface. When the bridge has no address cache entry (either dynamic or static) for the destination address of a packet, the bridge will forward the packet to all member interfaces marked as .Dq discovering . This is the default for all interfaces added to a bridge. .It Cm -discover Ar interface Clear the .Dq discovering attribute on a member interface. For packets without the .Dq discovering attribute, the only packets forwarded on the interface are broadcast or multicast packets and packets for which the destination address is known to be on the interface's segment. .It Cm learn Ar interface Mark an interface as a .Dq learning interface. When a packet arrives on such an interface, the source address of the packet is entered into the address cache as being a destination address on the interface's segment. This is the default for all interfaces added to a bridge. .It Cm -learn Ar interface Clear the .Dq learning attribute on a member interface. .It Cm sticky Ar interface Mark an interface as a .Dq sticky interface. Dynamically learned address entries are treated at static once entered into the cache. Sticky entries are never aged out of the cache or replaced, even if the address is seen on a different interface. .It Cm -sticky Ar interface Clear the .Dq sticky attribute on a member interface. .It Cm private Ar interface Mark an interface as a .Dq private interface. A private interface does not forward any traffic to any other port that is also a private interface. .It Cm -private Ar interface Clear the .Dq private attribute on a member interface. .It Cm span Ar interface Add the interface named by .Ar interface as a span port on the bridge. Span ports transmit a copy of every frame received by the bridge. This is most useful for snooping a bridged network passively on another host connected to one of the span ports of the bridge. .It Cm -span Ar interface Delete the interface named by .Ar interface from the list of span ports of the bridge. .It Cm stp Ar interface Enable Spanning Tree protocol on .Ar interface . The .Xr if_bridge 4 driver has support for the IEEE 802.1D Spanning Tree protocol (STP). Spanning Tree is used to detect and remove loops in a network topology. .It Cm -stp Ar interface Disable Spanning Tree protocol on .Ar interface . This is the default for all interfaces added to a bridge. .It Cm edge Ar interface Set .Ar interface as an edge port. An edge port connects directly to end stations cannot create bridging loops in the network, this allows it to transition straight to forwarding. .It Cm -edge Ar interface Disable edge status on .Ar interface . .It Cm autoedge Ar interface Allow .Ar interface to automatically detect edge status. This is the default for all interfaces added to a bridge. .It Cm -autoedge Ar interface Disable automatic edge status on .Ar interface . .It Cm ptp Ar interface Set the .Ar interface as a point to point link. This is required for straight transitions to forwarding and should be enabled on a direct link to another RSTP capable switch. .It Cm -ptp Ar interface Disable point to point link status on .Ar interface . This should be disabled for a half duplex link and for an interface connected to a shared network segment, like a hub or a wireless network. .It Cm autoptp Ar interface Automatically detect the point to point status on .Ar interface by checking the full duplex link status. This is the default for interfaces added to the bridge. .It Cm -autoptp Ar interface Disable automatic point to point link detection on .Ar interface . .It Cm maxage Ar seconds Set the time that a Spanning Tree protocol configuration is valid. The default is 20 seconds. The minimum is 6 seconds and the maximum is 40 seconds. .It Cm fwddelay Ar seconds Set the time that must pass before an interface begins forwarding packets when Spanning Tree is enabled. The default is 15 seconds. The minimum is 4 seconds and the maximum is 30 seconds. .It Cm hellotime Ar seconds Set the time between broadcasting of Spanning Tree protocol configuration messages. The hello time may only be changed when operating in legacy stp mode. The default is 2 seconds. The minimum is 1 second and the maximum is 2 seconds. .It Cm priority Ar value Set the bridge priority for Spanning Tree. The default is 32768. The minimum is 0 and the maximum is 61440. .It Cm proto Ar value Set the Spanning Tree protocol. The default is rstp. The available options are stp and rstp. .It Cm holdcnt Ar value Set the transmit hold count for Spanning Tree. This is the number of packets transmitted before being rate limited. The default is 6. The minimum is 1 and the maximum is 10. .It Cm ifpriority Ar interface Ar value Set the Spanning Tree priority of .Ar interface to .Ar value . The default is 128. The minimum is 0 and the maximum is 240. .It Cm ifpathcost Ar interface Ar value Set the Spanning Tree path cost of .Ar interface to .Ar value . The default is calculated from the link speed. To change a previously selected path cost back to automatic, set the cost to 0. The minimum is 1 and the maximum is 200000000. .It Cm ifmaxaddr Ar interface Ar size Set the maximum number of hosts allowed from an interface, packets with unknown source addresses are dropped until an existing host cache entry expires or is removed. Set to 0 to disable. .El .Pp The following parameters are specific to lagg interfaces: .Bl -tag -width indent .It Cm laggport Ar interface Add the interface named by .Ar interface as a port of the aggregation interface. .It Cm -laggport Ar interface Remove the interface named by .Ar interface from the aggregation interface. .It Cm laggproto Ar proto Set the aggregation protocol. The default is .Li failover . The available options are .Li failover , .Li lacp , .Li loadbalance , .Li roundrobin , .Li broadcast and .Li none . .It Cm lagghash Ar option Ns Oo , Ns Ar option Oc Set the packet layers to hash for aggregation protocols which load balance. The default is .Dq l2,l3,l4 . The options can be combined using commas. .Pp .Bl -tag -width ".Cm l2" -compact .It Cm l2 src/dst mac address and optional vlan number. .It Cm l3 src/dst address for IPv4 or IPv6. .It Cm l4 src/dst port for TCP/UDP/SCTP. .El .It Cm -use_flowid Enable local hash computation for RSS hash on the interface. The .Li loadbalance and .Li lacp modes will use the RSS hash from the network card if available to avoid computing one, this may give poor traffic distribution if the hash is invalid or uses less of the protocol header information. .Cm -use_flowid disables use of RSS hash from the network card. The default value can be set via the .Va net.link.lagg.default_use_flowid .Xr sysctl 8 variable. .Li 0 means .Dq disabled and .Li 1 means .Dq enabled . .It Cm use_flowid Use the RSS hash from the network card if available. .It Cm flowid_shift Ar number Set a shift parameter for RSS local hash computation. Hash is calculated by using flowid bits in a packet header mbuf which are shifted by the number of this parameter. .It Cm use_numa Enable selection of egress ports based on the native .Xr NUMA 4 domain for the packets being transmitted. This is currently only implemented for lacp mode. This works only on .Xr NUMA 4 hardware, running a kernel compiled with the .Xr NUMA 4 option, and when interfaces from multiple .Xr NUMA 4 domains are ports of the aggregation interface. .It Cm -use_numa Disable selection of egress ports based on the native .Xr NUMA 4 domain for the packets being transmitted. .It Cm lacp_fast_timeout Enable lacp fast-timeout on the interface. .It Cm -lacp_fast_timeout Disable lacp fast-timeout on the interface. .It Cm lacp_strict Enable lacp strict compliance on the interface. The default value can be set via the .Va net.link.lagg.lacp.default_strict_mode .Xr sysctl 8 variable. .Li 0 means .Dq disabled and .Li 1 means .Dq enabled . .It Cm -lacp_strict Disable lacp strict compliance on the interface. .It Cm rr_limit Ar number Configure a stride for an interface in round-robin mode. The default stride is 1. .El .Pp The following parameters apply to IP tunnel interfaces, .Xr gif 4 : .Bl -tag -width indent .It Cm tunnel Ar src_addr dest_addr Configure the physical source and destination address for IP tunnel interfaces. The arguments .Ar src_addr and .Ar dest_addr are interpreted as the outer source/destination for the encapsulating IPv4/IPv6 header. .It Fl tunnel Unconfigure the physical source and destination address for IP tunnel interfaces previously configured with .Cm tunnel . .It Cm deletetunnel Another name for the .Fl tunnel parameter. .It Cm accept_rev_ethip_ver Set a flag to accept both correct EtherIP packets and ones with reversed version field. Enabled by default. This is for backward compatibility with .Fx 6.1 , 6.2, 6.3, 7.0, and 7.1. .It Cm -accept_rev_ethip_ver Clear a flag .Cm accept_rev_ethip_ver . .It Cm ignore_source Set a flag to accept encapsulated packets destined to this host independently from source address. This may be useful for hosts, that receive encapsulated packets from the load balancers. .It Cm -ignore_source Clear a flag .Cm ignore_source . .It Cm send_rev_ethip_ver Set a flag to send EtherIP packets with reversed version field intentionally. Disabled by default. This is for backward compatibility with .Fx 6.1 , 6.2, 6.3, 7.0, and 7.1. .It Cm -send_rev_ethip_ver Clear a flag .Cm send_rev_ethip_ver . .El .Pp The following parameters apply to GRE tunnel interfaces, .Xr gre 4 : .Bl -tag -width indent .It Cm tunnel Ar src_addr dest_addr Configure the physical source and destination address for GRE tunnel interfaces. The arguments .Ar src_addr and .Ar dest_addr are interpreted as the outer source/destination for the encapsulating IPv4/IPv6 header. .It Fl tunnel Unconfigure the physical source and destination address for GRE tunnel interfaces previously configured with .Cm tunnel . .It Cm deletetunnel Another name for the .Fl tunnel parameter. .It Cm grekey Ar key Configure the GRE key to be used for outgoing packets. Note that .Xr gre 4 will always accept GRE packets with invalid or absent keys. This command will result in a four byte MTU reduction on the interface. .El .Pp The following parameters are specific to .Xr pfsync 4 interfaces: .Bl -tag -width indent .It Cm syncdev Ar iface Use the specified interface to send and receive pfsync state synchronisation messages. .It Fl syncdev Stop sending pfsync state synchronisation messages over the network. .It Cm syncpeer Ar peer_address Make the pfsync link point-to-point rather than using multicast to broadcast the state synchronisation messages. The peer_address is the IP address of the other host taking part in the pfsync cluster. .It Fl syncpeer Broadcast the packets using multicast. .It Cm maxupd Ar n Set the maximum number of updates for a single state which can be collapsed into one. This is an 8-bit number; the default value is 128. .It Cm defer Defer transmission of the first packet in a state until a peer has acknowledged that the associated state has been inserted. .It Fl defer Do not defer the first packet in a state. This is the default. .El .Pp The following parameters are specific to .Xr vlan 4 interfaces: .Bl -tag -width indent .It Cm vlan Ar vlan_tag Set the VLAN tag value to .Ar vlan_tag . This value is a 12-bit VLAN Identifier (VID) which is used to create an 802.1Q -VLAN header for packets sent from the +or 802.1ad VLAN header for packets sent from the .Xr vlan 4 interface. Note that .Cm vlan and .Cm vlandev must both be set at the same time. +.It Cm vlanproto Ar vlan_proto +Set the VLAN encapsulation protocol to +.Ar vlan_proto . +Supported encapsulation protocols are currently +.Dq 802.1Q +and +.Dq 802.1ad . +The default encapsulation protocol is +.Dq 802.1Q . .It Cm vlanpcp Ar priority_code_point Priority code point .Pq Dv PCP is an 3-bit field which refers to the IEEE 802.1p class of service and maps to the frame priority level. .Pp Values in order of priority are: .Cm 1 .Pq Dv Background (lowest) , .Cm 0 .Pq Dv Best effort (default) , .Cm 2 .Pq Dv Excellent effort , .Cm 3 .Pq Dv Critical applications , .Cm 4 .Pq Dv Video, < 100ms latency , .Cm 5 .Pq Dv Video, < 10ms latency , .Cm 6 .Pq Dv Internetwork control , .Cm 7 .Pq Dv Network control (highest) . .It Cm vlandev Ar iface Associate the physical interface .Ar iface with a .Xr vlan 4 interface. Packets transmitted through the .Xr vlan 4 interface will be diverted to the specified physical interface .Ar iface with 802.1Q VLAN encapsulation. Packets with 802.1Q encapsulation received by the parent interface with the correct VLAN Identifier will be diverted to the associated .Xr vlan 4 pseudo-interface. The .Xr vlan 4 interface is assigned a copy of the parent interface's flags and the parent's Ethernet address. The .Cm vlandev and .Cm vlan must both be set at the same time. If the .Xr vlan 4 interface already has a physical interface associated with it, this command will fail. To change the association to another physical interface, the existing association must be cleared first. .Pp Note: if the hardware tagging capability is set on the parent interface, the .Xr vlan 4 pseudo interface's behavior changes: the .Xr vlan 4 interface recognizes that the parent interface supports insertion and extraction of VLAN tags on its own (usually in firmware) and that it should pass packets to and from the parent unaltered. .It Fl vlandev Op Ar iface If the driver is a .Xr vlan 4 pseudo device, disassociate the parent interface from it. This breaks the link between the .Xr vlan 4 interface and its parent, clears its VLAN Identifier, flags and its link address and shuts the interface down. The .Ar iface argument is useless and hence deprecated. .El .Pp The following parameters are used to configure .Xr vxlan 4 interfaces. .Bl -tag -width indent .It Cm vxlanid Ar identifier This value is a 24-bit VXLAN Network Identifier (VNI) that identifies the virtual network segment membership of the interface. .It Cm vxlanlocal Ar address The source address used in the encapsulating IPv4/IPv6 header. The address should already be assigned to an existing interface. When the interface is configured in unicast mode, the listening socket is bound to this address. .It Cm vxlanremote Ar address The interface can be configured in a unicast, or point-to-point, mode to create a tunnel between two hosts. This is the IP address of the remote end of the tunnel. .It Cm vxlangroup Ar address The interface can be configured in a multicast mode to create a virtual network of hosts. This is the IP multicast group address the interface will join. .It Cm vxlanlocalport Ar port The port number the interface will listen on. The default port number is 4789. .It Cm vxlanremoteport Ar port The destination port number used in the encapsulating IPv4/IPv6 header. The remote host should be listening on this port. The default port number is 4789. Note some other implementations, such as Linux, do not default to the IANA assigned port, but instead listen on port 8472. .It Cm vxlanportrange Ar low high The range of source ports used in the encapsulating IPv4/IPv6 header. The port selected within the range is based on a hash of the inner frame. A range is useful to provide entropy within the outer IP header for more effective load balancing. The default range is between the .Xr sysctl 8 variables .Va net.inet.ip.portrange.first and .Va net.inet.ip.portrange.last .It Cm vxlantimeout Ar timeout The maximum time, in seconds, before an entry in the forwarding table is pruned. The default is 1200 seconds (20 minutes). .It Cm vxlanmaxaddr Ar max The maximum number of entries in the forwarding table. The default is 2000. .It Cm vxlandev Ar dev When the interface is configured in multicast mode, the .Cm dev interface is used to transmit IP multicast packets. .It Cm vxlanttl Ar ttl The TTL used in the encapsulating IPv4/IPv6 header. The default is 64. .It Cm vxlanlearn The source IP address and inner source Ethernet MAC address of received packets are used to dynamically populate the forwarding table. When in multicast mode, an entry in the forwarding table allows the interface to send the frame directly to the remote host instead of broadcasting the frame to the multicast group. This is the default. .It Fl vxlanlearn The forwarding table is not populated by received packets. .It Cm vxlanflush Delete all dynamically-learned addresses from the forwarding table. .It Cm vxlanflushall Delete all addresses, including static addresses, from the forwarding table. .El .Pp The following parameters are used to configure .Xr carp 4 protocol on an interface: .Bl -tag -width indent .It Cm vhid Ar n Set the virtual host ID. This is a required setting to initiate .Xr carp 4 . If the virtual host ID does not exist yet, it is created and attached to the interface, otherwise configuration of an existing vhid is adjusted. If the .Cm vhid keyword is supplied along with an .Dq inet6 or .Dq inet address, then this address is configured to be run under control of the specified vhid. Whenever a last address that refers to a particular vhid is removed from an interface, the vhid is automatically removed from interface and destroyed. Any other configuration parameters for the .Xr carp 4 protocol should be supplied along with the .Cm vhid keyword. Acceptable values for vhid are 1 to 255. .It Cm advbase Ar seconds Specifies the base of the advertisement interval in seconds. The acceptable values are 1 to 255. The default value is 1. .It Cm advskew Ar interval Specifies the skew to add to the base advertisement interval to make one host advertise slower than another host. It is specified in 1/256 of seconds. The acceptable values are 1 to 254. The default value is 0. .It Cm pass Ar phrase Set the authentication key to .Ar phrase . .It Cm state Ar MASTER|BACKUP Forcibly change state of a given vhid. .El .Pp The .Nm utility displays the current configuration for a network interface when no optional parameters are supplied. If a protocol family is specified, .Nm will report only the details specific to that protocol family. .Pp If the .Fl m flag is passed before an interface name, .Nm will display the capability list and all of the supported media for the specified interface. If .Fl L flag is supplied, address lifetime is displayed for IPv6 addresses, as time offset string. .Pp Optionally, the .Fl a flag may be used instead of an interface name. This flag instructs .Nm to display information about all interfaces in the system. The .Fl d flag limits this to interfaces that are down, .Fl u limits this to interfaces that are up, .Fl g limits this to members of the specified group of interfaces, and .Fl G excludes members of the specified group from the list. Both .Fl g and .Fl G flags may be specified to apply both conditions. Only one option .Fl g should be specified as later override previous ones (same for .Fl G ) . .Sy groupname may contain shell patterns in which case it should be quoted. When no arguments are given, .Fl a is implied. .Pp The .Fl l flag may be used to list all available interfaces on the system, with no other additional information. If an .Ar address_family is specified, only interfaces of that type will be listed. .Fl l Dq ether will list only Ethernet adapters, excluding the loopback interface. Use of this flag is mutually exclusive with all other flags and commands, except for .Fl d (only list interfaces that are down) and .Fl u (only list interfaces that are up). .Pp The .Fl v flag may be used to get more verbose status for an interface. .Pp The .Fl C flag may be used to list all of the interface cloners available on the system, with no additional information. Use of this flag is mutually exclusive with all other flags and commands. .Pp The .Fl k flag causes keying information for the interface, if available, to be printed. For example, the values of 802.11 WEP keys and .Xr carp 4 passphrases will be printed, if accessible to the current user. This information is not printed by default, as it may be considered sensitive. .Pp If the network interface driver is not present in the kernel then .Nm will attempt to load it. The .Fl n flag disables this behavior. .Pp Only the super-user may modify the configuration of a network interface. .Sh EXAMPLES Assign the IPv4 address .Li 192.0.2.10 , with a network mask of .Li 255.255.255.0 , to the interface .Li em0 : .Dl # ifconfig em0 inet 192.0.2.10 netmask 255.255.255.0 .Pp Add the IPv4 address .Li 192.0.2.45 , with the CIDR network prefix .Li /28 , to the interface .Li em0 , using .Cm add as a synonym for the canonical form of the option .Cm alias : .Dl # ifconfig em0 inet 192.0.2.45/28 add .Pp Remove the IPv4 address .Li 192.0.2.45 from the interface .Li em0 : .Dl # ifconfig em0 inet 192.0.2.45 -alias .Pp Enable IPv6 functionality of the interface: .Dl # ifconfig em0 inet6 -ifdisabled .Pp Add the IPv6 address .Li 2001:DB8:DBDB::123/48 to the interface .Li em0 : .Dl # ifconfig em0 inet6 2001:db8:bdbd::123 prefixlen 48 alias Note that lower case hexadecimal IPv6 addresses are acceptable. .Pp Remove the IPv6 address added in the above example, using the .Li / character as shorthand for the network prefix, and using .Cm delete as a synonym for the canonical form of the option .Fl alias : .Dl # ifconfig em0 inet6 2001:db8:bdbd::123/48 delete .Pp Configure a single CARP redundant address on igb0, and then switch it to be master: .Dl # ifconfig igb0 vhid 1 10.0.0.1/24 pass foobar up .Dl # ifconfig igb0 vhid 1 state master .Pp Configure the interface .Li xl0 , to use 100baseTX, full duplex Ethernet media options: .Dl # ifconfig xl0 media 100baseTX mediaopt full-duplex .Pp Label the em0 interface as an uplink: .Dl # ifconfig em0 description \&"Uplink to Gigabit Switch 2\&" .Pp Create the software network interface .Li gif1 : .Dl # ifconfig gif1 create .Pp Destroy the software network interface .Li gif1 : .Dl # ifconfig gif1 destroy .Pp Display available wireless networks using .Li wlan0 : .Dl # ifconfig wlan0 list scan .Pp Display inet and inet6 address subnet masks in CIDR notation .Dl # ifconfig -f inet:cidr,inet6:cidr .Pp Display interfaces that are up with the exception of loopback .Dl # ifconfig -a -u -G lo .Sh DIAGNOSTICS Messages indicating the specified interface does not exist, the requested address is unknown, or the user is not privileged and tried to alter an interface's configuration. .Sh SEE ALSO .Xr netstat 1 , .Xr carp 4 , .Xr gif 4 , .Xr netintro 4 , .Xr pfsync 4 , .Xr polling 4 , .Xr vlan 4 , .Xr vxlan 4 , .Xr devd.conf 5 , .\" .Xr eon 5 , .Xr devd 8 , .Xr jail 8 , .Xr rc 8 , .Xr routed 8 , .Xr sysctl 8 .Sh HISTORY The .Nm utility appeared in .Bx 4.2 . .Sh BUGS Basic IPv6 node operation requires a link-local address on each interface configured for IPv6. Normally, such an address is automatically configured by the kernel on each interface added to the system or enabled; this behavior may be disabled by setting per-interface flag .Cm -auto_linklocal . The default value of this flag is 1 and can be disabled by using the sysctl MIB variable .Va net.inet6.ip6.auto_linklocal . .Pp Do not configure IPv6 addresses with no link-local address by using .Nm . It can result in unexpected behaviors of the kernel. Index: head/sbin/ifconfig/ifconfig.h =================================================================== --- head/sbin/ifconfig/ifconfig.h (revision 366916) +++ head/sbin/ifconfig/ifconfig.h (revision 366917) @@ -1,160 +1,162 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1997 Peter Wemm. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the FreeBSD Project * by Peter Wemm. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * so there! * * $FreeBSD$ */ #define __constructor __attribute__((constructor)) struct afswtch; struct cmd; typedef void c_func(const char *cmd, int arg, int s, const struct afswtch *afp); typedef void c_func2(const char *arg1, const char *arg2, int s, const struct afswtch *afp); struct cmd { const char *c_name; int c_parameter; #define NEXTARG 0xffffff /* has following arg */ #define NEXTARG2 0xfffffe /* has 2 following args */ #define OPTARG 0xfffffd /* has optional following arg */ union { c_func *c_func; c_func2 *c_func2; } c_u; int c_iscloneop; struct cmd *c_next; }; void cmd_register(struct cmd *); typedef void callback_func(int s, void *); void callback_register(callback_func *, void *); /* * Macros for declaring command functions and initializing entries. */ #define DECL_CMD_FUNC(name, cmd, arg) \ void name(const char *cmd, int arg, int s, const struct afswtch *afp) #define DECL_CMD_FUNC2(name, arg1, arg2) \ void name(const char *arg1, const char *arg2, int s, const struct afswtch *afp) #define DEF_CMD(name, param, func) { name, param, { .c_func = func }, 0, NULL } #define DEF_CMD_ARG(name, func) { name, NEXTARG, { .c_func = func }, 0, NULL } #define DEF_CMD_OPTARG(name, func) { name, OPTARG, { .c_func = func }, 0, NULL } #define DEF_CMD_ARG2(name, func) { name, NEXTARG2, { .c_func2 = func }, 0, NULL } #define DEF_CLONE_CMD(name, param, func) { name, param, { .c_func = func }, 1, NULL } #define DEF_CLONE_CMD_ARG(name, func) { name, NEXTARG, { .c_func = func }, 1, NULL } #define DEF_CLONE_CMD_ARG2(name, func) { name, NEXTARG2, { .c_func2 = func }, 1, NULL } struct ifaddrs; struct addrinfo; enum { RIDADDR, ADDR, MASK, DSTADDR, }; struct afswtch { const char *af_name; /* as given on cmd line, e.g. "inet" */ short af_af; /* AF_* */ /* * Status is handled one of two ways; if there is an * address associated with the interface then the * associated address family af_status method is invoked * with the appropriate addressin info. Otherwise, if * all possible info is to be displayed and af_other_status * is defined then it is invoked after all address status * is presented. */ void (*af_status)(int, const struct ifaddrs *); void (*af_other_status)(int); /* parse address method */ void (*af_getaddr)(const char *, int); /* parse prefix method (IPv6) */ void (*af_getprefix)(const char *, int); void (*af_postproc)(int s, const struct afswtch *); u_long af_difaddr; /* set dst if address ioctl */ u_long af_aifaddr; /* set if address ioctl */ void *af_ridreq; /* */ void *af_addreq; /* */ struct afswtch *af_next; /* XXX doesn't fit model */ void (*af_status_tunnel)(int); void (*af_settunnel)(int s, struct addrinfo *srcres, struct addrinfo *dstres); }; void af_register(struct afswtch *); struct option { const char *opt; const char *opt_usage; void (*cb)(const char *arg); struct option *next; }; void opt_register(struct option *); extern struct ifreq ifr; extern char name[IFNAMSIZ]; /* name of interface */ extern int allmedia; extern int supmedia; extern int printkeys; extern int newaddr; extern int verbose; extern int printifname; extern int exit_code; void setifcap(const char *, int value, int s, const struct afswtch *); void Perror(const char *cmd); void printb(const char *s, unsigned value, const char *bits); void ifmaybeload(const char *name); +typedef int clone_match_func(const char *); typedef void clone_callback_func(int, struct ifreq *); -void clone_setdefcallback(const char *, clone_callback_func *); +void clone_setdefcallback_prefix(const char *, clone_callback_func *); +void clone_setdefcallback_filter(clone_match_func *, clone_callback_func *); void sfp_status(int s, struct ifreq *ifr, int verbose); /* * XXX expose this so modules that neeed to know of any pending * operations on ifmedia can avoid cmd line ordering confusion. */ struct ifmediareq *ifmedia_getstate(int s); void print_vhid(const struct ifaddrs *, const char *); Index: head/sbin/ifconfig/ifieee80211.c =================================================================== --- head/sbin/ifconfig/ifieee80211.c (revision 366916) +++ head/sbin/ifconfig/ifieee80211.c (revision 366917) @@ -1,6073 +1,6073 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright 2001 The Aerospace Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of The Aerospace Corporation may not be used to endorse or * promote products derived from this software. * * THIS SOFTWARE IS PROVIDED BY THE AEROSPACE CORPORATION ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AEROSPACE CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /*- * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* NB: for offsetof */ #include #include #include "ifconfig.h" #include #include #ifndef IEEE80211_FIXED_RATE_NONE #define IEEE80211_FIXED_RATE_NONE 0xff #endif /* XXX need these publicly defined or similar */ #ifndef IEEE80211_NODE_AUTH #define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */ #define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */ #define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */ #define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */ #define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */ #define IEEE80211_NODE_HT 0x000040 /* HT enabled */ #define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */ #define IEEE80211_NODE_WPS 0x000100 /* WPS association */ #define IEEE80211_NODE_TSN 0x000200 /* TSN association */ #define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */ #define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */ #define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */ #define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */ #define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */ #define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */ #define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */ #define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */ #define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */ #define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */ #define IEEE80211_NODE_VHT 0x100000 /* VHT enabled */ #define IEEE80211_NODE_LDPC 0x200000 /* LDPC enabled */ #define IEEE80211_NODE_UAPSD 0x400000 /* UAPSD enabled */ #endif /* XXX should also figure out where to put these for k/u-space sharing. */ #ifndef IEEE80211_FVHT_VHT #define IEEE80211_FVHT_VHT 0x000000001 /* CONF: VHT supported */ #define IEEE80211_FVHT_USEVHT40 0x000000002 /* CONF: Use VHT40 */ #define IEEE80211_FVHT_USEVHT80 0x000000004 /* CONF: Use VHT80 */ #define IEEE80211_FVHT_USEVHT160 0x000000008 /* CONF: Use VHT160 */ #define IEEE80211_FVHT_USEVHT80P80 0x000000010 /* CONF: Use VHT 80+80 */ #endif /* Helper macros unified. */ #ifndef _IEEE80211_MASKSHIFT #define _IEEE80211_MASKSHIFT(_v, _f) (((_v) & _f) >> _f##_S) #endif #ifndef _IEEE80211_SHIFTMASK #define _IEEE80211_SHIFTMASK(_v, _f) (((_v) << _f##_S) & _f) #endif #define MAXCHAN 1536 /* max 1.5K channels */ #define MAXCOL 78 static int col; static char spacer; static void LINE_INIT(char c); static void LINE_BREAK(void); static void LINE_CHECK(const char *fmt, ...); static const char *modename[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = "auto", [IEEE80211_MODE_11A] = "11a", [IEEE80211_MODE_11B] = "11b", [IEEE80211_MODE_11G] = "11g", [IEEE80211_MODE_FH] = "fh", [IEEE80211_MODE_TURBO_A] = "turboA", [IEEE80211_MODE_TURBO_G] = "turboG", [IEEE80211_MODE_STURBO_A] = "sturbo", [IEEE80211_MODE_11NA] = "11na", [IEEE80211_MODE_11NG] = "11ng", [IEEE80211_MODE_HALF] = "half", [IEEE80211_MODE_QUARTER] = "quarter", [IEEE80211_MODE_VHT_2GHZ] = "11acg", [IEEE80211_MODE_VHT_5GHZ] = "11ac", }; static void set80211(int s, int type, int val, int len, void *data); static int get80211(int s, int type, void *data, int len); static int get80211len(int s, int type, void *data, int len, int *plen); static int get80211val(int s, int type, int *val); static const char *get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp); static void print_string(const u_int8_t *buf, int len); static void print_regdomain(const struct ieee80211_regdomain *, int); static void print_channels(int, const struct ieee80211req_chaninfo *, int allchans, int verbose); static void regdomain_makechannels(struct ieee80211_regdomain_req *, const struct ieee80211_devcaps_req *); static const char *mesh_linkstate_string(uint8_t state); static struct ieee80211req_chaninfo *chaninfo; static struct ieee80211_regdomain regdomain; static int gotregdomain = 0; static struct ieee80211_roamparams_req roamparams; static int gotroam = 0; static struct ieee80211_txparams_req txparams; static int gottxparams = 0; static struct ieee80211_channel curchan; static int gotcurchan = 0; static struct ifmediareq *ifmr; static int htconf = 0; static int gothtconf = 0; static void gethtconf(int s) { if (gothtconf) return; if (get80211val(s, IEEE80211_IOC_HTCONF, &htconf) < 0) warn("unable to get HT configuration information"); gothtconf = 1; } /* VHT */ static int vhtconf = 0; static int gotvhtconf = 0; static void getvhtconf(int s) { if (gotvhtconf) return; if (get80211val(s, IEEE80211_IOC_VHTCONF, &vhtconf) < 0) warn("unable to get VHT configuration information"); gotvhtconf = 1; } /* * Collect channel info from the kernel. We use this (mostly) * to handle mapping between frequency and IEEE channel number. */ static void getchaninfo(int s) { if (chaninfo != NULL) return; chaninfo = malloc(IEEE80211_CHANINFO_SIZE(MAXCHAN)); if (chaninfo == NULL) errx(1, "no space for channel list"); if (get80211(s, IEEE80211_IOC_CHANINFO, chaninfo, IEEE80211_CHANINFO_SIZE(MAXCHAN)) < 0) err(1, "unable to get channel information"); ifmr = ifmedia_getstate(s); gethtconf(s); getvhtconf(s); } static struct regdata * getregdata(void) { static struct regdata *rdp = NULL; if (rdp == NULL) { rdp = lib80211_alloc_regdata(); if (rdp == NULL) errx(-1, "missing or corrupted regdomain database"); } return rdp; } /* * Given the channel at index i with attributes from, * check if there is a channel with attributes to in * the channel table. With suitable attributes this * allows the caller to look for promotion; e.g. from * 11b > 11g. */ static int canpromote(int i, int from, int to) { const struct ieee80211_channel *fc = &chaninfo->ic_chans[i]; u_int j; if ((fc->ic_flags & from) != from) return i; /* NB: quick check exploiting ordering of chans w/ same frequency */ if (i+1 < chaninfo->ic_nchans && chaninfo->ic_chans[i+1].ic_freq == fc->ic_freq && (chaninfo->ic_chans[i+1].ic_flags & to) == to) return i+1; /* brute force search in case channel list is not ordered */ for (j = 0; j < chaninfo->ic_nchans; j++) { const struct ieee80211_channel *tc = &chaninfo->ic_chans[j]; if (j != i && tc->ic_freq == fc->ic_freq && (tc->ic_flags & to) == to) return j; } return i; } /* * Handle channel promotion. When a channel is specified with * only a frequency we want to promote it to the ``best'' channel * available. The channel list has separate entries for 11b, 11g, * 11a, and 11n[ga] channels so specifying a frequency w/o any * attributes requires we upgrade, e.g. from 11b -> 11g. This * gets complicated when the channel is specified on the same * command line with a media request that constrains the available * channe list (e.g. mode 11a); we want to honor that to avoid * confusing behaviour. */ /* * XXX VHT */ static int promote(int i) { /* * Query the current mode of the interface in case it's * constrained (e.g. to 11a). We must do this carefully * as there may be a pending ifmedia request in which case * asking the kernel will give us the wrong answer. This * is an unfortunate side-effect of the way ifconfig is * structure for modularity (yech). * * NB: ifmr is actually setup in getchaninfo (above); we * assume it's called coincident with to this call so * we have a ``current setting''; otherwise we must pass * the socket descriptor down to here so we can make * the ifmedia_getstate call ourselves. */ int chanmode = ifmr != NULL ? IFM_MODE(ifmr->ifm_current) : IFM_AUTO; /* when ambiguous promote to ``best'' */ /* NB: we abitrarily pick HT40+ over HT40- */ if (chanmode != IFM_IEEE80211_11B) i = canpromote(i, IEEE80211_CHAN_B, IEEE80211_CHAN_G); if (chanmode != IFM_IEEE80211_11G && (htconf & 1)) { i = canpromote(i, IEEE80211_CHAN_G, IEEE80211_CHAN_G | IEEE80211_CHAN_HT20); if (htconf & 2) { i = canpromote(i, IEEE80211_CHAN_G, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D); i = canpromote(i, IEEE80211_CHAN_G, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U); } } if (chanmode != IFM_IEEE80211_11A && (htconf & 1)) { i = canpromote(i, IEEE80211_CHAN_A, IEEE80211_CHAN_A | IEEE80211_CHAN_HT20); if (htconf & 2) { i = canpromote(i, IEEE80211_CHAN_A, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D); i = canpromote(i, IEEE80211_CHAN_A, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U); } } return i; } static void mapfreq(struct ieee80211_channel *chan, int freq, int flags) { u_int i; for (i = 0; i < chaninfo->ic_nchans; i++) { const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; if (c->ic_freq == freq && (c->ic_flags & flags) == flags) { if (flags == 0) { /* when ambiguous promote to ``best'' */ c = &chaninfo->ic_chans[promote(i)]; } *chan = *c; return; } } errx(1, "unknown/undefined frequency %u/0x%x", freq, flags); } static void mapchan(struct ieee80211_channel *chan, int ieee, int flags) { u_int i; for (i = 0; i < chaninfo->ic_nchans; i++) { const struct ieee80211_channel *c = &chaninfo->ic_chans[i]; if (c->ic_ieee == ieee && (c->ic_flags & flags) == flags) { if (flags == 0) { /* when ambiguous promote to ``best'' */ c = &chaninfo->ic_chans[promote(i)]; } *chan = *c; return; } } errx(1, "unknown/undefined channel number %d flags 0x%x", ieee, flags); } static const struct ieee80211_channel * getcurchan(int s) { if (gotcurchan) return &curchan; if (get80211(s, IEEE80211_IOC_CURCHAN, &curchan, sizeof(curchan)) < 0) { int val; /* fall back to legacy ioctl */ if (get80211val(s, IEEE80211_IOC_CHANNEL, &val) < 0) err(-1, "cannot figure out current channel"); getchaninfo(s); mapchan(&curchan, val, 0); } gotcurchan = 1; return &curchan; } static enum ieee80211_phymode chan2mode(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHTA(c)) return IEEE80211_MODE_VHT_5GHZ; if (IEEE80211_IS_CHAN_VHTG(c)) return IEEE80211_MODE_VHT_2GHZ; if (IEEE80211_IS_CHAN_HTA(c)) return IEEE80211_MODE_11NA; if (IEEE80211_IS_CHAN_HTG(c)) return IEEE80211_MODE_11NG; if (IEEE80211_IS_CHAN_108A(c)) return IEEE80211_MODE_TURBO_A; if (IEEE80211_IS_CHAN_108G(c)) return IEEE80211_MODE_TURBO_G; if (IEEE80211_IS_CHAN_ST(c)) return IEEE80211_MODE_STURBO_A; if (IEEE80211_IS_CHAN_FHSS(c)) return IEEE80211_MODE_FH; if (IEEE80211_IS_CHAN_HALF(c)) return IEEE80211_MODE_HALF; if (IEEE80211_IS_CHAN_QUARTER(c)) return IEEE80211_MODE_QUARTER; if (IEEE80211_IS_CHAN_A(c)) return IEEE80211_MODE_11A; if (IEEE80211_IS_CHAN_ANYG(c)) return IEEE80211_MODE_11G; if (IEEE80211_IS_CHAN_B(c)) return IEEE80211_MODE_11B; return IEEE80211_MODE_AUTO; } static void getroam(int s) { if (gotroam) return; if (get80211(s, IEEE80211_IOC_ROAM, &roamparams, sizeof(roamparams)) < 0) err(1, "unable to get roaming parameters"); gotroam = 1; } static void setroam_cb(int s, void *arg) { struct ieee80211_roamparams_req *roam = arg; set80211(s, IEEE80211_IOC_ROAM, 0, sizeof(*roam), roam); } static void gettxparams(int s) { if (gottxparams) return; if (get80211(s, IEEE80211_IOC_TXPARAMS, &txparams, sizeof(txparams)) < 0) err(1, "unable to get transmit parameters"); gottxparams = 1; } static void settxparams_cb(int s, void *arg) { struct ieee80211_txparams_req *txp = arg; set80211(s, IEEE80211_IOC_TXPARAMS, 0, sizeof(*txp), txp); } static void getregdomain(int s) { if (gotregdomain) return; if (get80211(s, IEEE80211_IOC_REGDOMAIN, ®domain, sizeof(regdomain)) < 0) err(1, "unable to get regulatory domain info"); gotregdomain = 1; } static void getdevcaps(int s, struct ieee80211_devcaps_req *dc) { if (get80211(s, IEEE80211_IOC_DEVCAPS, dc, IEEE80211_DEVCAPS_SPACE(dc)) < 0) err(1, "unable to get device capabilities"); } static void setregdomain_cb(int s, void *arg) { struct ieee80211_regdomain_req *req; struct ieee80211_regdomain *rd = arg; struct ieee80211_devcaps_req *dc; struct regdata *rdp = getregdata(); if (rd->country != NO_COUNTRY) { const struct country *cc; /* * Check current country seting to make sure it's * compatible with the new regdomain. If not, then * override it with any default country for this * SKU. If we cannot arrange a match, then abort. */ cc = lib80211_country_findbycc(rdp, rd->country); if (cc == NULL) errx(1, "unknown ISO country code %d", rd->country); if (cc->rd->sku != rd->regdomain) { const struct regdomain *rp; /* * Check if country is incompatible with regdomain. * To enable multiple regdomains for a country code * we permit a mismatch between the regdomain and * the country's associated regdomain when the * regdomain is setup w/o a default country. For * example, US is bound to the FCC regdomain but * we allow US to be combined with FCC3 because FCC3 * has not default country. This allows bogus * combinations like FCC3+DK which are resolved when * constructing the channel list by deferring to the * regdomain to construct the channel list. */ rp = lib80211_regdomain_findbysku(rdp, rd->regdomain); if (rp == NULL) errx(1, "country %s (%s) is not usable with " "regdomain %d", cc->isoname, cc->name, rd->regdomain); else if (rp->cc != NULL && rp->cc != cc) errx(1, "country %s (%s) is not usable with " "regdomain %s", cc->isoname, cc->name, rp->name); } } /* * Fetch the device capabilities and calculate the * full set of netbands for which we request a new * channel list be constructed. Once that's done we * push the regdomain info + channel list to the kernel. */ dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); if (dc == NULL) errx(1, "no space for device capabilities"); dc->dc_chaninfo.ic_nchans = MAXCHAN; getdevcaps(s, dc); #if 0 if (verbose) { printf("drivercaps: 0x%x\n", dc->dc_drivercaps); printf("cryptocaps: 0x%x\n", dc->dc_cryptocaps); printf("htcaps : 0x%x\n", dc->dc_htcaps); printf("vhtcaps : 0x%x\n", dc->dc_vhtcaps); #if 0 memcpy(chaninfo, &dc->dc_chaninfo, IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, 1/*verbose*/); #endif } #endif req = malloc(IEEE80211_REGDOMAIN_SIZE(dc->dc_chaninfo.ic_nchans)); if (req == NULL) errx(1, "no space for regdomain request"); req->rd = *rd; regdomain_makechannels(req, dc); if (verbose) { LINE_INIT(':'); print_regdomain(rd, 1/*verbose*/); LINE_BREAK(); /* blech, reallocate channel list for new data */ if (chaninfo != NULL) free(chaninfo); chaninfo = malloc(IEEE80211_CHANINFO_SPACE(&req->chaninfo)); if (chaninfo == NULL) errx(1, "no space for channel list"); memcpy(chaninfo, &req->chaninfo, IEEE80211_CHANINFO_SPACE(&req->chaninfo)); print_channels(s, &req->chaninfo, 1/*allchans*/, 1/*verbose*/); } if (req->chaninfo.ic_nchans == 0) errx(1, "no channels calculated"); set80211(s, IEEE80211_IOC_REGDOMAIN, 0, IEEE80211_REGDOMAIN_SPACE(req), req); free(req); free(dc); } static int ieee80211_mhz2ieee(int freq, int flags) { struct ieee80211_channel chan; mapfreq(&chan, freq, flags); return chan.ic_ieee; } static int isanyarg(const char *arg) { return (strncmp(arg, "-", 1) == 0 || strncasecmp(arg, "any", 3) == 0 || strncasecmp(arg, "off", 3) == 0); } static void set80211ssid(const char *val, int d, int s, const struct afswtch *rafp) { int ssid; int len; u_int8_t data[IEEE80211_NWID_LEN]; ssid = 0; len = strlen(val); if (len > 2 && isdigit((int)val[0]) && val[1] == ':') { ssid = atoi(val)-1; val += 2; } bzero(data, sizeof(data)); len = sizeof(data); if (get_string(val, NULL, data, &len) == NULL) exit(1); set80211(s, IEEE80211_IOC_SSID, ssid, len, data); } static void set80211meshid(const char *val, int d, int s, const struct afswtch *rafp) { int len; u_int8_t data[IEEE80211_NWID_LEN]; memset(data, 0, sizeof(data)); len = sizeof(data); if (get_string(val, NULL, data, &len) == NULL) exit(1); set80211(s, IEEE80211_IOC_MESH_ID, 0, len, data); } static void set80211stationname(const char *val, int d, int s, const struct afswtch *rafp) { int len; u_int8_t data[33]; bzero(data, sizeof(data)); len = sizeof(data); get_string(val, NULL, data, &len); set80211(s, IEEE80211_IOC_STATIONNAME, 0, len, data); } /* * Parse a channel specification for attributes/flags. * The syntax is: * freq/xx channel width (5,10,20,40,40+,40-) * freq:mode channel mode (a,b,g,h,n,t,s,d) * * These can be combined in either order; e.g. 2437:ng/40. * Modes are case insensitive. * * The result is not validated here; it's assumed to be * checked against the channel table fetched from the kernel. */ static int getchannelflags(const char *val, int freq) { #define _CHAN_HT 0x80000000 const char *cp; int flags; int is_vht = 0; flags = 0; cp = strchr(val, ':'); if (cp != NULL) { for (cp++; isalpha((int) *cp); cp++) { /* accept mixed case */ int c = *cp; if (isupper(c)) c = tolower(c); switch (c) { case 'a': /* 802.11a */ flags |= IEEE80211_CHAN_A; break; case 'b': /* 802.11b */ flags |= IEEE80211_CHAN_B; break; case 'g': /* 802.11g */ flags |= IEEE80211_CHAN_G; break; case 'v': /* vht: 802.11ac */ is_vht = 1; /* Fallthrough */ case 'h': /* ht = 802.11n */ case 'n': /* 802.11n */ flags |= _CHAN_HT; /* NB: private */ break; case 'd': /* dt = Atheros Dynamic Turbo */ flags |= IEEE80211_CHAN_TURBO; break; case 't': /* ht, dt, st, t */ /* dt and unadorned t specify Dynamic Turbo */ if ((flags & (IEEE80211_CHAN_STURBO|_CHAN_HT)) == 0) flags |= IEEE80211_CHAN_TURBO; break; case 's': /* st = Atheros Static Turbo */ flags |= IEEE80211_CHAN_STURBO; break; default: errx(-1, "%s: Invalid channel attribute %c\n", val, *cp); } } } cp = strchr(val, '/'); if (cp != NULL) { char *ep; u_long cw = strtoul(cp+1, &ep, 10); switch (cw) { case 5: flags |= IEEE80211_CHAN_QUARTER; break; case 10: flags |= IEEE80211_CHAN_HALF; break; case 20: /* NB: this may be removed below */ flags |= IEEE80211_CHAN_HT20; break; case 40: case 80: case 160: /* Handle the 80/160 VHT flag */ if (cw == 80) flags |= IEEE80211_CHAN_VHT80; else if (cw == 160) flags |= IEEE80211_CHAN_VHT160; /* Fallthrough */ if (ep != NULL && *ep == '+') flags |= IEEE80211_CHAN_HT40U; else if (ep != NULL && *ep == '-') flags |= IEEE80211_CHAN_HT40D; break; default: errx(-1, "%s: Invalid channel width\n", val); } } /* * Cleanup specifications. */ if ((flags & _CHAN_HT) == 0) { /* * If user specified freq/20 or freq/40 quietly remove * HT cw attributes depending on channel use. To give * an explicit 20/40 width for an HT channel you must * indicate it is an HT channel since all HT channels * are also usable for legacy operation; e.g. freq:n/40. */ flags &= ~IEEE80211_CHAN_HT; flags &= ~IEEE80211_CHAN_VHT; } else { /* * Remove private indicator that this is an HT channel * and if no explicit channel width has been given * provide the default settings. */ flags &= ~_CHAN_HT; if ((flags & IEEE80211_CHAN_HT) == 0) { struct ieee80211_channel chan; /* * Consult the channel list to see if we can use * HT40+ or HT40- (if both the map routines choose). */ if (freq > 255) mapfreq(&chan, freq, 0); else mapchan(&chan, freq, 0); flags |= (chan.ic_flags & IEEE80211_CHAN_HT); } /* * If VHT is enabled, then also set the VHT flag and the * relevant channel up/down. */ if (is_vht && (flags & IEEE80211_CHAN_HT)) { /* * XXX yes, maybe we should just have VHT, and reuse * HT20/HT40U/HT40D */ if (flags & IEEE80211_CHAN_VHT80) ; else if (flags & IEEE80211_CHAN_HT20) flags |= IEEE80211_CHAN_VHT20; else if (flags & IEEE80211_CHAN_HT40U) flags |= IEEE80211_CHAN_VHT40U; else if (flags & IEEE80211_CHAN_HT40D) flags |= IEEE80211_CHAN_VHT40D; } } return flags; #undef _CHAN_HT } static void getchannel(int s, struct ieee80211_channel *chan, const char *val) { int v, flags; char *eptr; memset(chan, 0, sizeof(*chan)); if (isanyarg(val)) { chan->ic_freq = IEEE80211_CHAN_ANY; return; } getchaninfo(s); errno = 0; v = strtol(val, &eptr, 10); if (val[0] == '\0' || val == eptr || errno == ERANGE || /* channel may be suffixed with nothing, :flag, or /width */ (eptr[0] != '\0' && eptr[0] != ':' && eptr[0] != '/')) errx(1, "invalid channel specification%s", errno == ERANGE ? " (out of range)" : ""); flags = getchannelflags(val, v); if (v > 255) { /* treat as frequency */ mapfreq(chan, v, flags); } else { mapchan(chan, v, flags); } } static void set80211channel(const char *val, int d, int s, const struct afswtch *rafp) { struct ieee80211_channel chan; getchannel(s, &chan, val); set80211(s, IEEE80211_IOC_CURCHAN, 0, sizeof(chan), &chan); } static void set80211chanswitch(const char *val, int d, int s, const struct afswtch *rafp) { struct ieee80211_chanswitch_req csr; getchannel(s, &csr.csa_chan, val); csr.csa_mode = 1; csr.csa_count = 5; set80211(s, IEEE80211_IOC_CHANSWITCH, 0, sizeof(csr), &csr); } static void set80211authmode(const char *val, int d, int s, const struct afswtch *rafp) { int mode; if (strcasecmp(val, "none") == 0) { mode = IEEE80211_AUTH_NONE; } else if (strcasecmp(val, "open") == 0) { mode = IEEE80211_AUTH_OPEN; } else if (strcasecmp(val, "shared") == 0) { mode = IEEE80211_AUTH_SHARED; } else if (strcasecmp(val, "8021x") == 0) { mode = IEEE80211_AUTH_8021X; } else if (strcasecmp(val, "wpa") == 0) { mode = IEEE80211_AUTH_WPA; } else { errx(1, "unknown authmode"); } set80211(s, IEEE80211_IOC_AUTHMODE, mode, 0, NULL); } static void set80211powersavemode(const char *val, int d, int s, const struct afswtch *rafp) { int mode; if (strcasecmp(val, "off") == 0) { mode = IEEE80211_POWERSAVE_OFF; } else if (strcasecmp(val, "on") == 0) { mode = IEEE80211_POWERSAVE_ON; } else if (strcasecmp(val, "cam") == 0) { mode = IEEE80211_POWERSAVE_CAM; } else if (strcasecmp(val, "psp") == 0) { mode = IEEE80211_POWERSAVE_PSP; } else if (strcasecmp(val, "psp-cam") == 0) { mode = IEEE80211_POWERSAVE_PSP_CAM; } else { errx(1, "unknown powersavemode"); } set80211(s, IEEE80211_IOC_POWERSAVE, mode, 0, NULL); } static void set80211powersave(const char *val, int d, int s, const struct afswtch *rafp) { if (d == 0) set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_OFF, 0, NULL); else set80211(s, IEEE80211_IOC_POWERSAVE, IEEE80211_POWERSAVE_ON, 0, NULL); } static void set80211powersavesleep(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_POWERSAVESLEEP, atoi(val), 0, NULL); } static void set80211wepmode(const char *val, int d, int s, const struct afswtch *rafp) { int mode; if (strcasecmp(val, "off") == 0) { mode = IEEE80211_WEP_OFF; } else if (strcasecmp(val, "on") == 0) { mode = IEEE80211_WEP_ON; } else if (strcasecmp(val, "mixed") == 0) { mode = IEEE80211_WEP_MIXED; } else { errx(1, "unknown wep mode"); } set80211(s, IEEE80211_IOC_WEP, mode, 0, NULL); } static void set80211wep(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_WEP, d, 0, NULL); } static int isundefarg(const char *arg) { return (strcmp(arg, "-") == 0 || strncasecmp(arg, "undef", 5) == 0); } static void set80211weptxkey(const char *val, int d, int s, const struct afswtch *rafp) { if (isundefarg(val)) set80211(s, IEEE80211_IOC_WEPTXKEY, IEEE80211_KEYIX_NONE, 0, NULL); else set80211(s, IEEE80211_IOC_WEPTXKEY, atoi(val)-1, 0, NULL); } static void set80211wepkey(const char *val, int d, int s, const struct afswtch *rafp) { int key = 0; int len; u_int8_t data[IEEE80211_KEYBUF_SIZE]; if (isdigit((int)val[0]) && val[1] == ':') { key = atoi(val)-1; val += 2; } bzero(data, sizeof(data)); len = sizeof(data); get_string(val, NULL, data, &len); set80211(s, IEEE80211_IOC_WEPKEY, key, len, data); } /* * This function is purely a NetBSD compatibility interface. The NetBSD * interface is too inflexible, but it's there so we'll support it since * it's not all that hard. */ static void set80211nwkey(const char *val, int d, int s, const struct afswtch *rafp) { int txkey; int i, len; u_int8_t data[IEEE80211_KEYBUF_SIZE]; set80211(s, IEEE80211_IOC_WEP, IEEE80211_WEP_ON, 0, NULL); if (isdigit((int)val[0]) && val[1] == ':') { txkey = val[0]-'0'-1; val += 2; for (i = 0; i < 4; i++) { bzero(data, sizeof(data)); len = sizeof(data); val = get_string(val, ",", data, &len); if (val == NULL) exit(1); set80211(s, IEEE80211_IOC_WEPKEY, i, len, data); } } else { bzero(data, sizeof(data)); len = sizeof(data); get_string(val, NULL, data, &len); txkey = 0; set80211(s, IEEE80211_IOC_WEPKEY, 0, len, data); bzero(data, sizeof(data)); for (i = 1; i < 4; i++) set80211(s, IEEE80211_IOC_WEPKEY, i, 0, data); } set80211(s, IEEE80211_IOC_WEPTXKEY, txkey, 0, NULL); } static void set80211rtsthreshold(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_RTSTHRESHOLD, isundefarg(val) ? IEEE80211_RTS_MAX : atoi(val), 0, NULL); } static void set80211protmode(const char *val, int d, int s, const struct afswtch *rafp) { int mode; if (strcasecmp(val, "off") == 0) { mode = IEEE80211_PROTMODE_OFF; } else if (strcasecmp(val, "cts") == 0) { mode = IEEE80211_PROTMODE_CTS; } else if (strncasecmp(val, "rtscts", 3) == 0) { mode = IEEE80211_PROTMODE_RTSCTS; } else { errx(1, "unknown protection mode"); } set80211(s, IEEE80211_IOC_PROTMODE, mode, 0, NULL); } static void set80211htprotmode(const char *val, int d, int s, const struct afswtch *rafp) { int mode; if (strcasecmp(val, "off") == 0) { mode = IEEE80211_PROTMODE_OFF; } else if (strncasecmp(val, "rts", 3) == 0) { mode = IEEE80211_PROTMODE_RTSCTS; } else { errx(1, "unknown protection mode"); } set80211(s, IEEE80211_IOC_HTPROTMODE, mode, 0, NULL); } static void set80211txpower(const char *val, int d, int s, const struct afswtch *rafp) { double v = atof(val); int txpow; txpow = (int) (2*v); if (txpow != 2*v) errx(-1, "invalid tx power (must be .5 dBm units)"); set80211(s, IEEE80211_IOC_TXPOWER, txpow, 0, NULL); } #define IEEE80211_ROAMING_DEVICE 0 #define IEEE80211_ROAMING_AUTO 1 #define IEEE80211_ROAMING_MANUAL 2 static void set80211roaming(const char *val, int d, int s, const struct afswtch *rafp) { int mode; if (strcasecmp(val, "device") == 0) { mode = IEEE80211_ROAMING_DEVICE; } else if (strcasecmp(val, "auto") == 0) { mode = IEEE80211_ROAMING_AUTO; } else if (strcasecmp(val, "manual") == 0) { mode = IEEE80211_ROAMING_MANUAL; } else { errx(1, "unknown roaming mode"); } set80211(s, IEEE80211_IOC_ROAMING, mode, 0, NULL); } static void set80211wme(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_WME, d, 0, NULL); } static void set80211hidessid(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_HIDESSID, d, 0, NULL); } static void set80211apbridge(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_APBRIDGE, d, 0, NULL); } static void set80211fastframes(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_FF, d, 0, NULL); } static void set80211dturbo(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_TURBOP, d, 0, NULL); } static void set80211chanlist(const char *val, int d, int s, const struct afswtch *rafp) { struct ieee80211req_chanlist chanlist; char *temp, *cp, *tp; temp = malloc(strlen(val) + 1); if (temp == NULL) errx(1, "malloc failed"); strcpy(temp, val); memset(&chanlist, 0, sizeof(chanlist)); cp = temp; for (;;) { int first, last, f, c; tp = strchr(cp, ','); if (tp != NULL) *tp++ = '\0'; switch (sscanf(cp, "%u-%u", &first, &last)) { case 1: if (first > IEEE80211_CHAN_MAX) errx(-1, "channel %u out of range, max %u", first, IEEE80211_CHAN_MAX); setbit(chanlist.ic_channels, first); break; case 2: if (first > IEEE80211_CHAN_MAX) errx(-1, "channel %u out of range, max %u", first, IEEE80211_CHAN_MAX); if (last > IEEE80211_CHAN_MAX) errx(-1, "channel %u out of range, max %u", last, IEEE80211_CHAN_MAX); if (first > last) errx(-1, "void channel range, %u > %u", first, last); for (f = first; f <= last; f++) setbit(chanlist.ic_channels, f); break; } if (tp == NULL) break; c = *tp; while (isspace(c)) tp++; if (!isdigit(c)) break; cp = tp; } set80211(s, IEEE80211_IOC_CHANLIST, 0, sizeof(chanlist), &chanlist); free(temp); } static void set80211bssid(const char *val, int d, int s, const struct afswtch *rafp) { if (!isanyarg(val)) { char *temp; struct sockaddr_dl sdl; temp = malloc(strlen(val) + 2); /* ':' and '\0' */ if (temp == NULL) errx(1, "malloc failed"); temp[0] = ':'; strcpy(temp + 1, val); sdl.sdl_len = sizeof(sdl); link_addr(temp, &sdl); free(temp); if (sdl.sdl_alen != IEEE80211_ADDR_LEN) errx(1, "malformed link-level address"); set80211(s, IEEE80211_IOC_BSSID, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl)); } else { uint8_t zerobssid[IEEE80211_ADDR_LEN]; memset(zerobssid, 0, sizeof(zerobssid)); set80211(s, IEEE80211_IOC_BSSID, 0, IEEE80211_ADDR_LEN, zerobssid); } } static int getac(const char *ac) { if (strcasecmp(ac, "ac_be") == 0 || strcasecmp(ac, "be") == 0) return WME_AC_BE; if (strcasecmp(ac, "ac_bk") == 0 || strcasecmp(ac, "bk") == 0) return WME_AC_BK; if (strcasecmp(ac, "ac_vi") == 0 || strcasecmp(ac, "vi") == 0) return WME_AC_VI; if (strcasecmp(ac, "ac_vo") == 0 || strcasecmp(ac, "vo") == 0) return WME_AC_VO; errx(1, "unknown wme access class %s", ac); } static DECL_CMD_FUNC2(set80211cwmin, ac, val) { set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac), NULL); } static DECL_CMD_FUNC2(set80211cwmax, ac, val) { set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac), NULL); } static DECL_CMD_FUNC2(set80211aifs, ac, val) { set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac), NULL); } static DECL_CMD_FUNC2(set80211txoplimit, ac, val) { set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac), NULL); } static DECL_CMD_FUNC(set80211acm, ac, d) { set80211(s, IEEE80211_IOC_WME_ACM, 1, getac(ac), NULL); } static DECL_CMD_FUNC(set80211noacm, ac, d) { set80211(s, IEEE80211_IOC_WME_ACM, 0, getac(ac), NULL); } static DECL_CMD_FUNC(set80211ackpolicy, ac, d) { set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 1, getac(ac), NULL); } static DECL_CMD_FUNC(set80211noackpolicy, ac, d) { set80211(s, IEEE80211_IOC_WME_ACKPOLICY, 0, getac(ac), NULL); } static DECL_CMD_FUNC2(set80211bsscwmin, ac, val) { set80211(s, IEEE80211_IOC_WME_CWMIN, atoi(val), getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); } static DECL_CMD_FUNC2(set80211bsscwmax, ac, val) { set80211(s, IEEE80211_IOC_WME_CWMAX, atoi(val), getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); } static DECL_CMD_FUNC2(set80211bssaifs, ac, val) { set80211(s, IEEE80211_IOC_WME_AIFS, atoi(val), getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); } static DECL_CMD_FUNC2(set80211bsstxoplimit, ac, val) { set80211(s, IEEE80211_IOC_WME_TXOPLIMIT, atoi(val), getac(ac)|IEEE80211_WMEPARAM_BSS, NULL); } static DECL_CMD_FUNC(set80211dtimperiod, val, d) { set80211(s, IEEE80211_IOC_DTIM_PERIOD, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211bintval, val, d) { set80211(s, IEEE80211_IOC_BEACON_INTERVAL, atoi(val), 0, NULL); } static void set80211macmac(int s, int op, const char *val) { char *temp; struct sockaddr_dl sdl; temp = malloc(strlen(val) + 2); /* ':' and '\0' */ if (temp == NULL) errx(1, "malloc failed"); temp[0] = ':'; strcpy(temp + 1, val); sdl.sdl_len = sizeof(sdl); link_addr(temp, &sdl); free(temp); if (sdl.sdl_alen != IEEE80211_ADDR_LEN) errx(1, "malformed link-level address"); set80211(s, op, 0, IEEE80211_ADDR_LEN, LLADDR(&sdl)); } static DECL_CMD_FUNC(set80211addmac, val, d) { set80211macmac(s, IEEE80211_IOC_ADDMAC, val); } static DECL_CMD_FUNC(set80211delmac, val, d) { set80211macmac(s, IEEE80211_IOC_DELMAC, val); } static DECL_CMD_FUNC(set80211kickmac, val, d) { char *temp; struct sockaddr_dl sdl; struct ieee80211req_mlme mlme; temp = malloc(strlen(val) + 2); /* ':' and '\0' */ if (temp == NULL) errx(1, "malloc failed"); temp[0] = ':'; strcpy(temp + 1, val); sdl.sdl_len = sizeof(sdl); link_addr(temp, &sdl); free(temp); if (sdl.sdl_alen != IEEE80211_ADDR_LEN) errx(1, "malformed link-level address"); memset(&mlme, 0, sizeof(mlme)); mlme.im_op = IEEE80211_MLME_DEAUTH; mlme.im_reason = IEEE80211_REASON_AUTH_EXPIRE; memcpy(mlme.im_macaddr, LLADDR(&sdl), IEEE80211_ADDR_LEN); set80211(s, IEEE80211_IOC_MLME, 0, sizeof(mlme), &mlme); } static DECL_CMD_FUNC(set80211maccmd, val, d) { set80211(s, IEEE80211_IOC_MACCMD, d, 0, NULL); } static void set80211meshrtmac(int s, int req, const char *val) { char *temp; struct sockaddr_dl sdl; temp = malloc(strlen(val) + 2); /* ':' and '\0' */ if (temp == NULL) errx(1, "malloc failed"); temp[0] = ':'; strcpy(temp + 1, val); sdl.sdl_len = sizeof(sdl); link_addr(temp, &sdl); free(temp); if (sdl.sdl_alen != IEEE80211_ADDR_LEN) errx(1, "malformed link-level address"); set80211(s, IEEE80211_IOC_MESH_RTCMD, req, IEEE80211_ADDR_LEN, LLADDR(&sdl)); } static DECL_CMD_FUNC(set80211addmeshrt, val, d) { set80211meshrtmac(s, IEEE80211_MESH_RTCMD_ADD, val); } static DECL_CMD_FUNC(set80211delmeshrt, val, d) { set80211meshrtmac(s, IEEE80211_MESH_RTCMD_DELETE, val); } static DECL_CMD_FUNC(set80211meshrtcmd, val, d) { set80211(s, IEEE80211_IOC_MESH_RTCMD, d, 0, NULL); } static DECL_CMD_FUNC(set80211hwmprootmode, val, d) { int mode; if (strcasecmp(val, "normal") == 0) mode = IEEE80211_HWMP_ROOTMODE_NORMAL; else if (strcasecmp(val, "proactive") == 0) mode = IEEE80211_HWMP_ROOTMODE_PROACTIVE; else if (strcasecmp(val, "rann") == 0) mode = IEEE80211_HWMP_ROOTMODE_RANN; else mode = IEEE80211_HWMP_ROOTMODE_DISABLED; set80211(s, IEEE80211_IOC_HWMP_ROOTMODE, mode, 0, NULL); } static DECL_CMD_FUNC(set80211hwmpmaxhops, val, d) { set80211(s, IEEE80211_IOC_HWMP_MAXHOPS, atoi(val), 0, NULL); } static void set80211pureg(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_PUREG, d, 0, NULL); } static void set80211quiet(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_QUIET, d, 0, NULL); } static DECL_CMD_FUNC(set80211quietperiod, val, d) { set80211(s, IEEE80211_IOC_QUIET_PERIOD, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211quietcount, val, d) { set80211(s, IEEE80211_IOC_QUIET_COUNT, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211quietduration, val, d) { set80211(s, IEEE80211_IOC_QUIET_DUR, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211quietoffset, val, d) { set80211(s, IEEE80211_IOC_QUIET_OFFSET, atoi(val), 0, NULL); } static void set80211bgscan(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_BGSCAN, d, 0, NULL); } static DECL_CMD_FUNC(set80211bgscanidle, val, d) { set80211(s, IEEE80211_IOC_BGSCAN_IDLE, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211bgscanintvl, val, d) { set80211(s, IEEE80211_IOC_BGSCAN_INTERVAL, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211scanvalid, val, d) { set80211(s, IEEE80211_IOC_SCANVALID, atoi(val), 0, NULL); } /* * Parse an optional trailing specification of which netbands * to apply a parameter to. This is basically the same syntax * as used for channels but you can concatenate to specify * multiple. For example: * 14:abg apply to 11a, 11b, and 11g * 6:ht apply to 11na and 11ng * We don't make a big effort to catch silly things; this is * really a convenience mechanism. */ static int getmodeflags(const char *val) { const char *cp; int flags; flags = 0; cp = strchr(val, ':'); if (cp != NULL) { for (cp++; isalpha((int) *cp); cp++) { /* accept mixed case */ int c = *cp; if (isupper(c)) c = tolower(c); switch (c) { case 'a': /* 802.11a */ flags |= IEEE80211_CHAN_A; break; case 'b': /* 802.11b */ flags |= IEEE80211_CHAN_B; break; case 'g': /* 802.11g */ flags |= IEEE80211_CHAN_G; break; case 'n': /* 802.11n */ flags |= IEEE80211_CHAN_HT; break; case 'd': /* dt = Atheros Dynamic Turbo */ flags |= IEEE80211_CHAN_TURBO; break; case 't': /* ht, dt, st, t */ /* dt and unadorned t specify Dynamic Turbo */ if ((flags & (IEEE80211_CHAN_STURBO|IEEE80211_CHAN_HT)) == 0) flags |= IEEE80211_CHAN_TURBO; break; case 's': /* st = Atheros Static Turbo */ flags |= IEEE80211_CHAN_STURBO; break; case 'h': /* 1/2-width channels */ flags |= IEEE80211_CHAN_HALF; break; case 'q': /* 1/4-width channels */ flags |= IEEE80211_CHAN_QUARTER; break; case 'v': /* XXX set HT too? */ flags |= IEEE80211_CHAN_VHT; break; default: errx(-1, "%s: Invalid mode attribute %c\n", val, *cp); } } } return flags; } #define _APPLY(_flags, _base, _param, _v) do { \ if (_flags & IEEE80211_CHAN_HT) { \ if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ _base.params[IEEE80211_MODE_11NA]._param = _v; \ _base.params[IEEE80211_MODE_11NG]._param = _v; \ } else if (_flags & IEEE80211_CHAN_5GHZ) \ _base.params[IEEE80211_MODE_11NA]._param = _v; \ else \ _base.params[IEEE80211_MODE_11NG]._param = _v; \ } \ if (_flags & IEEE80211_CHAN_TURBO) { \ if ((_flags & (IEEE80211_CHAN_5GHZ|IEEE80211_CHAN_2GHZ)) == 0) {\ _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ } else if (_flags & IEEE80211_CHAN_5GHZ) \ _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ else \ _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ } \ if (_flags & IEEE80211_CHAN_STURBO) \ _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ _base.params[IEEE80211_MODE_11A]._param = _v; \ if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ _base.params[IEEE80211_MODE_11G]._param = _v; \ if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ _base.params[IEEE80211_MODE_11B]._param = _v; \ if (_flags & IEEE80211_CHAN_HALF) \ _base.params[IEEE80211_MODE_HALF]._param = _v; \ if (_flags & IEEE80211_CHAN_QUARTER) \ _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ } while (0) #define _APPLY1(_flags, _base, _param, _v) do { \ if (_flags & IEEE80211_CHAN_HT) { \ if (_flags & IEEE80211_CHAN_5GHZ) \ _base.params[IEEE80211_MODE_11NA]._param = _v; \ else \ _base.params[IEEE80211_MODE_11NG]._param = _v; \ } else if ((_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A) \ _base.params[IEEE80211_MODE_TURBO_A]._param = _v; \ else if ((_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G) \ _base.params[IEEE80211_MODE_TURBO_G]._param = _v; \ else if ((_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST) \ _base.params[IEEE80211_MODE_STURBO_A]._param = _v; \ else if (_flags & IEEE80211_CHAN_HALF) \ _base.params[IEEE80211_MODE_HALF]._param = _v; \ else if (_flags & IEEE80211_CHAN_QUARTER) \ _base.params[IEEE80211_MODE_QUARTER]._param = _v; \ else if ((_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) \ _base.params[IEEE80211_MODE_11A]._param = _v; \ else if ((_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) \ _base.params[IEEE80211_MODE_11G]._param = _v; \ else if ((_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) \ _base.params[IEEE80211_MODE_11B]._param = _v; \ } while (0) #define _APPLY_RATE(_flags, _base, _param, _v) do { \ if (_flags & IEEE80211_CHAN_HT) { \ (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ } \ _APPLY(_flags, _base, _param, _v); \ } while (0) #define _APPLY_RATE1(_flags, _base, _param, _v) do { \ if (_flags & IEEE80211_CHAN_HT) { \ (_v) = (_v / 2) | IEEE80211_RATE_MCS; \ } \ _APPLY1(_flags, _base, _param, _v); \ } while (0) static DECL_CMD_FUNC(set80211roamrssi, val, d) { double v = atof(val); int rssi, flags; rssi = (int) (2*v); if (rssi != 2*v) errx(-1, "invalid rssi (must be .5 dBm units)"); flags = getmodeflags(val); getroam(s); if (flags == 0) { /* NB: no flags => current channel */ flags = getcurchan(s)->ic_flags; _APPLY1(flags, roamparams, rssi, rssi); } else _APPLY(flags, roamparams, rssi, rssi); callback_register(setroam_cb, &roamparams); } static int getrate(const char *val, const char *tag) { double v = atof(val); int rate; rate = (int) (2*v); if (rate != 2*v) errx(-1, "invalid %s rate (must be .5 Mb/s units)", tag); return rate; /* NB: returns 2x the specified value */ } static DECL_CMD_FUNC(set80211roamrate, val, d) { int rate, flags; rate = getrate(val, "roam"); flags = getmodeflags(val); getroam(s); if (flags == 0) { /* NB: no flags => current channel */ flags = getcurchan(s)->ic_flags; _APPLY_RATE1(flags, roamparams, rate, rate); } else _APPLY_RATE(flags, roamparams, rate, rate); callback_register(setroam_cb, &roamparams); } static DECL_CMD_FUNC(set80211mcastrate, val, d) { int rate, flags; rate = getrate(val, "mcast"); flags = getmodeflags(val); gettxparams(s); if (flags == 0) { /* NB: no flags => current channel */ flags = getcurchan(s)->ic_flags; _APPLY_RATE1(flags, txparams, mcastrate, rate); } else _APPLY_RATE(flags, txparams, mcastrate, rate); callback_register(settxparams_cb, &txparams); } static DECL_CMD_FUNC(set80211mgtrate, val, d) { int rate, flags; rate = getrate(val, "mgmt"); flags = getmodeflags(val); gettxparams(s); if (flags == 0) { /* NB: no flags => current channel */ flags = getcurchan(s)->ic_flags; _APPLY_RATE1(flags, txparams, mgmtrate, rate); } else _APPLY_RATE(flags, txparams, mgmtrate, rate); callback_register(settxparams_cb, &txparams); } static DECL_CMD_FUNC(set80211ucastrate, val, d) { int flags; gettxparams(s); flags = getmodeflags(val); if (isanyarg(val)) { if (flags == 0) { /* NB: no flags => current channel */ flags = getcurchan(s)->ic_flags; _APPLY1(flags, txparams, ucastrate, IEEE80211_FIXED_RATE_NONE); } else _APPLY(flags, txparams, ucastrate, IEEE80211_FIXED_RATE_NONE); } else { int rate = getrate(val, "ucast"); if (flags == 0) { /* NB: no flags => current channel */ flags = getcurchan(s)->ic_flags; _APPLY_RATE1(flags, txparams, ucastrate, rate); } else _APPLY_RATE(flags, txparams, ucastrate, rate); } callback_register(settxparams_cb, &txparams); } static DECL_CMD_FUNC(set80211maxretry, val, d) { int v = atoi(val), flags; flags = getmodeflags(val); gettxparams(s); if (flags == 0) { /* NB: no flags => current channel */ flags = getcurchan(s)->ic_flags; _APPLY1(flags, txparams, maxretry, v); } else _APPLY(flags, txparams, maxretry, v); callback_register(settxparams_cb, &txparams); } #undef _APPLY_RATE #undef _APPLY static DECL_CMD_FUNC(set80211fragthreshold, val, d) { set80211(s, IEEE80211_IOC_FRAGTHRESHOLD, isundefarg(val) ? IEEE80211_FRAG_MAX : atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211bmissthreshold, val, d) { set80211(s, IEEE80211_IOC_BMISSTHRESHOLD, isundefarg(val) ? IEEE80211_HWBMISS_MAX : atoi(val), 0, NULL); } static void set80211burst(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_BURST, d, 0, NULL); } static void set80211doth(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_DOTH, d, 0, NULL); } static void set80211dfs(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_DFS, d, 0, NULL); } static void set80211shortgi(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_SHORTGI, d ? (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) : 0, 0, NULL); } /* XXX 11ac density/size is different */ static void set80211ampdu(const char *val, int d, int s, const struct afswtch *rafp) { int ampdu; if (get80211val(s, IEEE80211_IOC_AMPDU, &du) < 0) errx(-1, "cannot set AMPDU setting"); if (d < 0) { d = -d; ampdu &= ~d; } else ampdu |= d; set80211(s, IEEE80211_IOC_AMPDU, ampdu, 0, NULL); } static void set80211stbc(const char *val, int d, int s, const struct afswtch *rafp) { int stbc; if (get80211val(s, IEEE80211_IOC_STBC, &stbc) < 0) errx(-1, "cannot set STBC setting"); if (d < 0) { d = -d; stbc &= ~d; } else stbc |= d; set80211(s, IEEE80211_IOC_STBC, stbc, 0, NULL); } static void set80211ldpc(const char *val, int d, int s, const struct afswtch *rafp) { int ldpc; if (get80211val(s, IEEE80211_IOC_LDPC, &ldpc) < 0) errx(-1, "cannot set LDPC setting"); if (d < 0) { d = -d; ldpc &= ~d; } else ldpc |= d; set80211(s, IEEE80211_IOC_LDPC, ldpc, 0, NULL); } static void set80211uapsd(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_UAPSD, d, 0, NULL); } static DECL_CMD_FUNC(set80211ampdulimit, val, d) { int v; switch (atoi(val)) { case 8: case 8*1024: v = IEEE80211_HTCAP_MAXRXAMPDU_8K; break; case 16: case 16*1024: v = IEEE80211_HTCAP_MAXRXAMPDU_16K; break; case 32: case 32*1024: v = IEEE80211_HTCAP_MAXRXAMPDU_32K; break; case 64: case 64*1024: v = IEEE80211_HTCAP_MAXRXAMPDU_64K; break; default: errx(-1, "invalid A-MPDU limit %s", val); } set80211(s, IEEE80211_IOC_AMPDU_LIMIT, v, 0, NULL); } /* XXX 11ac density/size is different */ static DECL_CMD_FUNC(set80211ampdudensity, val, d) { int v; if (isanyarg(val) || strcasecmp(val, "na") == 0) v = IEEE80211_HTCAP_MPDUDENSITY_NA; else switch ((int)(atof(val)*4)) { case 0: v = IEEE80211_HTCAP_MPDUDENSITY_NA; break; case 1: v = IEEE80211_HTCAP_MPDUDENSITY_025; break; case 2: v = IEEE80211_HTCAP_MPDUDENSITY_05; break; case 4: v = IEEE80211_HTCAP_MPDUDENSITY_1; break; case 8: v = IEEE80211_HTCAP_MPDUDENSITY_2; break; case 16: v = IEEE80211_HTCAP_MPDUDENSITY_4; break; case 32: v = IEEE80211_HTCAP_MPDUDENSITY_8; break; case 64: v = IEEE80211_HTCAP_MPDUDENSITY_16; break; default: errx(-1, "invalid A-MPDU density %s", val); } set80211(s, IEEE80211_IOC_AMPDU_DENSITY, v, 0, NULL); } static void set80211amsdu(const char *val, int d, int s, const struct afswtch *rafp) { int amsdu; if (get80211val(s, IEEE80211_IOC_AMSDU, &amsdu) < 0) err(-1, "cannot get AMSDU setting"); if (d < 0) { d = -d; amsdu &= ~d; } else amsdu |= d; set80211(s, IEEE80211_IOC_AMSDU, amsdu, 0, NULL); } static DECL_CMD_FUNC(set80211amsdulimit, val, d) { set80211(s, IEEE80211_IOC_AMSDU_LIMIT, atoi(val), 0, NULL); } static void set80211puren(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_PUREN, d, 0, NULL); } static void set80211htcompat(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_HTCOMPAT, d, 0, NULL); } static void set80211htconf(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_HTCONF, d, 0, NULL); htconf = d; } static void set80211dwds(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_DWDS, d, 0, NULL); } static void set80211inact(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_INACTIVITY, d, 0, NULL); } static void set80211tsn(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_TSN, d, 0, NULL); } static void set80211dotd(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_DOTD, d, 0, NULL); } static void set80211smps(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_SMPS, d, 0, NULL); } static void set80211rifs(const char *val, int d, int s, const struct afswtch *rafp) { set80211(s, IEEE80211_IOC_RIFS, d, 0, NULL); } static void set80211vhtconf(const char *val, int d, int s, const struct afswtch *rafp) { if (get80211val(s, IEEE80211_IOC_VHTCONF, &vhtconf) < 0) errx(-1, "cannot set VHT setting"); printf("%s: vhtconf=0x%08x, d=%d\n", __func__, vhtconf, d); if (d < 0) { d = -d; vhtconf &= ~d; } else vhtconf |= d; printf("%s: vhtconf is now 0x%08x\n", __func__, vhtconf); set80211(s, IEEE80211_IOC_VHTCONF, vhtconf, 0, NULL); } static DECL_CMD_FUNC(set80211tdmaslot, val, d) { set80211(s, IEEE80211_IOC_TDMA_SLOT, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211tdmaslotcnt, val, d) { set80211(s, IEEE80211_IOC_TDMA_SLOTCNT, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211tdmaslotlen, val, d) { set80211(s, IEEE80211_IOC_TDMA_SLOTLEN, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211tdmabintval, val, d) { set80211(s, IEEE80211_IOC_TDMA_BINTERVAL, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211meshttl, val, d) { set80211(s, IEEE80211_IOC_MESH_TTL, atoi(val), 0, NULL); } static DECL_CMD_FUNC(set80211meshforward, val, d) { set80211(s, IEEE80211_IOC_MESH_FWRD, d, 0, NULL); } static DECL_CMD_FUNC(set80211meshgate, val, d) { set80211(s, IEEE80211_IOC_MESH_GATE, d, 0, NULL); } static DECL_CMD_FUNC(set80211meshpeering, val, d) { set80211(s, IEEE80211_IOC_MESH_AP, d, 0, NULL); } static DECL_CMD_FUNC(set80211meshmetric, val, d) { char v[12]; memcpy(v, val, sizeof(v)); set80211(s, IEEE80211_IOC_MESH_PR_METRIC, 0, 0, v); } static DECL_CMD_FUNC(set80211meshpath, val, d) { char v[12]; memcpy(v, val, sizeof(v)); set80211(s, IEEE80211_IOC_MESH_PR_PATH, 0, 0, v); } static int regdomain_sort(const void *a, const void *b) { #define CHAN_ALL \ (IEEE80211_CHAN_ALLTURBO|IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER) const struct ieee80211_channel *ca = a; const struct ieee80211_channel *cb = b; return ca->ic_freq == cb->ic_freq ? (ca->ic_flags & CHAN_ALL) - (cb->ic_flags & CHAN_ALL) : ca->ic_freq - cb->ic_freq; #undef CHAN_ALL } static const struct ieee80211_channel * chanlookup(const struct ieee80211_channel chans[], int nchans, int freq, int flags) { int i; flags &= IEEE80211_CHAN_ALLTURBO; for (i = 0; i < nchans; i++) { const struct ieee80211_channel *c = &chans[i]; if (c->ic_freq == freq && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; } return NULL; } static int chanfind(const struct ieee80211_channel chans[], int nchans, int flags) { int i; for (i = 0; i < nchans; i++) { const struct ieee80211_channel *c = &chans[i]; if ((c->ic_flags & flags) == flags) return 1; } return 0; } /* * Check channel compatibility. */ static int checkchan(const struct ieee80211req_chaninfo *avail, int freq, int flags) { flags &= ~REQ_FLAGS; /* * Check if exact channel is in the calibration table; * everything below is to deal with channels that we * want to include but that are not explicitly listed. */ if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags) != NULL) return 1; if (flags & IEEE80211_CHAN_GSM) { /* * XXX GSM frequency mapping is handled in the kernel * so we cannot find them in the calibration table; * just accept the channel and the kernel will reject * the channel list if it's wrong. */ return 1; } /* * If this is a 1/2 or 1/4 width channel allow it if a full * width channel is present for this frequency, and the device * supports fractional channels on this band. This is a hack * that avoids bloating the calibration table; it may be better * by per-band attributes though (we are effectively calculating * this attribute by scanning the channel list ourself). */ if ((flags & (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == 0) return 0; if (chanlookup(avail->ic_chans, avail->ic_nchans, freq, flags &~ (IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER)) == NULL) return 0; if (flags & IEEE80211_CHAN_HALF) { return chanfind(avail->ic_chans, avail->ic_nchans, IEEE80211_CHAN_HALF | (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); } else { return chanfind(avail->ic_chans, avail->ic_nchans, IEEE80211_CHAN_QUARTER | (flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ))); } } static void regdomain_addchans(struct ieee80211req_chaninfo *ci, const netband_head *bands, const struct ieee80211_regdomain *reg, uint32_t chanFlags, const struct ieee80211req_chaninfo *avail) { const struct netband *nb; const struct freqband *b; struct ieee80211_channel *c, *prev; int freq, hi_adj, lo_adj, channelSep; uint32_t flags; hi_adj = (chanFlags & IEEE80211_CHAN_HT40U) ? -20 : 0; lo_adj = (chanFlags & IEEE80211_CHAN_HT40D) ? 20 : 0; channelSep = (chanFlags & IEEE80211_CHAN_2GHZ) ? 0 : 40; LIST_FOREACH(nb, bands, next) { b = nb->band; if (verbose) { printf("%s:", __func__); printb(" chanFlags", chanFlags, IEEE80211_CHAN_BITS); printb(" bandFlags", nb->flags | b->flags, IEEE80211_CHAN_BITS); putchar('\n'); } prev = NULL; for (freq = b->freqStart + lo_adj; freq <= b->freqEnd + hi_adj; freq += b->chanSep) { /* * Construct flags for the new channel. We take * the attributes from the band descriptions except * for HT40 which is enabled generically (i.e. +/- * extension channel) in the band description and * then constrained according by channel separation. */ flags = nb->flags | b->flags; /* * VHT first - HT is a subset. */ if (flags & IEEE80211_CHAN_VHT) { if ((chanFlags & IEEE80211_CHAN_VHT20) && (flags & IEEE80211_CHAN_VHT20) == 0) { if (verbose) printf("%u: skip, not a " "VHT20 channel\n", freq); continue; } if ((chanFlags & IEEE80211_CHAN_VHT40) && (flags & IEEE80211_CHAN_VHT40) == 0) { if (verbose) printf("%u: skip, not a " "VHT40 channel\n", freq); continue; } if ((chanFlags & IEEE80211_CHAN_VHT80) && (flags & IEEE80211_CHAN_VHT80) == 0) { if (verbose) printf("%u: skip, not a " "VHT80 channel\n", freq); continue; } if ((chanFlags & IEEE80211_CHAN_VHT160) && (flags & IEEE80211_CHAN_VHT160) == 0) { if (verbose) printf("%u: skip, not a " "VHT160 channel\n", freq); continue; } if ((chanFlags & IEEE80211_CHAN_VHT80P80) && (flags & IEEE80211_CHAN_VHT80P80) == 0) { if (verbose) printf("%u: skip, not a " "VHT80+80 channel\n", freq); continue; } flags &= ~IEEE80211_CHAN_VHT; flags |= chanFlags & IEEE80211_CHAN_VHT; } /* Now, constrain HT */ if (flags & IEEE80211_CHAN_HT) { /* * HT channels are generated specially; we're * called to add HT20, HT40+, and HT40- chan's * so we need to expand only band specs for * the HT channel type being added. */ if ((chanFlags & IEEE80211_CHAN_HT20) && (flags & IEEE80211_CHAN_HT20) == 0) { if (verbose) printf("%u: skip, not an " "HT20 channel\n", freq); continue; } if ((chanFlags & IEEE80211_CHAN_HT40) && (flags & IEEE80211_CHAN_HT40) == 0) { if (verbose) printf("%u: skip, not an " "HT40 channel\n", freq); continue; } /* NB: HT attribute comes from caller */ flags &= ~IEEE80211_CHAN_HT; flags |= chanFlags & IEEE80211_CHAN_HT; } /* * Check if device can operate on this frequency. */ if (!checkchan(avail, freq, flags)) { if (verbose) { printf("%u: skip, ", freq); printb("flags", flags, IEEE80211_CHAN_BITS); printf(" not available\n"); } continue; } if ((flags & REQ_ECM) && !reg->ecm) { if (verbose) printf("%u: skip, ECM channel\n", freq); continue; } if ((flags & REQ_INDOOR) && reg->location == 'O') { if (verbose) printf("%u: skip, indoor channel\n", freq); continue; } if ((flags & REQ_OUTDOOR) && reg->location == 'I') { if (verbose) printf("%u: skip, outdoor channel\n", freq); continue; } if ((flags & IEEE80211_CHAN_HT40) && prev != NULL && (freq - prev->ic_freq) < channelSep) { if (verbose) printf("%u: skip, only %u channel " "separation, need %d\n", freq, freq - prev->ic_freq, channelSep); continue; } if (ci->ic_nchans == IEEE80211_CHAN_MAX) { if (verbose) printf("%u: skip, channel table full\n", freq); break; } c = &ci->ic_chans[ci->ic_nchans++]; memset(c, 0, sizeof(*c)); c->ic_freq = freq; c->ic_flags = flags; if (c->ic_flags & IEEE80211_CHAN_DFS) c->ic_maxregpower = nb->maxPowerDFS; else c->ic_maxregpower = nb->maxPower; if (verbose) { printf("[%3d] add freq %u ", ci->ic_nchans-1, c->ic_freq); printb("flags", c->ic_flags, IEEE80211_CHAN_BITS); printf(" power %u\n", c->ic_maxregpower); } /* NB: kernel fills in other fields */ prev = c; } } } static void regdomain_makechannels( struct ieee80211_regdomain_req *req, const struct ieee80211_devcaps_req *dc) { struct regdata *rdp = getregdata(); const struct country *cc; const struct ieee80211_regdomain *reg = &req->rd; struct ieee80211req_chaninfo *ci = &req->chaninfo; const struct regdomain *rd; /* * Locate construction table for new channel list. We treat * the regdomain/SKU as definitive so a country can be in * multiple with different properties (e.g. US in FCC+FCC3). * If no regdomain is specified then we fallback on the country * code to find the associated regdomain since countries always * belong to at least one regdomain. */ if (reg->regdomain == 0) { cc = lib80211_country_findbycc(rdp, reg->country); if (cc == NULL) errx(1, "internal error, country %d not found", reg->country); rd = cc->rd; } else rd = lib80211_regdomain_findbysku(rdp, reg->regdomain); if (rd == NULL) errx(1, "internal error, regdomain %d not found", reg->regdomain); if (rd->sku != SKU_DEBUG) { /* * regdomain_addchans incrememnts the channel count for * each channel it adds so initialize ic_nchans to zero. * Note that we know we have enough space to hold all possible * channels because the devcaps list size was used to * allocate our request. */ ci->ic_nchans = 0; if (!LIST_EMPTY(&rd->bands_11b)) regdomain_addchans(ci, &rd->bands_11b, reg, IEEE80211_CHAN_B, &dc->dc_chaninfo); if (!LIST_EMPTY(&rd->bands_11g)) regdomain_addchans(ci, &rd->bands_11g, reg, IEEE80211_CHAN_G, &dc->dc_chaninfo); if (!LIST_EMPTY(&rd->bands_11a)) regdomain_addchans(ci, &rd->bands_11a, reg, IEEE80211_CHAN_A, &dc->dc_chaninfo); if (!LIST_EMPTY(&rd->bands_11na) && dc->dc_htcaps != 0) { regdomain_addchans(ci, &rd->bands_11na, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT20, &dc->dc_chaninfo); if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { regdomain_addchans(ci, &rd->bands_11na, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U, &dc->dc_chaninfo); regdomain_addchans(ci, &rd->bands_11na, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D, &dc->dc_chaninfo); } } if (!LIST_EMPTY(&rd->bands_11ac) && dc->dc_vhtcaps != 0) { regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | IEEE80211_CHAN_VHT20, &dc->dc_chaninfo); /* VHT40 is a function of HT40.. */ if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT40U, &dc->dc_chaninfo); regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT40D, &dc->dc_chaninfo); } /* VHT80 is mandatory (and so should be VHT40 above). */ if (1) { regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80, &dc->dc_chaninfo); regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80, &dc->dc_chaninfo); } /* VHT160 */ if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ( dc->dc_vhtcaps)) { regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT160, &dc->dc_chaninfo); regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT160, &dc->dc_chaninfo); } /* VHT80P80 */ if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ( dc->dc_vhtcaps)) { regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80P80, &dc->dc_chaninfo); regdomain_addchans(ci, &rd->bands_11ac, reg, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80P80, &dc->dc_chaninfo); } } if (!LIST_EMPTY(&rd->bands_11ng) && dc->dc_htcaps != 0) { regdomain_addchans(ci, &rd->bands_11ng, reg, IEEE80211_CHAN_G | IEEE80211_CHAN_HT20, &dc->dc_chaninfo); if (dc->dc_htcaps & IEEE80211_HTCAP_CHWIDTH40) { regdomain_addchans(ci, &rd->bands_11ng, reg, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U, &dc->dc_chaninfo); regdomain_addchans(ci, &rd->bands_11ng, reg, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D, &dc->dc_chaninfo); } } qsort(ci->ic_chans, ci->ic_nchans, sizeof(ci->ic_chans[0]), regdomain_sort); } else memcpy(ci, &dc->dc_chaninfo, IEEE80211_CHANINFO_SPACE(&dc->dc_chaninfo)); } static void list_countries(void) { struct regdata *rdp = getregdata(); const struct country *cp; const struct regdomain *dp; int i; i = 0; printf("\nCountry codes:\n"); LIST_FOREACH(cp, &rdp->countries, next) { printf("%2s %-15.15s%s", cp->isoname, cp->name, ((i+1)%4) == 0 ? "\n" : " "); i++; } i = 0; printf("\nRegulatory domains:\n"); LIST_FOREACH(dp, &rdp->domains, next) { printf("%-15.15s%s", dp->name, ((i+1)%4) == 0 ? "\n" : " "); i++; } printf("\n"); } static void defaultcountry(const struct regdomain *rd) { struct regdata *rdp = getregdata(); const struct country *cc; cc = lib80211_country_findbycc(rdp, rd->cc->code); if (cc == NULL) errx(1, "internal error, ISO country code %d not " "defined for regdomain %s", rd->cc->code, rd->name); regdomain.country = cc->code; regdomain.isocc[0] = cc->isoname[0]; regdomain.isocc[1] = cc->isoname[1]; } static DECL_CMD_FUNC(set80211regdomain, val, d) { struct regdata *rdp = getregdata(); const struct regdomain *rd; rd = lib80211_regdomain_findbyname(rdp, val); if (rd == NULL) { char *eptr; long sku = strtol(val, &eptr, 0); if (eptr != val) rd = lib80211_regdomain_findbysku(rdp, sku); if (eptr == val || rd == NULL) errx(1, "unknown regdomain %s", val); } getregdomain(s); regdomain.regdomain = rd->sku; if (regdomain.country == 0 && rd->cc != NULL) { /* * No country code setup and there's a default * one for this regdomain fill it in. */ defaultcountry(rd); } callback_register(setregdomain_cb, ®domain); } static DECL_CMD_FUNC(set80211country, val, d) { struct regdata *rdp = getregdata(); const struct country *cc; cc = lib80211_country_findbyname(rdp, val); if (cc == NULL) { char *eptr; long code = strtol(val, &eptr, 0); if (eptr != val) cc = lib80211_country_findbycc(rdp, code); if (eptr == val || cc == NULL) errx(1, "unknown ISO country code %s", val); } getregdomain(s); regdomain.regdomain = cc->rd->sku; regdomain.country = cc->code; regdomain.isocc[0] = cc->isoname[0]; regdomain.isocc[1] = cc->isoname[1]; callback_register(setregdomain_cb, ®domain); } static void set80211location(const char *val, int d, int s, const struct afswtch *rafp) { getregdomain(s); regdomain.location = d; callback_register(setregdomain_cb, ®domain); } static void set80211ecm(const char *val, int d, int s, const struct afswtch *rafp) { getregdomain(s); regdomain.ecm = d; callback_register(setregdomain_cb, ®domain); } static void LINE_INIT(char c) { spacer = c; if (c == '\t') col = 8; else col = 1; } static void LINE_BREAK(void) { if (spacer != '\t') { printf("\n"); spacer = '\t'; } col = 8; /* 8-col tab */ } static void LINE_CHECK(const char *fmt, ...) { char buf[80]; va_list ap; int n; va_start(ap, fmt); n = vsnprintf(buf+1, sizeof(buf)-1, fmt, ap); va_end(ap); col += 1+n; if (col > MAXCOL) { LINE_BREAK(); col += n; } buf[0] = spacer; printf("%s", buf); spacer = ' '; } static int getmaxrate(const uint8_t rates[15], uint8_t nrates) { int i, maxrate = -1; for (i = 0; i < nrates; i++) { int rate = rates[i] & IEEE80211_RATE_VAL; if (rate > maxrate) maxrate = rate; } return maxrate / 2; } static const char * getcaps(int capinfo) { static char capstring[32]; char *cp = capstring; if (capinfo & IEEE80211_CAPINFO_ESS) *cp++ = 'E'; if (capinfo & IEEE80211_CAPINFO_IBSS) *cp++ = 'I'; if (capinfo & IEEE80211_CAPINFO_CF_POLLABLE) *cp++ = 'c'; if (capinfo & IEEE80211_CAPINFO_CF_POLLREQ) *cp++ = 'C'; if (capinfo & IEEE80211_CAPINFO_PRIVACY) *cp++ = 'P'; if (capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) *cp++ = 'S'; if (capinfo & IEEE80211_CAPINFO_PBCC) *cp++ = 'B'; if (capinfo & IEEE80211_CAPINFO_CHNL_AGILITY) *cp++ = 'A'; if (capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) *cp++ = 's'; if (capinfo & IEEE80211_CAPINFO_RSN) *cp++ = 'R'; if (capinfo & IEEE80211_CAPINFO_DSSSOFDM) *cp++ = 'D'; *cp = '\0'; return capstring; } static const char * getflags(int flags) { static char flagstring[32]; char *cp = flagstring; if (flags & IEEE80211_NODE_AUTH) *cp++ = 'A'; if (flags & IEEE80211_NODE_QOS) *cp++ = 'Q'; if (flags & IEEE80211_NODE_ERP) *cp++ = 'E'; if (flags & IEEE80211_NODE_PWR_MGT) *cp++ = 'P'; if (flags & IEEE80211_NODE_HT) { *cp++ = 'H'; if (flags & IEEE80211_NODE_HTCOMPAT) *cp++ = '+'; } if (flags & IEEE80211_NODE_VHT) *cp++ = 'V'; if (flags & IEEE80211_NODE_WPS) *cp++ = 'W'; if (flags & IEEE80211_NODE_TSN) *cp++ = 'N'; if (flags & IEEE80211_NODE_AMPDU_TX) *cp++ = 'T'; if (flags & IEEE80211_NODE_AMPDU_RX) *cp++ = 'R'; if (flags & IEEE80211_NODE_MIMO_PS) { *cp++ = 'M'; if (flags & IEEE80211_NODE_MIMO_RTS) *cp++ = '+'; } if (flags & IEEE80211_NODE_RIFS) *cp++ = 'I'; if (flags & IEEE80211_NODE_SGI40) { *cp++ = 'S'; if (flags & IEEE80211_NODE_SGI20) *cp++ = '+'; } else if (flags & IEEE80211_NODE_SGI20) *cp++ = 's'; if (flags & IEEE80211_NODE_AMSDU_TX) *cp++ = 't'; if (flags & IEEE80211_NODE_AMSDU_RX) *cp++ = 'r'; if (flags & IEEE80211_NODE_UAPSD) *cp++ = 'U'; if (flags & IEEE80211_NODE_LDPC) *cp++ = 'L'; *cp = '\0'; return flagstring; } static void printie(const char* tag, const uint8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { maxlen -= strlen(tag)+2; if (2*ielen > maxlen) maxlen--; printf("<"); for (; ielen > 0; ie++, ielen--) { if (maxlen-- <= 0) break; printf("%02x", *ie); } if (ielen != 0) printf("-"); printf(">"); } } #define LE_READ_2(p) \ ((u_int16_t) \ ((((const u_int8_t *)(p))[0] ) | \ (((const u_int8_t *)(p))[1] << 8))) #define LE_READ_4(p) \ ((u_int32_t) \ ((((const u_int8_t *)(p))[0] ) | \ (((const u_int8_t *)(p))[1] << 8) | \ (((const u_int8_t *)(p))[2] << 16) | \ (((const u_int8_t *)(p))[3] << 24))) /* * NB: The decoding routines assume a properly formatted ie * which should be safe as the kernel only retains them * if they parse ok. */ static void printwmeparam(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { static const char *acnames[] = { "BE", "BK", "VO", "VI" }; const struct ieee80211_wme_param *wme = (const struct ieee80211_wme_param *) ie; int i; printf("%s", tag); if (!verbose) return; printf("param_qosInfo); ie += offsetof(struct ieee80211_wme_param, params_acParams); for (i = 0; i < WME_NUM_AC; i++) { const struct ieee80211_wme_acparams *ac = &wme->params_acParams[i]; printf(" %s[%saifsn %u cwmin %u cwmax %u txop %u]", acnames[i], _IEEE80211_MASKSHIFT(ac->acp_aci_aifsn, WME_PARAM_ACM) ? "acm " : "", _IEEE80211_MASKSHIFT(ac->acp_aci_aifsn, WME_PARAM_AIFSN), _IEEE80211_MASKSHIFT(ac->acp_logcwminmax, WME_PARAM_LOGCWMIN), _IEEE80211_MASKSHIFT(ac->acp_logcwminmax, WME_PARAM_LOGCWMAX), LE_READ_2(&ac->acp_txop)); } printf(">"); } static void printwmeinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_wme_info *wme = (const struct ieee80211_wme_info *) ie; printf("", wme->wme_version, wme->wme_info); } } static void printvhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_ie_vhtcap *vhtcap = (const struct ieee80211_ie_vhtcap *) ie; uint32_t vhtcap_info = LE_READ_4(&vhtcap->vht_cap_info); printf("supp_mcs.rx_mcs_map)); printf(" rx_highest %d", LE_READ_2(&vhtcap->supp_mcs.rx_highest) & 0x1fff); printf(" tx_mcs_map 0x%x", LE_READ_2(&vhtcap->supp_mcs.tx_mcs_map)); printf(" tx_highest %d", LE_READ_2(&vhtcap->supp_mcs.tx_highest) & 0x1fff); printf(">"); } } static void printvhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_ie_vht_operation *vhtinfo = (const struct ieee80211_ie_vht_operation *) ie; printf("", vhtinfo->chan_width, vhtinfo->center_freq_seg1_idx, vhtinfo->center_freq_seg2_idx, LE_READ_2(&vhtinfo->basic_mcs_set)); } } static void printvhtpwrenv(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); static const char *txpwrmap[] = { "20", "40", "80", "160", }; if (verbose) { const struct ieee80211_ie_vht_txpwrenv *vhtpwr = (const struct ieee80211_ie_vht_txpwrenv *) ie; int i, n; const char *sep = ""; /* Get count; trim at ielen */ n = (vhtpwr->tx_info & IEEE80211_VHT_TXPWRENV_INFO_COUNT_MASK) + 1; /* Trim at ielen */ if (n > ielen - 3) n = ielen - 3; printf("tx_info); for (i = 0; i < n; i++) { printf("%s%s:%.2f", sep, txpwrmap[i], ((float) ((int8_t) ie[i+3])) / 2.0); sep = " "; } printf("]>"); } } static void printhtcap(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_ie_htcap *htcap = (const struct ieee80211_ie_htcap *) ie; const char *sep; int i, j; printf("hc_cap), htcap->hc_param); printf(" mcsset["); sep = ""; for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) if (isset(htcap->hc_mcsset, i)) { for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) if (isclr(htcap->hc_mcsset, j)) break; j--; if (i == j) printf("%s%u", sep, i); else printf("%s%u-%u", sep, i, j); i += j-i; sep = ","; } printf("] extcap 0x%x txbf 0x%x antenna 0x%x>", LE_READ_2(&htcap->hc_extcap), LE_READ_4(&htcap->hc_txbf), htcap->hc_antenna); } } static void printhtinfo(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_ie_htinfo *htinfo = (const struct ieee80211_ie_htinfo *) ie; const char *sep; int i, j; printf("hi_ctrlchannel, htinfo->hi_byte1, htinfo->hi_byte2, htinfo->hi_byte3, LE_READ_2(&htinfo->hi_byte45)); printf(" basicmcs["); sep = ""; for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) if (isset(htinfo->hi_basicmcsset, i)) { for (j = i+1; j < IEEE80211_HTRATE_MAXSIZE; j++) if (isclr(htinfo->hi_basicmcsset, j)) break; j--; if (i == j) printf("%s%u", sep, i); else printf("%s%u-%u", sep, i, j); i += j-i; sep = ","; } printf("]>"); } } static void printathie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_ath_ie *ath = (const struct ieee80211_ath_ie *)ie; printf("<"); if (ath->ath_capability & ATHEROS_CAP_TURBO_PRIME) printf("DTURBO,"); if (ath->ath_capability & ATHEROS_CAP_COMPRESSION) printf("COMP,"); if (ath->ath_capability & ATHEROS_CAP_FAST_FRAME) printf("FF,"); if (ath->ath_capability & ATHEROS_CAP_XR) printf("XR,"); if (ath->ath_capability & ATHEROS_CAP_AR) printf("AR,"); if (ath->ath_capability & ATHEROS_CAP_BURST) printf("BURST,"); if (ath->ath_capability & ATHEROS_CAP_WME) printf("WME,"); if (ath->ath_capability & ATHEROS_CAP_BOOST) printf("BOOST,"); printf("0x%x>", LE_READ_2(ath->ath_defkeyix)); } } static void printmeshconf(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_meshconf_ie *mconf = (const struct ieee80211_meshconf_ie *)ie; printf("conf_pselid == IEEE80211_MESHCONF_PATH_HWMP) printf("HWMP"); else printf("UNKNOWN"); printf(" LINK:"); if (mconf->conf_pmetid == IEEE80211_MESHCONF_METRIC_AIRTIME) printf("AIRTIME"); else printf("UNKNOWN"); printf(" CONGESTION:"); if (mconf->conf_ccid == IEEE80211_MESHCONF_CC_DISABLED) printf("DISABLED"); else printf("UNKNOWN"); printf(" SYNC:"); if (mconf->conf_syncid == IEEE80211_MESHCONF_SYNC_NEIGHOFF) printf("NEIGHOFF"); else printf("UNKNOWN"); printf(" AUTH:"); if (mconf->conf_authid == IEEE80211_MESHCONF_AUTH_DISABLED) printf("DISABLED"); else printf("UNKNOWN"); printf(" FORM:0x%x CAPS:0x%x>", mconf->conf_form, mconf->conf_cap); } } static void printbssload(const char *tag, const uint8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_bss_load_ie *bssload = (const struct ieee80211_bss_load_ie *) ie; printf("", LE_READ_2(&bssload->sta_count), bssload->chan_load, bssload->aac); } } static void printapchanrep(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const struct ieee80211_ap_chan_report_ie *ap = (const struct ieee80211_ap_chan_report_ie *) ie; const char *sep = ""; int i; printf("i_class); for (i = 3; i < ielen; i++) { printf("%s%u", sep, ie[i]); sep = ","; } printf("]>"); } } static const char * wpa_cipher(const u_int8_t *sel) { #define WPA_SEL(x) (((x)<<24)|WPA_OUI) u_int32_t w = LE_READ_4(sel); switch (w) { case WPA_SEL(WPA_CSE_NULL): return "NONE"; case WPA_SEL(WPA_CSE_WEP40): return "WEP40"; case WPA_SEL(WPA_CSE_WEP104): return "WEP104"; case WPA_SEL(WPA_CSE_TKIP): return "TKIP"; case WPA_SEL(WPA_CSE_CCMP): return "AES-CCMP"; } return "?"; /* NB: so 1<< is discarded */ #undef WPA_SEL } static const char * wpa_keymgmt(const u_int8_t *sel) { #define WPA_SEL(x) (((x)<<24)|WPA_OUI) u_int32_t w = LE_READ_4(sel); switch (w) { case WPA_SEL(WPA_ASE_8021X_UNSPEC): return "8021X-UNSPEC"; case WPA_SEL(WPA_ASE_8021X_PSK): return "8021X-PSK"; case WPA_SEL(WPA_ASE_NONE): return "NONE"; } return "?"; #undef WPA_SEL } static void printwpaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { u_int8_t len = ie[1]; printf("%s", tag); if (verbose) { const char *sep; int n; ie += 6, len -= 4; /* NB: len is payload only */ printf(" 0; n--) { printf("%s%s", sep, wpa_cipher(ie)); ie += 4, len -= 4; sep = "+"; } /* key management algorithms */ n = LE_READ_2(ie); ie += 2, len -= 2; sep = " km:"; for (; n > 0; n--) { printf("%s%s", sep, wpa_keymgmt(ie)); ie += 4, len -= 4; sep = "+"; } if (len > 2) /* optional capabilities */ printf(", caps 0x%x", LE_READ_2(ie)); printf(">"); } } static const char * rsn_cipher(const u_int8_t *sel) { #define RSN_SEL(x) (((x)<<24)|RSN_OUI) u_int32_t w = LE_READ_4(sel); switch (w) { case RSN_SEL(RSN_CSE_NULL): return "NONE"; case RSN_SEL(RSN_CSE_WEP40): return "WEP40"; case RSN_SEL(RSN_CSE_WEP104): return "WEP104"; case RSN_SEL(RSN_CSE_TKIP): return "TKIP"; case RSN_SEL(RSN_CSE_CCMP): return "AES-CCMP"; case RSN_SEL(RSN_CSE_WRAP): return "AES-OCB"; } return "?"; #undef WPA_SEL } static const char * rsn_keymgmt(const u_int8_t *sel) { #define RSN_SEL(x) (((x)<<24)|RSN_OUI) u_int32_t w = LE_READ_4(sel); switch (w) { case RSN_SEL(RSN_ASE_8021X_UNSPEC): return "8021X-UNSPEC"; case RSN_SEL(RSN_ASE_8021X_PSK): return "8021X-PSK"; case RSN_SEL(RSN_ASE_NONE): return "NONE"; } return "?"; #undef RSN_SEL } static void printrsnie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose) { const char *sep; int n; ie += 2, ielen -= 2; printf(" 0; n--) { printf("%s%s", sep, rsn_cipher(ie)); ie += 4, ielen -= 4; sep = "+"; } /* key management algorithms */ n = LE_READ_2(ie); ie += 2, ielen -= 2; sep = " km:"; for (; n > 0; n--) { printf("%s%s", sep, rsn_keymgmt(ie)); ie += 4, ielen -= 4; sep = "+"; } if (ielen > 2) /* optional capabilities */ printf(", caps 0x%x", LE_READ_2(ie)); /* XXXPMKID */ printf(">"); } } #define BE_READ_2(p) \ ((u_int16_t) \ ((((const u_int8_t *)(p))[1] ) | \ (((const u_int8_t *)(p))[0] << 8))) static void printwpsie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { u_int8_t len = ie[1]; printf("%s", tag); if (verbose) { static const char *dev_pass_id[] = { "D", /* Default (PIN) */ "U", /* User-specified */ "M", /* Machine-specified */ "K", /* Rekey */ "P", /* PushButton */ "R" /* Registrar-specified */ }; int n; int f; ie +=6, len -= 4; /* NB: len is payload only */ /* WPS IE in Beacon and Probe Resp frames have different fields */ printf("<"); while (len) { uint16_t tlv_type = BE_READ_2(ie); uint16_t tlv_len = BE_READ_2(ie + 2); uint16_t cfg_mthd; /* some devices broadcast invalid WPS frames */ if (tlv_len > len) { printf("bad frame length tlv_type=0x%02x " "tlv_len=%d len=%d", tlv_type, tlv_len, len); break; } ie += 4, len -= 4; switch (tlv_type) { case IEEE80211_WPS_ATTR_VERSION: printf("v:%d.%d", *ie >> 4, *ie & 0xf); break; case IEEE80211_WPS_ATTR_AP_SETUP_LOCKED: printf(" ap_setup:%s", *ie ? "locked" : "unlocked"); break; case IEEE80211_WPS_ATTR_CONFIG_METHODS: case IEEE80211_WPS_ATTR_SELECTED_REGISTRAR_CONFIG_METHODS: if (tlv_type == IEEE80211_WPS_ATTR_SELECTED_REGISTRAR_CONFIG_METHODS) printf(" sel_reg_cfg_mthd:"); else printf(" cfg_mthd:" ); cfg_mthd = BE_READ_2(ie); f = 0; for (n = 15; n >= 0; n--) { if (f) { printf(","); f = 0; } switch (cfg_mthd & (1 << n)) { case 0: break; case IEEE80211_WPS_CONFIG_USBA: printf("usba"); f++; break; case IEEE80211_WPS_CONFIG_ETHERNET: printf("ethernet"); f++; break; case IEEE80211_WPS_CONFIG_LABEL: printf("label"); f++; break; case IEEE80211_WPS_CONFIG_DISPLAY: if (!(cfg_mthd & (IEEE80211_WPS_CONFIG_VIRT_DISPLAY | IEEE80211_WPS_CONFIG_PHY_DISPLAY))) { printf("display"); f++; } break; case IEEE80211_WPS_CONFIG_EXT_NFC_TOKEN: printf("ext_nfc_tokenk"); f++; break; case IEEE80211_WPS_CONFIG_INT_NFC_TOKEN: printf("int_nfc_token"); f++; break; case IEEE80211_WPS_CONFIG_NFC_INTERFACE: printf("nfc_interface"); f++; break; case IEEE80211_WPS_CONFIG_PUSHBUTTON: if (!(cfg_mthd & (IEEE80211_WPS_CONFIG_VIRT_PUSHBUTTON | IEEE80211_WPS_CONFIG_PHY_PUSHBUTTON))) { printf("push_button"); f++; } break; case IEEE80211_WPS_CONFIG_KEYPAD: printf("keypad"); f++; break; case IEEE80211_WPS_CONFIG_VIRT_PUSHBUTTON: printf("virtual_push_button"); f++; break; case IEEE80211_WPS_CONFIG_PHY_PUSHBUTTON: printf("physical_push_button"); f++; break; case IEEE80211_WPS_CONFIG_P2PS: printf("p2ps"); f++; break; case IEEE80211_WPS_CONFIG_VIRT_DISPLAY: printf("virtual_display"); f++; break; case IEEE80211_WPS_CONFIG_PHY_DISPLAY: printf("physical_display"); f++; break; default: printf("unknown_wps_config<%04x>", cfg_mthd & (1 << n)); f++; break; } } break; case IEEE80211_WPS_ATTR_DEV_NAME: printf(" device_name:<%.*s>", tlv_len, ie); break; case IEEE80211_WPS_ATTR_DEV_PASSWORD_ID: n = LE_READ_2(ie); if (n < nitems(dev_pass_id)) printf(" dpi:%s", dev_pass_id[n]); break; case IEEE80211_WPS_ATTR_MANUFACTURER: printf(" manufacturer:<%.*s>", tlv_len, ie); break; case IEEE80211_WPS_ATTR_MODEL_NAME: printf(" model_name:<%.*s>", tlv_len, ie); break; case IEEE80211_WPS_ATTR_MODEL_NUMBER: printf(" model_number:<%.*s>", tlv_len, ie); break; case IEEE80211_WPS_ATTR_PRIMARY_DEV_TYPE: printf(" prim_dev:"); for (n = 0; n < tlv_len; n++) printf("%02x", ie[n]); break; case IEEE80211_WPS_ATTR_RF_BANDS: printf(" rf:"); f = 0; for (n = 7; n >= 0; n--) { if (f) { printf(","); f = 0; } switch (*ie & (1 << n)) { case 0: break; case IEEE80211_WPS_RF_BAND_24GHZ: printf("2.4Ghz"); f++; break; case IEEE80211_WPS_RF_BAND_50GHZ: printf("5Ghz"); f++; break; case IEEE80211_WPS_RF_BAND_600GHZ: printf("60Ghz"); f++; break; default: printf("unknown<%02x>", *ie & (1 << n)); f++; break; } } break; case IEEE80211_WPS_ATTR_RESPONSE_TYPE: printf(" resp_type:0x%02x", *ie); break; case IEEE80211_WPS_ATTR_SELECTED_REGISTRAR: printf(" sel:%s", *ie ? "T" : "F"); break; case IEEE80211_WPS_ATTR_SERIAL_NUMBER: printf(" serial_number:<%.*s>", tlv_len, ie); break; case IEEE80211_WPS_ATTR_UUID_E: printf(" uuid-e:"); for (n = 0; n < (tlv_len - 1); n++) printf("%02x-", ie[n]); printf("%02x", ie[n]); break; case IEEE80211_WPS_ATTR_VENDOR_EXT: printf(" vendor:"); for (n = 0; n < tlv_len; n++) printf("%02x", ie[n]); break; case IEEE80211_WPS_ATTR_WPS_STATE: switch (*ie) { case IEEE80211_WPS_STATE_NOT_CONFIGURED: printf(" state:N"); break; case IEEE80211_WPS_STATE_CONFIGURED: printf(" state:C"); break; default: printf(" state:B<%02x>", *ie); break; } break; default: printf(" unknown_wps_attr:0x%x", tlv_type); break; } ie += tlv_len, len -= tlv_len; } printf(">"); } } static void printtdmaie(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { printf("%s", tag); if (verbose && ielen >= sizeof(struct ieee80211_tdma_param)) { const struct ieee80211_tdma_param *tdma = (const struct ieee80211_tdma_param *) ie; /* XXX tstamp */ printf("", tdma->tdma_version, tdma->tdma_slot, tdma->tdma_slotcnt, LE_READ_2(&tdma->tdma_slotlen), tdma->tdma_bintval, tdma->tdma_inuse[0]); } } /* * Copy the ssid string contents into buf, truncating to fit. If the * ssid is entirely printable then just copy intact. Otherwise convert * to hexadecimal. If the result is truncated then replace the last * three characters with "...". */ static int copy_essid(char buf[], size_t bufsize, const u_int8_t *essid, size_t essid_len) { const u_int8_t *p; size_t maxlen; u_int i; if (essid_len > bufsize) maxlen = bufsize; else maxlen = essid_len; /* determine printable or not */ for (i = 0, p = essid; i < maxlen; i++, p++) { if (*p < ' ' || *p > 0x7e) break; } if (i != maxlen) { /* not printable, print as hex */ if (bufsize < 3) return 0; strlcpy(buf, "0x", bufsize); bufsize -= 2; p = essid; for (i = 0; i < maxlen && bufsize >= 2; i++) { sprintf(&buf[2+2*i], "%02x", p[i]); bufsize -= 2; } if (i != essid_len) memcpy(&buf[2+2*i-3], "...", 3); } else { /* printable, truncate as needed */ memcpy(buf, essid, maxlen); if (maxlen != essid_len) memcpy(&buf[maxlen-3], "...", 3); } return maxlen; } static void printssid(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { char ssid[2*IEEE80211_NWID_LEN+1]; printf("%s<%.*s>", tag, copy_essid(ssid, maxlen, ie+2, ie[1]), ssid); } static void printrates(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { const char *sep; int i; printf("%s", tag); sep = "<"; for (i = 2; i < ielen; i++) { printf("%s%s%d", sep, ie[i] & IEEE80211_RATE_BASIC ? "B" : "", ie[i] & IEEE80211_RATE_VAL); sep = ","; } printf(">"); } static void printcountry(const char *tag, const u_int8_t *ie, size_t ielen, int maxlen) { const struct ieee80211_country_ie *cie = (const struct ieee80211_country_ie *) ie; int i, nbands, schan, nchan; printf("%s<%c%c%c", tag, cie->cc[0], cie->cc[1], cie->cc[2]); nbands = (cie->len - 3) / sizeof(cie->band[0]); for (i = 0; i < nbands; i++) { schan = cie->band[i].schan; nchan = cie->band[i].nchan; if (nchan != 1) printf(" %u-%u,%u", schan, schan + nchan-1, cie->band[i].maxtxpwr); else printf(" %u,%u", schan, cie->band[i].maxtxpwr); } printf(">"); } static __inline int iswpaoui(const u_int8_t *frm) { return frm[1] > 3 && LE_READ_4(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI); } static __inline int iswmeinfo(const u_int8_t *frm) { return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && frm[6] == WME_INFO_OUI_SUBTYPE; } static __inline int iswmeparam(const u_int8_t *frm) { return frm[1] > 5 && LE_READ_4(frm+2) == ((WME_OUI_TYPE<<24)|WME_OUI) && frm[6] == WME_PARAM_OUI_SUBTYPE; } static __inline int isatherosoui(const u_int8_t *frm) { return frm[1] > 3 && LE_READ_4(frm+2) == ((ATH_OUI_TYPE<<24)|ATH_OUI); } static __inline int istdmaoui(const uint8_t *frm) { return frm[1] > 3 && LE_READ_4(frm+2) == ((TDMA_OUI_TYPE<<24)|TDMA_OUI); } static __inline int iswpsoui(const uint8_t *frm) { return frm[1] > 3 && LE_READ_4(frm+2) == ((WPS_OUI_TYPE<<24)|WPA_OUI); } static const char * iename(int elemid) { static char iename_buf[64]; switch (elemid) { case IEEE80211_ELEMID_FHPARMS: return " FHPARMS"; case IEEE80211_ELEMID_CFPARMS: return " CFPARMS"; case IEEE80211_ELEMID_TIM: return " TIM"; case IEEE80211_ELEMID_IBSSPARMS:return " IBSSPARMS"; case IEEE80211_ELEMID_BSSLOAD: return " BSSLOAD"; case IEEE80211_ELEMID_CHALLENGE:return " CHALLENGE"; case IEEE80211_ELEMID_PWRCNSTR: return " PWRCNSTR"; case IEEE80211_ELEMID_PWRCAP: return " PWRCAP"; case IEEE80211_ELEMID_TPCREQ: return " TPCREQ"; case IEEE80211_ELEMID_TPCREP: return " TPCREP"; case IEEE80211_ELEMID_SUPPCHAN: return " SUPPCHAN"; case IEEE80211_ELEMID_CSA: return " CSA"; case IEEE80211_ELEMID_MEASREQ: return " MEASREQ"; case IEEE80211_ELEMID_MEASREP: return " MEASREP"; case IEEE80211_ELEMID_QUIET: return " QUIET"; case IEEE80211_ELEMID_IBSSDFS: return " IBSSDFS"; case IEEE80211_ELEMID_RESERVED_47: return " RESERVED_47"; case IEEE80211_ELEMID_MOBILITY_DOMAIN: return " MOBILITY_DOMAIN"; case IEEE80211_ELEMID_RRM_ENACAPS: return " RRM_ENCAPS"; case IEEE80211_ELEMID_OVERLAP_BSS_SCAN_PARAM: return " OVERLAP_BSS"; case IEEE80211_ELEMID_TPC: return " TPC"; case IEEE80211_ELEMID_CCKM: return " CCKM"; case IEEE80211_ELEMID_EXTCAP: return " EXTCAP"; } snprintf(iename_buf, sizeof(iename_buf), " UNKNOWN_ELEMID_%d", elemid); return (const char *) iename_buf; } static void printies(const u_int8_t *vp, int ielen, int maxcols) { while (ielen > 0) { switch (vp[0]) { case IEEE80211_ELEMID_SSID: if (verbose) printssid(" SSID", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_RATES: case IEEE80211_ELEMID_XRATES: if (verbose) printrates(vp[0] == IEEE80211_ELEMID_RATES ? " RATES" : " XRATES", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_DSPARMS: if (verbose) printf(" DSPARMS<%u>", vp[2]); break; case IEEE80211_ELEMID_COUNTRY: if (verbose) printcountry(" COUNTRY", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_ERP: if (verbose) printf(" ERP<0x%x>", vp[2]); break; case IEEE80211_ELEMID_VENDOR: if (iswpaoui(vp)) printwpaie(" WPA", vp, 2+vp[1], maxcols); else if (iswmeinfo(vp)) printwmeinfo(" WME", vp, 2+vp[1], maxcols); else if (iswmeparam(vp)) printwmeparam(" WME", vp, 2+vp[1], maxcols); else if (isatherosoui(vp)) printathie(" ATH", vp, 2+vp[1], maxcols); else if (iswpsoui(vp)) printwpsie(" WPS", vp, 2+vp[1], maxcols); else if (istdmaoui(vp)) printtdmaie(" TDMA", vp, 2+vp[1], maxcols); else if (verbose) printie(" VEN", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_RSN: printrsnie(" RSN", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_HTCAP: printhtcap(" HTCAP", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_HTINFO: if (verbose) printhtinfo(" HTINFO", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_MESHID: if (verbose) printssid(" MESHID", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_MESHCONF: printmeshconf(" MESHCONF", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_VHT_CAP: printvhtcap(" VHTCAP", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_VHT_OPMODE: printvhtinfo(" VHTOPMODE", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_VHT_PWR_ENV: printvhtpwrenv(" VHTPWRENV", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_BSSLOAD: printbssload(" BSSLOAD", vp, 2+vp[1], maxcols); break; case IEEE80211_ELEMID_APCHANREP: printapchanrep(" APCHANREP", vp, 2+vp[1], maxcols); break; default: if (verbose) printie(iename(vp[0]), vp, 2+vp[1], maxcols); break; } ielen -= 2+vp[1]; vp += 2+vp[1]; } } static void printmimo(const struct ieee80211_mimo_info *mi) { int i; int r = 0; for (i = 0; i < IEEE80211_MAX_CHAINS; i++) { if (mi->ch[i].rssi != 0) { r = 1; break; } } /* NB: don't muddy display unless there's something to show */ if (r == 0) return; /* XXX TODO: ignore EVM; secondary channels for now */ printf(" (rssi %.1f:%.1f:%.1f:%.1f nf %d:%d:%d:%d)", mi->ch[0].rssi[0] / 2.0, mi->ch[1].rssi[0] / 2.0, mi->ch[2].rssi[0] / 2.0, mi->ch[3].rssi[0] / 2.0, mi->ch[0].noise[0], mi->ch[1].noise[0], mi->ch[2].noise[0], mi->ch[3].noise[0]); } static void list_scan(int s) { uint8_t buf[24*1024]; char ssid[IEEE80211_NWID_LEN+1]; const uint8_t *cp; int len, idlen; if (get80211len(s, IEEE80211_IOC_SCAN_RESULTS, buf, sizeof(buf), &len) < 0) errx(1, "unable to get scan results"); if (len < sizeof(struct ieee80211req_scan_result)) return; getchaninfo(s); printf("%-*.*s %-17.17s %4s %4s %-7s %3s %4s\n" , IEEE80211_NWID_LEN, IEEE80211_NWID_LEN, "SSID/MESH ID" , "BSSID" , "CHAN" , "RATE" , " S:N" , "INT" , "CAPS" ); cp = buf; do { const struct ieee80211req_scan_result *sr; const uint8_t *vp, *idp; sr = (const struct ieee80211req_scan_result *) cp; vp = cp + sr->isr_ie_off; if (sr->isr_meshid_len) { idp = vp + sr->isr_ssid_len; idlen = sr->isr_meshid_len; } else { idp = vp; idlen = sr->isr_ssid_len; } printf("%-*.*s %s %3d %3dM %4d:%-4d %4d %-4.4s" , IEEE80211_NWID_LEN , copy_essid(ssid, IEEE80211_NWID_LEN, idp, idlen) , ssid , ether_ntoa((const struct ether_addr *) sr->isr_bssid) , ieee80211_mhz2ieee(sr->isr_freq, sr->isr_flags) , getmaxrate(sr->isr_rates, sr->isr_nrates) , (sr->isr_rssi/2)+sr->isr_noise, sr->isr_noise , sr->isr_intval , getcaps(sr->isr_capinfo) ); printies(vp + sr->isr_ssid_len + sr->isr_meshid_len, sr->isr_ie_len, 24); printf("\n"); cp += sr->isr_len, len -= sr->isr_len; } while (len >= sizeof(struct ieee80211req_scan_result)); } static void scan_and_wait(int s) { struct ieee80211_scan_req sr; struct ieee80211req ireq; int sroute; sroute = socket(PF_ROUTE, SOCK_RAW, 0); if (sroute < 0) { perror("socket(PF_ROUTE,SOCK_RAW)"); return; } (void) memset(&ireq, 0, sizeof(ireq)); (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); ireq.i_type = IEEE80211_IOC_SCAN_REQ; memset(&sr, 0, sizeof(sr)); sr.sr_flags = IEEE80211_IOC_SCAN_ACTIVE | IEEE80211_IOC_SCAN_BGSCAN | IEEE80211_IOC_SCAN_NOPICK | IEEE80211_IOC_SCAN_ONCE; sr.sr_duration = IEEE80211_IOC_SCAN_FOREVER; sr.sr_nssid = 0; ireq.i_data = &sr; ireq.i_len = sizeof(sr); /* * NB: only root can trigger a scan so ignore errors. Also ignore * possible errors from net80211, even if no new scan could be * started there might still be a valid scan cache. */ if (ioctl(s, SIOCS80211, &ireq) == 0) { char buf[2048]; struct if_announcemsghdr *ifan; struct rt_msghdr *rtm; do { if (read(sroute, buf, sizeof(buf)) < 0) { perror("read(PF_ROUTE)"); break; } rtm = (struct rt_msghdr *) buf; if (rtm->rtm_version != RTM_VERSION) break; ifan = (struct if_announcemsghdr *) rtm; } while (rtm->rtm_type != RTM_IEEE80211 || ifan->ifan_what != RTM_IEEE80211_SCAN); } close(sroute); } static DECL_CMD_FUNC(set80211scan, val, d) { scan_and_wait(s); list_scan(s); } static enum ieee80211_opmode get80211opmode(int s); static int gettxseq(const struct ieee80211req_sta_info *si) { int i, txseq; if ((si->isi_state & IEEE80211_NODE_QOS) == 0) return si->isi_txseqs[0]; /* XXX not right but usually what folks want */ txseq = 0; for (i = 0; i < IEEE80211_TID_SIZE; i++) if (si->isi_txseqs[i] > txseq) txseq = si->isi_txseqs[i]; return txseq; } static int getrxseq(const struct ieee80211req_sta_info *si) { int i, rxseq; if ((si->isi_state & IEEE80211_NODE_QOS) == 0) return si->isi_rxseqs[0]; /* XXX not right but usually what folks want */ rxseq = 0; for (i = 0; i < IEEE80211_TID_SIZE; i++) if (si->isi_rxseqs[i] > rxseq) rxseq = si->isi_rxseqs[i]; return rxseq; } static void list_stations(int s) { union { struct ieee80211req_sta_req req; uint8_t buf[24*1024]; } u; enum ieee80211_opmode opmode = get80211opmode(s); const uint8_t *cp; int len; /* broadcast address =>'s get all stations */ (void) memset(u.req.is_u.macaddr, 0xff, IEEE80211_ADDR_LEN); if (opmode == IEEE80211_M_STA) { /* * Get information about the associated AP. */ (void) get80211(s, IEEE80211_IOC_BSSID, u.req.is_u.macaddr, IEEE80211_ADDR_LEN); } if (get80211len(s, IEEE80211_IOC_STA_INFO, &u, sizeof(u), &len) < 0) errx(1, "unable to get station information"); if (len < sizeof(struct ieee80211req_sta_info)) return; getchaninfo(s); if (opmode == IEEE80211_M_MBSS) printf("%-17.17s %4s %5s %5s %7s %4s %4s %4s %6s %6s\n" , "ADDR" , "CHAN" , "LOCAL" , "PEER" , "STATE" , "RATE" , "RSSI" , "IDLE" , "TXSEQ" , "RXSEQ" ); else printf("%-17.17s %4s %4s %4s %4s %4s %6s %6s %4s %-12s\n" , "ADDR" , "AID" , "CHAN" , "RATE" , "RSSI" , "IDLE" , "TXSEQ" , "RXSEQ" , "CAPS" , "FLAG" ); cp = (const uint8_t *) u.req.info; do { const struct ieee80211req_sta_info *si; si = (const struct ieee80211req_sta_info *) cp; if (si->isi_len < sizeof(*si)) break; if (opmode == IEEE80211_M_MBSS) printf("%s %4d %5x %5x %7.7s %3dM %4.1f %4d %6d %6d" , ether_ntoa((const struct ether_addr*) si->isi_macaddr) , ieee80211_mhz2ieee(si->isi_freq, si->isi_flags) , si->isi_localid , si->isi_peerid , mesh_linkstate_string(si->isi_peerstate) , si->isi_txmbps/2 , si->isi_rssi/2. , si->isi_inact , gettxseq(si) , getrxseq(si) ); else printf("%s %4u %4d %3dM %4.1f %4d %6d %6d %-4.4s %-12.12s" , ether_ntoa((const struct ether_addr*) si->isi_macaddr) , IEEE80211_AID(si->isi_associd) , ieee80211_mhz2ieee(si->isi_freq, si->isi_flags) , si->isi_txmbps/2 , si->isi_rssi/2. , si->isi_inact , gettxseq(si) , getrxseq(si) , getcaps(si->isi_capinfo) , getflags(si->isi_state) ); printies(cp + si->isi_ie_off, si->isi_ie_len, 24); printmimo(&si->isi_mimo); printf("\n"); cp += si->isi_len, len -= si->isi_len; } while (len >= sizeof(struct ieee80211req_sta_info)); } static const char * mesh_linkstate_string(uint8_t state) { static const char *state_names[] = { [0] = "IDLE", [1] = "OPEN-TX", [2] = "OPEN-RX", [3] = "CONF-RX", [4] = "ESTAB", [5] = "HOLDING", }; if (state >= nitems(state_names)) { static char buf[10]; snprintf(buf, sizeof(buf), "#%u", state); return buf; } else return state_names[state]; } static const char * get_chaninfo(const struct ieee80211_channel *c, int precise, char buf[], size_t bsize) { buf[0] = '\0'; if (IEEE80211_IS_CHAN_FHSS(c)) strlcat(buf, " FHSS", bsize); if (IEEE80211_IS_CHAN_A(c)) strlcat(buf, " 11a", bsize); else if (IEEE80211_IS_CHAN_ANYG(c)) strlcat(buf, " 11g", bsize); else if (IEEE80211_IS_CHAN_B(c)) strlcat(buf, " 11b", bsize); if (IEEE80211_IS_CHAN_HALF(c)) strlcat(buf, "/10MHz", bsize); if (IEEE80211_IS_CHAN_QUARTER(c)) strlcat(buf, "/5MHz", bsize); if (IEEE80211_IS_CHAN_TURBO(c)) strlcat(buf, " Turbo", bsize); if (precise) { if (IEEE80211_IS_CHAN_VHT80P80(c)) strlcat(buf, " vht/80p80", bsize); else if (IEEE80211_IS_CHAN_VHT160(c)) strlcat(buf, " vht/160", bsize); else if (IEEE80211_IS_CHAN_VHT80(c) && IEEE80211_IS_CHAN_HT40D(c)) strlcat(buf, " vht/80-", bsize); else if (IEEE80211_IS_CHAN_VHT80(c) && IEEE80211_IS_CHAN_HT40U(c)) strlcat(buf, " vht/80+", bsize); else if (IEEE80211_IS_CHAN_VHT80(c)) strlcat(buf, " vht/80", bsize); else if (IEEE80211_IS_CHAN_VHT40D(c)) strlcat(buf, " vht/40-", bsize); else if (IEEE80211_IS_CHAN_VHT40U(c)) strlcat(buf, " vht/40+", bsize); else if (IEEE80211_IS_CHAN_VHT20(c)) strlcat(buf, " vht/20", bsize); else if (IEEE80211_IS_CHAN_HT20(c)) strlcat(buf, " ht/20", bsize); else if (IEEE80211_IS_CHAN_HT40D(c)) strlcat(buf, " ht/40-", bsize); else if (IEEE80211_IS_CHAN_HT40U(c)) strlcat(buf, " ht/40+", bsize); } else { if (IEEE80211_IS_CHAN_VHT(c)) strlcat(buf, " vht", bsize); else if (IEEE80211_IS_CHAN_HT(c)) strlcat(buf, " ht", bsize); } return buf; } static void print_chaninfo(const struct ieee80211_channel *c, int verb) { char buf[14]; if (verb) printf("Channel %3u : %u%c%c%c%c%c MHz%-14.14s", ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', IEEE80211_IS_CHAN_DFS(c) ? 'D' : ' ', IEEE80211_IS_CHAN_RADAR(c) ? 'R' : ' ', IEEE80211_IS_CHAN_CWINT(c) ? 'I' : ' ', IEEE80211_IS_CHAN_CACDONE(c) ? 'C' : ' ', get_chaninfo(c, verb, buf, sizeof(buf))); else printf("Channel %3u : %u%c MHz%-14.14s", ieee80211_mhz2ieee(c->ic_freq, c->ic_flags), c->ic_freq, IEEE80211_IS_CHAN_PASSIVE(c) ? '*' : ' ', get_chaninfo(c, verb, buf, sizeof(buf))); } static int chanpref(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHT80P80(c)) return 90; if (IEEE80211_IS_CHAN_VHT160(c)) return 80; if (IEEE80211_IS_CHAN_VHT80(c)) return 70; if (IEEE80211_IS_CHAN_VHT40(c)) return 60; if (IEEE80211_IS_CHAN_VHT20(c)) return 50; if (IEEE80211_IS_CHAN_HT40(c)) return 40; if (IEEE80211_IS_CHAN_HT20(c)) return 30; if (IEEE80211_IS_CHAN_HALF(c)) return 10; if (IEEE80211_IS_CHAN_QUARTER(c)) return 5; if (IEEE80211_IS_CHAN_TURBO(c)) return 25; if (IEEE80211_IS_CHAN_A(c)) return 20; if (IEEE80211_IS_CHAN_G(c)) return 20; if (IEEE80211_IS_CHAN_B(c)) return 15; if (IEEE80211_IS_CHAN_PUREG(c)) return 15; return 0; } static void print_channels(int s, const struct ieee80211req_chaninfo *chans, int allchans, int verb) { struct ieee80211req_chaninfo *achans; uint8_t reported[IEEE80211_CHAN_BYTES]; const struct ieee80211_channel *c; int i, half; achans = malloc(IEEE80211_CHANINFO_SPACE(chans)); if (achans == NULL) errx(1, "no space for active channel list"); achans->ic_nchans = 0; memset(reported, 0, sizeof(reported)); if (!allchans) { struct ieee80211req_chanlist active; if (get80211(s, IEEE80211_IOC_CHANLIST, &active, sizeof(active)) < 0) errx(1, "unable to get active channel list"); for (i = 0; i < chans->ic_nchans; i++) { c = &chans->ic_chans[i]; if (!isset(active.ic_channels, c->ic_ieee)) continue; /* * Suppress compatible duplicates unless * verbose. The kernel gives us it's * complete channel list which has separate * entries for 11g/11b and 11a/turbo. */ if (isset(reported, c->ic_ieee) && !verb) { /* XXX we assume duplicates are adjacent */ achans->ic_chans[achans->ic_nchans-1] = *c; } else { achans->ic_chans[achans->ic_nchans++] = *c; setbit(reported, c->ic_ieee); } } } else { for (i = 0; i < chans->ic_nchans; i++) { c = &chans->ic_chans[i]; /* suppress duplicates as above */ if (isset(reported, c->ic_ieee) && !verb) { /* XXX we assume duplicates are adjacent */ struct ieee80211_channel *a = &achans->ic_chans[achans->ic_nchans-1]; if (chanpref(c) > chanpref(a)) *a = *c; } else { achans->ic_chans[achans->ic_nchans++] = *c; setbit(reported, c->ic_ieee); } } } half = achans->ic_nchans / 2; if (achans->ic_nchans % 2) half++; for (i = 0; i < achans->ic_nchans / 2; i++) { print_chaninfo(&achans->ic_chans[i], verb); print_chaninfo(&achans->ic_chans[half+i], verb); printf("\n"); } if (achans->ic_nchans % 2) { print_chaninfo(&achans->ic_chans[i], verb); printf("\n"); } free(achans); } static void list_channels(int s, int allchans) { getchaninfo(s); print_channels(s, chaninfo, allchans, verbose); } static void print_txpow(const struct ieee80211_channel *c) { printf("Channel %3u : %u MHz %3.1f reg %2d ", c->ic_ieee, c->ic_freq, c->ic_maxpower/2., c->ic_maxregpower); } static void print_txpow_verbose(const struct ieee80211_channel *c) { print_chaninfo(c, 1); printf("min %4.1f dBm max %3.1f dBm reg %2d dBm", c->ic_minpower/2., c->ic_maxpower/2., c->ic_maxregpower); /* indicate where regulatory cap limits power use */ if (c->ic_maxpower > 2*c->ic_maxregpower) printf(" <"); } static void list_txpow(int s) { struct ieee80211req_chaninfo *achans; uint8_t reported[IEEE80211_CHAN_BYTES]; struct ieee80211_channel *c, *prev; int i, half; getchaninfo(s); achans = malloc(IEEE80211_CHANINFO_SPACE(chaninfo)); if (achans == NULL) errx(1, "no space for active channel list"); achans->ic_nchans = 0; memset(reported, 0, sizeof(reported)); for (i = 0; i < chaninfo->ic_nchans; i++) { c = &chaninfo->ic_chans[i]; /* suppress duplicates as above */ if (isset(reported, c->ic_ieee) && !verbose) { /* XXX we assume duplicates are adjacent */ assert(achans->ic_nchans > 0); prev = &achans->ic_chans[achans->ic_nchans-1]; /* display highest power on channel */ if (c->ic_maxpower > prev->ic_maxpower) *prev = *c; } else { achans->ic_chans[achans->ic_nchans++] = *c; setbit(reported, c->ic_ieee); } } if (!verbose) { half = achans->ic_nchans / 2; if (achans->ic_nchans % 2) half++; for (i = 0; i < achans->ic_nchans / 2; i++) { print_txpow(&achans->ic_chans[i]); print_txpow(&achans->ic_chans[half+i]); printf("\n"); } if (achans->ic_nchans % 2) { print_txpow(&achans->ic_chans[i]); printf("\n"); } } else { for (i = 0; i < achans->ic_nchans; i++) { print_txpow_verbose(&achans->ic_chans[i]); printf("\n"); } } free(achans); } static void list_keys(int s) { } static void list_capabilities(int s) { struct ieee80211_devcaps_req *dc; if (verbose) dc = malloc(IEEE80211_DEVCAPS_SIZE(MAXCHAN)); else dc = malloc(IEEE80211_DEVCAPS_SIZE(1)); if (dc == NULL) errx(1, "no space for device capabilities"); dc->dc_chaninfo.ic_nchans = verbose ? MAXCHAN : 1; getdevcaps(s, dc); printb("drivercaps", dc->dc_drivercaps, IEEE80211_C_BITS); if (dc->dc_cryptocaps != 0 || verbose) { putchar('\n'); printb("cryptocaps", dc->dc_cryptocaps, IEEE80211_CRYPTO_BITS); } if (dc->dc_htcaps != 0 || verbose) { putchar('\n'); printb("htcaps", dc->dc_htcaps, IEEE80211_HTCAP_BITS); } if (dc->dc_vhtcaps != 0 || verbose) { putchar('\n'); printb("vhtcaps", dc->dc_vhtcaps, IEEE80211_VHTCAP_BITS); } putchar('\n'); if (verbose) { chaninfo = &dc->dc_chaninfo; /* XXX */ print_channels(s, &dc->dc_chaninfo, 1/*allchans*/, verbose); } free(dc); } static int get80211wme(int s, int param, int ac, int *val) { struct ieee80211req ireq; (void) memset(&ireq, 0, sizeof(ireq)); (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); ireq.i_type = param; ireq.i_len = ac; if (ioctl(s, SIOCG80211, &ireq) < 0) { warn("cannot get WME parameter %d, ac %d%s", param, ac & IEEE80211_WMEPARAM_VAL, ac & IEEE80211_WMEPARAM_BSS ? " (BSS)" : ""); return -1; } *val = ireq.i_val; return 0; } static void list_wme_aci(int s, const char *tag, int ac) { int val; printf("\t%s", tag); /* show WME BSS parameters */ if (get80211wme(s, IEEE80211_IOC_WME_CWMIN, ac, &val) != -1) printf(" cwmin %2u", val); if (get80211wme(s, IEEE80211_IOC_WME_CWMAX, ac, &val) != -1) printf(" cwmax %2u", val); if (get80211wme(s, IEEE80211_IOC_WME_AIFS, ac, &val) != -1) printf(" aifs %2u", val); if (get80211wme(s, IEEE80211_IOC_WME_TXOPLIMIT, ac, &val) != -1) printf(" txopLimit %3u", val); if (get80211wme(s, IEEE80211_IOC_WME_ACM, ac, &val) != -1) { if (val) printf(" acm"); else if (verbose) printf(" -acm"); } /* !BSS only */ if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { if (get80211wme(s, IEEE80211_IOC_WME_ACKPOLICY, ac, &val) != -1) { if (!val) printf(" -ack"); else if (verbose) printf(" ack"); } } printf("\n"); } static void list_wme(int s) { static const char *acnames[] = { "AC_BE", "AC_BK", "AC_VI", "AC_VO" }; int ac; if (verbose) { /* display both BSS and local settings */ for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) { again: if (ac & IEEE80211_WMEPARAM_BSS) list_wme_aci(s, " ", ac); else list_wme_aci(s, acnames[ac], ac); if ((ac & IEEE80211_WMEPARAM_BSS) == 0) { ac |= IEEE80211_WMEPARAM_BSS; goto again; } else ac &= ~IEEE80211_WMEPARAM_BSS; } } else { /* display only channel settings */ for (ac = WME_AC_BE; ac <= WME_AC_VO; ac++) list_wme_aci(s, acnames[ac], ac); } } static void list_roam(int s) { const struct ieee80211_roamparam *rp; int mode; getroam(s); for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { rp = &roamparams.params[mode]; if (rp->rssi == 0 && rp->rate == 0) continue; if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG || mode == IEEE80211_MODE_VHT_2GHZ || mode == IEEE80211_MODE_VHT_5GHZ) { if (rp->rssi & 1) LINE_CHECK("roam:%-7.7s rssi %2u.5dBm MCS %2u ", modename[mode], rp->rssi/2, rp->rate &~ IEEE80211_RATE_MCS); else LINE_CHECK("roam:%-7.7s rssi %4udBm MCS %2u ", modename[mode], rp->rssi/2, rp->rate &~ IEEE80211_RATE_MCS); } else { if (rp->rssi & 1) LINE_CHECK("roam:%-7.7s rssi %2u.5dBm rate %2u Mb/s", modename[mode], rp->rssi/2, rp->rate/2); else LINE_CHECK("roam:%-7.7s rssi %4udBm rate %2u Mb/s", modename[mode], rp->rssi/2, rp->rate/2); } } } /* XXX TODO: rate-to-string method... */ static const char* get_mcs_mbs_rate_str(uint8_t rate) { return (rate & IEEE80211_RATE_MCS) ? "MCS " : "Mb/s"; } static uint8_t get_rate_value(uint8_t rate) { if (rate & IEEE80211_RATE_MCS) return (rate &~ IEEE80211_RATE_MCS); return (rate / 2); } static void list_txparams(int s) { const struct ieee80211_txparam *tp; int mode; gettxparams(s); for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) { tp = &txparams.params[mode]; if (tp->mgmtrate == 0 && tp->mcastrate == 0) continue; if (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG || mode == IEEE80211_MODE_VHT_2GHZ || mode == IEEE80211_MODE_VHT_5GHZ) { if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) LINE_CHECK("%-7.7s ucast NONE mgmt %2u %s " "mcast %2u %s maxretry %u", modename[mode], get_rate_value(tp->mgmtrate), get_mcs_mbs_rate_str(tp->mgmtrate), get_rate_value(tp->mcastrate), get_mcs_mbs_rate_str(tp->mcastrate), tp->maxretry); else LINE_CHECK("%-7.7s ucast %2u MCS mgmt %2u %s " "mcast %2u %s maxretry %u", modename[mode], tp->ucastrate &~ IEEE80211_RATE_MCS, get_rate_value(tp->mgmtrate), get_mcs_mbs_rate_str(tp->mgmtrate), get_rate_value(tp->mcastrate), get_mcs_mbs_rate_str(tp->mcastrate), tp->maxretry); } else { if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) LINE_CHECK("%-7.7s ucast NONE mgmt %2u Mb/s " "mcast %2u Mb/s maxretry %u", modename[mode], tp->mgmtrate/2, tp->mcastrate/2, tp->maxretry); else LINE_CHECK("%-7.7s ucast %2u Mb/s mgmt %2u Mb/s " "mcast %2u Mb/s maxretry %u", modename[mode], tp->ucastrate/2, tp->mgmtrate/2, tp->mcastrate/2, tp->maxretry); } } } static void printpolicy(int policy) { switch (policy) { case IEEE80211_MACCMD_POLICY_OPEN: printf("policy: open\n"); break; case IEEE80211_MACCMD_POLICY_ALLOW: printf("policy: allow\n"); break; case IEEE80211_MACCMD_POLICY_DENY: printf("policy: deny\n"); break; case IEEE80211_MACCMD_POLICY_RADIUS: printf("policy: radius\n"); break; default: printf("policy: unknown (%u)\n", policy); break; } } static void list_mac(int s) { struct ieee80211req ireq; struct ieee80211req_maclist *acllist; int i, nacls, policy, len; uint8_t *data; char c; (void) memset(&ireq, 0, sizeof(ireq)); (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); /* XXX ?? */ ireq.i_type = IEEE80211_IOC_MACCMD; ireq.i_val = IEEE80211_MACCMD_POLICY; if (ioctl(s, SIOCG80211, &ireq) < 0) { if (errno == EINVAL) { printf("No acl policy loaded\n"); return; } err(1, "unable to get mac policy"); } policy = ireq.i_val; if (policy == IEEE80211_MACCMD_POLICY_OPEN) { c = '*'; } else if (policy == IEEE80211_MACCMD_POLICY_ALLOW) { c = '+'; } else if (policy == IEEE80211_MACCMD_POLICY_DENY) { c = '-'; } else if (policy == IEEE80211_MACCMD_POLICY_RADIUS) { c = 'r'; /* NB: should never have entries */ } else { printf("policy: unknown (%u)\n", policy); c = '?'; } if (verbose || c == '?') printpolicy(policy); ireq.i_val = IEEE80211_MACCMD_LIST; ireq.i_len = 0; if (ioctl(s, SIOCG80211, &ireq) < 0) err(1, "unable to get mac acl list size"); if (ireq.i_len == 0) { /* NB: no acls */ if (!(verbose || c == '?')) printpolicy(policy); return; } len = ireq.i_len; data = malloc(len); if (data == NULL) err(1, "out of memory for acl list"); ireq.i_data = data; if (ioctl(s, SIOCG80211, &ireq) < 0) err(1, "unable to get mac acl list"); nacls = len / sizeof(*acllist); acllist = (struct ieee80211req_maclist *) data; for (i = 0; i < nacls; i++) printf("%c%s\n", c, ether_ntoa( (const struct ether_addr *) acllist[i].ml_macaddr)); free(data); } static void print_regdomain(const struct ieee80211_regdomain *reg, int verb) { if ((reg->regdomain != 0 && reg->regdomain != reg->country) || verb) { const struct regdomain *rd = lib80211_regdomain_findbysku(getregdata(), reg->regdomain); if (rd == NULL) LINE_CHECK("regdomain %d", reg->regdomain); else LINE_CHECK("regdomain %s", rd->name); } if (reg->country != 0 || verb) { const struct country *cc = lib80211_country_findbycc(getregdata(), reg->country); if (cc == NULL) LINE_CHECK("country %d", reg->country); else LINE_CHECK("country %s", cc->isoname); } if (reg->location == 'I') LINE_CHECK("indoor"); else if (reg->location == 'O') LINE_CHECK("outdoor"); else if (verb) LINE_CHECK("anywhere"); if (reg->ecm) LINE_CHECK("ecm"); else if (verb) LINE_CHECK("-ecm"); } static void list_regdomain(int s, int channelsalso) { getregdomain(s); if (channelsalso) { getchaninfo(s); spacer = ':'; print_regdomain(®domain, 1); LINE_BREAK(); print_channels(s, chaninfo, 1/*allchans*/, 1/*verbose*/); } else print_regdomain(®domain, verbose); } static void list_mesh(int s) { struct ieee80211req ireq; struct ieee80211req_mesh_route routes[128]; struct ieee80211req_mesh_route *rt; (void) memset(&ireq, 0, sizeof(ireq)); (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); ireq.i_type = IEEE80211_IOC_MESH_RTCMD; ireq.i_val = IEEE80211_MESH_RTCMD_LIST; ireq.i_data = &routes; ireq.i_len = sizeof(routes); if (ioctl(s, SIOCG80211, &ireq) < 0) err(1, "unable to get the Mesh routing table"); printf("%-17.17s %-17.17s %4s %4s %4s %6s %s\n" , "DEST" , "NEXT HOP" , "HOPS" , "METRIC" , "LIFETIME" , "MSEQ" , "FLAGS"); for (rt = &routes[0]; rt - &routes[0] < ireq.i_len / sizeof(*rt); rt++){ printf("%s ", ether_ntoa((const struct ether_addr *)rt->imr_dest)); printf("%s %4u %4u %6u %6u %c%c\n", ether_ntoa((const struct ether_addr *)rt->imr_nexthop), rt->imr_nhops, rt->imr_metric, rt->imr_lifetime, rt->imr_lastmseq, (rt->imr_flags & IEEE80211_MESHRT_FLAGS_DISCOVER) ? 'D' : (rt->imr_flags & IEEE80211_MESHRT_FLAGS_VALID) ? 'V' : '!', (rt->imr_flags & IEEE80211_MESHRT_FLAGS_PROXY) ? 'P' : (rt->imr_flags & IEEE80211_MESHRT_FLAGS_GATE) ? 'G' :' '); } } static DECL_CMD_FUNC(set80211list, arg, d) { #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) LINE_INIT('\t'); if (iseq(arg, "sta")) list_stations(s); else if (iseq(arg, "scan") || iseq(arg, "ap")) list_scan(s); else if (iseq(arg, "chan") || iseq(arg, "freq")) list_channels(s, 1); else if (iseq(arg, "active")) list_channels(s, 0); else if (iseq(arg, "keys")) list_keys(s); else if (iseq(arg, "caps")) list_capabilities(s); else if (iseq(arg, "wme") || iseq(arg, "wmm")) list_wme(s); else if (iseq(arg, "mac")) list_mac(s); else if (iseq(arg, "txpow")) list_txpow(s); else if (iseq(arg, "roam")) list_roam(s); else if (iseq(arg, "txparam") || iseq(arg, "txparm")) list_txparams(s); else if (iseq(arg, "regdomain")) list_regdomain(s, 1); else if (iseq(arg, "countries")) list_countries(); else if (iseq(arg, "mesh")) list_mesh(s); else errx(1, "Don't know how to list %s for %s", arg, name); LINE_BREAK(); #undef iseq } static enum ieee80211_opmode get80211opmode(int s) { struct ifmediareq ifmr; (void) memset(&ifmr, 0, sizeof(ifmr)); (void) strlcpy(ifmr.ifm_name, name, sizeof(ifmr.ifm_name)); if (ioctl(s, SIOCGIFMEDIA, (caddr_t)&ifmr) >= 0) { if (ifmr.ifm_current & IFM_IEEE80211_ADHOC) { if (ifmr.ifm_current & IFM_FLAG0) return IEEE80211_M_AHDEMO; else return IEEE80211_M_IBSS; } if (ifmr.ifm_current & IFM_IEEE80211_HOSTAP) return IEEE80211_M_HOSTAP; if (ifmr.ifm_current & IFM_IEEE80211_IBSS) return IEEE80211_M_IBSS; if (ifmr.ifm_current & IFM_IEEE80211_MONITOR) return IEEE80211_M_MONITOR; if (ifmr.ifm_current & IFM_IEEE80211_MBSS) return IEEE80211_M_MBSS; } return IEEE80211_M_STA; } #if 0 static void printcipher(int s, struct ieee80211req *ireq, int keylenop) { switch (ireq->i_val) { case IEEE80211_CIPHER_WEP: ireq->i_type = keylenop; if (ioctl(s, SIOCG80211, ireq) != -1) printf("WEP-%s", ireq->i_len <= 5 ? "40" : ireq->i_len <= 13 ? "104" : "128"); else printf("WEP"); break; case IEEE80211_CIPHER_TKIP: printf("TKIP"); break; case IEEE80211_CIPHER_AES_OCB: printf("AES-OCB"); break; case IEEE80211_CIPHER_AES_CCM: printf("AES-CCM"); break; case IEEE80211_CIPHER_CKIP: printf("CKIP"); break; case IEEE80211_CIPHER_NONE: printf("NONE"); break; default: printf("UNKNOWN (0x%x)", ireq->i_val); break; } } #endif static void printkey(const struct ieee80211req_key *ik) { static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE]; u_int keylen = ik->ik_keylen; int printcontents; printcontents = printkeys && (memcmp(ik->ik_keydata, zerodata, keylen) != 0 || verbose); if (printcontents) LINE_BREAK(); switch (ik->ik_type) { case IEEE80211_CIPHER_WEP: /* compatibility */ LINE_CHECK("wepkey %u:%s", ik->ik_keyix+1, keylen <= 5 ? "40-bit" : keylen <= 13 ? "104-bit" : "128-bit"); break; case IEEE80211_CIPHER_TKIP: if (keylen > 128/8) keylen -= 128/8; /* ignore MIC for now */ LINE_CHECK("TKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); break; case IEEE80211_CIPHER_AES_OCB: LINE_CHECK("AES-OCB %u:%u-bit", ik->ik_keyix+1, 8*keylen); break; case IEEE80211_CIPHER_AES_CCM: LINE_CHECK("AES-CCM %u:%u-bit", ik->ik_keyix+1, 8*keylen); break; case IEEE80211_CIPHER_CKIP: LINE_CHECK("CKIP %u:%u-bit", ik->ik_keyix+1, 8*keylen); break; case IEEE80211_CIPHER_NONE: LINE_CHECK("NULL %u:%u-bit", ik->ik_keyix+1, 8*keylen); break; default: LINE_CHECK("UNKNOWN (0x%x) %u:%u-bit", ik->ik_type, ik->ik_keyix+1, 8*keylen); break; } if (printcontents) { u_int i; printf(" <"); for (i = 0; i < keylen; i++) printf("%02x", ik->ik_keydata[i]); printf(">"); if (ik->ik_type != IEEE80211_CIPHER_WEP && (ik->ik_keyrsc != 0 || verbose)) printf(" rsc %ju", (uintmax_t)ik->ik_keyrsc); if (ik->ik_type != IEEE80211_CIPHER_WEP && (ik->ik_keytsc != 0 || verbose)) printf(" tsc %ju", (uintmax_t)ik->ik_keytsc); if (ik->ik_flags != 0 && verbose) { const char *sep = " "; if (ik->ik_flags & IEEE80211_KEY_XMIT) printf("%stx", sep), sep = "+"; if (ik->ik_flags & IEEE80211_KEY_RECV) printf("%srx", sep), sep = "+"; if (ik->ik_flags & IEEE80211_KEY_DEFAULT) printf("%sdef", sep), sep = "+"; } LINE_BREAK(); } } static void printrate(const char *tag, int v, int defrate, int defmcs) { if ((v & IEEE80211_RATE_MCS) == 0) { if (v != defrate) { if (v & 1) LINE_CHECK("%s %d.5", tag, v/2); else LINE_CHECK("%s %d", tag, v/2); } } else { if (v != defmcs) LINE_CHECK("%s %d", tag, v &~ 0x80); } } static int getid(int s, int ix, void *data, size_t len, int *plen, int mesh) { struct ieee80211req ireq; (void) memset(&ireq, 0, sizeof(ireq)); (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); ireq.i_type = (!mesh) ? IEEE80211_IOC_SSID : IEEE80211_IOC_MESH_ID; ireq.i_val = ix; ireq.i_data = data; ireq.i_len = len; if (ioctl(s, SIOCG80211, &ireq) < 0) return -1; *plen = ireq.i_len; return 0; } static int getdevicename(int s, void *data, size_t len, int *plen) { struct ieee80211req ireq; (void) memset(&ireq, 0, sizeof(ireq)); (void) strlcpy(ireq.i_name, name, sizeof(ireq.i_name)); ireq.i_type = IEEE80211_IOC_IC_NAME; ireq.i_val = -1; ireq.i_data = data; ireq.i_len = len; if (ioctl(s, SIOCG80211, &ireq) < 0) return (-1); *plen = ireq.i_len; return (0); } static void ieee80211_status(int s) { static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; enum ieee80211_opmode opmode = get80211opmode(s); int i, num, wpa, wme, bgscan, bgscaninterval, val, len, wepmode; uint8_t data[32]; const struct ieee80211_channel *c; const struct ieee80211_roamparam *rp; const struct ieee80211_txparam *tp; if (getid(s, -1, data, sizeof(data), &len, 0) < 0) { /* If we can't get the SSID, this isn't an 802.11 device. */ return; } /* * Invalidate cached state so printing status for multiple * if's doesn't reuse the first interfaces' cached state. */ gotcurchan = 0; gotroam = 0; gottxparams = 0; gothtconf = 0; gotregdomain = 0; printf("\t"); if (opmode == IEEE80211_M_MBSS) { printf("meshid "); getid(s, 0, data, sizeof(data), &len, 1); print_string(data, len); } else { if (get80211val(s, IEEE80211_IOC_NUMSSIDS, &num) < 0) num = 0; printf("ssid "); if (num > 1) { for (i = 0; i < num; i++) { if (getid(s, i, data, sizeof(data), &len, 0) >= 0 && len > 0) { printf(" %d:", i + 1); print_string(data, len); } } } else print_string(data, len); } c = getcurchan(s); if (c->ic_freq != IEEE80211_CHAN_ANY) { char buf[14]; printf(" channel %d (%u MHz%s)", c->ic_ieee, c->ic_freq, get_chaninfo(c, 1, buf, sizeof(buf))); } else if (verbose) printf(" channel UNDEF"); if (get80211(s, IEEE80211_IOC_BSSID, data, IEEE80211_ADDR_LEN) >= 0 && (memcmp(data, zerobssid, sizeof(zerobssid)) != 0 || verbose)) printf(" bssid %s", ether_ntoa((struct ether_addr *)data)); if (get80211len(s, IEEE80211_IOC_STATIONNAME, data, sizeof(data), &len) != -1) { printf("\n\tstationname "); print_string(data, len); } spacer = ' '; /* force first break */ LINE_BREAK(); list_regdomain(s, 0); wpa = 0; if (get80211val(s, IEEE80211_IOC_AUTHMODE, &val) != -1) { switch (val) { case IEEE80211_AUTH_NONE: LINE_CHECK("authmode NONE"); break; case IEEE80211_AUTH_OPEN: LINE_CHECK("authmode OPEN"); break; case IEEE80211_AUTH_SHARED: LINE_CHECK("authmode SHARED"); break; case IEEE80211_AUTH_8021X: LINE_CHECK("authmode 802.1x"); break; case IEEE80211_AUTH_WPA: if (get80211val(s, IEEE80211_IOC_WPA, &wpa) < 0) wpa = 1; /* default to WPA1 */ switch (wpa) { case 2: LINE_CHECK("authmode WPA2/802.11i"); break; case 3: LINE_CHECK("authmode WPA1+WPA2/802.11i"); break; default: LINE_CHECK("authmode WPA"); break; } break; case IEEE80211_AUTH_AUTO: LINE_CHECK("authmode AUTO"); break; default: LINE_CHECK("authmode UNKNOWN (0x%x)", val); break; } } if (wpa || verbose) { if (get80211val(s, IEEE80211_IOC_WPS, &val) != -1) { if (val) LINE_CHECK("wps"); else if (verbose) LINE_CHECK("-wps"); } if (get80211val(s, IEEE80211_IOC_TSN, &val) != -1) { if (val) LINE_CHECK("tsn"); else if (verbose) LINE_CHECK("-tsn"); } if (ioctl(s, IEEE80211_IOC_COUNTERMEASURES, &val) != -1) { if (val) LINE_CHECK("countermeasures"); else if (verbose) LINE_CHECK("-countermeasures"); } #if 0 /* XXX not interesting with WPA done in user space */ ireq.i_type = IEEE80211_IOC_KEYMGTALGS; if (ioctl(s, SIOCG80211, &ireq) != -1) { } ireq.i_type = IEEE80211_IOC_MCASTCIPHER; if (ioctl(s, SIOCG80211, &ireq) != -1) { LINE_CHECK("mcastcipher "); printcipher(s, &ireq, IEEE80211_IOC_MCASTKEYLEN); spacer = ' '; } ireq.i_type = IEEE80211_IOC_UCASTCIPHER; if (ioctl(s, SIOCG80211, &ireq) != -1) { LINE_CHECK("ucastcipher "); printcipher(s, &ireq, IEEE80211_IOC_UCASTKEYLEN); } if (wpa & 2) { ireq.i_type = IEEE80211_IOC_RSNCAPS; if (ioctl(s, SIOCG80211, &ireq) != -1) { LINE_CHECK("RSN caps 0x%x", ireq.i_val); spacer = ' '; } } ireq.i_type = IEEE80211_IOC_UCASTCIPHERS; if (ioctl(s, SIOCG80211, &ireq) != -1) { } #endif } if (get80211val(s, IEEE80211_IOC_WEP, &wepmode) != -1 && wepmode != IEEE80211_WEP_NOSUP) { switch (wepmode) { case IEEE80211_WEP_OFF: LINE_CHECK("privacy OFF"); break; case IEEE80211_WEP_ON: LINE_CHECK("privacy ON"); break; case IEEE80211_WEP_MIXED: LINE_CHECK("privacy MIXED"); break; default: LINE_CHECK("privacy UNKNOWN (0x%x)", wepmode); break; } /* * If we get here then we've got WEP support so we need * to print WEP status. */ if (get80211val(s, IEEE80211_IOC_WEPTXKEY, &val) < 0) { warn("WEP support, but no tx key!"); goto end; } if (val != -1) LINE_CHECK("deftxkey %d", val+1); else if (wepmode != IEEE80211_WEP_OFF || verbose) LINE_CHECK("deftxkey UNDEF"); if (get80211val(s, IEEE80211_IOC_NUMWEPKEYS, &num) < 0) { warn("WEP support, but no NUMWEPKEYS support!"); goto end; } for (i = 0; i < num; i++) { struct ieee80211req_key ik; memset(&ik, 0, sizeof(ik)); ik.ik_keyix = i; if (get80211(s, IEEE80211_IOC_WPAKEY, &ik, sizeof(ik)) < 0) { warn("WEP support, but can get keys!"); goto end; } if (ik.ik_keylen != 0) { if (verbose) LINE_BREAK(); printkey(&ik); } } end: ; } if (get80211val(s, IEEE80211_IOC_POWERSAVE, &val) != -1 && val != IEEE80211_POWERSAVE_NOSUP ) { if (val != IEEE80211_POWERSAVE_OFF || verbose) { switch (val) { case IEEE80211_POWERSAVE_OFF: LINE_CHECK("powersavemode OFF"); break; case IEEE80211_POWERSAVE_CAM: LINE_CHECK("powersavemode CAM"); break; case IEEE80211_POWERSAVE_PSP: LINE_CHECK("powersavemode PSP"); break; case IEEE80211_POWERSAVE_PSP_CAM: LINE_CHECK("powersavemode PSP-CAM"); break; } if (get80211val(s, IEEE80211_IOC_POWERSAVESLEEP, &val) != -1) LINE_CHECK("powersavesleep %d", val); } } if (get80211val(s, IEEE80211_IOC_TXPOWER, &val) != -1) { if (val & 1) LINE_CHECK("txpower %d.5", val/2); else LINE_CHECK("txpower %d", val/2); } if (verbose) { if (get80211val(s, IEEE80211_IOC_TXPOWMAX, &val) != -1) LINE_CHECK("txpowmax %.1f", val/2.); } if (get80211val(s, IEEE80211_IOC_DOTD, &val) != -1) { if (val) LINE_CHECK("dotd"); else if (verbose) LINE_CHECK("-dotd"); } if (get80211val(s, IEEE80211_IOC_RTSTHRESHOLD, &val) != -1) { if (val != IEEE80211_RTS_MAX || verbose) LINE_CHECK("rtsthreshold %d", val); } if (get80211val(s, IEEE80211_IOC_FRAGTHRESHOLD, &val) != -1) { if (val != IEEE80211_FRAG_MAX || verbose) LINE_CHECK("fragthreshold %d", val); } if (opmode == IEEE80211_M_STA || verbose) { if (get80211val(s, IEEE80211_IOC_BMISSTHRESHOLD, &val) != -1) { if (val != IEEE80211_HWBMISS_MAX || verbose) LINE_CHECK("bmiss %d", val); } } if (!verbose) { gettxparams(s); tp = &txparams.params[chan2mode(c)]; printrate("ucastrate", tp->ucastrate, IEEE80211_FIXED_RATE_NONE, IEEE80211_FIXED_RATE_NONE); printrate("mcastrate", tp->mcastrate, 2*1, IEEE80211_RATE_MCS|0); printrate("mgmtrate", tp->mgmtrate, 2*1, IEEE80211_RATE_MCS|0); if (tp->maxretry != 6) /* XXX */ LINE_CHECK("maxretry %d", tp->maxretry); } else { LINE_BREAK(); list_txparams(s); } bgscaninterval = -1; (void) get80211val(s, IEEE80211_IOC_BGSCAN_INTERVAL, &bgscaninterval); if (get80211val(s, IEEE80211_IOC_SCANVALID, &val) != -1) { if (val != bgscaninterval || verbose) LINE_CHECK("scanvalid %u", val); } bgscan = 0; if (get80211val(s, IEEE80211_IOC_BGSCAN, &bgscan) != -1) { if (bgscan) LINE_CHECK("bgscan"); else if (verbose) LINE_CHECK("-bgscan"); } if (bgscan || verbose) { if (bgscaninterval != -1) LINE_CHECK("bgscanintvl %u", bgscaninterval); if (get80211val(s, IEEE80211_IOC_BGSCAN_IDLE, &val) != -1) LINE_CHECK("bgscanidle %u", val); if (!verbose) { getroam(s); rp = &roamparams.params[chan2mode(c)]; if (rp->rssi & 1) LINE_CHECK("roam:rssi %u.5", rp->rssi/2); else LINE_CHECK("roam:rssi %u", rp->rssi/2); LINE_CHECK("roam:rate %s%u", (rp->rate & IEEE80211_RATE_MCS) ? "MCS " : "", get_rate_value(rp->rate)); } else { LINE_BREAK(); list_roam(s); LINE_BREAK(); } } if (IEEE80211_IS_CHAN_ANYG(c) || verbose) { if (get80211val(s, IEEE80211_IOC_PUREG, &val) != -1) { if (val) LINE_CHECK("pureg"); else if (verbose) LINE_CHECK("-pureg"); } if (get80211val(s, IEEE80211_IOC_PROTMODE, &val) != -1) { switch (val) { case IEEE80211_PROTMODE_OFF: LINE_CHECK("protmode OFF"); break; case IEEE80211_PROTMODE_CTS: LINE_CHECK("protmode CTS"); break; case IEEE80211_PROTMODE_RTSCTS: LINE_CHECK("protmode RTSCTS"); break; default: LINE_CHECK("protmode UNKNOWN (0x%x)", val); break; } } } if (IEEE80211_IS_CHAN_HT(c) || verbose) { gethtconf(s); switch (htconf & 3) { case 0: case 2: LINE_CHECK("-ht"); break; case 1: LINE_CHECK("ht20"); break; case 3: if (verbose) LINE_CHECK("ht"); break; } if (get80211val(s, IEEE80211_IOC_HTCOMPAT, &val) != -1) { if (!val) LINE_CHECK("-htcompat"); else if (verbose) LINE_CHECK("htcompat"); } if (get80211val(s, IEEE80211_IOC_AMPDU, &val) != -1) { switch (val) { case 0: LINE_CHECK("-ampdu"); break; case 1: LINE_CHECK("ampdutx -ampdurx"); break; case 2: LINE_CHECK("-ampdutx ampdurx"); break; case 3: if (verbose) LINE_CHECK("ampdu"); break; } } /* XXX 11ac density/size is different */ if (get80211val(s, IEEE80211_IOC_AMPDU_LIMIT, &val) != -1) { switch (val) { case IEEE80211_HTCAP_MAXRXAMPDU_8K: LINE_CHECK("ampdulimit 8k"); break; case IEEE80211_HTCAP_MAXRXAMPDU_16K: LINE_CHECK("ampdulimit 16k"); break; case IEEE80211_HTCAP_MAXRXAMPDU_32K: LINE_CHECK("ampdulimit 32k"); break; case IEEE80211_HTCAP_MAXRXAMPDU_64K: LINE_CHECK("ampdulimit 64k"); break; } } /* XXX 11ac density/size is different */ if (get80211val(s, IEEE80211_IOC_AMPDU_DENSITY, &val) != -1) { switch (val) { case IEEE80211_HTCAP_MPDUDENSITY_NA: if (verbose) LINE_CHECK("ampdudensity NA"); break; case IEEE80211_HTCAP_MPDUDENSITY_025: LINE_CHECK("ampdudensity .25"); break; case IEEE80211_HTCAP_MPDUDENSITY_05: LINE_CHECK("ampdudensity .5"); break; case IEEE80211_HTCAP_MPDUDENSITY_1: LINE_CHECK("ampdudensity 1"); break; case IEEE80211_HTCAP_MPDUDENSITY_2: LINE_CHECK("ampdudensity 2"); break; case IEEE80211_HTCAP_MPDUDENSITY_4: LINE_CHECK("ampdudensity 4"); break; case IEEE80211_HTCAP_MPDUDENSITY_8: LINE_CHECK("ampdudensity 8"); break; case IEEE80211_HTCAP_MPDUDENSITY_16: LINE_CHECK("ampdudensity 16"); break; } } if (get80211val(s, IEEE80211_IOC_AMSDU, &val) != -1) { switch (val) { case 0: LINE_CHECK("-amsdu"); break; case 1: LINE_CHECK("amsdutx -amsdurx"); break; case 2: LINE_CHECK("-amsdutx amsdurx"); break; case 3: if (verbose) LINE_CHECK("amsdu"); break; } } /* XXX amsdu limit */ if (get80211val(s, IEEE80211_IOC_SHORTGI, &val) != -1) { if (val) LINE_CHECK("shortgi"); else if (verbose) LINE_CHECK("-shortgi"); } if (get80211val(s, IEEE80211_IOC_HTPROTMODE, &val) != -1) { if (val == IEEE80211_PROTMODE_OFF) LINE_CHECK("htprotmode OFF"); else if (val != IEEE80211_PROTMODE_RTSCTS) LINE_CHECK("htprotmode UNKNOWN (0x%x)", val); else if (verbose) LINE_CHECK("htprotmode RTSCTS"); } if (get80211val(s, IEEE80211_IOC_PUREN, &val) != -1) { if (val) LINE_CHECK("puren"); else if (verbose) LINE_CHECK("-puren"); } if (get80211val(s, IEEE80211_IOC_SMPS, &val) != -1) { if (val == IEEE80211_HTCAP_SMPS_DYNAMIC) LINE_CHECK("smpsdyn"); else if (val == IEEE80211_HTCAP_SMPS_ENA) LINE_CHECK("smps"); else if (verbose) LINE_CHECK("-smps"); } if (get80211val(s, IEEE80211_IOC_RIFS, &val) != -1) { if (val) LINE_CHECK("rifs"); else if (verbose) LINE_CHECK("-rifs"); } /* XXX VHT STBC? */ if (get80211val(s, IEEE80211_IOC_STBC, &val) != -1) { switch (val) { case 0: LINE_CHECK("-stbc"); break; case 1: LINE_CHECK("stbctx -stbcrx"); break; case 2: LINE_CHECK("-stbctx stbcrx"); break; case 3: if (verbose) LINE_CHECK("stbc"); break; } } if (get80211val(s, IEEE80211_IOC_LDPC, &val) != -1) { switch (val) { case 0: LINE_CHECK("-ldpc"); break; case 1: LINE_CHECK("ldpctx -ldpcrx"); break; case 2: LINE_CHECK("-ldpctx ldpcrx"); break; case 3: if (verbose) LINE_CHECK("ldpc"); break; } } if (get80211val(s, IEEE80211_IOC_UAPSD, &val) != -1) { switch (val) { case 0: LINE_CHECK("-uapsd"); break; case 1: LINE_CHECK("uapsd"); break; } } } if (IEEE80211_IS_CHAN_VHT(c) || verbose) { getvhtconf(s); if (vhtconf & IEEE80211_FVHT_VHT) LINE_CHECK("vht"); else LINE_CHECK("-vht"); if (vhtconf & IEEE80211_FVHT_USEVHT40) LINE_CHECK("vht40"); else LINE_CHECK("-vht40"); if (vhtconf & IEEE80211_FVHT_USEVHT80) LINE_CHECK("vht80"); else LINE_CHECK("-vht80"); if (vhtconf & IEEE80211_FVHT_USEVHT160) LINE_CHECK("vht160"); else LINE_CHECK("-vht160"); if (vhtconf & IEEE80211_FVHT_USEVHT80P80) LINE_CHECK("vht80p80"); else LINE_CHECK("-vht80p80"); } if (get80211val(s, IEEE80211_IOC_WME, &wme) != -1) { if (wme) LINE_CHECK("wme"); else if (verbose) LINE_CHECK("-wme"); } else wme = 0; if (get80211val(s, IEEE80211_IOC_BURST, &val) != -1) { if (val) LINE_CHECK("burst"); else if (verbose) LINE_CHECK("-burst"); } if (get80211val(s, IEEE80211_IOC_FF, &val) != -1) { if (val) LINE_CHECK("ff"); else if (verbose) LINE_CHECK("-ff"); } if (get80211val(s, IEEE80211_IOC_TURBOP, &val) != -1) { if (val) LINE_CHECK("dturbo"); else if (verbose) LINE_CHECK("-dturbo"); } if (get80211val(s, IEEE80211_IOC_DWDS, &val) != -1) { if (val) LINE_CHECK("dwds"); else if (verbose) LINE_CHECK("-dwds"); } if (opmode == IEEE80211_M_HOSTAP) { if (get80211val(s, IEEE80211_IOC_HIDESSID, &val) != -1) { if (val) LINE_CHECK("hidessid"); else if (verbose) LINE_CHECK("-hidessid"); } if (get80211val(s, IEEE80211_IOC_APBRIDGE, &val) != -1) { if (!val) LINE_CHECK("-apbridge"); else if (verbose) LINE_CHECK("apbridge"); } if (get80211val(s, IEEE80211_IOC_DTIM_PERIOD, &val) != -1) LINE_CHECK("dtimperiod %u", val); if (get80211val(s, IEEE80211_IOC_DOTH, &val) != -1) { if (!val) LINE_CHECK("-doth"); else if (verbose) LINE_CHECK("doth"); } if (get80211val(s, IEEE80211_IOC_DFS, &val) != -1) { if (!val) LINE_CHECK("-dfs"); else if (verbose) LINE_CHECK("dfs"); } if (get80211val(s, IEEE80211_IOC_INACTIVITY, &val) != -1) { if (!val) LINE_CHECK("-inact"); else if (verbose) LINE_CHECK("inact"); } } else { if (get80211val(s, IEEE80211_IOC_ROAMING, &val) != -1) { if (val != IEEE80211_ROAMING_AUTO || verbose) { switch (val) { case IEEE80211_ROAMING_DEVICE: LINE_CHECK("roaming DEVICE"); break; case IEEE80211_ROAMING_AUTO: LINE_CHECK("roaming AUTO"); break; case IEEE80211_ROAMING_MANUAL: LINE_CHECK("roaming MANUAL"); break; default: LINE_CHECK("roaming UNKNOWN (0x%x)", val); break; } } } } if (opmode == IEEE80211_M_AHDEMO) { if (get80211val(s, IEEE80211_IOC_TDMA_SLOT, &val) != -1) LINE_CHECK("tdmaslot %u", val); if (get80211val(s, IEEE80211_IOC_TDMA_SLOTCNT, &val) != -1) LINE_CHECK("tdmaslotcnt %u", val); if (get80211val(s, IEEE80211_IOC_TDMA_SLOTLEN, &val) != -1) LINE_CHECK("tdmaslotlen %u", val); if (get80211val(s, IEEE80211_IOC_TDMA_BINTERVAL, &val) != -1) LINE_CHECK("tdmabintval %u", val); } else if (get80211val(s, IEEE80211_IOC_BEACON_INTERVAL, &val) != -1) { /* XXX default define not visible */ if (val != 100 || verbose) LINE_CHECK("bintval %u", val); } if (wme && verbose) { LINE_BREAK(); list_wme(s); } if (opmode == IEEE80211_M_MBSS) { if (get80211val(s, IEEE80211_IOC_MESH_TTL, &val) != -1) { LINE_CHECK("meshttl %u", val); } if (get80211val(s, IEEE80211_IOC_MESH_AP, &val) != -1) { if (val) LINE_CHECK("meshpeering"); else LINE_CHECK("-meshpeering"); } if (get80211val(s, IEEE80211_IOC_MESH_FWRD, &val) != -1) { if (val) LINE_CHECK("meshforward"); else LINE_CHECK("-meshforward"); } if (get80211val(s, IEEE80211_IOC_MESH_GATE, &val) != -1) { if (val) LINE_CHECK("meshgate"); else LINE_CHECK("-meshgate"); } if (get80211len(s, IEEE80211_IOC_MESH_PR_METRIC, data, 12, &len) != -1) { data[len] = '\0'; LINE_CHECK("meshmetric %s", data); } if (get80211len(s, IEEE80211_IOC_MESH_PR_PATH, data, 12, &len) != -1) { data[len] = '\0'; LINE_CHECK("meshpath %s", data); } if (get80211val(s, IEEE80211_IOC_HWMP_ROOTMODE, &val) != -1) { switch (val) { case IEEE80211_HWMP_ROOTMODE_DISABLED: LINE_CHECK("hwmprootmode DISABLED"); break; case IEEE80211_HWMP_ROOTMODE_NORMAL: LINE_CHECK("hwmprootmode NORMAL"); break; case IEEE80211_HWMP_ROOTMODE_PROACTIVE: LINE_CHECK("hwmprootmode PROACTIVE"); break; case IEEE80211_HWMP_ROOTMODE_RANN: LINE_CHECK("hwmprootmode RANN"); break; default: LINE_CHECK("hwmprootmode UNKNOWN(%d)", val); break; } } if (get80211val(s, IEEE80211_IOC_HWMP_MAXHOPS, &val) != -1) { LINE_CHECK("hwmpmaxhops %u", val); } } LINE_BREAK(); if (getdevicename(s, data, sizeof(data), &len) < 0) return; LINE_CHECK("parent interface: %s", data); LINE_BREAK(); } static int get80211(int s, int type, void *data, int len) { return (lib80211_get80211(s, name, type, data, len)); } static int get80211len(int s, int type, void *data, int len, int *plen) { return (lib80211_get80211len(s, name, type, data, len, plen)); } static int get80211val(int s, int type, int *val) { return (lib80211_get80211val(s, name, type, val)); } static void set80211(int s, int type, int val, int len, void *data) { int ret; ret = lib80211_set80211(s, name, type, val, len, data); if (ret < 0) err(1, "SIOCS80211"); } static const char * get_string(const char *val, const char *sep, u_int8_t *buf, int *lenp) { int len; int hexstr; u_int8_t *p; len = *lenp; p = buf; hexstr = (val[0] == '0' && tolower((u_char)val[1]) == 'x'); if (hexstr) val += 2; for (;;) { if (*val == '\0') break; if (sep != NULL && strchr(sep, *val) != NULL) { val++; break; } if (hexstr) { if (!isxdigit((u_char)val[0])) { warnx("bad hexadecimal digits"); return NULL; } if (!isxdigit((u_char)val[1])) { warnx("odd count hexadecimal digits"); return NULL; } } if (p >= buf + len) { if (hexstr) warnx("hexadecimal digits too long"); else warnx("string too long"); return NULL; } if (hexstr) { #define tohex(x) (isdigit(x) ? (x) - '0' : tolower(x) - 'a' + 10) *p++ = (tohex((u_char)val[0]) << 4) | tohex((u_char)val[1]); #undef tohex val += 2; } else *p++ = *val++; } len = p - buf; /* The string "-" is treated as the empty string. */ if (!hexstr && len == 1 && buf[0] == '-') { len = 0; memset(buf, 0, *lenp); } else if (len < *lenp) memset(p, 0, *lenp - len); *lenp = len; return val; } static void print_string(const u_int8_t *buf, int len) { int i; int hasspc; int utf8; i = 0; hasspc = 0; setlocale(LC_CTYPE, ""); utf8 = strncmp("UTF-8", nl_langinfo(CODESET), 5) == 0; for (; i < len; i++) { if (!isprint(buf[i]) && buf[i] != '\0' && !utf8) break; if (isspace(buf[i])) hasspc++; } if (i == len || utf8) { if (hasspc || len == 0 || buf[0] == '\0') printf("\"%.*s\"", len, buf); else printf("%.*s", len, buf); } else { printf("0x"); for (i = 0; i < len; i++) printf("%02x", buf[i]); } } static void setdefregdomain(int s) { struct regdata *rdp = getregdata(); const struct regdomain *rd; /* Check if regdomain/country was already set by a previous call. */ /* XXX is it possible? */ if (regdomain.regdomain != 0 || regdomain.country != CTRY_DEFAULT) return; getregdomain(s); /* Check if it was already set by the driver. */ if (regdomain.regdomain != 0 || regdomain.country != CTRY_DEFAULT) return; /* Set FCC/US as default. */ rd = lib80211_regdomain_findbysku(rdp, SKU_FCC); if (rd == NULL) errx(1, "FCC regdomain was not found"); regdomain.regdomain = rd->sku; if (rd->cc != NULL) defaultcountry(rd); /* Send changes to net80211. */ setregdomain_cb(s, ®domain); /* Cleanup (so it can be overriden by subsequent parameters). */ regdomain.regdomain = 0; regdomain.country = CTRY_DEFAULT; regdomain.isocc[0] = 0; regdomain.isocc[1] = 0; } /* * Virtual AP cloning support. */ static struct ieee80211_clone_params params = { .icp_opmode = IEEE80211_M_STA, /* default to station mode */ }; static void wlan_create(int s, struct ifreq *ifr) { static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; char orig_name[IFNAMSIZ]; if (params.icp_parent[0] == '\0') errx(1, "must specify a parent device (wlandev) when creating " "a wlan device"); if (params.icp_opmode == IEEE80211_M_WDS && memcmp(params.icp_bssid, zerobssid, sizeof(zerobssid)) == 0) errx(1, "no bssid specified for WDS (use wlanbssid)"); ifr->ifr_data = (caddr_t) ¶ms; if (ioctl(s, SIOCIFCREATE2, ifr) < 0) err(1, "SIOCIFCREATE2"); /* XXX preserve original name for ifclonecreate(). */ strlcpy(orig_name, name, sizeof(orig_name)); strlcpy(name, ifr->ifr_name, sizeof(name)); setdefregdomain(s); strlcpy(name, orig_name, sizeof(name)); } static DECL_CMD_FUNC(set80211clone_wlandev, arg, d) { strlcpy(params.icp_parent, arg, IFNAMSIZ); } static DECL_CMD_FUNC(set80211clone_wlanbssid, arg, d) { const struct ether_addr *ea; ea = ether_aton(arg); if (ea == NULL) errx(1, "%s: cannot parse bssid", arg); memcpy(params.icp_bssid, ea->octet, IEEE80211_ADDR_LEN); } static DECL_CMD_FUNC(set80211clone_wlanaddr, arg, d) { const struct ether_addr *ea; ea = ether_aton(arg); if (ea == NULL) errx(1, "%s: cannot parse address", arg); memcpy(params.icp_macaddr, ea->octet, IEEE80211_ADDR_LEN); params.icp_flags |= IEEE80211_CLONE_MACADDR; } static DECL_CMD_FUNC(set80211clone_wlanmode, arg, d) { #define iseq(a,b) (strncasecmp(a,b,sizeof(b)-1) == 0) if (iseq(arg, "sta")) params.icp_opmode = IEEE80211_M_STA; else if (iseq(arg, "ahdemo") || iseq(arg, "adhoc-demo")) params.icp_opmode = IEEE80211_M_AHDEMO; else if (iseq(arg, "ibss") || iseq(arg, "adhoc")) params.icp_opmode = IEEE80211_M_IBSS; else if (iseq(arg, "ap") || iseq(arg, "host")) params.icp_opmode = IEEE80211_M_HOSTAP; else if (iseq(arg, "wds")) params.icp_opmode = IEEE80211_M_WDS; else if (iseq(arg, "monitor")) params.icp_opmode = IEEE80211_M_MONITOR; else if (iseq(arg, "tdma")) { params.icp_opmode = IEEE80211_M_AHDEMO; params.icp_flags |= IEEE80211_CLONE_TDMA; } else if (iseq(arg, "mesh") || iseq(arg, "mp")) /* mesh point */ params.icp_opmode = IEEE80211_M_MBSS; else errx(1, "Don't know to create %s for %s", arg, name); #undef iseq } static void set80211clone_beacons(const char *val, int d, int s, const struct afswtch *rafp) { /* NB: inverted sense */ if (d) params.icp_flags &= ~IEEE80211_CLONE_NOBEACONS; else params.icp_flags |= IEEE80211_CLONE_NOBEACONS; } static void set80211clone_bssid(const char *val, int d, int s, const struct afswtch *rafp) { if (d) params.icp_flags |= IEEE80211_CLONE_BSSID; else params.icp_flags &= ~IEEE80211_CLONE_BSSID; } static void set80211clone_wdslegacy(const char *val, int d, int s, const struct afswtch *rafp) { if (d) params.icp_flags |= IEEE80211_CLONE_WDSLEGACY; else params.icp_flags &= ~IEEE80211_CLONE_WDSLEGACY; } static struct cmd ieee80211_cmds[] = { DEF_CMD_ARG("ssid", set80211ssid), DEF_CMD_ARG("nwid", set80211ssid), DEF_CMD_ARG("meshid", set80211meshid), DEF_CMD_ARG("stationname", set80211stationname), DEF_CMD_ARG("station", set80211stationname), /* BSD/OS */ DEF_CMD_ARG("channel", set80211channel), DEF_CMD_ARG("authmode", set80211authmode), DEF_CMD_ARG("powersavemode", set80211powersavemode), DEF_CMD("powersave", 1, set80211powersave), DEF_CMD("-powersave", 0, set80211powersave), DEF_CMD_ARG("powersavesleep", set80211powersavesleep), DEF_CMD_ARG("wepmode", set80211wepmode), DEF_CMD("wep", 1, set80211wep), DEF_CMD("-wep", 0, set80211wep), DEF_CMD_ARG("deftxkey", set80211weptxkey), DEF_CMD_ARG("weptxkey", set80211weptxkey), DEF_CMD_ARG("wepkey", set80211wepkey), DEF_CMD_ARG("nwkey", set80211nwkey), /* NetBSD */ DEF_CMD("-nwkey", 0, set80211wep), /* NetBSD */ DEF_CMD_ARG("rtsthreshold", set80211rtsthreshold), DEF_CMD_ARG("protmode", set80211protmode), DEF_CMD_ARG("txpower", set80211txpower), DEF_CMD_ARG("roaming", set80211roaming), DEF_CMD("wme", 1, set80211wme), DEF_CMD("-wme", 0, set80211wme), DEF_CMD("wmm", 1, set80211wme), DEF_CMD("-wmm", 0, set80211wme), DEF_CMD("hidessid", 1, set80211hidessid), DEF_CMD("-hidessid", 0, set80211hidessid), DEF_CMD("apbridge", 1, set80211apbridge), DEF_CMD("-apbridge", 0, set80211apbridge), DEF_CMD_ARG("chanlist", set80211chanlist), DEF_CMD_ARG("bssid", set80211bssid), DEF_CMD_ARG("ap", set80211bssid), DEF_CMD("scan", 0, set80211scan), DEF_CMD_ARG("list", set80211list), DEF_CMD_ARG2("cwmin", set80211cwmin), DEF_CMD_ARG2("cwmax", set80211cwmax), DEF_CMD_ARG2("aifs", set80211aifs), DEF_CMD_ARG2("txoplimit", set80211txoplimit), DEF_CMD_ARG("acm", set80211acm), DEF_CMD_ARG("-acm", set80211noacm), DEF_CMD_ARG("ack", set80211ackpolicy), DEF_CMD_ARG("-ack", set80211noackpolicy), DEF_CMD_ARG2("bss:cwmin", set80211bsscwmin), DEF_CMD_ARG2("bss:cwmax", set80211bsscwmax), DEF_CMD_ARG2("bss:aifs", set80211bssaifs), DEF_CMD_ARG2("bss:txoplimit", set80211bsstxoplimit), DEF_CMD_ARG("dtimperiod", set80211dtimperiod), DEF_CMD_ARG("bintval", set80211bintval), DEF_CMD("mac:open", IEEE80211_MACCMD_POLICY_OPEN, set80211maccmd), DEF_CMD("mac:allow", IEEE80211_MACCMD_POLICY_ALLOW, set80211maccmd), DEF_CMD("mac:deny", IEEE80211_MACCMD_POLICY_DENY, set80211maccmd), DEF_CMD("mac:radius", IEEE80211_MACCMD_POLICY_RADIUS, set80211maccmd), DEF_CMD("mac:flush", IEEE80211_MACCMD_FLUSH, set80211maccmd), DEF_CMD("mac:detach", IEEE80211_MACCMD_DETACH, set80211maccmd), DEF_CMD_ARG("mac:add", set80211addmac), DEF_CMD_ARG("mac:del", set80211delmac), DEF_CMD_ARG("mac:kick", set80211kickmac), DEF_CMD("pureg", 1, set80211pureg), DEF_CMD("-pureg", 0, set80211pureg), DEF_CMD("ff", 1, set80211fastframes), DEF_CMD("-ff", 0, set80211fastframes), DEF_CMD("dturbo", 1, set80211dturbo), DEF_CMD("-dturbo", 0, set80211dturbo), DEF_CMD("bgscan", 1, set80211bgscan), DEF_CMD("-bgscan", 0, set80211bgscan), DEF_CMD_ARG("bgscanidle", set80211bgscanidle), DEF_CMD_ARG("bgscanintvl", set80211bgscanintvl), DEF_CMD_ARG("scanvalid", set80211scanvalid), DEF_CMD("quiet", 1, set80211quiet), DEF_CMD("-quiet", 0, set80211quiet), DEF_CMD_ARG("quiet_count", set80211quietcount), DEF_CMD_ARG("quiet_period", set80211quietperiod), DEF_CMD_ARG("quiet_duration", set80211quietduration), DEF_CMD_ARG("quiet_offset", set80211quietoffset), DEF_CMD_ARG("roam:rssi", set80211roamrssi), DEF_CMD_ARG("roam:rate", set80211roamrate), DEF_CMD_ARG("mcastrate", set80211mcastrate), DEF_CMD_ARG("ucastrate", set80211ucastrate), DEF_CMD_ARG("mgtrate", set80211mgtrate), DEF_CMD_ARG("mgmtrate", set80211mgtrate), DEF_CMD_ARG("maxretry", set80211maxretry), DEF_CMD_ARG("fragthreshold", set80211fragthreshold), DEF_CMD("burst", 1, set80211burst), DEF_CMD("-burst", 0, set80211burst), DEF_CMD_ARG("bmiss", set80211bmissthreshold), DEF_CMD_ARG("bmissthreshold", set80211bmissthreshold), DEF_CMD("shortgi", 1, set80211shortgi), DEF_CMD("-shortgi", 0, set80211shortgi), DEF_CMD("ampdurx", 2, set80211ampdu), DEF_CMD("-ampdurx", -2, set80211ampdu), DEF_CMD("ampdutx", 1, set80211ampdu), DEF_CMD("-ampdutx", -1, set80211ampdu), DEF_CMD("ampdu", 3, set80211ampdu), /* NB: tx+rx */ DEF_CMD("-ampdu", -3, set80211ampdu), DEF_CMD_ARG("ampdulimit", set80211ampdulimit), DEF_CMD_ARG("ampdudensity", set80211ampdudensity), DEF_CMD("amsdurx", 2, set80211amsdu), DEF_CMD("-amsdurx", -2, set80211amsdu), DEF_CMD("amsdutx", 1, set80211amsdu), DEF_CMD("-amsdutx", -1, set80211amsdu), DEF_CMD("amsdu", 3, set80211amsdu), /* NB: tx+rx */ DEF_CMD("-amsdu", -3, set80211amsdu), DEF_CMD_ARG("amsdulimit", set80211amsdulimit), DEF_CMD("stbcrx", 2, set80211stbc), DEF_CMD("-stbcrx", -2, set80211stbc), DEF_CMD("stbctx", 1, set80211stbc), DEF_CMD("-stbctx", -1, set80211stbc), DEF_CMD("stbc", 3, set80211stbc), /* NB: tx+rx */ DEF_CMD("-stbc", -3, set80211stbc), DEF_CMD("ldpcrx", 2, set80211ldpc), DEF_CMD("-ldpcrx", -2, set80211ldpc), DEF_CMD("ldpctx", 1, set80211ldpc), DEF_CMD("-ldpctx", -1, set80211ldpc), DEF_CMD("ldpc", 3, set80211ldpc), /* NB: tx+rx */ DEF_CMD("-ldpc", -3, set80211ldpc), DEF_CMD("uapsd", 1, set80211uapsd), DEF_CMD("-uapsd", 0, set80211uapsd), DEF_CMD("puren", 1, set80211puren), DEF_CMD("-puren", 0, set80211puren), DEF_CMD("doth", 1, set80211doth), DEF_CMD("-doth", 0, set80211doth), DEF_CMD("dfs", 1, set80211dfs), DEF_CMD("-dfs", 0, set80211dfs), DEF_CMD("htcompat", 1, set80211htcompat), DEF_CMD("-htcompat", 0, set80211htcompat), DEF_CMD("dwds", 1, set80211dwds), DEF_CMD("-dwds", 0, set80211dwds), DEF_CMD("inact", 1, set80211inact), DEF_CMD("-inact", 0, set80211inact), DEF_CMD("tsn", 1, set80211tsn), DEF_CMD("-tsn", 0, set80211tsn), DEF_CMD_ARG("regdomain", set80211regdomain), DEF_CMD_ARG("country", set80211country), DEF_CMD("indoor", 'I', set80211location), DEF_CMD("-indoor", 'O', set80211location), DEF_CMD("outdoor", 'O', set80211location), DEF_CMD("-outdoor", 'I', set80211location), DEF_CMD("anywhere", ' ', set80211location), DEF_CMD("ecm", 1, set80211ecm), DEF_CMD("-ecm", 0, set80211ecm), DEF_CMD("dotd", 1, set80211dotd), DEF_CMD("-dotd", 0, set80211dotd), DEF_CMD_ARG("htprotmode", set80211htprotmode), DEF_CMD("ht20", 1, set80211htconf), DEF_CMD("-ht20", 0, set80211htconf), DEF_CMD("ht40", 3, set80211htconf), /* NB: 20+40 */ DEF_CMD("-ht40", 0, set80211htconf), DEF_CMD("ht", 3, set80211htconf), /* NB: 20+40 */ DEF_CMD("-ht", 0, set80211htconf), DEF_CMD("vht", IEEE80211_FVHT_VHT, set80211vhtconf), DEF_CMD("-vht", 0, set80211vhtconf), DEF_CMD("vht40", IEEE80211_FVHT_USEVHT40, set80211vhtconf), DEF_CMD("-vht40", -IEEE80211_FVHT_USEVHT40, set80211vhtconf), DEF_CMD("vht80", IEEE80211_FVHT_USEVHT80, set80211vhtconf), DEF_CMD("-vht80", -IEEE80211_FVHT_USEVHT80, set80211vhtconf), DEF_CMD("vht160", IEEE80211_FVHT_USEVHT160, set80211vhtconf), DEF_CMD("-vht160", -IEEE80211_FVHT_USEVHT160, set80211vhtconf), DEF_CMD("vht80p80", IEEE80211_FVHT_USEVHT80P80, set80211vhtconf), DEF_CMD("-vht80p80", -IEEE80211_FVHT_USEVHT80P80, set80211vhtconf), DEF_CMD("rifs", 1, set80211rifs), DEF_CMD("-rifs", 0, set80211rifs), DEF_CMD("smps", IEEE80211_HTCAP_SMPS_ENA, set80211smps), DEF_CMD("smpsdyn", IEEE80211_HTCAP_SMPS_DYNAMIC, set80211smps), DEF_CMD("-smps", IEEE80211_HTCAP_SMPS_OFF, set80211smps), /* XXX for testing */ DEF_CMD_ARG("chanswitch", set80211chanswitch), DEF_CMD_ARG("tdmaslot", set80211tdmaslot), DEF_CMD_ARG("tdmaslotcnt", set80211tdmaslotcnt), DEF_CMD_ARG("tdmaslotlen", set80211tdmaslotlen), DEF_CMD_ARG("tdmabintval", set80211tdmabintval), DEF_CMD_ARG("meshttl", set80211meshttl), DEF_CMD("meshforward", 1, set80211meshforward), DEF_CMD("-meshforward", 0, set80211meshforward), DEF_CMD("meshgate", 1, set80211meshgate), DEF_CMD("-meshgate", 0, set80211meshgate), DEF_CMD("meshpeering", 1, set80211meshpeering), DEF_CMD("-meshpeering", 0, set80211meshpeering), DEF_CMD_ARG("meshmetric", set80211meshmetric), DEF_CMD_ARG("meshpath", set80211meshpath), DEF_CMD("meshrt:flush", IEEE80211_MESH_RTCMD_FLUSH, set80211meshrtcmd), DEF_CMD_ARG("meshrt:add", set80211addmeshrt), DEF_CMD_ARG("meshrt:del", set80211delmeshrt), DEF_CMD_ARG("hwmprootmode", set80211hwmprootmode), DEF_CMD_ARG("hwmpmaxhops", set80211hwmpmaxhops), /* vap cloning support */ DEF_CLONE_CMD_ARG("wlanaddr", set80211clone_wlanaddr), DEF_CLONE_CMD_ARG("wlanbssid", set80211clone_wlanbssid), DEF_CLONE_CMD_ARG("wlandev", set80211clone_wlandev), DEF_CLONE_CMD_ARG("wlanmode", set80211clone_wlanmode), DEF_CLONE_CMD("beacons", 1, set80211clone_beacons), DEF_CLONE_CMD("-beacons", 0, set80211clone_beacons), DEF_CLONE_CMD("bssid", 1, set80211clone_bssid), DEF_CLONE_CMD("-bssid", 0, set80211clone_bssid), DEF_CLONE_CMD("wdslegacy", 1, set80211clone_wdslegacy), DEF_CLONE_CMD("-wdslegacy", 0, set80211clone_wdslegacy), }; static struct afswtch af_ieee80211 = { .af_name = "af_ieee80211", .af_af = AF_UNSPEC, .af_other_status = ieee80211_status, }; static __constructor void ieee80211_ctor(void) { int i; for (i = 0; i < nitems(ieee80211_cmds); i++) cmd_register(&ieee80211_cmds[i]); af_register(&af_ieee80211); - clone_setdefcallback("wlan", wlan_create); + clone_setdefcallback_prefix("wlan", wlan_create); } Index: head/sbin/ifconfig/ifvlan.c =================================================================== --- head/sbin/ifconfig/ifvlan.c (revision 366916) +++ head/sbin/ifconfig/ifvlan.c (revision 366917) @@ -1,231 +1,307 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1999 Bill Paul * Copyright (c) 2012 ADARA Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to ADARA Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ifconfig.h" #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif #define NOTAG ((u_short) -1) +static const char proto_8021Q[] = "802.1q"; +static const char proto_8021ad[] = "802.1ad"; + static struct vlanreq params = { .vlr_tag = NOTAG, + .vlr_proto = ETHERTYPE_VLAN, }; static int getvlan(int s, struct ifreq *ifr, struct vlanreq *vreq) { bzero((char *)vreq, sizeof(*vreq)); ifr->ifr_data = (caddr_t)vreq; return ioctl(s, SIOCGETVLAN, (caddr_t)ifr); } static void vlan_status(int s) { struct vlanreq vreq; if (getvlan(s, &ifr, &vreq) == -1) return; printf("\tvlan: %d", vreq.vlr_tag); + printf(" vlanproto: "); + switch (vreq.vlr_proto) { + case ETHERTYPE_VLAN: + printf(proto_8021Q); + break; + case ETHERTYPE_QINQ: + printf(proto_8021ad); + break; + default: + printf("0x%04x", vreq.vlr_proto); + } if (ioctl(s, SIOCGVLANPCP, (caddr_t)&ifr) != -1) printf(" vlanpcp: %u", ifr.ifr_vlan_pcp); printf(" parent interface: %s", vreq.vlr_parent[0] == '\0' ? "" : vreq.vlr_parent); printf("\n"); } +static int +vlan_match_ethervid(const char *name) +{ + return (strchr(name, '.') != NULL); +} + static void +vlan_parse_ethervid(const char *name) +{ + char ifname[IFNAMSIZ]; + char *cp; + int vid; + + strlcpy(ifname, name, IFNAMSIZ); + if ((cp = strrchr(ifname, '.')) == NULL) + return; + /* + * Don't mix vlan/vlandev parameters with dot notation. + */ + if (params.vlr_tag != NOTAG || params.vlr_parent[0] != '\0') + errx(1, "ambiguous vlan specification"); + /* + * Derive params from interface name: "parent.vid". + */ + *cp++ = '\0'; + if ((*cp < '1') || (*cp > '9')) + errx(1, "invalid vlan tag"); + + vid = *cp++ - '0'; + while ((*cp >= '0') && (*cp <= '9')) + vid = (vid * 10) + (*cp++ - '0'); + if ((*cp != '\0') || (vid & ~0xFFF)) + errx(1, "invalid vlan tag"); + + strlcpy(params.vlr_parent, ifname, IFNAMSIZ); + params.vlr_tag = (vid & 0xFFF); +} + +static void vlan_create(int s, struct ifreq *ifr) { + vlan_parse_ethervid(ifr->ifr_name); + if (params.vlr_tag != NOTAG || params.vlr_parent[0] != '\0') { /* * One or both parameters were specified, make sure both. */ if (params.vlr_tag == NOTAG) errx(1, "must specify a tag for vlan create"); if (params.vlr_parent[0] == '\0') errx(1, "must specify a parent device for vlan create"); ifr->ifr_data = (caddr_t) ¶ms; } if (ioctl(s, SIOCIFCREATE2, ifr) < 0) err(1, "SIOCIFCREATE2"); } static void vlan_cb(int s, void *arg) { if ((params.vlr_tag != NOTAG) ^ (params.vlr_parent[0] != '\0')) errx(1, "both vlan and vlandev must be specified"); } static void vlan_set(int s, struct ifreq *ifr) { if (params.vlr_tag != NOTAG && params.vlr_parent[0] != '\0') { ifr->ifr_data = (caddr_t) ¶ms; if (ioctl(s, SIOCSETVLAN, (caddr_t)ifr) == -1) err(1, "SIOCSETVLAN"); } } static DECL_CMD_FUNC(setvlantag, val, d) { struct vlanreq vreq; u_long ul; char *endp; ul = strtoul(val, &endp, 0); if (*endp != '\0') errx(1, "invalid value for vlan"); params.vlr_tag = ul; /* check if the value can be represented in vlr_tag */ if (params.vlr_tag != ul) errx(1, "value for vlan out of range"); if (getvlan(s, &ifr, &vreq) != -1) vlan_set(s, &ifr); } static DECL_CMD_FUNC(setvlandev, val, d) { struct vlanreq vreq; strlcpy(params.vlr_parent, val, sizeof(params.vlr_parent)); if (getvlan(s, &ifr, &vreq) != -1) vlan_set(s, &ifr); } static +DECL_CMD_FUNC(setvlanproto, val, d) +{ + struct vlanreq vreq; + + if (strncasecmp(proto_8021Q, val, + strlen(proto_8021Q)) == 0) { + params.vlr_proto = ETHERTYPE_VLAN; + } else if (strncasecmp(proto_8021ad, val, + strlen(proto_8021ad)) == 0) { + params.vlr_proto = ETHERTYPE_QINQ; + } else + errx(1, "invalid value for vlanproto"); + + if (getvlan(s, &ifr, &vreq) != -1) + vlan_set(s, &ifr); +} + +static DECL_CMD_FUNC(setvlanpcp, val, d) { u_long ul; char *endp; ul = strtoul(val, &endp, 0); if (*endp != '\0') errx(1, "invalid value for vlanpcp"); if (ul > 7) errx(1, "value for vlanpcp out of range"); ifr.ifr_vlan_pcp = ul; if (ioctl(s, SIOCSVLANPCP, (caddr_t)&ifr) == -1) err(1, "SIOCSVLANPCP"); } static DECL_CMD_FUNC(unsetvlandev, val, d) { struct vlanreq vreq; bzero((char *)&vreq, sizeof(struct vlanreq)); ifr.ifr_data = (caddr_t)&vreq; if (ioctl(s, SIOCGETVLAN, (caddr_t)&ifr) == -1) err(1, "SIOCGETVLAN"); bzero((char *)&vreq.vlr_parent, sizeof(vreq.vlr_parent)); vreq.vlr_tag = 0; if (ioctl(s, SIOCSETVLAN, (caddr_t)&ifr) == -1) err(1, "SIOCSETVLAN"); } static struct cmd vlan_cmds[] = { DEF_CLONE_CMD_ARG("vlan", setvlantag), DEF_CLONE_CMD_ARG("vlandev", setvlandev), + DEF_CLONE_CMD_ARG("vlanproto", setvlanproto), DEF_CMD_ARG("vlanpcp", setvlanpcp), /* NB: non-clone cmds */ DEF_CMD_ARG("vlan", setvlantag), DEF_CMD_ARG("vlandev", setvlandev), + DEF_CMD_ARG("vlanproto", setvlanproto), /* XXX For compatibility. Should become DEF_CMD() some day. */ DEF_CMD_OPTARG("-vlandev", unsetvlandev), DEF_CMD("vlanmtu", IFCAP_VLAN_MTU, setifcap), DEF_CMD("-vlanmtu", -IFCAP_VLAN_MTU, setifcap), DEF_CMD("vlanhwtag", IFCAP_VLAN_HWTAGGING, setifcap), DEF_CMD("-vlanhwtag", -IFCAP_VLAN_HWTAGGING, setifcap), DEF_CMD("vlanhwfilter", IFCAP_VLAN_HWFILTER, setifcap), DEF_CMD("-vlanhwfilter", -IFCAP_VLAN_HWFILTER, setifcap), DEF_CMD("-vlanhwtso", -IFCAP_VLAN_HWTSO, setifcap), DEF_CMD("vlanhwtso", IFCAP_VLAN_HWTSO, setifcap), DEF_CMD("vlanhwcsum", IFCAP_VLAN_HWCSUM, setifcap), DEF_CMD("-vlanhwcsum", -IFCAP_VLAN_HWCSUM, setifcap), }; static struct afswtch af_vlan = { .af_name = "af_vlan", .af_af = AF_UNSPEC, .af_other_status = vlan_status, }; static __constructor void vlan_ctor(void) { size_t i; for (i = 0; i < nitems(vlan_cmds); i++) cmd_register(&vlan_cmds[i]); af_register(&af_vlan); callback_register(vlan_cb, NULL); - clone_setdefcallback("vlan", vlan_create); + clone_setdefcallback_prefix("vlan", vlan_create); + clone_setdefcallback_filter(vlan_match_ethervid, vlan_create); } Index: head/sbin/ifconfig/ifvxlan.c =================================================================== --- head/sbin/ifconfig/ifvxlan.c (revision 366916) +++ head/sbin/ifconfig/ifvxlan.c (revision 366917) @@ -1,646 +1,646 @@ /*- * Copyright (c) 2014, Bryan Venteicher * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ifconfig.h" static struct ifvxlanparam params = { .vxlp_vni = VXLAN_VNI_MAX, }; static int get_val(const char *cp, u_long *valp) { char *endptr; u_long val; errno = 0; val = strtoul(cp, &endptr, 0); if (cp[0] == '\0' || endptr[0] != '\0' || errno == ERANGE) return (-1); *valp = val; return (0); } static int do_cmd(int sock, u_long op, void *arg, size_t argsize, int set) { struct ifdrv ifd; bzero(&ifd, sizeof(ifd)); strlcpy(ifd.ifd_name, ifr.ifr_name, sizeof(ifd.ifd_name)); ifd.ifd_cmd = op; ifd.ifd_len = argsize; ifd.ifd_data = arg; return (ioctl(sock, set ? SIOCSDRVSPEC : SIOCGDRVSPEC, &ifd)); } static int vxlan_exists(int sock) { struct ifvxlancfg cfg; bzero(&cfg, sizeof(cfg)); return (do_cmd(sock, VXLAN_CMD_GET_CONFIG, &cfg, sizeof(cfg), 0) != -1); } static void vxlan_status(int s) { struct ifvxlancfg cfg; char src[NI_MAXHOST], dst[NI_MAXHOST]; char srcport[NI_MAXSERV], dstport[NI_MAXSERV]; struct sockaddr *lsa, *rsa; int vni, mc, ipv6; bzero(&cfg, sizeof(cfg)); if (do_cmd(s, VXLAN_CMD_GET_CONFIG, &cfg, sizeof(cfg), 0) < 0) return; vni = cfg.vxlc_vni; lsa = &cfg.vxlc_local_sa.sa; rsa = &cfg.vxlc_remote_sa.sa; ipv6 = rsa->sa_family == AF_INET6; /* Just report nothing if the network identity isn't set yet. */ if (vni >= VXLAN_VNI_MAX) return; if (getnameinfo(lsa, lsa->sa_len, src, sizeof(src), srcport, sizeof(srcport), NI_NUMERICHOST | NI_NUMERICSERV) != 0) src[0] = srcport[0] = '\0'; if (getnameinfo(rsa, rsa->sa_len, dst, sizeof(dst), dstport, sizeof(dstport), NI_NUMERICHOST | NI_NUMERICSERV) != 0) dst[0] = dstport[0] = '\0'; if (!ipv6) { struct sockaddr_in *sin = (struct sockaddr_in *)rsa; mc = IN_MULTICAST(ntohl(sin->sin_addr.s_addr)); } else { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)rsa; mc = IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr); } printf("\tvxlan vni %d", vni); printf(" local %s%s%s:%s", ipv6 ? "[" : "", src, ipv6 ? "]" : "", srcport); printf(" %s %s%s%s:%s", mc ? "group" : "remote", ipv6 ? "[" : "", dst, ipv6 ? "]" : "", dstport); if (verbose) { printf("\n\t\tconfig: "); printf("%slearning portrange %d-%d ttl %d", cfg.vxlc_learn ? "" : "no", cfg.vxlc_port_min, cfg.vxlc_port_max, cfg.vxlc_ttl); printf("\n\t\tftable: "); printf("cnt %d max %d timeout %d", cfg.vxlc_ftable_cnt, cfg.vxlc_ftable_max, cfg.vxlc_ftable_timeout); } putchar('\n'); } #define _LOCAL_ADDR46 \ (VXLAN_PARAM_WITH_LOCAL_ADDR4 | VXLAN_PARAM_WITH_LOCAL_ADDR6) #define _REMOTE_ADDR46 \ (VXLAN_PARAM_WITH_REMOTE_ADDR4 | VXLAN_PARAM_WITH_REMOTE_ADDR6) static void vxlan_check_params(void) { if ((params.vxlp_with & _LOCAL_ADDR46) == _LOCAL_ADDR46) errx(1, "cannot specify both local IPv4 and IPv6 addresses"); if ((params.vxlp_with & _REMOTE_ADDR46) == _REMOTE_ADDR46) errx(1, "cannot specify both remote IPv4 and IPv6 addresses"); if ((params.vxlp_with & VXLAN_PARAM_WITH_LOCAL_ADDR4 && params.vxlp_with & VXLAN_PARAM_WITH_REMOTE_ADDR6) || (params.vxlp_with & VXLAN_PARAM_WITH_LOCAL_ADDR6 && params.vxlp_with & VXLAN_PARAM_WITH_REMOTE_ADDR4)) errx(1, "cannot mix IPv4 and IPv6 addresses"); } #undef _LOCAL_ADDR46 #undef _REMOTE_ADDR46 static void vxlan_cb(int s, void *arg) { } static void vxlan_create(int s, struct ifreq *ifr) { vxlan_check_params(); ifr->ifr_data = (caddr_t) ¶ms; if (ioctl(s, SIOCIFCREATE2, ifr) < 0) err(1, "SIOCIFCREATE2"); } static DECL_CMD_FUNC(setvxlan_vni, arg, d) { struct ifvxlancmd cmd; u_long val; if (get_val(arg, &val) < 0 || val >= VXLAN_VNI_MAX) errx(1, "invalid network identifier: %s", arg); if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_VNI; params.vxlp_vni = val; return; } bzero(&cmd, sizeof(cmd)); cmd.vxlcmd_vni = val; if (do_cmd(s, VXLAN_CMD_SET_VNI, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_VNI"); } static DECL_CMD_FUNC(setvxlan_local, addr, d) { struct ifvxlancmd cmd; struct addrinfo *ai; struct sockaddr *sa; int error; bzero(&cmd, sizeof(cmd)); if ((error = getaddrinfo(addr, NULL, NULL, &ai)) != 0) errx(1, "error in parsing local address string: %s", gai_strerror(error)); sa = ai->ai_addr; switch (ai->ai_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) errx(1, "local address cannot be multicast"); cmd.vxlcmd_sa.in4 = *sin; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) errx(1, "local address cannot be multicast"); cmd.vxlcmd_sa.in6 = *sin6; break; } #endif default: errx(1, "local address %s not supported", addr); } freeaddrinfo(ai); if (!vxlan_exists(s)) { if (cmd.vxlcmd_sa.sa.sa_family == AF_INET) { params.vxlp_with |= VXLAN_PARAM_WITH_LOCAL_ADDR4; params.vxlp_local_sa.in4 = cmd.vxlcmd_sa.in4; } else { params.vxlp_with |= VXLAN_PARAM_WITH_LOCAL_ADDR6; params.vxlp_local_sa.in6 = cmd.vxlcmd_sa.in6; } return; } if (do_cmd(s, VXLAN_CMD_SET_LOCAL_ADDR, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_LOCAL_ADDR"); } static DECL_CMD_FUNC(setvxlan_remote, addr, d) { struct ifvxlancmd cmd; struct addrinfo *ai; struct sockaddr *sa; int error; bzero(&cmd, sizeof(cmd)); if ((error = getaddrinfo(addr, NULL, NULL, &ai)) != 0) errx(1, "error in parsing remote address string: %s", gai_strerror(error)); sa = ai->ai_addr; switch (ai->ai_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) errx(1, "remote address cannot be multicast"); cmd.vxlcmd_sa.in4 = *sin; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) errx(1, "remote address cannot be multicast"); cmd.vxlcmd_sa.in6 = *sin6; break; } #endif default: errx(1, "remote address %s not supported", addr); } freeaddrinfo(ai); if (!vxlan_exists(s)) { if (cmd.vxlcmd_sa.sa.sa_family == AF_INET) { params.vxlp_with |= VXLAN_PARAM_WITH_REMOTE_ADDR4; params.vxlp_remote_sa.in4 = cmd.vxlcmd_sa.in4; } else { params.vxlp_with |= VXLAN_PARAM_WITH_REMOTE_ADDR6; params.vxlp_remote_sa.in6 = cmd.vxlcmd_sa.in6; } return; } if (do_cmd(s, VXLAN_CMD_SET_REMOTE_ADDR, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_REMOTE_ADDR"); } static DECL_CMD_FUNC(setvxlan_group, addr, d) { struct ifvxlancmd cmd; struct addrinfo *ai; struct sockaddr *sa; int error; bzero(&cmd, sizeof(cmd)); if ((error = getaddrinfo(addr, NULL, NULL, &ai)) != 0) errx(1, "error in parsing group address string: %s", gai_strerror(error)); sa = ai->ai_addr; switch (ai->ai_family) { #ifdef INET case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) errx(1, "group address must be multicast"); cmd.vxlcmd_sa.in4 = *sin; break; } #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa; if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) errx(1, "group address must be multicast"); cmd.vxlcmd_sa.in6 = *sin6; break; } #endif default: errx(1, "group address %s not supported", addr); } freeaddrinfo(ai); if (!vxlan_exists(s)) { if (cmd.vxlcmd_sa.sa.sa_family == AF_INET) { params.vxlp_with |= VXLAN_PARAM_WITH_REMOTE_ADDR4; params.vxlp_remote_sa.in4 = cmd.vxlcmd_sa.in4; } else { params.vxlp_with |= VXLAN_PARAM_WITH_REMOTE_ADDR6; params.vxlp_remote_sa.in6 = cmd.vxlcmd_sa.in6; } return; } if (do_cmd(s, VXLAN_CMD_SET_REMOTE_ADDR, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_REMOTE_ADDR"); } static DECL_CMD_FUNC(setvxlan_local_port, arg, d) { struct ifvxlancmd cmd; u_long val; if (get_val(arg, &val) < 0 || val >= UINT16_MAX) errx(1, "invalid local port: %s", arg); if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_LOCAL_PORT; params.vxlp_local_port = val; return; } bzero(&cmd, sizeof(cmd)); cmd.vxlcmd_port = val; if (do_cmd(s, VXLAN_CMD_SET_LOCAL_PORT, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_LOCAL_PORT"); } static DECL_CMD_FUNC(setvxlan_remote_port, arg, d) { struct ifvxlancmd cmd; u_long val; if (get_val(arg, &val) < 0 || val >= UINT16_MAX) errx(1, "invalid remote port: %s", arg); if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_REMOTE_PORT; params.vxlp_remote_port = val; return; } bzero(&cmd, sizeof(cmd)); cmd.vxlcmd_port = val; if (do_cmd(s, VXLAN_CMD_SET_REMOTE_PORT, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_REMOTE_PORT"); } static DECL_CMD_FUNC2(setvxlan_port_range, arg1, arg2) { struct ifvxlancmd cmd; u_long min, max; if (get_val(arg1, &min) < 0 || min >= UINT16_MAX) errx(1, "invalid port range minimum: %s", arg1); if (get_val(arg2, &max) < 0 || max >= UINT16_MAX) errx(1, "invalid port range maximum: %s", arg2); if (max < min) errx(1, "invalid port range"); if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_PORT_RANGE; params.vxlp_min_port = min; params.vxlp_max_port = max; return; } bzero(&cmd, sizeof(cmd)); cmd.vxlcmd_port_min = min; cmd.vxlcmd_port_max = max; if (do_cmd(s, VXLAN_CMD_SET_PORT_RANGE, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_PORT_RANGE"); } static DECL_CMD_FUNC(setvxlan_timeout, arg, d) { struct ifvxlancmd cmd; u_long val; if (get_val(arg, &val) < 0 || (val & ~0xFFFFFFFF) != 0) errx(1, "invalid timeout value: %s", arg); if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_FTABLE_TIMEOUT; params.vxlp_ftable_timeout = val & 0xFFFFFFFF; return; } bzero(&cmd, sizeof(cmd)); cmd.vxlcmd_ftable_timeout = val & 0xFFFFFFFF; if (do_cmd(s, VXLAN_CMD_SET_FTABLE_TIMEOUT, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_FTABLE_TIMEOUT"); } static DECL_CMD_FUNC(setvxlan_maxaddr, arg, d) { struct ifvxlancmd cmd; u_long val; if (get_val(arg, &val) < 0 || (val & ~0xFFFFFFFF) != 0) errx(1, "invalid maxaddr value: %s", arg); if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_FTABLE_MAX; params.vxlp_ftable_max = val & 0xFFFFFFFF; return; } bzero(&cmd, sizeof(cmd)); cmd.vxlcmd_ftable_max = val & 0xFFFFFFFF; if (do_cmd(s, VXLAN_CMD_SET_FTABLE_MAX, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_FTABLE_MAX"); } static DECL_CMD_FUNC(setvxlan_dev, arg, d) { struct ifvxlancmd cmd; if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_MULTICAST_IF; strlcpy(params.vxlp_mc_ifname, arg, sizeof(params.vxlp_mc_ifname)); return; } bzero(&cmd, sizeof(cmd)); strlcpy(cmd.vxlcmd_ifname, arg, sizeof(cmd.vxlcmd_ifname)); if (do_cmd(s, VXLAN_CMD_SET_MULTICAST_IF, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_MULTICAST_IF"); } static DECL_CMD_FUNC(setvxlan_ttl, arg, d) { struct ifvxlancmd cmd; u_long val; if (get_val(arg, &val) < 0 || val > 256) errx(1, "invalid TTL value: %s", arg); if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_TTL; params.vxlp_ttl = val; return; } bzero(&cmd, sizeof(cmd)); cmd.vxlcmd_ttl = val; if (do_cmd(s, VXLAN_CMD_SET_TTL, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_TTL"); } static DECL_CMD_FUNC(setvxlan_learn, arg, d) { struct ifvxlancmd cmd; if (!vxlan_exists(s)) { params.vxlp_with |= VXLAN_PARAM_WITH_LEARN; params.vxlp_learn = d; return; } bzero(&cmd, sizeof(cmd)); if (d != 0) cmd.vxlcmd_flags |= VXLAN_CMD_FLAG_LEARN; if (do_cmd(s, VXLAN_CMD_SET_LEARN, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_SET_LEARN"); } static void setvxlan_flush(const char *val, int d, int s, const struct afswtch *afp) { struct ifvxlancmd cmd; bzero(&cmd, sizeof(cmd)); if (d != 0) cmd.vxlcmd_flags |= VXLAN_CMD_FLAG_FLUSH_ALL; if (do_cmd(s, VXLAN_CMD_FLUSH, &cmd, sizeof(cmd), 1) < 0) err(1, "VXLAN_CMD_FLUSH"); } static struct cmd vxlan_cmds[] = { DEF_CLONE_CMD_ARG("vni", setvxlan_vni), DEF_CLONE_CMD_ARG("vxlanid", setvxlan_vni), DEF_CLONE_CMD_ARG("vxlanlocal", setvxlan_local), DEF_CLONE_CMD_ARG("vxlanremote", setvxlan_remote), DEF_CLONE_CMD_ARG("vxlangroup", setvxlan_group), DEF_CLONE_CMD_ARG("vxlanlocalport", setvxlan_local_port), DEF_CLONE_CMD_ARG("vxlanremoteport", setvxlan_remote_port), DEF_CLONE_CMD_ARG2("vxlanportrange", setvxlan_port_range), DEF_CLONE_CMD_ARG("vxlantimeout", setvxlan_timeout), DEF_CLONE_CMD_ARG("vxlanmaxaddr", setvxlan_maxaddr), DEF_CLONE_CMD_ARG("vxlandev", setvxlan_dev), DEF_CLONE_CMD_ARG("vxlanttl", setvxlan_ttl), DEF_CLONE_CMD("vxlanlearn", 1, setvxlan_learn), DEF_CLONE_CMD("-vxlanlearn", 0, setvxlan_learn), DEF_CMD_ARG("vni", setvxlan_vni), DEF_CMD_ARG("vxlanid", setvxlan_vni), DEF_CMD_ARG("vxlanlocal", setvxlan_local), DEF_CMD_ARG("vxlanremote", setvxlan_remote), DEF_CMD_ARG("vxlangroup", setvxlan_group), DEF_CMD_ARG("vxlanlocalport", setvxlan_local_port), DEF_CMD_ARG("vxlanremoteport", setvxlan_remote_port), DEF_CMD_ARG2("vxlanportrange", setvxlan_port_range), DEF_CMD_ARG("vxlantimeout", setvxlan_timeout), DEF_CMD_ARG("vxlanmaxaddr", setvxlan_maxaddr), DEF_CMD_ARG("vxlandev", setvxlan_dev), DEF_CMD_ARG("vxlanttl", setvxlan_ttl), DEF_CMD("vxlanlearn", 1, setvxlan_learn), DEF_CMD("-vxlanlearn", 0, setvxlan_learn), DEF_CMD("vxlanflush", 0, setvxlan_flush), DEF_CMD("vxlanflushall", 1, setvxlan_flush), DEF_CMD("vxlanhwcsum", IFCAP_VXLAN_HWCSUM, setifcap), DEF_CMD("-vxlanhwcsum", -IFCAP_VXLAN_HWCSUM, setifcap), DEF_CMD("vxlanhwtso", IFCAP_VXLAN_HWTSO, setifcap), DEF_CMD("-vxlanhwtso", -IFCAP_VXLAN_HWTSO, setifcap), }; static struct afswtch af_vxlan = { .af_name = "af_vxlan", .af_af = AF_UNSPEC, .af_other_status = vxlan_status, }; static __constructor void vxlan_ctor(void) { size_t i; for (i = 0; i < nitems(vxlan_cmds); i++) cmd_register(&vxlan_cmds[i]); af_register(&af_vxlan); callback_register(vxlan_cb, NULL); - clone_setdefcallback("vxlan", vxlan_create); + clone_setdefcallback_prefix("vxlan", vxlan_create); } Index: head/sys/net/ethernet.h =================================================================== --- head/sys/net/ethernet.h (revision 366916) +++ head/sys/net/ethernet.h (revision 366917) @@ -1,472 +1,479 @@ /* * Fundamental constants relating to ethernet. * * $FreeBSD$ * */ #ifndef _NET_ETHERNET_H_ #define _NET_ETHERNET_H_ /* * Some basic Ethernet constants. */ #define ETHER_ADDR_LEN 6 /* length of an Ethernet address */ #define ETHER_TYPE_LEN 2 /* length of the Ethernet type field */ #define ETHER_CRC_LEN 4 /* length of the Ethernet CRC */ #define ETHER_HDR_LEN (ETHER_ADDR_LEN*2+ETHER_TYPE_LEN) #define ETHER_MIN_LEN 64 /* minimum frame len, including CRC */ #define ETHER_MAX_LEN 1518 /* maximum frame len, including CRC */ #define ETHER_MAX_LEN_JUMBO 9018 /* max jumbo frame len, including CRC */ #define ETHER_VLAN_ENCAP_LEN 4 /* len of 802.1Q VLAN encapsulation */ /* * Mbuf adjust factor to force 32-bit alignment of IP header. * Drivers should do m_adj(m, ETHER_ALIGN) when setting up a * receive so the upper layers get the IP header properly aligned * past the 14-byte Ethernet header. */ #define ETHER_ALIGN 2 /* driver adjust for IP hdr alignment */ /* * Compute the maximum frame size based on ethertype (i.e. possible * encapsulation) and whether or not an FCS is present. */ #define ETHER_MAX_FRAME(ifp, etype, hasfcs) \ ((ifp)->if_mtu + ETHER_HDR_LEN + \ ((hasfcs) ? ETHER_CRC_LEN : 0) + \ (((etype) == ETHERTYPE_VLAN) ? ETHER_VLAN_ENCAP_LEN : 0)) /* * Ethernet-specific mbuf flags. */ #define M_HASFCS M_PROTO5 /* FCS included at end of frame */ /* * Ethernet CRC32 polynomials (big- and little-endian verions). */ #define ETHER_CRC_POLY_LE 0xedb88320 #define ETHER_CRC_POLY_BE 0x04c11db6 /* * A macro to validate a length with */ #define ETHER_IS_VALID_LEN(foo) \ ((foo) >= ETHER_MIN_LEN && (foo) <= ETHER_MAX_LEN) /* * Structure of a 10Mb/s Ethernet header. */ struct ether_header { u_char ether_dhost[ETHER_ADDR_LEN]; u_char ether_shost[ETHER_ADDR_LEN]; u_short ether_type; } __packed; /* * Structure of a 48-bit Ethernet address. */ struct ether_addr { u_char octet[ETHER_ADDR_LEN]; } __packed; #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ #define ETHER_IS_BROADCAST(addr) \ (((addr)[0] & (addr)[1] & (addr)[2] & \ (addr)[3] & (addr)[4] & (addr)[5]) == 0xff) #define ETHER_IS_ZERO(addr) \ (((addr)[0] | (addr)[1] | (addr)[2] | \ (addr)[3] | (addr)[4] | (addr)[5]) == 0x00) /* * 802.1q Virtual LAN header. */ struct ether_vlan_header { uint8_t evl_dhost[ETHER_ADDR_LEN]; uint8_t evl_shost[ETHER_ADDR_LEN]; uint16_t evl_encap_proto; uint16_t evl_tag; uint16_t evl_proto; } __packed; #define EVL_VLID_MASK 0x0FFF #define EVL_PRI_MASK 0xE000 #define EVL_VLANOFTAG(tag) ((tag) & EVL_VLID_MASK) #define EVL_PRIOFTAG(tag) (((tag) >> 13) & 7) #define EVL_CFIOFTAG(tag) (((tag) >> 12) & 1) #define EVL_MAKETAG(vlid, pri, cfi) \ ((((((pri) & 7) << 1) | ((cfi) & 1)) << 12) | ((vlid) & EVL_VLID_MASK)) /* * Ethernet protocol types. * * A public list is available from the IEEE Registration Authority: * https://standards.ieee.org/products-services/regauth/ * * NOTE: 0x0000-0x05DC (0..1500) are generally IEEE 802.3 length fields. * However, there are some conflicts. */ #define ETHERTYPE_8023 0x0004 /* IEEE 802.3 packet */ /* 0x0101 .. 0x1FF Experimental */ #define ETHERTYPE_PUP 0x0200 /* Xerox PUP protocol - see 0A00 */ #define ETHERTYPE_PUPAT 0x0200 /* PUP Address Translation - see 0A01 */ #define ETHERTYPE_SPRITE 0x0500 /* ??? */ /* 0x0400 Nixdorf */ #define ETHERTYPE_NS 0x0600 /* XNS */ #define ETHERTYPE_NSAT 0x0601 /* XNS Address Translation (3Mb only) */ #define ETHERTYPE_DLOG1 0x0660 /* DLOG (?) */ #define ETHERTYPE_DLOG2 0x0661 /* DLOG (?) */ #define ETHERTYPE_IP 0x0800 /* IP protocol */ #define ETHERTYPE_X75 0x0801 /* X.75 Internet */ #define ETHERTYPE_NBS 0x0802 /* NBS Internet */ #define ETHERTYPE_ECMA 0x0803 /* ECMA Internet */ #define ETHERTYPE_CHAOS 0x0804 /* CHAOSnet */ #define ETHERTYPE_X25 0x0805 /* X.25 Level 3 */ #define ETHERTYPE_ARP 0x0806 /* Address resolution protocol */ #define ETHERTYPE_NSCOMPAT 0x0807 /* XNS Compatibility */ #define ETHERTYPE_FRARP 0x0808 /* Frame Relay ARP (RFC1701) */ /* 0x081C Symbolics Private */ /* 0x0888 - 0x088A Xyplex */ #define ETHERTYPE_UBDEBUG 0x0900 /* Ungermann-Bass network debugger */ #define ETHERTYPE_IEEEPUP 0x0A00 /* Xerox IEEE802.3 PUP */ #define ETHERTYPE_IEEEPUPAT 0x0A01 /* Xerox IEEE802.3 PUP Address Translation */ #define ETHERTYPE_VINES 0x0BAD /* Banyan VINES */ #define ETHERTYPE_VINESLOOP 0x0BAE /* Banyan VINES Loopback */ #define ETHERTYPE_VINESECHO 0x0BAF /* Banyan VINES Echo */ /* 0x1000 - 0x100F Berkeley Trailer */ /* * The ETHERTYPE_NTRAILER packet types starting at ETHERTYPE_TRAIL have * (type-ETHERTYPE_TRAIL)*512 bytes of data followed * by an ETHER type (as given above) and then the (variable-length) header. */ #define ETHERTYPE_TRAIL 0x1000 /* Trailer packet */ #define ETHERTYPE_NTRAILER 16 #define ETHERTYPE_DCA 0x1234 /* DCA - Multicast */ #define ETHERTYPE_VALID 0x1600 /* VALID system protocol */ #define ETHERTYPE_DOGFIGHT 0x1989 /* Artificial Horizons ("Aviator" dogfight simulator [on Sun]) */ #define ETHERTYPE_RCL 0x1995 /* Datapoint Corporation (RCL lan protocol) */ /* The following 3C0x types are unregistered: */ #define ETHERTYPE_NBPVCD 0x3C00 /* 3Com NBP virtual circuit datagram (like XNS SPP) not registered */ #define ETHERTYPE_NBPSCD 0x3C01 /* 3Com NBP System control datagram not registered */ #define ETHERTYPE_NBPCREQ 0x3C02 /* 3Com NBP Connect request (virtual cct) not registered */ #define ETHERTYPE_NBPCRSP 0x3C03 /* 3Com NBP Connect response not registered */ #define ETHERTYPE_NBPCC 0x3C04 /* 3Com NBP Connect complete not registered */ #define ETHERTYPE_NBPCLREQ 0x3C05 /* 3Com NBP Close request (virtual cct) not registered */ #define ETHERTYPE_NBPCLRSP 0x3C06 /* 3Com NBP Close response not registered */ #define ETHERTYPE_NBPDG 0x3C07 /* 3Com NBP Datagram (like XNS IDP) not registered */ #define ETHERTYPE_NBPDGB 0x3C08 /* 3Com NBP Datagram broadcast not registered */ #define ETHERTYPE_NBPCLAIM 0x3C09 /* 3Com NBP Claim NetBIOS name not registered */ #define ETHERTYPE_NBPDLTE 0x3C0A /* 3Com NBP Delete NetBIOS name not registered */ #define ETHERTYPE_NBPRAS 0x3C0B /* 3Com NBP Remote adaptor status request not registered */ #define ETHERTYPE_NBPRAR 0x3C0C /* 3Com NBP Remote adaptor response not registered */ #define ETHERTYPE_NBPRST 0x3C0D /* 3Com NBP Reset not registered */ #define ETHERTYPE_PCS 0x4242 /* PCS Basic Block Protocol */ #define ETHERTYPE_IMLBLDIAG 0x424C /* Information Modes Little Big LAN diagnostic */ #define ETHERTYPE_DIDDLE 0x4321 /* THD - Diddle */ #define ETHERTYPE_IMLBL 0x4C42 /* Information Modes Little Big LAN */ #define ETHERTYPE_SIMNET 0x5208 /* BBN Simnet Private */ #define ETHERTYPE_DECEXPER 0x6000 /* DEC Unassigned, experimental */ #define ETHERTYPE_MOPDL 0x6001 /* DEC MOP dump/load */ #define ETHERTYPE_MOPRC 0x6002 /* DEC MOP remote console */ #define ETHERTYPE_DECnet 0x6003 /* DEC DECNET Phase IV route */ #define ETHERTYPE_DN ETHERTYPE_DECnet /* libpcap, tcpdump */ #define ETHERTYPE_LAT 0x6004 /* DEC LAT */ #define ETHERTYPE_DECDIAG 0x6005 /* DEC diagnostic protocol (at interface initialization?) */ #define ETHERTYPE_DECCUST 0x6006 /* DEC customer protocol */ #define ETHERTYPE_SCA 0x6007 /* DEC LAVC, SCA */ #define ETHERTYPE_AMBER 0x6008 /* DEC AMBER */ #define ETHERTYPE_DECMUMPS 0x6009 /* DEC MUMPS */ /* 0x6010 - 0x6014 3Com Corporation */ #define ETHERTYPE_TRANSETHER 0x6558 /* Trans Ether Bridging (RFC1701)*/ #define ETHERTYPE_RAWFR 0x6559 /* Raw Frame Relay (RFC1701) */ #define ETHERTYPE_UBDL 0x7000 /* Ungermann-Bass download */ #define ETHERTYPE_UBNIU 0x7001 /* Ungermann-Bass NIUs */ #define ETHERTYPE_UBDIAGLOOP 0x7002 /* Ungermann-Bass diagnostic/loopback */ #define ETHERTYPE_UBNMC 0x7003 /* Ungermann-Bass ??? (NMC to/from UB Bridge) */ #define ETHERTYPE_UBBST 0x7005 /* Ungermann-Bass Bridge Spanning Tree */ #define ETHERTYPE_OS9 0x7007 /* OS/9 Microware */ #define ETHERTYPE_OS9NET 0x7009 /* OS/9 Net? */ /* 0x7020 - 0x7029 LRT (England) (now Sintrom) */ #define ETHERTYPE_RACAL 0x7030 /* Racal-Interlan */ #define ETHERTYPE_PRIMENTS 0x7031 /* Prime NTS (Network Terminal Service) */ #define ETHERTYPE_CABLETRON 0x7034 /* Cabletron */ #define ETHERTYPE_CRONUSVLN 0x8003 /* Cronus VLN */ #define ETHERTYPE_CRONUS 0x8004 /* Cronus Direct */ #define ETHERTYPE_HP 0x8005 /* HP Probe */ #define ETHERTYPE_NESTAR 0x8006 /* Nestar */ #define ETHERTYPE_ATTSTANFORD 0x8008 /* AT&T/Stanford (local use) */ #define ETHERTYPE_EXCELAN 0x8010 /* Excelan */ #define ETHERTYPE_SG_DIAG 0x8013 /* SGI diagnostic type */ #define ETHERTYPE_SG_NETGAMES 0x8014 /* SGI network games */ #define ETHERTYPE_SG_RESV 0x8015 /* SGI reserved type */ #define ETHERTYPE_SG_BOUNCE 0x8016 /* SGI bounce server */ #define ETHERTYPE_APOLLODOMAIN 0x8019 /* Apollo DOMAIN */ #define ETHERTYPE_TYMSHARE 0x802E /* Tymeshare */ #define ETHERTYPE_TIGAN 0x802F /* Tigan, Inc. */ #define ETHERTYPE_REVARP 0x8035 /* Reverse addr resolution protocol */ #define ETHERTYPE_AEONIC 0x8036 /* Aeonic Systems */ #define ETHERTYPE_IPXNEW 0x8037 /* IPX (Novell Netware?) */ #define ETHERTYPE_LANBRIDGE 0x8038 /* DEC LANBridge */ #define ETHERTYPE_DSMD 0x8039 /* DEC DSM/DDP */ #define ETHERTYPE_ARGONAUT 0x803A /* DEC Argonaut Console */ #define ETHERTYPE_VAXELN 0x803B /* DEC VAXELN */ #define ETHERTYPE_DECDNS 0x803C /* DEC DNS Naming Service */ #define ETHERTYPE_ENCRYPT 0x803D /* DEC Ethernet Encryption */ #define ETHERTYPE_DECDTS 0x803E /* DEC Distributed Time Service */ #define ETHERTYPE_DECLTM 0x803F /* DEC LAN Traffic Monitor */ #define ETHERTYPE_DECNETBIOS 0x8040 /* DEC PATHWORKS DECnet NETBIOS Emulation */ #define ETHERTYPE_DECLAST 0x8041 /* DEC Local Area System Transport */ /* 0x8042 DEC Unassigned */ #define ETHERTYPE_PLANNING 0x8044 /* Planning Research Corp. */ /* 0x8046 - 0x8047 AT&T */ #define ETHERTYPE_DECAM 0x8048 /* DEC Availability Manager for Distributed Systems DECamds (but someone at DEC says not) */ #define ETHERTYPE_EXPERDATA 0x8049 /* ExperData */ #define ETHERTYPE_VEXP 0x805B /* Stanford V Kernel exp. */ #define ETHERTYPE_VPROD 0x805C /* Stanford V Kernel prod. */ #define ETHERTYPE_ES 0x805D /* Evans & Sutherland */ #define ETHERTYPE_LITTLE 0x8060 /* Little Machines */ #define ETHERTYPE_COUNTERPOINT 0x8062 /* Counterpoint Computers */ /* 0x8065 - 0x8066 Univ. of Mass @ Amherst */ #define ETHERTYPE_VEECO 0x8067 /* Veeco Integrated Auto. */ #define ETHERTYPE_GENDYN 0x8068 /* General Dynamics */ #define ETHERTYPE_ATT 0x8069 /* AT&T */ #define ETHERTYPE_AUTOPHON 0x806A /* Autophon */ #define ETHERTYPE_COMDESIGN 0x806C /* ComDesign */ #define ETHERTYPE_COMPUGRAPHIC 0x806D /* Compugraphic Corporation */ /* 0x806E - 0x8077 Landmark Graphics Corp. */ #define ETHERTYPE_MATRA 0x807A /* Matra */ #define ETHERTYPE_DDE 0x807B /* Dansk Data Elektronik */ #define ETHERTYPE_MERIT 0x807C /* Merit Internodal (or Univ of Michigan?) */ /* 0x807D - 0x807F Vitalink Communications */ #define ETHERTYPE_VLTLMAN 0x8080 /* Vitalink TransLAN III Management */ /* 0x8081 - 0x8083 Counterpoint Computers */ /* 0x8088 - 0x808A Xyplex */ #define ETHERTYPE_ATALK 0x809B /* AppleTalk */ #define ETHERTYPE_AT ETHERTYPE_ATALK /* old NetBSD */ #define ETHERTYPE_APPLETALK ETHERTYPE_ATALK /* HP-UX */ /* 0x809C - 0x809E Datability */ #define ETHERTYPE_SPIDER 0x809F /* Spider Systems Ltd. */ /* 0x80A3 Nixdorf */ /* 0x80A4 - 0x80B3 Siemens Gammasonics Inc. */ /* 0x80C0 - 0x80C3 DCA (Digital Comm. Assoc.) Data Exchange Cluster */ /* 0x80C4 - 0x80C5 Banyan Systems */ #define ETHERTYPE_PACER 0x80C6 /* Pacer Software */ #define ETHERTYPE_APPLITEK 0x80C7 /* Applitek Corporation */ /* 0x80C8 - 0x80CC Intergraph Corporation */ /* 0x80CD - 0x80CE Harris Corporation */ /* 0x80CF - 0x80D2 Taylor Instrument */ /* 0x80D3 - 0x80D4 Rosemount Corporation */ #define ETHERTYPE_SNA 0x80D5 /* IBM SNA Services over Ethernet */ #define ETHERTYPE_VARIAN 0x80DD /* Varian Associates */ /* 0x80DE - 0x80DF TRFS (Integrated Solutions Transparent Remote File System) */ /* 0x80E0 - 0x80E3 Allen-Bradley */ /* 0x80E4 - 0x80F0 Datability */ #define ETHERTYPE_RETIX 0x80F2 /* Retix */ #define ETHERTYPE_AARP 0x80F3 /* AppleTalk AARP */ /* 0x80F4 - 0x80F5 Kinetics */ #define ETHERTYPE_APOLLO 0x80F7 /* Apollo Computer */ #define ETHERTYPE_VLAN 0x8100 /* IEEE 802.1Q VLAN tagging (XXX conflicts) */ /* 0x80FF - 0x8101 Wellfleet Communications (XXX conflicts) */ #define ETHERTYPE_BOFL 0x8102 /* Wellfleet; BOFL (Breath OF Life) pkts [every 5-10 secs.] */ #define ETHERTYPE_WELLFLEET 0x8103 /* Wellfleet Communications */ /* 0x8107 - 0x8109 Symbolics Private */ #define ETHERTYPE_TALARIS 0x812B /* Talaris */ #define ETHERTYPE_WATERLOO 0x8130 /* Waterloo Microsystems Inc. (XXX which?) */ #define ETHERTYPE_HAYES 0x8130 /* Hayes Microcomputers (XXX which?) */ #define ETHERTYPE_VGLAB 0x8131 /* VG Laboratory Systems */ /* 0x8132 - 0x8137 Bridge Communications */ #define ETHERTYPE_IPX 0x8137 /* Novell (old) NetWare IPX (ECONFIG E option) */ #define ETHERTYPE_NOVELL 0x8138 /* Novell, Inc. */ /* 0x8139 - 0x813D KTI */ #define ETHERTYPE_MUMPS 0x813F /* M/MUMPS data sharing */ #define ETHERTYPE_AMOEBA 0x8145 /* Vrije Universiteit (NL) Amoeba 4 RPC (obsolete) */ #define ETHERTYPE_FLIP 0x8146 /* Vrije Universiteit (NL) FLIP (Fast Local Internet Protocol) */ #define ETHERTYPE_VURESERVED 0x8147 /* Vrije Universiteit (NL) [reserved] */ #define ETHERTYPE_LOGICRAFT 0x8148 /* Logicraft */ #define ETHERTYPE_NCD 0x8149 /* Network Computing Devices */ #define ETHERTYPE_ALPHA 0x814A /* Alpha Micro */ #define ETHERTYPE_SNMP 0x814C /* SNMP over Ethernet (see RFC1089) */ /* 0x814D - 0x814E BIIN */ #define ETHERTYPE_TEC 0x814F /* Technically Elite Concepts */ #define ETHERTYPE_RATIONAL 0x8150 /* Rational Corp */ /* 0x8151 - 0x8153 Qualcomm */ /* 0x815C - 0x815E Computer Protocol Pty Ltd */ /* 0x8164 - 0x8166 Charles River Data Systems */ #define ETHERTYPE_XTP 0x817D /* Protocol Engines XTP */ #define ETHERTYPE_SGITW 0x817E /* SGI/Time Warner prop. */ #define ETHERTYPE_HIPPI_FP 0x8180 /* HIPPI-FP encapsulation */ #define ETHERTYPE_STP 0x8181 /* Scheduled Transfer STP, HIPPI-ST */ /* 0x8182 - 0x8183 Reserved for HIPPI-6400 */ /* 0x8184 - 0x818C SGI prop. */ #define ETHERTYPE_MOTOROLA 0x818D /* Motorola */ #define ETHERTYPE_NETBEUI 0x8191 /* PowerLAN NetBIOS/NetBEUI (PC) */ /* 0x819A - 0x81A3 RAD Network Devices */ /* 0x81B7 - 0x81B9 Xyplex */ /* 0x81CC - 0x81D5 Apricot Computers */ /* 0x81D6 - 0x81DD Artisoft Lantastic */ /* 0x81E6 - 0x81EF Polygon */ /* 0x81F0 - 0x81F2 Comsat Labs */ /* 0x81F3 - 0x81F5 SAIC */ /* 0x81F6 - 0x81F8 VG Analytical */ /* 0x8203 - 0x8205 QNX Software Systems Ltd. */ /* 0x8221 - 0x8222 Ascom Banking Systems */ /* 0x823E - 0x8240 Advanced Encryption Systems */ /* 0x8263 - 0x826A Charles River Data Systems */ /* 0x827F - 0x8282 Athena Programming */ /* 0x829A - 0x829B Inst Ind Info Tech */ /* 0x829C - 0x82AB Taurus Controls */ /* 0x82AC - 0x8693 Walker Richer & Quinn */ #define ETHERTYPE_ACCTON 0x8390 /* Accton Technologies (unregistered) */ #define ETHERTYPE_TALARISMC 0x852B /* Talaris multicast */ #define ETHERTYPE_KALPANA 0x8582 /* Kalpana */ /* 0x8694 - 0x869D Idea Courier */ /* 0x869E - 0x86A1 Computer Network Tech */ /* 0x86A3 - 0x86AC Gateway Communications */ #define ETHERTYPE_SECTRA 0x86DB /* SECTRA */ #define ETHERTYPE_IPV6 0x86DD /* IP protocol version 6 */ #define ETHERTYPE_DELTACON 0x86DE /* Delta Controls */ #define ETHERTYPE_ATOMIC 0x86DF /* ATOMIC */ /* 0x86E0 - 0x86EF Landis & Gyr Powers */ /* 0x8700 - 0x8710 Motorola */ #define ETHERTYPE_RDP 0x8739 /* Control Technology Inc. RDP Without IP */ #define ETHERTYPE_MICP 0x873A /* Control Technology Inc. Mcast Industrial Ctrl Proto. */ /* 0x873B - 0x873C Control Technology Inc. Proprietary */ #define ETHERTYPE_TCPCOMP 0x876B /* TCP/IP Compression (RFC1701) */ #define ETHERTYPE_IPAS 0x876C /* IP Autonomous Systems (RFC1701) */ #define ETHERTYPE_SECUREDATA 0x876D /* Secure Data (RFC1701) */ #define ETHERTYPE_FLOWCONTROL 0x8808 /* 802.3x flow control packet */ #define ETHERTYPE_SLOW 0x8809 /* 802.3ad link aggregation (LACP) */ #define ETHERTYPE_PPP 0x880B /* PPP (obsolete by PPPoE) */ #define ETHERTYPE_HITACHI 0x8820 /* Hitachi Cable (Optoelectronic Systems Laboratory) */ #define ETHERTYPE_TEST 0x8822 /* Network Conformance Testing */ #define ETHERTYPE_MPLS 0x8847 /* MPLS Unicast */ #define ETHERTYPE_MPLS_MCAST 0x8848 /* MPLS Multicast */ #define ETHERTYPE_AXIS 0x8856 /* Axis Communications AB proprietary bootstrap/config */ #define ETHERTYPE_PPPOEDISC 0x8863 /* PPP Over Ethernet Discovery Stage */ #define ETHERTYPE_PPPOE 0x8864 /* PPP Over Ethernet Session Stage */ #define ETHERTYPE_LANPROBE 0x8888 /* HP LanProbe test? */ #define ETHERTYPE_PAE 0x888E /* EAPOL PAE/802.1x */ #define ETHERTYPE_PROFINET 0x8892 /* PROFINET RT Protocol */ #define ETHERTYPE_AOE 0x88A2 /* ATA Protocol */ #define ETHERTYPE_ETHERCAT 0x88A4 /* EtherCat Protocol */ #define ETHERTYPE_QINQ 0x88A8 /* 802.1ad VLAN stacking */ #define ETHERTYPE_POWERLINK 0x88AB /* Ethernet Powerlink (EPL) */ #define ETHERTYPE_LLDP 0x88CC /* Link Layer Discovery Protocol */ #define ETHERTYPE_SERCOS 0x88CD /* SERCOS III Protocol */ #define ETHERTYPE_MACSEC 0x88E5 /* 802.1AE MAC Security */ #define ETHERTYPE_PBB 0x88E7 /* 802.1Q Provider Backbone Bridges */ #define ETHERTYPE_FCOE 0x8906 /* Fibre Channel over Ethernet */ #define ETHERTYPE_LOOPBACK 0x9000 /* Loopback: used to test interfaces */ #define ETHERTYPE_8021Q9100 0x9100 /* IEEE 802.1Q stacking (proprietary) */ #define ETHERTYPE_LBACK ETHERTYPE_LOOPBACK /* DEC MOP loopback */ #define ETHERTYPE_XNSSM 0x9001 /* 3Com (Formerly Bridge Communications), XNS Systems Management */ #define ETHERTYPE_TCPSM 0x9002 /* 3Com (Formerly Bridge Communications), TCP/IP Systems Management */ #define ETHERTYPE_BCLOOP 0x9003 /* 3Com (Formerly Bridge Communications), loopback detection */ #define ETHERTYPE_8021Q9200 0x9200 /* IEEE 802.1Q stacking (proprietary) */ #define ETHERTYPE_8021Q9300 0x9300 /* IEEE 802.1Q stacking (proprietary) */ #define ETHERTYPE_DEBNI 0xAAAA /* DECNET? Used by VAX 6220 DEBNI */ #define ETHERTYPE_SONIX 0xFAF5 /* Sonix Arpeggio */ #define ETHERTYPE_VITAL 0xFF00 /* BBN VITAL-LanBridge cache wakeups */ /* 0xFF00 - 0xFFOF ISC Bunker Ramo */ #define ETHERTYPE_MAX 0xFFFF /* Maximum valid ethernet type, reserved */ /* * The ETHERTYPE_NTRAILER packet types starting at ETHERTYPE_TRAIL have * (type-ETHERTYPE_TRAIL)*512 bytes of data followed * by an ETHER type (as given above) and then the (variable-length) header. */ #define ETHERTYPE_TRAIL 0x1000 /* Trailer packet */ #define ETHERTYPE_NTRAILER 16 #define ETHERMTU (ETHER_MAX_LEN-ETHER_HDR_LEN-ETHER_CRC_LEN) #define ETHERMIN (ETHER_MIN_LEN-ETHER_HDR_LEN-ETHER_CRC_LEN) #define ETHERMTU_JUMBO (ETHER_MAX_LEN_JUMBO - ETHER_HDR_LEN - ETHER_CRC_LEN) /* * The ETHER_BPF_MTAP macro should be used by drivers which support hardware * offload for VLAN tag processing. It will check the mbuf to see if it has * M_VLANTAG set, and if it does, will pass the packet along to * ether_vlan_mtap. This function will re-insert VLAN tags for the duration * of the tap, so they show up properly for network analyzers. */ #define ETHER_BPF_MTAP(_ifp, _m) do { \ if (bpf_peers_present((_ifp)->if_bpf)) { \ M_ASSERTVALID(_m); \ if (((_m)->m_flags & M_VLANTAG) != 0) \ ether_vlan_mtap((_ifp)->if_bpf, (_m), NULL, 0); \ else \ bpf_mtap((_ifp)->if_bpf, (_m)); \ } \ } while (0) /* * Names for 802.1q priorities ("802.1p"). Notice that in this scheme, * (0 < 1), allowing default 0-tagged traffic to take priority over background * tagged traffic. */ #define IEEE8021Q_PCP_BK 1 /* Background (lowest) */ #define IEEE8021Q_PCP_BE 0 /* Best effort (default) */ #define IEEE8021Q_PCP_EE 2 /* Excellent effort */ #define IEEE8021Q_PCP_CA 3 /* Critical applications */ #define IEEE8021Q_PCP_VI 4 /* Video, < 100ms latency */ #define IEEE8021Q_PCP_VO 5 /* Video, < 10ms latency */ #define IEEE8021Q_PCP_IC 6 /* Internetwork control */ #define IEEE8021Q_PCP_NC 7 /* Network control (highest) */ #ifdef _KERNEL #include struct ifnet; struct mbuf; struct route; struct sockaddr; struct bpf_if; +struct ether_8021q_tag; extern uint32_t ether_crc32_le(const uint8_t *, size_t); extern uint32_t ether_crc32_be(const uint8_t *, size_t); extern void ether_demux(struct ifnet *, struct mbuf *); extern void ether_ifattach(struct ifnet *, const u_int8_t *); extern void ether_ifdetach(struct ifnet *); extern int ether_ioctl(struct ifnet *, u_long, caddr_t); extern int ether_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); extern int ether_output_frame(struct ifnet *, struct mbuf *); extern char *ether_sprintf(const u_int8_t *); void ether_vlan_mtap(struct bpf_if *, struct mbuf *, void *, u_int); -struct mbuf *ether_vlanencap(struct mbuf *, uint16_t); -bool ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, - uint16_t vid, uint8_t pcp); +struct mbuf *ether_vlanencap_proto(struct mbuf *, uint16_t, uint16_t); +bool ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, + struct ifnet *p, struct ether_8021q_tag *); void ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr); + +static __inline struct mbuf *ether_vlanencap(struct mbuf *m, uint16_t tag) +{ + + return ether_vlanencap_proto(m, tag, ETHERTYPE_VLAN); +} /* new ethernet interface attached event */ typedef void (*ether_ifattach_event_handler_t)(void *, struct ifnet *); EVENTHANDLER_DECLARE(ether_ifattach_event, ether_ifattach_event_handler_t); #else /* _KERNEL */ #include /* * Ethernet address conversion/parsing routines. */ __BEGIN_DECLS struct ether_addr *ether_aton(const char *); struct ether_addr *ether_aton_r(const char *, struct ether_addr *); int ether_hostton(const char *, struct ether_addr *); int ether_line(const char *, struct ether_addr *, char *); char *ether_ntoa(const struct ether_addr *); char *ether_ntoa_r(const struct ether_addr *, char *); int ether_ntohost(char *, const struct ether_addr *); __END_DECLS #endif /* !_KERNEL */ #endif /* !_NET_ETHERNET_H_ */ Index: head/sys/net/if_clone.c =================================================================== --- head/sys/net/if_clone.c (revision 366916) +++ head/sys/net/if_clone.c (revision 366917) @@ -1,762 +1,764 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2012 Gleb Smirnoff * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Current IF_MAXUNIT expands maximum to 5 characters. */ #define IFCLOSIZ (IFNAMSIZ - 5) /* * Structure describing a `cloning' interface. * * List of locks * (c) const until freeing * (d) driver specific data, may need external protection. * (e) locked by if_cloners_mtx * (i) locked by ifc_mtx mtx */ struct if_clone { char ifc_name[IFCLOSIZ]; /* (c) Name of device, e.g. `gif' */ struct unrhdr *ifc_unrhdr; /* (c) alloc_unr(9) header */ int ifc_maxunit; /* (c) maximum unit number */ int ifc_flags; long ifc_refcnt; /* (i) Reference count. */ LIST_HEAD(, ifnet) ifc_iflist; /* (i) List of cloned interfaces */ struct mtx ifc_mtx; /* Mutex to protect members. */ enum { SIMPLE, ADVANCED } ifc_type; /* (c) */ /* (c) Driver specific cloning functions. Called with no locks held. */ union { struct { /* advanced cloner */ ifc_match_t *_ifc_match; ifc_create_t *_ifc_create; ifc_destroy_t *_ifc_destroy; } A; struct { /* simple cloner */ ifcs_create_t *_ifcs_create; ifcs_destroy_t *_ifcs_destroy; int _ifcs_minifs; /* minimum ifs */ } S; } U; #define ifc_match U.A._ifc_match #define ifc_create U.A._ifc_create #define ifc_destroy U.A._ifc_destroy #define ifcs_create U.S._ifcs_create #define ifcs_destroy U.S._ifcs_destroy #define ifcs_minifs U.S._ifcs_minifs LIST_ENTRY(if_clone) ifc_list; /* (e) On list of cloners */ }; static void if_clone_free(struct if_clone *ifc); static int if_clone_createif(struct if_clone *ifc, char *name, size_t len, caddr_t params); static int ifc_simple_match(struct if_clone *, const char *); static int ifc_simple_create(struct if_clone *, char *, size_t, caddr_t); static int ifc_simple_destroy(struct if_clone *, struct ifnet *); static struct mtx if_cloners_mtx; MTX_SYSINIT(if_cloners_lock, &if_cloners_mtx, "if_cloners lock", MTX_DEF); VNET_DEFINE_STATIC(int, if_cloners_count); VNET_DEFINE(LIST_HEAD(, if_clone), if_cloners); #define V_if_cloners_count VNET(if_cloners_count) #define V_if_cloners VNET(if_cloners) #define IF_CLONERS_LOCK_ASSERT() mtx_assert(&if_cloners_mtx, MA_OWNED) #define IF_CLONERS_LOCK() mtx_lock(&if_cloners_mtx) #define IF_CLONERS_UNLOCK() mtx_unlock(&if_cloners_mtx) #define IF_CLONE_LOCK_INIT(ifc) \ mtx_init(&(ifc)->ifc_mtx, "if_clone lock", NULL, MTX_DEF) #define IF_CLONE_LOCK_DESTROY(ifc) mtx_destroy(&(ifc)->ifc_mtx) #define IF_CLONE_LOCK_ASSERT(ifc) mtx_assert(&(ifc)->ifc_mtx, MA_OWNED) #define IF_CLONE_LOCK(ifc) mtx_lock(&(ifc)->ifc_mtx) #define IF_CLONE_UNLOCK(ifc) mtx_unlock(&(ifc)->ifc_mtx) #define IF_CLONE_ADDREF(ifc) \ do { \ IF_CLONE_LOCK(ifc); \ IF_CLONE_ADDREF_LOCKED(ifc); \ IF_CLONE_UNLOCK(ifc); \ } while (0) #define IF_CLONE_ADDREF_LOCKED(ifc) \ do { \ IF_CLONE_LOCK_ASSERT(ifc); \ KASSERT((ifc)->ifc_refcnt >= 0, \ ("negative refcnt %ld", (ifc)->ifc_refcnt)); \ (ifc)->ifc_refcnt++; \ } while (0) #define IF_CLONE_REMREF(ifc) \ do { \ IF_CLONE_LOCK(ifc); \ IF_CLONE_REMREF_LOCKED(ifc); \ } while (0) #define IF_CLONE_REMREF_LOCKED(ifc) \ do { \ IF_CLONE_LOCK_ASSERT(ifc); \ KASSERT((ifc)->ifc_refcnt > 0, \ ("bogus refcnt %ld", (ifc)->ifc_refcnt)); \ if (--(ifc)->ifc_refcnt == 0) { \ IF_CLONE_UNLOCK(ifc); \ if_clone_free(ifc); \ } else { \ /* silently free the lock */ \ IF_CLONE_UNLOCK(ifc); \ } \ } while (0) #define IFC_IFLIST_INSERT(_ifc, _ifp) \ LIST_INSERT_HEAD(&_ifc->ifc_iflist, _ifp, if_clones) #define IFC_IFLIST_REMOVE(_ifc, _ifp) \ LIST_REMOVE(_ifp, if_clones) static MALLOC_DEFINE(M_CLONE, "clone", "interface cloning framework"); void vnet_if_clone_init(void) { LIST_INIT(&V_if_cloners); } /* * Lookup and create a clone network interface. */ int if_clone_create(char *name, size_t len, caddr_t params) { struct if_clone *ifc; /* Try to find an applicable cloner for this request */ IF_CLONERS_LOCK(); LIST_FOREACH(ifc, &V_if_cloners, ifc_list) if (ifc->ifc_type == SIMPLE) { if (ifc_simple_match(ifc, name)) break; } else { if (ifc->ifc_match(ifc, name)) break; } #ifdef VIMAGE if (ifc == NULL && !IS_DEFAULT_VNET(curvnet)) { CURVNET_SET_QUIET(vnet0); LIST_FOREACH(ifc, &V_if_cloners, ifc_list) if (ifc->ifc_type == SIMPLE) { if (ifc_simple_match(ifc, name)) break; } else { if (ifc->ifc_match(ifc, name)) break; } CURVNET_RESTORE(); } #endif IF_CLONERS_UNLOCK(); if (ifc == NULL) return (EINVAL); return (if_clone_createif(ifc, name, len, params)); } void if_clone_addif(struct if_clone *ifc, struct ifnet *ifp) { if ((ifc->ifc_flags & IFC_NOGROUP) == 0) if_addgroup(ifp, ifc->ifc_name); IF_CLONE_LOCK(ifc); IFC_IFLIST_INSERT(ifc, ifp); IF_CLONE_UNLOCK(ifc); } /* * Create a clone network interface. */ static int if_clone_createif(struct if_clone *ifc, char *name, size_t len, caddr_t params) { int err; struct ifnet *ifp; if (ifunit(name) != NULL) return (EEXIST); if (ifc->ifc_type == SIMPLE) err = ifc_simple_create(ifc, name, len, params); else err = (*ifc->ifc_create)(ifc, name, len, params); if (!err) { ifp = ifunit(name); if (ifp == NULL) panic("%s: lookup failed for %s", __func__, name); if_clone_addif(ifc, ifp); } return (err); } /* * Lookup and destroy a clone network interface. */ int if_clone_destroy(const char *name) { int err; struct if_clone *ifc; struct ifnet *ifp; ifp = ifunit_ref(name); if (ifp == NULL) return (ENXIO); /* Find the cloner for this interface */ IF_CLONERS_LOCK(); LIST_FOREACH(ifc, &V_if_cloners, ifc_list) { if (strcmp(ifc->ifc_name, ifp->if_dname) == 0) { break; } } #ifdef VIMAGE if (ifc == NULL && !IS_DEFAULT_VNET(curvnet)) { CURVNET_SET_QUIET(vnet0); LIST_FOREACH(ifc, &V_if_cloners, ifc_list) if (ifc->ifc_type == SIMPLE) { if (ifc_simple_match(ifc, name)) break; } else { if (ifc->ifc_match(ifc, name)) break; } CURVNET_RESTORE(); } #endif IF_CLONERS_UNLOCK(); if (ifc == NULL) { if_rele(ifp); return (EINVAL); } err = if_clone_destroyif(ifc, ifp); if_rele(ifp); return err; } /* * Destroy a clone network interface. */ int if_clone_destroyif(struct if_clone *ifc, struct ifnet *ifp) { int err; struct ifnet *ifcifp; if (ifc->ifc_type == ADVANCED && ifc->ifc_destroy == NULL) return(EOPNOTSUPP); /* * Given that the cloned ifnet might be attached to a different * vnet from where its cloner was registered, we have to * switch to the vnet context of the target vnet. */ CURVNET_SET_QUIET(ifp->if_vnet); IF_CLONE_LOCK(ifc); LIST_FOREACH(ifcifp, &ifc->ifc_iflist, if_clones) { if (ifcifp == ifp) { IFC_IFLIST_REMOVE(ifc, ifp); break; } } IF_CLONE_UNLOCK(ifc); if (ifcifp == NULL) { CURVNET_RESTORE(); return (ENXIO); /* ifp is not on the list. */ } if ((ifc->ifc_flags & IFC_NOGROUP) == 0) if_delgroup(ifp, ifc->ifc_name); if (ifc->ifc_type == SIMPLE) err = ifc_simple_destroy(ifc, ifp); else err = (*ifc->ifc_destroy)(ifc, ifp); if (err != 0) { if ((ifc->ifc_flags & IFC_NOGROUP) == 0) if_addgroup(ifp, ifc->ifc_name); IF_CLONE_LOCK(ifc); IFC_IFLIST_INSERT(ifc, ifp); IF_CLONE_UNLOCK(ifc); } CURVNET_RESTORE(); return (err); } static struct if_clone * if_clone_alloc(const char *name, int maxunit) { struct if_clone *ifc; KASSERT(name != NULL, ("%s: no name\n", __func__)); ifc = malloc(sizeof(struct if_clone), M_CLONE, M_WAITOK | M_ZERO); strncpy(ifc->ifc_name, name, IFCLOSIZ-1); IF_CLONE_LOCK_INIT(ifc); IF_CLONE_ADDREF(ifc); ifc->ifc_maxunit = maxunit ? maxunit : IF_MAXUNIT; ifc->ifc_unrhdr = new_unrhdr(0, ifc->ifc_maxunit, &ifc->ifc_mtx); LIST_INIT(&ifc->ifc_iflist); return (ifc); } static int if_clone_attach(struct if_clone *ifc) { struct if_clone *ifc1; IF_CLONERS_LOCK(); LIST_FOREACH(ifc1, &V_if_cloners, ifc_list) if (strcmp(ifc->ifc_name, ifc1->ifc_name) == 0) { IF_CLONERS_UNLOCK(); IF_CLONE_REMREF(ifc); return (EEXIST); } LIST_INSERT_HEAD(&V_if_cloners, ifc, ifc_list); V_if_cloners_count++; IF_CLONERS_UNLOCK(); return (0); } struct if_clone * if_clone_advanced(const char *name, u_int maxunit, ifc_match_t match, ifc_create_t create, ifc_destroy_t destroy) { struct if_clone *ifc; ifc = if_clone_alloc(name, maxunit); ifc->ifc_type = ADVANCED; ifc->ifc_match = match; ifc->ifc_create = create; ifc->ifc_destroy = destroy; if (if_clone_attach(ifc) != 0) return (NULL); EVENTHANDLER_INVOKE(if_clone_event, ifc); return (ifc); } struct if_clone * if_clone_simple(const char *name, ifcs_create_t create, ifcs_destroy_t destroy, u_int minifs) { struct if_clone *ifc; u_int unit; ifc = if_clone_alloc(name, 0); ifc->ifc_type = SIMPLE; ifc->ifcs_create = create; ifc->ifcs_destroy = destroy; ifc->ifcs_minifs = minifs; if (if_clone_attach(ifc) != 0) return (NULL); for (unit = 0; unit < minifs; unit++) { char name[IFNAMSIZ]; int error __unused; snprintf(name, IFNAMSIZ, "%s%d", ifc->ifc_name, unit); error = if_clone_createif(ifc, name, IFNAMSIZ, NULL); KASSERT(error == 0, ("%s: failed to create required interface %s", __func__, name)); } EVENTHANDLER_INVOKE(if_clone_event, ifc); return (ifc); } /* * Unregister a network interface cloner. */ void if_clone_detach(struct if_clone *ifc) { IF_CLONERS_LOCK(); LIST_REMOVE(ifc, ifc_list); V_if_cloners_count--; IF_CLONERS_UNLOCK(); /* Allow all simples to be destroyed */ if (ifc->ifc_type == SIMPLE) ifc->ifcs_minifs = 0; /* destroy all interfaces for this cloner */ while (!LIST_EMPTY(&ifc->ifc_iflist)) if_clone_destroyif(ifc, LIST_FIRST(&ifc->ifc_iflist)); IF_CLONE_REMREF(ifc); } static void if_clone_free(struct if_clone *ifc) { KASSERT(LIST_EMPTY(&ifc->ifc_iflist), ("%s: ifc_iflist not empty", __func__)); IF_CLONE_LOCK_DESTROY(ifc); delete_unrhdr(ifc->ifc_unrhdr); free(ifc, M_CLONE); } /* * Provide list of interface cloners to userspace. */ int if_clone_list(struct if_clonereq *ifcr) { char *buf, *dst, *outbuf = NULL; struct if_clone *ifc; int buf_count, count, err = 0; if (ifcr->ifcr_count < 0) return (EINVAL); IF_CLONERS_LOCK(); /* * Set our internal output buffer size. We could end up not * reporting a cloner that is added between the unlock and lock * below, but that's not a major problem. Not caping our * allocation to the number of cloners actually in the system * could be because that would let arbitrary users cause us to * allocate arbitrary amounts of kernel memory. */ buf_count = (V_if_cloners_count < ifcr->ifcr_count) ? V_if_cloners_count : ifcr->ifcr_count; IF_CLONERS_UNLOCK(); outbuf = malloc(IFNAMSIZ*buf_count, M_CLONE, M_WAITOK | M_ZERO); IF_CLONERS_LOCK(); ifcr->ifcr_total = V_if_cloners_count; if ((dst = ifcr->ifcr_buffer) == NULL) { /* Just asking how many there are. */ goto done; } count = (V_if_cloners_count < buf_count) ? V_if_cloners_count : buf_count; for (ifc = LIST_FIRST(&V_if_cloners), buf = outbuf; ifc != NULL && count != 0; ifc = LIST_NEXT(ifc, ifc_list), count--, buf += IFNAMSIZ) { strlcpy(buf, ifc->ifc_name, IFNAMSIZ); } done: IF_CLONERS_UNLOCK(); if (err == 0 && dst != NULL) err = copyout(outbuf, dst, buf_count*IFNAMSIZ); if (outbuf != NULL) free(outbuf, M_CLONE); return (err); } /* * if_clone_findifc() looks up ifnet from the current * cloner list, and returns ifc if found. Note that ifc_refcnt * is incremented. */ struct if_clone * if_clone_findifc(struct ifnet *ifp) { struct if_clone *ifc, *ifc0; struct ifnet *ifcifp; ifc0 = NULL; IF_CLONERS_LOCK(); LIST_FOREACH(ifc, &V_if_cloners, ifc_list) { IF_CLONE_LOCK(ifc); LIST_FOREACH(ifcifp, &ifc->ifc_iflist, if_clones) { if (ifp == ifcifp) { ifc0 = ifc; IF_CLONE_ADDREF_LOCKED(ifc); break; } } IF_CLONE_UNLOCK(ifc); if (ifc0 != NULL) break; } IF_CLONERS_UNLOCK(); return (ifc0); } /* * if_clone_addgroup() decrements ifc_refcnt because it is called after * if_clone_findifc(). */ void if_clone_addgroup(struct ifnet *ifp, struct if_clone *ifc) { if ((ifc->ifc_flags & IFC_NOGROUP) == 0) { if_addgroup(ifp, ifc->ifc_name); IF_CLONE_REMREF(ifc); } } /* * A utility function to extract unit numbers from interface names of - * the form name###. + * the form name###[.###]. * * Returns 0 on success and an error on failure. */ int ifc_name2unit(const char *name, int *unit) { const char *cp; int cutoff = INT_MAX / 10; int cutlim = INT_MAX % 10; - for (cp = name; *cp != '\0' && (*cp < '0' || *cp > '9'); cp++); + if ((cp = strrchr(name, '.')) == NULL) + cp = name; + for (; *cp != '\0' && (*cp < '0' || *cp > '9'); cp++); if (*cp == '\0') { *unit = -1; } else if (cp[0] == '0' && cp[1] != '\0') { /* Disallow leading zeroes. */ return (EINVAL); } else { for (*unit = 0; *cp != '\0'; cp++) { if (*cp < '0' || *cp > '9') { /* Bogus unit number. */ return (EINVAL); } if (*unit > cutoff || (*unit == cutoff && *cp - '0' > cutlim)) return (EINVAL); *unit = (*unit * 10) + (*cp - '0'); } } return (0); } static int ifc_alloc_unit_specific(struct if_clone *ifc, int *unit) { char name[IFNAMSIZ]; if (*unit > ifc->ifc_maxunit) return (ENOSPC); if (alloc_unr_specific(ifc->ifc_unrhdr, *unit) == -1) return (EEXIST); snprintf(name, IFNAMSIZ, "%s%d", ifc->ifc_name, *unit); if (ifunit(name) != NULL) { free_unr(ifc->ifc_unrhdr, *unit); return (EEXIST); } IF_CLONE_ADDREF(ifc); return (0); } static int ifc_alloc_unit_next(struct if_clone *ifc, int *unit) { int error; *unit = alloc_unr(ifc->ifc_unrhdr); if (*unit == -1) return (ENOSPC); free_unr(ifc->ifc_unrhdr, *unit); for (;;) { error = ifc_alloc_unit_specific(ifc, unit); if (error != EEXIST) break; (*unit)++; } return (error); } int ifc_alloc_unit(struct if_clone *ifc, int *unit) { if (*unit < 0) return (ifc_alloc_unit_next(ifc, unit)); else return (ifc_alloc_unit_specific(ifc, unit)); } void ifc_free_unit(struct if_clone *ifc, int unit) { free_unr(ifc->ifc_unrhdr, unit); IF_CLONE_REMREF(ifc); } static int ifc_simple_match(struct if_clone *ifc, const char *name) { const char *cp; int i; /* Match the name */ for (cp = name, i = 0; i < strlen(ifc->ifc_name); i++, cp++) { if (ifc->ifc_name[i] != *cp) return (0); } /* Make sure there's a unit number or nothing after the name */ for (; *cp != '\0'; cp++) { if (*cp < '0' || *cp > '9') return (0); } return (1); } static int ifc_simple_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) { char *dp; int wildcard; int unit; int err; err = ifc_name2unit(name, &unit); if (err != 0) return (err); wildcard = (unit < 0); err = ifc_alloc_unit(ifc, &unit); if (err != 0) return (err); err = ifc->ifcs_create(ifc, unit, params); if (err != 0) { ifc_free_unit(ifc, unit); return (err); } /* In the wildcard case, we need to update the name. */ if (wildcard) { for (dp = name; *dp != '\0'; dp++); if (snprintf(dp, len - (dp-name), "%d", unit) > len - (dp-name) - 1) { /* * This can only be a programmer error and * there's no straightforward way to recover if * it happens. */ panic("if_clone_create(): interface name too long"); } } return (0); } static int ifc_simple_destroy(struct if_clone *ifc, struct ifnet *ifp) { int unit; unit = ifp->if_dunit; if (unit < ifc->ifcs_minifs) return (EINVAL); ifc->ifcs_destroy(ifp); ifc_free_unit(ifc, unit); return (0); } const char * ifc_name(struct if_clone *ifc) { return (ifc->ifc_name); } void ifc_flags_set(struct if_clone *ifc, int flags) { ifc->ifc_flags = flags; } int ifc_flags_get(struct if_clone *ifc) { return (ifc->ifc_flags); } Index: head/sys/net/if_ethersubr.c =================================================================== --- head/sys/net/if_ethersubr.c (revision 366916) +++ head/sys/net/if_ethersubr.c (revision 366917) @@ -1,1468 +1,1476 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_netgraph.h" #include "opt_mbuf_profiling.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #endif #ifdef INET6 #include #endif #include #include #ifdef CTASSERT CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); #endif VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */ /* netgraph node hooks for ng_ether(4) */ void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_attach_p)(struct ifnet *ifp); void (*ng_ether_detach_p)(struct ifnet *ifp); void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* if_bridge(4) support */ void (*bridge_dn_p)(struct mbuf *, struct ifnet *); /* if_lagg(4) support */ struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static int ether_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); #ifdef VIMAGE static void ether_reassign(struct ifnet *, struct vnet *, char *); #endif static int ether_requestencap(struct ifnet *, struct if_encap_req *); #define senderr(e) do { error = (e); goto bad;} while (0) static void update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) { int csum_flags = 0; if (src->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); if (src->m_pkthdr.csum_flags & CSUM_SCTP) csum_flags |= CSUM_SCTP_VALID; dst->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) dst->m_pkthdr.csum_data = 0xffff; } /* * Handle link-layer encapsulation requests. */ static int ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) { struct ether_header *eh; struct arphdr *ah; uint16_t etype; const u_char *lladdr; if (req->rtype != IFENCAP_LL) return (EOPNOTSUPP); if (req->bufsize < ETHER_HDR_LEN) return (ENOMEM); eh = (struct ether_header *)req->buf; lladdr = req->lladdr; req->lladdr_off = 0; switch (req->family) { case AF_INET: etype = htons(ETHERTYPE_IP); break; case AF_INET6: etype = htons(ETHERTYPE_IPV6); break; case AF_ARP: ah = (struct arphdr *)req->hdata; ah->ar_hrd = htons(ARPHRD_ETHER); switch(ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: etype = htons(ETHERTYPE_REVARP); break; case ARPOP_REQUEST: case ARPOP_REPLY: default: etype = htons(ETHERTYPE_ARP); break; } if (req->flags & IFENCAP_FLAG_BROADCAST) lladdr = ifp->if_broadcastaddr; break; default: return (EAFNOSUPPORT); } memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); req->bufsize = sizeof(struct ether_header); return (0); } static int ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro, u_char *phdr, uint32_t *pflags, struct llentry **plle) { struct ether_header *eh; uint32_t lleflags = 0; int error = 0; #if defined(INET) || defined(INET6) uint16_t etype; #endif if (plle) *plle = NULL; eh = (struct ether_header *)phdr; switch (dst->sa_family) { #ifdef INET case AF_INET: if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, plle); else { if (m->m_flags & M_BCAST) memcpy(eh->ether_dhost, ifp->if_broadcastaddr, ETHER_ADDR_LEN); else { const struct in_addr *a; a = &(((const struct sockaddr_in *)dst)->sin_addr); ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); } etype = htons(ETHERTYPE_IP); memcpy(&eh->ether_type, &etype, sizeof(etype)); memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); } break; #endif #ifdef INET6 case AF_INET6: if ((m->m_flags & M_MCAST) == 0) error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, plle); else { const struct in6_addr *a6; a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); etype = htons(ETHERTYPE_IPV6); memcpy(&eh->ether_type, &etype, sizeof(etype)); memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); } break; #endif default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); if (m != NULL) m_freem(m); return (EAFNOSUPPORT); } if (error == EHOSTDOWN) { if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) error = EHOSTUNREACH; } if (error != 0) return (error); *pflags = RT_MAY_LOOP; if (lleflags & LLE_IFADDR) *pflags |= RT_L2_ME; return (0); } /* * Ethernet output routine. * Encapsulate a packet of type family for the local net. * Use trailer local net encapsulation if enough data in first * packet leaves a multiple of 512 bytes of data in remainder. */ int ether_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { int error = 0; char linkhdr[ETHER_HDR_LEN], *phdr; struct ether_header *eh; struct pf_mtag *t; int loop_copy = 1; int hlen; /* link layer header length */ uint32_t pflags; struct llentry *lle = NULL; int addref = 0; phdr = NULL; pflags = 0; if (ro != NULL) { /* XXX BPF uses ro_prepend */ if (ro->ro_prepend != NULL) { phdr = ro->ro_prepend; hlen = ro->ro_plen; } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { if ((ro->ro_flags & RT_LLE_CACHE) != 0) { lle = ro->ro_lle; if (lle != NULL && (lle->la_flags & LLE_VALID) == 0) { LLE_FREE(lle); lle = NULL; /* redundant */ ro->ro_lle = NULL; } if (lle == NULL) { /* if we lookup, keep cache */ addref = 1; } else /* * Notify LLE code that * the entry was used * by datapath. */ llentry_mark_used(lle); } if (lle != NULL) { phdr = lle->r_linkdata; hlen = lle->r_hdrlen; pflags = lle->r_flags; } } } #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif M_PROFILE(m); if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) senderr(ENETDOWN); if (phdr == NULL) { /* No prepend data supplied. Try to calculate ourselves. */ phdr = linkhdr; hlen = ETHER_HDR_LEN; error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, addref ? &lle : NULL); if (addref && lle != NULL) ro->ro_lle = lle; if (error != 0) return (error == EWOULDBLOCK ? 0 : error); } if ((pflags & RT_L2_ME) != 0) { update_mbuf_csumflags(m, m); return (if_simloop(ifp, m, dst->sa_family, 0)); } loop_copy = pflags & RT_MAY_LOOP; /* * Add local net header. If no space in first mbuf, * allocate another. * * Note that we do prepend regardless of RT_HAS_HEADER flag. * This is done because BPF code shifts m_data pointer * to the end of ethernet header prior to calling if_output(). */ M_PREPEND(m, hlen, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); if ((pflags & RT_HAS_HEADER) == 0) { eh = mtod(m, struct ether_header *); memcpy(eh, phdr, hlen); } /* * If a simplex interface, and the packet is being sent to our * Ethernet address or a broadcast address, loopback a copy. * XXX To make a simplex device behave exactly like a duplex * device, we should copy in the case of sending to our own * ethernet address (thus letting the original actually appear * on the wire). However, we don't do that here for security * reasons and compatibility with the original behavior. */ if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && ((t = pf_find_mtag(m)) == NULL || !t->routed)) { struct mbuf *n; /* * Because if_simloop() modifies the packet, we need a * writable copy through m_dup() instead of a readonly * one as m_copy[m] would give us. The alternative would * be to modify if_simloop() to handle the readonly mbuf, * but performancewise it is mostly equivalent (trading * extra data copying vs. extra locking). * * XXX This is a local workaround. A number of less * often used kernel parts suffer from the same bug. * See PR kern/105943 for a proposed general solution. */ if ((n = m_dup(m, M_NOWAIT)) != NULL) { update_mbuf_csumflags(m, n); (void)if_simloop(ifp, n, dst->sa_family, hlen); } else if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); } /* * Bridges require special output handling. */ if (ifp->if_bridge) { BRIDGE_OUTPUT(ifp, m, error); return (error); } #if defined(INET) || defined(INET6) if (ifp->if_carp && (error = (*carp_output_p)(ifp, m, dst))) goto bad; #endif /* Handle ng_ether(4) processing, if any */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_output_p != NULL, ("ng_ether_output_p is NULL")); if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { bad: if (m != NULL) m_freem(m); return (error); } if (m == NULL) return (0); } /* Continue with link-layer output */ return ether_output_frame(ifp, m); } static bool ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp) { + struct ether_8021q_tag qtag; struct ether_header *eh; eh = mtod(*mp, struct ether_header *); if (ntohs(eh->ether_type) == ETHERTYPE_VLAN || - ether_8021q_frame(mp, ifp, ifp, 0, pcp)) + ntohs(eh->ether_type) == ETHERTYPE_QINQ) return (true); + + qtag.vid = 0; + qtag.pcp = pcp; + qtag.proto = ETHERTYPE_VLAN; + if (ether_8021q_frame(mp, ifp, ifp, &qtag)) + return (true); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (false); } /* * Ethernet link layer output routine to send a raw frame to the device. * * This assumes that the 14 byte Ethernet header is present and contiguous * in the first mbuf (if BRIDGE'ing). */ int ether_output_frame(struct ifnet *ifp, struct mbuf *m) { uint8_t pcp; pcp = ifp->if_pcp; if (pcp != IFNET_PCP_NONE && ifp->if_type != IFT_L2VLAN && !ether_set_pcp(&m, ifp, pcp)) return (0); if (PFIL_HOOKED_OUT(V_link_pfil_head)) switch (pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_OUT, NULL)) { case PFIL_DROPPED: return (EACCES); case PFIL_CONSUMED: return (0); } #ifdef EXPERIMENTAL #if defined(INET6) && defined(INET) /* draft-ietf-6man-ipv6only-flag */ /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { struct ether_header *eh; eh = mtod(m, struct ether_header *); switch (ntohs(eh->ether_type)) { case ETHERTYPE_IP: case ETHERTYPE_ARP: case ETHERTYPE_REVARP: m_freem(m); return (EAFNOSUPPORT); /* NOTREACHED */ break; }; } #endif #endif /* * Queue message on interface, update output statistics if * successful, and start output if interface not yet active. */ return ((ifp->if_transmit)(ifp, m)); } /* * Process a received Ethernet packet; the packet is in the * mbuf chain m with the ethernet header at the front. */ static void ether_input_internal(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; u_short etype; if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } #ifdef DIAGNOSTIC if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); m_freem(m); return; } #endif if (m->m_len < ETHER_HDR_LEN) { /* XXX maybe should pullup? */ if_printf(ifp, "discard frame w/o leading ethernet " "header (len %u pkt len %u)\n", m->m_len, m->m_pkthdr.len); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); random_harvest_queue_ether(m, sizeof(*m)); #ifdef EXPERIMENTAL #if defined(INET6) && defined(INET) /* draft-ietf-6man-ipv6only-flag */ /* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) { switch (etype) { case ETHERTYPE_IP: case ETHERTYPE_ARP: case ETHERTYPE_REVARP: m_freem(m); return; /* NOTREACHED */ break; }; } #endif #endif CURVNET_SET_QUIET(ifp->if_vnet); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (ETHER_IS_BROADCAST(eh->ether_dhost)) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } #ifdef MAC /* * Tag the mbuf with an appropriate MAC label before any other * consumers can get to it. */ mac_ifnet_create_mbuf(ifp, m); #endif /* * Give bpf a chance at the packet. */ ETHER_BPF_MTAP(ifp, m); /* * If the CRC is still on the packet, trim it off. We do this once * and once only in case we are re-entered. Nothing else on the * Ethernet receive path expects to see the FCS. */ if (m->m_flags & M_HASFCS) { m_adj(m, -ETHER_CRC_LEN); m->m_flags &= ~M_HASFCS; } if (!(ifp->if_capenable & IFCAP_HWSTATS)) if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); /* Allow monitor mode to claim this frame, after stats are updated. */ if (ifp->if_flags & IFF_MONITOR) { m_freem(m); CURVNET_RESTORE(); return; } /* Handle input from a lagg(4) port */ if (ifp->if_type == IFT_IEEE8023ADLAG) { KASSERT(lagg_input_p != NULL, ("%s: if_lagg not loaded!", __func__)); m = (*lagg_input_p)(ifp, m); if (m != NULL) ifp = m->m_pkthdr.rcvif; else { CURVNET_RESTORE(); return; } } /* * If the hardware did not process an 802.1Q tag, do this now, * to allow 802.1P priority frames to be passed to the main input * path correctly. - * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. */ - if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { + if ((m->m_flags & M_VLANTAG) == 0 && + ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) { struct ether_vlan_header *evl; if (m->m_len < sizeof(*evl) && (m = m_pullup(m, sizeof(*evl))) == NULL) { #ifdef DIAGNOSTIC if_printf(ifp, "cannot pullup VLAN header\n"); #endif if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); CURVNET_RESTORE(); return; } evl = mtod(m, struct ether_vlan_header *); m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); m->m_flags |= M_VLANTAG; bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); eh = mtod(m, struct ether_header *); } M_SETFIB(m, ifp->if_fib); /* Allow ng_ether(4) to claim this frame. */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_input_p != NULL, ("%s: ng_ether_input_p is NULL", __func__)); m->m_flags &= ~M_PROMISC; (*ng_ether_input_p)(ifp, &m); if (m == NULL) { CURVNET_RESTORE(); return; } eh = mtod(m, struct ether_header *); } /* * Allow if_bridge(4) to claim this frame. * The BRIDGE_INPUT() macro will update ifp if the bridge changed it * and the frame should be delivered locally. */ if (ifp->if_bridge != NULL) { m->m_flags &= ~M_PROMISC; BRIDGE_INPUT(ifp, m); if (m == NULL) { CURVNET_RESTORE(); return; } eh = mtod(m, struct ether_header *); } #if defined(INET) || defined(INET6) /* * Clear M_PROMISC on frame so that carp(4) will see it when the * mbuf flows up to Layer 3. * FreeBSD's implementation of carp(4) uses the inprotosw * to dispatch IPPROTO_CARP. carp(4) also allocates its own * Ethernet addresses of the form 00:00:5e:00:01:xx, which * is outside the scope of the M_PROMISC test below. * TODO: Maintain a hash table of ethernet addresses other than * ether_dhost which may be active on this ifp. */ if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { m->m_flags &= ~M_PROMISC; } else #endif { /* * If the frame received was not for our MAC address, set the * M_PROMISC flag on the mbuf chain. The frame may need to * be seen by the rest of the Ethernet input path in case of * re-entry (e.g. bridge, vlan, netgraph) but should not be * seen by upper protocol layers. */ if (!ETHER_IS_MULTICAST(eh->ether_dhost) && bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) m->m_flags |= M_PROMISC; } ether_demux(ifp, m); CURVNET_RESTORE(); } /* * Ethernet input dispatch; by default, direct dispatch here regardless of * global configuration. However, if RSS is enabled, hook up RSS affinity * so that when deferred or hybrid dispatch is enabled, we can redistribute * load based on RSS. * * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or * not it had already done work distribution via multi-queue. Then we could * direct dispatch in the event load balancing was already complete and * handle the case of interfaces with different capabilities better. * * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions * at multiple layers? * * XXXRW: For now, enable all this only if RSS is compiled in, although it * works fine without RSS. Need to characterise the performance overhead * of the detour through the netisr code in the event the result is always * direct dispatch. */ static void ether_nh_input(struct mbuf *m) { M_ASSERTPKTHDR(m); KASSERT(m->m_pkthdr.rcvif != NULL, ("%s: NULL interface pointer", __func__)); ether_input_internal(m->m_pkthdr.rcvif, m); } static struct netisr_handler ether_nh = { .nh_name = "ether", .nh_handler = ether_nh_input, .nh_proto = NETISR_ETHER, #ifdef RSS .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_DIRECT, .nh_m2cpuid = rss_m2cpuid, #else .nh_policy = NETISR_POLICY_SOURCE, .nh_dispatch = NETISR_DISPATCH_DIRECT, #endif }; static void ether_init(__unused void *arg) { netisr_register(ðer_nh); } SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); static void vnet_ether_init(__unused void *arg) { struct pfil_head_args args; args.pa_version = PFIL_VERSION; args.pa_flags = PFIL_IN | PFIL_OUT; args.pa_type = PFIL_TYPE_ETHERNET; args.pa_headname = PFIL_ETHER_NAME; V_link_pfil_head = pfil_head_register(&args); #ifdef VIMAGE netisr_register_vnet(ðer_nh); #endif } VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, vnet_ether_init, NULL); #ifdef VIMAGE static void vnet_ether_pfil_destroy(__unused void *arg) { pfil_head_unregister(V_link_pfil_head); } VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY, vnet_ether_pfil_destroy, NULL); static void vnet_ether_destroy(__unused void *arg) { netisr_unregister_vnet(ðer_nh); } VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, vnet_ether_destroy, NULL); #endif static void ether_input(struct ifnet *ifp, struct mbuf *m) { struct epoch_tracker et; struct mbuf *mn; bool needs_epoch; needs_epoch = !(ifp->if_flags & IFF_KNOWSEPOCH); /* * The drivers are allowed to pass in a chain of packets linked with * m_nextpkt. We split them up into separate packets here and pass * them up. This allows the drivers to amortize the receive lock. */ CURVNET_SET_QUIET(ifp->if_vnet); if (__predict_false(needs_epoch)) NET_EPOCH_ENTER(et); while (m) { mn = m->m_nextpkt; m->m_nextpkt = NULL; /* * We will rely on rcvif being set properly in the deferred * context, so assert it is correct here. */ MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p " "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp)); netisr_dispatch(NETISR_ETHER, m); m = mn; } if (__predict_false(needs_epoch)) NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } /* * Upper layer processing for a received Ethernet packet. */ void ether_demux(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; int i, isr; u_short ether_type; NET_EPOCH_ASSERT(); KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); /* Do not grab PROMISC frames in case we are re-entered. */ if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) { i = pfil_run_hooks(V_link_pfil_head, &m, ifp, PFIL_IN, NULL); if (i != 0 || m == NULL) return; } eh = mtod(m, struct ether_header *); ether_type = ntohs(eh->ether_type); /* * If this frame has a VLAN tag other than 0, call vlan_input() * if its module is loaded. Otherwise, drop. */ if ((m->m_flags & M_VLANTAG) && EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { if (ifp->if_vlantrunk == NULL) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); m_freem(m); return; } KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", __func__)); /* Clear before possibly re-entering ether_input(). */ m->m_flags &= ~M_PROMISC; (*vlan_input_p)(ifp, m); return; } /* * Pass promiscuously received frames to the upper layer if the user * requested this by setting IFF_PPROMISC. Otherwise, drop them. */ if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { m_freem(m); return; } /* * Reset layer specific mbuf flags to avoid confusing upper layers. * Strip off Ethernet header. */ m->m_flags &= ~M_VLANTAG; m_clrprotoflags(m); m_adj(m, ETHER_HDR_LEN); /* * Dispatch frame to upper layer. */ switch (ether_type) { #ifdef INET case ETHERTYPE_IP: isr = NETISR_IP; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } isr = NETISR_ARP; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; break; #endif default: goto discard; } netisr_dispatch(isr, m); return; discard: /* * Packet is to be discarded. If netgraph is present, * hand the packet to it for last chance processing; * otherwise dispose of it. */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_input_orphan_p != NULL, ("ng_ether_input_orphan_p is NULL")); /* * Put back the ethernet header so netgraph has a * consistent view of inbound packets. */ M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); (*ng_ether_input_orphan_p)(ifp, m); return; } m_freem(m); } /* * Convert Ethernet address to printable (loggable) representation. * This routine is for compatibility; it's better to just use * * printf("%6D", , ":"); * * since there's no static buffer involved. */ char * ether_sprintf(const u_char *ap) { static char etherbuf[18]; snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); return (etherbuf); } /* * Perform common duties while attaching to interface list */ void ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) { int i; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifp->if_addrlen = ETHER_ADDR_LEN; ifp->if_hdrlen = ETHER_HDR_LEN; ifp->if_mtu = ETHERMTU; if_attach(ifp); ifp->if_output = ether_output; ifp->if_input = ether_input; ifp->if_resolvemulti = ether_resolvemulti; ifp->if_requestencap = ether_requestencap; #ifdef VIMAGE ifp->if_reassign = ether_reassign; #endif if (ifp->if_baudrate == 0) ifp->if_baudrate = IF_Mbps(10); /* just a default */ ifp->if_broadcastaddr = etherbroadcastaddr; ifa = ifp->if_addr; KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ifp->if_addrlen; bcopy(lla, LLADDR(sdl), ifp->if_addrlen); if (ifp->if_hw_addr != NULL) bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen); bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); if (ng_ether_attach_p != NULL) (*ng_ether_attach_p)(ifp); /* Announce Ethernet MAC address if non-zero. */ for (i = 0; i < ifp->if_addrlen; i++) if (lla[i] != 0) break; if (i != ifp->if_addrlen) if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); uuid_ether_add(LLADDR(sdl)); /* Add necessary bits are setup; announce it now. */ EVENTHANDLER_INVOKE(ether_ifattach_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL); } /* * Perform common duties while detaching an Ethernet interface */ void ether_ifdetach(struct ifnet *ifp) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); uuid_ether_del(LLADDR(sdl)); if (ifp->if_l2com != NULL) { KASSERT(ng_ether_detach_p != NULL, ("ng_ether_detach_p is NULL")); (*ng_ether_detach_p)(ifp); } bpfdetach(ifp); if_detach(ifp); } #ifdef VIMAGE void ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) { if (ifp->if_l2com != NULL) { KASSERT(ng_ether_detach_p != NULL, ("ng_ether_detach_p is NULL")); (*ng_ether_detach_p)(ifp); } if (ng_ether_attach_p != NULL) { CURVNET_SET_QUIET(new_vnet); (*ng_ether_attach_p)(ifp); CURVNET_RESTORE(); } } #endif SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Ethernet"); #if 0 /* * This is for reference. We have a table-driven version * of the little-endian crc32 generator, which is faster * than the double-loop. */ uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { size_t i; uint32_t crc; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { carry = (crc ^ data) & 1; crc >>= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_LE); } } return (crc); } #else uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { static const uint32_t crctab[] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; size_t i; uint32_t crc; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { crc ^= buf[i]; crc = (crc >> 4) ^ crctab[crc & 0xf]; crc = (crc >> 4) ^ crctab[crc & 0xf]; } return (crc); } #endif uint32_t ether_crc32_be(const uint8_t *buf, size_t len) { size_t i; uint32_t crc, carry; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); crc <<= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_BE) | carry; } } return (crc); } int ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], ETHER_ADDR_LEN); break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > ETHERMTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCSLANPCP: error = priv_check(curthread, PRIV_NET_SETLANPCP); if (error != 0) break; if (ifr->ifr_lan_pcp > 7 && ifr->ifr_lan_pcp != IFNET_PCP_NONE) { error = EINVAL; } else { ifp->if_pcp = ifr->ifr_lan_pcp; /* broadcast event about PCP change */ EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); } break; case SIOCGLANPCP: ifr->ifr_lan_pcp = ifp->if_pcp; break; default: error = EINVAL; /* XXX netbsd has ENOTTY??? */ break; } return (error); } static int ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if (!ETHER_IS_MULTICAST(e_addr)) return EADDRNOTAVAIL; *llsa = NULL; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = NULL; return 0; } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return EAFNOSUPPORT; } } static moduledata_t ether_mod = { .name = "ether", }; void ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) { struct ether_vlan_header vlan; struct mbuf mv, mb; KASSERT((m->m_flags & M_VLANTAG) != 0, ("%s: vlan information not present", __func__)); KASSERT(m->m_len >= sizeof(struct ether_header), ("%s: mbuf not large enough for header", __func__)); bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); vlan.evl_proto = vlan.evl_encap_proto; vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * If a data link has been supplied by the caller, then we will need to * re-create a stack allocated mbuf chain with the following structure: * * (1) mbuf #1 will contain the supplied data link * (2) mbuf #2 will contain the vlan header * (3) mbuf #3 will contain the original mbuf's packet data * * Otherwise, submit the packet and vlan header via bpf_mtap2(). */ if (data != NULL) { mv.m_next = m; mv.m_data = (caddr_t)&vlan; mv.m_len = sizeof(vlan); mb.m_next = &mv; mb.m_data = data; mb.m_len = dlen; bpf_mtap(bp, &mb); } else bpf_mtap2(bp, &vlan, sizeof(vlan), m); m->m_len += sizeof(struct ether_header); m->m_data -= sizeof(struct ether_header); } struct mbuf * -ether_vlanencap(struct mbuf *m, uint16_t tag) +ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto) { struct ether_vlan_header *evl; M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); if (m == NULL) return (NULL); /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ if (m->m_len < sizeof(*evl)) { m = m_pullup(m, sizeof(*evl)); if (m == NULL) return (NULL); } /* * Transform the Ethernet header into an Ethernet header * with 802.1Q encapsulation. */ evl = mtod(m, struct ether_vlan_header *); bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); - evl->evl_encap_proto = htons(ETHERTYPE_VLAN); + evl->evl_encap_proto = htons(proto); evl->evl_tag = htons(tag); return (m); } static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IEEE 802.1Q VLAN"); static SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "for consistency"); VNET_DEFINE_STATIC(int, soft_pad); #define V_soft_pad VNET(soft_pad) SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(soft_pad), 0, "pad short frames before tagging"); /* * For now, make preserving PCP via an mbuf tag optional, as it increases * per-packet memory allocations and frees. In the future, it would be * preferable to reuse ether_vtag for this, or similar. */ int vlan_mtag_pcp = 0; SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW, &vlan_mtag_pcp, 0, "Retain VLAN PCP information as packets are passed up the stack"); bool ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p, - uint16_t vid, uint8_t pcp) + struct ether_8021q_tag *qtag) { struct m_tag *mtag; int n; uint16_t tag; static const char pad[8]; /* just zeros */ /* * Pad the frame to the minimum size allowed if told to. * This option is in accord with IEEE Std 802.1Q, 2003 Ed., * paragraph C.4.4.3.b. It can help to work around buggy * bridges that violate paragraph C.4.4.3.a from the same * document, i.e., fail to pad short frames after untagging. * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but * untagging it will produce a 62-byte frame, which is a runt * and requires padding. There are VLAN-enabled network * devices that just discard such runts instead or mishandle * them somehow. */ if (V_soft_pad && p->if_type == IFT_ETHER) { for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len; n > 0; n -= sizeof(pad)) { if (!m_append(*mp, min(n, sizeof(pad)), pad)) break; } if (n > 0) { m_freem(*mp); *mp = NULL; if_printf(ife, "cannot pad short frame"); return (false); } } /* * If PCP is set in mbuf, use it */ if ((*mp)->m_flags & M_VLANTAG) { - pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag); + qtag->pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag); } /* * If underlying interface can do VLAN tag insertion itself, * just pass the packet along. However, we need some way to * tell the interface where the packet came from so that it * knows how to find the VLAN tag to use, so we attach a * packet tag that holds it. */ if (vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL)) != NULL) - tag = EVL_MAKETAG(vid, *(uint8_t *)(mtag + 1), 0); + tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0); else - tag = EVL_MAKETAG(vid, pcp, 0); - if (p->if_capenable & IFCAP_VLAN_HWTAGGING) { + tag = EVL_MAKETAG(qtag->vid, qtag->pcp, 0); + if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) && + (qtag->proto == ETHERTYPE_VLAN)) { (*mp)->m_pkthdr.ether_vtag = tag; (*mp)->m_flags |= M_VLANTAG; } else { - *mp = ether_vlanencap(*mp, tag); + *mp = ether_vlanencap_proto(*mp, tag, qtag->proto); if (*mp == NULL) { if_printf(ife, "unable to prepend 802.1Q header"); return (false); } } return (true); } /* * Allocate an address from the FreeBSD Foundation OUI. This uses a * cryptographic hash function on the containing jail's name, UUID and the * interface name to attempt to provide a unique but stable address. * Pseudo-interfaces which require a MAC address should use this function to * allocate non-locally-administered addresses. */ void ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr) { SHA1_CTX ctx; char *buf; char uuid[HOSTUUIDLEN + 1]; uint64_t addr; int i, sz; char digest[SHA1_RESULTLEN]; char jailname[MAXHOSTNAMELEN]; getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid)); /* If each (vnet) jail would also have a unique hostuuid this would not * be necessary. */ getjailname(curthread->td_ucred, jailname, sizeof(jailname)); sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, if_name(ifp), jailname); if (sz < 0) { /* Fall back to a random mac address. */ arc4rand(hwaddr, sizeof(*hwaddr), 0); hwaddr->octet[0] = 0x02; return; } SHA1Init(&ctx); SHA1Update(&ctx, buf, sz); SHA1Final(digest, &ctx); free(buf, M_TEMP); addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) & OUI_FREEBSD_GENERATED_MASK; addr = OUI_FREEBSD(addr); for (i = 0; i < ETHER_ADDR_LEN; ++i) { hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) & 0xFF; } } DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(ether, 1); Index: head/sys/net/if_vlan.c =================================================================== --- head/sys/net/if_vlan.c (revision 366916) +++ head/sys/net/if_vlan.c (revision 366917) @@ -1,2104 +1,2105 @@ /*- * Copyright 1998 Massachusetts Institute of Technology * Copyright 2012 ADARA Networks, Inc. * Copyright 2017 Dell EMC Isilon * * Portions of this software were developed by Robert N. M. Watson under * contract to ADARA Networks, Inc. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. - * + * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. * This is sort of sneaky in the implementation, since * we need to pretend to be enough of an Ethernet implementation * to make arp work. The way we do this is by telling everyone * that we are an Ethernet, and then catch the packets that * ether_output() sends to us via if_transmit(), rewrite them for * use by the real outgoing interface, and ask it to send them. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_kern_tls.h" #include "opt_vlan.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif #define VLAN_DEF_HWIDTH 4 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) #define UP_AND_RUNNING(ifp) \ ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) CK_SLIST_HEAD(ifvlanhead, ifvlan); struct ifvlantrunk { struct ifnet *parent; /* parent interface of this trunk */ struct mtx lock; #ifdef VLAN_ARRAY #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ #else struct ifvlanhead *hash; /* dynamic hash-list table */ uint16_t hmask; uint16_t hwidth; #endif int refcnt; }; #if defined(KERN_TLS) || defined(RATELIMIT) struct vlan_snd_tag { struct m_snd_tag com; struct m_snd_tag *tag; }; static inline struct vlan_snd_tag * mst_to_vst(struct m_snd_tag *mst) { return (__containerof(mst, struct vlan_snd_tag, com)); } #endif /* * This macro provides a facility to iterate over every vlan on a trunk with * the assumption that none will be added/removed during iteration. */ #ifdef VLAN_ARRAY #define VLAN_FOREACH(_ifv, _trunk) \ size_t _i; \ for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ if (((_ifv) = (_trunk)->vlans[_i]) != NULL) #else /* VLAN_ARRAY */ #define VLAN_FOREACH(_ifv, _trunk) \ struct ifvlan *_next; \ size_t _i; \ for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) #endif /* VLAN_ARRAY */ /* * This macro provides a facility to iterate over every vlan on a trunk while * also modifying the number of vlans on the trunk. The iteration continues * until some condition is met or there are no more vlans on the trunk. */ #ifdef VLAN_ARRAY /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ size_t _i; \ for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ if (((_ifv) = (_trunk)->vlans[_i])) #else /* VLAN_ARRAY */ /* * The hash table case is more complicated. We allow for the hash table to be * modified (i.e. vlans removed) while we are iterating over it. To allow for * this we must restart the iteration every time we "touch" something during * the iteration, since removal will resize the hash table and invalidate our * current position. If acting on the touched element causes the trunk to be * emptied, then iteration also stops. */ #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ size_t _i; \ bool _touch = false; \ for (_i = 0; \ !(_cond) && _i < (1 << (_trunk)->hwidth); \ _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ (_touch = true)) #endif /* VLAN_ARRAY */ struct vlan_mc_entry { struct sockaddr_dl mc_addr; CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; struct epoch_context mc_epoch_ctx; }; struct ifvlan { struct ifvlantrunk *ifv_trunk; struct ifnet *ifv_ifp; #define TRUNK(ifv) ((ifv)->ifv_trunk) -#define PARENT(ifv) ((ifv)->ifv_trunk->parent) +#define PARENT(ifv) (TRUNK(ifv)->parent) void *ifv_cookie; int ifv_pflags; /* special flags we have set on parent */ int ifv_capenable; int ifv_encaplen; /* encapsulation length */ int ifv_mtufudge; /* MTU fudged by this much */ int ifv_mintu; /* min transmission unit */ - uint16_t ifv_proto; /* encapsulation ethertype */ - uint16_t ifv_tag; /* tag to apply on packets leaving if */ - uint16_t ifv_vid; /* VLAN ID */ - uint8_t ifv_pcp; /* Priority Code Point (PCP). */ + struct ether_8021q_tag ifv_qtag; +#define ifv_proto ifv_qtag.proto +#define ifv_vid ifv_qtag.vid +#define ifv_pcp ifv_qtag.pcp struct task lladdr_task; CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; #ifndef VLAN_ARRAY CK_SLIST_ENTRY(ifvlan) ifv_list; #endif }; /* Special flags we should propagate to parent. */ static struct { int flag; int (*func)(struct ifnet *, int); } vlan_pflags[] = { {IFF_PROMISC, ifpromisc}, {IFF_ALLMULTI, if_allmulti}, {0, NULL} }; extern int vlan_mtag_pcp; static const char vlanname[] = "vlan"; static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); static eventhandler_tag ifdetach_tag; static eventhandler_tag iflladdr_tag; /* - * if_vlan uses two module-level synchronizations primitives to allow concurrent - * modification of vlan interfaces and (mostly) allow for vlans to be destroyed - * while they are being used for tx/rx. To accomplish this in a way that has + * if_vlan uses two module-level synchronizations primitives to allow concurrent + * modification of vlan interfaces and (mostly) allow for vlans to be destroyed + * while they are being used for tx/rx. To accomplish this in a way that has * acceptable performance and cooperation with other parts of the network stack * there is a non-sleepable epoch(9) and an sx(9). * * The performance-sensitive paths that warrant using the epoch(9) are * vlan_transmit and vlan_input. Both have to check for the vlan interface's * existence using if_vlantrunk, and being in the network tx/rx paths the use * of an epoch(9) gives a measureable improvement in performance. * * The reason for having an sx(9) is mostly because there are still areas that * must be sleepable and also have safe concurrent access to a vlan interface. * Since the sx(9) exists, it is used by default in most paths unless sleeping * is not permitted, or if it is not clear whether sleeping is permitted. * */ #define _VLAN_SX_ID ifv_sx static struct sx _VLAN_SX_ID; #define VLAN_LOCKING_INIT() \ - sx_init(&_VLAN_SX_ID, "vlan_sx") + sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE) #define VLAN_LOCKING_DESTROY() \ sx_destroy(&_VLAN_SX_ID) #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) /* * We also have a per-trunk mutex that should be acquired when changing * its state. */ #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); /* * The VLAN_ARRAY substitutes the dynamic hash with a static array * with 4096 entries. In theory this can give a boost in processing, * however in practice it does not. Probably this is because the array * is too big to fit into CPU cache. */ #ifndef VLAN_ARRAY static void vlan_inithash(struct ifvlantrunk *trunk); static void vlan_freehash(struct ifvlantrunk *trunk); static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid); #endif static void trunk_destroy(struct ifvlantrunk *trunk); static void vlan_init(void *foo); static void vlan_input(struct ifnet *ifp, struct mbuf *m); static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); #if defined(KERN_TLS) || defined(RATELIMIT) static int vlan_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); static int vlan_snd_tag_modify(struct m_snd_tag *, union if_snd_tag_modify_params *); static int vlan_snd_tag_query(struct m_snd_tag *, union if_snd_tag_query_params *); static void vlan_snd_tag_free(struct m_snd_tag *); #endif static void vlan_qflush(struct ifnet *ifp); static int vlan_setflag(struct ifnet *ifp, int flag, int status, int (*func)(struct ifnet *, int)); static int vlan_setflags(struct ifnet *ifp, int status); static int vlan_setmulti(struct ifnet *ifp); static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); static int vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro); static void vlan_unconfig(struct ifnet *ifp); static void vlan_unconfig_locked(struct ifnet *ifp, int departing); -static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag); +static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag, + uint16_t proto); static void vlan_link_state(struct ifnet *ifp); static void vlan_capabilities(struct ifvlan *ifv); static void vlan_trunk_capabilities(struct ifnet *ifp); static struct ifnet *vlan_clone_match_ethervid(const char *, int *); static int vlan_clone_match(struct if_clone *, const char *); static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); static int vlan_clone_destroy(struct if_clone *, struct ifnet *); static void vlan_ifdetach(void *arg, struct ifnet *ifp); static void vlan_iflladdr(void *arg, struct ifnet *ifp); static void vlan_lladdr_fn(void *arg, int pending); static struct if_clone *vlan_cloner; #ifdef VIMAGE VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); #define V_vlan_cloner VNET(vlan_cloner) #endif static void vlan_mc_free(struct epoch_context *ctx) { struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); free(mc, M_VLAN); } #ifndef VLAN_ARRAY #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) static void vlan_inithash(struct ifvlantrunk *trunk) { int i, n; /* * The trunk must not be locked here since we call malloc(M_WAITOK). * It is OK in case this function is called before the trunk struct * gets hooked up and becomes visible from other threads. */ KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, ("%s: hash already initialized", __func__)); trunk->hwidth = VLAN_DEF_HWIDTH; n = 1 << trunk->hwidth; trunk->hmask = n - 1; trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); for (i = 0; i < n; i++) CK_SLIST_INIT(&trunk->hash[i]); } static void vlan_freehash(struct ifvlantrunk *trunk) { #ifdef INVARIANTS int i; KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); for (i = 0; i < (1 << trunk->hwidth); i++) KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), ("%s: hash table not empty", __func__)); #endif free(trunk->hash, M_VLAN); trunk->hash = NULL; trunk->hwidth = trunk->hmask = 0; } static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { int i, b; struct ifvlan *ifv2; VLAN_XLOCK_ASSERT(); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); b = 1 << trunk->hwidth; i = HASH(ifv->ifv_vid, trunk->hmask); CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) if (ifv->ifv_vid == ifv2->ifv_vid) return (EEXIST); /* * Grow the hash when the number of vlans exceeds half of the number of * hash buckets squared. This will make the average linked-list length * buckets/2. */ if (trunk->refcnt > (b * b) / 2) { vlan_growhash(trunk, 1); i = HASH(ifv->ifv_vid, trunk->hmask); } CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); trunk->refcnt++; return (0); } static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { int i, b; struct ifvlan *ifv2; VLAN_XLOCK_ASSERT(); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); b = 1 << trunk->hwidth; i = HASH(ifv->ifv_vid, trunk->hmask); CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) if (ifv2 == ifv) { trunk->refcnt--; CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); if (trunk->refcnt < (b * b) / 2) vlan_growhash(trunk, -1); return (0); } panic("%s: vlan not found\n", __func__); return (ENOENT); /*NOTREACHED*/ } /* * Grow the hash larger or smaller if memory permits. */ static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch) { struct ifvlan *ifv; struct ifvlanhead *hash2; int hwidth2, i, j, n, n2; VLAN_XLOCK_ASSERT(); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); if (howmuch == 0) { /* Harmless yet obvious coding error */ printf("%s: howmuch is 0\n", __func__); return; } hwidth2 = trunk->hwidth + howmuch; n = 1 << trunk->hwidth; n2 = 1 << hwidth2; /* Do not shrink the table below the default */ if (hwidth2 < VLAN_DEF_HWIDTH) return; hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); if (hash2 == NULL) { printf("%s: out of memory -- hash size not changed\n", __func__); return; /* We can live with the old hash table */ } for (j = 0; j < n2; j++) CK_SLIST_INIT(&hash2[j]); for (i = 0; i < n; i++) while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); j = HASH(ifv->ifv_vid, n2 - 1); CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); } NET_EPOCH_WAIT(); free(trunk->hash, M_VLAN); trunk->hash = hash2; trunk->hwidth = hwidth2; trunk->hmask = n2 - 1; if (bootverbose) if_printf(trunk->parent, "VLAN hash table resized from %d to %d buckets\n", n, n2); } static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) { struct ifvlan *ifv; NET_EPOCH_ASSERT(); CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) if (ifv->ifv_vid == vid) return (ifv); return (NULL); } #if 0 /* Debugging code to view the hashtables. */ static void vlan_dumphash(struct ifvlantrunk *trunk) { int i; struct ifvlan *ifv; for (i = 0; i < (1 << trunk->hwidth); i++) { printf("%d: ", i); CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) printf("%s ", ifv->ifv_ifp->if_xname); printf("\n"); } } #endif /* 0 */ #else static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) { return trunk->vlans[vid]; } static __inline int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { if (trunk->vlans[ifv->ifv_vid] != NULL) return EEXIST; trunk->vlans[ifv->ifv_vid] = ifv; trunk->refcnt++; return (0); } static __inline int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { trunk->vlans[ifv->ifv_vid] = NULL; trunk->refcnt--; return (0); } static __inline void vlan_freehash(struct ifvlantrunk *trunk) { } static __inline void vlan_inithash(struct ifvlantrunk *trunk) { } #endif /* !VLAN_ARRAY */ static void trunk_destroy(struct ifvlantrunk *trunk) { VLAN_XLOCK_ASSERT(); vlan_freehash(trunk); trunk->parent->if_vlantrunk = NULL; TRUNK_LOCK_DESTROY(trunk); if_rele(trunk->parent); free(trunk, M_VLAN); } /* * Program our multicast filter. What we're actually doing is * programming the multicast filter of the parent. This has the * side effect of causing the parent interface to receive multicast * traffic that it doesn't really want, which ends up being discarded * later by the upper protocol layers. Unfortunately, there's no way * to avoid this: there really is only one physical interface. */ static int vlan_setmulti(struct ifnet *ifp) { struct ifnet *ifp_p; struct ifmultiaddr *ifma; struct ifvlan *sc; struct vlan_mc_entry *mc; int error; VLAN_XLOCK_ASSERT(); /* Find the parent. */ sc = ifp->if_softc; ifp_p = PARENT(sc); CURVNET_SET_QUIET(ifp_p->if_vnet); /* First, remove any existing filter entries. */ while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); } /* Now program new ones. */ IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); if (mc == NULL) { IF_ADDR_WUNLOCK(ifp); return (ENOMEM); } bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); mc->mc_addr.sdl_index = ifp_p->if_index; CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); } IF_ADDR_WUNLOCK(ifp); CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, NULL); if (error) return (error); } CURVNET_RESTORE(); return (0); } /* * A handler for parent interface link layer address changes. * If the parent interface link layer address is changed we * should also change it on all children vlans. */ static void vlan_iflladdr(void *arg __unused, struct ifnet *ifp) { struct epoch_tracker et; struct ifvlan *ifv; struct ifnet *ifv_ifp; struct ifvlantrunk *trunk; struct sockaddr_dl *sdl; /* Need the epoch since this is run on taskqueue_swi. */ NET_EPOCH_ENTER(et); trunk = ifp->if_vlantrunk; if (trunk == NULL) { NET_EPOCH_EXIT(et); return; } /* * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR * ioctl calls on the parent garbling the lladdr of the child vlan. */ TRUNK_WLOCK(trunk); VLAN_FOREACH(ifv, trunk) { /* * Copy new new lladdr into the ifv_ifp, enqueue a task * to actually call if_setlladdr. if_setlladdr needs to * be deferred to a taskqueue because it will call into * the if_vlan ioctl path and try to acquire the global * lock. */ ifv_ifp = ifv->ifv_ifp; bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), ifp->if_addrlen); sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; sdl->sdl_alen = ifp->if_addrlen; taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); } TRUNK_WUNLOCK(trunk); NET_EPOCH_EXIT(et); } /* * A handler for network interface departure events. * Track departure of trunks here so that we don't access invalid * pointers or whatever if a trunk is ripped from under us, e.g., * by ejecting its hot-plug card. However, if an ifnet is simply * being renamed, then there's no need to tear down the state. */ static void vlan_ifdetach(void *arg __unused, struct ifnet *ifp) { struct ifvlan *ifv; struct ifvlantrunk *trunk; /* If the ifnet is just being renamed, don't do anything. */ if (ifp->if_flags & IFF_RENAMING) return; VLAN_XLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_XUNLOCK(); return; } /* * OK, it's a trunk. Loop over and detach all vlan's on it. * Check trunk pointer after each vlan_unconfig() as it will * free it and set to NULL after the last vlan was detached. */ VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, ifp->if_vlantrunk == NULL) vlan_unconfig_locked(ifv->ifv_ifp, 1); /* Trunk should have been destroyed in vlan_unconfig(). */ KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); VLAN_XUNLOCK(); } /* * Return the trunk device for a virtual interface. */ static struct ifnet * vlan_trunkdev(struct ifnet *ifp) { struct ifvlan *ifv; NET_EPOCH_ASSERT(); if (ifp->if_type != IFT_L2VLAN) return (NULL); ifv = ifp->if_softc; ifp = NULL; if (ifv->ifv_trunk) ifp = PARENT(ifv); return (ifp); } /* * Return the 12-bit VLAN VID for this interface, for use by external * components such as Infiniband. * * XXXRW: Note that the function name here is historical; it should be named * vlan_vid(). */ static int vlan_tag(struct ifnet *ifp, uint16_t *vidp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; *vidp = ifv->ifv_vid; return (0); } static int vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; *pcpp = ifv->ifv_pcp; return (0); } /* * Return a driver specific cookie for this interface. Synchronization - * with setcookie must be provided by the driver. + * with setcookie must be provided by the driver. */ static void * vlan_cookie(struct ifnet *ifp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (NULL); ifv = ifp->if_softc; return (ifv->ifv_cookie); } /* * Store a cookie in our softc that drivers can use to store driver * private per-instance data in. */ static int vlan_setcookie(struct ifnet *ifp, void *cookie) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; ifv->ifv_cookie = cookie; return (0); } /* * Return the vlan device present at the specific VID. */ static struct ifnet * vlan_devat(struct ifnet *ifp, uint16_t vid) { struct ifvlantrunk *trunk; struct ifvlan *ifv; NET_EPOCH_ASSERT(); trunk = ifp->if_vlantrunk; if (trunk == NULL) return (NULL); ifp = NULL; ifv = vlan_gethash(trunk, vid); if (ifv) ifp = ifv->ifv_ifp; return (ifp); } /* - * Recalculate the cached VLAN tag exposed via the MIB. - */ -static void -vlan_tag_recalculate(struct ifvlan *ifv) -{ - - ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0); -} - -/* * VLAN support can be loaded as a module. The only place in the * system that's intimately aware of this is ether_input. We hook * into this code through vlan_input_p which is defined there and * set here. No one else in the system should be aware of this so * we use an explicit reference here. */ extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* For if_link_state_change() eyes only... */ extern void (*vlan_link_state_p)(struct ifnet *); static int vlan_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); if (ifdetach_tag == NULL) return (ENOMEM); iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); if (iflladdr_tag == NULL) return (ENOMEM); VLAN_LOCKING_INIT(); vlan_input_p = vlan_input; vlan_link_state_p = vlan_link_state; vlan_trunk_cap_p = vlan_trunk_capabilities; vlan_trunkdev_p = vlan_trunkdev; vlan_cookie_p = vlan_cookie; vlan_setcookie_p = vlan_setcookie; vlan_tag_p = vlan_tag; vlan_pcp_p = vlan_pcp; vlan_devat_p = vlan_devat; #ifndef VIMAGE vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, vlan_clone_create, vlan_clone_destroy); #endif if (bootverbose) printf("vlan: initialized, using " #ifdef VLAN_ARRAY "full-size arrays" #else "hash tables with chaining" #endif - + "\n"); break; case MOD_UNLOAD: #ifndef VIMAGE if_clone_detach(vlan_cloner); #endif EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); vlan_input_p = NULL; vlan_link_state_p = NULL; vlan_trunk_cap_p = NULL; vlan_trunkdev_p = NULL; vlan_tag_p = NULL; vlan_cookie_p = NULL; vlan_setcookie_p = NULL; vlan_devat_p = NULL; VLAN_LOCKING_DESTROY(); if (bootverbose) printf("vlan: unloaded\n"); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t vlan_mod = { "if_vlan", vlan_modevent, 0 }; DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_vlan, 3); #ifdef VIMAGE static void vnet_vlan_init(const void *unused __unused) { vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, vlan_clone_create, vlan_clone_destroy); V_vlan_cloner = vlan_cloner; } VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_vlan_init, NULL); static void vnet_vlan_uninit(const void *unused __unused) { if_clone_detach(V_vlan_cloner); } VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, vnet_vlan_uninit, NULL); #endif /* - * Check for . style interface names. + * Check for .[. ...] style interface names. */ static struct ifnet * vlan_clone_match_ethervid(const char *name, int *vidp) { char ifname[IFNAMSIZ]; char *cp; struct ifnet *ifp; int vid; strlcpy(ifname, name, IFNAMSIZ); - if ((cp = strchr(ifname, '.')) == NULL) + if ((cp = strrchr(ifname, '.')) == NULL) return (NULL); *cp = '\0'; if ((ifp = ifunit_ref(ifname)) == NULL) return (NULL); /* Parse VID. */ if (*++cp == '\0') { if_rele(ifp); return (NULL); } vid = 0; for(; *cp >= '0' && *cp <= '9'; cp++) vid = (vid * 10) + (*cp - '0'); if (*cp != '\0') { if_rele(ifp); return (NULL); } if (vidp != NULL) *vidp = vid; return (ifp); } static int vlan_clone_match(struct if_clone *ifc, const char *name) { struct ifnet *ifp; const char *cp; ifp = vlan_clone_match_ethervid(name, NULL); if (ifp != NULL) { if_rele(ifp); return (1); } if (strncmp(vlanname, name, strlen(vlanname)) != 0) return (0); for (cp = name + 4; *cp != '\0'; cp++) { if (*cp < '0' || *cp > '9') return (0); } return (1); } static int vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) { char *dp; int wildcard; int unit; int error; int vid; + uint16_t proto; struct ifvlan *ifv; struct ifnet *ifp; struct ifnet *p; struct ifaddr *ifa; struct sockaddr_dl *sdl; struct vlanreq vlr; static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ + proto = ETHERTYPE_VLAN; + /* - * There are 3 (ugh) ways to specify the cloned device: + * There are two ways to specify the cloned device: * o pass a parameter block with the clone request. - * o specify parameters in the text of the clone device name * o specify no parameters and get an unattached device that * must be configured separately. - * The first technique is preferred; the latter two are - * supported for backwards compatibility. + * The first technique is preferred; the latter is supported + * for backwards compatibility. * * XXXRW: Note historic use of the word "tag" here. New ioctls may be * called for. */ if (params) { error = copyin(params, &vlr, sizeof(vlr)); if (error) return error; p = ifunit_ref(vlr.vlr_parent); if (p == NULL) return (ENXIO); error = ifc_name2unit(name, &unit); if (error != 0) { if_rele(p); return (error); } vid = vlr.vlr_tag; + proto = vlr.vlr_proto; wildcard = (unit < 0); - } else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) { - unit = -1; - wildcard = 0; } else { p = NULL; error = ifc_name2unit(name, &unit); if (error != 0) return (error); wildcard = (unit < 0); } error = ifc_alloc_unit(ifc, &unit); if (error != 0) { if (p != NULL) if_rele(p); return (error); } /* In the wildcard case, we need to update the name. */ if (wildcard) { for (dp = name; *dp != '\0'; dp++); if (snprintf(dp, len - (dp-name), "%d", unit) > len - (dp-name) - 1) { panic("%s: interface name too long", __func__); } } ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { ifc_free_unit(ifc, unit); free(ifv, M_VLAN); if (p != NULL) if_rele(p); return (ENOSPC); } CK_SLIST_INIT(&ifv->vlan_mc_listhead); ifp->if_softc = ifv; /* * Set the name manually rather than using if_initname because * we don't conform to the default naming convention for interfaces. */ strlcpy(ifp->if_xname, name, IFNAMSIZ); ifp->if_dname = vlanname; ifp->if_dunit = unit; ifp->if_init = vlan_init; ifp->if_transmit = vlan_transmit; ifp->if_qflush = vlan_qflush; ifp->if_ioctl = vlan_ioctl; #if defined(KERN_TLS) || defined(RATELIMIT) ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; ifp->if_snd_tag_modify = vlan_snd_tag_modify; ifp->if_snd_tag_query = vlan_snd_tag_query; ifp->if_snd_tag_free = vlan_snd_tag_free; #endif ifp->if_flags = VLAN_IFFLAGS; ether_ifattach(ifp, eaddr); /* Now undo some of the damage... */ ifp->if_baudrate = 0; ifp->if_type = IFT_L2VLAN; ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_L2VLAN; if (p != NULL) { - error = vlan_config(ifv, p, vid); + error = vlan_config(ifv, p, vid, proto); if_rele(p); if (error != 0) { /* * Since we've partially failed, we need to back * out all the way, otherwise userland could get * confused. Thus, we destroy the interface. */ ether_ifdetach(ifp); vlan_unconfig(ifp); if_free(ifp); ifc_free_unit(ifc, unit); free(ifv, M_VLAN); return (error); } } return (0); } static int vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; - int unit = ifp->if_dunit; + if (ifp->if_vlantrunk) + return (EBUSY); + ether_ifdetach(ifp); /* first, remove it from system-wide lists */ vlan_unconfig(ifp); /* now it can be unconfigured and freed */ /* * We should have the only reference to the ifv now, so we can now * drain any remaining lladdr task before freeing the ifnet and the * ifvlan. */ taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); NET_EPOCH_WAIT(); if_free(ifp); free(ifv, M_VLAN); - ifc_free_unit(ifc, unit); + ifc_free_unit(ifc, ifp->if_dunit); return (0); } /* * The ifp->if_init entry point for vlan(4) is a no-op. */ static void vlan_init(void *foo __unused) { } /* * The if_transmit method for vlan(4) interface. */ static int vlan_transmit(struct ifnet *ifp, struct mbuf *m) { struct ifvlan *ifv; struct ifnet *p; int error, len, mcast; NET_EPOCH_ASSERT(); ifv = ifp->if_softc; if (TRUNK(ifv) == NULL) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (ENETDOWN); } p = PARENT(ifv); len = m->m_pkthdr.len; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; BPF_MTAP(ifp, m); #if defined(KERN_TLS) || defined(RATELIMIT) if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { struct vlan_snd_tag *vst; struct m_snd_tag *mst; MPASS(m->m_pkthdr.snd_tag->ifp == ifp); mst = m->m_pkthdr.snd_tag; vst = mst_to_vst(mst); if (vst->tag->ifp != p) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (EAGAIN); } m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag); m_snd_tag_rele(mst); } #endif /* * Do not run parent's if_transmit() if the parent is not up, * or parent's driver will cause a system crash. */ if (!UP_AND_RUNNING(p)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (ENETDOWN); } - if (!ether_8021q_frame(&m, ifp, p, ifv->ifv_vid, ifv->ifv_pcp)) { + if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (0); } /* * Send it, precisely as ether_output() would have. */ error = (p->if_transmit)(p, m); if (error == 0) { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, len); if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); } else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (error); } static int vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct ifvlan *ifv; struct ifnet *p; NET_EPOCH_ASSERT(); + /* + * Find the first non-VLAN parent interface. + */ ifv = ifp->if_softc; - if (TRUNK(ifv) == NULL) { - m_freem(m); - return (ENETDOWN); - } - p = PARENT(ifv); + do { + if (TRUNK(ifv) == NULL) { + m_freem(m); + return (ENETDOWN); + } + p = PARENT(ifv); + ifv = p->if_softc; + } while (p->if_type == IFT_L2VLAN); + return p->if_output(ifp, m, dst, ro); } /* * The ifp->if_qflush entry point for vlan(4) is a no-op. */ static void vlan_qflush(struct ifnet *ifp __unused) { } static void vlan_input(struct ifnet *ifp, struct mbuf *m) { struct ifvlantrunk *trunk; struct ifvlan *ifv; struct m_tag *mtag; uint16_t vid, tag; NET_EPOCH_ASSERT(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { m_freem(m); return; } if (m->m_flags & M_VLANTAG) { /* * Packet is tagged, but m contains a normal * Ethernet frame; the tag is stored out-of-band. */ tag = m->m_pkthdr.ether_vtag; m->m_flags &= ~M_VLANTAG; } else { struct ether_vlan_header *evl; /* * Packet is tagged in-band as specified by 802.1q. */ switch (ifp->if_type) { case IFT_ETHER: if (m->m_len < sizeof(*evl) && (m = m_pullup(m, sizeof(*evl))) == NULL) { if_printf(ifp, "cannot pullup VLAN header\n"); return; } evl = mtod(m, struct ether_vlan_header *); tag = ntohs(evl->evl_tag); /* * Remove the 802.1q header by copying the Ethernet * addresses over it and adjusting the beginning of * the data in the mbuf. The encapsulated Ethernet * type field is already in place. */ bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); break; default: #ifdef INVARIANTS panic("%s: %s has unsupported if_type %u", __func__, ifp->if_xname, ifp->if_type); #endif if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); m_freem(m); return; } } vid = EVL_VLANOFTAG(tag); ifv = vlan_gethash(trunk, vid); if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); m_freem(m); return; } if (vlan_mtag_pcp) { /* * While uncommon, it is possible that we will find a 802.1q * packet encapsulated inside another packet that also had an * 802.1q header. For example, ethernet tunneled over IPSEC * arriving over ethernet. In that case, we replace the * existing 802.1q PCP m_tag value. */ mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); if (mtag == NULL) { mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, sizeof(uint8_t), M_NOWAIT); if (mtag == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } m_tag_prepend(m, mtag); } *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); } m->m_pkthdr.rcvif = ifv->ifv_ifp; if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); /* Pass it back through the parent's input routine. */ (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); } static void vlan_lladdr_fn(void *arg, int pending __unused) { struct ifvlan *ifv; struct ifnet *ifp; ifv = (struct ifvlan *)arg; ifp = ifv->ifv_ifp; CURVNET_SET(ifp->if_vnet); /* The ifv_ifp already has the lladdr copied in. */ if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); CURVNET_RESTORE(); } static int -vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid) +vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid, + uint16_t proto) { struct epoch_tracker et; struct ifvlantrunk *trunk; struct ifnet *ifp; int error = 0; /* * We can handle non-ethernet hardware types as long as * they handle the tagging and headers themselves. */ if (p->if_type != IFT_ETHER && + p->if_type != IFT_L2VLAN && (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) return (EPROTONOSUPPORT); if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) return (EPROTONOSUPPORT); /* * Don't let the caller set up a VLAN VID with * anything except VLID bits. * VID numbers 0x0 and 0xFFF are reserved. */ if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) return (EINVAL); if (ifv->ifv_trunk) return (EBUSY); VLAN_XLOCK(); if (p->if_vlantrunk == NULL) { trunk = malloc(sizeof(struct ifvlantrunk), M_VLAN, M_WAITOK | M_ZERO); vlan_inithash(trunk); TRUNK_LOCK_INIT(trunk); TRUNK_WLOCK(trunk); p->if_vlantrunk = trunk; trunk->parent = p; if_ref(trunk->parent); TRUNK_WUNLOCK(trunk); } else { trunk = p->if_vlantrunk; } ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ ifv->ifv_pcp = 0; /* Default: best effort delivery. */ - vlan_tag_recalculate(ifv); error = vlan_inshash(trunk, ifv); if (error) goto done; - ifv->ifv_proto = ETHERTYPE_VLAN; + ifv->ifv_proto = proto; ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; ifv->ifv_mintu = ETHERMIN; ifv->ifv_pflags = 0; ifv->ifv_capenable = -1; /* * If the parent supports the VLAN_MTU capability, * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, * use it. */ if (p->if_capenable & IFCAP_VLAN_MTU) { /* * No need to fudge the MTU since the parent can * handle extended frames. */ ifv->ifv_mtufudge = 0; } else { /* * Fudge the MTU by the encapsulation size. This * makes us incompatible with strictly compliant * 802.1Q implementations, but allows us to use * the feature with other NetBSD implementations, * which might still be useful. */ ifv->ifv_mtufudge = ifv->ifv_encaplen; } ifv->ifv_trunk = trunk; ifp = ifv->ifv_ifp; /* * Initialize fields from our parent. This duplicates some * work with ether_ifattach() but allows for non-ethernet * interfaces to also work. */ ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; ifp->if_baudrate = p->if_baudrate; ifp->if_input = p->if_input; ifp->if_resolvemulti = p->if_resolvemulti; ifp->if_addrlen = p->if_addrlen; ifp->if_broadcastaddr = p->if_broadcastaddr; ifp->if_pcp = ifv->ifv_pcp; /* * We wrap the parent's if_output using vlan_output to ensure that it * can't become stale. */ ifp->if_output = vlan_output; /* * Copy only a selected subset of flags from the parent. * Other flags are none of our business. */ #define VLAN_COPY_FLAGS (IFF_SIMPLEX) ifp->if_flags &= ~VLAN_COPY_FLAGS; ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; #undef VLAN_COPY_FLAGS ifp->if_link_state = p->if_link_state; NET_EPOCH_ENTER(et); vlan_capabilities(ifv); NET_EPOCH_EXIT(et); /* * Set up our interface address to reflect the underlying * physical interface's. */ TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = p->if_addrlen; /* * Do not schedule link address update if it was the same * as previous parent's. This helps avoid updating for each * associated llentry. */ if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); } /* We are ready for operation now. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; /* Update flags on the parent, if necessary. */ vlan_setflags(ifp, 1); /* * Configure multicast addresses that may already be * joined on the vlan device. */ (void)vlan_setmulti(ifp); done: if (error == 0) EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); VLAN_XUNLOCK(); return (error); } static void vlan_unconfig(struct ifnet *ifp) { VLAN_XLOCK(); vlan_unconfig_locked(ifp, 0); VLAN_XUNLOCK(); } static void vlan_unconfig_locked(struct ifnet *ifp, int departing) { struct ifvlantrunk *trunk; struct vlan_mc_entry *mc; struct ifvlan *ifv; struct ifnet *parent; int error; VLAN_XLOCK_ASSERT(); ifv = ifp->if_softc; trunk = ifv->ifv_trunk; parent = NULL; if (trunk != NULL) { parent = trunk->parent; /* * Since the interface is being unconfigured, we need to * empty the list of multicast groups that we may have joined * while we were alive from the parent's list. */ while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { /* * If the parent interface is being detached, * all its multicast addresses have already * been removed. Warn about errors if * if_delmulti() does fail, but don't abort as * all callers expect vlan destruction to * succeed. */ if (!departing) { error = if_delmulti(parent, (struct sockaddr *)&mc->mc_addr); if (error) if_printf(ifp, "Failed to delete multicast address from parent: %d\n", error); } CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx); } vlan_setflags(ifp, 0); /* clear special flags on parent */ vlan_remhash(trunk, ifv); ifv->ifv_trunk = NULL; /* * Check if we were the last. */ if (trunk->refcnt == 0) { parent->if_vlantrunk = NULL; NET_EPOCH_WAIT(); trunk_destroy(trunk); } } /* Disconnect from parent. */ if (ifv->ifv_pflags) if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); ifp->if_mtu = ETHERMTU; ifp->if_link_state = LINK_STATE_UNKNOWN; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* * Only dispatch an event if vlan was * attached, otherwise there is nothing * to cleanup anyway. */ if (parent != NULL) EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); } /* Handle a reference counted flag that should be set on the parent as well */ static int vlan_setflag(struct ifnet *ifp, int flag, int status, int (*func)(struct ifnet *, int)) { struct ifvlan *ifv; int error; VLAN_SXLOCK_ASSERT(); ifv = ifp->if_softc; status = status ? (ifp->if_flags & flag) : 0; /* Now "status" contains the flag value or 0 */ /* * See if recorded parent's status is different from what * we want it to be. If it is, flip it. We record parent's * status in ifv_pflags so that we won't clear parent's flag * we haven't set. In fact, we don't clear or set parent's * flags directly, but get or release references to them. * That's why we can be sure that recorded flags still are * in accord with actual parent's flags. */ if (status != (ifv->ifv_pflags & flag)) { error = (*func)(PARENT(ifv), status); if (error) return (error); ifv->ifv_pflags &= ~flag; ifv->ifv_pflags |= status; } return (0); } /* * Handle IFF_* flags that require certain changes on the parent: * if "status" is true, update parent's flags respective to our if_flags; * if "status" is false, forcedly clear the flags set on parent. */ static int vlan_setflags(struct ifnet *ifp, int status) { int error, i; for (i = 0; vlan_pflags[i].flag; i++) { error = vlan_setflag(ifp, vlan_pflags[i].flag, status, vlan_pflags[i].func); if (error) return (error); } return (0); } /* Inform all vlans that their parent has changed link state */ static void vlan_link_state(struct ifnet *ifp) { struct epoch_tracker et; struct ifvlantrunk *trunk; struct ifvlan *ifv; NET_EPOCH_ENTER(et); trunk = ifp->if_vlantrunk; if (trunk == NULL) { NET_EPOCH_EXIT(et); return; } TRUNK_WLOCK(trunk); VLAN_FOREACH(ifv, trunk) { ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; if_link_state_change(ifv->ifv_ifp, trunk->parent->if_link_state); } TRUNK_WUNLOCK(trunk); NET_EPOCH_EXIT(et); } static void vlan_capabilities(struct ifvlan *ifv) { struct ifnet *p; struct ifnet *ifp; struct ifnet_hw_tsomax hw_tsomax; int cap = 0, ena = 0, mena; u_long hwa = 0; NET_EPOCH_ASSERT(); VLAN_SXLOCK_ASSERT(); p = PARENT(ifv); ifp = ifv->ifv_ifp; /* Mask parent interface enabled capabilities disabled by user. */ mena = p->if_capenable & ifv->ifv_capenable; /* * If the parent interface can do checksum offloading * on VLANs, then propagate its hardware-assisted * checksumming flags. Also assert that checksum * offloading requires hardware VLAN tagging. */ if (p->if_capabilities & IFCAP_VLAN_HWCSUM) cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); if (p->if_capenable & IFCAP_VLAN_HWCSUM && p->if_capenable & IFCAP_VLAN_HWTAGGING) { ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); if (ena & IFCAP_TXCSUM) hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP); if (ena & IFCAP_TXCSUM_IPV6) hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); } /* * If the parent interface can do TSO on VLANs then * propagate the hardware-assisted flag. TSO on VLANs * does not necessarily require hardware VLAN tagging. */ memset(&hw_tsomax, 0, sizeof(hw_tsomax)); if_hw_tsomax_common(p, &hw_tsomax); if_hw_tsomax_update(ifp, &hw_tsomax); if (p->if_capabilities & IFCAP_VLAN_HWTSO) cap |= p->if_capabilities & IFCAP_TSO; if (p->if_capenable & IFCAP_VLAN_HWTSO) { ena |= mena & IFCAP_TSO; if (ena & IFCAP_TSO) hwa |= p->if_hwassist & CSUM_TSO; } /* * If the parent interface can do LRO and checksum offloading on * VLANs, then guess it may do LRO on VLANs. False positive here * cost nothing, while false negative may lead to some confusions. */ if (p->if_capabilities & IFCAP_VLAN_HWCSUM) cap |= p->if_capabilities & IFCAP_LRO; if (p->if_capenable & IFCAP_VLAN_HWCSUM) ena |= p->if_capenable & IFCAP_LRO; /* * If the parent interface can offload TCP connections over VLANs then * propagate its TOE capability to the VLAN interface. * * All TOE drivers in the tree today can deal with VLANs. If this * changes then IFCAP_VLAN_TOE should be promoted to a full capability * with its own bit. */ #define IFCAP_VLAN_TOE IFCAP_TOE if (p->if_capabilities & IFCAP_VLAN_TOE) cap |= p->if_capabilities & IFCAP_TOE; if (p->if_capenable & IFCAP_VLAN_TOE) { TOEDEV(ifp) = TOEDEV(p); ena |= mena & IFCAP_TOE; } /* * If the parent interface supports dynamic link state, so does the * VLAN interface. */ cap |= (p->if_capabilities & IFCAP_LINKSTATE); ena |= (mena & IFCAP_LINKSTATE); #ifdef RATELIMIT /* * If the parent interface supports ratelimiting, so does the * VLAN interface. */ cap |= (p->if_capabilities & IFCAP_TXRTLMT); ena |= (mena & IFCAP_TXRTLMT); #endif /* * If the parent interface supports unmapped mbufs, so does * the VLAN interface. Note that this should be fine even for * interfaces that don't support hardware tagging as headers * are prepended in normal mbufs to unmapped mbufs holding * payload data. */ cap |= (p->if_capabilities & IFCAP_NOMAP); ena |= (mena & IFCAP_NOMAP); /* * If the parent interface can offload encryption and segmentation * of TLS records over TCP, propagate it's capability to the VLAN * interface. * * All TLS drivers in the tree today can deal with VLANs. If * this ever changes, then a new IFCAP_VLAN_TXTLS can be * defined. */ if (p->if_capabilities & IFCAP_TXTLS) cap |= p->if_capabilities & IFCAP_TXTLS; if (p->if_capenable & IFCAP_TXTLS) ena |= mena & IFCAP_TXTLS; ifp->if_capabilities = cap; ifp->if_capenable = ena; ifp->if_hwassist = hwa; } static void vlan_trunk_capabilities(struct ifnet *ifp) { struct epoch_tracker et; struct ifvlantrunk *trunk; struct ifvlan *ifv; VLAN_SLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_SUNLOCK(); return; } NET_EPOCH_ENTER(et); VLAN_FOREACH(ifv, trunk) vlan_capabilities(ifv); NET_EPOCH_EXIT(et); VLAN_SUNLOCK(); } static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifnet *p; struct ifreq *ifr; struct ifaddr *ifa; struct ifvlan *ifv; struct ifvlantrunk *trunk; struct vlanreq vlr; int error = 0, oldmtu; ifr = (struct ifreq *)data; ifa = (struct ifaddr *) data; ifv = ifp->if_softc; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); #endif break; case SIOCGIFADDR: bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], ifp->if_addrlen); break; case SIOCGIFMEDIA: VLAN_SLOCK(); if (TRUNK(ifv) != NULL) { p = PARENT(ifv); if_ref(p); error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); if_rele(p); /* Limit the result to the parent's current config. */ if (error == 0) { struct ifmediareq *ifmr; ifmr = (struct ifmediareq *)data; if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { ifmr->ifm_count = 1; error = copyout(&ifmr->ifm_current, ifmr->ifm_ulist, sizeof(int)); } } } else { error = EINVAL; } VLAN_SUNLOCK(); break; case SIOCSIFMEDIA: error = EINVAL; break; case SIOCSIFMTU: /* * Set the interface MTU. */ VLAN_SLOCK(); trunk = TRUNK(ifv); if (trunk != NULL) { TRUNK_WLOCK(trunk); if (ifr->ifr_mtu > (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge)) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; TRUNK_WUNLOCK(trunk); } else error = EINVAL; VLAN_SUNLOCK(); break; case SIOCSETVLAN: #ifdef VIMAGE /* * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN * interface to be delegated to a jail without allowing the * jail to change what underlying interface/VID it is * associated with. We are not entirely convinced that this * is the right way to accomplish that policy goal. */ if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); if (error) break; if (vlr.vlr_parent[0] == '\0') { vlan_unconfig(ifp); break; } p = ifunit_ref(vlr.vlr_parent); if (p == NULL) { error = ENOENT; break; } oldmtu = ifp->if_mtu; - error = vlan_config(ifv, p, vlr.vlr_tag); + error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto); if_rele(p); /* * VLAN MTU may change during addition of the vlandev. * If it did, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif rt_updatemtu(ifp); } break; case SIOCGETVLAN: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif bzero(&vlr, sizeof(vlr)); VLAN_SLOCK(); if (TRUNK(ifv) != NULL) { strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, sizeof(vlr.vlr_parent)); vlr.vlr_tag = ifv->ifv_vid; + vlr.vlr_proto = ifv->ifv_proto; } VLAN_SUNLOCK(); error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); break; - + case SIOCSIFFLAGS: /* * We should propagate selected flags to the parent, * e.g., promiscuous mode. */ VLAN_XLOCK(); if (TRUNK(ifv) != NULL) error = vlan_setflags(ifp, 1); VLAN_XUNLOCK(); break; case SIOCADDMULTI: case SIOCDELMULTI: /* * If we don't have a parent, just remember the membership for * when we do. * * XXX We need the rmlock here to avoid sleeping while * holding in6_multi_mtx. */ VLAN_XLOCK(); trunk = TRUNK(ifv); if (trunk != NULL) error = vlan_setmulti(ifp); VLAN_XUNLOCK(); break; case SIOCGVLANPCP: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif ifr->ifr_vlan_pcp = ifv->ifv_pcp; break; case SIOCSVLANPCP: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif error = priv_check(curthread, PRIV_NET_SETVLANPCP); if (error) break; if (ifr->ifr_vlan_pcp > 7) { error = EINVAL; break; } ifv->ifv_pcp = ifr->ifr_vlan_pcp; ifp->if_pcp = ifv->ifv_pcp; - vlan_tag_recalculate(ifv); /* broadcast event about PCP change */ EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); break; case SIOCSIFCAP: VLAN_SLOCK(); ifv->ifv_capenable = ifr->ifr_reqcap; trunk = TRUNK(ifv); if (trunk != NULL) { struct epoch_tracker et; NET_EPOCH_ENTER(et); vlan_capabilities(ifv); NET_EPOCH_EXIT(et); } VLAN_SUNLOCK(); break; default: error = EINVAL; break; } return (error); } #if defined(KERN_TLS) || defined(RATELIMIT) static int vlan_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **ppmt) { struct epoch_tracker et; struct vlan_snd_tag *vst; struct ifvlan *ifv; struct ifnet *parent; int error; NET_EPOCH_ENTER(et); ifv = ifp->if_softc; if (ifv->ifv_trunk != NULL) parent = PARENT(ifv); else parent = NULL; if (parent == NULL || parent->if_snd_tag_alloc == NULL) { NET_EPOCH_EXIT(et); return (EOPNOTSUPP); } if_ref(parent); NET_EPOCH_EXIT(et); vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT); if (vst == NULL) { if_rele(parent); return (ENOMEM); } error = parent->if_snd_tag_alloc(parent, params, &vst->tag); if_rele(parent); if (error) { free(vst, M_VLAN); return (error); } m_snd_tag_init(&vst->com, ifp, vst->tag->type); *ppmt = &vst->com; return (0); } static int vlan_snd_tag_modify(struct m_snd_tag *mst, union if_snd_tag_modify_params *params) { struct vlan_snd_tag *vst; vst = mst_to_vst(mst); return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params)); } static int vlan_snd_tag_query(struct m_snd_tag *mst, union if_snd_tag_query_params *params) { struct vlan_snd_tag *vst; vst = mst_to_vst(mst); return (vst->tag->ifp->if_snd_tag_query(vst->tag, params)); } static void vlan_snd_tag_free(struct m_snd_tag *mst) { struct vlan_snd_tag *vst; vst = mst_to_vst(mst); m_snd_tag_rele(vst->tag); free(vst, M_VLAN); } #endif Index: head/sys/net/if_vlan_var.h =================================================================== --- head/sys/net/if_vlan_var.h (revision 366916) +++ head/sys/net/if_vlan_var.h (revision 366917) @@ -1,163 +1,173 @@ /*- * Copyright 1998 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _NET_IF_VLAN_VAR_H_ #define _NET_IF_VLAN_VAR_H_ 1 /* Set the VLAN ID in an mbuf packet header non-destructively. */ #define EVL_APPLY_VLID(m, vlid) \ do { \ if ((m)->m_flags & M_VLANTAG) { \ (m)->m_pkthdr.ether_vtag &= EVL_VLID_MASK; \ (m)->m_pkthdr.ether_vtag |= (vlid); \ } else { \ (m)->m_pkthdr.ether_vtag = (vlid); \ (m)->m_flags |= M_VLANTAG; \ } \ } while (0) /* Set the priority ID in an mbuf packet header non-destructively. */ #define EVL_APPLY_PRI(m, pri) \ do { \ if ((m)->m_flags & M_VLANTAG) { \ uint16_t __vlantag = (m)->m_pkthdr.ether_vtag; \ (m)->m_pkthdr.ether_vtag |= EVL_MAKETAG( \ EVL_VLANOFTAG(__vlantag), (pri), \ EVL_CFIOFTAG(__vlantag)); \ } else { \ (m)->m_pkthdr.ether_vtag = \ EVL_MAKETAG(0, (pri), 0); \ (m)->m_flags |= M_VLANTAG; \ } \ } while (0) /* sysctl(3) tags, for compatibility purposes */ #define VLANCTL_PROTO 1 #define VLANCTL_MAX 2 /* * Configuration structure for SIOCSETVLAN and SIOCGETVLAN ioctls. */ struct vlanreq { char vlr_parent[IFNAMSIZ]; u_short vlr_tag; + u_short vlr_proto; }; #define SIOCSETVLAN SIOCSIFGENERIC #define SIOCGETVLAN SIOCGIFGENERIC #define SIOCGVLANPCP SIOCGLANPCP /* Get VLAN PCP */ #define SIOCSVLANPCP SIOCSLANPCP /* Set VLAN PCP */ #ifdef _KERNEL /* * Drivers that are capable of adding and removing the VLAN header * in hardware indicate they support this by marking IFCAP_VLAN_HWTAGGING * in if_capabilities. Drivers for hardware that is capable * of handling larger MTU's that may include a software-appended * VLAN header w/o lowering the normal MTU should mark IFCAP_VLAN_MTU * in if_capabilities; this notifies the VLAN code it can leave the * MTU on the vlan interface at the normal setting. */ /* * VLAN tags are stored in host byte order. Byte swapping may be * necessary. * * Drivers that support hardware VLAN tag stripping fill in the * received VLAN tag (containing both vlan and priority information) * into the ether_vtag mbuf packet header field: * * m->m_pkthdr.ether_vtag = vtag; // ntohs()? * m->m_flags |= M_VLANTAG; * * to mark the packet m with the specified VLAN tag. * * On output the driver should check the mbuf for the M_VLANTAG * flag to see if a VLAN tag is present and valid: * * if (m->m_flags & M_VLANTAG) { * ... = m->m_pkthdr.ether_vtag; // htons()? * ... pass tag to hardware ... * } * * Note that a driver must indicate it supports hardware VLAN * stripping/insertion by marking IFCAP_VLAN_HWTAGGING in * if_capabilities. */ /* * The 802.1q code may also tag mbufs with the PCP (priority) field for use in * other layers of the stack, in which case an m_tag will be used. This is * semantically quite different from use of the ether_vtag field, which is * defined only between the device driver and VLAN layer. */ #define MTAG_8021Q 1326104895 #define MTAG_8021Q_PCP_IN 0 /* Input priority. */ #define MTAG_8021Q_PCP_OUT 1 /* Output priority. */ + +/* + * 802.1q full tag. Proto and vid are stored in host byte order. + */ +struct ether_8021q_tag { + uint16_t proto; + uint16_t vid; + uint8_t pcp; +}; #define VLAN_CAPABILITIES(_ifp) do { \ if ((_ifp)->if_vlantrunk != NULL) \ (*vlan_trunk_cap_p)(_ifp); \ } while (0) #define VLAN_TRUNKDEV(_ifp) \ ((_ifp)->if_type == IFT_L2VLAN ? (*vlan_trunkdev_p)((_ifp)) : NULL) #define VLAN_TAG(_ifp, _vid) \ ((_ifp)->if_type == IFT_L2VLAN ? (*vlan_tag_p)((_ifp), (_vid)) : EINVAL) #define VLAN_PCP(_ifp, _pcp) \ ((_ifp)->if_type == IFT_L2VLAN ? (*vlan_pcp_p)((_ifp), (_pcp)) : EINVAL) #define VLAN_COOKIE(_ifp) \ ((_ifp)->if_type == IFT_L2VLAN ? (*vlan_cookie_p)((_ifp)) : NULL) #define VLAN_SETCOOKIE(_ifp, _cookie) \ ((_ifp)->if_type == IFT_L2VLAN ? \ (*vlan_setcookie_p)((_ifp), (_cookie)) : EINVAL) #define VLAN_DEVAT(_ifp, _vid) \ ((_ifp)->if_vlantrunk != NULL ? (*vlan_devat_p)((_ifp), (_vid)) : NULL) extern void (*vlan_trunk_cap_p)(struct ifnet *); extern struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); extern struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); extern int (*vlan_tag_p)(struct ifnet *, uint16_t *); extern int (*vlan_pcp_p)(struct ifnet *, uint16_t *); extern int (*vlan_setcookie_p)(struct ifnet *, void *); extern void *(*vlan_cookie_p)(struct ifnet *); #include /* VLAN state change events */ typedef void (*vlan_config_fn)(void *, struct ifnet *, uint16_t); typedef void (*vlan_unconfig_fn)(void *, struct ifnet *, uint16_t); EVENTHANDLER_DECLARE(vlan_config, vlan_config_fn); EVENTHANDLER_DECLARE(vlan_unconfig, vlan_unconfig_fn); #endif /* _KERNEL */ #endif /* _NET_IF_VLAN_VAR_H_ */ Index: head/tests/sys/net/if_vlan.sh =================================================================== --- head/tests/sys/net/if_vlan.sh (revision 366916) +++ head/tests/sys/net/if_vlan.sh (revision 366917) @@ -1,42 +1,220 @@ # $FreeBSD$ . $(atf_get_srcdir)/../common/vnet.subr atf_test_case "basic" "cleanup" basic_head() { atf_set descr 'Basic VLAN test' atf_set require.user root } basic_body() { vnet_init epair_vlan=$(vnet_mkepair) vnet_mkjail alcatraz ${epair_vlan}a vnet_mkjail singsing ${epair_vlan}b vlan0=$(jexec alcatraz ifconfig vlan create vlandev ${epair_vlan}a \ vlan 42) jexec alcatraz ifconfig ${epair_vlan}a up jexec alcatraz ifconfig ${vlan0} 10.0.0.1/24 up vlan1=$(jexec singsing ifconfig vlan create vlandev ${epair_vlan}b \ vlan 42) jexec singsing ifconfig ${epair_vlan}b up jexec singsing ifconfig ${vlan1} 10.0.0.2/24 up atf_check -s exit:0 -o ignore jexec singsing ping -c 1 10.0.0.1 } basic_cleanup() { vnet_cleanup } +# Simple Q-in-Q (802.1Q over 802.1ad) + +atf_test_case "qinq_simple" "cleanup" +qinq_simple_head() +{ + atf_set descr 'Simple Q-in-Q test (802.1Q over 802.1ad)' + atf_set require.user root +} + +qinq_simple_body() +{ + vnet_init + + epair_qinq=$(vnet_mkepair) + + vnet_mkjail jqinq0 ${epair_qinq}a + vnet_mkjail jqinq1 ${epair_qinq}b + + vlan5a=$(jexec jqinq0 ifconfig vlan create \ + vlandev ${epair_qinq}a vlan 5 vlanproto 802.1ad) + vlan42a=$(jexec jqinq0 ifconfig vlan create \ + vlandev ${vlan5a} vlan 42 vlanproto 802.1q) + jexec jqinq0 ifconfig ${epair_qinq}a up + jexec jqinq0 ifconfig ${vlan5a} up + jexec jqinq0 ifconfig ${vlan42a} 10.5.42.1/24 up + + vlan5b=$(jexec jqinq1 ifconfig vlan create \ + vlandev ${epair_qinq}b vlan 5 vlanproto 802.1ad) + vlan42b=$(jexec jqinq1 ifconfig vlan create \ + vlandev ${vlan5b} vlan 42 vlanproto 802.1q) + jexec jqinq1 ifconfig ${epair_qinq}b up + jexec jqinq1 ifconfig ${vlan5b} up + jexec jqinq1 ifconfig ${vlan42b} 10.5.42.2/24 up + + atf_check -s exit:0 -o ignore jexec jqinq1 ping -c 1 10.5.42.1 +} + +qinq_simple_cleanup() +{ + vnet_cleanup +} + +# Deep Q-in-Q (802.1Q over 802.1ad over 802.1ad) + +atf_test_case "qinq_deep" "cleanup" +qinq_deep_head() +{ + atf_set descr 'Deep Q-in-Q test (802.1Q over 802.1ad over 802.1ad)' + atf_set require.user root +} + +qinq_deep_body() +{ + vnet_init + + epair_qinq=$(vnet_mkepair) + + vnet_mkjail jqinq2 ${epair_qinq}a + vnet_mkjail jqinq3 ${epair_qinq}b + + vlan5a=$(jexec jqinq2 ifconfig vlan create \ + vlandev ${epair_qinq}a vlan 5 vlanproto 802.1ad) + vlan6a=$(jexec jqinq2 ifconfig vlan create \ + vlandev ${vlan5a} vlan 6 vlanproto 802.1ad) + vlan42a=$(jexec jqinq2 ifconfig vlan create \ + vlandev ${vlan6a} vlan 42 vlanproto 802.1q) + jexec jqinq2 ifconfig ${epair_qinq}a up + jexec jqinq2 ifconfig ${vlan5a} up + jexec jqinq2 ifconfig ${vlan6a} up + jexec jqinq2 ifconfig ${vlan42a} 10.6.42.1/24 up + + vlan5b=$(jexec jqinq3 ifconfig vlan create \ + vlandev ${epair_qinq}b vlan 5 vlanproto 802.1ad) + vlan6b=$(jexec jqinq3 ifconfig vlan create \ + vlandev ${vlan5b} vlan 6 vlanproto 802.1ad) + vlan42b=$(jexec jqinq3 ifconfig vlan create \ + vlandev ${vlan6b} vlan 42 vlanproto 802.1q) + jexec jqinq3 ifconfig ${epair_qinq}b up + jexec jqinq3 ifconfig ${vlan5b} up + jexec jqinq3 ifconfig ${vlan6b} up + jexec jqinq3 ifconfig ${vlan42b} 10.6.42.2/24 up + + atf_check -s exit:0 -o ignore jexec jqinq3 ping -c 1 10.6.42.1 +} + +qinq_deep_cleanup() +{ + vnet_cleanup +} + +# Legacy Q-in-Q (802.1Q over 802.1Q) + +atf_test_case "qinq_legacy" "cleanup" +qinq_legacy_head() +{ + atf_set descr 'Legacy Q-in-Q test (802.1Q over 802.1Q)' + atf_set require.user root +} + +qinq_legacy_body() +{ + vnet_init + + epair_qinq=$(vnet_mkepair) + + vnet_mkjail jqinq4 ${epair_qinq}a + vnet_mkjail jqinq5 ${epair_qinq}b + + vlan5a=$(jexec jqinq4 ifconfig vlan create \ + vlandev ${epair_qinq}a vlan 5) + vlan42a=$(jexec jqinq4 ifconfig vlan create \ + vlandev ${vlan5a} vlan 42) + jexec jqinq4 ifconfig ${epair_qinq}a up + jexec jqinq4 ifconfig ${vlan5a} up + jexec jqinq4 ifconfig ${vlan42a} 10.5.42.1/24 up + + vlan5b=$(jexec jqinq5 ifconfig vlan create \ + vlandev ${epair_qinq}b vlan 5) + vlan42b=$(jexec jqinq5 ifconfig vlan create \ + vlandev ${vlan5b} vlan 42) + jexec jqinq5 ifconfig ${epair_qinq}b up + jexec jqinq5 ifconfig ${vlan5b} up + jexec jqinq5 ifconfig ${vlan42b} 10.5.42.2/24 up + + atf_check -s exit:0 -o ignore jexec jqinq5 ping -c 1 10.5.42.1 +} + +qinq_legacy_cleanup() +{ + vnet_cleanup +} + +# Simple Q-in-Q with dot notation + +atf_test_case "qinq_dot" "cleanup" +qinq_dot_head() +{ + atf_set descr 'Simple Q-in-Q test with dot notation' + atf_set require.user root +} + +qinq_dot_body() +{ + vnet_init + + epair_qinq=$(vnet_mkepair) + + vnet_mkjail jqinq6 ${epair_qinq}a + vnet_mkjail jqinq7 ${epair_qinq}b + + jexec jqinq6 ifconfig vlan5 create \ + vlandev ${epair_qinq}a vlan 5 vlanproto 802.1ad + jexec jqinq6 ifconfig vlan5.42 create \ + vlanproto 802.1q + jexec jqinq6 ifconfig ${epair_qinq}a up + jexec jqinq6 ifconfig vlan5 up + jexec jqinq6 ifconfig vlan5.42 10.5.42.1/24 up + + vlan5b=$(jexec jqinq7 ifconfig vlan create \ + vlandev ${epair_qinq}b vlan 5 vlanproto 802.1ad) + vlan42b=$(jexec jqinq7 ifconfig vlan create \ + vlandev ${vlan5b} vlan 42 vlanproto 802.1q) + jexec jqinq7 ifconfig ${epair_qinq}b up + jexec jqinq7 ifconfig ${vlan5b} up + jexec jqinq7 ifconfig ${vlan42b} 10.5.42.2/24 up + + atf_check -s exit:0 -o ignore jexec jqinq7 ping -c 1 10.5.42.1 +} + +qinq_dot_cleanup() +{ + vnet_cleanup +} + atf_init_test_cases() { atf_add_test_case "basic" + atf_add_test_case "qinq_simple" + atf_add_test_case "qinq_deep" + atf_add_test_case "qinq_legacy" + atf_add_test_case "qinq_dot" }