Index: head/lib/libc/gen/arc4random.c =================================================================== --- head/lib/libc/gen/arc4random.c (revision 366621) +++ head/lib/libc/gen/arc4random.c (revision 366622) @@ -1,205 +1,243 @@ /* $OpenBSD: arc4random.c,v 1.55 2019/03/24 17:56:54 deraadt Exp $ */ /* * Copyright (c) 1996, David Mazieres * Copyright (c) 2008, Damien Miller * Copyright (c) 2013, Markus Friedl * Copyright (c) 2014, Theo de Raadt * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * ChaCha based random number generator for OpenBSD. */ #include __FBSDID("$FreeBSD$"); #include "namespace.h" +#if defined(__FreeBSD__) +#include +#endif #include #include #include #include #include #include #include #include #include #include #include "libc_private.h" #include "un-namespace.h" #define CHACHA_EMBED #define KEYSTREAM_ONLY #include "chacha.c" #define minimum(a, b) ((a) < (b) ? (a) : (b)) #if defined(__GNUC__) || defined(_MSC_VER) #define inline __inline #else /* __GNUC__ || _MSC_VER */ #define inline #endif /* !__GNUC__ && !_MSC_VER */ #define KEYSZ 32 #define IVSZ 8 #define BLOCKSZ 64 #define RSBUFSZ (16*BLOCKSZ) /* Marked INHERIT_ZERO, so zero'd out in fork children. */ static struct _rs { size_t rs_have; /* valid bytes at end of rs_buf */ size_t rs_count; /* bytes till reseed */ } *rs; /* Maybe be preserved in fork children, if _rs_allocate() decides. */ static struct _rsx { chacha_ctx rs_chacha; /* chacha context for random keystream */ u_char rs_buf[RSBUFSZ]; /* keystream blocks */ +#ifdef __FreeBSD__ + uint32_t rs_seed_generation; /* 32-bit userspace RNG version */ +#endif } *rsx; static inline int _rs_allocate(struct _rs **, struct _rsx **); static inline void _rs_forkdetect(void); #include "arc4random.h" static inline void _rs_rekey(u_char *dat, size_t datlen); static inline void _rs_init(u_char *buf, size_t n) { if (n < KEYSZ + IVSZ) return; if (rs == NULL) { if (_rs_allocate(&rs, &rsx) == -1) _exit(1); } chacha_keysetup(&rsx->rs_chacha, buf, KEYSZ * 8); chacha_ivsetup(&rsx->rs_chacha, buf + KEYSZ, NULL); } static void _rs_stir(void) { u_char rnd[KEYSZ + IVSZ]; +#if defined(__FreeBSD__) + bool need_init; + + /* + * De-couple allocation (which locates the vdso_fxrngp pointer in + * auxinfo) from initialization. This allows us to read the root seed + * version before we fetch system entropy, maintaining the invariant + * that the PRF was seeded with entropy from rs_seed_generation or a + * later generation. But never seeded from an earlier generation. + * This invariant prevents us from missing a root reseed event. + */ + need_init = false; + if (rs == NULL) { + if (_rs_allocate(&rs, &rsx) == -1) + abort(); + need_init = true; + } + /* + * Transition period: new userspace on old kernel. This should become + * a hard error at some point, if the scheme is adopted. + */ + if (vdso_fxrngp != NULL) + rsx->rs_seed_generation = + fxrng_load_acq_generation(&vdso_fxrngp->fx_generation32); +#endif + if (getentropy(rnd, sizeof rnd) == -1) _getentropy_fail(); +#if !defined(__FreeBSD__) if (!rs) _rs_init(rnd, sizeof(rnd)); +#else /* __FreeBSD__ */ + assert(rs != NULL); + if (need_init) + _rs_init(rnd, sizeof(rnd)); +#endif else _rs_rekey(rnd, sizeof(rnd)); explicit_bzero(rnd, sizeof(rnd)); /* discard source seed */ /* invalidate rs_buf */ rs->rs_have = 0; memset(rsx->rs_buf, 0, sizeof(rsx->rs_buf)); rs->rs_count = 1600000; } static inline void _rs_stir_if_needed(size_t len) { _rs_forkdetect(); if (!rs || rs->rs_count <= len) _rs_stir(); if (rs->rs_count <= len) rs->rs_count = 0; else rs->rs_count -= len; } static inline void _rs_rekey(u_char *dat, size_t datlen) { #ifndef KEYSTREAM_ONLY memset(rsx->rs_buf, 0, sizeof(rsx->rs_buf)); #endif /* fill rs_buf with the keystream */ chacha_encrypt_bytes(&rsx->rs_chacha, rsx->rs_buf, rsx->rs_buf, sizeof(rsx->rs_buf)); /* mix in optional user provided data */ if (dat) { size_t i, m; m = minimum(datlen, KEYSZ + IVSZ); for (i = 0; i < m; i++) rsx->rs_buf[i] ^= dat[i]; } /* immediately reinit for backtracking resistance */ _rs_init(rsx->rs_buf, KEYSZ + IVSZ); memset(rsx->rs_buf, 0, KEYSZ + IVSZ); rs->rs_have = sizeof(rsx->rs_buf) - KEYSZ - IVSZ; } static inline void _rs_random_buf(void *_buf, size_t n) { u_char *buf = (u_char *)_buf; u_char *keystream; size_t m; _rs_stir_if_needed(n); while (n > 0) { if (rs->rs_have > 0) { m = minimum(n, rs->rs_have); keystream = rsx->rs_buf + sizeof(rsx->rs_buf) - rs->rs_have; memcpy(buf, keystream, m); memset(keystream, 0, m); buf += m; n -= m; rs->rs_have -= m; } if (rs->rs_have == 0) _rs_rekey(NULL, 0); } } static inline void _rs_random_u32(uint32_t *val) { u_char *keystream; _rs_stir_if_needed(sizeof(*val)); if (rs->rs_have < sizeof(*val)) _rs_rekey(NULL, 0); keystream = rsx->rs_buf + sizeof(rsx->rs_buf) - rs->rs_have; memcpy(val, keystream, sizeof(*val)); memset(keystream, 0, sizeof(*val)); rs->rs_have -= sizeof(*val); } uint32_t arc4random(void) { uint32_t val; _ARC4_LOCK(); _rs_random_u32(&val); _ARC4_UNLOCK(); return val; } void arc4random_buf(void *buf, size_t n) { _ARC4_LOCK(); _rs_random_buf(buf, n); _ARC4_UNLOCK(); } Index: head/lib/libc/gen/arc4random.h =================================================================== --- head/lib/libc/gen/arc4random.h (revision 366621) +++ head/lib/libc/gen/arc4random.h (revision 366622) @@ -1,76 +1,143 @@ /* $OpenBSD: arc4random.h,v 1.4 2015/01/15 06:57:18 deraadt Exp $ */ /* * Copyright (c) 1996, David Mazieres * Copyright (c) 2008, Damien Miller * Copyright (c) 2013, Markus Friedl * Copyright (c) 2014, Theo de Raadt * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $FreeBSD$ */ /* * Stub functions for portability. */ +#include +#include #include +#include /* for sys/vdso.h only. */ +#include +#include +#include +#include #include +#include +#include +/* + * The kernel root seed version is a 64-bit counter, but we truncate it to a + * 32-bit value in userspace for the convenience of 32-bit platforms. 32-bit + * rollover is not possible with the current reseed interval (1 hour at limit) + * without dynamic addition of new random devices (which also force a reseed in + * the FXRNG design). We don't have any dynamic device mechanism at this + * time, and anyway something else is very wrong if billions of new devices are + * being added. + * + * As is, it takes roughly 456,000 years of runtime to overflow the 32-bit + * version. + */ +#define fxrng_load_acq_generation(x) atomic_load_acq_32(x) +static struct vdso_fxrng_generation_1 *vdso_fxrngp; + static pthread_mutex_t arc4random_mtx = PTHREAD_MUTEX_INITIALIZER; #define _ARC4_LOCK() \ do { \ if (__isthreaded) \ _pthread_mutex_lock(&arc4random_mtx); \ } while (0) #define _ARC4_UNLOCK() \ do { \ if (__isthreaded) \ _pthread_mutex_unlock(&arc4random_mtx); \ } while (0) static inline void _getentropy_fail(void) { raise(SIGKILL); } +static inline void +_rs_initialize_fxrng(void) +{ + struct vdso_fxrng_generation_1 *fxrngp; + int error; + + error = _elf_aux_info(AT_FXRNG, &fxrngp, sizeof(fxrngp)); + if (error != 0) { + /* + * New userspace on an old or !RANDOM_FENESTRASX kernel; or an + * arch that does not have a VDSO page. + */ + return; + } + + /* Old userspace on newer kernel. */ + if (fxrngp->fx_vdso_version != VDSO_FXRNG_VER_1) + return; + + vdso_fxrngp = fxrngp; +} + static inline int _rs_allocate(struct _rs **rsp, struct _rsx **rsxp) { struct { struct _rs rs; struct _rsx rsx; } *p; if ((p = mmap(NULL, sizeof(*p), PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0)) == MAP_FAILED) return (-1); /* Allow bootstrapping arc4random.c on Linux/macOS */ #ifdef INHERIT_ZERO if (minherit(p, sizeof(*p), INHERIT_ZERO) == -1) { munmap(p, sizeof(*p)); return (-1); } #endif + + _rs_initialize_fxrng(); + *rsp = &p->rs; *rsxp = &p->rsx; return (0); } +/* + * This isn't only detecting fork. We're also using the existing callback from + * _rs_stir_if_needed() to force arc4random(3) to reseed if the fenestrasX root + * seed version has changed. (That is, the root random(4) has reseeded from + * pooled entropy.) + */ static inline void _rs_forkdetect(void) { + /* Detect fork (minherit(2) INHERIT_ZERO). */ + if (__predict_false(rs == NULL || rsx == NULL)) + return; + /* If present, detect kernel FenestrasX seed version change. */ + if (vdso_fxrngp == NULL) + return; + if (__predict_true(rsx->rs_seed_generation == + fxrng_load_acq_generation(&vdso_fxrngp->fx_generation32))) + return; + + /* Invalidate rs_buf to force "stir" (reseed). */ + memset(rs, 0, sizeof(*rs)); } Index: head/lib/libc/gen/auxv.c =================================================================== --- head/lib/libc/gen/auxv.c (revision 366621) +++ head/lib/libc/gen/auxv.c (revision 366622) @@ -1,363 +1,378 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 2010, 2012 Konstantin Belousov . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "namespace.h" #include #include #include #include #include #include #include "un-namespace.h" #include "libc_private.h" extern char **environ; extern int _DYNAMIC; #pragma weak _DYNAMIC void *__elf_aux_vector; static pthread_once_t aux_vector_once = PTHREAD_ONCE_INIT; static void init_aux_vector_once(void) { Elf_Addr *sp; sp = (Elf_Addr *)environ; while (*sp++ != 0) ; __elf_aux_vector = (Elf_Auxinfo *)sp; } void __init_elf_aux_vector(void) { if (&_DYNAMIC != NULL) return; _once(&aux_vector_once, init_aux_vector_once); } static pthread_once_t aux_once = PTHREAD_ONCE_INIT; static int pagesize, osreldate, canary_len, ncpus, pagesizes_len, bsdflags; static int hwcap_present, hwcap2_present; static char *canary, *pagesizes, *execpath; static void *ps_strings, *timekeep; static u_long hwcap, hwcap2; +static void *fxrng_seed_version; #ifdef __powerpc__ static int powerpc_new_auxv_format = 0; static void _init_aux_powerpc_fixup(void); int _powerpc_elf_aux_info(int, void *, int); #endif static void init_aux(void) { Elf_Auxinfo *aux; for (aux = __elf_aux_vector; aux->a_type != AT_NULL; aux++) { switch (aux->a_type) { case AT_BSDFLAGS: bsdflags = aux->a_un.a_val; break; case AT_CANARY: canary = (char *)(aux->a_un.a_ptr); break; case AT_CANARYLEN: canary_len = aux->a_un.a_val; break; case AT_EXECPATH: execpath = (char *)(aux->a_un.a_ptr); break; case AT_HWCAP: hwcap_present = 1; hwcap = (u_long)(aux->a_un.a_val); break; case AT_HWCAP2: hwcap2_present = 1; hwcap2 = (u_long)(aux->a_un.a_val); break; case AT_PAGESIZES: pagesizes = (char *)(aux->a_un.a_ptr); break; case AT_PAGESIZESLEN: pagesizes_len = aux->a_un.a_val; break; case AT_PAGESZ: pagesize = aux->a_un.a_val; break; case AT_OSRELDATE: osreldate = aux->a_un.a_val; break; case AT_NCPUS: ncpus = aux->a_un.a_val; break; case AT_TIMEKEEP: timekeep = aux->a_un.a_ptr; break; case AT_PS_STRINGS: ps_strings = aux->a_un.a_ptr; break; + + case AT_FXRNG: + fxrng_seed_version = aux->a_un.a_ptr; + break; #ifdef __powerpc__ /* * Since AT_STACKPROT is always set, and the common * value 23 is mutually exclusive with the legacy powerpc * value 21, the existence of AT_STACKPROT proves we are * on the common format. */ case AT_STACKPROT: /* 23 */ powerpc_new_auxv_format = 1; break; #endif } } #ifdef __powerpc__ if (!powerpc_new_auxv_format) _init_aux_powerpc_fixup(); #endif } #ifdef __powerpc__ static void _init_aux_powerpc_fixup(void) { Elf_Auxinfo *aux; /* * Before 1300070, PowerPC platforms had nonstandard numbering for * the aux vector. When running old binaries, the kernel will pass * the vector using the old numbering. Reload affected variables. */ for (aux = __elf_aux_vector; aux->a_type != AT_NULL; aux++) { switch (aux->a_type) { case AT_OLD_CANARY: canary = (char *)(aux->a_un.a_ptr); break; case AT_OLD_CANARYLEN: canary_len = aux->a_un.a_val; break; case AT_OLD_EXECPATH: execpath = (char *)(aux->a_un.a_ptr); break; case AT_OLD_PAGESIZES: pagesizes = (char *)(aux->a_un.a_ptr); break; case AT_OLD_PAGESIZESLEN: pagesizes_len = aux->a_un.a_val; break; case AT_OLD_OSRELDATE: osreldate = aux->a_un.a_val; break; case AT_OLD_NCPUS: ncpus = aux->a_un.a_val; break; } } } int _powerpc_elf_aux_info(int aux, void *buf, int buflen) { /* * If we are in the old auxv format, we need to translate the aux * parameter of elf_aux_info() calls into the common auxv format. * Internal libc calls always use the common format, and they * directly call _elf_aux_info instead of using the weak symbol. */ if (!powerpc_new_auxv_format) { switch (aux) { case AT_OLD_EXECPATH: aux = AT_EXECPATH; break; case AT_OLD_CANARY: aux = AT_CANARY; break; case AT_OLD_CANARYLEN: aux = AT_CANARYLEN; break; case AT_OLD_OSRELDATE: aux = AT_OSRELDATE; break; case AT_OLD_NCPUS: aux = AT_NCPUS; break; case AT_OLD_PAGESIZES: aux = AT_PAGESIZES; break; case AT_OLD_PAGESIZESLEN: aux = AT_PAGESIZESLEN; break; case AT_OLD_STACKPROT: aux = AT_STACKPROT; break; } } return _elf_aux_info(aux, buf, buflen); } __weak_reference(_powerpc_elf_aux_info, elf_aux_info); #else __weak_reference(_elf_aux_info, elf_aux_info); #endif int _elf_aux_info(int aux, void *buf, int buflen) { int res; __init_elf_aux_vector(); if (__elf_aux_vector == NULL) return (ENOSYS); _once(&aux_once, init_aux); if (buflen < 0) return (EINVAL); switch (aux) { case AT_CANARY: if (canary != NULL && canary_len >= buflen) { memcpy(buf, canary, buflen); memset(canary, 0, canary_len); canary = NULL; res = 0; } else res = ENOENT; break; case AT_EXECPATH: if (execpath == NULL) res = ENOENT; else if (buf == NULL) res = EINVAL; else { if (strlcpy(buf, execpath, buflen) >= (unsigned int)buflen) res = EINVAL; else res = 0; } break; case AT_HWCAP: if (hwcap_present && buflen == sizeof(u_long)) { *(u_long *)buf = hwcap; res = 0; } else res = ENOENT; break; case AT_HWCAP2: if (hwcap2_present && buflen == sizeof(u_long)) { *(u_long *)buf = hwcap2; res = 0; } else res = ENOENT; break; case AT_PAGESIZES: if (pagesizes != NULL && pagesizes_len >= buflen) { memcpy(buf, pagesizes, buflen); res = 0; } else res = ENOENT; break; case AT_PAGESZ: if (buflen == sizeof(int)) { if (pagesize != 0) { *(int *)buf = pagesize; res = 0; } else res = ENOENT; } else res = EINVAL; break; case AT_OSRELDATE: if (buflen == sizeof(int)) { if (osreldate != 0) { *(int *)buf = osreldate; res = 0; } else res = ENOENT; } else res = EINVAL; break; case AT_NCPUS: if (buflen == sizeof(int)) { if (ncpus != 0) { *(int *)buf = ncpus; res = 0; } else res = ENOENT; } else res = EINVAL; break; case AT_TIMEKEEP: if (buflen == sizeof(void *)) { if (timekeep != NULL) { *(void **)buf = timekeep; res = 0; } else res = ENOENT; } else res = EINVAL; break; case AT_BSDFLAGS: if (buflen == sizeof(int)) { *(int *)buf = bsdflags; res = 0; } else res = EINVAL; break; case AT_PS_STRINGS: if (buflen == sizeof(void *)) { if (ps_strings != NULL) { *(void **)buf = ps_strings; + res = 0; + } else + res = ENOENT; + } else + res = EINVAL; + break; + case AT_FXRNG: + if (buflen == sizeof(void *)) { + if (fxrng_seed_version != NULL) { + *(void **)buf = fxrng_seed_version; res = 0; } else res = ENOENT; } else res = EINVAL; break; default: res = ENOENT; break; } return (res); } Index: head/sys/amd64/amd64/elf_machdep.c =================================================================== --- head/sys/amd64/amd64/elf_machdep.c (revision 366621) +++ head/sys/amd64/amd64/elf_machdep.c (revision 366622) @@ -1,426 +1,426 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 1996-1998 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sysentvec elf64_freebsd_sysvec_la48 = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, .sv_name = "FreeBSD ELF64", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS_LA48, .sv_usrstack = USRSTACK_LA48, .sv_psstrings = PS_STRINGS_LA48, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_FREEBSD | SV_ASLR | SV_LP64 | SV_SHP | - SV_TIMEKEEP, + SV_TIMEKEEP | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE_LA48, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_stackgap = elf64_stackgap, }; struct sysentvec elf64_freebsd_sysvec_la57 = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, .sv_name = "FreeBSD ELF64", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS_LA57, .sv_usrstack = USRSTACK_LA57, .sv_psstrings = PS_STRINGS_LA57, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_FREEBSD | SV_ASLR | SV_LP64 | SV_SHP | - SV_TIMEKEEP, + SV_TIMEKEEP | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE_LA57, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_stackgap = elf64_stackgap, }; static void amd64_init_sysvecs(void *arg) { amd64_lower_shared_page(&elf64_freebsd_sysvec_la48); if (la57) { exec_sysvec_init(&elf64_freebsd_sysvec_la57); exec_sysvec_init_secondary(&elf64_freebsd_sysvec_la57, &elf64_freebsd_sysvec_la48); } else { exec_sysvec_init(&elf64_freebsd_sysvec_la48); } } SYSINIT(elf64_sysvec, SI_SUB_EXEC, SI_ORDER_ANY, amd64_init_sysvecs, NULL); void amd64_lower_shared_page(struct sysentvec *sv) { if (hw_lower_amd64_sharedpage != 0) { sv->sv_maxuser -= PAGE_SIZE; sv->sv_shared_page_base -= PAGE_SIZE; sv->sv_usrstack -= PAGE_SIZE; sv->sv_psstrings -= PAGE_SIZE; } } static boolean_t freebsd_brand_info_la57_img_compat(struct image_params *imgp, int32_t *osrel __unused, uint32_t *fctl0) { if ((imgp->proc->p_md.md_flags & P_MD_LA57) != 0) return (TRUE); if (fctl0 == NULL || (*fctl0 & NT_FREEBSD_FCTL_LA48) != 0) return (FALSE); if ((imgp->proc->p_md.md_flags & P_MD_LA48) != 0) return (FALSE); return (TRUE); } static Elf64_Brandinfo freebsd_brand_info_la48 = { .brand = ELFOSABI_FREEBSD, .machine = EM_X86_64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec_la48, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE, }; static Elf64_Brandinfo freebsd_brand_info_la57 = { .brand = ELFOSABI_FREEBSD, .machine = EM_X86_64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec_la57, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE, .header_supported = freebsd_brand_info_la57_img_compat, }; static void sysinit_register_elf64_brand_entries(void *arg __unused) { /* * _57 must go first so it can either claim the image or hand * it to _48. */ if (la57) elf64_insert_brand_entry(&freebsd_brand_info_la57); elf64_insert_brand_entry(&freebsd_brand_info_la48); } SYSINIT(elf64, SI_SUB_EXEC, SI_ORDER_FIRST, sysinit_register_elf64_brand_entries, NULL); static Elf64_Brandinfo freebsd_brand_oinfo = { .brand = ELFOSABI_FREEBSD, .machine = EM_X86_64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/usr/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec_la48, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(oelf64, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t)elf64_insert_brand_entry, &freebsd_brand_oinfo); static Elf64_Brandinfo kfreebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_X86_64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/lib/ld-kfreebsd-x86-64.so.1", .sysvec = &elf64_freebsd_sysvec_la48, .interp_newpath = NULL, .brand_note = &elf64_kfreebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE_MANDATORY }; SYSINIT(kelf64, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t)elf64_insert_brand_entry, &kfreebsd_brand_info); void elf64_dump_thread(struct thread *td, void *dst, size_t *off) { void *buf; size_t len; len = 0; if (use_xsave) { if (dst != NULL) { fpugetregs(td); len += elf64_populate_note(NT_X86_XSTATE, get_pcb_user_save_td(td), dst, cpu_max_ext_state_size, &buf); *(uint64_t *)((char *)buf + X86_XSTATE_XCR0_OFFSET) = xsave_mask; } else len += elf64_populate_note(NT_X86_XSTATE, NULL, NULL, cpu_max_ext_state_size, NULL); } *off = len; } bool elf_is_ifunc_reloc(Elf_Size r_info) { return (ELF_R_TYPE(r_info) == R_X86_64_IRELATIVE); } /* Process one elf relocation with addend. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, bool late_ifunc, elf_lookup_fn lookup) { Elf64_Addr *where, val; Elf32_Addr *where32, val32; Elf_Addr addr; Elf_Addr addend; Elf_Size rtype, symidx; const Elf_Rel *rel; const Elf_Rela *rela; int error; switch (type) { case ELF_RELOC_REL: rel = (const Elf_Rel *)data; where = (Elf_Addr *) (relocbase + rel->r_offset); rtype = ELF_R_TYPE(rel->r_info); symidx = ELF_R_SYM(rel->r_info); /* Addend is 32 bit on 32 bit relocs */ switch (rtype) { case R_X86_64_PC32: case R_X86_64_32S: case R_X86_64_PLT32: addend = *(Elf32_Addr *)where; break; default: addend = *where; break; } break; case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf_Addr *) (relocbase + rela->r_offset); addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: panic("unknown reloc type %d\n", type); } if (late_ifunc) { KASSERT(type == ELF_RELOC_RELA, ("Only RELA ifunc relocations are supported")); if (rtype != R_X86_64_IRELATIVE) return (0); } switch (rtype) { case R_X86_64_NONE: /* none */ break; case R_X86_64_64: /* S + A */ error = lookup(lf, symidx, 1, &addr); val = addr + addend; if (error != 0) return (-1); if (*where != val) *where = val; break; case R_X86_64_PC32: /* S + A - P */ case R_X86_64_PLT32: /* L + A - P, L is PLT location for the symbol, which we treat as S */ error = lookup(lf, symidx, 1, &addr); where32 = (Elf32_Addr *)where; val32 = (Elf32_Addr)(addr + addend - (Elf_Addr)where); if (error != 0) return (-1); if (*where32 != val32) *where32 = val32; break; case R_X86_64_32S: /* S + A sign extend */ error = lookup(lf, symidx, 1, &addr); val32 = (Elf32_Addr)(addr + addend); where32 = (Elf32_Addr *)where; if (error != 0) return (-1); if (*where32 != val32) *where32 = val32; break; case R_X86_64_COPY: /* none */ /* * There shouldn't be copy relocations in kernel * objects. */ printf("kldload: unexpected R_COPY relocation, " "symbol index %ld\n", symidx); return (-1); case R_X86_64_GLOB_DAT: /* S */ case R_X86_64_JMP_SLOT: /* XXX need addend + offset */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); if (*where != addr) *where = addr; break; case R_X86_64_RELATIVE: /* B + A */ addr = elf_relocaddr(lf, relocbase + addend); val = addr; if (*where != val) *where = val; break; case R_X86_64_IRELATIVE: addr = relocbase + addend; val = ((Elf64_Addr (*)(void))addr)(); if (*where != val) *where = val; break; default: printf("kldload: unexpected relocation type %ld, " "symbol index %ld\n", rtype, symidx); return (-1); } return (0); } int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, false, lookup)); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, false, lookup)); } int elf_reloc_late(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, true, lookup)); } int elf_cpu_load_file(linker_file_t lf __unused) { return (0); } int elf_cpu_unload_file(linker_file_t lf __unused) { return (0); } int elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused) { return (0); } Index: head/sys/arm/arm/elf_machdep.c =================================================================== --- head/sys/arm/arm/elf_machdep.c (revision 366621) +++ head/sys/arm/arm/elf_machdep.c (revision 366622) @@ -1,344 +1,344 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 1996-1998 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VFP #include #endif #include "opt_ddb.h" /* for OPT_DDB */ #include "opt_global.h" /* for OPT_KDTRACE_HOOKS */ #include "opt_stack.h" /* for OPT_STACK */ static boolean_t elf32_arm_abi_supported(struct image_params *, int32_t *, uint32_t *); u_long elf_hwcap; u_long elf_hwcap2; struct sysentvec elf32_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, .sv_name = "FreeBSD ELF32", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = #if __ARM_ARCH >= 6 - SV_ASLR | SV_SHP | SV_TIMEKEEP | + SV_ASLR | SV_SHP | SV_TIMEKEEP | SV_RNG_SEED_VER | #endif SV_ABI_FREEBSD | SV_ILP32 | SV_ASLR, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_hwcap = &elf_hwcap, .sv_hwcap2 = &elf_hwcap2, }; INIT_SYSENTVEC(elf32_sysvec, &elf32_freebsd_sysvec); static Elf32_Brandinfo freebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_ARM, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf32_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE, .header_supported= elf32_arm_abi_supported, }; SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t) elf32_insert_brand_entry, &freebsd_brand_info); static boolean_t elf32_arm_abi_supported(struct image_params *imgp, int32_t *osrel __unused, uint32_t *fctl0 __unused) { const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; /* * When configured for EABI, FreeBSD supports EABI vesions 4 and 5. */ if (EF_ARM_EABI_VERSION(hdr->e_flags) < EF_ARM_EABI_FREEBSD_MIN) { if (bootverbose) uprintf("Attempting to execute non EABI binary (rev %d) image %s", EF_ARM_EABI_VERSION(hdr->e_flags), imgp->args->fname); return (FALSE); } return (TRUE); } void elf32_dump_thread(struct thread *td, void *dst, size_t *off) { #ifdef VFP mcontext_vfp_t vfp; if (dst != NULL) { get_vfpcontext(td, &vfp); *off = elf32_populate_note(NT_ARM_VFP, &vfp, dst, sizeof(vfp), NULL); } else *off = elf32_populate_note(NT_ARM_VFP, NULL, NULL, sizeof(vfp), NULL); #endif } bool elf_is_ifunc_reloc(Elf_Size r_info __unused) { return (false); } /* * It is possible for the compiler to emit relocations for unaligned data. * We handle this situation with these inlines. */ #define RELOC_ALIGNED_P(x) \ (((uintptr_t)(x) & (sizeof(void *) - 1)) == 0) static __inline Elf_Addr load_ptr(Elf_Addr *where) { Elf_Addr res; if (RELOC_ALIGNED_P(where)) return *where; memcpy(&res, where, sizeof(res)); return (res); } static __inline void store_ptr(Elf_Addr *where, Elf_Addr val) { if (RELOC_ALIGNED_P(where)) *where = val; else memcpy(where, &val, sizeof(val)); } #undef RELOC_ALIGNED_P /* Process one elf relocation with addend. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, int local, elf_lookup_fn lookup) { Elf_Addr *where; Elf_Addr addr; Elf_Addr addend; Elf_Word rtype, symidx; const Elf_Rel *rel; const Elf_Rela *rela; int error; switch (type) { case ELF_RELOC_REL: rel = (const Elf_Rel *)data; where = (Elf_Addr *) (relocbase + rel->r_offset); addend = load_ptr(where); rtype = ELF_R_TYPE(rel->r_info); symidx = ELF_R_SYM(rel->r_info); break; case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf_Addr *) (relocbase + rela->r_offset); addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: panic("unknown reloc type %d\n", type); } if (local) { if (rtype == R_ARM_RELATIVE) { /* A + B */ addr = elf_relocaddr(lf, relocbase + addend); if (load_ptr(where) != addr) store_ptr(where, addr); } return (0); } switch (rtype) { case R_ARM_NONE: /* none */ break; case R_ARM_ABS32: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); store_ptr(where, addr + load_ptr(where)); break; case R_ARM_COPY: /* none */ /* * There shouldn't be copy relocations in kernel * objects. */ printf("kldload: unexpected R_COPY relocation, " "symbol index %d\n", symidx); return (-1); break; case R_ARM_JUMP_SLOT: error = lookup(lf, symidx, 1, &addr); if (error == 0) { store_ptr(where, addr); return (0); } return (-1); case R_ARM_RELATIVE: break; default: printf("kldload: unexpected relocation type %d, " "symbol index %d\n", rtype, symidx); return (-1); } return(0); } int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 0, lookup)); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 1, lookup)); } int elf_cpu_load_file(linker_file_t lf) { /* * The pmap code does not do an icache sync upon establishing executable * mappings in the kernel pmap. It's an optimization based on the fact * that kernel memory allocations always have EXECUTABLE protection even * when the memory isn't going to hold executable code. The only time * kernel memory holding instructions does need a sync is after loading * a kernel module, and that's when this function gets called. * * This syncs data and instruction caches after loading a module. We * don't worry about the kernel itself (lf->id is 1) as locore.S did * that on entry. Even if data cache maintenance was done by IO code, * the relocation fixup process creates dirty cache entries that we must * write back before doing icache sync. The instruction cache sync also * invalidates the branch predictor cache on platforms that have one. */ if (lf->id == 1) return (0); #if __ARM_ARCH >= 6 dcache_wb_pou((vm_offset_t)lf->address, (vm_size_t)lf->size); icache_inv_all(); #else cpu_dcache_wb_range((vm_offset_t)lf->address, (vm_size_t)lf->size); cpu_l2cache_wb_range((vm_offset_t)lf->address, (vm_size_t)lf->size); cpu_icache_sync_range((vm_offset_t)lf->address, (vm_size_t)lf->size); #endif #if defined(DDB) || defined(KDTRACE_HOOKS) || defined(STACK) /* * Inform the stack(9) code of the new module, so it can acquire its * per-module unwind data. */ unwind_module_loaded(lf); #endif return (0); } int elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused) { return (0); } int elf_cpu_unload_file(linker_file_t lf) { #if defined(DDB) || defined(KDTRACE_HOOKS) || defined(STACK) /* Inform the stack(9) code that this module is gone. */ unwind_module_unloaded(lf); #endif return (0); } Index: head/sys/arm64/arm64/elf32_machdep.c =================================================================== --- head/sys/arm64/arm64/elf32_machdep.c (revision 366621) +++ head/sys/arm64/arm64/elf32_machdep.c (revision 366622) @@ -1,259 +1,260 @@ /*- * Copyright (c) 2014, 2015 The FreeBSD Foundation. * Copyright (c) 2014, 2017 Andrew Turner. * Copyright (c) 2018 Olivier Houchard * All rights reserved. * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define __ELF_WORD_SIZE 32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FREEBSD32_MINUSER 0x00001000 #define FREEBSD32_MAXUSER ((1ul << 32) - PAGE_SIZE) #define FREEBSD32_SHAREDPAGE (FREEBSD32_MAXUSER - PAGE_SIZE) #define FREEBSD32_USRSTACK FREEBSD32_SHAREDPAGE extern const char *freebsd32_syscallnames[]; extern char aarch32_sigcode[]; extern int sz_aarch32_sigcode; static int freebsd32_fetch_syscall_args(struct thread *td); static void freebsd32_setregs(struct thread *td, struct image_params *imgp, u_long stack); static void freebsd32_set_syscall_retval(struct thread *, int); static boolean_t elf32_arm_abi_supported(struct image_params *, int32_t *, uint32_t *); extern void freebsd32_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask); static struct sysentvec elf32_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = freebsd32_sysent, .sv_transtrap = NULL, .sv_fixup = elf32_freebsd_fixup, .sv_sendsig = freebsd32_sendsig, .sv_sigcode = aarch32_sigcode, .sv_szsigcode = &sz_aarch32_sigcode, .sv_name = "FreeBSD ELF32", .sv_coredump = elf32_coredump, .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = FREEBSD32_MINUSER, .sv_maxuser = FREEBSD32_MAXUSER, .sv_usrstack = FREEBSD32_USRSTACK, .sv_psstrings = FREEBSD32_PS_STRINGS, .sv_stackprot = VM_PROT_READ | VM_PROT_WRITE, .sv_copyout_auxargs = elf32_freebsd_copyout_auxargs, .sv_copyout_strings = freebsd32_copyout_strings, .sv_setregs = freebsd32_setregs, .sv_fixlimit = NULL, // XXX .sv_maxssiz = NULL, - .sv_flags = SV_ABI_FREEBSD | SV_ILP32 | SV_SHP | SV_TIMEKEEP, + .sv_flags = SV_ABI_FREEBSD | SV_ILP32 | SV_SHP | SV_TIMEKEEP | + SV_RNG_SEED_VER, .sv_set_syscall_retval = freebsd32_set_syscall_retval, .sv_fetch_syscall_args = freebsd32_fetch_syscall_args, .sv_syscallnames = freebsd32_syscallnames, .sv_shared_page_base = FREEBSD32_SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, }; INIT_SYSENTVEC(elf32_sysvec, &elf32_freebsd_sysvec); static Elf32_Brandinfo freebsd32_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_ARM, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf32_freebsd_sysvec, .interp_newpath = "/libexec/ld-elf32.so.1", .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE, .header_supported= elf32_arm_abi_supported, }; SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)elf32_insert_brand_entry, &freebsd32_brand_info); static boolean_t elf32_arm_abi_supported(struct image_params *imgp, int32_t *osrel __unused, uint32_t *fctl0 __unused) { const Elf32_Ehdr *hdr; /* Check if we support AArch32 */ if (ID_AA64PFR0_EL0_VAL(READ_SPECIALREG(id_aa64pfr0_el1)) != ID_AA64PFR0_EL0_64_32) return (FALSE); #define EF_ARM_EABI_VERSION(x) (((x) & EF_ARM_EABIMASK) >> 24) #define EF_ARM_EABI_FREEBSD_MIN 4 hdr = (const Elf32_Ehdr *)imgp->image_header; if (EF_ARM_EABI_VERSION(hdr->e_flags) < EF_ARM_EABI_FREEBSD_MIN) { if (bootverbose) uprintf("Attempting to execute non EABI binary " "(rev %d) image %s", EF_ARM_EABI_VERSION(hdr->e_flags), imgp->args->fname); return (FALSE); } return (TRUE); } static int freebsd32_fetch_syscall_args(struct thread *td) { struct proc *p; register_t *ap; struct syscall_args *sa; int error, i, nap, narg; unsigned int args[4]; nap = 4; p = td->td_proc; ap = td->td_frame->tf_x; sa = &td->td_sa; /* r7 is the syscall id */ sa->code = td->td_frame->tf_x[7]; if (sa->code == SYS_syscall) { sa->code = *ap++; nap--; } else if (sa->code == SYS___syscall) { sa->code = ap[1]; nap -= 2; ap += 2; } if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; narg = sa->callp->sy_narg; for (i = 0; i < nap; i++) sa->args[i] = ap[i]; if (narg > nap) { if (narg - nap > nitems(args)) panic("Too many system call arguiments"); error = copyin((void *)td->td_frame->tf_x[13], args, (narg - nap) * sizeof(int)); for (i = 0; i < (narg - nap); i++) sa->args[i + nap] = args[i]; } td->td_retval[0] = 0; td->td_retval[1] = 0; return (0); } static void freebsd32_set_syscall_retval(struct thread *td, int error) { struct trapframe *frame; frame = td->td_frame; switch (error) { case 0: frame->tf_x[0] = td->td_retval[0]; frame->tf_x[1] = td->td_retval[1]; frame->tf_spsr &= ~PSR_C; break; case ERESTART: /* * Reconstruct the pc to point at the swi. */ if ((frame->tf_spsr & PSR_T) != 0) frame->tf_elr -= 2; //THUMB_INSN_SIZE; else frame->tf_elr -= 4; //INSN_SIZE; break; case EJUSTRETURN: /* nothing to do */ break; default: frame->tf_x[0] = error; frame->tf_spsr |= PSR_C; break; } } static void freebsd32_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *tf = td->td_frame; memset(tf, 0, sizeof(struct trapframe)); /* * We need to set x0 for init as it doesn't call * cpu_set_syscall_retval to copy the value. We also * need to set td_retval for the cases where we do. */ tf->tf_x[0] = stack; /* SP_usr is mapped to x13 */ tf->tf_x[13] = stack; /* LR_usr is mapped to x14 */ tf->tf_x[14] = imgp->entry_addr; tf->tf_elr = imgp->entry_addr; tf->tf_spsr = PSR_M_32; } void elf32_dump_thread(struct thread *td, void *dst, size_t *off) { /* XXX: VFP */ } Index: head/sys/arm64/arm64/elf_machdep.c =================================================================== --- head/sys/arm64/arm64/elf_machdep.c (revision 366621) +++ head/sys/arm64/arm64/elf_machdep.c (revision 366622) @@ -1,285 +1,285 @@ /*- * Copyright (c) 2014, 2015 The FreeBSD Foundation. * Copyright (c) 2014 Andrew Turner. * All rights reserved. * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "linker_if.h" u_long __read_frequently elf_hwcap; u_long __read_frequently elf_hwcap2; static struct sysentvec elf64_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, .sv_name = "FreeBSD ELF64", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_READ | VM_PROT_WRITE, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_SHP | SV_TIMEKEEP | SV_ABI_FREEBSD | SV_LP64 | - SV_ASLR, + SV_ASLR | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_hwcap = &elf_hwcap, .sv_hwcap2 = &elf_hwcap2, }; INIT_SYSENTVEC(elf64_sysvec, &elf64_freebsd_sysvec); static Elf64_Brandinfo freebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_AARCH64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(elf64, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)elf64_insert_brand_entry, &freebsd_brand_info); void elf64_dump_thread(struct thread *td __unused, void *dst __unused, size_t *off __unused) { } bool elf_is_ifunc_reloc(Elf_Size r_info __unused) { return (ELF_R_TYPE(r_info) == R_AARCH64_IRELATIVE); } static int reloc_instr_imm(Elf32_Addr *where, Elf_Addr val, u_int msb, u_int lsb) { /* Check bounds: upper bits must be all ones or all zeros. */ if ((uint64_t)((int64_t)val >> (msb + 1)) + 1 > 1) return (-1); val >>= lsb; val &= (1 << (msb - lsb + 1)) - 1; *where |= (Elf32_Addr)val; return (0); } /* * Process a relocation. Support for some static relocations is required * in order for the -zifunc-noplt optimization to work. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, int flags, elf_lookup_fn lookup) { #define ARM64_ELF_RELOC_LOCAL (1 << 0) #define ARM64_ELF_RELOC_LATE_IFUNC (1 << 1) Elf_Addr *where, addr, addend, val; Elf_Word rtype, symidx; const Elf_Rel *rel; const Elf_Rela *rela; int error; switch (type) { case ELF_RELOC_REL: rel = (const Elf_Rel *)data; where = (Elf_Addr *) (relocbase + rel->r_offset); addend = *where; rtype = ELF_R_TYPE(rel->r_info); symidx = ELF_R_SYM(rel->r_info); break; case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf_Addr *) (relocbase + rela->r_offset); addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: panic("unknown reloc type %d\n", type); } if ((flags & ARM64_ELF_RELOC_LATE_IFUNC) != 0) { KASSERT(type == ELF_RELOC_RELA, ("Only RELA ifunc relocations are supported")); if (rtype != R_AARCH64_IRELATIVE) return (0); } if ((flags & ARM64_ELF_RELOC_LOCAL) != 0) { if (rtype == R_AARCH64_RELATIVE) *where = elf_relocaddr(lf, relocbase + addend); return (0); } error = 0; switch (rtype) { case R_AARCH64_NONE: case R_AARCH64_RELATIVE: break; case R_AARCH64_TSTBR14: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); error = reloc_instr_imm((Elf32_Addr *)where, addr + addend - (Elf_Addr)where, 15, 2); break; case R_AARCH64_CONDBR19: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); error = reloc_instr_imm((Elf32_Addr *)where, addr + addend - (Elf_Addr)where, 20, 2); break; case R_AARCH64_JUMP26: case R_AARCH64_CALL26: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); error = reloc_instr_imm((Elf32_Addr *)where, addr + addend - (Elf_Addr)where, 27, 2); break; case R_AARCH64_ABS64: case R_AARCH64_GLOB_DAT: case R_AARCH64_JUMP_SLOT: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); *where = addr + addend; break; case R_AARCH64_IRELATIVE: addr = relocbase + addend; val = ((Elf64_Addr (*)(void))addr)(); if (*where != val) *where = val; break; default: printf("kldload: unexpected relocation type %d, " "symbol index %d\n", rtype, symidx); return (-1); } return (error); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, ARM64_ELF_RELOC_LOCAL, lookup)); } /* Process one elf relocation with addend. */ int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 0, lookup)); } int elf_reloc_late(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, ARM64_ELF_RELOC_LATE_IFUNC, lookup)); } int elf_cpu_load_file(linker_file_t lf) { if (lf->id != 1) cpu_icache_sync_range((vm_offset_t)lf->address, lf->size); return (0); } int elf_cpu_unload_file(linker_file_t lf __unused) { return (0); } int elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused) { return (0); } Index: head/sys/compat/ia32/ia32_sysvec.c =================================================================== --- head/sys/compat/ia32/ia32_sysvec.c (revision 366621) +++ head/sys/compat/ia32/ia32_sysvec.c (revision 366622) @@ -1,233 +1,233 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Doug Rabson * Copyright (c) 2003 Peter Wemm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define __ELF_WORD_SIZE 32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CTASSERT(sizeof(struct ia32_mcontext) == 640); CTASSERT(sizeof(struct ia32_ucontext) == 704); CTASSERT(sizeof(struct ia32_sigframe) == 800); CTASSERT(sizeof(struct siginfo32) == 64); #ifdef COMPAT_FREEBSD4 CTASSERT(sizeof(struct ia32_mcontext4) == 260); CTASSERT(sizeof(struct ia32_ucontext4) == 324); CTASSERT(sizeof(struct ia32_sigframe4) == 408); #endif extern const char *freebsd32_syscallnames[]; static SYSCTL_NODE(_compat, OID_AUTO, ia32, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "ia32 mode"); static u_long ia32_maxdsiz = IA32_MAXDSIZ; SYSCTL_ULONG(_compat_ia32, OID_AUTO, maxdsiz, CTLFLAG_RWTUN, &ia32_maxdsiz, 0, ""); u_long ia32_maxssiz = IA32_MAXSSIZ; SYSCTL_ULONG(_compat_ia32, OID_AUTO, maxssiz, CTLFLAG_RWTUN, &ia32_maxssiz, 0, ""); static u_long ia32_maxvmem = IA32_MAXVMEM; SYSCTL_ULONG(_compat_ia32, OID_AUTO, maxvmem, CTLFLAG_RWTUN, &ia32_maxvmem, 0, ""); struct sysentvec ia32_freebsd_sysvec = { .sv_size = FREEBSD32_SYS_MAXSYSCALL, .sv_table = freebsd32_sysent, .sv_transtrap = NULL, .sv_fixup = elf32_freebsd_fixup, .sv_sendsig = ia32_sendsig, .sv_sigcode = ia32_sigcode, .sv_szsigcode = &sz_ia32_sigcode, .sv_name = "FreeBSD ELF32", .sv_coredump = elf32_coredump, .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = FREEBSD32_MINUSER, .sv_maxuser = FREEBSD32_MAXUSER, .sv_usrstack = FREEBSD32_USRSTACK, .sv_psstrings = FREEBSD32_PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = elf32_freebsd_copyout_auxargs, .sv_copyout_strings = freebsd32_copyout_strings, .sv_setregs = ia32_setregs, .sv_fixlimit = ia32_fixlimit, .sv_maxssiz = &ia32_maxssiz, .sv_flags = SV_ABI_FREEBSD | SV_ASLR | SV_IA32 | SV_ILP32 | - SV_SHP | SV_TIMEKEEP, + SV_SHP | SV_TIMEKEEP | SV_RNG_SEED_VER, .sv_set_syscall_retval = ia32_set_syscall_retval, .sv_fetch_syscall_args = ia32_fetch_syscall_args, .sv_syscallnames = freebsd32_syscallnames, .sv_shared_page_base = FREEBSD32_SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_stackgap = elf32_stackgap, }; INIT_SYSENTVEC(elf_ia32_sysvec, &ia32_freebsd_sysvec); static Elf32_Brandinfo ia32_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_386, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &ia32_freebsd_sysvec, .interp_newpath = "/libexec/ld-elf32.so.1", .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(ia32, SI_SUB_EXEC, SI_ORDER_MIDDLE, (sysinit_cfunc_t) elf32_insert_brand_entry, &ia32_brand_info); static Elf32_Brandinfo ia32_brand_oinfo = { .brand = ELFOSABI_FREEBSD, .machine = EM_386, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/usr/libexec/ld-elf.so.1", .sysvec = &ia32_freebsd_sysvec, .interp_newpath = "/libexec/ld-elf32.so.1", .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(oia32, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf32_insert_brand_entry, &ia32_brand_oinfo); static Elf32_Brandinfo kia32_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_386, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/lib/ld.so.1", .sysvec = &ia32_freebsd_sysvec, .brand_note = &elf32_kfreebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE_MANDATORY }; SYSINIT(kia32, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf32_insert_brand_entry, &kia32_brand_info); void elf32_dump_thread(struct thread *td, void *dst, size_t *off) { void *buf; size_t len; len = 0; if (use_xsave) { if (dst != NULL) { fpugetregs(td); len += elf32_populate_note(NT_X86_XSTATE, get_pcb_user_save_td(td), dst, cpu_max_ext_state_size, &buf); *(uint64_t *)((char *)buf + X86_XSTATE_XCR0_OFFSET) = xsave_mask; } else len += elf32_populate_note(NT_X86_XSTATE, NULL, NULL, cpu_max_ext_state_size, NULL); } *off = len; } void ia32_fixlimit(struct rlimit *rl, int which) { switch (which) { case RLIMIT_DATA: if (ia32_maxdsiz != 0) { if (rl->rlim_cur > ia32_maxdsiz) rl->rlim_cur = ia32_maxdsiz; if (rl->rlim_max > ia32_maxdsiz) rl->rlim_max = ia32_maxdsiz; } break; case RLIMIT_STACK: if (ia32_maxssiz != 0) { if (rl->rlim_cur > ia32_maxssiz) rl->rlim_cur = ia32_maxssiz; if (rl->rlim_max > ia32_maxssiz) rl->rlim_max = ia32_maxssiz; } break; case RLIMIT_VMEM: if (ia32_maxvmem != 0) { if (rl->rlim_cur > ia32_maxvmem) rl->rlim_cur = ia32_maxvmem; if (rl->rlim_max > ia32_maxvmem) rl->rlim_max = ia32_maxvmem; } break; } } Index: head/sys/dev/random/fenestrasX/fx_brng.c =================================================================== --- head/sys/dev/random/fenestrasX/fx_brng.c (revision 366621) +++ head/sys/dev/random/fenestrasX/fx_brng.c (revision 366622) @@ -1,296 +1,316 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2019 Conrad Meyer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include /* * Implementation of a buffered RNG, described in § 1.2-1.4 of the whitepaper. */ /* * Initialize a buffered rng instance (either the static root instance, or a * per-cpu instance on the heap. Both should be zero initialized before this * routine. */ void fxrng_brng_init(struct fxrng_buffered_rng *rng) { fxrng_rng_init(&rng->brng_rng, rng == &fxrng_root); /* I.e., the buffer is empty. */ rng->brng_avail_idx = sizeof(rng->brng_buffer); /* * It is fine and correct for brng_generation and brng_buffer to be * zero values. * * brng_prf and brng_generation must be initialized later. * Initialization is special for the root BRNG. PCPU child instances * use fxrng_brng_produce_seed_data_internal() below. */ } /* * Directly reseed the root BRNG from a first-time entropy source, * incorporating the existing BRNG state. The main motivation for doing so "is * to ensure that as soon as an entropy source produces data, PRNG output * depends on the data from that source." (§ 3.1) * * The root BRNG is locked on entry and initial keying (brng_generation > 0) * has already been performed. The root BRNG is unlocked on return. */ void fxrng_brng_src_reseed(const struct harvest_event *event) { struct fxrng_buffered_rng *rng; rng = &fxrng_root; FXRNG_BRNG_ASSERT(rng); ASSERT_DEBUG(rng->brng_generation > 0, "root RNG not seeded"); fxrng_rng_src_reseed(&rng->brng_rng, event); FXRNG_BRNG_ASSERT(rng); /* * Bump root generation (which is costly) to force downstream BRNGs to * reseed and quickly incorporate the new entropy. The intuition is * that this tradeoff is worth it because new sources show up extremely * rarely (limiting cost) and if they can contribute any entropy to a * weak state, we want to propagate it to all generators ASAP. */ rng->brng_generation++; atomic_store_rel_64(&fxrng_root_generation, rng->brng_generation); + /* Update VDSO version. */ + fxrng_push_seed_generation(rng->brng_generation); FXRNG_BRNG_UNLOCK(rng); } /* * Reseed a brng from some amount of pooled entropy (determined in fx_pool.c by * fxent_timer_reseed_npools). For initial seeding, we pool entropy in a * single pool and use this API as well (fxrng_alg_seeded). */ void fxrng_brng_reseed(const void *entr, size_t sz) { struct fxrng_buffered_rng *rng; rng = &fxrng_root; FXRNG_BRNG_LOCK(rng); fxrng_rng_reseed(&rng->brng_rng, (rng->brng_generation > 0), entr, sz); FXRNG_BRNG_ASSERT(rng); rng->brng_generation++; atomic_store_rel_64(&fxrng_root_generation, rng->brng_generation); + /* Update VDSO version. */ + fxrng_push_seed_generation(rng->brng_generation); FXRNG_BRNG_UNLOCK(rng); } + +/* + * Sysentvec and VDSO are initialized much later than SI_SUB_RANDOM. When + * they're online, go ahead and push an initial root seed version. + * INIT_SYSENTVEC runs at SI_SUB_EXEC:SI_ORDER_ANY, and SI_ORDER_ANY is the + * maximum value, so we must run at SI_SUB_EXEC+1. + */ +static void +fxrng_vdso_sysinit(void *dummy __unused) +{ + FXRNG_BRNG_LOCK(&fxrng_root); + fxrng_push_seed_generation(fxrng_root.brng_generation); + FXRNG_BRNG_UNLOCK(&fxrng_root); +} +SYSINIT(fxrng_vdso, SI_SUB_EXEC + 1, SI_ORDER_ANY, fxrng_vdso_sysinit, NULL); /* * Grab some bytes off an initialized, current generation RNG. * * (Does not handle reseeding if our generation is stale.) * * Locking protocol is a bit odd. The RNG is locked on entrance, but the lock * is dropped on exit. This avoids holding a lock during expensive and slow * RNG generation. */ static void fxrng_brng_getbytes_internal(struct fxrng_buffered_rng *rng, void *buf, size_t nbytes) { FXRNG_BRNG_ASSERT(rng); /* Make the zero request impossible for the rest of the logic. */ if (__predict_false(nbytes == 0)) { FXRNG_BRNG_UNLOCK(rng); goto out; } /* Fast/easy case: Use some bytes from the buffer. */ if (rng->brng_avail_idx + nbytes <= sizeof(rng->brng_buffer)) { memcpy(buf, &rng->brng_buffer[rng->brng_avail_idx], nbytes); explicit_bzero(&rng->brng_buffer[rng->brng_avail_idx], nbytes); rng->brng_avail_idx += nbytes; FXRNG_BRNG_UNLOCK(rng); goto out; } /* Buffer case: */ if (nbytes < sizeof(rng->brng_buffer)) { size_t rem; /* Drain anything left in the buffer first. */ if (rng->brng_avail_idx < sizeof(rng->brng_buffer)) { rem = sizeof(rng->brng_buffer) - rng->brng_avail_idx; ASSERT_DEBUG(nbytes > rem, "invariant"); memcpy(buf, &rng->brng_buffer[rng->brng_avail_idx], rem); buf = (uint8_t*)buf + rem; nbytes -= rem; ASSERT_DEBUG(nbytes != 0, "invariant"); } /* * Partial fill from first buffer, have to rekey and generate a * new buffer to do the rest. */ fxrng_rng_genrandom_internal(&rng->brng_rng, rng->brng_buffer, sizeof(rng->brng_buffer), false); FXRNG_BRNG_ASSERT(rng); rng->brng_avail_idx = 0; memcpy(buf, &rng->brng_buffer[rng->brng_avail_idx], nbytes); explicit_bzero(&rng->brng_buffer[rng->brng_avail_idx], nbytes); rng->brng_avail_idx += nbytes; FXRNG_BRNG_UNLOCK(rng); goto out; } /* Large request; skip the buffer. */ fxrng_rng_genrandom_internal(&rng->brng_rng, buf, nbytes, true); out: FXRNG_BRNG_ASSERT_NOT(rng); return; } /* * API to get a new key for a downstream RNG. Returns the new key in 'buf', as * well as the generator's reseed_generation. * * 'rng' is locked on entry and unlocked on return. * * Only valid after confirming the caller's seed version or reseed_generation * matches roots (or we are root). (For now, this is only used to reseed the * per-CPU generators from root.) */ void fxrng_brng_produce_seed_data_internal(struct fxrng_buffered_rng *rng, void *buf, size_t keysz, uint64_t *seed_generation) { FXRNG_BRNG_ASSERT(rng); ASSERT_DEBUG(keysz == FX_CHACHA20_KEYSIZE, "keysz: %zu", keysz); *seed_generation = rng->brng_generation; fxrng_brng_getbytes_internal(rng, buf, keysz); FXRNG_BRNG_ASSERT_NOT(rng); } /* * Read from an allocated and initialized buffered BRNG. This a high-level * API, but doesn't handle PCPU BRNG allocation. * * BRNG is locked on entry. It is unlocked on return. */ void fxrng_brng_read(struct fxrng_buffered_rng *rng, void *buf, size_t nbytes) { uint8_t newkey[FX_CHACHA20_KEYSIZE]; FXRNG_BRNG_ASSERT(rng); /* Fast path: there hasn't been a global reseed since last read. */ if (rng->brng_generation == atomic_load_acq_64(&fxrng_root_generation)) goto done_reseeding; ASSERT(rng != &fxrng_root, "root rng inconsistent seed version"); /* * Slow path: We need to rekey from the parent BRNG to incorporate new * entropy material. * * Lock order is always root -> percpu. */ FXRNG_BRNG_UNLOCK(rng); FXRNG_BRNG_LOCK(&fxrng_root); FXRNG_BRNG_LOCK(rng); /* * If we lost the reseeding race when the lock was dropped, don't * duplicate work. */ if (__predict_false(rng->brng_generation == atomic_load_acq_64(&fxrng_root_generation))) { FXRNG_BRNG_UNLOCK(&fxrng_root); goto done_reseeding; } fxrng_brng_produce_seed_data_internal(&fxrng_root, newkey, sizeof(newkey), &rng->brng_generation); FXRNG_BRNG_ASSERT_NOT(&fxrng_root); FXRNG_BRNG_ASSERT(rng); fxrng_rng_setkey(&rng->brng_rng, newkey, sizeof(newkey)); explicit_bzero(newkey, sizeof(newkey)); /* * A reseed invalidates any previous buffered contents. Here, we * forward the available index to the end of the buffer, i.e., empty. * Requests that would use the buffer (< 128 bytes) will refill its * contents on demand. * * It is explicitly ok that we do not zero out any remaining buffer * bytes; they will never be handed out to callers, and they reveal * nothing about the reseeded key (which came from the root BRNG). * (§ 1.3) */ rng->brng_avail_idx = sizeof(rng->brng_buffer); done_reseeding: if (rng != &fxrng_root) FXRNG_BRNG_ASSERT_NOT(&fxrng_root); FXRNG_BRNG_ASSERT(rng); fxrng_brng_getbytes_internal(rng, buf, nbytes); FXRNG_BRNG_ASSERT_NOT(rng); } Index: head/sys/dev/random/fenestrasX/fx_main.c =================================================================== --- head/sys/dev/random/fenestrasX/fx_main.c (revision 366621) +++ head/sys/dev/random/fenestrasX/fx_main.c (revision 366622) @@ -1,296 +1,297 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2019 Conrad Meyer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This random algorithm is derived in part from the "Windows 10 random number * generation infrastructure" whitepaper published by Niels Ferguson and * Microsoft: https://aka.ms/win10rng * * It is also inspired by DJB's writing on buffered key-erasure PRNGs: * https://blog.cr.yp.to/20170723-random.html * * The Windows 10 RNG bears some similarity to Fortuna, which Ferguson was also * involved with. Notable differences include: * - Extended to multi-CPU design * - Extended to pre-buffer some PRNG output * - Pool-based reseeding is solely time-based (rather than on-access w/ * pacing) * - Extended to specify efficient userspace design * - Always-available design (requires the equivalent of loader(8) for all * boots; probably relatively easy given the limited platforms Windows 10 * supports) * * Some aspects of the design document I found confusing and may have * misinterpreted: * - Relationship between root PRNG seed version and periodic reseed pool use. * I interpreted these as separate sequences. The root PRNG seed version is * bumped both by the periodic pool based reseed, and also special * conditions such as the first time an entropy source provides entropy. I * don't think first-time entropy sources should cause us to skip an entropy * pool reseed. * - Initial seeding. The paper is pretty terse on the subject. My * interpretation of the document is that the Windows RNG infrastructure * relies on the loader(8)-provided material for initial seeding and either * ignores or doesn't start entropy sources until after that time. So when * the paper says that first-time entropy source material "bypasses the * pools," the root PRNG state already has been keyed for the first time and * can generate 256 bits, mix it with the first-time entropy, and reseed * immediately. * * Some notable design choices in this implementation divergent from that * specified in the document above: * - Blake2b instead of SHA-2 512 for entropy pooling * - Chacha20 instead of AES-CTR DRBG for PRF * - Initial seeding. We treat the 0->1 seed version (brng_generation) edge * as the transition from blocked to unblocked. That edge is also the first * time the key of the root BRNG's PRF is set. We perform initial seeding * when the first request for entropy arrives. * • As a result: Entropy callbacks prior to this edge do not have a keyed * root PRNG, so bypassing the pools is kind of meaningless. Instead, * they feed into pool0. (They also do not set the root PRNG key or bump * the root PRNG seed version.) * • Entropy callbacks after the edge behave like the specification. * • All one-off sources are fed into pool0 and the result used to seed the * root BRNG during the initial seed step. * • All memory needed for initial seeding must be preallocated or static or * fit on the stack; random reads can occur in nonsleepable contexts and * we cannot allocate M_WAITOK. (We also cannot fail to incorporate any * present one-off source, to the extent it is in the control of * software.) * - Timer interval reseeding. We also start the timer-based reseeding at * initial seed, but unlike the design, our initial seed is some time after * load (usually within the order of micro- or milliseconds due to * stack_guard on x86, but conceivably later if nothing reads from random for * a while). * * Not yet implemented, not in scope, or todo: - * - Userspace portions -- shared page, like timehands vdso? + * - Various initial seeding sources we don't have yet + * - In particular, VM migration/copy detection */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct fxrng_buffered_rng fxrng_root; uint64_t __read_mostly fxrng_root_generation; DPCPU_DEFINE_STATIC(struct fxrng_buffered_rng *, fxrng_brng); /* * Top-level read API from randomdev. Responsible for NOWAIT-allocating * per-cpu NUMA-local BRNGs, if needed and satisfiable; subroutines handle * reseeding if the local BRNG is stale and rekeying when necessary. In * low-memory conditions when a local BRNG cannot be allocated, the request is * simply forwarded to the root BRNG. * * It is a precondition is that the root BRNG initial seeding has completed and * the root generation number >0. */ static void _fxrng_alg_read(uint8_t *output, size_t nbytes, uint64_t *seed_version_out) { struct fxrng_buffered_rng **pcpu_brng_p, *rng, *tmp; struct pcpu *pcpu; pcpu = get_pcpu(); /* * The following statement directly accesses an implementation detail * of DPCPU, but the macros cater only to pinned threads; we want to * operate on our initial CPU, without pinning, *even if* we migrate. */ pcpu_brng_p = _DPCPU_PTR(pcpu->pc_dynamic, fxrng_brng); rng = (void *)atomic_load_acq_ptr((uintptr_t *)pcpu_brng_p); /* * Usually the pcpu BRNG has already been allocated, but we do it * on-demand and need to check first. BRNGs are never deallocated and * are valid as soon as the pointer is initialized. */ if (__predict_false(rng == NULL)) { uint8_t newkey[FX_CHACHA20_KEYSIZE]; struct domainset *ds; int domain; domain = pcpu->pc_domain; /* * Allocate pcpu BRNGs off-domain on weird NUMA machines like * AMD Threadripper 2990WX, which has 2 NUMA nodes without * local memory controllers. The PREF policy is automatically * converted to something appropriate when domains are empty. * (FIXED is not.) * * Otherwise, allocate strictly CPU-local memory. The * rationale is this: if there is a memory shortage such that * PREF policy would fallback to RR, we have no business * wasting memory on a faster BRNG. So, use a FIXED domainset * policy. If we cannot allocate, that's fine! We fall back * to invoking the root BRNG. */ if (VM_DOMAIN_EMPTY(domain)) ds = DOMAINSET_PREF(domain); else ds = DOMAINSET_FIXED(domain); rng = malloc_domainset(sizeof(*rng), M_ENTROPY, ds, M_NOWAIT | M_ZERO); if (rng == NULL) { /* Relatively easy case: fall back to root BRNG. */ rng = &fxrng_root; goto have_valid_rng; } fxrng_brng_init(rng); /* * The root BRNG is always up and available. Requests are * always satisfiable. This is a design invariant. */ ASSERT_DEBUG(atomic_load_acq_64(&fxrng_root_generation) != 0, "%s: attempting to seed child BRNG when root hasn't " "been initialized yet.", __func__); FXRNG_BRNG_LOCK(&fxrng_root); #ifdef WITNESS /* Establish lock order root->pcpu for WITNESS. */ FXRNG_BRNG_LOCK(rng); FXRNG_BRNG_UNLOCK(rng); #endif fxrng_brng_produce_seed_data_internal(&fxrng_root, newkey, sizeof(newkey), &rng->brng_generation); FXRNG_BRNG_ASSERT_NOT(&fxrng_root); fxrng_rng_setkey(&rng->brng_rng, newkey, sizeof(newkey)); explicit_bzero(newkey, sizeof(newkey)); /* * We have a valid RNG. Try to install it, or grab the other * one if we lost the race. */ tmp = NULL; while (tmp == NULL) if (atomic_fcmpset_ptr((uintptr_t *)pcpu_brng_p, (uintptr_t *)&tmp, (uintptr_t)rng)) goto have_valid_rng; /* * We lost the race. There's nothing sensitive about * our BRNG's PRF state, because it will never be used * for anything and the key doesn't expose any * information about the parent (root) generator's * state -- it has already rekeyed. The generation * number is public, and a zero counter isn't sensitive. */ free(rng, M_ENTROPY); /* * Use the winner's PCPU BRNG. */ rng = tmp; } have_valid_rng: /* At this point we have a valid, initialized and seeded rng pointer. */ FXRNG_BRNG_LOCK(rng); if (seed_version_out != NULL) *seed_version_out = rng->brng_generation; fxrng_brng_read(rng, output, nbytes); FXRNG_BRNG_ASSERT_NOT(rng); } static void fxrng_alg_read(uint8_t *output, size_t nbytes) { _fxrng_alg_read(output, nbytes, NULL); } /* * External API for arc4random(9) to fetch new key material and associated seed * version in chacha20_randomstir(). */ void read_random_key(void *output, size_t nbytes, uint64_t *seed_version_out) { /* Ensure _fxrng_alg_read invariant. */ if (__predict_false(atomic_load_acq_64(&fxrng_root_generation) == 0)) (void)fxrng_alg_seeded(); _fxrng_alg_read(output, nbytes, seed_version_out); } static void fxrng_init_alg(void *dummy __unused) { DPCPU_ZERO(fxrng_brng); fxrng_brng_init(&fxrng_root); fxrng_pools_init(); } SYSINIT(random_alg, SI_SUB_RANDOM, SI_ORDER_SECOND, fxrng_init_alg, NULL); /* * Public visibility struct referenced directly by other parts of randomdev. */ const struct random_algorithm random_alg_context = { .ra_ident = "fenestrasX", .ra_pre_read = (void (*)(void))nullop, .ra_read = fxrng_alg_read, .ra_seeded = fxrng_alg_seeded, .ra_event_processor = fxrng_event_processor, .ra_poolcount = FXRNG_NPOOLS, }; Index: head/sys/i386/i386/elf_machdep.c =================================================================== --- head/sys/i386/i386/elf_machdep.c (revision 366621) +++ head/sys/i386/i386/elf_machdep.c (revision 366622) @@ -1,302 +1,302 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 1996-1998 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_cpu.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sysentvec elf32_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, .sv_name = "FreeBSD ELF32", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_FREEBSD | SV_ASLR | SV_IA32 | SV_ILP32 | - SV_SHP | SV_TIMEKEEP, + SV_SHP | SV_TIMEKEEP | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, }; INIT_SYSENTVEC(elf32_sysvec, &elf32_freebsd_sysvec); static Elf32_Brandinfo freebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_386, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf32_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t) elf32_insert_brand_entry, &freebsd_brand_info); static Elf32_Brandinfo freebsd_brand_oinfo = { .brand = ELFOSABI_FREEBSD, .machine = EM_386, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/usr/libexec/ld-elf.so.1", .sysvec = &elf32_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(oelf32, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf32_insert_brand_entry, &freebsd_brand_oinfo); static Elf32_Brandinfo kfreebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_386, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/lib/ld.so.1", .sysvec = &elf32_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &elf32_kfreebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE_MANDATORY }; SYSINIT(kelf32, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf32_insert_brand_entry, &kfreebsd_brand_info); void elf32_dump_thread(struct thread *td, void *dst, size_t *off) { void *buf; size_t len; len = 0; if (use_xsave) { if (dst != NULL) { npxgetregs(td); len += elf32_populate_note(NT_X86_XSTATE, get_pcb_user_save_td(td), dst, cpu_max_ext_state_size, &buf); *(uint64_t *)((char *)buf + X86_XSTATE_XCR0_OFFSET) = xsave_mask; } else len += elf32_populate_note(NT_X86_XSTATE, NULL, NULL, cpu_max_ext_state_size, NULL); } *off = len; } bool elf_is_ifunc_reloc(Elf_Size r_info) { return (ELF_R_TYPE(r_info) == R_386_IRELATIVE); } #define ERI_LOCAL 0x0001 /* Process one elf relocation with addend. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup, int flags) { Elf_Addr *where; Elf_Addr addr; Elf_Addr addend; Elf_Word rtype, symidx; const Elf_Rel *rel; const Elf_Rela *rela; int error; switch (type) { case ELF_RELOC_REL: rel = (const Elf_Rel *)data; where = (Elf_Addr *) (relocbase + rel->r_offset); addend = *where; rtype = ELF_R_TYPE(rel->r_info); symidx = ELF_R_SYM(rel->r_info); break; case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf_Addr *) (relocbase + rela->r_offset); addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: panic("unknown reloc type %d\n", type); } if ((flags & ERI_LOCAL) != 0) { if (rtype == R_386_RELATIVE) { /* A + B */ addr = elf_relocaddr(lf, relocbase + addend); if (*where != addr) *where = addr; } return (0); } switch (rtype) { case R_386_NONE: /* none */ break; case R_386_32: /* S + A */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; if (*where != addr) *where = addr; break; case R_386_PC32: /* S + A - P */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend - (Elf_Addr)where; if (*where != addr) *where = addr; break; case R_386_COPY: /* none */ /* * There shouldn't be copy relocations in kernel * objects. */ printf("kldload: unexpected R_COPY relocation, " "symbol index %d\n", symidx); return (-1); break; case R_386_GLOB_DAT: /* S */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); if (*where != addr) *where = addr; break; case R_386_RELATIVE: break; case R_386_IRELATIVE: addr = relocbase + addend; addr = ((Elf_Addr (*)(void))addr)(); if (*where != addr) *where = addr; break; default: printf("kldload: unexpected relocation type %d, " "symbol index %d\n", rtype, symidx); return (-1); } return(0); } int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, lookup, 0)); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, lookup, ERI_LOCAL)); } int elf_cpu_load_file(linker_file_t lf __unused) { return (0); } int elf_cpu_unload_file(linker_file_t lf __unused) { return (0); } int elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused) { return (0); } Index: head/sys/kern/imgact_elf.c =================================================================== --- head/sys/kern/imgact_elf.c (revision 366621) +++ head/sys/kern/imgact_elf.c (revision 366622) @@ -1,2831 +1,2833 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2017 Dell EMC * Copyright (c) 2000-2001, 2003 David O'Brien * Copyright (c) 1995-1996 Søren Schmidt * Copyright (c) 1996 Peter Wemm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ELF_NOTE_ROUNDSIZE 4 #define OLD_EI_BRAND 8 static int __elfN(check_header)(const Elf_Ehdr *hdr); static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp, const char *interp, int32_t *osrel, uint32_t *fctl0); static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry); static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot); static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp); static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel); static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel); static boolean_t __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote, int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0); static vm_prot_t __elfN(trans_prot)(Elf_Word); static Elf_Word __elfN(untrans_prot)(vm_prot_t); SYSCTL_NODE(_kern, OID_AUTO, __CONCAT(elf, __ELF_WORD_SIZE), CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); #define CORE_BUF_SIZE (16 * 1024) int __elfN(fallback_brand) = -1; SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0, __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) " brand of last resort"); static int elf_legacy_coredump = 0; SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW, &elf_legacy_coredump, 0, "include all and only RW pages in core dumps"); int __elfN(nxstack) = #if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \ (defined(__arm__) && __ARM_ARCH >= 7) || defined(__aarch64__) || \ defined(__riscv) 1; #else 0; #endif SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, nxstack, CTLFLAG_RW, &__elfN(nxstack), 0, __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable non-executable stack"); #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) int i386_read_exec = 0; SYSCTL_INT(_kern_elf32, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0, "enable execution from readable segments"); #endif static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR; static int sysctl_pie_base(SYSCTL_HANDLER_ARGS) { u_long val; int error; val = __elfN(pie_base); error = sysctl_handle_long(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if ((val & PAGE_MASK) != 0) return (EINVAL); __elfN(pie_base) = val; return (0); } SYSCTL_PROC(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, pie_base, CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_pie_base, "LU", "PIE load base without randomization"); SYSCTL_NODE(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, aslr, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); #define ASLR_NODE_OID __CONCAT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), _aslr) static int __elfN(aslr_enabled) = 0; SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN, &__elfN(aslr_enabled), 0, __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable address map randomization"); static int __elfN(pie_aslr_enabled) = 0; SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN, &__elfN(pie_aslr_enabled), 0, __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": enable address map randomization for PIE binaries"); static int __elfN(aslr_honor_sbrk) = 1; SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW, &__elfN(aslr_honor_sbrk), 0, __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": assume sbrk is used"); static int __elfN(aslr_stack_gap) = 3; SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack_gap, CTLFLAG_RW, &__elfN(aslr_stack_gap), 0, __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) ": maximum percentage of main stack to waste on a random gap"); static int __elfN(sigfastblock) = 1; SYSCTL_INT(__CONCAT(_kern_elf, __ELF_WORD_SIZE), OID_AUTO, sigfastblock, CTLFLAG_RWTUN, &__elfN(sigfastblock), 0, "enable sigfastblock for new processes"); static Elf_Brandinfo *elf_brand_list[MAX_BRANDS]; #define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a)) static const char FREEBSD_ABI_VENDOR[] = "FreeBSD"; Elf_Brandnote __elfN(freebsd_brandnote) = { .hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR), .hdr.n_descsz = sizeof(int32_t), .hdr.n_type = NT_FREEBSD_ABI_TAG, .vendor = FREEBSD_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = __elfN(freebsd_trans_osrel) }; static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel) { uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); *osrel = *(const int32_t *)(p); return (true); } static const char GNU_ABI_VENDOR[] = "GNU"; static int GNU_KFREEBSD_ABI_DESC = 3; Elf_Brandnote __elfN(kfreebsd_brandnote) = { .hdr.n_namesz = sizeof(GNU_ABI_VENDOR), .hdr.n_descsz = 16, /* XXX at least 16 */ .hdr.n_type = 1, .vendor = GNU_ABI_VENDOR, .flags = BN_TRANSLATE_OSREL, .trans_osrel = kfreebsd_trans_osrel }; static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel) { const Elf32_Word *desc; uintptr_t p; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); desc = (const Elf32_Word *)p; if (desc[0] != GNU_KFREEBSD_ABI_DESC) return (false); /* * Debian GNU/kFreeBSD embed the earliest compatible kernel version * (__FreeBSD_version: Rxx) in the LSB way. */ *osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3]; return (true); } int __elfN(insert_brand_entry)(Elf_Brandinfo *entry) { int i; for (i = 0; i < MAX_BRANDS; i++) { if (elf_brand_list[i] == NULL) { elf_brand_list[i] = entry; break; } } if (i == MAX_BRANDS) { printf("WARNING: %s: could not insert brandinfo entry: %p\n", __func__, entry); return (-1); } return (0); } int __elfN(remove_brand_entry)(Elf_Brandinfo *entry) { int i; for (i = 0; i < MAX_BRANDS; i++) { if (elf_brand_list[i] == entry) { elf_brand_list[i] = NULL; break; } } if (i == MAX_BRANDS) return (-1); return (0); } int __elfN(brand_inuse)(Elf_Brandinfo *entry) { struct proc *p; int rval = FALSE; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { if (p->p_sysent == entry->sysvec) { rval = TRUE; break; } } sx_sunlock(&allproc_lock); return (rval); } static Elf_Brandinfo * __elfN(get_brandinfo)(struct image_params *imgp, const char *interp, int32_t *osrel, uint32_t *fctl0) { const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header; Elf_Brandinfo *bi, *bi_m; boolean_t ret, has_fctl0; int i, interp_name_len; interp_name_len = interp != NULL ? strlen(interp) + 1 : 0; /* * We support four types of branding -- (1) the ELF EI_OSABI field * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string * branding w/in the ELF header, (3) path of the `interp_path' * field, and (4) the ".note.ABI-tag" ELF section. */ /* Look for an ".note.ABI-tag" ELF section */ bi_m = NULL; for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL) continue; if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0) continue; if (hdr->e_machine == bi->machine && (bi->flags & (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) { has_fctl0 = false; *fctl0 = 0; *osrel = 0; ret = __elfN(check_note)(imgp, bi->brand_note, osrel, &has_fctl0, fctl0); /* Give brand a chance to veto check_note's guess */ if (ret && bi->header_supported) { ret = bi->header_supported(imgp, osrel, has_fctl0 ? fctl0 : NULL); } /* * If note checker claimed the binary, but the * interpreter path in the image does not * match default one for the brand, try to * search for other brands with the same * interpreter. Either there is better brand * with the right interpreter, or, failing * this, we return first brand which accepted * our note and, optionally, header. */ if (ret && bi_m == NULL && interp != NULL && (bi->interp_path == NULL || (strlen(bi->interp_path) + 1 != interp_name_len || strncmp(interp, bi->interp_path, interp_name_len) != 0))) { bi_m = bi; ret = 0; } if (ret) return (bi); } } if (bi_m != NULL) return (bi_m); /* If the executable has a brand, search for it in the brand list. */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) continue; if (hdr->e_machine == bi->machine && (hdr->e_ident[EI_OSABI] == bi->brand || (bi->compat_3_brand != NULL && strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND], bi->compat_3_brand) == 0))) { /* Looks good, but give brand a chance to veto */ if (bi->header_supported == NULL || bi->header_supported(imgp, NULL, NULL)) { /* * Again, prefer strictly matching * interpreter path. */ if (interp_name_len == 0 && bi->interp_path == NULL) return (bi); if (bi->interp_path != NULL && strlen(bi->interp_path) + 1 == interp_name_len && strncmp(interp, bi->interp_path, interp_name_len) == 0) return (bi); if (bi_m == NULL) bi_m = bi; } } } if (bi_m != NULL) return (bi_m); /* No known brand, see if the header is recognized by any brand */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY || bi->header_supported == NULL) continue; if (hdr->e_machine == bi->machine) { ret = bi->header_supported(imgp, NULL, NULL); if (ret) return (bi); } } /* Lacking a known brand, search for a recognized interpreter. */ if (interp != NULL) { for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL || (bi->flags & (BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC)) != 0) continue; if (hdr->e_machine == bi->machine && bi->interp_path != NULL && /* ELF image p_filesz includes terminating zero */ strlen(bi->interp_path) + 1 == interp_name_len && strncmp(interp, bi->interp_path, interp_name_len) == 0 && (bi->header_supported == NULL || bi->header_supported(imgp, NULL, NULL))) return (bi); } } /* Lacking a recognized interpreter, try the default brand */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 || (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)) continue; if (hdr->e_machine == bi->machine && __elfN(fallback_brand) == bi->brand && (bi->header_supported == NULL || bi->header_supported(imgp, NULL, NULL))) return (bi); } return (NULL); } static bool __elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr) { return (hdr->e_phoff <= PAGE_SIZE && (u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff); } static int __elfN(check_header)(const Elf_Ehdr *hdr) { Elf_Brandinfo *bi; int i; if (!IS_ELF(*hdr) || hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || hdr->e_ident[EI_DATA] != ELF_TARG_DATA || hdr->e_ident[EI_VERSION] != EV_CURRENT || hdr->e_phentsize != sizeof(Elf_Phdr) || hdr->e_version != ELF_TARG_VER) return (ENOEXEC); /* * Make sure we have at least one brand for this machine. */ for (i = 0; i < MAX_BRANDS; i++) { bi = elf_brand_list[i]; if (bi != NULL && bi->machine == hdr->e_machine) break; } if (i == MAX_BRANDS) return (ENOEXEC); return (0); } static int __elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot) { struct sf_buf *sf; int error; vm_offset_t off; /* * Create the page if it doesn't exist yet. Ignore errors. */ vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) - trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL); /* * Find the page from the underlying object. */ if (object != NULL) { sf = vm_imgact_map_page(object, offset); if (sf == NULL) return (KERN_FAILURE); off = offset - trunc_page(offset); error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, end - start); vm_imgact_unmap_page(sf); if (error != 0) return (KERN_FAILURE); } return (KERN_SUCCESS); } static int __elfN(map_insert)(struct image_params *imgp, vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, int cow) { struct sf_buf *sf; vm_offset_t off; vm_size_t sz; int error, locked, rv; if (start != trunc_page(start)) { rv = __elfN(map_partial)(map, object, offset, start, round_page(start), prot); if (rv != KERN_SUCCESS) return (rv); offset += round_page(start) - start; start = round_page(start); } if (end != round_page(end)) { rv = __elfN(map_partial)(map, object, offset + trunc_page(end) - start, trunc_page(end), end, prot); if (rv != KERN_SUCCESS) return (rv); end = trunc_page(end); } if (start >= end) return (KERN_SUCCESS); if ((offset & PAGE_MASK) != 0) { /* * The mapping is not page aligned. This means that we have * to copy the data. */ rv = vm_map_fixed(map, NULL, 0, start, end - start, prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL); if (rv != KERN_SUCCESS) return (rv); if (object == NULL) return (KERN_SUCCESS); for (; start < end; start += sz) { sf = vm_imgact_map_page(object, offset); if (sf == NULL) return (KERN_FAILURE); off = offset - trunc_page(offset); sz = end - start; if (sz > PAGE_SIZE - off) sz = PAGE_SIZE - off; error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start, sz); vm_imgact_unmap_page(sf); if (error != 0) return (KERN_FAILURE); offset += sz; } } else { vm_object_reference(object); rv = vm_map_fixed(map, object, offset, start, end - start, prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL | (object != NULL ? MAP_VN_EXEC : 0)); if (rv != KERN_SUCCESS) { locked = VOP_ISLOCKED(imgp->vp); VOP_UNLOCK(imgp->vp); vm_object_deallocate(object); vn_lock(imgp->vp, locked | LK_RETRY); return (rv); } else if (object != NULL) { MPASS(imgp->vp->v_object == object); VOP_SET_TEXT_CHECKED(imgp->vp); } } return (KERN_SUCCESS); } static int __elfN(load_section)(struct image_params *imgp, vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot) { struct sf_buf *sf; size_t map_len; vm_map_t map; vm_object_t object; vm_offset_t map_addr; int error, rv, cow; size_t copy_len; vm_ooffset_t file_addr; /* * It's necessary to fail if the filsz + offset taken from the * header is greater than the actual file pager object's size. * If we were to allow this, then the vm_map_find() below would * walk right off the end of the file object and into the ether. * * While I'm here, might as well check for something else that * is invalid: filsz cannot be greater than memsz. */ if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) || filsz > memsz) { uprintf("elf_load_section: truncated ELF file\n"); return (ENOEXEC); } object = imgp->object; map = &imgp->proc->p_vmspace->vm_map; map_addr = trunc_page((vm_offset_t)vmaddr); file_addr = trunc_page(offset); /* * We have two choices. We can either clear the data in the last page * of an oversized mapping, or we can start the anon mapping a page * early and copy the initialized data into that first page. We * choose the second. */ if (filsz == 0) map_len = 0; else if (memsz > filsz) map_len = trunc_page(offset + filsz) - file_addr; else map_len = round_page(offset + filsz) - file_addr; if (map_len != 0) { /* cow flags: don't dump readonly sections in core */ cow = MAP_COPY_ON_WRITE | MAP_PREFAULT | (prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP); rv = __elfN(map_insert)(imgp, map, object, file_addr, map_addr, map_addr + map_len, prot, cow); if (rv != KERN_SUCCESS) return (EINVAL); /* we can stop now if we've covered it all */ if (memsz == filsz) return (0); } /* * We have to get the remaining bit of the file into the first part * of the oversized map segment. This is normally because the .data * segment in the file is extended to provide bss. It's a neat idea * to try and save a page, but it's a pain in the behind to implement. */ copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset + filsz); map_addr = trunc_page((vm_offset_t)vmaddr + filsz); map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr; /* This had damn well better be true! */ if (map_len != 0) { rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr, map_addr + map_len, prot, 0); if (rv != KERN_SUCCESS) return (EINVAL); } if (copy_len != 0) { sf = vm_imgact_map_page(object, offset + filsz); if (sf == NULL) return (EIO); /* send the page fragment to user space */ error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr, copy_len); vm_imgact_unmap_page(sf); if (error != 0) return (error); } /* * Remove write access to the page if it was only granted by map_insert * to allow copyout. */ if ((prot & VM_PROT_WRITE) == 0) vm_map_protect(map, trunc_page(map_addr), round_page(map_addr + map_len), prot, FALSE); return (0); } static int __elfN(load_sections)(struct image_params *imgp, const Elf_Ehdr *hdr, const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp) { vm_prot_t prot; u_long base_addr; bool first; int error, i; ASSERT_VOP_LOCKED(imgp->vp, __func__); base_addr = 0; first = true; for (i = 0; i < hdr->e_phnum; i++) { if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) continue; /* Loadable segment */ prot = __elfN(trans_prot)(phdr[i].p_flags); error = __elfN(load_section)(imgp, phdr[i].p_offset, (caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase, phdr[i].p_memsz, phdr[i].p_filesz, prot); if (error != 0) return (error); /* * Establish the base address if this is the first segment. */ if (first) { base_addr = trunc_page(phdr[i].p_vaddr + rbase); first = false; } } if (base_addrp != NULL) *base_addrp = base_addr; return (0); } /* * Load the file "file" into memory. It may be either a shared object * or an executable. * * The "addr" reference parameter is in/out. On entry, it specifies * the address where a shared object should be loaded. If the file is * an executable, this value is ignored. On exit, "addr" specifies * where the file was actually loaded. * * The "entry" reference parameter is out only. On exit, it specifies * the entry point for the loaded file. */ static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry) { struct { struct nameidata nd; struct vattr attr; struct image_params image_params; } *tempdata; const Elf_Ehdr *hdr = NULL; const Elf_Phdr *phdr = NULL; struct nameidata *nd; struct vattr *attr; struct image_params *imgp; u_long rbase; u_long base_addr = 0; int error; #ifdef CAPABILITY_MODE /* * XXXJA: This check can go away once we are sufficiently confident * that the checks in namei() are correct. */ if (IN_CAPABILITY_MODE(curthread)) return (ECAPMODE); #endif tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO); nd = &tempdata->nd; attr = &tempdata->attr; imgp = &tempdata->image_params; /* * Initialize part of the common data */ imgp->proc = p; imgp->attr = attr; NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF, UIO_SYSSPACE, file, curthread); if ((error = namei(nd)) != 0) { nd->ni_vp = NULL; goto fail; } NDFREE(nd, NDF_ONLY_PNBUF); imgp->vp = nd->ni_vp; /* * Check permissions, modes, uid, etc on the file, and "open" it. */ error = exec_check_permissions(imgp); if (error) goto fail; error = exec_map_first_page(imgp); if (error) goto fail; imgp->object = nd->ni_vp->v_object; hdr = (const Elf_Ehdr *)imgp->image_header; if ((error = __elfN(check_header)(hdr)) != 0) goto fail; if (hdr->e_type == ET_DYN) rbase = *addr; else if (hdr->e_type == ET_EXEC) rbase = 0; else { error = ENOEXEC; goto fail; } /* Only support headers that fit within first page for now */ if (!__elfN(phdr_in_zero_page)(hdr)) { error = ENOEXEC; goto fail; } phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); if (!aligned(phdr, Elf_Addr)) { error = ENOEXEC; goto fail; } error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr); if (error != 0) goto fail; *addr = base_addr; *entry = (unsigned long)hdr->e_entry + rbase; fail: if (imgp->firstpage) exec_unmap_first_page(imgp); if (nd->ni_vp) { if (imgp->textset) VOP_UNSET_TEXT_CHECKED(nd->ni_vp); vput(nd->ni_vp); } free(tempdata, M_TEMP); return (error); } static u_long __CONCAT(rnd_, __elfN(base))(vm_map_t map __unused, u_long minv, u_long maxv, u_int align) { u_long rbase, res; MPASS(vm_map_min(map) <= minv); MPASS(maxv <= vm_map_max(map)); MPASS(minv < maxv); MPASS(minv + align < maxv); arc4rand(&rbase, sizeof(rbase), 0); res = roundup(minv, (u_long)align) + rbase % (maxv - minv); res &= ~((u_long)align - 1); if (res >= maxv) res -= align; KASSERT(res >= minv, ("res %#lx < minv %#lx, maxv %#lx rbase %#lx", res, minv, maxv, rbase)); KASSERT(res < maxv, ("res %#lx > maxv %#lx, minv %#lx rbase %#lx", res, maxv, minv, rbase)); return (res); } static int __elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr, const Elf_Phdr *phdr, u_long et_dyn_addr) { struct vmspace *vmspace; const char *err_str; u_long text_size, data_size, total_size, text_addr, data_addr; u_long seg_size, seg_addr; int i; err_str = NULL; text_size = data_size = total_size = text_addr = data_addr = 0; for (i = 0; i < hdr->e_phnum; i++) { if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0) continue; seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr); seg_size = round_page(phdr[i].p_memsz + phdr[i].p_vaddr + et_dyn_addr - seg_addr); /* * Make the largest executable segment the official * text segment and all others data. * * Note that obreak() assumes that data_addr + data_size == end * of data load area, and the ELF file format expects segments * to be sorted by address. If multiple data segments exist, * the last one will be used. */ if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) { text_size = seg_size; text_addr = seg_addr; } else { data_size = seg_size; data_addr = seg_addr; } total_size += seg_size; } if (data_addr == 0 && data_size == 0) { data_addr = text_addr; data_size = text_size; } /* * Check limits. It should be safe to check the * limits after loading the segments since we do * not actually fault in all the segments pages. */ PROC_LOCK(imgp->proc); if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA)) err_str = "Data segment size exceeds process limit"; else if (text_size > maxtsiz) err_str = "Text segment size exceeds system limit"; else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM)) err_str = "Total segment size exceeds process limit"; else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0) err_str = "Data segment size exceeds resource limit"; else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0) err_str = "Total segment size exceeds resource limit"; PROC_UNLOCK(imgp->proc); if (err_str != NULL) { uprintf("%s\n", err_str); return (ENOMEM); } vmspace = imgp->proc->p_vmspace; vmspace->vm_tsize = text_size >> PAGE_SHIFT; vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr; vmspace->vm_dsize = data_size >> PAGE_SHIFT; vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr; return (0); } static int __elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr, char **interpp, bool *free_interpp) { struct thread *td; char *interp; int error, interp_name_len; KASSERT(phdr->p_type == PT_INTERP, ("%s: p_type %u != PT_INTERP", __func__, phdr->p_type)); ASSERT_VOP_LOCKED(imgp->vp, __func__); td = curthread; /* Path to interpreter */ if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) { uprintf("Invalid PT_INTERP\n"); return (ENOEXEC); } interp_name_len = phdr->p_filesz; if (phdr->p_offset > PAGE_SIZE || interp_name_len > PAGE_SIZE - phdr->p_offset) { /* * The vnode lock might be needed by the pagedaemon to * clean pages owned by the vnode. Do not allow sleep * waiting for memory with the vnode locked, instead * try non-sleepable allocation first, and if it * fails, go to the slow path were we drop the lock * and do M_WAITOK. A text reference prevents * modifications to the vnode content. */ interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT); if (interp == NULL) { VOP_UNLOCK(imgp->vp); interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } error = vn_rdwr(UIO_READ, imgp->vp, interp, interp_name_len, phdr->p_offset, UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred, NOCRED, NULL, td); if (error != 0) { free(interp, M_TEMP); uprintf("i/o error PT_INTERP %d\n", error); return (error); } interp[interp_name_len] = '\0'; *interpp = interp; *free_interpp = true; return (0); } interp = __DECONST(char *, imgp->image_header) + phdr->p_offset; if (interp[interp_name_len - 1] != '\0') { uprintf("Invalid PT_INTERP\n"); return (ENOEXEC); } *interpp = interp; *free_interpp = false; return (0); } static int __elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info, const char *interp, u_long *addr, u_long *entry) { char *path; int error; if (brand_info->emul_path != NULL && brand_info->emul_path[0] != '\0') { path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); snprintf(path, MAXPATHLEN, "%s%s", brand_info->emul_path, interp); error = __elfN(load_file)(imgp->proc, path, addr, entry); free(path, M_TEMP); if (error == 0) return (0); } if (brand_info->interp_newpath != NULL && (brand_info->interp_path == NULL || strcmp(interp, brand_info->interp_path) == 0)) { error = __elfN(load_file)(imgp->proc, brand_info->interp_newpath, addr, entry); if (error == 0) return (0); } error = __elfN(load_file)(imgp->proc, interp, addr, entry); if (error == 0) return (0); uprintf("ELF interpreter %s not found, error %d\n", interp, error); return (error); } /* * Impossible et_dyn_addr initial value indicating that the real base * must be calculated later with some randomization applied. */ #define ET_DYN_ADDR_RAND 1 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp) { struct thread *td; const Elf_Ehdr *hdr; const Elf_Phdr *phdr; Elf_Auxargs *elf_auxargs; struct vmspace *vmspace; vm_map_t map; char *interp; Elf_Brandinfo *brand_info; struct sysentvec *sv; u_long addr, baddr, et_dyn_addr, entry, proghdr; u_long maxalign, mapsz, maxv, maxv1; uint32_t fctl0; int32_t osrel; bool free_interp; int error, i, n; hdr = (const Elf_Ehdr *)imgp->image_header; /* * Do we have a valid ELF header ? * * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later * if particular brand doesn't support it. */ if (__elfN(check_header)(hdr) != 0 || (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN)) return (-1); /* * From here on down, we return an errno, not -1, as we've * detected an ELF file. */ if (!__elfN(phdr_in_zero_page)(hdr)) { uprintf("Program headers not in the first page\n"); return (ENOEXEC); } phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); if (!aligned(phdr, Elf_Addr)) { uprintf("Unaligned program headers\n"); return (ENOEXEC); } n = error = 0; baddr = 0; osrel = 0; fctl0 = 0; entry = proghdr = 0; interp = NULL; free_interp = false; td = curthread; maxalign = PAGE_SIZE; mapsz = 0; for (i = 0; i < hdr->e_phnum; i++) { switch (phdr[i].p_type) { case PT_LOAD: if (n == 0) baddr = phdr[i].p_vaddr; if (phdr[i].p_align > maxalign) maxalign = phdr[i].p_align; mapsz += phdr[i].p_memsz; n++; /* * If this segment contains the program headers, * remember their virtual address for the AT_PHDR * aux entry. Static binaries don't usually include * a PT_PHDR entry. */ if (phdr[i].p_offset == 0 && hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <= phdr[i].p_filesz) proghdr = phdr[i].p_vaddr + hdr->e_phoff; break; case PT_INTERP: /* Path to interpreter */ if (interp != NULL) { uprintf("Multiple PT_INTERP headers\n"); error = ENOEXEC; goto ret; } error = __elfN(get_interp)(imgp, &phdr[i], &interp, &free_interp); if (error != 0) goto ret; break; case PT_GNU_STACK: if (__elfN(nxstack)) imgp->stack_prot = __elfN(trans_prot)(phdr[i].p_flags); imgp->stack_sz = phdr[i].p_memsz; break; case PT_PHDR: /* Program header table info */ proghdr = phdr[i].p_vaddr; break; } } brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0); if (brand_info == NULL) { uprintf("ELF binary type \"%u\" not known.\n", hdr->e_ident[EI_OSABI]); error = ENOEXEC; goto ret; } sv = brand_info->sysvec; et_dyn_addr = 0; if (hdr->e_type == ET_DYN) { if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) { uprintf("Cannot execute shared object\n"); error = ENOEXEC; goto ret; } /* * Honour the base load address from the dso if it is * non-zero for some reason. */ if (baddr == 0) { if ((sv->sv_flags & SV_ASLR) == 0 || (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) et_dyn_addr = __elfN(pie_base); else if ((__elfN(pie_aslr_enabled) && (imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) || (imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0) et_dyn_addr = ET_DYN_ADDR_RAND; else et_dyn_addr = __elfN(pie_base); } } /* * Avoid a possible deadlock if the current address space is destroyed * and that address space maps the locked vnode. In the common case, * the locked vnode's v_usecount is decremented but remains greater * than zero. Consequently, the vnode lock is not needed by vrele(). * However, in cases where the vnode lock is external, such as nullfs, * v_usecount may become zero. * * The VV_TEXT flag prevents modifications to the executable while * the vnode is unlocked. */ VOP_UNLOCK(imgp->vp); /* * Decide whether to enable randomization of user mappings. * First, reset user preferences for the setid binaries. * Then, account for the support of the randomization by the * ABI, by user preferences, and make special treatment for * PIE binaries. */ if (imgp->credential_setid) { PROC_LOCK(imgp->proc); imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE); PROC_UNLOCK(imgp->proc); } if ((sv->sv_flags & SV_ASLR) == 0 || (imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 || (fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) { KASSERT(et_dyn_addr != ET_DYN_ADDR_RAND, ("et_dyn_addr == RAND and !ASLR")); } else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 || (__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) || et_dyn_addr == ET_DYN_ADDR_RAND) { imgp->map_flags |= MAP_ASLR; /* * If user does not care about sbrk, utilize the bss * grow region for mappings as well. We can select * the base for the image anywere and still not suffer * from the fragmentation. */ if (!__elfN(aslr_honor_sbrk) || (imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0) imgp->map_flags |= MAP_ASLR_IGNSTART; } error = exec_new_vmspace(imgp, sv); vmspace = imgp->proc->p_vmspace; map = &vmspace->vm_map; imgp->proc->p_sysent = sv; maxv = vm_map_max(map) - lim_max(td, RLIMIT_STACK); if (et_dyn_addr == ET_DYN_ADDR_RAND) { KASSERT((map->flags & MAP_ASLR) != 0, ("ET_DYN_ADDR_RAND but !MAP_ASLR")); et_dyn_addr = __CONCAT(rnd_, __elfN(base))(map, vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA), /* reserve half of the address space to interpreter */ maxv / 2, 1UL << flsl(maxalign)); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (error != 0) goto ret; error = __elfN(load_sections)(imgp, hdr, phdr, et_dyn_addr, NULL); if (error != 0) goto ret; error = __elfN(enforce_limits)(imgp, hdr, phdr, et_dyn_addr); if (error != 0) goto ret; entry = (u_long)hdr->e_entry + et_dyn_addr; /* * We load the dynamic linker where a userland call * to mmap(0, ...) would put it. The rationale behind this * calculation is that it leaves room for the heap to grow to * its maximum allowed size. */ addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td, RLIMIT_DATA)); if ((map->flags & MAP_ASLR) != 0) { maxv1 = maxv / 2 + addr / 2; MPASS(maxv1 >= addr); /* No overflow */ map->anon_loc = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, MAXPAGESIZES > 1 ? pagesizes[1] : pagesizes[0]); } else { map->anon_loc = addr; } imgp->entry_addr = entry; if (interp != NULL) { VOP_UNLOCK(imgp->vp); if ((map->flags & MAP_ASLR) != 0) { /* Assume that interpeter fits into 1/4 of AS */ maxv1 = maxv / 2 + addr / 2; MPASS(maxv1 >= addr); /* No overflow */ addr = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1, PAGE_SIZE); } error = __elfN(load_interp)(imgp, brand_info, interp, &addr, &imgp->entry_addr); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (error != 0) goto ret; } else addr = et_dyn_addr; /* * Construct auxargs table (used by the copyout_auxargs routine) */ elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT); if (elf_auxargs == NULL) { VOP_UNLOCK(imgp->vp); elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } elf_auxargs->execfd = -1; elf_auxargs->phdr = proghdr + et_dyn_addr; elf_auxargs->phent = hdr->e_phentsize; elf_auxargs->phnum = hdr->e_phnum; elf_auxargs->pagesz = PAGE_SIZE; elf_auxargs->base = addr; elf_auxargs->flags = 0; elf_auxargs->entry = entry; elf_auxargs->hdr_eflags = hdr->e_flags; imgp->auxargs = elf_auxargs; imgp->interpreted = 0; imgp->reloc_base = addr; imgp->proc->p_osrel = osrel; imgp->proc->p_fctl0 = fctl0; imgp->proc->p_elf_machine = hdr->e_machine; imgp->proc->p_elf_flags = hdr->e_flags; ret: if (free_interp) free(interp, M_TEMP); return (error); } #define suword __CONCAT(suword, __ELF_WORD_SIZE) int __elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base) { Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs; Elf_Auxinfo *argarray, *pos; int error; argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP, M_WAITOK | M_ZERO); if (args->execfd != -1) AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd); AUXARGS_ENTRY(pos, AT_PHDR, args->phdr); AUXARGS_ENTRY(pos, AT_PHENT, args->phent); AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum); AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz); AUXARGS_ENTRY(pos, AT_FLAGS, args->flags); AUXARGS_ENTRY(pos, AT_ENTRY, args->entry); AUXARGS_ENTRY(pos, AT_BASE, args->base); AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags); if (imgp->execpathp != 0) AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp); AUXARGS_ENTRY(pos, AT_OSRELDATE, imgp->proc->p_ucred->cr_prison->pr_osreldate); if (imgp->canary != 0) { AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary); AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen); } AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus); if (imgp->pagesizes != 0) { AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes); AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen); } if (imgp->sysent->sv_timekeep_base != 0) { AUXARGS_ENTRY(pos, AT_TIMEKEEP, imgp->sysent->sv_timekeep_base); } AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : imgp->sysent->sv_stackprot); if (imgp->sysent->sv_hwcap != NULL) AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap); if (imgp->sysent->sv_hwcap2 != NULL) AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2); AUXARGS_ENTRY(pos, AT_BSDFLAGS, __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0); AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc); AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv); AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc); AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv); AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings); + if (imgp->sysent->sv_fxrng_gen_base != 0) + AUXARGS_ENTRY(pos, AT_FXRNG, imgp->sysent->sv_fxrng_gen_base); AUXARGS_ENTRY(pos, AT_NULL, 0); free(imgp->auxargs, M_TEMP); imgp->auxargs = NULL; KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs")); error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT); free(argarray, M_TEMP); return (error); } int __elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp) { Elf_Addr *base; base = (Elf_Addr *)*stack_base; base--; if (suword(base, imgp->args->argc) == -1) return (EFAULT); *stack_base = (uintptr_t)base; return (0); } /* * Code for generating ELF core dumps. */ typedef void (*segment_callback)(vm_map_entry_t, void *); /* Closure for cb_put_phdr(). */ struct phdr_closure { Elf_Phdr *phdr; /* Program header to fill in */ Elf_Off offset; /* Offset of segment in core file */ }; /* Closure for cb_size_segment(). */ struct sseg_closure { int count; /* Count of writable segments. */ size_t size; /* Total size of all writable segments. */ }; typedef void (*outfunc_t)(void *, struct sbuf *, size_t *); struct note_info { int type; /* Note type. */ outfunc_t outfunc; /* Output function. */ void *outarg; /* Argument for the output function. */ size_t outsize; /* Output size. */ TAILQ_ENTRY(note_info) link; /* Link to the next note info. */ }; TAILQ_HEAD(note_info_list, note_info); /* Coredump output parameters. */ struct coredump_params { off_t offset; struct ucred *active_cred; struct ucred *file_cred; struct thread *td; struct vnode *vp; struct compressor *comp; }; extern int compress_user_cores; extern int compress_user_cores_level; static void cb_put_phdr(vm_map_entry_t, void *); static void cb_size_segment(vm_map_entry_t, void *); static int core_write(struct coredump_params *, const void *, size_t, off_t, enum uio_seg, size_t *); static void each_dumpable_segment(struct thread *, segment_callback, void *); static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t, struct note_info_list *, size_t); static void __elfN(prepare_notes)(struct thread *, struct note_info_list *, size_t *); static void __elfN(puthdr)(struct thread *, void *, size_t, int, size_t); static void __elfN(putnote)(struct note_info *, struct sbuf *); static size_t register_note(struct note_info_list *, int, outfunc_t, void *); static int sbuf_drain_core_output(void *, const char *, int); static void __elfN(note_fpregset)(void *, struct sbuf *, size_t *); static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *); static void __elfN(note_prstatus)(void *, struct sbuf *, size_t *); static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *); static void __elfN(note_thrmisc)(void *, struct sbuf *, size_t *); static void __elfN(note_ptlwpinfo)(void *, struct sbuf *, size_t *); static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *); static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *); static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *); static void note_procstat_files(void *, struct sbuf *, size_t *); static void note_procstat_groups(void *, struct sbuf *, size_t *); static void note_procstat_osrel(void *, struct sbuf *, size_t *); static void note_procstat_rlimit(void *, struct sbuf *, size_t *); static void note_procstat_umask(void *, struct sbuf *, size_t *); static void note_procstat_vmmap(void *, struct sbuf *, size_t *); /* * Write out a core segment to the compression stream. */ static int compress_chunk(struct coredump_params *p, char *base, char *buf, u_int len) { u_int chunk_len; int error; while (len > 0) { chunk_len = MIN(len, CORE_BUF_SIZE); /* * We can get EFAULT error here. * In that case zero out the current chunk of the segment. */ error = copyin(base, buf, chunk_len); if (error != 0) bzero(buf, chunk_len); error = compressor_write(p->comp, buf, chunk_len); if (error != 0) break; base += chunk_len; len -= chunk_len; } return (error); } static int core_compressed_write(void *base, size_t len, off_t offset, void *arg) { return (core_write((struct coredump_params *)arg, base, len, offset, UIO_SYSSPACE, NULL)); } static int core_write(struct coredump_params *p, const void *base, size_t len, off_t offset, enum uio_seg seg, size_t *resid) { return (vn_rdwr_inchunks(UIO_WRITE, p->vp, __DECONST(void *, base), len, offset, seg, IO_UNIT | IO_DIRECT | IO_RANGELOCKED, p->active_cred, p->file_cred, resid, p->td)); } static int core_output(char *base, size_t len, off_t offset, struct coredump_params *p, void *tmpbuf) { vm_map_t map; struct mount *mp; size_t resid, runlen; int error; bool success; KASSERT((uintptr_t)base % PAGE_SIZE == 0, ("%s: user address %p is not page-aligned", __func__, base)); if (p->comp != NULL) return (compress_chunk(p, base, tmpbuf, len)); map = &p->td->td_proc->p_vmspace->vm_map; for (; len > 0; base += runlen, offset += runlen, len -= runlen) { /* * Attempt to page in all virtual pages in the range. If a * virtual page is not backed by the pager, it is represented as * a hole in the file. This can occur with zero-filled * anonymous memory or truncated files, for example. */ for (runlen = 0; runlen < len; runlen += PAGE_SIZE) { error = vm_fault(map, (uintptr_t)base + runlen, VM_PROT_READ, VM_FAULT_NOFILL, NULL); if (runlen == 0) success = error == KERN_SUCCESS; else if ((error == KERN_SUCCESS) != success) break; } if (success) { error = core_write(p, base, runlen, offset, UIO_USERSPACE, &resid); if (error != 0) { if (error != EFAULT) break; /* * EFAULT may be returned if the user mapping * could not be accessed, e.g., because a mapped * file has been truncated. Skip the page if no * progress was made, to protect against a * hypothetical scenario where vm_fault() was * successful but core_write() returns EFAULT * anyway. */ runlen -= resid; if (runlen == 0) { success = false; runlen = PAGE_SIZE; } } } if (!success) { error = vn_start_write(p->vp, &mp, V_WAIT); if (error != 0) break; vn_lock(p->vp, LK_EXCLUSIVE | LK_RETRY); error = vn_truncate_locked(p->vp, offset + runlen, false, p->td->td_ucred); VOP_UNLOCK(p->vp); vn_finished_write(mp); if (error != 0) break; } } return (error); } /* * Drain into a core file. */ static int sbuf_drain_core_output(void *arg, const char *data, int len) { struct coredump_params *p; int error, locked; p = (struct coredump_params *)arg; /* * Some kern_proc out routines that print to this sbuf may * call us with the process lock held. Draining with the * non-sleepable lock held is unsafe. The lock is needed for * those routines when dumping a live process. In our case we * can safely release the lock before draining and acquire * again after. */ locked = PROC_LOCKED(p->td->td_proc); if (locked) PROC_UNLOCK(p->td->td_proc); if (p->comp != NULL) error = compressor_write(p->comp, __DECONST(char *, data), len); else error = core_write(p, __DECONST(void *, data), len, p->offset, UIO_SYSSPACE, NULL); if (locked) PROC_LOCK(p->td->td_proc); if (error != 0) return (-error); p->offset += len; return (len); } int __elfN(coredump)(struct thread *td, struct vnode *vp, off_t limit, int flags) { struct ucred *cred = td->td_ucred; int error = 0; struct sseg_closure seginfo; struct note_info_list notelst; struct coredump_params params; struct note_info *ninfo; void *hdr, *tmpbuf; size_t hdrsize, notesz, coresize; hdr = NULL; tmpbuf = NULL; TAILQ_INIT(¬elst); /* Size the program segments. */ seginfo.count = 0; seginfo.size = 0; each_dumpable_segment(td, cb_size_segment, &seginfo); /* * Collect info about the core file header area. */ hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count); if (seginfo.count + 1 >= PN_XNUM) hdrsize += sizeof(Elf_Shdr); __elfN(prepare_notes)(td, ¬elst, ¬esz); coresize = round_page(hdrsize + notesz) + seginfo.size; /* Set up core dump parameters. */ params.offset = 0; params.active_cred = cred; params.file_cred = NOCRED; params.td = td; params.vp = vp; params.comp = NULL; #ifdef RACCT if (racct_enable) { PROC_LOCK(td->td_proc); error = racct_add(td->td_proc, RACCT_CORE, coresize); PROC_UNLOCK(td->td_proc); if (error != 0) { error = EFAULT; goto done; } } #endif if (coresize >= limit) { error = EFAULT; goto done; } /* Create a compression stream if necessary. */ if (compress_user_cores != 0) { params.comp = compressor_init(core_compressed_write, compress_user_cores, CORE_BUF_SIZE, compress_user_cores_level, ¶ms); if (params.comp == NULL) { error = EFAULT; goto done; } tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO); } /* * Allocate memory for building the header, fill it up, * and write it out following the notes. */ hdr = malloc(hdrsize, M_TEMP, M_WAITOK); error = __elfN(corehdr)(¶ms, seginfo.count, hdr, hdrsize, ¬elst, notesz); /* Write the contents of all of the writable segments. */ if (error == 0) { Elf_Phdr *php; off_t offset; int i; php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1; offset = round_page(hdrsize + notesz); for (i = 0; i < seginfo.count; i++) { error = core_output((char *)(uintptr_t)php->p_vaddr, php->p_filesz, offset, ¶ms, tmpbuf); if (error != 0) break; offset += php->p_filesz; php++; } if (error == 0 && params.comp != NULL) error = compressor_flush(params.comp); } if (error) { log(LOG_WARNING, "Failed to write core file for process %s (error %d)\n", curproc->p_comm, error); } done: free(tmpbuf, M_TEMP); if (params.comp != NULL) compressor_fini(params.comp); while ((ninfo = TAILQ_FIRST(¬elst)) != NULL) { TAILQ_REMOVE(¬elst, ninfo, link); free(ninfo, M_TEMP); } if (hdr != NULL) free(hdr, M_TEMP); return (error); } /* * A callback for each_dumpable_segment() to write out the segment's * program header entry. */ static void cb_put_phdr(vm_map_entry_t entry, void *closure) { struct phdr_closure *phc = (struct phdr_closure *)closure; Elf_Phdr *phdr = phc->phdr; phc->offset = round_page(phc->offset); phdr->p_type = PT_LOAD; phdr->p_offset = phc->offset; phdr->p_vaddr = entry->start; phdr->p_paddr = 0; phdr->p_filesz = phdr->p_memsz = entry->end - entry->start; phdr->p_align = PAGE_SIZE; phdr->p_flags = __elfN(untrans_prot)(entry->protection); phc->offset += phdr->p_filesz; phc->phdr++; } /* * A callback for each_dumpable_segment() to gather information about * the number of segments and their total size. */ static void cb_size_segment(vm_map_entry_t entry, void *closure) { struct sseg_closure *ssc = (struct sseg_closure *)closure; ssc->count++; ssc->size += entry->end - entry->start; } /* * For each writable segment in the process's memory map, call the given * function with a pointer to the map entry and some arbitrary * caller-supplied data. */ static void each_dumpable_segment(struct thread *td, segment_callback func, void *closure) { struct proc *p = td->td_proc; vm_map_t map = &p->p_vmspace->vm_map; vm_map_entry_t entry; vm_object_t backing_object, object; bool ignore_entry; vm_map_lock_read(map); VM_MAP_ENTRY_FOREACH(entry, map) { /* * Don't dump inaccessible mappings, deal with legacy * coredump mode. * * Note that read-only segments related to the elf binary * are marked MAP_ENTRY_NOCOREDUMP now so we no longer * need to arbitrarily ignore such segments. */ if (elf_legacy_coredump) { if ((entry->protection & VM_PROT_RW) != VM_PROT_RW) continue; } else { if ((entry->protection & VM_PROT_ALL) == 0) continue; } /* * Dont include memory segment in the coredump if * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in * madvise(2). Do not dump submaps (i.e. parts of the * kernel map). */ if (entry->eflags & (MAP_ENTRY_NOCOREDUMP|MAP_ENTRY_IS_SUB_MAP)) continue; if ((object = entry->object.vm_object) == NULL) continue; /* Ignore memory-mapped devices and such things. */ VM_OBJECT_RLOCK(object); while ((backing_object = object->backing_object) != NULL) { VM_OBJECT_RLOCK(backing_object); VM_OBJECT_RUNLOCK(object); object = backing_object; } ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0; VM_OBJECT_RUNLOCK(object); if (ignore_entry) continue; (*func)(entry, closure); } vm_map_unlock_read(map); } /* * Write the core file header to the file, including padding up to * the page boundary. */ static int __elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr, size_t hdrsize, struct note_info_list *notelst, size_t notesz) { struct note_info *ninfo; struct sbuf *sb; int error; /* Fill in the header. */ bzero(hdr, hdrsize); __elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz); sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN); sbuf_set_drain(sb, sbuf_drain_core_output, p); sbuf_start_section(sb, NULL); sbuf_bcat(sb, hdr, hdrsize); TAILQ_FOREACH(ninfo, notelst, link) __elfN(putnote)(ninfo, sb); /* Align up to a page boundary for the program segments. */ sbuf_end_section(sb, -1, PAGE_SIZE, 0); error = sbuf_finish(sb); sbuf_delete(sb); return (error); } static void __elfN(prepare_notes)(struct thread *td, struct note_info_list *list, size_t *sizep) { struct proc *p; struct thread *thr; size_t size; p = td->td_proc; size = 0; size += register_note(list, NT_PRPSINFO, __elfN(note_prpsinfo), p); /* * To have the debugger select the right thread (LWP) as the initial * thread, we dump the state of the thread passed to us in td first. * This is the thread that causes the core dump and thus likely to * be the right thread one wants to have selected in the debugger. */ thr = td; while (thr != NULL) { size += register_note(list, NT_PRSTATUS, __elfN(note_prstatus), thr); size += register_note(list, NT_FPREGSET, __elfN(note_fpregset), thr); size += register_note(list, NT_THRMISC, __elfN(note_thrmisc), thr); size += register_note(list, NT_PTLWPINFO, __elfN(note_ptlwpinfo), thr); size += register_note(list, -1, __elfN(note_threadmd), thr); thr = (thr == td) ? TAILQ_FIRST(&p->p_threads) : TAILQ_NEXT(thr, td_plist); if (thr == td) thr = TAILQ_NEXT(thr, td_plist); } size += register_note(list, NT_PROCSTAT_PROC, __elfN(note_procstat_proc), p); size += register_note(list, NT_PROCSTAT_FILES, note_procstat_files, p); size += register_note(list, NT_PROCSTAT_VMMAP, note_procstat_vmmap, p); size += register_note(list, NT_PROCSTAT_GROUPS, note_procstat_groups, p); size += register_note(list, NT_PROCSTAT_UMASK, note_procstat_umask, p); size += register_note(list, NT_PROCSTAT_RLIMIT, note_procstat_rlimit, p); size += register_note(list, NT_PROCSTAT_OSREL, note_procstat_osrel, p); size += register_note(list, NT_PROCSTAT_PSSTRINGS, __elfN(note_procstat_psstrings), p); size += register_note(list, NT_PROCSTAT_AUXV, __elfN(note_procstat_auxv), p); *sizep = size; } static void __elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs, size_t notesz) { Elf_Ehdr *ehdr; Elf_Phdr *phdr; Elf_Shdr *shdr; struct phdr_closure phc; ehdr = (Elf_Ehdr *)hdr; ehdr->e_ident[EI_MAG0] = ELFMAG0; ehdr->e_ident[EI_MAG1] = ELFMAG1; ehdr->e_ident[EI_MAG2] = ELFMAG2; ehdr->e_ident[EI_MAG3] = ELFMAG3; ehdr->e_ident[EI_CLASS] = ELF_CLASS; ehdr->e_ident[EI_DATA] = ELF_DATA; ehdr->e_ident[EI_VERSION] = EV_CURRENT; ehdr->e_ident[EI_OSABI] = ELFOSABI_FREEBSD; ehdr->e_ident[EI_ABIVERSION] = 0; ehdr->e_ident[EI_PAD] = 0; ehdr->e_type = ET_CORE; ehdr->e_machine = td->td_proc->p_elf_machine; ehdr->e_version = EV_CURRENT; ehdr->e_entry = 0; ehdr->e_phoff = sizeof(Elf_Ehdr); ehdr->e_flags = td->td_proc->p_elf_flags; ehdr->e_ehsize = sizeof(Elf_Ehdr); ehdr->e_phentsize = sizeof(Elf_Phdr); ehdr->e_shentsize = sizeof(Elf_Shdr); ehdr->e_shstrndx = SHN_UNDEF; if (numsegs + 1 < PN_XNUM) { ehdr->e_phnum = numsegs + 1; ehdr->e_shnum = 0; } else { ehdr->e_phnum = PN_XNUM; ehdr->e_shnum = 1; ehdr->e_shoff = ehdr->e_phoff + (numsegs + 1) * ehdr->e_phentsize; KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr), ("e_shoff: %zu, hdrsize - shdr: %zu", (size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr))); shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff); memset(shdr, 0, sizeof(*shdr)); /* * A special first section is used to hold large segment and * section counts. This was proposed by Sun Microsystems in * Solaris and has been adopted by Linux; the standard ELF * tools are already familiar with the technique. * * See table 7-7 of the Solaris "Linker and Libraries Guide" * (or 12-7 depending on the version of the document) for more * details. */ shdr->sh_type = SHT_NULL; shdr->sh_size = ehdr->e_shnum; shdr->sh_link = ehdr->e_shstrndx; shdr->sh_info = numsegs + 1; } /* * Fill in the program header entries. */ phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff); /* The note segement. */ phdr->p_type = PT_NOTE; phdr->p_offset = hdrsize; phdr->p_vaddr = 0; phdr->p_paddr = 0; phdr->p_filesz = notesz; phdr->p_memsz = 0; phdr->p_flags = PF_R; phdr->p_align = ELF_NOTE_ROUNDSIZE; phdr++; /* All the writable segments from the program. */ phc.phdr = phdr; phc.offset = round_page(hdrsize + notesz); each_dumpable_segment(td, cb_put_phdr, &phc); } static size_t register_note(struct note_info_list *list, int type, outfunc_t out, void *arg) { struct note_info *ninfo; size_t size, notesize; size = 0; out(arg, NULL, &size); ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK); ninfo->type = type; ninfo->outfunc = out; ninfo->outarg = arg; ninfo->outsize = size; TAILQ_INSERT_TAIL(list, ninfo, link); if (type == -1) return (size); notesize = sizeof(Elf_Note) + /* note header */ roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + /* note name */ roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ return (notesize); } static size_t append_note_data(const void *src, void *dst, size_t len) { size_t padded_len; padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE); if (dst != NULL) { bcopy(src, dst, len); bzero((char *)dst + len, padded_len - len); } return (padded_len); } size_t __elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp) { Elf_Note *note; char *buf; size_t notesize; buf = dst; if (buf != NULL) { note = (Elf_Note *)buf; note->n_namesz = sizeof(FREEBSD_ABI_VENDOR); note->n_descsz = size; note->n_type = type; buf += sizeof(*note); buf += append_note_data(FREEBSD_ABI_VENDOR, buf, sizeof(FREEBSD_ABI_VENDOR)); append_note_data(src, buf, size); if (descp != NULL) *descp = buf; } notesize = sizeof(Elf_Note) + /* note header */ roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) + /* note name */ roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */ return (notesize); } static void __elfN(putnote)(struct note_info *ninfo, struct sbuf *sb) { Elf_Note note; ssize_t old_len, sect_len; size_t new_len, descsz, i; if (ninfo->type == -1) { ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); return; } note.n_namesz = sizeof(FREEBSD_ABI_VENDOR); note.n_descsz = ninfo->outsize; note.n_type = ninfo->type; sbuf_bcat(sb, ¬e, sizeof(note)); sbuf_start_section(sb, &old_len); sbuf_bcat(sb, FREEBSD_ABI_VENDOR, sizeof(FREEBSD_ABI_VENDOR)); sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); if (note.n_descsz == 0) return; sbuf_start_section(sb, &old_len); ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize); sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0); if (sect_len < 0) return; new_len = (size_t)sect_len; descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE); if (new_len < descsz) { /* * It is expected that individual note emitters will correctly * predict their expected output size and fill up to that size * themselves, padding in a format-specific way if needed. * However, in case they don't, just do it here with zeros. */ for (i = 0; i < descsz - new_len; i++) sbuf_putc(sb, 0); } else if (new_len > descsz) { /* * We can't always truncate sb -- we may have drained some * of it already. */ KASSERT(new_len == descsz, ("%s: Note type %u changed as we " "read it (%zu > %zu). Since it is longer than " "expected, this coredump's notes are corrupt. THIS " "IS A BUG in the note_procstat routine for type %u.\n", __func__, (unsigned)note.n_type, new_len, descsz, (unsigned)note.n_type)); } } /* * Miscellaneous note out functions. */ #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 #include #include typedef struct prstatus32 elf_prstatus_t; typedef struct prpsinfo32 elf_prpsinfo_t; typedef struct fpreg32 elf_prfpregset_t; typedef struct fpreg32 elf_fpregset_t; typedef struct reg32 elf_gregset_t; typedef struct thrmisc32 elf_thrmisc_t; #define ELF_KERN_PROC_MASK KERN_PROC_MASK32 typedef struct kinfo_proc32 elf_kinfo_proc_t; typedef uint32_t elf_ps_strings_t; #else typedef prstatus_t elf_prstatus_t; typedef prpsinfo_t elf_prpsinfo_t; typedef prfpregset_t elf_prfpregset_t; typedef prfpregset_t elf_fpregset_t; typedef gregset_t elf_gregset_t; typedef thrmisc_t elf_thrmisc_t; #define ELF_KERN_PROC_MASK 0 typedef struct kinfo_proc elf_kinfo_proc_t; typedef vm_offset_t elf_ps_strings_t; #endif static void __elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep) { struct sbuf sbarg; size_t len; char *cp, *end; struct proc *p; elf_prpsinfo_t *psinfo; int error; p = (struct proc *)arg; if (sb != NULL) { KASSERT(*sizep == sizeof(*psinfo), ("invalid size")); psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK); psinfo->pr_version = PRPSINFO_VERSION; psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t); strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname)); PROC_LOCK(p); if (p->p_args != NULL) { len = sizeof(psinfo->pr_psargs) - 1; if (len > p->p_args->ar_length) len = p->p_args->ar_length; memcpy(psinfo->pr_psargs, p->p_args->ar_args, len); PROC_UNLOCK(p); error = 0; } else { _PHOLD(p); PROC_UNLOCK(p); sbuf_new(&sbarg, psinfo->pr_psargs, sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN); error = proc_getargv(curthread, p, &sbarg); PRELE(p); if (sbuf_finish(&sbarg) == 0) len = sbuf_len(&sbarg) - 1; else len = sizeof(psinfo->pr_psargs) - 1; sbuf_delete(&sbarg); } if (error || len == 0) strlcpy(psinfo->pr_psargs, p->p_comm, sizeof(psinfo->pr_psargs)); else { KASSERT(len < sizeof(psinfo->pr_psargs), ("len is too long: %zu vs %zu", len, sizeof(psinfo->pr_psargs))); cp = psinfo->pr_psargs; end = cp + len - 1; for (;;) { cp = memchr(cp, '\0', end - cp); if (cp == NULL) break; *cp = ' '; } } psinfo->pr_pid = p->p_pid; sbuf_bcat(sb, psinfo, sizeof(*psinfo)); free(psinfo, M_TEMP); } *sizep = sizeof(*psinfo); } static void __elfN(note_prstatus)(void *arg, struct sbuf *sb, size_t *sizep) { struct thread *td; elf_prstatus_t *status; td = (struct thread *)arg; if (sb != NULL) { KASSERT(*sizep == sizeof(*status), ("invalid size")); status = malloc(sizeof(*status), M_TEMP, M_ZERO | M_WAITOK); status->pr_version = PRSTATUS_VERSION; status->pr_statussz = sizeof(elf_prstatus_t); status->pr_gregsetsz = sizeof(elf_gregset_t); status->pr_fpregsetsz = sizeof(elf_fpregset_t); status->pr_osreldate = osreldate; status->pr_cursig = td->td_proc->p_sig; status->pr_pid = td->td_tid; #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 fill_regs32(td, &status->pr_reg); #else fill_regs(td, &status->pr_reg); #endif sbuf_bcat(sb, status, sizeof(*status)); free(status, M_TEMP); } *sizep = sizeof(*status); } static void __elfN(note_fpregset)(void *arg, struct sbuf *sb, size_t *sizep) { struct thread *td; elf_prfpregset_t *fpregset; td = (struct thread *)arg; if (sb != NULL) { KASSERT(*sizep == sizeof(*fpregset), ("invalid size")); fpregset = malloc(sizeof(*fpregset), M_TEMP, M_ZERO | M_WAITOK); #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 fill_fpregs32(td, fpregset); #else fill_fpregs(td, fpregset); #endif sbuf_bcat(sb, fpregset, sizeof(*fpregset)); free(fpregset, M_TEMP); } *sizep = sizeof(*fpregset); } static void __elfN(note_thrmisc)(void *arg, struct sbuf *sb, size_t *sizep) { struct thread *td; elf_thrmisc_t thrmisc; td = (struct thread *)arg; if (sb != NULL) { KASSERT(*sizep == sizeof(thrmisc), ("invalid size")); bzero(&thrmisc, sizeof(thrmisc)); strcpy(thrmisc.pr_tname, td->td_name); sbuf_bcat(sb, &thrmisc, sizeof(thrmisc)); } *sizep = sizeof(thrmisc); } static void __elfN(note_ptlwpinfo)(void *arg, struct sbuf *sb, size_t *sizep) { struct thread *td; size_t size; int structsize; #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 struct ptrace_lwpinfo32 pl; #else struct ptrace_lwpinfo pl; #endif td = (struct thread *)arg; size = sizeof(structsize) + sizeof(pl); if (sb != NULL) { KASSERT(*sizep == size, ("invalid size")); structsize = sizeof(pl); sbuf_bcat(sb, &structsize, sizeof(structsize)); bzero(&pl, sizeof(pl)); pl.pl_lwpid = td->td_tid; pl.pl_event = PL_EVENT_NONE; pl.pl_sigmask = td->td_sigmask; pl.pl_siglist = td->td_siglist; if (td->td_si.si_signo != 0) { pl.pl_event = PL_EVENT_SIGNAL; pl.pl_flags |= PL_FLAG_SI; #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo); #else pl.pl_siginfo = td->td_si; #endif } strcpy(pl.pl_tdname, td->td_name); /* XXX TODO: supply more information in struct ptrace_lwpinfo*/ sbuf_bcat(sb, &pl, sizeof(pl)); } *sizep = size; } /* * Allow for MD specific notes, as well as any MD * specific preparations for writing MI notes. */ static void __elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep) { struct thread *td; void *buf; size_t size; td = (struct thread *)arg; size = *sizep; if (size != 0 && sb != NULL) buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK); else buf = NULL; size = 0; __elfN(dump_thread)(td, buf, &size); KASSERT(sb == NULL || *sizep == size, ("invalid size")); if (size != 0 && sb != NULL) sbuf_bcat(sb, buf, size); free(buf, M_TEMP); *sizep = size; } #ifdef KINFO_PROC_SIZE CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); #endif static void __elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; size_t size; int structsize; p = (struct proc *)arg; size = sizeof(structsize) + p->p_numthreads * sizeof(elf_kinfo_proc_t); if (sb != NULL) { KASSERT(*sizep == size, ("invalid size")); structsize = sizeof(elf_kinfo_proc_t); sbuf_bcat(sb, &structsize, sizeof(structsize)); PROC_LOCK(p); kern_proc_out(p, sb, ELF_KERN_PROC_MASK); } *sizep = size; } #ifdef KINFO_FILE_SIZE CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE); #endif static void note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; size_t size, sect_sz, i; ssize_t start_len, sect_len; int structsize, filedesc_flags; if (coredump_pack_fileinfo) filedesc_flags = KERN_FILEDESC_PACK_KINFO; else filedesc_flags = 0; p = (struct proc *)arg; structsize = sizeof(struct kinfo_file); if (sb == NULL) { size = 0; sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); sbuf_set_drain(sb, sbuf_count_drain, &size); sbuf_bcat(sb, &structsize, sizeof(structsize)); PROC_LOCK(p); kern_proc_filedesc_out(p, sb, -1, filedesc_flags); sbuf_finish(sb); sbuf_delete(sb); *sizep = size; } else { sbuf_start_section(sb, &start_len); sbuf_bcat(sb, &structsize, sizeof(structsize)); PROC_LOCK(p); kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize), filedesc_flags); sect_len = sbuf_end_section(sb, start_len, 0, 0); if (sect_len < 0) return; sect_sz = sect_len; KASSERT(sect_sz <= *sizep, ("kern_proc_filedesc_out did not respect maxlen; " "requested %zu, got %zu", *sizep - sizeof(structsize), sect_sz - sizeof(structsize))); for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++) sbuf_putc(sb, 0); } } #ifdef KINFO_VMENTRY_SIZE CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); #endif static void note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; size_t size; int structsize, vmmap_flags; if (coredump_pack_vmmapinfo) vmmap_flags = KERN_VMMAP_PACK_KINFO; else vmmap_flags = 0; p = (struct proc *)arg; structsize = sizeof(struct kinfo_vmentry); if (sb == NULL) { size = 0; sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); sbuf_set_drain(sb, sbuf_count_drain, &size); sbuf_bcat(sb, &structsize, sizeof(structsize)); PROC_LOCK(p); kern_proc_vmmap_out(p, sb, -1, vmmap_flags); sbuf_finish(sb); sbuf_delete(sb); *sizep = size; } else { sbuf_bcat(sb, &structsize, sizeof(structsize)); PROC_LOCK(p); kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize), vmmap_flags); } } static void note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; size_t size; int structsize; p = (struct proc *)arg; size = sizeof(structsize) + p->p_ucred->cr_ngroups * sizeof(gid_t); if (sb != NULL) { KASSERT(*sizep == size, ("invalid size")); structsize = sizeof(gid_t); sbuf_bcat(sb, &structsize, sizeof(structsize)); sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups * sizeof(gid_t)); } *sizep = size; } static void note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; size_t size; int structsize; p = (struct proc *)arg; size = sizeof(structsize) + sizeof(p->p_fd->fd_cmask); if (sb != NULL) { KASSERT(*sizep == size, ("invalid size")); structsize = sizeof(p->p_fd->fd_cmask); sbuf_bcat(sb, &structsize, sizeof(structsize)); sbuf_bcat(sb, &p->p_fd->fd_cmask, sizeof(p->p_fd->fd_cmask)); } *sizep = size; } static void note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; struct rlimit rlim[RLIM_NLIMITS]; size_t size; int structsize, i; p = (struct proc *)arg; size = sizeof(structsize) + sizeof(rlim); if (sb != NULL) { KASSERT(*sizep == size, ("invalid size")); structsize = sizeof(rlim); sbuf_bcat(sb, &structsize, sizeof(structsize)); PROC_LOCK(p); for (i = 0; i < RLIM_NLIMITS; i++) lim_rlimit_proc(p, i, &rlim[i]); PROC_UNLOCK(p); sbuf_bcat(sb, rlim, sizeof(rlim)); } *sizep = size; } static void note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; size_t size; int structsize; p = (struct proc *)arg; size = sizeof(structsize) + sizeof(p->p_osrel); if (sb != NULL) { KASSERT(*sizep == size, ("invalid size")); structsize = sizeof(p->p_osrel); sbuf_bcat(sb, &structsize, sizeof(structsize)); sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel)); } *sizep = size; } static void __elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; elf_ps_strings_t ps_strings; size_t size; int structsize; p = (struct proc *)arg; size = sizeof(structsize) + sizeof(ps_strings); if (sb != NULL) { KASSERT(*sizep == size, ("invalid size")); structsize = sizeof(ps_strings); #if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32 ps_strings = PTROUT(p->p_sysent->sv_psstrings); #else ps_strings = p->p_sysent->sv_psstrings; #endif sbuf_bcat(sb, &structsize, sizeof(structsize)); sbuf_bcat(sb, &ps_strings, sizeof(ps_strings)); } *sizep = size; } static void __elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep) { struct proc *p; size_t size; int structsize; p = (struct proc *)arg; if (sb == NULL) { size = 0; sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN); sbuf_set_drain(sb, sbuf_count_drain, &size); sbuf_bcat(sb, &structsize, sizeof(structsize)); PHOLD(p); proc_getauxv(curthread, p, sb); PRELE(p); sbuf_finish(sb); sbuf_delete(sb); *sizep = size; } else { structsize = sizeof(Elf_Auxinfo); sbuf_bcat(sb, &structsize, sizeof(structsize)); PHOLD(p); proc_getauxv(curthread, p, sb); PRELE(p); } } static boolean_t __elfN(parse_notes)(struct image_params *imgp, Elf_Note *checknote, const char *note_vendor, const Elf_Phdr *pnote, boolean_t (*cb)(const Elf_Note *, void *, boolean_t *), void *cb_arg) { const Elf_Note *note, *note0, *note_end; const char *note_name; char *buf; int i, error; boolean_t res; /* We need some limit, might as well use PAGE_SIZE. */ if (pnote == NULL || pnote->p_filesz > PAGE_SIZE) return (FALSE); ASSERT_VOP_LOCKED(imgp->vp, "parse_notes"); if (pnote->p_offset > PAGE_SIZE || pnote->p_filesz > PAGE_SIZE - pnote->p_offset) { buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT); if (buf == NULL) { VOP_UNLOCK(imgp->vp); buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz, pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED, curthread->td_ucred, NOCRED, NULL, curthread); if (error != 0) { uprintf("i/o error PT_NOTE\n"); goto retf; } note = note0 = (const Elf_Note *)buf; note_end = (const Elf_Note *)(buf + pnote->p_filesz); } else { note = note0 = (const Elf_Note *)(imgp->image_header + pnote->p_offset); note_end = (const Elf_Note *)(imgp->image_header + pnote->p_offset + pnote->p_filesz); buf = NULL; } for (i = 0; i < 100 && note >= note0 && note < note_end; i++) { if (!aligned(note, Elf32_Addr) || (const char *)note_end - (const char *)note < sizeof(Elf_Note)) { goto retf; } if (note->n_namesz != checknote->n_namesz || note->n_descsz != checknote->n_descsz || note->n_type != checknote->n_type) goto nextnote; note_name = (const char *)(note + 1); if (note_name + checknote->n_namesz >= (const char *)note_end || strncmp(note_vendor, note_name, checknote->n_namesz) != 0) goto nextnote; if (cb(note, cb_arg, &res)) goto ret; nextnote: note = (const Elf_Note *)((const char *)(note + 1) + roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) + roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE)); } retf: res = FALSE; ret: free(buf, M_TEMP); return (res); } struct brandnote_cb_arg { Elf_Brandnote *brandnote; int32_t *osrel; }; static boolean_t brandnote_cb(const Elf_Note *note, void *arg0, boolean_t *res) { struct brandnote_cb_arg *arg; arg = arg0; /* * Fetch the osreldate for binary from the ELF OSABI-note if * necessary. */ *res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 && arg->brandnote->trans_osrel != NULL ? arg->brandnote->trans_osrel(note, arg->osrel) : TRUE; return (TRUE); } static Elf_Note fctl_note = { .n_namesz = sizeof(FREEBSD_ABI_VENDOR), .n_descsz = sizeof(uint32_t), .n_type = NT_FREEBSD_FEATURE_CTL, }; struct fctl_cb_arg { boolean_t *has_fctl0; uint32_t *fctl0; }; static boolean_t note_fctl_cb(const Elf_Note *note, void *arg0, boolean_t *res) { struct fctl_cb_arg *arg; const Elf32_Word *desc; uintptr_t p; arg = arg0; p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE); desc = (const Elf32_Word *)p; *arg->has_fctl0 = TRUE; *arg->fctl0 = desc[0]; return (TRUE); } /* * Try to find the appropriate ABI-note section for checknote, fetch * the osreldate and feature control flags for binary from the ELF * OSABI-note. Only the first page of the image is searched, the same * as for headers. */ static boolean_t __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote, int32_t *osrel, boolean_t *has_fctl0, uint32_t *fctl0) { const Elf_Phdr *phdr; const Elf_Ehdr *hdr; struct brandnote_cb_arg b_arg; struct fctl_cb_arg f_arg; int i, j; hdr = (const Elf_Ehdr *)imgp->image_header; phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff); b_arg.brandnote = brandnote; b_arg.osrel = osrel; f_arg.has_fctl0 = has_fctl0; f_arg.fctl0 = fctl0; for (i = 0; i < hdr->e_phnum; i++) { if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp, &brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb, &b_arg)) { for (j = 0; j < hdr->e_phnum; j++) { if (phdr[j].p_type == PT_NOTE && __elfN(parse_notes)(imgp, &fctl_note, FREEBSD_ABI_VENDOR, &phdr[j], note_fctl_cb, &f_arg)) break; } return (TRUE); } } return (FALSE); } /* * Tell kern_execve.c about it, with a little help from the linker. */ static struct execsw __elfN(execsw) = { .ex_imgact = __CONCAT(exec_, __elfN(imgact)), .ex_name = __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE)) }; EXEC_SET(__CONCAT(elf, __ELF_WORD_SIZE), __elfN(execsw)); static vm_prot_t __elfN(trans_prot)(Elf_Word flags) { vm_prot_t prot; prot = 0; if (flags & PF_X) prot |= VM_PROT_EXECUTE; if (flags & PF_W) prot |= VM_PROT_WRITE; if (flags & PF_R) prot |= VM_PROT_READ; #if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__)) if (i386_read_exec && (flags & PF_R)) prot |= VM_PROT_EXECUTE; #endif return (prot); } static Elf_Word __elfN(untrans_prot)(vm_prot_t prot) { Elf_Word flags; flags = 0; if (prot & VM_PROT_EXECUTE) flags |= PF_X; if (prot & VM_PROT_READ) flags |= PF_R; if (prot & VM_PROT_WRITE) flags |= PF_W; return (flags); } void __elfN(stackgap)(struct image_params *imgp, uintptr_t *stack_base) { uintptr_t range, rbase, gap; int pct; if ((imgp->map_flags & MAP_ASLR) == 0) return; pct = __elfN(aslr_stack_gap); if (pct == 0) return; if (pct > 50) pct = 50; range = imgp->eff_stack_sz * pct / 100; arc4rand(&rbase, sizeof(rbase), 0); gap = rbase % range; gap &= ~(sizeof(u_long) - 1); *stack_base -= gap; } Index: head/sys/kern/kern_sharedpage.c =================================================================== --- head/sys/kern/kern_sharedpage.c (revision 366621) +++ head/sys/kern/kern_sharedpage.c (revision 366622) @@ -1,308 +1,374 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010, 2012 Konstantin Belousov * Copyright (c) 2015 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include static struct sx shared_page_alloc_sx; static vm_object_t shared_page_obj; static int shared_page_free; char *shared_page_mapping; +#ifdef RANDOM_FENESTRASX +static struct vdso_fxrng_generation *fxrng_shpage_mapping; + +static bool fxrng_enabled = true; +SYSCTL_BOOL(_debug, OID_AUTO, fxrng_vdso_enable, CTLFLAG_RWTUN, &fxrng_enabled, + 0, "Enable FXRNG VDSO"); +#endif + void shared_page_write(int base, int size, const void *data) { bcopy(data, shared_page_mapping + base, size); } static int shared_page_alloc_locked(int size, int align) { int res; res = roundup(shared_page_free, align); if (res + size >= IDX_TO_OFF(shared_page_obj->size)) res = -1; else shared_page_free = res + size; return (res); } int shared_page_alloc(int size, int align) { int res; sx_xlock(&shared_page_alloc_sx); res = shared_page_alloc_locked(size, align); sx_xunlock(&shared_page_alloc_sx); return (res); } int shared_page_fill(int size, int align, const void *data) { int res; sx_xlock(&shared_page_alloc_sx); res = shared_page_alloc_locked(size, align); if (res != -1) shared_page_write(res, size, data); sx_xunlock(&shared_page_alloc_sx); return (res); } static void shared_page_init(void *dummy __unused) { vm_page_t m; vm_offset_t addr; sx_init(&shared_page_alloc_sx, "shpsx"); shared_page_obj = vm_pager_allocate(OBJT_PHYS, 0, PAGE_SIZE, VM_PROT_DEFAULT, 0, NULL); VM_OBJECT_WLOCK(shared_page_obj); m = vm_page_grab(shared_page_obj, 0, VM_ALLOC_ZERO); VM_OBJECT_WUNLOCK(shared_page_obj); vm_page_valid(m); vm_page_xunbusy(m); addr = kva_alloc(PAGE_SIZE); pmap_qenter(addr, &m, 1); shared_page_mapping = (char *)addr; } SYSINIT(shp, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)shared_page_init, NULL); /* * Push the timehands update to the shared page. * * The lockless update scheme is similar to the one used to update the * in-kernel timehands, see sys/kern/kern_tc.c:tc_windup() (which * calls us after the timehands are updated). */ static void timehands_update(struct vdso_sv_tk *svtk) { struct vdso_timehands th; struct vdso_timekeep *tk; uint32_t enabled, idx; enabled = tc_fill_vdso_timehands(&th); th.th_gen = 0; idx = svtk->sv_timekeep_curr; if (++idx >= VDSO_TH_NUM) idx = 0; svtk->sv_timekeep_curr = idx; if (++svtk->sv_timekeep_gen == 0) svtk->sv_timekeep_gen = 1; tk = (struct vdso_timekeep *)(shared_page_mapping + svtk->sv_timekeep_off); tk->tk_th[idx].th_gen = 0; atomic_thread_fence_rel(); if (enabled) tk->tk_th[idx] = th; atomic_store_rel_32(&tk->tk_th[idx].th_gen, svtk->sv_timekeep_gen); atomic_store_rel_32(&tk->tk_current, idx); /* * The ordering of the assignment to tk_enabled relative to * the update of the vdso_timehands is not important. */ tk->tk_enabled = enabled; } #ifdef COMPAT_FREEBSD32 static void timehands_update32(struct vdso_sv_tk *svtk) { struct vdso_timehands32 th; struct vdso_timekeep32 *tk; uint32_t enabled, idx; enabled = tc_fill_vdso_timehands32(&th); th.th_gen = 0; idx = svtk->sv_timekeep_curr; if (++idx >= VDSO_TH_NUM) idx = 0; svtk->sv_timekeep_curr = idx; if (++svtk->sv_timekeep_gen == 0) svtk->sv_timekeep_gen = 1; tk = (struct vdso_timekeep32 *)(shared_page_mapping + svtk->sv_timekeep_off); tk->tk_th[idx].th_gen = 0; atomic_thread_fence_rel(); if (enabled) tk->tk_th[idx] = th; atomic_store_rel_32(&tk->tk_th[idx].th_gen, svtk->sv_timekeep_gen); atomic_store_rel_32(&tk->tk_current, idx); tk->tk_enabled = enabled; } #endif /* * This is hackish, but easiest way to avoid creating list structures * that needs to be iterated over from the hardclock interrupt * context. */ static struct vdso_sv_tk *host_svtk; #ifdef COMPAT_FREEBSD32 static struct vdso_sv_tk *compat32_svtk; #endif void timekeep_push_vdso(void) { if (host_svtk != NULL) timehands_update(host_svtk); #ifdef COMPAT_FREEBSD32 if (compat32_svtk != NULL) timehands_update32(compat32_svtk); #endif } struct vdso_sv_tk * alloc_sv_tk(void) { struct vdso_sv_tk *svtk; int tk_base; uint32_t tk_ver; tk_ver = VDSO_TK_VER_CURR; svtk = malloc(sizeof(struct vdso_sv_tk), M_TEMP, M_WAITOK | M_ZERO); tk_base = shared_page_alloc(sizeof(struct vdso_timekeep) + sizeof(struct vdso_timehands) * VDSO_TH_NUM, 16); KASSERT(tk_base != -1, ("tk_base -1 for native")); shared_page_write(tk_base + offsetof(struct vdso_timekeep, tk_ver), sizeof(uint32_t), &tk_ver); svtk->sv_timekeep_off = tk_base; timekeep_push_vdso(); return (svtk); } #ifdef COMPAT_FREEBSD32 struct vdso_sv_tk * alloc_sv_tk_compat32(void) { struct vdso_sv_tk *svtk; int tk_base; uint32_t tk_ver; svtk = malloc(sizeof(struct vdso_sv_tk), M_TEMP, M_WAITOK | M_ZERO); tk_ver = VDSO_TK_VER_CURR; tk_base = shared_page_alloc(sizeof(struct vdso_timekeep32) + sizeof(struct vdso_timehands32) * VDSO_TH_NUM, 16); KASSERT(tk_base != -1, ("tk_base -1 for 32bit")); shared_page_write(tk_base + offsetof(struct vdso_timekeep32, tk_ver), sizeof(uint32_t), &tk_ver); svtk->sv_timekeep_off = tk_base; timekeep_push_vdso(); return (svtk); } #endif +#ifdef RANDOM_FENESTRASX void +fxrng_push_seed_generation(uint64_t gen) +{ + if (fxrng_shpage_mapping == NULL || !fxrng_enabled) + return; + KASSERT(gen < INT32_MAX, + ("fxrng seed version shouldn't roll over a 32-bit counter " + "for approximately 456,000 years")); + atomic_store_rel_32(&fxrng_shpage_mapping->fx_generation32, + (uint32_t)gen); +} + +static void +alloc_sv_fxrng_generation(void) +{ + int base; + + /* + * Allocate a full cache line for the fxrng root generation (64-bit + * counter, or truncated 32-bit counter on ILP32 userspace). It is + * important that the line is not shared with frequently dirtied data, + * and the shared page allocator lacks a __read_mostly mechanism. + * However, PAGE_SIZE is typically large relative to the amount of + * stuff we've got in it so far, so maybe the possible waste isn't an + * issue. + */ + base = shared_page_alloc(CACHE_LINE_SIZE, CACHE_LINE_SIZE); + KASSERT(base != -1, ("%s: base allocation failed", __func__)); + fxrng_shpage_mapping = (void *)(shared_page_mapping + base); + *fxrng_shpage_mapping = (struct vdso_fxrng_generation) { + .fx_vdso_version = VDSO_FXRNG_VER_CURR, + }; +} +#endif /* RANDOM_FENESTRASX */ + +void exec_sysvec_init(void *param) { struct sysentvec *sv; +#ifdef RANDOM_FENESTRASX + ptrdiff_t base; +#endif sv = (struct sysentvec *)param; if ((sv->sv_flags & SV_SHP) == 0) return; sv->sv_shared_page_obj = shared_page_obj; sv->sv_sigcode_base = sv->sv_shared_page_base + shared_page_fill(*(sv->sv_szsigcode), 16, sv->sv_sigcode); if ((sv->sv_flags & SV_ABI_MASK) != SV_ABI_FREEBSD) return; if ((sv->sv_flags & SV_TIMEKEEP) != 0) { #ifdef COMPAT_FREEBSD32 if ((sv->sv_flags & SV_ILP32) != 0) { KASSERT(compat32_svtk == NULL, ("Compat32 already registered")); compat32_svtk = alloc_sv_tk_compat32(); sv->sv_timekeep_base = sv->sv_shared_page_base + compat32_svtk->sv_timekeep_off; } else { #endif KASSERT(host_svtk == NULL, ("Host already registered")); host_svtk = alloc_sv_tk(); sv->sv_timekeep_base = sv->sv_shared_page_base + host_svtk->sv_timekeep_off; #ifdef COMPAT_FREEBSD32 } #endif } +#ifdef RANDOM_FENESTRASX + if ((sv->sv_flags & SV_RNG_SEED_VER) != 0) { + /* + * Only allocate a single VDSO entry for multiple sysentvecs, + * i.e., native and COMPAT32. + */ + if (fxrng_shpage_mapping == NULL) + alloc_sv_fxrng_generation(); + base = (char *)fxrng_shpage_mapping - shared_page_mapping; + sv->sv_fxrng_gen_base = sv->sv_shared_page_base + base; + } +#endif } void exec_sysvec_init_secondary(struct sysentvec *sv, struct sysentvec *sv2) { MPASS((sv2->sv_flags & SV_ABI_MASK) == (sv->sv_flags & SV_ABI_MASK)); MPASS((sv2->sv_flags & SV_TIMEKEEP) == (sv->sv_flags & SV_TIMEKEEP)); MPASS((sv2->sv_flags & SV_SHP) != 0 && (sv->sv_flags & SV_SHP) != 0); + MPASS((sv2->sv_flags & SV_RNG_SEED_VER) == + (sv->sv_flags & SV_RNG_SEED_VER)); sv2->sv_shared_page_obj = sv->sv_shared_page_obj; sv2->sv_sigcode_base = sv2->sv_shared_page_base + (sv->sv_sigcode_base - sv->sv_shared_page_base); if ((sv2->sv_flags & SV_ABI_MASK) != SV_ABI_FREEBSD) return; if ((sv2->sv_flags & SV_TIMEKEEP) != 0) { sv2->sv_timekeep_base = sv2->sv_shared_page_base + (sv->sv_timekeep_base - sv->sv_shared_page_base); + } + if ((sv2->sv_flags & SV_RNG_SEED_VER) != 0) { + sv2->sv_fxrng_gen_base = sv2->sv_shared_page_base + + (sv->sv_fxrng_gen_base - sv->sv_shared_page_base); } } Index: head/sys/mips/mips/elf_machdep.c =================================================================== --- head/sys/mips/mips/elf_machdep.c (revision 366621) +++ head/sys/mips/mips/elf_machdep.c (revision 366622) @@ -1,508 +1,509 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 1996-1998 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * from: src/sys/i386/i386/elf_machdep.c,v 1.20 2004/08/11 02:35:05 marcel */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct sysentvec elf_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, #ifdef __mips_n64 .sv_name = "FreeBSD ELF64", #else .sv_name = "FreeBSD ELF32", #endif .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, + .sv_flags = SV_ABI_FREEBSD | SV_ASLR | SV_RNG_SEED_VER | #ifdef __mips_n64 - .sv_flags = SV_ABI_FREEBSD | SV_LP64 | SV_ASLR, + SV_LP64, #else - .sv_flags = SV_ABI_FREEBSD | SV_ILP32 | SV_ASLR, + SV_ILP32, #endif .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, }; static __ElfN(Brandinfo) freebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_MIPS, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &__elfN(freebsd_brandnote), .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(elf, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) __elfN(insert_brand_entry), &freebsd_brand_info); void __elfN(dump_thread)(struct thread *td __unused, void *dst __unused, size_t *off __unused) { } /* * The following MIPS relocation code for tracking multiple * consecutive HI32/LO32 entries is because of the following: * * https://dmz-portal.mips.com/wiki/MIPS_relocation_types * * === * * + R_MIPS_HI16 * * An R_MIPS_HI16 must be followed eventually by an associated R_MIPS_LO16 * relocation record in the same SHT_REL section. The contents of the two * fields to be relocated are combined to form a full 32-bit addend AHL. * An R_MIPS_LO16 entry which does not immediately follow a R_MIPS_HI16 is * combined with the most recent one encountered, i.e. multiple R_MIPS_LO16 * entries may be associated with a single R_MIPS_HI16. Use of these * relocation types in a SHT_REL section is discouraged and may be * forbidden to avoid this complication. * * A GNU extension allows multiple R_MIPS_HI16 records to share the same * R_MIPS_LO16 relocation record(s). The association works like this within * a single relocation section: * * + From the beginning of the section moving to the end of the section, * until R_MIPS_LO16 is not found each found R_MIPS_HI16 relocation will * be associated with the first R_MIPS_LO16. * * + Until another R_MIPS_HI16 record is found all found R_MIPS_LO16 * relocations found are associated with the last R_MIPS_HI16. * * === * * This is so gcc can do dead code detection/removal without having to * generate HI/LO pairs even if one of them would be deleted. * * So, the summary is: * * + A HI16 entry must occur before any LO16 entries; * + Multiple consecutive HI16 RELA entries need to be buffered until the * first LO16 RELA entry occurs - and then all HI16 RELA relocations use * the offset in the LOW16 RELA for calculating their offsets; * + The last HI16 RELA entry before a LO16 RELA entry is used (the AHL) * for the first subsequent LO16 calculation; * + If multiple consecutive LO16 RELA entries occur, only the first * LO16 RELA entry triggers an update of buffered HI16 RELA entries; * any subsequent LO16 RELA entry before another HI16 RELA entry will * not cause any further updates to the HI16 RELA entries. * * Additionally, flush out any outstanding HI16 entries that don't have * a LO16 entry in case some garbage entries are left in the file. */ struct mips_tmp_reloc; struct mips_tmp_reloc { struct mips_tmp_reloc *next; Elf_Addr ahl; Elf32_Addr *where_hi16; }; static struct mips_tmp_reloc *ml = NULL; /* * Add a temporary relocation (ie, a HI16 reloc type.) */ static int mips_tmp_reloc_add(Elf_Addr ahl, Elf32_Addr *where_hi16) { struct mips_tmp_reloc *r; r = malloc(sizeof(struct mips_tmp_reloc), M_TEMP, M_NOWAIT); if (r == NULL) { printf("%s: failed to malloc\n", __func__); return (0); } r->ahl = ahl; r->where_hi16 = where_hi16; r->next = ml; ml = r; return (1); } /* * Flush the temporary relocation list. * * This should be done after a file is completely loaded * so no stale relocations exist to confuse the next * load. */ static void mips_tmp_reloc_flush(void) { struct mips_tmp_reloc *r, *rn; r = ml; ml = NULL; while (r != NULL) { rn = r->next; free(r, M_TEMP); r = rn; } } /* * Get an entry from the reloc list; or NULL if we've run out. */ static struct mips_tmp_reloc * mips_tmp_reloc_get(void) { struct mips_tmp_reloc *r; r = ml; if (r == NULL) return (NULL); ml = ml->next; return (r); } /* * Free a relocation entry. */ static void mips_tmp_reloc_free(struct mips_tmp_reloc *r) { free(r, M_TEMP); } bool elf_is_ifunc_reloc(Elf_Size r_info __unused) { return (false); } /* Process one elf relocation with addend. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, int local, elf_lookup_fn lookup) { Elf32_Addr *where = (Elf32_Addr *)NULL; Elf_Addr addr; Elf_Addr addend = (Elf_Addr)0; Elf_Word rtype = (Elf_Word)0, symidx; struct mips_tmp_reloc *r; const Elf_Rel *rel = NULL; const Elf_Rela *rela = NULL; int error; /* Store the last seen ahl from a HI16 for LO16 processing */ static Elf_Addr last_ahl; switch (type) { case ELF_RELOC_REL: rel = (const Elf_Rel *)data; where = (Elf32_Addr *) (relocbase + rel->r_offset); rtype = ELF_R_TYPE(rel->r_info); symidx = ELF_R_SYM(rel->r_info); switch (rtype) { case R_MIPS_64: addend = *(Elf64_Addr *)where; break; default: addend = *where; break; } break; case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf32_Addr *) (relocbase + rela->r_offset); addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: panic("unknown reloc type %d\n", type); } switch (rtype) { case R_MIPS_NONE: /* none */ break; case R_MIPS_32: /* S + A */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; if (*where != addr) *where = (Elf32_Addr)addr; break; case R_MIPS_26: /* ((A << 2) | (P & 0xf0000000) + S) >> 2 */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addend &= 0x03ffffff; /* * Addendum for .rela R_MIPS_26 is not shifted right */ if (rela == NULL) addend <<= 2; addr += ((Elf_Addr)where & 0xf0000000) | addend; addr >>= 2; *where &= ~0x03ffffff; *where |= addr & 0x03ffffff; break; case R_MIPS_64: /* S + A */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; if (*(Elf64_Addr*)where != addr) *(Elf64_Addr*)where = addr; break; /* * Handle the two GNU extension cases: * * + Multiple HI16s followed by a LO16, and * + A HI16 followed by multiple LO16s. * * The former is tricky - the HI16 relocations need * to be buffered until a LO16 occurs, at which point * each HI16 is replayed against the LO16 relocation entry * (with the relevant overflow information.) * * The latter should be easy to handle - when the * first LO16 is seen, write out and flush the * HI16 buffer. Any subsequent LO16 entries will * find a blank relocation buffer. * */ case R_MIPS_HI16: /* ((AHL + S) - ((short)(AHL + S)) >> 16 */ if (rela != NULL) { error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; *where &= 0xffff0000; *where |= ((((long long) addr + 0x8000LL) >> 16) & 0xffff); } else { /* * Add a temporary relocation to the list; * will pop it off / free the list when * we've found a suitable HI16. */ if (mips_tmp_reloc_add(addend << 16, where) == 0) return (-1); /* * Track the last seen HI16 AHL for use by * the first LO16 AHL calculation. * * The assumption is any intermediary deleted * LO16's were optimised out, so the last * HI16 before the LO16 is the "true" relocation * entry to use for that LO16 write. */ last_ahl = addend << 16; } break; case R_MIPS_LO16: /* AHL + S */ if (rela != NULL) { error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; *where &= 0xffff0000; *where |= addr & 0xffff; } else { Elf_Addr tmp_ahl; Elf_Addr tmp_addend; tmp_ahl = last_ahl + (int16_t) addend; error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); tmp_addend = addend & 0xffff0000; /* Use the last seen ahl for calculating addend */ tmp_addend |= (uint16_t)(tmp_ahl + addr); *where = tmp_addend; /* * This logic implements the "we saw multiple HI16 * before a LO16" assignment /and/ "we saw multiple * LO16s". * * Multiple LO16s will be handled as a blank * relocation list. * * Multple HI16's are iterated over here. */ while ((r = mips_tmp_reloc_get()) != NULL) { Elf_Addr rahl; /* * We have the ahl from the HI16 entry, so * offset it by the 16 bits of the low ahl. */ rahl = r->ahl; rahl += (int16_t) addend; tmp_addend = *(r->where_hi16); tmp_addend &= 0xffff0000; tmp_addend |= ((rahl + addr) - (int16_t)(rahl + addr)) >> 16; *(r->where_hi16) = tmp_addend; mips_tmp_reloc_free(r); } } break; case R_MIPS_HIGHER: /* %higher(A+S) */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; *where &= 0xffff0000; *where |= (((long long)addr + 0x80008000LL) >> 32) & 0xffff; break; case R_MIPS_HIGHEST: /* %highest(A+S) */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; *where &= 0xffff0000; *where |= (((long long)addr + 0x800080008000LL) >> 48) & 0xffff; break; default: printf("kldload: unexpected relocation type %d, " "symbol index %d\n", rtype, symidx); return (-1); } return (0); } int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 0, lookup)); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 1, lookup)); } int elf_cpu_load_file(linker_file_t lf __unused) { /* * Sync the I and D caches to make sure our relocations are visible. */ mips_icache_sync_all(); /* Flush outstanding relocations */ mips_tmp_reloc_flush(); return (0); } int elf_cpu_unload_file(linker_file_t lf __unused) { return (0); } int elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused) { return (0); } Index: head/sys/mips/mips/freebsd32_machdep.c =================================================================== --- head/sys/mips/mips/freebsd32_machdep.c (revision 366621) +++ head/sys/mips/mips/freebsd32_machdep.c (revision 366622) @@ -1,485 +1,485 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Juli Mallett * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Based on nwhitehorn's COMPAT_FREEBSD32 support code for PowerPC64. */ #define __ELF_WORD_SIZE 32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int get_mcontext32(struct thread *, mcontext32_t *, int); static int set_mcontext32(struct thread *, mcontext32_t *); static void freebsd32_sendsig(sig_t, ksiginfo_t *, sigset_t *); extern const char *freebsd32_syscallnames[]; struct sysentvec elf32_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = freebsd32_sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = freebsd32_sendsig, .sv_sigcode = sigcode32, .sv_szsigcode = &szsigcode32, .sv_name = "FreeBSD ELF32", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = ((vm_offset_t)0x80000000), .sv_usrstack = FREEBSD32_USRSTACK, .sv_psstrings = FREEBSD32_PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = freebsd32_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, - .sv_flags = SV_ABI_FREEBSD | SV_ILP32, + .sv_flags = SV_ABI_FREEBSD | SV_ILP32 | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = freebsd32_syscallnames, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, }; INIT_SYSENTVEC(elf32_sysvec, &elf32_freebsd_sysvec); static Elf32_Brandinfo freebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_MIPS, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf32_freebsd_sysvec, .interp_newpath = "/libexec/ld-elf32.so.1", .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t) elf32_insert_brand_entry, &freebsd_brand_info); int set_regs32(struct thread *td, struct reg32 *regs) { struct reg r; unsigned i; for (i = 0; i < NUMSAVEREGS; i++) r.r_regs[i] = regs->r_regs[i]; return (set_regs(td, &r)); } int fill_regs32(struct thread *td, struct reg32 *regs) { struct reg r; unsigned i; int error; error = fill_regs(td, &r); if (error != 0) return (error); for (i = 0; i < NUMSAVEREGS; i++) regs->r_regs[i] = r.r_regs[i]; return (0); } int set_fpregs32(struct thread *td, struct fpreg32 *fpregs) { struct fpreg fp; unsigned i; for (i = 0; i < NUMFPREGS; i++) fp.r_regs[i] = fpregs->r_regs[i]; return (set_fpregs(td, &fp)); } int fill_fpregs32(struct thread *td, struct fpreg32 *fpregs) { struct fpreg fp; unsigned i; int error; error = fill_fpregs(td, &fp); if (error != 0) return (error); for (i = 0; i < NUMFPREGS; i++) fpregs->r_regs[i] = fp.r_regs[i]; return (0); } static int get_mcontext32(struct thread *td, mcontext32_t *mcp, int flags) { mcontext_t mcp64; unsigned i; int error; error = get_mcontext(td, &mcp64, flags); if (error != 0) return (error); mcp->mc_onstack = mcp64.mc_onstack; mcp->mc_pc = mcp64.mc_pc; for (i = 0; i < 32; i++) mcp->mc_regs[i] = mcp64.mc_regs[i]; mcp->sr = mcp64.sr; mcp->mullo = mcp64.mullo; mcp->mulhi = mcp64.mulhi; mcp->mc_fpused = mcp64.mc_fpused; for (i = 0; i < 33; i++) mcp->mc_fpregs[i] = mcp64.mc_fpregs[i]; mcp->mc_fpc_eir = mcp64.mc_fpc_eir; mcp->mc_tls = (int32_t)(intptr_t)mcp64.mc_tls; return (0); } static int set_mcontext32(struct thread *td, mcontext32_t *mcp) { mcontext_t mcp64; unsigned i; mcp64.mc_onstack = mcp->mc_onstack; mcp64.mc_pc = mcp->mc_pc; for (i = 0; i < 32; i++) mcp64.mc_regs[i] = mcp->mc_regs[i]; mcp64.sr = mcp->sr; mcp64.mullo = mcp->mullo; mcp64.mulhi = mcp->mulhi; mcp64.mc_fpused = mcp->mc_fpused; for (i = 0; i < 33; i++) mcp64.mc_fpregs[i] = mcp->mc_fpregs[i]; mcp64.mc_fpc_eir = mcp->mc_fpc_eir; mcp64.mc_tls = (void *)(intptr_t)mcp->mc_tls; return (set_mcontext(td, &mcp64)); } int freebsd32_sigreturn(struct thread *td, struct freebsd32_sigreturn_args *uap) { ucontext32_t uc; int error; CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp); if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) { CTR1(KTR_SIG, "sigreturn: efault td=%p", td); return (EFAULT); } error = set_mcontext32(td, &uc.uc_mcontext); if (error != 0) return (error); kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); #if 0 CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x", td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]); #endif return (EJUSTRETURN); } /* * The first two fields of a ucontext_t are the signal mask and the machine * context. The next field is uc_link; we want to avoid destroying the link * when copying out contexts. */ #define UC32_COPY_SIZE offsetof(ucontext32_t, uc_link) int freebsd32_getcontext(struct thread *td, struct freebsd32_getcontext_args *uap) { ucontext32_t uc; int ret; if (uap->ucp == NULL) ret = EINVAL; else { bzero(&uc, sizeof(uc)); get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET); PROC_LOCK(td->td_proc); uc.uc_sigmask = td->td_sigmask; PROC_UNLOCK(td->td_proc); ret = copyout(&uc, uap->ucp, UC32_COPY_SIZE); } return (ret); } int freebsd32_setcontext(struct thread *td, struct freebsd32_setcontext_args *uap) { ucontext32_t uc; int ret; if (uap->ucp == NULL) ret = EINVAL; else { ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE); if (ret == 0) { ret = set_mcontext32(td, &uc.uc_mcontext); if (ret == 0) { kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); } } } return (ret == 0 ? EJUSTRETURN : ret); } int freebsd32_swapcontext(struct thread *td, struct freebsd32_swapcontext_args *uap) { ucontext32_t uc; int ret; if (uap->oucp == NULL || uap->ucp == NULL) ret = EINVAL; else { bzero(&uc, sizeof(uc)); get_mcontext32(td, &uc.uc_mcontext, GET_MC_CLEAR_RET); PROC_LOCK(td->td_proc); uc.uc_sigmask = td->td_sigmask; PROC_UNLOCK(td->td_proc); ret = copyout(&uc, uap->oucp, UC32_COPY_SIZE); if (ret == 0) { ret = copyin(uap->ucp, &uc, UC32_COPY_SIZE); if (ret == 0) { ret = set_mcontext32(td, &uc.uc_mcontext); if (ret == 0) { kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); } } } } return (ret == 0 ? EJUSTRETURN : ret); } #define UCONTEXT_MAGIC 0xACEDBADE /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * at top to call routine, followed by kcall * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ static void freebsd32_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct proc *p; struct thread *td; struct fpreg32 fpregs; struct reg32 regs; struct sigacts *psp; struct sigframe32 sf, *sfp; int sig; int oonstack; unsigned i; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); fill_regs32(td, ®s); oonstack = sigonstack(td->td_frame->sp); /* save user context */ bzero(&sf, sizeof sf); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack.ss_sp = (int32_t)(intptr_t)td->td_sigstk.ss_sp; sf.sf_uc.uc_stack.ss_size = td->td_sigstk.ss_size; sf.sf_uc.uc_stack.ss_flags = td->td_sigstk.ss_flags; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; sf.sf_uc.uc_mcontext.mc_pc = regs.r_regs[PC]; sf.sf_uc.uc_mcontext.mullo = regs.r_regs[MULLO]; sf.sf_uc.uc_mcontext.mulhi = regs.r_regs[MULHI]; sf.sf_uc.uc_mcontext.mc_tls = (int32_t)(intptr_t)td->td_md.md_tls; sf.sf_uc.uc_mcontext.mc_regs[0] = UCONTEXT_MAGIC; /* magic number */ for (i = 1; i < 32; i++) sf.sf_uc.uc_mcontext.mc_regs[i] = regs.r_regs[i]; sf.sf_uc.uc_mcontext.mc_fpused = td->td_md.md_flags & MDTD_FPUSED; if (sf.sf_uc.uc_mcontext.mc_fpused) { /* if FPU has current state, save it first */ if (td == PCPU_GET(fpcurthread)) MipsSaveCurFPState(td); fill_fpregs32(td, &fpregs); for (i = 0; i < 33; i++) sf.sf_uc.uc_mcontext.mc_fpregs[i] = fpregs.r_regs[i]; } /* Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sfp = (struct sigframe32 *)(((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct sigframe32)) & ~(sizeof(__int64_t) - 1)); } else sfp = (struct sigframe32 *)((vm_offset_t)(td->td_frame->sp - sizeof(struct sigframe32)) & ~(sizeof(__int64_t) - 1)); /* Build the argument list for the signal handler. */ td->td_frame->a0 = sig; td->td_frame->a2 = (register_t)(intptr_t)&sfp->sf_uc; if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ td->td_frame->a1 = (register_t)(intptr_t)&sfp->sf_si; /* sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; */ /* fill siginfo structure */ sf.sf_si.si_signo = sig; sf.sf_si.si_code = ksi->ksi_code; sf.sf_si.si_addr = td->td_frame->badvaddr; } else { /* Old FreeBSD-style arguments. */ td->td_frame->a1 = ksi->ksi_code; td->td_frame->a3 = td->td_frame->badvaddr; /* sf.sf_ahu.sf_handler = catcher; */ } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(struct sigframe32)) != 0) { /* * Something is wrong with the stack pointer. * ...Kill the process. */ PROC_LOCK(p); sigexit(td, SIGILL); } td->td_frame->pc = (register_t)(intptr_t)catcher; td->td_frame->t9 = (register_t)(intptr_t)catcher; td->td_frame->sp = (register_t)(intptr_t)sfp; /* * Signal trampoline code is at base of user stack. */ td->td_frame->ra = (register_t)(intptr_t)FREEBSD32_PS_STRINGS - *(p->p_sysent->sv_szsigcode); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } int freebsd32_sysarch(struct thread *td, struct freebsd32_sysarch_args *uap) { int error; int32_t tlsbase; switch (uap->op) { case MIPS_SET_TLS: td->td_md.md_tls = (void *)(intptr_t)uap->parms; /* * If there is an user local register implementation (ULRI) * update it as well. Add the TLS and TCB offsets so the * value in this register is adjusted like in the case of the * rdhwr trap() instruction handler. */ if (cpuinfo.userlocal_reg == true) { mips_wr_userlocal((unsigned long)(uap->parms + td->td_proc->p_md.md_tls_tcb_offset)); } return (0); case MIPS_GET_TLS: tlsbase = (int32_t)(intptr_t)td->td_md.md_tls; error = copyout(&tlsbase, uap->parms, sizeof(tlsbase)); return (error); default: break; } return (EINVAL); } void elf32_dump_thread(struct thread *td __unused, void *dst __unused, size_t *off __unused) { } Index: head/sys/powerpc/powerpc/elf32_machdep.c =================================================================== --- head/sys/powerpc/powerpc/elf32_machdep.c (revision 366621) +++ head/sys/powerpc/powerpc/elf32_machdep.c (revision 366622) @@ -1,464 +1,464 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 1996-1998 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #define __ELF_WORD_SIZE 32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __powerpc64__ #include #include extern const char *freebsd32_syscallnames[]; static void ppc32_fixlimit(struct rlimit *rl, int which); static SYSCTL_NODE(_compat, OID_AUTO, ppc32, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "32-bit mode"); #define PPC32_MAXDSIZ (1024*1024*1024) static u_long ppc32_maxdsiz = PPC32_MAXDSIZ; SYSCTL_ULONG(_compat_ppc32, OID_AUTO, maxdsiz, CTLFLAG_RWTUN, &ppc32_maxdsiz, 0, ""); #define PPC32_MAXSSIZ (64*1024*1024) u_long ppc32_maxssiz = PPC32_MAXSSIZ; SYSCTL_ULONG(_compat_ppc32, OID_AUTO, maxssiz, CTLFLAG_RWTUN, &ppc32_maxssiz, 0, ""); #else static void ppc32_runtime_resolve(void); #endif struct sysentvec elf32_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, #ifdef __powerpc64__ .sv_table = freebsd32_sysent, #else .sv_table = sysent, #endif .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_copyout_auxargs = __elfN(powerpc_copyout_auxargs), .sv_sendsig = sendsig, .sv_sigcode = sigcode32, .sv_szsigcode = &szsigcode32, .sv_name = "FreeBSD ELF32", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_stackprot = VM_PROT_ALL, #ifdef __powerpc64__ .sv_maxuser = VM_MAXUSER_ADDRESS32, .sv_usrstack = FREEBSD32_USRSTACK, .sv_psstrings = FREEBSD32_PS_STRINGS, .sv_copyout_strings = freebsd32_copyout_strings, .sv_setregs = ppc32_setregs, .sv_syscallnames = freebsd32_syscallnames, .sv_fixlimit = ppc32_fixlimit, #else .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_syscallnames = syscallnames, .sv_fixlimit = NULL, #endif .sv_maxssiz = NULL, .sv_flags = SV_ABI_FREEBSD | SV_ILP32 | SV_SHP | SV_ASLR | - SV_TIMEKEEP, + SV_TIMEKEEP | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_shared_page_base = FREEBSD32_SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_hwcap = &cpu_features, .sv_hwcap2 = &cpu_features2, }; INIT_SYSENTVEC(elf32_sysvec, &elf32_freebsd_sysvec); static Elf32_Brandinfo freebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_PPC, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf32_freebsd_sysvec, #ifdef __powerpc64__ .interp_newpath = "/libexec/ld-elf32.so.1", #else .interp_newpath = NULL, #endif .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t) elf32_insert_brand_entry, &freebsd_brand_info); static Elf32_Brandinfo freebsd_brand_oinfo = { .brand = ELFOSABI_FREEBSD, .machine = EM_PPC, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/usr/libexec/ld-elf.so.1", .sysvec = &elf32_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &elf32_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(oelf32, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf32_insert_brand_entry, &freebsd_brand_oinfo); void elf_reloc_self(Elf_Dyn *dynp, Elf_Addr relocbase); void elf32_dump_thread(struct thread *td, void *dst, size_t *off) { size_t len; struct pcb *pcb; uint64_t vshr[32]; uint64_t *vsr_dw1; int vsr_idx; len = 0; pcb = td->td_pcb; if (pcb->pcb_flags & PCB_VEC) { save_vec_nodrop(td); if (dst != NULL) { len += elf32_populate_note(NT_PPC_VMX, &pcb->pcb_vec, (char *)dst + len, sizeof(pcb->pcb_vec), NULL); } else len += elf32_populate_note(NT_PPC_VMX, NULL, NULL, sizeof(pcb->pcb_vec), NULL); } if (pcb->pcb_flags & PCB_VSX) { save_fpu_nodrop(td); if (dst != NULL) { /* * Doubleword 0 of VSR0-VSR31 overlap with FPR0-FPR31 and * VSR32-VSR63 overlap with VR0-VR31, so we only copy * the non-overlapping data, which is doubleword 1 of VSR0-VSR31. */ for (vsr_idx = 0; vsr_idx < nitems(vshr); vsr_idx++) { vsr_dw1 = (uint64_t *)&pcb->pcb_fpu.fpr[vsr_idx].vsr[2]; vshr[vsr_idx] = *vsr_dw1; } len += elf32_populate_note(NT_PPC_VSX, vshr, (char *)dst + len, sizeof(vshr), NULL); } else len += elf32_populate_note(NT_PPC_VSX, NULL, NULL, sizeof(vshr), NULL); } *off = len; } #ifndef __powerpc64__ bool elf_is_ifunc_reloc(Elf_Size r_info) { return (ELF_R_TYPE(r_info) == R_PPC_IRELATIVE); } /* Process one elf relocation with addend. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, int local, elf_lookup_fn lookup) { Elf_Addr *where; Elf_Half *hwhere; Elf_Addr addr; Elf_Addr addend, val; Elf_Word rtype, symidx; const Elf_Rela *rela; int error; switch (type) { case ELF_RELOC_REL: panic("PPC only supports RELA relocations"); break; case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf_Addr *) ((uintptr_t)relocbase + rela->r_offset); hwhere = (Elf_Half *) ((uintptr_t)relocbase + rela->r_offset); addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: panic("elf_reloc: unknown relocation mode %d\n", type); } switch (rtype) { case R_PPC_NONE: break; case R_PPC_ADDR32: /* word32 S + A */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); *where = elf_relocaddr(lf, addr + addend); break; case R_PPC_ADDR16_LO: /* #lo(S) */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); /* * addend values are sometimes relative to sections * (i.e. .rodata) in rela, where in reality they * are relative to relocbase. Detect this condition. */ if (addr > relocbase && addr <= (relocbase + addend)) addr = relocbase; addr = elf_relocaddr(lf, addr + addend); *hwhere = addr & 0xffff; break; case R_PPC_ADDR16_HA: /* #ha(S) */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); /* * addend values are sometimes relative to sections * (i.e. .rodata) in rela, where in reality they * are relative to relocbase. Detect this condition. */ if (addr > relocbase && addr <= (relocbase + addend)) addr = relocbase; addr = elf_relocaddr(lf, addr + addend); *hwhere = ((addr >> 16) + ((addr & 0x8000) ? 1 : 0)) & 0xffff; break; case R_PPC_RELATIVE: /* word32 B + A */ *where = elf_relocaddr(lf, relocbase + addend); break; case R_PPC_JMP_SLOT: /* PLT jump slot entry */ /* * We currently only support Secure-PLT jump slots. * Given that we reject BSS-PLT modules during load, we * don't need to check again. * The method we are using here is equivilent to * LD_BIND_NOW. */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); *where = elf_relocaddr(lf, addr + addend); break; case R_PPC_IRELATIVE: addr = relocbase + addend; val = ((Elf32_Addr (*)(void))addr)(); if (*where != val) *where = val; break; default: printf("kldload: unexpected relocation type %d, " "symbol index %d\n", (int)rtype, symidx); return (-1); } return (0); } void elf_reloc_self(Elf_Dyn *dynp, Elf_Addr relocbase) { Elf_Rela *rela = NULL, *relalim; Elf_Addr relasz = 0; Elf_Addr *where; /* * Extract the rela/relasz values from the dynamic section */ for (; dynp->d_tag != DT_NULL; dynp++) { switch (dynp->d_tag) { case DT_RELA: rela = (Elf_Rela *)(relocbase+dynp->d_un.d_ptr); break; case DT_RELASZ: relasz = dynp->d_un.d_val; break; } } /* * Relocate these values */ relalim = (Elf_Rela *)((caddr_t)rela + relasz); for (; rela < relalim; rela++) { if (ELF_R_TYPE(rela->r_info) != R_PPC_RELATIVE) continue; where = (Elf_Addr *)(relocbase + rela->r_offset); *where = (Elf_Addr)(relocbase + rela->r_addend); } } int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 0, lookup)); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 1, lookup)); } int elf_cpu_load_file(linker_file_t lf) { /* Only sync the cache for non-kernel modules */ if (lf->id != 1) __syncicache(lf->address, lf->size); return (0); } int elf_cpu_unload_file(linker_file_t lf __unused) { return (0); } static void ppc32_runtime_resolve() { /* * Since we don't support lazy binding, panic immediately if anyone * manages to call the runtime resolver. */ panic("kldload: Runtime resolver was called unexpectedly!"); } int elf_cpu_parse_dynamic(caddr_t loadbase, Elf_Dyn *dynamic) { Elf_Dyn *dp; bool has_plt = false; bool secure_plt = false; Elf_Addr *got; for (dp = dynamic; dp->d_tag != DT_NULL; dp++) { switch (dp->d_tag) { case DT_PPC_GOT: secure_plt = true; got = (Elf_Addr *)(loadbase + dp->d_un.d_ptr); /* Install runtime resolver canary. */ got[1] = (Elf_Addr)ppc32_runtime_resolve; got[2] = (Elf_Addr)0; break; case DT_PLTGOT: has_plt = true; break; } } if (has_plt && !secure_plt) { printf("kldload: BSS-PLT modules are not supported.\n"); return (-1); } return (0); } #endif #ifdef __powerpc64__ static void ppc32_fixlimit(struct rlimit *rl, int which) { switch (which) { case RLIMIT_DATA: if (ppc32_maxdsiz != 0) { if (rl->rlim_cur > ppc32_maxdsiz) rl->rlim_cur = ppc32_maxdsiz; if (rl->rlim_max > ppc32_maxdsiz) rl->rlim_max = ppc32_maxdsiz; } break; case RLIMIT_STACK: if (ppc32_maxssiz != 0) { if (rl->rlim_cur > ppc32_maxssiz) rl->rlim_cur = ppc32_maxssiz; if (rl->rlim_max > ppc32_maxssiz) rl->rlim_max = ppc32_maxssiz; } break; } } #endif Index: head/sys/powerpc/powerpc/elf64_machdep.c =================================================================== --- head/sys/powerpc/powerpc/elf64_machdep.c (revision 366621) +++ head/sys/powerpc/powerpc/elf64_machdep.c (revision 366622) @@ -1,449 +1,449 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 1996-1998 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void exec_setregs_funcdesc(struct thread *td, struct image_params *imgp, uintptr_t stack); struct sysentvec elf64_freebsd_sysvec_v1 = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode64, .sv_szsigcode = &szsigcode64, .sv_name = "FreeBSD ELF64", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(powerpc_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs_funcdesc, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_FREEBSD | SV_LP64 | SV_SHP | SV_ASLR | - SV_TIMEKEEP, + SV_TIMEKEEP | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_hwcap = &cpu_features, .sv_hwcap2 = &cpu_features2, }; struct sysentvec elf64_freebsd_sysvec_v2 = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode64, /* Fixed up in ppc64_init_sysvecs(). */ .sv_szsigcode = &szsigcode64, .sv_name = "FreeBSD ELF64 V2", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_ALL, .sv_copyout_auxargs = __elfN(powerpc_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, .sv_flags = SV_ABI_FREEBSD | SV_LP64 | SV_SHP | - SV_TIMEKEEP, + SV_TIMEKEEP | SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_hwcap = &cpu_features, .sv_hwcap2 = &cpu_features2, }; static boolean_t ppc64_elfv1_header_match(struct image_params *params, int32_t *, uint32_t *); static boolean_t ppc64_elfv2_header_match(struct image_params *params, int32_t *, uint32_t *); static Elf64_Brandinfo freebsd_brand_info_elfv1 = { .brand = ELFOSABI_FREEBSD, .machine = EM_PPC64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec_v1, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE, .header_supported = &ppc64_elfv1_header_match }; SYSINIT(elf64v1, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf64_insert_brand_entry, &freebsd_brand_info_elfv1); static Elf64_Brandinfo freebsd_brand_info_elfv2 = { .brand = ELFOSABI_FREEBSD, .machine = EM_PPC64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec_v2, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE, .header_supported = &ppc64_elfv2_header_match }; SYSINIT(elf64v2, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf64_insert_brand_entry, &freebsd_brand_info_elfv2); static Elf64_Brandinfo freebsd_brand_oinfo = { .brand = ELFOSABI_FREEBSD, .machine = EM_PPC64, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/usr/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec_v1, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE, .header_supported = &ppc64_elfv1_header_match }; SYSINIT(oelf64, SI_SUB_EXEC, SI_ORDER_ANY, (sysinit_cfunc_t) elf64_insert_brand_entry, &freebsd_brand_oinfo); void elf_reloc_self(Elf_Dyn *dynp, Elf_Addr relocbase); static void ppc64_init_sysvecs(void *arg) { exec_sysvec_init(&elf64_freebsd_sysvec_v2); exec_sysvec_init_secondary(&elf64_freebsd_sysvec_v2, &elf64_freebsd_sysvec_v1); /* * Adjust elfv2 sigcode after elfv1 sysvec is initialized. * exec_sysvec_init_secondary() assumes secondary sysvecs use * identical signal code, and skips allocating a second copy. * Since the ELFv2 trampoline is a strict subset of the ELFv1 code, * we can work around this by adjusting the base address. This also * avoids two copies of the trampoline code being allocated! */ elf64_freebsd_sysvec_v2.sv_sigcode_base += (uintptr_t)sigcode64_elfv2 - (uintptr_t)&sigcode64; elf64_freebsd_sysvec_v2.sv_szsigcode = &szsigcode64_elfv2; } SYSINIT(elf64_sysvec, SI_SUB_EXEC, SI_ORDER_ANY, ppc64_init_sysvecs, NULL); static boolean_t ppc64_elfv1_header_match(struct image_params *params, int32_t *osrel __unused, uint32_t *fctl0 __unused) { const Elf64_Ehdr *hdr = (const Elf64_Ehdr *)params->image_header; int abi = (hdr->e_flags & 3); return (abi == 0 || abi == 1); } static boolean_t ppc64_elfv2_header_match(struct image_params *params, int32_t *osrel __unused, uint32_t *fctl0 __unused) { const Elf64_Ehdr *hdr = (const Elf64_Ehdr *)params->image_header; int abi = (hdr->e_flags & 3); return (abi == 2); } static void exec_setregs_funcdesc(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *tf; register_t entry_desc[3]; tf = trapframe(td); exec_setregs(td, imgp, stack); /* * For 64-bit ELFv1, we need to disentangle the function * descriptor * * 0. entry point * 1. TOC value (r2) * 2. Environment pointer (r11) */ (void)copyin((void *)imgp->entry_addr, entry_desc, sizeof(entry_desc)); tf->srr0 = entry_desc[0] + imgp->reloc_base; tf->fixreg[2] = entry_desc[1] + imgp->reloc_base; tf->fixreg[11] = entry_desc[2] + imgp->reloc_base; } void elf64_dump_thread(struct thread *td, void *dst, size_t *off) { size_t len; struct pcb *pcb; uint64_t vshr[32]; uint64_t *vsr_dw1; int vsr_idx; len = 0; pcb = td->td_pcb; if (pcb->pcb_flags & PCB_VEC) { save_vec_nodrop(td); if (dst != NULL) { len += elf64_populate_note(NT_PPC_VMX, &pcb->pcb_vec, (char *)dst + len, sizeof(pcb->pcb_vec), NULL); } else len += elf64_populate_note(NT_PPC_VMX, NULL, NULL, sizeof(pcb->pcb_vec), NULL); } if (pcb->pcb_flags & PCB_VSX) { save_fpu_nodrop(td); if (dst != NULL) { /* * Doubleword 0 of VSR0-VSR31 overlap with FPR0-FPR31 and * VSR32-VSR63 overlap with VR0-VR31, so we only copy * the non-overlapping data, which is doubleword 1 of VSR0-VSR31. */ for (vsr_idx = 0; vsr_idx < nitems(vshr); vsr_idx++) { vsr_dw1 = (uint64_t *)&pcb->pcb_fpu.fpr[vsr_idx].vsr[2]; vshr[vsr_idx] = *vsr_dw1; } len += elf64_populate_note(NT_PPC_VSX, vshr, (char *)dst + len, sizeof(vshr), NULL); } else len += elf64_populate_note(NT_PPC_VSX, NULL, NULL, sizeof(vshr), NULL); } *off = len; } bool elf_is_ifunc_reloc(Elf_Size r_info) { return (ELF_R_TYPE(r_info) == R_PPC_IRELATIVE); } /* Process one elf relocation with addend. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, int local, elf_lookup_fn lookup) { Elf_Addr *where; Elf_Addr addr; Elf_Addr addend, val; Elf_Word rtype, symidx; const Elf_Rela *rela; int error; switch (type) { case ELF_RELOC_REL: panic("PPC only supports RELA relocations"); break; case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf_Addr *) (relocbase + rela->r_offset); addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: panic("elf_reloc: unknown relocation mode %d\n", type); } switch (rtype) { case R_PPC_NONE: break; case R_PPC64_ADDR64: /* doubleword64 S + A */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); addr += addend; *where = addr; break; case R_PPC_RELATIVE: /* doubleword64 B + A */ *where = elf_relocaddr(lf, relocbase + addend); break; case R_PPC_JMP_SLOT: /* function descriptor copy */ lookup(lf, symidx, 1, &addr); #if !defined(_CALL_ELF) || _CALL_ELF == 1 memcpy(where, (Elf_Addr *)addr, 3*sizeof(Elf_Addr)); #else *where = addr; #endif __asm __volatile("dcbst 0,%0; sync" :: "r"(where) : "memory"); break; case R_PPC_IRELATIVE: addr = relocbase + addend; val = ((Elf64_Addr (*)(void))addr)(); if (*where != val) *where = val; break; default: printf("kldload: unexpected relocation type %d, " "symbol index %d\n", (int)rtype, symidx); return (-1); } return (0); } void elf_reloc_self(Elf_Dyn *dynp, Elf_Addr relocbase) { Elf_Rela *rela = NULL, *relalim; Elf_Addr relasz = 0; Elf_Addr *where; /* * Extract the rela/relasz values from the dynamic section */ for (; dynp->d_tag != DT_NULL; dynp++) { switch (dynp->d_tag) { case DT_RELA: rela = (Elf_Rela *)(relocbase+dynp->d_un.d_ptr); break; case DT_RELASZ: relasz = dynp->d_un.d_val; break; } } /* * Relocate these values */ relalim = (Elf_Rela *)((caddr_t)rela + relasz); for (; rela < relalim; rela++) { if (ELF_R_TYPE(rela->r_info) != R_PPC_RELATIVE) continue; where = (Elf_Addr *)(relocbase + rela->r_offset); *where = (Elf_Addr)(relocbase + rela->r_addend); } } int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 0, lookup)); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 1, lookup)); } int elf_cpu_load_file(linker_file_t lf) { /* Only sync the cache for non-kernel modules */ if (lf->id != 1) __syncicache(lf->address, lf->size); return (0); } int elf_cpu_unload_file(linker_file_t lf __unused) { return (0); } int elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused) { return (0); } Index: head/sys/riscv/riscv/elf_machdep.c =================================================================== --- head/sys/riscv/riscv/elf_machdep.c (revision 366621) +++ head/sys/riscv/riscv/elf_machdep.c (revision 366622) @@ -1,525 +1,526 @@ /*- * Copyright 1996-1998 John D. Polstra. * Copyright (c) 2015 Ruslan Bukin * Copyright (c) 2016 Yukishige Shibata * All rights reserved. * * Portions of this software were developed by SRI International and the * University of Cambridge Computer Laboratory under DARPA/AFRL contract * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme. * * Portions of this software were developed by the University of Cambridge * Computer Laboratory as part of the CTSRD Project, with support from the * UK Higher Education Innovation Fund (HEIF). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const char *riscv_machine_arch(struct proc *p); u_long elf_hwcap; struct sysentvec elf64_freebsd_sysvec = { .sv_size = SYS_MAXSYSCALL, .sv_table = sysent, .sv_transtrap = NULL, .sv_fixup = __elfN(freebsd_fixup), .sv_sendsig = sendsig, .sv_sigcode = sigcode, .sv_szsigcode = &szsigcode, .sv_name = "FreeBSD ELF64", .sv_coredump = __elfN(coredump), .sv_imgact_try = NULL, .sv_minsigstksz = MINSIGSTKSZ, .sv_minuser = VM_MIN_ADDRESS, .sv_maxuser = VM_MAXUSER_ADDRESS, .sv_usrstack = USRSTACK, .sv_psstrings = PS_STRINGS, .sv_stackprot = VM_PROT_READ | VM_PROT_WRITE, .sv_copyout_auxargs = __elfN(freebsd_copyout_auxargs), .sv_copyout_strings = exec_copyout_strings, .sv_setregs = exec_setregs, .sv_fixlimit = NULL, .sv_maxssiz = NULL, - .sv_flags = SV_ABI_FREEBSD | SV_LP64 | SV_SHP | SV_ASLR, + .sv_flags = SV_ABI_FREEBSD | SV_LP64 | SV_SHP | SV_ASLR | + SV_RNG_SEED_VER, .sv_set_syscall_retval = cpu_set_syscall_retval, .sv_fetch_syscall_args = cpu_fetch_syscall_args, .sv_syscallnames = syscallnames, .sv_shared_page_base = SHAREDPAGE, .sv_shared_page_len = PAGE_SIZE, .sv_schedtail = NULL, .sv_thread_detach = NULL, .sv_trap = NULL, .sv_hwcap = &elf_hwcap, .sv_machine_arch = riscv_machine_arch, }; INIT_SYSENTVEC(elf64_sysvec, &elf64_freebsd_sysvec); static const char * riscv_machine_arch(struct proc *p) { if ((p->p_elf_flags & EF_RISCV_FLOAT_ABI_MASK) == EF_RISCV_FLOAT_ABI_SOFT) return (MACHINE_ARCH "sf"); return (MACHINE_ARCH); } static Elf64_Brandinfo freebsd_brand_info = { .brand = ELFOSABI_FREEBSD, .machine = EM_RISCV, .compat_3_brand = "FreeBSD", .emul_path = NULL, .interp_path = "/libexec/ld-elf.so.1", .sysvec = &elf64_freebsd_sysvec, .interp_newpath = NULL, .brand_note = &elf64_freebsd_brandnote, .flags = BI_CAN_EXEC_DYN | BI_BRAND_NOTE }; SYSINIT(elf64, SI_SUB_EXEC, SI_ORDER_FIRST, (sysinit_cfunc_t)elf64_insert_brand_entry, &freebsd_brand_info); static bool debug_kld; SYSCTL_BOOL(_debug, OID_AUTO, kld_reloc, CTLFLAG_RW, &debug_kld, 0, "Activate debug prints in elf_reloc_internal()"); struct type2str_ent { int type; const char *str; }; void elf64_dump_thread(struct thread *td, void *dst, size_t *off) { } /* * Following 4 functions are used to manupilate bits on 32bit interger value. * FIXME: I implemetend for ease-to-understand rather than for well-optimized. */ static uint32_t gen_bitmask(int msb, int lsb) { uint32_t mask; if (msb == sizeof(mask) * 8 - 1) mask = ~0; else mask = (1U << (msb + 1)) - 1; if (lsb > 0) mask &= ~((1U << lsb) - 1); return (mask); } static uint32_t extract_bits(uint32_t x, int msb, int lsb) { uint32_t mask; mask = gen_bitmask(msb, lsb); x &= mask; x >>= lsb; return (x); } static uint32_t insert_bits(uint32_t d, uint32_t s, int msb, int lsb) { uint32_t mask; mask = gen_bitmask(msb, lsb); d &= ~mask; s <<= lsb; s &= mask; return (d | s); } static uint32_t insert_imm(uint32_t insn, uint32_t imm, int imm_msb, int imm_lsb, int insn_lsb) { int insn_msb; uint32_t v; v = extract_bits(imm, imm_msb, imm_lsb); insn_msb = (imm_msb - imm_lsb) + insn_lsb; return (insert_bits(insn, v, insn_msb, insn_lsb)); } /* * The RISC-V ISA is designed so that all of immediate values are * sign-extended. * An immediate value is sometimes generated at runtime by adding * 12bit sign integer and 20bit signed integer. This requests 20bit * immediate value to be ajusted if the MSB of the 12bit immediate * value is asserted (sign-extended value is treated as negative value). * * For example, 0x123800 can be calculated by adding upper 20 bit of * 0x124000 and sign-extended 12bit immediate whose bit pattern is * 0x800 as follows: * 0x123800 * = 0x123000 + 0x800 * = (0x123000 + 0x1000) + (-0x1000 + 0x800) * = (0x123000 + 0x1000) + (0xff...ff800) * = 0x124000 + sign-extention(0x800) */ static uint32_t calc_hi20_imm(uint32_t value) { /* * There is the arithmetical hack that can remove conditional * statement. But I implement it in straightforward way. */ if ((value & 0x800) != 0) value += 0x1000; return (value & ~0xfff); } static const struct type2str_ent t2s[] = { { R_RISCV_NONE, "R_RISCV_NONE" }, { R_RISCV_64, "R_RISCV_64" }, { R_RISCV_JUMP_SLOT, "R_RISCV_JUMP_SLOT" }, { R_RISCV_RELATIVE, "R_RISCV_RELATIVE" }, { R_RISCV_JAL, "R_RISCV_JAL" }, { R_RISCV_CALL, "R_RISCV_CALL" }, { R_RISCV_PCREL_HI20, "R_RISCV_PCREL_HI20" }, { R_RISCV_PCREL_LO12_I, "R_RISCV_PCREL_LO12_I" }, { R_RISCV_PCREL_LO12_S, "R_RISCV_PCREL_LO12_S" }, { R_RISCV_HI20, "R_RISCV_HI20" }, { R_RISCV_LO12_I, "R_RISCV_LO12_I" }, { R_RISCV_LO12_S, "R_RISCV_LO12_S" }, }; static const char * reloctype_to_str(int type) { int i; for (i = 0; i < sizeof(t2s) / sizeof(t2s[0]); ++i) { if (type == t2s[i].type) return t2s[i].str; } return "*unknown*"; } bool elf_is_ifunc_reloc(Elf_Size r_info __unused) { return (false); } /* * Currently kernel loadable module for RISCV is compiled with -fPIC option. * (see also additional CFLAGS definition for RISCV in sys/conf/kmod.mk) * Only R_RISCV_64, R_RISCV_JUMP_SLOT and RISCV_RELATIVE are emitted in * the module. Other relocations will be processed when kernel loadable * modules are built in non-PIC. * * FIXME: only RISCV64 is supported. */ static int elf_reloc_internal(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, int local, elf_lookup_fn lookup) { Elf_Size rtype, symidx; const Elf_Rela *rela; Elf_Addr val, addr; Elf64_Addr *where; Elf_Addr addend; uint32_t before32_1; uint32_t before32; uint64_t before64; uint32_t *insn32p; uint32_t imm20; int error; switch (type) { case ELF_RELOC_RELA: rela = (const Elf_Rela *)data; where = (Elf_Addr *)(relocbase + rela->r_offset); insn32p = (uint32_t *)where; addend = rela->r_addend; rtype = ELF_R_TYPE(rela->r_info); symidx = ELF_R_SYM(rela->r_info); break; default: printf("%s:%d unknown reloc type %d\n", __FUNCTION__, __LINE__, type); return (-1); } switch (rtype) { case R_RISCV_NONE: break; case R_RISCV_64: case R_RISCV_JUMP_SLOT: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr; before64 = *where; if (*where != val) *where = val; if (debug_kld) printf("%p %c %-24s %016lx -> %016lx\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before64, *where); break; case R_RISCV_RELATIVE: before64 = *where; *where = elf_relocaddr(lf, relocbase + addend); if (debug_kld) printf("%p %c %-24s %016lx -> %016lx\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before64, *where); break; case R_RISCV_JAL: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr - (Elf_Addr)where; if (val <= -(1UL << 20) || (1UL << 20) <= val) { printf("kldload: huge offset against R_RISCV_JAL\n"); return (-1); } before32 = *insn32p; *insn32p = insert_imm(*insn32p, val, 20, 20, 31); *insn32p = insert_imm(*insn32p, val, 10, 1, 21); *insn32p = insert_imm(*insn32p, val, 11, 11, 20); *insn32p = insert_imm(*insn32p, val, 19, 12, 12); if (debug_kld) printf("%p %c %-24s %08x -> %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, *insn32p); break; case R_RISCV_CALL: /* * R_RISCV_CALL relocates 8-byte region that consists * of the sequence of AUIPC and JALR. */ /* Calculate and check the pc relative offset. */ error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr - (Elf_Addr)where; if (val <= -(1UL << 32) || (1UL << 32) <= val) { printf("kldload: huge offset against R_RISCV_CALL\n"); return (-1); } /* Relocate AUIPC. */ before32 = insn32p[0]; imm20 = calc_hi20_imm(val); insn32p[0] = insert_imm(insn32p[0], imm20, 31, 12, 12); /* Relocate JALR. */ before32_1 = insn32p[1]; insn32p[1] = insert_imm(insn32p[1], val, 11, 0, 20); if (debug_kld) printf("%p %c %-24s %08x %08x -> %08x %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, insn32p[0], before32_1, insn32p[1]); break; case R_RISCV_PCREL_HI20: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr - (Elf_Addr)where; insn32p = (uint32_t *)where; before32 = *insn32p; imm20 = calc_hi20_imm(val); *insn32p = insert_imm(*insn32p, imm20, 31, 12, 12); if (debug_kld) printf("%p %c %-24s %08x -> %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, *insn32p); break; case R_RISCV_PCREL_LO12_I: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr - (Elf_Addr)where; insn32p = (uint32_t *)where; before32 = *insn32p; *insn32p = insert_imm(*insn32p, addr, 11, 0, 20); if (debug_kld) printf("%p %c %-24s %08x -> %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, *insn32p); break; case R_RISCV_PCREL_LO12_S: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr - (Elf_Addr)where; insn32p = (uint32_t *)where; before32 = *insn32p; *insn32p = insert_imm(*insn32p, addr, 11, 5, 25); *insn32p = insert_imm(*insn32p, addr, 4, 0, 7); if (debug_kld) printf("%p %c %-24s %08x -> %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, *insn32p); break; case R_RISCV_HI20: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr; insn32p = (uint32_t *)where; before32 = *insn32p; imm20 = calc_hi20_imm(val); *insn32p = insert_imm(*insn32p, imm20, 31, 12, 12); if (debug_kld) printf("%p %c %-24s %08x -> %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, *insn32p); break; case R_RISCV_LO12_I: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr; insn32p = (uint32_t *)where; before32 = *insn32p; *insn32p = insert_imm(*insn32p, addr, 11, 0, 20); if (debug_kld) printf("%p %c %-24s %08x -> %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, *insn32p); break; case R_RISCV_LO12_S: error = lookup(lf, symidx, 1, &addr); if (error != 0) return (-1); val = addr; insn32p = (uint32_t *)where; before32 = *insn32p; *insn32p = insert_imm(*insn32p, addr, 11, 5, 25); *insn32p = insert_imm(*insn32p, addr, 4, 0, 7); if (debug_kld) printf("%p %c %-24s %08x -> %08x\n", where, (local ? 'l' : 'g'), reloctype_to_str(rtype), before32, *insn32p); break; default: printf("kldload: unexpected relocation type %ld, " "symbol index %ld\n", rtype, symidx); return (-1); } return (0); } int elf_reloc(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 0, lookup)); } int elf_reloc_local(linker_file_t lf, Elf_Addr relocbase, const void *data, int type, elf_lookup_fn lookup) { return (elf_reloc_internal(lf, relocbase, data, type, 1, lookup)); } int elf_cpu_load_file(linker_file_t lf __unused) { return (0); } int elf_cpu_unload_file(linker_file_t lf __unused) { return (0); } int elf_cpu_parse_dynamic(caddr_t loadbase __unused, Elf_Dyn *dynamic __unused) { return (0); } Index: head/sys/sys/elf_common.h =================================================================== --- head/sys/sys/elf_common.h (revision 366621) +++ head/sys/sys/elf_common.h (revision 366622) @@ -1,1476 +1,1477 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2017, 2018 Dell EMC * Copyright (c) 2000, 2001, 2008, 2011, David E. O'Brien * Copyright (c) 1998 John D. Polstra. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_ELF_COMMON_H_ #define _SYS_ELF_COMMON_H_ 1 /* * ELF definitions that are independent of architecture or word size. */ /* * Note header. The ".note" section contains an array of notes. Each * begins with this header, aligned to a word boundary. Immediately * following the note header is n_namesz bytes of name, padded to the * next word boundary. Then comes n_descsz bytes of descriptor, again * padded to a word boundary. The values of n_namesz and n_descsz do * not include the padding. */ #ifndef LOCORE typedef struct { u_int32_t n_namesz; /* Length of name. */ u_int32_t n_descsz; /* Length of descriptor. */ u_int32_t n_type; /* Type of this note. */ } Elf_Note; typedef Elf_Note Elf_Nhdr; #endif /* * Option kinds. */ #define ODK_NULL 0 /* undefined */ #define ODK_REGINFO 1 /* register usage info */ #define ODK_EXCEPTIONS 2 /* exception processing info */ #define ODK_PAD 3 /* section padding */ #define ODK_HWPATCH 4 /* hardware patch applied */ #define ODK_FILL 5 /* fill value used by the linker */ #define ODK_TAGS 6 /* reserved space for tools */ #define ODK_HWAND 7 /* hardware AND patch applied */ #define ODK_HWOR 8 /* hardware OR patch applied */ #define ODK_GP_GROUP 9 /* GP group for text/data sections */ #define ODK_IDENT 10 /* ID information */ #define ODK_PAGESIZE 11 /* page size information */ /* * ODK_EXCEPTIONS info field masks. */ #define OEX_FPU_MIN 0x0000001f /* min FPU exception required */ #define OEX_FPU_MAX 0x00001f00 /* max FPU exception allowed */ #define OEX_PAGE0 0x00010000 /* page zero must be mapped */ #define OEX_SMM 0x00020000 /* run in sequential memory mode */ #define OEX_PRECISEFP 0x00040000 /* run in precise FP exception mode */ #define OEX_DISMISS 0x00080000 /* dismiss invalid address traps */ /* * ODK_PAD info field masks. */ #define OPAD_PREFIX 0x0001 #define OPAD_POSTFIX 0x0002 #define OPAD_SYMBOL 0x0004 /* * ODK_HWPATCH info field masks. */ #define OHW_R4KEOP 0x00000001 /* patch for R4000 branch at end-of-page bug */ #define OHW_R8KPFETCH 0x00000002 /* R8000 prefetch bug may occur */ #define OHW_R5KEOP 0x00000004 /* patch for R5000 branch at end-of-page bug */ #define OHW_R5KCVTL 0x00000008 /* R5000 cvt.[ds].l bug: clean == 1 */ #define OHW_R10KLDL 0x00000010UL /* need patch for R10000 misaligned load */ /* * ODK_HWAND/ODK_HWOR info field and hwp_flags[12] masks. */ #define OHWA0_R4KEOP_CHECKED 0x00000001 /* object checked for R4000 end-of-page bug */ #define OHWA0_R4KEOP_CLEAN 0x00000002 /* object verified clean for R4000 end-of-page bug */ #define OHWO0_FIXADE 0x00000001 /* object requires call to fixade */ /* * ODK_IDENT/ODK_GP_GROUP info field masks. */ #define OGP_GROUP 0x0000ffff /* GP group number */ #define OGP_SELF 0x00010000 /* GP group is self-contained */ /* * The header for GNU-style hash sections. */ #ifndef LOCORE typedef struct { u_int32_t gh_nbuckets; /* Number of hash buckets. */ u_int32_t gh_symndx; /* First visible symbol in .dynsym. */ u_int32_t gh_maskwords; /* #maskwords used in bloom filter. */ u_int32_t gh_shift2; /* Bloom filter shift count. */ } Elf_GNU_Hash_Header; #endif /* Indexes into the e_ident array. Keep synced with http://www.sco.com/developers/gabi/latest/ch4.eheader.html */ #define EI_MAG0 0 /* Magic number, byte 0. */ #define EI_MAG1 1 /* Magic number, byte 1. */ #define EI_MAG2 2 /* Magic number, byte 2. */ #define EI_MAG3 3 /* Magic number, byte 3. */ #define EI_CLASS 4 /* Class of machine. */ #define EI_DATA 5 /* Data format. */ #define EI_VERSION 6 /* ELF format version. */ #define EI_OSABI 7 /* Operating system / ABI identification */ #define EI_ABIVERSION 8 /* ABI version */ #define OLD_EI_BRAND 8 /* Start of architecture identification. */ #define EI_PAD 9 /* Start of padding (per SVR4 ABI). */ #define EI_NIDENT 16 /* Size of e_ident array. */ /* Values for the magic number bytes. */ #define ELFMAG0 0x7f #define ELFMAG1 'E' #define ELFMAG2 'L' #define ELFMAG3 'F' #define ELFMAG "\177ELF" /* magic string */ #define SELFMAG 4 /* magic string size */ /* Values for e_ident[EI_VERSION] and e_version. */ #define EV_NONE 0 #define EV_CURRENT 1 /* Values for e_ident[EI_CLASS]. */ #define ELFCLASSNONE 0 /* Unknown class. */ #define ELFCLASS32 1 /* 32-bit architecture. */ #define ELFCLASS64 2 /* 64-bit architecture. */ /* Values for e_ident[EI_DATA]. */ #define ELFDATANONE 0 /* Unknown data format. */ #define ELFDATA2LSB 1 /* 2's complement little-endian. */ #define ELFDATA2MSB 2 /* 2's complement big-endian. */ /* Values for e_ident[EI_OSABI]. */ #define ELFOSABI_NONE 0 /* UNIX System V ABI */ #define ELFOSABI_HPUX 1 /* HP-UX operating system */ #define ELFOSABI_NETBSD 2 /* NetBSD */ #define ELFOSABI_LINUX 3 /* GNU/Linux */ #define ELFOSABI_HURD 4 /* GNU/Hurd */ #define ELFOSABI_86OPEN 5 /* 86Open common IA32 ABI */ #define ELFOSABI_SOLARIS 6 /* Solaris */ #define ELFOSABI_AIX 7 /* AIX */ #define ELFOSABI_IRIX 8 /* IRIX */ #define ELFOSABI_FREEBSD 9 /* FreeBSD */ #define ELFOSABI_TRU64 10 /* TRU64 UNIX */ #define ELFOSABI_MODESTO 11 /* Novell Modesto */ #define ELFOSABI_OPENBSD 12 /* OpenBSD */ #define ELFOSABI_OPENVMS 13 /* Open VMS */ #define ELFOSABI_NSK 14 /* HP Non-Stop Kernel */ #define ELFOSABI_AROS 15 /* Amiga Research OS */ #define ELFOSABI_FENIXOS 16 /* FenixOS */ #define ELFOSABI_CLOUDABI 17 /* Nuxi CloudABI */ #define ELFOSABI_OPENVOS 18 /* Stratus Technologies OpenVOS */ #define ELFOSABI_ARM_AEABI 64 /* ARM EABI */ #define ELFOSABI_ARM 97 /* ARM */ #define ELFOSABI_STANDALONE 255 /* Standalone (embedded) application */ #define ELFOSABI_SYSV ELFOSABI_NONE /* symbol used in old spec */ #define ELFOSABI_MONTEREY ELFOSABI_AIX /* Monterey */ #define ELFOSABI_GNU ELFOSABI_LINUX /* e_ident */ #define IS_ELF(ehdr) ((ehdr).e_ident[EI_MAG0] == ELFMAG0 && \ (ehdr).e_ident[EI_MAG1] == ELFMAG1 && \ (ehdr).e_ident[EI_MAG2] == ELFMAG2 && \ (ehdr).e_ident[EI_MAG3] == ELFMAG3) /* Values for e_type. */ #define ET_NONE 0 /* Unknown type. */ #define ET_REL 1 /* Relocatable. */ #define ET_EXEC 2 /* Executable. */ #define ET_DYN 3 /* Shared object. */ #define ET_CORE 4 /* Core file. */ #define ET_LOOS 0xfe00 /* First operating system specific. */ #define ET_HIOS 0xfeff /* Last operating system-specific. */ #define ET_LOPROC 0xff00 /* First processor-specific. */ #define ET_HIPROC 0xffff /* Last processor-specific. */ /* Values for e_machine. */ #define EM_NONE 0 /* Unknown machine. */ #define EM_M32 1 /* AT&T WE32100. */ #define EM_SPARC 2 /* Sun SPARC. */ #define EM_386 3 /* Intel i386. */ #define EM_68K 4 /* Motorola 68000. */ #define EM_88K 5 /* Motorola 88000. */ #define EM_IAMCU 6 /* Intel MCU. */ #define EM_860 7 /* Intel i860. */ #define EM_MIPS 8 /* MIPS R3000 Big-Endian only. */ #define EM_S370 9 /* IBM System/370. */ #define EM_MIPS_RS3_LE 10 /* MIPS R3000 Little-Endian. */ #define EM_PARISC 15 /* HP PA-RISC. */ #define EM_VPP500 17 /* Fujitsu VPP500. */ #define EM_SPARC32PLUS 18 /* SPARC v8plus. */ #define EM_960 19 /* Intel 80960. */ #define EM_PPC 20 /* PowerPC 32-bit. */ #define EM_PPC64 21 /* PowerPC 64-bit. */ #define EM_S390 22 /* IBM System/390. */ #define EM_V800 36 /* NEC V800. */ #define EM_FR20 37 /* Fujitsu FR20. */ #define EM_RH32 38 /* TRW RH-32. */ #define EM_RCE 39 /* Motorola RCE. */ #define EM_ARM 40 /* ARM. */ #define EM_SH 42 /* Hitachi SH. */ #define EM_SPARCV9 43 /* SPARC v9 64-bit. */ #define EM_TRICORE 44 /* Siemens TriCore embedded processor. */ #define EM_ARC 45 /* Argonaut RISC Core. */ #define EM_H8_300 46 /* Hitachi H8/300. */ #define EM_H8_300H 47 /* Hitachi H8/300H. */ #define EM_H8S 48 /* Hitachi H8S. */ #define EM_H8_500 49 /* Hitachi H8/500. */ #define EM_IA_64 50 /* Intel IA-64 Processor. */ #define EM_MIPS_X 51 /* Stanford MIPS-X. */ #define EM_COLDFIRE 52 /* Motorola ColdFire. */ #define EM_68HC12 53 /* Motorola M68HC12. */ #define EM_MMA 54 /* Fujitsu MMA. */ #define EM_PCP 55 /* Siemens PCP. */ #define EM_NCPU 56 /* Sony nCPU. */ #define EM_NDR1 57 /* Denso NDR1 microprocessor. */ #define EM_STARCORE 58 /* Motorola Star*Core processor. */ #define EM_ME16 59 /* Toyota ME16 processor. */ #define EM_ST100 60 /* STMicroelectronics ST100 processor. */ #define EM_TINYJ 61 /* Advanced Logic Corp. TinyJ processor. */ #define EM_X86_64 62 /* Advanced Micro Devices x86-64 */ #define EM_AMD64 EM_X86_64 /* Advanced Micro Devices x86-64 (compat) */ #define EM_PDSP 63 /* Sony DSP Processor. */ #define EM_FX66 66 /* Siemens FX66 microcontroller. */ #define EM_ST9PLUS 67 /* STMicroelectronics ST9+ 8/16 microcontroller. */ #define EM_ST7 68 /* STmicroelectronics ST7 8-bit microcontroller. */ #define EM_68HC16 69 /* Motorola MC68HC16 microcontroller. */ #define EM_68HC11 70 /* Motorola MC68HC11 microcontroller. */ #define EM_68HC08 71 /* Motorola MC68HC08 microcontroller. */ #define EM_68HC05 72 /* Motorola MC68HC05 microcontroller. */ #define EM_SVX 73 /* Silicon Graphics SVx. */ #define EM_ST19 74 /* STMicroelectronics ST19 8-bit mc. */ #define EM_VAX 75 /* Digital VAX. */ #define EM_CRIS 76 /* Axis Communications 32-bit embedded processor. */ #define EM_JAVELIN 77 /* Infineon Technologies 32-bit embedded processor. */ #define EM_FIREPATH 78 /* Element 14 64-bit DSP Processor. */ #define EM_ZSP 79 /* LSI Logic 16-bit DSP Processor. */ #define EM_MMIX 80 /* Donald Knuth's educational 64-bit proc. */ #define EM_HUANY 81 /* Harvard University machine-independent object files. */ #define EM_PRISM 82 /* SiTera Prism. */ #define EM_AVR 83 /* Atmel AVR 8-bit microcontroller. */ #define EM_FR30 84 /* Fujitsu FR30. */ #define EM_D10V 85 /* Mitsubishi D10V. */ #define EM_D30V 86 /* Mitsubishi D30V. */ #define EM_V850 87 /* NEC v850. */ #define EM_M32R 88 /* Mitsubishi M32R. */ #define EM_MN10300 89 /* Matsushita MN10300. */ #define EM_MN10200 90 /* Matsushita MN10200. */ #define EM_PJ 91 /* picoJava. */ #define EM_OPENRISC 92 /* OpenRISC 32-bit embedded processor. */ #define EM_ARC_A5 93 /* ARC Cores Tangent-A5. */ #define EM_XTENSA 94 /* Tensilica Xtensa Architecture. */ #define EM_VIDEOCORE 95 /* Alphamosaic VideoCore processor. */ #define EM_TMM_GPP 96 /* Thompson Multimedia General Purpose Processor. */ #define EM_NS32K 97 /* National Semiconductor 32000 series. */ #define EM_TPC 98 /* Tenor Network TPC processor. */ #define EM_SNP1K 99 /* Trebia SNP 1000 processor. */ #define EM_ST200 100 /* STMicroelectronics ST200 microcontroller. */ #define EM_IP2K 101 /* Ubicom IP2xxx microcontroller family. */ #define EM_MAX 102 /* MAX Processor. */ #define EM_CR 103 /* National Semiconductor CompactRISC microprocessor. */ #define EM_F2MC16 104 /* Fujitsu F2MC16. */ #define EM_MSP430 105 /* Texas Instruments embedded microcontroller msp430. */ #define EM_BLACKFIN 106 /* Analog Devices Blackfin (DSP) processor. */ #define EM_SE_C33 107 /* S1C33 Family of Seiko Epson processors. */ #define EM_SEP 108 /* Sharp embedded microprocessor. */ #define EM_ARCA 109 /* Arca RISC Microprocessor. */ #define EM_UNICORE 110 /* Microprocessor series from PKU-Unity Ltd. and MPRC of Peking University */ #define EM_AARCH64 183 /* AArch64 (64-bit ARM) */ #define EM_RISCV 243 /* RISC-V */ /* Non-standard or deprecated. */ #define EM_486 6 /* Intel i486. */ #define EM_MIPS_RS4_BE 10 /* MIPS R4000 Big-Endian */ #define EM_ALPHA_STD 41 /* Digital Alpha (standard value). */ #define EM_ALPHA 0x9026 /* Alpha (written in the absence of an ABI) */ /** * e_flags */ #define EF_ARM_RELEXEC 0x1 #define EF_ARM_HASENTRY 0x2 #define EF_ARM_SYMSARESORTED 0x4 #define EF_ARM_DYNSYMSUSESEGIDX 0x8 #define EF_ARM_MAPSYMSFIRST 0x10 #define EF_ARM_LE8 0x00400000 #define EF_ARM_BE8 0x00800000 #define EF_ARM_EABIMASK 0xFF000000 #define EF_ARM_EABI_UNKNOWN 0x00000000 #define EF_ARM_EABI_VER1 0x01000000 #define EF_ARM_EABI_VER2 0x02000000 #define EF_ARM_EABI_VER3 0x03000000 #define EF_ARM_EABI_VER4 0x04000000 #define EF_ARM_EABI_VER5 0x05000000 #define EF_ARM_INTERWORK 0x00000004 #define EF_ARM_APCS_26 0x00000008 #define EF_ARM_APCS_FLOAT 0x00000010 #define EF_ARM_PIC 0x00000020 #define EF_ARM_ALIGN8 0x00000040 #define EF_ARM_NEW_ABI 0x00000080 #define EF_ARM_OLD_ABI 0x00000100 #define EF_ARM_ABI_FLOAT_SOFT 0x00000200 #define EF_ARM_SOFT_FLOAT EF_ARM_ABI_FLOAT_SOFT /* Pre-V5 ABI name */ #define EF_ARM_ABI_FLOAT_HARD 0x00000400 #define EF_ARM_VFP_FLOAT EF_ARM_ABI_FLOAT_HARD /* Pre-V5 ABI name */ #define EF_ARM_MAVERICK_FLOAT 0x00000800 #define EF_MIPS_NOREORDER 0x00000001 #define EF_MIPS_PIC 0x00000002 /* Contains PIC code */ #define EF_MIPS_CPIC 0x00000004 /* STD PIC calling sequence */ #define EF_MIPS_UCODE 0x00000010 #define EF_MIPS_ABI2 0x00000020 /* N32 */ #define EF_MIPS_OPTIONS_FIRST 0x00000080 #define EF_MIPS_ABI 0x0000F000 #define EF_MIPS_ABI_O32 0x00001000 #define EF_MIPS_ABI_O64 0x00002000 #define EF_MIPS_ABI_EABI32 0x00003000 #define EF_MIPS_ABI_EABI64 0x00004000 #define EF_MIPS_ARCH_ASE 0x0F000000 /* Architectural extensions */ #define EF_MIPS_ARCH_ASE_MDMX 0x08000000 /* MDMX multimedia extension */ #define EF_MIPS_ARCH_ASE_M16 0x04000000 /* MIPS-16 ISA extensions */ #define EF_MIPS_ARCH 0xF0000000 /* Architecture field */ #define EF_MIPS_ARCH_1 0x00000000 /* -mips1 code */ #define EF_MIPS_ARCH_2 0x10000000 /* -mips2 code */ #define EF_MIPS_ARCH_3 0x20000000 /* -mips3 code */ #define EF_MIPS_ARCH_4 0x30000000 /* -mips4 code */ #define EF_MIPS_ARCH_5 0x40000000 /* -mips5 code */ #define EF_MIPS_ARCH_32 0x50000000 /* -mips32 code */ #define EF_MIPS_ARCH_64 0x60000000 /* -mips64 code */ #define EF_MIPS_ARCH_32R2 0x70000000 /* -mips32r2 code */ #define EF_MIPS_ARCH_64R2 0x80000000 /* -mips64r2 code */ #define EF_PPC_EMB 0x80000000 #define EF_PPC_RELOCATABLE 0x00010000 #define EF_PPC_RELOCATABLE_LIB 0x00008000 #define EF_RISCV_RVC 0x00000001 #define EF_RISCV_FLOAT_ABI_MASK 0x00000006 #define EF_RISCV_FLOAT_ABI_SOFT 0x00000000 #define EF_RISCV_FLOAT_ABI_SINGLE 0x000002 #define EF_RISCV_FLOAT_ABI_DOUBLE 0x000004 #define EF_RISCV_FLOAT_ABI_QUAD 0x00000006 #define EF_RISCV_RVE 0x00000008 #define EF_RISCV_TSO 0x00000010 #define EF_SPARC_EXT_MASK 0x00ffff00 #define EF_SPARC_32PLUS 0x00000100 #define EF_SPARC_SUN_US1 0x00000200 #define EF_SPARC_HAL_R1 0x00000200 #define EF_SPARC_SUN_US3 0x00000800 #define EF_SPARCV9_MM 0x00000003 #define EF_SPARCV9_TSO 0x00000000 #define EF_SPARCV9_PSO 0x00000001 #define EF_SPARCV9_RMO 0x00000002 /* Special section indexes. */ #define SHN_UNDEF 0 /* Undefined, missing, irrelevant. */ #define SHN_LORESERVE 0xff00 /* First of reserved range. */ #define SHN_LOPROC 0xff00 /* First processor-specific. */ #define SHN_HIPROC 0xff1f /* Last processor-specific. */ #define SHN_LOOS 0xff20 /* First operating system-specific. */ #define SHN_FBSD_CACHED SHN_LOOS /* Transient, for sys/kern/link_elf_obj linker only: Cached global in local symtab. */ #define SHN_HIOS 0xff3f /* Last operating system-specific. */ #define SHN_ABS 0xfff1 /* Absolute values. */ #define SHN_COMMON 0xfff2 /* Common data. */ #define SHN_XINDEX 0xffff /* Escape -- index stored elsewhere. */ #define SHN_HIRESERVE 0xffff /* Last of reserved range. */ /* sh_type */ #define SHT_NULL 0 /* inactive */ #define SHT_PROGBITS 1 /* program defined information */ #define SHT_SYMTAB 2 /* symbol table section */ #define SHT_STRTAB 3 /* string table section */ #define SHT_RELA 4 /* relocation section with addends */ #define SHT_HASH 5 /* symbol hash table section */ #define SHT_DYNAMIC 6 /* dynamic section */ #define SHT_NOTE 7 /* note section */ #define SHT_NOBITS 8 /* no space section */ #define SHT_REL 9 /* relocation section - no addends */ #define SHT_SHLIB 10 /* reserved - purpose unknown */ #define SHT_DYNSYM 11 /* dynamic symbol table section */ #define SHT_INIT_ARRAY 14 /* Initialization function pointers. */ #define SHT_FINI_ARRAY 15 /* Termination function pointers. */ #define SHT_PREINIT_ARRAY 16 /* Pre-initialization function ptrs. */ #define SHT_GROUP 17 /* Section group. */ #define SHT_SYMTAB_SHNDX 18 /* Section indexes (see SHN_XINDEX). */ #define SHT_LOOS 0x60000000 /* First of OS specific semantics */ #define SHT_LOSUNW 0x6ffffff4 #define SHT_SUNW_dof 0x6ffffff4 #define SHT_SUNW_cap 0x6ffffff5 #define SHT_GNU_ATTRIBUTES 0x6ffffff5 #define SHT_SUNW_SIGNATURE 0x6ffffff6 #define SHT_GNU_HASH 0x6ffffff6 #define SHT_GNU_LIBLIST 0x6ffffff7 #define SHT_SUNW_ANNOTATE 0x6ffffff7 #define SHT_SUNW_DEBUGSTR 0x6ffffff8 #define SHT_SUNW_DEBUG 0x6ffffff9 #define SHT_SUNW_move 0x6ffffffa #define SHT_SUNW_COMDAT 0x6ffffffb #define SHT_SUNW_syminfo 0x6ffffffc #define SHT_SUNW_verdef 0x6ffffffd #define SHT_GNU_verdef 0x6ffffffd /* Symbol versions provided */ #define SHT_SUNW_verneed 0x6ffffffe #define SHT_GNU_verneed 0x6ffffffe /* Symbol versions required */ #define SHT_SUNW_versym 0x6fffffff #define SHT_GNU_versym 0x6fffffff /* Symbol version table */ #define SHT_HISUNW 0x6fffffff #define SHT_HIOS 0x6fffffff /* Last of OS specific semantics */ #define SHT_LOPROC 0x70000000 /* reserved range for processor */ #define SHT_X86_64_UNWIND 0x70000001 /* unwind information */ #define SHT_AMD64_UNWIND SHT_X86_64_UNWIND #define SHT_ARM_EXIDX 0x70000001 /* Exception index table. */ #define SHT_ARM_PREEMPTMAP 0x70000002 /* BPABI DLL dynamic linking pre-emption map. */ #define SHT_ARM_ATTRIBUTES 0x70000003 /* Object file compatibility attributes. */ #define SHT_ARM_DEBUGOVERLAY 0x70000004 /* See DBGOVL for details. */ #define SHT_ARM_OVERLAYSECTION 0x70000005 /* See DBGOVL for details. */ #define SHT_MIPS_LIBLIST 0x70000000 #define SHT_MIPS_MSYM 0x70000001 #define SHT_MIPS_CONFLICT 0x70000002 #define SHT_MIPS_GPTAB 0x70000003 #define SHT_MIPS_UCODE 0x70000004 #define SHT_MIPS_DEBUG 0x70000005 #define SHT_MIPS_REGINFO 0x70000006 #define SHT_MIPS_PACKAGE 0x70000007 #define SHT_MIPS_PACKSYM 0x70000008 #define SHT_MIPS_RELD 0x70000009 #define SHT_MIPS_IFACE 0x7000000b #define SHT_MIPS_CONTENT 0x7000000c #define SHT_MIPS_OPTIONS 0x7000000d #define SHT_MIPS_DELTASYM 0x7000001b #define SHT_MIPS_DELTAINST 0x7000001c #define SHT_MIPS_DELTACLASS 0x7000001d #define SHT_MIPS_DWARF 0x7000001e /* MIPS gcc uses MIPS_DWARF */ #define SHT_MIPS_DELTADECL 0x7000001f #define SHT_MIPS_SYMBOL_LIB 0x70000020 #define SHT_MIPS_EVENTS 0x70000021 #define SHT_MIPS_TRANSLATE 0x70000022 #define SHT_MIPS_PIXIE 0x70000023 #define SHT_MIPS_XLATE 0x70000024 #define SHT_MIPS_XLATE_DEBUG 0x70000025 #define SHT_MIPS_WHIRL 0x70000026 #define SHT_MIPS_EH_REGION 0x70000027 #define SHT_MIPS_XLATE_OLD 0x70000028 #define SHT_MIPS_PDR_EXCEPTION 0x70000029 #define SHT_MIPS_ABIFLAGS 0x7000002a #define SHT_SPARC_GOTDATA 0x70000000 #define SHTORDERED #define SHT_HIPROC 0x7fffffff /* specific section header types */ #define SHT_LOUSER 0x80000000 /* reserved range for application */ #define SHT_HIUSER 0xffffffff /* specific indexes */ /* Flags for sh_flags. */ #define SHF_WRITE 0x1 /* Section contains writable data. */ #define SHF_ALLOC 0x2 /* Section occupies memory. */ #define SHF_EXECINSTR 0x4 /* Section contains instructions. */ #define SHF_MERGE 0x10 /* Section may be merged. */ #define SHF_STRINGS 0x20 /* Section contains strings. */ #define SHF_INFO_LINK 0x40 /* sh_info holds section index. */ #define SHF_LINK_ORDER 0x80 /* Special ordering requirements. */ #define SHF_OS_NONCONFORMING 0x100 /* OS-specific processing required. */ #define SHF_GROUP 0x200 /* Member of section group. */ #define SHF_TLS 0x400 /* Section contains TLS data. */ #define SHF_COMPRESSED 0x800 /* Section contains compressed data. */ #define SHF_MASKOS 0x0ff00000 /* OS-specific semantics. */ #define SHF_MASKPROC 0xf0000000 /* Processor-specific semantics. */ /* Flags for section groups. */ #define GRP_COMDAT 0x1 /* COMDAT semantics. */ /* * Flags / mask for .gnu.versym sections. */ #define VERSYM_VERSION 0x7fff #define VERSYM_HIDDEN 0x8000 /* Values for p_type. */ #define PT_NULL 0 /* Unused entry. */ #define PT_LOAD 1 /* Loadable segment. */ #define PT_DYNAMIC 2 /* Dynamic linking information segment. */ #define PT_INTERP 3 /* Pathname of interpreter. */ #define PT_NOTE 4 /* Auxiliary information. */ #define PT_SHLIB 5 /* Reserved (not used). */ #define PT_PHDR 6 /* Location of program header itself. */ #define PT_TLS 7 /* Thread local storage segment */ #define PT_LOOS 0x60000000 /* First OS-specific. */ #define PT_SUNW_UNWIND 0x6464e550 /* amd64 UNWIND program header */ #define PT_GNU_EH_FRAME 0x6474e550 #define PT_GNU_STACK 0x6474e551 #define PT_GNU_RELRO 0x6474e552 #define PT_DUMP_DELTA 0x6fb5d000 /* va->pa map for kernel dumps (currently arm). */ #define PT_LOSUNW 0x6ffffffa #define PT_SUNWBSS 0x6ffffffa /* Sun Specific segment */ #define PT_SUNWSTACK 0x6ffffffb /* describes the stack segment */ #define PT_SUNWDTRACE 0x6ffffffc /* private */ #define PT_SUNWCAP 0x6ffffffd /* hard/soft capabilities segment */ #define PT_HISUNW 0x6fffffff #define PT_HIOS 0x6fffffff /* Last OS-specific. */ #define PT_LOPROC 0x70000000 /* First processor-specific type. */ #define PT_ARM_ARCHEXT 0x70000000 /* ARM arch compat information. */ #define PT_ARM_EXIDX 0x70000001 /* ARM exception unwind tables. */ #define PT_MIPS_REGINFO 0x70000000 /* MIPS register usage info */ #define PT_MIPS_RTPROC 0x70000001 /* MIPS runtime procedure tbl */ #define PT_MIPS_OPTIONS 0x70000002 /* MIPS e_flags value*/ #define PT_MIPS_ABIFLAGS 0x70000003 /* MIPS fp mode */ #define PT_HIPROC 0x7fffffff /* Last processor-specific type. */ #define PT_OPENBSD_RANDOMIZE 0x65A3DBE6 /* OpenBSD random data segment */ #define PT_OPENBSD_WXNEEDED 0x65A3DBE7 /* OpenBSD EXEC/WRITE pages needed */ #define PT_OPENBSD_BOOTDATA 0x65A41BE6 /* OpenBSD section for boot args */ /* Values for p_flags. */ #define PF_X 0x1 /* Executable. */ #define PF_W 0x2 /* Writable. */ #define PF_R 0x4 /* Readable. */ #define PF_MASKOS 0x0ff00000 /* Operating system-specific. */ #define PF_MASKPROC 0xf0000000 /* Processor-specific. */ /* Extended program header index. */ #define PN_XNUM 0xffff /* Values for d_tag. */ #define DT_NULL 0 /* Terminating entry. */ #define DT_NEEDED 1 /* String table offset of a needed shared library. */ #define DT_PLTRELSZ 2 /* Total size in bytes of PLT relocations. */ #define DT_PLTGOT 3 /* Processor-dependent address. */ #define DT_HASH 4 /* Address of symbol hash table. */ #define DT_STRTAB 5 /* Address of string table. */ #define DT_SYMTAB 6 /* Address of symbol table. */ #define DT_RELA 7 /* Address of ElfNN_Rela relocations. */ #define DT_RELASZ 8 /* Total size of ElfNN_Rela relocations. */ #define DT_RELAENT 9 /* Size of each ElfNN_Rela relocation entry. */ #define DT_STRSZ 10 /* Size of string table. */ #define DT_SYMENT 11 /* Size of each symbol table entry. */ #define DT_INIT 12 /* Address of initialization function. */ #define DT_FINI 13 /* Address of finalization function. */ #define DT_SONAME 14 /* String table offset of shared object name. */ #define DT_RPATH 15 /* String table offset of library path. [sup] */ #define DT_SYMBOLIC 16 /* Indicates "symbolic" linking. [sup] */ #define DT_REL 17 /* Address of ElfNN_Rel relocations. */ #define DT_RELSZ 18 /* Total size of ElfNN_Rel relocations. */ #define DT_RELENT 19 /* Size of each ElfNN_Rel relocation. */ #define DT_PLTREL 20 /* Type of relocation used for PLT. */ #define DT_DEBUG 21 /* Reserved (not used). */ #define DT_TEXTREL 22 /* Indicates there may be relocations in non-writable segments. [sup] */ #define DT_JMPREL 23 /* Address of PLT relocations. */ #define DT_BIND_NOW 24 /* [sup] */ #define DT_INIT_ARRAY 25 /* Address of the array of pointers to initialization functions */ #define DT_FINI_ARRAY 26 /* Address of the array of pointers to termination functions */ #define DT_INIT_ARRAYSZ 27 /* Size in bytes of the array of initialization functions. */ #define DT_FINI_ARRAYSZ 28 /* Size in bytes of the array of termination functions. */ #define DT_RUNPATH 29 /* String table offset of a null-terminated library search path string. */ #define DT_FLAGS 30 /* Object specific flag values. */ #define DT_ENCODING 32 /* Values greater than or equal to DT_ENCODING and less than DT_LOOS follow the rules for the interpretation of the d_un union as follows: even == 'd_ptr', odd == 'd_val' or none */ #define DT_PREINIT_ARRAY 32 /* Address of the array of pointers to pre-initialization functions. */ #define DT_PREINIT_ARRAYSZ 33 /* Size in bytes of the array of pre-initialization functions. */ #define DT_MAXPOSTAGS 34 /* number of positive tags */ #define DT_LOOS 0x6000000d /* First OS-specific */ #define DT_SUNW_AUXILIARY 0x6000000d /* symbol auxiliary name */ #define DT_SUNW_RTLDINF 0x6000000e /* ld.so.1 info (private) */ #define DT_SUNW_FILTER 0x6000000f /* symbol filter name */ #define DT_SUNW_CAP 0x60000010 /* hardware/software */ #define DT_SUNW_ASLR 0x60000023 /* ASLR control */ #define DT_HIOS 0x6ffff000 /* Last OS-specific */ /* * DT_* entries which fall between DT_VALRNGHI & DT_VALRNGLO use the * Dyn.d_un.d_val field of the Elf*_Dyn structure. */ #define DT_VALRNGLO 0x6ffffd00 #define DT_GNU_PRELINKED 0x6ffffdf5 /* prelinking timestamp */ #define DT_GNU_CONFLICTSZ 0x6ffffdf6 /* size of conflict section */ #define DT_GNU_LIBLISTSZ 0x6ffffdf7 /* size of library list */ #define DT_CHECKSUM 0x6ffffdf8 /* elf checksum */ #define DT_PLTPADSZ 0x6ffffdf9 /* pltpadding size */ #define DT_MOVEENT 0x6ffffdfa /* move table entry size */ #define DT_MOVESZ 0x6ffffdfb /* move table size */ #define DT_FEATURE 0x6ffffdfc /* feature holder */ #define DT_FEATURE_1 DT_FEATURE #define DT_POSFLAG_1 0x6ffffdfd /* flags for DT_* entries, effecting */ /* the following DT_* entry. */ /* See DF_P1_* definitions */ #define DT_SYMINSZ 0x6ffffdfe /* syminfo table size (in bytes) */ #define DT_SYMINENT 0x6ffffdff /* syminfo entry size (in bytes) */ #define DT_VALRNGHI 0x6ffffdff /* * DT_* entries which fall between DT_ADDRRNGHI & DT_ADDRRNGLO use the * Dyn.d_un.d_ptr field of the Elf*_Dyn structure. * * If any adjustment is made to the ELF object after it has been * built, these entries will need to be adjusted. */ #define DT_ADDRRNGLO 0x6ffffe00 #define DT_GNU_HASH 0x6ffffef5 /* GNU-style hash table */ #define DT_TLSDESC_PLT 0x6ffffef6 /* loc. of PLT for tlsdesc resolver */ #define DT_TLSDESC_GOT 0x6ffffef7 /* loc. of GOT for tlsdesc resolver */ #define DT_GNU_CONFLICT 0x6ffffef8 /* address of conflict section */ #define DT_GNU_LIBLIST 0x6ffffef9 /* address of library list */ #define DT_CONFIG 0x6ffffefa /* configuration information */ #define DT_DEPAUDIT 0x6ffffefb /* dependency auditing */ #define DT_AUDIT 0x6ffffefc /* object auditing */ #define DT_PLTPAD 0x6ffffefd /* pltpadding (sparcv9) */ #define DT_MOVETAB 0x6ffffefe /* move table */ #define DT_SYMINFO 0x6ffffeff /* syminfo table */ #define DT_ADDRRNGHI 0x6ffffeff #define DT_VERSYM 0x6ffffff0 /* Address of versym section. */ #define DT_RELACOUNT 0x6ffffff9 /* number of RELATIVE relocations */ #define DT_RELCOUNT 0x6ffffffa /* number of RELATIVE relocations */ #define DT_FLAGS_1 0x6ffffffb /* state flags - see DF_1_* defs */ #define DT_VERDEF 0x6ffffffc /* Address of verdef section. */ #define DT_VERDEFNUM 0x6ffffffd /* Number of elems in verdef section */ #define DT_VERNEED 0x6ffffffe /* Address of verneed section. */ #define DT_VERNEEDNUM 0x6fffffff /* Number of elems in verneed section */ #define DT_LOPROC 0x70000000 /* First processor-specific type. */ #define DT_ARM_SYMTABSZ 0x70000001 #define DT_ARM_PREEMPTMAP 0x70000002 #define DT_SPARC_REGISTER 0x70000001 #define DT_DEPRECATED_SPARC_REGISTER 0x7000001 #define DT_MIPS_RLD_VERSION 0x70000001 #define DT_MIPS_TIME_STAMP 0x70000002 #define DT_MIPS_ICHECKSUM 0x70000003 #define DT_MIPS_IVERSION 0x70000004 #define DT_MIPS_FLAGS 0x70000005 #define DT_MIPS_BASE_ADDRESS 0x70000006 #define DT_MIPS_CONFLICT 0x70000008 #define DT_MIPS_LIBLIST 0x70000009 #define DT_MIPS_LOCAL_GOTNO 0x7000000a #define DT_MIPS_CONFLICTNO 0x7000000b #define DT_MIPS_LIBLISTNO 0x70000010 #define DT_MIPS_SYMTABNO 0x70000011 #define DT_MIPS_UNREFEXTNO 0x70000012 #define DT_MIPS_GOTSYM 0x70000013 #define DT_MIPS_HIPAGENO 0x70000014 #define DT_MIPS_RLD_MAP 0x70000016 #define DT_MIPS_DELTA_CLASS 0x70000017 #define DT_MIPS_DELTA_CLASS_NO 0x70000018 #define DT_MIPS_DELTA_INSTANCE 0x70000019 #define DT_MIPS_DELTA_INSTANCE_NO 0x7000001A #define DT_MIPS_DELTA_RELOC 0x7000001B #define DT_MIPS_DELTA_RELOC_NO 0x7000001C #define DT_MIPS_DELTA_SYM 0x7000001D #define DT_MIPS_DELTA_SYM_NO 0x7000001E #define DT_MIPS_DELTA_CLASSSYM 0x70000020 #define DT_MIPS_DELTA_CLASSSYM_NO 0x70000021 #define DT_MIPS_CXX_FLAGS 0x70000022 #define DT_MIPS_PIXIE_INIT 0x70000023 #define DT_MIPS_SYMBOL_LIB 0x70000024 #define DT_MIPS_LOCALPAGE_GOTIDX 0x70000025 #define DT_MIPS_LOCAL_GOTIDX 0x70000026 #define DT_MIPS_HIDDEN_GOTIDX 0x70000027 #define DT_MIPS_PROTECTED_GOTIDX 0x70000028 #define DT_MIPS_OPTIONS 0x70000029 #define DT_MIPS_INTERFACE 0x7000002A #define DT_MIPS_DYNSTR_ALIGN 0x7000002B #define DT_MIPS_INTERFACE_SIZE 0x7000002C #define DT_MIPS_RLD_TEXT_RESOLVE_ADDR 0x7000002D #define DT_MIPS_PERF_SUFFIX 0x7000002E #define DT_MIPS_COMPACT_SIZE 0x7000002F #define DT_MIPS_GP_VALUE 0x70000030 #define DT_MIPS_AUX_DYNAMIC 0x70000031 #define DT_MIPS_PLTGOT 0x70000032 #define DT_MIPS_RLD_OBJ_UPDATE 0x70000033 #define DT_MIPS_RWPLT 0x70000034 #define DT_MIPS_RLD_MAP_REL 0x70000035 #define DT_PPC_GOT 0x70000000 #define DT_PPC_TLSOPT 0x70000001 #define DT_PPC64_GLINK 0x70000000 #define DT_PPC64_OPD 0x70000001 #define DT_PPC64_OPDSZ 0x70000002 #define DT_PPC64_TLSOPT 0x70000003 #define DT_AUXILIARY 0x7ffffffd /* shared library auxiliary name */ #define DT_USED 0x7ffffffe /* ignored - same as needed */ #define DT_FILTER 0x7fffffff /* shared library filter name */ #define DT_HIPROC 0x7fffffff /* Last processor-specific type. */ /* Values for DT_FLAGS */ #define DF_ORIGIN 0x0001 /* Indicates that the object being loaded may make reference to the $ORIGIN substitution string */ #define DF_SYMBOLIC 0x0002 /* Indicates "symbolic" linking. */ #define DF_TEXTREL 0x0004 /* Indicates there may be relocations in non-writable segments. */ #define DF_BIND_NOW 0x0008 /* Indicates that the dynamic linker should process all relocations for the object containing this entry before transferring control to the program. */ #define DF_STATIC_TLS 0x0010 /* Indicates that the shared object or executable contains code using a static thread-local storage scheme. */ /* Values for DT_FLAGS_1 */ #define DF_1_BIND_NOW 0x00000001 /* Same as DF_BIND_NOW */ #define DF_1_GLOBAL 0x00000002 /* Set the RTLD_GLOBAL for object */ #define DF_1_NODELETE 0x00000008 /* Set the RTLD_NODELETE for object */ #define DF_1_LOADFLTR 0x00000010 /* Immediate loading of filtees */ #define DF_1_NOOPEN 0x00000040 /* Do not allow loading on dlopen() */ #define DF_1_ORIGIN 0x00000080 /* Process $ORIGIN */ #define DF_1_INTERPOSE 0x00000400 /* Interpose all objects but main */ #define DF_1_NODEFLIB 0x00000800 /* Do not search default paths */ #define DF_1_PIE 0x08000000 /* Is position-independent executable */ /* Values for l_flags. */ #define LL_NONE 0x0 /* no flags */ #define LL_EXACT_MATCH 0x1 /* require an exact match */ #define LL_IGNORE_INT_VER 0x2 /* ignore version incompatibilities */ #define LL_REQUIRE_MINOR 0x4 #define LL_EXPORTS 0x8 #define LL_DELAY_LOAD 0x10 #define LL_DELTA 0x20 /* Note section names */ #define ELF_NOTE_FREEBSD "FreeBSD" #define ELF_NOTE_NETBSD "NetBSD" #define ELF_NOTE_SOLARIS "SUNW Solaris" #define ELF_NOTE_GNU "GNU" /* Values for n_type used in executables. */ #define NT_FREEBSD_ABI_TAG 1 #define NT_FREEBSD_NOINIT_TAG 2 #define NT_FREEBSD_ARCH_TAG 3 #define NT_FREEBSD_FEATURE_CTL 4 /* NT_FREEBSD_FEATURE_CTL desc[0] bits */ #define NT_FREEBSD_FCTL_ASLR_DISABLE 0x00000001 #define NT_FREEBSD_FCTL_PROTMAX_DISABLE 0x00000002 #define NT_FREEBSD_FCTL_STKGAP_DISABLE 0x00000004 #define NT_FREEBSD_FCTL_WXNEEDED 0x00000008 #define NT_FREEBSD_FCTL_LA48 0x00000010 /* Values for n_type. Used in core files. */ #define NT_PRSTATUS 1 /* Process status. */ #define NT_FPREGSET 2 /* Floating point registers. */ #define NT_PRPSINFO 3 /* Process state info. */ #define NT_THRMISC 7 /* Thread miscellaneous info. */ #define NT_PROCSTAT_PROC 8 /* Procstat proc data. */ #define NT_PROCSTAT_FILES 9 /* Procstat files data. */ #define NT_PROCSTAT_VMMAP 10 /* Procstat vmmap data. */ #define NT_PROCSTAT_GROUPS 11 /* Procstat groups data. */ #define NT_PROCSTAT_UMASK 12 /* Procstat umask data. */ #define NT_PROCSTAT_RLIMIT 13 /* Procstat rlimit data. */ #define NT_PROCSTAT_OSREL 14 /* Procstat osreldate data. */ #define NT_PROCSTAT_PSSTRINGS 15 /* Procstat ps_strings data. */ #define NT_PROCSTAT_AUXV 16 /* Procstat auxv data. */ #define NT_PTLWPINFO 17 /* Thread ptrace miscellaneous info. */ #define NT_PPC_VMX 0x100 /* PowerPC Altivec/VMX registers */ #define NT_PPC_VSX 0x102 /* PowerPC VSX registers */ #define NT_X86_XSTATE 0x202 /* x86 XSAVE extended state. */ #define NT_ARM_VFP 0x400 /* ARM VFP registers */ /* GNU note types. */ #define NT_GNU_ABI_TAG 1 #define NT_GNU_HWCAP 2 #define NT_GNU_BUILD_ID 3 #define NT_GNU_GOLD_VERSION 4 #define NT_GNU_PROPERTY_TYPE_0 5 #define GNU_PROPERTY_LOPROC 0xc0000000 #define GNU_PROPERTY_HIPROC 0xdfffffff #define GNU_PROPERTY_X86_FEATURE_1_AND 0xc0000002 #define GNU_PROPERTY_X86_FEATURE_1_IBT 0x00000001 #define GNU_PROPERTY_X86_FEATURE_1_SHSTK 0x00000002 /* Symbol Binding - ELFNN_ST_BIND - st_info */ #define STB_LOCAL 0 /* Local symbol */ #define STB_GLOBAL 1 /* Global symbol */ #define STB_WEAK 2 /* like global - lower precedence */ #define STB_LOOS 10 /* Start of operating system reserved range. */ #define STB_GNU_UNIQUE 10 /* Unique symbol (GNU) */ #define STB_HIOS 12 /* End of operating system reserved range. */ #define STB_LOPROC 13 /* reserved range for processor */ #define STB_HIPROC 15 /* specific semantics. */ /* Symbol type - ELFNN_ST_TYPE - st_info */ #define STT_NOTYPE 0 /* Unspecified type. */ #define STT_OBJECT 1 /* Data object. */ #define STT_FUNC 2 /* Function. */ #define STT_SECTION 3 /* Section. */ #define STT_FILE 4 /* Source file. */ #define STT_COMMON 5 /* Uninitialized common block. */ #define STT_TLS 6 /* TLS object. */ #define STT_NUM 7 #define STT_LOOS 10 /* Reserved range for operating system */ #define STT_GNU_IFUNC 10 #define STT_HIOS 12 /* specific semantics. */ #define STT_LOPROC 13 /* Start of processor reserved range. */ #define STT_SPARC_REGISTER 13 /* SPARC register information. */ #define STT_HIPROC 15 /* End of processor reserved range. */ /* Symbol visibility - ELFNN_ST_VISIBILITY - st_other */ #define STV_DEFAULT 0x0 /* Default visibility (see binding). */ #define STV_INTERNAL 0x1 /* Special meaning in relocatable objects. */ #define STV_HIDDEN 0x2 /* Not visible. */ #define STV_PROTECTED 0x3 /* Visible but not preemptible. */ #define STV_EXPORTED 0x4 #define STV_SINGLETON 0x5 #define STV_ELIMINATE 0x6 /* Special symbol table indexes. */ #define STN_UNDEF 0 /* Undefined symbol index. */ /* Symbol versioning flags. */ #define VER_DEF_CURRENT 1 #define VER_DEF_IDX(x) VER_NDX(x) #define VER_FLG_BASE 0x01 #define VER_FLG_WEAK 0x02 #define VER_NEED_CURRENT 1 #define VER_NEED_WEAK (1u << 15) #define VER_NEED_HIDDEN VER_NDX_HIDDEN #define VER_NEED_IDX(x) VER_NDX(x) #define VER_NDX_LOCAL 0 #define VER_NDX_GLOBAL 1 #define VER_NDX_GIVEN 2 #define VER_NDX_HIDDEN (1u << 15) #define VER_NDX(x) ((x) & ~(1u << 15)) #define CA_SUNW_NULL 0 #define CA_SUNW_HW_1 1 /* first hardware capabilities entry */ #define CA_SUNW_SF_1 2 /* first software capabilities entry */ /* * Syminfo flag values */ #define SYMINFO_FLG_DIRECT 0x0001 /* symbol ref has direct association */ /* to object containing defn. */ #define SYMINFO_FLG_PASSTHRU 0x0002 /* ignored - see SYMINFO_FLG_FILTER */ #define SYMINFO_FLG_COPY 0x0004 /* symbol is a copy-reloc */ #define SYMINFO_FLG_LAZYLOAD 0x0008 /* object containing defn should be */ /* lazily-loaded */ #define SYMINFO_FLG_DIRECTBIND 0x0010 /* ref should be bound directly to */ /* object containing defn. */ #define SYMINFO_FLG_NOEXTDIRECT 0x0020 /* don't let an external reference */ /* directly bind to this symbol */ #define SYMINFO_FLG_FILTER 0x0002 /* symbol ref is associated to a */ #define SYMINFO_FLG_AUXILIARY 0x0040 /* standard or auxiliary filter */ /* * Syminfo.si_boundto values. */ #define SYMINFO_BT_SELF 0xffff /* symbol bound to self */ #define SYMINFO_BT_PARENT 0xfffe /* symbol bound to parent */ #define SYMINFO_BT_NONE 0xfffd /* no special symbol binding */ #define SYMINFO_BT_EXTERN 0xfffc /* symbol defined as external */ #define SYMINFO_BT_LOWRESERVE 0xff00 /* beginning of reserved entries */ /* * Syminfo version values. */ #define SYMINFO_NONE 0 /* Syminfo version */ #define SYMINFO_CURRENT 1 #define SYMINFO_NUM 2 /* Values for ch_type (compressed section headers). */ #define ELFCOMPRESS_ZLIB 1 /* ZLIB/DEFLATE */ #define ELFCOMPRESS_LOOS 0x60000000 /* OS-specific */ #define ELFCOMPRESS_HIOS 0x6fffffff #define ELFCOMPRESS_LOPROC 0x70000000 /* Processor-specific */ #define ELFCOMPRESS_HIPROC 0x7fffffff /* Values for a_type. */ #define AT_NULL 0 /* Terminates the vector. */ #define AT_IGNORE 1 /* Ignored entry. */ #define AT_EXECFD 2 /* File descriptor of program to load. */ #define AT_PHDR 3 /* Program header of program already loaded. */ #define AT_PHENT 4 /* Size of each program header entry. */ #define AT_PHNUM 5 /* Number of program header entries. */ #define AT_PAGESZ 6 /* Page size in bytes. */ #define AT_BASE 7 /* Interpreter's base address. */ #define AT_FLAGS 8 /* Flags. */ #define AT_ENTRY 9 /* Where interpreter should transfer control. */ #define AT_NOTELF 10 /* Program is not ELF ?? */ #define AT_UID 11 /* Real uid. */ #define AT_EUID 12 /* Effective uid. */ #define AT_GID 13 /* Real gid. */ #define AT_EGID 14 /* Effective gid. */ #define AT_EXECPATH 15 /* Path to the executable. */ #define AT_CANARY 16 /* Canary for SSP. */ #define AT_CANARYLEN 17 /* Length of the canary. */ #define AT_OSRELDATE 18 /* OSRELDATE. */ #define AT_NCPUS 19 /* Number of CPUs. */ #define AT_PAGESIZES 20 /* Pagesizes. */ #define AT_PAGESIZESLEN 21 /* Number of pagesizes. */ #define AT_TIMEKEEP 22 /* Pointer to timehands. */ #define AT_STACKPROT 23 /* Initial stack protection. */ #define AT_EHDRFLAGS 24 /* e_flags field from elf hdr */ #define AT_HWCAP 25 /* CPU feature flags. */ #define AT_HWCAP2 26 /* CPU feature flags 2. */ #define AT_BSDFLAGS 27 /* ELF BSD Flags. */ #define AT_ARGC 28 /* Argument count */ #define AT_ARGV 29 /* Argument vector */ #define AT_ENVC 30 /* Environment count */ #define AT_ENVV 31 /* Environment vector */ #define AT_PS_STRINGS 32 /* struct ps_strings */ +#define AT_FXRNG 33 /* Pointer to root RNG seed version. */ -#define AT_COUNT 33 /* Count of defined aux entry types. */ +#define AT_COUNT 34 /* Count of defined aux entry types. */ /* * Relocation types. * * All machine architectures are defined here to allow tools on one to * handle others. */ #define R_386_NONE 0 /* No relocation. */ #define R_386_32 1 /* Add symbol value. */ #define R_386_PC32 2 /* Add PC-relative symbol value. */ #define R_386_GOT32 3 /* Add PC-relative GOT offset. */ #define R_386_PLT32 4 /* Add PC-relative PLT offset. */ #define R_386_COPY 5 /* Copy data from shared object. */ #define R_386_GLOB_DAT 6 /* Set GOT entry to data address. */ #define R_386_JMP_SLOT 7 /* Set GOT entry to code address. */ #define R_386_RELATIVE 8 /* Add load address of shared object. */ #define R_386_GOTOFF 9 /* Add GOT-relative symbol address. */ #define R_386_GOTPC 10 /* Add PC-relative GOT table address. */ #define R_386_TLS_TPOFF 14 /* Negative offset in static TLS block */ #define R_386_TLS_IE 15 /* Absolute address of GOT for -ve static TLS */ #define R_386_TLS_GOTIE 16 /* GOT entry for negative static TLS block */ #define R_386_TLS_LE 17 /* Negative offset relative to static TLS */ #define R_386_TLS_GD 18 /* 32 bit offset to GOT (index,off) pair */ #define R_386_TLS_LDM 19 /* 32 bit offset to GOT (index,zero) pair */ #define R_386_TLS_GD_32 24 /* 32 bit offset to GOT (index,off) pair */ #define R_386_TLS_GD_PUSH 25 /* pushl instruction for Sun ABI GD sequence */ #define R_386_TLS_GD_CALL 26 /* call instruction for Sun ABI GD sequence */ #define R_386_TLS_GD_POP 27 /* popl instruction for Sun ABI GD sequence */ #define R_386_TLS_LDM_32 28 /* 32 bit offset to GOT (index,zero) pair */ #define R_386_TLS_LDM_PUSH 29 /* pushl instruction for Sun ABI LD sequence */ #define R_386_TLS_LDM_CALL 30 /* call instruction for Sun ABI LD sequence */ #define R_386_TLS_LDM_POP 31 /* popl instruction for Sun ABI LD sequence */ #define R_386_TLS_LDO_32 32 /* 32 bit offset from start of TLS block */ #define R_386_TLS_IE_32 33 /* 32 bit offset to GOT static TLS offset entry */ #define R_386_TLS_LE_32 34 /* 32 bit offset within static TLS block */ #define R_386_TLS_DTPMOD32 35 /* GOT entry containing TLS index */ #define R_386_TLS_DTPOFF32 36 /* GOT entry containing TLS offset */ #define R_386_TLS_TPOFF32 37 /* GOT entry of -ve static TLS offset */ #define R_386_IRELATIVE 42 /* PLT entry resolved indirectly at runtime */ #define R_AARCH64_NONE 0 /* No relocation */ #define R_AARCH64_ABS64 257 /* Absolute offset */ #define R_AARCH64_ABS32 258 /* Absolute, 32-bit overflow check */ #define R_AARCH64_ABS16 259 /* Absolute, 16-bit overflow check */ #define R_AARCH64_PREL64 260 /* PC relative */ #define R_AARCH64_PREL32 261 /* PC relative, 32-bit overflow check */ #define R_AARCH64_PREL16 262 /* PC relative, 16-bit overflow check */ #define R_AARCH64_TSTBR14 279 /* TBZ/TBNZ immediate */ #define R_AARCH64_CONDBR19 280 /* Conditional branch immediate */ #define R_AARCH64_JUMP26 282 /* Branch immediate */ #define R_AARCH64_CALL26 283 /* Call immediate */ #define R_AARCH64_COPY 1024 /* Copy data from shared object */ #define R_AARCH64_GLOB_DAT 1025 /* Set GOT entry to data address */ #define R_AARCH64_JUMP_SLOT 1026 /* Set GOT entry to code address */ #define R_AARCH64_RELATIVE 1027 /* Add load address of shared object */ #define R_AARCH64_TLS_DTPREL64 1028 #define R_AARCH64_TLS_DTPMOD64 1029 #define R_AARCH64_TLS_TPREL64 1030 #define R_AARCH64_TLSDESC 1031 /* Identify the TLS descriptor */ #define R_AARCH64_IRELATIVE 1032 #define R_ARM_NONE 0 /* No relocation. */ #define R_ARM_PC24 1 #define R_ARM_ABS32 2 #define R_ARM_REL32 3 #define R_ARM_PC13 4 #define R_ARM_ABS16 5 #define R_ARM_ABS12 6 #define R_ARM_THM_ABS5 7 #define R_ARM_ABS8 8 #define R_ARM_SBREL32 9 #define R_ARM_THM_PC22 10 #define R_ARM_THM_PC8 11 #define R_ARM_AMP_VCALL9 12 #define R_ARM_SWI24 13 #define R_ARM_THM_SWI8 14 #define R_ARM_XPC25 15 #define R_ARM_THM_XPC22 16 /* TLS relocations */ #define R_ARM_TLS_DTPMOD32 17 /* ID of module containing symbol */ #define R_ARM_TLS_DTPOFF32 18 /* Offset in TLS block */ #define R_ARM_TLS_TPOFF32 19 /* Offset in static TLS block */ #define R_ARM_COPY 20 /* Copy data from shared object. */ #define R_ARM_GLOB_DAT 21 /* Set GOT entry to data address. */ #define R_ARM_JUMP_SLOT 22 /* Set GOT entry to code address. */ #define R_ARM_RELATIVE 23 /* Add load address of shared object. */ #define R_ARM_GOTOFF 24 /* Add GOT-relative symbol address. */ #define R_ARM_GOTPC 25 /* Add PC-relative GOT table address. */ #define R_ARM_GOT32 26 /* Add PC-relative GOT offset. */ #define R_ARM_PLT32 27 /* Add PC-relative PLT offset. */ #define R_ARM_GNU_VTENTRY 100 #define R_ARM_GNU_VTINHERIT 101 #define R_ARM_RSBREL32 250 #define R_ARM_THM_RPC22 251 #define R_ARM_RREL32 252 #define R_ARM_RABS32 253 #define R_ARM_RPC24 254 #define R_ARM_RBASE 255 /* Name Value Field Calculation */ #define R_IA_64_NONE 0 /* None */ #define R_IA_64_IMM14 0x21 /* immediate14 S + A */ #define R_IA_64_IMM22 0x22 /* immediate22 S + A */ #define R_IA_64_IMM64 0x23 /* immediate64 S + A */ #define R_IA_64_DIR32MSB 0x24 /* word32 MSB S + A */ #define R_IA_64_DIR32LSB 0x25 /* word32 LSB S + A */ #define R_IA_64_DIR64MSB 0x26 /* word64 MSB S + A */ #define R_IA_64_DIR64LSB 0x27 /* word64 LSB S + A */ #define R_IA_64_GPREL22 0x2a /* immediate22 @gprel(S + A) */ #define R_IA_64_GPREL64I 0x2b /* immediate64 @gprel(S + A) */ #define R_IA_64_GPREL32MSB 0x2c /* word32 MSB @gprel(S + A) */ #define R_IA_64_GPREL32LSB 0x2d /* word32 LSB @gprel(S + A) */ #define R_IA_64_GPREL64MSB 0x2e /* word64 MSB @gprel(S + A) */ #define R_IA_64_GPREL64LSB 0x2f /* word64 LSB @gprel(S + A) */ #define R_IA_64_LTOFF22 0x32 /* immediate22 @ltoff(S + A) */ #define R_IA_64_LTOFF64I 0x33 /* immediate64 @ltoff(S + A) */ #define R_IA_64_PLTOFF22 0x3a /* immediate22 @pltoff(S + A) */ #define R_IA_64_PLTOFF64I 0x3b /* immediate64 @pltoff(S + A) */ #define R_IA_64_PLTOFF64MSB 0x3e /* word64 MSB @pltoff(S + A) */ #define R_IA_64_PLTOFF64LSB 0x3f /* word64 LSB @pltoff(S + A) */ #define R_IA_64_FPTR64I 0x43 /* immediate64 @fptr(S + A) */ #define R_IA_64_FPTR32MSB 0x44 /* word32 MSB @fptr(S + A) */ #define R_IA_64_FPTR32LSB 0x45 /* word32 LSB @fptr(S + A) */ #define R_IA_64_FPTR64MSB 0x46 /* word64 MSB @fptr(S + A) */ #define R_IA_64_FPTR64LSB 0x47 /* word64 LSB @fptr(S + A) */ #define R_IA_64_PCREL60B 0x48 /* immediate60 form1 S + A - P */ #define R_IA_64_PCREL21B 0x49 /* immediate21 form1 S + A - P */ #define R_IA_64_PCREL21M 0x4a /* immediate21 form2 S + A - P */ #define R_IA_64_PCREL21F 0x4b /* immediate21 form3 S + A - P */ #define R_IA_64_PCREL32MSB 0x4c /* word32 MSB S + A - P */ #define R_IA_64_PCREL32LSB 0x4d /* word32 LSB S + A - P */ #define R_IA_64_PCREL64MSB 0x4e /* word64 MSB S + A - P */ #define R_IA_64_PCREL64LSB 0x4f /* word64 LSB S + A - P */ #define R_IA_64_LTOFF_FPTR22 0x52 /* immediate22 @ltoff(@fptr(S + A)) */ #define R_IA_64_LTOFF_FPTR64I 0x53 /* immediate64 @ltoff(@fptr(S + A)) */ #define R_IA_64_LTOFF_FPTR32MSB 0x54 /* word32 MSB @ltoff(@fptr(S + A)) */ #define R_IA_64_LTOFF_FPTR32LSB 0x55 /* word32 LSB @ltoff(@fptr(S + A)) */ #define R_IA_64_LTOFF_FPTR64MSB 0x56 /* word64 MSB @ltoff(@fptr(S + A)) */ #define R_IA_64_LTOFF_FPTR64LSB 0x57 /* word64 LSB @ltoff(@fptr(S + A)) */ #define R_IA_64_SEGREL32MSB 0x5c /* word32 MSB @segrel(S + A) */ #define R_IA_64_SEGREL32LSB 0x5d /* word32 LSB @segrel(S + A) */ #define R_IA_64_SEGREL64MSB 0x5e /* word64 MSB @segrel(S + A) */ #define R_IA_64_SEGREL64LSB 0x5f /* word64 LSB @segrel(S + A) */ #define R_IA_64_SECREL32MSB 0x64 /* word32 MSB @secrel(S + A) */ #define R_IA_64_SECREL32LSB 0x65 /* word32 LSB @secrel(S + A) */ #define R_IA_64_SECREL64MSB 0x66 /* word64 MSB @secrel(S + A) */ #define R_IA_64_SECREL64LSB 0x67 /* word64 LSB @secrel(S + A) */ #define R_IA_64_REL32MSB 0x6c /* word32 MSB BD + A */ #define R_IA_64_REL32LSB 0x6d /* word32 LSB BD + A */ #define R_IA_64_REL64MSB 0x6e /* word64 MSB BD + A */ #define R_IA_64_REL64LSB 0x6f /* word64 LSB BD + A */ #define R_IA_64_LTV32MSB 0x74 /* word32 MSB S + A */ #define R_IA_64_LTV32LSB 0x75 /* word32 LSB S + A */ #define R_IA_64_LTV64MSB 0x76 /* word64 MSB S + A */ #define R_IA_64_LTV64LSB 0x77 /* word64 LSB S + A */ #define R_IA_64_PCREL21BI 0x79 /* immediate21 form1 S + A - P */ #define R_IA_64_PCREL22 0x7a /* immediate22 S + A - P */ #define R_IA_64_PCREL64I 0x7b /* immediate64 S + A - P */ #define R_IA_64_IPLTMSB 0x80 /* function descriptor MSB special */ #define R_IA_64_IPLTLSB 0x81 /* function descriptor LSB speciaal */ #define R_IA_64_SUB 0x85 /* immediate64 A - S */ #define R_IA_64_LTOFF22X 0x86 /* immediate22 special */ #define R_IA_64_LDXMOV 0x87 /* immediate22 special */ #define R_IA_64_TPREL14 0x91 /* imm14 @tprel(S + A) */ #define R_IA_64_TPREL22 0x92 /* imm22 @tprel(S + A) */ #define R_IA_64_TPREL64I 0x93 /* imm64 @tprel(S + A) */ #define R_IA_64_TPREL64MSB 0x96 /* word64 MSB @tprel(S + A) */ #define R_IA_64_TPREL64LSB 0x97 /* word64 LSB @tprel(S + A) */ #define R_IA_64_LTOFF_TPREL22 0x9a /* imm22 @ltoff(@tprel(S+A)) */ #define R_IA_64_DTPMOD64MSB 0xa6 /* word64 MSB @dtpmod(S + A) */ #define R_IA_64_DTPMOD64LSB 0xa7 /* word64 LSB @dtpmod(S + A) */ #define R_IA_64_LTOFF_DTPMOD22 0xaa /* imm22 @ltoff(@dtpmod(S+A)) */ #define R_IA_64_DTPREL14 0xb1 /* imm14 @dtprel(S + A) */ #define R_IA_64_DTPREL22 0xb2 /* imm22 @dtprel(S + A) */ #define R_IA_64_DTPREL64I 0xb3 /* imm64 @dtprel(S + A) */ #define R_IA_64_DTPREL32MSB 0xb4 /* word32 MSB @dtprel(S + A) */ #define R_IA_64_DTPREL32LSB 0xb5 /* word32 LSB @dtprel(S + A) */ #define R_IA_64_DTPREL64MSB 0xb6 /* word64 MSB @dtprel(S + A) */ #define R_IA_64_DTPREL64LSB 0xb7 /* word64 LSB @dtprel(S + A) */ #define R_IA_64_LTOFF_DTPREL22 0xba /* imm22 @ltoff(@dtprel(S+A)) */ #define R_MIPS_NONE 0 /* No reloc */ #define R_MIPS_16 1 /* Direct 16 bit */ #define R_MIPS_32 2 /* Direct 32 bit */ #define R_MIPS_REL32 3 /* PC relative 32 bit */ #define R_MIPS_26 4 /* Direct 26 bit shifted */ #define R_MIPS_HI16 5 /* High 16 bit */ #define R_MIPS_LO16 6 /* Low 16 bit */ #define R_MIPS_GPREL16 7 /* GP relative 16 bit */ #define R_MIPS_LITERAL 8 /* 16 bit literal entry */ #define R_MIPS_GOT16 9 /* 16 bit GOT entry */ #define R_MIPS_PC16 10 /* PC relative 16 bit */ #define R_MIPS_CALL16 11 /* 16 bit GOT entry for function */ #define R_MIPS_GPREL32 12 /* GP relative 32 bit */ #define R_MIPS_64 18 /* Direct 64 bit */ #define R_MIPS_GOT_DISP 19 #define R_MIPS_GOT_PAGE 20 #define R_MIPS_GOT_OFST 21 #define R_MIPS_GOT_HI16 22 /* GOT HI 16 bit */ #define R_MIPS_GOT_LO16 23 /* GOT LO 16 bit */ #define R_MIPS_SUB 24 #define R_MIPS_CALLHI16 30 /* upper 16 bit GOT entry for function */ #define R_MIPS_CALLLO16 31 /* lower 16 bit GOT entry for function */ #define R_MIPS_JALR 37 #define R_MIPS_TLS_GD 42 #define R_MIPS_COPY 126 #define R_MIPS_JUMP_SLOT 127 #define R_PPC_NONE 0 /* No relocation. */ #define R_PPC_ADDR32 1 #define R_PPC_ADDR24 2 #define R_PPC_ADDR16 3 #define R_PPC_ADDR16_LO 4 #define R_PPC_ADDR16_HI 5 #define R_PPC_ADDR16_HA 6 #define R_PPC_ADDR14 7 #define R_PPC_ADDR14_BRTAKEN 8 #define R_PPC_ADDR14_BRNTAKEN 9 #define R_PPC_REL24 10 #define R_PPC_REL14 11 #define R_PPC_REL14_BRTAKEN 12 #define R_PPC_REL14_BRNTAKEN 13 #define R_PPC_GOT16 14 #define R_PPC_GOT16_LO 15 #define R_PPC_GOT16_HI 16 #define R_PPC_GOT16_HA 17 #define R_PPC_PLTREL24 18 #define R_PPC_COPY 19 #define R_PPC_GLOB_DAT 20 #define R_PPC_JMP_SLOT 21 #define R_PPC_RELATIVE 22 #define R_PPC_LOCAL24PC 23 #define R_PPC_UADDR32 24 #define R_PPC_UADDR16 25 #define R_PPC_REL32 26 #define R_PPC_PLT32 27 #define R_PPC_PLTREL32 28 #define R_PPC_PLT16_LO 29 #define R_PPC_PLT16_HI 30 #define R_PPC_PLT16_HA 31 #define R_PPC_SDAREL16 32 #define R_PPC_SECTOFF 33 #define R_PPC_SECTOFF_LO 34 #define R_PPC_SECTOFF_HI 35 #define R_PPC_SECTOFF_HA 36 #define R_PPC_IRELATIVE 248 /* * 64-bit relocations */ #define R_PPC64_ADDR64 38 #define R_PPC64_ADDR16_HIGHER 39 #define R_PPC64_ADDR16_HIGHERA 40 #define R_PPC64_ADDR16_HIGHEST 41 #define R_PPC64_ADDR16_HIGHESTA 42 #define R_PPC64_UADDR64 43 #define R_PPC64_REL64 44 #define R_PPC64_PLT64 45 #define R_PPC64_PLTREL64 46 #define R_PPC64_TOC16 47 #define R_PPC64_TOC16_LO 48 #define R_PPC64_TOC16_HI 49 #define R_PPC64_TOC16_HA 50 #define R_PPC64_TOC 51 #define R_PPC64_DTPMOD64 68 #define R_PPC64_TPREL64 73 #define R_PPC64_DTPREL64 78 /* * TLS relocations */ #define R_PPC_TLS 67 #define R_PPC_DTPMOD32 68 #define R_PPC_TPREL16 69 #define R_PPC_TPREL16_LO 70 #define R_PPC_TPREL16_HI 71 #define R_PPC_TPREL16_HA 72 #define R_PPC_TPREL32 73 #define R_PPC_DTPREL16 74 #define R_PPC_DTPREL16_LO 75 #define R_PPC_DTPREL16_HI 76 #define R_PPC_DTPREL16_HA 77 #define R_PPC_DTPREL32 78 #define R_PPC_GOT_TLSGD16 79 #define R_PPC_GOT_TLSGD16_LO 80 #define R_PPC_GOT_TLSGD16_HI 81 #define R_PPC_GOT_TLSGD16_HA 82 #define R_PPC_GOT_TLSLD16 83 #define R_PPC_GOT_TLSLD16_LO 84 #define R_PPC_GOT_TLSLD16_HI 85 #define R_PPC_GOT_TLSLD16_HA 86 #define R_PPC_GOT_TPREL16 87 #define R_PPC_GOT_TPREL16_LO 88 #define R_PPC_GOT_TPREL16_HI 89 #define R_PPC_GOT_TPREL16_HA 90 /* * The remaining relocs are from the Embedded ELF ABI, and are not in the * SVR4 ELF ABI. */ #define R_PPC_EMB_NADDR32 101 #define R_PPC_EMB_NADDR16 102 #define R_PPC_EMB_NADDR16_LO 103 #define R_PPC_EMB_NADDR16_HI 104 #define R_PPC_EMB_NADDR16_HA 105 #define R_PPC_EMB_SDAI16 106 #define R_PPC_EMB_SDA2I16 107 #define R_PPC_EMB_SDA2REL 108 #define R_PPC_EMB_SDA21 109 #define R_PPC_EMB_MRKREF 110 #define R_PPC_EMB_RELSEC16 111 #define R_PPC_EMB_RELST_LO 112 #define R_PPC_EMB_RELST_HI 113 #define R_PPC_EMB_RELST_HA 114 #define R_PPC_EMB_BIT_FLD 115 #define R_PPC_EMB_RELSDA 116 /* * RISC-V relocation types. */ /* Relocation types used by the dynamic linker. */ #define R_RISCV_NONE 0 #define R_RISCV_32 1 #define R_RISCV_64 2 #define R_RISCV_RELATIVE 3 #define R_RISCV_COPY 4 #define R_RISCV_JUMP_SLOT 5 #define R_RISCV_TLS_DTPMOD32 6 #define R_RISCV_TLS_DTPMOD64 7 #define R_RISCV_TLS_DTPREL32 8 #define R_RISCV_TLS_DTPREL64 9 #define R_RISCV_TLS_TPREL32 10 #define R_RISCV_TLS_TPREL64 11 /* Relocation types not used by the dynamic linker. */ #define R_RISCV_BRANCH 16 #define R_RISCV_JAL 17 #define R_RISCV_CALL 18 #define R_RISCV_CALL_PLT 19 #define R_RISCV_GOT_HI20 20 #define R_RISCV_TLS_GOT_HI20 21 #define R_RISCV_TLS_GD_HI20 22 #define R_RISCV_PCREL_HI20 23 #define R_RISCV_PCREL_LO12_I 24 #define R_RISCV_PCREL_LO12_S 25 #define R_RISCV_HI20 26 #define R_RISCV_LO12_I 27 #define R_RISCV_LO12_S 28 #define R_RISCV_TPREL_HI20 29 #define R_RISCV_TPREL_LO12_I 30 #define R_RISCV_TPREL_LO12_S 31 #define R_RISCV_TPREL_ADD 32 #define R_RISCV_ADD8 33 #define R_RISCV_ADD16 34 #define R_RISCV_ADD32 35 #define R_RISCV_ADD64 36 #define R_RISCV_SUB8 37 #define R_RISCV_SUB16 38 #define R_RISCV_SUB32 39 #define R_RISCV_SUB64 40 #define R_RISCV_GNU_VTINHERIT 41 #define R_RISCV_GNU_VTENTRY 42 #define R_RISCV_ALIGN 43 #define R_RISCV_RVC_BRANCH 44 #define R_RISCV_RVC_JUMP 45 #define R_RISCV_RVC_LUI 46 #define R_RISCV_GPREL_I 47 #define R_RISCV_GPREL_S 48 #define R_RISCV_TPREL_I 49 #define R_RISCV_TPREL_S 50 #define R_RISCV_RELAX 51 #define R_RISCV_SUB6 52 #define R_RISCV_SET6 53 #define R_RISCV_SET8 54 #define R_RISCV_SET16 55 #define R_RISCV_SET32 56 #define R_RISCV_32_PCREL 57 #define R_RISCV_IRELATIVE 58 #define R_SPARC_NONE 0 #define R_SPARC_8 1 #define R_SPARC_16 2 #define R_SPARC_32 3 #define R_SPARC_DISP8 4 #define R_SPARC_DISP16 5 #define R_SPARC_DISP32 6 #define R_SPARC_WDISP30 7 #define R_SPARC_WDISP22 8 #define R_SPARC_HI22 9 #define R_SPARC_22 10 #define R_SPARC_13 11 #define R_SPARC_LO10 12 #define R_SPARC_GOT10 13 #define R_SPARC_GOT13 14 #define R_SPARC_GOT22 15 #define R_SPARC_PC10 16 #define R_SPARC_PC22 17 #define R_SPARC_WPLT30 18 #define R_SPARC_COPY 19 #define R_SPARC_GLOB_DAT 20 #define R_SPARC_JMP_SLOT 21 #define R_SPARC_RELATIVE 22 #define R_SPARC_UA32 23 #define R_SPARC_PLT32 24 #define R_SPARC_HIPLT22 25 #define R_SPARC_LOPLT10 26 #define R_SPARC_PCPLT32 27 #define R_SPARC_PCPLT22 28 #define R_SPARC_PCPLT10 29 #define R_SPARC_10 30 #define R_SPARC_11 31 #define R_SPARC_64 32 #define R_SPARC_OLO10 33 #define R_SPARC_HH22 34 #define R_SPARC_HM10 35 #define R_SPARC_LM22 36 #define R_SPARC_PC_HH22 37 #define R_SPARC_PC_HM10 38 #define R_SPARC_PC_LM22 39 #define R_SPARC_WDISP16 40 #define R_SPARC_WDISP19 41 #define R_SPARC_GLOB_JMP 42 #define R_SPARC_7 43 #define R_SPARC_5 44 #define R_SPARC_6 45 #define R_SPARC_DISP64 46 #define R_SPARC_PLT64 47 #define R_SPARC_HIX22 48 #define R_SPARC_LOX10 49 #define R_SPARC_H44 50 #define R_SPARC_M44 51 #define R_SPARC_L44 52 #define R_SPARC_REGISTER 53 #define R_SPARC_UA64 54 #define R_SPARC_UA16 55 #define R_SPARC_TLS_GD_HI22 56 #define R_SPARC_TLS_GD_LO10 57 #define R_SPARC_TLS_GD_ADD 58 #define R_SPARC_TLS_GD_CALL 59 #define R_SPARC_TLS_LDM_HI22 60 #define R_SPARC_TLS_LDM_LO10 61 #define R_SPARC_TLS_LDM_ADD 62 #define R_SPARC_TLS_LDM_CALL 63 #define R_SPARC_TLS_LDO_HIX22 64 #define R_SPARC_TLS_LDO_LOX10 65 #define R_SPARC_TLS_LDO_ADD 66 #define R_SPARC_TLS_IE_HI22 67 #define R_SPARC_TLS_IE_LO10 68 #define R_SPARC_TLS_IE_LD 69 #define R_SPARC_TLS_IE_LDX 70 #define R_SPARC_TLS_IE_ADD 71 #define R_SPARC_TLS_LE_HIX22 72 #define R_SPARC_TLS_LE_LOX10 73 #define R_SPARC_TLS_DTPMOD32 74 #define R_SPARC_TLS_DTPMOD64 75 #define R_SPARC_TLS_DTPOFF32 76 #define R_SPARC_TLS_DTPOFF64 77 #define R_SPARC_TLS_TPOFF32 78 #define R_SPARC_TLS_TPOFF64 79 #define R_X86_64_NONE 0 /* No relocation. */ #define R_X86_64_64 1 /* Add 64 bit symbol value. */ #define R_X86_64_PC32 2 /* PC-relative 32 bit signed sym value. */ #define R_X86_64_GOT32 3 /* PC-relative 32 bit GOT offset. */ #define R_X86_64_PLT32 4 /* PC-relative 32 bit PLT offset. */ #define R_X86_64_COPY 5 /* Copy data from shared object. */ #define R_X86_64_GLOB_DAT 6 /* Set GOT entry to data address. */ #define R_X86_64_JMP_SLOT 7 /* Set GOT entry to code address. */ #define R_X86_64_RELATIVE 8 /* Add load address of shared object. */ #define R_X86_64_GOTPCREL 9 /* Add 32 bit signed pcrel offset to GOT. */ #define R_X86_64_32 10 /* Add 32 bit zero extended symbol value */ #define R_X86_64_32S 11 /* Add 32 bit sign extended symbol value */ #define R_X86_64_16 12 /* Add 16 bit zero extended symbol value */ #define R_X86_64_PC16 13 /* Add 16 bit signed extended pc relative symbol value */ #define R_X86_64_8 14 /* Add 8 bit zero extended symbol value */ #define R_X86_64_PC8 15 /* Add 8 bit signed extended pc relative symbol value */ #define R_X86_64_DTPMOD64 16 /* ID of module containing symbol */ #define R_X86_64_DTPOFF64 17 /* Offset in TLS block */ #define R_X86_64_TPOFF64 18 /* Offset in static TLS block */ #define R_X86_64_TLSGD 19 /* PC relative offset to GD GOT entry */ #define R_X86_64_TLSLD 20 /* PC relative offset to LD GOT entry */ #define R_X86_64_DTPOFF32 21 /* Offset in TLS block */ #define R_X86_64_GOTTPOFF 22 /* PC relative offset to IE GOT entry */ #define R_X86_64_TPOFF32 23 /* Offset in static TLS block */ #define R_X86_64_PC64 24 /* PC-relative 64 bit signed sym value. */ #define R_X86_64_GOTOFF64 25 #define R_X86_64_GOTPC32 26 #define R_X86_64_GOT64 27 #define R_X86_64_GOTPCREL64 28 #define R_X86_64_GOTPC64 29 #define R_X86_64_GOTPLT64 30 #define R_X86_64_PLTOFF64 31 #define R_X86_64_SIZE32 32 #define R_X86_64_SIZE64 33 #define R_X86_64_GOTPC32_TLSDESC 34 #define R_X86_64_TLSDESC_CALL 35 #define R_X86_64_TLSDESC 36 #define R_X86_64_IRELATIVE 37 #define ELF_BSDF_SIGFASTBLK 0x0001 /* Kernel supports fast sigblock */ #endif /* !_SYS_ELF_COMMON_H_ */ Index: head/sys/sys/sysent.h =================================================================== --- head/sys/sys/sysent.h (revision 366621) +++ head/sys/sys/sysent.h (revision 366622) @@ -1,329 +1,331 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1988, 1991 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SYSENT_H_ #define _SYS_SYSENT_H_ #include struct rlimit; struct sysent; struct thread; struct ksiginfo; struct syscall_args; enum systrace_probe_t { SYSTRACE_ENTRY, SYSTRACE_RETURN, }; typedef int sy_call_t(struct thread *, void *); typedef void (*systrace_probe_func_t)(struct syscall_args *, enum systrace_probe_t, int); typedef void (*systrace_args_func_t)(int, void *, uint64_t *, int *); #ifdef _KERNEL extern systrace_probe_func_t systrace_probe_func; extern bool systrace_enabled; #ifdef KDTRACE_HOOKS #define SYSTRACE_ENABLED() (systrace_enabled) #else #define SYSTRACE_ENABLED() (0) #endif #endif /* _KERNEL */ struct sysent { /* system call table */ sy_call_t *sy_call; /* implementing function */ systrace_args_func_t sy_systrace_args_func; /* optional argument conversion function. */ u_int8_t sy_narg; /* number of arguments */ u_int8_t sy_flags; /* General flags for system calls. */ au_event_t sy_auevent; /* audit event associated with syscall */ u_int32_t sy_entry; /* DTrace entry ID for systrace. */ u_int32_t sy_return; /* DTrace return ID for systrace. */ u_int32_t sy_thrcnt; }; /* * A system call is permitted in capability mode. */ #define SYF_CAPENABLED 0x00000001 #define SY_THR_FLAGMASK 0x7 #define SY_THR_STATIC 0x1 #define SY_THR_DRAINING 0x2 #define SY_THR_ABSENT 0x4 #define SY_THR_INCR 0x8 #ifdef KLD_MODULE #define SY_THR_STATIC_KLD 0 #else #define SY_THR_STATIC_KLD SY_THR_STATIC #endif struct image_params; struct proc; struct __sigset; struct trapframe; struct vnode; struct sysentvec { int sv_size; /* number of entries */ struct sysent *sv_table; /* pointer to sysent */ int (*sv_transtrap)(int, int); /* translate trap-to-signal mapping */ int (*sv_fixup)(uintptr_t *, struct image_params *); /* stack fixup function */ void (*sv_sendsig)(void (*)(int), struct ksiginfo *, struct __sigset *); /* send signal */ char *sv_sigcode; /* start of sigtramp code */ int *sv_szsigcode; /* size of sigtramp code */ char *sv_name; /* name of binary type */ int (*sv_coredump)(struct thread *, struct vnode *, off_t, int); /* function to dump core, or NULL */ int (*sv_imgact_try)(struct image_params *); void (*sv_stackgap)(struct image_params *, uintptr_t *); int (*sv_copyout_auxargs)(struct image_params *, uintptr_t); int sv_minsigstksz; /* minimum signal stack size */ vm_offset_t sv_minuser; /* VM_MIN_ADDRESS */ vm_offset_t sv_maxuser; /* VM_MAXUSER_ADDRESS */ vm_offset_t sv_usrstack; /* USRSTACK */ vm_offset_t sv_psstrings; /* PS_STRINGS */ int sv_stackprot; /* vm protection for stack */ int (*sv_copyout_strings)(struct image_params *, uintptr_t *); void (*sv_setregs)(struct thread *, struct image_params *, uintptr_t); void (*sv_fixlimit)(struct rlimit *, int); u_long *sv_maxssiz; u_int sv_flags; void (*sv_set_syscall_retval)(struct thread *, int); int (*sv_fetch_syscall_args)(struct thread *); const char **sv_syscallnames; vm_offset_t sv_timekeep_base; vm_offset_t sv_shared_page_base; vm_offset_t sv_shared_page_len; vm_offset_t sv_sigcode_base; void *sv_shared_page_obj; void (*sv_schedtail)(struct thread *); void (*sv_thread_detach)(struct thread *); int (*sv_trap)(struct thread *); u_long *sv_hwcap; /* Value passed in AT_HWCAP. */ u_long *sv_hwcap2; /* Value passed in AT_HWCAP2. */ const char *(*sv_machine_arch)(struct proc *); + vm_offset_t sv_fxrng_gen_base; }; #define SV_ILP32 0x000100 /* 32-bit executable. */ #define SV_LP64 0x000200 /* 64-bit executable. */ #define SV_IA32 0x004000 /* Intel 32-bit executable. */ #define SV_AOUT 0x008000 /* a.out executable. */ #define SV_SHP 0x010000 /* Shared page. */ #define SV_CAPSICUM 0x020000 /* Force cap_enter() on startup. */ #define SV_TIMEKEEP 0x040000 /* Shared page timehands. */ #define SV_ASLR 0x080000 /* ASLR allowed. */ +#define SV_RNG_SEED_VER 0x100000 /* random(4) reseed generation. */ #define SV_ABI_MASK 0xff #define SV_PROC_FLAG(p, x) ((p)->p_sysent->sv_flags & (x)) #define SV_PROC_ABI(p) ((p)->p_sysent->sv_flags & SV_ABI_MASK) #define SV_CURPROC_FLAG(x) SV_PROC_FLAG(curproc, x) #define SV_CURPROC_ABI() SV_PROC_ABI(curproc) /* same as ELFOSABI_XXX, to prevent header pollution */ #define SV_ABI_LINUX 3 #define SV_ABI_FREEBSD 9 #define SV_ABI_CLOUDABI 17 #define SV_ABI_UNDEF 255 #ifdef _KERNEL extern struct sysentvec aout_sysvec; extern struct sysent sysent[]; extern const char *syscallnames[]; #define NO_SYSCALL (-1) struct module; struct syscall_module_data { int (*chainevh)(struct module *, int, void *); /* next handler */ void *chainarg; /* arg for next event handler */ int *offset; /* offset into sysent */ struct sysent *new_sysent; /* new sysent */ struct sysent old_sysent; /* old sysent */ int flags; /* flags for syscall_register */ }; /* separate initialization vector so it can be used in a substructure */ #define SYSENT_INIT_VALS(_syscallname) { \ .sy_narg = (sizeof(struct _syscallname ## _args ) \ / sizeof(register_t)), \ .sy_call = (sy_call_t *)&sys_##_syscallname, \ .sy_auevent = SYS_AUE_##_syscallname, \ .sy_systrace_args_func = NULL, \ .sy_entry = 0, \ .sy_return = 0, \ .sy_flags = 0, \ .sy_thrcnt = 0 \ } #define MAKE_SYSENT(syscallname) \ static struct sysent syscallname##_sysent = SYSENT_INIT_VALS(syscallname); #define MAKE_SYSENT_COMPAT(syscallname) \ static struct sysent syscallname##_sysent = { \ (sizeof(struct syscallname ## _args ) \ / sizeof(register_t)), \ (sy_call_t *)& syscallname, \ SYS_AUE_##syscallname \ } #define SYSCALL_MODULE(name, offset, new_sysent, evh, arg) \ static struct syscall_module_data name##_syscall_mod = { \ evh, arg, offset, new_sysent, { 0, NULL, AUE_NULL } \ }; \ \ static moduledata_t name##_mod = { \ "sys/" #name, \ syscall_module_handler, \ &name##_syscall_mod \ }; \ DECLARE_MODULE(name, name##_mod, SI_SUB_SYSCALLS, SI_ORDER_MIDDLE) #define SYSCALL_MODULE_HELPER(syscallname) \ static int syscallname##_syscall = SYS_##syscallname; \ MAKE_SYSENT(syscallname); \ SYSCALL_MODULE(syscallname, \ & syscallname##_syscall, & syscallname##_sysent, \ NULL, NULL) #define SYSCALL_MODULE_PRESENT(syscallname) \ (sysent[SYS_##syscallname].sy_call != (sy_call_t *)lkmnosys && \ sysent[SYS_##syscallname].sy_call != (sy_call_t *)lkmressys) /* * Syscall registration helpers with resource allocation handling. */ struct syscall_helper_data { struct sysent new_sysent; struct sysent old_sysent; int syscall_no; int registered; }; #define SYSCALL_INIT_HELPER_F(syscallname, flags) { \ .new_sysent = { \ .sy_narg = (sizeof(struct syscallname ## _args ) \ / sizeof(register_t)), \ .sy_call = (sy_call_t *)& sys_ ## syscallname, \ .sy_auevent = SYS_AUE_##syscallname, \ .sy_flags = (flags) \ }, \ .syscall_no = SYS_##syscallname \ } #define SYSCALL_INIT_HELPER_COMPAT_F(syscallname, flags) { \ .new_sysent = { \ .sy_narg = (sizeof(struct syscallname ## _args ) \ / sizeof(register_t)), \ .sy_call = (sy_call_t *)& syscallname, \ .sy_auevent = SYS_AUE_##syscallname, \ .sy_flags = (flags) \ }, \ .syscall_no = SYS_##syscallname \ } #define SYSCALL_INIT_HELPER(syscallname) \ SYSCALL_INIT_HELPER_F(syscallname, 0) #define SYSCALL_INIT_HELPER_COMPAT(syscallname) \ SYSCALL_INIT_HELPER_COMPAT_F(syscallname, 0) #define SYSCALL_INIT_LAST { \ .syscall_no = NO_SYSCALL \ } int syscall_module_handler(struct module *mod, int what, void *arg); int syscall_helper_register(struct syscall_helper_data *sd, int flags); int syscall_helper_unregister(struct syscall_helper_data *sd); /* Implementation, exposed for COMPAT code */ int kern_syscall_register(struct sysent *sysents, int *offset, struct sysent *new_sysent, struct sysent *old_sysent, int flags); int kern_syscall_deregister(struct sysent *sysents, int offset, const struct sysent *old_sysent); int kern_syscall_module_handler(struct sysent *sysents, struct module *mod, int what, void *arg); int kern_syscall_helper_register(struct sysent *sysents, struct syscall_helper_data *sd, int flags); int kern_syscall_helper_unregister(struct sysent *sysents, struct syscall_helper_data *sd); struct proc; const char *syscallname(struct proc *p, u_int code); /* Special purpose system call functions. */ struct nosys_args; int lkmnosys(struct thread *, struct nosys_args *); int lkmressys(struct thread *, struct nosys_args *); int _syscall_thread_enter(struct thread *td, struct sysent *se); void _syscall_thread_exit(struct thread *td, struct sysent *se); static inline int syscall_thread_enter(struct thread *td, struct sysent *se) { if (__predict_true((se->sy_thrcnt & SY_THR_STATIC) != 0)) return (0); return (_syscall_thread_enter(td, se)); } static inline void syscall_thread_exit(struct thread *td, struct sysent *se) { if (__predict_true((se->sy_thrcnt & SY_THR_STATIC) != 0)) return; _syscall_thread_exit(td, se); } int shared_page_alloc(int size, int align); int shared_page_fill(int size, int align, const void *data); void shared_page_write(int base, int size, const void *data); void exec_sysvec_init(void *param); void exec_sysvec_init_secondary(struct sysentvec *sv, struct sysentvec *sv2); void exec_inittk(void); #define INIT_SYSENTVEC(name, sv) \ SYSINIT(name, SI_SUB_EXEC, SI_ORDER_ANY, \ (sysinit_cfunc_t)exec_sysvec_init, sv); #endif /* _KERNEL */ #endif /* !_SYS_SYSENT_H_ */ Index: head/sys/sys/vdso.h =================================================================== --- head/sys/sys/vdso.h (revision 366621) +++ head/sys/sys/vdso.h (revision 366622) @@ -1,144 +1,159 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 2012 Konstantin Belousov . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_VDSO_H #define _SYS_VDSO_H #include #include struct vdso_timehands { uint32_t th_algo; uint32_t th_gen; uint64_t th_scale; uint32_t th_offset_count; uint32_t th_counter_mask; struct bintime th_offset; struct bintime th_boottime; VDSO_TIMEHANDS_MD }; struct vdso_timekeep { uint32_t tk_ver; uint32_t tk_enabled; uint32_t tk_current; struct vdso_timehands tk_th[]; }; #define VDSO_TK_CURRENT_BUSY 0xffffffff #define VDSO_TK_VER_1 0x1 #define VDSO_TK_VER_CURR VDSO_TK_VER_1 #define VDSO_TH_ALGO_1 0x1 #define VDSO_TH_ALGO_2 0x2 #define VDSO_TH_ALGO_3 0x3 #define VDSO_TH_ALGO_4 0x4 +struct vdso_fxrng_generation_1 { + uint32_t fx_vdso_version; /* 1 */ + uint32_t fx_generation32; + uint64_t _fx_reserved; +}; +_Static_assert(sizeof(struct vdso_fxrng_generation_1) == 16, ""); +#define vdso_fxrng_generation vdso_fxrng_generation_1 + +/* fx_vdso_version values: */ +#define VDSO_FXRNG_VER_1 0x1 +#define VDSO_FXRNG_VER_CURR VDSO_FXRNG_VER_1 + #ifndef _KERNEL struct timespec; struct timeval; struct timezone; int __vdso_clock_gettime(clockid_t clock_id, struct timespec *ts); int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz); int __vdso_gettc(const struct vdso_timehands *vdso_th, u_int *tc); int __vdso_gettimekeep(struct vdso_timekeep **tk); #endif #ifdef _KERNEL struct timecounter; struct vdso_sv_tk { int sv_timekeep_off; int sv_timekeep_curr; uint32_t sv_timekeep_gen; }; +#ifdef RANDOM_FENESTRASX +void fxrng_push_seed_generation(uint64_t gen); +#endif void timekeep_push_vdso(void); uint32_t tc_fill_vdso_timehands(struct vdso_timehands *vdso_th); /* * The cpu_fill_vdso_timehands() function should fill MD-part of the * struct vdso_timehands, which is both machine- and * timecounter-depended. The return value should be 1 if fast * userspace timecounter is enabled by hardware, and 0 otherwise. The * global sysctl enable override is handled by machine-independed code * after cpu_fill_vdso_timehands() call is made. */ uint32_t cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc); struct vdso_sv_tk *alloc_sv_tk(void); #define VDSO_TH_NUM 4 #ifdef COMPAT_FREEBSD32 /* * i386 is the only arch with a 32 bit time_t. */ struct bintime32 { #if defined(__amd64__) uint32_t sec; #else uint64_t sec; #endif uint32_t frac[2]; }; struct vdso_timehands32 { uint32_t th_algo; uint32_t th_gen; uint32_t th_scale[2]; uint32_t th_offset_count; uint32_t th_counter_mask; struct bintime32 th_offset; struct bintime32 th_boottime; VDSO_TIMEHANDS_MD32 }; struct vdso_timekeep32 { uint32_t tk_ver; uint32_t tk_enabled; uint32_t tk_current; struct vdso_timehands32 tk_th[]; }; uint32_t tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32); uint32_t cpu_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32, struct timecounter *tc); struct vdso_sv_tk *alloc_sv_tk_compat32(void); #endif #endif #endif