Index: head/sys/contrib/dev/acpica/changes.txt =================================================================== --- head/sys/contrib/dev/acpica/changes.txt (revision 366561) +++ head/sys/contrib/dev/acpica/changes.txt (revision 366562) @@ -1,19127 +1,19201 @@ ---------------------------------------- +25 September 2020. Summary of changes for version 20200925: + +This release is available at https://acpica.org/downloads + + +1) ACPICA kernel-resident subsystem: + +Preserve memory opregion mappings. The ACPICA's strategy with respect to +the handling of memory mappings associated with memory operation regions +is to avoid mapping the entire region at once which may be problematic at +least in principle (for example, it may lead to conflicts with +overlapping mappings having different attributes created by drivers). It +may also be wasteful, because memory opregions on some systems take up +vastchunks of address space while the fields in those regions actually +accessed by AML are sparsely distributed. + +For this reason, a one-page "window" is mapped for a given opregion on +the first memory access through it and if that "window" does not cover an +address range accessed through that opregion subsequently, it is unmapped +and a new "window" is mapped to replace it. Next, if the new "window" is +not sufficient to access memory through the opregion in question in the +future, it will be replaced with yet another "window" and so on. That +may lead to a suboptimal sequence of memory mapping and unmapping +operations, for example if two fields in one opregion separated from each +other by a sufficiently wide chunk of unused address space are accessed +in an alternating pattern. + +Added support for 64 bit risc-v compilation. Useful for acpica tools and +incorporating ACPICA into the Firmware Test Suite. Colin Ian King +. + +Added support for SMBus predefined names (from SMBus Control Method +Interface Specification, Version 1.0, December 10, 1999. New predefined +names: + _SBA + _SBI + _SBR + _SBT + _SBW + +AML Disassembler: Added a new command, "All option). Includes fixes to prevent AE_ALREADY_EXISTS errors, several seg faults, and enhancements to line parsing within the init file. In addition, each object found in the init file and it's new value is displayed, as well as any such entries that do not have a corresponding name in the namespace. For reference, the syntax for the various supported data types are presented below: PCHG 0x777788889999BBBB // Integer \DEV1.STR1 "XYZ" // String BUF1 (88 99 AA) // Buffer PKG1 [0x1111 0x2222] // Package \BF1 0x7980 // BufferField RCRV 0x0123456789ABCDEF // Field Unit iASL: Added a custom iASL macro __EXPECT__(iASL-Error-Code). This macro can be used anywhere in a given ASL file to configure iASL to expect an iASL compiler error code on the line where this macro was placed. If the error code does not exist, an error is generated. This is intended to be used for ACPICA's ASL test suite, but can be used by ASL developers as well. iASL: table compiler: Implemented IVRS IVHD type 11h parsing. The AMD IVRS table parsing supported only IVHD type 10h structures. Parsing an IVHD type 11h caused the iasl to report unknown subtable type. Add necessary structure definition for IVHD type 11h and apply correct parsing method based on subtable type. Micha? ?ygowski. iASL: table compiler: Fixed IVRS table IVHD type 10h reserved field name According to AMD IOMMU Specification Revision 3.05 the reserved field should be IOMMU Feature Reporting. Change the name of the field to the correct one. Micha? ?ygowski. acpiexec: removed redeclaration of AcpiGbl_DbOpt_NoRegionSupport. Patch based on suggestions by David Seifert and Benjamin Berg. iASL: table compiler: removed an unused variable (DtCompilerParserResult) causing linking errors. Patch based on suggestions by David Seifert and Benjamin Berg. iASL: table compiler: make LexBuffer static to avoid linking errors in newer compilers. Patch based on suggestions by David Seifert and Benjamin Berg. iASL: fixed type matching between External and Named objects. External object types can only be expressed with ACPI object type values that are defined in the ACPI spec. However, iASL uses ACPI object type values that are local to ACPICA in addition to the values defined in the ACPI spec. This change implements type matching to map some object type values specific to ACPICA to ones that are defined in the ACPI spec. iASL: Dropped the type mismatch compiler error that can arise from External declarations to a warning. This warning can occur when there is a type difference between the external declaration and the actual object declaration (when compiling multiple files/modules simultaneously). iASL: removed an incorrect error message regarding externals. This change removes an incorrect error that is emitted when a duplicate external declaration does not contain a type that opens a scope. This is incorrect because the duplicate external with conflicting types are already caught by iASL and it doesn't make any sense to enforce what this conflicting type should be. AcpiXtract: fix AX_IS_TABLE_BLOCK_HEADER macro. This macro needs to be surrounded by parens. Otherwise, a logical statement that applies a logical not operator to this macro could result in a computation that applies the operator to the left side of the logical and but not the right. Reported-by: John Levon Fixed a problem with the local version of sprint(): On 32-bit, the provided sprintf() is non-functional: with a size of ACPI_UINT32_MAX, String + Size will wrap, meaning End < Start, and AcpiUtBoundStringOutput() will never output anything as a result. The symptom seen of this was acpixtract failing to output anything -- with a custom build that included utprint.c. Signed-off-by: John Levon iASL: Changed the "PlatformCommChannel" ASL keyword to "PCC", as per the ACPI specification. ---------------------------------------- 14 February 2020. Summary of changes for version 20200214: 1) ACPICA kernel-resident subsystem: Enable sleep button on ACPI legacy wake: Hibernation (S4) is triggered in a guest when it receives a sleep trigger from the hypervisor. When the guest resumes from this power state, it does not see the SleepEnabled bit. In other words, the sleepHibernation (S4) is triggered in a guest when it receives a sleep trigger from the hypervisor. When the guest resumes from this power state, it does not see the SleepEnabled bit. In other words, the sleep button is not enabled on waking from an S4 state. This causes subsequent invocation of sleep state to fail since the guest.button is not enabled on waking from an S4 state. This causes subsequent invocation of sleep state to fail in the guest. Fix this problem by enabling the sleep button in ACPI legacy wake. From Anchal Agarwal . Implemented a new external interface, AcpiAnyGpeStatusSet (). To be used for checking the status bits of all enabled GPEs in one go. It is needed to distinguish spurious SCIs from genuine ones when deciding whether or not to wake up the system from suspend-to-idle. Generic Makefiles: replace HOST name with ACPI_HOST: Some machines may be using HOST in their environment to represent the host name for their machines. Avoid this problem by renaming this variable from HOST to ACPI_HOST. MSVC 2017 project files: Enable multiprocessor generation to improve build performance. Added a macro to get the byte width of a Generic Address structure. New ACPI_ACCESS_BYTE_WIDTH is in addition to the existing ACPI_ACCESS_BIT_WIDTH. From Mika Westerberg. 2) iASL Compiler/Disassembler and ACPICA tools: iASL: Implemented full support for the (optional, rarely used) ReturnType and ParameterTypesList for the Method, Function, and External operators. For Method declarations, the number of individual ParameterTypes must match the declaration of the number of arguments (NumArgs). This also Fixes a problem with the External operator where extra/extraneous bytes were emitted in the AML code if the optional ReturnType/ParameterTypes were specified for a MethodObj declaration. New error message: 1) Method NumArgs count does not match length of ParameterTypes list iASL: Implemented detection of type mismatches between External declarations and named object declarations. Also, detect type mismatches between multiple External declarations of the same Name. New error messages: 1) Type mismatch between external declaration and actual object declaration detected 2) Type mismatch between multiple external declarations detected iASL: Implemented new error messages for External operators that specify a ReturnType and/or ParameterTypesList for any object type other than control methods (MethodObj). New error messages: 1) Return type is only allowed for Externals declared as MethodObj 2) Parameter type is only allowed for Externals declared as MethodObj iASL: Implemented two new remark/warning messages for ASL code that creates named objects from within a control method. This is very inefficient since the named object must be created and deleted each time the method is executed. New messages: 1) Creation of named objects within a method is highly inefficient, use globals or method local variables instead (remark) 2) Static OperationRegion should be declared outside control method (warning) iASL: Improved illegal forward reference detection by adding support to detect forward-reference method invocations. iASL: Detect and issue an error message for NameStrings that contain too many individual NameSegs (>255). This is an AML limitation that is defined in the ACPI specification. New message: 1) NameString contains too many NameSegs (>255) acpidump: windows: use GetSystemFirmwareTable API for all tables except SSDT. By using this API, acpidump is able to get all tables in the XSDT iASL: Removed unused parser file and updated msvc2017 project files. Removed the obsolete AslCompiler.y from the repository. iASL: msvc2017: Fixed macros in the file dependency list to prevent unnecessary rebuilds. Replace %(Directory) with %(RelativeDir). Disassembler: Prevent spilling error messages to the output file. All errors are directed to the console instead. These error messages prevented re-compilation of the resulting disassembled ASL output file (.DSL). ---------------------------------------- 10 January 2020. Summary of changes for version 20200110: 1) ACPICA kernel-resident subsystem: Updated all copyrights to 2020. This affects all ACPICA source code modules. 2) iASL Compiler/Disassembler and ACPICA tools: ASL test suite (ASLTS): Updated all copyrights to 2020. Tools and utilities: Updated all signon copyrights to 2020. iASL: fix forward reference analysis for field declarations. Fixes forward reference analysis for field declarations by searching the parent scope for the named object when the object is not present in the current scope. iASL: Improved the error output for ALREADY_EXISTS errors. Now, the full pathname of the name that already exists is printed. iASL: Enhance duplicate Case() detection for buffers. Add check for buffers with no initializer list (these buffers will be filled with zeros at runtime.) ---------------------------------------- 13 December 2019. Summary of changes for version 20191213: 1) ACPICA kernel-resident subsystem: Return a Buffer object for all fields created via the CreateField operator. Previously, an Integer would be returned if the size of the field was less than or equal to the current size of an Integer. Although this goes against the ACPI specification, it provides compatibility with other ACPI implementations. Also updated the ASLTS test suite to reflect this new behavior. 2) iASL Compiler/Disassembler and ACPICA tools: iASL: Implemented detection of (and throw an error for) duplicate values for Case statements within a single Switch statement. Duplicate Integers, Strings, and Buffers are supported. iASL: Fix error logging issue during multiple file compilation -- Switch to the correct input file during error node creation. iASL: For duplicate named object creation, now emit an error instead of a warning - since this will cause a runtime error. AcpiSrc: Add unix line-ending support for non-Windows builds. iASL: Add an error condition for an attempt to create a NameString with > 255 NameSegs (the max allowable via the AML definition). ---------------------------------------- 18 October 2019. Summary of changes for version 20191018: 1) ACPICA kernel-resident subsystem: Debugger: added a new command: ?Fields [address space ID]?. This command dumps the contents of all field units that are defined within the namespace with a particular address space ID. Modified the external interface AcpiLoadTable() to return a table index. This table index can be used for unloading a table for debugging. ACPI_STATUS AcpiLoadTable ( ACPI_TABLE_HEADER *Table, UINT32 *TableIndex)) Implemented a new external interface: AcpiUnloadTable() This new function takes a table index as an argument and unloads the table. Useful for debugging only. ACPI_STATUS AcpiUnloadTable ( UINT32 TableIndex)) Ported the AcpiNames utility to use the new table initialization sequence. The utility was broken before this change. Also, it was required to include most of the AML interpreter into the utility in order to process table initialization (module-level code execution.) Update for results from running Clang V8.0.1. This fixes all "dead assignment" warnings. There are still several "Dereference of NULL pointer" warnings, but these have been found to be false positive warnings. 2) iASL Compiler/Disassembler and ACPICA tools: iASL: numerous table compiler changes to ensure that the usage of yacc/bison syntax is POSIX-compliant. iASL/disassembler: several simple bug fixes in the data table disassembler. Acpiexec: expanded the initialization file (the -fi option) to initialize strings, buffers, packages, and field units. ---------------------------------------- 16 August 2019. Summary of changes for version 20190816: This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Modified the OwnerId mechanism to allow for more Owner Ids. The previous limit was 256 Ids, now it is 4096 Ids. This prevents OWNER_ID_LIMIT exceptions on machines with a large number of initialization threads, many CPU cores and nested initialization control methods. Introduced acpi_dispatch_gpe() as a wrapper around AcpiEvDetectGpe() for checking if the given GPE (as represented by a GPE device handle and a GPE number) is currently active and dispatching it (if that's the case) outside of interrupt context. Table load: exit the interpreter before initializing objects within the new table This prevents re-acquiring the interpreter lock when loading tables Added the "Windows 2019" string to the _OSI support (version 1903). Jung- uk Kim Macros: removed pointer math on a null pointer. Causes warnings on some compilers and/or tools. Changed ACPI_TO_POINTER to use ACPI_CAST_PTR instead of using arithmetic. Fully deployed the ACPI_PRINTF_LIKE macro. This macro was not being used across all "printf-like" internal functions. Also, cleanup all calls to such functions (both in 32-bit mode and 64-bit mode) now that they are analyzed by the gcc compiler via ACPI_PRINTF_LIKE. 2) iASL Compiler/Disassembler and ACPICA tools: iASL: implemented a new data table compiler flex/bison front-end. This change is internal and is not intended to result in changes to the compiled code. This new compiler front-end can be invoked using the -tp option for now, until the old mechanism is removed. ASLTS: Implemented a new data table compiler test suite. This test suite generates all table templates and compile/disassemble/re-compile/binary- compare each file. iASL: return -1 if AML files were not generated due to compiler errors iASL: added a warning on use of the now-legacy ASL Processor () keyword. iASL: added an error on _UID object declaration that returns a String within a Processor () declaration. A _UID for a processor must be an Integer. iASL: added a null terminator to name strings that consist only of multiple parent prefixes (^) iASL: added support to compile both ASL and data table files in a single command. Updated the tool generation project files that were recently migrated to MSVC 2017 to eliminate all new warnings. The new project files appear in the directory \acpica\generate\msvc2017. This change effectively deprecates the older project files in \acpica\generate\msvc9. ---------------------------------------- 03 July 2019. Summary of changes for version 20190703: 1) ACPICA kernel-resident subsystem: Remove legacy module-level support code. There were still some remnants of the legacy module-level code executions. Since we no longer support this option, this is essentially dead code and has been removed from the ACPICA source. iASL: ensure that _WAK, _PTS, _TTS, and _Sx are declared only at the root scope. If these named objects are declared outside the root scope, they will not be invoked by any host Operating System. Clear status of GPEs on first direct enable. ACPI GPEs (other than the EC one) can be enabled in two situations. First, the GPEs with existing _Lxx and _Exx methods are enabled implicitly by ACPICA during system initialization. Second, the GPEs without these methods (like GPEs listed by _PRW objects for wakeup devices) need to be enabled directly by the code that is going to use them (e.g. ACPI power management or device drivers). In the former case, if the status of a given GPE is set to start with, its handler method (either _Lxx or _Exx) needs to be invoked to take care of the events (possibly) signaled before the GPE was enabled. In the latter case, however, the first caller of AcpiEnableGpe() for a given GPE should not be expected to care about any events that might be signaled through it earlier. In that case, it is better to clear the status of the GPE before enabling it, to prevent stale events from triggering unwanted actions (like spurious system resume, for example). For this reason, modify AcpiEvAddGpeReference() to take an additional boolean argument indicating whether or not the GPE status needs to be cleared when its reference counter changes from zero to one and make AcpiEnableGpe() pass TRUE to it through that new argument. 2) iASL Compiler/Disassembler and ACPICA tools: The tool generation process has been migrated to MSVC 2017, and all project files have been upgraded. The new project files appear in the directory \acpica\generate\msvc2017. This change effectively deprecates the older project files in \acpica\generate\msvc9. iASL: ensure that _WAK, _PTS, _TTS, and _Sx are declared only at the root scope. If these named objects are declared outside the root scope, they will not be invoked by any host Operating System ---------------------------------------- 09 May 2019. Summary of changes for version 20190509: 1) ACPICA kernel-resident subsystem: Revert commit 6c43e1a ("ACPICA: Clear status of GPEs before enabling them") that causes problems with Thunderbolt controllers to occur if a dock device is connected at init time (the xhci_hcd and thunderbolt modules crash which prevents peripherals connected through them from working). Commit 6c43e1a effectively causes commit ecc1165b8b74 ("ACPICA: Dispatch active GPEs at init time") to get undone, so the problem addressed by commit ecc1165b8b74 appears again as a result of it. 2) iASL Compiler/Disassembler and ACPICA tools: Reverted iASL: Additional forward reference detection. This change reverts forward reference detection for field declarations. The feature unintentionally emitted AML bytecode with incorrect package lengths for some ASL code related to Fields and OperationRegions. This malformed AML can cause systems to crash during boot. The malformed AML bytecode is emitted in iASL version 20190329 and 20190405. iASL: improve forward reference detection. This change improves forward reference detection for named objects inside of scopes. If a parse object has the OP_NOT_FOUND_DURING_LOAD set, it means that Op is a reference to a named object that is declared later in the AML bytecode. This is allowed if the reference is inside of a method and the declaration is outside of a method like so: DefinitionBlock(...) { Method (TEST) { Return (NUM0) } Name (NUM0,0) } However, if the declaration and reference are both in the same method or outside any methods, this is a forward reference and should be marked as an error because it would result in runtime errors. DefinitionBlock(...) { Name (BUFF, Buffer (NUM0) {}) // Forward reference Name (NUM0, 0x0) Method (TEST) { Local0 = NUM1 Name (NUM1, 0x1) // Forward reference return (Local0) } } iASL: Implemented additional buffer overflow analysis for BufferField declarations. Check if a buffer index argument to a create buffer field operation is beyond the end of the target buffer. This affects these AML operators: AML_CREATE_FIELD_OP AML_CREATE_BIT_FIELD_OP AML_CREATE_BYTE_FIELD_OP AML_CREATE_WORD_FIELD_OP AML_CREATE_DWORD_FIELD_OP AML_CREATE_QWORD_FIELD_OP There are three conditions that must be satisfied in order to allow this validation at compile time: 1) The length of the target buffer must be an integer constant 2) The index specified in the create* must be an integer constant 3) For CreateField, the bit length argument must be non-zero. Example: Name (BUF1, Buffer() {1,2}) CreateField (BUF1, 7, 9, CF03) // 3: ERR dsdt.asl 14: CreateField (BUF1, 7, 9, CF03) // 3: ERR Error 6165 - ^ Buffer index beyond end of target buffer ---------------------------------------- 05 April 2019. Summary of changes for version 20190405: 1) ACPICA kernel-resident subsystem: Event Manager: History: Commit 18996f2db918 ("ACPICA: Events: Stop unconditionally clearing ACPI IRQs during suspend/resume") was added earlier to stop clearing of event status bits unconditionally on suspend and resume paths. Though this change fixed an issue on suspend path, it introduced regressions on several resume paths. In the case of S0ix, events are enabled as part of device suspend path. If status bits for the events are set when they are enabled, it could result in premature wake from S0ix. If status is cleared for any event that is being enabled so that any stale events are cleared out. In case of S0ix, events are enabled as part of device suspend path. If status bits for the events are set when they are enabled, it could result in premature wake from S0ix. This change ensures that status is cleared for any event that is being enabled so that any stale events are cleared out. 2) iASL Compiler/Disassembler and ACPICA tools: iASL: Implemented an enhanced multiple file compilation that combines named objects from all input files to a single namespace. With this feature, any unresolved external declarations as well as duplicate named object declarations can be detected during compilation rather than generating errors much later at runtime. The following commands are examples that utilize this feature: iasl dsdt.asl ssdt.asl iasl dsdt.asl ssdt1.asl ssdt2.asl iasl dsdt.asl ssdt*.asl ---------------------------------------- 29 March 2019. Summary of changes for version 20190329: 1) ACPICA kernel-resident subsystem: Namespace support: Remove the address nodes from global list after method termination. The global address list contains pointers to namespace nodes that represent Operation Regions. This change properly removes Operation Region namespace nodes that are declared dynamically during method execution. Linux: Use a different debug default than ACPICA. There was a divergence between Linux and the ACPICA codebases. In order to resolve this divergence, Linux now declares its own debug default in aclinux.h Renamed some internal macros to improve code understanding and maintenance. The macros below all operate on single 4-character ACPI NameSegs, not generic strings (old -> new): ACPI_NAME_SIZE -> ACPI_NAMESEG_SIZE ACPI_COMPARE_NAME -> ACPI_COMPARE_NAMESEG ACPI_MOVE_NAME -> ACPI_COPY_NAMESEG Fix for missing comma in array declaration for the AcpiGbl_GenericNotify table. Test suite: Update makefiles, add PCC operation region support 2) iASL Compiler/Disassembler and Tools: iASL: Implemented additional illegal forward reference detection. Now detect and emit an error upon detection of a forward reference from a Field to an Operation Region. This will fail at runtime if allowed to pass the compiler. AcpiExec: Add an address list check for dynamic Operation Regions. This feature performs a sanity test for each node the global address list. This is done in order to ensure that all dynamic operation regions are properly removed from the global address list and no dangling pointers are left behind. Disassembler: Improved generation of resource pathnames. This change improves the code that generates resource descriptor and resource tag pathnames. The original code used a bunch of str* C library functions that caused warnings on some compilers. iASL: Removed some uses of strncpy and replaced with memmove. The strncpy function can overwrite buffers if the calling code is not very careful. In the case of generating a module/table header, use of memmove is a better implementation. 3) Status of new features that have not been completed at this time: iASL: Implementing an enhanced multiple file compilation into a single namespace feature (Status): This feature will be released soon, and allows multiple ASL files to be compiled into the same single namespace. By doing so, any unresolved external declarations as well as duplicate named object declarations can be detected during compilation (rather than later during runtime). The following commands are examples that utilize this feature: iasl dsdt.asl ssdt.asl iasl dsdt.asl ssdt1.asl ssdt2.asl iasl dsdt.asl ssdt*.asl ASL tutorial status: Feedback is being gathered internally and the current plan is to publish this tutorial on the ACPICA website after a final review by a tech writer. ---------------------------------------- 15 February 2019. Summary of changes for version 20190215: 0) Support for ACPI specification version 6.3: Add PCC operation region support for the AML interpreter. This adds PCC operation region support in the AML interpreter and a default handler for acpiexec. The change also renames the PCC region address space keyword to PlatformCommChannel. Support for new predefined methods _NBS, _NCH, _NIC, _NIH, and _NIG. These methods provide OSPM with health information and device boot status. PDTT: Add TriggerOrder to the PCC Identifier structure. The field value defines if the trigger needs to be invoked by OSPM before or at the end of kernel crash dump processing/handling operation. SRAT: Add Generic Affinity Structure subtable. This subtable in the SRAT is used for describing devices such as heterogeneous processors, accelerators, GPUs, and IO devices with integrated compute or DMA engines. MADT: Add support for statistical profiling in GICC. Statistical profiling extension (SPE) is an architecture-specific feature for ARM. MADT: Add online capable flag. If this bit is set, system hardware supports enabling this processor during OS runtime. New Error Disconnect Recover Notification value. There are a number of scenarios where system Firmware in collaboration with hardware may disconnect one or more devices from the rest of the system for purposes of error containment. Firmware can use this new notification value to alert OSPM of such a removal. PPTT: New additional fields in Processor Structure Flags. These flags provide more information about processor topology. NFIT/Disassembler: Change a field name from "Address Range" to "Region Type". HMAT updates: make several existing fields to be reserved as well as rename subtable 0 to "memory proximity domain attributes". GTDT: Add support for new GTDT Revision 3. This revision adds information for the EL2 timer. iASL: Update the HMAT example template for new fields. iASL: Add support for the new revision of the GTDT (Rev 3). 1) ACPICA kernel-resident subsystem: AML Parser: fix the main AML parse loop to correctly skip erroneous extended opcodes. AML opcodes come in two lengths: 1-byte opcodes and 2- byte extended opcodes. If an error occurs during an AML table load, the AML parser will continue loading the table by skipping the offending opcode. This implements a "load table at any cost" philosophy. 2) iASL Compiler/Disassembler and Tools: iASL: Add checks for illegal object references, such as a reference outside of method to an object within a method. Such an object is only temporary. iASL: Emit error for creation of a zero-length operation region. Such a region is rather pointless. If encountered, a runtime error is also implemented in the interpreter. Debugger: Fix a possible fault with the "test objects" command. iASL: Makefile: support parent directory filenames containing embedded spaces. iASL: Update the TPM2 template to revision 4. iASL: Add the ability to report specific warnings or remarks as errors. Disassembler: Disassemble OEMx tables as actual AML byte code. Previously, these tables were treated as "unknown table". iASL: Add definition and disassembly for TPM2 revision 3. iASL: Add support for TPM2 rev 3 compilation. ---------------------------------------- 08 January 2019. Summary of changes for version 20190108: 1) ACPICA kernel-resident subsystem: Updated all copyrights to 2019. This affects all source code modules. 2) iASL Compiler/Disassembler and Tools: ASL test suite (ASLTS): Updated all copyrights to 2019. Tools: Updated all signon copyrights to 2019. AcpiExec: Added a new option to dump extra information concerning any memory leaks detected by the internal object/cache tracking mechanism. - va iASL: Updated the table template for the TPM2 table to the newest version of the table (Revision 4) ---------------------------------------- 13 December 2018. Summary of changes for version 20181213: 1) ACPICA Kernel-resident Subsystem: Fixed some buffer length issues with the GenericSerialBus, related to two of the bidirectional protocols: AttribRawProcessBytes and AttribRawBytes, which are rarely seen in the field. For these, the LEN field of the ASL buffer is now ignored. Hans de Goede Implemented a new object evaluation trace mechanism for control methods and data objects. This includes nested control methods. It is particularly useful for examining the ACPI execution during system initialization since the output is relatively terse. The flag below enables the output of the trace via the ACPI_DEBUG_PRINT_RAW interface: #define ACPI_LV_EVALUATION 0x00080000 Examples: Enter evaluation : _SB.PCI0._INI (Method) Exit evaluation : _SB.PCI0._INI Enter evaluation : _OSI (Method) Exit evaluation : _OSI Enter evaluation : _SB.PCI0.TEST (Method) Nested method call : _SB.PCI0.NST1 Exit nested method : _SB.PCI0.NST1 Exit evaluation : _SB.PCI0.TEST Added two recently-defined _OSI strings. See https://docs.microsoft.com/en-us/windows-hardware/drivers/acpi/winacpi- osi. "Windows 2018" "Windows 2018.2" Update for buffer-to-string conversions via the ToHexString ASL operator. A "0x" is now prepended to each of the hex values in the output string. This provides compatibility with other ACPI implementations. The ACPI specification is somewhat vague on this issue. Example output string after conversion: "0x01,0x02,0x03,0x04,0x05,0x06" Return a run-time error for TermArg expressions within individual package elements. Although this is technically supported by the ASL grammar, other ACPI implementations do not support this either. Also, this fixes a fault if this type of construct is ever encountered (it never has been). 2) iASL Compiler/Disassembler and Tools: iASL: Implemented a new compile option (-ww) that will promote individual warnings and remarks to errors. This is intended to enhance the firmware build process. AcpiExec: Implemented a new command-line option (-eo) to support the new object evaluation trace mechanism described above. Disassembler: Added support to disassemble OEMx tables as AML/ASL tables instead of a "unknown table" message. AcpiHelp: Improved support for the "special" predefined names such as _Lxx, _Exx, _EJx, _T_x, etc. For these, any legal hex value can now be used for "xx" and "x". ---------------------------------------- 31 October 2018. Summary of changes for version 20181031: An Operation Region regression was fixed by properly adding address ranges to a global list during initialization. This allows OS to accurately check for overlapping regions between native devices (such as PCI) and Operation regions as well as checking for region conflicts between two Operation Regions. Added support for the 2-byte extended opcodes in the code/feature that attempts to continue parsing during the table load phase. Skip parsing Device declarations (and other extended opcodes) when an error occurs during parsing. Previously, only single-byte opcodes were supported. Cleanup: Simplified the module-level code support by eliminating a useless global variable (AcpiGbl_GroupModuleLeveCode). 2) iASL Compiler/Disassembler and Tools: iASL/Preprocessor: Fixed a regression where an incorrect use of ACPI_FREE could cause a fault in the preprocessor. This was an inadvertent side- effect from moving more allocations/frees to the local cache/memory mechanism. iASL: Enhanced error detection by validating that all NameSeg elements within a NamePatch actually exist. The previous behavior was spotty at best, and such errors could be improperly ignored at compiler time (never at runtime, however. There are two new error messages, as shown in the examples below: dsdt.asl 33: CreateByteField (TTTT.BXXX, 1, CBF1) Error 6161 - ^ One or more objects within the Pathname do not exist (TTTT.BXXX) dsdt.asl 34: CreateByteField (BUF1, UUUU.INT1, BBBB.CBF1) Error 6160 - One or more prefix Scopes do not exist ^ (BBBB.CBF1) iASL: Disassembler/table-compiler: Added support for the static data table TPM2 revision 3 (an older version of TPM2). The support has been added for the compiler and the disassembler. Fixed compilation of DOS format data table file on Unix/Linux systems. iASL now properly detects line continuations (\) for DOS format data table definition language files on when executing on Unix/Linux. ---------------------------------------- 03 October 2018. Summary of changes for version 20181003: 2) iASL Compiler/Disassembler and Tools: Fixed a regression introduced in version 20180927 that could cause the compiler to fault, especially with NamePaths containing one or more carats (^). Such as: ^^_SB_PCI0 Added a new remark for the Sleep() operator when the sleep time operand is larger than one second. This is a very long time for the ASL/BIOS code and may not be what was intended by the ASL writer. ---------------------------------------- 27 September 2018. Summary of changes for version 20180927: 1) ACPICA kernel-resident subsystem: Updated the GPE support to clear the status of all ACPI events when entering any/all sleep states in order to avoid premature wakeups. In theory, this may cause some wakeup events to be missed, but the likelihood of this is small. This change restores the original behavior of the ACPICA code in order to fix a regression seen from the previous "Stop unconditionally clearing ACPI IRQs during suspend/resume" change. This regression could cause some systems to incorrectly wake immediately. Updated the execution of the _REG methods during initialization and namespace loading to bring the behavior into closer conformance to the ACPI specification and other ACPI implementations: From the ACPI specification 6.2A, section 6.5.4 "_REG (Region): "Control methods must assume all operation regions are inaccessible until the _REG(RegionSpace, 1) method is executed" "The exceptions to this rule are: 1. OSPM must guarantee that the following operation regions are always accessible: SystemIO operation regions. SystemMemory operation regions when accessing memory returned by the System Address Map reporting interfaces." Since the state of both the SystemIO and SystemMemory address spaces are defined by the specification to never change, this ACPICA change ensures that now _REG is never called on them. This solves some problems seen in the field and provides compatibility with other ACPI implementations. An update to the upcoming new version of the ACPI specification will help clarify this behavior. Updated the implementation of support for the Generic Serial Bus. For the "bidirectional" protocols, the internal implementation now automatically creates a return data buffer of the maximum size (255). This handles the worst-case for data that is returned from the serial bus handler, and fixes some problems seen in the field. This new buffer is directly returned to the ASL. As such, there is no true "bidirectional" buffer, which matches the ACPI specification. This is the reason for the "double store" seen in the example ASL code in the specification, shown below: Word Process Call (AttribProcessCall): OperationRegion(TOP1, GenericSerialBus, 0x00, 0x100) Field(TOP1, BufferAcc, NoLock, Preserve) { FLD1, 8, // Virtual register at command value 1. } Name(BUFF, Buffer(20){}) // Create GenericSerialBus data buffer // as BUFF CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word) Store(0x5416, DATA) // Save 0x5416 into the data buffer Store(Store(BUFF, FLD1), BUFF) // Invoke a write/read Process Call transaction // This is the "double store". The write to // FLD1 returns a new buffer, which is stored // back into BUFF with the second Store. 2) iASL Compiler/Disassembler and Tools: iASL: Implemented detection of extraneous/redundant uses of the Offset() operator within a Field Unit list. A remark is now issued for these. For example, the first two of the Offset() operators below are extraneous. Because both the compiler and the interpreter track the offsets automatically, these Offsets simply refer to the current offset and are unnecessary. Note, when optimization is enabled, the iASL compiler will in fact remove the redundant Offset operators and will not emit any AML code for them. OperationRegion (OPR1, SystemMemory, 0x100, 0x100) Field (OPR1) { Offset (0), // Never needed FLD1, 32, Offset (4), // Redundant, offset is already 4 (bytes) FLD2, 8, Offset (64), // OK use of Offset. FLD3, 16, } dsdt.asl 14: Offset (0), Remark 2158 - ^ Unnecessary/redundant use of Offset operator dsdt.asl 16: Offset (4), Remark 2158 - ^ Unnecessary/redundant use of Offset operator ---------------------------------------- 10 August 2018. Summary of changes for version 20180810: 1) ACPICA kernel-resident subsystem: Initial ACPI table loading: Attempt to continue loading ACPI tables regardless of malformed AML. Since migrating table initialization to the new module-level code support, the AML interpreter rejected tables upon any ACPI error encountered during table load. This is a problem because non-serious ACPI errors during table load do not necessarily mean that the entire definition block (DSDT or SSDT) is invalid. This change improves the table loading by ignoring some types of errors that can be generated by incorrect AML. This can range from object type errors, scope errors, and index errors. Suspend/Resume support: Update to stop unconditionally clearing ACPI IRQs during suspend/resume. The status of ACPI events is no longer cleared when entering the ACPI S5 system state (power off) which caused some systems to power up immediately after turning off power in certain situations. This was a functional regression. It was fixed by clearing the status of all ACPI events again when entering S5 (for system-wide suspend or hibernation the clearing of the status of all events is not desirable, as it might cause the kernel to miss wakeup events sometimes). Rafael Wysocki. 2) iASL Compiler/Disassembler and Tools: AcpiExec: Enhanced the -fi option (Namespace initialization file). Field elements listed in the initialization file were previously initialized after the table load and before executing module-level code blocks. Recent changes in the module-level code support means that the table load becomes a large control method execution. If fields are used within module-level code and we are executing with the -fi option, the initialization values were used to initialize the namespace object(s) only after the table was finished loading. This change Provides an early initialization of objects specified in the initialization file so that field unit values are populated during the table load (not after the load). AcpiExec: Fixed a small memory leak regression that could result in warnings during exit of the utility. These warnings were similar to these: 0002D690 Length 0x0006 nsnames-0502 [Not a Descriptor - too small] 0002CD70 Length 0x002C utcache-0453 [Operand] Integer RefCount 0x0001 ---------------------------------------- 29 June 2018. Summary of changes for version 20180629: 1) iASL Compiler/Disassembler and Tools: iASL: Fixed a regression related to the use of the ASL External statement. Error checking for the use of the External() statement has been relaxed. Previously, a restriction on the use of External meant that the referenced named object was required to be defined in a different table (an SSDT). Thus it would be an error to declare an object as an external and then define the same named object in the same table. For example: DefinitionBlock (...) { External (DEV1) Device (DEV1){...} // This was an error } However, this behavior has caused regressions in some existing ASL code, because there is code that depends on named objects and externals (with the same name) being declared in the same table. This change will allow the ASL code above to compile without errors or warnings. iASL: Implemented ASL language extensions for four operators to make some of their arguments optional instead of required: 1) Field (RegionName, AccessType, LockRule, UpdateRule) 2) BankField (RegionName, BankName, BankValue, AccessType, LockRule, UpdateRule) 3) IndexField (IndexName, DataName, AccessType, LockRule, UpdateRule) For the Field operators above, the AccessType, LockRule, and UpdateRule are now optional arguments. The default values are: AccessType: AnyAcc LockRule: NoLock UpdateRule: Preserve 4) Mutex (MutexName, SyncLevel) For this operator, the SyncLevel argument is now optional. This argument is rarely used in any meaningful way by ASL code, and thus it makes sense to make it optional. The default value is: SyncLevel: 0 iASL: Attempted use of the ASL Unload() operator now results in the following warning: "Unload is not supported by all operating systems" This is in fact very true, and the Unload operator may be completely deprecated in the near future. AcpiExec: Fixed a regression for the -fi option (Namespace initialization file. Recent changes in the ACPICA module-level code support altered the table load/initialization sequence . This means that the table load has become a large method execution of the table itself. If Operation Region Fields are used within any module-level code and the -fi option was specified, the initialization values were populated only after the table had completely finished loading (and thus the module-level code had already been executed). This change moves the initialization of objects listed in the initialization file to before the table is executed as a method. Field unit values are now initialized before the table execution is performed. ---------------------------------------- 31 May 2018. Summary of changes for version 20180531: 1) ACPICA kernel-resident Subsystem: Implemented additional support to help ensure that a DSDT or SSDT is fully loaded even if errors are incurred during the load. The majority of the problems that are seen is the failure of individual AML operators that occur during execution of any module-level code (MLC) existing in the table. This support adds a mechanism to abort the current ASL statement (AML opcode), emit an error message, and to simply move on to the next opcode -- instead of aborting the entire table load. This is different than the execution of a control method where the entire method is aborted upon any error. The goal is to perform a very "best effort" to load the ACPI tables. The most common MLC errors that have been seen in the field are direct references to unresolved ASL/AML symbols (referenced directly without the use of the CondRefOf operator to validate the symbol). This new ACPICA behavior is now compatible with other ACPI implementations. Interpreter: The Unload AML operator is no longer supported for the reasons below. An AE_NOT_IMPLEMENTED exception is returned. 1) A correct implementation on at least some hosts may not be possible. 2) Other ACPI implementations do not correctly/fully support it. 3) It requires host device driver support which is not known to exist. (To properly support namespace unload out from underneath.) 4) This AML operator has never been seen in the field. Parser: Added a debug option to dump AML parse sub-trees as they are being executed. Used with ACPI_DEBUG_PRINT, the enabling debug level is ACPI_DB_PARSE_TREES. Debugger: Reduced the verbosity for errors incurred during table load and module-level code execution. Completed an investigation into adding a namespace node "owner list" instead of the current "owner ID" associated with namespace nodes. This list would link together all nodes that are owned by an individual control method. The purpose would be to enhance control method execution by speeding up cleanup during method exit (all namespace nodes created by a method are deleted upon method termination.) Currently, the entire namespace must be searched for matching owner IDs if (and only if) the method creates named objects outside of the local scope. However, by far the most common case is that methods create objects locally, not outside the method scope. There is already an ACPICA optimization in place that only searches the entire namespace in the rare case of a method creating objects elsewhere in the namespace. Therefore, it is felt that the overhead of adding an additional pointer to each namespace node to implement the owner list makes this feature unnecessary. 2) iASL Compiler/Disassembler and Tools: iASL, Disassembler, and Template generator: Implemented support for Revision D of the IORT table. Adds a new subtable that is used to specify SMMUv3 PMCGs. rmurphy-arm. Disassembler: Restored correct table header validation for the "special" ACPI tables -- RSDP and FACS. These tables do not contain a standard ACPI table header and must be special-cased. This was a regression that has been present for apparently a long time. AcpiExec: Reduced verbosity of the local exception handler implemented within acpiexec. This handler is invoked by ACPICA upon any exceptions generated during control method execution. A new option was added: -vh restores the original verbosity level if desired. AcpiExec: Changed the default base from decimal to hex for the -x option (set debug level). This simplifies the use of this option and matches the behavior of the corresponding iASL -x option. AcpiExec: Restored a force-exit on multiple control-c (sigint) interrupts. This allows program termination even if other issues cause the control-c to fail. ASL test suite (ASLTS): Added tests for the recently implemented package element resolution mechanism that allows forward references to named objects from individual package elements (this mechanism provides compatibility with other ACPI implementations.) ---------------------------------------- 8 May 2018. Summary of changes for version 20180508: 1) ACPICA kernel-resident subsystem: Completed the new (recently deployed) package resolution mechanism for the Load and LoadTable ASL/AML operators. This fixes a regression that was introduced in version 20180209 that could result in an AE_AML_INTERNAL exception during the loading of a dynamic ACPI/AML table (SSDT) that contains package objects. 2) iASL Compiler/Disassembler and Tools: AcpiDump and AcpiXtract: Implemented support for ACPI tables larger than 1 MB. This change allows for table offsets within the acpidump file to be up to 8 characters. These changes are backwards compatible with existing acpidump files. ---------------------------------------- 27 April 2018. Summary of changes for version 20180427: 1) ACPICA kernel-resident subsystem: Debugger: Added support for Package objects in the "Test Objects" command. This command walks the entire namespace and evaluates all named data objects (Integers, Strings, Buffers, and now Packages). Improved error messages for the namespace root node. Originally, the root was referred to by the confusing string "\___". This has been replaced by "Namespace Root" for clarification. Fixed a potential infinite loop in the AcpiRsDumpByteList function. Colin Ian King . 2) iASL Compiler/Disassembler and Tools: iASL: Implemented support to detect and flag illegal forward references. For compatibility with other ACPI implementations, these references are now illegal at the root level of the DSDT or SSDTs. Forward references have always been illegal within control methods. This change should not affect existing ASL/AML code because of the fact that these references have always been illegal in the other ACPI implementation. iASL: Added error messages for the case where a table OEM ID and OEM TABLE ID strings are longer than the ACPI-defined length. Previously, these strings were simply silently truncated. iASL: Enhanced the -tc option (which creates an AML hex file in C, suitable for import into a firmware project): 1) Create a unique name for the table, to simplify use of multiple SSDTs. 2) Add a protection #ifdef in the file, similar to a .h header file. With assistance from Sami Mujawar, sami.mujawar@arm.com and Evan Lloyd, evan.lloyd@arm.com AcpiExec: Added a new option, -df, to disable the local fault handler. This is useful during debugging, where it may be desired to drop into a debugger on a fault. ---------------------------------------- 13 March 2018. Summary of changes for version 20180313: 1) ACPICA kernel-resident subsystem: Implemented various improvements to the GPE support: 1) Dispatch all active GPEs at initialization time so that no GPEs are lost. 2) Enable runtime GPEs earlier. Some systems expect GPEs to be enabled before devices are enumerated. 3) Don't unconditionally clear ACPI IRQs during suspend/resume, so that IRQs are not lost. 4) Add parallel GPE handling to eliminate the possibility of dispatching the same GPE twice. 5) Dispatch any pending GPEs after enabling for the first time. AcpiGetObjectInfo - removed support for the _STA method. This was causing problems on some platforms. Added a new _OSI string, "Windows 2017.2". Cleaned up and simplified the module-level code support. These changes are in preparation for the eventual removal of the legacy MLC support (deferred execution), replaced by the new MLC architecture which executes the MLC as a table is loaded (DSDT/SSDTs). Changed a compile-time option to a runtime option. Changes the option to ignore ACPI table load-time package resolution errors into a runtime option. Used only for platforms that generate many AE_NOT_FOUND errors during boot. AcpiGbl_IgnorePackageResolutionErrors. Fixed the ACPI_ERROR_NAMESPACE macro. This change involves putting some ACPI_ERROR_NAMESPACE parameters inside macros. By doing so, we avoid compilation errors from unused variables (seen with some compilers). 2) iASL Compiler/Disassembler and Tools: ASLTS: parallelized execution in order to achieve an (approximately) 2X performance increase. ASLTS: Updated to use the iASL __LINE__ and __METHOD__ macros. Improves error reporting. ---------------------------------------- 09 February 2018. Summary of changes for version 20180209: 1) ACPICA kernel-resident subsystem: Completed the final integration of the recent changes to Package Object handling and the module-level AML code support. This allows forward references from individual package elements when the package object is declared from within module-level code blocks. Provides compatibility with other ACPI implementations. The new architecture for the AML module-level code has been completed and is now the default for the ACPICA code. This new architecture executes the module-level code in-line as the ACPI table is loaded/parsed instead of the previous architecture which deferred this code until after the table was fully loaded. This solves some ASL code ordering issues and provides compatibility with other ACPI implementations. At this time, there is an option to fallback to the earlier architecture, but this support is deprecated and is planned to be completely removed later this year. Added a compile-time option to ignore AE_NOT_FOUND exceptions during resolution of named reference elements within Package objects. Although this is potentially a serious problem, it can generate a lot of noise/errors on platforms whose firmware carries around a bunch of unused Package objects. To disable these errors, define ACPI_IGNORE_PACKAGE_RESOLUTION_ERRORS in the OS-specific header. All errors are always reported for ACPICA applications such as AcpiExec. Fixed a regression related to the explicit type-conversion AML operators (ToXXXX). The regression was introduced early in 2017 but was not seen until recently because these operators are not fully supported by other ACPI implementations and are thus rarely used by firmware developers. The operators are defined by the ACPI specification to not implement the "implicit result object conversion". The regression incorrectly introduced this object conversion for the following explicit conversion operators: ToInteger ToString ToBuffer ToDecimalString ToHexString ToBCD FromBCD 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with the compiler constant folding feature as related to the ToXXXX explicit conversion operators. These operators do not support the "implicit result object conversion" by definition. Thus, ASL expressions that use these operators cannot be folded to a simple Store operator because Store implements the implicit conversion. This change uses the CopyObject operator for the ToXXXX operator folding instead. CopyObject is defined to not implement implicit result conversions and is thus appropriate for folding the ToXXXX operators. iASL: Changed the severity of an error condition to a simple warning for the case where a symbol is declared both locally and as an external symbol. This accommodates existing ASL code. AcpiExec: The -ep option to enable the new architecture for module-level code has been removed. It is replaced by the -dp option which instead has the opposite effect: it disables the new architecture (the default) and enables the legacy architecture. When the legacy code is removed in the future, the -dp option will be removed also. ---------------------------------------- 05 January 2018. Summary of changes for version 20180105: 1) ACPICA kernel-resident subsystem: Updated all copyrights to 2018. This affects all source code modules. Fixed a possible build error caused by an unresolved reference to the AcpiUtSafeStrncpy function. Removed NULL pointer arithmetic in the various pointer manipulation macros. All "(void *) NULL" constructs are converted to "(void *) 0". This eliminates warnings/errors in newer C compilers. Jung-uk Kim. Added support for A32 ABI compilation, which uses the ILP32 model. Anuj Mittal. 2) iASL Compiler/Disassembler and Tools: ASLTS: Updated all copyrights to 2018. Tools: Updated all signon copyrights to 2018. AcpiXtract: Fixed a regression related to ACPI table signatures where the signature was truncated to 3 characters (instead of 4). AcpiExec: Restore the original terminal mode after the use of the -v and -vd options. ASLTS: Deployed the iASL __METHOD__ macro across the test suite. ---------------------------------------- 14 December 2017. Summary of changes for version 20171214: 1) ACPICA kernel-resident subsystem: Fixed a regression in the external (public) AcpiEvaluateObjectTyped interface where the optional "pathname" argument had inadvertently become a required argument returning an error if omitted (NULL pointer argument). Fixed two possible memory leaks related to the recently developed "late resolution" of reference objects within ASL Package Object definitions. Added two recently defined _OSI strings: "Windows 2016" and "Windows 2017". Mario Limonciello. Implemented and deployed a safer version of the C library function strncpy: AcpiUtSafeStrncpy. The intent is to at least prevent the creation of unterminated strings as a possible result of a standard strncpy. Cleaned up and restructured the global variable file (acglobal.h). There are many changes, but no functional changes. 2) iASL Compiler/Disassembler and Tools: iASL Table Compiler: Fixed a problem with the DBG2 ACPI table where the optional OemData field at the end of the table was incorrectly required for proper compilation. It is now correctly an optional field. ASLTS: The entire suite was converted from standard ASL to the ASL+ language, using the ASL-to-ASL+ converter which is integrated into the iASL compiler. A binary compare of all output files has verified the correctness of the conversion. iASL: Fixed the source code build for platforms where "char" is unsigned. This affected the iASL lexer only. Jung-uk Kim. ---------------------------------------- 10 November 2017. Summary of changes for version 20171110: 1) ACPICA kernel-resident subsystem: This release implements full support for ACPI 6.2A: NFIT - Added a new subtable, "Platform Capabilities Structure" No other changes to ACPICA were required, since ACPI 6.2A is primarily an errata release of the specification. Other ACPI table changes: IORT: Added the SMMUv3 Device ID mapping index. Hanjun Guo PPTT: Added cache attribute flag definitions to actbl1.h. Jeremy Linton Utilities: Modified the string/integer conversion functions to use internal 64-bit divide support instead of a native divide. On 32-bit platforms, a 64-bit divide typically requires a library function which may not be present in the build (kernel or otherwise). Implemented a targeted error message for timeouts returned from the Embedded Controller device driver. This is seen frequently enough to special-case an AE_TIME returned from an EC operation region access: "Timeout from EC hardware or EC device driver" Changed the "ACPI Exception" message prefix to "ACPI Error" so that all runtime error messages have the identical prefix. 2) iASL Compiler/Disassembler and Tools: AcpiXtract: Fixed a problem with table header detection within the acpidump file. Processing a table could be ended early if a 0x40 (@) appears in the original binary table, resulting in the @ symbol appearing in the decoded ASCII field at the end of the acpidump text line. The symbol caused acpixtract to incorrectly think it had reached the end of the current table and the beginning of a new table. AcpiXtract: Added an option (-f) to ignore some errors during table extraction. This initial implementation ignores non-ASCII and non- printable characters found in the acpidump text file. TestSuite(ASLTS)/AcpiExec: Fixed and restored the memory usage statistics for ASLTS. This feature is used to track memory allocations from different memory caches within the ACPICA code. At the end of an ASLTS run, these memory statistics are recorded and stored in a log file. Debugger (user-space version): Implemented a simple "Background" command. Creates a new thread to execute a control method in the background, while control returns to the debugger prompt to allow additional commands. Syntax: Background [Arguments] ---------------------------------------- 29 September 2017. Summary of changes for version 20170929: 1) ACPICA kernel-resident subsystem: Redesigned and implemented an improved ASL While() loop timeout mechanism. This mechanism is used to prevent infinite loops in the kernel AML interpreter caused by either non-responsive hardware or incorrect AML code. The new implementation uses AcpiOsGetTimer instead of a simple maximum loop count, and is thus more accurate and constant across different machines. The default timeout is currently 30 seconds, but this may be adjusted later. Renamed the ACPI_AML_INFINITE_LOOP exception to AE_AML_LOOP_TIMEOUT to better reflect the new implementation of the loop timeout mechanism. Updated the AcpiGetTimerDuration interface to cleanup the 64-bit support and to fix an off-by-one error. Jung-uk Kim. Fixed an EFI build problem by updating the makefiles to for a new file that was added, utstrsuppt.c 2) iASL Compiler/Disassembler and Tools: Implemented full support for the PDTT, SDEV, and TPM2 ACPI tables. This includes support in the table disassembler, compiler, and template generator. iASL: Added an exception for an illegal type of recursive method invocation. If a method creates named objects, the first recursive call will fail at runtime. This change adds an error detection at compile time to catch the problem up front. Note: Marking such a method as "serialized" will not help with this problem, because the same thread can acquire the method mutex more than once. Example compiler and runtime output: Method (MTH1) { Name (INT1, 1) MTH1 () } dsdt.asl 22: MTH1 () Error 6152 - ^ Illegal recursive call to method that creates named objects (MTH1) Previous runtime exception: ACPI Error: [INT1] Namespace lookup failure, AE_ALREADY_EXISTS (20170831/dswload2-465) iASL: Updated support for External() opcodes to improve namespace management and error detection. These changes are related to issues seen with multiple-segment namespace pathnames within External declarations, such as below: External(\_SB.PCI0.GFX0, DeviceObj) External(\_SB.PCI0.GFX0.ALSI) iASL: Implemented support for multi-line error/warning messages. This enables more detailed and helpful error messages as below, from the initial deployment for the duplicate names error: DSDT.iiii 1692: Device(PEG2) { Error 6074 - ^ Name already exists in scope (PEG2) Original name creation/declaration below: DSDT.iiii 93: External(\_SB.PCI0.PEG2, DeviceObj) AcpiXtract: Added additional flexibility to support differing input hex dump formats. Specifically, hex dumps that contain partial disassembly and/or comments within the ACPI table data definition. There exist some dump utilities seen in the field that create this type of hex dump (such as Simics). For example: DSDT @ 0xdfffd0c0 (10999 bytes) Signature DSDT Length 10999 Revision 1 Checksum 0xf3 (Ok) OEM_ID BXPC OEM_table_id BXDSDT OEM_revision 1 Creator_id 1280593481 Creator_revision 537399345 0000: 44 53 44 54 f7 2a 00 00 01 f3 42 58 50 43 00 00 ... 2af0: 5f 4c 30 46 00 a4 01 Test suite: Miscellaneous changes/fixes: More cleanup and simplification of makefiles Continue compilation of test cases after a compile failure Do not perform binary compare unless both files actually exist iASL: Performed some code/module restructuring. Moved all memory allocation functions to new modules. Two new files, aslallocate.c and aslcache.c ---------------------------------------- 31 August 2017. Summary of changes for version 20170831: 1) ACPICA kernel-resident subsystem: Implemented internal support for full 64-bit addresses that appear in all Generic Address Structure (GAS) structures. Previously, only the lower 32 bits were used. Affects the use of GAS structures in the FADT and other tables, as well as the GAS structures passed to the AcpiRead and AcpiWrite public external interfaces that are used by drivers. Lv Zheng. Added header support for the PDTT ACPI table (Processor Debug Trigger Table). Full support in the iASL Data Table Compiler and disassembler is forthcoming. 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Fixed a problem with the PPTT ACPI table (Processor Properties Topology Table) where a flag bit was specified in the wrong bit position ("Line Size Valid", bit 6). iASL: Implemented support for Octal integer constants as defined by the ASL language grammar, per the ACPI specification. Any integer constant that starts with a zero is an octal constant. For example, Store (037777, Local0) /* Octal constant */ Store (0x3FFF, Local0) /* Hex equivalent */ Store (16383, Local0) /* Decimal equivalent */ iASL: Improved overflow detection for 64-bit string conversions during compilation of integer constants. "Overflow" in this case means a string that represents an integer that is too large to fit into a 64-bit value. Any 64-bit constants within a 32-bit DSDT or SSDT are still truncated to the low-order 32 bits with a warning, as previously implemented. Several new exceptions are defined that indicate a 64-bit overflow, as well as the base (radix) that was used during the attempted conversion. Examples: Local0 = 0xAAAABBBBCCCCDDDDEEEEFFFF // AE_HEX_OVERFLOW Local0 = 01111222233334444555566667777 // AE_OCTAL_OVERFLOW Local0 = 11112222333344445555666677778888 // AE_DECIMAL_OVERFLOW iASL: Added a warning for the case where a ResourceTemplate is declared with no ResourceDescriptor entries (coded as "ResourceTemplate(){}"). In this case, the resulting template is created with a single END_TAG descriptor, which is essentially useless. iASL: Expanded the -vw option (ignore specific warnings/remarks) to include compilation error codes as well. ---------------------------------------- 28 July 2017. Summary of changes for version 20170728: 1) ACPICA kernel-resident subsystem: Fixed a regression seen with small resource descriptors that could cause an inadvertent AE_AML_NO_RESOURCE_END_TAG exception. AML interpreter: Implemented a new feature that allows forward references from individual named references within package objects that are contained within blocks of "module-level code". This provides compatibility with other ACPI implementations and supports existing firmware that depends on this feature. Example: Name (ABCD, 1) If (ABCD) /* An If() at module-level */ { Name (PKG1, Package() { INT1 /* Forward reference to object INT1 */ }) Name (INT1, 0x1234) } AML Interpreter: Fixed a problem with the Alias() operator where aliases to some ASL objects were not handled properly. Objects affected are: Mutex, Event, and OperationRegion. AML Debugger: Enhanced to properly handle AML Alias objects. These objects have one level of indirection which was not fully supported by the debugger. Table Manager: Added support to detect and ignore duplicate SSDTs within the XSDT/RSDT. This error in the XSDT has been seen in the field. EFI and EDK2 support: Enabled /WX flag for MSVC builds Added support for AcpiOsStall, AcpiOsSleep, and AcpiOsGetTimer Added local support for 64-bit multiply and shift operations Added support to compile acpidump.efi on Windows Added OSL function stubs for interfaces not used under EFI Added additional support for the _DMA predefined name. _DMA returns a buffer containing a resource template. This change add support within the resource manager (AcpiWalkResourceBuffer) to walk and parse this list of resource descriptors. Lorenzo Pieralisi 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem where the internal input line buffer(s) could overflow if there are very long lines in the input ASL source code file. Implemented buffer management that automatically increases the size of the buffers as necessary. iASL: Added an option (-vx) to "expect" particular remarks, warnings and errors. If the specified exception is not raised during compilation, the compiler emits an error. This is intended to support the ASL test suite, but may be useful in other contexts. iASL: Implemented a new predefined macro, __METHOD__, which returns a string containing the name of the current control method that is being compiled. iASL: Implemented debugger and table compiler support for the SDEI ACPI table (Software Delegated Exception Interface). James Morse Unix/Linux makefiles: Added an option to disable compile optimizations. The disable occurs when the NOOPT flag is set to TRUE. theracermaster@gmail.com Acpidump: Added support for multiple DSDT and FACS tables. This can occur when there are different tables for 32-bit versus 64-bit. Enhanced error reporting for the ASL test suite (ASLTS) by removing unnecessary/verbose text, and emit the actual line number where an error has occurred. These changes are intended to improve the usefulness of the test suite. ---------------------------------------- 29 June 2017. Summary of changes for version 20170629: 1) ACPICA kernel-resident subsystem: Tables: Implemented a deferred ACPI table verification. This is useful for operating systems where the tables cannot be verified in the early initialization stage due to early memory mapping limitations on some architectures. Lv Zheng. Tables: Removed the signature validation for dynamically loaded tables. Provides compatibility with other ACPI implementations. Previously, only SSDT tables were allowed, as per the ACPI specification. Now, any table signature can be used via the Load() operator. Lv Zheng. Tables: Fixed several mutex issues that could cause errors during table acquisition. Lv Zheng. Tables: Fixed a problem where an ACPI warning could be generated if a null pointer was passed to the AcpiPutTable interface. Lv Zheng. Tables: Added a mechanism to handle imbalances for the AcpiGetTable and AcpiPutTable interfaces. This applies to the "late stage" table loading when the use of AcpiPutTable is no longer required (since the system memory manager is fully running and available). Lv Zheng. Fixed/Reverted a regression during processing of resource descriptors that contain only a single EndTag. Fixes an AE_AML_NO_RESOURCE_END_TAG exception in this case. Headers: IORT/SMMU support: Updated the SMMU models for Revision C of the I/O Remapping specification. Robin Murphy Interpreter: Fixed a possible fault if an Alias operator with an invalid or duplicate target is encountered during Alias creation in AcpiExCreateAlias. Alex James Added an option to use designated initializers for function pointers. Kees Cook 2) iASL Compiler/Disassembler and Tools: iASL: Allow compilation of External declarations with target pathnames that refer to existing named objects within the table. Erik Schmauss. iASL: Fixed a regression when compiling FieldUnits. Fixes an error if a FieldUnit name also is declared via External in the same table. Erik Schmauss. iASL: Allow existing scope names within pathnames used in External statements. For example: External (ABCD.EFGH) // ABCD exists, but EFGH is truly external Device (ABCD) iASL: IORT ACPI table: Implemented changes required to decode the new Proximity Domain for the SMMUv3 IORT. Disassembler and Data Table compiler. Ganapatrao Kulkarni Disassembler: Don't abort disassembly on errors from External() statements. Erik Schmauss. Disassembler: fixed a possible fault when one of the Create*Field operators references a Resource Template. ACPICA Bugzilla 1396. iASL: In the source code, resolved some naming inconsistences across the parsing support. Fixes confusion between "Parse Op" and "Parse Node". Adds a new file, aslparseop.c ---------------------------------------- 31 May 2017. Summary of changes for version 20170531: 0) ACPI 6.2 support: The ACPI specification version 6.2 has been released and is available at http://uefi.org/specifications This version of ACPICA fully supports the ACPI 6.2 specification. Changes are summarized below. New ACPI tables (Table Compiler/Disassembler/Templates): HMAT (Heterogeneous Memory Attributes Table) WSMT (Windows SMM Security Mitigation Table) PPTT (Processor Properties Topology Table) New subtables for existing ACPI tables: HEST (New subtable, Arch-deferred machine check) SRAT (New subtable, Arch-specific affinity structure) PCCT (New subtables, Extended PCC subspaces (types 3 and 4)) Simple updates for existing ACPI tables: BGRT (two new flag bits) HEST (New bit defined for several subtables, GHES_ASSIST) New Resource Descriptors and Resource macros (Compiler/Disassembler): PinConfig() PinFunction() PinGroup() PinGroupConfig() PinGroupFunction() New type for hardware error notification (section 18.3.2.9) New predefined names/methods (Compiler/Interpreter): _HMA (Heterogeneous Memory Attributes) _LSI (Label Storage Information) _LSR (Label Storage Read) _LSW (Label Storage Write) ASL grammar/macro changes (Compiler): For() ASL macro, implemented with the AML while operator Extensions to Concatenate operator Support for multiple definition blocks in same ASL file Clarification for Buffer operator Allow executable AML code underneath all scopes (Devices, etc.) Clarification/change for the _OSI return value ASL grammar update for reference operators Allow a zero-length string for AML filename in DefinitionBlock Miscellaneous: New device object notification value Remove a notify value (0x0C) for graceful shutdown New UUIDs for processor/cache properties and physical package property New _HID, ACPI0014 (Wireless Power Calibration Device) 1) ACPICA kernel-resident subsystem: Added support to disable ACPI events on hardware-reduced platforms. Eliminates error messages of the form "Could not enable fixed event". Lv Zheng Fixed a problem using Device/Thermal objects with the ObjectType and DerefOf ASL operators. This support had not been fully/properly implemented. Fixed a problem where if a Buffer object containing a resource template was longer than the actual resource template, an error was generated -- even though the AML is legal. This case has been seen in the field. Fixed a problem with the header definition of the MADT PCAT_COMPAT flag. The values for DUAL_PIC and MULTIPLE_APIC were reversed. Added header file changes for the TPM2 ACPI table. Update to new version of the TCG specification. Adds a new TPM2 subtable for ARM SMC. Exported the external interfaces AcpiAcquireMutex and AcpiReleaseMutex. These interfaces are intended to be used only in conjunction with the predefined _DLM method (Device Lock Method). "This object appears in a device scope when AML access to the device must be synchronized with the OS environment". Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 143.1K Code, 60.0K Data, 203.1K Total Debug Version: 204.0K Code, 84.3K Data, 288.3K Total Previous Release: Non-Debug Version: 141.7K Code, 58.5K Data, 200.2K Total Debug Version: 207.5K Code, 82.7K Data, 290.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem where an External() declaration could not refer to a Field Unit. Erik Schmauss. Disassembler: Improved support for the Switch/Case operators. This feature will disassemble AML code back to the original Switch operators when possible, instead of an If..Else sequence. David Box iASL and disassembler: Improved the handling of multiple extraneous parentheses for both ASL input and disassembled ASL output. Improved the behavior of the iASL compiler and disassembler to detect improper use of external declarations Disassembler: Now aborts immediately upon detection of an unknown AML opcode. The AML parser has no real way to recover from this, and can result in the creation of an ill-formed parse tree that causes errors later during the disassembly. All tools: Fixed a problem where the Unix application OSL did not handle control-c correctly. For example, a control-c could incorrectly wake the debugger. AcpiExec: Improved the Control-C handling and added a handler for segmentation faults (SIGSEGV). Supports both Windows and Unix-like environments. Reduced the verbosity of the generic unix makefiles. Previously, each compilation displayed the full set of compiler options. This has been eliminated as the options are easily inspected within the makefiles. Each compilation now results in a single line of output. ---------------------------------------- 03 March 2017. Summary of changes for version 20170303: 0) ACPICA licensing: The licensing information at the start of each source code module has been updated. In addition to the Intel license, the dual GPLv2/BSD license has been added for completeness. Now, a single version of the source code should be suitable for all ACPICA customers. This is the major change for this release since it affects all source code modules. 1) ACPICA kernel-resident subsystem: Fixed two issues with the common asltypes.h header that could cause problems in some environments: (Kim Jung-uk) Removed typedef for YY_BUFFER_STATE ? Fixes an error with earlier versions of Flex. Removed use of FILE typedef (which is only defined in stdio.h) 2) iASL Compiler/Disassembler and Tools: Disassembler: fixed a regression introduced in 20170224. A fix for a memory leak related to resource descriptor tags (names) could fault when the disassembler was generated with 64-bit compilers. The ASLTS test suite has been updated to implement a new testing architecture. During generation of the suite from ASL source, both the ASL and ASL+ compilers are now validated, as well as the disassembler itself (Erik Schmauss). The architecture executes as follows: For every ASL source module: Compile (legacy ASL compilation) Disassemble the resulting AML to ASL+ source code Compile the new ASL+ module Perform a binary compare on the legacy AML and the new ASL+ AML The ASLTS suite then executes normally using the AML binaries. ---------------------------------------- 24 February 2017. Summary of changes for version 20170224: 1) ACPICA kernel-resident subsystem: Interpreter: Fixed two issues with the control method return value auto- repair feature, where an attempt to double-delete an internal object could result in an ACPICA warning (for _CID repair and others). No fault occurs, however, because the attempted deletion (actually a release to an internal cache) is detected and ignored via object poisoning. Debugger: Fixed an AML interpreter mutex issue during the single stepping of control methods. If certain debugger commands are executed during stepping, a mutex acquire/release error could occur. Lv Zheng. Fixed some issues generating ACPICA with the Intel C compiler by restoring the original behavior and compiler-specific include file in acenv.h. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 141.7K Code, 58.5K Data, 200.2K Total Debug Version: 207.5K Code, 82.7K Data, 290.2K Total Previous Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: A preliminary version of a new ASL-to-ASL+ conversion tool has been designed, implemented, and included in this release. The key feature of this utility is that the original comments within the input ASL file are preserved during the conversion process, and included within the converted ASL+ file -- thus creating a transparent conversion of existing ASL files to ASL+ (ASL 2.0). Erik Schmauss. Usage: iasl -ca // Output is a .dsl file with converted code iASL/Disassembler: Improved the detection and correct disassembly of Switch/Case operators. This feature detects sequences of if/elseif/else operators that originated from ASL Switch/Case/Default operators and emits the original operators. David Box. iASL: Improved the IORT ACPI table support in the following areas. Lv Zheng: Clear MappingOffset if the MappingCount is zero. Fix the disassembly of the SMMU GSU interrupt offset. Update the template file for the IORT table. Disassembler: Enhanced the detection and disassembly of resource template/descriptor within a Buffer object. An EndTag descriptor is now required to have a zero second byte, since all known ASL compilers emit this. This helps eliminate incorrect decisions when a buffer is disassembled (false positives on resource templates). ---------------------------------------- 19 January 2017. Summary of changes for version 20170119: 1) General ACPICA software: Entire source code base: Added the 2017 copyright to all source code legal/licensing module headers and utility/tool signons. This includes the standard Linux dual-license header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the ACPICA test suite. 2) iASL Compiler/Disassembler and Tools: iASL: Removed/fixed an inadvertent remark when a method argument containing a reference is used as a target operand within the method (and never used as a simple argument), as in the example below. Jeffrey Hugo. dsdt.asl 1507: Store(0x1, Arg0) Remark 2146 - ^ Method Argument is never used (Arg0) All tools: Removed the bit width of the compiler that generated the tool from the common signon for all user space tools. This proved to be confusing and unnecessary. This includes similar removal of HARDWARE_NAME from the generic makefiles (Thomas Petazzoni). Example below. Old: ASL+ Optimizing Compiler version 20170119-32 ASL+ Optimizing Compiler version 20170119-64 New: ASL+ Optimizing Compiler version 20170119 ---------------------------------------- 22 December 2016. Summary of changes for version 20161222: 1) ACPICA kernel-resident subsystem: AML Debugger: Implemented a new mechanism to simplify and enhance debugger integration into all environments, including kernel debuggers and user-space utilities, as well as remote debug services. This mechanism essentially consists of new OSL interfaces to support debugger initialization/termination, as well as wait/notify interfaces to perform the debugger handshake with the host. Lv Zheng. New OSL interfaces: AcpiOsInitializeDebugger (void) AcpiOsTerminateDebugger (void) AcpiOsWaitCommandReady (void) AcpiOsNotifyCommandComplete (void) New OS services layer: osgendbg.c -- Example implementation, and used for AcpiExec Update for Generic Address Space (GAS) support: Although the AccessWidth and/or BitOffset fields of the GAS are not often used, this change now fully supports these fields. This affects the internal support for FADT registers, registers in other ACPI data tables, and the AcpiRead and AcpiWrite public interfaces. Lv Zheng. Sleep support: In order to simplify integration of ACPI sleep for the various host operating systems, a new OSL interface has been introduced. AcpiOsEnterSleep allows the host to perform any required operations before the final write to the sleep control register(s) is performed by ACPICA. Lv Zheng. New OSL interface: AcpiOsEnterSleep(SleepState, RegisterAValue, RegisterBValue) Called from these internal interfaces: AcpiHwLegacySleep AcpiHwExtendedSleep EFI support: Added a very small EFI/ACPICA example application. Provides a simple demo for EFI integration, as well as assisting with resolution of issues related to customer ACPICA/EFI integration. Lv Zheng. See: source/tools/efihello/efihello.c Local C library: Implemented several new functions to enhance ACPICA portability, for environments where these clib functions are not available (such as EFI). Lv Zheng: putchar getchar strpbrk strtok memmove Fixed a regression where occasionally a valid resource descriptor was incorrectly detected as invalid at runtime, and a AE_AML_NO_RESOURCE_END_TAG was returned. Fixed a problem with the recently implemented support that enables control method invocations as Target operands to many ASL operators. Warnings of this form: "Needed type [Reference], found [Processor]" were seen at runtime for some method invocations. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 141.5K Code, 58.5K Data, 200.0K Total Debug Version: 201.7K Code, 82.7K Data, 284.4K Total Previous Release: Non-Debug Version: 140.5K Code, 58.5K Data, 198.9K Total Debug Version: 201.3K Code, 82.7K Data, 284.0K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Enhanced output by adding the capability to detect and disassemble ASL Switch/Case statements back to the original ASL source code instead of if/else blocks. David Box. AcpiHelp: Split a large file into separate files based upon functionality/purpose. New files are: ahaml.c ahasl.c ---------------------------------------- 17 November 2016. Summary of changes for version 20161117: 1) ACPICA kernel-resident subsystem: Table Manager: Fixed a regression introduced in 20160729, "FADT support cleanup". This was an attempt to remove all references in the source to the FADT version 2, which never was a legal version number. It was skipped because it was an early version of 64-bit support that was eventually abandoned for the current 64-bit support. Interpreter: Fixed a problem where runtime implicit conversion was incorrectly disabled for the ASL operators below. This brings the behavior into compliance with the ACPI specification: FromBCD ToBCD ToDecimalString ToHexString ToInteger ToBuffer Table Manager: Added a new public interface, AcpiPutTable, used to release and free an ACPI table returned by AcpiGetTable and related interfaces. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 140.5K Code, 58.5K Data, 198.9K Total Debug Version: 201.3K Code, 82.7K Data, 284.0K Total Previous Release: Non-Debug Version: 140.4K Code, 58.1K Data, 198.5K Total Debug Version: 200.7K Code, 82.1K Data, 282.8K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a regression for disassembly of Resource Template. Detection of templates in the AML stream missed some types of templates. iASL: Fixed a problem where an Access Size error was returned for the PCC address space when the AccessSize of the GAS register is greater than a DWORD. Hoan Tran. iASL: Implemented several grammar changes for the operators below. These changes are slated for the next version of the ACPI specification: RefOf - Disallow method invocation as an operand CondRefOf - Disallow method invocation as an operand DerefOf - Disallow operands that use the result from operators that do not return a reference (Changed TermArg to SuperName). iASL: Control method invocations are now allowed for Target operands, as per the ACPI specification. Removed error for using a control method invocation as a Target operand. Disassembler: Improved detection of Resource Templates, Unicode, and Strings within Buffer objects. These subtypes do not contain a specific opcode to indicate the originating ASL code, and they must be detected by other means within the disassembler. iASL: Implemented an optimization improvement for 32-bit ACPI tables (DSDT/SSDT). For the 32-bit case only, compute the optimum integer opcode only after 64-bit to 32-bit truncation. A truncation warning message is still emitted, however. AcpiXtract: Implemented handling for both types of line terminators (LF or CR/LF) so that it can accept AcpiDump output files from any system. Peter Wu. AcpiBin: Added two new options for comparing AML files: -a: compare and display ALL mismatches -o: start compare at this offset into the second file ---------------------------------------- 30 September 2016. Summary of changes for version 20160930: 1) ACPICA kernel-resident subsystem: Fixed a regression in the internal AcpiTbFindTable function where a non AE_OK exception could inadvertently be returned even if the function did not fail. This problem affects the following operators: DataTableRegion LoadTable Fixed a regression in the LoadTable operator where a load to any namespace location other than the root no longer worked properly. Increased the maximum loop count value that will result in the AE_AML_INFINITE_LOOP exception. This is a mechanism that is intended to prevent infinite loops within the AML interpreter and thus the host OS kernel. The value is increased from 0xFFFF to 0xFFFFF loops (65,535 to 1,048,575). Moved the AcpiGbl_MaxLoopIterations configuration variable to the public acpixf.h file. This allows hosts to easily configure the maximum loop count at runtime. Removed an illegal character in the strtoul64.c file. This character caused errors with some C compilers. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 140.4K Code, 58.1K Data, 198.5K Total Debug Version: 200.7K Code, 82.1K Data, 282.8K Total Previous Release: Non-Debug Version: 140.0K Code, 58.1K Data, 198.1K Total Debug Version: 200.3K Code, 82.1K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the conversion of Else{If{ blocks into the simpler ASL ElseIf keyword. During the conversion, a trailing If block could be lost and missing from the disassembled output. iASL: Fixed a missing parser rule for the ObjectType operator. For ASL+, the missing rule caused a parse error when using the Index operator as an operand to ObjectType. This construct now compiles properly. Example: ObjectType(PKG1[4]). iASL: Correctly handle unresolved symbols in the hardware map file (-lm option). Previously, unresolved symbols could cause a protection fault. Such symbols are now marked as unresolved in the map file. iASL: Implemented support to allow control method invocations as an operand to the ASL DeRefOf operator. Example: DeRefOf(MTH1(Local0)) Disassembler: Improved support for the ToPLD ASL macro. Detection of a possible _PLD buffer now includes examination of both the normal buffer length (16 or 20) as well as the surrounding AML package length. Disassembler: Fixed a problem with the decoding of complex expressions within the Divide operator for ASL+. For the case where both the quotient and remainder targets are specified, the entire statement cannot be disassembled. Previously, the output incorrectly contained a mix of ASL- and ASL+ operators. This mixed statement causes a syntax error when compiled. Example: Divide (Add (INT1, 6), 128, RSLT, QUOT) // was incorrectly disassembled to: Divide (INT1 + 6, 128, RSLT, QUOT) iASL/Tools: Added support to process AML and non-AML ACPI tables consistently. For the disassembler and AcpiExec, allow all types of ACPI tables (AML and data tables). For the iASL -e option, allow only AML tables (DSDT/SSDT). ---------------------------------------- 31 August 2016. Summary of changes for version 20160831: 1) ACPICA kernel-resident subsystem: Improve support for the so-called "module-level code", which is defined to be math, logical and control AML opcodes that appear outside of any control method. This change improves the support by adding more opcodes that can be executed in the manner. Some other issues have been solved, and the ASL grammar changes to support such code under all scope operators (Device, etc.) are complete. Lv Zheng. UEFI support: these OSL functions have been implemented. This is an additional step toward supporting the AcpiExec utility natively (with full hardware access) under UEFI. Marcelo Ferreira. AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration Fixed a possible mutex error during control method auto-serialization. Lv Zheng. Updated support for the Generic Address Structure by fully implementing all GAS fields when a 32-bit address is expanded to a 64-bit GAS. Lv Zheng. Updated the return value for the internal _OSI method. Instead of 0xFFFFFFFF, the "Ones" value is now returned, which is 0xFFFFFFFFFFFFFFFF for 64-bit ACPI tables. This fixes an incompatibility with other ACPI implementations, and will be reflected and clarified in the next version of the ACPI specification. Implemented two new table events that can be passed to an ACPICA table handler. These events are used to indicate a table installation or uninstallation. These events are used in addition to existed table load and unload events. Lv Zheng. Implemented a cleanup for all internal string-to-integer conversions. Consolidate multiple versions of this functionality and limit possible bases to either 10 or 16 to simplify the code. Adds a new file, utstrtoul64. Cleanup the inclusion order of the various compiler-specific headers. This simplifies build configuration management. The compiler-specific headers are now split out from the host-specific headers. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 140.1K Code, 58.1K Data, 198.1K Total Debug Version: 200.3K Code, 82.1K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/AcpiExec: Added a command line option to display the build date/time of the tool (-vd). This can be useful to verify that the correct version of the tools are being used. AML Debugger: Implemented a new subcommand ("execute predef") to execute all predefined control methods and names within the current namespace. This can be useful for debugging problems with ACPI tables and the ACPI namespace. ---------------------------------------- 29 July 2016. Summary of changes for version 20160729: 1) ACPICA kernel-resident subsystem: Implemented basic UEFI support for the various ACPICA tools. This includes: 1) An OSL to implement the various AcpiOs* interfaces on UEFI. 2) Support to obtain the ACPI tables on UEFI. 3) Local implementation of required C library functions not available on UEFI. 4) A front-end (main) function for the tools for UEFI-related initialization. The initial deployment of this support is the AcpiDump utility executing as an UEFI application via EDK2 (EDKII, "UEFI Firmware Development Kit"). Current environments supported are Linux/Unix. MSVC generation is not supported at this time. See the generate/efi/README file for build instructions. Lv Zheng. Future plans include porting the AcpiExec utility to execute natively on the platform with I/O and memory access. This will allow viewing/dump of the platform namespace and native execution of ACPI control methods that access the actual hardware. To fully implement this support, the OSL functions below must be implemented with UEFI interfaces. Any community help in the implementation of these functions would be appreciated: AcpiOsReadPort AcpiOsWritePort AcpiOsReadMemory AcpiOsWriteMemory AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration Restructured and standardized the C library configuration for ACPICA, resulting in the various configuration options below. This includes a global restructuring of the compiler-dependent and platform-dependent include files. These changes may affect the existing platform-dependent configuration files on some hosts. Lv Zheng. The current C library configuration options appear below. For any issues, it may be helpful to examine the existing compiler-dependent and platform-dependent files as examples. Lv Zheng. 1) Linux kernel: ACPI_USE_STANDARD_HEADERS=n in order not to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=y in order not to use ACPICA mini C library. 2) Unix/Windows/BSD applications: ACPI_USE_STANDARD_HEADERS=y in order to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=y in order not to use ACPICA mini C library. 3) UEFI applications: ACPI_USE_STANDARD_HEADERS=n in order not to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=n in order to use ACPICA mini C library. 4) UEFI applications (EDK2/StdLib): ACPI_USE_STANDARD_HEADERS=y in order to use EDK2 StdLib C library. ACPI_USE_SYSTEM_CLIBRARY=y in order to use EDK2 StdLib C library. AML interpreter: "module-level code" support. Allows for execution of so- called "executable" AML code (math/logical operations, etc.) outside of control methods not just at the module level (top level) but also within any scope declared outside of a control method - Scope{}, Device{}, Processor{}, PowerResource{}, and ThermalZone{}. Lv Zheng. Simplified the configuration of the "maximum AML loops" global option by adding a global public variable, "AcpiGbl_MaxLoopIterations" which can be modified at runtime. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 139.1K Code, 22.9K Data, 162.0K Total Debug Version: 199.0K Code, 81.8K Data, 280.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Add full support for the RASF ACPI table (RAS Features Table). Includes disassembler, data table compiler, and header support. iASL Expand "module-level code" support. Allows for compilation/disassembly of so-called "executable" AML code (math/logical operations, etc.) outside of control methods not just at the module level (top level) but also within any scope declared outside of a control method - Scope{}, Device{}, Processor{}, PowerResource{}, and ThermalZone{}. AcpiDump: Added support for dumping all SSDTs on newer versions of Windows. These tables are now easily available -- SSDTs are not available through the registry on older versions. ---------------------------------------- 27 May 2016. Summary of changes for version 20160527: 1) ACPICA kernel-resident subsystem: Temporarily reverted the new arbitrary bit length/alignment support in AcpiHwRead/AcpiHwWrite for the Generic Address Structure. There have been a number of regressions with the new code that need to be fully resolved and tested before this support can be finally integrated into ACPICA. Apologies for any inconveniences these issues may have caused. The ACPI message macros are not configurable (ACPI_MSG_ERROR, ACPI_MSG_EXCEPTION, ACPI_MSG_WARNING, ACPI_MSG_INFO, ACPI_MSG_BIOS_ERROR, and ACPI_MSG_BIOS_WARNING). Lv Zheng. Fixed a couple of GCC warnings associated with the use of the -Wcast-qual option. Adds a new return macro, return_STR. Junk-uk Kim. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 136.8K Code, 51.6K Data, 188.4K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total Previous Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 200.9K Code, 82.2K Data, 283.1K Total ---------------------------------------- 22 April 2016. Summary of changes for version 20160422: 1) ACPICA kernel-resident subsystem: Fixed a regression in the GAS (generic address structure) arbitrary bit support in AcpiHwRead/AcpiHwWrite. Problem could cause incorrect behavior and incorrect return values. Lv Zheng. ACPICA BZ 1270. ACPI 6.0: Added support for new/renamed resource macros. One new argument was added to each of these macros, and the original name has been deprecated. The AML disassembler will always disassemble to the new names. Support for the new macros was added to iASL, disassembler, resource manager, and the acpihelp utility. ACPICA BZ 1274. I2cSerialBus -> I2cSerialBusV2 SpiSerialBus -> SpiSerialBusV2 UartSerialBus -> UartSerialBusV2 ACPI 6.0: Added support for a new integer field that was appended to the package object returned by the _BIX method. This adds iASL compile-time and AML runtime error checking. ACPICA BZ 1273. ACPI 6.1: Added support for a new PCCT subtable, "HW-Reduced Comm Subspace Type2" (Headers, Disassembler, and data table compiler). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total Previous Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented an ASL grammar extension to allow/enable executable "module-level code" to be created and executed under the various operators that create new scopes. This type of AML code is already supported in all known AML interpreters, and the grammar change will appear in the next version of the ACPI specification. Simplifies the conditional runtime creation of named objects under these object types: Device PowerResource Processor Scope ThermalZone iASL: Implemented a new ASL extension, a "For" loop macro to add greater ease-of-use to the ASL language. The syntax is similar to the corresponding C operator, and is implemented with the existing AML While opcode -- thus requiring no changes to existing AML interpreters. For (Initialize, Predicate, Update) {TermList} Grammar: ForTerm := For ( Initializer // Nothing | TermArg => ComputationalData Predicate // Nothing | TermArg => ComputationalData Update // Nothing | TermArg => ComputationalData ) {TermList} iASL: The _HID/_ADR detection and validation has been enhanced to search under conditionals in order to allow these objects to be conditionally created at runtime. iASL: Fixed several issues with the constant folding feature. The improvement allows better detection and resolution of statements that can be folded at compile time. ACPICA BZ 1266. iASL/Disassembler: Fixed a couple issues with the Else{If{}...} conversion to the ASL ElseIf operator where incorrect ASL code could be generated. iASL/Disassembler: Fixed a problem with the ASL+ code disassembly where sometimes an extra (and extraneous) set of parentheses were emitted for some combinations of operators. Although this did not cause any problems with recompilation of the disassembled code, it made the code more difficult to read. David Box. ACPICA BZ 1231. iASL: Changed to ignore the unreferenced detection for predefined names of resource descriptor elements, when the resource descriptor is created/defined within a control method. iASL: Disassembler: Fix a possible fault with externally declared Buffer objects. ---------------------------------------- 18 March 2016. Summary of changes for version 20160318: 1) ACPICA kernel-resident subsystem: Added support for arbitrary bit lengths and bit offsets for registers defined by the Generic Address Structure. Previously, only aligned bit lengths of 8/16/32/64 were supported. This was sufficient for many years, but recently some machines have been seen that require arbitrary bit- level support. ACPICA BZ 1240. Lv Zheng. Fixed an issue where the \_SB._INI method sometimes must be evaluated before any _REG methods are evaluated. Lv Zheng. Implemented several changes related to ACPI table support (Headers/Disassembler/TableCompiler): NFIT: For ACPI 6.1, updated to add some additional new fields and constants. FADT: Updated a warning message and set compliance to ACPI 6.1 (Version 6). DMAR: Added new constants per the 10/2014 DMAR spec. IORT: Added new subtable per the 10/2015 IORT spec. HEST: For ACPI 6.1, added new constants and new subtable. DBG2: Added new constants per the 12/2015 DBG2 spec. FPDT: Fixed several incorrect fields, add the FPDT boot record structure. ACPICA BZ 1249. ERST/EINJ: Updated disassembler with new "Execute Timings" actions. Updated header support for the DMAR table to match the current version of the related spec. Added extensions to the ASL Concatenate operator to allow any ACPI object to be passed as an operand. Any object other than Integer/String/Buffer simply returns a string containing the object type. This extends the usefulness of the Printf macros. Previously, Concatenate would abort the control method if a non-data object was encountered. ACPICA source code: Deployed the C "const" keyword across the source code where appropriate. ACPICA BZ 732. Joerg Sonnenberger (NetBSD). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total Previous Release: Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Improved the heuristic used to determine the number of arguments for an externally defined control method (a method in another table). Although this is an improvement, there is no deterministic way to "guess" the number of method arguments. Only the ACPI 6.0 External opcode will completely solve this problem as it is deployed (automatically) in newer BIOS code. iASL/Disassembler: Fixed an ordering issue for emitted External() ASL statements that could cause errors when the disassembled file is compiled. ACPICA BZ 1243. David Box. iASL: Fixed a regression caused by the merger of the two versions of the local strtoul64. Because of a dependency on a global variable, strtoul64 could return an error for integers greater than a 32-bit value. ACPICA BZ 1260. iASL: Fixed a regression where a fault could occur for an ASL Return statement if it invokes a control method that is not resolved. ACPICA BZ 1264. AcpiXtract: Improved input file validation: detection of binary files and non-acpidump text files. ---------------------------------------- 12 February 2016. Summary of changes for version 20160212: 1) ACPICA kernel-resident subsystem: Implemented full support for the ACPI 6.1 specification (released in January). This version of the specification is available at: http://www.uefi.org/specifications Only a relatively small number of changes were required in ACPICA to support ACPI 6.1, in these areas: - New predefined names - New _HID values - A new subtable for HEST - A few other header changes for new values Ensure \_SB_._INI is executed before any _REG methods are executed. There appears to be existing BIOS code that relies on this behavior. Lv Zheng. Reverted a change made in version 20151218 which enabled method invocations to be targets of various ASL operators (SuperName and Target grammar elements). While the new behavior is supported by the ACPI specification, other AML interpreters do not support this behavior and never will. The ACPI specification will be updated for ACPI 6.2 to remove this support. Therefore, the change was reverted to the original ACPICA behavior. ACPICA now supports the GCC 6 compiler. Current Release: (Note: build changes increased sizes) Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total Previous Release: Non-Debug Version: 102.7K Code, 28.4K Data, 131.1K Total Debug Version: 200.4K Code, 81.9K Data, 282.3K Total 2) iASL Compiler/Disassembler and Tools: Completed full support for the ACPI 6.0 External() AML opcode. The compiler emits an external AML opcode for each ASL External statement. This opcode is used by the disassembler to assist with the disassembly of external control methods by specifying the required number of arguments for the method. AML interpreters do not use this opcode. To ensure that interpreters do not even see the opcode, a block of one or more external opcodes is surrounded by an "If(0)" construct. As this feature becomes commonly deployed in BIOS code, the ability of disassemblers to correctly disassemble AML code will be greatly improved. David Box. iASL: Implemented support for an optional cross-reference output file. The -lx option will create a the cross-reference file with the suffix "xrf". Three different types of cross-reference are created in this file: - List of object references made from within each control method - Invocation (caller) list for each user-defined control method - List of references to each non-method object in the namespace iASL: Method invocations as ASL Target operands are now disallowed and flagged as errors in preparation for ACPI 6.2 (see the description of the problem above). ---------------------------------------- 8 January 2016. Summary of changes for version 20160108: 1) ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2016: Added the 2016 copyright to all source code module headers and utility/tool signons. This includes the standard Linux dual-license header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the ACPICA test suite. Fixed a regression introduced in version 20151218 concerning the execution of so-called module-level ASL/AML code. Namespace objects created under a module-level If() construct were not properly/fully entered into the namespace and could cause an interpreter fault when accessed. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.7K Code, 28.4K Data, 131.1K Total Debug Version: 200.4K Code, 81.9K Data, 282.4K Total Previous Release: Non-Debug Version: 102.6K Code, 28.4K Data, 131.0K Total Debug Version: 200.3K Code, 81.9K Data, 282.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the compilation of the GpioIo and GpioInt resource descriptors. The _PIN field name was incorrectly defined to be an array of 32-bit values, but the _PIN values are in fact 16 bits each. This would cause incorrect bit width warnings when using Word (16-bit) fields to access the descriptors. ---------------------------------------- 18 December 2015. Summary of changes for version 20151218: 1) ACPICA kernel-resident subsystem: Implemented per-AML-table execution of "module-level code" as individual ACPI tables are loaded into the namespace during ACPICA initialization. In other words, any module-level code within an AML table is executed immediately after the table is loaded, instead of batched and executed after all of the tables have been loaded. This provides compatibility with other ACPI implementations. ACPICA BZ 1219. Bob Moore, Lv Zheng, David Box. To fully support the feature above, the default operation region handlers for the SystemMemory, SystemIO, and PCI_Config address spaces are now installed before any ACPI tables are loaded. This enables module-level code to access these address spaces during the table load and module- level code execution phase. ACPICA BZ 1220. Bob Moore, Lv Zheng, David Box. Implemented several changes to the internal _REG support in conjunction with the changes above. Also, changes to the AcpiExec/AcpiNames/Examples utilities for the changes above. Although these tools were changed, host operating systems that simply use the default handlers for SystemMemory, SystemIO, and PCI_Config spaces should not require any update. Lv Zheng. For example, in the code below, DEV1 is conditionally added to the namespace by the DSDT via module-level code that accesses an operation region. The SSDT references DEV1 via the Scope operator. DEV1 must be created immediately after the DSDT is loaded in order for the SSDT to successfully reference DEV1. Previously, this code would cause an AE_NOT_EXIST exception during the load of the SSDT. Now, this code is fully supported by ACPICA. DefinitionBlock ("", "DSDT", 2, "Intel", "DSDT1", 1) { OperationRegion (OPR1, SystemMemory, 0x400, 32) Field (OPR1, AnyAcc, NoLock, Preserve) { FLD1, 1 } If (FLD1) { Device (\DEV1) { } } } DefinitionBlock ("", "SSDT", 2, "Intel", "SSDT1", 1) { External (\DEV1, DeviceObj) Scope (\DEV1) { } } Fixed an AML interpreter problem where control method invocations were not handled correctly when the invocation was itself a SuperName argument to another ASL operator. In these cases, the method was not invoked. ACPICA BZ 1002. Affects the following ASL operators that have a SuperName argument: Store Acquire, Wait CondRefOf, RefOf Decrement, Increment Load, Unload Notify Signal, Release, Reset SizeOf Implemented automatic String-to-ObjectReference conversion support for packages returned by predefined names (such as _DEP). A common BIOS error is to add double quotes around an ObjectReference namepath, which turns the reference into an unexpected string object. This support detects the problem and corrects it before the package is returned to the caller that invoked the method. Lv Zheng. Implemented extensions to the Concatenate operator. Concatenate now accepts any type of object, it is not restricted to simply Integer/String/Buffer. For objects other than these 3 basic data types, the argument is treated as a string containing the name of the object type. This expands the utility of Concatenate and the Printf/Fprintf macros. ACPICA BZ 1222. Cleaned up the output of the ASL Debug object. The timer() value is now optional and no longer emitted by default. Also, the basic data types of Integer/String/Buffer are simply emitted as their values, without a data type string -- since the data type is obvious from the output. ACPICA BZ 1221. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.6K Code, 28.4K Data, 131.0K Total Debug Version: 200.3K Code, 81.9K Data, 282.3K Total Previous Release: Non-Debug Version: 102.0K Code, 28.3K Data, 130.3K Total Debug Version: 199.6K Code, 81.8K Data, 281.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed some issues with the ASL Include() operator. This operator was incorrectly defined in the iASL parser rules, causing a new scope to be opened for the code within the include file. This could lead to several issues, including allowing ASL code that is technically illegal and not supported by AML interpreters. Note, this does not affect the related #include preprocessor operator. ACPICA BZ 1212. iASL/Disassembler: Implemented support for the ASL ElseIf operator. This operator is essentially an ASL macro since there is no AML opcode associated with it. The code emitted by the iASL compiler for ElseIf is an Else opcode followed immediately by an If opcode. The disassembler will now emit an ElseIf if it finds an Else immediately followed by an If. This simplifies the decoded ASL, especially for deeply nested If..Else and large Switch constructs. Thus, the disassembled code more closely follows the original source ASL. ACPICA BZ 1211. Example: Old disassembly: Else { If (Arg0 == 0x02) { Local0 = 0x05 } } New disassembly: ElseIf (Arg0 == 0x02) { Local0 = 0x05 } AcpiExec: Added support for the new module level code behavior and the early region installation. This required a small change to the initialization, since AcpiExec must install its own operation region handlers. AcpiExec: Added support to make the debug object timer optional. Default is timer disabled. This cleans up the debug object output -- the timer data is rarely used. AcpiExec: Multiple ACPI tables are now loaded in the order that they appear on the command line. This can be important when there are interdependencies/references between the tables. iASL/Templates. Add support to generate template files with multiple SSDTs within a single output file. Also added ommand line support to specify the number of SSDTs (in addition to a single DSDT). ACPICA BZ 1223, 1225. ---------------------------------------- 24 November 2015. Summary of changes for version 20151124: 1) ACPICA kernel-resident subsystem: Fixed a possible regression for a previous update to FADT handling. The FADT no longer has a fixed table ID, causing some issues with code that was hardwired to a specific ID. Lv Zheng. Fixed a problem where the method auto-serialization could interfere with the current SyncLevel. This change makes the auto-serialization support transparent to the SyncLevel support and management. Removed support for the _SUB predefined name in AcpiGetObjectInfo. This interface is intended for early access to the namespace during the initial namespace device discovery walk. The _SUB method has been seen to access operation regions in some cases, causing errors because the operation regions are not fully initialized. AML Debugger: Fixed some issues with the terminate/quit/exit commands that can cause faults. Lv Zheng. AML Debugger: Add thread ID support so that single-step mode only applies to the AML Debugger thread. This prevents runtime errors within some kernels. Lv Zheng. Eliminated extraneous warnings from AcpiGetSleepTypeData. Since the _Sx methods that are invoked by this interface are optional, removed warnings emitted for the case where one or more of these methods do not exist. ACPICA BZ 1208, original change by Prarit Bhargava. Made a major pass through the entire ACPICA source code base to standardize formatting that has diverged a bit over time. There are no functional changes, but this will of course cause quite a few code differences from the previous ACPICA release. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.0K Code, 28.3K Data, 130.3K Total Debug Version: 199.6K Code, 81.8K Data, 281.4K Total Previous Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.3K Code, 81.4K Data, 280.7K Total 2) iASL Compiler/Disassembler and Tools: iASL/acpiexec/acpixtract/disassembler: Added support to allow multiple definition blocks within a single ASL file and the resulting AML file. Support for this type of file was also added to the various tools that use binary AML files: acpiexec, acpixtract, and the AML disassembler. The example code below shows two definition blocks within the same file: DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x12345678) { } DefinitionBlock ("", "SSDT", 2, "Intel", "Template", 0xABCDEF01) { } iASL: Enhanced typechecking for the Name() operator. All expressions for the value of the named object must be reduced/folded to a single constant at compile time, as per the ACPI specification (the AML definition of Name()). iASL: Fixed some code indentation issues for the -ic and -ia options (C and assembly headers). Now all emitted code correctly begins in column 1. iASL: Added an error message for an attempt to open a Scope() on an object defined in an SSDT. The DSDT is always loaded into the namespace first, so any attempt to open a Scope on an SSDT object will fail at runtime. ---------------------------------------- 30 September 2015. Summary of changes for version 20150930: 1) ACPICA kernel-resident subsystem: Debugger: Implemented several changes and bug fixes to assist support for the in-kernel version of the AML debugger. Lv Zheng. - Fix the "predefined" command for in-kernel debugger. - Do not enter debug command loop for the help and version commands. - Disallow "execute" command during execution/single-step of a method. Interpreter: Updated runtime typechecking for all operators that have target operands. The operand is resolved and validated that it is legal. For example, the target cannot be a non-data object such as a Device, Mutex, ThermalZone, etc., as per the ACPI specification. Debugger: Fixed the double-mutex user I/O handshake to work when local deadlock detection is enabled. Debugger: limited display of method locals and arguments (LocalX and ArgX) to only those that have actually been initialized. This prevents lines of extraneous output. Updated the definition of the NFIT table to correct the bit polarity of one flag: ACPI_NFIT_MEM_ARMED --> ACPI_NFIT_MEM_NOT_ARMED Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.3K Code, 81.4K Data, 280.7K Total Previous Release: Non-Debug Version: 101.3K Code, 27.7K Data, 129.0K Total Debug Version: 198.6K Code, 80.9K Data, 279.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Improved the compile-time typechecking for operands of many of the ASL operators: -- Added an option to disable compiler operand/operator typechecking (- ot). -- For the following operators, the TermArg operands are now validated when possible to be Integer data objects: BankField, OperationRegion, DataTableRegion, Buffer, and Package. -- Store (Source, Target): Both the source and target operands are resolved and checked that the operands are both legal. For example, neither operand can be a non-data object such as a Device, Mutex, ThermalZone, etc. Note, as per the ACPI specification, the CopyObject operator can be used to store an object to any type of target object. -- Store (Source, Target): If the source is a Package object, the target must be a Package object, LocalX, ArgX, or Debug. Likewise, if the target is a Package, the source must also be a Package. -- Store (Source, Target): A warning is issued if the source and target resolve to the identical named object. -- Store (Source, ): An error is generated for the target method invocation, as this construct is not supported by the AML interpreter. -- For all ASL math and logic operators, the target operand must be a data object (Integer, String, Buffer, LocalX, ArgX, or Debug). This includes the function return value also. -- External declarations are also included in the typechecking where possible. External objects defined using the UnknownObj keyword cannot be typechecked, however. iASL and Disassembler: Added symbolic (ASL+) support for the ASL Index operator: - Legacy code: Index(PKG1, 3) - New ASL+ code: PKG1[3] This completes the ACPI 6.0 ASL+ support as it was the only operator not supported. iASL: Fixed the file suffix for the preprocessor output file (.i). Two spaces were inadvertently appended to the filename, causing file access and deletion problems on some systems. ASL Test Suite (ASLTS): Updated the master makefile to generate all possible compiler output files when building the test suite -- thus exercising these features of the compiler. These files are automatically deleted when the test suite exits. ---------------------------------------- 18 August 2015. Summary of changes for version 20150818: 1) ACPICA kernel-resident subsystem: Fix a regression for AcpiGetTableByIndex interface causing it to fail. Lv Zheng. ACPICA BZ 1186. Completed development to ensure that the ACPICA Disassembler and Debugger are fully standalone components of ACPICA. Removed cross-component dependences. Lv Zheng. The max-number-of-AML-loops is now runtime configurable (previously was compile-time only). This is essentially a loop timeout to force-abort infinite AML loops. ACPCIA BZ 1192. Debugger: Cleanup output to dump ACPI names and namepaths without any trailing underscores. Lv Zheng. ACPICA BZ 1135. Removed unnecessary conditional compilations across the Debugger and Disassembler components where entire modules could be left uncompiled. The aapits test is deprecated and has been removed from the ACPICA git tree. The test has never been completed and has not been maintained, thus becoming rather useless. ACPICA BZ 1015, 794. A batch of small changes to close bugzilla and other reports: - Remove duplicate code for _PLD processing. ACPICA BZ 1176. - Correctly cleanup after a ACPI table load failure. ACPICA BZ 1185. - iASL: Support POSIX yacc again in makefile. Jung-uk Kim. - ACPI table support: general cleanup and simplification. Lv Zheng, Bob Moore. - ACPI table support: fix for a buffer read overrun in AcpiTbFindTable. ACPICA BZ 1184. - Enhance parameter validation for DataTableRegion and LoadTable ASL/AML operators. - Debugger: Split debugger initialization/termination interfaces. Lv Zheng. - AcpiExec: Emit OemTableId for SSDTs during the load phase for table identification. - AcpiExec: Add debug message during _REG method phase during table load/init. - AcpiNames: Fix a regression where some output was missing and no longer emitted. - Debugger: General cleanup and simplification. Lv Zheng. - Disassembler: Cleanup use of several global option variables. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 101.3K Code, 27.7K Data, 129.0K Total Debug Version: 198.6K Code, 80.9K Data, 279.5K Total Previous Release: Non-Debug Version: 100.9K Code, 24.5K Data, 125.4K Total Debug Version: 197.8K Code, 81.5K Data, 279.3K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Fixed a problem where any more than 32 ACPI tables in the XSDT were not handled properly and caused load errors. Now, properly invoke and use the ACPICA auto-reallocate mechanism for ACPI table data structures. ACPICA BZ 1188 AcpiNames: Add command-line wildcard support for ACPI table files. ACPICA BZ 1190. AcpiExec and AcpiNames: Add -l option to load ACPI tables only. For AcpiExec, this means that no control methods (like _REG/_INI/_STA) are executed during initialization. ACPICA BZ 1187, 1189. iASL/Disassembler: Implemented a prototype "listing" mode that emits AML that corresponds to each disassembled ASL statement, to simplify debugging. ACPICA BZ 1191. Debugger: Add option to the "objects" command to display a summary of the current namespace objects (Object type and count). This is displayed if the command is entered with no arguments. AcpiNames: Add -x option to specify debug level, similar to AcpiExec. ---------------------------------------- 17 July 2015. Summary of changes for version 20150717: 1) ACPICA kernel-resident subsystem: Improved the partitioning between the Debugger and Disassembler components. This allows the Debugger to be used standalone within kernel code without the Disassembler (which is used for single stepping also). This renames and moves one file, dmobject.c to dbobject.c. Lv Zheng. Debugger: Implemented a new command to trace the execution of control methods (Trace). This is especially useful for the in-kernel version of the debugger when file I/O may not be available for method trace output. See the ACPICA reference for more information. Lv Zheng. Moved all C library prototypes (used for the local versions of these functions when requested) to a new header, acclib.h Cleaned up the use of non-ANSI C library functions. These functions are implemented locally in ACPICA. Moved all such functions to a common source file, utnonansi.c Debugger: Fixed a problem with the "!!" command (get last command executed) where the debugger could enter an infinite loop and eventually crash. Removed the use of local macros that were used for some of the standard C library functions to automatically cast input parameters. This mostly affected the is* functions where the input parameter is defined to be an int. This required a few modifications to the main ACPICA source code to provide casting for these functions and eliminate possible compiler warnings for these parameters. Across the source code, added additional status/error checking to resolve issues discovered by static source code analysis tools such as Coverity. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 100.9K Code, 24.5K Data, 125.4K Total Debug Version: 197.8K Code, 81.5K Data, 279.3K Total Previous Release: Non-Debug Version: 100.6K Code, 27.6K Data, 128.2K Total Debug Version: 196.2K Code, 81.0K Data, 277.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a regression where the device map file feature no longer worked properly when used in conjunction with the disassembler. It only worked properly with the compiler itself. iASL: Implemented a new warning for method LocalX variables that are set but never used (similar to a C compiler such as gcc). This also applies to ArgX variables that are not defined by the parent method, and are instead (legally) used as local variables. iASL/Preprocessor: Finished the pass-through of line numbers from the preprocessor to the compiler. This ensures that compiler errors/warnings have the correct original line numbers and filenames, regardless of any #include files. iASL/Preprocessor: Fixed a couple of issues with comment handling and the pass-through of comments to the preprocessor output file (which becomes the compiler input file). Also fixed a problem with // comments that appear after a math expression. iASL: Added support for the TCPA server table to the table compiler and template generator. (The client table was already previously supported) iASL/Preprocessor: Added a permanent #define of the symbol "__IASL__" to identify the iASL compiler. Cleaned up the use of the macros NEGATIVE and POSITIVE which were defined multiple times. The new names are ACPI_SIGN_NEGATIVE and ACPI_SIGN_POSITIVE. AcpiHelp: Update to expand help messages for the iASL preprocessor directives. ---------------------------------------- 19 June 2015. Summary of changes for version 20150619: Two regressions in version 20150616 have been addressed: Fixes some problems/issues with the C library macro removal (ACPI_STRLEN, etc.) This update changes ACPICA to only use the standard headers for functions, or the prototypes for the local versions of the C library functions. Across the source code, this required some additional casts for some Clib invocations for portability. Moved all local prototypes to a new file, acclib.h Fixes several problems with recent changes to the handling of the FACS table that could cause some systems not to boot. ---------------------------------------- 16 June 2015. Summary of changes for version 20150616: 1) ACPICA kernel-resident subsystem: Across the entire ACPICA source code base, the various macros for the C library functions (such as ACPI_STRLEN, etc.) have been removed and replaced by the standard C library names (strlen, etc.) The original purpose for these macros is no longer applicable. This simplification reduces the number of macros used in the ACPICA source code significantly, improving readability and maintainability. Implemented support for a new ACPI table, the OSDT. This table, the "override" SDT, can be loaded directly by the host OS at boot time. It enables the replacement of existing namespace objects that were installed via the DSDT and/or SSDTs. The primary purpose for this is to replace buggy or incorrect ASL/AML code obtained via the BIOS. The OSDT is slated for inclusion in a future version of the ACPI Specification. Lv Zheng/Bob Moore. Added support for systems with (improperly) two FACS tables -- a "32-bit" table (via FADT 32-bit legacy field) and a "64-bit" table (via the 64-bit X field). This change will support both automatically. There continues to be systems found with this issue. This support requires a change to the AcpiSetFirmwareWakingVector interface. Also, a public global variable has been added to allow the host to select which FACS is desired (AcpiGbl_Use32BitFacsAddresses). See the ACPICA reference for more details Lv Zheng. Added a new feature to allow for systems that do not contain an FACS. Although this is already supported on hardware-reduced platforms, the feature has been extended for all platforms. The reasoning is that we do not want to abort the entire ACPICA initialization just because the system is seriously buggy and has no FACS. Fixed a problem where the GUID strings for NFIT tables (in acuuid.h) were not correctly transcribed from the ACPI specification in ACPICA version 20150515. Implemented support for the _CLS object in the AcpiGetObjectInfo external interface. Updated the definitions of the TCPA and TPM2 ACPI tables to the more recent TCG ACPI Specification, December 14, 2014. Table disassembler and compiler also updated. Note: The TCPA "server" table is not supported by the disassembler/table-compiler at this time. ACPI 6.0: Added definitions for the new GIC version field in the MADT. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 100.6K Code, 27.6K Data, 128.2K Total Debug Version: 196.2K Code, 81.0K Data, 277.2K Total Previous Release: Non-Debug Version: 99.9K Code, 27.5K Data, 127.4K Total Debug Version: 195.2K Code, 80.8K Data, 276.0K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the new symbolic operator disassembler where incorrect ASL code could be emitted in some cases for the "non- commutative" operators -- Subtract, Divide, Modulo, ShiftLeft, and ShiftRight. The actual problem cases seem to be rather unusual in common ASL code, however. David Box. Modified the linux version of acpidump to obtain ACPI tables from not just /dev/mem (which may not exist) and /sys/firmware/acpi/tables. Lv Zheng. iASL: Fixed a problem where the user preprocessor output file (.i) contained extra data that was not expected. The compiler was using this file as a temporary file and passed through #line directives in order to keep compiler error messages in sync with the input file and line number across multiple include files. The (.i) is no longer a temporary file as the compiler uses a new, different file for the original purpose. iASL: Fixed a problem where comments within the original ASL source code file were not passed through to the preprocessor output file, nor any listing files. iASL: Fixed some issues for the handling of the "#include" preprocessor directive and the similar (but not the same) "Include" ASL operator. iASL: Add support for the new OSDT in both the disassembler and compiler. iASL: Fixed a problem with the constant folding support where a Buffer object could be incorrectly generated (incorrectly formed) during a conversion to a Store() operator. AcpiHelp: Updated for new NFIT GUIDs, "External" AML opcode, and new description text for the _REV predefined name. _REV now permanently returns 2, as per the ACPI 6.0 specification. Debugger: Enhanced the output of the Debug ASL object for references produced by the Index operator. For Buffers and strings, only output the actual byte pointed to by the index. For packages, only print the single package element decoded by the index. Previously, the entire buffer/string/package was emitted. iASL/Table-compiler: Fixed a regression where the "generic" data types were no longer recognized, causing errors. ---------------------------------------- 15 May 2015. Summary of changes for version 20150515: This release implements most of ACPI 6.0 as described below. 1) ACPICA kernel-resident subsystem: Implemented runtime argument checking and return value checking for all new ACPI 6.0 predefined names. This includes: _BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 99.9K Code, 27.5K Data, 127.4K Total Debug Version: 195.2K Code, 80.8K Data, 276.0K Total Previous Release: Non-Debug Version: 99.1K Code, 27.3K Data, 126.4K Total Debug Version: 192.8K Code, 79.9K Data, 272.7K Total 2) iASL Compiler/Disassembler and Tools: iASL compiler: Added compile-time support for all new ACPI 6.0 predefined names (argument count validation and return value typechecking.) iASL disassembler and table compiler: implemented support for all new ACPI 6.0 tables. This includes: DRTM, IORT, LPIT, NFIT, STAO, WPBT, XENV. iASL disassembler and table compiler: Added ACPI 6.0 changes to existing tables: FADT, MADT. iASL preprocessor: Added a new directive to enable inclusion of binary blobs into ASL code. The new directive is #includebuffer. It takes a binary file as input and emits a named ascii buffer object into the ASL code. AcpiHelp: Added support for all new ACPI 6.0 predefined names. AcpiHelp: Added a new option, -d, to display all iASL preprocessor directives. AcpiHelp: Added a new option, -t, to display all known/supported ACPI tables. ---------------------------------------- 10 April 2015. Summary of changes for version 20150410: Reverted a change introduced in version 20150408 that caused a regression in the disassembler where incorrect operator symbols could be emitted. ---------------------------------------- 08 April 2015. Summary of changes for version 20150408: 1) ACPICA kernel-resident subsystem: Permanently set the return value for the _REV predefined name. It now returns 2 (was 5). This matches other ACPI implementations. _REV will be deprecated in the future, and is now defined to be 1 for ACPI 1.0, and 2 for ACPI 2.0 and later. It should never be used to differentiate or identify operating systems. Added the "Windows 2015" string to the _OSI support. ACPICA will now return TRUE to a query with this string. Fixed several issues with the local version of the printf function. Added the C99 compiler option (-std=c99) to the Unix makefiles. Current Release: Non-Debug Version: 99.9K Code, 27.4K Data, 127.3K Total Debug Version: 195.2K Code, 80.7K Data, 275.9K Total Previous Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented an enhancement to the constant folding feature to transform the parse tree to a simple Store operation whenever possible: Add (2, 3, X) ==> is converted to: Store (5, X) X = 2 + 3 ==> is converted to: Store (5, X) Updated support for the SLIC table (Software Licensing Description Table) in both the Data Table compiler and the disassembler. The SLIC table support now conforms to "Microsoft Software Licensing Tables (SLIC and MSDM). November 29, 2011. Copyright 2011 Microsoft". Note: Any SLIC data following the ACPI header is now defined to be "Proprietary Data", and as such, can only be entered or displayed as a hex data block. Implemented full support for the MSDM table as described in the document above. Note: The format of MSDM is similar to SLIC. Any MSDM data following the ACPI header is defined to be "Proprietary Data", and can only be entered or displayed as a hex data block. Implemented the -Pn option for the iASL Table Compiler (was only implemented for the ASL compiler). This option disables the iASL preprocessor. Disassembler: For disassembly of Data Tables, added a comment field around the Ascii equivalent data that is emitted as part of the "Raw Table Data" block. This prevents the iASL Preprocessor from possible confusion if/when the table is compiled. Disassembler: Added an option (-df) to force the disassembler to assume that the table being disassembled contains valid AML. This feature is useful for disassembling AML files that contain ACPI signatures other than DSDT or SSDT (such as OEMx or other signatures). Changes for the EFI version of the tools: 1) Fixed a build error/issue 2) Fixed a cast warning iASL: Fixed a path issue with the __FILE__ operator by making the directory prefix optional within the internal SplitInputFilename function. Debugger: Removed some unused global variables. Tests: Updated the makefile for proper generation of the AAPITS suite. ---------------------------------------- 04 February 2015. Summary of changes for version 20150204: ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2014. Added the 2014 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Events: Introduce ACPI_GPE_DISPATCH_RAW_HANDLER to fix GPE storm issues. A raw gpe handling mechanism was created to allow better handling of GPE storms that aren't easily managed by the normal handler. The raw handler allows disabling/renabling of the the GPE so that interrupt storms can be avoided in cases where events cannot be timely serviced. In this scenario, handlers should use the AcpiSetGpe() API to disable/enable the GPE. This API will leave the reference counts undisturbed, thereby preventing unintentional clearing of the GPE when the intent in only to temporarily disable it. Raw handlers allow enabling and disabling of a GPE by removing GPE register locking. As such, raw handlers much provide their own locks while using GPE API's to protect access to GPE data structures. Lv Zheng Events: Always modify GPE registers under the GPE lock. Applies GPE lock around AcpiFinishGpe() to protect access to GPE register values. Reported as bug by joe.liu@apple.com. Unix makefiles: Separate option to disable optimizations and _FORTIFY_SOURCE. This change removes the _FORTIFY_SOURCE flag from the NOOPT disable option and creates a separate flag (NOFORTIFY) for this purpose. Some toolchains may define _FORTIFY_SOURCE which leads redefined errors when building ACPICA. This allows disabling the option without also having to disable optimazations. David Box Current Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.2K Code, 82.4K Data, 281.6K Total -- -------------------------------------- 07 November 2014. Summary of changes for version 20141107: This release is available at https://acpica.org/downloads This release introduces and implements language extensions to ASL that provide support for symbolic ("C-style") operators and expressions. These language extensions are known collectively as ASL+. 1) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with disassembly of the UartSerialBus macro. Changed "StopBitsNone" to the correct "StopBitsZero". David E. Box. Disassembler: Fixed the Unicode macro support to add escape sequences. All non-printable ASCII values are emitted as escape sequences, as well as the standard escapes for quote and backslash. Ensures that the disassembled macro can be correctly recompiled. iASL: Added Printf/Fprintf macros for formatted output. These macros are translated to existing AML Concatenate and Store operations. Printf writes to the ASL Debug object. Fprintf allows the specification of an ASL name as the target. Only a single format specifier is required, %o, since the AML interpreter dynamically converts objects to the required type. David E. Box. (old) Store (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate ("", Arg0), ": Unexpected value for "), Arg1), ", "), Arg2), " at line "), Arg3), Debug) (new) Printf ("%o: Unexpected value for %o, %o at line %o", Arg0, Arg1, Arg2, Arg3) (old) Store (Concatenate (Concatenate (Concatenate (Concatenate ("", Arg1), ": "), Arg0), " Successful"), STR1) (new) Fprintf (STR1, "%o: %o Successful", Arg1, Arg0) iASL: Added debug options (-bp, -bt) to dynamically prune levels of the ASL parse tree before the AML code is generated. This allows blocks of ASL code to be removed in order to help locate and identify problem devices and/or code. David E. Box. AcpiExec: Added support (-fi) for an optional namespace object initialization file. This file specifies initial values for namespace objects as necessary for debugging and testing different ASL code paths that may be taken as a result of BIOS options. 2) Overview of symbolic operator support for ASL (ASL+) ------------------------------------------------------- As an extension to the ASL language, iASL implements support for symbolic (C-style) operators for math and logical expressions. This can greatly simplify ASL code as well as improve both readability and maintainability. These language extensions can exist concurrently with all legacy ASL code and expressions. The symbolic extensions are 100% compatible with existing AML interpreters, since no new AML opcodes are created. To implement the extensions, the iASL compiler transforms the symbolic expressions into the legacy ASL/AML equivalents at compile time. Full symbolic expressions are supported, along with the standard C precedence and associativity rules. Full disassembler support for the symbolic expressions is provided, and creates an automatic migration path for existing ASL code to ASL+ code via the disassembly process. By default, the disassembler now emits ASL+ code with symbolic expressions. An option (-dl) is provided to force the disassembler to emit legacy ASL code if desired. Below is the complete list of the currently supported symbolic operators with examples. See the iASL User Guide for additional information. ASL+ Syntax Legacy ASL Equivalent ----------- --------------------- // Math operators Z = X + Y Add (X, Y, Z) Z = X - Y Subtract (X, Y, Z) Z = X * Y Multiply (X, Y, Z) Z = X / Y Divide (X, Y, , Z) Z = X % Y Mod (X, Y, Z) Z = X << Y ShiftLeft (X, Y, Z) Z = X >> Y ShiftRight (X, Y, Z) Z = X & Y And (X, Y, Z) Z = X | Y Or (X, Y, Z) Z = X ^ Y Xor (X, Y, Z) Z = ~X Not (X, Z) X++ Increment (X) X-- Decrement (X) // Logical operators (X == Y) LEqual (X, Y) (X != Y) LNotEqual (X, Y) (X < Y) LLess (X, Y) (X > Y) LGreater (X, Y) (X <= Y) LLessEqual (X, Y) (X >= Y) LGreaterEqual (X, Y) (X && Y) LAnd (X, Y) (X || Y) LOr (X, Y) (!X) LNot (X) // Assignment and compound assignment operations X = Y Store (Y, X) X += Y Add (X, Y, X) X -= Y Subtract (X, Y, X) X *= Y Multiply (X, Y, X) X /= Y Divide (X, Y, , X) X %= Y Mod (X, Y, X) X <<= Y ShiftLeft (X, Y, X) X >>= Y ShiftRight (X, Y, X) X &= Y And (X, Y, X) X |= Y Or (X, Y, X) X ^= Y Xor (X, Y, X) 3) ASL+ Examples: ----------------- Legacy ASL: If (LOr (LOr (LEqual (And (R510, 0x03FB), 0x02E0), LEqual ( And (R520, 0x03FB), 0x02E0)), LOr (LEqual (And (R530, 0x03FB), 0x02E0), LEqual (And (R540, 0x03FB), 0x02E0)))) { And (MEMB, 0xFFFFFFF0, SRMB) Store (MEMB, Local2) Store (PDBM, Local1) And (PDBM, 0xFFFFFFFFFFFFFFF9, PDBM) Store (SRMB, MEMB) Or (PDBM, 0x02, PDBM) } ASL+ version: If (((R510 & 0x03FB) == 0x02E0) || ((R520 & 0x03FB) == 0x02E0) || ((R530 & 0x03FB) == 0x02E0) || ((R540 & 0x03FB) == 0x02E0)) { SRMB = (MEMB & 0xFFFFFFF0) Local2 = MEMB Local1 = PDBM PDBM &= 0xFFFFFFFFFFFFFFF9 MEMB = SRMB PDBM |= 0x02 } Legacy ASL: Store (0x1234, Local1) Multiply (Add (Add (Local1, TEST), 0x20), Local2, Local3) Multiply (Local2, Add (Add (Local1, TEST), 0x20), Local3) Add (Local1, Add (TEST, Multiply (0x20, Local2)), Local3) Store (Index (PKG1, 0x03), Local6) Store (Add (Local3, Local2), Debug) Add (Local1, 0x0F, Local2) Add (Local1, Multiply (Local2, Local3), Local2) Multiply (Add (Add (Local1, TEST), 0x20), ToBCD (Local1), Local3) ASL+ version: Local1 = 0x1234 Local3 = (((Local1 + TEST) + 0x20) * Local2) Local3 = (Local2 * ((Local1 + TEST) + 0x20)) Local3 = (Local1 + (TEST + (0x20 * Local2))) Local6 = Index (PKG1, 0x03) Debug = (Local3 + Local2) Local2 = (Local1 + 0x0F) Local2 = (Local1 + (Local2 * Local3)) Local3 = (((Local1 + TEST) + 0x20) * ToBCD (Local1)) ---------------------------------------- 26 September 2014. Summary of changes for version 20140926: 1) ACPICA kernel-resident subsystem: Updated the GPIO operation region handler interface (GeneralPurposeIo). In order to support GPIO Connection objects with multiple pins, along with the related Field objects, the following changes to the interface have been made: The Address is now defined to be the offset in bits of the field unit from the previous invocation of a Connection. It can be viewed as a "Pin Number Index" into the connection resource descriptor. The BitWidth is the exact bit width of the field. It is usually one bit, but not always. See the ACPICA reference guide (section 8.8.6.2.1) for additional information and examples. GPE support: During ACPICA/GPE initialization, ensure that all GPEs with corresponding _Lxx/_Exx methods are disabled (they may have been enabled by the firmware), so that they cannot fire until they are enabled via AcpiUpdateAllGpes. Rafael J. Wysocki. Added a new return flag for the Event/GPE status interfaces -- AcpiGetEventStatus and AcpiGetGpeStatus. The new ACPI_EVENT_FLAGS_HAS_HANDLER flag is used to indicate that the event or GPE currently has a handler associated with it, and can thus actually affect the system. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 99.1K Code, 27.3K Data, 126.4K Total Debug Version: 192.8K Code, 79.9K Data, 272.7K Total Previous Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a memory allocation/free regression introduced in 20140828 that could cause the compiler to crash. This was introduced inadvertently during the effort to eliminate compiler memory leaks. ACPICA BZ 1111, 1113. iASL: Removed two error messages that have been found to create false positives, until they can be fixed and fully validated (ACPICA BZ 1112): 1) Illegal forward reference within a method 2) Illegal reference across two methods iASL: Implemented a new option (-lm) to create a hardware mapping file that summarizes all GPIO, I2C, SPI, and UART connections. This option works for both the compiler and disassembler. See the iASL compiler user guide for additional information and examples (section 6.4.6). AcpiDump: Added support for the version 1 (ACPI 1.0) RSDP in addition to version 2. This corrects the AE_BAD_HEADER exception seen on systems with a version 1 RSDP. Lv Zheng ACPICA BZ 1097. AcpiExec: For Unix versions, don't attempt to put STDIN into raw mode unless STDIN is actually a terminal. Assists with batch-mode processing. ACPICA BZ 1114. Disassembler/AcpiHelp: Added another large group of recognized _HID values. ---------------------------------------- 28 August 2014. Summary of changes for version 20140828: 1) ACPICA kernel-resident subsystem: Fixed a problem related to the internal use of the Timer() operator where a 64-bit divide could cause an attempted link to a double-precision math library. This divide is not actually necessary, so the code was restructured to eliminate it. Lv Zheng. ACPI 5.1: Added support for the runtime validation of the _DSD package (similar to the iASL support). ACPI 5.1/Headers: Added support for the GICC affinity subtable to the SRAT table. Hanjun Guo . Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total Previous Release: Non-Debug Version: 98.7K Code, 27.3K Data, 126.0K Total1 Debug Version: 192.0K Code, 79.7K Data, 271.7K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Fixed a problem on unix systems where the original terminal state was not always properly restored upon exit. Seen when using the -v option. ACPICA BZ 1104. iASL: Fixed a problem with the validation of the ranges/length within the Memory24 resource descriptor. There was a boundary condition when the range was equal to the (length -1) caused by the fact that these values are defined in 256-byte blocks, not bytes. ACPICA BZ 1098 Disassembler: Fixed a problem with the GpioInt descriptor interrupt polarity flags. The flags are actually 2 bits, not 1, and the "ActiveBoth" keyword is now supported properly. ACPI 5.1: Added the GICC affinity subtable to the SRAT table. Supported in the disassembler, data table compiler, and table template generator. iASL: Added a requirement for Device() objects that one of either a _HID or _ADR must exist within the scope of a Device, as per the ACPI specification. Remove a similar requirement that was incorrectly in place for the _DSD object. iASL: Added error detection for illegal named references within control methods that would cause runtime failures. Now trapped as errors are: 1) References to objects within a non-parent control method. 2) Forward references (within a method) -- for control methods, AML interpreters use a one-pass parse of control methods. ACPICA BZ 1008. iASL: Added error checking for dependencies related to the _PSx power methods. ACPICA BZ 1029. 1) For _PS0, one of these must exist within the same scope: _PS1, _PS2, _PS3. 2) For _PS1, _PS2, and PS3: A _PS0 object must exist within the same scope. iASL and table compiler: Cleanup miscellaneous memory leaks by fully deploying the existing object and string caches and adding new caches for the table compiler. iASL: Split the huge parser source file into multiple subfiles to improve manageability. Generation now requires the M4 macro preprocessor, which is part of the Bison distribution on both unix and windows platforms. AcpiSrc: Fixed and removed all extraneous warnings generated during entire ACPICA source code scan and/or conversion. ---------------------------------------- 24 July 2014. Summary of changes for version 20140724: The ACPI 5.1 specification has been released and is available at: http://uefi.org/specs/access 0) ACPI 5.1 support in ACPICA: ACPI 5.1 is fully supported in ACPICA as of this release. New predefined names. Support includes iASL and runtime ACPICA validation. _CCA (Cache Coherency Attribute). _DSD (Device-Specific Data). David Box. Modifications to existing ACPI tables. Support includes headers, iASL Data Table compiler, disassembler, and the template generator. FADT - New fields and flags. Graeme Gregory. GTDT - One new subtable and new fields. Tomasz Nowicki. MADT - Two new subtables. Tomasz Nowicki. PCCT - One new subtable. Miscellaneous. New notification type for System Resource Affinity change events. 1) ACPICA kernel-resident subsystem: Fixed a regression introduced in 20140627 where a fault can happen during the deletion of Alias AML namespace objects. The problem affected both the core ACPICA and the ACPICA tools including iASL and AcpiExec. Implemented a new GPE public interface, AcpiMarkGpeForWake. Provides a simple mechanism to enable wake GPEs that have no associated handler or control method. Rafael Wysocki. Updated the AcpiEnableGpe interface to disallow the enable if there is no handler or control method associated with the particular GPE. This will help avoid meaningless GPEs and even GPE floods. Rafael Wysocki. Updated GPE handling and dispatch by disabling the GPE before clearing the status bit for edge-triggered GPEs. Lv Zheng. Added Timer() support to the AML Debug object. The current timer value is now displayed with each invocation of (Store to) the debug object to enable simple generation of execution times for AML code (method execution for example.) ACPICA BZ 1093. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.7K Code, 27.3K Data, 126.0K Total Debug Version: 192.0K Code, 79.7K Data, 271.7K Total Previous Release: Non-Debug Version: 98.7K Code, 27.2K Data, 125.9K Total Debug Version: 191.7K Code, 79.6K Data, 271.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed an issue with the recently added local printf implementation, concerning width/precision specifiers that could cause incorrect output. Lv Zheng. ACPICA BZ 1094. Disassembler: Added support to detect buffers that contain UUIDs and disassemble them to an invocation of the ToUUID operator. Also emit commented descriptions of known ACPI-related UUIDs. AcpiHelp: Added support to display known ACPI-related UUIDs. New option, -u. Adds three new files. iASL: Update table compiler and disassembler for DMAR table changes that were introduced in September 2013. With assistance by David Woodhouse. ---------------------------------------- 27 June 2014. Summary of changes for version 20140627: 1) ACPICA kernel-resident subsystem: Formatted Output: Implemented local versions of standard formatted output utilities such as printf, etc. Over time, it has been discovered that there are in fact many portability issues with printf, and the addition of this feature will fix/prevent these issues once and for all. Some known issues are summarized below: 1) Output of 64-bit values is not portable. For example, UINT64 is %ull for the Linux kernel and is %uI64 for some MSVC versions. 2) Invoking printf consistently in a manner that is portable across both 32-bit and 64-bit platforms is difficult at best in many situations. 3) The output format for pointers varies from system to system (leading zeros especially), and leads to inconsistent output from ACPICA across platforms. 4) Certain platform-specific printf formats may conflict with ACPICA use. 5) If there is no local C library available, ACPICA now has local support for printf. -- To address these printf issues in a complete manner, ACPICA now directly implements a small subset of printf format specifiers, only those that it requires. Adds a new file, utilities/utprint.c. Lv Zheng. Implemented support for ACPICA generation within the EFI environment. Initially, the AcpiDump utility is supported in the UEFI shell environment. Lv Zheng. Added a new external interface, AcpiLogError, to improve ACPICA portability. This allows the host to redirect error messages from the ACPICA utilities. Lv Zheng. Added and deployed new OSL file I/O interfaces to improve ACPICA portability: AcpiOsOpenFile AcpiOsCloseFile AcpiOsReadFile AcpiOsWriteFile AcpiOsGetFileOffset AcpiOsSetFileOffset There are C library implementations of these functions in the new file service_layers/oslibcfs.c -- however, the functions can be implemented by the local host in any way necessary. Lv Zheng. Implemented a mechanism to disable/enable ACPI table checksum validation at runtime. This can be useful when loading tables very early during OS initialization when it may not be possible to map the entire table in order to compute the checksum. Lv Zheng. Fixed a buffer allocation issue for the Generic Serial Bus support. Originally, a fixed buffer length was used. This change allows for variable-length buffers based upon the protocol indicated by the field access attributes. Reported by Lan Tianyu. Lv Zheng. Fixed a problem where an object detached from a namespace node was not properly terminated/cleared and could cause a circular list problem if reattached. ACPICA BZ 1063. David Box. Fixed a possible recursive lock acquisition in hwregs.c. Rakib Mullick. Fixed a possible memory leak in an error return path within the function AcpiUtCopyIobjectToIobject. ACPICA BZ 1087. Colin Ian King. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.7K Code, 27.2K Data, 125.9K Total Debug Version: 191.7K Code, 79.6K Data, 271.3K Total Previous Release: Non-Debug Version: 96.8K Code, 27.2K Data, 124.0K Total Debug Version: 189.5K Code, 79.7K Data, 269.2K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Add dump of ASCII equivalent text within a comment at the end of each line of the output for the Buffer() ASL operator. AcpiDump: Miscellaneous changes: Fixed repetitive table dump in -n mode. For older EFI platforms, use the ACPI 1.0 GUID during RSDP search if the ACPI 2.0 GUID fails. iASL: Fixed a problem where the compiler could fault if incorrectly given an acpidump output file as input. ACPICA BZ 1088. David Box. AcpiExec/AcpiNames: Fixed a problem where these utilities could fault if they are invoked without any arguments. Debugger: Fixed a possible memory leak in an error return path. ACPICA BZ 1086. Colin Ian King. Disassembler: Cleaned up a block of code that extracts a parent Op object. Added a comment that explains that the parent is guaranteed to be valid in this case. ACPICA BZ 1069. ---------------------------------------- 24 April 2014. Summary of changes for version 20140424: 1) ACPICA kernel-resident subsystem: Implemented support to skip/ignore NULL address entries in the RSDT/XSDT. Some of these tables are known to contain a trailing NULL entry. Lv Zheng. Removed an extraneous error message for the case where there are a large number of system GPEs (> 124). This was the "32-bit FADT register is too long to convert to GAS struct" message, which is irrelevant for GPEs since the GPEx_BLK_LEN fields of the FADT are always used instead of the (limited capacity) GAS bit length. Also, several changes to ensure proper support for GPE numbers > 255, where some "GPE number" fields were 8-bits internally. Implemented and deployed additional configuration support for the public ACPICA external interfaces. Entire classes of interfaces can now be easily modified or configured out, replaced by stubbed inline functions by default. Lv Zheng. Moved all public ACPICA runtime configuration globals to the public ACPICA external interface file for convenience. Also, removed some obsolete/unused globals. See the file acpixf.h. Lv Zheng. Documentation: Added a new section to the ACPICA reference describing the maximum number of GPEs that can be supported by the FADT-defined GPEs in block zero and one. About 1200 total. See section 4.4.1 of the ACPICA reference. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.8K Code, 27.2K Data, 124.0K Total Debug Version: 189.5K Code, 79.7K Data, 269.2K Total Previous Release: Non-Debug Version: 97.0K Code, 27.2K Data, 124.2K Total Debug Version: 189.7K Code, 79.5K Data, 269.2K Total 2) iASL Compiler/Disassembler and Tools: iASL and disassembler: Add full support for the LPIT table (Low Power Idle Table). Includes support in the disassembler, data table compiler, and template generator. AcpiDump utility: 1) Add option to force the use of the RSDT (over the XSDT). 2) Improve validation of the RSDP signature (use 8 chars instead of 4). iASL: Add check for predefined packages that are too large. For predefined names that contain subpackages, check if each subpackage is too large. (Check for too small already exists.) Debugger: Updated the GPE command (which simulates a GPE by executing the GPE code paths in ACPICA). The GPE device is now optional, and defaults to the GPE 0/1 FADT-defined blocks. Unix application OSL: Update line-editing support. Add additional error checking and take care not to reset terminal attributes on exit if they were never set. This should help guarantee that the terminal is always left in the previous state on program exit. ---------------------------------------- 25 March 2014. Summary of changes for version 20140325: 1) ACPICA kernel-resident subsystem: Updated the auto-serialize feature for control methods. This feature automatically serializes all methods that create named objects in order to prevent runtime errors. The update adds support to ignore the currently executing AML SyncLevel when invoking such a method, in order to prevent disruption of any existing SyncLevel priorities that may exist in the AML code. Although the use of SyncLevels is relatively rare, this change fixes a regression where an AE_AML_MUTEX_ORDER exception can appear on some machines starting with the 20140214 release. Added a new external interface to allow the host to install ACPI tables very early, before the namespace is even created. AcpiInstallTable gives the host additional flexibility for ACPI table management. Tables can be installed directly by the host as if they had originally appeared in the XSDT/RSDT. Installed tables can be SSDTs or other ACPI data tables (anything except the DSDT and FACS). Adds a new file, tbdata.c, along with additional internal restructuring and cleanup. See the ACPICA Reference for interface details. Lv Zheng. Added validation of the checksum for all incoming dynamically loaded tables (via external interfaces or via AML Load/LoadTable operators). Lv Zheng. Updated the use of the AcpiOsWaitEventsComplete interface during Notify and GPE handler removal. Restructured calls to eliminate possible race conditions. Lv Zheng. Added a warning for the use/execution of the ASL/AML Unload (table) operator. This will help detect and identify machines that use this operator if and when it is ever used. This operator has never been seen in the field and the usage model and possible side-effects of the drastic runtime action of a full table removal are unknown. Reverted the use of #pragma push/pop which was introduced in the 20140214 release. It appears that push and pop are not implemented by enough compilers to make the use of this feature feasible for ACPICA at this time. However, these operators may be deployed in a future ACPICA release. Added the missing EXPORT_SYMBOL macros for the install and remove SCI handler interfaces. Source code generation: 1) Disabled the use of the "strchr" macro for the gcc-specific generation. For some versions of gcc, this macro can periodically expose a compiler bug which in turn causes compile-time error(s). 2) Added support for PPC64 compilation. Colin Ian King. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 97.0K Code, 27.2K Data, 124.2K Total Debug Version: 189.7K Code, 79.5K Data, 269.2K Total Previous Release: Non-Debug Version: 96.5K Code, 27.2K Data, 123.7K Total Debug Version: 188.6K Code, 79.0K Data, 267.6K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added several new features to improve the readability of the resulting ASL code. Extra information is emitted within comment fields in the ASL code: 1) Known _HID/_CID values are decoded to descriptive text. 2) Standard values for the Notify() operator are decoded to descriptive text. 3) Target operands are expanded to full pathnames (in a comment) when possible. Disassembler: Miscellaneous updates for extern() handling: 1) Abort compiler if file specified by -fe option does not exist. 2) Silence unnecessary warnings about argument count mismatches. 3) Update warning messages concerning unresolved method externals. 4) Emit "UnknownObj" keyword for externals whose type cannot be determined. AcpiHelp utility: 1) Added the -a option to display both the ASL syntax and the AML encoding for an input ASL operator. This effectively displays all known information about an ASL operator with one AcpiHelp invocation. 2) Added substring match support (similar to a wildcard) for the -i (_HID/PNP IDs) option. iASL/Disassembler: Since this tool does not yet support execution on big- endian machines, added detection of endianness and an error message if execution is attempted on big-endian. Support for big-endian within iASL is a feature that is on the ACPICA to-be-done list. AcpiBin utility: 1) Remove option to extract binary files from an acpidump; this function is made obsolete by the AcpiXtract utility. 2) General cleanup of open files and allocated buffers. ---------------------------------------- 14 February 2014. Summary of changes for version 20140214: 1) ACPICA kernel-resident subsystem: Implemented a new mechanism to proactively prevent problems with ill- behaved reentrant control methods that create named ACPI objects. This behavior is illegal as per the ACPI specification, but is nonetheless frequently seen in the field. Previously, this could lead to an AE_ALREADY_EXISTS exception if the method was actually entered by more than one thread. This new mechanism detects such methods at table load time and marks them "serialized" to prevent reentrancy. A new global option, AcpiGbl_AutoSerializeMethods, has been added to disable this feature if desired. This mechanism and global option obsoletes and supersedes the previous AcpiGbl_SerializeAllMethods option. Added the "Windows 2013" string to the _OSI support. ACPICA will now respond TRUE to _OSI queries with this string. It is the stated policy of ACPICA to add new strings to the _OSI support as soon as possible after they are defined. See the full ACPICA _OSI policy which has been added to the utilities/utosi.c file. Hardened/updated the _PRT return value auto-repair code: 1) Do not abort the repair on a single subpackage failure, continue to check all subpackages. 2) Add check for the minimum subpackage length (4). 3) Properly handle extraneous NULL package elements. Added support to avoid the possibility of infinite loops when traversing object linked lists. Never allow an infinite loop, even in the face of corrupted object lists. ACPICA headers: Deployed the use of #pragma pack(push) and #pragma pack(pop) directives to ensure that the ACPICA headers are independent of compiler settings or other host headers. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.5K Code, 27.2K Data, 123.7K Total Debug Version: 188.6K Code, 79.0K Data, 267.6K Total Previous Release: Non-Debug Version: 96.2K Code, 27.0K Data, 123.2K Total Debug Version: 187.5K Code, 78.3K Data, 265.8K Total 2) iASL Compiler/Disassembler and Tools: iASL/Table-compiler: Fixed a problem with support for the SPMI table. The first reserved field was incorrectly forced to have a value of zero. This change correctly forces the field to have a value of one. ACPICA BZ 1081. Debugger: Added missing support for the "Extra" and "Data" subobjects when displaying object data. Debugger: Added support to display entire object linked lists when displaying object data. iASL: Removed the obsolete -g option to obtain ACPI tables from the Windows registry. This feature has been superseded by the acpidump utility. ---------------------------------------- 14 January 2014. Summary of changes for version 20140114: 1) ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2014. Added the 2014 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Improved parameter validation for AcpiInstallGpeBlock. Added the following checks: 1) The incoming device handle refers to type ACPI_TYPE_DEVICE. 2) There is not already a GPE block attached to the device. Likewise, with AcpiRemoveGpeBlock, ensure that the incoming object is a device. Correctly support "references" in the ACPI_OBJECT. This change fixes the support to allow references (namespace nodes) to be passed as arguments to control methods via the evaluate object interface. This is probably most useful for testing purposes, however. Improved support for 32/64 bit physical addresses in printf()-like output. This change improves the support for physical addresses in printf debug statements and other output on both 32-bit and 64-bit hosts. It consistently outputs the appropriate number of bytes for each host. The %p specifier is unsatisfactory since it does not emit uniform output on all hosts/clib implementations (on some, leading zeros are not supported, leading to difficult-to-read output). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.2K Code, 27.0K Data, 123.2K Total Debug Version: 187.5K Code, 78.3K Data, 265.8K Total Previous Release: Non-Debug Version: 96.1K Code, 27.0K Data, 123.1K Total Debug Version: 185.6K Code, 77.3K Data, 262.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fix a possible fault when using the Connection() operator. Fixes a problem if the parent Field definition for the Connection operator refers to an operation region that does not exist. ACPICA BZ 1064. AcpiExec: Load of local test tables is now optional. The utility has the capability to load some various tables to test features of ACPICA. However, there are enough of them that the output of the utility became confusing. With this change, only the required local tables are displayed (RSDP, XSDT, etc.) along with the actual tables loaded via the command line specification. This makes the default output simler and easier to understand. The -el command line option restores the original behavior for testing purposes. AcpiExec: Added support for overlapping operation regions. This change expands the simulation of operation regions by supporting regions that overlap within the given address space. Supports SystemMemory and SystemIO. ASLTS test suite updated also. David Box. ACPICA BZ 1031. AcpiExec: Added region handler support for PCI_Config and EC spaces. This allows AcpiExec to simulate these address spaces, similar to the current support for SystemMemory and SystemIO. Debugger: Added new command to read/write/compare all namespace objects. The command "test objects" will exercise the entire namespace by writing new values to each data object, and ensuring that the write was successful. The original value is then restored and verified. Debugger: Added the "test predefined" command. This change makes this test public and puts it under the new "test" command. The test executes each and every predefined name within the current namespace. ---------------------------------------- 18 December 2013. Summary of changes for version 20131218: Global note: The ACPI 5.0A specification was released this month. There are no changes needed for ACPICA since this release of ACPI is an errata/clarification release. The specification is available at acpi.info. 1) ACPICA kernel-resident subsystem: Added validation of the XSDT root table if it is present. Some older platforms contain an XSDT that is ill-formed or otherwise invalid (such as containing some or all entries that are NULL pointers). This change adds a new function to validate the XSDT before actually using it. If the XSDT is found to be invalid, ACPICA will now automatically fall back to using the RSDT instead. Original implementation by Zhao Yakui. Ported to ACPICA and enhanced by Lv Zheng and Bob Moore. Added a runtime option to ignore the XSDT and force the use of the RSDT. This change adds a runtime option that will force ACPICA to use the RSDT instead of the XSDT (AcpiGbl_DoNotUseXsdt). Although the ACPI spec requires that an XSDT be used instead of the RSDT, the XSDT has been found to be corrupt or ill-formed on some machines. Lv Zheng. Added a runtime option to favor 32-bit FADT register addresses over the 64-bit addresses. This change adds an option to favor 32-bit FADT addresses when there is a conflict between the 32-bit and 64-bit versions of the same register. The default behavior is to use the 64-bit version in accordance with the ACPI specification. This can now be overridden via the AcpiGbl_Use32BitFadtAddresses flag. ACPICA BZ 885. Lv Zheng. During the change above, the internal "Convert FADT" and "Verify FADT" functions have been merged to simplify the code, making it easier to understand and maintain. ACPICA BZ 933. Improve exception reporting and handling for GPE block installation. Return an actual status from AcpiEvGetGpeXruptBlock and don't clobber the status when exiting AcpiEvInstallGpeBlock. ACPICA BZ 1019. Added helper macros to extract bus/segment numbers from the HEST table. This change adds two macros to extract the encoded bus and segment numbers from the HEST Bus field - ACPI_HEST_BUS and ACPI_HEST_SEGMENT. Betty Dall Removed the unused ACPI_FREE_BUFFER macro. This macro is no longer used by ACPICA. It is not a public macro, so it should have no effect on existing OSV code. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.1K Code, 27.0K Data, 123.1K Total Debug Version: 185.6K Code, 77.3K Data, 262.9K Total Previous Release: Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total Debug Version: 185.1K Code, 77.2K Data, 262.3K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Improved pathname support for emitted External() statements. This change adds full pathname support for external names that have been resolved internally by the inclusion of additional ACPI tables (via the iASL -e option). Without this change, the disassembler can emit multiple externals for the same object, or it become confused when the Scope() operator is used on an external object. Overall, greatly improves the ability to actually recompile the emitted ASL code when objects a referenced across multiple ACPI tables. Reported by Michael Tsirkin (mst@redhat.com). Tests/ASLTS: Updated functional control suite to execute with no errors. David Box. Fixed several errors related to the testing of the interpreter slack mode. Lv Zheng. iASL: Added support to detect names that are declared within a control method, but are unused (these are temporary names that are only valid during the time the method is executing). A remark is issued for these cases. ACPICA BZ 1022. iASL: Added full support for the DBG2 table. Adds full disassembler, table compiler, and template generator support for the DBG2 table (Debug Port 2 table). iASL: Added full support for the PCCT table, update the table definition. Updates the PCCT table definition in the actbl3.h header and adds table compiler and template generator support. iASL: Added an option to emit only error messages (no warnings/remarks). The -ve option will enable only error messages, warnings and remarks are suppressed. This can simplify debugging when only the errors are important, such as when an ACPI table is disassembled and there are many warnings and remarks -- but only the actual errors are of real interest. Example ACPICA code (source/tools/examples): Updated the example code so that it builds to an actual working program, not just example code. Added ACPI tables and execution of an example control method in the DSDT. Added makefile support for Unix generation. ---------------------------------------- 15 November 2013. Summary of changes for version 20131115: This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Resource Manager: Fixed loop termination for the "get AML length" function. The loop previously had an error termination on a NULL resource pointer, which can never happen since the loop simply increments a valid resource pointer. This fix changes the loop to terminate with an error on an invalid end-of-buffer condition. The problem can be seen as an infinite loop by callers to AcpiSetCurrentResources with an invalid or corrupted resource descriptor, or a resource descriptor that is missing an END_TAG descriptor. Reported by Dan Carpenter . Lv Zheng, Bob Moore. Table unload and ACPICA termination: Delete all attached data objects during namespace node deletion. This fix updates namespace node deletion to delete the entire list of attached objects (attached via AcpiAttachObject) instead of just one of the attached items. ACPICA BZ 1024. Tomasz Nowicki (tomasz.nowicki@linaro.org). ACPICA termination: Added support to delete all objects attached to the root namespace node. This fix deletes any and all objects that have been attached to the root node via AcpiAttachData. Previously, none of these objects were deleted. Reported by Tomasz Nowicki. ACPICA BZ 1026. Debug output: Do not emit the function nesting level for the in-kernel build. The nesting level is really only useful during a single-thread execution. Therefore, only enable this output for the AcpiExec utility. Also, only emit the thread ID when executing under AcpiExec (Context switches are still always detected and a message is emitted). ACPICA BZ 972. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total Debug Version: 185.1K Code, 77.2K Data, 262.3K Total Previous Release: Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total Debug Version: 185.2K Code, 77.2K Data, 262.4K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec/Unix-OSL: Use instead of . This is the correct portable POSIX header for terminal control functions. Disassembler: Fixed control method invocation issues related to the use of the CondRefOf() operator. The problem is seen in the disassembly where control method invocations may not be disassembled properly if the control method name has been used previously as an argument to CondRefOf. The solution is to not attempt to emit an external declaration for the CondRefOf target (it is not necessary in the first place). This prevents disassembler object type confusion. ACPICA BZ 988. Unix Makefiles: Added an option to disable compiler optimizations and the _FORTIFY_SOURCE flag. Some older compilers have problems compiling ACPICA with optimizations (reportedly, gcc 4.4 for example). This change adds a command line option for make (NOOPT) that disables all compiler optimizations and the _FORTIFY_SOURCE compiler flag. The default optimization is -O2 with the _FORTIFY_SOURCE flag specified. ACPICA BZ 1034. Lv Zheng, Bob Moore. Tests/ASLTS: Added options to specify individual test cases and modes. This allows testers running aslts.sh to optionally specify individual test modes and test cases. Also added an option to disable the forced generation of the ACPICA tools from source if desired. Lv Zheng. ---------------------------------------- 27 September 2013. Summary of changes for version 20130927: This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Fixed a problem with store operations to reference objects. This change fixes a problem where a Store operation to an ArgX object that contained a reference to a field object did not complete the automatic dereference and then write to the actual field object. Instead, the object type of the field object was inadvertently changed to match the type of the source operand. The new behavior will actually write to the field object (buffer field or field unit), thus matching the correct ACPI-defined behavior. Implemented support to allow the host to redefine individual OSL prototypes. This change enables the host to redefine OSL prototypes found in the acpiosxf.h file. This allows the host to implement OSL interfaces with a macro or inlined function. Further, it allows the host to add any additional required modifiers such as __iomem, __init, __exit, etc., as necessary on a per-interface basis. Enables maximum flexibility for the OSL interfaces. Lv Zheng. Hardcoded the access width for the FADT-defined reset register. The ACPI specification requires the reset register width to be 8 bits. ACPICA now hardcodes the width to 8 and ignores the FADT width value. This provides compatibility with other ACPI implementations that have allowed BIOS code with bad register width values to go unnoticed. Matthew Garett, Bob Moore, Lv Zheng. Changed the position/use of the ACPI_PRINTF_LIKE macro. This macro is used in the OSL header (acpiosxf). The change modifies the position of this macro in each instance where it is used (AcpiDebugPrint, etc.) to avoid build issues if the OSL defines the implementation of the interface to be an inline stub function. Lv Zheng. Deployed a new macro ACPI_EXPORT_SYMBOL_INIT for the main ACPICA initialization interfaces. This change adds a new macro for the main init and terminate external interfaces in order to support hosts that require additional or different processing for these functions. Changed from ACPI_EXPORT_SYMBOL to ACPI_EXPORT_SYMBOL_INIT for these functions. Lv Zheng, Bob Moore. Cleaned up the memory allocation macros for configurability. In the common case, the ACPI_ALLOCATE and related macros now resolve directly to their respective AcpiOs* OSL interfaces. Two options: 1) The ACPI_ALLOCATE_ZEROED macro uses a simple local implementation by default, unless overridden by the USE_NATIVE_ALLOCATE_ZEROED define. 2) For AcpiExec (and for debugging), the macros can optionally be resolved to the local ACPICA interfaces that track each allocation (local tracking is used to immediately detect memory leaks). Lv Zheng. Simplified the configuration for ACPI_REDUCED_HARDWARE. Allows the kernel to predefine this macro to either TRUE or FALSE during the system build. Replaced __FUNCTION_ with __func__ in the gcc-specific header. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total Debug Version: 185.2K Code, 77.2K Data, 262.4K Total Previous Release: Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented wildcard support for the -e option. This simplifies use when there are many SSDTs that must be included to resolve external method declarations. ACPICA BZ 1041. Example: iasl -e ssdt*.dat -d dsdt.dat AcpiExec: Add history/line-editing for Unix/Linux systems. This change adds a portable module that implements full history and limited line editing for Unix and Linux systems. It does not use readline() due to portability issues. Instead it uses the POSIX termio interface to put the terminal in raw input mode so that the various special keys can be trapped (such as up/down-arrow for history support and left/right-arrow for line editing). Uses the existing debugger history mechanism. ACPICA BZ 1036. AcpiXtract: Add support to handle (ignore) "empty" lines containing only one or more spaces. This provides compatible with early or different versions of the AcpiDump utility. ACPICA BZ 1044. AcpiDump: Do not ignore tables that contain only an ACPI table header. Apparently, some BIOSs create SSDTs that contain an ACPI table header but no other data. This change adds support to dump these tables. Any tables shorter than the length of an ACPI table header remain in error (an error message is emitted). Reported by Yi Li. Debugger: Echo actual command along with the "unknown command" message. ---------------------------------------- 23 August 2013. Summary of changes for version 20130823: 1) ACPICA kernel-resident subsystem: Implemented support for host-installed System Control Interrupt (SCI) handlers. Certain ACPI functionality requires the host to handle raw SCIs. For example, the "SCI Doorbell" that is defined for memory power state support requires the host device driver to handle SCIs to examine if the doorbell has been activated. Multiple SCI handlers can be installed to allow for future expansion. New external interfaces are AcpiInstallSciHandler, AcpiRemoveSciHandler; see the ACPICA reference for details. Lv Zheng, Bob Moore. ACPICA BZ 1032. Operation region support: Never locally free the handler "context" pointer. This change removes some dangerous code that attempts to free the handler context pointer in some (rare) circumstances. The owner of the handler owns this pointer and the ACPICA code should never touch it. Although not seen to be an issue in any kernel, it did show up as a problem (fault) under AcpiExec. Also, set the internal storage field for the context pointer to zero when the region is deactivated, simply for sanity. David Box. ACPICA BZ 1039. AcpiRead: On error, do not modify the return value target location. If an error happens in the middle of a split 32/32 64-bit I/O operation, do not modify the target of the return value pointer. Makes the code consistent with the rest of ACPICA. Bjorn Helgaas. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total Previous Release: Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total Debug Version: 185.4K Code, 77.1K Data, 262.5K Total 2) iASL Compiler/Disassembler and Tools: AcpiDump: Implemented several new features and fixed some problems: 1) Added support to dump the RSDP, RSDT, and XSDT tables. 2) Added support for multiple table instances (SSDT, UEFI). 3) Added option to dump "customized" (overridden) tables (-c). 4) Fixed a problem where some table filenames were improperly constructed. 5) Improved some error messages, removed some unnecessary messages. iASL: Implemented additional support for disassembly of ACPI tables that contain invocations of external control methods. The -fe option allows the import of a file that specifies the external methods along with the required number of arguments for each -- allowing for the correct disassembly of the table. This is a workaround for a limitation of AML code where the disassembler often cannot determine the number of arguments required for an external control method and generates incorrect ASL code. See the iASL reference for details. ACPICA BZ 1030. Debugger: Implemented a new command (paths) that displays the full pathnames (namepaths) and object types of all objects in the namespace. This is an alternative to the namespace command. Debugger: Implemented a new command (sci) that invokes the SCI dispatch mechanism and any installed handlers. iASL: Fixed a possible segfault for "too many parent prefixes" condition. This can occur if there are too many parent prefixes in a namepath (for example, ^^^^^^PCI0.ECRD). ACPICA BZ 1035. Application OSLs: Set the return value for the PCI read functions. These functions simply return AE_OK, but should set the return value to zero also. This change implements this. ACPICA BZ 1038. Debugger: Prevent possible command line buffer overflow. Increase the size of a couple of the debugger line buffers, and ensure that overflow cannot happen. ACPICA BZ 1037. iASL: Changed to abort immediately on serious errors during the parsing phase. Due to the nature of ASL, there is no point in attempting to compile these types of errors, and they typically end up causing a cascade of hundreds of errors which obscure the original problem. ---------------------------------------- 25 July 2013. Summary of changes for version 20130725: 1) ACPICA kernel-resident subsystem: Fixed a problem with the DerefOf operator where references to FieldUnits and BufferFields incorrectly returned the parent object, not the actual value of the object. After this change, a dereference of a FieldUnit reference results in a read operation on the field to get the value, and likewise, the appropriate BufferField value is extracted from the target buffer. Fixed a problem where the _WAK method could cause a fault under these circumstances: 1) Interpreter slack mode was not enabled, and 2) the _WAK method returned no value. The problem is rarely seen because most kernels run ACPICA in slack mode. For the DerefOf operator, a fatal error now results if an attempt is made to dereference a reference (created by the Index operator) to a NULL package element. Provides compatibility with other ACPI implementations, and this behavior will be added to a future version of the ACPI specification. The ACPI Power Management Timer (defined in the FADT) is now optional. This provides compatibility with other ACPI implementations and will appear in the next version of the ACPI specification. If there is no PM Timer on the platform, AcpiGetTimer returns AE_SUPPORT. An address of zero in the FADT indicates no PM timer. Implemented a new interface for _OSI support, AcpiUpdateInterfaces. This allows the host to globally enable/disable all vendor strings, all feature strings, or both. Intended to be primarily used for debugging purposes only. Lv Zheng. Expose the collected _OSI data to the host via a global variable. This data tracks the highest level vendor ID that has been invoked by the BIOS so that the host (and potentially ACPICA itself) can change behaviors based upon the age of the BIOS. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total Previous Release: Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total Debug Version: 184.1K Code, 76.7K Data, 260.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Created the following enhancements for the -so option (create offset table): 1)Add offsets for the last nameseg in each namepath for every supported object type 2)Add support for Processor, Device, Thermal Zone, and Scope objects 3)Add the actual AML opcode for the parent object of every supported object type 4)Add support for the ZERO/ONE/ONES AML opcodes for integer objects Disassembler: Emit all unresolved external symbols in a single block. These are external references to control methods that could not be resolved, and thus, the disassembler had to make a guess at the number of arguments to parse. iASL: The argument to the -T option (create table template) is now optional. If not specified, the default table is a DSDT, typically the most common case. ---------------------------------------- 26 June 2013. Summary of changes for version 20130626: 1) ACPICA kernel-resident subsystem: Fixed an issue with runtime repair of the _CST object. Null or invalid elements were not always removed properly. Lv Zheng. Removed an arbitrary restriction of 256 GPEs per GPE block (such as the FADT-defined GPE0 and GPE1). For GPE0, GPE1, and each GPE Block Device, the maximum number of GPEs is 1016. Use of multiple GPE block devices makes the system-wide number of GPEs essentially unlimited. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total Debug Version: 184.1K Code, 76.7K Data, 260.8K Total Previous Release: Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total Debug Version: 184.1K Code, 76.8K Data, 260.9K Total 2) iASL Compiler/Disassembler and Tools: Portable AcpiDump: Implemented full support for the Linux and FreeBSD hosts. Now supports Linux, FreeBSD, and Windows. Disassembler: Added some missing types for the HEST and EINJ tables: "Set Error Type With Address", "CMCI", "MCE", and "Flush Cacheline". iASL/Preprocessor: Implemented full support for nested #if/#else/#elif/#endif blocks. Allows arbitrary depth of nested blocks. Disassembler: Expanded maximum output string length to 64K. Was 256 bytes max. The original purpose of this constraint was to limit the amount of debug output. However, the string function in question (UtPrintString) is now used for the disassembler also, where 256 bytes is insufficient. Reported by RehabMan@GitHub. iASL/DataTables: Fixed some problems and issues with compilation of DMAR tables. ACPICA BZ 999. Lv Zheng. iASL: Fixed a couple of error exit issues that could result in a "Could not delete " message during ASL compilation. AcpiDump: Allow "FADT" and "MADT" as valid table signatures, even though the actual signatures for these tables are "FACP" and "APIC", respectively. AcpiDump: Added support for multiple UEFI tables. Only SSDT and UEFI tables are allowed to have multiple instances. ---------------------------------------- 17 May 2013. Summary of changes for version 20130517: 1) ACPICA kernel-resident subsystem: Fixed a regression introduced in version 20130328 for _INI methods. This change fixes a problem introduced in 20130328 where _INI methods are no longer executed properly because of a memory block that was not initialized correctly. ACPICA BZ 1016. Tomasz Nowicki . Fixed a possible problem with the new extended sleep registers in the ACPI 5.0 FADT. Do not use these registers (even if populated) unless the HW- reduced bit is set in the FADT (as per the ACPI specification). ACPICA BZ 1020. Lv Zheng. Implemented return value repair code for _CST predefined objects: Sort the list and detect/remove invalid entries. ACPICA BZ 890. Lv Zheng. Implemented a debug-only option to disable loading of SSDTs from the RSDT/XSDT during ACPICA initialization. This can be useful for debugging ACPI problems on some machines. Set AcpiGbl_DisableSsdtTableLoad in acglobal.h - ACPICA BZ 1005. Lv Zheng. Fixed some issues in the ACPICA initialization and termination code: Tomasz Nowicki 1) Clear events initialized flag upon event component termination. ACPICA BZ 1013. 2) Fixed a possible memory leak in GPE init error path. ACPICA BZ 1018. 3) Delete global lock pending lock during termination. ACPICA BZ 1012. 4) Clear debug buffer global on termination to prevent possible multiple delete. ACPICA BZ 1010. Standardized all switch() blocks across the entire source base. After many years, different formatting for switch() had crept in. This change makes the formatting of every switch block identical. ACPICA BZ 997. Chao Guan. Split some files to enhance ACPICA modularity and configurability: 1) Split buffer dump routines into utilities/utbuffer.c 2) Split internal error message routines into utilities/uterror.c 3) Split table print utilities into tables/tbprint.c 4) Split iASL command-line option processing into asloptions.c Makefile enhancements: 1) Support for all new files above. 2) Abort make on errors from any subcomponent. Chao Guan. 3) Add build support for Apple Mac OS X. Liang Qi. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total Debug Version: 184.1K Code, 76.8K Data, 260.9K Total Previous Release: Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total Debug Version: 183.5K Code, 76.6K Data, 260.1K Total 2) iASL Compiler/Disassembler and Tools: New utility: Implemented an easily portable version of the acpidump utility to extract ACPI tables from the system (or a file) in an ASCII hex dump format. The top-level code implements the various command line options, file I/O, and table dump routines. To port to a new host, only three functions need to be implemented to get tables -- since this functionality is OS-dependent. See the tools/acpidump/apmain.c module and the ACPICA reference for porting instructions. ACPICA BZ 859. Notes: 1) The Windows version obtains the ACPI tables from the Registry. 2) The Linux version is under development. 3) Other hosts - If an OS-dependent module is submitted, it will be distributed with ACPICA. iASL: Fixed a regression for -D preprocessor option (define symbol). A restructuring/change to the initialization sequence caused this option to no longer work properly. iASL: Implemented a mechanism to disable specific warnings and remarks. Adds a new command line option, "-vw as well as "#pragma disable ". ACPICA BZ 989. Chao Guan, Bob Moore. iASL: Fix for too-strict package object validation. The package object validation for return values from the predefined names is a bit too strict, it does not allow names references within the package (which will be resolved at runtime.) These types of references cannot be validated at compile time. This change ignores named references within package objects for names that return or define static packages. Debugger: Fixed the 80-character command line limitation for the History command. Now allows lines of arbitrary length. ACPICA BZ 1000. Chao Guan. iASL: Added control method and package support for the -so option (generates AML offset table for BIOS support.) iASL: issue a remark if a non-serialized method creates named objects. If a thread blocks within the method for any reason, and another thread enters the method, the method will fail because an attempt will be made to create the same (named) object twice. In this case, issue a remark that the method should be marked serialized. NOTE: may become a warning later. ACPICA BZ 909. ---------------------------------------- 18 April 2013. Summary of changes for version 20130418: 1) ACPICA kernel-resident subsystem: Fixed a possible buffer overrun during some rare but specific field unit read operations. This overrun can only happen if the DSDT version is 1 -- meaning that all AML integers are 32 bits -- and the field length is between 33 and 55 bits long. During the read, an internal buffer object is created for the field unit because the field is larger than an integer (32 bits). However, in this case, the buffer will be incorrectly written beyond the end because the buffer length is less than the internal minimum of 64 bits (8 bytes) long. The buffer will be either 5, 6, or 7 bytes long, but a full 8 bytes will be written. Updated the Embedded Controller "orphan" _REG method support. This refers to _REG methods under the EC device that have no corresponding operation region. This is allowed by the ACPI specification. This update removes a dependency on the existence an ECDT table. It will execute an orphan _REG method as long as the operation region handler for the EC is installed at the EC device node and not the namespace root. Rui Zhang (original update), Bob Moore (update/integrate). Implemented run-time argument typechecking for all predefined ACPI names (_STA, _BIF, etc.) This change performs object typechecking on all incoming arguments for all predefined names executed via AcpiEvaluateObject. This ensures that ACPI-related device drivers are passing correct object types as well as the correct number of arguments (therefore identifying any issues immediately). Also, the ASL/namespace definition of the predefined name is checked against the ACPI specification for the proper argument count. Adds one new file, nsarguments.c Changed an exception code for the ASL UnLoad() operator. Changed the exception code for the case where the input DdbHandle is invalid, from AE_BAD_PARAMETER to the more appropriate AE_AML_OPERAND_TYPE. Unix/Linux makefiles: Removed the use of the -O2 optimization flag in the global makefile. The use of this flag causes compiler errors on earlier versions of GCC, so it has been removed for compatibility. Miscellaneous cleanup: 1) Removed some unused/obsolete macros 2) Fixed a possible memory leak in the _OSI support 3) Removed an unused variable in the predefined name support 4) Windows OSL: remove obsolete reference to a memory list field Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total Debug Version: 183.0K Code, 76.0K Data, 259.0K Total Previous Release: Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total Debug Version: 183.5K Code, 76.6K Data, 260.1K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Added installation of a handler for the SystemCMOS address space. This prevents control method abort if a method accesses this space. AcpiExec: Added support for multiple EC devices, and now install EC operation region handler(s) at the actual EC device instead of the namespace root. This reflects the typical behavior of host operating systems. AcpiExec: Updated to ensure that all operation region handlers are installed before the _REG methods are executed. This prevents a _REG method from aborting if it accesses an address space has no handler. AcpiExec installs a handler for every possible address space. Debugger: Enhanced the "handlers" command to display non-root handlers. This change enhances the handlers command to display handlers associated with individual devices throughout the namespace, in addition to the currently supported display of handlers associated with the root namespace node. ASL Test Suite: Several test suite errors have been identified and resolved, reducing the total error count during execution. Chao Guan. ---------------------------------------- 28 March 2013. Summary of changes for version 20130328: 1) ACPICA kernel-resident subsystem: Fixed several possible race conditions with the internal object reference counting mechanism. Some of the external ACPICA interfaces update object reference counts without holding the interpreter or namespace lock. This change adds a spinlock to protect reference count updates on the internal ACPICA objects. Reported by and with assistance from Andriy Gapon (avg@FreeBSD.org). FADT support: Removed an extraneous warning for very large GPE register sets. This change removes a size mismatch warning if the legacy length field for a GPE register set is larger than the 64-bit GAS structure can accommodate. GPE register sets can be larger than the 255-bit width limitation of the GAS structure. Linn Crosetto (linn@hp.com). _OSI Support: handle any errors from AcpiOsAcquireMutex. Check for error return from this interface. Handles a possible timeout case if ACPI_WAIT_FOREVER is modified by the host to be a value less than "forever". Jung-uk Kim. Predefined name support: Add allowed/required argument type information to the master predefined info table. This change adds the infrastructure to enable typechecking on incoming arguments for all predefined methods/objects. It does not actually contain the code that will fully utilize this information, this is still under development. Also condenses some duplicate code for the predefined names into a new module, utilities/utpredef.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total Debug Version: 182.9K Code, 75.6K Data, 258.5K Total Current Release: Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total Debug Version: 183.0K Code, 76.0K Data, 259.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented a new option to simplify the development of ACPI- related BIOS code. Adds support for a new "offset table" output file. The -so option will create a C table containing the AML table offsets of various named objects in the namespace so that BIOS code can modify them easily at boot time. This can simplify BIOS runtime code by eliminating expensive searches for "magic values", enhancing boot times and adding greater reliability. With assistance from Lee Hamel. iASL: Allow additional predefined names to return zero-length packages. Now, all predefined names that are defined by the ACPI specification to return a "variable-length package of packages" are allowed to return a zero length top-level package. This allows the BIOS to tell the host that the requested feature is not supported, and supports existing BIOS/ASL code and practices. iASL: Changed the "result not used" warning to an error. This is the case where an ASL operator is effectively a NOOP because the result of the operation is not stored anywhere. For example: Add (4, Local0) There is no target (missing 3rd argument), nor is the function return value used. This is potentially a very serious problem -- since the code was probably intended to do something, but for whatever reason, the value was not stored. Therefore, this issue has been upgraded from a warning to an error. AcpiHelp: Added allowable/required argument types to the predefined names info display. This feature utilizes the recent update to the predefined names table (above). ---------------------------------------- 14 February 2013. Summary of changes for version 20130214: 1) ACPICA Kernel-resident Subsystem: Fixed a possible regression on some hosts: Reinstated the safe return macros (return_ACPI_STATUS, etc.) that ensure that the argument is evaluated only once. Although these macros are not needed for the ACPICA code itself, they are often used by ACPI-related host device drivers where the safe feature may be necessary. Fixed several issues related to the ACPI 5.0 reduced hardware support (SOC): Now ensure that if the platform declares itself as hardware- reduced via the FADT, the following functions become NOOPs (and always return AE_OK) because ACPI is always enabled by definition on these machines: AcpiEnable AcpiDisable AcpiHwGetMode AcpiHwSetMode Dynamic Object Repair: Implemented additional runtime repairs for predefined name return values. Both of these repairs can simplify code in the related device drivers that invoke these methods: 1) For the _STR and _MLS names, automatically repair/convert an ASCII string to a Unicode buffer. 2) For the _CRS, _PRS, and _DMA names, return a resource descriptor with a lone end tag descriptor in the following cases: A Return(0) was executed, a null buffer was returned, or no object at all was returned (non-slack mode only). Adds a new file, nsconvert.c ACPICA BZ 998. Bob Moore, Lv Zheng. Resource Manager: Added additional code to prevent possible infinite loops while traversing corrupted or ill-formed resource template buffers. Check for zero-length resource descriptors in all code that loops through resource templates (the length field is used to index through the template). This change also hardens the external AcpiWalkResources and AcpiWalkResourceBuffer interfaces. Local Cache Manager: Enhanced the main data structure to eliminate an unnecessary mechanism to access the next object in the list. Actually provides a small performance enhancement for hosts that use the local ACPICA cache manager. Jung-uk Kim. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total Debug Version: 182.3K Code, 75.0K Data, 257.3K Total Current Release: Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total Debug Version: 182.9K Code, 75.6K Data, 258.5K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Fixed several issues with the definition of the ACPI 5.0 RASF table (RAS Feature Table). This change incorporates late changes that were made to the ACPI 5.0 specification. iASL/Disassembler: Added full support for the following new ACPI tables: 1) The MTMR table (MID Timer Table) 2) The VRTC table (Virtual Real Time Clock Table). Includes header file, disassembler, table compiler, and template support for both tables. iASL: Implemented compile-time validation of package objects returned by predefined names. This new feature validates static package objects returned by the various predefined names defined to return packages. Both object types and package lengths are validated, for both parent packages and sub-packages, if any. The code is similar in structure and behavior to the runtime repair mechanism within the AML interpreter and uses the existing predefined name information table. Adds a new file, aslprepkg.c. ACPICA BZ 938. iASL: Implemented auto-detection of binary ACPI tables for disassembly. This feature detects a binary file with a valid ACPI table header and invokes the disassembler automatically. Eliminates the need to specifically invoke the disassembler with the -d option. ACPICA BZ 862. iASL/Disassembler: Added several warnings for the case where there are unresolved control methods during the disassembly. This can potentially cause errors when the output file is compiled, because the disassembler assumes zero method arguments in these cases (it cannot determine the actual number of arguments without resolution/definition of the method). Debugger: Added support to display all resources with a single command. Invocation of the resources command with no arguments will now display all resources within the current namespace. AcpiHelp: Added descriptive text for each ACPICA exception code displayed via the -e option. ---------------------------------------- 17 January 2013. Summary of changes for version 20130117: 1) ACPICA Kernel-resident Subsystem: Updated the AcpiGetSleepTypeData interface: Allow the \_Sx methods to return either 1 or 2 integers. Although the ACPI spec defines the \_Sx objects to return a package containing one integer, most BIOS code returns two integers and the previous code reflects that. However, we also need to support BIOS code that actually implements to the ACPI spec, and this change reflects this. Fixed two issues with the ACPI_DEBUG_PRINT macros: 1) Added the ACPI_DO_WHILE macro to the main DEBUG_PRINT helper macro for C compilers that require this support. 2) Renamed the internal ACPI_DEBUG macro to ACPI_DO_DEBUG_PRINT since ACPI_DEBUG is already used by many of the various hosts. Updated all ACPICA copyrights and signons to 2013. Added the 2013 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total Debug Version: 182.2K Code, 74.9K Data, 257.1K Total Current Release: Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total Debug Version: 182.3K Code, 75.0K Data, 257.3K Total 2) iASL Compiler/Disassembler and Tools: Generic Unix OSL: Use a buffer to eliminate multiple vfprintf()s and prevent a possible fault on some hosts. Some C libraries modify the arg pointer parameter to vfprintf making it difficult to call it twice in the AcpiOsVprintf function. Use a local buffer to workaround this issue. This does not affect the Windows OSL since the Win C library does not modify the arg pointer. Chao Guan, Bob Moore. iASL: Fixed a possible infinite loop when the maximum error count is reached. If an output file other than the .AML file is specified (such as a listing file), and the maximum number of errors is reached, do not attempt to flush data to the output file(s) as the compiler is aborting. This can cause an infinite loop as the max error count code essentially keeps calling itself. iASL/Disassembler: Added an option (-in) to ignore NOOP opcodes/operators. Implemented for both the compiler and the disassembler. Often, the NOOP opcode is used as padding for packages that are changed dynamically by the BIOS. When disassembled and recompiled, these NOOPs will cause syntax errors. This option causes the disassembler to ignore all NOOP opcodes (0xA3), and it also causes the compiler to ignore all ASL source code NOOP statements as well. Debugger: Enhanced the Sleep command to execute all sleep states. This change allows Sleep to be invoked with no arguments and causes the debugger to execute all of the sleep states, 0-5, automatically. ---------------------------------------- 20 December 2012. Summary of changes for version 20121220: 1) ACPICA Kernel-resident Subsystem: Implemented a new interface, AcpiWalkResourceBuffer. This interface is an alternate entry point for AcpiWalkResources and improves the usability of the resource manager by accepting as input a buffer containing the output of either a _CRS, _PRS, or _AEI method. The key functionality is that the input buffer is not deleted by this interface so that it can be used by the host later. See the ACPICA reference for details. Interpreter: Add a warning if a 64-bit constant appears in a 32-bit table (DSDT version < 2). The constant will be truncated and this warning reflects that behavior. Resource Manager: Add support for the new ACPI 5.0 wake bit in the IRQ, ExtendedInterrupt, and GpioInt descriptors. This change adds support to both get and set the new wake bit in these descriptors, separately from the existing share bit. Reported by Aaron Lu. Interpreter: Fix Store() when an implicit conversion is not possible. For example, in the cases such as a store of a string to an existing package object, implement the store as a CopyObject(). This is a small departure from the ACPI specification which states that the control method should be aborted in this case. However, the ASLTS suite depends on this behavior. Performance improvement for the various FUNCTION_TRACE and DEBUG_PRINT macros: check if debug output is currently enabled as soon as possible to minimize performance impact if debug is in fact not enabled. Source code restructuring: Cleanup to improve modularity. The following new files have been added: dbconvert.c, evhandler.c, nsprepkg.c, psopinfo.c, psobject.c, rsdumpinfo.c, utstring.c, and utownerid.c. Associated makefiles and project files have been updated. Changed an exception code for LoadTable operator. For the case where one of the input strings is too long, change the returned exception code from AE_BAD_PARAMETER to AE_AML_STRING_LIMIT. Fixed a possible memory leak in dispatcher error path. On error, delete the mutex object created during method mutex creation. Reported by tim.gardner@canonical.com. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total Current Release: Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total Debug Version: 182.2K Code, 74.9K Data, 257.1K Total 2) iASL Compiler/Disassembler and Tools: iASL: Disallow a method call as argument to the ObjectType ASL operator. This change tracks an errata to the ACPI 5.0 document. The AML grammar will not allow the interpreter to differentiate between a method and a method invocation when these are used as an argument to the ObjectType operator. The ACPI specification change is to disallow a method invocation (UserTerm) for the ObjectType operator. Finish support for the TPM2 and CSRT tables in the headers, table compiler, and disassembler. Unix user-space OSL: Fix a problem with WaitSemaphore where the timeout always expires immediately if the semaphore is not available. The original code was using a relative-time timeout, but sem_timedwait requires the use of an absolute time. iASL: Added a remark if the Timer() operator is used within a 32-bit table. This operator returns a 64-bit time value that will be truncated within a 32-bit table. iASL Source code restructuring: Cleanup to improve modularity. The following new files have been added: aslhex.c, aslxref.c, aslnamesp.c, aslmethod.c, and aslfileio.c. Associated makefiles and project files have been updated. ---------------------------------------- 14 November 2012. Summary of changes for version 20121114: 1) ACPICA Kernel-resident Subsystem: Implemented a performance enhancement for ACPI/AML Package objects. This change greatly increases the performance of Package objects within the interpreter. It changes the processing of reference counts for packages by optimizing for the most common case where the package sub-objects are either Integers, Strings, or Buffers. Increases the overall performance of the ASLTS test suite by 1.5X (Increases the Slack Mode performance by 2X.) Chao Guan. ACPICA BZ 943. Implemented and deployed common macros to extract flag bits from resource descriptors. Improves readability and maintainability of the code. Fixes a problem with the UART serial bus descriptor for the number of data bits flags (was incorrectly 2 bits, should be 3). Enhanced the ACPI_GETx and ACPI_SETx macros. Improved the implementation of the macros and changed the SETx macros to the style of (destination, source). Also added ACPI_CASTx companion macros. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total Current Release: Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added the new ACPI 5.0 interrupt sharing flags. This change adds the ShareAndWake and ExclusiveAndWake flags which were added to the Irq, Interrupt, and Gpio resource descriptors in ACPI 5.0. ACPICA BZ 986. Disassembler: Fixed a problem with external declaration generation. Fixes a problem where an incorrect pathname could be generated for an external declaration if the original reference to the object includes leading carats (^). ACPICA BZ 984. Debugger: Completed a major update for the Disassemble command. This command was out-of-date and did not properly disassemble control methods that had any reasonable complexity. This fix brings the command up to the same level as the rest of the disassembler. Adds one new file, dmdeferred.c, which is existing code that is now common with the main disassembler and the debugger disassemble command. ACPICA MZ 978. iASL: Moved the parser entry prototype to avoid a duplicate declaration. Newer versions of Bison emit this prototype, so moved the prototype out of the iASL header to where it is actually used in order to avoid a duplicate declaration. iASL/Tools: Standardized use of the stream I/O functions: 1) Ensure check for I/O error after every fopen/fread/fwrite 2) Ensure proper order of size/count arguments for fread/fwrite 3) Use test of (Actual != Requested) after all fwrite, and most fread 4) Standardize I/O error messages Improves reliability and maintainability of the code. Bob Moore, Lv Zheng. ACPICA BZ 981. Disassembler: Prevent duplicate External() statements. During generation of external statements, detect similar pathnames that are actually duplicates such as these: External (\ABCD) External (ABCD) Remove all leading '\' characters from pathnames during the external statement generation so that duplicates will be detected and tossed. ACPICA BZ 985. Tools: Replace low-level I/O with stream I/O functions. Replace open/read/write/close with the stream I/O equivalents fopen/fread/fwrite/fclose for portability and performance. Lv Zheng, Bob Moore. AcpiBin: Fix for the dump-to-hex function. Now correctly output the table name header so that AcpiXtract recognizes the output file/table. iASL: Remove obsolete -2 option flag. Originally intended to force the compiler/disassembler into an ACPI 2.0 mode, this was never implemented and the entire concept is now obsolete. ---------------------------------------- 18 October 2012. Summary of changes for version 20121018: 1) ACPICA Kernel-resident Subsystem: Updated support for the ACPI 5.0 MPST table. Fixes some problems introduced by late changes to the table as it was added to the ACPI 5.0 specification. Includes header, disassembler, and data table compiler support as well as a new version of the MPST template. AcpiGetObjectInfo: Enhanced the device object support to include the ACPI 5.0 _SUB method. Now calls _SUB in addition to the other PNP-related ID methods: _HID, _CID, and _UID. Changed ACPI_DEVICE_ID to ACPI_PNP_DEVICE_ID. Also changed ACPI_DEVICE_ID_LIST to ACPI_PNP_DEVICE_ID_LIST. These changes prevent name collisions on hosts that reserve the *_DEVICE_ID (or *DeviceId) names for their various drivers. Affects the AcpiGetObjectInfo external interface, and other internal interfaces as well. Added and deployed a new macro for ACPI_NAME management: ACPI_MOVE_NAME. This macro resolves to a simple 32-bit move of the 4-character ACPI_NAME on machines that support non-aligned transfers. Optimizes for this case rather than using a strncpy. With assistance from Zheng Lv. Resource Manager: Small fix for buffer size calculation. Fixed a one byte error in the output buffer calculation. Feng Tang. ACPICA BZ 849. Added a new debug print message for AML mutex objects that are force- released. At control method termination, any currently acquired mutex objects are force-released. Adds a new debug-only message for each one that is released. Audited/updated all ACPICA return macros and the function debug depth counter: 1) Ensure that all functions that use the various TRACE macros also use the appropriate ACPICA return macros. 2) Ensure that all normal return statements surround the return expression (value) with parens to ensure consistency across the ACPICA code base. Guan Chao, Tang Feng, Zheng Lv, Bob Moore. ACPICA Bugzilla 972. Global source code changes/maintenance: All extra lines at the start and end of each source file have been removed for consistency. Also, within comments, all new sentences start with a single space instead of a double space, again for consistency across the code base. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total Debug Version: 175.0K Code, 74.4K Data, 249.4K Total Current Release: Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Improved the algorithm used for memory leak/corruption detection. Added some intelligence to the code that maintains the global list of allocated memory. The list is now ordered by allocated memory address, significantly improving performance. When running AcpiExec on the ASLTS test suite, speed improvements of 3X to 5X are seen, depending on the platform and/or the environment. Note, this performance enhancement affects the AcpiExec utility only, not the kernel-resident ACPICA code. Enhanced error reporting for invalid AML opcodes and bad ACPI_NAMEs. For the disassembler, dump the 48 bytes surrounding the invalid opcode. Fix incorrect table offset reported for invalid opcodes. Report the original 32-bit value for bad ACPI_NAMEs (as well as the repaired name.) Disassembler: Enhanced the -vt option to emit the binary table data in hex format to assist with debugging. Fixed a potential filename buffer overflow in osunixdir.c. Increased the size of file structure. Colin Ian King. ---------------------------------------- 13 September 2012. Summary of changes for version 20120913: 1) ACPICA Kernel-resident Subsystem: ACPI 5.0: Added two new notify types for the Hardware Error Notification Structure within the Hardware Error Source Table (HEST) table -- CMCI(5) and MCE(6). Table Manager: Merged/removed duplicate code in the root table resize functions. One function is external, the other is internal. Lv Zheng, ACPICA BZ 846. Makefiles: Completely removed the obsolete "Linux" makefiles under acpica/generate/linux. These makefiles are obsolete and have been replaced by the generic unix makefiles under acpica/generate/unix. Makefiles: Ensure that binary files always copied properly. Minor rule change to ensure that the final binary output files are always copied up to the appropriate binary directory (bin32 or bin64.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total Debug Version: 175.7K Code, 74.8K Data, 250.5K Total Current Release: Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total Debug Version: 175.0K Code, 74.4K Data, 249.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a possible fault during the disassembly of resource descriptors when a second parse is required because of the invocation of external control methods within the table. With assistance from adq@lidskialf.net. ACPICA BZ 976. iASL: Fixed a namepath optimization problem. An error can occur if the parse node that contains the namepath to be optimized does not have a parent node that is a named object. This change fixes the problem. iASL: Fixed a regression where the AML file is not deleted on errors. The AML output file should be deleted if there are any errors during the compiler. The only exception is if the -f (force output) option is used. ACPICA BZ 974. iASL: Added a feature to automatically increase internal line buffer sizes. Via realloc(), automatically increase the internal line buffer sizes as necessary to support very long source code lines. The current version of the preprocessor requires a buffer long enough to contain full source code lines. This change increases the line buffer(s) if the input lines go beyond the current buffer size. This eliminates errors that occurred when a source code line was longer than the buffer. iASL: Fixed a problem with constant folding in method declarations. The SyncLevel term is a ByteConstExpr, and incorrect code would be generated if a Type3 opcode was used. Debugger: Improved command help support. For incorrect argument count, display full help for the command. For help command itself, allow an argument to specify a command. Test Suites: Several bug fixes for the ASLTS suite reduces the number of errors during execution of the suite. Guan Chao. ---------------------------------------- 16 August 2012. Summary of changes for version 20120816: 1) ACPICA Kernel-resident Subsystem: Removed all use of the deprecated _GTS and _BFS predefined methods. The _GTS (Going To Sleep) and _BFS (Back From Sleep) methods are essentially deprecated and will probably be removed from the ACPI specification. Windows does not invoke them, and reportedly never will. The final nail in the coffin is that the ACPI specification states that these methods must be run with interrupts off, which is not going to happen in a kernel interpreter. Note: Linux has removed all use of the methods also. It was discovered that invoking these functions caused failures on some machines, probably because they were never tested since Windows does not call them. Affects two external interfaces, AcpiEnterSleepState and AcpiLeaveSleepStatePrep. Tang Feng. ACPICA BZ 969. Implemented support for complex bit-packed buffers returned from the _PLD (Physical Location of Device) predefined method. Adds a new external interface, AcpiDecodePldBuffer that parses the buffer into a more usable C structure. Note: C Bitfields cannot be used for this type of predefined structure since the memory layout of individual bitfields is not defined by the C language. In addition, there are endian concerns where a compiler will change the bitfield ordering based on the machine type. The new ACPICA interface eliminates these issues, and should be called after _PLD is executed. ACPICA BZ 954. Implemented a change to allow a scope change to root (via "Scope (\)") during execution of module-level ASL code (code that is executed at table load time.) Lin Ming. Added the Windows8/Server2012 string for the _OSI method. This change adds a new _OSI string, "Windows 2012" for both Windows 8 and Windows Server 2012. Added header support for the new ACPI tables DBG2 (Debug Port Table Type 2) and CSRT (Core System Resource Table). Added struct header support for the _FDE, _GRT, _GTM, and _SRT predefined names. This simplifies access to the buffers returned by these predefined names. Adds a new file, include/acbuffer.h. ACPICA BZ 956. GPE support: Removed an extraneous parameter from the various low-level internal GPE functions. Tang Feng. Removed the linux makefiles from the unix packages. The generate/linux makefiles are obsolete and have been removed from the unix tarball release packages. The replacement makefiles are under generate/unix, and there is a top-level makefile under the main acpica directory. ACPICA BZ 967, 912. Updates for Unix makefiles: 1) Add -D_FORTIFY_SOURCE=2 for gcc generation. Arjan van de Ven. 2) Update linker flags (move to end of command line) for AcpiExec utility. Guan Chao. Split ACPICA initialization functions to new file, utxfinit.c. Split from utxface.c to improve modularity and reduce file size. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total Debug Version: 173.7K Code, 74.0K Data, 247.7K Total Current Release: Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total Debug Version: 175.7K Code, 74.8K Data, 250.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with constant folding for fixed-length constant expressions. The constant-folding code was not being invoked for constant expressions that allow the use of type 3/4/5 opcodes to generate constants for expressions such as ByteConstExpr, WordConstExpr, etc. This could result in the generation of invalid AML bytecode. ACPICA BZ 970. iASL: Fixed a generation issue on newer versions of Bison. Newer versions apparently automatically emit some of the necessary externals. This change handles these versions in order to eliminate generation warnings. Disassembler: Added support to decode the DBG2 and CSRT ACPI tables. Disassembler: Add support to decode _PLD buffers. The decoded buffer appears within comments in the output file. Debugger: Fixed a regression with the "Threads" command where AE_BAD_PARAMETER was always returned. ---------------------------------------- 11 July 2012. Summary of changes for version 20120711: 1) ACPICA Kernel-resident Subsystem: Fixed a possible fault in the return package object repair code. Fixes a problem that can occur when a lone package object is wrapped with an outer package object in order to force conformance to the ACPI specification. Can affect these predefined names: _ALR, _MLS, _PSS, _TRT, _TSS, _PRT, _HPX, _DLM, _CSD, _PSD, _TSD. Removed code to disable/enable bus master arbitration (ARB_DIS bit in the PM2_CNT register) in the ACPICA sleep/wake interfaces. Management of the ARB_DIS bit must be implemented in the host-dependent C3 processor power state support. Note, ARB_DIS is obsolete and only applies to older chipsets, both Intel and other vendors. (for Intel: ICH4-M and earlier) This change removes the code to disable/enable bus master arbitration during suspend/resume. Use of the ARB_DIS bit in the optional PM2_CNT register causes resume problems on some machines. The change has been in use for over seven years within Linux. Implemented two new external interfaces to support host-directed dynamic ACPI table load and unload. They are intended to simplify the host implementation of hot-plug support: AcpiLoadTable: Load an SSDT from a buffer into the namespace. AcpiUnloadParentTable: Unload an SSDT via a named object owned by the table. See the ACPICA reference for additional details. Adds one new file, components/tables/tbxfload.c Implemented and deployed two new interfaces for errors and warnings that are known to be caused by BIOS/firmware issues: AcpiBiosError: Prints "ACPI Firmware Error" message. AcpiBiosWarning: Prints "ACPI Firmware Warning" message. Deployed these new interfaces in the ACPICA Table Manager code for ACPI table and FADT errors. Additional deployment to be completed as appropriate in the future. The associated conditional macros are ACPI_BIOS_ERROR and ACPI_BIOS_WARNING. See the ACPICA reference for additional details. ACPICA BZ 843. Implicit notify support: ensure that no memory allocation occurs within a critical region. This fix moves a memory allocation outside of the time that a spinlock is held. Fixes issues on systems that do not allow this behavior. Jung-uk Kim. Split exception code utilities and tables into a new file, utilities/utexcep.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total Debug Version: 172.9K Code, 73.6K Data, 246.5K Total Current Release: Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total Debug Version: 173.7K Code, 74.0K Data, 247.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a parser problem for hosts where EOF is defined as -1 instead of 0. Jung-uk Kim. Debugger: Enhanced the "tables" command to emit additional information about the current set of ACPI tables, including the owner ID and flags decode. Debugger: Reimplemented the "unload" command to use the new AcpiUnloadParentTable external interface. This command was disable previously due to need for an unload interface. AcpiHelp: Added a new option to decode ACPICA exception codes. The -e option will decode 16-bit hex status codes (ACPI_STATUS) to name strings. ---------------------------------------- 20 June 2012. Summary of changes for version 20120620: 1) ACPICA Kernel-resident Subsystem: Implemented support to expand the "implicit notify" feature to allow multiple devices to be notified by a single GPE. This feature automatically generates a runtime device notification in the absence of a BIOS-provided GPE control method (_Lxx/_Exx) or a host-installed handler for the GPE. Implicit notify is provided by ACPICA for Windows compatibility, and is a workaround for BIOS AML code errors. See the description of the AcpiSetupGpeForWake interface in the APCICA reference. Bob Moore, Rafael Wysocki. ACPICA BZ 918. Changed some comments and internal function names to simplify and ensure correctness of the Linux code translation. No functional changes. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total Debug Version: 172.7K Code, 73.6K Data, 246.3K Total Current Release: Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total Debug Version: 172.9K Code, 73.6K Data, 246.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added support to emit short, commented descriptions for the ACPI predefined names in order to improve the readability of the disassembled output. ACPICA BZ 959. Changes include: 1) Emit descriptions for all standard predefined names (_INI, _STA, _PRW, etc.) 2) Emit generic descriptions for the special names (_Exx, _Qxx, etc.) 3) Emit descriptions for the resource descriptor names (_MIN, _LEN, etc.) AcpiSrc: Fixed several long-standing Linux code translation issues. Argument descriptions in function headers are now translated properly to lower case and underscores. ACPICA BZ 961. Also fixes translation problems such as these: (old -> new) i_aSL -> iASL 00-7_f -> 00-7F 16_k -> 16K local_fADT -> local_FADT execute_oSI -> execute_OSI iASL: Fixed a problem where null bytes were inadvertently emitted into some listing files. iASL: Added the existing debug options to the standard help screen. There are no longer two different help screens. ACPICA BZ 957. AcpiHelp: Fixed some typos in the various predefined name descriptions. Also expand some of the descriptions where appropriate. iASL: Fixed the -ot option (display compile times/statistics). Was not working properly for standard output; only worked for the debug file case. ---------------------------------------- 18 May 2012. Summary of changes for version 20120518: 1) ACPICA Core Subsystem: Added a new OSL interface, AcpiOsWaitEventsComplete. This interface is defined to block until asynchronous events such as notifies and GPEs have completed. Within ACPICA, it is only called before a notify or GPE handler is removed/uninstalled. It also may be useful for the host OS within related drivers such as the Embedded Controller driver. See the ACPICA reference for additional information. ACPICA BZ 868. ACPI Tables: Added a new error message for a possible overflow failure during the conversion of FADT 32-bit legacy register addresses to internal common 64- bit GAS structure representation. The GAS has a one-byte "bit length" field, thus limiting the register length to 255 bits. ACPICA BZ 953. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.6K Code, 73.4K Data, 246.0K Total Current Release: Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total Debug Version: 172.7K Code, 73.6K Data, 246.3K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added the ACPI 5.0 "PCC" keyword for use in the Register() ASL macro. This keyword was added late in the ACPI 5.0 release cycle and was not implemented until now. Disassembler: Added support for Operation Region externals. Adds missing support for operation regions that are defined in another table, and referenced locally via a Field or BankField ASL operator. Now generates the correct External statement. Disassembler: Several additional fixes for the External() statement generation related to some ASL operators. Also, order the External() statements alphabetically in the disassembler output. Fixes the External() generation for the Create* field, Alias, and Scope operators: 1) Create* buffer field operators - fix type mismatch warning on disassembly 2) Alias - implement missing External support 3) Scope - fix to make sure all necessary externals are emitted. iASL: Improved pathname support. For include files, merge the prefix pathname with the file pathname and eliminate unnecessary components. Convert backslashes in all pathnames to forward slashes, for readability. Include file pathname changes affect both #include and Include() type operators. iASL/DTC/Preprocessor: Gracefully handle early EOF. Handle an EOF at the end of a valid line by inserting a newline and then returning the EOF during the next call to GetNextLine. Prevents the line from being ignored due to EOF condition. iASL: Implemented some changes to enhance the IDE support (-vi option.) Error and Warning messages are now correctly recognized for both the source code browser and the global error and warning counts. ---------------------------------------- 20 April 2012. Summary of changes for version 20120420: 1) ACPICA Core Subsystem: Implemented support for multiple notify handlers. This change adds support to allow multiple system and device notify handlers on Device, Thermal Zone, and Processor objects. This can simplify the host OS notification implementation. Also re-worked and restructured the entire notify support code to simplify handler installation, handler removal, notify event queuing, and notify dispatch to handler(s). Note: there can still only be two global notify handlers - one for system notifies and one for device notifies. There are no changes to the existing handler install/remove interfaces. Lin Ming, Bob Moore, Rafael Wysocki. Fixed a regression in the package repair code where the object reference count was calculated incorrectly. Regression was introduced in the commit "Support to add Package wrappers". Fixed a couple possible memory leaks in the AML parser, in the error recovery path. Jesper Juhl, Lin Ming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total Current Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.6K Code, 73.4K Data, 246.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with the resource descriptor support where the length of the StartDependentFn and StartDependentFnNoPrio descriptors were not included in cumulative descriptor offset, resulting in incorrect values for resource tags within resource descriptors appearing after a StartDependent* descriptor. Reported by Petr Vandrovec. ACPICA BZ 949. iASL and Preprocessor: Implemented full support for the #line directive to correctly track original source file line numbers through the .i preprocessor output file - for error and warning messages. iASL: Expand the allowable byte constants for address space IDs. Previously, the allowable range was 0x80-0xFF (user-defined spaces), now the range is 0x0A-0xFF to allow for custom and new IDs without changing the compiler. iASL: Add option to treat all warnings as errors (-we). ACPICA BZ 948. iASL: Add option to completely disable the preprocessor (-Pn). iASL: Now emit all error/warning messages to standard error (stderr) by default (instead of the previous stdout). ASL Test Suite (ASLTS): Reduce iASL warnings due to use of Switch(). Update for resource descriptor offset fix above. Update/cleanup error output routines. Enable and send iASL errors/warnings to an error logfile (error.txt). Send all other iASL output to a logfile (compiler.txt). Fixed several extraneous "unrecognized operator" messages. ---------------------------------------- 20 March 2012. Summary of changes for version 20120320: 1) ACPICA Core Subsystem: Enhanced the sleep/wake interfaces to optionally execute the _GTS method (Going To Sleep) and the _BFS method (Back From Sleep). Windows apparently does not execute these methods, and therefore these methods are often untested. It has been seen on some systems where the execution of these methods causes errors and also prevents the machine from entering S5. It is therefore suggested that host operating systems do not execute these methods by default. In the future, perhaps these methods can be optionally executed based on the age of the system and/or what is the newest version of Windows that the BIOS asks for via _OSI. Changed interfaces: AcpiEnterSleepState and AcpileaveSleepStatePrep. See the ACPICA reference and Linux BZ 13041. Lin Ming. Fixed a problem where the length of the local/common FADT was set too early. The local FADT table length cannot be set to the common length until the original length has been examined. There is code that checks the table length and sets various fields appropriately. This can affect older machines with early FADT versions. For example, this can cause inadvertent writes to the CST_CNT register. Julian Anastasov. Fixed a mapping issue related to a physical table override. Use the deferred mapping mechanism for tables loaded via the physical override OSL interface. This allows for early mapping before the virtual memory manager is available. Thomas Renninger, Bob Moore. Enhanced the automatic return-object repair code: Repair a common problem with predefined methods that are defined to return a variable-length Package of sub-objects. If there is only one sub-object, some BIOS ASL code mistakenly simply returns the single object instead of a Package with one sub- object. This new support will repair this error by wrapping a Package object around the original object, creating the correct and expected Package with one sub- object. Names that can be repaired in this manner include: _ALR, _CSD, _HPX, _MLS, _PLD, _PRT, _PSS, _TRT, _TSS, _BCL, _DOD, _FIX, and _Sx. ACPICA BZ 939. Changed the exception code returned for invalid ACPI paths passed as parameters to external interfaces such as AcpiEvaluateObject. Was AE_BAD_PARAMETER, now is the more sensible AE_BAD_PATHNAME. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total Current Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added the infrastructure and initial implementation of a integrated C- like preprocessor. This will simplify BIOS development process by eliminating the need for a separate preprocessing step during builds. On Windows, it also eliminates the need to install a separate C compiler. ACPICA BZ 761. Some features including full #define() macro support are still under development. These preprocessor directives are supported: #define #elif #else #endif #error #if #ifdef #ifndef #include #pragma message #undef #warning In addition, these new command line options are supported: -D Define symbol for preprocessor use -li Create preprocessed output file (*.i) -P Preprocess only and create preprocessor output file (*.i) Table Compiler: Fixed a problem where the equals operator within an expression did not work properly. Updated iASL to use the current versions of Bison/Flex. Updated the Windows project file to invoke these tools from the standard location. ACPICA BZ 904. Versions supported: Flex for Windows: V2.5.4 Bison for Windows: V2.4.1 ---------------------------------------- 15 February 2012. Summary of changes for version 20120215: 1) ACPICA Core Subsystem: There have been some major changes to the sleep/wake support code, as described below (a - e). a) The AcpiLeaveSleepState has been split into two interfaces, similar to AcpiEnterSleepStatePrep and AcpiEnterSleepState. The new interface is AcpiLeaveSleepStatePrep. This allows the host to perform actions between the time the _BFS method is called and the _WAK method is called. NOTE: all hosts must update their wake/resume code or else sleep/wake will not work properly. Rafael Wysocki. b) In AcpiLeaveSleepState, now enable all runtime GPEs before calling the _WAK method. Some machines require that the GPEs are enabled before the _WAK method is executed. Thomas Renninger. c) In AcpiLeaveSleepState, now always clear the WAK_STS (wake status) bit. Some BIOS code assumes that WAK_STS will be cleared on resume and use it to determine whether the system is rebooting or resuming. Matthew Garrett. d) Move the invocations of _GTS (Going To Sleep) and _BFS (Back From Sleep) to match the ACPI specification requirement. Rafael Wysocki. e) Implemented full support for the ACPI 5.0 SleepStatus and SleepControl registers within the V5 FADT. This support adds two new files: hardware/hwesleep.c implements the support for the new registers. Moved all sleep/wake external interfaces to hardware/hwxfsleep.c. Added a new OSL interface for ACPI table overrides, AcpiOsPhysicalTableOverride. This interface allows the host to override a table via a physical address, instead of the logical address required by AcpiOsTableOverride. This simplifies the host implementation. Initial implementation by Thomas Renninger. The ACPICA implementation creates a single shared function for table overrides that attempts both a logical and a physical override. Expanded the OSL memory read/write interfaces to 64-bit data (AcpiOsReadMemory, AcpiOsWriteMemory.) This enables full 64-bit memory transfer support for GAS register structures passed to AcpiRead and AcpiWrite. Implemented the ACPI_REDUCED_HARDWARE option to allow the creation of a custom build of ACPICA that supports only the ACPI 5.0 reduced hardware (SoC) model. See the ACPICA reference for details. ACPICA BZ 942. This option removes about 10% of the code and 5% of the static data, and the following hardware ACPI features become unavailable: PM Event and Control registers SCI interrupt (and handler) Fixed Events General Purpose Events (GPEs) Global Lock ACPI PM timer FACS table (Waking vectors and Global Lock) Updated the unix tarball directory structure to match the ACPICA git source tree. This ensures that the generic unix makefiles work properly (in generate/unix). Also updated the Linux makefiles to match. ACPICA BZ 867. Updated the return value of the _REV predefined method to integer value 5 to reflect ACPI 5.0 support. Moved the external ACPI PM timer interface prototypes to the public acpixf.h file where they belong. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total Debug Version: 171.7K Code, 72.9K Data, 244.5K Total Current Release: Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the new ACPI 5.0 serial resource descriptors (I2C, SPI, UART) where the resource produce/consumer bit was incorrectly displayed. AcpiHelp: Add display of ACPI/PNP device IDs that are defined in the ACPI specification. ---------------------------------------- 11 January 2012. Summary of changes for version 20120111: 1) ACPICA Core Subsystem: Implemented a new mechanism to allow host device drivers to check for address range conflicts with ACPI Operation Regions. Both SystemMemory and SystemIO address spaces are supported. A new external interface, AcpiCheckAddressRange, allows drivers to check an address range against the ACPI namespace. See the ACPICA reference for additional details. Adds one new file, utilities/utaddress.c. Lin Ming, Bob Moore. Fixed several issues with the ACPI 5.0 FADT support: Add the sleep Control and Status registers, update the ACPI 5.0 flags, and update internal data structures to handle an FADT larger than 256 bytes. The size of the ACPI 5.0 FADT is 268 bytes. Updated all ACPICA copyrights and signons to 2012. Added the 2012 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and all ACPICA utilities. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total Debug Version: 170.8K Code, 72.6K Data, 243.4K Total Current Release: Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total Debug Version: 171.7K Code, 72.9K Data, 244.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: fixed a problem with the automatic resource tag generation support. Fixes a problem where the resource tags are inadvertently not constructed if the table being disassembled contains external references to control methods. Moved the actual construction of the tags to after the final namespace is constructed (after 2nd parse is invoked due to external control method references.) ACPICA BZ 941. Table Compiler: Make all "generic" operators caseless. These are the operators like UINT8, String, etc. Making these caseless improves ease-of-use. ACPICA BZ 934. ---------------------------------------- 23 November 2011. Summary of changes for version 20111123: 0) ACPI 5.0 Support: This release contains full support for the ACPI 5.0 specification, as summarized below. Reduced Hardware Support: ------------------------- This support allows for ACPI systems without the usual ACPI hardware. This support is enabled by a flag in the revision 5 FADT. If it is set, ACPICA will not attempt to initialize or use any of the usual ACPI hardware. Note, when this flag is set, all of the following ACPI hardware is assumed to be not present and is not initialized or accessed: General Purpose Events (GPEs) Fixed Events (PM1a/PM1b and PM Control) Power Management Timer and Console Buttons (power/sleep) Real-time Clock Alarm Global Lock System Control Interrupt (SCI) The FACS is assumed to be non-existent ACPI Tables: ------------ All new tables and updates to existing tables are fully supported in the ACPICA headers (for use by device drivers), the disassembler, and the iASL Data Table Compiler. ACPI 5.0 defines these new tables: BGRT /* Boot Graphics Resource Table */ DRTM /* Dynamic Root of Trust for Measurement table */ FPDT /* Firmware Performance Data Table */ GTDT /* Generic Timer Description Table */ MPST /* Memory Power State Table */ PCCT /* Platform Communications Channel Table */ PMTT /* Platform Memory Topology Table */ RASF /* RAS Feature table */ Operation Regions/SpaceIDs: --------------------------- All new operation regions are fully supported by the iASL compiler, the disassembler, and the ACPICA runtime code (for dispatch to region handlers.) The new operation region Space IDs are: GeneralPurposeIo GenericSerialBus Resource Descriptors: --------------------- All new ASL resource descriptors are fully supported by the iASL compiler, the ASL/AML disassembler, and the ACPICA runtime Resource Manager code (including all new predefined resource tags). New descriptors are: FixedDma GpioIo GpioInt I2cSerialBus SpiSerialBus UartSerialBus ASL/AML Operators, New and Modified: ------------------------------------ One new operator is added, the Connection operator, which is used to associate a GeneralPurposeIo or GenericSerialBus resource descriptor with individual field objects within an operation region. Several new protocols are associated with the AccessAs operator. All are fully supported by the iASL compiler, disassembler, and runtime ACPICA AML interpreter: Connection // Declare Field Connection attributes AccessAs: AttribBytes (n) // Read/Write N-Bytes Protocol AccessAs: AttribRawBytes (n) // Raw Read/Write N-Bytes Protocol AccessAs: AttribRawProcessBytes (n) // Raw Process Call Protocol RawDataBuffer // Data type for Vendor Data fields Predefined ASL/AML Objects: --------------------------- All new predefined objects/control-methods are supported by the iASL compiler and the ACPICA runtime validation/repair (arguments and return values.) New predefined names include the following: Standard Predefined Names (Objects or Control Methods): _AEI, _CLS, _CPC, _CWS, _DEP, _DLM, _EVT, _GCP, _CRT, _GWS, _HRV, _PRE, _PSE, _SRT, _SUB. Resource Tags (Names used to access individual fields within resource descriptors): _DBT, _DPL, _DRS, _END, _FLC, _IOR, _LIN, _MOD, _PAR, _PHA, _PIN, _PPI, _POL, _RXL, _SLV, _SPE, _STB, _TXL, _VEN. ACPICA External Interfaces: --------------------------- Several new interfaces have been defined for use by ACPI-related device drivers and other host OS services: AcpiAcquireMutex and AcpiReleaseMutex: These interfaces allow the host OS to acquire and release AML mutexes that are defined in the DSDT/SSDT tables provided by the BIOS. They are intended to be used in conjunction with the ACPI 5.0 _DLM (Device Lock Method) in order to provide transaction-level mutual exclusion with the AML code/interpreter. AcpiGetEventResources: Returns the (formatted) resource descriptors as defined by the ACPI 5.0 _AEI object (ACPI Event Information). This object provides resource descriptors associated with hardware-reduced platform events, similar to the AcpiGetCurrentResources interface. Operation Region Handlers: For General Purpose IO and Generic Serial Bus operation regions, information about the Connection() object and any optional length information is passed to the region handler within the Context parameter. AcpiBufferToResource: This interface converts a raw AML buffer containing a resource template or resource descriptor to the ACPI_RESOURCE internal format suitable for use by device drivers. Can be used by an operation region handler to convert the Connection() buffer object into a ACPI_RESOURCE. Miscellaneous/Tools/TestSuites: ------------------------------- Support for extended _HID names (Four alpha characters instead of three). Support for ACPI 5.0 features in the AcpiExec and AcpiHelp utilities. Support for ACPI 5.0 features in the ASLTS test suite. Fully updated documentation (ACPICA and iASL reference documents.) ACPI Table Definition Language: ------------------------------- Support for this language was implemented and released as a subsystem of the iASL compiler in 2010. (See the iASL compiler User Guide.) Non-ACPI 5.0 changes for this release: -------------------------------------- 1) ACPICA Core Subsystem: Fix a problem with operation region declarations where a failure can occur if the region name and an argument that evaluates to an object (such as the region address) are in different namespace scopes. Lin Ming, ACPICA BZ 937. Do not abort an ACPI table load if an invalid space ID is found within. This will be caught later if the offending method is executed. ACPICA BZ 925. Fixed an issue with the FFixedHW space ID where the ID was not always recognized properly (Both ACPICA and iASL). ACPICA BZ 926. Fixed a problem with the 32-bit generation of the unix-specific OSL (osunixxf.c). Lin Ming, ACPICA BZ 936. Several changes made to enable generation with the GCC 4.6 compiler. ACPICA BZ 935. New error messages: Unsupported I/O requests (not 8/16/32 bit), and Index/Bank field registers out-of-range. 2) iASL Compiler/Disassembler and Tools: iASL: Implemented the __PATH__ operator, which returns the full pathname of the current source file. AcpiHelp: Automatically display expanded keyword information for all ASL operators. Debugger: Add "Template" command to disassemble/dump resource template buffers. Added a new master script to generate and execute the ASLTS test suite. Automatically handles 32- and 64-bit generation. See tests/aslts.sh iASL: Fix problem with listing generation during processing of the Switch() operator where AML listing was disabled until the entire Switch block was completed. iASL: Improve support for semicolon statement terminators. Fix "invalid character" message for some cases when the semicolon is used. Semicolons are now allowed after every grammar element. ACPICA BZ 927. iASL: Fixed some possible aliasing warnings during generation. ACPICA BZ 923. Disassembler: Fix problem with disassembly of the DataTableRegion operator where an inadvertent "Unhandled deferred opcode" message could be generated. 3) Example Code and Data Size These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release: Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total Debug Version: 170.8K Code, 72.6K Data, 243.4K Total ---------------------------------------- 22 September 2011. Summary of changes for version 20110922: 0) ACPI 5.0 News: Support for ACPI 5.0 in ACPICA has been underway for several months and will be released at the same time that ACPI 5.0 is officially released. The ACPI 5.0 specification is on track for release in the next few months. 1) ACPICA Core Subsystem: Fixed a problem where the maximum sleep time for the Sleep() operator was intended to be limited to two seconds, but was inadvertently limited to 20 seconds instead. Linux and Unix makefiles: Added header file dependencies to ensure correct generation of ACPICA core code and utilities. Also simplified the makefiles considerably through the use of the vpath variable to specify search paths. ACPICA BZ 924. 2) iASL Compiler/Disassembler and Tools: iASL: Implemented support to check the access length for all fields created to access named Resource Descriptor fields. For example, if a resource field is defined to be two bits, a warning is issued if a CreateXxxxField() is used with an incorrect bit length. This is implemented for all current resource descriptor names. ACPICA BZ 930. Disassembler: Fixed a byte ordering problem with the output of 24-bit and 56- bit integers. iASL: Fixed a couple of issues associated with variable-length package objects. 1) properly handle constants like One, Ones, Zero -- do not make a VAR_PACKAGE when these are used as a package length. 2) Allow the VAR_PACKAGE opcode (in addition to PACKAGE) when validating object types for predefined names. iASL: Emit statistics for all output files (instead of just the ASL input and AML output). Includes listings, hex files, etc. iASL: Added -G option to the table compiler to allow the compilation of custom ACPI tables. The only part of a table that is required is the standard 36- byte ACPI header. AcpiXtract: Ported to the standard ACPICA environment (with ACPICA headers), which also adds correct 64-bit support. Also, now all output filenames are completely lower case. AcpiExec: Ignore any non-AML tables (tables other than DSDT or SSDT) when loading table files. A warning is issued for any such tables. The only exception is an FADT. This also fixes a possible fault when attempting to load non-AML tables. ACPICA BZ 932. AcpiHelp: Added the AccessAs and Offset operators. Fixed a problem where a missing table terminator could cause a fault when using the -p option. AcpiSrc: Fixed a possible divide-by-zero fault when generating file statistics. 3) Example Code and Data Size These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total ---------------------------------------- 23 June 2011. Summary of changes for version 20110623: 1) ACPI CA Core Subsystem: Updated the predefined name repair mechanism to not attempt repair of a _TSS return object if a _PSS object is present. We can only sort the _TSS return package if there is no _PSS within the same scope. This is because if _PSS is present, the ACPI specification dictates that the _TSS Power Dissipation field is to be ignored, and therefore some BIOSs leave garbage values in the _TSS Power field(s). In this case, it is best to just return the _TSS package as- is. Reported by, and fixed with assistance from Fenghua Yu. Added an option to globally disable the control method return value validation and repair. This runtime option can be used to disable return value repair if this is causing a problem on a particular machine. Also added an option to AcpiExec (-dr) to set this disable flag. All makefiles and project files: Major changes to improve generation of ACPICA tools. ACPICA BZ 912: Reduce default optimization levels to improve compatibility For Linux, add strict-aliasing=0 for gcc 4 Cleanup and simplify use of command line defines Cleanup multithread library support Improve usage messages Linux-specific header: update handling of THREAD_ID and pthread. For the 32- bit case, improve casting to eliminate possible warnings, especially with the acpica tools. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total 2) iASL Compiler/Disassembler and Tools: With this release, a new utility named "acpihelp" has been added to the ACPICA package. This utility summarizes the ACPI specification chapters for the ASL and AML languages. It generates under Linux/Unix as well as Windows, and provides the following functionality: Find/display ASL operator(s) -- with description and syntax. Find/display ASL keyword(s) -- with exact spelling and descriptions. Find/display ACPI predefined name(s) -- with description, number of arguments, and the return value data type. Find/display AML opcode name(s) -- with opcode, arguments, and grammar. Decode/display AML opcode -- with opcode name, arguments, and grammar. Service Layers: Make multi-thread support configurable. Conditionally compile the multi-thread support so that threading libraries will not be linked if not necessary. The only tool that requires multi-thread support is AcpiExec. iASL: Update yyerrror/AslCompilerError for "const" errors. Newer versions of Bison appear to want the interface to yyerror to be a const char * (or at least this is a problem when generating iASL on some systems.) ACPICA BZ 923 Pierre Lejeune. Tools: Fix for systems where O_BINARY is not defined. Only used for Windows versions of the tools. ---------------------------------------- 27 May 2011. Summary of changes for version 20110527: 1) ACPI CA Core Subsystem: ASL Load() operator: Reinstate most restrictions on the incoming ACPI table signature. Now, only allow SSDT, OEMx, and a null signature. History: 1) Originally, we checked the table signature for "SSDT" or "PSDT". (PSDT is now obsolete.) 2) We added support for OEMx tables, signature "OEM" plus a fourth "don't care" character. 3) Valid tables were encountered with a null signature, so we just gave up on validating the signature, (05/2008). 4) We encountered non-AML tables such as the MADT, which caused interpreter errors and kernel faults. So now, we once again allow only SSDT, OEMx, and now, also a null signature. (05/2011). Added the missing _TDL predefined name to the global name list in order to enable validation. Affects both the core ACPICA code and the iASL compiler. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total Debug Version: 164.5K Code, 68.0K Data, 232.5K Total Current Release (VC 9.0): Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total 2) iASL Compiler/Disassembler and Tools: Debugger/AcpiExec: Implemented support for "complex" method arguments on the debugger command line. This adds support beyond simple integers -- including Strings, Buffers, and Packages. Includes support for nested packages. Increased the default command line buffer size to accommodate these arguments. See the ACPICA reference for details and syntax. ACPICA BZ 917. Debugger/AcpiExec: Implemented support for "default" method arguments for the Execute/Debug command. Now, the debugger will always invoke a control method with the required number of arguments -- even if the command line specifies none or insufficient arguments. It uses default integer values for any missing arguments. Also fixes a bug where only six method arguments maximum were supported instead of the required seven. Debugger/AcpiExec: Add a maximum buffer length parameter to AcpiOsGetLine and also return status in order to prevent buffer overruns. See the ACPICA reference for details and syntax. ACPICA BZ 921 iASL: Cleaned up support for Berkeley yacc. A general cleanup of code and makefiles to simplify support for the two different but similar parser generators, bison and yacc. Updated the generic unix makefile for gcc 4. The default gcc version is now expected to be 4 or greater, since options specific to gcc 4 are used. ---------------------------------------- 13 April 2011. Summary of changes for version 20110413: 1) ACPI CA Core Subsystem: Implemented support to execute a so-called "orphan" _REG method under the EC device. This change will force the execution of a _REG method underneath the EC device even if there is no corresponding operation region of type EmbeddedControl. Fixes a problem seen on some machines and apparently is compatible with Windows behavior. ACPICA BZ 875. Added more predefined methods that are eligible for automatic NULL package element removal. This change adds another group of predefined names to the list of names that can be repaired by having NULL package elements dynamically removed. This group are those methods that return a single variable- length package containing simple data types such as integers, buffers, strings. This includes: _ALx, _BCL, _CID,_ DOD, _EDL, _FIX, _PCL, _PLD, _PMD, _PRx, _PSL, _Sx, and _TZD. ACPICA BZ 914. Split and segregated all internal global lock functions to a new file, evglock.c. Updated internal address SpaceID for DataTable regions. Moved this internal space id in preparation for ACPI 5.0 changes that will include some new space IDs. This change should not affect user/host code. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total Debug Version: 164.2K Code, 67.9K Data, 232.1K Total Current Release (VC 9.0): Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total Debug Version: 164.5K Code, 68.0K Data, 232.5K Total 2) iASL Compiler/Disassembler and Tools: iASL/DTC: Major update for new grammar features. Allow generic data types in custom ACPI tables. Field names are now optional. Any line can be split to multiple lines using the continuation char (\). Large buffers now use line- continuation character(s) and no colon on the continuation lines. See the grammar update in the iASL compiler reference. ACPI BZ 910,911. Lin Ming, Bob Moore. iASL: Mark ASL "Return()" and the simple "Return" as "Null" return statements. Since the parser stuffs a "zero" as the return value for these statements (due to the underlying AML grammar), they were seen as "return with value" by the iASL semantic checking. They are now seen correctly as "null" return statements. iASL: Check if a_REG declaration has a corresponding Operation Region. Adds a check for each _REG to ensure that there is in fact a corresponding operation region declaration in the same scope. If not, the _REG method is not very useful since it probably won't be executed. ACPICA BZ 915. iASL/DTC: Finish support for expression evaluation. Added a new expression parser that implements c-style operator precedence and parenthesization. ACPICA bugzilla 908. Disassembler/DTC: Remove support for () and <> style comments in data tables. Now that DTC has full expression support, we don't want to have comment strings that start with a parentheses or a less-than symbol. Now, only the standard /* and // comments are supported, as well as the bracket [] comments. AcpiXtract: Fix for RSDP and dynamic SSDT extraction. These tables have "unusual" headers in the acpidump file. Update the header validation to support these tables. Problem introduced in previous AcpiXtract version in the change to support "wrong checksum" error messages emitted by acpidump utility. iASL: Add a * option to generate all template files (as a synonym for ALL) as in "iasl -T *" or "iasl -T ALL". iASL/DTC: Do not abort compiler on fatal errors. We do not want to completely abort the compiler on "fatal" errors, simply should abort the current compile. This allows multiple compiles with a single (possibly wildcard) compiler invocation. ---------------------------------------- 16 March 2011. Summary of changes for version 20110316: 1) ACPI CA Core Subsystem: Fixed a problem caused by a _PRW method appearing at the namespace root scope during the setup of wake GPEs. A fault could occur if a _PRW directly under the root object was passed to the AcpiSetupGpeForWake interface. Lin Ming. Implemented support for "spurious" Global Lock interrupts. On some systems, a global lock interrupt can occur without the pending flag being set. Upon a GL interrupt, we now ensure that a thread is actually waiting for the lock before signaling GL availability. Rafael Wysocki, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total Current Release (VC 9.0): Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total Debug Version: 164.2K Code, 67.9K Data, 232.1K Total 2) iASL Compiler/Disassembler and Tools: Implemented full support for the "SLIC" ACPI table. Includes support in the header files, disassembler, table compiler, and template generator. Bob Moore, Lin Ming. AcpiXtract: Correctly handle embedded comments and messages from AcpiDump. Apparently some or all versions of acpidump will occasionally emit a comment like "Wrong checksum", etc., into the dump file. This was causing problems for AcpiXtract. ACPICA BZ 905. iASL: Fix the Linux makefile by removing an inadvertent double file inclusion. ACPICA BZ 913. AcpiExec: Update installation of operation region handlers. Install one handler for a user-defined address space. This is used by the ASL test suite (ASLTS). ---------------------------------------- 11 February 2011. Summary of changes for version 20110211: 1) ACPI CA Core Subsystem: Added a mechanism to defer _REG methods for some early-installed handlers. Most user handlers should be installed before call to AcpiEnableSubsystem. However, Event handlers and region handlers should be installed after AcpiInitializeObjects. Override handlers for the "default" regions should be installed early, however. This change executes all _REG methods for the default regions (Memory/IO/PCI/DataTable) simultaneously to prevent any chicken/egg issues between them. ACPICA BZ 848. Implemented an optimization for GPE detection. This optimization will simply ignore GPE registers that contain no enabled GPEs -- there is no need to read the register since this information is available internally. This becomes more important on machines with a large GPE space. ACPICA bugzilla 884. Lin Ming. Suggestion from Joe Liu. Removed all use of the highly unreliable FADT revision field. The revision number in the FADT has been found to be completely unreliable and cannot be trusted. Only the actual table length can be used to infer the version. This change updates the ACPICA core and the disassembler so that both no longer even look at the FADT version and instead depend solely upon the FADT length. Fix an unresolved name issue for the no-debug and no-error-message source generation cases. The _AcpiModuleName was left undefined in these cases, but it is actually needed as a parameter to some interfaces. Define _AcpiModuleName as a null string in these cases. ACPICA Bugzilla 888. Split several large files (makefiles and project files updated) utglobal.c -> utdecode.c dbcomds.c -> dbmethod.c dbnames.c dsopcode.c -> dsargs.c dscontrol.c dsload.c -> dsload2.c aslanalyze.c -> aslbtypes.c aslwalks.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total Current Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented the predefined macros __LINE__, __FILE__, and __DATE__. These are useful C-style macros with the standard definitions. ACPICA bugzilla 898. iASL/DTC: Added support for integer expressions and labels. Support for full expressions for all integer fields in all ACPI tables. Support for labels in "generic" portions of tables such as UEFI. See the iASL reference manual. Debugger: Added a command to display the status of global handlers. The "handlers" command will display op region, fixed event, and miscellaneous global handlers. installation status -- and for op regions, whether default or user-installed handler will be used. iASL: Warn if reserved method incorrectly returns a value. Many predefined names are defined such that they do not return a value. If implemented as a method, issue a warning if such a name explicitly returns a value. ACPICA Bugzilla 855. iASL: Added detection of GPE method name conflicts. Detects a conflict where there are two GPE methods of the form _Lxy and _Exy in the same scope. (For example, _L1D and _E1D in the same scope.) ACPICA bugzilla 848. iASL/DTC: Fixed a couple input scanner issues with comments and line numbers. Comment remover could get confused and miss a comment ending. Fixed a problem with line counter maintenance. iASL/DTC: Reduced the severity of some errors from fatal to error. There is no need to abort on simple errors within a field definition. Debugger: Simplified the output of the help command. All help output now in a single screen, instead of help subcommands. ACPICA Bugzilla 897. ---------------------------------------- 12 January 2011. Summary of changes for version 20110112: 1) ACPI CA Core Subsystem: Fixed a race condition between method execution and namespace walks that can possibly cause a fault. The problem was apparently introduced in version 20100528 as a result of a performance optimization that reduces the number of namespace walks upon method exit by using the delete_namespace_subtree function instead of the delete_namespace_by_owner function used previously. Bug is a missing namespace lock in the delete_namespace_subtree function. dana.myers@oracle.com Fixed several issues and a possible fault with the automatic "serialized" method support. History: This support changes a method to "serialized" on the fly if the method generates an AE_ALREADY_EXISTS error, indicating the possibility that it cannot handle reentrancy. This fix repairs a couple of issues seen in the field, especially on machines with many cores: 1) Delete method children only upon the exit of the last thread, so as to not delete objects out from under other running threads (and possibly causing a fault.) 2) Set the "serialized" bit for the method only upon the exit of the Last thread, so as to not cause deadlock when running threads attempt to exit. 3) Cleanup the use of the AML "MethodFlags" and internal method flags so that there is no longer any confusion between the two. Lin Ming, Bob Moore. Reported by dana.myers@oracle.com. Debugger: Now lock the namespace for duration of a namespace dump. Prevents issues if the namespace is changing dynamically underneath the debugger. Especially affects temporary namespace nodes, since the debugger displays these also. Updated the ordering of include files. The ACPICA headers should appear before any compiler-specific headers (stdio.h, etc.) so that acenv.h can set any necessary compiler-specific defines, etc. Affects the ACPI-related tools and utilities. Updated all ACPICA copyrights and signons to 2011. Added the 2011 copyright to all module headers and signons, including the Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and all utilities. Added project files for MS Visual Studio 2008 (VC++ 9.0). The original project files for VC++ 6.0 are now obsolete. New project files can be found under acpica/generate/msvc9. See acpica/generate/msvc9/readme.txt for details. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 6.0): Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total Debug Version: 166.6K Code, 52.1K Data, 218.7K Total Current Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added generic data types to the Data Table compiler. Add "generic" data types such as UINT32, String, Unicode, etc., to simplify the generation of platform-defined tables such as UEFI. Lin Ming. iASL: Added listing support for the Data Table Compiler. Adds listing support (-l) to display actual binary output for each line of input code. ---------------------------------------- 09 December 2010. Summary of changes for version 20101209: 1) ACPI CA Core Subsystem: Completed the major overhaul of the GPE support code that was begun in July 2010. Major features include: removal of _PRW execution in ACPICA (host executes _PRWs anyway), cleanup of "wake" GPE interfaces and processing, changes to existing interfaces, simplification of GPE handler operation, and a handful of new interfaces: AcpiUpdateAllGpes AcpiFinishGpe AcpiSetupGpeForWake AcpiSetGpeWakeMask One new file, evxfgpe.c to consolidate all external GPE interfaces. See the ACPICA Programmer Reference for full details and programming information. See the new section 4.4 "General Purpose Event (GPE) Support" for a full overview, and section 8.7 "ACPI General Purpose Event Management" for programming details. ACPICA BZ 858,870,877. Matthew Garrett, Lin Ming, Bob Moore, Rafael Wysocki. Implemented a new GPE feature for Windows compatibility, the "Implicit Wake GPE Notify". This feature will automatically issue a Notify(2) on a device when a Wake GPE is received if there is no corresponding GPE method or handler. ACPICA BZ 870. Fixed a problem with the Scope() operator during table parse and load phase. During load phase (table load or method execution), the scope operator should not enter the target into the namespace. Instead, it should open a new scope at the target location. Linux BZ 19462, ACPICA BZ 882. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total Debug Version: 166.6K Code, 52.1K Data, 218.7K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Relax the alphanumeric restriction on _CID strings. These strings are "bus-specific" per the ACPI specification, and therefore any characters are acceptable. The only checks that can be performed are for a null string and perhaps for a leading asterisk. ACPICA BZ 886. iASL: Fixed a problem where a syntax error that caused a premature EOF condition on the source file emitted a very confusing error message. The premature EOF is now detected correctly. ACPICA BZ 891. Disassembler: Decode the AccessSize within a Generic Address Structure (byte access, word access, etc.) Note, this field does not allow arbitrary bit access, the size is encoded as 1=byte, 2=word, 3=dword, and 4=qword. New: AcpiNames utility - Example namespace dump utility. Shows an example of ACPICA configuration for a minimal namespace dump utility. Uses table and namespace managers, but no AML interpreter. Does not add any functionality over AcpiExec, it is a subset of AcpiExec. The purpose is to show how to partition and configure ACPICA. ACPICA BZ 883. AML Debugger: Increased the debugger buffer size for method return objects. Was 4K, increased to 16K. Also enhanced error messages for debugger method execution, including the buffer overflow case. ---------------------------------------- 13 October 2010. Summary of changes for version 20101013: 1) ACPI CA Core Subsystem: Added support to clear the PCIEXP_WAKE event. When clearing ACPI events, now clear the PCIEXP_WAKE_STS bit in the ACPI PM1 Status Register, via HwClearAcpiStatus. Original change from Colin King. ACPICA BZ 880. Changed the type of the predefined namespace object _TZ from ThermalZone to Device. This was found to be confusing to the host software that processes the various thermal zones, since _TZ is not really a ThermalZone. However, a Notify() can still be performed on it. ACPICA BZ 876. Suggestion from Rui Zhang. Added Windows Vista SP2 to the list of supported _OSI strings. The actual string is "Windows 2006 SP2". Eliminated duplicate code in AcpiUtExecute* functions. Now that the nsrepair code automatically repairs _HID-related strings, this type of code is no longer needed in Execute_HID, Execute_CID, and Execute_UID. ACPICA BZ 878. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented additional compile-time validation for _HID strings. The non-hex prefix (such as "PNP" or "ACPI") must be uppercase, and the length of the string must be exactly seven or eight characters. For both _HID and _CID strings, all characters must be alphanumeric. ACPICA BZ 874. iASL: Allow certain "null" resource descriptors. Some BIOS code creates descriptors that are mostly or all zeros, with the expectation that they will be filled in at runtime. iASL now allows this as long as there is a "resource tag" (name) associated with the descriptor, which gives the ASL a handle needed to modify the descriptor. ACPICA BZ 873. Added single-thread support to the generic Unix application OSL. Primarily for iASL support, this change removes the use of semaphores in the single- threaded ACPICA tools/applications - increasing performance. The _MULTI_THREADED option was replaced by the (reverse) ACPI_SINGLE_THREADED option. ACPICA BZ 879. AcpiExec: several fixes for the 64-bit version. Adds XSDT support and support for 64-bit DSDT/FACS addresses in the FADT. Lin Ming. iASL: Moved all compiler messages to a new file, aslmessages.h. ---------------------------------------- 15 September 2010. Summary of changes for version 20100915: 1) ACPI CA Core Subsystem: Removed the AcpiOsDerivePciId OSL interface. The various host implementations of this function were not OS-dependent and are now obsolete and can be removed from all host OSLs. This function has been replaced by AcpiHwDerivePciId, which is now part of the ACPICA core code. AcpiHwDerivePciId has been implemented without recursion. Adds one new module, hwpci.c. ACPICA BZ 857. Implemented a dynamic repair for _HID and _CID strings. The following problems are now repaired at runtime: 1) Remove a leading asterisk in the string, and 2) the entire string is uppercased. Both repairs are in accordance with the ACPI specification and will simplify host driver code. ACPICA BZ 871. The ACPI_THREAD_ID type is no longer configurable, internally it is now always UINT64. This simplifies the ACPICA code, especially any printf output. UINT64 is the only common data type for all thread_id types across all operating systems. It is now up to the host OSL to cast the native thread_id type to UINT64 before returning the value to ACPICA (via AcpiOsGetThreadId). Lin Ming, Bob Moore. Added the ACPI_INLINE type to enhance the ACPICA configuration. The "inline" keyword is not standard across compilers, and this type allows inline to be configured on a per-compiler basis. Lin Ming. Made the system global AcpiGbl_SystemAwakeAndRunning publicly available. Added an extern for this boolean in acpixf.h. Some hosts utilize this value during suspend/restore operations. ACPICA BZ 869. All code that implements error/warning messages with the "ACPI:" prefix has been moved to a new module, utxferror.c. The UINT64_OVERLAY was moved to utmath.c, which is the only module where it is used. ACPICA BZ 829. Lin Ming, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total Debug Version: 165.1K Code, 51.9K Data, 217.0K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Write ACPI errors to stderr instead of the output file. This keeps the output files free of random error messages that may originate from within the namespace/interpreter code. Used this opportunity to merge all ACPI:-style messages into a single new module, utxferror.c. ACPICA BZ 866. Lin Ming, Bob Moore. Tools: update some printfs for ansi warnings on size_t. Handle width change of size_t on 32-bit versus 64-bit generations. Lin Ming. ---------------------------------------- 06 August 2010. Summary of changes for version 20100806: 1) ACPI CA Core Subsystem: Designed and implemented a new host interface to the _OSI support code. This will allow the host to dynamically add or remove multiple _OSI strings, as well as install an optional handler that is called for each _OSI invocation. Also added a new AML debugger command, 'osi' to display and modify the global _OSI string table, and test support in the AcpiExec utility. See the ACPICA reference manual for full details. Lin Ming, Bob Moore. ACPICA BZ 836. New Functions: AcpiInstallInterface - Add an _OSI string. AcpiRemoveInterface - Delete an _OSI string. AcpiInstallInterfaceHandler - Install optional _OSI handler. Obsolete Functions: AcpiOsValidateInterface - no longer used. New Files: source/components/utilities/utosi.c Re-introduced the support to enable multi-byte transfers for Embedded Controller (EC) operation regions. A reported problem was found to be a bug in the host OS, not in the multi-byte support. Previously, the maximum data size passed to the EC operation region handler was a single byte. There are often EC Fields larger than one byte that need to be transferred, and it is useful for the EC driver to lock these as a single transaction. This change enables single transfers larger than 8 bits. This effectively changes the access to the EC space from ByteAcc to AnyAcc, and will probably require changes to the host OS Embedded Controller driver to enable 16/32/64/256- bit transfers in addition to 8-bit transfers. Alexey Starikovskiy, Lin Ming. Fixed a problem with the prototype for AcpiOsReadPciConfiguration. The prototype in acpiosxf.h had the output value pointer as a (void *). It should be a (UINT64 *). This may affect some host OSL code. Fixed a couple problems with the recently modified Linux makefiles for iASL and AcpiExec. These new makefiles place the generated object files in the local directory so that there can be no collisions between the files that are shared between them that are compiled with different options. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.0K Code, 51.5K Data, 215.5K Total Current Release: Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total Debug Version: 165.1K Code, 51.9K Data, 217.0K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Added a new option (-da, "disassemble all") to load the namespace from and disassemble an entire group of AML files. Useful for loading all of the AML tables for a given machine (DSDT, SSDT1...SSDTn) and disassembling with one simple command. ACPICA BZ 865. Lin Ming. iASL: Allow multiple invocations of -e option. This change allows multiple uses of -e on the command line: "-e ssdt1.dat -e ssdt2.dat". ACPICA BZ 834. Lin Ming. ---------------------------------------- 02 July 2010. Summary of changes for version 20100702: 1) ACPI CA Core Subsystem: Implemented several updates to the recently added GPE reference count support. The model for "wake" GPEs is changing to give the host OS complete control of these GPEs. Eventually, the ACPICA core will not execute any _PRW methods, since the host already must execute them. Also, additional changes were made to help ensure that the reference counts are kept in proper synchronization with reality. Rafael J. Wysocki. 1) Ensure that GPEs are not enabled twice during initialization. 2) Ensure that GPE enable masks stay in sync with the reference count. 3) Do not inadvertently enable GPEs when writing GPE registers. 4) Remove the internal wake reference counter and add new AcpiGpeWakeup interface. This interface will set or clear individual GPEs for wakeup. 5) Remove GpeType argument from AcpiEnable and AcpiDisable. These interfaces are now used for "runtime" GPEs only. Changed the behavior of the GPE install/remove handler interfaces. The GPE is no longer disabled during this process, as it was found to cause problems on some machines. Rafael J. Wysocki. Reverted a change introduced in version 20100528 to enable Embedded Controller multi-byte transfers. This change was found to cause problems with Index Fields and possibly Bank Fields. It will be reintroduced when these problems have been resolved. Fixed a problem with references to Alias objects within Package Objects. A reference to an Alias within the definition of a Package was not always resolved properly. Aliases to objects like Processors, Thermal zones, etc. were resolved to the actual object instead of a reference to the object as it should be. Package objects are only allowed to contain integer, string, buffer, package, and reference objects. Redhat bugzilla 608648. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.1K Code, 51.5K Data, 215.6K Total Current Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.0K Code, 51.5K Data, 215.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented a new compiler subsystem to allow definition and compilation of the non-AML ACPI tables such as FADT, MADT, SRAT, etc. These are called "ACPI Data Tables", and the new compiler is the "Data Table Compiler". This compiler is intended to simplify the existing error-prone process of creating these tables for the BIOS, as well as allowing the disassembly, modification, recompilation, and override of existing ACPI data tables. See the iASL User Guide for detailed information. iASL: Implemented a new Template Generator option in support of the new Data Table Compiler. This option will create examples of all known ACPI tables that can be used as the basis for table development. See the iASL documentation and the -T option. Disassembler and headers: Added support for the WDDT ACPI table (Watchdog Descriptor Table). Updated the Linux makefiles for iASL and AcpiExec to place the generated object files in the local directory so that there can be no collisions between the shared files between them that are generated with different options. Added support for Mac OS X in the Unix OSL used for iASL and AcpiExec. Use the #define __APPLE__ to enable this support. ---------------------------------------- 28 May 2010. Summary of changes for version 20100528: Note: The ACPI 4.0a specification was released on April 5, 2010 and is available at www.acpi.info. This is primarily an errata release. 1) ACPI CA Core Subsystem: Undefined ACPI tables: We are looking for the definitions for the following ACPI tables that have been seen in the field: ATKG, IEIT, GSCI. Implemented support to enable multi-byte transfers for Embedded Controller (EC) operation regions. Previously, the maximum data size passed to the EC operation region handler was a single byte. There are often EC Fields larger than one byte that need to be transferred, and it is useful for the EC driver to lock these as a single transaction. This change enables single transfers larger than 8 bits. This effectively changes the access to the EC space from ByteAcc to AnyAcc, and will probably require changes to the host OS Embedded Controller driver to enable 16/32/64/256-bit transfers in addition to 8- bit transfers. Alexey Starikovskiy, Lin Ming Implemented a performance enhancement for namespace search and access. This change enhances the performance of namespace searches and walks by adding a backpointer to the parent in each namespace node. On large namespaces, this change can improve overall ACPI performance by up to 9X. Adding a pointer to each namespace node increases the overall size of the internal namespace by about 5%, since each namespace entry usually consists of both a namespace node and an ACPI operand object. However, this is the first growth of the namespace in ten years. ACPICA bugzilla 817. Alexey Starikovskiy. Implemented a performance optimization that reduces the number of namespace walks. On control method exit, only walk the namespace if the method is known to have created namespace objects outside of its local scope. Previously, the entire namespace was traversed on each control method exit. This change can improve overall ACPI performance by up to 3X. Alexey Starikovskiy, Bob Moore. Added support to truncate I/O addresses to 16 bits for Windows compatibility. Some ASL code has been seen in the field that inadvertently has bits set above bit 15. This feature is optional and is enabled if the BIOS requests any Windows OSI strings. It can also be enabled by the host OS. Matthew Garrett, Bob Moore. Added support to limit the maximum time for the ASL Sleep() operator. To prevent accidental deep sleeps, limit the maximum time that Sleep() will actually sleep. Configurable, the default maximum is two seconds. ACPICA bugzilla 854. Added run-time validation support for the _WDG and_WED Microsoft predefined methods. These objects are defined by "Windows Instrumentation", and are not part of the ACPI spec. ACPICA BZ 860. Expanded all statistic counters used during namespace and device initialization from 16 to 32 bits in order to support very large namespaces. Replaced all instances of %d in printf format specifiers with %u since nearly all integers in ACPICA are unsigned. Fixed the exception namestring for AE_WAKE_ONLY_GPE. Was incorrectly returned as AE_NO_HANDLER. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total Debug Version: 164.2K Code, 51.5K Data, 215.7K Total Current Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.1K Code, 51.5K Data, 215.6K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added compiler support for the _WDG and_WED Microsoft predefined methods. These objects are defined by "Windows Instrumentation", and are not part of the ACPI spec. ACPICA BZ 860. AcpiExec: added option to disable the memory tracking mechanism. The -dt option will disable the tracking mechanism, which improves performance considerably. AcpiExec: Restructured the command line options into -d (disable) and -e (enable) options. ---------------------------------------- 28 April 2010. Summary of changes for version 20100428: 1) ACPI CA Core Subsystem: Implemented GPE support for dynamically loaded ACPI tables. For all GPEs, including FADT-based and GPE Block Devices, execute any _PRW methods in the new table, and process any _Lxx/_Exx GPE methods in the new table. Any runtime GPE that is referenced by an _Lxx/_Exx method in the new table is immediately enabled. Handles the FADT-defined GPEs as well as GPE Block Devices. Provides compatibility with other ACPI implementations. Two new files added, evgpeinit.c and evgpeutil.c. ACPICA BZ 833. Lin Ming, Bob Moore. Fixed a regression introduced in version 20100331 within the table manager where initial table loading could fail. This was introduced in the fix for AcpiReallocateRootTable. Also, renamed some of fields in the table manager data structures to clarify their meaning and use. Fixed a possible allocation overrun during internal object copy in AcpiUtCopySimpleObject. The original code did not correctly handle the case where the object to be copied was a namespace node. Lin Ming. ACPICA BZ 847. Updated the allocation dump routine, AcpiUtDumpAllocation and fixed a possible access beyond end-of-allocation. Also, now fully validate descriptor (size and type) before output. Lin Ming, Bob Moore. ACPICA BZ 847 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total Debug Version: 163.5K Code, 51.3K Data, 214.8K Total Current Release: Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total Debug Version: 164.2K Code, 51.5K Data, 215.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented Min/Max/Len/Gran validation for address resource descriptors. This change implements validation for the address fields that are common to all address-type resource descriptors. These checks are implemented: Checks for valid Min/Max, length within the Min/Max window, valid granularity, Min/Max a multiple of granularity, and _MIF/_MAF as per table 6-40 in the ACPI 4.0a specification. Also split the large aslrestype1.c and aslrestype2.c files into five new files. ACPICA BZ 840. iASL: Added support for the _Wxx predefined names. This support was missing and these names were not recognized by the compiler as valid predefined names. ACPICA BZ 851. iASL: Added an error for all predefined names that are defined to return no value and thus must be implemented as Control Methods. These include all of the _Lxx, _Exx, _Wxx, and _Qxx names, as well as some other miscellaneous names such as _DIS, _INI, _IRC, _OFF, _ON, and _PSx. ACPICA BZ 850, 856. iASL: Implemented the -ts option to emit hex AML data in ASL format, as an ASL Buffer. Allows ACPI tables to be easily included within ASL files, to be dynamically loaded via the Load() operator. Also cleaned up output for the - ta and -tc options. ACPICA BZ 853. Tests: Added a new file with examples of extended iASL error checking. Demonstrates the advanced error checking ability of the iASL compiler. Available at tests/misc/badcode.asl. ---------------------------------------- 31 March 2010. Summary of changes for version 20100331: 1) ACPI CA Core Subsystem: Completed a major update for the GPE support in order to improve support for shared GPEs and to simplify both host OS and ACPICA code. Added a reference count mechanism to support shared GPEs that require multiple device drivers. Several external interfaces have changed. One external interface has been removed. One new external interface was added. Most of the GPE external interfaces now use the GPE spinlock instead of the events mutex (and the Flags parameter for many GPE interfaces has been removed.) See the updated ACPICA Programmer Reference for details. Matthew Garrett, Bob Moore, Rafael Wysocki. ACPICA BZ 831. Changed: AcpiEnableGpe, AcpiDisableGpe, AcpiClearGpe, AcpiGetGpeStatus Removed: AcpiSetGpeType New: AcpiSetGpe Implemented write support for DataTable operation regions. These regions are defined via the DataTableRegion() operator. Previously, only read support was implemented. The ACPI specification allows DataTableRegions to be read/write, however. Implemented a new subsystem option to force a copy of the DSDT to local memory. Optionally copy the entire DSDT to local memory (instead of simply mapping it.) There are some (albeit very rare) BIOSs that corrupt or replace the original DSDT, creating the need for this option. Default is FALSE, do not copy the DSDT. Implemented detection of a corrupted or replaced DSDT. This change adds support to detect a DSDT that has been corrupted and/or replaced from outside the OS (by firmware). This is typically catastrophic for the system, but has been seen on some machines. Once this problem has been detected, the DSDT copy option can be enabled via system configuration. Lin Ming, Bob Moore. Fixed two problems with AcpiReallocateRootTable during the root table copy. When copying the root table to the new allocation, the length used was incorrect. The new size was used instead of the current table size, meaning too much data was copied. Also, the count of available slots for ACPI tables was not set correctly. Alexey Starikovskiy, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total Debug Version: 163.4K Code, 51.1K Data, 214.5K Total Current Release: Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total Debug Version: 163.5K Code, 51.3K Data, 214.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implement limited typechecking for values returned from predefined control methods. The type of any returned static (unnamed) object is now validated. For example, Return(1). ACPICA BZ 786. iASL: Fixed a predefined name object verification regression. Fixes a problem introduced in version 20100304. An error is incorrectly generated if a predefined name is declared as a static named object with a value defined using the keywords "Zero", "One", or "Ones". Lin Ming. iASL: Added Windows 7 support for the -g option (get local ACPI tables) by reducing the requested registry access rights. ACPICA BZ 842. Disassembler: fixed a possible fault when generating External() statements. Introduced in commit ae7d6fd: Properly handle externals with parent- prefix (carat). Fixes a string length allocation calculation. Lin Ming. ---------------------------------------- 04 March 2010. Summary of changes for version 20100304: 1) ACPI CA Core Subsystem: Fixed a possible problem with the AML Mutex handling function AcpiExReleaseMutex where the function could fault under the very rare condition when the interpreter has blocked, the interpreter lock is released, the interpreter is then reentered via the same thread, and attempts to acquire an AML mutex that was previously acquired. FreeBSD report 140979. Lin Ming. Implemented additional configuration support for the AML "Debug Object". Output from the debug object can now be enabled via a global variable, AcpiGbl_EnableAmlDebugObject. This will assist with remote machine debugging. This debug output is now available in the release version of ACPICA instead of just the debug version. Also, the entire debug output module can now be configured out of the ACPICA build if desired. One new file added, executer/exdebug.c. Lin Ming, Bob Moore. Added header support for the ACPI MCHI table (Management Controller Host Interface Table). This table was added in ACPI 4.0, but the defining document has only recently become available. Standardized output of integer values for ACPICA warnings/errors. Always use 0x prefix for hex output, always use %u for unsigned integer decimal output. Affects ACPI_INFO, ACPI_ERROR, ACPI_EXCEPTION, and ACPI_WARNING (about 400 invocations.) These invocations were converted from the original ACPI_DEBUG_PRINT invocations and were not consistent. ACPICA BZ 835. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total Debug Version: 163.5K Code, 50.9K Data, 214.4K Total Current Release: Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total Debug Version: 163.4K Code, 51.1K Data, 214.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented typechecking support for static (non-control method) predefined named objects that are declared with the Name() operator. For example, the type of this object is now validated to be of type Integer: Name(_BBN, 1). This change migrates the compiler to using the core predefined name table instead of maintaining a local version. Added a new file, aslpredef.c. ACPICA BZ 832. Disassembler: Added support for the ACPI 4.0 MCHI table. ---------------------------------------- 21 January 2010. Summary of changes for version 20100121: 1) ACPI CA Core Subsystem: Added the 2010 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, the tools/utilities, and the test suites. Implemented a change to the AcpiGetDevices interface to eliminate unnecessary invocations of the _STA method. In the case where a specific _HID is requested, do not run _STA until a _HID match is found. This eliminates potentially dozens of _STA calls during a search for a particular device/HID, which in turn can improve boot times. ACPICA BZ 828. Lin Ming. Implemented an additional repair for predefined method return values. Attempt to repair unexpected NULL elements within returned Package objects. Create an Integer of value zero, a NULL String, or a zero-length Buffer as appropriate. ACPICA BZ 818. Lin Ming, Bob Moore. Removed the obsolete ACPI_INTEGER data type. This type was introduced as the code was migrated from ACPI 1.0 (with 32-bit AML integers) to ACPI 2.0 (with 64-bit AML integers). It is now obsolete and this change removes it from the ACPICA code base, replaced by UINT64. The original typedef has been retained for now for compatibility with existing device driver code. ACPICA BZ 824. Removed the unused UINT32_STRUCT type, and the obsolete Integer64 field in the parse tree object. Added additional warning options for the gcc-4 generation. Updated the source accordingly. This includes some code restructuring to eliminate unreachable code, elimination of some gotos, elimination of unused return values, some additional casting, and removal of redundant declarations. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total Debug Version: 163.4K Code, 50.8K Data, 214.2K Total Current Release: Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total Debug Version: 163.5K Code, 50.9K Data, 214.4K Total 2) iASL Compiler/Disassembler and Tools: No functional changes for this release. ---------------------------------------- 14 December 2009. Summary of changes for version 20091214: 1) ACPI CA Core Subsystem: Enhanced automatic data type conversions for predefined name repairs. This change expands the automatic repairs/conversions for predefined name return values to make Integers, Strings, and Buffers fully interchangeable. Also, a Buffer can be converted to a Package of Integers if necessary. The nsrepair.c module was completely restructured. Lin Ming, Bob Moore. Implemented automatic removal of null package elements during predefined name repairs. This change will automatically remove embedded and trailing NULL package elements from returned package objects that are defined to contain a variable number of sub-packages. The driver is then presented with a package with no null elements to deal with. ACPICA BZ 819. Implemented a repair for the predefined _FDE and _GTM names. The expected return value for both names is a Buffer of 5 DWORDs. This repair fixes two possible problems (both seen in the field), where a package of integers is returned, or a buffer of BYTEs is returned. With assistance from Jung-uk Kim. Implemented additional module-level code support. This change will properly execute module-level code that is not at the root of the namespace (under a Device object, etc.). Now executes the code within the current scope instead of the root. ACPICA BZ 762. Lin Ming. Fixed possible mutex acquisition errors when running _REG methods. Fixes a problem where mutex errors can occur when running a _REG method that is in the same scope as a method-defined operation region or an operation region under a module-level IF block. This type of code is rare, so the problem has not been seen before. ACPICA BZ 826. Lin Ming, Bob Moore. Fixed a possible memory leak during module-level code execution. An object could be leaked for each block of executed module-level code if the interpreter slack mode is enabled This change deletes any implicitly returned object from the module-level code block. Lin Ming. Removed messages for successful predefined repair(s). The repair mechanism was considered too wordy. Now, messages are only unconditionally emitted if the return object cannot be repaired. Existing messages for successful repairs were converted to ACPI_DEBUG_PRINT messages for now. ACPICA BZ 827. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total Debug Version: 162.7K Code, 50.8K Data, 213.5K Total Current Release: Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total Debug Version: 163.4K Code, 50.8K Data, 214.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a regression introduced in 20091112 where intermediate .SRC files were no longer automatically removed at the termination of the compile. acpiexec: Implemented the -f option to specify default region fill value. This option specifies the value used to initialize buffers that simulate operation regions. Default value is zero. Useful for debugging problems that depend on a specific initial value for a region or field. ---------------------------------------- 12 November 2009. Summary of changes for version 20091112: 1) ACPI CA Core Subsystem: Implemented a post-order callback to AcpiWalkNamespace. The existing interface only has a pre-order callback. This change adds an additional parameter for a post-order callback which will be more useful for bus scans. ACPICA BZ 779. Lin Ming. Updated the ACPICA Programmer Reference. Modified the behavior of the operation region memory mapping cache for SystemMemory. Ensure that the memory mappings created for operation regions do not cross 4K page boundaries. Crossing a page boundary while mapping regions can cause kernel warnings on some hosts if the pages have different attributes. Such regions are probably BIOS bugs, and this is the workaround. Linux BZ 14445. Lin Ming. Implemented an automatic repair for predefined methods that must return sorted lists. This change will repair (by sorting) packages returned by _ALR, _PSS, and _TSS. Drivers can now assume that the packages are correctly sorted and do not contain NULL package elements. Adds one new file, namespace/nsrepair2.c. ACPICA BZ 784. Lin Ming, Bob Moore. Fixed a possible fault during predefined name validation if a return Package object contains NULL elements. Also adds a warning if a NULL element is followed by any non-null elements. ACPICA BZ 813, 814. Future enhancement may include repair or removal of all such NULL elements where possible. Implemented additional module-level executable AML code support. This change will execute module-level code that is not at the root of the namespace (under a Device object, etc.) at table load time. Module-level executable AML code has been illegal since ACPI 2.0. ACPICA BZ 762. Lin Ming. Implemented a new internal function to create Integer objects. This function simplifies miscellaneous object creation code. ACPICA BZ 823. Reduced the severity of predefined repair messages, Warning to Info. Since the object was successfully repaired, a warning is too severe. Reduced to an info message for now. These messages may eventually be changed to debug- only. ACPICA BZ 812. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total Debug Version: 161.8K Code, 50.6K Data, 212.4K Total Current Release: Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total Debug Version: 162.7K Code, 50.8K Data, 213.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented Switch() with While(1) so that Break works correctly. This change correctly implements the Switch operator with a surrounding While(1) so that the Break operator works as expected. ACPICA BZ 461. Lin Ming. iASL: Added a message if a package initializer list is shorter than package length. Adds a new remark for a Package() declaration if an initializer list exists, but is shorter than the declared length of the package. Although technically legal, this is probably a coding error and it is seen in the field. ACPICA BZ 815. Lin Ming, Bob Moore. iASL: Fixed a problem where the compiler could fault after the maximum number of errors was reached (200). acpixtract: Fixed a possible warning for pointer cast if the compiler warning level set very high. ---------------------------------------- 13 October 2009. Summary of changes for version 20091013: 1) ACPI CA Core Subsystem: Fixed a problem where an Operation Region _REG method could be executed more than once. If a custom address space handler is installed by the host before the "initialize operation regions" phase of the ACPICA initialization, any _REG methods for that address space could be executed twice. This change fixes the problem. ACPICA BZ 427. Lin Ming. Fixed a possible memory leak for the Scope() ASL operator. When the exact invocation of "Scope(\)" is executed (change scope to root), one internal operand object was leaked. Lin Ming. Implemented a run-time repair for the _MAT predefined method. If the _MAT return value is defined as a Field object in the AML, and the field size is less than or equal to the default width of an integer (32 or 64),_MAT can incorrectly return an Integer instead of a Buffer. ACPICA now automatically repairs this problem. ACPICA BZ 810. Implemented a run-time repair for the _BIF and _BIX predefined methods. The "OEM Information" field is often incorrectly returned as an Integer with value zero if the field is not supported by the platform. This is due to an ambiguity in the ACPI specification. The field should always be a string. ACPICA now automatically repairs this problem by returning a NULL string within the returned Package. ACPICA BZ 807. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total Debug Version: 161.7K Code, 50.9K Data, 212.6K Total Current Release: Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total Debug Version: 161.8K Code, 50.6K Data, 212.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem where references to external symbols that contained one or more parent-prefixes (carats) were not handled correctly, possibly causing a fault. ACPICA BZ 806. Lin Ming. Disassembler: Restructured the code so that all functions that handle external symbols are in a single module. One new file is added, common/dmextern.c. AML Debugger: Added a max count argument for the Batch command (which executes multiple predefined methods within the namespace.) iASL: Updated the compiler documentation (User Reference.) Available at http://www.acpica.org/documentation/. ACPICA BZ 750. AcpiXtract: Updated for Lint and other formatting changes. Close all open files. ---------------------------------------- 03 September 2009. Summary of changes for version 20090903: 1) ACPI CA Core Subsystem: For Windows Vista compatibility, added the automatic execution of an _INI method located at the namespace root (\_INI). This method is executed at table load time. This support is in addition to the automatic execution of \_SB._INI. Lin Ming. Fixed a possible memory leak in the interpreter for AML package objects if the package initializer list is longer than the defined size of the package. This apparently can only happen if the BIOS changes the package size on the fly (seen in a _PSS object), as ASL compilers do not allow this. The interpreter will truncate the package to the defined size (and issue an error message), but previously could leave the extra objects undeleted if they were pre-created during the argument processing (such is the case if the package consists of a number of sub-packages as in the _PSS.) ACPICA BZ 805. Fixed a problem seen when a Buffer or String is stored to itself via ASL. This has been reported in the field. Previously, ACPICA would zero out the buffer/string. Now, the operation is treated as a noop. Provides Windows compatibility. ACPICA BZ 803. Lin Ming. Removed an extraneous error message for ASL constructs of the form Store(LocalX,LocalX) when LocalX is uninitialized. These curious statements are seen in many BIOSs and are once again treated as NOOPs and no error is emitted when they are encountered. ACPICA BZ 785. Fixed an extraneous warning message if a _DSM reserved method returns a Package object. _DSM can return any type of object, so validation on the return type cannot be performed. ACPICA BZ 802. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total Debug Version: 161.6K Code, 50.9K Data, 212.5K Total Current Release: Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total Debug Version: 161.7K Code, 50.9K Data, 212.6K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with the use of the Alias operator and Resource Templates. The correct alias is now constructed and no error is emitted. ACPICA BZ 738. iASL: Implemented the -I option to specify additional search directories for include files. Allows multiple additional search paths for include files. Directories are searched in the order specified on the command line (after the local directory is searched.) ACPICA BZ 800. iASL: Fixed a problem where the full pathname for include files was not emitted for warnings/errors. This caused the IDE support to not work properly. ACPICA BZ 765. iASL: Implemented the -@ option to specify a Windows-style response file containing additional command line options. ACPICA BZ 801. AcpiExec: Added support to load multiple AML files simultaneously (such as a DSDT and multiple SSDTs). Also added support for wildcards within the AML pathname. These features allow all machine tables to be easily loaded and debugged together. ACPICA BZ 804. Disassembler: Added missing support for disassembly of HEST table Error Bank subtables. ---------------------------------------- 30 July 2009. Summary of changes for version 20090730: The ACPI 4.0 implementation for ACPICA is complete with this release. 1) ACPI CA Core Subsystem: ACPI 4.0: Added header file support for all new and changed ACPI tables. Completely new tables are: IBFT, IVRS, MSCT, and WAET. Tables that are new for ACPI 4.0, but have previously been supported in ACPICA are: CPEP, BERT, EINJ, ERST, and HEST. Other newly supported tables are: UEFI and WDAT. There have been some ACPI 4.0 changes to other existing tables. Split the large actbl1.h header into the existing actbl2.h header. ACPICA BZ 774. ACPI 4.0: Implemented predefined name validation for all new names. There are 31 new names in ACPI 4.0. The predefined validation module was split into two files. The new file is namespace/nsrepair.c. ACPICA BZ 770. Implemented support for so-called "module-level executable code". This is executable AML code that exists outside of any control method and is intended to be executed at table load time. Although illegal since ACPI 2.0, this type of code still exists and is apparently still being created. Blocks of this code are now detected and executed as intended. Currently, the code blocks must exist under either an If, Else, or While construct; these are the typical cases seen in the field. ACPICA BZ 762. Lin Ming. Implemented an automatic dynamic repair for predefined names that return nested Package objects. This applies to predefined names that are defined to return a variable-length Package of sub-packages. If the number of sub- packages is one, BIOS code is occasionally seen that creates a simple single package with no sub-packages. This code attempts to fix the problem by wrapping a new package object around the existing package. These methods can be repaired: _ALR, _CSD, _HPX, _MLS, _PRT, _PSS, _TRT, and _TSS. ACPICA BZ 790. Fixed a regression introduced in 20090625 for the AcpiGetDevices interface. The _HID/_CID matching was broken and no longer matched IDs correctly. ACPICA BZ 793. Fixed a problem with AcpiReset where the reset would silently fail if the register was one of the protected I/O ports. AcpiReset now bypasses the port validation mechanism. This may eventually be driven into the AcpiRead/Write interfaces. Fixed a regression related to the recent update of the AcpiRead/Write interfaces. A sleep/suspend could fail if the optional PM2 Control register does not exist during an attempt to write the Bus Master Arbitration bit. (However, some hosts already delete the code that writes this bit, and the code may in fact be obsolete at this date.) ACPICA BZ 799. Fixed a problem where AcpiTerminate could fault if inadvertently called twice in succession. ACPICA BZ 795. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total Debug Version: 160.5K Code, 50.6K Data, 211.1K Total Current Release: Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total Debug Version: 161.6K Code, 50.9K Data, 212.5K Total 2) iASL Compiler/Disassembler and Tools: ACPI 4.0: Implemented disassembler support for all new ACPI tables and changes to existing tables. ACPICA BZ 775. ---------------------------------------- 25 June 2009. Summary of changes for version 20090625: The ACPI 4.0 Specification was released on June 16 and is available at www.acpi.info. ACPICA implementation of ACPI 4.0 is underway and will continue for the next few releases. 1) ACPI CA Core Subsystem: ACPI 4.0: Implemented interpreter support for the IPMI operation region address space. Includes support for bi-directional data buffers and an IPMI address space handler (to be installed by an IPMI device driver.) ACPICA BZ 773. Lin Ming. ACPI 4.0: Added changes for existing ACPI tables - FACS and SRAT. Includes support in both the header files and the disassembler. Completed a major update for the AcpiGetObjectInfo external interface. Changes include: - Support for variable, unlimited length HID, UID, and CID strings. - Support Processor objects the same as Devices (HID,UID,CID,ADR,STA, etc.) - Call the _SxW power methods on behalf of a device object. - Determine if a device is a PCI root bridge. - Change the ACPI_BUFFER parameter to ACPI_DEVICE_INFO. These changes will require an update to all callers of this interface. See the updated ACPICA Programmer Reference for details. One new source file has been added - utilities/utids.c. ACPICA BZ 368, 780. Updated the AcpiRead and AcpiWrite external interfaces to support 64-bit transfers. The Value parameter has been extended from 32 bits to 64 bits in order to support new ACPI 4.0 tables. These changes will require an update to all callers of these interfaces. See the ACPICA Programmer Reference for details. ACPICA BZ 768. Fixed several problems with AcpiAttachData. The handler was not invoked when the host node was deleted. The data sub-object was not automatically deleted when the host node was deleted. The interface to the handler had an unused parameter, this was removed. ACPICA BZ 778. Enhanced the function that dumps ACPI table headers. All non-printable characters in the string fields are now replaced with '?' (Signature, OemId, OemTableId, and CompilerId.) ACPI tables with non-printable characters in these fields are occasionally seen in the field. ACPICA BZ 788. Fixed a problem with predefined method repair code where the code that attempts to repair/convert an object of incorrect type is only executed on the first time the predefined method is called. The mechanism that disables warnings on subsequent calls was interfering with the repair mechanism. ACPICA BZ 781. Fixed a possible memory leak in the predefined validation/repair code when a buffer is automatically converted to an expected string object. Removed obsolete 16-bit files from the distribution and from the current git tree head. ACPICA BZ 776. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total Debug Version: 158.9K Code, 50.0K Data, 208.9K Total Current Release: Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total Debug Version: 160.5K Code, 50.6K Data, 211.1K Total 2) iASL Compiler/Disassembler and Tools: ACPI 4.0: iASL and Disassembler - implemented support for the new IPMI operation region keyword. ACPICA BZ 771, 772. Lin Ming. ACPI 4.0: iASL - implemented compile-time validation support for all new predefined names and control methods (31 total). ACPICA BZ 769. ---------------------------------------- 21 May 2009. Summary of changes for version 20090521: 1) ACPI CA Core Subsystem: Disabled the preservation of the SCI enable bit in the PM1 control register. The SCI enable bit (bit 0, SCI_EN) is defined by the ACPI specification to be a "preserved" bit - "OSPM always preserves this bit position", section 4.7.3.2.1. However, some machines fail if this bit is in fact preserved because the bit needs to be explicitly set by the OS as a workaround. No machines fail if the bit is not preserved. Therefore, ACPICA no longer attempts to preserve this bit. Fixed a problem in AcpiRsGetPciRoutingTableLength where an invalid or incorrectly formed _PRT package could cause a fault. Added validation to ensure that each package element is actually a sub-package. Implemented a new interface to install or override a single control method, AcpiInstallMethod. This interface is useful when debugging in order to repair an existing method or to install a missing method without having to override the entire ACPI table. See the ACPICA Programmer Reference for use and examples. Lin Ming, Bob Moore. Fixed several reference count issues with the DdbHandle object that is created from a Load or LoadTable operator. Prevent premature deletion of the object. Also, mark the object as invalid once the table has been unloaded. This is needed because the handle itself may not be deleted after the table unload, depending on whether it has been stored in a named object by the caller. Lin Ming. Fixed a problem with Mutex Sync Levels. Fixed a problem where if multiple mutexes of the same sync level are acquired but then not released in strict opposite order, the internally maintained Current Sync Level becomes confused and can cause subsequent execution errors. ACPICA BZ 471. Changed the allowable release order for ASL mutex objects. The ACPI 4.0 specification has been changed to make the SyncLevel for mutex objects more useful. When releasing a mutex, the SyncLevel of the mutex must now be the same as the current sync level. This makes more sense than the previous rule (SyncLevel less than or equal). This change updates the code to match the specification. Fixed a problem with the local version of the AcpiOsPurgeCache function. The (local) cache must be locked during all cache object deletions. Andrew Baumann. Updated the Load operator to use operation region interfaces. This replaces direct memory mapping with region access calls. Now, all region accesses go through the installed region handler as they should. Simplified and optimized the NsGetNextNode function. Reduced parameter count and reduced code for this frequently used function. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total Debug Version: 158.0K Code, 49.9K Data, 207.9K Total Current Release: Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total Debug Version: 158.9K Code, 50.0K Data, 208.9K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed some issues with DMAR, HEST, MADT tables. Some problems with sub-table disassembly and handling invalid sub-tables. Attempt recovery after an invalid sub-table ID. ---------------------------------------- 22 April 2009. Summary of changes for version 20090422: 1) ACPI CA Core Subsystem: Fixed a compatibility issue with the recently released I/O port protection mechanism. For windows compatibility, 1) On a port protection violation, simply ignore the request and do not return an exception (allow the control method to continue execution.) 2) If only part of the request overlaps a protected port, read/write the individual ports that are not protected. Linux BZ 13036. Lin Ming Enhanced the execution of the ASL/AML BreakPoint operator so that it actually breaks into the AML debugger if the debugger is present. This matches the ACPI-defined behavior. Fixed several possible warnings related to the use of the configurable ACPI_THREAD_ID. This type can now be configured as either an integer or a pointer with no warnings. Also fixes several warnings in printf-like statements for the 64-bit build when the type is configured as a pointer. ACPICA BZ 766, 767. Fixed a number of possible warnings when compiling with gcc 4+ (depending on warning options.) Examples include printf formats, aliasing, unused globals, missing prototypes, missing switch default statements, use of non-ANSI library functions, use of non-ANSI constructs. See generate/unix/Makefile for a list of warning options used with gcc 3 and 4. ACPICA BZ 735. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total Debug Version: 157.7K Code, 49.9K Data, 207.6K Total Current Release: Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total Debug Version: 158.0K Code, 49.9K Data, 207.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a generation warning from Bison 2.3 and fixed several warnings on the 64-bit build. iASL: Fixed a problem where the Unix/Linux versions of the compiler could not correctly digest Windows/DOS formatted files (with CR/LF). iASL: Added a new option for "quiet mode" (-va) that produces only the compilation summary, not individual errors and warnings. Useful for large batch compilations. AcpiExec: Implemented a new option (-z) to enable a forced semaphore/mutex timeout that can be used to detect hang conditions during execution of AML code (includes both internal semaphores and AML-defined mutexes and events.) Added new makefiles for the generation of acpica in a generic unix-like environment. These makefiles are intended to generate the acpica tools and utilities from the original acpica git source tree structure. Test Suites: Updated and cleaned up the documentation files. Updated the copyrights to 2009, affecting all source files. Use the new version of iASL with quiet mode. Increased the number of available semaphores in the Windows OSL, allowing the aslts to execute fully on Windows. For the Unix OSL, added an alternate implementation of the semaphore timeout to allow aslts to execute fully on Cygwin. ---------------------------------------- 20 March 2009. Summary of changes for version 20090320: 1) ACPI CA Core Subsystem: Fixed a possible race condition between AcpiWalkNamespace and dynamic table unloads. Added a reader/writer locking mechanism to allow multiple concurrent namespace walks (readers), but block a dynamic table unload until it can gain exclusive write access to the namespace. This fixes a problem where a table unload could (possibly catastrophically) delete the portion of the namespace that is currently being examined by a walk. Adds a new file, utlock.c, that implements the reader/writer lock mechanism. ACPICA BZ 749. Fixed a regression introduced in version 20090220 where a change to the FADT handling could cause the ACPICA subsystem to access non-existent I/O ports. Modified the handling of FADT register and table (FACS/DSDT) addresses. The FADT can contain both 32-bit and 64-bit versions of these addresses. Previously, the 64-bit versions were favored, meaning that if both 32 and 64 versions were valid, but not equal, the 64-bit version was used. This was found to cause some machines to fail. Now, in this case, the 32-bit version is used instead. This now matches the Windows behavior. Implemented a new mechanism to protect certain I/O ports. Provides Microsoft compatibility and protects the standard PC I/O ports from access via AML code. Adds a new file, hwvalid.c Fixed a possible extraneous warning message from the FADT support. The message warns of a 32/64 length mismatch between the legacy and GAS definitions for a register. Removed the obsolete AcpiOsValidateAddress OSL interface. This interface is made obsolete by the port protection mechanism above. It was previously used to validate the entire address range of an operation region, which could be incorrect if the range included illegal ports, but fields within the operation region did not actually access those ports. Validation is now performed on a per-field basis instead of the entire region. Modified the handling of the PM1 Status Register ignored bit (bit 11.) Ignored bits must be "preserved" according to the ACPI spec. Usually, this means a read/modify/write when writing to the register. However, for status registers, writing a one means clear the event. Writing a zero means preserve the event (do not clear.) This behavior is clarified in the ACPI 4.0 spec, and the ACPICA code now simply always writes a zero to the ignored bit. Modified the handling of ignored bits for the PM1 A/B Control Registers. As per the ACPI specification, for the control registers, preserve (read/modify/write) all bits that are defined as either reserved or ignored. Updated the handling of write-only bits in the PM1 A/B Control Registers. When reading the register, zero the write-only bits as per the ACPI spec. ACPICA BZ 443. Lin Ming. Removed "Linux" from the list of supported _OSI strings. Linux no longer wants to reply true to this request. The Windows strings are the only paths through the AML that are tested and known to work properly. Previous Release: Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total Debug Version: 156.9K Code, 49.8K Data, 206.7K Total Current Release: Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total Debug Version: 157.7K Code, 49.9K Data, 207.6K Total 2) iASL Compiler/Disassembler and Tools: Acpiexec: Split the large aeexec.c file into two new files, aehandlers.c and aetables.c ---------------------------------------- 20 February 2009. Summary of changes for version 20090220: 1) ACPI CA Core Subsystem: Optimized the ACPI register locking. Removed locking for reads from the ACPI bit registers in PM1 Status, Enable, Control, and PM2 Control. The lock is not required when reading the single-bit registers. The AcpiGetRegisterUnlocked function is no longer needed and has been removed. This will improve performance for reads on these registers. ACPICA BZ 760. Fixed the parameter validation for AcpiRead/Write. Now return AE_BAD_PARAMETER if the input register pointer is null, and AE_BAD_ADDRESS if the register has an address of zero. Previously, these cases simply returned AE_OK. For optional registers such as PM1B status/enable/control, the caller should check for a valid register address before calling. ACPICA BZ 748. Renamed the external ACPI bit register access functions. Renamed AcpiGetRegister and AcpiSetRegister to clarify the purpose of these functions. The new names are AcpiReadBitRegister and AcpiWriteBitRegister. Also, restructured the code for these functions by simplifying the code path and condensing duplicate code to reduce code size. Added new functions to transparently handle the possibly split PM1 A/B registers. AcpiHwReadMultiple and AcpiHwWriteMultiple. These two functions now handle the split registers for PM1 Status, Enable, and Control. ACPICA BZ 746. Added a function to handle the PM1 control registers, AcpiHwWritePm1Control. This function writes both of the PM1 control registers (A/B). These registers are different than the PM1 A/B status and enable registers in that different values can be written to the A/B registers. Most notably, the SLP_TYP bits can be different, as per the values returned from the _Sx predefined methods. Removed an extra register write within AcpiHwClearAcpiStatus. This function was writing an optional PM1B status register twice. The existing call to the low-level AcpiHwRegisterWrite automatically handles a possibly split PM1 A/B register. ACPICA BZ 751. Split out the PM1 Status registers from the FADT. Added new globals for these registers (A/B), similar to the way the PM1 Enable registers are handled. Instead of overloading the FADT Event Register blocks. This makes the code clearer and less prone to error. Fixed the warning message for when the platform contains too many ACPI tables for the default size of the global root table data structure. The calculation for the truncation value was incorrect. Removed the ACPI_GET_OBJECT_TYPE macro. Removed all instances of this obsolete macro, since it is now a simple reference to ->common.type. There were about 150 invocations of the macro across 41 files. ACPICA BZ 755. Removed the redundant ACPI_BITREG_SLEEP_TYPE_B. This type is the same as TYPE_A. Removed this and all related instances. Renamed SLEEP_TYPE_A to simply SLEEP_TYPE. ACPICA BZ 754. Conditionally compile the AcpiSetFirmwareWakingVector64 function. This function is only needed on 64-bit host operating systems and is thus not included for 32-bit hosts. Debug output: print the input and result for invocations of the _OSI reserved control method via the ACPI_LV_INFO debug level. Also, reduced some of the verbosity of this debug level. Len Brown. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total Debug Version: 157.3K Code, 49.8K Data, 207.1K Total Current Release: Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total Debug Version: 156.9K Code, 49.8K Data, 206.7K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Decode the FADT PM_Profile field. Emit ascii names for the various legal performance profiles. ---------------------------------------- 23 January 2009. Summary of changes for version 20090123: 1) ACPI CA Core Subsystem: Added the 2009 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the tools/utilities. Implemented a change to allow the host to override any ACPI table, including dynamically loaded tables. Previously, only the DSDT could be replaced by the host. With this change, the AcpiOsTableOverride interface is called for each table found in the RSDT/XSDT during ACPICA initialization, and also whenever a table is dynamically loaded via the AML Load operator. Updated FADT flag definitions, especially the Boot Architecture flags. Debugger: For the Find command, automatically pad the input ACPI name with underscores if the name is shorter than 4 characters. This enables a match with the actual namespace entry which is itself padded with underscores. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total Debug Version: 157.1K Code, 49.7K Data, 206.8K Total Current Release: Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total Debug Version: 157.3K Code, 49.8K Data, 207.1K Total 2) iASL Compiler/Disassembler and Tools: Fix build error under Bison-2.4. Disassembler: Enhanced FADT support. Added decoding of the Boot Architecture flags. Now decode all flags, regardless of the FADT version. Flag output includes the FADT version which first defined each flag. The iASL -g option now dumps the RSDT to a file (in addition to the FADT and DSDT). Windows only. ---------------------------------------- 04 December 2008. Summary of changes for version 20081204: 1) ACPI CA Core Subsystem: The ACPICA Programmer Reference has been completely updated and revamped for this release. This includes updates to the external interfaces, OSL interfaces, the overview sections, and the debugger reference. Several new ACPICA interfaces have been implemented and documented in the programmer reference: AcpiReset - Writes the reset value to the FADT-defined reset register. AcpiDisableAllGpes - Disable all available GPEs. AcpiEnableAllRuntimeGpes - Enable all available runtime GPEs. AcpiGetGpeDevice - Get the GPE block device associated with a GPE. AcpiGbl_CurrentGpeCount - Tracks the current number of available GPEs. AcpiRead - Low-level read ACPI register (was HwLowLevelRead.) AcpiWrite - Low-level write ACPI register (was HwLowLevelWrite.) Most of the public ACPI hardware-related interfaces have been moved to a new file, components/hardware/hwxface.c Enhanced the FADT parsing and low-level ACPI register access: The ACPI register lengths within the FADT are now used, and the low level ACPI register access no longer hardcodes the ACPI register lengths. Given that there may be some risk in actually trusting the FADT register lengths, a run- time option was added to fall back to the default hardcoded lengths if the FADT proves to contain incorrect values - UseDefaultRegisterWidths. This option is set to true for now, and a warning is issued if a suspicious FADT register length is overridden with the default value. Fixed a reference count issue in NsRepairObject. This problem was introduced in version 20081031 as part of a fix to repair Buffer objects within Packages. Lin Ming. Added semaphore support to the Linux/Unix application OS-services layer (OSL). ACPICA BZ 448. Lin Ming. Added the ACPI_MUTEX_TYPE configuration option to select whether mutexes will be implemented in the OSL, or will binary semaphores be used instead. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total Debug Version: 156.4K Code, 49.4K Data, 205.8K Total Current Release: Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total Debug Version: 157.1K Code, 49.7K Data, 206.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Completed the '-e' option to include additional ACPI tables in order to aid with disassembly and External statement generation. ACPICA BZ 742. Lin Ming. iASL: Removed the "named object in while loop" error. The compiler cannot determine how many times a loop will execute. ACPICA BZ 730. Disassembler: Implemented support for FADT revision 2 (MS extension). ACPICA BZ 743. Disassembler: Updates for several ACPI data tables (HEST, EINJ, and MCFG). ---------------------------------------- 31 October 2008. Summary of changes for version 20081031: 1) ACPI CA Core Subsystem: Restructured the ACPICA header files into public/private. acpi.h now includes only the "public" acpica headers. All other acpica headers are "private" and should not be included by acpica users. One new file, accommon.h is used to include the commonly used private headers for acpica code generation. Future plans include moving all private headers to a new subdirectory. Implemented an automatic Buffer->String return value conversion for predefined ACPI methods. For these methods (such as _BIF), added automatic conversion for return objects that are required to be a String, but a Buffer was found instead. This can happen when reading string battery data from an operation region, because it used to be difficult to convert the data from buffer to string from within the ASL. Ensures that the host OS is provided with a valid null-terminated string. Linux BZ 11822. Updated the FACS waking vector interfaces. Split AcpiSetFirmwareWakingVector into two: one for the 32-bit vector, another for the 64-bit vector. This is required because the host OS must setup the wake much differently for each vector (real vs. protected mode, etc.) and the interface itself should not be deciding which vector to use. Also, eliminated the GetFirmwareWakingVector interface, as it served no purpose (only the firmware reads the vector, OS only writes the vector.) ACPICA BZ 731. Implemented a mechanism to escape infinite AML While() loops. Added a loop counter to force exit from AML While loops if the count becomes too large. This can occur in poorly written AML when the hardware does not respond within a while loop and the loop does not implement a timeout. The maximum loop count is configurable. A new exception code is returned when a loop is broken, AE_AML_INFINITE_LOOP. Alexey Starikovskiy, Bob Moore. Optimized the execution of AML While loops. Previously, a control state object was allocated and freed for each execution of the loop. The optimization is to simply reuse the control state for each iteration. This speeds up the raw loop execution time by about 5%. Enhanced the implicit return mechanism. For Windows compatibility, return an implicit integer of value zero for methods that contain no executable code. Such methods are seen in the field as stubs (presumably), and can cause drivers to fail if they expect a return value. Lin Ming. Allow multiple backslashes as root prefixes in namepaths. In a fully qualified namepath, allow multiple backslash prefixes. This can happen (and is seen in the field) because of the use of a double-backslash in strings (since backslash is the escape character) causing confusion. ACPICA BZ 739 Lin Ming. Emit a warning if two different FACS or DSDT tables are discovered in the FADT. Checks if there are two valid but different addresses for the FACS and DSDT within the FADT (mismatch between the 32-bit and 64-bit fields.) Consolidated the method argument count validation code. Merged the code that validates control method argument counts into the predefined validation module. Eliminates possible multiple warnings for incorrect argument counts. Implemented ACPICA example code. Includes code for ACPICA initialization, handler installation, and calling a control method. Available at source/tools/examples. Added a global pointer for FACS table to simplify internal FACS access. Use the global pointer instead of using AcpiGetTableByIndex for each FACS access. This simplifies the code for the Global Lock and the Firmware Waking Vector(s). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total Debug Version: 155.8K Code, 49.1K Data, 204.9K Total Current Release: Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total Debug Version: 156.4K Code, 49.4K Data, 205.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Improved disassembly of external method calls. Added the -e option to allow the inclusion of additional ACPI tables to help with the disassembly of method invocations and the generation of external declarations during the disassembly. Certain external method invocations cannot be disassembled properly without the actual declaration of the method. Use the -e option to include the table where the external method(s) are actually declared. Most useful for disassembling SSDTs that make method calls back to the master DSDT. Lin Ming. Example: To disassemble an SSDT with calls to DSDT: iasl -d -e dsdt.aml ssdt1.aml iASL: Fix to allow references to aliases within ASL namepaths. Fixes a problem where the use of an alias within a namepath would result in a not found error or cause the compiler to fault. Also now allows forward references from the Alias operator itself. ACPICA BZ 738. ---------------------------------------- 26 September 2008. Summary of changes for version 20080926: 1) ACPI CA Core Subsystem: Designed and implemented a mechanism to validate predefined ACPI methods and objects. This code validates the predefined ACPI objects (objects whose names start with underscore) that appear in the namespace, at the time they are evaluated. The argument count and the type of the returned object are validated against the ACPI specification. The purpose of this validation is to detect problems with the BIOS-implemented predefined ACPI objects before the results are returned to the ACPI-related drivers. Future enhancements may include actual repair of incorrect return objects where possible. Two new files are nspredef.c and acpredef.h. Fixed a fault in the AML parser if a memory allocation fails during the Op completion routine AcpiPsCompleteThisOp. Lin Ming. ACPICA BZ 492. Fixed an issue with implicit return compatibility. This change improves the implicit return mechanism to be more compatible with the MS interpreter. Lin Ming, ACPICA BZ 349. Implemented support for zero-length buffer-to-string conversions. Allow zero length strings during interpreter buffer-to-string conversions. For example, during the ToDecimalString and ToHexString operators, as well as implicit conversions. Fiodor Suietov, ACPICA BZ 585. Fixed two possible memory leaks in the error exit paths of AcpiUtUpdateObjectReference and AcpiUtWalkPackageTree. These functions are similar in that they use a stack of state objects in order to eliminate recursion. The stack must be fully unwound and deallocated if an error occurs. Lin Ming. ACPICA BZ 383. Removed the unused ACPI_BITREG_WAKE_ENABLE definition and entry in the global ACPI register table. This bit does not exist and is unused. Lin Ming, Bob Moore ACPICA BZ 442. Removed the obsolete version number in module headers. Removed the "$Revision" number that appeared in each module header. This version number was useful under SourceSafe and CVS, but has no meaning under git. It is not only incorrect, it could also be misleading. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.7K Code, 48.2K Data, 201.9K Total Current Release: Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total Debug Version: 155.8K Code, 49.1K Data, 204.9K Total ---------------------------------------- 29 August 2008. Summary of changes for version 20080829: 1) ACPI CA Core Subsystem: Completed a major cleanup of the internal ACPI_OPERAND_OBJECT of type Reference. Changes include the elimination of cheating on the Object field for the DdbHandle subtype, addition of a reference class field to differentiate the various reference types (instead of an AML opcode), and the cleanup of debug output for this object. Lin Ming, Bob Moore. BZ 723 Reduce an error to a warning for an incorrect method argument count. Previously aborted with an error if too few arguments were passed to a control method via the external ACPICA interface. Now issue a warning instead and continue. Handles the case where the method inadvertently declares too many arguments, but does not actually use the extra ones. Applies mainly to the predefined methods. Lin Ming. Linux BZ 11032. Disallow the evaluation of named object types with no intrinsic value. Return AE_TYPE for objects that have no value and therefore evaluation is undefined: Device, Event, Mutex, Region, Thermal, and Scope. Previously, evaluation of these types were allowed, but an exception would be generated at some point during the evaluation. Now, the error is generated up front. Fixed a possible memory leak in the AcpiNsGetExternalPathname function (nsnames.c). Fixes a leak in the error exit path. Removed the obsolete debug levels ACPI_DB_WARN and ACPI_DB_ERROR. These debug levels were made obsolete by the ACPI_WARNING, ACPI_ERROR, and ACPI_EXCEPTION interfaces. Also added ACPI_DB_EVENTS to correspond with the existing ACPI_LV_EVENTS. Removed obsolete and/or unused exception codes from the acexcep.h header. There is the possibility that certain device drivers may be affected if they use any of these exceptions. The ACPICA documentation has been added to the public git source tree, under acpica/documents. Included are the ACPICA programmer reference, the iASL compiler reference, and the changes.txt release logfile. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.9K Code, 48.4K Data, 202.3K Total Current Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.7K Code, 48.2K Data, 201.9K Total 2) iASL Compiler/Disassembler and Tools: Allow multiple argument counts for the predefined _SCP method. ACPI 3.0 defines _SCP with 3 arguments. Previous versions defined it with only 1 argument. iASL now allows both definitions. iASL/disassembler: avoid infinite loop on bad ACPI tables. Check for zero- length subtables when disassembling ACPI tables. Also fixed a couple of errors where a full 16-bit table type field was not extracted from the input properly. acpisrc: Improve comment counting mechanism for generating source code statistics. Count first and last lines of multi-line comments as whitespace, not comment lines. Handle Linux legal header in addition to standard acpica header. ---------------------------------------- 29 July 2008. Summary of changes for version 20080729: 1) ACPI CA Core Subsystem: Fix a possible deadlock in the GPE dispatch. Remove call to AcpiHwDisableAllGpes during wake in AcpiEvGpeDispatch. This call will attempt to acquire the GPE lock but can deadlock since the GPE lock is already held at dispatch time. This code was introduced in version 20060831 as a response to Linux BZ 6881 and has since been removed from Linux. Add a function to dereference returned reference objects. Examines the return object from a call to AcpiEvaluateObject. Any Index or RefOf references are automatically dereferenced in an attempt to return something useful (these reference types cannot be converted into an external ACPI_OBJECT.) Provides MS compatibility. Lin Ming, Bob Moore. Linux BZ 11105 x2APIC support: changes for MADT and SRAT ACPI tables. There are 2 new subtables for the MADT and one new subtable for the SRAT. Includes disassembler and AcpiSrc support. Data from the Intel 64 Architecture x2APIC Specification, June 2008. Additional error checking for pathname utilities. Add error check after all calls to AcpiNsGetPathnameLength. Add status return from AcpiNsBuildExternalPath and check after all calls. Add parameter validation to AcpiUtInitializeBuffer. Reported by and initial patch by Ingo Molnar. Return status from the global init function AcpiUtGlobalInitialize. This is used by both the kernel subsystem and the utilities such as iASL compiler. The function could possibly fail when the caches are initialized. Yang Yi. Add a function to decode reference object types to strings. Created for improved error messages. Improve object conversion error messages. Better error messages during object conversion from internal to the external ACPI_OBJECT. Used for external calls to AcpiEvaluateObject. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total Debug Version: 153.5K Code, 48.2K Data, 201.7K Total Current Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.9K Code, 48.4K Data, 202.3K Total 2) iASL Compiler/Disassembler and Tools: Debugger: fix a possible hang when evaluating non-methods. Fixes a problem introduced in version 20080701. If the object being evaluated (via execute command) is not a method, the debugger can hang while trying to obtain non- existent parameters. iASL: relax error for using reserved "_T_x" identifiers. These names can appear in a disassembled ASL file if they were emitted by the original compiler. Instead of issuing an error or warning and forcing the user to manually change these names, issue a remark instead. iASL: error if named object created in while loop. Emit an error if any named object is created within a While loop. If allowed, this code will generate a run-time error on the second iteration of the loop when an attempt is made to create the same named object twice. ACPICA bugzilla 730. iASL: Support absolute pathnames for include files. Add support for absolute pathnames within the Include operator. previously, only relative pathnames were supported. iASL: Enforce minimum 1 interrupt in interrupt macro and Resource Descriptor. The ACPI spec requires one interrupt minimum. BZ 423 iASL: Handle a missing ResourceSource arg, with a present SourceIndex. Handles the case for the Interrupt Resource Descriptor where the ResourceSource argument is omitted but ResourceSourceIndex is present. Now leave room for the Index. BZ 426 iASL: Prevent error message if CondRefOf target does not exist. Fixes cases where an error message is emitted if the target does not exist. BZ 516 iASL: Fix broken -g option (get Windows ACPI tables). Fixes the -g option (get ACPI tables on Windows). This was apparently broken in version 20070919. AcpiXtract: Handle EOF while extracting data. Correctly handle the case where the EOF happens immediately after the last table in the input file. Print completion message. Previously, no message was displayed in this case. ---------------------------------------- 01 July 2008. Summary of changes for version 20080701: 0) Git source tree / acpica.org Fixed a problem where a git-clone from http would not transfer the entire source tree. 1) ACPI CA Core Subsystem: Implemented a "careful" GPE disable in AcpiEvDisableGpe, only modify one enable bit. Now performs a read-change-write of the enable register instead of simply writing out the cached enable mask. This will prevent inadvertent enabling of GPEs if a rogue GPE is received during initialization (before GPE handlers are installed.) Implemented a copy for dynamically loaded tables. Previously, dynamically loaded tables were simply mapped - but on some machines this memory is corrupted after suspend. Now copy the table to a local buffer. For the OpRegion case, added checksum verify. Use the table length from the table header, not the region length. For the Buffer case, use the table length also. Dennis Noordsij, Bob Moore. BZ 10734 Fixed a problem where the same ACPI table could not be dynamically loaded and unloaded more than once. Without this change, a table cannot be loaded again once it has been loaded/unloaded one time. The current mechanism does not unregister a table upon an unload. During a load, if the same table is found, this no longer returns an exception. BZ 722 Fixed a problem where the wrong descriptor length was calculated for the EndTag descriptor in 64-bit mode. The "minimal" descriptors such as EndTag are calculated as 12 bytes long, but the actual length in the internal descriptor is 16 because of the round-up to 8 on the 64-bit build. Reported by Linn Crosetto. BZ 728 Fixed a possible memory leak in the Unload operator. The DdbHandle returned by Load() did not have its reference count decremented during unload, leading to a memory leak. Lin Ming. BZ 727 Fixed a possible memory leak when deleting thermal/processor objects. Any associated notify handlers (and objects) were not being deleted. Fiodor Suietov. BZ 506 Fixed the ordering of the ASCII names in the global mutex table to match the actual mutex IDs. Used by AcpiUtGetMutexName, a function used for debug only. Vegard Nossum. BZ 726 Enhanced the AcpiGetObjectInfo interface to return the number of required arguments if the object is a control method. Added this call to the debugger so the proper number of default arguments are passed to a method. This prevents a warning when executing methods from AcpiExec. Added a check for an invalid handle in AcpiGetObjectInfo. Return AE_BAD_PARAMETER if input handle is invalid. BZ 474 Fixed an extraneous warning from exconfig.c on the 64-bit build. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total Debug Version: 153.0K Code, 48.2K Data, 201.2K Total Current Release: Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total Debug Version: 153.5K Code, 48.2K Data, 201.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added two missing ACPI reserved names. Added _MTP and _ASZ, both resource descriptor names. iASL: Detect invalid ASCII characters in input (windows version). Removed the "-CF" flag from the flex compile, enables correct detection of non-ASCII characters in the input. BZ 441 iASL: Eliminate warning when result of LoadTable is not used. Eliminate the "result of operation not used" warning when the DDB handle returned from LoadTable is not used. The warning is not needed. BZ 590 AcpiExec: Add support for dynamic table load/unload. Now calls _CFG method to pass address of table to the AML. Added option to disable OpRegion simulation to allow creation of an OpRegion with a real address that was passed to _CFG. All of this allows testing of the Load and Unload operators from AcpiExec. Debugger: update tables command for unloaded tables. Handle unloaded tables and use the standard table header output routine. ---------------------------------------- 09 June 2008. Summary of changes for version 20080609: 1) ACPI CA Core Subsystem: Implemented a workaround for reversed _PRT entries. A significant number of BIOSs erroneously reverse the _PRT SourceName and the SourceIndex. This change dynamically detects and repairs this problem. Provides compatibility with MS ACPI. BZ 6859 Simplified the internal ACPI hardware interfaces to eliminate the locking flag parameter from Register Read/Write. Added a new external interface, AcpiGetRegisterUnlocked. Fixed a problem where the invocation of a GPE control method could hang. This was a regression introduced in 20080514. The new method argument count validation mechanism can enter an infinite loop when a GPE method is dispatched. Problem fixed by removing the obsolete code that passed GPE block information to the notify handler via the control method parameter pointer. Fixed a problem where the _SST execution status was incorrectly returned to the caller of AcpiEnterSleepStatePrep. This was a regression introduced in 20080514. _SST is optional and a NOT_FOUND exception should never be returned. BZ 716 Fixed a problem where a deleted object could be accessed from within the AML parser. This was a regression introduced in version 20080123 as a fix for the Unload operator. Lin Ming. BZ 10669 Cleaned up the debug operand dump mechanism. Eliminated unnecessary operands and eliminated the use of a negative index in a loop. Operands are now displayed in the correct order, not backwards. This also fixes a regression introduced in 20080514 on 64-bit systems where the elimination of ACPI_NATIVE_UINT caused the negative index to go large and positive. BZ 715 Fixed a possible memory leak in EvPciConfigRegionSetup where the error exit path did not delete a locally allocated structure. Updated definitions for the DMAR and SRAT tables to synchronize with the current specifications. Includes disassembler support. Fixed a problem in the mutex debug code (in utmutex.c) where an incorrect loop termination value was used. Loop terminated on iteration early, missing one mutex. Linn Crosetto Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total Debug Version: 153.3K Code, 48.3K Data, 201.6K Total Current Release: Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total Debug Version: 153.0K Code, 48.2K Data, 201.2K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support for EisaId() within _CID objects. Now disassemble integer _CID objects back to EisaId invocations, including multiple integers within _CID packages. Includes single-step support for debugger also. Disassembler: Added support for DMAR and SRAT table definition changes. ---------------------------------------- 14 May 2008. Summary of changes for version 20080514: 1) ACPI CA Core Subsystem: Fixed a problem where GPEs were enabled too early during the ACPICA initialization. This could lead to "handler not installed" errors on some machines. Moved GPE enable until after _REG/_STA/_INI methods are run. This ensures that all operation regions and devices throughout the namespace have been initialized before GPEs are enabled. Alexey Starikovskiy, BZ 9916. Implemented a change to the enter sleep code. Moved execution of the _GTS method to just before setting sleep enable bit. The execution was moved from AcpiEnterSleepStatePrep to AcpiEnterSleepState. _GTS is now executed immediately before the SLP_EN bit is set, as per the ACPI specification. Luming Yu, BZ 1653. Implemented a fix to disable unknown GPEs (2nd version). Now always disable the GPE, even if ACPICA thinks that that it is already disabled. It is possible that the AML or some other code has enabled the GPE unbeknownst to the ACPICA code. Fixed a problem with the Field operator where zero-length fields would return an AE_AML_NO_OPERAND exception during table load. Fix enables zero-length ASL field declarations in Field(), BankField(), and IndexField(). BZ 10606. Implemented a fix for the Load operator, now load the table at the namespace root. This reverts a change introduced in version 20071019. The table is now loaded at the namespace root even though this goes against the ACPI specification. This provides compatibility with other ACPI implementations. The ACPI specification will be updated to reflect this in ACPI 4.0. Lin Ming. Fixed a problem where ACPICA would not Load() tables with unusual signatures. Now ignore ACPI table signature for Load() operator. Only "SSDT" is acceptable to the ACPI spec, but tables are seen with OEMx and null sigs. Therefore, signature validation is worthless. Apparently MS ACPI accepts such signatures, ACPICA must be compatible. BZ 10454. Fixed a possible negative array index in AcpiUtValidateException. Added NULL fields to the exception string arrays to eliminate a -1 subtraction on the SubStatus field. Updated the debug tracking macros to reduce overall code and data size. Changed ACPI_MODULE_NAME and ACPI_FUNCTION_NAME to use arrays of strings instead of pointers to static strings. Jan Beulich and Bob Moore. Implemented argument count checking in control method invocation via AcpiEvaluateObject. Now emit an error if too few arguments, warning if too many. This applies only to extern programmatic control method execution, not method-to-method calls within the AML. Lin Ming. Eliminated the ACPI_NATIVE_UINT type across all ACPICA code. This type is no longer needed, especially with the removal of 16-bit support. It was replaced mostly with UINT32, but also ACPI_SIZE where a type that changes 32/64 bit on 32/64-bit platforms is required. Added the C const qualifier for appropriate string constants -- mostly MODULE_NAME and printf format strings. Jan Beulich. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total Debug Version: 159.4K Code, 64.4K Data, 223.8K Total Current Release: Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total Debug Version: 153.3K Code, 48.3K Data, 201.6K Total 2) iASL Compiler/Disassembler and Tools: Implemented ACPI table revision ID validation in the disassembler. Zero is always invalid. For DSDTs, the ID controls the interpreter integer width. 1 means 32-bit and this is unusual. 2 or greater is 64-bit. ---------------------------------------- 21 March 2008. Summary of changes for version 20080321: 1) ACPI CA Core Subsystem: Implemented an additional change to the GPE support in order to suppress spurious or stray GPEs. The AcpiEvDisableGpe function will now permanently disable incoming GPEs that are neither enabled nor disabled -- meaning that the GPE is unknown to the system. This should prevent future interrupt floods from that GPE. BZ 6217 (Zhang Rui) Fixed a problem where NULL package elements were not returned to the AcpiEvaluateObject interface correctly. The element was simply ignored instead of returning a NULL ACPI_OBJECT package element, potentially causing a buffer overflow and/or confusing the caller who expected a fixed number of elements. BZ 10132 (Lin Ming, Bob Moore) Fixed a problem with the CreateField, CreateXXXField (Bit, Byte, Word, Dword, Qword), Field, BankField, and IndexField operators when invoked from inside an executing control method. In this case, these operators created namespace nodes that were incorrectly left marked as permanent nodes instead of temporary nodes. This could cause a problem if there is race condition between an exiting control method and a running namespace walk. (Reported by Linn Crosetto) Fixed a problem where the CreateField and CreateXXXField operators would incorrectly allow duplicate names (the name of the field) with no exception generated. Implemented several changes for Notify handling. Added support for new Notify values (ACPI 2.0+) and improved the Notify debug output. Notify on PowerResource objects is no longer allowed, as per the ACPI specification. (Bob Moore, Zhang Rui) All Reference Objects returned via the AcpiEvaluateObject interface are now marked as type "REFERENCE" instead of "ANY". The type ANY is now reserved for NULL objects - either NULL package elements or unresolved named references. Fixed a problem where an extraneous debug message was produced for package objects (when debugging enabled). The message "Package List length larger than NumElements count" is now produced in the correct case, and is now an error message rather than a debug message. Added a debug message for the opposite case, where NumElements is larger than the Package List (the package will be padded out with NULL elements as per the ACPI spec.) Implemented several improvements for the output of the ASL "Debug" object to clarify and keep all data for a given object on one output line. Fixed two size calculation issues with the variable-length Start Dependent resource descriptor. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total Debug Version: 158.9K Code, 64.0K Data, 222.9K Total Current Release: Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total Debug Version: 159.4K Code, 64.4K Data, 223.8K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the use of the Switch operator where execution of the containing method by multiple concurrent threads could cause an AE_ALREADY_EXISTS exception. This is caused by the fact that there is no actual Switch opcode, it must be simulated with local named temporary variables and if/else pairs. The solution chosen was to mark any method that uses Switch as Serialized, thus preventing multiple thread entries. BZ 469. ---------------------------------------- 13 February 2008. Summary of changes for version 20080213: 1) ACPI CA Core Subsystem: Implemented another MS compatibility design change for GPE/Notify handling. GPEs are now cleared/enabled asynchronously to allow all pending notifies to complete first. It is expected that the OSL will queue the enable request behind all pending notify requests (may require changes to the local host OSL in AcpiOsExecute). Alexey Starikovskiy. Fixed a problem where buffer and package objects passed as arguments to a control method via the external AcpiEvaluateObject interface could cause an AE_AML_INTERNAL exception depending on the order and type of operators executed by the target control method. Fixed a problem where resource descriptor size optimization could cause a problem when a _CRS resource template is passed to a _SRS method. The _SRS resource template must use the same descriptors (with the same size) as returned from _CRS. This change affects the following resource descriptors: IRQ / IRQNoFlags and StartDependendentFn / StartDependentFnNoPri. (BZ 9487) Fixed a problem where a CopyObject to RegionField, BankField, and IndexField objects did not perform an implicit conversion as it should. These types must retain their initial type permanently as per the ACPI specification. However, a CopyObject to all other object types should not perform an implicit conversion, as per the ACPI specification. (Lin Ming, Bob Moore) BZ 388 Fixed a problem with the AcpiGetDevices interface where the mechanism to match device CIDs did not examine the entire list of available CIDs, but instead aborted on the first non-matching CID. Andrew Patterson. Fixed a regression introduced in version 20071114. The ACPI_HIDWORD macro was inadvertently changed to return a 16-bit value instead of a 32-bit value, truncating the upper dword of a 64-bit value. This macro is only used to display debug output, so no incorrect calculations were made. Also, reimplemented the macro so that a 64-bit shift is not performed by inefficient compilers. Added missing va_end statements that should correspond with each va_start statement. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total Debug Version: 159.0K Code, 63.8K Data, 222.8K Total Current Release: Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total Debug Version: 158.9K Code, 64.0K Data, 222.9K Total 2) iASL Compiler/Disassembler and Tools: Implemented full disassembler support for the following new ACPI tables: BERT, EINJ, and ERST. Implemented partial disassembler support for the complicated HEST table. These tables support the Windows Hardware Error Architecture (WHEA). ---------------------------------------- 23 January 2008. Summary of changes for version 20080123: 1) ACPI CA Core Subsystem: Added the 2008 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the tools/utilities. Fixed a problem with the SizeOf operator when used with Package and Buffer objects. These objects have deferred execution for some arguments, and the execution is now completed before the SizeOf is executed. This problem caused unexpected AE_PACKAGE_LIMIT errors on some systems (Lin Ming, Bob Moore) BZ 9558 Implemented an enhancement to the interpreter "slack mode". In the absence of an explicit return or an implicitly returned object from the last executed opcode, a control method will now implicitly return an integer of value 0 for Microsoft compatibility. (Lin Ming) BZ 392 Fixed a problem with the Load operator where an exception was not returned in the case where the table is already loaded. (Lin Ming) BZ 463 Implemented support for the use of DDBHandles as an Indexed Reference, as per the ACPI spec. (Lin Ming) BZ 486 Implemented support for UserTerm (Method invocation) for the Unload operator as per the ACPI spec. (Lin Ming) BZ 580 Fixed a problem with the LoadTable operator where the OemId and OemTableId input strings could cause unexpected failures if they were shorter than the maximum lengths allowed. (Lin Ming, Bob Moore) BZ 576 Implemented support for UserTerm (Method invocation) for the Unload operator as per the ACPI spec. (Lin Ming) BZ 580 Implemented header file support for new ACPI tables - BERT, ERST, EINJ, HEST, IBFT, UEFI, WDAT. Disassembler support is forthcoming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total Debug Version: 158.6K Code, 63.8K Data, 222.4K Total Current Release: Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total Debug Version: 159.0K Code, 63.8K Data, 222.8K Total 2) iASL Compiler/Disassembler and Tools: Implemented support in the disassembler for checksum validation on incoming binary DSDTs and SSDTs. If incorrect, a message is displayed within the table header dump at the start of the disassembly. Implemented additional debugging information in the namespace listing file created during compilation. In addition to the namespace hierarchy, the full pathname to each namespace object is displayed. Fixed a problem with the disassembler where invalid ACPI tables could cause faults or infinite loops. Fixed an unexpected parse error when using the optional "parameter types" list in a control method declaration. (Lin Ming) BZ 397 Fixed a problem where two External declarations with the same name did not cause an error (Lin Ming) BZ 509 Implemented support for full TermArgs (adding Argx, Localx and method invocation) for the ParameterData parameter to the LoadTable operator. (Lin Ming) BZ 583,587 ---------------------------------------- 19 December 2007. Summary of changes for version 20071219: 1) ACPI CA Core Subsystem: Implemented full support for deferred execution for the TermArg string arguments for DataTableRegion. This enables forward references and full operand resolution for the three string arguments. Similar to OperationRegion deferred argument execution.) Lin Ming. BZ 430 Implemented full argument resolution support for the BankValue argument to BankField. Previously, only constants were supported, now any TermArg may be used. Lin Ming BZ 387, 393 Fixed a problem with AcpiGetDevices where the search of a branch of the device tree could be terminated prematurely. In accordance with the ACPI specification, the search down the current branch is terminated if a device is both not present and not functional (instead of just not present.) Yakui Zhao. Fixed a problem where "unknown" GPEs could be allowed to fire repeatedly if the underlying AML code changed the GPE enable registers. Now, any unknown incoming GPE (no _Lxx/_Exx method and not the EC GPE) is immediately disabled instead of simply ignored. Rui Zhang. Fixed a problem with Index Fields where the Index register was incorrectly limited to a maximum of 32 bits. Now any size may be used. Fixed a couple memory leaks associated with "implicit return" objects when the AML Interpreter slack mode is enabled. Lin Ming BZ 349 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total Debug Version: 157.9K Code, 63.6K Data, 221.5K Total Current Release: Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total Debug Version: 158.6K Code, 63.8K Data, 222.4K Total ---------------------------------------- 14 November 2007. Summary of changes for version 20071114: 1) ACPI CA Core Subsystem: Implemented event counters for each of the Fixed Events, the ACPI SCI (interrupt) itself, and control methods executed. Named AcpiFixedEventCount[], AcpiSciCount, and AcpiMethodCount respectively. These should be useful for debugging and statistics. Implemented a new external interface, AcpiGetStatistics, to retrieve the contents of the various event counters. Returns the current values for AcpiSciCount, AcpiGpeCount, the AcpiFixedEventCount array, and AcpiMethodCount. The interface can be expanded in the future if new counters are added. Device drivers should use this interface rather than access the counters directly. Fixed a problem with the FromBCD and ToBCD operators. With some compilers, the ShortDivide function worked incorrectly, causing problems with the BCD functions with large input values. A truncation from 64-bit to 32-bit inadvertently occurred. Internal BZ 435. Lin Ming Fixed a problem with Index references passed as method arguments. References passed as arguments to control methods were dereferenced immediately (before control was passed to the called method). The references are now correctly passed directly to the called method. BZ 5389. Lin Ming Fixed a problem with CopyObject used in conjunction with the Index operator. The reference was incorrectly dereferenced before the copy. The reference is now correctly copied. BZ 5391. Lin Ming Fixed a problem with Control Method references within Package objects. These references are now correctly generated. This completes the package construction overhaul that began in version 20071019. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total Debug Version: 157.2K Code, 63.4K Data, 220.6K Total Current Release: Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total Debug Version: 157.9K Code, 63.6K Data, 221.5K Total 2) iASL Compiler/Disassembler and Tools: The AcpiExec utility now installs handlers for all of the predefined Operation Region types. New types supported are: PCI_Config, CMOS, and PCIBARTarget. Fixed a problem with the 64-bit version of AcpiExec where the extended (64- bit) address fields for the DSDT and FACS within the FADT were not being used, causing truncation of the upper 32-bits of these addresses. Lin Ming and Bob Moore ---------------------------------------- 19 October 2007. Summary of changes for version 20071019: 1) ACPI CA Core Subsystem: Fixed a problem with the Alias operator when the target of the alias is a named ASL operator that opens a new scope -- Scope, Device, PowerResource, Processor, and ThermalZone. In these cases, any children of the original operator could not be accessed via the alias, potentially causing unexpected AE_NOT_FOUND exceptions. (BZ 9067) Fixed a problem with the Package operator where all named references were created as object references and left otherwise unresolved. According to the ACPI specification, a Package can only contain Data Objects or references to control methods. The implication is that named references to Data Objects (Integer, Buffer, String, Package, BufferField, Field) should be resolved immediately upon package creation. This is the approach taken with this change. References to all other named objects (Methods, Devices, Scopes, etc.) are all now properly created as reference objects. (BZ 5328) Reverted a change to Notify handling that was introduced in version 20070508. This version changed the Notify handling from asynchronous to fully synchronous (Device driver Notify handling with respect to the Notify ASL operator). It was found that this change caused more problems than it solved and was removed by most users. Fixed a problem with the Increment and Decrement operators where the type of the target object could be unexpectedly and incorrectly changed. (BZ 353) Lin Ming. Fixed a problem with the Load and LoadTable operators where the table location within the namespace was ignored. Instead, the table was always loaded into the root or current scope. Lin Ming. Fixed a problem with the Load operator when loading a table from a buffer object. The input buffer was prematurely zeroed and/or deleted. (BZ 577) Fixed a problem with the Debug object where a store of a DdbHandle reference object to the Debug object could cause a fault. Added a table checksum verification for the Load operator, in the case where the load is from a buffer. (BZ 578). Implemented additional parameter validation for the LoadTable operator. The length of the input strings SignatureString, OemIdString, and OemTableId are now checked for maximum lengths. (BZ 582) Lin Ming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total Debug Version: 156.7K Code, 63.2K Data, 219.9K Total Current Release: Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total Debug Version: 157.2K Code, 63.4K Data, 220.6K Total 2) iASL Compiler/Disassembler: Fixed a problem where if a single file was specified and the file did not exist, no error message was emitted. (Introduced with wildcard support in version 20070917.) ---------------------------------------- 19 September 2007. Summary of changes for version 20070919: 1) ACPI CA Core Subsystem: Designed and implemented new external interfaces to install and remove handlers for ACPI table-related events. Current events that are defined are LOAD and UNLOAD. These interfaces allow the host to track ACPI tables as they are dynamically loaded and unloaded. See AcpiInstallTableHandler and AcpiRemoveTableHandler. (Lin Ming and Bob Moore) Fixed a problem where the use of the AcpiGbl_AllMethodsSerialized flag (acpi_serialized option on Linux) could cause some systems to hang during initialization. (Bob Moore) BZ 8171 Fixed a problem where objects of certain types (Device, ThermalZone, Processor, PowerResource) can be not found if they are declared and referenced from within the same control method (Lin Ming) BZ 341 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total Debug Version: 156.3K Code, 63.1K Data, 219.4K Total Current Release: Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total Debug Version: 156.7K Code, 63.2K Data, 219.9K Total 2) iASL Compiler/Disassembler: Implemented support to allow multiple files to be compiled/disassembled in a single invocation. This includes command line wildcard support for both the Windows and Unix versions of the compiler. This feature simplifies the disassembly and compilation of multiple ACPI tables in a single directory. ---------------------------------------- 08 May 2007. Summary of changes for version 20070508: 1) ACPI CA Core Subsystem: Implemented a Microsoft compatibility design change for the handling of the Notify AML operator. Previously, notify handlers were dispatched and executed completely asynchronously in a deferred thread. The new design still executes the notify handlers in a different thread, but the original thread that executed the Notify() now waits at a synchronization point for the notify handler to complete. Some machines depend on a synchronous Notify operator in order to operate correctly. Implemented support to allow Package objects to be passed as method arguments to the external AcpiEvaluateObject interface. Previously, this would return the AE_NOT_IMPLEMENTED exception. This feature had not been implemented since there were no reserved control methods that required it until recently. Fixed a problem with the internal FADT conversion where ACPI 1.0 FADTs that contained invalid non-zero values in reserved fields could cause later failures because these fields have meaning in later revisions of the FADT. For incoming ACPI 1.0 FADTs, these fields are now always zeroed. (The fields are: Preferred_PM_Profile, PSTATE_CNT, CST_CNT, and IAPC_BOOT_FLAGS.) Fixed a problem where the Global Lock handle was not properly updated if a thread that acquired the Global Lock via executing AML code then attempted to acquire the lock via the AcpiAcquireGlobalLock interface. Reported by Joe Liu. Fixed a problem in AcpiEvDeleteGpeXrupt where the global interrupt list could be corrupted if the interrupt being removed was at the head of the list. Reported by Linn Crosetto. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.9K Code, 63.1K Data, 219.0K Total Current Release: Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total Debug Version: 156.3K Code, 63.1K Data, 219.4K Total ---------------------------------------- 20 March 2007. Summary of changes for version 20070320: 1) ACPI CA Core Subsystem: Implemented a change to the order of interpretation and evaluation of AML operand objects within the AML interpreter. The interpreter now evaluates operands in the order that they appear in the AML stream (and the corresponding ASL code), instead of in the reverse order (after the entire operand list has been parsed). The previous behavior caused several subtle incompatibilities with the Microsoft AML interpreter as well as being somewhat non-intuitive. BZ 7871, local BZ 263. Valery Podrezov. Implemented a change to the ACPI Global Lock support. All interfaces to the global lock now allow the same thread to acquire the lock multiple times. This affects the AcpiAcquireGlobalLock external interface to the global lock as well as the internal use of the global lock to support AML fields -- a control method that is holding the global lock can now simultaneously access AML fields that require global lock protection. Previously, in both cases, this would have resulted in an AE_ALREADY_ACQUIRED exception. The change to AcpiAcquireGlobalLock is of special interest to drivers for the Embedded Controller. There is no change to the behavior of the AML Acquire operator, as this can already be used to acquire a mutex multiple times by the same thread. BZ 8066. With assistance from Alexey Starikovskiy. Fixed a problem where invalid objects could be referenced in the AML Interpreter after error conditions. During operand evaluation, ensure that the internal "Return Object" field is cleared on error and only valid pointers are stored there. Caused occasional access to deleted objects that resulted in "large reference count" warning messages. Valery Podrezov. Fixed a problem where an AE_STACK_OVERFLOW internal exception could occur on deeply nested control method invocations. BZ 7873, local BZ 487. Valery Podrezov. Fixed an internal problem with the handling of result objects on the interpreter result stack. BZ 7872. Valery Podrezov. Removed obsolete code that handled the case where AML_NAME_OP is the target of a reference (Reference.Opcode). This code was no longer necessary. BZ 7874. Valery Podrezov. Removed obsolete ACPI_NO_INTEGER64_SUPPORT from two header files. This was a remnant from the previously discontinued 16-bit support. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.9K Code, 63.1K Data, 219.0K Total ---------------------------------------- 26 January 2007. Summary of changes for version 20070126: 1) ACPI CA Core Subsystem: Added the 2007 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the utilities. Implemented a fix for an incorrect parameter passed to AcpiTbDeleteTable during a table load. A bad pointer was passed in the case where the DSDT is overridden, causing a fault in this case. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total ---------------------------------------- 15 December 2006. Summary of changes for version 20061215: 1) ACPI CA Core Subsystem: Support for 16-bit ACPICA has been completely removed since it is no longer necessary and it clutters the code. All 16-bit macros, types, and conditional compiles have been removed, cleaning up and simplifying the code across the entire subsystem. DOS support is no longer needed since the bootable Linux firmware kit is now available. The handler for the Global Lock is now removed during AcpiTerminate to enable a clean subsystem restart, via the implementation of the AcpiEvRemoveGlobalLockHandler function. (With assistance from Joel Bretz, HP) Implemented enhancements to the multithreading support within the debugger to enable improved multithreading debugging and evaluation of the subsystem. (Valery Podrezov) Debugger: Enhanced the Statistics/Memory command to emit the total (maximum) memory used during the execution, as well as the maximum memory consumed by each of the various object types. (Valery Podrezov) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total Debug Version: 155.2K Code, 63.1K Data, 218.3K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Implemented a new option (-m) to display full memory use statistics upon subsystem/program termination. (Valery Podrezov) ---------------------------------------- 09 November 2006. Summary of changes for version 20061109: 1) ACPI CA Core Subsystem: Optimized the Load ASL operator in the case where the source operand is an operation region. Simply map the operation region memory, instead of performing a bytewise read. (Region must be of type SystemMemory, see below.) Fixed the Load ASL operator for the case where the source operand is a region field. A buffer object is also allowed as the source operand. BZ 480 Fixed a problem where the Load ASL operator allowed the source operand to be an operation region of any type. It is now restricted to regions of type SystemMemory, as per the ACPI specification. BZ 481 Additional cleanup and optimizations for the new Table Manager code. AcpiEnable will now fail if all of the required ACPI tables are not loaded (FADT, FACS, DSDT). BZ 477 Added #pragma pack(8/4) to acobject.h to ensure that the structures in this header are always compiled as aligned. The ACPI_OPERAND_OBJECT has been manually optimized to be aligned and will not work if it is byte-packed. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total Debug Version: 155.4K Code, 63.1K Data, 218.5K Total Current Release: Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total Debug Version: 155.2K Code, 63.1K Data, 218.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem where the presence of the _OSI predefined control method within complex expressions could cause an internal compiler error. AcpiExec: Implemented full region support for multiple address spaces. SpaceId is now part of the REGION object. BZ 429 ---------------------------------------- 11 October 2006. Summary of changes for version 20061011: 1) ACPI CA Core Subsystem: Completed an AML interpreter performance enhancement for control method execution. Previously a 2-pass parse/execution, control methods are now completely parsed and executed in a single pass. This improves overall interpreter performance by ~25%, reduces code size, and reduces CPU stack use. (Valery Podrezov + interpreter changes in version 20051202 that eliminated namespace loading during the pass one parse.) Implemented _CID support for PCI Root Bridge detection. If the _HID does not match the predefined PCI Root Bridge IDs, the _CID list (if present) is now obtained and also checked for an ID match. Implemented additional support for the PCI _ADR execution: upsearch until a device scope is found before executing _ADR. This allows PCI_Config operation regions to be declared locally within control methods underneath PCI device objects. Fixed a problem with a possible race condition between threads executing AcpiWalkNamespace and the AML interpreter. This condition was removed by modifying AcpiWalkNamespace to (by default) ignore all temporary namespace entries created during any concurrent control method execution. An additional namespace race condition is known to exist between AcpiWalkNamespace and the Load/Unload ASL operators and is still under investigation. Restructured the AML ParseLoop function, breaking it into several subfunctions in order to reduce CPU stack use and improve maintainability. (Mikhail Kouzmich) AcpiGetHandle: Fix for parameter validation to detect invalid combinations of prefix handle and pathname. BZ 478 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.6K Code, 63.0K Data, 217.6K Total Current Release: Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total Debug Version: 155.4K Code, 63.1K Data, 218.5K Total 2) iASL Compiler/Disassembler and Tools: Ported the -g option (get local ACPI tables) to the new ACPICA Table Manager to restore original behavior. ---------------------------------------- 27 September 2006. Summary of changes for version 20060927: 1) ACPI CA Core Subsystem: Removed the "Flags" parameter from AcpiGetRegister and AcpiSetRegister. These functions now use a spinlock for mutual exclusion and the interrupt level indication flag is not needed. Fixed a problem with the Global Lock where the lock could appear to be obtained before it is actually obtained. The global lock semaphore was inadvertently created with one unit instead of zero units. (BZ 464) Fiodor Suietov. Fixed a possible memory leak and fault in AcpiExResolveObjectToValue during a read from a buffer or region field. (BZ 458) Fiodor Suietov. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.7K Code, 63.0K Data, 217.7K Total Current Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.6K Code, 63.0K Data, 217.6K Total 2) iASL Compiler/Disassembler and Tools: Fixed a compilation problem with the pre-defined Resource Descriptor field names where an "object does not exist" error could be incorrectly generated if the parent ResourceTemplate pathname places the template within a different namespace scope than the current scope. (BZ 7212) Fixed a problem where the compiler could hang after syntax errors detected in an ElseIf construct. (BZ 453) Fixed a problem with the AmlFilename parameter to the DefinitionBlock() operator. An incorrect output filename was produced when this parameter was a null string (""). Now, the original input filename is used as the AML output filename, with an ".aml" extension. Implemented a generic batch command mode for the AcpiExec utility (execute any AML debugger command) (Valery Podrezov). ---------------------------------------- 12 September 2006. Summary of changes for version 20060912: 1) ACPI CA Core Subsystem: Enhanced the implementation of the "serialized mode" of the interpreter (enabled via the AcpiGbl_AllMethodsSerialized flag.) When this mode is specified, instead of creating a serialization semaphore per control method, the interpreter lock is simply no longer released before a blocking operation during control method execution. This effectively makes the AML Interpreter single-threaded. The overhead of a semaphore per-method is eliminated. Fixed a regression where an error was no longer emitted if a control method attempts to create 2 objects of the same name. This once again returns AE_ALREADY_EXISTS. When this exception occurs, it invokes the mechanism that will dynamically serialize the control method to possible prevent future errors. (BZ 440) Integrated a fix for a problem with PCI Express HID detection in the PCI Config Space setup procedure. (BZ 7145) Moved all FADT-related functions to a new file, tbfadt.c. Eliminated the AcpiHwInitialize function - the FADT registers are now validated when the table is loaded. Added two new warnings during FADT verification - 1) if the FADT is larger than the largest known FADT version, and 2) if there is a mismatch between a 32-bit block address and the 64-bit X counterpart (when both are non- zero.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total Debug Version: 154.9K Code, 62.6K Data, 217.5K Total Current Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.7K Code, 63.0K Data, 217.7K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the implementation of the Switch() operator where the temporary variable was declared too close to the actual Switch, instead of at method level. This could cause a problem if the Switch() operator is within a while loop, causing an error on the second iteration. (BZ 460) Disassembler - fix for error emitted for unknown type for target of scope operator. Now, ignore it and continue. Disassembly of an FADT now verifies the input FADT and reports any errors found. Fix for proper disassembly of full-sized (ACPI 2.0) FADTs. Disassembly of raw data buffers with byte initialization data now prefixes each output line with the current buffer offset. Disassembly of ASF! table now includes all variable-length data fields at the end of some of the subtables. The disassembler now emits a comment if a buffer appears to be a ResourceTemplate, but cannot be disassembled as such because the EndTag does not appear at the very end of the buffer. AcpiExec - Added the "-t" command line option to enable the serialized mode of the AML interpreter. ---------------------------------------- 31 August 2006. Summary of changes for version 20060831: 1) ACPI CA Core Subsystem: Miscellaneous fixes for the Table Manager: - Correctly initialize internal common FADT for all 64-bit "X" fields - Fixed a couple table mapping issues during table load - Fixed a couple alignment issues for IA64 - Initialize input array to zero in AcpiInitializeTables - Additional parameter validation for AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex Change for GPE support: when a "wake" GPE is received, all wake GPEs are now immediately disabled to prevent the waking GPE from firing again and to prevent other wake GPEs from interrupting the wake process. Added the AcpiGpeCount global that tracks the number of processed GPEs, to be used for debugging systems with a large number of ACPI interrupts. Implemented support for the "DMAR" ACPI table (DMA Redirection Table) in both the ACPICA headers and the disassembler. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total Debug Version: 154.6K Code, 62.3K Data, 216.9K Total Current Release: Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total Debug Version: 154.9K Code, 62.6K Data, 217.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler support for the DMAR ACPI table. ---------------------------------------- 23 August 2006. Summary of changes for version 20060823: 1) ACPI CA Core Subsystem: The Table Manager component has been completely redesigned and reimplemented. The new design is much simpler, and reduces the overall code and data size of the kernel-resident ACPICA by approximately 5%. Also, it is now possible to obtain the ACPI tables very early during kernel initialization, even before dynamic memory management is initialized. (Alexey Starikovskiy, Fiodor Suietov, Bob Moore) Obsolete ACPICA interfaces: - AcpiGetFirmwareTable: Use AcpiGetTable instead (works at early kernel init time). - AcpiLoadTable: Not needed. - AcpiUnloadTable: Not needed. New ACPICA interfaces: - AcpiInitializeTables: Must be called before the table manager can be used. - AcpiReallocateRootTable: Used to transfer the root table to dynamically allocated memory after it becomes available. - AcpiGetTableByIndex: Allows the host to easily enumerate all ACPI tables in the RSDT/XSDT. Other ACPICA changes: - AcpiGetTableHeader returns the actual mapped table header, not a copy. Use AcpiOsUnmapMemory to free this mapping. - AcpiGetTable returns the actual mapped table. The mapping is managed internally and must not be deleted by the caller. Use of this interface causes no additional dynamic memory allocation. - AcpiFindRootPointer: Support for physical addressing has been eliminated, it appeared to be unused. - The interface to AcpiOsMapMemory has changed to be consistent with the other allocation interfaces. - The interface to AcpiOsGetRootPointer has changed to eliminate unnecessary parameters. - ACPI_PHYSICAL_ADDRESS is now 32 bits on 32-bit platforms, 64 bits on 64- bit platforms. Was previously 64 bits on all platforms. - The interface to the ACPI Global Lock acquire/release macros have changed slightly since ACPICA no longer keeps a local copy of the FACS with a constructed pointer to the actual global lock. Porting to the new table manager: - AcpiInitializeTables: Must be called once, and can be called anytime during the OS initialization process. It allows the host to specify an area of memory to be used to store the internal version of the RSDT/XSDT (root table). This allows the host to access ACPI tables before memory management is initialized and running. - AcpiReallocateRootTable: Can be called after memory management is running to copy the root table to a dynamically allocated array, freeing up the scratch memory specified in the call to AcpiInitializeTables. - AcpiSubsystemInitialize: This existing interface is independent of the Table Manager, and does not have to be called before the Table Manager can be used, it only must be called before the rest of ACPICA can be used. - ACPI Tables: Some changes have been made to the names and structure of the actbl.h and actbl1.h header files and may require changes to existing code. For example, bitfields have been completely removed because of their lack of portability across C compilers. - Update interfaces to the Global Lock acquire/release macros if local versions are used. (see acwin.h) Obsolete files: tbconvrt.c, tbget.c, tbgetall.c, tbrsdt.c New files: tbfind.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total Current Release: Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total Debug Version: 154.6K Code, 62.3K Data, 216.9K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 21 July 2006. Summary of changes for version 20060721: 1) ACPI CA Core Subsystem: The full source code for the ASL test suite used to validate the iASL compiler and the ACPICA core subsystem is being released with the ACPICA source for the first time. The source is contained in a separate package and consists of over 1100 files that exercise all ASL/AML operators. The package should appear on the Intel/ACPI web site shortly. (Valery Podrezov, Fiodor Suietov) Completed a new design and implementation for support of the ACPI Global Lock. On the OS side, the global lock is now treated as a standard AML mutex. Previously, multiple OS threads could "acquire" the global lock simultaneously. However, this could cause the BIOS to be starved out of the lock - especially in cases such as the Embedded Controller driver where there is a tight coupling between the OS and the BIOS. Implemented an optimization for the ACPI Global Lock interrupt mechanism. The Global Lock interrupt handler no longer queues the execution of a separate thread to signal the global lock semaphore. Instead, the semaphore is signaled directly from the interrupt handler. Implemented support within the AML interpreter for package objects that contain a larger AML length (package list length) than the package element count. In this case, the length of the package is truncated to match the package element count. Some BIOS code apparently modifies the package length on the fly, and this change supports this behavior. Provides compatibility with the MS AML interpreter. (With assistance from Fiodor Suietov) Implemented a temporary fix for the BankValue parameter of a Bank Field to support all constant values, now including the Zero and One opcodes. Evaluation of this parameter must eventually be converted to a full TermArg evaluation. A not-implemented error is now returned (temporarily) for non- constant values for this parameter. Fixed problem reports (Fiodor Suietov) integrated: - Fix for premature object deletion after CopyObject on Operation Region (BZ 350) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.7K Code, 18.0K Data, 98.7K Total Debug Version: 160.9K Code, 65.1K Data, 226.0K Total Current Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 07 July 2006. Summary of changes for version 20060707: 1) ACPI CA Core Subsystem: Added the ACPI_PACKED_POINTERS_NOT_SUPPORTED macro to support C compilers that do not allow the initialization of address pointers within packed structures - even though the hardware itself may support misaligned transfers. Some of the debug data structures are packed by default to minimize size. Added an error message for the case where AcpiOsGetThreadId() returns zero. A non-zero value is required by the core ACPICA code to ensure the proper operation of AML mutexes and recursive control methods. The DSDT is now the only ACPI table that determines whether the AML interpreter is in 32-bit or 64-bit mode. Not really a functional change, but the hooks for per-table 32/64 switching have been removed from the code. A clarification to the ACPI specification is forthcoming in ACPI 3.0B. Fixed a possible leak of an OwnerID in the error path of AcpiTbInitTableDescriptor (tbinstal.c), and migrated all table OwnerID deletion to a single place in AcpiTbUninstallTable to correct possible leaks when using the AcpiTbDeleteTablesByType interface (with assistance from Lance Ortiz.) Fixed a problem with Serialized control methods where the semaphore associated with the method could be over-signaled after multiple method invocations. Fixed two issues with the locking of the internal namespace data structure. Both the Unload() operator and AcpiUnloadTable interface now lock the namespace during the namespace deletion associated with the table unload (with assistance from Linn Crosetto.) Fixed problem reports (Valery Podrezov) integrated: - Eliminate unnecessary memory allocation for CreateXxxxField (BZ 5426) Fixed problem reports (Fiodor Suietov) integrated: - Incomplete cleanup branches in AcpiTbGetTableRsdt (BZ 369) - On Address Space handler deletion, needless deactivation call (BZ 374) - AcpiRemoveAddressSpaceHandler: validate Device handle parameter (BZ 375) - Possible memory leak, Notify sub-objects of Processor, Power, ThermalZone (BZ 376) - AcpiRemoveAddressSpaceHandler: validate Handler parameter (BZ 378) - Minimum Length of RSDT should be validated (BZ 379) - AcpiRemoveNotifyHandler: return AE_NOT_EXIST if Processor Obj has no Handler (BZ (380) - AcpiUnloadTable: return AE_NOT_EXIST if no table of specified type loaded (BZ 381) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total Debug Version: 160.8K Code, 64.8K Data, 225.6K Total Current Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total 2) iASL Compiler/Disassembler and Tools: Fixed problem reports: Compiler segfault when ASL contains a long (>1024) String declaration (BZ 436) ---------------------------------------- 23 June 2006. Summary of changes for version 20060623: 1) ACPI CA Core Subsystem: Implemented a new ACPI_SPINLOCK type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Therefore, no OSL changes are required at this time. (See acpiosxf.h) Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total Debug Version: 160.2K Code, 64.7K Data, 224.9K Total Current Release: Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total Debug Version: 160.8K Code, 64.8K Data, 225.6K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 08 June 2006. Summary of changes for version 20060608: 1) ACPI CA Core Subsystem: Converted the locking mutex used for the ACPI hardware to a spinlock. This change should eliminate all problems caused by attempting to acquire a semaphore at interrupt level, and it means that all ACPICA external interfaces that directly access the ACPI hardware can be safely called from interrupt level. OSL code that implements the semaphore interfaces should be able to eliminate any workarounds for being called at interrupt level. Fixed a regression introduced in 20060526 where the ACPI device initialization could be prematurely aborted with an AE_NOT_FOUND if a device did not have an optional _INI method. Fixed an IndexField issue where a write to the Data Register should be limited in size to the AccessSize (width) of the IndexField itself. (BZ 433, Fiodor Suietov) Fixed problem reports (Valery Podrezov) integrated: - Allow store of ThermalZone objects to Debug object (BZ 5369/5370) Fixed problem reports (Fiodor Suietov) integrated: - AcpiGetTableHeader doesn't handle multiple instances correctly (BZ 364) Removed four global mutexes that were obsolete and were no longer being used. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total Debug Version: 160.3K Code, 64.9K Data, 225.2K Total Current Release: Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total Debug Version: 160.2K Code, 64.7K Data, 224.9K Total 2) iASL Compiler/Disassembler and Tools: Fixed a fault when using -g option (get tables from registry) on Windows machines. Fixed problem reports integrated: - Generate error if CreateField NumBits parameter is zero. (BZ 405) - Fault if Offset/Length in Field unit is very large (BZ 432, Fiodor Suietov) - Global table revision override (-r) is ignored (BZ 413) ---------------------------------------- 26 May 2006. Summary of changes for version 20060526: 1) ACPI CA Core Subsystem: Restructured, flattened, and simplified the internal interfaces for namespace object evaluation - resulting in smaller code, less CPU stack use, and fewer interfaces. (With assistance from Mikhail Kouzmich) Fixed a problem with the CopyObject operator where the first parameter was not typed correctly for the parser, interpreter, compiler, and disassembler. Caused various errors and unexpected behavior. Fixed a problem where a ShiftLeft or ShiftRight of more than 64 bits produced incorrect results with some C compilers. Since the behavior of C compilers when the shift value is larger than the datatype width is apparently not well defined, the interpreter now detects this condition and simply returns zero as expected in all such cases. (BZ 395) Fixed problem reports (Valery Podrezov) integrated: - Update String-to-Integer conversion to match ACPI 3.0A spec (BZ 5329) - Allow interpreter to handle nested method declarations (BZ 5361) Fixed problem reports (Fiodor Suietov) integrated: - AcpiTerminate doesn't free debug memory allocation list objects (BZ 355) - After Core Subsystem shutdown, AcpiSubsystemStatus returns AE_OK (BZ 356) - AcpiOsUnmapMemory for RSDP can be invoked inconsistently (BZ 357) - Resource Manager should return AE_TYPE for non-device objects (BZ 358) - Incomplete cleanup branch in AcpiNsEvaluateRelative (BZ 359) - Use AcpiOsFree instead of ACPI_FREE in AcpiRsSetSrsMethodData (BZ 360) - Incomplete cleanup branch in AcpiPsParseAml (BZ 361) - Incomplete cleanup branch in AcpiDsDeleteWalkState (BZ 362) - AcpiGetTableHeader returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ 365) - Status of the Global Initialization Handler call not used (BZ 366) - Incorrect object parameter to Global Initialization Handler (BZ 367) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total Debug Version: 160.5K Code, 65.1K Data, 225.6K Total Current Release: Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total Debug Version: 160.3K Code, 64.9K Data, 225.2K Total 2) iASL Compiler/Disassembler and Tools: Modified the parser to allow the names IO, DMA, and IRQ to be used as namespace identifiers with no collision with existing resource descriptor macro names. This provides compatibility with other ASL compilers and is most useful for disassembly/recompilation of existing tables without parse errors. (With assistance from Thomas Renninger) Disassembler: fixed an incorrect disassembly problem with the DataTableRegion and CopyObject operators. Fixed a possible fault during disassembly of some Alias operators. ---------------------------------------- 12 May 2006. Summary of changes for version 20060512: 1) ACPI CA Core Subsystem: Replaced the AcpiOsQueueForExecution interface with a new interface named AcpiOsExecute. The major difference is that the new interface does not have a Priority parameter, this appeared to be useless and has been replaced by a Type parameter. The Type tells the host what type of execution is being requested, such as global lock handler, notify handler, GPE handler, etc. This allows the host to queue and execute the request as appropriate for the request type, possibly using different work queues and different priorities for the various request types. This enables fixes for multithreading deadlock problems such as BZ #5534, and will require changes to all existing OS interface layers. (Alexey Starikovskiy and Bob Moore) Fixed a possible memory leak associated with the support for the so- called "implicit return" ACPI extension. Reported by FreeBSD, BZ #6514. (Fiodor Suietov) Fixed a problem with the Load() operator where a table load from an operation region could overwrite an internal table buffer by up to 7 bytes and cause alignment faults on IPF systems. (With assistance from Luming Yu) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total Debug Version: 160.1K Code, 65.2K Data, 225.3K Total Current Release: Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total Debug Version: 160.5K Code, 65.1K Data, 225.6K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support to cross reference the internal namespace and automatically generate ASL External() statements for symbols not defined within the current table being disassembled. This will simplify the disassembly and recompilation of interdependent tables such as SSDTs since these statements will no longer have to be added manually. Disassembler: Implemented experimental support to automatically detect invocations of external control methods and generate appropriate External() statements. This is problematic because the AML cannot be correctly parsed until the number of arguments for each control method is known. Currently, standalone method invocations and invocations as the source operand of a Store() statement are supported. Disassembler: Implemented support for the ASL pseudo-operators LNotEqual, LLessEqual, and LGreaterEqual. Previously disassembled as LNot(LEqual()), LNot(LGreater()), and LNot(LLess()), this makes the disassembled ASL code more readable and likely closer to the original ASL source. ---------------------------------------- 21 April 2006. Summary of changes for version 20060421: 1) ACPI CA Core Subsystem: Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree. (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, AcpiOsValidateAddress. This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) See oswinxf or osunixxf for an example implementation. Defined and deployed a new OSL interface, AcpiOsValidateInterface. This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) See oswinxf or osunixxf for an example implementation. Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total Debug Version: 158.9K Code, 64.9K Data, 223.8K Total Current Release: Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total Debug Version: 160.1K Code, 65.2K Data, 225.3K Total 2) iASL Compiler/Disassembler and Tools: Implemented 3 new warnings for iASL, and implemented multiple warning levels (w2 flag). 1) Ignored timeouts: If the TimeoutValue parameter to Wait or Acquire is not WAIT_FOREVER (0xFFFF) and the code does not examine the return value to check for the possible timeout, a warning is issued. 2) Useless operators: If an ASL operator does not specify an optional target operand and it also does not use the function return value from the operator, a warning is issued since the operator effectively does nothing. 3) Unreferenced objects: If a namespace object is created, but never referenced, a warning is issued. This is a warning level 2 since there are cases where this is ok, such as when a secondary table is loaded that uses the unreferenced objects. Even so, care is taken to only flag objects that don't look like they will ever be used. For example, the reserved methods (starting with an underscore) are usually not referenced because it is expected that the OS will invoke them. ---------------------------------------- 31 March 2006. Summary of changes for version 20060331: 1) ACPI CA Core Subsystem: Implemented header file support for the following additional ACPI tables: ASF!, BOOT, CPEP, DBGP, MCFG, SPCR, SPMI, TCPA, and WDRT. With this support, all current and known ACPI tables are now defined in the ACPICA headers and are available for use by device drivers and other software. Implemented support to allow tables that contain ACPI names with invalid characters to be loaded. Previously, this would cause the table load to fail, but since there are several known cases of such tables on existing machines, this change was made to enable ACPI support for them. Also, this matches the behavior of the Microsoft ACPI implementation. Fixed a couple regressions introduced during the memory optimization in the 20060317 release. The namespace node definition required additional reorganization and an internal datatype that had been changed to 8-bit was restored to 32-bit. (Valery Podrezov) Fixed a problem where a null pointer passed to AcpiUtDeleteGenericState could be passed through to AcpiOsReleaseObject which is unexpected. Such null pointers are now trapped and ignored, matching the behavior of the previous implementation before the deployment of AcpiOsReleaseObject. (Valery Podrezov, Fiodor Suietov) Fixed a memory mapping leak during the deletion of a SystemMemory operation region where a cached memory mapping was not deleted. This became a noticeable problem for operation regions that are defined within frequently used control methods. (Dana Meyers) Reorganized the ACPI table header files into two main files: one for the ACPI tables consumed by the ACPICA core, and another for the miscellaneous ACPI tables that are consumed by the drivers and other software. The various FADT definitions were merged into one common section and three different tables (ACPI 1.0, 1.0+, and 2.0) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total Debug Version: 158.7K Code, 64.8K Data, 223.5K Total Current Release: Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total Debug Version: 158.9K Code, 64.9K Data, 223.8K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support to decode and format all non-AML ACPI tables (tables other than DSDTs and SSDTs.) This includes the new tables added to the ACPICA headers, therefore all current and known ACPI tables are supported. Disassembler: The change to allow ACPI names with invalid characters also enables the disassembly of such tables. Invalid characters within names are changed to '*' to make the name printable; the iASL compiler will still generate an error for such names, however, since this is an invalid ACPI character. Implemented an option for AcpiXtract (-a) to extract all tables found in the input file. The default invocation extracts only the DSDTs and SSDTs. Fixed a couple of gcc generation issues for iASL and AcpiExec and added a makefile for the AcpiXtract utility. ---------------------------------------- 17 March 2006. Summary of changes for version 20060317: 1) ACPI CA Core Subsystem: Implemented the use of a cache object for all internal namespace nodes. Since there are about 1000 static nodes in a typical system, this will decrease memory use for cache implementations that minimize per- allocation overhead (such as a slab allocator.) Removed the reference count mechanism for internal namespace nodes, since it was deemed unnecessary. This reduces the size of each namespace node by about 5%-10% on all platforms. Nodes are now 20 bytes for the 32-bit case, and 32 bytes for the 64-bit case. Optimized several internal data structures to reduce object size on 64- bit platforms by packing data within the 64-bit alignment. This includes the frequently used ACPI_OPERAND_OBJECT, of which there can be ~1000 static instances corresponding to the namespace objects. Added two new strings for the predefined _OSI method: "Windows 2001.1 SP1" and "Windows 2006". Split the allocation tracking mechanism out to a separate file, from utalloc.c to uttrack.c. This mechanism appears to be only useful for application-level code. Kernels may wish to not include uttrack.c in distributions. Removed all remnants of the obsolete ACPI_REPORT_* macros and the associated code. (These macros have been replaced by the ACPI_ERROR and ACPI_WARNING macros.) Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.6K Code, 65.7K Data, 227.3K Total Current Release: Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total Debug Version: 158.7K Code, 64.8K Data, 223.5K Total 2) iASL Compiler/Disassembler and Tools: Implemented an ANSI C version of the acpixtract utility. This version will automatically extract the DSDT and all SSDTs from the input acpidump text file and dump the binary output to separate files. It can also display a summary of the input file including the headers for each table found and will extract any single ACPI table, with any signature. (See source/tools/acpixtract) ---------------------------------------- 10 March 2006. Summary of changes for version 20060310: 1) ACPI CA Core Subsystem: Tagged all external interfaces to the subsystem with the new ACPI_EXPORT_SYMBOL macro. This macro can be defined as necessary to assist kernel integration. For Linux, the macro resolves to the EXPORT_SYMBOL macro. The default definition is NULL. Added the ACPI_THREAD_ID type for the return value from AcpiOsGetThreadId. This allows the host to define this as necessary to simplify kernel integration. The default definition is ACPI_NATIVE_UINT. Fixed two interpreter problems related to error processing, the deletion of objects, and placing invalid pointers onto the internal operator result stack. BZ 6028, 6151 (Valery Podrezov) Increased the reference count threshold where a warning is emitted for large reference counts in order to eliminate unnecessary warnings on systems with large namespaces (especially 64-bit.) Increased the value from 0x400 to 0x800. Due to universal disagreement as to the meaning of the 'c' in the calloc() function, the ACPI_MEM_CALLOCATE macro has been renamed to ACPI_ALLOCATE_ZEROED so that the purpose of the interface is 'clear'. ACPI_MEM_ALLOCATE and ACPI_MEM_FREE are renamed to ACPI_ALLOCATE and ACPI_FREE. Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total Debug Version: 161.4K Code, 65.7K Data, 227.1K Total Current Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.6K Code, 65.7K Data, 227.3K Total 2) iASL Compiler/Disassembler: Disassembler: implemented support for symbolic resource descriptor references. If a CreateXxxxField operator references a fixed offset within a resource descriptor, a name is assigned to the descriptor and the offset is translated to the appropriate resource tag and pathname. The addition of this support brings the disassembled code very close to the original ASL source code and helps eliminate run-time errors when the disassembled code is modified (and recompiled) in such a way as to invalidate the original fixed offsets. Implemented support for a Descriptor Name as the last parameter to the ASL Register() macro. This parameter was inadvertently left out of the ACPI specification, and will be added for ACPI 3.0b. Fixed a problem where the use of the "_OSI" string (versus the full path "\_OSI") caused an internal compiler error. ("No back ptr to op") Fixed a problem with the error message that occurs when an invalid string is used for a _HID object (such as one with an embedded asterisk: "*PNP010A".) The correct message is now displayed. ---------------------------------------- 17 February 2006. Summary of changes for version 20060217: 1) ACPI CA Core Subsystem: Implemented a change to the IndexField support to match the behavior of the Microsoft AML interpreter. The value written to the Index register is now a byte offset, no longer an index based upon the width of the Data register. This should fix IndexField problems seen on some machines where the Data register is not exactly one byte wide. The ACPI specification will be clarified on this point. Fixed a problem where several resource descriptor types could overrun the internal descriptor buffer due to size miscalculation: VendorShort, VendorLong, and Interrupt. This was noticed on IA64 machines, but could affect all platforms. Fixed a problem where individual resource descriptors were misaligned within the internal buffer, causing alignment faults on IA64 platforms. Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.3K Code, 65.6K Data, 226.9K Total Current Release: Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total Debug Version: 161.4K Code, 65.7K Data, 227.1K Total 2) iASL Compiler/Disassembler: Implemented support for new reserved names: _WDG and _WED are Microsoft extensions for Windows Instrumentation Management, _TDL is a new ACPI- defined method (Throttling Depth Limit.) Fixed a problem where a zero-length VendorShort or VendorLong resource descriptor was incorrectly emitted as a descriptor of length one. ---------------------------------------- 10 February 2006. Summary of changes for version 20060210: 1) ACPI CA Core Subsystem: Removed a couple of extraneous ACPI_ERROR messages that appeared during normal execution. These became apparent after the conversion from ACPI_DEBUG_PRINT. Fixed a problem where the CreateField operator could hang if the BitIndex or NumBits parameter referred to a named object. (Valery Podrezov, BZ 5359) Fixed a problem where a DeRefOf operation on a buffer object incorrectly failed with an exception. This also fixes a couple of related RefOf and DeRefOf issues. (Valery Podrezov, BZ 5360/5392/5387) Fixed a problem where the AE_BUFFER_LIMIT exception was returned instead of AE_STRING_LIMIT on an out-of-bounds Index() operation. (Valery Podrezov, BZ 5480) Implemented a memory cleanup at the end of the execution of each iteration of an AML While() loop, preventing the accumulation of outstanding objects. (Valery Podrezov, BZ 5427) Eliminated a chunk of duplicate code in the object resolution code. (Valery Podrezov, BZ 5336) Fixed several warnings during the 64-bit code generation. The AcpiSrc source code conversion tool now inserts one line of whitespace after an if() statement that is followed immediately by a comment, improving readability of the Linux code. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total Debug Version: 161.3K Code, 65.7K Data, 227.0K Total Current Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.3K Code, 65.6K Data, 226.9K Total 2) iASL Compiler/Disassembler: Fixed a problem with the disassembly of a BankField operator with a complex expression for the BankValue parameter. ---------------------------------------- 27 January 2006. Summary of changes for version 20060127: 1) ACPI CA Core Subsystem: Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled, these unresolved references will be passed through to the caller as a NULL package entry. Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. The older macros remain defined to allow ACPI drivers time to migrate to the new macros. Implemented the ACPI_CPU_FLAGS type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Fixed a problem where Alias ASL operators are sometimes not correctly resolved, in both the interpreter and the iASL compiler. Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total Debug Version: 163.2K Code, 66.2K Data, 229.4K Total Current Release: Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total Debug Version: 161.3K Code, 65.7K Data, 227.0K Total 2) iASL Compiler/Disassembler: Fixed an internal error that was generated for any forward references to ASL Alias objects. ---------------------------------------- 13 January 2006. Summary of changes for version 20060113: 1) ACPI CA Core Subsystem: Added 2006 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and the utilities. Enhanced the ACPICA error reporting in order to simplify user migration to the non-debug version of ACPICA. Replaced all instances of the ACPI_DEBUG_PRINT macro invoked at the ACPI_DB_ERROR and ACPI_DB_WARN debug levels with the ACPI_REPORT_ERROR and ACPI_REPORT_WARNING macros, respectively. This preserves all error and warning messages in the non- debug version of the ACPICA code (this has been referred to as the "debug lite" option.) Over 200 cases were converted to create a total of over 380 error/warning messages across the ACPICA code. This increases the code and data size of the default non-debug version of the code somewhat (about 13K), but all error/warning reporting may be disabled if desired (and code eliminated) by specifying the ACPI_NO_ERROR_MESSAGES compile-time configuration option. The size of the debug version of ACPICA remains about the same. Fixed a memory leak within the AML Debugger "Set" command. One object was not properly deleted for every successful invocation of the command. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total Debug Version: 163.7K Code, 67.5K Data, 231.2K Total Current Release: Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total Debug Version: 163.2K Code, 66.2K Data, 229.4K Total 2) iASL Compiler/Disassembler: The compiler now officially supports the ACPI 3.0a specification that was released on December 30, 2005. (Specification is available at www.acpi.info) ---------------------------------------- 16 December 2005. Summary of changes for version 20051216: 1) ACPI CA Core Subsystem: Implemented optional support to allow unresolved names within ASL Package objects. A null object is inserted in the package when a named reference cannot be located in the current namespace. Enabled via the interpreter slack flag, this should eliminate AE_NOT_FOUND exceptions seen on machines that contain such code. Implemented an optimization to the initialization sequence that can improve boot time. During ACPI device initialization, the _STA method is now run if and only if the _INI method exists. The _STA method is used to determine if the device is present; An _INI can only be run if _STA returns present, but it is a waste of time to run the _STA method if the _INI does not exist. (Prototype and assistance from Dong Wei) Implemented use of the C99 uintptr_t for the pointer casting macros if it is available in the current compiler. Otherwise, the default (void *) cast is used as before. Fixed some possible memory leaks found within the execution path of the Break, Continue, If, and CreateField operators. (Valery Podrezov) Fixed a problem introduced in the 20051202 release where an exception is generated during method execution if a control method attempts to declare another method. Moved resource descriptor string constants that are used by both the AML disassembler and AML debugger to the common utilities directory so that these components are independent. Implemented support in the AcpiExec utility (-e switch) to globally ignore exceptions during control method execution (method is not aborted.) Added the rsinfo.c source file to the AcpiExec makefile for Linux/Unix generation. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.2K Code, 67.4K Data, 230.6K Total Current Release: Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total Debug Version: 163.7K Code, 67.5K Data, 231.2K Total 2) iASL Compiler/Disassembler: Fixed a problem where a CPU stack overflow fault could occur if a recursive method call was made from within a Return statement. ---------------------------------------- 02 December 2005. Summary of changes for version 20051202: 1) ACPI CA Core Subsystem: Modified the parsing of control methods to no longer create namespace objects during the first pass of the parse. Objects are now created only during the execute phase, at the moment the namespace creation operator is encountered in the AML (Name, OperationRegion, CreateByteField, etc.) This should eliminate ALREADY_EXISTS exceptions seen on some machines where reentrant control methods are protected by an AML mutex. The mutex will now correctly block multiple threads from attempting to create the same object more than once. Increased the number of available Owner Ids for namespace object tracking from 32 to 255. This should eliminate the OWNER_ID_LIMIT exceptions seen on some machines with a large number of ACPI tables (either static or dynamic). Fixed a problem with the AcpiExec utility where a fault could occur when the -b switch (batch mode) is used. Enhanced the namespace dump routine to output the owner ID for each namespace object. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total Current Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.2K Code, 67.4K Data, 230.6K Total 2) iASL Compiler/Disassembler: Fixed a parse error during compilation of certain Switch/Case constructs. To simplify the parse, the grammar now allows for multiple Default statements and this error is now detected and flagged during the analysis phase. Disassembler: The disassembly now includes the contents of the original table header within a comment at the start of the file. This includes the name and version of the original ASL compiler. ---------------------------------------- 17 November 2005. Summary of changes for version 20051117: 1) ACPI CA Core Subsystem: Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, AcpiGetVendorResource. This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. With assistance from Bjorn Helgaas. Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatenate operator, 3) the String object result of the ASL ToString operator. Fixed a problem in the Windows OS interface layer (OSL) where a WAIT_FOREVER on a semaphore object would incorrectly timeout. This allows the multithreading features of the AcpiExec utility to work properly under Windows. Updated the Linux makefiles for the iASL compiler and AcpiExec to include the recently added file named "utresrc.c". Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total Current Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total 2) iASL Compiler/Disassembler: Removed the limit (200) on string objects as per the upcoming ACPI 3.0A specification. For the iASL compiler, this means that string literals within the source ASL can be of any length. Enhanced the listing output to dump the AML code for resource descriptors immediately after the ASL code for each descriptor, instead of in a block at the end of the entire resource template. Enhanced the compiler debug output to dump the entire original parse tree constructed during the parse phase, before any transforms are applied to the tree. The transformed tree is dumped also. ---------------------------------------- 02 November 2005. Summary of changes for version 20051102: 1) ACPI CA Core Subsystem: Modified the subsystem initialization sequence to improve GPE support. The GPE initialization has been split into two parts in order to defer execution of the _PRW methods (Power Resources for Wake) until after the hardware is fully initialized and the SCI handler is installed. This allows the _PRW methods to access fields protected by the Global Lock. This will fix systems where a NO_GLOBAL_LOCK exception has been seen during initialization. Converted the ACPI internal object disassemble and display code within the AML debugger to fully table-driven operation, reducing code size and increasing maintainability. Fixed a regression with the ConcatenateResTemplate() ASL operator introduced in the 20051021 release. Implemented support for "local" internal ACPI object types within the debugger "Object" command and the AcpiWalkNamespace external interfaces. These local types include RegionFields, BankFields, IndexFields, Alias, and reference objects. Moved common AML resource handling code into a new file, "utresrc.c". This code is shared by both the Resource Manager and the AML Debugger. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total Debug Version: 163.5K Code, 67.0K Data, 230.5K Total Current Release: Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total 2) iASL Compiler/Disassembler: Fixed a problem with very large initializer lists (more than 4000 elements) for both Buffer and Package objects where the parse stack could overflow. Enhanced the pre-compile source code scan for non-ASCII characters to ignore characters within comment fields. The scan is now always performed and is no longer optional, detecting invalid characters within a source file immediately rather than during the parse phase or later. Enhanced the ASL grammar definition to force early reductions on all list- style grammar elements so that the overall parse stack usage is greatly reduced. This should improve performance and reduce the possibility of parse stack overflow. Eliminated all reduce/reduce conflicts in the iASL parser generation. Also, with the addition of a %expected statement, the compiler generates from source with no warnings. Fixed a possible segment fault in the disassembler if the input filename does not contain a "dot" extension (Thomas Renninger). ---------------------------------------- 21 October 2005. Summary of changes for version 20051021: 1) ACPI CA Core Subsystem: Implemented support for the EM64T and other x86-64 processors. This essentially entails recognizing that these processors support non-aligned memory transfers. Previously, all 64-bit processors were assumed to lack hardware support for non-aligned transfers. Completed conversion of the Resource Manager to nearly full table-driven operation. Specifically, the resource conversion code (convert AML to internal format and the reverse) and the debug code to dump internal resource descriptors are fully table-driven, reducing code and data size and improving maintainability. The OSL interfaces for Acquire and Release Lock now use a 64-bit flag word on 64-bit processors instead of a fixed 32-bit word. (With assistance from Alexey Starikovskiy) Implemented support within the resource conversion code for the Type- Specific byte within the various ACPI 3.0 *WordSpace macros. Fixed some issues within the resource conversion code for the type- specific flags for both Memory and I/O address resource descriptors. For Memory, implemented support for the MTP and TTP flags. For I/O, split the TRS and TTP flags into two separate fields. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total Debug Version: 168.0K Code, 68.3K Data, 236.3K Total Current Release: Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total Debug Version: 163.5K Code, 67.0K Data, 230.5K Total 2) iASL Compiler/Disassembler: Relaxed a compiler restriction that disallowed a ResourceIndex byte if the corresponding ResourceSource string was not also present in a resource descriptor declaration. This restriction caused problems with existing AML/ASL code that includes the Index byte without the string. When such AML was disassembled, it could not be compiled without modification. Further, the modified code created a resource template with a different size than the original, breaking code that used fixed offsets into the resource template buffer. Removed a recent feature of the disassembler to ignore a lone ResourceIndex byte. This byte is now emitted if present so that the exact AML can be reproduced when the disassembled code is recompiled. Improved comments and text alignment for the resource descriptor code emitted by the disassembler. Implemented disassembler support for the ACPI 3.0 AccessSize field within a Register() resource descriptor. ---------------------------------------- 30 September 2005. Summary of changes for version 20050930: 1) ACPI CA Core Subsystem: Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) The update may force changes in some driver code, depending on how resources are handled by the host OS. All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, AcpiDebugTrace, is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. AcpiUtCallocate will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of AcpiUtAllocate. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total Debug Version: 168.1K Code, 68.4K Data, 236.5K Total Current Release: Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total Debug Version: 168.0K Code, 68.3K Data, 236.3K Total 2) iASL Compiler/Disassembler: A remark is issued if the effective compile-time length of a package or buffer is zero. Previously, this was a warning. ---------------------------------------- 16 September 2005. Summary of changes for version 20050916: 1) ACPI CA Core Subsystem: Fixed a problem within the Resource Manager where support for the Generic Register descriptor was not fully implemented. This descriptor is now fully recognized, parsed, disassembled, and displayed. Completely restructured the Resource Manager code to utilize table-driven dispatch and lookup, eliminating many of the large switch() statements. This reduces overall subsystem code size and code complexity. Affects the resource parsing and construction, disassembly, and debug dump output. Cleaned up and restructured the debug dump output for all resource descriptors. Improved readability of the output and reduced code size. Fixed a problem where changes to internal data structures caused the optional ACPI_MUTEX_DEBUG code to fail compilation if specified. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total Debug Version: 169.6K Code, 69.9K Data, 239.5K Total Current Release: Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total Debug Version: 168.1K Code, 68.4K Data, 236.5K Total 2) iASL Compiler/Disassembler: Updated the disassembler to automatically insert an EndDependentFn() macro into the ASL stream if this macro is missing in the original AML code, simplifying compilation of the resulting ASL module. Fixed a problem in the disassembler where a disassembled ResourceSource string (within a large resource descriptor) was not surrounded by quotes and not followed by a comma, causing errors when the resulting ASL module was compiled. Also, escape sequences within a ResourceSource string are now handled correctly (especially "\\") ---------------------------------------- 02 September 2005. Summary of changes for version 20050902: 1) ACPI CA Core Subsystem: Fixed a problem with the internal Owner ID allocation and deallocation mechanisms for control method execution and recursive method invocation. This should eliminate the OWNER_ID_LIMIT exceptions and "Invalid OwnerId" messages seen on some systems. Recursive method invocation depth is currently limited to 255. (Alexey Starikovskiy) Completely eliminated all vestiges of support for the "module-level executable code" until this support is fully implemented and debugged. This should eliminate the NO_RETURN_VALUE exceptions seen during table load on some systems that invoke this support. Fixed a problem within the resource manager code where the transaction flags for a 64-bit address descriptor were handled incorrectly in the type- specific flag byte. Consolidated duplicate code within the address descriptor resource manager code, reducing overall subsystem code size. Fixed a fault when using the AML debugger "disassemble" command to disassemble individual control methods. Removed references to the "release_current" directory within the Unix release package. Code and Data Size: The current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 170.0K Code, 69.9K Data, 239.9K Total Current Release: Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total Debug Version: 169.6K Code, 69.9K Data, 239.5K Total 2) iASL Compiler/Disassembler: Implemented an error check for illegal duplicate values in the interrupt and dma lists for the following ASL macros: Dma(), Irq(), IrqNoFlags(), and Interrupt(). Implemented error checking for the Irq() and IrqNoFlags() macros to detect too many values in the interrupt list (16 max) and invalid values in the list (range 0 - 15) The maximum length string literal within an ASL file is now restricted to 200 characters as per the ACPI specification. Fixed a fault when using the -ln option (generate namespace listing). Implemented an error check to determine if a DescriptorName within a resource descriptor has already been used within the current scope. ---------------------------------------- 15 August 2005. Summary of changes for version 20050815: 1) ACPI CA Core Subsystem: Implemented a full bytewise compare to determine if a table load request is attempting to load a duplicate table. The compare is performed if the table signatures and table lengths match. This will allow different tables with the same OEM Table ID and revision to be loaded - probably against the ACPI specification, but discovered in the field nonetheless. Added the changes.txt logfile to each of the zipped release packages. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 167.0K Code, 69.9K Data, 236.9K Total Current Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 170.0K Code, 69.9K Data, 239.9K Total 2) iASL Compiler/Disassembler: Fixed a problem where incorrect AML code could be generated for Package objects if optimization is disabled (via the -oa switch). Fixed a problem with where incorrect AML code is generated for variable- length packages when the package length is not specified and the number of initializer values is greater than 255. ---------------------------------------- 29 July 2005. Summary of changes for version 20050729: 1) ACPI CA Core Subsystem: Implemented support to ignore an attempt to install/load a particular ACPI table more than once. Apparently there exists BIOS code that repeatedly attempts to load the same SSDT upon certain events. With assistance from Venkatesh Pallipadi. Restructured the main interface to the AML parser in order to correctly handle all exceptional conditions. This will prevent leakage of the OwnerId resource and should eliminate the AE_OWNER_ID_LIMIT exceptions seen on some machines. With assistance from Alexey Starikovskiy. Support for "module level code" has been disabled in this version due to a number of issues that have appeared on various machines. The support can be enabled by defining ACPI_ENABLE_MODULE_LEVEL_CODE during subsystem compilation. When the issues are fully resolved, the code will be enabled by default again. Modified the internal functions for debug print support to define the FunctionName parameter as a (const char *) for compatibility with compiler built-in macros such as __FUNCTION__, etc. Linted the entire ACPICA source tree for both 32-bit and 64-bit. Implemented support to display an object count summary for the AML Debugger commands Object and Methods. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total Debug Version: 170.0K Code, 69.7K Data, 239.7K Total Current Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 167.0K Code, 69.9K Data, 236.9K Total 2) iASL Compiler/Disassembler: Fixed a regression that appeared in the 20050708 version of the compiler where an error message was inadvertently emitted for invocations of the _OSI reserved control method. ---------------------------------------- 08 July 2005. Summary of changes for version 20050708: 1) ACPI CA Core Subsystem: The use of the CPU stack in the debug version of the subsystem has been considerably reduced. Previously, a debug structure was declared in every function that used the debug macros. This structure has been removed in favor of declaring the individual elements as parameters to the debug functions. This reduces the cumulative stack use during nested execution of ACPI function calls at the cost of a small increase in the code size of the debug version of the subsystem. With assistance from Alexey Starikovskiy and Len Brown. Added the ACPI_GET_FUNCTION_NAME macro to enable the compiler-dependent headers to define a macro that will return the current function name at runtime (such as __FUNCTION__ or _func_, etc.) The function name is used by the debug trace output. If ACPI_GET_FUNCTION_NAME is not defined in the compiler-dependent header, the function name is saved on the CPU stack (one pointer per function.) This mechanism is used because apparently there exists no standard ANSI-C defined macro that that returns the function name. Redesigned and reimplemented the "Owner ID" mechanism used to track namespace objects created/deleted by ACPI tables and control method execution. A bitmap is now used to allocate and free the IDs, thus solving the wraparound problem present in the previous implementation. The size of the namespace node descriptor was reduced by 2 bytes as a result (Alexey Starikovskiy). Removed the UINT32_BIT and UINT16_BIT types that were used for the bitfield flag definitions within the headers for the predefined ACPI tables. These have been replaced by UINT8_BIT in order to increase the code portability of the subsystem. If the use of UINT8 remains a problem, we may be forced to eliminate bitfields entirely because of a lack of portability. Enhanced the performance of the AcpiUtUpdateObjectReference procedure. This is a frequently used function and this improvement increases the performance of the entire subsystem (Alexey Starikovskiy). Fixed several possible memory leaks and the inverse - premature object deletion (Alexey Starikovskiy). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total Debug Version: 165.2K Code, 69.6K Data, 234.8K Total Current Release: Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total Debug Version: 170.0K Code, 69.7K Data, 239.7K Total ---------------------------------------- 24 June 2005. Summary of changes for version 20050624: 1) ACPI CA Core Subsystem: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. AcpiOsAcquireObject is now similar to the AcpiOsAllocate interface. Implemented a new AML debugger command named Businfo. This command displays information about all devices that have an associate _PRT object. The _ADR, _HID, _UID, and _CID are displayed for these devices. Modified the initialization sequence in AcpiInitializeSubsystem to call the OSL interface AcpiOslInitialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Enhanced the Dump command to display the entire contents of Package objects (including all sub-objects and their values.) Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. All makefiles and project files included in the ACPI CA release have been updated. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ interpreter/parser/psloop.c /* Main AML parse loop */ Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total Debug Version: 164.0K Code, 69.1K Data, 233.1K Total Current Release: Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total Debug Version: 165.2K Code, 69.6K Data, 234.8K Total 2) iASL Compiler/Disassembler: Fixed a regression introduced in version 20050513 where the use of a Package object within a Case() statement caused a compile time exception. The original behavior has been restored (a Match() operator is emitted.) ---------------------------------------- 17 June 2005. Summary of changes for version 20050617: 1) ACPI CA Core Subsystem: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. With assistance from Alexey Starikovskiy. AcpiOsCreateCache AcpiOsDeleteCache AcpiOsPurgeCache AcpiOsAcquireObject AcpiOsReleaseObject Modified the interfaces to AcpiOsAcquireLock and AcpiOsReleaseLock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. With assistance from Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. Enhanced the debugger Find command to emit object values in addition to the found object pathnames. The output format is the same as the dump namespace command. Enhanced the debugger Set command. It now has the ability to set the value of any Named integer object in the namespace (Previously, only method locals and args could be set.) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total Debug Version: 164.0K Code, 69.3K Data, 233.3K Total Current Release: Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total Debug Version: 164.0K Code, 69.1K Data, 233.1K Total 2) iASL Compiler/Disassembler: Fixed a regression in the disassembler where if/else/while constructs were output incorrectly. This problem was introduced in the previous release (20050526). This problem also affected the single-step disassembly in the debugger. Fixed a problem where compiling the reserved _OSI method would randomly (but rarely) produce compile errors. Enhanced the disassembler to emit compilable code in the face of incorrect AML resource descriptors. If the optional ResourceSourceIndex is present, but the ResourceSource is not, do not emit the ResourceSourceIndex in the disassembly. Otherwise, the resulting code cannot be compiled without errors. ---------------------------------------- 26 May 2005. Summary of changes for version 20050526: 1) ACPI CA Core Subsystem: Implemented support to execute Type 1 and Type 2 AML opcodes appearing at the module level (not within a control method.) These opcodes are executed exactly once at the time the table is loaded. This type of code was legal up until the release of ACPI 2.0B (2002) and is now supported within ACPI CA in order to provide backwards compatibility with earlier BIOS implementations. This eliminates the "Encountered executable code at module level" warning that was previously generated upon detection of such code. Fixed a problem in the interpreter where an AE_NOT_FOUND exception could inadvertently be generated during the lookup of namespace objects in the second pass parse of ACPI tables and control methods. It appears that this problem could occur during the resolution of forward references to namespace objects. Added the ACPI_MUTEX_DEBUG #ifdef to the AcpiUtReleaseMutex function, corresponding to the same #ifdef in the AcpiUtAcquireMutex function. This allows the deadlock detection debug code to be compiled out in the normal case, improving mutex performance (and overall subsystem performance) considerably. Implemented a handful of miscellaneous fixes for possible memory leaks on error conditions and error handling control paths. These fixes were suggested by FreeBSD and the Coverity Prevent source code analysis tool. Added a check for a null RSDT pointer in AcpiGetFirmwareTable (tbxfroot.c) to prevent a fault in this error case. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total Current Release: Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total Debug Version: 164.0K Code, 69.3K Data, 233.3K Total 2) iASL Compiler/Disassembler: Implemented support to allow Type 1 and Type 2 ASL operators to appear at the module level (not within a control method.) These operators will be executed once at the time the table is loaded. This type of code was legal up until the release of ACPI 2.0B (2002) and is now supported by the iASL compiler in order to provide backwards compatibility with earlier BIOS ASL code. The ACPI integer width (specified via the table revision ID or the -r override, 32 or 64 bits) is now used internally during compile-time constant folding to ensure that constants are truncated to 32 bits if necessary. Previously, the revision ID value was only emitted in the AML table header. An error message is now generated for the Mutex and Method operators if the SyncLevel parameter is outside the legal range of 0 through 15. Fixed a problem with the Method operator ParameterTypes list handling (ACPI 3.0). Previously, more than 2 types or 2 arguments generated a syntax error. The actual underlying implementation of method argument typechecking is still under development, however. ---------------------------------------- 13 May 2005. Summary of changes for version 20050513: 1) ACPI CA Core Subsystem: Implemented support for PCI Express root bridges -- added support for device PNP0A08 in the root bridge search within AcpiEvPciConfigRegionSetup. The interpreter now automatically truncates incoming 64-bit constants to 32 bits if currently executing out of a 32-bit ACPI table (Revision < 2). This also affects the iASL compiler constant folding. (Note: as per below, the iASL compiler no longer allows 64-bit constants within 32-bit tables.) Fixed a problem where string and buffer objects with "static" pointers (pointers to initialization data within an ACPI table) were not handled consistently. The internal object copy operation now always copies the data to a newly allocated buffer, regardless of whether the source object is static or not. Fixed a problem with the FromBCD operator where an implicit result conversion was improperly performed while storing the result to the target operand. Since this is an "explicit conversion" operator, the implicit conversion should never be performed on the output. Fixed a problem with the CopyObject operator where a copy to an existing named object did not always completely overwrite the existing object stored at name. Specifically, a buffer-to-buffer copy did not delete the existing buffer. Replaced "InterruptLevel" with "InterruptNumber" in all GPE interfaces and structs for consistency. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total Current Release: (Same sizes) Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total 2) iASL Compiler/Disassembler: The compiler now emits a warning if an attempt is made to generate a 64- bit integer constant from within a 32-bit ACPI table (Revision < 2). The integer is truncated to 32 bits. Fixed a problem with large package objects: if the static length of the package is greater than 255, the "variable length package" opcode is emitted. Previously, this caused an error. This requires an update to the ACPI spec, since it currently (incorrectly) states that packages larger than 255 elements are not allowed. The disassembler now correctly handles variable length packages and packages larger than 255 elements. ---------------------------------------- 08 April 2005. Summary of changes for version 20050408: 1) ACPI CA Core Subsystem: Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (AcpiUtStrupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. All references to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. Implemented an extract option (-e) for the AcpiBin utility (AML binary utility). This option allows the utility to extract individual ACPI tables from the output of AcpiDmp. It provides the same functionality of the acpixtract.pl perl script without the worry of setting the correct perl options. AcpiBin runs on Windows and has not yet been generated/validated in the Linux/Unix environment (but should be soon). Updated and fixed the table dump option for AcpiBin (-d). This option converts a single ACPI table to a hex/ascii file, similar to the output of AcpiDmp. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total Debug Version: 163.5K Code, 69.3K Data, 232.8K Total Current Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total 2) iASL Compiler/Disassembler: Disassembler fix: Added a check to ensure that the table length found in the ACPI table header within the input file is not longer than the actual input file size. This indicates some kind of file or table corruption. ---------------------------------------- 29 March 2005. Summary of changes for version 20050329: 1) ACPI CA Core Subsystem: An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across both the core subsystem and the iASL compiler. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.7K Data, 236.1K Total Current Release: Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total Debug Version: 163.5K Code, 69.3K Data, 232.8K Total 2) iASL Compiler/Disassembler: Fixed a problem with the resource descriptor generation/support. For the ResourceSourceIndex and the ResourceSource fields, both must be present, or both must be not present - can't have one without the other. The compiler now returns non-zero from the main procedure if any errors have occurred during the compilation. ---------------------------------------- 09 March 2005. Summary of changes for version 20050309: 1) ACPI CA Core Subsystem: The string-to-buffer implicit conversion code has been modified again after a change to the ACPI specification. In order to match the behavior of the other major ACPI implementation, the target buffer is no longer truncated if the source string is smaller than an existing target buffer. This change requires an update to the ACPI spec, and should eliminate the recent AE_AML_BUFFER_LIMIT issues. The "implicit return" support was rewritten to a new algorithm that solves the general case. Rather than attempt to determine when a method is about to exit, the result of every ASL operator is saved momentarily until the very next ASL operator is executed. Therefore, no matter how the method exits, there will always be a saved implicit return value. This feature is only enabled with the AcpiGbl_EnableInterpreterSlack flag, and should eliminate AE_AML_NO_RETURN_VALUE errors when enabled. Implemented implicit conversion support for the predicate (operand) of the If, Else, and While operators. String and Buffer arguments are automatically converted to Integers. Changed the string-to-integer conversion behavior to match the new ACPI errata: "If no integer object exists, a new integer is created. The ASCII string is interpreted as a hexadecimal constant. Each string character is interpreted as a hexadecimal value ('0'-'9', 'A'-'F', 'a', 'f'), starting with the first character as the most significant digit, and ending with the first non-hexadecimal character or end-of-string." This means that the first non-hex character terminates the conversion and this is the code that was changed. Fixed a problem where the ObjectType operator would fail (fault) when used on an Index of a Package which pointed to a null package element. The operator now properly returns zero (Uninitialized) in this case. Fixed a problem where the While operator used excessive memory by not properly popping the result stack during execution. There was no memory leak after execution, however. (Code provided by Valery Podrezov.) Fixed a problem where references to control methods within Package objects caused the method to be invoked, instead of producing a reference object pointing to the method. Restructured and simplified the pswalk.c module (AcpiPsDeleteParseTree) to improve performance and reduce code size. (Code provided by Alexey Starikovskiy.) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.6K Data, 236.0K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.7K Data, 236.1K Total 2) iASL Compiler/Disassembler: Fixed a problem with the Return operator with no arguments. Since the AML grammar for the byte encoding requires an operand for the Return opcode, the compiler now emits a Return(Zero) for this case. An ACPI specification update has been written for this case. For tables other than the DSDT, namepath optimization is automatically disabled. This is because SSDTs can be loaded anywhere in the namespace, the compiler has no knowledge of where, and thus cannot optimize namepaths. Added "ProcessorObj" to the ObjectTypeKeyword list. This object type was inadvertently omitted from the ACPI specification, and will require an update to the spec. The source file scan for ASCII characters is now optional (-a). This change was made because some vendors place non-ascii characters within comments. However, the scan is simply a brute-force byte compare to ensure all characters in the file are in the range 0x00 to 0x7F. Fixed a problem with the CondRefOf operator where the compiler was inappropriately checking for the existence of the target. Since the point of the operator is to check for the existence of the target at run-time, the compiler no longer checks for the target existence. Fixed a problem where errors generated from the internal AML interpreter during constant folding were not handled properly, causing a fault. Fixed a problem with overly aggressive range checking for the Stall operator. The valid range (max 255) is now only checked if the operand is of type Integer. All other operand types cannot be statically checked. Fixed a problem where control method references within the RefOf, DeRefOf, and ObjectType operators were not treated properly. They are now treated as actual references, not method invocations. Fixed and enhanced the "list namespace" option (-ln). This option was broken a number of releases ago. Improved error handling for the Field, IndexField, and BankField operators. The compiler now cleanly reports and recovers from errors in the field component (FieldUnit) list. Fixed a disassembler problem where the optional ResourceDescriptor fields TRS and TTP were not always handled correctly. Disassembler - Comments in output now use "//" instead of "/*" ---------------------------------------- 28 February 2005. Summary of changes for version 20050228: 1) ACPI CA Core Subsystem: Fixed a problem where the result of an Index() operator (an object reference) must increment the reference count on the target object for the life of the object reference. Implemented AML Interpreter and Debugger support for the new ACPI 3.0 Extended Address (IO, Memory, Space), QwordSpace, DwordSpace, and WordSpace resource descriptors. Implemented support in the _OSI method for the ACPI 3.0 "Extended Address Space Descriptor" string, indicating interpreter support for the descriptors above. Implemented header support for the new ACPI 3.0 FADT flag bits. Implemented header support for the new ACPI 3.0 PCI Express bits for the PM1 status/enable registers. Updated header support for the MADT processor local Apic struct and MADT platform interrupt source struct for new ACPI 3.0 fields. Implemented header support for the SRAT and SLIT ACPI tables. Implemented the -s switch in AcpiExec to enable the "InterpreterSlack" flag at runtime. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total Debug Version: 164.9K Code, 69.2K Data, 234.1K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.6K Data, 236.0K Total 2) iASL Compiler/Disassembler: Fixed a problem with the internal 64-bit String-to-integer conversion with strings less than two characters long. Fixed a problem with constant folding where the result of the Index() operator can not be considered a constant. This means that Index() cannot be a type3 opcode and this will require an update to the ACPI specification. Disassembler: Implemented support for the TTP, MTP, and TRS resource descriptor fields. These fields were inadvertently ignored and not output in the disassembly of the resource descriptor. ---------------------------------------- 11 February 2005. Summary of changes for version 20050211: 1) ACPI CA Core Subsystem: Implemented ACPI 3.0 support for implicit conversion within the Match() operator. MatchObjects can now be of type integer, buffer, or string instead of just type integer. Package elements are implicitly converted to the type of the MatchObject. This change aligns the behavior of Match() with the behavior of the other logical operators (LLess(), etc.) It also requires an errata change to the ACPI specification as this support was intended for ACPI 3.0, but was inadvertently omitted. Fixed a problem with the internal implicit "to buffer" conversion. Strings that are converted to buffers will cause buffer truncation if the string is smaller than the target buffer. Integers that are converted to buffers will not cause buffer truncation, only zero extension (both as per the ACPI spec.) The problem was introduced when code was added to truncate the buffer, but this should not be performed in all cases, only the string case. Fixed a problem with the Buffer and Package operators where the interpreter would get confused if two such operators were used as operands to an ASL operator (such as LLess(Buffer(1){0},Buffer(1){1}). The internal result stack was not being popped after the execution of these operators, resulting in an AE_NO_RETURN_VALUE exception. Fixed a problem with constructs of the form Store(Index(...),...). The reference object returned from Index was inadvertently resolved to an actual value. This problem was introduced in version 20050114 when the behavior of Store() was modified to restrict the object types that can be used as the source operand (to match the ACPI specification.) Reduced excessive stack use within the AcpiGetObjectInfo procedure. Added a fix to aclinux.h to allow generation of AcpiExec on Linux. Updated the AcpiSrc utility to add the FADT_DESCRIPTOR_REV2_MINUS struct. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total Debug Version: 164.8K Code, 69.2K Data, 234.0K Total Current Release: Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total Debug Version: 164.9K Code, 69.2K Data, 234.1K Total 2) iASL Compiler/Disassembler: Fixed a code generation problem in the constant folding optimization code where incorrect code was generated if a constant was reduced to a buffer object (i.e., a reduced type 5 opcode.) Fixed a typechecking problem for the ToBuffer operator. Caused by an incorrect return type in the internal opcode information table. ---------------------------------------- 25 January 2005. Summary of changes for version 20050125: 1) ACPI CA Core Subsystem: Fixed a recently introduced problem with the Global Lock where the underlying semaphore was not created. This problem was introduced in version 20050114, and caused an AE_AML_NO_OPERAND exception during an Acquire() operation on _GL. The local object cache is now optional, and is disabled by default. Both AcpiExec and the iASL compiler enable the cache because they run in user mode and this enhances their performance. #define ACPI_ENABLE_OBJECT_CACHE to enable the local cache. Fixed an issue in the internal function AcpiUtEvaluateObject concerning the optional "implicit return" support where an error was returned if no return object was expected, but one was implicitly returned. AE_OK is now returned in this case and the implicitly returned object is deleted. AcpiUtEvaluateObject is only occasionally used, and only to execute reserved methods such as _STA and _INI where the return type is known up front. Fixed a few issues with the internal convert-to-integer code. It now returns an error if an attempt is made to convert a null string, a string of only blanks/tabs, or a zero-length buffer. This affects both implicit conversion and explicit conversion via the ToInteger() operator. The internal debug code in AcpiUtAcquireMutex has been commented out. It is not needed for normal operation and should increase the performance of the entire subsystem. The code remains in case it is needed for debug purposes again. The AcpiExec source and makefile are included in the Unix/Linux package for the first time. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total Debug Version: 165.4K Code, 69.4K Data, 234.8K Total Current Release: Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total Debug Version: 164.8K Code, 69.2K Data, 234.0K Total 2) iASL Compiler/Disassembler: Switch/Case support: A warning is now issued if the type of the Switch value cannot be determined at compile time. For example, Switch(Arg0) will generate the warning, and the type is assumed to be an integer. As per the ACPI spec, use a construct such as Switch(ToInteger(Arg0)) to eliminate the warning. Switch/Case support: Implemented support for buffer and string objects as the switch value. This is an ACPI 3.0 feature, now that LEqual supports buffers and strings. Switch/Case support: The emitted code for the LEqual() comparisons now uses the switch value as the first operand, not the second. The case value is now the second operand, and this allows the case value to be implicitly converted to the type of the switch value, not the other way around. Switch/Case support: Temporary variables are now emitted immediately within the control method, not at the global level. This means that there are now 36 temps available per-method, not 36 temps per-module as was the case with the earlier implementation (_T_0 through _T_9 and _T_A through _T_Z.) ---------------------------------------- 14 January 2005. Summary of changes for version 20050114: Added 2005 copyright to all module headers. This affects every module in the core subsystem, iASL compiler, and the utilities. 1) ACPI CA Core Subsystem: Fixed an issue with the String-to-Buffer conversion code where the string null terminator was not included in the buffer after conversion, but there is existing ASL that assumes the string null terminator is included. This is the root of the ACPI_AML_BUFFER_LIMIT regression. This problem was introduced in the previous version when the code was updated to correctly set the converted buffer size as per the ACPI specification. The ACPI spec is ambiguous and will be updated to specify that the null terminator must be included in the converted buffer. This also affects the ToBuffer() ASL operator. Fixed a problem with the Mid() ASL/AML operator where it did not work correctly on Buffer objects. Newly created sub-buffers were not being marked as initialized. Fixed a problem in AcpiTbFindTable where incorrect string compares were performed on the OemId and OemTableId table header fields. These fields are not null terminated, so strncmp is now used instead of strcmp. Implemented a restriction on the Store() ASL/AML operator to align the behavior with the ACPI specification. Previously, any object could be used as the source operand. Now, the only objects that may be used are Integers, Buffers, Strings, Packages, Object References, and DDB Handles. If necessary, the original behavior can be restored by enabling the EnableInterpreterSlack flag. Enhanced the optional "implicit return" support to allow an implicit return value from methods that are invoked externally via the AcpiEvaluateObject interface. This enables implicit returns from the _STA and _INI methods, for example. Changed the Revision() ASL/AML operator to return the current version of the AML interpreter, in the YYYYMMDD format. Previously, it incorrectly returned the supported ACPI version (This is the function of the _REV method). Updated the _REV predefined method to return the currently supported version of ACPI, now 3. Implemented batch mode option for the AcpiExec utility (-b). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.3K Code, 69.4K Data, 234.7K Total Current Release: Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total Debug Version: 165.4K Code, 69.4K Data, 234.8K Total ---------------------------------------- 10 December 2004. Summary of changes for version 20041210: ACPI 3.0 support is nearing completion in both the iASL compiler and the ACPI CA core subsystem. 1) ACPI CA Core Subsystem: Fixed a problem in the ToDecimalString operator where the resulting string length was incorrectly calculated. The length is now calculated exactly, eliminating incorrect AE_STRING_LIMIT exceptions. Fixed a problem in the ToHexString operator to allow a maximum 200 character string to be produced. Fixed a problem in the internal string-to-buffer and buffer-to-buffer copy routine where the length of the resulting buffer was not truncated to the new size (if the target buffer already existed). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 164.7K Code, 68.5K Data, 233.2K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.3K Code, 69.4K Data, 234.7K Total 2) iASL Compiler/Disassembler: Implemented the new ACPI 3.0 resource template macros - DWordSpace, ExtendedIO, ExtendedMemory, ExtendedSpace, QWordSpace, and WordSpace. Includes support in the disassembler. Implemented support for the new (ACPI 3.0) parameter to the Register macro, AccessSize. Fixed a problem where the _HE resource name for the Interrupt macro was referencing bit 0 instead of bit 1. Implemented check for maximum 255 interrupts in the Interrupt macro. Fixed a problem with the predefined resource descriptor names where incorrect AML code was generated if the offset within the resource buffer was 0 or 1. The optimizer shortened the AML code to a single byte opcode but did not update the surrounding package lengths. Changes to the Dma macro: All channels within the channel list must be in the range 0-7. Maximum 8 channels can be specified. BusMaster operand is optional (default is BusMaster). Implemented check for maximum 7 data bytes for the VendorShort macro. The ReadWrite parameter is now optional for the Memory32 and similar macros. ---------------------------------------- 03 December 2004. Summary of changes for version 20041203: 1) ACPI CA Core Subsystem: The low-level field insertion/extraction code (exfldio) has been completely rewritten to eliminate unnecessary complexity, bugs, and boundary conditions. Fixed a problem in the ToInteger, ToBuffer, ToHexString, and ToDecimalString operators where the input operand could be inadvertently deleted if no conversion was necessary (e.g., if the input to ToInteger was an Integer object.) Fixed a problem with the ToDecimalString and ToHexString where an incorrect exception code was returned if the resulting string would be > 200 chars. AE_STRING_LIMIT is now returned. Fixed a problem with the Concatenate operator where AE_OK was always returned, even if the operation failed. Fixed a problem in oswinxf (used by AcpiExec and iASL) to allow > 128 semaphores to be allocated. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 164.7K Code, 68.5K Data, 233.2K Total 2) iASL Compiler/Disassembler: Fixed typechecking for the ObjectType and SizeOf operators. Problem was recently introduced in 20041119. Fixed a problem with the ToUUID macro where the upper nybble of each buffer byte was inadvertently set to zero. ---------------------------------------- 19 November 2004. Summary of changes for version 20041119: 1) ACPI CA Core Subsystem: Fixed a problem in the internal ConvertToInteger routine where new integers were not truncated to 32 bits for 32-bit ACPI tables. This routine converts buffers and strings to integers. Implemented support to store a value to an Index() on a String object. This is an ACPI 2.0 feature that had not yet been implemented. Implemented new behavior for storing objects to individual package elements (via the Index() operator). The previous behavior was to invoke the implicit conversion rules if an object was already present at the index. The new behavior is to simply delete any existing object and directly store the new object. Although the ACPI specification seems unclear on this subject, other ACPI implementations behave in this manner. (This is the root of the AE_BAD_HEX_CONSTANT issue.) Modified the RSDP memory scan mechanism to support the extended checksum for ACPI 2.0 (and above) RSDPs. Note that the search continues until a valid RSDP signature is found with a valid checksum. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total Current Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total 2) iASL Compiler/Disassembler: Fixed a missing semicolon in the aslcompiler.y file. ---------------------------------------- 05 November 2004. Summary of changes for version 20041105: 1) ACPI CA Core Subsystem: Implemented support for FADT revision 2. This was an interim table (between ACPI 1.0 and ACPI 2.0) that adds support for the FADT reset register. Implemented optional support to allow uninitialized LocalX and ArgX variables in a control method. The variables are initialized to an Integer object with a value of zero. This support is enabled by setting the AcpiGbl_EnableInterpreterSlack flag to TRUE. Implemented support for Integer objects for the SizeOf operator. Either 4 or 8 is returned, depending on the current integer size (32-bit or 64- bit, depending on the parent table revision). Fixed a problem in the implementation of the SizeOf and ObjectType operators where the operand was resolved to a value too early, causing incorrect return values for some objects. Fixed some possible memory leaks during exceptional conditions. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.8K Code, 68.6K Data, 233.4K Total Current Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total 2) iASL Compiler/Disassembler: Implemented support for all ACPI 3.0 reserved names and methods. Implemented all ACPI 3.0 grammar elements in the front-end, including support for semicolons. Implemented the ACPI 3.0 Function() and ToUUID() macros Fixed a problem in the disassembler where a Scope() operator would not be emitted properly if the target of the scope was in another table. ---------------------------------------- 15 October 2004. Summary of changes for version 20041015: Note: ACPI CA is currently undergoing an in-depth and complete formal evaluation to test/verify the following areas. Other suggestions are welcome. This will result in an increase in the frequency of releases and the number of bug fixes in the next few months. - Functional tests for all ASL/AML operators - All implicit/explicit type conversions - Bit fields and operation regions - 64-bit math support and 32-bit-only "truncated" math support - Exceptional conditions, both compiler and interpreter - Dynamic object deletion and memory leaks - ACPI 3.0 support when implemented - External interfaces to the ACPI subsystem 1) ACPI CA Core Subsystem: Fixed two alignment issues on 64-bit platforms - within debug statements in AcpiEvGpeDetect and AcpiEvCreateGpeBlock. Removed references to the Address field within the non-aligned ACPI generic address structure. Fixed a problem in the Increment and Decrement operators where incorrect operand resolution could result in the inadvertent modification of the original integer when the integer is passed into another method as an argument and the arg is then incremented/decremented. Fixed a problem in the FromBCD operator where the upper 32-bits of a 64- bit BCD number were truncated during conversion. Fixed a problem in the ToDecimal operator where the length of the resulting string could be set incorrectly too long if the input operand was a Buffer object. Fixed a problem in the Logical operators (LLess, etc.) where a NULL byte (0) within a buffer would prematurely terminate a compare between buffer objects. Added a check for string overflow (>200 characters as per the ACPI specification) during the Concatenate operator with two string operands. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 164.6K Code, 68.5K Data, 233.1K Total Current Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.8K Code, 68.6K Data, 233.4K Total 2) iASL Compiler/Disassembler: Allow the use of the ObjectType operator on uninitialized Locals and Args (returns 0 as per the ACPI specification). Fixed a problem where the compiler would fault if there was a syntax error in the FieldName of all of the various CreateXXXField operators. Disallow the use of lower case letters within the EISAID macro, as per the ACPI specification. All EISAID strings must be of the form "UUUNNNN" Where U is an uppercase letter and N is a hex digit. ---------------------------------------- 06 October 2004. Summary of changes for version 20041006: 1) ACPI CA Core Subsystem: Implemented support for the ACPI 3.0 Timer operator. This ASL function implements a 64-bit timer with 100 nanosecond granularity. Defined a new OSL interface, AcpiOsGetTimer. This interface is used to implement the ACPI 3.0 Timer operator. This allows the host OS to implement the timer with the best clock available. Also, it keeps the core subsystem out of the clock handling business, since the host OS (usually) performs this function. Fixed an alignment issue on 64-bit platforms. The HwLowLevelRead(Write) functions use a 64-bit address which is part of the packed ACPI Generic Address Structure. Since the structure is non-aligned, the alignment macros are now used to extract the address to a local variable before use. Fixed a problem where the ToInteger operator assumed all input strings were hexadecimal. The operator now handles both decimal strings and hex strings (prefixed with "0x"). Fixed a problem where the string length in the string object created as a result of the internal ConvertToString procedure could be incorrect. This potentially affected all implicit conversions and also the ToDecimalString and ToHexString operators. Fixed two problems in the ToString operator. If the length parameter was zero, an incorrect string object was created and the value of the input length parameter was inadvertently changed from zero to Ones. Fixed a problem where the optional ResourceSource string in the ExtendedIRQ resource macro was ignored. Simplified the interfaces to the internal division functions, reducing code size and complexity. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total Debug Version: 164.5K Code, 68.3K Data, 232.8K Total Current Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 164.6K Code, 68.5K Data, 233.1K Total 2) iASL Compiler/Disassembler: Implemented support for the ACPI 3.0 Timer operator. Fixed a problem where the Default() operator was inadvertently ignored in a Switch/Case block. This was a problem in the translation of the Switch statement to If...Else pairs. Added support to allow a standalone Return operator, with no parentheses (or operands). Fixed a problem with code generation for the ElseIf operator where the translated Else...If parse tree was improperly constructed leading to the loss of some code. ---------------------------------------- 22 September 2004. Summary of changes for version 20040922: 1) ACPI CA Core Subsystem: Fixed a problem with the implementation of the LNot() operator where "Ones" was not returned for the TRUE case. Changed the code to return Ones instead of (!Arg) which was usually 1. This change affects iASL constant folding for this operator also. Fixed a problem in AcpiUtInitializeBuffer where an existing buffer was not initialized properly -- Now zero the entire buffer in this case where the buffer already exists. Changed the interface to AcpiOsSleep from (UINT32 Seconds, UINT32 Milliseconds) to simply (ACPI_INTEGER Milliseconds). This simplifies all related code considerably. This will require changes/updates to all OS interface layers (OSLs.) Implemented a new external interface, AcpiInstallExceptionHandler, to allow a system exception handler to be installed. This handler is invoked upon any run-time exception that occurs during control method execution. Added support for the DSDT in AcpiTbFindTable. This allows the DataTableRegion() operator to access the local copy of the DSDT. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total Debug Version: 164.2K Code, 68.2K Data, 232.4K Total Current Release: Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total Debug Version: 164.5K Code, 68.3K Data, 232.8K Total 2) iASL Compiler/Disassembler: Fixed a problem with constant folding and the LNot operator. LNot was returning 1 in the TRUE case, not Ones as per the ACPI specification. This could result in the generation of an incorrect folded/reduced constant. End-Of-File is now allowed within a "//"-style comment. A parse error no longer occurs if such a comment is at the very end of the input ASL source file. Implemented the "-r" option to override the Revision in the table header. The initial use of this option will be to simplify the evaluation of the AML interpreter by allowing a single ASL source module to be compiled for either 32-bit or 64-bit integers. ---------------------------------------- 27 August 2004. Summary of changes for version 20040827: 1) ACPI CA Core Subsystem: - Implemented support for implicit object conversion in the non-numeric logical operators (LEqual, LGreater, LGreaterEqual, LLess, LLessEqual, and LNotEqual.) Any combination of Integers/Strings/Buffers may now be used; the second operand is implicitly converted on the fly to match the type of the first operand. For example: LEqual (Source1, Source2) Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1 dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of Source1. - Updated and corrected the behavior of the string conversion support. The rules concerning conversion of buffers to strings (according to the ACPI specification) are as follows: ToDecimalString - explicit byte-wise conversion of buffer to string of decimal values (0-255) separated by commas. ToHexString - explicit byte- wise conversion of buffer to string of hex values (0-FF) separated by commas. ToString - explicit byte-wise conversion of buffer to string. Byte-by- byte copy with no transform except NULL terminated. Any other implicit buffer- to- string conversion - byte-wise conversion of buffer to string of hex values (0-FF) separated by spaces. - Fixed typo in definition of AcpiGbl_EnableInterpreterSlack. - Fixed a problem in AcpiNsGetPathnameLength where the returned length was one byte too short in the case of a node in the root scope. This could cause a fault during debug output. - Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total Debug Version: 164.1K Code, 68.3K Data, 232.4K Total Current Release: Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total Debug Version: 164.2K Code, 68.2K Data, 232.4K Total 2) iASL Compiler/Disassembler: - Fixed a Linux generation error. ---------------------------------------- 16 August 2004. Summary of changes for version 20040816: 1) ACPI CA Core Subsystem: Designed and implemented support within the AML interpreter for the so- called "implicit return". This support returns the result of the last ASL operation within a control method, in the absence of an explicit Return() operator. A few machines depend on this behavior, even though it is not explicitly supported by the ASL language. It is optional support that can be enabled at runtime via the AcpiGbl_EnableInterpreterSlack flag. Removed support for the PCI_Config address space from the internal low level hardware interfaces (AcpiHwLowLevelRead and AcpiHwLowLevelWrite). This support was not used internally, and would not work correctly anyway because the PCI bus number and segment number were not supported. There are separate interfaces for PCI configuration space access because of the unique interface. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.1K Code, 68.2K Data, 232.3K Total Current Release: Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total Debug Version: 164.1K Code, 68.3K Data, 232.4K Total 2) iASL Compiler/Disassembler: Fixed a problem where constants in ASL expressions at the root level (not within a control method) could be inadvertently truncated during code generation. This problem was introduced in the 20040715 release. ---------------------------------------- 15 July 2004. Summary of changes for version 20040715: 1) ACPI CA Core Subsystem: Restructured the internal HW GPE interfaces to pass/track the current state of interrupts (enabled/disabled) in order to avoid possible deadlock and increase flexibility of the interfaces. Implemented a "lexicographical compare" for String and Buffer objects within the logical operators -- LGreater, LLess, LGreaterEqual, and LLessEqual - - as per further clarification to the ACPI specification. Behavior is similar to C library "strcmp". Completed a major reduction in CPU stack use for the AcpiGetFirmwareTable external function. In the 32-bit non-debug case, the stack use has been reduced from 168 bytes to 32 bytes. Deployed a new run-time configuration flag, AcpiGbl_EnableInterpreterSlack, whose purpose is to allow the AML interpreter to forgive certain bad AML constructs. Default setting is FALSE. Implemented the first use of AcpiGbl_EnableInterpreterSlack in the Field IO support code. If enabled, it allows field access to go beyond the end of a region definition if the field is within the region length rounded up to the next access width boundary (a common coding error.) Renamed OSD_HANDLER to ACPI_OSD_HANDLER, and OSD_EXECUTION_CALLBACK to ACPI_OSD_EXEC_CALLBACK for consistency with other ACPI symbols. Also, these symbols are lowercase by the latest version of the AcpiSrc tool. The prototypes for the PCI interfaces in acpiosxf.h have been updated to rename "Register" to simply "Reg" to prevent certain compilers from complaining. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 163.8K Code, 68.2K Data, 232.0K Total Current Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.1K Code, 68.2K Data, 232.3K Total 2) iASL Compiler/Disassembler: Implemented full support for Package objects within the Case() operator. Note: The Break() operator is currently not supported within Case blocks (TermLists) as there is some question about backward compatibility with ACPI 1.0 interpreters. Fixed a problem where complex terms were not supported properly within the Switch() operator. Eliminated extraneous warning for compiler-emitted reserved names of the form "_T_x". (Used in Switch/Case operators.) Eliminated optimization messages for "_T_x" objects and small constants within the DefinitionBlock operator. ---------------------------------------- 15 June 2004. Summary of changes for version 20040615: 1) ACPI CA Core Subsystem: Implemented support for Buffer and String objects (as per ACPI 2.0) for the following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and LLessEqual. All directory names in the entire source package are lower case, as they were in earlier releases. Implemented "Disassemble" command in the AML debugger that will disassemble a single control method. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total Debug Version: 163.3K Code, 67.2K Data, 230.5K Total Current Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 163.8K Code, 68.2K Data, 232.0K Total 2) iASL Compiler/Disassembler: Implemented support for Buffer and String objects (as per ACPI 2.0) for the following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and LLessEqual. All directory names in the entire source package are lower case, as they were in earlier releases. Fixed a fault when using the -g or -d options if the FADT was not found. Fixed an issue with the Windows version of the compiler where later versions of Windows place the FADT in the registry under the name "FADT" and not "FACP" as earlier versions did. This applies when using the -g or - d options. The compiler now looks for both strings as necessary. Fixed a problem with compiler namepath optimization where a namepath within the Scope() operator could not be optimized if the namepath was a subpath of the current scope path. ---------------------------------------- 27 May 2004. Summary of changes for version 20040527: 1) ACPI CA Core Subsystem: Completed a new design and implementation for EBDA (Extended BIOS Data Area) support in the RSDP scan code. The original code improperly scanned for the EBDA by simply scanning from memory location 0 to 0x400. The correct method is to first obtain the EBDA pointer from within the BIOS data area, then scan 1K of memory starting at the EBDA pointer. There appear to be few if any machines that place the RSDP in the EBDA, however. Integrated a fix for a possible fault during evaluation of BufferField arguments. Obsolete code that was causing the problem was removed. Found and fixed a problem in the Field Support Code where data could be corrupted on a bit field read that starts on an aligned boundary but does not end on an aligned boundary. Merged the read/write "datum length" calculation code into a common procedure. Rolled in a couple of changes to the FreeBSD-specific header. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 163.2K Code, 67.2K Data, 230.4K Total Current Release: Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total Debug Version: 163.3K Code, 67.2K Data, 230.5K Total 2) iASL Compiler/Disassembler: Fixed a generation warning produced by some overly-verbose compilers for a 64-bit constant. ---------------------------------------- 14 May 2004. Summary of changes for version 20040514: 1) ACPI CA Core Subsystem: Fixed a problem where hardware GPE enable bits sometimes not set properly during and after GPE method execution. Result of 04/27 changes. Removed extra "clear all GPEs" when sleeping/waking. Removed AcpiHwEnableGpe and AcpiHwDisableGpe, replaced by the single AcpiHwWriteGpeEnableReg. Changed a couple of calls to the functions above to the new AcpiEv* calls as appropriate. ACPI_OS_NAME was removed from the OS-specific headers. The default name is now "Microsoft Windows NT" for maximum compatibility. However this can be changed by modifying the acconfig.h file. Allow a single invocation of AcpiInstallNotifyHandler for a handler that traps both types of notifies (System, Device). Use ACPI_ALL_NOTIFY flag. Run _INI methods on ThermalZone objects. This is against the ACPI specification, but there is apparently ASL code in the field that has these _INI methods, and apparently "other" AML interpreters execute them. Performed a full 16/32/64 bit lint that resulted in some small changes. Added a sleep simulation command to the AML debugger to test sleep code. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 162.9K Code, 67.0K Data, 229.9K Total Current Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 163.2K Code, 67.2K Data, 230.4K Total ---------------------------------------- 27 April 2004. Summary of changes for version 20040427: 1) ACPI CA Core Subsystem: Completed a major overhaul of the GPE handling within ACPI CA. There are now three types of GPEs: wake-only, runtime-only, and combination wake/run. The only GPEs allowed to be combination wake/run are for button-style devices such as a control-method power button, control-method sleep button, or a notebook lid switch. GPEs that have an _Lxx or _Exx method and are not referenced by any _PRW methods are marked for "runtime" and hardware enabled. Any GPE that is referenced by a _PRW method is marked for "wake" (and disabled at runtime). However, at sleep time, only those GPEs that have been specifically enabled for wake via the AcpiEnableGpe interface will actually be hardware enabled. A new external interface has been added, AcpiSetGpeType(), that is meant to be used by device drivers to force a GPE to a particular type. It will be especially useful for the drivers for the button devices mentioned above. Completed restructuring of the ACPI CA initialization sequence so that default operation region handlers are installed before GPEs are initialized and the _PRW methods are executed. This will prevent errors when the _PRW methods attempt to access system memory or I/O space. GPE enable/disable no longer reads the GPE enable register. We now keep the enable info for runtime and wake separate and in the GPE_EVENT_INFO. We thus no longer depend on the hardware to maintain these bits. Always clear the wake status and fixed/GPE status bits before sleep, even for state S5. Improved the AML debugger output for displaying the GPE blocks and their current status. Added new strings for the _OSI method, of the form "Windows 2001 SPx" where x = 0,1,2,3,4. Fixed a problem where the physical address was incorrectly calculated when the Load() operator was used to directly load from an Operation Region (vs. loading from a Field object.) Also added check for minimum table length for this case. Fix for multiple mutex acquisition. Restore original thread SyncLevel on mutex release. Added ACPI_VALID_SXDS flag to the AcpiGetObjectInfo interface for consistency with the other fields returned. Shrunk the ACPI_GPE_EVENT_INFO structure by 40%. There is one such structure for each GPE in the system, so the size of this structure is important. CPU stack requirement reduction: Cleaned up the method execution and object evaluation paths so that now a parameter structure is passed, instead of copying the various method parameters over and over again. In evregion.c: Correctly exit and reenter the interpreter region if and only if dispatching an operation region request to a user-installed handler. Do not exit/reenter when dispatching to a default handler (e.g., default system memory or I/O handlers) Notes for updating drivers for the new GPE support. The following changes must be made to ACPI-related device drivers that are attached to one or more GPEs: (This information will be added to the ACPI CA Programmer Reference.) 1) AcpiInstallGpeHandler no longer automatically enables the GPE, you must explicitly call AcpiEnableGpe. 2) There is a new interface called AcpiSetGpeType. This should be called before enabling the GPE. Also, this interface will automatically disable the GPE if it is currently enabled. 3) AcpiEnableGpe no longer supports a GPE type flag. Specific drivers that must be changed: 1) EC driver: AcpiInstallGpeHandler (NULL, GpeNum, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandler, NULL); AcpiSetGpeType (NULL, GpeNum, ACPI_GPE_TYPE_RUNTIME); AcpiEnableGpe (NULL, GpeNum, ACPI_NOT_ISR); 2) Button Drivers (Power, Lid, Sleep): Run _PRW method under parent device If _PRW exists: /* This is a control-method button */ Extract GPE number and possibly GpeDevice AcpiSetGpeType (GpeDevice, GpeNum, ACPI_GPE_TYPE_WAKE_RUN); AcpiEnableGpe (GpeDevice, GpeNum, ACPI_NOT_ISR); For all other devices that have _PRWs, we automatically set the GPE type to ACPI_GPE_TYPE_WAKE, but the GPE is NOT automatically (wake) enabled. This must be done on a selective basis, usually requiring some kind of user app to allow the user to pick the wake devices. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total Debug Version: 161.0K Code, 66.3K Data, 227.3K Total Current Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 162.9K Code, 67.0K Data, 229.9K Total ---------------------------------------- 02 April 2004. Summary of changes for version 20040402: 1) ACPI CA Core Subsystem: Fixed an interpreter problem where an indirect store through an ArgX parameter was incorrectly applying the "implicit conversion rules" during the store. From the ACPI specification: "If the target is a method local or argument (LocalX or ArgX), no conversion is performed and the result is stored directly to the target". The new behavior is to disable implicit conversion during ALL stores to an ArgX. Changed the behavior of the _PRW method scan to ignore any and all errors returned by a given _PRW. This prevents the scan from aborting from the failure of any single _PRW. Moved the runtime configuration parameters from the global init procedure to static variables in acglobal.h. This will allow the host to override the default values easily. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total Debug Version: 160.8K Code, 66.1K Data, 226.9K Total Current Release: Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total Debug Version: 161.0K Code, 66.3K Data, 227.3K Total 2) iASL Compiler/Disassembler: iASL now fully disassembles SSDTs. However, External() statements are not generated automatically for unresolved symbols at this time. This is a planned feature for future implementation. Fixed a scoping problem in the disassembler that occurs when the type of the target of a Scope() operator is overridden. This problem caused an incorrectly nested internal namespace to be constructed. Any warnings or errors that are emitted during disassembly are now commented out automatically so that the resulting file can be recompiled without any hand editing. ---------------------------------------- 26 March 2004. Summary of changes for version 20040326: 1) ACPI CA Core Subsystem: Implemented support for "wake" GPEs via interaction between GPEs and the _PRW methods. Every GPE that is pointed to by one or more _PRWs is identified as a WAKE GPE and by default will no longer be enabled at runtime. Previously, we were blindly enabling all GPEs with a corresponding _Lxx or _Exx method - but most of these turn out to be WAKE GPEs anyway. We believe this has been the cause of thousands of "spurious" GPEs on some systems. This new GPE behavior is can be reverted to the original behavior (enable ALL GPEs at runtime) via a runtime flag. Fixed a problem where aliased control methods could not access objects properly. The proper scope within the namespace was not initialized (transferred to the target of the aliased method) before executing the target method. Fixed a potential race condition on internal object deletion on the return object in AcpiEvaluateObject. Integrated a fix for resource descriptors where both _MEM and _MTP were being extracted instead of just _MEM. (i.e. bitmask was incorrectly too wide, 0x0F instead of 0x03.) Added a special case for ACPI_ROOT_OBJECT in AcpiUtGetNodeName, preventing a fault in some cases. Updated Notify() values for debug statements in evmisc.c Return proper status from AcpiUtMutexInitialize, not just simply AE_OK. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total Debug Version: 160.3K Code, 66.0K Data, 226.3K Total Current Release: Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total Debug Version: 160.8K Code, 66.1K Data, 226.9K Total ---------------------------------------- 11 March 2004. Summary of changes for version 20040311: 1) ACPI CA Core Subsystem: Fixed a problem where errors occurring during the parse phase of control method execution did not abort cleanly. For example, objects created and installed in the namespace were not deleted. This caused all subsequent invocations of the method to return the AE_ALREADY_EXISTS exception. Implemented a mechanism to force a control method to "Serialized" execution if the method attempts to create namespace objects. (The root of the AE_ALREADY_EXISTS problem.) Implemented support for the predefined _OSI "internal" control method. Initial supported strings are "Linux", "Windows 2000", "Windows 2001", and "Windows 2001.1", and can be easily upgraded for new strings as necessary. This feature will allow "other" operating systems to execute the fully tested, "Windows" code path through the ASL code Global Lock Support: Now allows multiple acquires and releases with any internal thread. Removed concept of "owning thread" for this special mutex. Fixed two functions that were inappropriately declaring large objects on the CPU stack: PsParseLoop, NsEvaluateRelative. Reduces the stack usage during method execution considerably. Fixed a problem in the ACPI 2.0 FACS descriptor (actbl2.h) where the S4Bios_f field was incorrectly defined as UINT32 instead of UINT32_BIT. Fixed a problem where AcpiEvGpeDetect would fault if there were no GPEs defined on the machine. Implemented two runtime options: One to force all control method execution to "Serialized" to mimic Windows behavior, another to disable _OSI support if it causes problems on a given machine. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total Debug Version: 158.7K Code, 65.1K Data, 223.8K Total Current Release: Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total Debug Version: 160.3K Code, 66.0K Data, 226.3K Total 2) iASL Compiler/Disassembler: Fixed an array size problem for FreeBSD that would cause the compiler to fault. ---------------------------------------- 20 February 2004. Summary of changes for version 20040220: 1) ACPI CA Core Subsystem: Implemented execution of _SxD methods for Device objects in the GetObjectInfo interface. Fixed calls to _SST method to pass the correct arguments. Added a call to _SST on wake to restore to "working" state. Check for End-Of-Buffer failure case in the WalkResources interface. Integrated fix for 64-bit alignment issue in acglobal.h by moving two structures to the beginning of the file. After wake, clear GPE status register(s) before enabling GPEs. After wake, clear/enable power button. (Perhaps we should clear/enable all fixed events upon wake.) Fixed a couple of possible memory leaks in the Namespace manager. Integrated latest acnetbsd.h file. ---------------------------------------- 11 February 2004. Summary of changes for version 20040211: 1) ACPI CA Core Subsystem: Completed investigation and implementation of the call-by-reference mechanism for control method arguments. Fixed a problem where a store of an object into an indexed package could fail if the store occurs within a different method than the method that created the package. Fixed a problem where the ToDecimal operator could return incorrect results. Fixed a problem where the CopyObject operator could fail on some of the more obscure objects (e.g., Reference objects.) Improved the output of the Debug object to display buffer, package, and index objects. Fixed a problem where constructs of the form "RefOf (ArgX)" did not return the expected result. Added permanent ACPI_REPORT_ERROR macros for all instances of the ACPI_AML_INTERNAL exception. Integrated latest version of acfreebsd.h ---------------------------------------- 16 January 2004. Summary of changes for version 20040116: The purpose of this release is primarily to update the copyright years in each module, thus causing a huge number of diffs. There are a few small functional changes, however. 1) ACPI CA Core Subsystem: Improved error messages when there is a problem finding one or more of the required base ACPI tables Reintroduced the definition of APIC_HEADER in actbl.h Changed definition of MADT_ADDRESS_OVERRIDE to 64 bits (actbl.h) Removed extraneous reference to NewObj in dsmthdat.c 2) iASL compiler Fixed a problem introduced in December that disabled the correct disassembly of Resource Templates ---------------------------------------- 03 December 2003. Summary of changes for version 20031203: 1) ACPI CA Core Subsystem: Changed the initialization of Operation Regions during subsystem init to perform two entire walks of the ACPI namespace; The first to initialize the regions themselves, the second to execute the _REG methods. This fixed some interdependencies across _REG methods found on some machines. Fixed a problem where a Store(Local0, Local1) could simply update the object reference count, and not create a new copy of the object if the Local1 is uninitialized. Implemented support for the _SST reserved method during sleep transitions. Implemented support to clear the SLP_TYP and SLP_EN bits when waking up, this is apparently required by some machines. When sleeping, clear the wake status only if SleepState is not S5. Fixed a problem in AcpiRsExtendedIrqResource() where an incorrect pointer arithmetic advanced a string pointer too far. Fixed a problem in AcpiTbGetTablePtr() where a garbage pointer could be returned if the requested table has not been loaded. Within the support for IRQ resources, restructured the handling of the active and edge/level bits. Fixed a few problems in AcpiPsxExecute() where memory could be leaked under certain error conditions. Improved error messages for the cases where the ACPI mode could not be entered. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20031029): Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total Debug Version: 158.3K Code, 65.0K Data, 223.3K Total Current Release: Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total Debug Version: 158.7K Code, 65.1K Data, 223.8K Total 2) iASL Compiler/Disassembler: Implemented a fix for the iASL disassembler where a bad index was generated. This was most noticeable on 64-bit platforms ---------------------------------------- 29 October 2003. Summary of changes for version 20031029: 1) ACPI CA Core Subsystem: Fixed a problem where a level-triggered GPE with an associated _Lxx control method was incorrectly cleared twice. Fixed a problem with the Field support code where an access can occur beyond the end-of-region if the field is non-aligned but extends to the very end of the parent region (resulted in an AE_AML_REGION_LIMIT exception.) Fixed a problem with ACPI Fixed Events where an RT Clock handler would not get invoked on an RTC event. The RTC event bitmasks for the PM1 registers were not being initialized properly. Implemented support for executing _STA and _INI methods for Processor objects. Although this is currently not part of the ACPI specification, there is existing ASL code that depends on the init-time execution of these methods. Implemented and deployed a GetDescriptorName function to decode the various types of internal descriptors. Guards against null descriptors during debug output also. Implemented and deployed a GetNodeName function to extract the 4- character namespace node name. This function simplifies the debug and error output, as well as guarding against null pointers during output. Implemented and deployed the ACPI_FORMAT_UINT64 helper macro to simplify the debug and error output of 64-bit integers. This macro replaces the HIDWORD and LODWORD macros for dumping these integers. Updated the implementation of the Stall() operator to only call AcpiOsStall(), and also return an error if the operand is larger than 255. This preserves the required behavior of not relinquishing the processor, as would happen if AcpiOsSleep() was called for "long stalls". Constructs of the form "Store(LocalX,LocalX)" where LocalX is not initialized are now treated as NOOPs. Cleaned up a handful of warnings during 64-bit generation. Fixed a reported error where and incorrect GPE number was passed to the GPE dispatch handler. This value is only used for error output, however. Used this opportunity to clean up and streamline the GPE dispatch code. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20031002): Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total Debug Version: 157.9K Code, 64.8K Data, 222.7K Total Current Release: Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total Debug Version: 158.3K Code, 65.0K Data, 223.3K Total 2) iASL Compiler/Disassembler: Updated the iASL compiler to return an error if the operand to the Stall() operator is larger than 255. ---------------------------------------- 02 October 2003. Summary of changes for version 20031002: 1) ACPI CA Core Subsystem: Fixed a problem with Index Fields where the index was not incremented for fields that require multiple writes to the index/data registers (Fields that are wider than the data register.) Fixed a problem with all Field objects where a write could go beyond the end-of-field if the field was larger than the access granularity and therefore required multiple writes to complete the request. An extra write beyond the end of the field could happen inadvertently. Fixed a problem with Index Fields where a BUFFER_OVERFLOW error would incorrectly be returned if the width of the Data Register was larger than the specified field access width. Completed fixes for LoadTable() and Unload() and verified their operation. Implemented full support for the "DdbHandle" object throughout the ACPI CA subsystem. Implemented full support for the MADT and ECDT tables in the ACPI CA header files. Even though these tables are not directly consumed by ACPI CA, the header definitions are useful for ACPI device drivers. Integrated resource descriptor fixes posted to the Linux ACPI list. This included checks for minimum descriptor length, and support for trailing NULL strings within descriptors that have optional string elements. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20030918): Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total Debug Version: 157.3K Code, 64.5K Data, 221.8K Total Current Release: Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total Debug Version: 157.9K Code, 64.8K Data, 222.7K Total 2) iASL Compiler: Implemented detection of non-ASCII characters within the input source ASL file. This catches attempts to compile binary (AML) files early in the compile, with an informative error message. Fixed a problem where the disassembler would fault if the output filename could not be generated or if the output file could not be opened. ---------------------------------------- 18 September 2003. Summary of changes for version 20030918: 1) ACPI CA Core Subsystem: Found and fixed a longstanding problem with the late execution of the various deferred AML opcodes (such as Operation Regions, Buffer Fields, Buffers, and Packages). If the name string specified for the name of the new object placed the object in a scope other than the current scope, the initialization/execution of the opcode failed. The solution to this problem was to implement a mechanism where the late execution of such opcodes does not attempt to lookup/create the name a second time in an incorrect scope. This fixes the "region size computed incorrectly" problem. Fixed a call to AcpiHwRegisterWrite in hwregs.c that was causing a Global Lock AE_BAD_PARAMETER error. Fixed several 64-bit issues with prototypes, casting and data types. Removed duplicate prototype from acdisasm.h Fixed an issue involving EC Operation Region Detach (Shaohua Li) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total Debug Version: 156.9K Code, 64.2K Data, 221.1K Total Current Release: Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total Debug Version: 157.3K Code, 64.5K Data, 221.8K Total 2) Linux: Fixed the AcpiOsSleep implementation in osunixxf.c to pass the correct sleep time in seconds. ---------------------------------------- 14 July 2003. Summary of changes for version 20030619: 1) ACPI CA Core Subsystem: Parse SSDTs in order discovered, as opposed to reverse order (Hrvoje Habjanic) Fixes from FreeBSD and NetBSD. (Frank van der Linden, Thomas Klausner, Nate Lawson) 2) Linux: Dynamically allocate SDT list (suggested by Andi Kleen) proc function return value cleanups (Andi Kleen) Correctly handle NMI watchdog during long stalls (Andrew Morton) Make it so acpismp=force works (reported by Andrew Morton) ---------------------------------------- 19 June 2003. Summary of changes for version 20030619: 1) ACPI CA Core Subsystem: Fix To/FromBCD, eliminating the need for an arch-specific #define. Do not acquire a semaphore in the S5 shutdown path. Fix ex_digits_needed for 0. (Takayoshi Kochi) Fix sleep/stall code reversal. (Andi Kleen) Revert a change having to do with control method calling semantics. 2) Linux: acpiphp update (Takayoshi Kochi) Export acpi_disabled for sonypi (Stelian Pop) Mention acpismp=force in config help Re-add acpitable.c and acpismp=force. This improves backwards compatibility and also cleans up the code to a significant degree. Add ASUS Value-add driver (Karol Kozimor and Julien Lerouge) ---------------------------------------- 22 May 2003. Summary of changes for version 20030522: 1) ACPI CA Core Subsystem: Found and fixed a reported problem where an AE_NOT_FOUND error occurred occasionally during _BST evaluation. This turned out to be an Owner ID allocation issue where a called method did not get a new ID assigned to it. Eventually, (after 64k calls), the Owner ID UINT16 would wraparound so that the ID would be the same as the caller's and the called method would delete the caller's namespace. Implemented extended error reporting for control methods that are aborted due to a run-time exception. Output includes the exact AML instruction that caused the method abort, a dump of the method locals and arguments at the time of the abort, and a trace of all nested control method calls. Modified the interpreter to allow the creation of buffers of zero length from the AML code. Implemented new code to ensure that no attempt is made to actually allocate a memory buffer (of length zero) - instead, a simple buffer object with a NULL buffer pointer and length zero is created. A warning is no longer issued when the AML attempts to create a zero-length buffer. Implemented a workaround for the "leading asterisk issue" in _HIDs, _UIDs, and _CIDs in the AML interpreter. One leading asterisk is automatically removed if present in any HID, UID, or CID strings. The iASL compiler will still flag this asterisk as an error, however. Implemented full support for _CID methods that return a package of multiple CIDs (Compatible IDs). The AcpiGetObjectInfo() interface now additionally returns a device _CID list if present. This required a change to the external interface in order to pass an ACPI_BUFFER object as a parameter since the _CID list is of variable length. Fixed a problem with the new AE_SAME_HANDLER exception where handler initialization code did not know about this exception. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20030509): Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total Debug Version: 156.1K Code, 63.9K Data, 220.0K Total Current Release: Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total Debug Version: 156.9K Code, 64.2K Data, 221.1K Total 2) Linux: Fixed a bug in which we would reinitialize the ACPI interrupt after it was already working, thus disabling all ACPI and the IRQs for any other device sharing the interrupt. (Thanks to Stian Jordet) Toshiba driver update (John Belmonte) Return only 0 or 1 for our interrupt handler status (Andrew Morton) 3) iASL Compiler: Fixed a reported problem where multiple (nested) ElseIf() statements were not handled correctly by the compiler, resulting in incorrect warnings and incorrect AML code. This was a problem in both the ASL parser and the code generator. 4) Documentation: Added changes to existing interfaces, new exception codes, and new text concerning reference count object management versus garbage collection. ---------------------------------------- 09 May 2003. Summary of changes for version 20030509. 1) ACPI CA Core Subsystem: Changed the subsystem initialization sequence to hold off installation of address space handlers until the hardware has been initialized and the system has entered ACPI mode. This is because the installation of space handlers can cause _REG methods to be run. Previously, the _REG methods could potentially be run before ACPI mode was enabled. Fixed some memory leak issues related to address space handler and notify handler installation. There were some problems with the reference count mechanism caused by the fact that the handler objects are shared across several namespace objects. Fixed a reported problem where reference counts within the namespace were not properly updated when named objects created by method execution were deleted. Fixed a reported problem where multiple SSDTs caused a deletion issue during subsystem termination. Restructured the table data structures to simplify the linked lists and the related code. Fixed a problem where the table ID associated with secondary tables (SSDTs) was not being propagated into the namespace objects created by those tables. This would only present a problem for tables that are unloaded at run-time, however. Updated AcpiOsReadable and AcpiOsWritable to use the ACPI_SIZE type as the length parameter (instead of UINT32). Solved a long-standing problem where an ALREADY_EXISTS error appears on various systems. This problem could happen when there are multiple PCI_Config operation regions under a single PCI root bus. This doesn't happen very frequently, but there are some systems that do this in the ASL. Fixed a reported problem where the internal DeleteNode function was incorrectly handling the case where a namespace node was the first in the parent's child list, and had additional peers (not the only child, but first in the list of children.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total Debug Version: 156.1K Code, 63.6K Data, 219.7K Total Current Release: Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total Debug Version: 156.1K Code, 63.9K Data, 220.0K Total 2) Linux: Allow ":" in OS override string (Ducrot Bruno) Kobject fix (Greg KH) 3 iASL Compiler/Disassembler: Fixed a problem in the generation of the C source code files (AML is emitted in C source statements for BIOS inclusion) where the Ascii dump that appears within a C comment at the end of each line could cause a compile time error if the AML sequence happens to have an open comment or close comment sequence embedded. ---------------------------------------- 24 April 2003. Summary of changes for version 20030424. 1) ACPI CA Core Subsystem: Support for big-endian systems has been implemented. Most of the support has been invisibly added behind big-endian versions of the ACPI_MOVE_* macros. Fixed a problem in AcpiHwDisableGpeBlock() and AcpiHwClearGpeBlock() where an incorrect offset was passed to the low level hardware write routine. The offset parameter was actually eliminated from the low level read/write routines because they had become obsolete. Fixed a problem where a handler object was deleted twice during the removal of a fixed event handler. 2) Linux: A fix for SMP systems with link devices was contributed by Compaq's Dan Zink. (2.5) Return whether we handled the interrupt in our IRQ handler. (Linux ISRs no longer return void, so we can propagate the handler return value from the ACPI CA core back to the OS.) 3) Documentation: The ACPI CA Programmer Reference has been updated to reflect new interfaces and changes to existing interfaces. ---------------------------------------- 28 March 2003. Summary of changes for version 20030328. 1) ACPI CA Core Subsystem: The GPE Block Device support has been completed. New interfaces are AcpiInstallGpeBlock and AcpiRemoveGpeBlock. The Event interfaces (enable, disable, clear, getstatus) have been split into separate interfaces for Fixed Events and General Purpose Events (GPEs) in order to support GPE Block Devices properly. Fixed a problem where the error message "Failed to acquire semaphore" would appear during operations on the embedded controller (EC). Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total Debug Version: 154.0K Code, 63.4K Data, 217.4K Total Current Release: Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total Debug Version: 156.1K Code, 63.6K Data, 219.7K Total ---------------------------------------- 28 February 2003. Summary of changes for version 20030228. 1) ACPI CA Core Subsystem: The GPE handling and dispatch code has been completely overhauled in preparation for support of GPE Block Devices (ID ACPI0006). This affects internal data structures and code only; there should be no differences visible externally. One new file has been added, evgpeblk.c The FADT fields GPE0_BLK_LEN and GPE1_BLK_LEN are now the only fields that are used to determine the GPE block lengths. The REGISTER_BIT_WIDTH field of the X_GPEx_BLK extended address structures are ignored. This is per the ACPI specification but it isn't very clear. The full 256 Block 0/1 GPEs are now supported (the use of REGISTER_BIT_WIDTH limited the number of GPEs to 128). In the SCI interrupt handler, removed the read of the PM1_CONTROL register to look at the SCI_EN bit. On some machines, this read causes an SMI event and greatly slows down SCI events. (This may in fact be the cause of slow battery status response on some systems.) Fixed a problem where a store of a NULL string to a package object could cause the premature deletion of the object. This was seen during execution of the battery _BIF method on some systems, resulting in no battery data being returned. Added AcpiWalkResources interface to simplify parsing of resource lists. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total Current Release: Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total Debug Version: 154.0K Code, 63.4K Data, 217.4K Total 2) Linux S3 fixes (Ole Rohne) Update ACPI PHP driver with to use new acpi_walk_resource API (Bjorn Helgaas) Add S4BIOS support (Pavel Machek) Map in entire table before performing checksum (John Stultz) Expand the mem= cmdline to allow the specification of reserved and ACPI DATA blocks (Pavel Machek) Never use ACPI on VISWS Fix derive_pci_id (Ducrot Bruno, Alvaro Lopez) Revert a change that allowed P_BLK lengths to be 4 or 5. This is causing us to think that some systems support C2 when they really don't. Do not count processor objects for non-present CPUs (Thanks to Dominik Brodowski) 3) iASL Compiler: Fixed a problem where ASL include files could not be found and opened. Added support for the _PDC reserved name. ---------------------------------------- 22 January 2003. Summary of changes for version 20030122. 1) ACPI CA Core Subsystem: Added a check for constructs of the form: Store (Local0, Local0) where Local0 is not initialized. Apparently, some BIOS programmers believe that this is a NOOP. Since this store doesn't do anything anyway, the new prototype behavior will ignore this error. This is a case where we can relax the strict checking in the interpreter in the name of compatibility. 2) Linux The AcpiSrc Source Conversion Utility has been released with the Linux package for the first time. This is the utility that is used to convert the ACPI CA base source code to the Linux version. (Both) Handle P_BLK lengths shorter than 6 more gracefully (Both) Move more headers to include/acpi, and delete an unused header. (Both) Move drivers/acpi/include directory to include/acpi (Both) Boot functions don't use cmdline, so don't pass it around (Both) Remove include of unused header (Adrian Bunk) (Both) acpiphp.h includes both linux/acpi.h and acpi_bus.h. Since the former now also includes the latter, acpiphp.h only needs the one, now. (2.5) Make it possible to select method of bios restoring after S3 resume. [=> no more ugly ifdefs] (Pavel Machek) (2.5) Make proc write interfaces work (Pavel Machek) (2.5) Properly init/clean up in cpufreq/acpi (Dominik Brodowski) (2.5) Break out ACPI Perf code into its own module, under cpufreq (Dominik Brodowski) (2.4) S4BIOS support (Ducrot Bruno) (2.4) Fix acpiphp_glue.c for latest ACPI struct changes (Sergio Visinoni) 3) iASL Compiler: Added support to disassemble SSDT and PSDTs. Implemented support to obtain SSDTs from the Windows registry if available. ---------------------------------------- 09 January 2003. Summary of changes for version 20030109. 1) ACPI CA Core Subsystem: Changed the behavior of the internal Buffer-to-String conversion function. The current ACPI specification states that the contents of the buffer are "converted to a string of two-character hexadecimal numbers, each separated by a space". Unfortunately, this definition is not backwards compatible with existing ACPI 1.0 implementations (although the behavior was not defined in the ACPI 1.0 specification). The new behavior simply copies data from the buffer to the string until a null character is found or the end of the buffer is reached. The new String object is always null terminated. This problem was seen during the generation of _BIF battery data where incorrect strings were returned for battery type, etc. This will also require an errata to the ACPI specification. Renamed all instances of NATIVE_UINT and NATIVE_INT to ACPI_NATIVE_UINT and ACPI_NATIVE_INT, respectively. Copyright in all module headers (both Linux and non-Linux) has be updated to 2003. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total Current Release: Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total 2) Linux Fixed an oops on module insertion/removal (Matthew Tippett) (2.4) Fix to handle dynamic size of mp_irqs (Joerg Prante) (2.5) Replace pr_debug (Randy Dunlap) (2.5) Remove usage of CPUFREQ_ALL_CPUS (Dominik Brodowski) (Both) Eliminate spawning of thread from timer callback, in favor of schedule_work() (Both) Show Lid status in /proc (Zdenek OGAR Skalak) (Both) Added define for Fixed Function HW region (Matthew Wilcox) (Both) Add missing statics to button.c (Pavel Machek) Several changes have been made to the source code translation utility that generates the Linux Code in order to make the code more "Linux-like": All typedefs on structs and unions have been removed in keeping with the Linux coding style. Removed the non-Linux SourceSafe module revision number from each module header. Completed major overhaul of symbols to be lowercase for linux. Doubled the number of symbols that are lowercase. Fixed a problem where identifiers within procedure headers and within quotes were not fully lower cased (they were left with a starting capital.) Some C macros whose only purpose is to allow the generation of 16- bit code are now completely removed in the Linux code, increasing readability and maintainability. ---------------------------------------- 12 December 2002. Summary of changes for version 20021212. 1) ACPI CA Core Subsystem: Fixed a problem where the creation of a zero-length AML Buffer would cause a fault. Fixed a problem where a Buffer object that pointed to a static AML buffer (in an ACPI table) could inadvertently be deleted, causing memory corruption. Fixed a problem where a user buffer (passed in to the external ACPI CA interfaces) could be overwritten if the buffer was too small to complete the operation, causing memory corruption. Fixed a problem in the Buffer-to-String conversion code where a string of length one was always returned, regardless of the size of the input Buffer object. Removed the NATIVE_CHAR data type across the entire source due to lack of need and lack of consistent use. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total Debug Version: 152.7K Code, 62.7K Data, 215.4K Total Current Release: Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total ---------------------------------------- 05 December 2002. Summary of changes for version 20021205. 1) ACPI CA Core Subsystem: Fixed a problem where a store to a String or Buffer object could cause corruption of the DSDT if the object type being stored was the same as the target object type and the length of the object being stored was equal to or smaller than the original (existing) target object. This was seen to cause corruption of battery _BIF buffers if the _BIF method modified the buffer on the fly. Fixed a problem where an internal error was generated if a control method invocation was used in an OperationRegion, Buffer, or Package declaration. This was caused by the deferred parsing of the control method and thus the deferred creation of the internal method object. The solution to this problem was to create the internal method object at the moment the method is encountered in the first pass - so that subsequent references to the method will able to obtain the required parameter count and thus properly parse the method invocation. This problem presented itself as an AE_AML_INTERNAL during the pass 1 parse phase during table load. Fixed a problem where the internal String object copy routine did not always allocate sufficient memory for the target String object and caused memory corruption. This problem was seen to cause "Allocation already present in list!" errors as memory allocation became corrupted. Implemented a new function for the evaluation of namespace objects that allows the specification of the allowable return object types. This simplifies a lot of code that checks for a return object of one or more specific objects returned from the evaluation (such as _STA, etc.) This may become and external function if it would be useful to ACPI-related drivers. Completed another round of prefixing #defines with "ACPI_" for clarity. Completed additional code restructuring to allow more modular linking for iASL compiler and AcpiExec. Several files were split creating new files. New files: nsparse.c dsinit.c evgpe.c Implemented an abort mechanism to terminate an executing control method via the AML debugger. This feature is useful for debugging control methods that depend (wait) for specific hardware responses. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.9K Code, 63.3K Data, 216.2K Total Current Release: Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total Debug Version: 152.7K Code, 62.7K Data, 215.4K Total 2) iASL Compiler/Disassembler Fixed a compiler code generation problem for "Interrupt" Resource Descriptors. If specified in the ASL, the optional "Resource Source Index" and "Resource Source" fields were not inserted into the correct location within the AML resource descriptor, creating an invalid descriptor. Fixed a disassembler problem for "Interrupt" resource descriptors. The optional "Resource Source Index" and "Resource Source" fields were ignored. ---------------------------------------- 22 November 2002. Summary of changes for version 20021122. 1) ACPI CA Core Subsystem: Fixed a reported problem where an object stored to a Method Local or Arg was not copied to a new object during the store - the object pointer was simply copied to the Local/Arg. This caused all subsequent operations on the Local/Arg to also affect the original source of the store operation. Fixed a problem where a store operation to a Method Local or Arg was not completed properly if the Local/Arg contained a reference (from RefOf) to a named field. The general-purpose store-to- namespace-node code is now used so that this case is handled automatically. Fixed a problem where the internal object copy routine would cause a protection fault if the object being copied was a Package and contained either 1) a NULL package element or 2) a nested sub- package. Fixed a problem with the GPE initialization that resulted from an ambiguity in the ACPI specification. One section of the specification states that both the address and length of the GPE block must be zero if the block is not supported. Another section implies that only the address need be zero if the block is not supported. The code has been changed so that both the address and the length must be non-zero to indicate a valid GPE block (i.e., if either the address or the length is zero, the GPE block is invalid.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total Debug Version: 152.7K Code, 63.2K Data, 215.5K Total Current Release: Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.9K Code, 63.3K Data, 216.2K Total 2) Linux Cleaned up EC driver. Exported an external EC read/write interface. By going through this, other drivers (most notably sonypi) will be able to serialize access to the EC. 3) iASL Compiler/Disassembler Implemented support to optionally generate include files for both ASM and C (the -i switch). This simplifies BIOS development by automatically creating include files that contain external declarations for the symbols that are created within the (optionally generated) ASM and C AML source files. ---------------------------------------- 15 November 2002. Summary of changes for version 20021115. 1) ACPI CA Core Subsystem: Fixed a memory leak problem where an error during resolution of method arguments during a method invocation from another method failed to cleanup properly by deleting all successfully resolved argument objects. Fixed a problem where the target of the Index() operator was not correctly constructed if the source object was a package. This problem has not been detected because the use of a target operand with Index() is very rare. Fixed a problem with the Index() operator where an attempt was made to delete the operand objects twice. Fixed a problem where an attempt was made to delete an operand twice during execution of the CondRefOf() operator if the target did not exist. Implemented the first of perhaps several internal create object functions that create and initialize a specific object type. This consolidates duplicated code wherever the object is created, thus shrinking the size of the subsystem. Implemented improved debug/error messages for errors that occur during nested method invocations. All executing method pathnames are displayed (with the error) as the call stack is unwound - thus simplifying debug. Fixed a problem introduced in the 10/02 release that caused premature deletion of a buffer object if a buffer was used as an ASL operand where an integer operand is required (Thus causing an implicit object conversion from Buffer to Integer.) The change in the 10/02 release was attempting to fix a memory leak (albeit incorrectly.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total Debug Version: 153.1K Code, 63.3K Data, 216.4K Total Current Release: Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total Debug Version: 152.7K Code, 63.2K Data, 215.5K Total 2) Linux Changed the implementation of the ACPI semaphores to use down() instead of down_interruptable(). It is important that the execution of ACPI control methods not be interrupted by signals. Methods must run to completion, or the system may be left in an unknown/unstable state. Fixed a compilation error when CONFIG_SOFTWARE_SUSPEND is not set. (Shawn Starr) 3) iASL Compiler/Disassembler Changed the default location of output files. All output files are now placed in the current directory by default instead of in the directory of the source file. This change may affect some existing makefiles, but it brings the behavior of the compiler in line with other similar tools. The location of the output files can be overridden with the -p command line switch. ---------------------------------------- 11 November 2002. Summary of changes for version 20021111. 0) ACPI Specification 2.0B is released and is now available at: http://www.acpi.info/index.html 1) ACPI CA Core Subsystem: Implemented support for the ACPI 2.0 SMBus Operation Regions. This includes the early detection and handoff of the request to the SMBus region handler (avoiding all of the complex field support code), and support for the bidirectional return packet from an SMBus write operation. This paves the way for the development of SMBus drivers in each host operating system. Fixed a problem where the semaphore WAIT_FOREVER constant was defined as 32 bits, but must be 16 bits according to the ACPI specification. This had the side effect of causing ASL Mutex/Event timeouts even though the ASL code requested a wait forever. Changed all internal references to the ACPI timeout parameter to 16 bits to prevent future problems. Changed the name of WAIT_FOREVER to ACPI_WAIT_FOREVER. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.3K Code, 63.0K Data, 215.3K Total Current Release: Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total Debug Version: 153.1K Code, 63.3K Data, 216.4K Total 2) Linux Module loading/unloading fixes (John Cagle) 3) iASL Compiler/Disassembler Added support for the SMBBlockProcessCall keyword (ACPI 2.0) Implemented support for the disassembly of all SMBus protocol keywords (SMBQuick, SMBWord, etc.) ---------------------------------------- 01 November 2002. Summary of changes for version 20021101. 1) ACPI CA Core Subsystem: Fixed a problem where platforms that have a GPE1 block but no GPE0 block were not handled correctly. This resulted in a "GPE overlap" error message. GPE0 is no longer required. Removed code added in the previous release that inserted nodes into the namespace in alphabetical order. This caused some side- effects on various machines. The root cause of the problem is still under investigation since in theory, the internal ordering of the namespace nodes should not matter. Enhanced error reporting for the case where a named object is not found during control method execution. The full ACPI namepath (name reference) of the object that was not found is displayed in this case. Note: as a result of the overhaul of the namespace object types in the previous release, the namespace nodes for the predefined scopes (_TZ, _PR, etc.) are now of the type ACPI_TYPE_LOCAL_SCOPE instead of ACPI_TYPE_ANY. This simplifies the namespace management code but may affect code that walks the namespace tree looking for specific object types. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total Debug Version: 151.7K Code, 62.4K Data, 214.1K Total Current Release: Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.3K Code, 63.0K Data, 215.3K Total 2) Linux Fixed a problem introduced in the previous release where the Processor and Thermal objects were not recognized and installed in /proc. This was related to the scope type change described above. 3) iASL Compiler/Disassembler Implemented the -g option to get all of the required ACPI tables from the registry and save them to files (Windows version of the compiler only.) The required tables are the FADT, FACS, and DSDT. Added ACPI table checksum validation during table disassembly in order to catch corrupted tables. ---------------------------------------- 22 October 2002. Summary of changes for version 20021022. 1) ACPI CA Core Subsystem: Implemented a restriction on the Scope operator that the target must already exist in the namespace at the time the operator is encountered (during table load or method execution). In other words, forward references are not allowed and Scope() cannot create a new object. This changes the previous behavior where the interpreter would create the name if not found. This new behavior correctly enables the search-to-root algorithm during namespace lookup of the target name. Because of this upsearch, this fixes the known Compaq _SB_.OKEC problem and makes both the AML interpreter and iASL compiler compatible with other ACPI implementations. Completed a major overhaul of the internal ACPI object types for the ACPI Namespace and the associated operand objects. Many of these types had become obsolete with the introduction of the two- pass namespace load. This cleanup simplifies the code and makes the entire namespace load mechanism much clearer and easier to understand. Improved debug output for tracking scope opening/closing to help diagnose scoping issues. The old scope name as well as the new scope name are displayed. Also improved error messages for problems with ASL Mutex objects and error messages for GPE problems. Cleaned up the namespace dump code, removed obsolete code. All string output (for all namespace/object dumps) now uses the common ACPI string output procedure which handles escapes properly and does not emit non-printable characters. Fixed some issues with constants in the 64-bit version of the local C library (utclib.c) 2) Linux EC Driver: No longer attempts to acquire the Global Lock at interrupt level. 3) iASL Compiler/Disassembler Implemented ACPI 2.0B grammar change that disallows all Type 1 and 2 opcodes outside of a control method. This means that the "executable" operators (versus the "namespace" operators) cannot be used at the table level; they can only be used within a control method. Implemented the restriction on the Scope() operator where the target must already exist in the namespace at the time the operator is encountered (during ASL compilation). In other words, forward references are not allowed and Scope() cannot create a new object. This makes the iASL compiler compatible with other ACPI implementations and makes the Scope() implementation adhere to the ACPI specification. Fixed a problem where namepath optimization for the Alias operator was optimizing the wrong path (of the two namepaths.) This caused a "Missing alias link" error message. Fixed a problem where an "unknown reserved name" warning could be incorrectly generated for names like "_SB" when the trailing underscore is not used in the original ASL. Fixed a problem where the reserved name check did not handle NamePaths with multiple NameSegs correctly. The first nameseg of the NamePath was examined instead of the last NameSeg. ---------------------------------------- 02 October 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem version 20021002: Fixed a problem where a store/copy of a string to an existing string did not always set the string length properly in the String object. Fixed a reported problem with the ToString operator where the behavior was identical to the ToHexString operator instead of just simply converting a raw buffer to a string data type. Fixed a problem where CopyObject and the other "explicit" conversion operators were not updating the internal namespace node type as part of the store operation. Fixed a memory leak during implicit source operand conversion where the original object was not deleted if it was converted to a new object of a different type. Enhanced error messages for all problems associated with namespace lookups. Common procedure generates and prints the lookup name as well as the formatted status. Completed implementation of a new design for the Alias support within the namespace. The existing design did not handle the case where a new object was assigned to one of the two names due to the use of an explicit conversion operator, resulting in the two names pointing to two different objects. The new design simply points the Alias name to the original name node - not to the object. This results in a level of indirection that must be handled in the name resolution mechanism. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total Debug Version: 150.0K Code, 61.7K Data, 211.7K Total Current Release: Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total Debug Version: 151.7K Code, 62.4K Data, 214.1K Total 2) Linux Initialize thermal driver's timer before it is used. (Knut Neumann) Allow handling negative celsius values. (Kochi Takayoshi) Fix thermal management and make trip points. R/W (Pavel Machek) Fix /proc/acpi/sleep. (P. Christeas) IA64 fixes. (David Mosberger) Fix reversed logic in blacklist code. (Sergio Monteiro Basto) Replace ACPI_DEBUG define with ACPI_DEBUG_OUTPUT. (Dominik Brodowski) 3) iASL Compiler/Disassembler Clarified some warning/error messages. ---------------------------------------- 18 September 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem version 20020918: Fixed a reported problem with reference chaining (via the Index() and RefOf() operators) in the ObjectType() and SizeOf() operators. The definition of these operators includes the dereferencing of all chained references to return information on the base object. Fixed a problem with stores to indexed package elements - the existing code would not complete the store if an "implicit conversion" was not performed. In other words, if the existing object (package element) was to be replaced completely, the code didn't handle this case. Relaxed typechecking on the ASL "Scope" operator to allow the target name to refer to an object of type Integer, String, or Buffer, in addition to the scoping object types (Device, predefined Scopes, Processor, PowerResource, and ThermalZone.) This allows existing AML code that has workarounds for a bug in Windows to function properly. A warning is issued, however. This affects both the AML interpreter and the iASL compiler. Below is an example of this type of ASL code: Name(DEB,0x00) Scope(DEB) { Fixed some reported problems with 64-bit integer support in the local implementation of C library functions (clib.c) 2) Linux Use ACPI fix map region instead of IOAPIC region, since it is undefined in non-SMP. Ensure that the SCI has the proper polarity and trigger, even on systems that do not have an interrupt override entry in the MADT. 2.5 big driver reorganization (Pat Mochel) Use early table mapping code from acpitable.c (Andi Kleen) New blacklist entries (Andi Kleen) Blacklist improvements. Split blacklist code out into a separate file. Move checking the blacklist to very early. Previously, we would use ACPI tables, and then halfway through init, check the blacklist -- too late. Now, it's early enough to completely fall- back to non-ACPI. 3) iASL Compiler/Disassembler version 20020918: Fixed a problem where the typechecking code didn't know that an alias could point to a method. In other words, aliases were not being dereferenced during typechecking. ---------------------------------------- 29 August 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020829: If the target of a Scope() operator already exists, it must be an object type that actually opens a scope -- such as a Device, Method, Scope, etc. This is a fatal runtime error. Similar error check has been added to the iASL compiler also. Tightened up the namespace load to disallow multiple names in the same scope. This previously was allowed if both objects were of the same type. (i.e., a lookup was the same as entering a new name). 2) Linux Ensure that the ACPI interrupt has the proper trigger and polarity. local_irq_disable is extraneous. (Matthew Wilcox) Make "acpi=off" actually do what it says, and not use the ACPI interpreter *or* the tables. Added arch-neutral support for parsing SLIT and SRAT tables (Kochi Takayoshi) 3) iASL Compiler/Disassembler Version 20020829: Implemented namepath optimization for name declarations. For example, a declaration like "Method (\_SB_.ABCD)" would get optimized to "Method (ABCD)" if the declaration is within the \_SB_ scope. This optimization is in addition to the named reference path optimization first released in the previous version. This would seem to complete all possible optimizations for namepaths within the ASL/AML. If the target of a Scope() operator already exists, it must be an object type that actually opens a scope -- such as a Device, Method, Scope, etc. Implemented a check and warning for unreachable code in the same block below a Return() statement. Fixed a problem where the listing file was not generated if the compiler aborted if the maximum error count was exceeded (200). Fixed a problem where the typechecking of method return values was broken. This includes the check for a return value when the method is invoked as a TermArg (a return value is expected.) Fixed a reported problem where EOF conditions during a quoted string or comment caused a fault. ---------------------------------------- 15 August 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020815: Fixed a reported problem where a Store to a method argument that contains a reference did not perform the indirect store correctly. This problem was created during the conversion to the new reference object model - the indirect store to a method argument code was not updated to reflect the new model. Reworked the ACPI mode change code to better conform to ACPI 2.0, handle corner cases, and improve code legibility (Kochi Takayoshi) Fixed a problem with the pathname parsing for the carat (^) prefix. The heavy use of the carat operator by the new namepath optimization in the iASL compiler uncovered a problem with the AML interpreter handling of this prefix. In the case where one or more carats precede a single nameseg, the nameseg was treated as standalone and the search rule (to root) was inadvertently applied. This could cause both the iASL compiler and the interpreter to find the wrong object or to miss the error that should occur if the object does not exist at that exact pathname. Found and fixed the problem where the HP Pavilion DSDT would not load. This was a relatively minor tweak to the table loading code (a problem caused by the unexpected encounter with a method invocation not within a control method), but it does not solve the overall issue of the execution of AML code at the table level. This investigation is still ongoing. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total Debug Version: 149.4K Code, 61.6K Data, 211.0K Total Current Release: Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total Debug Version: 150.0K Code, 61.7K Data, 211.7K Total 2) Linux Remove redundant slab.h include (Brad Hards) Fix several bugs in thermal.c (Herbert Nachtnebel) Make CONFIG_ACPI_BOOT work properly (Pavel Machek) Change acpi_system_suspend to use updated irq functions (Pavel Machek) Export acpi_get_firmware_table (Matthew Wilcox) Use proper root proc entry for ACPI (Kochi Takayoshi) Fix early-boot table parsing (Bjorn Helgaas) 3) iASL Compiler/Disassembler Reworked the compiler options to make them more consistent and to use two-letter options where appropriate. We were running out of sensible letters. This may break some makefiles, so check the current options list by invoking the compiler with no parameters. Completed the design and implementation of the ASL namepath optimization option for the compiler. This option optimizes all references to named objects to the shortest possible path. The first attempt tries to utilize a single nameseg (4 characters) and the "search-to-root" algorithm used by the interpreter. If that cannot be used (because either the name is not in the search path or there is a conflict with another object with the same name), the pathname is optimized using the carat prefix (usually a shorter string than specifying the entire path from the root.) Implemented support to obtain the DSDT from the Windows registry (when the disassembly option is specified with no input file). Added this code as the implementation for AcpiOsTableOverride in the Windows OSL. Migrated the 16-bit code (used in the AcpiDump utility) to scan memory for the DSDT to the AcpiOsTableOverride function in the DOS OSL to make the disassembler truly OS independent. Implemented a new option to disassemble and compile in one step. When used without an input filename, this option will grab the DSDT from the local machine, disassemble it, and compile it in one step. Added a warning message for invalid escapes (a backslash followed by any character other than the allowable escapes). This catches the quoted string error "\_SB_" (which should be "\\_SB_" ). Also, there are numerous instances in the ACPI specification where this error occurs. Added a compiler option to disable all optimizations. This is basically the "compatibility mode" because by using this option, the AML code will come out exactly the same as other ASL compilers. Added error messages for incorrectly ordered dependent resource functions. This includes: missing EndDependentFn macro at end of dependent resource list, nested dependent function macros (both start and end), and missing StartDependentFn macro. These are common errors that should be caught at compile time. Implemented _OSI support for the disassembler and compiler. _OSI must be included in the namespace for proper disassembly (because the disassembler must know the number of arguments.) Added an "optimization" message type that is optional (off by default). This message is used for all optimizations - including constant folding, integer optimization, and namepath optimization. ---------------------------------------- 25 July 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020725: The AML Disassembler has been enhanced to produce compilable ASL code and has been integrated into the iASL compiler (see below) as well as the single-step disassembly for the AML debugger and the disassembler for the AcpiDump utility. All ACPI 2.0A opcodes, resource templates and macros are fully supported. The disassembler has been tested on over 30 different AML files, producing identical AML when the resulting disassembled ASL file is recompiled with the same ASL compiler. Modified the Resource Manager to allow zero interrupts and zero dma channels during the GetCurrentResources call. This was causing problems on some platforms. Added the AcpiOsRedirectOutput interface to the OSL to simplify output redirection for the AcpiOsPrintf and AcpiOsVprintf interfaces. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total Debug Version: 142.9K Code, 58.7K Data, 201.6K Total Current Release: Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total Debug Version: 149.4K Code, 61.6K Data, 211.0K Total 2) Linux Fixed a panic in the EC driver (Dominik Brodowski) Implemented checksum of the R/XSDT itself during Linux table scan (Richard Schaal) 3) iASL compiler The AML disassembler is integrated into the compiler. The "-d" option invokes the disassembler to completely disassemble an input AML file, producing as output a text ASL file with the extension ".dsl" (to avoid name collisions with existing .asl source files.) A future enhancement will allow the disassembler to obtain the BIOS DSDT from the registry under Windows. Fixed a problem with the VendorShort and VendorLong resource descriptors where an invalid AML sequence was created. Implemented a fix for BufferData term in the ASL parser. It was inadvertently defined twice, allowing invalid syntax to pass and causing reduction conflicts. Fixed a problem where the Ones opcode could get converted to a value of zero if "Ones" was used where a byte, word or dword value was expected. The 64-bit value is now truncated to the correct size with the correct value. ---------------------------------------- 02 July 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020702: The Table Manager code has been restructured to add several new features. Tables that are not required by the core subsystem (other than the FADT, DSDT, FACS, PSDTs, etc.) are no longer validated in any way and are returned from AcpiGetFirmwareTable if requested. The AcpiOsTableOverride interface is now called for each table that is loaded by the subsystem in order to allow the host to override any table it chooses. Previously, only the DSDT could be overridden. Added one new files, tbrsdt.c and tbgetall.c. Fixed a problem with the conversion of internal package objects to external objects (when a package is returned from a control method.) The return buffer length was set to zero instead of the proper length of the package object. Fixed a reported problem with the use of the RefOf and DeRefOf operators when passing reference arguments to control methods. A new type of Reference object is used internally for references produced by the RefOf operator. Added additional error messages in the Resource Manager to explain AE_BAD_DATA errors when they occur during resource parsing. Split the AcpiEnableSubsystem into two primitives to enable a finer granularity initialization sequence. These two calls should be called in this order: AcpiEnableSubsystem (flags), AcpiInitializeObjects (flags). The flags parameter remains the same. 2) Linux Updated the ACPI utilities module to understand the new style of fully resolved package objects that are now returned from the core subsystem. This eliminates errors of the form: ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.PPB_._PRT] acpi_utils-0430 [145] acpi_evaluate_reference: Invalid element in package (not a device reference) The method evaluation utility uses the new buffer allocation scheme instead of calling AcpiEvaluate Object twice. Added support for ECDT. This allows the use of the Embedded Controller before the namespace has been fully initialized, which is necessary for ACPI 2.0 support, and for some laptops to initialize properly. (Laptops using ECDT are still rare, so only limited testing was performed of the added functionality.) Fixed memory leaks in the EC driver. Eliminated a brittle code structure in acpi_bus_init(). Eliminated the acpi_evaluate() helper function in utils.c. It is no longer needed since acpi_evaluate_object can optionally allocate memory for the return object. Implemented fix for keyboard hang when getting battery readings on some systems (Stephen White) PCI IRQ routing update (Dominik Brodowski) Fix an ifdef to allow compilation on UP with LAPIC but no IOAPIC support ---------------------------------------- 11 June 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020611: Fixed a reported problem where constants such as Zero and One appearing within _PRT packages were not handled correctly within the resource manager code. Originally reported against the ASL compiler because the code generator now optimizes integers to their minimal AML representation (i.e. AML constants if possible.) The _PRT code now handles all AML constant opcodes correctly (Zero, One, Ones, Revision). Fixed a problem with the Concatenate operator in the AML interpreter where a buffer result object was incorrectly marked as not fully evaluated, causing a run-time error of AE_AML_INTERNAL. All package sub-objects are now fully resolved before they are returned from the external ACPI interfaces. This means that name strings are resolved to object handles, and constant operators (Zero, One, Ones, Revision) are resolved to Integers. Implemented immediate resolution of the AML Constant opcodes (Zero, One, Ones, Revision) to Integer objects upon detection within the AML stream. This has simplified and reduced the generated code size of the subsystem by eliminating about 10 switch statements for these constants (which previously were contained in Reference objects.) The complicating issues are that the Zero opcode is used as a "placeholder" for unspecified optional target operands and stores to constants are defined to be no-ops. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total Debug Version: 143.8K Code, 58.8K Data, 202.6K Total Current Release: Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total Debug Version: 142.9K Code, 58.7K Data, 201.6K Total 2) Linux Added preliminary support for obtaining _TRA data for PCI root bridges (Bjorn Helgaas). 3) iASL Compiler Version X2046: Fixed a problem where the "_DDN" reserved name was defined to be a control method with one argument. There are no arguments, and _DDN does not have to be a control method. Fixed a problem with the Linux version of the compiler where the source lines printed with error messages were the wrong lines. This turned out to be the "LF versus CR/LF" difference between Windows and Unix. This appears to be the longstanding issue concerning listing output and error messages. Fixed a problem with the Linux version of compiler where opcode names within error messages were wrong. This was caused by a slight difference in the output of the Flex tool on Linux versus Windows. Fixed a problem with the Linux compiler where the hex output files contained some garbage data caused by an internal buffer overrun. ---------------------------------------- 17 May 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020517: Implemented a workaround to an BIOS bug discovered on the HP OmniBook where the FADT revision number and the table size are inconsistent (ACPI 2.0 revision vs. ACPI 1.0 table size). The new behavior is to fallback to using only the ACPI 1.0 fields of the FADT if the table is too small to be a ACPI 2.0 table as claimed by the revision number. Although this is a BIOS bug, this is a case where the workaround is simple enough and with no side effects, so it seemed prudent to add it. A warning message is issued, however. Implemented minimum size checks for the fixed-length ACPI tables - - the FADT and FACS, as well as consistency checks between the revision number and the table size. Fixed a reported problem in the table override support where the new table pointer was incorrectly treated as a physical address instead of a logical address. Eliminated the use of the AE_AML_ERROR exception and replaced it with more descriptive codes. Fixed a problem where an exception would occur if an ASL Field was defined with no named Field Units underneath it (used by some index fields). Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total Debug Version: 142.9K Code, 58.4K Data, 201.3K Total Current Release: Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total Debug Version: 143.8K Code, 58.8K Data, 202.6K Total 2) Linux Much work done on ACPI init (MADT and PCI IRQ routing support). (Paul D. and Dominik Brodowski) Fix PCI IRQ-related panic on boot (Sam Revitch) Set BM_ARB_DIS when entering a sleep state (Ducrot Bruno) Fix "MHz" typo (Dominik Brodowski) Fix RTC year 2000 issue (Dominik Brodowski) Preclude multiple button proc entries (Eric Brunet) Moved arch-specific code out of include/platform/aclinux.h 3) iASL Compiler Version X2044: Implemented error checking for the string used in the EISAID macro (Usually used in the definition of the _HID object.) The code now strictly enforces the PnP format - exactly 7 characters, 3 uppercase letters and 4 hex digits. If a raw string is used in the definition of the _HID object (instead of the EISAID macro), the string must contain all alphanumeric characters (e.g., "*PNP0011" is not allowed because of the asterisk.) Implemented checking for invalid use of ACPI reserved names for most of the name creation operators (Name, Device, Event, Mutex, OperationRegion, PowerResource, Processor, and ThermalZone.) Previously, this check was only performed for control methods. Implemented an additional check on the Name operator to emit an error if a reserved name that must be implemented in ASL as a control method is used. We know that a reserved name must be a method if it is defined with input arguments. The warning emitted when a namespace object reference is not found during the cross reference phase has been changed into an error. The "External" directive should be used for names defined in other modules. 4) Tools and Utilities The 16-bit tools (adump16 and aexec16) have been regenerated and tested. Fixed a problem with the output of both acpidump and adump16 where the indentation of closing parentheses and brackets was not aligned properly with the parent block. ---------------------------------------- 03 May 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020503: Added support a new OSL interface that allows the host operating system software to override the DSDT found in the firmware - AcpiOsTableOverride. With this interface, the OSL can examine the version of the firmware DSDT and replace it with a different one if desired. Added new external interfaces for accessing ACPI registers from device drivers and other system software - AcpiGetRegister and AcpiSetRegister. This was simply an externalization of the existing AcpiHwBitRegister interfaces. Fixed a regression introduced in the previous build where the ASL/AML CreateField operator always returned an error, "destination must be a NS Node". Extended the maximum time (before failure) to successfully enable ACPI mode to 3 seconds. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total Debug Version: 142.4K Code, 58.3K Data, 200.7K Total Current Release: Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total Debug Version: 142.9K Code, 58.4K Data, 201.3K Total 2) Linux Enhanced ACPI init code for SMP. We are now fully MPS and $PIR- free. While 3 out of 4 of our in-house systems work fine, the last one still hangs when testing the LAPIC timer. Renamed many files in 2.5 kernel release to omit "acpi_" from the name. Added warning on boot for Presario 711FR. Sleep improvements (Pavel Machek) ACPI can now be built without CONFIG_PCI enabled. IA64: Fixed memory map functions (JI Lee) 3) iASL Compiler Version X2043: Added support to allow the compiler to be integrated into the MS VC++ development environment for one-button compilation of single files or entire projects -- with error-to-source-line mapping. Implemented support for compile-time constant folding for the Type3, Type4, and Type5 opcodes first defined in the ACPI 2.0 specification. This allows the ASL writer to use expressions instead of Integer/Buffer/String constants in terms that must evaluate to constants at compile time and will also simplify the emitted AML in any such sub-expressions that can be folded (evaluated at compile-time.) This increases the size of the compiler significantly because a portion of the ACPI CA AML interpreter is included within the compiler in order to pre- evaluate constant expressions. Fixed a problem with the "Unicode" ASL macro that caused the compiler to fault. (This macro is used in conjunction with the _STR reserved name.) Implemented an AML opcode optimization to use the Zero, One, and Ones opcodes where possible to further reduce the size of integer constants and thus reduce the overall size of the generated AML code. Implemented error checking for new reserved terms for ACPI version 2.0A. Implemented the -qr option to display the current list of ACPI reserved names known to the compiler. Implemented the -qc option to display the current list of ASL operators that are allowed within constant expressions and can therefore be folded at compile time if the operands are constants. 4) Documentation Updated the Programmer's Reference for new interfaces, data types, and memory allocation model options. Updated the iASL Compiler User Reference to apply new format and add information about new features and options. ---------------------------------------- 19 April 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020419: The source code base for the Core Subsystem has been completely cleaned with PC-lint (FlexLint) for both 32-bit and 64-bit versions. The Lint option files used are included in the /acpi/generate/lint directory. Implemented enhanced status/error checking across the entire Hardware manager subsystem. Any hardware errors (reported from the OSL) are now bubbled up and will abort a running control method. Fixed a problem where the per-ACPI-table integer width (32 or 64) was stored only with control method nodes, causing a fault when non-control method code was executed during table loading. The solution implemented uses a global variable to indicate table width across the entire ACPI subsystem. Therefore, ACPI CA does not support mixed integer widths across different ACPI tables (DSDT, SSDT). Fixed a problem where NULL extended fields (X fields) in an ACPI 2.0 ACPI FADT caused the table load to fail. Although the existing ACPI specification is a bit fuzzy on this topic, the new behavior is to fall back on a ACPI 1.0 field if the corresponding ACPI 2.0 X field is zero (even though the table revision indicates a full ACPI 2.0 table.) The ACPI specification will be updated to clarify this issue. Fixed a problem with the SystemMemory operation region handler where memory was always accessed byte-wise even if the AML- specified access width was larger than a byte. This caused problems on systems with memory-mapped I/O. Memory is now accessed with the width specified. On systems that do not support non-aligned transfers, a check is made to guarantee proper address alignment before proceeding in order to avoid an AML-caused alignment fault within the kernel. Fixed a problem with the ExtendedIrq resource where only one byte of the 4-byte Irq field was extracted. Fixed the AcpiExDigitsNeeded() procedure to support _UID. This function was out of date and required a rewrite. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total Debug Version: 139.8K Code, 57.4K Data, 197.2K Total Current Release: Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total Debug Version: 142.4K Code, 58.3K Data, 200.7K Total 2) Linux PCI IRQ routing fixes (Dominik Brodowski) 3) iASL Compiler Version X2042: Implemented an additional compile-time error check for a field unit whose size + minimum access width would cause a run-time access beyond the end-of-region. Previously, only the field size itself was checked. The Core subsystem and iASL compiler now share a common parse object in preparation for compile-time evaluation of the type 3/4/5 ASL operators. ---------------------------------------- Summary of changes for this release: 03_29_02 1) ACPI CA Core Subsystem Version 20020329: Implemented support for late evaluation of TermArg operands to Buffer and Package objects. This allows complex expressions to be used in the declarations of these object types. Fixed an ACPI 1.0 compatibility issue when reading Fields. In ACPI 1.0, if the field was larger than 32 bits, it was returned as a buffer - otherwise it was returned as an integer. In ACPI 2.0, the field is returned as a buffer only if the field is larger than 64 bits. The TableRevision is now considered when making this conversion to avoid incompatibility with existing ASL code. Implemented logical addressing for AcpiOsGetRootPointer. This allows an RSDP with either a logical or physical address. With this support, the host OS can now override all ACPI tables with one logical RSDP. Includes implementation of "typed" pointer support to allow a common data type for both physical and logical pointers internally. This required a change to the AcpiOsGetRootPointer interface. Implemented the use of ACPI 2.0 Generic Address Structures for all GPE, Fixed Event, and PM Timer I/O. This allows the use of memory mapped I/O for these ACPI features. Initialization now ignores not only non-required tables (All tables other than the FADT, FACS, DSDT, and SSDTs), but also does not validate the table headers of unrecognized tables. Fixed a problem where a notify handler could only be installed/removed on an object of type Device. All "notify" objects are now supported -- Devices, Processor, Power, and Thermal. Removed most verbosity from the ACPI_DB_INFO debug level. Only critical information is returned when this debug level is enabled. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total Debug Version: 138.0K Code, 56.6K Data, 194.6K Total Current Release: Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total Debug Version: 139.8K Code, 57.4K Data, 197.2K Total 2) Linux: The processor driver (acpi_processor.c) now fully supports ACPI 2.0-based processor performance control (e.g. Intel(R) SpeedStep(TM) technology) Note that older laptops that only have the Intel "applet" interface are not supported through this. The 'limit' and 'performance' interface (/proc) are fully functional. [Note that basic policy for controlling performance state transitions will be included in the next version of ospmd.] The idle handler was modified to more aggressively use C2, and PIIX4 errata handling underwent a complete overhaul (big thanks to Dominik Brodowski). Added support for ACPI-PCI device binding (acpi_pci_root.c). _ADR- based devices in the ACPI namespace are now dynamically bound (associated) with their PCI counterparts (e.g. PCI1->01:00.0). This allows, among other things, ACPI to resolve bus numbers for subordinate PCI bridges. Enhanced PCI IRQ routing to get the proper bus number for _PRT entries defined underneath PCI bridges. Added IBM 600E to bad bios list due to invalid _ADR value for PIIX4 PCI-ISA bridge, resulting in improper PCI IRQ routing. In the process of adding full MADT support (e.g. IOAPIC) for IA32 (acpi.c, mpparse.c) -- stay tuned. Added back visual differentiation between fixed-feature and control-method buttons in dmesg. Buttons are also subtyped (e.g. button/power/PWRF) to simplify button identification. We no longer use -Wno-unused when compiling debug. Please ignore any "_THIS_MODULE defined but not used" messages. Can now shut down the system using "magic sysrq" key. 3) iASL Compiler version 2041: Fixed a problem where conversion errors for hex/octal/decimal constants were not reported. Implemented a fix for the General Register template Address field. This field was 8 bits when it should be 64. Fixed a problem where errors/warnings were no longer being emitted within the listing output file. Implemented the ACPI 2.0A restriction on ACPI Table Signatures to exactly 4 characters, alphanumeric only. ---------------------------------------- Summary of changes for this release: 03_08_02 1) ACPI CA Core Subsystem Version 20020308: Fixed a problem with AML Fields where the use of the "AccessAny" keyword could cause an interpreter error due to attempting to read or write beyond the end of the parent Operation Region. Fixed a problem in the SystemMemory Operation Region handler where an attempt was made to map memory beyond the end of the region. This was the root cause of the "AE_ERROR" and "AE_NO_MEMORY" errors on some Linux systems. Fixed a problem where the interpreter/namespace "search to root" algorithm was not functioning for some object types. Relaxed the internal restriction on the search to allow upsearches for all external object types as well as most internal types. 2) Linux: We now use safe_halt() macro versus individual calls to sti | hlt. Writing to the processor limit interface should now work. "echo 1" will increase the limit, 2 will decrease, and 0 will reset to the default. 3) ASL compiler: Fixed segfault on Linux version. ---------------------------------------- Summary of changes for this release: 02_25_02 1) ACPI CA Core Subsystem: Fixed a problem where the GPE bit masks were not initialized properly, causing erratic GPE behavior. Implemented limited support for multiple calling conventions. The code can be generated with either the VPL (variable parameter list, or "C") convention, or the FPL (fixed parameter list, or "Pascal") convention. The core subsystem is about 3.4% smaller when generated with FPL. 2) Linux Re-add some /proc/acpi/event functionality that was lost during the rewrite Resolved issue with /proc events for fixed-feature buttons showing up as the system device. Fixed checks on C2/C3 latencies to be inclusive of maximum values. Replaced AE_ERRORs in acpi_osl.c with more specific error codes. Changed ACPI PRT option from "pci=noacpi-routing" to "pci=noacpi" Fixed limit interface & usage to fix bugs with passive cooling hysterisis. Restructured PRT support. ---------------------------------------- Summary of changes for this label: 02_14_02 1) ACPI CA Core Subsystem: Implemented support in AcpiLoadTable to allow loading of FACS and FADT tables. Support for the now-obsolete interim 0.71 64-bit ACPI tables has been removed. All 64-bit platforms should be migrated to the ACPI 2.0 tables. The actbl71.h header has been removed from the source tree. All C macros defined within the subsystem have been prefixed with "ACPI_" to avoid collision with other system include files. Removed the return value for the two AcpiOsPrint interfaces, since it is never used and causes lint warnings for ignoring the return value. Added error checking to all internal mutex acquire and release calls. Although a failure from one of these interfaces is probably a fatal system error, these checks will cause the immediate abort of the currently executing method or interface. Fixed a problem where the AcpiSetCurrentResources interface could fault. This was a side effect of the deployment of the new memory allocation model. Fixed a couple of problems with the Global Lock support introduced in the last major build. The "common" (1.0/2.0) internal FACS was being overwritten with the FACS signature and clobbering the Global Lock pointer. Also, the actual firmware FACS was being unmapped after construction of the "common" FACS, preventing access to the actual Global Lock field within it. The "common" internal FACS is no longer installed as an actual ACPI table; it is used simply as a global. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (02_07_01) Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total Debug Version: 136.9K Code, 56.4K Data, 193.3K Total Current Release: Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total Debug Version: 138.0K Code, 56.6K Data, 194.6K Total 2) Linux Updated Linux-specific code for core macro and OSL interface changes described above. Improved /proc/acpi/event. It now can be opened only once and has proper poll functionality. Fixed and restructured power management (acpi_bus). Only create /proc "view by type" when devices of that class exist. Fixed "charging/discharging" bug (and others) in acpi_battery. Improved thermal zone code. 3) ASL Compiler, version X2039: Implemented the new compiler restriction on ASL String hex/octal escapes to non-null, ASCII values. An error results if an invalid value is used. (This will require an ACPI 2.0 specification change.) AML object labels that are output to the optional C and ASM source are now prefixed with both the ACPI table signature and table ID to help guarantee uniqueness within a large BIOS project. ---------------------------------------- Summary of changes for this label: 02_01_02 1) ACPI CA Core Subsystem: ACPI 2.0 support is complete in the entire Core Subsystem and the ASL compiler. All new ACPI 2.0 operators are implemented and all other changes for ACPI 2.0 support are complete. With simultaneous code and data optimizations throughout the subsystem, ACPI 2.0 support has been implemented with almost no additional cost in terms of code and data size. Implemented a new mechanism for allocation of return buffers. If the buffer length is set to ACPI_ALLOCATE_BUFFER, the buffer will be allocated on behalf of the caller. Consolidated all return buffer validation and allocation to a common procedure. Return buffers will be allocated via the primary OSL allocation interface since it appears that a separate pool is not needed by most users. If a separate pool is required for these buffers, the caller can still use the original mechanism and pre-allocate the buffer(s). Implemented support for string operands within the DerefOf operator. Restructured the Hardware and Event managers to be table driven, simplifying the source code and reducing the amount of generated code. Split the common read/write low-level ACPI register bitfield procedure into a separate read and write, simplifying the code considerably. Obsoleted the AcpiOsCallocate OSL interface. This interface was used only a handful of times and didn't have enough critical mass for a separate interface. Replaced with a common calloc procedure in the core. Fixed a reported problem with the GPE number mapping mechanism that allows GPE1 numbers to be non-contiguous with GPE0. Reorganized the GPE information and shrunk a large array that was originally large enough to hold info for all possible GPEs (256) to simply large enough to hold all GPEs up to the largest GPE number on the machine. Fixed a reported problem with resource structure alignment on 64- bit platforms. Changed the AcpiEnableEvent and AcpiDisableEvent external interfaces to not require any flags for the common case of enabling/disabling a GPE. Implemented support to allow a "Notify" on a Processor object. Most TBDs in comments within the source code have been resolved and eliminated. Fixed a problem in the interpreter where a standalone parent prefix (^) was not handled correctly in the interpreter and debugger. Removed obsolete and unnecessary GPE save/restore code. Implemented Field support in the ASL Load operator. This allows a table to be loaded from a named field, in addition to loading a table directly from an Operation Region. Implemented timeout and handle support in the external Global Lock interfaces. Fixed a problem in the AcpiDump utility where pathnames were no longer being generated correctly during the dump of named objects. Modified the AML debugger to give a full display of if/while predicates instead of just one AML opcode at a time. (The predicate can have several nested ASL statements.) The old method was confusing during single stepping. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (12_18_01) Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total Debug Version: 138.3K Code, 55.9K Data, 194.2K Total Current Release: Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total Debug Version: 136.9K Code, 56.4K Data, 193.3K Total 2) Linux Implemented fix for PIIX reverse throttling errata (Processor driver) Added new Limit interface (Processor and Thermal drivers) New thermal policy (Thermal driver) Many updates to /proc Battery "low" event support (Battery driver) Supports ACPI PCI IRQ routing (PCI Link and PCI root drivers) IA32 - IA64 initialization unification, no longer experimental Menuconfig options redesigned 3) ASL Compiler, version X2037: Implemented several new output features to simplify integration of AML code into firmware: 1) Output the AML in C source code with labels for each named ASL object. The original ASL source code is interleaved as C comments. 2) Output the AML in ASM source code with labels and interleaved ASL source. 3) Output the AML in raw hex table form, in either C or ASM. Implemented support for optional string parameters to the LoadTable operator. Completed support for embedded escape sequences within string literals. The compiler now supports all single character escapes as well as the Octal and Hex escapes. Note: the insertion of a null byte into a string literal (via the hex/octal escape) causes the string to be immediately terminated. A warning is issued. Fixed a problem where incorrect AML was generated for the case where an ASL namepath consists of a single parent prefix ( ) with no trailing name segments. The compiler has been successfully generated with a 64-bit C compiler. ---------------------------------------- Summary of changes for this label: 12_18_01 1) Linux Enhanced blacklist with reason and severity fields. Any table's signature may now be used to identify a blacklisted system. Call _PIC control method to inform the firmware which interrupt model the OS is using. Turn on any disabled link devices. Cleaned up busmgr /proc error handling (Andreas Dilger) 2) ACPI CA Core Subsystem: Implemented ACPI 2.0 semantics for the "Break" operator (Exit from while loop) Completed implementation of the ACPI 2.0 "Continue", "ConcatenateResTemplate", "DataTableRegion", and "LoadTable" operators. All new ACPI 2.0 operators are now implemented in both the ASL compiler and the AML interpreter. The only remaining ACPI 2.0 task is support for the String data type in the DerefOf operator. Fixed a problem with AcquireMutex where the status code was lost if the caller had to actually wait for the mutex. Increased the maximum ASL Field size from 64K bits to 4G bits. Completed implementation of the external Global Lock interfaces -- AcpiAcquireGlobalLock and AcpiReleaseGlobalLock. The Timeout and Handler parameters were added. Completed another pass at removing warnings and issues when compiling with 64-bit compilers. The code now compiles cleanly with the Intel 64-bit C/C++ compiler. Most notably, the pointer add and subtract (diff) macros have changed considerably. Created and deployed a new ACPI_SIZE type that is 64-bits wide on 64-bit platforms, 32-bits on all others. This type is used wherever memory allocation and/or the C sizeof() operator is used, and affects the OSL memory allocation interfaces AcpiOsAllocate and AcpiOsCallocate. Implemented sticky user breakpoints in the AML debugger. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (12_05_01) Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total Debug Version: 136.2K Code, 55.6K Data, 191.8K Total Current Release: Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total Debug Version: 138.3K Code, 55.9K Data, 194.2K Total 3) ASL Compiler, version X2034: Now checks for (and generates an error if detected) the use of a Break or Continue statement without an enclosing While statement. Successfully generated the compiler with the Intel 64-bit C compiler. ---------------------------------------- Summary of changes for this label: 12_05_01 1) ACPI CA Core Subsystem: The ACPI 2.0 CopyObject operator is fully implemented. This operator creates a new copy of an object (and is also used to bypass the "implicit conversion" mechanism of the Store operator.) The ACPI 2.0 semantics for the SizeOf operator are fully implemented. The change is that performing a SizeOf on a reference object causes an automatic dereference of the object to -tha actual value before the size is evaluated. This behavior was +the actual value before the size is evaluated. This behavior was undefined in ACPI 1.0. The ACPI 2.0 semantics for the Extended IRQ resource descriptor have been implemented. The interrupt polarity and mode are now independently set. Fixed a problem where ASL Constants (Zero, One, Ones, Revision) appearing in Package objects were not properly converted to integers when the internal Package was converted to an external object (via the AcpiEvaluateObject interface.) Fixed a problem with the namespace object deletion mechanism for objects created by control methods. There were two parts to this problem: 1) Objects created during the initialization phase method parse were not being deleted, and 2) The object owner ID mechanism to track objects was broken. Fixed a problem where the use of the ASL Scope operator within a control method would result in an invalid opcode exception. Fixed a problem introduced in the previous label where the buffer length required for the _PRT structure was not being returned correctly. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (11_20_01) Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total Debug Version: 135.1K Code, 55.4K Data, 190.5K Total Current Release: Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total Debug Version: 136.2K Code, 55.6K Data, 191.8K Total 2) Linux: Updated all files to apply cleanly against 2.4.16. Added basic PCI Interrupt Routing Table (PRT) support for IA32 (acpi_pci.c), and unified the PRT code for IA32 and IA64. This version supports both static and dynamic PRT entries, but dynamic entries are treated as if they were static (not yet reconfigurable). Architecture- specific code to use this data is absent on IA32 but should be available shortly. Changed the initialization sequence to start the ACPI interpreter (acpi_init) prior to initialization of the PCI driver (pci_init) in init/main.c. This ordering is required to support PRT and facilitate other (future) enhancement. A side effect is that the ACPI bus driver and certain device drivers can no longer be loaded as modules. Modified the 'make menuconfig' options to allow PCI Interrupt Routing support to be included without the ACPI Bus and other device drivers. 3) ASL Compiler, version X2033: Fixed some issues with the use of the new CopyObject and DataTableRegion operators. Both are fully functional. ---------------------------------------- Summary of changes for this label: 11_20_01 20 November 2001. Summary of changes for this release. 1) ACPI CA Core Subsystem: Updated Index support to match ACPI 2.0 semantics. Storing a Integer, String, or Buffer to an Index of a Buffer will store only the least-significant byte of the source to the Indexed buffer byte. Multiple writes are not performed. Fixed a problem where the access type used in an AccessAs ASL operator was not recorded correctly into the field object. Fixed a problem where ASL Event objects were created in a signalled state. Events are now created in an unsignalled state. The internal object cache is now purged after table loading and initialization to reduce the use of dynamic kernel memory -- on the assumption that object use is greatest during the parse phase of the entire table (versus the run-time use of individual control methods.) ACPI 2.0 variable-length packages are now fully operational. Code and Data Size: Code and Data optimizations have permitted new feature development with an actual reduction in the library size. Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (11_09_01): Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total Debug Version: 134.5K Code, 55.4K Data, 189.9K Total Current Release: Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total Debug Version: 135.1K Code, 55.4K Data, 190.5K Total 2) Linux: Enhanced the ACPI boot-time initialization code to allow the use of Local APIC tables for processor enumeration on IA-32, and to pave the way for a fully MPS-free boot (on SMP systems) in the near future. This functionality replaces arch/i386/kernel/acpitables.c, which was introduced in an earlier 2.4.15-preX release. To enable this feature you must add "acpi_boot=on" to the kernel command line -- see the help entry for CONFIG_ACPI_BOOT for more information. An IA-64 release is in the works... Restructured the configuration options to allow boot-time table parsing support without inclusion of the ACPI Interpreter (and other) code. NOTE: This release does not include fixes for the reported events, power-down, and thermal passive cooling issues (coming soon). 3) ASL Compiler: Added additional typechecking for Fields within restricted access Operation Regions. All fields within EC and CMOS regions must be declared with ByteAcc. All fields within SMBus regions must be declared with the BufferAcc access type. Fixed a problem where the listing file output of control methods no longer interleaved the actual AML code with the ASL source code. ---------------------------------------- Summary of changes for this label: 11_09_01 1) ACPI CA Core Subsystem: Implemented ACPI 2.0-defined support for writes to fields with a Buffer, String, or Integer source operand that is smaller than the target field. In these cases, the source operand is zero-extended to fill the target field. Fixed a problem where a Field starting bit offset (within the parent operation region) was calculated incorrectly if the alignment of the field differed from the access width. This affected CreateWordField, CreateDwordField, CreateQwordField, and possibly other fields that use the "AccessAny" keyword. Fixed a problem introduced in the 11_02_01 release where indirect stores through method arguments did not operate correctly. 2) Linux: Implemented boot-time ACPI table parsing support (CONFIG_ACPI_BOOT) for IA32 and IA64 UP/SMP systems. This code facilitates the use of ACPI tables (e.g. MADT, SRAT) rather than legacy BIOS interfaces (e.g. MPS) for the configuration of system processors, memory, and interrupts during setup_arch(). Note that this patch does not include the required architecture-specific changes required to apply this information -- subsequent patches will be posted for both IA32 and IA64 to achieve this. Added low-level sleep support for IA32 platforms, courtesy of Pat Mochel. This allows IA32 systems to transition to/from various sleeping states (e.g. S1, S3), although the lack of a centralized driver model and power-manageable drivers will prevent its (successful) use on most systems. Revamped the ACPI 'menuconfig' layout: created new "ACPI Support" submenu, unified IA32 and IA64 options, added new "Boot using ACPI tables" option, etc. Increased the default timeout for the EC driver from 1ms to 10ms (1000 cycles of 10us) to try to address AE_TIME errors during EC transactions. ---------------------------------------- Summary of changes for this label: 11_02_01 1) ACPI CA Core Subsystem: ACPI 2.0 Support: Implemented ACPI 2.0 64-bit Field access (QWordAcc keyword). All ACPI 2.0 64-bit support is now implemented. OSL Interfaces: Several of the OSL (AcpiOs*) interfaces required changes to support ACPI 2.0 Qword field access. Read/Write PciConfiguration(), Read/Write Memory(), and Read/Write Port() now accept an ACPI_INTEGER (64 bits) as the value parameter. Also, the value parameter for the address space handler interface is now an ACPI_INTEGER. OSL implementations of these interfaces must now handle the case where the Width parameter is 64. Index Fields: Fixed a problem where unaligned bit assembly and disassembly for IndexFields was not supported correctly. Index and Bank Fields: Nested Index and Bank Fields are now supported. During field access, a check is performed to ensure that the value written to an Index or Bank register is not out of the range of the register. The Index (or Bank) register is written before each access to the field data. Future support will include allowing individual IndexFields to be wider than the DataRegister width. Fields: Fixed a problem where the AML interpreter was incorrectly attempting to write beyond the end of a Field/OpRegion. This was a boundary case that occurred when a DWORD field was written to a BYTE access OpRegion, forcing multiple writes and causing the interpreter to write one datum too many. Fields: Fixed a problem with Field/OpRegion access where the starting bit address of a field was incorrectly calculated if the current access type was wider than a byte (WordAcc, DwordAcc, or QwordAcc). Fields: Fixed a problem where forward references to individual FieldUnits (individual Field names within a Field definition) were not resolved during the AML table load. Fields: Fixed a problem where forward references from a Field definition to the parent Operation Region definition were not resolved during the AML table load. Fields: Duplicate FieldUnit names within a scope are now detected during AML table load. Acpi Interfaces: Fixed a problem where the AcpiGetName() interface returned an incorrect name for the root node. Code and Data Size: Code and Data optimizations have permitted new feature development with an actual reduction in the library size. Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (10_18_01): Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total Debug Version: 136.7K Code, 57.4K Data, 194.2K Total Current Release: Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total Debug Version: 134.5K Code, 55.4K Data, 189.9K Total 2) Linux: Improved /proc processor output (Pavel Machek) Re-added MODULE_LICENSE("GPL") to all modules. 3) ASL Compiler version X2030: Duplicate FieldUnit names within a scope are now detected and flagged as errors. 4) Documentation: Programmer Reference updated to reflect OSL and address space handler interface changes described above. ---------------------------------------- Summary of changes for this label: 10_18_01 ACPI CA Core Subsystem: Fixed a problem with the internal object reference count mechanism that occasionally caused premature object deletion. This resolves all of the outstanding problem reports where an object is deleted in the middle of an interpreter evaluation. Although this problem only showed up in rather obscure cases, the solution to the problem involved an adjustment of all reference counts involving objects attached to namespace nodes. Fixed a problem with Field support in the interpreter where writing to an aligned field whose length is an exact multiple (2 or greater) of the field access granularity would cause an attempt to write beyond the end of the field. The top level AML opcode execution functions within the interpreter have been renamed with a more meaningful and consistent naming convention. The modules exmonad.c and exdyadic.c were eliminated. New modules are exoparg1.c, exoparg2.c, exoparg3.c, and exoparg6.c. Support for the ACPI 2.0 "Mid" ASL operator has been implemented. Fixed a problem where the AML debugger was causing some internal objects to not be deleted during subsystem termination. Fixed a problem with the external AcpiEvaluateObject interface where the subsystem would fault if the named object to be evaluated referred to a constant such as Zero, Ones, etc. Fixed a problem with IndexFields and BankFields where the subsystem would fault if the index, data, or bank registers were not defined in the same scope as the field itself. Added printf format string checking for compilers that support this feature. Corrected more than 50 instances of issues with format specifiers within invocations of ACPI_DEBUG_PRINT throughout the core subsystem code. The ASL "Revision" operator now returns the ACPI support level implemented in the core - the value "2" since the ACPI 2.0 support is more than 50% implemented. Enhanced the output of the AML debugger "dump namespace" command to output in a more human-readable form. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Label (09_20_01): Non-Debug Version: 65K Code, 5K Data, 70K Total Debug Version: 138K Code, 58K Data, 196K Total This Label: Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total Debug Version: 136.7K Code, 57.4K Data, 194.2K Total Linux: Implemented a "Bad BIOS Blacklist" to track machines that have known ASL/AML problems. Enhanced the /proc interface for the thermal zone driver and added support for _HOT (the critical suspend trip point). The 'info' file now includes threshold/policy information, and allows setting of _SCP (cooling preference) and _TZP (polling frequency) values to the 'info' file. Examples: "echo tzp=5 > info" sets the polling frequency to 5 seconds, and "echo scp=1 > info" sets the cooling preference to the passive/quiet mode (if supported by the ASL). Implemented a workaround for a gcc bug that resuted in an OOPs when loading the control method battery driver. ---------------------------------------- Summary of changes for this label: 09_20_01 ACPI CA Core Subsystem: The AcpiEnableEvent and AcpiDisableEvent interfaces have been modified to allow individual GPE levels to be flagged as wake- enabled (i.e., these GPEs are to remain enabled when the platform sleeps.) The AcpiEnterSleepState and AcpiLeaveSleepState interfaces now support wake-enabled GPEs. This means that upon entering the sleep state, all GPEs that are not wake-enabled are disabled. When leaving the sleep state, these GPEs are re-enabled. A local double-precision divide/modulo module has been added to enhance portability to OS kernels where a 64-bit math library is not available. The new module is "utmath.c". Several optimizations have been made to reduce the use of CPU stack. Originally over 2K, the maximum stack usage is now below 2K at 1860 bytes (1.82k) Fixed a problem with the AcpiGetFirmwareTable interface where the root table pointer was not mapped into a logical address properly. Fixed a problem where a NULL pointer was being dereferenced in the interpreter code for the ASL Notify operator. Fixed a problem where the use of the ASL Revision operator returned an error. This operator now returns the current version of the ACPI CA core subsystem. Fixed a problem where objects passed as control method parameters to AcpiEvaluateObject were always deleted at method termination. However, these objects may end up being stored into the namespace by the called method. The object reference count mechanism was applied to these objects instead of a force delete. Fixed a problem where static strings or buffers (contained in the AML code) that are declared as package elements within the ASL code could cause a fault because the interpreter would attempt to delete them. These objects are now marked with the "static object" flag to prevent any attempt to delete them. Implemented an interpreter optimization to use operands directly from the state object instead of extracting the operands to local variables. This reduces stack use and code size, and improves performance. The module exxface.c was eliminated as it was an unnecessary extra layer of code. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Non-Debug Version: 65K Code, 5K Data, 70K Total (Previously 69K) Debug Version: 138K Code, 58K Data, 196K Total (Previously 195K) Linux: Support for ACPI 2.0 64-bit integers has been added. All ACPI Integer objects are now 64 bits wide All Acpi data types and structures are now in lower case. Only Acpi macros are upper case for differentiation. Documentation: Changes to the external interfaces as described above. ---------------------------------------- Summary of changes for this label: 08_31_01 ACPI CA Core Subsystem: A bug with interpreter implementation of the ASL Divide operator was found and fixed. The implicit function return value (not the explicit store operands) was returning the remainder instead of the quotient. This was a longstanding bug and it fixes several known outstanding issues on various platforms. The ACPI_DEBUG_PRINT and function trace entry/exit macros have been further optimized for size. There are 700 invocations of the DEBUG_PRINT macro alone, so each optimization reduces the size of the debug version of the subsystem significantly. A stack trace mechanism has been implemented. The maximum stack usage is about 2K on 32-bit platforms. The debugger command "stat stack" will display the current maximum stack usage. All public symbols and global variables within the subsystem are now prefixed with the string "Acpi". This keeps all of the symbols grouped together in a kernel map, and avoids conflicts with other kernel subsystems. Most of the internal fixed lookup tables have been moved into the code segment via the const operator. Several enhancements have been made to the interpreter to both reduce the code size and improve performance. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism which contains over 700 invocations of the DEBUG_PRINT macro, 500 function entry macro invocations, and over 900 function exit macro invocations -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Non-Debug Version: 64K Code, 5K Data, 69K Total Debug Version: 137K Code, 58K Data, 195K Total Linux: Implemented wbinvd() macro, pending a kernel-wide definition. Fixed /proc/acpi/event to handle poll() and short reads. ASL Compiler, version X2026: Fixed a problem introduced in the previous label where the AML code emitted for package objects produced packages with zero length. ---------------------------------------- Summary of changes for this label: 08_16_01 ACPI CA Core Subsystem: The following ACPI 2.0 ASL operators have been implemented in the AML interpreter (These are already supported by the Intel ASL compiler): ToDecimalString, ToHexString, ToString, ToInteger, and ToBuffer. Support for 64-bit AML constants is implemented in the AML parser, debugger, and disassembler. The internal memory tracking mechanism (leak detection code) has been upgraded to reduce the memory overhead (a separate tracking block is no longer allocated for each memory allocation), and now supports all of the internal object caches. The data structures and code for the internal object caches have been coelesced and optimized so that there is a single cache and memory list data structure and a single group of functions that implement generic cache management. This has reduced the code size in both the debug and release versions of the subsystem. The DEBUG_PRINT macro(s) have been optimized for size and replaced by ACPI_DEBUG_PRINT. The syntax for this macro is slightly different, because it generates a single call to an internal function. This results in a savings of about 90 bytes per invocation, resulting in an overall code and data savings of about 16% in the debug version of the subsystem. Linux: Fixed C3 disk corruption problems and re-enabled C3 on supporting machines. Integrated low-level sleep code by Patrick Mochel. Further tweaked source code Linuxization. Other minor fixes. ASL Compiler: Support for ACPI 2.0 variable length packages is fixed/completed. Fixed a problem where the optional length parameter for the ACPI 2.0 ToString operator. Fixed multiple extraneous error messages when a syntax error is detected within the declaration line of a control method. ---------------------------------------- Summary of changes for this label: 07_17_01 ACPI CA Core Subsystem: Added a new interface named AcpiGetFirmwareTable to obtain any ACPI table via the ACPI signature. The interface can be called at any time during kernel initialization, even before the kernel virtual memory manager is initialized and paging is enabled. This allows kernel subsystems to obtain ACPI tables very early, even before the ACPI CA subsystem is initialized. Fixed a problem where Fields defined with the AnyAcc attribute could be resolved to the incorrect address under the following conditions: 1) the field width is larger than 8 bits and 2) the parent operation region is not defined on a DWORD boundary. Fixed a problem where the interpreter is not being locked during namespace initialization (during execution of the _INI control methods), causing an error when an attempt is made to release it later. ACPI 2.0 support in the AML Interpreter has begun and will be ongoing throughout the rest of this year. In this label, The Mod operator is implemented. Added a new data type to contain full PCI addresses named ACPI_PCI_ID. This structure contains the PCI Segment, Bus, Device, and Function values. Linux: Enhanced the Linux version of the source code to change most capitalized ACPI type names to lowercase. For example, all instances of ACPI_STATUS are changed to acpi_status. This will result in a large diff, but the change is strictly cosmetic and aligns the CA code closer to the Linux coding standard. OSL Interfaces: The interfaces to the PCI configuration space have been changed to add the PCI Segment number and to split the single 32-bit combined DeviceFunction field into two 16-bit fields. This was accomplished by moving the four values that define an address in PCI configuration space (segment, bus, device, and function) to the new ACPI_PCI_ID structure. The changes to the PCI configuration space interfaces led to a reexamination of the complete set of address space access interfaces for PCI, I/O, and Memory. The previously existing 18 interfaces have proven difficult to maintain (any small change must be propagated across at least 6 interfaces) and do not easily allow for future expansion to 64 bits if necessary. Also, on some systems, it would not be appropriate to demultiplex the access width (8, 16, 32,or 64) before calling the OSL if the corresponding native OS interfaces contain a similar access width parameter. For these reasons, the 18 address space interfaces have been replaced by these 6 new ones: AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration AcpiOsReadMemory AcpiOsWriteMemory AcpiOsReadPort AcpiOsWritePort Added a new interface named AcpiOsGetRootPointer to allow the OSL to perform the platform and/or OS-specific actions necessary to obtain the ACPI RSDP table pointer. On IA-32 platforms, this interface will simply call down to the CA core to perform the low- memory search for the table. On IA-64, the RSDP is obtained from EFI. Migrating this interface to the OSL allows the CA core to remain OS and platform independent. Added a new interface named AcpiOsSignal to provide a generic "function code and pointer" interface for various miscellaneous signals and notifications that must be made to the host OS. The first such signals are intended to support the ASL Fatal and Breakpoint operators. In the latter case, the AcpiOsBreakpoint interface has been obsoleted. The definition of the AcpiFormatException interface has been changed to simplify its use. The caller no longer must supply a buffer to the call; A pointer to a const string is now returned directly. This allows the call to be easily used in printf statements, etc. since the caller does not have to manage a local buffer. ASL Compiler, Version X2025: The ACPI 2.0 Switch/Case/Default operators have been implemented and are fully functional. They will work with all ACPI 1.0 interpreters, since the operators are simply translated to If/Else pairs. The ACPI 2.0 ElseIf operator is implemented and will also work with 1.0 interpreters, for the same reason. Implemented support for ACPI 2.0 variable-length packages. These packages have a separate opcode, and their size is determined by the interpreter at run-time. Documentation The ACPI CA Programmer Reference has been updated to reflect the new interfaces and changes to existing interfaces. ------------------------------------------ Summary of changes for this label: 06_15_01 ACPI CA Core Subsystem: Fixed a problem where a DWORD-accessed field within a Buffer object would get its byte address inadvertently rounded down to the nearest DWORD. Buffers are always Byte-accessible. ASL Compiler, version X2024: Fixed a problem where the Switch() operator would either fault or hang the compiler. Note however, that the AML code for this ACPI 2.0 operator is not yet implemented. Compiler uses the new AcpiOsGetTimer interface to obtain compile timings. Implementation of the CreateField operator automatically converts a reference to a named field within a resource descriptor from a byte offset to a bit offset if required. Added some missing named fields from the resource descriptor support. These are the names that are automatically created by the compiler to reference fields within a descriptor. They are only valid at compile time and are not passed through to the AML interpreter. Resource descriptor named fields are now typed as Integers and subject to compile-time typechecking when used in expressions. ------------------------------------------ Summary of changes for this label: 05_18_01 ACPI CA Core Subsystem: Fixed a couple of problems in the Field support code where bits from adjacent fields could be returned along with the proper field bits. Restructured the field support code to improve performance, readability and maintainability. New DEBUG_PRINTP macro automatically inserts the procedure name into the output, saving hundreds of copies of procedure name strings within the source, shrinking the memory footprint of the debug version of the core subsystem. Source Code Structure: The source code directory tree was restructured to reflect the current organization of the component architecture. Some files and directories have been moved and/or renamed. Linux: Fixed leaking kacpidpc processes. Fixed queueing event data even when /proc/acpi/event is not opened. ASL Compiler, version X2020: Memory allocation performance enhancement - over 24X compile time improvement on large ASL files. Parse nodes and namestring buffers are now allocated from a large internal compiler buffer. The temporary .SRC file is deleted unless the "-s" option is specified The "-d" debug output option now sends all output to the .DBG file instead of the console. "External" second parameter is now optional "ElseIf" syntax now properly allows the predicate Last operand to "Load" now recognized as a Target operand Debug object can now be used anywhere as a normal object. ResourceTemplate now returns an object of type BUFFER EISAID now returns an object of type INTEGER "Index" now works with a STRING operand "LoadTable" now accepts optional parameters "ToString" length parameter is now optional "Interrupt (ResourceType," parse error fixed. "Register" with a user-defined region space parse error fixed Escaped backslash at the end of a string ("\\") scan/parse error fixed "Revision" is now an object of type INTEGER. ------------------------------------------ Summary of changes for this label: 05_02_01 Linux: /proc/acpi/event now blocks properly. Removed /proc/sys/acpi. You can still dump your DSDT from /proc/acpi/dsdt. ACPI CA Core Subsystem: Fixed a problem introduced in the previous label where some of the "small" resource descriptor types were not recognized. Improved error messages for the case where an ASL Field is outside the range of the parent operation region. ASL Compiler, version X2018: Added error detection for ASL Fields that extend beyond the length of the parent operation region (only if the length of the region is known at compile time.) This includes fields that have a minimum access width that is smaller than the parent region, and individual field units that are partially or entirely beyond the extent of the parent. ------------------------------------------ Summary of changes for this label: 04_27_01 ACPI CA Core Subsystem: Fixed a problem where the namespace mutex could be released at the wrong time during execution of AcpiRemoveAddressSpaceHandler. Added optional thread ID output for debug traces, to simplify debugging of multiple threads. Added context switch notification when the debug code realizes that a different thread is now executing ACPI code. Some additional external data types have been prefixed with the string "ACPI_" for consistency. This may effect existing code. The data types affected are the external callback typedefs - e.g., WALK_CALLBACK becomes ACPI_WALK_CALLBACK. Linux: Fixed an issue with the OSL semaphore implementation where a thread was waking up with an error from receiving a SIGCHLD signal. Linux version of ACPI CA now uses the system C library for string manipulation routines instead of a local implementation. Cleaned up comments and removed TBDs. ASL Compiler, version X2017: Enhanced error detection and reporting for all file I/O operations. Documentation: Programmer Reference updated to version 1.06. ------------------------------------------ Summary of changes for this label: 04_13_01 ACPI CA Core Subsystem: Restructured support for BufferFields and RegionFields. BankFields support is now fully operational. All known 32-bit limitations on field sizes have been removed. Both BufferFields and (Operation) RegionFields are now supported by the same field management code. Resource support now supports QWORD address and IO resources. The 16/32/64 bit address structures and the Extended IRQ structure have been changed to properly handle Source Resource strings. A ThreadId of -1 is now used to indicate a "mutex not acquired" condition internally and must never be returned by AcpiOsThreadId. This reserved value was changed from 0 since Unix systems allow a thread ID of 0. Linux: Driver code reorganized to enhance portability Added a kernel configuration option to control ACPI_DEBUG Fixed the EC driver to honor _GLK. ASL Compiler, version X2016: Fixed support for the "FixedHw" keyword. Previously, the FixedHw address space was set to 0, not 0x7f as it should be. ------------------------------------------ Summary of changes for this label: 03_13_01 ACPI CA Core Subsystem: During ACPI initialization, the _SB_._INI method is now run if present. Notify handler fix - notifies are deferred until the parent method completes execution. This fixes the "mutex already acquired" issue seen occasionally. Part of the "implicit conversion" rules in ACPI 2.0 have been found to cause compatibility problems with existing ASL/AML. The convert "result-to-target-type" implementation has been removed for stores to method Args and Locals. Source operand conversion is still fully implemented. Possible changes to ACPI 2.0 specification pending. Fix to AcpiRsCalculatePciRoutingTableLength to return correct length. Fix for compiler warnings for 64-bit compiles. Linux: /proc output aligned for easier parsing. Release-version compile problem fixed. New kernel configuration options documented in Configure.help. IBM 600E - Fixed Sleep button may generate "Invalid context" message. OSPM: Power resource driver integrated with bus manager. Fixed kernel fault during active cooling for thermal zones. Source Code: The source code tree has been restructured. ------------------------------------------ Summary of changes for this label: 03_02_01 Linux OS Services Layer (OSL): Major revision of all Linux-specific code. Modularized all ACPI-specific drivers. Added new thermal zone and power resource drivers. Revamped /proc interface (new functionality is under /proc/acpi). New kernel configuration options. Linux known issues: New kernel configuration options not documented in Configure.help yet. Module dependencies not currently implemented. If used, they should be loaded in this order: busmgr, power, ec, system, processor, battery, ac_adapter, button, thermal. Modules will not load if CONFIG_MODVERSION is set. IBM 600E - entering S5 may reboot instead of shutting down. IBM 600E - Sleep button may generate "Invalid context" message. Some systems may fail with "execution mutex already acquired" message. ACPI CA Core Subsystem: Added a new OSL Interface, AcpiOsGetThreadId. This was required for the deadlock detection code. Defined to return a non-zero, 32- bit thread ID for the currently executing thread. May be a non- zero constant integer on single-thread systems. Implemented deadlock detection for internal subsystem mutexes. We may add conditional compilation for this code (debug only) later. ASL/AML Mutex object semantics are now fully supported. This includes multiple acquires/releases by owner and support for the Mutex SyncLevel parameter. A new "Force Release" mechanism automatically frees all ASL Mutexes that have been acquired but not released when a thread exits the interpreter. This forces conformance to the ACPI spec ("All mutexes must be released when an invocation exits") and prevents deadlocked ASL threads. This mechanism can be expanded (later) to monitor other resource acquisitions if OEM ASL code continues to misbehave (which it will). Several new ACPI exception codes have been added for the Mutex support. Recursive method calls are now allowed and supported (the ACPI spec does in fact allow recursive method calls.) The number of recursive calls is subject to the restrictions imposed by the SERIALIZED method keyword and SyncLevel (ACPI 2.0) method parameter. Implemented support for the SyncLevel parameter for control methods (ACPI 2.0 feature) Fixed a deadlock problem when multiple threads attempted to use the interpreter. Fixed a problem where the string length of a String package element was not always set in a package returned from AcpiEvaluateObject. Fixed a problem where the length of a String package element was not always included in the length of the overall package returned from AcpiEvaluateObject. Added external interfaces (Acpi*) to the ACPI debug memory manager. This manager keeps a list of all outstanding allocations, and can therefore detect memory leaks and attempts to free memory blocks more than once. Useful for code such as the power manager, etc. May not be appropriate for device drivers. Performance with the debug code enabled is slow. The ACPI Global Lock is now an optional hardware element. ASL Compiler Version X2015: Integrated changes to allow the compiler to be generated on multiple platforms. Linux makefile added to generate the compiler on Linux Source Code: All platform-specific headers have been moved to their own subdirectory, Include/Platform. New source file added, Interpreter/ammutex.c New header file, Include/acstruct.h Documentation: The programmer reference has been updated for the following new interfaces: AcpiOsGetThreadId AcpiAllocate AcpiCallocate AcpiFree ------------------------------------------ Summary of changes for this label: 02_08_01 Core ACPI CA Subsystem: Fixed a problem where an error was incorrectly returned if the return resource buffer was larger than the actual data (in the resource interfaces). References to named objects within packages are resolved to the full pathname string before packages are returned directly (via the AcpiEvaluateObject interface) or indirectly via the resource interfaces. Linux OS Services Layer (OSL): Improved /proc battery interface. Added C-state debugging output and other miscellaneous fixes. ASL Compiler Version X2014: All defined method arguments can now be used as local variables, including the ones that are not actually passed in as parameters. The compiler tracks initialization of the arguments and issues an exception if they are used without prior assignment (just like locals). The -o option now specifies a filename prefix that is used for all output files, including the AML output file. Otherwise, the default behavior is as follows: 1) the AML goes to the file specified in the DSDT. 2) all other output files use the input source filename as the base. ------------------------------------------ Summary of changes for this label: 01_25_01 Core ACPI CA Subsystem: Restructured the implementation of object store support within the interpreter. This includes support for the Store operator as well as any ASL operators that include a target operand. Partially implemented support for Implicit Result-to-Target conversion. This is when a result object is converted on the fly to the type of an existing target object. Completion of this support is pending further analysis of the ACPI specification concerning this matter. CPU-specific code has been removed from the subsystem (hardware directory). New Power Management Timer functions added Linux OS Services Layer (OSL): Moved system state transition code to the core, fixed it, and modified Linux OSL accordingly. Fixed C2 and C3 latency calculations. We no longer use the compilation date for the version message on initialization, but retrieve the version from AcpiGetSystemInfo(). Incorporated for fix Sony VAIO machines. Documentation: The Programmer Reference has been updated and reformatted. ASL Compiler: Version X2013: Fixed a problem where the line numbering and error reporting could get out of sync in the presence of multiple include files. ------------------------------------------ Summary of changes for this label: 01_15_01 Core ACPI CA Subsystem: Implemented support for type conversions in the execution of the ASL Concatenate operator (The second operand is converted to match the type of the first operand before concatenation.) Support for implicit source operand conversion is partially implemented. The ASL source operand types Integer, Buffer, and String are freely interchangeable for most ASL operators and are converted by the interpreter on the fly as required. Implicit Target operand conversion (where the result is converted to the target type before storing) is not yet implemented. Support for 32-bit and 64-bit BCD integers is implemented. Problem fixed where a field read on an aligned field could cause a read past the end of the field. New exception, AE_AML_NO_RETURN_VALUE, is returned when a method does not return a value, but the caller expects one. (The ASL compiler flags this as a warning.) ASL Compiler: Version X2011: 1. Static typechecking of all operands is implemented. This prevents the use of invalid objects (such as using a Package where an Integer is required) at compile time instead of at interpreter run-time. 2. The ASL source line is printed with ALL errors and warnings. 3. Bug fix for source EOF without final linefeed. 4. Debug option is split into a parse trace and a namespace trace. 5. Namespace output option (-n) includes initial values for integers and strings. 6. Parse-only option added for quick syntax checking. 7. Compiler checks for duplicate ACPI name declarations Version X2012: 1. Relaxed typechecking to allow interchangeability between strings, integers, and buffers. These types are now converted by the interpreter at runtime. 2. Compiler reports time taken by each internal subsystem in the debug output file. ------------------------------------------ Summary of changes for this label: 12_14_00 ASL Compiler: This is the first official release of the compiler. Since the compiler requires elements of the Core Subsystem, this label synchronizes everything. ------------------------------------------ Summary of changes for this label: 12_08_00 Fixed a problem where named references within the ASL definition of both OperationRegions and CreateXXXFields did not work properly. The symptom was an AE_AML_OPERAND_TYPE during initialization of the region/field. This is similar (but not related internally) to the problem that was fixed in the last label. Implemented both 32-bit and 64-bit support for the BCD ASL functions ToBCD and FromBCD. Updated all legal headers to include "2000" in the copyright years. ------------------------------------------ Summary of changes for this label: 12_01_00 Fixed a problem where method invocations within the ASL definition of both OperationRegions and CreateXXXFields did not work properly. The symptom was an AE_AML_OPERAND_TYPE during initialization of the region/field: nsinit-0209: AE_AML_OPERAND_TYPE while getting region arguments [DEBG] ammonad-0284: Exec_monadic2_r/Not: bad operand(s) (0x3005) Fixed a problem where operators with more than one nested subexpression would fail. The symptoms were varied, by mostly AE_AML_OPERAND_TYPE errors. This was actually a rather serious problem that has gone unnoticed until now. Subtract (Add (1,2), Multiply (3,4)) Fixed a problem where AcpiGetHandle didn't quite get fixed in the previous build (The prefix part of a relative path was handled incorrectly). Fixed a problem where Operation Region initialization failed if the operation region name was a "namepath" instead of a simple "nameseg". Symptom was an AE_NO_OPERAND error. Fixed a problem where an assignment to a local variable via the indirect RefOf mechanism only worked for the first such assignment. Subsequent assignments were ignored. ------------------------------------------ Summary of changes for this label: 11_15_00 ACPI 2.0 table support with backwards support for ACPI 1.0 and the 0.71 extensions. Note: although we can read ACPI 2.0 BIOS tables, the AML interpreter does NOT have support for the new 2.0 ASL grammar terms at this time. All ACPI hardware access is via the GAS structures in the ACPI 2.0 FADT. All physical memory addresses across all platforms are now 64 bits wide. Logical address width remains dependent on the platform (i.e., "void *"). AcpiOsMapMemory interface changed to a 64-bit physical address. The AML interpreter integer size is now 64 bits, as per the ACPI 2.0 specification. For backwards compatibility with ACPI 1.0, ACPI tables with a revision number less than 2 use 32-bit integers only. Fixed a problem where the evaluation of OpRegion operands did not always resolve them to numbers properly. ------------------------------------------ Summary of changes for this label: 10_20_00 Fix for CBN_._STA issue. This fix will allow correct access to CBN_ OpRegions when the _STA returns 0x8. Support to convert ACPI constants (Ones, Zeros, One) to actual values before a package object is returned Fix for method call as predicate to if/while construct causing incorrect if/while behavior Fix for Else block package lengths sometimes calculated wrong (if block > 63 bytes) Fix for Processor object length field, was always zero Table load abort if FACP sanity check fails Fix for problem with Scope(name) if name already exists Warning emitted if a named object referenced cannot be found (resolved) during method execution. ------------------------------------------ Summary of changes for this label: 9_29_00 New table initialization interfaces: AcpiInitializeSubsystem no longer has any parameters AcpiFindRootPointer - Find the RSDP (if necessary) AcpiLoadTables (RSDP) - load all tables found at RSDP- >RSDT Obsolete Interfaces AcpiLoadFirmwareTables - replaced by AcpiLoadTables Note: These interface changes require changes to all existing OSDs The PCI_Config default address space handler is always installed at the root namespace object. ------------------------------------------- Summary of changes for this label: 09_15_00 The new initialization architecture is implemented. New interfaces are: AcpiInitializeSubsystem (replaces AcpiInitialize) AcpiEnableSubsystem Obsolete Interfaces: AcpiLoadNamespace (Namespace is automatically loaded when a table is loaded) The ACPI_OPERAND_OBJECT has been optimized to shrink its size from 52 bytes to 32 bytes. There is usually one of these for every namespace object, so the memory savings is significant. Implemented just-in-time evaluation of the CreateField operators. Bug fixes for IA-64 support have been integrated. Additional code review comments have been implemented The so-called "third pass parse" has been replaced by a final walk through the namespace to initialize all operation regions (address spaces) and fields that have not yet been initialized during the execution of the various _INI and REG methods. New file - namespace/nsinit.c ------------------------------------------- Summary of changes for this label: 09_01_00 Namespace manager data structures have been reworked to change the primary object from a table to a single object. This has resulted in dynamic memory savings of 3X within the namespace and 2X overall in the ACPI CA subsystem. Fixed problem where the call to AcpiEvFindPciRootBuses was inadvertently left commented out. Reduced the warning count when generating the source with the GCC compiler. Revision numbers added to each module header showing the SourceSafe version of the file. Please refer to this version number when giving us feedback or comments on individual modules. The main object types within the subsystem have been renamed to clarify their purpose: ACPI_INTERNAL_OBJECT -> ACPI_OPERAND_OBJECT ACPI_GENERIC_OP -> ACPI_PARSE_OBJECT ACPI_NAME_TABLE_ENTRY -> ACPI_NAMESPACE_NODE NOTE: no changes to the initialization sequence are included in this label. ------------------------------------------- Summary of changes for this label: 08_23_00 Fixed problem where TerminateControlMethod was being called multiple times per method Fixed debugger problem where single stepping caused a semaphore to be oversignalled Improved performance through additional parse object caching - added ACPI_EXTENDED_OP type ------------------------------------------- Summary of changes for this label: 08_10_00 Parser/Interpreter integration: Eliminated the creation of complete parse trees for ACPI tables and control methods. Instead, parse subtrees are created and then deleted as soon as they are processed (Either entered into the namespace or executed by the interpreter). This reduces the use of dynamic kernel memory significantly. (about 10X) Exception codes broken into classes and renumbered. Be sure to recompile all code that includes acexcep.h. Hopefully we won't have to renumber the codes again now that they are split into classes (environment, programmer, AML code, ACPI table, and internal). Fixed some additional alignment issues in the Resource Manager subcomponent Implemented semaphore tracking in the AcpiExec utility, and fixed several places where mutexes/semaphores were being unlocked without a corresponding lock operation. There are no known semaphore or mutex "leaks" at this time. Fixed the case where an ASL Return operator is used to return an unnamed package. ------------------------------------------- Summary of changes for this label: 07_28_00 Fixed a problem with the way addresses were calculated in AcpiAmlReadFieldData() and AcpiAmlWriteFieldData(). This problem manifested itself when a Field was created with WordAccess or DwordAccess, but the field unit defined within the Field was less than a Word or Dword. Fixed a problem in AmlDumpOperands() module's loop to pull operands off of the operand stack to display information. The problem manifested itself as a TLB error on 64-bit systems when accessing an operand stack with two or more operands. Fixed a problem with the PCI configuration space handlers where context was getting confused between accesses. This required a change to the generic address space handler and address space setup definitions. Handlers now get both a global handler context (this is the one passed in by the user when executing AcpiInstallAddressSpaceHandler() and a specific region context that is unique to each region (For example, the _ADR, _SEG and _BBN values associated with a specific region). The generic function definitions have changed to the following: typedef ACPI_STATUS (*ADDRESS_SPACE_HANDLER) ( UINT32 Function, UINT32 Address, UINT32 BitWidth, UINT32 *Value, void *HandlerContext, // This used to be void *Context void *RegionContext); // This is an additional parameter typedef ACPI_STATUS (*ADDRESS_SPACE_SETUP) ( ACPI_HANDLE RegionHandle, UINT32 Function, void *HandlerContext, void **RegionContext); // This used to be **ReturnContext ------------------------------------------- Summary of changes for this label: 07_21_00 Major file consolidation and rename. All files within the interpreter have been renamed as well as most header files. This was done to prevent collisions with existing files in the host OSs -- filenames such as "config.h" and "global.h" seem to be quite common. The VC project files have been updated. All makefiles will require modification. The parser/interpreter integration continues in Phase 5 with the implementation of a complete 2-pass parse (the AML is parsed twice) for each table; This avoids the construction of a huge parse tree and therefore reduces the amount of dynamic memory required by the subsystem. Greater use of the parse object cache means that performance is unaffected. Many comments from the two code reviews have been rolled in. The 64-bit alignment support is complete. ------------------------------------------- Summary of changes for this label: 06_30_00 With a nod and a tip of the hat to the technology of yesteryear, we've added support in the source code for 80 column output devices. The code is now mostly constrained to 80 columns or less to support environments and editors that 1) cannot display or print more than 80 characters on a single line, and 2) cannot disable line wrapping. A major restructuring of the namespace data structure has been completed. The result is 1) cleaner and more understandable/maintainable code, and 2) a significant reduction in the dynamic memory requirement for each named ACPI object (almost half). ------------------------------------------- Summary of changes for this label: 06_23_00 Linux support has been added. In order to obtain approval to get the ACPI CA subsystem into the Linux kernel, we've had to make quite a few changes to the base subsystem that will affect all users (all the changes are generic and OS- independent). The effects of these global changes have been somewhat far reaching. Files have been merged and/or renamed and interfaces have been renamed. The major changes are described below. Osd* interfaces renamed to AcpiOs* to eliminate namespace pollution/confusion within our target kernels. All OSD interfaces must be modified to match the new naming convention. Files merged across the subsystem. A number of the smaller source and header files have been merged to reduce the file count and increase the density of the existing files. There are too many to list here. In general, makefiles that call out individual files will require rebuilding. Interpreter files renamed. All interpreter files now have the prefix am* instead of ie* and is*. Header files renamed: The acapi.h file is now acpixf.h. The acpiosd.h file is now acpiosxf.h. We are removing references to the acronym "API" since it is somewhat windowsy. The new name is "external interface" or xface or xf in the filenames.j All manifest constants have been forced to upper case (some were mixed case.) Also, the string "ACPI_" has been prepended to many (not all) of the constants, typedefs, and structs. The globals "DebugLevel" and "DebugLayer" have been renamed "AcpiDbgLevel" and "AcpiDbgLayer" respectively. All other globals within the subsystem are now prefixed with "AcpiGbl_" Internal procedures within the subsystem are now prefixed with "Acpi" (with only a few exceptions). The original two-letter abbreviation for the subcomponent remains after "Acpi" - for example, CmCallocate became AcpiCmCallocate. Added a source code translation/conversion utility. Used to generate the Linux source code, it can be modified to generate other types of source as well. Can also be used to cleanup existing source by removing extraneous spaces and blank lines. Found in tools/acpisrc/* OsdUnMapMemory was renamed to OsdUnmapMemory and then AcpiOsUnmapMemory. (UnMap became Unmap). A "MaxUnits" parameter has been added to AcpiOsCreateSemaphore. When set to one, this indicates that the caller wants to use the semaphore as a mutex, not a counting semaphore. ACPI CA uses both types. However, implementers of this call may want to use different OS primitives depending on the type of semaphore requested. For example, some operating systems provide separate "mutex" and "semaphore" interfaces - where the mutex interface is much faster because it doesn't have all the overhead of a full semaphore implementation. Fixed a deadlock problem where a method that accesses the PCI address space can block forever if it is the first access to the space. ------------------------------------------- Summary of changes for this label: 06_02_00 Support for environments that cannot handle unaligned data accesses (e.g. firmware and OS environments devoid of alignment handler technology namely SAL/EFI and the IA-64 Linux kernel) has been added (via configurable macros) in these three areas: - Transfer of data from the raw AML byte stream is done via byte moves instead of word/dword/qword moves. - External objects are aligned within the user buffer, including package elements (sub- objects). - Conversion of name strings to UINT32 Acpi Names is now done byte-wise. The Store operator was modified to mimic Microsoft's implementation when storing to a Buffer Field. Added a check of the BM_STS bit before entering C3. The methods subdirectory has been obsoleted and removed. A new file, cmeval.c subsumes the functionality. A 16-bit (DOS) version of AcpiExec has been developed. The makefile is under the acpiexec directory. Index: head/sys/contrib/dev/acpica/common/ahpredef.c =================================================================== --- head/sys/contrib/dev/acpica/common/ahpredef.c (revision 366561) +++ head/sys/contrib/dev/acpica/common/ahpredef.c (revision 366562) @@ -1,500 +1,505 @@ /****************************************************************************** * * Module Name: ahpredef - Table of all known ACPI predefined names * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("ahpredef") /* * iASL only needs a partial table (short descriptions only). * AcpiHelp needs the full table. */ #ifdef ACPI_ASL_COMPILER #define AH_PREDEF(Name, ShortDesc, LongDesc) {Name, ShortDesc} #else #define AH_PREDEF(Name, ShortDesc, LongDesc) {Name, ShortDesc, LongDesc} #endif /* * Predefined ACPI names, with short description and return value. * This table was extracted directly from the ACPI specification. */ const AH_PREDEFINED_NAME AslPredefinedInfo[] = { AH_PREDEF ("_ACx", "Active Cooling, x=0-9", "Returns the active cooling policy threshold values"), AH_PREDEF ("_ADR", "Address", "Returns address of a device on parent bus, and resource field"), AH_PREDEF ("_AEI", "ACPI Event Interrupts", "Returns a list of GPIO events to be used as ACPI events"), AH_PREDEF ("_ALC", "Ambient Light Chromaticity", "Returns the ambient light color chromaticity"), AH_PREDEF ("_ALI", "Ambient Light Illuminance", "Returns the ambient light brightness"), AH_PREDEF ("_ALN", "Alignment", "Base alignment, Resource Descriptor field"), AH_PREDEF ("_ALP", "Ambient Light Polling", "Returns the ambient light sensor polling frequency"), AH_PREDEF ("_ALR", "Ambient Light Response", "Returns the ambient light brightness to display brightness mappings"), AH_PREDEF ("_ALT", "Ambient Light Temperature", "Returns the ambient light color temperature"), AH_PREDEF ("_ALx", "Active List, x=0-9", "Returns a list of active cooling device objects"), AH_PREDEF ("_ART", "Active Cooling Relationship Table", "Returns thermal relationship information between platform devices and fan devices"), AH_PREDEF ("_ASI", "Address Space Id", "Resource Descriptor field"), AH_PREDEF ("_ASZ", "Access Size", "Resource Descriptor field"), AH_PREDEF ("_ATT", "Type-Specific Attribute", "Resource Descriptor field"), AH_PREDEF ("_BAS", "Base Address", "Range base address, Resource Descriptor field"), AH_PREDEF ("_BBN", "BIOS Bus Number", "Returns the PCI bus number returned by the BIOS"), AH_PREDEF ("_BCL", "Brightness Control Levels", "Returns a list of supported brightness control levels"), AH_PREDEF ("_BCM", "Brightness Control Method", "Sets the brightness level of the display device"), AH_PREDEF ("_BCT", "Battery Charge Time", "Returns time remaining to complete charging battery"), AH_PREDEF ("_BDN", "BIOS Dock Name", "Returns the Dock ID returned by the BIOS"), AH_PREDEF ("_BFS", "Back From Sleep", "Inform AML of a wake event"), AH_PREDEF ("_BIF", "Battery Information", "Returns a Control Method Battery information block"), AH_PREDEF ("_BIX", "Battery Information Extended", "Returns a Control Method Battery extended information block"), AH_PREDEF ("_BLT", "Battery Level Threshold", "Set battery level threshold preferences"), AH_PREDEF ("_BM_", "Bus Master", "Resource Descriptor field"), AH_PREDEF ("_BMA", "Battery Measurement Averaging Interval", "Sets battery measurement averaging interval"), AH_PREDEF ("_BMC", "Battery Maintenance Control", "Sets battery maintenance and control features"), AH_PREDEF ("_BMD", "Battery Maintenance Data", "Returns battery maintenance, control, and state data"), AH_PREDEF ("_BMS", "Battery Measurement Sampling Time", "Sets the battery measurement sampling time"), AH_PREDEF ("_BQC", "Brightness Query Current", "Returns the current display brightness level"), AH_PREDEF ("_BST", "Battery Status", "Returns a Control Method Battery status block"), AH_PREDEF ("_BTH", "Battery Throttle Limit", "Thermal limit for charging and discharging"), AH_PREDEF ("_BTM", "Battery Time", "Returns the battery runtime"), AH_PREDEF ("_BTP", "Battery Trip Point", "Sets a Control Method Battery trip point"), AH_PREDEF ("_CBA", "Configuration Base Address", "Sets the base address for a PCI Express host bridge"), AH_PREDEF ("_CCA", "Cache Coherency Attribute", "Returns a device's support level for cache coherency"), AH_PREDEF ("_CDM", "Clock Domain", "Returns a logical processor's clock domain identifier"), AH_PREDEF ("_CID", "Compatible ID", "Returns a device's Plug and Play Compatible ID list"), AH_PREDEF ("_CLS", "Class Code", "Returns PCI class code and subclass"), AH_PREDEF ("_CPC", "Continuous Performance Control", "Returns a list of performance control interfaces"), AH_PREDEF ("_CR3", "Warm/Standby Temperature", "Temperature for a fast low power state"), AH_PREDEF ("_CRS", "Current Resource Settings", "Returns the current resource settings for a device"), AH_PREDEF ("_CRT", "Critical Temperature", "Returns the shutdown critical temperature"), AH_PREDEF ("_CSD", "C-State Dependencies", "Returns a list of C-state dependencies"), AH_PREDEF ("_CST", "C-States", "Returns a list of supported C-states"), AH_PREDEF ("_CWS", "Clear Wake Alarm Status", "Clear the status of wake alarms"), AH_PREDEF ("_DBT", "Debounce Timeout", "Timeout value, Resource Descriptor field"), AH_PREDEF ("_DCK", "Dock Present", "Sets docking isolation. Presence indicates device is a docking station"), AH_PREDEF ("_DCS", "Display Current Status", "Returns status of the display output device"), AH_PREDEF ("_DDC", "Display Data Current", "Returns the EDID for the display output device"), AH_PREDEF ("_DDN", "DOS Device Name", "Returns a device logical name"), AH_PREDEF ("_DEC", "Decode", "Device decoding type, Resource Descriptor field"), AH_PREDEF ("_DEP", "Dependencies", "Returns a list of operation region dependencies"), AH_PREDEF ("_DGS", "Display Graphics State", "Return the current state of the output device"), AH_PREDEF ("_DIS", "Disable Device", "Disables a device"), AH_PREDEF ("_DLM", "Device Lock Mutex", "Defines mutex for OS/AML sharing"), AH_PREDEF ("_DMA", "Direct Memory Access", "Returns device current resources for DMA transactions, and resource field"), AH_PREDEF ("_DOD", "Display Output Devices", "Enumerate all devices attached to the display adapter"), AH_PREDEF ("_DOS", "Disable Output Switching", "Sets the display output switching mode"), AH_PREDEF ("_DPL", "Device Selection Polarity", "Polarity of Device Selection signal, Resource Descriptor field"), AH_PREDEF ("_DRS", "Drive Strength", "Drive Strength setting for GPIO connection, Resource Descriptor field"), AH_PREDEF ("_DSD", "Device-Specific Data", "Returns a list of device property information"), AH_PREDEF ("_DSM", "Device-Specific Method", "Executes device-specific functions"), AH_PREDEF ("_DSS", "Device Set State", "Sets the display device state"), AH_PREDEF ("_DSW", "Device Sleep Wake", "Sets the sleep and wake transition states for a device"), AH_PREDEF ("_DTI", "Device Temperature Indication", "Conveys native device temperature to the platform"), AH_PREDEF ("_Exx", "Edge-Triggered GPE, xx=0x00-0xFF", "Method executed as a result of a general-purpose event"), AH_PREDEF ("_EC_", "Embedded Controller", "returns EC offset and query information"), AH_PREDEF ("_EDL", "Eject Device List", "Returns a list of devices that are dependent on a device (docking)"), AH_PREDEF ("_EJD", "Ejection Dependent Device", "Returns the name of dependent (parent) device (docking)"), AH_PREDEF ("_EJx", "Eject Device, x=0-9", "Begin or cancel a device ejection request (docking)"), AH_PREDEF ("_END", "Endianness", "Endian orientation, Resource Descriptor field"), AH_PREDEF ("_EVT", "Event", "Event method for GPIO events"), AH_PREDEF ("_FDE", "Floppy Disk Enumerate", "Returns floppy disk configuration information"), AH_PREDEF ("_FDI", "Floppy Drive Information", "Returns a floppy drive information block"), AH_PREDEF ("_FDM", "Floppy Drive Mode", "Sets a floppy drive speed"), AH_PREDEF ("_FIF", "Fan Information", "Returns fan device information"), AH_PREDEF ("_FIT", "Firmware Interface Table", "Returns a list of NFIT structures"), AH_PREDEF ("_FIX", "Fixed Register Resource Provider", "Returns a list of devices that implement FADT register blocks"), AH_PREDEF ("_FLC", "Flow Control", "Flow control, Resource Descriptor field"), AH_PREDEF ("_FPS", "Fan Performance States", "Returns a list of supported fan performance states"), AH_PREDEF ("_FSL", "Fan Set Level", "Control method that sets the fan device's speed level (performance state)"), AH_PREDEF ("_FST", "Fan Status", "Returns current status information for a fan device"), AH_PREDEF ("_FUN", "Function Number", "Resource descriptor field"), AH_PREDEF ("_GAI", "Get Averaging Interval", "Returns the power meter averaging interval"), AH_PREDEF ("_GCP", "Get Capabilities", "Get device time capabilities"), AH_PREDEF ("_GHL", "Get Hardware Limit", "Returns the hardware limit enforced by the power meter"), AH_PREDEF ("_GL_", "Global Lock", "OS-defined Global Lock mutex object"), AH_PREDEF ("_GLK", "Get Global Lock Requirement", "Returns a device's Global Lock requirement for device access"), AH_PREDEF ("_GPD", "Get Post Data", "Returns the value of the VGA device that will be posted at boot"), AH_PREDEF ("_GPE", "General Purpose Events", "Predefined scope (\\_GPE) or SCI number for EC"), AH_PREDEF ("_GRA", "Granularity", "Address space granularity, Resource Descriptor field"), AH_PREDEF ("_GRT", "Get Real Time", "Returns current time-of-day from a time/alarm device"), AH_PREDEF ("_GSB", "Global System Interrupt Base", "Returns the GSB for a I/O APIC device"), AH_PREDEF ("_GTF", "Get Task File", "Returns a list of ATA commands to restore a drive to default state"), AH_PREDEF ("_GTM", "Get Timing Mode", "Returns a list of IDE controller timing information"), AH_PREDEF ("_GTS", "Going To Sleep", "Inform AML of pending sleep"), AH_PREDEF ("_GWS", "Get Wake Status", "Return status of wake alarms"), AH_PREDEF ("_HE_", "High-Edge", "Interrupt triggering, Resource Descriptor field"), AH_PREDEF ("_HID", "Hardware ID", "Returns a device's Plug and Play Hardware ID"), AH_PREDEF ("_HMA", "Heterogeneous Memory Attributes", "Returns a list of HMAT structures."), AH_PREDEF ("_HOT", "Hot Temperature", "Returns the critical temperature for sleep (entry to S4)"), AH_PREDEF ("_HPP", "Hot Plug Parameters", "Returns a list of hot-plug information for a PCI device"), AH_PREDEF ("_HPX", "Hot Plug Parameter Extensions", "Returns a list of hot-plug information for a PCI device. Supersedes _HPP"), AH_PREDEF ("_HRV", "Hardware Revision", "Returns a hardware revision value"), AH_PREDEF ("_IFT", "IPMI Interface Type", "See the Intelligent Platform Management Interface Specification"), AH_PREDEF ("_INI", "Initialize", "Performs device specific initialization"), AH_PREDEF ("_INT", "Interrupts", "Interrupt mask bits, Resource Descriptor field"), AH_PREDEF ("_IOR", "I/O Restriction", "Restriction type, Resource Descriptor field"), AH_PREDEF ("_IRC", "Inrush Current", "Presence indicates that a device has a significant inrush current draw"), AH_PREDEF ("_Lxx", "Level-Triggered GPE, xx=0x00-0xFF", "Control method executed as a result of a general-purpose event"), AH_PREDEF ("_LCK", "Lock Device", "Locks or unlocks a device (docking)"), AH_PREDEF ("_LEN", "Length", "Range length, Resource Descriptor field"), AH_PREDEF ("_LID", "Lid Status", "Returns the open/closed status of the lid on a mobile system"), AH_PREDEF ("_LIN", "Lines In Use", "Handshake lines, Resource Descriptor field"), AH_PREDEF ("_LL_", "Low Level", "Interrupt polarity, Resource Descriptor field"), AH_PREDEF ("_LPD", "Low Power Dependencies", "Returns a list of dependencies for low power idle entry"), AH_PREDEF ("_LPI", "Low Power Idle States", "Returns a list of supported low power idle states"), AH_PREDEF ("_LSI", "Label Storage Information", "Returns information about the Label Storage Area associated with the NVDIMM object."), AH_PREDEF ("_LSR", "Label Storage Read", "Returns label data from the Label Storage Area of the NVDIMM object."), AH_PREDEF ("_LSW", "Label Storage Write", "Writes label data in to the Label Storage Area of the NVDIMM object."), AH_PREDEF ("_MAF", "Maximum Address Fixed", "Resource Descriptor field"), AH_PREDEF ("_MAT", "Multiple APIC Table Entry", "Returns a list of MADT APIC structure entries"), AH_PREDEF ("_MAX", "Maximum Base Address", "Resource Descriptor field"), AH_PREDEF ("_MBM", "Memory Bandwidth Monitoring Data", "Returns bandwidth monitoring data for a memory device"), AH_PREDEF ("_MEM", "Memory Attributes", "Resource Descriptor field"), AH_PREDEF ("_MIF", "Minimum Address Fixed", "Resource Descriptor field"), AH_PREDEF ("_MIN", "Minimum Base Address", "Resource Descriptor field"), AH_PREDEF ("_MLS", "Multiple Language String", "Returns a device description in multiple languages"), AH_PREDEF ("_MOD", "Mode", "Interrupt mode, Resource Descriptor field"), AH_PREDEF ("_MSG", "Message", "Sets the system message waiting status indicator"), AH_PREDEF ("_MSM", "Memory Set Monitoring", "Sets bandwidth monitoring parameters for a memory device"), AH_PREDEF ("_MTL", "Minimum Throttle Limit", "Returns the minimum throttle limit for a thermal zone"), AH_PREDEF ("_MTP", "Memory Type", "Resource Descriptor field"), AH_PREDEF ("_NBS", "NVDIMM Boot Status", "Returns information about NVDIMM device’s status at boot time"), AH_PREDEF ("_NCH", "NVDIMM Current Health Information", "Returns current health information of the NVDIMM device"), AH_PREDEF ("_NIC", "NVDIMM Health Error Injection Capabilities", "Returns health error injection capabilities that are supported by the platform"), AH_PREDEF ("_NIG", "NVDIMM Inject Health Error Status","Returns currently active health errors and their error attributes that are injected by _NIH"), AH_PREDEF ("_NIH", "NVDIMM Inject/Clear Health Errors", "Returns the status of injecting or clearing Health Errors"), AH_PREDEF ("_NTT", "Notification Temperature Threshold", "Returns a threshold for device temperature change that requires platform notification"), AH_PREDEF ("_OFF", "Power Off", "Sets a power resource to the off state"), AH_PREDEF ("_ON_", "Power On", "Sets a power resource to the on state"), AH_PREDEF ("_OS_", "Operating System", "Returns a string that identifies the operating system"), AH_PREDEF ("_OSC", "Operating System Capabilities", "Inform AML of host features and capabilities"), AH_PREDEF ("_OSI", "Operating System Interfaces", "Returns supported interfaces, behaviors, and features"), AH_PREDEF ("_OST", "OSPM Status Indication", "Inform AML of event processing status"), AH_PREDEF ("_PAI", "Power Averaging Interval", "Sets the averaging interval for a power meter"), AH_PREDEF ("_PAR", "Parity", "Parity bits, Resource Descriptor field"), AH_PREDEF ("_PCL", "Power Consumer List", "Returns a list of devices powered by a power source"), AH_PREDEF ("_PCT", "Performance Control", "Returns processor performance control and status registers"), AH_PREDEF ("_PDC", "Processor Driver Capabilities", "Inform AML of processor driver capabilities"), AH_PREDEF ("_PDL", "P-state Depth Limit", "Returns the lowest available performance P-state"), AH_PREDEF ("_PHA", "Clock Phase", "Clock phase, Resource Descriptor field"), AH_PREDEF ("_PIC", "Interrupt Model", "Inform AML of the interrupt model in use"), AH_PREDEF ("_PIF", "Power Source Information", "Returns a Power Source information block"), AH_PREDEF ("_PIN", "Pin List", "Pin list, Resource Descriptor field"), AH_PREDEF ("_PLD", "Physical Location of Device", "Returns a device's physical location information"), AH_PREDEF ("_PMC", "Power Meter Capabilities", "Returns a list of Power Meter capabilities info"), AH_PREDEF ("_PMD", "Power Metered Devices", "Returns a list of devices that are measured by the power meter device"), AH_PREDEF ("_PMM", "Power Meter Measurement", "Returns the current value of the Power Meter"), AH_PREDEF ("_POL", "Polarity", "Interrupt polarity, Resource Descriptor field"), AH_PREDEF ("_PPC", "Performance Present Capabilities", "Returns a list of the performance states currently supported by the platform"), AH_PREDEF ("_PPE", "Polling for Platform Error", "Returns the polling interval to retrieve Corrected Platform Error information"), AH_PREDEF ("_PPI", "Pin Configuration", "Resource Descriptor field"), AH_PREDEF ("_PR", "Processor", "Predefined scope for processor objects"), AH_PREDEF ("_PR0", "Power Resources for D0", "Returns a list of dependent power resources to enter state D0 (fully on)"), AH_PREDEF ("_PR1", "Power Resources for D1", "Returns a list of dependent power resources to enter state D1"), AH_PREDEF ("_PR2", "Power Resources for D2", "Returns a list of dependent power resources to enter state D2"), AH_PREDEF ("_PR3", "Power Resources for D3hot", "Returns a list of dependent power resources to enter state D3hot"), AH_PREDEF ("_PRE", "Power Resources for Enumeration", "Returns a list of dependent power resources to enumerate devices on a bus"), AH_PREDEF ("_PRL", "Power Source Redundancy List", "Returns a list of power source devices in the same redundancy grouping"), AH_PREDEF ("_PRR", "Power Resource for Reset", "Execute a reset on a device"), AH_PREDEF ("_PRS", "Possible Resource Settings", "Returns a list of a device's possible resource settings"), AH_PREDEF ("_PRT", "PCI Routing Table", "Returns a list of PCI interrupt mappings"), AH_PREDEF ("_PRW", "Power Resources for Wake", "Returns a list of dependent power resources for waking"), AH_PREDEF ("_PS0", "Power State 0", "Sets a device's power state to D0 (device fully on)"), AH_PREDEF ("_PS1", "Power State 1", "Sets a device's power state to D1"), AH_PREDEF ("_PS2", "Power State 2", "Sets a device's power state to D2"), AH_PREDEF ("_PS3", "Power State 3", "Sets a device's power state to D3 (device off)"), AH_PREDEF ("_PSC", "Power State Current", "Returns a device's current power state"), AH_PREDEF ("_PSD", "Power State Dependencies", "Returns processor P-State dependencies"), AH_PREDEF ("_PSE", "Power State for Enumeration", "Put a bus into enumeration power mode"), AH_PREDEF ("_PSL", "Passive List", "Returns a list of passive cooling device objects"), AH_PREDEF ("_PSR", "Power Source", "Returns the power source device currently in use"), AH_PREDEF ("_PSS", "Performance Supported States", "Returns a list of supported processor performance states"), AH_PREDEF ("_PSV", "Passive Temperature", "Returns the passive trip point temperature"), AH_PREDEF ("_PSW", "Power State Wake", "Sets a device's wake function"), AH_PREDEF ("_PTC", "Processor Throttling Control", "Returns throttling control and status registers"), AH_PREDEF ("_PTP", "Power Trip Points", "Sets trip points for the Power Meter device"), AH_PREDEF ("_PTS", "Prepare To Sleep", "Inform the platform of an impending sleep transition"), AH_PREDEF ("_PUR", "Processor Utilization Request", "Returns the number of processors that the platform would like to idle"), AH_PREDEF ("_PXM", "Device Proximity", "Returns a device's proximity domain identifier"), AH_PREDEF ("_Qxx", "EC Query, xx=0x00-0xFF", "Embedded Controller query and SMBus Alarm control method"), AH_PREDEF ("_RBO", "Register Bit Offset", "Resource Descriptor field"), AH_PREDEF ("_RBW", "Register Bit Width", "Resource Descriptor field"), AH_PREDEF ("_RDI", "Resource Dependencies for Idle", "Returns a list of dependencies for idle states"), AH_PREDEF ("_REG", "Region Availability", "Inform AML code of an operation region availability change"), AH_PREDEF ("_REV", "Supported Integer Width", "Returns the supported integer width (<= 1: 32 bits only, >=2: both 32 and 64 bits"), AH_PREDEF ("_RMV", "Removal Status", "Returns a device's removal ability status (docking)"), AH_PREDEF ("_RNG", "Range", "Memory range type, Resource Descriptor field"), AH_PREDEF ("_RST", "Device Reset", "Executes a reset on a device"), AH_PREDEF ("_ROM", "Read-Only Memory", "Returns a copy of the ROM data for a display device"), AH_PREDEF ("_RT_", "Resource Type", "Resource Descriptor field"), AH_PREDEF ("_RTV", "Relative Temperature Values", "Returns temperature value information"), AH_PREDEF ("_RW_", "Read-Write Status", "Resource Descriptor field"), AH_PREDEF ("_RXL", "Receive Buffer Size", "Serial channel buffer, Resource Descriptor field"), AH_PREDEF ("_S0_", "S0 System State", "Returns values to enter the system into the S0 state"), AH_PREDEF ("_S1_", "S1 System State", "Returns values to enter the system into the S1 state"), AH_PREDEF ("_S2_", "S2 System State", "Returns values to enter the system into the S2 state"), AH_PREDEF ("_S3_", "S3 System State", "Returns values to enter the system into the S3 state"), AH_PREDEF ("_S4_", "S4 System State", "Returns values to enter the system into the S4 state"), AH_PREDEF ("_S5_", "S5 System State", "Returns values to enter the system into the S5 state"), AH_PREDEF ("_S1D", "S1 Device State", "Returns the highest D-state supported by a device when in the S1 state"), AH_PREDEF ("_S2D", "S2 Device State", "Returns the highest D-state supported by a device when in the S2 state"), AH_PREDEF ("_S3D", "S3 Device State", "Returns the highest D-state supported by a device when in the S3 state"), AH_PREDEF ("_S4D", "S4 Device State", "Returns the highest D-state supported by a device when in the S4 state"), AH_PREDEF ("_S0W", "S0 Device Wake State", "Returns the lowest D-state that the device can wake itself from S0"), AH_PREDEF ("_S1W", "S1 Device Wake State", "Returns the lowest D-state for this device that can wake the system from S1"), AH_PREDEF ("_S2W", "S2 Device Wake State", "Returns the lowest D-state for this device that can wake the system from S2"), AH_PREDEF ("_S3W", "S3 Device Wake State", "Returns the lowest D-state for this device that can wake the system from S3"), AH_PREDEF ("_S4W", "S4 Device Wake State", "Returns the lowest D-state for this device that can wake the system from S4"), AH_PREDEF ("_SB_", "System Bus", "Predefined scope for device and bus objects"), + AH_PREDEF ("_SBA", "SM Bus Alert information", "Returns info on an SMBus alert"), + AH_PREDEF ("_SBI", "SM Bus General information", "Returns info on an SMBus segment"), + AH_PREDEF ("_SBR", "SM Bus Data read", "Reads Byte, Word, or Block data from an SMBus segment"), + AH_PREDEF ("_SBT", "SM Bus Data transfer", "Performs data transfer to/from an SMBus segment. Implements ProcessCall protocol"), + AH_PREDEF ("_SBW", "SM Bus Data write", "Writes Byte, Word, or Block data to an SMBus segment"), AH_PREDEF ("_SBS", "Smart Battery Subsystem", "Returns the subsystem configuration"), AH_PREDEF ("_SCP", "Set Cooling Policy", "Sets the cooling policy (active or passive)"), AH_PREDEF ("_SDD", "Set Device Data", "Sets data for a SATA device"), AH_PREDEF ("_SEG", "PCI Segment", "Returns a device's PCI Segment Group number"), AH_PREDEF ("_SHL", "Set Hardware Limit", "Sets the hardware limit enforced by the Power Meter"), AH_PREDEF ("_SHR", "Shareable", "Interrupt share status, Resource Descriptor field"), AH_PREDEF ("_SI_", "System Indicators", "Predefined scope"), AH_PREDEF ("_SIZ", "Size", "DMA transfer size, Resource Descriptor field"), AH_PREDEF ("_SLI", "System Locality Information", "Returns a list of NUMA system localities"), AH_PREDEF ("_SLV", "Slave Mode", "Mode setting, Resource Descriptor field"), AH_PREDEF ("_SPD", "Set Post Device", "Sets which video device will be posted at boot"), AH_PREDEF ("_SPE", "Speed", "Connection speed, Resource Descriptor field"), AH_PREDEF ("_SRS", "Set Resource Settings", "Sets a device's resource allocation"), AH_PREDEF ("_SRT", "Set Real Time", "Sets the current time for a time/alarm device"), AH_PREDEF ("_SRV", "IPMI Spec Revision", "See the Intelligent Platform Management Interface Specification"), AH_PREDEF ("_SST", "System Status", "Sets the system status indicator"), AH_PREDEF ("_STA", "Status", "Returns the current status of a Device or Power Resource"), AH_PREDEF ("_STB", "Stop Bits", "Serial channel stop bits, Resource Descriptor field"), AH_PREDEF ("_STM", "Set Timing Mode", "Sets an IDE controller transfer timings"), AH_PREDEF ("_STP", "Set Expired Timer Wake Policy", "Sets expired timer policies of the wake alarm device"), AH_PREDEF ("_STR", "Description String", "Returns a device's description string"), AH_PREDEF ("_STV", "Set Timer Value", "Set timer values of the wake alarm device"), AH_PREDEF ("_SUB", "Subsystem ID", "Returns the subsystem ID for a device"), AH_PREDEF ("_SUN", "Slot User Number", "Returns the slot unique ID number"), AH_PREDEF ("_SWS", "System Wake Source", "Returns the source event that caused the system to wake"), AH_PREDEF ("_T_x", "Emitted by ASL Compiler, x=0-9, A-Z", "Reserved for use by ASL compilers"), AH_PREDEF ("_TC1", "Thermal Constant 1", "Returns TC1 for the passive cooling formula"), AH_PREDEF ("_TC2", "Thermal Constant 2", "Returns TC2 for the passive cooling formula"), AH_PREDEF ("_TDL", "T-State Depth Limit", "Returns the _TSS entry number of the lowest power throttling state"), AH_PREDEF ("_TFP", "Thermal Fast Sampling Period", "Returns the sampling period for passive cooling"), AH_PREDEF ("_TIP", "Expired Timer Wake Policy", "Returns timer policies of the wake alarm device"), AH_PREDEF ("_TIV", "Timer Values", "Returns remaining time of the wake alarm device"), AH_PREDEF ("_TMP", "Temperature", "Returns a thermal zone's current temperature"), AH_PREDEF ("_TPC", "Throttling Present Capabilities", "Returns the current number of supported throttling states"), AH_PREDEF ("_TPT", "Trip Point Temperature", "Inform AML that a device's embedded temperature sensor has crossed a temperature trip point"), AH_PREDEF ("_TRA", "Translation", "Address translation offset, Resource Descriptor field"), AH_PREDEF ("_TRS", "Translation Sparse", "Sparse/dense flag, Resource Descriptor field"), AH_PREDEF ("_TRT", "Thermal Relationship Table", "Returns thermal relationships between platform devices"), AH_PREDEF ("_TSD", "Throttling State Dependencies", "Returns a list of T-state dependencies"), AH_PREDEF ("_TSF", "Type-Specific Flags", "Resource Descriptor field"), AH_PREDEF ("_TSN", "Thermal Sensor Device", "Returns a reference to a thermal sensor"), AH_PREDEF ("_TSP", "Thermal Sampling Period", "Returns the thermal sampling period for passive cooling"), AH_PREDEF ("_TSS", "Throttling Supported States", "Returns supported throttling state information"), AH_PREDEF ("_TST", "Temperature Sensor Threshold", "Returns the minimum separation for a device's temperature trip points"), AH_PREDEF ("_TTP", "Translation Type", "Translation/static flag, Resource Descriptor field"), AH_PREDEF ("_TTS", "Transition To State", "Inform AML of an S-state transition"), AH_PREDEF ("_TXL", "Transmit Buffer Size", "Serial Channel buffer, Resource Descriptor field"), AH_PREDEF ("_TYP", "Type", "DMA channel type (speed), Resource Descriptor field"), AH_PREDEF ("_TZ_", "Thermal Zone", "Predefined scope: ACPI 1.0"), AH_PREDEF ("_TZD", "Thermal Zone Devices", "Returns a list of device names associated with a Thermal Zone"), AH_PREDEF ("_TZM", "Thermal Zone Member", "Returns a reference to the thermal zone of which a device is a member"), AH_PREDEF ("_TZP", "Thermal Zone Polling", "Returns a Thermal zone's polling frequency"), AH_PREDEF ("_UID", "Unique ID", "Return a device's unique persistent ID"), AH_PREDEF ("_UPC", "USB Port Capabilities", "Returns a list of USB port capabilities"), AH_PREDEF ("_UPD", "User Presence Detect", "Returns user detection information"), AH_PREDEF ("_UPP", "User Presence Polling", "Returns the recommended user presence polling interval"), AH_PREDEF ("_VAL", "Pin Configuration Value", "Resource Descriptor field"), AH_PREDEF ("_VEN", "Vendor Data", "Resource Descriptor field"), AH_PREDEF ("_VPO", "Video Post Options", "Returns the implemented video post options"), AH_PREDEF ("_Wxx", "Wake Event, xx=0x00-0xFF", "Method executed as a result of a wake event"), AH_PREDEF ("_WAK", "Wake", "Inform AML that the system has just awakened"), AH_PREDEF ("_WPC", "Wireless Power Calibration", "Calibrate power and notify wireless device"), AH_PREDEF ("_WPP", "Wireless Power Polling", "Get recommended polling interval"), AH_PREDEF (NULL, NULL, NULL) }; /******************************************************************************* * * FUNCTION: AcpiAhMatchPredefinedName * * PARAMETERS: Nameseg - Predefined name string * * RETURN: ID info struct. NULL if Nameseg not found * * DESCRIPTION: Lookup a predefined name. * ******************************************************************************/ const AH_PREDEFINED_NAME * AcpiAhMatchPredefinedName ( char *Nameseg) { const AH_PREDEFINED_NAME *Info; /* Nameseg must start with an underscore */ if (*Nameseg != '_') { return (NULL); } /* Search for a match in the predefined name table */ for (Info = AslPredefinedInfo; Info->Name; Info++) { if (ACPI_COMPARE_NAMESEG (Nameseg, Info->Name)) { return (Info); } } return (NULL); } Index: head/sys/contrib/dev/acpica/common/ahuuids.c =================================================================== --- head/sys/contrib/dev/acpica/common/ahuuids.c (revision 366561) +++ head/sys/contrib/dev/acpica/common/ahuuids.c (revision 366562) @@ -1,245 +1,251 @@ /****************************************************************************** * * Module Name: ahuuids - Table of known ACPI-related UUIDs * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("ahuuids") /* * Table of "known" (ACPI-related) UUIDs */ const AH_UUID Gbl_AcpiUuids[] = { {"[Controllers]", NULL}, {"GPIO Controller", UUID_GPIO_CONTROLLER}, {"USB Controller", UUID_USB_CONTROLLER}, {"SATA Controller", UUID_SATA_CONTROLLER}, {"[Devices]", NULL}, {"PCI Host Bridge Device", UUID_PCI_HOST_BRIDGE}, {"HID I2C Device", UUID_I2C_DEVICE}, {"Power Button Device", UUID_POWER_BUTTON}, + {"Memory Device", UUID_MEMORY_DEVICE}, + {"Generic Buttons Device", UUID_GENERIC_BUTTONS_DEVICE}, + {"NVDIMM Root Device", UUID_NVDIMM_ROOT_DEVICE}, + {"Control Method Battery", UUID_CONTROL_METHOD_BATTERY}, {"[Interfaces]", NULL}, {"Device Labeling Interface", UUID_DEVICE_LABELING}, {"Physical Presence Interface", UUID_PHYSICAL_PRESENCE}, {"[Non-volatile DIMM and NFIT table]", NULL}, {"Volatile Memory Region", UUID_VOLATILE_MEMORY}, {"Persistent Memory Region", UUID_PERSISTENT_MEMORY}, {"NVDIMM Control Region", UUID_CONTROL_REGION}, {"NVDIMM Data Region", UUID_DATA_REGION}, {"Volatile Virtual Disk", UUID_VOLATILE_VIRTUAL_DISK}, {"Volatile Virtual CD", UUID_VOLATILE_VIRTUAL_CD}, {"Persistent Virtual Disk", UUID_PERSISTENT_VIRTUAL_DISK}, {"Persistent Virtual CD", UUID_PERSISTENT_VIRTUAL_CD}, {"[Processor Properties]", NULL}, {"Cache Properties", UUID_CACHE_PROPERTIES}, {"Physical Package Property", UUID_PHYSICAL_PROPERTY}, {"[Miscellaneous]", NULL}, {"Platform-wide Capabilities", UUID_PLATFORM_CAPABILITIES}, {"Dynamic Enumeration", UUID_DYNAMIC_ENUMERATION}, {"Battery Thermal Limit", UUID_BATTERY_THERMAL_LIMIT}, {"Thermal Extensions", UUID_THERMAL_EXTENSIONS}, {"Device Properties for _DSD", UUID_DEVICE_PROPERTIES}, - + {"Device Graphs for _DSD", UUID_DEVICE_GRAPHS}, + {"Hierarchical Data Extension", UUID_HIERARCHICAL_DATA_EXTENSION}, + {"ARM Coresight Graph", UUID_CORESIGHT_GRAPH}, {NULL, NULL} }; /******************************************************************************* * * FUNCTION: AcpiAhMatchUuid * * PARAMETERS: Data - Data buffer containing a UUID * * RETURN: ASCII description string for the UUID if it is found. * * DESCRIPTION: Returns a description string for "known" UUIDs, which are * are UUIDs that are related to ACPI in some way. * ******************************************************************************/ const char * AcpiAhMatchUuid ( UINT8 *Data) { const AH_UUID *Info; UINT8 UuidBuffer[UUID_BUFFER_LENGTH]; /* Walk the table of known ACPI-related UUIDs */ for (Info = Gbl_AcpiUuids; Info->Description; Info++) { /* Null string means description is a UUID class */ if (!Info->String) { continue; } AcpiUtConvertStringToUuid (Info->String, UuidBuffer); if (!memcmp (Data, UuidBuffer, UUID_BUFFER_LENGTH)) { return (Info->Description); } } return (NULL); } Index: head/sys/contrib/dev/acpica/common/dmtbinfo1.c =================================================================== --- head/sys/contrib/dev/acpica/common/dmtbinfo1.c (revision 366561) +++ head/sys/contrib/dev/acpica/common/dmtbinfo1.c (revision 366562) @@ -1,1207 +1,1207 @@ /****************************************************************************** * * Module Name: dmtbinfo1 - Table info for non-AML tables * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include /* This module used for application-level code only */ #define _COMPONENT ACPI_CA_DISASSEMBLER ACPI_MODULE_NAME ("dmtbinfo1") /* * How to add a new table: * * - Add the C table definition to the actbl1.h or actbl2.h header. * - Add ACPI_xxxx_OFFSET macro(s) for the table (and subtables) to list below. * - Define the table in this file (for the disassembler). If any * new data types are required (ACPI_DMT_*), see below. * - Add an external declaration for the new table definition (AcpiDmTableInfo*) * in acdisam.h * - Add new table definition to the dispatch table in dmtable.c (AcpiDmTableData) * If a simple table (with no subtables), no disassembly code is needed. * Otherwise, create the AcpiDmDump* function for to disassemble the table * and add it to the dmtbdump.c file. * - Add an external declaration for the new AcpiDmDump* function in acdisasm.h * - Add the new AcpiDmDump* function to the dispatch table in dmtable.c * - Create a template for the new table * - Add data table compiler support * * How to add a new data type (ACPI_DMT_*): * * - Add new type at the end of the ACPI_DMT list in acdisasm.h * - Add length and implementation cases in dmtable.c (disassembler) * - Add type and length cases in dtutils.c (DT compiler) */ /* * ACPI Table Information, used to dump formatted ACPI tables * * Each entry is of the form: */ /******************************************************************************* * * ASF - Alert Standard Format table (Signature "ASF!") * ******************************************************************************/ /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsfHdr[] = { {ACPI_DMT_ASF, ACPI_ASF0_OFFSET (Header.Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (Header.Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_ASF0_OFFSET (Header.Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* 0: ASF Information */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf0[] = { {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (MinResetValue), "Minimum Reset Value", 0}, {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (MinPollInterval), "Minimum Polling Interval", 0}, {ACPI_DMT_UINT16, ACPI_ASF0_OFFSET (SystemId), "System ID", 0}, {ACPI_DMT_UINT32, ACPI_ASF0_OFFSET (MfgId), "Manufacturer ID", 0}, {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT24, ACPI_ASF0_OFFSET (Reserved2[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 1: ASF Alerts */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1[] = { {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (AssertMask), "AssertMask", 0}, {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (DeassertMask), "DeassertMask", 0}, {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (Alerts), "Alert Count", 0}, {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (DataLength), "Alert Data Length", 0}, ACPI_DMT_TERMINATOR }; /* 1a: ASF Alert data */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1a[] = { {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Address), "Address", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Command), "Command", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Mask), "Mask", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Value), "Value", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SensorType), "SensorType", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Type), "Type", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Offset), "Offset", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SourceType), "SourceType", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Severity), "Severity", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SensorNumber), "SensorNumber", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Entity), "Entity", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Instance), "Instance", 0}, ACPI_DMT_TERMINATOR }; /* 2: ASF Remote Control */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2[] = { {ACPI_DMT_UINT8, ACPI_ASF2_OFFSET (Controls), "Control Count", 0}, {ACPI_DMT_UINT8, ACPI_ASF2_OFFSET (DataLength), "Control Data Length", 0}, {ACPI_DMT_UINT16, ACPI_ASF2_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 2a: ASF Control data */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2a[] = { {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Function), "Function", 0}, {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Address), "Address", 0}, {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Command), "Command", 0}, {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Value), "Value", 0}, ACPI_DMT_TERMINATOR }; /* 3: ASF RMCP Boot Options */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf3[] = { {ACPI_DMT_BUF7, ACPI_ASF3_OFFSET (Capabilities[0]), "Capabilities", 0}, {ACPI_DMT_UINT8, ACPI_ASF3_OFFSET (CompletionCode), "Completion Code", 0}, {ACPI_DMT_UINT32, ACPI_ASF3_OFFSET (EnterpriseId), "Enterprise ID", 0}, {ACPI_DMT_UINT8, ACPI_ASF3_OFFSET (Command), "Command", 0}, {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (Parameter), "Parameter", 0}, {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (BootOptions), "Boot Options", 0}, {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (OemParameters), "Oem Parameters", 0}, ACPI_DMT_TERMINATOR }; /* 4: ASF Address */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf4[] = { {ACPI_DMT_UINT8, ACPI_ASF4_OFFSET (EpromAddress), "Eprom Address", 0}, {ACPI_DMT_UINT8, ACPI_ASF4_OFFSET (Devices), "Device Count", DT_COUNT}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * BERT - Boot Error Record table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoBert[] = { {ACPI_DMT_UINT32, ACPI_BERT_OFFSET (RegionLength), "Boot Error Region Length", 0}, {ACPI_DMT_UINT64, ACPI_BERT_OFFSET (Address), "Boot Error Region Address", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * BGRT - Boot Graphics Resource Table (ACPI 5.0) * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoBgrt[] = { {ACPI_DMT_UINT16, ACPI_BGRT_OFFSET (Version), "Version", 0}, {ACPI_DMT_UINT8, ACPI_BGRT_OFFSET (Status), "Status (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_BGRT_FLAG_OFFSET (Status, 0), "Displayed", 0}, {ACPI_DMT_FLAGS1, ACPI_BGRT_FLAG_OFFSET (Status, 0), "Orientation Offset", 0}, {ACPI_DMT_UINT8, ACPI_BGRT_OFFSET (ImageType), "Image Type", 0}, {ACPI_DMT_UINT64, ACPI_BGRT_OFFSET (ImageAddress), "Image Address", 0}, {ACPI_DMT_UINT32, ACPI_BGRT_OFFSET (ImageOffsetX), "Image OffsetX", 0}, {ACPI_DMT_UINT32, ACPI_BGRT_OFFSET (ImageOffsetY), "Image OffsetY", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * BOOT - Simple Boot Flag Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoBoot[] = { {ACPI_DMT_UINT8, ACPI_BOOT_OFFSET (CmosIndex), "Boot Register Index", 0}, {ACPI_DMT_UINT24, ACPI_BOOT_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * CPEP - Corrected Platform Error Polling table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoCpep[] = { {ACPI_DMT_UINT64, ACPI_CPEP_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoCpep0[] = { {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Header.Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Header.Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Id), "Processor ID", 0}, {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Eid), "Processor EID", 0}, {ACPI_DMT_UINT32, ACPI_CPEP0_OFFSET (Interval), "Polling Interval", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * CSRT - Core System Resource Table * ******************************************************************************/ /* Main table consists only of the standard ACPI table header */ /* Resource Group subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt0[] = { {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (VendorId), "Vendor ID", 0}, {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (SubvendorId), "Subvendor ID", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (DeviceId), "Device ID", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (SubdeviceId), "Subdevice ID", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (SharedInfoLength), "Shared Info Length", 0}, ACPI_DMT_TERMINATOR }; /* Shared Info subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt1[] = { {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (MajorVersion), "Major Version", 0}, {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (MinorVersion), "Minor Version", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MmioBaseLow), "MMIO Base Address Low", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MmioBaseHigh), "MMIO Base Address High", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (GsiInterrupt), "GSI Interrupt", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (InterruptPolarity), "Interrupt Polarity", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (InterruptMode), "Interrupt Mode", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (NumChannels), "Num Channels", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (DmaAddressWidth), "DMA Address Width", 0}, {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (BaseRequestLine), "Base Request Line", 0}, {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (NumHandshakeSignals), "Num Handshake Signals", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MaxBlockSize), "Max Block Size", 0}, ACPI_DMT_TERMINATOR }; /* Resource Descriptor subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2[] = { {ACPI_DMT_UINT32, ACPI_CSRT2_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_CSRT2_OFFSET (Type), "Type", 0}, {ACPI_DMT_UINT16, ACPI_CSRT2_OFFSET (Subtype), "Subtype", 0}, {ACPI_DMT_UINT32, ACPI_CSRT2_OFFSET (Uid), "UID", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2a[] = { {ACPI_DMT_RAW_BUFFER, 0, "ResourceInfo", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DBG2 - Debug Port Table 2 * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2[] = { {ACPI_DMT_UINT32, ACPI_DBG2_OFFSET (InfoOffset), "Info Offset", 0}, {ACPI_DMT_UINT32, ACPI_DBG2_OFFSET (InfoCount), "Info Count", 0}, ACPI_DMT_TERMINATOR }; /* Debug Device Information Subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Device[] = { {ACPI_DMT_UINT8, ACPI_DBG20_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_DBG20_OFFSET (RegisterCount), "Register Count", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (NamepathLength), "Namepath Length", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (NamepathOffset), "Namepath Offset", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (OemDataLength), "OEM Data Length", DT_DESCRIBES_OPTIONAL}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (OemDataOffset), "OEM Data Offset", DT_DESCRIBES_OPTIONAL}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (PortType), "Port Type", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (PortSubtype), "Port Subtype", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (BaseAddressOffset), "Base Address Offset", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (AddressSizeOffset), "Address Size Offset", 0}, ACPI_DMT_TERMINATOR }; /* Variable-length data for the subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Addr[] = { {ACPI_DMT_GAS, 0, "Base Address Register", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Size[] = { {ACPI_DMT_UINT32, 0, "Address Size", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Name[] = { {ACPI_DMT_STRING, 0, "Namepath", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2OemData[] = { {ACPI_DMT_RAW_BUFFER, 0, "OEM Data", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DBGP - Debug Port * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDbgp[] = { {ACPI_DMT_UINT8, ACPI_DBGP_OFFSET (Type), "Interface Type", 0}, {ACPI_DMT_UINT24, ACPI_DBGP_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_DBGP_OFFSET (DebugPort), "Debug Port Register", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DMAR - DMA Remapping table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar[] = { {ACPI_DMT_UINT8, ACPI_DMAR_OFFSET (Width), "Host Address Width", 0}, {ACPI_DMT_UINT8, ACPI_DMAR_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_BUF10, ACPI_DMAR_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmarHdr[] = { {ACPI_DMT_DMAR, ACPI_DMAR0_OFFSET (Header.Type), "Subtable Type", 0}, {ACPI_DMT_UINT16, ACPI_DMAR0_OFFSET (Header.Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* Common device scope entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmarScope[] = { {ACPI_DMT_DMAR_SCOPE, ACPI_DMARS_OFFSET (EntryType), "Device Scope Type", 0}, {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (Length), "Entry Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_DMARS_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (EnumerationId), "Enumeration ID", 0}, {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (Bus), "PCI Bus Number", 0}, ACPI_DMT_TERMINATOR }; /* DMAR Subtables */ /* 0: Hardware Unit Definition */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar0[] = { {ACPI_DMT_UINT8, ACPI_DMAR0_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT8, ACPI_DMAR0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DMAR0_OFFSET (Segment), "PCI Segment Number", 0}, {ACPI_DMT_UINT64, ACPI_DMAR0_OFFSET (Address), "Register Base Address", 0}, ACPI_DMT_TERMINATOR }; /* 1: Reserved Memory Definition */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar1[] = { {ACPI_DMT_UINT16, ACPI_DMAR1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DMAR1_OFFSET (Segment), "PCI Segment Number", 0}, {ACPI_DMT_UINT64, ACPI_DMAR1_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_DMAR1_OFFSET (EndAddress), "End Address (limit)", 0}, ACPI_DMT_TERMINATOR }; /* 2: Root Port ATS Capability Definition */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar2[] = { {ACPI_DMT_UINT8, ACPI_DMAR2_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT8, ACPI_DMAR2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DMAR2_OFFSET (Segment), "PCI Segment Number", 0}, ACPI_DMT_TERMINATOR }; /* 3: Remapping Hardware Static Affinity Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar3[] = { {ACPI_DMT_UINT32, ACPI_DMAR3_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_DMAR3_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT32, ACPI_DMAR3_OFFSET (ProximityDomain), "Proximity Domain", 0}, ACPI_DMT_TERMINATOR }; /* 4: ACPI Namespace Device Declaration Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar4[] = { {ACPI_DMT_UINT24, ACPI_DMAR4_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_DMAR4_OFFSET (DeviceNumber), "Device Number", 0}, {ACPI_DMT_STRING, ACPI_DMAR4_OFFSET (DeviceName[0]), "Device Name", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DRTM - Dynamic Root of Trust for Measurement table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm[] = { {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (EntryBaseAddress), "Entry Base Address", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (EntryLength), "Entry Length", 0}, {ACPI_DMT_UINT32, ACPI_DRTM_OFFSET (EntryAddress32), "Entry 32", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (EntryAddress64), "Entry 64", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (ExitAddress), "Exit Address", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (LogAreaAddress), "Log Area Start", 0}, {ACPI_DMT_UINT32, ACPI_DRTM_OFFSET (LogAreaLength), "Log Area Length", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (ArchDependentAddress), "Arch Dependent Address", 0}, {ACPI_DMT_UINT32, ACPI_DRTM_OFFSET (Flags), "Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "Namespace in TCB", 0}, {ACPI_DMT_FLAG1, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "Gap Code on S3 Resume", 0}, {ACPI_DMT_FLAG2, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "Gap Code on DLME_Exit", 0}, {ACPI_DMT_FLAG3, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "PCR_Authorities Changed", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm0[] = { {ACPI_DMT_UINT32, ACPI_DRTM0_OFFSET (ValidatedTableCount), "Validated Table Count", DT_COUNT}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm0a[] = { {ACPI_DMT_UINT64, 0, "Table Address", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm1[] = { {ACPI_DMT_UINT32, ACPI_DRTM1_OFFSET (ResourceCount), "Resource Count", DT_COUNT}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm1a[] = { {ACPI_DMT_UINT56, ACPI_DRTM1a_OFFSET (Size[0]), "Size", DT_OPTIONAL}, {ACPI_DMT_UINT8, ACPI_DRTM1a_OFFSET (Type), "Type", 0}, {ACPI_DMT_FLAG0, ACPI_DRTM1a_FLAG_OFFSET (Type, 0), "Resource Type", 0}, {ACPI_DMT_FLAG7, ACPI_DRTM1a_FLAG_OFFSET (Type, 0), "Protections", 0}, {ACPI_DMT_UINT64, ACPI_DRTM1a_OFFSET (Address), "Address", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm2[] = { {ACPI_DMT_UINT32, ACPI_DRTM2_OFFSET (DpsIdLength), "DLME Platform Id Length", DT_COUNT}, {ACPI_DMT_BUF16, ACPI_DRTM2_OFFSET (DpsId), "DLME Platform Id", DT_COUNT}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * ECDT - Embedded Controller Boot Resources Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoEcdt[] = { {ACPI_DMT_GAS, ACPI_ECDT_OFFSET (Control), "Command/Status Register", 0}, {ACPI_DMT_GAS, ACPI_ECDT_OFFSET (Data), "Data Register", 0}, {ACPI_DMT_UINT32, ACPI_ECDT_OFFSET (Uid), "UID", 0}, {ACPI_DMT_UINT8, ACPI_ECDT_OFFSET (Gpe), "GPE Number", 0}, {ACPI_DMT_STRING, ACPI_ECDT_OFFSET (Id[0]), "Namepath", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * EINJ - Error Injection table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoEinj[] = { {ACPI_DMT_UINT32, ACPI_EINJ_OFFSET (HeaderLength), "Injection Header Length", 0}, {ACPI_DMT_UINT8, ACPI_EINJ_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT24, ACPI_EINJ_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_EINJ_OFFSET (Entries), "Injection Entry Count", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoEinj0[] = { {ACPI_DMT_EINJACT, ACPI_EINJ0_OFFSET (Action), "Action", 0}, {ACPI_DMT_EINJINST, ACPI_EINJ0_OFFSET (Instruction), "Instruction", 0}, {ACPI_DMT_UINT8, ACPI_EINJ0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_EINJ0_FLAG_OFFSET (Flags,0), "Preserve Register Bits", 0}, {ACPI_DMT_UINT8, ACPI_EINJ0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_EINJ0_OFFSET (RegisterRegion), "Register Region", 0}, {ACPI_DMT_UINT64, ACPI_EINJ0_OFFSET (Value), "Value", 0}, {ACPI_DMT_UINT64, ACPI_EINJ0_OFFSET (Mask), "Mask", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * ERST - Error Record Serialization table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoErst[] = { {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (HeaderLength), "Serialization Header Length", 0}, {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (Entries), "Instruction Entry Count", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoErst0[] = { {ACPI_DMT_ERSTACT, ACPI_ERST0_OFFSET (Action), "Action", 0}, {ACPI_DMT_ERSTINST, ACPI_ERST0_OFFSET (Instruction), "Instruction", 0}, {ACPI_DMT_UINT8, ACPI_ERST0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_ERST0_FLAG_OFFSET (Flags,0), "Preserve Register Bits", 0}, {ACPI_DMT_UINT8, ACPI_ERST0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_ERST0_OFFSET (RegisterRegion), "Register Region", 0}, {ACPI_DMT_UINT64, ACPI_ERST0_OFFSET (Value), "Value", 0}, {ACPI_DMT_UINT64, ACPI_ERST0_OFFSET (Mask), "Mask", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * FPDT - Firmware Performance Data Table (ACPI 5.0) * ******************************************************************************/ /* Main table consists of only the standard ACPI header - subtables follow */ /* FPDT subtable header */ ACPI_DMTABLE_INFO AcpiDmTableInfoFpdtHdr[] = { {ACPI_DMT_UINT16, ACPI_FPDTH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_FPDTH_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_FPDTH_OFFSET (Revision), "Revision", 0}, ACPI_DMT_TERMINATOR }; /* 0: Firmware Basic Boot Performance Record */ ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt0[] = { {ACPI_DMT_UINT32, ACPI_FPDT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_FPDT1_OFFSET (Address), "FPDT Boot Record Address", 0}, ACPI_DMT_TERMINATOR }; /* 1: S3 Performance Table Pointer Record */ ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt1[] = { {ACPI_DMT_UINT32, ACPI_FPDT1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_FPDT1_OFFSET (Address), "S3PT Record Address", 0}, ACPI_DMT_TERMINATOR }; #if 0 /* Boot Performance Record, not supported at this time. */ {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ResetEnd), "Reset End", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (LoadStart), "Load Image Start", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (StartupStart), "Start Image Start", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ExitServicesEntry), "Exit Services Entry", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ExitServicesExit), "Exit Services Exit", 0}, #endif /******************************************************************************* * * GTDT - Generic Timer Description Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt[] = { {ACPI_DMT_UINT64, ACPI_GTDT_OFFSET (CounterBlockAddresss), "Counter Block Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (SecureEl1Interrupt), "Secure EL1 Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (SecureEl1Flags), "EL1 Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (SecureEl1Flags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (SecureEl1Flags,0), "Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (SecureEl1Flags,0), "Always On", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl1Interrupt), "Non-Secure EL1 Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl1Flags), "NEL1 Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (NonSecureEl1Flags,0),"Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (NonSecureEl1Flags,0),"Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (NonSecureEl1Flags,0),"Always On", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (VirtualTimerInterrupt), "Virtual Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (VirtualTimerFlags), "VT Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Always On", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl2Interrupt), "Non-Secure EL2 Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl2Flags), "NEL2 Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (NonSecureEl2Flags,0),"Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (NonSecureEl2Flags,0),"Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (NonSecureEl2Flags,0),"Always On", 0}, {ACPI_DMT_UINT64, ACPI_GTDT_OFFSET (CounterReadBlockAddress), "Counter Read Block Address", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (PlatformTimerCount), "Platform Timer Count", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (PlatformTimerOffset), "Platform Timer Offset", 0}, ACPI_DMT_TERMINATOR }; /* GDTD EL2 timer info. This table is appended to AcpiDmTableInfoGtdt for rev 3 and later */ ACPI_DMTABLE_INFO AcpiDmTableInfoGtdtEl2[] = { {ACPI_DMT_UINT32, ACPI_GTDT_EL2_OFFSET (VirtualEL2TimerGsiv), "Virtual EL2 Timer GSIV", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_EL2_OFFSET (VirtualEL2TimerFlags), "Virtual EL2 Timer Flags", 0}, ACPI_DMT_TERMINATOR }; /* GTDT Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoGtdtHdr[] = { {ACPI_DMT_GTDT, ACPI_GTDTH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT16, ACPI_GTDTH_OFFSET (Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* GTDT Subtables */ ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt0[] = { {ACPI_DMT_UINT8, ACPI_GTDT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_GTDT0_OFFSET (BlockAddress), "Block Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0_OFFSET (TimerCount), "Timer Count", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0_OFFSET (TimerOffset), "Timer Offset", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt0a[] = { {ACPI_DMT_UINT8 , ACPI_GTDT0a_OFFSET (FrameNumber), "Frame Number", 0}, {ACPI_DMT_UINT24, ACPI_GTDT0a_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_GTDT0a_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_GTDT0a_OFFSET (El0BaseAddress), "EL0 Base Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (TimerInterrupt), "Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (TimerFlags), "Timer Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_GTDT0a_FLAG_OFFSET (TimerFlags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT0a_FLAG_OFFSET (TimerFlags,0), "Polarity", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (VirtualTimerInterrupt), "Virtual Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (VirtualTimerFlags), "Virtual Timer Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_GTDT0a_FLAG_OFFSET (VirtualTimerFlags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT0a_FLAG_OFFSET (VirtualTimerFlags,0), "Polarity", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (CommonFlags), "Common Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_GTDT0a_FLAG_OFFSET (CommonFlags,0), "Secure", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT0a_FLAG_OFFSET (CommonFlags,0), "Always On", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt1[] = { {ACPI_DMT_UINT8, ACPI_GTDT1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_GTDT1_OFFSET (RefreshFrameAddress), "Refresh Frame Address", 0}, {ACPI_DMT_UINT64, ACPI_GTDT1_OFFSET (ControlFrameAddress), "Control Frame Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT1_OFFSET (TimerInterrupt), "Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT1_OFFSET (TimerFlags), "Timer Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT1_FLAG_OFFSET (TimerFlags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT1_FLAG_OFFSET (TimerFlags,0), "Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT1_FLAG_OFFSET (TimerFlags,0), "Security", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * HEST - Hardware Error Source table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoHest[] = { {ACPI_DMT_UINT32, ACPI_HEST_OFFSET (ErrorSourceCount), "Error Source Count", 0}, ACPI_DMT_TERMINATOR }; /* Common HEST structures for subtables */ #define ACPI_DM_HEST_HEADER \ {ACPI_DMT_HEST, ACPI_HEST0_OFFSET (Header.Type), "Subtable Type", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST0_OFFSET (Header.SourceId), "Source Id", 0} #define ACPI_DM_HEST_AER \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Reserved1), "Reserved", 0}, \ {ACPI_DMT_UINT8, ACPI_HEST6_OFFSET (Aer.Flags), "Flags (decoded below)", DT_FLAG}, \ {ACPI_DMT_FLAG0, ACPI_HEST6_FLAG_OFFSET (Aer.Flags,0), "Firmware First", 0}, \ {ACPI_DMT_FLAG0, ACPI_HEST6_FLAG_OFFSET (Aer.Flags,0), "Global", 0}, \ {ACPI_DMT_UINT8, ACPI_HEST6_OFFSET (Aer.Enabled), "Enabled", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.RecordsToPreallocate), "Records To Preallocate", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.MaxSectionsPerRecord), "Max Sections Per Record", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.Bus), "Bus", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Device), "Device", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Function), "Function", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.DeviceControl), "DeviceControl", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Reserved2), "Reserved", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.UncorrectableMask), "Uncorrectable Mask", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.UncorrectableSeverity), "Uncorrectable Severity", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.CorrectableMask), "Correctable Mask", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.AdvancedCapabilities), "Advanced Capabilities", 0} /* HEST Subtables */ /* 0: IA32 Machine Check Exception */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest0[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST0_OFFSET (Reserved1), "Reserved1", 0}, {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_HEST0_FLAG_OFFSET (Flags,0), "Firmware First", 0}, {ACPI_DMT_FLAG2, ACPI_HEST0_FLAG_OFFSET (Flags,0), "GHES Assist", 0}, {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST0_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST0_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT64, ACPI_HEST0_OFFSET (GlobalCapabilityData), "Global Capability Data", 0}, {ACPI_DMT_UINT64, ACPI_HEST0_OFFSET (GlobalControlData), "Global Control Data", 0}, {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (NumHardwareBanks), "Num Hardware Banks", 0}, {ACPI_DMT_UINT56, ACPI_HEST0_OFFSET (Reserved3[0]), "Reserved2", 0}, ACPI_DMT_TERMINATOR }; /* 1: IA32 Corrected Machine Check */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest1[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST1_OFFSET (Reserved1), "Reserved1", 0}, {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_HEST1_FLAG_OFFSET (Flags,0), "Firmware First", 0}, {ACPI_DMT_FLAG2, ACPI_HEST1_FLAG_OFFSET (Flags,0), "GHES Assist", 0}, {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST1_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST1_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_HESTNTFY, ACPI_HEST1_OFFSET (Notify), "Notify", 0}, {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (NumHardwareBanks), "Num Hardware Banks", 0}, {ACPI_DMT_UINT24, ACPI_HEST1_OFFSET (Reserved2[0]), "Reserved2", 0}, ACPI_DMT_TERMINATOR }; /* 2: IA32 Non-Maskable Interrupt */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest2[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (MaxRawDataLength), "Max Raw Data Length", 0}, ACPI_DMT_TERMINATOR }; /* 6: PCI Express Root Port AER */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest6[] = { ACPI_DM_HEST_HEADER, ACPI_DM_HEST_AER, {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (RootErrorCommand), "Root Error Command", 0}, ACPI_DMT_TERMINATOR }; /* 7: PCI Express AER (AER Endpoint) */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest7[] = { ACPI_DM_HEST_HEADER, ACPI_DM_HEST_AER, ACPI_DMT_TERMINATOR }; /* 8: PCI Express/PCI-X Bridge AER */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest8[] = { ACPI_DM_HEST_HEADER, ACPI_DM_HEST_AER, {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (UncorrectableMask2), "2nd Uncorrectable Mask", 0}, {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (UncorrectableSeverity2), "2nd Uncorrectable Severity", 0}, {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (AdvancedCapabilities2), "2nd Advanced Capabilities", 0}, ACPI_DMT_TERMINATOR }; /* 9: Generic Hardware Error Source */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest9[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST9_OFFSET (RelatedSourceId), "Related Source Id", 0}, {ACPI_DMT_UINT8, ACPI_HEST9_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_HEST9_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (MaxRawDataLength), "Max Raw Data Length", 0}, {ACPI_DMT_GAS, ACPI_HEST9_OFFSET (ErrorStatusAddress), "Error Status Address", 0}, {ACPI_DMT_HESTNTFY, ACPI_HEST9_OFFSET (Notify), "Notify", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (ErrorBlockLength), "Error Status Block Length", 0}, ACPI_DMT_TERMINATOR }; /* 10: Generic Hardware Error Source - Version 2 */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest10[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST10_OFFSET (RelatedSourceId), "Related Source Id", 0}, {ACPI_DMT_UINT8, ACPI_HEST10_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_HEST10_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (MaxRawDataLength), "Max Raw Data Length", 0}, {ACPI_DMT_GAS, ACPI_HEST10_OFFSET (ErrorStatusAddress), "Error Status Address", 0}, {ACPI_DMT_HESTNTFY, ACPI_HEST10_OFFSET (Notify), "Notify", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (ErrorBlockLength), "Error Status Block Length", 0}, {ACPI_DMT_GAS, ACPI_HEST10_OFFSET (ReadAckRegister), "Read Ack Register", 0}, {ACPI_DMT_UINT64, ACPI_HEST10_OFFSET (ReadAckPreserve), "Read Ack Preserve", 0}, {ACPI_DMT_UINT64, ACPI_HEST10_OFFSET (ReadAckWrite), "Read Ack Write", 0}, ACPI_DMT_TERMINATOR }; /* 11: IA32 Deferred Machine Check */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest11[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST11_OFFSET (Reserved1), "Reserved1", 0}, {ACPI_DMT_UINT8, ACPI_HEST11_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_HEST11_FLAG_OFFSET (Flags,0), "Firmware First", 0}, {ACPI_DMT_FLAG2, ACPI_HEST11_FLAG_OFFSET (Flags,0), "GHES Assist", 0}, {ACPI_DMT_UINT8, ACPI_HEST11_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST11_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST11_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_HESTNTFY, ACPI_HEST11_OFFSET (Notify), "Notify", 0}, {ACPI_DMT_UINT8, ACPI_HEST11_OFFSET (NumHardwareBanks), "Num Hardware Banks", 0}, {ACPI_DMT_UINT24, ACPI_HEST11_OFFSET (Reserved2[0]), "Reserved2", 0}, ACPI_DMT_TERMINATOR }; /* Notification Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoHestNotify[] = { {ACPI_DMT_HESTNTYP, ACPI_HESTN_OFFSET (Type), "Notify Type", 0}, {ACPI_DMT_UINT8, ACPI_HESTN_OFFSET (Length), "Notify Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_HESTN_OFFSET (ConfigWriteEnable), "Configuration Write Enable", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollInterval), "PollInterval", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (Vector), "Vector", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollingThresholdValue), "Polling Threshold Value", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollingThresholdWindow), "Polling Threshold Window", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (ErrorThresholdValue), "Error Threshold Value", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (ErrorThresholdWindow), "Error Threshold Window", 0}, ACPI_DMT_TERMINATOR }; /* * IA32 Error Bank(s) - Follows the ACPI_HEST_IA_MACHINE_CHECK and * ACPI_HEST_IA_CORRECTED structures. */ ACPI_DMTABLE_INFO AcpiDmTableInfoHestBank[] = { {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (BankNumber), "Bank Number", 0}, {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (ClearStatusOnInit), "Clear Status On Init", 0}, {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (StatusFormat), "Status Format", 0}, {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (ControlRegister), "Control Register", 0}, {ACPI_DMT_UINT64, ACPI_HESTB_OFFSET (ControlData), "Control Data", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (StatusRegister), "Status Register", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (AddressRegister), "Address Register", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (MiscRegister), "Misc Register", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * HMAT - Heterogeneous Memory Attributes Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoHmat[] = { {ACPI_DMT_UINT32, ACPI_HMAT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Common HMAT structure header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoHmatHdr[] = { {ACPI_DMT_HMAT, ACPI_HMATH_OFFSET (Type), "Structure Type", 0}, {ACPI_DMT_UINT16, ACPI_HMATH_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_HMATH_OFFSET (Length), "Length", 0}, ACPI_DMT_TERMINATOR }; /* HMAT subtables */ /* 0x00: Memory proximity domain attributes */ ACPI_DMTABLE_INFO AcpiDmTableInfoHmat0[] = { {ACPI_DMT_UINT16, ACPI_HMAT0_OFFSET (Flags), "Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_HMAT0_FLAG_OFFSET (Flags,0), "Processor Proximity Domain Valid", 0}, {ACPI_DMT_UINT16, ACPI_HMAT0_OFFSET (Reserved1), "Reserved1", 0}, - {ACPI_DMT_UINT32, ACPI_HMAT0_OFFSET (ProcessorPD), "Processor Proximity Domain", 0}, + {ACPI_DMT_UINT32, ACPI_HMAT0_OFFSET (InitiatorPD), "Attached Initiator Proximity Domain", 0}, {ACPI_DMT_UINT32, ACPI_HMAT0_OFFSET (MemoryPD), "Memory Proximity Domain", 0}, {ACPI_DMT_UINT32, ACPI_HMAT0_OFFSET (Reserved2), "Reserved2", 0}, {ACPI_DMT_UINT64, ACPI_HMAT0_OFFSET (Reserved3), "Reserved3", 0}, {ACPI_DMT_UINT64, ACPI_HMAT0_OFFSET (Reserved4), "Reserved4", 0}, ACPI_DMT_TERMINATOR }; /* 0x01: System Locality Latency and Bandwidth Information */ ACPI_DMTABLE_INFO AcpiDmTableInfoHmat1[] = { {ACPI_DMT_UINT8, ACPI_HMAT1_OFFSET (Flags), "Flags (decoded below)", 0}, {ACPI_DMT_FLAGS4_0, ACPI_HMAT1_FLAG_OFFSET (Flags,0), "Memory Hierarchy", 0}, {ACPI_DMT_UINT8, ACPI_HMAT1_OFFSET (DataType), "Data Type", 0}, {ACPI_DMT_UINT16, ACPI_HMAT1_OFFSET (Reserved1), "Reserved1", 0}, {ACPI_DMT_UINT32, ACPI_HMAT1_OFFSET (NumberOfInitiatorPDs), "Initiator Proximity Domains #", 0}, {ACPI_DMT_UINT32, ACPI_HMAT1_OFFSET (NumberOfTargetPDs), "Target Proximity Domains #", 0}, {ACPI_DMT_UINT32, ACPI_HMAT1_OFFSET (Reserved2), "Reserved2", 0}, {ACPI_DMT_UINT64, ACPI_HMAT1_OFFSET (EntryBaseUnit), "Entry Base Unit", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoHmat1a[] = { {ACPI_DMT_UINT32, 0, "Initiator Proximity Domain List", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoHmat1b[] = { {ACPI_DMT_UINT32, 0, "Target Proximity Domain List", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoHmat1c[] = { {ACPI_DMT_UINT16, 0, "Entry", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /* 0x02: Memory Side Cache Information */ ACPI_DMTABLE_INFO AcpiDmTableInfoHmat2[] = { {ACPI_DMT_UINT32, ACPI_HMAT2_OFFSET (MemoryPD), "Memory Proximity Domain", 0}, {ACPI_DMT_UINT32, ACPI_HMAT2_OFFSET (Reserved1), "Reserved1", 0}, {ACPI_DMT_UINT64, ACPI_HMAT2_OFFSET (CacheSize), "Memory Side Cache Size", 0}, {ACPI_DMT_UINT32, ACPI_HMAT2_OFFSET (CacheAttributes), "Cache Attributes (decoded below)", 0}, {ACPI_DMT_FLAGS4_0, ACPI_HMAT2_FLAG_OFFSET (CacheAttributes,0), "Total Cache Levels", 0}, {ACPI_DMT_FLAGS4_4, ACPI_HMAT2_FLAG_OFFSET (CacheAttributes,0), "Cache Level", 0}, {ACPI_DMT_FLAGS4_8, ACPI_HMAT2_FLAG_OFFSET (CacheAttributes,0), "Cache Associativity", 0}, {ACPI_DMT_FLAGS4_12, ACPI_HMAT2_FLAG_OFFSET (CacheAttributes,0), "Write Policy", 0}, {ACPI_DMT_FLAGS16_16, ACPI_HMAT2_FLAG_OFFSET (CacheAttributes,0), "Cache Line Size", 0}, {ACPI_DMT_UINT16, ACPI_HMAT2_OFFSET (Reserved2), "Reserved2", 0}, {ACPI_DMT_UINT16, ACPI_HMAT2_OFFSET (NumberOfSMBIOSHandles), "SMBIOS Handle #", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoHmat2a[] = { {ACPI_DMT_UINT16, 0, "SMBIOS Handle", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * HPET - High Precision Event Timer table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoHpet[] = { {ACPI_DMT_UINT32, ACPI_HPET_OFFSET (Id), "Hardware Block ID", 0}, {ACPI_DMT_GAS, ACPI_HPET_OFFSET (Address), "Timer Block Register", 0}, {ACPI_DMT_UINT8, ACPI_HPET_OFFSET (Sequence), "Sequence Number", 0}, {ACPI_DMT_UINT16, ACPI_HPET_OFFSET (MinimumTick), "Minimum Clock Ticks", 0}, {ACPI_DMT_UINT8, ACPI_HPET_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_HPET_FLAG_OFFSET (Flags,0), "4K Page Protect", 0}, {ACPI_DMT_FLAG1, ACPI_HPET_FLAG_OFFSET (Flags,0), "64K Page Protect", 0}, ACPI_DMT_TERMINATOR }; /*! [End] no source code translation !*/ Index: head/sys/contrib/dev/acpica/compiler/aslcompiler.l =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslcompiler.l (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslcompiler.l (revision 366562) @@ -1,887 +1,885 @@ %{ /****************************************************************************** * * Module Name: aslcompiler.l - Flex/lex input file * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include "aslcompiler.y.h" #include #include #include /* * Generation: Use the following command line: * * flex.exe -PAslCompiler -i -o$(InputPath).c $(InputPath) * * -i: Scanner must be case-insensitive */ #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslscanner") /* Local prototypes */ static void AslDoLineDirective (void); static BOOLEAN AslDoComment (void); static BOOLEAN AslDoCommentType2 (void); static char AslDoStringLiteral (void); static void count (int type); /*! [Begin] no source code translation */ %} /* Definitions */ LeadNameChar [A-Za-z_] DigitChar [0-9] ErrorCode [(][ ]*[1-9][0-9][0-9][0-9][ ]*[)] OctalChar [0-7] HexDigitChar [A-Fa-f0-9] RootChar [\\] Nothing [] NameChar [A-Za-z_0-9] NameSeg1 {LeadNameChar}{NameChar} NameSeg2 {LeadNameChar}{NameChar}{NameChar} NameSeg3 {LeadNameChar}{NameChar}{NameChar}{NameChar} NameSeg {LeadNameChar}|{NameSeg1}|{NameSeg2}|{NameSeg3} NameString {RootChar}|{RootChar}{NamePath}|[\^]+{NamePath}|{NonEmptyNamePath} NamePath {NonEmptyNamePath}? NonEmptyNamePath {NameSeg}{NamePathTail}* NamePathTail [.]{NameSeg} %% /* Rules */ [ ] { count (0); } [\n] { count (0); } /* Handle files with both LF and CR/LF */ [\r] { count (0); } /* termination on both Unix and Windows */ [ \t] { count (0); } "/*" { if (!AslDoComment ()) {yyterminate ();} } "//" { if (!AslDoCommentType2 ()) {yyterminate ();} } "\"" { if (AslDoStringLiteral ()) {return (PARSEOP_STRING_LITERAL);} else {yyterminate ();} } ";" { count (0); return(';'); } /* ASL Extension: Standard C operators */ "~" { count (3); return (PARSEOP_EXP_NOT); } "!" { count (3); return (PARSEOP_EXP_LOGICAL_NOT); } "*" { count (3); return (PARSEOP_EXP_MULTIPLY); } "/" { count (3); return (PARSEOP_EXP_DIVIDE); } "%" { count (3); return (PARSEOP_EXP_MODULO); } "+" { count (3); return (PARSEOP_EXP_ADD); } "-" { count (3); return (PARSEOP_EXP_SUBTRACT); } ">>" { count (3); return (PARSEOP_EXP_SHIFT_RIGHT); } "<<" { count (3); return (PARSEOP_EXP_SHIFT_LEFT); } "<" { count (3); return (PARSEOP_EXP_LESS); } ">" { count (3); return (PARSEOP_EXP_GREATER); } "&" { count (3); return (PARSEOP_EXP_AND); } "<=" { count (3); return (PARSEOP_EXP_LESS_EQUAL); } ">=" { count (3); return (PARSEOP_EXP_GREATER_EQUAL); } "==" { count (3); return (PARSEOP_EXP_EQUAL); } "!=" { count (3); return (PARSEOP_EXP_NOT_EQUAL); } "|" { count (3); return (PARSEOP_EXP_OR); } "&&" { count (3); return (PARSEOP_EXP_LOGICAL_AND); } "||" { count (3); return (PARSEOP_EXP_LOGICAL_OR); } "++" { count (3); return (PARSEOP_EXP_INCREMENT); } "--" { count (3); return (PARSEOP_EXP_DECREMENT); } "^ " { count (3); return (PARSEOP_EXP_XOR); } /* ASL Extension: Standard C assignment operators */ "=" { count (3); return (PARSEOP_EXP_EQUALS); } "+=" { count (3); return (PARSEOP_EXP_ADD_EQ); } "-=" { count (3); return (PARSEOP_EXP_SUB_EQ); } "*=" { count (3); return (PARSEOP_EXP_MUL_EQ); } "/=" { count (3); return (PARSEOP_EXP_DIV_EQ); } "%=" { count (3); return (PARSEOP_EXP_MOD_EQ); } "<<=" { count (3); return (PARSEOP_EXP_SHL_EQ); } ">>=" { count (3); return (PARSEOP_EXP_SHR_EQ); } "&=" { count (3); return (PARSEOP_EXP_AND_EQ); } "^=" { count (3); return (PARSEOP_EXP_XOR_EQ); } "|=" { count (3); return (PARSEOP_EXP_OR_EQ); } "[" { count (3); return (PARSEOP_EXP_INDEX_LEFT); } "]" { count (0); return (PARSEOP_EXP_INDEX_RIGHT); } "(" { count (0); return (PARSEOP_OPEN_PAREN); } ")" { count (0); return (PARSEOP_CLOSE_PAREN); } "{" { count (0); return ('{'); } "}" { count (0); return ('}'); } "," { count (0); return (','); } /* * Begin standard ASL grammar */ -[0-9][a-zA-Z0-9]* { AslCompilerlval.i = UtDoConstant ((char *) AslCompilertext); - count (1); return (PARSEOP_INTEGER); } +[0-9][a-zA-Z0-9]* { count (1); AslCompilerlval.i = UtDoConstant ((char *) AslCompilertext); + return (PARSEOP_INTEGER); } "Include" { count (1); return (PARSEOP_INCLUDE); } "External" { count (1); return (PARSEOP_EXTERNAL); } /* * The #line directive is emitted by the preprocessor and handled * here in the main iASL lexer - simply set the line number and * optionally the current filename. */ "#line" { AslDoLineDirective ();} /**************************************************************************** * * Main ASL operators * ****************************************************************************/ "AccessAs" { count (1); return (PARSEOP_ACCESSAS); } "Acquire" { count (3); return (PARSEOP_ACQUIRE); } "Add" { count (3); return (PARSEOP_ADD); } "Alias" { count (2); return (PARSEOP_ALIAS); } "And" { count (3); return (PARSEOP_AND); } "BankField" { count (2); return (PARSEOP_BANKFIELD); } "Break" { count (3); return (PARSEOP_BREAK); } "BreakPoint" { count (3); return (PARSEOP_BREAKPOINT); } "Buffer" { count (1); return (PARSEOP_BUFFER); } "Case" { count (3); return (PARSEOP_CASE); } "Concatenate" { count (3); return (PARSEOP_CONCATENATE); } "ConcatenateResTemplate" { count (3); return (PARSEOP_CONCATENATERESTEMPLATE); } "CondRefOf" { count (3); return (PARSEOP_CONDREFOF); } "Connection" { count (2); return (PARSEOP_CONNECTION); } "Continue" { count (3); return (PARSEOP_CONTINUE); } "CopyObject" { count (3); return (PARSEOP_COPYOBJECT); } "CreateBitField" { count (2); return (PARSEOP_CREATEBITFIELD); } "CreateByteField" { count (2); return (PARSEOP_CREATEBYTEFIELD); } "CreateDWordField" { count (2); return (PARSEOP_CREATEDWORDFIELD); } "CreateField" { count (2); return (PARSEOP_CREATEFIELD); } "CreateQWordField" { count (2); return (PARSEOP_CREATEQWORDFIELD); } "CreateWordField" { count (2); return (PARSEOP_CREATEWORDFIELD); } "DataTableRegion" { count (2); return (PARSEOP_DATATABLEREGION); } "Debug" { count (1); return (PARSEOP_DEBUG); } "Decrement" { count (3); return (PARSEOP_DECREMENT); } "Default" { count (3); return (PARSEOP_DEFAULT); } "DefinitionBlock" { count (1); return (PARSEOP_DEFINITION_BLOCK); } "DeRefOf" { count (3); return (PARSEOP_DEREFOF); } "Device" { count (2); return (PARSEOP_DEVICE); } "Divide" { count (3); return (PARSEOP_DIVIDE); } "Eisaid" { count (1); return (PARSEOP_EISAID); } "Else" { count (3); return (PARSEOP_ELSE); } "ElseIf" { count (3); return (PARSEOP_ELSEIF); } "Event" { count (2); return (PARSEOP_EVENT); } "Fatal" { count (3); return (PARSEOP_FATAL); } "Field" { count (2); return (PARSEOP_FIELD); } "FindSetLeftBit" { count (3); return (PARSEOP_FINDSETLEFTBIT); } "FindSetRightBit" { count (3); return (PARSEOP_FINDSETRIGHTBIT); } "FromBcd" { count (3); return (PARSEOP_FROMBCD); } "Function" { count (2); return (PARSEOP_FUNCTION); } "If" { count (3); return (PARSEOP_IF); } "Increment" { count (3); return (PARSEOP_INCREMENT); } "Index" { count (3); return (PARSEOP_INDEX); } "IndexField" { count (2); return (PARSEOP_INDEXFIELD); } "LAnd" { count (3); return (PARSEOP_LAND); } "LEqual" { count (3); return (PARSEOP_LEQUAL); } "LGreater" { count (3); return (PARSEOP_LGREATER); } "LGreaterEqual" { count (3); return (PARSEOP_LGREATEREQUAL); } "LLess" { count (3); return (PARSEOP_LLESS); } "LLessEqual" { count (3); return (PARSEOP_LLESSEQUAL); } "LNot" { count (3); return (PARSEOP_LNOT); } "LNotEqual" { count (3); return (PARSEOP_LNOTEQUAL); } "Load" { count (3); return (PARSEOP_LOAD); } "LoadTable" { count (3); return (PARSEOP_LOADTABLE); } "LOr" { count (3); return (PARSEOP_LOR); } "Match" { count (3); return (PARSEOP_MATCH); } "Method" { count (2); return (PARSEOP_METHOD); } "Mid" { count (3); return (PARSEOP_MID); } "Mod" { count (3); return (PARSEOP_MOD); } "Multiply" { count (3); return (PARSEOP_MULTIPLY); } "Mutex" { count (2); return (PARSEOP_MUTEX); } "Name" { count (2); return (PARSEOP_NAME); } "NAnd" { count (3); return (PARSEOP_NAND); } "Noop" { if (!AcpiGbl_IgnoreNoopOperator) {count (3); return (PARSEOP_NOOP);} } "NOr" { count (3); return (PARSEOP_NOR); } "Not" { count (3); return (PARSEOP_NOT); } "Notify" { count (3); return (PARSEOP_NOTIFY); } "ObjectType" { count (3); return (PARSEOP_OBJECTTYPE); } "Offset" { count (1); return (PARSEOP_OFFSET); } "One" { count (1); return (PARSEOP_ONE); } "Ones" { count (1); return (PARSEOP_ONES); } "OperationRegion" { count (2); return (PARSEOP_OPERATIONREGION); } "Or" { count (3); return (PARSEOP_OR); } "Package" { count (1); return (PARSEOP_PACKAGE); } "PowerResource" { count (2); return (PARSEOP_POWERRESOURCE); } "Processor" { count (2); return (PARSEOP_PROCESSOR); } "RefOf" { count (3); return (PARSEOP_REFOF); } "Release" { count (3); return (PARSEOP_RELEASE); } "Reset" { count (3); return (PARSEOP_RESET); } "Return" { count (3); return (PARSEOP_RETURN); } "Revision" { count (1); return (PARSEOP_REVISION); } "Scope" { count (2); return (PARSEOP_SCOPE); } "ShiftLeft" { count (3); return (PARSEOP_SHIFTLEFT); } "ShiftRight" { count (3); return (PARSEOP_SHIFTRIGHT); } "Signal" { count (3); return (PARSEOP_SIGNAL); } "SizeOf" { count (3); return (PARSEOP_SIZEOF); } "Sleep" { count (3); return (PARSEOP_SLEEP); } "Stall" { count (3); return (PARSEOP_STALL); } "Store" { count (3); return (PARSEOP_STORE); } "Subtract" { count (3); return (PARSEOP_SUBTRACT); } "Switch" { count (3); return (PARSEOP_SWITCH); } "ThermalZone" { count (2); return (PARSEOP_THERMALZONE); } "Timer" { count (3); return (PARSEOP_TIMER); } "ToBcd" { count (3); return (PARSEOP_TOBCD); } "ToBuffer" { count (3); return (PARSEOP_TOBUFFER); } "ToDecimalString" { count (3); return (PARSEOP_TODECIMALSTRING); } "ToHexString" { count (3); return (PARSEOP_TOHEXSTRING); } "ToInteger" { count (3); return (PARSEOP_TOINTEGER); } "ToString" { count (3); return (PARSEOP_TOSTRING); } "ToUuid" { count (1); return (PARSEOP_TOUUID); } "Unicode" { count (1); return (PARSEOP_UNICODE); } "Unload" { count (3); return (PARSEOP_UNLOAD); } "Wait" { count (3); return (PARSEOP_WAIT); } "While" { count (3); return (PARSEOP_WHILE); } "XOr" { count (3); return (PARSEOP_XOR); } "Zero" { count (1); return (PARSEOP_ZERO); } /* Control method arguments and locals */ "Arg0" { count (1); return (PARSEOP_ARG0); } "Arg1" { count (1); return (PARSEOP_ARG1); } "Arg2" { count (1); return (PARSEOP_ARG2); } "Arg3" { count (1); return (PARSEOP_ARG3); } "Arg4" { count (1); return (PARSEOP_ARG4); } "Arg5" { count (1); return (PARSEOP_ARG5); } "Arg6" { count (1); return (PARSEOP_ARG6); } "Local0" { count (1); return (PARSEOP_LOCAL0); } "Local1" { count (1); return (PARSEOP_LOCAL1); } "Local2" { count (1); return (PARSEOP_LOCAL2); } "Local3" { count (1); return (PARSEOP_LOCAL3); } "Local4" { count (1); return (PARSEOP_LOCAL4); } "Local5" { count (1); return (PARSEOP_LOCAL5); } "Local6" { count (1); return (PARSEOP_LOCAL6); } "Local7" { count (1); return (PARSEOP_LOCAL7); } /**************************************************************************** * * Resource Descriptor macros * ****************************************************************************/ "ResourceTemplate" { count (1); return (PARSEOP_RESOURCETEMPLATE); } "RawDataBuffer" { count (1); return (PARSEOP_DATABUFFER); } "DMA" { count (1); return (PARSEOP_DMA); } "DWordIO" { count (1); return (PARSEOP_DWORDIO); } "DWordMemory" { count (1); return (PARSEOP_DWORDMEMORY); } "DWordSpace" { count (1); return (PARSEOP_DWORDSPACE); } "EndDependentFn" { count (1); return (PARSEOP_ENDDEPENDENTFN); } "ExtendedIO" { count (1); return (PARSEOP_EXTENDEDIO); } "ExtendedMemory" { count (1); return (PARSEOP_EXTENDEDMEMORY); } "ExtendedSpace" { count (1); return (PARSEOP_EXTENDEDSPACE); } "FixedDma" { count (1); return (PARSEOP_FIXEDDMA); } "FixedIO" { count (1); return (PARSEOP_FIXEDIO); } "GpioInt" { count (1); return (PARSEOP_GPIO_INT); } "GpioIo" { count (1); return (PARSEOP_GPIO_IO); } "I2cSerialBus" { count (1); return (PARSEOP_I2C_SERIALBUS); } "I2cSerialBusV2" { count (1); return (PARSEOP_I2C_SERIALBUS_V2); } "Interrupt" { count (1); return (PARSEOP_INTERRUPT); } "IO" { count (1); return (PARSEOP_IO); } "IRQ" { count (1); return (PARSEOP_IRQ); } "IRQNoFlags" { count (1); return (PARSEOP_IRQNOFLAGS); } "Memory24" { count (1); return (PARSEOP_MEMORY24); } "Memory32" { count (1); return (PARSEOP_MEMORY32); } "Memory32Fixed" { count (1); return (PARSEOP_MEMORY32FIXED); } "PinConfig" { count (1); return (PARSEOP_PINCONFIG); } "PinFunction" { count (1); return (PARSEOP_PINFUNCTION); } "PinGroup" { count (1); return (PARSEOP_PINGROUP); } "PinGroupConfig" { count (1); return (PARSEOP_PINGROUPCONFIG); } "PinGroupFunction" { count (1); return (PARSEOP_PINGROUPFUNCTION); } "QWordIO" { count (1); return (PARSEOP_QWORDIO); } "QWordMemory" { count (1); return (PARSEOP_QWORDMEMORY); } "QWordSpace" { count (1); return (PARSEOP_QWORDSPACE); } "Register" { count (1); return (PARSEOP_REGISTER); } "SpiSerialBus" { count (1); return (PARSEOP_SPI_SERIALBUS); } "SpiSerialBusV2" { count (1); return (PARSEOP_SPI_SERIALBUS_V2); } "StartDependentFn" { count (1); return (PARSEOP_STARTDEPENDENTFN); } "StartDependentFnNoPri" { count (1); return (PARSEOP_STARTDEPENDENTFN_NOPRI); } "UartSerialBus" { count (1); return (PARSEOP_UART_SERIALBUS); } "UartSerialBusV2" { count (1); return (PARSEOP_UART_SERIALBUS_V2); } "VendorLong" { count (1); return (PARSEOP_VENDORLONG); } "VendorShort" { count (1); return (PARSEOP_VENDORSHORT); } "WordBusNumber" { count (1); return (PARSEOP_WORDBUSNUMBER); } "WordIO" { count (1); return (PARSEOP_WORDIO); } "WordSpace" { count (1); return (PARSEOP_WORDSPACE); } /**************************************************************************** * * Keywords used as arguments to ASL operators and macros * ****************************************************************************/ /* AccessAttribKeyword: Serial Bus Attributes (ACPI 5.0) */ "AttribQuick" { count (0); return (PARSEOP_ACCESSATTRIB_QUICK); } "AttribSendReceive" { count (0); return (PARSEOP_ACCESSATTRIB_SND_RCV); } "AttribByte" { count (0); return (PARSEOP_ACCESSATTRIB_BYTE); } "AttribWord" { count (0); return (PARSEOP_ACCESSATTRIB_WORD); } "AttribBlock" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK); } "AttribProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_WORD_CALL); } "AttribBlockProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK_CALL); } /* AccessAttribKeyword: Legacy synonyms for above (pre-ACPI 5.0) */ "SMBQuick" { count (0); return (PARSEOP_ACCESSATTRIB_QUICK); } "SMBSendReceive" { count (0); return (PARSEOP_ACCESSATTRIB_SND_RCV); } "SMBByte" { count (0); return (PARSEOP_ACCESSATTRIB_BYTE); } "SMBWord" { count (0); return (PARSEOP_ACCESSATTRIB_WORD); } "SMBBlock" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK); } "SMBProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_WORD_CALL); } "SMBBlockProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK_CALL); } /* AccessTypeKeyword: Field Access Types */ "AnyAcc" { count (0); return (PARSEOP_ACCESSTYPE_ANY); } "ByteAcc" { count (0); return (PARSEOP_ACCESSTYPE_BYTE); } "WordAcc" { count (0); return (PARSEOP_ACCESSTYPE_WORD); } "DWordAcc" { count (0); return (PARSEOP_ACCESSTYPE_DWORD); } "QWordAcc" { count (0); return (PARSEOP_ACCESSTYPE_QWORD); } "BufferAcc" { count (0); return (PARSEOP_ACCESSTYPE_BUF); } /* AddressingModeKeyword: Mode - Resource Descriptors (ACPI 5.0) */ "AddressingMode7Bit" { count (0); return (PARSEOP_ADDRESSINGMODE_7BIT); } "AddressingMode10Bit" { count (0); return (PARSEOP_ADDRESSINGMODE_10BIT); } /* AddressKeyword: ACPI memory range types */ "AddressRangeMemory" { count (0); return (PARSEOP_ADDRESSTYPE_MEMORY); } "AddressRangeReserved" { count (0); return (PARSEOP_ADDRESSTYPE_RESERVED); } "AddressRangeNVS" { count (0); return (PARSEOP_ADDRESSTYPE_NVS); } "AddressRangeACPI" { count (0); return (PARSEOP_ADDRESSTYPE_ACPI); } /* BusMasterKeyword: DMA Bus Mastering */ "BusMaster" { count (0); return (PARSEOP_BUSMASTERTYPE_MASTER); } "NotBusMaster" { count (0); return (PARSEOP_BUSMASTERTYPE_NOTMASTER); } /* ByteLengthKeyword: Bits per Byte - Resource Descriptors (ACPI 5.0) */ "DataBitsFive" { count (0); return (PARSEOP_BITSPERBYTE_FIVE); } "DataBitsSix" { count (0); return (PARSEOP_BITSPERBYTE_SIX); } "DataBitsSeven" { count (0); return (PARSEOP_BITSPERBYTE_SEVEN); } "DataBitsEight" { count (0); return (PARSEOP_BITSPERBYTE_EIGHT); } "DataBitsNine" { count (0); return (PARSEOP_BITSPERBYTE_NINE); } /* ClockPhaseKeyword: Resource Descriptors (ACPI 5.0) */ "ClockPhaseFirst" { count (0); return (PARSEOP_CLOCKPHASE_FIRST); } "ClockPhaseSecond" { count (0); return (PARSEOP_CLOCKPHASE_SECOND); } /* ClockPolarityKeyword: Resource Descriptors (ACPI 5.0) */ "ClockPolarityLow" { count (0); return (PARSEOP_CLOCKPOLARITY_LOW); } "ClockPolarityHigh" { count (0); return (PARSEOP_CLOCKPOLARITY_HIGH); } /* DecodeKeyword: Type of Memory Decoding - Resource Descriptors */ "PosDecode" { count (0); return (PARSEOP_DECODETYPE_POS); } "SubDecode" { count (0); return (PARSEOP_DECODETYPE_SUB); } /* DmaTypeKeyword: DMA Types - DMA Resource Descriptor */ "Compatibility" { count (0); return (PARSEOP_DMATYPE_COMPATIBILITY); } "TypeA" { count (0); return (PARSEOP_DMATYPE_A); } "TypeB" { count (0); return (PARSEOP_DMATYPE_B); } "TypeF" { count (0); return (PARSEOP_DMATYPE_F); } /* EndianKeyword: Endian type - Resource Descriptor (ACPI 5.0) */ "LittleEndian" { count (0); return (PARSEOP_ENDIAN_LITTLE); } "BigEndian" { count (0); return (PARSEOP_ENDIAN_BIG); } /* ExtendedAttribKeyword: Bus attributes, AccessAs operator (ACPI 5.0) */ "AttribBytes" { count (0); return (PARSEOP_ACCESSATTRIB_BYTES); } "AttribRawBytes" { count (0); return (PARSEOP_ACCESSATTRIB_RAW_BYTES); } "AttribRawProcessBytes" { count (0); return (PARSEOP_ACCESSATTRIB_RAW_PROCESS); } /* FlowControlKeyword: Resource Descriptors (ACPI 5.0) */ "FlowControlHardware" { count (0); return (PARSEOP_FLOWCONTROL_HW); } "FlowControlNone" { count (0); return (PARSEOP_FLOWCONTROL_NONE); } "FlowControlXon" { count (0); return (PARSEOP_FLOWCONTROL_SW); } /* InterruptLevelKeyword: Interrupt Active Types */ "ActiveBoth" { count (0); return (PARSEOP_INTLEVEL_ACTIVEBOTH); } "ActiveHigh" { count (0); return (PARSEOP_INTLEVEL_ACTIVEHIGH); } "ActiveLow" { count (0); return (PARSEOP_INTLEVEL_ACTIVELOW); } /* InterruptTypeKeyword: Interrupt Types */ "Edge" { count (0); return (PARSEOP_INTTYPE_EDGE); } "Level" { count (0); return (PARSEOP_INTTYPE_LEVEL); } /* IoDecodeKeyword: Type of Memory Decoding - Resource Descriptors */ "Decode10" { count (0); return (PARSEOP_IODECODETYPE_10); } "Decode16" { count (0); return (PARSEOP_IODECODETYPE_16); } /* IoRestrictionKeyword: I/O Restriction - GPIO Resource Descriptors (ACPI 5.0) */ "IoRestrictionNone" { count (0); return (PARSEOP_IORESTRICT_NONE); } "IoRestrictionInputOnly" { count (0); return (PARSEOP_IORESTRICT_IN); } "IoRestrictionOutputOnly" { count (0); return (PARSEOP_IORESTRICT_OUT); } "IoRestrictionNoneAndPreserve" { count (0); return (PARSEOP_IORESTRICT_PRESERVE); } /* LockRuleKeyword: Global Lock use for Field Operator */ "Lock" { count (0); return (PARSEOP_LOCKRULE_LOCK); } "NoLock" { count (0); return (PARSEOP_LOCKRULE_NOLOCK); } /* MatchOpKeyword: Types for Match Operator */ "MTR" { count (0); return (PARSEOP_MATCHTYPE_MTR); } "MEQ" { count (0); return (PARSEOP_MATCHTYPE_MEQ); } "MLE" { count (0); return (PARSEOP_MATCHTYPE_MLE); } "MLT" { count (0); return (PARSEOP_MATCHTYPE_MLT); } "MGE" { count (0); return (PARSEOP_MATCHTYPE_MGE); } "MGT" { count (0); return (PARSEOP_MATCHTYPE_MGT); } /* MaxKeyword: Max Range Type - Resource Descriptors */ "MaxFixed" { count (0); return (PARSEOP_MAXTYPE_FIXED); } "MaxNotFixed" { count (0); return (PARSEOP_MAXTYPE_NOTFIXED); } /* MemTypeKeyword: Memory Types - Resource Descriptors */ "Cacheable" { count (0); return (PARSEOP_MEMTYPE_CACHEABLE); } "WriteCombining" { count (0); return (PARSEOP_MEMTYPE_WRITECOMBINING); } "Prefetchable" { count (0); return (PARSEOP_MEMTYPE_PREFETCHABLE); } "NonCacheable" { count (0); return (PARSEOP_MEMTYPE_NONCACHEABLE); } /* MinKeyword: Min Range Type - Resource Descriptors */ "MinFixed" { count (0); return (PARSEOP_MINTYPE_FIXED); } "MinNotFixed" { count (0); return (PARSEOP_MINTYPE_NOTFIXED); } /* ObjectTypeKeyword: ACPI Object Types */ "UnknownObj" { count (0); return (PARSEOP_OBJECTTYPE_UNK); } "IntObj" { count (0); return (PARSEOP_OBJECTTYPE_INT); } "StrObj" { count (0); return (PARSEOP_OBJECTTYPE_STR); } "BuffObj" { count (0); return (PARSEOP_OBJECTTYPE_BUF); } "PkgObj" { count (0); return (PARSEOP_OBJECTTYPE_PKG); } "FieldUnitObj" { count (0); return (PARSEOP_OBJECTTYPE_FLD); } "DeviceObj" { count (0); return (PARSEOP_OBJECTTYPE_DEV); } "EventObj" { count (0); return (PARSEOP_OBJECTTYPE_EVT); } "MethodObj" { count (0); return (PARSEOP_OBJECTTYPE_MTH); } "MutexObj" { count (0); return (PARSEOP_OBJECTTYPE_MTX); } "OpRegionObj" { count (0); return (PARSEOP_OBJECTTYPE_OPR); } "PowerResObj" { count (0); return (PARSEOP_OBJECTTYPE_POW); } "ProcessorObj" { count (0); return (PARSEOP_OBJECTTYPE_PRO); } "ThermalZoneObj" { count (0); return (PARSEOP_OBJECTTYPE_THZ); } "BuffFieldObj" { count (0); return (PARSEOP_OBJECTTYPE_BFF); } "DDBHandleObj" { count (0); return (PARSEOP_OBJECTTYPE_DDB); } /* ParityKeyword: Resource Descriptors (ACPI 5.0) */ "ParityTypeSpace" { count (0); return (PARSEOP_PARITYTYPE_SPACE); } "ParityTypeMark" { count (0); return (PARSEOP_PARITYTYPE_MARK); } "ParityTypeOdd" { count (0); return (PARSEOP_PARITYTYPE_ODD); } "ParityTypeEven" { count (0); return (PARSEOP_PARITYTYPE_EVEN); } "ParityTypeNone" { count (0); return (PARSEOP_PARITYTYPE_NONE); } /* PinConfigKeyword: Pin Configuration - GPIO Resource Descriptors (ACPI 5.0) */ "PullDefault" { count (0); return (PARSEOP_PIN_PULLDEFAULT); } "PullUp" { count (0); return (PARSEOP_PIN_PULLUP); } "PullDown" { count (0); return (PARSEOP_PIN_PULLDOWN); } "PullNone" { count (0); return (PARSEOP_PIN_NOPULL); } /* PolarityKeyword: Resource Descriptors (ACPI 5.0) */ "PolarityLow" { count (0); return (PARSEOP_DEVICEPOLARITY_LOW); } "PolarityHigh" { count (0); return (PARSEOP_DEVICEPOLARITY_HIGH); } /* RangeTypeKeyword: I/O Range Types - Resource Descriptors */ "ISAOnlyRanges" { count (0); return (PARSEOP_RANGETYPE_ISAONLY); } "NonISAOnlyRanges" { count (0); return (PARSEOP_RANGETYPE_NONISAONLY); } "EntireRange" { count (0); return (PARSEOP_RANGETYPE_ENTIRE); } /* ReadWriteKeyword: Memory Access Types - Resource Descriptors */ "ReadWrite" { count (0); return (PARSEOP_READWRITETYPE_BOTH); } "ReadOnly" { count (0); return (PARSEOP_READWRITETYPE_READONLY); } /* RegionSpaceKeyword: Operation Region Address Space Types */ "SystemIO" { count (0); return (PARSEOP_REGIONSPACE_IO); } "SystemMemory" { count (0); return (PARSEOP_REGIONSPACE_MEM); } "PCI_Config" { count (0); return (PARSEOP_REGIONSPACE_PCI); } "EmbeddedControl" { count (0); return (PARSEOP_REGIONSPACE_EC); } "SMBus" { count (0); return (PARSEOP_REGIONSPACE_SMBUS); } "SystemCMOS" { count (0); return (PARSEOP_REGIONSPACE_CMOS); } "PciBarTarget" { count (0); return (PARSEOP_REGIONSPACE_PCIBAR); } "IPMI" { count (0); return (PARSEOP_REGIONSPACE_IPMI); } "GeneralPurposeIo" { count (0); return (PARSEOP_REGIONSPACE_GPIO); } /* ACPI 5.0 */ "GenericSerialBus" { count (0); return (PARSEOP_REGIONSPACE_GSBUS); } /* ACPI 5.0 */ "PCC" { count (0); return (PARSEOP_REGIONSPACE_PCC); } /* ACPI 5.0 */ "PlatformRtMechanism" { count (0); return (PARSEOP_REGIONSPACE_PRM); } "FFixedHW" { count (0); return (PARSEOP_REGIONSPACE_FFIXEDHW); } /* ResourceTypeKeyword: Resource Usage - Resource Descriptors */ "ResourceConsumer" { count (0); return (PARSEOP_RESOURCETYPE_CONSUMER); } "ResourceProducer" { count (0); return (PARSEOP_RESOURCETYPE_PRODUCER); } /* SerializeRuleKeyword: Control Method Serialization */ "Serialized" { count (0); return (PARSEOP_SERIALIZERULE_SERIAL); } "NotSerialized" { count (0); return (PARSEOP_SERIALIZERULE_NOTSERIAL); } /* ShareTypeKeyword: Interrupt Sharing - Resource Descriptors */ "Shared" { count (0); return (PARSEOP_SHARETYPE_SHARED); } "Exclusive" { count (0); return (PARSEOP_SHARETYPE_EXCLUSIVE); } "SharedAndWake" { count (0); return (PARSEOP_SHARETYPE_SHAREDWAKE); } /* ACPI 5.0 */ "ExclusiveAndWake" { count (0); return (PARSEOP_SHARETYPE_EXCLUSIVEWAKE); } /* ACPI 5.0 */ /* SlaveModeKeyword: Resource Descriptors (ACPI 5.0) */ "ControllerInitiated" { count (0); return (PARSEOP_SLAVEMODE_CONTROLLERINIT); } "DeviceInitiated" { count (0); return (PARSEOP_SLAVEMODE_DEVICEINIT); } /* StopBitsKeyword: Resource Descriptors (ACPI 5.0) */ "StopBitsOne" { count (0); return (PARSEOP_STOPBITS_ONE); } "StopBitsOnePlusHalf" { count (0); return (PARSEOP_STOPBITS_ONEPLUSHALF); } "StopBitsTwo" { count (0); return (PARSEOP_STOPBITS_TWO); } "StopBitsZero" { count (0); return (PARSEOP_STOPBITS_ZERO); } /* TransferWidthKeyword: DMA Widths - Fixed DMA Resource Descriptor (ACPI 5.0) */ "Width8bit" { count (0); return (PARSEOP_XFERSIZE_8); } "Width16bit" { count (0); return (PARSEOP_XFERSIZE_16); } "Width32bit" { count (0); return (PARSEOP_XFERSIZE_32); } "Width64bit" { count (0); return (PARSEOP_XFERSIZE_64); } "Width128bit" { count (0); return (PARSEOP_XFERSIZE_128); } "Width256bit" { count (0); return (PARSEOP_XFERSIZE_256); } /* TranslationKeyword: Translation Density Types - Resource Descriptors */ "SparseTranslation" { count (0); return (PARSEOP_TRANSLATIONTYPE_SPARSE); } "DenseTranslation" { count (0); return (PARSEOP_TRANSLATIONTYPE_DENSE); } /* TypeKeyword: Translation Types - Resource Descriptors */ "TypeTranslation" { count (0); return (PARSEOP_TYPE_TRANSLATION); } "TypeStatic" { count (0); return (PARSEOP_TYPE_STATIC); } /* UpdateRuleKeyword: Field Update Rules */ "Preserve" { count (0); return (PARSEOP_UPDATERULE_PRESERVE); } "WriteAsOnes" { count (0); return (PARSEOP_UPDATERULE_ONES); } "WriteAsZeros" { count (0); return (PARSEOP_UPDATERULE_ZEROS); } /* WireModeKeyword: SPI Wire Mode - Resource Descriptors (ACPI 5.0) */ "FourWireMode" { count (0); return (PARSEOP_WIREMODE_FOUR); } "ThreeWireMode" { count (0); return (PARSEOP_WIREMODE_THREE); } /* XferTypeKeyword: DMA Transfer Types */ "Transfer8" { count (0); return (PARSEOP_XFERTYPE_8); } "Transfer8_16" { count (0); return (PARSEOP_XFERTYPE_8_16); } "Transfer16" { count (0); return (PARSEOP_XFERTYPE_16); } /* ToPld macro */ "ToPLD" { count (0); return (PARSEOP_TOPLD); } "PLD_Revision" { count (0); return (PARSEOP_PLD_REVISION); } "PLD_IgnoreColor" { count (0); return (PARSEOP_PLD_IGNORECOLOR); } "PLD_Red" { count (0); return (PARSEOP_PLD_RED); } "PLD_Green" { count (0); return (PARSEOP_PLD_GREEN); } "PLD_Blue" { count (0); return (PARSEOP_PLD_BLUE); } "PLD_Width" { count (0); return (PARSEOP_PLD_WIDTH); } "PLD_Height" { count (0); return (PARSEOP_PLD_HEIGHT); } "PLD_UserVisible" { count (0); return (PARSEOP_PLD_USERVISIBLE); } "PLD_Dock" { count (0); return (PARSEOP_PLD_DOCK); } "PLD_Lid" { count (0); return (PARSEOP_PLD_LID); } "PLD_Panel" { count (0); return (PARSEOP_PLD_PANEL); } "PLD_VerticalPosition" { count (0); return (PARSEOP_PLD_VERTICALPOSITION); } "PLD_HorizontalPosition" { count (0); return (PARSEOP_PLD_HORIZONTALPOSITION); } "PLD_Shape" { count (0); return (PARSEOP_PLD_SHAPE); } "PLD_GroupOrientation" { count (0); return (PARSEOP_PLD_GROUPORIENTATION); } "PLD_GroupToken" { count (0); return (PARSEOP_PLD_GROUPTOKEN); } "PLD_GroupPosition" { count (0); return (PARSEOP_PLD_GROUPPOSITION); } "PLD_Bay" { count (0); return (PARSEOP_PLD_BAY); } "PLD_Ejectable" { count (0); return (PARSEOP_PLD_EJECTABLE); } "PLD_EjectRequired" { count (0); return (PARSEOP_PLD_EJECTREQUIRED); } "PLD_CabinetNumber" { count (0); return (PARSEOP_PLD_CABINETNUMBER); } "PLD_CardCageNumber" { count (0); return (PARSEOP_PLD_CARDCAGENUMBER); } "PLD_Reference" { count (0); return (PARSEOP_PLD_REFERENCE); } "PLD_Rotation" { count (0); return (PARSEOP_PLD_ROTATION); } "PLD_Order" { count (0); return (PARSEOP_PLD_ORDER); } "PLD_Reserved" { count (0); return (PARSEOP_PLD_RESERVED); } "PLD_VerticalOffset" { count (0); return (PARSEOP_PLD_VERTICALOFFSET); } "PLD_HorizontalOffset" { count (0); return (PARSEOP_PLD_HORIZONTALOFFSET); } /* printf debug macros */ "printf" { count (0); return (PARSEOP_PRINTF); } "fprintf" { count (0); return (PARSEOP_FPRINTF); } /* Other macros */ "For" { count (0); return (PARSEOP_FOR); } /* Predefined compiler names */ "__DATE__" { count (0); return (PARSEOP___DATE__); } "__FILE__" { count (0); return (PARSEOP___FILE__); } "__LINE__" { count (0); return (PARSEOP___LINE__); } "__PATH__" { count (0); return (PARSEOP___PATH__); } "__METHOD__" { count (0); return (PARSEOP___METHOD__); } "__EXPECT__"{ErrorCode} { char *s; int index = 0; count (0); while (!isdigit (AslCompilertext[index])) { index++; } /* * The error code is contained inside the * {ErrorCode} pattern. Extract it and log it * as the expected error code. */ s = UtLocalCacheCalloc (ASL_ERROR_CODE_LENGTH + 1); memcpy (s, AslCompilertext + index, ASL_ERROR_CODE_LENGTH); AslLogExpectedExceptionByLine (s); } {NameSeg} { char *s; count (0); s=UtLocalCacheCalloc (ACPI_NAMESEG_SIZE + 1); if (strcmp (AslCompilertext, "\\")) { /* * According to the ACPI specification, * NameSegments must have length of 4. If * the NameSegment has length less than 4, * they are padded with underscores to meet * the required length. */ strcpy (s, "____"); - AcpiUtStrupr (AslCompilertext); } memcpy (s, AslCompilertext, strlen (AslCompilertext)); AslCompilerlval.s = s; DbgPrint (ASL_PARSE_OUTPUT, "NameSeg: %s\n", s); return (PARSEOP_NAMESEG); } {NameString} { char *s; count (0); s=UtLocalCacheCalloc (strlen (AslCompilertext)+1); - AcpiUtStrupr (AslCompilertext); strcpy (s, AslCompilertext); AslCompilerlval.s = s; DbgPrint (ASL_PARSE_OUTPUT, "NameString: %s\n", s); return (PARSEOP_NAMESTRING); } . { count (1); if (isprint ((int) *AslCompilertext)) { sprintf (AslGbl_MsgBuffer, "Invalid character (%c), expecting ASL keyword or name", *AslCompilertext); } else { sprintf (AslGbl_MsgBuffer, "Invalid character (0x%2.2X), expecting ASL keyword or name", *AslCompilertext); } AslCompilererror (AslGbl_MsgBuffer);} <> { if (AslPopInputFileStack ()) {yyterminate();} else {return (PARSEOP_INCLUDE_END);} }; %% /*! [End] no source code translation !*/ /* * Bring in the scanner support routines */ #include Index: head/sys/contrib/dev/acpica/compiler/aslload.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslload.c (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslload.c (revision 366562) @@ -1,1486 +1,1493 @@ /****************************************************************************** * * Module Name: aslload - compiler namespace load callbacks * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #include #include "aslcompiler.y.h" #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslload") /* Local prototypes */ static ACPI_STATUS LdLoadFieldElements ( UINT32 AmlType, ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState); static ACPI_STATUS LdLoadResourceElements ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState); static ACPI_STATUS LdNamespace1Begin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); static ACPI_STATUS LdNamespace2Begin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); static ACPI_STATUS LdCommonNamespaceEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); static void LdCheckSpecialNames ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op); static ACPI_STATUS LdAnalyzeExternals ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op, ACPI_OBJECT_TYPE ExternalOpType, ACPI_WALK_STATE *WalkState); /******************************************************************************* * * FUNCTION: LdLoadNamespace * * PARAMETERS: RootOp - Root of the parse tree * * RETURN: Status * * DESCRIPTION: Perform a walk of the parse tree that in turn loads all of the * named ASL/AML objects into the namespace. The namespace is * constructed in order to resolve named references and references * to named fields within resource templates/descriptors. * ******************************************************************************/ ACPI_STATUS LdLoadNamespace ( ACPI_PARSE_OBJECT *RootOp) { ACPI_WALK_STATE *WalkState; /* Create a new walk state */ WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL); if (!WalkState) { return (AE_NO_MEMORY); } /* Walk the entire parse tree, first pass */ TrWalkParseTree (RootOp, ASL_WALK_VISIT_TWICE, LdNamespace1Begin, LdCommonNamespaceEnd, WalkState); /* Second pass to handle forward references */ TrWalkParseTree (RootOp, ASL_WALK_VISIT_TWICE, LdNamespace2Begin, LdCommonNamespaceEnd, WalkState); /* Dump the namespace if debug is enabled */ if (AcpiDbgLevel & ACPI_LV_TABLES) { AcpiNsDumpTables (ACPI_NS_ALL, ACPI_UINT32_MAX); } ACPI_FREE (WalkState); return (AE_OK); } /******************************************************************************* * * FUNCTION: LdLoadFieldElements * * PARAMETERS: AmlType - Type to search * Op - Parent node (Field) * WalkState - Current walk state * * RETURN: Status * * DESCRIPTION: Enter the named elements of the field (children of the parent) * into the namespace. * ******************************************************************************/ static ACPI_STATUS LdLoadFieldElements ( UINT32 AmlType, ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { ACPI_PARSE_OBJECT *Child = NULL; ACPI_PARSE_OBJECT *SourceRegion; ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; char *ExternalPath; SourceRegion = UtGetArg (Op, 0); if (SourceRegion) { Status = AcpiNsLookup (WalkState->ScopeInfo, SourceRegion->Asl.Value.String, AmlType, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, NULL, &Node); if (Status == AE_NOT_FOUND) { /* * If the named object is not found, it means that it is either a * forward reference or the named object does not exist. */ SourceRegion->Asl.CompileFlags |= OP_NOT_FOUND_DURING_LOAD; } } /* Get the first named field element */ switch (Op->Asl.AmlOpcode) { case AML_BANK_FIELD_OP: Child = UtGetArg (Op, 6); break; case AML_INDEX_FIELD_OP: Child = UtGetArg (Op, 5); break; case AML_FIELD_OP: Child = UtGetArg (Op, 4); break; default: /* No other opcodes should arrive here */ return (AE_BAD_PARAMETER); } /* Enter all elements into the namespace */ while (Child) { switch (Child->Asl.AmlOpcode) { case AML_INT_RESERVEDFIELD_OP: case AML_INT_ACCESSFIELD_OP: case AML_INT_CONNECTION_OP: break; default: Status = AcpiNsLookup (WalkState->ScopeInfo, Child->Asl.Value.String, ACPI_TYPE_LOCAL_REGION_FIELD, ACPI_IMODE_LOAD_PASS1, ACPI_NS_NO_UPSEARCH | ACPI_NS_DONT_OPEN_SCOPE | ACPI_NS_ERROR_IF_FOUND, NULL, &Node); if (ACPI_FAILURE (Status)) { if (Status != AE_ALREADY_EXISTS) { AslError (ASL_ERROR, ASL_MSG_CORE_EXCEPTION, Child, Child->Asl.Value.String); return (Status); } else if (Status == AE_ALREADY_EXISTS && (Node->Flags & ANOBJ_IS_EXTERNAL)) { Node->Type = (UINT8) ACPI_TYPE_LOCAL_REGION_FIELD; Node->Flags &= ~ANOBJ_IS_EXTERNAL; } else { /* * The name already exists in this scope * But continue processing the elements */ ExternalPath = AcpiNsGetNormalizedPathname (Node, TRUE); AslDualParseOpError (ASL_ERROR, ASL_MSG_NAME_EXISTS, Child, ExternalPath, ASL_MSG_FOUND_HERE, Node->Op, ExternalPath); if (ExternalPath) { ACPI_FREE (ExternalPath); } } } else { Child->Asl.Node = Node; Node->Op = Child; } break; } Child = Child->Asl.Next; } return (AE_OK); } /******************************************************************************* * * FUNCTION: LdLoadResourceElements * * PARAMETERS: Op - Parent node (Resource Descriptor) * WalkState - Current walk state * * RETURN: Status * * DESCRIPTION: Enter the named elements of the resource descriptor (children * of the parent) into the namespace. * * NOTE: In the real AML namespace, these named elements never exist. But * we simply use the namespace here as a symbol table so we can look * them up as they are referenced. * ******************************************************************************/ static ACPI_STATUS LdLoadResourceElements ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { ACPI_PARSE_OBJECT *InitializerOp = NULL; ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; char *ExternalPath; /* * Enter the resource name into the namespace. Name must not already exist. * This opens a scope, so later field names are guaranteed to be new/unique. */ Status = AcpiNsLookup (WalkState->ScopeInfo, Op->Asl.Namepath, ACPI_TYPE_LOCAL_RESOURCE, ACPI_IMODE_LOAD_PASS1, ACPI_NS_NO_UPSEARCH | ACPI_NS_ERROR_IF_FOUND, WalkState, &Node); if (ACPI_FAILURE (Status)) { if (Status == AE_ALREADY_EXISTS) { /* Actual node causing the error was saved in ParentMethod */ ExternalPath = AcpiNsGetNormalizedPathname (Node, TRUE); AslDualParseOpError (ASL_ERROR, ASL_MSG_NAME_EXISTS, (ACPI_PARSE_OBJECT *) Op->Asl.ParentMethod, ExternalPath, ASL_MSG_FOUND_HERE, Node->Op, ExternalPath); if (ExternalPath) { ACPI_FREE (ExternalPath); } return (AE_OK); } return (Status); } Node->Value = (UINT32) Op->Asl.Value.Integer; Node->Op = Op; Op->Asl.Node = Node; /* * Now enter the predefined fields, for easy lookup when referenced * by the source ASL */ InitializerOp = ASL_GET_CHILD_NODE (Op); while (InitializerOp) { if (InitializerOp->Asl.ExternalName) { Status = AcpiNsLookup (WalkState->ScopeInfo, InitializerOp->Asl.ExternalName, ACPI_TYPE_LOCAL_RESOURCE_FIELD, ACPI_IMODE_LOAD_PASS1, ACPI_NS_NO_UPSEARCH | ACPI_NS_DONT_OPEN_SCOPE, NULL, &Node); if (ACPI_FAILURE (Status)) { return (Status); } /* * Store the field offset and length in the namespace node * so it can be used when the field is referenced */ Node->Value = InitializerOp->Asl.Value.Tag.BitOffset; Node->Length = InitializerOp->Asl.Value.Tag.BitLength; InitializerOp->Asl.Node = Node; Node->Op = InitializerOp; } InitializerOp = ASL_GET_PEER_NODE (InitializerOp); } return (AE_OK); } /******************************************************************************* * * FUNCTION: LdNamespace1Begin * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Descending callback used during the parse tree walk. If this * is a named AML opcode, enter into the namespace * ******************************************************************************/ static ACPI_STATUS LdNamespace1Begin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context; ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *MethodOp; ACPI_STATUS Status; ACPI_OBJECT_TYPE ObjectType; char *Path; UINT32 Flags = ACPI_NS_NO_UPSEARCH; ACPI_PARSE_OBJECT *Arg; UINT32 i; BOOLEAN ForceNewScope = FALSE; const ACPI_OPCODE_INFO *OpInfo; ACPI_PARSE_OBJECT *ParentOp; char *ExternalPath; ACPI_FUNCTION_NAME (LdNamespace1Begin); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op %p [%s]\n", Op, Op->Asl.ParseOpName)); /* * We are only interested in opcodes that have an associated name * (or multiple names) */ switch (Op->Asl.AmlOpcode) { case AML_INDEX_FIELD_OP: Status = LdLoadFieldElements (ACPI_TYPE_LOCAL_REGION_FIELD, Op, WalkState); return (Status); case AML_BANK_FIELD_OP: case AML_FIELD_OP: Status = LdLoadFieldElements (ACPI_TYPE_REGION, Op, WalkState); return (Status); case AML_INT_CONNECTION_OP: if (Op->Asl.Child->Asl.AmlOpcode != AML_INT_NAMEPATH_OP) { break; } Arg = Op->Asl.Child; Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Asl.ExternalName, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &Node); if (ACPI_FAILURE (Status)) { break; } break; default: /* All other opcodes go below */ break; } /* Check if this object has already been installed in the namespace */ if (Op->Asl.Node) { return (AE_OK); } /* Check for a possible illegal forward reference */ if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) || (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpcode == PARSEOP_METHODCALL)) { /* * Op->Asl.Namepath will be NULL for these opcodes. * These opcodes are guaranteed to have a parent. * Examine the parent opcode. */ ParentOp = Op->Asl.Parent; OpInfo = AcpiPsGetOpcodeInfo (ParentOp->Asl.AmlOpcode); /* * Exclude all operators that actually declare a new name: * Name (ABCD, 1) -> Ignore (AML_CLASS_NAMED_OBJECT) * We only want references to named objects: * Store (2, WXYZ) -> Attempt to resolve the name */ if ((Op->Asl.ParseOpcode != PARSEOP_METHODCALL) && (OpInfo->Class == AML_CLASS_NAMED_OBJECT)) { return (AE_OK); } /* * Check if the referenced object exists at this point during * the load: * 1) If it exists, then this cannot be a forward reference. * 2) If it does not exist, it could be a forward reference or * it truly does not exist (and no external declaration). */ Status = AcpiNsLookup (WalkState->ScopeInfo, Op->Asl.Value.Name, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, WalkState, &Node); if (Status == AE_NOT_FOUND) { /* * This is either a forward reference or the object truly * does not exist. The two cases can only be differentiated * during the cross-reference stage later. Mark the Op/Name * as not-found for now to indicate the need for further * processing. * * Special case: Allow forward references from elements of * Package objects. This provides compatibility with other * ACPI implementations. To correctly implement this, the * ACPICA table load defers package resolution until the entire * namespace has been loaded. */ if ((ParentOp->Asl.ParseOpcode != PARSEOP_PACKAGE) && (ParentOp->Asl.ParseOpcode != PARSEOP_VAR_PACKAGE)) { Op->Asl.CompileFlags |= OP_NOT_FOUND_DURING_LOAD; } return (AE_OK); } return (Status); } Path = Op->Asl.Namepath; if (!Path) { return (AE_OK); } /* Map the raw opcode into an internal object type */ switch (Op->Asl.ParseOpcode) { case PARSEOP_NAME: Arg = Op->Asl.Child; /* Get the NameSeg/NameString node */ Arg = Arg->Asl.Next; /* First peer is the object to be associated with the name */ /* * If this name refers to a ResourceTemplate, we will need to open * a new scope so that the resource subfield names can be entered into * the namespace underneath this name */ if (Op->Asl.CompileFlags & OP_IS_RESOURCE_DESC) { ForceNewScope = TRUE; } /* Get the data type associated with the named object, not the name itself */ /* Log2 loop to convert from Btype (binary) to Etype (encoded) */ ObjectType = 1; for (i = 1; i < Arg->Asl.AcpiBtype; i *= 2) { ObjectType++; } break; case PARSEOP_EXTERNAL: /* * "External" simply enters a name and type into the namespace. * We must be careful to not open a new scope, however, no matter * what type the external name refers to (e.g., a method) * * first child is name, next child is ObjectType */ ObjectType = (UINT8) Op->Asl.Child->Asl.Next->Asl.Value.Integer; /* * We will mark every new node along the path as "External". This * allows some or all of the nodes to be created later in the ASL * code. Handles cases like this: * * External (\_SB_.PCI0.ABCD, IntObj) * Scope (_SB_) * { * Device (PCI0) * { * } * } * Method (X) * { * Store (\_SB_.PCI0.ABCD, Local0) * } */ Flags |= ACPI_NS_EXTERNAL | ACPI_NS_DONT_OPEN_SCOPE; break; case PARSEOP_DEFAULT_ARG: if (Op->Asl.CompileFlags == OP_IS_RESOURCE_DESC) { Status = LdLoadResourceElements (Op, WalkState); return_ACPI_STATUS (Status); } ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode); break; case PARSEOP_SCOPE: /* * The name referenced by Scope(Name) must already exist at this point. * In other words, forward references for Scope() are not supported. * The only real reason for this is that the MS interpreter cannot * handle this case. Perhaps someday this case can go away. */ Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &Node); if (ACPI_FAILURE (Status)) { if (Status == AE_NOT_FOUND) { /* The name was not found, go ahead and create it */ Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_LOCAL_SCOPE, ACPI_IMODE_LOAD_PASS1, Flags, WalkState, &Node); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* However, this is an error -- operand to Scope must exist */ if (strlen (Op->Asl.ExternalName) == ACPI_NAMESEG_SIZE) { AslError (ASL_ERROR, ASL_MSG_NOT_FOUND, Op, Op->Asl.ExternalName); } else { AslError (ASL_ERROR, ASL_MSG_NAMEPATH_NOT_EXIST, Op, Op->Asl.ExternalName); } goto FinishNode; } AslCoreSubsystemError (Op, Status, "Failure from namespace lookup", FALSE); return_ACPI_STATUS (Status); } else /* Status AE_OK */ { /* * Do not allow references to external scopes from the DSDT. * This is because the DSDT is always loaded first, and the * external reference cannot be resolved -- causing a runtime * error because Scope() must be resolved immediately. * 10/2015. */ if ((Node->Flags & ANOBJ_IS_EXTERNAL) && (ACPI_COMPARE_NAMESEG (AslGbl_TableSignature, "DSDT"))) { /* However, allowed if the reference is within a method */ MethodOp = Op->Asl.Parent; while (MethodOp && (MethodOp->Asl.ParseOpcode != PARSEOP_METHOD)) { MethodOp = MethodOp->Asl.Parent; } if (!MethodOp) { /* Not in a control method, error */ AslError (ASL_ERROR, ASL_MSG_CROSS_TABLE_SCOPE, Op, NULL); } } } /* We found a node with this name, now check the type */ switch (Node->Type) { case ACPI_TYPE_LOCAL_SCOPE: case ACPI_TYPE_DEVICE: case ACPI_TYPE_POWER: case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: /* These are acceptable types - they all open a new scope */ break; case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* * These types we will allow, but we will change the type. * This enables some existing code of the form: * * Name (DEB, 0) * Scope (DEB) { ... } * * Which is used to workaround the fact that the MS interpreter * does not allow Scope() forward references. */ sprintf (AslGbl_MsgBuffer, "%s [%s], changing type to [Scope]", Op->Asl.ExternalName, AcpiUtGetTypeName (Node->Type)); AslError (ASL_REMARK, ASL_MSG_SCOPE_TYPE, Op, AslGbl_MsgBuffer); /* Switch the type to scope, open the new scope */ Node->Type = ACPI_TYPE_LOCAL_SCOPE; Status = AcpiDsScopeStackPush (Node, ACPI_TYPE_LOCAL_SCOPE, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } break; default: /* All other types are an error */ sprintf (AslGbl_MsgBuffer, "%s [%s]", Op->Asl.ExternalName, AcpiUtGetTypeName (Node->Type)); AslError (ASL_ERROR, ASL_MSG_SCOPE_TYPE, Op, AslGbl_MsgBuffer); /* * However, switch the type to be an actual scope so * that compilation can continue without generating a whole * cascade of additional errors. Open the new scope. */ Node->Type = ACPI_TYPE_LOCAL_SCOPE; Status = AcpiDsScopeStackPush (Node, ACPI_TYPE_LOCAL_SCOPE, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } break; } Status = AE_OK; goto FinishNode; default: ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode); break; } ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Loading name: %s, (%s)\n", Op->Asl.ExternalName, AcpiUtGetTypeName (ObjectType))); /* The name must not already exist */ Flags |= ACPI_NS_ERROR_IF_FOUND; /* * For opcodes that enter new names into the namespace, * all prefix NameSegs must exist. */ WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode); if (((WalkState->OpInfo->Flags & AML_NAMED) || (WalkState->OpInfo->Flags & AML_CREATE)) && (Op->Asl.AmlOpcode != AML_EXTERNAL_OP)) { Flags |= ACPI_NS_PREFIX_MUST_EXIST; } /* * Enter the named type into the internal namespace. We enter the name * as we go downward in the parse tree. Any necessary subobjects that * involve arguments to the opcode must be created as we go back up the * parse tree later. */ Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType, ACPI_IMODE_LOAD_PASS1, Flags, WalkState, &Node); if (ACPI_FAILURE (Status)) { if (Status == AE_ALREADY_EXISTS) { /* The name already exists in this scope */ if (Node->Type == ACPI_TYPE_LOCAL_SCOPE) { /* Allow multiple references to the same scope */ Node->Type = (UINT8) ObjectType; Status = AE_OK; } else if ((Node->Flags & ANOBJ_IS_EXTERNAL) || (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL)) { Status = LdAnalyzeExternals (Node, Op, ObjectType, WalkState); if (ACPI_FAILURE (Status)) { if (Status == AE_ERROR) { /* * The use of AE_ERROR here indicates that there was a * compiler error emitted in LdAnalyzeExternals which * means that the caller should proceed to the next Op * for analysis of subsequent parse objects. */ Status = AE_OK; } return_ACPI_STATUS (Status); } if (!(Node->Flags & ANOBJ_IS_EXTERNAL) && (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL)) { /* * If we get to here, it means that an actual definition of * the object declared external exists. Meaning that Op * loading this this Op should have no change to the ACPI * namespace. By going to FinishNode, we skip the * assignment of Node->Op = Op. */ goto FinishNode; } } else { /* Valid error, object already exists */ ExternalPath = AcpiNsGetNormalizedPathname (Node, TRUE); AslDualParseOpError (ASL_ERROR, ASL_MSG_NAME_EXISTS, Op, ExternalPath, ASL_MSG_FOUND_HERE, Node->Op, ExternalPath); if (ExternalPath) { ACPI_FREE (ExternalPath); } return_ACPI_STATUS (AE_OK); } } else if (AE_NOT_FOUND) { /* * One or more prefix NameSegs of the NamePath do not exist * (all of them must exist). Attempt to continue compilation * by setting the current scope to the root. */ Node = AcpiGbl_RootNode; Status = AE_OK; } else { /* Flag all other errors as coming from the ACPICA core */ AslCoreSubsystemError (Op, Status, "Failure from namespace lookup", FALSE); return_ACPI_STATUS (Status); } } /* Check special names like _WAK and _PTS */ LdCheckSpecialNames (Node, Op); if (ForceNewScope) { Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* Point the Node back to the original Parse node */ Node->Op = Op; FinishNode: /* Point the parse node to the new namespace node */ Op->Asl.Node = Node; if (Op->Asl.ParseOpcode == PARSEOP_METHOD) { /* * Get the method argument count from "Extra" and save * it in the namespace node */ Node->Value = (UINT32) Op->Asl.Extra; } else if (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL && Node->Type == ACPI_TYPE_METHOD && (Node->Flags & ANOBJ_IS_EXTERNAL)) { Node->Value = (UINT32) Op->Asl.Child->Asl.Next->Asl.Next->Asl.Value.Integer; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: LdMatchExternType * * PARAMETERS: Type1 * Type2 * * RETURN: BOOLEAN * * DESCRIPTION: Match Type1 and Type2 with the assumption that one might be * using external types and another might be using local types. * This should be used to compare the types found in external * declarations with types found in other external declarations or * named object declaration. This should not be used to match two * object type declarations. * ******************************************************************************/ static BOOLEAN LdMatchExternType ( ACPI_OBJECT_TYPE Type1, ACPI_OBJECT_TYPE Type2) { BOOLEAN Type1IsLocal = Type1 > ACPI_TYPE_EXTERNAL_MAX; BOOLEAN Type2IsLocal = Type2 > ACPI_TYPE_EXTERNAL_MAX; ACPI_OBJECT_TYPE ExternalType; ACPI_OBJECT_TYPE LocalType; /* * The inputs could represent types that are local to ACPICA or types that * are known externally. Some local types, such as the OperationRegion * field units, are defined with more granularity than ACPICA local types. * * Therefore, map the local types to the external types before matching. */ if (Type1IsLocal && !Type2IsLocal) { LocalType = Type1; ExternalType = Type2; } else if (!Type1IsLocal && Type2IsLocal) { LocalType = Type2; ExternalType = Type1; } else { return (Type1 == Type2); } switch (LocalType) { case ACPI_TYPE_LOCAL_REGION_FIELD: case ACPI_TYPE_LOCAL_BANK_FIELD: case ACPI_TYPE_LOCAL_INDEX_FIELD: LocalType = ACPI_TYPE_FIELD_UNIT; break; default: break; } return (LocalType == ExternalType); } /******************************************************************************* * * FUNCTION: LdAnalyzeExternals * * PARAMETERS: Node - Node that represents the named object * Op - Named object declaring this named object * ExternalOpType - Type of ExternalOp * WalkState - Current WalkState * * RETURN: Status * * DESCRIPTION: Node and Op represents an identically named object declaration * that is either declared by the ASL external keyword or declared * by operators that declare named objects (i.e. Name, Device, * OperationRegion, and etc.). This function ensures that the * declarations do not contradict each other. * ******************************************************************************/ static ACPI_STATUS LdAnalyzeExternals ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op, ACPI_OBJECT_TYPE ExternalOpType, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_OBJECT_TYPE ActualExternalOpType; ACPI_OBJECT_TYPE ActualOpType; ACPI_PARSE_OBJECT *ExternalOp; ACPI_PARSE_OBJECT *ActualOp; /* * The declaration represented by Node and Op must have the same type. * The type of the external Op is represented by ExternalOpType. However, * the type of the pre-existing declaration depends on whether if Op * is an external declaration or an actual declaration. */ if (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL) { ActualExternalOpType = ExternalOpType; ActualOpType = Node->Type; } else { ActualExternalOpType = Node->Type; ActualOpType = ExternalOpType; } if ((ActualOpType != ACPI_TYPE_ANY) && (ActualExternalOpType != ACPI_TYPE_ANY) && !LdMatchExternType (ActualExternalOpType, ActualOpType)) { if (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL && Node->Op->Asl.ParseOpcode == PARSEOP_EXTERNAL) { AslDualParseOpError (ASL_WARNING, ASL_MSG_DUPLICATE_EXTERN_MISMATCH, Op, NULL, ASL_MSG_DUPLICATE_EXTERN_FOUND_HERE, Node->Op, NULL); } else { if (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL && Node->Op->Asl.ParseOpcode != PARSEOP_EXTERNAL) { ExternalOp = Op; ActualOp = Node->Op; } else { ExternalOp = Node->Op; ActualOp = Op; } AslDualParseOpError (ASL_WARNING, ASL_MSG_DECLARATION_TYPE_MISMATCH, ExternalOp, NULL, ASL_MSG_TYPE_MISMATCH_FOUND_HERE, ActualOp, NULL); } } /* Set the object type of the external */ if ((Node->Flags & ANOBJ_IS_EXTERNAL) && (Op->Asl.ParseOpcode != PARSEOP_EXTERNAL)) { /* * Allow one create on an object or segment that was * previously declared External */ Node->Flags &= ~ANOBJ_IS_EXTERNAL; Node->Type = (UINT8) ActualOpType; /* Just retyped a node, probably will need to open a scope */ if (AcpiNsOpensScope (ActualOpType)) { Status = AcpiDsScopeStackPush (Node, ActualOpType, WalkState); if (ACPI_FAILURE (Status)) { return (Status); } } Status = AE_OK; } else if (!(Node->Flags & ANOBJ_IS_EXTERNAL) && (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL)) { /* * Allow externals in same scope as the definition of the * actual object. Similar to C. Allows multiple definition * blocks that refer to each other in the same file. */ Status = AE_OK; } else if ((Node->Flags & ANOBJ_IS_EXTERNAL) && (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL) && (ActualOpType == ACPI_TYPE_ANY)) { /* Allow update of externals of unknown type. */ Node->Type = (UINT8) ActualExternalOpType; Status = AE_OK; } return (Status); } /******************************************************************************* * * FUNCTION: LdCheckSpecialNames * * PARAMETERS: Node - Node that represents the named object * Op - Named object declaring this named object * * RETURN: None * * DESCRIPTION: Check if certain named objects are declared in the incorrect * scope. Special named objects are listed in * AslGbl_SpecialNamedObjects and can only be declared at the root * scope. _UID inside of a processor declaration must not be a * string. * ******************************************************************************/ static void LdCheckSpecialNames ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op) { UINT32 i; for (i = 0; i < MAX_SPECIAL_NAMES; i++) { if (ACPI_COMPARE_NAMESEG(Node->Name.Ascii, AslGbl_SpecialNamedObjects[i]) && Node->Parent != AcpiGbl_RootNode) { AslError (ASL_ERROR, ASL_MSG_INVALID_SPECIAL_NAME, Op, Op->Asl.ExternalName); return; } } if (ACPI_COMPARE_NAMESEG (Node->Name.Ascii, "_UID") && Node->Parent->Type == ACPI_TYPE_PROCESSOR && Node->Type == ACPI_TYPE_STRING) { AslError (ASL_ERROR, ASL_MSG_INVALID_PROCESSOR_UID , Op, "found a string"); } } /******************************************************************************* * * FUNCTION: LdNamespace2Begin * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Descending callback used during the pass 2 parse tree walk. * Second pass resolves some forward references. * * Notes: * Currently only needs to handle the Alias operator. * Could be used to allow forward references from the Scope() operator, but * the MS interpreter does not allow this, so this compiler does not either. * ******************************************************************************/ static ACPI_STATUS LdNamespace2Begin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context; ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node; ACPI_OBJECT_TYPE ObjectType; BOOLEAN ForceNewScope = FALSE; ACPI_PARSE_OBJECT *Arg; char *Path; ACPI_NAMESPACE_NODE *TargetNode; ACPI_FUNCTION_NAME (LdNamespace2Begin); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op %p [%s]\n", Op, Op->Asl.ParseOpName)); /* Ignore Ops with no namespace node */ Node = Op->Asl.Node; if (!Node) { return (AE_OK); } /* Get the type to determine if we should push the scope */ if ((Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) && (Op->Asl.CompileFlags == OP_IS_RESOURCE_DESC)) { ObjectType = ACPI_TYPE_LOCAL_RESOURCE; } else { ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode); } /* Push scope for Resource Templates */ if (Op->Asl.ParseOpcode == PARSEOP_NAME) { if (Op->Asl.CompileFlags & OP_IS_RESOURCE_DESC) { ForceNewScope = TRUE; } } /* Push the scope stack */ if (ForceNewScope || AcpiNsOpensScope (ObjectType)) { Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } if (Op->Asl.ParseOpcode == PARSEOP_ALIAS) { /* * Complete the alias node by getting and saving the target node. * First child is the alias target */ Arg = Op->Asl.Child; /* Get the target pathname */ Path = Arg->Asl.Namepath; if (!Path) { Status = UtInternalizeName (Arg->Asl.ExternalName, &Path); if (ACPI_FAILURE (Status)) { return (Status); } } /* Get the NS node associated with the target. It must exist. */ Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, WalkState, &TargetNode); if (ACPI_FAILURE (Status)) { if (Status == AE_NOT_FOUND) { /* Standalone NameSeg vs. NamePath */ if (strlen (Arg->Asl.ExternalName) == ACPI_NAMESEG_SIZE) { AslError (ASL_ERROR, ASL_MSG_NOT_FOUND, Op, Arg->Asl.ExternalName); } else { AslError (ASL_ERROR, ASL_MSG_NAMEPATH_NOT_EXIST, Op, Arg->Asl.ExternalName); } #if 0 /* * NOTE: Removed 10/2018 to enhance compiler error reporting. No * regressions seen. */ /* * The name was not found, go ahead and create it. * This prevents more errors later. */ Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_ANY, ACPI_IMODE_LOAD_PASS1, ACPI_NS_NO_UPSEARCH, WalkState, &Node); #endif return (Status); /* Removed: return (AE_OK)*/ } AslCoreSubsystemError (Op, Status, "Failure from namespace lookup", FALSE); return (AE_OK); } - /* Save the target node within the alias node */ + /* Save the target node within the alias node as well as type information */ Node->Object = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, TargetNode); + Node->Type = TargetNode->Type; + if (Node->Type == ACPI_TYPE_METHOD) + { + /* Save the parameter count for methods */ + + Node->Value = TargetNode->Value; + } } return (AE_OK); } /******************************************************************************* * * FUNCTION: LdCommonNamespaceEnd * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Ascending callback used during the loading of the namespace, * We only need to worry about managing the scope stack here. * ******************************************************************************/ static ACPI_STATUS LdCommonNamespaceEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context; ACPI_OBJECT_TYPE ObjectType; BOOLEAN ForceNewScope = FALSE; ACPI_FUNCTION_NAME (LdCommonNamespaceEnd); /* We are only interested in opcodes that have an associated name */ if (!Op->Asl.Namepath) { return (AE_OK); } /* Get the type to determine if we should pop the scope */ if ((Op->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) && (Op->Asl.CompileFlags == OP_IS_RESOURCE_DESC)) { /* TBD: Merge into AcpiDsMapNamedOpcodeToDataType */ ObjectType = ACPI_TYPE_LOCAL_RESOURCE; } else { ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode); } /* Pop scope that was pushed for Resource Templates */ if (Op->Asl.ParseOpcode == PARSEOP_NAME) { if (Op->Asl.CompileFlags & OP_IS_RESOURCE_DESC) { ForceNewScope = TRUE; } } /* Pop the scope stack */ if (ForceNewScope || AcpiNsOpensScope (ObjectType)) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "(%s): Popping scope for Op [%s] %p\n", AcpiUtGetTypeName (ObjectType), Op->Asl.ParseOpName, Op)); (void) AcpiDsScopeStackPop (WalkState); } return (AE_OK); } Index: head/sys/contrib/dev/acpica/compiler/aslmessages.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslmessages.c (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslmessages.c (revision 366562) @@ -1,558 +1,561 @@ /****************************************************************************** * * Module Name: aslmessages.c - Compiler error/warning message strings * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslmessages") /* * Strings for message reporting levels, must match error * type string tables in aslmessages.c */ const char *AslErrorLevel [ASL_NUM_REPORT_LEVELS] = { "Optimize", "Remark ", "Warning ", "Warning ", "Warning ", "Error " }; /* All lowercase versions for IDEs */ const char *AslErrorLevelIde [ASL_NUM_REPORT_LEVELS] = { "optimize", "remark ", "warning ", "warning ", "warning ", "error " }; /* * Actual message strings for each compiler message ID. There are currently * three distinct blocks of error messages (so that they can be expanded * individually): * Main ASL compiler * Data Table compiler * Preprocessor * * NOTE1: These tables must match the enum list of message IDs in the file * aslmessages.h exactly. * * NOTE2: With the introduction of the -vw option to disable specific messages, * new messages should only be added to the end of this list, so that values * for existing messages are not disturbed. */ /* ASL compiler */ const char *AslCompilerMsgs [] = { /* The zeroth message is reserved */ "", /* ASL_MSG_ALIGNMENT */ "Must be a multiple of alignment/granularity value", /* ASL_MSG_ALPHANUMERIC_STRING */ "String must be entirely alphanumeric", /* ASL_MSG_AML_NOT_IMPLEMENTED */ "Opcode is not implemented in compiler AML code generator", /* ASL_MSG_ARG_COUNT_HI */ "Too many arguments", /* ASL_MSG_ARG_COUNT_LO */ "Too few arguments", /* ASL_MSG_ARG_INIT */ "Method argument is not initialized", /* ASL_MSG_BACKWARDS_OFFSET */ "Invalid backwards offset", /* ASL_MSG_BUFFER_LENGTH */ "Effective AML buffer length is zero", /* ASL_MSG_CLOSE */ "Could not close file", /* ASL_MSG_COMPILER_INTERNAL */ "Internal compiler error", /* ASL_MSG_COMPILER_RESERVED */ "Use of compiler reserved name", /* ASL_MSG_CONNECTION_MISSING */ "A Connection operator is required for this field SpaceId", /* ASL_MSG_CONNECTION_INVALID */ "Invalid OpRegion SpaceId for use of Connection operator", /* ASL_MSG_CONSTANT_EVALUATION */ "Could not evaluate constant expression", /* ASL_MSG_CONSTANT_FOLDED */ "Constant expression evaluated and reduced", /* ASL_MSG_CORE_EXCEPTION */ "From ACPICA Subsystem", /* ASL_MSG_DEBUG_FILE_OPEN */ "Could not open debug file", /* ASL_MSG_DEBUG_FILENAME */ "Could not create debug filename", /* ASL_MSG_DEPENDENT_NESTING */ "Dependent function macros cannot be nested", /* ASL_MSG_DMA_CHANNEL */ "Invalid DMA channel (must be 0-7)", /* ASL_MSG_DMA_LIST */ "Too many DMA channels (8 max)", /* ASL_MSG_DUPLICATE_CASE */ "Case value already specified", /* ASL_MSG_DUPLICATE_ITEM */ "Duplicate value in list", /* ASL_MSG_EARLY_EOF */ "Premature end-of-file reached", /* ASL_MSG_ENCODING_LENGTH */ "Package length too long to encode", /* ASL_MSG_EX_INTERRUPT_LIST */ "Too many interrupts (255 max)", /* ASL_MSG_EX_INTERRUPT_LIST_MIN */ "Too few interrupts (1 minimum required)", /* ASL_MSG_EX_INTERRUPT_NUMBER */ "Invalid interrupt number (must be 32 bits)", /* ASL_MSG_FIELD_ACCESS_WIDTH */ "Access width is greater than region size", /* ASL_MSG_FIELD_UNIT_ACCESS_WIDTH */ "Access width of Field Unit extends beyond region limit", /* ASL_MSG_FIELD_UNIT_OFFSET */ "Field Unit extends beyond region limit", /* ASL_MSG_GPE_NAME_CONFLICT */ "Name conflicts with a previous GPE method", /* ASL_MSG_HID_LENGTH */ "_HID string must be exactly 7 or 8 characters", /* ASL_MSG_HID_PREFIX */ "_HID prefix must be all uppercase or decimal digits", /* ASL_MSG_HID_SUFFIX */ "_HID suffix must be all hex digits", /* ASL_MSG_INCLUDE_FILE_OPEN */ "Could not open include file", /* ASL_MSG_INPUT_FILE_OPEN */ "Could not open input file", /* ASL_MSG_INTEGER_LENGTH */ "Truncating 64-bit constant found in 32-bit table", /* ASL_MSG_INTEGER_OPTIMIZATION */ "Integer optimized to single-byte AML opcode", /* ASL_MSG_INTERRUPT_LIST */ "Too many interrupts (16 max)", /* ASL_MSG_INTERRUPT_NUMBER */ "Invalid interrupt number (must be 0-15)", /* ASL_MSG_INVALID_ACCESS_SIZE */ "Invalid AccessSize (Maximum is 4 - QWord access)", /* ASL_MSG_INVALID_ADDR_FLAGS */ "Invalid combination of Length and Min/Max fixed flags", /* ASL_MSG_INVALID_CONSTANT_OP */ "Invalid operator in constant expression (not type 3/4/5)", /* ASL_MSG_INVALID_EISAID */ "EISAID string must be of the form \"UUUXXXX\" (3 uppercase, 4 hex digits)", /* ASL_MSG_INVALID_ESCAPE */ "Invalid or unknown escape sequence", /* ASL_MSG_INVALID_GRAN_FIXED */ "Granularity must be zero for fixed Min/Max", /* ASL_MSG_INVALID_GRANULARITY */ "Granularity must be zero or a power of two minus one", /* ASL_MSG_INVALID_LENGTH */ "Length is larger than Min/Max window", /* ASL_MSG_INVALID_LENGTH_FIXED */ "Length is not equal to fixed Min/Max window", /* ASL_MSG_INVALID_MIN_MAX */ "Address Min is greater than Address Max", /* ASL_MSG_INVALID_OPERAND */ "Invalid operand", /* ASL_MSG_INVALID_PERFORMANCE */ "Invalid performance/robustness value", /* ASL_MSG_INVALID_PRIORITY */ "Invalid priority value", /* ASL_MSG_INVALID_STRING */ "Invalid Hex/Octal Escape - Non-ASCII or NULL", /* ASL_MSG_INVALID_TARGET */ "Target operand not allowed in constant expression", /* ASL_MSG_INVALID_TIME */ "Time parameter too long (255 max)", /* ASL_MSG_INVALID_TYPE */ "Invalid type", /* ASL_MSG_INVALID_UUID */ "UUID string must be of the form \"aabbccdd-eeff-gghh-iijj-kkllmmnnoopp\"", /* ASL_MSG_ISA_ADDRESS */ "Maximum 10-bit ISA address (0x3FF)", /* ASL_MSG_LEADING_ASTERISK */ "Invalid leading asterisk", /* ASL_MSG_LIST_LENGTH_LONG */ "Initializer list longer than declared package length", /* ASL_MSG_LIST_LENGTH_SHORT */ "Initializer list shorter than declared package length", /* ASL_MSG_LISTING_FILE_OPEN */ "Could not open listing file", /* ASL_MSG_LISTING_FILENAME */ "Could not create listing filename", /* ASL_MSG_LOCAL_INIT */ "Method local variable is not initialized", /* ASL_MSG_LOCAL_OUTSIDE_METHOD */ "Local or Arg used outside a control method", /* ASL_MSG_LONG_LINE */ "Splitting long input line", /* ASL_MSG_MEMORY_ALLOCATION */ "Memory allocation failure", /* ASL_MSG_MISSING_ENDDEPENDENT */ "Missing EndDependentFn() macro in dependent resource list", /* ASL_MSG_MISSING_STARTDEPENDENT */ "Missing StartDependentFn() macro in dependent resource list", /* ASL_MSG_MULTIPLE_DEFAULT */ "More than one Default statement within Switch construct", /* ASL_MSG_MULTIPLE_TYPES */ "Multiple types", /* ASL_MSG_NAME_EXISTS */ "Name already exists in scope", /* ASL_MSG_NAME_OPTIMIZATION */ "NamePath optimized", /* ASL_MSG_NAMED_OBJECT_IN_WHILE */ "Creating a named object in a While loop", /* ASL_MSG_NESTED_COMMENT */ "Nested comment found", /* ASL_MSG_NO_CASES */ "No Case statements under Switch", /* ASL_MSG_NO_REGION */ "_REG has no corresponding Operation Region", /* ASL_MSG_NO_RETVAL */ "Called method returns no value", /* ASL_MSG_NO_WHILE */ "No enclosing While statement", /* ASL_MSG_NON_ASCII */ "Invalid characters found in file", /* ASL_MSG_BUFFER_FIELD_LENGTH */ "Field length must be non-zero", /* ASL_MSG_NOT_EXIST */ "Object does not exist", /* ASL_MSG_NOT_FOUND */ "Object not found or not accessible from current scope", /* ASL_MSG_NOT_METHOD */ "Not a control method, cannot invoke", /* ASL_MSG_NOT_PARAMETER */ "Not a parameter, used as local only", /* ASL_MSG_NOT_REACHABLE */ "Object is not accessible from this scope", /* ASL_MSG_NOT_REFERENCED */ "Object is not referenced", /* ASL_MSG_NULL_DESCRIPTOR */ "Min/Max/Length/Gran are all zero, but no resource tag", /* ASL_MSG_NULL_STRING */ "Invalid zero-length (null) string", /* ASL_MSG_OPEN */ "Could not open file", /* ASL_MSG_OUTPUT_FILE_OPEN */ "Could not open output AML file", /* ASL_MSG_OUTPUT_FILENAME */ "Could not create output filename", /* ASL_MSG_PACKAGE_LENGTH */ "Effective AML package length is zero", /* ASL_MSG_PREPROCESSOR_FILENAME */ "Could not create preprocessor filename", /* ASL_MSG_READ */ "Could not read file", /* ASL_MSG_RECURSION */ "Recursive method call", /* ASL_MSG_REGION_BUFFER_ACCESS */ "Host Operation Region requires BufferAcc access", /* ASL_MSG_REGION_BYTE_ACCESS */ "Host Operation Region requires ByteAcc access", /* ASL_MSG_RESERVED_ARG_COUNT_HI */ "Reserved method has too many arguments", /* ASL_MSG_RESERVED_ARG_COUNT_LO */ "Reserved method has too few arguments", /* ASL_MSG_RESERVED_METHOD */ "Reserved name must be a control method", /* ASL_MSG_RESERVED_NO_RETURN_VAL */ "Reserved method should not return a value", /* ASL_MSG_RESERVED_OPERAND_TYPE */ "Invalid object type for reserved name", /* ASL_MSG_RESERVED_PACKAGE_LENGTH */ "Invalid package length for reserved name", /* ASL_MSG_RESERVED_RETURN_VALUE */ "Reserved method must return a value", /* ASL_MSG_RESERVED_USE */ "Invalid use of reserved name", /* ASL_MSG_RESERVED_WORD */ "Use of reserved name", /* ASL_MSG_RESOURCE_FIELD */ "Resource field name cannot be used as a target", /* ASL_MSG_RESOURCE_INDEX */ "Missing ResourceSourceIndex (required)", /* ASL_MSG_RESOURCE_LIST */ "Too many resource items (internal error)", /* ASL_MSG_RESOURCE_SOURCE */ "Missing ResourceSource string (required)", /* ASL_MSG_RESULT_NOT_USED */ "Result is not used, operator has no effect", /* ASL_MSG_RETURN_TYPES */ "Not all control paths return a value", /* ASL_MSG_SCOPE_FWD_REF */ "Forward references from Scope operator not allowed", /* ASL_MSG_SCOPE_TYPE */ "Existing object has invalid type for Scope operator", /* ASL_MSG_SEEK */ "Could not seek file", /* ASL_MSG_SERIALIZED */ "Control Method marked Serialized", /* ASL_MSG_SERIALIZED_REQUIRED */ "Control Method should be made Serialized due to creation of named objects within", /* ASL_MSG_SINGLE_NAME_OPTIMIZATION */ "NamePath optimized to NameSeg (uses run-time search path)", /* ASL_MSG_SOME_NO_RETVAL */ "Called method may not always return a value", /* ASL_MSG_STRING_LENGTH */ "String literal too long", /* ASL_MSG_SWITCH_TYPE */ "Switch expression is not a static Integer/Buffer/String data type, defaulting to Integer", /* ASL_MSG_SYNC_LEVEL */ "SyncLevel must be in the range 0-15", /* ASL_MSG_SYNTAX */ "", /* ASL_MSG_TABLE_SIGNATURE */ "Invalid Table Signature", /* ASL_MSG_TAG_LARGER */ "ResourceTag larger than Field", /* ASL_MSG_TAG_SMALLER */ "ResourceTag smaller than Field", /* ASL_MSG_TIMEOUT */ "Result is not used, possible operator timeout will be missed", /* ASL_MSG_TOO_MANY_TEMPS */ "Method requires too many temporary variables (_T_x)", /* ASL_MSG_TRUNCATION */ "64-bit return value will be truncated to 32 bits (DSDT or SSDT version < 2)", /* ASL_MSG_UNKNOWN_RESERVED_NAME */ "Unknown reserved name", /* ASL_MSG_UNREACHABLE_CODE */ "Statement is unreachable", /* ASL_MSG_UNSUPPORTED */ "Unsupported feature", /* ASL_MSG_UPPER_CASE */ "Non-hex letters must be upper case", /* ASL_MSG_VENDOR_LIST */ "Too many vendor data bytes (7 max)", /* ASL_MSG_WRITE */ "Could not write file", /* ASL_MSG_RANGE */ "Constant out of range", /* ASL_MSG_BUFFER_ALLOCATION */ "Could not allocate line buffer", /* ASL_MSG_MISSING_DEPENDENCY */ "Missing dependency", /* ASL_MSG_ILLEGAL_FORWARD_REF */ "Illegal forward reference", /* ASL_MSG_ILLEGAL_METHOD_REF */ "Object is declared in a different method", /* ASL_MSG_LOCAL_NOT_USED */ "Method Local is set but never used", /* ASL_MSG_ARG_AS_LOCAL_NOT_USED */ "Method Argument (as a local) is set but never used", /* ASL_MSG_ARG_NOT_USED */ "Method Argument is never used", /* ASL_MSG_CONSTANT_REQUIRED */ "Non-reducible expression", /* ASL_MSG_CROSS_TABLE_SCOPE */ "Illegal open scope on external object from within DSDT", /* ASL_MSG_EXCEPTION_NOT_RECEIVED */ "Expected remark, warning, or error did not occur. Message ID:", /* ASL_MSG_NULL_RESOURCE_TEMPLATE */ "Empty Resource Template (END_TAG only)", /* ASL_MSG_FOUND_HERE */ "Original name creation/declaration below: ", /* ASL_MSG_ILLEGAL_RECURSION */ "Illegal recursive call to method that creates named objects", /* ASL_MSG_DUPLICATE_INPUT_FILE */ "Duplicate input files detected:", /* ASL_MSG_WARNING_AS_ERROR */ "Warnings detected during compilation", /* ASL_MSG_OEM_TABLE_ID */ "Invalid OEM Table ID", /* ASL_MSG_OEM_ID */ "Invalid OEM ID", /* ASL_MSG_UNLOAD */ "Unload is not supported by all operating systems", /* ASL_MSG_OFFSET */ "Unnecessary/redundant use of Offset operator", /* ASL_MSG_LONG_SLEEP */ "Very long Sleep, greater than 1 second", /* ASL_MSG_PREFIX_NOT_EXIST */ "One or more prefix Scopes do not exist", /* ASL_MSG_NAMEPATH_NOT_EXIST */ "One or more objects within the Pathname do not exist", /* ASL_MSG_REGION_LENGTH */ "Operation Region declared with zero length", /* ASL_MSG_TEMPORARY_OBJECT */ "Object is created temporarily in another method and cannot be accessed", /* ASL_MSG_UNDEFINED_EXTERNAL */ "Named object was declared external but the actual definition does not exist", /* ASL_MSG_BUFFER_FIELD_OVERFLOW */ "Buffer field extends beyond end of target buffer", /* ASL_MSG_INVALID_SPECIAL_NAME */ "declaration of this named object outside root scope is illegal", /* ASL_MSG_INVALID_PROCESSOR_UID */ "_UID inside processor declaration must be an integer", /* ASL_MSG_LEGACY_PROCESSOR_OP */ "Legacy Processor() keyword detected. Use Device() keyword instead.", /* ASL_MSG_NAMESTRING_LENGTH */ "NameString contains too many NameSegs (>255)", /* ASL_MSG_CASE_FOUND_HERE */ "Original Case value below:", /* ASL_MSG_EXTERN_INVALID_RET_TYPE */ "Return type is only allowed for Externals declared as MethodObj", /* ASL_MSG_EXTERN_INVALID_PARAM_TYPE */ "Parameter type is only allowed for Externals declared as MethodObj", /* ASL_MSG_NAMED_OBJECT_CREATION */ "Creation of named objects within a method is highly inefficient, use globals or method local variables instead", /* ASL_MSG_ARG_COUNT_MISMATCH */ "Method NumArgs count does not match length of ParameterTypes list", /* ASL_MSG_STATIC_OPREGION_IN_METHOD */ "Static OperationRegion should be declared outside control method", /* ASL_MSG_DECLARATION_TYPE_MISMATCH */ "Type mismatch between external declaration and actual object declaration detected", /* ASL_MSG_TYPE_MISMATCH_FOUND_HERE */ "Actual object declaration:", /* ASL_MSG_DUPLICATE_EXTERN_MISMATCH */ "Type mismatch between multiple external declarations detected", /* ASL_MSG_DUPLICATE_EXTERN_FOUND_HERE */"Duplicate external declaration:", /* ASL_MSG_CONDREF_NEEDS_EXTERNAL_DECL */"CondRefOf parameter requires External() declaration", +/* ASL_MSG_EXTERNAL_FOUND_HERE */ "External declaration below ", +/* ASL_MSG_LOWER_CASE_NAMESEG */ "At least one lower case letter found in NameSeg, ASL is case insensitive - converting to upper case", +/* ASL_MSG_LOWER_CASE_NAMEPATH */ "At least one lower case letter found in NamePath, ASL is case insensitive - converting to upper case", }; /* Table compiler */ const char *AslTableCompilerMsgs [] = { /* ASL_MSG_BUFFER_ELEMENT */ "Invalid element in buffer initializer list", /* ASL_MSG_DIVIDE_BY_ZERO */ "Expression contains divide-by-zero", /* ASL_MSG_FLAG_VALUE */ "Flag value is too large", /* ASL_MSG_INTEGER_SIZE */ "Integer too large for target", /* ASL_MSG_INVALID_EXPRESSION */ "Invalid expression", /* ASL_MSG_INVALID_FIELD_NAME */ "Invalid Field Name", /* ASL_MSG_INVALID_HEX_INTEGER */ "Invalid hex integer constant", /* ASL_MSG_OEM_TABLE */ "OEM table - unknown contents", /* ASL_MSG_RESERVED_VALUE */ "Reserved field", /* ASL_MSG_UNKNOWN_LABEL */ "Label is undefined", /* ASL_MSG_UNKNOWN_SUBTABLE */ "Unknown subtable type", /* ASL_MSG_UNKNOWN_TABLE */ "Unknown ACPI table signature", /* ASL_MSG_ZERO_VALUE */ "Value must be non-zero", /* ASL_MSG_INVALID_LABEL */ "Invalid field label detected", /* ASL_MSG_BUFFER_LIST */ "Invalid buffer initializer list", /* ASL_MSG_ENTRY_LIST */ "Invalid entry initializer list" }; /* Preprocessor */ const char *AslPreprocessorMsgs [] = { /* ASL_MSG_DIRECTIVE_SYNTAX */ "Invalid directive syntax", /* ASL_MSG_ENDIF_MISMATCH */ "Mismatched #endif", /* ASL_MSG_ERROR_DIRECTIVE */ "#error", /* ASL_MSG_EXISTING_NAME */ "Name is already defined", /* ASL_MSG_INVALID_INVOCATION */ "Invalid macro invocation", /* ASL_MSG_MACRO_SYNTAX */ "Invalid macro syntax", /* ASL_MSG_TOO_MANY_ARGUMENTS */ "Too many macro arguments", /* ASL_MSG_UNKNOWN_DIRECTIVE */ "Unknown directive", /* ASL_MSG_UNKNOWN_PRAGMA */ "Unknown pragma", /* ASL_MSG_WARNING_DIRECTIVE */ "#warning", /* ASL_MSG_INCLUDE_FILE */ "Found a # preprocessor directive in ASL Include() file" }; /******************************************************************************* * * FUNCTION: AeDecodeMessageId * * PARAMETERS: MessageId - ASL message ID (exception code) to be * formatted. Possibly fully encoded. * * RETURN: A string containing the exception message text. * * DESCRIPTION: This function validates and translates an ASL message ID into * an ASCII string. * ******************************************************************************/ const char * AeDecodeMessageId ( UINT16 MessageId) { UINT32 Index; const char **MessageTable; /* Main ASL Compiler messages */ if (MessageId <= ASL_MSG_MAIN_COMPILER_END) { MessageTable = AslCompilerMsgs; Index = MessageId; if (Index >= ACPI_ARRAY_LENGTH (AslCompilerMsgs)) { return ("[Unknown ASL Compiler exception ID]"); } } /* Data Table Compiler messages */ else if (MessageId <= ASL_MSG_TABLE_COMPILER_END) { MessageTable = AslTableCompilerMsgs; Index = MessageId - ASL_MSG_TABLE_COMPILER; if (Index >= ACPI_ARRAY_LENGTH (AslTableCompilerMsgs)) { return ("[Unknown Table Compiler exception ID]"); } } /* Preprocessor messages */ else if (MessageId <= ASL_MSG_PREPROCESSOR_END) { MessageTable = AslPreprocessorMsgs; Index = MessageId - ASL_MSG_PREPROCESSOR; if (Index >= ACPI_ARRAY_LENGTH (AslPreprocessorMsgs)) { return ("[Unknown Preprocessor exception ID]"); } } /* Everything else is unknown */ else { return ("[Unknown exception/component ID]"); } return (MessageTable[Index]); } /******************************************************************************* * * FUNCTION: AeDecodeExceptionLevel * * PARAMETERS: Level - The ASL error level to be decoded * * RETURN: A string containing the error level text * * DESCRIPTION: This function validates and translates an ASL error level into * an ASCII string. * ******************************************************************************/ const char * AeDecodeExceptionLevel ( UINT8 Level) { /* Range check on Level */ if (Level >= ACPI_ARRAY_LENGTH (AslErrorLevel)) { return ("Unknown exception level"); } /* Differentiate the string type to be used (IDE is all lower case) */ if (AslGbl_VerboseErrors) { return (AslErrorLevel[Level]); } return (AslErrorLevelIde[Level]); } /******************************************************************************* * * FUNCTION: AeBuildFullExceptionCode * * PARAMETERS: Level - ASL error level * MessageId - ASL exception code to be formatted * * RETURN: Fully encoded exception code * * DESCRIPTION: Build the full exception code from the error level and the * actual message ID. * ******************************************************************************/ UINT16 AeBuildFullExceptionCode ( UINT8 Level, UINT16 MessageId) { /* * Error level is in the thousands slot (error/warning/remark, etc.) * Error codes are 0 - 999 */ return (((Level + 1) * 1000) + MessageId); } Index: head/sys/contrib/dev/acpica/compiler/aslmessages.h =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslmessages.h (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslmessages.h (revision 366562) @@ -1,424 +1,427 @@ /****************************************************************************** * * Module Name: aslmessages.h - Compiler error/warning messages * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ASLMESSAGES_H #define __ASLMESSAGES_H /* These values must match error type string tables in aslmessages.c */ typedef enum { ASL_OPTIMIZATION = 0, ASL_REMARK, ASL_WARNING, ASL_WARNING2, ASL_WARNING3, ASL_ERROR, ASL_NUM_REPORT_LEVELS } ASL_MESSAGE_TYPES; #define ASL_ERROR_LEVEL_LENGTH 8 /* Length of strings for types above */ /* * Exception code blocks, 0 - 999 * Available for new exception blocks: 600 - 999 */ #define ASL_MSG_MAIN_COMPILER 0 /* 0 - 299 */ #define ASL_MSG_MAIN_COMPILER_END 299 #define ASL_MSG_TABLE_COMPILER 300 /* 300 - 499 */ #define ASL_MSG_TABLE_COMPILER_END 499 #define ASL_MSG_PREPROCESSOR 500 /* 500 - 599 */ #define ASL_MSG_PREPROCESSOR_END 599 /* * Values (message IDs) for all compiler messages. There are currently * three distinct blocks of error messages (so that they can be expanded * individually): * Main ASL compiler * Data Table compiler * Preprocessor * * NOTE1: This list must match the tables of message strings in the file * aslmessages.c exactly. * * NOTE2: With the introduction of the -vw option to disable specific * messages, new messages should only be added to the end of these * lists, so that values for existing messages are not disturbed. */ typedef enum { ASL_MSG_RESERVED = ASL_MSG_MAIN_COMPILER, ASL_MSG_ALIGNMENT, ASL_MSG_ALPHANUMERIC_STRING, ASL_MSG_AML_NOT_IMPLEMENTED, ASL_MSG_ARG_COUNT_HI, ASL_MSG_ARG_COUNT_LO, ASL_MSG_ARG_INIT, ASL_MSG_BACKWARDS_OFFSET, ASL_MSG_BUFFER_LENGTH, ASL_MSG_CLOSE, ASL_MSG_COMPILER_INTERNAL, ASL_MSG_COMPILER_RESERVED, ASL_MSG_CONNECTION_MISSING, ASL_MSG_CONNECTION_INVALID, ASL_MSG_CONSTANT_EVALUATION, ASL_MSG_CONSTANT_FOLDED, ASL_MSG_CORE_EXCEPTION, ASL_MSG_DEBUG_FILE_OPEN, ASL_MSG_DEBUG_FILENAME, ASL_MSG_DEPENDENT_NESTING, ASL_MSG_DMA_CHANNEL, ASL_MSG_DMA_LIST, ASL_MSG_DUPLICATE_CASE, ASL_MSG_DUPLICATE_ITEM, ASL_MSG_EARLY_EOF, ASL_MSG_ENCODING_LENGTH, ASL_MSG_EX_INTERRUPT_LIST, ASL_MSG_EX_INTERRUPT_LIST_MIN, ASL_MSG_EX_INTERRUPT_NUMBER, ASL_MSG_FIELD_ACCESS_WIDTH, ASL_MSG_FIELD_UNIT_ACCESS_WIDTH, ASL_MSG_FIELD_UNIT_OFFSET, ASL_MSG_GPE_NAME_CONFLICT, ASL_MSG_HID_LENGTH, ASL_MSG_HID_PREFIX, ASL_MSG_HID_SUFFIX, ASL_MSG_INCLUDE_FILE_OPEN, ASL_MSG_INPUT_FILE_OPEN, ASL_MSG_INTEGER_LENGTH, ASL_MSG_INTEGER_OPTIMIZATION, ASL_MSG_INTERRUPT_LIST, ASL_MSG_INTERRUPT_NUMBER, ASL_MSG_INVALID_ACCESS_SIZE, ASL_MSG_INVALID_ADDR_FLAGS, ASL_MSG_INVALID_CONSTANT_OP, ASL_MSG_INVALID_EISAID, ASL_MSG_INVALID_ESCAPE, ASL_MSG_INVALID_GRAN_FIXED, ASL_MSG_INVALID_GRANULARITY, ASL_MSG_INVALID_LENGTH, ASL_MSG_INVALID_LENGTH_FIXED, ASL_MSG_INVALID_MIN_MAX, ASL_MSG_INVALID_OPERAND, ASL_MSG_INVALID_PERFORMANCE, ASL_MSG_INVALID_PRIORITY, ASL_MSG_INVALID_STRING, ASL_MSG_INVALID_TARGET, ASL_MSG_INVALID_TIME, ASL_MSG_INVALID_TYPE, ASL_MSG_INVALID_UUID, ASL_MSG_ISA_ADDRESS, ASL_MSG_LEADING_ASTERISK, ASL_MSG_LIST_LENGTH_LONG, ASL_MSG_LIST_LENGTH_SHORT, ASL_MSG_LISTING_FILE_OPEN, ASL_MSG_LISTING_FILENAME, ASL_MSG_LOCAL_INIT, ASL_MSG_LOCAL_OUTSIDE_METHOD, ASL_MSG_LONG_LINE, ASL_MSG_MEMORY_ALLOCATION, ASL_MSG_MISSING_ENDDEPENDENT, ASL_MSG_MISSING_STARTDEPENDENT, ASL_MSG_MULTIPLE_DEFAULT, ASL_MSG_MULTIPLE_TYPES, ASL_MSG_NAME_EXISTS, ASL_MSG_NAME_OPTIMIZATION, ASL_MSG_NAMED_OBJECT_IN_WHILE, ASL_MSG_NESTED_COMMENT, ASL_MSG_NO_CASES, ASL_MSG_NO_REGION, ASL_MSG_NO_RETVAL, ASL_MSG_NO_WHILE, ASL_MSG_NON_ASCII, ASL_MSG_BUFFER_FIELD_LENGTH, ASL_MSG_NOT_EXIST, ASL_MSG_NOT_FOUND, ASL_MSG_NOT_METHOD, ASL_MSG_NOT_PARAMETER, ASL_MSG_NOT_REACHABLE, ASL_MSG_NOT_REFERENCED, ASL_MSG_NULL_DESCRIPTOR, ASL_MSG_NULL_STRING, ASL_MSG_OPEN, ASL_MSG_OUTPUT_FILE_OPEN, ASL_MSG_OUTPUT_FILENAME, ASL_MSG_PACKAGE_LENGTH, ASL_MSG_PREPROCESSOR_FILENAME, ASL_MSG_READ, ASL_MSG_RECURSION, ASL_MSG_REGION_BUFFER_ACCESS, ASL_MSG_REGION_BYTE_ACCESS, ASL_MSG_RESERVED_ARG_COUNT_HI, ASL_MSG_RESERVED_ARG_COUNT_LO, ASL_MSG_RESERVED_METHOD, ASL_MSG_RESERVED_NO_RETURN_VAL, ASL_MSG_RESERVED_OPERAND_TYPE, ASL_MSG_RESERVED_PACKAGE_LENGTH, ASL_MSG_RESERVED_RETURN_VALUE, ASL_MSG_RESERVED_USE, ASL_MSG_RESERVED_WORD, ASL_MSG_RESOURCE_FIELD, ASL_MSG_RESOURCE_INDEX, ASL_MSG_RESOURCE_LIST, ASL_MSG_RESOURCE_SOURCE, ASL_MSG_RESULT_NOT_USED, ASL_MSG_RETURN_TYPES, ASL_MSG_SCOPE_FWD_REF, ASL_MSG_SCOPE_TYPE, ASL_MSG_SEEK, ASL_MSG_SERIALIZED, ASL_MSG_SERIALIZED_REQUIRED, ASL_MSG_SINGLE_NAME_OPTIMIZATION, ASL_MSG_SOME_NO_RETVAL, ASL_MSG_STRING_LENGTH, ASL_MSG_SWITCH_TYPE, ASL_MSG_SYNC_LEVEL, ASL_MSG_SYNTAX, ASL_MSG_TABLE_SIGNATURE, ASL_MSG_TAG_LARGER, ASL_MSG_TAG_SMALLER, ASL_MSG_TIMEOUT, ASL_MSG_TOO_MANY_TEMPS, ASL_MSG_TRUNCATION, ASL_MSG_UNKNOWN_RESERVED_NAME, ASL_MSG_UNREACHABLE_CODE, ASL_MSG_UNSUPPORTED, ASL_MSG_UPPER_CASE, ASL_MSG_VENDOR_LIST, ASL_MSG_WRITE, ASL_MSG_RANGE, ASL_MSG_BUFFER_ALLOCATION, ASL_MSG_MISSING_DEPENDENCY, ASL_MSG_ILLEGAL_FORWARD_REF, ASL_MSG_ILLEGAL_METHOD_REF, ASL_MSG_LOCAL_NOT_USED, ASL_MSG_ARG_AS_LOCAL_NOT_USED, ASL_MSG_ARG_NOT_USED, ASL_MSG_CONSTANT_REQUIRED, ASL_MSG_CROSS_TABLE_SCOPE, ASL_MSG_EXCEPTION_NOT_RECEIVED, ASL_MSG_NULL_RESOURCE_TEMPLATE, ASL_MSG_FOUND_HERE, ASL_MSG_ILLEGAL_RECURSION, ASL_MSG_DUPLICATE_INPUT_FILE, ASL_MSG_WARNING_AS_ERROR, ASL_MSG_OEM_TABLE_ID, ASL_MSG_OEM_ID, ASL_MSG_UNLOAD, ASL_MSG_OFFSET, ASL_MSG_LONG_SLEEP, ASL_MSG_PREFIX_NOT_EXIST, ASL_MSG_NAMEPATH_NOT_EXIST, ASL_MSG_REGION_LENGTH, ASL_MSG_TEMPORARY_OBJECT, ASL_MSG_UNDEFINED_EXTERNAL, ASL_MSG_BUFFER_FIELD_OVERFLOW, ASL_MSG_INVALID_SPECIAL_NAME, ASL_MSG_INVALID_PROCESSOR_UID, ASL_MSG_LEGACY_PROCESSOR_OP, ASL_MSG_NAMESTRING_LENGTH, ASL_MSG_CASE_FOUND_HERE, ASL_MSG_EXTERN_INVALID_RET_TYPE, ASL_MSG_EXTERN_INVALID_PARAM_TYPE, ASL_MSG_NAMED_OBJECT_CREATION, ASL_MSG_ARG_COUNT_MISMATCH, ASL_MSG_STATIC_OPREGION_IN_METHOD, ASL_MSG_DECLARATION_TYPE_MISMATCH, ASL_MSG_TYPE_MISMATCH_FOUND_HERE, ASL_MSG_DUPLICATE_EXTERN_MISMATCH, ASL_MSG_DUPLICATE_EXTERN_FOUND_HERE, ASL_MSG_CONDREF_NEEDS_EXTERNAL_DECL, + ASL_MSG_EXTERNAL_FOUND_HERE, + ASL_MSG_LOWER_CASE_NAMESEG, + ASL_MSG_LOWER_CASE_NAMEPATH, /* These messages are used by the Data Table compiler only */ ASL_MSG_BUFFER_ELEMENT = ASL_MSG_TABLE_COMPILER, ASL_MSG_DIVIDE_BY_ZERO, ASL_MSG_FLAG_VALUE, ASL_MSG_INTEGER_SIZE, ASL_MSG_INVALID_EXPRESSION, ASL_MSG_INVALID_FIELD_NAME, ASL_MSG_INVALID_HEX_INTEGER, ASL_MSG_OEM_TABLE, ASL_MSG_RESERVED_VALUE, ASL_MSG_UNKNOWN_LABEL, ASL_MSG_UNKNOWN_SUBTABLE, ASL_MSG_UNKNOWN_TABLE, ASL_MSG_ZERO_VALUE, ASL_MSG_INVALID_LABEL, ASL_MSG_BUFFER_LIST, ASL_MSG_ENTRY_LIST, /* These messages are used by the Preprocessor only */ ASL_MSG_DIRECTIVE_SYNTAX = ASL_MSG_PREPROCESSOR, ASL_MSG_ENDIF_MISMATCH, ASL_MSG_ERROR_DIRECTIVE, ASL_MSG_EXISTING_NAME, ASL_MSG_INVALID_INVOCATION, ASL_MSG_MACRO_SYNTAX, ASL_MSG_TOO_MANY_ARGUMENTS, ASL_MSG_UNKNOWN_DIRECTIVE, ASL_MSG_UNKNOWN_PRAGMA, ASL_MSG_WARNING_DIRECTIVE, ASL_MSG_INCLUDE_FILE } ASL_MESSAGE_IDS; #endif /* __ASLMESSAGES_H */ Index: head/sys/contrib/dev/acpica/compiler/aslparseop.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslparseop.c (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslparseop.c (revision 366562) @@ -1,913 +1,939 @@ /****************************************************************************** * * Module Name: aslparseop - Parse op create/allocate/cache interfaces * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include "aslcompiler.y.h" #include #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslparseop") /******************************************************************************* * * FUNCTION: TrCreateOp * * PARAMETERS: ParseOpcode - Opcode to be assigned to the op * NumChildren - Number of children to follow * ... - A list of child ops to link to the new * op. NumChildren long. * * RETURN: Pointer to the new op. Aborts on allocation failure * * DESCRIPTION: Create a new parse op and link together a list of child * ops underneath the new op. * ******************************************************************************/ ACPI_PARSE_OBJECT * TrCreateOp ( UINT32 ParseOpcode, UINT32 NumChildren, ...) { ACPI_PARSE_OBJECT *Op; ACPI_PARSE_OBJECT *Child; ACPI_PARSE_OBJECT *PrevChild; va_list ap; UINT32 i; BOOLEAN FirstChild; va_start (ap, NumChildren); /* Allocate one new op */ Op = TrAllocateOp (ParseOpcode); DbgPrint (ASL_PARSE_OUTPUT, "\nCreateOp Ln/Col %u/%u NewParent %p Child %u Op %s ", Op->Asl.LineNumber, Op->Asl.Column, Op, NumChildren, UtGetOpName(ParseOpcode)); /* Some extra debug output based on the parse opcode */ switch (ParseOpcode) { case PARSEOP_ASL_CODE: AslGbl_ParseTreeRoot = Op; Op->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG; DbgPrint (ASL_PARSE_OUTPUT, "ASLCODE (Tree Completed)->"); break; case PARSEOP_DEFINITION_BLOCK: DbgPrint (ASL_PARSE_OUTPUT, "DEFINITION_BLOCK (Tree Completed)->"); break; case PARSEOP_OPERATIONREGION: DbgPrint (ASL_PARSE_OUTPUT, "OPREGION->"); break; case PARSEOP_OR: DbgPrint (ASL_PARSE_OUTPUT, "OR->"); break; default: /* Nothing to do for other opcodes */ break; } /* Link the new op to its children */ PrevChild = NULL; FirstChild = TRUE; for (i = 0; i < NumChildren; i++) { /* Get the next child */ Child = va_arg (ap, ACPI_PARSE_OBJECT *); DbgPrint (ASL_PARSE_OUTPUT, "%p, ", Child); /* * If child is NULL, this means that an optional argument * was omitted. We must create a placeholder with a special * opcode (DEFAULT_ARG) so that the code generator will know * that it must emit the correct default for this argument */ if (!Child) { Child = TrAllocateOp (PARSEOP_DEFAULT_ARG); } /* Link first child to parent */ if (FirstChild) { FirstChild = FALSE; Op->Asl.Child = Child; /* * For the ASL-/ASL+ converter: if the ParseOp is a Connection, * External, Offset or AccessAs, it means that the comments in the * FirstChild belongs to their parent due to the parsing order in * the .y files. To correct this, take the comments in the * FirstChild place it in the parent. This also means that * legitimate comments for the child gets put to the parent. */ if (AcpiGbl_CaptureComments && ((ParseOpcode == PARSEOP_CONNECTION) || (ParseOpcode == PARSEOP_EXTERNAL) || (ParseOpcode == PARSEOP_OFFSET) || (ParseOpcode == PARSEOP_ACCESSAS))) { Op->Asl.CommentList = Child->Asl.CommentList; Op->Asl.EndBlkComment = Child->Asl.EndBlkComment; Op->Asl.InlineComment = Child->Asl.InlineComment; Op->Asl.FileChanged = Child->Asl.FileChanged; Child->Asl.CommentList = NULL; Child->Asl.EndBlkComment = NULL; Child->Asl.InlineComment = NULL; Child->Asl.FileChanged = FALSE; /* * These do not need to be "passed off". They can be copied * because the code for these opcodes should be printed in the * same file. */ Op->Asl.Filename = Child->Asl.Filename; Op->Asl.ParentFilename = Child->Asl.ParentFilename; } } /* Point all children to parent */ Child->Asl.Parent = Op; /* Link children in a peer list */ if (PrevChild) { PrevChild->Asl.Next = Child; }; /* Get the comment from last child in the resource template call */ if (AcpiGbl_CaptureComments && (Op->Asl.ParseOpcode == PARSEOP_RESOURCETEMPLATE)) { CvDbgPrint ("Transferred current comment list to this op.\n"); Op->Asl.CommentList = Child->Asl.CommentList; Child->Asl.CommentList = NULL; Op->Asl.InlineComment = Child->Asl.InlineComment; Child->Asl.InlineComment = NULL; } /* * This child might be a list, point all ops in the list * to the same parent */ while (Child->Asl.Next) { Child = Child->Asl.Next; Child->Asl.Parent = Op; } PrevChild = Child; } va_end(ap); DbgPrint (ASL_PARSE_OUTPUT, "\n"); return (Op); } /******************************************************************************* * * FUNCTION: TrCreateLeafOp * * PARAMETERS: ParseOpcode - New opcode to be assigned to the op * * RETURN: Pointer to the new op. Aborts on allocation failure * * DESCRIPTION: Create a simple leaf op (no children or peers, and no value * assigned to the op) * ******************************************************************************/ ACPI_PARSE_OBJECT * TrCreateLeafOp ( UINT32 ParseOpcode) { ACPI_PARSE_OBJECT *Op; Op = TrAllocateOp (ParseOpcode); DbgPrint (ASL_PARSE_OUTPUT, "\nCreateLeafOp Ln/Col %u/%u NewOp %p Op %s\n\n", Op->Asl.LineNumber, Op->Asl.Column, Op, UtGetOpName (ParseOpcode)); return (Op); } /******************************************************************************* * * FUNCTION: TrCreateValuedLeafOp * * PARAMETERS: ParseOpcode - New opcode to be assigned to the op * Value - Value to be assigned to the op * * RETURN: Pointer to the new op. Aborts on allocation failure * * DESCRIPTION: Create a leaf op (no children or peers) with a value * assigned to it * ******************************************************************************/ ACPI_PARSE_OBJECT * TrCreateValuedLeafOp ( UINT32 ParseOpcode, UINT64 Value) { ACPI_PARSE_OBJECT *Op; + UINT32 i; + char *StringPtr = NULL; Op = TrAllocateOp (ParseOpcode); Op->Asl.Value.Integer = Value; DbgPrint (ASL_PARSE_OUTPUT, "\nCreateValuedLeafOp Ln/Col %u/%u NewOp %p " "Op %s Value %8.8X%8.8X ", Op->Asl.LineNumber, Op->Asl.Column, Op, UtGetOpName(ParseOpcode), ACPI_FORMAT_UINT64 (Value)); switch (ParseOpcode) { case PARSEOP_STRING_LITERAL: DbgPrint (ASL_PARSE_OUTPUT, "STRING->%s", Op->Asl.Value.String); break; case PARSEOP_NAMESEG: + /* Check for mixed case (or all lower case). Issue a remark in this case */ + + for (i = 0; i < ACPI_NAMESEG_SIZE; i++) + { + if (islower (Op->Asl.Value.Name[i])) + { + AcpiUtStrupr (&Op->Asl.Value.Name[i]); + AslError (ASL_REMARK, ASL_MSG_LOWER_CASE_NAMESEG, Op, Op->Asl.Value.Name); + break; + } + } DbgPrint (ASL_PARSE_OUTPUT, "NAMESEG->%s", Op->Asl.Value.String); break; case PARSEOP_NAMESTRING: + /* Check for mixed case (or all lower case). Issue a remark in this case */ + + StringPtr = Op->Asl.Value.Name; + for (i = 0; *StringPtr; i++) + { + if (islower (*StringPtr)) + { + AcpiUtStrupr (&Op->Asl.Value.Name[i]); + AslError (ASL_REMARK, ASL_MSG_LOWER_CASE_NAMEPATH, Op, Op->Asl.Value.Name); + break; + } + StringPtr++; + } DbgPrint (ASL_PARSE_OUTPUT, "NAMESTRING->%s", Op->Asl.Value.String); break; case PARSEOP_EISAID: DbgPrint (ASL_PARSE_OUTPUT, "EISAID->%s", Op->Asl.Value.String); break; case PARSEOP_METHOD: DbgPrint (ASL_PARSE_OUTPUT, "METHOD"); break; case PARSEOP_INTEGER: DbgPrint (ASL_PARSE_OUTPUT, "INTEGER->%8.8X%8.8X", ACPI_FORMAT_UINT64 (Value)); break; default: break; } DbgPrint (ASL_PARSE_OUTPUT, "\n\n"); return (Op); } /******************************************************************************* * * FUNCTION: TrCreateTargetOp * * PARAMETERS: OriginalOp - Op to be copied * * RETURN: Pointer to the new op. Aborts on allocation failure * * DESCRIPTION: Copy an existing op (and subtree). Used in ASL+ (C-style) * expressions where the target is the same as one of the * operands. A new op and subtree must be created from the * original so that the parse tree can be linked properly. * * NOTE: This code is specific to target operands that are the last * operand in an ASL/AML operator. Meaning that the top-level * parse Op in a possible subtree has a NULL Next pointer. * This simplifies the recursion. * * Subtree example: * DeRefOf (Local1) += 32 * * This gets converted to: * Add (DeRefOf (Local1), 32, DeRefOf (Local1)) * * Each DeRefOf has a single child, Local1. Even more complex * subtrees can be created via the Index and DeRefOf operators. * ******************************************************************************/ ACPI_PARSE_OBJECT * TrCreateTargetOp ( ACPI_PARSE_OBJECT *OriginalOp, ACPI_PARSE_OBJECT *ParentOp) { ACPI_PARSE_OBJECT *Op; if (!OriginalOp) { return (NULL); } Op = UtParseOpCacheCalloc (); /* Copy the pertinent values (omit link pointer fields) */ Op->Asl.Value = OriginalOp->Asl.Value; Op->Asl.Filename = OriginalOp->Asl.Filename; Op->Asl.LineNumber = OriginalOp->Asl.LineNumber; Op->Asl.LogicalLineNumber = OriginalOp->Asl.LogicalLineNumber; Op->Asl.LogicalByteOffset = OriginalOp->Asl.LogicalByteOffset; Op->Asl.Column = OriginalOp->Asl.Column; Op->Asl.Flags = OriginalOp->Asl.Flags; Op->Asl.CompileFlags = OriginalOp->Asl.CompileFlags; Op->Asl.AmlOpcode = OriginalOp->Asl.AmlOpcode; Op->Asl.ParseOpcode = OriginalOp->Asl.ParseOpcode; Op->Asl.Parent = ParentOp; UtSetParseOpName (Op); /* Copy a possible subtree below this op */ if (OriginalOp->Asl.Child) { Op->Asl.Child = TrCreateTargetOp (OriginalOp->Asl.Child, Op); } if (OriginalOp->Asl.Next) /* Null for top-level op */ { Op->Asl.Next = TrCreateTargetOp (OriginalOp->Asl.Next, ParentOp); } return (Op); } /******************************************************************************* * * FUNCTION: TrCreateAssignmentOp * * PARAMETERS: Target - Assignment target * Source - Assignment source * * RETURN: Pointer to the new op. Aborts on allocation failure * * DESCRIPTION: Implements the C-style '=' operator. It changes the parse * tree if possible to utilize the last argument of the math * operators which is a target operand -- thus saving invocation * of and additional Store() operator. An optimization. * ******************************************************************************/ ACPI_PARSE_OBJECT * TrCreateAssignmentOp ( ACPI_PARSE_OBJECT *Target, ACPI_PARSE_OBJECT *Source) { ACPI_PARSE_OBJECT *TargetOp; ACPI_PARSE_OBJECT *SourceOp1; ACPI_PARSE_OBJECT *SourceOp2; ACPI_PARSE_OBJECT *Operator; DbgPrint (ASL_PARSE_OUTPUT, "\nTrCreateAssignmentOp Line [%u to %u] Source %s Target %s\n", Source->Asl.LineNumber, Source->Asl.EndLine, UtGetOpName (Source->Asl.ParseOpcode), UtGetOpName (Target->Asl.ParseOpcode)); TrSetOpFlags (Target, OP_IS_TARGET); switch (Source->Asl.ParseOpcode) { /* * Only these operators can be optimized because they have * a target operand */ case PARSEOP_ADD: case PARSEOP_AND: case PARSEOP_DIVIDE: case PARSEOP_INDEX: case PARSEOP_MOD: case PARSEOP_MULTIPLY: case PARSEOP_NOT: case PARSEOP_OR: case PARSEOP_SHIFTLEFT: case PARSEOP_SHIFTRIGHT: case PARSEOP_SUBTRACT: case PARSEOP_XOR: break; /* Otherwise, just create a normal Store operator */ default: goto CannotOptimize; } /* * Transform the parse tree such that the target is moved to the * last operand of the operator */ SourceOp1 = Source->Asl.Child; SourceOp2 = SourceOp1->Asl.Next; /* NOT only has one operand, but has a target */ if (Source->Asl.ParseOpcode == PARSEOP_NOT) { SourceOp2 = SourceOp1; } /* DIVIDE has an extra target operand (remainder) */ if (Source->Asl.ParseOpcode == PARSEOP_DIVIDE) { SourceOp2 = SourceOp2->Asl.Next; } TargetOp = SourceOp2->Asl.Next; /* * Can't perform this optimization if there already is a target * for the operator (ZERO is a "no target" placeholder). */ if (TargetOp->Asl.ParseOpcode != PARSEOP_ZERO) { goto CannotOptimize; } /* Link in the target as the final operand */ SourceOp2->Asl.Next = Target; Target->Asl.Parent = Source; return (Source); CannotOptimize: Operator = TrAllocateOp (PARSEOP_STORE); TrLinkOpChildren (Operator, 2, Source, Target); /* Set the appropriate line numbers for the new op */ Operator->Asl.LineNumber = Target->Asl.LineNumber; Operator->Asl.LogicalLineNumber = Target->Asl.LogicalLineNumber; Operator->Asl.LogicalByteOffset = Target->Asl.LogicalByteOffset; Operator->Asl.Column = Target->Asl.Column; return (Operator); } /******************************************************************************* * * FUNCTION: TrCreateNullTargetOp * * PARAMETERS: None * * RETURN: Pointer to the new op. Aborts on allocation failure * * DESCRIPTION: Create a "null" target op. This is defined by the ACPI * specification to be a zero AML opcode, and indicates that * no target has been specified for the parent operation * ******************************************************************************/ ACPI_PARSE_OBJECT * TrCreateNullTargetOp ( void) { ACPI_PARSE_OBJECT *Op; Op = TrAllocateOp (PARSEOP_ZERO); Op->Asl.CompileFlags |= (OP_IS_TARGET | OP_COMPILE_TIME_CONST); DbgPrint (ASL_PARSE_OUTPUT, "\nCreateNullTargetOp Ln/Col %u/%u NewOp %p Op %s\n", Op->Asl.LineNumber, Op->Asl.Column, Op, UtGetOpName (Op->Asl.ParseOpcode)); return (Op); } /******************************************************************************* * * FUNCTION: TrCreateConstantLeafOp * * PARAMETERS: ParseOpcode - The constant opcode * * RETURN: Pointer to the new op. Aborts on allocation failure * * DESCRIPTION: Create a leaf op (no children or peers) for one of the * special constants - __LINE__, __FILE__, and __DATE__. * * Note: The fullimplemenation of __METHOD__ cannot happen here because we * don't have a full parse tree at this time and cannot find the parent * control method. __METHOD__ must be implemented later, after the parse * tree has been fully constructed. * ******************************************************************************/ ACPI_PARSE_OBJECT * TrCreateConstantLeafOp ( UINT32 ParseOpcode) { ACPI_PARSE_OBJECT *Op = NULL; time_t CurrentTime; char *StaticTimeString; char *TimeString; char *Filename = NULL; ACPI_STATUS Status; switch (ParseOpcode) { case PARSEOP___LINE__: Op = TrAllocateOp (PARSEOP_INTEGER); Op->Asl.Value.Integer = Op->Asl.LineNumber; break; case PARSEOP___METHOD__: /* Will become a string literal later */ Op = TrAllocateOp (PARSEOP___METHOD__); Op->Asl.Value.String = NULL; break; case PARSEOP___PATH__: Op = TrAllocateOp (PARSEOP_STRING_LITERAL); /* Op.Asl.Filename contains the full pathname to the file */ Op->Asl.Value.String = Op->Asl.Filename; break; case PARSEOP___FILE__: Op = TrAllocateOp (PARSEOP_STRING_LITERAL); /* Get the simple filename from the full path */ Status = FlSplitInputPathname (Op->Asl.Filename, NULL, &Filename); if (ACPI_FAILURE (Status)) { return (NULL); } Op->Asl.Value.String = Filename; break; case PARSEOP___DATE__: Op = TrAllocateOp (PARSEOP_STRING_LITERAL); /* Get a copy of the current time */ Op->Asl.Value.String = ""; CurrentTime = time (NULL); StaticTimeString = ctime (&CurrentTime); if (StaticTimeString) { TimeString = UtLocalCalloc (strlen (StaticTimeString) + 1); strcpy (TimeString, StaticTimeString); TimeString[strlen(TimeString) -1] = 0; /* Remove trailing newline */ Op->Asl.Value.String = TimeString; } break; default: /* This would be an internal error */ return (NULL); } DbgPrint (ASL_PARSE_OUTPUT, "\nCreateConstantLeafOp Ln/Col %u/%u NewOp %p " "Op %s Value %8.8X%8.8X \n", Op->Asl.LineNumber, Op->Asl.Column, Op, UtGetOpName (ParseOpcode), ACPI_FORMAT_UINT64 (Op->Asl.Value.Integer)); return (Op); } /******************************************************************************* * * FUNCTION: TrAllocateOp * * PARAMETERS: ParseOpcode - Opcode to be assigned to the op * * RETURN: New parse op. Aborts on allocation failure * * DESCRIPTION: Allocate and initialize a new parse op for the parse tree * ******************************************************************************/ ACPI_PARSE_OBJECT * TrAllocateOp ( UINT32 ParseOpcode) { ACPI_PARSE_OBJECT *Op; ACPI_PARSE_OBJECT *LatestOp; Op = UtParseOpCacheCalloc (); Op->Asl.ParseOpcode = (UINT16) ParseOpcode; Op->Asl.Filename = AslGbl_Files[ASL_FILE_INPUT].Filename; Op->Asl.LineNumber = AslGbl_CurrentLineNumber; Op->Asl.LogicalLineNumber = AslGbl_LogicalLineNumber; Op->Asl.LogicalByteOffset = AslGbl_CurrentLineOffset; Op->Asl.Column = AslGbl_CurrentColumn; UtSetParseOpName (Op); /* The following is for capturing comments */ if (AcpiGbl_CaptureComments) { LatestOp = AslGbl_CommentState.LatestParseOp; Op->Asl.InlineComment = NULL; Op->Asl.EndNodeComment = NULL; Op->Asl.CommentList = NULL; Op->Asl.FileChanged = FALSE; /* * Check to see if the file name has changed before resetting the * latest parse op. */ if (LatestOp && (ParseOpcode != PARSEOP_INCLUDE) && (ParseOpcode != PARSEOP_INCLUDE_END) && strcmp (LatestOp->Asl.Filename, Op->Asl.Filename)) { CvDbgPrint ("latest op: %s\n", LatestOp->Asl.ParseOpName); Op->Asl.FileChanged = TRUE; if (AslGbl_IncludeFileStack) { Op->Asl.ParentFilename = AslGbl_IncludeFileStack->Filename; } else { Op->Asl.ParentFilename = NULL; } } AslGbl_CommentState.LatestParseOp = Op; CvDbgPrint ("TrAllocateOp=Set latest parse op to this op.\n"); CvDbgPrint (" Op->Asl.ParseOpName = %s\n", AslGbl_CommentState.LatestParseOp->Asl.ParseOpName); CvDbgPrint (" Op->Asl.ParseOpcode = 0x%x\n", ParseOpcode); if (Op->Asl.FileChanged) { CvDbgPrint(" file has been changed!\n"); } /* * if this parse op's syntax uses () and {} (i.e. Package(1){0x00}) then * set a flag in the comment state. This facilitates paring comments for * these types of opcodes. */ if ((CvParseOpBlockType(Op) == (BLOCK_PAREN | BLOCK_BRACE)) && (ParseOpcode != PARSEOP_DEFINITION_BLOCK)) { CvDbgPrint ("Parsing paren/Brace op now!\n"); AslGbl_CommentState.ParsingParenBraceNode = Op; } if (AslGbl_CommentListHead) { CvDbgPrint ("Transferring...\n"); Op->Asl.CommentList = AslGbl_CommentListHead; AslGbl_CommentListHead = NULL; AslGbl_CommentListTail = NULL; CvDbgPrint (" Transferred current comment list to this op.\n"); CvDbgPrint (" %s\n", Op->Asl.CommentList->Comment); } if (AslGbl_InlineCommentBuffer) { Op->Asl.InlineComment = AslGbl_InlineCommentBuffer; AslGbl_InlineCommentBuffer = NULL; CvDbgPrint ("Transferred current inline comment list to this op.\n"); } } return (Op); } /******************************************************************************* * * FUNCTION: TrPrintOpFlags * * PARAMETERS: Flags - Flags word to be decoded * OutputLevel - Debug output level: ASL_TREE_OUTPUT etc. * * RETURN: None * * DESCRIPTION: Decode a flags word to text. Displays all flags that are set. * ******************************************************************************/ void TrPrintOpFlags ( UINT32 Flags, UINT32 OutputLevel) { UINT32 FlagBit = 1; UINT32 i; for (i = 0; i < ACPI_NUM_OP_FLAGS; i++) { if (Flags & FlagBit) { DbgPrint (OutputLevel, " %s", AslGbl_OpFlagNames[i]); } FlagBit <<= 1; } } Index: head/sys/contrib/dev/acpica/compiler/aslprepkg.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslprepkg.c (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslprepkg.c (revision 366562) @@ -1,982 +1,993 @@ /****************************************************************************** * * Module Name: aslprepkg - support for ACPI predefined name package objects * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include "aslcompiler.y.h" #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslprepkg") /* Local prototypes */ static ACPI_PARSE_OBJECT * ApCheckPackageElements ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op, UINT8 Type1, UINT32 Count1, UINT8 Type2, UINT32 Count2); static void ApCheckPackageList ( const char *PredefinedName, ACPI_PARSE_OBJECT *ParentOp, const ACPI_PREDEFINED_INFO *Package, UINT32 StartIndex, UINT32 Count); static void ApPackageTooSmall ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op, UINT32 Count, UINT32 ExpectedCount); static void ApZeroLengthPackage ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op); static void ApPackageTooLarge ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op, UINT32 Count, UINT32 ExpectedCount); static void ApCustomPackage ( ACPI_PARSE_OBJECT *ParentOp, const ACPI_PREDEFINED_INFO *Predefined); /******************************************************************************* * * FUNCTION: ApCheckPackage * * PARAMETERS: ParentOp - Parser op for the package * Predefined - Pointer to package-specific info for * the method * * RETURN: None * * DESCRIPTION: Top-level validation for predefined name return package * objects. * ******************************************************************************/ void ApCheckPackage ( ACPI_PARSE_OBJECT *ParentOp, const ACPI_PREDEFINED_INFO *Predefined) { ACPI_PARSE_OBJECT *Op; const ACPI_PREDEFINED_INFO *Package; ACPI_STATUS Status; UINT32 ExpectedCount; UINT32 Count; UINT32 i; /* The package info for this name is in the next table entry */ Package = Predefined + 1; /* First child is the package length */ Op = ParentOp->Asl.Child; Count = (UINT32) Op->Asl.Value.Integer; /* * Many of the variable-length top-level packages are allowed to simply * have zero elements. This allows the BIOS to tell the host that even * though the predefined name/method exists, the feature is not supported. * Other package types require one or more elements. In any case, there * is no need to continue validation. */ if (!Count) { switch (Package->RetInfo.Type) { case ACPI_PTYPE1_FIXED: case ACPI_PTYPE1_OPTION: case ACPI_PTYPE2_PKG_COUNT: case ACPI_PTYPE2_REV_FIXED: ApZeroLengthPackage (Predefined->Info.Name, ParentOp); break; case ACPI_PTYPE1_VAR: case ACPI_PTYPE2: case ACPI_PTYPE2_COUNT: case ACPI_PTYPE2_FIXED: case ACPI_PTYPE2_MIN: case ACPI_PTYPE2_FIX_VAR: case ACPI_PTYPE2_VAR_VAR: default: break; } return; } /* Get the first element of the package */ Op = Op->Asl.Next; /* Decode the package type */ switch (Package->RetInfo.Type) { case ACPI_PTYPE_CUSTOM: ApCustomPackage (ParentOp, Predefined); break; case ACPI_PTYPE1_FIXED: /* * The package count is fixed and there are no subpackages * * If package is too small, exit. * If package is larger than expected, issue warning but continue */ ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2; if (Count < ExpectedCount) { goto PackageTooSmall; } else if (Count > ExpectedCount) { ApPackageTooLarge (Predefined->Info.Name, ParentOp, Count, ExpectedCount); } /* Validate all elements of the package */ ApCheckPackageElements (Predefined->Info.Name, Op, Package->RetInfo.ObjectType1, Package->RetInfo.Count1, Package->RetInfo.ObjectType2, Package->RetInfo.Count2); break; case ACPI_PTYPE1_VAR: /* * The package count is variable, there are no subpackages, * and all elements must be of the same type */ for (i = 0; i < Count; i++) { + if (!Op) + { + /* + * If we get to this point, it means that the package length + * is larger than the initializer list. Stop processing the + * package and return because we have run out of package + * elements to analyze. + */ + return; + } + ApCheckObjectType (Predefined->Info.Name, Op, Package->RetInfo.ObjectType1, i); Op = Op->Asl.Next; } break; case ACPI_PTYPE1_OPTION: /* * The package count is variable, there are no subpackages. * There are a fixed number of required elements, and a variable * number of optional elements. * * Check if package is at least as large as the minimum required */ ExpectedCount = Package->RetInfo3.Count; if (Count < ExpectedCount) { goto PackageTooSmall; } /* Variable number of sub-objects */ for (i = 0; i < Count; i++) { if (i < Package->RetInfo3.Count) { /* These are the required package elements (0, 1, or 2) */ ApCheckObjectType (Predefined->Info.Name, Op, Package->RetInfo3.ObjectType[i], i); } else { /* These are the optional package elements */ ApCheckObjectType (Predefined->Info.Name, Op, Package->RetInfo3.TailObjectType, i); } Op = Op->Asl.Next; } break; case ACPI_PTYPE2_REV_FIXED: /* First element is the (Integer) revision */ ApCheckObjectType (Predefined->Info.Name, Op, ACPI_RTYPE_INTEGER, 0); Op = Op->Asl.Next; Count--; /* Examine the subpackages */ ApCheckPackageList (Predefined->Info.Name, Op, Package, 1, Count); break; case ACPI_PTYPE2_PKG_COUNT: /* First element is the (Integer) count of subpackages to follow */ Status = ApCheckObjectType (Predefined->Info.Name, Op, ACPI_RTYPE_INTEGER, 0); /* We must have an integer count from above (otherwise, use Count) */ if (ACPI_SUCCESS (Status)) { /* * Count cannot be larger than the parent package length, but * allow it to be smaller. The >= accounts for the Integer above. */ ExpectedCount = (UINT32) Op->Asl.Value.Integer; if (ExpectedCount >= Count) { goto PackageTooSmall; } Count = ExpectedCount; } Op = Op->Asl.Next; /* Examine the subpackages */ ApCheckPackageList (Predefined->Info.Name, Op, Package, 1, Count); break; case ACPI_PTYPE2_UUID_PAIR: /* The package contains a variable list of UUID Buffer/Package pairs */ /* The length of the package must be even */ if (Count & 1) { sprintf (AslGbl_MsgBuffer, "%4.4s: Package length, %d, must be even.", Predefined->Info.Name, Count); AslError (ASL_ERROR, ASL_MSG_RESERVED_PACKAGE_LENGTH, ParentOp->Asl.Child, AslGbl_MsgBuffer); } /* Validate the alternating types */ for (i = 0; i < Count; ++i) { if (i & 1) { ApCheckObjectType (Predefined->Info.Name, Op, Package->RetInfo.ObjectType2, i); } else { ApCheckObjectType (Predefined->Info.Name, Op, Package->RetInfo.ObjectType1, i); } Op = Op->Asl.Next; } break; case ACPI_PTYPE2_VAR_VAR: /* Check for minimum size (ints at beginning + 1 subpackage) */ ExpectedCount = Package->RetInfo4.Count1 + 1; if (Count < ExpectedCount) { goto PackageTooSmall; } /* Check the non-package elements at beginning of main package */ for (i = 0; i < Package->RetInfo4.Count1; ++i) { ApCheckObjectType (Predefined->Info.Name, Op, Package->RetInfo4.ObjectType1, i); Op = Op->Asl.Next; } /* Examine the variable-length list of subpackages */ ApCheckPackageList (Predefined->Info.Name, Op, Package, Package->RetInfo4.Count1, Count); break; case ACPI_PTYPE2: case ACPI_PTYPE2_FIXED: case ACPI_PTYPE2_MIN: case ACPI_PTYPE2_COUNT: case ACPI_PTYPE2_FIX_VAR: /* * These types all return a single Package that consists of a * variable number of subpackages. */ /* Examine the subpackages */ ApCheckPackageList (Predefined->Info.Name, Op, Package, 0, Count); break; default: return; } return; PackageTooSmall: ApPackageTooSmall (Predefined->Info.Name, ParentOp, Count, ExpectedCount); } /******************************************************************************* * * FUNCTION: ApCustomPackage * * PARAMETERS: ParentOp - Parse op for the package * Predefined - Pointer to package-specific info for * the method * * RETURN: None * * DESCRIPTION: Validate packages that don't fit into the standard model and * require custom code. * * NOTE: Currently used for the _BIX method only. When needed for two or more * methods, probably a detect/dispatch mechanism will be required. * ******************************************************************************/ static void ApCustomPackage ( ACPI_PARSE_OBJECT *ParentOp, const ACPI_PREDEFINED_INFO *Predefined) { ACPI_PARSE_OBJECT *Op; UINT32 Count; UINT32 ExpectedCount; UINT32 Version; /* First child is the package length */ Op = ParentOp->Asl.Child; Count = (UINT32) Op->Asl.Value.Integer; /* Get the version number, must be Integer */ Op = Op->Asl.Next; Version = (UINT32) Op->Asl.Value.Integer; if (Op->Asl.ParseOpcode != PARSEOP_INTEGER) { AslError (ASL_ERROR, ASL_MSG_RESERVED_OPERAND_TYPE, Op, AslGbl_MsgBuffer); return; } /* Validate count (# of elements) */ ExpectedCount = 21; /* Version 1 */ if (Version == 0) { ExpectedCount = 20; /* Version 0 */ } if (Count < ExpectedCount) { ApPackageTooSmall (Predefined->Info.Name, ParentOp, Count, ExpectedCount); return; } else if (Count > ExpectedCount) { ApPackageTooLarge (Predefined->Info.Name, ParentOp, Count, ExpectedCount); } /* Validate all elements of the package */ Op = ApCheckPackageElements (Predefined->Info.Name, Op, ACPI_RTYPE_INTEGER, 16, ACPI_RTYPE_STRING, 4); /* Version 1 has a single trailing integer */ if (Version > 0) { ApCheckPackageElements (Predefined->Info.Name, Op, ACPI_RTYPE_INTEGER, 1, 0, 0); } } /******************************************************************************* * * FUNCTION: ApCheckPackageElements * * PARAMETERS: PredefinedName - Name of the predefined object * Op - Parser op for the package * Type1 - Object type for first group * Count1 - Count for first group * Type2 - Object type for second group * Count2 - Count for second group * * RETURN: Next Op peer in the parse tree, after all specified elements * have been validated. Used for multiple validations (calls * to this function). * * DESCRIPTION: Validate all elements of a package. Works with packages that * are defined to contain up to two groups of different object * types. * ******************************************************************************/ static ACPI_PARSE_OBJECT * ApCheckPackageElements ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op, UINT8 Type1, UINT32 Count1, UINT8 Type2, UINT32 Count2) { UINT32 i; /* * Up to two groups of package elements are supported by the data * structure. All elements in each group must be of the same type. * The second group can have a count of zero. * * Aborts check upon a NULL package element, as this means (at compile * time) that the remainder of the package elements are also NULL * (This is the only way to create NULL package elements.) */ for (i = 0; (i < Count1) && Op; i++) { ApCheckObjectType (PredefinedName, Op, Type1, i); Op = Op->Asl.Next; } for (i = 0; (i < Count2) && Op; i++) { ApCheckObjectType (PredefinedName, Op, Type2, (i + Count1)); Op = Op->Asl.Next; } return (Op); } /******************************************************************************* * * FUNCTION: ApCheckPackageList * * PARAMETERS: PredefinedName - Name of the predefined object * ParentOp - Parser op of the parent package * Package - Package info for this predefined name * StartIndex - Index in parent package where list begins * ParentCount - Element count of parent package * * RETURN: None * * DESCRIPTION: Validate the individual package elements for a predefined name. * Handles the cases where the predefined name is defined as a * Package of Packages (subpackages). These are the types: * * ACPI_PTYPE2 * ACPI_PTYPE2_FIXED * ACPI_PTYPE2_MIN * ACPI_PTYPE2_COUNT * ACPI_PTYPE2_FIX_VAR * ACPI_PTYPE2_VAR_VAR * ******************************************************************************/ static void ApCheckPackageList ( const char *PredefinedName, ACPI_PARSE_OBJECT *ParentOp, const ACPI_PREDEFINED_INFO *Package, UINT32 StartIndex, UINT32 ParentCount) { ACPI_PARSE_OBJECT *SubPackageOp = ParentOp; ACPI_PARSE_OBJECT *Op; ACPI_STATUS Status; UINT32 Count; UINT32 ExpectedCount; UINT32 i; UINT32 j; /* * Validate each subpackage in the parent Package * * Note: We ignore NULL package elements on the assumption that * they will be initialized by the BIOS or other ASL code. */ for (i = 0; (i < ParentCount) && SubPackageOp; i++) { /* Each object in the list must be of type Package */ Status = ApCheckObjectType (PredefinedName, SubPackageOp, ACPI_RTYPE_PACKAGE, i + StartIndex); if (ACPI_FAILURE (Status)) { goto NextSubpackage; } /* Examine the different types of expected subpackages */ Op = SubPackageOp->Asl.Child; /* First child is the package length */ Count = (UINT32) Op->Asl.Value.Integer; Op = Op->Asl.Next; /* * Most subpackage must have at least one element, with * only rare exceptions. (_RDI) */ if (!Count && (Package->RetInfo.Type != ACPI_PTYPE2_VAR_VAR)) { ApZeroLengthPackage (PredefinedName, SubPackageOp); goto NextSubpackage; } /* * Decode the package type. * PTYPE2 indicates that a "package of packages" is expected for * this name. The various flavors of PTYPE2 indicate the number * and format of the subpackages. */ switch (Package->RetInfo.Type) { case ACPI_PTYPE2: case ACPI_PTYPE2_PKG_COUNT: case ACPI_PTYPE2_REV_FIXED: /* Each subpackage has a fixed number of elements */ ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2; if (Count < ExpectedCount) { ApPackageTooSmall (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } if (Count > ExpectedCount) { ApPackageTooLarge (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } ApCheckPackageElements (PredefinedName, Op, Package->RetInfo.ObjectType1, Package->RetInfo.Count1, Package->RetInfo.ObjectType2, Package->RetInfo.Count2); break; case ACPI_PTYPE2_FIX_VAR: /* * Each subpackage has a fixed number of elements and an * optional element */ ExpectedCount = Package->RetInfo.Count1 + Package->RetInfo.Count2; if (Count < ExpectedCount) { ApPackageTooSmall (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } ApCheckPackageElements (PredefinedName, Op, Package->RetInfo.ObjectType1, Package->RetInfo.Count1, Package->RetInfo.ObjectType2, Count - Package->RetInfo.Count1); break; case ACPI_PTYPE2_VAR_VAR: /* * Must have at least the minimum number elements. * A zero PkgCount means the number of elements is variable. */ ExpectedCount = Package->RetInfo4.PkgCount; if (ExpectedCount && (Count < ExpectedCount)) { ApPackageTooSmall (PredefinedName, SubPackageOp, Count, 1); break; } ApCheckPackageElements (PredefinedName, Op, Package->RetInfo4.SubObjectTypes, Package->RetInfo4.PkgCount, 0, 0); break; case ACPI_PTYPE2_FIXED: /* Each subpackage has a fixed length */ ExpectedCount = Package->RetInfo2.Count; if (Count < ExpectedCount) { ApPackageTooSmall (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } if (Count > ExpectedCount) { ApPackageTooLarge (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } /* Check each object/type combination */ for (j = 0; j < ExpectedCount; j++) { ApCheckObjectType (PredefinedName, Op, Package->RetInfo2.ObjectType[j], j); Op = Op->Asl.Next; } break; case ACPI_PTYPE2_MIN: /* Each subpackage has a variable but minimum length */ ExpectedCount = Package->RetInfo.Count1; if (Count < ExpectedCount) { ApPackageTooSmall (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } /* Check the type of each subpackage element */ ApCheckPackageElements (PredefinedName, Op, Package->RetInfo.ObjectType1, Count, 0, 0); break; case ACPI_PTYPE2_COUNT: /* * First element is the (Integer) count of elements, including * the count field (the ACPI name is NumElements) */ Status = ApCheckObjectType (PredefinedName, Op, ACPI_RTYPE_INTEGER, 0); /* We must have an integer count from above (otherwise, use Count) */ if (ACPI_SUCCESS (Status)) { /* * Make sure package is large enough for the Count and is * is as large as the minimum size */ ExpectedCount = (UINT32) Op->Asl.Value.Integer; if (Count < ExpectedCount) { ApPackageTooSmall (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } else if (Count > ExpectedCount) { ApPackageTooLarge (PredefinedName, SubPackageOp, Count, ExpectedCount); } /* Some names of this type have a minimum length */ if (Count < Package->RetInfo.Count1) { ExpectedCount = Package->RetInfo.Count1; ApPackageTooSmall (PredefinedName, SubPackageOp, Count, ExpectedCount); break; } Count = ExpectedCount; } /* Check the type of each subpackage element */ Op = Op->Asl.Next; ApCheckPackageElements (PredefinedName, Op, Package->RetInfo.ObjectType1, (Count - 1), 0, 0); break; default: break; } NextSubpackage: SubPackageOp = SubPackageOp->Asl.Next; } } /******************************************************************************* * * FUNCTION: ApPackageTooSmall * * PARAMETERS: PredefinedName - Name of the predefined object * Op - Current parser op * Count - Actual package element count * ExpectedCount - Expected package element count * * RETURN: None * * DESCRIPTION: Issue error message for a package that is smaller than * required. * ******************************************************************************/ static void ApPackageTooSmall ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op, UINT32 Count, UINT32 ExpectedCount) { - sprintf (AslGbl_MsgBuffer, "%s: length %u, required minimum is %u", + sprintf (AslGbl_MsgBuffer, "%4.4s: length %u, required minimum is %u", PredefinedName, Count, ExpectedCount); AslError (ASL_ERROR, ASL_MSG_RESERVED_PACKAGE_LENGTH, Op, AslGbl_MsgBuffer); } /******************************************************************************* * * FUNCTION: ApZeroLengthPackage * * PARAMETERS: PredefinedName - Name of the predefined object * Op - Current parser op * * RETURN: None * * DESCRIPTION: Issue error message for a zero-length package (a package that * is required to have a non-zero length). Variable length * packages seem to be allowed to have zero length, however. * Even if not allowed, BIOS code does it. * ******************************************************************************/ static void ApZeroLengthPackage ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op) { - sprintf (AslGbl_MsgBuffer, "%s: length is zero", PredefinedName); + sprintf (AslGbl_MsgBuffer, "%4.4s: length is zero", PredefinedName); AslError (ASL_ERROR, ASL_MSG_RESERVED_PACKAGE_LENGTH, Op, AslGbl_MsgBuffer); } /******************************************************************************* * * FUNCTION: ApPackageTooLarge * * PARAMETERS: PredefinedName - Name of the predefined object * Op - Current parser op * Count - Actual package element count * ExpectedCount - Expected package element count * * RETURN: None * * DESCRIPTION: Issue a remark for a package that is larger than expected. * ******************************************************************************/ static void ApPackageTooLarge ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op, UINT32 Count, UINT32 ExpectedCount) { - sprintf (AslGbl_MsgBuffer, "%s: length is %u, only %u required", + sprintf (AslGbl_MsgBuffer, "%4.4s: length is %u, only %u required", PredefinedName, Count, ExpectedCount); AslError (ASL_REMARK, ASL_MSG_RESERVED_PACKAGE_LENGTH, Op, AslGbl_MsgBuffer); } Index: head/sys/contrib/dev/acpica/compiler/aslutils.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslutils.c (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslutils.c (revision 366562) @@ -1,1145 +1,1147 @@ /****************************************************************************** * * Module Name: aslutils -- compiler utilities * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include "aslcompiler.y.h" #include #include #include #include #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslutils") /* Local prototypes */ static void UtPadNameWithUnderscores ( char *NameSeg, char *PaddedNameSeg); static void UtAttachNameseg ( ACPI_PARSE_OBJECT *Op, char *Name); static void UtDisplayErrorSummary ( UINT32 FileId); /******************************************************************************* * * FUNCTION: UtIsBigEndianMachine * * PARAMETERS: None * * RETURN: TRUE if machine is big endian * FALSE if machine is little endian * * DESCRIPTION: Detect whether machine is little endian or big endian. * ******************************************************************************/ UINT8 UtIsBigEndianMachine ( void) { union { UINT32 Integer; UINT8 Bytes[4]; } Overlay = {0xFF000000}; return (Overlay.Bytes[0]); /* Returns 0xFF (TRUE) for big endian */ } /****************************************************************************** * * FUNCTION: UtQueryForOverwrite * * PARAMETERS: Pathname - Output filename * * RETURN: TRUE if file does not exist or overwrite is authorized * * DESCRIPTION: Query for file overwrite if it already exists. * ******************************************************************************/ BOOLEAN UtQueryForOverwrite ( char *Pathname) { struct stat StatInfo; int InChar; if (!stat (Pathname, &StatInfo)) { fprintf (stderr, "Target file \"%s\" already exists, overwrite? [y|n] ", Pathname); InChar = fgetc (stdin); if (InChar == '\n') { InChar = fgetc (stdin); } if ((InChar != 'y') && (InChar != 'Y')) { return (FALSE); } } return (TRUE); } /******************************************************************************* * * FUNCTION: UtNodeIsDescendantOf * * PARAMETERS: Node1 - Child node * Node2 - Possible parent node * * RETURN: Boolean * * DESCRIPTION: Returns TRUE if Node1 is a descendant of Node2. Otherwise, * return FALSE. Note, we assume a NULL Node2 element to be the * topmost (root) scope. All nodes are descendants of the root. * Note: Nodes at the same level (siblings) are not considered * descendants. * ******************************************************************************/ BOOLEAN UtNodeIsDescendantOf ( ACPI_NAMESPACE_NODE *Node1, ACPI_NAMESPACE_NODE *Node2) { if (Node1 == Node2) { return (FALSE); } if (!Node2) { return (TRUE); /* All nodes descend from the root */ } /* Walk upward until the root is reached or parent is found */ while (Node1) { if (Node1 == Node2) { return (TRUE); } Node1 = Node1->Parent; } return (FALSE); } /******************************************************************************* * * FUNCTION: UtGetParentMethodNode * * PARAMETERS: Node - Namespace node for any object * * RETURN: Namespace node for the parent method * NULL - object is not within a method * * DESCRIPTION: Find the parent (owning) method node for a namespace object * ******************************************************************************/ ACPI_NAMESPACE_NODE * UtGetParentMethodNode ( ACPI_NAMESPACE_NODE *Node) { ACPI_NAMESPACE_NODE *ParentNode; if (!Node) { return (NULL); } /* Walk upward until a method is found, or the root is reached */ ParentNode = Node->Parent; while (ParentNode) { if (ParentNode->Type == ACPI_TYPE_METHOD) { return (ParentNode); } ParentNode = ParentNode->Parent; } return (NULL); /* Object is not within a control method */ } /******************************************************************************* * * FUNCTION: UtGetParentMethodOp * * PARAMETERS: Op - Parse Op to be checked * * RETURN: Control method Op if found. NULL otherwise * * DESCRIPTION: Find the control method parent of a parse op. Returns NULL if * the input Op is not within a control method. * ******************************************************************************/ ACPI_PARSE_OBJECT * UtGetParentMethodOp ( ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *NextOp; NextOp = Op->Asl.Parent; while (NextOp) { if (NextOp->Asl.AmlOpcode == AML_METHOD_OP) { return (NextOp); } NextOp = NextOp->Asl.Parent; } return (NULL); /* No parent method found */ } /******************************************************************************* * * FUNCTION: UtDisplaySupportedTables * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Print all supported ACPI table names. * ******************************************************************************/ void UtDisplaySupportedTables ( void) { const AH_TABLE *TableData; UINT32 i; printf ("\nACPI tables supported by iASL version %8.8X:\n" " (Compiler, Disassembler, Template Generator)\n\n", ACPI_CA_VERSION); /* All ACPI tables with the common table header */ printf ("\n Supported ACPI tables:\n"); for (TableData = AcpiGbl_SupportedTables, i = 1; TableData->Signature; TableData++, i++) { printf ("%8u) %s %s\n", i, TableData->Signature, TableData->Description); } } /******************************************************************************* * * FUNCTION: UtDisplayConstantOpcodes * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Print AML opcodes that can be used in constant expressions. * ******************************************************************************/ void UtDisplayConstantOpcodes ( void) { UINT32 i; printf ("Constant expression opcode information\n\n"); for (i = 0; i < sizeof (AcpiGbl_AmlOpInfo) / sizeof (ACPI_OPCODE_INFO); i++) { if (AcpiGbl_AmlOpInfo[i].Flags & AML_CONSTANT) { printf ("%s\n", AcpiGbl_AmlOpInfo[i].Name); } } } /******************************************************************************* * * FUNCTION: UtBeginEvent * * PARAMETERS: Name - Ascii name of this event * * RETURN: Event number (integer index) * * DESCRIPTION: Saves the current time with this event * ******************************************************************************/ UINT8 UtBeginEvent ( char *Name) { if (AslGbl_NextEvent >= ASL_NUM_EVENTS) { AcpiOsPrintf ("Ran out of compiler event structs!\n"); return (AslGbl_NextEvent); } /* Init event with current (start) time */ AslGbl_Events[AslGbl_NextEvent].StartTime = AcpiOsGetTimer (); AslGbl_Events[AslGbl_NextEvent].EventName = Name; AslGbl_Events[AslGbl_NextEvent].Valid = TRUE; return (AslGbl_NextEvent++); } /******************************************************************************* * * FUNCTION: UtEndEvent * * PARAMETERS: Event - Event number (integer index) * * RETURN: None * * DESCRIPTION: Saves the current time (end time) with this event * ******************************************************************************/ void UtEndEvent ( UINT8 Event) { if (Event >= ASL_NUM_EVENTS) { return; } /* Insert end time for event */ AslGbl_Events[Event].EndTime = AcpiOsGetTimer (); } /******************************************************************************* * * FUNCTION: DbgPrint * * PARAMETERS: Type - Type of output * Fmt - Printf format string * ... - variable printf list * * RETURN: None * * DESCRIPTION: Conditional print statement. Prints to stderr only if the * debug flag is set. * ******************************************************************************/ void DbgPrint ( UINT32 Type, char *Fmt, ...) { va_list Args; if (!AslGbl_DebugFlag) { return; } if ((Type == ASL_PARSE_OUTPUT) && (!(AslCompilerdebug))) { return; } va_start (Args, Fmt); (void) vfprintf (stderr, Fmt, Args); va_end (Args); return; } /******************************************************************************* * * FUNCTION: UtSetParseOpName * * PARAMETERS: Op - Parse op to be named. * * RETURN: None * * DESCRIPTION: Insert the ascii name of the parse opcode * ******************************************************************************/ void UtSetParseOpName ( ACPI_PARSE_OBJECT *Op) { AcpiUtSafeStrncpy (Op->Asl.ParseOpName, UtGetOpName (Op->Asl.ParseOpcode), ACPI_MAX_PARSEOP_NAME); } /******************************************************************************* * * FUNCTION: UtDisplayOneSummary * * PARAMETERS: FileID - ID of outpout file * * RETURN: None * * DESCRIPTION: Display compilation statistics for one input file * ******************************************************************************/ void UtDisplayOneSummary ( UINT32 FileId, BOOLEAN DisplayErrorSummary) { UINT32 i; ASL_GLOBAL_FILE_NODE *FileNode; BOOLEAN DisplayAMLSummary; DisplayAMLSummary = !AslGbl_PreprocessOnly && !AslGbl_ParserErrorDetected && ((AslGbl_ExceptionCount[ASL_ERROR] == 0) || AslGbl_IgnoreErrors) && AslGbl_Files[ASL_FILE_AML_OUTPUT].Handle; if (FileId != ASL_FILE_STDOUT) { /* Compiler name and version number */ FlPrintFile (FileId, "%s version %X\n\n", ASL_COMPILER_NAME, (UINT32) ACPI_CA_VERSION); } /* Summary of main input and output files */ FileNode = FlGetCurrentFileNode (); if (FileNode->ParserErrorDetected) { FlPrintFile (FileId, "%-14s %s - Compilation aborted due to parser-detected syntax error(s)\n", "Input file:", AslGbl_Files[ASL_FILE_INPUT].Filename); } else if (FileNode->FileType == ASL_INPUT_TYPE_ASCII_DATA) { FlPrintFile (FileId, "%-14s %s - %7u bytes %6u fields %8u source lines\n", "Table Input:", AslGbl_Files[ASL_FILE_INPUT].Filename, FileNode->OriginalInputFileSize, FileNode->TotalFields, FileNode->TotalLineCount); FlPrintFile (FileId, "%-14s %s - %7u bytes\n", "Binary Output:", AslGbl_Files[ASL_FILE_AML_OUTPUT].Filename, FileNode->OutputByteLength); } else if (FileNode->FileType == ASL_INPUT_TYPE_ASCII_ASL) { FlPrintFile (FileId, "%-14s %s - %7u bytes %6u keywords %6u source lines\n", "ASL Input:", AslGbl_Files[ASL_FILE_INPUT].Filename, FileNode->OriginalInputFileSize, FileNode->TotalKeywords, FileNode->TotalLineCount); /* AML summary */ if (DisplayAMLSummary) { FlPrintFile (FileId, "%-14s %s - %7u bytes %6u opcodes %6u named objects\n", "AML Output:", AslGbl_Files[ASL_FILE_AML_OUTPUT].Filename, FlGetFileSize (ASL_FILE_AML_OUTPUT), FileNode->TotalExecutableOpcodes, FileNode->TotalNamedObjects); } } /* Display summary of any optional files */ for (i = ASL_FILE_SOURCE_OUTPUT; i <= ASL_MAX_FILE_TYPE; i++) { if (!AslGbl_Files[i].Filename || !AslGbl_Files[i].Handle) { continue; } /* .SRC is a temp file unless specifically requested */ if ((i == ASL_FILE_SOURCE_OUTPUT) && (!AslGbl_SourceOutputFlag)) { continue; } /* .PRE is the preprocessor intermediate file */ if ((i == ASL_FILE_PREPROCESSOR) && (!AslGbl_KeepPreprocessorTempFile)) { continue; } FlPrintFile (FileId, "%-14s %s - %7u bytes\n", AslGbl_FileDescs[i].ShortDescription, AslGbl_Files[i].Filename, FlGetFileSize (i)); } /* * Optionally emit an error summary for a file. This is used to enhance the * appearance of listing files. */ if (DisplayErrorSummary) { UtDisplayErrorSummary (FileId); } } /******************************************************************************* * * FUNCTION: UtDisplayErrorSummary * * PARAMETERS: FileID - ID of outpout file * * RETURN: None * * DESCRIPTION: Display compilation statistics for all input files * ******************************************************************************/ static void UtDisplayErrorSummary ( UINT32 FileId) { BOOLEAN ErrorDetected; ErrorDetected = AslGbl_ParserErrorDetected || ((AslGbl_ExceptionCount[ASL_ERROR] > 0) && !AslGbl_IgnoreErrors); if (ErrorDetected) { FlPrintFile (FileId, "\nCompilation failed. "); } else { FlPrintFile (FileId, "\nCompilation successful. "); } FlPrintFile (FileId, "%u Errors, %u Warnings, %u Remarks", AslGbl_ExceptionCount[ASL_ERROR], AslGbl_ExceptionCount[ASL_WARNING] + AslGbl_ExceptionCount[ASL_WARNING2] + AslGbl_ExceptionCount[ASL_WARNING3], AslGbl_ExceptionCount[ASL_REMARK]); if (AslGbl_FileType != ASL_INPUT_TYPE_ASCII_DATA) { if (AslGbl_ParserErrorDetected) { FlPrintFile (FileId, "\nNo AML files were generated due to syntax error(s)\n"); return; } else if (ErrorDetected) { FlPrintFile (FileId, "\nNo AML files were generated due to compiler error(s)\n"); return; } FlPrintFile (FileId, ", %u Optimizations", AslGbl_ExceptionCount[ASL_OPTIMIZATION]); if (AslGbl_TotalFolds) { FlPrintFile (FileId, ", %u Constants Folded", AslGbl_TotalFolds); } } FlPrintFile (FileId, "\n"); } /******************************************************************************* * * FUNCTION: UtDisplaySummary * * PARAMETERS: FileID - ID of outpout file * * RETURN: None * * DESCRIPTION: Display compilation statistics for all input files * ******************************************************************************/ void UtDisplaySummary ( UINT32 FileId) { ASL_GLOBAL_FILE_NODE *Current = AslGbl_FilesList; while (Current) { switch (FlSwitchFileSet(Current->Files[ASL_FILE_INPUT].Filename)) { case SWITCH_TO_SAME_FILE: case SWITCH_TO_DIFFERENT_FILE: UtDisplayOneSummary (FileId, FALSE); Current = Current->Next; break; case FILE_NOT_FOUND: default: Current = NULL; break; } } UtDisplayErrorSummary (FileId); } /******************************************************************************* * * FUNCTION: UtCheckIntegerRange * * PARAMETERS: Op - Integer parse node * LowValue - Smallest allowed value * HighValue - Largest allowed value * * RETURN: Op if OK, otherwise NULL * * DESCRIPTION: Check integer for an allowable range * ******************************************************************************/ ACPI_PARSE_OBJECT * UtCheckIntegerRange ( ACPI_PARSE_OBJECT *Op, UINT32 LowValue, UINT32 HighValue) { if (!Op) { return (NULL); } if ((Op->Asl.Value.Integer < LowValue) || (Op->Asl.Value.Integer > HighValue)) { sprintf (AslGbl_MsgBuffer, "0x%X, allowable: 0x%X-0x%X", (UINT32) Op->Asl.Value.Integer, LowValue, HighValue); AslError (ASL_ERROR, ASL_MSG_RANGE, Op, AslGbl_MsgBuffer); return (NULL); } return (Op); } /******************************************************************************* * * FUNCTION: UtInternalizeName * * PARAMETERS: ExternalName - Name to convert * ConvertedName - Where the converted name is returned * * RETURN: Status * * DESCRIPTION: Convert an external (ASL) name to an internal (AML) name * ******************************************************************************/ ACPI_STATUS UtInternalizeName ( char *ExternalName, char **ConvertedName) { ACPI_NAMESTRING_INFO Info; ACPI_STATUS Status; if (!ExternalName) { return (AE_OK); } /* Get the length of the new internal name */ Info.ExternalName = ExternalName; AcpiNsGetInternalNameLength (&Info); /* We need a segment to store the internal name */ Info.InternalName = UtLocalCacheCalloc (Info.Length); /* Build the name */ Status = AcpiNsBuildInternalName (&Info); if (ACPI_FAILURE (Status)) { return (Status); } *ConvertedName = Info.InternalName; return (AE_OK); } /******************************************************************************* * * FUNCTION: UtPadNameWithUnderscores * * PARAMETERS: NameSeg - Input nameseg * PaddedNameSeg - Output padded nameseg * * RETURN: Padded nameseg. * * DESCRIPTION: Pads a NameSeg with underscores if necessary to form a full * ACPI_NAME. * ******************************************************************************/ static void UtPadNameWithUnderscores ( char *NameSeg, char *PaddedNameSeg) { UINT32 i; for (i = 0; (i < ACPI_NAMESEG_SIZE); i++) { if (*NameSeg) { *PaddedNameSeg = *NameSeg; NameSeg++; } else { *PaddedNameSeg = '_'; } PaddedNameSeg++; } } /******************************************************************************* * * FUNCTION: UtAttachNameseg * * PARAMETERS: Op - Parent parse node * Name - Full ExternalName * * RETURN: None; Sets the NameSeg field in parent node * * DESCRIPTION: Extract the last nameseg of the ExternalName and store it * in the NameSeg field of the Op. * ******************************************************************************/ static void UtAttachNameseg ( ACPI_PARSE_OBJECT *Op, char *Name) { char *NameSeg; char PaddedNameSeg[4]; if (!Name) { return; } /* Look for the last dot in the namepath */ NameSeg = strrchr (Name, '.'); if (NameSeg) { /* Found last dot, we have also found the final nameseg */ NameSeg++; UtPadNameWithUnderscores (NameSeg, PaddedNameSeg); } else { /* No dots in the namepath, there is only a single nameseg. */ /* Handle prefixes */ while (ACPI_IS_ROOT_PREFIX (*Name) || ACPI_IS_PARENT_PREFIX (*Name)) { Name++; } /* Remaining string should be one single nameseg */ UtPadNameWithUnderscores (Name, PaddedNameSeg); } ACPI_COPY_NAMESEG (Op->Asl.NameSeg, PaddedNameSeg); } /******************************************************************************* * * FUNCTION: UtAttachNamepathToOwner * * PARAMETERS: Op - Parent parse node * NameOp - Node that contains the name * * RETURN: Sets the ExternalName and Namepath in the parent node * * DESCRIPTION: Store the name in two forms in the parent node: The original * (external) name, and the internalized name that is used within * the ACPI namespace manager. * ******************************************************************************/ void UtAttachNamepathToOwner ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *NameOp) { ACPI_STATUS Status; /* Full external path */ Op->Asl.ExternalName = NameOp->Asl.Value.String; /* Save the NameOp for possible error reporting later */ Op->Asl.ParentMethod = (void *) NameOp; /* Last nameseg of the path */ UtAttachNameseg (Op, Op->Asl.ExternalName); /* Create internalized path */ Status = UtInternalizeName (NameOp->Asl.Value.String, &Op->Asl.Namepath); if (ACPI_FAILURE (Status)) { /* TBD: abort on no memory */ } } /******************************************************************************* * * FUNCTION: UtNameContainsAllPrefix * * PARAMETERS: Op - Op containing NameString * * RETURN: NameString consists of all ^ characters * * DESCRIPTION: Determine if this Op contains a name segment that consists of * all '^' characters. * ******************************************************************************/ BOOLEAN UtNameContainsAllPrefix ( ACPI_PARSE_OBJECT *Op) { UINT32 Length = Op->Asl.AmlLength; UINT32 i; for (i = 0; i < Length; i++) { if (Op->Asl.Value.String[i] != '^') { return (FALSE); } } return (TRUE); } /******************************************************************************* * * FUNCTION: UtDoConstant * * PARAMETERS: String - Hex/Decimal/Octal * * RETURN: Converted Integer * * DESCRIPTION: Convert a string to an integer, with overflow/error checking. * ******************************************************************************/ UINT64 UtDoConstant ( char *String) { ACPI_STATUS Status; UINT64 ConvertedInteger; - char ErrBuf[64]; + char ErrBuf[128]; + const ACPI_EXCEPTION_INFO *ExceptionInfo; Status = AcpiUtStrtoul64 (String, &ConvertedInteger); if (ACPI_FAILURE (Status)) { - sprintf (ErrBuf, "While creating 64-bit constant: %s\n", - AcpiFormatException (Status)); + ExceptionInfo = AcpiUtValidateException ((ACPI_STATUS) Status); + sprintf (ErrBuf, " %s while converting to 64-bit integer", + ExceptionInfo->Description); AslCommonError (ASL_ERROR, ASL_MSG_SYNTAX, AslGbl_CurrentLineNumber, AslGbl_LogicalLineNumber, AslGbl_CurrentLineOffset, AslGbl_CurrentColumn, AslGbl_Files[ASL_FILE_INPUT].Filename, ErrBuf); } return (ConvertedInteger); } /****************************************************************************** * * FUNCTION: AcpiUtStrdup * * PARAMETERS: String1 - string to duplicate * * RETURN: int that signifies string relationship. Zero means strings * are equal. * * DESCRIPTION: Duplicate the string using UtCacheAlloc to avoid manual memory * reclamation. * ******************************************************************************/ char * AcpiUtStrdup ( char *String) { char *NewString = (char *) UtLocalCalloc (strlen (String) + 1); strcpy (NewString, String); return (NewString); } /****************************************************************************** * * FUNCTION: AcpiUtStrcat * * PARAMETERS: String1 * String2 * * RETURN: New string with String1 concatenated with String2 * * DESCRIPTION: Concatenate string1 and string2 * ******************************************************************************/ char * AcpiUtStrcat ( char *String1, char *String2) { UINT32 String1Length = strlen (String1); char *NewString = (char *) UtLocalCalloc (strlen (String1) + strlen (String2) + 1); strcpy (NewString, String1); strcpy (NewString + String1Length, String2); return (NewString); } Index: head/sys/contrib/dev/acpica/compiler/aslxref.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslxref.c (revision 366561) +++ head/sys/contrib/dev/acpica/compiler/aslxref.c (revision 366562) @@ -1,1529 +1,1538 @@ /****************************************************************************** * * Module Name: aslxref - Namespace cross-reference * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include "aslcompiler.y.h" #include #include #include #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslxref") /* Local prototypes */ static ACPI_STATUS XfNamespaceLocateBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); static ACPI_STATUS XfNamespaceLocateEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); static BOOLEAN XfValidateCrossReference ( ACPI_PARSE_OBJECT *Op, const ACPI_OPCODE_INFO *OpInfo, ACPI_NAMESPACE_NODE *Node); static BOOLEAN XfObjectExists ( char *Name); static ACPI_STATUS XfCompareOneNamespaceObject ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue); static void XfCheckFieldRange ( ACPI_PARSE_OBJECT *Op, UINT32 RegionBitLength, UINT32 FieldBitOffset, UINT32 FieldBitLength, UINT32 AccessBitWidth); static BOOLEAN XfFindCondRefOfName ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op); static BOOLEAN XfRefIsGuardedByIfCondRefOf ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op); /******************************************************************************* * * FUNCTION: XfCrossReferenceNamespace * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Perform a cross reference check of the parse tree against the * namespace. Every named referenced within the parse tree * should be get resolved with a namespace lookup. If not, the * original reference in the ASL code is invalid -- i.e., refers * to a non-existent object. * * NOTE: The ASL "External" operator causes the name to be inserted into the * namespace so that references to the external name will be resolved * correctly here. * ******************************************************************************/ ACPI_STATUS XfCrossReferenceNamespace ( void) { ACPI_WALK_STATE *WalkState; /* * Create a new walk state for use when looking up names * within the namespace (Passed as context to the callbacks) */ WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL); if (!WalkState) { return (AE_NO_MEMORY); } /* Walk the entire parse tree */ TrWalkParseTree (AslGbl_ParseTreeRoot, ASL_WALK_VISIT_TWICE, XfNamespaceLocateBegin, XfNamespaceLocateEnd, WalkState); ACPI_FREE (WalkState); return (AE_OK); } /******************************************************************************* * * FUNCTION: XfObjectExists * * PARAMETERS: Name - 4 char ACPI name * * RETURN: TRUE if name exists in namespace * * DESCRIPTION: Walk the namespace to find an object * ******************************************************************************/ static BOOLEAN XfObjectExists ( char *Name) { ACPI_STATUS Status; /* Walk entire namespace from the supplied root */ Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, FALSE, XfCompareOneNamespaceObject, NULL, Name, NULL); if (Status == AE_CTRL_TRUE) { /* At least one instance of the name was found */ return (TRUE); } return (FALSE); } /******************************************************************************* * * FUNCTION: XfCompareOneNamespaceObject * * PARAMETERS: ACPI_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Compare name of one object. * ******************************************************************************/ static ACPI_STATUS XfCompareOneNamespaceObject ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue) { ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; /* Simply check the name */ if (*((UINT32 *) (Context)) == Node->Name.Integer) { /* Abort walk if we found one instance */ return (AE_CTRL_TRUE); } return (AE_OK); } /******************************************************************************* * * FUNCTION: XfCheckFieldRange * * PARAMETERS: RegionBitLength - Length of entire parent region * FieldBitOffset - Start of the field unit (within region) * FieldBitLength - Entire length of field unit * AccessBitWidth - Access width of the field unit * * RETURN: None * * DESCRIPTION: Check one field unit to make sure it fits in the parent * op region. * * Note: AccessBitWidth must be either 8,16,32, or 64 * ******************************************************************************/ static void XfCheckFieldRange ( ACPI_PARSE_OBJECT *Op, UINT32 RegionBitLength, UINT32 FieldBitOffset, UINT32 FieldBitLength, UINT32 AccessBitWidth) { UINT32 FieldEndBitOffset; /* * Check each field unit against the region size. The entire * field unit (start offset plus length) must fit within the * region. */ FieldEndBitOffset = FieldBitOffset + FieldBitLength; if (FieldEndBitOffset > RegionBitLength) { /* Field definition itself is beyond the end-of-region */ AslError (ASL_ERROR, ASL_MSG_FIELD_UNIT_OFFSET, Op, NULL); return; } /* * Now check that the field plus AccessWidth doesn't go beyond * the end-of-region. Assumes AccessBitWidth is a power of 2 */ FieldEndBitOffset = ACPI_ROUND_UP (FieldEndBitOffset, AccessBitWidth); if (FieldEndBitOffset > RegionBitLength) { /* Field definition combined with the access is beyond EOR */ AslError (ASL_ERROR, ASL_MSG_FIELD_UNIT_ACCESS_WIDTH, Op, NULL); } } /******************************************************************************* * * FUNCTION: XfNamespaceLocateBegin * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Descending callback used during cross-reference. For named * object references, attempt to locate the name in the * namespace. * * NOTE: ASL references to named fields within resource descriptors are * resolved to integer values here. Therefore, this step is an * important part of the code generation. We don't know that the * name refers to a resource descriptor until now. * ******************************************************************************/ static ACPI_STATUS XfNamespaceLocateBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context; ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; ACPI_OBJECT_TYPE ObjectType; char *Path; UINT8 PassedArgs; ACPI_PARSE_OBJECT *NextOp; ACPI_PARSE_OBJECT *OwningOp; ACPI_PARSE_OBJECT *SpaceIdOp; UINT32 MinimumLength; UINT32 Offset; UINT32 FieldBitLength; UINT32 TagBitLength; UINT8 Message = 0; const ACPI_OPCODE_INFO *OpInfo; UINT32 Flags; ASL_METHOD_LOCAL *MethodLocals = NULL; ASL_METHOD_LOCAL *MethodArgs = NULL; int RegisterNumber; UINT32 i; ACPI_NAMESPACE_NODE *DeclarationParentMethod; ACPI_PARSE_OBJECT *ReferenceParentMethod; + char *ExternalPath; ACPI_FUNCTION_TRACE_PTR (XfNamespaceLocateBegin, Op); if ((Op->Asl.AmlOpcode == AML_METHOD_OP) && Op->Asl.Node) { Node = Op->Asl.Node; /* Support for method LocalX/ArgX analysis */ if (!Node->MethodLocals) { /* Create local/arg info blocks */ MethodLocals = UtLocalCalloc ( sizeof (ASL_METHOD_LOCAL) * ACPI_METHOD_NUM_LOCALS); Node->MethodLocals = MethodLocals; MethodArgs = UtLocalCalloc ( sizeof (ASL_METHOD_LOCAL) * ACPI_METHOD_NUM_ARGS); Node->MethodArgs = MethodArgs; /* * Get the method argument count * First, get the name node */ NextOp = Op->Asl.Child; /* Get the NumArguments node */ NextOp = NextOp->Asl.Next; Node->ArgCount = (UINT8) (((UINT8) NextOp->Asl.Value.Integer) & 0x07); /* We will track all possible ArgXs */ for (i = 0; i < ACPI_METHOD_NUM_ARGS; i++) { if (i < Node->ArgCount) { /* Real Args are always "initialized" */ MethodArgs[i].Flags = ASL_ARG_INITIALIZED; } else { /* Other ArgXs can be used as locals */ MethodArgs[i].Flags = ASL_ARG_IS_LOCAL; } MethodArgs[i].Op = Op; } } } /* * If this node is the actual declaration of a name * [such as the XXXX name in "Method (XXXX)"], * we are not interested in it here. We only care about names that are * references to other objects within the namespace and the parent objects * of name declarations */ if (Op->Asl.CompileFlags & OP_IS_NAME_DECLARATION) { return_ACPI_STATUS (AE_OK); } OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode); /* Check method LocalX variables */ if (OpInfo->Type == AML_TYPE_LOCAL_VARIABLE) { /* Find parent method Op */ NextOp = UtGetParentMethodOp (Op); if (!NextOp) { return_ACPI_STATUS (AE_OK); } /* Get method node */ Node = NextOp->Asl.Node; RegisterNumber = Op->Asl.AmlOpcode & 0x0007; /* 0x60 through 0x67 */ MethodLocals = Node->MethodLocals; if (Op->Asl.CompileFlags & OP_IS_TARGET) { /* Local is being initialized */ MethodLocals[RegisterNumber].Flags |= ASL_LOCAL_INITIALIZED; MethodLocals[RegisterNumber].Op = Op; return_ACPI_STATUS (AE_OK); } /* Mark this Local as referenced */ MethodLocals[RegisterNumber].Flags |= ASL_LOCAL_REFERENCED; MethodLocals[RegisterNumber].Op = Op; return_ACPI_STATUS (AE_OK); } /* Check method ArgX variables */ if (OpInfo->Type == AML_TYPE_METHOD_ARGUMENT) { /* Find parent method Op */ NextOp = UtGetParentMethodOp (Op); if (!NextOp) { return_ACPI_STATUS (AE_OK); } /* Get method node */ Node = NextOp->Asl.Node; /* Get Arg # */ RegisterNumber = Op->Asl.AmlOpcode - AML_ARG0; /* 0x68 through 0x6F */ MethodArgs = Node->MethodArgs; /* Mark this Arg as referenced */ MethodArgs[RegisterNumber].Flags |= ASL_ARG_REFERENCED; MethodArgs[RegisterNumber].Op = Op; if (Op->Asl.CompileFlags & OP_IS_TARGET) { /* Arg is being initialized */ MethodArgs[RegisterNumber].Flags |= ASL_ARG_INITIALIZED; } return_ACPI_STATUS (AE_OK); } /* * After method ArgX and LocalX, we are only interested in opcodes * that have an associated name */ if ((!(OpInfo->Flags & AML_NAMED)) && (!(OpInfo->Flags & AML_CREATE)) && (Op->Asl.ParseOpcode != PARSEOP_NAMESTRING) && (Op->Asl.ParseOpcode != PARSEOP_NAMESEG) && (Op->Asl.ParseOpcode != PARSEOP_METHODCALL) && (Op->Asl.ParseOpcode != PARSEOP_EXTERNAL)) { return_ACPI_STATUS (AE_OK); } /* * We must enable the "search-to-root" for single NameSegs, but * we have to be very careful about opening up scopes */ Flags = ACPI_NS_SEARCH_PARENT; if ((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpcode == PARSEOP_NAMESEG) || (Op->Asl.ParseOpcode == PARSEOP_METHODCALL) || (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL) || (Op->Asl.ParseOpcode == PARSEOP_CONDREFOF)) { /* * These are name references, do not push the scope stack * for them. */ Flags |= ACPI_NS_DONT_OPEN_SCOPE; } /* Get the NamePath from the appropriate place */ if (OpInfo->Flags & AML_NAMED) { /* For nearly all NAMED operators, the name reference is the first child */ Path = Op->Asl.Child->Asl.Value.String; if (Op->Asl.AmlOpcode == AML_ALIAS_OP) { /* * ALIAS is the only oddball opcode, the name declaration * (alias name) is the second operand */ Path = Op->Asl.Child->Asl.Next->Asl.Value.String; } } else if (OpInfo->Flags & AML_CREATE) { /* Name must appear as the last parameter */ NextOp = Op->Asl.Child; while (!(NextOp->Asl.CompileFlags & OP_IS_NAME_DECLARATION)) { NextOp = NextOp->Asl.Next; } Path = NextOp->Asl.Value.String; } else { Path = Op->Asl.Value.String; } ObjectType = AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Type=%s\n", AcpiUtGetTypeName (ObjectType))); /* * Lookup the name in the namespace. Name must exist at this point, or it * is an invalid reference. * * The namespace is also used as a lookup table for references to resource * descriptors and the fields within them. */ AslGbl_NsLookupCount++; Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ObjectType, ACPI_IMODE_EXECUTE, Flags, WalkState, &Node); if (ACPI_FAILURE (Status)) { if (Status == AE_NOT_FOUND) { /* * We didn't find the name reference by path -- we can qualify this * a little better before we print an error message */ if ((Op->Asl.Parent) && (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONDREFOF)) { /* * One special case: CondRefOf operator - if the name doesn't * exist at this point, it means that there's no actual or * external declaration. If the name is not found, just ignore * it, the point of the operator is to determine if the name * exists at runtime. We wanted to see if this named object * exists to facilitate analysis to allow protected usage of * undeclared externals. */ return_ACPI_STATUS (AE_OK); } else if (strlen (Path) == ACPI_NAMESEG_SIZE) { /* A simple, one-segment ACPI name */ if (XfObjectExists (Path)) { /* * There exists such a name, but we couldn't get to it * from this scope */ AslError (ASL_ERROR, ASL_MSG_NOT_REACHABLE, Op, Op->Asl.ExternalName); } else { /* The name doesn't exist, period */ AslError (ASL_ERROR, ASL_MSG_NOT_EXIST, Op, Op->Asl.ExternalName); } } else { /* The NamePath contains multiple NameSegs */ if ((OpInfo->Flags & AML_CREATE) || (OpInfo->ObjectType == ACPI_TYPE_LOCAL_ALIAS)) { /* * The new name is the last parameter. For the * CreateXXXXField and Alias operators */ NextOp = Op->Asl.Child; while (!(NextOp->Asl.CompileFlags & OP_IS_NAME_DECLARATION)) { NextOp = NextOp->Asl.Next; } AslError (ASL_ERROR, ASL_MSG_PREFIX_NOT_EXIST, NextOp, NextOp->Asl.ExternalName); } else if (OpInfo->Flags & AML_NAMED) { /* The new name is the first parameter */ AslError (ASL_ERROR, ASL_MSG_PREFIX_NOT_EXIST, Op, Op->Asl.ExternalName); } else if (Path[0] == AML_ROOT_PREFIX) { /* Full namepath from root, the object does not exist */ AslError (ASL_ERROR, ASL_MSG_NOT_EXIST, Op, Op->Asl.ExternalName); } else { /* * Generic "not found" error. Cannot determine whether it * doesn't exist or just can't be reached. However, we * can differentiate between a NameSeg vs. NamePath. */ if (strlen (Op->Asl.ExternalName) == ACPI_NAMESEG_SIZE) { AslError (ASL_ERROR, ASL_MSG_NOT_FOUND, Op, Op->Asl.ExternalName); } else { AslError (ASL_ERROR, ASL_MSG_NAMEPATH_NOT_EXIST, Op, Op->Asl.ExternalName); } } } Status = AE_OK; } return_ACPI_STATUS (Status); } /* Check for an attempt to access an object in another method */ if (!XfValidateCrossReference (Op, OpInfo, Node)) { AslError (ASL_ERROR, ASL_MSG_TEMPORARY_OBJECT, Op, Op->Asl.ExternalName); return_ACPI_STATUS (Status); } /* Object was found above, check for an illegal forward reference */ if (Op->Asl.CompileFlags & OP_NOT_FOUND_DURING_LOAD) { /* * During the load phase, this Op was flagged as a possible * illegal forward reference. In other words, Op is a name path or * name segment that refers to a named object declared after the * reference. In this scinario, Node refers to the actual declaration * and Op is a parse node that references the named object. * * Note: * * Object references inside of control methods are allowed to * refer to objects declared outside of control methods. * * If the declaration and reference are both contained inside of the * same method or outside of any method, this is a forward reference * and should be reported as a compiler error. */ DeclarationParentMethod = UtGetParentMethodNode (Node); ReferenceParentMethod = UtGetParentMethodOp (Op); /* case 1: declaration and reference are both outside of method */ if (!ReferenceParentMethod && !DeclarationParentMethod) { AslError (ASL_ERROR, ASL_MSG_ILLEGAL_FORWARD_REF, Op, Op->Asl.ExternalName); } /* case 2: declaration and reference are both inside of the same method */ else if (ReferenceParentMethod && DeclarationParentMethod && ReferenceParentMethod == DeclarationParentMethod->Op) { AslError (ASL_ERROR, ASL_MSG_ILLEGAL_FORWARD_REF, Op, Op->Asl.ExternalName); } } /* Check for a reference vs. name declaration */ if (!(OpInfo->Flags & AML_NAMED) && !(OpInfo->Flags & AML_CREATE)) { /* This node has been referenced, mark it for reference check */ Node->Flags |= ANOBJ_IS_REFERENCED; } /* * Attempt to optimize the NamePath * * One special case: CondRefOf operator - not all AML interpreter * implementations expect optimized namepaths as a parameter to this * operator. They require relative name paths with prefix operators or * namepaths starting with the root scope. * * Other AML interpreter implementations do not perform the namespace * search that starts at the current scope and recursively searching the * parent scope until the root scope. The lack of search is only known to * occur for the namestring parameter for the CondRefOf operator. */ if ((Op->Asl.Parent) && (Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_CONDREFOF)) { OptOptimizeNamePath (Op, OpInfo->Flags, WalkState, Path, Node); } /* * 1) Dereference an alias (A name reference that is an alias) * Aliases are not nested, the alias always points to the final object */ if ((Op->Asl.ParseOpcode != PARSEOP_ALIAS) && (Node->Type == ACPI_TYPE_LOCAL_ALIAS)) { /* This node points back to the original PARSEOP_ALIAS */ NextOp = Node->Op; /* The first child is the alias target op */ NextOp = NextOp->Asl.Child; /* That in turn points back to original target alias node */ if (NextOp->Asl.Node) { Node = NextOp->Asl.Node; } /* Else - forward reference to alias, will be resolved later */ } /* 2) Check for a reference to a resource descriptor */ if ((Node->Type == ACPI_TYPE_LOCAL_RESOURCE_FIELD) || (Node->Type == ACPI_TYPE_LOCAL_RESOURCE)) { /* * This was a reference to a field within a resource descriptor. * Extract the associated field offset (either a bit or byte * offset depending on the field type) and change the named * reference into an integer for AML code generation */ Offset = Node->Value; TagBitLength = Node->Length; /* * If a field is being created, generate the length (in bits) of * the field. Note: Opcodes other than CreateXxxField and Index * can come through here. For other opcodes, we just need to * convert the resource tag reference to an integer offset. */ switch (Op->Asl.Parent->Asl.AmlOpcode) { case AML_CREATE_FIELD_OP: /* Variable "Length" field, in bits */ /* * We know the length operand is an integer constant because * we know that it contains a reference to a resource * descriptor tag. */ FieldBitLength = (UINT32) Op->Asl.Next->Asl.Value.Integer; break; case AML_CREATE_BIT_FIELD_OP: FieldBitLength = 1; break; case AML_CREATE_BYTE_FIELD_OP: case AML_INDEX_OP: FieldBitLength = 8; break; case AML_CREATE_WORD_FIELD_OP: FieldBitLength = 16; break; case AML_CREATE_DWORD_FIELD_OP: FieldBitLength = 32; break; case AML_CREATE_QWORD_FIELD_OP: FieldBitLength = 64; break; default: FieldBitLength = 0; break; } /* Check the field length against the length of the resource tag */ if (FieldBitLength) { if (TagBitLength < FieldBitLength) { Message = ASL_MSG_TAG_SMALLER; } else if (TagBitLength > FieldBitLength) { Message = ASL_MSG_TAG_LARGER; } if (Message) { sprintf (AslGbl_MsgBuffer, "Size mismatch, Tag: %u bit%s, Field: %u bit%s", TagBitLength, (TagBitLength > 1) ? "s" : "", FieldBitLength, (FieldBitLength > 1) ? "s" : ""); AslError (ASL_WARNING, Message, Op, AslGbl_MsgBuffer); } } /* Convert the BitOffset to a ByteOffset for certain opcodes */ switch (Op->Asl.Parent->Asl.AmlOpcode) { case AML_CREATE_BYTE_FIELD_OP: case AML_CREATE_WORD_FIELD_OP: case AML_CREATE_DWORD_FIELD_OP: case AML_CREATE_QWORD_FIELD_OP: case AML_INDEX_OP: Offset = ACPI_DIV_8 (Offset); break; default: break; } /* Now convert this node to an integer whose value is the field offset */ Op->Asl.AmlLength = 0; Op->Asl.ParseOpcode = PARSEOP_INTEGER; Op->Asl.Value.Integer = (UINT64) Offset; Op->Asl.CompileFlags |= OP_IS_RESOURCE_FIELD; OpcGenerateAmlOpcode (Op); } /* 3) Check for a method invocation */ else if ((((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpcode == PARSEOP_NAMESEG)) && (Node->Type == ACPI_TYPE_METHOD) && (Op->Asl.Parent) && (Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_METHOD)) || (Op->Asl.ParseOpcode == PARSEOP_METHODCALL)) { /* * A reference to a method within one of these opcodes is not an * invocation of the method, it is simply a reference to the method. * * September 2016: Removed DeRefOf from this list * July 2020: Added Alias to this list */ if ((Op->Asl.Parent) && ((Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_REFOF) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_PACKAGE) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_VAR_PACKAGE)|| (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_OBJECTTYPE) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_ALIAS))) { return_ACPI_STATUS (AE_OK); } /* * There are two types of method invocation: * 1) Invocation with arguments -- the parser recognizes this * as a METHODCALL. * 2) Invocation with no arguments --the parser cannot determine that * this is a method invocation, therefore we have to figure it out * here. */ if (Node->Type != ACPI_TYPE_METHOD) { sprintf (AslGbl_MsgBuffer, "%s is a %s", Op->Asl.ExternalName, AcpiUtGetTypeName (Node->Type)); AslError (ASL_ERROR, ASL_MSG_NOT_METHOD, Op, AslGbl_MsgBuffer); return_ACPI_STATUS (AE_OK); } /* Save the method node in the caller's op */ Op->Asl.Node = Node; if (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONDREFOF) { return_ACPI_STATUS (AE_OK); } /* * This is a method invocation, with or without arguments. * Count the number of arguments, each appears as a child * under the parent node */ Op->Asl.ParseOpcode = PARSEOP_METHODCALL; UtSetParseOpName (Op); PassedArgs = 0; NextOp = Op->Asl.Child; while (NextOp) { PassedArgs++; NextOp = NextOp->Asl.Next; } if (Node->Value != ASL_EXTERNAL_METHOD_UNKNOWN_PARAMS && Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_EXTERNAL) { /* * Check the parsed arguments with the number expected by the * method declaration itself */ if (PassedArgs != Node->Value) { if (Node->Flags & ANOBJ_IS_EXTERNAL) { sprintf (AslGbl_MsgBuffer, "according to previous use, %s requires %u", Op->Asl.ExternalName, Node->Value); } else { sprintf (AslGbl_MsgBuffer, "%s requires %u", Op->Asl.ExternalName, Node->Value); } if (PassedArgs < Node->Value) { AslError (ASL_ERROR, ASL_MSG_ARG_COUNT_LO, Op, AslGbl_MsgBuffer); } else { AslError (ASL_ERROR, ASL_MSG_ARG_COUNT_HI, Op, AslGbl_MsgBuffer); } } } /* * At this point, a method call to an external method has been * detected. As of 11/19/2019, iASL does not support parameter counts * for methods declared as external. Therefore, save the parameter * count of the first method call and use this count check other * method calls to ensure that the methods are being called with the * same amount of parameters. */ else if (Node->Type == ACPI_TYPE_METHOD && (Node->Flags & ANOBJ_IS_EXTERNAL) && Node->Value == ASL_EXTERNAL_METHOD_UNKNOWN_PARAMS && Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_EXTERNAL) { Node->Value = PassedArgs; } } /* 4) Check for an ASL Field definition */ else if ((Op->Asl.Parent) && ((Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_FIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_BANKFIELD))) { /* * Offset checking for fields. If the parent operation region has a * constant length (known at compile time), we can check fields * defined in that region against the region length. This will catch * fields and field units that cannot possibly fit within the region. * * Note: Index fields do not directly reference an operation region, * thus they are not included in this check. */ if (Op == Op->Asl.Parent->Asl.Child) { /* * This is the first child of the field node, which is * the name of the region. Get the parse node for the * region -- which contains the length of the region. */ OwningOp = Node->Op; Op->Asl.Parent->Asl.ExtraValue = ACPI_MUL_8 ((UINT32) OwningOp->Asl.Value.Integer); /* Examine the field access width */ switch ((UINT8) Op->Asl.Parent->Asl.Value.Integer) { case AML_FIELD_ACCESS_ANY: case AML_FIELD_ACCESS_BYTE: case AML_FIELD_ACCESS_BUFFER: default: MinimumLength = 1; break; case AML_FIELD_ACCESS_WORD: MinimumLength = 2; break; case AML_FIELD_ACCESS_DWORD: MinimumLength = 4; break; case AML_FIELD_ACCESS_QWORD: MinimumLength = 8; break; } /* * Is the region at least as big as the access width? * Note: DataTableRegions have 0 length */ if (((UINT32) OwningOp->Asl.Value.Integer) && ((UINT32) OwningOp->Asl.Value.Integer < MinimumLength)) { AslError (ASL_ERROR, ASL_MSG_FIELD_ACCESS_WIDTH, Op, NULL); } /* * Check EC/CMOS/SMBUS fields to make sure that the correct * access type is used (BYTE for EC/CMOS, BUFFER for SMBUS) */ SpaceIdOp = OwningOp->Asl.Child->Asl.Next; switch ((UINT32) SpaceIdOp->Asl.Value.Integer) { case ACPI_ADR_SPACE_EC: case ACPI_ADR_SPACE_CMOS: case ACPI_ADR_SPACE_GPIO: if ((UINT8) Op->Asl.Parent->Asl.Value.Integer != AML_FIELD_ACCESS_BYTE) { AslError (ASL_ERROR, ASL_MSG_REGION_BYTE_ACCESS, Op, NULL); } break; case ACPI_ADR_SPACE_SMBUS: case ACPI_ADR_SPACE_IPMI: case ACPI_ADR_SPACE_GSBUS: if ((UINT8) Op->Asl.Parent->Asl.Value.Integer != AML_FIELD_ACCESS_BUFFER) { AslError (ASL_ERROR, ASL_MSG_REGION_BUFFER_ACCESS, Op, NULL); } break; default: /* Nothing to do for other address spaces */ break; } } else { /* * This is one element of the field list. Check to make sure * that it does not go beyond the end of the parent operation region. * * In the code below: * Op->Asl.Parent->Asl.ExtraValue - Region Length (bits) * Op->Asl.ExtraValue - Field start offset (bits) * Op->Asl.Child->Asl.Value.Integer32 - Field length (bits) * Op->Asl.Child->Asl.ExtraValue - Field access width (bits) */ if (Op->Asl.Parent->Asl.ExtraValue && Op->Asl.Child) { XfCheckFieldRange (Op, Op->Asl.Parent->Asl.ExtraValue, Op->Asl.ExtraValue, (UINT32) Op->Asl.Child->Asl.Value.Integer, Op->Asl.Child->Asl.ExtraValue); } } } /* * 5) Check for external resolution * * By this point, everything should be loaded in the namespace. If a * namespace lookup results in a namespace node that is an external, it * means that this named object was not defined in the input ASL. This * causes issues because there are plenty of incidents where developers * use the external keyword to suppress compiler errors about undefined * objects. Note: this only applies when compiling multiple definition * blocks. * * Do not check for external resolution in the following cases: * * case 1) External (ABCD) * * This declares ABCD as an external so there is no requirement for * ABCD to be loaded in the namespace when analyzing the actual * External() statement. * * case 2) CondRefOf (ABCD) * * This operator will query the ACPI namespace on the existence of * ABCD. If ABCD does not exist, this operator will return a 0 * without incurring AML runtime errors. Therefore, ABCD is allowed * to not exist when analyzing the CondRefOf operator. * * case 3) External (ABCD) * if (CondRefOf (ABCD)) * { * Store (0, ABCD) * } * * In this case, ABCD is accessed only if it exists due to the if * statement so there is no need to flag the ABCD nested in the * store operator. */ if (AslGbl_ParseTreeRoot->Asl.Child && AslGbl_ParseTreeRoot->Asl.Child->Asl.Next && (Node->Flags & ANOBJ_IS_EXTERNAL) && Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_EXTERNAL && Op->Asl.ParseOpcode != PARSEOP_EXTERNAL && Op->Asl.Parent->Asl.ParseOpcode != PARSEOP_CONDREFOF && !XfRefIsGuardedByIfCondRefOf (Node, Op)) { - AslError (ASL_ERROR, ASL_MSG_UNDEFINED_EXTERNAL, Op, NULL); + ExternalPath = AcpiNsGetNormalizedPathname (Node, TRUE); + sprintf (AslGbl_MsgBuffer, "full path of external object: %s", + ExternalPath); + AslDualParseOpError (ASL_ERROR, ASL_MSG_UNDEFINED_EXTERNAL, Op, NULL, + ASL_MSG_EXTERNAL_FOUND_HERE, Node->Op, AslGbl_MsgBuffer); + if (ExternalPath) + { + ACPI_FREE (ExternalPath); + } } /* 5) Check for a connection object */ #if 0 else if (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONNECTION) { return_ACPI_STATUS (Status); } #endif Op->Asl.Node = Node; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: XfRefIsGuardedByIfCondRefOf * * PARAMETERS: Node - Named object reference node * Op - Named object reference parse node * * RETURN: BOOLEAN * * DESCRIPTION: returns true if Op checked inside if (CondRefOf (...)) * refers to Node. * ******************************************************************************/ static BOOLEAN XfRefIsGuardedByIfCondRefOf ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *Parent = Op->Asl.Parent; while (Parent) { if (Parent->Asl.ParseOpcode == PARSEOP_IF && XfFindCondRefOfName (Node, Parent->Asl.Child)) { return (TRUE); } Parent = Parent->Asl.Parent; } return (FALSE); } /******************************************************************************* * * FUNCTION: XfRefIsGuardedByIfCondRefOf * * PARAMETERS: Node - Named object reference node * Op - Named object reference parse node * * RETURN: BOOLEAN * * DESCRIPTION: returns true if Op checked inside if (CondRefOf (...)) * refers to Node. * ******************************************************************************/ static BOOLEAN XfFindCondRefOfName ( ACPI_NAMESPACE_NODE *Node, ACPI_PARSE_OBJECT *Op) { BOOLEAN CondRefOfFound = FALSE; if (!Op) { return (FALSE); } switch (Op->Asl.ParseOpcode) { case PARSEOP_CONDREFOF: return (Op->Asl.Child->Common.Node == Node); break; case PARSEOP_LAND: CondRefOfFound = XfFindCondRefOfName (Node, Op->Asl.Child); if (CondRefOfFound) { return (TRUE); } return (XfFindCondRefOfName (Node, Op->Asl.Child->Asl.Next)); break; default: return (FALSE); break; } } /******************************************************************************* * * FUNCTION: XfNamespaceLocateEnd * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Ascending callback used during cross reference. We only * need to worry about scope management here. * ******************************************************************************/ static ACPI_STATUS XfNamespaceLocateEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { ACPI_WALK_STATE *WalkState = (ACPI_WALK_STATE *) Context; const ACPI_OPCODE_INFO *OpInfo; ACPI_FUNCTION_TRACE (XfNamespaceLocateEnd); /* We are only interested in opcodes that have an associated name */ OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode); if (!(OpInfo->Flags & AML_NAMED)) { return_ACPI_STATUS (AE_OK); } /* Not interested in name references, we did not open a scope for them */ if ((Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpcode == PARSEOP_NAMESEG) || (Op->Asl.ParseOpcode == PARSEOP_METHODCALL) || (Op->Asl.ParseOpcode == PARSEOP_EXTERNAL)) { return_ACPI_STATUS (AE_OK); } /* Pop the scope stack if necessary */ if (AcpiNsOpensScope (AslMapNamedOpcodeToDataType (Op->Asl.AmlOpcode))) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "%s: Popping scope for Op %p\n", AcpiUtGetTypeName (OpInfo->ObjectType), Op)); (void) AcpiDsScopeStackPop (WalkState); } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: XfValidateCrossReference * * PARAMETERS: Op - Parse Op that references the object * OpInfo - Parse Op info struct * Node - Node for the referenced object * * RETURN: TRUE if the reference is legal, FALSE otherwise * * DESCRIPTION: Determine if a reference to another object is allowed. * * EXAMPLE: * Method (A) {Name (INT1, 1)} Declaration of object INT1 * Method (B) (Store (2, \A.INT1)} Illegal reference to object INT1 * (INT1 is temporary, valid only during * execution of A) * * NOTES: * A null pointer returned by either UtGetParentMethodOp or * UtGetParentMethodNode indicates that the parameter object is not * within a control method. * * Five cases are handled: Case(Op, Node) * 1) Case(0,0): Op is not within a method, Node is not --> OK * 2) Case(0,1): Op is not within a method, but Node is --> Illegal * 3) Case(1,0): Op is within a method, Node is not --> OK * 4) Case(1,1): Both are within the same method --> OK * 5) Case(1,1): Both are in methods, but not same method --> Illegal * ******************************************************************************/ static BOOLEAN XfValidateCrossReference ( ACPI_PARSE_OBJECT *Op, const ACPI_OPCODE_INFO *OpInfo, ACPI_NAMESPACE_NODE *Node) { ACPI_PARSE_OBJECT *ReferencingMethodOp; ACPI_NAMESPACE_NODE *ReferencedMethodNode; /* Ignore actual named (and related) object declarations */ if (OpInfo->Flags & (AML_NAMED | AML_CREATE | AML_DEFER | AML_HAS_ARGS)) { return (TRUE); } /* * 1) Search upwards in parse tree for owner of the referencing object * 2) Search upwards in namespace to find the owner of the referenced object */ ReferencingMethodOp = UtGetParentMethodOp (Op); ReferencedMethodNode = UtGetParentMethodNode (Node); if (!ReferencingMethodOp && !ReferencedMethodNode) { /* * 1) Case (0,0): Both Op and Node are not within methods * --> OK */ return (TRUE); } if (!ReferencingMethodOp && ReferencedMethodNode) { /* * 2) Case (0,1): Op is not in a method, but Node is within a * method --> illegal */ return (FALSE); } else if (ReferencingMethodOp && !ReferencedMethodNode) { /* * 3) Case (1,0): Op is within a method, but Node is not * --> OK */ return (TRUE); } else if (ReferencingMethodOp->Asl.Node == ReferencedMethodNode) { /* * 4) Case (1,1): Both Op and Node are within the same method * --> OK */ return (TRUE); } else { /* * 5) Case (1,1), Op and Node are in different methods * --> Illegal */ return (FALSE); } } Index: head/sys/contrib/dev/acpica/components/debugger/dbexec.c =================================================================== --- head/sys/contrib/dev/acpica/components/debugger/dbexec.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/debugger/dbexec.c (revision 366562) @@ -1,1089 +1,1113 @@ /******************************************************************************* * * Module Name: dbexec - debugger control method execution * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbexec") static ACPI_DB_METHOD_INFO AcpiGbl_DbMethodInfo; /* Local prototypes */ static ACPI_STATUS AcpiDbExecuteMethod ( ACPI_DB_METHOD_INFO *Info, ACPI_BUFFER *ReturnObj); static ACPI_STATUS AcpiDbExecuteSetup ( ACPI_DB_METHOD_INFO *Info); static UINT32 AcpiDbGetOutstandingAllocations ( void); static void ACPI_SYSTEM_XFACE AcpiDbMethodThread ( void *Context); static ACPI_STATUS AcpiDbExecutionWalk ( ACPI_HANDLE ObjHandle, UINT32 NestingLevel, void *Context, void **ReturnValue); static void ACPI_SYSTEM_XFACE AcpiDbSingleExecutionThread ( void *Context); /******************************************************************************* * * FUNCTION: AcpiDbDeleteObjects * * PARAMETERS: Count - Count of objects in the list * Objects - Array of ACPI_OBJECTs to be deleted * * RETURN: None * * DESCRIPTION: Delete a list of ACPI_OBJECTS. Handles packages and nested * packages via recursion. * ******************************************************************************/ void AcpiDbDeleteObjects ( UINT32 Count, ACPI_OBJECT *Objects) { UINT32 i; for (i = 0; i < Count; i++) { switch (Objects[i].Type) { case ACPI_TYPE_BUFFER: ACPI_FREE (Objects[i].Buffer.Pointer); break; case ACPI_TYPE_PACKAGE: /* Recursive call to delete package elements */ AcpiDbDeleteObjects (Objects[i].Package.Count, Objects[i].Package.Elements); /* Free the elements array */ ACPI_FREE (Objects[i].Package.Elements); break; default: break; } } } /******************************************************************************* * * FUNCTION: AcpiDbExecuteMethod * * PARAMETERS: Info - Valid info segment * ReturnObj - Where to put return object * * RETURN: Status * - * DESCRIPTION: Execute a control method. + * DESCRIPTION: Execute a control method. Used to evaluate objects via the + * "EXECUTE" or "EVALUATE" commands. * ******************************************************************************/ static ACPI_STATUS AcpiDbExecuteMethod ( ACPI_DB_METHOD_INFO *Info, ACPI_BUFFER *ReturnObj) { ACPI_STATUS Status; ACPI_OBJECT_LIST ParamObjects; ACPI_OBJECT Params[ACPI_DEBUGGER_MAX_ARGS + 1]; UINT32 i; ACPI_FUNCTION_TRACE (DbExecuteMethod); if (AcpiGbl_DbOutputToFile && !AcpiDbgLevel) { AcpiOsPrintf ("Warning: debug output is not enabled!\n"); } ParamObjects.Count = 0; ParamObjects.Pointer = NULL; /* Pass through any command-line arguments */ if (Info->Args && Info->Args[0]) { /* Get arguments passed on the command line */ for (i = 0; (Info->Args[i] && *(Info->Args[i])); i++) { /* Convert input string (token) to an actual ACPI_OBJECT */ Status = AcpiDbConvertToObject (Info->Types[i], Info->Args[i], &Params[i]); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "While parsing method arguments")); goto Cleanup; } } ParamObjects.Count = i; ParamObjects.Pointer = Params; } /* Prepare for a return object of arbitrary size */ ReturnObj->Pointer = AcpiGbl_DbBuffer; ReturnObj->Length = ACPI_DEBUG_BUFFER_SIZE; /* Do the actual method execution */ AcpiGbl_MethodExecuting = TRUE; Status = AcpiEvaluateObject (NULL, Info->Pathname, &ParamObjects, ReturnObj); AcpiGbl_CmSingleStep = FALSE; AcpiGbl_MethodExecuting = FALSE; if (ACPI_FAILURE (Status)) { if ((Status == AE_ABORT_METHOD) || AcpiGbl_AbortMethod) { /* Clear the abort and fall back to the debugger prompt */ ACPI_EXCEPTION ((AE_INFO, Status, "Aborting top-level method")); AcpiGbl_AbortMethod = FALSE; Status = AE_OK; goto Cleanup; } ACPI_EXCEPTION ((AE_INFO, Status, "while executing %s from AML Debugger", Info->Pathname)); if (Status == AE_BUFFER_OVERFLOW) { ACPI_ERROR ((AE_INFO, "Possible buffer overflow within AML Debugger " "buffer (size 0x%X needed 0x%X)", ACPI_DEBUG_BUFFER_SIZE, (UINT32) ReturnObj->Length)); } } Cleanup: AcpiDbDeleteObjects (ParamObjects.Count, Params); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDbExecuteSetup * * PARAMETERS: Info - Valid method info * * RETURN: None * * DESCRIPTION: Setup info segment prior to method execution * ******************************************************************************/ static ACPI_STATUS AcpiDbExecuteSetup ( ACPI_DB_METHOD_INFO *Info) { ACPI_STATUS Status; ACPI_FUNCTION_NAME (DbExecuteSetup); /* Concatenate the current scope to the supplied name */ Info->Pathname[0] = 0; if ((Info->Name[0] != '\\') && (Info->Name[0] != '/')) { if (AcpiUtSafeStrcat (Info->Pathname, sizeof (Info->Pathname), AcpiGbl_DbScopeBuf)) { Status = AE_BUFFER_OVERFLOW; goto ErrorExit; } } if (AcpiUtSafeStrcat (Info->Pathname, sizeof (Info->Pathname), Info->Name)) { Status = AE_BUFFER_OVERFLOW; goto ErrorExit; } AcpiDbPrepNamestring (Info->Pathname); AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT); AcpiOsPrintf ("Evaluating %s\n", Info->Pathname); if (Info->Flags & EX_SINGLE_STEP) { AcpiGbl_CmSingleStep = TRUE; AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT); } else { /* No single step, allow redirection to a file */ AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT); } return (AE_OK); ErrorExit: ACPI_EXCEPTION ((AE_INFO, Status, "During setup for method execution")); return (Status); } #ifdef ACPI_DBG_TRACK_ALLOCATIONS UINT32 AcpiDbGetCacheInfo ( ACPI_MEMORY_LIST *Cache) { return (Cache->TotalAllocated - Cache->TotalFreed - Cache->CurrentDepth); } #endif /******************************************************************************* * * FUNCTION: AcpiDbGetOutstandingAllocations * * PARAMETERS: None * * RETURN: Current global allocation count minus cache entries * * DESCRIPTION: Determine the current number of "outstanding" allocations -- * those allocations that have not been freed and also are not * in one of the various object caches. * ******************************************************************************/ static UINT32 AcpiDbGetOutstandingAllocations ( void) { UINT32 Outstanding = 0; #ifdef ACPI_DBG_TRACK_ALLOCATIONS Outstanding += AcpiDbGetCacheInfo (AcpiGbl_StateCache); Outstanding += AcpiDbGetCacheInfo (AcpiGbl_PsNodeCache); Outstanding += AcpiDbGetCacheInfo (AcpiGbl_PsNodeExtCache); Outstanding += AcpiDbGetCacheInfo (AcpiGbl_OperandCache); #endif return (Outstanding); } /******************************************************************************* * * FUNCTION: AcpiDbExecutionWalk * * PARAMETERS: WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Execute a control method. Name is relative to the current * scope. * ******************************************************************************/ static ACPI_STATUS AcpiDbExecutionWalk ( ACPI_HANDLE ObjHandle, UINT32 NestingLevel, void *Context, void **ReturnValue) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; ACPI_BUFFER ReturnObj; ACPI_STATUS Status; ObjDesc = AcpiNsGetAttachedObject (Node); if (ObjDesc->Method.ParamCount) { return (AE_OK); } ReturnObj.Pointer = NULL; ReturnObj.Length = ACPI_ALLOCATE_BUFFER; AcpiNsPrintNodePathname (Node, "Evaluating"); /* Do the actual method execution */ AcpiOsPrintf ("\n"); AcpiGbl_MethodExecuting = TRUE; Status = AcpiEvaluateObject (Node, NULL, NULL, &ReturnObj); + AcpiGbl_MethodExecuting = FALSE; + AcpiOsPrintf ("Evaluation of [%4.4s] returned %s\n", AcpiUtGetNodeName (Node), AcpiFormatException (Status)); - AcpiGbl_MethodExecuting = FALSE; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDbExecute * * PARAMETERS: Name - Name of method to execute * Args - Parameters to the method * Types - * Flags - single step/no single step * * RETURN: None * * DESCRIPTION: Execute a control method. Name is relative to the current - * scope. + * scope. Function used for the "EXECUTE", "EVALUATE", and + * "ALL" commands * ******************************************************************************/ void AcpiDbExecute ( char *Name, char **Args, ACPI_OBJECT_TYPE *Types, UINT32 Flags) { ACPI_STATUS Status; ACPI_BUFFER ReturnObj; char *NameString; #ifdef ACPI_DEBUG_OUTPUT UINT32 PreviousAllocations; UINT32 Allocations; #endif /* * Allow one execution to be performed by debugger or single step * execution will be dead locked by the interpreter mutexes. */ if (AcpiGbl_MethodExecuting) { AcpiOsPrintf ("Only one debugger execution is allowed.\n"); return; } #ifdef ACPI_DEBUG_OUTPUT /* Memory allocation tracking */ PreviousAllocations = AcpiDbGetOutstandingAllocations (); #endif if (*Name == '*') { (void) AcpiWalkNamespace (ACPI_TYPE_METHOD, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, AcpiDbExecutionWalk, NULL, NULL, NULL); return; } + if ((Flags & EX_ALL) && (strlen (Name) > 4)) + { + AcpiOsPrintf ("Input name (%s) must be a 4-char NameSeg\n", Name); + return; + } + NameString = ACPI_ALLOCATE (strlen (Name) + 1); if (!NameString) { return; } memset (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO)); strcpy (NameString, Name); AcpiUtStrupr (NameString); /* Subcommand to Execute all predefined names in the namespace */ if (!strncmp (NameString, "PREDEF", 6)) { AcpiDbEvaluatePredefinedNames (); ACPI_FREE (NameString); return; } - AcpiGbl_DbMethodInfo.Name = NameString; - AcpiGbl_DbMethodInfo.Args = Args; - AcpiGbl_DbMethodInfo.Types = Types; - AcpiGbl_DbMethodInfo.Flags = Flags; + /* Command (ALL ) to execute all methods of a particular name */ - ReturnObj.Pointer = NULL; - ReturnObj.Length = ACPI_ALLOCATE_BUFFER; + else if (Flags & EX_ALL) + { + AcpiGbl_DbMethodInfo.Name = NameString; + ReturnObj.Pointer = NULL; + ReturnObj.Length = ACPI_ALLOCATE_BUFFER; + AcpiDbEvaluateAll (NameString); + ACPI_FREE (NameString); + return; + } + else + { + AcpiGbl_DbMethodInfo.Name = NameString; + AcpiGbl_DbMethodInfo.Args = Args; + AcpiGbl_DbMethodInfo.Types = Types; + AcpiGbl_DbMethodInfo.Flags = Flags; + ReturnObj.Pointer = NULL; + ReturnObj.Length = ACPI_ALLOCATE_BUFFER; + } + Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo); if (ACPI_FAILURE (Status)) { ACPI_FREE (NameString); return; } /* Get the NS node, determines existence also */ Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname, &AcpiGbl_DbMethodInfo.Method); if (ACPI_SUCCESS (Status)) { Status = AcpiDbExecuteMethod (&AcpiGbl_DbMethodInfo, &ReturnObj); } ACPI_FREE (NameString); /* * Allow any handlers in separate threads to complete. * (Such as Notify handlers invoked from AML executed above). */ AcpiOsSleep ((UINT64) 10); #ifdef ACPI_DEBUG_OUTPUT /* Memory allocation tracking */ Allocations = AcpiDbGetOutstandingAllocations () - PreviousAllocations; AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT); if (Allocations > 0) { AcpiOsPrintf ( "0x%X Outstanding allocations after evaluation of %s\n", Allocations, AcpiGbl_DbMethodInfo.Pathname); } #endif if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Evaluation of %s failed with status %s\n", AcpiGbl_DbMethodInfo.Pathname, AcpiFormatException (Status)); } else { /* Display a return object, if any */ if (ReturnObj.Length) { AcpiOsPrintf ( "Evaluation of %s returned object %p, " "external buffer length %X\n", AcpiGbl_DbMethodInfo.Pathname, ReturnObj.Pointer, (UINT32) ReturnObj.Length); AcpiDbDumpExternalObject (ReturnObj.Pointer, 1); + AcpiOsPrintf ("\n"); /* Dump a _PLD buffer if present */ if (ACPI_COMPARE_NAMESEG ((ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, AcpiGbl_DbMethodInfo.Method)->Name.Ascii), METHOD_NAME__PLD)) { AcpiDbDumpPldBuffer (ReturnObj.Pointer); } } else { AcpiOsPrintf ("No object was returned from evaluation of %s\n", AcpiGbl_DbMethodInfo.Pathname); } } AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT); } /******************************************************************************* * * FUNCTION: AcpiDbMethodThread * * PARAMETERS: Context - Execution info segment * * RETURN: None * * DESCRIPTION: Debugger execute thread. Waits for a command line, then * simply dispatches it. * ******************************************************************************/ static void ACPI_SYSTEM_XFACE AcpiDbMethodThread ( void *Context) { ACPI_STATUS Status; ACPI_DB_METHOD_INFO *Info = Context; ACPI_DB_METHOD_INFO LocalInfo; UINT32 i; UINT8 Allow; ACPI_BUFFER ReturnObj; /* * AcpiGbl_DbMethodInfo.Arguments will be passed as method arguments. * Prevent AcpiGbl_DbMethodInfo from being modified by multiple threads * concurrently. * * Note: The arguments we are passing are used by the ASL test suite * (aslts). Do not change them without updating the tests. */ (void) AcpiOsWaitSemaphore (Info->InfoGate, 1, ACPI_WAIT_FOREVER); if (Info->InitArgs) { AcpiDbUint32ToHexString (Info->NumCreated, Info->IndexOfThreadStr); AcpiDbUint32ToHexString ((UINT32) AcpiOsGetThreadId (), Info->IdOfThreadStr); } if (Info->Threads && (Info->NumCreated < Info->NumThreads)) { Info->Threads[Info->NumCreated++] = AcpiOsGetThreadId(); } LocalInfo = *Info; LocalInfo.Args = LocalInfo.Arguments; LocalInfo.Arguments[0] = LocalInfo.NumThreadsStr; LocalInfo.Arguments[1] = LocalInfo.IdOfThreadStr; LocalInfo.Arguments[2] = LocalInfo.IndexOfThreadStr; LocalInfo.Arguments[3] = NULL; LocalInfo.Types = LocalInfo.ArgTypes; (void) AcpiOsSignalSemaphore (Info->InfoGate, 1); for (i = 0; i < Info->NumLoops; i++) { Status = AcpiDbExecuteMethod (&LocalInfo, &ReturnObj); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s During evaluation of %s at iteration %X\n", AcpiFormatException (Status), Info->Pathname, i); if (Status == AE_ABORT_METHOD) { break; } } #if 0 if ((i % 100) == 0) { AcpiOsPrintf ("%u loops, Thread 0x%x\n", i, AcpiOsGetThreadId ()); } if (ReturnObj.Length) { AcpiOsPrintf ("Evaluation of %s returned object %p Buflen %X\n", Info->Pathname, ReturnObj.Pointer, (UINT32) ReturnObj.Length); AcpiDbDumpExternalObject (ReturnObj.Pointer, 1); } #endif } /* Signal our completion */ Allow = 0; (void) AcpiOsWaitSemaphore (Info->ThreadCompleteGate, 1, ACPI_WAIT_FOREVER); Info->NumCompleted++; if (Info->NumCompleted == Info->NumThreads) { /* Do signal for main thread once only */ Allow = 1; } (void) AcpiOsSignalSemaphore (Info->ThreadCompleteGate, 1); if (Allow) { Status = AcpiOsSignalSemaphore (Info->MainThreadGate, 1); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ( "Could not signal debugger thread sync semaphore, %s\n", AcpiFormatException (Status)); } } } /******************************************************************************* * * FUNCTION: AcpiDbSingleExecutionThread * * PARAMETERS: Context - Method info struct * * RETURN: None * * DESCRIPTION: Create one thread and execute a method * ******************************************************************************/ static void ACPI_SYSTEM_XFACE AcpiDbSingleExecutionThread ( void *Context) { ACPI_DB_METHOD_INFO *Info = Context; ACPI_STATUS Status; ACPI_BUFFER ReturnObj; AcpiOsPrintf ("\n"); Status = AcpiDbExecuteMethod (Info, &ReturnObj); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s During evaluation of %s\n", AcpiFormatException (Status), Info->Pathname); return; } /* Display a return object, if any */ if (ReturnObj.Length) { AcpiOsPrintf ("Evaluation of %s returned object %p, " "external buffer length %X\n", AcpiGbl_DbMethodInfo.Pathname, ReturnObj.Pointer, (UINT32) ReturnObj.Length); AcpiDbDumpExternalObject (ReturnObj.Pointer, 1); } AcpiOsPrintf ("\nBackground thread completed\n%c ", ACPI_DEBUGGER_COMMAND_PROMPT); } /******************************************************************************* * * FUNCTION: AcpiDbCreateExecutionThread * * PARAMETERS: MethodNameArg - Control method to execute * Arguments - Array of arguments to the method * Types - Corresponding array of object types * * RETURN: None * * DESCRIPTION: Create a single thread to evaluate a namespace object. Handles * arguments passed on command line for control methods. * ******************************************************************************/ void AcpiDbCreateExecutionThread ( char *MethodNameArg, char **Arguments, ACPI_OBJECT_TYPE *Types) { ACPI_STATUS Status; UINT32 i; memset (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO)); AcpiGbl_DbMethodInfo.Name = MethodNameArg; AcpiGbl_DbMethodInfo.InitArgs = 1; AcpiGbl_DbMethodInfo.Args = AcpiGbl_DbMethodInfo.Arguments; AcpiGbl_DbMethodInfo.Types = AcpiGbl_DbMethodInfo.ArgTypes; /* Setup method arguments, up to 7 (0-6) */ for (i = 0; (i < ACPI_METHOD_NUM_ARGS) && *Arguments; i++) { AcpiGbl_DbMethodInfo.Arguments[i] = *Arguments; Arguments++; AcpiGbl_DbMethodInfo.ArgTypes[i] = *Types; Types++; } Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo); if (ACPI_FAILURE (Status)) { return; } /* Get the NS node, determines existence also */ Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname, &AcpiGbl_DbMethodInfo.Method); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s Could not get handle for %s\n", AcpiFormatException (Status), AcpiGbl_DbMethodInfo.Pathname); return; } Status = AcpiOsExecute (OSL_DEBUGGER_EXEC_THREAD, AcpiDbSingleExecutionThread, &AcpiGbl_DbMethodInfo); if (ACPI_FAILURE (Status)) { return; } AcpiOsPrintf ("\nBackground thread started\n"); } /******************************************************************************* * * FUNCTION: AcpiDbCreateExecutionThreads * * PARAMETERS: NumThreadsArg - Number of threads to create * NumLoopsArg - Loop count for the thread(s) * MethodNameArg - Control method to execute * * RETURN: None * * DESCRIPTION: Create threads to execute method(s) * ******************************************************************************/ void AcpiDbCreateExecutionThreads ( char *NumThreadsArg, char *NumLoopsArg, char *MethodNameArg) { ACPI_STATUS Status; UINT32 NumThreads; UINT32 NumLoops; UINT32 i; UINT32 Size; ACPI_MUTEX MainThreadGate; ACPI_MUTEX ThreadCompleteGate; ACPI_MUTEX InfoGate; /* Get the arguments */ NumThreads = strtoul (NumThreadsArg, NULL, 0); NumLoops = strtoul (NumLoopsArg, NULL, 0); if (!NumThreads || !NumLoops) { AcpiOsPrintf ("Bad argument: Threads %X, Loops %X\n", NumThreads, NumLoops); return; } /* * Create the semaphore for synchronization of * the created threads with the main thread. */ Status = AcpiOsCreateSemaphore (1, 0, &MainThreadGate); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Could not create semaphore for " "synchronization with the main thread, %s\n", AcpiFormatException (Status)); return; } /* * Create the semaphore for synchronization * between the created threads. */ Status = AcpiOsCreateSemaphore (1, 1, &ThreadCompleteGate); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Could not create semaphore for " "synchronization between the created threads, %s\n", AcpiFormatException (Status)); (void) AcpiOsDeleteSemaphore (MainThreadGate); return; } Status = AcpiOsCreateSemaphore (1, 1, &InfoGate); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Could not create semaphore for " "synchronization of AcpiGbl_DbMethodInfo, %s\n", AcpiFormatException (Status)); (void) AcpiOsDeleteSemaphore (ThreadCompleteGate); (void) AcpiOsDeleteSemaphore (MainThreadGate); return; } memset (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO)); /* Array to store IDs of threads */ AcpiGbl_DbMethodInfo.NumThreads = NumThreads; Size = sizeof (ACPI_THREAD_ID) * AcpiGbl_DbMethodInfo.NumThreads; AcpiGbl_DbMethodInfo.Threads = AcpiOsAllocate (Size); if (AcpiGbl_DbMethodInfo.Threads == NULL) { AcpiOsPrintf ("No memory for thread IDs array\n"); (void) AcpiOsDeleteSemaphore (MainThreadGate); (void) AcpiOsDeleteSemaphore (ThreadCompleteGate); (void) AcpiOsDeleteSemaphore (InfoGate); return; } memset (AcpiGbl_DbMethodInfo.Threads, 0, Size); /* Setup the context to be passed to each thread */ AcpiGbl_DbMethodInfo.Name = MethodNameArg; AcpiGbl_DbMethodInfo.Flags = 0; AcpiGbl_DbMethodInfo.NumLoops = NumLoops; AcpiGbl_DbMethodInfo.MainThreadGate = MainThreadGate; AcpiGbl_DbMethodInfo.ThreadCompleteGate = ThreadCompleteGate; AcpiGbl_DbMethodInfo.InfoGate = InfoGate; /* Init arguments to be passed to method */ AcpiGbl_DbMethodInfo.InitArgs = 1; AcpiGbl_DbMethodInfo.Args = AcpiGbl_DbMethodInfo.Arguments; AcpiGbl_DbMethodInfo.Arguments[0] = AcpiGbl_DbMethodInfo.NumThreadsStr; AcpiGbl_DbMethodInfo.Arguments[1] = AcpiGbl_DbMethodInfo.IdOfThreadStr; AcpiGbl_DbMethodInfo.Arguments[2] = AcpiGbl_DbMethodInfo.IndexOfThreadStr; AcpiGbl_DbMethodInfo.Arguments[3] = NULL; AcpiGbl_DbMethodInfo.Types = AcpiGbl_DbMethodInfo.ArgTypes; AcpiGbl_DbMethodInfo.ArgTypes[0] = ACPI_TYPE_INTEGER; AcpiGbl_DbMethodInfo.ArgTypes[1] = ACPI_TYPE_INTEGER; AcpiGbl_DbMethodInfo.ArgTypes[2] = ACPI_TYPE_INTEGER; AcpiDbUint32ToHexString (NumThreads, AcpiGbl_DbMethodInfo.NumThreadsStr); Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo); if (ACPI_FAILURE (Status)) { goto CleanupAndExit; } /* Get the NS node, determines existence also */ Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname, &AcpiGbl_DbMethodInfo.Method); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s Could not get handle for %s\n", AcpiFormatException (Status), AcpiGbl_DbMethodInfo.Pathname); goto CleanupAndExit; } /* Create the threads */ AcpiOsPrintf ("Creating %X threads to execute %X times each\n", NumThreads, NumLoops); for (i = 0; i < (NumThreads); i++) { Status = AcpiOsExecute (OSL_DEBUGGER_EXEC_THREAD, AcpiDbMethodThread, &AcpiGbl_DbMethodInfo); if (ACPI_FAILURE (Status)) { break; } } /* Wait for all threads to complete */ (void) AcpiOsWaitSemaphore (MainThreadGate, 1, ACPI_WAIT_FOREVER); AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT); AcpiOsPrintf ("All threads (%X) have completed\n", NumThreads); AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT); CleanupAndExit: /* Cleanup and exit */ (void) AcpiOsDeleteSemaphore (MainThreadGate); (void) AcpiOsDeleteSemaphore (ThreadCompleteGate); (void) AcpiOsDeleteSemaphore (InfoGate); AcpiOsFree (AcpiGbl_DbMethodInfo.Threads); AcpiGbl_DbMethodInfo.Threads = NULL; } Index: head/sys/contrib/dev/acpica/components/debugger/dbinput.c =================================================================== --- head/sys/contrib/dev/acpica/components/debugger/dbinput.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/debugger/dbinput.c (revision 366562) @@ -1,1461 +1,1471 @@ /******************************************************************************* * * Module Name: dbinput - user front-end to the AML debugger * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #ifdef ACPI_APPLICATION #include #endif #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbinput") /* Local prototypes */ static UINT32 AcpiDbGetLine ( char *InputBuffer); static UINT32 AcpiDbMatchCommand ( char *UserCommand); static void AcpiDbDisplayCommandInfo ( const char *Command, BOOLEAN DisplayAll); static void AcpiDbDisplayHelp ( char *Command); static BOOLEAN AcpiDbMatchCommandHelp ( const char *Command, const ACPI_DB_COMMAND_HELP *Help); /* * Top-level debugger commands. * * This list of commands must match the string table below it */ enum AcpiExDebuggerCommands { CMD_NOT_FOUND = 0, CMD_NULL, + CMD_ALL, CMD_ALLOCATIONS, CMD_ARGS, CMD_ARGUMENTS, CMD_BREAKPOINT, CMD_BUSINFO, CMD_CALL, CMD_DEBUG, CMD_DISASSEMBLE, CMD_DISASM, CMD_DUMP, CMD_EVALUATE, CMD_EXECUTE, CMD_EXIT, CMD_FIELDS, CMD_FIND, CMD_GO, CMD_HANDLERS, CMD_HELP, CMD_HELP2, CMD_HISTORY, CMD_HISTORY_EXE, CMD_HISTORY_LAST, CMD_INFORMATION, CMD_INTEGRITY, CMD_INTO, CMD_LEVEL, CMD_LIST, CMD_LOCALS, CMD_LOCKS, CMD_METHODS, CMD_NAMESPACE, CMD_NOTIFY, CMD_OBJECTS, CMD_OSI, CMD_OWNER, CMD_PATHS, CMD_PREDEFINED, CMD_PREFIX, CMD_QUIT, CMD_REFERENCES, CMD_RESOURCES, CMD_RESULTS, CMD_SET, CMD_STATS, CMD_STOP, CMD_TABLES, CMD_TEMPLATE, CMD_TRACE, CMD_TREE, CMD_TYPE, #ifdef ACPI_APPLICATION CMD_ENABLEACPI, CMD_EVENT, CMD_GPE, CMD_GPES, CMD_SCI, CMD_SLEEP, CMD_CLOSE, CMD_LOAD, CMD_OPEN, CMD_UNLOAD, CMD_TERMINATE, CMD_BACKGROUND, CMD_THREADS, CMD_TEST, #endif }; #define CMD_FIRST_VALID 2 /* Second parameter is the required argument count */ static const ACPI_DB_COMMAND_INFO AcpiGbl_DbCommands[] = { {"", 0}, {"", 0}, + {"ALL", 1}, {"ALLOCATIONS", 0}, {"ARGS", 0}, {"ARGUMENTS", 0}, {"BREAKPOINT", 1}, {"BUSINFO", 0}, {"CALL", 0}, {"DEBUG", 1}, {"DISASSEMBLE", 1}, {"DISASM", 1}, {"DUMP", 1}, {"EVALUATE", 1}, {"EXECUTE", 1}, {"EXIT", 0}, {"FIELDS", 1}, {"FIND", 1}, {"GO", 0}, {"HANDLERS", 0}, {"HELP", 0}, {"?", 0}, {"HISTORY", 0}, {"!", 1}, {"!!", 0}, {"INFORMATION", 0}, {"INTEGRITY", 0}, {"INTO", 0}, {"LEVEL", 0}, {"LIST", 0}, {"LOCALS", 0}, {"LOCKS", 0}, {"METHODS", 0}, {"NAMESPACE", 0}, {"NOTIFY", 2}, {"OBJECTS", 0}, {"OSI", 0}, {"OWNER", 1}, {"PATHS", 0}, {"PREDEFINED", 0}, {"PREFIX", 0}, {"QUIT", 0}, {"REFERENCES", 1}, {"RESOURCES", 0}, {"RESULTS", 0}, {"SET", 3}, {"STATS", 1}, {"STOP", 0}, {"TABLES", 0}, {"TEMPLATE", 1}, {"TRACE", 1}, {"TREE", 0}, {"TYPE", 1}, #ifdef ACPI_APPLICATION {"ENABLEACPI", 0}, {"EVENT", 1}, {"GPE", 1}, {"GPES", 0}, {"SCI", 0}, {"SLEEP", 0}, {"CLOSE", 0}, {"LOAD", 1}, {"OPEN", 1}, {"UNLOAD", 1}, {"TERMINATE", 0}, {"BACKGROUND", 1}, {"THREADS", 3}, {"TEST", 1}, #endif {NULL, 0} }; /* * Help for all debugger commands. First argument is the number of lines * of help to output for the command. * * Note: Some commands are not supported by the kernel-level version of * the debugger. */ static const ACPI_DB_COMMAND_HELP AcpiGbl_DbCommandHelp[] = { {0, "\nNamespace Access:", "\n"}, {1, " Businfo", "Display system bus info\n"}, {1, " Disassemble ", "Disassemble a control method\n"}, {1, " Find (? is wildcard)", "Find ACPI name(s) with wildcards\n"}, {1, " Integrity", "Validate namespace integrity\n"}, {1, " Methods", "Display list of loaded control methods\n"}, {1, " Fields ", "Display list of loaded field units by space ID\n"}, {1, " Namespace [Object] [Depth]", "Display loaded namespace tree/subtree\n"}, {1, " Notify ", "Send a notification on Object\n"}, {1, " Objects [ObjectType]", "Display summary of all objects or just given type\n"}, {1, " Owner [Depth]", "Display loaded namespace by object owner\n"}, {1, " Paths", "Display full pathnames of namespace objects\n"}, {1, " Predefined", "Check all predefined names\n"}, {1, " Prefix []", "Set or Get current execution prefix\n"}, {1, " References ", "Find all references to object at addr\n"}, {1, " Resources [DeviceName]", "Display Device resources (no arg = all devices)\n"}, {1, " Set N ", "Set value for named integer\n"}, {1, " Template ", "Format/dump a Buffer/ResourceTemplate\n"}, {1, " Type ", "Display object type\n"}, {0, "\nControl Method Execution:", "\n"}, + {1, " All ", "Evaluate all objects named NameSeg\n"}, {1, " Evaluate [Arguments]", "Evaluate object or control method\n"}, {1, " Execute [Arguments]", "Synonym for Evaluate\n"}, #ifdef ACPI_APPLICATION {1, " Background [Arguments]", "Evaluate object/method in a separate thread\n"}, {1, " Thread ", "Spawn threads to execute method(s)\n"}, #endif {1, " Debug [Arguments]", "Single-Step a control method\n"}, {7, " [Arguments] formats:", "Control method argument formats\n"}, {1, " Hex Integer", "Integer\n"}, {1, " \"Ascii String\"", "String\n"}, {1, " (Hex Byte List)", "Buffer\n"}, {1, " (01 42 7A BF)", "Buffer example (4 bytes)\n"}, {1, " [Package Element List]", "Package\n"}, {1, " [0x01 0x1234 \"string\"]", "Package example (3 elements)\n"}, {0, "\nMiscellaneous:", "\n"}, {1, " Allocations", "Display list of current memory allocations\n"}, {2, " Dump
|", "\n"}, {0, " [Byte|Word|Dword|Qword]", "Display ACPI objects or memory\n"}, {1, " Handlers", "Info about global handlers\n"}, {1, " Help [Command]", "This help screen or individual command\n"}, {1, " History", "Display command history buffer\n"}, {1, " Level ] [console]", "Get/Set debug level for file or console\n"}, {1, " Locks", "Current status of internal mutexes\n"}, {1, " Osi [Install|Remove ]", "Display or modify global _OSI list\n"}, {1, " Quit or Exit", "Exit this command\n"}, {8, " Stats ", "Display namespace and memory statistics\n"}, {1, " Allocations", "Display list of current memory allocations\n"}, {1, " Memory", "Dump internal memory lists\n"}, {1, " Misc", "Namespace search and mutex stats\n"}, {1, " Objects", "Summary of namespace objects\n"}, {1, " Sizes", "Sizes for each of the internal objects\n"}, {1, " Stack", "Display CPU stack usage\n"}, {1, " Tables", "Info about current ACPI table(s)\n"}, {1, " Tables", "Display info about loaded ACPI tables\n"}, #ifdef ACPI_APPLICATION {1, " Terminate", "Delete namespace and all internal objects\n"}, #endif {1, " ! ", "Execute command from history buffer\n"}, {1, " !!", "Execute last command again\n"}, {0, "\nMethod and Namespace Debugging:", "\n"}, {5, " Trace [] [Once]", "Trace control method execution\n"}, {1, " Enable", "Enable all messages\n"}, {1, " Disable", "Disable tracing\n"}, {1, " Method", "Enable method execution messages\n"}, {1, " Opcode", "Enable opcode execution messages\n"}, {3, " Test ", "Invoke a debug test\n"}, {1, " Objects", "Read/write/compare all namespace data objects\n"}, {1, " Predefined", "Validate all ACPI predefined names (_STA, etc.)\n"}, {1, " Execute predefined", "Execute all predefined (public) methods\n"}, {0, "\nControl Method Single-Step Execution:","\n"}, {1, " Arguments (or Args)", "Display method arguments\n"}, {1, " Breakpoint ", "Set an AML execution breakpoint\n"}, {1, " Call", "Run to next control method invocation\n"}, {1, " Go", "Allow method to run to completion\n"}, {1, " Information", "Display info about the current method\n"}, {1, " Into", "Step into (not over) a method call\n"}, {1, " List [# of Aml Opcodes]", "Display method ASL statements\n"}, {1, " Locals", "Display method local variables\n"}, {1, " Results", "Display method result stack\n"}, {1, " Set <#> ", "Set method data (Arguments/Locals)\n"}, {1, " Stop", "Terminate control method\n"}, {1, " Tree", "Display control method calling tree\n"}, {1, " ", "Single step next AML opcode (over calls)\n"}, #ifdef ACPI_APPLICATION {0, "\nFile Operations:", "\n"}, {1, " Close", "Close debug output file\n"}, {1, " Load ", "Load ACPI table from a file\n"}, {1, " Open ", "Open a file for debug output\n"}, {1, " Unload ", "Unload an ACPI table via namespace object\n"}, {0, "\nHardware Simulation:", "\n"}, {1, " EnableAcpi", "Enable ACPI (hardware) mode\n"}, {1, " Event ", "Generate AcpiEvent (Fixed/GPE)\n"}, {1, " Gpe [GpeBlockDevice]", "Simulate a GPE\n"}, {1, " Gpes", "Display info on all GPE devices\n"}, {1, " Sci", "Generate an SCI\n"}, {1, " Sleep [SleepState]", "Simulate sleep/wake sequence(s) (0-5)\n"}, #endif {0, NULL, NULL} }; /******************************************************************************* * * FUNCTION: AcpiDbMatchCommandHelp * * PARAMETERS: Command - Command string to match * Help - Help table entry to attempt match * * RETURN: TRUE if command matched, FALSE otherwise * * DESCRIPTION: Attempt to match a command in the help table in order to * print help information for a single command. * ******************************************************************************/ static BOOLEAN AcpiDbMatchCommandHelp ( const char *Command, const ACPI_DB_COMMAND_HELP *Help) { char *Invocation = Help->Invocation; UINT32 LineCount; /* Valid commands in the help table begin with a couple of spaces */ if (*Invocation != ' ') { return (FALSE); } while (*Invocation == ' ') { Invocation++; } /* Match command name (full command or substring) */ while ((*Command) && (*Invocation) && (*Invocation != ' ')) { if (tolower ((int) *Command) != tolower ((int) *Invocation)) { return (FALSE); } Invocation++; Command++; } /* Print the appropriate number of help lines */ LineCount = Help->LineCount; while (LineCount) { AcpiOsPrintf ("%-38s : %s", Help->Invocation, Help->Description); Help++; LineCount--; } return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDbDisplayCommandInfo * * PARAMETERS: Command - Command string to match * DisplayAll - Display all matching commands, or just * the first one (substring match) * * RETURN: None * * DESCRIPTION: Display help information for a Debugger command. * ******************************************************************************/ static void AcpiDbDisplayCommandInfo ( const char *Command, BOOLEAN DisplayAll) { const ACPI_DB_COMMAND_HELP *Next; BOOLEAN Matched; Next = AcpiGbl_DbCommandHelp; while (Next->Invocation) { Matched = AcpiDbMatchCommandHelp (Command, Next); if (!DisplayAll && Matched) { return; } Next++; } } /******************************************************************************* * * FUNCTION: AcpiDbDisplayHelp * * PARAMETERS: Command - Optional command string to display help. * if not specified, all debugger command * help strings are displayed * * RETURN: None * * DESCRIPTION: Display help for a single debugger command, or all of them. * ******************************************************************************/ static void AcpiDbDisplayHelp ( char *Command) { const ACPI_DB_COMMAND_HELP *Next = AcpiGbl_DbCommandHelp; if (!Command) { /* No argument to help, display help for all commands */ AcpiOsPrintf ("\nSummary of AML Debugger Commands\n\n"); while (Next->Invocation) { AcpiOsPrintf ("%-38s%s", Next->Invocation, Next->Description); Next++; } AcpiOsPrintf ("\n"); } else { - /* Display help for all commands that match the subtring */ + /* Display help for all commands that match the substring */ AcpiDbDisplayCommandInfo (Command, TRUE); } } /******************************************************************************* * * FUNCTION: AcpiDbGetNextToken * * PARAMETERS: String - Command buffer * Next - Return value, end of next token * * RETURN: Pointer to the start of the next token. * * DESCRIPTION: Command line parsing. Get the next token on the command line * ******************************************************************************/ char * AcpiDbGetNextToken ( char *String, char **Next, ACPI_OBJECT_TYPE *ReturnType) { char *Start; UINT32 Depth; ACPI_OBJECT_TYPE Type = ACPI_TYPE_INTEGER; /* At end of buffer? */ if (!String || !(*String)) { return (NULL); } /* Remove any spaces at the beginning, ignore blank lines */ while (*String && isspace (*String)) { String++; } if (!(*String)) { return (NULL); } switch (*String) { case '"': /* This is a quoted string, scan until closing quote */ String++; Start = String; Type = ACPI_TYPE_STRING; /* Find end of string */ while (*String && (*String != '"')) { String++; } break; case '(': /* This is the start of a buffer, scan until closing paren */ String++; Start = String; Type = ACPI_TYPE_BUFFER; /* Find end of buffer */ while (*String && (*String != ')')) { String++; } break; case '{': /* This is the start of a field unit, scan until closing brace */ String++; Start = String; Type = ACPI_TYPE_FIELD_UNIT; /* Find end of buffer */ while (*String && (*String != '}')) { String++; } break; case '[': /* This is the start of a package, scan until closing bracket */ String++; Depth = 1; Start = String; Type = ACPI_TYPE_PACKAGE; /* Find end of package (closing bracket) */ while (*String) { /* Handle String package elements */ if (*String == '"') { /* Find end of string */ String++; while (*String && (*String != '"')) { String++; } if (!(*String)) { break; } } else if (*String == '[') { Depth++; /* A nested package declaration */ } else if (*String == ']') { Depth--; if (Depth == 0) /* Found final package closing bracket */ { break; } } String++; } break; default: Start = String; /* Find end of token */ while (*String && !isspace (*String)) { String++; } break; } if (!(*String)) { *Next = NULL; } else { *String = 0; *Next = String + 1; } *ReturnType = Type; return (Start); } /******************************************************************************* * * FUNCTION: AcpiDbGetLine * * PARAMETERS: InputBuffer - Command line buffer * * RETURN: Count of arguments to the command * * DESCRIPTION: Get the next command line from the user. Gets entire line * up to the next newline * ******************************************************************************/ static UINT32 AcpiDbGetLine ( char *InputBuffer) { UINT32 i; UINT32 Count; char *Next; char *This; if (AcpiUtSafeStrcpy (AcpiGbl_DbParsedBuf, sizeof (AcpiGbl_DbParsedBuf), InputBuffer)) { AcpiOsPrintf ( "Buffer overflow while parsing input line (max %u characters)\n", (UINT32) sizeof (AcpiGbl_DbParsedBuf)); return (0); } This = AcpiGbl_DbParsedBuf; for (i = 0; i < ACPI_DEBUGGER_MAX_ARGS; i++) { AcpiGbl_DbArgs[i] = AcpiDbGetNextToken (This, &Next, &AcpiGbl_DbArgTypes[i]); if (!AcpiGbl_DbArgs[i]) { break; } This = Next; } /* Uppercase the actual command */ AcpiUtStrupr (AcpiGbl_DbArgs[0]); Count = i; if (Count) { Count--; /* Number of args only */ } return (Count); } /******************************************************************************* * * FUNCTION: AcpiDbMatchCommand * * PARAMETERS: UserCommand - User command line * * RETURN: Index into command array, -1 if not found * * DESCRIPTION: Search command array for a command match * ******************************************************************************/ static UINT32 AcpiDbMatchCommand ( char *UserCommand) { UINT32 i; if (!UserCommand || UserCommand[0] == 0) { return (CMD_NULL); } for (i = CMD_FIRST_VALID; AcpiGbl_DbCommands[i].Name; i++) { if (strstr ( ACPI_CAST_PTR (char, AcpiGbl_DbCommands[i].Name), UserCommand) == AcpiGbl_DbCommands[i].Name) { return (i); } } /* Command not recognized */ return (CMD_NOT_FOUND); } /******************************************************************************* * * FUNCTION: AcpiDbCommandDispatch * * PARAMETERS: InputBuffer - Command line buffer * WalkState - Current walk * Op - Current (executing) parse op * * RETURN: Status * * DESCRIPTION: Command dispatcher. * ******************************************************************************/ ACPI_STATUS AcpiDbCommandDispatch ( char *InputBuffer, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { UINT32 Temp; UINT64 Temp64; UINT32 CommandIndex; UINT32 ParamCount; char *CommandLine; ACPI_STATUS Status = AE_CTRL_TRUE; /* If AcpiTerminate has been called, terminate this thread */ if (AcpiGbl_DbTerminateLoop) { return (AE_CTRL_TERMINATE); } /* Find command and add to the history buffer */ ParamCount = AcpiDbGetLine (InputBuffer); CommandIndex = AcpiDbMatchCommand (AcpiGbl_DbArgs[0]); /* * We don't want to add the !! command to the history buffer. It * would cause an infinite loop because it would always be the * previous command. */ if (CommandIndex != CMD_HISTORY_LAST) { AcpiDbAddToHistory (InputBuffer); } /* Verify that we have the minimum number of params */ if (ParamCount < AcpiGbl_DbCommands[CommandIndex].MinArgs) { AcpiOsPrintf ("%u parameters entered, [%s] requires %u parameters\n", ParamCount, AcpiGbl_DbCommands[CommandIndex].Name, AcpiGbl_DbCommands[CommandIndex].MinArgs); AcpiDbDisplayCommandInfo ( AcpiGbl_DbCommands[CommandIndex].Name, FALSE); return (AE_CTRL_TRUE); } /* Decode and dispatch the command */ switch (CommandIndex) { case CMD_NULL: if (Op) { return (AE_OK); } + break; + + case CMD_ALL: + + AcpiOsPrintf ("Executing all objects with NameSeg: %s\n", AcpiGbl_DbArgs[1]); + AcpiDbExecute (AcpiGbl_DbArgs[1], + &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2], EX_NO_SINGLE_STEP | EX_ALL); break; case CMD_ALLOCATIONS: #ifdef ACPI_DBG_TRACK_ALLOCATIONS AcpiUtDumpAllocations ((UINT32) -1, NULL); #endif break; case CMD_ARGS: case CMD_ARGUMENTS: AcpiDbDisplayArguments (); break; case CMD_BREAKPOINT: AcpiDbSetMethodBreakpoint (AcpiGbl_DbArgs[1], WalkState, Op); break; case CMD_BUSINFO: AcpiDbGetBusInfo (); break; case CMD_CALL: AcpiDbSetMethodCallBreakpoint (Op); Status = AE_OK; break; case CMD_DEBUG: AcpiDbExecute (AcpiGbl_DbArgs[1], &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2], EX_SINGLE_STEP); break; case CMD_DISASSEMBLE: case CMD_DISASM: #ifdef ACPI_DISASSEMBLER (void) AcpiDbDisassembleMethod (AcpiGbl_DbArgs[1]); #else AcpiOsPrintf ("The AML Disassembler is not configured/present\n"); #endif break; case CMD_DUMP: AcpiDbDecodeAndDisplayObject (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_EVALUATE: case CMD_EXECUTE: AcpiDbExecute (AcpiGbl_DbArgs[1], &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2], EX_NO_SINGLE_STEP); break; case CMD_FIND: Status = AcpiDbFindNameInNamespace (AcpiGbl_DbArgs[1]); break; case CMD_FIELDS: Status = AcpiUtStrtoul64 (AcpiGbl_DbArgs[1], &Temp64); if (ACPI_FAILURE (Status) || Temp64 >= ACPI_NUM_PREDEFINED_REGIONS) { AcpiOsPrintf ( "Invalid address space ID: must be between 0 and %u inclusive\n", ACPI_NUM_PREDEFINED_REGIONS - 1); return (AE_OK); } Status = AcpiDbDisplayFields ((UINT32) Temp64); break; case CMD_GO: AcpiGbl_CmSingleStep = FALSE; return (AE_OK); case CMD_HANDLERS: AcpiDbDisplayHandlers (); break; case CMD_HELP: case CMD_HELP2: AcpiDbDisplayHelp (AcpiGbl_DbArgs[1]); break; case CMD_HISTORY: AcpiDbDisplayHistory (); break; case CMD_HISTORY_EXE: /* ! command */ CommandLine = AcpiDbGetFromHistory (AcpiGbl_DbArgs[1]); if (!CommandLine) { return (AE_CTRL_TRUE); } Status = AcpiDbCommandDispatch (CommandLine, WalkState, Op); return (Status); case CMD_HISTORY_LAST: /* !! command */ CommandLine = AcpiDbGetFromHistory (NULL); if (!CommandLine) { return (AE_CTRL_TRUE); } Status = AcpiDbCommandDispatch (CommandLine, WalkState, Op); return (Status); case CMD_INFORMATION: AcpiDbDisplayMethodInfo (Op); break; case CMD_INTEGRITY: AcpiDbCheckIntegrity (); break; case CMD_INTO: if (Op) { AcpiGbl_CmSingleStep = TRUE; return (AE_OK); } break; case CMD_LEVEL: if (ParamCount == 0) { AcpiOsPrintf ( "Current debug level for file output is: %8.8X\n", AcpiGbl_DbDebugLevel); AcpiOsPrintf ( "Current debug level for console output is: %8.8X\n", AcpiGbl_DbConsoleDebugLevel); } else if (ParamCount == 2) { Temp = AcpiGbl_DbConsoleDebugLevel; AcpiGbl_DbConsoleDebugLevel = strtoul (AcpiGbl_DbArgs[1], NULL, 16); AcpiOsPrintf ( "Debug Level for console output was %8.8X, now %8.8X\n", Temp, AcpiGbl_DbConsoleDebugLevel); } else { Temp = AcpiGbl_DbDebugLevel; AcpiGbl_DbDebugLevel = strtoul (AcpiGbl_DbArgs[1], NULL, 16); AcpiOsPrintf ( "Debug Level for file output was %8.8X, now %8.8X\n", Temp, AcpiGbl_DbDebugLevel); } break; case CMD_LIST: #ifdef ACPI_DISASSEMBLER AcpiDbDisassembleAml (AcpiGbl_DbArgs[1], Op); #else AcpiOsPrintf ("The AML Disassembler is not configured/present\n"); #endif break; case CMD_LOCKS: AcpiDbDisplayLocks (); break; case CMD_LOCALS: AcpiDbDisplayLocals (); break; case CMD_METHODS: Status = AcpiDbDisplayObjects ("METHOD", AcpiGbl_DbArgs[1]); break; case CMD_NAMESPACE: AcpiDbDumpNamespace (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_NOTIFY: Temp = strtoul (AcpiGbl_DbArgs[2], NULL, 0); AcpiDbSendNotify (AcpiGbl_DbArgs[1], Temp); break; case CMD_OBJECTS: AcpiUtStrupr (AcpiGbl_DbArgs[1]); Status = AcpiDbDisplayObjects (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_OSI: AcpiDbDisplayInterfaces (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_OWNER: AcpiDbDumpNamespaceByOwner (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_PATHS: AcpiDbDumpNamespacePaths (); break; case CMD_PREFIX: AcpiDbSetScope (AcpiGbl_DbArgs[1]); break; case CMD_REFERENCES: AcpiDbFindReferences (AcpiGbl_DbArgs[1]); break; case CMD_RESOURCES: AcpiDbDisplayResources (AcpiGbl_DbArgs[1]); break; case CMD_RESULTS: AcpiDbDisplayResults (); break; case CMD_SET: AcpiDbSetMethodData (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2], AcpiGbl_DbArgs[3]); break; case CMD_STATS: Status = AcpiDbDisplayStatistics (AcpiGbl_DbArgs[1]); break; case CMD_STOP: return (AE_NOT_IMPLEMENTED); case CMD_TABLES: AcpiDbDisplayTableInfo (AcpiGbl_DbArgs[1]); break; case CMD_TEMPLATE: AcpiDbDisplayTemplate (AcpiGbl_DbArgs[1]); break; case CMD_TRACE: AcpiDbTrace (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2], AcpiGbl_DbArgs[3]); break; case CMD_TREE: AcpiDbDisplayCallingTree (); break; case CMD_TYPE: AcpiDbDisplayObjectType (AcpiGbl_DbArgs[1]); break; #ifdef ACPI_APPLICATION /* Hardware simulation commands. */ case CMD_ENABLEACPI: #if (!ACPI_REDUCED_HARDWARE) Status = AcpiEnable(); if (ACPI_FAILURE(Status)) { AcpiOsPrintf("AcpiEnable failed (Status=%X)\n", Status); return (Status); } #endif /* !ACPI_REDUCED_HARDWARE */ break; case CMD_EVENT: AcpiOsPrintf ("Event command not implemented\n"); break; case CMD_GPE: AcpiDbGenerateGpe (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_GPES: AcpiDbDisplayGpes (); break; case CMD_SCI: AcpiDbGenerateSci (); break; case CMD_SLEEP: Status = AcpiDbSleep (AcpiGbl_DbArgs[1]); break; /* File I/O commands. */ case CMD_CLOSE: AcpiDbCloseDebugFile (); break; case CMD_LOAD: { ACPI_NEW_TABLE_DESC *ListHead = NULL; Status = AcGetAllTablesFromFile (AcpiGbl_DbArgs[1], ACPI_GET_ALL_TABLES, &ListHead); if (ACPI_SUCCESS (Status)) { AcpiDbLoadTables (ListHead); } } break; case CMD_OPEN: AcpiDbOpenDebugFile (AcpiGbl_DbArgs[1]); break; /* User space commands. */ case CMD_TERMINATE: AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT); AcpiUtSubsystemShutdown (); /* * TBD: [Restructure] Need some way to re-initialize without * re-creating the semaphores! */ AcpiGbl_DbTerminateLoop = TRUE; /* AcpiInitialize (NULL); */ break; case CMD_BACKGROUND: AcpiDbCreateExecutionThread (AcpiGbl_DbArgs[1], &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2]); break; case CMD_THREADS: AcpiDbCreateExecutionThreads (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2], AcpiGbl_DbArgs[3]); break; /* Debug test commands. */ case CMD_PREDEFINED: AcpiDbCheckPredefinedNames (); break; case CMD_TEST: AcpiDbExecuteTest (AcpiGbl_DbArgs[1]); break; case CMD_UNLOAD: AcpiDbUnloadAcpiTable (AcpiGbl_DbArgs[1]); break; #endif case CMD_EXIT: case CMD_QUIT: if (Op) { AcpiOsPrintf ("Method execution terminated\n"); return (AE_CTRL_TERMINATE); } if (!AcpiGbl_DbOutputToFile) { AcpiDbgLevel = ACPI_DEBUG_DEFAULT; } #ifdef ACPI_APPLICATION AcpiDbCloseDebugFile (); #endif AcpiGbl_DbTerminateLoop = TRUE; return (AE_CTRL_TERMINATE); case CMD_NOT_FOUND: default: AcpiOsPrintf ("%s: unknown command\n", AcpiGbl_DbArgs[0]); return (AE_CTRL_TRUE); } if (ACPI_SUCCESS (Status)) { Status = AE_CTRL_TRUE; } return (Status); } /******************************************************************************* * * FUNCTION: AcpiDbExecuteThread * * PARAMETERS: Context - Not used * * RETURN: None * * DESCRIPTION: Debugger execute thread. Waits for a command line, then * simply dispatches it. * ******************************************************************************/ void ACPI_SYSTEM_XFACE AcpiDbExecuteThread ( void *Context) { (void) AcpiDbUserCommands (); AcpiGbl_DbThreadsTerminated = TRUE; } /******************************************************************************* * * FUNCTION: AcpiDbUserCommands * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Command line execution for the AML debugger. Commands are * matched and dispatched here. * ******************************************************************************/ ACPI_STATUS AcpiDbUserCommands ( void) { ACPI_STATUS Status = AE_OK; AcpiOsPrintf ("\n"); /* TBD: [Restructure] Need a separate command line buffer for step mode */ while (!AcpiGbl_DbTerminateLoop) { /* Wait the readiness of the command */ Status = AcpiOsWaitCommandReady (); if (ACPI_FAILURE (Status)) { break; } /* Just call to the command line interpreter */ AcpiGbl_MethodExecuting = FALSE; AcpiGbl_StepToNextCall = FALSE; (void) AcpiDbCommandDispatch (AcpiGbl_DbLineBuf, NULL, NULL); /* Notify the completion of the command */ Status = AcpiOsNotifyCommandComplete (); if (ACPI_FAILURE (Status)) { break; } } if (ACPI_FAILURE (Status) && Status != AE_CTRL_TERMINATE) { ACPI_EXCEPTION ((AE_INFO, Status, "While parsing command line")); } return (Status); } Index: head/sys/contrib/dev/acpica/components/debugger/dbmethod.c =================================================================== --- head/sys/contrib/dev/acpica/components/debugger/dbmethod.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/debugger/dbmethod.c (revision 366562) @@ -1,677 +1,806 @@ /******************************************************************************* * * Module Name: dbmethod - Debug commands for control methods * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #include #include #include #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbmethod") /* Local prototypes */ static ACPI_STATUS AcpiDbWalkForExecute ( ACPI_HANDLE ObjHandle, UINT32 NestingLevel, void *Context, void **ReturnValue); +static ACPI_STATUS +AcpiDbEvaluateObject ( + ACPI_NAMESPACE_NODE *Node); + /******************************************************************************* * * FUNCTION: AcpiDbSetMethodBreakpoint * * PARAMETERS: Location - AML offset of breakpoint * WalkState - Current walk info * Op - Current Op (from parse walk) * * RETURN: None * * DESCRIPTION: Set a breakpoint in a control method at the specified * AML offset * ******************************************************************************/ void AcpiDbSetMethodBreakpoint ( char *Location, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { UINT32 Address; UINT32 AmlOffset; if (!Op) { AcpiOsPrintf ("There is no method currently executing\n"); return; } /* Get and verify the breakpoint address */ Address = strtoul (Location, NULL, 16); AmlOffset = (UINT32) ACPI_PTR_DIFF (Op->Common.Aml, WalkState->ParserState.AmlStart); if (Address <= AmlOffset) { AcpiOsPrintf ("Breakpoint %X is beyond current address %X\n", Address, AmlOffset); } /* Save breakpoint in current walk */ WalkState->UserBreakpoint = Address; AcpiOsPrintf ("Breakpoint set at AML offset %X\n", Address); } /******************************************************************************* * * FUNCTION: AcpiDbSetMethodCallBreakpoint * * PARAMETERS: Op - Current Op (from parse walk) * * RETURN: None * * DESCRIPTION: Set a breakpoint in a control method at the specified * AML offset * ******************************************************************************/ void AcpiDbSetMethodCallBreakpoint ( ACPI_PARSE_OBJECT *Op) { if (!Op) { AcpiOsPrintf ("There is no method currently executing\n"); return; } AcpiGbl_StepToNextCall = TRUE; } /******************************************************************************* * * FUNCTION: AcpiDbSetMethodData * * PARAMETERS: TypeArg - L for local, A for argument * IndexArg - which one * ValueArg - Value to set. * * RETURN: None * * DESCRIPTION: Set a local or argument for the running control method. * NOTE: only object supported is Number. * ******************************************************************************/ void AcpiDbSetMethodData ( char *TypeArg, char *IndexArg, char *ValueArg) { char Type; UINT32 Index; UINT32 Value; ACPI_WALK_STATE *WalkState; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node; /* Validate TypeArg */ AcpiUtStrupr (TypeArg); Type = TypeArg[0]; if ((Type != 'L') && (Type != 'A') && (Type != 'N')) { AcpiOsPrintf ("Invalid SET operand: %s\n", TypeArg); return; } Value = strtoul (ValueArg, NULL, 16); if (Type == 'N') { Node = AcpiDbConvertToNode (IndexArg); if (!Node) { return; } if (Node->Type != ACPI_TYPE_INTEGER) { AcpiOsPrintf ("Can only set Integer nodes\n"); return; } ObjDesc = Node->Object; ObjDesc->Integer.Value = Value; return; } /* Get the index and value */ Index = strtoul (IndexArg, NULL, 16); WalkState = AcpiDsGetCurrentWalkState (AcpiGbl_CurrentWalkList); if (!WalkState) { AcpiOsPrintf ("There is no method currently executing\n"); return; } /* Create and initialize the new object */ ObjDesc = AcpiUtCreateIntegerObject ((UINT64) Value); if (!ObjDesc) { AcpiOsPrintf ("Could not create an internal object\n"); return; } /* Store the new object into the target */ switch (Type) { case 'A': /* Set a method argument */ if (Index > ACPI_METHOD_MAX_ARG) { AcpiOsPrintf ("Arg%u - Invalid argument name\n", Index); goto Cleanup; } Status = AcpiDsStoreObjectToLocal (ACPI_REFCLASS_ARG, Index, ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } ObjDesc = WalkState->Arguments[Index].Object; AcpiOsPrintf ("Arg%u: ", Index); AcpiDbDisplayInternalObject (ObjDesc, WalkState); break; case 'L': /* Set a method local */ if (Index > ACPI_METHOD_MAX_LOCAL) { AcpiOsPrintf ("Local%u - Invalid local variable name\n", Index); goto Cleanup; } Status = AcpiDsStoreObjectToLocal (ACPI_REFCLASS_LOCAL, Index, ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } ObjDesc = WalkState->LocalVariables[Index].Object; AcpiOsPrintf ("Local%u: ", Index); AcpiDbDisplayInternalObject (ObjDesc, WalkState); break; default: break; } Cleanup: AcpiUtRemoveReference (ObjDesc); } #ifdef ACPI_DISASSEMBLER /******************************************************************************* * * FUNCTION: AcpiDbDisassembleAml * * PARAMETERS: Statements - Number of statements to disassemble * Op - Current Op (from parse walk) * * RETURN: None * * DESCRIPTION: Display disassembled AML (ASL) starting from Op for the number * of statements specified. * ******************************************************************************/ void AcpiDbDisassembleAml ( char *Statements, ACPI_PARSE_OBJECT *Op) { UINT32 NumStatements = 8; if (!Op) { AcpiOsPrintf ("There is no method currently executing\n"); return; } if (Statements) { NumStatements = strtoul (Statements, NULL, 0); } AcpiDmDisassemble (NULL, Op, NumStatements); } /******************************************************************************* * * FUNCTION: AcpiDbDisassembleMethod * * PARAMETERS: Name - Name of control method * * RETURN: None * * DESCRIPTION: Display disassembled AML (ASL) starting from Op for the number * of statements specified. * ******************************************************************************/ ACPI_STATUS AcpiDbDisassembleMethod ( char *Name) { ACPI_STATUS Status; ACPI_PARSE_OBJECT *Op; ACPI_WALK_STATE *WalkState; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_NAMESPACE_NODE *Method; Method = AcpiDbConvertToNode (Name); if (!Method) { return (AE_BAD_PARAMETER); } if (Method->Type != ACPI_TYPE_METHOD) { ACPI_ERROR ((AE_INFO, "%s (%s): Object must be a control method", Name, AcpiUtGetTypeName (Method->Type))); return (AE_BAD_PARAMETER); } ObjDesc = Method->Object; Op = AcpiPsCreateScopeOp (ObjDesc->Method.AmlStart); if (!Op) { return (AE_NO_MEMORY); } /* Create and initialize a new walk state */ WalkState = AcpiDsCreateWalkState (0, Op, NULL, NULL); if (!WalkState) { return (AE_NO_MEMORY); } Status = AcpiDsInitAmlWalk (WalkState, Op, NULL, ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength, NULL, ACPI_IMODE_LOAD_PASS1); if (ACPI_FAILURE (Status)) { return (Status); } Status = AcpiUtAllocateOwnerId (&ObjDesc->Method.OwnerId); if (ACPI_FAILURE(Status)) { return (Status); } WalkState->OwnerId = ObjDesc->Method.OwnerId; /* Push start scope on scope stack and make it current */ Status = AcpiDsScopeStackPush (Method, Method->Type, WalkState); if (ACPI_FAILURE (Status)) { return (Status); } /* Parse the entire method AML including deferred operators */ WalkState->ParseFlags &= ~ACPI_PARSE_DELETE_TREE; WalkState->ParseFlags |= ACPI_PARSE_DISASSEMBLE; Status = AcpiPsParseAml (WalkState); if (ACPI_FAILURE(Status)) { return (Status); } (void) AcpiDmParseDeferredOps (Op); /* Now we can disassemble the method */ AcpiGbl_DmOpt_Verbose = FALSE; AcpiDmDisassemble (NULL, Op, 0); AcpiGbl_DmOpt_Verbose = TRUE; AcpiPsDeleteParseTree (Op); /* Method cleanup */ AcpiNsDeleteNamespaceSubtree (Method); AcpiNsDeleteNamespaceByOwner (ObjDesc->Method.OwnerId); AcpiUtReleaseOwnerId (&ObjDesc->Method.OwnerId); return (AE_OK); } #endif /******************************************************************************* * - * FUNCTION: AcpiDbWalkForExecute + * FUNCTION: AcpiDbEvaluateObject * - * PARAMETERS: Callback from WalkNamespace + * PARAMETERS: Node - Namespace node for the object * * RETURN: Status * - * DESCRIPTION: Batch execution module. Currently only executes predefined - * ACPI names. + * DESCRIPTION: Main execution function for the Evaluate/Execute/All debugger + * commands. * ******************************************************************************/ static ACPI_STATUS -AcpiDbWalkForExecute ( - ACPI_HANDLE ObjHandle, - UINT32 NestingLevel, - void *Context, - void **ReturnValue) +AcpiDbEvaluateObject ( + ACPI_NAMESPACE_NODE *Node) { - ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; - ACPI_DB_EXECUTE_WALK *Info = (ACPI_DB_EXECUTE_WALK *) Context; - ACPI_BUFFER ReturnObj; - ACPI_STATUS Status; char *Pathname; UINT32 i; ACPI_DEVICE_INFO *ObjInfo; ACPI_OBJECT_LIST ParamObjects; ACPI_OBJECT Params[ACPI_METHOD_NUM_ARGS]; - const ACPI_PREDEFINED_INFO *Predefined; + ACPI_BUFFER ReturnObj; + ACPI_STATUS Status; - Predefined = AcpiUtMatchPredefinedMethod (Node->Name.Ascii); - if (!Predefined) - { - return (AE_OK); - } - - if (Node->Type == ACPI_TYPE_LOCAL_SCOPE) - { - return (AE_OK); - } - Pathname = AcpiNsGetExternalPathname (Node); if (!Pathname) { return (AE_OK); } /* Get the object info for number of method parameters */ - Status = AcpiGetObjectInfo (ObjHandle, &ObjInfo); + Status = AcpiGetObjectInfo (Node, &ObjInfo); if (ACPI_FAILURE (Status)) { ACPI_FREE (Pathname); return (Status); } ParamObjects.Pointer = NULL; ParamObjects.Count = 0; if (ObjInfo->Type == ACPI_TYPE_METHOD) { /* Setup default parameters */ for (i = 0; i < ObjInfo->ParamCount; i++) { Params[i].Type = ACPI_TYPE_INTEGER; Params[i].Integer.Value = 1; } ParamObjects.Pointer = Params; ParamObjects.Count = ObjInfo->ParamCount; } ACPI_FREE (ObjInfo); ReturnObj.Pointer = NULL; ReturnObj.Length = ACPI_ALLOCATE_BUFFER; /* Do the actual method execution */ AcpiGbl_MethodExecuting = TRUE; Status = AcpiEvaluateObject (Node, NULL, &ParamObjects, &ReturnObj); + AcpiGbl_MethodExecuting = FALSE; AcpiOsPrintf ("%-32s returned %s\n", Pathname, AcpiFormatException (Status)); - AcpiGbl_MethodExecuting = FALSE; + if (ReturnObj.Length) + { + AcpiOsPrintf ("Evaluation of %s returned object %p, " + "external buffer length %X\n", + Pathname, ReturnObj.Pointer, (UINT32) ReturnObj.Length); + + AcpiDbDumpExternalObject (ReturnObj.Pointer, 1); + AcpiOsPrintf ("\n"); + } + ACPI_FREE (Pathname); /* Ignore status from method execution */ + return (AE_OK); + + /* Update count, check if we have executed enough methods */ + +} + +/******************************************************************************* + * + * FUNCTION: AcpiDbWalkForExecute + * + * PARAMETERS: Callback from WalkNamespace + * + * RETURN: Status + * + * DESCRIPTION: Batch execution function. Evaluates all "predefined" objects -- + * the nameseg begins with an underscore. + * + ******************************************************************************/ + +static ACPI_STATUS +AcpiDbWalkForExecute ( + ACPI_HANDLE ObjHandle, + UINT32 NestingLevel, + void *Context, + void **ReturnValue) +{ + ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; + ACPI_DB_EXECUTE_WALK *Info = (ACPI_DB_EXECUTE_WALK *) Context; + ACPI_STATUS Status; + const ACPI_PREDEFINED_INFO *Predefined; + + + Predefined = AcpiUtMatchPredefinedMethod (Node->Name.Ascii); + if (!Predefined) + { + return (AE_OK); + } + + if (Node->Type == ACPI_TYPE_LOCAL_SCOPE) + { + return (AE_OK); + } + + AcpiDbEvaluateObject (Node); + + /* Ignore status from object evaluation */ + Status = AE_OK; /* Update count, check if we have executed enough methods */ Info->Count++; if (Info->Count >= Info->MaxCount) { Status = AE_CTRL_TERMINATE; } return (Status); } /******************************************************************************* * + * FUNCTION: AcpiDbWalkForExecuteAll + * + * PARAMETERS: Callback from WalkNamespace + * + * RETURN: Status + * + * DESCRIPTION: Batch execution function. Evaluates all objects whose path ends + * with the nameseg "Info->NameSeg". Used for the "ALL" command. + * + ******************************************************************************/ + +static ACPI_STATUS +AcpiDbWalkForExecuteAll ( + ACPI_HANDLE ObjHandle, + UINT32 NestingLevel, + void *Context, + void **ReturnValue) +{ + ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; + ACPI_DB_EXECUTE_WALK *Info = (ACPI_DB_EXECUTE_WALK *) Context; + ACPI_STATUS Status; + + + if (!ACPI_COMPARE_NAMESEG (Node->Name.Ascii, Info->NameSeg)) + { + return (AE_OK); + } + + if (Node->Type == ACPI_TYPE_LOCAL_SCOPE) + { + return (AE_OK); + } + + /* Now evaluate the input object (node) */ + + AcpiDbEvaluateObject (Node); + + /* Ignore status from method execution */ + + Status = AE_OK; + + /* Update count of executed methods/objects */ + + Info->Count++; + return (Status); +} + + +/******************************************************************************* + * * FUNCTION: AcpiDbEvaluatePredefinedNames * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Namespace batch execution. Execute predefined names in the * namespace, up to the max count, if specified. * ******************************************************************************/ void AcpiDbEvaluatePredefinedNames ( void) { ACPI_DB_EXECUTE_WALK Info; Info.Count = 0; Info.MaxCount = ACPI_UINT32_MAX; /* Search all nodes in namespace */ (void) AcpiWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, AcpiDbWalkForExecute, NULL, (void *) &Info, NULL); AcpiOsPrintf ("Evaluated %u predefined names in the namespace\n", Info.Count); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiDbEvaluateAll + * + * PARAMETERS: NoneAcpiGbl_DbMethodInfo + * + * RETURN: None + * + * DESCRIPTION: Namespace batch execution. Implements the "ALL" command. + * Execute all namepaths whose final nameseg matches the + * input nameseg. + * + ******************************************************************************/ + +void +AcpiDbEvaluateAll ( + char *NameSeg) +{ + ACPI_DB_EXECUTE_WALK Info; + + + Info.Count = 0; + Info.MaxCount = ACPI_UINT32_MAX; + ACPI_COPY_NAMESEG (Info.NameSeg, NameSeg); + Info.NameSeg[ACPI_NAMESEG_SIZE] = 0; + + /* Search all nodes in namespace */ + + (void) AcpiWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, + AcpiDbWalkForExecuteAll, NULL, (void *) &Info, NULL); + + AcpiOsPrintf ("Evaluated %u names in the namespace\n", Info.Count); } Index: head/sys/contrib/dev/acpica/components/disassembler/dmbuffer.c =================================================================== --- head/sys/contrib/dev/acpica/components/disassembler/dmbuffer.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/disassembler/dmbuffer.c (revision 366562) @@ -1,1194 +1,1198 @@ /******************************************************************************* * * Module Name: dmbuffer - AML disassembler, buffer and string support * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #include #include #include #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dmbuffer") /* Local prototypes */ static void AcpiDmUuid ( ACPI_PARSE_OBJECT *Op); static void AcpiDmUnicode ( ACPI_PARSE_OBJECT *Op); static void AcpiDmGetHardwareIdType ( ACPI_PARSE_OBJECT *Op); static void AcpiDmPldBuffer ( UINT32 Level, UINT8 *ByteData, UINT32 ByteCount); static const char * AcpiDmFindNameByIndex ( UINT64 Index, const char **List); #define ACPI_BUFFER_BYTES_PER_LINE 8 /******************************************************************************* * * FUNCTION: AcpiDmDisasmByteList * * PARAMETERS: Level - Current source code indentation level * ByteData - Pointer to the byte list * ByteCount - Length of the byte list * * RETURN: None * * DESCRIPTION: Dump an AML "ByteList" in Hex format. 8 bytes per line, prefixed * with the hex buffer offset. * ******************************************************************************/ void AcpiDmDisasmByteList ( UINT32 Level, UINT8 *ByteData, UINT32 ByteCount) { UINT32 i; UINT32 j; UINT32 CurrentIndex; UINT8 BufChar; if (!ByteCount) { return; } for (i = 0; i < ByteCount; i += ACPI_BUFFER_BYTES_PER_LINE) { /* Line indent and offset prefix for each new line */ AcpiDmIndent (Level); if (ByteCount > ACPI_BUFFER_BYTES_PER_LINE) { AcpiOsPrintf ("/* %04X */ ", i); } /* Dump the actual hex values */ for (j = 0; j < ACPI_BUFFER_BYTES_PER_LINE; j++) { CurrentIndex = i + j; if (CurrentIndex >= ByteCount) { /* Dump fill spaces */ AcpiOsPrintf (" "); continue; } AcpiOsPrintf (" 0x%2.2X", ByteData[CurrentIndex]); /* Add comma if there are more bytes to display */ if (CurrentIndex < (ByteCount - 1)) { AcpiOsPrintf (","); } else { AcpiOsPrintf (" "); } } /* Dump the ASCII equivalents within a comment */ AcpiOsPrintf (" // "); for (j = 0; j < ACPI_BUFFER_BYTES_PER_LINE; j++) { CurrentIndex = i + j; if (CurrentIndex >= ByteCount) { break; } BufChar = ByteData[CurrentIndex]; if (isprint (BufChar)) { AcpiOsPrintf ("%c", BufChar); } else { AcpiOsPrintf ("."); } } /* Finished with this line */ AcpiOsPrintf ("\n"); } } /******************************************************************************* * * FUNCTION: AcpiDmByteList * * PARAMETERS: Info - Parse tree walk info * Op - Byte list op * * RETURN: None * * DESCRIPTION: Dump a buffer byte list, handling the various types of buffers. * Buffer type must be already set in the Op DisasmOpcode. * ******************************************************************************/ void AcpiDmByteList ( ACPI_OP_WALK_INFO *Info, ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; ByteData = Op->Named.Data; ByteCount = (UINT32) Op->Common.Value.Integer; /* * The byte list belongs to a buffer, and can be produced by either * a ResourceTemplate, Unicode, quoted string, or a plain byte list. */ switch (Op->Common.Parent->Common.DisasmOpcode) { case ACPI_DASM_RESOURCE: AcpiDmResourceTemplate ( Info, Op->Common.Parent, ByteData, ByteCount); break; case ACPI_DASM_STRING: AcpiDmIndent (Info->Level); AcpiUtPrintString ((char *) ByteData, ACPI_UINT16_MAX); AcpiOsPrintf ("\n"); break; case ACPI_DASM_UUID: AcpiDmUuid (Op); break; case ACPI_DASM_UNICODE: AcpiDmUnicode (Op); break; case ACPI_DASM_PLD_METHOD: #if 0 AcpiDmDisasmByteList (Info->Level, ByteData, ByteCount); #endif AcpiDmPldBuffer (Info->Level, ByteData, ByteCount); break; case ACPI_DASM_BUFFER: default: /* * Not a resource, string, or unicode string. * Just dump the buffer */ AcpiDmDisasmByteList (Info->Level, ByteData, ByteCount); break; } } /******************************************************************************* * * FUNCTION: AcpiDmIsUuidBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer contains a UUID * * DESCRIPTION: Determine if a buffer Op contains a UUID * * To help determine whether the buffer is a UUID versus a raw data buffer, * there a are a couple bytes we can look at: * * xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx * * The variant covered by the UUID specification is indicated by the two most * significant bits of N being 1 0 (i.e., the hexadecimal N will always be * 8, 9, A, or B). * * The variant covered by the UUID specification has five versions. For this * variant, the four bits of M indicates the UUID version (i.e., the * hexadecimal M will be either 1, 2, 3, 4, or 5). * ******************************************************************************/ BOOLEAN AcpiDmIsUuidBuffer ( ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *NextOp; /* Buffer size is the buffer argument */ SizeOp = Op->Common.Value.Arg; if (!SizeOp) { return (FALSE); } /* Next, the initializer byte list to examine */ NextOp = SizeOp->Common.Next; if (!NextOp) { return (FALSE); } /* Extract the byte list info */ ByteData = NextOp->Named.Data; ByteCount = (UINT32) NextOp->Common.Value.Integer; /* Byte count must be exactly 16 */ if (ByteCount != UUID_BUFFER_LENGTH) { return (FALSE); } /* Check for valid "M" and "N" values (see function header above) */ if (((ByteData[7] & 0xF0) == 0x00) || /* M={1,2,3,4,5} */ ((ByteData[7] & 0xF0) > 0x50) || ((ByteData[8] & 0xF0) < 0x80) || /* N={8,9,A,B} */ ((ByteData[8] & 0xF0) > 0xB0)) { return (FALSE); } /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmUuid * * PARAMETERS: Op - Byte List op containing a UUID * * RETURN: None * * DESCRIPTION: Dump a buffer containing a UUID as a standard ASCII string. * * Output Format: * In its canonical form, the UUID is represented by a string containing 32 * lowercase hexadecimal digits, displayed in 5 groups separated by hyphens. * The complete form is 8-4-4-4-12 for a total of 36 characters (32 * alphanumeric characters representing hex digits and 4 hyphens). In bytes, * 4-2-2-2-6. Example: * * ToUUID ("107ededd-d381-4fd7-8da9-08e9a6c79644") * ******************************************************************************/ static void AcpiDmUuid ( ACPI_PARSE_OBJECT *Op) { UINT8 *Data; const char *Description; Data = ACPI_CAST_PTR (UINT8, Op->Named.Data); /* Emit the 36-byte UUID string in the proper format/order */ AcpiOsPrintf ( "\"%2.2x%2.2x%2.2x%2.2x-" "%2.2x%2.2x-" "%2.2x%2.2x-" "%2.2x%2.2x-" "%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\")", Data[3], Data[2], Data[1], Data[0], Data[5], Data[4], Data[7], Data[6], Data[8], Data[9], Data[10], Data[11], Data[12], Data[13], Data[14], Data[15]); /* Dump the UUID description string if available */ Description = AcpiAhMatchUuid (Data); if (Description) { AcpiOsPrintf (" /* %s */", Description); } + else + { + AcpiOsPrintf (" /* Unknown UUID */"); + } } /******************************************************************************* * * FUNCTION: AcpiDmIsUnicodeBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer contains a UNICODE string * * DESCRIPTION: Determine if a buffer Op contains a Unicode string * ******************************************************************************/ BOOLEAN AcpiDmIsUnicodeBuffer ( ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; UINT32 WordCount; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *NextOp; UINT32 i; /* Buffer size is the buffer argument */ SizeOp = Op->Common.Value.Arg; if (!SizeOp) { return (FALSE); } /* Next, the initializer byte list to examine */ NextOp = SizeOp->Common.Next; if (!NextOp) { return (FALSE); } /* Extract the byte list info */ ByteData = NextOp->Named.Data; ByteCount = (UINT32) NextOp->Common.Value.Integer; WordCount = ACPI_DIV_2 (ByteCount); /* * Unicode string must have an even number of bytes and last * word must be zero */ if ((!ByteCount) || (ByteCount < 4) || (ByteCount & 1) || ((UINT16 *) (void *) ByteData)[WordCount - 1] != 0) { return (FALSE); } /* * For each word, 1st byte must be printable ascii, and the * 2nd byte must be zero. This does not allow for escape * sequences, but it is the most secure way to detect a * unicode string. */ for (i = 0; i < (ByteCount - 2); i += 2) { if ((ByteData[i] == 0) || !(isprint (ByteData[i])) || (ByteData[(ACPI_SIZE) i + 1] != 0)) { return (FALSE); } } /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmIsStringBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer contains a ASCII string, FALSE otherwise * * DESCRIPTION: Determine if a buffer Op contains a ASCII string * ******************************************************************************/ BOOLEAN AcpiDmIsStringBuffer ( ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *NextOp; UINT32 i; /* Buffer size is the buffer argument */ SizeOp = Op->Common.Value.Arg; if (!SizeOp) { return (FALSE); } /* Next, the initializer byte list to examine */ NextOp = SizeOp->Common.Next; if (!NextOp) { return (FALSE); } /* Extract the byte list info */ ByteData = NextOp->Named.Data; ByteCount = (UINT32) NextOp->Common.Value.Integer; /* Last byte must be the null terminator */ if ((!ByteCount) || (ByteCount < 2) || (ByteData[ByteCount-1] != 0)) { return (FALSE); } /* * Check for a possible standalone resource EndTag, ignore it * here. However, this sequence is also the string "Y", but * this seems rare enough to be acceptable. */ if ((ByteCount == 2) && (ByteData[0] == 0x79)) { return (FALSE); } /* Check all bytes for ASCII */ for (i = 0; i < (ByteCount - 1); i++) { /* * TBD: allow some escapes (non-ascii chars). * they will be handled in the string output routine */ /* Not a string if not printable ascii */ if (!isprint (ByteData[i])) { return (FALSE); } } return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmIsPldBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer appears to contain data produced via the * ToPLD macro, FALSE otherwise * * DESCRIPTION: Determine if a buffer Op contains a _PLD structure * ******************************************************************************/ BOOLEAN AcpiDmIsPldBuffer ( ACPI_PARSE_OBJECT *Op) { ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *ByteListOp; ACPI_PARSE_OBJECT *ParentOp; UINT64 BufferSize; UINT64 InitializerSize; if (!Op) { return (FALSE); } /* * Get the BufferSize argument - Buffer(BufferSize) * If the buffer was generated by the ToPld macro, it must * be a BYTE constant. */ SizeOp = Op->Common.Value.Arg; if (!SizeOp || SizeOp->Common.AmlOpcode != AML_BYTE_OP) { return (FALSE); } /* Check the declared BufferSize, two possibilities */ BufferSize = SizeOp->Common.Value.Integer; if ((BufferSize != ACPI_PLD_REV1_BUFFER_SIZE) && (BufferSize != ACPI_PLD_REV2_BUFFER_SIZE)) { return (FALSE); } /* * Check the initializer list length. This is the actual * number of bytes in the buffer as counted by the AML parser. * The declared BufferSize can be larger than the actual length. * However, for the ToPLD macro, the BufferSize will be the same * as the initializer list length. */ ByteListOp = SizeOp->Common.Next; if (!ByteListOp) { return (FALSE); /* Zero-length buffer case */ } InitializerSize = ByteListOp->Common.Value.Integer; if ((InitializerSize != ACPI_PLD_REV1_BUFFER_SIZE) && (InitializerSize != ACPI_PLD_REV2_BUFFER_SIZE)) { return (FALSE); } /* Final size check */ if (BufferSize != InitializerSize) { return (FALSE); } /* Now examine the buffer parent */ ParentOp = Op->Common.Parent; if (!ParentOp) { return (FALSE); } /* Check for form: Name(_PLD, Buffer() {}). Not legal, however */ if (ParentOp->Common.AmlOpcode == AML_NAME_OP) { Node = ParentOp->Common.Node; if (ACPI_COMPARE_NAMESEG (Node->Name.Ascii, METHOD_NAME__PLD)) { /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } return (FALSE); } /* * Check for proper form: Name(_PLD, Package() {ToPLD()}) * * Note: All other forms such as * Return (Package() {ToPLD()}) * Local0 = ToPLD() * etc. are not converted back to the ToPLD macro, because * there is really no deterministic way to disassemble the buffer * back to the ToPLD macro, other than trying to find the "_PLD" * name */ if (ParentOp->Common.AmlOpcode == AML_PACKAGE_OP) { ParentOp = ParentOp->Common.Parent; if (!ParentOp) { return (FALSE); } if (ParentOp->Common.AmlOpcode == AML_NAME_OP) { Node = ParentOp->Common.Node; if (ACPI_COMPARE_NAMESEG (Node->Name.Ascii, METHOD_NAME__PLD)) { /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } } } return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiDmFindNameByIndex * * PARAMETERS: Index - Index of array to check * List - Array to reference * * RETURN: String from List or empty string * * DESCRIPTION: Finds and returns the char string located at the given index * position in List. * ******************************************************************************/ static const char * AcpiDmFindNameByIndex ( UINT64 Index, const char **List) { const char *NameString; UINT32 i; /* Bounds check */ NameString = List[0]; i = 0; while (NameString) { i++; NameString = List[i]; } if (Index >= i) { /* TBD: Add error msg */ return (""); } return (List[Index]); } /******************************************************************************* * * FUNCTION: AcpiDmPldBuffer * * PARAMETERS: Level - Current source code indentation level * ByteData - Pointer to the byte list * ByteCount - Length of the byte list * * RETURN: None * * DESCRIPTION: Dump and format the contents of a _PLD buffer object * ******************************************************************************/ #define ACPI_PLD_OUTPUT08 "%*.s%-22s = 0x%X,\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT08P "%*.s%-22s = 0x%X)\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT16 "%*.s%-22s = 0x%X,\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT16P "%*.s%-22s = 0x%X)\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT24 "%*.s%-22s = 0x%X,\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUTSTR "%*.s%-22s = \"%s\",\n", ACPI_MUL_4 (Level), " " static void AcpiDmPldBuffer ( UINT32 Level, UINT8 *ByteData, UINT32 ByteCount) { ACPI_PLD_INFO *PldInfo; ACPI_STATUS Status; /* Check for valid byte count */ if (ByteCount < ACPI_PLD_REV1_BUFFER_SIZE) { return; } /* Convert _PLD buffer to local _PLD struct */ Status = AcpiDecodePldBuffer (ByteData, ByteCount, &PldInfo); if (ACPI_FAILURE (Status)) { return; } AcpiOsPrintf ("\n"); /* First 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Revision", PldInfo->Revision); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_IgnoreColor", PldInfo->IgnoreColor); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Red", PldInfo->Red); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Green", PldInfo->Green); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Blue", PldInfo->Blue); /* Second 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT16, "PLD_Width", PldInfo->Width); AcpiOsPrintf (ACPI_PLD_OUTPUT16, "PLD_Height", PldInfo->Height); /* Third 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_UserVisible", PldInfo->UserVisible); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Dock", PldInfo->Dock); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Lid", PldInfo->Lid); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_Panel", AcpiDmFindNameByIndex(PldInfo->Panel, AcpiGbl_PldPanelList)); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_VerticalPosition", AcpiDmFindNameByIndex(PldInfo->VerticalPosition, AcpiGbl_PldVerticalPositionList)); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_HorizontalPosition", AcpiDmFindNameByIndex(PldInfo->HorizontalPosition, AcpiGbl_PldHorizontalPositionList)); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_Shape", AcpiDmFindNameByIndex(PldInfo->Shape, AcpiGbl_PldShapeList)); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_GroupOrientation", PldInfo->GroupOrientation); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_GroupToken", PldInfo->GroupToken); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_GroupPosition", PldInfo->GroupPosition); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Bay", PldInfo->Bay); /* Fourth 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Ejectable", PldInfo->Ejectable); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_EjectRequired", PldInfo->OspmEjectRequired); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_CabinetNumber", PldInfo->CabinetNumber); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_CardCageNumber", PldInfo->CardCageNumber); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Reference", PldInfo->Reference); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Rotation", PldInfo->Rotation); if (ByteCount >= ACPI_PLD_REV2_BUFFER_SIZE) { AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Order", PldInfo->Order); /* Fifth 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT16, "PLD_VerticalOffset", PldInfo->VerticalOffset); AcpiOsPrintf (ACPI_PLD_OUTPUT16P, "PLD_HorizontalOffset", PldInfo->HorizontalOffset); } else /* Rev 1 buffer */ { AcpiOsPrintf (ACPI_PLD_OUTPUT08P, "PLD_Order", PldInfo->Order); } ACPI_FREE (PldInfo); } /******************************************************************************* * * FUNCTION: AcpiDmUnicode * * PARAMETERS: Op - Byte List op containing Unicode string * * RETURN: None * * DESCRIPTION: Dump Unicode string as a standard ASCII string. (Remove * the extra zero bytes). * ******************************************************************************/ static void AcpiDmUnicode ( ACPI_PARSE_OBJECT *Op) { UINT16 *WordData; UINT32 WordCount; UINT32 i; int OutputValue; /* Extract the buffer info as a WORD buffer */ WordData = ACPI_CAST_PTR (UINT16, Op->Named.Data); WordCount = ACPI_DIV_2 (((UINT32) Op->Common.Value.Integer)); /* Write every other byte as an ASCII character */ AcpiOsPrintf ("\""); for (i = 0; i < (WordCount - 1); i++) { OutputValue = (int) WordData[i]; /* Handle values that must be escaped */ if ((OutputValue == '\"') || (OutputValue == '\\')) { AcpiOsPrintf ("\\%c", OutputValue); } else if (!isprint (OutputValue)) { AcpiOsPrintf ("\\x%2.2X", OutputValue); } else { AcpiOsPrintf ("%c", OutputValue); } } AcpiOsPrintf ("\")"); } /******************************************************************************* * * FUNCTION: AcpiDmGetHardwareIdType * * PARAMETERS: Op - Op to be examined * * RETURN: None * * DESCRIPTION: Determine the type of the argument to a _HID or _CID * 1) Strings are allowed * 2) If Integer, determine if it is a valid EISAID * ******************************************************************************/ static void AcpiDmGetHardwareIdType ( ACPI_PARSE_OBJECT *Op) { UINT32 BigEndianId; UINT32 Prefix[3]; UINT32 i; switch (Op->Common.AmlOpcode) { case AML_STRING_OP: /* Mark this string as an _HID/_CID string */ Op->Common.DisasmOpcode = ACPI_DASM_HID_STRING; break; case AML_WORD_OP: case AML_DWORD_OP: /* Determine if a Word/Dword is a valid encoded EISAID */ /* Swap from little-endian to big-endian to simplify conversion */ BigEndianId = AcpiUtDwordByteSwap ((UINT32) Op->Common.Value.Integer); /* Create the 3 leading ASCII letters */ Prefix[0] = ((BigEndianId >> 26) & 0x1F) + 0x40; Prefix[1] = ((BigEndianId >> 21) & 0x1F) + 0x40; Prefix[2] = ((BigEndianId >> 16) & 0x1F) + 0x40; /* Verify that all 3 are ascii and alpha */ for (i = 0; i < 3; i++) { if (!ACPI_IS_ASCII (Prefix[i]) || !isalpha (Prefix[i])) { return; } } /* Mark this node as convertible to an EISA ID string */ Op->Common.DisasmOpcode = ACPI_DASM_EISAID; break; default: break; } } /******************************************************************************* * * FUNCTION: AcpiDmCheckForHardwareId * * PARAMETERS: Op - Op to be examined * * RETURN: None * * DESCRIPTION: Determine if a Name() Op is a _HID/_CID. * ******************************************************************************/ void AcpiDmCheckForHardwareId ( ACPI_PARSE_OBJECT *Op) { UINT32 Name; ACPI_PARSE_OBJECT *NextOp; /* Get the NameSegment */ Name = AcpiPsGetName (Op); if (!Name) { return; } NextOp = AcpiPsGetDepthNext (NULL, Op); if (!NextOp) { return; } /* Check for _HID - has one argument */ if (ACPI_COMPARE_NAMESEG (&Name, METHOD_NAME__HID)) { AcpiDmGetHardwareIdType (NextOp); return; } /* Exit if not _CID */ if (!ACPI_COMPARE_NAMESEG (&Name, METHOD_NAME__CID)) { return; } /* _CID can contain a single argument or a package */ if (NextOp->Common.AmlOpcode != AML_PACKAGE_OP) { AcpiDmGetHardwareIdType (NextOp); return; } /* _CID with Package: get the package length, check all elements */ NextOp = AcpiPsGetDepthNext (NULL, NextOp); if (!NextOp) { return; } /* Don't need to use the length, just walk the peer list */ NextOp = NextOp->Common.Next; while (NextOp) { AcpiDmGetHardwareIdType (NextOp); NextOp = NextOp->Common.Next; } } /******************************************************************************* * * FUNCTION: AcpiDmDecompressEisaId * * PARAMETERS: EncodedId - Raw encoded EISA ID. * * RETURN: None * * DESCRIPTION: Convert an encoded EISAID back to the original ASCII String * and emit the correct ASL statement. If the ID is known, emit * a description of the ID as a comment. * ******************************************************************************/ void AcpiDmDecompressEisaId ( UINT32 EncodedId) { char IdBuffer[ACPI_EISAID_STRING_SIZE]; const AH_DEVICE_ID *Info; /* Convert EISAID to a string an emit the statement */ AcpiExEisaIdToString (IdBuffer, EncodedId); AcpiOsPrintf ("EisaId (\"%s\")", IdBuffer); /* If we know about the ID, emit the description */ Info = AcpiAhMatchHardwareId (IdBuffer); if (Info) { AcpiOsPrintf (" /* %s */", Info->Description); } } Index: head/sys/contrib/dev/acpica/components/disassembler/dmcstyle.c =================================================================== --- head/sys/contrib/dev/acpica/components/disassembler/dmcstyle.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/disassembler/dmcstyle.c (revision 366562) @@ -1,1141 +1,1141 @@ /******************************************************************************* * * Module Name: dmcstyle - Support for C-style operator disassembly * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #include #include #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dmcstyle") /* Local prototypes */ static char * AcpiDmGetCompoundSymbol ( UINT16 AslOpcode); static void AcpiDmPromoteTarget ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *Target); static BOOLEAN AcpiDmIsValidTarget ( ACPI_PARSE_OBJECT *Op); static BOOLEAN AcpiDmIsTargetAnOperand ( ACPI_PARSE_OBJECT *Target, ACPI_PARSE_OBJECT *Operand, BOOLEAN TopLevel); static BOOLEAN AcpiDmIsOptimizationIgnored ( ACPI_PARSE_OBJECT *StoreOp, ACPI_PARSE_OBJECT *StoreArgument); /******************************************************************************* * * FUNCTION: AcpiDmCheckForSymbolicOpcode * * PARAMETERS: Op - Current parse object * Walk - Current parse tree walk info * * RETURN: TRUE if opcode can be converted to symbolic, FALSE otherwise * * DESCRIPTION: This is the main code that implements disassembly of AML code * to C-style operators. Called during descending phase of the * parse tree walk. * ******************************************************************************/ BOOLEAN AcpiDmCheckForSymbolicOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_OP_WALK_INFO *Info) { char *OperatorSymbol = NULL; ACPI_PARSE_OBJECT *Argument1; ACPI_PARSE_OBJECT *Argument2; ACPI_PARSE_OBJECT *Target; ACPI_PARSE_OBJECT *Target2; /* Exit immediately if ASL+ not enabled */ if (!AcpiGbl_CstyleDisassembly) { return (FALSE); } /* Get the first operand */ Argument1 = AcpiPsGetArg (Op, 0); if (!Argument1) { return (FALSE); } /* Get the second operand */ Argument2 = Argument1->Common.Next; /* Setup the operator string for this opcode */ switch (Op->Common.AmlOpcode) { case AML_ADD_OP: OperatorSymbol = " + "; break; case AML_SUBTRACT_OP: OperatorSymbol = " - "; break; case AML_MULTIPLY_OP: OperatorSymbol = " * "; break; case AML_DIVIDE_OP: OperatorSymbol = " / "; break; case AML_MOD_OP: OperatorSymbol = " % "; break; case AML_SHIFT_LEFT_OP: OperatorSymbol = " << "; break; case AML_SHIFT_RIGHT_OP: OperatorSymbol = " >> "; break; case AML_BIT_AND_OP: OperatorSymbol = " & "; break; case AML_BIT_OR_OP: OperatorSymbol = " | "; break; case AML_BIT_XOR_OP: OperatorSymbol = " ^ "; break; /* Logical operators, no target */ case AML_LOGICAL_AND_OP: OperatorSymbol = " && "; break; case AML_LOGICAL_EQUAL_OP: OperatorSymbol = " == "; break; case AML_LOGICAL_GREATER_OP: OperatorSymbol = " > "; break; case AML_LOGICAL_LESS_OP: OperatorSymbol = " < "; break; case AML_LOGICAL_OR_OP: OperatorSymbol = " || "; break; case AML_LOGICAL_NOT_OP: /* * Check for the LNOT sub-opcodes. These correspond to * LNotEqual, LLessEqual, and LGreaterEqual. There are * no actual AML opcodes for these operators. */ switch (Argument1->Common.AmlOpcode) { case AML_LOGICAL_EQUAL_OP: OperatorSymbol = " != "; break; case AML_LOGICAL_GREATER_OP: OperatorSymbol = " <= "; break; case AML_LOGICAL_LESS_OP: OperatorSymbol = " >= "; break; default: /* Unary LNOT case, emit "!" immediately */ AcpiOsPrintf ("!"); return (TRUE); } Argument1->Common.DisasmOpcode = ACPI_DASM_LNOT_SUFFIX; Op->Common.DisasmOpcode = ACPI_DASM_LNOT_PREFIX; /* Save symbol string in the next child (not peer) */ Argument2 = AcpiPsGetArg (Argument1, 0); if (!Argument2) { return (FALSE); } Argument2->Common.OperatorSymbol = OperatorSymbol; return (TRUE); case AML_INDEX_OP: /* * Check for constant source operand. Note: although technically * legal syntax, the iASL compiler does not support this with * the symbolic operators for Index(). It doesn't make sense to * use Index() with a constant anyway. */ if ((Argument1->Common.AmlOpcode == AML_STRING_OP) || (Argument1->Common.AmlOpcode == AML_BUFFER_OP) || (Argument1->Common.AmlOpcode == AML_PACKAGE_OP) || (Argument1->Common.AmlOpcode == AML_VARIABLE_PACKAGE_OP)) { Op->Common.DisasmFlags |= ACPI_PARSEOP_CLOSING_PAREN; return (FALSE); } /* Index operator is [] */ Argument1->Common.OperatorSymbol = " ["; Argument2->Common.OperatorSymbol = "]"; break; /* Unary operators */ case AML_DECREMENT_OP: OperatorSymbol = "--"; break; case AML_INCREMENT_OP: OperatorSymbol = "++"; break; case AML_BIT_NOT_OP: case AML_STORE_OP: OperatorSymbol = NULL; break; default: return (FALSE); } if (Argument1->Common.DisasmOpcode == ACPI_DASM_LNOT_SUFFIX) { return (TRUE); } /* * This is the key to how the disassembly of the C-style operators * works. We save the operator symbol in the first child, thus * deferring symbol output until after the first operand has been * emitted. */ if (!Argument1->Common.OperatorSymbol) { Argument1->Common.OperatorSymbol = OperatorSymbol; } /* * Check for a valid target as the 3rd (or sometimes 2nd) operand * * Compound assignment operator support: * Attempt to optimize constructs of the form: * Add (Local1, 0xFF, Local1) * to: * Local1 += 0xFF * * Only the math operators and Store() have a target. * Logicals have no target. */ switch (Op->Common.AmlOpcode) { case AML_ADD_OP: case AML_SUBTRACT_OP: case AML_MULTIPLY_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: /* Target is 3rd operand */ Target = Argument2->Common.Next; if (Op->Common.AmlOpcode == AML_DIVIDE_OP) { Target2 = Target->Common.Next; /* * Divide has an extra target operand (Remainder). * Default behavior is to simply ignore ASL+ conversion * if the remainder target (modulo) is specified. */ if (!AcpiGbl_DoDisassemblerOptimizations) { if (AcpiDmIsValidTarget (Target)) { Argument1->Common.OperatorSymbol = NULL; Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; return (FALSE); } Target->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; Target = Target2; } else { /* * Divide has an extra target operand (Remainder). * If both targets are specified, it cannot be converted * to a C-style operator. */ if (AcpiDmIsValidTarget (Target) && AcpiDmIsValidTarget (Target2)) { Argument1->Common.OperatorSymbol = NULL; Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; return (FALSE); } if (AcpiDmIsValidTarget (Target)) /* Only first Target is valid (remainder) */ { /* Convert the Divide to Modulo */ Op->Common.AmlOpcode = AML_MOD_OP; Argument1->Common.OperatorSymbol = " % "; Target2->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; } else /* Only second Target (quotient) is valid */ { Target->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; Target = Target2; } } } /* Parser should ensure there is at least a placeholder target */ if (!Target) { return (FALSE); } if (!AcpiDmIsValidTarget (Target)) { /* Not a valid target (placeholder only, from parser) */ break; } /* * Promote the target up to the first child in the parse * tree. This is done because the target will be output * first, in the form: * = Operands... */ AcpiDmPromoteTarget (Op, Target); /* Check operands for conversion to a "Compound Assignment" */ switch (Op->Common.AmlOpcode) { /* Commutative operators */ case AML_ADD_OP: case AML_MULTIPLY_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: /* * For the commutative operators, we can convert to a * compound statement only if at least one (either) operand * is the same as the target. * * Add (A, B, A) --> A += B * Add (B, A, A) --> A += B * Add (B, C, A) --> A = (B + C) */ if ((AcpiDmIsTargetAnOperand (Target, Argument1, TRUE)) || (AcpiDmIsTargetAnOperand (Target, Argument2, TRUE))) { Target->Common.OperatorSymbol = AcpiDmGetCompoundSymbol (Op->Common.AmlOpcode); /* Convert operator to compound assignment */ Op->Common.DisasmFlags |= ACPI_PARSEOP_COMPOUND_ASSIGNMENT; Argument1->Common.OperatorSymbol = NULL; return (TRUE); } break; /* Non-commutative operators */ case AML_SUBTRACT_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: /* * For the non-commutative operators, we can convert to a * compound statement only if the target is the same as the * first operand. * * Subtract (A, B, A) --> A -= B * Subtract (B, A, A) --> A = (B - A) */ if ((AcpiDmIsTargetAnOperand (Target, Argument1, TRUE))) { Target->Common.OperatorSymbol = AcpiDmGetCompoundSymbol (Op->Common.AmlOpcode); /* Convert operator to compound assignment */ Op->Common.DisasmFlags |= ACPI_PARSEOP_COMPOUND_ASSIGNMENT; Argument1->Common.OperatorSymbol = NULL; return (TRUE); } break; default: break; } /* * If we are within a C-style expression, emit an extra open * paren. Implemented by examining the parent op. */ switch (Op->Common.Parent->Common.AmlOpcode) { case AML_ADD_OP: case AML_SUBTRACT_OP: case AML_MULTIPLY_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: case AML_LOGICAL_AND_OP: case AML_LOGICAL_EQUAL_OP: case AML_LOGICAL_GREATER_OP: case AML_LOGICAL_LESS_OP: case AML_LOGICAL_OR_OP: Op->Common.DisasmFlags |= ACPI_PARSEOP_ASSIGNMENT; AcpiOsPrintf ("("); break; default: break; } /* Normal output for ASL/AML operators with a target operand */ Target->Common.OperatorSymbol = " = ("; return (TRUE); /* Binary operators, no parens */ case AML_DECREMENT_OP: case AML_INCREMENT_OP: return (TRUE); case AML_INDEX_OP: /* Target is optional, 3rd operand */ Target = Argument2->Common.Next; if (AcpiDmIsValidTarget (Target)) { AcpiDmPromoteTarget (Op, Target); if (!Target->Common.OperatorSymbol) { Target->Common.OperatorSymbol = " = "; } } return (TRUE); case AML_STORE_OP: /* * For Store, the Target is the 2nd operand. We know the target * is valid, because it is not optional. * * Ignore any optimizations/folding if flag is set. * Used for iASL/disassembler test suite only. */ if (AcpiDmIsOptimizationIgnored (Op, Argument1)) { return (FALSE); } /* * Perform conversion. * In the parse tree, simply swap the target with the * source so that the target is processed first. */ Target = Argument1->Common.Next; if (!Target) { return (FALSE); } AcpiDmPromoteTarget (Op, Target); if (!Target->Common.OperatorSymbol) { Target->Common.OperatorSymbol = " = "; } return (TRUE); case AML_BIT_NOT_OP: /* Target is optional, 2nd operand */ Target = Argument1->Common.Next; if (!Target) { return (FALSE); } if (AcpiDmIsValidTarget (Target)) { /* Valid target, not a placeholder */ AcpiDmPromoteTarget (Op, Target); Target->Common.OperatorSymbol = " = ~"; } else { /* No target. Emit this prefix operator immediately */ AcpiOsPrintf ("~"); } return (TRUE); default: break; } /* All other operators, emit an open paren */ AcpiOsPrintf ("("); return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmIsOptimizationIgnored * * PARAMETERS: StoreOp - Store operator parse object * StoreArgument - Target associate with the Op * * RETURN: TRUE if this Store operator should not be converted/removed. * * DESCRIPTION: The following function implements "Do not optimize if a * store is immediately followed by a math/bit operator that * has no target". * * Function is ignored if DoDisassemblerOptimizations is TRUE. * This is the default, ignore this function. * * Disables these types of optimizations, and simply emits * legacy ASL code: * Store (Add (INT1, 4), INT2) --> Add (INT1, 4, INT2) * --> INT2 = INT1 + 4 * * Store (Not (INT1), INT2) --> Not (INT1, INT2) * --> INT2 = ~INT1 * * Used only for the ASL test suite. For the test suite, we * don't want to perform some optimizations to ensure binary * compatibility with the generation of the legacy ASL->AML. * In other words, for all test modules we want exactly: * (ASL+ -> AML) == (ASL- -> AML) * ******************************************************************************/ static BOOLEAN AcpiDmIsOptimizationIgnored ( ACPI_PARSE_OBJECT *StoreOp, ACPI_PARSE_OBJECT *StoreArgument) { ACPI_PARSE_OBJECT *Argument1; ACPI_PARSE_OBJECT *Argument2; ACPI_PARSE_OBJECT *Target; /* No optimizations/folding for the typical case */ if (AcpiGbl_DoDisassemblerOptimizations) { return (FALSE); } /* * Only a small subset of ASL/AML operators can be optimized. * Can only optimize/fold if there is no target (or targets) * specified for the operator. And of course, the operator - * is surrrounded by a Store() operator. + * is surrounded by a Store() operator. */ switch (StoreArgument->Common.AmlOpcode) { case AML_ADD_OP: case AML_SUBTRACT_OP: case AML_MULTIPLY_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: case AML_INDEX_OP: /* These operators have two arguments and one target */ Argument1 = StoreArgument->Common.Value.Arg; Argument2 = Argument1->Common.Next; Target = Argument2->Common.Next; if (!AcpiDmIsValidTarget (Target)) { StoreOp->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; return (TRUE); } break; case AML_DIVIDE_OP: /* This operator has two arguments and two targets */ Argument1 = StoreArgument->Common.Value.Arg; Argument2 = Argument1->Common.Next; Target = Argument2->Common.Next; if (!AcpiDmIsValidTarget (Target) || !AcpiDmIsValidTarget (Target->Common.Next)) { StoreOp->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; return (TRUE); } break; case AML_BIT_NOT_OP: /* This operator has one operand and one target */ Argument1 = StoreArgument->Common.Value.Arg; Target = Argument1->Common.Next; if (!AcpiDmIsValidTarget (Target)) { StoreOp->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; return (TRUE); } break; default: break; } return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiDmCloseOperator * * PARAMETERS: Op - Current parse object * * RETURN: None * * DESCRIPTION: Closes an operator by adding a closing parentheses if and * when necessary. Called during ascending phase of the * parse tree walk. * ******************************************************************************/ void AcpiDmCloseOperator ( ACPI_PARSE_OBJECT *Op) { /* Always emit paren if ASL+ disassembly disabled */ if (!AcpiGbl_CstyleDisassembly) { AcpiOsPrintf (")"); ASL_CV_PRINT_ONE_COMMENT (Op, AML_COMMENT_END_NODE, NULL, 0); return; } if (Op->Common.DisasmFlags & ACPI_PARSEOP_LEGACY_ASL_ONLY) { AcpiOsPrintf (")"); ASL_CV_PRINT_ONE_COMMENT (Op, AML_COMMENT_END_NODE, NULL, 0); return; } /* Check if we need to add an additional closing paren */ switch (Op->Common.AmlOpcode) { case AML_ADD_OP: case AML_SUBTRACT_OP: case AML_MULTIPLY_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: case AML_LOGICAL_AND_OP: case AML_LOGICAL_EQUAL_OP: case AML_LOGICAL_GREATER_OP: case AML_LOGICAL_LESS_OP: case AML_LOGICAL_OR_OP: /* Emit paren only if this is not a compound assignment */ if (Op->Common.DisasmFlags & ACPI_PARSEOP_COMPOUND_ASSIGNMENT) { ASL_CV_PRINT_ONE_COMMENT (Op, AML_COMMENT_END_NODE, NULL, 0); return; } /* Emit extra close paren for assignment within an expression */ if (Op->Common.DisasmFlags & ACPI_PARSEOP_ASSIGNMENT) { AcpiOsPrintf (")"); } break; case AML_INDEX_OP: /* This is case for unsupported Index() source constants */ if (Op->Common.DisasmFlags & ACPI_PARSEOP_CLOSING_PAREN) { AcpiOsPrintf (")"); } ASL_CV_PRINT_ONE_COMMENT (Op, AML_COMMENT_END_NODE, NULL, 0); return; /* No need for parens for these */ case AML_DECREMENT_OP: case AML_INCREMENT_OP: case AML_LOGICAL_NOT_OP: case AML_BIT_NOT_OP: case AML_STORE_OP: ASL_CV_PRINT_ONE_COMMENT (Op, AML_COMMENT_END_NODE, NULL, 0); return; default: /* Always emit paren for non-ASL+ operators */ break; } AcpiOsPrintf (")"); ASL_CV_PRINT_ONE_COMMENT (Op, AML_COMMENT_END_NODE, NULL, 0); return; } /******************************************************************************* * * FUNCTION: AcpiDmGetCompoundSymbol * * PARAMETERS: AslOpcode * * RETURN: String containing the compound assignment symbol * * DESCRIPTION: Detect opcodes that can be converted to compound assignment, * return the appropriate operator string. * ******************************************************************************/ static char * AcpiDmGetCompoundSymbol ( UINT16 AmlOpcode) { char *Symbol; switch (AmlOpcode) { case AML_ADD_OP: Symbol = " += "; break; case AML_SUBTRACT_OP: Symbol = " -= "; break; case AML_MULTIPLY_OP: Symbol = " *= "; break; case AML_DIVIDE_OP: Symbol = " /= "; break; case AML_MOD_OP: Symbol = " %= "; break; case AML_SHIFT_LEFT_OP: Symbol = " <<= "; break; case AML_SHIFT_RIGHT_OP: Symbol = " >>= "; break; case AML_BIT_AND_OP: Symbol = " &= "; break; case AML_BIT_OR_OP: Symbol = " |= "; break; case AML_BIT_XOR_OP: Symbol = " ^= "; break; default: /* No operator string for all other opcodes */ return (NULL); } return (Symbol); } /******************************************************************************* * * FUNCTION: AcpiDmPromoteTarget * * PARAMETERS: Op - Operator parse object * Target - Target associate with the Op * * RETURN: None * * DESCRIPTION: Transform the parse tree by moving the target up to the first * child of the Op. * ******************************************************************************/ static void AcpiDmPromoteTarget ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *Target) { ACPI_PARSE_OBJECT *Child; /* Link target directly to the Op as first child */ Child = Op->Common.Value.Arg; Op->Common.Value.Arg = Target; Target->Common.Next = Child; /* Find the last peer, it is linked to the target. Unlink it. */ while (Child->Common.Next != Target) { Child = Child->Common.Next; } Child->Common.Next = NULL; } /******************************************************************************* * * FUNCTION: AcpiDmIsValidTarget * * PARAMETERS: Target - Target Op from the parse tree * * RETURN: TRUE if the Target is real. FALSE if it is just a placeholder * Op that was inserted by the parser. * * DESCRIPTION: Determine if a Target Op is a placeholder Op or a real Target. * In other words, determine if the optional target is used or * not. Note: If Target is NULL, something is seriously wrong, * probably with the parse tree. * ******************************************************************************/ static BOOLEAN AcpiDmIsValidTarget ( ACPI_PARSE_OBJECT *Target) { if (!Target) { return (FALSE); } if ((Target->Common.AmlOpcode == AML_INT_NAMEPATH_OP) && (Target->Common.Value.Arg == NULL)) { return (FALSE); } return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmIsTargetAnOperand * * PARAMETERS: Target - Target associated with the expression * Operand - An operand associated with expression * * RETURN: TRUE if expression can be converted to a compound assignment. * FALSE otherwise. * * DESCRIPTION: Determine if the Target duplicates the operand, in order to * detect if the expression can be converted to a compound * assignment. (+=, *=, etc.) * ******************************************************************************/ static BOOLEAN AcpiDmIsTargetAnOperand ( ACPI_PARSE_OBJECT *Target, ACPI_PARSE_OBJECT *Operand, BOOLEAN TopLevel) { const ACPI_OPCODE_INFO *OpInfo; BOOLEAN Same; /* * Opcodes must match. Note: ignoring the difference between nameseg * and namepath for now. May be needed later. */ if (Target->Common.AmlOpcode != Operand->Common.AmlOpcode) { return (FALSE); } /* Nodes should match, even if they are NULL */ if (Target->Common.Node != Operand->Common.Node) { return (FALSE); } /* Determine if a child exists */ OpInfo = AcpiPsGetOpcodeInfo (Operand->Common.AmlOpcode); if (OpInfo->Flags & AML_HAS_ARGS) { Same = AcpiDmIsTargetAnOperand (Target->Common.Value.Arg, Operand->Common.Value.Arg, FALSE); if (!Same) { return (FALSE); } } /* Check the next peer, as long as we are not at the top level */ if ((!TopLevel) && Target->Common.Next) { Same = AcpiDmIsTargetAnOperand (Target->Common.Next, Operand->Common.Next, FALSE); if (!Same) { return (FALSE); } } /* Suppress the duplicate operand at the top-level */ if (TopLevel) { Operand->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; } return (TRUE); } Index: head/sys/contrib/dev/acpica/components/events/evrgnini.c =================================================================== --- head/sys/contrib/dev/acpica/components/events/evrgnini.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/events/evrgnini.c (revision 366562) @@ -1,770 +1,773 @@ /****************************************************************************** * * Module Name: evrgnini- ACPI AddressSpace (OpRegion) init * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #include #define _COMPONENT ACPI_EVENTS ACPI_MODULE_NAME ("evrgnini") /******************************************************************************* * * FUNCTION: AcpiEvSystemMemoryRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a SystemMemory operation region * ******************************************************************************/ ACPI_STATUS AcpiEvSystemMemoryRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_OPERAND_OBJECT *RegionDesc = (ACPI_OPERAND_OBJECT *) Handle; ACPI_MEM_SPACE_CONTEXT *LocalRegionContext; + ACPI_MEM_MAPPING *Mm; ACPI_FUNCTION_TRACE (EvSystemMemoryRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { if (*RegionContext) { LocalRegionContext = (ACPI_MEM_SPACE_CONTEXT *) *RegionContext; - /* Delete a cached mapping if present */ + /* Delete memory mappings if present */ - if (LocalRegionContext->MappedLength) + while (LocalRegionContext->FirstMm) { - AcpiOsUnmapMemory (LocalRegionContext->MappedLogicalAddress, - LocalRegionContext->MappedLength); + Mm = LocalRegionContext->FirstMm; + LocalRegionContext->FirstMm = Mm->NextMm; + AcpiOsUnmapMemory(Mm->LogicalAddress, Mm->Length); + ACPI_FREE(Mm); } ACPI_FREE (LocalRegionContext); *RegionContext = NULL; } return_ACPI_STATUS (AE_OK); } /* Create a new context */ LocalRegionContext = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_MEM_SPACE_CONTEXT)); if (!(LocalRegionContext)) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Save the region length and address for use in the handler */ LocalRegionContext->Length = RegionDesc->Region.Length; LocalRegionContext->Address = RegionDesc->Region.Address; *RegionContext = LocalRegionContext; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvIoSpaceRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a IO operation region * ******************************************************************************/ ACPI_STATUS AcpiEvIoSpaceRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvIoSpaceRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { *RegionContext = NULL; } else { *RegionContext = HandlerContext; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvPciConfigRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a PCI_Config operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvPciConfigRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_STATUS Status = AE_OK; UINT64 PciValue; ACPI_PCI_ID *PciId = *RegionContext; ACPI_OPERAND_OBJECT *HandlerObj; ACPI_NAMESPACE_NODE *ParentNode; ACPI_NAMESPACE_NODE *PciRootNode; ACPI_NAMESPACE_NODE *PciDeviceNode; ACPI_OPERAND_OBJECT *RegionObj = (ACPI_OPERAND_OBJECT *) Handle; ACPI_FUNCTION_TRACE (EvPciConfigRegionSetup); HandlerObj = RegionObj->Region.Handler; if (!HandlerObj) { /* * No installed handler. This shouldn't happen because the dispatch * routine checks before we get here, but we check again just in case. */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "Attempting to init a region %p, with no handler\n", RegionObj)); return_ACPI_STATUS (AE_NOT_EXIST); } *RegionContext = NULL; if (Function == ACPI_REGION_DEACTIVATE) { if (PciId) { ACPI_FREE (PciId); } return_ACPI_STATUS (Status); } ParentNode = RegionObj->Region.Node->Parent; /* * Get the _SEG and _BBN values from the device upon which the handler * is installed. * * We need to get the _SEG and _BBN objects relative to the PCI BUS device. * This is the device the handler has been registered to handle. */ /* * If the AddressSpace.Node is still pointing to the root, we need * to scan upward for a PCI Root bridge and re-associate the OpRegion * handlers with that device. */ if (HandlerObj->AddressSpace.Node == AcpiGbl_RootNode) { /* Start search from the parent object */ PciRootNode = ParentNode; while (PciRootNode != AcpiGbl_RootNode) { /* Get the _HID/_CID in order to detect a RootBridge */ if (AcpiEvIsPciRootBridge (PciRootNode)) { /* Install a handler for this PCI root bridge */ Status = AcpiInstallAddressSpaceHandler ( (ACPI_HANDLE) PciRootNode, ACPI_ADR_SPACE_PCI_CONFIG, ACPI_DEFAULT_HANDLER, NULL, NULL); if (ACPI_FAILURE (Status)) { if (Status == AE_SAME_HANDLER) { /* * It is OK if the handler is already installed on the * root bridge. Still need to return a context object * for the new PCI_Config operation region, however. */ } else { ACPI_EXCEPTION ((AE_INFO, Status, "Could not install PciConfig handler " "for Root Bridge %4.4s", AcpiUtGetNodeName (PciRootNode))); } } break; } PciRootNode = PciRootNode->Parent; } /* PCI root bridge not found, use namespace root node */ } else { PciRootNode = HandlerObj->AddressSpace.Node; } /* * If this region is now initialized, we are done. * (InstallAddressSpaceHandler could have initialized it) */ if (RegionObj->Region.Flags & AOPOBJ_SETUP_COMPLETE) { return_ACPI_STATUS (AE_OK); } /* Region is still not initialized. Create a new context */ PciId = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_PCI_ID)); if (!PciId) { return_ACPI_STATUS (AE_NO_MEMORY); } /* * For PCI_Config space access, we need the segment, bus, device and * function numbers. Acquire them here. * * Find the parent device object. (This allows the operation region to be * within a subscope under the device, such as a control method.) */ PciDeviceNode = RegionObj->Region.Node; while (PciDeviceNode && (PciDeviceNode->Type != ACPI_TYPE_DEVICE)) { PciDeviceNode = PciDeviceNode->Parent; } if (!PciDeviceNode) { ACPI_FREE (PciId); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * Get the PCI device and function numbers from the _ADR object * contained in the parent's scope. */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__ADR, PciDeviceNode, &PciValue); /* * The default is zero, and since the allocation above zeroed the data, * just do nothing on failure. */ if (ACPI_SUCCESS (Status)) { PciId->Device = ACPI_HIWORD (ACPI_LODWORD (PciValue)); PciId->Function = ACPI_LOWORD (ACPI_LODWORD (PciValue)); } /* The PCI segment number comes from the _SEG method */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__SEG, PciRootNode, &PciValue); if (ACPI_SUCCESS (Status)) { PciId->Segment = ACPI_LOWORD (PciValue); } /* The PCI bus number comes from the _BBN method */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__BBN, PciRootNode, &PciValue); if (ACPI_SUCCESS (Status)) { PciId->Bus = ACPI_LOWORD (PciValue); } /* Complete/update the PCI ID for this device */ Status = AcpiHwDerivePciId (PciId, PciRootNode, RegionObj->Region.Node); if (ACPI_FAILURE (Status)) { ACPI_FREE (PciId); return_ACPI_STATUS (Status); } *RegionContext = PciId; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvIsPciRootBridge * * PARAMETERS: Node - Device node being examined * * RETURN: TRUE if device is a PCI/PCI-Express Root Bridge * * DESCRIPTION: Determine if the input device represents a PCI Root Bridge by * examining the _HID and _CID for the device. * ******************************************************************************/ BOOLEAN AcpiEvIsPciRootBridge ( ACPI_NAMESPACE_NODE *Node) { ACPI_STATUS Status; ACPI_PNP_DEVICE_ID *Hid; ACPI_PNP_DEVICE_ID_LIST *Cid; UINT32 i; BOOLEAN Match; /* Get the _HID and check for a PCI Root Bridge */ Status = AcpiUtExecute_HID (Node, &Hid); if (ACPI_FAILURE (Status)) { return (FALSE); } Match = AcpiUtIsPciRootBridge (Hid->String); ACPI_FREE (Hid); if (Match) { return (TRUE); } /* The _HID did not match. Get the _CID and check for a PCI Root Bridge */ Status = AcpiUtExecute_CID (Node, &Cid); if (ACPI_FAILURE (Status)) { return (FALSE); } /* Check all _CIDs in the returned list */ for (i = 0; i < Cid->Count; i++) { if (AcpiUtIsPciRootBridge (Cid->Ids[i].String)) { ACPI_FREE (Cid); return (TRUE); } } ACPI_FREE (Cid); return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiEvPciBarRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a PciBAR operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvPciBarRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvPciBarRegionSetup); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvCmosRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a CMOS operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvCmosRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvCmosRegionSetup); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvDefaultRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Default region initialization * ******************************************************************************/ ACPI_STATUS AcpiEvDefaultRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvDefaultRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { *RegionContext = NULL; } else { *RegionContext = HandlerContext; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvInitializeRegion * * PARAMETERS: RegionObj - Region we are initializing * * RETURN: Status * * DESCRIPTION: Initializes the region, finds any _REG methods and saves them * for execution at a later time * * Get the appropriate address space handler for a newly * created region. * * This also performs address space specific initialization. For * example, PCI regions must have an _ADR object that contains * a PCI address in the scope of the definition. This address is * required to perform an access to PCI config space. * * MUTEX: Interpreter should be unlocked, because we may run the _REG * method for this region. * * NOTE: Possible incompliance: * There is a behavior conflict in automatic _REG execution: * 1. When the interpreter is evaluating a method, we can only * automatically run _REG for the following case: * Method(_REG, 2) {} * OperationRegion (OPR1, 0x80, 0x1000010, 0x4) * 2. When the interpreter is loading a table, we can also * automatically run _REG for the following case: * OperationRegion (OPR1, 0x80, 0x1000010, 0x4) * Method(_REG, 2) {} * Though this may not be compliant to the de-facto standard, the * logic is kept in order not to trigger regressions. And keeping * this logic should be taken care by the caller of this function. * ******************************************************************************/ ACPI_STATUS AcpiEvInitializeRegion ( ACPI_OPERAND_OBJECT *RegionObj) { ACPI_OPERAND_OBJECT *HandlerObj; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_ADR_SPACE_TYPE SpaceId; ACPI_NAMESPACE_NODE *Node; ACPI_FUNCTION_TRACE (EvInitializeRegion); if (!RegionObj) { return_ACPI_STATUS (AE_BAD_PARAMETER); } if (RegionObj->Common.Flags & AOPOBJ_OBJECT_INITIALIZED) { return_ACPI_STATUS (AE_OK); } RegionObj->Common.Flags |= AOPOBJ_OBJECT_INITIALIZED; Node = RegionObj->Region.Node->Parent; SpaceId = RegionObj->Region.SpaceId; /* * The following loop depends upon the root Node having no parent * ie: AcpiGbl_RootNode->Parent being set to NULL */ while (Node) { /* Check to see if a handler exists */ HandlerObj = NULL; ObjDesc = AcpiNsGetAttachedObject (Node); if (ObjDesc) { /* Can only be a handler if the object exists */ switch (Node->Type) { case ACPI_TYPE_DEVICE: case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: HandlerObj = ObjDesc->CommonNotify.Handler; break; default: /* Ignore other objects */ break; } HandlerObj = AcpiEvFindRegionHandler (SpaceId, HandlerObj); if (HandlerObj) { /* Found correct handler */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "Found handler %p for region %p in obj %p\n", HandlerObj, RegionObj, ObjDesc)); (void) AcpiEvAttachRegion (HandlerObj, RegionObj, FALSE); /* * Tell all users that this region is usable by * running the _REG method */ AcpiExExitInterpreter (); (void) AcpiEvExecuteRegMethod (RegionObj, ACPI_REG_CONNECT); AcpiExEnterInterpreter (); return_ACPI_STATUS (AE_OK); } } /* This node does not have the handler we need; Pop up one level */ Node = Node->Parent; } /* * If we get here, there is no handler for this region. This is not * fatal because many regions get created before a handler is installed * for said region. */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "No handler for RegionType %s(%X) (RegionObj %p)\n", AcpiUtGetRegionName (SpaceId), SpaceId, RegionObj)); return_ACPI_STATUS (AE_OK); } Index: head/sys/contrib/dev/acpica/components/executer/exregion.c =================================================================== --- head/sys/contrib/dev/acpica/components/executer/exregion.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/executer/exregion.c (revision 366562) @@ -1,686 +1,722 @@ /****************************************************************************** * * Module Name: exregion - ACPI default OpRegion (address space) handlers * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exregion") /******************************************************************************* * * FUNCTION: AcpiExSystemMemorySpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the System Memory address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExSystemMemorySpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; void *LogicalAddrPtr = NULL; ACPI_MEM_SPACE_CONTEXT *MemInfo = RegionContext; + ACPI_MEM_MAPPING *Mm = MemInfo->CurMm; UINT32 Length; ACPI_SIZE MapLength; ACPI_SIZE PageBoundaryMapLength; #ifdef ACPI_MISALIGNMENT_NOT_SUPPORTED UINT32 Remainder; #endif ACPI_FUNCTION_TRACE (ExSystemMemorySpaceHandler); /* Validate and translate the bit width */ switch (BitWidth) { case 8: Length = 1; break; case 16: Length = 2; break; case 32: Length = 4; break; case 64: Length = 8; break; default: ACPI_ERROR ((AE_INFO, "Invalid SystemMemory width %u", BitWidth)); return_ACPI_STATUS (AE_AML_OPERAND_VALUE); } #ifdef ACPI_MISALIGNMENT_NOT_SUPPORTED /* * Hardware does not support non-aligned data transfers, we must verify * the request. */ (void) AcpiUtShortDivide ((UINT64) Address, Length, NULL, &Remainder); if (Remainder != 0) { return_ACPI_STATUS (AE_AML_ALIGNMENT); } #endif /* * Does the request fit into the cached memory mapping? * Is 1) Address below the current mapping? OR * 2) Address beyond the current mapping? */ - if ((Address < MemInfo->MappedPhysicalAddress) || - (((UINT64) Address + Length) > - ((UINT64) - MemInfo->MappedPhysicalAddress + MemInfo->MappedLength))) + if (!Mm || (Address < Mm->PhysicalAddress) || + ((UINT64) Address + Length > (UINT64) Mm->PhysicalAddress + Mm->Length)) { /* - * The request cannot be resolved by the current memory mapping; - * Delete the existing mapping and create a new one. + * The request cannot be resolved by the current memory mapping. + * + * Look for an existing saved mapping covering the address range + * at hand. If found, save it as the current one and carry out + * the access. */ - if (MemInfo->MappedLength) + for (Mm = MemInfo->FirstMm; Mm; Mm = Mm->NextMm) { - /* Valid mapping, delete it */ + if (Mm == MemInfo->CurMm) + { + continue; + } - AcpiOsUnmapMemory (MemInfo->MappedLogicalAddress, - MemInfo->MappedLength); + if (Address < Mm->PhysicalAddress) + { + continue; + } + + if ((UINT64) Address + Length > (UINT64) Mm->PhysicalAddress + Mm->Length) + { + continue; + } + + MemInfo->CurMm = Mm; + goto access; } + /* Create a new mappings list entry */ + + Mm = ACPI_ALLOCATE_ZEROED(sizeof(*Mm)); + if (!Mm) + { + ACPI_ERROR((AE_INFO, + "Unable to save memory mapping at 0x%8.8X%8.8X, size %u", + ACPI_FORMAT_UINT64(Address), Length)); + return_ACPI_STATUS(AE_NO_MEMORY); + } + /* * October 2009: Attempt to map from the requested address to the * end of the region. However, we will never map more than one * page, nor will we cross a page boundary. */ MapLength = (ACPI_SIZE) ((MemInfo->Address + MemInfo->Length) - Address); /* * If mapping the entire remaining portion of the region will cross * a page boundary, just map up to the page boundary, do not cross. * On some systems, crossing a page boundary while mapping regions * can cause warnings if the pages have different attributes * due to resource management. * * This has the added benefit of constraining a single mapping to * one page, which is similar to the original code that used a 4k * maximum window. */ PageBoundaryMapLength = (ACPI_SIZE) (ACPI_ROUND_UP (Address, ACPI_DEFAULT_PAGE_SIZE) - Address); if (PageBoundaryMapLength == 0) { PageBoundaryMapLength = ACPI_DEFAULT_PAGE_SIZE; } if (MapLength > PageBoundaryMapLength) { MapLength = PageBoundaryMapLength; } /* Create a new mapping starting at the address given */ - MemInfo->MappedLogicalAddress = AcpiOsMapMemory (Address, MapLength); - if (!MemInfo->MappedLogicalAddress) + LogicalAddrPtr = AcpiOsMapMemory(Address, MapLength); + if (!LogicalAddrPtr) { ACPI_ERROR ((AE_INFO, "Could not map memory at 0x%8.8X%8.8X, size %u", ACPI_FORMAT_UINT64 (Address), (UINT32) MapLength)); - MemInfo->MappedLength = 0; + ACPI_FREE(Mm); return_ACPI_STATUS (AE_NO_MEMORY); } /* Save the physical address and mapping size */ - MemInfo->MappedPhysicalAddress = Address; - MemInfo->MappedLength = MapLength; + Mm->LogicalAddress = LogicalAddrPtr; + Mm->PhysicalAddress = Address; + Mm->Length = MapLength; + + /* + * Add the new entry to the mappigs list and save it as the + * current mapping. + */ + Mm->NextMm = MemInfo->FirstMm; + MemInfo->FirstMm = Mm; + MemInfo->CurMm = Mm; } +access: /* * Generate a logical pointer corresponding to the address we want to * access */ - LogicalAddrPtr = MemInfo->MappedLogicalAddress + - ((UINT64) Address - (UINT64) MemInfo->MappedPhysicalAddress); + LogicalAddrPtr = Mm->LogicalAddress + + ((UINT64) Address - (UINT64) Mm->PhysicalAddress); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "System-Memory (width %u) R/W %u Address=%8.8X%8.8X\n", BitWidth, Function, ACPI_FORMAT_UINT64 (Address))); /* * Perform the memory read or write * * Note: For machines that do not support non-aligned transfers, the target * address was checked for alignment above. We do not attempt to break the * transfer up into smaller (byte-size) chunks because the AML specifically * asked for a transfer width that the hardware may require. */ switch (Function) { case ACPI_READ: *Value = 0; switch (BitWidth) { case 8: *Value = (UINT64) ACPI_GET8 (LogicalAddrPtr); break; case 16: *Value = (UINT64) ACPI_GET16 (LogicalAddrPtr); break; case 32: *Value = (UINT64) ACPI_GET32 (LogicalAddrPtr); break; case 64: *Value = (UINT64) ACPI_GET64 (LogicalAddrPtr); break; default: /* BitWidth was already validated */ break; } break; case ACPI_WRITE: switch (BitWidth) { case 8: ACPI_SET8 (LogicalAddrPtr, *Value); break; case 16: ACPI_SET16 (LogicalAddrPtr, *Value); break; case 32: ACPI_SET32 (LogicalAddrPtr, *Value); break; case 64: ACPI_SET64 (LogicalAddrPtr, *Value); break; default: /* BitWidth was already validated */ break; } break; default: Status = AE_BAD_PARAMETER; break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExSystemIoSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the System IO address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExSystemIoSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; UINT32 Value32; ACPI_FUNCTION_TRACE (ExSystemIoSpaceHandler); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "System-IO (width %u) R/W %u Address=%8.8X%8.8X\n", BitWidth, Function, ACPI_FORMAT_UINT64 (Address))); /* Decode the function parameter */ switch (Function) { case ACPI_READ: Status = AcpiHwReadPort ((ACPI_IO_ADDRESS) Address, &Value32, BitWidth); *Value = Value32; break; case ACPI_WRITE: Status = AcpiHwWritePort ((ACPI_IO_ADDRESS) Address, (UINT32) *Value, BitWidth); break; default: Status = AE_BAD_PARAMETER; break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExPciConfigSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the PCI Config address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExPciConfigSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; ACPI_PCI_ID *PciId; UINT16 PciRegister; ACPI_FUNCTION_TRACE (ExPciConfigSpaceHandler); /* * The arguments to AcpiOs(Read|Write)PciConfiguration are: * * PciSegment is the PCI bus segment range 0-31 * PciBus is the PCI bus number range 0-255 * PciDevice is the PCI device number range 0-31 * PciFunction is the PCI device function number * PciRegister is the Config space register range 0-255 bytes * * Value - input value for write, output address for read * */ PciId = (ACPI_PCI_ID *) RegionContext; PciRegister = (UINT16) (UINT32) Address; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Pci-Config %u (%u) Seg(%04x) Bus(%04x) " "Dev(%04x) Func(%04x) Reg(%04x)\n", Function, BitWidth, PciId->Segment, PciId->Bus, PciId->Device, PciId->Function, PciRegister)); switch (Function) { case ACPI_READ: *Value = 0; Status = AcpiOsReadPciConfiguration ( PciId, PciRegister, Value, BitWidth); break; case ACPI_WRITE: Status = AcpiOsWritePciConfiguration ( PciId, PciRegister, *Value, BitWidth); break; default: Status = AE_BAD_PARAMETER; break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExCmosSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the CMOS address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExCmosSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (ExCmosSpaceHandler); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExPciBarSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the PCI BarTarget address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExPciBarSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (ExPciBarSpaceHandler); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExDataTableSpaceHandler * * PARAMETERS: Function - Read or Write operation * Address - Where in the space to read or write * BitWidth - Field width in bits (8, 16, or 32) * Value - Pointer to in or out value * HandlerContext - Pointer to Handler's context * RegionContext - Pointer to context specific to the * accessed region * * RETURN: Status * * DESCRIPTION: Handler for the Data Table address space (Op Region) * ******************************************************************************/ ACPI_STATUS AcpiExDataTableSpaceHandler ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext) { ACPI_FUNCTION_TRACE (ExDataTableSpaceHandler); /* * Perform the memory read or write. The BitWidth was already * validated. */ switch (Function) { case ACPI_READ: memcpy (ACPI_CAST_PTR (char, Value), ACPI_PHYSADDR_TO_PTR (Address), ACPI_DIV_8 (BitWidth)); break; case ACPI_WRITE: memcpy (ACPI_PHYSADDR_TO_PTR (Address), ACPI_CAST_PTR (char, Value), ACPI_DIV_8 (BitWidth)); break; default: return_ACPI_STATUS (AE_BAD_PARAMETER); } return_ACPI_STATUS (AE_OK); } Index: head/sys/contrib/dev/acpica/components/namespace/nsalloc.c =================================================================== --- head/sys/contrib/dev/acpica/components/namespace/nsalloc.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/namespace/nsalloc.c (revision 366562) @@ -1,708 +1,708 @@ /******************************************************************************* * * Module Name: nsalloc - Namespace allocation and deletion utilities * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsalloc") /******************************************************************************* * * FUNCTION: AcpiNsCreateNode * * PARAMETERS: Name - Name of the new node (4 char ACPI name) * * RETURN: New namespace node (Null on failure) * * DESCRIPTION: Create a namespace node * ******************************************************************************/ ACPI_NAMESPACE_NODE * AcpiNsCreateNode ( UINT32 Name) { ACPI_NAMESPACE_NODE *Node; #ifdef ACPI_DBG_TRACK_ALLOCATIONS UINT32 Temp; #endif ACPI_FUNCTION_TRACE (NsCreateNode); Node = AcpiOsAcquireObject (AcpiGbl_NamespaceCache); if (!Node) { return_PTR (NULL); } ACPI_MEM_TRACKING (AcpiGbl_NsNodeList->TotalAllocated++); #ifdef ACPI_DBG_TRACK_ALLOCATIONS Temp = AcpiGbl_NsNodeList->TotalAllocated - AcpiGbl_NsNodeList->TotalFreed; if (Temp > AcpiGbl_NsNodeList->MaxOccupied) { AcpiGbl_NsNodeList->MaxOccupied = Temp; } #endif Node->Name.Integer = Name; ACPI_SET_DESCRIPTOR_TYPE (Node, ACPI_DESC_TYPE_NAMED); return_PTR (Node); } /******************************************************************************* * * FUNCTION: AcpiNsDeleteNode * * PARAMETERS: Node - Node to be deleted * * RETURN: None * * DESCRIPTION: Delete a namespace node. All node deletions must come through * here. Detaches any attached objects, including any attached * data. If a handler is associated with attached data, it is * invoked before the node is deleted. * ******************************************************************************/ void AcpiNsDeleteNode ( ACPI_NAMESPACE_NODE *Node) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_OPERAND_OBJECT *NextDesc; ACPI_FUNCTION_NAME (NsDeleteNode); if (!Node) { return_VOID; } /* Detach an object if there is one */ AcpiNsDetachObject (Node); /* * Delete an attached data object list if present (objects that were * attached via AcpiAttachData). Note: After any normal object is * detached above, the only possible remaining object(s) are data * objects, in a linked list. */ ObjDesc = Node->Object; while (ObjDesc && (ObjDesc->Common.Type == ACPI_TYPE_LOCAL_DATA)) { /* Invoke the attached data deletion handler if present */ if (ObjDesc->Data.Handler) { ObjDesc->Data.Handler (Node, ObjDesc->Data.Pointer); } NextDesc = ObjDesc->Common.NextObject; AcpiUtRemoveReference (ObjDesc); ObjDesc = NextDesc; } /* Special case for the statically allocated root node */ if (Node == AcpiGbl_RootNode) { return; } /* Now we can delete the node */ (void) AcpiOsReleaseObject (AcpiGbl_NamespaceCache, Node); ACPI_MEM_TRACKING (AcpiGbl_NsNodeList->TotalFreed++); ACPI_DEBUG_PRINT ((ACPI_DB_ALLOCATIONS, "Node %p, Remaining %X\n", Node, AcpiGbl_CurrentNodeCount)); } /******************************************************************************* * * FUNCTION: AcpiNsRemoveNode * * PARAMETERS: Node - Node to be removed/deleted * * RETURN: None * * DESCRIPTION: Remove (unlink) and delete a namespace node * ******************************************************************************/ void AcpiNsRemoveNode ( ACPI_NAMESPACE_NODE *Node) { ACPI_NAMESPACE_NODE *ParentNode; ACPI_NAMESPACE_NODE *PrevNode; ACPI_NAMESPACE_NODE *NextNode; ACPI_FUNCTION_TRACE_PTR (NsRemoveNode, Node); ParentNode = Node->Parent; PrevNode = NULL; NextNode = ParentNode->Child; /* Find the node that is the previous peer in the parent's child list */ while (NextNode != Node) { PrevNode = NextNode; NextNode = NextNode->Peer; } if (PrevNode) { /* Node is not first child, unlink it */ PrevNode->Peer = Node->Peer; } else { /* * Node is first child (has no previous peer). * Link peer list to parent */ ParentNode->Child = Node->Peer; } /* Delete the node and any attached objects */ AcpiNsDeleteNode (Node); return_VOID; } /******************************************************************************* * * FUNCTION: AcpiNsInstallNode * * PARAMETERS: WalkState - Current state of the walk * ParentNode - The parent of the new Node * Node - The new Node to install * Type - ACPI object type of the new Node * * RETURN: None * * DESCRIPTION: Initialize a new namespace node and install it amongst * its peers. * * Note: Current namespace lookup is linear search. This appears * to be sufficient as namespace searches consume only a small * fraction of the execution time of the ACPI subsystem. * ******************************************************************************/ void AcpiNsInstallNode ( ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *ParentNode, /* Parent */ ACPI_NAMESPACE_NODE *Node, /* New Child*/ ACPI_OBJECT_TYPE Type) { ACPI_OWNER_ID OwnerId = 0; ACPI_NAMESPACE_NODE *ChildNode; ACPI_FUNCTION_TRACE (NsInstallNode); if (WalkState) { /* * Get the owner ID from the Walk state. The owner ID is used to * track table deletion and deletion of objects created by methods. */ OwnerId = WalkState->OwnerId; if ((WalkState->MethodDesc) && (ParentNode != WalkState->MethodNode)) { /* * A method is creating a new node that is not a child of the * method (it is non-local). Mark the executing method as having * modified the namespace. This is used for cleanup when the * method exits. */ WalkState->MethodDesc->Method.InfoFlags |= ACPI_METHOD_MODIFIED_NAMESPACE; } } /* Link the new entry into the parent and existing children */ Node->Peer = NULL; Node->Parent = ParentNode; ChildNode = ParentNode->Child; if (!ChildNode) { ParentNode->Child = Node; } else { /* Add node to the end of the peer list */ while (ChildNode->Peer) { ChildNode = ChildNode->Peer; } ChildNode->Peer = Node; } /* Init the new entry */ Node->OwnerId = OwnerId; Node->Type = (UINT8) Type; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "%4.4s (%s) [Node %p Owner %3.3X] added to %4.4s (%s) [Node %p]\n", AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type), Node, OwnerId, AcpiUtGetNodeName (ParentNode), AcpiUtGetTypeName (ParentNode->Type), ParentNode)); return_VOID; } /******************************************************************************* * * FUNCTION: AcpiNsDeleteChildren * * PARAMETERS: ParentNode - Delete this objects children * * RETURN: None. * * DESCRIPTION: Delete all children of the parent object. In other words, * deletes a "scope". * ******************************************************************************/ void AcpiNsDeleteChildren ( ACPI_NAMESPACE_NODE *ParentNode) { ACPI_NAMESPACE_NODE *NextNode; ACPI_NAMESPACE_NODE *NodeToDelete; ACPI_FUNCTION_TRACE_PTR (NsDeleteChildren, ParentNode); if (!ParentNode) { return_VOID; } /* Deallocate all children at this level */ NextNode = ParentNode->Child; while (NextNode) { /* Grandchildren should have all been deleted already */ if (NextNode->Child) { ACPI_ERROR ((AE_INFO, "Found a grandchild! P=%p C=%p", ParentNode, NextNode)); } /* * Delete this child node and move on to the next child in the list. * No need to unlink the node since we are deleting the entire branch. */ NodeToDelete = NextNode; NextNode = NextNode->Peer; AcpiNsDeleteNode (NodeToDelete); - }; + } /* Clear the parent's child pointer */ ParentNode->Child = NULL; return_VOID; } /******************************************************************************* * * FUNCTION: AcpiNsDeleteNamespaceSubtree * * PARAMETERS: ParentNode - Root of the subtree to be deleted * * RETURN: None. * * DESCRIPTION: Delete a subtree of the namespace. This includes all objects * stored within the subtree. * ******************************************************************************/ void AcpiNsDeleteNamespaceSubtree ( ACPI_NAMESPACE_NODE *ParentNode) { ACPI_NAMESPACE_NODE *ChildNode = NULL; UINT32 Level = 1; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsDeleteNamespaceSubtree); if (!ParentNode) { return_VOID; } /* Lock namespace for possible update */ Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_VOID; } /* * Traverse the tree of objects until we bubble back up * to where we started. */ while (Level > 0) { /* Get the next node in this scope (NULL if none) */ ChildNode = AcpiNsGetNextNode (ParentNode, ChildNode); if (ChildNode) { /* Found a child node - detach any attached object */ AcpiNsDetachObject (ChildNode); /* Check if this node has any children */ if (ChildNode->Child) { /* * There is at least one child of this node, * visit the node */ Level++; ParentNode = ChildNode; ChildNode = NULL; } } else { /* * No more children of this parent node. * Move up to the grandparent. */ Level--; /* * Now delete all of the children of this parent * all at the same time. */ AcpiNsDeleteChildren (ParentNode); /* New "last child" is this parent node */ ChildNode = ParentNode; /* Move up the tree to the grandparent */ ParentNode = ParentNode->Parent; } } (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return_VOID; } /******************************************************************************* * * FUNCTION: AcpiNsDeleteNamespaceByOwner * * PARAMETERS: OwnerId - All nodes with this owner will be deleted * * RETURN: Status * * DESCRIPTION: Delete entries within the namespace that are owned by a * specific ID. Used to delete entire ACPI tables. All * reference counts are updated. * * MUTEX: Locks namespace during deletion walk. * ******************************************************************************/ void AcpiNsDeleteNamespaceByOwner ( ACPI_OWNER_ID OwnerId) { ACPI_NAMESPACE_NODE *ChildNode; ACPI_NAMESPACE_NODE *DeletionNode; ACPI_NAMESPACE_NODE *ParentNode; UINT32 Level; ACPI_STATUS Status; ACPI_FUNCTION_TRACE_U32 (NsDeleteNamespaceByOwner, OwnerId); if (OwnerId == 0) { return_VOID; } /* Lock namespace for possible update */ Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_VOID; } DeletionNode = NULL; ParentNode = AcpiGbl_RootNode; ChildNode = NULL; Level = 1; /* * Traverse the tree of nodes until we bubble back up * to where we started. */ while (Level > 0) { /* * Get the next child of this parent node. When ChildNode is NULL, * the first child of the parent is returned */ ChildNode = AcpiNsGetNextNode (ParentNode, ChildNode); if (DeletionNode) { AcpiNsDeleteChildren (DeletionNode); AcpiNsRemoveNode (DeletionNode); DeletionNode = NULL; } if (ChildNode) { if (ChildNode->OwnerId == OwnerId) { /* Found a matching child node - detach any attached object */ AcpiNsDetachObject (ChildNode); } /* Check if this node has any children */ if (ChildNode->Child) { /* * There is at least one child of this node, * visit the node */ Level++; ParentNode = ChildNode; ChildNode = NULL; } else if (ChildNode->OwnerId == OwnerId) { DeletionNode = ChildNode; } } else { /* * No more children of this parent node. * Move up to the grandparent. */ Level--; if (Level != 0) { if (ParentNode->OwnerId == OwnerId) { DeletionNode = ParentNode; } } /* New "last child" is this parent node */ ChildNode = ParentNode; /* Move up the tree to the grandparent */ ParentNode = ParentNode->Parent; } } (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return_VOID; } Index: head/sys/contrib/dev/acpica/components/namespace/nsarguments.c =================================================================== --- head/sys/contrib/dev/acpica/components/namespace/nsarguments.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/namespace/nsarguments.c (revision 366562) @@ -1,427 +1,429 @@ /****************************************************************************** * * Module Name: nsarguments - Validation of args for ACPI predefined methods * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #include #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsarguments") /******************************************************************************* * * FUNCTION: AcpiNsCheckArgumentTypes * * PARAMETERS: Info - Method execution information block * * RETURN: None * * DESCRIPTION: Check the incoming argument count and all argument types * against the argument type list for a predefined name. * ******************************************************************************/ void AcpiNsCheckArgumentTypes ( ACPI_EVALUATE_INFO *Info) { UINT16 ArgTypeList; UINT8 ArgCount; UINT8 ArgType; UINT8 UserArgType; UINT32 i; /* * If not a predefined name, cannot typecheck args, because * we have no idea what argument types are expected. * Also, ignore typecheck if warnings/errors if this method * has already been evaluated at least once -- in order * to suppress repetitive messages. */ if (!Info->Predefined || (Info->Node->Flags & ANOBJ_EVALUATED)) { return; } ArgTypeList = Info->Predefined->Info.ArgumentList; ArgCount = METHOD_GET_ARG_COUNT (ArgTypeList); /* Typecheck all arguments */ for (i = 0; ((i < ArgCount) && (i < Info->ParamCount)); i++) { ArgType = METHOD_GET_NEXT_TYPE (ArgTypeList); UserArgType = Info->Parameters[i]->Common.Type; - if (UserArgType != ArgType) + /* No typechecking for ACPI_TYPE_ANY */ + + if ((UserArgType != ArgType) && (ArgType != ACPI_TYPE_ANY)) { ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, ACPI_WARN_ALWAYS, "Argument #%u type mismatch - " "Found [%s], ACPI requires [%s]", (i + 1), AcpiUtGetTypeName (UserArgType), AcpiUtGetTypeName (ArgType))); /* Prevent any additional typechecking for this method */ Info->Node->Flags |= ANOBJ_EVALUATED; } } } /******************************************************************************* * * FUNCTION: AcpiNsCheckAcpiCompliance * * PARAMETERS: Pathname - Full pathname to the node (for error msgs) * Node - Namespace node for the method/object * Predefined - Pointer to entry in predefined name table * * RETURN: None * * DESCRIPTION: Check that the declared parameter count (in ASL/AML) for a * predefined name is what is expected (matches what is defined in * the ACPI specification for this predefined name.) * ******************************************************************************/ void AcpiNsCheckAcpiCompliance ( char *Pathname, ACPI_NAMESPACE_NODE *Node, const ACPI_PREDEFINED_INFO *Predefined) { UINT32 AmlParamCount; UINT32 RequiredParamCount; if (!Predefined || (Node->Flags & ANOBJ_EVALUATED)) { return; } /* Get the ACPI-required arg count from the predefined info table */ RequiredParamCount = METHOD_GET_ARG_COUNT (Predefined->Info.ArgumentList); /* * If this object is not a control method, we can check if the ACPI * spec requires that it be a method. */ if (Node->Type != ACPI_TYPE_METHOD) { if (RequiredParamCount > 0) { /* Object requires args, must be implemented as a method */ ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Object (%s) must be a control method with %u arguments", AcpiUtGetTypeName (Node->Type), RequiredParamCount)); } else if (!RequiredParamCount && !Predefined->Info.ExpectedBtypes) { /* Object requires no args and no return value, must be a method */ ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Object (%s) must be a control method " "with no arguments and no return value", AcpiUtGetTypeName (Node->Type))); } return; } /* * This is a control method. * Check that the ASL/AML-defined parameter count for this method * matches the ACPI-required parameter count * * Some methods are allowed to have a "minimum" number of args (_SCP) * because their definition in ACPI has changed over time. * * Note: These are BIOS errors in the declaration of the object */ AmlParamCount = Node->Object->Method.ParamCount; if (AmlParamCount < RequiredParamCount) { ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Insufficient arguments - " "ASL declared %u, ACPI requires %u", AmlParamCount, RequiredParamCount)); } else if ((AmlParamCount > RequiredParamCount) && !(Predefined->Info.ArgumentList & ARG_COUNT_IS_MINIMUM)) { ACPI_BIOS_ERROR_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Excess arguments - " "ASL declared %u, ACPI requires %u", AmlParamCount, RequiredParamCount)); } } /******************************************************************************* * * FUNCTION: AcpiNsCheckArgumentCount * * PARAMETERS: Pathname - Full pathname to the node (for error msgs) * Node - Namespace node for the method/object * UserParamCount - Number of args passed in by the caller * Predefined - Pointer to entry in predefined name table * * RETURN: None * * DESCRIPTION: Check that incoming argument count matches the declared * parameter count (in the ASL/AML) for an object. * ******************************************************************************/ void AcpiNsCheckArgumentCount ( char *Pathname, ACPI_NAMESPACE_NODE *Node, UINT32 UserParamCount, const ACPI_PREDEFINED_INFO *Predefined) { UINT32 AmlParamCount; UINT32 RequiredParamCount; if (Node->Flags & ANOBJ_EVALUATED) { return; } if (!Predefined) { /* * Not a predefined name. Check the incoming user argument count * against the count that is specified in the method/object. */ if (Node->Type != ACPI_TYPE_METHOD) { if (UserParamCount) { ACPI_INFO_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "%u arguments were passed to a non-method ACPI object (%s)", UserParamCount, AcpiUtGetTypeName (Node->Type))); } return; } /* * This is a control method. Check the parameter count. * We can only check the incoming argument count against the * argument count declared for the method in the ASL/AML. * * Emit a message if too few or too many arguments have been passed * by the caller. * * Note: Too many arguments will not cause the method to * fail. However, the method will fail if there are too few * arguments and the method attempts to use one of the missing ones. */ AmlParamCount = Node->Object->Method.ParamCount; if (UserParamCount < AmlParamCount) { ACPI_WARN_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Insufficient arguments - " "Caller passed %u, method requires %u", UserParamCount, AmlParamCount)); } else if (UserParamCount > AmlParamCount) { ACPI_INFO_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Excess arguments - " "Caller passed %u, method requires %u", UserParamCount, AmlParamCount)); } return; } /* * This is a predefined name. Validate the user-supplied parameter * count against the ACPI specification. We don't validate against * the method itself because what is important here is that the * caller is in conformance with the spec. (The arg count for the * method was checked against the ACPI spec earlier.) * * Some methods are allowed to have a "minimum" number of args (_SCP) * because their definition in ACPI has changed over time. */ RequiredParamCount = METHOD_GET_ARG_COUNT (Predefined->Info.ArgumentList); if (UserParamCount < RequiredParamCount) { ACPI_WARN_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Insufficient arguments - " "Caller passed %u, ACPI requires %u", UserParamCount, RequiredParamCount)); } else if ((UserParamCount > RequiredParamCount) && !(Predefined->Info.ArgumentList & ARG_COUNT_IS_MINIMUM)) { ACPI_INFO_PREDEFINED ((AE_INFO, Pathname, ACPI_WARN_ALWAYS, "Excess arguments - " "Caller passed %u, ACPI requires %u", UserParamCount, RequiredParamCount)); } } Index: head/sys/contrib/dev/acpica/components/namespace/nsxfobj.c =================================================================== --- head/sys/contrib/dev/acpica/components/namespace/nsxfobj.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/namespace/nsxfobj.c (revision 366562) @@ -1,388 +1,389 @@ /******************************************************************************* * * Module Name: nsxfobj - Public interfaces to the ACPI subsystem * ACPI Object oriented interfaces * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #define EXPORT_ACPI_INTERFACES #include #include #include #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsxfobj") /******************************************************************************* * * FUNCTION: AcpiGetType * * PARAMETERS: Handle - Handle of object whose type is desired * RetType - Where the type will be placed * * RETURN: Status * - * DESCRIPTION: This routine returns the type associatd with a particular handle + * DESCRIPTION: This routine returns the type associated with a particular + * handle * ******************************************************************************/ ACPI_STATUS AcpiGetType ( ACPI_HANDLE Handle, ACPI_OBJECT_TYPE *RetType) { ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; /* Parameter Validation */ if (!RetType) { return (AE_BAD_PARAMETER); } /* Special case for the predefined Root Node (return type ANY) */ if (Handle == ACPI_ROOT_OBJECT) { *RetType = ACPI_TYPE_ANY; return (AE_OK); } Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return (Status); } /* Convert and validate the handle */ Node = AcpiNsValidateHandle (Handle); if (!Node) { (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return (AE_BAD_PARAMETER); } *RetType = Node->Type; Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return (Status); } ACPI_EXPORT_SYMBOL (AcpiGetType) /******************************************************************************* * * FUNCTION: AcpiGetParent * * PARAMETERS: Handle - Handle of object whose parent is desired * RetHandle - Where the parent handle will be placed * * RETURN: Status * * DESCRIPTION: Returns a handle to the parent of the object represented by * Handle. * ******************************************************************************/ ACPI_STATUS AcpiGetParent ( ACPI_HANDLE Handle, ACPI_HANDLE *RetHandle) { ACPI_NAMESPACE_NODE *Node; ACPI_NAMESPACE_NODE *ParentNode; ACPI_STATUS Status; if (!RetHandle) { return (AE_BAD_PARAMETER); } /* Special case for the predefined Root Node (no parent) */ if (Handle == ACPI_ROOT_OBJECT) { return (AE_NULL_ENTRY); } Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return (Status); } /* Convert and validate the handle */ Node = AcpiNsValidateHandle (Handle); if (!Node) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } /* Get the parent entry */ ParentNode = Node->Parent; *RetHandle = ACPI_CAST_PTR (ACPI_HANDLE, ParentNode); /* Return exception if parent is null */ if (!ParentNode) { Status = AE_NULL_ENTRY; } UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return (Status); } ACPI_EXPORT_SYMBOL (AcpiGetParent) /******************************************************************************* * * FUNCTION: AcpiGetNextObject * * PARAMETERS: Type - Type of object to be searched for * Parent - Parent object whose children we are getting * LastChild - Previous child that was found. * The NEXT child will be returned * RetHandle - Where handle to the next object is placed * * RETURN: Status * * DESCRIPTION: Return the next peer object within the namespace. If Handle is * valid, Scope is ignored. Otherwise, the first object within * Scope is returned. * ******************************************************************************/ ACPI_STATUS AcpiGetNextObject ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE Parent, ACPI_HANDLE Child, ACPI_HANDLE *RetHandle) { ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node; ACPI_NAMESPACE_NODE *ParentNode = NULL; ACPI_NAMESPACE_NODE *ChildNode = NULL; /* Parameter validation */ if (Type > ACPI_TYPE_EXTERNAL_MAX) { return (AE_BAD_PARAMETER); } Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return (Status); } /* If null handle, use the parent */ if (!Child) { /* Start search at the beginning of the specified scope */ ParentNode = AcpiNsValidateHandle (Parent); if (!ParentNode) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } } else { /* Non-null handle, ignore the parent */ /* Convert and validate the handle */ ChildNode = AcpiNsValidateHandle (Child); if (!ChildNode) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } } /* Internal function does the real work */ Node = AcpiNsGetNextNodeTyped (Type, ParentNode, ChildNode); if (!Node) { Status = AE_NOT_FOUND; goto UnlockAndExit; } if (RetHandle) { *RetHandle = ACPI_CAST_PTR (ACPI_HANDLE, Node); } UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return (Status); } ACPI_EXPORT_SYMBOL (AcpiGetNextObject) Index: head/sys/contrib/dev/acpica/components/parser/psparse.c =================================================================== --- head/sys/contrib/dev/acpica/components/parser/psparse.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/parser/psparse.c (revision 366562) @@ -1,843 +1,843 @@ /****************************************************************************** * * Module Name: psparse - Parser top level AML parse routines * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ /* * Parse the AML and build an operation tree as most interpreters, * like Perl, do. Parsing is done by hand rather than with a YACC * generated parser to tightly constrain stack and dynamic memory * usage. At the same time, parsing is kept flexible and the code * fairly compact by parsing based on a list of AML opcode * templates in AmlOpInfo[] */ #include #include #include #include #include #include #include #define _COMPONENT ACPI_PARSER ACPI_MODULE_NAME ("psparse") /******************************************************************************* * * FUNCTION: AcpiPsGetOpcodeSize * * PARAMETERS: Opcode - An AML opcode * * RETURN: Size of the opcode, in bytes (1 or 2) * * DESCRIPTION: Get the size of the current opcode. * ******************************************************************************/ UINT32 AcpiPsGetOpcodeSize ( UINT32 Opcode) { /* Extended (2-byte) opcode if > 255 */ if (Opcode > 0x00FF) { return (2); } /* Otherwise, just a single byte opcode */ return (1); } /******************************************************************************* * * FUNCTION: AcpiPsPeekOpcode * * PARAMETERS: ParserState - A parser state object * * RETURN: Next AML opcode * * DESCRIPTION: Get next AML opcode (without incrementing AML pointer) * ******************************************************************************/ UINT16 AcpiPsPeekOpcode ( ACPI_PARSE_STATE *ParserState) { UINT8 *Aml; UINT16 Opcode; Aml = ParserState->Aml; Opcode = (UINT16) ACPI_GET8 (Aml); if (Opcode == AML_EXTENDED_PREFIX) { /* Extended opcode, get the second opcode byte */ Aml++; Opcode = (UINT16) ((Opcode << 8) | ACPI_GET8 (Aml)); } return (Opcode); } /******************************************************************************* * * FUNCTION: AcpiPsCompleteThisOp * * PARAMETERS: WalkState - Current State * Op - Op to complete * * RETURN: Status * * DESCRIPTION: Perform any cleanup at the completion of an Op. * ******************************************************************************/ ACPI_STATUS AcpiPsCompleteThisOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *Prev; ACPI_PARSE_OBJECT *Next; const ACPI_OPCODE_INFO *ParentInfo; ACPI_PARSE_OBJECT *ReplacementOp = NULL; ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE_PTR (PsCompleteThisOp, Op); /* Check for null Op, can happen if AML code is corrupt */ if (!Op) { return_ACPI_STATUS (AE_OK); /* OK for now */ } AcpiExStopTraceOpcode (Op, WalkState); /* Delete this op and the subtree below it if asked to */ if (((WalkState->ParseFlags & ACPI_PARSE_TREE_MASK) != ACPI_PARSE_DELETE_TREE) || (WalkState->OpInfo->Class == AML_CLASS_ARGUMENT)) { return_ACPI_STATUS (AE_OK); } /* Make sure that we only delete this subtree */ if (Op->Common.Parent) { Prev = Op->Common.Parent->Common.Value.Arg; if (!Prev) { /* Nothing more to do */ goto Cleanup; } /* * Check if we need to replace the operator and its subtree * with a return value op (placeholder op) */ ParentInfo = AcpiPsGetOpcodeInfo (Op->Common.Parent->Common.AmlOpcode); switch (ParentInfo->Class) { case AML_CLASS_CONTROL: break; case AML_CLASS_CREATE: /* * These opcodes contain TermArg operands. The current * op must be replaced by a placeholder return op */ ReplacementOp = AcpiPsAllocOp ( AML_INT_RETURN_VALUE_OP, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } break; case AML_CLASS_NAMED_OBJECT: /* * These opcodes contain TermArg operands. The current * op must be replaced by a placeholder return op */ if ((Op->Common.Parent->Common.AmlOpcode == AML_REGION_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_DATA_REGION_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_BUFFER_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_BANK_FIELD_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_VARIABLE_PACKAGE_OP)) { ReplacementOp = AcpiPsAllocOp ( AML_INT_RETURN_VALUE_OP, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } } else if ((Op->Common.Parent->Common.AmlOpcode == AML_NAME_OP) && (WalkState->PassNumber <= ACPI_IMODE_LOAD_PASS2)) { if ((Op->Common.AmlOpcode == AML_BUFFER_OP) || (Op->Common.AmlOpcode == AML_PACKAGE_OP) || (Op->Common.AmlOpcode == AML_VARIABLE_PACKAGE_OP)) { ReplacementOp = AcpiPsAllocOp (Op->Common.AmlOpcode, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } else { ReplacementOp->Named.Data = Op->Named.Data; ReplacementOp->Named.Length = Op->Named.Length; } } } break; default: ReplacementOp = AcpiPsAllocOp ( AML_INT_RETURN_VALUE_OP, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } } /* We must unlink this op from the parent tree */ if (Prev == Op) { /* This op is the first in the list */ if (ReplacementOp) { ReplacementOp->Common.Parent = Op->Common.Parent; ReplacementOp->Common.Value.Arg = NULL; ReplacementOp->Common.Node = Op->Common.Node; Op->Common.Parent->Common.Value.Arg = ReplacementOp; ReplacementOp->Common.Next = Op->Common.Next; } else { Op->Common.Parent->Common.Value.Arg = Op->Common.Next; } } /* Search the parent list */ else while (Prev) { /* Traverse all siblings in the parent's argument list */ Next = Prev->Common.Next; if (Next == Op) { if (ReplacementOp) { ReplacementOp->Common.Parent = Op->Common.Parent; ReplacementOp->Common.Value.Arg = NULL; ReplacementOp->Common.Node = Op->Common.Node; Prev->Common.Next = ReplacementOp; ReplacementOp->Common.Next = Op->Common.Next; Next = NULL; } else { Prev->Common.Next = Op->Common.Next; Next = NULL; } } Prev = Next; } } Cleanup: /* Now we can actually delete the subtree rooted at Op */ AcpiPsDeleteParseTree (Op); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiPsNextParseState * * PARAMETERS: WalkState - Current state * Op - Current parse op * CallbackStatus - Status from previous operation * * RETURN: Status * * DESCRIPTION: Update the parser state based upon the return exception from * the parser callback. * ******************************************************************************/ ACPI_STATUS AcpiPsNextParseState ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, ACPI_STATUS CallbackStatus) { ACPI_PARSE_STATE *ParserState = &WalkState->ParserState; ACPI_STATUS Status = AE_CTRL_PENDING; ACPI_FUNCTION_TRACE_PTR (PsNextParseState, Op); switch (CallbackStatus) { case AE_CTRL_TERMINATE: /* * A control method was terminated via a RETURN statement. * The walk of this method is complete. */ ParserState->Aml = ParserState->AmlEnd; Status = AE_CTRL_TERMINATE; break; case AE_CTRL_BREAK: ParserState->Aml = WalkState->AmlLastWhile; WalkState->ControlState->Common.Value = FALSE; Status = AE_CTRL_BREAK; break; case AE_CTRL_CONTINUE: ParserState->Aml = WalkState->AmlLastWhile; Status = AE_CTRL_CONTINUE; break; case AE_CTRL_PENDING: ParserState->Aml = WalkState->AmlLastWhile; break; #if 0 case AE_CTRL_SKIP: ParserState->Aml = ParserState->Scope->ParseScope.PkgEnd; Status = AE_OK; break; #endif case AE_CTRL_TRUE: /* * Predicate of an IF was true, and we are at the matching ELSE. * Just close out this package */ ParserState->Aml = AcpiPsGetNextPackageEnd (ParserState); Status = AE_CTRL_PENDING; break; case AE_CTRL_FALSE: /* * Either an IF/WHILE Predicate was false or we encountered a BREAK * opcode. In both cases, we do not execute the rest of the * package; We simply close out the parent (finishing the walk of * this branch of the tree) and continue execution at the parent * level. */ ParserState->Aml = ParserState->Scope->ParseScope.PkgEnd; /* In the case of a BREAK, just force a predicate (if any) to FALSE */ WalkState->ControlState->Common.Value = FALSE; Status = AE_CTRL_END; break; case AE_CTRL_TRANSFER: /* A method call (invocation) -- transfer control */ Status = AE_CTRL_TRANSFER; WalkState->PrevOp = Op; WalkState->MethodCallOp = Op; WalkState->MethodCallNode = (Op->Common.Value.Arg)->Common.Node; /* Will return value (if any) be used by the caller? */ WalkState->ReturnUsed = AcpiDsIsResultUsed (Op, WalkState); break; default: Status = CallbackStatus; if ((CallbackStatus & AE_CODE_MASK) == AE_CODE_CONTROL) { Status = AE_OK; } break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiPsParseAml * * PARAMETERS: WalkState - Current state * * * RETURN: Status * * DESCRIPTION: Parse raw AML and return a tree of ops * ******************************************************************************/ ACPI_STATUS AcpiPsParseAml ( ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status; ACPI_THREAD_STATE *Thread; ACPI_THREAD_STATE *PrevWalkList = AcpiGbl_CurrentWalkList; ACPI_WALK_STATE *PreviousWalkState; ACPI_FUNCTION_TRACE (PsParseAml); ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Entered with WalkState=%p Aml=%p size=%X\n", WalkState, WalkState->ParserState.Aml, WalkState->ParserState.AmlSize)); if (!WalkState->ParserState.Aml) { return_ACPI_STATUS (AE_BAD_ADDRESS); } /* Create and initialize a new thread state */ Thread = AcpiUtCreateThreadState (); if (!Thread) { if (WalkState->MethodDesc) { /* Executing a control method - additional cleanup */ AcpiDsTerminateControlMethod (WalkState->MethodDesc, WalkState); } AcpiDsDeleteWalkState (WalkState); return_ACPI_STATUS (AE_NO_MEMORY); } WalkState->Thread = Thread; /* * If executing a method, the starting SyncLevel is this method's * SyncLevel */ if (WalkState->MethodDesc) { WalkState->Thread->CurrentSyncLevel = WalkState->MethodDesc->Method.SyncLevel; } AcpiDsPushWalkState (WalkState, Thread); /* * This global allows the AML debugger to get a handle to the currently * executing control method. */ AcpiGbl_CurrentWalkList = Thread; /* * Execute the walk loop as long as there is a valid Walk State. This * handles nested control method invocations without recursion. */ ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "State=%p\n", WalkState)); Status = AE_OK; while (WalkState) { if (ACPI_SUCCESS (Status)) { /* * The ParseLoop executes AML until the method terminates * or calls another method. */ Status = AcpiPsParseLoop (WalkState); } ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Completed one call to walk loop, %s State=%p\n", AcpiFormatException (Status), WalkState)); if (WalkState->MethodPathname && WalkState->MethodIsNested) { /* Optional object evaluation log */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_EVALUATION, "%-26s: %*s%s\n", " Exit nested method", (WalkState->MethodNestingDepth + 1) * 3, " ", &WalkState->MethodPathname[1])); ACPI_FREE (WalkState->MethodPathname); WalkState->MethodIsNested = FALSE; } if (Status == AE_CTRL_TRANSFER) { /* * A method call was detected. * Transfer control to the called control method */ Status = AcpiDsCallControlMethod (Thread, WalkState, NULL); if (ACPI_FAILURE (Status)) { Status = AcpiDsMethodError (Status, WalkState); } /* - * If the transfer to the new method method call worked - *, a new walk state was created -- get it + * If the transfer to the new method method call worked, + * a new walk state was created -- get it */ WalkState = AcpiDsGetCurrentWalkState (Thread); continue; } else if (Status == AE_CTRL_TERMINATE) { Status = AE_OK; } else if ((Status != AE_OK) && (WalkState->MethodDesc)) { /* Either the method parse or actual execution failed */ AcpiExExitInterpreter (); if (Status == AE_ABORT_METHOD) { AcpiNsPrintNodePathname ( WalkState->MethodNode, "Aborting method"); AcpiOsPrintf ("\n"); } else { ACPI_ERROR_METHOD ("Aborting method", WalkState->MethodNode, NULL, Status); } AcpiExEnterInterpreter (); /* Check for possible multi-thread reentrancy problem */ if ((Status == AE_ALREADY_EXISTS) && (!(WalkState->MethodDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED))) { /* * Method is not serialized and tried to create an object * twice. The probable cause is that the method cannot * handle reentrancy. Mark as "pending serialized" now, and * then mark "serialized" when the last thread exits. */ WalkState->MethodDesc->Method.InfoFlags |= ACPI_METHOD_SERIALIZED_PENDING; } } /* We are done with this walk, move on to the parent if any */ WalkState = AcpiDsPopWalkState (Thread); /* Reset the current scope to the beginning of scope stack */ AcpiDsScopeStackClear (WalkState); /* * If we just returned from the execution of a control method or if we * encountered an error during the method parse phase, there's lots of * cleanup to do */ if (((WalkState->ParseFlags & ACPI_PARSE_MODE_MASK) == ACPI_PARSE_EXECUTE && !(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL)) || (ACPI_FAILURE (Status))) { AcpiDsTerminateControlMethod (WalkState->MethodDesc, WalkState); } /* Delete this walk state and all linked control states */ AcpiPsCleanupScope (&WalkState->ParserState); PreviousWalkState = WalkState; ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "ReturnValue=%p, ImplicitValue=%p State=%p\n", WalkState->ReturnDesc, WalkState->ImplicitReturnObj, WalkState)); /* Check if we have restarted a preempted walk */ WalkState = AcpiDsGetCurrentWalkState (Thread); if (WalkState) { if (ACPI_SUCCESS (Status)) { /* * There is another walk state, restart it. * If the method return value is not used by the parent, * The object is deleted */ if (!PreviousWalkState->ReturnDesc) { /* * In slack mode execution, if there is no return value * we should implicitly return zero (0) as a default value. */ if (AcpiGbl_EnableInterpreterSlack && !PreviousWalkState->ImplicitReturnObj) { PreviousWalkState->ImplicitReturnObj = AcpiUtCreateIntegerObject ((UINT64) 0); if (!PreviousWalkState->ImplicitReturnObj) { return_ACPI_STATUS (AE_NO_MEMORY); } } /* Restart the calling control method */ Status = AcpiDsRestartControlMethod (WalkState, PreviousWalkState->ImplicitReturnObj); } else { /* * We have a valid return value, delete any implicit * return value. */ AcpiDsClearImplicitReturn (PreviousWalkState); Status = AcpiDsRestartControlMethod (WalkState, PreviousWalkState->ReturnDesc); } if (ACPI_SUCCESS (Status)) { WalkState->WalkType |= ACPI_WALK_METHOD_RESTART; } } else { /* On error, delete any return object or implicit return */ AcpiUtRemoveReference (PreviousWalkState->ReturnDesc); AcpiDsClearImplicitReturn (PreviousWalkState); } } /* * Just completed a 1st-level method, save the final internal return * value (if any) */ else if (PreviousWalkState->CallerReturnDesc) { if (PreviousWalkState->ImplicitReturnObj) { *(PreviousWalkState->CallerReturnDesc) = PreviousWalkState->ImplicitReturnObj; } else { /* NULL if no return value */ *(PreviousWalkState->CallerReturnDesc) = PreviousWalkState->ReturnDesc; } } else { if (PreviousWalkState->ReturnDesc) { /* Caller doesn't want it, must delete it */ AcpiUtRemoveReference (PreviousWalkState->ReturnDesc); } if (PreviousWalkState->ImplicitReturnObj) { /* Caller doesn't want it, must delete it */ AcpiUtRemoveReference (PreviousWalkState->ImplicitReturnObj); } } AcpiDsDeleteWalkState (PreviousWalkState); } /* Normal exit */ AcpiExReleaseAllMutexes (Thread); AcpiUtDeleteGenericState (ACPI_CAST_PTR (ACPI_GENERIC_STATE, Thread)); AcpiGbl_CurrentWalkList = PrevWalkList; return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/utilities/utpredef.c =================================================================== --- head/sys/contrib/dev/acpica/components/utilities/utpredef.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/utilities/utpredef.c (revision 366562) @@ -1,558 +1,558 @@ /****************************************************************************** * * Module Name: utpredef - support functions for predefined names * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #include #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utpredef") /* * Names for the types that can be returned by the predefined objects. * Used for warning messages. Must be in the same order as the ACPI_RTYPEs */ static const char *UtRtypeNames[] = { "/Integer", "/String", "/Buffer", "/Package", "/Reference", }; /******************************************************************************* * * FUNCTION: AcpiUtGetNextPredefinedMethod * * PARAMETERS: ThisName - Entry in the predefined method/name table * * RETURN: Pointer to next entry in predefined table. * * DESCRIPTION: Get the next entry in the predefine method table. Handles the * cases where a package info entry follows a method name that * returns a package. * ******************************************************************************/ const ACPI_PREDEFINED_INFO * AcpiUtGetNextPredefinedMethod ( const ACPI_PREDEFINED_INFO *ThisName) { /* * Skip next entry in the table if this name returns a Package * (next entry contains the package info) */ if ((ThisName->Info.ExpectedBtypes & ACPI_RTYPE_PACKAGE) && (ThisName->Info.ExpectedBtypes != ACPI_RTYPE_ALL)) { ThisName++; } ThisName++; return (ThisName); } /******************************************************************************* * * FUNCTION: AcpiUtMatchPredefinedMethod * * PARAMETERS: Name - Name to find * * RETURN: Pointer to entry in predefined table. NULL indicates not found. * * DESCRIPTION: Check an object name against the predefined object list. * ******************************************************************************/ const ACPI_PREDEFINED_INFO * AcpiUtMatchPredefinedMethod ( char *Name) { const ACPI_PREDEFINED_INFO *ThisName; /* Quick check for a predefined name, first character must be underscore */ if (Name[0] != '_') { return (NULL); } /* Search info table for a predefined method/object name */ ThisName = AcpiGbl_PredefinedMethods; while (ThisName->Info.Name[0]) { if (ACPI_COMPARE_NAMESEG (Name, ThisName->Info.Name)) { return (ThisName); } ThisName = AcpiUtGetNextPredefinedMethod (ThisName); } return (NULL); /* Not found */ } /******************************************************************************* * * FUNCTION: AcpiUtGetExpectedReturnTypes * * PARAMETERS: Buffer - Where the formatted string is returned * ExpectedBTypes - Bitfield of expected data types * * RETURN: Formatted string in Buffer. * * DESCRIPTION: Format the expected object types into a printable string. * ******************************************************************************/ void AcpiUtGetExpectedReturnTypes ( char *Buffer, UINT32 ExpectedBtypes) { UINT32 ThisRtype; UINT32 i; UINT32 j; if (!ExpectedBtypes) { strcpy (Buffer, "NONE"); return; } j = 1; Buffer[0] = 0; ThisRtype = ACPI_RTYPE_INTEGER; for (i = 0; i < ACPI_NUM_RTYPES; i++) { /* If one of the expected types, concatenate the name of this type */ if (ExpectedBtypes & ThisRtype) { strcat (Buffer, &UtRtypeNames[i][j]); j = 0; /* Use name separator from now on */ } ThisRtype <<= 1; /* Next Rtype */ } } /******************************************************************************* * * The remaining functions are used by iASL and AcpiHelp only * ******************************************************************************/ #if (defined ACPI_ASL_COMPILER || defined ACPI_HELP_APP) /* Local prototypes */ static UINT32 AcpiUtGetArgumentTypes ( char *Buffer, UINT16 ArgumentTypes); /* Types that can be returned externally by a predefined name */ static const char *UtExternalTypeNames[] = /* Indexed by ACPI_TYPE_* */ { - ", UNSUPPORTED-TYPE", + ", Type_ANY", ", Integer", ", String", ", Buffer", ", Package" }; /* Bit widths for resource descriptor predefined names */ static const char *UtResourceTypeNames[] = { "/1", "/2", "/3", "/8", "/16", "/32", "/64", "/variable", }; /******************************************************************************* * * FUNCTION: AcpiUtMatchResourceName * * PARAMETERS: Name - Name to find * * RETURN: Pointer to entry in the resource table. NULL indicates not * found. * * DESCRIPTION: Check an object name against the predefined resource * descriptor object list. * ******************************************************************************/ const ACPI_PREDEFINED_INFO * AcpiUtMatchResourceName ( char *Name) { const ACPI_PREDEFINED_INFO *ThisName; /* * Quick check for a predefined name, first character must * be underscore */ if (Name[0] != '_') { return (NULL); } /* Search info table for a predefined method/object name */ ThisName = AcpiGbl_ResourceNames; while (ThisName->Info.Name[0]) { if (ACPI_COMPARE_NAMESEG (Name, ThisName->Info.Name)) { return (ThisName); } ThisName++; } return (NULL); /* Not found */ } /******************************************************************************* * * FUNCTION: AcpiUtDisplayPredefinedMethod * * PARAMETERS: Buffer - Scratch buffer for this function * ThisName - Entry in the predefined method/name table * MultiLine - TRUE if output should be on >1 line * * RETURN: None * * DESCRIPTION: Display information about a predefined method. Number and * type of the input arguments, and expected type(s) for the * return value, if any. * ******************************************************************************/ void AcpiUtDisplayPredefinedMethod ( char *Buffer, const ACPI_PREDEFINED_INFO *ThisName, BOOLEAN MultiLine) { UINT32 ArgCount; /* * Get the argument count and the string buffer * containing all argument types */ ArgCount = AcpiUtGetArgumentTypes (Buffer, ThisName->Info.ArgumentList); if (MultiLine) { printf (" "); } printf ("%4.4s Requires %s%u argument%s", ThisName->Info.Name, (ThisName->Info.ArgumentList & ARG_COUNT_IS_MINIMUM) ? "(at least) " : "", ArgCount, ArgCount != 1 ? "s" : ""); /* Display the types for any arguments */ if (ArgCount > 0) { printf (" (%s)", Buffer); } if (MultiLine) { printf ("\n "); } /* Get the return value type(s) allowed */ if (ThisName->Info.ExpectedBtypes) { AcpiUtGetExpectedReturnTypes (Buffer, ThisName->Info.ExpectedBtypes); printf (" Return value types: %s\n", Buffer); } else { printf (" No return value\n"); } } /******************************************************************************* * * FUNCTION: AcpiUtGetArgumentTypes * * PARAMETERS: Buffer - Where to return the formatted types * ArgumentTypes - Types field for this method * * RETURN: Count - the number of arguments required for this method * * DESCRIPTION: Format the required data types for this method (Integer, * String, Buffer, or Package) and return the required argument * count. * ******************************************************************************/ static UINT32 AcpiUtGetArgumentTypes ( char *Buffer, UINT16 ArgumentTypes) { UINT16 ThisArgumentType; UINT16 SubIndex; UINT16 ArgCount; UINT32 i; *Buffer = 0; SubIndex = 2; /* First field in the types list is the count of args to follow */ ArgCount = METHOD_GET_ARG_COUNT (ArgumentTypes); if (ArgCount > METHOD_PREDEF_ARGS_MAX) { printf ("**** Invalid argument count (%u) " "in predefined info structure\n", ArgCount); return (ArgCount); } /* Get each argument from the list, convert to ascii, store to buffer */ for (i = 0; i < ArgCount; i++) { ThisArgumentType = METHOD_GET_NEXT_TYPE (ArgumentTypes); - if (!ThisArgumentType || (ThisArgumentType > METHOD_MAX_ARG_TYPE)) + if (ThisArgumentType > METHOD_MAX_ARG_TYPE) { printf ("**** Invalid argument type (%u) " "in predefined info structure\n", ThisArgumentType); return (ArgCount); } strcat (Buffer, UtExternalTypeNames[ThisArgumentType] + SubIndex); SubIndex = 0; } return (ArgCount); } /******************************************************************************* * * FUNCTION: AcpiUtGetResourceBitWidth * * PARAMETERS: Buffer - Where the formatted string is returned * Types - Bitfield of expected data types * * RETURN: Count of return types. Formatted string in Buffer. * * DESCRIPTION: Format the resource bit widths into a printable string. * ******************************************************************************/ UINT32 AcpiUtGetResourceBitWidth ( char *Buffer, UINT16 Types) { UINT32 i; UINT16 SubIndex; UINT32 Found; *Buffer = 0; SubIndex = 1; Found = 0; for (i = 0; i < NUM_RESOURCE_WIDTHS; i++) { if (Types & 1) { strcat (Buffer, &(UtResourceTypeNames[i][SubIndex])); SubIndex = 0; Found++; } Types >>= 1; } return (Found); } #endif Index: head/sys/contrib/dev/acpica/components/utilities/utstrsuppt.c =================================================================== --- head/sys/contrib/dev/acpica/components/utilities/utstrsuppt.c (revision 366561) +++ head/sys/contrib/dev/acpica/components/utilities/utstrsuppt.c (revision 366562) @@ -1,645 +1,663 @@ /******************************************************************************* * * Module Name: utstrsuppt - Support functions for string-to-integer conversion * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #include #include #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utstrsuppt") /* Local prototypes */ static ACPI_STATUS AcpiUtInsertDigit ( UINT64 *AccumulatedValue, UINT32 Base, int AsciiDigit); static ACPI_STATUS AcpiUtStrtoulMultiply64 ( UINT64 Multiplicand, UINT32 Base, UINT64 *OutProduct); static ACPI_STATUS AcpiUtStrtoulAdd64 ( UINT64 Addend1, UINT32 Digit, UINT64 *OutSum); /******************************************************************************* * * FUNCTION: AcpiUtConvertOctalString * * PARAMETERS: String - Null terminated input string * ReturnValuePtr - Where the converted value is returned * * RETURN: Status and 64-bit converted integer * * DESCRIPTION: Performs a base 8 conversion of the input string to an * integer value, either 32 or 64 bits. * * NOTE: Maximum 64-bit unsigned octal value is 01777777777777777777777 * Maximum 32-bit unsigned octal value is 037777777777 * ******************************************************************************/ ACPI_STATUS AcpiUtConvertOctalString ( char *String, UINT64 *ReturnValuePtr) { UINT64 AccumulatedValue = 0; ACPI_STATUS Status = AE_OK; /* Convert each ASCII byte in the input string */ while (*String) { - /* Character must be ASCII 0-7, otherwise terminate with no error */ - + /* + * Character must be ASCII 0-7, otherwise: + * 1) Runtime: terminate with no error, per the ACPI spec + * 2) Compiler: return an error + */ if (!(ACPI_IS_OCTAL_DIGIT (*String))) { +#ifdef ACPI_ASL_COMPILER + Status = AE_BAD_OCTAL_CONSTANT; +#endif break; } /* Convert and insert this octal digit into the accumulator */ Status = AcpiUtInsertDigit (&AccumulatedValue, 8, *String); if (ACPI_FAILURE (Status)) { Status = AE_OCTAL_OVERFLOW; break; } String++; } /* Always return the value that has been accumulated */ *ReturnValuePtr = AccumulatedValue; return (Status); } /******************************************************************************* * * FUNCTION: AcpiUtConvertDecimalString * * PARAMETERS: String - Null terminated input string * ReturnValuePtr - Where the converted value is returned * * RETURN: Status and 64-bit converted integer * * DESCRIPTION: Performs a base 10 conversion of the input string to an * integer value, either 32 or 64 bits. * * NOTE: Maximum 64-bit unsigned decimal value is 18446744073709551615 * Maximum 32-bit unsigned decimal value is 4294967295 * ******************************************************************************/ ACPI_STATUS AcpiUtConvertDecimalString ( char *String, UINT64 *ReturnValuePtr) { UINT64 AccumulatedValue = 0; ACPI_STATUS Status = AE_OK; /* Convert each ASCII byte in the input string */ while (*String) { - /* Character must be ASCII 0-9, otherwise terminate with no error */ - + /* + * Character must be ASCII 0-9, otherwise: + * 1) Runtime: terminate with no error, per the ACPI spec + * 2) Compiler: return an error + */ if (!isdigit (*String)) { +#ifdef ACPI_ASL_COMPILER + Status = AE_BAD_DECIMAL_CONSTANT; +#endif break; } /* Convert and insert this decimal digit into the accumulator */ Status = AcpiUtInsertDigit (&AccumulatedValue, 10, *String); if (ACPI_FAILURE (Status)) { Status = AE_DECIMAL_OVERFLOW; break; } String++; } /* Always return the value that has been accumulated */ *ReturnValuePtr = AccumulatedValue; return (Status); } /******************************************************************************* * * FUNCTION: AcpiUtConvertHexString * * PARAMETERS: String - Null terminated input string * ReturnValuePtr - Where the converted value is returned * * RETURN: Status and 64-bit converted integer * * DESCRIPTION: Performs a base 16 conversion of the input string to an * integer value, either 32 or 64 bits. * * NOTE: Maximum 64-bit unsigned hex value is 0xFFFFFFFFFFFFFFFF * Maximum 32-bit unsigned hex value is 0xFFFFFFFF * ******************************************************************************/ ACPI_STATUS AcpiUtConvertHexString ( char *String, UINT64 *ReturnValuePtr) { UINT64 AccumulatedValue = 0; ACPI_STATUS Status = AE_OK; /* Convert each ASCII byte in the input string */ while (*String) { - /* Must be ASCII A-F, a-f, or 0-9, otherwise terminate with no error */ - + /* + * Character must be ASCII A-F, a-f, or 0-9, otherwise: + * 1) Runtime: terminate with no error, per the ACPI spec + * 2) Compiler: return an error + */ if (!isxdigit (*String)) { +#ifdef ACPI_ASL_COMPILER + Status = AE_BAD_HEX_CONSTANT; +#endif break; } /* Convert and insert this hex digit into the accumulator */ Status = AcpiUtInsertDigit (&AccumulatedValue, 16, *String); if (ACPI_FAILURE (Status)) { Status = AE_HEX_OVERFLOW; break; } String++; } /* Always return the value that has been accumulated */ *ReturnValuePtr = AccumulatedValue; return (Status); } /******************************************************************************* * * FUNCTION: AcpiUtRemoveLeadingZeros * * PARAMETERS: String - Pointer to input ASCII string * * RETURN: Next character after any leading zeros. This character may be * used by the caller to detect end-of-string. * * DESCRIPTION: Remove any leading zeros in the input string. Return the * next character after the final ASCII zero to enable the caller * to check for the end of the string (NULL terminator). * ******************************************************************************/ char AcpiUtRemoveLeadingZeros ( char **String) { while (**String == ACPI_ASCII_ZERO) { *String += 1; } return (**String); } /******************************************************************************* * * FUNCTION: AcpiUtRemoveWhitespace * * PARAMETERS: String - Pointer to input ASCII string * * RETURN: Next character after any whitespace. This character may be * used by the caller to detect end-of-string. * * DESCRIPTION: Remove any leading whitespace in the input string. Return the * next character after the final ASCII zero to enable the caller * to check for the end of the string (NULL terminator). * ******************************************************************************/ char AcpiUtRemoveWhitespace ( char **String) { while (isspace ((UINT8) **String)) { *String += 1; } return (**String); } /******************************************************************************* * * FUNCTION: AcpiUtDetectHexPrefix * * PARAMETERS: String - Pointer to input ASCII string * * RETURN: TRUE if a "0x" prefix was found at the start of the string * * DESCRIPTION: Detect and remove a hex "0x" prefix * ******************************************************************************/ BOOLEAN AcpiUtDetectHexPrefix ( char **String) { char *InitialPosition = *String; AcpiUtRemoveHexPrefix (String); if (*String != InitialPosition) { return (TRUE); /* String is past leading 0x */ } return (FALSE); /* Not a hex string */ } /******************************************************************************* * * FUNCTION: AcpiUtRemoveHexPrefix * * PARAMETERS: String - Pointer to input ASCII string * * RETURN: none * * DESCRIPTION: Remove a hex "0x" prefix * ******************************************************************************/ void AcpiUtRemoveHexPrefix ( char **String) { if ((**String == ACPI_ASCII_ZERO) && (tolower ((int) *(*String + 1)) == 'x')) { *String += 2; /* Go past the leading 0x */ } } /******************************************************************************* * * FUNCTION: AcpiUtDetectOctalPrefix * * PARAMETERS: String - Pointer to input ASCII string * * RETURN: True if an octal "0" prefix was found at the start of the * string * * DESCRIPTION: Detect and remove an octal prefix (zero) * ******************************************************************************/ BOOLEAN AcpiUtDetectOctalPrefix ( char **String) { if (**String == ACPI_ASCII_ZERO) { *String += 1; /* Go past the leading 0 */ return (TRUE); } return (FALSE); /* Not an octal string */ } /******************************************************************************* * * FUNCTION: AcpiUtInsertDigit * * PARAMETERS: AccumulatedValue - Current value of the integer value * accumulator. The new value is * returned here. * Base - Radix, either 8/10/16 * AsciiDigit - ASCII single digit to be inserted * * RETURN: Status and result of the convert/insert operation. The only * possible returned exception code is numeric overflow of * either the multiply or add conversion operations. * * DESCRIPTION: Generic conversion and insertion function for all bases: * * 1) Multiply the current accumulated/converted value by the * base in order to make room for the new character. * * 2) Convert the new character to binary and add it to the * current accumulated value. * * Note: The only possible exception indicates an integer * overflow (AE_NUMERIC_OVERFLOW) * ******************************************************************************/ static ACPI_STATUS AcpiUtInsertDigit ( UINT64 *AccumulatedValue, UINT32 Base, int AsciiDigit) { ACPI_STATUS Status; UINT64 Product; /* Make room in the accumulated value for the incoming digit */ Status = AcpiUtStrtoulMultiply64 (*AccumulatedValue, Base, &Product); if (ACPI_FAILURE (Status)) { return (Status); } /* Add in the new digit, and store the sum to the accumulated value */ Status = AcpiUtStrtoulAdd64 (Product, AcpiUtAsciiCharToHex (AsciiDigit), AccumulatedValue); return (Status); } /******************************************************************************* * * FUNCTION: AcpiUtStrtoulMultiply64 * * PARAMETERS: Multiplicand - Current accumulated converted integer * Base - Base/Radix * OutProduct - Where the product is returned * * RETURN: Status and 64-bit product * * DESCRIPTION: Multiply two 64-bit values, with checking for 64-bit overflow as * well as 32-bit overflow if necessary (if the current global * integer width is 32). * ******************************************************************************/ static ACPI_STATUS AcpiUtStrtoulMultiply64 ( UINT64 Multiplicand, UINT32 Base, UINT64 *OutProduct) { UINT64 Product; UINT64 Quotient; /* Exit if either operand is zero */ *OutProduct = 0; if (!Multiplicand || !Base) { return (AE_OK); } /* * Check for 64-bit overflow before the actual multiplication. * * Notes: 64-bit division is often not supported on 32-bit platforms * (it requires a library function), Therefore ACPICA has a local * 64-bit divide function. Also, Multiplier is currently only used * as the radix (8/10/16), to the 64/32 divide will always work. */ AcpiUtShortDivide (ACPI_UINT64_MAX, Base, &Quotient, NULL); if (Multiplicand > Quotient) { return (AE_NUMERIC_OVERFLOW); } Product = Multiplicand * Base; /* Check for 32-bit overflow if necessary */ if ((AcpiGbl_IntegerBitWidth == 32) && (Product > ACPI_UINT32_MAX)) { return (AE_NUMERIC_OVERFLOW); } *OutProduct = Product; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiUtStrtoulAdd64 * * PARAMETERS: Addend1 - Current accumulated converted integer * Digit - New hex value/char * OutSum - Where sum is returned (Accumulator) * * RETURN: Status and 64-bit sum * * DESCRIPTION: Add two 64-bit values, with checking for 64-bit overflow as * well as 32-bit overflow if necessary (if the current global * integer width is 32). * ******************************************************************************/ static ACPI_STATUS AcpiUtStrtoulAdd64 ( UINT64 Addend1, UINT32 Digit, UINT64 *OutSum) { UINT64 Sum; /* Check for 64-bit overflow before the actual addition */ if ((Addend1 > 0) && (Digit > (ACPI_UINT64_MAX - Addend1))) { return (AE_NUMERIC_OVERFLOW); } Sum = Addend1 + Digit; /* Check for 32-bit overflow if necessary */ if ((AcpiGbl_IntegerBitWidth == 32) && (Sum > ACPI_UINT32_MAX)) { return (AE_NUMERIC_OVERFLOW); } *OutSum = Sum; return (AE_OK); } Index: head/sys/contrib/dev/acpica/include/acconfig.h =================================================================== --- head/sys/contrib/dev/acpica/include/acconfig.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/acconfig.h (revision 366562) @@ -1,375 +1,375 @@ /****************************************************************************** * * Name: acconfig.h - Global configuration constants * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef _ACCONFIG_H #define _ACCONFIG_H /****************************************************************************** * * Configuration options * *****************************************************************************/ /* * ACPI_DEBUG_OUTPUT - This switch enables all the debug facilities of the * ACPI subsystem. This includes the DEBUG_PRINT output * statements. When disabled, all DEBUG_PRINT * statements are compiled out. * * ACPI_APPLICATION - Use this switch if the subsystem is going to be run * at the application level. * */ /* * OS name, used for the _OS object. The _OS object is essentially obsolete, * but there is a large base of ASL/AML code in existing machines that check * for the string below. The use of this string usually guarantees that * the ASL will execute down the most tested code path. Also, there is some * code that will not execute the _OSI method unless _OS matches the string * below. Therefore, change this string at your own risk. */ #define ACPI_OS_NAME "Microsoft Windows NT" /* Maximum objects in the various object caches */ #define ACPI_MAX_STATE_CACHE_DEPTH 96 /* State objects */ #define ACPI_MAX_PARSE_CACHE_DEPTH 96 /* Parse tree objects */ #define ACPI_MAX_EXTPARSE_CACHE_DEPTH 96 /* Parse tree objects */ #define ACPI_MAX_OBJECT_CACHE_DEPTH 96 /* Interpreter operand objects */ #define ACPI_MAX_NAMESPACE_CACHE_DEPTH 96 /* Namespace objects */ #define ACPI_MAX_COMMENT_CACHE_DEPTH 96 /* Comments for the -ca option */ /* * Should the subsystem abort the loading of an ACPI table if the * table checksum is incorrect? */ #ifndef ACPI_CHECKSUM_ABORT #define ACPI_CHECKSUM_ABORT FALSE #endif /* * Generate a version of ACPICA that only supports "reduced hardware" * platforms (as defined in ACPI 5.0). Set to TRUE to generate a specialized * version of ACPICA that ONLY supports the ACPI 5.0 "reduced hardware" * model. In other words, no ACPI hardware is supported. * * If TRUE, this means no support for the following: * PM Event and Control registers * SCI interrupt (and handler) * Fixed Events * General Purpose Events (GPEs) * Global Lock * ACPI PM timer * FACS table (Waking vectors and Global Lock) */ #ifndef ACPI_REDUCED_HARDWARE #define ACPI_REDUCED_HARDWARE FALSE #endif /****************************************************************************** * * Subsystem Constants * *****************************************************************************/ /* Version of ACPI supported */ #define ACPI_CA_SUPPORT_LEVEL 5 /* Maximum count for a semaphore object */ #define ACPI_MAX_SEMAPHORE_COUNT 256 /* Maximum object reference count (detects object deletion issues) */ #define ACPI_MAX_REFERENCE_COUNT 0x4000 /* Default page size for use in mapping memory for operation regions */ #define ACPI_DEFAULT_PAGE_SIZE 4096 /* Must be power of 2 */ /* OwnerId tracking. 128 entries allows for 4095 OwnerIds */ #define ACPI_NUM_OWNERID_MASKS 128 /* Size of the root table array is increased by this increment */ #define ACPI_ROOT_TABLE_SIZE_INCREMENT 4 /* Maximum sleep allowed via Sleep() operator */ #define ACPI_MAX_SLEEP 2000 /* 2000 millisec == two seconds */ /* Address Range lists are per-SpaceId (Memory and I/O only) */ #define ACPI_ADDRESS_RANGE_MAX 2 /* Maximum time (default 30s) of While() loops before abort */ #define ACPI_MAX_LOOP_TIMEOUT 30 /****************************************************************************** * * ACPI Specification constants (Do not change unless the specification changes) * *****************************************************************************/ -/* Method info (in WALK_STATE), containing local variables and argumetns */ +/* Method info (in WALK_STATE), containing local variables and arguments */ #define ACPI_METHOD_NUM_LOCALS 8 #define ACPI_METHOD_MAX_LOCAL 7 #define ACPI_METHOD_NUM_ARGS 7 #define ACPI_METHOD_MAX_ARG 6 /* * Operand Stack (in WALK_STATE), Must be large enough to contain METHOD_MAX_ARG */ #define ACPI_OBJ_NUM_OPERANDS 8 #define ACPI_OBJ_MAX_OPERAND 7 /* Number of elements in the Result Stack frame, can be an arbitrary value */ #define ACPI_RESULTS_FRAME_OBJ_NUM 8 /* * Maximal number of elements the Result Stack can contain, * it may be an arbitrary value not exceeding the types of * ResultSize and ResultCount (now UINT8). */ #define ACPI_RESULTS_OBJ_NUM_MAX 255 /* Constants used in searching for the RSDP in low memory */ #define ACPI_EBDA_PTR_LOCATION 0x0000040E /* Physical Address */ #define ACPI_EBDA_PTR_LENGTH 2 #define ACPI_EBDA_WINDOW_SIZE 1024 #define ACPI_HI_RSDP_WINDOW_BASE 0x000E0000 /* Physical Address */ #define ACPI_HI_RSDP_WINDOW_SIZE 0x00020000 #define ACPI_RSDP_SCAN_STEP 16 /* Operation regions */ #define ACPI_USER_REGION_BEGIN 0x80 /* Maximum SpaceIds for Operation Regions */ #define ACPI_MAX_ADDRESS_SPACE 255 #define ACPI_NUM_DEFAULT_SPACES 4 /* Array sizes. Used for range checking also */ #define ACPI_MAX_MATCH_OPCODE 5 /* RSDP checksums */ #define ACPI_RSDP_CHECKSUM_LENGTH 20 #define ACPI_RSDP_XCHECKSUM_LENGTH 36 /* * SMBus, GSBus and IPMI buffer sizes. All have a 2-byte header, * containing both Status and Length. */ #define ACPI_SERIAL_HEADER_SIZE 2 /* Common for below. Status and Length fields */ #define ACPI_SMBUS_DATA_SIZE 32 #define ACPI_SMBUS_BUFFER_SIZE ACPI_SERIAL_HEADER_SIZE + ACPI_SMBUS_DATA_SIZE #define ACPI_IPMI_DATA_SIZE 64 #define ACPI_IPMI_BUFFER_SIZE ACPI_SERIAL_HEADER_SIZE + ACPI_IPMI_DATA_SIZE #define ACPI_MAX_GSBUS_DATA_SIZE 255 #define ACPI_MAX_GSBUS_BUFFER_SIZE ACPI_SERIAL_HEADER_SIZE + ACPI_MAX_GSBUS_DATA_SIZE /* _SxD and _SxW control methods */ #define ACPI_NUM_SxD_METHODS 4 #define ACPI_NUM_SxW_METHODS 5 /****************************************************************************** * * Miscellaneous constants * *****************************************************************************/ /* UUID constants */ #define UUID_BUFFER_LENGTH 16 /* Length of UUID in memory */ #define UUID_STRING_LENGTH 36 /* Total length of a UUID string */ /* Positions for required hyphens (dashes) in UUID strings */ #define UUID_HYPHEN1_OFFSET 8 #define UUID_HYPHEN2_OFFSET 13 #define UUID_HYPHEN3_OFFSET 18 #define UUID_HYPHEN4_OFFSET 23 /****************************************************************************** * * ACPI AML Debugger * *****************************************************************************/ #define ACPI_DEBUGGER_MAX_ARGS ACPI_METHOD_NUM_ARGS + 4 /* Max command line arguments */ #define ACPI_DB_LINE_BUFFER_SIZE 512 #define ACPI_DEBUGGER_COMMAND_PROMPT '-' #define ACPI_DEBUGGER_EXECUTE_PROMPT '%' #endif /* _ACCONFIG_H */ Index: head/sys/contrib/dev/acpica/include/acdebug.h =================================================================== --- head/sys/contrib/dev/acpica/include/acdebug.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/acdebug.h (revision 366562) @@ -1,616 +1,622 @@ /****************************************************************************** * * Name: acdebug.h - ACPI/AML debugger * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ACDEBUG_H__ #define __ACDEBUG_H__ /* The debugger is used in conjunction with the disassembler most of time */ #ifdef ACPI_DISASSEMBLER #include #endif #define ACPI_DEBUG_BUFFER_SIZE 0x4000 /* 16K buffer for return objects */ #define ACPI_DEBUG_LENGTH_FORMAT " (%.4X bits, %.3X bytes)" typedef struct acpi_db_command_info { const char *Name; /* Command Name */ UINT8 MinArgs; /* Minimum arguments required */ } ACPI_DB_COMMAND_INFO; typedef struct acpi_db_command_help { UINT8 LineCount; /* Number of help lines */ char *Invocation; /* Command Invocation */ char *Description; /* Command Description */ } ACPI_DB_COMMAND_HELP; typedef struct acpi_db_argument_info { const char *Name; /* Argument Name */ } ACPI_DB_ARGUMENT_INFO; typedef struct acpi_db_execute_walk { UINT32 Count; UINT32 MaxCount; + char NameSeg[ACPI_NAMESEG_SIZE + 1]; } ACPI_DB_EXECUTE_WALK; #define PARAM_LIST(pl) pl #define EX_NO_SINGLE_STEP 1 #define EX_SINGLE_STEP 2 +#define EX_ALL 4 /* * dbxface - external debugger interfaces */ ACPI_DBR_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiDbSingleStep ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, UINT32 OpType)) ACPI_DBR_DEPENDENT_RETURN_VOID ( void AcpiDbSignalBreakPoint ( ACPI_WALK_STATE *WalkState)) /* * dbcmds - debug commands and output routines */ ACPI_NAMESPACE_NODE * AcpiDbConvertToNode ( char *InString); void AcpiDbDisplayTableInfo ( char *TableArg); void AcpiDbDisplayTemplate ( char *BufferArg); void AcpiDbUnloadAcpiTable ( char *Name); void AcpiDbSendNotify ( char *Name, UINT32 Value); void AcpiDbDisplayInterfaces ( char *ActionArg, char *InterfaceNameArg); ACPI_STATUS AcpiDbSleep ( char *ObjectArg); void AcpiDbTrace ( char *EnableArg, char *MethodArg, char *OnceArg); void AcpiDbDisplayLocks ( void); void AcpiDbDisplayResources ( char *ObjectArg); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiDbDisplayGpes ( void)) void AcpiDbDisplayHandlers ( void); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiDbGenerateGpe ( char *GpeArg, char *BlockArg)) ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiDbGenerateSci ( void)) void AcpiDbExecuteTest ( char *TypeArg); /* * dbconvert - miscellaneous conversion routines */ ACPI_STATUS AcpiDbHexCharToValue ( int HexChar, UINT8 *ReturnValue); ACPI_STATUS AcpiDbConvertToPackage ( char *String, ACPI_OBJECT *Object); ACPI_STATUS AcpiDbConvertToObject ( ACPI_OBJECT_TYPE Type, char *String, ACPI_OBJECT *Object); UINT8 * AcpiDbEncodePldBuffer ( ACPI_PLD_INFO *PldInfo); void AcpiDbDumpPldBuffer ( ACPI_OBJECT *ObjDesc); /* * dbmethod - control method commands */ void AcpiDbSetMethodBreakpoint ( char *Location, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op); void AcpiDbSetMethodCallBreakpoint ( ACPI_PARSE_OBJECT *Op); void AcpiDbSetMethodData ( char *TypeArg, char *IndexArg, char *ValueArg); ACPI_STATUS AcpiDbDisassembleMethod ( char *Name); void AcpiDbDisassembleAml ( char *Statements, ACPI_PARSE_OBJECT *Op); void AcpiDbEvaluatePredefinedNames ( void); + +void +AcpiDbEvaluateAll ( + char *NameSeg); /* * dbnames - namespace commands */ void AcpiDbSetScope ( char *Name); void AcpiDbDumpNamespace ( char *StartArg, char *DepthArg); void AcpiDbDumpNamespacePaths ( void); void AcpiDbDumpNamespaceByOwner ( char *OwnerArg, char *DepthArg); ACPI_STATUS AcpiDbFindNameInNamespace ( char *NameArg); void AcpiDbCheckPredefinedNames ( void); ACPI_STATUS AcpiDbDisplayObjects ( char *ObjTypeArg, char *DisplayCountArg); void AcpiDbCheckIntegrity ( void); void AcpiDbFindReferences ( char *ObjectArg); void AcpiDbGetBusInfo ( void); ACPI_STATUS AcpiDbDisplayFields ( UINT32 AddressSpaceId); /* * dbdisply - debug display commands */ void AcpiDbDisplayMethodInfo ( ACPI_PARSE_OBJECT *Op); void AcpiDbDecodeAndDisplayObject ( char *Target, char *OutputType); ACPI_DBR_DEPENDENT_RETURN_VOID ( void AcpiDbDisplayResultObject ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState)) ACPI_STATUS AcpiDbDisplayAllMethods ( char *DisplayCountArg); void AcpiDbDisplayArguments ( void); void AcpiDbDisplayLocals ( void); void AcpiDbDisplayResults ( void); void AcpiDbDisplayCallingTree ( void); void AcpiDbDisplayObjectType ( char *ObjectArg); ACPI_DBR_DEPENDENT_RETURN_VOID ( void AcpiDbDisplayArgumentObject ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState)) /* * dbexec - debugger control method execution */ void AcpiDbExecute ( char *Name, char **Args, ACPI_OBJECT_TYPE *Types, UINT32 Flags); void AcpiDbCreateExecutionThread ( char *MethodNameArg, char **Arguments, ACPI_OBJECT_TYPE *Types); void AcpiDbCreateExecutionThreads ( char *NumThreadsArg, char *NumLoopsArg, char *MethodNameArg); void AcpiDbDeleteObjects ( UINT32 Count, ACPI_OBJECT *Objects); #ifdef ACPI_DBG_TRACK_ALLOCATIONS UINT32 AcpiDbGetCacheInfo ( ACPI_MEMORY_LIST *Cache); #endif /* * dbfileio - Debugger file I/O commands */ ACPI_OBJECT_TYPE AcpiDbMatchArgument ( char *UserArgument, ACPI_DB_ARGUMENT_INFO *Arguments); void AcpiDbCloseDebugFile ( void); void AcpiDbOpenDebugFile ( char *Name); ACPI_STATUS AcpiDbLoadAcpiTable ( char *Filename); ACPI_STATUS AcpiDbLoadTables ( ACPI_NEW_TABLE_DESC *ListHead); /* * dbhistry - debugger HISTORY command */ void AcpiDbAddToHistory ( char *CommandLine); void AcpiDbDisplayHistory ( void); char * AcpiDbGetFromHistory ( char *CommandNumArg); char * AcpiDbGetHistoryByIndex ( UINT32 CommanddNum); /* * dbinput - user front-end to the AML debugger */ ACPI_STATUS AcpiDbCommandDispatch ( char *InputBuffer, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op); void ACPI_SYSTEM_XFACE AcpiDbExecuteThread ( void *Context); ACPI_STATUS AcpiDbUserCommands ( void); char * AcpiDbGetNextToken ( char *String, char **Next, ACPI_OBJECT_TYPE *ReturnType); /* * dbobject */ void AcpiDbDecodeInternalObject ( ACPI_OPERAND_OBJECT *ObjDesc); void AcpiDbDisplayInternalObject ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState); void AcpiDbDecodeArguments ( ACPI_WALK_STATE *WalkState); void AcpiDbDecodeLocals ( ACPI_WALK_STATE *WalkState); void AcpiDbDumpMethodInfo ( ACPI_STATUS Status, ACPI_WALK_STATE *WalkState); /* * dbstats - Generation and display of ACPI table statistics */ void AcpiDbGenerateStatistics ( ACPI_PARSE_OBJECT *Root, BOOLEAN IsMethod); ACPI_STATUS AcpiDbDisplayStatistics ( char *TypeArg); /* * dbutils - AML debugger utilities */ void AcpiDbSetOutputDestination ( UINT32 Where); void AcpiDbDumpExternalObject ( ACPI_OBJECT *ObjDesc, UINT32 Level); void AcpiDbPrepNamestring ( char *Name); ACPI_NAMESPACE_NODE * AcpiDbLocalNsLookup ( char *Name); void AcpiDbUint32ToHexString ( UINT32 Value, char *Buffer); #endif /* __ACDEBUG_H__ */ Index: head/sys/contrib/dev/acpica/include/acexcep.h =================================================================== --- head/sys/contrib/dev/acpica/include/acexcep.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/acexcep.h (revision 366562) @@ -1,481 +1,481 @@ /****************************************************************************** * * Name: acexcep.h - Exception codes returned by the ACPI subsystem * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ACEXCEP_H__ #define __ACEXCEP_H__ /* This module contains all possible exception codes for ACPI_STATUS */ /* * Exception code classes */ #define AE_CODE_ENVIRONMENTAL 0x0000 /* General ACPICA environment */ #define AE_CODE_PROGRAMMER 0x1000 /* External ACPICA interface caller */ #define AE_CODE_ACPI_TABLES 0x2000 /* ACPI tables */ #define AE_CODE_AML 0x3000 /* From executing AML code */ #define AE_CODE_CONTROL 0x4000 /* Internal control codes */ #define AE_CODE_MAX 0x4000 #define AE_CODE_MASK 0xF000 /* * Macros to insert the exception code classes */ #define EXCEP_ENV(code) ((ACPI_STATUS) (code | AE_CODE_ENVIRONMENTAL)) #define EXCEP_PGM(code) ((ACPI_STATUS) (code | AE_CODE_PROGRAMMER)) #define EXCEP_TBL(code) ((ACPI_STATUS) (code | AE_CODE_ACPI_TABLES)) #define EXCEP_AML(code) ((ACPI_STATUS) (code | AE_CODE_AML)) #define EXCEP_CTL(code) ((ACPI_STATUS) (code | AE_CODE_CONTROL)) /* * Exception info table. The "Description" field is used only by the * ACPICA help application (acpihelp). */ typedef struct acpi_exception_info { char *Name; -#ifdef ACPI_HELP_APP +#if defined (ACPI_HELP_APP) || defined (ACPI_ASL_COMPILER) char *Description; #endif } ACPI_EXCEPTION_INFO; -#ifdef ACPI_HELP_APP +#if defined (ACPI_HELP_APP) || defined (ACPI_ASL_COMPILER) #define EXCEP_TXT(Name,Description) {Name, Description} #else #define EXCEP_TXT(Name,Description) {Name} #endif /* * Success is always zero, failure is non-zero */ #define ACPI_SUCCESS(a) (!(a)) #define ACPI_FAILURE(a) (a) #define AE_OK (ACPI_STATUS) 0x0000 #define ACPI_ENV_EXCEPTION(Status) (Status & AE_CODE_ENVIRONMENTAL) #define ACPI_AML_EXCEPTION(Status) (Status & AE_CODE_AML) #define ACPI_PROG_EXCEPTION(Status) (Status & AE_CODE_PROGRAMMER) #define ACPI_TABLE_EXCEPTION(Status) (Status & AE_CODE_ACPI_TABLES) #define ACPI_CNTL_EXCEPTION(Status) (Status & AE_CODE_CONTROL) /* * Environmental exceptions */ #define AE_ERROR EXCEP_ENV (0x0001) #define AE_NO_ACPI_TABLES EXCEP_ENV (0x0002) #define AE_NO_NAMESPACE EXCEP_ENV (0x0003) #define AE_NO_MEMORY EXCEP_ENV (0x0004) #define AE_NOT_FOUND EXCEP_ENV (0x0005) #define AE_NOT_EXIST EXCEP_ENV (0x0006) #define AE_ALREADY_EXISTS EXCEP_ENV (0x0007) #define AE_TYPE EXCEP_ENV (0x0008) #define AE_NULL_OBJECT EXCEP_ENV (0x0009) #define AE_NULL_ENTRY EXCEP_ENV (0x000A) #define AE_BUFFER_OVERFLOW EXCEP_ENV (0x000B) #define AE_STACK_OVERFLOW EXCEP_ENV (0x000C) #define AE_STACK_UNDERFLOW EXCEP_ENV (0x000D) #define AE_NOT_IMPLEMENTED EXCEP_ENV (0x000E) #define AE_SUPPORT EXCEP_ENV (0x000F) #define AE_LIMIT EXCEP_ENV (0x0010) #define AE_TIME EXCEP_ENV (0x0011) #define AE_ACQUIRE_DEADLOCK EXCEP_ENV (0x0012) #define AE_RELEASE_DEADLOCK EXCEP_ENV (0x0013) #define AE_NOT_ACQUIRED EXCEP_ENV (0x0014) #define AE_ALREADY_ACQUIRED EXCEP_ENV (0x0015) #define AE_NO_HARDWARE_RESPONSE EXCEP_ENV (0x0016) #define AE_NO_GLOBAL_LOCK EXCEP_ENV (0x0017) #define AE_ABORT_METHOD EXCEP_ENV (0x0018) #define AE_SAME_HANDLER EXCEP_ENV (0x0019) #define AE_NO_HANDLER EXCEP_ENV (0x001A) #define AE_OWNER_ID_LIMIT EXCEP_ENV (0x001B) #define AE_NOT_CONFIGURED EXCEP_ENV (0x001C) #define AE_ACCESS EXCEP_ENV (0x001D) #define AE_IO_ERROR EXCEP_ENV (0x001E) #define AE_NUMERIC_OVERFLOW EXCEP_ENV (0x001F) #define AE_HEX_OVERFLOW EXCEP_ENV (0x0020) #define AE_DECIMAL_OVERFLOW EXCEP_ENV (0x0021) #define AE_OCTAL_OVERFLOW EXCEP_ENV (0x0022) #define AE_END_OF_TABLE EXCEP_ENV (0x0023) #define AE_CODE_ENV_MAX 0x0023 /* * Programmer exceptions */ #define AE_BAD_PARAMETER EXCEP_PGM (0x0001) #define AE_BAD_CHARACTER EXCEP_PGM (0x0002) #define AE_BAD_PATHNAME EXCEP_PGM (0x0003) #define AE_BAD_DATA EXCEP_PGM (0x0004) #define AE_BAD_HEX_CONSTANT EXCEP_PGM (0x0005) #define AE_BAD_OCTAL_CONSTANT EXCEP_PGM (0x0006) #define AE_BAD_DECIMAL_CONSTANT EXCEP_PGM (0x0007) #define AE_MISSING_ARGUMENTS EXCEP_PGM (0x0008) #define AE_BAD_ADDRESS EXCEP_PGM (0x0009) #define AE_CODE_PGM_MAX 0x0009 /* * Acpi table exceptions */ #define AE_BAD_SIGNATURE EXCEP_TBL (0x0001) #define AE_BAD_HEADER EXCEP_TBL (0x0002) #define AE_BAD_CHECKSUM EXCEP_TBL (0x0003) #define AE_BAD_VALUE EXCEP_TBL (0x0004) #define AE_INVALID_TABLE_LENGTH EXCEP_TBL (0x0005) #define AE_CODE_TBL_MAX 0x0005 /* * AML exceptions. These are caused by problems with * the actual AML byte stream */ #define AE_AML_BAD_OPCODE EXCEP_AML (0x0001) #define AE_AML_NO_OPERAND EXCEP_AML (0x0002) #define AE_AML_OPERAND_TYPE EXCEP_AML (0x0003) #define AE_AML_OPERAND_VALUE EXCEP_AML (0x0004) #define AE_AML_UNINITIALIZED_LOCAL EXCEP_AML (0x0005) #define AE_AML_UNINITIALIZED_ARG EXCEP_AML (0x0006) #define AE_AML_UNINITIALIZED_ELEMENT EXCEP_AML (0x0007) #define AE_AML_NUMERIC_OVERFLOW EXCEP_AML (0x0008) #define AE_AML_REGION_LIMIT EXCEP_AML (0x0009) #define AE_AML_BUFFER_LIMIT EXCEP_AML (0x000A) #define AE_AML_PACKAGE_LIMIT EXCEP_AML (0x000B) #define AE_AML_DIVIDE_BY_ZERO EXCEP_AML (0x000C) #define AE_AML_BAD_NAME EXCEP_AML (0x000D) #define AE_AML_NAME_NOT_FOUND EXCEP_AML (0x000E) #define AE_AML_INTERNAL EXCEP_AML (0x000F) #define AE_AML_INVALID_SPACE_ID EXCEP_AML (0x0010) #define AE_AML_STRING_LIMIT EXCEP_AML (0x0011) #define AE_AML_NO_RETURN_VALUE EXCEP_AML (0x0012) #define AE_AML_METHOD_LIMIT EXCEP_AML (0x0013) #define AE_AML_NOT_OWNER EXCEP_AML (0x0014) #define AE_AML_MUTEX_ORDER EXCEP_AML (0x0015) #define AE_AML_MUTEX_NOT_ACQUIRED EXCEP_AML (0x0016) #define AE_AML_INVALID_RESOURCE_TYPE EXCEP_AML (0x0017) #define AE_AML_INVALID_INDEX EXCEP_AML (0x0018) #define AE_AML_REGISTER_LIMIT EXCEP_AML (0x0019) #define AE_AML_NO_WHILE EXCEP_AML (0x001A) #define AE_AML_ALIGNMENT EXCEP_AML (0x001B) #define AE_AML_NO_RESOURCE_END_TAG EXCEP_AML (0x001C) #define AE_AML_BAD_RESOURCE_VALUE EXCEP_AML (0x001D) #define AE_AML_CIRCULAR_REFERENCE EXCEP_AML (0x001E) #define AE_AML_BAD_RESOURCE_LENGTH EXCEP_AML (0x001F) #define AE_AML_ILLEGAL_ADDRESS EXCEP_AML (0x0020) #define AE_AML_LOOP_TIMEOUT EXCEP_AML (0x0021) #define AE_AML_UNINITIALIZED_NODE EXCEP_AML (0x0022) #define AE_AML_TARGET_TYPE EXCEP_AML (0x0023) #define AE_AML_PROTOCOL EXCEP_AML (0x0024) #define AE_AML_BUFFER_LENGTH EXCEP_AML (0x0025) #define AE_CODE_AML_MAX 0x0025 /* * Internal exceptions used for control */ #define AE_CTRL_RETURN_VALUE EXCEP_CTL (0x0001) #define AE_CTRL_PENDING EXCEP_CTL (0x0002) #define AE_CTRL_TERMINATE EXCEP_CTL (0x0003) #define AE_CTRL_TRUE EXCEP_CTL (0x0004) #define AE_CTRL_FALSE EXCEP_CTL (0x0005) #define AE_CTRL_DEPTH EXCEP_CTL (0x0006) #define AE_CTRL_END EXCEP_CTL (0x0007) #define AE_CTRL_TRANSFER EXCEP_CTL (0x0008) #define AE_CTRL_BREAK EXCEP_CTL (0x0009) #define AE_CTRL_CONTINUE EXCEP_CTL (0x000A) #define AE_CTRL_PARSE_CONTINUE EXCEP_CTL (0x000B) #define AE_CTRL_PARSE_PENDING EXCEP_CTL (0x000C) #define AE_CODE_CTRL_MAX 0x000C /* Exception strings for AcpiFormatException */ #ifdef ACPI_DEFINE_EXCEPTION_TABLE /* * String versions of the exception codes above * These strings must match the corresponding defines exactly */ static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Env[] = { EXCEP_TXT ("AE_OK", "No error"), EXCEP_TXT ("AE_ERROR", "Unspecified error"), EXCEP_TXT ("AE_NO_ACPI_TABLES", "ACPI tables could not be found"), EXCEP_TXT ("AE_NO_NAMESPACE", "A namespace has not been loaded"), EXCEP_TXT ("AE_NO_MEMORY", "Insufficient dynamic memory"), EXCEP_TXT ("AE_NOT_FOUND", "A requested entity is not found"), EXCEP_TXT ("AE_NOT_EXIST", "A required entity does not exist"), EXCEP_TXT ("AE_ALREADY_EXISTS", "An entity already exists"), EXCEP_TXT ("AE_TYPE", "The object type is incorrect"), EXCEP_TXT ("AE_NULL_OBJECT", "A required object was missing"), EXCEP_TXT ("AE_NULL_ENTRY", "The requested object does not exist"), EXCEP_TXT ("AE_BUFFER_OVERFLOW", "The buffer provided is too small"), EXCEP_TXT ("AE_STACK_OVERFLOW", "An internal stack overflowed"), EXCEP_TXT ("AE_STACK_UNDERFLOW", "An internal stack underflowed"), EXCEP_TXT ("AE_NOT_IMPLEMENTED", "The feature is not implemented"), EXCEP_TXT ("AE_SUPPORT", "The feature is not supported"), EXCEP_TXT ("AE_LIMIT", "A predefined limit was exceeded"), EXCEP_TXT ("AE_TIME", "A time limit or timeout expired"), EXCEP_TXT ("AE_ACQUIRE_DEADLOCK", "Internal error, attempt was made to acquire a mutex in improper order"), EXCEP_TXT ("AE_RELEASE_DEADLOCK", "Internal error, attempt was made to release a mutex in improper order"), EXCEP_TXT ("AE_NOT_ACQUIRED", "An attempt to release a mutex or Global Lock without a previous acquire"), EXCEP_TXT ("AE_ALREADY_ACQUIRED", "Internal error, attempt was made to acquire a mutex twice"), EXCEP_TXT ("AE_NO_HARDWARE_RESPONSE", "Hardware did not respond after an I/O operation"), EXCEP_TXT ("AE_NO_GLOBAL_LOCK", "There is no FACS Global Lock"), EXCEP_TXT ("AE_ABORT_METHOD", "A control method was aborted"), EXCEP_TXT ("AE_SAME_HANDLER", "Attempt was made to install the same handler that is already installed"), EXCEP_TXT ("AE_NO_HANDLER", "A handler for the operation is not installed"), EXCEP_TXT ("AE_OWNER_ID_LIMIT", "There are no more Owner IDs available for ACPI tables or control methods"), EXCEP_TXT ("AE_NOT_CONFIGURED", "The interface is not part of the current subsystem configuration"), EXCEP_TXT ("AE_ACCESS", "Permission denied for the requested operation"), EXCEP_TXT ("AE_IO_ERROR", "An I/O error occurred"), EXCEP_TXT ("AE_NUMERIC_OVERFLOW", "Overflow during string-to-integer conversion"), EXCEP_TXT ("AE_HEX_OVERFLOW", "Overflow during ASCII hex-to-binary conversion"), EXCEP_TXT ("AE_DECIMAL_OVERFLOW", "Overflow during ASCII decimal-to-binary conversion"), EXCEP_TXT ("AE_OCTAL_OVERFLOW", "Overflow during ASCII octal-to-binary conversion"), EXCEP_TXT ("AE_END_OF_TABLE", "Reached the end of table") }; static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Pgm[] = { EXCEP_TXT (NULL, NULL), EXCEP_TXT ("AE_BAD_PARAMETER", "A parameter is out of range or invalid"), EXCEP_TXT ("AE_BAD_CHARACTER", "An invalid character was found in a name"), EXCEP_TXT ("AE_BAD_PATHNAME", "An invalid character was found in a pathname"), EXCEP_TXT ("AE_BAD_DATA", "A package or buffer contained incorrect data"), EXCEP_TXT ("AE_BAD_HEX_CONSTANT", "Invalid character in a Hex constant"), EXCEP_TXT ("AE_BAD_OCTAL_CONSTANT", "Invalid character in an Octal constant"), EXCEP_TXT ("AE_BAD_DECIMAL_CONSTANT", "Invalid character in a Decimal constant"), EXCEP_TXT ("AE_MISSING_ARGUMENTS", "Too few arguments were passed to a control method"), EXCEP_TXT ("AE_BAD_ADDRESS", "An illegal null I/O address") }; static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Tbl[] = { EXCEP_TXT (NULL, NULL), EXCEP_TXT ("AE_BAD_SIGNATURE", "An ACPI table has an invalid signature"), EXCEP_TXT ("AE_BAD_HEADER", "Invalid field in an ACPI table header"), EXCEP_TXT ("AE_BAD_CHECKSUM", "An ACPI table checksum is not correct"), EXCEP_TXT ("AE_BAD_VALUE", "An invalid value was found in a table"), EXCEP_TXT ("AE_INVALID_TABLE_LENGTH", "The FADT or FACS has improper length") }; static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Aml[] = { EXCEP_TXT (NULL, NULL), EXCEP_TXT ("AE_AML_BAD_OPCODE", "Invalid AML opcode encountered"), EXCEP_TXT ("AE_AML_NO_OPERAND", "A required operand is missing"), EXCEP_TXT ("AE_AML_OPERAND_TYPE", "An operand of an incorrect type was encountered"), EXCEP_TXT ("AE_AML_OPERAND_VALUE", "The operand had an inappropriate or invalid value"), EXCEP_TXT ("AE_AML_UNINITIALIZED_LOCAL", "Method tried to use an uninitialized local variable"), EXCEP_TXT ("AE_AML_UNINITIALIZED_ARG", "Method tried to use an uninitialized argument"), EXCEP_TXT ("AE_AML_UNINITIALIZED_ELEMENT", "Method tried to use an empty package element"), EXCEP_TXT ("AE_AML_NUMERIC_OVERFLOW", "Overflow during BCD conversion or other"), EXCEP_TXT ("AE_AML_REGION_LIMIT", "Tried to access beyond the end of an Operation Region"), EXCEP_TXT ("AE_AML_BUFFER_LIMIT", "Tried to access beyond the end of a buffer"), EXCEP_TXT ("AE_AML_PACKAGE_LIMIT", "Tried to access beyond the end of a package"), EXCEP_TXT ("AE_AML_DIVIDE_BY_ZERO", "During execution of AML Divide operator"), EXCEP_TXT ("AE_AML_BAD_NAME", "An ACPI name contains invalid character(s)"), EXCEP_TXT ("AE_AML_NAME_NOT_FOUND", "Could not resolve a named reference"), EXCEP_TXT ("AE_AML_INTERNAL", "An internal error within the interpreter"), EXCEP_TXT ("AE_AML_INVALID_SPACE_ID", "An Operation Region SpaceID is invalid"), EXCEP_TXT ("AE_AML_STRING_LIMIT", "String is longer than 200 characters"), EXCEP_TXT ("AE_AML_NO_RETURN_VALUE", "A method did not return a required value"), EXCEP_TXT ("AE_AML_METHOD_LIMIT", "A control method reached the maximum reentrancy limit of 255"), EXCEP_TXT ("AE_AML_NOT_OWNER", "A thread tried to release a mutex that it does not own"), EXCEP_TXT ("AE_AML_MUTEX_ORDER", "Mutex SyncLevel release mismatch"), EXCEP_TXT ("AE_AML_MUTEX_NOT_ACQUIRED", "Attempt to release a mutex that was not previously acquired"), EXCEP_TXT ("AE_AML_INVALID_RESOURCE_TYPE", "Invalid resource type in resource list"), EXCEP_TXT ("AE_AML_INVALID_INDEX", "Invalid Argx or Localx (x too large)"), EXCEP_TXT ("AE_AML_REGISTER_LIMIT", "Bank value or Index value beyond range of register"), EXCEP_TXT ("AE_AML_NO_WHILE", "Break or Continue without a While"), EXCEP_TXT ("AE_AML_ALIGNMENT", "Non-aligned memory transfer on platform that does not support this"), EXCEP_TXT ("AE_AML_NO_RESOURCE_END_TAG", "No End Tag in a resource list"), EXCEP_TXT ("AE_AML_BAD_RESOURCE_VALUE", "Invalid value of a resource element"), EXCEP_TXT ("AE_AML_CIRCULAR_REFERENCE", "Two references refer to each other"), EXCEP_TXT ("AE_AML_BAD_RESOURCE_LENGTH", "The length of a Resource Descriptor in the AML is incorrect"), EXCEP_TXT ("AE_AML_ILLEGAL_ADDRESS", "A memory, I/O, or PCI configuration address is invalid"), EXCEP_TXT ("AE_AML_LOOP_TIMEOUT", "An AML While loop exceeded the maximum execution time"), EXCEP_TXT ("AE_AML_UNINITIALIZED_NODE", "A namespace node is uninitialized or unresolved"), EXCEP_TXT ("AE_AML_TARGET_TYPE", "A target operand of an incorrect type was encountered"), EXCEP_TXT ("AE_AML_PROTOCOL", "Violation of a fixed ACPI protocol"), EXCEP_TXT ("AE_AML_BUFFER_LENGTH", "The length of the buffer is invalid/incorrect") }; static const ACPI_EXCEPTION_INFO AcpiGbl_ExceptionNames_Ctrl[] = { EXCEP_TXT (NULL, NULL), EXCEP_TXT ("AE_CTRL_RETURN_VALUE", "A Method returned a value"), EXCEP_TXT ("AE_CTRL_PENDING", "Method is calling another method"), EXCEP_TXT ("AE_CTRL_TERMINATE", "Terminate the executing method"), EXCEP_TXT ("AE_CTRL_TRUE", "An If or While predicate result"), EXCEP_TXT ("AE_CTRL_FALSE", "An If or While predicate result"), EXCEP_TXT ("AE_CTRL_DEPTH", "Maximum search depth has been reached"), EXCEP_TXT ("AE_CTRL_END", "An If or While predicate is false"), EXCEP_TXT ("AE_CTRL_TRANSFER", "Transfer control to called method"), EXCEP_TXT ("AE_CTRL_BREAK", "A Break has been executed"), EXCEP_TXT ("AE_CTRL_CONTINUE", "A Continue has been executed"), EXCEP_TXT ("AE_CTRL_PARSE_CONTINUE", "Used to skip over bad opcodes"), EXCEP_TXT ("AE_CTRL_PARSE_PENDING", "Used to implement AML While loops") }; #endif /* EXCEPTION_TABLE */ #endif /* __ACEXCEP_H__ */ Index: head/sys/contrib/dev/acpica/include/acpixf.h =================================================================== --- head/sys/contrib/dev/acpica/include/acpixf.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/acpixf.h (revision 366562) @@ -1,1425 +1,1425 @@ /****************************************************************************** * * Name: acpixf.h - External interfaces to the ACPI subsystem * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ACXFACE_H__ #define __ACXFACE_H__ /* Current ACPICA subsystem version in YYYYMMDD format */ -#define ACPI_CA_VERSION 0x20200717 +#define ACPI_CA_VERSION 0x20200925 #include #include #include #include /***************************************************************************** * * Macros used for ACPICA globals and configuration * ****************************************************************************/ /* * Ensure that global variables are defined and initialized only once. * * The use of these macros allows for a single list of globals (here) * in order to simplify maintenance of the code. */ #ifdef DEFINE_ACPI_GLOBALS #define ACPI_GLOBAL(type,name) \ extern type name; \ type name #define ACPI_INIT_GLOBAL(type,name,value) \ type name=value #else #ifndef ACPI_GLOBAL #define ACPI_GLOBAL(type,name) \ extern type name #endif #ifndef ACPI_INIT_GLOBAL #define ACPI_INIT_GLOBAL(type,name,value) \ extern type name #endif #endif /* * These macros configure the various ACPICA interfaces. They are * useful for generating stub inline functions for features that are * configured out of the current kernel or ACPICA application. */ #ifndef ACPI_EXTERNAL_RETURN_STATUS #define ACPI_EXTERNAL_RETURN_STATUS(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_OK #define ACPI_EXTERNAL_RETURN_OK(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_VOID #define ACPI_EXTERNAL_RETURN_VOID(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_UINT32 #define ACPI_EXTERNAL_RETURN_UINT32(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_PTR #define ACPI_EXTERNAL_RETURN_PTR(Prototype) \ Prototype; #endif /***************************************************************************** * * Public globals and runtime configuration options * ****************************************************************************/ /* * Enable "slack mode" of the AML interpreter? Default is FALSE, and the * interpreter strictly follows the ACPI specification. Setting to TRUE * allows the interpreter to ignore certain errors and/or bad AML constructs. * * Currently, these features are enabled by this flag: * * 1) Allow "implicit return" of last value in a control method * 2) Allow access beyond the end of an operation region * 3) Allow access to uninitialized locals/args (auto-init to integer 0) * 4) Allow ANY object type to be a source operand for the Store() operator * 5) Allow unresolved references (invalid target name) in package objects * 6) Enable warning messages for behavior that is not ACPI spec compliant */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_EnableInterpreterSlack, FALSE); /* * Automatically serialize all methods that create named objects? Default * is TRUE, meaning that all NonSerialized methods are scanned once at * table load time to determine those that create named objects. Methods * that create named objects are marked Serialized in order to prevent * possible run-time problems if they are entered by more than one thread. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_AutoSerializeMethods, TRUE); /* * Create the predefined _OSI method in the namespace? Default is TRUE * because ACPICA is fully compatible with other ACPI implementations. * Changing this will revert ACPICA (and machine ASL) to pre-OSI behavior. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_CreateOsiMethod, TRUE); /* * Optionally use default values for the ACPI register widths. Set this to * TRUE to use the defaults, if an FADT contains incorrect widths/lengths. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_UseDefaultRegisterWidths, TRUE); /* * Whether or not to validate (map) an entire table to verify * checksum/duplication in early stage before install. Set this to TRUE to * allow early table validation before install it to the table manager. * Note that enabling this option causes errors to happen in some OSPMs * during early initialization stages. Default behavior is to allow such * validation. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_EnableTableValidation, TRUE); /* * Optionally enable output from the AML Debug Object. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_EnableAmlDebugObject, FALSE); /* * Optionally copy the entire DSDT to local memory (instead of simply * mapping it.) There are some BIOSs that corrupt or replace the original * DSDT, creating the need for this option. Default is FALSE, do not copy * the DSDT. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_CopyDsdtLocally, FALSE); /* * Optionally ignore an XSDT if present and use the RSDT instead. * Although the ACPI specification requires that an XSDT be used instead * of the RSDT, the XSDT has been found to be corrupt or ill-formed on * some machines. Default behavior is to use the XSDT if present. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DoNotUseXsdt, FALSE); /* * Optionally use 32-bit FADT addresses if and when there is a conflict * (address mismatch) between the 32-bit and 64-bit versions of the * address. Although ACPICA adheres to the ACPI specification which * requires the use of the corresponding 64-bit address if it is non-zero, * some machines have been found to have a corrupted non-zero 64-bit * address. Default is FALSE, do not favor the 32-bit addresses. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_Use32BitFadtAddresses, FALSE); /* * Optionally use 32-bit FACS table addresses. * It is reported that some platforms fail to resume from system suspending * if 64-bit FACS table address is selected: * https://bugzilla.kernel.org/show_bug.cgi?id=74021 * Default is TRUE, favor the 32-bit addresses. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_Use32BitFacsAddresses, TRUE); /* * Optionally truncate I/O addresses to 16 bits. Provides compatibility * with other ACPI implementations. NOTE: During ACPICA initialization, * this value is set to TRUE if any Windows OSI strings have been * requested by the BIOS. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_TruncateIoAddresses, FALSE); /* * Disable runtime checking and repair of values returned by control methods. * Use only if the repair is causing a problem on a particular machine. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisableAutoRepair, FALSE); /* * Optionally do not install any SSDTs from the RSDT/XSDT during initialization. * This can be useful for debugging ACPI problems on some machines. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisableSsdtTableInstall, FALSE); /* * Optionally enable runtime namespace override. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_RuntimeNamespaceOverride, TRUE); /* * We keep track of the latest version of Windows that has been requested by * the BIOS. ACPI 5.0. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_OsiData, 0); /* * ACPI 5.0 introduces the concept of a "reduced hardware platform", meaning * that the ACPI hardware is no longer required. A flag in the FADT indicates * a reduced HW machine, and that flag is duplicated here for convenience. */ ACPI_INIT_GLOBAL (BOOLEAN, AcpiGbl_ReducedHardware, FALSE); /* * Maximum timeout for While() loop iterations before forced method abort. * This mechanism is intended to prevent infinite loops during interpreter * execution within a host kernel. */ ACPI_INIT_GLOBAL (UINT32, AcpiGbl_MaxLoopIterations, ACPI_MAX_LOOP_TIMEOUT); /* * Optionally ignore AE_NOT_FOUND errors from named reference package elements * during DSDT/SSDT table loading. This reduces error "noise" in platforms * whose firmware is carrying around a bunch of unused package objects that * refer to non-existent named objects. However, If the AML actually tries to * use such a package, the unresolved element(s) will be replaced with NULL * elements. */ ACPI_INIT_GLOBAL (BOOLEAN, AcpiGbl_IgnorePackageResolutionErrors, FALSE); /* * This mechanism is used to trace a specified AML method. The method is * traced each time it is executed. */ ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceFlags, 0); ACPI_INIT_GLOBAL (const char *, AcpiGbl_TraceMethodName, NULL); ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceDbgLevel, ACPI_TRACE_LEVEL_DEFAULT); ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceDbgLayer, ACPI_TRACE_LAYER_DEFAULT); /* * Runtime configuration of debug output control masks. We want the debug * switches statically initialized so they are already set when the debugger * is entered. */ #ifdef ACPI_DEBUG_OUTPUT ACPI_INIT_GLOBAL (UINT32, AcpiDbgLevel, ACPI_DEBUG_DEFAULT); #else ACPI_INIT_GLOBAL (UINT32, AcpiDbgLevel, ACPI_NORMAL_DEFAULT); #endif ACPI_INIT_GLOBAL (UINT32, AcpiDbgLayer, ACPI_COMPONENT_DEFAULT); /* Optionally enable timer output with Debug Object output */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisplayDebugTimer, FALSE); /* * Debugger command handshake globals. Host OSes need to access these * variables to implement their own command handshake mechanism. */ #ifdef ACPI_DEBUGGER ACPI_INIT_GLOBAL (BOOLEAN, AcpiGbl_MethodExecuting, FALSE); ACPI_GLOBAL (char, AcpiGbl_DbLineBuf[ACPI_DB_LINE_BUFFER_SIZE]); #endif /* * Other miscellaneous globals */ ACPI_GLOBAL (ACPI_TABLE_FADT, AcpiGbl_FADT); ACPI_GLOBAL (UINT32, AcpiCurrentGpeCount); ACPI_GLOBAL (BOOLEAN, AcpiGbl_SystemAwakeAndRunning); /***************************************************************************** * * ACPICA public interface configuration. * * Interfaces that are configured out of the ACPICA build are replaced * by inlined stubs by default. * ****************************************************************************/ /* * Hardware-reduced prototypes (default: Not hardware reduced). * * All ACPICA hardware-related interfaces that use these macros will be * configured out of the ACPICA build if the ACPI_REDUCED_HARDWARE flag * is set to TRUE. * * Note: This static build option for reduced hardware is intended to * reduce ACPICA code size if desired or necessary. However, even if this * option is not specified, the runtime behavior of ACPICA is dependent * on the actual FADT reduced hardware flag (HW_REDUCED_ACPI). If set, * the flag will enable similar behavior -- ACPICA will not attempt * to access any ACPI-relate hardware (SCI, GPEs, Fixed Events, etc.) */ #if (!ACPI_REDUCED_HARDWARE) #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \ ACPI_EXTERNAL_RETURN_STATUS(Prototype) #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \ ACPI_EXTERNAL_RETURN_OK(Prototype) #define ACPI_HW_DEPENDENT_RETURN_UINT32(prototype) \ ACPI_EXTERNAL_RETURN_UINT32(prototype) #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \ ACPI_EXTERNAL_RETURN_VOID(Prototype) #else #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \ static ACPI_INLINE Prototype {return(AE_NOT_CONFIGURED);} #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \ static ACPI_INLINE Prototype {return(AE_OK);} #define ACPI_HW_DEPENDENT_RETURN_UINT32(prototype) \ static ACPI_INLINE prototype {return(0);} #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* !ACPI_REDUCED_HARDWARE */ /* * Error message prototypes (default: error messages enabled). * * All interfaces related to error and warning messages * will be configured out of the ACPICA build if the * ACPI_NO_ERROR_MESSAGE flag is defined. */ #ifndef ACPI_NO_ERROR_MESSAGES #define ACPI_MSG_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_MSG_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_NO_ERROR_MESSAGES */ /* * Debugging output prototypes (default: no debug output). * * All interfaces related to debug output messages * will be configured out of the ACPICA build unless the * ACPI_DEBUG_OUTPUT flag is defined. */ #ifdef ACPI_DEBUG_OUTPUT #define ACPI_DBG_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_DBG_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_DEBUG_OUTPUT */ /* * Application prototypes * * All interfaces used by application will be configured * out of the ACPICA build unless the ACPI_APPLICATION * flag is defined. */ #ifdef ACPI_APPLICATION #define ACPI_APP_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_APP_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_APPLICATION */ /* * Debugger prototypes * * All interfaces used by debugger will be configured * out of the ACPICA build unless the ACPI_DEBUGGER * flag is defined. */ #ifdef ACPI_DEBUGGER #define ACPI_DBR_DEPENDENT_RETURN_OK(Prototype) \ ACPI_EXTERNAL_RETURN_OK(Prototype) #define ACPI_DBR_DEPENDENT_RETURN_VOID(Prototype) \ ACPI_EXTERNAL_RETURN_VOID(Prototype) #else #define ACPI_DBR_DEPENDENT_RETURN_OK(Prototype) \ static ACPI_INLINE Prototype {return(AE_OK);} #define ACPI_DBR_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_DEBUGGER */ /***************************************************************************** * * ACPICA public interface prototypes * ****************************************************************************/ /* * Initialization */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeTables ( ACPI_TABLE_DESC *InitialStorage, UINT32 InitialTableCount, BOOLEAN AllowResize)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeSubsystem ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiEnableSubsystem ( UINT32 Flags)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeObjects ( UINT32 Flags)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiTerminate ( void)) /* * Miscellaneous global interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnable ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisable ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiSubsystemStatus ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetSystemInfo ( ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetStatistics ( ACPI_STATISTICS *Stats)) ACPI_EXTERNAL_RETURN_PTR ( const char * AcpiFormatException ( ACPI_STATUS Exception)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiPurgeCachedObjects ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInterface ( ACPI_STRING InterfaceName)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveInterface ( ACPI_STRING InterfaceName)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiUpdateInterfaces ( UINT8 Action)) ACPI_EXTERNAL_RETURN_UINT32 ( UINT32 AcpiCheckAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, ACPI_SIZE Length, BOOLEAN Warn)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDecodePldBuffer ( UINT8 *InBuffer, ACPI_SIZE Length, ACPI_PLD_INFO **ReturnBuffer)) /* * ACPI table load/unload interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInstallTable ( ACPI_PHYSICAL_ADDRESS Address, BOOLEAN Physical)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLoadTable ( ACPI_TABLE_HEADER *Table, UINT32 *TableIdx)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiUnloadTable ( UINT32 TableIndex)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiUnloadParentTable ( ACPI_HANDLE Object)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiLoadTables ( void)) /* * ACPI table manipulation interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiReallocateRootTable ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiFindRootPointer ( ACPI_PHYSICAL_ADDRESS *RsdpAddress)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTableHeader ( ACPI_STRING Signature, UINT32 Instance, ACPI_TABLE_HEADER *OutTableHeader)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTable ( ACPI_STRING Signature, UINT32 Instance, ACPI_TABLE_HEADER **OutTable)) ACPI_EXTERNAL_RETURN_VOID ( void AcpiPutTable ( ACPI_TABLE_HEADER *Table)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTableByIndex ( UINT32 TableIndex, ACPI_TABLE_HEADER **OutTable)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallTableHandler ( ACPI_TABLE_HANDLER Handler, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveTableHandler ( ACPI_TABLE_HANDLER Handler)) /* * Namespace and name interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkNamespace ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE StartObject, UINT32 MaxDepth, ACPI_WALK_CALLBACK DescendingCallback, ACPI_WALK_CALLBACK AscendingCallback, void *Context, void **ReturnValue)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetDevices ( char *HID, ACPI_WALK_CALLBACK UserFunction, void *Context, void **ReturnValue)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetName ( ACPI_HANDLE Object, UINT32 NameType, ACPI_BUFFER *RetPathPtr)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetHandle ( ACPI_HANDLE Parent, ACPI_STRING Pathname, ACPI_HANDLE *RetHandle)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiAttachData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler, void *Data)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDetachData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler, void **Data)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDebugTrace ( const char *Name, UINT32 DebugLevel, UINT32 DebugLayer, UINT32 Flags)) /* * Object manipulation and enumeration */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEvaluateObject ( ACPI_HANDLE Object, ACPI_STRING Pathname, ACPI_OBJECT_LIST *ParameterObjects, ACPI_BUFFER *ReturnObjectBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEvaluateObjectTyped ( ACPI_HANDLE Object, ACPI_STRING Pathname, ACPI_OBJECT_LIST *ExternalParams, ACPI_BUFFER *ReturnBuffer, ACPI_OBJECT_TYPE ReturnType)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetObjectInfo ( ACPI_HANDLE Object, ACPI_DEVICE_INFO **ReturnBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallMethod ( UINT8 *Buffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetNextObject ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE Parent, ACPI_HANDLE Child, ACPI_HANDLE *OutHandle)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetType ( ACPI_HANDLE Object, ACPI_OBJECT_TYPE *OutType)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetParent ( ACPI_HANDLE Object, ACPI_HANDLE *OutHandle)) /* * Handler interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInitializationHandler ( ACPI_INIT_HANDLER Handler, UINT32 Function)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallSciHandler ( ACPI_SCI_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveSciHandler ( ACPI_SCI_HANDLER Address)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGlobalEventHandler ( ACPI_GBL_EVENT_HANDLER Handler, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallFixedEventHandler ( UINT32 AcpiEvent, ACPI_EVENT_HANDLER Handler, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveFixedEventHandler ( UINT32 AcpiEvent, ACPI_EVENT_HANDLER Handler)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT32 Type, ACPI_GPE_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeRawHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT32 Type, ACPI_GPE_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveGpeHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, ACPI_GPE_HANDLER Address)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallNotifyHandler ( ACPI_HANDLE Device, UINT32 HandlerType, ACPI_NOTIFY_HANDLER Handler, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveNotifyHandler ( ACPI_HANDLE Device, UINT32 HandlerType, ACPI_NOTIFY_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallAddressSpaceHandler ( ACPI_HANDLE Device, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler, ACPI_ADR_SPACE_SETUP Setup, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveAddressSpaceHandler ( ACPI_HANDLE Device, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallExceptionHandler ( ACPI_EXCEPTION_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInterfaceHandler ( ACPI_INTERFACE_HANDLER Handler)) /* * Global Lock interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiAcquireGlobalLock ( UINT16 Timeout, UINT32 *Handle)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiReleaseGlobalLock ( UINT32 Handle)) /* * Interfaces to AML mutex objects */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiAcquireMutex ( ACPI_HANDLE Handle, ACPI_STRING Pathname, UINT16 Timeout)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiReleaseMutex ( ACPI_HANDLE Handle, ACPI_STRING Pathname)) /* * Fixed Event interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableEvent ( UINT32 Event, UINT32 Flags)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableEvent ( UINT32 Event, UINT32 Flags)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiClearEvent ( UINT32 Event)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetEventStatus ( UINT32 Event, ACPI_EVENT_STATUS *EventStatus)) /* * General Purpose Event (GPE) Interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiUpdateAllGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiClearGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiFinishGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiMaskGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, BOOLEAN IsMasked)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiMarkGpeForWake ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetupGpeForWake ( ACPI_HANDLE ParentDevice, ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetGpeWakeMask ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetGpeStatus ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, ACPI_EVENT_STATUS *EventStatus)) ACPI_HW_DEPENDENT_RETURN_UINT32 ( UINT32 AcpiDispatchGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableAllGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableAllRuntimeGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableAllWakeupGpes ( void)) ACPI_HW_DEPENDENT_RETURN_UINT32 ( UINT32 AcpiAnyGpeStatusSet ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetGpeDevice ( UINT32 GpeIndex, ACPI_HANDLE *GpeDevice)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeBlock ( ACPI_HANDLE GpeDevice, ACPI_GENERIC_ADDRESS *GpeBlockAddress, UINT32 RegisterCount, UINT32 InterruptNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveGpeBlock ( ACPI_HANDLE GpeDevice)) /* * Resource interfaces */ typedef ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) ( ACPI_RESOURCE *Resource, void *Context); ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetVendorResource ( ACPI_HANDLE Device, char *Name, ACPI_VENDOR_UUID *Uuid, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetCurrentResources ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetPossibleResources ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetEventResources ( ACPI_HANDLE DeviceHandle, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkResourceBuffer ( ACPI_BUFFER *Buffer, ACPI_WALK_RESOURCE_CALLBACK UserFunction, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkResources ( ACPI_HANDLE Device, char *Name, ACPI_WALK_RESOURCE_CALLBACK UserFunction, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiSetCurrentResources ( ACPI_HANDLE Device, ACPI_BUFFER *InBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetIrqRoutingTable ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiResourceToAddress64 ( ACPI_RESOURCE *Resource, ACPI_RESOURCE_ADDRESS64 *Out)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiBufferToResource ( UINT8 *AmlBuffer, UINT16 AmlBufferLength, ACPI_RESOURCE **ResourcePtr)) /* * Hardware (ACPI device) interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiReset ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRead ( UINT64 *Value, ACPI_GENERIC_ADDRESS *Reg)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWrite ( UINT64 Value, ACPI_GENERIC_ADDRESS *Reg)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiReadBitRegister ( UINT32 RegisterId, UINT32 *ReturnValue)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiWriteBitRegister ( UINT32 RegisterId, UINT32 Value)) /* * Sleep/Wake interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetSleepTypeData ( UINT8 SleepState, UINT8 *Slp_TypA, UINT8 *Slp_TypB)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepStatePrep ( UINT8 SleepState)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepState ( UINT8 SleepState)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepStateS4bios ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLeaveSleepStatePrep ( UINT8 SleepState)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLeaveSleepState ( UINT8 SleepState)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetFirmwareWakingVector ( ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_PHYSICAL_ADDRESS PhysicalAddress64)) /* * ACPI Timer interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimerResolution ( UINT32 *Resolution)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimer ( UINT32 *Ticks)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimerDuration ( UINT32 StartTicks, UINT32 EndTicks, UINT32 *TimeElapsed)) /* * Error/Warning output */ ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiError ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(4) void ACPI_INTERNAL_VAR_XFACE AcpiException ( const char *ModuleName, UINT32 LineNumber, ACPI_STATUS Status, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiWarning ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(1) void ACPI_INTERNAL_VAR_XFACE AcpiInfo ( const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiBiosError ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(4) void ACPI_INTERNAL_VAR_XFACE AcpiBiosException ( const char *ModuleName, UINT32 LineNumber, ACPI_STATUS Status, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiBiosWarning ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) /* * Debug output */ ACPI_DBG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(6) void ACPI_INTERNAL_VAR_XFACE AcpiDebugPrint ( UINT32 RequestedDebugLevel, UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *Format, ...)) ACPI_DBG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(6) void ACPI_INTERNAL_VAR_XFACE AcpiDebugPrintRaw ( UINT32 RequestedDebugLevel, UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *Format, ...)) ACPI_DBG_DEPENDENT_RETURN_VOID ( void AcpiTracePoint ( ACPI_TRACE_EVENT_TYPE Type, BOOLEAN Begin, UINT8 *Aml, char *Pathname)) ACPI_STATUS AcpiInitializeDebugger ( void); void AcpiTerminateDebugger ( void); void AcpiRunDebugger ( char *BatchBuffer); void AcpiSetDebuggerThreadId ( ACPI_THREAD_ID ThreadId); #endif /* __ACXFACE_H__ */ Index: head/sys/contrib/dev/acpica/include/acpredef.h =================================================================== --- head/sys/contrib/dev/acpica/include/acpredef.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/acpredef.h (revision 366562) @@ -1,1266 +1,1287 @@ /****************************************************************************** * * Name: acpredef - Information table for ACPI predefined methods and objects * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ACPREDEF_H__ #define __ACPREDEF_H__ /****************************************************************************** * * Return Package types * * 1) PTYPE1 packages do not contain subpackages. * * ACPI_PTYPE1_FIXED: Fixed-length length, 1 or 2 object types: * object type * count * object type * count * * ACPI_PTYPE1_VAR: Variable-length length. Zero-length package is allowed: * object type (Int/Buf/Ref) * * ACPI_PTYPE1_OPTION: Package has some required and some optional elements * (Used for _PRW) * * * 2) PTYPE2 packages contain a Variable-length number of subpackages. Each * of the different types describe the contents of each of the subpackages. * * ACPI_PTYPE2: Each subpackage contains 1 or 2 object types. Zero-length * parent package is allowed: * object type * count * object type * count * (Used for _ALR,_MLS,_PSS,_TRT,_TSS) * * ACPI_PTYPE2_COUNT: Each subpackage has a count as first element. * Zero-length parent package is allowed: * object type * (Used for _CSD,_PSD,_TSD) * * ACPI_PTYPE2_PKG_COUNT: Count of subpackages at start, 1 or 2 object types: * object type * count * object type * count * (Used for _CST) * * ACPI_PTYPE2_FIXED: Each subpackage is of Fixed-length. Zero-length * parent package is allowed. * (Used for _PRT) * * ACPI_PTYPE2_MIN: Each subpackage has a Variable-length but minimum length. * Zero-length parent package is allowed: * (Used for _HPX) * * ACPI_PTYPE2_REV_FIXED: Revision at start, each subpackage is Fixed-length * (Used for _ART, _FPS) * * ACPI_PTYPE2_FIX_VAR: Each subpackage consists of some fixed-length elements * followed by an optional element. Zero-length parent package is allowed. * object type * count * object type * count = 0 (optional) * (Used for _DLM) * * ACPI_PTYPE2_VAR_VAR: Variable number of subpackages, each of either a * constant or variable length. The subpackages are preceded by a * constant number of objects. * (Used for _LPI, _RDI) * * ACPI_PTYPE2_UUID_PAIR: Each subpackage is preceded by a UUID Buffer. The UUID * defines the format of the package. Zero-length parent package is * allowed. * (Used for _DSD) * *****************************************************************************/ enum AcpiReturnPackageTypes { ACPI_PTYPE1_FIXED = 1, ACPI_PTYPE1_VAR = 2, ACPI_PTYPE1_OPTION = 3, ACPI_PTYPE2 = 4, ACPI_PTYPE2_COUNT = 5, ACPI_PTYPE2_PKG_COUNT = 6, ACPI_PTYPE2_FIXED = 7, ACPI_PTYPE2_MIN = 8, ACPI_PTYPE2_REV_FIXED = 9, ACPI_PTYPE2_FIX_VAR = 10, ACPI_PTYPE2_VAR_VAR = 11, ACPI_PTYPE2_UUID_PAIR = 12, ACPI_PTYPE_CUSTOM = 13 }; /* Support macros for users of the predefined info table */ -#define METHOD_PREDEF_ARGS_MAX 4 +#define METHOD_PREDEF_ARGS_MAX 5 #define METHOD_ARG_BIT_WIDTH 3 #define METHOD_ARG_MASK 0x0007 #define ARG_COUNT_IS_MINIMUM 0x8000 #define METHOD_MAX_ARG_TYPE ACPI_TYPE_PACKAGE #define METHOD_GET_ARG_COUNT(ArgList) ((ArgList) & METHOD_ARG_MASK) #define METHOD_GET_NEXT_TYPE(ArgList) (((ArgList) >>= METHOD_ARG_BIT_WIDTH) & METHOD_ARG_MASK) /* Macros used to build the predefined info table */ #define METHOD_0ARGS 0 #define METHOD_1ARGS(a1) (1 | (a1 << 3)) #define METHOD_2ARGS(a1,a2) (2 | (a1 << 3) | (a2 << 6)) #define METHOD_3ARGS(a1,a2,a3) (3 | (a1 << 3) | (a2 << 6) | (a3 << 9)) #define METHOD_4ARGS(a1,a2,a3,a4) (4 | (a1 << 3) | (a2 << 6) | (a3 << 9) | (a4 << 12)) +#define METHOD_5ARGS(a1,a2,a3,a4,a5) (5 | (a1 << 3) | (a2 << 6) | (a3 << 9) | (a4 << 12) | (a5 << 15)) #define METHOD_RETURNS(type) (type) #define METHOD_NO_RETURN_VALUE 0 #define PACKAGE_INFO(a,b,c,d,e,f) {{{(a),(b),(c),(d)}, ((((UINT16)(f)) << 8) | (e)), 0}} /* Support macros for the resource descriptor info table */ #define WIDTH_1 0x0001 #define WIDTH_2 0x0002 #define WIDTH_3 0x0004 #define WIDTH_8 0x0008 #define WIDTH_16 0x0010 #define WIDTH_32 0x0020 #define WIDTH_64 0x0040 #define VARIABLE_DATA 0x0080 #define NUM_RESOURCE_WIDTHS 8 #define WIDTH_ADDRESS WIDTH_16 | WIDTH_32 | WIDTH_64 #ifdef ACPI_CREATE_PREDEFINED_TABLE /****************************************************************************** * * Predefined method/object information table. * * These are the names that can actually be evaluated via AcpiEvaluateObject. * Not present in this table are the following: * * 1) Predefined/Reserved names that are not usually evaluated via * AcpiEvaluateObject: * _Lxx and _Exx GPE methods * _Qxx EC methods * _T_x compiler temporary variables * _Wxx wake events * * 2) Predefined names that never actually exist within the AML code: * Predefined resource descriptor field names * * 3) Predefined names that are implemented within ACPICA: * _OSI * * The main entries in the table each contain the following items: * * Name - The ACPI reserved name * ArgumentList - Contains (in 16 bits), the number of required * arguments to the method (3 bits), and a 3-bit type * field for each argument (up to 4 arguments). The * METHOD_?ARGS macros generate the correct packed data. * ExpectedBtypes - Allowed type(s) for the return value. * 0 means that no return value is expected. * * For methods that return packages, the next entry in the table contains * information about the expected structure of the package. This information * is saved here (rather than in a separate table) in order to minimize the * overall size of the stored data. * * Note: The additional braces are intended to promote portability. * * Note2: Table is used by the kernel-resident subsystem, the iASL compiler, * and the AcpiHelp utility. * * TBD: _PRT - currently ignore reversed entries. Attempt to fix in nsrepair. * Possibly fixing package elements like _BIF, etc. * *****************************************************************************/ const ACPI_PREDEFINED_INFO AcpiGbl_PredefinedMethods[] = { {{"_AC0", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC1", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC2", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC3", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC4", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC5", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC6", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC7", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC8", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AC9", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_ADR", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_AEI", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_AL0", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL1", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL2", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL3", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL4", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL5", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL6", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL7", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL8", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_AL9", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_ALC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_ALI", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_ALP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_ALR", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each 2 (Ints) */ PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_INTEGER, 2,0,0,0), {{"_ALT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_ART", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int(rev), n Pkg (2 Ref/11 Int) */ PACKAGE_INFO (ACPI_PTYPE2_REV_FIXED, ACPI_RTYPE_REFERENCE, 2, ACPI_RTYPE_INTEGER, 11,0), {{"_BBN", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_BCL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 0,0,0,0), {{"_BCM", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_BCT", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_BDN", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_BFS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_BIF", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (9 Int),(4 Str) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 9, ACPI_RTYPE_STRING, 4,0), {{"_BIX", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (16 Int),(4 Str) */ PACKAGE_INFO (ACPI_PTYPE_CUSTOM, ACPI_RTYPE_INTEGER, 16, ACPI_RTYPE_STRING, 4,0), {{"_BLT", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_BMA", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_BMC", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_BMD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (5 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 5,0,0,0), {{"_BMS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_BQC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_BST", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0), {{"_BTH", METHOD_1ARGS (ACPI_TYPE_INTEGER), /* ACPI 6.0 */ METHOD_NO_RETURN_VALUE}}, {{"_BTM", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_BTP", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_CBA", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See PCI firmware spec 3.0 */ {{"_CCA", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* ACPI 5.1 */ {{"_CDM", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_CID", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING | ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints/Strs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING, 0,0,0,0), {{"_CLS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (3 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 3,0,0,0), {{"_CPC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints/Bufs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER | ACPI_RTYPE_BUFFER, 0,0,0,0), {{"_CR3", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_CRS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_CRT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_CSD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int(n), n-1 Int) */ PACKAGE_INFO (ACPI_PTYPE2_COUNT, ACPI_RTYPE_INTEGER, 0,0,0,0), {{"_CST", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int(n), n Pkg (1 Buf/3 Int) */ PACKAGE_INFO (ACPI_PTYPE2_PKG_COUNT,ACPI_RTYPE_BUFFER, 1, ACPI_RTYPE_INTEGER, 3,0), {{"_CWS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_DCK", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_DCS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_DDC", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_BUFFER)}}, {{"_DDN", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_STRING)}}, {{"_DEP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_DGS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_DIS", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_DLM", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each (1 Ref, 0/1 Optional Buf/Ref) */ PACKAGE_INFO (ACPI_PTYPE2_FIX_VAR, ACPI_RTYPE_REFERENCE, 1, ACPI_RTYPE_REFERENCE | ACPI_RTYPE_BUFFER, 0,0), {{"_DMA", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_DOD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 0,0,0,0), {{"_DOS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_DSD", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each: 1 Buf, 1 Pkg */ PACKAGE_INFO (ACPI_PTYPE2_UUID_PAIR, ACPI_RTYPE_BUFFER, 1, ACPI_RTYPE_PACKAGE, 1,0), {{"_DSM", METHOD_4ARGS (ACPI_TYPE_BUFFER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_PACKAGE), METHOD_RETURNS (ACPI_RTYPE_ALL)}}, /* Must return a value, but it can be of any type */ {{"_DSS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_DSW", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_DTI", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_EC_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_EDL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs)*/ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_EJ0", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_EJ1", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_EJ2", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_EJ3", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_EJ4", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_EJD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_STRING)}}, {{"_ERR", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_STRING, ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* Internal use only, used by ACPICA test suites */ {{"_EVT", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_FDE", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_FDI", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (16 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 16,0,0,0), {{"_FDM", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_FIF", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0), {{"_FIT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, /* ACPI 6.0 */ {{"_FIX", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Ints) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 0,0,0,0), {{"_FPS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int(rev), n Pkg (5 Int) */ PACKAGE_INFO (ACPI_PTYPE2_REV_FIXED,ACPI_RTYPE_INTEGER, 5, 0,0,0), {{"_FSL", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_FST", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (3 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 3,0,0,0), {{"_GAI", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_GCP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_GHL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_GLK", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_GPD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_GPE", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* _GPE method, not _GPE scope */ {{"_GRT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_GSB", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_GTF", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_GTM", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_GTS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_GWS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_HID", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING)}}, {{"_HMA", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_HOT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_HPP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0), /* * For _HPX, a single package is returned, containing a variable-length number * of subpackages. Each subpackage contains a PCI record setting. * There are several different type of record settings, of different * lengths, but all elements of all settings are Integers. */ {{"_HPX", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each (var Ints) */ PACKAGE_INFO (ACPI_PTYPE2_MIN, ACPI_RTYPE_INTEGER, 5,0,0,0), {{"_HRV", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_IFT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See IPMI spec */ {{"_INI", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_IRC", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_LCK", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_LID", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_LPD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int(rev), n Pkg (2 Int) */ PACKAGE_INFO (ACPI_PTYPE2_REV_FIXED, ACPI_RTYPE_INTEGER, 2,0,0,0), {{"_LPI", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (3 Int, n Pkg (10 Int/Buf) */ PACKAGE_INFO (ACPI_PTYPE2_VAR_VAR, ACPI_RTYPE_INTEGER, 3, ACPI_RTYPE_INTEGER | ACPI_RTYPE_BUFFER | ACPI_RTYPE_STRING, 10,0), {{"_LSI", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 3,0,0,0), {{"_LSR", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 1, ACPI_RTYPE_BUFFER, 1,0), {{"_LSW", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_BUFFER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_MAT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_MBM", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (8 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 8,0,0,0), {{"_MLS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each (1 Str/1 Buf) */ PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_STRING, 1, ACPI_RTYPE_BUFFER, 1,0), {{"_MSG", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_MSM", METHOD_4ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_MTL", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_NBS", METHOD_0ARGS, /* ACPI 6.3 */ METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_NCH", METHOD_0ARGS, /* ACPI 6.3 */ METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_NIC", METHOD_0ARGS, /* ACPI 6.3 */ METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_NIG", METHOD_0ARGS, /* ACPI 6.3 */ METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_NIH", METHOD_1ARGS (ACPI_TYPE_BUFFER), /* ACPI 6.3 */ METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_NTT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_OFF", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_ON_", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_OS_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_STRING)}}, {{"_OSC", METHOD_4ARGS (ACPI_TYPE_BUFFER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_BUFFER), METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_OST", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_BUFFER), METHOD_NO_RETURN_VALUE}}, {{"_PAI", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PCL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PCT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Buf) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_BUFFER, 2,0,0,0), {{"_PDC", METHOD_1ARGS (ACPI_TYPE_BUFFER), METHOD_NO_RETURN_VALUE}}, {{"_PDL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PIC", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_PIF", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (3 Int),(3 Str) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 3, ACPI_RTYPE_STRING, 3,0), {{"_PLD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Bufs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_BUFFER, 0,0,0,0), {{"_PMC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (11 Int),(3 Str) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 11, ACPI_RTYPE_STRING, 3,0), {{"_PMD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PMM", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PPC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PPE", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See dig64 spec */ {{"_PR0", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PR1", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PR2", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PR3", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PRE", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PRL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PRR", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Ref) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_REFERENCE, 1,0,0,0), {{"_PRS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, /* * For _PRT, many BIOSs reverse the 3rd and 4th Package elements (Source * and SourceIndex). This bug is so prevalent that there is code in the * ACPICA Resource Manager to detect this and switch them back. For now, * do not allow and issue a warning. To allow this and eliminate the * warning, add the ACPI_RTYPE_REFERENCE type to the 4th element (index 3) * in the statement below. */ {{"_PRT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each (4): Int,Int,Int/Ref,Int */ PACKAGE_INFO (ACPI_PTYPE2_FIXED, 4, ACPI_RTYPE_INTEGER, ACPI_RTYPE_INTEGER, ACPI_RTYPE_INTEGER | ACPI_RTYPE_REFERENCE, ACPI_RTYPE_INTEGER), {{"_PRW", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each: Pkg/Int,Int,[Variable-length Refs] (Pkg is Ref/Int) */ PACKAGE_INFO (ACPI_PTYPE1_OPTION, 2, ACPI_RTYPE_INTEGER | ACPI_RTYPE_PACKAGE, ACPI_RTYPE_INTEGER, ACPI_RTYPE_REFERENCE, 0), {{"_PS0", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_PS1", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_PS2", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_PS3", METHOD_0ARGS, METHOD_NO_RETURN_VALUE}}, {{"_PSC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PSD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each (5 Int) with count */ PACKAGE_INFO (ACPI_PTYPE2_COUNT, ACPI_RTYPE_INTEGER, 0,0,0,0), {{"_PSE", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_PSL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_PSR", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PSS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each (6 Int) */ PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_INTEGER, 6,0,0,0), {{"_PSV", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PSW", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_PTC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Buf) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_BUFFER, 2,0,0,0), {{"_PTP", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_PTS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_PUR", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 2,0,0,0), {{"_PXM", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_RDI", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (1 Int, n Pkg (m Ref)) */ PACKAGE_INFO (ACPI_PTYPE2_VAR_VAR, ACPI_RTYPE_INTEGER, 1, ACPI_RTYPE_REFERENCE,0,0), {{"_REG", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_REV", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_RMV", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_ROM", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_RST", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_NO_RETURN_VALUE}}, {{"_RTV", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* * For _S0_ through _S5_, the ACPI spec defines a return Package * containing 1 Integer, but most DSDTs have it wrong - 2,3, or 4 integers. * Allow this by making the objects "Variable-length length", but all elements * must be Integers. */ {{"_S0_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0), {{"_S1_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0), {{"_S2_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0), {{"_S3_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0), {{"_S4_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0), {{"_S5_", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_INTEGER, 1,0,0,0), {{"_S1D", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S2D", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S3D", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S4D", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S0W", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S1W", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S2W", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S3W", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_S4W", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, + {{"_SBA", METHOD_0ARGS, + METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) */ + PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0), + + {{"_SBI", METHOD_0ARGS, + METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (1 Int, 1 Buf) */ + PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 1, ACPI_RTYPE_BUFFER,1,0), + + {{"_SBR", METHOD_3ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), + METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Int) */ + PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 2, ACPI_RTYPE_BUFFER | ACPI_RTYPE_INTEGER, 1,0), + {{"_SBS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, + + {{"_SBT", METHOD_4ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_ANY), + METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (2 Int, 1 Buf | Int) */ + PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 2, ACPI_RTYPE_BUFFER | ACPI_RTYPE_INTEGER, 1,0), + + {{"_SBW", METHOD_5ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER, ACPI_TYPE_ANY), + METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, + PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_BUFFER | ACPI_RTYPE_INTEGER, 1, 0,0,0), {{"_SCP", METHOD_1ARGS (ACPI_TYPE_INTEGER) | ARG_COUNT_IS_MINIMUM, METHOD_NO_RETURN_VALUE}}, /* Acpi 1.0 allowed 1 integer arg. Acpi 3.0 expanded to 3 args. Allow both. */ {{"_SDD", METHOD_1ARGS (ACPI_TYPE_BUFFER), METHOD_NO_RETURN_VALUE}}, {{"_SEG", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_SHL", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_SLI", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_SPD", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_SRS", METHOD_1ARGS (ACPI_TYPE_BUFFER), METHOD_NO_RETURN_VALUE}}, {{"_SRT", METHOD_1ARGS (ACPI_TYPE_BUFFER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_SRV", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* See IPMI spec */ {{"_SST", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_STA", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_STM", METHOD_3ARGS (ACPI_TYPE_BUFFER, ACPI_TYPE_BUFFER, ACPI_TYPE_BUFFER), METHOD_NO_RETURN_VALUE}}, {{"_STP", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_STR", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_STV", METHOD_2ARGS (ACPI_TYPE_INTEGER, ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_SUB", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_STRING)}}, {{"_SUN", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_SWS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TC1", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TC2", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TDL", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TFP", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TIP", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TIV", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TMP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TPC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TPT", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_TRT", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each 2 Ref/6 Int */ PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_REFERENCE, 2, ACPI_RTYPE_INTEGER, 6, 0), {{"_TSD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each 5 Int with count */ PACKAGE_INFO (ACPI_PTYPE2_COUNT,ACPI_RTYPE_INTEGER, 5,0,0,0), {{"_TSN", METHOD_0ARGS, /* ACPI 6.0 */ METHOD_RETURNS (ACPI_RTYPE_REFERENCE)}}, {{"_TSP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TSS", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Pkgs) each 5 Int */ PACKAGE_INFO (ACPI_PTYPE2, ACPI_RTYPE_INTEGER, 5,0,0,0), {{"_TST", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_TTS", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_NO_RETURN_VALUE}}, {{"_TZD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Variable-length (Refs) */ PACKAGE_INFO (ACPI_PTYPE1_VAR, ACPI_RTYPE_REFERENCE, 0,0,0,0), {{"_TZM", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_REFERENCE)}}, {{"_TZP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_UID", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING)}}, {{"_UPC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_PACKAGE)}}, /* Fixed-length (4 Int) */ PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 4,0,0,0), {{"_UPD", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_UPP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, {{"_VPO", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* Acpi 1.0 defined _WAK with no return value. Later, it was changed to return a package */ {{"_WAK", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_NONE | ACPI_RTYPE_INTEGER | ACPI_RTYPE_PACKAGE)}}, PACKAGE_INFO (ACPI_PTYPE1_FIXED, ACPI_RTYPE_INTEGER, 2,0,0,0), /* Fixed-length (2 Int), but is optional */ /* _WDG/_WED are MS extensions defined by "Windows Instrumentation" */ {{"_WDG", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_BUFFER)}}, {{"_WED", METHOD_1ARGS (ACPI_TYPE_INTEGER), METHOD_RETURNS (ACPI_RTYPE_INTEGER | ACPI_RTYPE_STRING | ACPI_RTYPE_BUFFER)}}, {{"_WPC", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* ACPI 6.1 */ {{"_WPP", METHOD_0ARGS, METHOD_RETURNS (ACPI_RTYPE_INTEGER)}}, /* ACPI 6.1 */ PACKAGE_INFO (0,0,0,0,0,0) /* Table terminator */ }; #else extern const ACPI_PREDEFINED_INFO AcpiGbl_PredefinedMethods[]; #endif #if (defined ACPI_CREATE_RESOURCE_TABLE && defined ACPI_APPLICATION) /****************************************************************************** * * Predefined names for use in Resource Descriptors. These names do not * appear in the global Predefined Name table (since these names never * appear in actual AML byte code, only in the original ASL) * * Note: Used by iASL compiler and AcpiHelp utility only. * *****************************************************************************/ const ACPI_PREDEFINED_INFO AcpiGbl_ResourceNames[] = { {{"_ADR", WIDTH_16 | WIDTH_64, 0}}, {{"_ALN", WIDTH_8 | WIDTH_16 | WIDTH_32, 0}}, {{"_ASI", WIDTH_8, 0}}, {{"_ASZ", WIDTH_8, 0}}, {{"_ATT", WIDTH_64, 0}}, {{"_BAS", WIDTH_16 | WIDTH_32, 0}}, {{"_BM_", WIDTH_1, 0}}, {{"_DBT", WIDTH_16, 0}}, /* Acpi 5.0 */ {{"_DEC", WIDTH_1, 0}}, {{"_DMA", WIDTH_8, 0}}, {{"_DPL", WIDTH_1, 0}}, /* Acpi 5.0 */ {{"_DRS", WIDTH_16, 0}}, /* Acpi 5.0 */ {{"_END", WIDTH_1, 0}}, /* Acpi 5.0 */ {{"_FLC", WIDTH_2, 0}}, /* Acpi 5.0 */ {{"_GRA", WIDTH_ADDRESS, 0}}, {{"_HE_", WIDTH_1, 0}}, {{"_INT", WIDTH_16 | WIDTH_32, 0}}, {{"_IOR", WIDTH_2, 0}}, /* Acpi 5.0 */ {{"_LEN", WIDTH_8 | WIDTH_ADDRESS, 0}}, {{"_LIN", WIDTH_8, 0}}, /* Acpi 5.0 */ {{"_LL_", WIDTH_1, 0}}, {{"_MAF", WIDTH_1, 0}}, {{"_MAX", WIDTH_ADDRESS, 0}}, {{"_MEM", WIDTH_2, 0}}, {{"_MIF", WIDTH_1, 0}}, {{"_MIN", WIDTH_ADDRESS, 0}}, {{"_MOD", WIDTH_1, 0}}, /* Acpi 5.0 */ {{"_MTP", WIDTH_2, 0}}, {{"_PAR", WIDTH_8, 0}}, /* Acpi 5.0 */ {{"_PHA", WIDTH_1, 0}}, /* Acpi 5.0 */ {{"_PIN", WIDTH_16, 0}}, /* Acpi 5.0 */ {{"_PPI", WIDTH_8, 0}}, /* Acpi 5.0 */ {{"_POL", WIDTH_1 | WIDTH_2, 0}}, /* Acpi 5.0 */ {{"_RBO", WIDTH_8, 0}}, {{"_RBW", WIDTH_8, 0}}, {{"_RNG", WIDTH_1, 0}}, {{"_RT_", WIDTH_8, 0}}, /* Acpi 3.0 */ {{"_RW_", WIDTH_1, 0}}, {{"_RXL", WIDTH_16, 0}}, /* Acpi 5.0 */ {{"_SHR", WIDTH_2, 0}}, {{"_SIZ", WIDTH_2, 0}}, {{"_SLV", WIDTH_1, 0}}, /* Acpi 5.0 */ {{"_SPE", WIDTH_32, 0}}, /* Acpi 5.0 */ {{"_STB", WIDTH_2, 0}}, /* Acpi 5.0 */ {{"_TRA", WIDTH_ADDRESS, 0}}, {{"_TRS", WIDTH_1, 0}}, {{"_TSF", WIDTH_8, 0}}, /* Acpi 3.0 */ {{"_TTP", WIDTH_1, 0}}, {{"_TXL", WIDTH_16, 0}}, /* Acpi 5.0 */ {{"_TYP", WIDTH_2 | WIDTH_16, 0}}, {{"_VEN", VARIABLE_DATA, 0}}, /* Acpi 5.0 */ PACKAGE_INFO (0,0,0,0,0,0) /* Table terminator */ }; const ACPI_PREDEFINED_INFO AcpiGbl_ScopeNames[] = { {{"_GPE", 0, 0}}, {{"_PR_", 0, 0}}, {{"_SB_", 0, 0}}, {{"_SI_", 0, 0}}, {{"_TZ_", 0, 0}}, PACKAGE_INFO (0,0,0,0,0,0) /* Table terminator */ }; #else extern const ACPI_PREDEFINED_INFO AcpiGbl_ResourceNames[]; #endif #endif Index: head/sys/contrib/dev/acpica/include/actbl1.h =================================================================== --- head/sys/contrib/dev/acpica/include/actbl1.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/actbl1.h (revision 366562) @@ -1,2052 +1,2048 @@ /****************************************************************************** * * Name: actbl1.h - Additional ACPI table definitions * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ACTBL1_H__ #define __ACTBL1_H__ /******************************************************************************* * * Additional ACPI Tables * * These tables are not consumed directly by the ACPICA subsystem, but are * included here to support device drivers and the AML disassembler. * ******************************************************************************/ /* * Values for description table header signatures for tables defined in this * file. Useful because they make it more difficult to inadvertently type in * the wrong signature. */ #define ACPI_SIG_ASF "ASF!" /* Alert Standard Format table */ #define ACPI_SIG_BERT "BERT" /* Boot Error Record Table */ #define ACPI_SIG_BGRT "BGRT" /* Boot Graphics Resource Table */ #define ACPI_SIG_BOOT "BOOT" /* Simple Boot Flag Table */ #define ACPI_SIG_CPEP "CPEP" /* Corrected Platform Error Polling table */ #define ACPI_SIG_CSRT "CSRT" /* Core System Resource Table */ #define ACPI_SIG_DBG2 "DBG2" /* Debug Port table type 2 */ #define ACPI_SIG_DBGP "DBGP" /* Debug Port table */ #define ACPI_SIG_DMAR "DMAR" /* DMA Remapping table */ #define ACPI_SIG_DRTM "DRTM" /* Dynamic Root of Trust for Measurement table */ #define ACPI_SIG_ECDT "ECDT" /* Embedded Controller Boot Resources Table */ #define ACPI_SIG_EINJ "EINJ" /* Error Injection table */ #define ACPI_SIG_ERST "ERST" /* Error Record Serialization Table */ #define ACPI_SIG_FPDT "FPDT" /* Firmware Performance Data Table */ #define ACPI_SIG_GTDT "GTDT" /* Generic Timer Description Table */ #define ACPI_SIG_HEST "HEST" /* Hardware Error Source Table */ #define ACPI_SIG_HMAT "HMAT" /* Heterogeneous Memory Attributes Table */ #define ACPI_SIG_HPET "HPET" /* High Precision Event Timer table */ #define ACPI_SIG_IBFT "IBFT" /* iSCSI Boot Firmware Table */ #define ACPI_SIG_S3PT "S3PT" /* S3 Performance (sub)Table */ #define ACPI_SIG_PCCS "PCC" /* PCC Shared Memory Region */ /* Reserved table signatures */ #define ACPI_SIG_MATR "MATR" /* Memory Address Translation Table */ #define ACPI_SIG_MSDM "MSDM" /* Microsoft Data Management Table */ /* * These tables have been seen in the field, but no definition has been found */ #ifdef ACPI_UNDEFINED_TABLES #define ACPI_SIG_ATKG "ATKG" #define ACPI_SIG_GSCI "GSCI" /* GMCH SCI table */ #define ACPI_SIG_IEIT "IEIT" #endif /* * All tables must be byte-packed to match the ACPI specification, since * the tables are provided by the system BIOS. */ #pragma pack(1) /* * Note: C bitfields are not used for this reason: * * "Bitfields are great and easy to read, but unfortunately the C language * does not specify the layout of bitfields in memory, which means they are * essentially useless for dealing with packed data in on-disk formats or * binary wire protocols." (Or ACPI tables and buffers.) "If you ask me, * this decision was a design error in C. Ritchie could have picked an order * and stuck with it." Norman Ramsey. * See http://stackoverflow.com/a/1053662/41661 */ /******************************************************************************* * * Common subtable headers * ******************************************************************************/ /* Generic subtable header (used in MADT, SRAT, etc.) */ typedef struct acpi_subtable_header { UINT8 Type; UINT8 Length; } ACPI_SUBTABLE_HEADER; /* Subtable header for WHEA tables (EINJ, ERST, WDAT) */ typedef struct acpi_whea_header { UINT8 Action; UINT8 Instruction; UINT8 Flags; UINT8 Reserved; ACPI_GENERIC_ADDRESS RegisterRegion; UINT64 Value; /* Value used with Read/Write register */ UINT64 Mask; /* Bitmask required for this register instruction */ } ACPI_WHEA_HEADER; /******************************************************************************* * * ASF - Alert Standard Format table (Signature "ASF!") * Revision 0x10 * * Conforms to the Alert Standard Format Specification V2.0, 23 April 2003 * ******************************************************************************/ typedef struct acpi_table_asf { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ } ACPI_TABLE_ASF; /* ASF subtable header */ typedef struct acpi_asf_header { UINT8 Type; UINT8 Reserved; UINT16 Length; } ACPI_ASF_HEADER; /* Values for Type field above */ enum AcpiAsfType { ACPI_ASF_TYPE_INFO = 0, ACPI_ASF_TYPE_ALERT = 1, ACPI_ASF_TYPE_CONTROL = 2, ACPI_ASF_TYPE_BOOT = 3, ACPI_ASF_TYPE_ADDRESS = 4, ACPI_ASF_TYPE_RESERVED = 5 }; /* * ASF subtables */ /* 0: ASF Information */ typedef struct acpi_asf_info { ACPI_ASF_HEADER Header; UINT8 MinResetValue; UINT8 MinPollInterval; UINT16 SystemId; UINT32 MfgId; UINT8 Flags; UINT8 Reserved2[3]; } ACPI_ASF_INFO; /* Masks for Flags field above */ #define ACPI_ASF_SMBUS_PROTOCOLS (1) /* 1: ASF Alerts */ typedef struct acpi_asf_alert { ACPI_ASF_HEADER Header; UINT8 AssertMask; UINT8 DeassertMask; UINT8 Alerts; UINT8 DataLength; } ACPI_ASF_ALERT; typedef struct acpi_asf_alert_data { UINT8 Address; UINT8 Command; UINT8 Mask; UINT8 Value; UINT8 SensorType; UINT8 Type; UINT8 Offset; UINT8 SourceType; UINT8 Severity; UINT8 SensorNumber; UINT8 Entity; UINT8 Instance; } ACPI_ASF_ALERT_DATA; /* 2: ASF Remote Control */ typedef struct acpi_asf_remote { ACPI_ASF_HEADER Header; UINT8 Controls; UINT8 DataLength; UINT16 Reserved2; } ACPI_ASF_REMOTE; typedef struct acpi_asf_control_data { UINT8 Function; UINT8 Address; UINT8 Command; UINT8 Value; } ACPI_ASF_CONTROL_DATA; /* 3: ASF RMCP Boot Options */ typedef struct acpi_asf_rmcp { ACPI_ASF_HEADER Header; UINT8 Capabilities[7]; UINT8 CompletionCode; UINT32 EnterpriseId; UINT8 Command; UINT16 Parameter; UINT16 BootOptions; UINT16 OemParameters; } ACPI_ASF_RMCP; /* 4: ASF Address */ typedef struct acpi_asf_address { ACPI_ASF_HEADER Header; UINT8 EpromAddress; UINT8 Devices; } ACPI_ASF_ADDRESS; /******************************************************************************* * * BERT - Boot Error Record Table (ACPI 4.0) * Version 1 * ******************************************************************************/ typedef struct acpi_table_bert { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 RegionLength; /* Length of the boot error region */ UINT64 Address; /* Physical address of the error region */ } ACPI_TABLE_BERT; /* Boot Error Region (not a subtable, pointed to by Address field above) */ typedef struct acpi_bert_region { UINT32 BlockStatus; /* Type of error information */ UINT32 RawDataOffset; /* Offset to raw error data */ UINT32 RawDataLength; /* Length of raw error data */ UINT32 DataLength; /* Length of generic error data */ UINT32 ErrorSeverity; /* Severity code */ } ACPI_BERT_REGION; /* Values for BlockStatus flags above */ #define ACPI_BERT_UNCORRECTABLE (1) #define ACPI_BERT_CORRECTABLE (1<<1) #define ACPI_BERT_MULTIPLE_UNCORRECTABLE (1<<2) #define ACPI_BERT_MULTIPLE_CORRECTABLE (1<<3) #define ACPI_BERT_ERROR_ENTRY_COUNT (0xFF<<4) /* 8 bits, error count */ /* Values for ErrorSeverity above */ enum AcpiBertErrorSeverity { ACPI_BERT_ERROR_CORRECTABLE = 0, ACPI_BERT_ERROR_FATAL = 1, ACPI_BERT_ERROR_CORRECTED = 2, ACPI_BERT_ERROR_NONE = 3, ACPI_BERT_ERROR_RESERVED = 4 /* 4 and greater are reserved */ }; /* * Note: The generic error data that follows the ErrorSeverity field above * uses the ACPI_HEST_GENERIC_DATA defined under the HEST table below */ /******************************************************************************* * * BGRT - Boot Graphics Resource Table (ACPI 5.0) * Version 1 * ******************************************************************************/ typedef struct acpi_table_bgrt { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT16 Version; UINT8 Status; UINT8 ImageType; UINT64 ImageAddress; UINT32 ImageOffsetX; UINT32 ImageOffsetY; } ACPI_TABLE_BGRT; /* Flags for Status field above */ #define ACPI_BGRT_DISPLAYED (1) #define ACPI_BGRT_ORIENTATION_OFFSET (3 << 1) /******************************************************************************* * * BOOT - Simple Boot Flag Table * Version 1 * * Conforms to the "Simple Boot Flag Specification", Version 2.1 * ******************************************************************************/ typedef struct acpi_table_boot { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT8 CmosIndex; /* Index in CMOS RAM for the boot register */ UINT8 Reserved[3]; } ACPI_TABLE_BOOT; /******************************************************************************* * * CPEP - Corrected Platform Error Polling table (ACPI 4.0) * Version 1 * ******************************************************************************/ typedef struct acpi_table_cpep { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT64 Reserved; } ACPI_TABLE_CPEP; /* Subtable */ typedef struct acpi_cpep_polling { ACPI_SUBTABLE_HEADER Header; UINT8 Id; /* Processor ID */ UINT8 Eid; /* Processor EID */ UINT32 Interval; /* Polling interval (msec) */ } ACPI_CPEP_POLLING; /******************************************************************************* * * CSRT - Core System Resource Table * Version 0 * * Conforms to the "Core System Resource Table (CSRT)", November 14, 2011 * ******************************************************************************/ typedef struct acpi_table_csrt { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ } ACPI_TABLE_CSRT; /* Resource Group subtable */ typedef struct acpi_csrt_group { UINT32 Length; UINT32 VendorId; UINT32 SubvendorId; UINT16 DeviceId; UINT16 SubdeviceId; UINT16 Revision; UINT16 Reserved; UINT32 SharedInfoLength; /* Shared data immediately follows (Length = SharedInfoLength) */ } ACPI_CSRT_GROUP; /* Shared Info subtable */ typedef struct acpi_csrt_shared_info { UINT16 MajorVersion; UINT16 MinorVersion; UINT32 MmioBaseLow; UINT32 MmioBaseHigh; UINT32 GsiInterrupt; UINT8 InterruptPolarity; UINT8 InterruptMode; UINT8 NumChannels; UINT8 DmaAddressWidth; UINT16 BaseRequestLine; UINT16 NumHandshakeSignals; UINT32 MaxBlockSize; /* Resource descriptors immediately follow (Length = Group Length - SharedInfoLength) */ } ACPI_CSRT_SHARED_INFO; /* Resource Descriptor subtable */ typedef struct acpi_csrt_descriptor { UINT32 Length; UINT16 Type; UINT16 Subtype; UINT32 Uid; /* Resource-specific information immediately follows */ } ACPI_CSRT_DESCRIPTOR; /* Resource Types */ #define ACPI_CSRT_TYPE_INTERRUPT 0x0001 #define ACPI_CSRT_TYPE_TIMER 0x0002 #define ACPI_CSRT_TYPE_DMA 0x0003 /* Resource Subtypes */ #define ACPI_CSRT_XRUPT_LINE 0x0000 #define ACPI_CSRT_XRUPT_CONTROLLER 0x0001 #define ACPI_CSRT_TIMER 0x0000 #define ACPI_CSRT_DMA_CHANNEL 0x0000 #define ACPI_CSRT_DMA_CONTROLLER 0x0001 /******************************************************************************* * * DBG2 - Debug Port Table 2 * Version 0 (Both main table and subtables) * * Conforms to "Microsoft Debug Port Table 2 (DBG2)", December 10, 2015 * ******************************************************************************/ typedef struct acpi_table_dbg2 { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 InfoOffset; UINT32 InfoCount; } ACPI_TABLE_DBG2; typedef struct acpi_dbg2_header { UINT32 InfoOffset; UINT32 InfoCount; } ACPI_DBG2_HEADER; /* Debug Device Information Subtable */ typedef struct acpi_dbg2_device { UINT8 Revision; UINT16 Length; UINT8 RegisterCount; /* Number of BaseAddress registers */ UINT16 NamepathLength; UINT16 NamepathOffset; UINT16 OemDataLength; UINT16 OemDataOffset; UINT16 PortType; UINT16 PortSubtype; UINT16 Reserved; UINT16 BaseAddressOffset; UINT16 AddressSizeOffset; /* * Data that follows: * BaseAddress (required) - Each in 12-byte Generic Address Structure format. * AddressSize (required) - Array of UINT32 sizes corresponding to each BaseAddress register. * Namepath (required) - Null terminated string. Single dot if not supported. * OemData (optional) - Length is OemDataLength. */ } ACPI_DBG2_DEVICE; /* Types for PortType field above */ #define ACPI_DBG2_SERIAL_PORT 0x8000 #define ACPI_DBG2_1394_PORT 0x8001 #define ACPI_DBG2_USB_PORT 0x8002 #define ACPI_DBG2_NET_PORT 0x8003 /* Subtypes for PortSubtype field above */ #define ACPI_DBG2_16550_COMPATIBLE 0x0000 #define ACPI_DBG2_16550_SUBSET 0x0001 #define ACPI_DBG2_ARM_PL011 0x0003 #define ACPI_DBG2_ARM_SBSA_32BIT 0x000D #define ACPI_DBG2_ARM_SBSA_GENERIC 0x000E #define ACPI_DBG2_ARM_DCC 0x000F #define ACPI_DBG2_BCM2835 0x0010 #define ACPI_DBG2_1394_STANDARD 0x0000 #define ACPI_DBG2_USB_XHCI 0x0000 #define ACPI_DBG2_USB_EHCI 0x0001 /******************************************************************************* * * DBGP - Debug Port table * Version 1 * * Conforms to the "Debug Port Specification", Version 1.00, 2/9/2000 * ******************************************************************************/ typedef struct acpi_table_dbgp { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT8 Type; /* 0=full 16550, 1=subset of 16550 */ UINT8 Reserved[3]; ACPI_GENERIC_ADDRESS DebugPort; } ACPI_TABLE_DBGP; /******************************************************************************* * * DMAR - DMA Remapping table * Version 1 * * Conforms to "Intel Virtualization Technology for Directed I/O", * Version 2.3, October 2014 * ******************************************************************************/ typedef struct acpi_table_dmar { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT8 Width; /* Host Address Width */ UINT8 Flags; UINT8 Reserved[10]; } ACPI_TABLE_DMAR; /* Masks for Flags field above */ #define ACPI_DMAR_INTR_REMAP (1) #define ACPI_DMAR_X2APIC_OPT_OUT (1<<1) #define ACPI_DMAR_X2APIC_MODE (1<<2) /* DMAR subtable header */ typedef struct acpi_dmar_header { UINT16 Type; UINT16 Length; } ACPI_DMAR_HEADER; /* Values for subtable type in ACPI_DMAR_HEADER */ enum AcpiDmarType { ACPI_DMAR_TYPE_HARDWARE_UNIT = 0, ACPI_DMAR_TYPE_RESERVED_MEMORY = 1, ACPI_DMAR_TYPE_ROOT_ATS = 2, ACPI_DMAR_TYPE_HARDWARE_AFFINITY = 3, ACPI_DMAR_TYPE_NAMESPACE = 4, ACPI_DMAR_TYPE_RESERVED = 5 /* 5 and greater are reserved */ }; /* DMAR Device Scope structure */ typedef struct acpi_dmar_device_scope { UINT8 EntryType; UINT8 Length; UINT16 Reserved; UINT8 EnumerationId; UINT8 Bus; } ACPI_DMAR_DEVICE_SCOPE; /* Values for EntryType in ACPI_DMAR_DEVICE_SCOPE - device types */ enum AcpiDmarScopeType { ACPI_DMAR_SCOPE_TYPE_NOT_USED = 0, ACPI_DMAR_SCOPE_TYPE_ENDPOINT = 1, ACPI_DMAR_SCOPE_TYPE_BRIDGE = 2, ACPI_DMAR_SCOPE_TYPE_IOAPIC = 3, ACPI_DMAR_SCOPE_TYPE_HPET = 4, ACPI_DMAR_SCOPE_TYPE_NAMESPACE = 5, ACPI_DMAR_SCOPE_TYPE_RESERVED = 6 /* 6 and greater are reserved */ }; typedef struct acpi_dmar_pci_path { UINT8 Device; UINT8 Function; } ACPI_DMAR_PCI_PATH; /* * DMAR Subtables, correspond to Type in ACPI_DMAR_HEADER */ /* 0: Hardware Unit Definition */ typedef struct acpi_dmar_hardware_unit { ACPI_DMAR_HEADER Header; UINT8 Flags; UINT8 Reserved; UINT16 Segment; UINT64 Address; /* Register Base Address */ } ACPI_DMAR_HARDWARE_UNIT; /* Masks for Flags field above */ #define ACPI_DMAR_INCLUDE_ALL (1) /* 1: Reserved Memory Definition */ typedef struct acpi_dmar_reserved_memory { ACPI_DMAR_HEADER Header; UINT16 Reserved; UINT16 Segment; UINT64 BaseAddress; /* 4K aligned base address */ UINT64 EndAddress; /* 4K aligned limit address */ } ACPI_DMAR_RESERVED_MEMORY; /* Masks for Flags field above */ #define ACPI_DMAR_ALLOW_ALL (1) /* 2: Root Port ATS Capability Reporting Structure */ typedef struct acpi_dmar_atsr { ACPI_DMAR_HEADER Header; UINT8 Flags; UINT8 Reserved; UINT16 Segment; } ACPI_DMAR_ATSR; /* Masks for Flags field above */ #define ACPI_DMAR_ALL_PORTS (1) /* 3: Remapping Hardware Static Affinity Structure */ typedef struct acpi_dmar_rhsa { ACPI_DMAR_HEADER Header; UINT32 Reserved; UINT64 BaseAddress; UINT32 ProximityDomain; } ACPI_DMAR_RHSA; /* 4: ACPI Namespace Device Declaration Structure */ typedef struct acpi_dmar_andd { ACPI_DMAR_HEADER Header; UINT8 Reserved[3]; UINT8 DeviceNumber; char DeviceName[1]; } ACPI_DMAR_ANDD; /******************************************************************************* * * DRTM - Dynamic Root of Trust for Measurement table * Conforms to "TCG D-RTM Architecture" June 17 2013, Version 1.0.0 * Table version 1 * ******************************************************************************/ typedef struct acpi_table_drtm { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT64 EntryBaseAddress; UINT64 EntryLength; UINT32 EntryAddress32; UINT64 EntryAddress64; UINT64 ExitAddress; UINT64 LogAreaAddress; UINT32 LogAreaLength; UINT64 ArchDependentAddress; UINT32 Flags; } ACPI_TABLE_DRTM; /* Flag Definitions for above */ #define ACPI_DRTM_ACCESS_ALLOWED (1) #define ACPI_DRTM_ENABLE_GAP_CODE (1<<1) #define ACPI_DRTM_INCOMPLETE_MEASUREMENTS (1<<2) #define ACPI_DRTM_AUTHORITY_ORDER (1<<3) /* 1) Validated Tables List (64-bit addresses) */ typedef struct acpi_drtm_vtable_list { UINT32 ValidatedTableCount; UINT64 ValidatedTables[1]; } ACPI_DRTM_VTABLE_LIST; /* 2) Resources List (of Resource Descriptors) */ /* Resource Descriptor */ typedef struct acpi_drtm_resource { UINT8 Size[7]; UINT8 Type; UINT64 Address; } ACPI_DRTM_RESOURCE; typedef struct acpi_drtm_resource_list { UINT32 ResourceCount; ACPI_DRTM_RESOURCE Resources[1]; } ACPI_DRTM_RESOURCE_LIST; /* 3) Platform-specific Identifiers List */ typedef struct acpi_drtm_dps_id { UINT32 DpsIdLength; UINT8 DpsId[16]; } ACPI_DRTM_DPS_ID; /******************************************************************************* * * ECDT - Embedded Controller Boot Resources Table * Version 1 * ******************************************************************************/ typedef struct acpi_table_ecdt { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ ACPI_GENERIC_ADDRESS Control; /* Address of EC command/status register */ ACPI_GENERIC_ADDRESS Data; /* Address of EC data register */ UINT32 Uid; /* Unique ID - must be same as the EC _UID method */ UINT8 Gpe; /* The GPE for the EC */ UINT8 Id[1]; /* Full namepath of the EC in the ACPI namespace */ } ACPI_TABLE_ECDT; /******************************************************************************* * * EINJ - Error Injection Table (ACPI 4.0) * Version 1 * ******************************************************************************/ typedef struct acpi_table_einj { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 HeaderLength; UINT8 Flags; UINT8 Reserved[3]; UINT32 Entries; } ACPI_TABLE_EINJ; /* EINJ Injection Instruction Entries (actions) */ typedef struct acpi_einj_entry { ACPI_WHEA_HEADER WheaHeader; /* Common header for WHEA tables */ } ACPI_EINJ_ENTRY; /* Masks for Flags field above */ #define ACPI_EINJ_PRESERVE (1) /* Values for Action field above */ enum AcpiEinjActions { ACPI_EINJ_BEGIN_OPERATION = 0, ACPI_EINJ_GET_TRIGGER_TABLE = 1, ACPI_EINJ_SET_ERROR_TYPE = 2, ACPI_EINJ_GET_ERROR_TYPE = 3, ACPI_EINJ_END_OPERATION = 4, ACPI_EINJ_EXECUTE_OPERATION = 5, ACPI_EINJ_CHECK_BUSY_STATUS = 6, ACPI_EINJ_GET_COMMAND_STATUS = 7, ACPI_EINJ_SET_ERROR_TYPE_WITH_ADDRESS = 8, ACPI_EINJ_GET_EXECUTE_TIMINGS = 9, ACPI_EINJ_ACTION_RESERVED = 10, /* 10 and greater are reserved */ ACPI_EINJ_TRIGGER_ERROR = 0xFF /* Except for this value */ }; /* Values for Instruction field above */ enum AcpiEinjInstructions { ACPI_EINJ_READ_REGISTER = 0, ACPI_EINJ_READ_REGISTER_VALUE = 1, ACPI_EINJ_WRITE_REGISTER = 2, ACPI_EINJ_WRITE_REGISTER_VALUE = 3, ACPI_EINJ_NOOP = 4, ACPI_EINJ_FLUSH_CACHELINE = 5, ACPI_EINJ_INSTRUCTION_RESERVED = 6 /* 6 and greater are reserved */ }; typedef struct acpi_einj_error_type_with_addr { UINT32 ErrorType; UINT32 VendorStructOffset; UINT32 Flags; UINT32 ApicId; UINT64 Address; UINT64 Range; UINT32 PcieId; } ACPI_EINJ_ERROR_TYPE_WITH_ADDR; typedef struct acpi_einj_vendor { UINT32 Length; UINT32 PcieId; UINT16 VendorId; UINT16 DeviceId; UINT8 RevisionId; UINT8 Reserved[3]; } ACPI_EINJ_VENDOR; /* EINJ Trigger Error Action Table */ typedef struct acpi_einj_trigger { UINT32 HeaderSize; UINT32 Revision; UINT32 TableSize; UINT32 EntryCount; } ACPI_EINJ_TRIGGER; /* Command status return values */ enum AcpiEinjCommandStatus { ACPI_EINJ_SUCCESS = 0, ACPI_EINJ_FAILURE = 1, ACPI_EINJ_INVALID_ACCESS = 2, ACPI_EINJ_STATUS_RESERVED = 3 /* 3 and greater are reserved */ }; /* Error types returned from ACPI_EINJ_GET_ERROR_TYPE (bitfield) */ #define ACPI_EINJ_PROCESSOR_CORRECTABLE (1) #define ACPI_EINJ_PROCESSOR_UNCORRECTABLE (1<<1) #define ACPI_EINJ_PROCESSOR_FATAL (1<<2) #define ACPI_EINJ_MEMORY_CORRECTABLE (1<<3) #define ACPI_EINJ_MEMORY_UNCORRECTABLE (1<<4) #define ACPI_EINJ_MEMORY_FATAL (1<<5) #define ACPI_EINJ_PCIX_CORRECTABLE (1<<6) #define ACPI_EINJ_PCIX_UNCORRECTABLE (1<<7) #define ACPI_EINJ_PCIX_FATAL (1<<8) #define ACPI_EINJ_PLATFORM_CORRECTABLE (1<<9) #define ACPI_EINJ_PLATFORM_UNCORRECTABLE (1<<10) #define ACPI_EINJ_PLATFORM_FATAL (1<<11) #define ACPI_EINJ_VENDOR_DEFINED (1<<31) /******************************************************************************* * * ERST - Error Record Serialization Table (ACPI 4.0) * Version 1 * ******************************************************************************/ typedef struct acpi_table_erst { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 HeaderLength; UINT32 Reserved; UINT32 Entries; } ACPI_TABLE_ERST; /* ERST Serialization Entries (actions) */ typedef struct acpi_erst_entry { ACPI_WHEA_HEADER WheaHeader; /* Common header for WHEA tables */ } ACPI_ERST_ENTRY; /* Masks for Flags field above */ #define ACPI_ERST_PRESERVE (1) /* Values for Action field above */ enum AcpiErstActions { ACPI_ERST_BEGIN_WRITE = 0, ACPI_ERST_BEGIN_READ = 1, ACPI_ERST_BEGIN_CLEAR = 2, ACPI_ERST_END = 3, ACPI_ERST_SET_RECORD_OFFSET = 4, ACPI_ERST_EXECUTE_OPERATION = 5, ACPI_ERST_CHECK_BUSY_STATUS = 6, ACPI_ERST_GET_COMMAND_STATUS = 7, ACPI_ERST_GET_RECORD_ID = 8, ACPI_ERST_SET_RECORD_ID = 9, ACPI_ERST_GET_RECORD_COUNT = 10, ACPI_ERST_BEGIN_DUMMY_WRIITE = 11, ACPI_ERST_NOT_USED = 12, ACPI_ERST_GET_ERROR_RANGE = 13, ACPI_ERST_GET_ERROR_LENGTH = 14, ACPI_ERST_GET_ERROR_ATTRIBUTES = 15, ACPI_ERST_EXECUTE_TIMINGS = 16, ACPI_ERST_ACTION_RESERVED = 17 /* 17 and greater are reserved */ }; /* Values for Instruction field above */ enum AcpiErstInstructions { ACPI_ERST_READ_REGISTER = 0, ACPI_ERST_READ_REGISTER_VALUE = 1, ACPI_ERST_WRITE_REGISTER = 2, ACPI_ERST_WRITE_REGISTER_VALUE = 3, ACPI_ERST_NOOP = 4, ACPI_ERST_LOAD_VAR1 = 5, ACPI_ERST_LOAD_VAR2 = 6, ACPI_ERST_STORE_VAR1 = 7, ACPI_ERST_ADD = 8, ACPI_ERST_SUBTRACT = 9, ACPI_ERST_ADD_VALUE = 10, ACPI_ERST_SUBTRACT_VALUE = 11, ACPI_ERST_STALL = 12, ACPI_ERST_STALL_WHILE_TRUE = 13, ACPI_ERST_SKIP_NEXT_IF_TRUE = 14, ACPI_ERST_GOTO = 15, ACPI_ERST_SET_SRC_ADDRESS_BASE = 16, ACPI_ERST_SET_DST_ADDRESS_BASE = 17, ACPI_ERST_MOVE_DATA = 18, ACPI_ERST_INSTRUCTION_RESERVED = 19 /* 19 and greater are reserved */ }; /* Command status return values */ enum AcpiErstCommandStatus { ACPI_ERST_SUCCESS = 0, ACPI_ERST_NO_SPACE = 1, ACPI_ERST_NOT_AVAILABLE = 2, ACPI_ERST_FAILURE = 3, ACPI_ERST_RECORD_EMPTY = 4, ACPI_ERST_NOT_FOUND = 5, ACPI_ERST_STATUS_RESERVED = 6 /* 6 and greater are reserved */ }; /* Error Record Serialization Information */ typedef struct acpi_erst_info { UINT16 Signature; /* Should be "ER" */ UINT8 Data[48]; } ACPI_ERST_INFO; /******************************************************************************* * * FPDT - Firmware Performance Data Table (ACPI 5.0) * Version 1 * ******************************************************************************/ typedef struct acpi_table_fpdt { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ } ACPI_TABLE_FPDT; /* FPDT subtable header (Performance Record Structure) */ typedef struct acpi_fpdt_header { UINT16 Type; UINT8 Length; UINT8 Revision; } ACPI_FPDT_HEADER; /* Values for Type field above */ enum AcpiFpdtType { ACPI_FPDT_TYPE_BOOT = 0, ACPI_FPDT_TYPE_S3PERF = 1 }; /* * FPDT subtables */ /* 0: Firmware Basic Boot Performance Record */ typedef struct acpi_fpdt_boot_pointer { ACPI_FPDT_HEADER Header; UINT8 Reserved[4]; UINT64 Address; } ACPI_FPDT_BOOT_POINTER; /* 1: S3 Performance Table Pointer Record */ typedef struct acpi_fpdt_s3pt_pointer { ACPI_FPDT_HEADER Header; UINT8 Reserved[4]; UINT64 Address; } ACPI_FPDT_S3PT_POINTER; /* * S3PT - S3 Performance Table. This table is pointed to by the * S3 Pointer Record above. */ typedef struct acpi_table_s3pt { UINT8 Signature[4]; /* "S3PT" */ UINT32 Length; } ACPI_TABLE_S3PT; /* * S3PT Subtables (Not part of the actual FPDT) */ /* Values for Type field in S3PT header */ enum AcpiS3ptType { ACPI_S3PT_TYPE_RESUME = 0, ACPI_S3PT_TYPE_SUSPEND = 1, ACPI_FPDT_BOOT_PERFORMANCE = 2 }; typedef struct acpi_s3pt_resume { ACPI_FPDT_HEADER Header; UINT32 ResumeCount; UINT64 FullResume; UINT64 AverageResume; } ACPI_S3PT_RESUME; typedef struct acpi_s3pt_suspend { ACPI_FPDT_HEADER Header; UINT64 SuspendStart; UINT64 SuspendEnd; } ACPI_S3PT_SUSPEND; /* * FPDT Boot Performance Record (Not part of the actual FPDT) */ typedef struct acpi_fpdt_boot { ACPI_FPDT_HEADER Header; UINT8 Reserved[4]; UINT64 ResetEnd; UINT64 LoadStart; UINT64 StartupStart; UINT64 ExitServicesEntry; UINT64 ExitServicesExit; } ACPI_FPDT_BOOT; /******************************************************************************* * * GTDT - Generic Timer Description Table (ACPI 5.1) * Version 2 * ******************************************************************************/ typedef struct acpi_table_gtdt { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT64 CounterBlockAddresss; UINT32 Reserved; UINT32 SecureEl1Interrupt; UINT32 SecureEl1Flags; UINT32 NonSecureEl1Interrupt; UINT32 NonSecureEl1Flags; UINT32 VirtualTimerInterrupt; UINT32 VirtualTimerFlags; UINT32 NonSecureEl2Interrupt; UINT32 NonSecureEl2Flags; UINT64 CounterReadBlockAddress; UINT32 PlatformTimerCount; UINT32 PlatformTimerOffset; } ACPI_TABLE_GTDT; /* Flag Definitions: Timer Block Physical Timers and Virtual timers */ #define ACPI_GTDT_INTERRUPT_MODE (1) #define ACPI_GTDT_INTERRUPT_POLARITY (1<<1) #define ACPI_GTDT_ALWAYS_ON (1<<2) typedef struct acpi_gtdt_el2 { UINT32 VirtualEL2TimerGsiv; UINT32 VirtualEL2TimerFlags; } ACPI_GTDT_EL2; /* Common GTDT subtable header */ typedef struct acpi_gtdt_header { UINT8 Type; UINT16 Length; } ACPI_GTDT_HEADER; /* Values for GTDT subtable type above */ enum AcpiGtdtType { ACPI_GTDT_TYPE_TIMER_BLOCK = 0, ACPI_GTDT_TYPE_WATCHDOG = 1, ACPI_GTDT_TYPE_RESERVED = 2 /* 2 and greater are reserved */ }; /* GTDT Subtables, correspond to Type in acpi_gtdt_header */ /* 0: Generic Timer Block */ typedef struct acpi_gtdt_timer_block { ACPI_GTDT_HEADER Header; UINT8 Reserved; UINT64 BlockAddress; UINT32 TimerCount; UINT32 TimerOffset; } ACPI_GTDT_TIMER_BLOCK; /* Timer Sub-Structure, one per timer */ typedef struct acpi_gtdt_timer_entry { UINT8 FrameNumber; UINT8 Reserved[3]; UINT64 BaseAddress; UINT64 El0BaseAddress; UINT32 TimerInterrupt; UINT32 TimerFlags; UINT32 VirtualTimerInterrupt; UINT32 VirtualTimerFlags; UINT32 CommonFlags; } ACPI_GTDT_TIMER_ENTRY; /* Flag Definitions: TimerFlags and VirtualTimerFlags above */ #define ACPI_GTDT_GT_IRQ_MODE (1) #define ACPI_GTDT_GT_IRQ_POLARITY (1<<1) /* Flag Definitions: CommonFlags above */ #define ACPI_GTDT_GT_IS_SECURE_TIMER (1) #define ACPI_GTDT_GT_ALWAYS_ON (1<<1) /* 1: SBSA Generic Watchdog Structure */ typedef struct acpi_gtdt_watchdog { ACPI_GTDT_HEADER Header; UINT8 Reserved; UINT64 RefreshFrameAddress; UINT64 ControlFrameAddress; UINT32 TimerInterrupt; UINT32 TimerFlags; } ACPI_GTDT_WATCHDOG; /* Flag Definitions: TimerFlags above */ #define ACPI_GTDT_WATCHDOG_IRQ_MODE (1) #define ACPI_GTDT_WATCHDOG_IRQ_POLARITY (1<<1) #define ACPI_GTDT_WATCHDOG_SECURE (1<<2) /******************************************************************************* * * HEST - Hardware Error Source Table (ACPI 4.0) * Version 1 * ******************************************************************************/ typedef struct acpi_table_hest { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 ErrorSourceCount; } ACPI_TABLE_HEST; /* HEST subtable header */ typedef struct acpi_hest_header { UINT16 Type; UINT16 SourceId; } ACPI_HEST_HEADER; /* Values for Type field above for subtables */ enum AcpiHestTypes { ACPI_HEST_TYPE_IA32_CHECK = 0, ACPI_HEST_TYPE_IA32_CORRECTED_CHECK = 1, ACPI_HEST_TYPE_IA32_NMI = 2, ACPI_HEST_TYPE_NOT_USED3 = 3, ACPI_HEST_TYPE_NOT_USED4 = 4, ACPI_HEST_TYPE_NOT_USED5 = 5, ACPI_HEST_TYPE_AER_ROOT_PORT = 6, ACPI_HEST_TYPE_AER_ENDPOINT = 7, ACPI_HEST_TYPE_AER_BRIDGE = 8, ACPI_HEST_TYPE_GENERIC_ERROR = 9, ACPI_HEST_TYPE_GENERIC_ERROR_V2 = 10, ACPI_HEST_TYPE_IA32_DEFERRED_CHECK = 11, ACPI_HEST_TYPE_RESERVED = 12 /* 12 and greater are reserved */ }; /* * HEST substructures contained in subtables */ /* * IA32 Error Bank(s) - Follows the ACPI_HEST_IA_MACHINE_CHECK and * ACPI_HEST_IA_CORRECTED structures. */ typedef struct acpi_hest_ia_error_bank { UINT8 BankNumber; UINT8 ClearStatusOnInit; UINT8 StatusFormat; UINT8 Reserved; UINT32 ControlRegister; UINT64 ControlData; UINT32 StatusRegister; UINT32 AddressRegister; UINT32 MiscRegister; } ACPI_HEST_IA_ERROR_BANK; /* Common HEST sub-structure for PCI/AER structures below (6,7,8) */ typedef struct acpi_hest_aer_common { UINT16 Reserved1; UINT8 Flags; UINT8 Enabled; UINT32 RecordsToPreallocate; UINT32 MaxSectionsPerRecord; UINT32 Bus; /* Bus and Segment numbers */ UINT16 Device; UINT16 Function; UINT16 DeviceControl; UINT16 Reserved2; UINT32 UncorrectableMask; UINT32 UncorrectableSeverity; UINT32 CorrectableMask; UINT32 AdvancedCapabilities; } ACPI_HEST_AER_COMMON; /* Masks for HEST Flags fields */ #define ACPI_HEST_FIRMWARE_FIRST (1) #define ACPI_HEST_GLOBAL (1<<1) #define ACPI_HEST_GHES_ASSIST (1<<2) /* * Macros to access the bus/segment numbers in Bus field above: * Bus number is encoded in bits 7:0 * Segment number is encoded in bits 23:8 */ #define ACPI_HEST_BUS(Bus) ((Bus) & 0xFF) #define ACPI_HEST_SEGMENT(Bus) (((Bus) >> 8) & 0xFFFF) /* Hardware Error Notification */ typedef struct acpi_hest_notify { UINT8 Type; UINT8 Length; UINT16 ConfigWriteEnable; UINT32 PollInterval; UINT32 Vector; UINT32 PollingThresholdValue; UINT32 PollingThresholdWindow; UINT32 ErrorThresholdValue; UINT32 ErrorThresholdWindow; } ACPI_HEST_NOTIFY; /* Values for Notify Type field above */ enum AcpiHestNotifyTypes { ACPI_HEST_NOTIFY_POLLED = 0, ACPI_HEST_NOTIFY_EXTERNAL = 1, ACPI_HEST_NOTIFY_LOCAL = 2, ACPI_HEST_NOTIFY_SCI = 3, ACPI_HEST_NOTIFY_NMI = 4, ACPI_HEST_NOTIFY_CMCI = 5, /* ACPI 5.0 */ ACPI_HEST_NOTIFY_MCE = 6, /* ACPI 5.0 */ ACPI_HEST_NOTIFY_GPIO = 7, /* ACPI 6.0 */ ACPI_HEST_NOTIFY_SEA = 8, /* ACPI 6.1 */ ACPI_HEST_NOTIFY_SEI = 9, /* ACPI 6.1 */ ACPI_HEST_NOTIFY_GSIV = 10, /* ACPI 6.1 */ ACPI_HEST_NOTIFY_SOFTWARE_DELEGATED = 11, /* ACPI 6.2 */ ACPI_HEST_NOTIFY_RESERVED = 12 /* 12 and greater are reserved */ }; /* Values for ConfigWriteEnable bitfield above */ #define ACPI_HEST_TYPE (1) #define ACPI_HEST_POLL_INTERVAL (1<<1) #define ACPI_HEST_POLL_THRESHOLD_VALUE (1<<2) #define ACPI_HEST_POLL_THRESHOLD_WINDOW (1<<3) #define ACPI_HEST_ERR_THRESHOLD_VALUE (1<<4) #define ACPI_HEST_ERR_THRESHOLD_WINDOW (1<<5) /* * HEST subtables */ /* 0: IA32 Machine Check Exception */ typedef struct acpi_hest_ia_machine_check { ACPI_HEST_HEADER Header; UINT16 Reserved1; UINT8 Flags; /* See flags ACPI_HEST_GLOBAL, etc. above */ UINT8 Enabled; UINT32 RecordsToPreallocate; UINT32 MaxSectionsPerRecord; UINT64 GlobalCapabilityData; UINT64 GlobalControlData; UINT8 NumHardwareBanks; UINT8 Reserved3[7]; } ACPI_HEST_IA_MACHINE_CHECK; /* 1: IA32 Corrected Machine Check */ typedef struct acpi_hest_ia_corrected { ACPI_HEST_HEADER Header; UINT16 Reserved1; UINT8 Flags; /* See flags ACPI_HEST_GLOBAL, etc. above */ UINT8 Enabled; UINT32 RecordsToPreallocate; UINT32 MaxSectionsPerRecord; ACPI_HEST_NOTIFY Notify; UINT8 NumHardwareBanks; UINT8 Reserved2[3]; } ACPI_HEST_IA_CORRECTED; /* 2: IA32 Non-Maskable Interrupt */ typedef struct acpi_hest_ia_nmi { ACPI_HEST_HEADER Header; UINT32 Reserved; UINT32 RecordsToPreallocate; UINT32 MaxSectionsPerRecord; UINT32 MaxRawDataLength; } ACPI_HEST_IA_NMI; /* 3,4,5: Not used */ /* 6: PCI Express Root Port AER */ typedef struct acpi_hest_aer_root { ACPI_HEST_HEADER Header; ACPI_HEST_AER_COMMON Aer; UINT32 RootErrorCommand; } ACPI_HEST_AER_ROOT; /* 7: PCI Express AER (AER Endpoint) */ typedef struct acpi_hest_aer { ACPI_HEST_HEADER Header; ACPI_HEST_AER_COMMON Aer; } ACPI_HEST_AER; /* 8: PCI Express/PCI-X Bridge AER */ typedef struct acpi_hest_aer_bridge { ACPI_HEST_HEADER Header; ACPI_HEST_AER_COMMON Aer; UINT32 UncorrectableMask2; UINT32 UncorrectableSeverity2; UINT32 AdvancedCapabilities2; } ACPI_HEST_AER_BRIDGE; /* 9: Generic Hardware Error Source */ typedef struct acpi_hest_generic { ACPI_HEST_HEADER Header; UINT16 RelatedSourceId; UINT8 Reserved; UINT8 Enabled; UINT32 RecordsToPreallocate; UINT32 MaxSectionsPerRecord; UINT32 MaxRawDataLength; ACPI_GENERIC_ADDRESS ErrorStatusAddress; ACPI_HEST_NOTIFY Notify; UINT32 ErrorBlockLength; } ACPI_HEST_GENERIC; /* 10: Generic Hardware Error Source, version 2 */ typedef struct acpi_hest_generic_v2 { ACPI_HEST_HEADER Header; UINT16 RelatedSourceId; UINT8 Reserved; UINT8 Enabled; UINT32 RecordsToPreallocate; UINT32 MaxSectionsPerRecord; UINT32 MaxRawDataLength; ACPI_GENERIC_ADDRESS ErrorStatusAddress; ACPI_HEST_NOTIFY Notify; UINT32 ErrorBlockLength; ACPI_GENERIC_ADDRESS ReadAckRegister; UINT64 ReadAckPreserve; UINT64 ReadAckWrite; } ACPI_HEST_GENERIC_V2; /* Generic Error Status block */ typedef struct acpi_hest_generic_status { UINT32 BlockStatus; UINT32 RawDataOffset; UINT32 RawDataLength; UINT32 DataLength; UINT32 ErrorSeverity; } ACPI_HEST_GENERIC_STATUS; /* Values for BlockStatus flags above */ #define ACPI_HEST_UNCORRECTABLE (1) #define ACPI_HEST_CORRECTABLE (1<<1) #define ACPI_HEST_MULTIPLE_UNCORRECTABLE (1<<2) #define ACPI_HEST_MULTIPLE_CORRECTABLE (1<<3) #define ACPI_HEST_ERROR_ENTRY_COUNT (0xFF<<4) /* 8 bits, error count */ /* Generic Error Data entry */ typedef struct acpi_hest_generic_data { UINT8 SectionType[16]; UINT32 ErrorSeverity; UINT16 Revision; UINT8 ValidationBits; UINT8 Flags; UINT32 ErrorDataLength; UINT8 FruId[16]; UINT8 FruText[20]; } ACPI_HEST_GENERIC_DATA; /* Extension for revision 0x0300 */ typedef struct acpi_hest_generic_data_v300 { UINT8 SectionType[16]; UINT32 ErrorSeverity; UINT16 Revision; UINT8 ValidationBits; UINT8 Flags; UINT32 ErrorDataLength; UINT8 FruId[16]; UINT8 FruText[20]; UINT64 TimeStamp; } ACPI_HEST_GENERIC_DATA_V300; /* Values for ErrorSeverity above */ #define ACPI_HEST_GEN_ERROR_RECOVERABLE 0 #define ACPI_HEST_GEN_ERROR_FATAL 1 #define ACPI_HEST_GEN_ERROR_CORRECTED 2 #define ACPI_HEST_GEN_ERROR_NONE 3 /* Flags for ValidationBits above */ #define ACPI_HEST_GEN_VALID_FRU_ID (1) #define ACPI_HEST_GEN_VALID_FRU_STRING (1<<1) #define ACPI_HEST_GEN_VALID_TIMESTAMP (1<<2) /* 11: IA32 Deferred Machine Check Exception (ACPI 6.2) */ typedef struct acpi_hest_ia_deferred_check { ACPI_HEST_HEADER Header; UINT16 Reserved1; UINT8 Flags; /* See flags ACPI_HEST_GLOBAL, etc. above */ UINT8 Enabled; UINT32 RecordsToPreallocate; UINT32 MaxSectionsPerRecord; ACPI_HEST_NOTIFY Notify; UINT8 NumHardwareBanks; UINT8 Reserved2[3]; } ACPI_HEST_IA_DEFERRED_CHECK; /******************************************************************************* * - * HMAT - Heterogeneous Memory Attributes Table (ACPI 6.2) - * Version 1 + * HMAT - Heterogeneous Memory Attributes Table (ACPI 6.3) * ******************************************************************************/ typedef struct acpi_table_hmat { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 Reserved; } ACPI_TABLE_HMAT; /* Values for HMAT structure types */ enum AcpiHmatType { ACPI_HMAT_TYPE_ADDRESS_RANGE = 0, /* Memory subsystem address range */ ACPI_HMAT_TYPE_LOCALITY = 1, /* System locality latency and bandwidth information */ ACPI_HMAT_TYPE_CACHE = 2, /* Memory side cache information */ ACPI_HMAT_TYPE_RESERVED = 3 /* 3 and greater are reserved */ }; typedef struct acpi_hmat_structure { UINT16 Type; UINT16 Reserved; UINT32 Length; } ACPI_HMAT_STRUCTURE; /* * HMAT Structures, correspond to Type in ACPI_HMAT_STRUCTURE */ /* 0: Memory proximity domain attributes */ typedef struct acpi_hmat_proximity_domain { ACPI_HMAT_STRUCTURE Header; UINT16 Flags; UINT16 Reserved1; - UINT32 ProcessorPD; /* Processor proximity domain */ + UINT32 InitiatorPD; /* Attached Initiator proximity domain */ UINT32 MemoryPD; /* Memory proximity domain */ UINT32 Reserved2; UINT64 Reserved3; UINT64 Reserved4; } ACPI_HMAT_PROXIMITY_DOMAIN; /* Masks for Flags field above */ -#define ACPI_HMAT_PROCESSOR_PD_VALID (1) /* 1: ProcessorPD field is valid */ -#define ACPI_HMAT_MEMORY_PD_VALID (1<<1) /* 1: MemoryPD field is valid */ -#define ACPI_HMAT_RESERVATION_HINT (1<<2) /* 1: Reservation hint */ +#define ACPI_HMAT_INITIATOR_PD_VALID (1) /* 1: InitiatorPD field is valid */ /* 1: System locality latency and bandwidth information */ typedef struct acpi_hmat_locality { ACPI_HMAT_STRUCTURE Header; UINT8 Flags; UINT8 DataType; UINT16 Reserved1; UINT32 NumberOfInitiatorPDs; UINT32 NumberOfTargetPDs; UINT32 Reserved2; UINT64 EntryBaseUnit; } ACPI_HMAT_LOCALITY; /* Masks for Flags field above */ #define ACPI_HMAT_MEMORY_HIERARCHY (0x0F) /* Values for Memory Hierarchy flag */ #define ACPI_HMAT_MEMORY 0 -#define ACPI_HMAT_LAST_LEVEL_CACHE 1 -#define ACPI_HMAT_1ST_LEVEL_CACHE 2 -#define ACPI_HMAT_2ND_LEVEL_CACHE 3 -#define ACPI_HMAT_3RD_LEVEL_CACHE 4 +#define ACPI_HMAT_1ST_LEVEL_CACHE 1 +#define ACPI_HMAT_2ND_LEVEL_CACHE 2 +#define ACPI_HMAT_3RD_LEVEL_CACHE 3 /* Values for DataType field above */ #define ACPI_HMAT_ACCESS_LATENCY 0 #define ACPI_HMAT_READ_LATENCY 1 #define ACPI_HMAT_WRITE_LATENCY 2 #define ACPI_HMAT_ACCESS_BANDWIDTH 3 #define ACPI_HMAT_READ_BANDWIDTH 4 #define ACPI_HMAT_WRITE_BANDWIDTH 5 /* 2: Memory side cache information */ typedef struct acpi_hmat_cache { ACPI_HMAT_STRUCTURE Header; UINT32 MemoryPD; UINT32 Reserved1; UINT64 CacheSize; UINT32 CacheAttributes; UINT16 Reserved2; UINT16 NumberOfSMBIOSHandles; } ACPI_HMAT_CACHE; /* Masks for CacheAttributes field above */ #define ACPI_HMAT_TOTAL_CACHE_LEVEL (0x0000000F) #define ACPI_HMAT_CACHE_LEVEL (0x000000F0) #define ACPI_HMAT_CACHE_ASSOCIATIVITY (0x00000F00) #define ACPI_HMAT_WRITE_POLICY (0x0000F000) #define ACPI_HMAT_CACHE_LINE_SIZE (0xFFFF0000) /* Values for cache associativity flag */ #define ACPI_HMAT_CA_NONE (0) #define ACPI_HMAT_CA_DIRECT_MAPPED (1) #define ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING (2) /* Values for write policy flag */ #define ACPI_HMAT_CP_NONE (0) #define ACPI_HMAT_CP_WB (1) #define ACPI_HMAT_CP_WT (2) /******************************************************************************* * * HPET - High Precision Event Timer table * Version 1 * * Conforms to "IA-PC HPET (High Precision Event Timers) Specification", * Version 1.0a, October 2004 * ******************************************************************************/ typedef struct acpi_table_hpet { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 Id; /* Hardware ID of event timer block */ ACPI_GENERIC_ADDRESS Address; /* Address of event timer block */ UINT8 Sequence; /* HPET sequence number */ UINT16 MinimumTick; /* Main counter min tick, periodic mode */ UINT8 Flags; } ACPI_TABLE_HPET; /* Masks for Flags field above */ #define ACPI_HPET_PAGE_PROTECT_MASK (3) /* Values for Page Protect flags */ enum AcpiHpetPageProtect { ACPI_HPET_NO_PAGE_PROTECT = 0, ACPI_HPET_PAGE_PROTECT4 = 1, ACPI_HPET_PAGE_PROTECT64 = 2 }; /******************************************************************************* * * IBFT - Boot Firmware Table * Version 1 * * Conforms to "iSCSI Boot Firmware Table (iBFT) as Defined in ACPI 3.0b * Specification", Version 1.01, March 1, 2007 * * Note: It appears that this table is not intended to appear in the RSDT/XSDT. * Therefore, it is not currently supported by the disassembler. * ******************************************************************************/ typedef struct acpi_table_ibft { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT8 Reserved[12]; } ACPI_TABLE_IBFT; /* IBFT common subtable header */ typedef struct acpi_ibft_header { UINT8 Type; UINT8 Version; UINT16 Length; UINT8 Index; UINT8 Flags; } ACPI_IBFT_HEADER; /* Values for Type field above */ enum AcpiIbftType { ACPI_IBFT_TYPE_NOT_USED = 0, ACPI_IBFT_TYPE_CONTROL = 1, ACPI_IBFT_TYPE_INITIATOR = 2, ACPI_IBFT_TYPE_NIC = 3, ACPI_IBFT_TYPE_TARGET = 4, ACPI_IBFT_TYPE_EXTENSIONS = 5, ACPI_IBFT_TYPE_RESERVED = 6 /* 6 and greater are reserved */ }; /* IBFT subtables */ typedef struct acpi_ibft_control { ACPI_IBFT_HEADER Header; UINT16 Extensions; UINT16 InitiatorOffset; UINT16 Nic0Offset; UINT16 Target0Offset; UINT16 Nic1Offset; UINT16 Target1Offset; } ACPI_IBFT_CONTROL; typedef struct acpi_ibft_initiator { ACPI_IBFT_HEADER Header; UINT8 SnsServer[16]; UINT8 SlpServer[16]; UINT8 PrimaryServer[16]; UINT8 SecondaryServer[16]; UINT16 NameLength; UINT16 NameOffset; } ACPI_IBFT_INITIATOR; typedef struct acpi_ibft_nic { ACPI_IBFT_HEADER Header; UINT8 IpAddress[16]; UINT8 SubnetMaskPrefix; UINT8 Origin; UINT8 Gateway[16]; UINT8 PrimaryDns[16]; UINT8 SecondaryDns[16]; UINT8 Dhcp[16]; UINT16 Vlan; UINT8 MacAddress[6]; UINT16 PciAddress; UINT16 NameLength; UINT16 NameOffset; } ACPI_IBFT_NIC; typedef struct acpi_ibft_target { ACPI_IBFT_HEADER Header; UINT8 TargetIpAddress[16]; UINT16 TargetIpSocket; UINT8 TargetBootLun[8]; UINT8 ChapType; UINT8 NicAssociation; UINT16 TargetNameLength; UINT16 TargetNameOffset; UINT16 ChapNameLength; UINT16 ChapNameOffset; UINT16 ChapSecretLength; UINT16 ChapSecretOffset; UINT16 ReverseChapNameLength; UINT16 ReverseChapNameOffset; UINT16 ReverseChapSecretLength; UINT16 ReverseChapSecretOffset; } ACPI_IBFT_TARGET; /* Reset to default packing */ #pragma pack() #endif /* __ACTBL1_H__ */ Index: head/sys/contrib/dev/acpica/include/actypes.h =================================================================== --- head/sys/contrib/dev/acpica/include/actypes.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/actypes.h (revision 366562) @@ -1,1533 +1,1541 @@ /****************************************************************************** * * Name: actypes.h - Common data types for the entire ACPI subsystem * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ACTYPES_H__ #define __ACTYPES_H__ /* acpisrc:StructDefs -- for acpisrc conversion */ /* * ACPI_MACHINE_WIDTH must be specified in an OS- or compiler-dependent * header and must be either 32 or 64. 16-bit ACPICA is no longer * supported, as of 12/2006. */ #ifndef ACPI_MACHINE_WIDTH #error ACPI_MACHINE_WIDTH not defined #endif /* * Data type ranges * Note: These macros are designed to be compiler independent as well as * working around problems that some 32-bit compilers have with 64-bit * constants. */ #define ACPI_UINT8_MAX (UINT8) (~((UINT8) 0)) /* 0xFF */ #define ACPI_UINT16_MAX (UINT16)(~((UINT16) 0)) /* 0xFFFF */ #define ACPI_UINT32_MAX (UINT32)(~((UINT32) 0)) /* 0xFFFFFFFF */ #define ACPI_UINT64_MAX (UINT64)(~((UINT64) 0)) /* 0xFFFFFFFFFFFFFFFF */ #define ACPI_ASCII_MAX 0x7F /* * Architecture-specific ACPICA Subsystem Data Types * * The goal of these types is to provide source code portability across * 16-bit, 32-bit, and 64-bit targets. * * 1) The following types are of fixed size for all targets (16/32/64): * * BOOLEAN Logical boolean * * UINT8 8-bit (1 byte) unsigned value * UINT16 16-bit (2 byte) unsigned value * UINT32 32-bit (4 byte) unsigned value * UINT64 64-bit (8 byte) unsigned value * * INT16 16-bit (2 byte) signed value * INT32 32-bit (4 byte) signed value * INT64 64-bit (8 byte) signed value * * COMPILER_DEPENDENT_UINT64/INT64 - These types are defined in the * compiler-dependent header(s) and were introduced because there is no * common 64-bit integer type across the various compilation models, as * shown in the table below. * * Datatype LP64 ILP64 LLP64 ILP32 LP32 16bit * char 8 8 8 8 8 8 * short 16 16 16 16 16 16 * _int32 32 * int 32 64 32 32 16 16 * long 64 64 32 32 32 32 * long long 64 64 * pointer 64 64 64 32 32 32 * * Note: ILP64 and LP32 are currently not supported. * * * 2) These types represent the native word size of the target mode of the * processor, and may be 16-bit, 32-bit, or 64-bit as required. They are * usually used for memory allocation, efficient loop counters, and array * indexes. The types are similar to the size_t type in the C library and * are required because there is no C type that consistently represents the * native data width. ACPI_SIZE is needed because there is no guarantee * that a kernel-level C library is present. * * ACPI_SIZE 16/32/64-bit unsigned value * ACPI_NATIVE_INT 16/32/64-bit signed value */ /******************************************************************************* * * Common types for all compilers, all targets * ******************************************************************************/ #ifndef ACPI_USE_SYSTEM_INTTYPES typedef unsigned char BOOLEAN; typedef unsigned char UINT8; typedef unsigned short UINT16; typedef short INT16; typedef COMPILER_DEPENDENT_UINT64 UINT64; typedef COMPILER_DEPENDENT_INT64 INT64; #endif /* ACPI_USE_SYSTEM_INTTYPES */ /* * Value returned by AcpiOsGetThreadId. There is no standard "thread_id" * across operating systems or even the various UNIX systems. Since ACPICA * only needs the thread ID as a unique thread identifier, we use a UINT64 * as the only common data type - it will accommodate any type of pointer or * any type of integer. It is up to the host-dependent OSL to cast the * native thread ID type to a UINT64 (in AcpiOsGetThreadId). */ #define ACPI_THREAD_ID UINT64 /******************************************************************************* * * Types specific to 64-bit targets * ******************************************************************************/ #if ACPI_MACHINE_WIDTH == 64 #ifndef ACPI_USE_SYSTEM_INTTYPES typedef unsigned int UINT32; typedef int INT32; #endif /* ACPI_USE_SYSTEM_INTTYPES */ typedef INT64 ACPI_NATIVE_INT; typedef UINT64 ACPI_SIZE; typedef UINT64 ACPI_IO_ADDRESS; typedef UINT64 ACPI_PHYSICAL_ADDRESS; #define ACPI_MAX_PTR ACPI_UINT64_MAX #define ACPI_SIZE_MAX ACPI_UINT64_MAX #define ACPI_USE_NATIVE_DIVIDE /* Has native 64-bit integer support */ #define ACPI_USE_NATIVE_MATH64 /* Has native 64-bit integer support */ /* * In the case of the Itanium Processor Family (IPF), the hardware does not * support misaligned memory transfers. Set the MISALIGNMENT_NOT_SUPPORTED * flag to indicate that special precautions must be taken to avoid alignment * faults. (IA64 or ia64 is currently used by existing compilers to indicate * IPF.) * * Note: EM64T and other X86-64 processors support misaligned transfers, * so there is no need to define this flag. */ #if defined (__IA64__) || defined (__ia64__) #define ACPI_MISALIGNMENT_NOT_SUPPORTED #endif /******************************************************************************* * * Types specific to 32-bit targets * ******************************************************************************/ #elif ACPI_MACHINE_WIDTH == 32 #ifndef ACPI_USE_SYSTEM_INTTYPES typedef unsigned int UINT32; typedef int INT32; #endif /* ACPI_USE_SYSTEM_INTTYPES */ typedef INT32 ACPI_NATIVE_INT; typedef UINT32 ACPI_SIZE; #ifdef ACPI_32BIT_PHYSICAL_ADDRESS /* * OSPMs can define this to shrink the size of the structures for 32-bit * none PAE environment. ASL compiler may always define this to generate * 32-bit OSPM compliant tables. */ typedef UINT32 ACPI_IO_ADDRESS; typedef UINT32 ACPI_PHYSICAL_ADDRESS; #else /* ACPI_32BIT_PHYSICAL_ADDRESS */ /* * It is reported that, after some calculations, the physical addresses can * wrap over the 32-bit boundary on 32-bit PAE environment. * https://bugzilla.kernel.org/show_bug.cgi?id=87971 */ typedef UINT64 ACPI_IO_ADDRESS; typedef UINT64 ACPI_PHYSICAL_ADDRESS; #endif /* ACPI_32BIT_PHYSICAL_ADDRESS */ #define ACPI_MAX_PTR ACPI_UINT32_MAX #define ACPI_SIZE_MAX ACPI_UINT32_MAX #else /* ACPI_MACHINE_WIDTH must be either 64 or 32 */ #error unknown ACPI_MACHINE_WIDTH #endif /******************************************************************************* * * OS-dependent types * * If the defaults below are not appropriate for the host system, they can * be defined in the OS-specific header, and this will take precedence. * ******************************************************************************/ /* Flags for AcpiOsAcquireLock/AcpiOsReleaseLock */ #ifndef ACPI_CPU_FLAGS #define ACPI_CPU_FLAGS ACPI_SIZE #endif /* Object returned from AcpiOsCreateCache */ #ifndef ACPI_CACHE_T #ifdef ACPI_USE_LOCAL_CACHE #define ACPI_CACHE_T ACPI_MEMORY_LIST #else #define ACPI_CACHE_T void * #endif #endif /* * Synchronization objects - Mutexes, Semaphores, and SpinLocks */ #if (ACPI_MUTEX_TYPE == ACPI_BINARY_SEMAPHORE) /* * These macros are used if the host OS does not support a mutex object. * Map the OSL Mutex interfaces to binary semaphores. */ #define ACPI_MUTEX ACPI_SEMAPHORE #define AcpiOsCreateMutex(OutHandle) AcpiOsCreateSemaphore (1, 1, OutHandle) #define AcpiOsDeleteMutex(Handle) (void) AcpiOsDeleteSemaphore (Handle) #define AcpiOsAcquireMutex(Handle,Time) AcpiOsWaitSemaphore (Handle, 1, Time) #define AcpiOsReleaseMutex(Handle) (void) AcpiOsSignalSemaphore (Handle, 1) #endif /* Configurable types for synchronization objects */ #ifndef ACPI_SPINLOCK #define ACPI_SPINLOCK void * #endif #ifndef ACPI_SEMAPHORE #define ACPI_SEMAPHORE void * #endif #ifndef ACPI_MUTEX #define ACPI_MUTEX void * #endif /******************************************************************************* * * Compiler-dependent types * * If the defaults below are not appropriate for the host compiler, they can * be defined in the compiler-specific header, and this will take precedence. * ******************************************************************************/ /* Use C99 uintptr_t for pointer casting if available, "void *" otherwise */ #ifndef ACPI_UINTPTR_T #define ACPI_UINTPTR_T void * #endif /* * ACPI_PRINTF_LIKE is used to tag functions as "printf-like" because * some compilers can catch printf format string problems */ #ifndef ACPI_PRINTF_LIKE #define ACPI_PRINTF_LIKE(c) #endif /* * Some compilers complain about unused variables. Sometimes we don't want * to use all the variables (for example, _AcpiModuleName). This allows us * to tell the compiler in a per-variable manner that a variable * is unused */ #ifndef ACPI_UNUSED_VAR #define ACPI_UNUSED_VAR #endif /* * All ACPICA external functions that are available to the rest of the * kernel are tagged with these macros which can be defined as appropriate * for the host. * * Notes: * ACPI_EXPORT_SYMBOL_INIT is used for initialization and termination * interfaces that may need special processing. * ACPI_EXPORT_SYMBOL is used for all other public external functions. */ #ifndef ACPI_EXPORT_SYMBOL_INIT #define ACPI_EXPORT_SYMBOL_INIT(Symbol) #endif #ifndef ACPI_EXPORT_SYMBOL #define ACPI_EXPORT_SYMBOL(Symbol) #endif /* * Compiler/Clibrary-dependent debug initialization. Used for ACPICA * utilities only. */ #ifndef ACPI_DEBUG_INITIALIZE #define ACPI_DEBUG_INITIALIZE() #endif /******************************************************************************* * * Configuration * ******************************************************************************/ #ifdef ACPI_NO_MEM_ALLOCATIONS #define ACPI_ALLOCATE(a) NULL #define ACPI_ALLOCATE_ZEROED(a) NULL #define ACPI_FREE(a) #define ACPI_MEM_TRACKING(a) #else /* ACPI_NO_MEM_ALLOCATIONS */ #ifdef ACPI_DBG_TRACK_ALLOCATIONS /* * Memory allocation tracking (used by AcpiExec to detect memory leaks) */ #define ACPI_MEM_PARAMETERS _COMPONENT, _AcpiModuleName, __LINE__ #define ACPI_ALLOCATE(a) AcpiUtAllocateAndTrack ((ACPI_SIZE) (a), ACPI_MEM_PARAMETERS) #define ACPI_ALLOCATE_ZEROED(a) AcpiUtAllocateZeroedAndTrack ((ACPI_SIZE) (a), ACPI_MEM_PARAMETERS) #define ACPI_FREE(a) AcpiUtFreeAndTrack (a, ACPI_MEM_PARAMETERS) #define ACPI_MEM_TRACKING(a) a #else /* * Normal memory allocation directly via the OS services layer */ #define ACPI_ALLOCATE(a) AcpiOsAllocate ((ACPI_SIZE) (a)) #define ACPI_ALLOCATE_ZEROED(a) AcpiOsAllocateZeroed ((ACPI_SIZE) (a)) #define ACPI_FREE(a) AcpiOsFree (a) #define ACPI_MEM_TRACKING(a) #endif /* ACPI_DBG_TRACK_ALLOCATIONS */ #endif /* ACPI_NO_MEM_ALLOCATIONS */ /****************************************************************************** * * ACPI Specification constants (Do not change unless the specification * changes) * *****************************************************************************/ /* Number of distinct FADT-based GPE register blocks (GPE0 and GPE1) */ #define ACPI_MAX_GPE_BLOCKS 2 /* Default ACPI register widths */ #define ACPI_GPE_REGISTER_WIDTH 8 #define ACPI_PM1_REGISTER_WIDTH 16 #define ACPI_PM2_REGISTER_WIDTH 8 #define ACPI_PM_TIMER_WIDTH 32 #define ACPI_RESET_REGISTER_WIDTH 8 /* Names within the namespace are 4 bytes long */ #define ACPI_NAMESEG_SIZE 4 /* Fixed by ACPI spec */ #define ACPI_PATH_SEGMENT_LENGTH 5 /* 4 chars for name + 1 char for separator */ #define ACPI_PATH_SEPARATOR '.' /* Sizes for ACPI table headers */ #define ACPI_OEM_ID_SIZE 6 #define ACPI_OEM_TABLE_ID_SIZE 8 /* ACPI/PNP hardware IDs */ #define PCI_ROOT_HID_STRING "PNP0A03" #define PCI_EXPRESS_ROOT_HID_STRING "PNP0A08" /* PM Timer ticks per second (HZ) */ #define ACPI_PM_TIMER_FREQUENCY 3579545 /******************************************************************************* * * Independent types * ******************************************************************************/ /* Logical defines and NULL */ #ifdef FALSE #undef FALSE #endif #define FALSE (1 == 0) #ifdef TRUE #undef TRUE #endif #define TRUE (1 == 1) #ifndef NULL #define NULL (void *) 0 #endif /* * Miscellaneous types */ typedef UINT32 ACPI_STATUS; /* All ACPI Exceptions */ typedef UINT32 ACPI_NAME; /* 4-byte ACPI name */ typedef char * ACPI_STRING; /* Null terminated ASCII string */ typedef void * ACPI_HANDLE; /* Actually a ptr to a NS Node */ /* Time constants for timer calculations */ #define ACPI_MSEC_PER_SEC 1000L #define ACPI_USEC_PER_MSEC 1000L #define ACPI_USEC_PER_SEC 1000000L #define ACPI_100NSEC_PER_USEC 10L #define ACPI_100NSEC_PER_MSEC 10000L #define ACPI_100NSEC_PER_SEC 10000000L #define ACPI_NSEC_PER_USEC 1000L #define ACPI_NSEC_PER_MSEC 1000000L #define ACPI_NSEC_PER_SEC 1000000000L #define ACPI_TIME_AFTER(a, b) ((INT64)((b) - (a)) < 0) /* Owner IDs are used to track namespace nodes for selective deletion */ typedef UINT16 ACPI_OWNER_ID; #define ACPI_OWNER_ID_MAX 0xFFF /* 4095 possible owner IDs */ #define ACPI_INTEGER_BIT_SIZE 64 #define ACPI_MAX_DECIMAL_DIGITS 20 /* 2^64 = 18,446,744,073,709,551,616 */ #define ACPI_MAX64_DECIMAL_DIGITS 20 #define ACPI_MAX32_DECIMAL_DIGITS 10 #define ACPI_MAX16_DECIMAL_DIGITS 5 #define ACPI_MAX8_DECIMAL_DIGITS 3 /* * Constants with special meanings */ #define ACPI_ROOT_OBJECT ((ACPI_HANDLE) ACPI_TO_POINTER (ACPI_MAX_PTR)) #define ACPI_WAIT_FOREVER 0xFFFF /* UINT16, as per ACPI spec */ #define ACPI_DO_NOT_WAIT 0 /* * Obsolete: Acpi integer width. In ACPI version 1 (1996), integers are * 32 bits. In ACPI version 2 (2000) and later, integers are max 64 bits. * Note that this pertains to the ACPI integer type only, not to other * integers used in the implementation of the ACPICA subsystem. * * 01/2010: This type is obsolete and has been removed from the entire ACPICA * code base. It remains here for compatibility with device drivers that use * the type. However, it will be removed in the future. */ typedef UINT64 ACPI_INTEGER; #define ACPI_INTEGER_MAX ACPI_UINT64_MAX /******************************************************************************* * * Commonly used macros * ******************************************************************************/ /* Data manipulation */ #define ACPI_LOBYTE(Integer) ((UINT8) (UINT16)(Integer)) #define ACPI_HIBYTE(Integer) ((UINT8) (((UINT16)(Integer)) >> 8)) #define ACPI_LOWORD(Integer) ((UINT16) (UINT32)(Integer)) #define ACPI_HIWORD(Integer) ((UINT16)(((UINT32)(Integer)) >> 16)) #define ACPI_LODWORD(Integer64) ((UINT32) (UINT64)(Integer64)) #define ACPI_HIDWORD(Integer64) ((UINT32)(((UINT64)(Integer64)) >> 32)) #define ACPI_SET_BIT(target,bit) ((target) |= (bit)) #define ACPI_CLEAR_BIT(target,bit) ((target) &= ~(bit)) #define ACPI_MIN(a,b) (((a)<(b))?(a):(b)) #define ACPI_MAX(a,b) (((a)>(b))?(a):(b)) /* Size calculation */ #define ACPI_ARRAY_LENGTH(x) (sizeof(x) / sizeof((x)[0])) /* Pointer manipulation */ #define ACPI_CAST_PTR(t, p) ((t *) (ACPI_UINTPTR_T) (p)) #define ACPI_CAST_INDIRECT_PTR(t, p) ((t **) (ACPI_UINTPTR_T) (p)) #define ACPI_ADD_PTR(t, a, b) ACPI_CAST_PTR (t, (ACPI_CAST_PTR (UINT8, (a)) + (ACPI_SIZE)(b))) #define ACPI_SUB_PTR(t, a, b) ACPI_CAST_PTR (t, (ACPI_CAST_PTR (UINT8, (a)) - (ACPI_SIZE)(b))) #define ACPI_PTR_DIFF(a, b) ((ACPI_SIZE) (ACPI_CAST_PTR (UINT8, (a)) - ACPI_CAST_PTR (UINT8, (b)))) /* Pointer/Integer type conversions */ #define ACPI_TO_POINTER(i) ACPI_CAST_PTR (void, (ACPI_SIZE) (i)) #define ACPI_TO_INTEGER(p) ACPI_PTR_DIFF (p, (void *) 0) #define ACPI_OFFSET(d, f) ACPI_PTR_DIFF (&(((d *) 0)->f), (void *) 0) #define ACPI_PHYSADDR_TO_PTR(i) ACPI_TO_POINTER(i) #define ACPI_PTR_TO_PHYSADDR(i) ACPI_TO_INTEGER(i) /* Optimizations for 4-character (32-bit) ACPI_NAME manipulation */ #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED #define ACPI_COMPARE_NAMESEG(a,b) (*ACPI_CAST_PTR (UINT32, (a)) == *ACPI_CAST_PTR (UINT32, (b))) #define ACPI_COPY_NAMESEG(dest,src) (*ACPI_CAST_PTR (UINT32, (dest)) = *ACPI_CAST_PTR (UINT32, (src))) #else #define ACPI_COMPARE_NAMESEG(a,b) (!strncmp (ACPI_CAST_PTR (char, (a)), ACPI_CAST_PTR (char, (b)), ACPI_NAMESEG_SIZE)) #define ACPI_COPY_NAMESEG(dest,src) (strncpy (ACPI_CAST_PTR (char, (dest)), ACPI_CAST_PTR (char, (src)), ACPI_NAMESEG_SIZE)) #endif /* Support for the special RSDP signature (8 characters) */ #define ACPI_VALIDATE_RSDP_SIG(a) (!strncmp (ACPI_CAST_PTR (char, (a)), ACPI_SIG_RSDP, 8)) #define ACPI_MAKE_RSDP_SIG(dest) (memcpy (ACPI_CAST_PTR (char, (dest)), ACPI_SIG_RSDP, 8)) /* Support for OEMx signature (x can be any character) */ #define ACPI_IS_OEM_SIG(a) (!strncmp (ACPI_CAST_PTR (char, (a)), ACPI_OEM_NAME, 3) &&\ strnlen (a, ACPI_NAMESEG_SIZE) == ACPI_NAMESEG_SIZE) /* * Algorithm to obtain access bit or byte width. * Can be used with AccessSize field of ACPI_GENERIC_ADDRESS and * ACPI_RESOURCE_GENERIC_REGISTER. */ #define ACPI_ACCESS_BIT_WIDTH(AccessSize) (1 << ((AccessSize) + 2)) #define ACPI_ACCESS_BYTE_WIDTH(AccessSize) (1 << ((AccessSize) - 1)) /******************************************************************************* * * Miscellaneous constants * ******************************************************************************/ /* * Initialization sequence options */ #define ACPI_FULL_INITIALIZATION 0x0000 #define ACPI_NO_FACS_INIT 0x0001 #define ACPI_NO_ACPI_ENABLE 0x0002 #define ACPI_NO_HARDWARE_INIT 0x0004 #define ACPI_NO_EVENT_INIT 0x0008 #define ACPI_NO_HANDLER_INIT 0x0010 #define ACPI_NO_OBJECT_INIT 0x0020 #define ACPI_NO_DEVICE_INIT 0x0040 #define ACPI_NO_ADDRESS_SPACE_INIT 0x0080 /* * Initialization state */ #define ACPI_SUBSYSTEM_INITIALIZE 0x01 #define ACPI_INITIALIZED_OK 0x02 /* * Power state values */ #define ACPI_STATE_UNKNOWN (UINT8) 0xFF #define ACPI_STATE_S0 (UINT8) 0 #define ACPI_STATE_S1 (UINT8) 1 #define ACPI_STATE_S2 (UINT8) 2 #define ACPI_STATE_S3 (UINT8) 3 #define ACPI_STATE_S4 (UINT8) 4 #define ACPI_STATE_S5 (UINT8) 5 #define ACPI_S_STATES_MAX ACPI_STATE_S5 #define ACPI_S_STATE_COUNT 6 #define ACPI_STATE_D0 (UINT8) 0 #define ACPI_STATE_D1 (UINT8) 1 #define ACPI_STATE_D2 (UINT8) 2 #define ACPI_STATE_D3 (UINT8) 3 #define ACPI_D_STATES_MAX ACPI_STATE_D3 #define ACPI_D_STATE_COUNT 4 #define ACPI_STATE_C0 (UINT8) 0 #define ACPI_STATE_C1 (UINT8) 1 #define ACPI_STATE_C2 (UINT8) 2 #define ACPI_STATE_C3 (UINT8) 3 #define ACPI_C_STATES_MAX ACPI_STATE_C3 #define ACPI_C_STATE_COUNT 4 /* * Sleep type invalid value */ #define ACPI_SLEEP_TYPE_MAX 0x7 #define ACPI_SLEEP_TYPE_INVALID 0xFF /* * Standard notify values */ #define ACPI_NOTIFY_BUS_CHECK (UINT8) 0x00 #define ACPI_NOTIFY_DEVICE_CHECK (UINT8) 0x01 #define ACPI_NOTIFY_DEVICE_WAKE (UINT8) 0x02 #define ACPI_NOTIFY_EJECT_REQUEST (UINT8) 0x03 #define ACPI_NOTIFY_DEVICE_CHECK_LIGHT (UINT8) 0x04 #define ACPI_NOTIFY_FREQUENCY_MISMATCH (UINT8) 0x05 #define ACPI_NOTIFY_BUS_MODE_MISMATCH (UINT8) 0x06 #define ACPI_NOTIFY_POWER_FAULT (UINT8) 0x07 #define ACPI_NOTIFY_CAPABILITIES_CHECK (UINT8) 0x08 #define ACPI_NOTIFY_DEVICE_PLD_CHECK (UINT8) 0x09 #define ACPI_NOTIFY_RESERVED (UINT8) 0x0A #define ACPI_NOTIFY_LOCALITY_UPDATE (UINT8) 0x0B #define ACPI_NOTIFY_SHUTDOWN_REQUEST (UINT8) 0x0C #define ACPI_NOTIFY_AFFINITY_UPDATE (UINT8) 0x0D #define ACPI_NOTIFY_MEMORY_UPDATE (UINT8) 0x0E #define ACPI_NOTIFY_DISCONNECT_RECOVER (UINT8) 0x0F #define ACPI_GENERIC_NOTIFY_MAX 0x0F #define ACPI_SPECIFIC_NOTIFY_MAX 0x84 /* * Types associated with ACPI names and objects. The first group of * values (up to ACPI_TYPE_EXTERNAL_MAX) correspond to the definition * of the ACPI ObjectType() operator (See the ACPI Spec). Therefore, * only add to the first group if the spec changes. * * NOTE: Types must be kept in sync with the global AcpiNsProperties * and AcpiNsTypeNames arrays. */ typedef UINT32 ACPI_OBJECT_TYPE; #define ACPI_TYPE_ANY 0x00 #define ACPI_TYPE_INTEGER 0x01 /* Byte/Word/Dword/Zero/One/Ones */ #define ACPI_TYPE_STRING 0x02 #define ACPI_TYPE_BUFFER 0x03 #define ACPI_TYPE_PACKAGE 0x04 /* ByteConst, multiple DataTerm/Constant/SuperName */ #define ACPI_TYPE_FIELD_UNIT 0x05 #define ACPI_TYPE_DEVICE 0x06 /* Name, multiple Node */ #define ACPI_TYPE_EVENT 0x07 #define ACPI_TYPE_METHOD 0x08 /* Name, ByteConst, multiple Code */ #define ACPI_TYPE_MUTEX 0x09 #define ACPI_TYPE_REGION 0x0A #define ACPI_TYPE_POWER 0x0B /* Name,ByteConst,WordConst,multi Node */ #define ACPI_TYPE_PROCESSOR 0x0C /* Name,ByteConst,DWordConst,ByteConst,multi NmO */ #define ACPI_TYPE_THERMAL 0x0D /* Name, multiple Node */ #define ACPI_TYPE_BUFFER_FIELD 0x0E #define ACPI_TYPE_DDB_HANDLE 0x0F #define ACPI_TYPE_DEBUG_OBJECT 0x10 #define ACPI_TYPE_EXTERNAL_MAX 0x10 #define ACPI_NUM_TYPES (ACPI_TYPE_EXTERNAL_MAX + 1) /* * These are object types that do not map directly to the ACPI * ObjectType() operator. They are used for various internal purposes * only. If new predefined ACPI_TYPEs are added (via the ACPI * specification), these internal types must move upwards. (There * is code that depends on these values being contiguous with the * external types above.) */ #define ACPI_TYPE_LOCAL_REGION_FIELD 0x11 #define ACPI_TYPE_LOCAL_BANK_FIELD 0x12 #define ACPI_TYPE_LOCAL_INDEX_FIELD 0x13 #define ACPI_TYPE_LOCAL_REFERENCE 0x14 /* Arg#, Local#, Name, Debug, RefOf, Index */ #define ACPI_TYPE_LOCAL_ALIAS 0x15 #define ACPI_TYPE_LOCAL_METHOD_ALIAS 0x16 #define ACPI_TYPE_LOCAL_NOTIFY 0x17 #define ACPI_TYPE_LOCAL_ADDRESS_HANDLER 0x18 #define ACPI_TYPE_LOCAL_RESOURCE 0x19 #define ACPI_TYPE_LOCAL_RESOURCE_FIELD 0x1A #define ACPI_TYPE_LOCAL_SCOPE 0x1B /* 1 Name, multiple ObjectList Nodes */ #define ACPI_TYPE_NS_NODE_MAX 0x1B /* Last typecode used within a NS Node */ #define ACPI_TOTAL_TYPES (ACPI_TYPE_NS_NODE_MAX + 1) /* * These are special object types that never appear in * a Namespace node, only in an object of ACPI_OPERAND_OBJECT */ #define ACPI_TYPE_LOCAL_EXTRA 0x1C #define ACPI_TYPE_LOCAL_DATA 0x1D #define ACPI_TYPE_LOCAL_MAX 0x1D /* All types above here are invalid */ #define ACPI_TYPE_INVALID 0x1E #define ACPI_TYPE_NOT_FOUND 0xFF #define ACPI_NUM_NS_TYPES (ACPI_TYPE_INVALID + 1) /* * All I/O */ #define ACPI_READ 0 #define ACPI_WRITE 1 #define ACPI_IO_MASK 1 /* * Event Types: Fixed & General Purpose */ typedef UINT32 ACPI_EVENT_TYPE; /* * Fixed events */ #define ACPI_EVENT_PMTIMER 0 #define ACPI_EVENT_GLOBAL 1 #define ACPI_EVENT_POWER_BUTTON 2 #define ACPI_EVENT_SLEEP_BUTTON 3 #define ACPI_EVENT_RTC 4 #define ACPI_EVENT_MAX 4 #define ACPI_NUM_FIXED_EVENTS ACPI_EVENT_MAX + 1 /* * Event Status - Per event * ------------- * The encoding of ACPI_EVENT_STATUS is illustrated below. * Note that a set bit (1) indicates the property is TRUE * (e.g. if bit 0 is set then the event is enabled). * +-------------+-+-+-+-+-+-+ * | Bits 31:6 |5|4|3|2|1|0| * +-------------+-+-+-+-+-+-+ * | | | | | | | * | | | | | | +- Enabled? * | | | | | +--- Enabled for wake? * | | | | +----- Status bit set? * | | | +------- Enable bit set? * | | +--------- Has a handler? * | +----------- Masked? * +----------------- */ typedef UINT32 ACPI_EVENT_STATUS; #define ACPI_EVENT_FLAG_DISABLED (ACPI_EVENT_STATUS) 0x00 #define ACPI_EVENT_FLAG_ENABLED (ACPI_EVENT_STATUS) 0x01 #define ACPI_EVENT_FLAG_WAKE_ENABLED (ACPI_EVENT_STATUS) 0x02 #define ACPI_EVENT_FLAG_STATUS_SET (ACPI_EVENT_STATUS) 0x04 #define ACPI_EVENT_FLAG_ENABLE_SET (ACPI_EVENT_STATUS) 0x08 #define ACPI_EVENT_FLAG_HAS_HANDLER (ACPI_EVENT_STATUS) 0x10 #define ACPI_EVENT_FLAG_MASKED (ACPI_EVENT_STATUS) 0x20 #define ACPI_EVENT_FLAG_SET ACPI_EVENT_FLAG_STATUS_SET /* Actions for AcpiSetGpe, AcpiGpeWakeup, AcpiHwLowSetGpe */ #define ACPI_GPE_ENABLE 0 #define ACPI_GPE_DISABLE 1 #define ACPI_GPE_CONDITIONAL_ENABLE 2 /* * GPE info flags - Per GPE * +---+-+-+-+---+ * |7:6|5|4|3|2:0| * +---+-+-+-+---+ * | | | | | * | | | | +-- Type of dispatch:to method, handler, notify, or none * | | | +----- Interrupt type: edge or level triggered * | | +------- Is a Wake GPE * | +--------- Has been enabled automatically at init time * +------------ */ #define ACPI_GPE_DISPATCH_NONE (UINT8) 0x00 #define ACPI_GPE_DISPATCH_METHOD (UINT8) 0x01 #define ACPI_GPE_DISPATCH_HANDLER (UINT8) 0x02 #define ACPI_GPE_DISPATCH_NOTIFY (UINT8) 0x03 #define ACPI_GPE_DISPATCH_RAW_HANDLER (UINT8) 0x04 #define ACPI_GPE_DISPATCH_MASK (UINT8) 0x07 #define ACPI_GPE_DISPATCH_TYPE(flags) ((UINT8) ((flags) & ACPI_GPE_DISPATCH_MASK)) #define ACPI_GPE_LEVEL_TRIGGERED (UINT8) 0x08 #define ACPI_GPE_EDGE_TRIGGERED (UINT8) 0x00 #define ACPI_GPE_XRUPT_TYPE_MASK (UINT8) 0x08 #define ACPI_GPE_CAN_WAKE (UINT8) 0x10 #define ACPI_GPE_AUTO_ENABLED (UINT8) 0x20 #define ACPI_GPE_INITIALIZED (UINT8) 0x40 /* * Flags for GPE and Lock interfaces */ #define ACPI_NOT_ISR 0x1 #define ACPI_ISR 0x0 /* Notify types */ #define ACPI_SYSTEM_NOTIFY 0x1 #define ACPI_DEVICE_NOTIFY 0x2 #define ACPI_ALL_NOTIFY (ACPI_SYSTEM_NOTIFY | ACPI_DEVICE_NOTIFY) #define ACPI_MAX_NOTIFY_HANDLER_TYPE 0x3 #define ACPI_NUM_NOTIFY_TYPES 2 #define ACPI_MAX_SYS_NOTIFY 0x7F #define ACPI_MAX_DEVICE_SPECIFIC_NOTIFY 0xBF #define ACPI_SYSTEM_HANDLER_LIST 0 /* Used as index, must be SYSTEM_NOTIFY -1 */ #define ACPI_DEVICE_HANDLER_LIST 1 /* Used as index, must be DEVICE_NOTIFY -1 */ /* Address Space (Operation Region) Types */ typedef UINT8 ACPI_ADR_SPACE_TYPE; #define ACPI_ADR_SPACE_SYSTEM_MEMORY (ACPI_ADR_SPACE_TYPE) 0 #define ACPI_ADR_SPACE_SYSTEM_IO (ACPI_ADR_SPACE_TYPE) 1 #define ACPI_ADR_SPACE_PCI_CONFIG (ACPI_ADR_SPACE_TYPE) 2 #define ACPI_ADR_SPACE_EC (ACPI_ADR_SPACE_TYPE) 3 #define ACPI_ADR_SPACE_SMBUS (ACPI_ADR_SPACE_TYPE) 4 #define ACPI_ADR_SPACE_CMOS (ACPI_ADR_SPACE_TYPE) 5 #define ACPI_ADR_SPACE_PCI_BAR_TARGET (ACPI_ADR_SPACE_TYPE) 6 #define ACPI_ADR_SPACE_IPMI (ACPI_ADR_SPACE_TYPE) 7 #define ACPI_ADR_SPACE_GPIO (ACPI_ADR_SPACE_TYPE) 8 #define ACPI_ADR_SPACE_GSBUS (ACPI_ADR_SPACE_TYPE) 9 #define ACPI_ADR_SPACE_PLATFORM_COMM (ACPI_ADR_SPACE_TYPE) 10 #define ACPI_ADR_SPACE_PLATFORM_RT (ACPI_ADR_SPACE_TYPE) 11 #define ACPI_NUM_PREDEFINED_REGIONS 12 /* * Special Address Spaces * * Note: A Data Table region is a special type of operation region * that has its own AML opcode. However, internally, the AML - * interpreter simply creates an operation region with an an address + * interpreter simply creates an operation region with an address * space type of ACPI_ADR_SPACE_DATA_TABLE. */ #define ACPI_ADR_SPACE_DATA_TABLE (ACPI_ADR_SPACE_TYPE) 0x7E /* Internal to ACPICA only */ #define ACPI_ADR_SPACE_FIXED_HARDWARE (ACPI_ADR_SPACE_TYPE) 0x7F /* Values for _REG connection code */ #define ACPI_REG_DISCONNECT 0 #define ACPI_REG_CONNECT 1 /* * BitRegister IDs * * These values are intended to be used by the hardware interfaces * and are mapped to individual bitfields defined within the ACPI * registers. See the AcpiGbl_BitRegisterInfo global table in utglobal.c * for this mapping. */ /* PM1 Status register */ #define ACPI_BITREG_TIMER_STATUS 0x00 #define ACPI_BITREG_BUS_MASTER_STATUS 0x01 #define ACPI_BITREG_GLOBAL_LOCK_STATUS 0x02 #define ACPI_BITREG_POWER_BUTTON_STATUS 0x03 #define ACPI_BITREG_SLEEP_BUTTON_STATUS 0x04 #define ACPI_BITREG_RT_CLOCK_STATUS 0x05 #define ACPI_BITREG_WAKE_STATUS 0x06 #define ACPI_BITREG_PCIEXP_WAKE_STATUS 0x07 /* PM1 Enable register */ #define ACPI_BITREG_TIMER_ENABLE 0x08 #define ACPI_BITREG_GLOBAL_LOCK_ENABLE 0x09 #define ACPI_BITREG_POWER_BUTTON_ENABLE 0x0A #define ACPI_BITREG_SLEEP_BUTTON_ENABLE 0x0B #define ACPI_BITREG_RT_CLOCK_ENABLE 0x0C #define ACPI_BITREG_PCIEXP_WAKE_DISABLE 0x0D /* PM1 Control register */ #define ACPI_BITREG_SCI_ENABLE 0x0E #define ACPI_BITREG_BUS_MASTER_RLD 0x0F #define ACPI_BITREG_GLOBAL_LOCK_RELEASE 0x10 #define ACPI_BITREG_SLEEP_TYPE 0x11 #define ACPI_BITREG_SLEEP_ENABLE 0x12 /* PM2 Control register */ #define ACPI_BITREG_ARB_DISABLE 0x13 #define ACPI_BITREG_MAX 0x13 #define ACPI_NUM_BITREG ACPI_BITREG_MAX + 1 /* Status register values. A 1 clears a status bit. 0 = no effect */ #define ACPI_CLEAR_STATUS 1 /* Enable and Control register values */ #define ACPI_ENABLE_EVENT 1 #define ACPI_DISABLE_EVENT 0 /* Sleep function dispatch */ typedef ACPI_STATUS (*ACPI_SLEEP_FUNCTION) ( UINT8 SleepState); typedef struct acpi_sleep_functions { ACPI_SLEEP_FUNCTION LegacyFunction; ACPI_SLEEP_FUNCTION ExtendedFunction; } ACPI_SLEEP_FUNCTIONS; /* * External ACPI object definition */ /* * Note: Type == ACPI_TYPE_ANY (0) is used to indicate a NULL package * element or an unresolved named reference. */ typedef union acpi_object { ACPI_OBJECT_TYPE Type; /* See definition of AcpiNsType for values */ struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_INTEGER */ UINT64 Value; /* The actual number */ } Integer; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_STRING */ UINT32 Length; /* # of bytes in string, excluding trailing null */ char *Pointer; /* points to the string value */ } String; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_BUFFER */ UINT32 Length; /* # of bytes in buffer */ UINT8 *Pointer; /* points to the buffer */ } Buffer; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PACKAGE */ UINT32 Count; /* # of elements in package */ union acpi_object *Elements; /* Pointer to an array of ACPI_OBJECTs */ } Package; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_LOCAL_REFERENCE */ ACPI_OBJECT_TYPE ActualType; /* Type associated with the Handle */ ACPI_HANDLE Handle; /* object reference */ } Reference; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PROCESSOR */ UINT32 ProcId; ACPI_IO_ADDRESS PblkAddress; UINT32 PblkLength; } Processor; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_POWER */ UINT32 SystemLevel; UINT32 ResourceOrder; } PowerResource; } ACPI_OBJECT; /* * List of objects, used as a parameter list for control method evaluation */ typedef struct acpi_object_list { UINT32 Count; ACPI_OBJECT *Pointer; } ACPI_OBJECT_LIST; /* * Miscellaneous common Data Structures used by the interfaces */ #define ACPI_NO_BUFFER 0 #ifdef ACPI_NO_MEM_ALLOCATIONS #define ACPI_ALLOCATE_BUFFER (ACPI_SIZE) (0) #define ACPI_ALLOCATE_LOCAL_BUFFER (ACPI_SIZE) (0) #else /* ACPI_NO_MEM_ALLOCATIONS */ #define ACPI_ALLOCATE_BUFFER (ACPI_SIZE) (-1) /* Let ACPICA allocate buffer */ #define ACPI_ALLOCATE_LOCAL_BUFFER (ACPI_SIZE) (-2) /* For internal use only (enables tracking) */ #endif /* ACPI_NO_MEM_ALLOCATIONS */ typedef struct acpi_buffer { ACPI_SIZE Length; /* Length in bytes of the buffer */ void *Pointer; /* pointer to buffer */ } ACPI_BUFFER; /* * NameType for AcpiGetName */ #define ACPI_FULL_PATHNAME 0 #define ACPI_SINGLE_NAME 1 #define ACPI_FULL_PATHNAME_NO_TRAILING 2 #define ACPI_NAME_TYPE_MAX 2 /* * Predefined Namespace items */ typedef struct acpi_predefined_names { const char *Name; UINT8 Type; char *Val; } ACPI_PREDEFINED_NAMES; /* * Structure and flags for AcpiGetSystemInfo */ #define ACPI_SYS_MODE_UNKNOWN 0x0000 #define ACPI_SYS_MODE_ACPI 0x0001 #define ACPI_SYS_MODE_LEGACY 0x0002 #define ACPI_SYS_MODES_MASK 0x0003 /* * System info returned by AcpiGetSystemInfo() */ typedef struct acpi_system_info { UINT32 AcpiCaVersion; UINT32 Flags; UINT32 TimerResolution; UINT32 Reserved1; UINT32 Reserved2; UINT32 DebugLevel; UINT32 DebugLayer; } ACPI_SYSTEM_INFO; /* * System statistics returned by AcpiGetStatistics() */ typedef struct acpi_statistics { UINT32 SciCount; UINT32 GpeCount; UINT32 FixedEventCount[ACPI_NUM_FIXED_EVENTS]; UINT32 MethodCount; } ACPI_STATISTICS; /* * Types specific to the OS service interfaces */ typedef UINT32 (ACPI_SYSTEM_XFACE *ACPI_OSD_HANDLER) ( void *Context); typedef void (ACPI_SYSTEM_XFACE *ACPI_OSD_EXEC_CALLBACK) ( void *Context); /* * Various handlers and callback procedures */ typedef UINT32 (*ACPI_SCI_HANDLER) ( void *Context); typedef void (*ACPI_GBL_EVENT_HANDLER) ( UINT32 EventType, ACPI_HANDLE Device, UINT32 EventNumber, void *Context); #define ACPI_EVENT_TYPE_GPE 0 #define ACPI_EVENT_TYPE_FIXED 1 typedef UINT32 (*ACPI_EVENT_HANDLER) ( void *Context); typedef UINT32 (*ACPI_GPE_HANDLER) ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, void *Context); typedef void (*ACPI_NOTIFY_HANDLER) ( ACPI_HANDLE Device, UINT32 Value, void *Context); typedef void (*ACPI_OBJECT_HANDLER) ( ACPI_HANDLE Object, void *Data); typedef ACPI_STATUS (*ACPI_INIT_HANDLER) ( ACPI_HANDLE Object, UINT32 Function); #define ACPI_INIT_DEVICE_INI 1 typedef ACPI_STATUS (*ACPI_EXCEPTION_HANDLER) ( ACPI_STATUS AmlStatus, ACPI_NAME Name, UINT16 Opcode, UINT32 AmlOffset, void *Context); /* Table Event handler (Load, LoadTable, etc.) and types */ typedef ACPI_STATUS (*ACPI_TABLE_HANDLER) ( UINT32 Event, void *Table, void *Context); /* Table Event Types */ #define ACPI_TABLE_EVENT_LOAD 0x0 #define ACPI_TABLE_EVENT_UNLOAD 0x1 #define ACPI_TABLE_EVENT_INSTALL 0x2 #define ACPI_TABLE_EVENT_UNINSTALL 0x3 #define ACPI_NUM_TABLE_EVENTS 4 /* Address Spaces (For Operation Regions) */ typedef ACPI_STATUS (*ACPI_ADR_SPACE_HANDLER) ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext); #define ACPI_DEFAULT_HANDLER NULL /* Special Context data for GenericSerialBus/GeneralPurposeIo (ACPI 5.0) */ typedef struct acpi_connection_info { UINT8 *Connection; UINT16 Length; UINT8 AccessLength; } ACPI_CONNECTION_INFO; typedef ACPI_STATUS (*ACPI_ADR_SPACE_SETUP) ( ACPI_HANDLE RegionHandle, UINT32 Function, void *HandlerContext, void **RegionContext); #define ACPI_REGION_ACTIVATE 0 #define ACPI_REGION_DEACTIVATE 1 typedef ACPI_STATUS (*ACPI_WALK_CALLBACK) ( ACPI_HANDLE Object, UINT32 NestingLevel, void *Context, void **ReturnValue); typedef UINT32 (*ACPI_INTERFACE_HANDLER) ( ACPI_STRING InterfaceName, UINT32 Supported); /* Interrupt handler return values */ #define ACPI_INTERRUPT_NOT_HANDLED 0x00 #define ACPI_INTERRUPT_HANDLED 0x01 /* GPE handler return values */ #define ACPI_REENABLE_GPE 0x80 /* Length of 32-bit EISAID values when converted back to a string */ #define ACPI_EISAID_STRING_SIZE 8 /* Includes null terminator */ /* Length of UUID (string) values */ #define ACPI_UUID_LENGTH 16 /* Length of 3-byte PCI class code values when converted back to a string */ #define ACPI_PCICLS_STRING_SIZE 7 /* Includes null terminator */ /* Structures used for device/processor HID, UID, CID */ typedef struct acpi_pnp_device_id { UINT32 Length; /* Length of string + null */ char *String; } ACPI_PNP_DEVICE_ID; typedef struct acpi_pnp_device_id_list { UINT32 Count; /* Number of IDs in Ids array */ UINT32 ListSize; /* Size of list, including ID strings */ ACPI_PNP_DEVICE_ID Ids[]; /* ID array */ } ACPI_PNP_DEVICE_ID_LIST; /* * Structure returned from AcpiGetObjectInfo. * Optimized for both 32-bit and 64-bit builds. */ typedef struct acpi_device_info { UINT32 InfoSize; /* Size of info, including ID strings */ UINT32 Name; /* ACPI object Name */ ACPI_OBJECT_TYPE Type; /* ACPI object Type */ UINT8 ParamCount; /* If a method, required parameter count */ UINT16 Valid; /* Indicates which optional fields are valid */ UINT8 Flags; /* Miscellaneous info */ UINT8 HighestDstates[4]; /* _SxD values: 0xFF indicates not valid */ UINT8 LowestDstates[5]; /* _SxW values: 0xFF indicates not valid */ UINT64 Address; /* _ADR value */ ACPI_PNP_DEVICE_ID HardwareId; /* _HID value */ ACPI_PNP_DEVICE_ID UniqueId; /* _UID value */ ACPI_PNP_DEVICE_ID ClassCode; /* _CLS value */ ACPI_PNP_DEVICE_ID_LIST CompatibleIdList; /* _CID list */ } ACPI_DEVICE_INFO; /* Values for Flags field above (AcpiGetObjectInfo) */ #define ACPI_PCI_ROOT_BRIDGE 0x01 /* Flags for Valid field above (AcpiGetObjectInfo) */ #define ACPI_VALID_ADR 0x0002 #define ACPI_VALID_HID 0x0004 #define ACPI_VALID_UID 0x0008 #define ACPI_VALID_CID 0x0020 #define ACPI_VALID_CLS 0x0040 #define ACPI_VALID_SXDS 0x0100 #define ACPI_VALID_SXWS 0x0200 /* Flags for _STA method */ #define ACPI_STA_DEVICE_PRESENT 0x01 #define ACPI_STA_DEVICE_ENABLED 0x02 #define ACPI_STA_DEVICE_UI 0x04 #define ACPI_STA_DEVICE_FUNCTIONING 0x08 #define ACPI_STA_DEVICE_OK 0x08 /* Synonym */ #define ACPI_STA_BATTERY_PRESENT 0x10 /* Context structs for address space handlers */ typedef struct acpi_pci_id { UINT16 Segment; UINT16 Bus; UINT16 Device; UINT16 Function; } ACPI_PCI_ID; +typedef struct acpi_mem_mapping +{ + ACPI_PHYSICAL_ADDRESS PhysicalAddress; + UINT8 *LogicalAddress; + ACPI_SIZE Length; + struct acpi_mem_mapping *NextMm; + +} ACPI_MEM_MAPPING; + typedef struct acpi_mem_space_context { UINT32 Length; ACPI_PHYSICAL_ADDRESS Address; - ACPI_PHYSICAL_ADDRESS MappedPhysicalAddress; - UINT8 *MappedLogicalAddress; - ACPI_SIZE MappedLength; + ACPI_MEM_MAPPING *CurMm; + ACPI_MEM_MAPPING *FirstMm; } ACPI_MEM_SPACE_CONTEXT; /* * ACPI_MEMORY_LIST is used only if the ACPICA local cache is enabled */ typedef struct acpi_memory_list { const char *ListName; void *ListHead; UINT16 ObjectSize; UINT16 MaxDepth; UINT16 CurrentDepth; #ifdef ACPI_DBG_TRACK_ALLOCATIONS /* Statistics for debug memory tracking only */ UINT32 TotalAllocated; UINT32 TotalFreed; UINT32 MaxOccupied; UINT32 TotalSize; UINT32 CurrentTotalSize; UINT32 Requests; UINT32 Hits; #endif } ACPI_MEMORY_LIST; /* Definitions of trace event types */ typedef enum { ACPI_TRACE_AML_METHOD, ACPI_TRACE_AML_OPCODE, ACPI_TRACE_AML_REGION } ACPI_TRACE_EVENT_TYPE; /* Definitions of _OSI support */ #define ACPI_VENDOR_STRINGS 0x01 #define ACPI_FEATURE_STRINGS 0x02 #define ACPI_ENABLE_INTERFACES 0x00 #define ACPI_DISABLE_INTERFACES 0x04 #define ACPI_DISABLE_ALL_VENDOR_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_VENDOR_STRINGS) #define ACPI_DISABLE_ALL_FEATURE_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_FEATURE_STRINGS) #define ACPI_DISABLE_ALL_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_VENDOR_STRINGS | ACPI_FEATURE_STRINGS) #define ACPI_ENABLE_ALL_VENDOR_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_VENDOR_STRINGS) #define ACPI_ENABLE_ALL_FEATURE_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_FEATURE_STRINGS) #define ACPI_ENABLE_ALL_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_VENDOR_STRINGS | ACPI_FEATURE_STRINGS) #define ACPI_OSI_WIN_2000 0x01 #define ACPI_OSI_WIN_XP 0x02 #define ACPI_OSI_WIN_XP_SP1 0x03 #define ACPI_OSI_WINSRV_2003 0x04 #define ACPI_OSI_WIN_XP_SP2 0x05 #define ACPI_OSI_WINSRV_2003_SP1 0x06 #define ACPI_OSI_WIN_VISTA 0x07 #define ACPI_OSI_WINSRV_2008 0x08 #define ACPI_OSI_WIN_VISTA_SP1 0x09 #define ACPI_OSI_WIN_VISTA_SP2 0x0A #define ACPI_OSI_WIN_7 0x0B #define ACPI_OSI_WIN_8 0x0C #define ACPI_OSI_WIN_8_1 0x0D #define ACPI_OSI_WIN_10 0x0E #define ACPI_OSI_WIN_10_RS1 0x0F #define ACPI_OSI_WIN_10_RS2 0x10 #define ACPI_OSI_WIN_10_RS3 0x11 #define ACPI_OSI_WIN_10_RS4 0x12 #define ACPI_OSI_WIN_10_RS5 0x13 #define ACPI_OSI_WIN_10_19H1 0x14 /* Definitions of getopt */ #define ACPI_OPT_END -1 #endif /* __ACTYPES_H__ */ Index: head/sys/contrib/dev/acpica/include/acuuid.h =================================================================== --- head/sys/contrib/dev/acpica/include/acuuid.h (revision 366561) +++ head/sys/contrib/dev/acpica/include/acuuid.h (revision 366562) @@ -1,203 +1,209 @@ /****************************************************************************** * * Name: acuuid.h - ACPI-related UUID/GUID definitions * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2020, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * ***************************************************************************** * * Alternatively, you may choose to be licensed under the terms of the * following license: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, you may choose to be licensed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * *****************************************************************************/ #ifndef __ACUUID_H__ #define __ACUUID_H__ /* * Note1: UUIDs and GUIDs are defined to be identical in ACPI. * * Note2: This file is standalone and should remain that way. */ /* Controllers */ #define UUID_GPIO_CONTROLLER "4f248f40-d5e2-499f-834c-27758ea1cd3f" #define UUID_USB_CONTROLLER "ce2ee385-00e6-48cb-9f05-2edb927c4899" #define UUID_SATA_CONTROLLER "e4db149b-fcfe-425b-a6d8-92357d78fc7f" /* Devices */ #define UUID_PCI_HOST_BRIDGE "33db4d5b-1ff7-401c-9657-7441c03dd766" #define UUID_I2C_DEVICE "3cdff6f7-4267-4555-ad05-b30a3d8938de" #define UUID_POWER_BUTTON "dfbcf3c5-e7a5-44e6-9c1f-29c76f6e059c" +#define UUID_MEMORY_DEVICE "03b19910-f473-11dd-87af-0800200c9a66" +#define UUID_GENERIC_BUTTONS_DEVICE "fa6bd625-9ce8-470d-a2c7-b3ca36c4282e" +#define UUID_NVDIMM_ROOT_DEVICE "2f10e7a4-9e91-11e4-89d3-123b93f75cba" +#define UUID_CONTROL_METHOD_BATTERY "f18fc78b-0f15-4978-b793-53f833a1d35b" /* Interfaces */ #define UUID_DEVICE_LABELING "e5c937d0-3553-4d7a-9117-ea4d19c3434d" #define UUID_PHYSICAL_PRESENCE "3dddfaa6-361b-4eb4-a424-8d10089d1653" /* NVDIMM - NFIT table */ #define UUID_VOLATILE_MEMORY "7305944f-fdda-44e3-b16c-3f22d252e5d0" #define UUID_PERSISTENT_MEMORY "66f0d379-b4f3-4074-ac43-0d3318b78cdb" #define UUID_CONTROL_REGION "92f701f6-13b4-405d-910b-299367e8234c" #define UUID_DATA_REGION "91af0530-5d86-470e-a6b0-0a2db9408249" #define UUID_VOLATILE_VIRTUAL_DISK "77ab535a-45fc-624b-5560-f7b281d1f96e" #define UUID_VOLATILE_VIRTUAL_CD "3d5abd30-4175-87ce-6d64-d2ade523c4bb" #define UUID_PERSISTENT_VIRTUAL_DISK "5cea02c9-4d07-69d3-269f-4496fbe096f9" #define UUID_PERSISTENT_VIRTUAL_CD "08018188-42cd-bb48-100f-5387d53ded3d" /* Processor Properties (ACPI 6.2) */ #define UUID_CACHE_PROPERTIES "6DC63E77-257E-4E78-A973-A21F2796898D" #define UUID_PHYSICAL_PROPERTY "DDE4D59A-AA42-4349-B407-EA40F57D9FB7" /* Miscellaneous */ #define UUID_PLATFORM_CAPABILITIES "0811b06e-4a27-44f9-8d60-3cbbc22e7b48" #define UUID_DYNAMIC_ENUMERATION "d8c1a3a6-be9b-4c9b-91bf-c3cb81fc5daf" #define UUID_BATTERY_THERMAL_LIMIT "4c2067e3-887d-475c-9720-4af1d3ed602e" #define UUID_THERMAL_EXTENSIONS "14d399cd-7a27-4b18-8fb4-7cb7b9f4e500" #define UUID_DEVICE_PROPERTIES "daffd814-6eba-4d8c-8a91-bc9bbf4aa301" - +#define UUID_DEVICE_GRAPHS "ab02a46b-74c7-45a2-bd68-f7d344ef2153" +#define UUID_HIERARCHICAL_DATA_EXTENSION "dbb8e3e6-5886-4ba6-8795-1319f52a966b" +#define UUID_CORESIGHT_GRAPH "3ecbc8b6-1d0e-4fb3-8107-e627f805c6cd" #endif /* __ACUUID_H__ */ Index: head/sys/contrib/dev/acpica =================================================================== --- head/sys/contrib/dev/acpica (revision 366561) +++ head/sys/contrib/dev/acpica (revision 366562) Property changes on: head/sys/contrib/dev/acpica ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /vendor-sys/acpica/dist/source:r366539