Index: stable/12/sys/dev/nvme/nvme.h =================================================================== --- stable/12/sys/dev/nvme/nvme.h (revision 366254) +++ stable/12/sys/dev/nvme/nvme.h (revision 366255) @@ -1,1952 +1,1953 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2013 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef __NVME_H__ #define __NVME_H__ #ifdef _KERNEL #include #endif #include #include #define NVME_PASSTHROUGH_CMD _IOWR('n', 0, struct nvme_pt_command) #define NVME_RESET_CONTROLLER _IO('n', 1) #define NVME_GET_NSID _IOR('n', 2, struct nvme_get_nsid) +#define NVME_GET_MAX_XFER_SIZE _IOR('n', 3, uint64_t) #define NVME_IO_TEST _IOWR('n', 100, struct nvme_io_test) #define NVME_BIO_TEST _IOWR('n', 101, struct nvme_io_test) /* * Macros to deal with NVME revisions, as defined VS register */ #define NVME_REV(x, y) (((x) << 16) | ((y) << 8)) #define NVME_MAJOR(r) (((r) >> 16) & 0xffff) #define NVME_MINOR(r) (((r) >> 8) & 0xff) /* * Use to mark a command to apply to all namespaces, or to retrieve global * log pages. */ #define NVME_GLOBAL_NAMESPACE_TAG ((uint32_t)0xFFFFFFFF) /* Cap nvme to 1MB transfers driver explodes with larger sizes */ #define NVME_MAX_XFER_SIZE (MAXPHYS < (1<<20) ? MAXPHYS : (1<<20)) /* Register field definitions */ #define NVME_CAP_LO_REG_MQES_SHIFT (0) #define NVME_CAP_LO_REG_MQES_MASK (0xFFFF) #define NVME_CAP_LO_REG_CQR_SHIFT (16) #define NVME_CAP_LO_REG_CQR_MASK (0x1) #define NVME_CAP_LO_REG_AMS_SHIFT (17) #define NVME_CAP_LO_REG_AMS_MASK (0x3) #define NVME_CAP_LO_REG_TO_SHIFT (24) #define NVME_CAP_LO_REG_TO_MASK (0xFF) #define NVME_CAP_LO_MQES(x) \ (((x) >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK) #define NVME_CAP_LO_CQR(x) \ (((x) >> NVME_CAP_LO_REG_CQR_SHIFT) & NVME_CAP_LO_REG_CQR_MASK) #define NVME_CAP_LO_AMS(x) \ (((x) >> NVME_CAP_LO_REG_AMS_SHIFT) & NVME_CAP_LO_REG_AMS_MASK) #define NVME_CAP_LO_TO(x) \ (((x) >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK) #define NVME_CAP_HI_REG_DSTRD_SHIFT (0) #define NVME_CAP_HI_REG_DSTRD_MASK (0xF) #define NVME_CAP_HI_REG_NSSRS_SHIFT (4) #define NVME_CAP_HI_REG_NSSRS_MASK (0x1) #define NVME_CAP_HI_REG_CSS_NVM_SHIFT (5) #define NVME_CAP_HI_REG_CSS_NVM_MASK (0x1) #define NVME_CAP_HI_REG_BPS_SHIFT (13) #define NVME_CAP_HI_REG_BPS_MASK (0x1) #define NVME_CAP_HI_REG_MPSMIN_SHIFT (16) #define NVME_CAP_HI_REG_MPSMIN_MASK (0xF) #define NVME_CAP_HI_REG_MPSMAX_SHIFT (20) #define NVME_CAP_HI_REG_MPSMAX_MASK (0xF) #define NVME_CAP_HI_REG_PMRS_SHIFT (24) #define NVME_CAP_HI_REG_PMRS_MASK (0x1) #define NVME_CAP_HI_REG_CMBS_SHIFT (25) #define NVME_CAP_HI_REG_CMBS_MASK (0x1) #define NVME_CAP_HI_DSTRD(x) \ (((x) >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK) #define NVME_CAP_HI_CSS_NVM(x) \ (((x) >> NVME_CAP_HI_REG_CSS_NVM_SHIFT) & NVME_CAP_HI_REG_CSS_NVM_MASK) #define NVME_CAP_HI_MPSMIN(x) \ (((x) >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK) #define NVME_CAP_HI_MPSMAX(x) \ (((x) >> NVME_CAP_HI_REG_MPSMAX_SHIFT) & NVME_CAP_HI_REG_MPSMAX_MASK) #define NVME_CC_REG_EN_SHIFT (0) #define NVME_CC_REG_EN_MASK (0x1) #define NVME_CC_REG_CSS_SHIFT (4) #define NVME_CC_REG_CSS_MASK (0x7) #define NVME_CC_REG_MPS_SHIFT (7) #define NVME_CC_REG_MPS_MASK (0xF) #define NVME_CC_REG_AMS_SHIFT (11) #define NVME_CC_REG_AMS_MASK (0x7) #define NVME_CC_REG_SHN_SHIFT (14) #define NVME_CC_REG_SHN_MASK (0x3) #define NVME_CC_REG_IOSQES_SHIFT (16) #define NVME_CC_REG_IOSQES_MASK (0xF) #define NVME_CC_REG_IOCQES_SHIFT (20) #define NVME_CC_REG_IOCQES_MASK (0xF) #define NVME_CSTS_REG_RDY_SHIFT (0) #define NVME_CSTS_REG_RDY_MASK (0x1) #define NVME_CSTS_REG_CFS_SHIFT (1) #define NVME_CSTS_REG_CFS_MASK (0x1) #define NVME_CSTS_REG_SHST_SHIFT (2) #define NVME_CSTS_REG_SHST_MASK (0x3) #define NVME_CSTS_REG_NVSRO_SHIFT (4) #define NVME_CSTS_REG_NVSRO_MASK (0x1) #define NVME_CSTS_REG_PP_SHIFT (5) #define NVME_CSTS_REG_PP_MASK (0x1) #define NVME_CSTS_GET_SHST(csts) (((csts) >> NVME_CSTS_REG_SHST_SHIFT) & NVME_CSTS_REG_SHST_MASK) #define NVME_AQA_REG_ASQS_SHIFT (0) #define NVME_AQA_REG_ASQS_MASK (0xFFF) #define NVME_AQA_REG_ACQS_SHIFT (16) #define NVME_AQA_REG_ACQS_MASK (0xFFF) /* Command field definitions */ #define NVME_CMD_FUSE_SHIFT (8) #define NVME_CMD_FUSE_MASK (0x3) #define NVME_STATUS_P_SHIFT (0) #define NVME_STATUS_P_MASK (0x1) #define NVME_STATUS_SC_SHIFT (1) #define NVME_STATUS_SC_MASK (0xFF) #define NVME_STATUS_SCT_SHIFT (9) #define NVME_STATUS_SCT_MASK (0x7) #define NVME_STATUS_CRD_SHIFT (12) #define NVME_STATUS_CRD_MASK (0x3) #define NVME_STATUS_M_SHIFT (14) #define NVME_STATUS_M_MASK (0x1) #define NVME_STATUS_DNR_SHIFT (15) #define NVME_STATUS_DNR_MASK (0x1) #define NVME_STATUS_GET_P(st) (((st) >> NVME_STATUS_P_SHIFT) & NVME_STATUS_P_MASK) #define NVME_STATUS_GET_SC(st) (((st) >> NVME_STATUS_SC_SHIFT) & NVME_STATUS_SC_MASK) #define NVME_STATUS_GET_SCT(st) (((st) >> NVME_STATUS_SCT_SHIFT) & NVME_STATUS_SCT_MASK) #define NVME_STATUS_GET_M(st) (((st) >> NVME_STATUS_M_SHIFT) & NVME_STATUS_M_MASK) #define NVME_STATUS_GET_DNR(st) (((st) >> NVME_STATUS_DNR_SHIFT) & NVME_STATUS_DNR_MASK) #define NVME_PWR_ST_MPS_SHIFT (0) #define NVME_PWR_ST_MPS_MASK (0x1) #define NVME_PWR_ST_NOPS_SHIFT (1) #define NVME_PWR_ST_NOPS_MASK (0x1) #define NVME_PWR_ST_RRT_SHIFT (0) #define NVME_PWR_ST_RRT_MASK (0x1F) #define NVME_PWR_ST_RRL_SHIFT (0) #define NVME_PWR_ST_RRL_MASK (0x1F) #define NVME_PWR_ST_RWT_SHIFT (0) #define NVME_PWR_ST_RWT_MASK (0x1F) #define NVME_PWR_ST_RWL_SHIFT (0) #define NVME_PWR_ST_RWL_MASK (0x1F) #define NVME_PWR_ST_IPS_SHIFT (6) #define NVME_PWR_ST_IPS_MASK (0x3) #define NVME_PWR_ST_APW_SHIFT (0) #define NVME_PWR_ST_APW_MASK (0x7) #define NVME_PWR_ST_APS_SHIFT (6) #define NVME_PWR_ST_APS_MASK (0x3) /** Controller Multi-path I/O and Namespace Sharing Capabilities */ /* More then one port */ #define NVME_CTRLR_DATA_MIC_MPORTS_SHIFT (0) #define NVME_CTRLR_DATA_MIC_MPORTS_MASK (0x1) /* More then one controller */ #define NVME_CTRLR_DATA_MIC_MCTRLRS_SHIFT (1) #define NVME_CTRLR_DATA_MIC_MCTRLRS_MASK (0x1) /* SR-IOV Virtual Function */ #define NVME_CTRLR_DATA_MIC_SRIOVVF_SHIFT (2) #define NVME_CTRLR_DATA_MIC_SRIOVVF_MASK (0x1) /* Asymmetric Namespace Access Reporting */ #define NVME_CTRLR_DATA_MIC_ANAR_SHIFT (3) #define NVME_CTRLR_DATA_MIC_ANAR_MASK (0x1) /** OACS - optional admin command support */ /* supports security send/receive commands */ #define NVME_CTRLR_DATA_OACS_SECURITY_SHIFT (0) #define NVME_CTRLR_DATA_OACS_SECURITY_MASK (0x1) /* supports format nvm command */ #define NVME_CTRLR_DATA_OACS_FORMAT_SHIFT (1) #define NVME_CTRLR_DATA_OACS_FORMAT_MASK (0x1) /* supports firmware activate/download commands */ #define NVME_CTRLR_DATA_OACS_FIRMWARE_SHIFT (2) #define NVME_CTRLR_DATA_OACS_FIRMWARE_MASK (0x1) /* supports namespace management commands */ #define NVME_CTRLR_DATA_OACS_NSMGMT_SHIFT (3) #define NVME_CTRLR_DATA_OACS_NSMGMT_MASK (0x1) /* supports Device Self-test command */ #define NVME_CTRLR_DATA_OACS_SELFTEST_SHIFT (4) #define NVME_CTRLR_DATA_OACS_SELFTEST_MASK (0x1) /* supports Directives */ #define NVME_CTRLR_DATA_OACS_DIRECTIVES_SHIFT (5) #define NVME_CTRLR_DATA_OACS_DIRECTIVES_MASK (0x1) /* supports NVMe-MI Send/Receive */ #define NVME_CTRLR_DATA_OACS_NVMEMI_SHIFT (6) #define NVME_CTRLR_DATA_OACS_NVMEMI_MASK (0x1) /* supports Virtualization Management */ #define NVME_CTRLR_DATA_OACS_VM_SHIFT (7) #define NVME_CTRLR_DATA_OACS_VM_MASK (0x1) /* supports Doorbell Buffer Config */ #define NVME_CTRLR_DATA_OACS_DBBUFFER_SHIFT (8) #define NVME_CTRLR_DATA_OACS_DBBUFFER_MASK (0x1) /* supports Get LBA Status */ #define NVME_CTRLR_DATA_OACS_GETLBA_SHIFT (9) #define NVME_CTRLR_DATA_OACS_GETLBA_MASK (0x1) /** firmware updates */ /* first slot is read-only */ #define NVME_CTRLR_DATA_FRMW_SLOT1_RO_SHIFT (0) #define NVME_CTRLR_DATA_FRMW_SLOT1_RO_MASK (0x1) /* number of firmware slots */ #define NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT (1) #define NVME_CTRLR_DATA_FRMW_NUM_SLOTS_MASK (0x7) /* firmware activation without reset */ #define NVME_CTRLR_DATA_FRMW_ACT_WO_RESET_SHIFT (4) #define NVME_CTRLR_DATA_FRMW_ACT_WO_RESET_MASK (0x1) /** log page attributes */ /* per namespace smart/health log page */ #define NVME_CTRLR_DATA_LPA_NS_SMART_SHIFT (0) #define NVME_CTRLR_DATA_LPA_NS_SMART_MASK (0x1) /** AVSCC - admin vendor specific command configuration */ /* admin vendor specific commands use spec format */ #define NVME_CTRLR_DATA_AVSCC_SPEC_FORMAT_SHIFT (0) #define NVME_CTRLR_DATA_AVSCC_SPEC_FORMAT_MASK (0x1) /** Autonomous Power State Transition Attributes */ /* Autonomous Power State Transitions supported */ #define NVME_CTRLR_DATA_APSTA_APST_SUPP_SHIFT (0) #define NVME_CTRLR_DATA_APSTA_APST_SUPP_MASK (0x1) /** Sanitize Capabilities */ /* Crypto Erase Support */ #define NVME_CTRLR_DATA_SANICAP_CES_SHIFT (0) #define NVME_CTRLR_DATA_SANICAP_CES_MASK (0x1) /* Block Erase Support */ #define NVME_CTRLR_DATA_SANICAP_BES_SHIFT (1) #define NVME_CTRLR_DATA_SANICAP_BES_MASK (0x1) /* Overwrite Support */ #define NVME_CTRLR_DATA_SANICAP_OWS_SHIFT (2) #define NVME_CTRLR_DATA_SANICAP_OWS_MASK (0x1) /* No-Deallocate Inhibited */ #define NVME_CTRLR_DATA_SANICAP_NDI_SHIFT (29) #define NVME_CTRLR_DATA_SANICAP_NDI_MASK (0x1) /* No-Deallocate Modifies Media After Sanitize */ #define NVME_CTRLR_DATA_SANICAP_NODMMAS_SHIFT (30) #define NVME_CTRLR_DATA_SANICAP_NODMMAS_MASK (0x3) #define NVME_CTRLR_DATA_SANICAP_NODMMAS_UNDEF (0) #define NVME_CTRLR_DATA_SANICAP_NODMMAS_NO (1) #define NVME_CTRLR_DATA_SANICAP_NODMMAS_YES (2) /** submission queue entry size */ #define NVME_CTRLR_DATA_SQES_MIN_SHIFT (0) #define NVME_CTRLR_DATA_SQES_MIN_MASK (0xF) #define NVME_CTRLR_DATA_SQES_MAX_SHIFT (4) #define NVME_CTRLR_DATA_SQES_MAX_MASK (0xF) /** completion queue entry size */ #define NVME_CTRLR_DATA_CQES_MIN_SHIFT (0) #define NVME_CTRLR_DATA_CQES_MIN_MASK (0xF) #define NVME_CTRLR_DATA_CQES_MAX_SHIFT (4) #define NVME_CTRLR_DATA_CQES_MAX_MASK (0xF) /** optional nvm command support */ #define NVME_CTRLR_DATA_ONCS_COMPARE_SHIFT (0) #define NVME_CTRLR_DATA_ONCS_COMPARE_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_WRITE_UNC_SHIFT (1) #define NVME_CTRLR_DATA_ONCS_WRITE_UNC_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_DSM_SHIFT (2) #define NVME_CTRLR_DATA_ONCS_DSM_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_WRZERO_SHIFT (3) #define NVME_CTRLR_DATA_ONCS_WRZERO_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_SAVEFEAT_SHIFT (4) #define NVME_CTRLR_DATA_ONCS_SAVEFEAT_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_RESERV_SHIFT (5) #define NVME_CTRLR_DATA_ONCS_RESERV_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_TIMESTAMP_SHIFT (6) #define NVME_CTRLR_DATA_ONCS_TIMESTAMP_MASK (0x1) #define NVME_CTRLR_DATA_ONCS_VERIFY_SHIFT (7) #define NVME_CTRLR_DATA_ONCS_VERIFY_MASK (0x1) /** Fused Operation Support */ #define NVME_CTRLR_DATA_FUSES_CNW_SHIFT (0) #define NVME_CTRLR_DATA_FUSES_CNW_MASK (0x1) /** Format NVM Attributes */ #define NVME_CTRLR_DATA_FNA_FORMAT_ALL_SHIFT (0) #define NVME_CTRLR_DATA_FNA_FORMAT_ALL_MASK (0x1) #define NVME_CTRLR_DATA_FNA_ERASE_ALL_SHIFT (1) #define NVME_CTRLR_DATA_FNA_ERASE_ALL_MASK (0x1) #define NVME_CTRLR_DATA_FNA_CRYPTO_ERASE_SHIFT (2) #define NVME_CTRLR_DATA_FNA_CRYPTO_ERASE_MASK (0x1) /** volatile write cache */ /* volatile write cache present */ #define NVME_CTRLR_DATA_VWC_PRESENT_SHIFT (0) #define NVME_CTRLR_DATA_VWC_PRESENT_MASK (0x1) /* flush all namespaces supported */ #define NVME_CTRLR_DATA_VWC_ALL_SHIFT (1) #define NVME_CTRLR_DATA_VWC_ALL_MASK (0x3) #define NVME_CTRLR_DATA_VWC_ALL_UNKNOWN (0) #define NVME_CTRLR_DATA_VWC_ALL_NO (2) #define NVME_CTRLR_DATA_VWC_ALL_YES (3) /** namespace features */ /* thin provisioning */ #define NVME_NS_DATA_NSFEAT_THIN_PROV_SHIFT (0) #define NVME_NS_DATA_NSFEAT_THIN_PROV_MASK (0x1) /* NAWUN, NAWUPF, and NACWU fields are valid */ #define NVME_NS_DATA_NSFEAT_NA_FIELDS_SHIFT (1) #define NVME_NS_DATA_NSFEAT_NA_FIELDS_MASK (0x1) /* Deallocated or Unwritten Logical Block errors supported */ #define NVME_NS_DATA_NSFEAT_DEALLOC_SHIFT (2) #define NVME_NS_DATA_NSFEAT_DEALLOC_MASK (0x1) /* NGUID and EUI64 fields are not reusable */ #define NVME_NS_DATA_NSFEAT_NO_ID_REUSE_SHIFT (3) #define NVME_NS_DATA_NSFEAT_NO_ID_REUSE_MASK (0x1) /* NPWG, NPWA, NPDG, NPDA, and NOWS are valid */ #define NVME_NS_DATA_NSFEAT_NPVALID_SHIFT (4) #define NVME_NS_DATA_NSFEAT_NPVALID_MASK (0x1) /** formatted lba size */ #define NVME_NS_DATA_FLBAS_FORMAT_SHIFT (0) #define NVME_NS_DATA_FLBAS_FORMAT_MASK (0xF) #define NVME_NS_DATA_FLBAS_EXTENDED_SHIFT (4) #define NVME_NS_DATA_FLBAS_EXTENDED_MASK (0x1) /** metadata capabilities */ /* metadata can be transferred as part of data prp list */ #define NVME_NS_DATA_MC_EXTENDED_SHIFT (0) #define NVME_NS_DATA_MC_EXTENDED_MASK (0x1) /* metadata can be transferred with separate metadata pointer */ #define NVME_NS_DATA_MC_POINTER_SHIFT (1) #define NVME_NS_DATA_MC_POINTER_MASK (0x1) /** end-to-end data protection capabilities */ /* protection information type 1 */ #define NVME_NS_DATA_DPC_PIT1_SHIFT (0) #define NVME_NS_DATA_DPC_PIT1_MASK (0x1) /* protection information type 2 */ #define NVME_NS_DATA_DPC_PIT2_SHIFT (1) #define NVME_NS_DATA_DPC_PIT2_MASK (0x1) /* protection information type 3 */ #define NVME_NS_DATA_DPC_PIT3_SHIFT (2) #define NVME_NS_DATA_DPC_PIT3_MASK (0x1) /* first eight bytes of metadata */ #define NVME_NS_DATA_DPC_MD_START_SHIFT (3) #define NVME_NS_DATA_DPC_MD_START_MASK (0x1) /* last eight bytes of metadata */ #define NVME_NS_DATA_DPC_MD_END_SHIFT (4) #define NVME_NS_DATA_DPC_MD_END_MASK (0x1) /** end-to-end data protection type settings */ /* protection information type */ #define NVME_NS_DATA_DPS_PIT_SHIFT (0) #define NVME_NS_DATA_DPS_PIT_MASK (0x7) /* 1 == protection info transferred at start of metadata */ /* 0 == protection info transferred at end of metadata */ #define NVME_NS_DATA_DPS_MD_START_SHIFT (3) #define NVME_NS_DATA_DPS_MD_START_MASK (0x1) /** Namespace Multi-path I/O and Namespace Sharing Capabilities */ /* the namespace may be attached to two or more controllers */ #define NVME_NS_DATA_NMIC_MAY_BE_SHARED_SHIFT (0) #define NVME_NS_DATA_NMIC_MAY_BE_SHARED_MASK (0x1) /** Reservation Capabilities */ /* Persist Through Power Loss */ #define NVME_NS_DATA_RESCAP_PTPL_SHIFT (0) #define NVME_NS_DATA_RESCAP_PTPL_MASK (0x1) /* supports the Write Exclusive */ #define NVME_NS_DATA_RESCAP_WR_EX_SHIFT (1) #define NVME_NS_DATA_RESCAP_WR_EX_MASK (0x1) /* supports the Exclusive Access */ #define NVME_NS_DATA_RESCAP_EX_AC_SHIFT (2) #define NVME_NS_DATA_RESCAP_EX_AC_MASK (0x1) /* supports the Write Exclusive – Registrants Only */ #define NVME_NS_DATA_RESCAP_WR_EX_RO_SHIFT (3) #define NVME_NS_DATA_RESCAP_WR_EX_RO_MASK (0x1) /* supports the Exclusive Access - Registrants Only */ #define NVME_NS_DATA_RESCAP_EX_AC_RO_SHIFT (4) #define NVME_NS_DATA_RESCAP_EX_AC_RO_MASK (0x1) /* supports the Write Exclusive – All Registrants */ #define NVME_NS_DATA_RESCAP_WR_EX_AR_SHIFT (5) #define NVME_NS_DATA_RESCAP_WR_EX_AR_MASK (0x1) /* supports the Exclusive Access - All Registrants */ #define NVME_NS_DATA_RESCAP_EX_AC_AR_SHIFT (6) #define NVME_NS_DATA_RESCAP_EX_AC_AR_MASK (0x1) /* Ignore Existing Key is used as defined in revision 1.3 or later */ #define NVME_NS_DATA_RESCAP_IEKEY13_SHIFT (7) #define NVME_NS_DATA_RESCAP_IEKEY13_MASK (0x1) /** Format Progress Indicator */ /* percentage of the Format NVM command that remains to be completed */ #define NVME_NS_DATA_FPI_PERC_SHIFT (0) #define NVME_NS_DATA_FPI_PERC_MASK (0x7f) /* namespace supports the Format Progress Indicator */ #define NVME_NS_DATA_FPI_SUPP_SHIFT (7) #define NVME_NS_DATA_FPI_SUPP_MASK (0x1) /** Deallocate Logical Block Features */ /* deallocated logical block read behavior */ #define NVME_NS_DATA_DLFEAT_READ_SHIFT (0) #define NVME_NS_DATA_DLFEAT_READ_MASK (0x07) #define NVME_NS_DATA_DLFEAT_READ_NR (0x00) #define NVME_NS_DATA_DLFEAT_READ_00 (0x01) #define NVME_NS_DATA_DLFEAT_READ_FF (0x02) /* supports the Deallocate bit in the Write Zeroes */ #define NVME_NS_DATA_DLFEAT_DWZ_SHIFT (3) #define NVME_NS_DATA_DLFEAT_DWZ_MASK (0x01) /* Guard field for deallocated logical blocks is set to the CRC */ #define NVME_NS_DATA_DLFEAT_GCRC_SHIFT (4) #define NVME_NS_DATA_DLFEAT_GCRC_MASK (0x01) /** lba format support */ /* metadata size */ #define NVME_NS_DATA_LBAF_MS_SHIFT (0) #define NVME_NS_DATA_LBAF_MS_MASK (0xFFFF) /* lba data size */ #define NVME_NS_DATA_LBAF_LBADS_SHIFT (16) #define NVME_NS_DATA_LBAF_LBADS_MASK (0xFF) /* relative performance */ #define NVME_NS_DATA_LBAF_RP_SHIFT (24) #define NVME_NS_DATA_LBAF_RP_MASK (0x3) enum nvme_critical_warning_state { NVME_CRIT_WARN_ST_AVAILABLE_SPARE = 0x1, NVME_CRIT_WARN_ST_TEMPERATURE = 0x2, NVME_CRIT_WARN_ST_DEVICE_RELIABILITY = 0x4, NVME_CRIT_WARN_ST_READ_ONLY = 0x8, NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP = 0x10, }; #define NVME_CRIT_WARN_ST_RESERVED_MASK (0xE0) /* slot for current FW */ #define NVME_FIRMWARE_PAGE_AFI_SLOT_SHIFT (0) #define NVME_FIRMWARE_PAGE_AFI_SLOT_MASK (0x7) /* Commands Supported and Effects */ #define NVME_CE_PAGE_CSUP_SHIFT (0) #define NVME_CE_PAGE_CSUP_MASK (0x1) #define NVME_CE_PAGE_LBCC_SHIFT (1) #define NVME_CE_PAGE_LBCC_MASK (0x1) #define NVME_CE_PAGE_NCC_SHIFT (2) #define NVME_CE_PAGE_NCC_MASK (0x1) #define NVME_CE_PAGE_NIC_SHIFT (3) #define NVME_CE_PAGE_NIC_MASK (0x1) #define NVME_CE_PAGE_CCC_SHIFT (4) #define NVME_CE_PAGE_CCC_MASK (0x1) #define NVME_CE_PAGE_CSE_SHIFT (16) #define NVME_CE_PAGE_CSE_MASK (0x7) #define NVME_CE_PAGE_UUID_SHIFT (19) #define NVME_CE_PAGE_UUID_MASK (0x1) /* Sanitize Status */ #define NVME_SS_PAGE_SSTAT_STATUS_SHIFT (0) #define NVME_SS_PAGE_SSTAT_STATUS_MASK (0x7) #define NVME_SS_PAGE_SSTAT_STATUS_NEVER (0) #define NVME_SS_PAGE_SSTAT_STATUS_COMPLETED (1) #define NVME_SS_PAGE_SSTAT_STATUS_INPROG (2) #define NVME_SS_PAGE_SSTAT_STATUS_FAILED (3) #define NVME_SS_PAGE_SSTAT_STATUS_COMPLETEDWD (4) #define NVME_SS_PAGE_SSTAT_PASSES_SHIFT (3) #define NVME_SS_PAGE_SSTAT_PASSES_MASK (0x1f) #define NVME_SS_PAGE_SSTAT_GDE_SHIFT (8) #define NVME_SS_PAGE_SSTAT_GDE_MASK (0x1) /* CC register SHN field values */ enum shn_value { NVME_SHN_NORMAL = 0x1, NVME_SHN_ABRUPT = 0x2, }; /* CSTS register SHST field values */ enum shst_value { NVME_SHST_NORMAL = 0x0, NVME_SHST_OCCURRING = 0x1, NVME_SHST_COMPLETE = 0x2, }; struct nvme_registers { uint32_t cap_lo; /* controller capabilities */ uint32_t cap_hi; uint32_t vs; /* version */ uint32_t intms; /* interrupt mask set */ uint32_t intmc; /* interrupt mask clear */ uint32_t cc; /* controller configuration */ uint32_t reserved1; uint32_t csts; /* controller status */ uint32_t nssr; /* NVM Subsystem Reset */ uint32_t aqa; /* admin queue attributes */ uint64_t asq; /* admin submission queue base addr */ uint64_t acq; /* admin completion queue base addr */ uint32_t cmbloc; /* Controller Memory Buffer Location */ uint32_t cmbsz; /* Controller Memory Buffer Size */ uint32_t bpinfo; /* Boot Partition Information */ uint32_t bprsel; /* Boot Partition Read Select */ uint64_t bpmbl; /* Boot Partition Memory Buffer Location */ uint64_t cmbmsc; /* Controller Memory Buffer Memory Space Control */ uint32_t cmbsts; /* Controller Memory Buffer Status */ uint8_t reserved3[3492]; /* 5Ch - DFFh */ uint32_t pmrcap; /* Persistent Memory Capabilities */ uint32_t pmrctl; /* Persistent Memory Region Control */ uint32_t pmrsts; /* Persistent Memory Region Status */ uint32_t pmrebs; /* Persistent Memory Region Elasticity Buffer Size */ uint32_t pmrswtp; /* Persistent Memory Region Sustained Write Throughput */ uint32_t pmrmsc_lo; /* Persistent Memory Region Controller Memory Space Control */ uint32_t pmrmsc_hi; uint8_t reserved4[484]; /* E1Ch - FFFh */ struct { uint32_t sq_tdbl; /* submission queue tail doorbell */ uint32_t cq_hdbl; /* completion queue head doorbell */ } doorbell[1] __packed; } __packed; _Static_assert(sizeof(struct nvme_registers) == 0x1008, "bad size for nvme_registers"); struct nvme_command { /* dword 0 */ uint8_t opc; /* opcode */ uint8_t fuse; /* fused operation */ uint16_t cid; /* command identifier */ /* dword 1 */ uint32_t nsid; /* namespace identifier */ /* dword 2-3 */ uint32_t rsvd2; uint32_t rsvd3; /* dword 4-5 */ uint64_t mptr; /* metadata pointer */ /* dword 6-7 */ uint64_t prp1; /* prp entry 1 */ /* dword 8-9 */ uint64_t prp2; /* prp entry 2 */ /* dword 10-15 */ uint32_t cdw10; /* command-specific */ uint32_t cdw11; /* command-specific */ uint32_t cdw12; /* command-specific */ uint32_t cdw13; /* command-specific */ uint32_t cdw14; /* command-specific */ uint32_t cdw15; /* command-specific */ } __packed; _Static_assert(sizeof(struct nvme_command) == 16 * 4, "bad size for nvme_command"); struct nvme_completion { /* dword 0 */ uint32_t cdw0; /* command-specific */ /* dword 1 */ uint32_t rsvd1; /* dword 2 */ uint16_t sqhd; /* submission queue head pointer */ uint16_t sqid; /* submission queue identifier */ /* dword 3 */ uint16_t cid; /* command identifier */ uint16_t status; } __packed; _Static_assert(sizeof(struct nvme_completion) == 4 * 4, "bad size for nvme_completion"); struct nvme_dsm_range { uint32_t attributes; uint32_t length; uint64_t starting_lba; } __packed; /* Largest DSM Trim that can be done */ #define NVME_MAX_DSM_TRIM 4096 _Static_assert(sizeof(struct nvme_dsm_range) == 16, "bad size for nvme_dsm_ranage"); /* status code types */ enum nvme_status_code_type { NVME_SCT_GENERIC = 0x0, NVME_SCT_COMMAND_SPECIFIC = 0x1, NVME_SCT_MEDIA_ERROR = 0x2, NVME_SCT_PATH_RELATED = 0x3, /* 0x3-0x6 - reserved */ NVME_SCT_VENDOR_SPECIFIC = 0x7, }; /* generic command status codes */ enum nvme_generic_command_status_code { NVME_SC_SUCCESS = 0x00, NVME_SC_INVALID_OPCODE = 0x01, NVME_SC_INVALID_FIELD = 0x02, NVME_SC_COMMAND_ID_CONFLICT = 0x03, NVME_SC_DATA_TRANSFER_ERROR = 0x04, NVME_SC_ABORTED_POWER_LOSS = 0x05, NVME_SC_INTERNAL_DEVICE_ERROR = 0x06, NVME_SC_ABORTED_BY_REQUEST = 0x07, NVME_SC_ABORTED_SQ_DELETION = 0x08, NVME_SC_ABORTED_FAILED_FUSED = 0x09, NVME_SC_ABORTED_MISSING_FUSED = 0x0a, NVME_SC_INVALID_NAMESPACE_OR_FORMAT = 0x0b, NVME_SC_COMMAND_SEQUENCE_ERROR = 0x0c, NVME_SC_INVALID_SGL_SEGMENT_DESCR = 0x0d, NVME_SC_INVALID_NUMBER_OF_SGL_DESCR = 0x0e, NVME_SC_DATA_SGL_LENGTH_INVALID = 0x0f, NVME_SC_METADATA_SGL_LENGTH_INVALID = 0x10, NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID = 0x11, NVME_SC_INVALID_USE_OF_CMB = 0x12, NVME_SC_PRP_OFFET_INVALID = 0x13, NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED = 0x14, NVME_SC_OPERATION_DENIED = 0x15, NVME_SC_SGL_OFFSET_INVALID = 0x16, /* 0x17 - reserved */ NVME_SC_HOST_ID_INCONSISTENT_FORMAT = 0x18, NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED = 0x19, NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID = 0x1a, NVME_SC_ABORTED_DUE_TO_PREEMPT = 0x1b, NVME_SC_SANITIZE_FAILED = 0x1c, NVME_SC_SANITIZE_IN_PROGRESS = 0x1d, NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID = 0x1e, NVME_SC_NOT_SUPPORTED_IN_CMB = 0x1f, NVME_SC_NAMESPACE_IS_WRITE_PROTECTED = 0x20, NVME_SC_COMMAND_INTERRUPTED = 0x21, NVME_SC_TRANSIENT_TRANSPORT_ERROR = 0x22, NVME_SC_LBA_OUT_OF_RANGE = 0x80, NVME_SC_CAPACITY_EXCEEDED = 0x81, NVME_SC_NAMESPACE_NOT_READY = 0x82, NVME_SC_RESERVATION_CONFLICT = 0x83, NVME_SC_FORMAT_IN_PROGRESS = 0x84, }; /* command specific status codes */ enum nvme_command_specific_status_code { NVME_SC_COMPLETION_QUEUE_INVALID = 0x00, NVME_SC_INVALID_QUEUE_IDENTIFIER = 0x01, NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED = 0x02, NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED = 0x03, /* 0x04 - reserved */ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED = 0x05, NVME_SC_INVALID_FIRMWARE_SLOT = 0x06, NVME_SC_INVALID_FIRMWARE_IMAGE = 0x07, NVME_SC_INVALID_INTERRUPT_VECTOR = 0x08, NVME_SC_INVALID_LOG_PAGE = 0x09, NVME_SC_INVALID_FORMAT = 0x0a, NVME_SC_FIRMWARE_REQUIRES_RESET = 0x0b, NVME_SC_INVALID_QUEUE_DELETION = 0x0c, NVME_SC_FEATURE_NOT_SAVEABLE = 0x0d, NVME_SC_FEATURE_NOT_CHANGEABLE = 0x0e, NVME_SC_FEATURE_NOT_NS_SPECIFIC = 0x0f, NVME_SC_FW_ACT_REQUIRES_NVMS_RESET = 0x10, NVME_SC_FW_ACT_REQUIRES_RESET = 0x11, NVME_SC_FW_ACT_REQUIRES_TIME = 0x12, NVME_SC_FW_ACT_PROHIBITED = 0x13, NVME_SC_OVERLAPPING_RANGE = 0x14, NVME_SC_NS_INSUFFICIENT_CAPACITY = 0x15, NVME_SC_NS_ID_UNAVAILABLE = 0x16, /* 0x17 - reserved */ NVME_SC_NS_ALREADY_ATTACHED = 0x18, NVME_SC_NS_IS_PRIVATE = 0x19, NVME_SC_NS_NOT_ATTACHED = 0x1a, NVME_SC_THIN_PROV_NOT_SUPPORTED = 0x1b, NVME_SC_CTRLR_LIST_INVALID = 0x1c, NVME_SC_SELT_TEST_IN_PROGRESS = 0x1d, NVME_SC_BOOT_PART_WRITE_PROHIB = 0x1e, NVME_SC_INVALID_CTRLR_ID = 0x1f, NVME_SC_INVALID_SEC_CTRLR_STATE = 0x20, NVME_SC_INVALID_NUM_OF_CTRLR_RESRC = 0x21, NVME_SC_INVALID_RESOURCE_ID = 0x22, NVME_SC_SANITIZE_PROHIBITED_WPMRE = 0x23, NVME_SC_ANA_GROUP_ID_INVALID = 0x24, NVME_SC_ANA_ATTACH_FAILED = 0x25, NVME_SC_CONFLICTING_ATTRIBUTES = 0x80, NVME_SC_INVALID_PROTECTION_INFO = 0x81, NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE = 0x82, }; /* media error status codes */ enum nvme_media_error_status_code { NVME_SC_WRITE_FAULTS = 0x80, NVME_SC_UNRECOVERED_READ_ERROR = 0x81, NVME_SC_GUARD_CHECK_ERROR = 0x82, NVME_SC_APPLICATION_TAG_CHECK_ERROR = 0x83, NVME_SC_REFERENCE_TAG_CHECK_ERROR = 0x84, NVME_SC_COMPARE_FAILURE = 0x85, NVME_SC_ACCESS_DENIED = 0x86, NVME_SC_DEALLOCATED_OR_UNWRITTEN = 0x87, }; /* path related status codes */ enum nvme_path_related_status_code { NVME_SC_INTERNAL_PATH_ERROR = 0x00, NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS = 0x01, NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE = 0x02, NVME_SC_ASYMMETRIC_ACCESS_TRANSITION = 0x03, NVME_SC_CONTROLLER_PATHING_ERROR = 0x60, NVME_SC_HOST_PATHING_ERROR = 0x70, NVME_SC_COMMAND_ABOTHED_BY_HOST = 0x71, }; /* admin opcodes */ enum nvme_admin_opcode { NVME_OPC_DELETE_IO_SQ = 0x00, NVME_OPC_CREATE_IO_SQ = 0x01, NVME_OPC_GET_LOG_PAGE = 0x02, /* 0x03 - reserved */ NVME_OPC_DELETE_IO_CQ = 0x04, NVME_OPC_CREATE_IO_CQ = 0x05, NVME_OPC_IDENTIFY = 0x06, /* 0x07 - reserved */ NVME_OPC_ABORT = 0x08, NVME_OPC_SET_FEATURES = 0x09, NVME_OPC_GET_FEATURES = 0x0a, /* 0x0b - reserved */ NVME_OPC_ASYNC_EVENT_REQUEST = 0x0c, NVME_OPC_NAMESPACE_MANAGEMENT = 0x0d, /* 0x0e-0x0f - reserved */ NVME_OPC_FIRMWARE_ACTIVATE = 0x10, NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD = 0x11, /* 0x12-0x13 - reserved */ NVME_OPC_DEVICE_SELF_TEST = 0x14, NVME_OPC_NAMESPACE_ATTACHMENT = 0x15, /* 0x16-0x17 - reserved */ NVME_OPC_KEEP_ALIVE = 0x18, NVME_OPC_DIRECTIVE_SEND = 0x19, NVME_OPC_DIRECTIVE_RECEIVE = 0x1a, /* 0x1b - reserved */ NVME_OPC_VIRTUALIZATION_MANAGEMENT = 0x1c, NVME_OPC_NVME_MI_SEND = 0x1d, NVME_OPC_NVME_MI_RECEIVE = 0x1e, /* 0x1f-0x7b - reserved */ NVME_OPC_DOORBELL_BUFFER_CONFIG = 0x7c, NVME_OPC_FORMAT_NVM = 0x80, NVME_OPC_SECURITY_SEND = 0x81, NVME_OPC_SECURITY_RECEIVE = 0x82, /* 0x83 - reserved */ NVME_OPC_SANITIZE = 0x84, /* 0x85 - reserved */ NVME_OPC_GET_LBA_STATUS = 0x86, }; /* nvme nvm opcodes */ enum nvme_nvm_opcode { NVME_OPC_FLUSH = 0x00, NVME_OPC_WRITE = 0x01, NVME_OPC_READ = 0x02, /* 0x03 - reserved */ NVME_OPC_WRITE_UNCORRECTABLE = 0x04, NVME_OPC_COMPARE = 0x05, /* 0x06-0x07 - reserved */ NVME_OPC_WRITE_ZEROES = 0x08, NVME_OPC_DATASET_MANAGEMENT = 0x09, /* 0x0a-0x0b - reserved */ NVME_OPC_VERIFY = 0x0c, NVME_OPC_RESERVATION_REGISTER = 0x0d, NVME_OPC_RESERVATION_REPORT = 0x0e, /* 0x0f-0x10 - reserved */ NVME_OPC_RESERVATION_ACQUIRE = 0x11, /* 0x12-0x14 - reserved */ NVME_OPC_RESERVATION_RELEASE = 0x15, }; enum nvme_feature { /* 0x00 - reserved */ NVME_FEAT_ARBITRATION = 0x01, NVME_FEAT_POWER_MANAGEMENT = 0x02, NVME_FEAT_LBA_RANGE_TYPE = 0x03, NVME_FEAT_TEMPERATURE_THRESHOLD = 0x04, NVME_FEAT_ERROR_RECOVERY = 0x05, NVME_FEAT_VOLATILE_WRITE_CACHE = 0x06, NVME_FEAT_NUMBER_OF_QUEUES = 0x07, NVME_FEAT_INTERRUPT_COALESCING = 0x08, NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION = 0x09, NVME_FEAT_WRITE_ATOMICITY = 0x0A, NVME_FEAT_ASYNC_EVENT_CONFIGURATION = 0x0B, NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION = 0x0C, NVME_FEAT_HOST_MEMORY_BUFFER = 0x0D, NVME_FEAT_TIMESTAMP = 0x0E, NVME_FEAT_KEEP_ALIVE_TIMER = 0x0F, NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT = 0x10, NVME_FEAT_NON_OP_POWER_STATE_CONFIG = 0x11, NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG = 0x12, NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG = 0x13, NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW = 0x14, NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES = 0x15, NVME_FEAT_HOST_BEHAVIOR_SUPPORT = 0x16, NVME_FEAT_SANITIZE_CONFIG = 0x17, NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION = 0x18, /* 0x19-0x77 - reserved */ /* 0x78-0x7f - NVMe Management Interface */ NVME_FEAT_SOFTWARE_PROGRESS_MARKER = 0x80, NVME_FEAT_HOST_IDENTIFIER = 0x81, NVME_FEAT_RESERVATION_NOTIFICATION_MASK = 0x82, NVME_FEAT_RESERVATION_PERSISTENCE = 0x83, NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG = 0x84, /* 0x85-0xBF - command set specific (reserved) */ /* 0xC0-0xFF - vendor specific */ }; enum nvme_dsm_attribute { NVME_DSM_ATTR_INTEGRAL_READ = 0x1, NVME_DSM_ATTR_INTEGRAL_WRITE = 0x2, NVME_DSM_ATTR_DEALLOCATE = 0x4, }; enum nvme_activate_action { NVME_AA_REPLACE_NO_ACTIVATE = 0x0, NVME_AA_REPLACE_ACTIVATE = 0x1, NVME_AA_ACTIVATE = 0x2, }; struct nvme_power_state { /** Maximum Power */ uint16_t mp; /* Maximum Power */ uint8_t ps_rsvd1; uint8_t mps_nops; /* Max Power Scale, Non-Operational State */ uint32_t enlat; /* Entry Latency */ uint32_t exlat; /* Exit Latency */ uint8_t rrt; /* Relative Read Throughput */ uint8_t rrl; /* Relative Read Latency */ uint8_t rwt; /* Relative Write Throughput */ uint8_t rwl; /* Relative Write Latency */ uint16_t idlp; /* Idle Power */ uint8_t ips; /* Idle Power Scale */ uint8_t ps_rsvd8; uint16_t actp; /* Active Power */ uint8_t apw_aps; /* Active Power Workload, Active Power Scale */ uint8_t ps_rsvd10[9]; } __packed; _Static_assert(sizeof(struct nvme_power_state) == 32, "bad size for nvme_power_state"); #define NVME_SERIAL_NUMBER_LENGTH 20 #define NVME_MODEL_NUMBER_LENGTH 40 #define NVME_FIRMWARE_REVISION_LENGTH 8 struct nvme_controller_data { /* bytes 0-255: controller capabilities and features */ /** pci vendor id */ uint16_t vid; /** pci subsystem vendor id */ uint16_t ssvid; /** serial number */ uint8_t sn[NVME_SERIAL_NUMBER_LENGTH]; /** model number */ uint8_t mn[NVME_MODEL_NUMBER_LENGTH]; /** firmware revision */ uint8_t fr[NVME_FIRMWARE_REVISION_LENGTH]; /** recommended arbitration burst */ uint8_t rab; /** ieee oui identifier */ uint8_t ieee[3]; /** multi-interface capabilities */ uint8_t mic; /** maximum data transfer size */ uint8_t mdts; /** Controller ID */ uint16_t ctrlr_id; /** Version */ uint32_t ver; /** RTD3 Resume Latency */ uint32_t rtd3r; /** RTD3 Enter Latency */ uint32_t rtd3e; /** Optional Asynchronous Events Supported */ uint32_t oaes; /* bitfield really */ /** Controller Attributes */ uint32_t ctratt; /* bitfield really */ /** Read Recovery Levels Supported */ uint16_t rrls; uint8_t reserved1[9]; /** Controller Type */ uint8_t cntrltype; /** FRU Globally Unique Identifier */ uint8_t fguid[16]; /** Command Retry Delay Time 1 */ uint16_t crdt1; /** Command Retry Delay Time 2 */ uint16_t crdt2; /** Command Retry Delay Time 3 */ uint16_t crdt3; uint8_t reserved2[122]; /* bytes 256-511: admin command set attributes */ /** optional admin command support */ uint16_t oacs; /** abort command limit */ uint8_t acl; /** asynchronous event request limit */ uint8_t aerl; /** firmware updates */ uint8_t frmw; /** log page attributes */ uint8_t lpa; /** error log page entries */ uint8_t elpe; /** number of power states supported */ uint8_t npss; /** admin vendor specific command configuration */ uint8_t avscc; /** Autonomous Power State Transition Attributes */ uint8_t apsta; /** Warning Composite Temperature Threshold */ uint16_t wctemp; /** Critical Composite Temperature Threshold */ uint16_t cctemp; /** Maximum Time for Firmware Activation */ uint16_t mtfa; /** Host Memory Buffer Preferred Size */ uint32_t hmpre; /** Host Memory Buffer Minimum Size */ uint32_t hmmin; /** Name space capabilities */ struct { /* if nsmgmt, report tnvmcap and unvmcap */ uint8_t tnvmcap[16]; uint8_t unvmcap[16]; } __packed untncap; /** Replay Protected Memory Block Support */ uint32_t rpmbs; /* Really a bitfield */ /** Extended Device Self-test Time */ uint16_t edstt; /** Device Self-test Options */ uint8_t dsto; /* Really a bitfield */ /** Firmware Update Granularity */ uint8_t fwug; /** Keep Alive Support */ uint16_t kas; /** Host Controlled Thermal Management Attributes */ uint16_t hctma; /* Really a bitfield */ /** Minimum Thermal Management Temperature */ uint16_t mntmt; /** Maximum Thermal Management Temperature */ uint16_t mxtmt; /** Sanitize Capabilities */ uint32_t sanicap; /* Really a bitfield */ /** Host Memory Buffer Minimum Descriptor Entry Size */ uint32_t hmminds; /** Host Memory Maximum Descriptors Entries */ uint16_t hmmaxd; /** NVM Set Identifier Maximum */ uint16_t nsetidmax; /** Endurance Group Identifier Maximum */ uint16_t endgidmax; /** ANA Transition Time */ uint8_t anatt; /** Asymmetric Namespace Access Capabilities */ uint8_t anacap; /** ANA Group Identifier Maximum */ uint32_t anagrpmax; /** Number of ANA Group Identifiers */ uint32_t nanagrpid; /** Persistent Event Log Size */ uint32_t pels; uint8_t reserved3[156]; /* bytes 512-703: nvm command set attributes */ /** submission queue entry size */ uint8_t sqes; /** completion queue entry size */ uint8_t cqes; /** Maximum Outstanding Commands */ uint16_t maxcmd; /** number of namespaces */ uint32_t nn; /** optional nvm command support */ uint16_t oncs; /** fused operation support */ uint16_t fuses; /** format nvm attributes */ uint8_t fna; /** volatile write cache */ uint8_t vwc; /** Atomic Write Unit Normal */ uint16_t awun; /** Atomic Write Unit Power Fail */ uint16_t awupf; /** NVM Vendor Specific Command Configuration */ uint8_t nvscc; /** Namespace Write Protection Capabilities */ uint8_t nwpc; /** Atomic Compare & Write Unit */ uint16_t acwu; uint16_t reserved6; /** SGL Support */ uint32_t sgls; /** Maximum Number of Allowed Namespaces */ uint32_t mnan; /* bytes 540-767: Reserved */ uint8_t reserved7[224]; /** NVM Subsystem NVMe Qualified Name */ uint8_t subnqn[256]; /* bytes 1024-1791: Reserved */ uint8_t reserved8[768]; /* bytes 1792-2047: NVMe over Fabrics specification */ uint8_t reserved9[256]; /* bytes 2048-3071: power state descriptors */ struct nvme_power_state power_state[32]; /* bytes 3072-4095: vendor specific */ uint8_t vs[1024]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_controller_data) == 4096, "bad size for nvme_controller_data"); struct nvme_namespace_data { /** namespace size */ uint64_t nsze; /** namespace capacity */ uint64_t ncap; /** namespace utilization */ uint64_t nuse; /** namespace features */ uint8_t nsfeat; /** number of lba formats */ uint8_t nlbaf; /** formatted lba size */ uint8_t flbas; /** metadata capabilities */ uint8_t mc; /** end-to-end data protection capabilities */ uint8_t dpc; /** end-to-end data protection type settings */ uint8_t dps; /** Namespace Multi-path I/O and Namespace Sharing Capabilities */ uint8_t nmic; /** Reservation Capabilities */ uint8_t rescap; /** Format Progress Indicator */ uint8_t fpi; /** Deallocate Logical Block Features */ uint8_t dlfeat; /** Namespace Atomic Write Unit Normal */ uint16_t nawun; /** Namespace Atomic Write Unit Power Fail */ uint16_t nawupf; /** Namespace Atomic Compare & Write Unit */ uint16_t nacwu; /** Namespace Atomic Boundary Size Normal */ uint16_t nabsn; /** Namespace Atomic Boundary Offset */ uint16_t nabo; /** Namespace Atomic Boundary Size Power Fail */ uint16_t nabspf; /** Namespace Optimal IO Boundary */ uint16_t noiob; /** NVM Capacity */ uint8_t nvmcap[16]; /** Namespace Preferred Write Granularity */ uint16_t npwg; /** Namespace Preferred Write Alignment */ uint16_t npwa; /** Namespace Preferred Deallocate Granularity */ uint16_t npdg; /** Namespace Preferred Deallocate Alignment */ uint16_t npda; /** Namespace Optimal Write Size */ uint16_t nows; /* bytes 74-91: Reserved */ uint8_t reserved5[18]; /** ANA Group Identifier */ uint32_t anagrpid; /* bytes 96-98: Reserved */ uint8_t reserved6[3]; /** Namespace Attributes */ uint8_t nsattr; /** NVM Set Identifier */ uint16_t nvmsetid; /** Endurance Group Identifier */ uint16_t endgid; /** Namespace Globally Unique Identifier */ uint8_t nguid[16]; /** IEEE Extended Unique Identifier */ uint8_t eui64[8]; /** lba format support */ uint32_t lbaf[16]; uint8_t reserved7[192]; uint8_t vendor_specific[3712]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_namespace_data) == 4096, "bad size for nvme_namepsace_data"); enum nvme_log_page { /* 0x00 - reserved */ NVME_LOG_ERROR = 0x01, NVME_LOG_HEALTH_INFORMATION = 0x02, NVME_LOG_FIRMWARE_SLOT = 0x03, NVME_LOG_CHANGED_NAMESPACE = 0x04, NVME_LOG_COMMAND_EFFECT = 0x05, NVME_LOG_DEVICE_SELF_TEST = 0x06, NVME_LOG_TELEMETRY_HOST_INITIATED = 0x07, NVME_LOG_TELEMETRY_CONTROLLER_INITIATED = 0x08, NVME_LOG_ENDURANCE_GROUP_INFORMATION = 0x09, NVME_LOG_PREDICTABLE_LATENCY_PER_NVM_SET = 0x0a, NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE = 0x0b, NVME_LOG_ASYMMETRIC_NAMESPAVE_ACCESS = 0x0c, NVME_LOG_PERSISTENT_EVENT_LOG = 0x0d, NVME_LOG_LBA_STATUS_INFORMATION = 0x0e, NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE = 0x0f, /* 0x06-0x7F - reserved */ /* 0x80-0xBF - I/O command set specific */ NVME_LOG_RES_NOTIFICATION = 0x80, NVME_LOG_SANITIZE_STATUS = 0x81, /* 0x82-0xBF - reserved */ /* 0xC0-0xFF - vendor specific */ /* * The following are Intel Specific log pages, but they seem * to be widely implemented. */ INTEL_LOG_READ_LAT_LOG = 0xc1, INTEL_LOG_WRITE_LAT_LOG = 0xc2, INTEL_LOG_TEMP_STATS = 0xc5, INTEL_LOG_ADD_SMART = 0xca, INTEL_LOG_DRIVE_MKT_NAME = 0xdd, /* * HGST log page, with lots ofs sub pages. */ HGST_INFO_LOG = 0xc1, }; struct nvme_error_information_entry { uint64_t error_count; uint16_t sqid; uint16_t cid; uint16_t status; uint16_t error_location; uint64_t lba; uint32_t nsid; uint8_t vendor_specific; uint8_t trtype; uint16_t reserved30; uint64_t csi; uint16_t ttsi; uint8_t reserved[22]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_error_information_entry) == 64, "bad size for nvme_error_information_entry"); struct nvme_health_information_page { uint8_t critical_warning; uint16_t temperature; uint8_t available_spare; uint8_t available_spare_threshold; uint8_t percentage_used; uint8_t reserved[26]; /* * Note that the following are 128-bit values, but are * defined as an array of 2 64-bit values. */ /* Data Units Read is always in 512-byte units. */ uint64_t data_units_read[2]; /* Data Units Written is always in 512-byte units. */ uint64_t data_units_written[2]; /* For NVM command set, this includes Compare commands. */ uint64_t host_read_commands[2]; uint64_t host_write_commands[2]; /* Controller Busy Time is reported in minutes. */ uint64_t controller_busy_time[2]; uint64_t power_cycles[2]; uint64_t power_on_hours[2]; uint64_t unsafe_shutdowns[2]; uint64_t media_errors[2]; uint64_t num_error_info_log_entries[2]; uint32_t warning_temp_time; uint32_t error_temp_time; uint16_t temp_sensor[8]; /* Thermal Management Temperature 1 Transition Count */ uint32_t tmt1tc; /* Thermal Management Temperature 2 Transition Count */ uint32_t tmt2tc; /* Total Time For Thermal Management Temperature 1 */ uint32_t ttftmt1; /* Total Time For Thermal Management Temperature 2 */ uint32_t ttftmt2; uint8_t reserved2[280]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_health_information_page) == 512, "bad size for nvme_health_information_page"); struct nvme_firmware_page { uint8_t afi; uint8_t reserved[7]; uint64_t revision[7]; /* revisions for 7 slots */ uint8_t reserved2[448]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_firmware_page) == 512, "bad size for nvme_firmware_page"); struct nvme_ns_list { uint32_t ns[1024]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_ns_list) == 4096, "bad size for nvme_ns_list"); struct nvme_command_effects_page { uint32_t acs[256]; uint32_t iocs[256]; uint8_t reserved[2048]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_command_effects_page) == 4096, "bad size for nvme_command_effects_page"); struct nvme_res_notification_page { uint64_t log_page_count; uint8_t log_page_type; uint8_t available_log_pages; uint8_t reserved2; uint32_t nsid; uint8_t reserved[48]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_res_notification_page) == 64, "bad size for nvme_res_notification_page"); struct nvme_sanitize_status_page { uint16_t sprog; uint16_t sstat; uint32_t scdw10; uint32_t etfo; uint32_t etfbe; uint32_t etfce; uint32_t etfownd; uint32_t etfbewnd; uint32_t etfcewnd; uint8_t reserved[480]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_sanitize_status_page) == 512, "bad size for nvme_sanitize_status_page"); struct intel_log_temp_stats { uint64_t current; uint64_t overtemp_flag_last; uint64_t overtemp_flag_life; uint64_t max_temp; uint64_t min_temp; uint64_t _rsvd[5]; uint64_t max_oper_temp; uint64_t min_oper_temp; uint64_t est_offset; } __packed __aligned(4); _Static_assert(sizeof(struct intel_log_temp_stats) == 13 * 8, "bad size for intel_log_temp_stats"); struct nvme_resv_reg_ctrlr { uint16_t ctrlr_id; /* Controller ID */ uint8_t rcsts; /* Reservation Status */ uint8_t reserved3[5]; uint64_t hostid; /* Host Identifier */ uint64_t rkey; /* Reservation Key */ } __packed __aligned(4); _Static_assert(sizeof(struct nvme_resv_reg_ctrlr) == 24, "bad size for nvme_resv_reg_ctrlr"); struct nvme_resv_reg_ctrlr_ext { uint16_t ctrlr_id; /* Controller ID */ uint8_t rcsts; /* Reservation Status */ uint8_t reserved3[5]; uint64_t rkey; /* Reservation Key */ uint64_t hostid[2]; /* Host Identifier */ uint8_t reserved32[32]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_resv_reg_ctrlr_ext) == 64, "bad size for nvme_resv_reg_ctrlr_ext"); struct nvme_resv_status { uint32_t gen; /* Generation */ uint8_t rtype; /* Reservation Type */ uint8_t regctl[2]; /* Number of Registered Controllers */ uint8_t reserved7[2]; uint8_t ptpls; /* Persist Through Power Loss State */ uint8_t reserved10[14]; struct nvme_resv_reg_ctrlr ctrlr[0]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_resv_status) == 24, "bad size for nvme_resv_status"); struct nvme_resv_status_ext { uint32_t gen; /* Generation */ uint8_t rtype; /* Reservation Type */ uint8_t regctl[2]; /* Number of Registered Controllers */ uint8_t reserved7[2]; uint8_t ptpls; /* Persist Through Power Loss State */ uint8_t reserved10[14]; uint8_t reserved24[40]; struct nvme_resv_reg_ctrlr_ext ctrlr[0]; } __packed __aligned(4); _Static_assert(sizeof(struct nvme_resv_status_ext) == 64, "bad size for nvme_resv_status_ext"); #define NVME_TEST_MAX_THREADS 128 struct nvme_io_test { enum nvme_nvm_opcode opc; uint32_t size; uint32_t time; /* in seconds */ uint32_t num_threads; uint32_t flags; uint64_t io_completed[NVME_TEST_MAX_THREADS]; }; enum nvme_io_test_flags { /* * Specifies whether dev_refthread/dev_relthread should be * called during NVME_BIO_TEST. Ignored for other test * types. */ NVME_TEST_FLAG_REFTHREAD = 0x1, }; struct nvme_pt_command { /* * cmd is used to specify a passthrough command to a controller or * namespace. * * The following fields from cmd may be specified by the caller: * * opc (opcode) * * nsid (namespace id) - for admin commands only * * cdw10-cdw15 * * Remaining fields must be set to 0 by the caller. */ struct nvme_command cmd; /* * cpl returns completion status for the passthrough command * specified by cmd. * * The following fields will be filled out by the driver, for * consumption by the caller: * * cdw0 * * status (except for phase) * * Remaining fields will be set to 0 by the driver. */ struct nvme_completion cpl; /* buf is the data buffer associated with this passthrough command. */ void * buf; /* * len is the length of the data buffer associated with this * passthrough command. */ uint32_t len; /* * is_read = 1 if the passthrough command will read data into the * supplied buffer from the controller. * * is_read = 0 if the passthrough command will write data from the * supplied buffer to the controller. */ uint32_t is_read; /* * driver_lock is used by the driver only. It must be set to 0 * by the caller. */ struct mtx * driver_lock; }; struct nvme_get_nsid { char cdev[SPECNAMELEN + 1]; uint32_t nsid; }; struct nvme_hmb_desc { uint64_t addr; uint32_t size; uint32_t reserved; }; #define nvme_completion_is_error(cpl) \ (NVME_STATUS_GET_SC((cpl)->status) != 0 || NVME_STATUS_GET_SCT((cpl)->status) != 0) void nvme_strvis(uint8_t *dst, const uint8_t *src, int dstlen, int srclen); #ifdef _KERNEL struct bio; struct thread; struct nvme_namespace; struct nvme_controller; struct nvme_consumer; typedef void (*nvme_cb_fn_t)(void *, const struct nvme_completion *); typedef void *(*nvme_cons_ns_fn_t)(struct nvme_namespace *, void *); typedef void *(*nvme_cons_ctrlr_fn_t)(struct nvme_controller *); typedef void (*nvme_cons_async_fn_t)(void *, const struct nvme_completion *, uint32_t, void *, uint32_t); typedef void (*nvme_cons_fail_fn_t)(void *); enum nvme_namespace_flags { NVME_NS_DEALLOCATE_SUPPORTED = 0x1, NVME_NS_FLUSH_SUPPORTED = 0x2, }; int nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, int is_admin_cmd); /* Admin functions */ void nvme_ctrlr_cmd_set_feature(struct nvme_controller *ctrlr, uint8_t feature, uint32_t cdw11, uint32_t cdw12, uint32_t cdw13, uint32_t cdw14, uint32_t cdw15, void *payload, uint32_t payload_size, nvme_cb_fn_t cb_fn, void *cb_arg); void nvme_ctrlr_cmd_get_feature(struct nvme_controller *ctrlr, uint8_t feature, uint32_t cdw11, void *payload, uint32_t payload_size, nvme_cb_fn_t cb_fn, void *cb_arg); void nvme_ctrlr_cmd_get_log_page(struct nvme_controller *ctrlr, uint8_t log_page, uint32_t nsid, void *payload, uint32_t payload_size, nvme_cb_fn_t cb_fn, void *cb_arg); /* NVM I/O functions */ int nvme_ns_cmd_write(struct nvme_namespace *ns, void *payload, uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_write_bio(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_read(struct nvme_namespace *ns, void *payload, uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_read_bio(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_deallocate(struct nvme_namespace *ns, void *payload, uint8_t num_ranges, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_cmd_flush(struct nvme_namespace *ns, nvme_cb_fn_t cb_fn, void *cb_arg); int nvme_ns_dump(struct nvme_namespace *ns, void *virt, off_t offset, size_t len); /* Registration functions */ struct nvme_consumer * nvme_register_consumer(nvme_cons_ns_fn_t ns_fn, nvme_cons_ctrlr_fn_t ctrlr_fn, nvme_cons_async_fn_t async_fn, nvme_cons_fail_fn_t fail_fn); void nvme_unregister_consumer(struct nvme_consumer *consumer); /* Controller helper functions */ device_t nvme_ctrlr_get_device(struct nvme_controller *ctrlr); const struct nvme_controller_data * nvme_ctrlr_get_data(struct nvme_controller *ctrlr); static inline bool nvme_ctrlr_has_dataset_mgmt(const struct nvme_controller_data *cd) { /* Assumes cd was byte swapped by nvme_controller_data_swapbytes() */ return ((cd->oncs >> NVME_CTRLR_DATA_ONCS_DSM_SHIFT) & NVME_CTRLR_DATA_ONCS_DSM_MASK); } /* Namespace helper functions */ uint32_t nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns); uint32_t nvme_ns_get_sector_size(struct nvme_namespace *ns); uint64_t nvme_ns_get_num_sectors(struct nvme_namespace *ns); uint64_t nvme_ns_get_size(struct nvme_namespace *ns); uint32_t nvme_ns_get_flags(struct nvme_namespace *ns); const char * nvme_ns_get_serial_number(struct nvme_namespace *ns); const char * nvme_ns_get_model_number(struct nvme_namespace *ns); const struct nvme_namespace_data * nvme_ns_get_data(struct nvme_namespace *ns); uint32_t nvme_ns_get_stripesize(struct nvme_namespace *ns); int nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn); int nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg, int flag, struct thread *td); /* * Command building helper functions -- shared with CAM * These functions assume allocator zeros out cmd structure * CAM's xpt_get_ccb and the request allocator for nvme both * do zero'd allocations. */ static inline void nvme_ns_flush_cmd(struct nvme_command *cmd, uint32_t nsid) { cmd->opc = NVME_OPC_FLUSH; cmd->nsid = htole32(nsid); } static inline void nvme_ns_rw_cmd(struct nvme_command *cmd, uint32_t rwcmd, uint32_t nsid, uint64_t lba, uint32_t count) { cmd->opc = rwcmd; cmd->nsid = htole32(nsid); cmd->cdw10 = htole32(lba & 0xffffffffu); cmd->cdw11 = htole32(lba >> 32); cmd->cdw12 = htole32(count-1); } static inline void nvme_ns_write_cmd(struct nvme_command *cmd, uint32_t nsid, uint64_t lba, uint32_t count) { nvme_ns_rw_cmd(cmd, NVME_OPC_WRITE, nsid, lba, count); } static inline void nvme_ns_read_cmd(struct nvme_command *cmd, uint32_t nsid, uint64_t lba, uint32_t count) { nvme_ns_rw_cmd(cmd, NVME_OPC_READ, nsid, lba, count); } static inline void nvme_ns_trim_cmd(struct nvme_command *cmd, uint32_t nsid, uint32_t num_ranges) { cmd->opc = NVME_OPC_DATASET_MANAGEMENT; cmd->nsid = htole32(nsid); cmd->cdw10 = htole32(num_ranges - 1); cmd->cdw11 = htole32(NVME_DSM_ATTR_DEALLOCATE); } extern int nvme_use_nvd; #endif /* _KERNEL */ /* Endianess conversion functions for NVMe structs */ static inline void nvme_completion_swapbytes(struct nvme_completion *s) { s->cdw0 = le32toh(s->cdw0); /* omit rsvd1 */ s->sqhd = le16toh(s->sqhd); s->sqid = le16toh(s->sqid); /* omit cid */ s->status = le16toh(s->status); } static inline void nvme_power_state_swapbytes(struct nvme_power_state *s) { s->mp = le16toh(s->mp); s->enlat = le32toh(s->enlat); s->exlat = le32toh(s->exlat); s->idlp = le16toh(s->idlp); s->actp = le16toh(s->actp); } static inline void nvme_controller_data_swapbytes(struct nvme_controller_data *s) { int i; s->vid = le16toh(s->vid); s->ssvid = le16toh(s->ssvid); s->ctrlr_id = le16toh(s->ctrlr_id); s->ver = le32toh(s->ver); s->rtd3r = le32toh(s->rtd3r); s->rtd3e = le32toh(s->rtd3e); s->oaes = le32toh(s->oaes); s->ctratt = le32toh(s->ctratt); s->rrls = le16toh(s->rrls); s->crdt1 = le16toh(s->crdt1); s->crdt2 = le16toh(s->crdt2); s->crdt3 = le16toh(s->crdt3); s->oacs = le16toh(s->oacs); s->wctemp = le16toh(s->wctemp); s->cctemp = le16toh(s->cctemp); s->mtfa = le16toh(s->mtfa); s->hmpre = le32toh(s->hmpre); s->hmmin = le32toh(s->hmmin); s->rpmbs = le32toh(s->rpmbs); s->edstt = le16toh(s->edstt); s->kas = le16toh(s->kas); s->hctma = le16toh(s->hctma); s->mntmt = le16toh(s->mntmt); s->mxtmt = le16toh(s->mxtmt); s->sanicap = le32toh(s->sanicap); s->hmminds = le32toh(s->hmminds); s->hmmaxd = le16toh(s->hmmaxd); s->nsetidmax = le16toh(s->nsetidmax); s->endgidmax = le16toh(s->endgidmax); s->anagrpmax = le32toh(s->anagrpmax); s->nanagrpid = le32toh(s->nanagrpid); s->pels = le32toh(s->pels); s->maxcmd = le16toh(s->maxcmd); s->nn = le32toh(s->nn); s->oncs = le16toh(s->oncs); s->fuses = le16toh(s->fuses); s->awun = le16toh(s->awun); s->awupf = le16toh(s->awupf); s->acwu = le16toh(s->acwu); s->sgls = le32toh(s->sgls); s->mnan = le32toh(s->mnan); for (i = 0; i < 32; i++) nvme_power_state_swapbytes(&s->power_state[i]); } static inline void nvme_namespace_data_swapbytes(struct nvme_namespace_data *s) { int i; s->nsze = le64toh(s->nsze); s->ncap = le64toh(s->ncap); s->nuse = le64toh(s->nuse); s->nawun = le16toh(s->nawun); s->nawupf = le16toh(s->nawupf); s->nacwu = le16toh(s->nacwu); s->nabsn = le16toh(s->nabsn); s->nabo = le16toh(s->nabo); s->nabspf = le16toh(s->nabspf); s->noiob = le16toh(s->noiob); s->npwg = le16toh(s->npwg); s->npwa = le16toh(s->npwa); s->npdg = le16toh(s->npdg); s->npda = le16toh(s->npda); s->nows = le16toh(s->nows); s->anagrpid = le32toh(s->anagrpid); s->nvmsetid = le16toh(s->nvmsetid); s->endgid = le16toh(s->endgid); for (i = 0; i < 16; i++) s->lbaf[i] = le32toh(s->lbaf[i]); } static inline void nvme_error_information_entry_swapbytes(struct nvme_error_information_entry *s) { s->error_count = le64toh(s->error_count); s->sqid = le16toh(s->sqid); s->cid = le16toh(s->cid); s->status = le16toh(s->status); s->error_location = le16toh(s->error_location); s->lba = le64toh(s->lba); s->nsid = le32toh(s->nsid); s->csi = le64toh(s->csi); s->ttsi = le16toh(s->ttsi); } static inline void nvme_le128toh(void *p) { #if _BYTE_ORDER != _LITTLE_ENDIAN /* Swap 16 bytes in place */ char *tmp = (char*)p; char b; int i; for (i = 0; i < 8; i++) { b = tmp[i]; tmp[i] = tmp[15-i]; tmp[15-i] = b; } #else (void)p; #endif } static inline void nvme_health_information_page_swapbytes(struct nvme_health_information_page *s) { int i; s->temperature = le16toh(s->temperature); nvme_le128toh((void *)s->data_units_read); nvme_le128toh((void *)s->data_units_written); nvme_le128toh((void *)s->host_read_commands); nvme_le128toh((void *)s->host_write_commands); nvme_le128toh((void *)s->controller_busy_time); nvme_le128toh((void *)s->power_cycles); nvme_le128toh((void *)s->power_on_hours); nvme_le128toh((void *)s->unsafe_shutdowns); nvme_le128toh((void *)s->media_errors); nvme_le128toh((void *)s->num_error_info_log_entries); s->warning_temp_time = le32toh(s->warning_temp_time); s->error_temp_time = le32toh(s->error_temp_time); for (i = 0; i < 8; i++) s->temp_sensor[i] = le16toh(s->temp_sensor[i]); s->tmt1tc = le32toh(s->tmt1tc); s->tmt2tc = le32toh(s->tmt2tc); s->ttftmt1 = le32toh(s->ttftmt1); s->ttftmt2 = le32toh(s->ttftmt2); } static inline void nvme_firmware_page_swapbytes(struct nvme_firmware_page *s) { int i; for (i = 0; i < 7; i++) s->revision[i] = le64toh(s->revision[i]); } static inline void nvme_ns_list_swapbytes(struct nvme_ns_list *s) { int i; for (i = 0; i < 1024; i++) s->ns[i] = le32toh(s->ns[i]); } static inline void nvme_command_effects_page_swapbytes(struct nvme_command_effects_page *s) { int i; for (i = 0; i < 256; i++) s->acs[i] = le32toh(s->acs[i]); for (i = 0; i < 256; i++) s->iocs[i] = le32toh(s->iocs[i]); } static inline void nvme_res_notification_page_swapbytes(struct nvme_res_notification_page *s) { s->log_page_count = le64toh(s->log_page_count); s->nsid = le32toh(s->nsid); } static inline void nvme_sanitize_status_page_swapbytes(struct nvme_sanitize_status_page *s) { s->sprog = le16toh(s->sprog); s->sstat = le16toh(s->sstat); s->scdw10 = le32toh(s->scdw10); s->etfo = le32toh(s->etfo); s->etfbe = le32toh(s->etfbe); s->etfce = le32toh(s->etfce); s->etfownd = le32toh(s->etfownd); s->etfbewnd = le32toh(s->etfbewnd); s->etfcewnd = le32toh(s->etfcewnd); } static inline void intel_log_temp_stats_swapbytes(struct intel_log_temp_stats *s) { s->current = le64toh(s->current); s->overtemp_flag_last = le64toh(s->overtemp_flag_last); s->overtemp_flag_life = le64toh(s->overtemp_flag_life); s->max_temp = le64toh(s->max_temp); s->min_temp = le64toh(s->min_temp); /* omit _rsvd[] */ s->max_oper_temp = le64toh(s->max_oper_temp); s->min_oper_temp = le64toh(s->min_oper_temp); s->est_offset = le64toh(s->est_offset); } static inline void nvme_resv_status_swapbytes(struct nvme_resv_status *s, size_t size) { u_int i, n; s->gen = le32toh(s->gen); n = (s->regctl[1] << 8) | s->regctl[0]; n = MIN(n, (size - sizeof(s)) / sizeof(s->ctrlr[0])); for (i = 0; i < n; i++) { s->ctrlr[i].ctrlr_id = le16toh(s->ctrlr[i].ctrlr_id); s->ctrlr[i].hostid = le64toh(s->ctrlr[i].hostid); s->ctrlr[i].rkey = le64toh(s->ctrlr[i].rkey); } } static inline void nvme_resv_status_ext_swapbytes(struct nvme_resv_status_ext *s, size_t size) { u_int i, n; s->gen = le32toh(s->gen); n = (s->regctl[1] << 8) | s->regctl[0]; n = MIN(n, (size - sizeof(s)) / sizeof(s->ctrlr[0])); for (i = 0; i < n; i++) { s->ctrlr[i].ctrlr_id = le16toh(s->ctrlr[i].ctrlr_id); s->ctrlr[i].rkey = le64toh(s->ctrlr[i].rkey); nvme_le128toh((void *)s->ctrlr[i].hostid); } } #endif /* __NVME_H__ */ Index: stable/12/sys/dev/nvme/nvme_ctrlr.c =================================================================== --- stable/12/sys/dev/nvme/nvme_ctrlr.c (revision 366254) +++ stable/12/sys/dev/nvme/nvme_ctrlr.c (revision 366255) @@ -1,1613 +1,1616 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2012-2016 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_cam.h" #include #include #include #include #include #include #include #include #include #include #include #include "nvme_private.h" #define B4_CHK_RDY_DELAY_MS 2300 /* work around controller bug */ static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer); static int nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; uint32_t num_entries; int error; qpair = &ctrlr->adminq; qpair->id = 0; qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; qpair->domain = ctrlr->domain; num_entries = NVME_ADMIN_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); /* * If admin_entries was overridden to an invalid value, revert it * back to our default value. */ if (num_entries < NVME_MIN_ADMIN_ENTRIES || num_entries > NVME_MAX_ADMIN_ENTRIES) { nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " "specified\n", num_entries); num_entries = NVME_ADMIN_ENTRIES; } /* * The admin queue's max xfer size is treated differently than the * max I/O xfer size. 16KB is sufficient here - maybe even less? */ error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS, ctrlr); return (error); } #define QP(ctrlr, c) ((c) * (ctrlr)->num_io_queues / mp_ncpus) static int nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; uint32_t cap_lo; uint16_t mqes; int c, error, i, n; int num_entries, num_trackers, max_entries; /* * NVMe spec sets a hard limit of 64K max entries, but devices may * specify a smaller limit, so we need to check the MQES field in the * capabilities register. We have to cap the number of entries to the * current stride allows for in BAR 0/1, otherwise the remainder entries * are inaccessable. MQES should reflect this, and this is just a * fail-safe. */ max_entries = (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) / (1 << (ctrlr->dstrd + 1)); num_entries = NVME_IO_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); mqes = NVME_CAP_LO_MQES(cap_lo); num_entries = min(num_entries, mqes + 1); num_entries = min(num_entries, max_entries); num_trackers = NVME_IO_TRACKERS; TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); /* * No need to have more trackers than entries in the submit queue. Note * also that for a queue size of N, we can only have (N-1) commands * outstanding, hence the "-1" here. */ num_trackers = min(num_trackers, (num_entries-1)); /* * Our best estimate for the maximum number of I/Os that we should * normally have in flight at one time. This should be viewed as a hint, * not a hard limit and will need to be revisited when the upper layers * of the storage system grows multi-queue support. */ ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4; ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), M_NVME, M_ZERO | M_WAITOK); for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) { qpair = &ctrlr->ioq[i]; /* * Admin queue has ID=0. IO queues start at ID=1 - * hence the 'i+1' here. */ qpair->id = i + 1; if (ctrlr->num_io_queues > 1) { /* Find number of CPUs served by this queue. */ for (n = 1; QP(ctrlr, c + n) == i; n++) ; /* Shuffle multiple NVMe devices between CPUs. */ qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n; qpair->domain = pcpu_find(qpair->cpu)->pc_domain; } else { qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1; qpair->domain = ctrlr->domain; } /* * For I/O queues, use the controller-wide max_xfer_size * calculated in nvme_attach(). */ error = nvme_qpair_construct(qpair, num_entries, num_trackers, ctrlr); if (error) return (error); /* * Do not bother binding interrupts if we only have one I/O * interrupt thread for this controller. */ if (ctrlr->num_io_queues > 1) bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu); } return (0); } static void nvme_ctrlr_fail(struct nvme_controller *ctrlr) { int i; ctrlr->is_failed = true; nvme_admin_qpair_disable(&ctrlr->adminq); nvme_qpair_fail(&ctrlr->adminq); if (ctrlr->ioq != NULL) { for (i = 0; i < ctrlr->num_io_queues; i++) { nvme_io_qpair_disable(&ctrlr->ioq[i]); nvme_qpair_fail(&ctrlr->ioq[i]); } } nvme_notify_fail_consumers(ctrlr); } void nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, struct nvme_request *req) { mtx_lock(&ctrlr->lock); STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); mtx_unlock(&ctrlr->lock); taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); } static void nvme_ctrlr_fail_req_task(void *arg, int pending) { struct nvme_controller *ctrlr = arg; struct nvme_request *req; mtx_lock(&ctrlr->lock); while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) { STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); mtx_unlock(&ctrlr->lock); nvme_qpair_manual_complete_request(req->qpair, req, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); mtx_lock(&ctrlr->lock); } mtx_unlock(&ctrlr->lock); } static int nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) { int ms_waited; uint32_t csts; ms_waited = 0; while (1) { csts = nvme_mmio_read_4(ctrlr, csts); if (csts == 0xffffffff) /* Hot unplug. */ return (ENXIO); if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) == desired_val) break; if (ms_waited++ > ctrlr->ready_timeout_in_ms) { nvme_printf(ctrlr, "controller ready did not become %d " "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); return (ENXIO); } DELAY(1000); } return (0); } static int nvme_ctrlr_disable(struct nvme_controller *ctrlr) { uint32_t cc; uint32_t csts; uint8_t en, rdy; int err; cc = nvme_mmio_read_4(ctrlr, cc); csts = nvme_mmio_read_4(ctrlr, csts); en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; /* * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1 * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY * isn't the desired value. Short circuit if we're already disabled. */ if (en == 1) { if (rdy == 0) { /* EN == 1, wait for RDY == 1 or fail */ err = nvme_ctrlr_wait_for_ready(ctrlr, 1); if (err != 0) return (err); } } else { /* EN == 0 already wait for RDY == 0 */ if (rdy == 0) return (0); else return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); } cc &= ~NVME_CC_REG_EN_MASK; nvme_mmio_write_4(ctrlr, cc, cc); /* * Some drives have issues with accessing the mmio after we * disable, so delay for a bit after we write the bit to * cope with these issues. */ if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY) pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000); return (nvme_ctrlr_wait_for_ready(ctrlr, 0)); } static int nvme_ctrlr_enable(struct nvme_controller *ctrlr) { uint32_t cc; uint32_t csts; uint32_t aqa; uint32_t qsize; uint8_t en, rdy; int err; cc = nvme_mmio_read_4(ctrlr, cc); csts = nvme_mmio_read_4(ctrlr, csts); en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK; rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK; /* * See note in nvme_ctrlr_disable. Short circuit if we're already enabled. */ if (en == 1) { if (rdy == 1) return (0); else return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); } else { /* EN == 0 already wait for RDY == 0 or fail */ err = nvme_ctrlr_wait_for_ready(ctrlr, 0); if (err != 0) return (err); } nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); DELAY(5000); nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); DELAY(5000); /* acqs and asqs are 0-based. */ qsize = ctrlr->adminq.num_entries - 1; aqa = 0; aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT; aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT; nvme_mmio_write_4(ctrlr, aqa, aqa); DELAY(5000); /* Initialization values for CC */ cc = 0; cc |= 1 << NVME_CC_REG_EN_SHIFT; cc |= 0 << NVME_CC_REG_CSS_SHIFT; cc |= 0 << NVME_CC_REG_AMS_SHIFT; cc |= 0 << NVME_CC_REG_SHN_SHIFT; cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */ cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */ /* This evaluates to 0, which is according to spec. */ cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT; nvme_mmio_write_4(ctrlr, cc, cc); return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); } static void nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr) { int i; nvme_admin_qpair_disable(&ctrlr->adminq); /* * I/O queues are not allocated before the initial HW * reset, so do not try to disable them. Use is_initialized * to determine if this is the initial HW reset. */ if (ctrlr->is_initialized) { for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_disable(&ctrlr->ioq[i]); } } int nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) { int err; nvme_ctrlr_disable_qpairs(ctrlr); DELAY(100*1000); err = nvme_ctrlr_disable(ctrlr); if (err != 0) return err; return (nvme_ctrlr_enable(ctrlr)); } void nvme_ctrlr_reset(struct nvme_controller *ctrlr) { int cmpset; cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); if (cmpset == 0 || ctrlr->is_failed) /* * Controller is already resetting or has failed. Return * immediately since there is no need to kick off another * reset in these cases. */ return; taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); } static int nvme_ctrlr_identify(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; status.done = 0; nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); return (ENXIO); } /* Convert data to host endian */ nvme_controller_data_swapbytes(&ctrlr->cdata); /* * Use MDTS to ensure our default max_xfer_size doesn't exceed what the * controller supports. */ if (ctrlr->cdata.mdts > 0) ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); return (0); } static int nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; int cq_allocated, sq_allocated; status.done = 0; nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n"); return (ENXIO); } /* * Data in cdw0 is 0-based. * Lower 16-bits indicate number of submission queues allocated. * Upper 16-bits indicate number of completion queues allocated. */ sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; cq_allocated = (status.cpl.cdw0 >> 16) + 1; /* * Controller may allocate more queues than we requested, * so use the minimum of the number requested and what was * actually allocated. */ ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); if (ctrlr->num_io_queues > vm_ndomains) ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains; return (0); } static int nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_qpair *qpair; int i; for (i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; status.done = 0; nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); return (ENXIO); } status.done = 0; nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); return (ENXIO); } } return (0); } static int nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_qpair *qpair; for (int i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; status.done = 0; nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n"); return (ENXIO); } status.done = 0; nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n"); return (ENXIO); } } return (0); } static int nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) { struct nvme_namespace *ns; uint32_t i; for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) { ns = &ctrlr->ns[i]; nvme_ns_construct(ns, i+1, ctrlr); } return (0); } static bool is_log_page_id_valid(uint8_t page_id) { switch (page_id) { case NVME_LOG_ERROR: case NVME_LOG_HEALTH_INFORMATION: case NVME_LOG_FIRMWARE_SLOT: case NVME_LOG_CHANGED_NAMESPACE: case NVME_LOG_COMMAND_EFFECT: case NVME_LOG_RES_NOTIFICATION: case NVME_LOG_SANITIZE_STATUS: return (true); } return (false); } static uint32_t nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) { uint32_t log_page_size; switch (page_id) { case NVME_LOG_ERROR: log_page_size = min( sizeof(struct nvme_error_information_entry) * (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE); break; case NVME_LOG_HEALTH_INFORMATION: log_page_size = sizeof(struct nvme_health_information_page); break; case NVME_LOG_FIRMWARE_SLOT: log_page_size = sizeof(struct nvme_firmware_page); break; case NVME_LOG_CHANGED_NAMESPACE: log_page_size = sizeof(struct nvme_ns_list); break; case NVME_LOG_COMMAND_EFFECT: log_page_size = sizeof(struct nvme_command_effects_page); break; case NVME_LOG_RES_NOTIFICATION: log_page_size = sizeof(struct nvme_res_notification_page); break; case NVME_LOG_SANITIZE_STATUS: log_page_size = sizeof(struct nvme_sanitize_status_page); break; default: log_page_size = 0; break; } return (log_page_size); } static void nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, uint8_t state) { if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE) nvme_printf(ctrlr, "available spare space below threshold\n"); if (state & NVME_CRIT_WARN_ST_TEMPERATURE) nvme_printf(ctrlr, "temperature above threshold\n"); if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY) nvme_printf(ctrlr, "device reliability degraded\n"); if (state & NVME_CRIT_WARN_ST_READ_ONLY) nvme_printf(ctrlr, "media placed in read only mode\n"); if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP) nvme_printf(ctrlr, "volatile memory backup device failed\n"); if (state & NVME_CRIT_WARN_ST_RESERVED_MASK) nvme_printf(ctrlr, "unknown critical warning(s): state = 0x%02x\n", state); } static void nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_async_event_request *aer = arg; struct nvme_health_information_page *health_info; struct nvme_ns_list *nsl; struct nvme_error_information_entry *err; int i; /* * If the log page fetch for some reason completed with an error, * don't pass log page data to the consumers. In practice, this case * should never happen. */ if (nvme_completion_is_error(cpl)) nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, aer->log_page_id, NULL, 0); else { /* Convert data to host endian */ switch (aer->log_page_id) { case NVME_LOG_ERROR: err = (struct nvme_error_information_entry *)aer->log_page_buffer; for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++) nvme_error_information_entry_swapbytes(err++); break; case NVME_LOG_HEALTH_INFORMATION: nvme_health_information_page_swapbytes( (struct nvme_health_information_page *)aer->log_page_buffer); break; case NVME_LOG_FIRMWARE_SLOT: nvme_firmware_page_swapbytes( (struct nvme_firmware_page *)aer->log_page_buffer); break; case NVME_LOG_CHANGED_NAMESPACE: nvme_ns_list_swapbytes( (struct nvme_ns_list *)aer->log_page_buffer); break; case NVME_LOG_COMMAND_EFFECT: nvme_command_effects_page_swapbytes( (struct nvme_command_effects_page *)aer->log_page_buffer); break; case NVME_LOG_RES_NOTIFICATION: nvme_res_notification_page_swapbytes( (struct nvme_res_notification_page *)aer->log_page_buffer); break; case NVME_LOG_SANITIZE_STATUS: nvme_sanitize_status_page_swapbytes( (struct nvme_sanitize_status_page *)aer->log_page_buffer); break; case INTEL_LOG_TEMP_STATS: intel_log_temp_stats_swapbytes( (struct intel_log_temp_stats *)aer->log_page_buffer); break; default: break; } if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { health_info = (struct nvme_health_information_page *) aer->log_page_buffer; nvme_ctrlr_log_critical_warnings(aer->ctrlr, health_info->critical_warning); /* * Critical warnings reported through the * SMART/health log page are persistent, so * clear the associated bits in the async event * config so that we do not receive repeated * notifications for the same event. */ aer->ctrlr->async_event_config &= ~health_info->critical_warning; nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, aer->ctrlr->async_event_config, NULL, NULL); } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE && !nvme_use_nvd) { nsl = (struct nvme_ns_list *)aer->log_page_buffer; for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) { if (nsl->ns[i] > NVME_MAX_NAMESPACES) break; nvme_notify_ns(aer->ctrlr, nsl->ns[i]); } } /* * Pass the cpl data from the original async event completion, * not the log page fetch. */ nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, aer->log_page_id, aer->log_page_buffer, aer->log_page_size); } /* * Repost another asynchronous event request to replace the one * that just completed. */ nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); } static void nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_async_event_request *aer = arg; if (nvme_completion_is_error(cpl)) { /* * Do not retry failed async event requests. This avoids * infinite loops where a new async event request is submitted * to replace the one just failed, only to fail again and * perpetuate the loop. */ return; } /* Associated log page is in bits 23:16 of completion entry dw0. */ aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x," " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8, aer->log_page_id); if (is_log_page_id_valid(aer->log_page_id)) { aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, aer->log_page_id); memcpy(&aer->cpl, cpl, sizeof(*cpl)); nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, aer); /* Wait to notify consumers until after log page is fetched. */ } else { nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, NULL, 0); /* * Repost another asynchronous event request to replace the one * that just completed. */ nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); } } static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer) { struct nvme_request *req; aer->ctrlr = ctrlr; req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); aer->req = req; /* * Disable timeout here, since asynchronous event requests should by * nature never be timed out. */ req->timeout = false; req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; nvme_ctrlr_submit_admin_request(ctrlr, req); } static void nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_async_event_request *aer; uint32_t i; ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE | NVME_CRIT_WARN_ST_DEVICE_RELIABILITY | NVME_CRIT_WARN_ST_READ_ONLY | NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP; if (ctrlr->cdata.ver >= NVME_REV(1, 2)) ctrlr->async_event_config |= 0x300; status.done = 0; nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 0, NULL, 0, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl) || (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || (status.cpl.cdw0 & 0xFFFF) == 0x0000) { nvme_printf(ctrlr, "temperature threshold not supported\n"); } else ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE; nvme_ctrlr_cmd_set_async_event_config(ctrlr, ctrlr->async_event_config, NULL, NULL); /* aerl is a zero-based value, so we need to add 1 here. */ ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); for (i = 0; i < ctrlr->num_aers; i++) { aer = &ctrlr->aer[i]; nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); } } static void nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) { ctrlr->int_coal_time = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_time", &ctrlr->int_coal_time); ctrlr->int_coal_threshold = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", &ctrlr->int_coal_threshold); nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, ctrlr->int_coal_threshold, NULL, NULL); } static void nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr) { struct nvme_hmb_chunk *hmbc; int i; if (ctrlr->hmb_desc_paddr) { bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map); bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, ctrlr->hmb_desc_map); ctrlr->hmb_desc_paddr = 0; } if (ctrlr->hmb_desc_tag) { bus_dma_tag_destroy(ctrlr->hmb_desc_tag); ctrlr->hmb_desc_tag = NULL; } for (i = 0; i < ctrlr->hmb_nchunks; i++) { hmbc = &ctrlr->hmb_chunks[i]; bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map); bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, hmbc->hmbc_map); } ctrlr->hmb_nchunks = 0; if (ctrlr->hmb_tag) { bus_dma_tag_destroy(ctrlr->hmb_tag); ctrlr->hmb_tag = NULL; } if (ctrlr->hmb_chunks) { free(ctrlr->hmb_chunks, M_NVME); ctrlr->hmb_chunks = NULL; } } static void nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr) { struct nvme_hmb_chunk *hmbc; size_t pref, min, minc, size; int err, i; uint64_t max; /* Limit HMB to 5% of RAM size per device by default. */ max = (uint64_t)physmem * PAGE_SIZE / 20; TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max); min = (long long unsigned)ctrlr->cdata.hmmin * 4096; if (max == 0 || max < min) return; pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max); minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE); if (min > 0 && ctrlr->cdata.hmmaxd > 0) minc = MAX(minc, min / ctrlr->cdata.hmmaxd); ctrlr->hmb_chunk = pref; again: ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE); ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk); if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd) ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd; ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) * ctrlr->hmb_nchunks, M_NVME, M_WAITOK); err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag); if (err != 0) { nvme_printf(ctrlr, "HMB tag create failed %d\n", err); nvme_ctrlr_hmb_free(ctrlr); return; } for (i = 0; i < ctrlr->hmb_nchunks; i++) { hmbc = &ctrlr->hmb_chunks[i]; if (bus_dmamem_alloc(ctrlr->hmb_tag, (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT, &hmbc->hmbc_map)) { nvme_printf(ctrlr, "failed to alloc HMB\n"); break; } if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map, hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map, &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) { bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr, hmbc->hmbc_map); nvme_printf(ctrlr, "failed to load HMB\n"); break; } bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min && ctrlr->hmb_chunk / 2 >= minc) { ctrlr->hmb_nchunks = i; nvme_ctrlr_hmb_free(ctrlr); ctrlr->hmb_chunk /= 2; goto again; } ctrlr->hmb_nchunks = i; if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) { nvme_ctrlr_hmb_free(ctrlr); return; } size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks; err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag); if (err != 0) { nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err); nvme_ctrlr_hmb_free(ctrlr); return; } if (bus_dmamem_alloc(ctrlr->hmb_desc_tag, (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK, &ctrlr->hmb_desc_map)) { nvme_printf(ctrlr, "failed to alloc HMB desc\n"); nvme_ctrlr_hmb_free(ctrlr); return; } if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, ctrlr->hmb_desc_vaddr, size, nvme_single_map, &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) { bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr, ctrlr->hmb_desc_map); nvme_printf(ctrlr, "failed to load HMB desc\n"); nvme_ctrlr_hmb_free(ctrlr); return; } for (i = 0; i < ctrlr->hmb_nchunks; i++) { ctrlr->hmb_desc_vaddr[i].addr = htole64(ctrlr->hmb_chunks[i].hmbc_paddr); ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096); } bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map, BUS_DMASYNC_PREWRITE); nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n", (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 1024 / 1024); } static void nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret) { struct nvme_completion_poll_status status; uint32_t cdw11; cdw11 = 0; if (enable) cdw11 |= 1; if (memret) cdw11 |= 2; status.done = 0; nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11, ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0, nvme_completion_poll_cb, &status); nvme_completion_poll(&status); if (nvme_completion_is_error(&status.cpl)) nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n"); } static void nvme_ctrlr_start(void *ctrlr_arg, bool resetting) { struct nvme_controller *ctrlr = ctrlr_arg; uint32_t old_num_io_queues; int i; /* * Only reset adminq here when we are restarting the * controller after a reset. During initialization, * we have already submitted admin commands to get * the number of I/O queues supported, so cannot reset * the adminq again here. */ if (resetting) nvme_qpair_reset(&ctrlr->adminq); if (ctrlr->ioq != NULL) { for (i = 0; i < ctrlr->num_io_queues; i++) nvme_qpair_reset(&ctrlr->ioq[i]); } nvme_admin_qpair_enable(&ctrlr->adminq); /* * If it was a reset on initialization command timeout, just * return here, letting initialization code fail gracefully. */ if (resetting && !ctrlr->is_initialized) return; if (nvme_ctrlr_identify(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } /* * The number of qpairs are determined during controller initialization, * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the * HW limit. We call SET_FEATURES again here so that it gets called * after any reset for controllers that depend on the driver to * explicit specify how many queues it will use. This value should * never change between resets, so panic if somehow that does happen. */ if (resetting) { old_num_io_queues = ctrlr->num_io_queues; if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } if (old_num_io_queues != ctrlr->num_io_queues) { panic("num_io_queues changed from %u to %u", old_num_io_queues, ctrlr->num_io_queues); } } if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) { nvme_ctrlr_hmb_alloc(ctrlr); if (ctrlr->hmb_nchunks > 0) nvme_ctrlr_hmb_enable(ctrlr, true, false); } else if (ctrlr->hmb_nchunks > 0) nvme_ctrlr_hmb_enable(ctrlr, true, true); if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } nvme_ctrlr_configure_aer(ctrlr); nvme_ctrlr_configure_int_coalescing(ctrlr); for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_enable(&ctrlr->ioq[i]); } void nvme_ctrlr_start_config_hook(void *arg) { struct nvme_controller *ctrlr = arg; /* * Reset controller twice to ensure we do a transition from cc.en==1 to * cc.en==0. This is because we don't really know what status the * controller was left in when boot handed off to OS. Linux doesn't do * this, however. If we adopt that policy, see also nvme_ctrlr_resume(). */ if (nvme_ctrlr_hw_reset(ctrlr) != 0) { fail: nvme_ctrlr_fail(ctrlr); config_intrhook_disestablish(&ctrlr->config_hook); return; } if (nvme_ctrlr_hw_reset(ctrlr) != 0) goto fail; nvme_qpair_reset(&ctrlr->adminq); nvme_admin_qpair_enable(&ctrlr->adminq); if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) nvme_ctrlr_start(ctrlr, false); else goto fail; nvme_sysctl_initialize_ctrlr(ctrlr); config_intrhook_disestablish(&ctrlr->config_hook); ctrlr->is_initialized = 1; nvme_notify_new_controller(ctrlr); } static void nvme_ctrlr_reset_task(void *arg, int pending) { struct nvme_controller *ctrlr = arg; int status; nvme_printf(ctrlr, "resetting controller\n"); status = nvme_ctrlr_hw_reset(ctrlr); /* * Use pause instead of DELAY, so that we yield to any nvme interrupt * handlers on this CPU that were blocked on a qpair lock. We want * all nvme interrupts completed before proceeding with restarting the * controller. * * XXX - any way to guarantee the interrupt handlers have quiesced? */ pause("nvmereset", hz / 10); if (status == 0) nvme_ctrlr_start(ctrlr, true); else nvme_ctrlr_fail(ctrlr); atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); } /* * Poll all the queues enabled on the device for completion. */ void nvme_ctrlr_poll(struct nvme_controller *ctrlr) { int i; nvme_qpair_process_completions(&ctrlr->adminq); for (i = 0; i < ctrlr->num_io_queues; i++) if (ctrlr->ioq && ctrlr->ioq[i].cpl) nvme_qpair_process_completions(&ctrlr->ioq[i]); } /* * Poll the single-vector interrupt case: num_io_queues will be 1 and * there's only a single vector. While we're polling, we mask further * interrupts in the controller. */ void nvme_ctrlr_intx_handler(void *arg) { struct nvme_controller *ctrlr = arg; nvme_mmio_write_4(ctrlr, intms, 1); nvme_ctrlr_poll(ctrlr); nvme_mmio_write_4(ctrlr, intmc, 1); } static void nvme_pt_done(void *arg, const struct nvme_completion *cpl) { struct nvme_pt_command *pt = arg; struct mtx *mtx = pt->driver_lock; uint16_t status; bzero(&pt->cpl, sizeof(pt->cpl)); pt->cpl.cdw0 = cpl->cdw0; status = cpl->status; status &= ~NVME_STATUS_P_MASK; pt->cpl.status = status; mtx_lock(mtx); pt->driver_lock = NULL; wakeup(pt); mtx_unlock(mtx); } int nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, int is_admin_cmd) { struct nvme_request *req; struct mtx *mtx; struct buf *buf = NULL; int ret = 0; vm_offset_t addr, end; if (pt->len > 0) { /* * vmapbuf calls vm_fault_quick_hold_pages which only maps full * pages. Ensure this request has fewer than MAXPHYS bytes when * extended to full pages. */ addr = (vm_offset_t)pt->buf; end = round_page(addr + pt->len); addr = trunc_page(addr); if (end - addr > MAXPHYS) return EIO; if (pt->len > ctrlr->max_xfer_size) { nvme_printf(ctrlr, "pt->len (%d) " "exceeds max_xfer_size (%d)\n", pt->len, ctrlr->max_xfer_size); return EIO; } if (is_user_buffer) { /* * Ensure the user buffer is wired for the duration of * this pass-through command. */ PHOLD(curproc); buf = getpbuf(NULL); buf->b_data = pt->buf; buf->b_bufsize = pt->len; buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; if (vmapbuf(buf, 1) < 0) { ret = EFAULT; goto err; } req = nvme_allocate_request_vaddr(buf->b_data, pt->len, nvme_pt_done, pt); } else req = nvme_allocate_request_vaddr(pt->buf, pt->len, nvme_pt_done, pt); } else req = nvme_allocate_request_null(nvme_pt_done, pt); /* Assume user space already converted to little-endian */ req->cmd.opc = pt->cmd.opc; req->cmd.fuse = pt->cmd.fuse; req->cmd.rsvd2 = pt->cmd.rsvd2; req->cmd.rsvd3 = pt->cmd.rsvd3; req->cmd.cdw10 = pt->cmd.cdw10; req->cmd.cdw11 = pt->cmd.cdw11; req->cmd.cdw12 = pt->cmd.cdw12; req->cmd.cdw13 = pt->cmd.cdw13; req->cmd.cdw14 = pt->cmd.cdw14; req->cmd.cdw15 = pt->cmd.cdw15; req->cmd.nsid = htole32(nsid); mtx = mtx_pool_find(mtxpool_sleep, pt); pt->driver_lock = mtx; if (is_admin_cmd) nvme_ctrlr_submit_admin_request(ctrlr, req); else nvme_ctrlr_submit_io_request(ctrlr, req); mtx_lock(mtx); while (pt->driver_lock != NULL) mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); mtx_unlock(mtx); err: if (buf != NULL) { relpbuf(buf, NULL); PRELE(curproc); } return (ret); } static int nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct nvme_controller *ctrlr; struct nvme_pt_command *pt; ctrlr = cdev->si_drv1; switch (cmd) { case NVME_RESET_CONTROLLER: nvme_ctrlr_reset(ctrlr); break; case NVME_PASSTHROUGH_CMD: pt = (struct nvme_pt_command *)arg; return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid), 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); case NVME_GET_NSID: { struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg; strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev), sizeof(gnsid->cdev)); gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0'; gnsid->nsid = 0; break; } + case NVME_GET_MAX_XFER_SIZE: + *(uint64_t *)arg = ctrlr->max_xfer_size; + break; default: return (ENOTTY); } return (0); } static struct cdevsw nvme_ctrlr_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_ioctl = nvme_ctrlr_ioctl }; int nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) { struct make_dev_args md_args; uint32_t cap_lo; uint32_t cap_hi; uint32_t to; uint8_t mpsmin; int status, timeout_period; ctrlr->dev = dev; mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); if (bus_get_domain(dev, &ctrlr->domain) != 0) ctrlr->domain = 0; cap_hi = nvme_mmio_read_4(ctrlr, cap_hi); ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2; mpsmin = NVME_CAP_HI_MPSMIN(cap_hi); ctrlr->min_page_size = 1 << (12 + mpsmin); /* Get ready timeout value from controller, in units of 500ms. */ cap_lo = nvme_mmio_read_4(ctrlr, cap_lo); to = NVME_CAP_LO_TO(cap_lo) + 1; ctrlr->ready_timeout_in_ms = to * 500; timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); ctrlr->timeout_period = timeout_period; nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); ctrlr->enable_aborts = 0; TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0) return (ENXIO); ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, taskqueue_thread_enqueue, &ctrlr->taskqueue); taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); ctrlr->is_resetting = 0; ctrlr->is_initialized = 0; ctrlr->notification_sent = 0; TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); STAILQ_INIT(&ctrlr->fail_req); ctrlr->is_failed = false; make_dev_args_init(&md_args); md_args.mda_devsw = &nvme_ctrlr_cdevsw; md_args.mda_uid = UID_ROOT; md_args.mda_gid = GID_WHEEL; md_args.mda_mode = 0600; md_args.mda_unit = device_get_unit(dev); md_args.mda_si_drv1 = (void *)ctrlr; status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d", device_get_unit(dev)); if (status != 0) return (ENXIO); return (0); } void nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) { int gone, i; if (ctrlr->resource == NULL) goto nores; /* * Check whether it is a hot unplug or a clean driver detach. * If device is not there any more, skip any shutdown commands. */ gone = (nvme_mmio_read_4(ctrlr, csts) == 0xffffffff); if (gone) nvme_ctrlr_fail(ctrlr); else nvme_notify_fail_consumers(ctrlr); for (i = 0; i < NVME_MAX_NAMESPACES; i++) nvme_ns_destruct(&ctrlr->ns[i]); if (ctrlr->cdev) destroy_dev(ctrlr->cdev); if (ctrlr->is_initialized) { if (!gone) { if (ctrlr->hmb_nchunks > 0) nvme_ctrlr_hmb_enable(ctrlr, false, false); nvme_ctrlr_delete_qpairs(ctrlr); } nvme_ctrlr_hmb_free(ctrlr); } if (ctrlr->ioq != NULL) { for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_destroy(&ctrlr->ioq[i]); free(ctrlr->ioq, M_NVME); } nvme_admin_qpair_destroy(&ctrlr->adminq); /* * Notify the controller of a shutdown, even though this is due to * a driver unload, not a system shutdown (this path is not invoked * during shutdown). This ensures the controller receives a * shutdown notification in case the system is shutdown before * reloading the driver. */ if (!gone) nvme_ctrlr_shutdown(ctrlr); if (!gone) nvme_ctrlr_disable(ctrlr); if (ctrlr->taskqueue) taskqueue_free(ctrlr->taskqueue); if (ctrlr->tag) bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); if (ctrlr->res) bus_release_resource(ctrlr->dev, SYS_RES_IRQ, rman_get_rid(ctrlr->res), ctrlr->res); if (ctrlr->bar4_resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->bar4_resource_id, ctrlr->bar4_resource); } bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->resource_id, ctrlr->resource); nores: mtx_destroy(&ctrlr->lock); } void nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) { uint32_t cc; uint32_t csts; int ticks = 0; cc = nvme_mmio_read_4(ctrlr, cc); cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT); cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT; nvme_mmio_write_4(ctrlr, cc, cc); while (1) { csts = nvme_mmio_read_4(ctrlr, csts); if (csts == 0xffffffff) /* Hot unplug. */ break; if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE) break; if (ticks++ > 5*hz) { nvme_printf(ctrlr, "did not complete shutdown within" " 5 seconds of notification\n"); break; } pause("nvme shn", 1); } } void nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, struct nvme_request *req) { nvme_qpair_submit_request(&ctrlr->adminq, req); } void nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, struct nvme_request *req) { struct nvme_qpair *qpair; qpair = &ctrlr->ioq[QP(ctrlr, curcpu)]; nvme_qpair_submit_request(qpair, req); } device_t nvme_ctrlr_get_device(struct nvme_controller *ctrlr) { return (ctrlr->dev); } const struct nvme_controller_data * nvme_ctrlr_get_data(struct nvme_controller *ctrlr) { return (&ctrlr->cdata); } int nvme_ctrlr_suspend(struct nvme_controller *ctrlr) { int to = hz; /* * Can't touch failed controllers, so it's already suspended. */ if (ctrlr->is_failed) return (0); /* * We don't want the reset taskqueue running, since it does similar * things, so prevent it from running after we start. Wait for any reset * that may have been started to complete. The reset process we follow * will ensure that any new I/O will queue and be given to the hardware * after we resume (though there should be none). */ while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0) pause("nvmesusp", 1); if (to <= 0) { nvme_printf(ctrlr, "Competing reset task didn't finish. Try again later.\n"); return (EWOULDBLOCK); } if (ctrlr->hmb_nchunks > 0) nvme_ctrlr_hmb_enable(ctrlr, false, false); /* * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to * delete the hardware I/O queues, and then shutdown. This properly * flushes any metadata the drive may have stored so it can survive * having its power removed and prevents the unsafe shutdown count from * incriminating. Once we delete the qpairs, we have to disable them * before shutting down. The delay is out of paranoia in * nvme_ctrlr_hw_reset, and is repeated here (though we should have no * pending I/O that the delay copes with). */ nvme_ctrlr_delete_qpairs(ctrlr); nvme_ctrlr_disable_qpairs(ctrlr); DELAY(100*1000); nvme_ctrlr_shutdown(ctrlr); return (0); } int nvme_ctrlr_resume(struct nvme_controller *ctrlr) { /* * Can't touch failed controllers, so nothing to do to resume. */ if (ctrlr->is_failed) return (0); /* * Have to reset the hardware twice, just like we do on attach. See * nmve_attach() for why. */ if (nvme_ctrlr_hw_reset(ctrlr) != 0) goto fail; if (nvme_ctrlr_hw_reset(ctrlr) != 0) goto fail; /* * Now that we've reset the hardware, we can restart the controller. Any * I/O that was pending is requeued. Any admin commands are aborted with * an error. Once we've restarted, take the controller out of reset. */ nvme_ctrlr_start(ctrlr, true); (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); return (0); fail: /* * Since we can't bring the controller out of reset, announce and fail * the controller. However, we have to return success for the resume * itself, due to questionable APIs. */ nvme_printf(ctrlr, "Failed to reset on resume, failing.\n"); nvme_ctrlr_fail(ctrlr); (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); return (0); } Index: stable/12 =================================================================== --- stable/12 (revision 366254) +++ stable/12 (revision 366255) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r365946