Index: head/sys/dev/ath/if_ath_tx.c =================================================================== --- head/sys/dev/ath/if_ath_tx.c (revision 366111) +++ head/sys/dev/ath/if_ath_tx.c (revision 366112) @@ -1,6418 +1,6416 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * Copyright (c) 2010-2012 Adrian Chadd, Xenion Pty Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); /* * Driver for the Atheros Wireless LAN controller. * * This software is derived from work of Atsushi Onoe; his contribution * is greatly appreciated. */ #include "opt_inet.h" #include "opt_ath.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #include #ifdef INET #include #include #endif #include #include /* XXX for softled */ #include #include #ifdef ATH_TX99_DIAG #include #endif #include #include #include #ifdef ATH_DEBUG_ALQ #include #endif /* * How many retries to perform in software */ #define SWMAX_RETRIES 10 /* * What queue to throw the non-QoS TID traffic into */ #define ATH_NONQOS_TID_AC WME_AC_VO #if 0 static int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an); #endif static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid); static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid); static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0); static int ath_tx_action_frame_override_queue(struct ath_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, int *tid); static struct ath_buf * ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, struct ath_buf *bf); #ifdef ATH_DEBUG_ALQ void ath_tx_alq_post(struct ath_softc *sc, struct ath_buf *bf_first) { struct ath_buf *bf; int i, n; const char *ds; /* XXX we should skip out early if debugging isn't enabled! */ bf = bf_first; while (bf != NULL) { /* XXX should ensure bf_nseg > 0! */ if (bf->bf_nseg == 0) break; n = ((bf->bf_nseg - 1) / sc->sc_tx_nmaps) + 1; for (i = 0, ds = (const char *) bf->bf_desc; i < n; i++, ds += sc->sc_tx_desclen) { if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC, sc->sc_tx_desclen, ds); } bf = bf->bf_next; } } #endif /* ATH_DEBUG_ALQ */ /* * Whether to use the 11n rate scenario functions or not */ static inline int ath_tx_is_11n(struct ath_softc *sc) { return ((sc->sc_ah->ah_magic == 0x20065416) || (sc->sc_ah->ah_magic == 0x19741014)); } /* * Obtain the current TID from the given frame. * * Non-QoS frames get mapped to a TID so frames consistently * go on a sensible queue. */ static int ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0) { const struct ieee80211_frame *wh; wh = mtod(m0, const struct ieee80211_frame *); /* Non-QoS: map frame to a TID queue for software queueing */ if (! IEEE80211_QOS_HAS_SEQ(wh)) return (WME_AC_TO_TID(M_WME_GETAC(m0))); /* QoS - fetch the TID from the header, ignore mbuf WME */ return (ieee80211_gettid(wh)); } static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_frame *wh; wh = mtod(bf->bf_m, struct ieee80211_frame *); /* Only update/resync if needed */ if (bf->bf_state.bfs_isretried == 0) { wh->i_fc[1] |= IEEE80211_FC1_RETRY; bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); } bf->bf_state.bfs_isretried = 1; bf->bf_state.bfs_retries ++; } /* * Determine what the correct AC queue for the given frame * should be. * * For QoS frames, obey the TID. That way things like * management frames that are related to a given TID * are thus serialised with the rest of the TID traffic, * regardless of net80211 overriding priority. * * For non-QoS frames, return the mbuf WMI priority. * * This has implications that higher priority non-QoS traffic * may end up being scheduled before other non-QoS traffic, * leading to out-of-sequence packets being emitted. * * (It'd be nice to log/count this so we can see if it * really is a problem.) * * TODO: maybe we should throw multicast traffic, QoS or * otherwise, into a separate TX queue? */ static int ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0) { const struct ieee80211_frame *wh; wh = mtod(m0, const struct ieee80211_frame *); /* * QoS data frame (sequence number or otherwise) - * return hardware queue mapping for the underlying * TID. */ if (IEEE80211_QOS_HAS_SEQ(wh)) return TID_TO_WME_AC(ieee80211_gettid(wh)); /* * Otherwise - return mbuf QoS pri. */ return (M_WME_GETAC(m0)); } void ath_txfrag_cleanup(struct ath_softc *sc, ath_bufhead *frags, struct ieee80211_node *ni) { struct ath_buf *bf, *next; ATH_TXBUF_LOCK_ASSERT(sc); TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) { /* NB: bf assumed clean */ TAILQ_REMOVE(frags, bf, bf_list); ath_returnbuf_head(sc, bf); ieee80211_node_decref(ni); } } /* * Setup xmit of a fragmented frame. Allocate a buffer * for each frag and bump the node reference count to * reflect the held reference to be setup by ath_tx_start. */ int ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, struct mbuf *m0, struct ieee80211_node *ni) { struct mbuf *m; struct ath_buf *bf; ATH_TXBUF_LOCK(sc); for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { /* XXX non-management? */ bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); if (bf == NULL) { /* out of buffers, cleanup */ DPRINTF(sc, ATH_DEBUG_XMIT, "%s: no buffer?\n", __func__); ath_txfrag_cleanup(sc, frags, ni); break; } ieee80211_node_incref(ni); TAILQ_INSERT_TAIL(frags, bf, bf_list); } ATH_TXBUF_UNLOCK(sc); return !TAILQ_EMPTY(frags); } static int ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0) { struct mbuf *m; int error; /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error == EFBIG) { /* XXX packet requires too many descriptors */ bf->bf_nseg = ATH_MAX_SCATTER + 1; } else if (error != 0) { sc->sc_stats.ast_tx_busdma++; ieee80211_free_mbuf(m0); return error; } /* * Discard null packets and check for packets that * require too many TX descriptors. We try to convert * the latter to a cluster. */ if (bf->bf_nseg > ATH_MAX_SCATTER) { /* too many desc's, linearize */ sc->sc_stats.ast_tx_linear++; m = m_collapse(m0, M_NOWAIT, ATH_MAX_SCATTER); if (m == NULL) { ieee80211_free_mbuf(m0); sc->sc_stats.ast_tx_nombuf++; return ENOMEM; } m0 = m; error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error != 0) { sc->sc_stats.ast_tx_busdma++; ieee80211_free_mbuf(m0); return error; } KASSERT(bf->bf_nseg <= ATH_MAX_SCATTER, ("too many segments after defrag; nseg %u", bf->bf_nseg)); } else if (bf->bf_nseg == 0) { /* null packet, discard */ sc->sc_stats.ast_tx_nodata++; ieee80211_free_mbuf(m0); return EIO; } DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, m0->m_pkthdr.len); bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); bf->bf_m = m0; return 0; } /* * Chain together segments+descriptors for a frame - 11n or otherwise. * * For aggregates, this is called on each frame in the aggregate. */ static void ath_tx_chaindesclist(struct ath_softc *sc, struct ath_desc *ds0, struct ath_buf *bf, bool is_aggr, int is_first_subframe, int is_last_subframe) { struct ath_hal *ah = sc->sc_ah; char *ds; int i, bp, dsp; HAL_DMA_ADDR bufAddrList[4]; uint32_t segLenList[4]; int numTxMaps = 1; int isFirstDesc = 1; /* * XXX There's txdma and txdma_mgmt; the descriptor * sizes must match. */ struct ath_descdma *dd = &sc->sc_txdma; /* * Fillin the remainder of the descriptor info. */ /* * We need the number of TX data pointers in each descriptor. * EDMA and later chips support 4 TX buffers per descriptor; * previous chips just support one. */ numTxMaps = sc->sc_tx_nmaps; /* * For EDMA and later chips ensure the TX map is fully populated * before advancing to the next descriptor. */ ds = (char *) bf->bf_desc; bp = dsp = 0; bzero(bufAddrList, sizeof(bufAddrList)); bzero(segLenList, sizeof(segLenList)); for (i = 0; i < bf->bf_nseg; i++) { bufAddrList[bp] = bf->bf_segs[i].ds_addr; segLenList[bp] = bf->bf_segs[i].ds_len; bp++; /* * Go to the next segment if this isn't the last segment * and there's space in the current TX map. */ if ((i != bf->bf_nseg - 1) && (bp < numTxMaps)) continue; /* * Last segment or we're out of buffer pointers. */ bp = 0; if (i == bf->bf_nseg - 1) ath_hal_settxdesclink(ah, (struct ath_desc *) ds, 0); else ath_hal_settxdesclink(ah, (struct ath_desc *) ds, bf->bf_daddr + dd->dd_descsize * (dsp + 1)); /* * XXX This assumes that bfs_txq is the actual destination * hardware queue at this point. It may not have been * assigned, it may actually be pointing to the multicast * software TXQ id. These must be fixed! */ ath_hal_filltxdesc(ah, (struct ath_desc *) ds , bufAddrList , segLenList , bf->bf_descid /* XXX desc id */ , bf->bf_state.bfs_tx_queue , isFirstDesc /* first segment */ , i == bf->bf_nseg - 1 /* last segment */ , (struct ath_desc *) ds0 /* first descriptor */ ); /* * Make sure the 11n aggregate fields are cleared. * * XXX TODO: this doesn't need to be called for * aggregate frames; as it'll be called on all * sub-frames. Since the descriptors are in * non-cacheable memory, this leads to some * rather slow writes on MIPS/ARM platforms. */ if (ath_tx_is_11n(sc)) ath_hal_clr11n_aggr(sc->sc_ah, (struct ath_desc *) ds); /* * If 11n is enabled, set it up as if it's an aggregate * frame. */ if (is_last_subframe) { ath_hal_set11n_aggr_last(sc->sc_ah, (struct ath_desc *) ds); } else if (is_aggr) { /* * This clears the aggrlen field; so * the caller needs to call set_aggr_first()! * * XXX TODO: don't call this for the first * descriptor in the first frame in an * aggregate! */ ath_hal_set11n_aggr_middle(sc->sc_ah, (struct ath_desc *) ds, bf->bf_state.bfs_ndelim); } isFirstDesc = 0; bf->bf_lastds = (struct ath_desc *) ds; /* * Don't forget to skip to the next descriptor. */ ds += sc->sc_tx_desclen; dsp++; /* * .. and don't forget to blank these out! */ bzero(bufAddrList, sizeof(bufAddrList)); bzero(segLenList, sizeof(segLenList)); } bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); } /* * Set the rate control fields in the given descriptor based on * the bf_state fields and node state. * * The bfs fields should already be set with the relevant rate * control information, including whether MRR is to be enabled. * * Since the FreeBSD HAL currently sets up the first TX rate * in ath_hal_setuptxdesc(), this will setup the MRR * conditionally for the pre-11n chips, and call ath_buf_set_rate * unconditionally for 11n chips. These require the 11n rate * scenario to be set if MCS rates are enabled, so it's easier * to just always call it. The caller can then only set rates 2, 3 * and 4 if multi-rate retry is needed. */ static void ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf) { struct ath_rc_series *rc = bf->bf_state.bfs_rc; /* If mrr is disabled, blank tries 1, 2, 3 */ if (! bf->bf_state.bfs_ismrr) rc[1].tries = rc[2].tries = rc[3].tries = 0; #if 0 /* * If NOACK is set, just set ntries=1. */ else if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { rc[1].tries = rc[2].tries = rc[3].tries = 0; rc[0].tries = 1; } #endif /* * Always call - that way a retried descriptor will * have the MRR fields overwritten. * * XXX TODO: see if this is really needed - setting up * the first descriptor should set the MRR fields to 0 * for us anyway. */ if (ath_tx_is_11n(sc)) { ath_buf_set_rate(sc, ni, bf); } else { ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc , rc[1].ratecode, rc[1].tries , rc[2].ratecode, rc[2].tries , rc[3].ratecode, rc[3].tries ); } } /* * Setup segments+descriptors for an 11n aggregate. * bf_first is the first buffer in the aggregate. * The descriptor list must already been linked together using * bf->bf_next. */ static void ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first) { struct ath_buf *bf, *bf_prev = NULL; struct ath_desc *ds0 = bf_first->bf_desc; DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n", __func__, bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_al); bf = bf_first; if (bf->bf_state.bfs_txrate0 == 0) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, txrate0=%d\n", __func__, bf, 0); if (bf->bf_state.bfs_rc[0].ratecode == 0) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, rix0=%d\n", __func__, bf, 0); /* * Setup all descriptors of all subframes - this will * call ath_hal_set11naggrmiddle() on every frame. */ while (bf != NULL) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n", __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen, SEQNO(bf->bf_state.bfs_seqno)); /* * Setup the initial fields for the first descriptor - all * the non-11n specific stuff. */ ath_hal_setuptxdesc(sc->sc_ah, bf->bf_desc , bf->bf_state.bfs_pktlen /* packet length */ , bf->bf_state.bfs_hdrlen /* header length */ , bf->bf_state.bfs_atype /* Atheros packet type */ , bf->bf_state.bfs_txpower /* txpower */ , bf->bf_state.bfs_txrate0 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ , bf->bf_state.bfs_keyix /* key cache index */ , bf->bf_state.bfs_txantenna /* antenna mode */ , bf->bf_state.bfs_txflags | HAL_TXDESC_INTREQ /* flags */ , bf->bf_state.bfs_ctsrate /* rts/cts rate */ , bf->bf_state.bfs_ctsduration /* rts/cts duration */ ); /* * First descriptor? Setup the rate control and initial * aggregate header information. */ if (bf == bf_first) { /* * setup first desc with rate and aggr info */ ath_tx_set_ratectrl(sc, bf->bf_node, bf); } /* * Setup the descriptors for a multi-descriptor frame. * This is both aggregate and non-aggregate aware. */ ath_tx_chaindesclist(sc, ds0, bf, 1, /* is_aggr */ !! (bf == bf_first), /* is_first_subframe */ !! (bf->bf_next == NULL) /* is_last_subframe */ ); if (bf == bf_first) { /* * Initialise the first 11n aggregate with the * aggregate length and aggregate enable bits. */ ath_hal_set11n_aggr_first(sc->sc_ah, ds0, bf->bf_state.bfs_al, bf->bf_state.bfs_ndelim); } /* * Link the last descriptor of the previous frame * to the beginning descriptor of this frame. */ if (bf_prev != NULL) ath_hal_settxdesclink(sc->sc_ah, bf_prev->bf_lastds, bf->bf_daddr); /* Save a copy so we can link the next descriptor in */ bf_prev = bf; bf = bf->bf_next; } /* * Set the first descriptor bf_lastds field to point to * the last descriptor in the last subframe, that's where * the status update will occur. */ bf_first->bf_lastds = bf_prev->bf_lastds; /* * And bf_last in the first descriptor points to the end of * the aggregate list. */ bf_first->bf_last = bf_prev; /* * For non-AR9300 NICs, which require the rate control * in the final descriptor - let's set that up now. * * This is because the filltxdesc() HAL call doesn't * populate the last segment with rate control information * if firstSeg is also true. For non-aggregate frames * that is fine, as the first frame already has rate control * info. But if the last frame in an aggregate has one * descriptor, both firstseg and lastseg will be true and * the rate info isn't copied. * * This is inefficient on MIPS/ARM platforms that have * non-cachable memory for TX descriptors, but we'll just * make do for now. * * As to why the rate table is stashed in the last descriptor * rather than the first descriptor? Because proctxdesc() * is called on the final descriptor in an MPDU or A-MPDU - * ie, the one that gets updated by the hardware upon * completion. That way proctxdesc() doesn't need to know * about the first _and_ last TX descriptor. */ ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_lastds, ds0); DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__); } /* * Hand-off a frame to the multicast TX queue. * * This is a software TXQ which will be appended to the CAB queue * during the beacon setup code. * * XXX TODO: since the AR9300 EDMA TX queue support wants the QCU ID * as part of the TX descriptor, bf_state.bfs_tx_queue must be updated * with the actual hardware txq, or all of this will fall apart. * * XXX It may not be a bad idea to just stuff the QCU ID into bf_state * and retire bfs_tx_queue; then make sure the CABQ QCU ID is populated * correctly. */ static void ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { ATH_TX_LOCK_ASSERT(sc); KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, ("%s: busy status 0x%x", __func__, bf->bf_flags)); /* * Ensure that the tx queue is the cabq, so things get * mapped correctly. */ if (bf->bf_state.bfs_tx_queue != sc->sc_cabq->axq_qnum) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n", __func__, bf, bf->bf_state.bfs_tx_queue, txq->axq_qnum); } ATH_TXQ_LOCK(txq); if (ATH_TXQ_LAST(txq, axq_q_s) != NULL) { struct ath_buf *bf_last = ATH_TXQ_LAST(txq, axq_q_s); struct ieee80211_frame *wh; /* mark previous frame */ wh = mtod(bf_last->bf_m, struct ieee80211_frame *); wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; bus_dmamap_sync(sc->sc_dmat, bf_last->bf_dmamap, BUS_DMASYNC_PREWRITE); /* link descriptor */ ath_hal_settxdesclink(sc->sc_ah, bf_last->bf_lastds, bf->bf_daddr); } ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); ATH_TXQ_UNLOCK(txq); } /* * Hand-off packet to a hardware queue. */ static void ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf_first; /* * Insert the frame on the outbound list and pass it on * to the hardware. Multicast frames buffered for power * save stations and transmit from the CAB queue are stored * on a s/w only queue and loaded on to the CAB queue in * the SWBA handler since frames only go out on DTIM and * to avoid possible races. */ ATH_TX_LOCK_ASSERT(sc); KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0, ("%s: busy status 0x%x", __func__, bf->bf_flags)); KASSERT(txq->axq_qnum != ATH_TXQ_SWQ, ("ath_tx_handoff_hw called for mcast queue")); /* * XXX We should instead just verify that sc_txstart_cnt * or ath_txproc_cnt > 0. That would mean that * the reset is going to be waiting for us to complete. */ if (sc->sc_txproc_cnt == 0 && sc->sc_txstart_cnt == 0) { device_printf(sc->sc_dev, "%s: TX dispatch without holding txcount/txstart refcnt!\n", __func__); } /* * XXX .. this is going to cause the hardware to get upset; * so we really should find some way to drop or queue * things. */ ATH_TXQ_LOCK(txq); /* * XXX TODO: if there's a holdingbf, then * ATH_TXQ_PUTRUNNING should be clear. * * If there is a holdingbf and the list is empty, * then axq_link should be pointing to the holdingbf. * * Otherwise it should point to the last descriptor * in the last ath_buf. * * In any case, we should really ensure that we * update the previous descriptor link pointer to * this descriptor, regardless of all of the above state. * * For now this is captured by having axq_link point * to either the holdingbf (if the TXQ list is empty) * or the end of the list (if the TXQ list isn't empty.) * I'd rather just kill axq_link here and do it as above. */ /* * Append the frame to the TX queue. */ ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); ATH_KTR(sc, ATH_KTR_TX, 3, "ath_tx_handoff: non-tdma: txq=%u, add bf=%p " "depth=%d", txq->axq_qnum, bf, txq->axq_depth); /* * If there's a link pointer, update it. * * XXX we should replace this with the above logic, just * to kill axq_link with fire. */ if (txq->axq_link != NULL) { *txq->axq_link = bf->bf_daddr; DPRINTF(sc, ATH_DEBUG_XMIT, "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, txq->axq_qnum, txq->axq_link, (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); ATH_KTR(sc, ATH_KTR_TX, 5, "ath_tx_handoff: non-tdma: link[%u](%p)=%p (%p) " "lastds=%d", txq->axq_qnum, txq->axq_link, (caddr_t)bf->bf_daddr, bf->bf_desc, bf->bf_lastds); } /* * If we've not pushed anything into the hardware yet, * push the head of the queue into the TxDP. * * Once we've started DMA, there's no guarantee that * updating the TxDP with a new value will actually work. * So we just don't do that - if we hit the end of the list, * we keep that buffer around (the "holding buffer") and * re-start DMA by updating the link pointer of _that_ * descriptor and then restart DMA. */ if (! (txq->axq_flags & ATH_TXQ_PUTRUNNING)) { bf_first = TAILQ_FIRST(&txq->axq_q); txq->axq_flags |= ATH_TXQ_PUTRUNNING; ath_hal_puttxbuf(ah, txq->axq_qnum, bf_first->bf_daddr); DPRINTF(sc, ATH_DEBUG_XMIT, "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, txq->axq_qnum, (caddr_t)bf_first->bf_daddr, bf_first->bf_desc, txq->axq_depth); ATH_KTR(sc, ATH_KTR_TX, 5, "ath_tx_handoff: TXDP[%u] = %p (%p) " "lastds=%p depth %d", txq->axq_qnum, (caddr_t)bf_first->bf_daddr, bf_first->bf_desc, bf_first->bf_lastds, txq->axq_depth); } /* * Ensure that the bf TXQ matches this TXQ, so later * checking and holding buffer manipulation is sane. */ if (bf->bf_state.bfs_tx_queue != txq->axq_qnum) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: bf=%p, bfs_tx_queue=%d, axq_qnum=%d\n", __func__, bf, bf->bf_state.bfs_tx_queue, txq->axq_qnum); } /* * Track aggregate queue depth. */ if (bf->bf_state.bfs_aggr) txq->axq_aggr_depth++; /* * Update the link pointer. */ ath_hal_gettxdesclinkptr(ah, bf->bf_lastds, &txq->axq_link); /* * Start DMA. * * If we wrote a TxDP above, DMA will start from here. * * If DMA is running, it'll do nothing. * * If the DMA engine hit the end of the QCU list (ie LINK=NULL, * or VEOL) then it stops at the last transmitted write. * We then append a new frame by updating the link pointer * in that descriptor and then kick TxE here; it will re-read * that last descriptor and find the new descriptor to transmit. * * This is why we keep the holding descriptor around. */ ath_hal_txstart(ah, txq->axq_qnum); ATH_TXQ_UNLOCK(txq); ATH_KTR(sc, ATH_KTR_TX, 1, "ath_tx_handoff: txq=%u, txstart", txq->axq_qnum); } /* * Restart TX DMA for the given TXQ. * * This must be called whether the queue is empty or not. */ static void ath_legacy_tx_dma_restart(struct ath_softc *sc, struct ath_txq *txq) { struct ath_buf *bf, *bf_last; ATH_TXQ_LOCK_ASSERT(txq); /* XXX make this ATH_TXQ_FIRST */ bf = TAILQ_FIRST(&txq->axq_q); bf_last = ATH_TXQ_LAST(txq, axq_q_s); if (bf == NULL) return; DPRINTF(sc, ATH_DEBUG_RESET, "%s: Q%d: bf=%p, bf_last=%p, daddr=0x%08x\n", __func__, txq->axq_qnum, bf, bf_last, (uint32_t) bf->bf_daddr); #ifdef ATH_DEBUG if (sc->sc_debug & ATH_DEBUG_RESET) ath_tx_dump(sc, txq); #endif /* * This is called from a restart, so DMA is known to be * completely stopped. */ KASSERT((!(txq->axq_flags & ATH_TXQ_PUTRUNNING)), ("%s: Q%d: called with PUTRUNNING=1\n", __func__, txq->axq_qnum)); ath_hal_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr); txq->axq_flags |= ATH_TXQ_PUTRUNNING; ath_hal_gettxdesclinkptr(sc->sc_ah, bf_last->bf_lastds, &txq->axq_link); ath_hal_txstart(sc->sc_ah, txq->axq_qnum); } /* * Hand off a packet to the hardware (or mcast queue.) * * The relevant hardware txq should be locked. */ static void ath_legacy_xmit_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { ATH_TX_LOCK_ASSERT(sc); #ifdef ATH_DEBUG_ALQ if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_TXDESC)) ath_tx_alq_post(sc, bf); #endif if (txq->axq_qnum == ATH_TXQ_SWQ) ath_tx_handoff_mcast(sc, txq, bf); else ath_tx_handoff_hw(sc, txq, bf); } static int ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen, int *keyix) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n", __func__, *hdrlen, *pktlen, isfrag, iswep, m0); if (iswep) { const struct ieee80211_cipher *cip; struct ieee80211_key *k; /* * Construct the 802.11 header+trailer for an encrypted * frame. The only reason this can fail is because of an * unknown or unsupported cipher/key type. */ k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { /* * This can happen when the key is yanked after the * frame was queued. Just discard the frame; the * 802.11 layer counts failures and provides * debugging/diagnostics. */ return (0); } /* * Adjust the packet + header lengths for the crypto * additions and calculate the h/w key index. When * a s/w mic is done the frame will have had any mic * added to it prior to entry so m0->m_pkthdr.len will * account for it. Otherwise we need to add it to the * packet length. */ cip = k->wk_cipher; (*hdrlen) += cip->ic_header; (*pktlen) += cip->ic_header + cip->ic_trailer; /* NB: frags always have any TKIP MIC done in s/w */ if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) (*pktlen) += cip->ic_miclen; (*keyix) = k->wk_keyix; } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { /* * Use station key cache slot, if assigned. */ (*keyix) = ni->ni_ucastkey.wk_keyix; if ((*keyix) == IEEE80211_KEYIX_NONE) (*keyix) = HAL_TXKEYIX_INVALID; } else (*keyix) = HAL_TXKEYIX_INVALID; return (1); } /* * Calculate whether interoperability protection is required for * this frame. * * This requires the rate control information be filled in, * as the protection requirement depends upon the current * operating mode / PHY. */ static void ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_frame *wh; uint8_t rix; uint16_t flags; int shortPreamble; const HAL_RATE_TABLE *rt = sc->sc_currates; struct ieee80211com *ic = &sc->sc_ic; flags = bf->bf_state.bfs_txflags; rix = bf->bf_state.bfs_rc[0].rix; shortPreamble = bf->bf_state.bfs_shpream; wh = mtod(bf->bf_m, struct ieee80211_frame *); /* Disable frame protection for TOA probe frames */ if (bf->bf_flags & ATH_BUF_TOA_PROBE) { /* XXX count */ flags &= ~(HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA); bf->bf_state.bfs_doprot = 0; goto finish; } /* * If 802.11g protection is enabled, determine whether * to use RTS/CTS or just CTS. Note that this is only * done for OFDM unicast frames. */ if ((ic->ic_flags & IEEE80211_F_USEPROT) && rt->info[rix].phy == IEEE80211_T_OFDM && (flags & HAL_TXDESC_NOACK) == 0) { bf->bf_state.bfs_doprot = 1; /* XXX fragments must use CCK rates w/ protection */ if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { flags |= HAL_TXDESC_RTSENA; } else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { flags |= HAL_TXDESC_CTSENA; } /* * For frags it would be desirable to use the * highest CCK rate for RTS/CTS. But stations * farther away may detect it at a lower CCK rate * so use the configured protection rate instead * (for now). */ sc->sc_stats.ast_tx_protect++; } /* * If 11n protection is enabled and it's a HT frame, * enable RTS. * * XXX ic_htprotmode or ic_curhtprotmode? * XXX should it_htprotmode only matter if ic_curhtprotmode * XXX indicates it's not a HT pure environment? */ if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) && rt->info[rix].phy == IEEE80211_T_HT && (flags & HAL_TXDESC_NOACK) == 0) { flags |= HAL_TXDESC_RTSENA; sc->sc_stats.ast_tx_htprotect++; } finish: bf->bf_state.bfs_txflags = flags; } /* * Update the frame duration given the currently selected rate. * * This also updates the frame duration value, so it will require * a DMA flush. */ static void ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_frame *wh; uint8_t rix; uint16_t flags; int shortPreamble; struct ath_hal *ah = sc->sc_ah; const HAL_RATE_TABLE *rt = sc->sc_currates; int isfrag = bf->bf_m->m_flags & M_FRAG; flags = bf->bf_state.bfs_txflags; rix = bf->bf_state.bfs_rc[0].rix; shortPreamble = bf->bf_state.bfs_shpream; wh = mtod(bf->bf_m, struct ieee80211_frame *); /* * Calculate duration. This logically belongs in the 802.11 * layer but it lacks sufficient information to calculate it. */ if ((flags & HAL_TXDESC_NOACK) == 0 && (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { u_int16_t dur; if (shortPreamble) dur = rt->info[rix].spAckDuration; else dur = rt->info[rix].lpAckDuration; if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { dur += dur; /* additional SIFS+ACK */ /* * Include the size of next fragment so NAV is * updated properly. The last fragment uses only * the ACK duration * * XXX TODO: ensure that the rate lookup for each * fragment is the same as the rate used by the * first fragment! */ dur += ath_hal_computetxtime(ah, rt, bf->bf_nextfraglen, rix, shortPreamble, AH_TRUE); } if (isfrag) { /* * Force hardware to use computed duration for next * fragment by disabling multi-rate retry which updates * duration based on the multi-rate duration table. */ bf->bf_state.bfs_ismrr = 0; bf->bf_state.bfs_try0 = ATH_TXMGTTRY; /* XXX update bfs_rc[0].try? */ } /* Update the duration field itself */ *(u_int16_t *)wh->i_dur = htole16(dur); } } static uint8_t ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt, int cix, int shortPreamble) { uint8_t ctsrate; /* * CTS transmit rate is derived from the transmit rate * by looking in the h/w rate table. We must also factor * in whether or not a short preamble is to be used. */ /* NB: cix is set above where RTS/CTS is enabled */ KASSERT(cix != 0xff, ("cix not setup")); ctsrate = rt->info[cix].rateCode; /* XXX this should only matter for legacy rates */ if (shortPreamble) ctsrate |= rt->info[cix].shortPreamble; return (ctsrate); } /* * Calculate the RTS/CTS duration for legacy frames. */ static int ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix, int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt, int flags) { int ctsduration = 0; /* This mustn't be called for HT modes */ if (rt->info[cix].phy == IEEE80211_T_HT) { printf("%s: HT rate where it shouldn't be (0x%x)\n", __func__, rt->info[cix].rateCode); return (-1); } /* * Compute the transmit duration based on the frame * size and the size of an ACK frame. We call into the * HAL to do the computation since it depends on the * characteristics of the actual PHY being used. * * NB: CTS is assumed the same size as an ACK so we can * use the precalculated ACK durations. */ if (shortPreamble) { if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ ctsduration += rt->info[cix].spAckDuration; ctsduration += ath_hal_computetxtime(ah, rt, pktlen, rix, AH_TRUE, AH_TRUE); if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ ctsduration += rt->info[rix].spAckDuration; } else { if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ ctsduration += rt->info[cix].lpAckDuration; ctsduration += ath_hal_computetxtime(ah, rt, pktlen, rix, AH_FALSE, AH_TRUE); if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ ctsduration += rt->info[rix].lpAckDuration; } return (ctsduration); } /* * Update the given ath_buf with updated rts/cts setup and duration * values. * * To support rate lookups for each software retry, the rts/cts rate * and cts duration must be re-calculated. * * This function assumes the RTS/CTS flags have been set as needed; * mrr has been disabled; and the rate control lookup has been done. * * XXX TODO: MRR need only be disabled for the pre-11n NICs. * XXX The 11n NICs support per-rate RTS/CTS configuration. */ static void ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf) { uint16_t ctsduration = 0; uint8_t ctsrate = 0; uint8_t rix = bf->bf_state.bfs_rc[0].rix; uint8_t cix = 0; const HAL_RATE_TABLE *rt = sc->sc_currates; /* * No RTS/CTS enabled? Don't bother. */ if ((bf->bf_state.bfs_txflags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) { /* XXX is this really needed? */ bf->bf_state.bfs_ctsrate = 0; bf->bf_state.bfs_ctsduration = 0; return; } /* * If protection is enabled, use the protection rix control * rate. Otherwise use the rate0 control rate. */ if (bf->bf_state.bfs_doprot) rix = sc->sc_protrix; else rix = bf->bf_state.bfs_rc[0].rix; /* * If the raw path has hard-coded ctsrate0 to something, * use it. */ if (bf->bf_state.bfs_ctsrate0 != 0) cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0); else /* Control rate from above */ cix = rt->info[rix].controlRate; /* Calculate the rtscts rate for the given cix */ ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix, bf->bf_state.bfs_shpream); /* The 11n chipsets do ctsduration calculations for you */ if (! ath_tx_is_11n(sc)) ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix, bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen, rt, bf->bf_state.bfs_txflags); /* Squirrel away in ath_buf */ bf->bf_state.bfs_ctsrate = ctsrate; bf->bf_state.bfs_ctsduration = ctsduration; /* * Must disable multi-rate retry when using RTS/CTS. */ if (!sc->sc_mrrprot) { bf->bf_state.bfs_ismrr = 0; bf->bf_state.bfs_try0 = bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY; /* XXX ew */ } } /* * Setup the descriptor chain for a normal or fast-frame * frame. * * XXX TODO: extend to include the destination hardware QCU ID. * Make sure that is correct. Make sure that when being added * to the mcastq, the CABQ QCUID is set or things will get a bit * odd. */ static void ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf) { struct ath_desc *ds = bf->bf_desc; struct ath_hal *ah = sc->sc_ah; if (bf->bf_state.bfs_txrate0 == 0) DPRINTF(sc, ATH_DEBUG_XMIT, "%s: bf=%p, txrate0=%d\n", __func__, bf, 0); ath_hal_setuptxdesc(ah, ds , bf->bf_state.bfs_pktlen /* packet length */ , bf->bf_state.bfs_hdrlen /* header length */ , bf->bf_state.bfs_atype /* Atheros packet type */ , bf->bf_state.bfs_txpower /* txpower */ , bf->bf_state.bfs_txrate0 , bf->bf_state.bfs_try0 /* series 0 rate/tries */ , bf->bf_state.bfs_keyix /* key cache index */ , bf->bf_state.bfs_txantenna /* antenna mode */ , bf->bf_state.bfs_txflags /* flags */ , bf->bf_state.bfs_ctsrate /* rts/cts rate */ , bf->bf_state.bfs_ctsduration /* rts/cts duration */ ); /* * This will be overriden when the descriptor chain is written. */ bf->bf_lastds = ds; bf->bf_last = bf; /* Set rate control and descriptor chain for this frame */ ath_tx_set_ratectrl(sc, bf->bf_node, bf); ath_tx_chaindesclist(sc, ds, bf, 0, 0, 0); } /* * Do a rate lookup. * * This performs a rate lookup for the given ath_buf only if it's required. * Non-data frames and raw frames don't require it. * * This populates the primary and MRR entries; MRR values are * then disabled later on if something requires it (eg RTS/CTS on * pre-11n chipsets. * * This needs to be done before the RTS/CTS fields are calculated * as they may depend upon the rate chosen. */ static void ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf, int tid, int pktlen, int is_aggr) { uint8_t rate, rix; int try0; int maxdur; // Note: Unused for now int maxpktlen; if (! bf->bf_state.bfs_doratelookup) return; /* Get rid of any previous state */ bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); ATH_NODE_LOCK(ATH_NODE(bf->bf_node)); ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream, pktlen, tid, is_aggr, &rix, &try0, &rate, &maxdur, &maxpktlen); /* In case MRR is disabled, make sure rc[0] is setup correctly */ bf->bf_state.bfs_rc[0].rix = rix; bf->bf_state.bfs_rc[0].ratecode = rate; bf->bf_state.bfs_rc[0].tries = try0; if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY) ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix, is_aggr, bf->bf_state.bfs_rc); ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node)); sc->sc_txrix = rix; /* for LED blinking */ sc->sc_lastdatarix = rix; /* for fast frames */ bf->bf_state.bfs_try0 = try0; bf->bf_state.bfs_txrate0 = rate; bf->bf_state.bfs_rc_maxpktlen = maxpktlen; } /* * Update the CLRDMASK bit in the ath_buf if it needs to be set. */ static void ath_tx_update_clrdmask(struct ath_softc *sc, struct ath_tid *tid, struct ath_buf *bf) { struct ath_node *an = ATH_NODE(bf->bf_node); ATH_TX_LOCK_ASSERT(sc); if (an->clrdmask == 1) { bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; an->clrdmask = 0; } } /* * Return whether this frame should be software queued or * direct dispatched. * * When doing powersave, BAR frames should be queued but other management * frames should be directly sent. * * When not doing powersave, stick BAR frames into the hardware queue * so it goes out even though the queue is paused. * * For now, management frames are also software queued by default. */ static int ath_tx_should_swq_frame(struct ath_softc *sc, struct ath_node *an, struct mbuf *m0, int *queue_to_head) { struct ieee80211_node *ni = &an->an_node; struct ieee80211_frame *wh; uint8_t type, subtype; wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; (*queue_to_head) = 0; /* If it's not in powersave - direct-dispatch BAR */ if ((ATH_NODE(ni)->an_is_powersave == 0) && type == IEEE80211_FC0_TYPE_CTL && subtype == IEEE80211_FC0_SUBTYPE_BAR) { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: BAR: TX'ing direct\n", __func__); return (0); } else if ((ATH_NODE(ni)->an_is_powersave == 1) && type == IEEE80211_FC0_TYPE_CTL && subtype == IEEE80211_FC0_SUBTYPE_BAR) { /* BAR TX whilst asleep; queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq: TX'ing\n", __func__); (*queue_to_head) = 1; return (1); } else if ((ATH_NODE(ni)->an_is_powersave == 1) && (type == IEEE80211_FC0_TYPE_MGT || type == IEEE80211_FC0_TYPE_CTL)) { /* * Other control/mgmt frame; bypass software queuing * for now! */ DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %6D: Node is asleep; sending mgmt " "(type=%d, subtype=%d)\n", __func__, ni->ni_macaddr, ":", type, subtype); return (0); } else { return (1); } } /* * Transmit the given frame to the hardware. * * The frame must already be setup; rate control must already have * been done. * * XXX since the TXQ lock is being held here (and I dislike holding * it for this long when not doing software aggregation), later on * break this function into "setup_normal" and "xmit_normal". The * lock only needs to be held for the ath_tx_handoff call. * * XXX we don't update the leak count here - if we're doing * direct frame dispatch, we need to be able to do it without * decrementing the leak count (eg multicast queue frames.) */ static void ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf) { struct ath_node *an = ATH_NODE(bf->bf_node); struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; ATH_TX_LOCK_ASSERT(sc); /* * For now, just enable CLRDMASK. ath_tx_xmit_normal() does * set a completion handler however it doesn't (yet) properly * handle the strict ordering requirements needed for normal, * non-aggregate session frames. * * Once this is implemented, only set CLRDMASK like this for * frames that must go out - eg management/raw frames. */ bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; /* Setup the descriptor before handoff */ ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen, false); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); /* Track per-TID hardware queue depth correctly */ tid->hwq_depth++; /* Assign the completion handler */ bf->bf_comp = ath_tx_normal_comp; /* Hand off to hardware */ ath_tx_handoff(sc, txq, bf); } /* * Do the basic frame setup stuff that's required before the frame * is added to a software queue. * * All frames get mostly the same treatment and it's done once. * Retransmits fiddle with things like the rate control setup, * setting the retransmit bit in the packet; doing relevant DMA/bus * syncing and relinking it (back) into the hardware TX queue. * * Note that this may cause the mbuf to be reallocated, so * m0 may not be valid. */ static int ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; int error, iswep, ismcast, isfrag, ismrr; int keyix, hdrlen, pktlen, try0 = 0; u_int8_t rix = 0, txrate = 0; struct ath_desc *ds; struct ieee80211_frame *wh; u_int subtype, flags; HAL_PKT_TYPE atype; const HAL_RATE_TABLE *rt; HAL_BOOL shortPreamble; struct ath_node *an; /* XXX TODO: this pri is only used for non-QoS check, right? */ u_int pri; /* * To ensure that both sequence numbers and the CCMP PN handling * is "correct", make sure that the relevant TID queue is locked. * Otherwise the CCMP PN and seqno may appear out of order, causing * re-ordered frames to have out of order CCMP PN's, resulting * in many, many frame drops. */ ATH_TX_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); isfrag = m0->m_flags & M_FRAG; hdrlen = ieee80211_anyhdrsize(wh); /* * Packet length must not include any * pad bytes; deduct them here. */ pktlen = m0->m_pkthdr.len - (hdrlen & 3); /* Handle encryption twiddling if needed */ if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen, &pktlen, &keyix)) { ieee80211_free_mbuf(m0); return EIO; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); pktlen += IEEE80211_CRC_LEN; /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = ath_tx_dmasetup(sc, bf, m0); if (error != 0) return error; KASSERT((ni != NULL), ("%s: ni=NULL!", __func__)); bf->bf_node = ni; /* NB: held reference */ m0 = bf->bf_m; /* NB: may have changed */ wh = mtod(m0, struct ieee80211_frame *); /* setup descriptors */ ds = bf->bf_desc; rt = sc->sc_currates; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); /* * NB: the 802.11 layer marks whether or not we should * use short preamble based on the current mode and * negotiated parameters. */ if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { shortPreamble = AH_TRUE; sc->sc_stats.ast_tx_shortpre++; } else { shortPreamble = AH_FALSE; } an = ATH_NODE(ni); //flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ flags = 0; ismrr = 0; /* default no multi-rate retry*/ pri = ath_tx_getac(sc, m0); /* honor classification */ /* XXX use txparams instead of fixed values */ /* * Calculate Atheros packet type from IEEE80211 packet header, * setup for rate calculations, and select h/w transmit queue. */ switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_MGT: subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) atype = HAL_PKT_TYPE_BEACON; else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) atype = HAL_PKT_TYPE_PROBE_RESP; else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) atype = HAL_PKT_TYPE_ATIM; else atype = HAL_PKT_TYPE_NORMAL; /* XXX */ rix = an->an_mgmtrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = ATH_TXMGTTRY; flags |= HAL_TXDESC_INTREQ; /* force interrupt */ break; case IEEE80211_FC0_TYPE_CTL: atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ rix = an->an_mgmtrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = ATH_TXMGTTRY; flags |= HAL_TXDESC_INTREQ; /* force interrupt */ break; case IEEE80211_FC0_TYPE_DATA: atype = HAL_PKT_TYPE_NORMAL; /* default */ /* * Data frames: multicast frames go out at a fixed rate, * EAPOL frames use the mgmt frame rate; otherwise consult * the rate control module for the rate to use. */ if (ismcast) { rix = an->an_mcastrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = 1; } else if (m0->m_flags & M_EAPOL) { /* XXX? maybe always use long preamble? */ rix = an->an_mgmtrix; txrate = rt->info[rix].rateCode; if (shortPreamble) txrate |= rt->info[rix].shortPreamble; try0 = ATH_TXMAXTRY; /* XXX?too many? */ } else { /* * Do rate lookup on each TX, rather than using * the hard-coded TX information decided here. */ ismrr = 1; bf->bf_state.bfs_doratelookup = 1; } /* * Check whether to set NOACK for this WME category or not. */ if (ieee80211_wme_vap_ac_is_noack(vap, pri)) flags |= HAL_TXDESC_NOACK; break; default: device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); /* XXX statistic */ /* XXX free tx dmamap */ ieee80211_free_mbuf(m0); return EIO; } /* * There are two known scenarios where the frame AC doesn't match * what the destination TXQ is. * * + non-QoS frames (eg management?) that the net80211 stack has * assigned a higher AC to, but since it's a non-QoS TID, it's * being thrown into TID 16. TID 16 gets the AC_BE queue. * It's quite possible that management frames should just be * direct dispatched to hardware rather than go via the software * queue; that should be investigated in the future. There are * some specific scenarios where this doesn't make sense, mostly * surrounding ADDBA request/response - hence why that is special * cased. * * + Multicast frames going into the VAP mcast queue. That shows up * as "TXQ 11". * * This driver should eventually support separate TID and TXQ locking, * allowing for arbitrary AC frames to appear on arbitrary software * queues, being queued to the "correct" hardware queue when needed. */ #if 0 if (txq != sc->sc_ac2q[pri]) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n", __func__, txq, txq->axq_qnum, pri, sc->sc_ac2q[pri], sc->sc_ac2q[pri]->axq_qnum); } #endif /* * Calculate miscellaneous flags. */ if (ismcast) { flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ } else if (pktlen > vap->iv_rtsthreshold && (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) { flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ sc->sc_stats.ast_tx_rts++; } if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ sc->sc_stats.ast_tx_noack++; #ifdef IEEE80211_SUPPORT_TDMA if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) { DPRINTF(sc, ATH_DEBUG_TDMA, "%s: discard frame, ACK required w/ TDMA\n", __func__); sc->sc_stats.ast_tdma_ack++; /* XXX free tx dmamap */ ieee80211_free_mbuf(m0); return EIO; } #endif /* * If it's a frame to do location reporting on, * communicate it to the HAL. */ if (ieee80211_get_toa_params(m0, NULL)) { device_printf(sc->sc_dev, "%s: setting TX positioning bit\n", __func__); flags |= HAL_TXDESC_POS; /* * Note: The hardware reports timestamps for * each of the RX'ed packets as part of the packet * exchange. So this means things like RTS/CTS * exchanges, as well as the final ACK. * * So, if you send a RTS-protected NULL data frame, * you'll get an RX report for the RTS response, then * an RX report for the NULL frame, and then the TX * completion at the end. * * NOTE: it doesn't work right for CCK frames; * there's no channel info data provided unless * it's OFDM or HT. Will have to dig into it. */ flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA); bf->bf_flags |= ATH_BUF_TOA_PROBE; } #if 0 /* * Placeholder: if you want to transmit with the azimuth * timestamp in the end of the payload, here's where you * should set the TXDESC field. */ flags |= HAL_TXDESC_HWTS; #endif /* * Determine if a tx interrupt should be generated for * this descriptor. We take a tx interrupt to reap * descriptors when the h/w hits an EOL condition or * when the descriptor is specifically marked to generate * an interrupt. We periodically mark descriptors in this * way to insure timely replenishing of the supply needed * for sending frames. Defering interrupts reduces system * load and potentially allows more concurrent work to be * done but if done to aggressively can cause senders to * backup. * * NB: use >= to deal with sc_txintrperiod changing * dynamically through sysctl. */ if (flags & HAL_TXDESC_INTREQ) { txq->axq_intrcnt = 0; } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { flags |= HAL_TXDESC_INTREQ; txq->axq_intrcnt = 0; } /* This point forward is actual TX bits */ /* * At this point we are committed to sending the frame * and we don't need to look at m_nextpkt; clear it in * case this frame is part of frag chain. */ m0->m_nextpkt = NULL; if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, sc->sc_hwmap[rix].ieeerate, -1); if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; if (iswep) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (isfrag) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; sc->sc_tx_th.wt_txpower = ieee80211_get_node_txpower(ni); sc->sc_tx_th.wt_antenna = sc->sc_txantenna; ieee80211_radiotap_tx(vap, m0); } /* Blank the legacy rate array */ bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); /* * ath_buf_set_rate needs at least one rate/try to setup * the rate scenario. */ bf->bf_state.bfs_rc[0].rix = rix; bf->bf_state.bfs_rc[0].tries = try0; bf->bf_state.bfs_rc[0].ratecode = txrate; /* Store the decided rate index values away */ bf->bf_state.bfs_pktlen = pktlen; bf->bf_state.bfs_hdrlen = hdrlen; bf->bf_state.bfs_atype = atype; bf->bf_state.bfs_txpower = ieee80211_get_node_txpower(ni); bf->bf_state.bfs_txrate0 = txrate; bf->bf_state.bfs_try0 = try0; bf->bf_state.bfs_keyix = keyix; bf->bf_state.bfs_txantenna = sc->sc_txantenna; bf->bf_state.bfs_txflags = flags; bf->bf_state.bfs_shpream = shortPreamble; /* XXX this should be done in ath_tx_setrate() */ bf->bf_state.bfs_ctsrate0 = 0; /* ie, no hard-coded ctsrate */ bf->bf_state.bfs_ctsrate = 0; /* calculated later */ bf->bf_state.bfs_ctsduration = 0; bf->bf_state.bfs_ismrr = ismrr; return 0; } /* * Queue a frame to the hardware or software queue. * * This can be called by the net80211 code. * * XXX what about locking? Or, push the seqno assign into the * XXX aggregate scheduler so its serialised? * * XXX When sending management frames via ath_raw_xmit(), * should CLRDMASK be set unconditionally? */ int ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0) { struct ieee80211vap *vap = ni->ni_vap; struct ath_vap *avp = ATH_VAP(vap); int r = 0; u_int pri; int tid; struct ath_txq *txq; int ismcast; const struct ieee80211_frame *wh; int is_ampdu, is_ampdu_tx, is_ampdu_pending; ieee80211_seq seqno; uint8_t type, subtype; int queue_to_head; ATH_TX_LOCK_ASSERT(sc); /* * Determine the target hardware queue. * * For multicast frames, the txq gets overridden appropriately * depending upon the state of PS. If powersave is enabled * then they get added to the cabq for later transmit. * * The "fun" issue here is that group addressed frames should * have the sequence number from a different pool, rather than * the per-TID pool. That means that even QoS group addressed * frames will have a sequence number from that global value, * which means if we transmit different group addressed frames * at different traffic priorities, the sequence numbers will * all be out of whack. So - chances are, the right thing * to do here is to always put group addressed frames into the BE * queue, and ignore the TID for queue selection. * * For any other frame, we do a TID/QoS lookup inside the frame * to see what the TID should be. If it's a non-QoS frame, the * AC and TID are overridden. The TID/TXQ code assumes the * TID is on a predictable hardware TXQ, so we don't support * having a node TID queued to multiple hardware TXQs. * This may change in the future but would require some locking * fudgery. */ pri = ath_tx_getac(sc, m0); tid = ath_tx_gettid(sc, m0); txq = sc->sc_ac2q[pri]; wh = mtod(m0, struct ieee80211_frame *); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* * Enforce how deep the multicast queue can grow. * * XXX duplicated in ath_raw_xmit(). */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth > sc->sc_txq_mcastq_maxdepth) { sc->sc_stats.ast_tx_mcastq_overflow++; m_freem(m0); return (ENOBUFS); } } /* * Enforce how deep the unicast queue can grow. * * If the node is in power save then we don't want * the software queue to grow too deep, or a node may * end up consuming all of the ath_buf entries. * * For now, only do this for DATA frames. * * We will want to cap how many management/control * frames get punted to the software queue so it doesn't * fill up. But the correct solution isn't yet obvious. * In any case, this check should at least let frames pass * that we are direct-dispatching. * * XXX TODO: duplicate this to the raw xmit path! */ if (type == IEEE80211_FC0_TYPE_DATA && ATH_NODE(ni)->an_is_powersave && ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_psq_maxdepth) { sc->sc_stats.ast_tx_node_psq_overflow++; m_freem(m0); return (ENOBUFS); } /* A-MPDU TX */ is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid); is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid); is_ampdu = is_ampdu_tx | is_ampdu_pending; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n", __func__, tid, pri, is_ampdu); /* Set local packet state, used to queue packets to hardware */ bf->bf_state.bfs_tid = tid; bf->bf_state.bfs_tx_queue = txq->axq_qnum; bf->bf_state.bfs_pri = pri; #if 1 /* * When servicing one or more stations in power-save mode * (or) if there is some mcast data waiting on the mcast * queue (to prevent out of order delivery) multicast frames * must be bufferd until after the beacon. * * TODO: we should lock the mcastq before we check the length. */ if (sc->sc_cabq_enable && ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth)) { txq = &avp->av_mcastq; /* * Mark the frame as eventually belonging on the CAB * queue, so the descriptor setup functions will * correctly initialise the descriptor 'qcuId' field. */ bf->bf_state.bfs_tx_queue = sc->sc_cabq->axq_qnum; } #endif /* Do the generic frame setup */ /* XXX should just bzero the bf_state? */ bf->bf_state.bfs_dobaw = 0; /* A-MPDU TX? Manually set sequence number */ /* * Don't do it whilst pending; the net80211 layer still * assigns them. * * Don't assign A-MPDU sequence numbers to group address * frames; they come from a different sequence number space. */ if (is_ampdu_tx && (! IEEE80211_IS_MULTICAST(wh->i_addr1))) { /* * Always call; this function will * handle making sure that null data frames * and group-addressed frames don't get a sequence number * from the current TID and thus mess with the BAW. */ seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0); /* * Don't add QoS NULL frames and group-addressed frames * to the BAW. */ if (IEEE80211_QOS_HAS_SEQ(wh) && (! IEEE80211_IS_MULTICAST(wh->i_addr1)) && (subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL)) { bf->bf_state.bfs_dobaw = 1; } } /* * If needed, the sequence number has been assigned. * Squirrel it away somewhere easy to get to. */ bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT; /* Is ampdu pending? fetch the seqno and print it out */ if (is_ampdu_pending) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid %d: ampdu pending, seqno %d\n", __func__, tid, M_SEQNO_GET(m0)); /* This also sets up the DMA map; crypto; frame parameters, etc */ r = ath_tx_normal_setup(sc, ni, bf, m0, txq); if (r != 0) goto done; /* At this point m0 could have changed! */ m0 = bf->bf_m; #if 1 /* * If it's a multicast frame, do a direct-dispatch to the * destination hardware queue. Don't bother software * queuing it. */ /* * If it's a BAR frame, do a direct dispatch to the * destination hardware queue. Don't bother software * queuing it, as the TID will now be paused. * Sending a BAR frame can occur from the net80211 txa timer * (ie, retries) or from the ath txtask (completion call.) * It queues directly to hardware because the TID is paused * at this point (and won't be unpaused until the BAR has * either been TXed successfully or max retries has been * reached.) */ /* * Until things are better debugged - if this node is asleep * and we're sending it a non-BAR frame, direct dispatch it. * Why? Because we need to figure out what's actually being * sent - eg, during reassociation/reauthentication after * the node (last) disappeared whilst asleep, the driver should * have unpaused/unsleep'ed the node. So until that is * sorted out, use this workaround. */ if (txq == &avp->av_mcastq) { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: mcastq: TX'ing\n", __func__, bf); bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; ath_tx_xmit_normal(sc, txq, bf); } else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0, &queue_to_head)) { ath_tx_swq(sc, ni, txq, queue_to_head, bf); } else { bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; ath_tx_xmit_normal(sc, txq, bf); } #else /* * For now, since there's no software queue, * direct-dispatch to the hardware. */ bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; /* * Update the current leak count if * we're leaking frames; and set the * MORE flag as appropriate. */ ath_tx_leak_count_update(sc, tid, bf); ath_tx_xmit_normal(sc, txq, bf); #endif done: return 0; } static int ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; int error, ismcast, ismrr; int keyix, hdrlen, pktlen, try0, txantenna; u_int8_t rix, txrate; struct ieee80211_frame *wh; u_int flags; HAL_PKT_TYPE atype; const HAL_RATE_TABLE *rt; struct ath_desc *ds; u_int pri; int o_tid = -1; int do_override; uint8_t type, subtype; int queue_to_head; struct ath_node *an = ATH_NODE(ni); ATH_TX_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); hdrlen = ieee80211_anyhdrsize(wh); /* * Packet length must not include any * pad bytes; deduct them here. */ /* XXX honor IEEE80211_BPF_DATAPAD */ pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; ATH_KTR(sc, ATH_KTR_TX, 2, "ath_tx_raw_start: ni=%p, bf=%p, raw", ni, bf); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n", __func__, ismcast); pri = params->ibp_pri & 3; /* Override pri if the frame isn't a QoS one */ if (! IEEE80211_QOS_HAS_SEQ(wh)) pri = ath_tx_getac(sc, m0); /* XXX If it's an ADDBA, override the correct queue */ do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid); /* Map ADDBA to the correct priority */ if (do_override) { #if 1 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: overriding tid %d pri %d -> %d\n", __func__, o_tid, pri, TID_TO_WME_AC(o_tid)); #endif pri = TID_TO_WME_AC(o_tid); } /* * "pri" is the hardware queue to transmit on. * * Look at the description in ath_tx_start() to understand * what needs to be "fixed" here so we just use the TID * for QoS frames. */ /* Handle encryption twiddling if needed */ if (! ath_tx_tag_crypto(sc, ni, m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0, &hdrlen, &pktlen, &keyix)) { ieee80211_free_mbuf(m0); return EIO; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); /* Do the generic frame setup */ /* XXX should just bzero the bf_state? */ bf->bf_state.bfs_dobaw = 0; error = ath_tx_dmasetup(sc, bf, m0); if (error != 0) return error; m0 = bf->bf_m; /* NB: may have changed */ wh = mtod(m0, struct ieee80211_frame *); KASSERT((ni != NULL), ("%s: ni=NULL!", __func__)); bf->bf_node = ni; /* NB: held reference */ /* Always enable CLRDMASK for raw frames for now.. */ flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ flags |= HAL_TXDESC_INTREQ; /* force interrupt */ if (params->ibp_flags & IEEE80211_BPF_RTS) flags |= HAL_TXDESC_RTSENA; else if (params->ibp_flags & IEEE80211_BPF_CTS) { /* XXX assume 11g/11n protection? */ bf->bf_state.bfs_doprot = 1; flags |= HAL_TXDESC_CTSENA; } /* XXX leave ismcast to injector? */ if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast) flags |= HAL_TXDESC_NOACK; rt = sc->sc_currates; KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); /* Fetch first rate information */ rix = ath_tx_findrix(sc, params->ibp_rate0); try0 = params->ibp_try0; /* * Override EAPOL rate as appropriate. */ if (m0->m_flags & M_EAPOL) { /* XXX? maybe always use long preamble? */ rix = an->an_mgmtrix; try0 = ATH_TXMAXTRY; /* XXX?too many? */ } /* * If it's a frame to do location reporting on, * communicate it to the HAL. */ if (ieee80211_get_toa_params(m0, NULL)) { device_printf(sc->sc_dev, "%s: setting TX positioning bit\n", __func__); flags |= HAL_TXDESC_POS; flags &= ~(HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA); bf->bf_flags |= ATH_BUF_TOA_PROBE; } txrate = rt->info[rix].rateCode; if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) txrate |= rt->info[rix].shortPreamble; sc->sc_txrix = rix; ismrr = (params->ibp_try1 != 0); txantenna = params->ibp_pri >> 2; if (txantenna == 0) /* XXX? */ txantenna = sc->sc_txantenna; /* * Since ctsrate is fixed, store it away for later * use when the descriptor fields are being set. */ if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate; /* * NB: we mark all packets as type PSPOLL so the h/w won't * set the sequence number, duration, etc. */ atype = HAL_PKT_TYPE_PSPOLL; if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len, sc->sc_hwmap[rix].ieeerate, -1); if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (m0->m_flags & M_FRAG) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate; sc->sc_tx_th.wt_txpower = MIN(params->ibp_power, ieee80211_get_node_txpower(ni)); sc->sc_tx_th.wt_antenna = sc->sc_txantenna; ieee80211_radiotap_tx(vap, m0); } /* * Formulate first tx descriptor with tx controls. */ ds = bf->bf_desc; /* XXX check return value? */ /* Store the decided rate index values away */ bf->bf_state.bfs_pktlen = pktlen; bf->bf_state.bfs_hdrlen = hdrlen; bf->bf_state.bfs_atype = atype; bf->bf_state.bfs_txpower = MIN(params->ibp_power, ieee80211_get_node_txpower(ni)); bf->bf_state.bfs_txrate0 = txrate; bf->bf_state.bfs_try0 = try0; bf->bf_state.bfs_keyix = keyix; bf->bf_state.bfs_txantenna = txantenna; bf->bf_state.bfs_txflags = flags; bf->bf_state.bfs_shpream = !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE); /* Set local packet state, used to queue packets to hardware */ bf->bf_state.bfs_tid = WME_AC_TO_TID(pri); bf->bf_state.bfs_tx_queue = sc->sc_ac2q[pri]->axq_qnum; bf->bf_state.bfs_pri = pri; /* XXX this should be done in ath_tx_setrate() */ bf->bf_state.bfs_ctsrate = 0; bf->bf_state.bfs_ctsduration = 0; bf->bf_state.bfs_ismrr = ismrr; /* Blank the legacy rate array */ bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc)); bf->bf_state.bfs_rc[0].rix = rix; bf->bf_state.bfs_rc[0].tries = try0; bf->bf_state.bfs_rc[0].ratecode = txrate; if (ismrr) { int rix; rix = ath_tx_findrix(sc, params->ibp_rate1); bf->bf_state.bfs_rc[1].rix = rix; bf->bf_state.bfs_rc[1].tries = params->ibp_try1; rix = ath_tx_findrix(sc, params->ibp_rate2); bf->bf_state.bfs_rc[2].rix = rix; bf->bf_state.bfs_rc[2].tries = params->ibp_try2; rix = ath_tx_findrix(sc, params->ibp_rate3); bf->bf_state.bfs_rc[3].rix = rix; bf->bf_state.bfs_rc[3].tries = params->ibp_try3; } /* * All the required rate control decisions have been made; * fill in the rc flags. */ ath_tx_rate_fill_rcflags(sc, bf); /* NB: no buffered multicast in power save support */ /* * If we're overiding the ADDBA destination, dump directly * into the hardware queue, right after any pending * frames to that node are. */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n", __func__, do_override); #if 1 /* * Put addba frames in the right place in the right TID/HWQ. */ if (do_override) { bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; /* * XXX if it's addba frames, should we be leaking * them out via the frame leak method? * XXX for now let's not risk it; but we may wish * to investigate this later. */ ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); } else if (ath_tx_should_swq_frame(sc, ATH_NODE(ni), m0, &queue_to_head)) { /* Queue to software queue */ ath_tx_swq(sc, ni, sc->sc_ac2q[pri], queue_to_head, bf); } else { bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); } #else /* Direct-dispatch to the hardware */ bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; /* * Update the current leak count if * we're leaking frames; and set the * MORE flag as appropriate. */ ath_tx_leak_count_update(sc, tid, bf); ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf); #endif return 0; } /* * Send a raw frame. * * This can be called by net80211. */ int ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ath_softc *sc = ic->ic_softc; struct ath_buf *bf; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); int error = 0; ATH_PCU_LOCK(sc); if (sc->sc_inreset_cnt > 0) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: sc_inreset_cnt > 0; bailing\n", __func__); error = EIO; ATH_PCU_UNLOCK(sc); goto badbad; } sc->sc_txstart_cnt++; ATH_PCU_UNLOCK(sc); /* Wake the hardware up already */ ATH_LOCK(sc); ath_power_set_power_state(sc, HAL_PM_AWAKE); ATH_UNLOCK(sc); ATH_TX_LOCK(sc); if (!sc->sc_running || sc->sc_invalid) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, r/i: %d/%d", __func__, sc->sc_running, sc->sc_invalid); m_freem(m); error = ENETDOWN; goto bad; } /* * Enforce how deep the multicast queue can grow. * * XXX duplicated in ath_tx_start(). */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { if (sc->sc_cabq->axq_depth + sc->sc_cabq->fifo.axq_depth > sc->sc_txq_mcastq_maxdepth) { sc->sc_stats.ast_tx_mcastq_overflow++; error = ENOBUFS; } if (error != 0) { m_freem(m); goto bad; } } /* * Grab a TX buffer and associated resources. */ bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); if (bf == NULL) { sc->sc_stats.ast_tx_nobuf++; m_freem(m); error = ENOBUFS; goto bad; } ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: m=%p, params=%p, bf=%p\n", m, params, bf); if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if (ath_tx_start(sc, ni, bf, m)) { error = EIO; /* XXX */ goto bad2; } } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if (ath_tx_raw_start(sc, ni, bf, m, params)) { error = EIO; /* XXX */ goto bad2; } } sc->sc_wd_timer = 5; sc->sc_stats.ast_tx_raw++; /* * Update the TIM - if there's anything queued to the * software queue and power save is enabled, we should * set the TIM. */ ath_tx_update_tim(sc, ni, 1); ATH_TX_UNLOCK(sc); ATH_PCU_LOCK(sc); sc->sc_txstart_cnt--; ATH_PCU_UNLOCK(sc); /* Put the hardware back to sleep if required */ ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); return 0; bad2: ATH_KTR(sc, ATH_KTR_TX, 3, "ath_raw_xmit: bad2: m=%p, params=%p, " "bf=%p", m, params, bf); ATH_TXBUF_LOCK(sc); ath_returnbuf_head(sc, bf); ATH_TXBUF_UNLOCK(sc); bad: ATH_TX_UNLOCK(sc); ATH_PCU_LOCK(sc); sc->sc_txstart_cnt--; ATH_PCU_UNLOCK(sc); /* Put the hardware back to sleep if required */ ATH_LOCK(sc); ath_power_restore_power_state(sc); ATH_UNLOCK(sc); badbad: ATH_KTR(sc, ATH_KTR_TX, 2, "ath_raw_xmit: bad0: m=%p, params=%p", m, params); sc->sc_stats.ast_tx_raw_fail++; return error; } /* Some helper functions */ /* * ADDBA (and potentially others) need to be placed in the same * hardware queue as the TID/node it's relating to. This is so * it goes out after any pending non-aggregate frames to the * same node/TID. * * If this isn't done, the ADDBA can go out before the frames * queued in hardware. Even though these frames have a sequence * number -earlier- than the ADDBA can be transmitted (but * no frames whose sequence numbers are after the ADDBA should * be!) they'll arrive after the ADDBA - and the receiving end * will simply drop them as being out of the BAW. * * The frames can't be appended to the TID software queue - it'll * never be sent out. So these frames have to be directly * dispatched to the hardware, rather than queued in software. * So if this function returns true, the TXQ has to be * overridden and it has to be directly dispatched. * * It's a dirty hack, but someone's gotta do it. */ /* * XXX doesn't belong here! */ static int ieee80211_is_action(struct ieee80211_frame *wh) { /* Type: Management frame? */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return 0; /* Subtype: Action frame? */ if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) != IEEE80211_FC0_SUBTYPE_ACTION) return 0; return 1; } -#define MS(_v, _f) (((_v) & _f) >> _f##_S) /* * Return an alternate TID for ADDBA request frames. * * Yes, this likely should be done in the net80211 layer. */ static int ath_tx_action_frame_override_queue(struct ath_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, int *tid) { struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); struct ieee80211_action_ba_addbarequest *ia; uint8_t *frm; uint16_t baparamset; /* Not action frame? Bail */ if (! ieee80211_is_action(wh)) return 0; /* XXX Not needed for frames we send? */ #if 0 /* Correct length? */ if (! ieee80211_parse_action(ni, m)) return 0; #endif /* Extract out action frame */ frm = (u_int8_t *)&wh[1]; ia = (struct ieee80211_action_ba_addbarequest *) frm; /* Not ADDBA? Bail */ if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA) return 0; if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST) return 0; /* Extract TID, return it */ baparamset = le16toh(ia->rq_baparamset); - *tid = (int) MS(baparamset, IEEE80211_BAPS_TID); + *tid = (int) _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); return 1; } -#undef MS /* Per-node software queue operations */ /* * Add the current packet to the given BAW. * It is assumed that the current packet * * + fits inside the BAW; * + already has had a sequence number allocated. * * Since the BAW status may be modified by both the ath task and * the net80211/ifnet contexts, the TID must be locked. */ void ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, struct ath_buf *bf) { int index, cindex; struct ieee80211_tx_ampdu *tap; ATH_TX_LOCK_ASSERT(sc); if (bf->bf_state.bfs_isretried) return; tap = ath_tx_get_tx_tid(an, tid->tid); if (! bf->bf_state.bfs_dobaw) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: dobaw=0, seqno=%d, window %d:%d\n", __func__, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd); } if (bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: re-added? tid=%d, seqno %d; window %d:%d; " "baw head=%d tail=%d\n", __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail); /* * Verify that the given sequence number is not outside of the * BAW. Complain loudly if that's the case. */ if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, SEQNO(bf->bf_state.bfs_seqno))) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; " "baw head=%d tail=%d\n", __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd, tid->baw_head, tid->baw_tail); } /* * ni->ni_txseqs[] is the currently allocated seqno. * the txa state contains the current baw start. */ index = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno)); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d " "baw head=%d tail=%d\n", __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno), tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head, tid->baw_tail); #if 0 assert(tid->tx_buf[cindex] == NULL); #endif if (tid->tx_buf[cindex] != NULL) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: ba packet dup (index=%d, cindex=%d, " "head=%d, tail=%d)\n", __func__, index, cindex, tid->baw_head, tid->baw_tail); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n", __func__, tid->tx_buf[cindex], SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno), bf, SEQNO(bf->bf_state.bfs_seqno) ); } tid->tx_buf[cindex] = bf; if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) { tid->baw_tail = cindex; INCR(tid->baw_tail, ATH_TID_MAX_BUFS); } } /* * Flip the BAW buffer entry over from the existing one to the new one. * * When software retransmitting a (sub-)frame, it is entirely possible that * the frame ath_buf is marked as BUSY and can't be immediately reused. * In that instance the buffer is cloned and the new buffer is used for * retransmit. We thus need to update the ath_buf slot in the BAW buf * tracking array to maintain consistency. */ static void ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf) { int index, cindex; struct ieee80211_tx_ampdu *tap; int seqno = SEQNO(old_bf->bf_state.bfs_seqno); ATH_TX_LOCK_ASSERT(sc); tap = ath_tx_get_tx_tid(an, tid->tid); index = ATH_BA_INDEX(tap->txa_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); /* * Just warn for now; if it happens then we should find out * about it. It's highly likely the aggregation session will * soon hang. */ if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: retransmitted buffer" " has mismatching seqno's, BA session may hang.\n", __func__); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: old seqno=%d, new_seqno=%d\n", __func__, old_bf->bf_state.bfs_seqno, new_bf->bf_state.bfs_seqno); } if (tid->tx_buf[cindex] != old_bf) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: ath_buf pointer incorrect; " " has m BA session may hang.\n", __func__); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: old bf=%p, new bf=%p\n", __func__, old_bf, new_bf); } tid->tx_buf[cindex] = new_bf; } /* * seq_start - left edge of BAW * seq_next - current/next sequence number to allocate * * Since the BAW status may be modified by both the ath task and * the net80211/ifnet contexts, the TID must be locked. */ static void ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, const struct ath_buf *bf) { int index, cindex; struct ieee80211_tx_ampdu *tap; int seqno = SEQNO(bf->bf_state.bfs_seqno); ATH_TX_LOCK_ASSERT(sc); tap = ath_tx_get_tx_tid(an, tid->tid); index = ATH_BA_INDEX(tap->txa_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, " "baw head=%d, tail=%d\n", __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index, cindex, tid->baw_head, tid->baw_tail); /* * If this occurs then we have a big problem - something else * has slid tap->txa_start along without updating the BAW * tracking start/end pointers. Thus the TX BAW state is now * completely busted. * * But for now, since I haven't yet fixed TDMA and buffer cloning, * it's quite possible that a cloned buffer is making its way * here and causing it to fire off. Disable TDMA for now. */ if (tid->tx_buf[cindex] != bf) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n", __func__, bf, SEQNO(bf->bf_state.bfs_seqno), tid->tx_buf[cindex], (tid->tx_buf[cindex] != NULL) ? SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno) : -1); } tid->tx_buf[cindex] = NULL; while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { INCR(tap->txa_start, IEEE80211_SEQ_RANGE); INCR(tid->baw_head, ATH_TID_MAX_BUFS); } DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: tid=%d: baw is now %d:%d, baw head=%d\n", __func__, tid->tid, tap->txa_start, tap->txa_wnd, tid->baw_head); } static void ath_tx_leak_count_update(struct ath_softc *sc, struct ath_tid *tid, struct ath_buf *bf) { struct ieee80211_frame *wh; ATH_TX_LOCK_ASSERT(sc); if (tid->an->an_leak_count > 0) { wh = mtod(bf->bf_m, struct ieee80211_frame *); /* * Update MORE based on the software/net80211 queue states. */ if ((tid->an->an_stack_psq > 0) || (tid->an->an_swq_depth > 0)) wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; else wh->i_fc[1] &= ~IEEE80211_FC1_MORE_DATA; DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: leak count = %d, psq=%d, swq=%d, MORE=%d\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->an->an_leak_count, tid->an->an_stack_psq, tid->an->an_swq_depth, !! (wh->i_fc[1] & IEEE80211_FC1_MORE_DATA)); /* * Re-sync the underlying buffer. */ bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); tid->an->an_leak_count --; } } static int ath_tx_tid_can_tx_or_sched(struct ath_softc *sc, struct ath_tid *tid) { ATH_TX_LOCK_ASSERT(sc); if (tid->an->an_leak_count > 0) { return (1); } if (tid->paused) return (0); return (1); } /* * Mark the current node/TID as ready to TX. * * This is done to make it easy for the software scheduler to * find which nodes have data to send. * * The TXQ lock must be held. */ void ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid) { struct ath_txq *txq = sc->sc_ac2q[tid->ac]; ATH_TX_LOCK_ASSERT(sc); /* * If we are leaking out a frame to this destination * for PS-POLL, ensure that we allow scheduling to * occur. */ if (! ath_tx_tid_can_tx_or_sched(sc, tid)) return; /* paused, can't schedule yet */ if (tid->sched) return; /* already scheduled */ tid->sched = 1; #if 0 /* * If this is a sleeping node we're leaking to, given * it a higher priority. This is so bad for QoS it hurts. */ if (tid->an->an_leak_count) { TAILQ_INSERT_HEAD(&txq->axq_tidq, tid, axq_qelem); } else { TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); } #endif /* * We can't do the above - it'll confuse the TXQ software * scheduler which will keep checking the _head_ TID * in the list to see if it has traffic. If we queue * a TID to the head of the list and it doesn't transmit, * we'll check it again. * * So, get the rest of this leaking frames support working * and reliable first and _then_ optimise it so they're * pushed out in front of any other pending software * queued nodes. */ TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem); } /* * Mark the current node as no longer needing to be polled for * TX packets. * * The TXQ lock must be held. */ static void ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid) { struct ath_txq *txq = sc->sc_ac2q[tid->ac]; ATH_TX_LOCK_ASSERT(sc); if (tid->sched == 0) return; tid->sched = 0; TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem); } /* * Assign a sequence number manually to the given frame. * * This should only be called for A-MPDU TX frames. * * Note: for group addressed frames, the sequence number * should be from NONQOS_TID, and net80211 should have * already assigned it for us. */ static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0) { struct ieee80211_frame *wh; int tid; ieee80211_seq seqno; uint8_t subtype; wh = mtod(m0, struct ieee80211_frame *); tid = ieee80211_gettid(wh); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, qos has seq=%d\n", __func__, tid, IEEE80211_QOS_HAS_SEQ(wh)); /* XXX Is it a control frame? Ignore */ /* Does the packet require a sequence number? */ if (! IEEE80211_QOS_HAS_SEQ(wh)) return -1; ATH_TX_LOCK_ASSERT(sc); /* * Is it a QOS NULL Data frame? Give it a sequence number from * the default TID (IEEE80211_NONQOS_TID.) * * The RX path of everything I've looked at doesn't include the NULL * data frame sequence number in the aggregation state updates, so * assigning it a sequence number there will cause a BAW hole on the * RX side. */ subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) { /* XXX no locking for this TID? This is a bit of a problem. */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); } else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* * group addressed frames get a sequence number from * a different sequence number space. */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]; INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE); } else { /* Manually assign sequence number */ seqno = ni->ni_txseqs[tid]; INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE); } *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m0, seqno); /* Return so caller can do something with it if needed */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: -> subtype=0x%x, tid=%d, seqno=%d\n", __func__, subtype, tid, seqno); return seqno; } /* * Attempt to direct dispatch an aggregate frame to hardware. * If the frame is out of BAW, queue. * Otherwise, schedule it as a single frame. */ static void ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_txq *txq, struct ath_buf *bf) { struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid]; struct ieee80211_tx_ampdu *tap; ATH_TX_LOCK_ASSERT(sc); tap = ath_tx_get_tx_tid(an, tid->tid); /* paused? queue */ if (! ath_tx_tid_can_tx_or_sched(sc, tid)) { ATH_TID_INSERT_HEAD(tid, bf, bf_list); /* XXX don't sched - we're paused! */ return; } /* outside baw? queue */ if (bf->bf_state.bfs_dobaw && (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, SEQNO(bf->bf_state.bfs_seqno)))) { ATH_TID_INSERT_HEAD(tid, bf, bf_list); ath_tx_tid_sched(sc, tid); return; } /* * This is a temporary check and should be removed once * all the relevant code paths have been fixed. * * During aggregate retries, it's possible that the head * frame will fail (which has the bfs_aggr and bfs_nframes * fields set for said aggregate) and will be retried as * a single frame. In this instance, the values should * be reset or the completion code will get upset with you. */ if (bf->bf_state.bfs_aggr != 0 || bf->bf_state.bfs_nframes > 1) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: bfs_aggr=%d, bfs_nframes=%d\n", __func__, bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes); bf->bf_state.bfs_aggr = 0; bf->bf_state.bfs_nframes = 1; } /* Update CLRDMASK just before this frame is queued */ ath_tx_update_clrdmask(sc, tid, bf); /* Direct dispatch to hardware */ ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen, false); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); /* Statistics */ sc->sc_aggr_stats.aggr_low_hwq_single_pkt++; /* Track per-TID hardware queue depth correctly */ tid->hwq_depth++; /* Add to BAW */ if (bf->bf_state.bfs_dobaw) { ath_tx_addto_baw(sc, an, tid, bf); bf->bf_state.bfs_addedbaw = 1; } /* Set completion handler, multi-frame aggregate or not */ bf->bf_comp = ath_tx_aggr_comp; /* * Update the current leak count if * we're leaking frames; and set the * MORE flag as appropriate. */ ath_tx_leak_count_update(sc, tid, bf); /* Hand off to hardware */ ath_tx_handoff(sc, txq, bf); } /* * Attempt to send the packet. * If the queue isn't busy, direct-dispatch. * If the queue is busy enough, queue the given packet on the * relevant software queue. */ void ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq, int queue_to_head, struct ath_buf *bf) { struct ath_node *an = ATH_NODE(ni); struct ieee80211_frame *wh; struct ath_tid *atid; int pri, tid; struct mbuf *m0 = bf->bf_m; ATH_TX_LOCK_ASSERT(sc); /* Fetch the TID - non-QoS frames get assigned to TID 16 */ wh = mtod(m0, struct ieee80211_frame *); pri = ath_tx_getac(sc, m0); tid = ath_tx_gettid(sc, m0); atid = &an->an_tid[tid]; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n", __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh)); /* Set local packet state, used to queue packets to hardware */ /* XXX potentially duplicate info, re-check */ bf->bf_state.bfs_tid = tid; bf->bf_state.bfs_tx_queue = txq->axq_qnum; bf->bf_state.bfs_pri = pri; /* * If the hardware queue isn't busy, queue it directly. * If the hardware queue is busy, queue it. * If the TID is paused or the traffic it outside BAW, software * queue it. * * If the node is in power-save and we're leaking a frame, * leak a single frame. */ if (! ath_tx_tid_can_tx_or_sched(sc, atid)) { /* TID is paused, queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__); /* * If the caller requested that it be sent at a high * priority, queue it at the head of the list. */ if (queue_to_head) ATH_TID_INSERT_HEAD(atid, bf, bf_list); else ATH_TID_INSERT_TAIL(atid, bf, bf_list); } else if (ath_tx_ampdu_pending(sc, an, tid)) { /* AMPDU pending; queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__); ATH_TID_INSERT_TAIL(atid, bf, bf_list); /* XXX sched? */ } else if (ath_tx_ampdu_running(sc, an, tid)) { /* * AMPDU running, queue single-frame if the hardware queue * isn't busy. * * If the hardware queue is busy, sending an aggregate frame * then just hold off so we can queue more aggregate frames. * * Otherwise we may end up with single frames leaking through * because we are dispatching them too quickly. * * TODO: maybe we should treat this as two policies - minimise * latency, or maximise throughput. Then for BE/BK we can * maximise throughput, and VO/VI (if AMPDU is enabled!) * minimise latency. */ /* * Always queue the frame to the tail of the list. */ ATH_TID_INSERT_TAIL(atid, bf, bf_list); /* * If the hardware queue isn't busy, direct dispatch * the head frame in the list. * * Note: if we're say, configured to do ADDBA but not A-MPDU * then maybe we want to still queue two non-aggregate frames * to the hardware. Again with the per-TID policy * configuration..) * * Otherwise, schedule the TID. */ /* XXX TXQ locking */ if (txq->axq_depth + txq->fifo.axq_depth == 0) { bf = ATH_TID_FIRST(atid); ATH_TID_REMOVE(atid, bf, bf_list); /* * Ensure it's definitely treated as a non-AMPDU * frame - this information may have been left * over from a previous attempt. */ bf->bf_state.bfs_aggr = 0; bf->bf_state.bfs_nframes = 1; /* Queue to the hardware */ ath_tx_xmit_aggr(sc, an, txq, bf); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_aggr\n", __func__); } else { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ampdu; swq'ing\n", __func__); ath_tx_tid_sched(sc, atid); } /* * If we're not doing A-MPDU, be prepared to direct dispatch * up to both limits if possible. This particular corner * case may end up with packet starvation between aggregate * traffic and non-aggregate traffic: we want to ensure * that non-aggregate stations get a few frames queued to the * hardware before the aggregate station(s) get their chance. * * So if you only ever see a couple of frames direct dispatched * to the hardware from a non-AMPDU client, check both here * and in the software queue dispatcher to ensure that those * non-AMPDU stations get a fair chance to transmit. */ /* XXX TXQ locking */ } else if ((txq->axq_depth + txq->fifo.axq_depth < sc->sc_hwq_limit_nonaggr) && (txq->axq_aggr_depth < sc->sc_hwq_limit_aggr)) { /* AMPDU not running, attempt direct dispatch */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__); /* See if clrdmask needs to be set */ ath_tx_update_clrdmask(sc, atid, bf); /* * Update the current leak count if * we're leaking frames; and set the * MORE flag as appropriate. */ ath_tx_leak_count_update(sc, atid, bf); /* * Dispatch the frame. */ ath_tx_xmit_normal(sc, txq, bf); } else { /* Busy; queue */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__); ATH_TID_INSERT_TAIL(atid, bf, bf_list); ath_tx_tid_sched(sc, atid); } } /* * Only set the clrdmask bit if none of the nodes are currently * filtered. * * XXX TODO: go through all the callers and check to see * which are being called in the context of looping over all * TIDs (eg, if all tids are being paused, resumed, etc.) * That'll avoid O(n^2) complexity here. */ static void ath_tx_set_clrdmask(struct ath_softc *sc, struct ath_node *an) { int i; ATH_TX_LOCK_ASSERT(sc); for (i = 0; i < IEEE80211_TID_SIZE; i++) { if (an->an_tid[i].isfiltered == 1) return; } an->clrdmask = 1; } /* * Configure the per-TID node state. * * This likely belongs in if_ath_node.c but I can't think of anywhere * else to put it just yet. * * This sets up the SLISTs and the mutex as appropriate. */ void ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an) { int i, j; struct ath_tid *atid; for (i = 0; i < IEEE80211_TID_SIZE; i++) { atid = &an->an_tid[i]; /* XXX now with this bzer(), is the field 0'ing needed? */ bzero(atid, sizeof(*atid)); TAILQ_INIT(&atid->tid_q); TAILQ_INIT(&atid->filtq.tid_q); atid->tid = i; atid->an = an; for (j = 0; j < ATH_TID_MAX_BUFS; j++) atid->tx_buf[j] = NULL; atid->baw_head = atid->baw_tail = 0; atid->paused = 0; atid->sched = 0; atid->hwq_depth = 0; atid->cleanup_inprogress = 0; if (i == IEEE80211_NONQOS_TID) atid->ac = ATH_NONQOS_TID_AC; else atid->ac = TID_TO_WME_AC(i); } an->clrdmask = 1; /* Always start by setting this bit */ } /* * Pause the current TID. This stops packets from being transmitted * on it. * * Since this is also called from upper layers as well as the driver, * it will get the TID lock. */ static void ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid) { ATH_TX_LOCK_ASSERT(sc); tid->paused++; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, paused = %d\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid, tid->paused); } /* * Unpause the current TID, and schedule it if needed. */ static void ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid) { ATH_TX_LOCK_ASSERT(sc); /* * There's some odd places where ath_tx_tid_resume() is called * when it shouldn't be; this works around that particular issue * until it's actually resolved. */ if (tid->paused == 0) { device_printf(sc->sc_dev, "%s: [%6D]: tid=%d, paused=0?\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid); } else { tid->paused--; } DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: [%6D]: tid=%d, unpaused = %d\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid, tid->paused); if (tid->paused) return; /* * Override the clrdmask configuration for the next frame * from this TID, just to get the ball rolling. */ ath_tx_set_clrdmask(sc, tid->an); if (tid->axq_depth == 0) return; /* XXX isfiltered shouldn't ever be 0 at this point */ if (tid->isfiltered == 1) { DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: filtered?!\n", __func__); return; } ath_tx_tid_sched(sc, tid); /* * Queue the software TX scheduler. */ ath_tx_swq_kick(sc); } /* * Add the given ath_buf to the TID filtered frame list. * This requires the TID be filtered. */ static void ath_tx_tid_filt_addbuf(struct ath_softc *sc, struct ath_tid *tid, struct ath_buf *bf) { ATH_TX_LOCK_ASSERT(sc); if (!tid->isfiltered) DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: not filtered?!\n", __func__); DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p\n", __func__, bf); /* Set the retry bit and bump the retry counter */ ath_tx_set_retry(sc, bf); sc->sc_stats.ast_tx_swfiltered++; ATH_TID_FILT_INSERT_TAIL(tid, bf, bf_list); } /* * Handle a completed filtered frame from the given TID. * This just enables/pauses the filtered frame state if required * and appends the filtered frame to the filtered queue. */ static void ath_tx_tid_filt_comp_buf(struct ath_softc *sc, struct ath_tid *tid, struct ath_buf *bf) { ATH_TX_LOCK_ASSERT(sc); if (! tid->isfiltered) { DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d; filter transition\n", __func__, tid->tid); tid->isfiltered = 1; ath_tx_tid_pause(sc, tid); } /* Add the frame to the filter queue */ ath_tx_tid_filt_addbuf(sc, tid, bf); } /* * Complete the filtered frame TX completion. * * If there are no more frames in the hardware queue, unpause/unfilter * the TID if applicable. Otherwise we will wait for a node PS transition * to unfilter. */ static void ath_tx_tid_filt_comp_complete(struct ath_softc *sc, struct ath_tid *tid) { struct ath_buf *bf; int do_resume = 0; ATH_TX_LOCK_ASSERT(sc); if (tid->hwq_depth != 0) return; DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, hwq=0, transition back\n", __func__, tid->tid); if (tid->isfiltered == 1) { tid->isfiltered = 0; do_resume = 1; } /* XXX ath_tx_tid_resume() also calls ath_tx_set_clrdmask()! */ ath_tx_set_clrdmask(sc, tid->an); /* XXX this is really quite inefficient */ while ((bf = ATH_TID_FILT_LAST(tid, ath_bufhead_s)) != NULL) { ATH_TID_FILT_REMOVE(tid, bf, bf_list); ATH_TID_INSERT_HEAD(tid, bf, bf_list); } /* And only resume if we had paused before */ if (do_resume) ath_tx_tid_resume(sc, tid); } /* * Called when a single (aggregate or otherwise) frame is completed. * * Returns 0 if the buffer could be added to the filtered list * (cloned or otherwise), 1 if the buffer couldn't be added to the * filtered list (failed clone; expired retry) and the caller should * free it and handle it like a failure (eg by sending a BAR.) * * since the buffer may be cloned, bf must be not touched after this * if the return value is 0. */ static int ath_tx_tid_filt_comp_single(struct ath_softc *sc, struct ath_tid *tid, struct ath_buf *bf) { struct ath_buf *nbf; int retval; ATH_TX_LOCK_ASSERT(sc); /* * Don't allow a filtered frame to live forever. */ if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { sc->sc_stats.ast_tx_swretrymax++; DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: bf=%p, seqno=%d, exceeded retries\n", __func__, bf, SEQNO(bf->bf_state.bfs_seqno)); retval = 1; /* error */ goto finish; } /* * A busy buffer can't be added to the retry list. * It needs to be cloned. */ if (bf->bf_flags & ATH_BUF_BUSY) { nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: busy buffer clone: %p -> %p\n", __func__, bf, nbf); } else { nbf = bf; } if (nbf == NULL) { DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: busy buffer couldn't be cloned (%p)!\n", __func__, bf); retval = 1; /* error */ } else { ath_tx_tid_filt_comp_buf(sc, tid, nbf); retval = 0; /* ok */ } finish: ath_tx_tid_filt_comp_complete(sc, tid); return (retval); } static void ath_tx_tid_filt_comp_aggr(struct ath_softc *sc, struct ath_tid *tid, struct ath_buf *bf_first, ath_bufhead *bf_q) { struct ath_buf *bf, *bf_next, *nbf; ATH_TX_LOCK_ASSERT(sc); bf = bf_first; while (bf) { bf_next = bf->bf_next; bf->bf_next = NULL; /* Remove it from the aggr list */ /* * Don't allow a filtered frame to live forever. */ if (bf->bf_state.bfs_retries > SWMAX_RETRIES) { sc->sc_stats.ast_tx_swretrymax++; DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, bf=%p, seqno=%d, exceeded retries\n", __func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno)); TAILQ_INSERT_TAIL(bf_q, bf, bf_list); goto next; } if (bf->bf_flags & ATH_BUF_BUSY) { nbf = ath_tx_retry_clone(sc, tid->an, tid, bf); DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, busy buffer cloned: %p -> %p, seqno=%d\n", __func__, tid->tid, bf, nbf, SEQNO(bf->bf_state.bfs_seqno)); } else { nbf = bf; } /* * If the buffer couldn't be cloned, add it to bf_q; * the caller will free the buffer(s) as required. */ if (nbf == NULL) { DPRINTF(sc, ATH_DEBUG_SW_TX_FILT, "%s: tid=%d, buffer couldn't be cloned! (%p) seqno=%d\n", __func__, tid->tid, bf, SEQNO(bf->bf_state.bfs_seqno)); TAILQ_INSERT_TAIL(bf_q, bf, bf_list); } else { ath_tx_tid_filt_comp_buf(sc, tid, nbf); } next: bf = bf_next; } ath_tx_tid_filt_comp_complete(sc, tid); } /* * Suspend the queue because we need to TX a BAR. */ static void ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid) { ATH_TX_LOCK_ASSERT(sc); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%d, bar_wait=%d, bar_tx=%d, called\n", __func__, tid->tid, tid->bar_wait, tid->bar_tx); /* We shouldn't be called when bar_tx is 1 */ if (tid->bar_tx) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: bar_tx is 1?!\n", __func__); } /* If we've already been called, just be patient. */ if (tid->bar_wait) return; /* Wait! */ tid->bar_wait = 1; /* Only one pause, no matter how many frames fail */ ath_tx_tid_pause(sc, tid); } /* * We've finished with BAR handling - either we succeeded or * failed. Either way, unsuspend TX. */ static void ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid) { ATH_TX_LOCK_ASSERT(sc); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, called\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid); if (tid->bar_tx == 0 || tid->bar_wait == 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid, tid->bar_tx, tid->bar_wait); } tid->bar_tx = tid->bar_wait = 0; ath_tx_tid_resume(sc, tid); } /* * Return whether we're ready to TX a BAR frame. * * Requires the TID lock be held. */ static int ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid) { ATH_TX_LOCK_ASSERT(sc); if (tid->bar_wait == 0 || tid->hwq_depth > 0) return (0); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, bar ready\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid); return (1); } /* * Check whether the current TID is ready to have a BAR * TXed and if so, do the TX. * * Since the TID/TXQ lock can't be held during a call to * ieee80211_send_bar(), we have to do the dirty thing of unlocking it, * sending the BAR and locking it again. * * Eventually, the code to send the BAR should be broken out * from this routine so the lock doesn't have to be reacquired * just to be immediately dropped by the caller. */ static void ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid) { struct ieee80211_tx_ampdu *tap; ATH_TX_LOCK_ASSERT(sc); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, called\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid); tap = ath_tx_get_tx_tid(tid->an, tid->tid); /* * This is an error condition! */ if (tid->bar_wait == 0 || tid->bar_tx == 1) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, bar_tx=%d, bar_wait=%d: ?\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid, tid->bar_tx, tid->bar_wait); return; } /* Don't do anything if we still have pending frames */ if (tid->hwq_depth > 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, hwq_depth=%d, waiting\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid, tid->hwq_depth); return; } /* We're now about to TX */ tid->bar_tx = 1; /* * Override the clrdmask configuration for the next frame, * just to get the ball rolling. */ ath_tx_set_clrdmask(sc, tid->an); /* * Calculate new BAW left edge, now that all frames have either * succeeded or failed. * * XXX verify this is _actually_ the valid value to begin at! */ DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, new BAW left edge=%d\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid, tap->txa_start); /* Try sending the BAR frame */ /* We can't hold the lock here! */ ATH_TX_UNLOCK(sc); if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) { /* Success? Now we wait for notification that it's done */ ATH_TX_LOCK(sc); return; } /* Failure? For now, warn loudly and continue */ ATH_TX_LOCK(sc); DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: TID=%d, failed to TX BAR, continue!\n", __func__, tid->an->an_node.ni_macaddr, ":", tid->tid); ath_tx_tid_bar_unsuspend(sc, tid); } static void ath_tx_tid_drain_pkt(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, ath_bufhead *bf_cq, struct ath_buf *bf) { ATH_TX_LOCK_ASSERT(sc); /* * If the current TID is running AMPDU, update * the BAW. */ if (ath_tx_ampdu_running(sc, an, tid->tid) && bf->bf_state.bfs_dobaw) { /* * Only remove the frame from the BAW if it's * been transmitted at least once; this means * the frame was in the BAW to begin with. */ if (bf->bf_state.bfs_retries > 0) { ath_tx_update_baw(sc, an, tid, bf); bf->bf_state.bfs_dobaw = 0; } #if 0 /* * This has become a non-fatal error now */ if (! bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX_BAW "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); #endif } /* Strip it out of an aggregate list if it was in one */ bf->bf_next = NULL; /* Insert on the free queue to be freed by the caller */ TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); } static void ath_tx_tid_drain_print(struct ath_softc *sc, struct ath_node *an, const char *pfx, struct ath_tid *tid, struct ath_buf *bf) { struct ieee80211_node *ni = &an->an_node; struct ath_txq *txq; struct ieee80211_tx_ampdu *tap; txq = sc->sc_ac2q[tid->ac]; tap = ath_tx_get_tx_tid(an, tid->tid); DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, "%s: %s: %6D: bf=%p: addbaw=%d, dobaw=%d, " "seqno=%d, retry=%d\n", __func__, pfx, ni->ni_macaddr, ":", bf, bf->bf_state.bfs_addedbaw, bf->bf_state.bfs_dobaw, SEQNO(bf->bf_state.bfs_seqno), bf->bf_state.bfs_retries); DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, "%s: %s: %6D: bf=%p: txq[%d] axq_depth=%d, axq_aggr_depth=%d\n", __func__, pfx, ni->ni_macaddr, ":", bf, txq->axq_qnum, txq->axq_depth, txq->axq_aggr_depth); DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, "%s: %s: %6D: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d, " "isfiltered=%d\n", __func__, pfx, ni->ni_macaddr, ":", bf, tid->axq_depth, tid->hwq_depth, tid->bar_wait, tid->isfiltered); DPRINTF(sc, ATH_DEBUG_SW_TX | ATH_DEBUG_RESET, "%s: %s: %6D: tid %d: " "sched=%d, paused=%d, " "incomp=%d, baw_head=%d, " "baw_tail=%d txa_start=%d, ni_txseqs=%d\n", __func__, pfx, ni->ni_macaddr, ":", tid->tid, tid->sched, tid->paused, tid->incomp, tid->baw_head, tid->baw_tail, tap == NULL ? -1 : tap->txa_start, ni->ni_txseqs[tid->tid]); /* XXX Dump the frame, see what it is? */ if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) ieee80211_dump_pkt(ni->ni_ic, mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 0, -1); } /* * Free any packets currently pending in the software TX queue. * * This will be called when a node is being deleted. * * It can also be called on an active node during an interface * reset or state transition. * * (From Linux/reference): * * TODO: For frame(s) that are in the retry state, we will reuse the * sequence number(s) without setting the retry bit. The * alternative is to give up on these and BAR the receiver's window * forward. */ static void ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, ath_bufhead *bf_cq) { struct ath_buf *bf; struct ieee80211_tx_ampdu *tap; struct ieee80211_node *ni = &an->an_node; int t; tap = ath_tx_get_tx_tid(an, tid->tid); ATH_TX_LOCK_ASSERT(sc); /* Walk the queue, free frames */ t = 0; for (;;) { bf = ATH_TID_FIRST(tid); if (bf == NULL) { break; } if (t == 0) { ath_tx_tid_drain_print(sc, an, "norm", tid, bf); // t = 1; } ATH_TID_REMOVE(tid, bf, bf_list); ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); } /* And now, drain the filtered frame queue */ t = 0; for (;;) { bf = ATH_TID_FILT_FIRST(tid); if (bf == NULL) break; if (t == 0) { ath_tx_tid_drain_print(sc, an, "filt", tid, bf); // t = 1; } ATH_TID_FILT_REMOVE(tid, bf, bf_list); ath_tx_tid_drain_pkt(sc, an, tid, bf_cq, bf); } /* * Override the clrdmask configuration for the next frame * in case there is some future transmission, just to get * the ball rolling. * * This won't hurt things if the TID is about to be freed. */ ath_tx_set_clrdmask(sc, tid->an); /* * Now that it's completed, grab the TID lock and update * the sequence number and BAW window. * Because sequence numbers have been assigned to frames * that haven't been sent yet, it's entirely possible * we'll be called with some pending frames that have not * been transmitted. * * The cleaner solution is to do the sequence number allocation * when the packet is first transmitted - and thus the "retries" * check above would be enough to update the BAW/seqno. */ /* But don't do it for non-QoS TIDs */ if (tap) { #if 1 DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: node %p: TID %d: sliding BAW left edge to %d\n", __func__, ni->ni_macaddr, ":", an, tid->tid, tap->txa_start); #endif ni->ni_txseqs[tid->tid] = tap->txa_start; tid->baw_tail = tid->baw_head; } } /* * Reset the TID state. This must be only called once the node has * had its frames flushed from this TID, to ensure that no other * pause / unpause logic can kick in. */ static void ath_tx_tid_reset(struct ath_softc *sc, struct ath_tid *tid) { #if 0 tid->bar_wait = tid->bar_tx = tid->isfiltered = 0; tid->paused = tid->sched = tid->addba_tx_pending = 0; tid->incomp = tid->cleanup_inprogress = 0; #endif /* * If we have a bar_wait set, we need to unpause the TID * here. Otherwise once cleanup has finished, the TID won't * have the right paused counter. * * XXX I'm not going through resume here - I don't want the * node to be rescheuled just yet. This however should be * methodized! */ if (tid->bar_wait) { if (tid->paused > 0) { tid->paused --; } } /* * XXX same with a currently filtered TID. * * Since this is being called during a flush, we assume that * the filtered frame list is actually empty. * * XXX TODO: add in a check to ensure that the filtered queue * depth is actually 0! */ if (tid->isfiltered) { if (tid->paused > 0) { tid->paused --; } } /* * Clear BAR, filtered frames, scheduled and ADDBA pending. * The TID may be going through cleanup from the last association * where things in the BAW are still in the hardware queue. */ tid->bar_wait = 0; tid->bar_tx = 0; tid->isfiltered = 0; tid->sched = 0; tid->addba_tx_pending = 0; /* * XXX TODO: it may just be enough to walk the HWQs and mark * frames for that node as non-aggregate; or mark the ath_node * with something that indicates that aggregation is no longer * occurring. Then we can just toss the BAW complaints and * do a complete hard reset of state here - no pause, no * complete counter, etc. */ } /* * Flush all software queued packets for the given node. * * This occurs when a completion handler frees the last buffer * for a node, and the node is thus freed. This causes the node * to be cleaned up, which ends up calling ath_tx_node_flush. */ void ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an) { int tid; ath_bufhead bf_cq; struct ath_buf *bf; TAILQ_INIT(&bf_cq); ATH_KTR(sc, ATH_KTR_NODE, 1, "ath_tx_node_flush: flush node; ni=%p", &an->an_node); ATH_TX_LOCK(sc); DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: flush; is_powersave=%d, stack_psq=%d, tim=%d, " "swq_depth=%d, clrdmask=%d, leak_count=%d\n", __func__, an->an_node.ni_macaddr, ":", an->an_is_powersave, an->an_stack_psq, an->an_tim_set, an->an_swq_depth, an->clrdmask, an->an_leak_count); for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { struct ath_tid *atid = &an->an_tid[tid]; /* Free packets */ ath_tx_tid_drain(sc, an, atid, &bf_cq); /* Remove this tid from the list of active tids */ ath_tx_tid_unsched(sc, atid); /* Reset the per-TID pause, BAR, etc state */ ath_tx_tid_reset(sc, atid); } /* * Clear global leak count */ an->an_leak_count = 0; ATH_TX_UNLOCK(sc); /* Handle completed frames */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Drain all the software TXQs currently with traffic queued. */ void ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq) { struct ath_tid *tid; ath_bufhead bf_cq; struct ath_buf *bf; TAILQ_INIT(&bf_cq); ATH_TX_LOCK(sc); /* * Iterate over all active tids for the given txq, * flushing and unsched'ing them */ while (! TAILQ_EMPTY(&txq->axq_tidq)) { tid = TAILQ_FIRST(&txq->axq_tidq); ath_tx_tid_drain(sc, tid->an, tid, &bf_cq); ath_tx_tid_unsched(sc, tid); } ATH_TX_UNLOCK(sc); while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Handle completion of non-aggregate session frames. * * This (currently) doesn't implement software retransmission of * non-aggregate frames! * * Software retransmission of non-aggregate frames needs to obey * the strict sequence number ordering, and drop any frames that * will fail this. * * For now, filtered frames and frame transmission will cause * all kinds of issues. So we don't support them. * * So anyone queuing frames via ath_tx_normal_xmit() or * ath_tx_hw_queue_norm() must override and set CLRDMASK. */ void ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ath_tx_status *ts = &bf->bf_status.ds_txstat; /* The TID state is protected behind the TXQ lock */ ATH_TX_LOCK(sc); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n", __func__, bf, fail, atid->hwq_depth - 1); atid->hwq_depth--; #if 0 /* * If the frame was filtered, stick it on the filter frame * queue and complain about it. It shouldn't happen! */ if ((ts->ts_status & HAL_TXERR_FILT) || (ts->ts_status != 0 && atid->isfiltered)) { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: isfiltered=%d, ts_status=%d: huh?\n", __func__, atid->isfiltered, ts->ts_status); ath_tx_tid_filt_comp_buf(sc, atid, bf); } #endif if (atid->isfiltered) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: filtered?!\n", __func__); if (atid->hwq_depth < 0) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n", __func__, atid->hwq_depth); /* If the TID is being cleaned up, track things */ /* XXX refactor! */ if (atid->cleanup_inprogress) { atid->incomp--; if (atid->incomp == 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: cleaned up! resume!\n", __func__, tid); atid->cleanup_inprogress = 0; ath_tx_tid_resume(sc, atid); } } /* * If the queue is filtered, potentially mark it as complete * and reschedule it as needed. * * This is required as there may be a subsequent TX descriptor * for this end-node that has CLRDMASK set, so it's quite possible * that a filtered frame will be followed by a non-filtered * (complete or otherwise) frame. * * XXX should we do this before we complete the frame? */ if (atid->isfiltered) ath_tx_tid_filt_comp_complete(sc, atid); ATH_TX_UNLOCK(sc); /* * punt to rate control if we're not being cleaned up * during a hw queue drain and the frame wanted an ACK. */ if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, ts, bf->bf_state.bfs_pktlen, bf->bf_state.bfs_pktlen, 1, (ts->ts_status == 0) ? 0 : 1); ath_tx_default_comp(sc, bf, fail); } /* * Handle cleanup of aggregate session packets that aren't * an A-MPDU. * * There's no need to update the BAW here - the session is being * torn down. */ static void ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n", __func__, tid, atid->incomp); ATH_TX_LOCK(sc); atid->incomp--; /* XXX refactor! */ if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); if (!bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } if (atid->incomp == 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: cleaned up! resume!\n", __func__, tid); atid->cleanup_inprogress = 0; ath_tx_tid_resume(sc, atid); } ATH_TX_UNLOCK(sc); ath_tx_default_comp(sc, bf, 0); } /* * This as it currently stands is a bit dumb. Ideally we'd just * fail the frame the normal way and have it permanently fail * via the normal aggregate completion path. */ static void ath_tx_tid_cleanup_frame(struct ath_softc *sc, struct ath_node *an, int tid, struct ath_buf *bf_head, ath_bufhead *bf_cq) { struct ath_tid *atid = &an->an_tid[tid]; struct ath_buf *bf, *bf_next; ATH_TX_LOCK_ASSERT(sc); /* * Remove this frame from the queue. */ ATH_TID_REMOVE(atid, bf_head, bf_list); /* * Loop over all the frames in the aggregate. */ bf = bf_head; while (bf != NULL) { bf_next = bf->bf_next; /* next aggregate frame, or NULL */ /* * If it's been added to the BAW we need to kick * it out of the BAW before we continue. * * XXX if it's an aggregate, assert that it's in the * BAW - we shouldn't have it be in an aggregate * otherwise! */ if (bf->bf_state.bfs_addedbaw) { ath_tx_update_baw(sc, an, atid, bf); bf->bf_state.bfs_dobaw = 0; } /* * Give it the default completion handler. */ bf->bf_comp = ath_tx_normal_comp; bf->bf_next = NULL; /* * Add it to the list to free. */ TAILQ_INSERT_TAIL(bf_cq, bf, bf_list); /* * Now advance to the next frame in the aggregate. */ bf = bf_next; } } /* * Performs transmit side cleanup when TID changes from aggregated to * unaggregated and during reassociation. * * For now, this just tosses everything from the TID software queue * whether or not it has been retried and marks the TID as * pending completion if there's anything for this TID queued to * the hardware. * * The caller is responsible for pausing the TID and unpausing the * TID if no cleanup was required. Otherwise the cleanup path will * unpause the TID once the last hardware queued frame is completed. */ static void ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid, ath_bufhead *bf_cq) { struct ath_tid *atid = &an->an_tid[tid]; struct ath_buf *bf, *bf_next; ATH_TX_LOCK_ASSERT(sc); DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: TID %d: called; inprogress=%d\n", __func__, tid, atid->cleanup_inprogress); /* * Move the filtered frames to the TX queue, before * we run off and discard/process things. */ /* XXX this is really quite inefficient */ while ((bf = ATH_TID_FILT_LAST(atid, ath_bufhead_s)) != NULL) { ATH_TID_FILT_REMOVE(atid, bf, bf_list); ATH_TID_INSERT_HEAD(atid, bf, bf_list); } /* * Update the frames in the software TX queue: * * + Discard retry frames in the queue * + Fix the completion function to be non-aggregate */ bf = ATH_TID_FIRST(atid); while (bf) { /* * Grab the next frame in the list, we may * be fiddling with the list. */ bf_next = TAILQ_NEXT(bf, bf_list); /* * Free the frame and all subframes. */ ath_tx_tid_cleanup_frame(sc, an, tid, bf, bf_cq); /* * Next frame! */ bf = bf_next; } /* * If there's anything in the hardware queue we wait * for the TID HWQ to empty. */ if (atid->hwq_depth > 0) { /* * XXX how about we kill atid->incomp, and instead * replace it with a macro that checks that atid->hwq_depth * is 0? */ atid->incomp = atid->hwq_depth; atid->cleanup_inprogress = 1; } if (atid->cleanup_inprogress) DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: cleanup needed: %d packets\n", __func__, tid, atid->incomp); /* Owner now must free completed frames */ } static struct ath_buf * ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, struct ath_buf *bf) { struct ath_buf *nbf; int error; /* * Clone the buffer. This will handle the dma unmap and * copy the node reference to the new buffer. If this * works out, 'bf' will have no DMA mapping, no mbuf * pointer and no node reference. */ nbf = ath_buf_clone(sc, bf); #if 0 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: ATH_BUF_BUSY; cloning\n", __func__); #endif if (nbf == NULL) { /* Failed to clone */ DPRINTF(sc, ATH_DEBUG_XMIT, "%s: failed to clone a busy buffer\n", __func__); return NULL; } /* Setup the dma for the new buffer */ error = ath_tx_dmasetup(sc, nbf, nbf->bf_m); if (error != 0) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: failed to setup dma for clone\n", __func__); /* * Put this at the head of the list, not tail; * that way it doesn't interfere with the * busy buffer logic (which uses the tail of * the list.) */ ATH_TXBUF_LOCK(sc); ath_returnbuf_head(sc, nbf); ATH_TXBUF_UNLOCK(sc); return NULL; } /* Update BAW if required, before we free the original buf */ if (bf->bf_state.bfs_dobaw) ath_tx_switch_baw_buf(sc, an, tid, bf, nbf); /* Free original buffer; return new buffer */ ath_freebuf(sc, bf); return nbf; } /* * Handle retrying an unaggregate frame in an aggregate * session. * * If too many retries occur, pause the TID, wait for * any further retransmits (as there's no reason why * non-aggregate frames in an aggregate session are * transmitted in-order; they just have to be in-BAW) * and then queue a BAR. */ static void ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ieee80211_tx_ampdu *tap; ATH_TX_LOCK(sc); tap = ath_tx_get_tx_tid(an, tid); /* * If the buffer is marked as busy, we can't directly * reuse it. Instead, try to clone the buffer. * If the clone is successful, recycle the old buffer. * If the clone is unsuccessful, set bfs_retries to max * to force the next bit of code to free the buffer * for us. */ if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && (bf->bf_flags & ATH_BUF_BUSY)) { struct ath_buf *nbf; nbf = ath_tx_retry_clone(sc, an, atid, bf); if (nbf) /* bf has been freed at this point */ bf = nbf; else bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; } if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, "%s: exceeded retries; seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); sc->sc_stats.ast_tx_swretrymax++; /* Update BAW anyway */ if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); if (! bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } bf->bf_state.bfs_dobaw = 0; /* Suspend the TX queue and get ready to send the BAR */ ath_tx_tid_bar_suspend(sc, atid); /* Send the BAR if there are no other frames waiting */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TX_UNLOCK(sc); /* Free buffer, bf is free after this call */ ath_tx_default_comp(sc, bf, 0); return; } /* * This increments the retry counter as well as * sets the retry flag in the ath_buf and packet * body. */ ath_tx_set_retry(sc, bf); sc->sc_stats.ast_tx_swretries++; /* * Insert this at the head of the queue, so it's * retried before any current/subsequent frames. */ ATH_TID_INSERT_HEAD(atid, bf, bf_list); ath_tx_tid_sched(sc, atid); /* Send the BAR if there are no other frames waiting */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TX_UNLOCK(sc); } /* * Common code for aggregate excessive retry/subframe retry. * If retrying, queues buffers to bf_q. If not, frees the * buffers. * * XXX should unify this with ath_tx_aggr_retry_unaggr() */ static int ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf, ath_bufhead *bf_q) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; ATH_TX_LOCK_ASSERT(sc); /* XXX clr11naggr should be done for all subframes */ ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0); /* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */ /* * If the buffer is marked as busy, we can't directly * reuse it. Instead, try to clone the buffer. * If the clone is successful, recycle the old buffer. * If the clone is unsuccessful, set bfs_retries to max * to force the next bit of code to free the buffer * for us. */ if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) && (bf->bf_flags & ATH_BUF_BUSY)) { struct ath_buf *nbf; nbf = ath_tx_retry_clone(sc, an, atid, bf); if (nbf) /* bf has been freed at this point */ bf = nbf; else bf->bf_state.bfs_retries = SWMAX_RETRIES + 1; } if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) { sc->sc_stats.ast_tx_swretrymax++; DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES, "%s: max retries: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); ath_tx_update_baw(sc, an, atid, bf); if (!bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX_BAW, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); bf->bf_state.bfs_dobaw = 0; return 1; } ath_tx_set_retry(sc, bf); sc->sc_stats.ast_tx_swretries++; bf->bf_next = NULL; /* Just to make sure */ /* Clear the aggregate state */ bf->bf_state.bfs_aggr = 0; bf->bf_state.bfs_ndelim = 0; /* ??? needed? */ bf->bf_state.bfs_nframes = 1; TAILQ_INSERT_TAIL(bf_q, bf, bf_list); return 0; } /* * error pkt completion for an aggregate destination */ static void ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first, struct ath_tid *tid) { struct ieee80211_node *ni = bf_first->bf_node; struct ath_node *an = ATH_NODE(ni); struct ath_buf *bf_next, *bf; ath_bufhead bf_q; int drops = 0; struct ieee80211_tx_ampdu *tap; ath_bufhead bf_cq; TAILQ_INIT(&bf_q); TAILQ_INIT(&bf_cq); /* * Update rate control - all frames have failed. */ ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc, &bf_first->bf_status.ds_txstat, bf_first->bf_state.bfs_al, bf_first->bf_state.bfs_rc_maxpktlen, bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes); ATH_TX_LOCK(sc); tap = ath_tx_get_tx_tid(an, tid->tid); sc->sc_stats.ast_tx_aggr_failall++; /* Retry all subframes */ bf = bf_first; while (bf) { bf_next = bf->bf_next; bf->bf_next = NULL; /* Remove it from the aggr list */ sc->sc_stats.ast_tx_aggr_fail++; if (ath_tx_retry_subframe(sc, bf, &bf_q)) { drops++; bf->bf_next = NULL; TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); } bf = bf_next; } /* Prepend all frames to the beginning of the queue */ while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { TAILQ_REMOVE(&bf_q, bf, bf_list); ATH_TID_INSERT_HEAD(tid, bf, bf_list); } /* * Schedule the TID to be re-tried. */ ath_tx_tid_sched(sc, tid); /* * send bar if we dropped any frames * * Keep the txq lock held for now, as we need to ensure * that ni_txseqs[] is consistent (as it's being updated * in the ifnet TX context or raw TX context.) */ if (drops) { /* Suspend the TX queue and get ready to send the BAR */ ath_tx_tid_bar_suspend(sc, tid); } /* * Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, tid)) ath_tx_tid_bar_tx(sc, tid); ATH_TX_UNLOCK(sc); /* Complete frames which errored out */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Handle clean-up of packets from an aggregate list. * * There's no need to update the BAW here - the session is being * torn down. */ static void ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first) { struct ath_buf *bf, *bf_next; struct ieee80211_node *ni = bf_first->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf_first->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; ATH_TX_LOCK(sc); /* update incomp */ atid->incomp--; /* Update the BAW */ bf = bf_first; while (bf) { /* XXX refactor! */ if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); if (!bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } bf = bf->bf_next; } if (atid->incomp == 0) { DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: cleaned up! resume!\n", __func__, tid); atid->cleanup_inprogress = 0; ath_tx_tid_resume(sc, atid); } /* Send BAR if required */ /* XXX why would we send a BAR when transitioning to non-aggregation? */ /* * XXX TODO: we should likely just tear down the BAR state here, * rather than sending a BAR. */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TX_UNLOCK(sc); /* Handle frame completion as individual frames */ bf = bf_first; while (bf) { bf_next = bf->bf_next; bf->bf_next = NULL; ath_tx_default_comp(sc, bf, 1); bf = bf_next; } } /* * Handle completion of an set of aggregate frames. * * Note: the completion handler is the last descriptor in the aggregate, * not the last descriptor in the first frame. */ static void ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first, int fail) { //struct ath_desc *ds = bf->bf_lastds; struct ieee80211_node *ni = bf_first->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf_first->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ath_tx_status ts; struct ieee80211_tx_ampdu *tap; ath_bufhead bf_q; ath_bufhead bf_cq; int seq_st, tx_ok; int hasba, isaggr; uint32_t ba[2]; struct ath_buf *bf, *bf_next; int ba_index; int drops = 0; int nframes = 0, nbad = 0, nf; int pktlen; int agglen, rc_agglen; /* XXX there's too much on the stack? */ struct ath_rc_series rc[ATH_RC_NUM]; int txseq; DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n", __func__, atid->hwq_depth); /* * Take a copy; this may be needed -after- bf_first * has been completed and freed. */ ts = bf_first->bf_status.ds_txstat; agglen = bf_first->bf_state.bfs_al; rc_agglen = bf_first->bf_state.bfs_rc_maxpktlen; TAILQ_INIT(&bf_q); TAILQ_INIT(&bf_cq); /* The TID state is kept behind the TXQ lock */ ATH_TX_LOCK(sc); atid->hwq_depth--; if (atid->hwq_depth < 0) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: hwq_depth < 0: %d\n", __func__, atid->hwq_depth); /* * If the TID is filtered, handle completing the filter * transition before potentially kicking it to the cleanup * function. * * XXX this is duplicate work, ew. */ if (atid->isfiltered) ath_tx_tid_filt_comp_complete(sc, atid); /* * Punt cleanup to the relevant function, not our problem now */ if (atid->cleanup_inprogress) { if (atid->isfiltered) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: isfiltered=1, normal_comp?\n", __func__); ATH_TX_UNLOCK(sc); ath_tx_comp_cleanup_aggr(sc, bf_first); return; } /* * If the frame is filtered, transition to filtered frame * mode and add this to the filtered frame list. * * XXX TODO: figure out how this interoperates with * BAR, pause and cleanup states. */ if ((ts.ts_status & HAL_TXERR_FILT) || (ts.ts_status != 0 && atid->isfiltered)) { if (fail != 0) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: isfiltered=1, fail=%d\n", __func__, fail); ath_tx_tid_filt_comp_aggr(sc, atid, bf_first, &bf_cq); /* Remove from BAW */ TAILQ_FOREACH_SAFE(bf, &bf_cq, bf_list, bf_next) { if (bf->bf_state.bfs_addedbaw) drops++; if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); if (!bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } bf->bf_state.bfs_dobaw = 0; } /* * If any intermediate frames in the BAW were dropped when * handling filtering things, send a BAR. */ if (drops) ath_tx_tid_bar_suspend(sc, atid); /* * Finish up by sending a BAR if required and freeing * the frames outside of the TX lock. */ goto finish_send_bar; } /* * XXX for now, use the first frame in the aggregate for * XXX rate control completion; it's at least consistent. */ pktlen = bf_first->bf_state.bfs_pktlen; /* * Handle errors first! * * Here, handle _any_ error as a "exceeded retries" error. * Later on (when filtered frames are to be specially handled) * it'll have to be expanded. */ #if 0 if (ts.ts_status & HAL_TXERR_XRETRY) { #endif if (ts.ts_status != 0) { ATH_TX_UNLOCK(sc); ath_tx_comp_aggr_error(sc, bf_first, atid); return; } tap = ath_tx_get_tx_tid(an, tid); /* * extract starting sequence and block-ack bitmap */ /* XXX endian-ness of seq_st, ba? */ seq_st = ts.ts_seqnum; hasba = !! (ts.ts_flags & HAL_TX_BA); tx_ok = (ts.ts_status == 0); isaggr = bf_first->bf_state.bfs_aggr; ba[0] = ts.ts_ba_low; ba[1] = ts.ts_ba_high; /* * Copy the TX completion status and the rate control * series from the first descriptor, as it may be freed * before the rate control code can get its grubby fingers * into things. */ memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc)); DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, " "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n", __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags, isaggr, seq_st, hasba, ba[0], ba[1]); /* * The reference driver doesn't do this; it simply ignores * this check in its entirety. * * I've seen this occur when using iperf to send traffic * out tid 1 - the aggregate frames are all marked as TID 1, * but the TXSTATUS has TID=0. So, let's just ignore this * check. */ #if 0 /* Occasionally, the MAC sends a tx status for the wrong TID. */ if (tid != ts.ts_tid) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: tid %d != hw tid %d\n", __func__, tid, ts.ts_tid); tx_ok = 0; } #endif /* AR5416 BA bug; this requires an interface reset */ if (isaggr && tx_ok && (! hasba)) { device_printf(sc->sc_dev, "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, " "seq_st=%d\n", __func__, hasba, tx_ok, isaggr, seq_st); taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); /* And as we can't really trust the BA here .. */ ba[0] = 0; ba[1] = 0; seq_st = 0; #ifdef ATH_DEBUG ath_printtxbuf(sc, bf_first, sc->sc_ac2q[atid->ac]->axq_qnum, 0, 0); #endif } /* * Walk the list of frames, figure out which ones were correctly * sent and which weren't. */ bf = bf_first; nf = bf_first->bf_state.bfs_nframes; /* bf_first is going to be invalid once this list is walked */ bf_first = NULL; /* * Walk the list of completed frames and determine * which need to be completed and which need to be * retransmitted. * * For completed frames, the completion functions need * to be called at the end of this function as the last * node reference may free the node. * * Finally, since the TXQ lock can't be held during the * completion callback (to avoid lock recursion), * the completion calls have to be done outside of the * lock. */ while (bf) { nframes++; ba_index = ATH_BA_INDEX(seq_st, SEQNO(bf->bf_state.bfs_seqno)); bf_next = bf->bf_next; bf->bf_next = NULL; /* Remove it from the aggr list */ DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: checking bf=%p seqno=%d; ack=%d\n", __func__, bf, SEQNO(bf->bf_state.bfs_seqno), ATH_BA_ISSET(ba, ba_index)); if (tx_ok && ATH_BA_ISSET(ba, ba_index)) { sc->sc_stats.ast_tx_aggr_ok++; ath_tx_update_baw(sc, an, atid, bf); bf->bf_state.bfs_dobaw = 0; if (!bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); bf->bf_next = NULL; TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); } else { sc->sc_stats.ast_tx_aggr_fail++; if (ath_tx_retry_subframe(sc, bf, &bf_q)) { drops++; bf->bf_next = NULL; TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list); } nbad++; } bf = bf_next; } /* * Now that the BAW updates have been done, unlock * * txseq is grabbed before the lock is released so we * have a consistent view of what -was- in the BAW. * Anything after this point will not yet have been * TXed. */ txseq = tap->txa_start; ATH_TX_UNLOCK(sc); if (nframes != nf) DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: num frames seen=%d; bf nframes=%d\n", __func__, nframes, nf); /* * Now we know how many frames were bad, call the rate * control code. */ if (fail == 0) { ath_tx_update_ratectrl(sc, ni, rc, &ts, agglen, rc_agglen, nframes, nbad); } /* * send bar if we dropped any frames */ if (drops) { /* Suspend the TX queue and get ready to send the BAR */ ATH_TX_LOCK(sc); ath_tx_tid_bar_suspend(sc, atid); ATH_TX_UNLOCK(sc); } DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: txa_start now %d\n", __func__, tap->txa_start); ATH_TX_LOCK(sc); /* Prepend all frames to the beginning of the queue */ while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) { TAILQ_REMOVE(&bf_q, bf, bf_list); ATH_TID_INSERT_HEAD(atid, bf, bf_list); } /* * Reschedule to grab some further frames. */ ath_tx_tid_sched(sc, atid); /* * If the queue is filtered, re-schedule as required. * * This is required as there may be a subsequent TX descriptor * for this end-node that has CLRDMASK set, so it's quite possible * that a filtered frame will be followed by a non-filtered * (complete or otherwise) frame. * * XXX should we do this before we complete the frame? */ if (atid->isfiltered) ath_tx_tid_filt_comp_complete(sc, atid); finish_send_bar: /* * Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TX_UNLOCK(sc); /* Do deferred completion */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 0); } } /* * Handle completion of unaggregated frames in an ADDBA * session. * * Fail is set to 1 if the entry is being freed via a call to * ath_tx_draintxq(). */ static void ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail) { struct ieee80211_node *ni = bf->bf_node; struct ath_node *an = ATH_NODE(ni); int tid = bf->bf_state.bfs_tid; struct ath_tid *atid = &an->an_tid[tid]; struct ath_tx_status ts; int drops = 0; /* * Take a copy of this; filtering/cloning the frame may free the * bf pointer. */ ts = bf->bf_status.ds_txstat; /* * Update rate control status here, before we possibly * punt to retry or cleanup. * * Do it outside of the TXQ lock. */ if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc, &bf->bf_status.ds_txstat, bf->bf_state.bfs_pktlen, bf->bf_state.bfs_pktlen, 1, (ts.ts_status == 0) ? 0 : 1); /* * This is called early so atid->hwq_depth can be tracked. * This unfortunately means that it's released and regrabbed * during retry and cleanup. That's rather inefficient. */ ATH_TX_LOCK(sc); if (tid == IEEE80211_NONQOS_TID) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16!\n", __func__); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n", __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth, SEQNO(bf->bf_state.bfs_seqno)); atid->hwq_depth--; if (atid->hwq_depth < 0) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: hwq_depth < 0: %d\n", __func__, atid->hwq_depth); /* * If the TID is filtered, handle completing the filter * transition before potentially kicking it to the cleanup * function. */ if (atid->isfiltered) ath_tx_tid_filt_comp_complete(sc, atid); /* * If a cleanup is in progress, punt to comp_cleanup; * rather than handling it here. It's thus their * responsibility to clean up, call the completion * function in net80211, etc. */ if (atid->cleanup_inprogress) { if (atid->isfiltered) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: isfiltered=1, normal_comp?\n", __func__); ATH_TX_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n", __func__); ath_tx_comp_cleanup_unaggr(sc, bf); return; } /* * XXX TODO: how does cleanup, BAR and filtered frame handling * overlap? * * If the frame is filtered OR if it's any failure but * the TID is filtered, the frame must be added to the * filtered frame list. * * However - a busy buffer can't be added to the filtered * list as it will end up being recycled without having * been made available for the hardware. */ if ((ts.ts_status & HAL_TXERR_FILT) || (ts.ts_status != 0 && atid->isfiltered)) { int freeframe; if (fail != 0) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: isfiltered=1, fail=%d\n", __func__, fail); freeframe = ath_tx_tid_filt_comp_single(sc, atid, bf); /* * If freeframe=0 then bf is no longer ours; don't * touch it. */ if (freeframe) { /* Remove from BAW */ if (bf->bf_state.bfs_addedbaw) drops++; if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); if (!bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } bf->bf_state.bfs_dobaw = 0; } /* * If the frame couldn't be filtered, treat it as a drop and * prepare to send a BAR. */ if (freeframe && drops) ath_tx_tid_bar_suspend(sc, atid); /* * Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TX_UNLOCK(sc); /* * If freeframe is set, then the frame couldn't be * cloned and bf is still valid. Just complete/free it. */ if (freeframe) ath_tx_default_comp(sc, bf, fail); return; } /* * Don't bother with the retry check if all frames * are being failed (eg during queue deletion.) */ #if 0 if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) { #endif if (fail == 0 && ts.ts_status != 0) { ATH_TX_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n", __func__); ath_tx_aggr_retry_unaggr(sc, bf); return; } /* Success? Complete */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n", __func__, tid, SEQNO(bf->bf_state.bfs_seqno)); if (bf->bf_state.bfs_dobaw) { ath_tx_update_baw(sc, an, atid, bf); bf->bf_state.bfs_dobaw = 0; if (!bf->bf_state.bfs_addedbaw) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: wasn't added: seqno %d\n", __func__, SEQNO(bf->bf_state.bfs_seqno)); } /* * If the queue is filtered, re-schedule as required. * * This is required as there may be a subsequent TX descriptor * for this end-node that has CLRDMASK set, so it's quite possible * that a filtered frame will be followed by a non-filtered * (complete or otherwise) frame. * * XXX should we do this before we complete the frame? */ if (atid->isfiltered) ath_tx_tid_filt_comp_complete(sc, atid); /* * Send BAR if required */ if (ath_tx_tid_bar_tx_ready(sc, atid)) ath_tx_tid_bar_tx(sc, atid); ATH_TX_UNLOCK(sc); ath_tx_default_comp(sc, bf, fail); /* bf is freed at this point */ } void ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) { if (bf->bf_state.bfs_aggr) ath_tx_aggr_comp_aggr(sc, bf, fail); else ath_tx_aggr_comp_unaggr(sc, bf, fail); } /* * Grab the software queue depth that we COULD transmit. * * This includes checks if it's in the BAW, whether it's a frame * that is supposed to be in the BAW. Other checks could be done; * but for now let's try and avoid doing the whole of ath_tx_form_aggr() * here. */ static int ath_tx_tid_swq_depth_bytes(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid) { struct ath_buf *bf; struct ieee80211_tx_ampdu *tap; int nbytes = 0; ATH_TX_LOCK_ASSERT(sc); tap = ath_tx_get_tx_tid(an, tid->tid); /* * Iterate over each buffer and sum the pkt_len. * Bail if we exceed ATH_AGGR_MAXSIZE bytes; we won't * ever queue more than that in a single frame. */ TAILQ_FOREACH(bf, &tid->tid_q, bf_list) { /* * TODO: I'm not sure if we're going to hit cases where * no frames get sent because the list is empty. */ /* Check if it's in the BAW */ if (tap != NULL && (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, SEQNO(bf->bf_state.bfs_seqno)))) { break; } /* Check if it's even supposed to be in the BAW */ if (! bf->bf_state.bfs_dobaw) { break; } nbytes += bf->bf_state.bfs_pktlen; if (nbytes >= ATH_AGGR_MAXSIZE) break; /* * Check if we're likely going to leak a frame * as part of a PSPOLL. Break out at this point; * we're only going to send a single frame anyway. */ if (an->an_leak_count) { break; } } return MIN(nbytes, ATH_AGGR_MAXSIZE); } /* * Schedule some packets from the given node/TID to the hardware. * * This is the aggregate version. */ void ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid) { struct ath_buf *bf; struct ath_txq *txq = sc->sc_ac2q[tid->ac]; struct ieee80211_tx_ampdu *tap; ATH_AGGR_STATUS status; ath_bufhead bf_q; int swq_pktbytes; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid); ATH_TX_LOCK_ASSERT(sc); /* * XXX TODO: If we're called for a queue that we're leaking frames to, * ensure we only leak one. */ tap = ath_tx_get_tx_tid(an, tid->tid); if (tid->tid == IEEE80211_NONQOS_TID) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: called for TID=NONQOS_TID?\n", __func__); for (;;) { status = ATH_AGGR_DONE; /* * If the upper layer has paused the TID, don't * queue any further packets. * * This can also occur from the completion task because * of packet loss; but as its serialised with this code, * it won't "appear" half way through queuing packets. */ if (! ath_tx_tid_can_tx_or_sched(sc, tid)) break; bf = ATH_TID_FIRST(tid); if (bf == NULL) { break; } /* * If the packet doesn't fall within the BAW (eg a NULL * data frame), schedule it directly; continue. */ if (! bf->bf_state.bfs_dobaw) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: non-baw packet\n", __func__); ATH_TID_REMOVE(tid, bf, bf_list); if (bf->bf_state.bfs_nframes > 1) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: aggr=%d, nframes=%d\n", __func__, bf->bf_state.bfs_aggr, bf->bf_state.bfs_nframes); /* * This shouldn't happen - such frames shouldn't * ever have been queued as an aggregate in the * first place. However, make sure the fields * are correctly setup just to be totally sure. */ bf->bf_state.bfs_aggr = 0; bf->bf_state.bfs_nframes = 1; /* Update CLRDMASK just before this frame is queued */ ath_tx_update_clrdmask(sc, tid, bf); ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen, false); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); sc->sc_aggr_stats.aggr_nonbaw_pkt++; /* Queue the packet; continue */ goto queuepkt; } TAILQ_INIT(&bf_q); /* * Loop over the swq to find out how long * each packet is (up until 64k) and provide that * to the rate control lookup. */ swq_pktbytes = ath_tx_tid_swq_depth_bytes(sc, an, tid); ath_tx_do_ratelookup(sc, bf, tid->tid, swq_pktbytes, true); /* * Note this only is used for the fragment paths and * should really be rethought out if we want to do * things like an RTS burst across >1 aggregate. */ ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); status = ath_tx_form_aggr(sc, an, tid, &bf_q); DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: ath_tx_form_aggr() status=%d\n", __func__, status); /* * No frames to be picked up - out of BAW */ if (TAILQ_EMPTY(&bf_q)) break; /* * This assumes that the descriptor list in the ath_bufhead * are already linked together via bf_next pointers. */ bf = TAILQ_FIRST(&bf_q); if (status == ATH_AGGR_8K_LIMITED) sc->sc_aggr_stats.aggr_rts_aggr_limited++; /* * If it's the only frame send as non-aggregate * assume that ath_tx_form_aggr() has checked * whether it's in the BAW and added it appropriately. */ if (bf->bf_state.bfs_nframes == 1) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: single-frame aggregate\n", __func__); /* Update CLRDMASK just before this frame is queued */ ath_tx_update_clrdmask(sc, tid, bf); bf->bf_state.bfs_aggr = 0; bf->bf_state.bfs_ndelim = 0; ath_tx_setds(sc, bf); ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc); if (status == ATH_AGGR_BAW_CLOSED) sc->sc_aggr_stats.aggr_baw_closed_single_pkt++; else sc->sc_aggr_stats.aggr_single_pkt++; } else { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: multi-frame aggregate: %d frames, " "length %d\n", __func__, bf->bf_state.bfs_nframes, bf->bf_state.bfs_al); bf->bf_state.bfs_aggr = 1; sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++; sc->sc_aggr_stats.aggr_aggr_pkt++; /* Update CLRDMASK just before this frame is queued */ ath_tx_update_clrdmask(sc, tid, bf); /* * Calculate the duration/protection as required. */ ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); /* * Update the rate and rtscts information based on the * rate decision made by the rate control code; * the first frame in the aggregate needs it. */ ath_tx_set_rtscts(sc, bf); /* * Setup the relevant descriptor fields * for aggregation. The first descriptor * already points to the rest in the chain. */ ath_tx_setds_11n(sc, bf); } queuepkt: /* Set completion handler, multi-frame aggregate or not */ bf->bf_comp = ath_tx_aggr_comp; if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=16?\n", __func__); /* * Update leak count and frame config if were leaking frames. * * XXX TODO: it should update all frames in an aggregate * correctly! */ ath_tx_leak_count_update(sc, tid, bf); /* Punt to txq */ ath_tx_handoff(sc, txq, bf); /* Track outstanding buffer count to hardware */ /* aggregates are "one" buffer */ tid->hwq_depth++; /* * Break out if ath_tx_form_aggr() indicated * there can't be any further progress (eg BAW is full.) * Checking for an empty txq is done above. * * XXX locking on txq here? */ /* XXX TXQ locking */ if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr || (status == ATH_AGGR_BAW_CLOSED || status == ATH_AGGR_LEAK_CLOSED)) break; } } /* * Schedule some packets from the given node/TID to the hardware. * * XXX TODO: this routine doesn't enforce the maximum TXQ depth. * It just dumps frames into the TXQ. We should limit how deep * the transmit queue can grow for frames dispatched to the given * TXQ. * * To avoid locking issues, either we need to own the TXQ lock * at this point, or we need to pass in the maximum frame count * from the caller. */ void ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid) { struct ath_buf *bf; struct ath_txq *txq = sc->sc_ac2q[tid->ac]; DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n", __func__, an, tid->tid); ATH_TX_LOCK_ASSERT(sc); /* Check - is AMPDU pending or running? then print out something */ if (ath_tx_ampdu_pending(sc, an, tid->tid)) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu pending?\n", __func__, tid->tid); if (ath_tx_ampdu_running(sc, an, tid->tid)) DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ampdu running?\n", __func__, tid->tid); for (;;) { /* * If the upper layers have paused the TID, don't * queue any further packets. * * XXX if we are leaking frames, make sure we decrement * that counter _and_ we continue here. */ if (! ath_tx_tid_can_tx_or_sched(sc, tid)) break; bf = ATH_TID_FIRST(tid); if (bf == NULL) { break; } ATH_TID_REMOVE(tid, bf, bf_list); /* Sanity check! */ if (tid->tid != bf->bf_state.bfs_tid) { DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bfs_tid %d !=" " tid %d\n", __func__, bf->bf_state.bfs_tid, tid->tid); } /* Normal completion handler */ bf->bf_comp = ath_tx_normal_comp; /* * Override this for now, until the non-aggregate * completion handler correctly handles software retransmits. */ bf->bf_state.bfs_txflags |= HAL_TXDESC_CLRDMASK; /* Update CLRDMASK just before this frame is queued */ ath_tx_update_clrdmask(sc, tid, bf); /* Program descriptors + rate control */ ath_tx_do_ratelookup(sc, bf, tid->tid, bf->bf_state.bfs_pktlen, false); ath_tx_calc_duration(sc, bf); ath_tx_calc_protection(sc, bf); ath_tx_set_rtscts(sc, bf); ath_tx_rate_fill_rcflags(sc, bf); ath_tx_setds(sc, bf); /* * Update the current leak count if * we're leaking frames; and set the * MORE flag as appropriate. */ ath_tx_leak_count_update(sc, tid, bf); /* Track outstanding buffer count to hardware */ /* aggregates are "one" buffer */ tid->hwq_depth++; /* Punt to hardware or software txq */ ath_tx_handoff(sc, txq, bf); } } /* * Schedule some packets to the given hardware queue. * * This function walks the list of TIDs (ie, ath_node TIDs * with queued traffic) and attempts to schedule traffic * from them. * * TID scheduling is implemented as a FIFO, with TIDs being * added to the end of the queue after some frames have been * scheduled. */ void ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq) { struct ath_tid *tid, *next, *last; ATH_TX_LOCK_ASSERT(sc); /* * For non-EDMA chips, aggr frames that have been built are * in axq_aggr_depth, whether they've been scheduled or not. * There's no FIFO, so txq->axq_depth is what's been scheduled * to the hardware. * * For EDMA chips, we do it in two stages. The existing code * builds a list of frames to go to the hardware and the EDMA * code turns it into a single entry to push into the FIFO. * That way we don't take up one packet per FIFO slot. * We do push one aggregate per FIFO slot though, just to keep * things simple. * * The FIFO depth is what's in the hardware; the txq->axq_depth * is what's been scheduled to the FIFO. * * fifo.axq_depth is the number of frames (or aggregates) pushed * into the EDMA FIFO. For multi-frame lists, this is the number * of frames pushed in. * axq_fifo_depth is the number of FIFO slots currently busy. */ /* For EDMA and non-EDMA, check built/scheduled against aggr limit */ if (txq->axq_aggr_depth >= sc->sc_hwq_limit_aggr) { sc->sc_aggr_stats.aggr_sched_nopkt++; return; } /* * For non-EDMA chips, axq_depth is the "what's scheduled to * the hardware list". For EDMA it's "What's built for the hardware" * and fifo.axq_depth is how many frames have been dispatched * already to the hardware. */ if (txq->axq_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_nonaggr) { sc->sc_aggr_stats.aggr_sched_nopkt++; return; } last = TAILQ_LAST(&txq->axq_tidq, axq_t_s); TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) { /* * Suspend paused queues here; they'll be resumed * once the addba completes or times out. */ DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n", __func__, tid->tid, tid->paused); ath_tx_tid_unsched(sc, tid); /* * This node may be in power-save and we're leaking * a frame; be careful. */ if (! ath_tx_tid_can_tx_or_sched(sc, tid)) { goto loop_done; } if (ath_tx_ampdu_running(sc, tid->an, tid->tid)) ath_tx_tid_hw_queue_aggr(sc, tid->an, tid); else ath_tx_tid_hw_queue_norm(sc, tid->an, tid); /* Not empty? Re-schedule */ if (tid->axq_depth != 0) ath_tx_tid_sched(sc, tid); /* * Give the software queue time to aggregate more * packets. If we aren't running aggregation then * we should still limit the hardware queue depth. */ /* XXX TXQ locking */ if (txq->axq_aggr_depth + txq->fifo.axq_depth >= sc->sc_hwq_limit_aggr) { break; } if (txq->axq_depth >= sc->sc_hwq_limit_nonaggr) { break; } loop_done: /* * If this was the last entry on the original list, stop. * Otherwise nodes that have been rescheduled onto the end * of the TID FIFO list will just keep being rescheduled. * * XXX What should we do about nodes that were paused * but are pending a leaking frame in response to a ps-poll? * They'll be put at the front of the list; so they'll * prematurely trigger this condition! Ew. */ if (tid == last) break; } } /* * TX addba handling */ /* * Return net80211 TID struct pointer, or NULL for none */ struct ieee80211_tx_ampdu * ath_tx_get_tx_tid(struct ath_node *an, int tid) { struct ieee80211_node *ni = &an->an_node; struct ieee80211_tx_ampdu *tap; if (tid == IEEE80211_NONQOS_TID) return NULL; tap = &ni->ni_tx_ampdu[tid]; return tap; } /* * Is AMPDU-TX running? */ static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid) { struct ieee80211_tx_ampdu *tap; if (tid == IEEE80211_NONQOS_TID) return 0; tap = ath_tx_get_tx_tid(an, tid); if (tap == NULL) return 0; /* Not valid; default to not running */ return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING); } /* * Is AMPDU-TX negotiation pending? */ static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid) { struct ieee80211_tx_ampdu *tap; if (tid == IEEE80211_NONQOS_TID) return 0; tap = ath_tx_get_tx_tid(an, tid); if (tap == NULL) return 0; /* Not valid; default to not pending */ return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND); } /* * Is AMPDU-TX pending for the given TID? */ /* * Method to handle sending an ADDBA request. * * We tap this so the relevant flags can be set to pause the TID * whilst waiting for the response. * * XXX there's no timeout handler we can override? */ int ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout) { struct ath_softc *sc = ni->ni_ic->ic_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; /* * XXX danger Will Robinson! * * Although the taskqueue may be running and scheduling some more * packets, these should all be _before_ the addba sequence number. * However, net80211 will keep self-assigning sequence numbers * until addba has been negotiated. * * In the past, these packets would be "paused" (which still works * fine, as they're being scheduled to the driver in the same * serialised method which is calling the addba request routine) * and when the aggregation session begins, they'll be dequeued * as aggregate packets and added to the BAW. However, now there's * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these * packets. Thus they never get included in the BAW tracking and * this can cause the initial burst of packets after the addba * negotiation to "hang", as they quickly fall outside the BAW. * * The "eventual" solution should be to tag these packets with * dobaw. Although net80211 has given us a sequence number, * it'll be "after" the left edge of the BAW and thus it'll * fall within it. */ ATH_TX_LOCK(sc); /* * This is a bit annoying. Until net80211 HT code inherits some * (any) locking, we may have this called in parallel BUT only * one response/timeout will be called. Grr. */ if (atid->addba_tx_pending == 0) { ath_tx_tid_pause(sc, atid); atid->addba_tx_pending = 1; } ATH_TX_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n", __func__, ni->ni_macaddr, ":", dialogtoken, baparamset, batimeout); DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: txa_start=%d, ni_txseqs=%d\n", __func__, tap->txa_start, ni->ni_txseqs[tid]); return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout); } /* * Handle an ADDBA response. * * We unpause the queue so TX'ing can resume. * * Any packets TX'ed from this point should be "aggregate" (whether * aggregate or not) so the BAW is updated. * * Note! net80211 keeps self-assigning sequence numbers until * ampdu is negotiated. This means the initially-negotiated BAW left * edge won't match the ni->ni_txseq. * * So, being very dirty, the BAW left edge is "slid" here to match * ni->ni_txseq. * * What likely SHOULD happen is that all packets subsequent to the * addba request should be tagged as aggregate and queued as non-aggregate * frames; thus updating the BAW. For now though, I'll just slide the * window. */ int ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status, int code, int batimeout) { struct ath_softc *sc = ni->ni_ic->ic_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; int r; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called; status=%d, code=%d, batimeout=%d\n", __func__, ni->ni_macaddr, ":", status, code, batimeout); DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: txa_start=%d, ni_txseqs=%d\n", __func__, tap->txa_start, ni->ni_txseqs[tid]); /* * Call this first, so the interface flags get updated * before the TID is unpaused. Otherwise a race condition * exists where the unpaused TID still doesn't yet have * IEEE80211_AGGR_RUNNING set. */ r = sc->sc_addba_response(ni, tap, status, code, batimeout); ATH_TX_LOCK(sc); atid->addba_tx_pending = 0; /* * XXX dirty! * Slide the BAW left edge to wherever net80211 left it for us. * Read above for more information. */ tap->txa_start = ni->ni_txseqs[tid]; ath_tx_tid_resume(sc, atid); ATH_TX_UNLOCK(sc); return r; } /* * Stop ADDBA on a queue. * * This can be called whilst BAR TX is currently active on the queue, * so make sure this is unblocked before continuing. */ void ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ath_softc *sc = ni->ni_ic->ic_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; ath_bufhead bf_cq; struct ath_buf *bf; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: called\n", __func__, ni->ni_macaddr, ":"); /* * Pause TID traffic early, so there aren't any races * Unblock the pending BAR held traffic, if it's currently paused. */ ATH_TX_LOCK(sc); ath_tx_tid_pause(sc, atid); if (atid->bar_wait) { /* * bar_unsuspend() expects bar_tx == 1, as it should be * called from the TX completion path. This quietens * the warning. It's cleared for us anyway. */ atid->bar_tx = 1; ath_tx_tid_bar_unsuspend(sc, atid); } ATH_TX_UNLOCK(sc); /* There's no need to hold the TXQ lock here */ sc->sc_addba_stop(ni, tap); /* * ath_tx_tid_cleanup will resume the TID if possible, otherwise * it'll set the cleanup flag, and it'll be unpaused once * things have been cleaned up. */ TAILQ_INIT(&bf_cq); ATH_TX_LOCK(sc); /* * In case there's a followup call to this, only call it * if we don't have a cleanup in progress. * * Since we've paused the queue above, we need to make * sure we unpause if there's already a cleanup in * progress - it means something else is also doing * this stuff, so we don't need to also keep it paused. */ if (atid->cleanup_inprogress) { ath_tx_tid_resume(sc, atid); } else { ath_tx_tid_cleanup(sc, an, tid, &bf_cq); /* * Unpause the TID if no cleanup is required. */ if (! atid->cleanup_inprogress) ath_tx_tid_resume(sc, atid); } ATH_TX_UNLOCK(sc); /* Handle completing frames and fail them */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 1); } } /* * Handle a node reassociation. * * We may have a bunch of frames queued to the hardware; those need * to be marked as cleanup. */ void ath_tx_node_reassoc(struct ath_softc *sc, struct ath_node *an) { struct ath_tid *tid; int i; ath_bufhead bf_cq; struct ath_buf *bf; TAILQ_INIT(&bf_cq); ATH_TX_UNLOCK_ASSERT(sc); ATH_TX_LOCK(sc); for (i = 0; i < IEEE80211_TID_SIZE; i++) { tid = &an->an_tid[i]; if (tid->hwq_depth == 0) continue; DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: TID %d: cleaning up TID\n", __func__, an->an_node.ni_macaddr, ":", i); /* * In case there's a followup call to this, only call it * if we don't have a cleanup in progress. */ if (! tid->cleanup_inprogress) { ath_tx_tid_pause(sc, tid); ath_tx_tid_cleanup(sc, an, i, &bf_cq); /* * Unpause the TID if no cleanup is required. */ if (! tid->cleanup_inprogress) ath_tx_tid_resume(sc, tid); } } ATH_TX_UNLOCK(sc); /* Handle completing frames and fail them */ while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) { TAILQ_REMOVE(&bf_cq, bf, bf_list); ath_tx_default_comp(sc, bf, 1); } } /* * Note: net80211 bar_timeout() doesn't call this function on BAR failure; * it simply tears down the aggregation session. Ew. * * It however will call ieee80211_ampdu_stop() which will call * ic->ic_addba_stop(). * * XXX This uses a hard-coded max BAR count value; the whole * XXX BAR TX success or failure should be better handled! */ void ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status) { struct ath_softc *sc = ni->ni_ic->ic_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; int attempts = tap->txa_attempts; int old_txa_start; DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: %6D: called; txa_tid=%d, atid->tid=%d, status=%d, attempts=%d, txa_start=%d, txa_seqpending=%d\n", __func__, ni->ni_macaddr, ":", tap->txa_tid, atid->tid, status, attempts, tap->txa_start, tap->txa_seqpending); /* Note: This may update the BAW details */ /* * XXX What if this does slide the BAW along? We need to somehow * XXX either fix things when it does happen, or prevent the * XXX seqpending value to be anything other than exactly what * XXX the hell we want! * * XXX So for now, how I do this inside the TX lock for now * XXX and just correct it afterwards? The below condition should * XXX never happen and if it does I need to fix all kinds of things. */ ATH_TX_LOCK(sc); old_txa_start = tap->txa_start; sc->sc_bar_response(ni, tap, status); if (tap->txa_start != old_txa_start) { device_printf(sc->sc_dev, "%s: tid=%d; txa_start=%d, old=%d, adjusting\n", __func__, tid, tap->txa_start, old_txa_start); } tap->txa_start = old_txa_start; ATH_TX_UNLOCK(sc); /* Unpause the TID */ /* * XXX if this is attempt=50, the TID will be downgraded * XXX to a non-aggregate session. So we must unpause the * XXX TID here or it'll never be done. * * Also, don't call it if bar_tx/bar_wait are 0; something * has beaten us to the punch? (XXX figure out what?) */ if (status == 0 || attempts == 50) { ATH_TX_LOCK(sc); if (atid->bar_tx == 0 || atid->bar_wait == 0) DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: huh? bar_tx=%d, bar_wait=%d\n", __func__, atid->bar_tx, atid->bar_wait); else ath_tx_tid_bar_unsuspend(sc, atid); ATH_TX_UNLOCK(sc); } } /* * This is called whenever the pending ADDBA request times out. * Unpause and reschedule the TID. */ void ath_addba_response_timeout(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ath_softc *sc = ni->ni_ic->ic_softc; int tid = tap->txa_tid; struct ath_node *an = ATH_NODE(ni); struct ath_tid *atid = &an->an_tid[tid]; DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: %6D: TID=%d, called; resuming\n", __func__, ni->ni_macaddr, ":", tid); ATH_TX_LOCK(sc); atid->addba_tx_pending = 0; ATH_TX_UNLOCK(sc); /* Note: This updates the aggregate state to (again) pending */ sc->sc_addba_response_timeout(ni, tap); /* Unpause the TID; which reschedules it */ ATH_TX_LOCK(sc); ath_tx_tid_resume(sc, atid); ATH_TX_UNLOCK(sc); } /* * Check if a node is asleep or not. */ int ath_tx_node_is_asleep(struct ath_softc *sc, struct ath_node *an) { ATH_TX_LOCK_ASSERT(sc); return (an->an_is_powersave); } /* * Mark a node as currently "in powersaving." * This suspends all traffic on the node. * * This must be called with the node/tx locks free. * * XXX TODO: the locking silliness below is due to how the node * locking currently works. Right now, the node lock is grabbed * to do rate control lookups and these are done with the TX * queue lock held. This means the node lock can't be grabbed * first here or a LOR will occur. * * Eventually (hopefully!) the TX path code will only grab * the TXQ lock when transmitting and the ath_node lock when * doing node/TID operations. There are other complications - * the sched/unsched operations involve walking the per-txq * 'active tid' list and this requires both locks to be held. */ void ath_tx_node_sleep(struct ath_softc *sc, struct ath_node *an) { struct ath_tid *atid; struct ath_txq *txq; int tid; ATH_TX_UNLOCK_ASSERT(sc); /* Suspend all traffic on the node */ ATH_TX_LOCK(sc); if (an->an_is_powersave) { DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %6D: node was already asleep!\n", __func__, an->an_node.ni_macaddr, ":"); ATH_TX_UNLOCK(sc); return; } for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { atid = &an->an_tid[tid]; txq = sc->sc_ac2q[atid->ac]; ath_tx_tid_pause(sc, atid); } /* Mark node as in powersaving */ an->an_is_powersave = 1; ATH_TX_UNLOCK(sc); } /* * Mark a node as currently "awake." * This resumes all traffic to the node. */ void ath_tx_node_wakeup(struct ath_softc *sc, struct ath_node *an) { struct ath_tid *atid; struct ath_txq *txq; int tid; ATH_TX_UNLOCK_ASSERT(sc); ATH_TX_LOCK(sc); /* !? */ if (an->an_is_powersave == 0) { ATH_TX_UNLOCK(sc); DPRINTF(sc, ATH_DEBUG_XMIT, "%s: an=%p: node was already awake\n", __func__, an); return; } /* Mark node as awake */ an->an_is_powersave = 0; /* * Clear any pending leaked frame requests */ an->an_leak_count = 0; for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) { atid = &an->an_tid[tid]; txq = sc->sc_ac2q[atid->ac]; ath_tx_tid_resume(sc, atid); } ATH_TX_UNLOCK(sc); } static int ath_legacy_dma_txsetup(struct ath_softc *sc) { /* nothing new needed */ return (0); } static int ath_legacy_dma_txteardown(struct ath_softc *sc) { /* nothing new needed */ return (0); } void ath_xmit_setup_legacy(struct ath_softc *sc) { /* * For now, just set the descriptor length to sizeof(ath_desc); * worry about extracting the real length out of the HAL later. */ sc->sc_tx_desclen = sizeof(struct ath_desc); sc->sc_tx_statuslen = sizeof(struct ath_desc); sc->sc_tx_nmaps = 1; /* only one buffer per TX desc */ sc->sc_tx.xmit_setup = ath_legacy_dma_txsetup; sc->sc_tx.xmit_teardown = ath_legacy_dma_txteardown; sc->sc_tx.xmit_attach_comp_func = ath_legacy_attach_comp_func; sc->sc_tx.xmit_dma_restart = ath_legacy_tx_dma_restart; sc->sc_tx.xmit_handoff = ath_legacy_xmit_handoff; sc->sc_tx.xmit_drain = ath_legacy_tx_drain; } Index: head/sys/dev/ath/if_ath_tx_ht.c =================================================================== --- head/sys/dev/ath/if_ath_tx_ht.c (revision 366111) +++ head/sys/dev/ath/if_ath_tx_ht.c (revision 366112) @@ -1,1045 +1,1042 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 Adrian Chadd, Xenion Pty Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_ath.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #ifdef INET #include #include #endif #include #include /* XXX for softled */ #include #ifdef ATH_TX99_DIAG #include #endif #include /* XXX for some support functions */ #include #include #include /* * XXX net80211? */ #define IEEE80211_AMPDU_SUBFRAME_DEFAULT 32 #define ATH_AGGR_DELIM_SZ 4 /* delimiter size */ #define ATH_AGGR_MINPLEN 256 /* in bytes, minimum packet length */ /* number of delimiters for encryption padding */ #define ATH_AGGR_ENCRYPTDELIM 10 /* * returns delimiter padding required given the packet length */ #define ATH_AGGR_GET_NDELIM(_len) \ (((((_len) + ATH_AGGR_DELIM_SZ) < ATH_AGGR_MINPLEN) ? \ (ATH_AGGR_MINPLEN - (_len) - ATH_AGGR_DELIM_SZ) : 0) >> 2) #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) int ath_max_4ms_framelen[4][32] = { [MCS_HT20] = { 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172, 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280, 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532, 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532, }, [MCS_HT20_SGI] = { 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744, 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532, 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532, 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532, }, [MCS_HT40] = { 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532, 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532, 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532, 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532, }, [MCS_HT40_SGI] = { 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532, 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532, 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532, 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532, } }; /* * XXX should be in net80211 */ static int ieee80211_mpdudensity_map[] = { 0, /* IEEE80211_HTCAP_MPDUDENSITY_NA */ 25, /* IEEE80211_HTCAP_MPDUDENSITY_025 */ 50, /* IEEE80211_HTCAP_MPDUDENSITY_05 */ 100, /* IEEE80211_HTCAP_MPDUDENSITY_1 */ 200, /* IEEE80211_HTCAP_MPDUDENSITY_2 */ 400, /* IEEE80211_HTCAP_MPDUDENSITY_4 */ 800, /* IEEE80211_HTCAP_MPDUDENSITY_8 */ 1600, /* IEEE80211_HTCAP_MPDUDENSITY_16 */ }; /* * XXX should be in the HAL/net80211 ? */ #define BITS_PER_BYTE 8 #define OFDM_PLCP_BITS 22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x7f) #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) #define L_STF 8 #define L_LTF 8 #define L_SIG 4 #define HT_SIG 8 #define HT_STF 4 #define HT_LTF(_ns) (4 * (_ns)) #define SYMBOL_TIME(_ns) ((_ns) << 2) // ns * 4 us #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) // ns * 3.6 us #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) #define IS_HT_RATE(_rate) ((_rate) & 0x80) const uint32_t bits_per_symbol[][2] = { /* 20MHz 40MHz */ { 26, 54 }, // 0: BPSK { 52, 108 }, // 1: QPSK 1/2 { 78, 162 }, // 2: QPSK 3/4 { 104, 216 }, // 3: 16-QAM 1/2 { 156, 324 }, // 4: 16-QAM 3/4 { 208, 432 }, // 5: 64-QAM 2/3 { 234, 486 }, // 6: 64-QAM 3/4 { 260, 540 }, // 7: 64-QAM 5/6 { 52, 108 }, // 8: BPSK { 104, 216 }, // 9: QPSK 1/2 { 156, 324 }, // 10: QPSK 3/4 { 208, 432 }, // 11: 16-QAM 1/2 { 312, 648 }, // 12: 16-QAM 3/4 { 416, 864 }, // 13: 64-QAM 2/3 { 468, 972 }, // 14: 64-QAM 3/4 { 520, 1080 }, // 15: 64-QAM 5/6 { 78, 162 }, // 16: BPSK { 156, 324 }, // 17: QPSK 1/2 { 234, 486 }, // 18: QPSK 3/4 { 312, 648 }, // 19: 16-QAM 1/2 { 468, 972 }, // 20: 16-QAM 3/4 { 624, 1296 }, // 21: 64-QAM 2/3 { 702, 1458 }, // 22: 64-QAM 3/4 { 780, 1620 }, // 23: 64-QAM 5/6 { 104, 216 }, // 24: BPSK { 208, 432 }, // 25: QPSK 1/2 { 312, 648 }, // 26: QPSK 3/4 { 416, 864 }, // 27: 16-QAM 1/2 { 624, 1296 }, // 28: 16-QAM 3/4 { 832, 1728 }, // 29: 64-QAM 2/3 { 936, 1944 }, // 30: 64-QAM 3/4 { 1040, 2160 }, // 31: 64-QAM 5/6 }; /* * Fill in the rate array information based on the current * node configuration and the choices made by the rate * selection code and ath_buf setup code. * * Later on, this may end up also being made by the * rate control code, but for now it can live here. * * This needs to be called just before the packet is * queued to the software queue or hardware queue, * so all of the needed fields in bf_state are setup. */ void ath_tx_rate_fill_rcflags(struct ath_softc *sc, struct ath_buf *bf) { struct ieee80211_node *ni = bf->bf_node; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; const HAL_RATE_TABLE *rt = sc->sc_currates; struct ath_rc_series *rc = bf->bf_state.bfs_rc; uint8_t rate; int i; int do_ldpc; int do_stbc; /* * We only do LDPC if the rate is 11n, both we and the * receiver support LDPC and it's enabled. * * It's a global flag, not a per-try flag, so we clear * it if any of the rate entries aren't 11n. */ do_ldpc = 0; if ((ni->ni_vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX) && (ni->ni_htcap & IEEE80211_HTCAP_LDPC)) do_ldpc = 1; /* * The 11n duration calculation doesn't know about LDPC, * so don't enable it for positioning. */ if (bf->bf_flags & ATH_BUF_TOA_PROBE) do_ldpc = 0; do_stbc = 0; for (i = 0; i < ATH_RC_NUM; i++) { rc[i].flags = 0; if (rc[i].tries == 0) continue; rate = rt->info[rc[i].rix].rateCode; /* * Only enable short preamble for legacy rates */ if ((! IS_HT_RATE(rate)) && bf->bf_state.bfs_shpream) rate |= rt->info[rc[i].rix].shortPreamble; /* * Save this, used by the TX and completion code */ rc[i].ratecode = rate; if (bf->bf_state.bfs_txflags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) rc[i].flags |= ATH_RC_RTSCTS_FLAG; /* * If we can't do LDPC, don't. */ if (! IS_HT_RATE(rate)) do_ldpc = 0; /* Only enable shortgi, 2040, dual-stream if HT is set */ if (IS_HT_RATE(rate)) { rc[i].flags |= ATH_RC_HT_FLAG; if (ni->ni_chw == 40) rc[i].flags |= ATH_RC_CW40_FLAG; /* * NOTE: Don't do short-gi for positioning frames. * * For now, the ath_hal and net80211 HT duration * calculation rounds up the 11n data txtime * to the nearest multiple of 3.6 microseconds * and doesn't return the fractional part, so * we are always "out" by some amount. */ if (ni->ni_chw == 40 && ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40 && ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 && vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40 && (bf->bf_flags & ATH_BUF_TOA_PROBE) == 0) { rc[i].flags |= ATH_RC_SGI_FLAG; } if (ni->ni_chw == 20 && ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20 && ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 && vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20 && (bf->bf_flags & ATH_BUF_TOA_PROBE) == 0) { rc[i].flags |= ATH_RC_SGI_FLAG; } /* * If we have STBC TX enabled and the receiver * can receive (at least) 1 stream STBC, AND it's * MCS 0-7, AND we have at least two chains enabled, * and we're not doing positioning, enable STBC. */ if (ic->ic_htcaps & IEEE80211_HTCAP_TXSTBC && (ni->ni_vap->iv_flags_ht & IEEE80211_FHT_STBC_TX) && (ni->ni_htcap & IEEE80211_HTCAP_RXSTBC) && (sc->sc_cur_txchainmask > 1) && (HT_RC_2_STREAMS(rate) == 1) && (bf->bf_flags & ATH_BUF_TOA_PROBE) == 0) { rc[i].flags |= ATH_RC_STBC_FLAG; do_stbc = 1; } /* * Dual / Triple stream rate? */ if (HT_RC_2_STREAMS(rate) == 2) rc[i].flags |= ATH_RC_DS_FLAG; else if (HT_RC_2_STREAMS(rate) == 3) rc[i].flags |= ATH_RC_TS_FLAG; } /* * Calculate the maximum TX power cap for the current * node. */ rc[i].tx_power_cap = ieee80211_get_node_txpower(ni); /* * Calculate the maximum 4ms frame length based * on the MCS rate, SGI and channel width flags. */ if ((rc[i].flags & ATH_RC_HT_FLAG) && (HT_RC_2_MCS(rate) < 32)) { int j; if (rc[i].flags & ATH_RC_CW40_FLAG) { if (rc[i].flags & ATH_RC_SGI_FLAG) j = MCS_HT40_SGI; else j = MCS_HT40; } else { if (rc[i].flags & ATH_RC_SGI_FLAG) j = MCS_HT20_SGI; else j = MCS_HT20; } rc[i].max4msframelen = ath_max_4ms_framelen[j][HT_RC_2_MCS(rate)]; } else rc[i].max4msframelen = 0; DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: i=%d, rate=0x%x, flags=0x%x, max4ms=%d\n", __func__, i, rate, rc[i].flags, rc[i].max4msframelen); } /* * LDPC is a global flag, so ... */ if (do_ldpc) { bf->bf_state.bfs_txflags |= HAL_TXDESC_LDPC; sc->sc_stats.ast_tx_ldpc++; } if (do_stbc) { sc->sc_stats.ast_tx_stbc++; } } /* * Return the number of delimiters to be added to * meet the minimum required mpdudensity. * * Caller should make sure that the rate is HT. * * TODO: is this delimiter calculation supposed to be the * total frame length, the hdr length, the data length (including * delimiters, padding, CRC, etc) or ? * * TODO: this should ensure that the rate control information * HAS been setup for the first rate. * * TODO: ensure this is only called for MCS rates. * * TODO: enforce MCS < 31 */ static int ath_compute_num_delims(struct ath_softc *sc, struct ath_buf *first_bf, uint16_t pktlen, int is_first) { -#define MS(_v, _f) (((_v) & _f) >> _f##_S) const HAL_RATE_TABLE *rt = sc->sc_currates; struct ieee80211_node *ni = first_bf->bf_node; struct ieee80211vap *vap = ni->ni_vap; int ndelim, mindelim = 0; int mpdudensity; /* in 1/100'th of a microsecond */ int peer_mpdudensity; /* net80211 value */ uint8_t rc, rix, flags; int width, half_gi; uint32_t nsymbits, nsymbols; uint16_t minlen; /* * Get the advertised density from the node. */ - peer_mpdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); + peer_mpdudensity = + _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); /* * vap->iv_ampdu_density is a net80211 value, rather than the actual * density. Larger values are longer A-MPDU density spacing values, * and we want to obey larger configured / negotiated density values * per station if we get it. */ if (vap->iv_ampdu_density > peer_mpdudensity) peer_mpdudensity = vap->iv_ampdu_density; /* * Convert the A-MPDU density net80211 value to a 1/100 microsecond * value for subsequent calculations. */ if (peer_mpdudensity > IEEE80211_HTCAP_MPDUDENSITY_16) mpdudensity = 1600; /* maximum density */ else mpdudensity = ieee80211_mpdudensity_map[peer_mpdudensity]; /* Select standard number of delimiters based on frame length */ ndelim = ATH_AGGR_GET_NDELIM(pktlen); /* * If encryption is enabled, add extra delimiters to let the * crypto hardware catch up. This could be tuned per-MAC and * per-rate, but for now we'll simply assume encryption is * always enabled. * * Also note that the Atheros reference driver inserts two * delimiters by default for pre-AR9380 peers. This will * include "that" required delimiter. */ ndelim += ATH_AGGR_ENCRYPTDELIM; /* * For AR9380, there's a minimum number of delimeters * required when doing RTS. * * XXX TODO: this is only needed if (a) RTS/CTS is enabled for * this exchange, and (b) (done) this is the first sub-frame * in the aggregate. */ if (sc->sc_use_ent && (sc->sc_ent_cfg & AH_ENT_RTSCTS_DELIM_WAR) && ndelim < AH_FIRST_DESC_NDELIMS && is_first) ndelim = AH_FIRST_DESC_NDELIMS; /* * If sc_delim_min_pad is non-zero, enforce it as the minimum * pad delimiter count. */ if (sc->sc_delim_min_pad != 0) ndelim = MAX(ndelim, sc->sc_delim_min_pad); DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: pktlen=%d, ndelim=%d, mpdudensity=%d\n", __func__, pktlen, ndelim, mpdudensity); /* * If the MPDU density is 0, we can return here. * Otherwise, we need to convert the desired mpdudensity * into a byte length, based on the rate in the subframe. */ if (mpdudensity == 0) return ndelim; /* * Convert desired mpdu density from microeconds to bytes based * on highest rate in rate series (i.e. first rate) to determine * required minimum length for subframe. Take into account * whether high rate is 20 or 40Mhz and half or full GI. */ rix = first_bf->bf_state.bfs_rc[0].rix; rc = rt->info[rix].rateCode; flags = first_bf->bf_state.bfs_rc[0].flags; width = !! (flags & ATH_RC_CW40_FLAG); half_gi = !! (flags & ATH_RC_SGI_FLAG); /* * mpdudensity is in 1/100th of a usec, so divide by 100 */ if (half_gi) nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); else nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); nsymbols /= 100; if (nsymbols == 0) nsymbols = 1; nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; /* * Min length is the minimum frame length for the * required MPDU density. */ if (pktlen < minlen) { mindelim = (minlen - pktlen) / ATH_AGGR_DELIM_SZ; ndelim = MAX(mindelim, ndelim); } DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: pktlen=%d, minlen=%d, rix=%x, rc=%x, width=%d, hgi=%d, ndelim=%d\n", __func__, pktlen, minlen, rix, rc, width, half_gi, ndelim); return ndelim; -#undef MS } /* * XXX TODO: put into net80211 */ static int ath_rx_ampdu_to_byte(char a) { switch (a) { case IEEE80211_HTCAP_MAXRXAMPDU_16K: return 16384; break; case IEEE80211_HTCAP_MAXRXAMPDU_32K: return 32768; break; case IEEE80211_HTCAP_MAXRXAMPDU_64K: return 65536; break; case IEEE80211_HTCAP_MAXRXAMPDU_8K: default: return 8192; break; } } /* * Fetch the aggregation limit. * * It's the lowest of the four rate series 4ms frame length. * * Also take into account the hardware specific limits (8KiB on AR5416) * and per-peer limits in non-STA mode. */ static int ath_get_aggr_limit(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf) { struct ieee80211vap *vap = ni->ni_vap; -#define MS(_v, _f) (((_v) & _f) >> _f##_S) int amin = ATH_AGGR_MAXSIZE; int i; /* Extract out the maximum configured driver A-MPDU limit */ if (sc->sc_aggr_limit > 0 && sc->sc_aggr_limit < ATH_AGGR_MAXSIZE) amin = sc->sc_aggr_limit; /* Check the vap configured transmit limit */ amin = MIN(amin, ath_rx_ampdu_to_byte(vap->iv_ampdu_limit)); /* * Check the HTCAP field for the maximum size the node has * negotiated. If it's smaller than what we have, cap it there. */ - amin = MIN(amin, ath_rx_ampdu_to_byte(MS(ni->ni_htparam, - IEEE80211_HTCAP_MAXRXAMPDU))); + amin = MIN(amin, ath_rx_ampdu_to_byte( + _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU))); for (i = 0; i < ATH_RC_NUM; i++) { if (bf->bf_state.bfs_rc[i].tries == 0) continue; amin = MIN(amin, bf->bf_state.bfs_rc[i].max4msframelen); } DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: aggr_limit=%d, iv_ampdu_limit=%d, " "peer maxrxampdu=%d, max frame len=%d\n", __func__, sc->sc_aggr_limit, vap->iv_ampdu_limit, - MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU), + _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU), amin); return amin; -#undef MS } /* * Setup a 11n rate series structure * * This should be called for both legacy and MCS rates. * * This uses the rate series stuf from ath_tx_rate_fill_rcflags(). * * It, along with ath_buf_set_rate, must be called -after- a burst * or aggregate is setup. */ static void ath_rateseries_setup(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, HAL_11N_RATE_SERIES *series) { struct ieee80211com *ic = ni->ni_ic; struct ath_hal *ah = sc->sc_ah; HAL_BOOL shortPreamble = AH_FALSE; const HAL_RATE_TABLE *rt = sc->sc_currates; int i; int pktlen; struct ath_rc_series *rc = bf->bf_state.bfs_rc; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) shortPreamble = AH_TRUE; /* * If this is the first frame in an aggregate series, * use the aggregate length. */ if (bf->bf_state.bfs_aggr) pktlen = bf->bf_state.bfs_al; else pktlen = bf->bf_state.bfs_pktlen; /* * XXX TODO: modify this routine to use the bfs_rc[x].flags * XXX fields. */ memset(series, 0, sizeof(HAL_11N_RATE_SERIES) * 4); for (i = 0; i < ATH_RC_NUM; i++) { /* Only set flags for actual TX attempts */ if (rc[i].tries == 0) continue; series[i].Tries = rc[i].tries; /* * XXX TODO: When the NIC is capable of three stream TX, * transmit 1/2 stream rates on two streams. * * This reduces the power consumption of the NIC and * keeps it within the PCIe slot power limits. */ series[i].ChSel = sc->sc_cur_txchainmask; /* * Setup rate and TX power cap for this series. */ series[i].Rate = rt->info[rc[i].rix].rateCode; series[i].RateIndex = rc[i].rix; series[i].tx_power_cap = rc[i].tx_power_cap; /* * Enable RTS/CTS as appropriate. */ if (rc[i].flags & ATH_RC_RTSCTS_FLAG) series[i].RateFlags |= HAL_RATESERIES_RTS_CTS; /* * 11n rate? Update 11n flags. */ if (rc[i].flags & ATH_RC_HT_FLAG) { if (rc[i].flags & ATH_RC_CW40_FLAG) series[i].RateFlags |= HAL_RATESERIES_2040; if (rc[i].flags & ATH_RC_SGI_FLAG) series[i].RateFlags |= HAL_RATESERIES_HALFGI; if (rc[i].flags & ATH_RC_STBC_FLAG) series[i].RateFlags |= HAL_RATESERIES_STBC; } /* * TODO: If we're all doing 11n rates then we can set LDPC. * If we've been asked to /do/ LDPC but we are handed a * legacy rate, then we should complain. Loudly. */ /* * PktDuration doesn't include slot, ACK, RTS, etc timing - * it's just the packet duration */ if (rc[i].flags & ATH_RC_HT_FLAG) { series[i].PktDuration = ath_computedur_ht(pktlen , series[i].Rate , HT_RC_2_STREAMS(series[i].Rate) , series[i].RateFlags & HAL_RATESERIES_2040 , series[i].RateFlags & HAL_RATESERIES_HALFGI); } else { if (shortPreamble) series[i].Rate |= rt->info[rc[i].rix].shortPreamble; /* XXX TODO: don't include SIFS */ series[i].PktDuration = ath_hal_computetxtime(ah, rt, pktlen, rc[i].rix, shortPreamble, AH_TRUE); } } } #ifdef ATH_DEBUG static void ath_rateseries_print(struct ath_softc *sc, HAL_11N_RATE_SERIES *series) { int i; for (i = 0; i < ATH_RC_NUM; i++) { device_printf(sc->sc_dev ,"series %d: rate %x; tries %d; " "pktDuration %d; chSel %d; txpowcap %d, rateFlags %x\n", i, series[i].Rate, series[i].Tries, series[i].PktDuration, series[i].ChSel, series[i].tx_power_cap, series[i].RateFlags); } } #endif /* * Setup the 11n rate scenario and burst duration for the given TX descriptor * list. * * This isn't useful for sending beacon frames, which has different needs * wrt what's passed into the rate scenario function. */ void ath_buf_set_rate(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf) { HAL_11N_RATE_SERIES series[4]; struct ath_desc *ds = bf->bf_desc; struct ath_hal *ah = sc->sc_ah; int is_pspoll = (bf->bf_state.bfs_atype == HAL_PKT_TYPE_PSPOLL); int ctsrate = bf->bf_state.bfs_ctsrate; int flags = bf->bf_state.bfs_txflags; /* Setup rate scenario */ memset(&series, 0, sizeof(series)); ath_rateseries_setup(sc, ni, bf, series); #ifdef ATH_DEBUG if (sc->sc_debug & ATH_DEBUG_XMIT) ath_rateseries_print(sc, series); #endif /* Set rate scenario */ /* * Note: Don't allow hardware to override the duration on * ps-poll packets. */ ath_hal_set11nratescenario(ah, ds, !is_pspoll, /* whether to override the duration or not */ ctsrate, /* rts/cts rate */ series, /* 11n rate series */ 4, /* number of series */ flags); /* Set burst duration */ /* * This is only required when doing 11n burst, not aggregation * ie, if there's a second frame in a RIFS or A-MPDU burst * w/ >1 A-MPDU frame bursting back to back. * Normal A-MPDU doesn't do bursting -between- aggregates. * * .. and it's highly likely this won't ever be implemented */ //ath_hal_set11nburstduration(ah, ds, 8192); } /* * Form an aggregate packet list. * * This function enforces the aggregate restrictions/requirements. * * These are: * * + The aggregate size maximum (64k for AR9160 and later, 8K for * AR5416 when doing RTS frame protection.) * + Maximum number of sub-frames for an aggregate * + The aggregate delimiter size, giving MACs time to do whatever is * needed before each frame * + Enforce the BAW limit * * Each descriptor queued should have the DMA setup. * The rate series, descriptor setup, linking, etc is all done * externally. This routine simply chains them together. * ath_tx_setds_11n() will take care of configuring the per- * descriptor setup, and ath_buf_set_rate() will configure the * rate control. * * The TID lock is required for the entirety of this function. * * If some code in another thread adds to the head of this * list, very strange behaviour will occur. Since retransmission is the * only reason this will occur, and this routine is designed to be called * from within the scheduler task, it won't ever clash with the completion * task. * * So if you want to call this from an upper layer context (eg, to direct- * dispatch aggregate frames to the hardware), please keep this in mind. */ ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_tid *tid, ath_bufhead *bf_q) { //struct ieee80211_node *ni = &an->an_node; struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL; int nframes = 0; uint16_t aggr_limit = 0, al = 0, bpad = 0, al_delta, h_baw; struct ieee80211_tx_ampdu *tap; int status = ATH_AGGR_DONE; int prev_frames = 0; /* XXX for AR5416 burst, not done here */ int prev_al = 0; /* XXX also for AR5416 burst */ ATH_TX_LOCK_ASSERT(sc); tap = ath_tx_get_tx_tid(an, tid->tid); if (tap == NULL) { status = ATH_AGGR_ERROR; goto finish; } /* * Limit the maximum number of frames in this A-MPDU * to half of the window size. This is done to prevent * sending a LOT of frames that may fail in one batch * when operating in higher MCS rates. If there are more * frames available to send then up to two A-MPDUs will * be queued per hardware queue, so we'll "just" get * a second A-MPDU. */ h_baw = tap->txa_wnd / 2; for (;;) { bf = ATH_TID_FIRST(tid); if (bf == NULL) { status = ATH_AGGR_DONE; break; } if (bf_first == NULL) { bf_first = bf; /* * It's the first frame; * set the aggregation limit based on the * rate control decision that has been made. */ aggr_limit = ath_get_aggr_limit(sc, &an->an_node, bf_first); if (bf_first->bf_state.bfs_rc_maxpktlen > 0) { aggr_limit = MIN(aggr_limit, bf_first->bf_state.bfs_rc_maxpktlen); } } /* Set this early just so things don't get confused */ bf->bf_next = NULL; /* * If the frame doesn't have a sequence number that we're * tracking in the BAW (eg NULL QOS data frame), we can't * aggregate it. Stop the aggregation process; the sender * can then TX what's in the list thus far and then * TX the frame individually. */ if (! bf->bf_state.bfs_dobaw) { status = ATH_AGGR_NONAGGR; break; } /* * If any of the rates are non-HT, this packet * can't be aggregated. * XXX TODO: add a bf_state flag which gets marked * if any active rate is non-HT. */ /* * do not exceed aggregation limit */ al_delta = ATH_AGGR_DELIM_SZ + bf->bf_state.bfs_pktlen; if (nframes && (aggr_limit < (al + bpad + al_delta + prev_al))) { status = ATH_AGGR_LIMITED; break; } /* * If RTS/CTS is set on the first frame, enforce * the RTS aggregate limit. */ if (bf_first->bf_state.bfs_txflags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) { if (nframes && (sc->sc_rts_aggr_limit < (al + bpad + al_delta + prev_al))) { status = ATH_AGGR_8K_LIMITED; break; } } /* * Do not exceed subframe limit. */ if ((nframes + prev_frames) >= MIN((h_baw), IEEE80211_AMPDU_SUBFRAME_DEFAULT)) { status = ATH_AGGR_LIMITED; break; } /* * If the current frame has an RTS/CTS configuration * that differs from the first frame, override the * subsequent frame with this config. */ if (bf != bf_first) { bf->bf_state.bfs_txflags &= ~ (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA); bf->bf_state.bfs_txflags |= bf_first->bf_state.bfs_txflags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA); } /* * If the packet has a sequence number, do not * step outside of the block-ack window. */ if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, SEQNO(bf->bf_state.bfs_seqno))) { status = ATH_AGGR_BAW_CLOSED; break; } /* * this packet is part of an aggregate. */ ATH_TID_REMOVE(tid, bf, bf_list); /* The TID lock is required for the BAW update */ ath_tx_addto_baw(sc, an, tid, bf); bf->bf_state.bfs_addedbaw = 1; /* * XXX enforce ACK for aggregate frames (this needs to be * XXX handled more gracefully? */ if (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) { device_printf(sc->sc_dev, "%s: HAL_TXDESC_NOACK set for an aggregate frame?\n", __func__); bf->bf_state.bfs_txflags &= (~HAL_TXDESC_NOACK); } /* * Add the now owned buffer (which isn't * on the software TXQ any longer) to our * aggregate frame list. */ TAILQ_INSERT_TAIL(bf_q, bf, bf_list); nframes ++; /* Completion handler */ bf->bf_comp = ath_tx_aggr_comp; /* * add padding for previous frame to aggregation length */ al += bpad + al_delta; /* * Calculate delimiters needed for the current frame */ bf->bf_state.bfs_ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_state.bfs_pktlen, (bf_first == bf)); /* * Calculate the padding needed from this set of delimiters, * used when calculating if the next frame will fit in * the aggregate. */ bpad = PADBYTES(al_delta) + (bf->bf_state.bfs_ndelim << 2); /* * Chain the buffers together */ if (bf_prev) bf_prev->bf_next = bf; bf_prev = bf; /* * If we're leaking frames, just return at this point; * we've queued a single frame and we don't want to add * any more. */ if (tid->an->an_leak_count) { status = ATH_AGGR_LEAK_CLOSED; break; } #if 0 /* * terminate aggregation on a small packet boundary */ if (bf->bf_state.bfs_pktlen < ATH_AGGR_MINPLEN) { status = ATH_AGGR_SHORTPKT; break; } #endif } finish: /* * Just in case the list was empty when we tried to * dequeue a packet .. */ if (bf_first) { DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: al=%d bytes; requested %d bytes\n", __func__, al, bf_first->bf_state.bfs_rc_maxpktlen); bf_first->bf_state.bfs_al = al; bf_first->bf_state.bfs_nframes = nframes; } return status; } Index: head/sys/dev/bwn/if_bwn.c =================================================================== --- head/sys/dev/bwn/if_bwn.c (revision 366111) +++ head/sys/dev/bwn/if_bwn.c (revision 366112) @@ -1,7744 +1,7753 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2009-2010 Weongyo Jeong * Copyright (c) 2016 Landon Fuller * Copyright (c) 2017 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Landon Fuller * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); /* * The Broadcom Wireless LAN controller driver. */ #include "opt_bwn.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bhnd_nvram_map.h" #include "gpio_if.h" static SYSCTL_NODE(_hw, OID_AUTO, bwn, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Broadcom driver parameters"); /* * Tunable & sysctl variables. */ #ifdef BWN_DEBUG static int bwn_debug = 0; SYSCTL_INT(_hw_bwn, OID_AUTO, debug, CTLFLAG_RWTUN, &bwn_debug, 0, "Broadcom debugging printfs"); #endif static int bwn_bfp = 0; /* use "Bad Frames Preemption" */ SYSCTL_INT(_hw_bwn, OID_AUTO, bfp, CTLFLAG_RW, &bwn_bfp, 0, "uses Bad Frames Preemption"); static int bwn_bluetooth = 1; SYSCTL_INT(_hw_bwn, OID_AUTO, bluetooth, CTLFLAG_RW, &bwn_bluetooth, 0, "turns on Bluetooth Coexistence"); static int bwn_hwpctl = 0; SYSCTL_INT(_hw_bwn, OID_AUTO, hwpctl, CTLFLAG_RW, &bwn_hwpctl, 0, "uses H/W power control"); static int bwn_usedma = 1; SYSCTL_INT(_hw_bwn, OID_AUTO, usedma, CTLFLAG_RD, &bwn_usedma, 0, "uses DMA"); TUNABLE_INT("hw.bwn.usedma", &bwn_usedma); static int bwn_wme = 1; SYSCTL_INT(_hw_bwn, OID_AUTO, wme, CTLFLAG_RW, &bwn_wme, 0, "uses WME support"); static void bwn_attach_pre(struct bwn_softc *); static int bwn_attach_post(struct bwn_softc *); static int bwn_retain_bus_providers(struct bwn_softc *sc); static void bwn_release_bus_providers(struct bwn_softc *sc); static void bwn_sprom_bugfixes(device_t); static int bwn_init(struct bwn_softc *); static void bwn_parent(struct ieee80211com *); static void bwn_start(struct bwn_softc *); static int bwn_transmit(struct ieee80211com *, struct mbuf *); static int bwn_attach_core(struct bwn_mac *); static int bwn_phy_getinfo(struct bwn_mac *, int); static int bwn_chiptest(struct bwn_mac *); static int bwn_setup_channels(struct bwn_mac *, int, int); static void bwn_shm_ctlword(struct bwn_mac *, uint16_t, uint16_t); static void bwn_addchannels(struct ieee80211_channel [], int, int *, const struct bwn_channelinfo *, const uint8_t []); static int bwn_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void bwn_updateslot(struct ieee80211com *); static void bwn_update_promisc(struct ieee80211com *); static void bwn_wme_init(struct bwn_mac *); static int bwn_wme_update(struct ieee80211com *); static void bwn_wme_clear(struct bwn_softc *); static void bwn_wme_load(struct bwn_mac *); static void bwn_wme_loadparams(struct bwn_mac *, const struct wmeParams *, uint16_t); static void bwn_scan_start(struct ieee80211com *); static void bwn_scan_end(struct ieee80211com *); static void bwn_set_channel(struct ieee80211com *); static struct ieee80211vap *bwn_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void bwn_vap_delete(struct ieee80211vap *); static void bwn_stop(struct bwn_softc *); static int bwn_core_forceclk(struct bwn_mac *, bool); static int bwn_core_init(struct bwn_mac *); static void bwn_core_start(struct bwn_mac *); static void bwn_core_exit(struct bwn_mac *); static void bwn_bt_disable(struct bwn_mac *); static int bwn_chip_init(struct bwn_mac *); static void bwn_set_txretry(struct bwn_mac *, int, int); static void bwn_rate_init(struct bwn_mac *); static void bwn_set_phytxctl(struct bwn_mac *); static void bwn_spu_setdelay(struct bwn_mac *, int); static void bwn_bt_enable(struct bwn_mac *); static void bwn_set_macaddr(struct bwn_mac *); static void bwn_crypt_init(struct bwn_mac *); static void bwn_chip_exit(struct bwn_mac *); static int bwn_fw_fillinfo(struct bwn_mac *); static int bwn_fw_loaducode(struct bwn_mac *); static int bwn_gpio_init(struct bwn_mac *); static int bwn_fw_loadinitvals(struct bwn_mac *); static int bwn_phy_init(struct bwn_mac *); static void bwn_set_txantenna(struct bwn_mac *, int); static void bwn_set_opmode(struct bwn_mac *); static void bwn_rate_write(struct bwn_mac *, uint16_t, int); static uint8_t bwn_plcp_getcck(const uint8_t); static uint8_t bwn_plcp_getofdm(const uint8_t); static void bwn_pio_init(struct bwn_mac *); static uint16_t bwn_pio_idx2base(struct bwn_mac *, int); static void bwn_pio_set_txqueue(struct bwn_mac *, struct bwn_pio_txqueue *, int); static void bwn_pio_setupqueue_rx(struct bwn_mac *, struct bwn_pio_rxqueue *, int); static void bwn_destroy_queue_tx(struct bwn_pio_txqueue *); static uint16_t bwn_pio_read_2(struct bwn_mac *, struct bwn_pio_txqueue *, uint16_t); static void bwn_pio_cancel_tx_packets(struct bwn_pio_txqueue *); static int bwn_pio_rx(struct bwn_pio_rxqueue *); static uint8_t bwn_pio_rxeof(struct bwn_pio_rxqueue *); static void bwn_pio_handle_txeof(struct bwn_mac *, const struct bwn_txstatus *); static uint16_t bwn_pio_rx_read_2(struct bwn_pio_rxqueue *, uint16_t); static uint32_t bwn_pio_rx_read_4(struct bwn_pio_rxqueue *, uint16_t); static void bwn_pio_rx_write_2(struct bwn_pio_rxqueue *, uint16_t, uint16_t); static void bwn_pio_rx_write_4(struct bwn_pio_rxqueue *, uint16_t, uint32_t); static int bwn_pio_tx_start(struct bwn_mac *, struct ieee80211_node *, struct mbuf **); static struct bwn_pio_txqueue *bwn_pio_select(struct bwn_mac *, uint8_t); static uint32_t bwn_pio_write_multi_4(struct bwn_mac *, struct bwn_pio_txqueue *, uint32_t, const void *, int); static void bwn_pio_write_4(struct bwn_mac *, struct bwn_pio_txqueue *, uint16_t, uint32_t); static uint16_t bwn_pio_write_multi_2(struct bwn_mac *, struct bwn_pio_txqueue *, uint16_t, const void *, int); static uint16_t bwn_pio_write_mbuf_2(struct bwn_mac *, struct bwn_pio_txqueue *, uint16_t, struct mbuf *); static struct bwn_pio_txqueue *bwn_pio_parse_cookie(struct bwn_mac *, uint16_t, struct bwn_pio_txpkt **); static void bwn_dma_init(struct bwn_mac *); static void bwn_dma_rxdirectfifo(struct bwn_mac *, int, uint8_t); static uint16_t bwn_dma_base(int, int); static void bwn_dma_ringfree(struct bwn_dma_ring **); static void bwn_dma_32_getdesc(struct bwn_dma_ring *, int, struct bwn_dmadesc_generic **, struct bwn_dmadesc_meta **); static void bwn_dma_32_setdesc(struct bwn_dma_ring *, struct bwn_dmadesc_generic *, bus_addr_t, uint16_t, int, int, int); static void bwn_dma_32_start_transfer(struct bwn_dma_ring *, int); static void bwn_dma_32_suspend(struct bwn_dma_ring *); static void bwn_dma_32_resume(struct bwn_dma_ring *); static int bwn_dma_32_get_curslot(struct bwn_dma_ring *); static void bwn_dma_32_set_curslot(struct bwn_dma_ring *, int); static void bwn_dma_64_getdesc(struct bwn_dma_ring *, int, struct bwn_dmadesc_generic **, struct bwn_dmadesc_meta **); static void bwn_dma_64_setdesc(struct bwn_dma_ring *, struct bwn_dmadesc_generic *, bus_addr_t, uint16_t, int, int, int); static void bwn_dma_64_start_transfer(struct bwn_dma_ring *, int); static void bwn_dma_64_suspend(struct bwn_dma_ring *); static void bwn_dma_64_resume(struct bwn_dma_ring *); static int bwn_dma_64_get_curslot(struct bwn_dma_ring *); static void bwn_dma_64_set_curslot(struct bwn_dma_ring *, int); static int bwn_dma_allocringmemory(struct bwn_dma_ring *); static void bwn_dma_setup(struct bwn_dma_ring *); static void bwn_dma_free_ringmemory(struct bwn_dma_ring *); static void bwn_dma_cleanup(struct bwn_dma_ring *); static void bwn_dma_free_descbufs(struct bwn_dma_ring *); static int bwn_dma_tx_reset(struct bwn_mac *, uint16_t, int); static void bwn_dma_rx(struct bwn_dma_ring *); static int bwn_dma_rx_reset(struct bwn_mac *, uint16_t, int); static void bwn_dma_free_descbuf(struct bwn_dma_ring *, struct bwn_dmadesc_meta *); static void bwn_dma_set_redzone(struct bwn_dma_ring *, struct mbuf *); static void bwn_dma_ring_addr(void *, bus_dma_segment_t *, int, int); static int bwn_dma_freeslot(struct bwn_dma_ring *); static int bwn_dma_nextslot(struct bwn_dma_ring *, int); static void bwn_dma_rxeof(struct bwn_dma_ring *, int *); static int bwn_dma_newbuf(struct bwn_dma_ring *, struct bwn_dmadesc_generic *, struct bwn_dmadesc_meta *, int); static void bwn_dma_buf_addr(void *, bus_dma_segment_t *, int, bus_size_t, int); static uint8_t bwn_dma_check_redzone(struct bwn_dma_ring *, struct mbuf *); static void bwn_ratectl_tx_complete(const struct ieee80211_node *, const struct bwn_txstatus *); static void bwn_dma_handle_txeof(struct bwn_mac *, const struct bwn_txstatus *); static int bwn_dma_tx_start(struct bwn_mac *, struct ieee80211_node *, struct mbuf **); static int bwn_dma_getslot(struct bwn_dma_ring *); static struct bwn_dma_ring *bwn_dma_select(struct bwn_mac *, uint8_t); static int bwn_dma_attach(struct bwn_mac *); static struct bwn_dma_ring *bwn_dma_ringsetup(struct bwn_mac *, int, int); static struct bwn_dma_ring *bwn_dma_parse_cookie(struct bwn_mac *, const struct bwn_txstatus *, uint16_t, int *); static void bwn_dma_free(struct bwn_mac *); static int bwn_fw_gets(struct bwn_mac *, enum bwn_fwtype); static int bwn_fw_get(struct bwn_mac *, enum bwn_fwtype, const char *, struct bwn_fwfile *); static void bwn_release_firmware(struct bwn_mac *); static void bwn_do_release_fw(struct bwn_fwfile *); static uint16_t bwn_fwcaps_read(struct bwn_mac *); static int bwn_fwinitvals_write(struct bwn_mac *, const struct bwn_fwinitvals *, size_t, size_t); static uint16_t bwn_ant2phy(int); static void bwn_mac_write_bssid(struct bwn_mac *); static void bwn_mac_setfilter(struct bwn_mac *, uint16_t, const uint8_t *); static void bwn_key_dowrite(struct bwn_mac *, uint8_t, uint8_t, const uint8_t *, size_t, const uint8_t *); static void bwn_key_macwrite(struct bwn_mac *, uint8_t, const uint8_t *); static void bwn_key_write(struct bwn_mac *, uint8_t, uint8_t, const uint8_t *); static void bwn_phy_exit(struct bwn_mac *); static void bwn_core_stop(struct bwn_mac *); static int bwn_switch_band(struct bwn_softc *, struct ieee80211_channel *); static int bwn_phy_reset(struct bwn_mac *); static int bwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void bwn_set_pretbtt(struct bwn_mac *); static int bwn_intr(void *); static void bwn_intrtask(void *, int); static void bwn_restart(struct bwn_mac *, const char *); static void bwn_intr_ucode_debug(struct bwn_mac *); static void bwn_intr_tbtt_indication(struct bwn_mac *); static void bwn_intr_atim_end(struct bwn_mac *); static void bwn_intr_beacon(struct bwn_mac *); static void bwn_intr_pmq(struct bwn_mac *); static void bwn_intr_noise(struct bwn_mac *); static void bwn_intr_txeof(struct bwn_mac *); static void bwn_hwreset(void *, int); static void bwn_handle_fwpanic(struct bwn_mac *); static void bwn_load_beacon0(struct bwn_mac *); static void bwn_load_beacon1(struct bwn_mac *); static uint32_t bwn_jssi_read(struct bwn_mac *); static void bwn_noise_gensample(struct bwn_mac *); static void bwn_handle_txeof(struct bwn_mac *, const struct bwn_txstatus *); static void bwn_rxeof(struct bwn_mac *, struct mbuf *, const void *); static void bwn_phy_txpower_check(struct bwn_mac *, uint32_t); static int bwn_tx_start(struct bwn_softc *, struct ieee80211_node *, struct mbuf *); static int bwn_tx_isfull(struct bwn_softc *, struct mbuf *); static int bwn_set_txhdr(struct bwn_mac *, struct ieee80211_node *, struct mbuf *, struct bwn_txhdr *, uint16_t); static void bwn_plcp_genhdr(struct bwn_plcp4 *, const uint16_t, const uint8_t); static uint8_t bwn_antenna_sanitize(struct bwn_mac *, uint8_t); static uint8_t bwn_get_fbrate(uint8_t); static void bwn_txpwr(void *, int); static void bwn_tasks(void *); static void bwn_task_15s(struct bwn_mac *); static void bwn_task_30s(struct bwn_mac *); static void bwn_task_60s(struct bwn_mac *); static int bwn_plcp_get_ofdmrate(struct bwn_mac *, struct bwn_plcp6 *, uint8_t); static int bwn_plcp_get_cckrate(struct bwn_mac *, struct bwn_plcp6 *); static void bwn_rx_radiotap(struct bwn_mac *, struct mbuf *, const struct bwn_rxhdr4 *, struct bwn_plcp6 *, int, int, int); static void bwn_tsf_read(struct bwn_mac *, uint64_t *); static void bwn_set_slot_time(struct bwn_mac *, uint16_t); static void bwn_watchdog(void *); static void bwn_dma_stop(struct bwn_mac *); static void bwn_pio_stop(struct bwn_mac *); static void bwn_dma_ringstop(struct bwn_dma_ring **); static int bwn_led_attach(struct bwn_mac *); static void bwn_led_newstate(struct bwn_mac *, enum ieee80211_state); static void bwn_led_event(struct bwn_mac *, int); static void bwn_led_blink_start(struct bwn_mac *, int, int); static void bwn_led_blink_next(void *); static void bwn_led_blink_end(void *); static void bwn_rfswitch(void *); static void bwn_rf_turnon(struct bwn_mac *); static void bwn_rf_turnoff(struct bwn_mac *); static void bwn_sysctl_node(struct bwn_softc *); static const struct bwn_channelinfo bwn_chantable_bg = { .channels = { { 2412, 1, 30 }, { 2417, 2, 30 }, { 2422, 3, 30 }, { 2427, 4, 30 }, { 2432, 5, 30 }, { 2437, 6, 30 }, { 2442, 7, 30 }, { 2447, 8, 30 }, { 2452, 9, 30 }, { 2457, 10, 30 }, { 2462, 11, 30 }, { 2467, 12, 30 }, { 2472, 13, 30 }, { 2484, 14, 30 } }, .nchannels = 14 }; static const struct bwn_channelinfo bwn_chantable_a = { .channels = { { 5170, 34, 30 }, { 5180, 36, 30 }, { 5190, 38, 30 }, { 5200, 40, 30 }, { 5210, 42, 30 }, { 5220, 44, 30 }, { 5230, 46, 30 }, { 5240, 48, 30 }, { 5260, 52, 30 }, { 5280, 56, 30 }, { 5300, 60, 30 }, { 5320, 64, 30 }, { 5500, 100, 30 }, { 5520, 104, 30 }, { 5540, 108, 30 }, { 5560, 112, 30 }, { 5580, 116, 30 }, { 5600, 120, 30 }, { 5620, 124, 30 }, { 5640, 128, 30 }, { 5660, 132, 30 }, { 5680, 136, 30 }, { 5700, 140, 30 }, { 5745, 149, 30 }, { 5765, 153, 30 }, { 5785, 157, 30 }, { 5805, 161, 30 }, { 5825, 165, 30 }, { 5920, 184, 30 }, { 5940, 188, 30 }, { 5960, 192, 30 }, { 5980, 196, 30 }, { 6000, 200, 30 }, { 6020, 204, 30 }, { 6040, 208, 30 }, { 6060, 212, 30 }, { 6080, 216, 30 } }, .nchannels = 37 }; #if 0 static const struct bwn_channelinfo bwn_chantable_n = { .channels = { { 5160, 32, 30 }, { 5170, 34, 30 }, { 5180, 36, 30 }, { 5190, 38, 30 }, { 5200, 40, 30 }, { 5210, 42, 30 }, { 5220, 44, 30 }, { 5230, 46, 30 }, { 5240, 48, 30 }, { 5250, 50, 30 }, { 5260, 52, 30 }, { 5270, 54, 30 }, { 5280, 56, 30 }, { 5290, 58, 30 }, { 5300, 60, 30 }, { 5310, 62, 30 }, { 5320, 64, 30 }, { 5330, 66, 30 }, { 5340, 68, 30 }, { 5350, 70, 30 }, { 5360, 72, 30 }, { 5370, 74, 30 }, { 5380, 76, 30 }, { 5390, 78, 30 }, { 5400, 80, 30 }, { 5410, 82, 30 }, { 5420, 84, 30 }, { 5430, 86, 30 }, { 5440, 88, 30 }, { 5450, 90, 30 }, { 5460, 92, 30 }, { 5470, 94, 30 }, { 5480, 96, 30 }, { 5490, 98, 30 }, { 5500, 100, 30 }, { 5510, 102, 30 }, { 5520, 104, 30 }, { 5530, 106, 30 }, { 5540, 108, 30 }, { 5550, 110, 30 }, { 5560, 112, 30 }, { 5570, 114, 30 }, { 5580, 116, 30 }, { 5590, 118, 30 }, { 5600, 120, 30 }, { 5610, 122, 30 }, { 5620, 124, 30 }, { 5630, 126, 30 }, { 5640, 128, 30 }, { 5650, 130, 30 }, { 5660, 132, 30 }, { 5670, 134, 30 }, { 5680, 136, 30 }, { 5690, 138, 30 }, { 5700, 140, 30 }, { 5710, 142, 30 }, { 5720, 144, 30 }, { 5725, 145, 30 }, { 5730, 146, 30 }, { 5735, 147, 30 }, { 5740, 148, 30 }, { 5745, 149, 30 }, { 5750, 150, 30 }, { 5755, 151, 30 }, { 5760, 152, 30 }, { 5765, 153, 30 }, { 5770, 154, 30 }, { 5775, 155, 30 }, { 5780, 156, 30 }, { 5785, 157, 30 }, { 5790, 158, 30 }, { 5795, 159, 30 }, { 5800, 160, 30 }, { 5805, 161, 30 }, { 5810, 162, 30 }, { 5815, 163, 30 }, { 5820, 164, 30 }, { 5825, 165, 30 }, { 5830, 166, 30 }, { 5840, 168, 30 }, { 5850, 170, 30 }, { 5860, 172, 30 }, { 5870, 174, 30 }, { 5880, 176, 30 }, { 5890, 178, 30 }, { 5900, 180, 30 }, { 5910, 182, 30 }, { 5920, 184, 30 }, { 5930, 186, 30 }, { 5940, 188, 30 }, { 5950, 190, 30 }, { 5960, 192, 30 }, { 5970, 194, 30 }, { 5980, 196, 30 }, { 5990, 198, 30 }, { 6000, 200, 30 }, { 6010, 202, 30 }, { 6020, 204, 30 }, { 6030, 206, 30 }, { 6040, 208, 30 }, { 6050, 210, 30 }, { 6060, 212, 30 }, { 6070, 214, 30 }, { 6080, 216, 30 }, { 6090, 218, 30 }, { 6100, 220, 30 }, { 6110, 222, 30 }, { 6120, 224, 30 }, { 6130, 226, 30 }, { 6140, 228, 30 } }, .nchannels = 110 }; #endif #define VENDOR_LED_ACT(vendor) \ { \ .vid = PCI_VENDOR_##vendor, \ .led_act = { BWN_VENDOR_LED_ACT_##vendor } \ } static const struct { uint16_t vid; uint8_t led_act[BWN_LED_MAX]; } bwn_vendor_led_act[] = { VENDOR_LED_ACT(HP_COMPAQ), VENDOR_LED_ACT(ASUSTEK) }; static const uint8_t bwn_default_led_act[BWN_LED_MAX] = { BWN_VENDOR_LED_ACT_DEFAULT }; #undef VENDOR_LED_ACT static const char *bwn_led_vars[] = { BHND_NVAR_LEDBH0, BHND_NVAR_LEDBH1, BHND_NVAR_LEDBH2, BHND_NVAR_LEDBH3 }; static const struct { int on_dur; int off_dur; } bwn_led_duration[109] = { [0] = { 400, 100 }, [2] = { 150, 75 }, [4] = { 90, 45 }, [11] = { 66, 34 }, [12] = { 53, 26 }, [18] = { 42, 21 }, [22] = { 35, 17 }, [24] = { 32, 16 }, [36] = { 21, 10 }, [48] = { 16, 8 }, [72] = { 11, 5 }, [96] = { 9, 4 }, [108] = { 7, 3 } }; static const uint16_t bwn_wme_shm_offsets[] = { [0] = BWN_WME_BESTEFFORT, [1] = BWN_WME_BACKGROUND, [2] = BWN_WME_VOICE, [3] = BWN_WME_VIDEO, }; /* Supported D11 core revisions */ #define BWN_DEV(_hwrev) {{ \ BHND_MATCH_CORE(BHND_MFGID_BCM, BHND_COREID_D11), \ BHND_MATCH_CORE_REV(_hwrev), \ }} static const struct bhnd_device bwn_devices[] = { BWN_DEV(HWREV_RANGE(5, 16)), BWN_DEV(HWREV_EQ(23)), BHND_DEVICE_END }; /* D11 quirks when bridged via a PCI host bridge core */ static const struct bhnd_device_quirk pci_bridge_quirks[] = { BHND_CORE_QUIRK (HWREV_LTE(10), BWN_QUIRK_UCODE_SLOWCLOCK_WAR), BHND_DEVICE_QUIRK_END }; /* D11 quirks when bridged via a PCMCIA host bridge core */ static const struct bhnd_device_quirk pcmcia_bridge_quirks[] = { BHND_CORE_QUIRK (HWREV_ANY, BWN_QUIRK_NODMA), BHND_DEVICE_QUIRK_END }; /* Host bridge cores for which D11 quirk flags should be applied */ static const struct bhnd_device bridge_devices[] = { BHND_DEVICE(BCM, PCI, NULL, pci_bridge_quirks), BHND_DEVICE(BCM, PCMCIA, NULL, pcmcia_bridge_quirks), BHND_DEVICE_END }; static int bwn_probe(device_t dev) { const struct bhnd_device *id; id = bhnd_device_lookup(dev, bwn_devices, sizeof(bwn_devices[0])); if (id == NULL) return (ENXIO); bhnd_set_default_core_desc(dev); return (BUS_PROBE_DEFAULT); } static int bwn_attach(device_t dev) { struct bwn_mac *mac; struct bwn_softc *sc; device_t parent, hostb; char chip_name[BHND_CHIPID_MAX_NAMELEN]; int error; sc = device_get_softc(dev); sc->sc_dev = dev; #ifdef BWN_DEBUG sc->sc_debug = bwn_debug; #endif mac = NULL; /* Determine the driver quirks applicable to this device, including any * quirks specific to the bus host bridge core (if any) */ sc->sc_quirks = bhnd_device_quirks(dev, bwn_devices, sizeof(bwn_devices[0])); parent = device_get_parent(dev); if ((hostb = bhnd_bus_find_hostb_device(parent)) != NULL) { sc->sc_quirks |= bhnd_device_quirks(hostb, bridge_devices, sizeof(bridge_devices[0])); } /* DMA explicitly disabled? */ if (!bwn_usedma) sc->sc_quirks |= BWN_QUIRK_NODMA; /* Fetch our chip identification and board info */ sc->sc_cid = *bhnd_get_chipid(dev); if ((error = bhnd_read_board_info(dev, &sc->sc_board_info))) { device_printf(sc->sc_dev, "couldn't read board info\n"); return (error); } /* Allocate our D11 register block and PMU state */ sc->sc_mem_rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_mem_rid, RF_ACTIVE); if (sc->sc_mem_res == NULL) { device_printf(sc->sc_dev, "couldn't allocate registers\n"); return (error); } if ((error = bhnd_alloc_pmu(sc->sc_dev))) { bus_release_resource(sc->sc_dev, SYS_RES_MEMORY, sc->sc_mem_rid, sc->sc_mem_res); return (error); } /* Retain references to all required bus service providers */ if ((error = bwn_retain_bus_providers(sc))) goto fail; /* Fetch mask of available antennas */ error = bhnd_nvram_getvar_uint8(sc->sc_dev, BHND_NVAR_AA2G, &sc->sc_ant2g); if (error) { device_printf(sc->sc_dev, "error determining 2GHz antenna " "availability from NVRAM: %d\n", error); goto fail; } error = bhnd_nvram_getvar_uint8(sc->sc_dev, BHND_NVAR_AA5G, &sc->sc_ant5g); if (error) { device_printf(sc->sc_dev, "error determining 5GHz antenna " "availability from NVRAM: %d\n", error); goto fail; } if ((sc->sc_flags & BWN_FLAG_ATTACHED) == 0) { bwn_attach_pre(sc); bwn_sprom_bugfixes(dev); sc->sc_flags |= BWN_FLAG_ATTACHED; } mac = malloc(sizeof(*mac), M_DEVBUF, M_WAITOK | M_ZERO); mac->mac_sc = sc; mac->mac_status = BWN_MAC_STATUS_UNINIT; if (bwn_bfp != 0) mac->mac_flags |= BWN_MAC_FLAG_BADFRAME_PREEMP; TASK_INIT(&mac->mac_hwreset, 0, bwn_hwreset, mac); NET_TASK_INIT(&mac->mac_intrtask, 0, bwn_intrtask, mac); TASK_INIT(&mac->mac_txpower, 0, bwn_txpwr, mac); error = bwn_attach_core(mac); if (error) goto fail; error = bwn_led_attach(mac); if (error) goto fail; bhnd_format_chip_id(chip_name, sizeof(chip_name), sc->sc_cid.chip_id); device_printf(sc->sc_dev, "WLAN (%s rev %u sromrev %u) " "PHY (analog %d type %d rev %d) RADIO (manuf %#x ver %#x rev %d)\n", chip_name, bhnd_get_hwrev(sc->sc_dev), sc->sc_board_info.board_srom_rev, mac->mac_phy.analog, mac->mac_phy.type, mac->mac_phy.rev, mac->mac_phy.rf_manuf, mac->mac_phy.rf_ver, mac->mac_phy.rf_rev); if (mac->mac_flags & BWN_MAC_FLAG_DMA) device_printf(sc->sc_dev, "DMA (%d bits)\n", mac->mac_dmatype); else device_printf(sc->sc_dev, "PIO\n"); #ifdef BWN_GPL_PHY device_printf(sc->sc_dev, "Note: compiled with BWN_GPL_PHY; includes GPLv2 code\n"); #endif mac->mac_rid_irq = 0; mac->mac_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &mac->mac_rid_irq, RF_ACTIVE | RF_SHAREABLE); if (mac->mac_res_irq == NULL) { device_printf(sc->sc_dev, "couldn't allocate IRQ resource\n"); error = ENXIO; goto fail; } error = bus_setup_intr(dev, mac->mac_res_irq, INTR_TYPE_NET | INTR_MPSAFE, bwn_intr, NULL, mac, &mac->mac_intrhand); if (error != 0) { device_printf(sc->sc_dev, "couldn't setup interrupt (%d)\n", error); goto fail; } TAILQ_INSERT_TAIL(&sc->sc_maclist, mac, mac_list); /* * calls attach-post routine */ if ((sc->sc_flags & BWN_FLAG_ATTACHED) != 0) bwn_attach_post(sc); return (0); fail: if (mac != NULL && mac->mac_res_irq != NULL) { bus_release_resource(dev, SYS_RES_IRQ, mac->mac_rid_irq, mac->mac_res_irq); } free(mac, M_DEVBUF); bhnd_release_pmu(dev); bwn_release_bus_providers(sc); if (sc->sc_mem_res != NULL) { bus_release_resource(sc->sc_dev, SYS_RES_MEMORY, sc->sc_mem_rid, sc->sc_mem_res); } return (error); } static int bwn_retain_bus_providers(struct bwn_softc *sc) { struct chipc_caps *ccaps; sc->sc_chipc = bhnd_retain_provider(sc->sc_dev, BHND_SERVICE_CHIPC); if (sc->sc_chipc == NULL) { device_printf(sc->sc_dev, "ChipCommon device not found\n"); goto failed; } ccaps = BHND_CHIPC_GET_CAPS(sc->sc_chipc); sc->sc_gpio = bhnd_retain_provider(sc->sc_dev, BHND_SERVICE_GPIO); if (sc->sc_gpio == NULL) { device_printf(sc->sc_dev, "GPIO device not found\n"); goto failed; } if (ccaps->pmu) { sc->sc_pmu = bhnd_retain_provider(sc->sc_dev, BHND_SERVICE_PMU); if (sc->sc_pmu == NULL) { device_printf(sc->sc_dev, "PMU device not found\n"); goto failed; } } return (0); failed: bwn_release_bus_providers(sc); return (ENXIO); } static void bwn_release_bus_providers(struct bwn_softc *sc) { #define BWN_RELEASE_PROV(_sc, _prov, _service) do { \ if ((_sc)-> _prov != NULL) { \ bhnd_release_provider((_sc)->sc_dev, (_sc)-> _prov, \ (_service)); \ (_sc)-> _prov = NULL; \ } \ } while (0) BWN_RELEASE_PROV(sc, sc_chipc, BHND_SERVICE_CHIPC); BWN_RELEASE_PROV(sc, sc_gpio, BHND_SERVICE_GPIO); BWN_RELEASE_PROV(sc, sc_pmu, BHND_SERVICE_PMU); #undef BWN_RELEASE_PROV } static int bwn_attach_post(struct bwn_softc *sc) { struct ieee80211com *ic; const char *mac_varname; u_int core_unit; int error; ic = &sc->sc_ic; ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->sc_dev); /* XXX not right but it's not used anywhere important */ ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WME /* WME/WMM supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ #if 0 | IEEE80211_C_BGSCAN /* capable of bg scanning */ #endif | IEEE80211_C_TXPMGT /* capable of txpow mgt */ ; ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; /* s/w bmiss */ /* Determine the NVRAM variable containing our MAC address */ core_unit = bhnd_get_core_unit(sc->sc_dev); mac_varname = NULL; if (sc->sc_board_info.board_srom_rev <= 2) { if (core_unit == 0) { mac_varname = BHND_NVAR_IL0MACADDR; } else if (core_unit == 1) { mac_varname = BHND_NVAR_ET1MACADDR; } } else { if (core_unit == 0) { mac_varname = BHND_NVAR_MACADDR; } } if (mac_varname == NULL) { device_printf(sc->sc_dev, "missing MAC address variable for " "D11 core %u", core_unit); return (ENXIO); } /* Read the MAC address from NVRAM */ error = bhnd_nvram_getvar_array(sc->sc_dev, mac_varname, ic->ic_macaddr, sizeof(ic->ic_macaddr), BHND_NVRAM_TYPE_UINT8_ARRAY); if (error) { device_printf(sc->sc_dev, "error reading %s: %d\n", mac_varname, error); return (error); } /* call MI attach routine. */ ieee80211_ifattach(ic); ic->ic_headroom = sizeof(struct bwn_txhdr); /* override default methods */ ic->ic_raw_xmit = bwn_raw_xmit; ic->ic_updateslot = bwn_updateslot; ic->ic_update_promisc = bwn_update_promisc; ic->ic_wme.wme_update = bwn_wme_update; ic->ic_scan_start = bwn_scan_start; ic->ic_scan_end = bwn_scan_end; ic->ic_set_channel = bwn_set_channel; ic->ic_vap_create = bwn_vap_create; ic->ic_vap_delete = bwn_vap_delete; ic->ic_transmit = bwn_transmit; ic->ic_parent = bwn_parent; ieee80211_radiotap_attach(ic, &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), BWN_TX_RADIOTAP_PRESENT, &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), BWN_RX_RADIOTAP_PRESENT); bwn_sysctl_node(sc); if (bootverbose) ieee80211_announce(ic); return (0); } static void bwn_phy_detach(struct bwn_mac *mac) { if (mac->mac_phy.detach != NULL) mac->mac_phy.detach(mac); } static int bwn_detach(device_t dev) { struct bwn_softc *sc = device_get_softc(dev); struct bwn_mac *mac = sc->sc_curmac; struct ieee80211com *ic = &sc->sc_ic; sc->sc_flags |= BWN_FLAG_INVALID; if (device_is_attached(sc->sc_dev)) { BWN_LOCK(sc); bwn_stop(sc); BWN_UNLOCK(sc); bwn_dma_free(mac); callout_drain(&sc->sc_led_blink_ch); callout_drain(&sc->sc_rfswitch_ch); callout_drain(&sc->sc_task_ch); callout_drain(&sc->sc_watchdog_ch); bwn_phy_detach(mac); ieee80211_draintask(ic, &mac->mac_hwreset); ieee80211_draintask(ic, &mac->mac_txpower); ieee80211_ifdetach(ic); } taskqueue_drain(sc->sc_tq, &mac->mac_intrtask); taskqueue_free(sc->sc_tq); if (mac->mac_intrhand != NULL) { bus_teardown_intr(dev, mac->mac_res_irq, mac->mac_intrhand); mac->mac_intrhand = NULL; } bhnd_release_pmu(dev); bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid, sc->sc_mem_res); bus_release_resource(dev, SYS_RES_IRQ, mac->mac_rid_irq, mac->mac_res_irq); mbufq_drain(&sc->sc_snd); bwn_release_firmware(mac); BWN_LOCK_DESTROY(sc); bwn_release_bus_providers(sc); return (0); } static void bwn_attach_pre(struct bwn_softc *sc) { BWN_LOCK_INIT(sc); TAILQ_INIT(&sc->sc_maclist); callout_init_mtx(&sc->sc_rfswitch_ch, &sc->sc_mtx, 0); callout_init_mtx(&sc->sc_task_ch, &sc->sc_mtx, 0); callout_init_mtx(&sc->sc_watchdog_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); sc->sc_tq = taskqueue_create_fast("bwn_taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->sc_tq); taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->sc_dev)); } static void bwn_sprom_bugfixes(device_t dev) { struct bwn_softc *sc = device_get_softc(dev); #define BWN_ISDEV(_device, _subvendor, _subdevice) \ ((sc->sc_board_info.board_devid == PCI_DEVID_##_device) && \ (sc->sc_board_info.board_vendor == PCI_VENDOR_##_subvendor) && \ (sc->sc_board_info.board_type == _subdevice)) /* A subset of Apple Airport Extreme (BCM4306 rev 2) devices * were programmed with a missing PACTRL boardflag */ if (sc->sc_board_info.board_vendor == PCI_VENDOR_APPLE && sc->sc_board_info.board_type == 0x4e && sc->sc_board_info.board_rev > 0x40) sc->sc_board_info.board_flags |= BHND_BFL_PACTRL; if (BWN_ISDEV(BCM4318_D11G, ASUSTEK, 0x100f) || BWN_ISDEV(BCM4306_D11G, DELL, 0x0003) || BWN_ISDEV(BCM4306_D11G, HP, 0x12f8) || BWN_ISDEV(BCM4306_D11G, LINKSYS, 0x0013) || BWN_ISDEV(BCM4306_D11G, LINKSYS, 0x0014) || BWN_ISDEV(BCM4306_D11G, LINKSYS, 0x0015) || BWN_ISDEV(BCM4306_D11G, MOTOROLA, 0x7010)) sc->sc_board_info.board_flags &= ~BHND_BFL_BTCOEX; #undef BWN_ISDEV } static void bwn_parent(struct ieee80211com *ic) { struct bwn_softc *sc = ic->ic_softc; int startall = 0; BWN_LOCK(sc); if (ic->ic_nrunning > 0) { if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0) { bwn_init(sc); startall = 1; } else bwn_update_promisc(ic); } else if (sc->sc_flags & BWN_FLAG_RUNNING) bwn_stop(sc); BWN_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int bwn_transmit(struct ieee80211com *ic, struct mbuf *m) { struct bwn_softc *sc = ic->ic_softc; int error; BWN_LOCK(sc); if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0) { BWN_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { BWN_UNLOCK(sc); return (error); } bwn_start(sc); BWN_UNLOCK(sc); return (0); } static void bwn_start(struct bwn_softc *sc) { struct bwn_mac *mac = sc->sc_curmac; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct ieee80211_key *k; struct mbuf *m; BWN_ASSERT_LOCKED(sc); if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0 || mac == NULL || mac->mac_status < BWN_MAC_STATUS_STARTED) return; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { if (bwn_tx_isfull(sc, m)) break; ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (ni == NULL) { device_printf(sc->sc_dev, "unexpected NULL ni\n"); m_freem(m); counter_u64_add(sc->sc_ic.ic_oerrors, 1); continue; } wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); m_freem(m); continue; } } wh = NULL; /* Catch any invalid use */ if (bwn_tx_start(sc, ni, m) != 0) { if (ni != NULL) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); } continue; } sc->sc_watchdog_timer = 5; } } static int bwn_tx_isfull(struct bwn_softc *sc, struct mbuf *m) { struct bwn_dma_ring *dr; struct bwn_mac *mac = sc->sc_curmac; struct bwn_pio_txqueue *tq; int pktlen = roundup(m->m_pkthdr.len + BWN_HDRSIZE(mac), 4); BWN_ASSERT_LOCKED(sc); if (mac->mac_flags & BWN_MAC_FLAG_DMA) { dr = bwn_dma_select(mac, M_WME_GETAC(m)); if (dr->dr_stop == 1 || bwn_dma_freeslot(dr) < BWN_TX_SLOTS_PER_FRAME) { dr->dr_stop = 1; goto full; } } else { tq = bwn_pio_select(mac, M_WME_GETAC(m)); if (tq->tq_free == 0 || pktlen > tq->tq_size || pktlen > (tq->tq_size - tq->tq_used)) goto full; } return (0); full: mbufq_prepend(&sc->sc_snd, m); return (1); } static int bwn_tx_start(struct bwn_softc *sc, struct ieee80211_node *ni, struct mbuf *m) { struct bwn_mac *mac = sc->sc_curmac; int error; BWN_ASSERT_LOCKED(sc); if (m->m_pkthdr.len < IEEE80211_MIN_LEN || mac == NULL) { m_freem(m); return (ENXIO); } error = (mac->mac_flags & BWN_MAC_FLAG_DMA) ? bwn_dma_tx_start(mac, ni, &m) : bwn_pio_tx_start(mac, ni, &m); if (error) { m_freem(m); return (error); } return (0); } static int bwn_pio_tx_start(struct bwn_mac *mac, struct ieee80211_node *ni, struct mbuf **mp) { struct bwn_pio_txpkt *tp; struct bwn_pio_txqueue *tq; struct bwn_softc *sc = mac->mac_sc; struct bwn_txhdr txhdr; struct mbuf *m, *m_new; uint32_t ctl32; int error; uint16_t ctl16; BWN_ASSERT_LOCKED(sc); /* XXX TODO send packets after DTIM */ m = *mp; tq = bwn_pio_select(mac, M_WME_GETAC(m)); KASSERT(!TAILQ_EMPTY(&tq->tq_pktlist), ("%s: fail", __func__)); tp = TAILQ_FIRST(&tq->tq_pktlist); tp->tp_ni = ni; tp->tp_m = m; error = bwn_set_txhdr(mac, ni, m, &txhdr, BWN_PIO_COOKIE(tq, tp)); if (error) { device_printf(sc->sc_dev, "tx fail\n"); return (error); } TAILQ_REMOVE(&tq->tq_pktlist, tp, tp_list); tq->tq_used += roundup(m->m_pkthdr.len + BWN_HDRSIZE(mac), 4); tq->tq_free--; if (bhnd_get_hwrev(sc->sc_dev) >= 8) { /* * XXX please removes m_defrag(9) */ m_new = m_defrag(*mp, M_NOWAIT); if (m_new == NULL) { device_printf(sc->sc_dev, "%s: can't defrag TX buffer\n", __func__); return (ENOBUFS); } *mp = m_new; if (m_new->m_next != NULL) device_printf(sc->sc_dev, "TODO: fragmented packets for PIO\n"); tp->tp_m = m_new; /* send HEADER */ ctl32 = bwn_pio_write_multi_4(mac, tq, (BWN_PIO_READ_4(mac, tq, BWN_PIO8_TXCTL) | BWN_PIO8_TXCTL_FRAMEREADY) & ~BWN_PIO8_TXCTL_EOF, (const uint8_t *)&txhdr, BWN_HDRSIZE(mac)); /* send BODY */ ctl32 = bwn_pio_write_multi_4(mac, tq, ctl32, mtod(m_new, const void *), m_new->m_pkthdr.len); bwn_pio_write_4(mac, tq, BWN_PIO_TXCTL, ctl32 | BWN_PIO8_TXCTL_EOF); } else { ctl16 = bwn_pio_write_multi_2(mac, tq, (bwn_pio_read_2(mac, tq, BWN_PIO_TXCTL) | BWN_PIO_TXCTL_FRAMEREADY) & ~BWN_PIO_TXCTL_EOF, (const uint8_t *)&txhdr, BWN_HDRSIZE(mac)); ctl16 = bwn_pio_write_mbuf_2(mac, tq, ctl16, m); BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl16 | BWN_PIO_TXCTL_EOF); } return (0); } static struct bwn_pio_txqueue * bwn_pio_select(struct bwn_mac *mac, uint8_t prio) { if ((mac->mac_flags & BWN_MAC_FLAG_WME) == 0) return (&mac->mac_method.pio.wme[WME_AC_BE]); switch (prio) { case 0: return (&mac->mac_method.pio.wme[WME_AC_BE]); case 1: return (&mac->mac_method.pio.wme[WME_AC_BK]); case 2: return (&mac->mac_method.pio.wme[WME_AC_VI]); case 3: return (&mac->mac_method.pio.wme[WME_AC_VO]); } KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); return (NULL); } static int bwn_dma_tx_start(struct bwn_mac *mac, struct ieee80211_node *ni, struct mbuf **mp) { #define BWN_GET_TXHDRCACHE(slot) \ &(txhdr_cache[(slot / BWN_TX_SLOTS_PER_FRAME) * BWN_HDRSIZE(mac)]) struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_dma_ring *dr = bwn_dma_select(mac, M_WME_GETAC(*mp)); struct bwn_dmadesc_generic *desc; struct bwn_dmadesc_meta *mt; struct bwn_softc *sc = mac->mac_sc; struct mbuf *m; uint8_t *txhdr_cache = (uint8_t *)dr->dr_txhdr_cache; int error, slot, backup[2] = { dr->dr_curslot, dr->dr_usedslot }; BWN_ASSERT_LOCKED(sc); KASSERT(!dr->dr_stop, ("%s:%d: fail", __func__, __LINE__)); /* XXX send after DTIM */ m = *mp; slot = bwn_dma_getslot(dr); dr->getdesc(dr, slot, &desc, &mt); KASSERT(mt->mt_txtype == BWN_DMADESC_METATYPE_HEADER, ("%s:%d: fail", __func__, __LINE__)); error = bwn_set_txhdr(dr->dr_mac, ni, m, (struct bwn_txhdr *)BWN_GET_TXHDRCACHE(slot), BWN_DMA_COOKIE(dr, slot)); if (error) goto fail; error = bus_dmamap_load(dr->dr_txring_dtag, mt->mt_dmap, BWN_GET_TXHDRCACHE(slot), BWN_HDRSIZE(mac), bwn_dma_ring_addr, &mt->mt_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", __func__, error); goto fail; } bus_dmamap_sync(dr->dr_txring_dtag, mt->mt_dmap, BUS_DMASYNC_PREWRITE); dr->setdesc(dr, desc, mt->mt_paddr, BWN_HDRSIZE(mac), 1, 0, 0); bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap, BUS_DMASYNC_PREWRITE); slot = bwn_dma_getslot(dr); dr->getdesc(dr, slot, &desc, &mt); KASSERT(mt->mt_txtype == BWN_DMADESC_METATYPE_BODY && mt->mt_islast == 1, ("%s:%d: fail", __func__, __LINE__)); mt->mt_m = m; mt->mt_ni = ni; error = bus_dmamap_load_mbuf(dma->txbuf_dtag, mt->mt_dmap, m, bwn_dma_buf_addr, &mt->mt_paddr, BUS_DMA_NOWAIT); if (error && error != EFBIG) { device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", __func__, error); goto fail; } if (error) { /* error == EFBIG */ struct mbuf *m_new; m_new = m_defrag(m, M_NOWAIT); if (m_new == NULL) { device_printf(sc->sc_dev, "%s: can't defrag TX buffer\n", __func__); error = ENOBUFS; goto fail; } *mp = m = m_new; mt->mt_m = m; error = bus_dmamap_load_mbuf(dma->txbuf_dtag, mt->mt_dmap, m, bwn_dma_buf_addr, &mt->mt_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "%s: can't load TX buffer (2) %d\n", __func__, error); goto fail; } } bus_dmamap_sync(dma->txbuf_dtag, mt->mt_dmap, BUS_DMASYNC_PREWRITE); dr->setdesc(dr, desc, mt->mt_paddr, m->m_pkthdr.len, 0, 1, 1); bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap, BUS_DMASYNC_PREWRITE); /* XXX send after DTIM */ dr->start_transfer(dr, bwn_dma_nextslot(dr, slot)); return (0); fail: dr->dr_curslot = backup[0]; dr->dr_usedslot = backup[1]; return (error); #undef BWN_GET_TXHDRCACHE } static void bwn_watchdog(void *arg) { struct bwn_softc *sc = arg; if (sc->sc_watchdog_timer != 0 && --sc->sc_watchdog_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(sc->sc_ic.ic_oerrors, 1); } callout_schedule(&sc->sc_watchdog_ch, hz); } static int bwn_attach_core(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; int error, have_bg = 0, have_a = 0; uint16_t iost; KASSERT(bhnd_get_hwrev(sc->sc_dev) >= 5, ("unsupported revision %d", bhnd_get_hwrev(sc->sc_dev))); if ((error = bwn_core_forceclk(mac, true))) return (error); if ((error = bhnd_read_iost(sc->sc_dev, &iost))) { device_printf(sc->sc_dev, "error reading I/O status flags: " "%d\n", error); return (error); } have_a = (iost & BWN_IOST_HAVE_5GHZ) ? 1 : 0; have_bg = (iost & BWN_IOST_HAVE_2GHZ) ? 1 : 0; if (iost & BWN_IOST_DUALPHY) { have_bg = 1; have_a = 1; } #if 0 device_printf(sc->sc_dev, "%s: iost=0x%04hx, have_a=%d, have_bg=%d," " deviceid=0x%04x, siba_deviceid=0x%04x\n", __func__, iost, have_a, have_bg, sc->sc_board_info.board_devid, sc->sc_cid.chip_id); #endif /* * Guess at whether it has A-PHY or G-PHY. * This is just used for resetting the core to probe things; * we will re-guess once it's all up and working. */ error = bwn_reset_core(mac, have_bg); if (error) goto fail; /* * Determine the DMA engine type */ if (iost & BHND_IOST_DMA64) { mac->mac_dmatype = BHND_DMA_ADDR_64BIT; } else { uint32_t tmp; uint16_t base; base = bwn_dma_base(0, 0); BWN_WRITE_4(mac, base + BWN_DMA32_TXCTL, BWN_DMA32_TXADDREXT_MASK); tmp = BWN_READ_4(mac, base + BWN_DMA32_TXCTL); if (tmp & BWN_DMA32_TXADDREXT_MASK) { mac->mac_dmatype = BHND_DMA_ADDR_32BIT; } else { mac->mac_dmatype = BHND_DMA_ADDR_30BIT; } } /* * Get the PHY version. */ error = bwn_phy_getinfo(mac, have_bg); if (error) goto fail; /* * This is the whitelist of devices which we "believe" * the SPROM PHY config from. The rest are "guessed". */ if (sc->sc_board_info.board_devid != PCI_DEVID_BCM4311_D11DUAL && sc->sc_board_info.board_devid != PCI_DEVID_BCM4328_D11G && sc->sc_board_info.board_devid != PCI_DEVID_BCM4318_D11DUAL && sc->sc_board_info.board_devid != PCI_DEVID_BCM4306_D11DUAL && sc->sc_board_info.board_devid != PCI_DEVID_BCM4321_D11N && sc->sc_board_info.board_devid != PCI_DEVID_BCM4322_D11N) { have_a = have_bg = 0; if (mac->mac_phy.type == BWN_PHYTYPE_A) have_a = 1; else if (mac->mac_phy.type == BWN_PHYTYPE_G || mac->mac_phy.type == BWN_PHYTYPE_N || mac->mac_phy.type == BWN_PHYTYPE_LP) have_bg = 1; else KASSERT(0 == 1, ("%s: unknown phy type (%d)", __func__, mac->mac_phy.type)); } /* * XXX The PHY-G support doesn't do 5GHz operation. */ if (mac->mac_phy.type != BWN_PHYTYPE_LP && mac->mac_phy.type != BWN_PHYTYPE_N) { device_printf(sc->sc_dev, "%s: forcing 2GHz only; no dual-band support for PHY\n", __func__); have_a = 0; have_bg = 1; } mac->mac_phy.phy_n = NULL; if (mac->mac_phy.type == BWN_PHYTYPE_G) { mac->mac_phy.attach = bwn_phy_g_attach; mac->mac_phy.detach = bwn_phy_g_detach; mac->mac_phy.prepare_hw = bwn_phy_g_prepare_hw; mac->mac_phy.init_pre = bwn_phy_g_init_pre; mac->mac_phy.init = bwn_phy_g_init; mac->mac_phy.exit = bwn_phy_g_exit; mac->mac_phy.phy_read = bwn_phy_g_read; mac->mac_phy.phy_write = bwn_phy_g_write; mac->mac_phy.rf_read = bwn_phy_g_rf_read; mac->mac_phy.rf_write = bwn_phy_g_rf_write; mac->mac_phy.use_hwpctl = bwn_phy_g_hwpctl; mac->mac_phy.rf_onoff = bwn_phy_g_rf_onoff; mac->mac_phy.switch_analog = bwn_phy_switch_analog; mac->mac_phy.switch_channel = bwn_phy_g_switch_channel; mac->mac_phy.get_default_chan = bwn_phy_g_get_default_chan; mac->mac_phy.set_antenna = bwn_phy_g_set_antenna; mac->mac_phy.set_im = bwn_phy_g_im; mac->mac_phy.recalc_txpwr = bwn_phy_g_recalc_txpwr; mac->mac_phy.set_txpwr = bwn_phy_g_set_txpwr; mac->mac_phy.task_15s = bwn_phy_g_task_15s; mac->mac_phy.task_60s = bwn_phy_g_task_60s; } else if (mac->mac_phy.type == BWN_PHYTYPE_LP) { mac->mac_phy.init_pre = bwn_phy_lp_init_pre; mac->mac_phy.init = bwn_phy_lp_init; mac->mac_phy.phy_read = bwn_phy_lp_read; mac->mac_phy.phy_write = bwn_phy_lp_write; mac->mac_phy.phy_maskset = bwn_phy_lp_maskset; mac->mac_phy.rf_read = bwn_phy_lp_rf_read; mac->mac_phy.rf_write = bwn_phy_lp_rf_write; mac->mac_phy.rf_onoff = bwn_phy_lp_rf_onoff; mac->mac_phy.switch_analog = bwn_phy_lp_switch_analog; mac->mac_phy.switch_channel = bwn_phy_lp_switch_channel; mac->mac_phy.get_default_chan = bwn_phy_lp_get_default_chan; mac->mac_phy.set_antenna = bwn_phy_lp_set_antenna; mac->mac_phy.task_60s = bwn_phy_lp_task_60s; } else if (mac->mac_phy.type == BWN_PHYTYPE_N) { mac->mac_phy.attach = bwn_phy_n_attach; mac->mac_phy.detach = bwn_phy_n_detach; mac->mac_phy.prepare_hw = bwn_phy_n_prepare_hw; mac->mac_phy.init_pre = bwn_phy_n_init_pre; mac->mac_phy.init = bwn_phy_n_init; mac->mac_phy.exit = bwn_phy_n_exit; mac->mac_phy.phy_read = bwn_phy_n_read; mac->mac_phy.phy_write = bwn_phy_n_write; mac->mac_phy.rf_read = bwn_phy_n_rf_read; mac->mac_phy.rf_write = bwn_phy_n_rf_write; mac->mac_phy.use_hwpctl = bwn_phy_n_hwpctl; mac->mac_phy.rf_onoff = bwn_phy_n_rf_onoff; mac->mac_phy.switch_analog = bwn_phy_n_switch_analog; mac->mac_phy.switch_channel = bwn_phy_n_switch_channel; mac->mac_phy.get_default_chan = bwn_phy_n_get_default_chan; mac->mac_phy.set_antenna = bwn_phy_n_set_antenna; mac->mac_phy.set_im = bwn_phy_n_im; mac->mac_phy.recalc_txpwr = bwn_phy_n_recalc_txpwr; mac->mac_phy.set_txpwr = bwn_phy_n_set_txpwr; mac->mac_phy.task_15s = bwn_phy_n_task_15s; mac->mac_phy.task_60s = bwn_phy_n_task_60s; } else { device_printf(sc->sc_dev, "unsupported PHY type (%d)\n", mac->mac_phy.type); error = ENXIO; goto fail; } mac->mac_phy.gmode = have_bg; if (mac->mac_phy.attach != NULL) { error = mac->mac_phy.attach(mac); if (error) { device_printf(sc->sc_dev, "failed\n"); goto fail; } } error = bwn_reset_core(mac, have_bg); if (error) goto fail; error = bwn_chiptest(mac); if (error) goto fail; error = bwn_setup_channels(mac, have_bg, have_a); if (error) { device_printf(sc->sc_dev, "failed to setup channels\n"); goto fail; } if (sc->sc_curmac == NULL) sc->sc_curmac = mac; error = bwn_dma_attach(mac); if (error != 0) { device_printf(sc->sc_dev, "failed to initialize DMA\n"); goto fail; } mac->mac_phy.switch_analog(mac, 0); fail: bhnd_suspend_hw(sc->sc_dev, 0); bwn_release_firmware(mac); return (error); } /* * Reset */ int bwn_reset_core(struct bwn_mac *mac, int g_mode) { struct bwn_softc *sc; uint32_t ctl; uint16_t ioctl, ioctl_mask; int error; sc = mac->mac_sc; DPRINTF(sc, BWN_DEBUG_RESET, "%s: g_mode=%d\n", __func__, g_mode); /* Reset core */ ioctl = (BWN_IOCTL_PHYCLOCK_ENABLE | BWN_IOCTL_PHYRESET); if (g_mode) ioctl |= BWN_IOCTL_SUPPORT_G; /* XXX N-PHY only; and hard-code to 20MHz for now */ if (mac->mac_phy.type == BWN_PHYTYPE_N) ioctl |= BWN_IOCTL_PHY_BANDWIDTH_20MHZ; if ((error = bhnd_reset_hw(sc->sc_dev, ioctl, ioctl))) { device_printf(sc->sc_dev, "core reset failed: %d", error); return (error); } DELAY(2000); /* Take PHY out of reset */ ioctl = BHND_IOCTL_CLK_FORCE; ioctl_mask = BHND_IOCTL_CLK_FORCE | BWN_IOCTL_PHYRESET | BWN_IOCTL_PHYCLOCK_ENABLE; if ((error = bhnd_write_ioctl(sc->sc_dev, ioctl, ioctl_mask))) { device_printf(sc->sc_dev, "failed to set core ioctl flags: " "%d\n", error); return (error); } DELAY(2000); ioctl = BWN_IOCTL_PHYCLOCK_ENABLE; if ((error = bhnd_write_ioctl(sc->sc_dev, ioctl, ioctl_mask))) { device_printf(sc->sc_dev, "failed to set core ioctl flags: " "%d\n", error); return (error); } DELAY(2000); if (mac->mac_phy.switch_analog != NULL) mac->mac_phy.switch_analog(mac, 1); ctl = BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_GMODE; if (g_mode) ctl |= BWN_MACCTL_GMODE; BWN_WRITE_4(mac, BWN_MACCTL, ctl | BWN_MACCTL_IHR_ON); return (0); } static int bwn_phy_getinfo(struct bwn_mac *mac, int gmode) { struct bwn_phy *phy = &mac->mac_phy; struct bwn_softc *sc = mac->mac_sc; uint32_t tmp; /* PHY */ tmp = BWN_READ_2(mac, BWN_PHYVER); phy->gmode = gmode; phy->rf_on = 1; phy->analog = (tmp & BWN_PHYVER_ANALOG) >> 12; phy->type = (tmp & BWN_PHYVER_TYPE) >> 8; phy->rev = (tmp & BWN_PHYVER_VERSION); if ((phy->type == BWN_PHYTYPE_A && phy->rev >= 4) || (phy->type == BWN_PHYTYPE_B && phy->rev != 2 && phy->rev != 4 && phy->rev != 6 && phy->rev != 7) || (phy->type == BWN_PHYTYPE_G && phy->rev > 9) || (phy->type == BWN_PHYTYPE_N && phy->rev > 6) || (phy->type == BWN_PHYTYPE_LP && phy->rev > 2)) goto unsupphy; /* RADIO */ BWN_WRITE_2(mac, BWN_RFCTL, BWN_RFCTL_ID); tmp = BWN_READ_2(mac, BWN_RFDATALO); BWN_WRITE_2(mac, BWN_RFCTL, BWN_RFCTL_ID); tmp |= (uint32_t)BWN_READ_2(mac, BWN_RFDATAHI) << 16; phy->rf_rev = (tmp & 0xf0000000) >> 28; phy->rf_ver = (tmp & 0x0ffff000) >> 12; phy->rf_manuf = (tmp & 0x00000fff); /* * For now, just always do full init (ie, what bwn has traditionally * done) */ phy->phy_do_full_init = 1; if (phy->rf_manuf != 0x17f) /* 0x17f is broadcom */ goto unsupradio; if ((phy->type == BWN_PHYTYPE_A && (phy->rf_ver != 0x2060 || phy->rf_rev != 1 || phy->rf_manuf != 0x17f)) || (phy->type == BWN_PHYTYPE_B && (phy->rf_ver & 0xfff0) != 0x2050) || (phy->type == BWN_PHYTYPE_G && phy->rf_ver != 0x2050) || (phy->type == BWN_PHYTYPE_N && phy->rf_ver != 0x2055 && phy->rf_ver != 0x2056) || (phy->type == BWN_PHYTYPE_LP && phy->rf_ver != 0x2062 && phy->rf_ver != 0x2063)) goto unsupradio; return (0); unsupphy: device_printf(sc->sc_dev, "unsupported PHY (type %#x, rev %#x, " "analog %#x)\n", phy->type, phy->rev, phy->analog); return (ENXIO); unsupradio: device_printf(sc->sc_dev, "unsupported radio (manuf %#x, ver %#x, " "rev %#x)\n", phy->rf_manuf, phy->rf_ver, phy->rf_rev); return (ENXIO); } static int bwn_chiptest(struct bwn_mac *mac) { #define TESTVAL0 0x55aaaa55 #define TESTVAL1 0xaa5555aa struct bwn_softc *sc = mac->mac_sc; uint32_t v, backup; BWN_LOCK(sc); backup = bwn_shm_read_4(mac, BWN_SHARED, 0); bwn_shm_write_4(mac, BWN_SHARED, 0, TESTVAL0); if (bwn_shm_read_4(mac, BWN_SHARED, 0) != TESTVAL0) goto error; bwn_shm_write_4(mac, BWN_SHARED, 0, TESTVAL1); if (bwn_shm_read_4(mac, BWN_SHARED, 0) != TESTVAL1) goto error; bwn_shm_write_4(mac, BWN_SHARED, 0, backup); if ((bhnd_get_hwrev(sc->sc_dev) >= 3) && (bhnd_get_hwrev(sc->sc_dev) <= 10)) { BWN_WRITE_2(mac, BWN_TSF_CFP_START, 0xaaaa); BWN_WRITE_4(mac, BWN_TSF_CFP_START, 0xccccbbbb); if (BWN_READ_2(mac, BWN_TSF_CFP_START_LOW) != 0xbbbb) goto error; if (BWN_READ_2(mac, BWN_TSF_CFP_START_HIGH) != 0xcccc) goto error; } BWN_WRITE_4(mac, BWN_TSF_CFP_START, 0); v = BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_GMODE; if (v != (BWN_MACCTL_GMODE | BWN_MACCTL_IHR_ON)) goto error; BWN_UNLOCK(sc); return (0); error: BWN_UNLOCK(sc); device_printf(sc->sc_dev, "failed to validate the chipaccess\n"); return (ENODEV); } static int bwn_setup_channels(struct bwn_mac *mac, int have_bg, int have_a) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; uint8_t bands[IEEE80211_MODE_BYTES]; memset(ic->ic_channels, 0, sizeof(ic->ic_channels)); ic->ic_nchans = 0; DPRINTF(sc, BWN_DEBUG_EEPROM, "%s: called; bg=%d, a=%d\n", __func__, have_bg, have_a); if (have_bg) { memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); bwn_addchannels(ic->ic_channels, IEEE80211_CHAN_MAX, &ic->ic_nchans, &bwn_chantable_bg, bands); } if (have_a) { memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11A); bwn_addchannels(ic->ic_channels, IEEE80211_CHAN_MAX, &ic->ic_nchans, &bwn_chantable_a, bands); } mac->mac_phy.supports_2ghz = have_bg; mac->mac_phy.supports_5ghz = have_a; return (ic->ic_nchans == 0 ? ENXIO : 0); } uint32_t bwn_shm_read_4(struct bwn_mac *mac, uint16_t way, uint16_t offset) { uint32_t ret; BWN_ASSERT_LOCKED(mac->mac_sc); if (way == BWN_SHARED) { KASSERT((offset & 0x0001) == 0, ("%s:%d warn", __func__, __LINE__)); if (offset & 0x0003) { bwn_shm_ctlword(mac, way, offset >> 2); ret = BWN_READ_2(mac, BWN_SHM_DATA_UNALIGNED); ret <<= 16; bwn_shm_ctlword(mac, way, (offset >> 2) + 1); ret |= BWN_READ_2(mac, BWN_SHM_DATA); goto out; } offset >>= 2; } bwn_shm_ctlword(mac, way, offset); ret = BWN_READ_4(mac, BWN_SHM_DATA); out: return (ret); } uint16_t bwn_shm_read_2(struct bwn_mac *mac, uint16_t way, uint16_t offset) { uint16_t ret; BWN_ASSERT_LOCKED(mac->mac_sc); if (way == BWN_SHARED) { KASSERT((offset & 0x0001) == 0, ("%s:%d warn", __func__, __LINE__)); if (offset & 0x0003) { bwn_shm_ctlword(mac, way, offset >> 2); ret = BWN_READ_2(mac, BWN_SHM_DATA_UNALIGNED); goto out; } offset >>= 2; } bwn_shm_ctlword(mac, way, offset); ret = BWN_READ_2(mac, BWN_SHM_DATA); out: return (ret); } static void bwn_shm_ctlword(struct bwn_mac *mac, uint16_t way, uint16_t offset) { uint32_t control; control = way; control <<= 16; control |= offset; BWN_WRITE_4(mac, BWN_SHM_CONTROL, control); } void bwn_shm_write_4(struct bwn_mac *mac, uint16_t way, uint16_t offset, uint32_t value) { BWN_ASSERT_LOCKED(mac->mac_sc); if (way == BWN_SHARED) { KASSERT((offset & 0x0001) == 0, ("%s:%d warn", __func__, __LINE__)); if (offset & 0x0003) { bwn_shm_ctlword(mac, way, offset >> 2); BWN_WRITE_2(mac, BWN_SHM_DATA_UNALIGNED, (value >> 16) & 0xffff); bwn_shm_ctlword(mac, way, (offset >> 2) + 1); BWN_WRITE_2(mac, BWN_SHM_DATA, value & 0xffff); return; } offset >>= 2; } bwn_shm_ctlword(mac, way, offset); BWN_WRITE_4(mac, BWN_SHM_DATA, value); } void bwn_shm_write_2(struct bwn_mac *mac, uint16_t way, uint16_t offset, uint16_t value) { BWN_ASSERT_LOCKED(mac->mac_sc); if (way == BWN_SHARED) { KASSERT((offset & 0x0001) == 0, ("%s:%d warn", __func__, __LINE__)); if (offset & 0x0003) { bwn_shm_ctlword(mac, way, offset >> 2); BWN_WRITE_2(mac, BWN_SHM_DATA_UNALIGNED, value); return; } offset >>= 2; } bwn_shm_ctlword(mac, way, offset); BWN_WRITE_2(mac, BWN_SHM_DATA, value); } static void bwn_addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans, const struct bwn_channelinfo *ci, const uint8_t bands[]) { int i, error; for (i = 0, error = 0; i < ci->nchannels && error == 0; i++) { const struct bwn_channel *hc = &ci->channels[i]; error = ieee80211_add_channel(chans, maxchans, nchans, hc->ieee, hc->freq, hc->maxTxPow, 0, bands); } } static int bwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac = sc->sc_curmac; int error; if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0 || mac->mac_status < BWN_MAC_STATUS_STARTED) { m_freem(m); return (ENETDOWN); } BWN_LOCK(sc); if (bwn_tx_isfull(sc, m)) { m_freem(m); BWN_UNLOCK(sc); return (ENOBUFS); } error = bwn_tx_start(sc, ni, m); if (error == 0) sc->sc_watchdog_timer = 5; BWN_UNLOCK(sc); return (error); } /* * Callback from the 802.11 layer to update the slot time * based on the current setting. We use it to notify the * firmware of ERP changes and the f/w takes care of things * like slot time and preamble. */ static void bwn_updateslot(struct ieee80211com *ic) { struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac; BWN_LOCK(sc); if (sc->sc_flags & BWN_FLAG_RUNNING) { mac = (struct bwn_mac *)sc->sc_curmac; bwn_set_slot_time(mac, IEEE80211_GET_SLOTTIME(ic)); } BWN_UNLOCK(sc); } /* * Callback from the 802.11 layer after a promiscuous mode change. * Note this interface does not check the operating mode as this * is an internal callback and we are expected to honor the current * state (e.g. this is used for setting the interface in promiscuous * mode when operating in hostap mode to do ACS). */ static void bwn_update_promisc(struct ieee80211com *ic) { struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac = sc->sc_curmac; BWN_LOCK(sc); mac = sc->sc_curmac; if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) { if (ic->ic_promisc > 0) sc->sc_filters |= BWN_MACCTL_PROMISC; else sc->sc_filters &= ~BWN_MACCTL_PROMISC; bwn_set_opmode(mac); } BWN_UNLOCK(sc); } /* * Callback from the 802.11 layer to update WME parameters. */ static int bwn_wme_update(struct ieee80211com *ic) { struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac = sc->sc_curmac; struct chanAccParams chp; struct wmeParams *wmep; int i; ieee80211_wme_ic_getparams(ic, &chp); BWN_LOCK(sc); mac = sc->sc_curmac; if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) { bwn_mac_suspend(mac); for (i = 0; i < N(sc->sc_wmeParams); i++) { wmep = &chp.cap_wmeParams[i]; bwn_wme_loadparams(mac, wmep, bwn_wme_shm_offsets[i]); } bwn_mac_enable(mac); } BWN_UNLOCK(sc); return (0); } static void bwn_scan_start(struct ieee80211com *ic) { struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac; BWN_LOCK(sc); mac = sc->sc_curmac; if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) { sc->sc_filters |= BWN_MACCTL_BEACON_PROMISC; bwn_set_opmode(mac); /* disable CFP update during scan */ bwn_hf_write(mac, bwn_hf_read(mac) | BWN_HF_SKIP_CFP_UPDATE); } BWN_UNLOCK(sc); } static void bwn_scan_end(struct ieee80211com *ic) { struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac; BWN_LOCK(sc); mac = sc->sc_curmac; if (mac != NULL && mac->mac_status >= BWN_MAC_STATUS_INITED) { sc->sc_filters &= ~BWN_MACCTL_BEACON_PROMISC; bwn_set_opmode(mac); bwn_hf_write(mac, bwn_hf_read(mac) & ~BWN_HF_SKIP_CFP_UPDATE); } BWN_UNLOCK(sc); } static void bwn_set_channel(struct ieee80211com *ic) { struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac = sc->sc_curmac; struct bwn_phy *phy = &mac->mac_phy; int chan, error; BWN_LOCK(sc); error = bwn_switch_band(sc, ic->ic_curchan); if (error) goto fail; bwn_mac_suspend(mac); bwn_set_txretry(mac, BWN_RETRY_SHORT, BWN_RETRY_LONG); chan = ieee80211_chan2ieee(ic, ic->ic_curchan); if (chan != phy->chan) bwn_switch_channel(mac, chan); /* TX power level */ if (ic->ic_curchan->ic_maxpower != 0 && ic->ic_curchan->ic_maxpower != phy->txpower) { phy->txpower = ic->ic_curchan->ic_maxpower / 2; bwn_phy_txpower_check(mac, BWN_TXPWR_IGNORE_TIME | BWN_TXPWR_IGNORE_TSSI); } bwn_set_txantenna(mac, BWN_ANT_DEFAULT); if (phy->set_antenna) phy->set_antenna(mac, BWN_ANT_DEFAULT); if (sc->sc_rf_enabled != phy->rf_on) { if (sc->sc_rf_enabled) { bwn_rf_turnon(mac); if (!(mac->mac_flags & BWN_MAC_FLAG_RADIO_ON)) device_printf(sc->sc_dev, "please turn on the RF switch\n"); } else bwn_rf_turnoff(mac); } bwn_mac_enable(mac); fail: BWN_UNLOCK(sc); } static struct ieee80211vap * bwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211vap *vap; struct bwn_vap *bvp; switch (opmode) { case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: case IEEE80211_M_STA: case IEEE80211_M_WDS: case IEEE80211_M_MONITOR: case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: break; default: return (NULL); } bvp = malloc(sizeof(struct bwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &bvp->bv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override with driver methods */ bvp->bv_newstate = vap->iv_newstate; vap->iv_newstate = bwn_newstate; /* override max aid so sta's cannot assoc when we're out of sta id's */ vap->iv_max_aid = BWN_STAID_MAX; ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); return (vap); } static void bwn_vap_delete(struct ieee80211vap *vap) { struct bwn_vap *bvp = BWN_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(bvp, M_80211_VAP); } static int bwn_init(struct bwn_softc *sc) { struct bwn_mac *mac; int error; BWN_ASSERT_LOCKED(sc); DPRINTF(sc, BWN_DEBUG_RESET, "%s: called\n", __func__); bzero(sc->sc_bssid, IEEE80211_ADDR_LEN); sc->sc_flags |= BWN_FLAG_NEED_BEACON_TP; sc->sc_filters = 0; bwn_wme_clear(sc); sc->sc_beacons[0] = sc->sc_beacons[1] = 0; sc->sc_rf_enabled = 1; mac = sc->sc_curmac; if (mac->mac_status == BWN_MAC_STATUS_UNINIT) { error = bwn_core_init(mac); if (error != 0) return (error); } if (mac->mac_status == BWN_MAC_STATUS_INITED) bwn_core_start(mac); bwn_set_opmode(mac); bwn_set_pretbtt(mac); bwn_spu_setdelay(mac, 0); bwn_set_macaddr(mac); sc->sc_flags |= BWN_FLAG_RUNNING; callout_reset(&sc->sc_rfswitch_ch, hz, bwn_rfswitch, sc); callout_reset(&sc->sc_watchdog_ch, hz, bwn_watchdog, sc); return (0); } static void bwn_stop(struct bwn_softc *sc) { struct bwn_mac *mac = sc->sc_curmac; BWN_ASSERT_LOCKED(sc); DPRINTF(sc, BWN_DEBUG_RESET, "%s: called\n", __func__); if (mac->mac_status >= BWN_MAC_STATUS_INITED) { /* XXX FIXME opmode not based on VAP */ bwn_set_opmode(mac); bwn_set_macaddr(mac); } if (mac->mac_status >= BWN_MAC_STATUS_STARTED) bwn_core_stop(mac); callout_stop(&sc->sc_led_blink_ch); sc->sc_led_blinking = 0; bwn_core_exit(mac); sc->sc_rf_enabled = 0; sc->sc_flags &= ~BWN_FLAG_RUNNING; } static void bwn_wme_clear(struct bwn_softc *sc) { -#define MS(_v, _f) (((_v) & _f) >> _f##_S) struct wmeParams *p; unsigned int i; KASSERT(N(bwn_wme_shm_offsets) == N(sc->sc_wmeParams), ("%s:%d: fail", __func__, __LINE__)); for (i = 0; i < N(sc->sc_wmeParams); i++) { p = &(sc->sc_wmeParams[i]); switch (bwn_wme_shm_offsets[i]) { case BWN_WME_VOICE: p->wmep_txopLimit = 0; p->wmep_aifsn = 2; /* XXX FIXME: log2(cwmin) */ - p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN); - p->wmep_logcwmax = MS(0x0001, WME_PARAM_LOGCWMAX); + p->wmep_logcwmin = + _IEEE80211_MASKSHIFT(0x0001, WME_PARAM_LOGCWMIN); + p->wmep_logcwmax = + _IEEE80211_MASKSHIFT(0x0001, WME_PARAM_LOGCWMAX); break; case BWN_WME_VIDEO: p->wmep_txopLimit = 0; p->wmep_aifsn = 2; /* XXX FIXME: log2(cwmin) */ - p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN); - p->wmep_logcwmax = MS(0x0001, WME_PARAM_LOGCWMAX); + p->wmep_logcwmin = + _IEEE80211_MASKSHIFT(0x0001, WME_PARAM_LOGCWMIN); + p->wmep_logcwmax = + _IEEE80211_MASKSHIFT(0x0001, WME_PARAM_LOGCWMAX); break; case BWN_WME_BESTEFFORT: p->wmep_txopLimit = 0; p->wmep_aifsn = 3; /* XXX FIXME: log2(cwmin) */ - p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN); - p->wmep_logcwmax = MS(0x03ff, WME_PARAM_LOGCWMAX); + p->wmep_logcwmin = + _IEEE80211_MASKSHIFT(0x0001, WME_PARAM_LOGCWMIN); + p->wmep_logcwmax = + _IEEE80211_MASKSHIFT(0x03ff, WME_PARAM_LOGCWMAX); break; case BWN_WME_BACKGROUND: p->wmep_txopLimit = 0; p->wmep_aifsn = 7; /* XXX FIXME: log2(cwmin) */ - p->wmep_logcwmin = MS(0x0001, WME_PARAM_LOGCWMIN); - p->wmep_logcwmax = MS(0x03ff, WME_PARAM_LOGCWMAX); + p->wmep_logcwmin = + _IEEE80211_MASKSHIFT(0x0001, WME_PARAM_LOGCWMIN); + p->wmep_logcwmax = + _IEEE80211_MASKSHIFT(0x03ff, WME_PARAM_LOGCWMAX); break; default: KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); } } } static int bwn_core_forceclk(struct bwn_mac *mac, bool force) { struct bwn_softc *sc; bhnd_clock clock; int error; sc = mac->mac_sc; /* On PMU equipped devices, we do not need to force the HT clock */ if (sc->sc_pmu != NULL) return (0); /* Issue a PMU clock request */ if (force) clock = BHND_CLOCK_HT; else clock = BHND_CLOCK_DYN; if ((error = bhnd_request_clock(sc->sc_dev, clock))) { device_printf(sc->sc_dev, "%d clock request failed: %d\n", clock, error); return (error); } return (0); } static int bwn_core_init(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint64_t hf; int error; KASSERT(mac->mac_status == BWN_MAC_STATUS_UNINIT, ("%s:%d: fail", __func__, __LINE__)); DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: called\n", __func__); if ((error = bwn_core_forceclk(mac, true))) return (error); if (bhnd_is_hw_suspended(sc->sc_dev)) { if ((error = bwn_reset_core(mac, mac->mac_phy.gmode))) goto fail0; } mac->mac_flags &= ~BWN_MAC_FLAG_DFQVALID; mac->mac_flags |= BWN_MAC_FLAG_RADIO_ON; mac->mac_phy.hwpctl = (bwn_hwpctl) ? 1 : 0; BWN_GETTIME(mac->mac_phy.nexttime); mac->mac_phy.txerrors = BWN_TXERROR_MAX; bzero(&mac->mac_stats, sizeof(mac->mac_stats)); mac->mac_stats.link_noise = -95; mac->mac_reason_intr = 0; bzero(mac->mac_reason, sizeof(mac->mac_reason)); mac->mac_intr_mask = BWN_INTR_MASKTEMPLATE; #ifdef BWN_DEBUG if (sc->sc_debug & BWN_DEBUG_XMIT) mac->mac_intr_mask &= ~BWN_INTR_PHY_TXERR; #endif mac->mac_suspended = 1; mac->mac_task_state = 0; memset(&mac->mac_noise, 0, sizeof(mac->mac_noise)); mac->mac_phy.init_pre(mac); bwn_bt_disable(mac); if (mac->mac_phy.prepare_hw) { error = mac->mac_phy.prepare_hw(mac); if (error) goto fail0; } DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: chip_init\n", __func__); error = bwn_chip_init(mac); if (error) goto fail0; bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_COREREV, bhnd_get_hwrev(sc->sc_dev)); hf = bwn_hf_read(mac); if (mac->mac_phy.type == BWN_PHYTYPE_G) { hf |= BWN_HF_GPHY_SYM_WORKAROUND; if (sc->sc_board_info.board_flags & BHND_BFL_PACTRL) hf |= BWN_HF_PAGAINBOOST_OFDM_ON; if (mac->mac_phy.rev == 1) hf |= BWN_HF_GPHY_DC_CANCELFILTER; } if (mac->mac_phy.rf_ver == 0x2050) { if (mac->mac_phy.rf_rev < 6) hf |= BWN_HF_FORCE_VCO_RECALC; if (mac->mac_phy.rf_rev == 6) hf |= BWN_HF_4318_TSSI; } if (sc->sc_board_info.board_flags & BHND_BFL_NOPLLDOWN) hf |= BWN_HF_SLOWCLOCK_REQ_OFF; if (sc->sc_quirks & BWN_QUIRK_UCODE_SLOWCLOCK_WAR) hf |= BWN_HF_PCI_SLOWCLOCK_WORKAROUND; hf &= ~BWN_HF_SKIP_CFP_UPDATE; bwn_hf_write(mac, hf); /* Tell the firmware about the MAC capabilities */ if (bhnd_get_hwrev(sc->sc_dev) >= 13) { uint32_t cap; cap = BWN_READ_4(mac, BWN_MAC_HW_CAP); DPRINTF(sc, BWN_DEBUG_RESET, "%s: hw capabilities: 0x%08x\n", __func__, cap); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_MACHW_L, cap & 0xffff); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_MACHW_H, (cap >> 16) & 0xffff); } bwn_set_txretry(mac, BWN_RETRY_SHORT, BWN_RETRY_LONG); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_SHORT_RETRY_FALLBACK, 3); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_LONG_RETRY_FALLBACK, 2); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_MAXTIME, 1); bwn_rate_init(mac); bwn_set_phytxctl(mac); bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_CONT_MIN, (mac->mac_phy.type == BWN_PHYTYPE_B) ? 0x1f : 0xf); bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_CONT_MAX, 0x3ff); if (sc->sc_quirks & BWN_QUIRK_NODMA) bwn_pio_init(mac); else bwn_dma_init(mac); bwn_wme_init(mac); bwn_spu_setdelay(mac, 1); bwn_bt_enable(mac); DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: powerup\n", __func__); if (sc->sc_board_info.board_flags & BHND_BFL_NOPLLDOWN) bwn_core_forceclk(mac, true); else bwn_core_forceclk(mac, false); bwn_set_macaddr(mac); bwn_crypt_init(mac); /* XXX LED initializatin */ mac->mac_status = BWN_MAC_STATUS_INITED; DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: done\n", __func__); return (error); fail0: bhnd_suspend_hw(sc->sc_dev, 0); KASSERT(mac->mac_status == BWN_MAC_STATUS_UNINIT, ("%s:%d: fail", __func__, __LINE__)); DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: fail\n", __func__); return (error); } static void bwn_core_start(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint32_t tmp; KASSERT(mac->mac_status == BWN_MAC_STATUS_INITED, ("%s:%d: fail", __func__, __LINE__)); if (bhnd_get_hwrev(sc->sc_dev) < 5) return; while (1) { tmp = BWN_READ_4(mac, BWN_XMITSTAT_0); if (!(tmp & 0x00000001)) break; tmp = BWN_READ_4(mac, BWN_XMITSTAT_1); } bwn_mac_enable(mac); BWN_WRITE_4(mac, BWN_INTR_MASK, mac->mac_intr_mask); callout_reset(&sc->sc_task_ch, hz * 15, bwn_tasks, mac); mac->mac_status = BWN_MAC_STATUS_STARTED; } static void bwn_core_exit(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint32_t macctl; BWN_ASSERT_LOCKED(mac->mac_sc); KASSERT(mac->mac_status <= BWN_MAC_STATUS_INITED, ("%s:%d: fail", __func__, __LINE__)); if (mac->mac_status != BWN_MAC_STATUS_INITED) return; mac->mac_status = BWN_MAC_STATUS_UNINIT; macctl = BWN_READ_4(mac, BWN_MACCTL); macctl &= ~BWN_MACCTL_MCODE_RUN; macctl |= BWN_MACCTL_MCODE_JMP0; BWN_WRITE_4(mac, BWN_MACCTL, macctl); bwn_dma_stop(mac); bwn_pio_stop(mac); bwn_chip_exit(mac); mac->mac_phy.switch_analog(mac, 0); bhnd_suspend_hw(sc->sc_dev, 0); } static void bwn_bt_disable(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; (void)sc; /* XXX do nothing yet */ } static int bwn_chip_init(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; struct bwn_phy *phy = &mac->mac_phy; uint32_t macctl; u_int delay; int error; macctl = BWN_MACCTL_IHR_ON | BWN_MACCTL_SHM_ON | BWN_MACCTL_STA; if (phy->gmode) macctl |= BWN_MACCTL_GMODE; BWN_WRITE_4(mac, BWN_MACCTL, macctl); error = bwn_fw_fillinfo(mac); if (error) return (error); error = bwn_fw_loaducode(mac); if (error) return (error); error = bwn_gpio_init(mac); if (error) return (error); error = bwn_fw_loadinitvals(mac); if (error) return (error); phy->switch_analog(mac, 1); error = bwn_phy_init(mac); if (error) return (error); if (phy->set_im) phy->set_im(mac, BWN_IMMODE_NONE); if (phy->set_antenna) phy->set_antenna(mac, BWN_ANT_DEFAULT); bwn_set_txantenna(mac, BWN_ANT_DEFAULT); if (phy->type == BWN_PHYTYPE_B) BWN_WRITE_2(mac, 0x005e, BWN_READ_2(mac, 0x005e) | 0x0004); BWN_WRITE_4(mac, 0x0100, 0x01000000); if (bhnd_get_hwrev(sc->sc_dev) < 5) BWN_WRITE_4(mac, 0x010c, 0x01000000); BWN_WRITE_4(mac, BWN_MACCTL, BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_STA); BWN_WRITE_4(mac, BWN_MACCTL, BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_STA); bwn_shm_write_2(mac, BWN_SHARED, 0x0074, 0x0000); bwn_set_opmode(mac); if (bhnd_get_hwrev(sc->sc_dev) < 3) { BWN_WRITE_2(mac, 0x060e, 0x0000); BWN_WRITE_2(mac, 0x0610, 0x8000); BWN_WRITE_2(mac, 0x0604, 0x0000); BWN_WRITE_2(mac, 0x0606, 0x0200); } else { BWN_WRITE_4(mac, 0x0188, 0x80000000); BWN_WRITE_4(mac, 0x018c, 0x02000000); } BWN_WRITE_4(mac, BWN_INTR_REASON, 0x00004000); BWN_WRITE_4(mac, BWN_DMA0_INTR_MASK, 0x0001dc00); BWN_WRITE_4(mac, BWN_DMA1_INTR_MASK, 0x0000dc00); BWN_WRITE_4(mac, BWN_DMA2_INTR_MASK, 0x0000dc00); BWN_WRITE_4(mac, BWN_DMA3_INTR_MASK, 0x0001dc00); BWN_WRITE_4(mac, BWN_DMA4_INTR_MASK, 0x0000dc00); BWN_WRITE_4(mac, BWN_DMA5_INTR_MASK, 0x0000dc00); bwn_mac_phy_clock_set(mac, true); /* Provide the HT clock transition latency to the MAC core */ error = bhnd_get_clock_latency(sc->sc_dev, BHND_CLOCK_HT, &delay); if (error) { device_printf(sc->sc_dev, "failed to fetch HT clock latency: " "%d\n", error); return (error); } if (delay > UINT16_MAX) { device_printf(sc->sc_dev, "invalid HT clock latency: %u\n", delay); return (ENXIO); } BWN_WRITE_2(mac, BWN_POWERUP_DELAY, delay); return (0); } /* read hostflags */ uint64_t bwn_hf_read(struct bwn_mac *mac) { uint64_t ret; ret = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_HFHI); ret <<= 16; ret |= bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_HFMI); ret <<= 16; ret |= bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_HFLO); return (ret); } void bwn_hf_write(struct bwn_mac *mac, uint64_t value) { bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_HFLO, (value & 0x00000000ffffull)); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_HFMI, (value & 0x0000ffff0000ull) >> 16); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_HFHI, (value & 0xffff00000000ULL) >> 32); } static void bwn_set_txretry(struct bwn_mac *mac, int s, int l) { bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_SHORT_RETRY, MIN(s, 0xf)); bwn_shm_write_2(mac, BWN_SCRATCH, BWN_SCRATCH_LONG_RETRY, MIN(l, 0xf)); } static void bwn_rate_init(struct bwn_mac *mac) { switch (mac->mac_phy.type) { case BWN_PHYTYPE_A: case BWN_PHYTYPE_G: case BWN_PHYTYPE_LP: case BWN_PHYTYPE_N: bwn_rate_write(mac, BWN_OFDM_RATE_6MB, 1); bwn_rate_write(mac, BWN_OFDM_RATE_12MB, 1); bwn_rate_write(mac, BWN_OFDM_RATE_18MB, 1); bwn_rate_write(mac, BWN_OFDM_RATE_24MB, 1); bwn_rate_write(mac, BWN_OFDM_RATE_36MB, 1); bwn_rate_write(mac, BWN_OFDM_RATE_48MB, 1); bwn_rate_write(mac, BWN_OFDM_RATE_54MB, 1); if (mac->mac_phy.type == BWN_PHYTYPE_A) break; /* FALLTHROUGH */ case BWN_PHYTYPE_B: bwn_rate_write(mac, BWN_CCK_RATE_1MB, 0); bwn_rate_write(mac, BWN_CCK_RATE_2MB, 0); bwn_rate_write(mac, BWN_CCK_RATE_5MB, 0); bwn_rate_write(mac, BWN_CCK_RATE_11MB, 0); break; default: KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); } } static void bwn_rate_write(struct bwn_mac *mac, uint16_t rate, int ofdm) { uint16_t offset; if (ofdm) { offset = 0x480; offset += (bwn_plcp_getofdm(rate) & 0x000f) * 2; } else { offset = 0x4c0; offset += (bwn_plcp_getcck(rate) & 0x000f) * 2; } bwn_shm_write_2(mac, BWN_SHARED, offset + 0x20, bwn_shm_read_2(mac, BWN_SHARED, offset)); } static uint8_t bwn_plcp_getcck(const uint8_t bitrate) { switch (bitrate) { case BWN_CCK_RATE_1MB: return (0x0a); case BWN_CCK_RATE_2MB: return (0x14); case BWN_CCK_RATE_5MB: return (0x37); case BWN_CCK_RATE_11MB: return (0x6e); } KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); return (0); } static uint8_t bwn_plcp_getofdm(const uint8_t bitrate) { switch (bitrate) { case BWN_OFDM_RATE_6MB: return (0xb); case BWN_OFDM_RATE_9MB: return (0xf); case BWN_OFDM_RATE_12MB: return (0xa); case BWN_OFDM_RATE_18MB: return (0xe); case BWN_OFDM_RATE_24MB: return (0x9); case BWN_OFDM_RATE_36MB: return (0xd); case BWN_OFDM_RATE_48MB: return (0x8); case BWN_OFDM_RATE_54MB: return (0xc); } KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); return (0); } static void bwn_set_phytxctl(struct bwn_mac *mac) { uint16_t ctl; ctl = (BWN_TX_PHY_ENC_CCK | BWN_TX_PHY_ANT01AUTO | BWN_TX_PHY_TXPWR); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_BEACON_PHYCTL, ctl); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_ACKCTS_PHYCTL, ctl); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_PHYCTL, ctl); } static void bwn_pio_init(struct bwn_mac *mac) { struct bwn_pio *pio = &mac->mac_method.pio; BWN_WRITE_4(mac, BWN_MACCTL, BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_BIGENDIAN); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_RX_PADOFFSET, 0); bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_BK], 0); bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_BE], 1); bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_VI], 2); bwn_pio_set_txqueue(mac, &pio->wme[WME_AC_VO], 3); bwn_pio_set_txqueue(mac, &pio->mcast, 4); bwn_pio_setupqueue_rx(mac, &pio->rx, 0); } static void bwn_pio_set_txqueue(struct bwn_mac *mac, struct bwn_pio_txqueue *tq, int index) { struct bwn_pio_txpkt *tp; struct bwn_softc *sc = mac->mac_sc; unsigned int i; tq->tq_base = bwn_pio_idx2base(mac, index) + BWN_PIO_TXQOFFSET(mac); tq->tq_index = index; tq->tq_free = BWN_PIO_MAX_TXPACKETS; if (bhnd_get_hwrev(sc->sc_dev) >= 8) tq->tq_size = 1920; else { tq->tq_size = bwn_pio_read_2(mac, tq, BWN_PIO_TXQBUFSIZE); tq->tq_size -= 80; } TAILQ_INIT(&tq->tq_pktlist); for (i = 0; i < N(tq->tq_pkts); i++) { tp = &(tq->tq_pkts[i]); tp->tp_index = i; tp->tp_queue = tq; TAILQ_INSERT_TAIL(&tq->tq_pktlist, tp, tp_list); } } static uint16_t bwn_pio_idx2base(struct bwn_mac *mac, int index) { struct bwn_softc *sc = mac->mac_sc; static const uint16_t bases[] = { BWN_PIO_BASE0, BWN_PIO_BASE1, BWN_PIO_BASE2, BWN_PIO_BASE3, BWN_PIO_BASE4, BWN_PIO_BASE5, BWN_PIO_BASE6, BWN_PIO_BASE7, }; static const uint16_t bases_rev11[] = { BWN_PIO11_BASE0, BWN_PIO11_BASE1, BWN_PIO11_BASE2, BWN_PIO11_BASE3, BWN_PIO11_BASE4, BWN_PIO11_BASE5, }; if (bhnd_get_hwrev(sc->sc_dev) >= 11) { if (index >= N(bases_rev11)) device_printf(sc->sc_dev, "%s: warning\n", __func__); return (bases_rev11[index]); } if (index >= N(bases)) device_printf(sc->sc_dev, "%s: warning\n", __func__); return (bases[index]); } static void bwn_pio_setupqueue_rx(struct bwn_mac *mac, struct bwn_pio_rxqueue *prq, int index) { struct bwn_softc *sc = mac->mac_sc; prq->prq_mac = mac; prq->prq_rev = bhnd_get_hwrev(sc->sc_dev); prq->prq_base = bwn_pio_idx2base(mac, index) + BWN_PIO_RXQOFFSET(mac); bwn_dma_rxdirectfifo(mac, index, 1); } static void bwn_destroy_pioqueue_tx(struct bwn_pio_txqueue *tq) { if (tq == NULL) return; bwn_pio_cancel_tx_packets(tq); } static void bwn_destroy_queue_tx(struct bwn_pio_txqueue *pio) { bwn_destroy_pioqueue_tx(pio); } static uint16_t bwn_pio_read_2(struct bwn_mac *mac, struct bwn_pio_txqueue *tq, uint16_t offset) { return (BWN_READ_2(mac, tq->tq_base + offset)); } static void bwn_dma_rxdirectfifo(struct bwn_mac *mac, int idx, uint8_t enable) { uint32_t ctl; uint16_t base; base = bwn_dma_base(mac->mac_dmatype, idx); if (mac->mac_dmatype == BHND_DMA_ADDR_64BIT) { ctl = BWN_READ_4(mac, base + BWN_DMA64_RXCTL); ctl &= ~BWN_DMA64_RXDIRECTFIFO; if (enable) ctl |= BWN_DMA64_RXDIRECTFIFO; BWN_WRITE_4(mac, base + BWN_DMA64_RXCTL, ctl); } else { ctl = BWN_READ_4(mac, base + BWN_DMA32_RXCTL); ctl &= ~BWN_DMA32_RXDIRECTFIFO; if (enable) ctl |= BWN_DMA32_RXDIRECTFIFO; BWN_WRITE_4(mac, base + BWN_DMA32_RXCTL, ctl); } } static void bwn_pio_cancel_tx_packets(struct bwn_pio_txqueue *tq) { struct bwn_pio_txpkt *tp; unsigned int i; for (i = 0; i < N(tq->tq_pkts); i++) { tp = &(tq->tq_pkts[i]); if (tp->tp_m) { m_freem(tp->tp_m); tp->tp_m = NULL; } } } static uint16_t bwn_dma_base(int type, int controller_idx) { static const uint16_t map64[] = { BWN_DMA64_BASE0, BWN_DMA64_BASE1, BWN_DMA64_BASE2, BWN_DMA64_BASE3, BWN_DMA64_BASE4, BWN_DMA64_BASE5, }; static const uint16_t map32[] = { BWN_DMA32_BASE0, BWN_DMA32_BASE1, BWN_DMA32_BASE2, BWN_DMA32_BASE3, BWN_DMA32_BASE4, BWN_DMA32_BASE5, }; if (type == BHND_DMA_ADDR_64BIT) { KASSERT(controller_idx >= 0 && controller_idx < N(map64), ("%s:%d: fail", __func__, __LINE__)); return (map64[controller_idx]); } KASSERT(controller_idx >= 0 && controller_idx < N(map32), ("%s:%d: fail", __func__, __LINE__)); return (map32[controller_idx]); } static void bwn_dma_init(struct bwn_mac *mac) { struct bwn_dma *dma = &mac->mac_method.dma; /* setup TX DMA channels. */ bwn_dma_setup(dma->wme[WME_AC_BK]); bwn_dma_setup(dma->wme[WME_AC_BE]); bwn_dma_setup(dma->wme[WME_AC_VI]); bwn_dma_setup(dma->wme[WME_AC_VO]); bwn_dma_setup(dma->mcast); /* setup RX DMA channel. */ bwn_dma_setup(dma->rx); } static struct bwn_dma_ring * bwn_dma_ringsetup(struct bwn_mac *mac, int controller_index, int for_tx) { struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_dma_ring *dr; struct bwn_dmadesc_generic *desc; struct bwn_dmadesc_meta *mt; struct bwn_softc *sc = mac->mac_sc; int error, i; dr = malloc(sizeof(*dr), M_DEVBUF, M_NOWAIT | M_ZERO); if (dr == NULL) goto out; dr->dr_numslots = BWN_RXRING_SLOTS; if (for_tx) dr->dr_numslots = BWN_TXRING_SLOTS; dr->dr_meta = malloc(dr->dr_numslots * sizeof(struct bwn_dmadesc_meta), M_DEVBUF, M_NOWAIT | M_ZERO); if (dr->dr_meta == NULL) goto fail0; dr->dr_type = mac->mac_dmatype; dr->dr_mac = mac; dr->dr_base = bwn_dma_base(dr->dr_type, controller_index); dr->dr_index = controller_index; if (dr->dr_type == BHND_DMA_ADDR_64BIT) { dr->getdesc = bwn_dma_64_getdesc; dr->setdesc = bwn_dma_64_setdesc; dr->start_transfer = bwn_dma_64_start_transfer; dr->suspend = bwn_dma_64_suspend; dr->resume = bwn_dma_64_resume; dr->get_curslot = bwn_dma_64_get_curslot; dr->set_curslot = bwn_dma_64_set_curslot; } else { dr->getdesc = bwn_dma_32_getdesc; dr->setdesc = bwn_dma_32_setdesc; dr->start_transfer = bwn_dma_32_start_transfer; dr->suspend = bwn_dma_32_suspend; dr->resume = bwn_dma_32_resume; dr->get_curslot = bwn_dma_32_get_curslot; dr->set_curslot = bwn_dma_32_set_curslot; } if (for_tx) { dr->dr_tx = 1; dr->dr_curslot = -1; } else { if (dr->dr_index == 0) { switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: case BWN_FW_HDR_410: dr->dr_rx_bufsize = BWN_DMA0_RX_BUFFERSIZE_FW351; dr->dr_frameoffset = BWN_DMA0_RX_FRAMEOFFSET_FW351; break; case BWN_FW_HDR_598: dr->dr_rx_bufsize = BWN_DMA0_RX_BUFFERSIZE_FW598; dr->dr_frameoffset = BWN_DMA0_RX_FRAMEOFFSET_FW598; break; } } else KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); } error = bwn_dma_allocringmemory(dr); if (error) goto fail2; if (for_tx) { /* * Assumption: BWN_TXRING_SLOTS can be divided by * BWN_TX_SLOTS_PER_FRAME */ KASSERT(BWN_TXRING_SLOTS % BWN_TX_SLOTS_PER_FRAME == 0, ("%s:%d: fail", __func__, __LINE__)); dr->dr_txhdr_cache = contigmalloc( (dr->dr_numslots / BWN_TX_SLOTS_PER_FRAME) * BWN_MAXTXHDRSIZE, M_DEVBUF, M_ZERO, 0, BUS_SPACE_MAXADDR, 8, 0); if (dr->dr_txhdr_cache == NULL) { device_printf(sc->sc_dev, "can't allocate TX header DMA memory\n"); goto fail1; } /* * Create TX ring DMA stuffs */ error = bus_dma_tag_create(dma->parent_dtag, BWN_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BWN_HDRSIZE(mac), 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &dr->dr_txring_dtag); if (error) { device_printf(sc->sc_dev, "can't create TX ring DMA tag: TODO frees\n"); goto fail2; } for (i = 0; i < dr->dr_numslots; i += 2) { dr->getdesc(dr, i, &desc, &mt); mt->mt_txtype = BWN_DMADESC_METATYPE_HEADER; mt->mt_m = NULL; mt->mt_ni = NULL; mt->mt_islast = 0; error = bus_dmamap_create(dr->dr_txring_dtag, 0, &mt->mt_dmap); if (error) { device_printf(sc->sc_dev, "can't create RX buf DMA map\n"); goto fail2; } dr->getdesc(dr, i + 1, &desc, &mt); mt->mt_txtype = BWN_DMADESC_METATYPE_BODY; mt->mt_m = NULL; mt->mt_ni = NULL; mt->mt_islast = 1; error = bus_dmamap_create(dma->txbuf_dtag, 0, &mt->mt_dmap); if (error) { device_printf(sc->sc_dev, "can't create RX buf DMA map\n"); goto fail2; } } } else { error = bus_dmamap_create(dma->rxbuf_dtag, 0, &dr->dr_spare_dmap); if (error) { device_printf(sc->sc_dev, "can't create RX buf DMA map\n"); goto out; /* XXX wrong! */ } for (i = 0; i < dr->dr_numslots; i++) { dr->getdesc(dr, i, &desc, &mt); error = bus_dmamap_create(dma->rxbuf_dtag, 0, &mt->mt_dmap); if (error) { device_printf(sc->sc_dev, "can't create RX buf DMA map\n"); goto out; /* XXX wrong! */ } error = bwn_dma_newbuf(dr, desc, mt, 1); if (error) { device_printf(sc->sc_dev, "failed to allocate RX buf\n"); goto out; /* XXX wrong! */ } } bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap, BUS_DMASYNC_PREWRITE); dr->dr_usedslot = dr->dr_numslots; } out: return (dr); fail2: if (dr->dr_txhdr_cache != NULL) { contigfree(dr->dr_txhdr_cache, (dr->dr_numslots / BWN_TX_SLOTS_PER_FRAME) * BWN_MAXTXHDRSIZE, M_DEVBUF); } fail1: free(dr->dr_meta, M_DEVBUF); fail0: free(dr, M_DEVBUF); return (NULL); } static void bwn_dma_ringfree(struct bwn_dma_ring **dr) { if (dr == NULL) return; bwn_dma_free_descbufs(*dr); bwn_dma_free_ringmemory(*dr); if ((*dr)->dr_txhdr_cache != NULL) { contigfree((*dr)->dr_txhdr_cache, ((*dr)->dr_numslots / BWN_TX_SLOTS_PER_FRAME) * BWN_MAXTXHDRSIZE, M_DEVBUF); } free((*dr)->dr_meta, M_DEVBUF); free(*dr, M_DEVBUF); *dr = NULL; } static void bwn_dma_32_getdesc(struct bwn_dma_ring *dr, int slot, struct bwn_dmadesc_generic **gdesc, struct bwn_dmadesc_meta **meta) { struct bwn_dmadesc32 *desc; *meta = &(dr->dr_meta[slot]); desc = dr->dr_ring_descbase; desc = &(desc[slot]); *gdesc = (struct bwn_dmadesc_generic *)desc; } static void bwn_dma_32_setdesc(struct bwn_dma_ring *dr, struct bwn_dmadesc_generic *desc, bus_addr_t dmaaddr, uint16_t bufsize, int start, int end, int irq) { struct bwn_dmadesc32 *descbase; struct bwn_dma *dma; struct bhnd_dma_translation *dt; uint32_t addr, addrext, ctl; int slot; descbase = dr->dr_ring_descbase; dma = &dr->dr_mac->mac_method.dma; dt = &dma->translation; slot = (int)(&(desc->dma.dma32) - descbase); KASSERT(slot >= 0 && slot < dr->dr_numslots, ("%s:%d: fail", __func__, __LINE__)); addr = (dmaaddr & dt->addr_mask) | dt->base_addr; addrext = ((dmaaddr & dt->addrext_mask) >> dma->addrext_shift); ctl = bufsize & BWN_DMA32_DCTL_BYTECNT; if (slot == dr->dr_numslots - 1) ctl |= BWN_DMA32_DCTL_DTABLEEND; if (start) ctl |= BWN_DMA32_DCTL_FRAMESTART; if (end) ctl |= BWN_DMA32_DCTL_FRAMEEND; if (irq) ctl |= BWN_DMA32_DCTL_IRQ; ctl |= (addrext << BWN_DMA32_DCTL_ADDREXT_SHIFT) & BWN_DMA32_DCTL_ADDREXT_MASK; desc->dma.dma32.control = htole32(ctl); desc->dma.dma32.address = htole32(addr); } static void bwn_dma_32_start_transfer(struct bwn_dma_ring *dr, int slot) { BWN_DMA_WRITE(dr, BWN_DMA32_TXINDEX, (uint32_t)(slot * sizeof(struct bwn_dmadesc32))); } static void bwn_dma_32_suspend(struct bwn_dma_ring *dr) { BWN_DMA_WRITE(dr, BWN_DMA32_TXCTL, BWN_DMA_READ(dr, BWN_DMA32_TXCTL) | BWN_DMA32_TXSUSPEND); } static void bwn_dma_32_resume(struct bwn_dma_ring *dr) { BWN_DMA_WRITE(dr, BWN_DMA32_TXCTL, BWN_DMA_READ(dr, BWN_DMA32_TXCTL) & ~BWN_DMA32_TXSUSPEND); } static int bwn_dma_32_get_curslot(struct bwn_dma_ring *dr) { uint32_t val; val = BWN_DMA_READ(dr, BWN_DMA32_RXSTATUS); val &= BWN_DMA32_RXDPTR; return (val / sizeof(struct bwn_dmadesc32)); } static void bwn_dma_32_set_curslot(struct bwn_dma_ring *dr, int slot) { BWN_DMA_WRITE(dr, BWN_DMA32_RXINDEX, (uint32_t) (slot * sizeof(struct bwn_dmadesc32))); } static void bwn_dma_64_getdesc(struct bwn_dma_ring *dr, int slot, struct bwn_dmadesc_generic **gdesc, struct bwn_dmadesc_meta **meta) { struct bwn_dmadesc64 *desc; *meta = &(dr->dr_meta[slot]); desc = dr->dr_ring_descbase; desc = &(desc[slot]); *gdesc = (struct bwn_dmadesc_generic *)desc; } static void bwn_dma_64_setdesc(struct bwn_dma_ring *dr, struct bwn_dmadesc_generic *desc, bus_addr_t dmaaddr, uint16_t bufsize, int start, int end, int irq) { struct bwn_dmadesc64 *descbase; struct bwn_dma *dma; struct bhnd_dma_translation *dt; bhnd_addr_t addr; uint32_t addrhi, addrlo; uint32_t addrext; uint32_t ctl0, ctl1; int slot; descbase = dr->dr_ring_descbase; dma = &dr->dr_mac->mac_method.dma; dt = &dma->translation; slot = (int)(&(desc->dma.dma64) - descbase); KASSERT(slot >= 0 && slot < dr->dr_numslots, ("%s:%d: fail", __func__, __LINE__)); addr = (dmaaddr & dt->addr_mask) | dt->base_addr; addrhi = (addr >> 32); addrlo = (addr & UINT32_MAX); addrext = ((dmaaddr & dt->addrext_mask) >> dma->addrext_shift); ctl0 = 0; if (slot == dr->dr_numslots - 1) ctl0 |= BWN_DMA64_DCTL0_DTABLEEND; if (start) ctl0 |= BWN_DMA64_DCTL0_FRAMESTART; if (end) ctl0 |= BWN_DMA64_DCTL0_FRAMEEND; if (irq) ctl0 |= BWN_DMA64_DCTL0_IRQ; ctl1 = 0; ctl1 |= bufsize & BWN_DMA64_DCTL1_BYTECNT; ctl1 |= (addrext << BWN_DMA64_DCTL1_ADDREXT_SHIFT) & BWN_DMA64_DCTL1_ADDREXT_MASK; desc->dma.dma64.control0 = htole32(ctl0); desc->dma.dma64.control1 = htole32(ctl1); desc->dma.dma64.address_low = htole32(addrlo); desc->dma.dma64.address_high = htole32(addrhi); } static void bwn_dma_64_start_transfer(struct bwn_dma_ring *dr, int slot) { BWN_DMA_WRITE(dr, BWN_DMA64_TXINDEX, (uint32_t)(slot * sizeof(struct bwn_dmadesc64))); } static void bwn_dma_64_suspend(struct bwn_dma_ring *dr) { BWN_DMA_WRITE(dr, BWN_DMA64_TXCTL, BWN_DMA_READ(dr, BWN_DMA64_TXCTL) | BWN_DMA64_TXSUSPEND); } static void bwn_dma_64_resume(struct bwn_dma_ring *dr) { BWN_DMA_WRITE(dr, BWN_DMA64_TXCTL, BWN_DMA_READ(dr, BWN_DMA64_TXCTL) & ~BWN_DMA64_TXSUSPEND); } static int bwn_dma_64_get_curslot(struct bwn_dma_ring *dr) { uint32_t val; val = BWN_DMA_READ(dr, BWN_DMA64_RXSTATUS); val &= BWN_DMA64_RXSTATDPTR; return (val / sizeof(struct bwn_dmadesc64)); } static void bwn_dma_64_set_curslot(struct bwn_dma_ring *dr, int slot) { BWN_DMA_WRITE(dr, BWN_DMA64_RXINDEX, (uint32_t)(slot * sizeof(struct bwn_dmadesc64))); } static int bwn_dma_allocringmemory(struct bwn_dma_ring *dr) { struct bwn_mac *mac = dr->dr_mac; struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_softc *sc = mac->mac_sc; int error; error = bus_dma_tag_create(dma->parent_dtag, BWN_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BWN_DMA_RINGMEMSIZE, 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &dr->dr_ring_dtag); if (error) { device_printf(sc->sc_dev, "can't create TX ring DMA tag: TODO frees\n"); return (-1); } error = bus_dmamem_alloc(dr->dr_ring_dtag, &dr->dr_ring_descbase, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dr->dr_ring_dmap); if (error) { device_printf(sc->sc_dev, "can't allocate DMA mem: TODO frees\n"); return (-1); } error = bus_dmamap_load(dr->dr_ring_dtag, dr->dr_ring_dmap, dr->dr_ring_descbase, BWN_DMA_RINGMEMSIZE, bwn_dma_ring_addr, &dr->dr_ring_dmabase, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "can't load DMA mem: TODO free\n"); return (-1); } return (0); } static void bwn_dma_setup(struct bwn_dma_ring *dr) { struct bwn_mac *mac; struct bwn_dma *dma; struct bhnd_dma_translation *dt; bhnd_addr_t addr, paddr; uint32_t addrhi, addrlo, addrext, value; mac = dr->dr_mac; dma = &mac->mac_method.dma; dt = &dma->translation; paddr = dr->dr_ring_dmabase; addr = (paddr & dt->addr_mask) | dt->base_addr; addrhi = (addr >> 32); addrlo = (addr & UINT32_MAX); addrext = ((paddr & dt->addrext_mask) >> dma->addrext_shift); if (dr->dr_tx) { dr->dr_curslot = -1; if (dr->dr_type == BHND_DMA_ADDR_64BIT) { value = BWN_DMA64_TXENABLE; value |= BWN_DMA64_TXPARITY_DISABLE; value |= (addrext << BWN_DMA64_TXADDREXT_SHIFT) & BWN_DMA64_TXADDREXT_MASK; BWN_DMA_WRITE(dr, BWN_DMA64_TXCTL, value); BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGLO, addrlo); BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGHI, addrhi); } else { value = BWN_DMA32_TXENABLE; value |= BWN_DMA32_TXPARITY_DISABLE; value |= (addrext << BWN_DMA32_TXADDREXT_SHIFT) & BWN_DMA32_TXADDREXT_MASK; BWN_DMA_WRITE(dr, BWN_DMA32_TXCTL, value); BWN_DMA_WRITE(dr, BWN_DMA32_TXRING, addrlo); } return; } /* * set for RX */ dr->dr_usedslot = dr->dr_numslots; if (dr->dr_type == BHND_DMA_ADDR_64BIT) { value = (dr->dr_frameoffset << BWN_DMA64_RXFROFF_SHIFT); value |= BWN_DMA64_RXENABLE; value |= BWN_DMA64_RXPARITY_DISABLE; value |= (addrext << BWN_DMA64_RXADDREXT_SHIFT) & BWN_DMA64_RXADDREXT_MASK; BWN_DMA_WRITE(dr, BWN_DMA64_RXCTL, value); BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGLO, addrlo); BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGHI, addrhi); BWN_DMA_WRITE(dr, BWN_DMA64_RXINDEX, dr->dr_numslots * sizeof(struct bwn_dmadesc64)); } else { value = (dr->dr_frameoffset << BWN_DMA32_RXFROFF_SHIFT); value |= BWN_DMA32_RXENABLE; value |= BWN_DMA32_RXPARITY_DISABLE; value |= (addrext << BWN_DMA32_RXADDREXT_SHIFT) & BWN_DMA32_RXADDREXT_MASK; BWN_DMA_WRITE(dr, BWN_DMA32_RXCTL, value); BWN_DMA_WRITE(dr, BWN_DMA32_RXRING, addrlo); BWN_DMA_WRITE(dr, BWN_DMA32_RXINDEX, dr->dr_numslots * sizeof(struct bwn_dmadesc32)); } } static void bwn_dma_free_ringmemory(struct bwn_dma_ring *dr) { bus_dmamap_unload(dr->dr_ring_dtag, dr->dr_ring_dmap); bus_dmamem_free(dr->dr_ring_dtag, dr->dr_ring_descbase, dr->dr_ring_dmap); } static void bwn_dma_cleanup(struct bwn_dma_ring *dr) { if (dr->dr_tx) { bwn_dma_tx_reset(dr->dr_mac, dr->dr_base, dr->dr_type); if (dr->dr_type == BHND_DMA_ADDR_64BIT) { BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGLO, 0); BWN_DMA_WRITE(dr, BWN_DMA64_TXRINGHI, 0); } else BWN_DMA_WRITE(dr, BWN_DMA32_TXRING, 0); } else { bwn_dma_rx_reset(dr->dr_mac, dr->dr_base, dr->dr_type); if (dr->dr_type == BHND_DMA_ADDR_64BIT) { BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGLO, 0); BWN_DMA_WRITE(dr, BWN_DMA64_RXRINGHI, 0); } else BWN_DMA_WRITE(dr, BWN_DMA32_RXRING, 0); } } static void bwn_dma_free_descbufs(struct bwn_dma_ring *dr) { struct bwn_dmadesc_generic *desc; struct bwn_dmadesc_meta *meta; struct bwn_mac *mac = dr->dr_mac; struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_softc *sc = mac->mac_sc; int i; if (!dr->dr_usedslot) return; for (i = 0; i < dr->dr_numslots; i++) { dr->getdesc(dr, i, &desc, &meta); if (meta->mt_m == NULL) { if (!dr->dr_tx) device_printf(sc->sc_dev, "%s: not TX?\n", __func__); continue; } if (dr->dr_tx) { if (meta->mt_txtype == BWN_DMADESC_METATYPE_HEADER) bus_dmamap_unload(dr->dr_txring_dtag, meta->mt_dmap); else if (meta->mt_txtype == BWN_DMADESC_METATYPE_BODY) bus_dmamap_unload(dma->txbuf_dtag, meta->mt_dmap); } else bus_dmamap_unload(dma->rxbuf_dtag, meta->mt_dmap); bwn_dma_free_descbuf(dr, meta); } } static int bwn_dma_tx_reset(struct bwn_mac *mac, uint16_t base, int type) { struct bwn_softc *sc = mac->mac_sc; uint32_t value; int i; uint16_t offset; for (i = 0; i < 10; i++) { offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_TXSTATUS : BWN_DMA32_TXSTATUS; value = BWN_READ_4(mac, base + offset); if (type == BHND_DMA_ADDR_64BIT) { value &= BWN_DMA64_TXSTAT; if (value == BWN_DMA64_TXSTAT_DISABLED || value == BWN_DMA64_TXSTAT_IDLEWAIT || value == BWN_DMA64_TXSTAT_STOPPED) break; } else { value &= BWN_DMA32_TXSTATE; if (value == BWN_DMA32_TXSTAT_DISABLED || value == BWN_DMA32_TXSTAT_IDLEWAIT || value == BWN_DMA32_TXSTAT_STOPPED) break; } DELAY(1000); } offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_TXCTL : BWN_DMA32_TXCTL; BWN_WRITE_4(mac, base + offset, 0); for (i = 0; i < 10; i++) { offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_TXSTATUS : BWN_DMA32_TXSTATUS; value = BWN_READ_4(mac, base + offset); if (type == BHND_DMA_ADDR_64BIT) { value &= BWN_DMA64_TXSTAT; if (value == BWN_DMA64_TXSTAT_DISABLED) { i = -1; break; } } else { value &= BWN_DMA32_TXSTATE; if (value == BWN_DMA32_TXSTAT_DISABLED) { i = -1; break; } } DELAY(1000); } if (i != -1) { device_printf(sc->sc_dev, "%s: timed out\n", __func__); return (ENODEV); } DELAY(1000); return (0); } static int bwn_dma_rx_reset(struct bwn_mac *mac, uint16_t base, int type) { struct bwn_softc *sc = mac->mac_sc; uint32_t value; int i; uint16_t offset; offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_RXCTL : BWN_DMA32_RXCTL; BWN_WRITE_4(mac, base + offset, 0); for (i = 0; i < 10; i++) { offset = (type == BHND_DMA_ADDR_64BIT) ? BWN_DMA64_RXSTATUS : BWN_DMA32_RXSTATUS; value = BWN_READ_4(mac, base + offset); if (type == BHND_DMA_ADDR_64BIT) { value &= BWN_DMA64_RXSTAT; if (value == BWN_DMA64_RXSTAT_DISABLED) { i = -1; break; } } else { value &= BWN_DMA32_RXSTATE; if (value == BWN_DMA32_RXSTAT_DISABLED) { i = -1; break; } } DELAY(1000); } if (i != -1) { device_printf(sc->sc_dev, "%s: timed out\n", __func__); return (ENODEV); } return (0); } static void bwn_dma_free_descbuf(struct bwn_dma_ring *dr, struct bwn_dmadesc_meta *meta) { if (meta->mt_m != NULL) { m_freem(meta->mt_m); meta->mt_m = NULL; } if (meta->mt_ni != NULL) { ieee80211_free_node(meta->mt_ni); meta->mt_ni = NULL; } } static void bwn_dma_set_redzone(struct bwn_dma_ring *dr, struct mbuf *m) { struct bwn_rxhdr4 *rxhdr; unsigned char *frame; rxhdr = mtod(m, struct bwn_rxhdr4 *); rxhdr->frame_len = 0; KASSERT(dr->dr_rx_bufsize >= dr->dr_frameoffset + sizeof(struct bwn_plcp6) + 2, ("%s:%d: fail", __func__, __LINE__)); frame = mtod(m, char *) + dr->dr_frameoffset; memset(frame, 0xff, sizeof(struct bwn_plcp6) + 2 /* padding */); } static uint8_t bwn_dma_check_redzone(struct bwn_dma_ring *dr, struct mbuf *m) { unsigned char *f = mtod(m, char *) + dr->dr_frameoffset; return ((f[0] & f[1] & f[2] & f[3] & f[4] & f[5] & f[6] & f[7]) == 0xff); } static void bwn_wme_init(struct bwn_mac *mac) { bwn_wme_load(mac); /* enable WME support. */ bwn_hf_write(mac, bwn_hf_read(mac) | BWN_HF_EDCF); BWN_WRITE_2(mac, BWN_IFSCTL, BWN_READ_2(mac, BWN_IFSCTL) | BWN_IFSCTL_USE_EDCF); } static void bwn_spu_setdelay(struct bwn_mac *mac, int idle) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; uint16_t delay; /* microsec */ delay = (mac->mac_phy.type == BWN_PHYTYPE_A) ? 3700 : 1050; if (ic->ic_opmode == IEEE80211_M_IBSS || idle) delay = 500; if ((mac->mac_phy.rf_ver == 0x2050) && (mac->mac_phy.rf_rev == 8)) delay = max(delay, (uint16_t)2400); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_SPU_WAKEUP, delay); } static void bwn_bt_enable(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint64_t hf; if (bwn_bluetooth == 0) return; if ((sc->sc_board_info.board_flags & BHND_BFL_BTCOEX) == 0) return; if (mac->mac_phy.type != BWN_PHYTYPE_B && !mac->mac_phy.gmode) return; hf = bwn_hf_read(mac); if (sc->sc_board_info.board_flags & BHND_BFL_BTC2WIRE_ALTGPIO) hf |= BWN_HF_BT_COEXISTALT; else hf |= BWN_HF_BT_COEXIST; bwn_hf_write(mac, hf); } static void bwn_set_macaddr(struct bwn_mac *mac) { bwn_mac_write_bssid(mac); bwn_mac_setfilter(mac, BWN_MACFILTER_SELF, mac->mac_sc->sc_ic.ic_macaddr); } static void bwn_clear_keys(struct bwn_mac *mac) { int i; for (i = 0; i < mac->mac_max_nr_keys; i++) { KASSERT(i >= 0 && i < mac->mac_max_nr_keys, ("%s:%d: fail", __func__, __LINE__)); bwn_key_dowrite(mac, i, BWN_SEC_ALGO_NONE, NULL, BWN_SEC_KEYSIZE, NULL); if ((i <= 3) && !BWN_SEC_NEWAPI(mac)) { bwn_key_dowrite(mac, i + 4, BWN_SEC_ALGO_NONE, NULL, BWN_SEC_KEYSIZE, NULL); } mac->mac_key[i].keyconf = NULL; } } static void bwn_crypt_init(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; mac->mac_max_nr_keys = (bhnd_get_hwrev(sc->sc_dev) >= 5) ? 58 : 20; KASSERT(mac->mac_max_nr_keys <= N(mac->mac_key), ("%s:%d: fail", __func__, __LINE__)); mac->mac_ktp = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_KEY_TABLEP); mac->mac_ktp *= 2; if (bhnd_get_hwrev(sc->sc_dev) >= 5) BWN_WRITE_2(mac, BWN_RCMTA_COUNT, mac->mac_max_nr_keys - 8); bwn_clear_keys(mac); } static void bwn_chip_exit(struct bwn_mac *mac) { bwn_phy_exit(mac); } static int bwn_fw_fillinfo(struct bwn_mac *mac) { int error; error = bwn_fw_gets(mac, BWN_FWTYPE_DEFAULT); if (error == 0) return (0); error = bwn_fw_gets(mac, BWN_FWTYPE_OPENSOURCE); if (error == 0) return (0); return (error); } /** * Request that the GPIO controller tristate all pins set in @p mask, granting * the MAC core control over the pins. * * @param mac bwn MAC state. * @param pins If the bit position for a pin number is set to one, tristate the * pin. */ int bwn_gpio_control(struct bwn_mac *mac, uint32_t pins) { struct bwn_softc *sc; uint32_t flags[32]; int error; sc = mac->mac_sc; /* Determine desired pin flags */ for (size_t pin = 0; pin < nitems(flags); pin++) { uint32_t pinbit = (1 << pin); if (pins & pinbit) { /* Tristate output */ flags[pin] = GPIO_PIN_OUTPUT|GPIO_PIN_TRISTATE; } else { /* Leave unmodified */ flags[pin] = 0; } } /* Configure all pins */ error = GPIO_PIN_CONFIG_32(sc->sc_gpio, 0, nitems(flags), flags); if (error) { device_printf(sc->sc_dev, "error configuring %s pin flags: " "%d\n", device_get_nameunit(sc->sc_gpio), error); return (error); } return (0); } static int bwn_gpio_init(struct bwn_mac *mac) { struct bwn_softc *sc; uint32_t pins; sc = mac->mac_sc; pins = 0xF; BWN_WRITE_4(mac, BWN_MACCTL, BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_GPOUT_MASK); BWN_WRITE_2(mac, BWN_GPIO_MASK, BWN_READ_2(mac, BWN_GPIO_MASK) | pins); if (sc->sc_board_info.board_flags & BHND_BFL_PACTRL) { /* MAC core is responsible for toggling PAREF via gpio9 */ BWN_WRITE_2(mac, BWN_GPIO_MASK, BWN_READ_2(mac, BWN_GPIO_MASK) | BHND_GPIO_BOARD_PACTRL); pins |= BHND_GPIO_BOARD_PACTRL; } return (bwn_gpio_control(mac, pins)); } static int bwn_fw_loadinitvals(struct bwn_mac *mac) { #define GETFWOFFSET(fwp, offset) \ ((const struct bwn_fwinitvals *)((const char *)fwp.fw->data + offset)) const size_t hdr_len = sizeof(struct bwn_fwhdr); const struct bwn_fwhdr *hdr; struct bwn_fw *fw = &mac->mac_fw; int error; hdr = (const struct bwn_fwhdr *)(fw->initvals.fw->data); error = bwn_fwinitvals_write(mac, GETFWOFFSET(fw->initvals, hdr_len), be32toh(hdr->size), fw->initvals.fw->datasize - hdr_len); if (error) return (error); if (fw->initvals_band.fw) { hdr = (const struct bwn_fwhdr *)(fw->initvals_band.fw->data); error = bwn_fwinitvals_write(mac, GETFWOFFSET(fw->initvals_band, hdr_len), be32toh(hdr->size), fw->initvals_band.fw->datasize - hdr_len); } return (error); #undef GETFWOFFSET } static int bwn_phy_init(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; int error; mac->mac_phy.chan = mac->mac_phy.get_default_chan(mac); mac->mac_phy.rf_onoff(mac, 1); error = mac->mac_phy.init(mac); if (error) { device_printf(sc->sc_dev, "PHY init failed\n"); goto fail0; } error = bwn_switch_channel(mac, mac->mac_phy.get_default_chan(mac)); if (error) { device_printf(sc->sc_dev, "failed to switch default channel\n"); goto fail1; } return (0); fail1: if (mac->mac_phy.exit) mac->mac_phy.exit(mac); fail0: mac->mac_phy.rf_onoff(mac, 0); return (error); } static void bwn_set_txantenna(struct bwn_mac *mac, int antenna) { uint16_t ant; uint16_t tmp; ant = bwn_ant2phy(antenna); /* For ACK/CTS */ tmp = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_ACKCTS_PHYCTL); tmp = (tmp & ~BWN_TX_PHY_ANT) | ant; bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_ACKCTS_PHYCTL, tmp); /* For Probe Resposes */ tmp = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_PHYCTL); tmp = (tmp & ~BWN_TX_PHY_ANT) | ant; bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PROBE_RESP_PHYCTL, tmp); } static void bwn_set_opmode(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; uint32_t ctl; uint16_t cfp_pretbtt; ctl = BWN_READ_4(mac, BWN_MACCTL); ctl &= ~(BWN_MACCTL_HOSTAP | BWN_MACCTL_PASS_CTL | BWN_MACCTL_PASS_BADPLCP | BWN_MACCTL_PASS_BADFCS | BWN_MACCTL_PROMISC | BWN_MACCTL_BEACON_PROMISC); ctl |= BWN_MACCTL_STA; if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_MBSS) ctl |= BWN_MACCTL_HOSTAP; else if (ic->ic_opmode == IEEE80211_M_IBSS) ctl &= ~BWN_MACCTL_STA; ctl |= sc->sc_filters; if (bhnd_get_hwrev(sc->sc_dev) <= 4) ctl |= BWN_MACCTL_PROMISC; BWN_WRITE_4(mac, BWN_MACCTL, ctl); cfp_pretbtt = 2; if ((ctl & BWN_MACCTL_STA) && !(ctl & BWN_MACCTL_HOSTAP)) { if (sc->sc_cid.chip_id == BHND_CHIPID_BCM4306 && sc->sc_cid.chip_rev == 3) cfp_pretbtt = 100; else cfp_pretbtt = 50; } BWN_WRITE_2(mac, 0x612, cfp_pretbtt); } static void bwn_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error) { if (!error) { KASSERT(nseg == 1, ("too many segments(%d)\n", nseg)); *((bus_addr_t *)arg) = seg->ds_addr; } } void bwn_dummy_transmission(struct bwn_mac *mac, int ofdm, int paon) { struct bwn_phy *phy = &mac->mac_phy; struct bwn_softc *sc = mac->mac_sc; unsigned int i, max_loop; uint16_t value; uint32_t buffer[5] = { 0x00000000, 0x00d40000, 0x00000000, 0x01000000, 0x00000000 }; if (ofdm) { max_loop = 0x1e; buffer[0] = 0x000201cc; } else { max_loop = 0xfa; buffer[0] = 0x000b846e; } BWN_ASSERT_LOCKED(mac->mac_sc); for (i = 0; i < 5; i++) bwn_ram_write(mac, i * 4, buffer[i]); BWN_WRITE_2(mac, 0x0568, 0x0000); BWN_WRITE_2(mac, 0x07c0, (bhnd_get_hwrev(sc->sc_dev) < 11) ? 0x0000 : 0x0100); value = (ofdm ? 0x41 : 0x40); BWN_WRITE_2(mac, 0x050c, value); if (phy->type == BWN_PHYTYPE_N || phy->type == BWN_PHYTYPE_LP || phy->type == BWN_PHYTYPE_LCN) BWN_WRITE_2(mac, 0x0514, 0x1a02); BWN_WRITE_2(mac, 0x0508, 0x0000); BWN_WRITE_2(mac, 0x050a, 0x0000); BWN_WRITE_2(mac, 0x054c, 0x0000); BWN_WRITE_2(mac, 0x056a, 0x0014); BWN_WRITE_2(mac, 0x0568, 0x0826); BWN_WRITE_2(mac, 0x0500, 0x0000); /* XXX TODO: n phy pa override? */ switch (phy->type) { case BWN_PHYTYPE_N: case BWN_PHYTYPE_LCN: BWN_WRITE_2(mac, 0x0502, 0x00d0); break; case BWN_PHYTYPE_LP: BWN_WRITE_2(mac, 0x0502, 0x0050); break; default: BWN_WRITE_2(mac, 0x0502, 0x0030); break; } /* flush */ BWN_READ_2(mac, 0x0502); if (phy->rf_ver == 0x2050 && phy->rf_rev <= 0x5) BWN_RF_WRITE(mac, 0x0051, 0x0017); for (i = 0x00; i < max_loop; i++) { value = BWN_READ_2(mac, 0x050e); if (value & 0x0080) break; DELAY(10); } for (i = 0x00; i < 0x0a; i++) { value = BWN_READ_2(mac, 0x050e); if (value & 0x0400) break; DELAY(10); } for (i = 0x00; i < 0x19; i++) { value = BWN_READ_2(mac, 0x0690); if (!(value & 0x0100)) break; DELAY(10); } if (phy->rf_ver == 0x2050 && phy->rf_rev <= 0x5) BWN_RF_WRITE(mac, 0x0051, 0x0037); } void bwn_ram_write(struct bwn_mac *mac, uint16_t offset, uint32_t val) { uint32_t macctl; KASSERT(offset % 4 == 0, ("%s:%d: fail", __func__, __LINE__)); macctl = BWN_READ_4(mac, BWN_MACCTL); if (macctl & BWN_MACCTL_BIGENDIAN) printf("TODO: need swap\n"); BWN_WRITE_4(mac, BWN_RAM_CONTROL, offset); BWN_BARRIER(mac, BWN_RAM_CONTROL, 4, BUS_SPACE_BARRIER_WRITE); BWN_WRITE_4(mac, BWN_RAM_DATA, val); } void bwn_mac_suspend(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; int i; uint32_t tmp; KASSERT(mac->mac_suspended >= 0, ("%s:%d: fail", __func__, __LINE__)); DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: suspended=%d\n", __func__, mac->mac_suspended); if (mac->mac_suspended == 0) { bwn_psctl(mac, BWN_PS_AWAKE); BWN_WRITE_4(mac, BWN_MACCTL, BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_ON); BWN_READ_4(mac, BWN_MACCTL); for (i = 35; i; i--) { tmp = BWN_READ_4(mac, BWN_INTR_REASON); if (tmp & BWN_INTR_MAC_SUSPENDED) goto out; DELAY(10); } for (i = 40; i; i--) { tmp = BWN_READ_4(mac, BWN_INTR_REASON); if (tmp & BWN_INTR_MAC_SUSPENDED) goto out; DELAY(1000); } device_printf(sc->sc_dev, "MAC suspend failed\n"); } out: mac->mac_suspended++; } void bwn_mac_enable(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint16_t state; DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: suspended=%d\n", __func__, mac->mac_suspended); state = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODESTAT); if (state != BWN_SHARED_UCODESTAT_SUSPEND && state != BWN_SHARED_UCODESTAT_SLEEP) { DPRINTF(sc, BWN_DEBUG_FW, "%s: warn: firmware state (%d)\n", __func__, state); } mac->mac_suspended--; KASSERT(mac->mac_suspended >= 0, ("%s:%d: fail", __func__, __LINE__)); if (mac->mac_suspended == 0) { BWN_WRITE_4(mac, BWN_MACCTL, BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_ON); BWN_WRITE_4(mac, BWN_INTR_REASON, BWN_INTR_MAC_SUSPENDED); BWN_READ_4(mac, BWN_MACCTL); BWN_READ_4(mac, BWN_INTR_REASON); bwn_psctl(mac, 0); } } void bwn_psctl(struct bwn_mac *mac, uint32_t flags) { struct bwn_softc *sc = mac->mac_sc; int i; uint16_t ucstat; KASSERT(!((flags & BWN_PS_ON) && (flags & BWN_PS_OFF)), ("%s:%d: fail", __func__, __LINE__)); KASSERT(!((flags & BWN_PS_AWAKE) && (flags & BWN_PS_ASLEEP)), ("%s:%d: fail", __func__, __LINE__)); /* XXX forcibly awake and hwps-off */ BWN_WRITE_4(mac, BWN_MACCTL, (BWN_READ_4(mac, BWN_MACCTL) | BWN_MACCTL_AWAKE) & ~BWN_MACCTL_HWPS); BWN_READ_4(mac, BWN_MACCTL); if (bhnd_get_hwrev(sc->sc_dev) >= 5) { for (i = 0; i < 100; i++) { ucstat = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODESTAT); if (ucstat != BWN_SHARED_UCODESTAT_SLEEP) break; DELAY(10); } } DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: ucstat=%d\n", __func__, ucstat); } static int bwn_fw_gets(struct bwn_mac *mac, enum bwn_fwtype type) { struct bwn_softc *sc = mac->mac_sc; struct bwn_fw *fw = &mac->mac_fw; const uint8_t rev = bhnd_get_hwrev(sc->sc_dev); const char *filename; uint16_t iost; int error; /* microcode */ filename = NULL; switch (rev) { case 42: if (mac->mac_phy.type == BWN_PHYTYPE_AC) filename = "ucode42"; break; case 40: if (mac->mac_phy.type == BWN_PHYTYPE_AC) filename = "ucode40"; break; case 33: if (mac->mac_phy.type == BWN_PHYTYPE_LCN40) filename = "ucode33_lcn40"; break; case 30: if (mac->mac_phy.type == BWN_PHYTYPE_N) filename = "ucode30_mimo"; break; case 29: if (mac->mac_phy.type == BWN_PHYTYPE_HT) filename = "ucode29_mimo"; break; case 26: if (mac->mac_phy.type == BWN_PHYTYPE_HT) filename = "ucode26_mimo"; break; case 28: case 25: if (mac->mac_phy.type == BWN_PHYTYPE_N) filename = "ucode25_mimo"; else if (mac->mac_phy.type == BWN_PHYTYPE_LCN) filename = "ucode25_lcn"; break; case 24: if (mac->mac_phy.type == BWN_PHYTYPE_LCN) filename = "ucode24_lcn"; break; case 23: if (mac->mac_phy.type == BWN_PHYTYPE_N) filename = "ucode16_mimo"; break; case 16: case 17: case 18: case 19: if (mac->mac_phy.type == BWN_PHYTYPE_N) filename = "ucode16_mimo"; else if (mac->mac_phy.type == BWN_PHYTYPE_LP) filename = "ucode16_lp"; break; case 15: filename = "ucode15"; break; case 14: filename = "ucode14"; break; case 13: filename = "ucode13"; break; case 12: case 11: filename = "ucode11"; break; case 10: case 9: case 8: case 7: case 6: case 5: filename = "ucode5"; break; default: device_printf(sc->sc_dev, "no ucode for rev %d\n", rev); bwn_release_firmware(mac); return (EOPNOTSUPP); } device_printf(sc->sc_dev, "ucode fw: %s\n", filename); error = bwn_fw_get(mac, type, filename, &fw->ucode); if (error) { bwn_release_firmware(mac); return (error); } /* PCM */ KASSERT(fw->no_pcmfile == 0, ("%s:%d fail", __func__, __LINE__)); if (rev >= 5 && rev <= 10) { error = bwn_fw_get(mac, type, "pcm5", &fw->pcm); if (error == ENOENT) fw->no_pcmfile = 1; else if (error) { bwn_release_firmware(mac); return (error); } } else if (rev < 11) { device_printf(sc->sc_dev, "no PCM for rev %d\n", rev); bwn_release_firmware(mac); return (EOPNOTSUPP); } /* initvals */ error = bhnd_read_iost(sc->sc_dev, &iost); if (error) goto fail1; switch (mac->mac_phy.type) { case BWN_PHYTYPE_A: if (rev < 5 || rev > 10) goto fail1; if (iost & BWN_IOST_HAVE_2GHZ) filename = "a0g1initvals5"; else filename = "a0g0initvals5"; break; case BWN_PHYTYPE_G: if (rev >= 5 && rev <= 10) filename = "b0g0initvals5"; else if (rev >= 13) filename = "b0g0initvals13"; else goto fail1; break; case BWN_PHYTYPE_LP: if (rev == 13) filename = "lp0initvals13"; else if (rev == 14) filename = "lp0initvals14"; else if (rev >= 15) filename = "lp0initvals15"; else goto fail1; break; case BWN_PHYTYPE_N: if (rev == 30) filename = "n16initvals30"; else if (rev == 28 || rev == 25) filename = "n0initvals25"; else if (rev == 24) filename = "n0initvals24"; else if (rev == 23) filename = "n0initvals16"; else if (rev >= 16 && rev <= 18) filename = "n0initvals16"; else if (rev >= 11 && rev <= 12) filename = "n0initvals11"; else goto fail1; break; default: goto fail1; } error = bwn_fw_get(mac, type, filename, &fw->initvals); if (error) { bwn_release_firmware(mac); return (error); } /* bandswitch initvals */ switch (mac->mac_phy.type) { case BWN_PHYTYPE_A: if (rev >= 5 && rev <= 10) { if (iost & BWN_IOST_HAVE_2GHZ) filename = "a0g1bsinitvals5"; else filename = "a0g0bsinitvals5"; } else if (rev >= 11) filename = NULL; else goto fail1; break; case BWN_PHYTYPE_G: if (rev >= 5 && rev <= 10) filename = "b0g0bsinitvals5"; else if (rev >= 11) filename = NULL; else goto fail1; break; case BWN_PHYTYPE_LP: if (rev == 13) filename = "lp0bsinitvals13"; else if (rev == 14) filename = "lp0bsinitvals14"; else if (rev >= 15) filename = "lp0bsinitvals15"; else goto fail1; break; case BWN_PHYTYPE_N: if (rev == 30) filename = "n16bsinitvals30"; else if (rev == 28 || rev == 25) filename = "n0bsinitvals25"; else if (rev == 24) filename = "n0bsinitvals24"; else if (rev == 23) filename = "n0bsinitvals16"; else if (rev >= 16 && rev <= 18) filename = "n0bsinitvals16"; else if (rev >= 11 && rev <= 12) filename = "n0bsinitvals11"; else goto fail1; break; default: device_printf(sc->sc_dev, "unknown phy (%d)\n", mac->mac_phy.type); goto fail1; } error = bwn_fw_get(mac, type, filename, &fw->initvals_band); if (error) { bwn_release_firmware(mac); return (error); } return (0); fail1: device_printf(sc->sc_dev, "no INITVALS for rev %d, phy.type %d\n", rev, mac->mac_phy.type); bwn_release_firmware(mac); return (EOPNOTSUPP); } static int bwn_fw_get(struct bwn_mac *mac, enum bwn_fwtype type, const char *name, struct bwn_fwfile *bfw) { const struct bwn_fwhdr *hdr; struct bwn_softc *sc = mac->mac_sc; const struct firmware *fw; char namebuf[64]; if (name == NULL) { bwn_do_release_fw(bfw); return (0); } if (bfw->filename != NULL) { if (bfw->type == type && (strcmp(bfw->filename, name) == 0)) return (0); bwn_do_release_fw(bfw); } snprintf(namebuf, sizeof(namebuf), "bwn%s_v4_%s%s", (type == BWN_FWTYPE_OPENSOURCE) ? "-open" : "", (mac->mac_phy.type == BWN_PHYTYPE_LP) ? "lp_" : "", name); /* XXX Sleeping on "fwload" with the non-sleepable locks held */ fw = firmware_get(namebuf); if (fw == NULL) { device_printf(sc->sc_dev, "the fw file(%s) not found\n", namebuf); return (ENOENT); } if (fw->datasize < sizeof(struct bwn_fwhdr)) goto fail; hdr = (const struct bwn_fwhdr *)(fw->data); switch (hdr->type) { case BWN_FWTYPE_UCODE: case BWN_FWTYPE_PCM: if (be32toh(hdr->size) != (fw->datasize - sizeof(struct bwn_fwhdr))) goto fail; /* FALLTHROUGH */ case BWN_FWTYPE_IV: if (hdr->ver != 1) goto fail; break; default: goto fail; } bfw->filename = name; bfw->fw = fw; bfw->type = type; return (0); fail: device_printf(sc->sc_dev, "the fw file(%s) format error\n", namebuf); if (fw != NULL) firmware_put(fw, FIRMWARE_UNLOAD); return (EPROTO); } static void bwn_release_firmware(struct bwn_mac *mac) { bwn_do_release_fw(&mac->mac_fw.ucode); bwn_do_release_fw(&mac->mac_fw.pcm); bwn_do_release_fw(&mac->mac_fw.initvals); bwn_do_release_fw(&mac->mac_fw.initvals_band); } static void bwn_do_release_fw(struct bwn_fwfile *bfw) { if (bfw->fw != NULL) firmware_put(bfw->fw, FIRMWARE_UNLOAD); bfw->fw = NULL; bfw->filename = NULL; } static int bwn_fw_loaducode(struct bwn_mac *mac) { #define GETFWOFFSET(fwp, offset) \ ((const uint32_t *)((const char *)fwp.fw->data + offset)) #define GETFWSIZE(fwp, offset) \ ((fwp.fw->datasize - offset) / sizeof(uint32_t)) struct bwn_softc *sc = mac->mac_sc; const uint32_t *data; unsigned int i; uint32_t ctl; uint16_t date, fwcaps, time; int error = 0; ctl = BWN_READ_4(mac, BWN_MACCTL); ctl |= BWN_MACCTL_MCODE_JMP0; KASSERT(!(ctl & BWN_MACCTL_MCODE_RUN), ("%s:%d: fail", __func__, __LINE__)); BWN_WRITE_4(mac, BWN_MACCTL, ctl); for (i = 0; i < 64; i++) bwn_shm_write_2(mac, BWN_SCRATCH, i, 0); for (i = 0; i < 4096; i += 2) bwn_shm_write_2(mac, BWN_SHARED, i, 0); data = GETFWOFFSET(mac->mac_fw.ucode, sizeof(struct bwn_fwhdr)); bwn_shm_ctlword(mac, BWN_UCODE | BWN_SHARED_AUTOINC, 0x0000); for (i = 0; i < GETFWSIZE(mac->mac_fw.ucode, sizeof(struct bwn_fwhdr)); i++) { BWN_WRITE_4(mac, BWN_SHM_DATA, be32toh(data[i])); DELAY(10); } if (mac->mac_fw.pcm.fw) { data = GETFWOFFSET(mac->mac_fw.pcm, sizeof(struct bwn_fwhdr)); bwn_shm_ctlword(mac, BWN_HW, 0x01ea); BWN_WRITE_4(mac, BWN_SHM_DATA, 0x00004000); bwn_shm_ctlword(mac, BWN_HW, 0x01eb); for (i = 0; i < GETFWSIZE(mac->mac_fw.pcm, sizeof(struct bwn_fwhdr)); i++) { BWN_WRITE_4(mac, BWN_SHM_DATA, be32toh(data[i])); DELAY(10); } } BWN_WRITE_4(mac, BWN_INTR_REASON, BWN_INTR_ALL); BWN_WRITE_4(mac, BWN_MACCTL, (BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_MCODE_JMP0) | BWN_MACCTL_MCODE_RUN); for (i = 0; i < 21; i++) { if (BWN_READ_4(mac, BWN_INTR_REASON) == BWN_INTR_MAC_SUSPENDED) break; if (i >= 20) { device_printf(sc->sc_dev, "ucode timeout\n"); error = ENXIO; goto error; } DELAY(50000); } BWN_READ_4(mac, BWN_INTR_REASON); mac->mac_fw.rev = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODE_REV); if (mac->mac_fw.rev <= 0x128) { device_printf(sc->sc_dev, "the firmware is too old\n"); error = EOPNOTSUPP; goto error; } /* * Determine firmware header version; needed for TX/RX packet * handling. */ if (mac->mac_fw.rev >= 598) mac->mac_fw.fw_hdr_format = BWN_FW_HDR_598; else if (mac->mac_fw.rev >= 410) mac->mac_fw.fw_hdr_format = BWN_FW_HDR_410; else mac->mac_fw.fw_hdr_format = BWN_FW_HDR_351; /* * We don't support rev 598 or later; that requires * another round of changes to the TX/RX descriptor * and status layout. * * So, complain this is the case and exit out, rather * than attaching and then failing. */ #if 0 if (mac->mac_fw.fw_hdr_format == BWN_FW_HDR_598) { device_printf(sc->sc_dev, "firmware is too new (>=598); not supported\n"); error = EOPNOTSUPP; goto error; } #endif mac->mac_fw.patch = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODE_PATCH); date = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODE_DATE); mac->mac_fw.opensource = (date == 0xffff); if (bwn_wme != 0) mac->mac_flags |= BWN_MAC_FLAG_WME; mac->mac_flags |= BWN_MAC_FLAG_HWCRYPTO; time = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_UCODE_TIME); if (mac->mac_fw.opensource == 0) { device_printf(sc->sc_dev, "firmware version (rev %u patch %u date %#x time %#x)\n", mac->mac_fw.rev, mac->mac_fw.patch, date, time); if (mac->mac_fw.no_pcmfile) device_printf(sc->sc_dev, "no HW crypto acceleration due to pcm5\n"); } else { mac->mac_fw.patch = time; fwcaps = bwn_fwcaps_read(mac); if (!(fwcaps & BWN_FWCAPS_HWCRYPTO) || mac->mac_fw.no_pcmfile) { device_printf(sc->sc_dev, "disabling HW crypto acceleration\n"); mac->mac_flags &= ~BWN_MAC_FLAG_HWCRYPTO; } if (!(fwcaps & BWN_FWCAPS_WME)) { device_printf(sc->sc_dev, "disabling WME support\n"); mac->mac_flags &= ~BWN_MAC_FLAG_WME; } } if (BWN_ISOLDFMT(mac)) device_printf(sc->sc_dev, "using old firmware image\n"); return (0); error: BWN_WRITE_4(mac, BWN_MACCTL, (BWN_READ_4(mac, BWN_MACCTL) & ~BWN_MACCTL_MCODE_RUN) | BWN_MACCTL_MCODE_JMP0); return (error); #undef GETFWSIZE #undef GETFWOFFSET } /* OpenFirmware only */ static uint16_t bwn_fwcaps_read(struct bwn_mac *mac) { KASSERT(mac->mac_fw.opensource == 1, ("%s:%d: fail", __func__, __LINE__)); return (bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_FWCAPS)); } static int bwn_fwinitvals_write(struct bwn_mac *mac, const struct bwn_fwinitvals *ivals, size_t count, size_t array_size) { #define GET_NEXTIV16(iv) \ ((const struct bwn_fwinitvals *)((const uint8_t *)(iv) + \ sizeof(uint16_t) + sizeof(uint16_t))) #define GET_NEXTIV32(iv) \ ((const struct bwn_fwinitvals *)((const uint8_t *)(iv) + \ sizeof(uint16_t) + sizeof(uint32_t))) struct bwn_softc *sc = mac->mac_sc; const struct bwn_fwinitvals *iv; uint16_t offset; size_t i; uint8_t bit32; KASSERT(sizeof(struct bwn_fwinitvals) == 6, ("%s:%d: fail", __func__, __LINE__)); iv = ivals; for (i = 0; i < count; i++) { if (array_size < sizeof(iv->offset_size)) goto fail; array_size -= sizeof(iv->offset_size); offset = be16toh(iv->offset_size); bit32 = (offset & BWN_FWINITVALS_32BIT) ? 1 : 0; offset &= BWN_FWINITVALS_OFFSET_MASK; if (offset >= 0x1000) goto fail; if (bit32) { if (array_size < sizeof(iv->data.d32)) goto fail; array_size -= sizeof(iv->data.d32); BWN_WRITE_4(mac, offset, be32toh(iv->data.d32)); iv = GET_NEXTIV32(iv); } else { if (array_size < sizeof(iv->data.d16)) goto fail; array_size -= sizeof(iv->data.d16); BWN_WRITE_2(mac, offset, be16toh(iv->data.d16)); iv = GET_NEXTIV16(iv); } } if (array_size != 0) goto fail; return (0); fail: device_printf(sc->sc_dev, "initvals: invalid format\n"); return (EPROTO); #undef GET_NEXTIV16 #undef GET_NEXTIV32 } int bwn_switch_channel(struct bwn_mac *mac, int chan) { struct bwn_phy *phy = &(mac->mac_phy); struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; uint16_t channelcookie, savedcookie; int error; if (chan == 0xffff) chan = phy->get_default_chan(mac); channelcookie = chan; if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) channelcookie |= 0x100; savedcookie = bwn_shm_read_2(mac, BWN_SHARED, BWN_SHARED_CHAN); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_CHAN, channelcookie); error = phy->switch_channel(mac, chan); if (error) goto fail; mac->mac_phy.chan = chan; DELAY(8000); return (0); fail: device_printf(sc->sc_dev, "failed to switch channel\n"); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_CHAN, savedcookie); return (error); } static uint16_t bwn_ant2phy(int antenna) { switch (antenna) { case BWN_ANT0: return (BWN_TX_PHY_ANT0); case BWN_ANT1: return (BWN_TX_PHY_ANT1); case BWN_ANT2: return (BWN_TX_PHY_ANT2); case BWN_ANT3: return (BWN_TX_PHY_ANT3); case BWN_ANTAUTO: return (BWN_TX_PHY_ANT01AUTO); } KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); return (0); } static void bwn_wme_load(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; int i; KASSERT(N(bwn_wme_shm_offsets) == N(sc->sc_wmeParams), ("%s:%d: fail", __func__, __LINE__)); bwn_mac_suspend(mac); for (i = 0; i < N(sc->sc_wmeParams); i++) bwn_wme_loadparams(mac, &(sc->sc_wmeParams[i]), bwn_wme_shm_offsets[i]); bwn_mac_enable(mac); } static void bwn_wme_loadparams(struct bwn_mac *mac, const struct wmeParams *p, uint16_t shm_offset) { -#define SM(_v, _f) (((_v) << _f##_S) & _f) struct bwn_softc *sc = mac->mac_sc; uint16_t params[BWN_NR_WMEPARAMS]; int slot, tmp; unsigned int i; slot = BWN_READ_2(mac, BWN_RNG) & - SM(p->wmep_logcwmin, WME_PARAM_LOGCWMIN); + _IEEE80211_SHIFTMASK(p->wmep_logcwmin, WME_PARAM_LOGCWMIN); memset(¶ms, 0, sizeof(params)); DPRINTF(sc, BWN_DEBUG_WME, "wmep_txopLimit %d wmep_logcwmin %d " "wmep_logcwmax %d wmep_aifsn %d\n", p->wmep_txopLimit, p->wmep_logcwmin, p->wmep_logcwmax, p->wmep_aifsn); params[BWN_WMEPARAM_TXOP] = p->wmep_txopLimit * 32; - params[BWN_WMEPARAM_CWMIN] = SM(p->wmep_logcwmin, WME_PARAM_LOGCWMIN); - params[BWN_WMEPARAM_CWMAX] = SM(p->wmep_logcwmax, WME_PARAM_LOGCWMAX); - params[BWN_WMEPARAM_CWCUR] = SM(p->wmep_logcwmin, WME_PARAM_LOGCWMIN); + params[BWN_WMEPARAM_CWMIN] = + _IEEE80211_SHIFTMASK(p->wmep_logcwmin, WME_PARAM_LOGCWMIN); + params[BWN_WMEPARAM_CWMAX] = + _IEEE80211_SHIFTMASK(p->wmep_logcwmax, WME_PARAM_LOGCWMAX); + params[BWN_WMEPARAM_CWCUR] = + _IEEE80211_SHIFTMASK(p->wmep_logcwmin, WME_PARAM_LOGCWMIN); params[BWN_WMEPARAM_AIFS] = p->wmep_aifsn; params[BWN_WMEPARAM_BSLOTS] = slot; params[BWN_WMEPARAM_REGGAP] = slot + p->wmep_aifsn; for (i = 0; i < N(params); i++) { if (i == BWN_WMEPARAM_STATUS) { tmp = bwn_shm_read_2(mac, BWN_SHARED, shm_offset + (i * 2)); tmp |= 0x100; bwn_shm_write_2(mac, BWN_SHARED, shm_offset + (i * 2), tmp); } else { bwn_shm_write_2(mac, BWN_SHARED, shm_offset + (i * 2), params[i]); } } } static void bwn_mac_write_bssid(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint32_t tmp; int i; uint8_t mac_bssid[IEEE80211_ADDR_LEN * 2]; bwn_mac_setfilter(mac, BWN_MACFILTER_BSSID, sc->sc_bssid); memcpy(mac_bssid, sc->sc_ic.ic_macaddr, IEEE80211_ADDR_LEN); memcpy(mac_bssid + IEEE80211_ADDR_LEN, sc->sc_bssid, IEEE80211_ADDR_LEN); for (i = 0; i < N(mac_bssid); i += sizeof(uint32_t)) { tmp = (uint32_t) (mac_bssid[i + 0]); tmp |= (uint32_t) (mac_bssid[i + 1]) << 8; tmp |= (uint32_t) (mac_bssid[i + 2]) << 16; tmp |= (uint32_t) (mac_bssid[i + 3]) << 24; bwn_ram_write(mac, 0x20 + i, tmp); } } static void bwn_mac_setfilter(struct bwn_mac *mac, uint16_t offset, const uint8_t *macaddr) { static const uint8_t zero[IEEE80211_ADDR_LEN] = { 0 }; uint16_t data; if (!mac) macaddr = zero; offset |= 0x0020; BWN_WRITE_2(mac, BWN_MACFILTER_CONTROL, offset); data = macaddr[0]; data |= macaddr[1] << 8; BWN_WRITE_2(mac, BWN_MACFILTER_DATA, data); data = macaddr[2]; data |= macaddr[3] << 8; BWN_WRITE_2(mac, BWN_MACFILTER_DATA, data); data = macaddr[4]; data |= macaddr[5] << 8; BWN_WRITE_2(mac, BWN_MACFILTER_DATA, data); } static void bwn_key_dowrite(struct bwn_mac *mac, uint8_t index, uint8_t algorithm, const uint8_t *key, size_t key_len, const uint8_t *mac_addr) { uint8_t buf[BWN_SEC_KEYSIZE] = { 0, }; uint8_t per_sta_keys_start = 8; if (BWN_SEC_NEWAPI(mac)) per_sta_keys_start = 4; KASSERT(index < mac->mac_max_nr_keys, ("%s:%d: fail", __func__, __LINE__)); KASSERT(key_len <= BWN_SEC_KEYSIZE, ("%s:%d: fail", __func__, __LINE__)); if (index >= per_sta_keys_start) bwn_key_macwrite(mac, index, NULL); if (key) memcpy(buf, key, key_len); bwn_key_write(mac, index, algorithm, buf); if (index >= per_sta_keys_start) bwn_key_macwrite(mac, index, mac_addr); mac->mac_key[index].algorithm = algorithm; } static void bwn_key_macwrite(struct bwn_mac *mac, uint8_t index, const uint8_t *addr) { struct bwn_softc *sc = mac->mac_sc; uint32_t addrtmp[2] = { 0, 0 }; uint8_t start = 8; if (BWN_SEC_NEWAPI(mac)) start = 4; KASSERT(index >= start, ("%s:%d: fail", __func__, __LINE__)); index -= start; if (addr) { addrtmp[0] = addr[0]; addrtmp[0] |= ((uint32_t) (addr[1]) << 8); addrtmp[0] |= ((uint32_t) (addr[2]) << 16); addrtmp[0] |= ((uint32_t) (addr[3]) << 24); addrtmp[1] = addr[4]; addrtmp[1] |= ((uint32_t) (addr[5]) << 8); } if (bhnd_get_hwrev(sc->sc_dev) >= 5) { bwn_shm_write_4(mac, BWN_RCMTA, (index * 2) + 0, addrtmp[0]); bwn_shm_write_2(mac, BWN_RCMTA, (index * 2) + 1, addrtmp[1]); } else { if (index >= 8) { bwn_shm_write_4(mac, BWN_SHARED, BWN_SHARED_PSM + (index * 6) + 0, addrtmp[0]); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PSM + (index * 6) + 4, addrtmp[1]); } } } static void bwn_key_write(struct bwn_mac *mac, uint8_t index, uint8_t algorithm, const uint8_t *key) { unsigned int i; uint32_t offset; uint16_t kidx, value; kidx = BWN_SEC_KEY2FW(mac, index); bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_KEYIDX_BLOCK + (kidx * 2), (kidx << 4) | algorithm); offset = mac->mac_ktp + (index * BWN_SEC_KEYSIZE); for (i = 0; i < BWN_SEC_KEYSIZE; i += 2) { value = key[i]; value |= (uint16_t)(key[i + 1]) << 8; bwn_shm_write_2(mac, BWN_SHARED, offset + i, value); } } static void bwn_phy_exit(struct bwn_mac *mac) { mac->mac_phy.rf_onoff(mac, 0); if (mac->mac_phy.exit != NULL) mac->mac_phy.exit(mac); } static void bwn_dma_free(struct bwn_mac *mac) { struct bwn_dma *dma; if ((mac->mac_flags & BWN_MAC_FLAG_DMA) == 0) return; dma = &mac->mac_method.dma; bwn_dma_ringfree(&dma->rx); bwn_dma_ringfree(&dma->wme[WME_AC_BK]); bwn_dma_ringfree(&dma->wme[WME_AC_BE]); bwn_dma_ringfree(&dma->wme[WME_AC_VI]); bwn_dma_ringfree(&dma->wme[WME_AC_VO]); bwn_dma_ringfree(&dma->mcast); } static void bwn_core_stop(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; BWN_ASSERT_LOCKED(sc); if (mac->mac_status < BWN_MAC_STATUS_STARTED) return; callout_stop(&sc->sc_rfswitch_ch); callout_stop(&sc->sc_task_ch); callout_stop(&sc->sc_watchdog_ch); sc->sc_watchdog_timer = 0; BWN_WRITE_4(mac, BWN_INTR_MASK, 0); BWN_READ_4(mac, BWN_INTR_MASK); bwn_mac_suspend(mac); mac->mac_status = BWN_MAC_STATUS_INITED; } static int bwn_switch_band(struct bwn_softc *sc, struct ieee80211_channel *chan) { struct bwn_mac *up_dev = NULL; struct bwn_mac *down_dev; struct bwn_mac *mac; int err, status; uint8_t gmode; BWN_ASSERT_LOCKED(sc); TAILQ_FOREACH(mac, &sc->sc_maclist, mac_list) { if (IEEE80211_IS_CHAN_2GHZ(chan) && mac->mac_phy.supports_2ghz) { up_dev = mac; gmode = 1; } else if (IEEE80211_IS_CHAN_5GHZ(chan) && mac->mac_phy.supports_5ghz) { up_dev = mac; gmode = 0; } else { KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); return (EINVAL); } if (up_dev != NULL) break; } if (up_dev == NULL) { device_printf(sc->sc_dev, "Could not find a device\n"); return (ENODEV); } if (up_dev == sc->sc_curmac && sc->sc_curmac->mac_phy.gmode == gmode) return (0); DPRINTF(sc, BWN_DEBUG_RF | BWN_DEBUG_PHY | BWN_DEBUG_RESET, "switching to %s-GHz band\n", IEEE80211_IS_CHAN_2GHZ(chan) ? "2" : "5"); down_dev = sc->sc_curmac; status = down_dev->mac_status; if (status >= BWN_MAC_STATUS_STARTED) bwn_core_stop(down_dev); if (status >= BWN_MAC_STATUS_INITED) bwn_core_exit(down_dev); if (down_dev != up_dev) { err = bwn_phy_reset(down_dev); if (err) goto fail; } up_dev->mac_phy.gmode = gmode; if (status >= BWN_MAC_STATUS_INITED) { err = bwn_core_init(up_dev); if (err) { device_printf(sc->sc_dev, "fatal: failed to initialize for %s-GHz\n", IEEE80211_IS_CHAN_2GHZ(chan) ? "2" : "5"); goto fail; } } if (status >= BWN_MAC_STATUS_STARTED) bwn_core_start(up_dev); KASSERT(up_dev->mac_status == status, ("%s: fail", __func__)); sc->sc_curmac = up_dev; return (0); fail: sc->sc_curmac = NULL; return (err); } static void bwn_rf_turnon(struct bwn_mac *mac) { DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: called\n", __func__); bwn_mac_suspend(mac); mac->mac_phy.rf_onoff(mac, 1); mac->mac_phy.rf_on = 1; bwn_mac_enable(mac); } static void bwn_rf_turnoff(struct bwn_mac *mac) { DPRINTF(mac->mac_sc, BWN_DEBUG_RESET, "%s: called\n", __func__); bwn_mac_suspend(mac); mac->mac_phy.rf_onoff(mac, 0); mac->mac_phy.rf_on = 0; bwn_mac_enable(mac); } /* * PHY reset. */ static int bwn_phy_reset(struct bwn_mac *mac) { struct bwn_softc *sc; uint16_t iost, mask; int error; sc = mac->mac_sc; iost = BWN_IOCTL_PHYRESET | BHND_IOCTL_CLK_FORCE; mask = iost | BWN_IOCTL_SUPPORT_G; if ((error = bhnd_write_ioctl(sc->sc_dev, iost, mask))) return (error); DELAY(1000); iost &= ~BHND_IOCTL_CLK_FORCE; if ((error = bhnd_write_ioctl(sc->sc_dev, iost, mask))) return (error); DELAY(1000); return (0); } static int bwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct bwn_vap *bvp = BWN_VAP(vap); struct ieee80211com *ic= vap->iv_ic; enum ieee80211_state ostate = vap->iv_state; struct bwn_softc *sc = ic->ic_softc; struct bwn_mac *mac = sc->sc_curmac; int error; DPRINTF(sc, BWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); error = bvp->bv_newstate(vap, nstate, arg); if (error != 0) return (error); BWN_LOCK(sc); bwn_led_newstate(mac, nstate); /* * Clear the BSSID when we stop a STA */ if (vap->iv_opmode == IEEE80211_M_STA) { if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { /* * Clear out the BSSID. If we reassociate to * the same AP, this will reinialize things * correctly... */ if (ic->ic_opmode == IEEE80211_M_STA && (sc->sc_flags & BWN_FLAG_INVALID) == 0) { memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN); bwn_set_macaddr(mac); } } } if (vap->iv_opmode == IEEE80211_M_MONITOR || vap->iv_opmode == IEEE80211_M_AHDEMO) { /* XXX nothing to do? */ } else if (nstate == IEEE80211_S_RUN) { memcpy(sc->sc_bssid, vap->iv_bss->ni_bssid, IEEE80211_ADDR_LEN); bwn_set_opmode(mac); bwn_set_pretbtt(mac); bwn_spu_setdelay(mac, 0); bwn_set_macaddr(mac); } BWN_UNLOCK(sc); return (error); } static void bwn_set_pretbtt(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; uint16_t pretbtt; if (ic->ic_opmode == IEEE80211_M_IBSS) pretbtt = 2; else pretbtt = (mac->mac_phy.type == BWN_PHYTYPE_A) ? 120 : 250; bwn_shm_write_2(mac, BWN_SHARED, BWN_SHARED_PRETBTT, pretbtt); BWN_WRITE_2(mac, BWN_TSF_CFP_PRETBTT, pretbtt); } static int bwn_intr(void *arg) { struct bwn_mac *mac = arg; struct bwn_softc *sc = mac->mac_sc; uint32_t reason; if (mac->mac_status < BWN_MAC_STATUS_STARTED || (sc->sc_flags & BWN_FLAG_INVALID)) return (FILTER_STRAY); DPRINTF(sc, BWN_DEBUG_INTR, "%s: called\n", __func__); reason = BWN_READ_4(mac, BWN_INTR_REASON); if (reason == 0xffffffff) /* shared IRQ */ return (FILTER_STRAY); reason &= mac->mac_intr_mask; if (reason == 0) return (FILTER_HANDLED); DPRINTF(sc, BWN_DEBUG_INTR, "%s: reason=0x%08x\n", __func__, reason); mac->mac_reason[0] = BWN_READ_4(mac, BWN_DMA0_REASON) & 0x0001dc00; mac->mac_reason[1] = BWN_READ_4(mac, BWN_DMA1_REASON) & 0x0000dc00; mac->mac_reason[2] = BWN_READ_4(mac, BWN_DMA2_REASON) & 0x0000dc00; mac->mac_reason[3] = BWN_READ_4(mac, BWN_DMA3_REASON) & 0x0001dc00; mac->mac_reason[4] = BWN_READ_4(mac, BWN_DMA4_REASON) & 0x0000dc00; BWN_WRITE_4(mac, BWN_INTR_REASON, reason); BWN_WRITE_4(mac, BWN_DMA0_REASON, mac->mac_reason[0]); BWN_WRITE_4(mac, BWN_DMA1_REASON, mac->mac_reason[1]); BWN_WRITE_4(mac, BWN_DMA2_REASON, mac->mac_reason[2]); BWN_WRITE_4(mac, BWN_DMA3_REASON, mac->mac_reason[3]); BWN_WRITE_4(mac, BWN_DMA4_REASON, mac->mac_reason[4]); /* Disable interrupts. */ BWN_WRITE_4(mac, BWN_INTR_MASK, 0); mac->mac_reason_intr = reason; BWN_BARRIER(mac, 0, 0, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE); taskqueue_enqueue(sc->sc_tq, &mac->mac_intrtask); return (FILTER_HANDLED); } static void bwn_intrtask(void *arg, int npending) { struct epoch_tracker et; struct bwn_mac *mac = arg; struct bwn_softc *sc = mac->mac_sc; uint32_t merged = 0; int i, tx = 0, rx = 0; BWN_LOCK(sc); if (mac->mac_status < BWN_MAC_STATUS_STARTED || (sc->sc_flags & BWN_FLAG_INVALID)) { BWN_UNLOCK(sc); return; } for (i = 0; i < N(mac->mac_reason); i++) merged |= mac->mac_reason[i]; if (mac->mac_reason_intr & BWN_INTR_MAC_TXERR) device_printf(sc->sc_dev, "MAC trans error\n"); if (mac->mac_reason_intr & BWN_INTR_PHY_TXERR) { DPRINTF(sc, BWN_DEBUG_INTR, "%s: PHY trans error\n", __func__); mac->mac_phy.txerrors--; if (mac->mac_phy.txerrors == 0) { mac->mac_phy.txerrors = BWN_TXERROR_MAX; bwn_restart(mac, "PHY TX errors"); } } if (merged & (BWN_DMAINTR_FATALMASK | BWN_DMAINTR_NONFATALMASK)) { if (merged & BWN_DMAINTR_FATALMASK) { device_printf(sc->sc_dev, "Fatal DMA error: %#x %#x %#x %#x %#x %#x\n", mac->mac_reason[0], mac->mac_reason[1], mac->mac_reason[2], mac->mac_reason[3], mac->mac_reason[4], mac->mac_reason[5]); bwn_restart(mac, "DMA error"); BWN_UNLOCK(sc); return; } if (merged & BWN_DMAINTR_NONFATALMASK) { device_printf(sc->sc_dev, "DMA error: %#x %#x %#x %#x %#x %#x\n", mac->mac_reason[0], mac->mac_reason[1], mac->mac_reason[2], mac->mac_reason[3], mac->mac_reason[4], mac->mac_reason[5]); } } if (mac->mac_reason_intr & BWN_INTR_UCODE_DEBUG) bwn_intr_ucode_debug(mac); if (mac->mac_reason_intr & BWN_INTR_TBTT_INDI) bwn_intr_tbtt_indication(mac); if (mac->mac_reason_intr & BWN_INTR_ATIM_END) bwn_intr_atim_end(mac); if (mac->mac_reason_intr & BWN_INTR_BEACON) bwn_intr_beacon(mac); if (mac->mac_reason_intr & BWN_INTR_PMQ) bwn_intr_pmq(mac); if (mac->mac_reason_intr & BWN_INTR_NOISESAMPLE_OK) bwn_intr_noise(mac); NET_EPOCH_ENTER(et); if (mac->mac_flags & BWN_MAC_FLAG_DMA) { if (mac->mac_reason[0] & BWN_DMAINTR_RX_DONE) { bwn_dma_rx(mac->mac_method.dma.rx); rx = 1; } } else rx = bwn_pio_rx(&mac->mac_method.pio.rx); NET_EPOCH_EXIT(et); KASSERT(!(mac->mac_reason[1] & BWN_DMAINTR_RX_DONE), ("%s", __func__)); KASSERT(!(mac->mac_reason[2] & BWN_DMAINTR_RX_DONE), ("%s", __func__)); KASSERT(!(mac->mac_reason[3] & BWN_DMAINTR_RX_DONE), ("%s", __func__)); KASSERT(!(mac->mac_reason[4] & BWN_DMAINTR_RX_DONE), ("%s", __func__)); KASSERT(!(mac->mac_reason[5] & BWN_DMAINTR_RX_DONE), ("%s", __func__)); if (mac->mac_reason_intr & BWN_INTR_TX_OK) { bwn_intr_txeof(mac); tx = 1; } BWN_WRITE_4(mac, BWN_INTR_MASK, mac->mac_intr_mask); if (sc->sc_blink_led != NULL && sc->sc_led_blink) { int evt = BWN_LED_EVENT_NONE; if (tx && rx) { if (sc->sc_rx_rate > sc->sc_tx_rate) evt = BWN_LED_EVENT_RX; else evt = BWN_LED_EVENT_TX; } else if (tx) { evt = BWN_LED_EVENT_TX; } else if (rx) { evt = BWN_LED_EVENT_RX; } else if (rx == 0) { evt = BWN_LED_EVENT_POLL; } if (evt != BWN_LED_EVENT_NONE) bwn_led_event(mac, evt); } if (mbufq_first(&sc->sc_snd) != NULL) bwn_start(sc); BWN_BARRIER(mac, 0, 0, BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE); BWN_UNLOCK(sc); } static void bwn_restart(struct bwn_mac *mac, const char *msg) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; if (mac->mac_status < BWN_MAC_STATUS_INITED) return; device_printf(sc->sc_dev, "HW reset: %s\n", msg); ieee80211_runtask(ic, &mac->mac_hwreset); } static void bwn_intr_ucode_debug(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint16_t reason; if (mac->mac_fw.opensource == 0) return; reason = bwn_shm_read_2(mac, BWN_SCRATCH, BWN_DEBUGINTR_REASON_REG); switch (reason) { case BWN_DEBUGINTR_PANIC: bwn_handle_fwpanic(mac); break; case BWN_DEBUGINTR_DUMP_SHM: device_printf(sc->sc_dev, "BWN_DEBUGINTR_DUMP_SHM\n"); break; case BWN_DEBUGINTR_DUMP_REGS: device_printf(sc->sc_dev, "BWN_DEBUGINTR_DUMP_REGS\n"); break; case BWN_DEBUGINTR_MARKER: device_printf(sc->sc_dev, "BWN_DEBUGINTR_MARKER\n"); break; default: device_printf(sc->sc_dev, "ucode debug unknown reason: %#x\n", reason); } bwn_shm_write_2(mac, BWN_SCRATCH, BWN_DEBUGINTR_REASON_REG, BWN_DEBUGINTR_ACK); } static void bwn_intr_tbtt_indication(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_opmode != IEEE80211_M_HOSTAP) bwn_psctl(mac, 0); if (ic->ic_opmode == IEEE80211_M_IBSS) mac->mac_flags |= BWN_MAC_FLAG_DFQVALID; } static void bwn_intr_atim_end(struct bwn_mac *mac) { if (mac->mac_flags & BWN_MAC_FLAG_DFQVALID) { BWN_WRITE_4(mac, BWN_MACCMD, BWN_READ_4(mac, BWN_MACCMD) | BWN_MACCMD_DFQ_VALID); mac->mac_flags &= ~BWN_MAC_FLAG_DFQVALID; } } static void bwn_intr_beacon(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; uint32_t cmd, beacon0, beacon1; if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_MBSS) return; mac->mac_intr_mask &= ~BWN_INTR_BEACON; cmd = BWN_READ_4(mac, BWN_MACCMD); beacon0 = (cmd & BWN_MACCMD_BEACON0_VALID); beacon1 = (cmd & BWN_MACCMD_BEACON1_VALID); if (beacon0 && beacon1) { BWN_WRITE_4(mac, BWN_INTR_REASON, BWN_INTR_BEACON); mac->mac_intr_mask |= BWN_INTR_BEACON; return; } if (sc->sc_flags & BWN_FLAG_NEED_BEACON_TP) { sc->sc_flags &= ~BWN_FLAG_NEED_BEACON_TP; bwn_load_beacon0(mac); bwn_load_beacon1(mac); cmd = BWN_READ_4(mac, BWN_MACCMD); cmd |= BWN_MACCMD_BEACON0_VALID; BWN_WRITE_4(mac, BWN_MACCMD, cmd); } else { if (!beacon0) { bwn_load_beacon0(mac); cmd = BWN_READ_4(mac, BWN_MACCMD); cmd |= BWN_MACCMD_BEACON0_VALID; BWN_WRITE_4(mac, BWN_MACCMD, cmd); } else if (!beacon1) { bwn_load_beacon1(mac); cmd = BWN_READ_4(mac, BWN_MACCMD); cmd |= BWN_MACCMD_BEACON1_VALID; BWN_WRITE_4(mac, BWN_MACCMD, cmd); } } } static void bwn_intr_pmq(struct bwn_mac *mac) { uint32_t tmp; while (1) { tmp = BWN_READ_4(mac, BWN_PS_STATUS); if (!(tmp & 0x00000008)) break; } BWN_WRITE_2(mac, BWN_PS_STATUS, 0x0002); } static void bwn_intr_noise(struct bwn_mac *mac) { struct bwn_phy_g *pg = &mac->mac_phy.phy_g; uint16_t tmp; uint8_t noise[4]; uint8_t i, j; int32_t average; if (mac->mac_phy.type != BWN_PHYTYPE_G) return; KASSERT(mac->mac_noise.noi_running, ("%s: fail", __func__)); *((uint32_t *)noise) = htole32(bwn_jssi_read(mac)); if (noise[0] == 0x7f || noise[1] == 0x7f || noise[2] == 0x7f || noise[3] == 0x7f) goto new; KASSERT(mac->mac_noise.noi_nsamples < 8, ("%s:%d: fail", __func__, __LINE__)); i = mac->mac_noise.noi_nsamples; noise[0] = MIN(MAX(noise[0], 0), N(pg->pg_nrssi_lt) - 1); noise[1] = MIN(MAX(noise[1], 0), N(pg->pg_nrssi_lt) - 1); noise[2] = MIN(MAX(noise[2], 0), N(pg->pg_nrssi_lt) - 1); noise[3] = MIN(MAX(noise[3], 0), N(pg->pg_nrssi_lt) - 1); mac->mac_noise.noi_samples[i][0] = pg->pg_nrssi_lt[noise[0]]; mac->mac_noise.noi_samples[i][1] = pg->pg_nrssi_lt[noise[1]]; mac->mac_noise.noi_samples[i][2] = pg->pg_nrssi_lt[noise[2]]; mac->mac_noise.noi_samples[i][3] = pg->pg_nrssi_lt[noise[3]]; mac->mac_noise.noi_nsamples++; if (mac->mac_noise.noi_nsamples == 8) { average = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 4; j++) average += mac->mac_noise.noi_samples[i][j]; } average = (((average / 32) * 125) + 64) / 128; tmp = (bwn_shm_read_2(mac, BWN_SHARED, 0x40c) / 128) & 0x1f; if (tmp >= 8) average += 2; else average -= 25; average -= (tmp == 8) ? 72 : 48; mac->mac_stats.link_noise = average; mac->mac_noise.noi_running = 0; return; } new: bwn_noise_gensample(mac); } static int bwn_pio_rx(struct bwn_pio_rxqueue *prq) { struct bwn_mac *mac = prq->prq_mac; struct bwn_softc *sc = mac->mac_sc; unsigned int i; BWN_ASSERT_LOCKED(sc); if (mac->mac_status < BWN_MAC_STATUS_STARTED) return (0); for (i = 0; i < 5000; i++) { if (bwn_pio_rxeof(prq) == 0) break; } if (i >= 5000) device_printf(sc->sc_dev, "too many RX frames in PIO mode\n"); return ((i > 0) ? 1 : 0); } static void bwn_dma_rx(struct bwn_dma_ring *dr) { int slot, curslot; KASSERT(!dr->dr_tx, ("%s:%d: fail", __func__, __LINE__)); curslot = dr->get_curslot(dr); KASSERT(curslot >= 0 && curslot < dr->dr_numslots, ("%s:%d: fail", __func__, __LINE__)); slot = dr->dr_curslot; for (; slot != curslot; slot = bwn_dma_nextslot(dr, slot)) bwn_dma_rxeof(dr, &slot); bus_dmamap_sync(dr->dr_ring_dtag, dr->dr_ring_dmap, BUS_DMASYNC_PREWRITE); dr->set_curslot(dr, slot); dr->dr_curslot = slot; } static void bwn_intr_txeof(struct bwn_mac *mac) { struct bwn_txstatus stat; uint32_t stat0, stat1; uint16_t tmp; BWN_ASSERT_LOCKED(mac->mac_sc); while (1) { stat0 = BWN_READ_4(mac, BWN_XMITSTAT_0); if (!(stat0 & 0x00000001)) break; stat1 = BWN_READ_4(mac, BWN_XMITSTAT_1); DPRINTF(mac->mac_sc, BWN_DEBUG_XMIT, "%s: stat0=0x%08x, stat1=0x%08x\n", __func__, stat0, stat1); stat.cookie = (stat0 >> 16); stat.seq = (stat1 & 0x0000ffff); stat.phy_stat = ((stat1 & 0x00ff0000) >> 16); tmp = (stat0 & 0x0000ffff); stat.framecnt = ((tmp & 0xf000) >> 12); stat.rtscnt = ((tmp & 0x0f00) >> 8); stat.sreason = ((tmp & 0x001c) >> 2); stat.pm = (tmp & 0x0080) ? 1 : 0; stat.im = (tmp & 0x0040) ? 1 : 0; stat.ampdu = (tmp & 0x0020) ? 1 : 0; stat.ack = (tmp & 0x0002) ? 1 : 0; DPRINTF(mac->mac_sc, BWN_DEBUG_XMIT, "%s: cookie=%d, seq=%d, phystat=0x%02x, framecnt=%d, " "rtscnt=%d, sreason=%d, pm=%d, im=%d, ampdu=%d, ack=%d\n", __func__, stat.cookie, stat.seq, stat.phy_stat, stat.framecnt, stat.rtscnt, stat.sreason, stat.pm, stat.im, stat.ampdu, stat.ack); bwn_handle_txeof(mac, &stat); } } static void bwn_hwreset(void *arg, int npending) { struct bwn_mac *mac = arg; struct bwn_softc *sc = mac->mac_sc; int error = 0; int prev_status; BWN_LOCK(sc); prev_status = mac->mac_status; if (prev_status >= BWN_MAC_STATUS_STARTED) bwn_core_stop(mac); if (prev_status >= BWN_MAC_STATUS_INITED) bwn_core_exit(mac); if (prev_status >= BWN_MAC_STATUS_INITED) { error = bwn_core_init(mac); if (error) goto out; } if (prev_status >= BWN_MAC_STATUS_STARTED) bwn_core_start(mac); out: if (error) { device_printf(sc->sc_dev, "%s: failed (%d)\n", __func__, error); sc->sc_curmac = NULL; } BWN_UNLOCK(sc); } static void bwn_handle_fwpanic(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; uint16_t reason; reason = bwn_shm_read_2(mac, BWN_SCRATCH, BWN_FWPANIC_REASON_REG); device_printf(sc->sc_dev,"fw panic (%u)\n", reason); if (reason == BWN_FWPANIC_RESTART) bwn_restart(mac, "ucode panic"); } static void bwn_load_beacon0(struct bwn_mac *mac) { KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); } static void bwn_load_beacon1(struct bwn_mac *mac) { KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); } static uint32_t bwn_jssi_read(struct bwn_mac *mac) { uint32_t val = 0; val = bwn_shm_read_2(mac, BWN_SHARED, 0x08a); val <<= 16; val |= bwn_shm_read_2(mac, BWN_SHARED, 0x088); return (val); } static void bwn_noise_gensample(struct bwn_mac *mac) { uint32_t jssi = 0x7f7f7f7f; bwn_shm_write_2(mac, BWN_SHARED, 0x088, (jssi & 0x0000ffff)); bwn_shm_write_2(mac, BWN_SHARED, 0x08a, (jssi & 0xffff0000) >> 16); BWN_WRITE_4(mac, BWN_MACCMD, BWN_READ_4(mac, BWN_MACCMD) | BWN_MACCMD_BGNOISE); } static int bwn_dma_freeslot(struct bwn_dma_ring *dr) { BWN_ASSERT_LOCKED(dr->dr_mac->mac_sc); return (dr->dr_numslots - dr->dr_usedslot); } static int bwn_dma_nextslot(struct bwn_dma_ring *dr, int slot) { BWN_ASSERT_LOCKED(dr->dr_mac->mac_sc); KASSERT(slot >= -1 && slot <= dr->dr_numslots - 1, ("%s:%d: fail", __func__, __LINE__)); if (slot == dr->dr_numslots - 1) return (0); return (slot + 1); } static void bwn_dma_rxeof(struct bwn_dma_ring *dr, int *slot) { struct bwn_mac *mac = dr->dr_mac; struct bwn_softc *sc = mac->mac_sc; struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_dmadesc_generic *desc; struct bwn_dmadesc_meta *meta; struct bwn_rxhdr4 *rxhdr; struct mbuf *m; uint32_t macstat; int32_t tmp; int cnt = 0; uint16_t len; dr->getdesc(dr, *slot, &desc, &meta); bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap, BUS_DMASYNC_POSTREAD); m = meta->mt_m; if (bwn_dma_newbuf(dr, desc, meta, 0)) { counter_u64_add(sc->sc_ic.ic_ierrors, 1); return; } rxhdr = mtod(m, struct bwn_rxhdr4 *); len = le16toh(rxhdr->frame_len); if (len <= 0) { counter_u64_add(sc->sc_ic.ic_ierrors, 1); return; } if (bwn_dma_check_redzone(dr, m)) { device_printf(sc->sc_dev, "redzone error.\n"); bwn_dma_set_redzone(dr, m); bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap, BUS_DMASYNC_PREWRITE); return; } if (len > dr->dr_rx_bufsize) { tmp = len; while (1) { dr->getdesc(dr, *slot, &desc, &meta); bwn_dma_set_redzone(dr, meta->mt_m); bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap, BUS_DMASYNC_PREWRITE); *slot = bwn_dma_nextslot(dr, *slot); cnt++; tmp -= dr->dr_rx_bufsize; if (tmp <= 0) break; } device_printf(sc->sc_dev, "too small buffer " "(len %u buffer %u dropped %d)\n", len, dr->dr_rx_bufsize, cnt); return; } switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: case BWN_FW_HDR_410: macstat = le32toh(rxhdr->ps4.r351.mac_status); break; case BWN_FW_HDR_598: macstat = le32toh(rxhdr->ps4.r598.mac_status); break; } if (macstat & BWN_RX_MAC_FCSERR) { if (!(mac->mac_sc->sc_filters & BWN_MACCTL_PASS_BADFCS)) { device_printf(sc->sc_dev, "RX drop\n"); return; } } m->m_len = m->m_pkthdr.len = len + dr->dr_frameoffset; m_adj(m, dr->dr_frameoffset); bwn_rxeof(dr->dr_mac, m, rxhdr); } static void bwn_handle_txeof(struct bwn_mac *mac, const struct bwn_txstatus *status) { struct bwn_softc *sc = mac->mac_sc; struct bwn_stats *stats = &mac->mac_stats; BWN_ASSERT_LOCKED(mac->mac_sc); if (status->im) device_printf(sc->sc_dev, "TODO: STATUS IM\n"); if (status->ampdu) device_printf(sc->sc_dev, "TODO: STATUS AMPDU\n"); if (status->rtscnt) { if (status->rtscnt == 0xf) stats->rtsfail++; else stats->rts++; } if (mac->mac_flags & BWN_MAC_FLAG_DMA) { bwn_dma_handle_txeof(mac, status); } else { bwn_pio_handle_txeof(mac, status); } bwn_phy_txpower_check(mac, 0); } static uint8_t bwn_pio_rxeof(struct bwn_pio_rxqueue *prq) { struct bwn_mac *mac = prq->prq_mac; struct bwn_softc *sc = mac->mac_sc; struct bwn_rxhdr4 rxhdr; struct mbuf *m; uint32_t ctl32, macstat, v32; unsigned int i, padding; uint16_t ctl16, len, totlen, v16; unsigned char *mp; char *data; memset(&rxhdr, 0, sizeof(rxhdr)); if (prq->prq_rev >= 8) { ctl32 = bwn_pio_rx_read_4(prq, BWN_PIO8_RXCTL); if (!(ctl32 & BWN_PIO8_RXCTL_FRAMEREADY)) return (0); bwn_pio_rx_write_4(prq, BWN_PIO8_RXCTL, BWN_PIO8_RXCTL_FRAMEREADY); for (i = 0; i < 10; i++) { ctl32 = bwn_pio_rx_read_4(prq, BWN_PIO8_RXCTL); if (ctl32 & BWN_PIO8_RXCTL_DATAREADY) goto ready; DELAY(10); } } else { ctl16 = bwn_pio_rx_read_2(prq, BWN_PIO_RXCTL); if (!(ctl16 & BWN_PIO_RXCTL_FRAMEREADY)) return (0); bwn_pio_rx_write_2(prq, BWN_PIO_RXCTL, BWN_PIO_RXCTL_FRAMEREADY); for (i = 0; i < 10; i++) { ctl16 = bwn_pio_rx_read_2(prq, BWN_PIO_RXCTL); if (ctl16 & BWN_PIO_RXCTL_DATAREADY) goto ready; DELAY(10); } } device_printf(sc->sc_dev, "%s: timed out\n", __func__); return (1); ready: if (prq->prq_rev >= 8) { bus_read_multi_4(sc->sc_mem_res, prq->prq_base + BWN_PIO8_RXDATA, (void *)&rxhdr, sizeof(rxhdr)); } else { bus_read_multi_2(sc->sc_mem_res, prq->prq_base + BWN_PIO_RXDATA, (void *)&rxhdr, sizeof(rxhdr)); } len = le16toh(rxhdr.frame_len); if (len > 0x700) { device_printf(sc->sc_dev, "%s: len is too big\n", __func__); goto error; } if (len == 0) { device_printf(sc->sc_dev, "%s: len is 0\n", __func__); goto error; } switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: case BWN_FW_HDR_410: macstat = le32toh(rxhdr.ps4.r351.mac_status); break; case BWN_FW_HDR_598: macstat = le32toh(rxhdr.ps4.r598.mac_status); break; } if (macstat & BWN_RX_MAC_FCSERR) { if (!(mac->mac_sc->sc_filters & BWN_MACCTL_PASS_BADFCS)) { device_printf(sc->sc_dev, "%s: FCS error", __func__); goto error; } } padding = (macstat & BWN_RX_MAC_PADDING) ? 2 : 0; totlen = len + padding; KASSERT(totlen <= MCLBYTES, ("too big..\n")); m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->sc_dev, "%s: out of memory", __func__); goto error; } mp = mtod(m, unsigned char *); if (prq->prq_rev >= 8) { bus_read_multi_4(sc->sc_mem_res, prq->prq_base + BWN_PIO8_RXDATA, (void *)mp, (totlen & ~3)); if (totlen & 3) { v32 = bwn_pio_rx_read_4(prq, BWN_PIO8_RXDATA); data = &(mp[totlen - 1]); switch (totlen & 3) { case 3: *data = (v32 >> 16); data--; case 2: *data = (v32 >> 8); data--; case 1: *data = v32; } } } else { bus_read_multi_2(sc->sc_mem_res, prq->prq_base + BWN_PIO_RXDATA, (void *)mp, (totlen & ~1)); if (totlen & 1) { v16 = bwn_pio_rx_read_2(prq, BWN_PIO_RXDATA); mp[totlen - 1] = v16; } } m->m_len = m->m_pkthdr.len = totlen; bwn_rxeof(prq->prq_mac, m, &rxhdr); return (1); error: if (prq->prq_rev >= 8) bwn_pio_rx_write_4(prq, BWN_PIO8_RXCTL, BWN_PIO8_RXCTL_DATAREADY); else bwn_pio_rx_write_2(prq, BWN_PIO_RXCTL, BWN_PIO_RXCTL_DATAREADY); return (1); } static int bwn_dma_newbuf(struct bwn_dma_ring *dr, struct bwn_dmadesc_generic *desc, struct bwn_dmadesc_meta *meta, int init) { struct bwn_mac *mac = dr->dr_mac; struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_rxhdr4 *hdr; bus_dmamap_t map; bus_addr_t paddr; struct mbuf *m; int error; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { error = ENOBUFS; /* * If the NIC is up and running, we need to: * - Clear RX buffer's header. * - Restore RX descriptor settings. */ if (init) return (error); else goto back; } m->m_len = m->m_pkthdr.len = MCLBYTES; bwn_dma_set_redzone(dr, m); /* * Try to load RX buf into temporary DMA map */ error = bus_dmamap_load_mbuf(dma->rxbuf_dtag, dr->dr_spare_dmap, m, bwn_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error) { m_freem(m); /* * See the comment above */ if (init) return (error); else goto back; } if (!init) bus_dmamap_unload(dma->rxbuf_dtag, meta->mt_dmap); meta->mt_m = m; meta->mt_paddr = paddr; /* * Swap RX buf's DMA map with the loaded temporary one */ map = meta->mt_dmap; meta->mt_dmap = dr->dr_spare_dmap; dr->dr_spare_dmap = map; back: /* * Clear RX buf header */ hdr = mtod(meta->mt_m, struct bwn_rxhdr4 *); bzero(hdr, sizeof(*hdr)); bus_dmamap_sync(dma->rxbuf_dtag, meta->mt_dmap, BUS_DMASYNC_PREWRITE); /* * Setup RX buf descriptor */ dr->setdesc(dr, desc, meta->mt_paddr, meta->mt_m->m_len - sizeof(*hdr), 0, 0, 0); return (error); } static void bwn_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsz __unused, int error) { if (!error) { KASSERT(nseg == 1, ("too many segments(%d)\n", nseg)); *((bus_addr_t *)arg) = seg->ds_addr; } } static int bwn_hwrate2ieeerate(int rate) { switch (rate) { case BWN_CCK_RATE_1MB: return (2); case BWN_CCK_RATE_2MB: return (4); case BWN_CCK_RATE_5MB: return (11); case BWN_CCK_RATE_11MB: return (22); case BWN_OFDM_RATE_6MB: return (12); case BWN_OFDM_RATE_9MB: return (18); case BWN_OFDM_RATE_12MB: return (24); case BWN_OFDM_RATE_18MB: return (36); case BWN_OFDM_RATE_24MB: return (48); case BWN_OFDM_RATE_36MB: return (72); case BWN_OFDM_RATE_48MB: return (96); case BWN_OFDM_RATE_54MB: return (108); default: printf("Ooops\n"); return (0); } } /* * Post process the RX provided RSSI. * * Valid for A, B, G, LP PHYs. */ static int8_t bwn_rx_rssi_calc(struct bwn_mac *mac, uint8_t in_rssi, int ofdm, int adjust_2053, int adjust_2050) { struct bwn_phy *phy = &mac->mac_phy; struct bwn_phy_g *gphy = &phy->phy_g; int tmp; switch (phy->rf_ver) { case 0x2050: if (ofdm) { tmp = in_rssi; if (tmp > 127) tmp -= 256; tmp = tmp * 73 / 64; if (adjust_2050) tmp += 25; else tmp -= 3; } else { if (mac->mac_sc->sc_board_info.board_flags & BHND_BFL_ADCDIV) { if (in_rssi > 63) in_rssi = 63; tmp = gphy->pg_nrssi_lt[in_rssi]; tmp = (31 - tmp) * -131 / 128 - 57; } else { tmp = in_rssi; tmp = (31 - tmp) * -149 / 128 - 68; } if (phy->type == BWN_PHYTYPE_G && adjust_2050) tmp += 25; } break; case 0x2060: if (in_rssi > 127) tmp = in_rssi - 256; else tmp = in_rssi; break; default: tmp = in_rssi; tmp = (tmp - 11) * 103 / 64; if (adjust_2053) tmp -= 109; else tmp -= 83; } return (tmp); } static void bwn_rxeof(struct bwn_mac *mac, struct mbuf *m, const void *_rxhdr) { const struct bwn_rxhdr4 *rxhdr = _rxhdr; struct bwn_plcp6 *plcp; struct bwn_softc *sc = mac->mac_sc; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct ieee80211com *ic = &sc->sc_ic; uint32_t macstat; int padding, rate, rssi = 0, noise = 0, type; uint16_t phytype, phystat0, phystat3, chanstat; unsigned char *mp = mtod(m, unsigned char *); BWN_ASSERT_LOCKED(sc); phystat0 = le16toh(rxhdr->phy_status0); /* * XXX Note: phy_status3 doesn't exist for HT-PHY; it's only * used for LP-PHY. */ phystat3 = le16toh(rxhdr->ps3.lp.phy_status3); switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: case BWN_FW_HDR_410: macstat = le32toh(rxhdr->ps4.r351.mac_status); chanstat = le16toh(rxhdr->ps4.r351.channel); break; case BWN_FW_HDR_598: macstat = le32toh(rxhdr->ps4.r598.mac_status); chanstat = le16toh(rxhdr->ps4.r598.channel); break; } phytype = chanstat & BWN_RX_CHAN_PHYTYPE; if (macstat & BWN_RX_MAC_FCSERR) device_printf(sc->sc_dev, "TODO RX: RX_FLAG_FAILED_FCS_CRC\n"); if (phystat0 & (BWN_RX_PHYST0_PLCPHCF | BWN_RX_PHYST0_PLCPFV)) device_printf(sc->sc_dev, "TODO RX: RX_FLAG_FAILED_PLCP_CRC\n"); if (macstat & BWN_RX_MAC_DECERR) goto drop; padding = (macstat & BWN_RX_MAC_PADDING) ? 2 : 0; if (m->m_pkthdr.len < (sizeof(struct bwn_plcp6) + padding)) { device_printf(sc->sc_dev, "frame too short (length=%d)\n", m->m_pkthdr.len); goto drop; } plcp = (struct bwn_plcp6 *)(mp + padding); m_adj(m, sizeof(struct bwn_plcp6) + padding); if (m->m_pkthdr.len < IEEE80211_MIN_LEN) { device_printf(sc->sc_dev, "frame too short (length=%d)\n", m->m_pkthdr.len); goto drop; } wh = mtod(m, struct ieee80211_frame_min *); if (macstat & BWN_RX_MAC_DEC) { DPRINTF(sc, BWN_DEBUG_HWCRYPTO, "RX decryption attempted (old %d keyidx %#x)\n", BWN_ISOLDFMT(mac), (macstat & BWN_RX_MAC_KEYIDX) >> BWN_RX_MAC_KEYIDX_SHIFT); } if (phystat0 & BWN_RX_PHYST0_OFDM) rate = bwn_plcp_get_ofdmrate(mac, plcp, phytype == BWN_PHYTYPE_A); else rate = bwn_plcp_get_cckrate(mac, plcp); if (rate == -1) { if (!(mac->mac_sc->sc_filters & BWN_MACCTL_PASS_BADPLCP)) goto drop; } sc->sc_rx_rate = bwn_hwrate2ieeerate(rate); /* rssi/noise */ switch (phytype) { case BWN_PHYTYPE_A: case BWN_PHYTYPE_B: case BWN_PHYTYPE_G: case BWN_PHYTYPE_LP: rssi = bwn_rx_rssi_calc(mac, rxhdr->phy.abg.rssi, !! (phystat0 & BWN_RX_PHYST0_OFDM), !! (phystat0 & BWN_RX_PHYST0_GAINCTL), !! (phystat3 & BWN_RX_PHYST3_TRSTATE)); break; case BWN_PHYTYPE_N: /* Broadcom has code for min/avg, but always used max */ if (rxhdr->phy.n.power0 == 16 || rxhdr->phy.n.power0 == 32) rssi = max(rxhdr->phy.n.power1, rxhdr->ps2.n.power2); else rssi = max(rxhdr->phy.n.power0, rxhdr->phy.n.power1); #if 0 DPRINTF(mac->mac_sc, BWN_DEBUG_RECV, "%s: power0=%d, power1=%d, power2=%d\n", __func__, rxhdr->phy.n.power0, rxhdr->phy.n.power1, rxhdr->ps2.n.power2); #endif break; default: /* XXX TODO: implement rssi for other PHYs */ break; } /* * RSSI here is absolute, not relative to the noise floor. */ noise = mac->mac_stats.link_noise; rssi = rssi - noise; /* RX radio tap */ if (ieee80211_radiotap_active(ic)) bwn_rx_radiotap(mac, m, rxhdr, plcp, rate, rssi, noise); m_adj(m, -IEEE80211_CRC_LEN); BWN_UNLOCK(sc); ni = ieee80211_find_rxnode(ic, wh); if (ni != NULL) { type = ieee80211_input(ni, m, rssi, noise); ieee80211_free_node(ni); } else type = ieee80211_input_all(ic, m, rssi, noise); BWN_LOCK(sc); return; drop: device_printf(sc->sc_dev, "%s: dropped\n", __func__); } static void bwn_ratectl_tx_complete(const struct ieee80211_node *ni, const struct bwn_txstatus *status) { struct ieee80211_ratectl_tx_status txs; int retrycnt = 0; /* * If we don't get an ACK, then we should log the * full framecnt. That may be 0 if it's a PHY * failure, so ensure that gets logged as some * retry attempt. */ txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY; if (status->ack) { txs.status = IEEE80211_RATECTL_TX_SUCCESS; retrycnt = status->framecnt - 1; } else { txs.status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; retrycnt = status->framecnt; if (retrycnt == 0) retrycnt = 1; } txs.long_retries = retrycnt; ieee80211_ratectl_tx_complete(ni, &txs); } static void bwn_dma_handle_txeof(struct bwn_mac *mac, const struct bwn_txstatus *status) { struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_dma_ring *dr; struct bwn_dmadesc_generic *desc; struct bwn_dmadesc_meta *meta; struct bwn_softc *sc = mac->mac_sc; int slot; BWN_ASSERT_LOCKED(sc); dr = bwn_dma_parse_cookie(mac, status, status->cookie, &slot); if (dr == NULL) { device_printf(sc->sc_dev, "failed to parse cookie\n"); return; } KASSERT(dr->dr_tx, ("%s:%d: fail", __func__, __LINE__)); while (1) { KASSERT(slot >= 0 && slot < dr->dr_numslots, ("%s:%d: fail", __func__, __LINE__)); dr->getdesc(dr, slot, &desc, &meta); if (meta->mt_txtype == BWN_DMADESC_METATYPE_HEADER) bus_dmamap_unload(dr->dr_txring_dtag, meta->mt_dmap); else if (meta->mt_txtype == BWN_DMADESC_METATYPE_BODY) bus_dmamap_unload(dma->txbuf_dtag, meta->mt_dmap); if (meta->mt_islast) { KASSERT(meta->mt_m != NULL, ("%s:%d: fail", __func__, __LINE__)); bwn_ratectl_tx_complete(meta->mt_ni, status); ieee80211_tx_complete(meta->mt_ni, meta->mt_m, 0); meta->mt_ni = NULL; meta->mt_m = NULL; } else KASSERT(meta->mt_m == NULL, ("%s:%d: fail", __func__, __LINE__)); dr->dr_usedslot--; if (meta->mt_islast) break; slot = bwn_dma_nextslot(dr, slot); } sc->sc_watchdog_timer = 0; if (dr->dr_stop) { KASSERT(bwn_dma_freeslot(dr) >= BWN_TX_SLOTS_PER_FRAME, ("%s:%d: fail", __func__, __LINE__)); dr->dr_stop = 0; } } static void bwn_pio_handle_txeof(struct bwn_mac *mac, const struct bwn_txstatus *status) { struct bwn_pio_txqueue *tq; struct bwn_pio_txpkt *tp = NULL; struct bwn_softc *sc = mac->mac_sc; BWN_ASSERT_LOCKED(sc); tq = bwn_pio_parse_cookie(mac, status->cookie, &tp); if (tq == NULL) return; tq->tq_used -= roundup(tp->tp_m->m_pkthdr.len + BWN_HDRSIZE(mac), 4); tq->tq_free++; if (tp->tp_ni != NULL) { /* * Do any tx complete callback. Note this must * be done before releasing the node reference. */ bwn_ratectl_tx_complete(tp->tp_ni, status); } ieee80211_tx_complete(tp->tp_ni, tp->tp_m, 0); tp->tp_ni = NULL; tp->tp_m = NULL; TAILQ_INSERT_TAIL(&tq->tq_pktlist, tp, tp_list); sc->sc_watchdog_timer = 0; } static void bwn_phy_txpower_check(struct bwn_mac *mac, uint32_t flags) { struct bwn_softc *sc = mac->mac_sc; struct bwn_phy *phy = &mac->mac_phy; struct ieee80211com *ic = &sc->sc_ic; unsigned long now; bwn_txpwr_result_t result; BWN_GETTIME(now); if (!(flags & BWN_TXPWR_IGNORE_TIME) && ieee80211_time_before(now, phy->nexttime)) return; phy->nexttime = now + 2 * 1000; if (sc->sc_board_info.board_vendor == PCI_VENDOR_BROADCOM && sc->sc_board_info.board_type == BHND_BOARD_BU4306) return; if (phy->recalc_txpwr != NULL) { result = phy->recalc_txpwr(mac, (flags & BWN_TXPWR_IGNORE_TSSI) ? 1 : 0); if (result == BWN_TXPWR_RES_DONE) return; KASSERT(result == BWN_TXPWR_RES_NEED_ADJUST, ("%s: fail", __func__)); KASSERT(phy->set_txpwr != NULL, ("%s: fail", __func__)); ieee80211_runtask(ic, &mac->mac_txpower); } } static uint16_t bwn_pio_rx_read_2(struct bwn_pio_rxqueue *prq, uint16_t offset) { return (BWN_READ_2(prq->prq_mac, prq->prq_base + offset)); } static uint32_t bwn_pio_rx_read_4(struct bwn_pio_rxqueue *prq, uint16_t offset) { return (BWN_READ_4(prq->prq_mac, prq->prq_base + offset)); } static void bwn_pio_rx_write_2(struct bwn_pio_rxqueue *prq, uint16_t offset, uint16_t value) { BWN_WRITE_2(prq->prq_mac, prq->prq_base + offset, value); } static void bwn_pio_rx_write_4(struct bwn_pio_rxqueue *prq, uint16_t offset, uint32_t value) { BWN_WRITE_4(prq->prq_mac, prq->prq_base + offset, value); } static int bwn_ieeerate2hwrate(struct bwn_softc *sc, int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return (BWN_OFDM_RATE_6MB); case 18: return (BWN_OFDM_RATE_9MB); case 24: return (BWN_OFDM_RATE_12MB); case 36: return (BWN_OFDM_RATE_18MB); case 48: return (BWN_OFDM_RATE_24MB); case 72: return (BWN_OFDM_RATE_36MB); case 96: return (BWN_OFDM_RATE_48MB); case 108: return (BWN_OFDM_RATE_54MB); /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return (BWN_CCK_RATE_1MB); case 4: return (BWN_CCK_RATE_2MB); case 11: return (BWN_CCK_RATE_5MB); case 22: return (BWN_CCK_RATE_11MB); } device_printf(sc->sc_dev, "unsupported rate %d\n", rate); return (BWN_CCK_RATE_1MB); } static uint16_t bwn_set_txhdr_phyctl1(struct bwn_mac *mac, uint8_t bitrate) { struct bwn_phy *phy = &mac->mac_phy; uint16_t control = 0; uint16_t bw; /* XXX TODO: this is for LP phy, what about N-PHY, etc? */ bw = BWN_TXH_PHY1_BW_20; if (BWN_ISCCKRATE(bitrate) && phy->type != BWN_PHYTYPE_LP) { control = bw; } else { control = bw; /* Figure out coding rate and modulation */ /* XXX TODO: table-ize, for MCS transmit */ /* Note: this is BWN_*_RATE values */ switch (bitrate) { case BWN_CCK_RATE_1MB: control |= 0; break; case BWN_CCK_RATE_2MB: control |= 1; break; case BWN_CCK_RATE_5MB: control |= 2; break; case BWN_CCK_RATE_11MB: control |= 3; break; case BWN_OFDM_RATE_6MB: control |= BWN_TXH_PHY1_CRATE_1_2; control |= BWN_TXH_PHY1_MODUL_BPSK; break; case BWN_OFDM_RATE_9MB: control |= BWN_TXH_PHY1_CRATE_3_4; control |= BWN_TXH_PHY1_MODUL_BPSK; break; case BWN_OFDM_RATE_12MB: control |= BWN_TXH_PHY1_CRATE_1_2; control |= BWN_TXH_PHY1_MODUL_QPSK; break; case BWN_OFDM_RATE_18MB: control |= BWN_TXH_PHY1_CRATE_3_4; control |= BWN_TXH_PHY1_MODUL_QPSK; break; case BWN_OFDM_RATE_24MB: control |= BWN_TXH_PHY1_CRATE_1_2; control |= BWN_TXH_PHY1_MODUL_QAM16; break; case BWN_OFDM_RATE_36MB: control |= BWN_TXH_PHY1_CRATE_3_4; control |= BWN_TXH_PHY1_MODUL_QAM16; break; case BWN_OFDM_RATE_48MB: control |= BWN_TXH_PHY1_CRATE_1_2; control |= BWN_TXH_PHY1_MODUL_QAM64; break; case BWN_OFDM_RATE_54MB: control |= BWN_TXH_PHY1_CRATE_3_4; control |= BWN_TXH_PHY1_MODUL_QAM64; break; default: break; } control |= BWN_TXH_PHY1_MODE_SISO; } return control; } static int bwn_set_txhdr(struct bwn_mac *mac, struct ieee80211_node *ni, struct mbuf *m, struct bwn_txhdr *txhdr, uint16_t cookie) { const struct bwn_phy *phy = &mac->mac_phy; struct bwn_softc *sc = mac->mac_sc; struct ieee80211_frame *wh; struct ieee80211_frame *protwh; const struct ieee80211_txparam *tp = ni->ni_txparms; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *mprot; uint8_t *prot_ptr; unsigned int len; uint32_t macctl = 0; int rts_rate, rts_rate_fb, ismcast, isshort, rix, type; uint16_t phyctl = 0; uint8_t rate, rate_fb; int fill_phy_ctl1 = 0; wh = mtod(m, struct ieee80211_frame *); memset(txhdr, 0, sizeof(*txhdr)); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; if ((phy->type == BWN_PHYTYPE_N) || (phy->type == BWN_PHYTYPE_LP) || (phy->type == BWN_PHYTYPE_HT)) fill_phy_ctl1 = 1; /* * Find TX rate */ if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) rate = rate_fb = tp->mgmtrate; else if (ismcast) rate = rate_fb = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = rate_fb = tp->ucastrate; else { rix = ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; if (rix > 0) rate_fb = ni->ni_rates.rs_rates[rix - 1] & IEEE80211_RATE_VAL; else rate_fb = rate; } sc->sc_tx_rate = rate; /* Note: this maps the select ieee80211 rate to hardware rate */ rate = bwn_ieeerate2hwrate(sc, rate); rate_fb = bwn_ieeerate2hwrate(sc, rate_fb); txhdr->phyrate = (BWN_ISOFDMRATE(rate)) ? bwn_plcp_getofdm(rate) : bwn_plcp_getcck(rate); bcopy(wh->i_fc, txhdr->macfc, sizeof(txhdr->macfc)); bcopy(wh->i_addr1, txhdr->addr1, IEEE80211_ADDR_LEN); /* XXX rate/rate_fb is the hardware rate */ if ((rate_fb == rate) || (*(u_int16_t *)wh->i_dur & htole16(0x8000)) || (*(u_int16_t *)wh->i_dur == htole16(0))) txhdr->dur_fb = *(u_int16_t *)wh->i_dur; else txhdr->dur_fb = ieee80211_compute_duration(ic->ic_rt, m->m_pkthdr.len, rate, isshort); /* XXX TX encryption */ switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->body.r351.plcp), m->m_pkthdr.len + IEEE80211_CRC_LEN, rate); break; case BWN_FW_HDR_410: bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->body.r410.plcp), m->m_pkthdr.len + IEEE80211_CRC_LEN, rate); break; case BWN_FW_HDR_598: bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->body.r598.plcp), m->m_pkthdr.len + IEEE80211_CRC_LEN, rate); break; } bwn_plcp_genhdr((struct bwn_plcp4 *)(&txhdr->plcp_fb), m->m_pkthdr.len + IEEE80211_CRC_LEN, rate_fb); txhdr->eftypes |= (BWN_ISOFDMRATE(rate_fb)) ? BWN_TX_EFT_FB_OFDM : BWN_TX_EFT_FB_CCK; txhdr->chan = phy->chan; phyctl |= (BWN_ISOFDMRATE(rate)) ? BWN_TX_PHY_ENC_OFDM : BWN_TX_PHY_ENC_CCK; /* XXX preamble? obey net80211 */ if (isshort && (rate == BWN_CCK_RATE_2MB || rate == BWN_CCK_RATE_5MB || rate == BWN_CCK_RATE_11MB)) phyctl |= BWN_TX_PHY_SHORTPRMBL; if (! phy->gmode) macctl |= BWN_TX_MAC_5GHZ; /* XXX TX antenna selection */ switch (bwn_antenna_sanitize(mac, 0)) { case 0: phyctl |= BWN_TX_PHY_ANT01AUTO; break; case 1: phyctl |= BWN_TX_PHY_ANT0; break; case 2: phyctl |= BWN_TX_PHY_ANT1; break; case 3: phyctl |= BWN_TX_PHY_ANT2; break; case 4: phyctl |= BWN_TX_PHY_ANT3; break; default: KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); } if (!ismcast) macctl |= BWN_TX_MAC_ACK; macctl |= (BWN_TX_MAC_HWSEQ | BWN_TX_MAC_START_MSDU); if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) macctl |= BWN_TX_MAC_LONGFRAME; if ((ic->ic_flags & IEEE80211_F_USEPROT) && ic->ic_protmode != IEEE80211_PROT_NONE) { /* Note: don't fall back to CCK rates for 5G */ if (phy->gmode) rts_rate = BWN_CCK_RATE_1MB; else rts_rate = BWN_OFDM_RATE_6MB; rts_rate_fb = bwn_get_fbrate(rts_rate); /* XXX 'rate' here is hardware rate now, not the net80211 rate */ mprot = ieee80211_alloc_prot(ni, m, rate, ic->ic_protmode); if (mprot == NULL) { if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); device_printf(sc->sc_dev, "could not allocate mbuf for protection mode %d\n", ic->ic_protmode); return (ENOBUFS); } switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: prot_ptr = txhdr->body.r351.rts_frame; break; case BWN_FW_HDR_410: prot_ptr = txhdr->body.r410.rts_frame; break; case BWN_FW_HDR_598: prot_ptr = txhdr->body.r598.rts_frame; break; } bcopy(mtod(mprot, uint8_t *), prot_ptr, mprot->m_pkthdr.len); m_freem(mprot); if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { macctl |= BWN_TX_MAC_SEND_CTSTOSELF; len = sizeof(struct ieee80211_frame_cts); } else { macctl |= BWN_TX_MAC_SEND_RTSCTS; len = sizeof(struct ieee80211_frame_rts); } len += IEEE80211_CRC_LEN; switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: bwn_plcp_genhdr((struct bwn_plcp4 *) &txhdr->body.r351.rts_plcp, len, rts_rate); break; case BWN_FW_HDR_410: bwn_plcp_genhdr((struct bwn_plcp4 *) &txhdr->body.r410.rts_plcp, len, rts_rate); break; case BWN_FW_HDR_598: bwn_plcp_genhdr((struct bwn_plcp4 *) &txhdr->body.r598.rts_plcp, len, rts_rate); break; } bwn_plcp_genhdr((struct bwn_plcp4 *)&txhdr->rts_plcp_fb, len, rts_rate_fb); switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: protwh = (struct ieee80211_frame *) &txhdr->body.r351.rts_frame; break; case BWN_FW_HDR_410: protwh = (struct ieee80211_frame *) &txhdr->body.r410.rts_frame; break; case BWN_FW_HDR_598: protwh = (struct ieee80211_frame *) &txhdr->body.r598.rts_frame; break; } txhdr->rts_dur_fb = *(u_int16_t *)protwh->i_dur; if (BWN_ISOFDMRATE(rts_rate)) { txhdr->eftypes |= BWN_TX_EFT_RTS_OFDM; txhdr->phyrate_rts = bwn_plcp_getofdm(rts_rate); } else { txhdr->eftypes |= BWN_TX_EFT_RTS_CCK; txhdr->phyrate_rts = bwn_plcp_getcck(rts_rate); } txhdr->eftypes |= (BWN_ISOFDMRATE(rts_rate_fb)) ? BWN_TX_EFT_RTS_FBOFDM : BWN_TX_EFT_RTS_FBCCK; if (fill_phy_ctl1) { txhdr->phyctl_1rts = htole16(bwn_set_txhdr_phyctl1(mac, rts_rate)); txhdr->phyctl_1rtsfb = htole16(bwn_set_txhdr_phyctl1(mac, rts_rate_fb)); } } if (fill_phy_ctl1) { txhdr->phyctl_1 = htole16(bwn_set_txhdr_phyctl1(mac, rate)); txhdr->phyctl_1fb = htole16(bwn_set_txhdr_phyctl1(mac, rate_fb)); } switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: txhdr->body.r351.cookie = htole16(cookie); break; case BWN_FW_HDR_410: txhdr->body.r410.cookie = htole16(cookie); break; case BWN_FW_HDR_598: txhdr->body.r598.cookie = htole16(cookie); break; } txhdr->macctl = htole32(macctl); txhdr->phyctl = htole16(phyctl); /* * TX radio tap */ if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (isshort && (rate == BWN_CCK_RATE_2MB || rate == BWN_CCK_RATE_5MB || rate == BWN_CCK_RATE_11MB)) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; sc->sc_tx_th.wt_rate = rate; ieee80211_radiotap_tx(vap, m); } return (0); } static void bwn_plcp_genhdr(struct bwn_plcp4 *plcp, const uint16_t octets, const uint8_t rate) { uint32_t d, plen; uint8_t *raw = plcp->o.raw; if (BWN_ISOFDMRATE(rate)) { d = bwn_plcp_getofdm(rate); KASSERT(!(octets & 0xf000), ("%s:%d: fail", __func__, __LINE__)); d |= (octets << 5); plcp->o.data = htole32(d); } else { plen = octets * 16 / rate; if ((octets * 16 % rate) > 0) { plen++; if ((rate == BWN_CCK_RATE_11MB) && ((octets * 8 % 11) < 4)) { raw[1] = 0x84; } else raw[1] = 0x04; } else raw[1] = 0x04; plcp->o.data |= htole32(plen << 16); raw[0] = bwn_plcp_getcck(rate); } } static uint8_t bwn_antenna_sanitize(struct bwn_mac *mac, uint8_t n) { struct bwn_softc *sc = mac->mac_sc; uint8_t mask; if (n == 0) return (0); if (mac->mac_phy.gmode) mask = sc->sc_ant2g; else mask = sc->sc_ant5g; if (!(mask & (1 << (n - 1)))) return (0); return (n); } /* * Return a fallback rate for the given rate. * * Note: Don't fall back from OFDM to CCK. */ static uint8_t bwn_get_fbrate(uint8_t bitrate) { switch (bitrate) { /* CCK */ case BWN_CCK_RATE_1MB: return (BWN_CCK_RATE_1MB); case BWN_CCK_RATE_2MB: return (BWN_CCK_RATE_1MB); case BWN_CCK_RATE_5MB: return (BWN_CCK_RATE_2MB); case BWN_CCK_RATE_11MB: return (BWN_CCK_RATE_5MB); /* OFDM */ case BWN_OFDM_RATE_6MB: return (BWN_OFDM_RATE_6MB); case BWN_OFDM_RATE_9MB: return (BWN_OFDM_RATE_6MB); case BWN_OFDM_RATE_12MB: return (BWN_OFDM_RATE_9MB); case BWN_OFDM_RATE_18MB: return (BWN_OFDM_RATE_12MB); case BWN_OFDM_RATE_24MB: return (BWN_OFDM_RATE_18MB); case BWN_OFDM_RATE_36MB: return (BWN_OFDM_RATE_24MB); case BWN_OFDM_RATE_48MB: return (BWN_OFDM_RATE_36MB); case BWN_OFDM_RATE_54MB: return (BWN_OFDM_RATE_48MB); } KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); return (0); } static uint32_t bwn_pio_write_multi_4(struct bwn_mac *mac, struct bwn_pio_txqueue *tq, uint32_t ctl, const void *_data, int len) { struct bwn_softc *sc = mac->mac_sc; uint32_t value = 0; const uint8_t *data = _data; ctl |= BWN_PIO8_TXCTL_0_7 | BWN_PIO8_TXCTL_8_15 | BWN_PIO8_TXCTL_16_23 | BWN_PIO8_TXCTL_24_31; bwn_pio_write_4(mac, tq, BWN_PIO8_TXCTL, ctl); bus_write_multi_4(sc->sc_mem_res, tq->tq_base + BWN_PIO8_TXDATA, __DECONST(void *, data), (len & ~3)); if (len & 3) { ctl &= ~(BWN_PIO8_TXCTL_8_15 | BWN_PIO8_TXCTL_16_23 | BWN_PIO8_TXCTL_24_31); data = &(data[len - 1]); switch (len & 3) { case 3: ctl |= BWN_PIO8_TXCTL_16_23; value |= (uint32_t)(*data) << 16; data--; case 2: ctl |= BWN_PIO8_TXCTL_8_15; value |= (uint32_t)(*data) << 8; data--; case 1: value |= (uint32_t)(*data); } bwn_pio_write_4(mac, tq, BWN_PIO8_TXCTL, ctl); bwn_pio_write_4(mac, tq, BWN_PIO8_TXDATA, value); } return (ctl); } static void bwn_pio_write_4(struct bwn_mac *mac, struct bwn_pio_txqueue *tq, uint16_t offset, uint32_t value) { BWN_WRITE_4(mac, tq->tq_base + offset, value); } static uint16_t bwn_pio_write_multi_2(struct bwn_mac *mac, struct bwn_pio_txqueue *tq, uint16_t ctl, const void *_data, int len) { struct bwn_softc *sc = mac->mac_sc; const uint8_t *data = _data; ctl |= BWN_PIO_TXCTL_WRITELO | BWN_PIO_TXCTL_WRITEHI; BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl); bus_write_multi_2(sc->sc_mem_res, tq->tq_base + BWN_PIO_TXDATA, __DECONST(void *, data), (len & ~1)); if (len & 1) { ctl &= ~BWN_PIO_TXCTL_WRITEHI; BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl); BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXDATA, data[len - 1]); } return (ctl); } static uint16_t bwn_pio_write_mbuf_2(struct bwn_mac *mac, struct bwn_pio_txqueue *tq, uint16_t ctl, struct mbuf *m0) { int i, j = 0; uint16_t data = 0; const uint8_t *buf; struct mbuf *m = m0; ctl |= BWN_PIO_TXCTL_WRITELO | BWN_PIO_TXCTL_WRITEHI; BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl); for (; m != NULL; m = m->m_next) { buf = mtod(m, const uint8_t *); for (i = 0; i < m->m_len; i++) { if (!((j++) % 2)) data |= buf[i]; else { data |= (buf[i] << 8); BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXDATA, data); data = 0; } } } if (m0->m_pkthdr.len % 2) { ctl &= ~BWN_PIO_TXCTL_WRITEHI; BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXCTL, ctl); BWN_PIO_WRITE_2(mac, tq, BWN_PIO_TXDATA, data); } return (ctl); } static void bwn_set_slot_time(struct bwn_mac *mac, uint16_t time) { /* XXX should exit if 5GHz band .. */ if (mac->mac_phy.type != BWN_PHYTYPE_G) return; BWN_WRITE_2(mac, 0x684, 510 + time); /* Disabled in Linux b43, can adversely effect performance */ #if 0 bwn_shm_write_2(mac, BWN_SHARED, 0x0010, time); #endif } static struct bwn_dma_ring * bwn_dma_select(struct bwn_mac *mac, uint8_t prio) { if ((mac->mac_flags & BWN_MAC_FLAG_WME) == 0) return (mac->mac_method.dma.wme[WME_AC_BE]); switch (prio) { case 3: return (mac->mac_method.dma.wme[WME_AC_VO]); case 2: return (mac->mac_method.dma.wme[WME_AC_VI]); case 0: return (mac->mac_method.dma.wme[WME_AC_BE]); case 1: return (mac->mac_method.dma.wme[WME_AC_BK]); } KASSERT(0 == 1, ("%s:%d: fail", __func__, __LINE__)); return (NULL); } static int bwn_dma_getslot(struct bwn_dma_ring *dr) { int slot; BWN_ASSERT_LOCKED(dr->dr_mac->mac_sc); KASSERT(dr->dr_tx, ("%s:%d: fail", __func__, __LINE__)); KASSERT(!(dr->dr_stop), ("%s:%d: fail", __func__, __LINE__)); KASSERT(bwn_dma_freeslot(dr) != 0, ("%s:%d: fail", __func__, __LINE__)); slot = bwn_dma_nextslot(dr, dr->dr_curslot); KASSERT(!(slot & ~0x0fff), ("%s:%d: fail", __func__, __LINE__)); dr->dr_curslot = slot; dr->dr_usedslot++; return (slot); } static struct bwn_pio_txqueue * bwn_pio_parse_cookie(struct bwn_mac *mac, uint16_t cookie, struct bwn_pio_txpkt **pack) { struct bwn_pio *pio = &mac->mac_method.pio; struct bwn_pio_txqueue *tq = NULL; unsigned int index; switch (cookie & 0xf000) { case 0x1000: tq = &pio->wme[WME_AC_BK]; break; case 0x2000: tq = &pio->wme[WME_AC_BE]; break; case 0x3000: tq = &pio->wme[WME_AC_VI]; break; case 0x4000: tq = &pio->wme[WME_AC_VO]; break; case 0x5000: tq = &pio->mcast; break; } KASSERT(tq != NULL, ("%s:%d: fail", __func__, __LINE__)); if (tq == NULL) return (NULL); index = (cookie & 0x0fff); KASSERT(index < N(tq->tq_pkts), ("%s:%d: fail", __func__, __LINE__)); if (index >= N(tq->tq_pkts)) return (NULL); *pack = &tq->tq_pkts[index]; KASSERT(*pack != NULL, ("%s:%d: fail", __func__, __LINE__)); return (tq); } static void bwn_txpwr(void *arg, int npending) { struct bwn_mac *mac = arg; struct bwn_softc *sc; if (mac == NULL) return; sc = mac->mac_sc; BWN_LOCK(sc); if (mac->mac_status >= BWN_MAC_STATUS_STARTED && mac->mac_phy.set_txpwr != NULL) mac->mac_phy.set_txpwr(mac); BWN_UNLOCK(sc); } static void bwn_task_15s(struct bwn_mac *mac) { uint16_t reg; if (mac->mac_fw.opensource) { reg = bwn_shm_read_2(mac, BWN_SCRATCH, BWN_WATCHDOG_REG); if (reg) { bwn_restart(mac, "fw watchdog"); return; } bwn_shm_write_2(mac, BWN_SCRATCH, BWN_WATCHDOG_REG, 1); } if (mac->mac_phy.task_15s) mac->mac_phy.task_15s(mac); mac->mac_phy.txerrors = BWN_TXERROR_MAX; } static void bwn_task_30s(struct bwn_mac *mac) { if (mac->mac_phy.type != BWN_PHYTYPE_G || mac->mac_noise.noi_running) return; mac->mac_noise.noi_running = 1; mac->mac_noise.noi_nsamples = 0; bwn_noise_gensample(mac); } static void bwn_task_60s(struct bwn_mac *mac) { if (mac->mac_phy.task_60s) mac->mac_phy.task_60s(mac); bwn_phy_txpower_check(mac, BWN_TXPWR_IGNORE_TIME); } static void bwn_tasks(void *arg) { struct bwn_mac *mac = arg; struct bwn_softc *sc = mac->mac_sc; BWN_ASSERT_LOCKED(sc); if (mac->mac_status != BWN_MAC_STATUS_STARTED) return; if (mac->mac_task_state % 4 == 0) bwn_task_60s(mac); if (mac->mac_task_state % 2 == 0) bwn_task_30s(mac); bwn_task_15s(mac); mac->mac_task_state++; callout_reset(&sc->sc_task_ch, hz * 15, bwn_tasks, mac); } static int bwn_plcp_get_ofdmrate(struct bwn_mac *mac, struct bwn_plcp6 *plcp, uint8_t a) { struct bwn_softc *sc = mac->mac_sc; KASSERT(a == 0, ("not support APHY\n")); switch (plcp->o.raw[0] & 0xf) { case 0xb: return (BWN_OFDM_RATE_6MB); case 0xf: return (BWN_OFDM_RATE_9MB); case 0xa: return (BWN_OFDM_RATE_12MB); case 0xe: return (BWN_OFDM_RATE_18MB); case 0x9: return (BWN_OFDM_RATE_24MB); case 0xd: return (BWN_OFDM_RATE_36MB); case 0x8: return (BWN_OFDM_RATE_48MB); case 0xc: return (BWN_OFDM_RATE_54MB); } device_printf(sc->sc_dev, "incorrect OFDM rate %d\n", plcp->o.raw[0] & 0xf); return (-1); } static int bwn_plcp_get_cckrate(struct bwn_mac *mac, struct bwn_plcp6 *plcp) { struct bwn_softc *sc = mac->mac_sc; switch (plcp->o.raw[0]) { case 0x0a: return (BWN_CCK_RATE_1MB); case 0x14: return (BWN_CCK_RATE_2MB); case 0x37: return (BWN_CCK_RATE_5MB); case 0x6e: return (BWN_CCK_RATE_11MB); } device_printf(sc->sc_dev, "incorrect CCK rate %d\n", plcp->o.raw[0]); return (-1); } static void bwn_rx_radiotap(struct bwn_mac *mac, struct mbuf *m, const struct bwn_rxhdr4 *rxhdr, struct bwn_plcp6 *plcp, int rate, int rssi, int noise) { struct bwn_softc *sc = mac->mac_sc; const struct ieee80211_frame_min *wh; uint64_t tsf; uint16_t low_mactime_now; uint16_t mt; if (htole16(rxhdr->phy_status0) & BWN_RX_PHYST0_SHORTPRMBL) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; wh = mtod(m, const struct ieee80211_frame_min *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP; bwn_tsf_read(mac, &tsf); low_mactime_now = tsf; tsf = tsf & ~0xffffULL; switch (mac->mac_fw.fw_hdr_format) { case BWN_FW_HDR_351: case BWN_FW_HDR_410: mt = le16toh(rxhdr->ps4.r351.mac_time); break; case BWN_FW_HDR_598: mt = le16toh(rxhdr->ps4.r598.mac_time); break; } tsf += mt; if (low_mactime_now < mt) tsf -= 0x10000; sc->sc_rx_th.wr_tsf = tsf; sc->sc_rx_th.wr_rate = rate; sc->sc_rx_th.wr_antsignal = rssi; sc->sc_rx_th.wr_antnoise = noise; } static void bwn_tsf_read(struct bwn_mac *mac, uint64_t *tsf) { uint32_t low, high; KASSERT(bhnd_get_hwrev(mac->mac_sc->sc_dev) >= 3, ("%s:%d: fail", __func__, __LINE__)); low = BWN_READ_4(mac, BWN_REV3PLUS_TSF_LOW); high = BWN_READ_4(mac, BWN_REV3PLUS_TSF_HIGH); *tsf = high; *tsf <<= 32; *tsf |= low; } static int bwn_dma_attach(struct bwn_mac *mac) { struct bwn_dma *dma; struct bwn_softc *sc; struct bhnd_dma_translation *dt, dma_translation; bhnd_addr_t addrext_req; bus_dma_tag_t dmat; bus_addr_t lowaddr; u_int addrext_shift, addr_width; int error; dma = &mac->mac_method.dma; sc = mac->mac_sc; dt = NULL; if (sc->sc_quirks & BWN_QUIRK_NODMA) return (0); KASSERT(bhnd_get_hwrev(sc->sc_dev) >= 5, ("%s: fail", __func__)); /* Use the DMA engine's maximum host address width to determine the * addrext constraints, and supported device address width. */ switch (mac->mac_dmatype) { case BHND_DMA_ADDR_30BIT: /* 32-bit engine without addrext support */ addrext_req = 0x0; addrext_shift = 0; /* We can address the full 32-bit device address space */ addr_width = BHND_DMA_ADDR_32BIT; break; case BHND_DMA_ADDR_32BIT: /* 32-bit engine with addrext support */ addrext_req = BWN_DMA32_ADDREXT_MASK; addrext_shift = BWN_DMA32_ADDREXT_SHIFT; addr_width = BHND_DMA_ADDR_32BIT; break; case BHND_DMA_ADDR_64BIT: /* 64-bit engine with addrext support */ addrext_req = BWN_DMA64_ADDREXT_MASK; addrext_shift = BWN_DMA64_ADDREXT_SHIFT; addr_width = BHND_DMA_ADDR_64BIT; break; default: device_printf(sc->sc_dev, "unsupported DMA address width: %d\n", mac->mac_dmatype); return (ENXIO); } /* Fetch our device->host DMA translation and tag */ error = bhnd_get_dma_translation(sc->sc_dev, addr_width, 0, &dmat, &dma_translation); if (error) { device_printf(sc->sc_dev, "error fetching DMA translation: " "%d\n", error); return (error); } /* Verify that our DMA engine's addrext constraints are compatible with * our DMA translation */ if (addrext_req != 0x0 && (dma_translation.addrext_mask & addrext_req) != addrext_req) { device_printf(sc->sc_dev, "bus addrext mask %#jx incompatible " "with device addrext mask %#jx, disabling extended address " "support\n", (uintmax_t)dma_translation.addrext_mask, (uintmax_t)addrext_req); addrext_req = 0x0; addrext_shift = 0; } /* Apply our addrext translation constraint */ dma_translation.addrext_mask = addrext_req; /* Initialize our DMA engine configuration */ mac->mac_flags |= BWN_MAC_FLAG_DMA; dma->addrext_shift = addrext_shift; dma->translation = dma_translation; dt = &dma->translation; /* Dermine our translation's maximum supported address */ lowaddr = MIN((dt->addr_mask | dt->addrext_mask), BUS_SPACE_MAXADDR); /* * Create top level DMA tag */ error = bus_dma_tag_create(dmat, /* parent */ BWN_ALIGN, 0, /* alignment, bounds */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &dma->parent_dtag); if (error) { device_printf(sc->sc_dev, "can't create parent DMA tag\n"); return (error); } /* * Create TX/RX mbuf DMA tag */ error = bus_dma_tag_create(dma->parent_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &dma->rxbuf_dtag); if (error) { device_printf(sc->sc_dev, "can't create mbuf DMA tag\n"); goto fail0; } error = bus_dma_tag_create(dma->parent_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &dma->txbuf_dtag); if (error) { device_printf(sc->sc_dev, "can't create mbuf DMA tag\n"); goto fail1; } dma->wme[WME_AC_BK] = bwn_dma_ringsetup(mac, 0, 1); if (!dma->wme[WME_AC_BK]) goto fail2; dma->wme[WME_AC_BE] = bwn_dma_ringsetup(mac, 1, 1); if (!dma->wme[WME_AC_BE]) goto fail3; dma->wme[WME_AC_VI] = bwn_dma_ringsetup(mac, 2, 1); if (!dma->wme[WME_AC_VI]) goto fail4; dma->wme[WME_AC_VO] = bwn_dma_ringsetup(mac, 3, 1); if (!dma->wme[WME_AC_VO]) goto fail5; dma->mcast = bwn_dma_ringsetup(mac, 4, 1); if (!dma->mcast) goto fail6; dma->rx = bwn_dma_ringsetup(mac, 0, 0); if (!dma->rx) goto fail7; return (error); fail7: bwn_dma_ringfree(&dma->mcast); fail6: bwn_dma_ringfree(&dma->wme[WME_AC_VO]); fail5: bwn_dma_ringfree(&dma->wme[WME_AC_VI]); fail4: bwn_dma_ringfree(&dma->wme[WME_AC_BE]); fail3: bwn_dma_ringfree(&dma->wme[WME_AC_BK]); fail2: bus_dma_tag_destroy(dma->txbuf_dtag); fail1: bus_dma_tag_destroy(dma->rxbuf_dtag); fail0: bus_dma_tag_destroy(dma->parent_dtag); return (error); } static struct bwn_dma_ring * bwn_dma_parse_cookie(struct bwn_mac *mac, const struct bwn_txstatus *status, uint16_t cookie, int *slot) { struct bwn_dma *dma = &mac->mac_method.dma; struct bwn_dma_ring *dr; struct bwn_softc *sc = mac->mac_sc; BWN_ASSERT_LOCKED(mac->mac_sc); switch (cookie & 0xf000) { case 0x1000: dr = dma->wme[WME_AC_BK]; break; case 0x2000: dr = dma->wme[WME_AC_BE]; break; case 0x3000: dr = dma->wme[WME_AC_VI]; break; case 0x4000: dr = dma->wme[WME_AC_VO]; break; case 0x5000: dr = dma->mcast; break; default: dr = NULL; KASSERT(0 == 1, ("invalid cookie value %d", cookie & 0xf000)); } *slot = (cookie & 0x0fff); if (*slot < 0 || *slot >= dr->dr_numslots) { /* * XXX FIXME: sometimes H/W returns TX DONE events duplicately * that it occurs events which have same H/W sequence numbers. * When it's occurred just prints a WARNING msgs and ignores. */ KASSERT(status->seq == dma->lastseq, ("%s:%d: fail", __func__, __LINE__)); device_printf(sc->sc_dev, "out of slot ranges (0 < %d < %d)\n", *slot, dr->dr_numslots); return (NULL); } dma->lastseq = status->seq; return (dr); } static void bwn_dma_stop(struct bwn_mac *mac) { struct bwn_dma *dma; if ((mac->mac_flags & BWN_MAC_FLAG_DMA) == 0) return; dma = &mac->mac_method.dma; bwn_dma_ringstop(&dma->rx); bwn_dma_ringstop(&dma->wme[WME_AC_BK]); bwn_dma_ringstop(&dma->wme[WME_AC_BE]); bwn_dma_ringstop(&dma->wme[WME_AC_VI]); bwn_dma_ringstop(&dma->wme[WME_AC_VO]); bwn_dma_ringstop(&dma->mcast); } static void bwn_dma_ringstop(struct bwn_dma_ring **dr) { if (dr == NULL) return; bwn_dma_cleanup(*dr); } static void bwn_pio_stop(struct bwn_mac *mac) { struct bwn_pio *pio; if (mac->mac_flags & BWN_MAC_FLAG_DMA) return; pio = &mac->mac_method.pio; bwn_destroy_queue_tx(&pio->mcast); bwn_destroy_queue_tx(&pio->wme[WME_AC_VO]); bwn_destroy_queue_tx(&pio->wme[WME_AC_VI]); bwn_destroy_queue_tx(&pio->wme[WME_AC_BE]); bwn_destroy_queue_tx(&pio->wme[WME_AC_BK]); } static int bwn_led_attach(struct bwn_mac *mac) { struct bwn_softc *sc = mac->mac_sc; const uint8_t *led_act = NULL; int error; int i; sc->sc_led_idle = (2350 * hz) / 1000; sc->sc_led_blink = 1; for (i = 0; i < N(bwn_vendor_led_act); ++i) { if (sc->sc_board_info.board_vendor == bwn_vendor_led_act[i].vid) { led_act = bwn_vendor_led_act[i].led_act; break; } } if (led_act == NULL) led_act = bwn_default_led_act; _Static_assert(nitems(bwn_led_vars) == BWN_LED_MAX, "invalid NVRAM variable name array"); for (i = 0; i < BWN_LED_MAX; ++i) { struct bwn_led *led; uint8_t val; led = &sc->sc_leds[i]; KASSERT(i < nitems(bwn_led_vars), ("unknown LED index")); error = bhnd_nvram_getvar_uint8(sc->sc_dev, bwn_led_vars[i], &val); if (error) { if (error != ENOENT) { device_printf(sc->sc_dev, "NVRAM variable %s " "unreadable: %d", bwn_led_vars[i], error); return (error); } /* Not found; use default */ led->led_act = led_act[i]; } else { if (val & BWN_LED_ACT_LOW) led->led_flags |= BWN_LED_F_ACTLOW; led->led_act = val & BWN_LED_ACT_MASK; } led->led_mask = (1 << i); if (led->led_act == BWN_LED_ACT_BLINK_SLOW || led->led_act == BWN_LED_ACT_BLINK_POLL || led->led_act == BWN_LED_ACT_BLINK) { led->led_flags |= BWN_LED_F_BLINK; if (led->led_act == BWN_LED_ACT_BLINK_POLL) led->led_flags |= BWN_LED_F_POLLABLE; else if (led->led_act == BWN_LED_ACT_BLINK_SLOW) led->led_flags |= BWN_LED_F_SLOW; if (sc->sc_blink_led == NULL) { sc->sc_blink_led = led; if (led->led_flags & BWN_LED_F_SLOW) BWN_LED_SLOWDOWN(sc->sc_led_idle); } } DPRINTF(sc, BWN_DEBUG_LED, "%dth led, act %d, lowact %d\n", i, led->led_act, led->led_flags & BWN_LED_F_ACTLOW); } callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0); return (0); } static __inline uint16_t bwn_led_onoff(const struct bwn_led *led, uint16_t val, int on) { if (led->led_flags & BWN_LED_F_ACTLOW) on = !on; if (on) val |= led->led_mask; else val &= ~led->led_mask; return val; } static void bwn_led_newstate(struct bwn_mac *mac, enum ieee80211_state nstate) { struct bwn_softc *sc = mac->mac_sc; struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int i; if (nstate == IEEE80211_S_INIT) { callout_stop(&sc->sc_led_blink_ch); sc->sc_led_blinking = 0; } if ((sc->sc_flags & BWN_FLAG_RUNNING) == 0) return; val = BWN_READ_2(mac, BWN_GPIO_CONTROL); for (i = 0; i < BWN_LED_MAX; ++i) { struct bwn_led *led = &sc->sc_leds[i]; int on; if (led->led_act == BWN_LED_ACT_UNKN || led->led_act == BWN_LED_ACT_NULL) continue; if ((led->led_flags & BWN_LED_F_BLINK) && nstate != IEEE80211_S_INIT) continue; switch (led->led_act) { case BWN_LED_ACT_ON: /* Always on */ on = 1; break; case BWN_LED_ACT_OFF: /* Always off */ case BWN_LED_ACT_5GHZ: /* TODO: 11A */ on = 0; break; default: on = 1; switch (nstate) { case IEEE80211_S_INIT: on = 0; break; case IEEE80211_S_RUN: if (led->led_act == BWN_LED_ACT_11G && ic->ic_curmode != IEEE80211_MODE_11G) on = 0; break; default: if (led->led_act == BWN_LED_ACT_ASSOC) on = 0; break; } break; } val = bwn_led_onoff(led, val, on); } BWN_WRITE_2(mac, BWN_GPIO_CONTROL, val); } static void bwn_led_event(struct bwn_mac *mac, int event) { struct bwn_softc *sc = mac->mac_sc; struct bwn_led *led = sc->sc_blink_led; int rate; if (event == BWN_LED_EVENT_POLL) { if ((led->led_flags & BWN_LED_F_POLLABLE) == 0) return; if (ticks - sc->sc_led_ticks < sc->sc_led_idle) return; } sc->sc_led_ticks = ticks; if (sc->sc_led_blinking) return; switch (event) { case BWN_LED_EVENT_RX: rate = sc->sc_rx_rate; break; case BWN_LED_EVENT_TX: rate = sc->sc_tx_rate; break; case BWN_LED_EVENT_POLL: rate = 0; break; default: panic("unknown LED event %d\n", event); break; } bwn_led_blink_start(mac, bwn_led_duration[rate].on_dur, bwn_led_duration[rate].off_dur); } static void bwn_led_blink_start(struct bwn_mac *mac, int on_dur, int off_dur) { struct bwn_softc *sc = mac->mac_sc; struct bwn_led *led = sc->sc_blink_led; uint16_t val; val = BWN_READ_2(mac, BWN_GPIO_CONTROL); val = bwn_led_onoff(led, val, 1); BWN_WRITE_2(mac, BWN_GPIO_CONTROL, val); if (led->led_flags & BWN_LED_F_SLOW) { BWN_LED_SLOWDOWN(on_dur); BWN_LED_SLOWDOWN(off_dur); } sc->sc_led_blinking = 1; sc->sc_led_blink_offdur = off_dur; callout_reset(&sc->sc_led_blink_ch, on_dur, bwn_led_blink_next, mac); } static void bwn_led_blink_next(void *arg) { struct bwn_mac *mac = arg; struct bwn_softc *sc = mac->mac_sc; uint16_t val; val = BWN_READ_2(mac, BWN_GPIO_CONTROL); val = bwn_led_onoff(sc->sc_blink_led, val, 0); BWN_WRITE_2(mac, BWN_GPIO_CONTROL, val); callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur, bwn_led_blink_end, mac); } static void bwn_led_blink_end(void *arg) { struct bwn_mac *mac = arg; struct bwn_softc *sc = mac->mac_sc; sc->sc_led_blinking = 0; } static int bwn_suspend(device_t dev) { struct bwn_softc *sc = device_get_softc(dev); BWN_LOCK(sc); bwn_stop(sc); BWN_UNLOCK(sc); return (0); } static int bwn_resume(device_t dev) { struct bwn_softc *sc = device_get_softc(dev); int error = EDOOFUS; BWN_LOCK(sc); if (sc->sc_ic.ic_nrunning > 0) error = bwn_init(sc); BWN_UNLOCK(sc); if (error == 0) ieee80211_start_all(&sc->sc_ic); return (0); } static void bwn_rfswitch(void *arg) { struct bwn_softc *sc = arg; struct bwn_mac *mac = sc->sc_curmac; int cur = 0, prev = 0; KASSERT(mac->mac_status >= BWN_MAC_STATUS_STARTED, ("%s: invalid MAC status %d", __func__, mac->mac_status)); if (mac->mac_phy.rev >= 3 || mac->mac_phy.type == BWN_PHYTYPE_LP || mac->mac_phy.type == BWN_PHYTYPE_N) { if (!(BWN_READ_4(mac, BWN_RF_HWENABLED_HI) & BWN_RF_HWENABLED_HI_MASK)) cur = 1; } else { if (BWN_READ_2(mac, BWN_RF_HWENABLED_LO) & BWN_RF_HWENABLED_LO_MASK) cur = 1; } if (mac->mac_flags & BWN_MAC_FLAG_RADIO_ON) prev = 1; DPRINTF(sc, BWN_DEBUG_RESET, "%s: called; cur=%d, prev=%d\n", __func__, cur, prev); if (cur != prev) { if (cur) mac->mac_flags |= BWN_MAC_FLAG_RADIO_ON; else mac->mac_flags &= ~BWN_MAC_FLAG_RADIO_ON; device_printf(sc->sc_dev, "status of RF switch is changed to %s\n", cur ? "ON" : "OFF"); if (cur != mac->mac_phy.rf_on) { if (cur) bwn_rf_turnon(mac); else bwn_rf_turnoff(mac); } } callout_schedule(&sc->sc_rfswitch_ch, hz); } static void bwn_sysctl_node(struct bwn_softc *sc) { device_t dev = sc->sc_dev; struct bwn_mac *mac; struct bwn_stats *stats; /* XXX assume that count of MAC is only 1. */ if ((mac = sc->sc_curmac) == NULL) return; stats = &mac->mac_stats; SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "linknoise", CTLFLAG_RW, &stats->rts, 0, "Noise level"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rts", CTLFLAG_RW, &stats->rts, 0, "RTS"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rtsfail", CTLFLAG_RW, &stats->rtsfail, 0, "RTS failed to send"); #ifdef BWN_DEBUG SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags"); #endif } static device_method_t bwn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bwn_probe), DEVMETHOD(device_attach, bwn_attach), DEVMETHOD(device_detach, bwn_detach), DEVMETHOD(device_suspend, bwn_suspend), DEVMETHOD(device_resume, bwn_resume), DEVMETHOD_END }; static driver_t bwn_driver = { "bwn", bwn_methods, sizeof(struct bwn_softc) }; static devclass_t bwn_devclass; DRIVER_MODULE(bwn, bhnd, bwn_driver, bwn_devclass, 0, 0); MODULE_DEPEND(bwn, bhnd, 1, 1, 1); MODULE_DEPEND(bwn, gpiobus, 1, 1, 1); MODULE_DEPEND(bwn, wlan, 1, 1, 1); /* 802.11 media layer */ MODULE_DEPEND(bwn, firmware, 1, 1, 1); /* firmware support */ MODULE_DEPEND(bwn, wlan_amrr, 1, 1, 1); MODULE_VERSION(bwn, 1); Index: head/sys/dev/iwn/if_iwn.c =================================================================== --- head/sys/dev/iwn/if_iwn.c (revision 366111) +++ head/sys/dev/iwn/if_iwn.c (revision 366112) @@ -1,9228 +1,9226 @@ /*- * Copyright (c) 2007-2009 Damien Bergamini * Copyright (c) 2008 Benjamin Close * Copyright (c) 2008 Sam Leffler, Errno Consulting * Copyright (c) 2011 Intel Corporation * Copyright (c) 2013 Cedric GROSS * Copyright (c) 2013 Adrian Chadd * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network * adapters. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include "opt_iwn.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct iwn_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct iwn_ident iwn_ident_table[] = { { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */ { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" }, { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" }, { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" }, { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" }, { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" }, { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" }, { 0, 0, NULL } }; static int iwn_probe(device_t); static int iwn_attach(device_t); static void iwn4965_attach(struct iwn_softc *, uint16_t); static void iwn5000_attach(struct iwn_softc *, uint16_t); static int iwn_config_specific(struct iwn_softc *, uint16_t); static void iwn_radiotap_attach(struct iwn_softc *); static void iwn_sysctlattach(struct iwn_softc *); static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void iwn_vap_delete(struct ieee80211vap *); static int iwn_detach(device_t); static int iwn_shutdown(device_t); static int iwn_suspend(device_t); static int iwn_resume(device_t); static int iwn_nic_lock(struct iwn_softc *); static int iwn_eeprom_lock(struct iwn_softc *); static int iwn_init_otprom(struct iwn_softc *); static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, void **, bus_size_t, bus_size_t); static void iwn_dma_contig_free(struct iwn_dma_info *); static int iwn_alloc_sched(struct iwn_softc *); static void iwn_free_sched(struct iwn_softc *); static int iwn_alloc_kw(struct iwn_softc *); static void iwn_free_kw(struct iwn_softc *); static int iwn_alloc_ict(struct iwn_softc *); static void iwn_free_ict(struct iwn_softc *); static int iwn_alloc_fwmem(struct iwn_softc *); static void iwn_free_fwmem(struct iwn_softc *); static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, int); static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); static void iwn_check_tx_ring(struct iwn_softc *, int); static void iwn5000_ict_reset(struct iwn_softc *); static int iwn_read_eeprom(struct iwn_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static void iwn4965_read_eeprom(struct iwn_softc *); #ifdef IWN_DEBUG static void iwn4965_print_power_group(struct iwn_softc *, int); #endif static void iwn5000_read_eeprom(struct iwn_softc *); static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); static void iwn_read_eeprom_band(struct iwn_softc *, int, int, int *, struct ieee80211_channel[]); static void iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *, struct ieee80211_channel[]); static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, struct ieee80211_channel *); static void iwn_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel[]); static int iwn_setregdomain(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel[]); static void iwn_read_eeprom_enhinfo(struct iwn_softc *); static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static void iwn_newassoc(struct ieee80211_node *, int); static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void iwn_calib_timeout(void *); static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *); static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *, int, int, int); static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *); static void iwn5000_rx_calib_results(struct iwn_softc *, struct iwn_rx_desc *); static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *); static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); static void iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *); static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int, uint8_t); static int iwn_ampdu_check_bitmap(uint64_t, int, int); static int iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *, uint64_t, int, int); static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *); static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); static void iwn_notif_intr(struct iwn_softc *); static void iwn_wakeup_intr(struct iwn_softc *); static void iwn_rftoggle_task(void *, int); static void iwn_fatal_intr(struct iwn_softc *); static void iwn_intr(void *); static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, uint16_t); static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, uint16_t); #ifdef notyet static void iwn5000_reset_sched(struct iwn_softc *, int, int); #endif static int iwn_tx_data(struct iwn_softc *, struct mbuf *, struct ieee80211_node *); static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *params); static int iwn_tx_cmd(struct iwn_softc *, struct mbuf *, struct ieee80211_node *, struct iwn_tx_ring *); static void iwn_xmit_task(void *arg0, int pending); static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int iwn_transmit(struct ieee80211com *, struct mbuf *); static void iwn_scan_timeout(void *); static void iwn_watchdog(void *); static int iwn_ioctl(struct ieee80211com *, u_long , void *); static void iwn_parent(struct ieee80211com *); static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, int); static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, int); static int iwn_set_link_quality(struct iwn_softc *, struct ieee80211_node *); static int iwn_add_broadcast_node(struct iwn_softc *, int); static int iwn_updateedca(struct ieee80211com *); static void iwn_set_promisc(struct iwn_softc *); static void iwn_update_promisc(struct ieee80211com *); static void iwn_update_mcast(struct ieee80211com *); static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); static int iwn_set_critical_temp(struct iwn_softc *); static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); static void iwn4965_power_calibration(struct iwn_softc *, int); static int iwn4965_set_txpower(struct iwn_softc *, int); static int iwn5000_set_txpower(struct iwn_softc *, int); static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); static int iwn_get_noise(const struct iwn_rx_general_stats *); static int iwn4965_get_temperature(struct iwn_softc *); static int iwn5000_get_temperature(struct iwn_softc *); static int iwn_init_sensitivity(struct iwn_softc *); static void iwn_collect_noise(struct iwn_softc *, const struct iwn_rx_general_stats *); static int iwn4965_init_gains(struct iwn_softc *); static int iwn5000_init_gains(struct iwn_softc *); static int iwn4965_set_gains(struct iwn_softc *); static int iwn5000_set_gains(struct iwn_softc *); static void iwn_tune_sensitivity(struct iwn_softc *, const struct iwn_rx_stats *); static void iwn_save_stats_counters(struct iwn_softc *, const struct iwn_stats *); static int iwn_send_sensitivity(struct iwn_softc *); static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *); static int iwn_set_pslevel(struct iwn_softc *, int, int, int); static int iwn_send_btcoex(struct iwn_softc *); static int iwn_send_advanced_btcoex(struct iwn_softc *); static int iwn5000_runtime_calib(struct iwn_softc *); static int iwn_check_bss_filter(struct iwn_softc *); static int iwn4965_rxon_assoc(struct iwn_softc *, int); static int iwn5000_rxon_assoc(struct iwn_softc *, int); static int iwn_send_rxon(struct iwn_softc *, int, int); static int iwn_config(struct iwn_softc *); static int iwn_scan(struct iwn_softc *, struct ieee80211vap *, struct ieee80211_scan_state *, struct ieee80211_channel *); static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); static int iwn_ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, int, int, int); static void iwn_ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); static int iwn_addba_request(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int, int, int); static int iwn_addba_response(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int, int, int); static int iwn_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); static void iwn_ampdu_tx_stop(struct ieee80211_node *, struct ieee80211_tx_ampdu *); static void iwn4965_ampdu_tx_start(struct iwn_softc *, struct ieee80211_node *, int, uint8_t, uint16_t); static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, uint8_t, uint16_t); static void iwn5000_ampdu_tx_start(struct iwn_softc *, struct ieee80211_node *, int, uint8_t, uint16_t); static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, uint8_t, uint16_t); static int iwn5000_query_calibration(struct iwn_softc *); static int iwn5000_send_calibration(struct iwn_softc *); static int iwn5000_send_wimax_coex(struct iwn_softc *); static int iwn5000_crystal_calib(struct iwn_softc *); static int iwn5000_temp_offset_calib(struct iwn_softc *); static int iwn5000_temp_offset_calibv2(struct iwn_softc *); static int iwn4965_post_alive(struct iwn_softc *); static int iwn5000_post_alive(struct iwn_softc *); static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, int); static int iwn4965_load_firmware(struct iwn_softc *); static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, const uint8_t *, int); static int iwn5000_load_firmware(struct iwn_softc *); static int iwn_read_firmware_leg(struct iwn_softc *, struct iwn_fw_info *); static int iwn_read_firmware_tlv(struct iwn_softc *, struct iwn_fw_info *, uint16_t); static int iwn_read_firmware(struct iwn_softc *); static void iwn_unload_firmware(struct iwn_softc *); static int iwn_clock_wait(struct iwn_softc *); static int iwn_apm_init(struct iwn_softc *); static void iwn_apm_stop_master(struct iwn_softc *); static void iwn_apm_stop(struct iwn_softc *); static int iwn4965_nic_config(struct iwn_softc *); static int iwn5000_nic_config(struct iwn_softc *); static int iwn_hw_prepare(struct iwn_softc *); static int iwn_hw_init(struct iwn_softc *); static void iwn_hw_stop(struct iwn_softc *); static void iwn_panicked(void *, int); static int iwn_init_locked(struct iwn_softc *); static int iwn_init(struct iwn_softc *); static void iwn_stop_locked(struct iwn_softc *); static void iwn_stop(struct iwn_softc *); static void iwn_scan_start(struct ieee80211com *); static void iwn_scan_end(struct ieee80211com *); static void iwn_set_channel(struct ieee80211com *); static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); static void iwn_scan_mindwell(struct ieee80211_scan_state *); #ifdef IWN_DEBUG static char *iwn_get_csr_string(int); static void iwn_debug_register(struct iwn_softc *); #endif static device_method_t iwn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwn_probe), DEVMETHOD(device_attach, iwn_attach), DEVMETHOD(device_detach, iwn_detach), DEVMETHOD(device_shutdown, iwn_shutdown), DEVMETHOD(device_suspend, iwn_suspend), DEVMETHOD(device_resume, iwn_resume), DEVMETHOD_END }; static driver_t iwn_driver = { "iwn", iwn_methods, sizeof(struct iwn_softc) }; static devclass_t iwn_devclass; DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL); MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table, nitems(iwn_ident_table) - 1); MODULE_VERSION(iwn, 1); MODULE_DEPEND(iwn, firmware, 1, 1, 1); MODULE_DEPEND(iwn, pci, 1, 1, 1); MODULE_DEPEND(iwn, wlan, 1, 1, 1); static d_ioctl_t iwn_cdev_ioctl; static d_open_t iwn_cdev_open; static d_close_t iwn_cdev_close; static struct cdevsw iwn_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = iwn_cdev_open, .d_close = iwn_cdev_close, .d_ioctl = iwn_cdev_ioctl, .d_name = "iwn", }; static int iwn_probe(device_t dev) { const struct iwn_ident *ident; for (ident = iwn_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } } return ENXIO; } static int iwn_is_3stream_device(struct iwn_softc *sc) { /* XXX for now only 5300, until the 5350 can be tested */ if (sc->hw_type == IWN_HW_REV_TYPE_5300) return (1); return (0); } static int iwn_attach(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); struct ieee80211com *ic; int i, error, rid; sc->sc_dev = dev; #ifdef IWN_DEBUG error = resource_int_value(device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); if (error != 0) sc->sc_debug = 0; #else sc->sc_debug = 0; #endif DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); /* * Get the offset of the PCI Express Capability Structure in PCI * Configuration Space. */ error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); if (error != 0) { device_printf(dev, "PCIe capability structure not found!\n"); return error; } /* Clear device-specific "PCI retry timeout" register (41h). */ pci_write_config(dev, 0x41, 0, 1); /* Enable bus-mastering. */ pci_enable_busmaster(dev); rid = PCIR_BAR(0); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "can't map mem space\n"); error = ENOMEM; return error; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); i = 1; rid = 0; if (pci_alloc_msi(dev, &i) == 0) rid = 1; /* Install interrupt handler. */ sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); if (sc->irq == NULL) { device_printf(dev, "can't map interrupt\n"); error = ENOMEM; goto fail; } IWN_LOCK_INIT(sc); /* Read hardware revision and attach. */ sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) & IWN_HW_REV_TYPE_MASK; sc->subdevice_id = pci_get_subdevice(dev); /* * 4965 versus 5000 and later have different methods. * Let's set those up first. */ if (sc->hw_type == IWN_HW_REV_TYPE_4965) iwn4965_attach(sc, pci_get_device(dev)); else iwn5000_attach(sc, pci_get_device(dev)); /* * Next, let's setup the various parameters of each NIC. */ error = iwn_config_specific(sc, pci_get_device(dev)); if (error != 0) { device_printf(dev, "could not attach device, error %d\n", error); goto fail; } if ((error = iwn_hw_prepare(sc)) != 0) { device_printf(dev, "hardware not ready, error %d\n", error); goto fail; } /* Allocate DMA memory for firmware transfers. */ if ((error = iwn_alloc_fwmem(sc)) != 0) { device_printf(dev, "could not allocate memory for firmware, error %d\n", error); goto fail; } /* Allocate "Keep Warm" page. */ if ((error = iwn_alloc_kw(sc)) != 0) { device_printf(dev, "could not allocate keep warm page, error %d\n", error); goto fail; } /* Allocate ICT table for 5000 Series. */ if (sc->hw_type != IWN_HW_REV_TYPE_4965 && (error = iwn_alloc_ict(sc)) != 0) { device_printf(dev, "could not allocate ICT table, error %d\n", error); goto fail; } /* Allocate TX scheduler "rings". */ if ((error = iwn_alloc_sched(sc)) != 0) { device_printf(dev, "could not allocate TX scheduler rings, error %d\n", error); goto fail; } /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ for (i = 0; i < sc->ntxqs; i++) { if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { device_printf(dev, "could not allocate TX ring %d, error %d\n", i, error); goto fail; } } /* Allocate RX ring. */ if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { device_printf(dev, "could not allocate RX ring, error %d\n", error); goto fail; } /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); ic = &sc->sc_ic; ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ #if 0 | IEEE80211_C_BGSCAN /* background scanning */ #endif | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA | IEEE80211_C_SHPREAMBLE /* short preamble supported */ #if 0 | IEEE80211_C_IBSS /* ibss/adhoc mode */ #endif | IEEE80211_C_WME /* WME */ | IEEE80211_C_PMGT /* Station-side power mgmt */ ; /* Read MAC address, channels, etc from EEPROM. */ if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) { device_printf(dev, "could not read EEPROM, error %d\n", error); goto fail; } /* Count the number of available chains. */ sc->ntxchains = ((sc->txchainmask >> 2) & 1) + ((sc->txchainmask >> 1) & 1) + ((sc->txchainmask >> 0) & 1); sc->nrxchains = ((sc->rxchainmask >> 2) & 1) + ((sc->rxchainmask >> 1) & 1) + ((sc->rxchainmask >> 0) & 1); if (bootverbose) { device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", sc->ntxchains, sc->nrxchains, sc->eeprom_domain, ic->ic_macaddr, ":"); } if (sc->sc_flags & IWN_FLAG_HAS_11N) { ic->ic_rxstream = sc->nrxchains; ic->ic_txstream = sc->ntxchains; /* * Some of the 3 antenna devices (ie, the 4965) only supports * 2x2 operation. So correct the number of streams if * it's not a 3-stream device. */ if (! iwn_is_3stream_device(sc)) { if (ic->ic_rxstream > 2) ic->ic_rxstream = 2; if (ic->ic_txstream > 2) ic->ic_txstream = 2; } ic->ic_htcaps = IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ #ifdef notyet | IEEE80211_HTCAP_GREENFIELD #if IWN_RBUF_SIZE == 8192 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ #else | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ #endif #endif /* s/w capabilities */ | IEEE80211_HTC_HT /* HT operation */ | IEEE80211_HTC_AMPDU /* tx A-MPDU */ #ifdef notyet | IEEE80211_HTC_AMSDU /* tx A-MSDU */ #endif ; } ieee80211_ifattach(ic); ic->ic_vap_create = iwn_vap_create; ic->ic_ioctl = iwn_ioctl; ic->ic_parent = iwn_parent; ic->ic_vap_delete = iwn_vap_delete; ic->ic_transmit = iwn_transmit; ic->ic_raw_xmit = iwn_raw_xmit; ic->ic_node_alloc = iwn_node_alloc; sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; sc->sc_addba_request = ic->ic_addba_request; ic->ic_addba_request = iwn_addba_request; sc->sc_addba_response = ic->ic_addba_response; ic->ic_addba_response = iwn_addba_response; sc->sc_addba_stop = ic->ic_addba_stop; ic->ic_addba_stop = iwn_ampdu_tx_stop; ic->ic_newassoc = iwn_newassoc; ic->ic_wme.wme_update = iwn_updateedca; ic->ic_update_promisc = iwn_update_promisc; ic->ic_update_mcast = iwn_update_mcast; ic->ic_scan_start = iwn_scan_start; ic->ic_scan_end = iwn_scan_end; ic->ic_set_channel = iwn_set_channel; ic->ic_scan_curchan = iwn_scan_curchan; ic->ic_scan_mindwell = iwn_scan_mindwell; ic->ic_getradiocaps = iwn_getradiocaps; ic->ic_setregdomain = iwn_setregdomain; iwn_radiotap_attach(sc); callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0); callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc); TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc); TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc); mbufq_init(&sc->sc_xmit_queue, 1024); sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK, taskqueue_thread_enqueue, &sc->sc_tq); error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq"); if (error != 0) { device_printf(dev, "can't start threads, error %d\n", error); goto fail; } iwn_sysctlattach(sc); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, iwn_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "can't establish interrupt, error %d\n", error); goto fail; } #if 0 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n", __func__, sizeof(struct iwn_stats), sizeof(struct iwn_stats_bt)); #endif if (bootverbose) ieee80211_announce(ic); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); /* Add debug ioctl right at the end */ sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev), UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); if (sc->sc_cdev == NULL) { device_printf(dev, "failed to create debug character device\n"); } else { sc->sc_cdev->si_drv1 = sc; } return 0; fail: iwn_detach(dev); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); return error; } /* * Define specific configuration based on device id and subdevice id * pid : PCI device id */ static int iwn_config_specific(struct iwn_softc *sc, uint16_t pid) { switch (pid) { /* 4965 series */ case IWN_DID_4965_1: case IWN_DID_4965_2: case IWN_DID_4965_3: case IWN_DID_4965_4: sc->base_params = &iwn4965_base_params; sc->limits = &iwn4965_sensitivity_limits; sc->fwname = "iwn4965fw"; /* Override chains masks, ROM is known to be broken. */ sc->txchainmask = IWN_ANT_AB; sc->rxchainmask = IWN_ANT_ABC; /* Enable normal btcoex */ sc->sc_flags |= IWN_FLAG_BTCOEX; break; /* 1000 Series */ case IWN_DID_1000_1: case IWN_DID_1000_2: switch(sc->subdevice_id) { case IWN_SDID_1000_1: case IWN_SDID_1000_2: case IWN_SDID_1000_3: case IWN_SDID_1000_4: case IWN_SDID_1000_5: case IWN_SDID_1000_6: case IWN_SDID_1000_7: case IWN_SDID_1000_8: case IWN_SDID_1000_9: case IWN_SDID_1000_10: case IWN_SDID_1000_11: case IWN_SDID_1000_12: sc->limits = &iwn1000_sensitivity_limits; sc->base_params = &iwn1000_base_params; sc->fwname = "iwn1000fw"; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 6x00 Series */ case IWN_DID_6x00_2: case IWN_DID_6x00_4: case IWN_DID_6x00_1: case IWN_DID_6x00_3: sc->fwname = "iwn6000fw"; sc->limits = &iwn6000_sensitivity_limits; switch(sc->subdevice_id) { case IWN_SDID_6x00_1: case IWN_SDID_6x00_2: case IWN_SDID_6x00_8: //iwl6000_3agn_cfg sc->base_params = &iwn_6000_base_params; break; case IWN_SDID_6x00_3: case IWN_SDID_6x00_6: case IWN_SDID_6x00_9: ////iwl6000i_2agn case IWN_SDID_6x00_4: case IWN_SDID_6x00_7: case IWN_SDID_6x00_10: //iwl6000i_2abg_cfg case IWN_SDID_6x00_5: //iwl6000i_2bg_cfg sc->base_params = &iwn_6000i_base_params; sc->sc_flags |= IWN_FLAG_INTERNAL_PA; sc->txchainmask = IWN_ANT_BC; sc->rxchainmask = IWN_ANT_BC; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 6x05 Series */ case IWN_DID_6x05_1: case IWN_DID_6x05_2: switch(sc->subdevice_id) { case IWN_SDID_6x05_1: case IWN_SDID_6x05_4: case IWN_SDID_6x05_6: //iwl6005_2agn_cfg case IWN_SDID_6x05_2: case IWN_SDID_6x05_5: case IWN_SDID_6x05_7: //iwl6005_2abg_cfg case IWN_SDID_6x05_3: //iwl6005_2bg_cfg case IWN_SDID_6x05_8: case IWN_SDID_6x05_9: //iwl6005_2agn_sff_cfg case IWN_SDID_6x05_10: //iwl6005_2agn_d_cfg case IWN_SDID_6x05_11: //iwl6005_2agn_mow1_cfg case IWN_SDID_6x05_12: //iwl6005_2agn_mow2_cfg sc->fwname = "iwn6000g2afw"; sc->limits = &iwn6000_sensitivity_limits; sc->base_params = &iwn_6000g2_base_params; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 6x35 Series */ case IWN_DID_6035_1: case IWN_DID_6035_2: switch(sc->subdevice_id) { case IWN_SDID_6035_1: case IWN_SDID_6035_2: case IWN_SDID_6035_3: case IWN_SDID_6035_4: case IWN_SDID_6035_5: sc->fwname = "iwn6000g2bfw"; sc->limits = &iwn6235_sensitivity_limits; sc->base_params = &iwn_6235_base_params; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 6x50 WiFi/WiMax Series */ case IWN_DID_6050_1: case IWN_DID_6050_2: switch(sc->subdevice_id) { case IWN_SDID_6050_1: case IWN_SDID_6050_3: case IWN_SDID_6050_5: //iwl6050_2agn_cfg case IWN_SDID_6050_2: case IWN_SDID_6050_4: case IWN_SDID_6050_6: //iwl6050_2abg_cfg sc->fwname = "iwn6050fw"; sc->txchainmask = IWN_ANT_AB; sc->rxchainmask = IWN_ANT_AB; sc->limits = &iwn6000_sensitivity_limits; sc->base_params = &iwn_6050_base_params; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 6150 WiFi/WiMax Series */ case IWN_DID_6150_1: case IWN_DID_6150_2: switch(sc->subdevice_id) { case IWN_SDID_6150_1: case IWN_SDID_6150_3: case IWN_SDID_6150_5: // iwl6150_bgn_cfg case IWN_SDID_6150_2: case IWN_SDID_6150_4: case IWN_SDID_6150_6: //iwl6150_bg_cfg sc->fwname = "iwn6050fw"; sc->limits = &iwn6000_sensitivity_limits; sc->base_params = &iwn_6150_base_params; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 6030 Series and 1030 Series */ case IWN_DID_x030_1: case IWN_DID_x030_2: case IWN_DID_x030_3: case IWN_DID_x030_4: switch(sc->subdevice_id) { case IWN_SDID_x030_1: case IWN_SDID_x030_3: case IWN_SDID_x030_5: // iwl1030_bgn_cfg case IWN_SDID_x030_2: case IWN_SDID_x030_4: case IWN_SDID_x030_6: //iwl1030_bg_cfg case IWN_SDID_x030_7: case IWN_SDID_x030_10: case IWN_SDID_x030_14: //iwl6030_2agn_cfg case IWN_SDID_x030_8: case IWN_SDID_x030_11: case IWN_SDID_x030_15: // iwl6030_2bgn_cfg case IWN_SDID_x030_9: case IWN_SDID_x030_12: case IWN_SDID_x030_16: // iwl6030_2abg_cfg case IWN_SDID_x030_13: //iwl6030_2bg_cfg sc->fwname = "iwn6000g2bfw"; sc->limits = &iwn6000_sensitivity_limits; sc->base_params = &iwn_6000g2b_base_params; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 130 Series WiFi */ /* XXX: This series will need adjustment for rate. * see rx_with_siso_diversity in linux kernel */ case IWN_DID_130_1: case IWN_DID_130_2: switch(sc->subdevice_id) { case IWN_SDID_130_1: case IWN_SDID_130_3: case IWN_SDID_130_5: //iwl130_bgn_cfg case IWN_SDID_130_2: case IWN_SDID_130_4: case IWN_SDID_130_6: //iwl130_bg_cfg sc->fwname = "iwn6000g2bfw"; sc->limits = &iwn6000_sensitivity_limits; sc->base_params = &iwn_6000g2b_base_params; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 100 Series WiFi */ case IWN_DID_100_1: case IWN_DID_100_2: switch(sc->subdevice_id) { case IWN_SDID_100_1: case IWN_SDID_100_2: case IWN_SDID_100_3: case IWN_SDID_100_4: case IWN_SDID_100_5: case IWN_SDID_100_6: sc->limits = &iwn1000_sensitivity_limits; sc->base_params = &iwn1000_base_params; sc->fwname = "iwn100fw"; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 105 Series */ /* XXX: This series will need adjustment for rate. * see rx_with_siso_diversity in linux kernel */ case IWN_DID_105_1: case IWN_DID_105_2: switch(sc->subdevice_id) { case IWN_SDID_105_1: case IWN_SDID_105_2: case IWN_SDID_105_3: //iwl105_bgn_cfg case IWN_SDID_105_4: //iwl105_bgn_d_cfg sc->limits = &iwn2030_sensitivity_limits; sc->base_params = &iwn2000_base_params; sc->fwname = "iwn105fw"; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 135 Series */ /* XXX: This series will need adjustment for rate. * see rx_with_siso_diversity in linux kernel */ case IWN_DID_135_1: case IWN_DID_135_2: switch(sc->subdevice_id) { case IWN_SDID_135_1: case IWN_SDID_135_2: case IWN_SDID_135_3: sc->limits = &iwn2030_sensitivity_limits; sc->base_params = &iwn2030_base_params; sc->fwname = "iwn135fw"; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 2x00 Series */ case IWN_DID_2x00_1: case IWN_DID_2x00_2: switch(sc->subdevice_id) { case IWN_SDID_2x00_1: case IWN_SDID_2x00_2: case IWN_SDID_2x00_3: //iwl2000_2bgn_cfg case IWN_SDID_2x00_4: //iwl2000_2bgn_d_cfg sc->limits = &iwn2030_sensitivity_limits; sc->base_params = &iwn2000_base_params; sc->fwname = "iwn2000fw"; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice) \n", pid, sc->subdevice_id, sc->hw_type); return ENOTSUP; } break; /* 2x30 Series */ case IWN_DID_2x30_1: case IWN_DID_2x30_2: switch(sc->subdevice_id) { case IWN_SDID_2x30_1: case IWN_SDID_2x30_3: case IWN_SDID_2x30_5: //iwl100_bgn_cfg case IWN_SDID_2x30_2: case IWN_SDID_2x30_4: case IWN_SDID_2x30_6: //iwl100_bg_cfg sc->limits = &iwn2030_sensitivity_limits; sc->base_params = &iwn2030_base_params; sc->fwname = "iwn2030fw"; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 5x00 Series */ case IWN_DID_5x00_1: case IWN_DID_5x00_2: case IWN_DID_5x00_3: case IWN_DID_5x00_4: sc->limits = &iwn5000_sensitivity_limits; sc->base_params = &iwn5000_base_params; sc->fwname = "iwn5000fw"; switch(sc->subdevice_id) { case IWN_SDID_5x00_1: case IWN_SDID_5x00_2: case IWN_SDID_5x00_3: case IWN_SDID_5x00_4: case IWN_SDID_5x00_9: case IWN_SDID_5x00_10: case IWN_SDID_5x00_11: case IWN_SDID_5x00_12: case IWN_SDID_5x00_17: case IWN_SDID_5x00_18: case IWN_SDID_5x00_19: case IWN_SDID_5x00_20: //iwl5100_agn_cfg sc->txchainmask = IWN_ANT_B; sc->rxchainmask = IWN_ANT_AB; break; case IWN_SDID_5x00_5: case IWN_SDID_5x00_6: case IWN_SDID_5x00_13: case IWN_SDID_5x00_14: case IWN_SDID_5x00_21: case IWN_SDID_5x00_22: //iwl5100_bgn_cfg sc->txchainmask = IWN_ANT_B; sc->rxchainmask = IWN_ANT_AB; break; case IWN_SDID_5x00_7: case IWN_SDID_5x00_8: case IWN_SDID_5x00_15: case IWN_SDID_5x00_16: case IWN_SDID_5x00_23: case IWN_SDID_5x00_24: //iwl5100_abg_cfg sc->txchainmask = IWN_ANT_B; sc->rxchainmask = IWN_ANT_AB; break; case IWN_SDID_5x00_25: case IWN_SDID_5x00_26: case IWN_SDID_5x00_27: case IWN_SDID_5x00_28: case IWN_SDID_5x00_29: case IWN_SDID_5x00_30: case IWN_SDID_5x00_31: case IWN_SDID_5x00_32: case IWN_SDID_5x00_33: case IWN_SDID_5x00_34: case IWN_SDID_5x00_35: case IWN_SDID_5x00_36: //iwl5300_agn_cfg sc->txchainmask = IWN_ANT_ABC; sc->rxchainmask = IWN_ANT_ABC; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; /* 5x50 Series */ case IWN_DID_5x50_1: case IWN_DID_5x50_2: case IWN_DID_5x50_3: case IWN_DID_5x50_4: sc->limits = &iwn5000_sensitivity_limits; sc->base_params = &iwn5000_base_params; sc->fwname = "iwn5000fw"; switch(sc->subdevice_id) { case IWN_SDID_5x50_1: case IWN_SDID_5x50_2: case IWN_SDID_5x50_3: //iwl5350_agn_cfg sc->limits = &iwn5000_sensitivity_limits; sc->base_params = &iwn5000_base_params; sc->fwname = "iwn5000fw"; break; case IWN_SDID_5x50_4: case IWN_SDID_5x50_5: case IWN_SDID_5x50_8: case IWN_SDID_5x50_9: case IWN_SDID_5x50_10: case IWN_SDID_5x50_11: //iwl5150_agn_cfg case IWN_SDID_5x50_6: case IWN_SDID_5x50_7: case IWN_SDID_5x50_12: case IWN_SDID_5x50_13: //iwl5150_abg_cfg sc->limits = &iwn5000_sensitivity_limits; sc->fwname = "iwn5150fw"; sc->base_params = &iwn_5x50_base_params; break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" "0x%04x rev %d not supported (subdevice)\n", pid, sc->subdevice_id,sc->hw_type); return ENOTSUP; } break; default: device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x" "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id, sc->hw_type); return ENOTSUP; } return 0; } static void iwn4965_attach(struct iwn_softc *sc, uint16_t pid) { struct iwn_ops *ops = &sc->ops; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); ops->load_firmware = iwn4965_load_firmware; ops->read_eeprom = iwn4965_read_eeprom; ops->post_alive = iwn4965_post_alive; ops->nic_config = iwn4965_nic_config; ops->update_sched = iwn4965_update_sched; ops->get_temperature = iwn4965_get_temperature; ops->get_rssi = iwn4965_get_rssi; ops->set_txpower = iwn4965_set_txpower; ops->init_gains = iwn4965_init_gains; ops->set_gains = iwn4965_set_gains; ops->rxon_assoc = iwn4965_rxon_assoc; ops->add_node = iwn4965_add_node; ops->tx_done = iwn4965_tx_done; ops->ampdu_tx_start = iwn4965_ampdu_tx_start; ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; sc->ntxqs = IWN4965_NTXQUEUES; sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; sc->ndmachnls = IWN4965_NDMACHNLS; sc->broadcast_id = IWN4965_ID_BROADCAST; sc->rxonsz = IWN4965_RXONSZ; sc->schedsz = IWN4965_SCHEDSZ; sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; sc->fwsz = IWN4965_FWSZ; sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; sc->limits = &iwn4965_sensitivity_limits; sc->fwname = "iwn4965fw"; /* Override chains masks, ROM is known to be broken. */ sc->txchainmask = IWN_ANT_AB; sc->rxchainmask = IWN_ANT_ABC; /* Enable normal btcoex */ sc->sc_flags |= IWN_FLAG_BTCOEX; DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); } static void iwn5000_attach(struct iwn_softc *sc, uint16_t pid) { struct iwn_ops *ops = &sc->ops; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); ops->load_firmware = iwn5000_load_firmware; ops->read_eeprom = iwn5000_read_eeprom; ops->post_alive = iwn5000_post_alive; ops->nic_config = iwn5000_nic_config; ops->update_sched = iwn5000_update_sched; ops->get_temperature = iwn5000_get_temperature; ops->get_rssi = iwn5000_get_rssi; ops->set_txpower = iwn5000_set_txpower; ops->init_gains = iwn5000_init_gains; ops->set_gains = iwn5000_set_gains; ops->rxon_assoc = iwn5000_rxon_assoc; ops->add_node = iwn5000_add_node; ops->tx_done = iwn5000_tx_done; ops->ampdu_tx_start = iwn5000_ampdu_tx_start; ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; sc->ntxqs = IWN5000_NTXQUEUES; sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; sc->ndmachnls = IWN5000_NDMACHNLS; sc->broadcast_id = IWN5000_ID_BROADCAST; sc->rxonsz = IWN5000_RXONSZ; sc->schedsz = IWN5000_SCHEDSZ; sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; sc->fwsz = IWN5000_FWSZ; sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); } /* * Attach the interface to 802.11 radiotap. */ static void iwn_radiotap_attach(struct iwn_softc *sc) { DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); ieee80211_radiotap_attach(&sc->sc_ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), IWN_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), IWN_RX_RADIOTAP_PRESENT); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); } static void iwn_sysctlattach(struct iwn_softc *sc) { #ifdef IWN_DEBUG struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, "control debugging printfs"); #endif } static struct ieee80211vap * iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwn_softc *sc = ic->ic_softc; struct iwn_vap *ivp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &ivp->iv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); ivp->ctx = IWN_RXON_BSS_CTX; vap->iv_bmissthreshold = 10; /* override default */ /* Override with driver methods. */ ivp->iv_newstate = vap->iv_newstate; vap->iv_newstate = iwn_newstate; sc->ivap[IWN_RXON_BSS_CTX] = vap; vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */ ieee80211_ratectl_init(vap); /* Complete setup. */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void iwn_vap_delete(struct ieee80211vap *vap) { struct iwn_vap *ivp = IWN_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static void iwn_xmit_queue_drain(struct iwn_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; IWN_LOCK_ASSERT(sc); while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; ieee80211_free_node(ni); m_freem(m); } } static int iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m) { IWN_LOCK_ASSERT(sc); return (mbufq_enqueue(&sc->sc_xmit_queue, m)); } static int iwn_detach(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); int qid; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); if (sc->sc_ic.ic_softc != NULL) { /* Free the mbuf queue and node references */ IWN_LOCK(sc); iwn_xmit_queue_drain(sc); IWN_UNLOCK(sc); iwn_stop(sc); taskqueue_drain_all(sc->sc_tq); taskqueue_free(sc->sc_tq); callout_drain(&sc->watchdog_to); callout_drain(&sc->scan_timeout); callout_drain(&sc->calib_to); ieee80211_ifdetach(&sc->sc_ic); } /* Uninstall interrupt handler. */ if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); pci_release_msi(dev); } /* Free DMA resources. */ iwn_free_rx_ring(sc, &sc->rxq); for (qid = 0; qid < sc->ntxqs; qid++) iwn_free_tx_ring(sc, &sc->txq[qid]); iwn_free_sched(sc); iwn_free_kw(sc); if (sc->ict != NULL) iwn_free_ict(sc); iwn_free_fwmem(sc); if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), sc->mem); if (sc->sc_cdev) { destroy_dev(sc->sc_cdev); sc->sc_cdev = NULL; } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); IWN_LOCK_DESTROY(sc); return 0; } static int iwn_shutdown(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); iwn_stop(sc); return 0; } static int iwn_suspend(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); ieee80211_suspend_all(&sc->sc_ic); return 0; } static int iwn_resume(device_t dev) { struct iwn_softc *sc = device_get_softc(dev); /* Clear device-specific "PCI retry timeout" register (41h). */ pci_write_config(dev, 0x41, 0, 1); ieee80211_resume_all(&sc->sc_ic); return 0; } static int iwn_nic_lock(struct iwn_softc *sc) { int ntries; /* Request exclusive access to NIC. */ IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); /* Spin until we actually get the lock. */ for (ntries = 0; ntries < 1000; ntries++) { if ((IWN_READ(sc, IWN_GP_CNTRL) & (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == IWN_GP_CNTRL_MAC_ACCESS_ENA) return 0; DELAY(10); } return ETIMEDOUT; } static __inline void iwn_nic_unlock(struct iwn_softc *sc) { IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); } static __inline uint32_t iwn_prph_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); IWN_BARRIER_READ_WRITE(sc); return IWN_READ(sc, IWN_PRPH_RDATA); } static __inline void iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); IWN_BARRIER_WRITE(sc); IWN_WRITE(sc, IWN_PRPH_WDATA, data); } static __inline void iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) { iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); } static __inline void iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) { iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); } static __inline void iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, const uint32_t *data, int count) { for (; count > 0; count--, data++, addr += 4) iwn_prph_write(sc, addr, *data); } static __inline uint32_t iwn_mem_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_MEM_RADDR, addr); IWN_BARRIER_READ_WRITE(sc); return IWN_READ(sc, IWN_MEM_RDATA); } static __inline void iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_MEM_WADDR, addr); IWN_BARRIER_WRITE(sc); IWN_WRITE(sc, IWN_MEM_WDATA, data); } static __inline void iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) { uint32_t tmp; tmp = iwn_mem_read(sc, addr & ~3); if (addr & 3) tmp = (tmp & 0x0000ffff) | data << 16; else tmp = (tmp & 0xffff0000) | data; iwn_mem_write(sc, addr & ~3, tmp); } static __inline void iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, int count) { for (; count > 0; count--, addr += 4) *data++ = iwn_mem_read(sc, addr); } static __inline void iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, int count) { for (; count > 0; count--, addr += 4) iwn_mem_write(sc, addr, val); } static int iwn_eeprom_lock(struct iwn_softc *sc) { int i, ntries; for (i = 0; i < 100; i++) { /* Request exclusive access to EEPROM. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); /* Spin until we actually get the lock. */ for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_EEPROM_LOCKED) return 0; DELAY(10); } } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); return ETIMEDOUT; } static __inline void iwn_eeprom_unlock(struct iwn_softc *sc) { IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); } /* * Initialize access by host to One Time Programmable ROM. * NB: This kind of ROM can be found on 1000 or 6000 Series only. */ static int iwn_init_otprom(struct iwn_softc *sc) { uint16_t prev, base, next; int count, error; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Wait for clock stabilization before accessing prph. */ if ((error = iwn_clock_wait(sc)) != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); DELAY(5); iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); iwn_nic_unlock(sc); /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ if (sc->base_params->shadow_ram_support) { IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, IWN_RESET_LINK_PWR_MGMT_DIS); } IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); /* Clear ECC status. */ IWN_SETBITS(sc, IWN_OTP_GP, IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); /* * Find the block before last block (contains the EEPROM image) * for HW without OTP shadow RAM. */ if (! sc->base_params->shadow_ram_support) { /* Switch to absolute addressing mode. */ IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); base = prev = 0; for (count = 0; count < sc->base_params->max_ll_items; count++) { error = iwn_read_prom_data(sc, base, &next, 2); if (error != 0) return error; if (next == 0) /* End of linked-list. */ break; prev = base; base = le16toh(next); } if (count == 0 || count == sc->base_params->max_ll_items) return EIO; /* Skip "next" word. */ sc->prom_base = prev + 1; } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); return 0; } static int iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) { uint8_t *out = data; uint32_t val, tmp; int ntries; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); addr += sc->prom_base; for (; count > 0; count -= 2, addr++) { IWN_WRITE(sc, IWN_EEPROM, addr << 2); for (ntries = 0; ntries < 10; ntries++) { val = IWN_READ(sc, IWN_EEPROM); if (val & IWN_EEPROM_READ_VALID) break; DELAY(5); } if (ntries == 10) { device_printf(sc->sc_dev, "timeout reading ROM at 0x%x\n", addr); return ETIMEDOUT; } if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { /* OTPROM, check for ECC errors. */ tmp = IWN_READ(sc, IWN_OTP_GP); if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { device_printf(sc->sc_dev, "OTPROM ECC error at 0x%x\n", addr); return EIO; } if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { /* Correctable ECC error, clear bit. */ IWN_SETBITS(sc, IWN_OTP_GP, IWN_OTP_GP_ECC_CORR_STTS); } } *out++ = val >> 16; if (count > 1) *out++ = val >> 24; } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); return 0; } static void iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, void **kvap, bus_size_t size, bus_size_t alignment) { int error; dma->tag = NULL; dma->size = size; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &dma->tag); if (error != 0) goto fail; error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); if (error != 0) goto fail; error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); if (error != 0) goto fail; bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); if (kvap != NULL) *kvap = dma->vaddr; return 0; fail: iwn_dma_contig_free(dma); return error; } static void iwn_dma_contig_free(struct iwn_dma_info *dma) { if (dma->vaddr != NULL) { bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_free(dma->tag, dma->vaddr, dma->map); dma->vaddr = NULL; } if (dma->tag != NULL) { bus_dma_tag_destroy(dma->tag); dma->tag = NULL; } } static int iwn_alloc_sched(struct iwn_softc *sc) { /* TX scheduler rings must be aligned on a 1KB boundary. */ return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, sc->schedsz, 1024); } static void iwn_free_sched(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->sched_dma); } static int iwn_alloc_kw(struct iwn_softc *sc) { /* "Keep Warm" page must be aligned on a 4KB boundary. */ return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); } static void iwn_free_kw(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->kw_dma); } static int iwn_alloc_ict(struct iwn_softc *sc) { /* ICT table must be aligned on a 4KB boundary. */ return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, IWN_ICT_SIZE, 4096); } static void iwn_free_ict(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->ict_dma); } static int iwn_alloc_fwmem(struct iwn_softc *sc) { /* Must be aligned on a 16-byte boundary. */ return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); } static void iwn_free_fwmem(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->fw_dma); } static int iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { bus_size_t size; int i, error; ring->cur = 0; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Allocate RX descriptors (256-byte aligned). */ size = IWN_RX_RING_COUNT * sizeof (uint32_t); error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, size, 256); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate RX ring DMA memory, error %d\n", __func__, error); goto fail; } /* Allocate RX status area (16-byte aligned). */ error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate RX status DMA memory, error %d\n", __func__, error); goto fail; } /* Create RX buffer DMA tag. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA tag, error %d\n", __func__, error); goto fail; } /* * Allocate and map RX buffers. */ for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; bus_addr_t paddr; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA map, error %d\n", __func__, error); goto fail; } data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); if (data->m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate RX mbuf\n", __func__); error = ENOBUFS; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: can't map mbuf, error %d\n", __func__, error); goto fail; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); /* Set physical address of RX buffer (256-byte aligned). */ ring->desc[i] = htole32(paddr >> 8); } bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return 0; fail: iwn_free_rx_ring(sc, ring); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); return error; } static void iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int ntries; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); if (iwn_nic_lock(sc) == 0) { IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); for (ntries = 0; ntries < 1000; ntries++) { if (IWN_READ(sc, IWN_FH_RX_STATUS) & IWN_FH_RX_STATUS_IDLE) break; DELAY(10); } iwn_nic_unlock(sc); } ring->cur = 0; sc->last_rx_valid = 0; } static void iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int i; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->stat_dma); for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } static int iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Allocate TX descriptors (256-byte aligned). */ size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, size, 256); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate TX ring DMA memory, error %d\n", __func__, error); goto fail; } size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, size, 4); if (error != 0) { device_printf(sc->sc_dev, "%s: could not allocate TX cmd DMA memory, error %d\n", __func__, error); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create TX buf DMA tag, error %d\n", __func__, error); goto fail; } paddr = ring->cmd_dma.paddr; for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; data->cmd_paddr = paddr; data->scratch_paddr = paddr + 12; paddr += sizeof (struct iwn_tx_cmd); error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create TX buf DMA map, error %d\n", __func__, error); goto fail; } } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); return 0; fail: iwn_free_tx_ring(sc, ring); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); return error; } static void iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } data->remapped = 0; data->long_retries = 0; } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; } static void iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } static void iwn_check_tx_ring(struct iwn_softc *sc, int qid) { struct iwn_tx_ring *ring = &sc->txq[qid]; KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!", __func__, ring->queued, qid)); if (qid >= sc->firstaggqueue) { struct iwn_ops *ops = &sc->ops; struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid]; if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) { uint16_t ssn = tap->txa_start & 0xfff; uint8_t tid = tap->txa_tid; int *res = tap->txa_private; iwn_nic_lock(sc); ops->ampdu_tx_stop(sc, qid, tid, ssn); iwn_nic_unlock(sc); sc->qid2tap[qid] = NULL; free(res, M_DEVBUF); } } if (ring->queued < IWN_TX_RING_LOMARK) { sc->qfullmsk &= ~(1 << qid); if (ring->queued == 0) sc->sc_tx_timer = 0; else sc->sc_tx_timer = 5; } } static void iwn5000_ict_reset(struct iwn_softc *sc) { /* Disable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, 0); /* Reset ICT table. */ memset(sc->ict, 0, IWN_ICT_SIZE); sc->ict_cur = 0; bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, BUS_DMASYNC_PREWRITE); /* Set physical address of ICT table (4KB aligned). */ DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); /* Enable periodic RX interrupt. */ sc->int_mask |= IWN_INT_RX_PERIODIC; /* Switch to ICT interrupt mode in driver. */ sc->sc_flags |= IWN_FLAG_USE_ICT; /* Re-enable interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); } static int iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct iwn_ops *ops = &sc->ops; uint16_t val; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Check whether adapter has an EEPROM or an OTPROM. */ if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) sc->sc_flags |= IWN_FLAG_HAS_OTPROM; DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); /* Adapter has to be powered on for EEPROM access to work. */ if ((error = iwn_apm_init(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not power ON adapter, error %d\n", __func__, error); return error; } if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); return EIO; } if ((error = iwn_eeprom_lock(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", __func__, error); return error; } if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { if ((error = iwn_init_otprom(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not initialize OTPROM, error %d\n", __func__, error); return error; } } iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); /* Check if HT support is bonded out. */ if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) sc->sc_flags |= IWN_FLAG_HAS_11N; iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); sc->rfcfg = le16toh(val); DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); /* Read Tx/Rx chains from ROM unless it's known to be broken. */ if (sc->txchainmask == 0) sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); if (sc->rxchainmask == 0) sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); /* Read MAC address. */ iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); /* Read adapter-specific information from EEPROM. */ ops->read_eeprom(sc); iwn_apm_stop(sc); /* Power OFF adapter. */ iwn_eeprom_unlock(sc); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); return 0; } static void iwn4965_read_eeprom(struct iwn_softc *sc) { uint32_t addr; uint16_t val; int i; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Read regulatory domain (4 ASCII characters). */ iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); /* Read the list of authorized channels (20MHz & 40MHz). */ for (i = 0; i < IWN_NBANDS - 1; i++) { addr = iwn4965_regulatory_bands[i]; iwn_read_eeprom_channels(sc, i, addr); } /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); sc->maxpwr2GHz = val & 0xff; sc->maxpwr5GHz = val >> 8; /* Check that EEPROM values are within valid range. */ if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) sc->maxpwr5GHz = 38; if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) sc->maxpwr2GHz = 38; DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz); /* Read samples for each TX power group. */ iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, sizeof sc->bands); /* Read voltage at which samples were taken. */ iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); sc->eeprom_voltage = (int16_t)le16toh(val); DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", sc->eeprom_voltage); #ifdef IWN_DEBUG /* Print samples. */ if (sc->sc_debug & IWN_DEBUG_ANY) { for (i = 0; i < IWN_NBANDS - 1; i++) iwn4965_print_power_group(sc, i); } #endif DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); } #ifdef IWN_DEBUG static void iwn4965_print_power_group(struct iwn_softc *sc, int i) { struct iwn4965_eeprom_band *band = &sc->bands[i]; struct iwn4965_eeprom_chan_samples *chans = band->chans; int j, c; printf("===band %d===\n", i); printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); printf("chan1 num=%d\n", chans[0].num); for (c = 0; c < 2; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[0].samples[c][j].temp, chans[0].samples[c][j].gain, chans[0].samples[c][j].power, chans[0].samples[c][j].pa_det); } } printf("chan2 num=%d\n", chans[1].num); for (c = 0; c < 2; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[1].samples[c][j].temp, chans[1].samples[c][j].gain, chans[1].samples[c][j].power, chans[1].samples[c][j].pa_det); } } } #endif static void iwn5000_read_eeprom(struct iwn_softc *sc) { struct iwn5000_eeprom_calib_hdr hdr; int32_t volt; uint32_t base, addr; uint16_t val; int i; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Read regulatory domain (4 ASCII characters). */ iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); base = le16toh(val); iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, sc->eeprom_domain, 4); /* Read the list of authorized channels (20MHz & 40MHz). */ for (i = 0; i < IWN_NBANDS - 1; i++) { addr = base + sc->base_params->regulatory_bands[i]; iwn_read_eeprom_channels(sc, i, addr); } /* Read enhanced TX power information for 6000 Series. */ if (sc->base_params->enhanced_TX_power) iwn_read_eeprom_enhinfo(sc); iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); base = le16toh(val); iwn_read_prom_data(sc, base, &hdr, sizeof hdr); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calib version=%u pa type=%u voltage=%u\n", __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt)); sc->calib_ver = hdr.version; if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { sc->eeprom_voltage = le16toh(hdr.volt); iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); sc->eeprom_temp_high=le16toh(val); iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); sc->eeprom_temp = le16toh(val); } if (sc->hw_type == IWN_HW_REV_TYPE_5150) { /* Compute temperature offset. */ iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); sc->eeprom_temp = le16toh(val); iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); volt = le16toh(val); sc->temp_off = sc->eeprom_temp - (volt / -5); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", sc->eeprom_temp, volt, sc->temp_off); } else { /* Read crystal calibration. */ iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, &sc->eeprom_crystal, sizeof (uint32_t)); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", le32toh(sc->eeprom_crystal)); } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); } /* * Translate EEPROM flags to net80211. */ static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) { uint32_t nflags; nflags = 0; if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) nflags |= IEEE80211_CHAN_PASSIVE; if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) nflags |= IEEE80211_CHAN_NOADHOC; if (channel->flags & IWN_EEPROM_CHAN_RADAR) { nflags |= IEEE80211_CHAN_DFS; /* XXX apparently IBSS may still be marked */ nflags |= IEEE80211_CHAN_NOADHOC; } return nflags; } static void iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; const struct iwn_chan_band *band = &iwn_bands[n]; uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t chan; int i, error, nflags; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); memset(bands, 0, sizeof(bands)); if (n == 0) { setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->sc_flags & IWN_FLAG_HAS_11N) setbit(bands, IEEE80211_MODE_11NG); } else { setbit(bands, IEEE80211_MODE_11A); if (sc->sc_flags & IWN_FLAG_HAS_11N) setbit(bands, IEEE80211_MODE_11NA); } for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { DPRINTF(sc, IWN_DEBUG_RESET, "skip chan %d flags 0x%x maxpwr %d\n", band->chan[i], channels[i].flags, channels[i].maxpwr); continue; } chan = band->chan[i]; nflags = iwn_eeprom_channel_flags(&channels[i]); error = ieee80211_add_channel(chans, maxchans, nchans, chan, 0, channels[i].maxpwr, nflags, bands); if (error != 0) break; /* Save maximum allowed TX power for this channel. */ /* XXX wrong */ sc->maxpwr[chan] = channels[i].maxpwr; DPRINTF(sc, IWN_DEBUG_RESET, "add chan %d flags 0x%x maxpwr %d\n", chan, channels[i].flags, channels[i].maxpwr); } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); } static void iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; const struct iwn_chan_band *band = &iwn_bands[n]; uint8_t chan; int i, error, nflags; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); return; } for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { DPRINTF(sc, IWN_DEBUG_RESET, "skip chan %d flags 0x%x maxpwr %d\n", band->chan[i], channels[i].flags, channels[i].maxpwr); continue; } chan = band->chan[i]; nflags = iwn_eeprom_channel_flags(&channels[i]); nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A); error = ieee80211_add_channel_ht40(chans, maxchans, nchans, chan, channels[i].maxpwr, nflags); switch (error) { case EINVAL: device_printf(sc->sc_dev, "%s: no entry for channel %d\n", __func__, chan); continue; case ENOENT: DPRINTF(sc, IWN_DEBUG_RESET, "%s: skip chan %d, extension channel not found\n", __func__, chan); continue; case ENOBUFS: device_printf(sc->sc_dev, "%s: channel table is full!\n", __func__); break; case 0: DPRINTF(sc, IWN_DEBUG_RESET, "add ht40 chan %d flags 0x%x maxpwr %d\n", chan, channels[i].flags, channels[i].maxpwr); /* FALLTHROUGH */ default: break; } } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); } static void iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) { struct ieee80211com *ic = &sc->sc_ic; iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); if (n < 5) { iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); } else { iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); } ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); } static struct iwn_eeprom_chan * iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) { int band, chan, i, j; if (IEEE80211_IS_CHAN_HT40(c)) { band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; if (IEEE80211_IS_CHAN_HT40D(c)) chan = c->ic_extieee; else chan = c->ic_ieee; for (i = 0; i < iwn_bands[band].nchan; i++) { if (iwn_bands[band].chan[i] == chan) return &sc->eeprom_channels[band][i]; } } else { for (j = 0; j < 5; j++) { for (i = 0; i < iwn_bands[j].nchan; i++) { if (iwn_bands[j].chan[i] == c->ic_ieee && ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) return &sc->eeprom_channels[j][i]; } } } return NULL; } static void iwn_getradiocaps(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct iwn_softc *sc = ic->ic_softc; int i; /* Parse the list of authorized channels. */ for (i = 0; i < 5 && *nchans < maxchans; i++) iwn_read_eeprom_band(sc, i, maxchans, nchans, chans); for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++) iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans); } /* * Enforce flags read from EEPROM. */ static int iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, int nchan, struct ieee80211_channel chans[]) { struct iwn_softc *sc = ic->ic_softc; int i; for (i = 0; i < nchan; i++) { struct ieee80211_channel *c = &chans[i]; struct iwn_eeprom_chan *channel; channel = iwn_find_eeprom_channel(sc, c); if (channel == NULL) { ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", __func__, c->ic_ieee, c->ic_freq, c->ic_flags); return EINVAL; } c->ic_flags |= iwn_eeprom_channel_flags(channel); } return 0; } static void iwn_read_eeprom_enhinfo(struct iwn_softc *sc) { struct iwn_eeprom_enhinfo enhinfo[35]; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c; uint16_t val, base; int8_t maxpwr; uint8_t flags; int i, j; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); base = le16toh(val); iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, enhinfo, sizeof enhinfo); for (i = 0; i < nitems(enhinfo); i++) { flags = enhinfo[i].flags; if (!(flags & IWN_ENHINFO_VALID)) continue; /* Skip invalid entries. */ maxpwr = 0; if (sc->txchainmask & IWN_ANT_A) maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); if (sc->txchainmask & IWN_ANT_B) maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); if (sc->txchainmask & IWN_ANT_C) maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); if (sc->ntxchains == 2) maxpwr = MAX(maxpwr, enhinfo[i].mimo2); else if (sc->ntxchains == 3) maxpwr = MAX(maxpwr, enhinfo[i].mimo3); for (j = 0; j < ic->ic_nchans; j++) { c = &ic->ic_channels[j]; if ((flags & IWN_ENHINFO_5GHZ)) { if (!IEEE80211_IS_CHAN_A(c)) continue; } else if ((flags & IWN_ENHINFO_OFDM)) { if (!IEEE80211_IS_CHAN_G(c)) continue; } else if (!IEEE80211_IS_CHAN_B(c)) continue; if ((flags & IWN_ENHINFO_HT40)) { if (!IEEE80211_IS_CHAN_HT40(c)) continue; } else { if (IEEE80211_IS_CHAN_HT40(c)) continue; } if (enhinfo[i].chan != 0 && enhinfo[i].chan != c->ic_ieee) continue; DPRINTF(sc, IWN_DEBUG_RESET, "channel %d(%x), maxpwr %d\n", c->ic_ieee, c->ic_flags, maxpwr / 2); c->ic_maxregpower = maxpwr / 2; c->ic_maxpower = maxpwr; } } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); } static struct ieee80211_node * iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwn_node *wn; wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (wn == NULL) return (NULL); wn->id = IWN_ID_UNDEFINED; return (&wn->ni); } static __inline int rate2plcp(int rate) { switch (rate & 0xff) { case 12: return 0xd; case 18: return 0xf; case 24: return 0x5; case 36: return 0x7; case 48: return 0x9; case 72: return 0xb; case 96: return 0x1; case 108: return 0x3; case 2: return 10; case 4: return 20; case 11: return 55; case 22: return 110; } return 0; } static __inline uint8_t plcp2rate(const uint8_t rate_plcp) { switch (rate_plcp) { case 0xd: return 12; case 0xf: return 18; case 0x5: return 24; case 0x7: return 36; case 0x9: return 48; case 0xb: return 72; case 0x1: return 96; case 0x3: return 108; case 10: return 2; case 20: return 4; case 55: return 11; case 110: return 22; default: return 0; } } static int iwn_get_1stream_tx_antmask(struct iwn_softc *sc) { return IWN_LSB(sc->txchainmask); } static int iwn_get_2stream_tx_antmask(struct iwn_softc *sc) { int tx; /* * The '2 stream' setup is a bit .. odd. * * For NICs that support only 1 antenna, default to IWN_ANT_AB or * the firmware panics (eg Intel 5100.) * * For NICs that support two antennas, we use ANT_AB. * * For NICs that support three antennas, we use the two that * wasn't the default one. * * XXX TODO: if bluetooth (full concurrent) is enabled, restrict * this to only one antenna. */ /* Default - transmit on the other antennas */ tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask)); /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */ if (tx == 0) tx = IWN_ANT_AB; /* * If the NIC is a two-stream TX NIC, configure the TX mask to * the default chainmask */ else if (sc->ntxchains == 2) tx = sc->txchainmask; return (tx); } /* * Calculate the required PLCP value from the given rate, * to the given node. * * This will take the node configuration (eg 11n, rate table * setup, etc) into consideration. */ static uint32_t iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, uint8_t rate) { struct ieee80211com *ic = ni->ni_ic; uint32_t plcp = 0; int ridx; /* * If it's an MCS rate, let's set the plcp correctly * and set the relevant flags based on the node config. */ if (rate & IEEE80211_RATE_MCS) { /* * Set the initial PLCP value to be between 0->31 for * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" * flag. */ plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS; /* * XXX the following should only occur if both * the local configuration _and_ the remote node * advertise these capabilities. Thus this code * may need fixing! */ /* * Set the channel width and guard interval. */ if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { plcp |= IWN_RFLAG_HT40; if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) plcp |= IWN_RFLAG_SGI; } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { plcp |= IWN_RFLAG_SGI; } /* * Ensure the selected rate matches the link quality * table entries being used. */ if (rate > 0x8f) plcp |= IWN_RFLAG_ANT(sc->txchainmask); else if (rate > 0x87) plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc)); else plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); } else { /* * Set the initial PLCP - fine for both * OFDM and CCK rates. */ plcp = rate2plcp(rate); /* Set CCK flag if it's CCK */ /* XXX It would be nice to have a method * to map the ridx -> phy table entry * so we could just query that, rather than * this hack to check against IWN_RIDX_OFDM6. */ ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, rate & IEEE80211_RATE_VAL); if (ridx < IWN_RIDX_OFDM6 && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) plcp |= IWN_RFLAG_CCK; /* Set antenna configuration */ /* XXX TODO: is this the right antenna to use for legacy? */ plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); } DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", __func__, rate, plcp); return (htole32(plcp)); } static void iwn_newassoc(struct ieee80211_node *ni, int isnew) { /* Doesn't do anything at the moment */ } static int iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct iwn_vap *ivp = IWN_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct iwn_softc *sc = ic->ic_softc; int error = 0; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); IWN_LOCK(sc); callout_stop(&sc->calib_to); sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; switch (nstate) { case IEEE80211_S_ASSOC: if (vap->iv_state != IEEE80211_S_RUN) break; /* FALLTHROUGH */ case IEEE80211_S_AUTH: if (vap->iv_state == IEEE80211_S_AUTH) break; /* * !AUTH -> AUTH transition requires state reset to handle * reassociations correctly. */ sc->rxon->associd = 0; sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); sc->calib.state = IWN_CALIB_STATE_INIT; /* Wait until we hear a beacon before we transmit */ if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) sc->sc_beacon_wait = 1; if ((error = iwn_auth(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to auth state\n", __func__); } break; case IEEE80211_S_RUN: /* * RUN -> RUN transition; Just restart the timers. */ if (vap->iv_state == IEEE80211_S_RUN) { sc->calib_cnt = 0; break; } /* Wait until we hear a beacon before we transmit */ if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) sc->sc_beacon_wait = 1; /* * !RUN -> RUN requires setting the association id * which is done with a firmware cmd. We also defer * starting the timers until that work is done. */ if ((error = iwn_run(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to run state\n", __func__); } break; case IEEE80211_S_INIT: sc->calib.state = IWN_CALIB_STATE_INIT; /* * Purge the xmit queue so we don't have old frames * during a new association attempt. */ sc->sc_beacon_wait = 0; iwn_xmit_queue_drain(sc); break; default: break; } IWN_UNLOCK(sc); IEEE80211_LOCK(ic); if (error != 0){ DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); return error; } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return ivp->iv_newstate(vap, nstate, arg); } static void iwn_calib_timeout(void *arg) { struct iwn_softc *sc = arg; IWN_LOCK_ASSERT(sc); /* Force automatic TX power calibration every 60 secs. */ if (++sc->calib_cnt >= 120) { uint32_t flags = 0; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", "sending request for statistics"); (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); sc->calib_cnt = 0; } callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, sc); } /* * Process an RX_PHY firmware notification. This is usually immediately * followed by an MPDU_RX_DONE notification. */ static void iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); /* Save RX statistics, they will be used on MPDU_RX_DONE. */ memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); sc->last_rx_valid = 1; } /* * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. */ static void iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct epoch_tracker et; struct iwn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; struct iwn_rx_ring *ring = &sc->rxq; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct mbuf *m, *m1; struct iwn_rx_stat *stat; caddr_t head; bus_addr_t paddr; uint32_t flags; int error, len, rssi, nf; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); if (desc->type == IWN_MPDU_RX_DONE) { /* Check for prior RX_PHY notification. */ if (!sc->last_rx_valid) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: missing RX_PHY\n", __func__); return; } stat = &sc->last_rx_stat; } else stat = (struct iwn_rx_stat *)(desc + 1); if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { device_printf(sc->sc_dev, "%s: invalid RX statistic header, len %d\n", __func__, stat->cfg_phy_len); return; } if (desc->type == IWN_MPDU_RX_DONE) { struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); head = (caddr_t)(mpdu + 1); len = le16toh(mpdu->len); } else { head = (caddr_t)(stat + 1) + stat->cfg_phy_len; len = le16toh(stat->len); } flags = le32toh(*(uint32_t *)(head + len)); /* Discard frames with a bad FCS early. */ if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", __func__, flags); counter_u64_add(ic->ic_ierrors, 1); return; } /* Discard frames that are too short. */ if (len < sizeof (struct ieee80211_frame_ack)) { DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", __func__, len); counter_u64_add(ic->ic_ierrors, 1); return; } m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); if (m1 == NULL) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", __func__); counter_u64_add(ic->ic_ierrors, 1); return; } bus_dmamap_unload(ring->data_dmat, data->map); error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); m_freem(m1); /* Try to reload the old mbuf. */ error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { panic("%s: could not load old RX mbuf", __func__); } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); /* Physical address may have changed. */ ring->desc[ring->cur] = htole32(paddr >> 8); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); counter_u64_add(ic->ic_ierrors, 1); return; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); m = data->m; data->m = m1; /* Update RX descriptor. */ ring->desc[ring->cur] = htole32(paddr >> 8); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Finalize mbuf. */ m->m_data = head; m->m_pkthdr.len = m->m_len = len; /* Grab a reference to the source node. */ wh = mtod(m, struct ieee80211_frame_min *); if (len >= sizeof(struct ieee80211_frame_min)) ni = ieee80211_find_rxnode(ic, wh); else ni = NULL; nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; rssi = ops->get_rssi(sc, stat); if (ieee80211_radiotap_active(ic)) { struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t rate = le32toh(stat->rate); tap->wr_flags = 0; if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)nf; tap->wr_tsft = stat->tstamp; if (rate & IWN_RFLAG_MCS) { tap->wr_rate = rate & IWN_RFLAG_RATE_MCS; tap->wr_rate |= IEEE80211_RATE_MCS; } else tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE); } /* * If it's a beacon and we're waiting, then do the * wakeup. This should unblock raw_xmit/start. */ if (sc->sc_beacon_wait) { uint8_t type, subtype; /* NB: Re-assign wh */ wh = mtod(m, struct ieee80211_frame_min *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* * This assumes at this point we've received our own * beacon. */ DPRINTF(sc, IWN_DEBUG_TRACE, "%s: beacon_wait, type=%d, subtype=%d\n", __func__, type, subtype); if (type == IEEE80211_FC0_TYPE_MGT && subtype == IEEE80211_FC0_SUBTYPE_BEACON) { DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "%s: waking things up\n", __func__); /* queue taskqueue to transmit! */ taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task); } } IWN_UNLOCK(sc); NET_EPOCH_ENTER(et); /* Send the frame to the 802.11 layer. */ if (ni != NULL) { if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void)ieee80211_input(ni, m, rssi - nf, nf); /* Node is no longer needed. */ ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, rssi - nf, nf); NET_EPOCH_EXIT(et); IWN_LOCK(sc); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); } static void iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid, int idx, int success) { struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; struct iwn_tx_data *data = &ring->data[idx]; struct iwn_node *wn; struct mbuf *m; struct ieee80211_node *ni; KASSERT(data->ni != NULL, ("idx %d: no node", idx)); KASSERT(data->m != NULL, ("idx %d: no mbuf", idx)); /* Unmap and free mbuf. */ bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m = data->m, data->m = NULL; ni = data->ni, data->ni = NULL; wn = (void *)ni; #if 0 /* XXX causes significant performance degradation. */ txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | IEEE80211_RATECTL_STATUS_LONG_RETRY; txs->long_retries = data->long_retries - 1; #else txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY; #endif txs->short_retries = wn->agg[tid].short_retries; if (success) txs->status = IEEE80211_RATECTL_TX_SUCCESS; else txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; wn->agg[tid].short_retries = 0; data->long_retries = 0; DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n", __func__, m, ni, idx, ring->qid); ieee80211_ratectl_tx_complete(ni, txs); ieee80211_tx_complete(ni, m, !success); } /* Process an incoming Compressed BlockAck. */ static void iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_tx_ring *ring; struct iwn_tx_data *data; struct iwn_node *wn; struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); struct ieee80211_tx_ampdu *tap; uint64_t bitmap; uint8_t tid; int i, qid, shift; int tx_ok = 0; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); qid = le16toh(ba->qid); tap = sc->qid2tap[qid]; ring = &sc->txq[qid]; tid = tap->txa_tid; wn = (void *)tap->txa_ni; DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n" "bitmap: ba %016jX wn %016jX, start %d\n", __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn), (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap, wn->agg[tid].startidx); if (wn->agg[tid].bitmap == 0) return; shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); if (shift <= -64) shift += 0x100; /* * Walk the bitmap and calculate how many successful attempts * are made. * * Yes, the rate control code doesn't know these are A-MPDU * subframes; due to that long_retries stats are not used here. */ bitmap = le64toh(ba->bitmap); if (shift >= 0) bitmap >>= shift; else bitmap <<= -shift; bitmap &= wn->agg[tid].bitmap; wn->agg[tid].bitmap = 0; for (i = wn->agg[tid].startidx; bitmap; bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) { if ((bitmap & 1) == 0) continue; data = &ring->data[i]; if (__predict_false(data->m == NULL)) { /* * There is no frame; skip this entry. * * NB: it is "ok" to have both * 'tx done' + 'compressed BA' replies for frame * with STATE_SCD_QUERY status. */ DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n", __func__, qid, i); continue; } tx_ok++; iwn_agg_tx_complete(sc, ring, tid, i, 1); } ring->queued -= tx_ok; iwn_check_tx_ring(sc, qid); DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU, "->%s: end; %d ok\n",__func__, tx_ok); } /* * Process a CALIBRATION_RESULT notification sent by the initialization * firmware on response to a CMD_CALIB_CONFIG command (5000 only). */ static void iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); int len, idx = -1; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Runtime firmware should not send such a notification. */ if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after calib done\n", __func__); return; } len = (le32toh(desc->len) & 0x3fff) - 4; switch (calib->code) { case IWN5000_PHY_CALIB_DC: if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC) idx = 0; break; case IWN5000_PHY_CALIB_LO: if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO) idx = 1; break; case IWN5000_PHY_CALIB_TX_IQ: if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ) idx = 2; break; case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC) idx = 3; break; case IWN5000_PHY_CALIB_BASE_BAND: if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND) idx = 4; break; } if (idx == -1) /* Ignore other results. */ return; /* Save calibration result. */ if (sc->calibcmd[idx].buf != NULL) free(sc->calibcmd[idx].buf, M_DEVBUF); sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); if (sc->calibcmd[idx].buf == NULL) { DPRINTF(sc, IWN_DEBUG_CALIBRATE, "not enough memory for calibration result %d\n", calib->code); return; } DPRINTF(sc, IWN_DEBUG_CALIBRATE, "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len); sc->calibcmd[idx].len = len; memcpy(sc->calibcmd[idx].buf, calib, len); } static void iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib, struct iwn_stats *stats, int len) { struct iwn_stats_bt *stats_bt; struct iwn_stats *lstats; /* * First - check whether the length is the bluetooth or normal. * * If it's normal - just copy it and bump out. * Otherwise we have to convert things. */ if (len == sizeof(struct iwn_stats) + 4) { memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); sc->last_stat_valid = 1; return; } /* * If it's not the bluetooth size - log, then just copy. */ if (len != sizeof(struct iwn_stats_bt) + 4) { DPRINTF(sc, IWN_DEBUG_STATS, "%s: size of rx statistics (%d) not an expected size!\n", __func__, len); memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); sc->last_stat_valid = 1; return; } /* * Ok. Time to copy. */ stats_bt = (struct iwn_stats_bt *) stats; lstats = &sc->last_stat; /* flags */ lstats->flags = stats_bt->flags; /* rx_bt */ memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm, sizeof(struct iwn_rx_phy_stats)); memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck, sizeof(struct iwn_rx_phy_stats)); memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common, sizeof(struct iwn_rx_general_stats)); memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht, sizeof(struct iwn_rx_ht_phy_stats)); /* tx */ memcpy(&lstats->tx, &stats_bt->tx, sizeof(struct iwn_tx_stats)); /* general */ memcpy(&lstats->general, &stats_bt->general, sizeof(struct iwn_general_stats)); /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */ sc->last_stat_valid = 1; } /* * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. * The latter is sent by the firmware after each received beacon. */ static void iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwn_calib_state *calib = &sc->calib; struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); struct iwn_stats *lstats; int temp; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Ignore statistics received during a scan. */ if (vap->iv_state != IEEE80211_S_RUN || (ic->ic_flags & IEEE80211_F_SCAN)){ DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", __func__); return; } DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS, "%s: received statistics, cmd %d, len %d\n", __func__, desc->type, le16toh(desc->len)); sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ /* * Collect/track general statistics for reporting. * * This takes care of ensuring that the bluetooth sized message * will be correctly converted to the legacy sized message. */ iwn_stats_update(sc, calib, stats, le16toh(desc->len)); /* * And now, let's take a reference of it to use! */ lstats = &sc->last_stat; /* Test if temperature has changed. */ if (lstats->general.temp != sc->rawtemp) { /* Convert "raw" temperature to degC. */ sc->rawtemp = stats->general.temp; temp = ops->get_temperature(sc); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", __func__, temp); /* Update TX power if need be (4965AGN only). */ if (sc->hw_type == IWN_HW_REV_TYPE_4965) iwn4965_power_calibration(sc, temp); } if (desc->type != IWN_BEACON_STATISTICS) return; /* Reply to a statistics request. */ sc->noise = iwn_get_noise(&lstats->rx.general); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); /* Test that RSSI and noise are present in stats report. */ if (le32toh(lstats->rx.general.flags) != 1) { DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "received statistics without RSSI"); return; } if (calib->state == IWN_CALIB_STATE_ASSOC) iwn_collect_noise(sc, &lstats->rx.general); else if (calib->state == IWN_CALIB_STATE_RUN) { iwn_tune_sensitivity(sc, &lstats->rx); /* * XXX TODO: Only run the RX recovery if we're associated! */ iwn_check_rx_recovery(sc, lstats); iwn_save_stats_counters(sc, lstats); } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); } /* * Save the relevant statistic counters for the next calibration * pass. */ static void iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs) { struct iwn_calib_state *calib = &sc->calib; /* Save counters values for next call. */ calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp); calib->fa_cck = le32toh(rs->rx.cck.fa); calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp); calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp); calib->fa_ofdm = le32toh(rs->rx.ofdm.fa); /* Last time we received these tick values */ sc->last_calib_ticks = ticks; } /* * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN * and 5000 adapters have different incompatible TX status formats. */ static void iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); int qid = desc->qid & IWN_RX_DESC_QID_MSK; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", __func__, desc->qid, desc->idx, stat->rtsfailcnt, stat->ackfailcnt, stat->btkillcnt, stat->rate, le16toh(stat->duration), le32toh(stat->status)); if (qid >= sc->firstaggqueue && stat->nframes != 1) { iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt, &stat->status); } else { iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, le32toh(stat->status) & 0xff); } } static void iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); int qid = desc->qid & IWN_RX_DESC_QID_MSK; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", __func__, desc->qid, desc->idx, stat->rtsfailcnt, stat->ackfailcnt, stat->btkillcnt, stat->rate, le16toh(stat->duration), le32toh(stat->status)); #ifdef notyet /* Reset TX scheduler slot. */ iwn5000_reset_sched(sc, qid, desc->idx); #endif if (qid >= sc->firstaggqueue && stat->nframes != 1) { iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt, &stat->status); } else { iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, le16toh(stat->status) & 0xff); } } static void iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) break; data->remapped = 0; } ring->read = i; } /* * Adapter-independent backend for TX_DONE firmware notifications. */ static void iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt, int ackfailcnt, uint8_t status) { struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK]; struct iwn_tx_data *data = &ring->data[desc->idx]; struct mbuf *m; struct ieee80211_node *ni; if (__predict_false(data->m == NULL && ring->qid >= sc->firstaggqueue)) { /* * There is no frame; skip this entry. */ DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n", __func__, ring->qid, desc->idx); return; } KASSERT(data->ni != NULL, ("no node")); KASSERT(data->m != NULL, ("no mbuf")); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Unmap and free mbuf. */ bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m = data->m, data->m = NULL; ni = data->ni, data->ni = NULL; data->long_retries = 0; if (ring->qid >= sc->firstaggqueue) iwn_adj_ampdu_ptr(sc, ring); /* * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64 * (aggregation queues only). */ ring->queued--; iwn_check_tx_ring(sc, ring->qid); /* * Update rate control statistics for the node. */ txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | IEEE80211_RATECTL_STATUS_LONG_RETRY; txs->short_retries = rtsfailcnt; txs->long_retries = ackfailcnt; if (!(status & IWN_TX_FAIL)) txs->status = IEEE80211_RATECTL_TX_SUCCESS; else { switch (status) { case IWN_TX_FAIL_SHORT_LIMIT: txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; break; case IWN_TX_FAIL_LONG_LIMIT: txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; break; case IWN_TX_STATUS_FAIL_LIFE_EXPIRE: txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; break; default: txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; break; } } ieee80211_ratectl_tx_complete(ni, txs); /* * Channels marked for "radar" require traffic to be received * to unlock before we can transmit. Until traffic is seen * any attempt to transmit is returned immediately with status * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily * happen on first authenticate after scanning. To workaround * this we ignore a failure of this sort in AUTH state so the * 802.11 layer will fall back to using a timeout to wait for * the AUTH reply. This allows the firmware time to see * traffic so a subsequent retry of AUTH succeeds. It's * unclear why the firmware does not maintain state for * channels recently visited as this would allow immediate * use of the channel after a scan (where we see traffic). */ if (status == IWN_TX_FAIL_TX_LOCKED && ni->ni_vap->iv_state == IEEE80211_S_AUTH) ieee80211_tx_complete(ni, m, 0); else ieee80211_tx_complete(ni, m, (status & IWN_TX_FAIL) != 0); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); } /* * Process a "command done" firmware notification. This is where we wakeup * processes waiting for a synchronous command completion. */ static void iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_tx_ring *ring; struct iwn_tx_data *data; int cmd_queue_num; if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) cmd_queue_num = IWN_PAN_CMD_QUEUE; else cmd_queue_num = IWN_CMD_QUEUE_NUM; if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num) return; /* Not a command ack. */ ring = &sc->txq[cmd_queue_num]; data = &ring->data[desc->idx]; /* If the command was mapped in an mbuf, free it. */ if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[desc->idx]); } static int iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx) { int bit, shift; bit = idx - start; shift = 0; if (bit >= 64) { shift = 0x100 - bit; bit = 0; } else if (bit <= -64) bit = 0x100 + bit; else if (bit < 0) { shift = -bit; bit = 0; } if (bit - shift >= 64) return (0); return ((bitmap & (1ULL << (bit - shift))) != 0); } /* * Firmware bug workaround: in case if 'retries' counter * overflows 'seqno' field will be incremented: * status|sequence|status|sequence|status|sequence * 0000 0A48 0001 0A49 0000 0A6A * 1000 0A48 1000 0A49 1000 0A6A * 2000 0A48 2000 0A49 2000 0A6A * ... * E000 0A48 E000 0A49 E000 0A6A * F000 0A48 F000 0A49 F000 0A6A * 0000 0A49 0000 0A49 0000 0A6B * 1000 0A49 1000 0A49 1000 0A6B * ... * D000 0A49 D000 0A49 D000 0A6B * E000 0A49 E001 0A49 E000 0A6B * F000 0A49 F001 0A49 F000 0A6B * 0000 0A4A 0000 0A4B 0000 0A6A * 1000 0A4A 1000 0A4B 1000 0A6A * ... * * Odd 'seqno' numbers are incremened by 2 every 2 overflows. * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0). * Not checked with nretries >= 64. * */ static int iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring, uint64_t bitmap, int start, int idx) { struct ieee80211com *ic = &sc->sc_ic; struct iwn_tx_data *data; int diff, min_retries, max_retries, new_idx, loop_end; new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG; if (new_idx < 0) new_idx += IWN_TX_RING_COUNT; /* * Corner case: check if retry count is not too big; * reset device otherwise. */ if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) { data = &ring->data[new_idx]; if (data->long_retries > IWN_LONG_RETRY_LIMIT) { device_printf(sc->sc_dev, "%s: retry count (%d) for idx %d/%d overflow, " "resetting...\n", __func__, data->long_retries, ring->qid, new_idx); ieee80211_restart_all(ic); return (-1); } } /* Correct index if needed. */ loop_end = idx; do { data = &ring->data[new_idx]; diff = idx - new_idx; if (diff < 0) diff += IWN_TX_RING_COUNT; min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff; if ((new_idx % 2) == 0) max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1); else max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2); if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) && ((data->long_retries >= min_retries && data->long_retries < max_retries) || (diff == 1 && (new_idx & 0x03) == 0x02 && data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) { DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: correcting index %d -> %d in queue %d" " (retries %d)\n", __func__, idx, new_idx, ring->qid, data->long_retries); return (new_idx); } new_idx = (new_idx + 1) % IWN_TX_RING_COUNT; } while (new_idx != loop_end); return (idx); } static void iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt, void *stat) { struct iwn_tx_ring *ring = &sc->txq[qid]; struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid]; struct iwn_node *wn = (void *)tap->txa_ni; struct iwn_tx_data *data; uint64_t bitmap = 0; uint16_t *aggstatus = stat; uint8_t tid = tap->txa_tid; int bit, i, idx, shift, start, tx_err; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); start = le16toh(*(aggstatus + nframes * 2)) & 0xff; for (i = 0; i < nframes; i++) { uint16_t status = le16toh(aggstatus[i * 2]); if (status & IWN_AGG_TX_STATE_IGNORE_MASK) continue; idx = le16toh(aggstatus[i * 2 + 1]) & 0xff; data = &ring->data[idx]; if (data->remapped) { idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx); if (idx == -1) { /* skip error (device will be restarted anyway). */ continue; } /* Index may have changed. */ data = &ring->data[idx]; } /* * XXX Sometimes (rarely) some frames are excluded from events. * XXX Due to that long_retries counter may be wrong. */ data->long_retries &= ~0x0f; data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1; if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) { int diff, wrong_idx; diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW; wrong_idx = (idx + diff) % IWN_TX_RING_COUNT; /* * Mark the entry so the above code will check it * next time. */ ring->data[wrong_idx].remapped = 1; } if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) { /* * NB: count retries but postpone - it was not * transmitted. */ continue; } bit = idx - start; shift = 0; if (bit >= 64) { shift = 0x100 - bit; bit = 0; } else if (bit <= -64) bit = 0x100 + bit; else if (bit < 0) { shift = -bit; bit = 0; } bitmap = bitmap << shift; bitmap |= 1ULL << bit; } wn->agg[tid].startidx = start; wn->agg[tid].bitmap = bitmap; wn->agg[tid].short_retries = rtsfailcnt; DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n", __func__, nframes, start, (uintmax_t)bitmap); i = ring->read; for (tx_err = 0; i != wn->agg[tid].startidx; i = (i + 1) % IWN_TX_RING_COUNT) { data = &ring->data[i]; data->remapped = 0; if (data->m == NULL) continue; tx_err++; iwn_agg_tx_complete(sc, ring, tid, i, 0); } ring->read = wn->agg[tid].startidx; ring->queued -= tx_err; iwn_check_tx_ring(sc, qid); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); } /* * Process an INT_FH_RX or INT_SW_RX interrupt. */ static void iwn_notif_intr(struct iwn_softc *sc) { struct iwn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t hw; int is_stopped; bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, BUS_DMASYNC_POSTREAD); hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; while (sc->rxq.cur != hw) { struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct iwn_rx_desc *desc; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); desc = mtod(data->m, struct iwn_rx_desc *); DPRINTF(sc, IWN_DEBUG_RECV, "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK, desc->idx, desc->flags, desc->type, iwn_intr_str(desc->type), le16toh(desc->len)); if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */ iwn_cmd_done(sc, desc); switch (desc->type) { case IWN_RX_PHY: iwn_rx_phy(sc, desc); break; case IWN_RX_DONE: /* 4965AGN only. */ case IWN_MPDU_RX_DONE: /* An 802.11 frame has been received. */ iwn_rx_done(sc, desc, data); is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0; if (__predict_false(is_stopped)) return; break; case IWN_RX_COMPRESSED_BA: /* A Compressed BlockAck has been received. */ iwn_rx_compressed_ba(sc, desc); break; case IWN_TX_DONE: /* An 802.11 frame has been transmitted. */ ops->tx_done(sc, desc, data); break; case IWN_RX_STATISTICS: case IWN_BEACON_STATISTICS: iwn_rx_statistics(sc, desc); break; case IWN_BEACON_MISSED: { struct iwn_beacon_missed *miss = (struct iwn_beacon_missed *)(desc + 1); int misses; misses = le32toh(miss->consecutive); DPRINTF(sc, IWN_DEBUG_STATE, "%s: beacons missed %d/%d\n", __func__, misses, le32toh(miss->total)); /* * If more than 5 consecutive beacons are missed, * reinitialize the sensitivity state machine. */ if (vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) { if (misses > 5) (void)iwn_init_sensitivity(sc); if (misses >= vap->iv_bmissthreshold) { IWN_UNLOCK(sc); ieee80211_beacon_miss(ic); IWN_LOCK(sc); is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0; if (__predict_false(is_stopped)) return; } } break; } case IWN_UC_READY: { struct iwn_ucode_info *uc = (struct iwn_ucode_info *)(desc + 1); /* The microcontroller is ready. */ DPRINTF(sc, IWN_DEBUG_RESET, "microcode alive notification version=%d.%d " "subtype=%x alive=%x\n", uc->major, uc->minor, uc->subtype, le32toh(uc->valid)); if (le32toh(uc->valid) != 1) { device_printf(sc->sc_dev, "microcontroller initialization failed"); break; } if (uc->subtype == IWN_UCODE_INIT) { /* Save microcontroller report. */ memcpy(&sc->ucode_info, uc, sizeof (*uc)); } /* Save the address of the error log in SRAM. */ sc->errptr = le32toh(uc->errptr); break; } #ifdef IWN_DEBUG case IWN_STATE_CHANGED: { /* * State change allows hardware switch change to be * noted. However, we handle this in iwn_intr as we * get both the enable/disble intr. */ uint32_t *status = (uint32_t *)(desc + 1); DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE, "state changed to %x\n", le32toh(*status)); break; } case IWN_START_SCAN: { struct iwn_start_scan *scan = (struct iwn_start_scan *)(desc + 1); DPRINTF(sc, IWN_DEBUG_ANY, "%s: scanning channel %d status %x\n", __func__, scan->chan, le32toh(scan->status)); break; } #endif case IWN_STOP_SCAN: { #ifdef IWN_DEBUG struct iwn_stop_scan *scan = (struct iwn_stop_scan *)(desc + 1); DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN, "scan finished nchan=%d status=%d chan=%d\n", scan->nchan, scan->status, scan->chan); #endif sc->sc_is_scanning = 0; callout_stop(&sc->scan_timeout); IWN_UNLOCK(sc); ieee80211_scan_next(vap); IWN_LOCK(sc); is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0; if (__predict_false(is_stopped)) return; break; } case IWN5000_CALIBRATION_RESULT: iwn5000_rx_calib_results(sc, desc); break; case IWN5000_CALIBRATION_DONE: sc->sc_flags |= IWN_FLAG_CALIB_DONE; wakeup(sc); break; } sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; } /* Tell the firmware what we have processed. */ hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); } /* * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up * from power-down sleep mode. */ static void iwn_wakeup_intr(struct iwn_softc *sc) { int qid; DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", __func__); /* Wakeup RX and TX rings. */ IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); for (qid = 0; qid < sc->ntxqs; qid++) { struct iwn_tx_ring *ring = &sc->txq[qid]; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); } } static void iwn_rftoggle_task(void *arg, int npending) { struct iwn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; IWN_LOCK(sc); tmp = IWN_READ(sc, IWN_GP_CNTRL); IWN_UNLOCK(sc); device_printf(sc->sc_dev, "RF switch: radio %s\n", (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); if (!(tmp & IWN_GP_CNTRL_RFKILL)) { ieee80211_suspend_all(ic); /* Enable interrupts to get RF toggle notification. */ IWN_LOCK(sc); IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); IWN_UNLOCK(sc); } else ieee80211_resume_all(ic); } /* * Dump the error log of the firmware when a firmware panic occurs. Although * we can't debug the firmware because it is neither open source nor free, it * can help us to identify certain classes of problems. */ static void iwn_fatal_intr(struct iwn_softc *sc) { struct iwn_fw_dump dump; int i; IWN_LOCK_ASSERT(sc); /* Force a complete recalibration on next init. */ sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; /* Check that the error log address is valid. */ if (sc->errptr < IWN_FW_DATA_BASE || sc->errptr + sizeof (dump) > IWN_FW_DATA_BASE + sc->fw_data_maxsz) { printf("%s: bad firmware error log address 0x%08x\n", __func__, sc->errptr); return; } if (iwn_nic_lock(sc) != 0) { printf("%s: could not read firmware error log\n", __func__); return; } /* Read firmware error log from SRAM. */ iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, sizeof (dump) / sizeof (uint32_t)); iwn_nic_unlock(sc); if (dump.valid == 0) { printf("%s: firmware error log is empty\n", __func__); return; } printf("firmware error log:\n"); printf(" error type = \"%s\" (0x%08X)\n", (dump.id < nitems(iwn_fw_errmsg)) ? iwn_fw_errmsg[dump.id] : "UNKNOWN", dump.id); printf(" program counter = 0x%08X\n", dump.pc); printf(" source line = 0x%08X\n", dump.src_line); printf(" error data = 0x%08X%08X\n", dump.error_data[0], dump.error_data[1]); printf(" branch link = 0x%08X%08X\n", dump.branch_link[0], dump.branch_link[1]); printf(" interrupt link = 0x%08X%08X\n", dump.interrupt_link[0], dump.interrupt_link[1]); printf(" time = %u\n", dump.time[0]); /* Dump driver status (TX and RX rings) while we're here. */ printf("driver status:\n"); for (i = 0; i < sc->ntxqs; i++) { struct iwn_tx_ring *ring = &sc->txq[i]; printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } printf(" rx ring: cur=%d\n", sc->rxq.cur); } static void iwn_intr(void *arg) { struct iwn_softc *sc = arg; uint32_t r1, r2, tmp; IWN_LOCK(sc); /* Disable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, 0); /* Read interrupts from ICT (fast) or from registers (slow). */ if (sc->sc_flags & IWN_FLAG_USE_ICT) { bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, BUS_DMASYNC_POSTREAD); tmp = 0; while (sc->ict[sc->ict_cur] != 0) { tmp |= sc->ict[sc->ict_cur]; sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; } tmp = le32toh(tmp); if (tmp == 0xffffffff) /* Shouldn't happen. */ tmp = 0; else if (tmp & 0xc0000) /* Workaround a HW bug. */ tmp |= 0x8000; r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); r2 = 0; /* Unused. */ } else { r1 = IWN_READ(sc, IWN_INT); if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) { IWN_UNLOCK(sc); return; /* Hardware gone! */ } r2 = IWN_READ(sc, IWN_FH_INT); } DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" , r1, r2); if (r1 == 0 && r2 == 0) goto done; /* Interrupt not for us. */ /* Acknowledge interrupts. */ IWN_WRITE(sc, IWN_INT, r1); if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) IWN_WRITE(sc, IWN_FH_INT, r2); if (r1 & IWN_INT_RF_TOGGLED) { taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); goto done; } if (r1 & IWN_INT_CT_REACHED) { device_printf(sc->sc_dev, "%s: critical temperature reached!\n", __func__); } if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { device_printf(sc->sc_dev, "%s: fatal firmware error\n", __func__); #ifdef IWN_DEBUG iwn_debug_register(sc); #endif /* Dump firmware error log and stop. */ iwn_fatal_intr(sc); taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task); goto done; } if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || (r2 & IWN_FH_INT_RX)) { if (sc->sc_flags & IWN_FLAG_USE_ICT) { if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS); iwn_notif_intr(sc); if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_ENA); } } else iwn_notif_intr(sc); } if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { if (sc->sc_flags & IWN_FLAG_USE_ICT) IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); wakeup(sc); /* FH DMA transfer completed. */ } if (r1 & IWN_INT_ALIVE) wakeup(sc); /* Firmware is alive. */ if (r1 & IWN_INT_WAKEUP) iwn_wakeup_intr(sc); done: /* Re-enable interrupts. */ if (sc->sc_flags & IWN_FLAG_RUNNING) IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); IWN_UNLOCK(sc); } /* * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and * 5000 adapters use a slightly different format). */ static void iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, uint16_t len) { uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); *w = htole16(len + 8); bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } static void iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, uint16_t len) { uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); *w = htole16(id << 12 | (len + 8)); bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } #ifdef notyet static void iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) { uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); *w = (*w & htole16(0xf000)) | htole16(1); bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } #endif /* * Check whether OFDM 11g protection will be enabled for the given rate. * * The original driver code only enabled protection for OFDM rates. * It didn't check to see whether it was operating in 11a or 11bg mode. */ static int iwn_check_rate_needs_protection(struct iwn_softc *sc, struct ieee80211vap *vap, uint8_t rate) { struct ieee80211com *ic = vap->iv_ic; /* * Not in 2GHz mode? Then there's no need to enable OFDM * 11bg protection. */ if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { return (0); } /* * 11bg protection not enabled? Then don't use it. */ if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0) return (0); /* * If it's an 11n rate - no protection. * We'll do it via a specific 11n check. */ if (rate & IEEE80211_RATE_MCS) { return (0); } /* * Do a rate table lookup. If the PHY is CCK, * don't do protection. */ if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK) return (0); /* * Yup, enable protection. */ return (1); } /* * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into * the link quality table that reflects this particular entry. */ static int iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni, uint8_t rate) { struct ieee80211_rateset *rs; int is_11n; int nr; int i; uint8_t cmp_rate; /* * Figure out if we're using 11n or not here. */ if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) is_11n = 1; else is_11n = 0; /* * Use the correct rate table. */ if (is_11n) { rs = (struct ieee80211_rateset *) &ni->ni_htrates; nr = ni->ni_htrates.rs_nrates; } else { rs = &ni->ni_rates; nr = rs->rs_nrates; } /* * Find the relevant link quality entry in the table. */ for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) { /* * The link quality table index starts at 0 == highest * rate, so we walk the rate table backwards. */ cmp_rate = rs->rs_rates[(nr - 1) - i]; if (rate & IEEE80211_RATE_MCS) cmp_rate |= IEEE80211_RATE_MCS; #if 0 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n", __func__, i, nr, rate, cmp_rate); #endif if (cmp_rate == rate) return (i); } /* Failed? Start at the end */ return (IWN_MAX_TX_RETRIES - 1); } static int iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { const struct ieee80211_txparam *tp = ni->ni_txparms; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct iwn_node *wn = (void *)ni; struct iwn_tx_ring *ring; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; uint32_t flags; uint16_t qos; uint8_t tid, type; int ac, totlen, rate; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); IWN_LOCK_ASSERT(sc); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* Select EDCA Access Category and TX ring for this frame. */ if (IEEE80211_QOS_HAS_SEQ(wh)) { qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid = qos & IEEE80211_QOS_TID; } else { qos = 0; tid = 0; } /* Choose a TX rate index. */ if (type == IEEE80211_FC0_TYPE_MGT || type == IEEE80211_FC0_TYPE_CTL || (m->m_flags & M_EAPOL) != 0) rate = tp->mgmtrate; else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else { /* XXX pass pktlen */ (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } /* * XXX TODO: Group addressed frames aren't aggregated and must * go to the normal non-aggregation queue, and have a NONQOS TID * assigned from net80211. */ ac = M_WME_GETAC(m); if (m->m_flags & M_AMPDU_MPDU) { struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; if (!IEEE80211_AMPDU_RUNNING(tap)) return (EINVAL); ac = *(int *)tap->txa_private; } /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* Retrieve key for TX. */ k = ieee80211_crypto_encap(ni, m); if (k == NULL) { return ENOBUFS; } /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } totlen = m->m_pkthdr.len; if (ieee80211_radiotap_active_vap(vap)) { struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* Unicast frame, check if an ACK is expected. */ if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK) flags |= IWN_TX_NEED_ACK; } if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* NB: Group frames are sent using CCK in 802.11b/g. */ if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { flags |= IWN_TX_NEED_RTS; } else if (iwn_check_rate_needs_protection(sc, vap, rate)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) flags |= IWN_TX_NEED_CTS; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) flags |= IWN_TX_NEED_RTS; } else if ((rate & IEEE80211_RATE_MCS) && (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { flags |= IWN_TX_NEED_RTS; } /* XXX HT protection? */ if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { if (sc->hw_type != IWN_HW_REV_TYPE_4965) { /* 5000 autoselects RTS/CTS or CTS-to-self. */ flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); flags |= IWN_TX_NEED_PROTECTION; } else flags |= IWN_TX_FULL_TXOP; } } ring = &sc->txq[ac]; if (m->m_flags & M_AMPDU_MPDU) { uint16_t seqno = ni->ni_txseqs[tid]; if (ring->queued > IWN_TX_RING_COUNT / 2 && (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) { DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space " "(queued %d) left in %d queue!\n", __func__, ring->queued, ac); return (ENOBUFS); } /* * Queue this frame to the hardware ring that we've * negotiated AMPDU TX on. * * Note that the sequence number must match the TX slot * being used! */ if ((seqno % 256) != ring->cur) { device_printf(sc->sc_dev, "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n", __func__, m, seqno, seqno % 256, ring->cur); /* XXX until D9195 will not be committed */ ni->ni_txseqs[tid] &= ~0xff; ni->ni_txseqs[tid] += ring->cur; seqno = ni->ni_txseqs[tid]; } *(uint16_t *)wh->i_seq = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[tid]++; } /* Prepare TX firmware command. */ cmd = &ring->cmd[ring->cur]; tx = (struct iwn_cmd_data *)cmd->data; /* NB: No need to clear tx, all fields are reinitialized here. */ tx->scratch = 0; /* clear "scratch" area */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) tx->id = sc->broadcast_id; else tx->id = wn->id; if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Tell HW to set timestamp in probe responses. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= IWN_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } else tx->timeout = htole16(0); if (tx->id == sc->broadcast_id) { /* Group or management frame. */ tx->linkq = 0; } else { tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate); flags |= IWN_TX_LINKQ; /* enable MRR */ } tx->tid = tid; tx->rts_ntries = 60; tx->data_ntries = 15; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->rate = iwn_rate_to_plcp(sc, ni, rate); tx->security = 0; tx->flags = htole32(flags); return (iwn_tx_cmd(sc, m, ni, ring)); } static int iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; struct iwn_tx_ring *ring; uint32_t flags; int ac, rate; uint8_t type; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); IWN_LOCK_ASSERT(sc); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ac = params->ibp_pri & 3; /* Choose a TX rate. */ rate = params->ibp_rate0; flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= IWN_TX_NEED_ACK; if (params->ibp_flags & IEEE80211_BPF_RTS) { if (sc->hw_type != IWN_HW_REV_TYPE_4965) { /* 5000 autoselects RTS/CTS or CTS-to-self. */ flags &= ~IWN_TX_NEED_RTS; flags |= IWN_TX_NEED_PROTECTION; } else flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; } if (params->ibp_flags & IEEE80211_BPF_CTS) { if (sc->hw_type != IWN_HW_REV_TYPE_4965) { /* 5000 autoselects RTS/CTS or CTS-to-self. */ flags &= ~IWN_TX_NEED_CTS; flags |= IWN_TX_NEED_PROTECTION; } else flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; } if (ieee80211_radiotap_active_vap(vap)) { struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; ieee80211_radiotap_tx(vap, m); } ring = &sc->txq[ac]; cmd = &ring->cmd[ring->cur]; tx = (struct iwn_cmd_data *)cmd->data; /* NB: No need to clear tx, all fields are reinitialized here. */ tx->scratch = 0; /* clear "scratch" area */ if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Tell HW to set timestamp in probe responses. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= IWN_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } else tx->timeout = htole16(0); tx->tid = 0; tx->id = sc->broadcast_id; tx->rts_ntries = params->ibp_try1; tx->data_ntries = params->ibp_try0; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->rate = iwn_rate_to_plcp(sc, ni, rate); tx->security = 0; tx->flags = htole32(flags); /* Group or management frame. */ tx->linkq = 0; return (iwn_tx_cmd(sc, m, ni, ring)); } static int iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, struct iwn_tx_ring *ring) { struct iwn_ops *ops = &sc->ops; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; struct iwn_tx_desc *desc; struct iwn_tx_data *data; bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; struct mbuf *m1; u_int hdrlen; int totlen, error, pad, nsegs = 0, i; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_anyhdrsize(wh); totlen = m->m_pkthdr.len; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; if (__predict_false(data->m != NULL || data->ni != NULL)) { device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d " "in queue %d is not NULL!\n", __func__, data->ni, data->m, ring->cur, ring->qid); return EIO; } /* Prepare TX firmware command. */ cmd = &ring->cmd[ring->cur]; cmd->code = IWN_CMD_TX_DATA; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; tx = (struct iwn_cmd_data *)cmd->data; tx->len = htole16(totlen); /* Set physical address of "scratch area". */ tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); tx->hiaddr = IWN_HIADDR(data->scratch_paddr); if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ tx->flags |= htole32(IWN_TX_NEED_PADDING); pad = 4 - (hdrlen & 3); } else pad = 0; /* Copy 802.11 header in TX command. */ memcpy((uint8_t *)(tx + 1), wh, hdrlen); /* Trim 802.11 header. */ m_adj(m, hdrlen); error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { if (error != EFBIG) { device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); return error; } /* Too many DMA segments, linearize mbuf. */ m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); if (m1 == NULL) { device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); return ENOBUFS; } m = m1; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { /* XXX fix this */ /* * NB: Do not return error; * original mbuf does not exist anymore. */ device_printf(sc->sc_dev, "%s: can't map mbuf (error %d)\n", __func__, error); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); m_freem(m); return 0; } } data->m = m; data->ni = ni; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d " "plcp %d\n", __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate); /* Fill TX descriptor. */ desc->nsegs = 1; if (m->m_len != 0) desc->nsegs += nsegs; /* First DMA segment is used by the TX command. */ desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | (4 + sizeof (*tx) + hdrlen + pad) << 4); /* Other DMA segments are for data payload. */ seg = &segs[0]; for (i = 1; i <= nsegs; i++) { desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | seg->ds_len << 4); seg++; } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Update TX scheduler. */ if (ring->qid >= sc->firstaggqueue) ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWN_TX_RING_HIMARK) sc->qfullmsk |= 1 << ring->qid; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return 0; } static void iwn_xmit_task(void *arg0, int pending) { struct iwn_softc *sc = arg0; struct ieee80211_node *ni; struct mbuf *m; int error; struct ieee80211_bpf_params p; int have_p; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__); IWN_LOCK(sc); /* * Dequeue frames, attempt to transmit, * then disable beaconwait when we're done. */ while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { have_p = 0; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; /* Get xmit params if appropriate */ if (ieee80211_get_xmit_params(m, &p) == 0) have_p = 1; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n", __func__, m, have_p); /* If we have xmit params, use them */ if (have_p) error = iwn_tx_data_raw(sc, m, ni, &p); else error = iwn_tx_data(sc, m, ni); if (error != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); m_freem(m); } } sc->sc_beacon_wait = 0; IWN_UNLOCK(sc); } /* * raw frame xmit - free node/reference if failed. */ static int iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct iwn_softc *sc = ic->ic_softc; int error = 0; DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__); IWN_LOCK(sc); if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) { m_freem(m); IWN_UNLOCK(sc); return (ENETDOWN); } /* queue frame if we have to */ if (sc->sc_beacon_wait) { if (iwn_xmit_queue_enqueue(sc, m) != 0) { m_freem(m); IWN_UNLOCK(sc); return (ENOBUFS); } /* Queued, so just return OK */ IWN_UNLOCK(sc); return (0); } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = iwn_tx_data(sc, m, ni); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = iwn_tx_data_raw(sc, m, ni, params); } if (error == 0) sc->sc_tx_timer = 5; else m_freem(m); IWN_UNLOCK(sc); DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__); return (error); } /* * transmit - don't free mbuf if failed; don't free node ref if failed. */ static int iwn_transmit(struct ieee80211com *ic, struct mbuf *m) { struct iwn_softc *sc = ic->ic_softc; struct ieee80211_node *ni; int error; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; IWN_LOCK(sc); if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) { IWN_UNLOCK(sc); return (ENXIO); } if (sc->qfullmsk) { IWN_UNLOCK(sc); return (ENOBUFS); } error = iwn_tx_data(sc, m, ni); if (!error) sc->sc_tx_timer = 5; IWN_UNLOCK(sc); return (error); } static void iwn_scan_timeout(void *arg) { struct iwn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; ic_printf(ic, "scan timeout\n"); ieee80211_restart_all(ic); } static void iwn_watchdog(void *arg) { struct iwn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWN_LOCK_ASSERT(sc); KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running")); DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { ic_printf(ic, "device timeout\n"); ieee80211_restart_all(ic); return; } } callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); } static int iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td) { return (0); } static int iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, struct thread *td) { int rc; struct iwn_softc *sc = dev->si_drv1; struct iwn_ioctl_data *d; rc = priv_check(td, PRIV_DRIVER); if (rc != 0) return (0); switch (cmd) { case SIOCGIWNSTATS: d = (struct iwn_ioctl_data *) data; IWN_LOCK(sc); /* XXX validate permissions/memory/etc? */ rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats)); IWN_UNLOCK(sc); break; case SIOCZIWNSTATS: IWN_LOCK(sc); memset(&sc->last_stat, 0, sizeof(struct iwn_stats)); IWN_UNLOCK(sc); break; default: rc = EINVAL; break; } return (rc); } static int iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data) { return (ENOTTY); } static void iwn_parent(struct ieee80211com *ic) { struct iwn_softc *sc = ic->ic_softc; struct ieee80211vap *vap; int error; if (ic->ic_nrunning > 0) { error = iwn_init(sc); switch (error) { case 0: ieee80211_start_all(ic); break; case 1: /* radio is disabled via RFkill switch */ taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); break; default: vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) ieee80211_stop(vap); break; } } else iwn_stop(sc); } /* * Send a command to the firmware. */ static int iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) { struct iwn_tx_ring *ring; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct mbuf *m; bus_addr_t paddr; int totlen, error; int cmd_queue_num; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); if (async == 0) IWN_LOCK_ASSERT(sc); if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) cmd_queue_num = IWN_PAN_CMD_QUEUE; else cmd_queue_num = IWN_CMD_QUEUE_NUM; ring = &sc->txq[cmd_queue_num]; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; totlen = 4 + size; if (size > sizeof cmd->data) { /* Command is too large to fit in a descriptor. */ if (totlen > MCLBYTES) return EINVAL; m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (m == NULL) return ENOMEM; cmd = mtod(m, struct iwn_tx_cmd *); error = bus_dmamap_load(ring->data_dmat, data->map, cmd, totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); return error; } data->m = m; } else { cmd = &ring->cmd[ring->cur]; paddr = data->cmd_paddr; } cmd->code = code; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; memcpy(cmd->data, buf, size); desc->nsegs = 1; desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", __func__, iwn_intr_str(cmd->code), cmd->code, cmd->flags, cmd->qid, cmd->idx); if (size > sizeof cmd->data) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); } bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); /* Kick command ring. */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); } static int iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) { struct iwn4965_node_info hnode; caddr_t src, dst; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* * We use the node structure for 5000 Series internally (it is * a superset of the one for 4965AGN). We thus copy the common * fields before sending the command. */ src = (caddr_t)node; dst = (caddr_t)&hnode; memcpy(dst, src, 48); /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ memcpy(dst + 48, src + 72, 20); return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); } static int iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) { DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Direct mapping. */ return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); } static int iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) { struct iwn_node *wn = (void *)ni; struct ieee80211_rateset *rs; struct iwn_cmd_link_quality linkq; int i, rate, txrate; int is_11n; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); memset(&linkq, 0, sizeof linkq); linkq.id = wn->id; linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); linkq.ampdu_max = 32; /* XXX negotiated? */ linkq.ampdu_threshold = 3; linkq.ampdu_limit = htole16(4000); /* 4ms */ DPRINTF(sc, IWN_DEBUG_XMIT, "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n", __func__, linkq.antmsk_1stream, linkq.antmsk_2stream, sc->ntxchains); /* * Are we using 11n rates? Ensure the channel is * 11n _and_ we have some 11n rates, or don't * try. */ if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) { rs = (struct ieee80211_rateset *) &ni->ni_htrates; is_11n = 1; } else { rs = &ni->ni_rates; is_11n = 0; } /* Start at highest available bit-rate. */ /* * XXX this is all very dirty! */ if (is_11n) txrate = ni->ni_htrates.rs_nrates - 1; else txrate = rs->rs_nrates - 1; for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { uint32_t plcp; /* * XXX TODO: ensure the last two slots are the two lowest * rate entries, just for now. */ if (i == 14 || i == 15) txrate = 0; if (is_11n) rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate]; else rate = IEEE80211_RV(rs->rs_rates[txrate]); /* Do rate -> PLCP config mapping */ plcp = iwn_rate_to_plcp(sc, ni, rate); linkq.retry[i] = plcp; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n", __func__, i, txrate, rate, le32toh(plcp)); /* * The mimo field is an index into the table which * indicates the first index where it and subsequent entries * will not be using MIMO. * * Since we're filling linkq from 0..15 and we're filling * from the highest MCS rates to the lowest rates, if we * _are_ doing a dual-stream rate, set mimo to idx+1 (ie, * the next entry.) That way if the next entry is a non-MIMO * entry, we're already pointing at it. */ if ((le32toh(plcp) & IWN_RFLAG_MCS) && IEEE80211_RV(le32toh(plcp)) > 7) linkq.mimo = i + 1; /* Next retry at immediate lower bit-rate. */ if (txrate > 0) txrate--; } /* * If we reached the end of the list and indeed we hit * all MIMO rates (eg 5300 doing MCS23-15) then yes, * set mimo to 15. Setting it to 16 panics the firmware. */ if (linkq.mimo > 15) linkq.mimo = 15; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); } /* * Broadcast node is used to send group-addressed and management frames. */ static int iwn_add_broadcast_node(struct iwn_softc *sc, int async) { struct iwn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; struct iwn_node_info node; struct iwn_cmd_link_quality linkq; uint8_t txant; int i, error; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); node.id = sc->broadcast_id; DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); if ((error = ops->add_node(sc, &node, async)) != 0) return error; /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txchainmask); memset(&linkq, 0, sizeof linkq); linkq.id = sc->broadcast_id; linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); linkq.ampdu_max = 64; linkq.ampdu_threshold = 3; linkq.ampdu_limit = htole16(4000); /* 4ms */ /* Use lowest mandatory bit-rate. */ /* XXX rate table lookup? */ if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) linkq.retry[0] = htole32(0xd); else linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); /* Use same bit-rate for all TX retries. */ for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { linkq.retry[i] = linkq.retry[0]; } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); } static int iwn_updateedca(struct ieee80211com *ic) { #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct iwn_softc *sc = ic->ic_softc; struct iwn_edca_params cmd; struct chanAccParams chp; int aci; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); ieee80211_wme_ic_getparams(ic, &chp); memset(&cmd, 0, sizeof cmd); cmd.flags = htole32(IWN_EDCA_UPDATE); IEEE80211_LOCK(ic); for (aci = 0; aci < WME_NUM_AC; aci++) { const struct wmeParams *ac = &chp.cap_wmeParams[aci]; cmd.ac[aci].aifsn = ac->wmep_aifsn; cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); cmd.ac[aci].txoplimit = htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); } IEEE80211_UNLOCK(ic); IWN_LOCK(sc); (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); IWN_UNLOCK(sc); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return 0; #undef IWN_EXP2 } static void iwn_set_promisc(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t promisc_filter; promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC; if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR) sc->rxon->filter |= htole32(promisc_filter); else sc->rxon->filter &= ~htole32(promisc_filter); } static void iwn_update_promisc(struct ieee80211com *ic) { struct iwn_softc *sc = ic->ic_softc; int error; if (ic->ic_opmode == IEEE80211_M_MONITOR) return; /* nothing to do */ IWN_LOCK(sc); if (!(sc->sc_flags & IWN_FLAG_RUNNING)) { IWN_UNLOCK(sc); return; } iwn_set_promisc(sc); if ((error = iwn_send_rxon(sc, 1, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON, error %d\n", __func__, error); } IWN_UNLOCK(sc); } static void iwn_update_mcast(struct ieee80211com *ic) { /* Ignore */ } static void iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) { struct iwn_cmd_led led; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); #if 0 /* XXX don't set LEDs during scan? */ if (sc->sc_is_scanning) return; #endif /* Clear microcode LED ownership. */ IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); led.which = which; led.unit = htole32(10000); /* on/off in unit of 100ms */ led.off = off; led.on = on; (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); } /* * Set the critical temperature at which the firmware will stop the radio * and notify us. */ static int iwn_set_critical_temp(struct iwn_softc *sc) { struct iwn_critical_temp crit; int32_t temp; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); if (sc->hw_type == IWN_HW_REV_TYPE_5150) temp = (IWN_CTOK(110) - sc->temp_off) * -5; else if (sc->hw_type == IWN_HW_REV_TYPE_4965) temp = IWN_CTOK(110); else temp = 110; memset(&crit, 0, sizeof crit); crit.tempR = htole32(temp); DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); } static int iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) { struct iwn_cmd_timing cmd; uint64_t val, mod; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); memset(&cmd, 0, sizeof cmd); memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); cmd.bintval = htole16(ni->ni_intval); cmd.lintval = htole16(10); /* Compute remaining time until next beacon. */ val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; mod = le64toh(cmd.tstamp) % val; cmd.binitval = htole32((uint32_t)(val - mod)); DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); } static void iwn4965_power_calibration(struct iwn_softc *sc, int temp) { DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Adjust TX power if need be (delta >= 3 degC). */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", __func__, sc->temp, temp); if (abs(temp - sc->temp) >= 3) { /* Record temperature of last calibration. */ sc->temp = temp; (void)iwn4965_set_txpower(sc, 1); } } /* * Set TX power for current channel (each rate has its own power settings). * This function takes into account the regulatory information from EEPROM, * the current temperature and the current voltage. */ static int iwn4965_set_txpower(struct iwn_softc *sc, int async) { /* Fixed-point arithmetic division using a n-bit fractional part. */ #define fdivround(a, b, n) \ ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) /* Linear interpolation. */ #define interpolate(x, x1, y1, x2, y2, n) \ ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; struct iwn_ucode_info *uc = &sc->ucode_info; struct iwn4965_cmd_txpower cmd; struct iwn4965_eeprom_chan_samples *chans; const uint8_t *rf_gain, *dsp_gain; int32_t vdiff, tdiff; int i, is_chan_5ghz, c, grp, maxpwr; uint8_t chan; sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; /* Retrieve current channel from last RXON. */ chan = sc->rxon->chan; is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0; DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", chan); memset(&cmd, 0, sizeof cmd); cmd.band = is_chan_5ghz ? 0 : 1; cmd.chan = chan; if (is_chan_5ghz) { maxpwr = sc->maxpwr5GHz; rf_gain = iwn4965_rf_gain_5ghz; dsp_gain = iwn4965_dsp_gain_5ghz; } else { maxpwr = sc->maxpwr2GHz; rf_gain = iwn4965_rf_gain_2ghz; dsp_gain = iwn4965_dsp_gain_2ghz; } /* Compute voltage compensation. */ vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; if (vdiff > 0) vdiff *= 2; if (abs(vdiff) > 2) vdiff = 0; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); /* Get channel attenuation group. */ if (chan <= 20) /* 1-20 */ grp = 4; else if (chan <= 43) /* 34-43 */ grp = 0; else if (chan <= 70) /* 44-70 */ grp = 1; else if (chan <= 124) /* 71-124 */ grp = 2; else /* 125-200 */ grp = 3; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); /* Get channel sub-band. */ for (i = 0; i < IWN_NBANDS; i++) if (sc->bands[i].lo != 0 && sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) break; if (i == IWN_NBANDS) /* Can't happen in real-life. */ return EINVAL; chans = sc->bands[i].chans; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: chan %d sub-band=%d\n", __func__, chan, i); for (c = 0; c < 2; c++) { uint8_t power, gain, temp; int maxchpwr, pwr, ridx, idx; power = interpolate(chan, chans[0].num, chans[0].samples[c][1].power, chans[1].num, chans[1].samples[c][1].power, 1); gain = interpolate(chan, chans[0].num, chans[0].samples[c][1].gain, chans[1].num, chans[1].samples[c][1].gain, 1); temp = interpolate(chan, chans[0].num, chans[0].samples[c][1].temp, chans[1].num, chans[1].samples[c][1].temp, 1); DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: Tx chain %d: power=%d gain=%d temp=%d\n", __func__, c, power, gain, temp); /* Compute temperature compensation. */ tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", __func__, tdiff, sc->temp, temp); for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { /* Convert dBm to half-dBm. */ maxchpwr = sc->maxpwr[chan] * 2; if ((ridx / 8) & 1) maxchpwr -= 6; /* MIMO 2T: -3dB */ pwr = maxpwr; /* Adjust TX power based on rate. */ if ((ridx % 8) == 5) pwr -= 15; /* OFDM48: -7.5dB */ else if ((ridx % 8) == 6) pwr -= 17; /* OFDM54: -8.5dB */ else if ((ridx % 8) == 7) pwr -= 20; /* OFDM60: -10dB */ else pwr -= 10; /* Others: -5dB */ /* Do not exceed channel max TX power. */ if (pwr > maxchpwr) pwr = maxchpwr; idx = gain - (pwr - power) - tdiff - vdiff; if ((ridx / 8) & 1) /* MIMO */ idx += (int32_t)le32toh(uc->atten[grp][c]); if (cmd.band == 0) idx += 9; /* 5GHz */ if (ridx == IWN_RIDX_MAX) idx += 5; /* CCK */ /* Make sure idx stays in a valid range. */ if (idx < 0) idx = 0; else if (idx > IWN4965_MAX_PWR_INDEX) idx = IWN4965_MAX_PWR_INDEX; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: Tx chain %d, rate idx %d: power=%d\n", __func__, c, ridx, idx); cmd.power[ridx].rf_gain[c] = rf_gain[idx]; cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; } } DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, "%s: set tx power for chan %d\n", __func__, chan); return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); #undef interpolate #undef fdivround } static int iwn5000_set_txpower(struct iwn_softc *sc, int async) { struct iwn5000_cmd_txpower cmd; int cmdid; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* * TX power calibration is handled automatically by the firmware * for 5000 Series. */ memset(&cmd, 0, sizeof cmd); cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ cmd.flags = IWN5000_TXPOWER_NO_CLOSED; cmd.srv_limit = IWN5000_TXPOWER_AUTO; DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, "%s: setting TX power; rev=%d\n", __func__, IWN_UCODE_API(sc->ucode_rev)); if (IWN_UCODE_API(sc->ucode_rev) == 1) cmdid = IWN_CMD_TXPOWER_DBM_V1; else cmdid = IWN_CMD_TXPOWER_DBM; return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); } /* * Retrieve the maximum RSSI (in dBm) among receivers. */ static int iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) { struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; uint8_t mask, agc; int rssi; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; agc = (le16toh(phy->agc) >> 7) & 0x7f; rssi = 0; if (mask & IWN_ANT_A) rssi = MAX(rssi, phy->rssi[0]); if (mask & IWN_ANT_B) rssi = MAX(rssi, phy->rssi[2]); if (mask & IWN_ANT_C) rssi = MAX(rssi, phy->rssi[4]); DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], rssi - agc - IWN_RSSI_TO_DBM); return rssi - agc - IWN_RSSI_TO_DBM; } static int iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) { struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; uint8_t agc; int rssi; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); agc = (le32toh(phy->agc) >> 9) & 0x7f; rssi = MAX(le16toh(phy->rssi[0]) & 0xff, le16toh(phy->rssi[1]) & 0xff); rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, phy->rssi[0], phy->rssi[1], phy->rssi[2], rssi - agc - IWN_RSSI_TO_DBM); return rssi - agc - IWN_RSSI_TO_DBM; } /* * Retrieve the average noise (in dBm) among receivers. */ static int iwn_get_noise(const struct iwn_rx_general_stats *stats) { int i, total, nbant, noise; total = nbant = 0; for (i = 0; i < 3; i++) { if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) continue; total += noise; nbant++; } /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; } /* * Compute temperature (in degC) from last received statistics. */ static int iwn4965_get_temperature(struct iwn_softc *sc) { struct iwn_ucode_info *uc = &sc->ucode_info; int32_t r1, r2, r3, r4, temp; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); r1 = le32toh(uc->temp[0].chan20MHz); r2 = le32toh(uc->temp[1].chan20MHz); r3 = le32toh(uc->temp[2].chan20MHz); r4 = le32toh(sc->rawtemp); if (r1 == r3) /* Prevents division by 0 (should not happen). */ return 0; /* Sign-extend 23-bit R4 value to 32-bit. */ r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; /* Compute temperature in Kelvin. */ temp = (259 * (r4 - r2)) / (r3 - r1); temp = (temp * 97) / 100 + 8; DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, IWN_KTOC(temp)); return IWN_KTOC(temp); } static int iwn5000_get_temperature(struct iwn_softc *sc) { int32_t temp; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* * Temperature is not used by the driver for 5000 Series because * TX power calibration is handled by firmware. */ temp = le32toh(sc->rawtemp); if (sc->hw_type == IWN_HW_REV_TYPE_5150) { temp = (temp / -5) + sc->temp_off; temp = IWN_KTOC(temp); } return temp; } /* * Initialize sensitivity calibration state machine. */ static int iwn_init_sensitivity(struct iwn_softc *sc) { struct iwn_ops *ops = &sc->ops; struct iwn_calib_state *calib = &sc->calib; uint32_t flags; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Reset calibration state machine. */ memset(calib, 0, sizeof (*calib)); calib->state = IWN_CALIB_STATE_INIT; calib->cck_state = IWN_CCK_STATE_HIFA; /* Set initial correlation values. */ calib->ofdm_x1 = sc->limits->min_ofdm_x1; calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; calib->ofdm_x4 = sc->limits->min_ofdm_x4; calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; calib->cck_x4 = 125; calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; calib->energy_cck = sc->limits->energy_cck; /* Write initial sensitivity. */ if ((error = iwn_send_sensitivity(sc)) != 0) return error; /* Write initial gains. */ if ((error = ops->init_gains(sc)) != 0) return error; /* Request statistics at each beacon interval. */ flags = 0; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", __func__); return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); } /* * Collect noise and RSSI statistics for the first 20 beacons received * after association and use them to determine connected antennas and * to set differential gains. */ static void iwn_collect_noise(struct iwn_softc *sc, const struct iwn_rx_general_stats *stats) { struct iwn_ops *ops = &sc->ops; struct iwn_calib_state *calib = &sc->calib; struct ieee80211com *ic = &sc->sc_ic; uint32_t val; int i; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Accumulate RSSI and noise for all 3 antennas. */ for (i = 0; i < 3; i++) { calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; calib->noise[i] += le32toh(stats->noise[i]) & 0xff; } /* NB: We update differential gains only once after 20 beacons. */ if (++calib->nbeacons < 20) return; /* Determine highest average RSSI. */ val = MAX(calib->rssi[0], calib->rssi[1]); val = MAX(calib->rssi[2], val); /* Determine which antennas are connected. */ sc->chainmask = sc->rxchainmask; for (i = 0; i < 3; i++) if (val - calib->rssi[i] > 15 * 20) sc->chainmask &= ~(1 << i); DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", __func__, sc->rxchainmask, sc->chainmask); /* If none of the TX antennas are connected, keep at least one. */ if ((sc->chainmask & sc->txchainmask) == 0) sc->chainmask |= IWN_LSB(sc->txchainmask); (void)ops->set_gains(sc); calib->state = IWN_CALIB_STATE_RUN; #ifdef notyet /* XXX Disable RX chains with no antennas connected. */ sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); if (sc->sc_is_scanning) device_printf(sc->sc_dev, "%s: is_scanning set, before RXON\n", __func__); (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); #endif /* Enable power-saving mode if requested by user. */ if (ic->ic_flags & IEEE80211_F_PMGTON) (void)iwn_set_pslevel(sc, 0, 3, 1); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); } static int iwn4965_init_gains(struct iwn_softc *sc) { struct iwn_phy_calib_gain cmd; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); memset(&cmd, 0, sizeof cmd); cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; /* Differential gains initially set to 0 for all 3 antennas. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting initial differential gains\n", __func__); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } static int iwn5000_init_gains(struct iwn_softc *sc) { struct iwn_phy_calib cmd; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); memset(&cmd, 0, sizeof cmd); cmd.code = sc->reset_noise_gain; cmd.ngroups = 1; cmd.isvalid = 1; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting initial differential gains\n", __func__); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } static int iwn4965_set_gains(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_gain cmd; int i, delta, noise; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Get minimal noise among connected antennas. */ noise = INT_MAX; /* NB: There's at least one antenna. */ for (i = 0; i < 3; i++) if (sc->chainmask & (1 << i)) noise = MIN(calib->noise[i], noise); memset(&cmd, 0, sizeof cmd); cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; /* Set differential gains for connected antennas. */ for (i = 0; i < 3; i++) { if (sc->chainmask & (1 << i)) { /* Compute attenuation (in unit of 1.5dB). */ delta = (noise - (int32_t)calib->noise[i]) / 30; /* NB: delta <= 0 */ /* Limit to [-4.5dB,0]. */ cmd.gain[i] = MIN(abs(delta), 3); if (delta < 0) cmd.gain[i] |= 1 << 2; /* sign bit */ } } DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } static int iwn5000_set_gains(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_gain cmd; int i, ant, div, delta; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* We collected 20 beacons and !=6050 need a 1.5 factor. */ div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; memset(&cmd, 0, sizeof cmd); cmd.code = sc->noise_gain; cmd.ngroups = 1; cmd.isvalid = 1; /* Get first available RX antenna as referential. */ ant = IWN_LSB(sc->rxchainmask); /* Set differential gains for other antennas. */ for (i = ant + 1; i < 3; i++) { if (sc->chainmask & (1 << i)) { /* The delta is relative to antenna "ant". */ delta = ((int32_t)calib->noise[ant] - (int32_t)calib->noise[i]) / div; /* Limit to [-4.5dB,+4.5dB]. */ cmd.gain[i - 1] = MIN(abs(delta), 3); if (delta < 0) cmd.gain[i - 1] |= 1 << 2; /* sign bit */ } } DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, "setting differential gains Ant B/C: %x/%x (%x)\n", cmd.gain[0], cmd.gain[1], sc->chainmask); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } /* * Tune RF RX sensitivity based on the number of false alarms detected * during the last beacon period. */ static void iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) { #define inc(val, inc, max) \ if ((val) < (max)) { \ if ((val) < (max) - (inc)) \ (val) += (inc); \ else \ (val) = (max); \ needs_update = 1; \ } #define dec(val, dec, min) \ if ((val) > (min)) { \ if ((val) > (min) + (dec)) \ (val) -= (dec); \ else \ (val) = (min); \ needs_update = 1; \ } const struct iwn_sensitivity_limits *limits = sc->limits; struct iwn_calib_state *calib = &sc->calib; uint32_t val, rxena, fa; uint32_t energy[3], energy_min; uint8_t noise[3], noise_ref; int i, needs_update = 0; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Check that we've been enabled long enough. */ if ((rxena = le32toh(stats->general.load)) == 0){ DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); return; } /* Compute number of false alarms since last call for OFDM. */ fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ if (fa > 50 * rxena) { /* High false alarm count, decrease sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: OFDM high false alarm count: %u\n", __func__, fa); inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); } else if (fa < 5 * rxena) { /* Low false alarm count, increase sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: OFDM low false alarm count: %u\n", __func__, fa); dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); } /* Compute maximum noise among 3 receivers. */ for (i = 0; i < 3; i++) noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; val = MAX(noise[0], noise[1]); val = MAX(noise[2], val); /* Insert it into our samples table. */ calib->noise_samples[calib->cur_noise_sample] = val; calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; /* Compute maximum noise among last 20 samples. */ noise_ref = calib->noise_samples[0]; for (i = 1; i < 20; i++) noise_ref = MAX(noise_ref, calib->noise_samples[i]); /* Compute maximum energy among 3 receivers. */ for (i = 0; i < 3; i++) energy[i] = le32toh(stats->general.energy[i]); val = MIN(energy[0], energy[1]); val = MIN(energy[2], val); /* Insert it into our samples table. */ calib->energy_samples[calib->cur_energy_sample] = val; calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; /* Compute minimum energy among last 10 samples. */ energy_min = calib->energy_samples[0]; for (i = 1; i < 10; i++) energy_min = MAX(energy_min, calib->energy_samples[i]); energy_min += 6; /* Compute number of false alarms since last call for CCK. */ fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; fa += le32toh(stats->cck.fa) - calib->fa_cck; fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ if (fa > 50 * rxena) { /* High false alarm count, decrease sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK high false alarm count: %u\n", __func__, fa); calib->cck_state = IWN_CCK_STATE_HIFA; calib->low_fa = 0; if (calib->cck_x4 > 160) { calib->noise_ref = noise_ref; if (calib->energy_cck > 2) dec(calib->energy_cck, 2, energy_min); } if (calib->cck_x4 < 160) { calib->cck_x4 = 161; needs_update = 1; } else inc(calib->cck_x4, 3, limits->max_cck_x4); inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); } else if (fa < 5 * rxena) { /* Low false alarm count, increase sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK low false alarm count: %u\n", __func__, fa); calib->cck_state = IWN_CCK_STATE_LOFA; calib->low_fa++; if (calib->cck_state != IWN_CCK_STATE_INIT && (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || calib->low_fa > 100)) { inc(calib->energy_cck, 2, limits->min_energy_cck); dec(calib->cck_x4, 3, limits->min_cck_x4); dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); } } else { /* Not worth to increase or decrease sensitivity. */ DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: CCK normal false alarm count: %u\n", __func__, fa); calib->low_fa = 0; calib->noise_ref = noise_ref; if (calib->cck_state == IWN_CCK_STATE_HIFA) { /* Previous interval had many false alarms. */ dec(calib->energy_cck, 8, energy_min); } calib->cck_state = IWN_CCK_STATE_INIT; } if (needs_update) (void)iwn_send_sensitivity(sc); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); #undef dec #undef inc } static int iwn_send_sensitivity(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_enhanced_sensitivity_cmd cmd; int len; memset(&cmd, 0, sizeof cmd); len = sizeof (struct iwn_sensitivity_cmd); cmd.which = IWN_SENSITIVITY_WORKTBL; /* OFDM modulation. */ cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); cmd.energy_ofdm_th = htole16(62); /* CCK modulation. */ cmd.corr_cck_x4 = htole16(calib->cck_x4); cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); cmd.energy_cck = htole16(calib->energy_cck); /* Barker modulation: use default values. */ cmd.corr_barker = htole16(190); cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, calib->energy_cck); if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) goto send; /* Enhanced sensitivity settings. */ len = sizeof (struct iwn_enhanced_sensitivity_cmd); cmd.ofdm_det_slope_mrc = htole16(668); cmd.ofdm_det_icept_mrc = htole16(4); cmd.ofdm_det_slope = htole16(486); cmd.ofdm_det_icept = htole16(37); cmd.cck_det_slope_mrc = htole16(853); cmd.cck_det_icept_mrc = htole16(4); cmd.cck_det_slope = htole16(476); cmd.cck_det_icept = htole16(99); send: return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); } /* * Look at the increase of PLCP errors over time; if it exceeds * a programmed threshold then trigger an RF retune. */ static void iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs) { int32_t delta_ofdm, delta_ht, delta_cck; struct iwn_calib_state *calib = &sc->calib; int delta_ticks, cur_ticks; int delta_msec; int thresh; /* * Calculate the difference between the current and * previous statistics. */ delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck; delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm; delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht; /* * Calculate the delta in time between successive statistics * messages. Yes, it can roll over; so we make sure that * this doesn't happen. * * XXX go figure out what to do about rollover * XXX go figure out what to do if ticks rolls over to -ve instead! * XXX go stab signed integer overflow undefined-ness in the face. */ cur_ticks = ticks; delta_ticks = cur_ticks - sc->last_calib_ticks; /* * If any are negative, then the firmware likely reset; so just * bail. We'll pick this up next time. */ if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0) return; /* * delta_ticks is in ticks; we need to convert it up to milliseconds * so we can do some useful math with it. */ delta_msec = ticks_to_msecs(delta_ticks); /* * Calculate what our threshold is given the current delta_msec. */ thresh = sc->base_params->plcp_err_threshold * delta_msec; DPRINTF(sc, IWN_DEBUG_STATE, "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n", __func__, delta_msec, delta_cck, delta_ofdm, delta_ht, (delta_msec + delta_cck + delta_ofdm + delta_ht), thresh); /* * If we need a retune, then schedule a single channel scan * to a channel that isn't the currently active one! * * The math from linux iwlwifi: * * if ((delta * 100 / msecs) > threshold) */ if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) { DPRINTF(sc, IWN_DEBUG_ANY, "%s: PLCP error threshold raw (%d) comparison (%d) " "over limit (%d); retune!\n", __func__, (delta_cck + delta_ofdm + delta_ht), (delta_cck + delta_ofdm + delta_ht) * 100, thresh); } } /* * Set STA mode power saving level (between 0 and 5). * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. */ static int iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) { struct iwn_pmgt_cmd cmd; const struct iwn_pmgt *pmgt; uint32_t max, skip_dtim; uint32_t reg; int i; DPRINTF(sc, IWN_DEBUG_PWRSAVE, "%s: dtim=%d, level=%d, async=%d\n", __func__, dtim, level, async); /* Select which PS parameters to use. */ if (dtim <= 2) pmgt = &iwn_pmgt[0][level]; else if (dtim <= 10) pmgt = &iwn_pmgt[1][level]; else pmgt = &iwn_pmgt[2][level]; memset(&cmd, 0, sizeof cmd); if (level != 0) /* not CAM */ cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); if (level == 5) cmd.flags |= htole16(IWN_PS_FAST_PD); /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ cmd.flags |= htole16(IWN_PS_PCI_PMGT); cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); cmd.txtimeout = htole32(pmgt->txtimeout * 1024); if (dtim == 0) { dtim = 1; skip_dtim = 0; } else skip_dtim = pmgt->skip_dtim; if (skip_dtim != 0) { cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); max = pmgt->intval[4]; if (max == (uint32_t)-1) max = dtim * (skip_dtim + 1); else if (max > dtim) max = rounddown(max, dtim); } else max = dtim; for (i = 0; i < 5; i++) cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", level); return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); } static int iwn_send_btcoex(struct iwn_softc *sc) { struct iwn_bluetooth cmd; memset(&cmd, 0, sizeof cmd); cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; cmd.lead_time = IWN_BT_LEAD_TIME_DEF; cmd.max_kill = IWN_BT_MAX_KILL_DEF; DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", __func__); return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); } static int iwn_send_advanced_btcoex(struct iwn_softc *sc) { static const uint32_t btcoex_3wire[12] = { 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, }; struct iwn6000_btcoex_config btconfig; struct iwn2000_btcoex_config btconfig2k; struct iwn_btcoex_priotable btprio; struct iwn_btcoex_prot btprot; int error, i; uint8_t flags; memset(&btconfig, 0, sizeof btconfig); memset(&btconfig2k, 0, sizeof btconfig2k); flags = IWN_BT_FLAG_COEX6000_MODE_3W << IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2 if (sc->base_params->bt_sco_disable) flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE; else flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE; flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION; /* Default flags result is 145 as old value */ /* * Flags value has to be review. Values must change if we * which to disable it */ if (sc->base_params->bt_session_2) { btconfig2k.flags = flags; btconfig2k.max_kill = 5; btconfig2k.bt3_t7_timer = 1; btconfig2k.kill_ack = htole32(0xffff0000); btconfig2k.kill_cts = htole32(0xffff0000); btconfig2k.sample_time = 2; btconfig2k.bt3_t2_timer = 0xc; for (i = 0; i < 12; i++) btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]); btconfig2k.valid = htole16(0xff); btconfig2k.prio_boost = htole32(0xf0); DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring advanced bluetooth coexistence" " session 2, flags : 0x%x\n", __func__, flags); error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k, sizeof(btconfig2k), 1); } else { btconfig.flags = flags; btconfig.max_kill = 5; btconfig.bt3_t7_timer = 1; btconfig.kill_ack = htole32(0xffff0000); btconfig.kill_cts = htole32(0xffff0000); btconfig.sample_time = 2; btconfig.bt3_t2_timer = 0xc; for (i = 0; i < 12; i++) btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); btconfig.valid = htole16(0xff); btconfig.prio_boost = 0xf0; DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring advanced bluetooth coexistence," " flags : 0x%x\n", __func__, flags); error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1); } if (error != 0) return error; memset(&btprio, 0, sizeof btprio); btprio.calib_init1 = 0x6; btprio.calib_init2 = 0x7; btprio.calib_periodic_low1 = 0x2; btprio.calib_periodic_low2 = 0x3; btprio.calib_periodic_high1 = 0x4; btprio.calib_periodic_high2 = 0x5; btprio.dtim = 0x6; btprio.scan52 = 0x8; btprio.scan24 = 0xa; error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 1); if (error != 0) return error; /* Force BT state machine change. */ memset(&btprot, 0, sizeof btprot); btprot.open = 1; btprot.type = 1; error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); if (error != 0) return error; btprot.open = 0; return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); } static int iwn5000_runtime_calib(struct iwn_softc *sc) { struct iwn5000_calib_config cmd; memset(&cmd, 0, sizeof cmd); cmd.ucode.once.enable = 0xffffffff; cmd.ucode.once.start = IWN5000_CALIB_DC; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: configuring runtime calibration\n", __func__); return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); } static uint32_t iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint32_t htflags = 0; if (! IEEE80211_IS_CHAN_HT(c)) return (0); htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); if (IEEE80211_IS_CHAN_HT40(c)) { switch (ic->ic_curhtprotmode) { case IEEE80211_HTINFO_OPMODE_HT20PR: htflags |= IWN_RXON_HT_MODEPURE40; break; default: htflags |= IWN_RXON_HT_MODEMIXED; break; } } if (IEEE80211_IS_CHAN_HT40D(c)) htflags |= IWN_RXON_HT_HT40MINUS; return (htflags); } static int iwn_check_bss_filter(struct iwn_softc *sc) { return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0); } static int iwn4965_rxon_assoc(struct iwn_softc *sc, int async) { struct iwn4965_rxon_assoc cmd; struct iwn_rxon *rxon = sc->rxon; cmd.flags = rxon->flags; cmd.filter = rxon->filter; cmd.ofdm_mask = rxon->ofdm_mask; cmd.cck_mask = rxon->cck_mask; cmd.ht_single_mask = rxon->ht_single_mask; cmd.ht_dual_mask = rxon->ht_dual_mask; cmd.rxchain = rxon->rxchain; cmd.reserved = 0; return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); } static int iwn5000_rxon_assoc(struct iwn_softc *sc, int async) { struct iwn5000_rxon_assoc cmd; struct iwn_rxon *rxon = sc->rxon; cmd.flags = rxon->flags; cmd.filter = rxon->filter; cmd.ofdm_mask = rxon->ofdm_mask; cmd.cck_mask = rxon->cck_mask; cmd.reserved1 = 0; cmd.ht_single_mask = rxon->ht_single_mask; cmd.ht_dual_mask = rxon->ht_dual_mask; cmd.ht_triple_mask = rxon->ht_triple_mask; cmd.reserved2 = 0; cmd.rxchain = rxon->rxchain; cmd.acquisition = rxon->acquisition; cmd.reserved3 = 0; return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); } static int iwn_send_rxon(struct iwn_softc *sc, int assoc, int async) { struct iwn_ops *ops = &sc->ops; int error; IWN_LOCK_ASSERT(sc); if (assoc && iwn_check_bss_filter(sc) != 0) { error = ops->rxon_assoc(sc, async); if (error != 0) { device_printf(sc->sc_dev, "%s: RXON_ASSOC command failed, error %d\n", __func__, error); return (error); } } else { if (sc->sc_is_scanning) device_printf(sc->sc_dev, "%s: is_scanning set, before RXON\n", __func__); error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async); if (error != 0) { device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n", __func__, error); return (error); } /* * Reconfiguring RXON clears the firmware nodes table so * we must add the broadcast node again. */ if (iwn_check_bss_filter(sc) == 0 && (error = iwn_add_broadcast_node(sc, async)) != 0) { device_printf(sc->sc_dev, "%s: could not add broadcast node, error %d\n", __func__, error); return (error); } } /* Configuration has changed, set TX power accordingly. */ if ((error = ops->set_txpower(sc, async)) != 0) { device_printf(sc->sc_dev, "%s: could not set TX power, error %d\n", __func__, error); return (error); } return (0); } static int iwn_config(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); const uint8_t *macaddr; uint32_t txmask; uint16_t rxchain; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) { device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are" " exclusive each together. Review NIC config file. Conf" " : 0x%08x Flags : 0x%08x \n", __func__, sc->base_params->calib_need, (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET | IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)); return (EINVAL); } /* Compute temperature calib if needed. Will be send by send calib */ if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) { error = iwn5000_temp_offset_calib(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not set temperature offset\n", __func__); return (error); } } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { error = iwn5000_temp_offset_calibv2(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not compute temperature offset v2\n", __func__); return (error); } } if (sc->hw_type == IWN_HW_REV_TYPE_6050) { /* Configure runtime DC calibration. */ error = iwn5000_runtime_calib(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure runtime calibration\n", __func__); return error; } } /* Configure valid TX chains for >=5000 Series. */ if (sc->hw_type != IWN_HW_REV_TYPE_4965 && IWN_UCODE_API(sc->ucode_rev) > 1) { txmask = htole32(sc->txchainmask); DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, "%s: configuring valid TX chains 0x%x\n", __func__, txmask); error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, sizeof txmask, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure valid TX chains, " "error %d\n", __func__, error); return error; } } /* Configure bluetooth coexistence. */ error = 0; /* Configure bluetooth coexistence if needed. */ if (sc->base_params->bt_mode == IWN_BT_ADVANCED) error = iwn_send_advanced_btcoex(sc); if (sc->base_params->bt_mode == IWN_BT_SIMPLE) error = iwn_send_btcoex(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure bluetooth coexistence, error %d\n", __func__, error); return error; } /* Set mode, channel, RX filter and enable RX. */ sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; memset(sc->rxon, 0, sizeof (struct iwn_rxon)); macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr); IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr); sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); switch (ic->ic_opmode) { case IEEE80211_M_STA: sc->rxon->mode = IWN_MODE_STA; break; case IEEE80211_M_MONITOR: sc->rxon->mode = IWN_MODE_MONITOR; break; default: /* Should not get there. */ break; } iwn_set_promisc(sc); sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ sc->rxon->ht_single_mask = 0xff; sc->rxon->ht_dual_mask = 0xff; sc->rxon->ht_triple_mask = 0xff; /* * In active association mode, ensure that * all the receive chains are enabled. * * Since we're not yet doing SMPS, don't allow the * number of idle RX chains to be less than the active * number. */ rxchain = IWN_RXCHAIN_VALID(sc->rxchainmask) | IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); sc->rxon->rxchain = htole16(rxchain); DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, "%s: rxchainmask=0x%x, nrxchains=%d\n", __func__, sc->rxchainmask, sc->nrxchains); sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration; flags=0x%08x\n", __func__, le32toh(sc->rxon->flags)); if ((error = iwn_send_rxon(sc, 0, 0)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); return error; } if ((error = iwn_set_critical_temp(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not set critical temperature\n", __func__); return error; } /* Set power saving level to CAM during initialization. */ if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { device_printf(sc->sc_dev, "%s: could not set power saving level\n", __func__); return error; } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return 0; } static uint16_t iwn_get_active_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c, uint8_t n_probes) { /* No channel? Default to 2GHz settings */ if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { return (IWN_ACTIVE_DWELL_TIME_2GHZ + IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); } /* 5GHz dwell time */ return (IWN_ACTIVE_DWELL_TIME_5GHZ + IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); } /* * Limit the total dwell time to 85% of the beacon interval. * * Returns the dwell time in milliseconds. */ static uint16_t iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = NULL; int bintval = 0; /* bintval is in TU (1.024mS) */ if (! TAILQ_EMPTY(&ic->ic_vaps)) { vap = TAILQ_FIRST(&ic->ic_vaps); bintval = vap->iv_bss->ni_intval; } /* * If it's non-zero, we should calculate the minimum of * it and the DWELL_BASE. * * XXX Yes, the math should take into account that bintval * is 1.024mS, not 1mS.. */ if (bintval > 0) { DPRINTF(sc, IWN_DEBUG_SCAN, "%s: bintval=%d\n", __func__, bintval); return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); } /* No association context? Default */ return (IWN_PASSIVE_DWELL_BASE); } static uint16_t iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c) { uint16_t passive; if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; } else { passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; } /* Clamp to the beacon interval if we're associated */ return (iwn_limit_dwell(sc, passive)); } static int iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap, struct ieee80211_scan_state *ss, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = vap->iv_bss; struct iwn_scan_hdr *hdr; struct iwn_cmd_data *tx; struct iwn_scan_essid *essid; struct iwn_scan_chan *chan; struct ieee80211_frame *wh; struct ieee80211_rateset *rs; uint8_t *buf, *frm; uint16_t rxchain; uint8_t txant; int buflen, error; int is_active; uint16_t dwell_active, dwell_passive; uint32_t extra, scan_service_time; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* * We are absolutely not allowed to send a scan command when another * scan command is pending. */ if (sc->sc_is_scanning) { device_printf(sc->sc_dev, "%s: called whilst scanning!\n", __func__); return (EAGAIN); } /* Assign the scan channel */ c = ic->ic_curchan; sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); if (buf == NULL) { device_printf(sc->sc_dev, "%s: could not allocate buffer for scan command\n", __func__); return ENOMEM; } hdr = (struct iwn_scan_hdr *)buf; /* * Move to the next channel if no frames are received within 10ms * after sending the probe request. */ hdr->quiet_time = htole16(10); /* timeout in milliseconds */ hdr->quiet_threshold = htole16(1); /* min # of packets */ /* * Max needs to be greater than active and passive and quiet! * It's also in microseconds! */ hdr->max_svc = htole32(250 * 1024); /* * Reset scan: interval=100 * Normal scan: interval=becaon interval * suspend_time: 100 (TU) * */ extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22; //scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024); scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */ hdr->pause_svc = htole32(scan_service_time); /* Select antennas for scanning. */ rxchain = IWN_RXCHAIN_VALID(sc->rxchainmask) | IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | IWN_RXCHAIN_DRIVER_FORCE; if (IEEE80211_IS_CHAN_A(c) && sc->hw_type == IWN_HW_REV_TYPE_4965) { /* Ant A must be avoided in 5GHz because of an HW bug. */ rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); } else /* Use all available RX antennas. */ rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); hdr->rxchain = htole16(rxchain); hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); tx = (struct iwn_cmd_data *)(hdr + 1); tx->flags = htole32(IWN_TX_AUTO_SEQ); tx->id = sc->broadcast_id; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); if (IEEE80211_IS_CHAN_5GHZ(c)) { /* Send probe requests at 6Mbps. */ tx->rate = htole32(0xd); rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; } else { hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); if (sc->hw_type == IWN_HW_REV_TYPE_4965 && sc->rxon->associd && sc->rxon->chan > 14) tx->rate = htole32(0xd); else { /* Send probe requests at 1Mbps. */ tx->rate = htole32(10 | IWN_RFLAG_CCK); } rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; } /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txchainmask); tx->rate |= htole32(IWN_RFLAG_ANT(txant)); /* * Only do active scanning if we're announcing a probe request * for a given SSID (or more, if we ever add it to the driver.) */ is_active = 0; /* * If we're scanning for a specific SSID, add it to the command. * * XXX maybe look at adding support for scanning multiple SSIDs? */ essid = (struct iwn_scan_essid *)(tx + 1); if (ss != NULL) { if (ss->ss_ssid[0].len != 0) { essid[0].id = IEEE80211_ELEMID_SSID; essid[0].len = ss->ss_ssid[0].len; memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); } DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n", __func__, ss->ss_ssid[0].len, ss->ss_ssid[0].len, ss->ss_ssid[0].ssid); if (ss->ss_nssid > 0) is_active = 1; } /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh = (struct ieee80211_frame *)(essid + 20); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp)); IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr); *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ frm = (uint8_t *)(wh + 1); frm = ieee80211_add_ssid(frm, NULL, 0); frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); if (ic->ic_htcaps & IEEE80211_HTC_HT) frm = ieee80211_add_htcap(frm, ni); /* Set length of probe request. */ tx->len = htole16(frm - (uint8_t *)wh); /* * If active scanning is requested but a certain channel is * marked passive, we can do active scanning if we detect * transmissions. * * There is an issue with some firmware versions that triggers * a sysassert on a "good CRC threshold" of zero (== disabled), * on a radar channel even though this means that we should NOT * send probes. * * The "good CRC threshold" is the number of frames that we * need to receive during our dwell time on a channel before * sending out probes -- setting this to a huge value will * mean we never reach it, but at the same time work around * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER * here instead of IWL_GOOD_CRC_TH_DISABLED. * * This was fixed in later versions along with some other * scan changes, and the threshold behaves as a flag in those * versions. */ /* * If we're doing active scanning, set the crc_threshold * to a suitable value. This is different to active veruss * passive scanning depending upon the channel flags; the * firmware will obey that particular check for us. */ if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) hdr->crc_threshold = is_active ? IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; else hdr->crc_threshold = is_active ? IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; chan = (struct iwn_scan_chan *)frm; chan->chan = htole16(ieee80211_chan2ieee(ic, c)); chan->flags = 0; if (ss->ss_nssid > 0) chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); chan->dsp_gain = 0x6e; /* * Set the passive/active flag depending upon the channel mode. * XXX TODO: take the is_active flag into account as well? */ if (c->ic_flags & IEEE80211_CHAN_PASSIVE) chan->flags |= htole32(IWN_CHAN_PASSIVE); else chan->flags |= htole32(IWN_CHAN_ACTIVE); /* * Calculate the active/passive dwell times. */ dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid); dwell_passive = iwn_get_passive_dwell_time(sc, c); /* Make sure they're valid */ if (dwell_passive <= dwell_active) dwell_passive = dwell_active + 1; chan->active = htole16(dwell_active); chan->passive = htole16(dwell_passive); if (IEEE80211_IS_CHAN_5GHZ(c)) chan->rf_gain = 0x3b; else chan->rf_gain = 0x28; DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x " "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x " "isactive=%d numssid=%d\n", __func__, chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, dwell_active, dwell_passive, scan_service_time, hdr->crc_threshold, is_active, ss->ss_nssid); hdr->nchan++; chan++; buflen = (uint8_t *)chan - buf; hdr->len = htole16(buflen); if (sc->sc_is_scanning) { device_printf(sc->sc_dev, "%s: called with is_scanning set!\n", __func__); } sc->sc_is_scanning = 1; DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", hdr->nchan); error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); free(buf, M_DEVBUF); if (error == 0) callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return error; } static int iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = vap->iv_bss; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; /* Update adapter configuration. */ IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { sc->rxon->cck_mask = 0; sc->rxon->ofdm_mask = 0x15; } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { sc->rxon->cck_mask = 0x03; sc->rxon->ofdm_mask = 0; } else { /* Assume 802.11b/g. */ sc->rxon->cck_mask = 0x03; sc->rxon->ofdm_mask = 0x15; } /* try HT */ sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, sc->rxon->ofdm_mask); if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); return (error); } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return (0); } static int iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) { struct iwn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = vap->iv_bss; struct iwn_node_info node; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* Link LED blinks while monitoring. */ iwn_set_led(sc, IWN_LED_LINK, 5, 5); return 0; } if ((error = iwn_set_timing(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not set timing, error %d\n", __func__, error); return error; } /* Update adapter configuration. */ IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { sc->rxon->cck_mask = 0; sc->rxon->ofdm_mask = 0x15; } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { sc->rxon->cck_mask = 0x03; sc->rxon->ofdm_mask = 0; } else { /* Assume 802.11b/g. */ sc->rxon->cck_mask = 0x0f; sc->rxon->ofdm_mask = 0x15; } /* try HT */ sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan)); sc->rxon->filter |= htole32(IWN_FILTER_BSS); DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n", sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode); if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { device_printf(sc->sc_dev, "%s: could not send RXON\n", __func__); return error; } /* Fake a join to initialize the TX rate. */ ((struct iwn_node *)ni)->id = IWN_ID_BSS; iwn_newassoc(ni, 1); /* Add BSS node. */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.id = IWN_ID_BSS; if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { case IEEE80211_HTCAP_SMPS_ENA: node.htflags |= htole32(IWN_SMPS_MIMO_DIS); break; case IEEE80211_HTCAP_SMPS_DYNAMIC: node.htflags |= htole32(IWN_SMPS_MIMO_PROT); break; } node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | IWN_AMDPU_DENSITY(5)); /* 4us */ if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) node.htflags |= htole32(IWN_NODE_HT40); } DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); error = ops->add_node(sc, &node, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not add BSS node, error %d\n", __func__, error); return error; } DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", __func__, node.id); if ((error = iwn_set_link_quality(sc, ni)) != 0) { device_printf(sc->sc_dev, "%s: could not setup link quality for node %d, error %d\n", __func__, node.id, error); return error; } if ((error = iwn_init_sensitivity(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not set sensitivity, error %d\n", __func__, error); return error; } /* Start periodic calibration timer. */ sc->calib.state = IWN_CALIB_STATE_ASSOC; sc->calib_cnt = 0; callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, sc); /* Link LED always on while associated. */ iwn_set_led(sc, IWN_LED_LINK, 0, 1); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return 0; } /* * This function is called by upper layer when an ADDBA request is received * from another STA and before the ADDBA response is sent. */ static int iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, int baparamset, int batimeout, int baseqctl) { -#define MS(_v, _f) (((_v) & _f) >> _f##_S) struct iwn_softc *sc = ni->ni_ic->ic_softc; struct iwn_ops *ops = &sc->ops; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; uint16_t ssn; uint8_t tid; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); - tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); - ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); + tid = _IEEE80211_MASKSHIFT(le16toh(baparamset), IEEE80211_BAPS_TID); + ssn = _IEEE80211_MASKSHIFT(le16toh(baseqctl), IEEE80211_BASEQ_START); if (wn->id == IWN_ID_UNDEFINED) return (ENOENT); memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_ADDBA; node.addba_tid = tid; node.addba_ssn = htole16(ssn); DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, ssn); error = ops->add_node(sc, &node, 1); if (error != 0) return error; return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); -#undef MS } /* * This function is called by upper layer on teardown of an HT-immediate * Block Ack agreement (eg. uppon receipt of a DELBA frame). */ static void iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { struct ieee80211com *ic = ni->ni_ic; struct iwn_softc *sc = ic->ic_softc; struct iwn_ops *ops = &sc->ops; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; uint8_t tid; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); if (wn->id == IWN_ID_UNDEFINED) goto end; /* XXX: tid as an argument */ for (tid = 0; tid < WME_NUM_TID; tid++) { if (&ni->ni_rx_ampdu[tid] == rap) break; } memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_DELBA; node.delba_tid = tid; DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); (void)ops->add_node(sc, &node, 1); end: sc->sc_ampdu_rx_stop(ni, rap); } static int iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout) { struct iwn_softc *sc = ni->ni_ic->ic_softc; int qid; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { if (sc->qid2tap[qid] == NULL) break; } if (qid == sc->ntxqs) { DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", __func__); return 0; } tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); if (tap->txa_private == NULL) { device_printf(sc->sc_dev, "%s: failed to alloc TX aggregation structure\n", __func__); return 0; } sc->qid2tap[qid] = tap; *(int *)tap->txa_private = qid; return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout); } static int iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int code, int baparamset, int batimeout) { struct iwn_softc *sc = ni->ni_ic->ic_softc; int qid = *(int *)tap->txa_private; uint8_t tid = tap->txa_tid; int ret; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); if (code == IEEE80211_STATUS_SUCCESS) { ni->ni_txseqs[tid] = tap->txa_start & 0xfff; ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); if (ret != 1) return ret; } else { sc->qid2tap[qid] = NULL; free(tap->txa_private, M_DEVBUF); tap->txa_private = NULL; } return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); } /* * This function is called by upper layer when an ADDBA response is received * from another STA. */ static int iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; struct iwn_softc *sc = ni->ni_ic->ic_softc; struct iwn_ops *ops = &sc->ops; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; int error, qid; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); if (wn->id == IWN_ID_UNDEFINED) return (0); /* Enable TX for the specified RA/TID. */ wn->disable_tid &= ~(1 << tid); memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_DISABLE_TID; node.disable_tid = htole16(wn->disable_tid); error = ops->add_node(sc, &node, 1); if (error != 0) return 0; if ((error = iwn_nic_lock(sc)) != 0) return 0; qid = *(int *)tap->txa_private; DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", __func__, wn->id, tid, tap->txa_start, qid); ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); iwn_nic_unlock(sc); iwn_set_link_quality(sc, ni); return 1; } static void iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct iwn_softc *sc = ni->ni_ic->ic_softc; struct iwn_ops *ops = &sc->ops; uint8_t tid = tap->txa_tid; int qid; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); sc->sc_addba_stop(ni, tap); if (tap->txa_private == NULL) return; qid = *(int *)tap->txa_private; if (sc->txq[qid].queued != 0) return; if (iwn_nic_lock(sc) != 0) return; ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); iwn_nic_unlock(sc); sc->qid2tap[qid] = NULL; free(tap->txa_private, M_DEVBUF); tap->txa_private = NULL; } static void iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, int qid, uint8_t tid, uint16_t ssn) { struct iwn_node *wn = (void *)ni; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_CHGACT); /* Assign RA/TID translation to the queue. */ iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), wn->id << 4 | tid); /* Enable chain-building mode for the queue. */ iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); /* Set scheduler window size. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); /* Set scheduler frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16); /* Enable interrupts for the queue. */ iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as active. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | iwn_tid2fifo[tid] << 1); } static void iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) { DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_CHGACT); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); /* Disable interrupts for the queue. */ iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as inactive. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); } static void iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, int qid, uint8_t tid, uint16_t ssn) { DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); struct iwn_node *wn = (void *)ni; /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_CHGACT); /* Assign RA/TID translation to the queue. */ iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), wn->id << 4 | tid); /* Enable chain-building mode for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); /* Enable aggregation for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); /* Set scheduler window size and frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); /* Enable interrupts for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as active. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); } static void iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) { DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_CHGACT); /* Disable aggregation for the queue. */ iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); /* Disable interrupts for the queue. */ iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as inactive. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); } /* * Query calibration tables from the initialization firmware. We do this * only once at first boot. Called from a process context. */ static int iwn5000_query_calibration(struct iwn_softc *sc) { struct iwn5000_calib_config cmd; int error; memset(&cmd, 0, sizeof cmd); cmd.ucode.once.enable = htole32(0xffffffff); cmd.ucode.once.start = htole32(0xffffffff); cmd.ucode.once.send = htole32(0xffffffff); cmd.ucode.flags = htole32(0xffffffff); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", __func__); error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); if (error != 0) return error; /* Wait at most two seconds for calibration to complete. */ if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); return error; } /* * Send calibration results to the runtime firmware. These results were * obtained on first boot from the initialization firmware. */ static int iwn5000_send_calibration(struct iwn_softc *sc) { int idx, error; for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) { if (!(sc->base_params->calib_need & (1<calibcmd[idx].buf == NULL) { DPRINTF(sc, IWN_DEBUG_CALIBRATE, "Need calib idx : %d but no available data\n", idx); continue; } DPRINTF(sc, IWN_DEBUG_CALIBRATE, "send calibration result idx=%d len=%d\n", idx, sc->calibcmd[idx].len); error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, sc->calibcmd[idx].len, 0); if (error != 0) { device_printf(sc->sc_dev, "%s: could not send calibration result, error %d\n", __func__, error); return error; } } return 0; } static int iwn5000_send_wimax_coex(struct iwn_softc *sc) { struct iwn5000_wimax_coex wimax; #if 0 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { /* Enable WiMAX coexistence for combo adapters. */ wimax.flags = IWN_WIMAX_COEX_ASSOC_WA_UNMASK | IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | IWN_WIMAX_COEX_STA_TABLE_VALID | IWN_WIMAX_COEX_ENABLE; memcpy(wimax.events, iwn6050_wimax_events, sizeof iwn6050_wimax_events); } else #endif { /* Disable WiMAX coexistence. */ wimax.flags = 0; memset(wimax.events, 0, sizeof wimax.events); } DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", __func__); return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); } static int iwn5000_crystal_calib(struct iwn_softc *sc) { struct iwn5000_phy_calib_crystal cmd; memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_CRYSTAL; cmd.ngroups = 1; cmd.isvalid = 1; cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", cmd.cap_pin[0], cmd.cap_pin[1]); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); } static int iwn5000_temp_offset_calib(struct iwn_softc *sc) { struct iwn5000_phy_calib_temp_offset cmd; memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; cmd.ngroups = 1; cmd.isvalid = 1; if (sc->eeprom_temp != 0) cmd.offset = htole16(sc->eeprom_temp); else cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", le16toh(cmd.offset)); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); } static int iwn5000_temp_offset_calibv2(struct iwn_softc *sc) { struct iwn5000_phy_calib_temp_offsetv2 cmd; memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; cmd.ngroups = 1; cmd.isvalid = 1; if (sc->eeprom_temp != 0) { cmd.offset_low = htole16(sc->eeprom_temp); cmd.offset_high = htole16(sc->eeprom_temp_high); } else { cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); } cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n", le16toh(cmd.offset_low), le16toh(cmd.offset_high), le16toh(cmd.burnt_voltage_ref)); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); } /* * This function is called after the runtime firmware notifies us of its * readiness (called in a process context). */ static int iwn4965_post_alive(struct iwn_softc *sc) { int error, qid; if ((error = iwn_nic_lock(sc)) != 0) return error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Clear TX scheduler state in SRAM. */ sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); /* Set physical address of TX scheduler rings (1KB aligned). */ iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); /* Disable chain mode for all our 16 queues. */ iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); /* Set scheduler window size. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); /* Set scheduler frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16); } /* Enable interrupts for all our 16 queues. */ iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); /* Identify TX FIFO rings (0-7). */ iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ for (qid = 0; qid < 7; qid++) { static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); } iwn_nic_unlock(sc); return 0; } /* * This function is called after the initialization or runtime firmware * notifies us of its readiness (called in a process context). */ static int iwn5000_post_alive(struct iwn_softc *sc) { int error, qid; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Switch to using ICT interrupt mode. */ iwn5000_ict_reset(sc); if ((error = iwn_nic_lock(sc)) != 0){ DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); return error; } /* Clear TX scheduler state in SRAM. */ sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); /* Set physical address of TX scheduler rings (1KB aligned). */ iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); /* Enable chain mode for all queues, except command queue. */ if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf); else iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid), 0); /* Set scheduler window size and frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); } /* Enable interrupts for all our 20 queues. */ iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); /* Identify TX FIFO rings (0-7). */ iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) { /* Mark TX rings as active. */ for (qid = 0; qid < 11; qid++) { static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 }; iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); } } else { /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ for (qid = 0; qid < 7; qid++) { static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); } } iwn_nic_unlock(sc); /* Configure WiMAX coexistence for combo adapters. */ error = iwn5000_send_wimax_coex(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not configure WiMAX coexistence, error %d\n", __func__, error); return error; } if (sc->hw_type != IWN_HW_REV_TYPE_5150) { /* Perform crystal calibration. */ error = iwn5000_crystal_calib(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: crystal calibration failed, error %d\n", __func__, error); return error; } } if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { /* Query calibration from the initialization firmware. */ if ((error = iwn5000_query_calibration(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not query calibration, error %d\n", __func__, error); return error; } /* * We have the calibration results now, reboot with the * runtime firmware (call ourselves recursively!) */ iwn_hw_stop(sc); error = iwn_hw_init(sc); } else { /* Send calibration results to runtime firmware. */ error = iwn5000_send_calibration(sc); } DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return error; } /* * The firmware boot code is small and is intended to be copied directly into * the NIC internal memory (no DMA transfer). */ static int iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) { int error, ntries; size /= sizeof (uint32_t); if ((error = iwn_nic_lock(sc)) != 0) return error; /* Copy microcode image into NIC memory. */ iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, (const uint32_t *)ucode, size); iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); /* Start boot load now. */ iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); /* Wait for transfer to complete. */ for (ntries = 0; ntries < 1000; ntries++) { if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & IWN_BSM_WR_CTRL_START)) break; DELAY(10); } if (ntries == 1000) { device_printf(sc->sc_dev, "%s: could not load boot firmware\n", __func__); iwn_nic_unlock(sc); return ETIMEDOUT; } /* Enable boot after power up. */ iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); iwn_nic_unlock(sc); return 0; } static int iwn4965_load_firmware(struct iwn_softc *sc) { struct iwn_fw_info *fw = &sc->fw; struct iwn_dma_info *dma = &sc->fw_dma; int error; /* Copy initialization sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->init.data, fw->init.datasz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find initialization sections. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); iwn_nic_unlock(sc); /* Load firmware boot code. */ error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load boot firmware\n", __func__); return error; } /* Now press "execute". */ IWN_WRITE(sc, IWN_RESET, 0); /* Wait at most one second for first alive notification. */ if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for adapter to initialize, error %d\n", __func__, error); return error; } /* Retrieve current temperature for initial TX power calibration. */ sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; sc->temp = iwn4965_get_temperature(sc); /* Copy runtime sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->main.data, fw->main.datasz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find runtime sections. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, IWN_FW_UPDATED | fw->main.textsz); iwn_nic_unlock(sc); return 0; } static int iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, const uint8_t *section, int size) { struct iwn_dma_info *dma = &sc->fw_dma; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Copy firmware section into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, section, size); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); if ((error = iwn_nic_lock(sc)) != 0) return error; IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), IWN_FH_TX_CONFIG_DMA_PAUSE); IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), IWN_LOADDR(dma->paddr)); IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), IWN_HIADDR(dma->paddr) << 28 | size); IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), IWN_FH_TXBUF_STATUS_TBNUM(1) | IWN_FH_TXBUF_STATUS_TBIDX(1) | IWN_FH_TXBUF_STATUS_TFBD_VALID); /* Kick Flow Handler to start DMA transfer. */ IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); iwn_nic_unlock(sc); /* Wait at most five seconds for FH DMA transfer to complete. */ return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); } static int iwn5000_load_firmware(struct iwn_softc *sc) { struct iwn_fw_part *fw; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Load the initialization firmware on first boot only. */ fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? &sc->fw.main : &sc->fw.init; error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, fw->text, fw->textsz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load firmware %s section, error %d\n", __func__, ".text", error); return error; } error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, fw->data, fw->datasz); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load firmware %s section, error %d\n", __func__, ".data", error); return error; } /* Now press "execute". */ IWN_WRITE(sc, IWN_RESET, 0); return 0; } /* * Extract text and data sections from a legacy firmware image. */ static int iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) { const uint32_t *ptr; size_t hdrlen = 24; uint32_t rev; ptr = (const uint32_t *)fw->data; rev = le32toh(*ptr++); sc->ucode_rev = rev; /* Check firmware API version. */ if (IWN_FW_API(rev) <= 1) { device_printf(sc->sc_dev, "%s: bad firmware, need API version >=2\n", __func__); return EINVAL; } if (IWN_FW_API(rev) >= 3) { /* Skip build number (version 2 header). */ hdrlen += 4; ptr++; } if (fw->size < hdrlen) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } fw->main.textsz = le32toh(*ptr++); fw->main.datasz = le32toh(*ptr++); fw->init.textsz = le32toh(*ptr++); fw->init.datasz = le32toh(*ptr++); fw->boot.textsz = le32toh(*ptr++); /* Check that all firmware sections fit. */ if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + fw->init.textsz + fw->init.datasz + fw->boot.textsz) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } /* Get pointers to firmware sections. */ fw->main.text = (const uint8_t *)ptr; fw->main.data = fw->main.text + fw->main.textsz; fw->init.text = fw->main.data + fw->main.datasz; fw->init.data = fw->init.text + fw->init.textsz; fw->boot.text = fw->init.data + fw->init.datasz; return 0; } /* * Extract text and data sections from a TLV firmware image. */ static int iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, uint16_t alt) { const struct iwn_fw_tlv_hdr *hdr; const struct iwn_fw_tlv *tlv; const uint8_t *ptr, *end; uint64_t altmask; uint32_t len, tmp; if (fw->size < sizeof (*hdr)) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } hdr = (const struct iwn_fw_tlv_hdr *)fw->data; if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", __func__, le32toh(hdr->signature)); return EINVAL; } DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, le32toh(hdr->build)); sc->ucode_rev = le32toh(hdr->rev); /* * Select the closest supported alternative that is less than * or equal to the specified one. */ altmask = le64toh(hdr->altmask); while (alt > 0 && !(altmask & (1ULL << alt))) alt--; /* Downgrade. */ DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); ptr = (const uint8_t *)(hdr + 1); end = (const uint8_t *)(fw->data + fw->size); /* Parse type-length-value fields. */ while (ptr + sizeof (*tlv) <= end) { tlv = (const struct iwn_fw_tlv *)ptr; len = le32toh(tlv->len); ptr += sizeof (*tlv); if (ptr + len > end) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); return EINVAL; } /* Skip other alternatives. */ if (tlv->alt != 0 && tlv->alt != htole16(alt)) goto next; switch (le16toh(tlv->type)) { case IWN_FW_TLV_MAIN_TEXT: fw->main.text = ptr; fw->main.textsz = len; break; case IWN_FW_TLV_MAIN_DATA: fw->main.data = ptr; fw->main.datasz = len; break; case IWN_FW_TLV_INIT_TEXT: fw->init.text = ptr; fw->init.textsz = len; break; case IWN_FW_TLV_INIT_DATA: fw->init.data = ptr; fw->init.datasz = len; break; case IWN_FW_TLV_BOOT_TEXT: fw->boot.text = ptr; fw->boot.textsz = len; break; case IWN_FW_TLV_ENH_SENS: if (!len) sc->sc_flags |= IWN_FLAG_ENH_SENS; break; case IWN_FW_TLV_PHY_CALIB: tmp = le32toh(*ptr); if (tmp < 253) { sc->reset_noise_gain = tmp; sc->noise_gain = tmp + 1; } break; case IWN_FW_TLV_PAN: sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; DPRINTF(sc, IWN_DEBUG_RESET, "PAN Support found: %d\n", 1); break; case IWN_FW_TLV_FLAGS: if (len < sizeof(uint32_t)) break; if (len % sizeof(uint32_t)) break; sc->tlv_feature_flags = le32toh(*ptr); DPRINTF(sc, IWN_DEBUG_RESET, "%s: feature: 0x%08x\n", __func__, sc->tlv_feature_flags); break; case IWN_FW_TLV_PBREQ_MAXLEN: case IWN_FW_TLV_RUNT_EVTLOG_PTR: case IWN_FW_TLV_RUNT_EVTLOG_SIZE: case IWN_FW_TLV_RUNT_ERRLOG_PTR: case IWN_FW_TLV_INIT_EVTLOG_PTR: case IWN_FW_TLV_INIT_EVTLOG_SIZE: case IWN_FW_TLV_INIT_ERRLOG_PTR: case IWN_FW_TLV_WOWLAN_INST: case IWN_FW_TLV_WOWLAN_DATA: DPRINTF(sc, IWN_DEBUG_RESET, "TLV type %d recognized but not handled\n", le16toh(tlv->type)); break; default: DPRINTF(sc, IWN_DEBUG_RESET, "TLV type %d not handled\n", le16toh(tlv->type)); break; } next: /* TLV fields are 32-bit aligned. */ ptr += (len + 3) & ~3; } return 0; } static int iwn_read_firmware(struct iwn_softc *sc) { struct iwn_fw_info *fw = &sc->fw; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); IWN_UNLOCK(sc); memset(fw, 0, sizeof (*fw)); /* Read firmware image from filesystem. */ sc->fw_fp = firmware_get(sc->fwname); if (sc->fw_fp == NULL) { device_printf(sc->sc_dev, "%s: could not read firmware %s\n", __func__, sc->fwname); IWN_LOCK(sc); return EINVAL; } IWN_LOCK(sc); fw->size = sc->fw_fp->datasize; fw->data = (const uint8_t *)sc->fw_fp->data; if (fw->size < sizeof (uint32_t)) { device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", __func__, fw->size); error = EINVAL; goto fail; } /* Retrieve text and data sections. */ if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ error = iwn_read_firmware_leg(sc, fw); else error = iwn_read_firmware_tlv(sc, fw, 1); if (error != 0) { device_printf(sc->sc_dev, "%s: could not read firmware sections, error %d\n", __func__, error); goto fail; } device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev); /* Make sure text and data sections fit in hardware memory. */ if (fw->main.textsz > sc->fw_text_maxsz || fw->main.datasz > sc->fw_data_maxsz || fw->init.textsz > sc->fw_text_maxsz || fw->init.datasz > sc->fw_data_maxsz || fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || (fw->boot.textsz & 3) != 0) { device_printf(sc->sc_dev, "%s: firmware sections too large\n", __func__); error = EINVAL; goto fail; } /* We can proceed with loading the firmware. */ return 0; fail: iwn_unload_firmware(sc); return error; } static void iwn_unload_firmware(struct iwn_softc *sc) { firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); sc->fw_fp = NULL; } static int iwn_clock_wait(struct iwn_softc *sc) { int ntries; /* Set "initialization complete" bit. */ IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); /* Wait for clock stabilization. */ for (ntries = 0; ntries < 2500; ntries++) { if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) return 0; DELAY(10); } device_printf(sc->sc_dev, "%s: timeout waiting for clock stabilization\n", __func__); return ETIMEDOUT; } static int iwn_apm_init(struct iwn_softc *sc) { uint32_t reg; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Disable L0s exit timer (NMI bug workaround). */ IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); /* Don't wait for ICH L0s (ICH bug workaround). */ IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); /* Set FH wait threshold to max (HW bug under stress workaround). */ IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); /* Enable HAP INTA to move adapter from L1a to L0s. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); else IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); if (sc->base_params->pll_cfg_val) IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val); /* Wait for clock stabilization before accessing prph. */ if ((error = iwn_clock_wait(sc)) != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; if (sc->hw_type == IWN_HW_REV_TYPE_4965) { /* Enable DMA and BSM (Bootstrap State Machine). */ iwn_prph_write(sc, IWN_APMG_CLK_EN, IWN_APMG_CLK_CTRL_DMA_CLK_RQT | IWN_APMG_CLK_CTRL_BSM_CLK_RQT); } else { /* Enable DMA. */ iwn_prph_write(sc, IWN_APMG_CLK_EN, IWN_APMG_CLK_CTRL_DMA_CLK_RQT); } DELAY(20); /* Disable L1-Active. */ iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); iwn_nic_unlock(sc); return 0; } static void iwn_apm_stop_master(struct iwn_softc *sc) { int ntries; /* Stop busmaster DMA activity. */ IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) return; DELAY(10); } device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); } static void iwn_apm_stop(struct iwn_softc *sc) { iwn_apm_stop_master(sc); /* Reset the entire device. */ IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); DELAY(10); /* Clear "initialization complete" bit. */ IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); } static int iwn4965_nic_config(struct iwn_softc *sc) { DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { /* * I don't believe this to be correct but this is what the * vendor driver is doing. Probably the bits should not be * shifted in IWN_RFCFG_*. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_RFCFG_TYPE(sc->rfcfg) | IWN_RFCFG_STEP(sc->rfcfg) | IWN_RFCFG_DASH(sc->rfcfg)); } IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); return 0; } static int iwn5000_nic_config(struct iwn_softc *sc) { uint32_t tmp; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_RFCFG_TYPE(sc->rfcfg) | IWN_RFCFG_STEP(sc->rfcfg) | IWN_RFCFG_DASH(sc->rfcfg)); } IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); if (sc->hw_type == IWN_HW_REV_TYPE_1000) { /* * Select first Switching Voltage Regulator (1.32V) to * solve a stability issue related to noisy DC2DC line * in the silicon of 1000 Series. */ tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); } iwn_nic_unlock(sc); if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { /* Use internal power amplifier only. */ IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); } if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) { /* Indicate that ROM calibration version is >=6. */ IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); } if (sc->base_params->additional_gp_drv_bit) IWN_SETBITS(sc, IWN_GP_DRIVER, sc->base_params->additional_gp_drv_bit); return 0; } /* * Take NIC ownership over Intel Active Management Technology (AMT). */ static int iwn_hw_prepare(struct iwn_softc *sc) { int ntries; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); /* Check if hardware is ready. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); for (ntries = 0; ntries < 5; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_NIC_READY) return 0; DELAY(10); } /* Hardware not ready, force into ready state. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); for (ntries = 0; ntries < 15000; ntries++) { if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_PREPARE_DONE)) break; DELAY(10); } if (ntries == 15000) return ETIMEDOUT; /* Hardware should be ready now. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); for (ntries = 0; ntries < 5; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_NIC_READY) return 0; DELAY(10); } return ETIMEDOUT; } static int iwn_hw_init(struct iwn_softc *sc) { struct iwn_ops *ops = &sc->ops; int error, chnl, qid; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); if ((error = iwn_apm_init(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not power ON adapter, error %d\n", __func__, error); return error; } /* Select VMAIN power source. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); iwn_nic_unlock(sc); /* Perform adapter-specific initialization. */ if ((error = ops->nic_config(sc)) != 0) return error; /* Initialize RX ring. */ if ((error = iwn_nic_lock(sc)) != 0) return error; IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); /* Set physical address of RX ring (256-byte aligned). */ IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); /* Set physical address of RX status (16-byte aligned). */ IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); /* Enable RX. */ IWN_WRITE(sc, IWN_FH_RX_CONFIG, IWN_FH_RX_CONFIG_ENA | IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ IWN_FH_RX_CONFIG_IRQ_DST_HOST | IWN_FH_RX_CONFIG_SINGLE_FRAME | IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); iwn_nic_unlock(sc); IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); if ((error = iwn_nic_lock(sc)) != 0) return error; /* Initialize TX scheduler. */ iwn_prph_write(sc, sc->sched_txfact_addr, 0); /* Set physical address of "keep warm" page (16-byte aligned). */ IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); /* Initialize TX rings. */ for (qid = 0; qid < sc->ntxqs; qid++) { struct iwn_tx_ring *txq = &sc->txq[qid]; /* Set physical address of TX ring (256-byte aligned). */ IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), txq->desc_dma.paddr >> 8); } iwn_nic_unlock(sc); /* Enable DMA channels. */ for (chnl = 0; chnl < sc->ndmachnls; chnl++) { IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); } /* Clear "radio off" and "commands blocked" bits. */ IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); /* Enable interrupt coalescing. */ IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); /* Enable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); /* _Really_ make sure "radio off" bit is cleared! */ IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); /* Enable shadow registers. */ if (sc->base_params->shadow_reg_enable) IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); if ((error = ops->load_firmware(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not load firmware, error %d\n", __func__, error); return error; } /* Wait at most one second for firmware alive notification. */ if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for adapter to initialize, error %d\n", __func__, error); return error; } /* Do post-firmware initialization. */ DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return ops->post_alive(sc); } static void iwn_hw_stop(struct iwn_softc *sc) { int chnl, qid, ntries; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); /* Disable interrupts. */ IWN_WRITE(sc, IWN_INT_MASK, 0); IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); sc->sc_flags &= ~IWN_FLAG_USE_ICT; /* Make sure we no longer hold the NIC lock. */ iwn_nic_unlock(sc); /* Stop TX scheduler. */ iwn_prph_write(sc, sc->sched_txfact_addr, 0); /* Stop all DMA channels. */ if (iwn_nic_lock(sc) == 0) { for (chnl = 0; chnl < sc->ndmachnls; chnl++) { IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); for (ntries = 0; ntries < 200; ntries++) { if (IWN_READ(sc, IWN_FH_TX_STATUS) & IWN_FH_TX_STATUS_IDLE(chnl)) break; DELAY(10); } } iwn_nic_unlock(sc); } /* Stop RX ring. */ iwn_reset_rx_ring(sc, &sc->rxq); /* Reset all TX rings. */ for (qid = 0; qid < sc->ntxqs; qid++) iwn_reset_tx_ring(sc, &sc->txq[qid]); if (iwn_nic_lock(sc) == 0) { iwn_prph_write(sc, IWN_APMG_CLK_DIS, IWN_APMG_CLK_CTRL_DMA_CLK_RQT); iwn_nic_unlock(sc); } DELAY(5); /* Power OFF adapter. */ iwn_apm_stop(sc); } static void iwn_panicked(void *arg0, int pending) { struct iwn_softc *sc = arg0; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); #if 0 int error; #endif if (vap == NULL) { printf("%s: null vap\n", __func__); return; } device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " "restarting\n", __func__, vap->iv_state); /* * This is not enough work. We need to also reinitialise * the correct transmit state for aggregation enabled queues, * which has a very specific requirement of * ring index = 802.11 seqno % 256. If we don't do this (which * we definitely don't!) then the firmware will just panic again. */ #if 1 ieee80211_restart_all(ic); #else IWN_LOCK(sc); iwn_stop_locked(sc); if ((error = iwn_init_locked(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not init hardware\n", __func__); goto unlock; } if (vap->iv_state >= IEEE80211_S_AUTH && (error = iwn_auth(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to auth state\n", __func__); } if (vap->iv_state >= IEEE80211_S_RUN && (error = iwn_run(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: could not move to run state\n", __func__); } unlock: IWN_UNLOCK(sc); #endif } static int iwn_init_locked(struct iwn_softc *sc) { int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); IWN_LOCK_ASSERT(sc); if (sc->sc_flags & IWN_FLAG_RUNNING) goto end; sc->sc_flags |= IWN_FLAG_RUNNING; if ((error = iwn_hw_prepare(sc)) != 0) { device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", __func__, error); goto fail; } /* Initialize interrupt mask to default value. */ sc->int_mask = IWN_INT_MASK_DEF; sc->sc_flags &= ~IWN_FLAG_USE_ICT; /* Check that the radio is not disabled by hardware switch. */ if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { iwn_stop_locked(sc); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return (1); } /* Read firmware images from the filesystem. */ if ((error = iwn_read_firmware(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not read firmware, error %d\n", __func__, error); goto fail; } /* Initialize hardware and upload firmware. */ error = iwn_hw_init(sc); iwn_unload_firmware(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not initialize hardware, error %d\n", __func__, error); goto fail; } /* Configure adapter now that it is ready. */ if ((error = iwn_config(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not configure device, error %d\n", __func__, error); goto fail; } callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); end: DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); return (0); fail: iwn_stop_locked(sc); DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); return (-1); } static int iwn_init(struct iwn_softc *sc) { int error; IWN_LOCK(sc); error = iwn_init_locked(sc); IWN_UNLOCK(sc); return (error); } static void iwn_stop_locked(struct iwn_softc *sc) { IWN_LOCK_ASSERT(sc); if (!(sc->sc_flags & IWN_FLAG_RUNNING)) return; sc->sc_is_scanning = 0; sc->sc_tx_timer = 0; callout_stop(&sc->watchdog_to); callout_stop(&sc->scan_timeout); callout_stop(&sc->calib_to); sc->sc_flags &= ~IWN_FLAG_RUNNING; /* Power OFF hardware. */ iwn_hw_stop(sc); } static void iwn_stop(struct iwn_softc *sc) { IWN_LOCK(sc); iwn_stop_locked(sc); IWN_UNLOCK(sc); } /* * Callback from net80211 to start a scan. */ static void iwn_scan_start(struct ieee80211com *ic) { struct iwn_softc *sc = ic->ic_softc; IWN_LOCK(sc); /* make the link LED blink while we're scanning */ iwn_set_led(sc, IWN_LED_LINK, 20, 2); IWN_UNLOCK(sc); } /* * Callback from net80211 to terminate a scan. */ static void iwn_scan_end(struct ieee80211com *ic) { struct iwn_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); IWN_LOCK(sc); if (vap->iv_state == IEEE80211_S_RUN) { /* Set link LED to ON status if we are associated */ iwn_set_led(sc, IWN_LED_LINK, 0, 1); } IWN_UNLOCK(sc); } /* * Callback from net80211 to force a channel change. */ static void iwn_set_channel(struct ieee80211com *ic) { struct iwn_softc *sc = ic->ic_softc; int error; DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); IWN_LOCK(sc); /* * Only need to set the channel in Monitor mode. AP scanning and auth * are already taken care of by their respective firmware commands. */ if (ic->ic_opmode == IEEE80211_M_MONITOR) { error = iwn_config(sc); if (error != 0) device_printf(sc->sc_dev, "%s: error %d settting channel\n", __func__, error); } IWN_UNLOCK(sc); } /* * Callback from net80211 to start scanning of the current channel. */ static void iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { struct ieee80211vap *vap = ss->ss_vap; struct ieee80211com *ic = vap->iv_ic; struct iwn_softc *sc = ic->ic_softc; int error; IWN_LOCK(sc); error = iwn_scan(sc, vap, ss, ic->ic_curchan); IWN_UNLOCK(sc); if (error != 0) ieee80211_cancel_scan(vap); } /* * Callback from net80211 to handle the minimum dwell time being met. * The intent is to terminate the scan but we just let the firmware * notify us when it's finished as we have no safe way to abort it. */ static void iwn_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } #ifdef IWN_DEBUG #define IWN_DESC(x) case x: return #x /* * Translate CSR code to string */ static char *iwn_get_csr_string(int csr) { switch (csr) { IWN_DESC(IWN_HW_IF_CONFIG); IWN_DESC(IWN_INT_COALESCING); IWN_DESC(IWN_INT); IWN_DESC(IWN_INT_MASK); IWN_DESC(IWN_FH_INT); IWN_DESC(IWN_GPIO_IN); IWN_DESC(IWN_RESET); IWN_DESC(IWN_GP_CNTRL); IWN_DESC(IWN_HW_REV); IWN_DESC(IWN_EEPROM); IWN_DESC(IWN_EEPROM_GP); IWN_DESC(IWN_OTP_GP); IWN_DESC(IWN_GIO); IWN_DESC(IWN_GP_UCODE); IWN_DESC(IWN_GP_DRIVER); IWN_DESC(IWN_UCODE_GP1); IWN_DESC(IWN_UCODE_GP2); IWN_DESC(IWN_LED); IWN_DESC(IWN_DRAM_INT_TBL); IWN_DESC(IWN_GIO_CHICKEN); IWN_DESC(IWN_ANA_PLL); IWN_DESC(IWN_HW_REV_WA); IWN_DESC(IWN_DBG_HPET_MEM); default: return "UNKNOWN CSR"; } } /* * This function print firmware register */ static void iwn_debug_register(struct iwn_softc *sc) { int i; static const uint32_t csr_tbl[] = { IWN_HW_IF_CONFIG, IWN_INT_COALESCING, IWN_INT, IWN_INT_MASK, IWN_FH_INT, IWN_GPIO_IN, IWN_RESET, IWN_GP_CNTRL, IWN_HW_REV, IWN_EEPROM, IWN_EEPROM_GP, IWN_OTP_GP, IWN_GIO, IWN_GP_UCODE, IWN_GP_DRIVER, IWN_UCODE_GP1, IWN_UCODE_GP2, IWN_LED, IWN_DRAM_INT_TBL, IWN_GIO_CHICKEN, IWN_ANA_PLL, IWN_HW_REV_WA, IWN_DBG_HPET_MEM, }; DPRINTF(sc, IWN_DEBUG_REGISTER, "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", "\n"); for (i = 0; i < nitems(csr_tbl); i++){ DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); if ((i+1) % 3 == 0) DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); } DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); } #endif Index: head/sys/dev/malo/if_malo.c =================================================================== --- head/sys/dev/malo/if_malo.c (revision 366111) +++ head/sys/dev/malo/if_malo.c (revision 366112) @@ -1,2164 +1,2161 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008 Weongyo Jeong * Copyright (c) 2007 Marvell Semiconductor, Inc. * Copyright (c) 2007 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD$"); #endif #include "opt_malo.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_NODE(_hw, OID_AUTO, malo, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Marvell 88w8335 driver parameters"); static int malo_txcoalesce = 8; /* # tx pkts to q before poking f/w*/ SYSCTL_INT(_hw_malo, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &malo_txcoalesce, 0, "tx buffers to send at once"); static int malo_rxbuf = MALO_RXBUF; /* # rx buffers to allocate */ SYSCTL_INT(_hw_malo, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &malo_rxbuf, 0, "rx buffers allocated"); static int malo_rxquota = MALO_RXBUF; /* # max buffers to process */ SYSCTL_INT(_hw_malo, OID_AUTO, rxquota, CTLFLAG_RWTUN, &malo_rxquota, 0, "max rx buffers to process per interrupt"); static int malo_txbuf = MALO_TXBUF; /* # tx buffers to allocate */ SYSCTL_INT(_hw_malo, OID_AUTO, txbuf, CTLFLAG_RWTUN, &malo_txbuf, 0, "tx buffers allocated"); #ifdef MALO_DEBUG static int malo_debug = 0; SYSCTL_INT(_hw_malo, OID_AUTO, debug, CTLFLAG_RWTUN, &malo_debug, 0, "control debugging printfs"); enum { MALO_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ MALO_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ MALO_DEBUG_RECV = 0x00000004, /* basic recv operation */ MALO_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ MALO_DEBUG_RESET = 0x00000010, /* reset processing */ MALO_DEBUG_INTR = 0x00000040, /* ISR */ MALO_DEBUG_TX_PROC = 0x00000080, /* tx ISR proc */ MALO_DEBUG_RX_PROC = 0x00000100, /* rx ISR proc */ MALO_DEBUG_STATE = 0x00000400, /* 802.11 state transitions */ MALO_DEBUG_NODE = 0x00000800, /* node management */ MALO_DEBUG_RECV_ALL = 0x00001000, /* trace all frames (beacons) */ MALO_DEBUG_FW = 0x00008000, /* firmware */ MALO_DEBUG_ANY = 0xffffffff }; #define IS_BEACON(wh) \ ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | \ IEEE80211_FC0_SUBTYPE_MASK)) == \ (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON)) #define IFF_DUMPPKTS_RECV(sc, wh) \ (((sc->malo_debug & MALO_DEBUG_RECV) && \ ((sc->malo_debug & MALO_DEBUG_RECV_ALL) || !IS_BEACON(wh)))) #define IFF_DUMPPKTS_XMIT(sc) \ (sc->malo_debug & MALO_DEBUG_XMIT) #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->malo_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif static MALLOC_DEFINE(M_MALODEV, "malodev", "malo driver dma buffers"); static struct ieee80211vap *malo_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void malo_vap_delete(struct ieee80211vap *); static int malo_dma_setup(struct malo_softc *); static int malo_setup_hwdma(struct malo_softc *); static void malo_txq_init(struct malo_softc *, struct malo_txq *, int); static void malo_tx_cleanupq(struct malo_softc *, struct malo_txq *); static void malo_parent(struct ieee80211com *); static int malo_transmit(struct ieee80211com *, struct mbuf *); static void malo_start(struct malo_softc *); static void malo_watchdog(void *); static void malo_updateslot(struct ieee80211com *); static int malo_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void malo_scan_start(struct ieee80211com *); static void malo_scan_end(struct ieee80211com *); static void malo_set_channel(struct ieee80211com *); static int malo_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void malo_sysctlattach(struct malo_softc *); static void malo_announce(struct malo_softc *); static void malo_dma_cleanup(struct malo_softc *); static void malo_stop(struct malo_softc *); static int malo_chan_set(struct malo_softc *, struct ieee80211_channel *); static int malo_mode_init(struct malo_softc *); static void malo_tx_proc(void *, int); static void malo_rx_proc(void *, int); static void malo_init(void *); /* * Read/Write shorthands for accesses to BAR 0. Note that all BAR 1 * operations are done in the "hal" except getting H/W MAC address at * malo_attach and there should be no reference to them here. */ static uint32_t malo_bar0_read4(struct malo_softc *sc, bus_size_t off) { return bus_space_read_4(sc->malo_io0t, sc->malo_io0h, off); } static void malo_bar0_write4(struct malo_softc *sc, bus_size_t off, uint32_t val) { DPRINTF(sc, MALO_DEBUG_FW, "%s: off 0x%jx val 0x%x\n", __func__, (uintmax_t)off, val); bus_space_write_4(sc->malo_io0t, sc->malo_io0h, off, val); } int malo_attach(uint16_t devid, struct malo_softc *sc) { struct ieee80211com *ic = &sc->malo_ic; struct malo_hal *mh; int error; uint8_t bands[IEEE80211_MODE_BYTES]; MALO_LOCK_INIT(sc); callout_init_mtx(&sc->malo_watchdog_timer, &sc->malo_mtx, 0); mbufq_init(&sc->malo_snd, ifqmaxlen); mh = malo_hal_attach(sc->malo_dev, devid, sc->malo_io1h, sc->malo_io1t, sc->malo_dmat); if (mh == NULL) { device_printf(sc->malo_dev, "unable to attach HAL\n"); error = EIO; goto bad; } sc->malo_mh = mh; /* * Load firmware so we can get setup. We arbitrarily pick station * firmware; we'll re-load firmware as needed so setting up * the wrong mode isn't a big deal. */ error = malo_hal_fwload(mh, "malo8335-h", "malo8335-m"); if (error != 0) { device_printf(sc->malo_dev, "unable to setup firmware\n"); goto bad1; } /* XXX gethwspecs() extracts correct informations? not maybe! */ error = malo_hal_gethwspecs(mh, &sc->malo_hwspecs); if (error != 0) { device_printf(sc->malo_dev, "unable to fetch h/w specs\n"); goto bad1; } DPRINTF(sc, MALO_DEBUG_FW, "malo_hal_gethwspecs: hwversion 0x%x hostif 0x%x" "maxnum_wcb 0x%x maxnum_mcaddr 0x%x maxnum_tx_wcb 0x%x" "regioncode 0x%x num_antenna 0x%x fw_releasenum 0x%x" "wcbbase0 0x%x rxdesc_read 0x%x rxdesc_write 0x%x" "ul_fw_awakecookie 0x%x w[4] = %x %x %x %x", sc->malo_hwspecs.hwversion, sc->malo_hwspecs.hostinterface, sc->malo_hwspecs.maxnum_wcb, sc->malo_hwspecs.maxnum_mcaddr, sc->malo_hwspecs.maxnum_tx_wcb, sc->malo_hwspecs.regioncode, sc->malo_hwspecs.num_antenna, sc->malo_hwspecs.fw_releasenum, sc->malo_hwspecs.wcbbase0, sc->malo_hwspecs.rxdesc_read, sc->malo_hwspecs.rxdesc_write, sc->malo_hwspecs.ul_fw_awakecookie, sc->malo_hwspecs.wcbbase[0], sc->malo_hwspecs.wcbbase[1], sc->malo_hwspecs.wcbbase[2], sc->malo_hwspecs.wcbbase[3]); /* NB: firmware looks that it does not export regdomain info API. */ memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, bands); sc->malo_txantenna = 0x2; /* h/w default */ sc->malo_rxantenna = 0xffff; /* h/w default */ /* * Allocate tx + rx descriptors and populate the lists. * We immediately push the information to the firmware * as otherwise it gets upset. */ error = malo_dma_setup(sc); if (error != 0) { device_printf(sc->malo_dev, "failed to setup descriptors: %d\n", error); goto bad1; } error = malo_setup_hwdma(sc); /* push to firmware */ if (error != 0) /* NB: malo_setupdma prints msg */ goto bad2; sc->malo_tq = taskqueue_create_fast("malo_taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->malo_tq); taskqueue_start_threads(&sc->malo_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->malo_dev)); NET_TASK_INIT(&sc->malo_rxtask, 0, malo_rx_proc, sc); TASK_INIT(&sc->malo_txtask, 0, malo_tx_proc, sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->malo_dev); /* XXX not right but it's not used anywhere important */ ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_TXPMGT /* capable of txpow mgt */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ ; IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->malo_hwspecs.macaddr); /* * Transmit requires space in the packet for a special format transmit * record and optional padding between this record and the payload. * Ask the net80211 layer to arrange this when encapsulating * packets so we can add it efficiently. */ ic->ic_headroom = sizeof(struct malo_txrec) - sizeof(struct ieee80211_frame); /* call MI attach routine. */ ieee80211_ifattach(ic); /* override default methods */ ic->ic_vap_create = malo_vap_create; ic->ic_vap_delete = malo_vap_delete; ic->ic_raw_xmit = malo_raw_xmit; ic->ic_updateslot = malo_updateslot; ic->ic_scan_start = malo_scan_start; ic->ic_scan_end = malo_scan_end; ic->ic_set_channel = malo_set_channel; ic->ic_parent = malo_parent; ic->ic_transmit = malo_transmit; sc->malo_invalid = 0; /* ready to go, enable int handling */ ieee80211_radiotap_attach(ic, &sc->malo_tx_th.wt_ihdr, sizeof(sc->malo_tx_th), MALO_TX_RADIOTAP_PRESENT, &sc->malo_rx_th.wr_ihdr, sizeof(sc->malo_rx_th), MALO_RX_RADIOTAP_PRESENT); /* * Setup dynamic sysctl's. */ malo_sysctlattach(sc); if (bootverbose) ieee80211_announce(ic); malo_announce(sc); return 0; bad2: malo_dma_cleanup(sc); bad1: malo_hal_detach(mh); bad: sc->malo_invalid = 1; return error; } static struct ieee80211vap * malo_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct malo_softc *sc = ic->ic_softc; struct malo_vap *mvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) { device_printf(sc->malo_dev, "multiple vaps not supported\n"); return NULL; } switch (opmode) { case IEEE80211_M_STA: if (opmode == IEEE80211_M_STA) flags |= IEEE80211_CLONE_NOBEACONS; /* fall thru... */ case IEEE80211_M_MONITOR: break; default: device_printf(sc->malo_dev, "%s mode not supported\n", ieee80211_opmode_name[opmode]); return NULL; /* unsupported */ } mvp = malloc(sizeof(struct malo_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &mvp->malo_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override state transition machine */ mvp->malo_newstate = vap->iv_newstate; vap->iv_newstate = malo_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void malo_vap_delete(struct ieee80211vap *vap) { struct malo_vap *mvp = MALO_VAP(vap); ieee80211_vap_detach(vap); free(mvp, M_80211_VAP); } int malo_intr(void *arg) { struct malo_softc *sc = arg; struct malo_hal *mh = sc->malo_mh; uint32_t status; if (sc->malo_invalid) { /* * The hardware is not ready/present, don't touch anything. * Note this can happen early on if the IRQ is shared. */ DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid; ignored\n", __func__); return (FILTER_STRAY); } /* * Figure out the reason(s) for the interrupt. */ malo_hal_getisr(mh, &status); /* NB: clears ISR too */ if (status == 0) /* must be a shared irq */ return (FILTER_STRAY); DPRINTF(sc, MALO_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n", __func__, status, sc->malo_imask); if (status & MALO_A2HRIC_BIT_RX_RDY) taskqueue_enqueue(sc->malo_tq, &sc->malo_rxtask); if (status & MALO_A2HRIC_BIT_TX_DONE) taskqueue_enqueue(sc->malo_tq, &sc->malo_txtask); if (status & MALO_A2HRIC_BIT_OPC_DONE) malo_hal_cmddone(mh); if (status & MALO_A2HRIC_BIT_MAC_EVENT) ; if (status & MALO_A2HRIC_BIT_RX_PROBLEM) ; if (status & MALO_A2HRIC_BIT_ICV_ERROR) { /* TKIP ICV error */ sc->malo_stats.mst_rx_badtkipicv++; } #ifdef MALO_DEBUG if (((status | sc->malo_imask) ^ sc->malo_imask) != 0) DPRINTF(sc, MALO_DEBUG_INTR, "%s: can't handle interrupt status 0x%x\n", __func__, status); #endif return (FILTER_HANDLED); } static void malo_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { bus_addr_t *paddr = (bus_addr_t*) arg; KASSERT(error == 0, ("error %u on bus_dma callback", error)); *paddr = segs->ds_addr; } static int malo_desc_setup(struct malo_softc *sc, const char *name, struct malo_descdma *dd, int nbuf, size_t bufsize, int ndesc, size_t descsize) { int error; uint8_t *ds; DPRINTF(sc, MALO_DEBUG_RESET, "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n", __func__, name, nbuf, (uintmax_t) bufsize, ndesc, (uintmax_t) descsize); dd->dd_name = name; dd->dd_desc_len = nbuf * ndesc * descsize; /* * Setup DMA descriptor area. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->malo_dev),/* parent */ PAGE_SIZE, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ dd->dd_desc_len, /* maxsize */ 1, /* nsegments */ dd->dd_desc_len, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dd->dd_dmat); if (error != 0) { device_printf(sc->malo_dev, "cannot allocate %s DMA tag\n", dd->dd_name); return error; } /* allocate descriptors */ error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dd->dd_dmamap); if (error != 0) { device_printf(sc->malo_dev, "unable to alloc memory for %u %s descriptors, " "error %u\n", nbuf * ndesc, dd->dd_name, error); goto fail1; } error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, dd->dd_desc_len, malo_load_cb, &dd->dd_desc_paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->malo_dev, "unable to map %s descriptors, error %u\n", dd->dd_name, error); goto fail2; } ds = dd->dd_desc; memset(ds, 0, dd->dd_desc_len); DPRINTF(sc, MALO_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n", __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); return 0; fail2: bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); fail1: bus_dma_tag_destroy(dd->dd_dmat); memset(dd, 0, sizeof(*dd)); return error; } #define DS2PHYS(_dd, _ds) \ ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) static int malo_rxdma_setup(struct malo_softc *sc) { int error, bsize, i; struct malo_rxbuf *bf; struct malo_rxdesc *ds; error = malo_desc_setup(sc, "rx", &sc->malo_rxdma, malo_rxbuf, sizeof(struct malo_rxbuf), 1, sizeof(struct malo_rxdesc)); if (error != 0) return error; /* * Allocate rx buffers and set them up. */ bsize = malo_rxbuf * sizeof(struct malo_rxbuf); bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO); if (bf == NULL) { device_printf(sc->malo_dev, "malloc of %u rx buffers failed\n", bsize); return error; } sc->malo_rxdma.dd_bufptr = bf; STAILQ_INIT(&sc->malo_rxbuf); ds = sc->malo_rxdma.dd_desc; for (i = 0; i < malo_rxbuf; i++, bf++, ds++) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(&sc->malo_rxdma, ds); error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); if (error != 0) { device_printf(sc->malo_dev, "%s: unable to dmamap for rx buffer, error %d\n", __func__, error); return error; } /* NB: tail is intentional to preserve descriptor order */ STAILQ_INSERT_TAIL(&sc->malo_rxbuf, bf, bf_list); } return 0; } static int malo_txdma_setup(struct malo_softc *sc, struct malo_txq *txq) { int error, bsize, i; struct malo_txbuf *bf; struct malo_txdesc *ds; error = malo_desc_setup(sc, "tx", &txq->dma, malo_txbuf, sizeof(struct malo_txbuf), MALO_TXDESC, sizeof(struct malo_txdesc)); if (error != 0) return error; /* allocate and setup tx buffers */ bsize = malo_txbuf * sizeof(struct malo_txbuf); bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO); if (bf == NULL) { device_printf(sc->malo_dev, "malloc of %u tx buffers failed\n", malo_txbuf); return ENOMEM; } txq->dma.dd_bufptr = bf; STAILQ_INIT(&txq->free); txq->nfree = 0; ds = txq->dma.dd_desc; for (i = 0; i < malo_txbuf; i++, bf++, ds += MALO_TXDESC) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(&txq->dma, ds); error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); if (error != 0) { device_printf(sc->malo_dev, "unable to create dmamap for tx " "buffer %u, error %u\n", i, error); return error; } STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree++; } return 0; } static void malo_desc_cleanup(struct malo_softc *sc, struct malo_descdma *dd) { bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); bus_dma_tag_destroy(dd->dd_dmat); memset(dd, 0, sizeof(*dd)); } static void malo_rxdma_cleanup(struct malo_softc *sc) { struct malo_rxbuf *bf; STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) { if (bf->bf_m != NULL) { m_freem(bf->bf_m); bf->bf_m = NULL; } if (bf->bf_dmamap != NULL) { bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap); bf->bf_dmamap = NULL; } } STAILQ_INIT(&sc->malo_rxbuf); if (sc->malo_rxdma.dd_bufptr != NULL) { free(sc->malo_rxdma.dd_bufptr, M_MALODEV); sc->malo_rxdma.dd_bufptr = NULL; } if (sc->malo_rxdma.dd_desc_len != 0) malo_desc_cleanup(sc, &sc->malo_rxdma); } static void malo_txdma_cleanup(struct malo_softc *sc, struct malo_txq *txq) { struct malo_txbuf *bf; struct ieee80211_node *ni; STAILQ_FOREACH(bf, &txq->free, bf_list) { if (bf->bf_m != NULL) { m_freem(bf->bf_m); bf->bf_m = NULL; } ni = bf->bf_node; bf->bf_node = NULL; if (ni != NULL) { /* * Reclaim node reference. */ ieee80211_free_node(ni); } if (bf->bf_dmamap != NULL) { bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap); bf->bf_dmamap = NULL; } } STAILQ_INIT(&txq->free); txq->nfree = 0; if (txq->dma.dd_bufptr != NULL) { free(txq->dma.dd_bufptr, M_MALODEV); txq->dma.dd_bufptr = NULL; } if (txq->dma.dd_desc_len != 0) malo_desc_cleanup(sc, &txq->dma); } static void malo_dma_cleanup(struct malo_softc *sc) { int i; for (i = 0; i < MALO_NUM_TX_QUEUES; i++) malo_txdma_cleanup(sc, &sc->malo_txq[i]); malo_rxdma_cleanup(sc); } static int malo_dma_setup(struct malo_softc *sc) { int error, i; /* rxdma initializing. */ error = malo_rxdma_setup(sc); if (error != 0) return error; /* NB: we just have 1 tx queue now. */ for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { error = malo_txdma_setup(sc, &sc->malo_txq[i]); if (error != 0) { malo_dma_cleanup(sc); return error; } malo_txq_init(sc, &sc->malo_txq[i], i); } return 0; } static void malo_hal_set_rxtxdma(struct malo_softc *sc) { int i; malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, sc->malo_hwdma.rxdesc_read); malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_write, sc->malo_hwdma.rxdesc_read); for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { malo_bar0_write4(sc, sc->malo_hwspecs.wcbbase[i], sc->malo_hwdma.wcbbase[i]); } } /* * Inform firmware of our tx/rx dma setup. The BAR 0 writes below are * for compatibility with older firmware. For current firmware we send * this information with a cmd block via malo_hal_sethwdma. */ static int malo_setup_hwdma(struct malo_softc *sc) { int i; struct malo_txq *txq; sc->malo_hwdma.rxdesc_read = sc->malo_rxdma.dd_desc_paddr; for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { txq = &sc->malo_txq[i]; sc->malo_hwdma.wcbbase[i] = txq->dma.dd_desc_paddr; } sc->malo_hwdma.maxnum_txwcb = malo_txbuf; sc->malo_hwdma.maxnum_wcb = MALO_NUM_TX_QUEUES; malo_hal_set_rxtxdma(sc); return 0; } static void malo_txq_init(struct malo_softc *sc, struct malo_txq *txq, int qnum) { struct malo_txbuf *bf, *bn; struct malo_txdesc *ds; MALO_TXQ_LOCK_INIT(sc, txq); txq->qnum = qnum; txq->txpri = 0; /* XXX */ STAILQ_FOREACH(bf, &txq->free, bf_list) { bf->bf_txq = txq; ds = bf->bf_desc; bn = STAILQ_NEXT(bf, bf_list); if (bn == NULL) bn = STAILQ_FIRST(&txq->free); ds->physnext = htole32(bn->bf_daddr); } STAILQ_INIT(&txq->active); } /* * Reclaim resources for a setup queue. */ static void malo_tx_cleanupq(struct malo_softc *sc, struct malo_txq *txq) { /* XXX hal work? */ MALO_TXQ_LOCK_DESTROY(txq); } /* * Allocate a tx buffer for sending a frame. */ static struct malo_txbuf * malo_getbuf(struct malo_softc *sc, struct malo_txq *txq) { struct malo_txbuf *bf; MALO_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->free); if (bf != NULL) { STAILQ_REMOVE_HEAD(&txq->free, bf_list); txq->nfree--; } MALO_TXQ_UNLOCK(txq); if (bf == NULL) { DPRINTF(sc, MALO_DEBUG_XMIT, "%s: out of xmit buffers on q %d\n", __func__, txq->qnum); sc->malo_stats.mst_tx_qstop++; } return bf; } static int malo_tx_dmasetup(struct malo_softc *sc, struct malo_txbuf *bf, struct mbuf *m0) { struct mbuf *m; int error; /* * Load the DMA map so any coalescing is done. This also calculates * the number of descriptors we need. */ error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error == EFBIG) { /* XXX packet requires too many descriptors */ bf->bf_nseg = MALO_TXDESC + 1; } else if (error != 0) { sc->malo_stats.mst_tx_busdma++; m_freem(m0); return error; } /* * Discard null packets and check for packets that require too many * TX descriptors. We try to convert the latter to a cluster. */ if (error == EFBIG) { /* too many desc's, linearize */ sc->malo_stats.mst_tx_linear++; m = m_defrag(m0, M_NOWAIT); if (m == NULL) { m_freem(m0); sc->malo_stats.mst_tx_nombuf++; return ENOMEM; } m0 = m; error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error != 0) { sc->malo_stats.mst_tx_busdma++; m_freem(m0); return error; } KASSERT(bf->bf_nseg <= MALO_TXDESC, ("too many segments after defrag; nseg %u", bf->bf_nseg)); } else if (bf->bf_nseg == 0) { /* null packet, discard */ sc->malo_stats.mst_tx_nodata++; m_freem(m0); return EIO; } DPRINTF(sc, MALO_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, m0->m_pkthdr.len); bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); bf->bf_m = m0; return 0; } #ifdef MALO_DEBUG static void malo_printrxbuf(const struct malo_rxbuf *bf, u_int ix) { const struct malo_rxdesc *ds = bf->bf_desc; uint32_t status = le32toh(ds->status); printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n" " STAT:%02x LEN:%04x SNR:%02x NF:%02x CHAN:%02x" " RATE:%02x QOS:%04x\n", ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->physnext), le32toh(ds->physbuffdata), ds->rxcontrol, ds->rxcontrol != MALO_RXD_CTRL_DRIVER_OWN ? "" : (status & MALO_RXD_STATUS_OK) ? " *" : " !", ds->status, le16toh(ds->pktlen), ds->snr, ds->nf, ds->channel, ds->rate, le16toh(ds->qosctrl)); } static void malo_printtxbuf(const struct malo_txbuf *bf, u_int qnum, u_int ix) { const struct malo_txdesc *ds = bf->bf_desc; uint32_t status = le32toh(ds->status); printf("Q%u[%3u]", qnum, ix); printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr); printf(" NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n", le32toh(ds->physnext), le32toh(ds->pktptr), le16toh(ds->pktlen), status, status & MALO_TXD_STATUS_USED ? "" : (status & 3) != 0 ? " *" : " !"); printf(" RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n", ds->datarate, ds->txpriority, le16toh(ds->qosctrl), le32toh(ds->sap_pktinfo), le16toh(ds->format)); #if 0 { const uint8_t *cp = (const uint8_t *) ds; int i; for (i = 0; i < sizeof(struct malo_txdesc); i++) { printf("%02x ", cp[i]); if (((i+1) % 16) == 0) printf("\n"); } printf("\n"); } #endif } #endif /* MALO_DEBUG */ static __inline void malo_updatetxrate(struct ieee80211_node *ni, int rix) { static const int ieeerates[] = { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 96, 108 }; if (rix < nitems(ieeerates)) ni->ni_txrate = ieeerates[rix]; } static int malo_fix2rate(int fix_rate) { static const int rates[] = { 2, 4, 11, 22, 12, 18, 24, 36, 48, 96, 108 }; return (fix_rate < nitems(rates) ? rates[fix_rate] : 0); } -/* idiomatic shorthands: MS = mask+shift, SM = shift+mask */ -#define MS(v,x) (((v) & x) >> x##_S) -#define SM(v,x) (((v) << x##_S) & x) - /* * Process completed xmit descriptors from the specified queue. */ static int malo_tx_processq(struct malo_softc *sc, struct malo_txq *txq) { struct malo_txbuf *bf; struct malo_txdesc *ds; struct ieee80211_node *ni; int nreaped; uint32_t status; DPRINTF(sc, MALO_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum); for (nreaped = 0;; nreaped++) { MALO_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->active); if (bf == NULL) { MALO_TXQ_UNLOCK(txq); break; } ds = bf->bf_desc; MALO_TXDESC_SYNC(txq, ds, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (ds->status & htole32(MALO_TXD_STATUS_FW_OWNED)) { MALO_TXQ_UNLOCK(txq); break; } STAILQ_REMOVE_HEAD(&txq->active, bf_list); MALO_TXQ_UNLOCK(txq); #ifdef MALO_DEBUG if (sc->malo_debug & MALO_DEBUG_XMIT_DESC) malo_printtxbuf(bf, txq->qnum, nreaped); #endif ni = bf->bf_node; if (ni != NULL) { status = le32toh(ds->status); if (status & MALO_TXD_STATUS_OK) { uint16_t format = le16toh(ds->format); - uint8_t txant = MS(format, MALO_TXD_ANTENNA); + uint8_t txant =_IEEE80211_MASKSHIFT( + format, MALO_TXD_ANTENNA); sc->malo_stats.mst_ant_tx[txant]++; if (status & MALO_TXD_STATUS_OK_RETRY) sc->malo_stats.mst_tx_retries++; if (status & MALO_TXD_STATUS_OK_MORE_RETRY) sc->malo_stats.mst_tx_mretries++; malo_updatetxrate(ni, ds->datarate); sc->malo_stats.mst_tx_rate = ds->datarate; } else { if (status & MALO_TXD_STATUS_FAILED_LINK_ERROR) sc->malo_stats.mst_tx_linkerror++; if (status & MALO_TXD_STATUS_FAILED_XRETRY) sc->malo_stats.mst_tx_xretries++; if (status & MALO_TXD_STATUS_FAILED_AGING) sc->malo_stats.mst_tx_aging++; } /* XXX strip fw len in case header inspected */ m_adj(bf->bf_m, sizeof(uint16_t)); ieee80211_tx_complete(ni, bf->bf_m, (status & MALO_TXD_STATUS_OK) == 0); } else m_freem(bf->bf_m); ds->status = htole32(MALO_TXD_STATUS_IDLE); ds->pktlen = htole32(0); bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap); bf->bf_m = NULL; bf->bf_node = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree++; MALO_TXQ_UNLOCK(txq); } return nreaped; } /* * Deferred processing of transmit interrupt. */ static void malo_tx_proc(void *arg, int npending) { struct malo_softc *sc = arg; int i, nreaped; /* * Process each active queue. */ nreaped = 0; MALO_LOCK(sc); for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { if (!STAILQ_EMPTY(&sc->malo_txq[i].active)) nreaped += malo_tx_processq(sc, &sc->malo_txq[i]); } if (nreaped != 0) { sc->malo_timer = 0; malo_start(sc); } MALO_UNLOCK(sc); } static int malo_tx_start(struct malo_softc *sc, struct ieee80211_node *ni, struct malo_txbuf *bf, struct mbuf *m0) { #define IS_DATA_FRAME(wh) \ ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK)) == IEEE80211_FC0_TYPE_DATA) int error, ismcast, iswep; int copyhdrlen, hdrlen, pktlen; struct ieee80211_frame *wh; struct ieee80211com *ic = &sc->malo_ic; struct ieee80211vap *vap = ni->ni_vap; struct malo_txdesc *ds; struct malo_txrec *tr; struct malo_txq *txq; uint16_t qos; wh = mtod(m0, struct ieee80211_frame *); iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); copyhdrlen = hdrlen = ieee80211_anyhdrsize(wh); pktlen = m0->m_pkthdr.len; if (IEEE80211_QOS_HAS_SEQ(wh)) { qos = *(uint16_t *)ieee80211_getqos(wh); if (IEEE80211_IS_DSTODS(wh)) copyhdrlen -= sizeof(qos); } else qos = 0; if (iswep) { struct ieee80211_key *k; /* * Construct the 802.11 header+trailer for an encrypted * frame. The only reason this can fail is because of an * unknown or unsupported cipher/key type. * * NB: we do this even though the firmware will ignore * what we've done for WEP and TKIP as we need the * ExtIV filled in for CCMP and this also adjusts * the headers which simplifies our work below. */ k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { /* * This can happen when the key is yanked after the * frame was queued. Just discard the frame; the * 802.11 layer counts failures and provides * debugging/diagnostics. */ m_freem(m0); return EIO; } /* * Adjust the packet length for the crypto additions * done during encap and any other bits that the f/w * will add later on. */ pktlen = m0->m_pkthdr.len; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { sc->malo_tx_th.wt_flags = 0; /* XXX */ if (iswep) sc->malo_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; sc->malo_tx_th.wt_txpower = ni->ni_txpower; sc->malo_tx_th.wt_antenna = sc->malo_txantenna; ieee80211_radiotap_tx(vap, m0); } /* * Copy up/down the 802.11 header; the firmware requires * we present a 2-byte payload length followed by a * 4-address header (w/o QoS), followed (optionally) by * any WEP/ExtIV header (but only filled in for CCMP). * We are assured the mbuf has sufficient headroom to * prepend in-place by the setup of ic_headroom in * malo_attach. */ if (hdrlen < sizeof(struct malo_txrec)) { const int space = sizeof(struct malo_txrec) - hdrlen; if (M_LEADINGSPACE(m0) < space) { /* NB: should never happen */ device_printf(sc->malo_dev, "not enough headroom, need %d found %zd, " "m_flags 0x%x m_len %d\n", space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len); ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 0, -1); m_freem(m0); /* XXX stat */ return EIO; } M_PREPEND(m0, space, M_NOWAIT); } tr = mtod(m0, struct malo_txrec *); if (wh != (struct ieee80211_frame *) &tr->wh) ovbcopy(wh, &tr->wh, hdrlen); /* * Note: the "firmware length" is actually the length of the fully * formed "802.11 payload". That is, it's everything except for * the 802.11 header. In particular this includes all crypto * material including the MIC! */ tr->fwlen = htole16(pktlen - hdrlen); /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = malo_tx_dmasetup(sc, bf, m0); if (error != 0) return error; bf->bf_node = ni; /* NB: held reference */ m0 = bf->bf_m; /* NB: may have changed */ tr = mtod(m0, struct malo_txrec *); wh = (struct ieee80211_frame *)&tr->wh; /* * Formulate tx descriptor. */ ds = bf->bf_desc; txq = bf->bf_txq; ds->qosctrl = qos; /* NB: already little-endian */ ds->pktptr = htole32(bf->bf_segs[0].ds_addr); ds->pktlen = htole16(bf->bf_segs[0].ds_len); /* NB: pPhysNext setup once, don't touch */ ds->datarate = IS_DATA_FRAME(wh) ? 1 : 0; ds->sap_pktinfo = 0; ds->format = 0; /* * Select transmit rate. */ switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_MGT: sc->malo_stats.mst_tx_mgmt++; /* fall thru... */ case IEEE80211_FC0_TYPE_CTL: ds->txpriority = 1; break; case IEEE80211_FC0_TYPE_DATA: ds->txpriority = txq->qnum; break; default: device_printf(sc->malo_dev, "bogus frame type 0x%x (%s)\n", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); /* XXX statistic */ m_freem(m0); return EIO; } #ifdef MALO_DEBUG if (IFF_DUMPPKTS_XMIT(sc)) ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *)+sizeof(uint16_t), m0->m_len - sizeof(uint16_t), ds->datarate, -1); #endif MALO_TXQ_LOCK(txq); if (!IS_DATA_FRAME(wh)) ds->status |= htole32(1); ds->status |= htole32(MALO_TXD_STATUS_FW_OWNED); STAILQ_INSERT_TAIL(&txq->active, bf, bf_list); MALO_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->malo_timer = 5; MALO_TXQ_UNLOCK(txq); return 0; } static int malo_transmit(struct ieee80211com *ic, struct mbuf *m) { struct malo_softc *sc = ic->ic_softc; int error; MALO_LOCK(sc); if (!sc->malo_running) { MALO_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->malo_snd, m); if (error) { MALO_UNLOCK(sc); return (error); } malo_start(sc); MALO_UNLOCK(sc); return (0); } static void malo_start(struct malo_softc *sc) { struct ieee80211_node *ni; struct malo_txq *txq = &sc->malo_txq[0]; struct malo_txbuf *bf = NULL; struct mbuf *m; int nqueued = 0; MALO_LOCK_ASSERT(sc); if (!sc->malo_running || sc->malo_invalid) return; while ((m = mbufq_dequeue(&sc->malo_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; bf = malo_getbuf(sc, txq); if (bf == NULL) { mbufq_prepend(&sc->malo_snd, m); sc->malo_stats.mst_tx_qstop++; break; } /* * Pass the frame to the h/w for transmission. */ if (malo_tx_start(sc, ni, bf, m)) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); if (bf != NULL) { bf->bf_m = NULL; bf->bf_node = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); MALO_TXQ_UNLOCK(txq); } ieee80211_free_node(ni); continue; } nqueued++; if (nqueued >= malo_txcoalesce) { /* * Poke the firmware to process queued frames; * see below about (lack of) locking. */ nqueued = 0; malo_hal_txstart(sc->malo_mh, 0/*XXX*/); } } if (nqueued) { /* * NB: We don't need to lock against tx done because * this just prods the firmware to check the transmit * descriptors. The firmware will also start fetching * descriptors by itself if it notices new ones are * present when it goes to deliver a tx done interrupt * to the host. So if we race with tx done processing * it's ok. Delivering the kick here rather than in * malo_tx_start is an optimization to avoid poking the * firmware for each packet. * * NB: the queue id isn't used so 0 is ok. */ malo_hal_txstart(sc->malo_mh, 0/*XXX*/); } } static void malo_watchdog(void *arg) { struct malo_softc *sc = arg; callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc); if (sc->malo_timer == 0 || --sc->malo_timer > 0) return; if (sc->malo_running && !sc->malo_invalid) { device_printf(sc->malo_dev, "watchdog timeout\n"); /* XXX no way to reset h/w. now */ counter_u64_add(sc->malo_ic.ic_oerrors, 1); sc->malo_stats.mst_watchdog++; } } static int malo_hal_reset(struct malo_softc *sc) { static int first = 0; struct ieee80211com *ic = &sc->malo_ic; struct malo_hal *mh = sc->malo_mh; if (first == 0) { /* * NB: when the device firstly is initialized, sometimes * firmware could override rx/tx dma registers so we re-set * these values once. */ malo_hal_set_rxtxdma(sc); first = 1; } malo_hal_setantenna(mh, MHA_ANTENNATYPE_RX, sc->malo_rxantenna); malo_hal_setantenna(mh, MHA_ANTENNATYPE_TX, sc->malo_txantenna); malo_hal_setradio(mh, 1, MHP_AUTO_PREAMBLE); malo_chan_set(sc, ic->ic_curchan); /* XXX needs other stuffs? */ return 1; } static __inline struct mbuf * malo_getrxmbuf(struct malo_softc *sc, struct malo_rxbuf *bf) { struct mbuf *m; bus_addr_t paddr; int error; /* XXX don't need mbuf, just dma buffer */ m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (m == NULL) { sc->malo_stats.mst_rx_nombuf++; /* XXX */ return NULL; } error = bus_dmamap_load(sc->malo_dmat, bf->bf_dmamap, mtod(m, caddr_t), MJUMPAGESIZE, malo_load_cb, &paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->malo_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); m_freem(m); return NULL; } bf->bf_data = paddr; bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); return m; } static int malo_rxbuf_init(struct malo_softc *sc, struct malo_rxbuf *bf) { struct malo_rxdesc *ds; ds = bf->bf_desc; if (bf->bf_m == NULL) { bf->bf_m = malo_getrxmbuf(sc, bf); if (bf->bf_m == NULL) { /* mark descriptor to be skipped */ ds->rxcontrol = MALO_RXD_CTRL_OS_OWN; /* NB: don't need PREREAD */ MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE); return ENOMEM; } } /* * Setup descriptor. */ ds->qosctrl = 0; ds->snr = 0; ds->status = MALO_RXD_STATUS_IDLE; ds->channel = 0; ds->pktlen = htole16(MALO_RXSIZE); ds->nf = 0; ds->physbuffdata = htole32(bf->bf_data); /* NB: don't touch pPhysNext, set once */ ds->rxcontrol = MALO_RXD_CTRL_DRIVER_OWN; MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return 0; } /* * Setup the rx data structures. This should only be done once or we may get * out of sync with the firmware. */ static int malo_startrecv(struct malo_softc *sc) { struct malo_rxbuf *bf, *prev; struct malo_rxdesc *ds; if (sc->malo_recvsetup == 1) { malo_mode_init(sc); /* set filters, etc. */ return 0; } prev = NULL; STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) { int error = malo_rxbuf_init(sc, bf); if (error != 0) { DPRINTF(sc, MALO_DEBUG_RECV, "%s: malo_rxbuf_init failed %d\n", __func__, error); return error; } if (prev != NULL) { ds = prev->bf_desc; ds->physnext = htole32(bf->bf_daddr); } prev = bf; } if (prev != NULL) { ds = prev->bf_desc; ds->physnext = htole32(STAILQ_FIRST(&sc->malo_rxbuf)->bf_daddr); } sc->malo_recvsetup = 1; malo_mode_init(sc); /* set filters, etc. */ return 0; } static void malo_init_locked(struct malo_softc *sc) { struct malo_hal *mh = sc->malo_mh; int error; MALO_LOCK_ASSERT(sc); /* * Stop anything previously setup. This is safe whether this is * the first time through or not. */ malo_stop(sc); /* * Push state to the firmware. */ if (!malo_hal_reset(sc)) { device_printf(sc->malo_dev, "%s: unable to reset hardware\n", __func__); return; } /* * Setup recv (once); transmit is already good to go. */ error = malo_startrecv(sc); if (error != 0) { device_printf(sc->malo_dev, "%s: unable to start recv logic, error %d\n", __func__, error); return; } /* * Enable interrupts. */ sc->malo_imask = MALO_A2HRIC_BIT_RX_RDY | MALO_A2HRIC_BIT_TX_DONE | MALO_A2HRIC_BIT_OPC_DONE | MALO_A2HRIC_BIT_MAC_EVENT | MALO_A2HRIC_BIT_RX_PROBLEM | MALO_A2HRIC_BIT_ICV_ERROR | MALO_A2HRIC_BIT_RADAR_DETECT | MALO_A2HRIC_BIT_CHAN_SWITCH; sc->malo_running = 1; malo_hal_intrset(mh, sc->malo_imask); callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc); } static void malo_init(void *arg) { struct malo_softc *sc = (struct malo_softc *) arg; struct ieee80211com *ic = &sc->malo_ic; MALO_LOCK(sc); malo_init_locked(sc); MALO_UNLOCK(sc); if (sc->malo_running) ieee80211_start_all(ic); /* start all vap's */ } struct malo_copy_maddr_ctx { uint8_t macs[IEEE80211_ADDR_LEN * MALO_HAL_MCAST_MAX]; int nmc; }; static u_int malo_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int nmc) { struct malo_copy_maddr_ctx *ctx = arg; if (ctx->nmc == MALO_HAL_MCAST_MAX) return (0); IEEE80211_ADDR_COPY(ctx->macs + (ctx->nmc * IEEE80211_ADDR_LEN), LLADDR(sdl)); ctx->nmc++; return (1); } /* * Set the multicast filter contents into the hardware. */ static void malo_setmcastfilter(struct malo_softc *sc) { struct malo_copy_maddr_ctx ctx; struct ieee80211com *ic = &sc->malo_ic; struct ieee80211vap *vap; if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || ic->ic_promisc > 0) goto all; ctx.nmc = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if_foreach_llmaddr(vap->iv_ifp, malo_copy_maddr, &ctx); malo_hal_setmcast(sc->malo_mh, ctx.nmc, ctx.macs); all: /* * XXX we don't know how to set the f/w for supporting * IFF_ALLMULTI | IFF_PROMISC cases */ return; } static int malo_mode_init(struct malo_softc *sc) { struct ieee80211com *ic = &sc->malo_ic; struct malo_hal *mh = sc->malo_mh; malo_hal_setpromisc(mh, ic->ic_promisc > 0); malo_setmcastfilter(sc); return ENXIO; } static void malo_tx_draintxq(struct malo_softc *sc, struct malo_txq *txq) { struct ieee80211_node *ni; struct malo_txbuf *bf; u_int ix; /* * NB: this assumes output has been stopped and * we do not need to block malo_tx_tasklet */ for (ix = 0;; ix++) { MALO_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->active); if (bf == NULL) { MALO_TXQ_UNLOCK(txq); break; } STAILQ_REMOVE_HEAD(&txq->active, bf_list); MALO_TXQ_UNLOCK(txq); #ifdef MALO_DEBUG if (sc->malo_debug & MALO_DEBUG_RESET) { struct ieee80211com *ic = &sc->malo_ic; const struct malo_txrec *tr = mtod(bf->bf_m, const struct malo_txrec *); malo_printtxbuf(bf, txq->qnum, ix); ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh, bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1); } #endif /* MALO_DEBUG */ bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap); ni = bf->bf_node; bf->bf_node = NULL; if (ni != NULL) { /* * Reclaim node reference. */ ieee80211_free_node(ni); } m_freem(bf->bf_m); bf->bf_m = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree++; MALO_TXQ_UNLOCK(txq); } } static void malo_stop(struct malo_softc *sc) { struct malo_hal *mh = sc->malo_mh; int i; DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid %u running %u\n", __func__, sc->malo_invalid, sc->malo_running); MALO_LOCK_ASSERT(sc); if (!sc->malo_running) return; /* * Shutdown the hardware and driver: * disable interrupts * turn off the radio * drain and release tx queues * * Note that some of this work is not possible if the hardware * is gone (invalid). */ sc->malo_running = 0; callout_stop(&sc->malo_watchdog_timer); sc->malo_timer = 0; /* disable interrupt. */ malo_hal_intrset(mh, 0); /* turn off the radio. */ malo_hal_setradio(mh, 0, MHP_AUTO_PREAMBLE); /* drain and release tx queues. */ for (i = 0; i < MALO_NUM_TX_QUEUES; i++) malo_tx_draintxq(sc, &sc->malo_txq[i]); } static void malo_parent(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; int startall = 0; MALO_LOCK(sc); if (ic->ic_nrunning > 0) { /* * Beware of being called during attach/detach * to reset promiscuous mode. In that case we * will still be marked UP but not RUNNING. * However trying to re-init the interface * is the wrong thing to do as we've already * torn down much of our state. There's * probably a better way to deal with this. */ if (!sc->malo_running && !sc->malo_invalid) { malo_init(sc); startall = 1; } /* * To avoid rescanning another access point, * do not call malo_init() here. Instead, * only reflect promisc mode settings. */ malo_mode_init(sc); } else if (sc->malo_running) malo_stop(sc); MALO_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } /* * Callback from the 802.11 layer to update the slot time * based on the current setting. We use it to notify the * firmware of ERP changes and the f/w takes care of things * like slot time and preamble. */ static void malo_updateslot(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; struct malo_hal *mh = sc->malo_mh; int error; /* NB: can be called early; suppress needless cmds */ if (!sc->malo_running) return; DPRINTF(sc, MALO_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x %s slot, (ic_flags 0x%x)\n", __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", ic->ic_flags); if (ic->ic_flags & IEEE80211_F_SHSLOT) error = malo_hal_set_slot(mh, 1); else error = malo_hal_set_slot(mh, 0); if (error != 0) device_printf(sc->malo_dev, "setting %s slot failed\n", ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long"); } static int malo_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct malo_softc *sc = ic->ic_softc; struct malo_hal *mh = sc->malo_mh; int error; DPRINTF(sc, MALO_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); /* * Invoke the net80211 layer first so iv_bss is setup. */ error = MALO_VAP(vap)->malo_newstate(vap, nstate, arg); if (error != 0) return error; if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { struct ieee80211_node *ni = vap->iv_bss; enum ieee80211_phymode mode = ieee80211_chan2mode(ni->ni_chan); const struct ieee80211_txparam *tp = &vap->iv_txparms[mode]; DPRINTF(sc, MALO_DEBUG_STATE, "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s " "capinfo 0x%04x chan %d associd 0x%x mode %d rate %d\n", vap->iv_ifp->if_xname, __func__, vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan), ni->ni_associd, mode, tp->ucastrate); malo_hal_setradio(mh, 1, (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? MHP_SHORT_PREAMBLE : MHP_LONG_PREAMBLE); malo_hal_setassocid(sc->malo_mh, ni->ni_bssid, ni->ni_associd); malo_hal_set_rate(mh, mode, tp->ucastrate == IEEE80211_FIXED_RATE_NONE ? 0 : malo_fix2rate(tp->ucastrate)); } return 0; } static int malo_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct malo_softc *sc = ic->ic_softc; struct malo_txbuf *bf; struct malo_txq *txq; if (!sc->malo_running || sc->malo_invalid) { m_freem(m); return ENETDOWN; } /* * Grab a TX buffer and associated resources. Note that we depend * on the classification by the 802.11 layer to get to the right h/w * queue. Management frames must ALWAYS go on queue 1 but we * cannot just force that here because we may receive non-mgt frames. */ txq = &sc->malo_txq[0]; bf = malo_getbuf(sc, txq); if (bf == NULL) { m_freem(m); return ENOBUFS; } /* * Pass the frame to the h/w for transmission. */ if (malo_tx_start(sc, ni, bf, m) != 0) { bf->bf_m = NULL; bf->bf_node = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); txq->nfree++; MALO_TXQ_UNLOCK(txq); return EIO; /* XXX */ } /* * NB: We don't need to lock against tx done because this just * prods the firmware to check the transmit descriptors. The firmware * will also start fetching descriptors by itself if it notices * new ones are present when it goes to deliver a tx done interrupt * to the host. So if we race with tx done processing it's ok. * Delivering the kick here rather than in malo_tx_start is * an optimization to avoid poking the firmware for each packet. * * NB: the queue id isn't used so 0 is ok. */ malo_hal_txstart(sc->malo_mh, 0/*XXX*/); return 0; } static void malo_sysctlattach(struct malo_softc *sc) { #ifdef MALO_DEBUG struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->malo_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->malo_dev); sc->malo_debug = malo_debug; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->malo_debug, 0, "control debugging printfs"); #endif } static void malo_announce(struct malo_softc *sc) { device_printf(sc->malo_dev, "versions [hw %d fw %d.%d.%d.%d] (regioncode %d)\n", sc->malo_hwspecs.hwversion, (sc->malo_hwspecs.fw_releasenum >> 24) & 0xff, (sc->malo_hwspecs.fw_releasenum >> 16) & 0xff, (sc->malo_hwspecs.fw_releasenum >> 8) & 0xff, (sc->malo_hwspecs.fw_releasenum >> 0) & 0xff, sc->malo_hwspecs.regioncode); if (bootverbose || malo_rxbuf != MALO_RXBUF) device_printf(sc->malo_dev, "using %u rx buffers\n", malo_rxbuf); if (bootverbose || malo_txbuf != MALO_TXBUF) device_printf(sc->malo_dev, "using %u tx buffers\n", malo_txbuf); } /* * Convert net80211 channel to a HAL channel. */ static void malo_mapchan(struct malo_hal_channel *hc, const struct ieee80211_channel *chan) { hc->channel = chan->ic_ieee; *(uint32_t *)&hc->flags = 0; if (IEEE80211_IS_CHAN_2GHZ(chan)) hc->flags.freqband = MALO_FREQ_BAND_2DOT4GHZ; } /* * Set/change channels. If the channel is really being changed, * it's done by reseting the chip. To accomplish this we must * first cleanup any pending DMA, then restart stuff after a la * malo_init. */ static int malo_chan_set(struct malo_softc *sc, struct ieee80211_channel *chan) { struct malo_hal *mh = sc->malo_mh; struct malo_hal_channel hchan; DPRINTF(sc, MALO_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n", __func__, chan->ic_freq, chan->ic_flags); /* * Convert to a HAL channel description with the flags constrained * to reflect the current operating mode. */ malo_mapchan(&hchan, chan); malo_hal_intrset(mh, 0); /* disable interrupts */ malo_hal_setchannel(mh, &hchan); malo_hal_settxpower(mh, &hchan); /* * Update internal state. */ sc->malo_tx_th.wt_chan_freq = htole16(chan->ic_freq); sc->malo_rx_th.wr_chan_freq = htole16(chan->ic_freq); if (IEEE80211_IS_CHAN_ANYG(chan)) { sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G); sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G); } else { sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B); sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B); } sc->malo_curchan = hchan; malo_hal_intrset(mh, sc->malo_imask); return 0; } static void malo_scan_start(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__); } static void malo_scan_end(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__); } static void malo_set_channel(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; (void) malo_chan_set(sc, ic->ic_curchan); } static void malo_rx_proc(void *arg, int npending) { struct epoch_tracker et; struct malo_softc *sc = arg; struct ieee80211com *ic = &sc->malo_ic; struct malo_rxbuf *bf; struct malo_rxdesc *ds; struct mbuf *m, *mnew; struct ieee80211_qosframe *wh; struct ieee80211_node *ni; int off, len, hdrlen, pktlen, rssi, ntodo; uint8_t *data, status; uint32_t readptr, writeptr; DPRINTF(sc, MALO_DEBUG_RX_PROC, "%s: pending %u rdptr(0x%x) 0x%x wrptr(0x%x) 0x%x\n", __func__, npending, sc->malo_hwspecs.rxdesc_read, malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read), sc->malo_hwspecs.rxdesc_write, malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write)); readptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read); writeptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write); if (readptr == writeptr) return; bf = sc->malo_rxnext; for (ntodo = malo_rxquota; ntodo > 0 && readptr != writeptr; ntodo--) { if (bf == NULL) { bf = STAILQ_FIRST(&sc->malo_rxbuf); break; } ds = bf->bf_desc; if (bf->bf_m == NULL) { /* * If data allocation failed previously there * will be no buffer; try again to re-populate it. * Note the firmware will not advance to the next * descriptor with a dma buffer so we must mimic * this or we'll get out of sync. */ DPRINTF(sc, MALO_DEBUG_ANY, "%s: rx buf w/o dma memory\n", __func__); (void)malo_rxbuf_init(sc, bf); break; } MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (ds->rxcontrol != MALO_RXD_CTRL_DMA_OWN) break; readptr = le32toh(ds->physnext); #ifdef MALO_DEBUG if (sc->malo_debug & MALO_DEBUG_RECV_DESC) malo_printrxbuf(bf, 0); #endif status = ds->status; if (status & MALO_RXD_STATUS_DECRYPT_ERR_MASK) { counter_u64_add(ic->ic_ierrors, 1); goto rx_next; } /* * Sync the data buffer. */ len = le16toh(ds->pktlen); bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD); /* * The 802.11 header is provided all or in part at the front; * use it to calculate the true size of the header that we'll * construct below. We use this to figure out where to copy * payload prior to constructing the header. */ m = bf->bf_m; data = mtod(m, uint8_t *); hdrlen = ieee80211_anyhdrsize(data + sizeof(uint16_t)); off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4); /* * Calculate RSSI. XXX wrong */ rssi = 2 * ((int) ds->snr - ds->nf); /* NB: .5 dBm */ if (rssi > 100) rssi = 100; pktlen = hdrlen + (len - off); /* * NB: we know our frame is at least as large as * IEEE80211_MIN_LEN because there is a 4-address frame at * the front. Hence there's no need to vet the packet length. * If the frame in fact is too small it should be discarded * at the net80211 layer. */ /* XXX don't need mbuf, just dma buffer */ mnew = malo_getrxmbuf(sc, bf); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); goto rx_next; } /* * Attach the dma buffer to the mbuf; malo_rxbuf_init will * re-setup the rx descriptor using the replacement dma * buffer we just installed above. */ bf->bf_m = mnew; m->m_data += off - hdrlen; m->m_pkthdr.len = m->m_len = pktlen; /* * Piece 802.11 header together. */ wh = mtod(m, struct ieee80211_qosframe *); /* NB: don't need to do this sometimes but ... */ /* XXX special case so we can memcpy after m_devget? */ ovbcopy(data + sizeof(uint16_t), wh, hdrlen); if (IEEE80211_QOS_HAS_SEQ(wh)) *(uint16_t *)ieee80211_getqos(wh) = ds->qosctrl; if (ieee80211_radiotap_active(ic)) { sc->malo_rx_th.wr_flags = 0; sc->malo_rx_th.wr_rate = ds->rate; sc->malo_rx_th.wr_antsignal = rssi; sc->malo_rx_th.wr_antnoise = ds->nf; } #ifdef MALO_DEBUG if (IFF_DUMPPKTS_RECV(sc, wh)) { ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, ds->rate, rssi); } #endif /* dispatch */ ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); NET_EPOCH_ENTER(et); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, ds->nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, ds->nf); NET_EPOCH_EXIT(et); rx_next: /* NB: ignore ENOMEM so we process more descriptors */ (void) malo_rxbuf_init(sc, bf); bf = STAILQ_NEXT(bf, bf_list); } malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, readptr); sc->malo_rxnext = bf; if (mbufq_first(&sc->malo_snd) != NULL) malo_start(sc); } /* * Reclaim all tx queue resources. */ static void malo_tx_cleanup(struct malo_softc *sc) { int i; for (i = 0; i < MALO_NUM_TX_QUEUES; i++) malo_tx_cleanupq(sc, &sc->malo_txq[i]); } int malo_detach(struct malo_softc *sc) { struct ieee80211com *ic = &sc->malo_ic; malo_stop(sc); if (sc->malo_tq != NULL) { taskqueue_drain(sc->malo_tq, &sc->malo_rxtask); taskqueue_drain(sc->malo_tq, &sc->malo_txtask); taskqueue_free(sc->malo_tq); sc->malo_tq = NULL; } /* * NB: the order of these is important: * o call the 802.11 layer before detaching the hal to * insure callbacks into the driver to delete global * key cache entries can be handled * o reclaim the tx queue data structures after calling * the 802.11 layer as we'll get called back to reclaim * node state and potentially want to use them * o to cleanup the tx queues the hal is called, so detach * it last * Other than that, it's straightforward... */ ieee80211_ifdetach(ic); callout_drain(&sc->malo_watchdog_timer); malo_dma_cleanup(sc); malo_tx_cleanup(sc); malo_hal_detach(sc->malo_mh); mbufq_drain(&sc->malo_snd); MALO_LOCK_DESTROY(sc); return 0; } void malo_shutdown(struct malo_softc *sc) { malo_stop(sc); } void malo_suspend(struct malo_softc *sc) { malo_stop(sc); } void malo_resume(struct malo_softc *sc) { if (sc->malo_ic.ic_nrunning > 0) malo_init(sc); } Index: head/sys/dev/mwl/if_mwl.c =================================================================== --- head/sys/dev/mwl/if_mwl.c (revision 366111) +++ head/sys/dev/mwl/if_mwl.c (revision 366112) @@ -1,4834 +1,4834 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting * Copyright (c) 2007-2008 Marvell Semiconductor, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); /* * Driver for the Marvell 88W8363 Wireless LAN controller. */ #include "opt_inet.h" #include "opt_mwl.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif /* INET */ #include #include -/* idiomatic shorthands: MS = mask+shift, SM = shift+mask */ -#define MS(v,x) (((v) & x) >> x##_S) -#define SM(v,x) (((v) << x##_S) & x) - static struct ieee80211vap *mwl_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void mwl_vap_delete(struct ieee80211vap *); static int mwl_setupdma(struct mwl_softc *); static int mwl_hal_reset(struct mwl_softc *sc); static int mwl_init(struct mwl_softc *); static void mwl_parent(struct ieee80211com *); static int mwl_reset(struct ieee80211vap *, u_long); static void mwl_stop(struct mwl_softc *); static void mwl_start(struct mwl_softc *); static int mwl_transmit(struct ieee80211com *, struct mbuf *); static int mwl_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int mwl_media_change(struct ifnet *); static void mwl_watchdog(void *); static int mwl_ioctl(struct ieee80211com *, u_long, void *); static void mwl_radar_proc(void *, int); static void mwl_chanswitch_proc(void *, int); static void mwl_bawatchdog_proc(void *, int); static int mwl_key_alloc(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); static int mwl_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static int mwl_key_set(struct ieee80211vap *, const struct ieee80211_key *); static int _mwl_key_set(struct ieee80211vap *, const struct ieee80211_key *, const uint8_t mac[IEEE80211_ADDR_LEN]); static int mwl_mode_init(struct mwl_softc *); static void mwl_update_mcast(struct ieee80211com *); static void mwl_update_promisc(struct ieee80211com *); static void mwl_updateslot(struct ieee80211com *); static int mwl_beacon_setup(struct ieee80211vap *); static void mwl_beacon_update(struct ieee80211vap *, int); #ifdef MWL_HOST_PS_SUPPORT static void mwl_update_ps(struct ieee80211vap *, int); static int mwl_set_tim(struct ieee80211_node *, int); #endif static int mwl_dma_setup(struct mwl_softc *); static void mwl_dma_cleanup(struct mwl_softc *); static struct ieee80211_node *mwl_node_alloc(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); static void mwl_node_cleanup(struct ieee80211_node *); static void mwl_node_drain(struct ieee80211_node *); static void mwl_node_getsignal(const struct ieee80211_node *, int8_t *, int8_t *); static void mwl_node_getmimoinfo(const struct ieee80211_node *, struct ieee80211_mimo_info *); static int mwl_rxbuf_init(struct mwl_softc *, struct mwl_rxbuf *); static void mwl_rx_proc(void *, int); static void mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *, int); static int mwl_tx_setup(struct mwl_softc *, int, int); static int mwl_wme_update(struct ieee80211com *); static void mwl_tx_cleanupq(struct mwl_softc *, struct mwl_txq *); static void mwl_tx_cleanup(struct mwl_softc *); static uint16_t mwl_calcformat(uint8_t rate, const struct ieee80211_node *); static int mwl_tx_start(struct mwl_softc *, struct ieee80211_node *, struct mwl_txbuf *, struct mbuf *); static void mwl_tx_proc(void *, int); static int mwl_chan_set(struct mwl_softc *, struct ieee80211_channel *); static void mwl_draintxq(struct mwl_softc *); static void mwl_cleartxq(struct mwl_softc *, struct ieee80211vap *); static int mwl_recv_action(struct ieee80211_node *, const struct ieee80211_frame *, const uint8_t *, const uint8_t *); static int mwl_addba_request(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int dialogtoken, int baparamset, int batimeout); static int mwl_addba_response(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int status, int baparamset, int batimeout); static void mwl_addba_stop(struct ieee80211_node *, struct ieee80211_tx_ampdu *); static int mwl_startrecv(struct mwl_softc *); static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *, struct ieee80211_channel *); static int mwl_setapmode(struct ieee80211vap *, struct ieee80211_channel*); static void mwl_scan_start(struct ieee80211com *); static void mwl_scan_end(struct ieee80211com *); static void mwl_set_channel(struct ieee80211com *); static int mwl_peerstadb(struct ieee80211_node *, int aid, int staid, MWL_HAL_PEERINFO *pi); static int mwl_localstadb(struct ieee80211vap *); static int mwl_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int allocstaid(struct mwl_softc *sc, int aid); static void delstaid(struct mwl_softc *sc, int staid); static void mwl_newassoc(struct ieee80211_node *, int); static void mwl_agestations(void *); static int mwl_setregdomain(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel []); static void mwl_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel []); static int mwl_getchannels(struct mwl_softc *); static void mwl_sysctlattach(struct mwl_softc *); static void mwl_announce(struct mwl_softc *); SYSCTL_NODE(_hw, OID_AUTO, mwl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Marvell driver parameters"); static int mwl_rxdesc = MWL_RXDESC; /* # rx desc's to allocate */ SYSCTL_INT(_hw_mwl, OID_AUTO, rxdesc, CTLFLAG_RW, &mwl_rxdesc, 0, "rx descriptors allocated"); static int mwl_rxbuf = MWL_RXBUF; /* # rx buffers to allocate */ SYSCTL_INT(_hw_mwl, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &mwl_rxbuf, 0, "rx buffers allocated"); static int mwl_txbuf = MWL_TXBUF; /* # tx buffers to allocate */ SYSCTL_INT(_hw_mwl, OID_AUTO, txbuf, CTLFLAG_RWTUN, &mwl_txbuf, 0, "tx buffers allocated"); static int mwl_txcoalesce = 8; /* # tx packets to q before poking f/w*/ SYSCTL_INT(_hw_mwl, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &mwl_txcoalesce, 0, "tx buffers to send at once"); static int mwl_rxquota = MWL_RXBUF; /* # max buffers to process */ SYSCTL_INT(_hw_mwl, OID_AUTO, rxquota, CTLFLAG_RWTUN, &mwl_rxquota, 0, "max rx buffers to process per interrupt"); static int mwl_rxdmalow = 3; /* # min buffers for wakeup */ SYSCTL_INT(_hw_mwl, OID_AUTO, rxdmalow, CTLFLAG_RWTUN, &mwl_rxdmalow, 0, "min free rx buffers before restarting traffic"); #ifdef MWL_DEBUG static int mwl_debug = 0; SYSCTL_INT(_hw_mwl, OID_AUTO, debug, CTLFLAG_RWTUN, &mwl_debug, 0, "control debugging printfs"); enum { MWL_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ MWL_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ MWL_DEBUG_RECV = 0x00000004, /* basic recv operation */ MWL_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ MWL_DEBUG_RESET = 0x00000010, /* reset processing */ MWL_DEBUG_BEACON = 0x00000020, /* beacon handling */ MWL_DEBUG_INTR = 0x00000040, /* ISR */ MWL_DEBUG_TX_PROC = 0x00000080, /* tx ISR proc */ MWL_DEBUG_RX_PROC = 0x00000100, /* rx ISR proc */ MWL_DEBUG_KEYCACHE = 0x00000200, /* key cache management */ MWL_DEBUG_STATE = 0x00000400, /* 802.11 state transitions */ MWL_DEBUG_NODE = 0x00000800, /* node management */ MWL_DEBUG_RECV_ALL = 0x00001000, /* trace all frames (beacons) */ MWL_DEBUG_TSO = 0x00002000, /* TSO processing */ MWL_DEBUG_AMPDU = 0x00004000, /* BA stream handling */ MWL_DEBUG_ANY = 0xffffffff }; #define IS_BEACON(wh) \ ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) == \ (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON)) #define IFF_DUMPPKTS_RECV(sc, wh) \ ((sc->sc_debug & MWL_DEBUG_RECV) && \ ((sc->sc_debug & MWL_DEBUG_RECV_ALL) || !IS_BEACON(wh))) #define IFF_DUMPPKTS_XMIT(sc) \ (sc->sc_debug & MWL_DEBUG_XMIT) #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #define KEYPRINTF(sc, hk, mac) do { \ if (sc->sc_debug & MWL_DEBUG_KEYCACHE) \ mwl_keyprint(sc, __func__, hk, mac); \ } while (0) static void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix); static void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix); #else #define IFF_DUMPPKTS_RECV(sc, wh) 0 #define IFF_DUMPPKTS_XMIT(sc) 0 #define DPRINTF(sc, m, fmt, ...) do { (void )sc; } while (0) #define KEYPRINTF(sc, k, mac) do { (void )sc; } while (0) #endif static MALLOC_DEFINE(M_MWLDEV, "mwldev", "mwl driver dma buffers"); /* * Each packet has fixed front matter: a 2-byte length * of the payload, followed by a 4-address 802.11 header * (regardless of the actual header and always w/o any * QoS header). The payload then follows. */ struct mwltxrec { uint16_t fwlen; struct ieee80211_frame_addr4 wh; } __packed; /* * Read/Write shorthands for accesses to BAR 0. Note * that all BAR 1 operations are done in the "hal" and * there should be no reference to them here. */ #ifdef MWL_DEBUG static __inline uint32_t RD4(struct mwl_softc *sc, bus_size_t off) { return bus_space_read_4(sc->sc_io0t, sc->sc_io0h, off); } #endif static __inline void WR4(struct mwl_softc *sc, bus_size_t off, uint32_t val) { bus_space_write_4(sc->sc_io0t, sc->sc_io0h, off, val); } int mwl_attach(uint16_t devid, struct mwl_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct mwl_hal *mh; int error = 0; DPRINTF(sc, MWL_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); /* * Setup the RX free list lock early, so it can be consistently * removed. */ MWL_RXFREE_INIT(sc); mh = mwl_hal_attach(sc->sc_dev, devid, sc->sc_io1h, sc->sc_io1t, sc->sc_dmat); if (mh == NULL) { device_printf(sc->sc_dev, "unable to attach HAL\n"); error = EIO; goto bad; } sc->sc_mh = mh; /* * Load firmware so we can get setup. We arbitrarily * pick station firmware; we'll re-load firmware as * needed so setting up the wrong mode isn't a big deal. */ if (mwl_hal_fwload(mh, NULL) != 0) { device_printf(sc->sc_dev, "unable to setup builtin firmware\n"); error = EIO; goto bad1; } if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) { device_printf(sc->sc_dev, "unable to fetch h/w specs\n"); error = EIO; goto bad1; } error = mwl_getchannels(sc); if (error != 0) goto bad1; sc->sc_txantenna = 0; /* h/w default */ sc->sc_rxantenna = 0; /* h/w default */ sc->sc_invalid = 0; /* ready to go, enable int handling */ sc->sc_ageinterval = MWL_AGEINTERVAL; /* * Allocate tx+rx descriptors and populate the lists. * We immediately push the information to the firmware * as otherwise it gets upset. */ error = mwl_dma_setup(sc); if (error != 0) { device_printf(sc->sc_dev, "failed to setup descriptors: %d\n", error); goto bad1; } error = mwl_setupdma(sc); /* push to firmware */ if (error != 0) /* NB: mwl_setupdma prints msg */ goto bad1; callout_init(&sc->sc_timer, 1); callout_init_mtx(&sc->sc_watchdog, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); sc->sc_tq = taskqueue_create("mwl_taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->sc_tq); taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->sc_dev)); NET_TASK_INIT(&sc->sc_rxtask, 0, mwl_rx_proc, sc); TASK_INIT(&sc->sc_radartask, 0, mwl_radar_proc, sc); TASK_INIT(&sc->sc_chanswitchtask, 0, mwl_chanswitch_proc, sc); TASK_INIT(&sc->sc_bawatchdogtask, 0, mwl_bawatchdog_proc, sc); /* NB: insure BK queue is the lowest priority h/w queue */ if (!mwl_tx_setup(sc, WME_AC_BK, MWL_WME_AC_BK)) { device_printf(sc->sc_dev, "unable to setup xmit queue for %s traffic!\n", ieee80211_wme_acnames[WME_AC_BK]); error = EIO; goto bad2; } if (!mwl_tx_setup(sc, WME_AC_BE, MWL_WME_AC_BE) || !mwl_tx_setup(sc, WME_AC_VI, MWL_WME_AC_VI) || !mwl_tx_setup(sc, WME_AC_VO, MWL_WME_AC_VO)) { /* * Not enough hardware tx queues to properly do WME; * just punt and assign them all to the same h/w queue. * We could do a better job of this if, for example, * we allocate queues when we switch from station to * AP mode. */ if (sc->sc_ac2q[WME_AC_VI] != NULL) mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); if (sc->sc_ac2q[WME_AC_BE] != NULL) mwl_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; } TASK_INIT(&sc->sc_txtask, 0, mwl_tx_proc, sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->sc_dev); /* XXX not right but it's not used anywhere important */ ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ #if 0 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ #endif | IEEE80211_C_MBSS /* mesh point link mode */ | IEEE80211_C_WDS /* WDS supported */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WME /* WME/WMM supported */ | IEEE80211_C_BURST /* xmit bursting supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_TXFRAG /* handle tx frags */ | IEEE80211_C_TXPMGT /* capable of txpow mgt */ | IEEE80211_C_DFS /* DFS supported */ ; ic->ic_htcaps = IEEE80211_HTCAP_SMPS_ENA /* SM PS mode enabled */ | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width */ | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ | IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */ #if MWL_AGGR_SIZE == 7935 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ #else | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ #endif #if 0 | IEEE80211_HTCAP_PSMP /* PSMP supported */ | IEEE80211_HTCAP_40INTOLERANT /* 40MHz intolerant */ #endif /* s/w capabilities */ | IEEE80211_HTC_HT /* HT operation */ | IEEE80211_HTC_AMPDU /* tx A-MPDU */ | IEEE80211_HTC_AMSDU /* tx A-MSDU */ | IEEE80211_HTC_SMPS /* SMPS available */ ; /* * Mark h/w crypto support. * XXX no way to query h/w support. */ ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_AES_CCM | IEEE80211_CRYPTO_TKIP | IEEE80211_CRYPTO_TKIPMIC ; /* * Transmit requires space in the packet for a special * format transmit record and optional padding between * this record and the payload. Ask the net80211 layer * to arrange this when encapsulating packets so we can * add it efficiently. */ ic->ic_headroom = sizeof(struct mwltxrec) - sizeof(struct ieee80211_frame); IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->sc_hwspecs.macAddr); /* call MI attach routine. */ ieee80211_ifattach(ic); ic->ic_setregdomain = mwl_setregdomain; ic->ic_getradiocaps = mwl_getradiocaps; /* override default methods */ ic->ic_raw_xmit = mwl_raw_xmit; ic->ic_newassoc = mwl_newassoc; ic->ic_updateslot = mwl_updateslot; ic->ic_update_mcast = mwl_update_mcast; ic->ic_update_promisc = mwl_update_promisc; ic->ic_wme.wme_update = mwl_wme_update; ic->ic_transmit = mwl_transmit; ic->ic_ioctl = mwl_ioctl; ic->ic_parent = mwl_parent; ic->ic_node_alloc = mwl_node_alloc; sc->sc_node_cleanup = ic->ic_node_cleanup; ic->ic_node_cleanup = mwl_node_cleanup; sc->sc_node_drain = ic->ic_node_drain; ic->ic_node_drain = mwl_node_drain; ic->ic_node_getsignal = mwl_node_getsignal; ic->ic_node_getmimoinfo = mwl_node_getmimoinfo; ic->ic_scan_start = mwl_scan_start; ic->ic_scan_end = mwl_scan_end; ic->ic_set_channel = mwl_set_channel; sc->sc_recv_action = ic->ic_recv_action; ic->ic_recv_action = mwl_recv_action; sc->sc_addba_request = ic->ic_addba_request; ic->ic_addba_request = mwl_addba_request; sc->sc_addba_response = ic->ic_addba_response; ic->ic_addba_response = mwl_addba_response; sc->sc_addba_stop = ic->ic_addba_stop; ic->ic_addba_stop = mwl_addba_stop; ic->ic_vap_create = mwl_vap_create; ic->ic_vap_delete = mwl_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), MWL_TX_RADIOTAP_PRESENT, &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), MWL_RX_RADIOTAP_PRESENT); /* * Setup dynamic sysctl's now that country code and * regdomain are available from the hal. */ mwl_sysctlattach(sc); if (bootverbose) ieee80211_announce(ic); mwl_announce(sc); return 0; bad2: mwl_dma_cleanup(sc); bad1: mwl_hal_detach(mh); bad: MWL_RXFREE_DESTROY(sc); sc->sc_invalid = 1; return error; } int mwl_detach(struct mwl_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; MWL_LOCK(sc); mwl_stop(sc); MWL_UNLOCK(sc); /* * NB: the order of these is important: * o call the 802.11 layer before detaching the hal to * insure callbacks into the driver to delete global * key cache entries can be handled * o reclaim the tx queue data structures after calling * the 802.11 layer as we'll get called back to reclaim * node state and potentially want to use them * o to cleanup the tx queues the hal is called, so detach * it last * Other than that, it's straightforward... */ ieee80211_ifdetach(ic); callout_drain(&sc->sc_watchdog); mwl_dma_cleanup(sc); MWL_RXFREE_DESTROY(sc); mwl_tx_cleanup(sc); mwl_hal_detach(sc->sc_mh); mbufq_drain(&sc->sc_snd); return 0; } /* * MAC address handling for multiple BSS on the same radio. * The first vap uses the MAC address from the EEPROM. For * subsequent vap's we set the U/L bit (bit 1) in the MAC * address and use the next six bits as an index. */ static void assign_address(struct mwl_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) { int i; if (clone && mwl_hal_ismbsscapable(sc->sc_mh)) { /* NB: we only do this if h/w supports multiple bssid */ for (i = 0; i < 32; i++) if ((sc->sc_bssidmask & (1<sc_bssidmask |= 1<sc_nbssid0++; } static void reclaim_address(struct mwl_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) { int i = mac[0] >> 2; if (i != 0 || --sc->sc_nbssid0 == 0) sc->sc_bssidmask &= ~(1<ic_softc; struct mwl_hal *mh = sc->sc_mh; struct ieee80211vap *vap, *apvap; struct mwl_hal_vap *hvap; struct mwl_vap *mvp; uint8_t mac[IEEE80211_ADDR_LEN]; IEEE80211_ADDR_COPY(mac, mac0); switch (opmode) { case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: if ((flags & IEEE80211_CLONE_MACADDR) == 0) assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); hvap = mwl_hal_newvap(mh, MWL_HAL_AP, mac); if (hvap == NULL) { if ((flags & IEEE80211_CLONE_MACADDR) == 0) reclaim_address(sc, mac); return NULL; } break; case IEEE80211_M_STA: if ((flags & IEEE80211_CLONE_MACADDR) == 0) assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); hvap = mwl_hal_newvap(mh, MWL_HAL_STA, mac); if (hvap == NULL) { if ((flags & IEEE80211_CLONE_MACADDR) == 0) reclaim_address(sc, mac); return NULL; } /* no h/w beacon miss support; always use s/w */ flags |= IEEE80211_CLONE_NOBEACONS; break; case IEEE80211_M_WDS: hvap = NULL; /* NB: we use associated AP vap */ if (sc->sc_napvaps == 0) return NULL; /* no existing AP vap */ break; case IEEE80211_M_MONITOR: hvap = NULL; break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: default: return NULL; } mvp = malloc(sizeof(struct mwl_vap), M_80211_VAP, M_WAITOK | M_ZERO); mvp->mv_hvap = hvap; if (opmode == IEEE80211_M_WDS) { /* * WDS vaps must have an associated AP vap; find one. * XXX not right. */ TAILQ_FOREACH(apvap, &ic->ic_vaps, iv_next) if (apvap->iv_opmode == IEEE80211_M_HOSTAP) { mvp->mv_ap_hvap = MWL_VAP(apvap)->mv_hvap; break; } KASSERT(mvp->mv_ap_hvap != NULL, ("no ap vap")); } vap = &mvp->mv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override with driver methods */ mvp->mv_newstate = vap->iv_newstate; vap->iv_newstate = mwl_newstate; vap->iv_max_keyix = 0; /* XXX */ vap->iv_key_alloc = mwl_key_alloc; vap->iv_key_delete = mwl_key_delete; vap->iv_key_set = mwl_key_set; #ifdef MWL_HOST_PS_SUPPORT if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { vap->iv_update_ps = mwl_update_ps; mvp->mv_set_tim = vap->iv_set_tim; vap->iv_set_tim = mwl_set_tim; } #endif vap->iv_reset = mwl_reset; vap->iv_update_beacon = mwl_beacon_update; /* override max aid so sta's cannot assoc when we're out of sta id's */ vap->iv_max_aid = MWL_MAXSTAID; /* override default A-MPDU rx parameters */ vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* complete setup */ ieee80211_vap_attach(vap, mwl_media_change, ieee80211_media_status, mac); switch (vap->iv_opmode) { case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: case IEEE80211_M_STA: /* * Setup sta db entry for local address. */ mwl_localstadb(vap); if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) sc->sc_napvaps++; else sc->sc_nstavaps++; break; case IEEE80211_M_WDS: sc->sc_nwdsvaps++; break; default: break; } /* * Setup overall operating mode. */ if (sc->sc_napvaps) ic->ic_opmode = IEEE80211_M_HOSTAP; else if (sc->sc_nstavaps) ic->ic_opmode = IEEE80211_M_STA; else ic->ic_opmode = opmode; return vap; } static void mwl_vap_delete(struct ieee80211vap *vap) { struct mwl_vap *mvp = MWL_VAP(vap); struct mwl_softc *sc = vap->iv_ic->ic_softc; struct mwl_hal *mh = sc->sc_mh; struct mwl_hal_vap *hvap = mvp->mv_hvap; enum ieee80211_opmode opmode = vap->iv_opmode; /* XXX disallow ap vap delete if WDS still present */ if (sc->sc_running) { /* quiesce h/w while we remove the vap */ mwl_hal_intrset(mh, 0); /* disable interrupts */ } ieee80211_vap_detach(vap); switch (opmode) { case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: case IEEE80211_M_STA: KASSERT(hvap != NULL, ("no hal vap handle")); (void) mwl_hal_delstation(hvap, vap->iv_myaddr); mwl_hal_delvap(hvap); if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) sc->sc_napvaps--; else sc->sc_nstavaps--; /* XXX don't do it for IEEE80211_CLONE_MACADDR */ reclaim_address(sc, vap->iv_myaddr); break; case IEEE80211_M_WDS: sc->sc_nwdsvaps--; break; default: break; } mwl_cleartxq(sc, vap); free(mvp, M_80211_VAP); if (sc->sc_running) mwl_hal_intrset(mh, sc->sc_imask); } void mwl_suspend(struct mwl_softc *sc) { MWL_LOCK(sc); mwl_stop(sc); MWL_UNLOCK(sc); } void mwl_resume(struct mwl_softc *sc) { int error = EDOOFUS; MWL_LOCK(sc); if (sc->sc_ic.ic_nrunning > 0) error = mwl_init(sc); MWL_UNLOCK(sc); if (error == 0) ieee80211_start_all(&sc->sc_ic); /* start all vap's */ } void mwl_shutdown(void *arg) { struct mwl_softc *sc = arg; MWL_LOCK(sc); mwl_stop(sc); MWL_UNLOCK(sc); } /* * Interrupt handler. Most of the actual processing is deferred. */ void mwl_intr(void *arg) { struct mwl_softc *sc = arg; struct mwl_hal *mh = sc->sc_mh; uint32_t status; if (sc->sc_invalid) { /* * The hardware is not ready/present, don't touch anything. * Note this can happen early on if the IRQ is shared. */ DPRINTF(sc, MWL_DEBUG_ANY, "%s: invalid; ignored\n", __func__); return; } /* * Figure out the reason(s) for the interrupt. */ mwl_hal_getisr(mh, &status); /* NB: clears ISR too */ if (status == 0) /* must be a shared irq */ return; DPRINTF(sc, MWL_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n", __func__, status, sc->sc_imask); if (status & MACREG_A2HRIC_BIT_RX_RDY) taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask); if (status & MACREG_A2HRIC_BIT_TX_DONE) taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); if (status & MACREG_A2HRIC_BIT_BA_WATCHDOG) taskqueue_enqueue(sc->sc_tq, &sc->sc_bawatchdogtask); if (status & MACREG_A2HRIC_BIT_OPC_DONE) mwl_hal_cmddone(mh); if (status & MACREG_A2HRIC_BIT_MAC_EVENT) { ; } if (status & MACREG_A2HRIC_BIT_ICV_ERROR) { /* TKIP ICV error */ sc->sc_stats.mst_rx_badtkipicv++; } if (status & MACREG_A2HRIC_BIT_QUEUE_EMPTY) { /* 11n aggregation queue is empty, re-fill */ ; } if (status & MACREG_A2HRIC_BIT_QUEUE_FULL) { ; } if (status & MACREG_A2HRIC_BIT_RADAR_DETECT) { /* radar detected, process event */ taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask); } if (status & MACREG_A2HRIC_BIT_CHAN_SWITCH) { /* DFS channel switch */ taskqueue_enqueue(sc->sc_tq, &sc->sc_chanswitchtask); } } static void mwl_radar_proc(void *arg, int pending) { struct mwl_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; DPRINTF(sc, MWL_DEBUG_ANY, "%s: radar detected, pending %u\n", __func__, pending); sc->sc_stats.mst_radardetect++; /* XXX stop h/w BA streams? */ IEEE80211_LOCK(ic); ieee80211_dfs_notify_radar(ic, ic->ic_curchan); IEEE80211_UNLOCK(ic); } static void mwl_chanswitch_proc(void *arg, int pending) { struct mwl_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; DPRINTF(sc, MWL_DEBUG_ANY, "%s: channel switch notice, pending %u\n", __func__, pending); IEEE80211_LOCK(ic); sc->sc_csapending = 0; ieee80211_csa_completeswitch(ic); IEEE80211_UNLOCK(ic); } static void mwl_bawatchdog(const MWL_HAL_BASTREAM *sp) { struct ieee80211_node *ni = sp->data[0]; /* send DELBA and drop the stream */ ieee80211_ampdu_stop(ni, sp->data[1], IEEE80211_REASON_UNSPECIFIED); } static void mwl_bawatchdog_proc(void *arg, int pending) { struct mwl_softc *sc = arg; struct mwl_hal *mh = sc->sc_mh; const MWL_HAL_BASTREAM *sp; uint8_t bitmap, n; sc->sc_stats.mst_bawatchdog++; if (mwl_hal_getwatchdogbitmap(mh, &bitmap) != 0) { DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: could not get bitmap\n", __func__); sc->sc_stats.mst_bawatchdog_failed++; return; } DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bitmap 0x%x\n", __func__, bitmap); if (bitmap == 0xff) { n = 0; /* disable all ba streams */ for (bitmap = 0; bitmap < 8; bitmap++) { sp = mwl_hal_bastream_lookup(mh, bitmap); if (sp != NULL) { mwl_bawatchdog(sp); n++; } } if (n == 0) { DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: no BA streams found\n", __func__); sc->sc_stats.mst_bawatchdog_empty++; } } else if (bitmap != 0xaa) { /* disable a single ba stream */ sp = mwl_hal_bastream_lookup(mh, bitmap); if (sp != NULL) { mwl_bawatchdog(sp); } else { DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: no BA stream %d\n", __func__, bitmap); sc->sc_stats.mst_bawatchdog_notfound++; } } } /* * Convert net80211 channel to a HAL channel. */ static void mwl_mapchan(MWL_HAL_CHANNEL *hc, const struct ieee80211_channel *chan) { hc->channel = chan->ic_ieee; *(uint32_t *)&hc->channelFlags = 0; if (IEEE80211_IS_CHAN_2GHZ(chan)) hc->channelFlags.FreqBand = MWL_FREQ_BAND_2DOT4GHZ; else if (IEEE80211_IS_CHAN_5GHZ(chan)) hc->channelFlags.FreqBand = MWL_FREQ_BAND_5GHZ; if (IEEE80211_IS_CHAN_HT40(chan)) { hc->channelFlags.ChnlWidth = MWL_CH_40_MHz_WIDTH; if (IEEE80211_IS_CHAN_HT40U(chan)) hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_ABOVE_CTRL_CH; else hc->channelFlags.ExtChnlOffset = MWL_EXT_CH_BELOW_CTRL_CH; } else hc->channelFlags.ChnlWidth = MWL_CH_20_MHz_WIDTH; /* XXX 10MHz channels */ } /* * Inform firmware of our tx/rx dma setup. The BAR 0 * writes below are for compatibility with older firmware. * For current firmware we send this information with a * cmd block via mwl_hal_sethwdma. */ static int mwl_setupdma(struct mwl_softc *sc) { int error, i; sc->sc_hwdma.rxDescRead = sc->sc_rxdma.dd_desc_paddr; WR4(sc, sc->sc_hwspecs.rxDescRead, sc->sc_hwdma.rxDescRead); WR4(sc, sc->sc_hwspecs.rxDescWrite, sc->sc_hwdma.rxDescRead); for (i = 0; i < MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; i++) { struct mwl_txq *txq = &sc->sc_txq[i]; sc->sc_hwdma.wcbBase[i] = txq->dma.dd_desc_paddr; WR4(sc, sc->sc_hwspecs.wcbBase[i], sc->sc_hwdma.wcbBase[i]); } sc->sc_hwdma.maxNumTxWcb = mwl_txbuf; sc->sc_hwdma.maxNumWCB = MWL_NUM_TX_QUEUES-MWL_NUM_ACK_QUEUES; error = mwl_hal_sethwdma(sc->sc_mh, &sc->sc_hwdma); if (error != 0) { device_printf(sc->sc_dev, "unable to setup tx/rx dma; hal status %u\n", error); /* XXX */ } return error; } /* * Inform firmware of tx rate parameters. * Called after a channel change. */ static int mwl_setcurchanrates(struct mwl_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; const struct ieee80211_rateset *rs; MWL_HAL_TXRATE rates; memset(&rates, 0, sizeof(rates)); rs = ieee80211_get_suprates(ic, ic->ic_curchan); /* rate used to send management frames */ rates.MgtRate = rs->rs_rates[0] & IEEE80211_RATE_VAL; /* rate used to send multicast frames */ rates.McastRate = rates.MgtRate; return mwl_hal_settxrate_auto(sc->sc_mh, &rates); } /* * Inform firmware of tx rate parameters. Called whenever * user-settable params change and after a channel change. */ static int mwl_setrates(struct ieee80211vap *vap) { struct mwl_vap *mvp = MWL_VAP(vap); struct ieee80211_node *ni = vap->iv_bss; const struct ieee80211_txparam *tp = ni->ni_txparms; MWL_HAL_TXRATE rates; KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state)); /* * Update the h/w rate map. * NB: 0x80 for MCS is passed through unchanged */ memset(&rates, 0, sizeof(rates)); /* rate used to send management frames */ rates.MgtRate = tp->mgmtrate; /* rate used to send multicast frames */ rates.McastRate = tp->mcastrate; /* while here calculate EAPOL fixed rate cookie */ mvp->mv_eapolformat = htole16(mwl_calcformat(rates.MgtRate, ni)); return mwl_hal_settxrate(mvp->mv_hvap, tp->ucastrate != IEEE80211_FIXED_RATE_NONE ? RATE_FIXED : RATE_AUTO, &rates); } /* * Setup a fixed xmit rate cookie for EAPOL frames. */ static void mwl_seteapolformat(struct ieee80211vap *vap) { struct mwl_vap *mvp = MWL_VAP(vap); struct ieee80211_node *ni = vap->iv_bss; enum ieee80211_phymode mode; uint8_t rate; KASSERT(vap->iv_state == IEEE80211_S_RUN, ("state %d", vap->iv_state)); mode = ieee80211_chan2mode(ni->ni_chan); /* * Use legacy rates when operating a mixed HT+non-HT bss. * NB: this may violate POLA for sta and wds vap's. */ if (mode == IEEE80211_MODE_11NA && (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0) rate = vap->iv_txparms[IEEE80211_MODE_11A].mgmtrate; else if (mode == IEEE80211_MODE_11NG && (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0) rate = vap->iv_txparms[IEEE80211_MODE_11G].mgmtrate; else rate = vap->iv_txparms[mode].mgmtrate; mvp->mv_eapolformat = htole16(mwl_calcformat(rate, ni)); } /* * Map SKU+country code to region code for radar bin'ing. */ static int mwl_map2regioncode(const struct ieee80211_regdomain *rd) { switch (rd->regdomain) { case SKU_FCC: case SKU_FCC3: return DOMAIN_CODE_FCC; case SKU_CA: return DOMAIN_CODE_IC; case SKU_ETSI: case SKU_ETSI2: case SKU_ETSI3: if (rd->country == CTRY_SPAIN) return DOMAIN_CODE_SPAIN; if (rd->country == CTRY_FRANCE || rd->country == CTRY_FRANCE2) return DOMAIN_CODE_FRANCE; /* XXX force 1.3.1 radar type */ return DOMAIN_CODE_ETSI_131; case SKU_JAPAN: return DOMAIN_CODE_MKK; case SKU_ROW: return DOMAIN_CODE_DGT; /* Taiwan */ case SKU_APAC: case SKU_APAC2: case SKU_APAC3: return DOMAIN_CODE_AUS; /* Australia */ } /* XXX KOREA? */ return DOMAIN_CODE_FCC; /* XXX? */ } static int mwl_hal_reset(struct mwl_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct mwl_hal *mh = sc->sc_mh; mwl_hal_setantenna(mh, WL_ANTENNATYPE_RX, sc->sc_rxantenna); mwl_hal_setantenna(mh, WL_ANTENNATYPE_TX, sc->sc_txantenna); mwl_hal_setradio(mh, 1, WL_AUTO_PREAMBLE); mwl_hal_setwmm(sc->sc_mh, (ic->ic_flags & IEEE80211_F_WME) != 0); mwl_chan_set(sc, ic->ic_curchan); /* NB: RF/RA performance tuned for indoor mode */ mwl_hal_setrateadaptmode(mh, 0); mwl_hal_setoptimizationlevel(mh, (ic->ic_flags & IEEE80211_F_BURST) != 0); mwl_hal_setregioncode(mh, mwl_map2regioncode(&ic->ic_regdomain)); mwl_hal_setaggampduratemode(mh, 1, 80); /* XXX */ mwl_hal_setcfend(mh, 0); /* XXX */ return 1; } static int mwl_init(struct mwl_softc *sc) { struct mwl_hal *mh = sc->sc_mh; int error = 0; MWL_LOCK_ASSERT(sc); /* * Stop anything previously setup. This is safe * whether this is the first time through or not. */ mwl_stop(sc); /* * Push vap-independent state to the firmware. */ if (!mwl_hal_reset(sc)) { device_printf(sc->sc_dev, "unable to reset hardware\n"); return EIO; } /* * Setup recv (once); transmit is already good to go. */ error = mwl_startrecv(sc); if (error != 0) { device_printf(sc->sc_dev, "unable to start recv logic\n"); return error; } /* * Enable interrupts. */ sc->sc_imask = MACREG_A2HRIC_BIT_RX_RDY | MACREG_A2HRIC_BIT_TX_DONE | MACREG_A2HRIC_BIT_OPC_DONE #if 0 | MACREG_A2HRIC_BIT_MAC_EVENT #endif | MACREG_A2HRIC_BIT_ICV_ERROR | MACREG_A2HRIC_BIT_RADAR_DETECT | MACREG_A2HRIC_BIT_CHAN_SWITCH #if 0 | MACREG_A2HRIC_BIT_QUEUE_EMPTY #endif | MACREG_A2HRIC_BIT_BA_WATCHDOG | MACREQ_A2HRIC_BIT_TX_ACK ; sc->sc_running = 1; mwl_hal_intrset(mh, sc->sc_imask); callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc); return 0; } static void mwl_stop(struct mwl_softc *sc) { MWL_LOCK_ASSERT(sc); if (sc->sc_running) { /* * Shutdown the hardware and driver. */ sc->sc_running = 0; callout_stop(&sc->sc_watchdog); sc->sc_tx_timer = 0; mwl_draintxq(sc); } } static int mwl_reset_vap(struct ieee80211vap *vap, int state) { struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; struct ieee80211com *ic = vap->iv_ic; if (state == IEEE80211_S_RUN) mwl_setrates(vap); /* XXX off by 1? */ mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold); /* XXX auto? 20/40 split? */ mwl_hal_sethtgi(hvap, (vap->iv_flags_ht & (IEEE80211_FHT_SHORTGI20|IEEE80211_FHT_SHORTGI40)) ? 1 : 0); mwl_hal_setnprot(hvap, ic->ic_htprotmode == IEEE80211_PROT_NONE ? HTPROTECT_NONE : HTPROTECT_AUTO); /* XXX txpower cap */ /* re-setup beacons */ if (state == IEEE80211_S_RUN && (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS || vap->iv_opmode == IEEE80211_M_IBSS)) { mwl_setapmode(vap, vap->iv_bss->ni_chan); - mwl_hal_setnprotmode(hvap, - MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE)); + mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT( + ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE)); return mwl_beacon_setup(vap); } return 0; } /* * Reset the hardware w/o losing operational state. * Used to reset or reload hardware state for a vap. */ static int mwl_reset(struct ieee80211vap *vap, u_long cmd) { struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; int error = 0; if (hvap != NULL) { /* WDS, MONITOR, etc. */ struct ieee80211com *ic = vap->iv_ic; struct mwl_softc *sc = ic->ic_softc; struct mwl_hal *mh = sc->sc_mh; /* XXX handle DWDS sta vap change */ /* XXX do we need to disable interrupts? */ mwl_hal_intrset(mh, 0); /* disable interrupts */ error = mwl_reset_vap(vap, vap->iv_state); mwl_hal_intrset(mh, sc->sc_imask); } return error; } /* * Allocate a tx buffer for sending a frame. The * packet is assumed to have the WME AC stored so * we can use it to select the appropriate h/w queue. */ static struct mwl_txbuf * mwl_gettxbuf(struct mwl_softc *sc, struct mwl_txq *txq) { struct mwl_txbuf *bf; /* * Grab a TX buffer and associated resources. */ MWL_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->free); if (bf != NULL) { STAILQ_REMOVE_HEAD(&txq->free, bf_list); txq->nfree--; } MWL_TXQ_UNLOCK(txq); if (bf == NULL) DPRINTF(sc, MWL_DEBUG_XMIT, "%s: out of xmit buffers on q %d\n", __func__, txq->qnum); return bf; } /* * Return a tx buffer to the queue it came from. Note there * are two cases because we must preserve the order of buffers * as it reflects the fixed order of descriptors in memory * (the firmware pre-fetches descriptors so we cannot reorder). */ static void mwl_puttxbuf_head(struct mwl_txq *txq, struct mwl_txbuf *bf) { bf->bf_m = NULL; bf->bf_node = NULL; MWL_TXQ_LOCK(txq); STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); txq->nfree++; MWL_TXQ_UNLOCK(txq); } static void mwl_puttxbuf_tail(struct mwl_txq *txq, struct mwl_txbuf *bf) { bf->bf_m = NULL; bf->bf_node = NULL; MWL_TXQ_LOCK(txq); STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree++; MWL_TXQ_UNLOCK(txq); } static int mwl_transmit(struct ieee80211com *ic, struct mbuf *m) { struct mwl_softc *sc = ic->ic_softc; int error; MWL_LOCK(sc); if (!sc->sc_running) { MWL_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { MWL_UNLOCK(sc); return (error); } mwl_start(sc); MWL_UNLOCK(sc); return (0); } static void mwl_start(struct mwl_softc *sc) { struct ieee80211_node *ni; struct mwl_txbuf *bf; struct mbuf *m; struct mwl_txq *txq = NULL; /* XXX silence gcc */ int nqueued; MWL_LOCK_ASSERT(sc); if (!sc->sc_running || sc->sc_invalid) return; nqueued = 0; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { /* * Grab the node for the destination. */ ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; KASSERT(ni != NULL, ("no node")); m->m_pkthdr.rcvif = NULL; /* committed, clear ref */ /* * Grab a TX buffer and associated resources. * We honor the classification by the 802.11 layer. */ txq = sc->sc_ac2q[M_WME_GETAC(m)]; bf = mwl_gettxbuf(sc, txq); if (bf == NULL) { m_freem(m); ieee80211_free_node(ni); #ifdef MWL_TX_NODROP sc->sc_stats.mst_tx_qstop++; break; #else DPRINTF(sc, MWL_DEBUG_XMIT, "%s: tail drop on q %d\n", __func__, txq->qnum); sc->sc_stats.mst_tx_qdrop++; continue; #endif /* MWL_TX_NODROP */ } /* * Pass the frame to the h/w for transmission. */ if (mwl_tx_start(sc, ni, bf, m)) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); mwl_puttxbuf_head(txq, bf); ieee80211_free_node(ni); continue; } nqueued++; if (nqueued >= mwl_txcoalesce) { /* * Poke the firmware to process queued frames; * see below about (lack of) locking. */ nqueued = 0; mwl_hal_txstart(sc->sc_mh, 0/*XXX*/); } } if (nqueued) { /* * NB: We don't need to lock against tx done because * this just prods the firmware to check the transmit * descriptors. The firmware will also start fetching * descriptors by itself if it notices new ones are * present when it goes to deliver a tx done interrupt * to the host. So if we race with tx done processing * it's ok. Delivering the kick here rather than in * mwl_tx_start is an optimization to avoid poking the * firmware for each packet. * * NB: the queue id isn't used so 0 is ok. */ mwl_hal_txstart(sc->sc_mh, 0/*XXX*/); } } static int mwl_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct mwl_softc *sc = ic->ic_softc; struct mwl_txbuf *bf; struct mwl_txq *txq; if (!sc->sc_running || sc->sc_invalid) { m_freem(m); return ENETDOWN; } /* * Grab a TX buffer and associated resources. * Note that we depend on the classification * by the 802.11 layer to get to the right h/w * queue. Management frames must ALWAYS go on * queue 1 but we cannot just force that here * because we may receive non-mgt frames. */ txq = sc->sc_ac2q[M_WME_GETAC(m)]; bf = mwl_gettxbuf(sc, txq); if (bf == NULL) { sc->sc_stats.mst_tx_qstop++; m_freem(m); return ENOBUFS; } /* * Pass the frame to the h/w for transmission. */ if (mwl_tx_start(sc, ni, bf, m)) { mwl_puttxbuf_head(txq, bf); return EIO; /* XXX */ } /* * NB: We don't need to lock against tx done because * this just prods the firmware to check the transmit * descriptors. The firmware will also start fetching * descriptors by itself if it notices new ones are * present when it goes to deliver a tx done interrupt * to the host. So if we race with tx done processing * it's ok. Delivering the kick here rather than in * mwl_tx_start is an optimization to avoid poking the * firmware for each packet. * * NB: the queue id isn't used so 0 is ok. */ mwl_hal_txstart(sc->sc_mh, 0/*XXX*/); return 0; } static int mwl_media_change(struct ifnet *ifp) { struct ieee80211vap *vap; int error; /* NB: only the fixed rate can change and that doesn't need a reset */ error = ieee80211_media_change(ifp); if (error != 0) return (error); vap = ifp->if_softc; mwl_setrates(vap); return (0); } #ifdef MWL_DEBUG static void mwl_keyprint(struct mwl_softc *sc, const char *tag, const MWL_HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN]) { static const char *ciphers[] = { "WEP", "TKIP", "AES-CCM", }; int i, n; printf("%s: [%u] %-7s", tag, hk->keyIndex, ciphers[hk->keyTypeId]); for (i = 0, n = hk->keyLen; i < n; i++) printf(" %02x", hk->key.aes[i]); printf(" mac %s", ether_sprintf(mac)); if (hk->keyTypeId == KEY_TYPE_ID_TKIP) { printf(" %s", "rxmic"); for (i = 0; i < sizeof(hk->key.tkip.rxMic); i++) printf(" %02x", hk->key.tkip.rxMic[i]); printf(" txmic"); for (i = 0; i < sizeof(hk->key.tkip.txMic); i++) printf(" %02x", hk->key.tkip.txMic[i]); } printf(" flags 0x%x\n", hk->keyFlags); } #endif /* * Allocate a key cache slot for a unicast key. The * firmware handles key allocation and every station is * guaranteed key space so we are always successful. */ static int mwl_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct mwl_softc *sc = vap->iv_ic->ic_softc; if (k->wk_keyix != IEEE80211_KEYIX_NONE || (k->wk_flags & IEEE80211_KEY_GROUP)) { if (!(&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { /* should not happen */ DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: bogus group key\n", __func__); return 0; } /* give the caller what they requested */ *keyix = *rxkeyix = ieee80211_crypto_get_key_wepidx(vap, k); } else { /* * Firmware handles key allocation. */ *keyix = *rxkeyix = 0; } return 1; } /* * Delete a key entry allocated by mwl_key_alloc. */ static int mwl_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct mwl_softc *sc = vap->iv_ic->ic_softc; struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; MWL_HAL_KEYVAL hk; const uint8_t bcastaddr[IEEE80211_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (hvap == NULL) { if (vap->iv_opmode != IEEE80211_M_WDS) { /* XXX monitor mode? */ DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: no hvap for opmode %d\n", __func__, vap->iv_opmode); return 0; } hvap = MWL_VAP(vap)->mv_ap_hvap; } DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, k->wk_keyix); memset(&hk, 0, sizeof(hk)); hk.keyIndex = k->wk_keyix; switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: hk.keyTypeId = KEY_TYPE_ID_WEP; break; case IEEE80211_CIPHER_TKIP: hk.keyTypeId = KEY_TYPE_ID_TKIP; break; case IEEE80211_CIPHER_AES_CCM: hk.keyTypeId = KEY_TYPE_ID_AES; break; default: /* XXX should not happen */ DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n", __func__, k->wk_cipher->ic_cipher); return 0; } return (mwl_hal_keyreset(hvap, &hk, bcastaddr) == 0); /*XXX*/ } static __inline int addgroupflags(MWL_HAL_KEYVAL *hk, const struct ieee80211_key *k) { if (k->wk_flags & IEEE80211_KEY_GROUP) { if (k->wk_flags & IEEE80211_KEY_XMIT) hk->keyFlags |= KEY_FLAG_TXGROUPKEY; if (k->wk_flags & IEEE80211_KEY_RECV) hk->keyFlags |= KEY_FLAG_RXGROUPKEY; return 1; } else return 0; } /* * Set the key cache contents for the specified key. Key cache * slot(s) must already have been allocated by mwl_key_alloc. */ static int mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { return (_mwl_key_set(vap, k, k->wk_macaddr)); } static int _mwl_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k, const uint8_t mac[IEEE80211_ADDR_LEN]) { #define GRPXMIT (IEEE80211_KEY_XMIT | IEEE80211_KEY_GROUP) /* NB: static wep keys are marked GROUP+tx/rx; GTK will be tx or rx */ #define IEEE80211_IS_STATICKEY(k) \ (((k)->wk_flags & (GRPXMIT|IEEE80211_KEY_RECV)) == \ (GRPXMIT|IEEE80211_KEY_RECV)) struct mwl_softc *sc = vap->iv_ic->ic_softc; struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; const struct ieee80211_cipher *cip = k->wk_cipher; const uint8_t *macaddr; MWL_HAL_KEYVAL hk; KASSERT((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0, ("s/w crypto set?")); if (hvap == NULL) { if (vap->iv_opmode != IEEE80211_M_WDS) { /* XXX monitor mode? */ DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: no hvap for opmode %d\n", __func__, vap->iv_opmode); return 0; } hvap = MWL_VAP(vap)->mv_ap_hvap; } memset(&hk, 0, sizeof(hk)); hk.keyIndex = k->wk_keyix; switch (cip->ic_cipher) { case IEEE80211_CIPHER_WEP: hk.keyTypeId = KEY_TYPE_ID_WEP; hk.keyLen = k->wk_keylen; if (k->wk_keyix == vap->iv_def_txkey) hk.keyFlags = KEY_FLAG_WEP_TXKEY; if (!IEEE80211_IS_STATICKEY(k)) { /* NB: WEP is never used for the PTK */ (void) addgroupflags(&hk, k); } break; case IEEE80211_CIPHER_TKIP: hk.keyTypeId = KEY_TYPE_ID_TKIP; hk.key.tkip.tsc.high = (uint32_t)(k->wk_keytsc >> 16); hk.key.tkip.tsc.low = (uint16_t)k->wk_keytsc; hk.keyFlags = KEY_FLAG_TSC_VALID | KEY_FLAG_MICKEY_VALID; hk.keyLen = k->wk_keylen + IEEE80211_MICBUF_SIZE; if (!addgroupflags(&hk, k)) hk.keyFlags |= KEY_FLAG_PAIRWISE; break; case IEEE80211_CIPHER_AES_CCM: hk.keyTypeId = KEY_TYPE_ID_AES; hk.keyLen = k->wk_keylen; if (!addgroupflags(&hk, k)) hk.keyFlags |= KEY_FLAG_PAIRWISE; break; default: /* XXX should not happen */ DPRINTF(sc, MWL_DEBUG_KEYCACHE, "%s: unknown cipher %d\n", __func__, k->wk_cipher->ic_cipher); return 0; } /* * NB: tkip mic keys get copied here too; the layout * just happens to match that in ieee80211_key. */ memcpy(hk.key.aes, k->wk_key, hk.keyLen); /* * Locate address of sta db entry for writing key; * the convention unfortunately is somewhat different * than how net80211, hostapd, and wpa_supplicant think. */ if (vap->iv_opmode == IEEE80211_M_STA) { /* * NB: keys plumbed before the sta reaches AUTH state * will be discarded or written to the wrong sta db * entry because iv_bss is meaningless. This is ok * (right now) because we handle deferred plumbing of * WEP keys when the sta reaches AUTH state. */ macaddr = vap->iv_bss->ni_bssid; if ((k->wk_flags & IEEE80211_KEY_GROUP) == 0) { /* XXX plumb to local sta db too for static key wep */ mwl_hal_keyset(hvap, &hk, vap->iv_myaddr); } } else if (vap->iv_opmode == IEEE80211_M_WDS && vap->iv_state != IEEE80211_S_RUN) { /* * Prior to RUN state a WDS vap will not it's BSS node * setup so we will plumb the key to the wrong mac * address (it'll be our local address). Workaround * this for the moment by grabbing the correct address. */ macaddr = vap->iv_des_bssid; } else if ((k->wk_flags & GRPXMIT) == GRPXMIT) macaddr = vap->iv_myaddr; else macaddr = mac; KEYPRINTF(sc, &hk, macaddr); return (mwl_hal_keyset(hvap, &hk, macaddr) == 0); #undef IEEE80211_IS_STATICKEY #undef GRPXMIT } /* * Set the multicast filter contents into the hardware. * XXX f/w has no support; just defer to the os. */ static void mwl_setmcastfilter(struct mwl_softc *sc) { #if 0 struct ether_multi *enm; struct ether_multistep estep; uint8_t macs[IEEE80211_ADDR_LEN*MWL_HAL_MCAST_MAX];/* XXX stack use */ uint8_t *mp; int nmc; mp = macs; nmc = 0; ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); while (enm != NULL) { /* XXX Punt on ranges. */ if (nmc == MWL_HAL_MCAST_MAX || !IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { ifp->if_flags |= IFF_ALLMULTI; return; } IEEE80211_ADDR_COPY(mp, enm->enm_addrlo); mp += IEEE80211_ADDR_LEN, nmc++; ETHER_NEXT_MULTI(estep, enm); } ifp->if_flags &= ~IFF_ALLMULTI; mwl_hal_setmcast(sc->sc_mh, nmc, macs); #endif } static int mwl_mode_init(struct mwl_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct mwl_hal *mh = sc->sc_mh; mwl_hal_setpromisc(mh, ic->ic_promisc > 0); mwl_setmcastfilter(sc); return 0; } /* * Callback from the 802.11 layer after a multicast state change. */ static void mwl_update_mcast(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; mwl_setmcastfilter(sc); } /* * Callback from the 802.11 layer after a promiscuous mode change. * Note this interface does not check the operating mode as this * is an internal callback and we are expected to honor the current * state (e.g. this is used for setting the interface in promiscuous * mode when operating in hostap mode to do ACS). */ static void mwl_update_promisc(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; mwl_hal_setpromisc(sc->sc_mh, ic->ic_promisc > 0); } /* * Callback from the 802.11 layer to update the slot time * based on the current setting. We use it to notify the * firmware of ERP changes and the f/w takes care of things * like slot time and preamble. */ static void mwl_updateslot(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; struct mwl_hal *mh = sc->sc_mh; int prot; /* NB: can be called early; suppress needless cmds */ if (!sc->sc_running) return; /* * Calculate the ERP flags. The firwmare will use * this to carry out the appropriate measures. */ prot = 0; if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { if ((ic->ic_flags & IEEE80211_F_SHSLOT) == 0) prot |= IEEE80211_ERP_NON_ERP_PRESENT; if (ic->ic_flags & IEEE80211_F_USEPROT) prot |= IEEE80211_ERP_USE_PROTECTION; if (ic->ic_flags & IEEE80211_F_USEBARKER) prot |= IEEE80211_ERP_LONG_PREAMBLE; } DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x %s slot, (prot 0x%x ic_flags 0x%x)\n", __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", prot, ic->ic_flags); mwl_hal_setgprot(mh, prot); } /* * Setup the beacon frame. */ static int mwl_beacon_setup(struct ieee80211vap *vap) { struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; struct ieee80211_node *ni = vap->iv_bss; struct mbuf *m; m = ieee80211_beacon_alloc(ni); if (m == NULL) return ENOBUFS; mwl_hal_setbeacon(hvap, mtod(m, const void *), m->m_len); m_free(m); return 0; } /* * Update the beacon frame in response to a change. */ static void mwl_beacon_update(struct ieee80211vap *vap, int item) { struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; struct ieee80211com *ic = vap->iv_ic; KASSERT(hvap != NULL, ("no beacon")); switch (item) { case IEEE80211_BEACON_ERP: mwl_updateslot(ic); break; case IEEE80211_BEACON_HTINFO: - mwl_hal_setnprotmode(hvap, - MS(ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE)); + mwl_hal_setnprotmode(hvap, _IEEE80211_MASKSHIFT( + ic->ic_curhtprotmode, IEEE80211_HTINFO_OPMODE)); break; case IEEE80211_BEACON_CAPS: case IEEE80211_BEACON_WME: case IEEE80211_BEACON_APPIE: case IEEE80211_BEACON_CSA: break; case IEEE80211_BEACON_TIM: /* NB: firmware always forms TIM */ return; } /* XXX retain beacon frame and update */ mwl_beacon_setup(vap); } static void mwl_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { bus_addr_t *paddr = (bus_addr_t*) arg; KASSERT(error == 0, ("error %u on bus_dma callback", error)); *paddr = segs->ds_addr; } #ifdef MWL_HOST_PS_SUPPORT /* * Handle power save station occupancy changes. */ static void mwl_update_ps(struct ieee80211vap *vap, int nsta) { struct mwl_vap *mvp = MWL_VAP(vap); if (nsta == 0 || mvp->mv_last_ps_sta == 0) mwl_hal_setpowersave_bss(mvp->mv_hvap, nsta); mvp->mv_last_ps_sta = nsta; } /* * Handle associated station power save state changes. */ static int mwl_set_tim(struct ieee80211_node *ni, int set) { struct ieee80211vap *vap = ni->ni_vap; struct mwl_vap *mvp = MWL_VAP(vap); if (mvp->mv_set_tim(ni, set)) { /* NB: state change */ mwl_hal_setpowersave_sta(mvp->mv_hvap, IEEE80211_AID(ni->ni_associd), set); return 1; } else return 0; } #endif /* MWL_HOST_PS_SUPPORT */ static int mwl_desc_setup(struct mwl_softc *sc, const char *name, struct mwl_descdma *dd, int nbuf, size_t bufsize, int ndesc, size_t descsize) { uint8_t *ds; int error; DPRINTF(sc, MWL_DEBUG_RESET, "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n", __func__, name, nbuf, (uintmax_t) bufsize, ndesc, (uintmax_t) descsize); dd->dd_name = name; dd->dd_desc_len = nbuf * ndesc * descsize; /* * Setup DMA descriptor area. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ PAGE_SIZE, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ dd->dd_desc_len, /* maxsize */ 1, /* nsegments */ dd->dd_desc_len, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dd->dd_dmat); if (error != 0) { device_printf(sc->sc_dev, "cannot allocate %s DMA tag\n", dd->dd_name); return error; } /* allocate descriptors */ error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dd->dd_dmamap); if (error != 0) { device_printf(sc->sc_dev, "unable to alloc memory for %u %s descriptors, " "error %u\n", nbuf * ndesc, dd->dd_name, error); goto fail1; } error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, dd->dd_desc_len, mwl_load_cb, &dd->dd_desc_paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "unable to map %s descriptors, error %u\n", dd->dd_name, error); goto fail2; } ds = dd->dd_desc; memset(ds, 0, dd->dd_desc_len); DPRINTF(sc, MWL_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n", __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); return 0; fail2: bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); fail1: bus_dma_tag_destroy(dd->dd_dmat); memset(dd, 0, sizeof(*dd)); return error; #undef DS2PHYS } static void mwl_desc_cleanup(struct mwl_softc *sc, struct mwl_descdma *dd) { bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); bus_dma_tag_destroy(dd->dd_dmat); memset(dd, 0, sizeof(*dd)); } /* * Construct a tx q's free list. The order of entries on * the list must reflect the physical layout of tx descriptors * because the firmware pre-fetches descriptors. * * XXX might be better to use indices into the buffer array. */ static void mwl_txq_reset(struct mwl_softc *sc, struct mwl_txq *txq) { struct mwl_txbuf *bf; int i; bf = txq->dma.dd_bufptr; STAILQ_INIT(&txq->free); for (i = 0; i < mwl_txbuf; i++, bf++) STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree = i; } #define DS2PHYS(_dd, _ds) \ ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) static int mwl_txdma_setup(struct mwl_softc *sc, struct mwl_txq *txq) { int error, bsize, i; struct mwl_txbuf *bf; struct mwl_txdesc *ds; error = mwl_desc_setup(sc, "tx", &txq->dma, mwl_txbuf, sizeof(struct mwl_txbuf), MWL_TXDESC, sizeof(struct mwl_txdesc)); if (error != 0) return error; /* allocate and setup tx buffers */ bsize = mwl_txbuf * sizeof(struct mwl_txbuf); bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO); if (bf == NULL) { device_printf(sc->sc_dev, "malloc of %u tx buffers failed\n", mwl_txbuf); return ENOMEM; } txq->dma.dd_bufptr = bf; ds = txq->dma.dd_desc; for (i = 0; i < mwl_txbuf; i++, bf++, ds += MWL_TXDESC) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(&txq->dma, ds); error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); if (error != 0) { device_printf(sc->sc_dev, "unable to create dmamap for tx " "buffer %u, error %u\n", i, error); return error; } } mwl_txq_reset(sc, txq); return 0; } static void mwl_txdma_cleanup(struct mwl_softc *sc, struct mwl_txq *txq) { struct mwl_txbuf *bf; int i; bf = txq->dma.dd_bufptr; for (i = 0; i < mwl_txbuf; i++, bf++) { KASSERT(bf->bf_m == NULL, ("mbuf on free list")); KASSERT(bf->bf_node == NULL, ("node on free list")); if (bf->bf_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); } STAILQ_INIT(&txq->free); txq->nfree = 0; if (txq->dma.dd_bufptr != NULL) { free(txq->dma.dd_bufptr, M_MWLDEV); txq->dma.dd_bufptr = NULL; } if (txq->dma.dd_desc_len != 0) mwl_desc_cleanup(sc, &txq->dma); } static int mwl_rxdma_setup(struct mwl_softc *sc) { int error, jumbosize, bsize, i; struct mwl_rxbuf *bf; struct mwl_jumbo *rbuf; struct mwl_rxdesc *ds; caddr_t data; error = mwl_desc_setup(sc, "rx", &sc->sc_rxdma, mwl_rxdesc, sizeof(struct mwl_rxbuf), 1, sizeof(struct mwl_rxdesc)); if (error != 0) return error; /* * Receive is done to a private pool of jumbo buffers. * This allows us to attach to mbuf's and avoid re-mapping * memory on each rx we post. We allocate a large chunk * of memory and manage it in the driver. The mbuf free * callback method is used to reclaim frames after sending * them up the stack. By default we allocate 2x the number of * rx descriptors configured so we have some slop to hold * us while frames are processed. */ if (mwl_rxbuf < 2*mwl_rxdesc) { device_printf(sc->sc_dev, "too few rx dma buffers (%d); increasing to %d\n", mwl_rxbuf, 2*mwl_rxdesc); mwl_rxbuf = 2*mwl_rxdesc; } jumbosize = roundup(MWL_AGGR_SIZE, PAGE_SIZE); sc->sc_rxmemsize = mwl_rxbuf*jumbosize; error = bus_dma_tag_create(sc->sc_dmat, /* parent */ PAGE_SIZE, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sc->sc_rxmemsize, /* maxsize */ 1, /* nsegments */ sc->sc_rxmemsize, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &sc->sc_rxdmat); if (error != 0) { device_printf(sc->sc_dev, "could not create rx DMA tag\n"); return error; } error = bus_dmamem_alloc(sc->sc_rxdmat, (void**) &sc->sc_rxmem, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &sc->sc_rxmap); if (error != 0) { device_printf(sc->sc_dev, "could not alloc %ju bytes of rx DMA memory\n", (uintmax_t) sc->sc_rxmemsize); return error; } error = bus_dmamap_load(sc->sc_rxdmat, sc->sc_rxmap, sc->sc_rxmem, sc->sc_rxmemsize, mwl_load_cb, &sc->sc_rxmem_paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "could not load rx DMA map\n"); return error; } /* * Allocate rx buffers and set them up. */ bsize = mwl_rxdesc * sizeof(struct mwl_rxbuf); bf = malloc(bsize, M_MWLDEV, M_NOWAIT | M_ZERO); if (bf == NULL) { device_printf(sc->sc_dev, "malloc of %u rx buffers failed\n", bsize); return error; } sc->sc_rxdma.dd_bufptr = bf; STAILQ_INIT(&sc->sc_rxbuf); ds = sc->sc_rxdma.dd_desc; for (i = 0; i < mwl_rxdesc; i++, bf++, ds++) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(&sc->sc_rxdma, ds); /* pre-assign dma buffer */ bf->bf_data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize); /* NB: tail is intentional to preserve descriptor order */ STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); } /* * Place remainder of dma memory buffers on the free list. */ SLIST_INIT(&sc->sc_rxfree); for (; i < mwl_rxbuf; i++) { data = ((uint8_t *)sc->sc_rxmem) + (i*jumbosize); rbuf = MWL_JUMBO_DATA2BUF(data); SLIST_INSERT_HEAD(&sc->sc_rxfree, rbuf, next); sc->sc_nrxfree++; } return 0; } #undef DS2PHYS static void mwl_rxdma_cleanup(struct mwl_softc *sc) { if (sc->sc_rxmem_paddr != 0) { bus_dmamap_unload(sc->sc_rxdmat, sc->sc_rxmap); sc->sc_rxmem_paddr = 0; } if (sc->sc_rxmem != NULL) { bus_dmamem_free(sc->sc_rxdmat, sc->sc_rxmem, sc->sc_rxmap); sc->sc_rxmem = NULL; } if (sc->sc_rxdma.dd_bufptr != NULL) { free(sc->sc_rxdma.dd_bufptr, M_MWLDEV); sc->sc_rxdma.dd_bufptr = NULL; } if (sc->sc_rxdma.dd_desc_len != 0) mwl_desc_cleanup(sc, &sc->sc_rxdma); } static int mwl_dma_setup(struct mwl_softc *sc) { int error, i; error = mwl_rxdma_setup(sc); if (error != 0) { mwl_rxdma_cleanup(sc); return error; } for (i = 0; i < MWL_NUM_TX_QUEUES; i++) { error = mwl_txdma_setup(sc, &sc->sc_txq[i]); if (error != 0) { mwl_dma_cleanup(sc); return error; } } return 0; } static void mwl_dma_cleanup(struct mwl_softc *sc) { int i; for (i = 0; i < MWL_NUM_TX_QUEUES; i++) mwl_txdma_cleanup(sc, &sc->sc_txq[i]); mwl_rxdma_cleanup(sc); } static struct ieee80211_node * mwl_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211com *ic = vap->iv_ic; struct mwl_softc *sc = ic->ic_softc; const size_t space = sizeof(struct mwl_node); struct mwl_node *mn; mn = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); if (mn == NULL) { /* XXX stat+msg */ return NULL; } DPRINTF(sc, MWL_DEBUG_NODE, "%s: mn %p\n", __func__, mn); return &mn->mn_node; } static void mwl_node_cleanup(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct mwl_softc *sc = ic->ic_softc; struct mwl_node *mn = MWL_NODE(ni); DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p ic %p staid %d\n", __func__, ni, ni->ni_ic, mn->mn_staid); if (mn->mn_staid != 0) { struct ieee80211vap *vap = ni->ni_vap; if (mn->mn_hvap != NULL) { if (vap->iv_opmode == IEEE80211_M_STA) mwl_hal_delstation(mn->mn_hvap, vap->iv_myaddr); else mwl_hal_delstation(mn->mn_hvap, ni->ni_macaddr); } /* * NB: legacy WDS peer sta db entry is installed using * the associate ap's hvap; use it again to delete it. * XXX can vap be NULL? */ else if (vap->iv_opmode == IEEE80211_M_WDS && MWL_VAP(vap)->mv_ap_hvap != NULL) mwl_hal_delstation(MWL_VAP(vap)->mv_ap_hvap, ni->ni_macaddr); delstaid(sc, mn->mn_staid); mn->mn_staid = 0; } sc->sc_node_cleanup(ni); } /* * Reclaim rx dma buffers from packets sitting on the ampdu * reorder queue for a station. We replace buffers with a * system cluster (if available). */ static void mwl_ampdu_rxdma_reclaim(struct ieee80211_rx_ampdu *rap) { #if 0 int i, n, off; struct mbuf *m; void *cl; n = rap->rxa_qframes; for (i = 0; i < rap->rxa_wnd && n > 0; i++) { m = rap->rxa_m[i]; if (m == NULL) continue; n--; /* our dma buffers have a well-known free routine */ if ((m->m_flags & M_EXT) == 0 || m->m_ext.ext_free != mwl_ext_free) continue; /* * Try to allocate a cluster and move the data. */ off = m->m_data - m->m_ext.ext_buf; if (off + m->m_pkthdr.len > MCLBYTES) { /* XXX no AMSDU for now */ continue; } cl = pool_cache_get_paddr(&mclpool_cache, 0, &m->m_ext.ext_paddr); if (cl != NULL) { /* * Copy the existing data to the cluster, remove * the rx dma buffer, and attach the cluster in * its place. Note we preserve the offset to the * data so frames being bridged can still prepend * their headers without adding another mbuf. */ memcpy((caddr_t) cl + off, m->m_data, m->m_pkthdr.len); MEXTREMOVE(m); MEXTADD(m, cl, MCLBYTES, 0, NULL, &mclpool_cache); /* setup mbuf like _MCLGET does */ m->m_flags |= M_CLUSTER | M_EXT_RW; _MOWNERREF(m, M_EXT | M_CLUSTER); /* NB: m_data is clobbered by MEXTADDR, adjust */ m->m_data += off; } } #endif } /* * Callback to reclaim resources. We first let the * net80211 layer do it's thing, then if we are still * blocked by a lack of rx dma buffers we walk the ampdu * reorder q's to reclaim buffers by copying to a system * cluster. */ static void mwl_node_drain(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct mwl_softc *sc = ic->ic_softc; struct mwl_node *mn = MWL_NODE(ni); DPRINTF(sc, MWL_DEBUG_NODE, "%s: ni %p vap %p staid %d\n", __func__, ni, ni->ni_vap, mn->mn_staid); /* NB: call up first to age out ampdu q's */ sc->sc_node_drain(ni); /* XXX better to not check low water mark? */ if (sc->sc_rxblocked && mn->mn_staid != 0 && (ni->ni_flags & IEEE80211_NODE_HT)) { uint8_t tid; /* * Walk the reorder q and reclaim rx dma buffers by copying * the packet contents into clusters. */ for (tid = 0; tid < WME_NUM_TID; tid++) { struct ieee80211_rx_ampdu *rap; rap = &ni->ni_rx_ampdu[tid]; if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) continue; if (rap->rxa_qframes) mwl_ampdu_rxdma_reclaim(rap); } } } static void mwl_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) { *rssi = ni->ni_ic->ic_node_getrssi(ni); #ifdef MWL_ANT_INFO_SUPPORT #if 0 /* XXX need to smooth data */ *noise = -MWL_NODE_CONST(ni)->mn_ai.nf; #else *noise = -95; /* XXX */ #endif #else *noise = -95; /* XXX */ #endif } /* * Convert Hardware per-antenna rssi info to common format: * Let a1, a2, a3 represent the amplitudes per chain * Let amax represent max[a1, a2, a3] * Rssi1_dBm = RSSI_dBm + 20*log10(a1/amax) * Rssi1_dBm = RSSI_dBm + 20*log10(a1) - 20*log10(amax) * We store a table that is 4*20*log10(idx) - the extra 4 is to store or * maintain some extra precision. * * Values are stored in .5 db format capped at 127. */ static void mwl_node_getmimoinfo(const struct ieee80211_node *ni, struct ieee80211_mimo_info *mi) { #define CVT(_dst, _src) do { \ (_dst) = rssi + ((logdbtbl[_src] - logdbtbl[rssi_max]) >> 2); \ (_dst) = (_dst) > 64 ? 127 : ((_dst) << 1); \ } while (0) static const int8_t logdbtbl[32] = { 0, 0, 24, 38, 48, 56, 62, 68, 72, 76, 80, 83, 86, 89, 92, 94, 96, 98, 100, 102, 104, 106, 107, 109, 110, 112, 113, 115, 116, 117, 118, 119 }; const struct mwl_node *mn = MWL_NODE_CONST(ni); uint8_t rssi = mn->mn_ai.rsvd1/2; /* XXX */ uint32_t rssi_max; rssi_max = mn->mn_ai.rssi_a; if (mn->mn_ai.rssi_b > rssi_max) rssi_max = mn->mn_ai.rssi_b; if (mn->mn_ai.rssi_c > rssi_max) rssi_max = mn->mn_ai.rssi_c; CVT(mi->ch[0].rssi[0], mn->mn_ai.rssi_a); CVT(mi->ch[1].rssi[0], mn->mn_ai.rssi_b); CVT(mi->ch[2].rssi[0], mn->mn_ai.rssi_c); mi->ch[0].noise[0] = mn->mn_ai.nf_a; mi->ch[1].noise[0] = mn->mn_ai.nf_b; mi->ch[2].noise[0] = mn->mn_ai.nf_c; #undef CVT } static __inline void * mwl_getrxdma(struct mwl_softc *sc) { struct mwl_jumbo *buf; void *data; /* * Allocate from jumbo pool. */ MWL_RXFREE_LOCK(sc); buf = SLIST_FIRST(&sc->sc_rxfree); if (buf == NULL) { DPRINTF(sc, MWL_DEBUG_ANY, "%s: out of rx dma buffers\n", __func__); sc->sc_stats.mst_rx_nodmabuf++; data = NULL; } else { SLIST_REMOVE_HEAD(&sc->sc_rxfree, next); sc->sc_nrxfree--; data = MWL_JUMBO_BUF2DATA(buf); } MWL_RXFREE_UNLOCK(sc); return data; } static __inline void mwl_putrxdma(struct mwl_softc *sc, void *data) { struct mwl_jumbo *buf; /* XXX bounds check data */ MWL_RXFREE_LOCK(sc); buf = MWL_JUMBO_DATA2BUF(data); SLIST_INSERT_HEAD(&sc->sc_rxfree, buf, next); sc->sc_nrxfree++; MWL_RXFREE_UNLOCK(sc); } static int mwl_rxbuf_init(struct mwl_softc *sc, struct mwl_rxbuf *bf) { struct mwl_rxdesc *ds; ds = bf->bf_desc; if (bf->bf_data == NULL) { bf->bf_data = mwl_getrxdma(sc); if (bf->bf_data == NULL) { /* mark descriptor to be skipped */ ds->RxControl = EAGLE_RXD_CTRL_OS_OWN; /* NB: don't need PREREAD */ MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE); sc->sc_stats.mst_rxbuf_failed++; return ENOMEM; } } /* * NB: DMA buffer contents is known to be unmodified * so there's no need to flush the data cache. */ /* * Setup descriptor. */ ds->QosCtrl = 0; ds->RSSI = 0; ds->Status = EAGLE_RXD_STATUS_IDLE; ds->Channel = 0; ds->PktLen = htole16(MWL_AGGR_SIZE); ds->SQ2 = 0; ds->pPhysBuffData = htole32(MWL_JUMBO_DMA_ADDR(sc, bf->bf_data)); /* NB: don't touch pPhysNext, set once */ ds->RxControl = EAGLE_RXD_CTRL_DRIVER_OWN; MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return 0; } static void mwl_ext_free(struct mbuf *m) { struct mwl_softc *sc = m->m_ext.ext_arg1; /* XXX bounds check data */ mwl_putrxdma(sc, m->m_ext.ext_buf); /* * If we were previously blocked by a lack of rx dma buffers * check if we now have enough to restart rx interrupt handling. * NB: we know we are called at splvm which is above splnet. */ if (sc->sc_rxblocked && sc->sc_nrxfree > mwl_rxdmalow) { sc->sc_rxblocked = 0; mwl_hal_intrset(sc->sc_mh, sc->sc_imask); } } struct mwl_frame_bar { u_int8_t i_fc[2]; u_int8_t i_dur[2]; u_int8_t i_ra[IEEE80211_ADDR_LEN]; u_int8_t i_ta[IEEE80211_ADDR_LEN]; /* ctl, seq, FCS */ } __packed; /* * Like ieee80211_anyhdrsize, but handles BAR frames * specially so the logic below to piece the 802.11 * header together works. */ static __inline int mwl_anyhdrsize(const void *data) { const struct ieee80211_frame *wh = data; if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) { case IEEE80211_FC0_SUBTYPE_CTS: case IEEE80211_FC0_SUBTYPE_ACK: return sizeof(struct ieee80211_frame_ack); case IEEE80211_FC0_SUBTYPE_BAR: return sizeof(struct mwl_frame_bar); } return sizeof(struct ieee80211_frame_min); } else return ieee80211_hdrsize(data); } static void mwl_handlemicerror(struct ieee80211com *ic, const uint8_t *data) { const struct ieee80211_frame *wh; struct ieee80211_node *ni; wh = (const struct ieee80211_frame *)(data + sizeof(uint16_t)); ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); if (ni != NULL) { ieee80211_notify_michael_failure(ni->ni_vap, wh, 0); ieee80211_free_node(ni); } } /* * Convert hardware signal strength to rssi. The value * provided by the device has the noise floor added in; * we need to compensate for this but we don't have that * so we use a fixed value. * * The offset of 8 is good for both 2.4 and 5GHz. The LNA * offset is already set as part of the initial gain. This * will give at least +/- 3dB for 2.4GHz and +/- 5dB for 5GHz. */ static __inline int cvtrssi(uint8_t ssi) { int rssi = (int) ssi + 8; /* XXX hack guess until we have a real noise floor */ rssi = 2*(87 - rssi); /* NB: .5 dBm units */ return (rssi < 0 ? 0 : rssi > 127 ? 127 : rssi); } static void mwl_rx_proc(void *arg, int npending) { struct epoch_tracker et; struct mwl_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct mwl_rxbuf *bf; struct mwl_rxdesc *ds; struct mbuf *m; struct ieee80211_qosframe *wh; struct ieee80211_node *ni; struct mwl_node *mn; int off, len, hdrlen, pktlen, rssi, ntodo; uint8_t *data, status; void *newdata; int16_t nf; DPRINTF(sc, MWL_DEBUG_RX_PROC, "%s: pending %u rdptr 0x%x wrptr 0x%x\n", __func__, npending, RD4(sc, sc->sc_hwspecs.rxDescRead), RD4(sc, sc->sc_hwspecs.rxDescWrite)); nf = -96; /* XXX */ bf = sc->sc_rxnext; for (ntodo = mwl_rxquota; ntodo > 0; ntodo--) { if (bf == NULL) bf = STAILQ_FIRST(&sc->sc_rxbuf); ds = bf->bf_desc; data = bf->bf_data; if (data == NULL) { /* * If data allocation failed previously there * will be no buffer; try again to re-populate it. * Note the firmware will not advance to the next * descriptor with a dma buffer so we must mimic * this or we'll get out of sync. */ DPRINTF(sc, MWL_DEBUG_ANY, "%s: rx buf w/o dma memory\n", __func__); (void) mwl_rxbuf_init(sc, bf); sc->sc_stats.mst_rx_dmabufmissing++; break; } MWL_RXDESC_SYNC(sc, ds, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (ds->RxControl != EAGLE_RXD_CTRL_DMA_OWN) break; #ifdef MWL_DEBUG if (sc->sc_debug & MWL_DEBUG_RECV_DESC) mwl_printrxbuf(bf, 0); #endif status = ds->Status; if (status & EAGLE_RXD_STATUS_DECRYPT_ERR_MASK) { counter_u64_add(ic->ic_ierrors, 1); sc->sc_stats.mst_rx_crypto++; /* * NB: Check EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR * for backwards compatibility. */ if (status != EAGLE_RXD_STATUS_GENERAL_DECRYPT_ERR && (status & EAGLE_RXD_STATUS_TKIP_MIC_DECRYPT_ERR)) { /* * MIC error, notify upper layers. */ bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD); mwl_handlemicerror(ic, data); sc->sc_stats.mst_rx_tkipmic++; } /* XXX too painful to tap packets */ goto rx_next; } /* * Sync the data buffer. */ len = le16toh(ds->PktLen); bus_dmamap_sync(sc->sc_rxdmat, sc->sc_rxmap, BUS_DMASYNC_POSTREAD); /* * The 802.11 header is provided all or in part at the front; * use it to calculate the true size of the header that we'll * construct below. We use this to figure out where to copy * payload prior to constructing the header. */ hdrlen = mwl_anyhdrsize(data + sizeof(uint16_t)); off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4); /* calculate rssi early so we can re-use for each aggregate */ rssi = cvtrssi(ds->RSSI); pktlen = hdrlen + (len - off); /* * NB: we know our frame is at least as large as * IEEE80211_MIN_LEN because there is a 4-address * frame at the front. Hence there's no need to * vet the packet length. If the frame in fact * is too small it should be discarded at the * net80211 layer. */ /* * Attach dma buffer to an mbuf. We tried * doing this based on the packet size (i.e. * copying small packets) but it turns out to * be a net loss. The tradeoff might be system * dependent (cache architecture is important). */ MGETHDR(m, M_NOWAIT, MT_DATA); if (m == NULL) { DPRINTF(sc, MWL_DEBUG_ANY, "%s: no rx mbuf\n", __func__); sc->sc_stats.mst_rx_nombuf++; goto rx_next; } /* * Acquire the replacement dma buffer before * processing the frame. If we're out of dma * buffers we disable rx interrupts and wait * for the free pool to reach mlw_rxdmalow buffers * before starting to do work again. If the firmware * runs out of descriptors then it will toss frames * which is better than our doing it as that can * starve our processing. It is also important that * we always process rx'd frames in case they are * A-MPDU as otherwise the host's view of the BA * window may get out of sync with the firmware. */ newdata = mwl_getrxdma(sc); if (newdata == NULL) { /* NB: stat+msg in mwl_getrxdma */ m_free(m); /* disable RX interrupt and mark state */ mwl_hal_intrset(sc->sc_mh, sc->sc_imask &~ MACREG_A2HRIC_BIT_RX_RDY); sc->sc_rxblocked = 1; ieee80211_drain(ic); /* XXX check rxblocked and immediately start again? */ goto rx_stop; } bf->bf_data = newdata; /* * Attach the dma buffer to the mbuf; * mwl_rxbuf_init will re-setup the rx * descriptor using the replacement dma * buffer we just installed above. */ m_extadd(m, data, MWL_AGGR_SIZE, mwl_ext_free, sc, NULL, 0, EXT_NET_DRV); m->m_data += off - hdrlen; m->m_pkthdr.len = m->m_len = pktlen; /* NB: dma buffer assumed read-only */ /* * Piece 802.11 header together. */ wh = mtod(m, struct ieee80211_qosframe *); /* NB: don't need to do this sometimes but ... */ /* XXX special case so we can memcpy after m_devget? */ ovbcopy(data + sizeof(uint16_t), wh, hdrlen); if (IEEE80211_QOS_HAS_SEQ(wh)) *(uint16_t *)ieee80211_getqos(wh) = ds->QosCtrl; /* * The f/w strips WEP header but doesn't clear * the WEP bit; mark the packet with M_WEP so * net80211 will treat the data as decrypted. * While here also clear the PWR_MGT bit since * power save is handled by the firmware and * passing this up will potentially cause the * upper layer to put a station in power save * (except when configured with MWL_HOST_PS_SUPPORT). */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) m->m_flags |= M_WEP; #ifdef MWL_HOST_PS_SUPPORT wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; #else wh->i_fc[1] &= ~(IEEE80211_FC1_PROTECTED | IEEE80211_FC1_PWR_MGT); #endif if (ieee80211_radiotap_active(ic)) { struct mwl_rx_radiotap_header *tap = &sc->sc_rx_th; tap->wr_flags = 0; tap->wr_rate = ds->Rate; tap->wr_antsignal = rssi + nf; tap->wr_antnoise = nf; } if (IFF_DUMPPKTS_RECV(sc, wh)) { ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, ds->Rate, rssi); } /* dispatch */ ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh); NET_EPOCH_ENTER(et); if (ni != NULL) { mn = MWL_NODE(ni); #ifdef MWL_ANT_INFO_SUPPORT mn->mn_ai.rssi_a = ds->ai.rssi_a; mn->mn_ai.rssi_b = ds->ai.rssi_b; mn->mn_ai.rssi_c = ds->ai.rssi_c; mn->mn_ai.rsvd1 = rssi; #endif /* tag AMPDU aggregates for reorder processing */ if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void) ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); NET_EPOCH_EXIT(et); rx_next: /* NB: ignore ENOMEM so we process more descriptors */ (void) mwl_rxbuf_init(sc, bf); bf = STAILQ_NEXT(bf, bf_list); } rx_stop: sc->sc_rxnext = bf; if (mbufq_first(&sc->sc_snd) != NULL) { /* NB: kick fw; the tx thread may have been preempted */ mwl_hal_txstart(sc->sc_mh, 0); mwl_start(sc); } } static void mwl_txq_init(struct mwl_softc *sc, struct mwl_txq *txq, int qnum) { struct mwl_txbuf *bf, *bn; struct mwl_txdesc *ds; MWL_TXQ_LOCK_INIT(sc, txq); txq->qnum = qnum; txq->txpri = 0; /* XXX */ #if 0 /* NB: q setup by mwl_txdma_setup XXX */ STAILQ_INIT(&txq->free); #endif STAILQ_FOREACH(bf, &txq->free, bf_list) { bf->bf_txq = txq; ds = bf->bf_desc; bn = STAILQ_NEXT(bf, bf_list); if (bn == NULL) bn = STAILQ_FIRST(&txq->free); ds->pPhysNext = htole32(bn->bf_daddr); } STAILQ_INIT(&txq->active); } /* * Setup a hardware data transmit queue for the specified * access control. We record the mapping from ac's * to h/w queues for use by mwl_tx_start. */ static int mwl_tx_setup(struct mwl_softc *sc, int ac, int mvtype) { struct mwl_txq *txq; if (ac >= nitems(sc->sc_ac2q)) { device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", ac, nitems(sc->sc_ac2q)); return 0; } if (mvtype >= MWL_NUM_TX_QUEUES) { device_printf(sc->sc_dev, "mvtype %u out of range, max %u!\n", mvtype, MWL_NUM_TX_QUEUES); return 0; } txq = &sc->sc_txq[mvtype]; mwl_txq_init(sc, txq, mvtype); sc->sc_ac2q[ac] = txq; return 1; } /* * Update WME parameters for a transmit queue. */ static int mwl_txq_update(struct mwl_softc *sc, int ac) { #define MWL_EXPONENT_TO_VALUE(v) ((1<sc_ic; struct chanAccParams chp; struct mwl_txq *txq = sc->sc_ac2q[ac]; struct wmeParams *wmep; struct mwl_hal *mh = sc->sc_mh; int aifs, cwmin, cwmax, txoplim; ieee80211_wme_ic_getparams(ic, &chp); wmep = &chp.cap_wmeParams[ac]; aifs = wmep->wmep_aifsn; /* XXX in sta mode need to pass log values for cwmin/max */ cwmin = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); cwmax = MWL_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); txoplim = wmep->wmep_txopLimit; /* NB: units of 32us */ if (mwl_hal_setedcaparams(mh, txq->qnum, cwmin, cwmax, aifs, txoplim)) { device_printf(sc->sc_dev, "unable to update hardware queue " "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); return 0; } return 1; #undef MWL_EXPONENT_TO_VALUE } /* * Callback from the 802.11 layer to update WME parameters. */ static int mwl_wme_update(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; return !mwl_txq_update(sc, WME_AC_BE) || !mwl_txq_update(sc, WME_AC_BK) || !mwl_txq_update(sc, WME_AC_VI) || !mwl_txq_update(sc, WME_AC_VO) ? EIO : 0; } /* * Reclaim resources for a setup queue. */ static void mwl_tx_cleanupq(struct mwl_softc *sc, struct mwl_txq *txq) { /* XXX hal work? */ MWL_TXQ_LOCK_DESTROY(txq); } /* * Reclaim all tx queue resources. */ static void mwl_tx_cleanup(struct mwl_softc *sc) { int i; for (i = 0; i < MWL_NUM_TX_QUEUES; i++) mwl_tx_cleanupq(sc, &sc->sc_txq[i]); } static int mwl_tx_dmasetup(struct mwl_softc *sc, struct mwl_txbuf *bf, struct mbuf *m0) { struct mbuf *m; int error; /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error == EFBIG) { /* XXX packet requires too many descriptors */ bf->bf_nseg = MWL_TXDESC+1; } else if (error != 0) { sc->sc_stats.mst_tx_busdma++; m_freem(m0); return error; } /* * Discard null packets and check for packets that * require too many TX descriptors. We try to convert * the latter to a cluster. */ if (error == EFBIG) { /* too many desc's, linearize */ sc->sc_stats.mst_tx_linear++; #if MWL_TXDESC > 1 m = m_collapse(m0, M_NOWAIT, MWL_TXDESC); #else m = m_defrag(m0, M_NOWAIT); #endif if (m == NULL) { m_freem(m0); sc->sc_stats.mst_tx_nombuf++; return ENOMEM; } m0 = m; error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error != 0) { sc->sc_stats.mst_tx_busdma++; m_freem(m0); return error; } KASSERT(bf->bf_nseg <= MWL_TXDESC, ("too many segments after defrag; nseg %u", bf->bf_nseg)); } else if (bf->bf_nseg == 0) { /* null packet, discard */ sc->sc_stats.mst_tx_nodata++; m_freem(m0); return EIO; } DPRINTF(sc, MWL_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, m0->m_pkthdr.len); bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); bf->bf_m = m0; return 0; } static __inline int mwl_cvtlegacyrate(int rate) { switch (rate) { case 2: return 0; case 4: return 1; case 11: return 2; case 22: return 3; case 44: return 4; case 12: return 5; case 18: return 6; case 24: return 7; case 36: return 8; case 48: return 9; case 72: return 10; case 96: return 11; case 108:return 12; } return 0; } /* * Calculate fixed tx rate information per client state; * this value is suitable for writing to the Format field * of a tx descriptor. */ static uint16_t mwl_calcformat(uint8_t rate, const struct ieee80211_node *ni) { uint16_t fmt; - fmt = SM(3, EAGLE_TXD_ANTENNA) + fmt = _IEEE80211_SHIFTMASK(3, EAGLE_TXD_ANTENNA) | (IEEE80211_IS_CHAN_HT40D(ni->ni_chan) ? EAGLE_TXD_EXTCHAN_LO : EAGLE_TXD_EXTCHAN_HI); if (rate & IEEE80211_RATE_MCS) { /* HT MCS */ fmt |= EAGLE_TXD_FORMAT_HT /* NB: 0x80 implicitly stripped from ucastrate */ - | SM(rate, EAGLE_TXD_RATE); + | _IEEE80211_SHIFTMASK(rate, EAGLE_TXD_RATE); /* XXX short/long GI may be wrong; re-check */ if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { fmt |= EAGLE_TXD_CHW_40 | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40 ? EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG); } else { fmt |= EAGLE_TXD_CHW_20 | (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20 ? EAGLE_TXD_GI_SHORT : EAGLE_TXD_GI_LONG); } } else { /* legacy rate */ fmt |= EAGLE_TXD_FORMAT_LEGACY - | SM(mwl_cvtlegacyrate(rate), EAGLE_TXD_RATE) + | _IEEE80211_SHIFTMASK(mwl_cvtlegacyrate(rate), + EAGLE_TXD_RATE) | EAGLE_TXD_CHW_20 /* XXX iv_flags & IEEE80211_F_SHPREAMBLE? */ | (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE ? EAGLE_TXD_PREAMBLE_SHORT : EAGLE_TXD_PREAMBLE_LONG); } return fmt; } static int mwl_tx_start(struct mwl_softc *sc, struct ieee80211_node *ni, struct mwl_txbuf *bf, struct mbuf *m0) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; int error, iswep, ismcast; int hdrlen, copyhdrlen, pktlen; struct mwl_txdesc *ds; struct mwl_txq *txq; struct ieee80211_frame *wh; struct mwltxrec *tr; struct mwl_node *mn; uint16_t qos; #if MWL_TXDESC > 1 int i; #endif wh = mtod(m0, struct ieee80211_frame *); iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); hdrlen = ieee80211_anyhdrsize(wh); copyhdrlen = hdrlen; pktlen = m0->m_pkthdr.len; if (IEEE80211_QOS_HAS_SEQ(wh)) { qos = *(uint16_t *)ieee80211_getqos(wh); if (IEEE80211_IS_DSTODS(wh)) copyhdrlen -= sizeof(qos); } else qos = 0; if (iswep) { const struct ieee80211_cipher *cip; struct ieee80211_key *k; /* * Construct the 802.11 header+trailer for an encrypted * frame. The only reason this can fail is because of an * unknown or unsupported cipher/key type. * * NB: we do this even though the firmware will ignore * what we've done for WEP and TKIP as we need the * ExtIV filled in for CCMP and this also adjusts * the headers which simplifies our work below. */ k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { /* * This can happen when the key is yanked after the * frame was queued. Just discard the frame; the * 802.11 layer counts failures and provides * debugging/diagnostics. */ m_freem(m0); return EIO; } /* * Adjust the packet length for the crypto additions * done during encap and any other bits that the f/w * will add later on. */ cip = k->wk_cipher; pktlen += cip->ic_header + cip->ic_miclen + cip->ic_trailer; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = 0; /* XXX */ if (iswep) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; #if 0 sc->sc_tx_th.wt_rate = ds->DataRate; #endif sc->sc_tx_th.wt_txpower = ni->ni_txpower; sc->sc_tx_th.wt_antenna = sc->sc_txantenna; ieee80211_radiotap_tx(vap, m0); } /* * Copy up/down the 802.11 header; the firmware requires * we present a 2-byte payload length followed by a * 4-address header (w/o QoS), followed (optionally) by * any WEP/ExtIV header (but only filled in for CCMP). * We are assured the mbuf has sufficient headroom to * prepend in-place by the setup of ic_headroom in * mwl_attach. */ if (hdrlen < sizeof(struct mwltxrec)) { const int space = sizeof(struct mwltxrec) - hdrlen; if (M_LEADINGSPACE(m0) < space) { /* NB: should never happen */ device_printf(sc->sc_dev, "not enough headroom, need %d found %zd, " "m_flags 0x%x m_len %d\n", space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len); ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 0, -1); m_freem(m0); sc->sc_stats.mst_tx_noheadroom++; return EIO; } M_PREPEND(m0, space, M_NOWAIT); } tr = mtod(m0, struct mwltxrec *); if (wh != (struct ieee80211_frame *) &tr->wh) ovbcopy(wh, &tr->wh, hdrlen); /* * Note: the "firmware length" is actually the length * of the fully formed "802.11 payload". That is, it's * everything except for the 802.11 header. In particular * this includes all crypto material including the MIC! */ tr->fwlen = htole16(pktlen - hdrlen); /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = mwl_tx_dmasetup(sc, bf, m0); if (error != 0) { /* NB: stat collected in mwl_tx_dmasetup */ DPRINTF(sc, MWL_DEBUG_XMIT, "%s: unable to setup dma\n", __func__); return error; } bf->bf_node = ni; /* NB: held reference */ m0 = bf->bf_m; /* NB: may have changed */ tr = mtod(m0, struct mwltxrec *); wh = (struct ieee80211_frame *)&tr->wh; /* * Formulate tx descriptor. */ ds = bf->bf_desc; txq = bf->bf_txq; ds->QosCtrl = qos; /* NB: already little-endian */ #if MWL_TXDESC == 1 /* * NB: multiframes should be zero because the descriptors * are initialized to zero. This should handle the case * where the driver is built with MWL_TXDESC=1 but we are * using firmware with multi-segment support. */ ds->PktPtr = htole32(bf->bf_segs[0].ds_addr); ds->PktLen = htole16(bf->bf_segs[0].ds_len); #else ds->multiframes = htole32(bf->bf_nseg); ds->PktLen = htole16(m0->m_pkthdr.len); for (i = 0; i < bf->bf_nseg; i++) { ds->PktPtrArray[i] = htole32(bf->bf_segs[i].ds_addr); ds->PktLenArray[i] = htole16(bf->bf_segs[i].ds_len); } #endif /* NB: pPhysNext, DataRate, and SapPktInfo setup once, don't touch */ ds->Format = 0; ds->pad = 0; ds->ack_wcb_addr = 0; mn = MWL_NODE(ni); /* * Select transmit rate. */ switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_MGT: sc->sc_stats.mst_tx_mgmt++; /* fall thru... */ case IEEE80211_FC0_TYPE_CTL: /* NB: assign to BE q to avoid bursting */ ds->TxPriority = MWL_WME_AC_BE; break; case IEEE80211_FC0_TYPE_DATA: if (!ismcast) { const struct ieee80211_txparam *tp = ni->ni_txparms; /* * EAPOL frames get forced to a fixed rate and w/o * aggregation; otherwise check for any fixed rate * for the client (may depend on association state). */ if (m0->m_flags & M_EAPOL) { const struct mwl_vap *mvp = MWL_VAP_CONST(vap); ds->Format = mvp->mv_eapolformat; ds->pad = htole16( EAGLE_TXD_FIXED_RATE | EAGLE_TXD_DONT_AGGR); } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { /* XXX pre-calculate per node */ ds->Format = htole16( mwl_calcformat(tp->ucastrate, ni)); ds->pad = htole16(EAGLE_TXD_FIXED_RATE); } /* NB: EAPOL frames will never have qos set */ if (qos == 0) ds->TxPriority = txq->qnum; #if MWL_MAXBA > 3 else if (mwl_bastream_match(&mn->mn_ba[3], qos)) ds->TxPriority = mn->mn_ba[3].txq; #endif #if MWL_MAXBA > 2 else if (mwl_bastream_match(&mn->mn_ba[2], qos)) ds->TxPriority = mn->mn_ba[2].txq; #endif #if MWL_MAXBA > 1 else if (mwl_bastream_match(&mn->mn_ba[1], qos)) ds->TxPriority = mn->mn_ba[1].txq; #endif #if MWL_MAXBA > 0 else if (mwl_bastream_match(&mn->mn_ba[0], qos)) ds->TxPriority = mn->mn_ba[0].txq; #endif else ds->TxPriority = txq->qnum; } else ds->TxPriority = txq->qnum; break; default: device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); sc->sc_stats.mst_tx_badframetype++; m_freem(m0); return EIO; } if (IFF_DUMPPKTS_XMIT(sc)) ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *)+sizeof(uint16_t), m0->m_len - sizeof(uint16_t), ds->DataRate, -1); MWL_TXQ_LOCK(txq); ds->Status = htole32(EAGLE_TXD_STATUS_FW_OWNED); STAILQ_INSERT_TAIL(&txq->active, bf, bf_list); MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_tx_timer = 5; MWL_TXQ_UNLOCK(txq); return 0; } static __inline int mwl_cvtlegacyrix(int rix) { static const int ieeerates[] = { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 72, 96, 108 }; return (rix < nitems(ieeerates) ? ieeerates[rix] : 0); } /* * Process completed xmit descriptors from the specified queue. */ static int mwl_tx_processq(struct mwl_softc *sc, struct mwl_txq *txq) { #define EAGLE_TXD_STATUS_MCAST \ (EAGLE_TXD_STATUS_MULTICAST_TX | EAGLE_TXD_STATUS_BROADCAST_TX) struct ieee80211com *ic = &sc->sc_ic; struct mwl_txbuf *bf; struct mwl_txdesc *ds; struct ieee80211_node *ni; struct mwl_node *an; int nreaped; uint32_t status; DPRINTF(sc, MWL_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum); for (nreaped = 0;; nreaped++) { MWL_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->active); if (bf == NULL) { MWL_TXQ_UNLOCK(txq); break; } ds = bf->bf_desc; MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (ds->Status & htole32(EAGLE_TXD_STATUS_FW_OWNED)) { MWL_TXQ_UNLOCK(txq); break; } STAILQ_REMOVE_HEAD(&txq->active, bf_list); MWL_TXQ_UNLOCK(txq); #ifdef MWL_DEBUG if (sc->sc_debug & MWL_DEBUG_XMIT_DESC) mwl_printtxbuf(bf, txq->qnum, nreaped); #endif ni = bf->bf_node; if (ni != NULL) { an = MWL_NODE(ni); status = le32toh(ds->Status); if (status & EAGLE_TXD_STATUS_OK) { uint16_t Format = le16toh(ds->Format); - uint8_t txant = MS(Format, EAGLE_TXD_ANTENNA); + uint8_t txant = _IEEE80211_MASKSHIFT(Format, + EAGLE_TXD_ANTENNA); sc->sc_stats.mst_ant_tx[txant]++; if (status & EAGLE_TXD_STATUS_OK_RETRY) sc->sc_stats.mst_tx_retries++; if (status & EAGLE_TXD_STATUS_OK_MORE_RETRY) sc->sc_stats.mst_tx_mretries++; if (txq->qnum >= MWL_WME_AC_VO) ic->ic_wme.wme_hipri_traffic++; - ni->ni_txrate = MS(Format, EAGLE_TXD_RATE); + ni->ni_txrate = _IEEE80211_MASKSHIFT(Format, + EAGLE_TXD_RATE); if ((Format & EAGLE_TXD_FORMAT_HT) == 0) { ni->ni_txrate = mwl_cvtlegacyrix( ni->ni_txrate); } else ni->ni_txrate |= IEEE80211_RATE_MCS; sc->sc_stats.mst_tx_rate = ni->ni_txrate; } else { if (status & EAGLE_TXD_STATUS_FAILED_LINK_ERROR) sc->sc_stats.mst_tx_linkerror++; if (status & EAGLE_TXD_STATUS_FAILED_XRETRY) sc->sc_stats.mst_tx_xretries++; if (status & EAGLE_TXD_STATUS_FAILED_AGING) sc->sc_stats.mst_tx_aging++; if (bf->bf_m->m_flags & M_FF) sc->sc_stats.mst_ff_txerr++; } if (bf->bf_m->m_flags & M_TXCB) /* XXX strip fw len in case header inspected */ m_adj(bf->bf_m, sizeof(uint16_t)); ieee80211_tx_complete(ni, bf->bf_m, (status & EAGLE_TXD_STATUS_OK) == 0); } else m_freem(bf->bf_m); ds->Status = htole32(EAGLE_TXD_STATUS_IDLE); bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); mwl_puttxbuf_tail(txq, bf); } return nreaped; #undef EAGLE_TXD_STATUS_MCAST } /* * Deferred processing of transmit interrupt; special-cased * for four hardware queues, 0-3. */ static void mwl_tx_proc(void *arg, int npending) { struct mwl_softc *sc = arg; int nreaped; /* * Process each active queue. */ nreaped = 0; if (!STAILQ_EMPTY(&sc->sc_txq[0].active)) nreaped += mwl_tx_processq(sc, &sc->sc_txq[0]); if (!STAILQ_EMPTY(&sc->sc_txq[1].active)) nreaped += mwl_tx_processq(sc, &sc->sc_txq[1]); if (!STAILQ_EMPTY(&sc->sc_txq[2].active)) nreaped += mwl_tx_processq(sc, &sc->sc_txq[2]); if (!STAILQ_EMPTY(&sc->sc_txq[3].active)) nreaped += mwl_tx_processq(sc, &sc->sc_txq[3]); if (nreaped != 0) { sc->sc_tx_timer = 0; if (mbufq_first(&sc->sc_snd) != NULL) { /* NB: kick fw; the tx thread may have been preempted */ mwl_hal_txstart(sc->sc_mh, 0); mwl_start(sc); } } } static void mwl_tx_draintxq(struct mwl_softc *sc, struct mwl_txq *txq) { struct ieee80211_node *ni; struct mwl_txbuf *bf; u_int ix; /* * NB: this assumes output has been stopped and * we do not need to block mwl_tx_tasklet */ for (ix = 0;; ix++) { MWL_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->active); if (bf == NULL) { MWL_TXQ_UNLOCK(txq); break; } STAILQ_REMOVE_HEAD(&txq->active, bf_list); MWL_TXQ_UNLOCK(txq); #ifdef MWL_DEBUG if (sc->sc_debug & MWL_DEBUG_RESET) { struct ieee80211com *ic = &sc->sc_ic; const struct mwltxrec *tr = mtod(bf->bf_m, const struct mwltxrec *); mwl_printtxbuf(bf, txq->qnum, ix); ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh, bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1); } #endif /* MWL_DEBUG */ bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); ni = bf->bf_node; if (ni != NULL) { /* * Reclaim node reference. */ ieee80211_free_node(ni); } m_freem(bf->bf_m); mwl_puttxbuf_tail(txq, bf); } } /* * Drain the transmit queues and reclaim resources. */ static void mwl_draintxq(struct mwl_softc *sc) { int i; for (i = 0; i < MWL_NUM_TX_QUEUES; i++) mwl_tx_draintxq(sc, &sc->sc_txq[i]); sc->sc_tx_timer = 0; } #ifdef MWL_DIAGAPI /* * Reset the transmit queues to a pristine state after a fw download. */ static void mwl_resettxq(struct mwl_softc *sc) { int i; for (i = 0; i < MWL_NUM_TX_QUEUES; i++) mwl_txq_reset(sc, &sc->sc_txq[i]); } #endif /* MWL_DIAGAPI */ /* * Clear the transmit queues of any frames submitted for the * specified vap. This is done when the vap is deleted so we * don't potentially reference the vap after it is gone. * Note we cannot remove the frames; we only reclaim the node * reference. */ static void mwl_cleartxq(struct mwl_softc *sc, struct ieee80211vap *vap) { struct mwl_txq *txq; struct mwl_txbuf *bf; int i; for (i = 0; i < MWL_NUM_TX_QUEUES; i++) { txq = &sc->sc_txq[i]; MWL_TXQ_LOCK(txq); STAILQ_FOREACH(bf, &txq->active, bf_list) { struct ieee80211_node *ni = bf->bf_node; if (ni != NULL && ni->ni_vap == vap) { bf->bf_node = NULL; ieee80211_free_node(ni); } } MWL_TXQ_UNLOCK(txq); } } static int mwl_recv_action(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct mwl_softc *sc = ni->ni_ic->ic_softc; const struct ieee80211_action *ia; ia = (const struct ieee80211_action *) frm; if (ia->ia_category == IEEE80211_ACTION_CAT_HT && ia->ia_action == IEEE80211_ACTION_HT_MIMOPWRSAVE) { const struct ieee80211_action_ht_mimopowersave *mps = (const struct ieee80211_action_ht_mimopowersave *) ia; mwl_hal_setmimops(sc->sc_mh, ni->ni_macaddr, mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA, - MS(mps->am_control, IEEE80211_A_HT_MIMOPWRSAVE_MODE)); + _IEEE80211_MASKSHIFT(mps->am_control, + IEEE80211_A_HT_MIMOPWRSAVE_MODE)); return 0; } else return sc->sc_recv_action(ni, wh, frm, efrm); } static int mwl_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout) { struct mwl_softc *sc = ni->ni_ic->ic_softc; struct ieee80211vap *vap = ni->ni_vap; struct mwl_node *mn = MWL_NODE(ni); struct mwl_bastate *bas; bas = tap->txa_private; if (bas == NULL) { const MWL_HAL_BASTREAM *sp; /* * Check for a free BA stream slot. */ #if MWL_MAXBA > 3 if (mn->mn_ba[3].bastream == NULL) bas = &mn->mn_ba[3]; else #endif #if MWL_MAXBA > 2 if (mn->mn_ba[2].bastream == NULL) bas = &mn->mn_ba[2]; else #endif #if MWL_MAXBA > 1 if (mn->mn_ba[1].bastream == NULL) bas = &mn->mn_ba[1]; else #endif #if MWL_MAXBA > 0 if (mn->mn_ba[0].bastream == NULL) bas = &mn->mn_ba[0]; else #endif { /* sta already has max BA streams */ /* XXX assign BA stream to highest priority tid */ DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: already has max bastreams\n", __func__); sc->sc_stats.mst_ampdu_reject++; return 0; } /* NB: no held reference to ni */ sp = mwl_hal_bastream_alloc(MWL_VAP(vap)->mv_hvap, (baparamset & IEEE80211_BAPS_POLICY_IMMEDIATE) != 0, ni->ni_macaddr, tap->txa_tid, ni->ni_htparam, ni, tap); if (sp == NULL) { /* * No available stream, return 0 so no * a-mpdu aggregation will be done. */ DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: no bastream available\n", __func__); sc->sc_stats.mst_ampdu_nostream++; return 0; } DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: alloc bastream %p\n", __func__, sp); /* NB: qos is left zero so we won't match in mwl_tx_start */ bas->bastream = sp; tap->txa_private = bas; } /* fetch current seq# from the firmware; if available */ if (mwl_hal_bastream_get_seqno(sc->sc_mh, bas->bastream, vap->iv_opmode == IEEE80211_M_STA ? vap->iv_myaddr : ni->ni_macaddr, &tap->txa_start) != 0) tap->txa_start = 0; return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, batimeout); } static int mwl_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int code, int baparamset, int batimeout) { struct mwl_softc *sc = ni->ni_ic->ic_softc; struct mwl_bastate *bas; bas = tap->txa_private; if (bas == NULL) { /* XXX should not happen */ DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: no BA stream allocated, TID %d\n", __func__, tap->txa_tid); sc->sc_stats.mst_addba_nostream++; return 0; } if (code == IEEE80211_STATUS_SUCCESS) { struct ieee80211vap *vap = ni->ni_vap; int bufsiz, error; /* * Tell the firmware to setup the BA stream; * we know resources are available because we * pre-allocated one before forming the request. */ - bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); + bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); if (bufsiz == 0) bufsiz = IEEE80211_AGGR_BAWMAX; error = mwl_hal_bastream_create(MWL_VAP(vap)->mv_hvap, bas->bastream, bufsiz, bufsiz, tap->txa_start); if (error != 0) { /* * Setup failed, return immediately so no a-mpdu * aggregation will be done. */ mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream); mwl_bastream_free(bas); tap->txa_private = NULL; DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: create failed, error %d, bufsiz %d TID %d " "htparam 0x%x\n", __func__, error, bufsiz, tap->txa_tid, ni->ni_htparam); sc->sc_stats.mst_bacreate_failed++; return 0; } /* NB: cache txq to avoid ptr indirect */ mwl_bastream_setup(bas, tap->txa_tid, bas->bastream->txq); DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: bastream %p assigned to txq %d TID %d bufsiz %d " "htparam 0x%x\n", __func__, bas->bastream, bas->txq, tap->txa_tid, bufsiz, ni->ni_htparam); } else { /* * Other side NAK'd us; return the resources. */ DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: request failed with code %d, destroy bastream %p\n", __func__, code, bas->bastream); mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream); mwl_bastream_free(bas); tap->txa_private = NULL; } /* NB: firmware sends BAR so we don't need to */ return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); } static void mwl_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct mwl_softc *sc = ni->ni_ic->ic_softc; struct mwl_bastate *bas; bas = tap->txa_private; if (bas != NULL) { DPRINTF(sc, MWL_DEBUG_AMPDU, "%s: destroy bastream %p\n", __func__, bas->bastream); mwl_hal_bastream_destroy(sc->sc_mh, bas->bastream); mwl_bastream_free(bas); tap->txa_private = NULL; } sc->sc_addba_stop(ni, tap); } /* * Setup the rx data structures. This should only be * done once or we may get out of sync with the firmware. */ static int mwl_startrecv(struct mwl_softc *sc) { if (!sc->sc_recvsetup) { struct mwl_rxbuf *bf, *prev; struct mwl_rxdesc *ds; prev = NULL; STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { int error = mwl_rxbuf_init(sc, bf); if (error != 0) { DPRINTF(sc, MWL_DEBUG_RECV, "%s: mwl_rxbuf_init failed %d\n", __func__, error); return error; } if (prev != NULL) { ds = prev->bf_desc; ds->pPhysNext = htole32(bf->bf_daddr); } prev = bf; } if (prev != NULL) { ds = prev->bf_desc; ds->pPhysNext = htole32(STAILQ_FIRST(&sc->sc_rxbuf)->bf_daddr); } sc->sc_recvsetup = 1; } mwl_mode_init(sc); /* set filters, etc. */ return 0; } static MWL_HAL_APMODE mwl_getapmode(const struct ieee80211vap *vap, struct ieee80211_channel *chan) { MWL_HAL_APMODE mode; if (IEEE80211_IS_CHAN_HT(chan)) { if (vap->iv_flags_ht & IEEE80211_FHT_PUREN) mode = AP_MODE_N_ONLY; else if (IEEE80211_IS_CHAN_5GHZ(chan)) mode = AP_MODE_AandN; else if (vap->iv_flags & IEEE80211_F_PUREG) mode = AP_MODE_GandN; else mode = AP_MODE_BandGandN; } else if (IEEE80211_IS_CHAN_ANYG(chan)) { if (vap->iv_flags & IEEE80211_F_PUREG) mode = AP_MODE_G_ONLY; else mode = AP_MODE_MIXED; } else if (IEEE80211_IS_CHAN_B(chan)) mode = AP_MODE_B_ONLY; else if (IEEE80211_IS_CHAN_A(chan)) mode = AP_MODE_A_ONLY; else mode = AP_MODE_MIXED; /* XXX should not happen? */ return mode; } static int mwl_setapmode(struct ieee80211vap *vap, struct ieee80211_channel *chan) { struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; return mwl_hal_setapmode(hvap, mwl_getapmode(vap, chan)); } /* * Set/change channels. */ static int mwl_chan_set(struct mwl_softc *sc, struct ieee80211_channel *chan) { struct mwl_hal *mh = sc->sc_mh; struct ieee80211com *ic = &sc->sc_ic; MWL_HAL_CHANNEL hchan; int maxtxpow; DPRINTF(sc, MWL_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n", __func__, chan->ic_freq, chan->ic_flags); /* * Convert to a HAL channel description with * the flags constrained to reflect the current * operating mode. */ mwl_mapchan(&hchan, chan); mwl_hal_intrset(mh, 0); /* disable interrupts */ #if 0 mwl_draintxq(sc); /* clear pending tx frames */ #endif mwl_hal_setchannel(mh, &hchan); /* * Tx power is cap'd by the regulatory setting and * possibly a user-set limit. We pass the min of * these to the hal to apply them to the cal data * for this channel. * XXX min bound? */ maxtxpow = 2*chan->ic_maxregpower; if (maxtxpow > ic->ic_txpowlimit) maxtxpow = ic->ic_txpowlimit; mwl_hal_settxpower(mh, &hchan, maxtxpow / 2); /* NB: potentially change mcast/mgt rates */ mwl_setcurchanrates(sc); /* * Update internal state. */ sc->sc_tx_th.wt_chan_freq = htole16(chan->ic_freq); sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq); if (IEEE80211_IS_CHAN_A(chan)) { sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_A); sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_A); } else if (IEEE80211_IS_CHAN_ANYG(chan)) { sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G); sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G); } else { sc->sc_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B); sc->sc_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B); } sc->sc_curchan = hchan; mwl_hal_intrset(mh, sc->sc_imask); return 0; } static void mwl_scan_start(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__); } static void mwl_scan_end(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; DPRINTF(sc, MWL_DEBUG_STATE, "%s\n", __func__); } static void mwl_set_channel(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; (void) mwl_chan_set(sc, ic->ic_curchan); } /* * Handle a channel switch request. We inform the firmware * and mark the global state to suppress various actions. * NB: we issue only one request to the fw; we may be called * multiple times if there are multiple vap's. */ static void mwl_startcsa(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct mwl_softc *sc = ic->ic_softc; MWL_HAL_CHANNEL hchan; if (sc->sc_csapending) return; mwl_mapchan(&hchan, ic->ic_csa_newchan); /* 1 =>'s quiet channel */ mwl_hal_setchannelswitchie(sc->sc_mh, &hchan, 1, ic->ic_csa_count); sc->sc_csapending = 1; } /* * Plumb any static WEP key for the station. This is * necessary as we must propagate the key from the * global key table of the vap to each sta db entry. */ static void mwl_setanywepkey(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { if ((vap->iv_flags & (IEEE80211_F_PRIVACY|IEEE80211_F_WPA)) == IEEE80211_F_PRIVACY && vap->iv_def_txkey != IEEE80211_KEYIX_NONE && vap->iv_nw_keys[vap->iv_def_txkey].wk_keyix != IEEE80211_KEYIX_NONE) (void) _mwl_key_set(vap, &vap->iv_nw_keys[vap->iv_def_txkey], mac); } static int mwl_peerstadb(struct ieee80211_node *ni, int aid, int staid, MWL_HAL_PEERINFO *pi) { #define WME(ie) ((const struct ieee80211_wme_info *) ie) struct ieee80211vap *vap = ni->ni_vap; struct mwl_hal_vap *hvap; int error; if (vap->iv_opmode == IEEE80211_M_WDS) { /* * WDS vap's do not have a f/w vap; instead they piggyback * on an AP vap and we must install the sta db entry and * crypto state using that AP's handle (the WDS vap has none). */ hvap = MWL_VAP(vap)->mv_ap_hvap; } else hvap = MWL_VAP(vap)->mv_hvap; error = mwl_hal_newstation(hvap, ni->ni_macaddr, aid, staid, pi, ni->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT), ni->ni_ies.wme_ie != NULL ? WME(ni->ni_ies.wme_ie)->wme_info : 0); if (error == 0) { /* * Setup security for this station. For sta mode this is * needed even though do the same thing on transition to * AUTH state because the call to mwl_hal_newstation * clobbers the crypto state we setup. */ mwl_setanywepkey(vap, ni->ni_macaddr); } return error; #undef WME } static void mwl_setglobalkeys(struct ieee80211vap *vap) { struct ieee80211_key *wk; wk = &vap->iv_nw_keys[0]; for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; wk++) if (wk->wk_keyix != IEEE80211_KEYIX_NONE) (void) _mwl_key_set(vap, wk, vap->iv_myaddr); } /* * Convert a legacy rate set to a firmware bitmask. */ static uint32_t get_rate_bitmap(const struct ieee80211_rateset *rs) { uint32_t rates; int i; rates = 0; for (i = 0; i < rs->rs_nrates; i++) switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { case 2: rates |= 0x001; break; case 4: rates |= 0x002; break; case 11: rates |= 0x004; break; case 22: rates |= 0x008; break; case 44: rates |= 0x010; break; case 12: rates |= 0x020; break; case 18: rates |= 0x040; break; case 24: rates |= 0x080; break; case 36: rates |= 0x100; break; case 48: rates |= 0x200; break; case 72: rates |= 0x400; break; case 96: rates |= 0x800; break; case 108: rates |= 0x1000; break; } return rates; } /* * Construct an HT firmware bitmask from an HT rate set. */ static uint32_t get_htrate_bitmap(const struct ieee80211_htrateset *rs) { uint32_t rates; int i; rates = 0; for (i = 0; i < rs->rs_nrates; i++) { if (rs->rs_rates[i] < 16) rates |= 1<rs_rates[i]; } return rates; } /* * Craft station database entry for station. * NB: use host byte order here, the hal handles byte swapping. */ static MWL_HAL_PEERINFO * mkpeerinfo(MWL_HAL_PEERINFO *pi, const struct ieee80211_node *ni) { const struct ieee80211vap *vap = ni->ni_vap; memset(pi, 0, sizeof(*pi)); pi->LegacyRateBitMap = get_rate_bitmap(&ni->ni_rates); pi->CapInfo = ni->ni_capinfo; if (ni->ni_flags & IEEE80211_NODE_HT) { /* HT capabilities, etc */ pi->HTCapabilitiesInfo = ni->ni_htcap; /* XXX pi.HTCapabilitiesInfo */ pi->MacHTParamInfo = ni->ni_htparam; pi->HTRateBitMap = get_htrate_bitmap(&ni->ni_htrates); pi->AddHtInfo.ControlChan = ni->ni_htctlchan; pi->AddHtInfo.AddChan = ni->ni_ht2ndchan; pi->AddHtInfo.OpMode = ni->ni_htopmode; pi->AddHtInfo.stbc = ni->ni_htstbc; /* constrain according to local configuration */ if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0) pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI40; if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_SHORTGI20; if (ni->ni_chw != 40) pi->HTCapabilitiesInfo &= ~IEEE80211_HTCAP_CHWIDTH40; } return pi; } /* * Re-create the local sta db entry for a vap to ensure * up to date WME state is pushed to the firmware. Because * this resets crypto state this must be followed by a * reload of any keys in the global key table. */ static int mwl_localstadb(struct ieee80211vap *vap) { #define WME(ie) ((const struct ieee80211_wme_info *) ie) struct mwl_hal_vap *hvap = MWL_VAP(vap)->mv_hvap; struct ieee80211_node *bss; MWL_HAL_PEERINFO pi; int error; switch (vap->iv_opmode) { case IEEE80211_M_STA: bss = vap->iv_bss; error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0, vap->iv_state == IEEE80211_S_RUN ? mkpeerinfo(&pi, bss) : NULL, (bss->ni_flags & (IEEE80211_NODE_QOS | IEEE80211_NODE_HT)), bss->ni_ies.wme_ie != NULL ? WME(bss->ni_ies.wme_ie)->wme_info : 0); if (error == 0) mwl_setglobalkeys(vap); break; case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: error = mwl_hal_newstation(hvap, vap->iv_myaddr, 0, 0, NULL, vap->iv_flags & IEEE80211_F_WME, 0); if (error == 0) mwl_setglobalkeys(vap); break; default: error = 0; break; } return error; #undef WME } static int mwl_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct mwl_vap *mvp = MWL_VAP(vap); struct mwl_hal_vap *hvap = mvp->mv_hvap; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni = NULL; struct mwl_softc *sc = ic->ic_softc; struct mwl_hal *mh = sc->sc_mh; enum ieee80211_state ostate = vap->iv_state; int error; DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: %s -> %s\n", vap->iv_ifp->if_xname, __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); callout_stop(&sc->sc_timer); /* * Clear current radar detection state. */ if (ostate == IEEE80211_S_CAC) { /* stop quiet mode radar detection */ mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_STOP); } else if (sc->sc_radarena) { /* stop in-service radar detection */ mwl_hal_setradardetection(mh, DR_DFS_DISABLE); sc->sc_radarena = 0; } /* * Carry out per-state actions before doing net80211 work. */ if (nstate == IEEE80211_S_INIT) { /* NB: only ap+sta vap's have a fw entity */ if (hvap != NULL) mwl_hal_stop(hvap); } else if (nstate == IEEE80211_S_SCAN) { mwl_hal_start(hvap); /* NB: this disables beacon frames */ mwl_hal_setinframode(hvap); } else if (nstate == IEEE80211_S_AUTH) { /* * Must create a sta db entry in case a WEP key needs to * be plumbed. This entry will be overwritten if we * associate; otherwise it will be reclaimed on node free. */ ni = vap->iv_bss; MWL_NODE(ni)->mn_hvap = hvap; (void) mwl_peerstadb(ni, 0, 0, NULL); } else if (nstate == IEEE80211_S_CSA) { /* XXX move to below? */ if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) mwl_startcsa(vap); } else if (nstate == IEEE80211_S_CAC) { /* XXX move to below? */ /* stop ap xmit and enable quiet mode radar detection */ mwl_hal_setradardetection(mh, DR_CHK_CHANNEL_AVAILABLE_START); } /* * Invoke the parent method to do net80211 work. */ error = mvp->mv_newstate(vap, nstate, arg); /* * Carry out work that must be done after net80211 runs; * this work requires up to date state (e.g. iv_bss). */ if (error == 0 && nstate == IEEE80211_S_RUN) { /* NB: collect bss node again, it may have changed */ ni = vap->iv_bss; DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s " "capinfo 0x%04x chan %d\n", vap->iv_ifp->if_xname, __func__, vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); /* * Recreate local sta db entry to update WME/HT state. */ mwl_localstadb(vap); switch (vap->iv_opmode) { case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: if (ostate == IEEE80211_S_CAC) { /* enable in-service radar detection */ mwl_hal_setradardetection(mh, DR_IN_SERVICE_MONITOR_START); sc->sc_radarena = 1; } /* * Allocate and setup the beacon frame * (and related state). */ error = mwl_reset_vap(vap, IEEE80211_S_RUN); if (error != 0) { DPRINTF(sc, MWL_DEBUG_STATE, "%s: beacon setup failed, error %d\n", __func__, error); goto bad; } /* NB: must be after setting up beacon */ mwl_hal_start(hvap); break; case IEEE80211_M_STA: DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: aid 0x%x\n", vap->iv_ifp->if_xname, __func__, ni->ni_associd); /* * Set state now that we're associated. */ mwl_hal_setassocid(hvap, ni->ni_bssid, ni->ni_associd); mwl_setrates(vap); mwl_hal_setrtsthreshold(hvap, vap->iv_rtsthreshold); if ((vap->iv_flags & IEEE80211_F_DWDS) && sc->sc_ndwdsvaps++ == 0) mwl_hal_setdwds(mh, 1); break; case IEEE80211_M_WDS: DPRINTF(sc, MWL_DEBUG_STATE, "%s: %s: bssid %s\n", vap->iv_ifp->if_xname, __func__, ether_sprintf(ni->ni_bssid)); mwl_seteapolformat(vap); break; default: break; } /* * Set CS mode according to operating channel; * this mostly an optimization for 5GHz. * * NB: must follow mwl_hal_start which resets csmode */ if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) mwl_hal_setcsmode(mh, CSMODE_AGGRESSIVE); else mwl_hal_setcsmode(mh, CSMODE_AUTO_ENA); /* * Start timer to prod firmware. */ if (sc->sc_ageinterval != 0) callout_reset(&sc->sc_timer, sc->sc_ageinterval*hz, mwl_agestations, sc); } else if (nstate == IEEE80211_S_SLEEP) { /* XXX set chip in power save */ } else if ((vap->iv_flags & IEEE80211_F_DWDS) && --sc->sc_ndwdsvaps == 0) mwl_hal_setdwds(mh, 0); bad: return error; } /* * Manage station id's; these are separate from AID's * as AID's may have values out of the range of possible * station id's acceptable to the firmware. */ static int allocstaid(struct mwl_softc *sc, int aid) { int staid; if (!(0 < aid && aid < MWL_MAXSTAID) || isset(sc->sc_staid, aid)) { /* NB: don't use 0 */ for (staid = 1; staid < MWL_MAXSTAID; staid++) if (isclr(sc->sc_staid, staid)) break; } else staid = aid; setbit(sc->sc_staid, staid); return staid; } static void delstaid(struct mwl_softc *sc, int staid) { clrbit(sc->sc_staid, staid); } /* * Setup driver-specific state for a newly associated node. * Note that we're called also on a re-associate, the isnew * param tells us if this is the first time or not. */ static void mwl_newassoc(struct ieee80211_node *ni, int isnew) { struct ieee80211vap *vap = ni->ni_vap; struct mwl_softc *sc = vap->iv_ic->ic_softc; struct mwl_node *mn = MWL_NODE(ni); MWL_HAL_PEERINFO pi; uint16_t aid; int error; aid = IEEE80211_AID(ni->ni_associd); if (isnew) { mn->mn_staid = allocstaid(sc, aid); mn->mn_hvap = MWL_VAP(vap)->mv_hvap; } else { mn = MWL_NODE(ni); /* XXX reset BA stream? */ } DPRINTF(sc, MWL_DEBUG_NODE, "%s: mac %s isnew %d aid %d staid %d\n", __func__, ether_sprintf(ni->ni_macaddr), isnew, aid, mn->mn_staid); error = mwl_peerstadb(ni, aid, mn->mn_staid, mkpeerinfo(&pi, ni)); if (error != 0) { DPRINTF(sc, MWL_DEBUG_NODE, "%s: error %d creating sta db entry\n", __func__, error); /* XXX how to deal with error? */ } } /* * Periodically poke the firmware to age out station state * (power save queues, pending tx aggregates). */ static void mwl_agestations(void *arg) { struct mwl_softc *sc = arg; mwl_hal_setkeepalive(sc->sc_mh); if (sc->sc_ageinterval != 0) /* NB: catch dynamic changes */ callout_schedule(&sc->sc_timer, sc->sc_ageinterval*hz); } static const struct mwl_hal_channel * findhalchannel(const MWL_HAL_CHANNELINFO *ci, int ieee) { int i; for (i = 0; i < ci->nchannels; i++) { const struct mwl_hal_channel *hc = &ci->channels[i]; if (hc->ieee == ieee) return hc; } return NULL; } static int mwl_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, int nchan, struct ieee80211_channel chans[]) { struct mwl_softc *sc = ic->ic_softc; struct mwl_hal *mh = sc->sc_mh; const MWL_HAL_CHANNELINFO *ci; int i; for (i = 0; i < nchan; i++) { struct ieee80211_channel *c = &chans[i]; const struct mwl_hal_channel *hc; if (IEEE80211_IS_CHAN_2GHZ(c)) { mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_2DOT4GHZ, IEEE80211_IS_CHAN_HT40(c) ? MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci); } else if (IEEE80211_IS_CHAN_5GHZ(c)) { mwl_hal_getchannelinfo(mh, MWL_FREQ_BAND_5GHZ, IEEE80211_IS_CHAN_HT40(c) ? MWL_CH_40_MHz_WIDTH : MWL_CH_20_MHz_WIDTH, &ci); } else { device_printf(sc->sc_dev, "%s: channel %u freq %u/0x%x not 2.4/5GHz\n", __func__, c->ic_ieee, c->ic_freq, c->ic_flags); return EINVAL; } /* * Verify channel has cal data and cap tx power. */ hc = findhalchannel(ci, c->ic_ieee); if (hc != NULL) { if (c->ic_maxpower > 2*hc->maxTxPow) c->ic_maxpower = 2*hc->maxTxPow; goto next; } if (IEEE80211_IS_CHAN_HT40(c)) { /* * Look for the extension channel since the * hal table only has the primary channel. */ hc = findhalchannel(ci, c->ic_extieee); if (hc != NULL) { if (c->ic_maxpower > 2*hc->maxTxPow) c->ic_maxpower = 2*hc->maxTxPow; goto next; } } device_printf(sc->sc_dev, "%s: no cal data for channel %u ext %u freq %u/0x%x\n", __func__, c->ic_ieee, c->ic_extieee, c->ic_freq, c->ic_flags); return EINVAL; next: ; } return 0; } #define IEEE80211_CHAN_HTG (IEEE80211_CHAN_HT|IEEE80211_CHAN_G) #define IEEE80211_CHAN_HTA (IEEE80211_CHAN_HT|IEEE80211_CHAN_A) static void addht40channels(struct ieee80211_channel chans[], int maxchans, int *nchans, const MWL_HAL_CHANNELINFO *ci, int flags) { int i, error; for (i = 0; i < ci->nchannels; i++) { const struct mwl_hal_channel *hc = &ci->channels[i]; error = ieee80211_add_channel_ht40(chans, maxchans, nchans, hc->ieee, hc->maxTxPow, flags); if (error != 0 && error != ENOENT) break; } } static void addchannels(struct ieee80211_channel chans[], int maxchans, int *nchans, const MWL_HAL_CHANNELINFO *ci, const uint8_t bands[]) { int i, error; error = 0; for (i = 0; i < ci->nchannels && error == 0; i++) { const struct mwl_hal_channel *hc = &ci->channels[i]; error = ieee80211_add_channel(chans, maxchans, nchans, hc->ieee, hc->freq, hc->maxTxPow, 0, bands); } } static void getchannels(struct mwl_softc *sc, int maxchans, int *nchans, struct ieee80211_channel chans[]) { const MWL_HAL_CHANNELINFO *ci; uint8_t bands[IEEE80211_MODE_BYTES]; /* * Use the channel info from the hal to craft the * channel list. Note that we pass back an unsorted * list; the caller is required to sort it for us * (if desired). */ *nchans = 0; if (mwl_hal_getchannelinfo(sc->sc_mh, MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) { memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); setbit(bands, IEEE80211_MODE_11NG); addchannels(chans, maxchans, nchans, ci, bands); } if (mwl_hal_getchannelinfo(sc->sc_mh, MWL_FREQ_BAND_5GHZ, MWL_CH_20_MHz_WIDTH, &ci) == 0) { memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11A); setbit(bands, IEEE80211_MODE_11NA); addchannels(chans, maxchans, nchans, ci, bands); } if (mwl_hal_getchannelinfo(sc->sc_mh, MWL_FREQ_BAND_2DOT4GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0) addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTG); if (mwl_hal_getchannelinfo(sc->sc_mh, MWL_FREQ_BAND_5GHZ, MWL_CH_40_MHz_WIDTH, &ci) == 0) addht40channels(chans, maxchans, nchans, ci, IEEE80211_CHAN_HTA); } static void mwl_getradiocaps(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct mwl_softc *sc = ic->ic_softc; getchannels(sc, maxchans, nchans, chans); } static int mwl_getchannels(struct mwl_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* * Use the channel info from the hal to craft the * channel list for net80211. Note that we pass up * an unsorted list; net80211 will sort it for us. */ memset(ic->ic_channels, 0, sizeof(ic->ic_channels)); ic->ic_nchans = 0; getchannels(sc, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); ic->ic_regdomain.regdomain = SKU_DEBUG; ic->ic_regdomain.country = CTRY_DEFAULT; ic->ic_regdomain.location = 'I'; ic->ic_regdomain.isocc[0] = ' '; /* XXX? */ ic->ic_regdomain.isocc[1] = ' '; return (ic->ic_nchans == 0 ? EIO : 0); } #undef IEEE80211_CHAN_HTA #undef IEEE80211_CHAN_HTG #ifdef MWL_DEBUG static void mwl_printrxbuf(const struct mwl_rxbuf *bf, u_int ix) { const struct mwl_rxdesc *ds = bf->bf_desc; uint32_t status = le32toh(ds->Status); printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n" " STAT:%02x LEN:%04x RSSI:%02x CHAN:%02x RATE:%02x QOS:%04x HT:%04x\n", ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->pPhysNext), le32toh(ds->pPhysBuffData), ds->RxControl, ds->RxControl != EAGLE_RXD_CTRL_DRIVER_OWN ? "" : (status & EAGLE_RXD_STATUS_OK) ? " *" : " !", ds->Status, le16toh(ds->PktLen), ds->RSSI, ds->Channel, ds->Rate, le16toh(ds->QosCtrl), le16toh(ds->HtSig2)); } static void mwl_printtxbuf(const struct mwl_txbuf *bf, u_int qnum, u_int ix) { const struct mwl_txdesc *ds = bf->bf_desc; uint32_t status = le32toh(ds->Status); printf("Q%u[%3u]", qnum, ix); printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr); printf(" NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n", le32toh(ds->pPhysNext), le32toh(ds->PktPtr), le16toh(ds->PktLen), status, status & EAGLE_TXD_STATUS_USED ? "" : (status & 3) != 0 ? " *" : " !"); printf(" RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n", ds->DataRate, ds->TxPriority, le16toh(ds->QosCtrl), le32toh(ds->SapPktInfo), le16toh(ds->Format)); #if MWL_TXDESC > 1 printf(" MULTIFRAMES:%u LEN:%04x %04x %04x %04x %04x %04x\n" , le32toh(ds->multiframes) , le16toh(ds->PktLenArray[0]), le16toh(ds->PktLenArray[1]) , le16toh(ds->PktLenArray[2]), le16toh(ds->PktLenArray[3]) , le16toh(ds->PktLenArray[4]), le16toh(ds->PktLenArray[5]) ); printf(" DATA:%08x %08x %08x %08x %08x %08x\n" , le32toh(ds->PktPtrArray[0]), le32toh(ds->PktPtrArray[1]) , le32toh(ds->PktPtrArray[2]), le32toh(ds->PktPtrArray[3]) , le32toh(ds->PktPtrArray[4]), le32toh(ds->PktPtrArray[5]) ); #endif #if 0 { const uint8_t *cp = (const uint8_t *) ds; int i; for (i = 0; i < sizeof(struct mwl_txdesc); i++) { printf("%02x ", cp[i]); if (((i+1) % 16) == 0) printf("\n"); } printf("\n"); } #endif } #endif /* MWL_DEBUG */ #if 0 static void mwl_txq_dump(struct mwl_txq *txq) { struct mwl_txbuf *bf; int i = 0; MWL_TXQ_LOCK(txq); STAILQ_FOREACH(bf, &txq->active, bf_list) { struct mwl_txdesc *ds = bf->bf_desc; MWL_TXDESC_SYNC(txq, ds, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); #ifdef MWL_DEBUG mwl_printtxbuf(bf, txq->qnum, i); #endif i++; } MWL_TXQ_UNLOCK(txq); } #endif static void mwl_watchdog(void *arg) { struct mwl_softc *sc = arg; callout_reset(&sc->sc_watchdog, hz, mwl_watchdog, sc); if (sc->sc_tx_timer == 0 || --sc->sc_tx_timer > 0) return; if (sc->sc_running && !sc->sc_invalid) { if (mwl_hal_setkeepalive(sc->sc_mh)) device_printf(sc->sc_dev, "transmit timeout (firmware hung?)\n"); else device_printf(sc->sc_dev, "transmit timeout\n"); #if 0 mwl_reset(sc); mwl_txq_dump(&sc->sc_txq[0]);/*XXX*/ #endif counter_u64_add(sc->sc_ic.ic_oerrors, 1); sc->sc_stats.mst_watchdog++; } } #ifdef MWL_DIAGAPI /* * Diagnostic interface to the HAL. This is used by various * tools to do things like retrieve register contents for * debugging. The mechanism is intentionally opaque so that * it can change frequently w/o concern for compatibility. */ static int mwl_ioctl_diag(struct mwl_softc *sc, struct mwl_diag *md) { struct mwl_hal *mh = sc->sc_mh; u_int id = md->md_id & MWL_DIAG_ID; void *indata = NULL; void *outdata = NULL; u_int32_t insize = md->md_in_size; u_int32_t outsize = md->md_out_size; int error = 0; if (md->md_id & MWL_DIAG_IN) { /* * Copy in data. */ indata = malloc(insize, M_TEMP, M_NOWAIT); if (indata == NULL) { error = ENOMEM; goto bad; } error = copyin(md->md_in_data, indata, insize); if (error) goto bad; } if (md->md_id & MWL_DIAG_DYN) { /* * Allocate a buffer for the results (otherwise the HAL * returns a pointer to a buffer where we can read the * results). Note that we depend on the HAL leaving this * pointer for us to use below in reclaiming the buffer; * may want to be more defensive. */ outdata = malloc(outsize, M_TEMP, M_NOWAIT); if (outdata == NULL) { error = ENOMEM; goto bad; } } if (mwl_hal_getdiagstate(mh, id, indata, insize, &outdata, &outsize)) { if (outsize < md->md_out_size) md->md_out_size = outsize; if (outdata != NULL) error = copyout(outdata, md->md_out_data, md->md_out_size); } else { error = EINVAL; } bad: if ((md->md_id & MWL_DIAG_IN) && indata != NULL) free(indata, M_TEMP); if ((md->md_id & MWL_DIAG_DYN) && outdata != NULL) free(outdata, M_TEMP); return error; } static int mwl_ioctl_reset(struct mwl_softc *sc, struct mwl_diag *md) { struct mwl_hal *mh = sc->sc_mh; int error; MWL_LOCK_ASSERT(sc); if (md->md_id == 0 && mwl_hal_fwload(mh, NULL) != 0) { device_printf(sc->sc_dev, "unable to load firmware\n"); return EIO; } if (mwl_hal_gethwspecs(mh, &sc->sc_hwspecs) != 0) { device_printf(sc->sc_dev, "unable to fetch h/w specs\n"); return EIO; } error = mwl_setupdma(sc); if (error != 0) { /* NB: mwl_setupdma prints a msg */ return error; } /* * Reset tx/rx data structures; after reload we must * re-start the driver's notion of the next xmit/recv. */ mwl_draintxq(sc); /* clear pending frames */ mwl_resettxq(sc); /* rebuild tx q lists */ sc->sc_rxnext = NULL; /* force rx to start at the list head */ return 0; } #endif /* MWL_DIAGAPI */ static void mwl_parent(struct ieee80211com *ic) { struct mwl_softc *sc = ic->ic_softc; int startall = 0; MWL_LOCK(sc); if (ic->ic_nrunning > 0) { if (sc->sc_running) { /* * To avoid rescanning another access point, * do not call mwl_init() here. Instead, * only reflect promisc mode settings. */ mwl_mode_init(sc); } else { /* * Beware of being called during attach/detach * to reset promiscuous mode. In that case we * will still be marked UP but not RUNNING. * However trying to re-init the interface * is the wrong thing to do as we've already * torn down much of our state. There's * probably a better way to deal with this. */ if (!sc->sc_invalid) { mwl_init(sc); /* XXX lose error */ startall = 1; } } } else mwl_stop(sc); MWL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int mwl_ioctl(struct ieee80211com *ic, u_long cmd, void *data) { struct mwl_softc *sc = ic->ic_softc; struct ifreq *ifr = data; int error = 0; switch (cmd) { case SIOCGMVSTATS: mwl_hal_gethwstats(sc->sc_mh, &sc->sc_stats.hw_stats); #if 0 /* NB: embed these numbers to get a consistent view */ sc->sc_stats.mst_tx_packets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); sc->sc_stats.mst_rx_packets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); #endif /* * NB: Drop the softc lock in case of a page fault; * we'll accept any potential inconsisentcy in the * statistics. The alternative is to copy the data * to a local structure. */ return (copyout(&sc->sc_stats, ifr_data_get_ptr(ifr), sizeof (sc->sc_stats))); #ifdef MWL_DIAGAPI case SIOCGMVDIAG: /* XXX check privs */ return mwl_ioctl_diag(sc, (struct mwl_diag *) ifr); case SIOCGMVRESET: /* XXX check privs */ MWL_LOCK(sc); error = mwl_ioctl_reset(sc,(struct mwl_diag *) ifr); MWL_UNLOCK(sc); break; #endif /* MWL_DIAGAPI */ default: error = ENOTTY; break; } return (error); } #ifdef MWL_DEBUG static int mwl_sysctl_debug(SYSCTL_HANDLER_ARGS) { struct mwl_softc *sc = arg1; int debug, error; debug = sc->sc_debug | (mwl_hal_getdebug(sc->sc_mh) << 24); error = sysctl_handle_int(oidp, &debug, 0, req); if (error || !req->newptr) return error; mwl_hal_setdebug(sc->sc_mh, debug >> 24); sc->sc_debug = debug & 0x00ffffff; return 0; } #endif /* MWL_DEBUG */ static void mwl_sysctlattach(struct mwl_softc *sc) { #ifdef MWL_DEBUG struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); sc->sc_debug = mwl_debug; SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, mwl_sysctl_debug, "I", "control debugging printfs"); #endif } /* * Announce various information on device/driver attach. */ static void mwl_announce(struct mwl_softc *sc) { device_printf(sc->sc_dev, "Rev A%d hardware, v%d.%d.%d.%d firmware (regioncode %d)\n", sc->sc_hwspecs.hwVersion, (sc->sc_hwspecs.fwReleaseNumber>>24) & 0xff, (sc->sc_hwspecs.fwReleaseNumber>>16) & 0xff, (sc->sc_hwspecs.fwReleaseNumber>>8) & 0xff, (sc->sc_hwspecs.fwReleaseNumber>>0) & 0xff, sc->sc_hwspecs.regionCode); sc->sc_fwrelease = sc->sc_hwspecs.fwReleaseNumber; if (bootverbose) { int i; for (i = 0; i <= WME_AC_VO; i++) { struct mwl_txq *txq = sc->sc_ac2q[i]; device_printf(sc->sc_dev, "Use hw queue %u for %s traffic\n", txq->qnum, ieee80211_wme_acnames[i]); } } if (bootverbose || mwl_rxdesc != MWL_RXDESC) device_printf(sc->sc_dev, "using %u rx descriptors\n", mwl_rxdesc); if (bootverbose || mwl_rxbuf != MWL_RXBUF) device_printf(sc->sc_dev, "using %u rx buffers\n", mwl_rxbuf); if (bootverbose || mwl_txbuf != MWL_TXBUF) device_printf(sc->sc_dev, "using %u tx buffers\n", mwl_txbuf); if (bootverbose && mwl_hal_ismbsscapable(sc->sc_mh)) device_printf(sc->sc_dev, "multi-bss support\n"); #ifdef MWL_TX_NODROP if (bootverbose) device_printf(sc->sc_dev, "no tx drop\n"); #endif } Index: head/sys/net80211/ieee80211_freebsd.c =================================================================== --- head/sys/net80211/ieee80211_freebsd.c (revision 366111) +++ head/sys/net80211/ieee80211_freebsd.c (revision 366112) @@ -1,1149 +1,1149 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * IEEE 802.11 support (FreeBSD-specific code) */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEBUGNET_DEFINE(ieee80211); SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "IEEE 80211 parameters"); #ifdef IEEE80211_DEBUG static int ieee80211_debug = 0; SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 0, "debugging printfs"); #endif static const char wlanname[] = "wlan"; static struct if_clone *wlan_cloner; static int wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct ieee80211_clone_params cp; struct ieee80211vap *vap; struct ieee80211com *ic; int error; error = priv_check(curthread, PRIV_NET80211_CREATE_VAP); if (error) return error; error = copyin(params, &cp, sizeof(cp)); if (error) return error; ic = ieee80211_find_com(cp.icp_parent); if (ic == NULL) return ENXIO; if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { ic_printf(ic, "%s: invalid opmode %d\n", __func__, cp.icp_opmode); return EINVAL; } if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { ic_printf(ic, "%s mode not supported\n", ieee80211_opmode_name[cp.icp_opmode]); return EOPNOTSUPP; } if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && #ifdef IEEE80211_SUPPORT_TDMA (ic->ic_caps & IEEE80211_C_TDMA) == 0 #else (1) #endif ) { ic_printf(ic, "TDMA not supported\n"); return EOPNOTSUPP; } vap = ic->ic_vap_create(ic, wlanname, unit, cp.icp_opmode, cp.icp_flags, cp.icp_bssid, cp.icp_flags & IEEE80211_CLONE_MACADDR ? cp.icp_macaddr : ic->ic_macaddr); if (vap == NULL) return (EIO); #ifdef DEBUGNET if (ic->ic_debugnet_meth != NULL) DEBUGNET_SET(vap->iv_ifp, ieee80211); #endif return (0); } static void wlan_clone_destroy(struct ifnet *ifp) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; ic->ic_vap_delete(vap); } void ieee80211_vap_destroy(struct ieee80211vap *vap) { CURVNET_SET(vap->iv_ifp->if_vnet); if_clone_destroyif(wlan_cloner, vap->iv_ifp); CURVNET_RESTORE(); } int ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) { int msecs = ticks_to_msecs(*(int *)arg1); int error; error = sysctl_handle_int(oidp, &msecs, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = msecs_to_ticks(msecs); return 0; } static int ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) { int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; int error; error = sysctl_handle_int(oidp, &inact, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = inact / IEEE80211_INACT_WAIT; return 0; } static int ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; return SYSCTL_OUT_STR(req, ic->ic_name); } static int ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; IEEE80211_LOCK(ic); ieee80211_dfs_notify_radar(ic, ic->ic_curchan); IEEE80211_UNLOCK(ic); return 0; } /* * For now, just restart everything. * * Later on, it'd be nice to have a separate VAP restart to * full-device restart. */ static int ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) { struct ieee80211vap *vap = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; ieee80211_restart_all(vap->iv_ic); return 0; } void ieee80211_sysctl_attach(struct ieee80211com *ic) { } void ieee80211_sysctl_detach(struct ieee80211com *ic) { } void ieee80211_sysctl_vattach(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; char num[14]; /* sufficient for 32 bits */ ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (ctx == NULL) { if_printf(ifp, "%s: cannot allocate sysctl context!\n", __func__); return; } sysctl_ctx_init(ctx); snprintf(num, sizeof(num), "%u", ifp->if_dunit); oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, "driver capabilities"); #ifdef IEEE80211_DEBUG vap->iv_debug = ieee80211_debug; SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "debug", CTLFLAG_RW, &vap->iv_debug, 0, "control debugging printfs"); #endif SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, "consecutive beacon misses before scanning"); /* XXX inherit from tunables */ SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I", "station inactivity timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I", "station inactivity probe timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I", "station authentication timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I", "station initial state timeout (sec)"); if (vap->iv_htcaps & IEEE80211_HTC_HT) { SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_bk", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, "BK traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_be", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, "BE traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vo", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, "VO traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vi", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, "VI traffic tx aggr threshold (pps)"); } SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart"); if (vap->iv_caps & IEEE80211_C_DFS) { SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_radar, "I", "simulate radar event"); } vap->iv_sysctl = ctx; vap->iv_oid = oid; } void ieee80211_sysctl_vdetach(struct ieee80211vap *vap) { if (vap->iv_sysctl != NULL) { sysctl_ctx_free(vap->iv_sysctl); IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); vap->iv_sysctl = NULL; } } -#define MS(_v, _f) (((_v) & _f##_M) >> _f##_S) int ieee80211_com_vincref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); if (ostate & IEEE80211_COM_DETACHED) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (ENETDOWN); } - if (MS(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) { + if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) == + IEEE80211_COM_REF_MAX) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (EOVERFLOW); } return (0); } void ieee80211_com_vdecref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD); - KASSERT(MS(ostate, IEEE80211_COM_REF) != 0, + KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0, ("com reference counter underflow")); (void) ostate; } void ieee80211_com_vdetach(struct ieee80211vap *vap) { int sleep_time; sleep_time = msecs_to_ticks(250); atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED); - while (MS(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0) + while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state), + IEEE80211_COM_REF) != 0) pause("comref", sleep_time); } -#undef MS int ieee80211_node_dectestref(struct ieee80211_node *ni) { /* XXX need equivalent of atomic_dec_and_test */ atomic_subtract_int(&ni->ni_refcnt, 1); return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); } void ieee80211_drain_ifq(struct ifqueue *ifq) { struct ieee80211_node *ni; struct mbuf *m; for (;;) { IF_DEQUEUE(ifq, m); if (m == NULL) break; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; KASSERT(ni != NULL, ("frame w/o node")); ieee80211_free_node(ni); m->m_pkthdr.rcvif = NULL; m_freem(m); } } void ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) { struct ieee80211_node *ni; struct mbuf *m, **mprev; IF_LOCK(ifq); mprev = &ifq->ifq_head; while ((m = *mprev) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (ni != NULL && ni->ni_vap == vap) { *mprev = m->m_nextpkt; /* remove from list */ ifq->ifq_len--; m_freem(m); ieee80211_free_node(ni); /* reclaim ref */ } else mprev = &m->m_nextpkt; } /* recalculate tail ptr */ m = ifq->ifq_head; for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) ; ifq->ifq_tail = m; IF_UNLOCK(ifq); } /* * As above, for mbufs allocated with m_gethdr/MGETHDR * or initialized by M_COPY_PKTHDR. */ #define MC_ALIGN(m, len) \ do { \ (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ } while (/* CONSTCOND */ 0) /* * Allocate and setup a management frame of the specified * size. We return the mbuf and a pointer to the start * of the contiguous data area that's been reserved based * on the packet length. The data area is forced to 32-bit * alignment and the buffer length to a multiple of 4 bytes. * This is done mainly so beacon frames (that require this) * can use this interface too. */ struct mbuf * ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) { struct mbuf *m; u_int len; /* * NB: we know the mbuf routines will align the data area * so we don't need to do anything special. */ len = roundup2(headroom + pktlen, 4); KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); if (len < MINCLSIZE) { m = m_gethdr(M_NOWAIT, MT_DATA); /* * Align the data in case additional headers are added. * This should only happen when a WEP header is added * which only happens for shared key authentication mgt * frames which all fit in MHLEN. */ if (m != NULL) M_ALIGN(m, len); } else { m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) MC_ALIGN(m, len); } if (m != NULL) { m->m_data += headroom; *frm = m->m_data; } return m; } #ifndef __NO_STRICT_ALIGNMENT /* * Re-align the payload in the mbuf. This is mainly used (right now) * to handle IP header alignment requirements on certain architectures. */ struct mbuf * ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) { int pktlen, space; struct mbuf *n; pktlen = m->m_pkthdr.len; space = pktlen + align; if (space < MINCLSIZE) n = m_gethdr(M_NOWAIT, MT_DATA); else { n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, space <= MCLBYTES ? MCLBYTES : #if MJUMPAGESIZE != MCLBYTES space <= MJUMPAGESIZE ? MJUMPAGESIZE : #endif space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); } if (__predict_true(n != NULL)) { m_move_pkthdr(n, m); n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); m_copydata(m, 0, pktlen, mtod(n, caddr_t)); n->m_len = pktlen; } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, mtod(m, const struct ieee80211_frame *), NULL, "%s", "no mbuf to realign"); vap->iv_stats.is_rx_badalign++; } m_freem(m); return n; } #endif /* !__NO_STRICT_ALIGNMENT */ int ieee80211_add_callback(struct mbuf *m, void (*func)(struct ieee80211_node *, void *, int), void *arg) { struct m_tag *mtag; struct ieee80211_cb *cb; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, sizeof(struct ieee80211_cb), M_NOWAIT); if (mtag == NULL) return 0; cb = (struct ieee80211_cb *)(mtag+1); cb->func = func; cb->arg = arg; m_tag_prepend(m, mtag); m->m_flags |= M_TXCB; return 1; } int ieee80211_add_xmit_params(struct mbuf *m, const struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, sizeof(struct ieee80211_tx_params), M_NOWAIT); if (mtag == NULL) return (0); tx = (struct ieee80211_tx_params *)(mtag+1); memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_xmit_params(struct mbuf *m, struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, NULL); if (mtag == NULL) return (-1); tx = (struct ieee80211_tx_params *)(mtag + 1); memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); return (0); } void ieee80211_process_callback(struct ieee80211_node *ni, struct mbuf *m, int status) { struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); if (mtag != NULL) { struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); cb->func(ni, cb->arg, status); } } /* * Add RX parameters to the given mbuf. * * Returns 1 if OK, 0 on error. */ int ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, sizeof(struct ieee80211_rx_stats), M_NOWAIT); if (mtag == NULL) return (0); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(&rx->params, rxs, sizeof(*rxs)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (-1); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(rxs, &rx->params, sizeof(*rxs)); return (0); } const struct ieee80211_rx_stats * ieee80211_get_rx_params_ptr(struct mbuf *m) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (NULL); rx = (struct ieee80211_rx_params *)(mtag + 1); return (&rx->params); } /* * Add TOA parameters to the given mbuf. */ int ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, sizeof(struct ieee80211_toa_params), M_NOWAIT); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); memcpy(rp, p, sizeof(*rp)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, NULL); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); if (p != NULL) memcpy(p, rp, sizeof(*p)); return (1); } /* * Transmit a frame to the parent interface. */ int ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) { int error; /* * Assert the IC TX lock is held - this enforces the * processing -> queuing order is maintained */ IEEE80211_TX_LOCK_ASSERT(ic); error = ic->ic_transmit(ic, m); if (error) { struct ieee80211_node *ni; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; /* XXX number of fragments */ if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); ieee80211_free_mbuf(m); } return (error); } /* * Transmit a frame to the VAP interface. */ int ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) { struct ifnet *ifp = vap->iv_ifp; /* * When transmitting via the VAP, we shouldn't hold * any IC TX lock as the VAP TX path will acquire it. */ IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); return (ifp->if_transmit(ifp, m)); } #include void get_random_bytes(void *p, size_t n) { uint8_t *dp = p; while (n > 0) { uint32_t v = arc4random(); size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); dp += sizeof(uint32_t), n -= nb; } } /* * Helper function for events that pass just a single mac address. */ static void notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211_join_event iev; CURVNET_SET(ifp->if_vnet); memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, mac); rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); if_link_state_change(ifp, LINK_STATE_UP); } else { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_node_leave(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); if_link_state_change(ifp, LINK_STATE_DOWN); } else { /* fire off wireless event station leaving */ notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_scan_done(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); /* dispatch wireless event indicating scan completed */ CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); CURVNET_RESTORE(); } void ieee80211_notify_replay_failure(struct ieee80211vap *vap, const struct ieee80211_frame *wh, const struct ieee80211_key *k, u_int64_t rsc, int tid) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "%s replay detected tid %d ", k->wk_cipher->ic_name, tid, (intmax_t) rsc, (intmax_t) rsc, (intmax_t) k->wk_keyrsc[tid], (intmax_t) k->wk_keyrsc[tid], k->wk_keyix, k->wk_rxkeyix); if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_replay_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = k->wk_cipher->ic_cipher; if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) iev.iev_keyix = k->wk_rxkeyix; else iev.iev_keyix = k->wk_keyix; iev.iev_keyrsc = k->wk_keyrsc[tid]; iev.iev_rsc = rsc; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_michael_failure(struct ieee80211vap *vap, const struct ieee80211_frame *wh, u_int keyix) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "michael MIC verification failed ", keyix); vap->iv_stats.is_rx_tkipmic++; if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_michael_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = IEEE80211_CIPHER_TKIP; iev.iev_keyix = keyix; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_wds_discover(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); } void ieee80211_notify_csa(struct ieee80211com *ic, const struct ieee80211_channel *c, int mode, int count) { struct ieee80211_csa_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_mode = mode; iev.iev_count = count; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_radar(struct ieee80211com *ic, const struct ieee80211_channel *c) { struct ieee80211_radar_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_cac(struct ieee80211com *ic, const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) { struct ieee80211_cac_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_type = type; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_node_deauth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); } void ieee80211_notify_node_auth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); } void ieee80211_notify_country(struct ieee80211vap *vap, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211_country_event iev; memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, bssid); iev.iev_cc[0] = cc[0]; iev.iev_cc[1] = cc[1]; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_radio(struct ieee80211com *ic, int state) { struct ieee80211_radio_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_state = state; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_ifnet_change(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n", "interface state change"); CURVNET_SET(ifp->if_vnet); rt_ifmsg(ifp); CURVNET_RESTORE(); } void ieee80211_load_module(const char *modname) { #ifdef notyet (void)kern_kldload(curthread, modname, NULL); #else printf("%s: load the %s module by hand for now.\n", __func__, modname); #endif } static eventhandler_tag wlan_bpfevent; static eventhandler_tag wlan_ifllevent; static void bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) { /* NB: identify vap's by if_init */ if (dlt == DLT_IEEE802_11_RADIO && ifp->if_init == ieee80211_init) { struct ieee80211vap *vap = ifp->if_softc; /* * Track bpf radiotap listener state. We mark the vap * to indicate if any listener is present and the com * to indicate if any listener exists on any associated * vap. This flag is used by drivers to prepare radiotap * state only when needed. */ if (attach) { ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_add_int(&vap->iv_ic->ic_montaps, 1); } else if (!bpf_peers_present(vap->iv_rawbpf)) { ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); } } } /* * Change MAC address on the vap (if was not started). */ static void wlan_iflladdr(void *arg __unused, struct ifnet *ifp) { /* NB: identify vap's by if_init */ if (ifp->if_init == ieee80211_init && (ifp->if_flags & IFF_UP) == 0) { struct ieee80211vap *vap = ifp->if_softc; IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); } } /* * Fetch the VAP name. * * This returns a const char pointer suitable for debugging, * but don't expect it to stick around for much longer. */ const char * ieee80211_get_vap_ifname(struct ieee80211vap *vap) { if (vap->iv_ifp == NULL) return "(none)"; return vap->iv_ifp->if_xname; } #ifdef DEBUGNET static void ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize); IEEE80211_UNLOCK(ic); } static void ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_event(ic, ev); IEEE80211_UNLOCK(ic); } static int ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) { return (ieee80211_vap_transmit(ifp, m)); } static int ieee80211_debugnet_poll(struct ifnet *ifp, int count) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; return (ic->ic_debugnet_meth->dn8_poll(ic, count)); } #endif /* * Module glue. * * NB: the module name is "wlan" for compatibility with NetBSD. */ static int wlan_modevent(module_t mod, int type, void *unused) { switch (type) { case MOD_LOAD: if (bootverbose) printf("wlan: <802.11 Link Layer>\n"); wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, bpf_track, 0, EVENTHANDLER_PRI_ANY); wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); wlan_cloner = if_clone_simple(wlanname, wlan_clone_create, wlan_clone_destroy, 0); return 0; case MOD_UNLOAD: if_clone_detach(wlan_cloner); EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); return 0; } return EINVAL; } static moduledata_t wlan_mod = { wlanname, wlan_modevent, 0 }; DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(wlan, 1); MODULE_DEPEND(wlan, ether, 1, 1, 1); #ifdef IEEE80211_ALQ MODULE_DEPEND(wlan, alq, 1, 1, 1); #endif /* IEEE80211_ALQ */ Index: head/sys/net80211/ieee80211_ht.c =================================================================== --- head/sys/net80211/ieee80211_ht.c (revision 366111) +++ head/sys/net80211/ieee80211_ht.c (revision 366112) @@ -1,3599 +1,3600 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD$"); #endif /* * IEEE 802.11n protocol support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include -/* define here, used throughout file */ -#define MS(_v, _f) (((_v) & _f) >> _f##_S) -#define SM(_v, _f) (((_v) << _f##_S) & _f) - const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { { 13, 14, 27, 30 }, /* MCS 0 */ { 26, 29, 54, 60 }, /* MCS 1 */ { 39, 43, 81, 90 }, /* MCS 2 */ { 52, 58, 108, 120 }, /* MCS 3 */ { 78, 87, 162, 180 }, /* MCS 4 */ { 104, 116, 216, 240 }, /* MCS 5 */ { 117, 130, 243, 270 }, /* MCS 6 */ { 130, 144, 270, 300 }, /* MCS 7 */ { 26, 29, 54, 60 }, /* MCS 8 */ { 52, 58, 108, 120 }, /* MCS 9 */ { 78, 87, 162, 180 }, /* MCS 10 */ { 104, 116, 216, 240 }, /* MCS 11 */ { 156, 173, 324, 360 }, /* MCS 12 */ { 208, 231, 432, 480 }, /* MCS 13 */ { 234, 260, 486, 540 }, /* MCS 14 */ { 260, 289, 540, 600 }, /* MCS 15 */ { 39, 43, 81, 90 }, /* MCS 16 */ { 78, 87, 162, 180 }, /* MCS 17 */ { 117, 130, 243, 270 }, /* MCS 18 */ { 156, 173, 324, 360 }, /* MCS 19 */ { 234, 260, 486, 540 }, /* MCS 20 */ { 312, 347, 648, 720 }, /* MCS 21 */ { 351, 390, 729, 810 }, /* MCS 22 */ { 390, 433, 810, 900 }, /* MCS 23 */ { 52, 58, 108, 120 }, /* MCS 24 */ { 104, 116, 216, 240 }, /* MCS 25 */ { 156, 173, 324, 360 }, /* MCS 26 */ { 208, 231, 432, 480 }, /* MCS 27 */ { 312, 347, 648, 720 }, /* MCS 28 */ { 416, 462, 864, 960 }, /* MCS 29 */ { 468, 520, 972, 1080 }, /* MCS 30 */ { 520, 578, 1080, 1200 }, /* MCS 31 */ { 0, 0, 12, 13 }, /* MCS 32 */ { 78, 87, 162, 180 }, /* MCS 33 */ { 104, 116, 216, 240 }, /* MCS 34 */ { 130, 144, 270, 300 }, /* MCS 35 */ { 117, 130, 243, 270 }, /* MCS 36 */ { 156, 173, 324, 360 }, /* MCS 37 */ { 195, 217, 405, 450 }, /* MCS 38 */ { 104, 116, 216, 240 }, /* MCS 39 */ { 130, 144, 270, 300 }, /* MCS 40 */ { 130, 144, 270, 300 }, /* MCS 41 */ { 156, 173, 324, 360 }, /* MCS 42 */ { 182, 202, 378, 420 }, /* MCS 43 */ { 182, 202, 378, 420 }, /* MCS 44 */ { 208, 231, 432, 480 }, /* MCS 45 */ { 156, 173, 324, 360 }, /* MCS 46 */ { 195, 217, 405, 450 }, /* MCS 47 */ { 195, 217, 405, 450 }, /* MCS 48 */ { 234, 260, 486, 540 }, /* MCS 49 */ { 273, 303, 567, 630 }, /* MCS 50 */ { 273, 303, 567, 630 }, /* MCS 51 */ { 312, 347, 648, 720 }, /* MCS 52 */ { 130, 144, 270, 300 }, /* MCS 53 */ { 156, 173, 324, 360 }, /* MCS 54 */ { 182, 202, 378, 420 }, /* MCS 55 */ { 156, 173, 324, 360 }, /* MCS 56 */ { 182, 202, 378, 420 }, /* MCS 57 */ { 208, 231, 432, 480 }, /* MCS 58 */ { 234, 260, 486, 540 }, /* MCS 59 */ { 208, 231, 432, 480 }, /* MCS 60 */ { 234, 260, 486, 540 }, /* MCS 61 */ { 260, 289, 540, 600 }, /* MCS 62 */ { 260, 289, 540, 600 }, /* MCS 63 */ { 286, 318, 594, 660 }, /* MCS 64 */ { 195, 217, 405, 450 }, /* MCS 65 */ { 234, 260, 486, 540 }, /* MCS 66 */ { 273, 303, 567, 630 }, /* MCS 67 */ { 234, 260, 486, 540 }, /* MCS 68 */ { 273, 303, 567, 630 }, /* MCS 69 */ { 312, 347, 648, 720 }, /* MCS 70 */ { 351, 390, 729, 810 }, /* MCS 71 */ { 312, 347, 648, 720 }, /* MCS 72 */ { 351, 390, 729, 810 }, /* MCS 73 */ { 390, 433, 810, 900 }, /* MCS 74 */ { 390, 433, 810, 900 }, /* MCS 75 */ { 429, 477, 891, 990 }, /* MCS 76 */ }; static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", "AMPDU max reorder age (ms)"); static int ieee80211_recv_bar_ena = 1; SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 0, "BAR frame processing (ena/dis)"); static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", "ADDBA request timeout (ms)"); static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", "ADDBA request backoff (ms)"); static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ static ieee80211_recv_action_func ht_recv_action_ba_addba_request; static ieee80211_recv_action_func ht_recv_action_ba_addba_response; static ieee80211_recv_action_func ht_recv_action_ba_delba; static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; static ieee80211_send_action_func ht_send_action_ba_addba; static ieee80211_send_action_func ht_send_action_ba_delba; static ieee80211_send_action_func ht_send_action_ht_txchwidth; static void ieee80211_ht_init(void) { /* * Setup HT parameters that depends on the clock frequency. */ ieee80211_ampdu_age = msecs_to_ticks(500); ieee80211_addba_timeout = msecs_to_ticks(250); ieee80211_addba_backoff = msecs_to_ticks(10*1000); ieee80211_bar_timeout = msecs_to_ticks(250); /* * Register action frame handlers. */ ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); } SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); static int ieee80211_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap); static int ieee80211_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout); static int ieee80211_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int code, int baparamset, int batimeout); static void ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap); static void null_addba_response_timeout(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap); static void ieee80211_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status); static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, int baparamset, int batimeout, int baseqctl); static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); void ieee80211_ht_attach(struct ieee80211com *ic) { /* setup default aggregation policy */ ic->ic_recv_action = ieee80211_recv_action; ic->ic_send_action = ieee80211_send_action; ic->ic_ampdu_enable = ieee80211_ampdu_enable; ic->ic_addba_request = ieee80211_addba_request; ic->ic_addba_response = ieee80211_addba_response; ic->ic_addba_response_timeout = null_addba_response_timeout; ic->ic_addba_stop = ieee80211_addba_stop; ic->ic_bar_response = ieee80211_bar_response; ic->ic_ampdu_rx_start = ampdu_rx_start; ic->ic_ampdu_rx_stop = ampdu_rx_stop; ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; } void ieee80211_ht_detach(struct ieee80211com *ic) { } void ieee80211_ht_vattach(struct ieee80211vap *vap) { /* driver can override defaults */ vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; /* tx aggregation traffic thresholds */ vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; if (vap->iv_htcaps & IEEE80211_HTC_HT) { /* * Device is HT capable; enable all HT-related * facilities by default. * XXX these choices may be too aggressive. */ vap->iv_flags_ht |= IEEE80211_FHT_HT | IEEE80211_FHT_HTCOMPAT ; if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; /* XXX infer from channel list? */ if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; } /* enable RIFS if capable */ if (vap->iv_htcaps & IEEE80211_HTC_RIFS) vap->iv_flags_ht |= IEEE80211_FHT_RIFS; /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; } /* NB: disable default legacy WDS, too many issues right now */ if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) vap->iv_flags_ht &= ~IEEE80211_FHT_HT; } void ieee80211_ht_vdetach(struct ieee80211vap *vap) { } static int ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, int ratetype) { int mword, rate; mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) return (0); switch (ratetype) { case 0: rate = ieee80211_htrates[index].ht20_rate_800ns; break; case 1: rate = ieee80211_htrates[index].ht20_rate_400ns; break; case 2: rate = ieee80211_htrates[index].ht40_rate_800ns; break; default: rate = ieee80211_htrates[index].ht40_rate_400ns; break; } return (rate); } static struct printranges { int minmcs; int maxmcs; int txstream; int ratetype; int htcapflags; } ranges[] = { { 0, 7, 1, 0, 0 }, { 8, 15, 2, 0, 0 }, { 16, 23, 3, 0, 0 }, { 24, 31, 4, 0, 0 }, { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, { 0, 0, 0, 0, 0 }, }; static void ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) { int minrate, maxrate; struct printranges *range; for (range = ranges; range->txstream != 0; range++) { if (ic->ic_txstream < range->txstream) continue; if (range->htcapflags && (ic->ic_htcaps & range->htcapflags) == 0) continue; if (ratetype < range->ratetype) continue; minrate = ht_getrate(ic, range->minmcs, mode, ratetype); maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); if (range->maxmcs) { ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", range->minmcs, range->maxmcs, minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); } else { ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); } } } static void ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) { const char *modestr = ieee80211_phymode_name[mode]; ic_printf(ic, "%s MCS 20MHz\n", modestr); ht_rateprint(ic, mode, 0); if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); ht_rateprint(ic, mode, 1); } if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { ic_printf(ic, "%s MCS 40MHz:\n", modestr); ht_rateprint(ic, mode, 2); } if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); ht_rateprint(ic, mode, 3); } } void ieee80211_ht_announce(struct ieee80211com *ic) { if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) ht_announce(ic, IEEE80211_MODE_11NA); if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) ht_announce(ic, IEEE80211_MODE_11NG); } void ieee80211_init_suphtrates(struct ieee80211com *ic) { #define ADDRATE(x) do { \ htrateset->rs_rates[htrateset->rs_nrates] = x; \ htrateset->rs_nrates++; \ } while (0) struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; int i; memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); for (i = 0; i < ic->ic_txstream * 8; i++) ADDRATE(i); if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) ADDRATE(32); if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { if (ic->ic_txstream >= 2) { for (i = 33; i <= 38; i++) ADDRATE(i); } if (ic->ic_txstream >= 3) { for (i = 39; i <= 52; i++) ADDRATE(i); } if (ic->ic_txstream == 4) { for (i = 53; i <= 76; i++) ADDRATE(i); } } #undef ADDRATE } /* * Receive processing. */ /* * Decap the encapsulated A-MSDU frames and dispatch all but * the last for delivery. The last frame is returned for * delivery via the normal path. */ struct mbuf * ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; int framelen; struct mbuf *n; /* discard 802.3 header inserted by ieee80211_decap */ m_adj(m, sizeof(struct ether_header)); vap->iv_stats.is_amsdu_decap++; for (;;) { /* * Decap the first frame, bust it apart from the * remainder and deliver. We leave the last frame * delivery to the caller (for consistency with other * code paths, could also do it here). */ m = ieee80211_decap1(m, &framelen); if (m == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "a-msdu", "%s", "decap failed"); vap->iv_stats.is_amsdu_tooshort++; return NULL; } if (m->m_pkthdr.len == framelen) break; n = m_split(m, framelen, M_NOWAIT); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "a-msdu", "%s", "unable to split encapsulated frames"); vap->iv_stats.is_amsdu_split++; m_freem(m); /* NB: must reclaim */ return NULL; } vap->iv_deliver_data(vap, ni, m); /* * Remove frame contents; each intermediate frame * is required to be aligned to a 4-byte boundary. */ m = n; m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ } return m; /* last delivered by caller */ } static void ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) { struct mbuf *m; /* Walk the queue, removing frames as appropriate */ while (mbufq_len(&rap->rxa_mq[i]) != 0) { m = mbufq_dequeue(&rap->rxa_mq[i]); if (m == NULL) break; rap->rxa_qbytes -= m->m_pkthdr.len; rap->rxa_qframes--; m_freem(m); } } /* * Add the given frame to the current RX reorder slot. * * For future offloaded A-MSDU handling where multiple frames with * the same sequence number show up here, this routine will append * those frames as long as they're appropriately tagged. */ static int ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, ieee80211_seq rxseq, struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_rx_stats *rxs) { const struct ieee80211_rx_stats *rxs_final = NULL; struct ieee80211vap *vap = ni->ni_vap; int toss_dup; #define PROCESS 0 /* caller should process frame */ #define CONSUMED 1 /* frame consumed, caller does nothing */ /* * Figure out if this is a duplicate frame for the given slot. * * We're assuming that the driver will hand us all the frames * for a given AMSDU decap pass and if we get /a/ frame * for an AMSDU decap then we'll get all of them. * * The tricksy bit is that we don't know when the /end/ of * the decap pass is, because we aren't tracking state here * per-slot to know that we've finished receiving the frame list. * * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us * what's going on; so ideally we'd just check the frame at the * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - * that means we've received the whole AMSDU decap pass. */ /* * Get the rxs of the final mbuf in the slot, if one exists. */ if (mbufq_len(&rap->rxa_mq[off]) != 0) { rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); } /* Default to tossing the duplicate frame */ toss_dup = 1; /* * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND * this frame has F_AMSDU set (MORE or otherwise.) That's a sign * that more can come. */ if ((rxs != NULL) && (rxs_final != NULL) && ieee80211_check_rxseq_amsdu(rxs) && ieee80211_check_rxseq_amsdu(rxs_final)) { if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { /* * amsdu_more() returning 0 means "it's not the * final frame" so we can append more * frames here. */ toss_dup = 0; } } /* * If the list is empty OR we have determined we can put more * driver decap'ed AMSDU frames in here, then insert. */ if ((mbufq_len(&rap->rxa_mq[off]) == 0) || (toss_dup == 0)) { if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu queue fail", "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", rxseq, tid, rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), off, mbufq_len(&rap->rxa_mq[off]), rap->rxa_mq[off].mq_maxlen); /* XXX error count */ m_freem(m); return CONSUMED; } rap->rxa_qframes++; rap->rxa_qbytes += m->m_pkthdr.len; vap->iv_stats.is_ampdu_rx_reorder++; /* * Statistics for AMSDU decap. */ if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { if (ieee80211_check_rxseq_amsdu_more(rxs)) { /* more=1, AMSDU, end of batch */ IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); } else { IEEE80211_NODE_STAT(ni, rx_amsdu_more); } } } else { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu duplicate", "seqno %u tid %u BA win <%u:%u>", rxseq, tid, rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); if (rxs != NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu duplicate", "seqno %d tid %u pktflags 0x%08x\n", rxseq, tid, rxs->c_pktflags); } if (rxs_final != NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu duplicate", "final: pktflags 0x%08x\n", rxs_final->c_pktflags); } vap->iv_stats.is_rx_dup++; IEEE80211_NODE_STAT(ni, rx_dup); m_freem(m); } return CONSUMED; #undef CONSUMED #undef PROCESS } /* * Purge all frames in the A-MPDU re-order queue. */ static void ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) { int i; for (i = 0; i < rap->rxa_wnd; i++) { ampdu_rx_purge_slot(rap, i); if (rap->rxa_qframes == 0) break; } KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, ("lost %u data, %u frames on ampdu rx q", rap->rxa_qbytes, rap->rxa_qframes)); } static void ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { int i; /* XXX TODO: ensure the queues are empty */ memset(rap, 0, sizeof(*rap)); for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) mbufq_init(&rap->rxa_mq[i], 256); } /* * Start A-MPDU rx/re-order processing for the specified TID. */ static int ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, int baparamset, int batimeout, int baseqctl) { struct ieee80211vap *vap = ni->ni_vap; - int bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); + int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { /* * AMPDU previously setup and not terminated with a DELBA, * flush the reorder q's in case anything remains. */ ampdu_rx_purge(rap); } ieee80211_ampdu_rx_init_rap(ni, rap); rap->rxa_wnd = (bufsiz == 0) ? IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); - rap->rxa_start = MS(baseqctl, IEEE80211_BASEQ_START); + rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START); rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; /* XXX this should be a configuration flag */ if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && - (MS(baparamset, IEEE80211_BAPS_AMSDU))) + (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) rap->rxa_flags |= IEEE80211_AGGR_AMSDU; else rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; return 0; } /* * Public function; manually setup the RX ampdu state. */ int ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) { struct ieee80211_rx_ampdu *rap; /* XXX TODO: sanity check tid, seq, baw */ rap = &ni->ni_rx_ampdu[tid]; if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { /* * AMPDU previously setup and not terminated with a DELBA, * flush the reorder q's in case anything remains. */ ampdu_rx_purge(rap); } ieee80211_ampdu_rx_init_rap(ni, rap); rap->rxa_wnd = (baw== 0) ? IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); if (seq == -1) { /* Wait for the first RX frame, use that as BAW */ rap->rxa_start = 0; rap->rxa_flags |= IEEE80211_AGGR_WAITRX; } else { rap->rxa_start = seq; } rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; /* XXX TODO: no amsdu flag */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", __func__, tid, seq, rap->rxa_wnd, rap->rxa_flags); return 0; } /* * Public function; manually stop the RX AMPDU state. */ void ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) { struct ieee80211_rx_ampdu *rap; /* XXX TODO: sanity check tid, seq, baw */ rap = &ni->ni_rx_ampdu[tid]; ampdu_rx_stop(ni, rap); } /* * Stop A-MPDU rx processing for the specified TID. */ static void ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { ampdu_rx_purge(rap); rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND | IEEE80211_AGGR_WAITRX); } /* * Dispatch a frame from the A-MPDU reorder queue. The * frame is fed back into ieee80211_input marked with an * M_AMPDU_MPDU flag so it doesn't come back to us (it also * permits ieee80211_input to optimize re-processing). */ static __inline void ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) { m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ (void) ieee80211_input(ni, m, 0, 0); } static int ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, int i) { struct mbuf *m; int n = 0; while (mbufq_len(&rap->rxa_mq[i]) != 0) { m = mbufq_dequeue(&rap->rxa_mq[i]); if (m == NULL) break; n++; rap->rxa_qbytes -= m->m_pkthdr.len; rap->rxa_qframes--; ampdu_dispatch(ni, m); } return (n); } static void ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, int i, int winstart) { struct ieee80211vap *vap = ni->ni_vap; /* * If frames remain, copy the mbuf pointers down so * they correspond to the offsets in the new window. */ if (rap->rxa_qframes != 0) { int n = rap->rxa_qframes, j; for (j = i+1; j < rap->rxa_wnd; j++) { /* * Concat the list contents over, which will * blank the source list for us. */ if (mbufq_len(&rap->rxa_mq[j]) != 0) { n = n - mbufq_len(&rap->rxa_mq[j]); mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); if (n == 0) break; } } KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " "BA win <%d:%d> winstart %d", __func__, n, rap->rxa_qframes, i, rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), winstart)); vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; } } /* * Dispatch as many frames as possible from the re-order queue. * Frames will always be "at the front"; we process all frames * up to the first empty slot in the window. On completion we * cleanup state if there are still pending frames in the current * BA window. We assume the frame at slot 0 is already handled * by the caller; we always start at slot 1. */ static void ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; int i, r, r2; /* flush run of frames */ r2 = 0; for (i = 1; i < rap->rxa_wnd; i++) { r = ampdu_dispatch_slot(rap, ni, i); if (r == 0) break; r2 += r; } /* move up frames */ ampdu_rx_moveup(rap, ni, i, -1); /* * Adjust the start of the BA window to * reflect the frames just dispatched. */ rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); vap->iv_stats.is_ampdu_rx_oor += r2; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: moved slot up %d slots to start at %d (%d frames)", __func__, i, rap->rxa_start, r2); } /* * Dispatch all frames in the A-MPDU re-order queue. */ static void ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { int i, r; for (i = 0; i < rap->rxa_wnd; i++) { r = ampdu_dispatch_slot(rap, ni, i); if (r == 0) continue; ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: moved slot up %d slots to start at %d (%d frames)", __func__, 1, rap->rxa_start, r); if (rap->rxa_qframes == 0) break; } } /* * Dispatch all frames in the A-MPDU re-order queue * preceding the specified sequence number. This logic * handles window moves due to a received MSDU or BAR. */ static void ampdu_rx_flush_upto(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) { struct ieee80211vap *vap = ni->ni_vap; ieee80211_seq seqno; int i, r; /* * Flush any complete MSDU's with a sequence number lower * than winstart. Gaps may exist. Note that we may actually * dispatch frames past winstart if a run continues; this is * an optimization that avoids having to do a separate pass * to dispatch frames after moving the BA window start. */ seqno = rap->rxa_start; for (i = 0; i < rap->rxa_wnd; i++) { if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { (void) ampdu_dispatch_slot(rap, ni, i); } else { if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) break; } vap->iv_stats.is_ampdu_rx_oor += r; seqno = IEEE80211_SEQ_INC(seqno); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: moved slot up %d slots to start at %d (%d frames)", __func__, 1, seqno, r); } /* * If frames remain, copy the mbuf pointers down so * they correspond to the offsets in the new window. */ ampdu_rx_moveup(rap, ni, i, winstart); /* * Move the start of the BA window; we use the * sequence number of the last MSDU that was * passed up the stack+1 or winstart if stopped on * a gap in the reorder buffer. */ rap->rxa_start = seqno; } /* * Process a received QoS data frame for an HT station. Handle * A-MPDU reordering: if this frame is received out of order * and falls within the BA window hold onto it. Otherwise if * this frame completes a run, flush any pending frames. We * return 1 if the frame is consumed. A 0 is returned if * the frame should be processed normally by the caller. * * A-MSDU: handle hardware decap'ed A-MSDU frames that are * pretending to be MPDU's. They're dispatched directly if * able; or attempted to put into the receive reordering slot. */ int ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_rx_stats *rxs) { #define PROCESS 0 /* caller should process frame */ #define CONSUMED 1 /* frame consumed, caller does nothing */ struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_qosframe *wh; struct ieee80211_rx_ampdu *rap; ieee80211_seq rxseq; uint8_t tid; int off; int amsdu = ieee80211_check_rxseq_amsdu(rxs); int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); /* NB: m_len known to be sufficient */ wh = mtod(m, struct ieee80211_qosframe *); if (wh->i_fc[0] != IEEE80211_FC0_QOSDATA) { /* * Not QoS data, shouldn't get here but just * return it to the caller for processing. */ return PROCESS; } /* * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. * * Multicast QoS data frames are checked against a different * counter, not the per-TID counter. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) return PROCESS; tid = ieee80211_getqos(wh)[0]; tid &= IEEE80211_QOS_TID; rap = &ni->ni_rx_ampdu[tid]; if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { /* * No ADDBA request yet, don't touch. */ return PROCESS; } rxseq = le16toh(*(uint16_t *)wh->i_seq); if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { /* * Fragments are not allowed; toss. */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); vap->iv_stats.is_ampdu_rx_drop++; IEEE80211_NODE_STAT(ni, rx_drop); m_freem(m); return CONSUMED; } rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; rap->rxa_nframes++; /* * Handle waiting for the first frame to define the BAW. * Some firmware doesn't provide the RX of the starting point * of the BAW and we have to cope. */ if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; rap->rxa_start = rxseq; } again: if (rxseq == rap->rxa_start) { /* * First frame in window. */ if (rap->rxa_qframes != 0) { /* * Dispatch as many packets as we can. */ KASSERT((mbufq_len(&rap->rxa_mq[0]) == 0), ("unexpected dup")); ampdu_dispatch(ni, m); ampdu_rx_dispatch(rap, ni); return CONSUMED; } else { /* * In order; advance window if needed and notify * caller to dispatch directly. */ if (amsdu) { if (amsdu_end) { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); } else { IEEE80211_NODE_STAT(ni, rx_amsdu_more); } } else { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); } return PROCESS; } } /* * Frame is out of order; store if in the BA window. */ /* calculate offset in BA window */ off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); if (off < rap->rxa_wnd) { /* * Common case (hopefully): in the BA window. * Sec 9.10.7.6.2 a) (p.137) */ /* * Check for frames sitting too long in the reorder queue. * This should only ever happen if frames are not delivered * without the sender otherwise notifying us (e.g. with a * BAR to move the window). Typically this happens because * of vendor bugs that cause the sequence number to jump. * When this happens we get a gap in the reorder queue that * leaves frame sitting on the queue until they get pushed * out due to window moves. When the vendor does not send * BAR this move only happens due to explicit packet sends * * NB: we only track the time of the oldest frame in the * reorder q; this means that if we flush we might push * frames that still "new"; if this happens then subsequent * frames will result in BA window moves which cost something * but is still better than a big throughput dip. */ if (rap->rxa_qframes != 0) { /* XXX honor batimeout? */ if (ticks - rap->rxa_age > ieee80211_ampdu_age) { /* * Too long since we received the first * frame; flush the reorder buffer. */ if (rap->rxa_qframes != 0) { vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; ampdu_rx_flush(ni, rap); } /* * Advance the window if needed and notify * the caller to dispatch directly. */ if (amsdu) { if (amsdu_end) { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); } else { IEEE80211_NODE_STAT(ni, rx_amsdu_more); } } else { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); } return PROCESS; } } else { /* * First frame, start aging timer. */ rap->rxa_age = ticks; } /* save packet - this consumes, no matter what */ ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); return CONSUMED; } if (off < IEEE80211_SEQ_BA_RANGE) { /* * Outside the BA window, but within range; * flush the reorder q and move the window. * Sec 9.10.7.6.2 b) (p.138) */ IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, "move BA win <%u:%u> (%u frames) rxseq %u tid %u", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid); vap->iv_stats.is_ampdu_rx_move++; /* * The spec says to flush frames up to but not including: * WinStart_B = rxseq - rap->rxa_wnd + 1 * Then insert the frame or notify the caller to process * it immediately. We can safely do this by just starting * over again because we know the frame will now be within * the BA window. */ /* NB: rxa_wnd known to be >0 */ ampdu_rx_flush_upto(ni, rap, IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); goto again; } else { /* * Outside the BA window and out of range; toss. * Sec 9.10.7.6.2 c) (p.138) */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid, wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); vap->iv_stats.is_ampdu_rx_drop++; IEEE80211_NODE_STAT(ni, rx_drop); m_freem(m); return CONSUMED; } #undef CONSUMED #undef PROCESS } /* * Process a BAR ctl frame. Dispatch all frames up to * the sequence number of the frame. If this frame is * out of range it's discarded. */ void ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame_bar *wh; struct ieee80211_rx_ampdu *rap; ieee80211_seq rxseq; int tid, off; if (!ieee80211_recv_bar_ena) { #if 0 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, ni->ni_macaddr, "BAR", "%s", "processing disabled"); #endif vap->iv_stats.is_ampdu_bar_bad++; return; } wh = mtod(m0, struct ieee80211_frame_bar *); /* XXX check basic BAR */ - tid = MS(le16toh(wh->i_ctl), IEEE80211_BAR_TID); + tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID); rap = &ni->ni_rx_ampdu[tid]; if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { /* * No ADDBA request yet, don't touch. */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); vap->iv_stats.is_ampdu_bar_bad++; return; } vap->iv_stats.is_ampdu_bar_rx++; rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; if (rxseq == rap->rxa_start) return; /* calculate offset in BA window */ off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); if (off < IEEE80211_SEQ_BA_RANGE) { /* * Flush the reorder q up to rxseq and move the window. * Sec 9.10.7.6.3 a) (p.138) */ IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid); vap->iv_stats.is_ampdu_bar_move++; ampdu_rx_flush_upto(ni, rap, rxseq); if (off >= rap->rxa_wnd) { /* * BAR specifies a window start to the right of BA * window; we must move it explicitly since * ampdu_rx_flush_upto will not. */ rap->rxa_start = rxseq; } } else { /* * Out of range; toss. * Sec 9.10.7.6.3 b) (p.138) */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid, wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); vap->iv_stats.is_ampdu_bar_oow++; IEEE80211_NODE_STAT(ni, rx_drop); } } /* * Setup HT-specific state in a node. Called only * when HT use is negotiated so we don't do extra * work for temporary and/or legacy sta's. */ void ieee80211_ht_node_init(struct ieee80211_node *ni) { struct ieee80211_tx_ampdu *tap; int tid; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called (%p)", __func__, ni); if (ni->ni_flags & IEEE80211_NODE_HT) { /* * Clean AMPDU state on re-associate. This handles the case * where a station leaves w/o notifying us and then returns * before node is reaped for inactivity. */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: calling cleanup (%p)", __func__, ni); ieee80211_ht_node_cleanup(ni); } for (tid = 0; tid < WME_NUM_TID; tid++) { tap = &ni->ni_tx_ampdu[tid]; tap->txa_tid = tid; tap->txa_ni = ni; ieee80211_txampdu_init_pps(tap); /* NB: further initialization deferred */ ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); } ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | IEEE80211_NODE_AMSDU; } /* * Cleanup HT-specific state in a node. Called only * when HT use has been marked. */ void ieee80211_ht_node_cleanup(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; int i; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called (%p)", __func__, ni); KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); /* XXX optimize this */ for (i = 0; i < WME_NUM_TID; i++) { struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; if (tap->txa_flags & IEEE80211_AGGR_SETUP) ampdu_tx_stop(tap); } for (i = 0; i < WME_NUM_TID; i++) ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); ni->ni_htcap = 0; ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; } /* * Age out HT resources for a station. */ void ieee80211_ht_node_age(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; uint8_t tid; KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); for (tid = 0; tid < WME_NUM_TID; tid++) { struct ieee80211_rx_ampdu *rap; rap = &ni->ni_rx_ampdu[tid]; if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) continue; if (rap->rxa_qframes == 0) continue; /* * Check for frames sitting too long in the reorder queue. * See above for more details on what's happening here. */ /* XXX honor batimeout? */ if (ticks - rap->rxa_age > ieee80211_ampdu_age) { /* * Too long since we received the first * frame; flush the reorder buffer. */ vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; ampdu_rx_flush(ni, rap); } } } static struct ieee80211_channel * findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) { return ieee80211_find_channel(ic, c->ic_freq, (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); } /* * Adjust a channel to be HT/non-HT according to the vap's configuration. */ struct ieee80211_channel * ieee80211_ht_adjust_channel(struct ieee80211com *ic, struct ieee80211_channel *chan, int flags) { struct ieee80211_channel *c; if (flags & IEEE80211_FHT_HT) { /* promote to HT if possible */ if (flags & IEEE80211_FHT_USEHT40) { if (!IEEE80211_IS_CHAN_HT40(chan)) { /* NB: arbitrarily pick ht40+ over ht40- */ c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); if (c == NULL) c = findhtchan(ic, chan, IEEE80211_CHAN_HT40D); if (c == NULL) c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); if (c != NULL) chan = c; } } else if (!IEEE80211_IS_CHAN_HT20(chan)) { c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); if (c != NULL) chan = c; } } else if (IEEE80211_IS_CHAN_HT(chan)) { /* demote to legacy, HT use is disabled */ c = ieee80211_find_channel(ic, chan->ic_freq, chan->ic_flags &~ IEEE80211_CHAN_HT); if (c != NULL) chan = c; } return chan; } /* * Setup HT-specific state for a legacy WDS peer. */ void ieee80211_ht_wds_init(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; int tid; KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); /* XXX check scan cache in case peer has an ap and we have info */ /* * If setup with a legacy channel; locate an HT channel. * Otherwise if the inherited channel (from a companion * AP) is suitable use it so we use the same location * for the extension channel). */ ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); ni->ni_htcap = 0; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; ni->ni_chw = 40; if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; } else { ni->ni_chw = 20; ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; } ni->ni_htctlchan = ni->ni_chan->ic_ieee; if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) ni->ni_flags |= IEEE80211_NODE_RIFS; /* XXX does it make sense to enable SMPS? */ ni->ni_htopmode = 0; /* XXX need protection state */ ni->ni_htstbc = 0; /* XXX need info */ for (tid = 0; tid < WME_NUM_TID; tid++) { tap = &ni->ni_tx_ampdu[tid]; tap->txa_tid = tid; ieee80211_txampdu_init_pps(tap); } /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | IEEE80211_NODE_AMSDU; } /* * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. * * This is to be called from the deferred HT protection update * task once the flags are updated. */ void ieee80211_htinfo_notify(struct ieee80211vap *vap) { IEEE80211_LOCK_ASSERT(vap->iv_ic); if (vap->iv_opmode != IEEE80211_M_HOSTAP) return; if (vap->iv_state != IEEE80211_S_RUN || !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) return; IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, vap->iv_bss, "HT bss occupancy change: %d sta, %d ht, " "%d ht40%s, HT protmode now 0x%x" , vap->iv_sta_assoc , vap->iv_ht_sta_assoc , vap->iv_ht40_sta_assoc , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? ", non-HT sta present" : "" , vap->iv_curhtprotmode); ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); } /* * Calculate HT protection mode from current * state and handle updates. */ static void htinfo_update(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; uint8_t protmode; if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { protmode = IEEE80211_HTINFO_OPMODE_MIXED | IEEE80211_HTINFO_NONHT_PRESENT; } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { protmode = IEEE80211_HTINFO_OPMODE_PROTOPT | IEEE80211_HTINFO_NONHT_PRESENT; } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { protmode = IEEE80211_HTINFO_OPMODE_HT20PR; } else { protmode = IEEE80211_HTINFO_OPMODE_PURE; } if (protmode != vap->iv_curhtprotmode) { vap->iv_curhtprotmode = protmode; /* Update VAP with new protection mode */ ieee80211_vap_update_ht_protmode(vap); } } /* * Handle an HT station joining a BSS. */ void ieee80211_ht_node_join(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; IEEE80211_LOCK_ASSERT(vap->iv_ic); if (ni->ni_flags & IEEE80211_NODE_HT) { vap->iv_ht_sta_assoc++; if (ni->ni_chw == 40) vap->iv_ht40_sta_assoc++; } htinfo_update(vap); } /* * Handle an HT station leaving a BSS. */ void ieee80211_ht_node_leave(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; IEEE80211_LOCK_ASSERT(vap->iv_ic); if (ni->ni_flags & IEEE80211_NODE_HT) { vap->iv_ht_sta_assoc--; if (ni->ni_chw == 40) vap->iv_ht40_sta_assoc--; } htinfo_update(vap); } /* * Public version of htinfo_update; used for processing * beacon frames from overlapping bss. * * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED * (on receipt of a beacon that advertises MIXED) or * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon * from an overlapping legacy bss). We treat MIXED with * a higher precedence than PROTOPT (i.e. we will not change * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This * corresponds to how we handle things in htinfo_update. * */ void ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) { struct ieee80211com *ic = vap->iv_ic; -#define OPMODE(x) SM(x, IEEE80211_HTINFO_OPMODE) +#define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE) IEEE80211_LOCK(ic); /* track non-HT station presence */ KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, ("protmode 0x%x", protmode)); vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; vap->iv_lastnonht = ticks; if (protmode != vap->iv_curhtprotmode && (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { vap->iv_curhtprotmode = protmode; /* Update VAP with new protection mode */ ieee80211_vap_update_ht_protmode(vap); } IEEE80211_UNLOCK(ic); #undef OPMODE } /* * Time out presence of an overlapping bss with non-HT * stations. When operating in hostap mode we listen for * beacons from other stations and if we identify a non-HT * station is present we update the opmode field of the * HTINFO ie. To identify when all non-HT stations are * gone we time out this condition. */ void ieee80211_ht_timeout(struct ieee80211vap *vap) { IEEE80211_LOCK_ASSERT(vap->iv_ic); if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, "%s", "time out non-HT STA present on channel"); vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; htinfo_update(vap); } } /* * Process an 802.11n HT capabilities ie. */ void ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) { if (ie[0] == IEEE80211_ELEMID_VENDOR) { /* * Station used Vendor OUI ie to associate; * mark the node so when we respond we'll use * the Vendor OUI's and not the standard ie's. */ ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; ie += 4; } else ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; ni->ni_htcap = le16dec(ie + __offsetof(struct ieee80211_ie_htcap, hc_cap)); ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; } static void htinfo_parse(struct ieee80211_node *ni, const struct ieee80211_ie_htinfo *htinfo) { uint16_t w; ni->ni_htctlchan = htinfo->hi_ctrlchannel; - ni->ni_ht2ndchan = SM(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); + ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1, + IEEE80211_HTINFO_2NDCHAN); w = le16dec(&htinfo->hi_byte2); - ni->ni_htopmode = SM(w, IEEE80211_HTINFO_OPMODE); + ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE); w = le16dec(&htinfo->hi_byte45); - ni->ni_htstbc = SM(w, IEEE80211_HTINFO_BASIC_STBCMCS); + ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS); } /* * Parse an 802.11n HT info ie and save useful information * to the node state. Note this does not effect any state * changes such as for channel width change. */ void ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) { if (ie[0] == IEEE80211_ELEMID_VENDOR) ie += 4; htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); } /* * Handle 11n/11ac channel switch. * * Use the received HT/VHT ie's to identify the right channel to use. * If we cannot locate it in the channel table then fallback to * legacy operation. * * Note that we use this information to identify the node's * channel only; the caller is responsible for insuring any * required channel change is done (e.g. in sta mode when * parsing the contents of a beacon frame). */ static int htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_channel *c; int chanflags; int ret = 0; /* * First step - do HT/VHT only channel lookup based on operating mode * flags. This involves masking out the VHT flags as well. * Otherwise we end up doing the full channel walk each time * we trigger this, which is expensive. */ chanflags = (ni->ni_chan->ic_flags &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; if (chanflags == ni->ni_chan->ic_flags) goto done; /* * If HT /or/ VHT flags have changed then check both. * We need to start by picking a HT channel anyway. */ c = NULL; chanflags = (ni->ni_chan->ic_flags &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; /* XXX not right for ht40- */ c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { /* * No HT40 channel entry in our table; fall back * to HT20 operation. This should not happen. */ c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); #if 0 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "no HT40 channel (freq %u), falling back to HT20", ni->ni_chan->ic_freq); #endif /* XXX stat */ } /* Nothing found - leave it alone; move onto VHT */ if (c == NULL) c = ni->ni_chan; /* * If it's non-HT, then bail out now. */ if (! IEEE80211_IS_CHAN_HT(c)) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "not HT; skipping VHT check (%u/0x%x)", c->ic_freq, c->ic_flags); goto done; } /* * Next step - look at the current VHT flags and determine * if we need to upgrade. Mask out the VHT and HT flags since * the vhtflags field will already have the correct HT * flags to use. */ if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { chanflags = (c->ic_flags &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | vhtflags; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", __func__, ni->ni_vht_chanwidth, vhtflags); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "%s: VHT; trying lookup for %d/0x%08x", __func__, c->ic_freq, chanflags); c = ieee80211_find_channel(ic, c->ic_freq, chanflags); } /* Finally, if it's changed */ if (c != NULL && c != ni->ni_chan) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "switch station to %s%d channel %u/0x%x", IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", IEEE80211_IS_CHAN_VHT80(c) ? 80 : (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), c->ic_freq, c->ic_flags); ni->ni_chan = c; ret = 1; } /* NB: caller responsible for forcing any channel change */ done: /* update node's (11n) tx channel width */ ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan)? 40 : 20; return (ret); } /* * Update 11n MIMO PS state according to received htcap. */ static __inline int htcap_update_mimo_ps(struct ieee80211_node *ni) { uint16_t oflags = ni->ni_flags; switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { case IEEE80211_HTCAP_SMPS_DYNAMIC: ni->ni_flags |= IEEE80211_NODE_MIMO_PS; ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; break; case IEEE80211_HTCAP_SMPS_ENA: ni->ni_flags |= IEEE80211_NODE_MIMO_PS; ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; break; case IEEE80211_HTCAP_SMPS_OFF: default: /* disable on rx of reserved value */ ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; break; } return (oflags ^ ni->ni_flags); } /* * Update short GI state according to received htcap * and local settings. */ static __inline void htcap_update_shortgi(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) ni->ni_flags |= IEEE80211_NODE_SGI20; if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) ni->ni_flags |= IEEE80211_NODE_SGI40; } /* * Update LDPC state according to received htcap * and local settings. */ static __inline void htcap_update_ldpc(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) ni->ni_flags |= IEEE80211_NODE_LDPC; } /* * Parse and update HT-related state extracted from * the HT cap and info ie's. * * This is called from the STA management path and * the ieee80211_node_join() path. It will take into * account the IEs discovered during scanning and * adjust things accordingly. */ void ieee80211_ht_updateparams(struct ieee80211_node *ni, const uint8_t *htcapie, const uint8_t *htinfoie) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ie_htinfo *htinfo; ieee80211_parse_htcap(ni, htcapie); if (vap->iv_htcaps & IEEE80211_HTC_SMPS) htcap_update_mimo_ps(ni); htcap_update_shortgi(ni); htcap_update_ldpc(ni); if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) htinfoie += 4; htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; htinfo_parse(ni, htinfo); /* * Defer the node channel change; we need to now * update VHT parameters before we do it. */ if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) ni->ni_flags |= IEEE80211_NODE_RIFS; else ni->ni_flags &= ~IEEE80211_NODE_RIFS; } static uint32_t ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) { struct ieee80211vap *vap = ni->ni_vap; uint32_t vhtflags = 0; vhtflags = 0; if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_flags_vht & IEEE80211_FVHT_VHT) { if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && /* XXX 2 means "160MHz and 80+80MHz", 1 means "160MHz" */ - (MS(vap->iv_vhtcaps, + (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) && (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160)) { vhtflags = IEEE80211_CHAN_VHT160; /* Mirror the HT40 flags */ if (htflags == IEEE80211_CHAN_HT40U) { vhtflags |= IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D) { vhtflags |= IEEE80211_CHAN_HT40D; } } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && /* XXX 2 means "160MHz and 80+80MHz" */ - (MS(vap->iv_vhtcaps, + (_IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) && (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80)) { vhtflags = IEEE80211_CHAN_VHT80P80; /* Mirror the HT40 flags */ if (htflags == IEEE80211_CHAN_HT40U) { vhtflags |= IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D) { vhtflags |= IEEE80211_CHAN_HT40D; } } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80)) { vhtflags = IEEE80211_CHAN_VHT80; /* Mirror the HT40 flags */ if (htflags == IEEE80211_CHAN_HT40U) { vhtflags |= IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D) { vhtflags |= IEEE80211_CHAN_HT40D; } } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { /* Mirror the HT40 flags */ /* * XXX TODO: if ht40 is disabled, but vht40 isn't * disabled then this logic will get very, very sad. * It's quite possible the only sane thing to do is * to not have vht40 as an option, and just obey * 'ht40' as that flag. */ if ((htflags == IEEE80211_CHAN_HT40U) && (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { vhtflags = IEEE80211_CHAN_VHT40U | IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D && (vap->iv_flags_vht & IEEE80211_FVHT_USEVHT40)) { vhtflags = IEEE80211_CHAN_VHT40D | IEEE80211_CHAN_HT40D; } else if (htflags == IEEE80211_CHAN_HT20) { vhtflags = IEEE80211_CHAN_VHT20 | IEEE80211_CHAN_HT20; } } else { vhtflags = IEEE80211_CHAN_VHT20; } } return (vhtflags); } /* * Final part of updating the HT parameters. * * This is called from the STA management path and * the ieee80211_node_join() path. It will take into * account the IEs discovered during scanning and * adjust things accordingly. * * This is done after a call to ieee80211_ht_updateparams() * because it (and the upcoming VHT version of updateparams) * needs to ensure everything is parsed before htinfo_update_chw() * is called - which will change the channel config for the * node for us. */ int ieee80211_ht_updateparams_final(struct ieee80211_node *ni, const uint8_t *htcapie, const uint8_t *htinfoie) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ie_htinfo *htinfo; int htflags, vhtflags; int ret = 0; htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? IEEE80211_CHAN_HT20 : 0; /* NB: honor operating mode constraint */ if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) htflags = IEEE80211_CHAN_HT40U; else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) htflags = IEEE80211_CHAN_HT40D; } /* * VHT flags - do much the same; check whether VHT is available * and if so, what our ideal channel use would be based on our * capabilities and the (pre-parsed) VHT info IE. */ vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); if (htinfo_update_chw(ni, htflags, vhtflags)) ret = 1; return (ret); } /* * Parse and update HT-related state extracted from the HT cap ie * for a station joining an HT BSS. * * This is called from the hostap path for each station. */ void ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) { struct ieee80211vap *vap = ni->ni_vap; ieee80211_parse_htcap(ni, htcapie); if (vap->iv_htcaps & IEEE80211_HTC_SMPS) htcap_update_mimo_ps(ni); htcap_update_shortgi(ni); htcap_update_ldpc(ni); } /* * Called once HT and VHT capabilities are parsed in hostap mode - * this will adjust the channel configuration of the given node * based on the configuration and capabilities. */ void ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; int htflags; int vhtflags; /* NB: honor operating mode constraint */ /* XXX 40 MHz intolerant */ htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? IEEE80211_CHAN_HT20 : 0; if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) htflags = IEEE80211_CHAN_HT40U; else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) htflags = IEEE80211_CHAN_HT40D; } /* * VHT flags - do much the same; check whether VHT is available * and if so, what our ideal channel use would be based on our * capabilities and the (pre-parsed) VHT info IE. */ vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); (void) htinfo_update_chw(ni, htflags, vhtflags); } /* * Install received HT rate set by parsing the HT cap ie. */ int ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ie_htcap *htcap; struct ieee80211_htrateset *rs; int i, maxequalmcs, maxunequalmcs; maxequalmcs = ic->ic_txstream * 8 - 1; maxunequalmcs = 0; if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { if (ic->ic_txstream >= 2) maxunequalmcs = 38; if (ic->ic_txstream >= 3) maxunequalmcs = 52; if (ic->ic_txstream >= 4) maxunequalmcs = 76; } rs = &ni->ni_htrates; memset(rs, 0, sizeof(*rs)); if (ie != NULL) { if (ie[0] == IEEE80211_ELEMID_VENDOR) ie += 4; htcap = (const struct ieee80211_ie_htcap *) ie; for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { if (isclr(htcap->hc_mcsset, i)) continue; if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, "WARNING, HT rate set too large; only " "using %u rates", IEEE80211_HTRATE_MAXSIZE); vap->iv_stats.is_rx_rstoobig++; break; } if (i <= 31 && i > maxequalmcs) continue; if (i == 32 && (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) continue; if (i > 32 && i > maxunequalmcs) continue; rs->rs_rates[rs->rs_nrates++] = i; } } return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); } /* * Mark rates in a node's HT rate set as basic according * to the information in the supplied HT info ie. */ void ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) { const struct ieee80211_ie_htinfo *htinfo; struct ieee80211_htrateset *rs; int i, j; if (ie[0] == IEEE80211_ELEMID_VENDOR) ie += 4; htinfo = (const struct ieee80211_ie_htinfo *) ie; rs = &ni->ni_htrates; if (rs->rs_nrates == 0) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, "%s", "WARNING, empty HT rate set"); return; } for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { if (isclr(htinfo->hi_basicmcsset, i)) continue; for (j = 0; j < rs->rs_nrates; j++) if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) rs->rs_rates[j] |= IEEE80211_RATE_BASIC; } } static void ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) { callout_init(&tap->txa_timer, 1); tap->txa_flags |= IEEE80211_AGGR_SETUP; tap->txa_lastsample = ticks; } static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) { struct ieee80211_node *ni = tap->txa_ni; struct ieee80211com *ic = ni->ni_ic; IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid))); /* * Stop BA stream if setup so driver has a chance * to reclaim any resources it might have allocated. */ ic->ic_addba_stop(ni, tap); /* * Stop any pending BAR transmit. */ bar_stop_timer(tap); /* * Reset packet estimate. */ ieee80211_txampdu_init_pps(tap); /* NB: clearing NAK means we may re-send ADDBA */ tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); } /* * ADDBA response timeout. * * If software aggregation and per-TID queue management was done here, * that queue would be unpaused after the ADDBA timeout occurs. */ static void addba_timeout(void *arg) { struct ieee80211_tx_ampdu *tap = arg; struct ieee80211_node *ni = tap->txa_ni; struct ieee80211com *ic = ni->ni_ic; /* XXX ? */ tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; tap->txa_attempts++; ic->ic_addba_response_timeout(ni, tap); } static void addba_start_timeout(struct ieee80211_tx_ampdu *tap) { /* XXX use CALLOUT_PENDING instead? */ callout_reset(&tap->txa_timer, ieee80211_addba_timeout, addba_timeout, tap); tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; tap->txa_nextrequest = ticks + ieee80211_addba_timeout; } static void addba_stop_timeout(struct ieee80211_tx_ampdu *tap) { /* XXX use CALLOUT_PENDING instead? */ if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { callout_stop(&tap->txa_timer); tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; } } static void null_addba_response_timeout(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { } /* * Default method for requesting A-MPDU tx aggregation. * We setup the specified state block and start a timer * to wait for an ADDBA response frame. */ static int ieee80211_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout) { int bufsiz; /* XXX locking */ tap->txa_token = dialogtoken; tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; - bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); + bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); tap->txa_wnd = (bufsiz == 0) ? IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); addba_start_timeout(tap); return 1; } /* * Called by drivers that wish to request an ADDBA session be * setup. This brings it up and starts the request timer. */ int ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) { struct ieee80211_tx_ampdu *tap; if (tid < 0 || tid > 15) return (0); tap = &ni->ni_tx_ampdu[tid]; /* XXX locking */ if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { /* do deferred setup of state */ ampdu_tx_setup(tap); } /* XXX hack for not doing proper locking */ tap->txa_flags &= ~IEEE80211_AGGR_NAK; addba_start_timeout(tap); return (1); } /* * Called by drivers that have marked a session as active. */ int ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, int status) { struct ieee80211_tx_ampdu *tap; if (tid < 0 || tid > 15) return (0); tap = &ni->ni_tx_ampdu[tid]; /* XXX locking */ addba_stop_timeout(tap); if (status == 1) { tap->txa_flags |= IEEE80211_AGGR_RUNNING; tap->txa_attempts = 0; } else { /* mark tid so we don't try again */ tap->txa_flags |= IEEE80211_AGGR_NAK; } return (1); } /* * Default method for processing an A-MPDU tx aggregation * response. We shutdown any pending timer and update the * state block according to the reply. */ static int ieee80211_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status, int baparamset, int batimeout) { struct ieee80211vap *vap = ni->ni_vap; int bufsiz, tid; /* XXX locking */ addba_stop_timeout(tap); if (status == IEEE80211_STATUS_SUCCESS) { - bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); + bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); /* XXX override our request? */ tap->txa_wnd = (bufsiz == 0) ? IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); - tid = MS(baparamset, IEEE80211_BAPS_TID); + tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); tap->txa_flags |= IEEE80211_AGGR_RUNNING; tap->txa_attempts = 0; /* TODO: this should be a vap flag */ if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && - (MS(baparamset, IEEE80211_BAPS_AMSDU))) + (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) tap->txa_flags |= IEEE80211_AGGR_AMSDU; else tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; } else { /* mark tid so we don't try again */ tap->txa_flags |= IEEE80211_AGGR_NAK; } return 1; } /* * Default method for stopping A-MPDU tx aggregation. * Any timer is cleared and we drain any pending frames. */ static void ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { /* XXX locking */ addba_stop_timeout(tap); if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { /* XXX clear aggregation queue */ tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); } tap->txa_attempts = 0; } /* * Process a received action frame using the default aggregation * policy. We intercept ADDBA-related frames and use them to * update our aggregation state. All other frames are passed up * for processing by ieee80211_recv_action. */ static int ht_recv_action_ba_addba_request(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_rx_ampdu *rap; uint8_t dialogtoken; uint16_t baparamset, batimeout, baseqctl; uint16_t args[5]; int tid; dialogtoken = frm[2]; baparamset = le16dec(frm+3); batimeout = le16dec(frm+5); baseqctl = le16dec(frm+7); - tid = MS(baparamset, IEEE80211_BAPS_TID); + tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "recv ADDBA request: dialogtoken %u baparamset 0x%x " "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", dialogtoken, baparamset, - tid, MS(baparamset, IEEE80211_BAPS_BUFSIZ), + tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ), batimeout, - MS(baseqctl, IEEE80211_BASEQ_START), - MS(baseqctl, IEEE80211_BASEQ_FRAG), - MS(baparamset, IEEE80211_BAPS_AMSDU)); + _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START), + _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG), + _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)); rap = &ni->ni_rx_ampdu[tid]; /* Send ADDBA response */ args[0] = dialogtoken; /* * NB: We ack only if the sta associated with HT and * the ap is configured to do AMPDU rx (the latter * violates the 11n spec and is mostly for testing). */ if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { /* XXX TODO: handle ampdu_rx_start failure */ ic->ic_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); args[1] = IEEE80211_STATUS_SUCCESS; } else { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "reject ADDBA request: %s", ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? "administratively disabled" : "not negotiated for station"); vap->iv_stats.is_addba_reject++; args[1] = IEEE80211_STATUS_UNSPECIFIED; } /* XXX honor rap flags? */ args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE - | SM(tid, IEEE80211_BAPS_TID) - | SM(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) + | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) + | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) ; /* * TODO: we're out of iv_flags_ht fields; once * this is extended we should make this configurable. */ if ((baparamset & IEEE80211_BAPS_AMSDU) && (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) args[2] |= IEEE80211_BAPS_AMSDU; args[3] = 0; args[4] = 0; ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); return 0; } static int ht_recv_action_ba_addba_response(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; uint8_t dialogtoken, policy; uint16_t baparamset, batimeout, code; int tid, bufsiz; int amsdu; dialogtoken = frm[2]; code = le16dec(frm+3); baparamset = le16dec(frm+5); - tid = MS(baparamset, IEEE80211_BAPS_TID); - bufsiz = MS(baparamset, IEEE80211_BAPS_BUFSIZ); - policy = MS(baparamset, IEEE80211_BAPS_POLICY); - amsdu = !! MS(baparamset, IEEE80211_BAPS_AMSDU); + tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); + bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); + policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY); + amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU); batimeout = le16dec(frm+7); tap = &ni->ni_tx_ampdu[tid]; if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "no pending ADDBA, tid %d dialogtoken %u " "code %d", tid, dialogtoken, code); vap->iv_stats.is_addba_norequest++; return 0; } if (dialogtoken != tap->txa_token) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "dialogtoken mismatch: waiting for %d, " "received %d, tid %d code %d", tap->txa_token, dialogtoken, tid, code); vap->iv_stats.is_addba_badtoken++; return 0; } /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "policy mismatch: expecting %s, " "received %s, tid %d code %d", tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, policy, tid, code); vap->iv_stats.is_addba_badpolicy++; return 0; } #if 0 /* XXX we take MIN in ieee80211_addba_response */ if (bufsiz > IEEE80211_AGGR_BAWMAX) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "BA window too large: max %d, " "received %d, tid %d code %d", bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); vap->iv_stats.is_addba_badbawinsize++; return 0; } #endif IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "recv ADDBA response: dialogtoken %u code %d " "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", dialogtoken, code, baparamset, tid, bufsiz, amsdu, batimeout); ic->ic_addba_response(ni, tap, code, baparamset, batimeout); return 0; } static int ht_recv_action_ba_delba(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_rx_ampdu *rap; struct ieee80211_tx_ampdu *tap; uint16_t baparamset, code; int tid; baparamset = le16dec(frm+2); code = le16dec(frm+4); - tid = MS(baparamset, IEEE80211_DELBAPS_TID); + tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "recv DELBA: baparamset 0x%x (tid %d initiator %d) " "code %d", baparamset, tid, - MS(baparamset, IEEE80211_DELBAPS_INIT), code); + _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code); if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { tap = &ni->ni_tx_ampdu[tid]; ic->ic_addba_stop(ni, tap); } else { rap = &ni->ni_rx_ampdu[tid]; ic->ic_ampdu_rx_stop(ni, rap); } return 0; } static int ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { int chw; chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? 40 : 20; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "%s: HT txchwidth, width %d%s", __func__, chw, ni->ni_chw != chw ? "*" : ""); if (chw != ni->ni_chw) { /* XXX does this need to change the ht40 station count? */ ni->ni_chw = chw; /* XXX notify on change */ } return 0; } static int ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { const struct ieee80211_action_ht_mimopowersave *mps = (const struct ieee80211_action_ht_mimopowersave *) frm; /* XXX check iv_htcaps */ if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) ni->ni_flags |= IEEE80211_NODE_MIMO_PS; else ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; else ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; /* XXX notify on change */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "%s: HT MIMO PS (%s%s)", __func__, (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" ); return 0; } /* * Transmit processing. */ /* * Check if A-MPDU should be requested/enabled for a stream. * We require a traffic rate above a per-AC threshold and we * also handle backoff from previous failed attempts. * * Drivers may override this method to bring in information * such as link state conditions in making the decision. */ static int ieee80211_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ieee80211vap *vap = ni->ni_vap; if (tap->txa_avgpps < vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) return 0; /* XXX check rssi? */ if (tap->txa_attempts >= ieee80211_addba_maxtries && ieee80211_time_after(ticks, tap->txa_nextrequest)) { /* * Don't retry too often; txa_nextrequest is set * to the minimum interval we'll retry after * ieee80211_addba_maxtries failed attempts are made. */ return 0; } IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); return 1; } /* * Request A-MPDU tx aggregation. Setup local state and * issue an ADDBA request. BA use will only happen after * the other end replies with ADDBA response. */ int ieee80211_ampdu_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ieee80211com *ic = ni->ni_ic; uint16_t args[5]; int tid, dialogtoken; static int tokens = 0; /* XXX */ /* XXX locking */ if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { /* do deferred setup of state */ ampdu_tx_setup(tap); } /* XXX hack for not doing proper locking */ tap->txa_flags &= ~IEEE80211_AGGR_NAK; dialogtoken = (tokens+1) % 63; /* XXX */ tid = tap->txa_tid; /* * XXX TODO: This is racy with any other parallel TX going on. :( */ tap->txa_start = ni->ni_txseqs[tid]; args[0] = dialogtoken; args[1] = 0; /* NB: status code not used */ args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE - | SM(tid, IEEE80211_BAPS_TID) - | SM(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) + | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) + | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX, + IEEE80211_BAPS_BUFSIZ) ; /* XXX TODO: this should be a flag, not iv_htcaps */ if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) args[2] |= IEEE80211_BAPS_AMSDU; args[3] = 0; /* batimeout */ /* NB: do first so there's no race against reply */ if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { /* unable to setup state, don't make request */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: could not setup BA stream for TID %d AC %d", __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); /* defer next try so we don't slam the driver with requests */ tap->txa_attempts = ieee80211_addba_maxtries; /* NB: check in case driver wants to override */ if (tap->txa_nextrequest <= ticks) tap->txa_nextrequest = ticks + ieee80211_addba_backoff; return 0; } tokens = dialogtoken; /* allocate token */ /* NB: after calling ic_addba_request so driver can set txa_start */ - args[4] = SM(tap->txa_start, IEEE80211_BASEQ_START) - | SM(0, IEEE80211_BASEQ_FRAG) + args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START) + | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG) ; return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_REQUEST, args); } /* * Terminate an AMPDU tx stream. State is reclaimed * and the peer notified with a DelBA Action frame. */ void ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int reason) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; uint16_t args[4]; /* XXX locking */ tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; if (IEEE80211_AMPDU_RUNNING(tap)) { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "%s: stop BA stream for TID %d (reason: %d (%s))", __func__, tap->txa_tid, reason, ieee80211_reason_to_string(reason)); vap->iv_stats.is_ampdu_stop++; ic->ic_addba_stop(ni, tap); args[0] = tap->txa_tid; args[1] = IEEE80211_DELBAPS_INIT; args[2] = reason; /* XXX reason code */ ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_DELBA, args); } else { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "%s: BA stream for TID %d not running " "(reason: %d (%s))", __func__, tap->txa_tid, reason, ieee80211_reason_to_string(reason)); vap->iv_stats.is_ampdu_stop_failed++; } } /* XXX */ static void bar_start_timer(struct ieee80211_tx_ampdu *tap); static void bar_timeout(void *arg) { struct ieee80211_tx_ampdu *tap = arg; struct ieee80211_node *ni = tap->txa_ni; KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, ("bar/addba collision, flags 0x%x", tap->txa_flags)); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: tid %u flags 0x%x attempts %d", __func__, tap->txa_tid, tap->txa_flags, tap->txa_attempts); /* guard against race with bar_tx_complete */ if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) return; /* XXX ? */ if (tap->txa_attempts >= ieee80211_bar_maxtries) { struct ieee80211com *ic = ni->ni_ic; ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; /* * If (at least) the last BAR TX timeout was due to * an ieee80211_send_bar() failures, then we need * to make sure we notify the driver that a BAR * TX did occur and fail. This gives the driver * a chance to undo any queue pause that may * have occurred. */ ic->ic_bar_response(ni, tap, 1); ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); } else { ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: failed to TX, starting timer\n", __func__); /* * If ieee80211_send_bar() fails here, the * timer may have stopped and/or the pending * flag may be clear. Because of this, * fake the BARPEND and reset the timer. * A retransmission attempt will then occur * during the next timeout. */ /* XXX locking */ tap->txa_flags |= IEEE80211_AGGR_BARPEND; bar_start_timer(tap); } } } static void bar_start_timer(struct ieee80211_tx_ampdu *tap) { IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); } static void bar_stop_timer(struct ieee80211_tx_ampdu *tap) { IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); callout_stop(&tap->txa_timer); } static void bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211_tx_ampdu *tap = arg; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: tid %u flags 0x%x pending %d status %d", __func__, tap->txa_tid, tap->txa_flags, callout_pending(&tap->txa_timer), status); ni->ni_vap->iv_stats.is_ampdu_bar_tx++; /* XXX locking */ if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && callout_pending(&tap->txa_timer)) { struct ieee80211com *ic = ni->ni_ic; if (status == 0) /* ACK'd */ bar_stop_timer(tap); ic->ic_bar_response(ni, tap, status); /* NB: just let timer expire so we pace requests */ } } static void ieee80211_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status) { IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); if (status == 0) { /* got ACK */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", tap->txa_start, IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), tap->txa_qframes, tap->txa_seqpending, tap->txa_tid); /* NB: timer already stopped in bar_tx_complete */ tap->txa_start = tap->txa_seqpending; tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; } } /* * Transmit a BAR frame to the specified node. The * BAR contents are drawn from the supplied aggregation * state associated with the node. * * NB: we only handle immediate ACK w/ compressed bitmap. */ int ieee80211_send_bar(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) { #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame_bar *bar; struct mbuf *m; uint16_t barctl, barseqctl; uint8_t *frm; int tid, ret; IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { /* no ADDBA response, should not happen */ /* XXX stat+msg */ return EINVAL; } /* XXX locking */ bar_stop_timer(tap); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { m_freem(m); senderr(ENOMEM, is_tx_nobuf); /* XXX */ /* NOTREACHED */ } bar = mtod(m, struct ieee80211_frame_bar *); bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; bar->i_fc[1] = 0; IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); tid = tap->txa_tid; barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 0 : IEEE80211_BAR_NOACK) | IEEE80211_BAR_COMP - | SM(tid, IEEE80211_BAR_TID) + | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID) ; - barseqctl = SM(seq, IEEE80211_BAR_SEQ_START); + barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START); /* NB: known to have proper alignment */ bar->i_ctl = htole16(barctl); bar->i_seq = htole16(barseqctl); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); M_WME_SETAC(m, WME_AC_VO); IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ /* XXX locking */ /* init/bump attempts counter */ if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) tap->txa_attempts = 1; else tap->txa_attempts++; tap->txa_seqpending = seq; tap->txa_flags |= IEEE80211_AGGR_BARPEND; IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", tid, barctl, seq, tap->txa_attempts); /* * ic_raw_xmit will free the node reference * regardless of queue/TX success or failure. */ IEEE80211_TX_LOCK(ic); ret = ieee80211_raw_output(vap, ni, m, NULL); IEEE80211_TX_UNLOCK(ic); if (ret != 0) { IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, ni, "send BAR: failed: (ret = %d)\n", ret); /* xmit failed, clear state flag */ tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; vap->iv_stats.is_ampdu_bar_tx_fail++; return ret; } /* XXX hack against tx complete happening before timer is started */ if (tap->txa_flags & IEEE80211_AGGR_BARPEND) bar_start_timer(tap); return 0; bad: IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: bad! ret=%d", __func__, ret); vap->iv_stats.is_ampdu_bar_tx_fail++; ieee80211_free_node(ni); return ret; #undef senderr } static int ht_action_output(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211_bpf_params params; memset(¶ms, 0, sizeof(params)); params.ibp_pri = WME_AC_VO; params.ibp_rate0 = ni->ni_txparms->mgmtrate; /* NB: we know all frames are unicast */ params.ibp_try0 = ni->ni_txparms->maxretry; params.ibp_power = ni->ni_txpower; return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, ¶ms); } #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) /* * Send an action management frame. The arguments are stuff * into a frame without inspection; the caller is assumed to * prepare them carefully (e.g. based on the aggregation state). */ static int ht_send_action_ba_addba(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; uint16_t *args = arg0; struct mbuf *m; uint8_t *frm; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "send ADDBA %s: dialogtoken %d status %d " "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? - "request" : "response", - args[0], args[1], args[2], MS(args[2], IEEE80211_BAPS_TID), - MS(args[2], IEEE80211_BAPS_AMSDU), args[3], args[4]); + "request" : "response", args[0], args[1], args[2], + _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID), + _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU), + args[3], args[4]); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ /* XXX may action payload */ + sizeof(struct ieee80211_action_ba_addbaresponse) ); if (m != NULL) { *frm++ = category; *frm++ = action; *frm++ = args[0]; /* dialog token */ if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) ADDSHORT(frm, args[1]); /* status code */ ADDSHORT(frm, args[2]); /* baparamset */ ADDSHORT(frm, args[3]); /* batimeout */ if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ADDSHORT(frm, args[4]); /* baseqctl */ m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return ht_action_output(ni, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int ht_send_action_ba_delba(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; uint16_t *args = arg0; struct mbuf *m; uint16_t baparamset; uint8_t *frm; - baparamset = SM(args[0], IEEE80211_DELBAPS_TID) + baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID) | args[1] ; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "send DELBA action: tid %d, initiator %d reason %d (%s)", args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ /* XXX may action payload */ + sizeof(struct ieee80211_action_ba_addbaresponse) ); if (m != NULL) { *frm++ = category; *frm++ = action; ADDSHORT(frm, baparamset); ADDSHORT(frm, args[2]); /* reason code */ m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return ht_action_output(ni, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int ht_send_action_ht_txchwidth(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct mbuf *m; uint8_t *frm; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "send HT txchwidth: width %d", IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ /* XXX may action payload */ + sizeof(struct ieee80211_action_ba_addbaresponse) ); if (m != NULL) { *frm++ = category; *frm++ = action; *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? IEEE80211_A_HT_TXCHWIDTH_2040 : IEEE80211_A_HT_TXCHWIDTH_20; m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return ht_action_output(ni, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } #undef ADDSHORT /* * Construct the MCS bit mask for inclusion in an HT capabilities * information element. */ static void ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) { int i; uint8_t txparams; KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), ("ic_rxstream %d out of range", ic->ic_rxstream)); KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), ("ic_txstream %d out of range", ic->ic_txstream)); for (i = 0; i < ic->ic_rxstream * 8; i++) setbit(frm, i); if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) setbit(frm, 32); if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { if (ic->ic_rxstream >= 2) { for (i = 33; i <= 38; i++) setbit(frm, i); } if (ic->ic_rxstream >= 3) { for (i = 39; i <= 52; i++) setbit(frm, i); } if (ic->ic_txstream >= 4) { for (i = 53; i <= 76; i++) setbit(frm, i); } } if (ic->ic_rxstream != ic->ic_txstream) { txparams = 0x1; /* TX MCS set defined */ txparams |= 0x2; /* TX RX MCS not equal */ txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) txparams |= 0x16; /* TX unequal modulation sup */ } else txparams = 0; frm[12] = txparams; } /* * Add body of an HTCAP information element. */ static uint8_t * ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) { #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; uint16_t caps, extcaps; int rxmax, density; /* HT capabilities */ caps = vap->iv_htcaps & 0xffff; /* * Note channel width depends on whether we are operating as * a sta or not. When operating as a sta we are generating * a request based on our desired configuration. Otherwise * we are operational and the channel attributes identify * how we've been setup (which might be different if a fixed * channel is specified). */ if (vap->iv_opmode == IEEE80211_M_STA) { /* override 20/40 use based on config */ if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) caps |= IEEE80211_HTCAP_CHWIDTH40; else caps &= ~IEEE80211_HTCAP_CHWIDTH40; /* Start by using the advertised settings */ - rxmax = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); - density = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); + rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam, + IEEE80211_HTCAP_MAXRXAMPDU); + density = _IEEE80211_MASKSHIFT(ni->ni_htparam, + IEEE80211_HTCAP_MPDUDENSITY); IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", __func__, rxmax, density, vap->iv_ampdu_rxmax, vap->iv_ampdu_density); /* Cap at VAP rxmax */ if (rxmax > vap->iv_ampdu_rxmax) rxmax = vap->iv_ampdu_rxmax; /* * If the VAP ampdu density value greater, use that. * * (Larger density value == larger minimum gap between A-MPDU * subframes.) */ if (vap->iv_ampdu_density > density) density = vap->iv_ampdu_density; /* * NB: Hardware might support HT40 on some but not all * channels. We can't determine this earlier because only * after association the channel is upgraded to HT based * on the negotiated capabilities. */ if (ni->ni_chan != IEEE80211_CHAN_ANYC && findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) caps &= ~IEEE80211_HTCAP_CHWIDTH40; } else { /* override 20/40 use based on current channel */ if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) caps |= IEEE80211_HTCAP_CHWIDTH40; else caps &= ~IEEE80211_HTCAP_CHWIDTH40; /* XXX TODO should it start by using advertised settings? */ rxmax = vap->iv_ampdu_rxmax; density = vap->iv_ampdu_density; } /* adjust short GI based on channel and config */ if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI20; if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI40; /* adjust STBC based on receive capabilities */ if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) caps &= ~IEEE80211_HTCAP_RXSTBC; /* adjust LDPC based on receive capabilites */ if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) caps &= ~IEEE80211_HTCAP_LDPC; ADDSHORT(frm, caps); /* HT parameters */ - *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) - | SM(density, IEEE80211_HTCAP_MPDUDENSITY) + *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) + | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) ; frm++; /* pre-zero remainder of ie */ memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); /* supported MCS set */ /* * XXX: For sta mode the rate set should be restricted based * on the AP's capabilities, but ni_htrates isn't setup when * we're called to form an AssocReq frame so for now we're * restricted to the device capabilities. */ ieee80211_set_mcsset(ni->ni_ic, frm); frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset); /* HT extended capabilities */ extcaps = vap->iv_htextcaps & 0xffff; ADDSHORT(frm, extcaps); frm += sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_txbf); return frm; #undef ADDSHORT } /* * Add 802.11n HT capabilities information element */ uint8_t * ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_HTCAP; frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; return ieee80211_add_htcap_body(frm + 2, ni); } /* * Non-associated probe request - add HT capabilities based on * the current channel configuration. */ static uint8_t * ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, struct ieee80211_channel *c) { #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) struct ieee80211com *ic = vap->iv_ic; uint16_t caps, extcaps; int rxmax, density; /* HT capabilities */ caps = vap->iv_htcaps & 0xffff; /* * We don't use this in STA mode; only in IBSS mode. * So in IBSS mode we base our HTCAP flags on the * given channel. */ /* override 20/40 use based on current channel */ if (IEEE80211_IS_CHAN_HT40(c)) caps |= IEEE80211_HTCAP_CHWIDTH40; else caps &= ~IEEE80211_HTCAP_CHWIDTH40; /* Use the currently configured values */ rxmax = vap->iv_ampdu_rxmax; density = vap->iv_ampdu_density; /* adjust short GI based on channel and config */ if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI20; if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI40; ADDSHORT(frm, caps); /* HT parameters */ - *frm = SM(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) - | SM(density, IEEE80211_HTCAP_MPDUDENSITY) + *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) + | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) ; frm++; /* pre-zero remainder of ie */ memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); /* supported MCS set */ /* * XXX: For sta mode the rate set should be restricted based * on the AP's capabilities, but ni_htrates isn't setup when * we're called to form an AssocReq frame so for now we're * restricted to the device capabilities. */ ieee80211_set_mcsset(ic, frm); frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset); /* HT extended capabilities */ extcaps = vap->iv_htextcaps & 0xffff; ADDSHORT(frm, extcaps); frm += sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_txbf); return frm; #undef ADDSHORT } /* * Add 802.11n HT capabilities information element */ uint8_t * ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, struct ieee80211_channel *c) { frm[0] = IEEE80211_ELEMID_HTCAP; frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; return ieee80211_add_htcap_body_ch(frm + 2, vap, c); } /* * Add Broadcom OUI wrapped standard HTCAP ie; this is * used for compatibility w/ pre-draft implementations. */ uint8_t * ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_VENDOR; frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; frm[2] = (BCM_OUI >> 0) & 0xff; frm[3] = (BCM_OUI >> 8) & 0xff; frm[4] = (BCM_OUI >> 16) & 0xff; frm[5] = BCM_OUI_HTCAP; return ieee80211_add_htcap_body(frm + 6, ni); } /* * Construct the MCS bit mask of basic rates * for inclusion in an HT information element. */ static void ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) { int i; for (i = 0; i < rs->rs_nrates; i++) { int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && r < IEEE80211_HTRATE_MAXSIZE) { /* NB: this assumes a particular implementation */ setbit(frm, r); } } } /* * Update the HTINFO ie for a beacon frame. */ void ieee80211_ht_update_beacon(struct ieee80211vap *vap, struct ieee80211_beacon_offsets *bo) { #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) struct ieee80211_node *ni; const struct ieee80211_channel *bsschan; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_ie_htinfo *ht = (struct ieee80211_ie_htinfo *) bo->bo_htinfo; ni = ieee80211_ref_node(vap->iv_bss); bsschan = ni->ni_chan; /* XXX only update on channel change */ ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; else ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; if (IEEE80211_IS_CHAN_HT40U(bsschan)) ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; else if (IEEE80211_IS_CHAN_HT40D(bsschan)) ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; else ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; if (IEEE80211_IS_CHAN_HT40(bsschan)) ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; /* protection mode */ /* * XXX TODO: this uses the global flag, not the per-VAP flag. * Eventually (once the protection modes are done per-channel * rather than per-VAP) we can flip this over to be per-VAP but * using the channel protection mode. */ ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; ieee80211_free_node(ni); /* XXX propagate to vendor ie's */ #undef PROTMODE } /* * Add body of an HTINFO information element. * * NB: We don't use struct ieee80211_ie_htinfo because we can * be called to fillin both a standard ie and a compat ie that * has a vendor OUI at the front. */ static uint8_t * ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; /* pre-zero remainder of ie */ memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); /* primary/control channel center */ *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; else frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; else frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; /* * Add current protection mode. Unlike for beacons, * this will respect the per-VAP flags. */ frm[1] = vap->iv_curhtprotmode; frm += 5; /* basic MCS set */ ieee80211_set_basic_htrates(frm, &ni->ni_htrates); frm += sizeof(struct ieee80211_ie_htinfo) - __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); return frm; } /* * Add 802.11n HT information element. */ uint8_t * ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_HTINFO; frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; return ieee80211_add_htinfo_body(frm + 2, ni); } /* * Add Broadcom OUI wrapped standard HTINFO ie; this is * used for compatibility w/ pre-draft implementations. */ uint8_t * ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_VENDOR; frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; frm[2] = (BCM_OUI >> 0) & 0xff; frm[3] = (BCM_OUI >> 8) & 0xff; frm[4] = (BCM_OUI >> 16) & 0xff; frm[5] = BCM_OUI_HTINFO; return ieee80211_add_htinfo_body(frm + 6, ni); } Index: head/sys/net80211/ieee80211_ioctl.c =================================================================== --- head/sys/net80211/ieee80211_ioctl.c (revision 366111) +++ head/sys/net80211/ieee80211_ioctl.c (revision 366112) @@ -1,3703 +1,3701 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * IEEE 802.11 ioctl support (FreeBSD-specific) */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include #define IS_UP_AUTO(_vap) \ (IFNET_IS_UP_RUNNING((_vap)->iv_ifp) && \ (_vap)->iv_roaming == IEEE80211_ROAMING_AUTO) static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; static struct ieee80211_channel *findchannel(struct ieee80211com *, int ieee, int mode); static int ieee80211_scanreq(struct ieee80211vap *, struct ieee80211_scan_req *); static int ieee80211_ioctl_getkey(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; struct ieee80211req_key ik; struct ieee80211_key *wk; const struct ieee80211_cipher *cip; u_int kid; int error; if (ireq->i_len != sizeof(ik)) return EINVAL; error = copyin(ireq->i_data, &ik, sizeof(ik)); if (error) return error; kid = ik.ik_keyix; if (kid == IEEE80211_KEYIX_NONE) { ni = ieee80211_find_vap_node(&ic->ic_sta, vap, ik.ik_macaddr); if (ni == NULL) return ENOENT; wk = &ni->ni_ucastkey; } else { if (kid >= IEEE80211_WEP_NKID) return EINVAL; wk = &vap->iv_nw_keys[kid]; IEEE80211_ADDR_COPY(&ik.ik_macaddr, vap->iv_bss->ni_macaddr); ni = NULL; } cip = wk->wk_cipher; ik.ik_type = cip->ic_cipher; ik.ik_keylen = wk->wk_keylen; ik.ik_flags = wk->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV); if (wk->wk_keyix == vap->iv_def_txkey) ik.ik_flags |= IEEE80211_KEY_DEFAULT; /* XXX TODO: move priv check to ieee80211_freebsd.c */ if (priv_check(curthread, PRIV_NET80211_VAP_GETKEY) == 0) { /* NB: only root can read key data */ ik.ik_keyrsc = wk->wk_keyrsc[IEEE80211_NONQOS_TID]; ik.ik_keytsc = wk->wk_keytsc; memcpy(ik.ik_keydata, wk->wk_key, wk->wk_keylen); if (cip->ic_cipher == IEEE80211_CIPHER_TKIP) { memcpy(ik.ik_keydata+wk->wk_keylen, wk->wk_key + IEEE80211_KEYBUF_SIZE, IEEE80211_MICBUF_SIZE); ik.ik_keylen += IEEE80211_MICBUF_SIZE; } } else { ik.ik_keyrsc = 0; ik.ik_keytsc = 0; memset(ik.ik_keydata, 0, sizeof(ik.ik_keydata)); } if (ni != NULL) ieee80211_free_node(ni); return copyout(&ik, ireq->i_data, sizeof(ik)); } static int ieee80211_ioctl_getchanlist(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; if (sizeof(ic->ic_chan_active) < ireq->i_len) ireq->i_len = sizeof(ic->ic_chan_active); return copyout(&ic->ic_chan_active, ireq->i_data, ireq->i_len); } static int ieee80211_ioctl_getchaninfo(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; uint32_t space; space = __offsetof(struct ieee80211req_chaninfo, ic_chans[ic->ic_nchans]); if (space > ireq->i_len) space = ireq->i_len; /* XXX assumes compatible layout */ return copyout(&ic->ic_nchans, ireq->i_data, space); } static int ieee80211_ioctl_getwpaie(struct ieee80211vap *vap, struct ieee80211req *ireq, int req) { struct ieee80211_node *ni; struct ieee80211req_wpaie2 *wpaie; int error; if (ireq->i_len < IEEE80211_ADDR_LEN) return EINVAL; wpaie = IEEE80211_MALLOC(sizeof(*wpaie), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (wpaie == NULL) return ENOMEM; error = copyin(ireq->i_data, wpaie->wpa_macaddr, IEEE80211_ADDR_LEN); if (error != 0) goto bad; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, wpaie->wpa_macaddr); if (ni == NULL) { error = ENOENT; goto bad; } if (ni->ni_ies.wpa_ie != NULL) { int ielen = ni->ni_ies.wpa_ie[1] + 2; if (ielen > sizeof(wpaie->wpa_ie)) ielen = sizeof(wpaie->wpa_ie); memcpy(wpaie->wpa_ie, ni->ni_ies.wpa_ie, ielen); } if (req == IEEE80211_IOC_WPAIE2) { if (ni->ni_ies.rsn_ie != NULL) { int ielen = ni->ni_ies.rsn_ie[1] + 2; if (ielen > sizeof(wpaie->rsn_ie)) ielen = sizeof(wpaie->rsn_ie); memcpy(wpaie->rsn_ie, ni->ni_ies.rsn_ie, ielen); } if (ireq->i_len > sizeof(struct ieee80211req_wpaie2)) ireq->i_len = sizeof(struct ieee80211req_wpaie2); } else { /* compatibility op, may overwrite wpa ie */ /* XXX check ic_flags? */ if (ni->ni_ies.rsn_ie != NULL) { int ielen = ni->ni_ies.rsn_ie[1] + 2; if (ielen > sizeof(wpaie->wpa_ie)) ielen = sizeof(wpaie->wpa_ie); memcpy(wpaie->wpa_ie, ni->ni_ies.rsn_ie, ielen); } if (ireq->i_len > sizeof(struct ieee80211req_wpaie)) ireq->i_len = sizeof(struct ieee80211req_wpaie); } ieee80211_free_node(ni); error = copyout(wpaie, ireq->i_data, ireq->i_len); bad: IEEE80211_FREE(wpaie, M_TEMP); return error; } static int ieee80211_ioctl_getstastats(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; uint8_t macaddr[IEEE80211_ADDR_LEN]; const size_t off = __offsetof(struct ieee80211req_sta_stats, is_stats); int error; if (ireq->i_len < off) return EINVAL; error = copyin(ireq->i_data, macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, macaddr); if (ni == NULL) return ENOENT; if (ireq->i_len > sizeof(struct ieee80211req_sta_stats)) ireq->i_len = sizeof(struct ieee80211req_sta_stats); /* NB: copy out only the statistics */ error = copyout(&ni->ni_stats, (uint8_t *) ireq->i_data + off, ireq->i_len - off); ieee80211_free_node(ni); return error; } struct scanreq { struct ieee80211req_scan_result *sr; size_t space; }; static size_t scan_space(const struct ieee80211_scan_entry *se, int *ielen) { size_t len; *ielen = se->se_ies.len; /* * NB: ie's can be no more than 255 bytes and the max 802.11 * packet is <3Kbytes so we are sure this doesn't overflow * 16-bits; if this is a concern we can drop the ie's. */ len = sizeof(struct ieee80211req_scan_result) + se->se_ssid[1] + se->se_meshid[1] + *ielen; return roundup(len, sizeof(uint32_t)); } static void get_scan_space(void *arg, const struct ieee80211_scan_entry *se) { struct scanreq *req = arg; int ielen; req->space += scan_space(se, &ielen); } static void get_scan_result(void *arg, const struct ieee80211_scan_entry *se) { struct scanreq *req = arg; struct ieee80211req_scan_result *sr; int ielen, len, nr, nxr; uint8_t *cp; len = scan_space(se, &ielen); if (len > req->space) return; sr = req->sr; KASSERT(len <= 65535 && ielen <= 65535, ("len %u ssid %u ie %u", len, se->se_ssid[1], ielen)); sr->isr_len = len; sr->isr_ie_off = sizeof(struct ieee80211req_scan_result); sr->isr_ie_len = ielen; sr->isr_freq = se->se_chan->ic_freq; sr->isr_flags = se->se_chan->ic_flags; sr->isr_rssi = se->se_rssi; sr->isr_noise = se->se_noise; sr->isr_intval = se->se_intval; sr->isr_capinfo = se->se_capinfo; sr->isr_erp = se->se_erp; IEEE80211_ADDR_COPY(sr->isr_bssid, se->se_bssid); nr = min(se->se_rates[1], IEEE80211_RATE_MAXSIZE); memcpy(sr->isr_rates, se->se_rates+2, nr); nxr = min(se->se_xrates[1], IEEE80211_RATE_MAXSIZE - nr); memcpy(sr->isr_rates+nr, se->se_xrates+2, nxr); sr->isr_nrates = nr + nxr; /* copy SSID */ sr->isr_ssid_len = se->se_ssid[1]; cp = ((uint8_t *)sr) + sr->isr_ie_off; memcpy(cp, se->se_ssid+2, sr->isr_ssid_len); /* copy mesh id */ cp += sr->isr_ssid_len; sr->isr_meshid_len = se->se_meshid[1]; memcpy(cp, se->se_meshid+2, sr->isr_meshid_len); cp += sr->isr_meshid_len; if (ielen) memcpy(cp, se->se_ies.data, ielen); req->space -= len; req->sr = (struct ieee80211req_scan_result *)(((uint8_t *)sr) + len); } static int ieee80211_ioctl_getscanresults(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct scanreq req; int error; if (ireq->i_len < sizeof(struct scanreq)) return EFAULT; error = 0; req.space = 0; ieee80211_scan_iterate(vap, get_scan_space, &req); if (req.space > ireq->i_len) req.space = ireq->i_len; if (req.space > 0) { uint32_t space; void *p; space = req.space; /* XXX M_WAITOK after driver lock released */ p = IEEE80211_MALLOC(space, M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (p == NULL) return ENOMEM; req.sr = p; ieee80211_scan_iterate(vap, get_scan_result, &req); ireq->i_len = space - req.space; error = copyout(p, ireq->i_data, ireq->i_len); IEEE80211_FREE(p, M_TEMP); } else ireq->i_len = 0; return error; } struct stainforeq { struct ieee80211req_sta_info *si; size_t space; }; static size_t sta_space(const struct ieee80211_node *ni, size_t *ielen) { *ielen = ni->ni_ies.len; return roundup(sizeof(struct ieee80211req_sta_info) + *ielen, sizeof(uint32_t)); } static void get_sta_space(void *arg, struct ieee80211_node *ni) { struct stainforeq *req = arg; size_t ielen; if (ni->ni_vap->iv_opmode == IEEE80211_M_HOSTAP && ni->ni_associd == 0) /* only associated stations */ return; req->space += sta_space(ni, &ielen); } static void get_sta_info(void *arg, struct ieee80211_node *ni) { struct stainforeq *req = arg; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211req_sta_info *si; size_t ielen, len; uint8_t *cp; if (vap->iv_opmode == IEEE80211_M_HOSTAP && ni->ni_associd == 0) /* only associated stations */ return; if (ni->ni_chan == IEEE80211_CHAN_ANYC) /* XXX bogus entry */ return; len = sta_space(ni, &ielen); if (len > req->space) return; si = req->si; si->isi_len = len; si->isi_ie_off = sizeof(struct ieee80211req_sta_info); si->isi_ie_len = ielen; si->isi_freq = ni->ni_chan->ic_freq; si->isi_flags = ni->ni_chan->ic_flags; si->isi_state = ni->ni_flags; si->isi_authmode = ni->ni_authmode; vap->iv_ic->ic_node_getsignal(ni, &si->isi_rssi, &si->isi_noise); vap->iv_ic->ic_node_getmimoinfo(ni, &si->isi_mimo); si->isi_capinfo = ni->ni_capinfo; si->isi_erp = ni->ni_erp; IEEE80211_ADDR_COPY(si->isi_macaddr, ni->ni_macaddr); si->isi_nrates = ni->ni_rates.rs_nrates; if (si->isi_nrates > 15) si->isi_nrates = 15; memcpy(si->isi_rates, ni->ni_rates.rs_rates, si->isi_nrates); si->isi_txrate = ni->ni_txrate; if (si->isi_txrate & IEEE80211_RATE_MCS) { const struct ieee80211_mcs_rates *mcs = &ieee80211_htrates[ni->ni_txrate &~ IEEE80211_RATE_MCS]; if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { if (ni->ni_flags & IEEE80211_NODE_SGI40) si->isi_txmbps = mcs->ht40_rate_800ns; else si->isi_txmbps = mcs->ht40_rate_400ns; } else { if (ni->ni_flags & IEEE80211_NODE_SGI20) si->isi_txmbps = mcs->ht20_rate_800ns; else si->isi_txmbps = mcs->ht20_rate_400ns; } } else si->isi_txmbps = si->isi_txrate; si->isi_associd = ni->ni_associd; si->isi_txpower = ni->ni_txpower; si->isi_vlan = ni->ni_vlan; if (ni->ni_flags & IEEE80211_NODE_QOS) { memcpy(si->isi_txseqs, ni->ni_txseqs, sizeof(ni->ni_txseqs)); memcpy(si->isi_rxseqs, ni->ni_rxseqs, sizeof(ni->ni_rxseqs)); } else { si->isi_txseqs[0] = ni->ni_txseqs[IEEE80211_NONQOS_TID]; si->isi_rxseqs[0] = ni->ni_rxseqs[IEEE80211_NONQOS_TID]; } /* NB: leave all cases in case we relax ni_associd == 0 check */ if (ieee80211_node_is_authorized(ni)) si->isi_inact = vap->iv_inact_run; else if (ni->ni_associd != 0 || (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) si->isi_inact = vap->iv_inact_auth; else si->isi_inact = vap->iv_inact_init; si->isi_inact = (si->isi_inact - ni->ni_inact) * IEEE80211_INACT_WAIT; si->isi_localid = ni->ni_mllid; si->isi_peerid = ni->ni_mlpid; si->isi_peerstate = ni->ni_mlstate; if (ielen) { cp = ((uint8_t *)si) + si->isi_ie_off; memcpy(cp, ni->ni_ies.data, ielen); } req->si = (struct ieee80211req_sta_info *)(((uint8_t *)si) + len); req->space -= len; } static int getstainfo_common(struct ieee80211vap *vap, struct ieee80211req *ireq, struct ieee80211_node *ni, size_t off) { struct ieee80211com *ic = vap->iv_ic; struct stainforeq req; size_t space; void *p; int error; error = 0; req.space = 0; if (ni == NULL) { ieee80211_iterate_nodes_vap(&ic->ic_sta, vap, get_sta_space, &req); } else get_sta_space(&req, ni); if (req.space > ireq->i_len) req.space = ireq->i_len; if (req.space > 0) { space = req.space; /* XXX M_WAITOK after driver lock released */ p = IEEE80211_MALLOC(space, M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (p == NULL) { error = ENOMEM; goto bad; } req.si = p; if (ni == NULL) { ieee80211_iterate_nodes_vap(&ic->ic_sta, vap, get_sta_info, &req); } else get_sta_info(&req, ni); ireq->i_len = space - req.space; error = copyout(p, (uint8_t *) ireq->i_data+off, ireq->i_len); IEEE80211_FREE(p, M_TEMP); } else ireq->i_len = 0; bad: if (ni != NULL) ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_getstainfo(struct ieee80211vap *vap, struct ieee80211req *ireq) { uint8_t macaddr[IEEE80211_ADDR_LEN]; const size_t off = __offsetof(struct ieee80211req_sta_req, info); struct ieee80211_node *ni; int error; if (ireq->i_len < sizeof(struct ieee80211req_sta_req)) return EFAULT; error = copyin(ireq->i_data, macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; if (IEEE80211_ADDR_EQ(macaddr, vap->iv_ifp->if_broadcastaddr)) { ni = NULL; } else { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, macaddr); if (ni == NULL) return ENOENT; } return getstainfo_common(vap, ireq, ni, off); } static int ieee80211_ioctl_getstatxpow(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_txpow txpow; int error; if (ireq->i_len != sizeof(txpow)) return EINVAL; error = copyin(ireq->i_data, &txpow, sizeof(txpow)); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, txpow.it_macaddr); if (ni == NULL) return ENOENT; txpow.it_txpow = ni->ni_txpower; error = copyout(&txpow, ireq->i_data, sizeof(txpow)); ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_getwmeparam(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; struct wmeParams *wmep; int ac; if ((ic->ic_caps & IEEE80211_C_WME) == 0) return EINVAL; ac = (ireq->i_len & IEEE80211_WMEPARAM_VAL); if (ac >= WME_NUM_AC) ac = WME_AC_BE; if (ireq->i_len & IEEE80211_WMEPARAM_BSS) wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac]; else wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac]; switch (ireq->i_type) { case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ ireq->i_val = wmep->wmep_logcwmin; break; case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ ireq->i_val = wmep->wmep_logcwmax; break; case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ ireq->i_val = wmep->wmep_aifsn; break; case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ ireq->i_val = wmep->wmep_txopLimit; break; case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac]; ireq->i_val = wmep->wmep_acm; break; case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only)*/ wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac]; ireq->i_val = !wmep->wmep_noackPolicy; break; } return 0; } static int ieee80211_ioctl_getmaccmd(struct ieee80211vap *vap, struct ieee80211req *ireq) { const struct ieee80211_aclator *acl = vap->iv_acl; return (acl == NULL ? EINVAL : acl->iac_getioctl(vap, ireq)); } static int ieee80211_ioctl_getcurchan(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *c; if (ireq->i_len != sizeof(struct ieee80211_channel)) return EINVAL; /* * vap's may have different operating channels when HT is * in use. When in RUN state report the vap-specific channel. * Otherwise return curchan. */ if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) c = vap->iv_bss->ni_chan; else c = ic->ic_curchan; return copyout(c, ireq->i_data, sizeof(*c)); } static int getappie(const struct ieee80211_appie *aie, struct ieee80211req *ireq) { if (aie == NULL) return EINVAL; /* NB: truncate, caller can check length */ if (ireq->i_len > aie->ie_len) ireq->i_len = aie->ie_len; return copyout(aie->ie_data, ireq->i_data, ireq->i_len); } static int ieee80211_ioctl_getappie(struct ieee80211vap *vap, struct ieee80211req *ireq) { uint8_t fc0; fc0 = ireq->i_val & 0xff; if ((fc0 & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return EINVAL; /* NB: could check iv_opmode and reject but hardly worth the effort */ switch (fc0 & IEEE80211_FC0_SUBTYPE_MASK) { case IEEE80211_FC0_SUBTYPE_BEACON: return getappie(vap->iv_appie_beacon, ireq); case IEEE80211_FC0_SUBTYPE_PROBE_RESP: return getappie(vap->iv_appie_proberesp, ireq); case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: return getappie(vap->iv_appie_assocresp, ireq); case IEEE80211_FC0_SUBTYPE_PROBE_REQ: return getappie(vap->iv_appie_probereq, ireq); case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: return getappie(vap->iv_appie_assocreq, ireq); case IEEE80211_FC0_SUBTYPE_BEACON|IEEE80211_FC0_SUBTYPE_PROBE_RESP: return getappie(vap->iv_appie_wpa, ireq); } return EINVAL; } static int ieee80211_ioctl_getregdomain(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; if (ireq->i_len != sizeof(ic->ic_regdomain)) return EINVAL; return copyout(&ic->ic_regdomain, ireq->i_data, sizeof(ic->ic_regdomain)); } static int ieee80211_ioctl_getroam(struct ieee80211vap *vap, const struct ieee80211req *ireq) { size_t len = ireq->i_len; /* NB: accept short requests for backwards compat */ if (len > sizeof(vap->iv_roamparms)) len = sizeof(vap->iv_roamparms); return copyout(vap->iv_roamparms, ireq->i_data, len); } static int ieee80211_ioctl_gettxparams(struct ieee80211vap *vap, const struct ieee80211req *ireq) { size_t len = ireq->i_len; /* NB: accept short requests for backwards compat */ if (len > sizeof(vap->iv_txparms)) len = sizeof(vap->iv_txparms); return copyout(vap->iv_txparms, ireq->i_data, len); } static int ieee80211_ioctl_getdevcaps(struct ieee80211com *ic, const struct ieee80211req *ireq) { struct ieee80211_devcaps_req *dc; struct ieee80211req_chaninfo *ci; int maxchans, error; maxchans = 1 + ((ireq->i_len - sizeof(struct ieee80211_devcaps_req)) / sizeof(struct ieee80211_channel)); /* NB: require 1 so we know ic_nchans is accessible */ if (maxchans < 1) return EINVAL; /* constrain max request size, 2K channels is ~24Kbytes */ if (maxchans > 2048) maxchans = 2048; dc = (struct ieee80211_devcaps_req *) IEEE80211_MALLOC(IEEE80211_DEVCAPS_SIZE(maxchans), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (dc == NULL) return ENOMEM; dc->dc_drivercaps = ic->ic_caps; dc->dc_cryptocaps = ic->ic_cryptocaps; dc->dc_htcaps = ic->ic_htcaps; dc->dc_vhtcaps = ic->ic_vhtcaps; ci = &dc->dc_chaninfo; ic->ic_getradiocaps(ic, maxchans, &ci->ic_nchans, ci->ic_chans); KASSERT(ci->ic_nchans <= maxchans, ("nchans %d maxchans %d", ci->ic_nchans, maxchans)); ieee80211_sort_channels(ci->ic_chans, ci->ic_nchans); error = copyout(dc, ireq->i_data, IEEE80211_DEVCAPS_SPACE(dc)); IEEE80211_FREE(dc, M_TEMP); return error; } static int ieee80211_ioctl_getstavlan(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_vlan vlan; int error; if (ireq->i_len != sizeof(vlan)) return EINVAL; error = copyin(ireq->i_data, &vlan, sizeof(vlan)); if (error != 0) return error; if (!IEEE80211_ADDR_EQ(vlan.sv_macaddr, zerobssid)) { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, vlan.sv_macaddr); if (ni == NULL) return ENOENT; } else ni = ieee80211_ref_node(vap->iv_bss); vlan.sv_vlan = ni->ni_vlan; error = copyout(&vlan, ireq->i_data, sizeof(vlan)); ieee80211_free_node(ni); return error; } /* * Dummy ioctl get handler so the linker set is defined. */ static int dummy_ioctl_get(struct ieee80211vap *vap, struct ieee80211req *ireq) { return ENOSYS; } IEEE80211_IOCTL_GET(dummy, dummy_ioctl_get); static int ieee80211_ioctl_getdefault(struct ieee80211vap *vap, struct ieee80211req *ireq) { ieee80211_ioctl_getfunc * const *get; int error; SET_FOREACH(get, ieee80211_ioctl_getset) { error = (*get)(vap, ireq); if (error != ENOSYS) return error; } return EINVAL; } static int ieee80211_ioctl_get80211(struct ieee80211vap *vap, u_long cmd, struct ieee80211req *ireq) { -#define MS(_v, _f) (((_v) & _f) >> _f##_S) struct ieee80211com *ic = vap->iv_ic; u_int kid, len; uint8_t tmpkey[IEEE80211_KEYBUF_SIZE]; char tmpssid[IEEE80211_NWID_LEN]; int error = 0; switch (ireq->i_type) { case IEEE80211_IOC_IC_NAME: len = strlen(ic->ic_name) + 1; if (len > ireq->i_len) return (EINVAL); ireq->i_len = len; error = copyout(ic->ic_name, ireq->i_data, ireq->i_len); break; case IEEE80211_IOC_SSID: switch (vap->iv_state) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: ireq->i_len = vap->iv_des_ssid[0].len; memcpy(tmpssid, vap->iv_des_ssid[0].ssid, ireq->i_len); break; default: ireq->i_len = vap->iv_bss->ni_esslen; memcpy(tmpssid, vap->iv_bss->ni_essid, ireq->i_len); break; } error = copyout(tmpssid, ireq->i_data, ireq->i_len); break; case IEEE80211_IOC_NUMSSIDS: ireq->i_val = 1; break; case IEEE80211_IOC_WEP: if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) ireq->i_val = IEEE80211_WEP_OFF; else if (vap->iv_flags & IEEE80211_F_DROPUNENC) ireq->i_val = IEEE80211_WEP_ON; else ireq->i_val = IEEE80211_WEP_MIXED; break; case IEEE80211_IOC_WEPKEY: kid = (u_int) ireq->i_val; if (kid >= IEEE80211_WEP_NKID) return EINVAL; len = (u_int) vap->iv_nw_keys[kid].wk_keylen; /* NB: only root can read WEP keys */ /* XXX TODO: move priv check to ieee80211_freebsd.c */ if (priv_check(curthread, PRIV_NET80211_VAP_GETKEY) == 0) { bcopy(vap->iv_nw_keys[kid].wk_key, tmpkey, len); } else { bzero(tmpkey, len); } ireq->i_len = len; error = copyout(tmpkey, ireq->i_data, len); break; case IEEE80211_IOC_NUMWEPKEYS: ireq->i_val = IEEE80211_WEP_NKID; break; case IEEE80211_IOC_WEPTXKEY: ireq->i_val = vap->iv_def_txkey; break; case IEEE80211_IOC_AUTHMODE: if (vap->iv_flags & IEEE80211_F_WPA) ireq->i_val = IEEE80211_AUTH_WPA; else ireq->i_val = vap->iv_bss->ni_authmode; break; case IEEE80211_IOC_CHANNEL: ireq->i_val = ieee80211_chan2ieee(ic, ic->ic_curchan); break; case IEEE80211_IOC_POWERSAVE: if (vap->iv_flags & IEEE80211_F_PMGTON) ireq->i_val = IEEE80211_POWERSAVE_ON; else ireq->i_val = IEEE80211_POWERSAVE_OFF; break; case IEEE80211_IOC_POWERSAVESLEEP: ireq->i_val = ic->ic_lintval; break; case IEEE80211_IOC_RTSTHRESHOLD: ireq->i_val = vap->iv_rtsthreshold; break; case IEEE80211_IOC_PROTMODE: ireq->i_val = vap->iv_protmode; break; case IEEE80211_IOC_TXPOWER: /* * Tx power limit is the min of max regulatory * power, any user-set limit, and the max the * radio can do. * * TODO: methodize this */ ireq->i_val = 2*ic->ic_curchan->ic_maxregpower; if (ireq->i_val > ic->ic_txpowlimit) ireq->i_val = ic->ic_txpowlimit; if (ireq->i_val > ic->ic_curchan->ic_maxpower) ireq->i_val = ic->ic_curchan->ic_maxpower; break; case IEEE80211_IOC_WPA: switch (vap->iv_flags & IEEE80211_F_WPA) { case IEEE80211_F_WPA1: ireq->i_val = 1; break; case IEEE80211_F_WPA2: ireq->i_val = 2; break; case IEEE80211_F_WPA1 | IEEE80211_F_WPA2: ireq->i_val = 3; break; default: ireq->i_val = 0; break; } break; case IEEE80211_IOC_CHANLIST: error = ieee80211_ioctl_getchanlist(vap, ireq); break; case IEEE80211_IOC_ROAMING: ireq->i_val = vap->iv_roaming; break; case IEEE80211_IOC_PRIVACY: ireq->i_val = (vap->iv_flags & IEEE80211_F_PRIVACY) != 0; break; case IEEE80211_IOC_DROPUNENCRYPTED: ireq->i_val = (vap->iv_flags & IEEE80211_F_DROPUNENC) != 0; break; case IEEE80211_IOC_COUNTERMEASURES: ireq->i_val = (vap->iv_flags & IEEE80211_F_COUNTERM) != 0; break; case IEEE80211_IOC_WME: ireq->i_val = (vap->iv_flags & IEEE80211_F_WME) != 0; break; case IEEE80211_IOC_HIDESSID: ireq->i_val = (vap->iv_flags & IEEE80211_F_HIDESSID) != 0; break; case IEEE80211_IOC_APBRIDGE: ireq->i_val = (vap->iv_flags & IEEE80211_F_NOBRIDGE) == 0; break; case IEEE80211_IOC_WPAKEY: error = ieee80211_ioctl_getkey(vap, ireq); break; case IEEE80211_IOC_CHANINFO: error = ieee80211_ioctl_getchaninfo(vap, ireq); break; case IEEE80211_IOC_BSSID: if (ireq->i_len != IEEE80211_ADDR_LEN) return EINVAL; if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) { error = copyout(vap->iv_opmode == IEEE80211_M_WDS ? vap->iv_bss->ni_macaddr : vap->iv_bss->ni_bssid, ireq->i_data, ireq->i_len); } else error = copyout(vap->iv_des_bssid, ireq->i_data, ireq->i_len); break; case IEEE80211_IOC_WPAIE: case IEEE80211_IOC_WPAIE2: error = ieee80211_ioctl_getwpaie(vap, ireq, ireq->i_type); break; case IEEE80211_IOC_SCAN_RESULTS: error = ieee80211_ioctl_getscanresults(vap, ireq); break; case IEEE80211_IOC_STA_STATS: error = ieee80211_ioctl_getstastats(vap, ireq); break; case IEEE80211_IOC_TXPOWMAX: ireq->i_val = vap->iv_bss->ni_txpower; break; case IEEE80211_IOC_STA_TXPOW: error = ieee80211_ioctl_getstatxpow(vap, ireq); break; case IEEE80211_IOC_STA_INFO: error = ieee80211_ioctl_getstainfo(vap, ireq); break; case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only) */ error = ieee80211_ioctl_getwmeparam(vap, ireq); break; case IEEE80211_IOC_DTIM_PERIOD: ireq->i_val = vap->iv_dtim_period; break; case IEEE80211_IOC_BEACON_INTERVAL: /* NB: get from ic_bss for station mode */ ireq->i_val = vap->iv_bss->ni_intval; break; case IEEE80211_IOC_PUREG: ireq->i_val = (vap->iv_flags & IEEE80211_F_PUREG) != 0; break; case IEEE80211_IOC_QUIET: ireq->i_val = vap->iv_quiet; break; case IEEE80211_IOC_QUIET_COUNT: ireq->i_val = vap->iv_quiet_count; break; case IEEE80211_IOC_QUIET_PERIOD: ireq->i_val = vap->iv_quiet_period; break; case IEEE80211_IOC_QUIET_DUR: ireq->i_val = vap->iv_quiet_duration; break; case IEEE80211_IOC_QUIET_OFFSET: ireq->i_val = vap->iv_quiet_offset; break; case IEEE80211_IOC_BGSCAN: ireq->i_val = (vap->iv_flags & IEEE80211_F_BGSCAN) != 0; break; case IEEE80211_IOC_BGSCAN_IDLE: ireq->i_val = vap->iv_bgscanidle*hz/1000; /* ms */ break; case IEEE80211_IOC_BGSCAN_INTERVAL: ireq->i_val = vap->iv_bgscanintvl/hz; /* seconds */ break; case IEEE80211_IOC_SCANVALID: ireq->i_val = vap->iv_scanvalid/hz; /* seconds */ break; case IEEE80211_IOC_FRAGTHRESHOLD: ireq->i_val = vap->iv_fragthreshold; break; case IEEE80211_IOC_MACCMD: error = ieee80211_ioctl_getmaccmd(vap, ireq); break; case IEEE80211_IOC_BURST: ireq->i_val = (vap->iv_flags & IEEE80211_F_BURST) != 0; break; case IEEE80211_IOC_BMISSTHRESHOLD: ireq->i_val = vap->iv_bmissthreshold; break; case IEEE80211_IOC_CURCHAN: error = ieee80211_ioctl_getcurchan(vap, ireq); break; case IEEE80211_IOC_SHORTGI: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) ireq->i_val |= IEEE80211_HTCAP_SHORTGI20; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) ireq->i_val |= IEEE80211_HTCAP_SHORTGI40; break; case IEEE80211_IOC_AMPDU: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_AMPDU_LIMIT: /* XXX TODO: make this a per-node thing; and leave this as global */ if (vap->iv_opmode == IEEE80211_M_HOSTAP) ireq->i_val = vap->iv_ampdu_rxmax; else if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) /* * XXX TODO: this isn't completely correct, as we've * negotiated the higher of the two. */ - ireq->i_val = MS(vap->iv_bss->ni_htparam, + ireq->i_val = _IEEE80211_MASKSHIFT( vap->iv_bss->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); else ireq->i_val = vap->iv_ampdu_limit; break; case IEEE80211_IOC_AMPDU_DENSITY: /* XXX TODO: make this a per-node thing; and leave this as global */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) /* * XXX TODO: this isn't completely correct, as we've * negotiated the higher of the two. */ - ireq->i_val = MS(vap->iv_bss->ni_htparam, + ireq->i_val = _IEEE80211_MASKSHIFT(vap->iv_bss->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); else ireq->i_val = vap->iv_ampdu_density; break; case IEEE80211_IOC_AMSDU: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_AMSDU_LIMIT: ireq->i_val = vap->iv_amsdu_limit; /* XXX truncation? */ break; case IEEE80211_IOC_PUREN: ireq->i_val = (vap->iv_flags_ht & IEEE80211_FHT_PUREN) != 0; break; case IEEE80211_IOC_DOTH: ireq->i_val = (vap->iv_flags & IEEE80211_F_DOTH) != 0; break; case IEEE80211_IOC_REGDOMAIN: error = ieee80211_ioctl_getregdomain(vap, ireq); break; case IEEE80211_IOC_ROAM: error = ieee80211_ioctl_getroam(vap, ireq); break; case IEEE80211_IOC_TXPARAMS: error = ieee80211_ioctl_gettxparams(vap, ireq); break; case IEEE80211_IOC_HTCOMPAT: ireq->i_val = (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) != 0; break; case IEEE80211_IOC_DWDS: ireq->i_val = (vap->iv_flags & IEEE80211_F_DWDS) != 0; break; case IEEE80211_IOC_INACTIVITY: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_INACT) != 0; break; case IEEE80211_IOC_APPIE: error = ieee80211_ioctl_getappie(vap, ireq); break; case IEEE80211_IOC_WPS: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_WPS) != 0; break; case IEEE80211_IOC_TSN: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_TSN) != 0; break; case IEEE80211_IOC_DFS: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_DFS) != 0; break; case IEEE80211_IOC_DOTD: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_DOTD) != 0; break; case IEEE80211_IOC_DEVCAPS: error = ieee80211_ioctl_getdevcaps(ic, ireq); break; case IEEE80211_IOC_HTPROTMODE: ireq->i_val = vap->iv_htprotmode; break; case IEEE80211_IOC_HTCONF: if (vap->iv_flags_ht & IEEE80211_FHT_HT) { ireq->i_val = 1; if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) ireq->i_val |= 2; } else ireq->i_val = 0; break; case IEEE80211_IOC_STA_VLAN: error = ieee80211_ioctl_getstavlan(vap, ireq); break; case IEEE80211_IOC_SMPS: if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) { if (vap->iv_bss->ni_flags & IEEE80211_NODE_MIMO_RTS) ireq->i_val = IEEE80211_HTCAP_SMPS_DYNAMIC; else if (vap->iv_bss->ni_flags & IEEE80211_NODE_MIMO_PS) ireq->i_val = IEEE80211_HTCAP_SMPS_ENA; else ireq->i_val = IEEE80211_HTCAP_SMPS_OFF; } else ireq->i_val = vap->iv_htcaps & IEEE80211_HTCAP_SMPS; break; case IEEE80211_IOC_RIFS: if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) ireq->i_val = (vap->iv_bss->ni_flags & IEEE80211_NODE_RIFS) != 0; else ireq->i_val = (vap->iv_flags_ht & IEEE80211_FHT_RIFS) != 0; break; case IEEE80211_IOC_STBC: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_STBC_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_LDPC: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_UAPSD: ireq->i_val = 0; if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) ireq->i_val = 1; break; case IEEE80211_IOC_VHTCONF: ireq->i_val = vap->iv_flags_vht & IEEE80211_FVHT_MASK; break; default: error = ieee80211_ioctl_getdefault(vap, ireq); break; } return error; -#undef MS } static int ieee80211_ioctl_setkey(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211req_key ik; struct ieee80211_node *ni; struct ieee80211_key *wk; uint16_t kid; int error, i; if (ireq->i_len != sizeof(ik)) return EINVAL; error = copyin(ireq->i_data, &ik, sizeof(ik)); if (error) return error; /* NB: cipher support is verified by ieee80211_crypt_newkey */ /* NB: this also checks ik->ik_keylen > sizeof(wk->wk_key) */ if (ik.ik_keylen > sizeof(ik.ik_keydata)) return E2BIG; kid = ik.ik_keyix; if (kid == IEEE80211_KEYIX_NONE) { /* XXX unicast keys currently must be tx/rx */ if (ik.ik_flags != (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)) return EINVAL; if (vap->iv_opmode == IEEE80211_M_STA) { ni = ieee80211_ref_node(vap->iv_bss); if (!IEEE80211_ADDR_EQ(ik.ik_macaddr, ni->ni_bssid)) { ieee80211_free_node(ni); return EADDRNOTAVAIL; } } else { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, ik.ik_macaddr); if (ni == NULL) return ENOENT; } wk = &ni->ni_ucastkey; } else { if (kid >= IEEE80211_WEP_NKID) return EINVAL; wk = &vap->iv_nw_keys[kid]; /* * Global slots start off w/o any assigned key index. * Force one here for consistency with IEEE80211_IOC_WEPKEY. */ if (wk->wk_keyix == IEEE80211_KEYIX_NONE) wk->wk_keyix = kid; ni = NULL; } error = 0; ieee80211_key_update_begin(vap); if (ieee80211_crypto_newkey(vap, ik.ik_type, ik.ik_flags, wk)) { wk->wk_keylen = ik.ik_keylen; /* NB: MIC presence is implied by cipher type */ if (wk->wk_keylen > IEEE80211_KEYBUF_SIZE) wk->wk_keylen = IEEE80211_KEYBUF_SIZE; for (i = 0; i < IEEE80211_TID_SIZE; i++) wk->wk_keyrsc[i] = ik.ik_keyrsc; wk->wk_keytsc = 0; /* new key, reset */ memset(wk->wk_key, 0, sizeof(wk->wk_key)); memcpy(wk->wk_key, ik.ik_keydata, ik.ik_keylen); IEEE80211_ADDR_COPY(wk->wk_macaddr, ni != NULL ? ni->ni_macaddr : ik.ik_macaddr); if (!ieee80211_crypto_setkey(vap, wk)) error = EIO; else if ((ik.ik_flags & IEEE80211_KEY_DEFAULT)) /* * Inform the driver that this is the default * transmit key. Now, ideally we'd just set * a flag in the key update that would * say "yes, we're the default key", but * that currently isn't the way the ioctl -> * key interface works. */ ieee80211_crypto_set_deftxkey(vap, kid); } else error = ENXIO; ieee80211_key_update_end(vap); if (ni != NULL) ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_delkey(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211req_del_key dk; int kid, error; if (ireq->i_len != sizeof(dk)) return EINVAL; error = copyin(ireq->i_data, &dk, sizeof(dk)); if (error) return error; kid = dk.idk_keyix; /* XXX uint8_t -> uint16_t */ if (dk.idk_keyix == (uint8_t) IEEE80211_KEYIX_NONE) { struct ieee80211_node *ni; if (vap->iv_opmode == IEEE80211_M_STA) { ni = ieee80211_ref_node(vap->iv_bss); if (!IEEE80211_ADDR_EQ(dk.idk_macaddr, ni->ni_bssid)) { ieee80211_free_node(ni); return EADDRNOTAVAIL; } } else { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, dk.idk_macaddr); if (ni == NULL) return ENOENT; } /* XXX error return */ ieee80211_node_delucastkey(ni); ieee80211_free_node(ni); } else { if (kid >= IEEE80211_WEP_NKID) return EINVAL; /* XXX error return */ ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[kid]); } return 0; } struct mlmeop { struct ieee80211vap *vap; int op; int reason; }; static void mlmedebug(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], int op, int reason) { #ifdef IEEE80211_DEBUG static const struct { int mask; const char *opstr; } ops[] = { { 0, "op#0" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_ASSOC, "assoc" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_ASSOC, "disassoc" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, "deauth" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, "authorize" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, "unauthorize" }, }; if (op == IEEE80211_MLME_AUTH) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, mac, "station authenticate %s via MLME (reason: %d (%s))", reason == IEEE80211_STATUS_SUCCESS ? "ACCEPT" : "REJECT", reason, ieee80211_reason_to_string(reason)); } else if (!(IEEE80211_MLME_ASSOC <= op && op <= IEEE80211_MLME_AUTH)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY, mac, "unknown MLME request %d (reason: %d (%s))", op, reason, ieee80211_reason_to_string(reason)); } else if (reason == IEEE80211_STATUS_SUCCESS) { IEEE80211_NOTE_MAC(vap, ops[op].mask, mac, "station %s via MLME", ops[op].opstr); } else { IEEE80211_NOTE_MAC(vap, ops[op].mask, mac, "station %s via MLME (reason: %d (%s))", ops[op].opstr, reason, ieee80211_reason_to_string(reason)); } #endif /* IEEE80211_DEBUG */ } static void domlme(void *arg, struct ieee80211_node *ni) { struct mlmeop *mop = arg; struct ieee80211vap *vap = ni->ni_vap; if (vap != mop->vap) return; /* * NB: if ni_associd is zero then the node is already cleaned * up and we don't need to do this (we're safely holding a * reference but should otherwise not modify it's state). */ if (ni->ni_associd == 0) return; mlmedebug(vap, ni->ni_macaddr, mop->op, mop->reason); if (mop->op == IEEE80211_MLME_DEAUTH) { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, mop->reason); } else { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC, mop->reason); } ieee80211_node_leave(ni); } static int setmlme_dropsta(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], struct mlmeop *mlmeop) { struct ieee80211_node_table *nt = &vap->iv_ic->ic_sta; struct ieee80211_node *ni; int error = 0; /* NB: the broadcast address means do 'em all */ if (!IEEE80211_ADDR_EQ(mac, vap->iv_ifp->if_broadcastaddr)) { IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_node_locked(nt, mac); IEEE80211_NODE_UNLOCK(nt); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ if (ni != NULL) { domlme(mlmeop, ni); ieee80211_free_node(ni); } else error = ENOENT; } else { ieee80211_iterate_nodes(nt, domlme, mlmeop); } return error; } static int setmlme_common(struct ieee80211vap *vap, int op, const uint8_t mac[IEEE80211_ADDR_LEN], int reason) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node_table *nt = &ic->ic_sta; struct ieee80211_node *ni; struct mlmeop mlmeop; int error; error = 0; switch (op) { case IEEE80211_MLME_DISASSOC: case IEEE80211_MLME_DEAUTH: switch (vap->iv_opmode) { case IEEE80211_M_STA: mlmedebug(vap, vap->iv_bss->ni_macaddr, op, reason); /* XXX not quite right */ ieee80211_new_state(vap, IEEE80211_S_INIT, reason); break; case IEEE80211_M_HOSTAP: mlmeop.vap = vap; mlmeop.op = op; mlmeop.reason = reason; error = setmlme_dropsta(vap, mac, &mlmeop); break; case IEEE80211_M_WDS: /* XXX user app should send raw frame? */ if (op != IEEE80211_MLME_DEAUTH) { error = EINVAL; break; } #if 0 /* XXX accept any address, simplifies user code */ if (!IEEE80211_ADDR_EQ(mac, vap->iv_bss->ni_macaddr)) { error = EINVAL; break; } #endif mlmedebug(vap, vap->iv_bss->ni_macaddr, op, reason); ni = ieee80211_ref_node(vap->iv_bss); IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, reason); ieee80211_free_node(ni); break; case IEEE80211_M_MBSS: IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_node_locked(nt, mac); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ IEEE80211_NODE_UNLOCK(nt); if (ni != NULL) { ieee80211_node_leave(ni); ieee80211_free_node(ni); } else { error = ENOENT; } break; default: error = EINVAL; break; } break; case IEEE80211_MLME_AUTHORIZE: case IEEE80211_MLME_UNAUTHORIZE: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_WDS) { error = EINVAL; break; } IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_vap_node_locked(nt, vap, mac); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ IEEE80211_NODE_UNLOCK(nt); if (ni != NULL) { mlmedebug(vap, mac, op, reason); if (op == IEEE80211_MLME_AUTHORIZE) ieee80211_node_authorize(ni); else ieee80211_node_unauthorize(ni); ieee80211_free_node(ni); } else error = ENOENT; break; case IEEE80211_MLME_AUTH: if (vap->iv_opmode != IEEE80211_M_HOSTAP) { error = EINVAL; break; } IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_vap_node_locked(nt, vap, mac); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ IEEE80211_NODE_UNLOCK(nt); if (ni != NULL) { mlmedebug(vap, mac, op, reason); if (reason == IEEE80211_STATUS_SUCCESS) { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); /* * For shared key auth, just continue the * exchange. Otherwise when 802.1x is not in * use mark the port authorized at this point * so traffic can flow. */ if (ni->ni_authmode != IEEE80211_AUTH_8021X && ni->ni_challenge == NULL) ieee80211_node_authorize(ni); } else { vap->iv_stats.is_rx_acl++; ieee80211_send_error(ni, ni->ni_macaddr, IEEE80211_FC0_SUBTYPE_AUTH, 2|(reason<<16)); ieee80211_node_leave(ni); } ieee80211_free_node(ni); } else error = ENOENT; break; default: error = EINVAL; break; } return error; } struct scanlookup { const uint8_t *mac; int esslen; const uint8_t *essid; const struct ieee80211_scan_entry *se; }; /* * Match mac address and any ssid. */ static void mlmelookup(void *arg, const struct ieee80211_scan_entry *se) { struct scanlookup *look = arg; if (!IEEE80211_ADDR_EQ(look->mac, se->se_macaddr)) return; if (look->esslen != 0) { if (se->se_ssid[1] != look->esslen) return; if (memcmp(look->essid, se->se_ssid+2, look->esslen)) return; } look->se = se; } static int setmlme_assoc_sta(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], int ssid_len, const uint8_t ssid[IEEE80211_NWID_LEN]) { struct scanlookup lookup; KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("expected opmode STA not %s", ieee80211_opmode_name[vap->iv_opmode])); /* NB: this is racey if roaming is !manual */ lookup.se = NULL; lookup.mac = mac; lookup.esslen = ssid_len; lookup.essid = ssid; ieee80211_scan_iterate(vap, mlmelookup, &lookup); if (lookup.se == NULL) return ENOENT; mlmedebug(vap, mac, IEEE80211_MLME_ASSOC, 0); if (!ieee80211_sta_join(vap, lookup.se->se_chan, lookup.se)) return EIO; /* XXX unique but could be better */ return 0; } static int setmlme_assoc_adhoc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], int ssid_len, const uint8_t ssid[IEEE80211_NWID_LEN]) { struct ieee80211_scan_req *sr; int error; KASSERT(vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_AHDEMO, ("expected opmode IBSS or AHDEMO not %s", ieee80211_opmode_name[vap->iv_opmode])); if (ssid_len == 0) return EINVAL; sr = IEEE80211_MALLOC(sizeof(*sr), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (sr == NULL) return ENOMEM; /* NB: IEEE80211_IOC_SSID call missing for ap_scan=2. */ memset(vap->iv_des_ssid[0].ssid, 0, IEEE80211_NWID_LEN); vap->iv_des_ssid[0].len = ssid_len; memcpy(vap->iv_des_ssid[0].ssid, ssid, ssid_len); vap->iv_des_nssid = 1; sr->sr_flags = IEEE80211_IOC_SCAN_ACTIVE | IEEE80211_IOC_SCAN_ONCE; sr->sr_duration = IEEE80211_IOC_SCAN_FOREVER; memcpy(sr->sr_ssid[0].ssid, ssid, ssid_len); sr->sr_ssid[0].len = ssid_len; sr->sr_nssid = 1; error = ieee80211_scanreq(vap, sr); IEEE80211_FREE(sr, M_TEMP); return error; } static int ieee80211_ioctl_setmlme(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211req_mlme mlme; int error; if (ireq->i_len != sizeof(mlme)) return EINVAL; error = copyin(ireq->i_data, &mlme, sizeof(mlme)); if (error) return error; if (vap->iv_opmode == IEEE80211_M_STA && mlme.im_op == IEEE80211_MLME_ASSOC) return setmlme_assoc_sta(vap, mlme.im_macaddr, vap->iv_des_ssid[0].len, vap->iv_des_ssid[0].ssid); else if ((vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_AHDEMO) && mlme.im_op == IEEE80211_MLME_ASSOC) return setmlme_assoc_adhoc(vap, mlme.im_macaddr, mlme.im_ssid_len, mlme.im_ssid); else return setmlme_common(vap, mlme.im_op, mlme.im_macaddr, mlme.im_reason); } static int ieee80211_ioctl_macmac(struct ieee80211vap *vap, struct ieee80211req *ireq) { uint8_t mac[IEEE80211_ADDR_LEN]; const struct ieee80211_aclator *acl = vap->iv_acl; int error; if (ireq->i_len != sizeof(mac)) return EINVAL; error = copyin(ireq->i_data, mac, ireq->i_len); if (error) return error; if (acl == NULL) { acl = ieee80211_aclator_get("mac"); if (acl == NULL || !acl->iac_attach(vap)) return EINVAL; vap->iv_acl = acl; } if (ireq->i_type == IEEE80211_IOC_ADDMAC) acl->iac_add(vap, mac); else acl->iac_remove(vap, mac); return 0; } static int ieee80211_ioctl_setmaccmd(struct ieee80211vap *vap, struct ieee80211req *ireq) { const struct ieee80211_aclator *acl = vap->iv_acl; switch (ireq->i_val) { case IEEE80211_MACCMD_POLICY_OPEN: case IEEE80211_MACCMD_POLICY_ALLOW: case IEEE80211_MACCMD_POLICY_DENY: case IEEE80211_MACCMD_POLICY_RADIUS: if (acl == NULL) { acl = ieee80211_aclator_get("mac"); if (acl == NULL || !acl->iac_attach(vap)) return EINVAL; vap->iv_acl = acl; } acl->iac_setpolicy(vap, ireq->i_val); break; case IEEE80211_MACCMD_FLUSH: if (acl != NULL) acl->iac_flush(vap); /* NB: silently ignore when not in use */ break; case IEEE80211_MACCMD_DETACH: if (acl != NULL) { vap->iv_acl = NULL; acl->iac_detach(vap); } break; default: if (acl == NULL) return EINVAL; else return acl->iac_setioctl(vap, ireq); } return 0; } static int ieee80211_ioctl_setchanlist(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; uint8_t *chanlist, *list; int i, nchan, maxchan, error; if (ireq->i_len > sizeof(ic->ic_chan_active)) ireq->i_len = sizeof(ic->ic_chan_active); list = IEEE80211_MALLOC(ireq->i_len + IEEE80211_CHAN_BYTES, M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (list == NULL) return ENOMEM; error = copyin(ireq->i_data, list, ireq->i_len); if (error) { IEEE80211_FREE(list, M_TEMP); return error; } nchan = 0; chanlist = list + ireq->i_len; /* NB: zero'd already */ maxchan = ireq->i_len * NBBY; for (i = 0; i < ic->ic_nchans; i++) { const struct ieee80211_channel *c = &ic->ic_channels[i]; /* * Calculate the intersection of the user list and the * available channels so users can do things like specify * 1-255 to get all available channels. */ if (c->ic_ieee < maxchan && isset(list, c->ic_ieee)) { setbit(chanlist, c->ic_ieee); nchan++; } } if (nchan == 0) { IEEE80211_FREE(list, M_TEMP); return EINVAL; } if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && /* XXX */ isclr(chanlist, ic->ic_bsschan->ic_ieee)) ic->ic_bsschan = IEEE80211_CHAN_ANYC; memcpy(ic->ic_chan_active, chanlist, IEEE80211_CHAN_BYTES); ieee80211_scan_flush(vap); IEEE80211_FREE(list, M_TEMP); return ENETRESET; } static int ieee80211_ioctl_setstastats(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; uint8_t macaddr[IEEE80211_ADDR_LEN]; int error; /* * NB: we could copyin ieee80211req_sta_stats so apps * could make selective changes but that's overkill; * just clear all stats for now. */ if (ireq->i_len < IEEE80211_ADDR_LEN) return EINVAL; error = copyin(ireq->i_data, macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, macaddr); if (ni == NULL) return ENOENT; /* XXX require ni_vap == vap? */ memset(&ni->ni_stats, 0, sizeof(ni->ni_stats)); ieee80211_free_node(ni); return 0; } static int ieee80211_ioctl_setstatxpow(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_txpow txpow; int error; if (ireq->i_len != sizeof(txpow)) return EINVAL; error = copyin(ireq->i_data, &txpow, sizeof(txpow)); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, txpow.it_macaddr); if (ni == NULL) return ENOENT; ni->ni_txpower = txpow.it_txpow; ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_setwmeparam(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; struct wmeParams *wmep, *chanp; int isbss, ac, aggrmode; if ((ic->ic_caps & IEEE80211_C_WME) == 0) return EOPNOTSUPP; isbss = (ireq->i_len & IEEE80211_WMEPARAM_BSS); ac = (ireq->i_len & IEEE80211_WMEPARAM_VAL); aggrmode = (wme->wme_flags & WME_F_AGGRMODE); if (ac >= WME_NUM_AC) ac = WME_AC_BE; if (isbss) { chanp = &wme->wme_bssChanParams.cap_wmeParams[ac]; wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac]; } else { chanp = &wme->wme_chanParams.cap_wmeParams[ac]; wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac]; } switch (ireq->i_type) { case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ wmep->wmep_logcwmin = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_logcwmin = ireq->i_val; break; case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ wmep->wmep_logcwmax = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_logcwmax = ireq->i_val; break; case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ wmep->wmep_aifsn = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_aifsn = ireq->i_val; break; case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ wmep->wmep_txopLimit = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_txopLimit = ireq->i_val; break; case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ wmep->wmep_acm = ireq->i_val; if (!aggrmode) chanp->wmep_acm = ireq->i_val; break; case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only)*/ wmep->wmep_noackPolicy = chanp->wmep_noackPolicy = (ireq->i_val) == 0; break; } ieee80211_wme_updateparams(vap); return 0; } static int find11gchannel(struct ieee80211com *ic, int start, int freq) { const struct ieee80211_channel *c; int i; for (i = start+1; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (c->ic_freq == freq && IEEE80211_IS_CHAN_ANYG(c)) return 1; } /* NB: should not be needed but in case things are mis-sorted */ for (i = 0; i < start; i++) { c = &ic->ic_channels[i]; if (c->ic_freq == freq && IEEE80211_IS_CHAN_ANYG(c)) return 1; } return 0; } static struct ieee80211_channel * findchannel(struct ieee80211com *ic, int ieee, int mode) { static const u_int chanflags[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = 0, [IEEE80211_MODE_11A] = IEEE80211_CHAN_A, [IEEE80211_MODE_11B] = IEEE80211_CHAN_B, [IEEE80211_MODE_11G] = IEEE80211_CHAN_G, [IEEE80211_MODE_FH] = IEEE80211_CHAN_FHSS, [IEEE80211_MODE_TURBO_A] = IEEE80211_CHAN_108A, [IEEE80211_MODE_TURBO_G] = IEEE80211_CHAN_108G, [IEEE80211_MODE_STURBO_A] = IEEE80211_CHAN_STURBO, [IEEE80211_MODE_HALF] = IEEE80211_CHAN_HALF, [IEEE80211_MODE_QUARTER] = IEEE80211_CHAN_QUARTER, /* NB: handled specially below */ [IEEE80211_MODE_11NA] = IEEE80211_CHAN_A, [IEEE80211_MODE_11NG] = IEEE80211_CHAN_G, [IEEE80211_MODE_VHT_5GHZ] = IEEE80211_CHAN_A, [IEEE80211_MODE_VHT_2GHZ] = IEEE80211_CHAN_G, }; u_int modeflags; int i; modeflags = chanflags[mode]; for (i = 0; i < ic->ic_nchans; i++) { struct ieee80211_channel *c = &ic->ic_channels[i]; if (c->ic_ieee != ieee) continue; if (mode == IEEE80211_MODE_AUTO) { /* ignore turbo channels for autoselect */ if (IEEE80211_IS_CHAN_TURBO(c)) continue; /* * XXX special-case 11b/g channels so we * always select the g channel if both * are present. * XXX prefer HT to non-HT? */ if (!IEEE80211_IS_CHAN_B(c) || !find11gchannel(ic, i, c->ic_freq)) return c; } else { /* must check VHT specifically */ if ((mode == IEEE80211_MODE_VHT_5GHZ || mode == IEEE80211_MODE_VHT_2GHZ) && !IEEE80211_IS_CHAN_VHT(c)) continue; /* * Must check HT specially - only match on HT, * not HT+VHT channels */ if ((mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) && !IEEE80211_IS_CHAN_HT(c)) continue; if ((mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) && IEEE80211_IS_CHAN_VHT(c)) continue; /* Check that the modeflags above match */ if ((c->ic_flags & modeflags) == modeflags) return c; } } return NULL; } /* * Check the specified against any desired mode (aka netband). * This is only used (presently) when operating in hostap mode * to enforce consistency. */ static int check_mode_consistency(const struct ieee80211_channel *c, int mode) { KASSERT(c != IEEE80211_CHAN_ANYC, ("oops, no channel")); switch (mode) { case IEEE80211_MODE_11B: return (IEEE80211_IS_CHAN_B(c)); case IEEE80211_MODE_11G: return (IEEE80211_IS_CHAN_ANYG(c) && !IEEE80211_IS_CHAN_HT(c)); case IEEE80211_MODE_11A: return (IEEE80211_IS_CHAN_A(c) && !IEEE80211_IS_CHAN_HT(c)); case IEEE80211_MODE_STURBO_A: return (IEEE80211_IS_CHAN_STURBO(c)); case IEEE80211_MODE_11NA: return (IEEE80211_IS_CHAN_HTA(c)); case IEEE80211_MODE_11NG: return (IEEE80211_IS_CHAN_HTG(c)); } return 1; } /* * Common code to set the current channel. If the device * is up and running this may result in an immediate channel * change or a kick of the state machine. */ static int setcurchan(struct ieee80211vap *vap, struct ieee80211_channel *c) { struct ieee80211com *ic = vap->iv_ic; int error; if (c != IEEE80211_CHAN_ANYC) { if (IEEE80211_IS_CHAN_RADAR(c)) return EBUSY; /* XXX better code? */ if (vap->iv_opmode == IEEE80211_M_HOSTAP) { if (IEEE80211_IS_CHAN_NOHOSTAP(c)) return EINVAL; if (!check_mode_consistency(c, vap->iv_des_mode)) return EINVAL; } else if (vap->iv_opmode == IEEE80211_M_IBSS) { if (IEEE80211_IS_CHAN_NOADHOC(c)) return EINVAL; } if ((vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) && vap->iv_bss->ni_chan == c) return 0; /* NB: nothing to do */ } vap->iv_des_chan = c; error = 0; if (vap->iv_opmode == IEEE80211_M_MONITOR && vap->iv_des_chan != IEEE80211_CHAN_ANYC) { /* * Monitor mode can switch directly. */ if (IFNET_IS_UP_RUNNING(vap->iv_ifp)) { /* XXX need state machine for other vap's to follow */ ieee80211_setcurchan(ic, vap->iv_des_chan); vap->iv_bss->ni_chan = ic->ic_curchan; } else { ic->ic_curchan = vap->iv_des_chan; ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); } } else { /* * Need to go through the state machine in case we * need to reassociate or the like. The state machine * will pickup the desired channel and avoid scanning. */ if (IS_UP_AUTO(vap)) ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); else if (vap->iv_des_chan != IEEE80211_CHAN_ANYC) { /* * When not up+running and a real channel has * been specified fix the current channel so * there is immediate feedback; e.g. via ifconfig. */ ic->ic_curchan = vap->iv_des_chan; ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); } } return error; } /* * Old api for setting the current channel; this is * deprecated because channel numbers are ambiguous. */ static int ieee80211_ioctl_setchannel(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *c; /* XXX 0xffff overflows 16-bit signed */ if (ireq->i_val == 0 || ireq->i_val == (int16_t) IEEE80211_CHAN_ANY) { c = IEEE80211_CHAN_ANYC; } else { struct ieee80211_channel *c2; c = findchannel(ic, ireq->i_val, vap->iv_des_mode); if (c == NULL) { c = findchannel(ic, ireq->i_val, IEEE80211_MODE_AUTO); if (c == NULL) return EINVAL; } /* * Fine tune channel selection based on desired mode: * if 11b is requested, find the 11b version of any * 11g channel returned, * if static turbo, find the turbo version of any * 11a channel return, * if 11na is requested, find the ht version of any * 11a channel returned, * if 11ng is requested, find the ht version of any * 11g channel returned, * if 11ac is requested, find the 11ac version * of any 11a/11na channel returned, * (TBD) 11acg (2GHz VHT) * otherwise we should be ok with what we've got. */ switch (vap->iv_des_mode) { case IEEE80211_MODE_11B: if (IEEE80211_IS_CHAN_ANYG(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_11B); /* NB: should not happen, =>'s 11g w/o 11b */ if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_TURBO_A: if (IEEE80211_IS_CHAN_A(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_TURBO_A); if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_11NA: if (IEEE80211_IS_CHAN_A(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_11NA); if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_11NG: if (IEEE80211_IS_CHAN_ANYG(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_11NG); if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_VHT_2GHZ: printf("%s: TBD\n", __func__); break; case IEEE80211_MODE_VHT_5GHZ: if (IEEE80211_IS_CHAN_A(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_VHT_5GHZ); if (c2 != NULL) c = c2; } break; default: /* NB: no static turboG */ break; } } return setcurchan(vap, c); } /* * New/current api for setting the current channel; a complete * channel description is provide so there is no ambiguity in * identifying the channel. */ static int ieee80211_ioctl_setcurchan(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel chan, *c; int error; if (ireq->i_len != sizeof(chan)) return EINVAL; error = copyin(ireq->i_data, &chan, sizeof(chan)); if (error != 0) return error; /* XXX 0xffff overflows 16-bit signed */ if (chan.ic_freq == 0 || chan.ic_freq == IEEE80211_CHAN_ANY) { c = IEEE80211_CHAN_ANYC; } else { c = ieee80211_find_channel(ic, chan.ic_freq, chan.ic_flags); if (c == NULL) return EINVAL; } return setcurchan(vap, c); } static int ieee80211_ioctl_setregdomain(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211_regdomain_req *reg; int nchans, error; nchans = 1 + ((ireq->i_len - sizeof(struct ieee80211_regdomain_req)) / sizeof(struct ieee80211_channel)); if (!(1 <= nchans && nchans <= IEEE80211_CHAN_MAX)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: bad # chans, i_len %d nchans %d\n", __func__, ireq->i_len, nchans); return EINVAL; } reg = (struct ieee80211_regdomain_req *) IEEE80211_MALLOC(IEEE80211_REGDOMAIN_SIZE(nchans), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (reg == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: no memory, nchans %d\n", __func__, nchans); return ENOMEM; } error = copyin(ireq->i_data, reg, IEEE80211_REGDOMAIN_SIZE(nchans)); if (error == 0) { /* NB: validate inline channel count against storage size */ if (reg->chaninfo.ic_nchans != nchans) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: chan cnt mismatch, %d != %d\n", __func__, reg->chaninfo.ic_nchans, nchans); error = EINVAL; } else error = ieee80211_setregdomain(vap, reg); } IEEE80211_FREE(reg, M_TEMP); return (error == 0 ? ENETRESET : error); } static int checkrate(const struct ieee80211_rateset *rs, int rate) { int i; if (rate == IEEE80211_FIXED_RATE_NONE) return 1; for (i = 0; i < rs->rs_nrates; i++) if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate) return 1; return 0; } static int checkmcs(const struct ieee80211_htrateset *rs, int mcs) { int rate_val = IEEE80211_RV(mcs); int i; if (mcs == IEEE80211_FIXED_RATE_NONE) return 1; if ((mcs & IEEE80211_RATE_MCS) == 0) /* MCS always have 0x80 set */ return 0; for (i = 0; i < rs->rs_nrates; i++) if (IEEE80211_RV(rs->rs_rates[i]) == rate_val) return 1; return 0; } static int ieee80211_ioctl_setroam(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_roamparams_req *parms; struct ieee80211_roamparam *src, *dst; const struct ieee80211_htrateset *rs_ht; const struct ieee80211_rateset *rs; int changed, error, mode, is11n, nmodes; if (ireq->i_len != sizeof(vap->iv_roamparms)) return EINVAL; parms = IEEE80211_MALLOC(sizeof(*parms), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (parms == NULL) return ENOMEM; error = copyin(ireq->i_data, parms, ireq->i_len); if (error != 0) goto fail; changed = 0; nmodes = IEEE80211_MODE_MAX; /* validate parameters and check if anything changed */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; src = &parms->params[mode]; dst = &vap->iv_roamparms[mode]; rs = &ic->ic_sup_rates[mode]; /* NB: 11n maps to legacy */ rs_ht = &ic->ic_sup_htrates; is11n = (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG); /* XXX TODO: 11ac */ if (src->rate != dst->rate) { if (!checkrate(rs, src->rate) && (!is11n || !checkmcs(rs_ht, src->rate))) { error = EINVAL; goto fail; } changed++; } if (src->rssi != dst->rssi) changed++; } if (changed) { /* * Copy new parameters in place and notify the * driver so it can push state to the device. */ /* XXX locking? */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isset(ic->ic_modecaps, mode)) vap->iv_roamparms[mode] = parms->params[mode]; } if (vap->iv_roaming == IEEE80211_ROAMING_DEVICE) error = ERESTART; } fail: IEEE80211_FREE(parms, M_TEMP); return error; } static int ieee80211_ioctl_settxparams(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_txparams_req parms; /* XXX stack use? */ struct ieee80211_txparam *src, *dst; const struct ieee80211_htrateset *rs_ht; const struct ieee80211_rateset *rs; int error, mode, changed, is11n, nmodes; /* NB: accept short requests for backwards compat */ if (ireq->i_len > sizeof(parms)) return EINVAL; error = copyin(ireq->i_data, &parms, ireq->i_len); if (error != 0) return error; nmodes = ireq->i_len / sizeof(struct ieee80211_txparam); changed = 0; /* validate parameters and check if anything changed */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; src = &parms.params[mode]; dst = &vap->iv_txparms[mode]; rs = &ic->ic_sup_rates[mode]; /* NB: 11n maps to legacy */ rs_ht = &ic->ic_sup_htrates; is11n = (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG); if (src->ucastrate != dst->ucastrate) { if (!checkrate(rs, src->ucastrate) && (!is11n || !checkmcs(rs_ht, src->ucastrate))) return EINVAL; changed++; } if (src->mcastrate != dst->mcastrate) { if (!checkrate(rs, src->mcastrate) && (!is11n || !checkmcs(rs_ht, src->mcastrate))) return EINVAL; changed++; } if (src->mgmtrate != dst->mgmtrate) { if (!checkrate(rs, src->mgmtrate) && (!is11n || !checkmcs(rs_ht, src->mgmtrate))) return EINVAL; changed++; } if (src->maxretry != dst->maxretry) /* NB: no bounds */ changed++; } if (changed) { /* * Copy new parameters in place and notify the * driver so it can push state to the device. */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isset(ic->ic_modecaps, mode)) vap->iv_txparms[mode] = parms.params[mode]; } /* XXX could be more intelligent, e.g. don't reset if setting not being used */ return ENETRESET; } return 0; } /* * Application Information Element support. */ static int setappie(struct ieee80211_appie **aie, const struct ieee80211req *ireq) { struct ieee80211_appie *app = *aie; struct ieee80211_appie *napp; int error; if (ireq->i_len == 0) { /* delete any existing ie */ if (app != NULL) { *aie = NULL; /* XXX racey */ IEEE80211_FREE(app, M_80211_NODE_IE); } return 0; } if (!(2 <= ireq->i_len && ireq->i_len <= IEEE80211_MAX_APPIE)) return EINVAL; /* * Allocate a new appie structure and copy in the user data. * When done swap in the new structure. Note that we do not * guard against users holding a ref to the old structure; * this must be handled outside this code. * * XXX bad bad bad */ napp = (struct ieee80211_appie *) IEEE80211_MALLOC( sizeof(struct ieee80211_appie) + ireq->i_len, M_80211_NODE_IE, IEEE80211_M_NOWAIT); if (napp == NULL) return ENOMEM; /* XXX holding ic lock */ error = copyin(ireq->i_data, napp->ie_data, ireq->i_len); if (error) { IEEE80211_FREE(napp, M_80211_NODE_IE); return error; } napp->ie_len = ireq->i_len; *aie = napp; if (app != NULL) IEEE80211_FREE(app, M_80211_NODE_IE); return 0; } static void setwparsnie(struct ieee80211vap *vap, uint8_t *ie, int space) { /* validate data is present as best we can */ if (space == 0 || 2+ie[1] > space) return; if (ie[0] == IEEE80211_ELEMID_VENDOR) vap->iv_wpa_ie = ie; else if (ie[0] == IEEE80211_ELEMID_RSN) vap->iv_rsn_ie = ie; } static int ieee80211_ioctl_setappie_locked(struct ieee80211vap *vap, const struct ieee80211req *ireq, int fc0) { int error; IEEE80211_LOCK_ASSERT(vap->iv_ic); switch (fc0 & IEEE80211_FC0_SUBTYPE_MASK) { case IEEE80211_FC0_SUBTYPE_BEACON: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_IBSS) { error = EINVAL; break; } error = setappie(&vap->iv_appie_beacon, ireq); if (error == 0) ieee80211_beacon_notify(vap, IEEE80211_BEACON_APPIE); break; case IEEE80211_FC0_SUBTYPE_PROBE_RESP: error = setappie(&vap->iv_appie_proberesp, ireq); break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: if (vap->iv_opmode == IEEE80211_M_HOSTAP) error = setappie(&vap->iv_appie_assocresp, ireq); else error = EINVAL; break; case IEEE80211_FC0_SUBTYPE_PROBE_REQ: error = setappie(&vap->iv_appie_probereq, ireq); break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: if (vap->iv_opmode == IEEE80211_M_STA) error = setappie(&vap->iv_appie_assocreq, ireq); else error = EINVAL; break; case (IEEE80211_APPIE_WPA & IEEE80211_FC0_SUBTYPE_MASK): error = setappie(&vap->iv_appie_wpa, ireq); if (error == 0) { /* * Must split single blob of data into separate * WPA and RSN ie's because they go in different * locations in the mgt frames. * XXX use IEEE80211_IOC_WPA2 so user code does split */ vap->iv_wpa_ie = NULL; vap->iv_rsn_ie = NULL; if (vap->iv_appie_wpa != NULL) { struct ieee80211_appie *appie = vap->iv_appie_wpa; uint8_t *data = appie->ie_data; /* XXX ie length validate is painful, cheat */ setwparsnie(vap, data, appie->ie_len); setwparsnie(vap, data + 2 + data[1], appie->ie_len - (2 + data[1])); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { /* * Must rebuild beacon frame as the update * mechanism doesn't handle WPA/RSN ie's. * Could extend it but it doesn't normally * change; this is just to deal with hostapd * plumbing the ie after the interface is up. */ error = ENETRESET; } } break; default: error = EINVAL; break; } return error; } static int ieee80211_ioctl_setappie(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; int error; uint8_t fc0; fc0 = ireq->i_val & 0xff; if ((fc0 & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return EINVAL; /* NB: could check iv_opmode and reject but hardly worth the effort */ IEEE80211_LOCK(ic); error = ieee80211_ioctl_setappie_locked(vap, ireq, fc0); IEEE80211_UNLOCK(ic); return error; } static int ieee80211_ioctl_chanswitch(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_chanswitch_req csr; struct ieee80211_channel *c; int error; if (ireq->i_len != sizeof(csr)) return EINVAL; error = copyin(ireq->i_data, &csr, sizeof(csr)); if (error != 0) return error; /* XXX adhoc mode not supported */ if (vap->iv_opmode != IEEE80211_M_HOSTAP || (vap->iv_flags & IEEE80211_F_DOTH) == 0) return EOPNOTSUPP; c = ieee80211_find_channel(ic, csr.csa_chan.ic_freq, csr.csa_chan.ic_flags); if (c == NULL) return ENOENT; IEEE80211_LOCK(ic); if ((ic->ic_flags & IEEE80211_F_CSAPENDING) == 0) ieee80211_csa_startswitch(ic, c, csr.csa_mode, csr.csa_count); else if (csr.csa_count == 0) ieee80211_csa_cancelswitch(ic); else error = EBUSY; IEEE80211_UNLOCK(ic); return error; } static int ieee80211_scanreq(struct ieee80211vap *vap, struct ieee80211_scan_req *sr) { #define IEEE80211_IOC_SCAN_FLAGS \ (IEEE80211_IOC_SCAN_NOPICK | IEEE80211_IOC_SCAN_ACTIVE | \ IEEE80211_IOC_SCAN_PICK1ST | IEEE80211_IOC_SCAN_BGSCAN | \ IEEE80211_IOC_SCAN_ONCE | IEEE80211_IOC_SCAN_NOBCAST | \ IEEE80211_IOC_SCAN_NOJOIN | IEEE80211_IOC_SCAN_FLUSH | \ IEEE80211_IOC_SCAN_CHECK) struct ieee80211com *ic = vap->iv_ic; int error, i; /* convert duration */ if (sr->sr_duration == IEEE80211_IOC_SCAN_FOREVER) sr->sr_duration = IEEE80211_SCAN_FOREVER; else { if (sr->sr_duration < IEEE80211_IOC_SCAN_DURATION_MIN || sr->sr_duration > IEEE80211_IOC_SCAN_DURATION_MAX) return EINVAL; sr->sr_duration = msecs_to_ticks(sr->sr_duration); } /* convert min/max channel dwell */ if (sr->sr_mindwell != 0) sr->sr_mindwell = msecs_to_ticks(sr->sr_mindwell); if (sr->sr_maxdwell != 0) sr->sr_maxdwell = msecs_to_ticks(sr->sr_maxdwell); /* NB: silently reduce ssid count to what is supported */ if (sr->sr_nssid > IEEE80211_SCAN_MAX_SSID) sr->sr_nssid = IEEE80211_SCAN_MAX_SSID; for (i = 0; i < sr->sr_nssid; i++) if (sr->sr_ssid[i].len > IEEE80211_NWID_LEN) return EINVAL; /* cleanse flags just in case, could reject if invalid flags */ sr->sr_flags &= IEEE80211_IOC_SCAN_FLAGS; /* * Add an implicit NOPICK if the vap is not marked UP. This * allows applications to scan without joining a bss (or picking * a channel and setting up a bss) and without forcing manual * roaming mode--you just need to mark the parent device UP. */ if ((vap->iv_ifp->if_flags & IFF_UP) == 0) sr->sr_flags |= IEEE80211_IOC_SCAN_NOPICK; IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s: flags 0x%x%s duration 0x%x mindwell %u maxdwell %u nssid %d\n", __func__, sr->sr_flags, (vap->iv_ifp->if_flags & IFF_UP) == 0 ? " (!IFF_UP)" : "", sr->sr_duration, sr->sr_mindwell, sr->sr_maxdwell, sr->sr_nssid); /* * If we are in INIT state then the driver has never had a chance * to setup hardware state to do a scan; we must use the state * machine to get us up to the SCAN state but once we reach SCAN * state we then want to use the supplied params. Stash the * parameters in the vap and mark IEEE80211_FEXT_SCANREQ; the * state machines will recognize this and use the stashed params * to issue the scan request. * * Otherwise just invoke the scan machinery directly. */ IEEE80211_LOCK(ic); if (ic->ic_nrunning == 0) { IEEE80211_UNLOCK(ic); return ENXIO; } if (vap->iv_state == IEEE80211_S_INIT) { /* NB: clobbers previous settings */ vap->iv_scanreq_flags = sr->sr_flags; vap->iv_scanreq_duration = sr->sr_duration; vap->iv_scanreq_nssid = sr->sr_nssid; for (i = 0; i < sr->sr_nssid; i++) { vap->iv_scanreq_ssid[i].len = sr->sr_ssid[i].len; memcpy(vap->iv_scanreq_ssid[i].ssid, sr->sr_ssid[i].ssid, sr->sr_ssid[i].len); } vap->iv_flags_ext |= IEEE80211_FEXT_SCANREQ; IEEE80211_UNLOCK(ic); ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } else { vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ; IEEE80211_UNLOCK(ic); if (sr->sr_flags & IEEE80211_IOC_SCAN_CHECK) { error = ieee80211_check_scan(vap, sr->sr_flags, sr->sr_duration, sr->sr_mindwell, sr->sr_maxdwell, sr->sr_nssid, /* NB: cheat, we assume structures are compatible */ (const struct ieee80211_scan_ssid *) &sr->sr_ssid[0]); } else { error = ieee80211_start_scan(vap, sr->sr_flags, sr->sr_duration, sr->sr_mindwell, sr->sr_maxdwell, sr->sr_nssid, /* NB: cheat, we assume structures are compatible */ (const struct ieee80211_scan_ssid *) &sr->sr_ssid[0]); } if (error == 0) return EINPROGRESS; } return 0; #undef IEEE80211_IOC_SCAN_FLAGS } static int ieee80211_ioctl_scanreq(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_scan_req *sr; int error; if (ireq->i_len != sizeof(*sr)) return EINVAL; sr = IEEE80211_MALLOC(sizeof(*sr), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (sr == NULL) return ENOMEM; error = copyin(ireq->i_data, sr, sizeof(*sr)); if (error != 0) goto bad; error = ieee80211_scanreq(vap, sr); bad: IEEE80211_FREE(sr, M_TEMP); return error; } static int ieee80211_ioctl_setstavlan(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_vlan vlan; int error; if (ireq->i_len != sizeof(vlan)) return EINVAL; error = copyin(ireq->i_data, &vlan, sizeof(vlan)); if (error != 0) return error; if (!IEEE80211_ADDR_EQ(vlan.sv_macaddr, zerobssid)) { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, vlan.sv_macaddr); if (ni == NULL) return ENOENT; } else ni = ieee80211_ref_node(vap->iv_bss); ni->ni_vlan = vlan.sv_vlan; ieee80211_free_node(ni); return error; } static int isvap11g(const struct ieee80211vap *vap) { const struct ieee80211_node *bss = vap->iv_bss; return bss->ni_chan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_ANYG(bss->ni_chan); } static int isvapht(const struct ieee80211vap *vap) { const struct ieee80211_node *bss = vap->iv_bss; return bss->ni_chan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_HT(bss->ni_chan); } /* * Dummy ioctl set handler so the linker set is defined. */ static int dummy_ioctl_set(struct ieee80211vap *vap, struct ieee80211req *ireq) { return ENOSYS; } IEEE80211_IOCTL_SET(dummy, dummy_ioctl_set); static int ieee80211_ioctl_setdefault(struct ieee80211vap *vap, struct ieee80211req *ireq) { ieee80211_ioctl_setfunc * const *set; int error; SET_FOREACH(set, ieee80211_ioctl_setset) { error = (*set)(vap, ireq); if (error != ENOSYS) return error; } return EINVAL; } static int ieee80211_ioctl_set80211(struct ieee80211vap *vap, u_long cmd, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; int error; const struct ieee80211_authenticator *auth; uint8_t tmpkey[IEEE80211_KEYBUF_SIZE]; char tmpssid[IEEE80211_NWID_LEN]; uint8_t tmpbssid[IEEE80211_ADDR_LEN]; struct ieee80211_key *k; u_int kid; uint32_t flags; error = 0; switch (ireq->i_type) { case IEEE80211_IOC_SSID: if (ireq->i_val != 0 || ireq->i_len > IEEE80211_NWID_LEN) return EINVAL; error = copyin(ireq->i_data, tmpssid, ireq->i_len); if (error) break; memset(vap->iv_des_ssid[0].ssid, 0, IEEE80211_NWID_LEN); vap->iv_des_ssid[0].len = ireq->i_len; memcpy(vap->iv_des_ssid[0].ssid, tmpssid, ireq->i_len); vap->iv_des_nssid = (ireq->i_len > 0); error = ENETRESET; break; case IEEE80211_IOC_WEP: switch (ireq->i_val) { case IEEE80211_WEP_OFF: vap->iv_flags &= ~IEEE80211_F_PRIVACY; vap->iv_flags &= ~IEEE80211_F_DROPUNENC; break; case IEEE80211_WEP_ON: vap->iv_flags |= IEEE80211_F_PRIVACY; vap->iv_flags |= IEEE80211_F_DROPUNENC; break; case IEEE80211_WEP_MIXED: vap->iv_flags |= IEEE80211_F_PRIVACY; vap->iv_flags &= ~IEEE80211_F_DROPUNENC; break; } error = ENETRESET; break; case IEEE80211_IOC_WEPKEY: kid = (u_int) ireq->i_val; if (kid >= IEEE80211_WEP_NKID) return EINVAL; k = &vap->iv_nw_keys[kid]; if (ireq->i_len == 0) { /* zero-len =>'s delete any existing key */ (void) ieee80211_crypto_delkey(vap, k); break; } if (ireq->i_len > sizeof(tmpkey)) return EINVAL; memset(tmpkey, 0, sizeof(tmpkey)); error = copyin(ireq->i_data, tmpkey, ireq->i_len); if (error) break; ieee80211_key_update_begin(vap); k->wk_keyix = kid; /* NB: force fixed key id */ if (ieee80211_crypto_newkey(vap, IEEE80211_CIPHER_WEP, IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV, k)) { k->wk_keylen = ireq->i_len; memcpy(k->wk_key, tmpkey, sizeof(tmpkey)); IEEE80211_ADDR_COPY(k->wk_macaddr, vap->iv_myaddr); if (!ieee80211_crypto_setkey(vap, k)) error = EINVAL; } else error = EINVAL; ieee80211_key_update_end(vap); break; case IEEE80211_IOC_WEPTXKEY: kid = (u_int) ireq->i_val; if (kid >= IEEE80211_WEP_NKID && (uint16_t) kid != IEEE80211_KEYIX_NONE) return EINVAL; /* * Firmware devices may need to be told about an explicit * key index here, versus just inferring it from the * key set / change. Since we may also need to pause * things like transmit before the key is updated, * give the driver a chance to flush things by tying * into key update begin/end. */ ieee80211_key_update_begin(vap); ieee80211_crypto_set_deftxkey(vap, kid); ieee80211_key_update_end(vap); break; case IEEE80211_IOC_AUTHMODE: switch (ireq->i_val) { case IEEE80211_AUTH_WPA: case IEEE80211_AUTH_8021X: /* 802.1x */ case IEEE80211_AUTH_OPEN: /* open */ case IEEE80211_AUTH_SHARED: /* shared-key */ case IEEE80211_AUTH_AUTO: /* auto */ auth = ieee80211_authenticator_get(ireq->i_val); if (auth == NULL) return EINVAL; break; default: return EINVAL; } switch (ireq->i_val) { case IEEE80211_AUTH_WPA: /* WPA w/ 802.1x */ vap->iv_flags |= IEEE80211_F_PRIVACY; ireq->i_val = IEEE80211_AUTH_8021X; break; case IEEE80211_AUTH_OPEN: /* open */ vap->iv_flags &= ~(IEEE80211_F_WPA|IEEE80211_F_PRIVACY); break; case IEEE80211_AUTH_SHARED: /* shared-key */ case IEEE80211_AUTH_8021X: /* 802.1x */ vap->iv_flags &= ~IEEE80211_F_WPA; /* both require a key so mark the PRIVACY capability */ vap->iv_flags |= IEEE80211_F_PRIVACY; break; case IEEE80211_AUTH_AUTO: /* auto */ vap->iv_flags &= ~IEEE80211_F_WPA; /* XXX PRIVACY handling? */ /* XXX what's the right way to do this? */ break; } /* NB: authenticator attach/detach happens on state change */ vap->iv_bss->ni_authmode = ireq->i_val; /* XXX mixed/mode/usage? */ vap->iv_auth = auth; error = ENETRESET; break; case IEEE80211_IOC_CHANNEL: error = ieee80211_ioctl_setchannel(vap, ireq); break; case IEEE80211_IOC_POWERSAVE: switch (ireq->i_val) { case IEEE80211_POWERSAVE_OFF: if (vap->iv_flags & IEEE80211_F_PMGTON) { ieee80211_syncflag(vap, -IEEE80211_F_PMGTON); error = ERESTART; } break; case IEEE80211_POWERSAVE_ON: if ((vap->iv_caps & IEEE80211_C_PMGT) == 0) error = EOPNOTSUPP; else if ((vap->iv_flags & IEEE80211_F_PMGTON) == 0) { ieee80211_syncflag(vap, IEEE80211_F_PMGTON); error = ERESTART; } break; default: error = EINVAL; break; } break; case IEEE80211_IOC_POWERSAVESLEEP: if (ireq->i_val < 0) return EINVAL; ic->ic_lintval = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_RTSTHRESHOLD: if (!(IEEE80211_RTS_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_RTS_MAX)) return EINVAL; vap->iv_rtsthreshold = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_PROTMODE: if (ireq->i_val > IEEE80211_PROT_RTSCTS) return EINVAL; vap->iv_protmode = (enum ieee80211_protmode)ireq->i_val; /* NB: if not operating in 11g this can wait */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan)) error = ERESTART; /* driver callback for protection mode update */ ieee80211_vap_update_erp_protmode(vap); break; case IEEE80211_IOC_TXPOWER: if ((ic->ic_caps & IEEE80211_C_TXPMGT) == 0) return EOPNOTSUPP; if (!(IEEE80211_TXPOWER_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_TXPOWER_MAX)) return EINVAL; ic->ic_txpowlimit = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_ROAMING: if (!(IEEE80211_ROAMING_DEVICE <= ireq->i_val && ireq->i_val <= IEEE80211_ROAMING_MANUAL)) return EINVAL; vap->iv_roaming = (enum ieee80211_roamingmode)ireq->i_val; /* XXXX reset? */ break; case IEEE80211_IOC_PRIVACY: if (ireq->i_val) { /* XXX check for key state? */ vap->iv_flags |= IEEE80211_F_PRIVACY; } else vap->iv_flags &= ~IEEE80211_F_PRIVACY; /* XXX ERESTART? */ break; case IEEE80211_IOC_DROPUNENCRYPTED: if (ireq->i_val) vap->iv_flags |= IEEE80211_F_DROPUNENC; else vap->iv_flags &= ~IEEE80211_F_DROPUNENC; /* XXX ERESTART? */ break; case IEEE80211_IOC_WPAKEY: error = ieee80211_ioctl_setkey(vap, ireq); break; case IEEE80211_IOC_DELKEY: error = ieee80211_ioctl_delkey(vap, ireq); break; case IEEE80211_IOC_MLME: error = ieee80211_ioctl_setmlme(vap, ireq); break; case IEEE80211_IOC_COUNTERMEASURES: if (ireq->i_val) { if ((vap->iv_flags & IEEE80211_F_WPA) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_COUNTERM; } else vap->iv_flags &= ~IEEE80211_F_COUNTERM; /* XXX ERESTART? */ break; case IEEE80211_IOC_WPA: if (ireq->i_val > 3) return EINVAL; /* XXX verify ciphers available */ flags = vap->iv_flags & ~IEEE80211_F_WPA; switch (ireq->i_val) { case 0: /* wpa_supplicant calls this to clear the WPA config */ break; case 1: if (!(vap->iv_caps & IEEE80211_C_WPA1)) return EOPNOTSUPP; flags |= IEEE80211_F_WPA1; break; case 2: if (!(vap->iv_caps & IEEE80211_C_WPA2)) return EOPNOTSUPP; flags |= IEEE80211_F_WPA2; break; case 3: if ((vap->iv_caps & IEEE80211_C_WPA) != IEEE80211_C_WPA) return EOPNOTSUPP; flags |= IEEE80211_F_WPA1 | IEEE80211_F_WPA2; break; default: /* Can't set any -> error */ return EOPNOTSUPP; } vap->iv_flags = flags; error = ERESTART; /* NB: can change beacon frame */ break; case IEEE80211_IOC_WME: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_WME) == 0) return EOPNOTSUPP; ieee80211_syncflag(vap, IEEE80211_F_WME); } else ieee80211_syncflag(vap, -IEEE80211_F_WME); error = ERESTART; /* NB: can change beacon frame */ break; case IEEE80211_IOC_HIDESSID: if (ireq->i_val) vap->iv_flags |= IEEE80211_F_HIDESSID; else vap->iv_flags &= ~IEEE80211_F_HIDESSID; error = ERESTART; /* XXX ENETRESET? */ break; case IEEE80211_IOC_APBRIDGE: if (ireq->i_val == 0) vap->iv_flags |= IEEE80211_F_NOBRIDGE; else vap->iv_flags &= ~IEEE80211_F_NOBRIDGE; break; case IEEE80211_IOC_BSSID: if (ireq->i_len != sizeof(tmpbssid)) return EINVAL; error = copyin(ireq->i_data, tmpbssid, ireq->i_len); if (error) break; IEEE80211_ADDR_COPY(vap->iv_des_bssid, tmpbssid); if (IEEE80211_ADDR_EQ(vap->iv_des_bssid, zerobssid)) vap->iv_flags &= ~IEEE80211_F_DESBSSID; else vap->iv_flags |= IEEE80211_F_DESBSSID; error = ENETRESET; break; case IEEE80211_IOC_CHANLIST: error = ieee80211_ioctl_setchanlist(vap, ireq); break; #define OLD_IEEE80211_IOC_SCAN_REQ 23 #ifdef OLD_IEEE80211_IOC_SCAN_REQ case OLD_IEEE80211_IOC_SCAN_REQ: IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s: active scan request\n", __func__); /* * If we are in INIT state then the driver has never * had a chance to setup hardware state to do a scan; * use the state machine to get us up the SCAN state. * Otherwise just invoke the scan machinery to start * a one-time scan. */ if (vap->iv_state == IEEE80211_S_INIT) ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); else (void) ieee80211_start_scan(vap, IEEE80211_SCAN_ACTIVE | IEEE80211_SCAN_NOPICK | IEEE80211_SCAN_ONCE, IEEE80211_SCAN_FOREVER, 0, 0, /* XXX use ioctl params */ vap->iv_des_nssid, vap->iv_des_ssid); break; #endif /* OLD_IEEE80211_IOC_SCAN_REQ */ case IEEE80211_IOC_SCAN_REQ: error = ieee80211_ioctl_scanreq(vap, ireq); break; case IEEE80211_IOC_SCAN_CANCEL: IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s: cancel scan\n", __func__); ieee80211_cancel_scan(vap); break; case IEEE80211_IOC_HTCONF: if (ireq->i_val & 1) ieee80211_syncflag_ht(vap, IEEE80211_FHT_HT); else ieee80211_syncflag_ht(vap, -IEEE80211_FHT_HT); if (ireq->i_val & 2) ieee80211_syncflag_ht(vap, IEEE80211_FHT_USEHT40); else ieee80211_syncflag_ht(vap, -IEEE80211_FHT_USEHT40); error = ENETRESET; break; case IEEE80211_IOC_ADDMAC: case IEEE80211_IOC_DELMAC: error = ieee80211_ioctl_macmac(vap, ireq); break; case IEEE80211_IOC_MACCMD: error = ieee80211_ioctl_setmaccmd(vap, ireq); break; case IEEE80211_IOC_STA_STATS: error = ieee80211_ioctl_setstastats(vap, ireq); break; case IEEE80211_IOC_STA_TXPOW: error = ieee80211_ioctl_setstatxpow(vap, ireq); break; case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only) */ error = ieee80211_ioctl_setwmeparam(vap, ireq); break; case IEEE80211_IOC_DTIM_PERIOD: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_MBSS && vap->iv_opmode != IEEE80211_M_IBSS) return EINVAL; if (IEEE80211_DTIM_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_DTIM_MAX) { vap->iv_dtim_period = ireq->i_val; error = ENETRESET; /* requires restart */ } else error = EINVAL; break; case IEEE80211_IOC_BEACON_INTERVAL: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_MBSS && vap->iv_opmode != IEEE80211_M_IBSS) return EINVAL; if (IEEE80211_BINTVAL_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_BINTVAL_MAX) { ic->ic_bintval = ireq->i_val; error = ENETRESET; /* requires restart */ } else error = EINVAL; break; case IEEE80211_IOC_PUREG: if (ireq->i_val) vap->iv_flags |= IEEE80211_F_PUREG; else vap->iv_flags &= ~IEEE80211_F_PUREG; /* NB: reset only if we're operating on an 11g channel */ if (isvap11g(vap)) error = ENETRESET; break; case IEEE80211_IOC_QUIET: vap->iv_quiet= ireq->i_val; break; case IEEE80211_IOC_QUIET_COUNT: vap->iv_quiet_count=ireq->i_val; break; case IEEE80211_IOC_QUIET_PERIOD: vap->iv_quiet_period=ireq->i_val; break; case IEEE80211_IOC_QUIET_OFFSET: vap->iv_quiet_offset=ireq->i_val; break; case IEEE80211_IOC_QUIET_DUR: if(ireq->i_val < vap->iv_bss->ni_intval) vap->iv_quiet_duration = ireq->i_val; else error = EINVAL; break; case IEEE80211_IOC_BGSCAN: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_BGSCAN) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_BGSCAN; } else vap->iv_flags &= ~IEEE80211_F_BGSCAN; break; case IEEE80211_IOC_BGSCAN_IDLE: if (ireq->i_val >= IEEE80211_BGSCAN_IDLE_MIN) vap->iv_bgscanidle = ireq->i_val*hz/1000; else error = EINVAL; break; case IEEE80211_IOC_BGSCAN_INTERVAL: if (ireq->i_val >= IEEE80211_BGSCAN_INTVAL_MIN) vap->iv_bgscanintvl = ireq->i_val*hz; else error = EINVAL; break; case IEEE80211_IOC_SCANVALID: if (ireq->i_val >= IEEE80211_SCAN_VALID_MIN) vap->iv_scanvalid = ireq->i_val*hz; else error = EINVAL; break; case IEEE80211_IOC_FRAGTHRESHOLD: if ((vap->iv_caps & IEEE80211_C_TXFRAG) == 0 && ireq->i_val != IEEE80211_FRAG_MAX) return EOPNOTSUPP; if (!(IEEE80211_FRAG_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_FRAG_MAX)) return EINVAL; vap->iv_fragthreshold = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_BURST: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_BURST) == 0) return EOPNOTSUPP; ieee80211_syncflag(vap, IEEE80211_F_BURST); } else ieee80211_syncflag(vap, -IEEE80211_F_BURST); error = ERESTART; break; case IEEE80211_IOC_BMISSTHRESHOLD: if (!(IEEE80211_HWBMISS_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_HWBMISS_MAX)) return EINVAL; vap->iv_bmissthreshold = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_CURCHAN: error = ieee80211_ioctl_setcurchan(vap, ireq); break; case IEEE80211_IOC_SHORTGI: if (ireq->i_val) { #define IEEE80211_HTCAP_SHORTGI \ (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) if (((ireq->i_val ^ vap->iv_htcaps) & IEEE80211_HTCAP_SHORTGI) != 0) return EINVAL; if (ireq->i_val & IEEE80211_HTCAP_SHORTGI20) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; if (ireq->i_val & IEEE80211_HTCAP_SHORTGI40) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; #undef IEEE80211_HTCAP_SHORTGI } else vap->iv_flags_ht &= ~(IEEE80211_FHT_SHORTGI20 | IEEE80211_FHT_SHORTGI40); error = ERESTART; break; case IEEE80211_IOC_AMPDU: if (ireq->i_val && (vap->iv_htcaps & IEEE80211_HTC_AMPDU) == 0) return EINVAL; if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMPDU_TX; if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMPDU_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_AMPDU_LIMIT: /* XXX TODO: figure out ampdu_limit versus ampdu_rxmax */ if (!(IEEE80211_HTCAP_MAXRXAMPDU_8K <= ireq->i_val && ireq->i_val <= IEEE80211_HTCAP_MAXRXAMPDU_64K)) return EINVAL; if (vap->iv_opmode == IEEE80211_M_HOSTAP) vap->iv_ampdu_rxmax = ireq->i_val; else vap->iv_ampdu_limit = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_AMPDU_DENSITY: if (!(IEEE80211_HTCAP_MPDUDENSITY_NA <= ireq->i_val && ireq->i_val <= IEEE80211_HTCAP_MPDUDENSITY_16)) return EINVAL; vap->iv_ampdu_density = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_AMSDU: if (ireq->i_val && (vap->iv_htcaps & IEEE80211_HTC_AMSDU) == 0) return EINVAL; if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMSDU_TX; if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMSDU_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_AMSDU_LIMIT: /* XXX validate */ vap->iv_amsdu_limit = ireq->i_val; /* XXX truncation? */ break; case IEEE80211_IOC_PUREN: if (ireq->i_val) { if ((vap->iv_flags_ht & IEEE80211_FHT_HT) == 0) return EINVAL; vap->iv_flags_ht |= IEEE80211_FHT_PUREN; } else vap->iv_flags_ht &= ~IEEE80211_FHT_PUREN; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_DOTH: if (ireq->i_val) { #if 0 /* XXX no capability */ if ((vap->iv_caps & IEEE80211_C_DOTH) == 0) return EOPNOTSUPP; #endif vap->iv_flags |= IEEE80211_F_DOTH; } else vap->iv_flags &= ~IEEE80211_F_DOTH; error = ENETRESET; break; case IEEE80211_IOC_REGDOMAIN: error = ieee80211_ioctl_setregdomain(vap, ireq); break; case IEEE80211_IOC_ROAM: error = ieee80211_ioctl_setroam(vap, ireq); break; case IEEE80211_IOC_TXPARAMS: error = ieee80211_ioctl_settxparams(vap, ireq); break; case IEEE80211_IOC_HTCOMPAT: if (ireq->i_val) { if ((vap->iv_flags_ht & IEEE80211_FHT_HT) == 0) return EOPNOTSUPP; vap->iv_flags_ht |= IEEE80211_FHT_HTCOMPAT; } else vap->iv_flags_ht &= ~IEEE80211_FHT_HTCOMPAT; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_DWDS: if (ireq->i_val) { /* NB: DWDS only makes sense for WDS-capable devices */ if ((ic->ic_caps & IEEE80211_C_WDS) == 0) return EOPNOTSUPP; /* NB: DWDS is used only with ap+sta vaps */ if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_STA) return EINVAL; vap->iv_flags |= IEEE80211_F_DWDS; if (vap->iv_opmode == IEEE80211_M_STA) vap->iv_flags_ext |= IEEE80211_FEXT_4ADDR; } else { vap->iv_flags &= ~IEEE80211_F_DWDS; if (vap->iv_opmode == IEEE80211_M_STA) vap->iv_flags_ext &= ~IEEE80211_FEXT_4ADDR; } break; case IEEE80211_IOC_INACTIVITY: if (ireq->i_val) vap->iv_flags_ext |= IEEE80211_FEXT_INACT; else vap->iv_flags_ext &= ~IEEE80211_FEXT_INACT; break; case IEEE80211_IOC_APPIE: error = ieee80211_ioctl_setappie(vap, ireq); break; case IEEE80211_IOC_WPS: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_WPA) == 0) return EOPNOTSUPP; vap->iv_flags_ext |= IEEE80211_FEXT_WPS; } else vap->iv_flags_ext &= ~IEEE80211_FEXT_WPS; break; case IEEE80211_IOC_TSN: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_WPA) == 0) return EOPNOTSUPP; vap->iv_flags_ext |= IEEE80211_FEXT_TSN; } else vap->iv_flags_ext &= ~IEEE80211_FEXT_TSN; break; case IEEE80211_IOC_CHANSWITCH: error = ieee80211_ioctl_chanswitch(vap, ireq); break; case IEEE80211_IOC_DFS: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_DFS) == 0) return EOPNOTSUPP; /* NB: DFS requires 11h support */ if ((vap->iv_flags & IEEE80211_F_DOTH) == 0) return EINVAL; vap->iv_flags_ext |= IEEE80211_FEXT_DFS; } else vap->iv_flags_ext &= ~IEEE80211_FEXT_DFS; break; case IEEE80211_IOC_DOTD: if (ireq->i_val) vap->iv_flags_ext |= IEEE80211_FEXT_DOTD; else vap->iv_flags_ext &= ~IEEE80211_FEXT_DOTD; if (vap->iv_opmode == IEEE80211_M_STA) error = ENETRESET; break; case IEEE80211_IOC_HTPROTMODE: if (ireq->i_val > IEEE80211_PROT_RTSCTS) return EINVAL; vap->iv_htprotmode = ireq->i_val ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_NONE; /* NB: if not operating in 11n this can wait */ if (isvapht(vap)) error = ERESTART; /* Notify driver layer of HT protmode changes */ ieee80211_vap_update_ht_protmode(vap); break; case IEEE80211_IOC_STA_VLAN: error = ieee80211_ioctl_setstavlan(vap, ireq); break; case IEEE80211_IOC_SMPS: if ((ireq->i_val &~ IEEE80211_HTCAP_SMPS) != 0 || ireq->i_val == 0x0008) /* value of 2 is reserved */ return EINVAL; if (ireq->i_val != IEEE80211_HTCAP_SMPS_OFF && (vap->iv_htcaps & IEEE80211_HTC_SMPS) == 0) return EOPNOTSUPP; vap->iv_htcaps = (vap->iv_htcaps &~ IEEE80211_HTCAP_SMPS) | ireq->i_val; /* NB: if not operating in 11n this can wait */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_RIFS: if (ireq->i_val != 0) { if ((vap->iv_htcaps & IEEE80211_HTC_RIFS) == 0) return EOPNOTSUPP; vap->iv_flags_ht |= IEEE80211_FHT_RIFS; } else vap->iv_flags_ht &= ~IEEE80211_FHT_RIFS; /* NB: if not operating in 11n this can wait */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_STBC: /* Check if we can do STBC TX/RX before changing the setting */ if ((ireq->i_val & 1) && ((vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) == 0)) return EOPNOTSUPP; if ((ireq->i_val & 2) && ((vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) == 0)) return EOPNOTSUPP; /* TX */ if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_STBC_TX; /* RX */ if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_STBC_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_LDPC: /* Check if we can do LDPC TX/RX before changing the setting */ if ((ireq->i_val & 1) && (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) == 0) return EOPNOTSUPP; if ((ireq->i_val & 2) && (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) == 0) return EOPNOTSUPP; /* TX */ if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_LDPC_TX; /* RX */ if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_LDPC_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_UAPSD: if ((vap->iv_caps & IEEE80211_C_UAPSD) == 0) return EOPNOTSUPP; if (ireq->i_val == 0) vap->iv_flags_ext &= ~IEEE80211_FEXT_UAPSD; else if (ireq->i_val == 1) vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; else return EINVAL; break; /* VHT */ case IEEE80211_IOC_VHTCONF: if (ireq->i_val & IEEE80211_FVHT_VHT) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_VHT); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_VHT); if (ireq->i_val & IEEE80211_FVHT_USEVHT40) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT40); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT40); if (ireq->i_val & IEEE80211_FVHT_USEVHT80) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT80); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT80); if (ireq->i_val & IEEE80211_FVHT_USEVHT160) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT160); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT160); if (ireq->i_val & IEEE80211_FVHT_USEVHT80P80) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT80P80); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT80P80); error = ENETRESET; break; default: error = ieee80211_ioctl_setdefault(vap, ireq); break; } /* * The convention is that ENETRESET means an operation * requires a complete re-initialization of the device (e.g. * changing something that affects the association state). * ERESTART means the request may be handled with only a * reload of the hardware state. We hand ERESTART requests * to the iv_reset callback so the driver can decide. If * a device does not fillin iv_reset then it defaults to one * that returns ENETRESET. Otherwise a driver may return * ENETRESET (in which case a full reset will be done) or * 0 to mean there's no need to do anything (e.g. when the * change has no effect on the driver/device). */ if (error == ERESTART) error = IFNET_IS_UP_RUNNING(vap->iv_ifp) ? vap->iv_reset(vap, ireq->i_type) : 0; if (error == ENETRESET) { /* XXX need to re-think AUTO handling */ if (IS_UP_AUTO(vap)) ieee80211_init(vap); error = 0; } return error; } int ieee80211_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; int error = 0, wait = 0, ic_used; struct ifreq *ifr; struct ifaddr *ifa; /* XXX */ ic_used = (cmd != SIOCSIFMTU && cmd != SIOCG80211STATS); if (ic_used && (error = ieee80211_com_vincref(vap)) != 0) return (error); switch (cmd) { case SIOCSIFFLAGS: IEEE80211_LOCK(ic); if ((ifp->if_flags ^ vap->iv_ifflags) & IFF_PROMISC) { /* * Enable promiscuous mode when: * 1. Interface is not a member of bridge, or * 2. Requested by user, or * 3. In monitor (or adhoc-demo) mode. */ if (ifp->if_bridge == NULL || (ifp->if_flags & IFF_PPROMISC) != 0 || vap->iv_opmode == IEEE80211_M_MONITOR || (vap->iv_opmode == IEEE80211_M_AHDEMO && (vap->iv_caps & IEEE80211_C_TDMA) == 0)) { ieee80211_promisc(vap, ifp->if_flags & IFF_PROMISC); vap->iv_ifflags ^= IFF_PROMISC; } } if ((ifp->if_flags ^ vap->iv_ifflags) & IFF_ALLMULTI) { ieee80211_allmulti(vap, ifp->if_flags & IFF_ALLMULTI); vap->iv_ifflags ^= IFF_ALLMULTI; } if (ifp->if_flags & IFF_UP) { /* * Bring ourself up unless we're already operational. * If we're the first vap and the parent is not up * then it will automatically be brought up as a * side-effect of bringing ourself up. */ if (vap->iv_state == IEEE80211_S_INIT) { if (ic->ic_nrunning == 0) wait = 1; ieee80211_start_locked(vap); } } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* * Stop ourself. If we are the last vap to be * marked down the parent will also be taken down. */ if (ic->ic_nrunning == 1) wait = 1; ieee80211_stop_locked(vap); } IEEE80211_UNLOCK(ic); /* Wait for parent ioctl handler if it was queued */ if (wait) { struct epoch_tracker et; ieee80211_waitfor_parent(ic); /* * Check if the MAC address was changed * via SIOCSIFLLADDR ioctl. * * NB: device may be detached during initialization; * use if_ioctl for existence check. */ NET_EPOCH_ENTER(et); if (ifp->if_ioctl == ieee80211_ioctl && (ifp->if_flags & IFF_UP) == 0 && !IEEE80211_ADDR_EQ(vap->iv_myaddr, IF_LLADDR(ifp))) IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); NET_EPOCH_EXIT(et); } break; case SIOCADDMULTI: case SIOCDELMULTI: ieee80211_runtask(ic, &ic->ic_mcast_task); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: ifr = (struct ifreq *)data; error = ifmedia_ioctl(ifp, ifr, &vap->iv_media, cmd); break; case SIOCG80211: error = ieee80211_ioctl_get80211(vap, cmd, (struct ieee80211req *) data); break; case SIOCS80211: /* XXX TODO: move priv check to ieee80211_freebsd.c */ error = priv_check(curthread, PRIV_NET80211_VAP_MANAGE); if (error == 0) error = ieee80211_ioctl_set80211(vap, cmd, (struct ieee80211req *) data); break; case SIOCG80211STATS: ifr = (struct ifreq *)data; copyout(&vap->iv_stats, ifr_data_get_ptr(ifr), sizeof (vap->iv_stats)); break; case SIOCSIFMTU: ifr = (struct ifreq *)data; if (!(IEEE80211_MTU_MIN <= ifr->ifr_mtu && ifr->ifr_mtu <= IEEE80211_MTU_MAX)) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFADDR: /* * XXX Handle this directly so we can suppress if_init calls. * XXX This should be done in ether_ioctl but for the moment * XXX there are too many other parts of the system that * XXX set IFF_UP and so suppress if_init being called when * XXX it should be. */ ifa = (struct ifaddr *) data; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: if ((ifp->if_flags & IFF_UP) == 0) { ifp->if_flags |= IFF_UP; ifp->if_init(ifp->if_softc); } arp_ifinit(ifp, ifa); break; #endif default: if ((ifp->if_flags & IFF_UP) == 0) { ifp->if_flags |= IFF_UP; ifp->if_init(ifp->if_softc); } break; } break; case SIOCSIFLLADDR: /* XXX TODO: move priv check to ieee80211_freebsd.c */ error = priv_check(curthread, PRIV_NET80211_VAP_SETMAC); if (error == 0) break; /* Fallthrough */ default: /* * Pass unknown ioctls first to the driver, and if it * returns ENOTTY, then to the generic Ethernet handler. */ if (ic->ic_ioctl != NULL && (error = ic->ic_ioctl(ic, cmd, data)) != ENOTTY) break; error = ether_ioctl(ifp, cmd, data); break; } if (ic_used) ieee80211_com_vdecref(vap); return (error); } Index: head/sys/net80211/ieee80211_output.c =================================================================== --- head/sys/net80211/ieee80211_output.c (revision 366111) +++ head/sys/net80211/ieee80211_output.c (revision 366112) @@ -1,4113 +1,4113 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #include #include #if defined(INET) || defined(INET6) #include #endif #ifdef INET #include #include #include #endif #ifdef INET6 #include #endif #include #define ETHER_HEADER_COPY(dst, src) \ memcpy(dst, src, sizeof(struct ether_header)) static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, u_int hdrsize, u_int ciphdrsize, u_int mtu); static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); #ifdef IEEE80211_DEBUG /* * Decide if an outbound management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: return (vap->iv_opmode == IEEE80211_M_IBSS); } return 1; } #endif /* * Transmit a frame to the given destination on the given VAP. * * It's up to the caller to figure out the details of who this * is going to and resolving the node. * * This routine takes care of queuing it for power save, * A-MPDU state stuff, fast-frames state stuff, encapsulation * if required, then passing it up to the driver layer. * * This routine (for now) consumes the mbuf and frees the node * reference; it ideally will return a TX status which reflects * whether the mbuf was consumed or not, so the caller can * free the mbuf (if appropriate) and the node reference (again, * if appropriate.) */ int ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int mcast; int do_ampdu = 0; int do_amsdu = 0; int do_ampdu_amsdu = 0; int no_ampdu = 1; /* Will be set to 0 if ampdu is active */ int do_ff = 0; if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && (m->m_flags & M_PWR_SAV) == 0) { /* * Station in power save mode; pass the frame * to the 802.11 layer and continue. We'll get * the frame back when the time is right. * XXX lose WDS vap linkage? */ if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); /* * We queued it fine, so tell the upper layer * that we consumed it. */ return (0); } /* calculate priority so drivers can find the tx queue */ if (ieee80211_classify(ni, m)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, ni->ni_macaddr, NULL, "%s", "classification failure"); vap->iv_stats.is_tx_classify++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (0); } /* * Stash the node pointer. Note that we do this after * any call to ieee80211_dwds_mcast because that code * uses any existing value for rcvif to identify the * interface it (might have been) received on. */ MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m->m_pkthdr.rcvif = (void *)ni; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; BPF_MTAP(ifp, m); /* 802.3 tx */ /* * Figure out if we can do A-MPDU, A-MSDU or FF. * * A-MPDU depends upon vap/node config. * A-MSDU depends upon vap/node config. * FF depends upon vap config, IE and whether * it's 11abg (and not 11n/11ac/etc.) * * Note that these flags indiciate whether we can do * it at all, rather than the situation (eg traffic type.) */ do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)); do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX)); do_ff = ((ni->ni_flags & IEEE80211_NODE_HT) == 0) && ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) && (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)); /* * Check if A-MPDU tx aggregation is setup or if we * should try to enable it. The sta must be associated * with HT and A-MPDU enabled for use. When the policy * routine decides we should enable A-MPDU we issue an * ADDBA request and wait for a reply. The frame being * encapsulated will go out w/o using A-MPDU, or possibly * it might be collected by the driver and held/retransmit. * The default ic_ampdu_enable routine handles staggering * ADDBA requests in case the receiver NAK's us or we are * otherwise unable to establish a BA stream. * * Don't treat group-addressed frames as candidates for aggregation; * net80211 doesn't support 802.11aa-2012 and so group addressed * frames will always have sequence numbers allocated from the NON_QOS * TID. */ if (do_ampdu) { if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { int tid = WME_AC_TO_TID(M_WME_GETAC(m)); struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; ieee80211_txampdu_count_packet(tap); if (IEEE80211_AMPDU_RUNNING(tap)) { /* * Operational, mark frame for aggregation. * * XXX do tx aggregation here */ m->m_flags |= M_AMPDU_MPDU; } else if (!IEEE80211_AMPDU_REQUESTED(tap) && ic->ic_ampdu_enable(ni, tap)) { /* * Not negotiated yet, request service. */ ieee80211_ampdu_request(ni, tap); /* XXX hold frame for reply? */ } /* * Now update the no-ampdu flag. A-MPDU may have been * started or administratively disabled above; so now we * know whether we're running yet or not. * * This will let us know whether we should be doing A-MSDU * at this point. We only do A-MSDU if we're either not * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU * is available. * * Whilst here, update the amsdu-ampdu flag. The above may * have also set or cleared the amsdu-in-ampdu txa_flags * combination so we can correctly do A-MPDU + A-MSDU. */ no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap) || (IEEE80211_AMPDU_NACKED(tap))); do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap); } } #ifdef IEEE80211_SUPPORT_SUPERG /* * Check for AMSDU/FF; queue for aggregation * * Note: we don't bother trying to do fast frames or * A-MSDU encapsulation for 802.3 drivers. Now, we * likely could do it for FF (because it's a magic * atheros tunnel LLC type) but I don't think we're going * to really need to. For A-MSDU we'd have to set the * A-MSDU QoS bit in the wifi header, so we just plain * can't do it. */ if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { if ((! mcast) && (do_ampdu_amsdu || (no_ampdu && do_amsdu)) && ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: amsdu_check queued frame\n", __func__); return (0); } } else if ((! mcast) && do_ff) { m = ieee80211_ff_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: ff_check queued frame\n", __func__); return (0); } } } #endif /* IEEE80211_SUPPORT_SUPERG */ /* * Grab the TX lock - serialise the TX process from this * point (where TX state is being checked/modified) * through to driver queue. */ IEEE80211_TX_LOCK(ic); /* * XXX make the encap and transmit code a separate function * so things like the FF (and later A-MSDU) path can just call * it for flushed frames. */ if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { /* * Encapsulate the packet in prep for transmission. */ m = ieee80211_encap(vap, ni, m); if (m == NULL) { /* NB: stat+msg handled in ieee80211_encap */ IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } } (void) ieee80211_parent_xmitpkt(ic, m); /* * Unlock at this point - no need to hold it across * ieee80211_free_node() (ie, the comlock) */ IEEE80211_TX_UNLOCK(ic); ic->ic_lastdata = ticks; return (0); } /* * Send the given mbuf through the given vap. * * This consumes the mbuf regardless of whether the transmit * was successful or not. * * This does none of the initial checks that ieee80211_start() * does (eg CAC timeout, interface wakeup) - the caller must * do this first. */ static int ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) { #define IS_DWDS(vap) \ (vap->iv_opmode == IEEE80211_M_WDS && \ (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_node *ni; struct ether_header *eh; /* * Cancel any background scan. */ if (ic->ic_flags & IEEE80211_F_SCAN) ieee80211_cancel_anyscan(vap); /* * Find the node for the destination so we can do * things like power save and fast frames aggregation. * * NB: past this point various code assumes the first * mbuf has the 802.3 header present (and contiguous). */ ni = NULL; if (m->m_len < sizeof(struct ether_header) && (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "discard frame, %s\n", "m_pullup failed"); vap->iv_stats.is_tx_nobuf++; /* XXX */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } eh = mtod(m, struct ether_header *); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (IS_DWDS(vap)) { /* * Only unicast frames from the above go out * DWDS vaps; multicast frames are handled by * dispatching the frame as it comes through * the AP vap (see below). */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, eh->ether_dhost, "mcast", "%s", "on DWDS"); vap->iv_stats.is_dwds_mcast++; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* * Spam DWDS vap's w/ multicast traffic. */ /* XXX only if dwds in use? */ ieee80211_dwds_mcast(vap, m); } } #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode != IEEE80211_M_MBSS) { #endif ni = ieee80211_find_txnode(vap, eh->ether_dhost); if (ni == NULL) { /* NB: ieee80211_find_txnode does stat+msg */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } if (ni->ni_associd == 0 && (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, eh->ether_dhost, NULL, "sta not associated (type 0x%04x)", htons(eh->ether_type)); vap->iv_stats.is_tx_notassoc++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (ENOBUFS); } #ifdef IEEE80211_SUPPORT_MESH } else { if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { /* * Proxy station only if configured. */ if (!ieee80211_mesh_isproxyena(vap)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_MESH, eh->ether_dhost, NULL, "%s", "proxy not enabled"); vap->iv_stats.is_mesh_notproxy++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "forward frame from DS SA(%6D), DA(%6D)\n", eh->ether_shost, ":", eh->ether_dhost, ":"); ieee80211_mesh_proxy_check(vap, eh->ether_shost); } ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); if (ni == NULL) { /* * NB: ieee80211_mesh_discover holds/disposes * frame (e.g. queueing on path discovery). */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } } #endif /* * We've resolved the sender, so attempt to transmit it. */ if (vap->iv_state == IEEE80211_S_SLEEP) { /* * In power save; queue frame and then wakeup device * for transmit. */ ic->ic_lastdata = ticks; if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); ieee80211_new_state(vap, IEEE80211_S_RUN, 0); return (0); } if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) return (ENOBUFS); return (0); #undef IS_DWDS } /* * Start method for vap's. All packets from the stack come * through here. We handle common processing of the packets * before dispatching them to the underlying device. * * if_transmit() requires that the mbuf be consumed by this call * regardless of the return condition. */ int ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; /* * No data frames go out unless we're running. * Note in particular this covers CAC and CSA * states (though maybe we should check muting * for CSA). */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_LOCK(ic); /* re-check under the com lock to avoid races */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: ignore queue, in %s state\n", __func__, ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_tx_badstate++; IEEE80211_UNLOCK(ic); ifp->if_drv_flags |= IFF_DRV_OACTIVE; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENETDOWN); } IEEE80211_UNLOCK(ic); } /* * Sanitize mbuf flags for net80211 use. We cannot * clear M_PWR_SAV or M_MORE_DATA because these may * be set for frames that are re-submitted from the * power save queue. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); /* * Bump to the packet transmission path. * The mbuf will be consumed here. */ return (ieee80211_start_pkt(vap, m)); } void ieee80211_vap_qflush(struct ifnet *ifp) { /* Empty for now */ } /* * 802.11 raw output routine. * * XXX TODO: this (and other send routines) should correctly * XXX keep the pwr mgmt bit set if it decides to call into the * XXX driver to send a frame whilst the state is SLEEP. * * Otherwise the peer may decide that we're awake and flood us * with traffic we are still too asleep to receive! */ int ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = vap->iv_ic; int error; /* * Set node - the caller has taken a reference, so ensure * that the mbuf has the same node value that * it would if it were going via the normal path. */ MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m->m_pkthdr.rcvif = (void *)ni; /* * Attempt to add bpf transmit parameters. * * For now it's ok to fail; the raw_xmit api still takes * them as an option. * * Later on when ic_raw_xmit() has params removed, * they'll have to be added - so fail the transmit if * they can't be. */ if (params) (void) ieee80211_add_xmit_params(m, params); error = ic->ic_raw_xmit(ni, m, params); if (error) { if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); } return (error); } static int ieee80211_validate_frame(struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211_frame *wh; int type; if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) return (EINVAL); wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != IEEE80211_FC0_VERSION_0) return (EINVAL); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if (type != IEEE80211_FC0_TYPE_DATA) { if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_NODS) return (EINVAL); if (type != IEEE80211_FC0_TYPE_MGT && (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) return (EINVAL); /* XXX skip other field checks? */ } if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { int subtype; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* * See IEEE Std 802.11-2012, * 8.2.4.1.9 'Protected Frame field' */ /* XXX no support for robust management frames yet. */ if (!(type == IEEE80211_FC0_TYPE_DATA || (type == IEEE80211_FC0_TYPE_MGT && subtype == IEEE80211_FC0_SUBTYPE_AUTH))) return (EINVAL); wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; } if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) return (EINVAL); return (0); } static int ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) { struct ieee80211com *ic = ni->ni_ic; if (IEEE80211_IS_HT_RATE(rate)) { if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) return (EINVAL); rate = IEEE80211_RV(rate); if (rate <= 31) { if (rate > ic->ic_txstream * 8 - 1) return (EINVAL); return (0); } if (rate == 32) { if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) return (EINVAL); return (0); } if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) return (EINVAL); switch (ic->ic_txstream) { case 0: case 1: return (EINVAL); case 2: if (rate > 38) return (EINVAL); return (0); case 3: if (rate > 52) return (EINVAL); return (0); case 4: default: if (rate > 76) return (EINVAL); return (0); } } if (!ieee80211_isratevalid(ic->ic_rt, rate)) return (EINVAL); return (0); } static int ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { int error; if (!params) return (0); /* nothing to do */ /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ if (params->ibp_rate0 != 0) { error = ieee80211_validate_rate(ni, params->ibp_rate0); if (error != 0) return (error); } else { /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ /* XXX __DECONST? */ (void) m; } if (params->ibp_rate1 != 0 && (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) return (error); if (params->ibp_rate2 != 0 && (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) return (error); if (params->ibp_rate3 != 0 && (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) return (error); return (0); } /* * 802.11 output routine. This is (currently) used only to * connect bpf write calls to the 802.11 layer for injecting * raw 802.11 frames. */ int ieee80211_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { #define senderr(e) do { error = (e); goto bad;} while (0) const struct ieee80211_bpf_params *params = NULL; struct ieee80211_node *ni = NULL; struct ieee80211vap *vap; struct ieee80211_frame *wh; struct ieee80211com *ic = NULL; int error; int ret; if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { /* * Short-circuit requests if the vap is marked OACTIVE * as this can happen because a packet came down through * ieee80211_start before the vap entered RUN state in * which case it's ok to just drop the frame. This * should not be necessary but callers of if_output don't * check OACTIVE. */ senderr(ENETDOWN); } vap = ifp->if_softc; ic = vap->iv_ic; /* * Hand to the 802.3 code if not tagged as * a raw 802.11 frame. */ if (dst->sa_family != AF_IEEE80211) return vap->iv_output(ifp, m, dst, ro); #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!IFNET_IS_UP_RUNNING(ifp)) senderr(ENETDOWN); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, "block %s frame in CAC state\n", "raw data"); vap->iv_stats.is_tx_badstate++; senderr(EIO); /* XXX */ } else if (vap->iv_state == IEEE80211_S_SCAN) senderr(EIO); /* XXX bypass bridge, pfil, carp, etc. */ /* * NB: DLT_IEEE802_11_RADIO identifies the parameters are * present by setting the sa_len field of the sockaddr (yes, * this is a hack). * NB: we assume sa_data is suitably aligned to cast. */ if (dst->sa_len != 0) params = (const struct ieee80211_bpf_params *)dst->sa_data; error = ieee80211_validate_frame(m, params); if (error != 0) senderr(error); wh = mtod(m, struct ieee80211_frame *); /* locate destination node */ switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: case IEEE80211_FC1_DIR_FROMDS: ni = ieee80211_find_txnode(vap, wh->i_addr1); break; case IEEE80211_FC1_DIR_TODS: case IEEE80211_FC1_DIR_DSTODS: ni = ieee80211_find_txnode(vap, wh->i_addr3); break; default: senderr(EDOOFUS); } if (ni == NULL) { /* * Permit packets w/ bpf params through regardless * (see below about sa_len). */ if (dst->sa_len == 0) senderr(EHOSTUNREACH); ni = ieee80211_ref_node(vap->iv_bss); } /* * Sanitize mbuf for net80211 flags leaked from above. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~M_80211_TX; m->m_flags |= M_ENCAP; /* mark encapsulated */ if (IEEE80211_IS_DATA(wh)) { /* calculate priority so drivers can find the tx queue */ if (ieee80211_classify(ni, m)) senderr(EIO); /* XXX */ /* NB: ieee80211_encap does not include 802.11 header */ IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len - ieee80211_hdrsize(wh)); } else M_WME_SETAC(m, WME_AC_BE); error = ieee80211_sanitize_rates(ni, m, params); if (error != 0) senderr(error); IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); IEEE80211_TX_LOCK(ic); ret = ieee80211_raw_output(vap, ni, m, params); IEEE80211_TX_UNLOCK(ic); return (ret); bad: if (m != NULL) m_freem(m); if (ni != NULL) ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return error; #undef senderr } /* * Set the direction field and address fields of an outgoing * frame. Note this should be called early on in constructing * a frame as it sets i_fc[1]; other bits can then be or'd in. */ void ieee80211_send_setup( struct ieee80211_node *ni, struct mbuf *m, int type, int tid, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN]) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); ieee80211_seq seqno; IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, bssid); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, da); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, bssid); IEEE80211_ADDR_COPY(wh->i_addr3, sa); break; case IEEE80211_M_WDS: wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); break; case IEEE80211_M_MBSS: #ifdef IEEE80211_SUPPORT_MESH if (IEEE80211_IS_MULTICAST(da)) { wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; /* XXX next hop */ IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); } else { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); } #endif break; case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ break; } } else { wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) IEEE80211_ADDR_COPY(wh->i_addr3, sa); else #endif IEEE80211_ADDR_COPY(wh->i_addr3, bssid); } *(uint16_t *)&wh->i_dur[0] = 0; /* * XXX TODO: this is what the TX lock is for. * Here we're incrementing sequence numbers, and they * need to be in lock-step with what the driver is doing * both in TX ordering and crypto encap (IV increment.) * * If the driver does seqno itself, then we can skip * assigning sequence numbers here, and we can avoid * requiring the TX lock. */ tap = &ni->ni_tx_ampdu[tid]; if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { m->m_flags |= M_AMPDU_MPDU; /* NB: zero out i_seq field (for s/w encryption etc) */ *(uint16_t *)&wh->i_seq[0] = 0; } else { if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, type & IEEE80211_FC0_SUBTYPE_MASK)) /* * 802.11-2012 9.3.2.10 - QoS multicast frames * come out of a different seqno space. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; } else { seqno = ni->ni_txseqs[tid]++; } else seqno = 0; *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } if (IEEE80211_IS_MULTICAST(wh->i_addr1)) m->m_flags |= M_MCAST; #undef WH4 } /* * Send a management frame to the specified node. The node pointer * must have a reference as the pointer will be passed to the driver * and potentially held for a long time. If the frame is successfully * dispatched to the driver, then it is responsible for freeing the * reference (and potentially free'ing up any associated storage); * otherwise deal with reclaiming any reference (on error). */ int ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; int ret; KASSERT(ni != NULL, ("null node")); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", ieee80211_mgt_subtype_name(type)); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(ni); m_freem(m); return EIO; /* XXX */ } M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); if (m == NULL) { ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, "encrypting frame (%s)", __func__); wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; } m->m_flags |= M_ENCAP; /* mark encapsulated */ KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); M_WME_SETAC(m, params->ibp_pri); #ifdef IEEE80211_DEBUG /* avoid printing too many frames */ if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || ieee80211_msg_dumppkts(vap)) { printf("[%s] send %s on channel %u\n", ether_sprintf(wh->i_addr1), ieee80211_mgt_subtype_name(type), ieee80211_chan2ieee(ic, ic->ic_curchan)); } #endif IEEE80211_NODE_STAT(ni, tx_mgmt); ret = ieee80211_raw_output(vap, ni, m, params); IEEE80211_TX_UNLOCK(ic); return (ret); } static void ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; wakeup(vap); } /* * Send a null data frame to the specified node. If the station * is setup for QoS then a QoS Null Data frame is constructed. * If this is a WDS station then a 4-address frame is constructed. * * NB: the caller is assumed to have setup a node reference * for use; this is necessary to deal with a race condition * when probing for inactive stations. Like ieee80211_mgmt_output * we must cleanup any node reference on error; however we * can safely just unref it as we know it will never be the * last reference to the node. */ int ieee80211_send_nulldata(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct mbuf *m; struct ieee80211_frame *wh; int hdrlen; uint8_t *frm; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", "null data"); ieee80211_unref_node(&ni); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) hdrlen = sizeof(struct ieee80211_qosframe); else hdrlen = sizeof(struct ieee80211_frame); /* NB: only WDS vap's get 4-address frames */ if (vap->iv_opmode == IEEE80211_M_WDS) hdrlen += IEEE80211_ADDR_LEN; if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrlen = roundup(hdrlen, sizeof(uint32_t)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); if (m == NULL) { /* XXX debug msg */ ieee80211_unref_node(&ni); vap->iv_stats.is_tx_nobuf++; return ENOMEM; } KASSERT(M_LEADINGSPACE(m) >= hdrlen, ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, hdrlen, M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ if (ni->ni_flags & IEEE80211_NODE_QOS) { const int tid = WME_AC_TO_TID(WME_AC_BE); uint8_t *qos; ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (vap->iv_opmode == IEEE80211_M_WDS) qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; else qos = ((struct ieee80211_qosframe *) wh)->i_qos; qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; qos[1] = 0; } else { ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); } if (vap->iv_opmode != IEEE80211_M_WDS) { /* NB: power management bit is never sent by an AP */ if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && vap->iv_opmode != IEEE80211_M_HOSTAP) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; } if ((ic->ic_flags & IEEE80211_F_SCAN) && (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { ieee80211_add_callback(m, ieee80211_nulldata_transmitted, NULL); } m->m_len = m->m_pkthdr.len = hdrlen; m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, "send %snull data frame on channel %u, pwr mgt %s", ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", ieee80211_chan2ieee(ic, ic->ic_curchan), wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); ret = ieee80211_raw_output(vap, ni, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Assign priority to a frame based on any vlan tag assigned * to the station and/or any Diffserv setting in an IP header. * Finally, if an ACM policy is setup (in station mode) it's * applied. */ int ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) { const struct ether_header *eh = NULL; uint16_t ether_type; int v_wme_ac, d_wme_ac, ac; if (__predict_false(m->m_flags & M_ENCAP)) { struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); struct llc *llc; int hdrlen, subtype; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { ac = WME_AC_BE; goto done; } hdrlen = ieee80211_hdrsize(wh); if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) return 1; llc = (struct llc *)mtodo(m, hdrlen); if (llc->llc_dsap != LLC_SNAP_LSAP || llc->llc_ssap != LLC_SNAP_LSAP || llc->llc_control != LLC_UI || llc->llc_snap.org_code[0] != 0 || llc->llc_snap.org_code[1] != 0 || llc->llc_snap.org_code[2] != 0) return 1; ether_type = llc->llc_snap.ether_type; } else { eh = mtod(m, struct ether_header *); ether_type = eh->ether_type; } /* * Always promote PAE/EAPOL frames to high priority. */ if (ether_type == htons(ETHERTYPE_PAE)) { /* NB: mark so others don't need to check header */ m->m_flags |= M_EAPOL; ac = WME_AC_VO; goto done; } /* * Non-qos traffic goes to BE. */ if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { ac = WME_AC_BE; goto done; } /* * If node has a vlan tag then all traffic * to it must have a matching tag. */ v_wme_ac = 0; if (ni->ni_vlan != 0) { if ((m->m_flags & M_VLANTAG) == 0) { IEEE80211_NODE_STAT(ni, tx_novlantag); return 1; } if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != EVL_VLANOFTAG(ni->ni_vlan)) { IEEE80211_NODE_STAT(ni, tx_vlanmismatch); return 1; } /* map vlan priority to AC */ v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); } /* XXX m_copydata may be too slow for fast path */ #ifdef INET if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { uint8_t tos; /* * IP frame, map the DSCP bits from the TOS field. */ /* NB: ip header may not be in first mbuf */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip, ip_tos), sizeof(tos), &tos); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); } else { #endif /* INET */ #ifdef INET6 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { uint32_t flow; uint8_t tos; /* * IPv6 frame, map the DSCP bits from the traffic class field. */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), (caddr_t) &flow); tos = (uint8_t)(ntohl(flow) >> 20); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); } else { #endif /* INET6 */ d_wme_ac = WME_AC_BE; #ifdef INET6 } #endif #ifdef INET } #endif /* * Use highest priority AC. */ if (v_wme_ac > d_wme_ac) ac = v_wme_ac; else ac = d_wme_ac; /* * Apply ACM policy. */ if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { static const int acmap[4] = { WME_AC_BK, /* WME_AC_BE */ WME_AC_BK, /* WME_AC_BK */ WME_AC_BE, /* WME_AC_VI */ WME_AC_VI, /* WME_AC_VO */ }; struct ieee80211com *ic = ni->ni_ic; while (ac != WME_AC_BK && ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) ac = acmap[ac]; } done: M_WME_SETAC(m, ac); return 0; } /* * Insure there is sufficient contiguous space to encapsulate the * 802.11 data frame. If room isn't already there, arrange for it. * Drivers and cipher modules assume we have done the necessary work * and fail rudely if they don't find the space they need. */ struct mbuf * ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, struct ieee80211_key *key, struct mbuf *m) { #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) int needed_space = vap->iv_ic->ic_headroom + hdrsize; if (key != NULL) { /* XXX belongs in crypto code? */ needed_space += key->wk_cipher->ic_header; /* XXX frags */ /* * When crypto is being done in the host we must insure * the data are writable for the cipher routines; clone * a writable mbuf chain. * XXX handle SWMIC specially */ if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { m = m_unshare(m, M_NOWAIT); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot get writable mbuf\n", __func__); vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ return NULL; } } } /* * We know we are called just before stripping an Ethernet * header and prepending an LLC header. This means we know * there will be * sizeof(struct ether_header) - sizeof(struct llc) * bytes recovered to which we need additional space for the * 802.11 header and any crypto header. */ /* XXX check trailing space and copy instead? */ if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); if (n == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage\n", __func__); vap->iv_stats.is_tx_nobuf++; m_freem(m); return NULL; } KASSERT(needed_space <= MHLEN, ("not enough room, need %u got %d\n", needed_space, MHLEN)); /* * Setup new mbuf to have leading space to prepend the * 802.11 header and any crypto header bits that are * required (the latter are added when the driver calls * back to ieee80211_crypto_encap to do crypto encapsulation). */ /* NB: must be first 'cuz it clobbers m_data */ m_move_pkthdr(n, m); n->m_len = 0; /* NB: m_gethdr does not set */ n->m_data += needed_space; /* * Pull up Ethernet header to create the expected layout. * We could use m_pullup but that's overkill (i.e. we don't * need the actual data) and it cannot fail so do it inline * for speed. */ /* NB: struct ether_header is known to be contiguous */ n->m_len += sizeof(struct ether_header); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * Replace the head of the chain. */ n->m_next = m; m = n; } return m; #undef TO_BE_RECLAIMED } /* * Return the transmit key to use in sending a unicast frame. * If a unicast key is set we use that. When no unicast key is set * we fall back to the default transmit key. */ static __inline struct ieee80211_key * ieee80211_crypto_getucastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } else { return &ni->ni_ucastkey; } } /* * Return the transmit key to use in sending a multicast frame. * Multicast traffic always uses the group key which is installed as * the default tx key. */ static __inline struct ieee80211_key * ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } /* * Encapsulate an outbound data frame. The mbuf chain is updated. * If an error is encountered NULL is returned. The caller is required * to provide a node reference and pullup the ethernet header in the * first mbuf. * * NB: Packet is assumed to be processed by ieee80211_classify which * marked EAPOL frames w/ M_EAPOL. */ struct mbuf * ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) struct ieee80211com *ic = ni->ni_ic; #ifdef IEEE80211_SUPPORT_MESH struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_meshcntl_ae10 *mc; struct ieee80211_mesh_route *rt = NULL; int dir = -1; #endif struct ether_header eh; struct ieee80211_frame *wh; struct ieee80211_key *key; struct llc *llc; int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; ieee80211_seq seqno; int meshhdrsize, meshae; uint8_t *qos; int is_amsdu = 0; IEEE80211_TX_LOCK_ASSERT(ic); is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); /* * Copy existing Ethernet header to a safe place. The * rest of the code assumes it's ok to strip it when * reorganizing state for the final encapsulation. */ KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); /* * Insure space for additional headers. First identify * transmit key to use in calculating any buffer adjustments * required. This is also used below to do privacy * encapsulation work. Then calculate the 802.11 header * size and any padding required by the driver. * * Note key may be NULL if we fall back to the default * transmit key and that is not set. In that case the * buffer may not be expanded as needed by the cipher * routines, but they will/should discard it. */ if (vap->iv_flags & IEEE80211_F_PRIVACY) { if (vap->iv_opmode == IEEE80211_M_STA || !IEEE80211_IS_MULTICAST(eh.ether_dhost) || (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { key = ieee80211_crypto_getucastkey(vap, ni); } else if ((vap->iv_opmode == IEEE80211_M_WDS) && (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { /* * Use ucastkey for DWDS transmit nodes, multicast * or otherwise. * * This is required to ensure that multicast frames * from a DWDS AP to a DWDS STA is encrypted with * a key that can actually work. * * There's no default key for multicast traffic * on a DWDS WDS VAP node (note NOT the DWDS enabled * AP VAP, the dynamically created per-STA WDS node) * so encap fails and transmit fails. */ key = ieee80211_crypto_getucastkey(vap, ni); } else { key = ieee80211_crypto_getmcastkey(vap, ni); } if (key == NULL && (m->m_flags & M_EAPOL) == 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, eh.ether_dhost, "no default transmit key (%s) deftxkey %u", __func__, vap->iv_def_txkey); vap->iv_stats.is_tx_nodefkey++; goto bad; } } else key = NULL; /* * XXX Some ap's don't handle QoS-encapsulated EAPOL * frames so suppress use. This may be an issue if other * ap's require all data frames to be QoS-encapsulated * once negotiated in which case we'll need to make this * configurable. * * Don't send multicast QoS frames. * Technically multicast frames can be QoS if all stations in the * BSS are also QoS. * * NB: mesh data frames are QoS, including multicast frames. */ addqos = (((is_mcast == 0) && (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || (vap->iv_opmode == IEEE80211_M_MBSS)) && (m->m_flags & M_EAPOL) == 0; if (addqos) hdrsize = sizeof(struct ieee80211_qosframe); else hdrsize = sizeof(struct ieee80211_frame); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { /* * Mesh data frames are encapsulated according to the * rules of Section 11B.8.5 (p.139 of D3.0 spec). * o Group Addressed data (aka multicast) originating * at the local sta are sent w/ 3-address format and * address extension mode 00 * o Individually Addressed data (aka unicast) originating * at the local sta are sent w/ 4-address format and * address extension mode 00 * o Group Addressed data forwarded from a non-mesh sta are * sent w/ 3-address format and address extension mode 01 * o Individually Address data from another sta are sent * w/ 4-address format and address extension mode 10 */ is4addr = 0; /* NB: don't use, disable */ if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); KASSERT(rt != NULL, ("route is NULL")); dir = IEEE80211_FC1_DIR_DSTODS; hdrsize += IEEE80211_ADDR_LEN; if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, vap->iv_myaddr)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, eh.ether_dhost, "%s", "trying to send to ourself"); goto bad; } meshae = IEEE80211_MESH_AE_10; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae10); } else { meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } else { dir = IEEE80211_FC1_DIR_FROMDS; if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { /* proxy group */ meshae = IEEE80211_MESH_AE_01; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae01); } else { /* group */ meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } } else { #endif /* * 4-address frames need to be generated for: * o packets sent through a WDS vap (IEEE80211_M_WDS) * o packets sent through a vap marked for relaying * (e.g. a station operating with dynamic WDS) */ is4addr = vap->iv_opmode == IEEE80211_M_WDS || ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); if (is4addr) hdrsize += IEEE80211_ADDR_LEN; meshhdrsize = meshae = 0; #ifdef IEEE80211_SUPPORT_MESH } #endif /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; if (__predict_true((m->m_flags & M_FF) == 0)) { /* * Normal frame. */ m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); if (m == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; } else { #ifdef IEEE80211_SUPPORT_SUPERG /* * Aggregated frame. Check if it's for AMSDU or FF. * * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented * anywhere for some reason. But, since 11n requires * AMSDU RX, we can just assume "11n" == "AMSDU". */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); if (ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); is_amsdu = 1; } else { m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); } if (m == NULL) #endif goto bad; } datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; goto bad; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; *(uint16_t *)wh->i_dur = 0; qos = NULL; /* NB: quiet compiler */ if (is4addr) { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); } else switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); /* * NB: always use the bssid from iv_bss as the * neighbor's may be stale after an ibss merge */ IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); break; #ifdef IEEE80211_SUPPORT_MESH case IEEE80211_M_MBSS: /* NB: offset by hdrspace to deal with DATAPAD */ mc = (struct ieee80211_meshcntl_ae10 *) (mtod(m, uint8_t *) + hdrspace); wh->i_fc[1] = dir; switch (meshae) { case IEEE80211_MESH_AE_00: /* no proxy */ mc->mc_flags = 0; if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); qos =((struct ieee80211_qosframe_addr4 *) wh)->i_qos; } else if (dir == IEEE80211_FC1_DIR_FROMDS) { /* mcast */ IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; } break; case IEEE80211_MESH_AE_01: /* mcast, proxy */ wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); mc->mc_flags = 1; IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; break; case IEEE80211_MESH_AE_10: /* ucast, proxy */ KASSERT(rt != NULL, ("route is NULL")); IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); mc->mc_flags = IEEE80211_MESH_AE_10; IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; break; default: KASSERT(0, ("meshae %d", meshae)); break; } mc->mc_ttl = ms->ms_ttl; ms->ms_seq++; le32enc(mc->mc_seq, ms->ms_seq); break; #endif case IEEE80211_M_WDS: /* NB: is4addr should always be true */ default: goto bad; } if (m->m_flags & M_MORE_DATA) wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; if (addqos) { int ac, tid; if (is4addr) { qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; /* NB: mesh case handled earlier */ } else if (vap->iv_opmode != IEEE80211_M_MBSS) qos = ((struct ieee80211_qosframe *) wh)->i_qos; ac = M_WME_GETAC(m); /* map from access class/queue to 11e header priorty value */ tid = WME_AC_TO_TID(ac); qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) qos[1] = IEEE80211_QOS_MC; else #endif qos[1] = 0; wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; /* * If this is an A-MSDU then ensure we set the * relevant field. */ if (is_amsdu) qos[0] |= IEEE80211_QOS_AMSDU; /* * XXX TODO TX lock is needed for atomic updates of sequence * numbers. If the driver does it, then don't do it here; * and we don't need the TX lock held. */ if ((m->m_flags & M_AMPDU_MPDU) == 0) { /* * 802.11-2012 9.3.2.10 - * * If this is a multicast frame then we need * to ensure that the sequence number comes from * a separate seqno space and not the TID space. * * Otherwise multicast frames may actually cause * holes in the TX blockack window space and * upset various things. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; else seqno = ni->ni_txseqs[tid]++; /* * NB: don't assign a sequence # to potential * aggregates; we expect this happens at the * point the frame comes off any aggregation q * as otherwise we may introduce holes in the * BA sequence space and/or make window accouting * more difficult. * * XXX may want to control this with a driver * capability; this may also change when we pull * aggregation up into net80211 */ *(uint16_t *)wh->i_seq = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } else { /* NB: zero out i_seq field (for s/w encryption etc) */ *(uint16_t *)wh->i_seq = 0; } } else { /* * XXX TODO TX lock is needed for atomic updates of sequence * numbers. If the driver does it, then don't do it here; * and we don't need the TX lock held. */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; *(uint16_t *)wh->i_seq = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); /* * XXX TODO: we shouldn't allow EAPOL, etc that would * be forced to be non-QoS traffic to be A-MSDU encapsulated. */ if (is_amsdu) printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", __func__); } /* * Check if xmit fragmentation is required. * * If the hardware does fragmentation offload, then don't bother * doing it here. */ if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) txfrag = 0; else txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1) && (vap->iv_caps & IEEE80211_C_TXFRAG) && (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); if (key != NULL) { /* * IEEE 802.1X: send EAPOL frames always in the clear. * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. */ if ((m->m_flags & M_EAPOL) == 0 || ((vap->iv_flags & IEEE80211_F_WPA) && (vap->iv_opmode == IEEE80211_M_STA ? !IEEE80211_KEY_UNDEFINED(key) : !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, eh.ether_dhost, "%s", "enmic failed, discard frame"); vap->iv_stats.is_crypto_enmicfail++; goto bad; } } } if (txfrag && !ieee80211_fragment(vap, m, hdrsize, key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) goto bad; m->m_flags |= M_ENCAP; /* mark encapsulated */ IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); return m; bad: if (m != NULL) m_freem(m); return NULL; #undef WH4 #undef MC01 } void ieee80211_free_mbuf(struct mbuf *m) { struct mbuf *next; if (m == NULL) return; do { next = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } while ((m = next) != NULL); } /* * Fragment the frame according to the specified mtu. * The size of the 802.11 header (w/o padding) is provided * so we don't need to recalculate it. We create a new * mbuf for each fragment and chain it through m_nextpkt; * we might be able to optimize this by reusing the original * packet's mbufs but that is significantly more complicated. */ static int ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, u_int hdrsize, u_int ciphdrsize, u_int mtu) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_frame *wh, *whf; struct mbuf *m, *prev; u_int totalhdrsize, fragno, fragsize, off, remainder, payload; u_int hdrspace; KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); KASSERT(m0->m_pkthdr.len > mtu, ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; wh = mtod(m0, struct ieee80211_frame *); /* NB: mark the first frag; it will be propagated below */ wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; totalhdrsize = hdrspace + ciphdrsize; fragno = 1; off = mtu - ciphdrsize; remainder = m0->m_pkthdr.len - off; prev = m0; do { fragsize = MIN(totalhdrsize + remainder, mtu); m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) goto bad; /* leave room to prepend any cipher header */ m_align(m, fragsize - ciphdrsize); /* * Form the header in the fragment. Note that since * we mark the first fragment with the MORE_FRAG bit * it automatically is propagated to each fragment; we * need only clear it on the last fragment (done below). * NB: frag 1+ dont have Mesh Control field present. */ whf = mtod(m, struct ieee80211_frame *); memcpy(whf, wh, hdrsize); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; #endif *(uint16_t *)&whf->i_seq[0] |= htole16( (fragno & IEEE80211_SEQ_FRAG_MASK) << IEEE80211_SEQ_FRAG_SHIFT); fragno++; payload = fragsize - totalhdrsize; /* NB: destination is known to be contiguous */ m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); m->m_len = hdrspace + payload; m->m_pkthdr.len = hdrspace + payload; m->m_flags |= M_FRAG; /* chain up the fragment */ prev->m_nextpkt = m; prev = m; /* deduct fragment just formed */ remainder -= payload; off += payload; } while (remainder != 0); /* set the last fragment */ m->m_flags |= M_LASTFRAG; whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; /* strip first mbuf now that everything has been copied */ m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); m0->m_flags |= M_FIRSTFRAG | M_FRAG; vap->iv_stats.is_tx_fragframes++; vap->iv_stats.is_tx_frags += fragno-1; return 1; bad: /* reclaim fragments but leave original frame for caller to free */ ieee80211_free_mbuf(m0->m_nextpkt); m0->m_nextpkt = NULL; return 0; } /* * Add a supported rates element id to a frame. */ uint8_t * ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) { int nrates; *frm++ = IEEE80211_ELEMID_RATES; nrates = rs->rs_nrates; if (nrates > IEEE80211_RATE_SIZE) nrates = IEEE80211_RATE_SIZE; *frm++ = nrates; memcpy(frm, rs->rs_rates, nrates); return frm + nrates; } /* * Add an extended supported rates element id to a frame. */ uint8_t * ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) { /* * Add an extended supported rates element if operating in 11g mode. */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) { int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; *frm++ = IEEE80211_ELEMID_XRATES; *frm++ = nrates; memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); frm += nrates; } return frm; } /* * Add an ssid element to a frame. */ uint8_t * ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) { *frm++ = IEEE80211_ELEMID_SSID; *frm++ = len; memcpy(frm, ssid, len); return frm + len; } /* * Add an erp element to a frame. */ static uint8_t * ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; uint8_t erp; *frm++ = IEEE80211_ELEMID_ERP; *frm++ = 1; erp = 0; /* * TODO: This uses the global flags for now because * the per-VAP flags are fine for per-VAP, but don't * take into account which VAPs share the same channel * and which are on different channels. * * ERP and HT/VHT protection mode is a function of * how many stations are on a channel, not specifically * the VAP or global. But, until we grow that status, * the global flag will have to do. */ if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR) erp |= IEEE80211_ERP_NON_ERP_PRESENT; /* * TODO: same as above; these should be based not * on the vap or ic flags, but instead on a combination * of per-VAP and channels. */ if (ic->ic_flags & IEEE80211_F_USEPROT) erp |= IEEE80211_ERP_USE_PROTECTION; if (ic->ic_flags & IEEE80211_F_USEBARKER) erp |= IEEE80211_ERP_LONG_PREAMBLE; *frm++ = erp; return frm; } /* * Add a CFParams element to a frame. */ static uint8_t * ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) { #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) *frm++ = IEEE80211_ELEMID_CFPARMS; *frm++ = 6; *frm++ = 0; /* CFP count */ *frm++ = 2; /* CFP period */ ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ return frm; #undef ADDSHORT } static __inline uint8_t * add_appie(uint8_t *frm, const struct ieee80211_appie *ie) { memcpy(frm, ie->ie_data, ie->ie_len); return frm + ie->ie_len; } static __inline uint8_t * add_ie(uint8_t *frm, const uint8_t *ie) { memcpy(frm, ie, 2 + ie[1]); return frm + 2 + ie[1]; } #define WME_OUI_BYTES 0x00, 0x50, 0xf2 /* * Add a WME information element to a frame. */ uint8_t * ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme, struct ieee80211_node *ni) { static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; struct ieee80211vap *vap = ni->ni_vap; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = sizeof(struct ieee80211_wme_info) - 2; memcpy(frm, oui, sizeof(oui)); frm += sizeof(oui); *frm++ = WME_INFO_OUI_SUBTYPE; *frm++ = WME_VERSION; /* QoS info field depends upon operating mode */ switch (vap->iv_opmode) { case IEEE80211_M_HOSTAP: *frm = wme->wme_bssChanParams.cap_info; if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) *frm |= WME_CAPINFO_UAPSD_EN; frm++; break; case IEEE80211_M_STA: /* * NB: UAPSD drivers must set this up in their * VAP creation method. */ *frm++ = vap->iv_uapsdinfo; break; default: *frm++ = 0; break; } return frm; } /* * Add a WME parameters element to a frame. */ static uint8_t * ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme, int uapsd_enable) { -#define SM(_v, _f) (((_v) << _f##_S) & _f) #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) /* NB: this works 'cuz a param has an info at the front */ static const struct ieee80211_wme_info param = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_param) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_PARAM_OUI_SUBTYPE, .wme_version = WME_VERSION, }; int i; memcpy(frm, ¶m, sizeof(param)); frm += __offsetof(struct ieee80211_wme_info, wme_info); *frm = wme->wme_bssChanParams.cap_info; /* AC info */ if (uapsd_enable) *frm |= WME_CAPINFO_UAPSD_EN; frm++; *frm++ = 0; /* reserved field */ /* XXX TODO - U-APSD bits - SP, flags below */ for (i = 0; i < WME_NUM_AC; i++) { const struct wmeParams *ac = &wme->wme_bssChanParams.cap_wmeParams[i]; - *frm++ = SM(i, WME_PARAM_ACI) - | SM(ac->wmep_acm, WME_PARAM_ACM) - | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) + *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI) + | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM) + | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN) ; - *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) - | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) + *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax, + WME_PARAM_LOGCWMAX) + | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin, + WME_PARAM_LOGCWMIN) ; ADDSHORT(frm, ac->wmep_txopLimit); } return frm; -#undef SM #undef ADDSHORT } #undef WME_OUI_BYTES /* * Add an 11h Power Constraint element to a frame. */ static uint8_t * ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) { const struct ieee80211_channel *c = vap->iv_bss->ni_chan; /* XXX per-vap tx power limit? */ int8_t limit = vap->iv_ic->ic_txpowlimit / 2; frm[0] = IEEE80211_ELEMID_PWRCNSTR; frm[1] = 1; frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; return frm + 3; } /* * Add an 11h Power Capability element to a frame. */ static uint8_t * ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) { frm[0] = IEEE80211_ELEMID_PWRCAP; frm[1] = 2; frm[2] = c->ic_minpower; frm[3] = c->ic_maxpower; return frm + 4; } /* * Add an 11h Supported Channels element to a frame. */ static uint8_t * ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) { static const int ielen = 26; frm[0] = IEEE80211_ELEMID_SUPPCHAN; frm[1] = ielen; /* XXX not correct */ memcpy(frm+2, ic->ic_chan_avail, ielen); return frm + 2 + ielen; } /* * Add an 11h Quiet time element to a frame. */ static uint8_t * ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) { struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; quiet->quiet_ie = IEEE80211_ELEMID_QUIET; quiet->len = 6; /* * Only update every beacon interval - otherwise probe responses * would update the quiet count value. */ if (update) { if (vap->iv_quiet_count_value == 1) vap->iv_quiet_count_value = vap->iv_quiet_count; else if (vap->iv_quiet_count_value > 1) vap->iv_quiet_count_value--; } if (vap->iv_quiet_count_value == 0) { /* value 0 is reserved as per 802.11h standerd */ vap->iv_quiet_count_value = 1; } quiet->tbttcount = vap->iv_quiet_count_value; quiet->period = vap->iv_quiet_period; quiet->duration = htole16(vap->iv_quiet_duration); quiet->offset = htole16(vap->iv_quiet_offset); return frm + sizeof(*quiet); } /* * Add an 11h Channel Switch Announcement element to a frame. * Note that we use the per-vap CSA count to adjust the global * counter so we can use this routine to form probe response * frames and get the current count. */ static uint8_t * ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; csa->csa_ie = IEEE80211_ELEMID_CSA; csa->csa_len = 3; csa->csa_mode = 1; /* XXX force quiet on channel */ csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; return frm + sizeof(*csa); } /* * Add an 11h country information element to a frame. */ static uint8_t * ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) { if (ic->ic_countryie == NULL || ic->ic_countryie_chan != ic->ic_bsschan) { /* * Handle lazy construction of ie. This is done on * first use and after a channel change that requires * re-calculation. */ if (ic->ic_countryie != NULL) IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); ic->ic_countryie = ieee80211_alloc_countryie(ic); if (ic->ic_countryie == NULL) return frm; ic->ic_countryie_chan = ic->ic_bsschan; } return add_appie(frm, ic->ic_countryie); } uint8_t * ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) return (add_ie(frm, vap->iv_wpa_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) return (add_ie(frm, vap->iv_rsn_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) { if (ni->ni_flags & IEEE80211_NODE_QOS) { *frm++ = IEEE80211_ELEMID_QOS; *frm++ = 1; *frm++ = 0; } return (frm); } /* * Send a probe request frame with the specified ssid * and any optional information element data. */ int ieee80211_send_probereq(struct ieee80211_node *ni, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t *ssid, size_t ssidlen) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss; const struct ieee80211_txparam *tp; struct ieee80211_bpf_params params; const struct ieee80211_rateset *rs; struct mbuf *m; uint8_t *frm; int ret; bss = ieee80211_ref_node(vap->iv_bss); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, "block %s frame in CAC state", "probe request"); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(bss); return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); /* * prreq frame format * [tlv] ssid * [tlv] supported rates * [tlv] RSN (optional) * [tlv] extended supported rates * [tlv] HT cap (optional) * [tlv] VHT cap (optional) * [tlv] WPA (optional) * [tlv] user-specified ie's */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ + sizeof(struct ieee80211_ie_wpa) + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wpa) + (vap->iv_appie_probereq != NULL ? vap->iv_appie_probereq->ie_len : 0) ); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } frm = ieee80211_add_ssid(frm, ssid, ssidlen); rs = ieee80211_get_suprates(ic, ic->ic_curchan); frm = ieee80211_add_rates(frm, rs); frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_xrates(frm, rs); /* * Note: we can't use bss; we don't have one yet. * * So, we should announce our capabilities * in this channel mode (2g/5g), not the * channel details itself. */ if ((vap->iv_opmode == IEEE80211_M_IBSS) && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { struct ieee80211_channel *c; /* * Get the HT channel that we should try upgrading to. * If we can do 40MHz then this'll upgrade it appropriately. */ c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); frm = ieee80211_add_htcap_ch(frm, vap, c); } /* * XXX TODO: need to figure out what/how to update the * VHT channel. */ #if 0 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { struct ieee80211_channel *c; c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); frm = ieee80211_add_vhtcap_ch(frm, vap, c); } #endif frm = ieee80211_add_wpa(frm, vap); if (vap->iv_appie_probereq != NULL) frm = add_appie(frm, vap->iv_appie_probereq); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } IEEE80211_TX_LOCK(ic); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, IEEE80211_NONQOS_TID, sa, da, bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_probereq); IEEE80211_NODE_STAT(ni, tx_mgmt); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), sa, ":", da, ":", ssidlen, ssid); memset(¶ms, 0, sizeof(params)); params.ibp_pri = M_WME_GETAC(m); tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; params.ibp_rate0 = tp->mgmtrate; if (IEEE80211_IS_MULTICAST(da)) { params.ibp_flags |= IEEE80211_BPF_NOACK; params.ibp_try0 = 1; } else params.ibp_try0 = tp->maxretry; params.ibp_power = ni->ni_txpower; ret = ieee80211_raw_output(vap, ni, m, ¶ms); IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(bss); return (ret); } /* * Calculate capability information for mgt frames. */ uint16_t ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) { uint16_t capinfo; KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); if (vap->iv_opmode == IEEE80211_M_HOSTAP) capinfo = IEEE80211_CAPINFO_ESS; else if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = 0; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (vap->iv_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; return capinfo; } /* * Send a management frame. The node is for the destination (or ic_bss * when in station mode). Nodes other than ic_bss have their reference * count bumped to reflect our use for an indeterminant time. */ int ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) { #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss = vap->iv_bss; struct ieee80211_bpf_params params; struct mbuf *m; uint8_t *frm; uint16_t capinfo; int has_challenge, is_shared_key, ret, status; KASSERT(ni != NULL, ("null node")); /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); memset(¶ms, 0, sizeof(params)); switch (type) { case IEEE80211_FC0_SUBTYPE_AUTH: status = arg >> 16; arg &= 0xffff; has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || arg == IEEE80211_AUTH_SHARED_RESPONSE) && ni->ni_challenge != NULL); /* * Deduce whether we're doing open authentication or * shared key authentication. We do the latter if * we're in the middle of a shared key authentication * handshake or if we're initiating an authentication * request and configured to use shared key. */ is_shared_key = has_challenge || arg >= IEEE80211_AUTH_SHARED_RESPONSE || (arg == IEEE80211_AUTH_SHARED_REQUEST && bss->ni_authmode == IEEE80211_AUTH_SHARED); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 3 * sizeof(uint16_t) + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); ((uint16_t *)frm)[0] = (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) : htole16(IEEE80211_AUTH_ALG_OPEN); ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ ((uint16_t *)frm)[2] = htole16(status);/* status */ if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { ((uint16_t *)frm)[3] = htole16((IEEE80211_CHALLENGE_LEN << 8) | IEEE80211_ELEMID_CHALLENGE); memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, IEEE80211_CHALLENGE_LEN); m->m_pkthdr.len = m->m_len = 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "request encrypt frame (%s)", __func__); /* mark frame for encryption */ params.ibp_flags |= IEEE80211_BPF_CRYPTO; } } else m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); /* XXX not right for shared key */ if (status == IEEE80211_STATUS_SUCCESS) IEEE80211_NODE_STAT(ni, tx_auth); else IEEE80211_NODE_STAT(ni, tx_auth_fail); if (vap->iv_opmode == IEEE80211_M_STA) ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "send station deauthenticate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_deauth); IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); ieee80211_node_unauthorize(ni); /* port closed */ break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: /* * asreq frame format * [2] capability information * [2] listen interval * [6*] current AP address (reassoc only) * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [4] power capability (optional) * [28] supported channels (optional) * [tlv] HT capabilities * [tlv] VHT capabilities * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Atheros capabilities (if negotiated) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + IEEE80211_ADDR_LEN + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + 4 + 2 + 26 + sizeof(struct ieee80211_wme_info) + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_vhtcap) + 4 + sizeof(struct ieee80211_ie_htcap) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_wpa != NULL ? vap->iv_appie_wpa->ie_len : 0) + (vap->iv_appie_assocreq != NULL ? vap->iv_appie_assocreq->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode %u", vap->iv_opmode)); capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; /* * NB: Some 11a AP's reject the request when * short preamble is set. */ if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ic->ic_caps & IEEE80211_C_SHSLOT)) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; *(uint16_t *)frm = htole16(capinfo); frm += 2; KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, bss->ni_intval)); frm += 2; if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { IEEE80211_ADDR_COPY(frm, bss->ni_bssid); frm += IEEE80211_ADDR_LEN; } frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_xrates(frm, &ni->ni_rates); if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { frm = ieee80211_add_powercapability(frm, ic->ic_curchan); frm = ieee80211_add_supportedchannels(frm, ic); } /* * Check the channel - we may be using an 11n NIC with an * 11n capable station, but we're configured to be an 11b * channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { frm = ieee80211_add_htcap(frm, ni); } if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && IEEE80211_IS_CHAN_VHT(ni->ni_chan) && ni->ni_ies.vhtcap_ie != NULL && ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { frm = ieee80211_add_vhtcap(frm, ni); } frm = ieee80211_add_wpa(frm, vap); if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni); /* * Same deal - only send HT info if we're on an 11n * capable channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { frm = ieee80211_add_htcap_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); } #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocreq != NULL) frm = add_appie(frm, vap->iv_appie_assocreq); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] HT capabilities (standard, if STA enabled) * [tlv] HT information (standard, if STA enabled) * [tlv] VHT capabilities (standard, if STA enabled) * [tlv] VHT information (standard, if STA enabled) * [tlv] WME (if configured and STA enabled) * [tlv] HT capabilities (vendor OUI, if STA enabled) * [tlv] HT information (vendor OUI, if STA enabled) * [tlv] Atheros capabilities (if STA enabled) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) + 4 + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_vht_operation) + sizeof(struct ieee80211_wme_param) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_assocresp != NULL ? vap->iv_appie_assocresp->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; *(uint16_t *)frm = htole16(arg); /* status */ frm += 2; if (arg == IEEE80211_STATUS_SUCCESS) { *(uint16_t *)frm = htole16(ni->ni_associd); IEEE80211_NODE_STAT(ni, tx_assoc); } else IEEE80211_NODE_STAT(ni, tx_assoc_fail); frm += 2; frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_xrates(frm, &ni->ni_rates); /* NB: respond according to what we received */ if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { frm = ieee80211_add_htcap(frm, ni); frm = ieee80211_add_htinfo(frm, ni); } if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_param(frm, &ic->ic_wme, !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } if (ni->ni_flags & IEEE80211_NODE_VHT) { frm = ieee80211_add_vhtcap(frm, ni); frm = ieee80211_add_vhtinfo(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocresp != NULL) frm = add_appie(frm, vap->iv_appie_assocresp); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); break; case IEEE80211_FC0_SUBTYPE_DISASSOC: IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "send station disassociate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_disassoc); IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); break; default: IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, "invalid mgmt frame type %u", type); senderr(EINVAL, is_tx_unknownmgt); /* NOTREACHED */ } /* NB: force non-ProbeResp frames to the highest queue */ params.ibp_pri = WME_AC_VO; params.ibp_rate0 = bss->ni_txparms->mgmtrate; /* NB: we know all frames are unicast */ params.ibp_try0 = bss->ni_txparms->maxretry; params.ibp_power = bss->ni_txpower; return ieee80211_mgmt_output(ni, m, type, ¶ms); bad: ieee80211_free_node(ni); return ret; #undef senderr #undef HTFLAGS } /* * Return an mbuf with a probe response frame in it. * Space is left to prepend and 802.11 header at the * front but it's left to the caller to fill in. */ struct mbuf * ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) { struct ieee80211vap *vap = bss->ni_vap; struct ieee80211com *ic = bss->ni_ic; const struct ieee80211_rateset *rs; struct mbuf *m; uint16_t capinfo; uint8_t *frm; /* * probe response frame format * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [tlv] parameter set (FH/DS) * [tlv] parameter set (IBSS) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN (optional) * [tlv] HT capabilities * [tlv] HT information * [tlv] VHT capabilities * [tlv] VHT information * [tlv] WPA (optional) * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities * [tlv] AppIE's (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 8 + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 7 /* max(7,3) */ + IEEE80211_COUNTRY_MAX_SIZE + 3 + sizeof(struct ieee80211_csa_ie) + sizeof(struct ieee80211_quiet_ie) + 3 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_htinfo) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_wme_param) + 4 + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) + sizeof(struct ieee80211_ie_vhtcap) + sizeof(struct ieee80211_ie_vht_operation) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + IEEE80211_MESHID_LEN + sizeof(struct ieee80211_meshconf_ie) #endif + (vap->iv_appie_proberesp != NULL ? vap->iv_appie_proberesp->ie_len : 0) ); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; return NULL; } memset(frm, 0, 8); /* timestamp should be filled later */ frm += 8; *(uint16_t *)frm = htole16(bss->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); rs = ieee80211_get_suprates(ic, bss->ni_chan); frm = ieee80211_add_rates(frm, rs); if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { *frm++ = IEEE80211_ELEMID_FHPARMS; *frm++ = 5; *frm++ = bss->ni_fhdwell & 0x00ff; *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; *frm++ = IEEE80211_FH_CHANSET( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = IEEE80211_FH_CHANPAT( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = bss->ni_fhindex; } else { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); } if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ } if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { if (vap->iv_quiet) frm = ieee80211_add_quiet(frm, vap, 0); } } if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) frm = ieee80211_add_erp(frm, vap); frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); /* * NB: legacy 11b clients do not get certain ie's. * The caller identifies such clients by passing * a token in legacy to us. Could expand this to be * any legacy client for stuff like HT ie's. */ if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap(frm, bss); frm = ieee80211_add_htinfo(frm, bss); } if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_vhtcap(frm, bss); frm = ieee80211_add_vhtinfo(frm, bss); } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) frm = ieee80211_add_wme_param(frm, &ic->ic_wme, !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap_vendor(frm, bss); frm = ieee80211_add_htinfo_vendor(frm, bss); } #ifdef IEEE80211_SUPPORT_SUPERG if ((vap->iv_flags & IEEE80211_F_ATHEROS) && legacy != IEEE80211_SEND_LEGACY_11B) frm = ieee80211_add_athcaps(frm, bss); #endif if (vap->iv_appie_proberesp != NULL) frm = add_appie(frm, vap->iv_appie_proberesp); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); frm = ieee80211_add_meshconf(frm, vap); } #endif m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return m; } /* * Send a probe response frame to the specified mac address. * This does not go through the normal mgt frame api so we * can specify the destination address and re-use the bss node * for the sta reference. */ int ieee80211_send_proberesp(struct ieee80211vap *vap, const uint8_t da[IEEE80211_ADDR_LEN], int legacy) { struct ieee80211_node *bss = vap->iv_bss; struct ieee80211com *ic = vap->iv_ic; struct mbuf *m; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, "block %s frame in CAC state", "probe response"); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), ieee80211_node_refcnt(bss)+1); ieee80211_ref_node(bss); m = ieee80211_alloc_proberesp(bss, legacy); if (m == NULL) { ieee80211_free_node(bss); return ENOMEM; } M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); KASSERT(m != NULL, ("no room for header")); IEEE80211_TX_LOCK(ic); ieee80211_send_setup(bss, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe resp on channel %u to %s%s\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), legacy ? " " : ""); IEEE80211_NODE_STAT(bss, tx_mgmt); ret = ieee80211_raw_output(vap, bss, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Allocate and build a RTS (Request To Send) control frame. */ struct mbuf * ieee80211_alloc_rts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], const uint8_t ta[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_rts *rts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m != NULL) { rts = mtod(m, struct ieee80211_frame_rts *); rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)rts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(rts->i_ra, ra); IEEE80211_ADDR_COPY(rts->i_ta, ta); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); } return m; } /* * Allocate and build a CTS (Clear To Send) control frame. */ struct mbuf * ieee80211_alloc_cts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_cts *cts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m != NULL) { cts = mtod(m, struct ieee80211_frame_cts *); cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)cts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(cts->i_ra, ra); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); } return m; } /* * Wrapper for CTS/RTS frame allocation. */ struct mbuf * ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, uint8_t rate, int prot) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_frame *wh; struct mbuf *mprot; uint16_t dur; int pktlen, isshort; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("wrong protection type %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur); return (mprot); } static void ieee80211_tx_mgt_timeout(void *arg) { struct ieee80211vap *vap = arg; IEEE80211_LOCK(vap->iv_ic); if (vap->iv_state != IEEE80211_S_INIT && (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* * NB: it's safe to specify a timeout as the reason here; * it'll only be used in the right state. */ ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_TIMEOUT); } IEEE80211_UNLOCK(vap->iv_ic); } /* * This is the callback set on net80211-sourced transmitted * authentication request frames. * * This does a couple of things: * * + If the frame transmitted was a success, it schedules a future * event which will transition the interface to scan. * If a state transition _then_ occurs before that event occurs, * said state transition will cancel this callout. * * + If the frame transmit was a failure, it immediately schedules * the transition back to scan. */ static void ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg; /* * Frame transmit completed; arrange timer callback. If * transmit was successfully we wait for response. Otherwise * we arrange an immediate callback instead of doing the * callback directly since we don't know what state the driver * is in (e.g. what locks it is holding). This work should * not be too time-critical and not happen too often so the * added overhead is acceptable. * * XXX what happens if !acked but response shows up before callback? */ if (vap->iv_state == ostate) { callout_reset(&vap->iv_mgtsend, status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, ieee80211_tx_mgt_timeout, vap); } } static void ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_rateset *rs = &ni->ni_rates; uint16_t capinfo; /* * beacon frame format * * TODO: update to 802.11-2012; a lot of stuff has changed; * vendor extensions should be at the end, etc. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * XXX TODO: Quiet * XXX TODO: IBSS DFS * XXX TODO: TPC report * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * XXX TODO: BSSLOAD * (XXX EDCA parameter set, QoS capability?) * XXX TODO: AP channel report * * [tlv] HT capabilities * [tlv] HT information * XXX TODO: 20/40 BSS coexistence * Mesh: * XXX TODO: Meshid * XXX TODO: mesh config * XXX TODO: mesh awake window * XXX TODO: beacon timing (mesh, etc) * XXX TODO: MCCAOP Advertisement Overview * XXX TODO: MCCAOP Advertisement * XXX TODO: Mesh channel switch parameters * VHT: * XXX TODO: VHT capabilities * XXX TODO: VHT operation * XXX TODO: VHT transmit power envelope * XXX TODO: channel switch wrapper element * XXX TODO: extended BSS load element * * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities (optional) * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) */ memset(bo, 0, sizeof(*bo)); memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ frm += 8; *(uint16_t *)frm = htole16(ni->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); bo->bo_caps = (uint16_t *)frm; *(uint16_t *)frm = htole16(capinfo); frm += 2; *frm++ = IEEE80211_ELEMID_SSID; if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { *frm++ = ni->ni_esslen; memcpy(frm, ni->ni_essid, ni->ni_esslen); frm += ni->ni_esslen; } else *frm++ = 0; frm = ieee80211_add_rates(frm, rs); if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); } if (ic->ic_flags & IEEE80211_F_PCF) { bo->bo_cfp = frm; frm = ieee80211_add_cfparms(frm, ic); } bo->bo_tim = frm; if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ bo->bo_tim_len = 0; } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* TIM IE is the same for Mesh and Hostap */ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; tie->tim_ie = IEEE80211_ELEMID_TIM; tie->tim_len = 4; /* length */ tie->tim_count = 0; /* DTIM count */ tie->tim_period = vap->iv_dtim_period; /* DTIM period */ tie->tim_bitctl = 0; /* bitmap control */ tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ frm += sizeof(struct ieee80211_tim_ie); bo->bo_tim_len = 1; } bo->bo_tim_trailer = frm; if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); bo->bo_csa = frm; if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } else bo->bo_csa = frm; bo->bo_quiet = NULL; if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && (vap->iv_quiet == 1)) { /* * We only insert the quiet IE offset if * the quiet IE is enabled. Otherwise don't * put it here or we'll just overwrite * some other beacon contents. */ if (vap->iv_quiet) { bo->bo_quiet = frm; frm = ieee80211_add_quiet(frm,vap, 0); } } } if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { bo->bo_erp = frm; frm = ieee80211_add_erp(frm, vap); } frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { frm = ieee80211_add_htcap(frm, ni); bo->bo_htinfo = frm; frm = ieee80211_add_htinfo(frm, ni); } if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { frm = ieee80211_add_vhtcap(frm, ni); bo->bo_vhtinfo = frm; frm = ieee80211_add_vhtinfo(frm, ni); /* Transmit power envelope */ /* Channel switch wrapper element */ /* Extended bss load element */ } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) { bo->bo_wme = frm; frm = ieee80211_add_wme_param(frm, &ic->ic_wme, !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); } if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (vap->iv_flags & IEEE80211_F_ATHEROS) { bo->bo_ath = frm; frm = ieee80211_add_athcaps(frm, ni); } #endif #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { bo->bo_tdma = frm; frm = ieee80211_add_tdma(frm, vap); } #endif if (vap->iv_appie_beacon != NULL) { bo->bo_appie = frm; bo->bo_appie_len = vap->iv_appie_beacon->ie_len; frm = add_appie(frm, vap->iv_appie_beacon); } /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); bo->bo_meshconf = frm; frm = ieee80211_add_meshconf(frm, vap); } #endif bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; bo->bo_csa_trailer_len = frm - bo->bo_csa; m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); } /* * Allocate a beacon frame and fillin the appropriate bits. */ struct mbuf * ieee80211_beacon_alloc(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; struct mbuf *m; int pktlen; uint8_t *frm; /* * Update the "We're putting the quiet IE in the beacon" state. */ if (vap->iv_quiet == 1) vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; else if (vap->iv_quiet == 0) vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; /* * beacon frame format * * Note: This needs updating for 802.11-2012. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * [tlv] HT capabilities * [tlv] HT information * [tlv] VHT capabilities * [tlv] VHT operation * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) * NB: we allocate the max space required for the TIM bitmap. * XXX how big is this? */ pktlen = 8 /* time stamp */ + sizeof(uint16_t) /* beacon interval */ + sizeof(uint16_t) /* capabilities */ + 2 + ni->ni_esslen /* ssid */ + 2 + IEEE80211_RATE_SIZE /* supported rates */ + 2 + 1 /* DS parameters */ + 2 + 6 /* CF parameters */ + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ + IEEE80211_COUNTRY_MAX_SIZE /* country */ + 2 + 1 /* power control */ + sizeof(struct ieee80211_csa_ie) /* CSA */ + sizeof(struct ieee80211_quiet_ie) /* Quiet */ + 2 + 1 /* ERP */ + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2*sizeof(struct ieee80211_ie_wpa) : 0) /* XXX conditional? */ + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ sizeof(struct ieee80211_wme_param) : 0) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) /* ATH */ #endif #ifdef IEEE80211_SUPPORT_TDMA + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ sizeof(struct ieee80211_tdma_param) : 0) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + ni->ni_meshidlen + sizeof(struct ieee80211_meshconf_ie) #endif + IEEE80211_MAX_APPIE ; m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "%s: cannot get buf; size %u\n", __func__, pktlen); vap->iv_stats.is_tx_nobuf++; return NULL; } ieee80211_beacon_construct(m, frm, ni); M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); KASSERT(m != NULL, ("no space for 802.11 header?")); wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)wh->i_dur = 0; IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); *(uint16_t *)wh->i_seq = 0; return m; } /* * Update the dynamic parts of a beacon frame based on the current state. */ int ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; int len_changed = 0; uint16_t capinfo; struct ieee80211_frame *wh; ieee80211_seq seqno; IEEE80211_LOCK(ic); /* * Handle 11h channel change when we've reached the count. * We must recalculate the beacon frame contents to account * for the new channel. Note we do this only for the first * vap that reaches this point; subsequent vaps just update * their beacon state to reflect the recalculated channel. */ if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && vap->iv_csa_count == ic->ic_csa_count) { vap->iv_csa_count = 0; /* * Effect channel change before reconstructing the beacon * frame contents as many places reference ni_chan. */ if (ic->ic_csa_newchan != NULL) ieee80211_csa_completeswitch(ic); /* * NB: ieee80211_beacon_construct clears all pending * updates in bo_flags so we don't need to explicitly * clear IEEE80211_BEACON_CSA. */ ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } /* * Handle the quiet time element being added and removed. * Again, for now we just cheat and reconstruct the whole * beacon - that way the gap is provided as appropriate. * * So, track whether we have already added the IE versus * whether we want to be adding the IE. */ if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && (vap->iv_quiet == 0)) { /* * Quiet time beacon IE enabled, but it's disabled; * recalc */ vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && (vap->iv_quiet == 1)) { /* * Quiet time beacon IE disabled, but it's now enabled; * recalc */ vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } wh = mtod(m, struct ieee80211_frame *); /* * XXX TODO Strictly speaking this should be incremented with the TX * lock held so as to serialise access to the non-qos TID sequence * number space. * * If the driver identifies it does its own TX seqno management then * we can skip this (and still not do the TX seqno.) */ seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); /* XXX faster to recalculate entirely or just changes? */ capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); *bo->bo_caps = htole16(capinfo); if (vap->iv_flags & IEEE80211_F_WME) { struct ieee80211_wme_state *wme = &ic->ic_wme; /* * Check for aggressive mode change. When there is * significant high priority traffic in the BSS * throttle back BE traffic by using conservative * parameters. Otherwise BE uses aggressive params * to optimize performance of legacy/non-QoS traffic. */ if (wme->wme_flags & WME_F_AGGRMODE) { if (wme->wme_hipri_traffic > wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, disable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags &= ~WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } else wme->wme_hipri_traffic = 0; } else { if (wme->wme_hipri_traffic <= wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, enable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags |= WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = 0; } else wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { (void) ieee80211_add_wme_param(bo->bo_wme, wme, vap->iv_flags_ext & IEEE80211_FEXT_UAPSD); clrbit(bo->bo_flags, IEEE80211_BEACON_WME); } } if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { ieee80211_ht_update_beacon(vap, bo); clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); } #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { /* * NB: the beacon is potentially updated every TBTT. */ ieee80211_tdma_update_beacon(vap, bo); } #endif #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_mesh_update_beacon(vap, bo); #endif if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) bo->bo_tim; if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { u_int timlen, timoff, i; /* * ATIM/DTIM needs updating. If it fits in the * current space allocated then just copy in the * new bits. Otherwise we need to move any trailing * data to make room. Note that we know there is * contiguous space because ieee80211_beacon_allocate * insures there is space in the mbuf to write a * maximal-size virtual bitmap (based on iv_max_aid). */ /* * Calculate the bitmap size and offset, copy any * trailer out of the way, and then copy in the * new bitmap and update the information element. * Note that the tim bitmap must contain at least * one byte and any offset must be even. */ if (vap->iv_ps_pending != 0) { timoff = 128; /* impossibly large */ for (i = 0; i < vap->iv_tim_len; i++) if (vap->iv_tim_bitmap[i]) { timoff = i &~ 1; break; } KASSERT(timoff != 128, ("tim bitmap empty!")); for (i = vap->iv_tim_len-1; i >= timoff; i--) if (vap->iv_tim_bitmap[i]) break; timlen = 1 + (i - timoff); } else { timoff = 0; timlen = 1; } /* * TODO: validate this! */ if (timlen != bo->bo_tim_len) { /* copy up/down trailer */ int adjust = tie->tim_bitmap+timlen - bo->bo_tim_trailer; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_erp += adjust; bo->bo_htinfo += adjust; bo->bo_vhtinfo += adjust; #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += adjust; #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += adjust; #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += adjust; #endif bo->bo_appie += adjust; bo->bo_wme += adjust; bo->bo_csa += adjust; bo->bo_quiet += adjust; bo->bo_tim_len = timlen; /* update information element */ tie->tim_len = 3 + timlen; tie->tim_bitctl = timoff; len_changed = 1; } memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, bo->bo_tim_len); clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, "%s: TIM updated, pending %u, off %u, len %u\n", __func__, vap->iv_ps_pending, timoff, timlen); } /* count down DTIM period */ if (tie->tim_count == 0) tie->tim_count = tie->tim_period - 1; else tie->tim_count--; /* update state for buffered multicast frames on DTIM */ if (mcast && tie->tim_count == 0) tie->tim_bitctl |= 1; else tie->tim_bitctl &= ~1; if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) bo->bo_csa; /* * Insert or update CSA ie. If we're just starting * to count down to the channel switch then we need * to insert the CSA ie. Otherwise we just need to * drop the count. The actual change happens above * when the vap's count reaches the target count. */ if (vap->iv_csa_count == 0) { memmove(&csa[1], csa, bo->bo_csa_trailer_len); bo->bo_erp += sizeof(*csa); bo->bo_htinfo += sizeof(*csa); bo->bo_vhtinfo += sizeof(*csa); bo->bo_wme += sizeof(*csa); #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += sizeof(*csa); #endif bo->bo_appie += sizeof(*csa); bo->bo_csa_trailer_len += sizeof(*csa); bo->bo_quiet += sizeof(*csa); bo->bo_tim_trailer_len += sizeof(*csa); m->m_len += sizeof(*csa); m->m_pkthdr.len += sizeof(*csa); ieee80211_add_csa(bo->bo_csa, vap); } else csa->csa_count--; vap->iv_csa_count++; /* NB: don't clear IEEE80211_BEACON_CSA */ } /* * Only add the quiet time IE if we've enabled it * as appropriate. */ if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { if (vap->iv_quiet && (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { ieee80211_add_quiet(bo->bo_quiet, vap, 1); } } if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { /* * ERP element needs updating. */ (void) ieee80211_add_erp(bo->bo_erp, vap); clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); } #ifdef IEEE80211_SUPPORT_SUPERG if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { ieee80211_add_athcaps(bo->bo_ath, ni); clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); } #endif } if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { const struct ieee80211_appie *aie = vap->iv_appie_beacon; int aielen; uint8_t *frm; aielen = 0; if (aie != NULL) aielen += aie->ie_len; if (aielen != bo->bo_appie_len) { /* copy up/down trailer */ int adjust = aielen - bo->bo_appie_len; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_appie += adjust; bo->bo_appie_len = aielen; len_changed = 1; } frm = bo->bo_appie; if (aie != NULL) frm = add_appie(frm, aie); clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); } IEEE80211_UNLOCK(ic); return len_changed; } /* * Do Ethernet-LLC encapsulation for each payload in a fast frame * tunnel encapsulation. The frame is assumed to have an Ethernet * header at the front that must be stripped before prepending the * LLC followed by the Ethernet header passed in (with an Ethernet * type that specifies the payload size). */ struct mbuf * ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, const struct ether_header *eh) { struct llc *llc; uint16_t payload; /* XXX optimize by combining m_adj+M_PREPEND */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh->ether_type; payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); if (m == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for ether_header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } ETHER_HEADER_COPY(mtod(m, void *), eh); mtod(m, struct ether_header *)->ether_type = htons(payload); return m; } /* * Complete an mbuf transmission. * * For now, this simply processes a completed frame after the * driver has completed it's transmission and/or retransmission. * It assumes the frame is an 802.11 encapsulated frame. * * Later on it will grow to become the exit path for a given frame * from the driver and, depending upon how it's been encapsulated * and already transmitted, it may end up doing A-MPDU retransmission, * power save requeuing, etc. * * In order for the above to work, the driver entry point to this * must not hold any driver locks. Thus, the driver needs to delay * any actual mbuf completion until it can release said locks. * * This frees the mbuf and if the mbuf has a node reference, * the node reference will be freed. */ void ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) { if (ni != NULL) { struct ifnet *ifp = ni->ni_vap->iv_ifp; if (status == 0) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if (m->m_flags & M_MCAST) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); } else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (m->m_flags & M_TXCB) ieee80211_process_callback(ni, m, status); ieee80211_free_node(ni); } m_freem(m); } Index: head/sys/net80211/ieee80211_regdomain.c =================================================================== --- head/sys/net80211/ieee80211_regdomain.c (revision 366111) +++ head/sys/net80211/ieee80211_regdomain.c (revision 366112) @@ -1,473 +1,473 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * IEEE 802.11 regdomain support. */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include static void null_getradiocaps(struct ieee80211com *ic, int maxchan, int *n, struct ieee80211_channel *c) { /* just feed back the current channel list */ if (maxchan > ic->ic_nchans) maxchan = ic->ic_nchans; memcpy(c, ic->ic_channels, maxchan*sizeof(struct ieee80211_channel)); *n = maxchan; } static int null_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, int nchans, struct ieee80211_channel chans[]) { return 0; /* accept anything */ } void ieee80211_regdomain_attach(struct ieee80211com *ic) { if (ic->ic_regdomain.regdomain == 0 && ic->ic_regdomain.country == CTRY_DEFAULT) { ic->ic_regdomain.location = ' '; /* both */ /* NB: driver calls ieee80211_init_channels or similar */ } ic->ic_getradiocaps = null_getradiocaps; ic->ic_setregdomain = null_setregdomain; } void ieee80211_regdomain_detach(struct ieee80211com *ic) { if (ic->ic_countryie != NULL) { IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); ic->ic_countryie = NULL; } } void ieee80211_regdomain_vattach(struct ieee80211vap *vap) { } void ieee80211_regdomain_vdetach(struct ieee80211vap *vap) { } static const uint8_t def_chan_2ghz[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; static const uint8_t def_chan_5ghz_band1[] = { 36, 40, 44, 48, 52, 56, 60, 64 }; static const uint8_t def_chan_5ghz_band2[] = { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static const uint8_t def_chan_5ghz_band3[] = { 149, 153, 157, 161 }; /* * Setup the channel list for the specified regulatory domain, * country code, and operating modes. This interface is used * when a driver does not obtain the channel list from another * source (such as firmware). */ int ieee80211_init_channels(struct ieee80211com *ic, const struct ieee80211_regdomain *rd, const uint8_t bands[]) { struct ieee80211_channel *chans = ic->ic_channels; int *nchans = &ic->ic_nchans; int cbw_flags; /* XXX just do something for now */ cbw_flags = (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) ? NET80211_CBW_FLAG_HT40 : 0; *nchans = 0; if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G) || isset(bands, IEEE80211_MODE_11NG)) { int nchan = nitems(def_chan_2ghz); if (!(rd != NULL && rd->ecm)) nchan -= 3; ieee80211_add_channel_list_2ghz(chans, IEEE80211_CHAN_MAX, nchans, def_chan_2ghz, nchan, bands, cbw_flags); } /* XXX IEEE80211_MODE_VHT_2GHZ if we really want to. */ if (isset(bands, IEEE80211_MODE_11A) || isset(bands, IEEE80211_MODE_11NA)) { ieee80211_add_channel_list_5ghz(chans, IEEE80211_CHAN_MAX, nchans, def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), bands, cbw_flags); ieee80211_add_channel_list_5ghz(chans, IEEE80211_CHAN_MAX, nchans, def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), bands, cbw_flags); ieee80211_add_channel_list_5ghz(chans, IEEE80211_CHAN_MAX, nchans, def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), bands, cbw_flags); } if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { cbw_flags |= NET80211_CBW_FLAG_HT40; /* Make sure this is set; or assert? */ cbw_flags |= NET80211_CBW_FLAG_VHT80; -#define MS(_v, _f) (((_v) & _f) >> _f##_S) - if (MS(ic->ic_vhtcaps, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) + if (_IEEE80211_MASKSHIFT(ic->ic_vhtcaps, + IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) cbw_flags |= NET80211_CBW_FLAG_VHT160; - if (MS(ic->ic_vhtcaps, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) + if (_IEEE80211_MASKSHIFT(ic->ic_vhtcaps, + IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) cbw_flags |= NET80211_CBW_FLAG_VHT80P80; -#undef MS ieee80211_add_channel_list_5ghz(chans, IEEE80211_CHAN_MAX, nchans, def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), bands, cbw_flags); ieee80211_add_channel_list_5ghz(chans, IEEE80211_CHAN_MAX, nchans, def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), bands, cbw_flags); ieee80211_add_channel_list_5ghz(chans, IEEE80211_CHAN_MAX, nchans, def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), bands, cbw_flags); } if (rd != NULL) ic->ic_regdomain = *rd; return 0; } static __inline int chancompar(const void *a, const void *b) { const struct ieee80211_channel *ca = a; const struct ieee80211_channel *cb = b; return (ca->ic_freq == cb->ic_freq) ? (ca->ic_flags & IEEE80211_CHAN_ALL) - (cb->ic_flags & IEEE80211_CHAN_ALL) : ca->ic_freq - cb->ic_freq; } /* * Insertion sort. */ #define swap(_a, _b, _size) { \ uint8_t *s = _b; \ int i = _size; \ do { \ uint8_t tmp = *_a; \ *_a++ = *s; \ *s++ = tmp; \ } while (--i); \ _a -= _size; \ } static void sort_channels(void *a, size_t n, size_t size) { uint8_t *aa = a; uint8_t *ai, *t; KASSERT(n > 0, ("no channels")); for (ai = aa+size; --n >= 1; ai += size) for (t = ai; t > aa; t -= size) { uint8_t *u = t - size; if (chancompar(u, t) <= 0) break; swap(u, t, size); } } #undef swap /* * Order channels w/ the same frequency so that * b < g < htg and a < hta. This is used to optimize * channel table lookups and some user applications * may also depend on it (though they should not). */ void ieee80211_sort_channels(struct ieee80211_channel chans[], int nchans) { if (nchans > 0) sort_channels(chans, nchans, sizeof(struct ieee80211_channel)); } /* * Allocate and construct a Country Information IE. */ struct ieee80211_appie * ieee80211_alloc_countryie(struct ieee80211com *ic) { #define CHAN_UNINTERESTING \ (IEEE80211_CHAN_TURBO | IEEE80211_CHAN_STURBO | \ IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER) /* XXX what about auto? */ /* flag set of channels to be excluded (band added below) */ static const int skipflags[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = CHAN_UNINTERESTING, [IEEE80211_MODE_11A] = CHAN_UNINTERESTING, [IEEE80211_MODE_11B] = CHAN_UNINTERESTING, [IEEE80211_MODE_11G] = CHAN_UNINTERESTING, [IEEE80211_MODE_FH] = CHAN_UNINTERESTING | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_CCK | IEEE80211_CHAN_DYN, [IEEE80211_MODE_TURBO_A] = CHAN_UNINTERESTING, [IEEE80211_MODE_TURBO_G] = CHAN_UNINTERESTING, [IEEE80211_MODE_STURBO_A] = CHAN_UNINTERESTING, [IEEE80211_MODE_HALF] = IEEE80211_CHAN_TURBO | IEEE80211_CHAN_STURBO, [IEEE80211_MODE_QUARTER] = IEEE80211_CHAN_TURBO | IEEE80211_CHAN_STURBO, [IEEE80211_MODE_11NA] = CHAN_UNINTERESTING, [IEEE80211_MODE_11NG] = CHAN_UNINTERESTING, }; const struct ieee80211_regdomain *rd = &ic->ic_regdomain; uint8_t nextchan, chans[IEEE80211_CHAN_BYTES], *frm; struct ieee80211_appie *aie; struct ieee80211_country_ie *ie; int i, skip, nruns; aie = IEEE80211_MALLOC(IEEE80211_COUNTRY_MAX_SIZE, M_80211_NODE_IE, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (aie == NULL) { ic_printf(ic, "%s: unable to allocate memory for country ie\n", __func__); /* XXX stat */ return NULL; } ie = (struct ieee80211_country_ie *) aie->ie_data; ie->ie = IEEE80211_ELEMID_COUNTRY; if (rd->isocc[0] == '\0') { ic_printf(ic, "no ISO country string for cc %d; using blanks\n", rd->country); ie->cc[0] = ie->cc[1] = ' '; } else { ie->cc[0] = rd->isocc[0]; ie->cc[1] = rd->isocc[1]; } /* * Indoor/Outdoor portion of country string: * 'I' indoor only * 'O' outdoor only * ' ' all environments */ ie->cc[2] = (rd->location == 'I' ? 'I' : rd->location == 'O' ? 'O' : ' '); /* * Run-length encoded channel+max tx power info. */ frm = (uint8_t *)&ie->band[0]; nextchan = 0; /* NB: impossible channel # */ nruns = 0; memset(chans, 0, sizeof(chans)); skip = skipflags[ieee80211_chan2mode(ic->ic_bsschan)]; if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) skip |= IEEE80211_CHAN_2GHZ; else if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bsschan)) skip |= IEEE80211_CHAN_5GHZ; for (i = 0; i < ic->ic_nchans; i++) { const struct ieee80211_channel *c = &ic->ic_channels[i]; if (isset(chans, c->ic_ieee)) /* suppress dup's */ continue; if (c->ic_flags & skip) /* skip band, etc. */ continue; setbit(chans, c->ic_ieee); if (c->ic_ieee != nextchan || c->ic_maxregpower != frm[-1]) { /* new run */ if (nruns == IEEE80211_COUNTRY_MAX_BANDS) { ic_printf(ic, "%s: country ie too big, " "runs > max %d, truncating\n", __func__, IEEE80211_COUNTRY_MAX_BANDS); /* XXX stat? fail? */ break; } frm[0] = c->ic_ieee; /* starting channel # */ frm[1] = 1; /* # channels in run */ frm[2] = c->ic_maxregpower; /* tx power cap */ frm += 3; nextchan = c->ic_ieee + 1; /* overflow? */ nruns++; } else { /* extend run */ frm[-2]++; nextchan++; } } ie->len = frm - ie->cc; if (ie->len & 1) { /* Zero pad to multiple of 2 */ ie->len++; *frm++ = 0; } aie->ie_len = frm - aie->ie_data; return aie; #undef CHAN_UNINTERESTING } static int allvapsdown(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_state != IEEE80211_S_INIT) return 0; return 1; } int ieee80211_setregdomain(struct ieee80211vap *vap, struct ieee80211_regdomain_req *reg) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *c; int desfreq = 0, desflags = 0; /* XXX silence gcc complaint */ int error, i; if (reg->rd.location != 'I' && reg->rd.location != 'O' && reg->rd.location != ' ') { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: invalid location 0x%x\n", __func__, reg->rd.location); return EINVAL; } if (reg->rd.isocc[0] == '\0' || reg->rd.isocc[1] == '\0') { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: invalid iso cc 0x%x:0x%x\n", __func__, reg->rd.isocc[0], reg->rd.isocc[1]); return EINVAL; } if (reg->chaninfo.ic_nchans > IEEE80211_CHAN_MAX) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: too many channels %u, max %u\n", __func__, reg->chaninfo.ic_nchans, IEEE80211_CHAN_MAX); return EINVAL; } /* * Calculate freq<->IEEE mapping and default max tx power * for channels not setup. The driver can override these * setting to reflect device properties/requirements. */ for (i = 0; i < reg->chaninfo.ic_nchans; i++) { c = ®->chaninfo.ic_chans[i]; if (c->ic_freq == 0 || c->ic_flags == 0) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: invalid channel spec at [%u]\n", __func__, i); return EINVAL; } if (c->ic_maxregpower == 0) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: invalid channel spec, zero maxregpower, " "freq %u flags 0x%x\n", __func__, c->ic_freq, c->ic_flags); return EINVAL; } if (c->ic_ieee == 0) c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), c->ic_flags); if (c->ic_maxpower == 0) c->ic_maxpower = 2*c->ic_maxregpower; } IEEE80211_LOCK(ic); /* XXX bandaid; a running vap will likely crash */ if (!allvapsdown(ic)) { IEEE80211_UNLOCK(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: reject: vaps are running\n", __func__); return EBUSY; } error = ic->ic_setregdomain(ic, ®->rd, reg->chaninfo.ic_nchans, reg->chaninfo.ic_chans); if (error != 0) { IEEE80211_UNLOCK(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: driver rejected request, error %u\n", __func__, error); return error; } /* * Commit: copy in new channel table and reset media state. * On return the state machines will be clocked so all vaps * will reset their state. * * XXX ic_bsschan is marked undefined, must have vap's in * INIT state or we blow up forcing stations off */ /* * Save any desired channel for restore below. Note this * needs to be done for all vaps but for now we only do * the one where the ioctl is issued. */ if (vap->iv_des_chan != IEEE80211_CHAN_ANYC) { desfreq = vap->iv_des_chan->ic_freq; desflags = vap->iv_des_chan->ic_flags; } /* regdomain parameters */ memcpy(&ic->ic_regdomain, ®->rd, sizeof(reg->rd)); /* channel table */ memcpy(ic->ic_channels, reg->chaninfo.ic_chans, reg->chaninfo.ic_nchans * sizeof(struct ieee80211_channel)); ic->ic_nchans = reg->chaninfo.ic_nchans; memset(&ic->ic_channels[ic->ic_nchans], 0, (IEEE80211_CHAN_MAX - ic->ic_nchans) * sizeof(struct ieee80211_channel)); ieee80211_chan_init(ic); /* * Invalidate channel-related state. */ if (ic->ic_countryie != NULL) { IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); ic->ic_countryie = NULL; } ieee80211_scan_flush(vap); ieee80211_dfs_reset(ic); if (vap->iv_des_chan != IEEE80211_CHAN_ANYC) { c = ieee80211_find_channel(ic, desfreq, desflags); /* NB: may be NULL if not present in new channel list */ vap->iv_des_chan = (c != NULL) ? c : IEEE80211_CHAN_ANYC; } IEEE80211_UNLOCK(ic); return 0; } Index: head/sys/net80211/ieee80211_sta.c =================================================================== --- head/sys/net80211/ieee80211_sta.c (revision 366111) +++ head/sys/net80211/ieee80211_sta.c (revision 366112) @@ -1,2050 +1,2051 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD$"); #endif /* * IEEE 802.11 Station mode support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include #define IEEE80211_RATE2MBS(r) (((r) & IEEE80211_RATE_VAL) / 2) static void sta_vattach(struct ieee80211vap *); static void sta_beacon_miss(struct ieee80211vap *); static int sta_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int sta_input(struct ieee80211_node *, struct mbuf *, const struct ieee80211_rx_stats *, int, int); static void sta_recv_mgmt(struct ieee80211_node *, struct mbuf *, int subtype, const struct ieee80211_rx_stats *, int rssi, int nf); static void sta_recv_ctl(struct ieee80211_node *, struct mbuf *, int subtype); void ieee80211_sta_attach(struct ieee80211com *ic) { ic->ic_vattach[IEEE80211_M_STA] = sta_vattach; } void ieee80211_sta_detach(struct ieee80211com *ic) { } static void sta_vdetach(struct ieee80211vap *vap) { } static void sta_vattach(struct ieee80211vap *vap) { vap->iv_newstate = sta_newstate; vap->iv_input = sta_input; vap->iv_recv_mgmt = sta_recv_mgmt; vap->iv_recv_ctl = sta_recv_ctl; vap->iv_opdetach = sta_vdetach; vap->iv_bmiss = sta_beacon_miss; } /* * Handle a beacon miss event. The common code filters out * spurious events that can happen when scanning and/or before * reaching RUN state. */ static void sta_beacon_miss(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); KASSERT((ic->ic_flags & IEEE80211_F_SCAN) == 0, ("scanning")); KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("wrong state %s", ieee80211_state_name[vap->iv_state])); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "beacon miss, mode %s state %s\n", ieee80211_opmode_name[vap->iv_opmode], ieee80211_state_name[vap->iv_state]); if (vap->iv_state == IEEE80211_S_CSA) { /* * A Channel Switch is pending; assume we missed the * beacon that would've completed the process and just * force the switch. If we made a mistake we'll not * find the AP on the new channel and fall back to a * normal scan. */ ieee80211_csa_completeswitch(ic); return; } if (++vap->iv_bmiss_count < vap->iv_bmiss_max) { /* * Send a directed probe req before falling back to a * scan; if we receive a response ic_bmiss_count will * be reset. Some cards mistakenly report beacon miss * so this avoids the expensive scan if the ap is * still there. */ ieee80211_send_probereq(vap->iv_bss, vap->iv_myaddr, vap->iv_bss->ni_bssid, vap->iv_bss->ni_bssid, vap->iv_bss->ni_essid, vap->iv_bss->ni_esslen); return; } callout_stop(&vap->iv_swbmiss); vap->iv_bmiss_count = 0; vap->iv_stats.is_beacon_miss++; if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { #ifdef IEEE80211_SUPPORT_SUPERG /* * If we receive a beacon miss interrupt when using * dynamic turbo, attempt to switch modes before * reassociating. */ if (IEEE80211_ATH_CAP(vap, vap->iv_bss, IEEE80211_NODE_TURBOP)) ieee80211_dturbo_switch(vap, ic->ic_bsschan->ic_flags ^ IEEE80211_CHAN_TURBO); #endif /* * Try to reassociate before scanning for a new ap. */ ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1); } else { /* * Somebody else is controlling state changes (e.g. * a user-mode app) don't do anything that would * confuse them; just drop into scan mode so they'll * notified of the state change and given control. */ ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } } /* * Handle deauth with reason. We retry only for * the cases where we might succeed. Otherwise * we downgrade the ap and scan. */ static void sta_authretry(struct ieee80211vap *vap, struct ieee80211_node *ni, int reason) { switch (reason) { case IEEE80211_STATUS_SUCCESS: /* NB: MLME assoc */ case IEEE80211_STATUS_TIMEOUT: case IEEE80211_REASON_ASSOC_EXPIRE: case IEEE80211_REASON_NOT_AUTHED: case IEEE80211_REASON_NOT_ASSOCED: case IEEE80211_REASON_ASSOC_LEAVE: case IEEE80211_REASON_ASSOC_NOT_AUTHED: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; default: ieee80211_scan_assoc_fail(vap, vap->iv_bss->ni_macaddr, reason); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; } } static void sta_swbmiss_start(struct ieee80211vap *vap) { if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) { /* * Start s/w beacon miss timer for devices w/o * hardware support. We fudge a bit here since * we're doing this in software. */ vap->iv_swbmiss_period = IEEE80211_TU_TO_TICKS( 2 * vap->iv_bmissthreshold * vap->iv_bss->ni_intval); vap->iv_swbmiss_count = 0; callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, ieee80211_swbmiss, vap); } } /* * IEEE80211_M_STA vap state machine handler. * This routine handles the main states in the 802.11 protocol. */ static int sta_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; enum ieee80211_state ostate; IEEE80211_LOCK_ASSERT(ic); ostate = vap->iv_state; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%d)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); vap->iv_state = nstate; /* state transition */ callout_stop(&vap->iv_mgtsend); /* XXX callout_drain */ if (ostate != IEEE80211_S_SCAN) ieee80211_cancel_scan(vap); /* background scan */ ni = vap->iv_bss; /* NB: no reference held */ if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) callout_stop(&vap->iv_swbmiss); switch (nstate) { case IEEE80211_S_INIT: switch (ostate) { case IEEE80211_S_SLEEP: /* XXX wakeup */ /* XXX driver hook to wakeup the hardware? */ case IEEE80211_S_RUN: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_sta_leave(ni); break; case IEEE80211_S_ASSOC: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_AUTH_LEAVE); break; case IEEE80211_S_SCAN: ieee80211_cancel_scan(vap); break; default: break; } if (ostate != IEEE80211_S_INIT) { /* NB: optimize INIT -> INIT case */ ieee80211_reset_bss(vap); } if (vap->iv_auth->ia_detach != NULL) vap->iv_auth->ia_detach(vap); break; case IEEE80211_S_SCAN: switch (ostate) { case IEEE80211_S_INIT: /* * Initiate a scan. We can come here as a result * of an IEEE80211_IOC_SCAN_REQ too in which case * the vap will be marked with IEEE80211_FEXT_SCANREQ * and the scan request parameters will be present * in iv_scanreq. Otherwise we do the default. */ if (vap->iv_flags_ext & IEEE80211_FEXT_SCANREQ) { ieee80211_check_scan(vap, vap->iv_scanreq_flags, vap->iv_scanreq_duration, vap->iv_scanreq_mindwell, vap->iv_scanreq_maxdwell, vap->iv_scanreq_nssid, vap->iv_scanreq_ssid); vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ; } else ieee80211_check_scan_current(vap); break; case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: /* * These can happen either because of a timeout * on an assoc/auth response or because of a * change in state that requires a reset. For * the former we're called with a non-zero arg * that is the cause for the failure; pass this * to the scan code so it can update state. * Otherwise trigger a new scan unless we're in * manual roaming mode in which case an application * must issue an explicit scan request. */ if (arg != 0) ieee80211_scan_assoc_fail(vap, vap->iv_bss->ni_macaddr, arg); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; case IEEE80211_S_SLEEP: /* beacon miss */ /* * XXX if in sleep we need to wakeup the hardware. */ /* FALLTHROUGH */ case IEEE80211_S_RUN: /* beacon miss */ /* * Beacon miss. Notify user space and if not * under control of a user application (roaming * manual) kick off a scan to re-connect. */ ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; default: goto invalid; } break; case IEEE80211_S_AUTH: switch (ostate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: switch (arg & 0xff) { case IEEE80211_FC0_SUBTYPE_AUTH: /* ??? */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: sta_authretry(vap, ni, arg>>8); break; } break; case IEEE80211_S_SLEEP: case IEEE80211_S_RUN: switch (arg & 0xff) { case IEEE80211_FC0_SUBTYPE_AUTH: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); vap->iv_state = IEEE80211_S_RUN; /* stay RUN */ break; case IEEE80211_FC0_SUBTYPE_DEAUTH: ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { /* try to reauth */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); } break; } break; default: goto invalid; } break; case IEEE80211_S_ASSOC: switch (ostate) { case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); break; case IEEE80211_S_SLEEP: /* cannot happen */ case IEEE80211_S_RUN: ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { IEEE80211_SEND_MGMT(ni, arg ? IEEE80211_FC0_SUBTYPE_REASSOC_REQ : IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); } break; default: goto invalid; } break; case IEEE80211_S_RUN: if (vap->iv_flags & IEEE80211_F_WPA) { /* XXX validate prerequisites */ } switch (ostate) { case IEEE80211_S_RUN: case IEEE80211_S_CSA: break; case IEEE80211_S_AUTH: /* when join is done in fw */ case IEEE80211_S_ASSOC: #ifdef IEEE80211_DEBUG if (ieee80211_msg_debug(vap)) { ieee80211_note(vap, "%s with %s ssid ", (vap->iv_opmode == IEEE80211_M_STA ? "associated" : "synchronized"), ether_sprintf(ni->ni_bssid)); ieee80211_print_essid(vap->iv_bss->ni_essid, ni->ni_esslen); /* XXX MCS/HT */ printf(" channel %d start %uMb\n", ieee80211_chan2ieee(ic, ic->ic_curchan), IEEE80211_RATE2MBS(ni->ni_txrate)); } #endif ieee80211_scan_assoc_success(vap, ni->ni_macaddr); ieee80211_notify_node_join(ni, arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); break; case IEEE80211_S_SLEEP: /* Wake up from sleep */ vap->iv_sta_ps(vap, 0); break; default: goto invalid; } ieee80211_sync_curchan(ic); if (ostate != IEEE80211_S_RUN) sta_swbmiss_start(vap); /* * When 802.1x is not in use mark the port authorized * at this point so traffic can flow. */ if (ni->ni_authmode != IEEE80211_AUTH_8021X) ieee80211_node_authorize(ni); /* * Fake association when joining an existing bss. * * Don't do this if we're doing SLEEP->RUN. */ if (ic->ic_newassoc != NULL && ostate != IEEE80211_S_SLEEP) ic->ic_newassoc(vap->iv_bss, (ostate != IEEE80211_S_RUN)); break; case IEEE80211_S_CSA: if (ostate != IEEE80211_S_RUN) goto invalid; break; case IEEE80211_S_SLEEP: sta_swbmiss_start(vap); vap->iv_sta_ps(vap, 1); break; default: invalid: IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: unexpected state transition %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); break; } return 0; } /* * Return non-zero if the frame is an echo of a multicast * frame sent by ourself. The dir is known to be DSTODS. */ static __inline int isdstods_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh) { #define QWH4(wh) ((const struct ieee80211_qosframe_addr4 *)wh) #define WH4(wh) ((const struct ieee80211_frame_addr4 *)wh) const uint8_t *sa; KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode")); if (!IEEE80211_IS_MULTICAST(wh->i_addr3)) return 0; sa = IEEE80211_QOS_HAS_SEQ(wh) ? QWH4(wh)->i_addr4 : WH4(wh)->i_addr4; return IEEE80211_ADDR_EQ(sa, vap->iv_myaddr); #undef WH4 #undef QWH4 } /* * Return non-zero if the frame is an echo of a multicast * frame sent by ourself. The dir is known to be FROMDS. */ static __inline int isfromds_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh) { KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode")); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) return 0; return IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_myaddr); } /* * Decide if a received management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_BEACON: return (vap->iv_ic->ic_flags & IEEE80211_F_SCAN); case IEEE80211_FC0_SUBTYPE_PROBE_REQ: return 0; } return 1; } /* * Process a received frame. The node associated with the sender * should be supplied. If nothing was found in the node table then * the caller is assumed to supply a reference to iv_bss instead. * The RSSI and a timestamp are also supplied. The RSSI data is used * during AP scanning to select a AP to associate with; it can have * any units so long as values have consistent units and higher values * mean ``better signal''. The receive timestamp is currently not used * by the 802.11 layer. */ static int sta_input(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; struct ieee80211_key *key; struct ether_header *eh; int hdrspace, need_tap = 1; /* mbuf need to be tapped. */ uint8_t dir, type, subtype, qos; uint8_t *bssid; int is_hw_decrypted = 0; int has_decrypted = 0; /* * Some devices do hardware decryption all the way through * to pretending the frame wasn't encrypted in the first place. * So, tag it appropriately so it isn't discarded inappropriately. */ if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) is_hw_decrypted = 1; if (m->m_flags & M_AMPDU_MPDU) { /* * Fastpath for A-MPDU reorder q resubmission. Frames * w/ M_AMPDU_MPDU marked have already passed through * here but were received out of order and been held on * the reorder queue. When resubmitted they are marked * with the M_AMPDU_MPDU flag and we can bypass most of * the normal processing. */ wh = mtod(m, struct ieee80211_frame *); type = IEEE80211_FC0_TYPE_DATA; dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; subtype = IEEE80211_FC0_SUBTYPE_QOS; hdrspace = ieee80211_hdrspace(ic, wh); /* XXX optimize? */ goto resubmit_ampdu; } KASSERT(ni != NULL, ("null node")); ni->ni_inact = ni->ni_inact_reload; type = -1; /* undefined */ if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_min)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "too short (1): len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto out; } /* * Bit of a cheat here, we use a pointer for a 3-address * frame format but don't reference fields past outside * ieee80211_frame_min w/o first validating the data is * present. */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != IEEE80211_FC0_VERSION_0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "wrong version, fc %02x:%02x", wh->i_fc[0], wh->i_fc[1]); vap->iv_stats.is_rx_badversion++; goto err; } dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { bssid = wh->i_addr2; if (!IEEE80211_ADDR_EQ(bssid, ni->ni_bssid)) { /* not interested in */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, bssid, NULL, "%s", "not to bss"); vap->iv_stats.is_rx_wrongbss++; goto out; } /* * Some devices may be in a promiscuous mode * where they receive frames for multiple station * addresses. * * If we receive a data frame that isn't * destined to our VAP MAC, drop it. * * XXX TODO: This is only enforced when not scanning; * XXX it assumes a software-driven scan will put the NIC * XXX into a "no data frames" mode before setting this * XXX flag. Otherwise it may be possible that we'll still * XXX process data frames whilst scanning. */ if ((! IEEE80211_IS_MULTICAST(wh->i_addr1)) && (! IEEE80211_ADDR_EQ(wh->i_addr1, IF_LLADDR(ifp)))) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, bssid, NULL, "not to cur sta: lladdr=%6D, addr1=%6D", IF_LLADDR(ifp), ":", wh->i_addr1, ":"); vap->iv_stats.is_rx_wrongbss++; goto out; } IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi); ni->ni_noise = nf; if ( IEEE80211_HAS_SEQ(type, subtype) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { uint8_t tid = ieee80211_gettid(wh); if (IEEE80211_QOS_HAS_SEQ(wh) && TID_TO_WME_AC(tid) >= WME_AC_VI) ic->ic_wme.wme_hipri_traffic++; if (! ieee80211_check_rxseq(ni, wh, bssid, rxs)) goto out; } } switch (type) { case IEEE80211_FC0_TYPE_DATA: hdrspace = ieee80211_hdrspace(ic, wh); if (m->m_len < hdrspace && (m = m_pullup(m, hdrspace)) == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "data too short: expecting %u", hdrspace); vap->iv_stats.is_rx_tooshort++; goto out; /* XXX */ } /* * Handle A-MPDU re-ordering. If the frame is to be * processed directly then ieee80211_ampdu_reorder * will return 0; otherwise it has consumed the mbuf * and we should do nothing more with it. */ if ((m->m_flags & M_AMPDU) && (dir == IEEE80211_FC1_DIR_FROMDS || dir == IEEE80211_FC1_DIR_DSTODS) && ieee80211_ampdu_reorder(ni, m, rxs) != 0) { m = NULL; goto out; } resubmit_ampdu: if (dir == IEEE80211_FC1_DIR_FROMDS) { if ((ifp->if_flags & IFF_SIMPLEX) && isfromds_mcastecho(vap, wh)) { /* * In IEEE802.11 network, multicast * packets sent from "me" are broadcast * from the AP; silently discard for * SIMPLEX interface. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "%s", "multicast echo"); vap->iv_stats.is_rx_mcastecho++; goto out; } if ((vap->iv_flags & IEEE80211_F_DWDS) && IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* * DWDS sta's must drop 3-address mcast frames * as they will be sent separately as a 4-addr * frame. Accepting the 3-addr frame will * confuse the bridge into thinking the sending * sta is located at the end of WDS link. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "3-address data", "%s", "DWDS enabled"); vap->iv_stats.is_rx_mcastecho++; goto out; } } else if (dir == IEEE80211_FC1_DIR_DSTODS) { if ((vap->iv_flags & IEEE80211_F_DWDS) == 0) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "4-address data", "%s", "DWDS not enabled"); vap->iv_stats.is_rx_wrongdir++; goto out; } if ((ifp->if_flags & IFF_SIMPLEX) && isdstods_mcastecho(vap, wh)) { /* * In IEEE802.11 network, multicast * packets sent from "me" are broadcast * from the AP; silently discard for * SIMPLEX interface. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "4-address data", "%s", "multicast echo"); vap->iv_stats.is_rx_mcastecho++; goto out; } } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto out; } /* * Handle privacy requirements for hardware decryption * devices. * * For those devices, a handful of things happen. * * + If IV has been stripped, then we can't run * ieee80211_crypto_decap() - none of the key * + If MIC has been stripped, we can't validate * MIC here. * + If MIC fails, then we need to communicate a * MIC failure up to the stack - but we don't know * which key was used. */ /* * Handle privacy requirements. Note that we * must not be preempted from here until after * we (potentially) call ieee80211_crypto_demic; * otherwise we may violate assumptions in the * crypto cipher modules used to do delayed update * of replay sequence numbers. */ if (is_hw_decrypted || wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { /* * Discard encrypted frames when privacy is off. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "WEP", "%s", "PRIVACY off"); vap->iv_stats.is_rx_noprivacy++; IEEE80211_NODE_STAT(ni, rx_noprivacy); goto out; } if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) { /* NB: stats+msgs handled in crypto_decap */ IEEE80211_NODE_STAT(ni, rx_wepfail); goto out; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; has_decrypted = 1; } else { /* XXX M_WEP and IEEE80211_F_PRIVACY */ key = NULL; } /* * Save QoS bits for use below--before we strip the header. */ if (subtype == IEEE80211_FC0_SUBTYPE_QOS) qos = ieee80211_getqos(wh)[0]; else qos = 0; /* * Next up, any fragmentation. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { m = ieee80211_defrag(ni, m, hdrspace); if (m == NULL) { /* Fragment dropped or frame not complete yet */ goto out; } } wh = NULL; /* no longer valid, catch any uses */ /* * Next strip any MSDU crypto bits. * * Note: we can't do MIC stripping/verification if the * upper layer has stripped it. We have to check MIC * ourselves. So, key may be NULL, but we have to check * the RX status. */ if (!ieee80211_crypto_demic(vap, key, m, 0)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "%s", "demic error"); vap->iv_stats.is_rx_demicfail++; IEEE80211_NODE_STAT(ni, rx_demicfail); goto out; } /* copy to listener after decrypt */ if (ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); need_tap = 0; /* * Finally, strip the 802.11 header. */ m = ieee80211_decap(vap, m, hdrspace); if (m == NULL) { /* XXX mask bit to check for both */ /* don't count Null data frames as errors */ if (subtype == IEEE80211_FC0_SUBTYPE_NODATA || subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) goto out; IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "%s", "decap error"); vap->iv_stats.is_rx_decap++; IEEE80211_NODE_STAT(ni, rx_decap); goto err; } eh = mtod(m, struct ether_header *); if (!ieee80211_node_is_authorized(ni)) { /* * Deny any non-PAE frames received prior to * authorization. For open/shared-key * authentication the port is mark authorized * after authentication completes. For 802.1x * the port is not marked authorized by the * authenticator until the handshake has completed. */ if (eh->ether_type != htons(ETHERTYPE_PAE)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, eh->ether_shost, "data", "unauthorized port: ether type 0x%x len %u", eh->ether_type, m->m_pkthdr.len); vap->iv_stats.is_rx_unauth++; IEEE80211_NODE_STAT(ni, rx_unauth); goto err; } } else { /* * When denying unencrypted frames, discard * any non-PAE frames received without encryption. */ if ((vap->iv_flags & IEEE80211_F_DROPUNENC) && ((has_decrypted == 0) && (m->m_flags & M_WEP) == 0) && (is_hw_decrypted == 0) && eh->ether_type != htons(ETHERTYPE_PAE)) { /* * Drop unencrypted frames. */ vap->iv_stats.is_rx_unencrypted++; IEEE80211_NODE_STAT(ni, rx_unencrypted); goto out; } } /* XXX require HT? */ if (qos & IEEE80211_QOS_AMSDU) { m = ieee80211_decap_amsdu(ni, m); if (m == NULL) return IEEE80211_FC0_TYPE_DATA; } else { #ifdef IEEE80211_SUPPORT_SUPERG m = ieee80211_decap_fastframe(vap, ni, m); if (m == NULL) return IEEE80211_FC0_TYPE_DATA; #endif } ieee80211_deliver_data(vap, ni, m); return IEEE80211_FC0_TYPE_DATA; case IEEE80211_FC0_TYPE_MGT: vap->iv_stats.is_rx_mgmt++; IEEE80211_NODE_STAT(ni, rx_mgmt); if (dir != IEEE80211_FC1_DIR_NODS) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto err; } if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "mgt", "too short: len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto out; } #ifdef IEEE80211_DEBUG if ((ieee80211_msg_debug(vap) && doprint(vap, subtype)) || ieee80211_msg_dumppkts(vap)) { if_printf(ifp, "received %s from %s rssi %d\n", ieee80211_mgt_subtype_name(subtype), ether_sprintf(wh->i_addr2), rssi); } #endif /* * Note: See above for hardware offload privacy requirements. * It also applies here. */ /* * Again, having encrypted flag set check would be good, but * then we have to also handle crypto_decap() like above. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { if (subtype != IEEE80211_FC0_SUBTYPE_AUTH) { /* * Only shared key auth frames with a challenge * should be encrypted, discard all others. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, ieee80211_mgt_subtype_name(subtype), "%s", "WEP set but not permitted"); vap->iv_stats.is_rx_mgtdiscard++; /* XXX */ goto out; } if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { /* * Discard encrypted frames when privacy is off. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "mgt", "%s", "WEP set but PRIVACY off"); vap->iv_stats.is_rx_noprivacy++; goto out; } hdrspace = ieee80211_hdrspace(ic, wh); /* * Again, if IV/MIC was stripped, then this whole * setup will fail. That's going to need some poking. */ if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) { /* NB: stats+msgs handled in crypto_decap */ goto out; } has_decrypted = 1; wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; } vap->iv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); goto out; case IEEE80211_FC0_TYPE_CTL: vap->iv_stats.is_rx_ctl++; IEEE80211_NODE_STAT(ni, rx_ctrl); vap->iv_recv_ctl(ni, m, subtype); goto out; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, NULL, "bad frame type 0x%x", type); /* should not come here */ break; } err: if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); out: if (m != NULL) { if (need_tap && ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); m_freem(m); } return type; } static void sta_auth_open(struct ieee80211_node *ni, struct ieee80211_frame *wh, int rssi, int nf, uint16_t seq, uint16_t status) { struct ieee80211vap *vap = ni->ni_vap; if (ni->ni_authmode == IEEE80211_AUTH_SHARED) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "open auth", "bad sta auth mode %u", ni->ni_authmode); vap->iv_stats.is_rx_bad_auth++; /* XXX */ return; } if (vap->iv_state != IEEE80211_S_AUTH || seq != IEEE80211_AUTH_OPEN_RESPONSE) { vap->iv_stats.is_rx_bad_auth++; return; } if (status != 0) { IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni, "open auth failed (reason %d)", status); vap->iv_stats.is_rx_auth_fail++; vap->iv_stats.is_rx_authfail_code = status; ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); } else ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); } static void sta_auth_shared(struct ieee80211_node *ni, struct ieee80211_frame *wh, uint8_t *frm, uint8_t *efrm, int rssi, int nf, uint16_t seq, uint16_t status) { struct ieee80211vap *vap = ni->ni_vap; uint8_t *challenge; /* * NB: this can happen as we allow pre-shared key * authentication to be enabled w/o wep being turned * on so that configuration of these can be done * in any order. It may be better to enforce the * ordering in which case this check would just be * for sanity/consistency. */ if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "%s", " PRIVACY is disabled"); goto bad; } /* * Pre-shared key authentication is evil; accept * it only if explicitly configured (it is supported * mainly for compatibility with clients like OS X). */ if (ni->ni_authmode != IEEE80211_AUTH_AUTO && ni->ni_authmode != IEEE80211_AUTH_SHARED) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "bad sta auth mode %u", ni->ni_authmode); vap->iv_stats.is_rx_bad_auth++; /* XXX maybe a unique error? */ goto bad; } challenge = NULL; if (frm + 1 < efrm) { if ((frm[1] + 2) > (efrm - frm)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "ie %d/%d too long", frm[0], (frm[1] + 2) - (efrm - frm)); vap->iv_stats.is_rx_bad_auth++; goto bad; } if (*frm == IEEE80211_ELEMID_CHALLENGE) challenge = frm; frm += frm[1] + 2; } switch (seq) { case IEEE80211_AUTH_SHARED_CHALLENGE: case IEEE80211_AUTH_SHARED_RESPONSE: if (challenge == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "%s", "no challenge"); vap->iv_stats.is_rx_bad_auth++; goto bad; } if (challenge[1] != IEEE80211_CHALLENGE_LEN) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "bad challenge len %d", challenge[1]); vap->iv_stats.is_rx_bad_auth++; goto bad; } default: break; } if (vap->iv_state != IEEE80211_S_AUTH) return; switch (seq) { case IEEE80211_AUTH_SHARED_PASS: if (ni->ni_challenge != NULL) { IEEE80211_FREE(ni->ni_challenge, M_80211_NODE); ni->ni_challenge = NULL; } if (status != 0) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, wh, "shared key auth failed (reason %d)", status); vap->iv_stats.is_rx_auth_fail++; vap->iv_stats.is_rx_authfail_code = status; return; } ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); break; case IEEE80211_AUTH_SHARED_CHALLENGE: if (!ieee80211_alloc_challenge(ni)) return; /* XXX could optimize by passing recvd challenge */ memcpy(ni->ni_challenge, &challenge[2], challenge[1]); IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, seq + 1); break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH, wh, "shared key auth", "bad seq %d", seq); vap->iv_stats.is_rx_bad_auth++; return; } return; bad: /* * Kick the state machine. This short-circuits * using the mgt frame timeout to trigger the * state transition. */ if (vap->iv_state == IEEE80211_S_AUTH) ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); } /* * Parse the WME IE for QoS and U-APSD information. * * Returns -1 if the IE isn't found, 1 if it's found. */ int ieee80211_parse_wmeie(uint8_t *frm, const struct ieee80211_frame *wh, struct ieee80211_node *ni) { u_int len = frm[1]; ni->ni_uapsd = 0; if (len < sizeof(struct ieee80211_wme_param)-2) { IEEE80211_DISCARD_IE(ni->ni_vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME, wh, "WME", "too short, len %u", len); return -1; } ni->ni_uapsd = frm[WME_CAPINFO_IE_OFFSET]; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_POWER | IEEE80211_MSG_ASSOC, ni, "U-APSD settings from STA: 0x%02x", ni->ni_uapsd); return 1; } int ieee80211_parse_wmeparams(struct ieee80211vap *vap, uint8_t *frm, const struct ieee80211_frame *wh, uint8_t *qosinfo) { -#define MS(_v, _f) (((_v) & _f) >> _f##_S) struct ieee80211_wme_state *wme = &vap->iv_ic->ic_wme; u_int len = frm[1], qosinfo_count; int i; *qosinfo = 0; if (len < sizeof(struct ieee80211_wme_param)-2) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME, wh, "WME", "too short, len %u", len); return -1; } *qosinfo = frm[__offsetof(struct ieee80211_wme_param, param_qosInfo)]; qosinfo_count = *qosinfo & WME_QOSINFO_COUNT; /* XXX do proper check for wraparound */ if (qosinfo_count == wme->wme_wmeChanParams.cap_info) return 0; frm += __offsetof(struct ieee80211_wme_param, params_acParams); for (i = 0; i < WME_NUM_AC; i++) { struct wmeParams *wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; /* NB: ACI not used */ - wmep->wmep_acm = MS(frm[0], WME_PARAM_ACM); - wmep->wmep_aifsn = MS(frm[0], WME_PARAM_AIFSN); - wmep->wmep_logcwmin = MS(frm[1], WME_PARAM_LOGCWMIN); - wmep->wmep_logcwmax = MS(frm[1], WME_PARAM_LOGCWMAX); + wmep->wmep_acm = _IEEE80211_MASKSHIFT(frm[0], WME_PARAM_ACM); + wmep->wmep_aifsn = + _IEEE80211_MASKSHIFT(frm[0], WME_PARAM_AIFSN); + wmep->wmep_logcwmin = + _IEEE80211_MASKSHIFT(frm[1], WME_PARAM_LOGCWMIN); + wmep->wmep_logcwmax = + _IEEE80211_MASKSHIFT(frm[1], WME_PARAM_LOGCWMAX); wmep->wmep_txopLimit = le16dec(frm+2); IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: WME: %d: acm=%d aifsn=%d logcwmin=%d logcwmax=%d txopLimit=%d\n", __func__, i, wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, wmep->wmep_logcwmax, wmep->wmep_txopLimit); frm += 4; } wme->wme_wmeChanParams.cap_info = qosinfo_count; return 1; -#undef MS } /* * Process 11h Channel Switch Announcement (CSA) ie. If this * is the first CSA then initiate the switch. Otherwise we * track state and trigger completion and/or cancel of the switch. * XXX should be public for IBSS use */ static void ieee80211_parse_csaparams(struct ieee80211vap *vap, uint8_t *frm, const struct ieee80211_frame *wh) { struct ieee80211com *ic = vap->iv_ic; const struct ieee80211_csa_ie *csa = (const struct ieee80211_csa_ie *) frm; KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("state %s", ieee80211_state_name[vap->iv_state])); if (csa->csa_mode > 1) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "invalid mode %u", csa->csa_mode); return; } IEEE80211_LOCK(ic); if ((ic->ic_flags & IEEE80211_F_CSAPENDING) == 0) { /* * Convert the channel number to a channel reference. We * try first to preserve turbo attribute of the current * channel then fallback. Note this will not work if the * CSA specifies a channel that requires a band switch (e.g. * 11a => 11g). This is intentional as 11h is defined only * for 5GHz/11a and because the switch does not involve a * reassociation, protocol state (capabilities, negotated * rates, etc) may/will be wrong. */ struct ieee80211_channel *c = ieee80211_find_channel_byieee(ic, csa->csa_newchan, (ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALLTURBO)); if (c == NULL) { c = ieee80211_find_channel_byieee(ic, csa->csa_newchan, (ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALL)); if (c == NULL) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "invalid channel %u", csa->csa_newchan); goto done; } } #if IEEE80211_CSA_COUNT_MIN > 0 if (csa->csa_count < IEEE80211_CSA_COUNT_MIN) { /* * Require at least IEEE80211_CSA_COUNT_MIN count to * reduce the risk of being redirected by a fabricated * CSA. If a valid CSA is dropped we'll still get a * beacon miss when the AP leaves the channel so we'll * eventually follow to the new channel. * * NOTE: this violates the 11h spec that states that * count may be any value and if 0 then a switch * should happen asap. */ IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "count %u too small, must be >= %u", csa->csa_count, IEEE80211_CSA_COUNT_MIN); goto done; } #endif ieee80211_csa_startswitch(ic, c, csa->csa_mode, csa->csa_count); } else { /* * Validate this ie against the initial CSA. We require * mode and channel not change and the count must be * monotonically decreasing. This may be pointless and * canceling the switch as a result may be too paranoid but * in the worst case if we drop out of CSA because of this * and the AP does move then we'll just end up taking a * beacon miss and scan to find the AP. * * XXX may want <= on count as we also process ProbeResp * frames and those may come in w/ the same count as the * previous beacon; but doing so leaves us open to a stuck * count until we add a dead-man timer */ if (!(csa->csa_count < ic->ic_csa_count && csa->csa_mode == ic->ic_csa_mode && csa->csa_newchan == ieee80211_chan2ieee(ic, ic->ic_csa_newchan))) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_DOTH, wh, "CSA ie mismatch, initial ie <%d,%d,%d>, " "this ie <%d,%d,%d>", ic->ic_csa_mode, ic->ic_csa_newchan, ic->ic_csa_count, csa->csa_mode, csa->csa_newchan, csa->csa_count); ieee80211_csa_cancelswitch(ic); } else { if (csa->csa_count <= 1) ieee80211_csa_completeswitch(ic); else ic->ic_csa_count = csa->csa_count; } } done: IEEE80211_UNLOCK(ic); } /* * Return non-zero if a background scan may be continued: * o bg scan is active * o no channel switch is pending * o there has not been any traffic recently * o no full-offload scan support (no need for explicitly continuing scan then) * * Note we do not check if there is an administrative enable; * this is only done to start the scan. We assume that any * change in state will be accompanied by a request to cancel * active scans which will otherwise cause this test to fail. */ static __inline int contbgscan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; return ((ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) && (ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 && !(vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) && vap->iv_state == IEEE80211_S_RUN && /* XXX? */ ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle)); } /* * Return non-zero if a backgrond scan may be started: * o bg scanning is administratively enabled * o no channel switch is pending * o we are not boosted on a dynamic turbo channel * o there has not been a scan recently * o there has not been any traffic recently (don't check if full-offload scan) */ static __inline int startbgscan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; return ((vap->iv_flags & IEEE80211_F_BGSCAN) && (ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 && #ifdef IEEE80211_SUPPORT_SUPERG !IEEE80211_IS_CHAN_DTURBO(ic->ic_curchan) && #endif ieee80211_time_after(ticks, ic->ic_lastscan + vap->iv_bgscanintvl) && ((vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) || ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle))); } #ifdef notyet /* * Compare two quiet IEs and return if they are equivalent. * * The tbttcount isnt checked - that's not part of the configuration. */ static int compare_quiet_ie(const struct ieee80211_quiet_ie *q1, const struct ieee80211_quiet_ie *q2) { if (q1->period != q2->period) return (0); if (le16dec(&q1->duration) != le16dec(&q2->duration)) return (0); if (le16dec(&q1->offset) != le16dec(&q2->offset)) return (0); return (1); } #endif static void sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m0, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { #define ISREASSOC(_st) ((_st) == IEEE80211_FC0_SUBTYPE_REASSOC_RESP) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_channel *rxchan = ic->ic_curchan; struct ieee80211_frame *wh; int ht_state_change = 0, do_ht = 0; uint8_t *frm, *efrm; uint8_t *rates, *xrates, *wme, *htcap, *htinfo; uint8_t *vhtcap, *vhtopmode; uint8_t rate; uint8_t qosinfo; wh = mtod(m0, struct ieee80211_frame *); frm = (uint8_t *)&wh[1]; efrm = mtod(m0, uint8_t *) + m0->m_len; switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: case IEEE80211_FC0_SUBTYPE_BEACON: { struct ieee80211_scanparams scan; struct ieee80211_channel *c; /* * We process beacon/probe response frames: * o when scanning, or * o station mode when associated (to collect state * updates such as 802.11g slot time) * Frames otherwise received are discarded. */ if (!((ic->ic_flags & IEEE80211_F_SCAN) || ni->ni_associd)) { vap->iv_stats.is_rx_mgtdiscard++; return; } /* Override RX channel as appropriate */ if (rxs != NULL) { c = ieee80211_lookup_channel_rxstatus(vap, rxs); if (c != NULL) rxchan = c; } /* XXX probe response in sta mode when !scanning? */ if (ieee80211_parse_beacon(ni, m0, rxchan, &scan) != 0) { if (! (ic->ic_flags & IEEE80211_F_SCAN)) vap->iv_stats.is_beacon_bad++; return; } /* * Count frame now that we know it's to be processed. */ if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) { vap->iv_stats.is_rx_beacon++; /* XXX remove */ IEEE80211_NODE_STAT(ni, rx_beacons); } else IEEE80211_NODE_STAT(ni, rx_proberesp); /* * When operating in station mode, check for state updates. * Be careful to ignore beacons received while doing a * background scan. We consider only 11g/WMM stuff right now. */ if (ni->ni_associd != 0 && ((ic->ic_flags & IEEE80211_F_SCAN) == 0 || IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_bssid))) { /* record tsf of last beacon */ memcpy(ni->ni_tstamp.data, scan.tstamp, sizeof(ni->ni_tstamp)); /* count beacon frame for s/w bmiss handling */ vap->iv_swbmiss_count++; vap->iv_bmiss_count = 0; if (ni->ni_erp != scan.erp) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "erp change: was 0x%x, now 0x%x", ni->ni_erp, scan.erp); if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ni->ni_erp & IEEE80211_ERP_USE_PROTECTION)) vap->iv_flags |= IEEE80211_F_USEPROT; else vap->iv_flags &= ~IEEE80211_F_USEPROT; ni->ni_erp = scan.erp; /* XXX statistic */ /* driver notification */ ieee80211_vap_update_erp_protmode(vap); } if ((ni->ni_capinfo ^ scan.capinfo) & IEEE80211_CAPINFO_SHORT_SLOTTIME) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "capabilities change: was 0x%x, now 0x%x", ni->ni_capinfo, scan.capinfo); /* * NB: we assume short preamble doesn't * change dynamically */ ieee80211_vap_set_shortslottime(vap, IEEE80211_IS_CHAN_A(ic->ic_bsschan) || (scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)); ni->ni_capinfo = (ni->ni_capinfo &~ IEEE80211_CAPINFO_SHORT_SLOTTIME) | (scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME); /* XXX statistic */ } if (scan.wme != NULL && (ni->ni_flags & IEEE80211_NODE_QOS)) { int _retval; if ((_retval = ieee80211_parse_wmeparams(vap, scan.wme, wh, &qosinfo)) >= 0) { if (qosinfo & WME_CAPINFO_UAPSD_EN) ni->ni_flags |= IEEE80211_NODE_UAPSD; if (_retval > 0) ieee80211_wme_updateparams(vap); } } else ni->ni_flags &= ~IEEE80211_NODE_UAPSD; #ifdef IEEE80211_SUPPORT_SUPERG if (scan.ath != NULL) ieee80211_parse_athparams(ni, scan.ath, wh); #endif if (scan.htcap != NULL && scan.htinfo != NULL && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { /* XXX state changes? */ ieee80211_ht_updateparams(ni, scan.htcap, scan.htinfo); do_ht = 1; } if (scan.vhtcap != NULL && scan.vhtopmode != NULL && (vap->iv_flags_vht & IEEE80211_FVHT_VHT)) { /* XXX state changes? */ ieee80211_vht_updateparams(ni, scan.vhtcap, scan.vhtopmode); do_ht = 1; } if (do_ht) { if (ieee80211_ht_updateparams_final(ni, scan.htcap, scan.htinfo)) ht_state_change = 1; } /* * If we have a quiet time IE then report it up to * the driver. * * Otherwise, inform the driver that the quiet time * IE has disappeared - only do that once rather than * spamming it each time. */ if (scan.quiet) { ic->ic_set_quiet(ni, scan.quiet); ni->ni_quiet_ie_set = 1; memcpy(&ni->ni_quiet_ie, scan.quiet, sizeof(struct ieee80211_quiet_ie)); } else { if (ni->ni_quiet_ie_set == 1) ic->ic_set_quiet(ni, NULL); ni->ni_quiet_ie_set = 0; bzero(&ni->ni_quiet_ie, sizeof(struct ieee80211_quiet_ie)); } if (scan.tim != NULL) { struct ieee80211_tim_ie *tim = (struct ieee80211_tim_ie *) scan.tim; /* * XXX Check/debug this code; see if it's about * the right time to force the VAP awake if we * receive a frame destined for us? */ int aid = IEEE80211_AID(ni->ni_associd); int ix = aid / NBBY; int min = tim->tim_bitctl &~ 1; int max = tim->tim_len + min - 4; int tim_ucast = 0, tim_mcast = 0; /* * Only do this for unicast traffic in the TIM * The multicast traffic notification for * the scan notification stuff should occur * differently. */ if (min <= ix && ix <= max && isset(tim->tim_bitmap - min, aid)) { tim_ucast = 1; } /* * Do a separate notification * for the multicast bit being set. */ if (tim->tim_bitctl & 1) { tim_mcast = 1; } /* * If the TIM indicates there's traffic for * us then get us out of STA mode powersave. */ if (tim_ucast == 1) { /* * Wake us out of SLEEP state if we're * in it; and if we're doing bgscan * then wake us out of STA powersave. */ ieee80211_sta_tim_notify(vap, 1); /* * This is preventing us from * continuing a bgscan; because it * tricks the contbgscan() * routine to think there's always * traffic for us. * * I think we need both an RX and * TX ic_lastdata field. */ ic->ic_lastdata = ticks; } ni->ni_dtim_count = tim->tim_count; ni->ni_dtim_period = tim->tim_period; } if (scan.csa != NULL && (vap->iv_flags & IEEE80211_F_DOTH)) ieee80211_parse_csaparams(vap, scan.csa, wh); else if (ic->ic_flags & IEEE80211_F_CSAPENDING) { /* * No CSA ie or 11h disabled, but a channel * switch is pending; drop out so we aren't * stuck in CSA state. If the AP really is * moving we'll get a beacon miss and scan. */ IEEE80211_LOCK(ic); ieee80211_csa_cancelswitch(ic); IEEE80211_UNLOCK(ic); } /* * If scanning, pass the info to the scan module. * Otherwise, check if it's the right time to do * a background scan. Background scanning must * be enabled and we must not be operating in the * turbo phase of dynamic turbo mode. Then, * it's been a while since the last background * scan and if no data frames have come through * recently, kick off a scan. Note that this * is the mechanism by which a background scan * is started _and_ continued each time we * return on-channel to receive a beacon from * our ap. */ if (ic->ic_flags & IEEE80211_F_SCAN) { ieee80211_add_scan(vap, rxchan, &scan, wh, subtype, rssi, nf); } else if (contbgscan(vap)) { ieee80211_bg_scan(vap, 0); } else if (startbgscan(vap)) { vap->iv_stats.is_scan_bg++; #if 0 /* wakeup if we are sleeing */ ieee80211_set_pwrsave(vap, 0); #endif ieee80211_bg_scan(vap, 0); } /* * Put the station to sleep if we haven't seen * traffic in a while. */ IEEE80211_LOCK(ic); ieee80211_sta_ps_timer_check(vap); IEEE80211_UNLOCK(ic); /* * If we've had a channel width change (eg HT20<->HT40) * then schedule a delayed driver notification. */ if (ht_state_change) ieee80211_update_chw(ic); return; } /* * If scanning, just pass information to the scan module. */ if (ic->ic_flags & IEEE80211_F_SCAN) { if (ic->ic_flags_ext & IEEE80211_FEXT_PROBECHAN) { /* * Actively scanning a channel marked passive; * send a probe request now that we know there * is 802.11 traffic present. * * XXX check if the beacon we recv'd gives * us what we need and suppress the probe req */ ieee80211_probe_curchan(vap, 1); ic->ic_flags_ext &= ~IEEE80211_FEXT_PROBECHAN; } ieee80211_add_scan(vap, rxchan, &scan, wh, subtype, rssi, nf); return; } break; } case IEEE80211_FC0_SUBTYPE_AUTH: { uint16_t algo, seq, status; /* * auth frame format * [2] algorithm * [2] sequence * [2] status * [tlv*] challenge */ IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return); algo = le16toh(*(uint16_t *)frm); seq = le16toh(*(uint16_t *)(frm + 2)); status = le16toh(*(uint16_t *)(frm + 4)); IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr2, "recv auth frame with algorithm %d seq %d", algo, seq); if (vap->iv_flags & IEEE80211_F_COUNTERM) { IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH | IEEE80211_MSG_CRYPTO, wh, "auth", "%s", "TKIP countermeasures enabled"); vap->iv_stats.is_rx_auth_countermeasures++; if (vap->iv_opmode == IEEE80211_M_HOSTAP) { ieee80211_send_error(ni, wh->i_addr2, IEEE80211_FC0_SUBTYPE_AUTH, IEEE80211_REASON_MIC_FAILURE); } return; } if (algo == IEEE80211_AUTH_ALG_SHARED) sta_auth_shared(ni, wh, frm + 6, efrm, rssi, nf, seq, status); else if (algo == IEEE80211_AUTH_ALG_OPEN) sta_auth_open(ni, wh, rssi, nf, seq, status); else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "auth", "unsupported alg %d", algo); vap->iv_stats.is_rx_auth_unsupported++; return; } break; } case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: { uint16_t capinfo, associd; uint16_t status; if (vap->iv_state != IEEE80211_S_ASSOC) { vap->iv_stats.is_rx_mgtdiscard++; return; } /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME * [tlv] HT capabilities * [tlv] HT info */ IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return); ni = vap->iv_bss; capinfo = le16toh(*(uint16_t *)frm); frm += 2; status = le16toh(*(uint16_t *)frm); frm += 2; if (status != 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "%sassoc failed (reason %d)", ISREASSOC(subtype) ? "re" : "", status); vap->iv_stats.is_rx_auth_fail++; /* XXX */ return; } associd = le16toh(*(uint16_t *)frm); frm += 2; rates = xrates = wme = htcap = htinfo = NULL; vhtcap = vhtopmode = NULL; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); switch (*frm) { case IEEE80211_ELEMID_RATES: rates = frm; break; case IEEE80211_ELEMID_XRATES: xrates = frm; break; case IEEE80211_ELEMID_HTCAP: htcap = frm; break; case IEEE80211_ELEMID_HTINFO: htinfo = frm; break; case IEEE80211_ELEMID_VENDOR: if (iswmeoui(frm)) wme = frm; else if (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) { /* * Accept pre-draft HT ie's if the * standard ones have not been seen. */ if (ishtcapoui(frm)) { if (htcap == NULL) htcap = frm; } else if (ishtinfooui(frm)) { if (htinfo == NULL) htinfo = frm; } } /* XXX Atheros OUI support */ break; case IEEE80211_ELEMID_VHT_CAP: vhtcap = frm; break; case IEEE80211_ELEMID_VHT_OPMODE: vhtopmode = frm; break; } frm += frm[1] + 2; } IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return); if (xrates != NULL) IEEE80211_VERIFY_ELEMENT(xrates, IEEE80211_RATE_MAXSIZE - rates[1], return); rate = ieee80211_setup_rates(ni, rates, xrates, IEEE80211_F_JOIN | IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE | IEEE80211_F_DONEGO | IEEE80211_F_DODEL); if (rate & IEEE80211_RATE_BASIC) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "%sassoc failed (rate set mismatch)", ISREASSOC(subtype) ? "re" : ""); vap->iv_stats.is_rx_assoc_norate++; ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); return; } ni->ni_capinfo = capinfo; ni->ni_associd = associd; if (ni->ni_jointime == 0) ni->ni_jointime = time_uptime; if (wme != NULL && ieee80211_parse_wmeparams(vap, wme, wh, &qosinfo) >= 0) { ni->ni_flags |= IEEE80211_NODE_QOS; ieee80211_wme_updateparams(vap); } else ni->ni_flags &= ~IEEE80211_NODE_QOS; /* * Setup HT state according to the negotiation. * * NB: shouldn't need to check if HT use is enabled but some * ap's send back HT ie's even when we don't indicate we * are HT capable in our AssocReq. */ if (htcap != NULL && htinfo != NULL && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { ieee80211_ht_node_init(ni); ieee80211_ht_updateparams(ni, htcap, htinfo); if ((vhtcap != NULL) && (vhtopmode != NULL) & (vap->iv_flags_vht & IEEE80211_FVHT_VHT)) { /* * Log if we get a VHT assoc/reassoc response. * We aren't ready for 2GHz VHT support. */ if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { printf("%s: peer %6D: VHT on 2GHz, ignoring\n", __func__, ni->ni_macaddr, ":"); } else { ieee80211_vht_node_init(ni); ieee80211_vht_updateparams(ni, vhtcap, vhtopmode); ieee80211_setup_vht_rates(ni, vhtcap, vhtopmode); } } ieee80211_ht_updateparams_final(ni, htcap, htinfo); ieee80211_setup_htrates(ni, htcap, IEEE80211_F_JOIN | IEEE80211_F_DOBRS); ieee80211_setup_basic_htrates(ni, htinfo); ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); } /* * Always initialise FF/superg state; we can use this * for doing A-MSDU encapsulation as well. */ #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_ff_node_init(ni); #endif /* * Configure state now that we are associated. * * XXX may need different/additional driver callbacks? */ if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { vap->iv_flags |= IEEE80211_F_SHPREAMBLE; vap->iv_flags &= ~IEEE80211_F_USEBARKER; } else { vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; vap->iv_flags |= IEEE80211_F_USEBARKER; } ieee80211_vap_set_shortslottime(vap, IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)); ieee80211_vap_update_preamble(vap); /* * Honor ERP protection. * * NB: ni_erp should zero for non-11g operation. */ if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ni->ni_erp & IEEE80211_ERP_USE_PROTECTION)) vap->iv_flags |= IEEE80211_F_USEPROT; else vap->iv_flags &= ~IEEE80211_F_USEPROT; ieee80211_vap_update_erp_protmode(vap); IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DEBUG, wh->i_addr2, "%sassoc success at aid %d: %s preamble, %s slot time%s%s%s%s%s%s%s%s%s", ISREASSOC(subtype) ? "re" : "", IEEE80211_NODE_AID(ni), vap->iv_flags&IEEE80211_F_SHPREAMBLE ? "short" : "long", vap->iv_flags&IEEE80211_F_SHSLOT ? "short" : "long", vap->iv_flags&IEEE80211_F_USEPROT ? ", protection" : "", ni->ni_flags & IEEE80211_NODE_QOS ? ", QoS" : "", ni->ni_flags & IEEE80211_NODE_HT ? (ni->ni_chw == 40 ? ", HT40" : ", HT20") : "", ni->ni_flags & IEEE80211_NODE_AMPDU ? " (+AMPDU)" : "", ni->ni_flags & IEEE80211_NODE_AMSDU ? " (+AMSDU)" : "", ni->ni_flags & IEEE80211_NODE_MIMO_RTS ? " (+SMPS-DYN)" : ni->ni_flags & IEEE80211_NODE_MIMO_PS ? " (+SMPS)" : "", ni->ni_flags & IEEE80211_NODE_RIFS ? " (+RIFS)" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF) ? ", fast-frames" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_TURBOP) ? ", turbo" : "" ); ieee80211_new_state(vap, IEEE80211_S_RUN, subtype); break; } case IEEE80211_FC0_SUBTYPE_DEAUTH: { uint16_t reason; if (vap->iv_state == IEEE80211_S_SCAN) { vap->iv_stats.is_rx_mgtdiscard++; return; } if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) { /* NB: can happen when in promiscuous mode */ vap->iv_stats.is_rx_mgtdiscard++; break; } /* * deauth frame format * [2] reason */ IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return); reason = le16toh(*(uint16_t *)frm); vap->iv_stats.is_rx_deauth++; vap->iv_stats.is_rx_deauth_code = reason; IEEE80211_NODE_STAT(ni, rx_deauth); IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "recv deauthenticate (reason: %d (%s))", reason, ieee80211_reason_to_string(reason)); ieee80211_new_state(vap, IEEE80211_S_AUTH, (reason << 8) | IEEE80211_FC0_SUBTYPE_DEAUTH); break; } case IEEE80211_FC0_SUBTYPE_DISASSOC: { uint16_t reason; if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_ASSOC && vap->iv_state != IEEE80211_S_AUTH) { vap->iv_stats.is_rx_mgtdiscard++; return; } if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) { /* NB: can happen when in promiscuous mode */ vap->iv_stats.is_rx_mgtdiscard++; break; } /* * disassoc frame format * [2] reason */ IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return); reason = le16toh(*(uint16_t *)frm); vap->iv_stats.is_rx_disassoc++; vap->iv_stats.is_rx_disassoc_code = reason; IEEE80211_NODE_STAT(ni, rx_disassoc); IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "recv disassociate (reason: %d (%s))", reason, ieee80211_reason_to_string(reason)); ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); break; } case IEEE80211_FC0_SUBTYPE_ACTION: case IEEE80211_FC0_SUBTYPE_ACTION_NOACK: if (!IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr1) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not for us"); vap->iv_stats.is_rx_mgtdiscard++; } else if (vap->iv_state != IEEE80211_S_RUN) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "wrong state %s", ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_rx_mgtdiscard++; } else { if (ieee80211_parse_action(ni, m0) == 0) (void)ic->ic_recv_action(ni, wh, frm, efrm); } break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: case IEEE80211_FC0_SUBTYPE_PROBE_REQ: case IEEE80211_FC0_SUBTYPE_TIMING_ADV: case IEEE80211_FC0_SUBTYPE_ATIM: IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not handled"); vap->iv_stats.is_rx_mgtdiscard++; break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "mgt", "subtype 0x%x not handled", subtype); vap->iv_stats.is_rx_badsubtype++; break; } #undef ISREASSOC } static void sta_recv_ctl(struct ieee80211_node *ni, struct mbuf *m, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_BAR: ieee80211_recv_bar(ni, m); break; } } Index: head/sys/net80211/ieee80211_superg.c =================================================================== --- head/sys/net80211/ieee80211_superg.c (revision 366111) +++ head/sys/net80211/ieee80211_superg.c (revision 366112) @@ -1,1067 +1,1065 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #ifdef IEEE80211_SUPPORT_SUPERG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Atheros fast-frame encapsulation format. * FF max payload: * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500: * 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500 * = 3066 */ /* fast frame header is 32-bits */ #define ATH_FF_PROTO 0x0000003f /* protocol */ #define ATH_FF_PROTO_S 0 #define ATH_FF_FTYPE 0x000000c0 /* frame type */ #define ATH_FF_FTYPE_S 6 #define ATH_FF_HLEN32 0x00000300 /* optional hdr length */ #define ATH_FF_HLEN32_S 8 #define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */ #define ATH_FF_SEQNUM_S 10 #define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */ #define ATH_FF_OFFSET_S 21 #define ATH_FF_MAX_HDR_PAD 4 #define ATH_FF_MAX_SEP_PAD 6 #define ATH_FF_MAX_HDR 30 #define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */ #define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */ #define ATH_FF_SNAP_ORGCODE_0 0x00 #define ATH_FF_SNAP_ORGCODE_1 0x03 #define ATH_FF_SNAP_ORGCODE_2 0x7f #define ATH_FF_TXQMIN 2 /* min txq depth for staging */ #define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */ #define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/ #define ETHER_HEADER_COPY(dst, src) \ memcpy(dst, src, sizeof(struct ether_header)) static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */ SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW, &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging"); static int ieee80211_ffagemax = -1; /* max time frames held on stage q */ SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I", "max hold time for fast-frame staging (ms)"); static void ff_age_all(void *arg, int npending) { struct ieee80211com *ic = arg; /* XXX cache timer value somewhere (racy) */ ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1); } void ieee80211_superg_attach(struct ieee80211com *ic) { struct ieee80211_superg *sg; IEEE80211_FF_LOCK_INIT(ic, ic->ic_name); sg = (struct ieee80211_superg *) IEEE80211_MALLOC( sizeof(struct ieee80211_superg), M_80211_VAP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (sg == NULL) { printf("%s: cannot allocate SuperG state block\n", __func__); return; } TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic); ic->ic_superg = sg; /* * Default to not being so aggressive for FF/AMSDU * aging, otherwise we may hold a frame around * for way too long before we expire it out. */ ieee80211_ffagemax = msecs_to_ticks(2); } void ieee80211_superg_detach(struct ieee80211com *ic) { if (ic->ic_superg != NULL) { struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0) taskqueue_drain_timeout(ic->ic_tq, qtask); IEEE80211_FREE(ic->ic_superg, M_80211_VAP); ic->ic_superg = NULL; } IEEE80211_FF_LOCK_DESTROY(ic); } void ieee80211_superg_vattach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */ vap->iv_caps &= ~IEEE80211_C_FF; if (vap->iv_caps & IEEE80211_C_FF) vap->iv_flags |= IEEE80211_F_FF; /* NB: we only implement sta mode */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_caps & IEEE80211_C_TURBOP)) vap->iv_flags |= IEEE80211_F_TURBOP; } void ieee80211_superg_vdetach(struct ieee80211vap *vap) { } #define ATH_OUI_BYTES 0x00, 0x03, 0x7f /* * Add a WME information element to a frame. */ uint8_t * ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) { static const struct ieee80211_ath_ie info = { .ath_id = IEEE80211_ELEMID_VENDOR, .ath_len = sizeof(struct ieee80211_ath_ie) - 2, .ath_oui = { ATH_OUI_BYTES }, .ath_oui_type = ATH_OUI_TYPE, .ath_oui_subtype= ATH_OUI_SUBTYPE, .ath_version = ATH_OUI_VERSION, }; struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; memcpy(frm, &info, sizeof(info)); ath->ath_capability = caps; if (defkeyix != IEEE80211_KEYIX_NONE) { ath->ath_defkeyix[0] = (defkeyix & 0xff); ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); } else { ath->ath_defkeyix[0] = 0xff; ath->ath_defkeyix[1] = 0x7f; } return frm + sizeof(info); } #undef ATH_OUI_BYTES uint8_t * ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) { const struct ieee80211vap *vap = bss->ni_vap; return ieee80211_add_ath(frm, vap->iv_flags & IEEE80211_F_ATHEROS, ((vap->iv_flags & IEEE80211_F_WPA) == 0 && bss->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); } void ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) { const struct ieee80211_ath_ie *ath = (const struct ieee80211_ath_ie *) ie; ni->ni_ath_flags = ath->ath_capability; ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix); } int ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, const struct ieee80211_frame *wh) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ath_ie *ath; u_int len = frm[1]; int capschanged; uint16_t defkeyix; if (len < sizeof(struct ieee80211_ath_ie)-2) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, wh, "Atheros", "too short, len %u", len); return -1; } ath = (const struct ieee80211_ath_ie *)frm; capschanged = (ni->ni_ath_flags != ath->ath_capability); defkeyix = le16dec(ath->ath_defkeyix); if (capschanged || defkeyix != ni->ni_ath_defkeyix) { ni->ni_ath_flags = ath->ath_capability; ni->ni_ath_defkeyix = defkeyix; IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "ath ie change: new caps 0x%x defkeyix 0x%x", ni->ni_ath_flags, ni->ni_ath_defkeyix); } if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { uint16_t curflags, newflags; /* * Check for turbo mode switch. Calculate flags * for the new mode and effect the switch. */ newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; /* NB: BOOST is not in ic_flags, so get it from the ie */ if (ath->ath_capability & ATHEROS_CAP_BOOST) newflags |= IEEE80211_CHAN_TURBO; else newflags &= ~IEEE80211_CHAN_TURBO; if (newflags != curflags) ieee80211_dturbo_switch(vap, newflags); } return capschanged; } /* * Decap the encapsulated frame pair and dispatch the first * for delivery. The second frame is returned for delivery * via the normal path. */ struct mbuf * ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) { #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) -#define MS(x,f) (((x) & f) >> f##_S) struct ieee80211vap *vap = ni->ni_vap; struct llc *llc; uint32_t ath; struct mbuf *n; int framelen; /* NB: we assume caller does this check for us */ KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), ("ff not negotiated")); /* * Check for fast-frame tunnel encapsulation. */ if (m->m_pkthdr.len < 3*FF_LLC_SIZE) return m; if (m->m_len < FF_LLC_SIZE && (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "m_pullup(llc) failed"); vap->iv_stats.is_rx_tooshort++; return NULL; } llc = (struct llc *)(mtod(m, uint8_t *) + sizeof(struct ether_header)); if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) return m; m_adj(m, FF_LLC_SIZE); m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath); - if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { + if (_IEEE80211_MASKSHIFT(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "unsupport tunnel protocol, header 0x%x", ath); vap->iv_stats.is_ff_badhdr++; m_freem(m); return NULL; } /* NB: skip header and alignment padding */ m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); vap->iv_stats.is_ff_decap++; /* * Decap the first frame, bust it apart from the * second and deliver; then decap the second frame * and return it to the caller for normal delivery. */ m = ieee80211_decap1(m, &framelen); if (m == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); vap->iv_stats.is_ff_tooshort++; return NULL; } n = m_split(m, framelen, M_NOWAIT); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "unable to split encapsulated frames"); vap->iv_stats.is_ff_split++; m_freem(m); /* NB: must reclaim */ return NULL; } /* XXX not right for WDS */ vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ /* * Decap second frame. */ m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ n = ieee80211_decap1(n, &framelen); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); vap->iv_stats.is_ff_tooshort++; } /* XXX verify framelen against mbuf contents */ return n; /* 2nd delivered by caller */ -#undef MS #undef FF_LLC_SIZE } /* * Fast frame encapsulation. There must be two packets * chained with m_nextpkt. We do header adjustment for * each, add the tunnel encapsulation, and then concatenate * the mbuf chains to form a single frame for transmission. */ struct mbuf * ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, struct ieee80211_key *key) { struct mbuf *m2; struct ether_header eh1, eh2; struct llc *llc; struct mbuf *m; int pad; m2 = m1->m_nextpkt; if (m2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: only one frame\n", __func__); goto bad; } m1->m_nextpkt = NULL; /* * Adjust to include 802.11 header requirement. */ KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1); if (m1 == NULL) { printf("%s: failed initial mbuf_adjust\n", __func__); /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ m_freem(m2); goto bad; } /* * Copy second frame's Ethernet header out of line * and adjust for possible padding in case there isn't room * at the end of first frame. */ KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); if (m2 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ printf("%s: failed second \n", __func__); goto bad; } /* * Now do tunnel encapsulation. First, each * frame gets a standard encapsulation. */ m1 = ieee80211_ff_encap1(vap, m1, &eh1); if (m1 == NULL) goto bad; m2 = ieee80211_ff_encap1(vap, m2, &eh2); if (m2 == NULL) goto bad; /* * Pad leading frame to a 4-byte boundary. If there * is space at the end of the first frame, put it * there; otherwise prepend to the front of the second * frame. We know doing the second will always work * because we reserve space above. We prefer appending * as this typically has better DMA alignment properties. */ for (m = m1; m->m_next != NULL; m = m->m_next) ; pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; if (pad) { if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ m2->m_data -= pad; m2->m_len += pad; m2->m_pkthdr.len += pad; } else { /* append to first */ m->m_len += pad; m1->m_pkthdr.len += pad; } } /* * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the * QoS header. * * XXX optimize by prepending together */ m->m_next = m2; /* NB: last mbuf from above */ m1->m_pkthdr.len += m2->m_pkthdr.len; M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT); if (m1 == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for tunnel header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); M_PREPEND(m1, sizeof(struct llc), M_NOWAIT); if (m1 == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for llc header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } llc = mtod(m1, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); vap->iv_stats.is_ff_encap++; return m1; bad: vap->iv_stats.is_ff_encapfail++; if (m1 != NULL) m_freem(m1); if (m2 != NULL) m_freem(m2); return NULL; } /* * A-MSDU encapsulation. * * This assumes just two frames for now, since we're borrowing the * same queuing code and infrastructure as fast-frames. * * There must be two packets chained with m_nextpkt. * We do header adjustment for each, and then concatenate the mbuf chains * to form a single frame for transmission. */ struct mbuf * ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, struct ieee80211_key *key) { struct mbuf *m2; struct ether_header eh1, eh2; struct mbuf *m; int pad; m2 = m1->m_nextpkt; if (m2 == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: only one frame\n", __func__); goto bad; } m1->m_nextpkt = NULL; /* * Include A-MSDU header in adjusting header layout. */ KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); m1 = ieee80211_mbuf_adjust(vap, hdrspace + sizeof(struct llc) + sizeof(uint32_t) + sizeof(struct ether_header), key, m1); if (m1 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ m_freem(m2); goto bad; } /* * Copy second frame's Ethernet header out of line * and adjust for encapsulation headers. Note that * we make room for padding in case there isn't room * at the end of first frame. */ KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); if (m2 == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* * Now do tunnel encapsulation. First, each * frame gets a standard encapsulation. */ m1 = ieee80211_ff_encap1(vap, m1, &eh1); if (m1 == NULL) goto bad; m2 = ieee80211_ff_encap1(vap, m2, &eh2); if (m2 == NULL) goto bad; /* * Pad leading frame to a 4-byte boundary. If there * is space at the end of the first frame, put it * there; otherwise prepend to the front of the second * frame. We know doing the second will always work * because we reserve space above. We prefer appending * as this typically has better DMA alignment properties. */ for (m = m1; m->m_next != NULL; m = m->m_next) ; pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; if (pad) { if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ m2->m_data -= pad; m2->m_len += pad; m2->m_pkthdr.len += pad; } else { /* append to first */ m->m_len += pad; m1->m_pkthdr.len += pad; } } /* * Now, stick 'em together. */ m->m_next = m2; /* NB: last mbuf from above */ m1->m_pkthdr.len += m2->m_pkthdr.len; vap->iv_stats.is_amsdu_encap++; return m1; bad: vap->iv_stats.is_amsdu_encapfail++; if (m1 != NULL) m_freem(m1); if (m2 != NULL) m_freem(m2); return NULL; } static void ff_transmit(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; IEEE80211_TX_LOCK_ASSERT(ic); /* encap and xmit */ m = ieee80211_encap(vap, ni, m); if (m != NULL) (void) ieee80211_parent_xmitpkt(ic, m); else ieee80211_free_node(ni); } /* * Flush frames to device; note we re-use the linked list * the frames were stored on and use the sentinel (unchanged) * which may be non-NULL. */ static void ff_flush(struct mbuf *head, struct mbuf *last) { struct mbuf *m, *next; struct ieee80211_node *ni; struct ieee80211vap *vap; for (m = head; m != last; m = next) { next = m->m_nextpkt; m->m_nextpkt = NULL; ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; vap = ni->ni_vap; IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: flush frame, age %u", __func__, M_AGE_GET(m)); vap->iv_stats.is_ff_flush++; ff_transmit(ni, m); } } /* * Age frames on the staging queue. */ void ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq, int quanta) { struct mbuf *m, *head; struct ieee80211_node *ni; IEEE80211_FF_LOCK(ic); if (sq->depth == 0) { IEEE80211_FF_UNLOCK(ic); return; /* nothing to do */ } KASSERT(sq->head != NULL, ("stageq empty")); head = sq->head; while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) { int tid = WME_AC_TO_TID(M_WME_GETAC(m)); /* clear staging ref to frame */ ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty")); ni->ni_tx_superg[tid] = NULL; sq->head = m->m_nextpkt; sq->depth--; } if (m == NULL) sq->tail = NULL; else M_AGE_SUB(m, quanta); IEEE80211_FF_UNLOCK(ic); IEEE80211_TX_LOCK(ic); ff_flush(head, m); IEEE80211_TX_UNLOCK(ic); } static void stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m) { int age = ieee80211_ffagemax; IEEE80211_FF_LOCK_ASSERT(ic); if (sq->tail != NULL) { sq->tail->m_nextpkt = m; age -= M_AGE_GET(sq->head); } else { sq->head = m; struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; taskqueue_enqueue_timeout(ic->ic_tq, qtask, age); } KASSERT(age >= 0, ("age %d", age)); M_AGE_SET(m, age); m->m_nextpkt = NULL; sq->tail = m; sq->depth++; } static void stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged) { struct mbuf *m, *mprev; IEEE80211_FF_LOCK_ASSERT(ic); mprev = NULL; for (m = sq->head; m != NULL; m = m->m_nextpkt) { if (m == mstaged) { if (mprev == NULL) sq->head = m->m_nextpkt; else mprev->m_nextpkt = m->m_nextpkt; if (sq->tail == m) sq->tail = mprev; sq->depth--; return; } mprev = m; } printf("%s: packet not found\n", __func__); } static uint32_t ff_approx_txtime(struct ieee80211_node *ni, const struct mbuf *m1, const struct mbuf *m2) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; uint32_t framelen; uint32_t frame_time; /* * Approximate the frame length to be transmitted. A swag to add * the following maximal values to the skb payload: * - 32: 802.11 encap + CRC * - 24: encryption overhead (if wep bit) * - 4 + 6: fast-frame header and padding * - 16: 2 LLC FF tunnel headers * - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd) */ framelen = m1->m_pkthdr.len + 32 + ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR; if (vap->iv_flags & IEEE80211_F_PRIVACY) framelen += 24; if (m2 != NULL) framelen += m2->m_pkthdr.len; /* * For now, we assume non-shortgi, 20MHz, just because I want to * at least test 802.11n. */ if (ni->ni_txrate & IEEE80211_RATE_MCS) frame_time = ieee80211_compute_duration_ht(framelen, ni->ni_txrate, IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate), 0, /* isht40 */ 0); /* isshortgi */ else frame_time = ieee80211_compute_duration(ic->ic_rt, framelen, ni->ni_txrate, 0); return (frame_time); } /* * Check if the supplied frame can be partnered with an existing * or pending frame. Return a reference to any frame that should be * sent on return; otherwise return NULL. */ struct mbuf * ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_superg *sg = ic->ic_superg; const int pri = M_WME_GETAC(m); struct ieee80211_stageq *sq; struct ieee80211_tx_ampdu *tap; struct mbuf *mstaged; uint32_t txtime, limit; IEEE80211_TX_UNLOCK_ASSERT(ic); IEEE80211_LOCK(ic); limit = IEEE80211_TXOP_TO_US( ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); IEEE80211_UNLOCK(ic); /* * Check if the supplied frame can be aggregated. * * NB: we allow EAPOL frames to be aggregated with other ucast traffic. * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't * be aggregated with other types of frames when encryption is on? */ IEEE80211_FF_LOCK(ic); tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)]; mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)]; /* XXX NOTE: reusing packet counter state from A-MPDU */ /* * XXX NOTE: this means we're double-counting; it should just * be done in ieee80211_output.c once for both superg and A-MPDU. */ ieee80211_txampdu_count_packet(tap); /* * When not in station mode never aggregate a multicast * frame; this insures, for example, that a combined frame * does not require multiple encryption keys. */ if (vap->iv_opmode != IEEE80211_M_STA && ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) { /* XXX flush staged frame? */ IEEE80211_FF_UNLOCK(ic); return m; } /* * If there is no frame to combine with and the pps is * too low; then do not attempt to aggregate this frame. */ if (mstaged == NULL && ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) { IEEE80211_FF_UNLOCK(ic); return m; } sq = &sg->ff_stageq[pri]; /* * Check the txop limit to insure the aggregate fits. */ if (limit != 0 && (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) { /* * Aggregate too long, return to the caller for direct * transmission. In addition, flush any pending frame * before sending this one. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: txtime %u exceeds txop limit %u\n", __func__, txtime, limit); ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; if (mstaged != NULL) stageq_remove(ic, sq, mstaged); IEEE80211_FF_UNLOCK(ic); if (mstaged != NULL) { IEEE80211_TX_LOCK(ic); IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: flush staged frame", __func__); /* encap and xmit */ ff_transmit(ni, mstaged); IEEE80211_TX_UNLOCK(ic); } return m; /* NB: original frame */ } /* * An aggregation candidate. If there's a frame to partner * with then combine and return for processing. Otherwise * save this frame and wait for a partner to show up (or * the frame to be flushed). Note that staged frames also * hold their node reference. */ if (mstaged != NULL) { ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; stageq_remove(ic, sq, mstaged); IEEE80211_FF_UNLOCK(ic); IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: aggregate fast-frame", __func__); /* * Release the node reference; we only need * the one already in mstaged. */ KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni, ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni)); ieee80211_free_node(ni); m->m_nextpkt = NULL; mstaged->m_nextpkt = m; mstaged->m_flags |= M_FF; /* NB: mark for encap work */ } else { KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL, ("ni_tx_superg[]: %p", ni->ni_tx_superg[WME_AC_TO_TID(pri)])); ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m; stageq_add(ic, sq, m); IEEE80211_FF_UNLOCK(ic); IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, "%s: stage frame, %u queued", __func__, sq->depth); /* NB: mstaged is NULL */ } return mstaged; } struct mbuf * ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m) { /* * XXX TODO: actually enforce the node support * and HTCAP requirements for the maximum A-MSDU * size. */ /* First: software A-MSDU transmit? */ if (! ieee80211_amsdu_tx_ok(ni)) return (m); /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */ if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST)) return (m); /* Next - needs to be a data frame, non-broadcast, etc */ if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) return (m); return (ieee80211_ff_check(ni, m)); } void ieee80211_ff_node_init(struct ieee80211_node *ni) { /* * Clean FF state on re-associate. This handles the case * where a station leaves w/o notifying us and then returns * before node is reaped for inactivity. */ ieee80211_ff_node_cleanup(ni); } void ieee80211_ff_node_cleanup(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_superg *sg = ic->ic_superg; struct mbuf *m, *next_m, *head; int tid; IEEE80211_FF_LOCK(ic); head = NULL; for (tid = 0; tid < WME_NUM_TID; tid++) { int ac = TID_TO_WME_AC(tid); /* * XXX Initialise the packet counter. * * This may be double-work for 11n stations; * but without it we never setup things. */ ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]); m = ni->ni_tx_superg[tid]; if (m != NULL) { ni->ni_tx_superg[tid] = NULL; stageq_remove(ic, &sg->ff_stageq[ac], m); m->m_nextpkt = head; head = m; } } IEEE80211_FF_UNLOCK(ic); /* * Free mbufs, taking care to not dereference the mbuf after * we free it (hence grabbing m_nextpkt before we free it.) */ m = head; while (m != NULL) { next_m = m->m_nextpkt; m_freem(m); ieee80211_free_node(ni); m = next_m; } } /* * Switch between turbo and non-turbo operating modes. * Use the specified channel flags to locate the new * channel, update 802.11 state, and then call back into * the driver to effect the change. */ void ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *chan; chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); if (chan == NULL) { /* XXX should not happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no channel with freq %u flags 0x%x\n", __func__, ic->ic_bsschan->ic_freq, newflags); return; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], ieee80211_phymode_name[ieee80211_chan2mode(chan)], chan->ic_freq, chan->ic_flags); ic->ic_bsschan = chan; ic->ic_prevchan = ic->ic_curchan; ic->ic_curchan = chan; ic->ic_rt = ieee80211_get_ratetable(chan); ic->ic_set_channel(ic); ieee80211_radiotap_chan_change(ic); /* NB: do not need to reset ERP state 'cuz we're in sta mode */ } /* * Return the current ``state'' of an Atheros capbility. * If associated in station mode report the negotiated * setting. Otherwise report the current setting. */ static int getathcap(struct ieee80211vap *vap, int cap) { if (vap->iv_opmode == IEEE80211_M_STA && vap->iv_state == IEEE80211_S_RUN) return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; else return (vap->iv_flags & cap) != 0; } static int superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { switch (ireq->i_type) { case IEEE80211_IOC_FF: ireq->i_val = getathcap(vap, IEEE80211_F_FF); break; case IEEE80211_IOC_TURBOP: ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); break; default: return ENOSYS; } return 0; } IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); static int superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) { switch (ireq->i_type) { case IEEE80211_IOC_FF: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_FF) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_FF; } else vap->iv_flags &= ~IEEE80211_F_FF; return ENETRESET; case IEEE80211_IOC_TURBOP: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_TURBOP; } else vap->iv_flags &= ~IEEE80211_F_TURBOP; return ENETRESET; default: return ENOSYS; } } IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211); #endif /* IEEE80211_SUPPORT_SUPERG */ Index: head/sys/net80211/ieee80211_var.h =================================================================== --- head/sys/net80211/ieee80211_var.h (revision 366111) +++ head/sys/net80211/ieee80211_var.h (revision 366112) @@ -1,1095 +1,1099 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _NET80211_IEEE80211_VAR_H_ #define _NET80211_IEEE80211_VAR_H_ /* * Definitions for IEEE 802.11 drivers. */ /* NB: portability glue must go first */ #if defined(__NetBSD__) #include #elif defined(__FreeBSD__) #include #elif defined(__linux__) #include #else #error "No support for your operating system!" #endif #include #include #include #include #include #include /* for ieee80211_stats */ #include #include #include #include #include #include #define IEEE80211_TXPOWER_MAX 100 /* .5 dBm (XXX units?) */ #define IEEE80211_TXPOWER_MIN 0 /* kill radio */ #define IEEE80211_DTIM_DEFAULT 1 /* default DTIM period */ #define IEEE80211_BINTVAL_DEFAULT 100 /* default beacon interval (TU's) */ #define IEEE80211_BMISS_MAX 2 /* maximum consecutive bmiss allowed */ #define IEEE80211_HWBMISS_DEFAULT 7 /* h/w bmiss threshold (beacons) */ #define IEEE80211_BGSCAN_INTVAL_MIN 15 /* min bg scan intvl (secs) */ #define IEEE80211_BGSCAN_INTVAL_DEFAULT (5*60) /* default bg scan intvl */ #define IEEE80211_BGSCAN_IDLE_MIN 100 /* min idle time (ms) */ #define IEEE80211_BGSCAN_IDLE_DEFAULT 250 /* default idle time (ms) */ #define IEEE80211_SCAN_VALID_MIN 10 /* min scan valid time (secs) */ #define IEEE80211_SCAN_VALID_DEFAULT 60 /* default scan valid time */ #define IEEE80211_PS_SLEEP 0x1 /* STA is in power saving mode */ #define IEEE80211_PS_MAX_QUEUE 50 /* maximum saved packets */ #define IEEE80211_FIXED_RATE_NONE 0xff #define IEEE80211_TXMAX_DEFAULT 6 /* default ucast max retries */ #define IEEE80211_RTS_DEFAULT IEEE80211_RTS_MAX #define IEEE80211_FRAG_DEFAULT IEEE80211_FRAG_MAX #define IEEE80211_MS_TO_TU(x) (((x) * 1000) / 1024) #define IEEE80211_TU_TO_MS(x) (((x) * 1024) / 1000) /* XXX TODO: cap this at 1, in case hz is not 1000 */ #define IEEE80211_TU_TO_TICKS(x)(((uint64_t)(x) * 1024 * hz) / (1000 * 1000)) /* * Technically, vhtflags may be 0 /and/ 11ac is enabled. * At some point ic should just grow a flag somewhere that * says that VHT is supported - and then this macro can be * changed. */ #define IEEE80211_CONF_VHT(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_VHT) #define IEEE80211_CONF_SEQNO_OFFLOAD(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_SEQNO_OFFLOAD) #define IEEE80211_CONF_FRAG_OFFLOAD(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_FRAG_OFFLOAD) /* * 802.11 control state is split into a common portion that maps * 1-1 to a physical device and one or more "Virtual AP's" (VAP) * that are bound to an ieee80211com instance and share a single * underlying device. Each VAP has a corresponding OS device * entity through which traffic flows and that applications use * for issuing ioctls, etc. */ /* * Data common to one or more virtual AP's. State shared by * the underlying device and the net80211 layer is exposed here; * e.g. device-specific callbacks. */ struct ieee80211vap; typedef void (*ieee80211vap_attach)(struct ieee80211vap *); struct ieee80211_appie { uint16_t ie_len; /* size of ie_data */ uint8_t ie_data[]; /* user-specified IE's */ }; struct ieee80211_tdma_param; struct ieee80211_rate_table; struct ieee80211_tx_ampdu; struct ieee80211_rx_ampdu; struct ieee80211_superg; struct ieee80211_frame; struct net80211dump_methods; struct ieee80211com { void *ic_softc; /* driver softc */ const char *ic_name; /* usually device name */ ieee80211_com_lock_t ic_comlock; /* state update lock */ ieee80211_tx_lock_t ic_txlock; /* ic/vap TX lock */ ieee80211_ff_lock_t ic_fflock; /* stageq/ni_tx_superg lock */ LIST_ENTRY(ieee80211com) ic_next; /* on global list */ TAILQ_HEAD(, ieee80211vap) ic_vaps; /* list of vap instances */ int ic_headroom; /* driver tx headroom needs */ enum ieee80211_phytype ic_phytype; /* XXX wrong for multi-mode */ enum ieee80211_opmode ic_opmode; /* operation mode */ struct callout ic_inact; /* inactivity processing */ struct taskqueue *ic_tq; /* deferred state thread */ struct task ic_parent_task; /* deferred parent processing */ struct task ic_promisc_task;/* deferred promisc update */ struct task ic_mcast_task; /* deferred mcast update */ struct task ic_chan_task; /* deferred channel change */ struct task ic_bmiss_task; /* deferred beacon miss hndlr */ struct task ic_chw_task; /* deferred HT CHW update */ struct task ic_restart_task; /* deferred device restart */ counter_u64_t ic_ierrors; /* input errors */ counter_u64_t ic_oerrors; /* output errors */ uint32_t ic_flags; /* state flags */ uint32_t ic_flags_ext; /* extended state flags */ uint32_t ic_flags_ht; /* HT state flags */ uint32_t ic_flags_ven; /* vendor state flags */ uint32_t ic_caps; /* capabilities */ uint32_t ic_htcaps; /* HT capabilities */ uint32_t ic_htextcaps; /* HT extended capabilities */ uint32_t ic_cryptocaps; /* crypto capabilities */ /* set of mode capabilities */ uint8_t ic_modecaps[IEEE80211_MODE_BYTES]; uint8_t ic_promisc; /* vap's needing promisc mode */ uint8_t ic_allmulti; /* vap's needing all multicast*/ uint8_t ic_nrunning; /* vap's marked running */ uint8_t ic_curmode; /* current mode */ uint8_t ic_macaddr[IEEE80211_ADDR_LEN]; uint16_t ic_bintval; /* beacon interval */ uint16_t ic_lintval; /* listen interval */ uint16_t ic_holdover; /* PM hold over duration */ uint16_t ic_txpowlimit; /* global tx power limit */ struct ieee80211_rateset ic_sup_rates[IEEE80211_MODE_MAX]; struct ieee80211_htrateset ic_sup_htrates; /* * Channel state: * * ic_channels is the set of available channels for the device; * it is setup by the driver * ic_nchans is the number of valid entries in ic_channels * ic_chan_avail is a bit vector of these channels used to check * whether a channel is available w/o searching the channel table. * ic_chan_active is a (potentially) constrained subset of * ic_chan_avail that reflects any mode setting or user-specified * limit on the set of channels to use/scan * ic_curchan is the current channel the device is set to; it may * be different from ic_bsschan when we are off-channel scanning * or otherwise doing background work * ic_bsschan is the channel selected for operation; it may * be undefined (IEEE80211_CHAN_ANYC) * ic_prevchan is a cached ``previous channel'' used to optimize * lookups when switching back+forth between two channels * (e.g. for dynamic turbo) */ int ic_nchans; /* # entries in ic_channels */ struct ieee80211_channel ic_channels[IEEE80211_CHAN_MAX]; uint8_t ic_chan_avail[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_active[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_scan[IEEE80211_CHAN_BYTES]; struct ieee80211_channel *ic_curchan; /* current channel */ const struct ieee80211_rate_table *ic_rt; /* table for ic_curchan */ struct ieee80211_channel *ic_bsschan; /* bss channel */ struct ieee80211_channel *ic_prevchan; /* previous channel */ struct ieee80211_regdomain ic_regdomain;/* regulatory data */ struct ieee80211_appie *ic_countryie; /* calculated country ie */ struct ieee80211_channel *ic_countryie_chan; /* 802.11h/DFS state */ struct ieee80211_channel *ic_csa_newchan;/* channel for doing CSA */ short ic_csa_mode; /* mode for doing CSA */ short ic_csa_count; /* count for doing CSA */ struct ieee80211_dfs_state ic_dfs; /* DFS state */ struct ieee80211_scan_state *ic_scan; /* scan state */ struct ieee80211_scan_methods *ic_scan_methods; /* scan methods */ int ic_lastdata; /* time of last data frame */ int ic_lastscan; /* time last scan completed */ /* NB: this is the union of all vap stations/neighbors */ int ic_max_keyix; /* max h/w key index */ struct ieee80211_node_table ic_sta; /* stations/neighbors */ struct ieee80211_ageq ic_stageq; /* frame staging queue */ uint32_t ic_hash_key; /* random key for mac hash */ /* XXX multi-bss: split out common/vap parts */ struct ieee80211_wme_state ic_wme; /* WME/WMM state */ /* Protection mode for net80211 driven channel NICs */ enum ieee80211_protmode ic_protmode; /* 802.11g protection mode */ enum ieee80211_protmode ic_htprotmode; /* HT protection mode */ uint8_t ic_curhtprotmode;/* HTINFO bss state */ uint8_t ic_rxstream; /* # RX streams */ uint8_t ic_txstream; /* # TX streams */ /* VHT information */ uint32_t ic_vhtcaps; /* VHT capabilities */ uint32_t ic_vhtextcaps; /* VHT extended capabilities (TODO) */ struct ieee80211_vht_mcs_info ic_vht_mcsinfo; /* Support TX/RX VHT MCS */ uint32_t ic_flags_vht; /* VHT state flags */ uint32_t ic_vht_spare[3]; /* optional state for Atheros SuperG protocol extensions */ struct ieee80211_superg *ic_superg; /* radiotap handling */ struct ieee80211_radiotap_header *ic_th;/* tx radiotap headers */ void *ic_txchan; /* channel state in ic_th */ struct ieee80211_radiotap_header *ic_rh;/* rx radiotap headers */ void *ic_rxchan; /* channel state in ic_rh */ int ic_montaps; /* active monitor mode taps */ /* virtual ap create/delete */ struct ieee80211vap* (*ic_vap_create)(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); void (*ic_vap_delete)(struct ieee80211vap *); /* device specific ioctls */ int (*ic_ioctl)(struct ieee80211com *, u_long, void *); /* start/stop device */ void (*ic_parent)(struct ieee80211com *); /* operating mode attachment */ ieee80211vap_attach ic_vattach[IEEE80211_OPMODE_MAX]; /* return hardware/radio capabilities */ void (*ic_getradiocaps)(struct ieee80211com *, int, int *, struct ieee80211_channel []); /* check and/or prepare regdomain state change */ int (*ic_setregdomain)(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel []); int (*ic_set_quiet)(struct ieee80211_node *, u_int8_t *quiet_elm); /* regular transmit */ int (*ic_transmit)(struct ieee80211com *, struct mbuf *); /* send/recv 802.11 management frame */ int (*ic_send_mgmt)(struct ieee80211_node *, int, int); /* send raw 802.11 frame */ int (*ic_raw_xmit)(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); /* update device state for 802.11 slot time change */ void (*ic_updateslot)(struct ieee80211com *); /* handle multicast state changes */ void (*ic_update_mcast)(struct ieee80211com *); /* handle promiscuous mode changes */ void (*ic_update_promisc)(struct ieee80211com *); /* new station association callback/notification */ void (*ic_newassoc)(struct ieee80211_node *, int); /* TDMA update notification */ void (*ic_tdma_update)(struct ieee80211_node *, const struct ieee80211_tdma_param *, int); /* Node state management */ /* Allocate a new node */ struct ieee80211_node* (*ic_node_alloc)(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); /* Driver node initialisation after net80211 setup */ int (*ic_node_init)(struct ieee80211_node *); /* Driver node deallocation */ void (*ic_node_free)(struct ieee80211_node *); /* Driver node state cleanup before deallocation */ void (*ic_node_cleanup)(struct ieee80211_node *); void (*ic_node_age)(struct ieee80211_node *); void (*ic_node_drain)(struct ieee80211_node *); int8_t (*ic_node_getrssi)(const struct ieee80211_node*); void (*ic_node_getsignal)(const struct ieee80211_node*, int8_t *, int8_t *); void (*ic_node_getmimoinfo)( const struct ieee80211_node*, struct ieee80211_mimo_info *); /* scanning support */ void (*ic_scan_start)(struct ieee80211com *); void (*ic_scan_end)(struct ieee80211com *); void (*ic_set_channel)(struct ieee80211com *); void (*ic_scan_curchan)(struct ieee80211_scan_state *, unsigned long); void (*ic_scan_mindwell)(struct ieee80211_scan_state *); /* * 802.11n ADDBA support. A simple/generic implementation * of A-MPDU tx aggregation is provided; the driver may * override these methods to provide their own support. * A-MPDU rx re-ordering happens automatically if the * driver passes out-of-order frames to ieee80211_input * from an assocated HT station. */ int (*ic_recv_action)(struct ieee80211_node *, const struct ieee80211_frame *, const uint8_t *frm, const uint8_t *efrm); int (*ic_send_action)(struct ieee80211_node *, int category, int action, void *); /* check if A-MPDU should be enabled this station+ac */ int (*ic_ampdu_enable)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); /* start/stop doing A-MPDU tx aggregation for a station */ int (*ic_addba_request)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int dialogtoken, int baparamset, int batimeout); int (*ic_addba_response)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int status, int baparamset, int batimeout); void (*ic_addba_stop)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); void (*ic_addba_response_timeout)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); /* BAR response received */ void (*ic_bar_response)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int status); /* start/stop doing A-MPDU rx processing for a station */ int (*ic_ampdu_rx_start)(struct ieee80211_node *, struct ieee80211_rx_ampdu *, int baparamset, int batimeout, int baseqctl); void (*ic_ampdu_rx_stop)(struct ieee80211_node *, struct ieee80211_rx_ampdu *); /* The channel width has changed (20<->2040) */ void (*ic_update_chw)(struct ieee80211com *); const struct debugnet80211_methods *ic_debugnet_meth; uint64_t ic_spare[7]; }; struct ieee80211_aclator; struct ieee80211_tdma_state; struct ieee80211_mesh_state; struct ieee80211_hwmp_state; struct ieee80211_rx_histogram; struct ieee80211_tx_histogram; struct ieee80211vap { struct ifmedia iv_media; /* interface media config */ struct ifnet *iv_ifp; /* associated device */ struct bpf_if *iv_rawbpf; /* packet filter structure */ struct sysctl_ctx_list *iv_sysctl; /* dynamic sysctl context */ struct sysctl_oid *iv_oid; /* net.wlan.X sysctl oid */ TAILQ_ENTRY(ieee80211vap) iv_next; /* list of vap instances */ struct ieee80211com *iv_ic; /* back ptr to common state */ /* MAC address: ifp or ic */ uint8_t iv_myaddr[IEEE80211_ADDR_LEN]; uint32_t iv_debug; /* debug msg flags */ struct ieee80211_stats iv_stats; /* statistics */ uint32_t iv_flags; /* state flags */ uint32_t iv_flags_ext; /* extended state flags */ uint32_t iv_flags_ht; /* HT state flags */ uint32_t iv_flags_ven; /* vendor state flags */ uint32_t iv_ifflags; /* ifnet flags */ uint32_t iv_caps; /* capabilities */ uint32_t iv_htcaps; /* HT capabilities */ uint32_t iv_htextcaps; /* HT extended capabilities */ uint32_t iv_com_state; /* com usage / detached flag */ enum ieee80211_opmode iv_opmode; /* operation mode */ enum ieee80211_state iv_state; /* state machine state */ enum ieee80211_state iv_nstate; /* pending state */ int iv_nstate_arg; /* pending state arg */ struct task iv_nstate_task; /* deferred state processing */ struct task iv_swbmiss_task;/* deferred iv_bmiss call */ struct callout iv_mgtsend; /* mgmt frame response timer */ /* inactivity timer settings */ int iv_inact_init; /* setting for new station */ int iv_inact_auth; /* auth but not assoc setting */ int iv_inact_run; /* authorized setting */ int iv_inact_probe; /* inactive probe time */ /* VHT flags */ uint32_t iv_flags_vht; /* VHT state flags */ uint32_t iv_vhtcaps; /* VHT capabilities */ uint32_t iv_vhtextcaps; /* VHT extended capabilities (TODO) */ struct ieee80211_vht_mcs_info iv_vht_mcsinfo; uint32_t iv_vht_spare[4]; int iv_des_nssid; /* # desired ssids */ struct ieee80211_scan_ssid iv_des_ssid[1];/* desired ssid table */ uint8_t iv_des_bssid[IEEE80211_ADDR_LEN]; struct ieee80211_channel *iv_des_chan; /* desired channel */ uint16_t iv_des_mode; /* desired mode */ int iv_nicknamelen; /* XXX junk */ uint8_t iv_nickname[IEEE80211_NWID_LEN]; u_int iv_bgscanidle; /* bg scan idle threshold */ u_int iv_bgscanintvl; /* bg scan min interval */ u_int iv_scanvalid; /* scan cache valid threshold */ u_int iv_scanreq_duration; u_int iv_scanreq_mindwell; u_int iv_scanreq_maxdwell; uint16_t iv_scanreq_flags;/* held scan request params */ uint8_t iv_scanreq_nssid; struct ieee80211_scan_ssid iv_scanreq_ssid[IEEE80211_SCAN_MAX_SSID]; /* sta-mode roaming state */ enum ieee80211_roamingmode iv_roaming; /* roaming mode */ struct ieee80211_roamparam iv_roamparms[IEEE80211_MODE_MAX]; uint8_t iv_bmissthreshold; uint8_t iv_bmiss_count; /* current beacon miss count */ int iv_bmiss_max; /* max bmiss before scan */ uint16_t iv_swbmiss_count;/* beacons in last period */ uint16_t iv_swbmiss_period;/* s/w bmiss period */ struct callout iv_swbmiss; /* s/w beacon miss timer */ int iv_ampdu_rxmax; /* A-MPDU rx limit (bytes) */ int iv_ampdu_density;/* A-MPDU density */ int iv_ampdu_limit; /* A-MPDU tx limit (bytes) */ int iv_amsdu_limit; /* A-MSDU tx limit (bytes) */ u_int iv_ampdu_mintraffic[WME_NUM_AC]; struct ieee80211_beacon_offsets iv_bcn_off; uint32_t *iv_aid_bitmap; /* association id map */ uint16_t iv_max_aid; uint16_t iv_sta_assoc; /* stations associated */ uint16_t iv_ps_sta; /* stations in power save */ uint16_t iv_ps_pending; /* ps sta's w/ pending frames */ uint16_t iv_txseq; /* mcast xmit seq# space */ uint16_t iv_tim_len; /* ic_tim_bitmap size (bytes) */ uint8_t *iv_tim_bitmap; /* power-save stations w/ data*/ uint8_t iv_dtim_period; /* DTIM period */ uint8_t iv_dtim_count; /* DTIM count from last bcn */ /* set/unset aid pwrsav state */ uint8_t iv_quiet; /* Quiet Element */ uint8_t iv_quiet_count; /* constant count for Quiet Element */ uint8_t iv_quiet_count_value; /* variable count for Quiet Element */ uint8_t iv_quiet_period; /* period for Quiet Element */ uint16_t iv_quiet_duration; /* duration for Quiet Element */ uint16_t iv_quiet_offset; /* offset for Quiet Element */ int iv_csa_count; /* count for doing CSA */ struct ieee80211_node *iv_bss; /* information for this node */ struct ieee80211_txparam iv_txparms[IEEE80211_MODE_MAX]; uint16_t iv_rtsthreshold; uint16_t iv_fragthreshold; int iv_inact_timer; /* inactivity timer wait */ /* application-specified IE's to attach to mgt frames */ struct ieee80211_appie *iv_appie_beacon; struct ieee80211_appie *iv_appie_probereq; struct ieee80211_appie *iv_appie_proberesp; struct ieee80211_appie *iv_appie_assocreq; struct ieee80211_appie *iv_appie_assocresp; struct ieee80211_appie *iv_appie_wpa; uint8_t *iv_wpa_ie; uint8_t *iv_rsn_ie; /* Key management */ uint16_t iv_max_keyix; /* max h/w key index */ ieee80211_keyix iv_def_txkey; /* default/group tx key index */ struct ieee80211_key iv_nw_keys[IEEE80211_WEP_NKID]; int (*iv_key_alloc)(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); int (*iv_key_delete)(struct ieee80211vap *, const struct ieee80211_key *); int (*iv_key_set)(struct ieee80211vap *, const struct ieee80211_key *); void (*iv_key_update_begin)(struct ieee80211vap *); void (*iv_key_update_end)(struct ieee80211vap *); void (*iv_update_deftxkey)(struct ieee80211vap *, ieee80211_keyix deftxkey); const struct ieee80211_authenticator *iv_auth; /* authenticator glue */ void *iv_ec; /* private auth state */ const struct ieee80211_aclator *iv_acl; /* acl glue */ void *iv_as; /* private aclator state */ const struct ieee80211_ratectl *iv_rate; void *iv_rs; /* private ratectl state */ struct ieee80211_tdma_state *iv_tdma; /* tdma state */ struct ieee80211_mesh_state *iv_mesh; /* MBSS state */ struct ieee80211_hwmp_state *iv_hwmp; /* HWMP state */ /* operate-mode detach hook */ void (*iv_opdetach)(struct ieee80211vap *); /* receive processing */ int (*iv_input)(struct ieee80211_node *, struct mbuf *, const struct ieee80211_rx_stats *, int, int); void (*iv_recv_mgmt)(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); void (*iv_recv_ctl)(struct ieee80211_node *, struct mbuf *, int); void (*iv_deliver_data)(struct ieee80211vap *, struct ieee80211_node *, struct mbuf *); #if 0 /* send processing */ int (*iv_send_mgmt)(struct ieee80211_node *, int, int); #endif /* beacon miss processing */ void (*iv_bmiss)(struct ieee80211vap *); /* reset device state after 802.11 parameter/state change */ int (*iv_reset)(struct ieee80211vap *, u_long); /* [schedule] beacon frame update */ void (*iv_update_beacon)(struct ieee80211vap *, int); /* power save handling */ void (*iv_update_ps)(struct ieee80211vap *, int); int (*iv_set_tim)(struct ieee80211_node *, int); void (*iv_node_ps)(struct ieee80211_node *, int); void (*iv_sta_ps)(struct ieee80211vap *, int); void (*iv_recv_pspoll)(struct ieee80211_node *, struct mbuf *); /* state machine processing */ int (*iv_newstate)(struct ieee80211vap *, enum ieee80211_state, int); /* 802.3 output method for raw frame xmit */ int (*iv_output)(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); int (*iv_wme_update)(struct ieee80211vap *, const struct wmeParams *wme_params); struct task iv_wme_task; /* deferred VAP WME update */ /* associated state; protection mode */ enum ieee80211_protmode iv_protmode; /* 802.11g protection mode */ enum ieee80211_protmode iv_htprotmode; /* HT protection mode */ uint8_t iv_curhtprotmode;/* HTINFO bss state */ uint16_t iv_nonerpsta; /* # non-ERP stations */ uint16_t iv_longslotsta; /* # long slot time stations */ uint16_t iv_ht_sta_assoc;/* HT stations associated */ uint16_t iv_ht40_sta_assoc;/* HT40 stations associated */ int iv_lastnonerp; /* last time non-ERP sta noted*/ int iv_lastnonht; /* last time non-HT sta noted */ /* update device state for 802.11 slot time change */ void (*iv_updateslot)(struct ieee80211vap *); struct task iv_slot_task; /* deferred slot time update */ struct task iv_erp_protmode_task; /* deferred ERP protmode update */ void (*iv_erp_protmode_update)(struct ieee80211vap *); struct task iv_preamble_task; /* deferred short/barker preamble update */ void (*iv_preamble_update)(struct ieee80211vap *); struct task iv_ht_protmode_task; /* deferred HT protmode update */ void (*iv_ht_protmode_update)(struct ieee80211vap *); /* per-vap U-APSD state */ uint8_t iv_uapsdinfo; /* sta mode QoS Info flags */ /* Optional transmit/receive histogram statistics */ struct ieee80211_rx_histogram *rx_histogram; struct ieee80211_tx_histogram *tx_histogram; uint64_t iv_spare[6]; }; MALLOC_DECLARE(M_80211_VAP); #define IEEE80211_ADDR_EQ(a1,a2) (memcmp(a1,a2,IEEE80211_ADDR_LEN) == 0) #define IEEE80211_ADDR_COPY(dst,src) memcpy(dst,src,IEEE80211_ADDR_LEN) /* ic_flags/iv_flags */ #define IEEE80211_F_TURBOP 0x00000001 /* CONF: ATH Turbo enabled*/ #define IEEE80211_F_COMP 0x00000002 /* CONF: ATH comp enabled */ #define IEEE80211_F_FF 0x00000004 /* CONF: ATH FF enabled */ #define IEEE80211_F_BURST 0x00000008 /* CONF: bursting enabled */ /* NB: this is intentionally setup to be IEEE80211_CAPINFO_PRIVACY */ #define IEEE80211_F_PRIVACY 0x00000010 /* CONF: privacy enabled */ #define IEEE80211_F_PUREG 0x00000020 /* CONF: 11g w/o 11b sta's */ #define IEEE80211_F_SCAN 0x00000080 /* STATUS: scanning */ /* 0x00000300 reserved */ /* NB: this is intentionally setup to be IEEE80211_CAPINFO_SHORT_SLOTTIME */ #define IEEE80211_F_SHSLOT 0x00000400 /* STATUS: use short slot time*/ #define IEEE80211_F_PMGTON 0x00000800 /* CONF: Power mgmt enable */ #define IEEE80211_F_DESBSSID 0x00001000 /* CONF: des_bssid is set */ #define IEEE80211_F_WME 0x00002000 /* CONF: enable WME use */ #define IEEE80211_F_BGSCAN 0x00004000 /* CONF: bg scan enabled (???)*/ #define IEEE80211_F_SWRETRY 0x00008000 /* CONF: sw tx retry enabled */ /* 0x00030000 reserved */ #define IEEE80211_F_SHPREAMBLE 0x00040000 /* STATUS: use short preamble */ #define IEEE80211_F_DATAPAD 0x00080000 /* CONF: do alignment pad */ #define IEEE80211_F_USEPROT 0x00100000 /* STATUS: protection enabled */ #define IEEE80211_F_USEBARKER 0x00200000 /* STATUS: use barker preamble*/ #define IEEE80211_F_CSAPENDING 0x00400000 /* STATUS: chan switch pending*/ #define IEEE80211_F_WPA1 0x00800000 /* CONF: WPA enabled */ #define IEEE80211_F_WPA2 0x01000000 /* CONF: WPA2 enabled */ #define IEEE80211_F_WPA 0x01800000 /* CONF: WPA/WPA2 enabled */ #define IEEE80211_F_DROPUNENC 0x02000000 /* CONF: drop unencrypted */ #define IEEE80211_F_COUNTERM 0x04000000 /* CONF: TKIP countermeasures */ #define IEEE80211_F_HIDESSID 0x08000000 /* CONF: hide SSID in beacon */ #define IEEE80211_F_NOBRIDGE 0x10000000 /* CONF: dis. internal bridge */ #define IEEE80211_F_PCF 0x20000000 /* CONF: PCF enabled */ #define IEEE80211_F_DOTH 0x40000000 /* CONF: 11h enabled */ #define IEEE80211_F_DWDS 0x80000000 /* CONF: Dynamic WDS enabled */ #define IEEE80211_F_BITS \ "\20\1TURBOP\2COMP\3FF\4BURST\5PRIVACY\6PUREG\10SCAN" \ "\13SHSLOT\14PMGTON\15DESBSSID\16WME\17BGSCAN\20SWRETRY" \ "\23SHPREAMBLE\24DATAPAD\25USEPROT\26USERBARKER\27CSAPENDING" \ "\30WPA1\31WPA2\32DROPUNENC\33COUNTERM\34HIDESSID\35NOBRIDG\36PCF" \ "\37DOTH\40DWDS" /* Atheros protocol-specific flags */ #define IEEE80211_F_ATHEROS \ (IEEE80211_F_FF | IEEE80211_F_COMP | IEEE80211_F_TURBOP) /* Check if an Atheros capability was negotiated for use */ #define IEEE80211_ATH_CAP(vap, ni, bit) \ ((vap)->iv_flags & (ni)->ni_ath_flags & (bit)) /* ic_flags_ext/iv_flags_ext */ #define IEEE80211_FEXT_INACT 0x00000002 /* CONF: sta inact handling */ #define IEEE80211_FEXT_SCANWAIT 0x00000004 /* STATUS: awaiting scan */ /* 0x00000006 reserved */ #define IEEE80211_FEXT_BGSCAN 0x00000008 /* STATUS: complete bgscan */ #define IEEE80211_FEXT_WPS 0x00000010 /* CONF: WPS enabled */ #define IEEE80211_FEXT_TSN 0x00000020 /* CONF: TSN enabled */ #define IEEE80211_FEXT_SCANREQ 0x00000040 /* STATUS: scan req params */ #define IEEE80211_FEXT_RESUME 0x00000080 /* STATUS: start on resume */ #define IEEE80211_FEXT_4ADDR 0x00000100 /* CONF: apply 4-addr encap */ #define IEEE80211_FEXT_NONERP_PR 0x00000200 /* STATUS: non-ERP sta present*/ #define IEEE80211_FEXT_SWBMISS 0x00000400 /* CONF: do bmiss in s/w */ #define IEEE80211_FEXT_DFS 0x00000800 /* CONF: DFS enabled */ #define IEEE80211_FEXT_DOTD 0x00001000 /* CONF: 11d enabled */ #define IEEE80211_FEXT_STATEWAIT 0x00002000 /* STATUS: awaiting state chg */ #define IEEE80211_FEXT_REINIT 0x00004000 /* STATUS: INIT state first */ #define IEEE80211_FEXT_BPF 0x00008000 /* STATUS: BPF tap present */ /* NB: immutable: should be set only when creating a vap */ #define IEEE80211_FEXT_WDSLEGACY 0x00010000 /* CONF: legacy WDS operation */ #define IEEE80211_FEXT_PROBECHAN 0x00020000 /* CONF: probe passive channel*/ #define IEEE80211_FEXT_UNIQMAC 0x00040000 /* CONF: user or computed mac */ #define IEEE80211_FEXT_SCAN_OFFLOAD 0x00080000 /* CONF: scan is fully offloaded */ #define IEEE80211_FEXT_SEQNO_OFFLOAD 0x00100000 /* CONF: driver does seqno insertion/allocation */ #define IEEE80211_FEXT_FRAG_OFFLOAD 0x00200000 /* CONF: hardware does 802.11 fragmentation + assignment */ #define IEEE80211_FEXT_VHT 0x00400000 /* CONF: VHT support */ #define IEEE80211_FEXT_QUIET_IE 0x00800000 /* STATUS: quiet IE in a beacon has been added */ #define IEEE80211_FEXT_UAPSD 0x01000000 /* CONF: enable U-APSD */ #define IEEE80211_FEXT_BITS \ "\20\2INACT\3SCANWAIT\4BGSCAN\5WPS\6TSN\7SCANREQ\10RESUME" \ "\0114ADDR\12NONEPR_PR\13SWBMISS\14DFS\15DOTD\16STATEWAIT\17REINIT" \ "\20BPF\21WDSLEGACY\22PROBECHAN\23UNIQMAC\24SCAN_OFFLOAD\25SEQNO_OFFLOAD" \ "\26VHT\27QUIET_IE" /* ic_flags_ht/iv_flags_ht */ #define IEEE80211_FHT_NONHT_PR 0x00000001 /* STATUS: non-HT sta present */ #define IEEE80211_FHT_LDPC_TX 0x00010000 /* CONF: LDPC tx enabled */ #define IEEE80211_FHT_LDPC_RX 0x00020000 /* CONF: LDPC rx enabled */ #define IEEE80211_FHT_GF 0x00040000 /* CONF: Greenfield enabled */ #define IEEE80211_FHT_HT 0x00080000 /* CONF: HT supported */ #define IEEE80211_FHT_AMPDU_TX 0x00100000 /* CONF: A-MPDU tx supported */ #define IEEE80211_FHT_AMPDU_RX 0x00200000 /* CONF: A-MPDU rx supported */ #define IEEE80211_FHT_AMSDU_TX 0x00400000 /* CONF: A-MSDU tx supported */ #define IEEE80211_FHT_AMSDU_RX 0x00800000 /* CONF: A-MSDU rx supported */ #define IEEE80211_FHT_USEHT40 0x01000000 /* CONF: 20/40 use enabled */ #define IEEE80211_FHT_PUREN 0x02000000 /* CONF: 11n w/o legacy sta's */ #define IEEE80211_FHT_SHORTGI20 0x04000000 /* CONF: short GI in HT20 */ #define IEEE80211_FHT_SHORTGI40 0x08000000 /* CONF: short GI in HT40 */ #define IEEE80211_FHT_HTCOMPAT 0x10000000 /* CONF: HT vendor OUI's */ #define IEEE80211_FHT_RIFS 0x20000000 /* CONF: RIFS enabled */ #define IEEE80211_FHT_STBC_TX 0x40000000 /* CONF: STBC tx enabled */ #define IEEE80211_FHT_STBC_RX 0x80000000 /* CONF: STBC rx enabled */ #define IEEE80211_FHT_BITS \ "\20\1NONHT_PR" \ "\23GF\24HT\25AMPDU_TX\26AMPDU_TX" \ "\27AMSDU_TX\30AMSDU_RX\31USEHT40\32PUREN\33SHORTGI20\34SHORTGI40" \ "\35HTCOMPAT\36RIFS\37STBC_TX\40STBC_RX" #define IEEE80211_FVEN_BITS "\20" #define IEEE80211_FVHT_VHT 0x000000001 /* CONF: VHT supported */ #define IEEE80211_FVHT_USEVHT40 0x000000002 /* CONF: Use VHT40 */ #define IEEE80211_FVHT_USEVHT80 0x000000004 /* CONF: Use VHT80 */ #define IEEE80211_FVHT_USEVHT160 0x000000008 /* CONF: Use VHT160 */ #define IEEE80211_FVHT_USEVHT80P80 0x000000010 /* CONF: Use VHT 80+80 */ #define IEEE80211_FVHT_MASK \ (IEEE80211_FVHT_VHT | IEEE80211_FVHT_USEVHT40 | \ IEEE80211_FVHT_USEVHT80 | IEEE80211_FVHT_USEVHT160 | \ IEEE80211_FVHT_USEVHT80P80) #define IEEE80211_VFHT_BITS \ "\20\1VHT\2VHT40\3VHT80\4VHT160\5VHT80P80" #define IEEE80211_COM_DETACHED 0x00000001 /* ieee80211_ifdetach called */ #define IEEE80211_COM_REF_ADD 0x00000002 /* add / remove reference */ -#define IEEE80211_COM_REF_M 0xfffffffe /* reference counter bits */ +#define IEEE80211_COM_REF 0xfffffffe /* reference counter bits */ #define IEEE80211_COM_REF_S 1 -#define IEEE80211_COM_REF_MAX (IEEE80211_COM_REF_M >> IEEE80211_COM_REF_S) +#define IEEE80211_COM_REF_MAX (IEEE80211_COM_REF >> IEEE80211_COM_REF_S) int ic_printf(struct ieee80211com *, const char *, ...) __printflike(2, 3); void ieee80211_ifattach(struct ieee80211com *); void ieee80211_ifdetach(struct ieee80211com *); int ieee80211_vap_setup(struct ieee80211com *, struct ieee80211vap *, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]); int ieee80211_vap_attach(struct ieee80211vap *, ifm_change_cb_t, ifm_stat_cb_t, const uint8_t macaddr[IEEE80211_ADDR_LEN]); void ieee80211_vap_detach(struct ieee80211vap *); const struct ieee80211_rateset *ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *); const struct ieee80211_htrateset *ieee80211_get_suphtrates( struct ieee80211com *, const struct ieee80211_channel *); void ieee80211_announce(struct ieee80211com *); void ieee80211_announce_channels(struct ieee80211com *); void ieee80211_drain(struct ieee80211com *); void ieee80211_chan_init(struct ieee80211com *); struct ieee80211com *ieee80211_find_vap(const uint8_t mac[IEEE80211_ADDR_LEN]); struct ieee80211com *ieee80211_find_com(const char *name); typedef void ieee80211_com_iter_func(void *, struct ieee80211com *); void ieee80211_iterate_coms(ieee80211_com_iter_func *, void *); int ieee80211_media_change(struct ifnet *); void ieee80211_media_status(struct ifnet *, struct ifmediareq *); int ieee80211_ioctl(struct ifnet *, u_long, caddr_t); int ieee80211_rate2media(struct ieee80211com *, int, enum ieee80211_phymode); int ieee80211_media2rate(int); int ieee80211_mhz2ieee(u_int, u_int); int ieee80211_chan2ieee(struct ieee80211com *, const struct ieee80211_channel *); u_int ieee80211_ieee2mhz(u_int, u_int); int ieee80211_add_channel(struct ieee80211_channel[], int, int *, uint8_t, uint16_t, int8_t, uint32_t, const uint8_t[]); int ieee80211_add_channel_ht40(struct ieee80211_channel[], int, int *, uint8_t, int8_t, uint32_t); uint32_t ieee80211_get_channel_center_freq(const struct ieee80211_channel *); uint32_t ieee80211_get_channel_center_freq1(const struct ieee80211_channel *); uint32_t ieee80211_get_channel_center_freq2(const struct ieee80211_channel *); #define NET80211_CBW_FLAG_HT40 0x01 #define NET80211_CBW_FLAG_VHT80 0x02 #define NET80211_CBW_FLAG_VHT160 0x04 #define NET80211_CBW_FLAG_VHT80P80 0x08 int ieee80211_add_channel_list_2ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int, const uint8_t[], int); int ieee80211_add_channels_default_2ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int); int ieee80211_add_channel_list_5ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int, const uint8_t[], int); struct ieee80211_channel *ieee80211_find_channel(struct ieee80211com *, int freq, int flags); struct ieee80211_channel *ieee80211_find_channel_byieee(struct ieee80211com *, int ieee, int flags); struct ieee80211_channel *ieee80211_lookup_channel_rxstatus(struct ieee80211vap *, const struct ieee80211_rx_stats *); int ieee80211_setmode(struct ieee80211com *, enum ieee80211_phymode); enum ieee80211_phymode ieee80211_chan2mode(const struct ieee80211_channel *); uint32_t ieee80211_mac_hash(const struct ieee80211com *, const uint8_t addr[IEEE80211_ADDR_LEN]); char ieee80211_channel_type_char(const struct ieee80211_channel *c); #define ieee80211_get_current_channel(_ic) ((_ic)->ic_curchan) #define ieee80211_get_home_channel(_ic) ((_ic)->ic_bsschan) #define ieee80211_get_vap_desired_channel(_iv) ((_iv)->iv_des_chan) void ieee80211_radiotap_attach(struct ieee80211com *, struct ieee80211_radiotap_header *th, int tlen, uint32_t tx_radiotap, struct ieee80211_radiotap_header *rh, int rlen, uint32_t rx_radiotap); void ieee80211_radiotap_attachv(struct ieee80211com *, struct ieee80211_radiotap_header *th, int tlen, int n_tx_v, uint32_t tx_radiotap, struct ieee80211_radiotap_header *rh, int rlen, int n_rx_v, uint32_t rx_radiotap); void ieee80211_radiotap_detach(struct ieee80211com *); void ieee80211_radiotap_vattach(struct ieee80211vap *); void ieee80211_radiotap_vdetach(struct ieee80211vap *); void ieee80211_radiotap_chan_change(struct ieee80211com *); void ieee80211_radiotap_tx(struct ieee80211vap *, struct mbuf *); void ieee80211_radiotap_rx(struct ieee80211vap *, struct mbuf *); void ieee80211_radiotap_rx_all(struct ieee80211com *, struct mbuf *); static __inline int ieee80211_radiotap_active(const struct ieee80211com *ic) { return (ic->ic_flags_ext & IEEE80211_FEXT_BPF) != 0; } static __inline int ieee80211_radiotap_active_vap(const struct ieee80211vap *vap) { return (vap->iv_flags_ext & IEEE80211_FEXT_BPF) || vap->iv_ic->ic_montaps != 0; } /* * Enqueue a task on the state thread. */ static __inline void ieee80211_runtask(struct ieee80211com *ic, struct task *task) { taskqueue_enqueue(ic->ic_tq, task); } /* * Wait for a queued task to complete. */ static __inline void ieee80211_draintask(struct ieee80211com *ic, struct task *task) { taskqueue_drain(ic->ic_tq, task); } /* * Key update synchronization methods. XXX should not be visible. */ static __inline void ieee80211_key_update_begin(struct ieee80211vap *vap) { vap->iv_key_update_begin(vap); } static __inline void ieee80211_key_update_end(struct ieee80211vap *vap) { vap->iv_key_update_end(vap); } /* * XXX these need to be here for IEEE80211_F_DATAPAD */ /* * Return the space occupied by the 802.11 header and any * padding required by the driver. This works for a * management or data frame. */ static __inline int ieee80211_hdrspace(struct ieee80211com *ic, const void *data) { int size = ieee80211_hdrsize(data); if (ic->ic_flags & IEEE80211_F_DATAPAD) size = roundup(size, sizeof(uint32_t)); return size; } /* * Like ieee80211_hdrspace, but handles any type of frame. */ static __inline int ieee80211_anyhdrspace(struct ieee80211com *ic, const void *data) { int size = ieee80211_anyhdrsize(data); if (ic->ic_flags & IEEE80211_F_DATAPAD) size = roundup(size, sizeof(uint32_t)); return size; } /* * Notify a vap that beacon state has been updated. */ static __inline void ieee80211_beacon_notify(struct ieee80211vap *vap, int what) { if (vap->iv_state == IEEE80211_S_RUN) vap->iv_update_beacon(vap, what); } /* * Calculate HT channel promotion flags for a channel. * XXX belongs in ieee80211_ht.h but needs IEEE80211_FHT_* */ static __inline int ieee80211_htchanflags(const struct ieee80211_channel *c) { return IEEE80211_IS_CHAN_HT40(c) ? IEEE80211_FHT_HT | IEEE80211_FHT_USEHT40 : IEEE80211_IS_CHAN_HT(c) ? IEEE80211_FHT_HT : 0; } /* * Calculate VHT channel promotion flags for a channel. * XXX belongs in ieee80211_vht.h but needs IEEE80211_FVHT_* */ static __inline int ieee80211_vhtchanflags(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHT80P80(c)) return IEEE80211_FVHT_USEVHT80P80; if (IEEE80211_IS_CHAN_VHT160(c)) return IEEE80211_FVHT_USEVHT160; if (IEEE80211_IS_CHAN_VHT80(c)) return IEEE80211_FVHT_USEVHT80; if (IEEE80211_IS_CHAN_VHT40(c)) return IEEE80211_FVHT_USEVHT40; if (IEEE80211_IS_CHAN_VHT(c)) return IEEE80211_FVHT_VHT; return (0); } /* * Fetch the current TX power (cap) for the given node. * * This includes the node and ic/vap TX power limit as needed, * but it doesn't take into account any per-rate limit. */ static __inline uint16_t ieee80211_get_node_txpower(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; uint16_t txpower; txpower = ni->ni_txpower; txpower = MIN(txpower, ic->ic_txpowlimit); if (ic->ic_curchan != NULL) { txpower = MIN(txpower, 2 * ic->ic_curchan->ic_maxregpower); txpower = MIN(txpower, ic->ic_curchan->ic_maxpower); } return (txpower); } /* * Debugging facilities compiled in when IEEE80211_DEBUG is defined. * * The intent is that any problem in the net80211 layer can be * diagnosed by inspecting the statistics (dumped by the wlanstats * program) and/or the msgs generated by net80211. Messages are * broken into functional classes and can be controlled with the * wlandebug program. Certain of these msg groups are for facilities * that are no longer part of net80211 (e.g. IEEE80211_MSG_DOT1XSM). */ #define IEEE80211_MSG_11N 0x80000000 /* 11n mode debug */ #define IEEE80211_MSG_DEBUG 0x40000000 /* IFF_DEBUG equivalent */ #define IEEE80211_MSG_DUMPPKTS 0x20000000 /* IFF_LINK2 equivalant */ #define IEEE80211_MSG_CRYPTO 0x10000000 /* crypto work */ #define IEEE80211_MSG_INPUT 0x08000000 /* input handling */ #define IEEE80211_MSG_XRATE 0x04000000 /* rate set handling */ #define IEEE80211_MSG_ELEMID 0x02000000 /* element id parsing */ #define IEEE80211_MSG_NODE 0x01000000 /* node handling */ #define IEEE80211_MSG_ASSOC 0x00800000 /* association handling */ #define IEEE80211_MSG_AUTH 0x00400000 /* authentication handling */ #define IEEE80211_MSG_SCAN 0x00200000 /* scanning */ #define IEEE80211_MSG_OUTPUT 0x00100000 /* output handling */ #define IEEE80211_MSG_STATE 0x00080000 /* state machine */ #define IEEE80211_MSG_POWER 0x00040000 /* power save handling */ #define IEEE80211_MSG_HWMP 0x00020000 /* hybrid mesh protocol */ #define IEEE80211_MSG_DOT1XSM 0x00010000 /* 802.1x state machine */ #define IEEE80211_MSG_RADIUS 0x00008000 /* 802.1x radius client */ #define IEEE80211_MSG_RADDUMP 0x00004000 /* dump 802.1x radius packets */ #define IEEE80211_MSG_MESH 0x00002000 /* mesh networking */ #define IEEE80211_MSG_WPA 0x00001000 /* WPA/RSN protocol */ #define IEEE80211_MSG_ACL 0x00000800 /* ACL handling */ #define IEEE80211_MSG_WME 0x00000400 /* WME protocol */ #define IEEE80211_MSG_SUPERG 0x00000200 /* Atheros SuperG protocol */ #define IEEE80211_MSG_DOTH 0x00000100 /* 802.11h support */ #define IEEE80211_MSG_INACT 0x00000080 /* inactivity handling */ #define IEEE80211_MSG_ROAM 0x00000040 /* sta-mode roaming */ #define IEEE80211_MSG_RATECTL 0x00000020 /* tx rate control */ #define IEEE80211_MSG_ACTION 0x00000010 /* action frame handling */ #define IEEE80211_MSG_WDS 0x00000008 /* WDS handling */ #define IEEE80211_MSG_IOCTL 0x00000004 /* ioctl handling */ #define IEEE80211_MSG_TDMA 0x00000002 /* TDMA handling */ #define IEEE80211_MSG_ANY 0xffffffff /* anything */ #define IEEE80211_MSG_BITS \ "\20\2TDMA\3IOCTL\4WDS\5ACTION\6RATECTL\7ROAM\10INACT\11DOTH\12SUPERG" \ "\13WME\14ACL\15WPA\16RADKEYS\17RADDUMP\20RADIUS\21DOT1XSM\22HWMP" \ "\23POWER\24STATE\25OUTPUT\26SCAN\27AUTH\30ASSOC\31NODE\32ELEMID" \ "\33XRATE\34INPUT\35CRYPTO\36DUPMPKTS\37DEBUG\04011N" + +/* Helper macros unified. */ +#define _IEEE80211_MASKSHIFT(_v, _f) (((_v) & _f) >> _f##_S) +#define _IEEE80211_SHIFTMASK(_v, _f) (((_v) << _f##_S) & _f) #ifdef IEEE80211_DEBUG #define ieee80211_msg(_vap, _m) ((_vap)->iv_debug & (_m)) #define IEEE80211_DPRINTF(_vap, _m, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note(_vap, _fmt, __VA_ARGS__); \ } while (0) #define IEEE80211_NOTE(_vap, _m, _ni, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_mac(_vap, (_ni)->ni_macaddr, _fmt, __VA_ARGS__);\ } while (0) #define IEEE80211_NOTE_MAC(_vap, _m, _mac, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_mac(_vap, _mac, _fmt, __VA_ARGS__); \ } while (0) #define IEEE80211_NOTE_FRAME(_vap, _m, _wh, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_frame(_vap, _wh, _fmt, __VA_ARGS__); \ } while (0) void ieee80211_note(const struct ieee80211vap *, const char *, ...); void ieee80211_note_mac(const struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN], const char *, ...); void ieee80211_note_frame(const struct ieee80211vap *, const struct ieee80211_frame *, const char *, ...); #define ieee80211_msg_debug(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_DEBUG) #define ieee80211_msg_dumppkts(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_DUMPPKTS) #define ieee80211_msg_input(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_INPUT) #define ieee80211_msg_radius(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADIUS) #define ieee80211_msg_dumpradius(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADDUMP) #define ieee80211_msg_dumpradkeys(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADKEYS) #define ieee80211_msg_scan(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_SCAN) #define ieee80211_msg_assoc(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_ASSOC) /* * Emit a debug message about discarding a frame or information * element. One format is for extracting the mac address from * the frame header; the other is for when a header is not * available or otherwise appropriate. */ #define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_frame(_vap, _wh, _type, _fmt, __VA_ARGS__);\ } while (0) #define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_ie(_vap, _wh, _type, _fmt, __VA_ARGS__);\ } while (0) #define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_mac(_vap, _mac, _type, _fmt, __VA_ARGS__);\ } while (0) void ieee80211_discard_frame(const struct ieee80211vap *, const struct ieee80211_frame *, const char *type, const char *fmt, ...); void ieee80211_discard_ie(const struct ieee80211vap *, const struct ieee80211_frame *, const char *type, const char *fmt, ...); void ieee80211_discard_mac(const struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN], const char *type, const char *fmt, ...); #else #define IEEE80211_DPRINTF(_vap, _m, _fmt, ...) #define IEEE80211_NOTE(_vap, _m, _ni, _fmt, ...) #define IEEE80211_NOTE_FRAME(_vap, _m, _wh, _fmt, ...) #define IEEE80211_NOTE_MAC(_vap, _m, _mac, _fmt, ...) #define ieee80211_msg_dumppkts(_vap) 0 #define ieee80211_msg(_vap, _m) 0 #define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...) #define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...) #define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...) #endif #endif /* _NET80211_IEEE80211_VAR_H_ */ Index: head/sys/net80211/ieee80211_vht.c =================================================================== --- head/sys/net80211/ieee80211_vht.c (revision 366111) +++ head/sys/net80211/ieee80211_vht.c (revision 366112) @@ -1,843 +1,874 @@ /*- * Copyright (c) 2017 Adrian Chadd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD$"); #endif /* * IEEE 802.11ac-2013 protocol support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include -/* define here, used throughout file */ -#define MS(_v, _f) (((_v) & _f) >> _f##_S) -#define SM(_v, _f) (((_v) << _f##_S) & _f) - #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) #define ADDWORD(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = ((v) >> 8) & 0xff; \ frm[2] = ((v) >> 16) & 0xff; \ frm[3] = ((v) >> 24) & 0xff; \ frm += 4; \ } while (0) /* * Immediate TODO: * * + handle WLAN_ACTION_VHT_OPMODE_NOTIF and other VHT action frames * + ensure vhtinfo/vhtcap parameters correctly use the negotiated * capabilities and ratesets * + group ID management operation */ /* * XXX TODO: handle WLAN_ACTION_VHT_OPMODE_NOTIF * * Look at mac80211/vht.c:ieee80211_vht_handle_opmode() for further details. */ static int vht_recv_action_placeholder(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { #ifdef IEEE80211_DEBUG ieee80211_note(ni->ni_vap, "%s: called; fc=0x%.2x/0x%.2x", __func__, wh->i_fc[0], wh->i_fc[1]); #endif return (0); } static int vht_send_action_placeholder(struct ieee80211_node *ni, int category, int action, void *arg0) { #ifdef IEEE80211_DEBUG ieee80211_note(ni->ni_vap, "%s: called; category=%d, action=%d", __func__, category, action); #endif return (EINVAL); } static void ieee80211_vht_init(void) { ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT, WLAN_ACTION_VHT_COMPRESSED_BF, vht_recv_action_placeholder); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT, WLAN_ACTION_VHT_GROUPID_MGMT, vht_recv_action_placeholder); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT, WLAN_ACTION_VHT_OPMODE_NOTIF, vht_recv_action_placeholder); ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT, WLAN_ACTION_VHT_COMPRESSED_BF, vht_send_action_placeholder); ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT, WLAN_ACTION_VHT_GROUPID_MGMT, vht_send_action_placeholder); ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT, WLAN_ACTION_VHT_OPMODE_NOTIF, vht_send_action_placeholder); } SYSINIT(wlan_vht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_vht_init, NULL); void ieee80211_vht_attach(struct ieee80211com *ic) { } void ieee80211_vht_detach(struct ieee80211com *ic) { } void ieee80211_vht_vattach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if (! IEEE80211_CONF_VHT(ic)) return; vap->iv_vhtcaps = ic->ic_vhtcaps; vap->iv_vhtextcaps = ic->ic_vhtextcaps; /* XXX assume VHT80 support; should really check vhtcaps */ vap->iv_flags_vht = IEEE80211_FVHT_VHT | IEEE80211_FVHT_USEVHT40 | IEEE80211_FVHT_USEVHT80; #if 0 /* XXX TODO: enable VHT80+80, VHT160 capabilities */ if (XXX TODO FIXME) vap->iv_flags_vht |= IEEE80211_FVHT_USEVHT160; if (XXX TODO FIXME) vap->iv_flags_vht |= IEEE80211_FVHT_USEVHT80P80; #endif memcpy(&vap->iv_vht_mcsinfo, &ic->ic_vht_mcsinfo, sizeof(struct ieee80211_vht_mcs_info)); } void ieee80211_vht_vdetach(struct ieee80211vap *vap) { } #if 0 static void vht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) { } #endif static int vht_mcs_to_num(int m) { switch (m) { case IEEE80211_VHT_MCS_SUPPORT_0_7: return (7); case IEEE80211_VHT_MCS_SUPPORT_0_8: return (8); case IEEE80211_VHT_MCS_SUPPORT_0_9: return (9); default: return (0); } } void ieee80211_vht_announce(struct ieee80211com *ic) { int i, tx, rx; if (! IEEE80211_CONF_VHT(ic)) return; /* Channel width */ ic_printf(ic, "[VHT] Channel Widths: 20MHz, 40MHz, 80MHz"); - if (MS(ic->ic_vhtcaps, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) + if (_IEEE80211_MASKSHIFT(ic->ic_vhtcaps, + IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) >= 1) printf(" 160MHz"); - if (MS(ic->ic_vhtcaps, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) + if (_IEEE80211_MASKSHIFT(ic->ic_vhtcaps, + IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK) == 2) printf(" 80+80MHz"); printf("\n"); /* Features */ ic_printf(ic, "[VHT] Features: %b\n", ic->ic_vhtcaps, IEEE80211_VHTCAP_BITS); /* For now, just 5GHz VHT. Worry about 2GHz VHT later */ for (i = 0; i < 8; i++) { /* Each stream is 2 bits */ tx = (ic->ic_vht_mcsinfo.tx_mcs_map >> (2*i)) & 0x3; rx = (ic->ic_vht_mcsinfo.rx_mcs_map >> (2*i)) & 0x3; if (tx == 3 && rx == 3) continue; ic_printf(ic, "[VHT] NSS %d: TX MCS 0..%d, RX MCS 0..%d\n", i + 1, vht_mcs_to_num(tx), vht_mcs_to_num(rx)); } } void ieee80211_vht_node_init(struct ieee80211_node *ni) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called", __func__); ni->ni_flags |= IEEE80211_NODE_VHT; } void ieee80211_vht_node_cleanup(struct ieee80211_node *ni) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called", __func__); ni->ni_flags &= ~IEEE80211_NODE_VHT; ni->ni_vhtcap = 0; bzero(&ni->ni_vht_mcsinfo, sizeof(struct ieee80211_vht_mcs_info)); } /* * Parse an 802.11ac VHT operation IE. */ void ieee80211_parse_vhtopmode(struct ieee80211_node *ni, const uint8_t *ie) { /* vht operation */ ni->ni_vht_chanwidth = ie[2]; ni->ni_vht_chan1 = ie[3]; ni->ni_vht_chan2 = ie[4]; ni->ni_vht_basicmcs = le16dec(ie + 5); #if 0 printf("%s: chan1=%d, chan2=%d, chanwidth=%d, basicmcs=0x%04x\n", __func__, ni->ni_vht_chan1, ni->ni_vht_chan2, ni->ni_vht_chanwidth, ni->ni_vht_basicmcs); #endif } /* * Parse an 802.11ac VHT capability IE. */ void ieee80211_parse_vhtcap(struct ieee80211_node *ni, const uint8_t *ie) { /* vht capability */ ni->ni_vhtcap = le32dec(ie + 2); /* suppmcs */ ni->ni_vht_mcsinfo.rx_mcs_map = le16dec(ie + 6); ni->ni_vht_mcsinfo.rx_highest = le16dec(ie + 8); ni->ni_vht_mcsinfo.tx_mcs_map = le16dec(ie + 10); ni->ni_vht_mcsinfo.tx_highest = le16dec(ie + 12); } int ieee80211_vht_updateparams(struct ieee80211_node *ni, const uint8_t *vhtcap_ie, const uint8_t *vhtop_ie) { //printf("%s: called\n", __func__); ieee80211_parse_vhtcap(ni, vhtcap_ie); ieee80211_parse_vhtopmode(ni, vhtop_ie); return (0); } void ieee80211_setup_vht_rates(struct ieee80211_node *ni, const uint8_t *vhtcap_ie, const uint8_t *vhtop_ie) { //printf("%s: called\n", __func__); /* XXX TODO */ } void ieee80211_vht_timeout(struct ieee80211vap *vap) { } void ieee80211_vht_node_join(struct ieee80211_node *ni) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called", __func__); } void ieee80211_vht_node_leave(struct ieee80211_node *ni) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called", __func__); } /* * Calculate the VHTCAP IE for a given node. * * This includes calculating the capability intersection based on the * current operating mode and intersection of the TX/RX MCS maps. * * The standard only makes it clear about MCS rate negotiation * and MCS basic rates (which must be a subset of the general * negotiated rates). It doesn't make it clear that the AP should * figure out the minimum functional overlap with the STA and * support that. * * Note: this is in host order, not in 802.11 endian order. * * TODO: ensure I re-read 9.7.11 Rate Selection for VHT STAs. * * TODO: investigate what we should negotiate for MU-MIMO beamforming * options. * * opmode is '1' for "vhtcap as if I'm a STA", 0 otherwise. */ void ieee80211_vht_get_vhtcap_ie(struct ieee80211_node *ni, struct ieee80211_ie_vhtcap *vhtcap, int opmode) { struct ieee80211vap *vap = ni->ni_vap; // struct ieee80211com *ic = vap->iv_ic; uint32_t val, val1, val2; uint32_t new_vhtcap; int i; vhtcap->ie = IEEE80211_ELEMID_VHT_CAP; vhtcap->len = sizeof(struct ieee80211_ie_vhtcap) - 2; /* * Capabilities - it depends on whether we are a station * or not. */ new_vhtcap = 0; /* * Station - use our desired configuration based on * local config, local device bits and the already-learnt * vhtcap/vhtinfo IE in the node. */ /* Limit MPDU size to the smaller of the two */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_MAX_MPDU_MASK); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_MAX_MPDU_MASK); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_MAX_MPDU_MASK); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_MAX_MPDU_MASK); } val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_MAX_MPDU_MASK); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_MAX_MPDU_MASK); /* Limit supp channel config */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK); } if ((val2 == 2) && ((vap->iv_flags_vht & IEEE80211_FVHT_USEVHT80P80) == 0)) val2 = 1; if ((val2 == 1) && ((vap->iv_flags_vht & IEEE80211_FVHT_USEVHT160) == 0)) val2 = 0; val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK); /* RX LDPC */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_RXLDPC); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_RXLDPC); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_RXLDPC); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_RXLDPC); } val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_RXLDPC); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_RXLDPC); /* Short-GI 80 */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_SHORT_GI_80); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_SHORT_GI_80); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_SHORT_GI_80); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_SHORT_GI_80); } val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SHORT_GI_80); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_SHORT_GI_80); /* Short-GI 160 */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_SHORT_GI_160); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_SHORT_GI_160); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_SHORT_GI_160); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_SHORT_GI_160); } val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SHORT_GI_160); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_SHORT_GI_160); /* * STBC is slightly more complicated. * * In non-STA mode, we just announce our capabilities and that * is that. * * In STA mode, we should calculate our capabilities based on * local capabilities /and/ what the remote says. So: * * + Only TX STBC if we support it and the remote supports RX STBC; * + Only announce RX STBC if we support it and the remote supports * TX STBC; * + RX STBC should be the minimum of local and remote RX STBC; */ /* TX STBC */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_TXSTBC); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_TXSTBC); if (opmode == 1) { /* STA mode - enable it only if node RXSTBC is non-zero */ - val2 = !! MS(ni->ni_vhtcap, IEEE80211_VHTCAP_RXSTBC_MASK); + val2 = !! _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_RXSTBC_MASK); } val = MIN(val1, val2); /* XXX For now, use the 11n config flag */ if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_TX) == 0) val = 0; - new_vhtcap |= SM(val, IEEE80211_VHTCAP_TXSTBC); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_TXSTBC); /* RX STBC1..4 */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_RXSTBC_MASK); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_RXSTBC_MASK); if (opmode == 1) { /* STA mode - enable it only if node TXSTBC is non-zero */ - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_TXSTBC); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_TXSTBC); } val = MIN(val1, val2); /* XXX For now, use the 11n config flag */ if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) val = 0; - new_vhtcap |= SM(val, IEEE80211_VHTCAP_RXSTBC_MASK); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_RXSTBC_MASK); /* * Finally - if RXSTBC is 0, then don't enable TXSTBC. * Strictly speaking a device can TXSTBC and not RXSTBC, but * it would be silly. */ if (val == 0) new_vhtcap &= ~IEEE80211_VHTCAP_TXSTBC; /* * Some of these fields require other fields to exist. * So before using it, the parent field needs to be checked * otherwise the overridden value may be wrong. * * For example, if SU beamformee is set to 0, then BF STS * needs to be 0. */ /* SU Beamformer capable */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); } val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); /* SU Beamformee capable */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); } val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); /* Beamformee STS capability - only if SU beamformee capable */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); if (opmode == 1) { - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); } val = MIN(val1, val2); if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE) == 0) val = 0; - new_vhtcap |= SM(val, IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); /* Sounding dimensions - only if SU beamformer capable */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK); val = MIN(val1, val2); if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE) == 0) val = 0; - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK); /* * MU Beamformer capable - only if SU BFF capable, MU BFF capable * and STA (not AP) */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_MU_BEAMFORMER_CAPABLE); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_MU_BEAMFORMER_CAPABLE); val = MIN(val1, val2); if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE) == 0) val = 0; if (opmode != 1) /* Only enable for STA mode */ val = 0; - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); /* * MU Beamformee capable - only if SU BFE capable, MU BFE capable * and AP (not STA) */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_MU_BEAMFORMEE_CAPABLE); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_MU_BEAMFORMEE_CAPABLE); val = MIN(val1, val2); if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE) == 0) val = 0; if (opmode != 0) /* Only enable for AP mode */ val = 0; - new_vhtcap |= SM(val, IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); /* VHT TXOP PS */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_VHT_TXOP_PS); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_VHT_TXOP_PS); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_VHT_TXOP_PS); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_VHT_TXOP_PS); val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_VHT_TXOP_PS); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_VHT_TXOP_PS); /* HTC_VHT */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_HTC_VHT); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_HTC_VHT); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_HTC_VHT); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_HTC_VHT); val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_HTC_VHT); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_HTC_VHT); /* A-MPDU length max */ /* XXX TODO: we need a userland config knob for this */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); val = MIN(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); /* * Link adaptation is only valid if HTC-VHT capable is 1. * Otherwise, always set it to 0. */ - val2 = val1 = MS(vap->iv_vhtcaps, + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK); val = MIN(val1, val2); if ((new_vhtcap & IEEE80211_VHTCAP_HTC_VHT) == 0) val = 0; - new_vhtcap |= SM(val, IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK); /* * The following two options are 0 if the pattern may change, 1 if it * does not change. So, downgrade to the higher value. */ /* RX antenna pattern */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); val = MAX(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); /* TX antenna pattern */ - val2 = val1 = MS(vap->iv_vhtcaps, IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); + val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vhtcaps, + IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); if (opmode == 1) - val2 = MS(ni->ni_vhtcap, IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); + val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, + IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); val = MAX(val1, val2); - new_vhtcap |= SM(val, IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); + new_vhtcap |= _IEEE80211_SHIFTMASK(val, + IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); /* * MCS set - again, we announce what we want to use * based on configuration, device capabilities and * already-learnt vhtcap/vhtinfo IE information. */ /* MCS set - start with whatever the device supports */ vhtcap->supp_mcs.rx_mcs_map = vap->iv_vht_mcsinfo.rx_mcs_map; vhtcap->supp_mcs.rx_highest = 0; vhtcap->supp_mcs.tx_mcs_map = vap->iv_vht_mcsinfo.tx_mcs_map; vhtcap->supp_mcs.tx_highest = 0; vhtcap->vht_cap_info = new_vhtcap; /* * Now, if we're a STA, mask off whatever the AP doesn't support. * Ie, we continue to state we can receive whatever we can do, * but we only announce that we will transmit rates that meet * the AP requirement. * * Note: 0 - MCS0..7; 1 - MCS0..8; 2 - MCS0..9; 3 = not supported. * We can't just use MIN() because '3' means "no", so special case it. */ if (opmode) { for (i = 0; i < 8; i++) { val1 = (vhtcap->supp_mcs.tx_mcs_map >> (i*2)) & 0x3; val2 = (ni->ni_vht_mcsinfo.tx_mcs_map >> (i*2)) & 0x3; val = MIN(val1, val2); if (val1 == 3 || val2 == 3) val = 3; vhtcap->supp_mcs.tx_mcs_map &= ~(0x3 << (i*2)); vhtcap->supp_mcs.tx_mcs_map |= (val << (i*2)); } } } /* * Add a VHTCAP field. * * If in station mode, we announce what we would like our * desired configuration to be. * * Else, we announce our capabilities based on our current * configuration. */ uint8_t * ieee80211_add_vhtcap(uint8_t *frm, struct ieee80211_node *ni) { struct ieee80211_ie_vhtcap vhtcap; int opmode; opmode = 0; if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) opmode = 1; ieee80211_vht_get_vhtcap_ie(ni, &vhtcap, opmode); memset(frm, '\0', sizeof(struct ieee80211_ie_vhtcap)); frm[0] = IEEE80211_ELEMID_VHT_CAP; frm[1] = sizeof(struct ieee80211_ie_vhtcap) - 2; frm += 2; /* 32-bit VHT capability */ ADDWORD(frm, vhtcap.vht_cap_info); /* suppmcs */ ADDSHORT(frm, vhtcap.supp_mcs.rx_mcs_map); ADDSHORT(frm, vhtcap.supp_mcs.rx_highest); ADDSHORT(frm, vhtcap.supp_mcs.tx_mcs_map); ADDSHORT(frm, vhtcap.supp_mcs.tx_highest); return (frm); } static uint8_t ieee80211_vht_get_chwidth_ie(struct ieee80211_channel *c) { /* * XXX TODO: look at the node configuration as * well? */ if (IEEE80211_IS_CHAN_VHT80P80(c)) return IEEE80211_VHT_CHANWIDTH_80P80MHZ; if (IEEE80211_IS_CHAN_VHT160(c)) return IEEE80211_VHT_CHANWIDTH_160MHZ; if (IEEE80211_IS_CHAN_VHT80(c)) return IEEE80211_VHT_CHANWIDTH_80MHZ; if (IEEE80211_IS_CHAN_VHT40(c)) return IEEE80211_VHT_CHANWIDTH_USE_HT; if (IEEE80211_IS_CHAN_VHT20(c)) return IEEE80211_VHT_CHANWIDTH_USE_HT; /* We shouldn't get here */ printf("%s: called on a non-VHT channel (freq=%d, flags=0x%08x\n", __func__, (int) c->ic_freq, c->ic_flags); return IEEE80211_VHT_CHANWIDTH_USE_HT; } /* * Note: this just uses the current channel information; * it doesn't use the node info after parsing. * * XXX TODO: need to make the basic MCS set configurable. * XXX TODO: read 802.11-2013 to determine what to set * chwidth to when scanning. I have a feeling * it isn't involved in scanning and we shouldn't * be sending it; and I don't yet know what to set * it to for IBSS or hostap where the peer may be * a completely different channel width to us. */ uint8_t * ieee80211_add_vhtinfo(uint8_t *frm, struct ieee80211_node *ni) { memset(frm, '\0', sizeof(struct ieee80211_ie_vht_operation)); frm[0] = IEEE80211_ELEMID_VHT_OPMODE; frm[1] = sizeof(struct ieee80211_ie_vht_operation) - 2; frm += 2; /* 8-bit chanwidth */ *frm++ = ieee80211_vht_get_chwidth_ie(ni->ni_chan); /* 8-bit freq1 */ *frm++ = ni->ni_chan->ic_vht_ch_freq1; /* 8-bit freq2 */ *frm++ = ni->ni_chan->ic_vht_ch_freq2; /* 16-bit basic MCS set - just MCS0..7 for NSS=1 for now */ ADDSHORT(frm, 0xfffc); return (frm); } void ieee80211_vht_update_cap(struct ieee80211_node *ni, const uint8_t *vhtcap_ie, const uint8_t *vhtop_ie) { ieee80211_parse_vhtcap(ni, vhtcap_ie); ieee80211_parse_vhtopmode(ni, vhtop_ie); } static struct ieee80211_channel * findvhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int vhtflags) { return (ieee80211_find_channel(ic, c->ic_freq, (c->ic_flags & ~IEEE80211_CHAN_VHT) | vhtflags)); } /* * Handle channel promotion to VHT, similar to ieee80211_ht_adjust_channel(). */ struct ieee80211_channel * ieee80211_vht_adjust_channel(struct ieee80211com *ic, struct ieee80211_channel *chan, int flags) { struct ieee80211_channel *c; /* First case - handle channel demotion - if VHT isn't set */ if ((flags & IEEE80211_FVHT_VHT) == 0) { #if 0 printf("%s: demoting channel %d/0x%08x\n", __func__, chan->ic_ieee, chan->ic_flags); #endif c = ieee80211_find_channel(ic, chan->ic_freq, chan->ic_flags & ~IEEE80211_CHAN_VHT); if (c == NULL) c = chan; #if 0 printf("%s: .. to %d/0x%08x\n", __func__, c->ic_ieee, c->ic_flags); #endif return (c); } /* * We can upgrade to VHT - attempt to do so * * Note: we don't clear the HT flags, these are the hints * for HT40U/HT40D when selecting VHT40 or larger channels. */ /* Start with VHT80 */ c = NULL; if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT160)) c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT80); if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT80P80)) c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT80P80); if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT80)) c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT80); if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT40)) c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT40U); if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT40)) c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT40D); /* * If we get here, VHT20 is always possible because we checked * for IEEE80211_FVHT_VHT above. */ if (c == NULL) c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT20); if (c != NULL) chan = c; #if 0 printf("%s: selected %d/0x%08x\n", __func__, c->ic_ieee, c->ic_flags); #endif return (chan); } /* * Calculate the VHT operation IE for a given node. * * This includes calculating the suitable channel width/parameters * and basic MCS set. * * TODO: ensure I read 9.7.11 Rate Selection for VHT STAs. * TODO: ensure I read 10.39.7 - BSS Basic VHT-MCS and NSS set operation. */ void ieee80211_vht_get_vhtinfo_ie(struct ieee80211_node *ni, struct ieee80211_ie_vht_operation *vhtop, int opmode) { printf("%s: called; TODO!\n", __func__); }