Index: head/sys/netinet/tcp_input.c =================================================================== --- head/sys/netinet/tcp_input.c (revision 364753) +++ head/sys/netinet/tcp_input.c (revision 364754) @@ -1,3893 +1,3892 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 * The Regents of the University of California. All rights reserved. * Copyright (c) 2007-2008,2010 * Swinburne University of Technology, Melbourne, Australia. * Copyright (c) 2009-2010 Lawrence Stewart * Copyright (c) 2010 The FreeBSD Foundation * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed at the Centre for Advanced Internet * Architectures, Swinburne University of Technology, by Lawrence Stewart, * James Healy and David Hayes, made possible in part by a grant from the Cisco * University Research Program Fund at Community Foundation Silicon Valley. * * Portions of this software were developed at the Centre for Advanced * Internet Architectures, Swinburne University of Technology, Melbourne, * Australia by David Hayes under sponsorship from the FreeBSD Foundation. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include #include #include #ifdef TCP_HHOOK #include #endif #include #include #include /* for proc0 declaration */ #include #include #include #include #include #include #include #include #include #include #include /* before tcp_seq.h, for tcp_random18() */ #include #include #include #include #include #define TCPSTATES /* for logging */ #include #include #include #include #include #include /* required for icmp_var.h */ #include /* for ICMP_BANDLIM */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef TCPPCAP #include #endif #include #ifdef TCPDEBUG #include #endif /* TCPDEBUG */ #ifdef TCP_OFFLOAD #include #endif #include #include #include const int tcprexmtthresh = 3; VNET_DEFINE(int, tcp_log_in_vain) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_log_in_vain), 0, "Log all incoming TCP segments to closed ports"); VNET_DEFINE(int, blackhole) = 0; #define V_blackhole VNET(blackhole) SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(blackhole), 0, "Do not send RST on segments to closed ports"); VNET_DEFINE(int, tcp_delack_enabled) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_delack_enabled), 0, "Delay ACK to try and piggyback it onto a data packet"); VNET_DEFINE(int, drop_synfin) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(drop_synfin), 0, "Drop TCP packets with SYN+FIN set"); VNET_DEFINE(int, tcp_do_newcwv) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_newcwv), 0, "Enable New Congestion Window Validation per RFC7661"); VNET_DEFINE(int, tcp_do_rfc6675_pipe) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc6675_pipe, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc6675_pipe), 0, "Use calculated pipe/in-flight bytes per RFC 6675"); VNET_DEFINE(int, tcp_do_rfc3042) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc3042), 0, "Enable RFC 3042 (Limited Transmit)"); VNET_DEFINE(int, tcp_do_rfc3390) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc3390), 0, "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)"); VNET_DEFINE(int, tcp_initcwnd_segments) = 10; SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0, "Slow-start flight size (initial congestion window) in number of segments"); VNET_DEFINE(int, tcp_do_rfc3465) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_rfc3465), 0, "Enable RFC 3465 (Appropriate Byte Counting)"); VNET_DEFINE(int, tcp_abc_l_var) = 2; SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_abc_l_var), 2, "Cap the max cwnd increment during slow-start to this number of segments"); static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, ecn, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "TCP ECN"); VNET_DEFINE(int, tcp_do_ecn) = 2; SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_ecn), 0, "TCP ECN support"); VNET_DEFINE(int, tcp_ecn_maxretries) = 1; SYSCTL_INT(_net_inet_tcp_ecn, OID_AUTO, maxretries, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_ecn_maxretries), 0, "Max retries before giving up on ECN"); VNET_DEFINE(int, tcp_insecure_syn) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_insecure_syn), 0, "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets"); VNET_DEFINE(int, tcp_insecure_rst) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_insecure_rst), 0, "Follow RFC793 instead of RFC5961 criteria for accepting RST packets"); VNET_DEFINE(int, tcp_recvspace) = 1024*64; #define V_tcp_recvspace VNET(tcp_recvspace) SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size"); VNET_DEFINE(int, tcp_do_autorcvbuf) = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_do_autorcvbuf), 0, "Enable automatic receive buffer sizing"); VNET_DEFINE(int, tcp_autorcvbuf_max) = 2*1024*1024; SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_autorcvbuf_max), 0, "Max size of automatic receive buffer"); VNET_DEFINE(struct inpcbhead, tcb); #define tcb6 tcb /* for KAME src sync over BSD*'s */ VNET_DEFINE(struct inpcbinfo, tcbinfo); /* * TCP statistics are stored in an array of counter(9)s, which size matches * size of struct tcpstat. TCP running connection count is a regular array. */ VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat); SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat, tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]); SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD | CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES, "TCP connection counts by TCP state"); static void tcp_vnet_init(const void *unused) { COUNTER_ARRAY_ALLOC(V_tcps_states, TCP_NSTATES, M_WAITOK); VNET_PCPUSTAT_ALLOC(tcpstat, M_WAITOK); } VNET_SYSINIT(tcp_vnet_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, tcp_vnet_init, NULL); #ifdef VIMAGE static void tcp_vnet_uninit(const void *unused) { COUNTER_ARRAY_FREE(V_tcps_states, TCP_NSTATES); VNET_PCPUSTAT_FREE(tcpstat); } VNET_SYSUNINIT(tcp_vnet_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, tcp_vnet_uninit, NULL); #endif /* VIMAGE */ /* * Kernel module interface for updating tcpstat. The first argument is an index * into tcpstat treated as an array. */ void kmod_tcpstat_add(int statnum, int val) { counter_u64_add(VNET(tcpstat)[statnum], val); } #ifdef TCP_HHOOK /* * Wrapper for the TCP established input helper hook. */ void hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) { struct tcp_hhook_data hhook_data; if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) { hhook_data.tp = tp; hhook_data.th = th; hhook_data.to = to; hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data, tp->osd); } } #endif /* * CC wrapper hook functions */ void cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs, uint16_t type) { #ifdef STATS int32_t gput; #endif INP_WLOCK_ASSERT(tp->t_inpcb); tp->ccv->nsegs = nsegs; tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th); if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) || (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) && (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2)))) tp->ccv->flags |= CCF_CWND_LIMITED; else tp->ccv->flags &= ~CCF_CWND_LIMITED; if (type == CC_ACK) { #ifdef STATS stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, ((int32_t)tp->snd_cwnd) - tp->snd_wnd); if (!IN_RECOVERY(tp->t_flags)) stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN, tp->ccv->bytes_this_ack / (tcp_maxseg(tp) * nsegs)); if ((tp->t_flags & TF_GPUTINPROG) && SEQ_GEQ(th->th_ack, tp->gput_ack)) { /* * Compute goodput in bits per millisecond. */ gput = (((int64_t)(th->th_ack - tp->gput_seq)) << 3) / max(1, tcp_ts_getticks() - tp->gput_ts); stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, gput); /* * XXXLAS: This is a temporary hack, and should be * chained off VOI_TCP_GPUT when stats(9) grows an API * to deal with chained VOIs. */ if (tp->t_stats_gput_prev > 0) stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_GPUT_ND, ((gput - tp->t_stats_gput_prev) * 100) / tp->t_stats_gput_prev); tp->t_flags &= ~TF_GPUTINPROG; tp->t_stats_gput_prev = gput; } #endif /* STATS */ if (tp->snd_cwnd > tp->snd_ssthresh) { - tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, - nsegs * V_tcp_abc_l_var * tcp_maxseg(tp)); + tp->t_bytes_acked += tp->ccv->bytes_this_ack; if (tp->t_bytes_acked >= tp->snd_cwnd) { tp->t_bytes_acked -= tp->snd_cwnd; tp->ccv->flags |= CCF_ABC_SENTAWND; } } else { tp->ccv->flags &= ~CCF_ABC_SENTAWND; tp->t_bytes_acked = 0; } } if (CC_ALGO(tp)->ack_received != NULL) { /* XXXLAS: Find a way to live without this */ tp->ccv->curack = th->th_ack; CC_ALGO(tp)->ack_received(tp->ccv, type); } #ifdef STATS stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd); #endif } void cc_conn_init(struct tcpcb *tp) { struct hc_metrics_lite metrics; struct inpcb *inp = tp->t_inpcb; u_int maxseg; int rtt; INP_WLOCK_ASSERT(tp->t_inpcb); tcp_hc_get(&inp->inp_inc, &metrics); maxseg = tcp_maxseg(tp); if (tp->t_srtt == 0 && (rtt = metrics.rmx_rtt)) { tp->t_srtt = rtt; tp->t_rttbest = tp->t_srtt + TCP_RTT_SCALE; TCPSTAT_INC(tcps_usedrtt); if (metrics.rmx_rttvar) { tp->t_rttvar = metrics.rmx_rttvar; TCPSTAT_INC(tcps_usedrttvar); } else { /* default variation is +- 1 rtt */ tp->t_rttvar = tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE; } TCPT_RANGESET(tp->t_rxtcur, ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1, tp->t_rttmin, TCPTV_REXMTMAX); } if (metrics.rmx_ssthresh) { /* * There's some sort of gateway or interface * buffer limit on the path. Use this to set * the slow start threshold, but set the * threshold to no less than 2*mss. */ tp->snd_ssthresh = max(2 * maxseg, metrics.rmx_ssthresh); TCPSTAT_INC(tcps_usedssthresh); } /* * Set the initial slow-start flight size. * * If a SYN or SYN/ACK was lost and retransmitted, we have to * reduce the initial CWND to one segment as congestion is likely * requiring us to be cautious. */ if (tp->snd_cwnd == 1) tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */ else tp->snd_cwnd = tcp_compute_initwnd(maxseg); if (CC_ALGO(tp)->conn_init != NULL) CC_ALGO(tp)->conn_init(tp->ccv); } void inline cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type) { u_int maxseg; INP_WLOCK_ASSERT(tp->t_inpcb); #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type); #endif switch(type) { case CC_NDUPACK: if (!IN_FASTRECOVERY(tp->t_flags)) { tp->snd_recover = tp->snd_max; if (tp->t_flags2 & TF2_ECN_PERMIT) tp->t_flags2 |= TF2_ECN_SND_CWR; } break; case CC_ECN: if (!IN_CONGRECOVERY(tp->t_flags) || /* * Allow ECN reaction on ACK to CWR, if * that data segment was also CE marked. */ SEQ_GEQ(th->th_ack, tp->snd_recover)) { EXIT_CONGRECOVERY(tp->t_flags); TCPSTAT_INC(tcps_ecn_rcwnd); tp->snd_recover = tp->snd_max + 1; if (tp->t_flags2 & TF2_ECN_PERMIT) tp->t_flags2 |= TF2_ECN_SND_CWR; } break; case CC_RTO: maxseg = tcp_maxseg(tp); tp->t_dupacks = 0; tp->t_bytes_acked = 0; EXIT_RECOVERY(tp->t_flags); tp->snd_ssthresh = max(2, min(tp->snd_wnd, tp->snd_cwnd) / 2 / maxseg) * maxseg; tp->snd_cwnd = maxseg; if (tp->t_flags2 & TF2_ECN_PERMIT) tp->t_flags2 |= TF2_ECN_SND_CWR; break; case CC_RTO_ERR: TCPSTAT_INC(tcps_sndrexmitbad); /* RTO was unnecessary, so reset everything. */ tp->snd_cwnd = tp->snd_cwnd_prev; tp->snd_ssthresh = tp->snd_ssthresh_prev; tp->snd_recover = tp->snd_recover_prev; if (tp->t_flags & TF_WASFRECOVERY) ENTER_FASTRECOVERY(tp->t_flags); if (tp->t_flags & TF_WASCRECOVERY) ENTER_CONGRECOVERY(tp->t_flags); tp->snd_nxt = tp->snd_max; tp->t_flags &= ~TF_PREVVALID; tp->t_badrxtwin = 0; break; } if (CC_ALGO(tp)->cong_signal != NULL) { if (th != NULL) tp->ccv->curack = th->th_ack; CC_ALGO(tp)->cong_signal(tp->ccv, type); } } void inline cc_post_recovery(struct tcpcb *tp, struct tcphdr *th) { INP_WLOCK_ASSERT(tp->t_inpcb); /* XXXLAS: KASSERT that we're in recovery? */ if (CC_ALGO(tp)->post_recovery != NULL) { tp->ccv->curack = th->th_ack; CC_ALGO(tp)->post_recovery(tp->ccv); } /* XXXLAS: EXIT_RECOVERY ? */ tp->t_bytes_acked = 0; } /* * Indicate whether this ack should be delayed. We can delay the ack if * following conditions are met: * - There is no delayed ack timer in progress. * - Our last ack wasn't a 0-sized window. We never want to delay * the ack that opens up a 0-sized window. * - LRO wasn't used for this segment. We make sure by checking that the * segment size is not larger than the MSS. */ #define DELAY_ACK(tp, tlen) \ ((!tcp_timer_active(tp, TT_DELACK) && \ (tp->t_flags & TF_RXWIN0SENT) == 0) && \ (tlen <= tp->t_maxseg) && \ (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN))) void inline cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos) { INP_WLOCK_ASSERT(tp->t_inpcb); if (CC_ALGO(tp)->ecnpkt_handler != NULL) { switch (iptos & IPTOS_ECN_MASK) { case IPTOS_ECN_CE: tp->ccv->flags |= CCF_IPHDR_CE; break; case IPTOS_ECN_ECT0: /* FALLTHROUGH */ case IPTOS_ECN_ECT1: /* FALLTHROUGH */ case IPTOS_ECN_NOTECT: tp->ccv->flags &= ~CCF_IPHDR_CE; break; } if (th->th_flags & TH_CWR) tp->ccv->flags |= CCF_TCPHDR_CWR; else tp->ccv->flags &= ~CCF_TCPHDR_CWR; CC_ALGO(tp)->ecnpkt_handler(tp->ccv); if (tp->ccv->flags & CCF_ACKNOW) { tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); tp->t_flags |= TF_ACKNOW; } } } /* * TCP input handling is split into multiple parts: * tcp6_input is a thin wrapper around tcp_input for the extended * ip6_protox[] call format in ip6_input * tcp_input handles primary segment validation, inpcb lookup and * SYN processing on listen sockets * tcp_do_segment processes the ACK and text of the segment for * establishing, established and closing connections */ #ifdef INET6 int tcp6_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m; struct in6_ifaddr *ia6; struct ip6_hdr *ip6; m = *mp; if (m->m_len < *offp + sizeof(struct tcphdr)) { m = m_pullup(m, *offp + sizeof(struct tcphdr)); if (m == NULL) { *mp = m; TCPSTAT_INC(tcps_rcvshort); return (IPPROTO_DONE); } } /* * draft-itojun-ipv6-tcp-to-anycast * better place to put this in? */ ip6 = mtod(m, struct ip6_hdr *); ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */); if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) { ifa_free(&ia6->ia_ifa); icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); *mp = NULL; return (IPPROTO_DONE); } if (ia6) ifa_free(&ia6->ia_ifa); *mp = m; return (tcp_input(mp, offp, proto)); } #endif /* INET6 */ int tcp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m = *mp; struct tcphdr *th = NULL; struct ip *ip = NULL; struct inpcb *inp = NULL; struct tcpcb *tp = NULL; struct socket *so = NULL; u_char *optp = NULL; int off0; int optlen = 0; #ifdef INET int len; uint8_t ipttl; #endif int tlen = 0, off; int drop_hdrlen; int thflags; int rstreason = 0; /* For badport_bandlim accounting purposes */ uint8_t iptos; struct m_tag *fwd_tag = NULL; #ifdef INET6 struct ip6_hdr *ip6 = NULL; int isipv6; #else const void *ip6 = NULL; #endif /* INET6 */ struct tcpopt to; /* options in this segment */ char *s = NULL; /* address and port logging */ #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif NET_EPOCH_ASSERT(); #ifdef INET6 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; #endif off0 = *offp; m = *mp; *mp = NULL; to.to_flags = 0; TCPSTAT_INC(tcps_rcvtotal); #ifdef INET6 if (isipv6) { ip6 = mtod(m, struct ip6_hdr *); th = (struct tcphdr *)((caddr_t)ip6 + off0); tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) th->th_sum = m->m_pkthdr.csum_data; else th->th_sum = in6_cksum_pseudo(ip6, tlen, IPPROTO_TCP, m->m_pkthdr.csum_data); th->th_sum ^= 0xffff; } else th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen); if (th->th_sum) { TCPSTAT_INC(tcps_rcvbadsum); goto drop; } /* * Be proactive about unspecified IPv6 address in source. * As we use all-zero to indicate unbounded/unconnected pcb, * unspecified IPv6 address can be used to confuse us. * * Note that packets with unspecified IPv6 destination is * already dropped in ip6_input. */ if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { /* XXX stat */ goto drop; } iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff; } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { /* * Get IP and TCP header together in first mbuf. * Note: IP leaves IP header in first mbuf. */ if (off0 > sizeof (struct ip)) { ip_stripoptions(m); off0 = sizeof(struct ip); } if (m->m_len < sizeof (struct tcpiphdr)) { if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == NULL) { TCPSTAT_INC(tcps_rcvshort); return (IPPROTO_DONE); } } ip = mtod(m, struct ip *); th = (struct tcphdr *)((caddr_t)ip + off0); tlen = ntohs(ip->ip_len) - off0; iptos = ip->ip_tos; if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) th->th_sum = m->m_pkthdr.csum_data; else th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data + tlen + IPPROTO_TCP)); th->th_sum ^= 0xffff; } else { struct ipovly *ipov = (struct ipovly *)ip; /* * Checksum extended TCP header and data. */ len = off0 + tlen; ipttl = ip->ip_ttl; bzero(ipov->ih_x1, sizeof(ipov->ih_x1)); ipov->ih_len = htons(tlen); th->th_sum = in_cksum(m, len); /* Reset length for SDT probes. */ ip->ip_len = htons(len); /* Reset TOS bits */ ip->ip_tos = iptos; /* Re-initialization for later version check */ ip->ip_ttl = ipttl; ip->ip_v = IPVERSION; ip->ip_hl = off0 >> 2; } if (th->th_sum) { TCPSTAT_INC(tcps_rcvbadsum); goto drop; } } #endif /* INET */ /* * Check that TCP offset makes sense, * pull out TCP options and adjust length. XXX */ off = th->th_off << 2; if (off < sizeof (struct tcphdr) || off > tlen) { TCPSTAT_INC(tcps_rcvbadoff); goto drop; } tlen -= off; /* tlen is used instead of ti->ti_len */ if (off > sizeof (struct tcphdr)) { #ifdef INET6 if (isipv6) { if (m->m_len < off0 + off) { m = m_pullup(m, off0 + off); if (m == NULL) { TCPSTAT_INC(tcps_rcvshort); return (IPPROTO_DONE); } } ip6 = mtod(m, struct ip6_hdr *); th = (struct tcphdr *)((caddr_t)ip6 + off0); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { if (m->m_len < sizeof(struct ip) + off) { if ((m = m_pullup(m, sizeof (struct ip) + off)) == NULL) { TCPSTAT_INC(tcps_rcvshort); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); th = (struct tcphdr *)((caddr_t)ip + off0); } } #endif optlen = off - sizeof (struct tcphdr); optp = (u_char *)(th + 1); } thflags = th->th_flags; /* * Convert TCP protocol specific fields to host format. */ tcp_fields_to_host(th); /* * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options. */ drop_hdrlen = off0 + off; /* * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ if ( #ifdef INET6 (isipv6 && (m->m_flags & M_IP6_NEXTHOP)) #ifdef INET || (!isipv6 && (m->m_flags & M_IP_NEXTHOP)) #endif #endif #if defined(INET) && !defined(INET6) (m->m_flags & M_IP_NEXTHOP) #endif ) fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL); findpcb: #ifdef INET6 if (isipv6 && fwd_tag != NULL) { struct sockaddr_in6 *next_hop6; next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1); /* * Transparently forwarded. Pretend to be the destination. * Already got one like this? */ inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport, INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src, th->th_sport, &next_hop6->sin6_addr, next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) : th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif); } } else if (isipv6) { inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET if (fwd_tag != NULL) { struct sockaddr_in *next_hop; next_hop = (struct sockaddr_in *)(fwd_tag+1); /* * Transparently forwarded. Pretend to be the destination. * already got one like this? */ inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport, ip->ip_dst, th->th_dport, INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); if (!inp) { /* * It's new. Try to find the ambushing socket. * Because we've rewritten the destination address, * any hardware-generated hash is ignored. */ inp = in_pcblookup(&V_tcbinfo, ip->ip_src, th->th_sport, next_hop->sin_addr, next_hop->sin_port ? ntohs(next_hop->sin_port) : th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif); } } else inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport, ip->ip_dst, th->th_dport, INPLOOKUP_WILDCARD | INPLOOKUP_WLOCKPCB, m->m_pkthdr.rcvif, m); #endif /* INET */ /* * If the INPCB does not exist then all data in the incoming * segment is discarded and an appropriate RST is sent back. * XXX MRT Send RST using which routing table? */ if (inp == NULL) { /* * Log communication attempts to ports that are not * in use. */ if ((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) || V_tcp_log_in_vain == 2) { if ((s = tcp_log_vain(NULL, th, (void *)ip, ip6))) log(LOG_INFO, "%s; %s: Connection attempt " "to closed port\n", s, __func__); } /* * When blackholing do not respond with a RST but * completely ignore the segment and drop it. */ if ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole == 2) goto dropunlock; rstreason = BANDLIM_RST_CLOSEDPORT; goto dropwithreset; } INP_WLOCK_ASSERT(inp); /* * While waiting for inp lock during the lookup, another thread * can have dropped the inpcb, in which case we need to loop back * and try to find a new inpcb to deliver to. */ if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); inp = NULL; goto findpcb; } if ((inp->inp_flowtype == M_HASHTYPE_NONE) && (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) && ((inp->inp_socket == NULL) || (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0)) { inp->inp_flowid = m->m_pkthdr.flowid; inp->inp_flowtype = M_HASHTYPE_GET(m); } #if defined(IPSEC) || defined(IPSEC_SUPPORT) #ifdef INET6 if (isipv6 && IPSEC_ENABLED(ipv6) && IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) { goto dropunlock; } #ifdef INET else #endif #endif /* INET6 */ #ifdef INET if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) { goto dropunlock; } #endif /* INET */ #endif /* IPSEC */ /* * Check the minimum TTL for socket. */ if (inp->inp_ip_minttl != 0) { #ifdef INET6 if (isipv6) { if (inp->inp_ip_minttl > ip6->ip6_hlim) goto dropunlock; } else #endif if (inp->inp_ip_minttl > ip->ip_ttl) goto dropunlock; } /* * A previous connection in TIMEWAIT state is supposed to catch stray * or duplicate segments arriving late. If this segment was a * legitimate new connection attempt, the old INPCB gets removed and * we can try again to find a listening socket. * * At this point, due to earlier optimism, we may hold only an inpcb * lock, and not the inpcbinfo write lock. If so, we need to try to * acquire it, or if that fails, acquire a reference on the inpcb, * drop all locks, acquire a global write lock, and then re-acquire * the inpcb lock. We may at that point discover that another thread * has tried to free the inpcb, in which case we need to loop back * and try to find a new inpcb to deliver to. * * XXXRW: It may be time to rethink timewait locking. */ if (inp->inp_flags & INP_TIMEWAIT) { if (thflags & TH_SYN) tcp_dooptions(&to, optp, optlen, TO_SYN); /* * NB: tcp_twcheck unlocks the INP and frees the mbuf. */ if (tcp_twcheck(inp, &to, th, m, tlen)) goto findpcb; return (IPPROTO_DONE); } /* * The TCPCB may no longer exist if the connection is winding * down or it is in the CLOSED state. Either way we drop the * segment and send an appropriate response. */ tp = intotcpcb(inp); if (tp == NULL || tp->t_state == TCPS_CLOSED) { rstreason = BANDLIM_RST_CLOSEDPORT; goto dropwithreset; } #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { tcp_offload_input(tp, m); m = NULL; /* consumed by the TOE driver */ goto dropunlock; } #endif #ifdef MAC INP_WLOCK_ASSERT(inp); if (mac_inpcb_check_deliver(inp, m)) goto dropunlock; #endif so = inp->inp_socket; KASSERT(so != NULL, ("%s: so == NULL", __func__)); #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) { ostate = tp->t_state; #ifdef INET6 if (isipv6) { bcopy((char *)ip6, (char *)tcp_saveipgen, sizeof(*ip6)); } else #endif bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); tcp_savetcp = *th; } #endif /* TCPDEBUG */ /* * When the socket is accepting connections (the INPCB is in LISTEN * state) we look into the SYN cache if this is a new connection * attempt or the completion of a previous one. */ KASSERT(tp->t_state == TCPS_LISTEN || !(so->so_options & SO_ACCEPTCONN), ("%s: so accepting but tp %p not listening", __func__, tp)); if (tp->t_state == TCPS_LISTEN && (so->so_options & SO_ACCEPTCONN)) { struct in_conninfo inc; bzero(&inc, sizeof(inc)); #ifdef INET6 if (isipv6) { inc.inc_flags |= INC_ISIPV6; if (inp->inp_inc.inc_flags & INC_IPV6MINMTU) inc.inc_flags |= INC_IPV6MINMTU; inc.inc6_faddr = ip6->ip6_src; inc.inc6_laddr = ip6->ip6_dst; } else #endif { inc.inc_faddr = ip->ip_src; inc.inc_laddr = ip->ip_dst; } inc.inc_fport = th->th_sport; inc.inc_lport = th->th_dport; inc.inc_fibnum = so->so_fibnum; /* * Check for an existing connection attempt in syncache if * the flag is only ACK. A successful lookup creates a new * socket appended to the listen queue in SYN_RECEIVED state. */ if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) { /* * Parse the TCP options here because * syncookies need access to the reflected * timestamp. */ tcp_dooptions(&to, optp, optlen, 0); /* * NB: syncache_expand() doesn't unlock * inp and tcpinfo locks. */ rstreason = syncache_expand(&inc, &to, th, &so, m); if (rstreason < 0) { /* * A failing TCP MD5 signature comparison * must result in the segment being dropped * and must not produce any response back * to the sender. */ goto dropunlock; } else if (rstreason == 0) { /* * No syncache entry or ACK was not * for our SYN/ACK. Send a RST. * NB: syncache did its own logging * of the failure cause. */ rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } tfo_socket_result: if (so == NULL) { /* * We completed the 3-way handshake * but could not allocate a socket * either due to memory shortage, * listen queue length limits or * global socket limits. Send RST * or wait and have the remote end * retransmit the ACK for another * try. */ if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Socket allocation failed due to " "limits or memory shortage, %s\n", s, __func__, V_tcp_sc_rst_sock_fail ? "sending RST" : "try again"); if (V_tcp_sc_rst_sock_fail) { rstreason = BANDLIM_UNLIMITED; goto dropwithreset; } else goto dropunlock; } /* * Socket is created in state SYN_RECEIVED. * Unlock the listen socket, lock the newly * created socket and update the tp variable. */ INP_WUNLOCK(inp); /* listen socket */ inp = sotoinpcb(so); /* * New connection inpcb is already locked by * syncache_expand(). */ INP_WLOCK_ASSERT(inp); tp = intotcpcb(inp); KASSERT(tp->t_state == TCPS_SYN_RECEIVED, ("%s: ", __func__)); /* * Process the segment and the data it * contains. tcp_do_segment() consumes * the mbuf chain and unlocks the inpcb. */ TCP_PROBE5(receive, NULL, tp, m, tp, th); tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos); return (IPPROTO_DONE); } /* * Segment flag validation for new connection attempts: * * Our (SYN|ACK) response was rejected. * Check with syncache and remove entry to prevent * retransmits. * * NB: syncache_chkrst does its own logging of failure * causes. */ if (thflags & TH_RST) { syncache_chkrst(&inc, th, m); goto dropunlock; } /* * We can't do anything without SYN. */ if ((thflags & TH_SYN) == 0) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "SYN is missing, segment ignored\n", s, __func__); TCPSTAT_INC(tcps_badsyn); goto dropunlock; } /* * (SYN|ACK) is bogus on a listen socket. */ if (thflags & TH_ACK) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "SYN|ACK invalid, segment rejected\n", s, __func__); syncache_badack(&inc); /* XXX: Not needed! */ TCPSTAT_INC(tcps_badsyn); rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } /* * If the drop_synfin option is enabled, drop all * segments with both the SYN and FIN bits set. * This prevents e.g. nmap from identifying the * TCP/IP stack. * XXX: Poor reasoning. nmap has other methods * and is constantly refining its stack detection * strategies. * XXX: This is a violation of the TCP specification * and was used by RFC1644. */ if ((thflags & TH_FIN) && V_drop_synfin) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "SYN|FIN segment ignored (based on " "sysctl setting)\n", s, __func__); TCPSTAT_INC(tcps_badsyn); goto dropunlock; } /* * Segment's flags are (SYN) or (SYN|FIN). * * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored * as they do not affect the state of the TCP FSM. * The data pointed to by TH_URG and th_urp is ignored. */ KASSERT((thflags & (TH_RST|TH_ACK)) == 0, ("%s: Listen socket: TH_RST or TH_ACK set", __func__)); KASSERT(thflags & (TH_SYN), ("%s: Listen socket: TH_SYN not set", __func__)); #ifdef INET6 /* * If deprecated address is forbidden, * we do not accept SYN to deprecated interface * address to prevent any new inbound connection from * getting established. * When we do not accept SYN, we send a TCP RST, * with deprecated source address (instead of dropping * it). We compromise it as it is much better for peer * to send a RST, and RST will be the final packet * for the exchange. * * If we do not forbid deprecated addresses, we accept * the SYN packet. RFC2462 does not suggest dropping * SYN in this case. * If we decipher RFC2462 5.5.4, it says like this: * 1. use of deprecated addr with existing * communication is okay - "SHOULD continue to be * used" * 2. use of it with new communication: * (2a) "SHOULD NOT be used if alternate address * with sufficient scope is available" * (2b) nothing mentioned otherwise. * Here we fall into (2b) case as we have no choice in * our source address selection - we must obey the peer. * * The wording in RFC2462 is confusing, and there are * multiple description text for deprecated address * handling - worse, they are not exactly the same. * I believe 5.5.4 is the best one, so we follow 5.5.4. */ if (isipv6 && !V_ip6_use_deprecated) { struct in6_ifaddr *ia6; ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */); if (ia6 != NULL && (ia6->ia6_flags & IN6_IFF_DEPRECATED)) { ifa_free(&ia6->ia_ifa); if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt to deprecated " "IPv6 address rejected\n", s, __func__); rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } if (ia6) ifa_free(&ia6->ia_ifa); } #endif /* INET6 */ /* * Basic sanity checks on incoming SYN requests: * Don't respond if the destination is a link layer * broadcast according to RFC1122 4.2.3.10, p. 104. * If it is from this socket it must be forged. * Don't respond if the source or destination is a * global or subnet broad- or multicast address. * Note that it is quite possible to receive unicast * link-layer packets with a broadcast IP address. Use * in_broadcast() to find them. */ if (m->m_flags & (M_BCAST|M_MCAST)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from broad- or multicast " "link layer address ignored\n", s, __func__); goto dropunlock; } #ifdef INET6 if (isipv6) { if (th->th_dport == th->th_sport && IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt to/from self " "ignored\n", s, __func__); goto dropunlock; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from/to multicast " "address ignored\n", s, __func__); goto dropunlock; } } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { if (th->th_dport == th->th_sport && ip->ip_dst.s_addr == ip->ip_src.s_addr) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from/to self " "ignored\n", s, __func__); goto dropunlock; } if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { if ((s = tcp_log_addrs(&inc, th, NULL, NULL))) log(LOG_DEBUG, "%s; %s: Listen socket: " "Connection attempt from/to broad- " "or multicast address ignored\n", s, __func__); goto dropunlock; } } #endif /* * SYN appears to be valid. Create compressed TCP state * for syncache. */ #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); tcp_dooptions(&to, optp, optlen, TO_SYN); if (syncache_add(&inc, &to, th, inp, &so, m, NULL, NULL, iptos)) goto tfo_socket_result; /* * Entry added to syncache and mbuf consumed. * Only the listen socket is unlocked by syncache_add(). */ INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo); return (IPPROTO_DONE); } else if (tp->t_state == TCPS_LISTEN) { /* * When a listen socket is torn down the SO_ACCEPTCONN * flag is removed first while connections are drained * from the accept queue in a unlock/lock cycle of the * ACCEPT_LOCK, opening a race condition allowing a SYN * attempt go through unhandled. */ goto dropunlock; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (tp->t_flags & TF_SIGNATURE) { tcp_dooptions(&to, optp, optlen, thflags); if ((to.to_flags & TOF_SIGNATURE) == 0) { TCPSTAT_INC(tcps_sig_err_nosigopt); goto dropunlock; } if (!TCPMD5_ENABLED() || TCPMD5_INPUT(m, th, to.to_signature) != 0) goto dropunlock; } #endif TCP_PROBE5(receive, NULL, tp, m, tp, th); /* * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later * state. tcp_do_segment() always consumes the mbuf chain, unlocks * the inpcb, and unlocks pcbinfo. */ tp->t_fb->tfb_tcp_do_segment(m, th, so, tp, drop_hdrlen, tlen, iptos); return (IPPROTO_DONE); dropwithreset: TCP_PROBE5(receive, NULL, tp, m, tp, th); if (inp != NULL) { tcp_dropwithreset(m, th, tp, tlen, rstreason); INP_WUNLOCK(inp); } else tcp_dropwithreset(m, th, NULL, tlen, rstreason); m = NULL; /* mbuf chain got consumed. */ goto drop; dropunlock: if (m != NULL) TCP_PROBE5(receive, NULL, tp, m, tp, th); if (inp != NULL) INP_WUNLOCK(inp); drop: INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo); if (s != NULL) free(s, M_TCPLOG); if (m != NULL) m_freem(m); return (IPPROTO_DONE); } /* * Automatic sizing of receive socket buffer. Often the send * buffer size is not optimally adjusted to the actual network * conditions at hand (delay bandwidth product). Setting the * buffer size too small limits throughput on links with high * bandwidth and high delay (eg. trans-continental/oceanic links). * * On the receive side the socket buffer memory is only rarely * used to any significant extent. This allows us to be much * more aggressive in scaling the receive socket buffer. For * the case that the buffer space is actually used to a large * extent and we run out of kernel memory we can simply drop * the new segments; TCP on the sender will just retransmit it * later. Setting the buffer size too big may only consume too * much kernel memory if the application doesn't read() from * the socket or packet loss or reordering makes use of the * reassembly queue. * * The criteria to step up the receive buffer one notch are: * 1. Application has not set receive buffer size with * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE. * 2. the number of bytes received during 1/2 of an sRTT * is at least 3/8 of the current socket buffer size. * 3. receive buffer size has not hit maximal automatic size; * * If all of the criteria are met we increaset the socket buffer * by a 1/2 (bounded by the max). This allows us to keep ahead * of slow-start but also makes it so our peer never gets limited * by our rwnd which we then open up causing a burst. * * This algorithm does two steps per RTT at most and only if * we receive a bulk stream w/o packet losses or reorderings. * Shrinking the buffer during idle times is not necessary as * it doesn't consume any memory when idle. * * TODO: Only step up if the application is actually serving * the buffer to better manage the socket buffer resources. */ int tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int tlen) { int newsize = 0; if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) && tp->t_srtt != 0 && tp->rfbuf_ts != 0 && TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) > ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) { if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) && so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) { newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max); } TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize); /* Start over with next RTT. */ tp->rfbuf_ts = 0; tp->rfbuf_cnt = 0; } else { tp->rfbuf_cnt += tlen; /* add up */ } return (newsize); } void tcp_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int drop_hdrlen, int tlen, uint8_t iptos) { int thflags, acked, ourfinisacked, needoutput = 0, sack_changed; int rstreason, todrop, win, incforsyn = 0; uint32_t tiwin; uint16_t nsegs; char *s; struct in_conninfo *inc; struct mbuf *mfree; struct tcpopt to; int tfo_syn; #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif thflags = th->th_flags; inc = &tp->t_inpcb->inp_inc; tp->sackhint.last_sack_ack = 0; sack_changed = 0; nsegs = max(1, m->m_pkthdr.lro_nsegs); NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(tp->t_inpcb); KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", __func__)); KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", __func__)); #ifdef TCPPCAP /* Save segment, if requested. */ tcp_pcap_add(th, m, &(tp->t_inpkts)); #endif TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, tlen, NULL, true); if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: " "SYN|FIN segment ignored (based on " "sysctl setting)\n", s, __func__); free(s, M_TCPLOG); } goto drop; } /* * If a segment with the ACK-bit set arrives in the SYN-SENT state * check SEQ.ACK first. */ if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { rstreason = BANDLIM_UNLIMITED; goto dropwithreset; } /* * Segment received on connection. * Reset idle time and keep-alive timer. * XXX: This should be done after segment * validation to ignore broken/spoofed segs. */ tp->t_rcvtime = ticks; /* * Scale up the window into a 32-bit value. * For the SYN_SENT state the scale is zero. */ tiwin = th->th_win << tp->snd_scale; #ifdef STATS stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); #endif /* * TCP ECN processing. */ if (tp->t_flags2 & TF2_ECN_PERMIT) { if (thflags & TH_CWR) { tp->t_flags2 &= ~TF2_ECN_SND_ECE; tp->t_flags |= TF_ACKNOW; } switch (iptos & IPTOS_ECN_MASK) { case IPTOS_ECN_CE: tp->t_flags2 |= TF2_ECN_SND_ECE; TCPSTAT_INC(tcps_ecn_ce); break; case IPTOS_ECN_ECT0: TCPSTAT_INC(tcps_ecn_ect0); break; case IPTOS_ECN_ECT1: TCPSTAT_INC(tcps_ecn_ect1); break; } /* Process a packet differently from RFC3168. */ cc_ecnpkt_handler(tp, th, iptos); /* Congestion experienced. */ if (thflags & TH_ECE) { cc_cong_signal(tp, th, CC_ECN); } } /* * Parse options on any incoming segment. */ tcp_dooptions(&to, (u_char *)(th + 1), (th->th_off << 2) - sizeof(struct tcphdr), (thflags & TH_SYN) ? TO_SYN : 0); #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if ((tp->t_flags & TF_SIGNATURE) != 0 && (to.to_flags & TOF_SIGNATURE) == 0) { TCPSTAT_INC(tcps_sig_err_sigopt); /* XXX: should drop? */ } #endif /* * If echoed timestamp is later than the current time, * fall back to non RFC1323 RTT calculation. Normalize * timestamp if syncookies were used when this connection * was established. */ if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { to.to_tsecr -= tp->ts_offset; if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) to.to_tsecr = 0; else if (tp->t_flags & TF_PREVVALID && tp->t_badrxtwin != 0 && SEQ_LT(to.to_tsecr, tp->t_badrxtwin)) cc_cong_signal(tp, th, CC_RTO_ERR); } /* * Process options only when we get SYN/ACK back. The SYN case * for incoming connections is handled in tcp_syncache. * According to RFC1323 the window field in a SYN (i.e., a * or ) segment itself is never scaled. * XXX this is traditional behavior, may need to be cleaned up. */ if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { /* Handle parallel SYN for ECN */ if (!(thflags & TH_ACK) && ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) && ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) { tp->t_flags2 |= TF2_ECN_PERMIT; tp->t_flags2 |= TF2_ECN_SND_ECE; TCPSTAT_INC(tcps_ecn_shs); } if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) { tp->t_flags |= TF_RCVD_SCALE; tp->snd_scale = to.to_wscale; } else tp->t_flags &= ~TF_REQ_SCALE; /* * Initial send window. It will be updated with * the next incoming segment to the scaled value. */ tp->snd_wnd = th->th_win; if ((to.to_flags & TOF_TS) && (tp->t_flags & TF_REQ_TSTMP)) { tp->t_flags |= TF_RCVD_TSTMP; tp->ts_recent = to.to_tsval; tp->ts_recent_age = tcp_ts_getticks(); } else tp->t_flags &= ~TF_REQ_TSTMP; if (to.to_flags & TOF_MSS) tcp_mss(tp, to.to_mss); if ((tp->t_flags & TF_SACK_PERMIT) && (to.to_flags & TOF_SACKPERM) == 0) tp->t_flags &= ~TF_SACK_PERMIT; if (IS_FASTOPEN(tp->t_flags)) { if (to.to_flags & TOF_FASTOPEN) { uint16_t mss; if (to.to_flags & TOF_MSS) mss = to.to_mss; else if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) mss = TCP6_MSS; else mss = TCP_MSS; tcp_fastopen_update_cache(tp, mss, to.to_tfo_len, to.to_tfo_cookie); } else tcp_fastopen_disable_path(tp); } } /* * If timestamps were negotiated during SYN/ACK they should * appear on every segment during this session and vice versa. */ if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp missing, " "no action\n", s, __func__); free(s, M_TCPLOG); } } if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: Timestamp not expected, " "no action\n", s, __func__); free(s, M_TCPLOG); } } /* * Header prediction: check for the two common cases * of a uni-directional data xfer. If the packet has * no control flags, is in-sequence, the window didn't * change and we're not retransmitting, it's a * candidate. If the length is zero and the ack moved * forward, we're the sender side of the xfer. Just * free the data acked & wake any higher level process * that was blocked waiting for space. If the length * is non-zero and the ack didn't move, we're the * receiver side. If we're getting packets in-order * (the reassembly queue is empty), add the data to * the socket buffer and note that we need a delayed ack. * Make sure that the hidden state-flags are also off. * Since we check for TCPS_ESTABLISHED first, it can only * be TH_NEEDSYN. */ if (tp->t_state == TCPS_ESTABLISHED && th->th_seq == tp->rcv_nxt && (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK && tp->snd_nxt == tp->snd_max && tiwin && tiwin == tp->snd_wnd && ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && SEGQ_EMPTY(tp) && ((to.to_flags & TOF_TS) == 0 || TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) { /* * If last ACK falls within this segment's sequence numbers, * record the timestamp. * NOTE that the test is modified according to the latest * proposal of the tcplw@cray.com list (Braden 1993/04/26). */ if ((to.to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to.to_tsval; } if (tlen == 0) { if (SEQ_GT(th->th_ack, tp->snd_una) && SEQ_LEQ(th->th_ack, tp->snd_max) && !IN_RECOVERY(tp->t_flags) && (to.to_flags & TOF_SACK) == 0 && TAILQ_EMPTY(&tp->snd_holes)) { /* * This is a pure ack for outstanding data. */ TCPSTAT_INC(tcps_predack); /* * "bad retransmit" recovery without timestamps. */ if ((to.to_flags & TOF_TS) == 0 && tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID && (int)(ticks - tp->t_badrxtwin) < 0) { cc_cong_signal(tp, th, CC_RTO_ERR); } /* * Recalculate the transmit timer / rtt. * * Some boxes send broken timestamp replies * during the SYN+ACK phase, ignore * timestamps of 0 or we could calculate a * huge RTT and blow up the retransmit timer. */ if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) { uint32_t t; t = tcp_ts_getticks() - to.to_tsecr; if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1); } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime) tp->t_rttlow = ticks - tp->t_rtttime; tcp_xmit_timer(tp, ticks - tp->t_rtttime); } acked = BYTES_THIS_ACK(tp, th); #ifdef TCP_HHOOK /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ hhook_run_tcp_est_in(tp, th, &to); #endif TCPSTAT_ADD(tcps_rcvackpack, nsegs); TCPSTAT_ADD(tcps_rcvackbyte, acked); sbdrop(&so->so_snd, acked); if (SEQ_GT(tp->snd_una, tp->snd_recover) && SEQ_LEQ(th->th_ack, tp->snd_recover)) tp->snd_recover = th->th_ack - 1; /* * Let the congestion control algorithm update * congestion control related information. This * typically means increasing the congestion * window. */ cc_ack_received(tp, th, nsegs, CC_ACK); tp->snd_una = th->th_ack; /* * Pull snd_wl2 up to prevent seq wrap relative * to th_ack. */ tp->snd_wl2 = th->th_ack; tp->t_dupacks = 0; m_freem(m); /* * If all outstanding data are acked, stop * retransmit timer, otherwise restart timer * using current (possibly backed-off) value. * If process is waiting for space, * wakeup/selwakeup/signal. If data * are ready to send, let tcp_output * decide between more output or persist. */ #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); if (tp->snd_una == tp->snd_max) tcp_timer_activate(tp, TT_REXMT, 0); else if (!tcp_timer_active(tp, TT_PERSIST)) tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); sowwakeup(so); if (sbavail(&so->so_snd)) (void) tp->t_fb->tfb_tcp_output(tp); goto check_delack; } } else if (th->th_ack == tp->snd_una && tlen <= sbspace(&so->so_rcv)) { int newsize = 0; /* automatic sockbuf scaling */ /* * This is a pure, in-sequence data packet with * nothing on the reassembly queue and we have enough * buffer space to take it. */ /* Clean receiver SACK report if present */ if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks) tcp_clean_sackreport(tp); TCPSTAT_INC(tcps_preddat); tp->rcv_nxt += tlen; if (tlen && ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && (tp->t_fbyte_in == 0)) { tp->t_fbyte_in = ticks; if (tp->t_fbyte_in == 0) tp->t_fbyte_in = 1; if (tp->t_fbyte_out && tp->t_fbyte_in) tp->t_flags2 |= TF2_FBYTES_COMPLETE; } /* * Pull snd_wl1 up to prevent seq wrap relative to * th_seq. */ tp->snd_wl1 = th->th_seq; /* * Pull rcv_up up to prevent seq wrap relative to * rcv_nxt. */ tp->rcv_up = tp->rcv_nxt; TCPSTAT_ADD(tcps_rcvpack, nsegs); TCPSTAT_ADD(tcps_rcvbyte, tlen); #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); newsize = tcp_autorcvbuf(m, th, so, tp, tlen); /* Add data to socket buffer. */ SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { m_freem(m); } else { /* * Set new socket buffer size. * Give up when limit is reached. */ if (newsize) if (!sbreserve_locked(&so->so_rcv, newsize, so, NULL)) so->so_rcv.sb_flags &= ~SB_AUTOSIZE; m_adj(m, drop_hdrlen); /* delayed header drop */ sbappendstream_locked(&so->so_rcv, m, 0); } /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); if (DELAY_ACK(tp, tlen)) { tp->t_flags |= TF_DELACK; } else { tp->t_flags |= TF_ACKNOW; tp->t_fb->tfb_tcp_output(tp); } goto check_delack; } } /* * Calculate amount of space in receive window, * and then do TCP input processing. * Receive window is amount of space in rcv queue, * but not less than advertised window. */ win = sbspace(&so->so_rcv); if (win < 0) win = 0; tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); switch (tp->t_state) { /* * If the state is SYN_RECEIVED: * if seg contains an ACK, but not for our SYN/ACK, send a RST. */ case TCPS_SYN_RECEIVED: if ((thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->snd_una) || SEQ_GT(th->th_ack, tp->snd_max))) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } if (IS_FASTOPEN(tp->t_flags)) { /* * When a TFO connection is in SYN_RECEIVED, the * only valid packets are the initial SYN, a * retransmit/copy of the initial SYN (possibly with * a subset of the original data), a valid ACK, a * FIN, or a RST. */ if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } else if (thflags & TH_SYN) { /* non-initial SYN is ignored */ if ((tcp_timer_active(tp, TT_DELACK) || tcp_timer_active(tp, TT_REXMT))) goto drop; } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) { goto drop; } } break; /* * If the state is SYN_SENT: * if seg contains a RST with valid ACK (SEQ.ACK has already * been verified), then drop the connection. * if seg contains a RST without an ACK, drop the seg. * if seg does not contain SYN, then drop the seg. * Otherwise this is an acceptable SYN segment * initialize tp->rcv_nxt and tp->irs * if seg contains ack then advance tp->snd_una * if seg contains an ECE and ECN support is enabled, the stream * is ECN capable. * if SYN has been acked change to ESTABLISHED else SYN_RCVD state * arrange for segment to be acked (eventually) * continue processing rest of data/controls, beginning with URG */ case TCPS_SYN_SENT: if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) { TCP_PROBE5(connect__refused, NULL, tp, m, tp, th); tp = tcp_drop(tp, ECONNREFUSED); } if (thflags & TH_RST) goto drop; if (!(thflags & TH_SYN)) goto drop; tp->irs = th->th_seq; tcp_rcvseqinit(tp); if (thflags & TH_ACK) { int tfo_partial_ack = 0; TCPSTAT_INC(tcps_connects); soisconnected(so); #ifdef MAC mac_socketpeer_set_from_mbuf(m, so); #endif /* Do window scaling on this connection? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; } tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale); tp->snd_una++; /* SYN is acked */ /* * If not all the data that was sent in the TFO SYN * has been acked, resend the remainder right away. */ if (IS_FASTOPEN(tp->t_flags) && (tp->snd_una != tp->snd_max)) { tp->snd_nxt = th->th_ack; tfo_partial_ack = 1; } /* * If there's data, delay ACK; if there's also a FIN * ACKNOW will be turned on later. */ if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack) tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); else tp->t_flags |= TF_ACKNOW; if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) && (V_tcp_do_ecn == 1)) { tp->t_flags2 |= TF2_ECN_PERMIT; TCPSTAT_INC(tcps_ecn_shs); } /* * Received in SYN_SENT[*] state. * Transitions: * SYN_SENT --> ESTABLISHED * SYN_SENT* --> FIN_WAIT_1 */ tp->t_starttime = ticks; if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; thflags &= ~TH_SYN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(connect__established, NULL, tp, m, tp, th); cc_conn_init(tp); tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); } } else { /* * Received initial SYN in SYN-SENT[*] state => * simultaneous open. * If it succeeds, connection is * half-synchronized. * Otherwise, do 3-way handshake: * SYN-SENT -> SYN-RECEIVED * SYN-SENT* -> SYN-RECEIVED* */ tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); tcp_timer_activate(tp, TT_REXMT, 0); tcp_state_change(tp, TCPS_SYN_RECEIVED); } INP_WLOCK_ASSERT(tp->t_inpcb); /* * Advance th->th_seq to correspond to first data byte. * If data, trim to stay within window, * dropping FIN if necessary. */ th->th_seq++; if (tlen > tp->rcv_wnd) { todrop = tlen - tp->rcv_wnd; m_adj(m, -todrop); tlen = tp->rcv_wnd; thflags &= ~TH_FIN; TCPSTAT_INC(tcps_rcvpackafterwin); TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); } tp->snd_wl1 = th->th_seq - 1; tp->rcv_up = th->th_seq; /* * Client side of transaction: already sent SYN and data. * If the remote host used T/TCP to validate the SYN, * our data will be ACK'd; if so, enter normal data segment * processing in the middle of step 5, ack processing. * Otherwise, goto step 6. */ if (thflags & TH_ACK) goto process_ACK; goto step6; /* * If the state is LAST_ACK or CLOSING or TIME_WAIT: * do normal processing. * * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. */ case TCPS_LAST_ACK: case TCPS_CLOSING: break; /* continue normal processing */ } /* * States other than LISTEN or SYN_SENT. * First check the RST flag and sequence number since reset segments * are exempt from the timestamp and connection count tests. This * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix * below which allowed reset segments in half the sequence space * to fall though and be processed (which gives forged reset * segments with a random sequence number a 50 percent chance of * killing a connection). * Then check timestamp, if present. * Then check the connection count, if present. * Then check that at least some bytes of segment are within * receive window. If segment begins before rcv_nxt, * drop leading data (and SYN); if nothing left, just ack. */ if (thflags & TH_RST) { /* * RFC5961 Section 3.2 * * - RST drops connection only if SEG.SEQ == RCV.NXT. * - If RST is in window, we send challenge ACK. * * Note: to take into account delayed ACKs, we should * test against last_ack_sent instead of rcv_nxt. * Note 2: we handle special case of closed window, not * covered by the RFC. */ if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) { KASSERT(tp->t_state != TCPS_SYN_SENT, ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p", __func__, th, tp)); if (V_tcp_insecure_rst || tp->last_ack_sent == th->th_seq) { TCPSTAT_INC(tcps_drops); /* Drop the connection. */ switch (tp->t_state) { case TCPS_SYN_RECEIVED: so->so_error = ECONNREFUSED; goto close; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: so->so_error = ECONNRESET; close: /* FALLTHROUGH */ default: tp = tcp_close(tp); } } else { TCPSTAT_INC(tcps_badrst); /* Send challenge ACK. */ tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt, tp->snd_nxt, TH_ACK); tp->last_ack_sent = tp->rcv_nxt; m = NULL; } } goto drop; } /* * RFC5961 Section 4.2 * Send challenge ACK for any SYN in synchronized state. */ if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT && tp->t_state != TCPS_SYN_RECEIVED) { TCPSTAT_INC(tcps_badsyn); if (V_tcp_insecure_syn && SEQ_GEQ(th->th_seq, tp->last_ack_sent) && SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { tp = tcp_drop(tp, ECONNRESET); rstreason = BANDLIM_UNLIMITED; } else { /* Send challenge ACK. */ tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt, tp->snd_nxt, TH_ACK); tp->last_ack_sent = tp->rcv_nxt; m = NULL; } goto drop; } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment * and it's less than ts_recent, drop it. */ if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to.to_tsval, tp->ts_recent)) { /* Check to see if ts_recent is over 24 days old. */ if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) { /* * Invalidate ts_recent. If this segment updates * ts_recent, the age will be reset later and ts_recent * will get a valid value. If it does not, setting * ts_recent to zero will at least satisfy the * requirement that zero be placed in the timestamp * echo reply when ts_recent isn't valid. The * age isn't reset until we get a valid ts_recent * because we don't want out-of-order segments to be * dropped when ts_recent is old. */ tp->ts_recent = 0; } else { TCPSTAT_INC(tcps_rcvduppack); TCPSTAT_ADD(tcps_rcvdupbyte, tlen); TCPSTAT_INC(tcps_pawsdrop); if (tlen) goto dropafterack; goto drop; } } /* * In the SYN-RECEIVED state, validate that the packet belongs to * this connection before trimming the data to fit the receive * window. Check the sequence number versus IRS since we know * the sequence numbers haven't wrapped. This is a partial fix * for the "LAND" DoS attack. */ if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } todrop = tp->rcv_nxt - th->th_seq; if (todrop > 0) { if (thflags & TH_SYN) { thflags &= ~TH_SYN; th->th_seq++; if (th->th_urp > 1) th->th_urp--; else thflags &= ~TH_URG; todrop--; } /* * Following if statement from Stevens, vol. 2, p. 960. */ if (todrop > tlen || (todrop == tlen && (thflags & TH_FIN) == 0)) { /* * Any valid FIN must be to the left of the window. * At this point the FIN must be a duplicate or out * of sequence; drop it. */ thflags &= ~TH_FIN; /* * Send an ACK to resynchronize and drop any data. * But keep on processing for RST or ACK. */ tp->t_flags |= TF_ACKNOW; todrop = tlen; TCPSTAT_INC(tcps_rcvduppack); TCPSTAT_ADD(tcps_rcvdupbyte, todrop); } else { TCPSTAT_INC(tcps_rcvpartduppack); TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop); } /* * DSACK - add SACK block for dropped range */ if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) { tcp_update_sack_list(tp, th->th_seq, th->th_seq + todrop); /* * ACK now, as the next in-sequence segment * will clear the DSACK block again */ tp->t_flags |= TF_ACKNOW; } drop_hdrlen += todrop; /* drop from the top afterwards */ th->th_seq += todrop; tlen -= todrop; if (th->th_urp > todrop) th->th_urp -= todrop; else { thflags &= ~TH_URG; th->th_urp = 0; } } /* * If new data are received on a connection after the * user processes are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tp->t_state > TCPS_CLOSE_WAIT && tlen) { if ((s = tcp_log_addrs(inc, th, NULL, NULL))) { log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data " "after socket was closed, " "sending RST and removing tcpcb\n", s, __func__, tcpstates[tp->t_state], tlen); free(s, M_TCPLOG); } tp = tcp_close(tp); TCPSTAT_INC(tcps_rcvafterclose); rstreason = BANDLIM_UNLIMITED; goto dropwithreset; } /* * If segment ends after window, drop trailing data * (and PUSH and FIN); if nothing left, just ACK. */ todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd); if (todrop > 0) { TCPSTAT_INC(tcps_rcvpackafterwin); if (todrop >= tlen) { TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen); /* * If window is closed can only take segments at * window edge, and have to drop data and PUSH from * incoming segments. Continue processing, but * remember to ack. Otherwise, drop segment * and ack. */ if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { tp->t_flags |= TF_ACKNOW; TCPSTAT_INC(tcps_rcvwinprobe); } else goto dropafterack; } else TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); m_adj(m, -todrop); tlen -= todrop; thflags &= ~(TH_PUSH|TH_FIN); } /* * If last ACK falls within this segment's sequence numbers, * record its timestamp. * NOTE: * 1) That the test incorporates suggestions from the latest * proposal of the tcplw@cray.com list (Braden 1993/04/26). * 2) That updating only on newer timestamps interferes with * our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. * 3) That we modify the segment boundary check to be * Last.ACK.Sent <= SEG.SEQ + SEG.Len * instead of RFC1323's * Last.ACK.Sent < SEG.SEQ + SEG.Len, * This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated * Vol. 2 p.869. In such cases, we can still calculate the * RTT correctly when RCV.NXT == Last.ACK.Sent. */ if ((to.to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN|TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to.to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN * flag is on (half-synchronized state), then queue data for * later processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_state == TCPS_SYN_RECEIVED || (tp->t_flags & TF_NEEDSYN)) { if (tp->t_state == TCPS_SYN_RECEIVED && IS_FASTOPEN(tp->t_flags)) { tp->snd_wnd = tiwin; cc_conn_init(tp); } goto step6; } else if (tp->t_flags & TF_ACKNOW) goto dropafterack; else goto drop; } /* * Ack processing. */ switch (tp->t_state) { /* * In SYN_RECEIVED state, the ack ACKs our SYN, so enter * ESTABLISHED state and continue processing. * The ACK was checked above. */ case TCPS_SYN_RECEIVED: TCPSTAT_INC(tcps_connects); soisconnected(so); /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; } tp->snd_wnd = tiwin; /* * Make transitions: * SYN-RECEIVED -> ESTABLISHED * SYN-RECEIVED* -> FIN-WAIT-1 */ tp->t_starttime = ticks; if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { tcp_fastopen_decrement_counter(tp->t_tfo_pending); tp->t_tfo_pending = NULL; } if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(accept__established, NULL, tp, m, tp, th); /* * TFO connections call cc_conn_init() during SYN * processing. Calling it again here for such * connections is not harmless as it would undo the * snd_cwnd reduction that occurs when a TFO SYN|ACK * is retransmitted. */ if (!IS_FASTOPEN(tp->t_flags)) cc_conn_init(tp); tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); } /* * Account for the ACK of our SYN prior to * regular ACK processing below, except for * simultaneous SYN, which is handled later. */ if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) incforsyn = 1; /* * If segment contains data or ACK, will call tcp_reass() * later; if not, do so now to pass queued data to user. */ if (tlen == 0 && (thflags & TH_FIN) == 0) (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, (struct mbuf *)0); tp->snd_wl1 = th->th_seq - 1; /* FALLTHROUGH */ /* * In ESTABLISHED state: drop duplicate ACKs; ACK out of range * ACKs. If the ack is in the range * tp->snd_una < th->th_ack <= tp->snd_max * then advance tp->snd_una to th->th_ack and drop * data from the retransmission queue. If this ACK reflects * more up to date window information we update our window information. */ case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: case TCPS_CLOSING: case TCPS_LAST_ACK: if (SEQ_GT(th->th_ack, tp->snd_max)) { TCPSTAT_INC(tcps_rcvacktoomuch); goto dropafterack; } if ((tp->t_flags & TF_SACK_PERMIT) && ((to.to_flags & TOF_SACK) || !TAILQ_EMPTY(&tp->snd_holes))) sack_changed = tcp_sack_doack(tp, &to, th->th_ack); else /* * Reset the value so that previous (valid) value * from the last ack with SACK doesn't get used. */ tp->sackhint.sacked_bytes = 0; #ifdef TCP_HHOOK /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ hhook_run_tcp_est_in(tp, th, &to); #endif if (SEQ_LEQ(th->th_ack, tp->snd_una)) { u_int maxseg; maxseg = tcp_maxseg(tp); if (tlen == 0 && (tiwin == tp->snd_wnd || (tp->t_flags & TF_SACK_PERMIT))) { /* * If this is the first time we've seen a * FIN from the remote, this is not a * duplicate and it needs to be processed * normally. This happens during a * simultaneous close. */ if ((thflags & TH_FIN) && (TCPS_HAVERCVDFIN(tp->t_state) == 0)) { tp->t_dupacks = 0; break; } TCPSTAT_INC(tcps_rcvdupack); /* * If we have outstanding data (other than * a window probe), this is a completely * duplicate ack (ie, window info didn't * change and FIN isn't set), * the ack is the biggest we've * seen and we've seen exactly our rexmt * threshold of them, assume a packet * has been dropped and retransmit it. * Kludge snd_nxt & the congestion * window so we send only this one * packet. * * We know we're losing at the current * window size so do congestion avoidance * (set ssthresh to half the current window * and pull our congestion window back to * the new ssthresh). * * Dup acks mean that packets have left the * network (they're now cached at the receiver) * so bump cwnd by the amount in the receiver * to keep a constant cwnd packets in the * network. * * When using TCP ECN, notify the peer that * we reduced the cwnd. */ /* * Following 2 kinds of acks should not affect * dupack counting: * 1) Old acks * 2) Acks with SACK but without any new SACK * information in them. These could result from * any anomaly in the network like a switch * duplicating packets or a possible DoS attack. */ if (th->th_ack != tp->snd_una || ((tp->t_flags & TF_SACK_PERMIT) && !sack_changed)) break; else if (!tcp_timer_active(tp, TT_REXMT)) tp->t_dupacks = 0; else if (++tp->t_dupacks > tcprexmtthresh || IN_FASTRECOVERY(tp->t_flags)) { cc_ack_received(tp, th, nsegs, CC_DUPACK); if ((tp->t_flags & TF_SACK_PERMIT) && IN_FASTRECOVERY(tp->t_flags)) { int awnd; /* * Compute the amount of data in flight first. * We can inject new data into the pipe iff * we have less than 1/2 the original window's * worth of data in flight. */ if (V_tcp_do_rfc6675_pipe) awnd = tcp_compute_pipe(tp); else awnd = (tp->snd_nxt - tp->snd_fack) + tp->sackhint.sack_bytes_rexmit; if (awnd < tp->snd_ssthresh) { tp->snd_cwnd += maxseg; if (tp->snd_cwnd > tp->snd_ssthresh) tp->snd_cwnd = tp->snd_ssthresh; } } else tp->snd_cwnd += maxseg; (void) tp->t_fb->tfb_tcp_output(tp); goto drop; } else if (tp->t_dupacks == tcprexmtthresh) { tcp_seq onxt = tp->snd_nxt; /* * If we're doing sack, check to * see if we're already in sack * recovery. If we're not doing sack, * check to see if we're in newreno * recovery. */ if (tp->t_flags & TF_SACK_PERMIT) { if (IN_FASTRECOVERY(tp->t_flags)) { tp->t_dupacks = 0; break; } } else { if (SEQ_LEQ(th->th_ack, tp->snd_recover)) { tp->t_dupacks = 0; break; } } /* Congestion signal before ack. */ cc_cong_signal(tp, th, CC_NDUPACK); cc_ack_received(tp, th, nsegs, CC_DUPACK); tcp_timer_activate(tp, TT_REXMT, 0); tp->t_rtttime = 0; if (tp->t_flags & TF_SACK_PERMIT) { TCPSTAT_INC( tcps_sack_recovery_episode); tp->snd_recover = tp->snd_nxt; tp->snd_cwnd = maxseg; (void) tp->t_fb->tfb_tcp_output(tp); goto drop; } tp->snd_nxt = th->th_ack; tp->snd_cwnd = maxseg; (void) tp->t_fb->tfb_tcp_output(tp); KASSERT(tp->snd_limited <= 2, ("%s: tp->snd_limited too big", __func__)); tp->snd_cwnd = tp->snd_ssthresh + maxseg * (tp->t_dupacks - tp->snd_limited); if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; goto drop; } else if (V_tcp_do_rfc3042) { /* * Process first and second duplicate * ACKs. Each indicates a segment * leaving the network, creating room * for more. Make sure we can send a * packet on reception of each duplicate * ACK by increasing snd_cwnd by one * segment. Restore the original * snd_cwnd after packet transmission. */ cc_ack_received(tp, th, nsegs, CC_DUPACK); uint32_t oldcwnd = tp->snd_cwnd; tcp_seq oldsndmax = tp->snd_max; u_int sent; int avail; KASSERT(tp->t_dupacks == 1 || tp->t_dupacks == 2, ("%s: dupacks not 1 or 2", __func__)); if (tp->t_dupacks == 1) tp->snd_limited = 0; tp->snd_cwnd = (tp->snd_nxt - tp->snd_una) + (tp->t_dupacks - tp->snd_limited) * maxseg; /* * Only call tcp_output when there * is new data available to be sent. * Otherwise we would send pure ACKs. */ SOCKBUF_LOCK(&so->so_snd); avail = sbavail(&so->so_snd) - (tp->snd_nxt - tp->snd_una); SOCKBUF_UNLOCK(&so->so_snd); if (avail > 0) (void) tp->t_fb->tfb_tcp_output(tp); sent = tp->snd_max - oldsndmax; if (sent > maxseg) { KASSERT((tp->t_dupacks == 2 && tp->snd_limited == 0) || (sent == maxseg + 1 && tp->t_flags & TF_SENTFIN), ("%s: sent too much", __func__)); tp->snd_limited = 2; } else if (sent > 0) ++tp->snd_limited; tp->snd_cwnd = oldcwnd; goto drop; } } break; } else { /* * This ack is advancing the left edge, reset the * counter. */ tp->t_dupacks = 0; /* * If this ack also has new SACK info, increment the * counter as per rfc6675. The variable * sack_changed tracks all changes to the SACK * scoreboard, including when partial ACKs without * SACK options are received, and clear the scoreboard * from the left side. Such partial ACKs should not be * counted as dupacks here. */ if ((tp->t_flags & TF_SACK_PERMIT) && (to.to_flags & TOF_SACK) && sack_changed) tp->t_dupacks++; } KASSERT(SEQ_GT(th->th_ack, tp->snd_una), ("%s: th_ack <= snd_una", __func__)); /* * If the congestion window was inflated to account * for the other side's cached packets, retract it. */ if (IN_FASTRECOVERY(tp->t_flags)) { if (SEQ_LT(th->th_ack, tp->snd_recover)) { if (tp->t_flags & TF_SACK_PERMIT) tcp_sack_partialack(tp, th); else tcp_newreno_partial_ack(tp, th); } else cc_post_recovery(tp, th); } /* * If we reach this point, ACK is not a duplicate, * i.e., it ACKs something we sent. */ if (tp->t_flags & TF_NEEDSYN) { /* * T/TCP: Connection was half-synchronized, and our * SYN has been ACK'd (so connection is now fully * synchronized). Go to non-starred state, * increment snd_una for ACK of SYN, and check if * we can do window scaling. */ tp->t_flags &= ~TF_NEEDSYN; tp->snd_una++; /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) == (TF_RCVD_SCALE|TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; /* Send window already scaled. */ } } process_ACK: INP_WLOCK_ASSERT(tp->t_inpcb); /* * Adjust for the SYN bit in sequence space, * but don't account for it in cwnd calculations. * This is for the SYN_RECEIVED, non-simultaneous * SYN case. SYN_SENT and simultaneous SYN are * treated elsewhere. */ if (incforsyn) tp->snd_una++; acked = BYTES_THIS_ACK(tp, th); KASSERT(acked >= 0, ("%s: acked unexepectedly negative " "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__, tp->snd_una, th->th_ack, tp, m)); TCPSTAT_ADD(tcps_rcvackpack, nsegs); TCPSTAT_ADD(tcps_rcvackbyte, acked); /* * If we just performed our first retransmit, and the ACK * arrives within our recovery window, then it was a mistake * to do the retransmit in the first place. Recover our * original cwnd and ssthresh, and proceed to transmit where * we left off. */ if (tp->t_rxtshift == 1 && tp->t_flags & TF_PREVVALID && tp->t_badrxtwin && SEQ_LT(to.to_tsecr, tp->t_badrxtwin)) cc_cong_signal(tp, th, CC_RTO_ERR); /* * If we have a timestamp reply, update smoothed * round trip time. If no timestamp is present but * transmit timer is running and timed sequence * number was acked, update smoothed round trip time. * Since we now have an rtt measurement, cancel the * timer backoff (cf., Phil Karn's retransmit alg.). * Recompute the initial retransmit timer. * * Some boxes send broken timestamp replies * during the SYN+ACK phase, ignore * timestamps of 0 or we could calculate a * huge RTT and blow up the retransmit timer. */ if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) { uint32_t t; t = tcp_ts_getticks() - to.to_tsecr; if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1); } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) { if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime) tp->t_rttlow = ticks - tp->t_rtttime; tcp_xmit_timer(tp, ticks - tp->t_rtttime); } /* * If all outstanding data is acked, stop retransmit * timer and remember to restart (more output or persist). * If there is more data to be acked, restart retransmit * timer, using current (possibly backed-off) value. */ if (th->th_ack == tp->snd_max) { tcp_timer_activate(tp, TT_REXMT, 0); needoutput = 1; } else if (!tcp_timer_active(tp, TT_PERSIST)) tcp_timer_activate(tp, TT_REXMT, tp->t_rxtcur); /* * If no data (only SYN) was ACK'd, * skip rest of ACK processing. */ if (acked == 0) goto step6; /* * Let the congestion control algorithm update congestion * control related information. This typically means increasing * the congestion window. */ cc_ack_received(tp, th, nsegs, CC_ACK); SOCKBUF_LOCK(&so->so_snd); if (acked > sbavail(&so->so_snd)) { if (tp->snd_wnd >= sbavail(&so->so_snd)) tp->snd_wnd -= sbavail(&so->so_snd); else tp->snd_wnd = 0; mfree = sbcut_locked(&so->so_snd, (int)sbavail(&so->so_snd)); ourfinisacked = 1; } else { mfree = sbcut_locked(&so->so_snd, acked); if (tp->snd_wnd >= (uint32_t) acked) tp->snd_wnd -= acked; else tp->snd_wnd = 0; ourfinisacked = 0; } /* NB: sowwakeup_locked() does an implicit unlock. */ sowwakeup_locked(so); m_freem(mfree); /* Detect una wraparound. */ if (!IN_RECOVERY(tp->t_flags) && SEQ_GT(tp->snd_una, tp->snd_recover) && SEQ_LEQ(th->th_ack, tp->snd_recover)) tp->snd_recover = th->th_ack - 1; /* XXXLAS: Can this be moved up into cc_post_recovery? */ if (IN_RECOVERY(tp->t_flags) && SEQ_GEQ(th->th_ack, tp->snd_recover)) { EXIT_RECOVERY(tp->t_flags); } tp->snd_una = th->th_ack; if (tp->t_flags & TF_SACK_PERMIT) { if (SEQ_GT(tp->snd_una, tp->snd_recover)) tp->snd_recover = tp->snd_una; } if (SEQ_LT(tp->snd_nxt, tp->snd_una)) tp->snd_nxt = tp->snd_una; switch (tp->t_state) { /* * In FIN_WAIT_1 STATE in addition to the processing * for the ESTABLISHED state if our FIN is now acknowledged * then enter FIN_WAIT_2. */ case TCPS_FIN_WAIT_1: if (ourfinisacked) { /* * If we can't receive any more * data, then closing user can proceed. * Starting the timer is contrary to the * specification, but if we don't get a FIN * we'll hang forever. * * XXXjl: * we should release the tp also, and use a * compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } break; /* * In CLOSING STATE in addition to the processing for * the ESTABLISHED state if the ACK acknowledges our FIN * then enter the TIME-WAIT state, otherwise ignore * the segment. */ case TCPS_CLOSING: if (ourfinisacked) { tcp_twstart(tp); m_freem(m); return; } break; /* * In LAST_ACK, we may still be waiting for data to drain * and/or to be acked, as well as for the ack of our FIN. * If our FIN is now acknowledged, delete the TCB, * enter the closed state and return. */ case TCPS_LAST_ACK: if (ourfinisacked) { tp = tcp_close(tp); goto drop; } break; } } step6: INP_WLOCK_ASSERT(tp->t_inpcb); /* * Update window information. * Don't look at window if no ACK: TAC's send garbage on first SYN. */ if ((thflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { /* keep track of pure window updates */ if (tlen == 0 && tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) TCPSTAT_INC(tcps_rcvwinupd); tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; tp->snd_wl2 = th->th_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; needoutput = 1; } /* * Process segments with URG. */ if ((thflags & TH_URG) && th->th_urp && TCPS_HAVERCVDFIN(tp->t_state) == 0) { /* * This is a kludge, but if we receive and accept * random urgent pointers, we'll crash in * soreceive. It's hard to imagine someone * actually wanting to send this much urgent data. */ SOCKBUF_LOCK(&so->so_rcv); if (th->th_urp + sbavail(&so->so_rcv) > sb_max) { th->th_urp = 0; /* XXX */ thflags &= ~TH_URG; /* XXX */ SOCKBUF_UNLOCK(&so->so_rcv); /* XXX */ goto dodata; /* XXX */ } /* * If this segment advances the known urgent pointer, * then mark the data stream. This should not happen * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since * a FIN has been received from the remote side. * In these states we ignore the URG. * * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section as the original * spec states (in one of two places). */ if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { tp->rcv_up = th->th_seq + th->th_urp; so->so_oobmark = sbavail(&so->so_rcv) + (tp->rcv_up - tp->rcv_nxt) - 1; if (so->so_oobmark == 0) so->so_rcv.sb_state |= SBS_RCVATMARK; sohasoutofband(so); tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); } SOCKBUF_UNLOCK(&so->so_rcv); /* * Remove out of band data so doesn't get presented to user. * This can happen independent of advancing the URG pointer, * but if two URG's are pending at once, some out-of-band * data may creep in... ick. */ if (th->th_urp <= (uint32_t)tlen && !(so->so_options & SO_OOBINLINE)) { /* hdr drop is delayed */ tcp_pulloutofband(so, th, m, drop_hdrlen); } } else { /* * If no out of band data is expected, * pull receive urgent pointer along * with the receive window. */ if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) tp->rcv_up = tp->rcv_nxt; } dodata: /* XXX */ INP_WLOCK_ASSERT(tp->t_inpcb); /* * Process the segment text, merging it into the TCP sequencing queue, * and arranging for acknowledgment of receipt if necessary. * This process logically involves adjusting tp->rcv_wnd as data * is presented to the user (this happens in tcp_usrreq.c, * case PRU_RCVD). If a FIN has already been received on this * connection then we just ignore the text. */ tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && IS_FASTOPEN(tp->t_flags)); if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { tcp_seq save_start = th->th_seq; tcp_seq save_rnxt = tp->rcv_nxt; int save_tlen = tlen; m_adj(m, drop_hdrlen); /* delayed header drop */ /* * Insert segment which includes th into TCP reassembly queue * with control block tp. Set thflags to whether reassembly now * includes a segment with FIN. This handles the common case * inline (segment is the next to be received on an established * connection, and the queue is empty), avoiding linkage into * and removal from the queue and repetition of various * conversions. * Set DELACK for segments received in order, but ack * immediately when segments are out of order (so * fast retransmit can work). */ if (th->th_seq == tp->rcv_nxt && SEGQ_EMPTY(tp) && (TCPS_HAVEESTABLISHED(tp->t_state) || tfo_syn)) { if (DELAY_ACK(tp, tlen) || tfo_syn) tp->t_flags |= TF_DELACK; else tp->t_flags |= TF_ACKNOW; tp->rcv_nxt += tlen; if (tlen && ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && (tp->t_fbyte_in == 0)) { tp->t_fbyte_in = ticks; if (tp->t_fbyte_in == 0) tp->t_fbyte_in = 1; if (tp->t_fbyte_out && tp->t_fbyte_in) tp->t_flags2 |= TF2_FBYTES_COMPLETE; } thflags = th->th_flags & TH_FIN; TCPSTAT_INC(tcps_rcvpack); TCPSTAT_ADD(tcps_rcvbyte, tlen); SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) m_freem(m); else sbappendstream_locked(&so->so_rcv, m, 0); /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); } else { /* * XXX: Due to the header drop above "th" is * theoretically invalid by now. Fortunately * m_adj() doesn't actually frees any mbufs * when trimming from the head. */ tcp_seq temp = save_start; thflags = tcp_reass(tp, th, &temp, &tlen, m); tp->t_flags |= TF_ACKNOW; } if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) { if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { /* * DSACK actually handled in the fastpath * above. */ tcp_update_sack_list(tp, save_start, save_start + save_tlen); } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { if ((tp->rcv_numsacks >= 1) && (tp->sackblks[0].end == save_start)) { /* * Partial overlap, recorded at todrop * above. */ tcp_update_sack_list(tp, tp->sackblks[0].start, tp->sackblks[0].end); } else { tcp_update_dsack_list(tp, save_start, save_start + save_tlen); } } else if (tlen >= save_tlen) { /* Update of sackblks. */ tcp_update_dsack_list(tp, save_start, save_start + save_tlen); } else if (tlen > 0) { tcp_update_dsack_list(tp, save_start, save_start + tlen); } } #if 0 /* * Note the amount of data that peer has sent into * our window, in order to estimate the sender's * buffer size. * XXX: Unused. */ if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt); else len = so->so_rcv.sb_hiwat; #endif } else { m_freem(m); thflags &= ~TH_FIN; } /* * If FIN is received ACK the FIN and let the user know * that the connection is closing. */ if (thflags & TH_FIN) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { socantrcvmore(so); /* * If connection is half-synchronized * (ie NEEDSYN flag on) then delay ACK, * so it may be piggybacked when SYN is sent. * Otherwise, since we received a FIN then no * more input can be expected, send ACK now. */ if (tp->t_flags & TF_NEEDSYN) tp->t_flags |= TF_DELACK; else tp->t_flags |= TF_ACKNOW; tp->rcv_nxt++; } switch (tp->t_state) { /* * In SYN_RECEIVED and ESTABLISHED STATES * enter the CLOSE_WAIT state. */ case TCPS_SYN_RECEIVED: tp->t_starttime = ticks; /* FALLTHROUGH */ case TCPS_ESTABLISHED: tcp_state_change(tp, TCPS_CLOSE_WAIT); break; /* * If still in FIN_WAIT_1 STATE FIN has not been acked so * enter the CLOSING state. */ case TCPS_FIN_WAIT_1: tcp_state_change(tp, TCPS_CLOSING); break; /* * In FIN_WAIT_2 state enter the TIME_WAIT state, * starting the time-wait timer, turning off the other * standard timers. */ case TCPS_FIN_WAIT_2: tcp_twstart(tp); return; } } #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); /* * Return any desired output. */ if (needoutput || (tp->t_flags & TF_ACKNOW)) (void) tp->t_fb->tfb_tcp_output(tp); check_delack: INP_WLOCK_ASSERT(tp->t_inpcb); if (tp->t_flags & TF_DELACK) { tp->t_flags &= ~TF_DELACK; tcp_timer_activate(tp, TT_DELACK, tcp_delacktime); } INP_WUNLOCK(tp->t_inpcb); return; dropafterack: /* * Generate an ACK dropping incoming segment if it occupies * sequence space, where the ACK reflects our state. * * We can now skip the test for the RST flag since all * paths to this code happen after packets containing * RST have been dropped. * * In the SYN-RECEIVED state, don't send an ACK unless the * segment we received passes the SYN-RECEIVED ACK test. * If it fails send a RST. This breaks the loop in the * "LAND" DoS attack, and also prevents an ACK storm * between two listening ports that have been sent forged * SYN segments, each with the source address of the other. */ if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && (SEQ_GT(tp->snd_una, th->th_ack) || SEQ_GT(th->th_ack, tp->snd_max)) ) { rstreason = BANDLIM_RST_OPENPORT; goto dropwithreset; } #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); tp->t_flags |= TF_ACKNOW; (void) tp->t_fb->tfb_tcp_output(tp); INP_WUNLOCK(tp->t_inpcb); m_freem(m); return; dropwithreset: if (tp != NULL) { tcp_dropwithreset(m, th, tp, tlen, rstreason); INP_WUNLOCK(tp->t_inpcb); } else tcp_dropwithreset(m, th, NULL, tlen, rstreason); return; drop: /* * Drop space held by incoming segment and return. */ #ifdef TCPDEBUG if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif TCP_PROBE3(debug__input, tp, th, m); if (tp != NULL) INP_WUNLOCK(tp->t_inpcb); m_freem(m); } /* * Issue RST and make ACK acceptable to originator of segment. * The mbuf must still include the original packet header. * tp may be NULL. */ void tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int tlen, int rstreason) { #ifdef INET struct ip *ip; #endif #ifdef INET6 struct ip6_hdr *ip6; #endif if (tp != NULL) { INP_WLOCK_ASSERT(tp->t_inpcb); } /* Don't bother if destination was broadcast/multicast. */ if ((th->th_flags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) goto drop; #ifdef INET6 if (mtod(m, struct ip *)->ip_v == 6) { ip6 = mtod(m, struct ip6_hdr *); if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) goto drop; /* IPv6 anycast check is done at tcp6_input() */ } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { ip = mtod(m, struct ip *); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) goto drop; } #endif /* Perform bandwidth limiting. */ if (badport_bandlim(rstreason) < 0) goto drop; /* tcp_respond consumes the mbuf chain. */ if (th->th_flags & TH_ACK) { tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack, TH_RST); } else { if (th->th_flags & TH_SYN) tlen++; if (th->th_flags & TH_FIN) tlen++; tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, (tcp_seq)0, TH_RST|TH_ACK); } return; drop: m_freem(m); } /* * Parse TCP options and place in tcpopt. */ void tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags) { int opt, optlen; to->to_flags = 0; for (; cnt > 0; cnt -= optlen, cp += optlen) { opt = cp[0]; if (opt == TCPOPT_EOL) break; if (opt == TCPOPT_NOP) optlen = 1; else { if (cnt < 2) break; optlen = cp[1]; if (optlen < 2 || optlen > cnt) break; } switch (opt) { case TCPOPT_MAXSEG: if (optlen != TCPOLEN_MAXSEG) continue; if (!(flags & TO_SYN)) continue; to->to_flags |= TOF_MSS; bcopy((char *)cp + 2, (char *)&to->to_mss, sizeof(to->to_mss)); to->to_mss = ntohs(to->to_mss); break; case TCPOPT_WINDOW: if (optlen != TCPOLEN_WINDOW) continue; if (!(flags & TO_SYN)) continue; to->to_flags |= TOF_SCALE; to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT); break; case TCPOPT_TIMESTAMP: if (optlen != TCPOLEN_TIMESTAMP) continue; to->to_flags |= TOF_TS; bcopy((char *)cp + 2, (char *)&to->to_tsval, sizeof(to->to_tsval)); to->to_tsval = ntohl(to->to_tsval); bcopy((char *)cp + 6, (char *)&to->to_tsecr, sizeof(to->to_tsecr)); to->to_tsecr = ntohl(to->to_tsecr); break; case TCPOPT_SIGNATURE: /* * In order to reply to a host which has set the * TCP_SIGNATURE option in its initial SYN, we have * to record the fact that the option was observed * here for the syncache code to perform the correct * response. */ if (optlen != TCPOLEN_SIGNATURE) continue; to->to_flags |= TOF_SIGNATURE; to->to_signature = cp + 2; break; case TCPOPT_SACK_PERMITTED: if (optlen != TCPOLEN_SACK_PERMITTED) continue; if (!(flags & TO_SYN)) continue; if (!V_tcp_do_sack) continue; to->to_flags |= TOF_SACKPERM; break; case TCPOPT_SACK: if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) continue; if (flags & TO_SYN) continue; to->to_flags |= TOF_SACK; to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; to->to_sacks = cp + 2; TCPSTAT_INC(tcps_sack_rcv_blocks); break; case TCPOPT_FAST_OPEN: /* * Cookie length validation is performed by the * server side cookie checking code or the client * side cookie cache update code. */ if (!(flags & TO_SYN)) continue; if (!V_tcp_fastopen_client_enable && !V_tcp_fastopen_server_enable) continue; to->to_flags |= TOF_FASTOPEN; to->to_tfo_len = optlen - 2; to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL; break; default: continue; } } } /* * Pull out of band byte out of a segment so * it doesn't appear in the user's data queue. * It is still reflected in the segment length for * sequencing purposes. */ void tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off) { int cnt = off + th->th_urp - 1; while (cnt >= 0) { if (m->m_len > cnt) { char *cp = mtod(m, caddr_t) + cnt; struct tcpcb *tp = sototcpcb(so); INP_WLOCK_ASSERT(tp->t_inpcb); tp->t_iobc = *cp; tp->t_oobflags |= TCPOOB_HAVEDATA; bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); m->m_len--; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len--; return; } cnt -= m->m_len; m = m->m_next; if (m == NULL) break; } panic("tcp_pulloutofband"); } /* * Collect new round-trip time estimate * and update averages and current timeout. */ void tcp_xmit_timer(struct tcpcb *tp, int rtt) { int delta; INP_WLOCK_ASSERT(tp->t_inpcb); TCPSTAT_INC(tcps_rttupdated); tp->t_rttupdated++; #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt * 1000 / hz)); #endif if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) { /* * srtt is stored as fixed point with 5 bits after the * binary point (i.e., scaled by 8). The following magic * is equivalent to the smoothing algorithm in rfc793 with * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed * point). Adjust rtt to origin 0. */ delta = ((rtt - 1) << TCP_DELTA_SHIFT) - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); if ((tp->t_srtt += delta) <= 0) tp->t_srtt = 1; /* * We accumulate a smoothed rtt variance (actually, a * smoothed mean difference), then set the retransmit * timer to smoothed rtt + 4 times the smoothed variance. * rttvar is stored as fixed point with 4 bits after the * binary point (scaled by 16). The following is * equivalent to rfc793 smoothing with an alpha of .75 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces * rfc793's wired-in beta. */ if (delta < 0) delta = -delta; delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); if ((tp->t_rttvar += delta) <= 0) tp->t_rttvar = 1; if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } else { /* * No rtt measurement yet - use the unsmoothed rtt. * Set the variance to half the rtt (so our first * retransmit happens at 3*rtt). */ tp->t_srtt = rtt << TCP_RTT_SHIFT; tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } tp->t_rtttime = 0; tp->t_rxtshift = 0; /* * the retransmit should happen at rtt + 4 * rttvar. * Because of the way we do the smoothing, srtt and rttvar * will each average +1/2 tick of bias. When we compute * the retransmit timer, we want 1/2 tick of rounding and * 1 extra tick because of +-1/2 tick uncertainty in the * firing of the timer. The bias will give us exactly the * 1.5 tick we need. But, because the bias is * statistical, we have to test that we don't drop below * the minimum feasible timer (which is 2 ticks). */ TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX); /* * We received an ack for a packet that wasn't retransmitted; * it is probably safe to discard any error indications we've * received recently. This isn't quite right, but close enough * for now (a route might have failed after we sent a segment, * and the return path might not be symmetrical). */ tp->t_softerror = 0; } /* * Determine a reasonable value for maxseg size. * If the route is known, check route for mtu. * If none, use an mss that can be handled on the outgoing interface * without forcing IP to fragment. If no route is found, route has no mtu, * or the destination isn't local, use a default, hopefully conservative * size (usually 512 or the default IP max size, but no more than the mtu * of the interface), as we can't discover anything about intervening * gateways or networks. We also initialize the congestion/slow start * window to be a single segment if the destination isn't local. * While looking at the routing entry, we also initialize other path-dependent * parameters from pre-set or cached values in the routing entry. * * NOTE that resulting t_maxseg doesn't include space for TCP options or * IP options, e.g. IPSEC data, since length of this data may vary, and * thus it is calculated for every segment separately in tcp_output(). * * NOTE that this routine is only called when we process an incoming * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS * settings are handled in tcp_mssopt(). */ void tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer, struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap) { int mss = 0; uint32_t maxmtu = 0; struct inpcb *inp = tp->t_inpcb; struct hc_metrics_lite metrics; #ifdef INET6 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; size_t min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) : sizeof (struct tcpiphdr); #else const size_t min_protoh = sizeof(struct tcpiphdr); #endif INP_WLOCK_ASSERT(tp->t_inpcb); if (mtuoffer != -1) { KASSERT(offer == -1, ("%s: conflict", __func__)); offer = mtuoffer - min_protoh; } /* Initialize. */ #ifdef INET6 if (isipv6) { maxmtu = tcp_maxmtu6(&inp->inp_inc, cap); tp->t_maxseg = V_tcp_v6mssdflt; } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { maxmtu = tcp_maxmtu(&inp->inp_inc, cap); tp->t_maxseg = V_tcp_mssdflt; } #endif /* * No route to sender, stay with default mss and return. */ if (maxmtu == 0) { /* * In case we return early we need to initialize metrics * to a defined state as tcp_hc_get() would do for us * if there was no cache hit. */ if (metricptr != NULL) bzero(metricptr, sizeof(struct hc_metrics_lite)); return; } /* What have we got? */ switch (offer) { case 0: /* * Offer == 0 means that there was no MSS on the SYN * segment, in this case we use tcp_mssdflt as * already assigned to t_maxseg above. */ offer = tp->t_maxseg; break; case -1: /* * Offer == -1 means that we didn't receive SYN yet. */ /* FALLTHROUGH */ default: /* * Prevent DoS attack with too small MSS. Round up * to at least minmss. */ offer = max(offer, V_tcp_minmss); } /* * rmx information is now retrieved from tcp_hostcache. */ tcp_hc_get(&inp->inp_inc, &metrics); if (metricptr != NULL) bcopy(&metrics, metricptr, sizeof(struct hc_metrics_lite)); /* * If there's a discovered mtu in tcp hostcache, use it. * Else, use the link mtu. */ if (metrics.rmx_mtu) mss = min(metrics.rmx_mtu, maxmtu) - min_protoh; else { #ifdef INET6 if (isipv6) { mss = maxmtu - min_protoh; if (!V_path_mtu_discovery && !in6_localaddr(&inp->in6p_faddr)) mss = min(mss, V_tcp_v6mssdflt); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { mss = maxmtu - min_protoh; if (!V_path_mtu_discovery && !in_localaddr(inp->inp_faddr)) mss = min(mss, V_tcp_mssdflt); } #endif /* * XXX - The above conditional (mss = maxmtu - min_protoh) * probably violates the TCP spec. * The problem is that, since we don't know the * other end's MSS, we are supposed to use a conservative * default. But, if we do that, then MTU discovery will * never actually take place, because the conservative * default is much less than the MTUs typically seen * on the Internet today. For the moment, we'll sweep * this under the carpet. * * The conservative default might not actually be a problem * if the only case this occurs is when sending an initial * SYN with options and data to a host we've never talked * to before. Then, they will reply with an MSS value which * will get recorded and the new parameters should get * recomputed. For Further Study. */ } mss = min(mss, offer); /* * Sanity check: make sure that maxseg will be large * enough to allow some data on segments even if the * all the option space is used (40bytes). Otherwise * funny things may happen in tcp_output. * * XXXGL: shouldn't we reserve space for IP/IPv6 options? */ mss = max(mss, 64); tp->t_maxseg = mss; } void tcp_mss(struct tcpcb *tp, int offer) { int mss; uint32_t bufsize; struct inpcb *inp; struct socket *so; struct hc_metrics_lite metrics; struct tcp_ifcap cap; KASSERT(tp != NULL, ("%s: tp == NULL", __func__)); bzero(&cap, sizeof(cap)); tcp_mss_update(tp, offer, -1, &metrics, &cap); mss = tp->t_maxseg; inp = tp->t_inpcb; /* * If there's a pipesize, change the socket buffer to that size, * don't change if sb_hiwat is different than default (then it * has been changed on purpose with setsockopt). * Make the socket buffers an integral number of mss units; * if the mss is larger than the socket buffer, decrease the mss. */ so = inp->inp_socket; SOCKBUF_LOCK(&so->so_snd); if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.rmx_sendpipe) bufsize = metrics.rmx_sendpipe; else bufsize = so->so_snd.sb_hiwat; if (bufsize < mss) mss = bufsize; else { bufsize = roundup(bufsize, mss); if (bufsize > sb_max) bufsize = sb_max; if (bufsize > so->so_snd.sb_hiwat) (void)sbreserve_locked(&so->so_snd, bufsize, so, NULL); } SOCKBUF_UNLOCK(&so->so_snd); /* * Sanity check: make sure that maxseg will be large * enough to allow some data on segments even if the * all the option space is used (40bytes). Otherwise * funny things may happen in tcp_output. * * XXXGL: shouldn't we reserve space for IP/IPv6 options? */ tp->t_maxseg = max(mss, 64); SOCKBUF_LOCK(&so->so_rcv); if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.rmx_recvpipe) bufsize = metrics.rmx_recvpipe; else bufsize = so->so_rcv.sb_hiwat; if (bufsize > mss) { bufsize = roundup(bufsize, mss); if (bufsize > sb_max) bufsize = sb_max; if (bufsize > so->so_rcv.sb_hiwat) (void)sbreserve_locked(&so->so_rcv, bufsize, so, NULL); } SOCKBUF_UNLOCK(&so->so_rcv); /* Check the interface for TSO capabilities. */ if (cap.ifcap & CSUM_TSO) { tp->t_flags |= TF_TSO; tp->t_tsomax = cap.tsomax; tp->t_tsomaxsegcount = cap.tsomaxsegcount; tp->t_tsomaxsegsize = cap.tsomaxsegsize; } } /* * Determine the MSS option to send on an outgoing SYN. */ int tcp_mssopt(struct in_conninfo *inc) { int mss = 0; uint32_t thcmtu = 0; uint32_t maxmtu = 0; size_t min_protoh; KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer")); #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { mss = V_tcp_v6mssdflt; maxmtu = tcp_maxmtu6(inc, NULL); min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); } #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET { mss = V_tcp_mssdflt; maxmtu = tcp_maxmtu(inc, NULL); min_protoh = sizeof(struct tcpiphdr); } #endif #if defined(INET6) || defined(INET) thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */ #endif if (maxmtu && thcmtu) mss = min(maxmtu, thcmtu) - min_protoh; else if (maxmtu || thcmtu) mss = max(maxmtu, thcmtu) - min_protoh; return (mss); } /* * On a partial ack arrives, force the retransmission of the * next unacknowledged segment. Do not clear tp->t_dupacks. * By setting snd_nxt to ti_ack, this forces retransmission timer to * be started again. */ void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th) { tcp_seq onxt = tp->snd_nxt; uint32_t ocwnd = tp->snd_cwnd; u_int maxseg = tcp_maxseg(tp); INP_WLOCK_ASSERT(tp->t_inpcb); tcp_timer_activate(tp, TT_REXMT, 0); tp->t_rtttime = 0; tp->snd_nxt = th->th_ack; /* * Set snd_cwnd to one segment beyond acknowledged offset. * (tp->snd_una has not yet been updated when this function is called.) */ tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th); tp->t_flags |= TF_ACKNOW; (void) tp->t_fb->tfb_tcp_output(tp); tp->snd_cwnd = ocwnd; if (SEQ_GT(onxt, tp->snd_nxt)) tp->snd_nxt = onxt; /* * Partial window deflation. Relies on fact that tp->snd_una * not updated yet. */ if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th)) tp->snd_cwnd -= BYTES_THIS_ACK(tp, th); else tp->snd_cwnd = 0; tp->snd_cwnd += maxseg; } int tcp_compute_pipe(struct tcpcb *tp) { return (tp->snd_max - tp->snd_una + tp->sackhint.sack_bytes_rexmit - tp->sackhint.sacked_bytes); } uint32_t tcp_compute_initwnd(uint32_t maxseg) { /* * Calculate the Initial Window, also used as Restart Window * * RFC5681 Section 3.1 specifies the default conservative values. * RFC3390 specifies slightly more aggressive values. * RFC6928 increases it to ten segments. * Support for user specified value for initial flight size. */ if (V_tcp_initcwnd_segments) return min(V_tcp_initcwnd_segments * maxseg, max(2 * maxseg, V_tcp_initcwnd_segments * 1460)); else if (V_tcp_do_rfc3390) return min(4 * maxseg, max(2 * maxseg, 4380)); else { /* Per RFC5681 Section 3.1 */ if (maxseg > 2190) return (2 * maxseg); else if (maxseg > 1095) return (3 * maxseg); else return (4 * maxseg); } } Index: head/sys/netinet/tcp_stacks/rack.c =================================================================== --- head/sys/netinet/tcp_stacks/rack.c (revision 364753) +++ head/sys/netinet/tcp_stacks/rack.c (revision 364754) @@ -1,14979 +1,14978 @@ /*- * Copyright (c) 2016-2020 Netflix, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_tcpdebug.h" #include "opt_ratelimit.h" #include #include #include #include #ifdef TCP_HHOOK #include #endif #include #include #include #include #include #include /* for proc0 declaration */ #include #include #include #include #ifdef STATS #include #include #include /* Must come after qmath.h and tree.h */ #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES /* for logging */ #include #include #include #include #include /* required for icmp_var.h */ #include /* for ICMP_BANDLIM */ #include #include #include #include #include #define TCPOUTFLAGS #include #include #include #include #include #include #include #include #include #include #include #ifdef NETFLIX_SHARED_CWND #include #endif #ifdef TCPDEBUG #include #endif /* TCPDEBUG */ #ifdef TCP_OFFLOAD #include #endif #ifdef INET6 #include #endif #include #if defined(IPSEC) || defined(IPSEC_SUPPORT) #include #include #endif /* IPSEC */ #include #include #include #ifdef MAC #include #endif #include "sack_filter.h" #include "tcp_rack.h" #include "rack_bbr_common.h" uma_zone_t rack_zone; uma_zone_t rack_pcb_zone; #ifndef TICKS2SBT #define TICKS2SBT(__t) (tick_sbt * ((sbintime_t)(__t))) #endif struct sysctl_ctx_list rack_sysctl_ctx; struct sysctl_oid *rack_sysctl_root; #define CUM_ACKED 1 #define SACKED 2 /* * The RACK module incorporates a number of * TCP ideas that have been put out into the IETF * over the last few years: * - Matt Mathis's Rate Halving which slowly drops * the congestion window so that the ack clock can * be maintained during a recovery. * - Yuchung Cheng's RACK TCP (for which its named) that * will stop us using the number of dup acks and instead * use time as the gage of when we retransmit. * - Reorder Detection of RFC4737 and the Tail-Loss probe draft * of Dukkipati et.al. * RACK depends on SACK, so if an endpoint arrives that * cannot do SACK the state machine below will shuttle the * connection back to using the "default" TCP stack that is * in FreeBSD. * * To implement RACK the original TCP stack was first decomposed * into a functional state machine with individual states * for each of the possible TCP connection states. The do_segement * functions role in life is to mandate the connection supports SACK * initially and then assure that the RACK state matches the conenction * state before calling the states do_segment function. Each * state is simplified due to the fact that the original do_segment * has been decomposed and we *know* what state we are in (no * switches on the state) and all tests for SACK are gone. This * greatly simplifies what each state does. * * TCP output is also over-written with a new version since it * must maintain the new rack scoreboard. * */ static int32_t rack_tlp_thresh = 1; static int32_t rack_tlp_limit = 2; /* No more than 2 TLPs w-out new data */ static int32_t rack_tlp_use_greater = 1; static int32_t rack_reorder_thresh = 2; static int32_t rack_reorder_fade = 60000; /* 0 - never fade, def 60,000 * - 60 seconds */ /* Attack threshold detections */ static uint32_t rack_highest_sack_thresh_seen = 0; static uint32_t rack_highest_move_thresh_seen = 0; static int32_t rack_pkt_delay = 1; static int32_t rack_early_recovery = 1; static int32_t rack_send_a_lot_in_prr = 1; static int32_t rack_min_to = 1; /* Number of ms minimum timeout */ static int32_t rack_verbose_logging = 0; static int32_t rack_ignore_data_after_close = 1; static int32_t rack_enable_shared_cwnd = 0; static int32_t rack_limits_scwnd = 1; static int32_t rack_enable_mqueue_for_nonpaced = 0; static int32_t rack_disable_prr = 0; static int32_t use_rack_rr = 1; static int32_t rack_non_rxt_use_cr = 0; /* does a non-rxt in recovery use the configured rate (ss/ca)? */ static int32_t rack_persist_min = 250; /* 250ms */ static int32_t rack_persist_max = 2000; /* 2 Second */ static int32_t rack_sack_not_required = 0; /* set to one to allow non-sack to use rack */ static int32_t rack_default_init_window = 0; /* Use system default */ static int32_t rack_limit_time_with_srtt = 0; static int32_t rack_hw_pace_adjust = 0; /* * Currently regular tcp has a rto_min of 30ms * the backoff goes 12 times so that ends up * being a total of 122.850 seconds before a * connection is killed. */ static uint32_t rack_def_data_window = 20; static uint32_t rack_goal_bdp = 2; static uint32_t rack_min_srtts = 1; static uint32_t rack_min_measure_usec = 0; static int32_t rack_tlp_min = 10; static int32_t rack_rto_min = 30; /* 30ms same as main freebsd */ static int32_t rack_rto_max = 4000; /* 4 seconds */ static const int32_t rack_free_cache = 2; static int32_t rack_hptsi_segments = 40; static int32_t rack_rate_sample_method = USE_RTT_LOW; static int32_t rack_pace_every_seg = 0; static int32_t rack_delayed_ack_time = 200; /* 200ms */ static int32_t rack_slot_reduction = 4; static int32_t rack_wma_divisor = 8; /* For WMA calculation */ static int32_t rack_cwnd_block_ends_measure = 0; static int32_t rack_rwnd_block_ends_measure = 0; static int32_t rack_lower_cwnd_at_tlp = 0; static int32_t rack_use_proportional_reduce = 0; static int32_t rack_proportional_rate = 10; static int32_t rack_tlp_max_resend = 2; static int32_t rack_limited_retran = 0; static int32_t rack_always_send_oldest = 0; static int32_t rack_tlp_threshold_use = TLP_USE_TWO_ONE; static uint16_t rack_per_of_gp_ss = 250; /* 250 % slow-start */ static uint16_t rack_per_of_gp_ca = 200; /* 200 % congestion-avoidance */ static uint16_t rack_per_of_gp_rec = 200; /* 200 % of bw */ /* Probertt */ static uint16_t rack_per_of_gp_probertt = 60; /* 60% of bw */ static uint16_t rack_per_of_gp_lowthresh = 40; /* 40% is bottom */ static uint16_t rack_per_of_gp_probertt_reduce = 10; /* 10% reduction */ static uint16_t rack_atexit_prtt_hbp = 130; /* Clamp to 130% on exit prtt if highly buffered path */ static uint16_t rack_atexit_prtt = 130; /* Clamp to 100% on exit prtt if non highly buffered path */ static uint32_t rack_max_drain_wait = 2; /* How man gp srtt's before we give up draining */ static uint32_t rack_must_drain = 1; /* How many GP srtt's we *must* wait */ static uint32_t rack_probertt_use_min_rtt_entry = 1; /* Use the min to calculate the goal else gp_srtt */ static uint32_t rack_probertt_use_min_rtt_exit = 0; static uint32_t rack_probe_rtt_sets_cwnd = 0; static uint32_t rack_probe_rtt_safety_val = 2000000; /* No more than 2 sec in probe-rtt */ static uint32_t rack_time_between_probertt = 9600000; /* 9.6 sec in us */ static uint32_t rack_probertt_gpsrtt_cnt_mul = 0; /* How many srtt periods does probe-rtt last top fraction */ static uint32_t rack_probertt_gpsrtt_cnt_div = 0; /* How many srtt periods does probe-rtt last bottom fraction */ static uint32_t rack_min_probertt_hold = 200000; /* Equal to delayed ack time */ static uint32_t rack_probertt_filter_life = 10000000; static uint32_t rack_probertt_lower_within = 10; static uint32_t rack_min_rtt_movement = 250; /* Must move at least 250 useconds to count as a lowering */ static int32_t rack_pace_one_seg = 0; /* Shall we pace for less than 1.4Meg 1MSS at a time */ static int32_t rack_probertt_clear_is = 1; static int32_t rack_max_drain_hbp = 1; /* Extra drain times gpsrtt for highly buffered paths */ static int32_t rack_hbp_thresh = 3; /* what is the divisor max_rtt/min_rtt to decided a hbp */ /* Part of pacing */ static int32_t rack_max_per_above = 30; /* When we go to increment stop if above 100+this% */ /* Timely information */ /* Combine these two gives the range of 'no change' to bw */ /* ie the up/down provide the upper and lower bound */ static int32_t rack_gp_per_bw_mul_up = 2; /* 2% */ static int32_t rack_gp_per_bw_mul_down = 4; /* 4% */ static int32_t rack_gp_rtt_maxmul = 3; /* 3 x maxmin */ static int32_t rack_gp_rtt_minmul = 1; /* minrtt + (minrtt/mindiv) is lower rtt */ static int32_t rack_gp_rtt_mindiv = 4; /* minrtt + (minrtt * minmul/mindiv) is lower rtt */ static int32_t rack_gp_decrease_per = 20; /* 20% decrease in multipler */ static int32_t rack_gp_increase_per = 2; /* 2% increase in multipler */ static int32_t rack_per_lower_bound = 50; /* Don't allow to drop below this multiplier */ static int32_t rack_per_upper_bound_ss = 0; /* Don't allow SS to grow above this */ static int32_t rack_per_upper_bound_ca = 0; /* Don't allow CA to grow above this */ static int32_t rack_do_dyn_mul = 0; /* Are the rack gp multipliers dynamic */ static int32_t rack_gp_no_rec_chg = 1; /* Prohibit recovery from reducing it's multiplier */ static int32_t rack_timely_dec_clear = 6; /* Do we clear decrement count at a value (6)? */ static int32_t rack_timely_max_push_rise = 3; /* One round of pushing */ static int32_t rack_timely_max_push_drop = 3; /* Three round of pushing */ static int32_t rack_timely_min_segs = 4; /* 4 segment minimum */ static int32_t rack_use_max_for_nobackoff = 0; static int32_t rack_timely_int_timely_only = 0; /* do interim timely's only use the timely algo (no b/w changes)? */ static int32_t rack_timely_no_stopping = 0; static int32_t rack_down_raise_thresh = 100; static int32_t rack_req_segs = 1; /* Weird delayed ack mode */ static int32_t rack_use_imac_dack = 0; /* Rack specific counters */ counter_u64_t rack_badfr; counter_u64_t rack_badfr_bytes; counter_u64_t rack_rtm_prr_retran; counter_u64_t rack_rtm_prr_newdata; counter_u64_t rack_timestamp_mismatch; counter_u64_t rack_reorder_seen; counter_u64_t rack_paced_segments; counter_u64_t rack_unpaced_segments; counter_u64_t rack_calc_zero; counter_u64_t rack_calc_nonzero; counter_u64_t rack_saw_enobuf; counter_u64_t rack_saw_enetunreach; counter_u64_t rack_per_timer_hole; /* Tail loss probe counters */ counter_u64_t rack_tlp_tot; counter_u64_t rack_tlp_newdata; counter_u64_t rack_tlp_retran; counter_u64_t rack_tlp_retran_bytes; counter_u64_t rack_tlp_retran_fail; counter_u64_t rack_to_tot; counter_u64_t rack_to_arm_rack; counter_u64_t rack_to_arm_tlp; counter_u64_t rack_to_alloc; counter_u64_t rack_to_alloc_hard; counter_u64_t rack_to_alloc_emerg; counter_u64_t rack_to_alloc_limited; counter_u64_t rack_alloc_limited_conns; counter_u64_t rack_split_limited; counter_u64_t rack_sack_proc_all; counter_u64_t rack_sack_proc_short; counter_u64_t rack_sack_proc_restart; counter_u64_t rack_sack_attacks_detected; counter_u64_t rack_sack_attacks_reversed; counter_u64_t rack_sack_used_next_merge; counter_u64_t rack_sack_splits; counter_u64_t rack_sack_used_prev_merge; counter_u64_t rack_sack_skipped_acked; counter_u64_t rack_ack_total; counter_u64_t rack_express_sack; counter_u64_t rack_sack_total; counter_u64_t rack_move_none; counter_u64_t rack_move_some; counter_u64_t rack_used_tlpmethod; counter_u64_t rack_used_tlpmethod2; counter_u64_t rack_enter_tlp_calc; counter_u64_t rack_input_idle_reduces; counter_u64_t rack_collapsed_win; counter_u64_t rack_tlp_does_nada; counter_u64_t rack_try_scwnd; /* Temp CPU counters */ counter_u64_t rack_find_high; counter_u64_t rack_progress_drops; counter_u64_t rack_out_size[TCP_MSS_ACCT_SIZE]; counter_u64_t rack_opts_arry[RACK_OPTS_SIZE]; static void rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line); static int rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val); static int rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt); static void rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery); static struct rack_sendmap *rack_alloc(struct tcp_rack *rack); static struct rack_sendmap *rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type); static struct rack_sendmap * rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused); static void rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type); static void rack_counter_destroy(void); static int rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp); static int32_t rack_ctor(void *mem, int32_t size, void *arg, int32_t how); static void rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line); static void rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos); static void rack_dtor(void *mem, int32_t size, void *arg); static void rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm, uint32_t t, uint32_t cts); static void rack_log_alt_to_to_cancel(struct tcp_rack *rack, uint32_t flex1, uint32_t flex2, uint32_t flex3, uint32_t flex4, uint32_t flex5, uint32_t flex6, uint16_t flex7, uint8_t mod); static void rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, struct rack_sendmap *rsm); static struct rack_sendmap * rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm); static struct rack_sendmap *rack_find_lowest_rsm(struct tcp_rack *rack); static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm); static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged); static int rack_get_sockopt(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack); static void rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, int line); static uint32_t rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss); static int32_t rack_handoff_ok(struct tcpcb *tp); static int32_t rack_init(struct tcpcb *tp); static void rack_init_sysctls(void); static void rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th); static void rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts, uint8_t pass, struct rack_sendmap *hintrsm, uint32_t us_cts); static void rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm); static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm); static int32_t rack_output(struct tcpcb *tp); static uint32_t rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two); static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th); static void rack_remxt_tmr(struct tcpcb *tp); static int rack_set_sockopt(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack); static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack); static int32_t rack_stopall(struct tcpcb *tp); static void rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta); static int32_t rack_timer_active(struct tcpcb *tp, uint32_t timer_type); static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line); static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type); static uint32_t rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t ts, int32_t * lenp); static void rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t ts); static int rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack); static int32_t tcp_addrack(module_t mod, int32_t type, void *data); static int rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); static int rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); static int rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); static int rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos); static int rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); static int rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); static int rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); static int rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); static int rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos); struct rack_sendmap * tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused); static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_tim, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt); static void tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th); int32_t rack_clear_counter=0; static int sysctl_rack_clear(SYSCTL_HANDLER_ARGS) { uint32_t stat; int32_t error; error = SYSCTL_OUT(req, &rack_clear_counter, sizeof(uint32_t)); if (error || req->newptr == NULL) return error; error = SYSCTL_IN(req, &stat, sizeof(uint32_t)); if (error) return (error); if (stat == 1) { #ifdef INVARIANTS printf("Clearing RACK counters\n"); #endif counter_u64_zero(rack_badfr); counter_u64_zero(rack_badfr_bytes); counter_u64_zero(rack_rtm_prr_retran); counter_u64_zero(rack_rtm_prr_newdata); counter_u64_zero(rack_timestamp_mismatch); counter_u64_zero(rack_reorder_seen); counter_u64_zero(rack_tlp_tot); counter_u64_zero(rack_tlp_newdata); counter_u64_zero(rack_tlp_retran); counter_u64_zero(rack_tlp_retran_bytes); counter_u64_zero(rack_tlp_retran_fail); counter_u64_zero(rack_to_tot); counter_u64_zero(rack_to_arm_rack); counter_u64_zero(rack_to_arm_tlp); counter_u64_zero(rack_paced_segments); counter_u64_zero(rack_calc_zero); counter_u64_zero(rack_calc_nonzero); counter_u64_zero(rack_unpaced_segments); counter_u64_zero(rack_saw_enobuf); counter_u64_zero(rack_saw_enetunreach); counter_u64_zero(rack_per_timer_hole); counter_u64_zero(rack_to_alloc_hard); counter_u64_zero(rack_to_alloc_emerg); counter_u64_zero(rack_sack_proc_all); counter_u64_zero(rack_sack_proc_short); counter_u64_zero(rack_sack_proc_restart); counter_u64_zero(rack_to_alloc); counter_u64_zero(rack_to_alloc_limited); counter_u64_zero(rack_alloc_limited_conns); counter_u64_zero(rack_split_limited); counter_u64_zero(rack_find_high); counter_u64_zero(rack_sack_attacks_detected); counter_u64_zero(rack_sack_attacks_reversed); counter_u64_zero(rack_sack_used_next_merge); counter_u64_zero(rack_sack_used_prev_merge); counter_u64_zero(rack_sack_splits); counter_u64_zero(rack_sack_skipped_acked); counter_u64_zero(rack_ack_total); counter_u64_zero(rack_express_sack); counter_u64_zero(rack_sack_total); counter_u64_zero(rack_move_none); counter_u64_zero(rack_move_some); counter_u64_zero(rack_used_tlpmethod); counter_u64_zero(rack_used_tlpmethod2); counter_u64_zero(rack_enter_tlp_calc); counter_u64_zero(rack_progress_drops); counter_u64_zero(rack_tlp_does_nada); counter_u64_zero(rack_try_scwnd); counter_u64_zero(rack_collapsed_win); } rack_clear_counter = 0; return (0); } static void rack_init_sysctls(void) { struct sysctl_oid *rack_counters; struct sysctl_oid *rack_attack; struct sysctl_oid *rack_pacing; struct sysctl_oid *rack_timely; struct sysctl_oid *rack_timers; struct sysctl_oid *rack_tlp; struct sysctl_oid *rack_misc; struct sysctl_oid *rack_measure; struct sysctl_oid *rack_probertt; rack_attack = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "sack_attack", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Rack Sack Attack Counters and Controls"); rack_counters = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "stats", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Rack Counters"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "rate_sample_method", CTLFLAG_RW, &rack_rate_sample_method , USE_RTT_LOW, "What method should we use for rate sampling 0=high, 1=low "); /* Probe rtt related controls */ rack_probertt = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "probertt", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "ProbeRTT related Controls"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "exit_per_hpb", CTLFLAG_RW, &rack_atexit_prtt_hbp, 130, "What percentage above goodput do we clamp CA/SS to at exit on high-BDP path 110%"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "exit_per_nonhpb", CTLFLAG_RW, &rack_atexit_prtt, 130, "What percentage above goodput do we clamp CA/SS to at exit on a non high-BDP path 100%"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "gp_per_mul", CTLFLAG_RW, &rack_per_of_gp_probertt, 60, "What percentage of goodput do we pace at in probertt"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "gp_per_reduce", CTLFLAG_RW, &rack_per_of_gp_probertt_reduce, 10, "What percentage of goodput do we reduce every gp_srtt"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "gp_per_low", CTLFLAG_RW, &rack_per_of_gp_lowthresh, 40, "What percentage of goodput do we allow the multiplier to fall to"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "time_between", CTLFLAG_RW, & rack_time_between_probertt, 96000000, "How many useconds between the lowest rtt falling must past before we enter probertt"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "safety", CTLFLAG_RW, &rack_probe_rtt_safety_val, 2000000, "If not zero, provides a maximum usecond that you can stay in probertt (2sec = 2000000)"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "sets_cwnd", CTLFLAG_RW, &rack_probe_rtt_sets_cwnd, 0, "Do we set the cwnd too (if always_lower is on)"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "maxdrainsrtts", CTLFLAG_RW, &rack_max_drain_wait, 2, "Maximum number of gp_srtt's to hold in drain waiting for flight to reach goal"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "mustdrainsrtts", CTLFLAG_RW, &rack_must_drain, 1, "We must drain this many gp_srtt's waiting for flight to reach goal"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "goal_use_min_entry", CTLFLAG_RW, &rack_probertt_use_min_rtt_entry, 1, "Should we use the min-rtt to calculate the goal rtt (else gp_srtt) at entry"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "goal_use_min_exit", CTLFLAG_RW, &rack_probertt_use_min_rtt_exit, 0, "How to set cwnd at exit, 0 - dynamic, 1 - use min-rtt, 2 - use curgprtt, 3 - entry gp-rtt"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "length_div", CTLFLAG_RW, &rack_probertt_gpsrtt_cnt_div, 0, "How many recent goodput srtt periods plus hold tim does probertt last (bottom of fraction)"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "length_mul", CTLFLAG_RW, &rack_probertt_gpsrtt_cnt_mul, 0, "How many recent goodput srtt periods plus hold tim does probertt last (top of fraction)"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "holdtim_at_target", CTLFLAG_RW, &rack_min_probertt_hold, 200000, "What is the minimum time we hold probertt at target"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "filter_life", CTLFLAG_RW, &rack_probertt_filter_life, 10000000, "What is the time for the filters life in useconds"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "lower_within", CTLFLAG_RW, &rack_probertt_lower_within, 10, "If the rtt goes lower within this percentage of the time, go into probe-rtt"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "must_move", CTLFLAG_RW, &rack_min_rtt_movement, 250, "How much is the minimum movement in rtt to count as a drop for probertt purposes"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "clear_is_cnts", CTLFLAG_RW, &rack_probertt_clear_is, 1, "Do we clear I/S counts on exiting probe-rtt"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "hbp_extra_drain", CTLFLAG_RW, &rack_max_drain_hbp, 1, "How many extra drain gpsrtt's do we get in highly buffered paths"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_probertt), OID_AUTO, "hbp_threshold", CTLFLAG_RW, &rack_hbp_thresh, 3, "We are highly buffered if min_rtt_seen / max_rtt_seen > this-threshold"); /* Pacing related sysctls */ rack_pacing = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "pacing", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Pacing related Controls"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "max_pace_over", CTLFLAG_RW, &rack_max_per_above, 30, "What is the maximum allowable percentage that we can pace above (so 30 = 130% of our goal)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "pace_to_one", CTLFLAG_RW, &rack_pace_one_seg, 0, "Do we allow low b/w pacing of 1MSS instead of two"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "limit_wsrtt", CTLFLAG_RW, &rack_limit_time_with_srtt, 0, "Do we limit pacing time based on srtt"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "init_win", CTLFLAG_RW, &rack_default_init_window, 0, "Do we have a rack initial window 0 = system default"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "hw_pacing_adjust", CTLFLAG_RW, &rack_hw_pace_adjust, 0, "What percentage do we raise the MSS by (11 = 1.1%)"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "gp_per_ss", CTLFLAG_RW, &rack_per_of_gp_ss, 250, "If non zero, what percentage of goodput to pace at in slow start"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "gp_per_ca", CTLFLAG_RW, &rack_per_of_gp_ca, 150, "If non zero, what percentage of goodput to pace at in congestion avoidance"); SYSCTL_ADD_U16(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "gp_per_rec", CTLFLAG_RW, &rack_per_of_gp_rec, 200, "If non zero, what percentage of goodput to pace at in recovery"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "pace_max_seg", CTLFLAG_RW, &rack_hptsi_segments, 40, "What size is the max for TSO segments in pacing and burst mitigation"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_pacing), OID_AUTO, "burst_reduces", CTLFLAG_RW, &rack_slot_reduction, 4, "When doing only burst mitigation what is the reduce divisor"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "use_pacing", CTLFLAG_RW, &rack_pace_every_seg, 0, "If set we use pacing, if clear we use only the original burst mitigation"); rack_timely = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "timely", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Rack Timely RTT Controls"); /* Timely based GP dynmics */ SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "upper", CTLFLAG_RW, &rack_gp_per_bw_mul_up, 2, "Rack timely upper range for equal b/w (in percentage)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "lower", CTLFLAG_RW, &rack_gp_per_bw_mul_down, 4, "Rack timely lower range for equal b/w (in percentage)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "rtt_max_mul", CTLFLAG_RW, &rack_gp_rtt_maxmul, 3, "Rack timely multipler of lowest rtt for rtt_max"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "rtt_min_div", CTLFLAG_RW, &rack_gp_rtt_mindiv, 4, "Rack timely divisor used for rtt + (rtt * mul/divisor) for check for lower rtt"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "rtt_min_mul", CTLFLAG_RW, &rack_gp_rtt_minmul, 1, "Rack timely multiplier used for rtt + (rtt * mul/divisor) for check for lower rtt"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "decrease", CTLFLAG_RW, &rack_gp_decrease_per, 20, "Rack timely decrease percentage of our GP multiplication factor"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "increase", CTLFLAG_RW, &rack_gp_increase_per, 2, "Rack timely increase perentage of our GP multiplication factor"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "lowerbound", CTLFLAG_RW, &rack_per_lower_bound, 50, "Rack timely lowest percentage we allow GP multiplier to fall to"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "upperboundss", CTLFLAG_RW, &rack_per_upper_bound_ss, 0, "Rack timely higest percentage we allow GP multiplier in SS to raise to (0 is no upperbound)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "upperboundca", CTLFLAG_RW, &rack_per_upper_bound_ca, 0, "Rack timely higest percentage we allow GP multiplier to CA raise to (0 is no upperbound)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "dynamicgp", CTLFLAG_RW, &rack_do_dyn_mul, 0, "Rack timely do we enable dynmaic timely goodput by default"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "no_rec_red", CTLFLAG_RW, &rack_gp_no_rec_chg, 1, "Rack timely do we prohibit the recovery multiplier from being lowered"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "red_clear_cnt", CTLFLAG_RW, &rack_timely_dec_clear, 6, "Rack timely what threshold do we count to before another boost during b/w decent"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "max_push_rise", CTLFLAG_RW, &rack_timely_max_push_rise, 3, "Rack timely how many times do we push up with b/w increase"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "max_push_drop", CTLFLAG_RW, &rack_timely_max_push_drop, 3, "Rack timely how many times do we push back on b/w decent"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "min_segs", CTLFLAG_RW, &rack_timely_min_segs, 4, "Rack timely when setting the cwnd what is the min num segments"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "noback_max", CTLFLAG_RW, &rack_use_max_for_nobackoff, 0, "Rack timely when deciding if to backoff on a loss, do we use under max rtt else min"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "interim_timely_only", CTLFLAG_RW, &rack_timely_int_timely_only, 0, "Rack timely when doing interim timely's do we only do timely (no b/w consideration)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "nonstop", CTLFLAG_RW, &rack_timely_no_stopping, 0, "Rack timely don't stop increase"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "dec_raise_thresh", CTLFLAG_RW, &rack_down_raise_thresh, 100, "If the CA or SS is below this threshold raise on the first 3 b/w lowers (0=always)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timely), OID_AUTO, "bottom_drag_segs", CTLFLAG_RW, &rack_req_segs, 1, "Bottom dragging if not these many segments outstanding and room"); /* TLP and Rack related parameters */ rack_tlp = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "tlp", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "TLP and Rack related Controls"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "use_rrr", CTLFLAG_RW, &use_rack_rr, 1, "Do we use Rack Rapid Recovery"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "nonrxt_use_cr", CTLFLAG_RW, &rack_non_rxt_use_cr, 0, "Do we use ss/ca rate if in recovery we are transmitting a new data chunk"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "tlpmethod", CTLFLAG_RW, &rack_tlp_threshold_use, TLP_USE_TWO_ONE, "What method do we do for TLP time calc 0=no-de-ack-comp, 1=ID, 2=2.1, 3=2.2"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "limit", CTLFLAG_RW, &rack_tlp_limit, 2, "How many TLP's can be sent without sending new data"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "use_greater", CTLFLAG_RW, &rack_tlp_use_greater, 1, "Should we use the rack_rtt time if its greater than srtt"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "tlpminto", CTLFLAG_RW, &rack_tlp_min, 10, "TLP minimum timeout per the specification (10ms)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "send_oldest", CTLFLAG_RW, &rack_always_send_oldest, 0, "Should we always send the oldest TLP and RACK-TLP"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "rack_tlimit", CTLFLAG_RW, &rack_limited_retran, 0, "How many times can a rack timeout drive out sends"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "tlp_retry", CTLFLAG_RW, &rack_tlp_max_resend, 2, "How many times does TLP retry a single segment or multiple with no ACK"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "tlp_cwnd_flag", CTLFLAG_RW, &rack_lower_cwnd_at_tlp, 0, "When a TLP completes a retran should we enter recovery"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "reorder_thresh", CTLFLAG_RW, &rack_reorder_thresh, 2, "What factor for rack will be added when seeing reordering (shift right)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "rtt_tlp_thresh", CTLFLAG_RW, &rack_tlp_thresh, 1, "What divisor for TLP rtt/retran will be added (1=rtt, 2=1/2 rtt etc)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "reorder_fade", CTLFLAG_RW, &rack_reorder_fade, 0, "Does reorder detection fade, if so how many ms (0 means never)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_tlp), OID_AUTO, "pktdelay", CTLFLAG_RW, &rack_pkt_delay, 1, "Extra RACK time (in ms) besides reordering thresh"); /* Timer related controls */ rack_timers = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "timers", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Timer related controls"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timers), OID_AUTO, "persmin", CTLFLAG_RW, &rack_persist_min, 250, "What is the minimum time in milliseconds between persists"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timers), OID_AUTO, "persmax", CTLFLAG_RW, &rack_persist_max, 2000, "What is the largest delay in milliseconds between persists"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timers), OID_AUTO, "delayed_ack", CTLFLAG_RW, &rack_delayed_ack_time, 200, "Delayed ack time (200ms)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timers), OID_AUTO, "minrto", CTLFLAG_RW, &rack_rto_min, 0, "Minimum RTO in ms -- set with caution below 1000 due to TLP"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timers), OID_AUTO, "maxrto", CTLFLAG_RW, &rack_rto_max, 0, "Maxiumum RTO in ms -- should be at least as large as min_rto"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_timers), OID_AUTO, "minto", CTLFLAG_RW, &rack_min_to, 1, "Minimum rack timeout in milliseconds"); /* Measure controls */ rack_measure = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "measure", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Measure related controls"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_measure), OID_AUTO, "wma_divisor", CTLFLAG_RW, &rack_wma_divisor, 8, "When doing b/w calculation what is the divisor for the WMA"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_measure), OID_AUTO, "end_cwnd", CTLFLAG_RW, &rack_cwnd_block_ends_measure, 0, "Does a cwnd just-return end the measurement window (app limited)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_measure), OID_AUTO, "end_rwnd", CTLFLAG_RW, &rack_rwnd_block_ends_measure, 0, "Does an rwnd just-return end the measurement window (app limited -- not persists)"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_measure), OID_AUTO, "min_target", CTLFLAG_RW, &rack_def_data_window, 20, "What is the minimum target window (in mss) for a GP measurements"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_measure), OID_AUTO, "goal_bdp", CTLFLAG_RW, &rack_goal_bdp, 2, "What is the goal BDP to measure"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_measure), OID_AUTO, "min_srtts", CTLFLAG_RW, &rack_min_srtts, 1, "What is the goal BDP to measure"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_measure), OID_AUTO, "min_measure_tim", CTLFLAG_RW, &rack_min_measure_usec, 0, "What is the Minimum time time for a measurement if 0, this is off"); /* Misc rack controls */ rack_misc = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "misc", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Misc related controls"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "shared_cwnd", CTLFLAG_RW, &rack_enable_shared_cwnd, 0, "Should RACK try to use the shared cwnd on connections where allowed"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "limits_on_scwnd", CTLFLAG_RW, &rack_limits_scwnd, 1, "Should RACK place low end time limits on the shared cwnd feature"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "non_paced_lro_queue", CTLFLAG_RW, &rack_enable_mqueue_for_nonpaced, 0, "Should RACK use mbuf queuing for non-paced connections"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "iMac_dack", CTLFLAG_RW, &rack_use_imac_dack, 0, "Should RACK try to emulate iMac delayed ack"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "no_prr", CTLFLAG_RW, &rack_disable_prr, 0, "Should RACK not use prr and only pace (must have pacing on)"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "bb_verbose", CTLFLAG_RW, &rack_verbose_logging, 0, "Should RACK black box logging be verbose"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "data_after_close", CTLFLAG_RW, &rack_ignore_data_after_close, 1, "Do we hold off sending a RST until all pending data is ack'd"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "no_sack_needed", CTLFLAG_RW, &rack_sack_not_required, 0, "Do we allow rack to run on connections not supporting SACK"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "recovery_loss_prop", CTLFLAG_RW, &rack_use_proportional_reduce, 0, "Should we proportionaly reduce cwnd based on the number of losses "); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "recovery_prop", CTLFLAG_RW, &rack_proportional_rate, 10, "What percent reduction per loss"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "prr_sendalot", CTLFLAG_RW, &rack_send_a_lot_in_prr, 1, "Send a lot in prr"); SYSCTL_ADD_S32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_misc), OID_AUTO, "earlyrecovery", CTLFLAG_RW, &rack_early_recovery, 1, "Do we do early recovery with rack"); /* Sack Attacker detection stuff */ SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "detect_highsackratio", CTLFLAG_RW, &rack_highest_sack_thresh_seen, 0, "Highest sack to ack ratio seen"); SYSCTL_ADD_U32(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "detect_highmoveratio", CTLFLAG_RW, &rack_highest_move_thresh_seen, 0, "Highest move to non-move ratio seen"); rack_ack_total = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "acktotal", CTLFLAG_RD, &rack_ack_total, "Total number of Ack's"); rack_express_sack = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "exp_sacktotal", CTLFLAG_RD, &rack_express_sack, "Total expresss number of Sack's"); rack_sack_total = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "sacktotal", CTLFLAG_RD, &rack_sack_total, "Total number of SACKs"); rack_move_none = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "move_none", CTLFLAG_RD, &rack_move_none, "Total number of SACK index reuse of postions under threshold"); rack_move_some = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "move_some", CTLFLAG_RD, &rack_move_some, "Total number of SACK index reuse of postions over threshold"); rack_sack_attacks_detected = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "attacks", CTLFLAG_RD, &rack_sack_attacks_detected, "Total number of SACK attackers that had sack disabled"); rack_sack_attacks_reversed = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "reversed", CTLFLAG_RD, &rack_sack_attacks_reversed, "Total number of SACK attackers that were later determined false positive"); rack_sack_used_next_merge = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "nextmerge", CTLFLAG_RD, &rack_sack_used_next_merge, "Total number of times we used the next merge"); rack_sack_used_prev_merge = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "prevmerge", CTLFLAG_RD, &rack_sack_used_prev_merge, "Total number of times we used the prev merge"); /* Counters */ rack_badfr = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "badfr", CTLFLAG_RD, &rack_badfr, "Total number of bad FRs"); rack_badfr_bytes = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "badfr_bytes", CTLFLAG_RD, &rack_badfr_bytes, "Total number of bad FRs"); rack_rtm_prr_retran = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "prrsndret", CTLFLAG_RD, &rack_rtm_prr_retran, "Total number of prr based retransmits"); rack_rtm_prr_newdata = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "prrsndnew", CTLFLAG_RD, &rack_rtm_prr_newdata, "Total number of prr based new transmits"); rack_timestamp_mismatch = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tsnf", CTLFLAG_RD, &rack_timestamp_mismatch, "Total number of timestamps that we could not find the reported ts"); rack_find_high = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "findhigh", CTLFLAG_RD, &rack_find_high, "Total number of FIN causing find-high"); rack_reorder_seen = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "reordering", CTLFLAG_RD, &rack_reorder_seen, "Total number of times we added delay due to reordering"); rack_tlp_tot = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tlp_to_total", CTLFLAG_RD, &rack_tlp_tot, "Total number of tail loss probe expirations"); rack_tlp_newdata = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tlp_new", CTLFLAG_RD, &rack_tlp_newdata, "Total number of tail loss probe sending new data"); rack_tlp_retran = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tlp_retran", CTLFLAG_RD, &rack_tlp_retran, "Total number of tail loss probe sending retransmitted data"); rack_tlp_retran_bytes = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tlp_retran_bytes", CTLFLAG_RD, &rack_tlp_retran_bytes, "Total bytes of tail loss probe sending retransmitted data"); rack_tlp_retran_fail = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tlp_retran_fail", CTLFLAG_RD, &rack_tlp_retran_fail, "Total number of tail loss probe sending retransmitted data that failed (wait for t3)"); rack_to_tot = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "rack_to_tot", CTLFLAG_RD, &rack_to_tot, "Total number of times the rack to expired"); rack_to_arm_rack = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "arm_rack", CTLFLAG_RD, &rack_to_arm_rack, "Total number of times the rack timer armed"); rack_to_arm_tlp = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "arm_tlp", CTLFLAG_RD, &rack_to_arm_tlp, "Total number of times the tlp timer armed"); rack_calc_zero = counter_u64_alloc(M_WAITOK); rack_calc_nonzero = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "calc_zero", CTLFLAG_RD, &rack_calc_zero, "Total number of times pacing time worked out to zero"); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "calc_nonzero", CTLFLAG_RD, &rack_calc_nonzero, "Total number of times pacing time worked out to non-zero"); rack_paced_segments = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "paced", CTLFLAG_RD, &rack_paced_segments, "Total number of times a segment send caused hptsi"); rack_unpaced_segments = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "unpaced", CTLFLAG_RD, &rack_unpaced_segments, "Total number of times a segment did not cause hptsi"); rack_saw_enobuf = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "saw_enobufs", CTLFLAG_RD, &rack_saw_enobuf, "Total number of times a segment did not cause hptsi"); rack_saw_enetunreach = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "saw_enetunreach", CTLFLAG_RD, &rack_saw_enetunreach, "Total number of times a segment did not cause hptsi"); rack_to_alloc = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "allocs", CTLFLAG_RD, &rack_to_alloc, "Total allocations of tracking structures"); rack_to_alloc_hard = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "allochard", CTLFLAG_RD, &rack_to_alloc_hard, "Total allocations done with sleeping the hard way"); rack_to_alloc_emerg = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "allocemerg", CTLFLAG_RD, &rack_to_alloc_emerg, "Total allocations done from emergency cache"); rack_to_alloc_limited = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "alloc_limited", CTLFLAG_RD, &rack_to_alloc_limited, "Total allocations dropped due to limit"); rack_alloc_limited_conns = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "alloc_limited_conns", CTLFLAG_RD, &rack_alloc_limited_conns, "Connections with allocations dropped due to limit"); rack_split_limited = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "split_limited", CTLFLAG_RD, &rack_split_limited, "Split allocations dropped due to limit"); rack_sack_proc_all = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "sack_long", CTLFLAG_RD, &rack_sack_proc_all, "Total times we had to walk whole list for sack processing"); rack_sack_proc_restart = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "sack_restart", CTLFLAG_RD, &rack_sack_proc_restart, "Total times we had to walk whole list due to a restart"); rack_sack_proc_short = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "sack_short", CTLFLAG_RD, &rack_sack_proc_short, "Total times we took shortcut for sack processing"); rack_enter_tlp_calc = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tlp_calc_entered", CTLFLAG_RD, &rack_enter_tlp_calc, "Total times we called calc-tlp"); rack_used_tlpmethod = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "hit_tlp_method", CTLFLAG_RD, &rack_used_tlpmethod, "Total number of runt sacks"); rack_used_tlpmethod2 = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "hit_tlp_method2", CTLFLAG_RD, &rack_used_tlpmethod2, "Total number of times we hit TLP method 2"); rack_sack_skipped_acked = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "skipacked", CTLFLAG_RD, &rack_sack_skipped_acked, "Total number of times we skipped previously sacked"); rack_sack_splits = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_attack), OID_AUTO, "ofsplit", CTLFLAG_RD, &rack_sack_splits, "Total number of times we did the old fashion tree split"); rack_progress_drops = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "prog_drops", CTLFLAG_RD, &rack_progress_drops, "Total number of progress drops"); rack_input_idle_reduces = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "idle_reduce_oninput", CTLFLAG_RD, &rack_input_idle_reduces, "Total number of idle reductions on input"); rack_collapsed_win = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "collapsed_win", CTLFLAG_RD, &rack_collapsed_win, "Total number of collapsed windows"); rack_tlp_does_nada = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tlp_nada", CTLFLAG_RD, &rack_tlp_does_nada, "Total number of nada tlp calls"); rack_try_scwnd = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "tried_scwnd", CTLFLAG_RD, &rack_try_scwnd, "Total number of scwnd attempts"); rack_per_timer_hole = counter_u64_alloc(M_WAITOK); SYSCTL_ADD_COUNTER_U64(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_counters), OID_AUTO, "timer_hole", CTLFLAG_RD, &rack_per_timer_hole, "Total persists start in timer hole"); COUNTER_ARRAY_ALLOC(rack_out_size, TCP_MSS_ACCT_SIZE, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "outsize", CTLFLAG_RD, rack_out_size, TCP_MSS_ACCT_SIZE, "MSS send sizes"); COUNTER_ARRAY_ALLOC(rack_opts_arry, RACK_OPTS_SIZE, M_WAITOK); SYSCTL_ADD_COUNTER_U64_ARRAY(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "opts", CTLFLAG_RD, rack_opts_arry, RACK_OPTS_SIZE, "RACK Option Stats"); SYSCTL_ADD_PROC(&rack_sysctl_ctx, SYSCTL_CHILDREN(rack_sysctl_root), OID_AUTO, "clear", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, &rack_clear_counter, 0, sysctl_rack_clear, "IU", "Clear counters"); } static __inline int rb_map_cmp(struct rack_sendmap *b, struct rack_sendmap *a) { if (SEQ_GEQ(b->r_start, a->r_start) && SEQ_LT(b->r_start, a->r_end)) { /* * The entry b is within the * block a. i.e.: * a -- |-------------| * b -- |----| * * b -- |------| * * b -- |-----------| */ return (0); } else if (SEQ_GEQ(b->r_start, a->r_end)) { /* * b falls as either the next * sequence block after a so a * is said to be smaller than b. * i.e: * a -- |------| * b -- |--------| * or * b -- |-----| */ return (1); } /* * Whats left is where a is * larger than b. i.e: * a -- |-------| * b -- |---| * or even possibly * b -- |--------------| */ return (-1); } RB_PROTOTYPE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); RB_GENERATE(rack_rb_tree_head, rack_sendmap, r_next, rb_map_cmp); static uint32_t rc_init_window(struct tcp_rack *rack) { uint32_t win; if (rack->rc_init_win == 0) { /* * Nothing set by the user, use the system stack * default. */ return(tcp_compute_initwnd(tcp_maxseg(rack->rc_tp))); } win = ctf_fixed_maxseg(rack->rc_tp) * rack->rc_init_win; return(win); } static uint64_t rack_get_fixed_pacing_bw(struct tcp_rack *rack) { if (IN_RECOVERY(rack->rc_tp->t_flags)) return (rack->r_ctl.rc_fixed_pacing_rate_rec); else if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) return (rack->r_ctl.rc_fixed_pacing_rate_ss); else return (rack->r_ctl.rc_fixed_pacing_rate_ca); } static uint64_t rack_get_bw(struct tcp_rack *rack) { if (rack->use_fixed_rate) { /* Return the fixed pacing rate */ return (rack_get_fixed_pacing_bw(rack)); } if (rack->r_ctl.gp_bw == 0) { /* * We have yet no b/w measurement, * if we have a user set initial bw * return it. If we don't have that and * we have an srtt, use the tcp IW (10) to * calculate a fictional b/w over the SRTT * which is more or less a guess. Note * we don't use our IW from rack on purpose * so if we have like IW=30, we are not * calculating a "huge" b/w. */ uint64_t bw, srtt; if (rack->r_ctl.init_rate) return (rack->r_ctl.init_rate); /* Has the user set a max peak rate? */ #ifdef NETFLIX_PEAKRATE if (rack->rc_tp->t_maxpeakrate) return (rack->rc_tp->t_maxpeakrate); #endif /* Ok lets come up with the IW guess, if we have a srtt */ if (rack->rc_tp->t_srtt == 0) { /* * Go with old pacing method * i.e. burst mitigation only. */ return (0); } /* Ok lets get the initial TCP win (not racks) */ bw = tcp_compute_initwnd(tcp_maxseg(rack->rc_tp)); srtt = ((uint64_t)TICKS_2_USEC(rack->rc_tp->t_srtt) >> TCP_RTT_SHIFT); bw *= (uint64_t)USECS_IN_SECOND; bw /= srtt; return (bw); } else { uint64_t bw; if(rack->r_ctl.num_avg >= RACK_REQ_AVG) { /* Averaging is done, we can return the value */ bw = rack->r_ctl.gp_bw; } else { /* Still doing initial average must calculate */ bw = rack->r_ctl.gp_bw / rack->r_ctl.num_avg; } #ifdef NETFLIX_PEAKRATE if ((rack->rc_tp->t_maxpeakrate) && (bw > rack->rc_tp->t_maxpeakrate)) { /* The user has set a peak rate to pace at * don't allow us to pace faster than that. */ return (rack->rc_tp->t_maxpeakrate); } #endif return (bw); } } static uint16_t rack_get_output_gain(struct tcp_rack *rack, struct rack_sendmap *rsm) { if (rack->use_fixed_rate) { return (100); } else if (rack->in_probe_rtt && (rsm == NULL)) return(rack->r_ctl.rack_per_of_gp_probertt); else if ((IN_RECOVERY(rack->rc_tp->t_flags) && rack->r_ctl.rack_per_of_gp_rec)) { if (rsm) { /* a retransmission always use the recovery rate */ return(rack->r_ctl.rack_per_of_gp_rec); } else if (rack->rack_rec_nonrxt_use_cr) { /* Directed to use the configured rate */ goto configured_rate; } else if (rack->rack_no_prr && (rack->r_ctl.rack_per_of_gp_rec > 100)) { /* No PRR, lets just use the b/w estimate only */ return(100); } else { /* * Here we may have a non-retransmit but we * have no overrides, so just use the recovery * rate (prr is in effect). */ return(rack->r_ctl.rack_per_of_gp_rec); } } configured_rate: /* For the configured rate we look at our cwnd vs the ssthresh */ if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) return (rack->r_ctl.rack_per_of_gp_ss); else return(rack->r_ctl.rack_per_of_gp_ca); } static uint64_t rack_get_output_bw(struct tcp_rack *rack, uint64_t bw, struct rack_sendmap *rsm) { /* * We allow rack_per_of_gp_xx to dictate our bw rate we want. */ uint64_t bw_est; uint64_t gain; gain = (uint64_t)rack_get_output_gain(rack, rsm); bw_est = bw * gain; bw_est /= (uint64_t)100; /* Never fall below the minimum (def 64kbps) */ if (bw_est < RACK_MIN_BW) bw_est = RACK_MIN_BW; return (bw_est); } static void rack_log_retran_reason(struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t tsused, uint32_t thresh, int mod) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; if ((mod != 1) && (rack_verbose_logging == 0)) { /* * We get 3 values currently for mod * 1 - We are retransmitting and this tells the reason. * 2 - We are clearing a dup-ack count. * 3 - We are incrementing a dup-ack count. * * The clear/increment are only logged * if you have BBverbose on. */ return; } memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.flex1 = tsused; log.u_bbr.flex2 = thresh; log.u_bbr.flex3 = rsm->r_flags; log.u_bbr.flex4 = rsm->r_dupack; log.u_bbr.flex5 = rsm->r_start; log.u_bbr.flex6 = rsm->r_end; log.u_bbr.flex8 = mod; log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_SETTINGS_CHG, 0, 0, &log, false, &tv); } } static void rack_log_to_start(struct tcp_rack *rack, uint32_t cts, uint32_t to, int32_t slot, uint8_t which) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.flex1 = TICKS_2_MSEC(rack->rc_tp->t_srtt >> TCP_RTT_SHIFT); log.u_bbr.flex2 = to * 1000; log.u_bbr.flex3 = rack->r_ctl.rc_hpts_flags; log.u_bbr.flex4 = slot; log.u_bbr.flex5 = rack->rc_inp->inp_hptsslot; log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; log.u_bbr.flex7 = rack->rc_in_persist; log.u_bbr.flex8 = which; if (rack->rack_no_prr) log.u_bbr.pkts_out = 0; else log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_TIMERSTAR, 0, 0, &log, false, &tv); } } static void rack_log_to_event(struct tcp_rack *rack, int32_t to_num, struct rack_sendmap *rsm) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.flex8 = to_num; log.u_bbr.flex1 = rack->r_ctl.rc_rack_min_rtt; log.u_bbr.flex2 = rack->rc_rack_rtt; if (rsm == NULL) log.u_bbr.flex3 = 0; else log.u_bbr.flex3 = rsm->r_end - rsm->r_start; if (rack->rack_no_prr) log.u_bbr.flex5 = 0; else log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_RTO, 0, 0, &log, false, &tv); } } static void rack_log_rtt_upd(struct tcpcb *tp, struct tcp_rack *rack, uint32_t t, uint32_t len, struct rack_sendmap *rsm, int conf) { if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.flex1 = t; log.u_bbr.flex2 = len; log.u_bbr.flex3 = rack->r_ctl.rc_rack_min_rtt * HPTS_USEC_IN_MSEC; log.u_bbr.flex4 = rack->r_ctl.rack_rs.rs_rtt_lowest * HPTS_USEC_IN_MSEC; log.u_bbr.flex5 = rack->r_ctl.rack_rs.rs_rtt_highest * HPTS_USEC_IN_MSEC; log.u_bbr.flex6 = rack->r_ctl.rack_rs.rs_rtt_cnt; log.u_bbr.flex7 = conf; log.u_bbr.rttProp = (uint64_t)rack->r_ctl.rack_rs.rs_rtt_tot * (uint64_t)HPTS_USEC_IN_MSEC; log.u_bbr.flex8 = rack->r_ctl.rc_rate_sample_method; if (rack->rack_no_prr) log.u_bbr.pkts_out = 0; else log.u_bbr.pkts_out = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.delivered = rack->r_ctl.rack_rs.rs_us_rtt; log.u_bbr.pkts_out = rack->r_ctl.rack_rs.rs_flags; log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); if (rsm) { log.u_bbr.pkt_epoch = rsm->r_start; log.u_bbr.lost = rsm->r_end; log.u_bbr.cwnd_gain = rsm->r_rtr_cnt; } else { /* Its a SYN */ log.u_bbr.pkt_epoch = rack->rc_tp->iss; log.u_bbr.lost = 0; log.u_bbr.cwnd_gain = 0; } /* Write out general bits of interest rrs here */ log.u_bbr.use_lt_bw = rack->rc_highly_buffered; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->forced_ack; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->rc_gp_dyn_mul; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->in_probe_rtt; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->app_limited_needs_set; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->rc_gp_filled; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->rc_dragged_bottom; log.u_bbr.applimited = rack->r_ctl.rc_target_probertt_flight; log.u_bbr.epoch = rack->r_ctl.rc_time_probertt_starts; log.u_bbr.lt_epoch = rack->r_ctl.rc_time_probertt_entered; log.u_bbr.cur_del_rate = rack->r_ctl.rc_lower_rtt_us_cts; log.u_bbr.delRate = rack->r_ctl.rc_gp_srtt; TCP_LOG_EVENTP(tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_BBRRTT, 0, 0, &log, false, &tv); } } static void rack_log_rtt_sample(struct tcp_rack *rack, uint32_t rtt) { /* * Log the rtt sample we are * applying to the srtt algorithm in * useconds. */ if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; /* Convert our ms to a microsecond */ memset(&log, 0, sizeof(log)); log.u_bbr.flex1 = rtt * 1000; log.u_bbr.flex2 = rack->r_ctl.ack_count; log.u_bbr.flex3 = rack->r_ctl.sack_count; log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; log.u_bbr.flex5 = rack->r_ctl.sack_moved_extra; log.u_bbr.flex8 = rack->sack_attack_disable; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, TCP_LOG_RTT, 0, 0, &log, false, &tv); } } static inline void rack_log_progress_event(struct tcp_rack *rack, struct tcpcb *tp, uint32_t tick, int event, int line) { if (rack_verbose_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.flex1 = line; log.u_bbr.flex2 = tick; log.u_bbr.flex3 = tp->t_maxunacktime; log.u_bbr.flex4 = tp->t_acktime; log.u_bbr.flex8 = event; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_PROGRESS, 0, 0, &log, false, &tv); } } static void rack_log_type_bbrsnd(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint32_t cts, struct timeval *tv) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.flex1 = slot; if (rack->rack_no_prr) log.u_bbr.flex2 = 0; else log.u_bbr.flex2 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.flex7 = (0x0000ffff & rack->r_ctl.rc_hpts_flags); log.u_bbr.flex8 = rack->rc_in_persist; log.u_bbr.timeStamp = cts; log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_BBRSND, 0, 0, &log, false, tv); } } static void rack_log_doseg_done(struct tcp_rack *rack, uint32_t cts, int32_t nxt_pkt, int32_t did_out, int way_out) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log, 0, sizeof(log)); log.u_bbr.flex1 = did_out; log.u_bbr.flex2 = nxt_pkt; log.u_bbr.flex3 = way_out; log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; if (rack->rack_no_prr) log.u_bbr.flex5 = 0; else log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.applimited = rack->r_ctl.rc_pace_min_segs; log.u_bbr.flex7 = rack->r_wanted_output; log.u_bbr.flex8 = rack->rc_in_persist; log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_DOSEG_DONE, 0, 0, &log, false, &tv); } } static void rack_log_type_hrdwtso(struct tcpcb *tp, struct tcp_rack *rack, int len, int mod, int32_t orig_len, int frm) { if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; uint32_t cts; memset(&log, 0, sizeof(log)); cts = tcp_get_usecs(&tv); log.u_bbr.flex1 = rack->r_ctl.rc_pace_min_segs; log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; log.u_bbr.flex4 = len; log.u_bbr.flex5 = orig_len; log.u_bbr.flex6 = rack->r_ctl.rc_sacked; log.u_bbr.flex7 = mod; log.u_bbr.flex8 = frm; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(tp, NULL, &tp->t_inpcb->inp_socket->so_rcv, &tp->t_inpcb->inp_socket->so_snd, TCP_HDWR_TLS, 0, 0, &log, false, &tv); } } static void rack_log_type_just_return(struct tcp_rack *rack, uint32_t cts, uint32_t tlen, uint32_t slot, uint8_t hpts_calling, int reason, uint32_t cwnd_to_use) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.flex1 = slot; log.u_bbr.flex2 = rack->r_ctl.rc_hpts_flags; log.u_bbr.flex4 = reason; if (rack->rack_no_prr) log.u_bbr.flex5 = 0; else log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.flex7 = hpts_calling; log.u_bbr.flex8 = rack->rc_in_persist; log.u_bbr.lt_epoch = cwnd_to_use; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_JUSTRET, 0, tlen, &log, false, &tv); } } static void rack_log_to_cancel(struct tcp_rack *rack, int32_t hpts_removed, int line, uint32_t us_cts, struct timeval *tv, uint32_t flags_on_entry) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; log.u_bbr.flex1 = line; log.u_bbr.flex2 = rack->r_ctl.rc_last_output_to; log.u_bbr.flex3 = flags_on_entry; log.u_bbr.flex4 = us_cts; if (rack->rack_no_prr) log.u_bbr.flex5 = 0; else log.u_bbr.flex5 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.flex6 = rack->rc_tp->t_rxtcur; log.u_bbr.flex7 = hpts_removed; log.u_bbr.flex8 = 1; log.u_bbr.applimited = rack->r_ctl.rc_hpts_flags; log.u_bbr.timeStamp = us_cts; log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_TIMERCANC, 0, 0, &log, false, tv); } } static void rack_log_alt_to_to_cancel(struct tcp_rack *rack, uint32_t flex1, uint32_t flex2, uint32_t flex3, uint32_t flex4, uint32_t flex5, uint32_t flex6, uint16_t flex7, uint8_t mod) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; if (mod == 1) { /* No you can't use 1, its for the real to cancel */ return; } memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.flex1 = flex1; log.u_bbr.flex2 = flex2; log.u_bbr.flex3 = flex3; log.u_bbr.flex4 = flex4; log.u_bbr.flex5 = flex5; log.u_bbr.flex6 = flex6; log.u_bbr.flex7 = flex7; log.u_bbr.flex8 = mod; TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_TIMERCANC, 0, 0, &log, false, &tv); } } static void rack_log_to_processing(struct tcp_rack *rack, uint32_t cts, int32_t ret, int32_t timers) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.flex1 = timers; log.u_bbr.flex2 = ret; log.u_bbr.flex3 = rack->r_ctl.rc_timer_exp; log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; log.u_bbr.flex5 = cts; if (rack->rack_no_prr) log.u_bbr.flex6 = 0; else log.u_bbr.flex6 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_TO_PROCESS, 0, 0, &log, false, &tv); } } static void rack_log_to_prr(struct tcp_rack *rack, int frm, int orig_cwnd) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.flex1 = rack->r_ctl.rc_prr_out; log.u_bbr.flex2 = rack->r_ctl.rc_prr_recovery_fs; if (rack->rack_no_prr) log.u_bbr.flex3 = 0; else log.u_bbr.flex3 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.flex4 = rack->r_ctl.rc_prr_delivered; log.u_bbr.flex5 = rack->r_ctl.rc_sacked; log.u_bbr.flex6 = rack->r_ctl.rc_holes_rxt; log.u_bbr.flex8 = frm; log.u_bbr.pkts_out = orig_cwnd; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_BBRUPD, 0, 0, &log, false, &tv); } } #ifdef NETFLIX_EXP_DETECTION static void rack_log_sad(struct tcp_rack *rack, int event) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.flex1 = rack->r_ctl.sack_count; log.u_bbr.flex2 = rack->r_ctl.ack_count; log.u_bbr.flex3 = rack->r_ctl.sack_moved_extra; log.u_bbr.flex4 = rack->r_ctl.sack_noextra_move; log.u_bbr.flex5 = rack->r_ctl.rc_num_maps_alloced; log.u_bbr.flex6 = tcp_sack_to_ack_thresh; log.u_bbr.pkts_out = tcp_sack_to_move_thresh; log.u_bbr.lt_epoch = (tcp_force_detection << 8); log.u_bbr.lt_epoch |= rack->do_detection; log.u_bbr.applimited = tcp_map_minimum; log.u_bbr.flex7 = rack->sack_attack_disable; log.u_bbr.flex8 = event; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); log.u_bbr.delivered = tcp_sad_decay_val; TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, TCP_SAD_DETECTION, 0, 0, &log, false, &tv); } } #endif static void rack_counter_destroy(void) { counter_u64_free(rack_ack_total); counter_u64_free(rack_express_sack); counter_u64_free(rack_sack_total); counter_u64_free(rack_move_none); counter_u64_free(rack_move_some); counter_u64_free(rack_sack_attacks_detected); counter_u64_free(rack_sack_attacks_reversed); counter_u64_free(rack_sack_used_next_merge); counter_u64_free(rack_sack_used_prev_merge); counter_u64_free(rack_badfr); counter_u64_free(rack_badfr_bytes); counter_u64_free(rack_rtm_prr_retran); counter_u64_free(rack_rtm_prr_newdata); counter_u64_free(rack_timestamp_mismatch); counter_u64_free(rack_find_high); counter_u64_free(rack_reorder_seen); counter_u64_free(rack_tlp_tot); counter_u64_free(rack_tlp_newdata); counter_u64_free(rack_tlp_retran); counter_u64_free(rack_tlp_retran_bytes); counter_u64_free(rack_tlp_retran_fail); counter_u64_free(rack_to_tot); counter_u64_free(rack_to_arm_rack); counter_u64_free(rack_to_arm_tlp); counter_u64_free(rack_calc_zero); counter_u64_free(rack_calc_nonzero); counter_u64_free(rack_paced_segments); counter_u64_free(rack_unpaced_segments); counter_u64_free(rack_saw_enobuf); counter_u64_free(rack_saw_enetunreach); counter_u64_free(rack_to_alloc); counter_u64_free(rack_to_alloc_hard); counter_u64_free(rack_to_alloc_emerg); counter_u64_free(rack_to_alloc_limited); counter_u64_free(rack_alloc_limited_conns); counter_u64_free(rack_split_limited); counter_u64_free(rack_sack_proc_all); counter_u64_free(rack_sack_proc_restart); counter_u64_free(rack_sack_proc_short); counter_u64_free(rack_enter_tlp_calc); counter_u64_free(rack_used_tlpmethod); counter_u64_free(rack_used_tlpmethod2); counter_u64_free(rack_sack_skipped_acked); counter_u64_free(rack_sack_splits); counter_u64_free(rack_progress_drops); counter_u64_free(rack_input_idle_reduces); counter_u64_free(rack_collapsed_win); counter_u64_free(rack_tlp_does_nada); counter_u64_free(rack_try_scwnd); counter_u64_free(rack_per_timer_hole); COUNTER_ARRAY_FREE(rack_out_size, TCP_MSS_ACCT_SIZE); COUNTER_ARRAY_FREE(rack_opts_arry, RACK_OPTS_SIZE); } static struct rack_sendmap * rack_alloc(struct tcp_rack *rack) { struct rack_sendmap *rsm; rsm = uma_zalloc(rack_zone, M_NOWAIT); if (rsm) { rack->r_ctl.rc_num_maps_alloced++; counter_u64_add(rack_to_alloc, 1); return (rsm); } if (rack->rc_free_cnt) { counter_u64_add(rack_to_alloc_emerg, 1); rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); rack->rc_free_cnt--; return (rsm); } return (NULL); } static struct rack_sendmap * rack_alloc_full_limit(struct tcp_rack *rack) { if ((V_tcp_map_entries_limit > 0) && (rack->do_detection == 0) && (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { counter_u64_add(rack_to_alloc_limited, 1); if (!rack->alloc_limit_reported) { rack->alloc_limit_reported = 1; counter_u64_add(rack_alloc_limited_conns, 1); } return (NULL); } return (rack_alloc(rack)); } /* wrapper to allocate a sendmap entry, subject to a specific limit */ static struct rack_sendmap * rack_alloc_limit(struct tcp_rack *rack, uint8_t limit_type) { struct rack_sendmap *rsm; if (limit_type) { /* currently there is only one limit type */ if (V_tcp_map_split_limit > 0 && (rack->do_detection == 0) && rack->r_ctl.rc_num_split_allocs >= V_tcp_map_split_limit) { counter_u64_add(rack_split_limited, 1); if (!rack->alloc_limit_reported) { rack->alloc_limit_reported = 1; counter_u64_add(rack_alloc_limited_conns, 1); } return (NULL); } } /* allocate and mark in the limit type, if set */ rsm = rack_alloc(rack); if (rsm != NULL && limit_type) { rsm->r_limit_type = limit_type; rack->r_ctl.rc_num_split_allocs++; } return (rsm); } static void rack_free(struct tcp_rack *rack, struct rack_sendmap *rsm) { if (rsm->r_flags & RACK_APP_LIMITED) { if (rack->r_ctl.rc_app_limited_cnt > 0) { rack->r_ctl.rc_app_limited_cnt--; } } if (rsm->r_limit_type) { /* currently there is only one limit type */ rack->r_ctl.rc_num_split_allocs--; } if (rsm == rack->r_ctl.rc_first_appl) { if (rack->r_ctl.rc_app_limited_cnt == 0) rack->r_ctl.rc_first_appl = NULL; else { /* Follow the next one out */ struct rack_sendmap fe; fe.r_start = rsm->r_nseq_appl; rack->r_ctl.rc_first_appl = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); } } if (rsm == rack->r_ctl.rc_resend) rack->r_ctl.rc_resend = NULL; if (rsm == rack->r_ctl.rc_rsm_at_retran) rack->r_ctl.rc_rsm_at_retran = NULL; if (rsm == rack->r_ctl.rc_end_appl) rack->r_ctl.rc_end_appl = NULL; if (rack->r_ctl.rc_tlpsend == rsm) rack->r_ctl.rc_tlpsend = NULL; if (rack->r_ctl.rc_sacklast == rsm) rack->r_ctl.rc_sacklast = NULL; if (rack->rc_free_cnt < rack_free_cache) { memset(rsm, 0, sizeof(struct rack_sendmap)); TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext); rsm->r_limit_type = 0; rack->rc_free_cnt++; return; } rack->r_ctl.rc_num_maps_alloced--; uma_zfree(rack_zone, rsm); } static uint32_t rack_get_measure_window(struct tcpcb *tp, struct tcp_rack *rack) { uint64_t srtt, bw, len, tim; uint32_t segsiz, def_len, minl; segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); def_len = rack_def_data_window * segsiz; if (rack->rc_gp_filled == 0) { /* * We have no measurement (IW is in flight?) so * we can only guess using our data_window sysctl * value (usually 100MSS). */ return (def_len); } /* * Now we have a number of factors to consider. * * 1) We have a desired BDP which is usually * at least 2. * 2) We have a minimum number of rtt's usually 1 SRTT * but we allow it too to be more. * 3) We want to make sure a measurement last N useconds (if * we have set rack_min_measure_usec. * * We handle the first concern here by trying to create a data * window of max(rack_def_data_window, DesiredBDP). The * second concern we handle in not letting the measurement * window end normally until at least the required SRTT's * have gone by which is done further below in * rack_enough_for_measurement(). Finally the third concern * we also handle here by calculating how long that time * would take at the current BW and then return the * max of our first calculation and that length. Note * that if rack_min_measure_usec is 0, we don't deal * with concern 3. Also for both Concern 1 and 3 an * application limited period could end the measurement * earlier. * * So lets calculate the BDP with the "known" b/w using * the SRTT has our rtt and then multiply it by the * goal. */ bw = rack_get_bw(rack); srtt = ((uint64_t)TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT); len = bw * srtt; len /= (uint64_t)HPTS_USEC_IN_SEC; len *= max(1, rack_goal_bdp); /* Now we need to round up to the nearest MSS */ len = roundup(len, segsiz); if (rack_min_measure_usec) { /* Now calculate our min length for this b/w */ tim = rack_min_measure_usec; minl = (tim * bw) / (uint64_t)HPTS_USEC_IN_SEC; if (minl == 0) minl = 1; minl = roundup(minl, segsiz); if (len < minl) len = minl; } /* * Now if we have a very small window we want * to attempt to get the window that is * as small as possible. This happens on * low b/w connections and we don't want to * span huge numbers of rtt's between measurements. * * We basically include 2 over our "MIN window" so * that the measurement can be shortened (possibly) by * an ack'ed packet. */ if (len < def_len) return (max((uint32_t)len, ((MIN_GP_WIN+2) * segsiz))); else return (max((uint32_t)len, def_len)); } static int rack_enough_for_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack) { uint32_t tim, srtts, segsiz; /* * Has enough time passed for the GP measurement to be valid? */ if ((tp->snd_max == tp->snd_una) || (th_ack == tp->snd_max)){ /* All is acked */ return (1); } if (SEQ_LT(th_ack, tp->gput_seq)) { /* Not enough bytes yet */ return (0); } segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); if (SEQ_LT(th_ack, tp->gput_ack) && ((th_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { /* Not enough bytes yet */ return (0); } if (rack->r_ctl.rc_first_appl && (rack->r_ctl.rc_first_appl->r_start == th_ack)) { /* * We are up to the app limited point * we have to measure irrespective of the time.. */ return (1); } /* Now what about time? */ srtts = (rack->r_ctl.rc_gp_srtt * rack_min_srtts); tim = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - tp->gput_ts; if (tim >= srtts) { return (1); } /* Nope not even a full SRTT has passed */ return (0); } static void rack_log_timely(struct tcp_rack *rack, uint32_t logged, uint64_t cur_bw, uint64_t low_bnd, uint64_t up_bnd, int line, uint8_t method) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log, 0, sizeof(log)); log.u_bbr.flex1 = logged; log.u_bbr.flex2 = rack->rc_gp_timely_inc_cnt; log.u_bbr.flex2 <<= 4; log.u_bbr.flex2 |= rack->rc_gp_timely_dec_cnt; log.u_bbr.flex2 <<= 4; log.u_bbr.flex2 |= rack->rc_gp_incr; log.u_bbr.flex2 <<= 4; log.u_bbr.flex2 |= rack->rc_gp_bwred; log.u_bbr.flex3 = rack->rc_gp_incr; log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ca; log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_rec; log.u_bbr.flex7 = rack->rc_gp_bwred; log.u_bbr.flex8 = method; log.u_bbr.cur_del_rate = cur_bw; log.u_bbr.delRate = low_bnd; log.u_bbr.bw_inuse = up_bnd; log.u_bbr.rttProp = rack_get_bw(rack); log.u_bbr.pkt_epoch = line; log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; log.u_bbr.cwnd_gain = rack->rc_dragged_bottom; log.u_bbr.cwnd_gain <<= 1; log.u_bbr.cwnd_gain |= rack->rc_gp_saw_rec; log.u_bbr.cwnd_gain <<= 1; log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; log.u_bbr.cwnd_gain <<= 1; log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; log.u_bbr.lost = rack->r_ctl.rc_loss_count; TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, TCP_TIMELY_WORK, 0, 0, &log, false, &tv); } } static int rack_bw_can_be_raised(struct tcp_rack *rack, uint64_t cur_bw, uint64_t last_bw_est, uint16_t mult) { /* * Before we increase we need to know if * the estimate just made was less than * our pacing goal (i.e. (cur_bw * mult) > last_bw_est) * * If we already are pacing at a fast enough * rate to push us faster there is no sense of * increasing. * * We first caculate our actual pacing rate (ss or ca multipler * times our cur_bw). * * Then we take the last measured rate and multipy by our * maximum pacing overage to give us a max allowable rate. * * If our act_rate is smaller than our max_allowable rate * then we should increase. Else we should hold steady. * */ uint64_t act_rate, max_allow_rate; if (rack_timely_no_stopping) return (1); if ((cur_bw == 0) || (last_bw_est == 0)) { /* * Initial startup case or * everything is acked case. */ rack_log_timely(rack, mult, cur_bw, 0, 0, __LINE__, 9); return (1); } if (mult <= 100) { /* * We can always pace at or slightly above our rate. */ rack_log_timely(rack, mult, cur_bw, 0, 0, __LINE__, 9); return (1); } act_rate = cur_bw * (uint64_t)mult; act_rate /= 100; max_allow_rate = last_bw_est * ((uint64_t)rack_max_per_above + (uint64_t)100); max_allow_rate /= 100; if (act_rate < max_allow_rate) { /* * Here the rate we are actually pacing at * is smaller than 10% above our last measurement. * This means we are pacing below what we would * like to try to achieve (plus some wiggle room). */ rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, __LINE__, 9); return (1); } else { /* * Here we are already pacing at least rack_max_per_above(10%) * what we are getting back. This indicates most likely * that we are being limited (cwnd/rwnd/app) and can't * get any more b/w. There is no sense of trying to * raise up the pacing rate its not speeding us up * and we already are pacing faster than we are getting. */ rack_log_timely(rack, mult, cur_bw, act_rate, max_allow_rate, __LINE__, 8); return (0); } } static void rack_validate_multipliers_at_or_above100(struct tcp_rack *rack) { /* * When we drag bottom, we want to assure * that no multiplier is below 1.0, if so * we want to restore it to at least that. */ if (rack->r_ctl.rack_per_of_gp_rec < 100) { /* This is unlikely we usually do not touch recovery */ rack->r_ctl.rack_per_of_gp_rec = 100; } if (rack->r_ctl.rack_per_of_gp_ca < 100) { rack->r_ctl.rack_per_of_gp_ca = 100; } if (rack->r_ctl.rack_per_of_gp_ss < 100) { rack->r_ctl.rack_per_of_gp_ss = 100; } } static void rack_validate_multipliers_at_or_below_100(struct tcp_rack *rack) { if (rack->r_ctl.rack_per_of_gp_ca > 100) { rack->r_ctl.rack_per_of_gp_ca = 100; } if (rack->r_ctl.rack_per_of_gp_ss > 100) { rack->r_ctl.rack_per_of_gp_ss = 100; } } static void rack_increase_bw_mul(struct tcp_rack *rack, int timely_says, uint64_t cur_bw, uint64_t last_bw_est, int override) { int32_t calc, logged, plus; logged = 0; if (override) { /* * override is passed when we are * loosing b/w and making one last * gasp at trying to not loose out * to a new-reno flow. */ goto extra_boost; } /* In classic timely we boost by 5x if we have 5 increases in a row, lets not */ if (rack->rc_gp_incr && ((rack->rc_gp_timely_inc_cnt + 1) >= RACK_TIMELY_CNT_BOOST)) { /* * Reset and get 5 strokes more before the boost. Note * that the count is 0 based so we have to add one. */ extra_boost: plus = (uint32_t)rack_gp_increase_per * RACK_TIMELY_CNT_BOOST; rack->rc_gp_timely_inc_cnt = 0; } else plus = (uint32_t)rack_gp_increase_per; /* Must be at least 1% increase for true timely increases */ if ((plus < 1) && ((rack->r_ctl.rc_rtt_diff <= 0) || (timely_says <= 0))) plus = 1; if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0) && rack_bw_can_be_raised(rack, cur_bw, last_bw_est, rack->r_ctl.rack_per_of_gp_rec)) { /* We have been in recovery ding it too */ calc = rack->r_ctl.rack_per_of_gp_rec + plus; if (calc > 0xffff) calc = 0xffff; logged |= 1; rack->r_ctl.rack_per_of_gp_rec = (uint16_t)calc; if (rack_per_upper_bound_ss && (rack->rc_dragged_bottom == 0) && (rack->r_ctl.rack_per_of_gp_rec > rack_per_upper_bound_ss)) rack->r_ctl.rack_per_of_gp_rec = rack_per_upper_bound_ss; } if (rack->rc_gp_saw_ca && (rack->rc_gp_saw_ss == 0) && rack_bw_can_be_raised(rack, cur_bw, last_bw_est, rack->r_ctl.rack_per_of_gp_ca)) { /* In CA */ calc = rack->r_ctl.rack_per_of_gp_ca + plus; if (calc > 0xffff) calc = 0xffff; logged |= 2; rack->r_ctl.rack_per_of_gp_ca = (uint16_t)calc; if (rack_per_upper_bound_ca && (rack->rc_dragged_bottom == 0) && (rack->r_ctl.rack_per_of_gp_ca > rack_per_upper_bound_ca)) rack->r_ctl.rack_per_of_gp_ca = rack_per_upper_bound_ca; } if (rack->rc_gp_saw_ss && rack_bw_can_be_raised(rack, cur_bw, last_bw_est, rack->r_ctl.rack_per_of_gp_ss)) { /* In SS */ calc = rack->r_ctl.rack_per_of_gp_ss + plus; if (calc > 0xffff) calc = 0xffff; rack->r_ctl.rack_per_of_gp_ss = (uint16_t)calc; if (rack_per_upper_bound_ss && (rack->rc_dragged_bottom == 0) && (rack->r_ctl.rack_per_of_gp_ss > rack_per_upper_bound_ss)) rack->r_ctl.rack_per_of_gp_ss = rack_per_upper_bound_ss; logged |= 4; } if (logged && (rack->rc_gp_incr == 0)){ /* Go into increment mode */ rack->rc_gp_incr = 1; rack->rc_gp_timely_inc_cnt = 0; } if (rack->rc_gp_incr && logged && (rack->rc_gp_timely_inc_cnt < RACK_TIMELY_CNT_BOOST)) { rack->rc_gp_timely_inc_cnt++; } rack_log_timely(rack, logged, plus, 0, 0, __LINE__, 1); } static uint32_t rack_get_decrease(struct tcp_rack *rack, uint32_t curper, int32_t rtt_diff) { /* * norm_grad = rtt_diff / minrtt; * new_per = curper * (1 - B * norm_grad) * * B = rack_gp_decrease_per (default 10%) * rtt_dif = input var current rtt-diff * curper = input var current percentage * minrtt = from rack filter * */ uint64_t perf; perf = (((uint64_t)curper * ((uint64_t)1000000 - ((uint64_t)rack_gp_decrease_per * (uint64_t)10000 * (((uint64_t)rtt_diff * (uint64_t)1000000)/ (uint64_t)get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)))/ (uint64_t)1000000)) / (uint64_t)1000000); if (perf > curper) { /* TSNH */ perf = curper - 1; } return ((uint32_t)perf); } static uint32_t rack_decrease_highrtt(struct tcp_rack *rack, uint32_t curper, uint32_t rtt) { /* * highrttthresh * result = curper * (1 - (B * ( 1 - ------ )) * gp_srtt * * B = rack_gp_decrease_per (default 10%) * highrttthresh = filter_min * rack_gp_rtt_maxmul */ uint64_t perf; uint32_t highrttthresh; highrttthresh = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; perf = (((uint64_t)curper * ((uint64_t)1000000 - ((uint64_t)rack_gp_decrease_per * ((uint64_t)1000000 - ((uint64_t)highrttthresh * (uint64_t)1000000) / (uint64_t)rtt)) / 100)) /(uint64_t)1000000); return (perf); } static void rack_decrease_bw_mul(struct tcp_rack *rack, int timely_says, uint32_t rtt, int32_t rtt_diff) { uint64_t logvar, logvar2, logvar3; uint32_t logged, new_per, ss_red, ca_red, rec_red, alt, val; if (rack->rc_gp_incr) { /* Turn off increment counting */ rack->rc_gp_incr = 0; rack->rc_gp_timely_inc_cnt = 0; } ss_red = ca_red = rec_red = 0; logged = 0; /* Calculate the reduction value */ if (rtt_diff < 0) { rtt_diff *= -1; } /* Must be at least 1% reduction */ if (rack->rc_gp_saw_rec && (rack->rc_gp_no_rec_chg == 0)) { /* We have been in recovery ding it too */ if (timely_says == 2) { new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_rec, rtt); alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); if (alt < new_per) val = alt; else val = new_per; } else val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); if (rack->r_ctl.rack_per_of_gp_rec > val) { rec_red = (rack->r_ctl.rack_per_of_gp_rec - val); rack->r_ctl.rack_per_of_gp_rec = (uint16_t)val; } else { rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; rec_red = 0; } if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_rec) rack->r_ctl.rack_per_of_gp_rec = rack_per_lower_bound; logged |= 1; } if (rack->rc_gp_saw_ss) { /* Sent in SS */ if (timely_says == 2) { new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ss, rtt); alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); if (alt < new_per) val = alt; else val = new_per; } else val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ss, rtt_diff); if (rack->r_ctl.rack_per_of_gp_ss > new_per) { ss_red = rack->r_ctl.rack_per_of_gp_ss - val; rack->r_ctl.rack_per_of_gp_ss = (uint16_t)val; } else { ss_red = new_per; rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; logvar = new_per; logvar <<= 32; logvar |= alt; logvar2 = (uint32_t)rtt; logvar2 <<= 32; logvar2 |= (uint32_t)rtt_diff; logvar3 = rack_gp_rtt_maxmul; logvar3 <<= 32; logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); rack_log_timely(rack, timely_says, logvar2, logvar3, logvar, __LINE__, 10); } if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ss) rack->r_ctl.rack_per_of_gp_ss = rack_per_lower_bound; logged |= 4; } else if (rack->rc_gp_saw_ca) { /* Sent in CA */ if (timely_says == 2) { new_per = rack_decrease_highrtt(rack, rack->r_ctl.rack_per_of_gp_ca, rtt); alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_rec, rtt_diff); if (alt < new_per) val = alt; else val = new_per; } else val = new_per = alt = rack_get_decrease(rack, rack->r_ctl.rack_per_of_gp_ca, rtt_diff); if (rack->r_ctl.rack_per_of_gp_ca > val) { ca_red = rack->r_ctl.rack_per_of_gp_ca - val; rack->r_ctl.rack_per_of_gp_ca = (uint16_t)val; } else { rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; ca_red = 0; logvar = new_per; logvar <<= 32; logvar |= alt; logvar2 = (uint32_t)rtt; logvar2 <<= 32; logvar2 |= (uint32_t)rtt_diff; logvar3 = rack_gp_rtt_maxmul; logvar3 <<= 32; logvar3 |= get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); rack_log_timely(rack, timely_says, logvar2, logvar3, logvar, __LINE__, 10); } if (rack_per_lower_bound > rack->r_ctl.rack_per_of_gp_ca) rack->r_ctl.rack_per_of_gp_ca = rack_per_lower_bound; logged |= 2; } if (rack->rc_gp_timely_dec_cnt < 0x7) { rack->rc_gp_timely_dec_cnt++; if (rack_timely_dec_clear && (rack->rc_gp_timely_dec_cnt == rack_timely_dec_clear)) rack->rc_gp_timely_dec_cnt = 0; } logvar = ss_red; logvar <<= 32; logvar |= ca_red; rack_log_timely(rack, logged, rec_red, rack_per_lower_bound, logvar, __LINE__, 2); } static void rack_log_rtt_shrinks(struct tcp_rack *rack, uint32_t us_cts, uint32_t rtt, uint32_t line, uint8_t reas) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.flex1 = line; log.u_bbr.flex2 = rack->r_ctl.rc_time_probertt_starts; log.u_bbr.flex3 = rack->r_ctl.rc_lower_rtt_us_cts; log.u_bbr.flex4 = rack->r_ctl.rack_per_of_gp_ss; log.u_bbr.flex5 = rtt; log.u_bbr.flex6 = rack->rc_highly_buffered; log.u_bbr.flex6 <<= 1; log.u_bbr.flex6 |= rack->forced_ack; log.u_bbr.flex6 <<= 1; log.u_bbr.flex6 |= rack->rc_gp_dyn_mul; log.u_bbr.flex6 <<= 1; log.u_bbr.flex6 |= rack->in_probe_rtt; log.u_bbr.flex6 <<= 1; log.u_bbr.flex6 |= rack->measure_saw_probe_rtt; log.u_bbr.flex7 = rack->r_ctl.rack_per_of_gp_probertt; log.u_bbr.pacing_gain = rack->r_ctl.rack_per_of_gp_ca; log.u_bbr.cwnd_gain = rack->r_ctl.rack_per_of_gp_rec; log.u_bbr.flex8 = reas; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.delRate = rack_get_bw(rack); log.u_bbr.cur_del_rate = rack->r_ctl.rc_highest_us_rtt; log.u_bbr.cur_del_rate <<= 32; log.u_bbr.cur_del_rate |= rack->r_ctl.rc_lowest_us_rtt; log.u_bbr.applimited = rack->r_ctl.rc_time_probertt_entered; log.u_bbr.pkts_out = rack->r_ctl.rc_rtt_diff; log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); log.u_bbr.epoch = rack->r_ctl.rc_gp_srtt; log.u_bbr.lt_epoch = rack->r_ctl.rc_prev_gp_srtt; log.u_bbr.pkt_epoch = rack->r_ctl.rc_lower_rtt_us_cts; log.u_bbr.delivered = rack->r_ctl.rc_target_probertt_flight; log.u_bbr.lost = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); log.u_bbr.rttProp = us_cts; log.u_bbr.rttProp <<= 32; log.u_bbr.rttProp |= rack->r_ctl.rc_entry_gp_rtt; TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_RTT_SHRINKS, 0, 0, &log, false, &rack->r_ctl.act_rcv_time); } } static void rack_set_prtt_target(struct tcp_rack *rack, uint32_t segsiz, uint32_t rtt) { uint64_t bwdp; bwdp = rack_get_bw(rack); bwdp *= (uint64_t)rtt; bwdp /= (uint64_t)HPTS_USEC_IN_SEC; rack->r_ctl.rc_target_probertt_flight = roundup((uint32_t)bwdp, segsiz); if (rack->r_ctl.rc_target_probertt_flight < (segsiz * rack_timely_min_segs)) { /* * A window protocol must be able to have 4 packets * outstanding as the floor in order to function * (especially considering delayed ack :D). */ rack->r_ctl.rc_target_probertt_flight = (segsiz * rack_timely_min_segs); } } static void rack_enter_probertt(struct tcp_rack *rack, uint32_t us_cts) { /** * ProbeRTT is a bit different in rack_pacing than in * BBR. It is like BBR in that it uses the lowering of * the RTT as a signal that we saw something new and * counts from there for how long between. But it is * different in that its quite simple. It does not * play with the cwnd and wait until we get down * to N segments outstanding and hold that for * 200ms. Instead it just sets the pacing reduction * rate to a set percentage (70 by default) and hold * that for a number of recent GP Srtt's. */ uint32_t segsiz; if (rack->rc_gp_dyn_mul == 0) return; if (rack->rc_tp->snd_max == rack->rc_tp->snd_una) { /* We are idle */ return; } if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { /* * Stop the goodput now, the idea here is * that future measurements with in_probe_rtt * won't register if they are not greater so * we want to get what info (if any) is available * now. */ rack_do_goodput_measurement(rack->rc_tp, rack, rack->rc_tp->snd_una, __LINE__); } rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; rack->r_ctl.rc_time_probertt_entered = us_cts; segsiz = min(ctf_fixed_maxseg(rack->rc_tp), rack->r_ctl.rc_pace_min_segs); rack->in_probe_rtt = 1; rack->measure_saw_probe_rtt = 1; rack->r_ctl.rc_lower_rtt_us_cts = us_cts; rack->r_ctl.rc_time_probertt_starts = 0; rack->r_ctl.rc_entry_gp_rtt = rack->r_ctl.rc_gp_srtt; if (rack_probertt_use_min_rtt_entry) rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); else rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt); rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), __LINE__, RACK_RTTS_ENTERPROBE); } static void rack_exit_probertt(struct tcp_rack *rack, uint32_t us_cts) { struct rack_sendmap *rsm; uint32_t segsiz; segsiz = min(ctf_fixed_maxseg(rack->rc_tp), rack->r_ctl.rc_pace_min_segs); rack->in_probe_rtt = 0; if ((rack->rc_tp->t_flags & TF_GPUTINPROG) && SEQ_GT(rack->rc_tp->snd_una, rack->rc_tp->gput_seq)) { /* * Stop the goodput now, the idea here is * that future measurements with in_probe_rtt * won't register if they are not greater so * we want to get what info (if any) is available * now. */ rack_do_goodput_measurement(rack->rc_tp, rack, rack->rc_tp->snd_una, __LINE__); } else if (rack->rc_tp->t_flags & TF_GPUTINPROG) { /* * We don't have enough data to make a measurement. * So lets just stop and start here after exiting * probe-rtt. We probably are not interested in * the results anyway. */ rack->rc_tp->t_flags &= ~TF_GPUTINPROG; } /* * Measurements through the current snd_max are going * to be limited by the slower pacing rate. * * We need to mark these as app-limited so we * don't collapse the b/w. */ rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { if (rack->r_ctl.rc_app_limited_cnt == 0) rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; else { /* * Go out to the end app limited and mark * this new one as next and move the end_appl up * to this guy. */ if (rack->r_ctl.rc_end_appl) rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; rack->r_ctl.rc_end_appl = rsm; } rsm->r_flags |= RACK_APP_LIMITED; rack->r_ctl.rc_app_limited_cnt++; } /* * Now, we need to examine our pacing rate multipliers. * If its under 100%, we need to kick it back up to * 100%. We also don't let it be over our "max" above * the actual rate i.e. 100% + rack_clamp_atexit_prtt. * Note setting clamp_atexit_prtt to 0 has the effect * of setting CA/SS to 100% always at exit (which is * the default behavior). */ if (rack_probertt_clear_is) { rack->rc_gp_incr = 0; rack->rc_gp_bwred = 0; rack->rc_gp_timely_inc_cnt = 0; rack->rc_gp_timely_dec_cnt = 0; } /* Do we do any clamping at exit? */ if (rack->rc_highly_buffered && rack_atexit_prtt_hbp) { rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt_hbp; rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt_hbp; } if ((rack->rc_highly_buffered == 0) && rack_atexit_prtt) { rack->r_ctl.rack_per_of_gp_ca = rack_atexit_prtt; rack->r_ctl.rack_per_of_gp_ss = rack_atexit_prtt; } /* * Lets set rtt_diff to 0, so that we will get a "boost" * after exiting. */ rack->r_ctl.rc_rtt_diff = 0; /* Clear all flags so we start fresh */ rack->rc_tp->t_bytes_acked = 0; rack->rc_tp->ccv->flags &= ~CCF_ABC_SENTAWND; /* * If configured to, set the cwnd and ssthresh to * our targets. */ if (rack_probe_rtt_sets_cwnd) { uint64_t ebdp; uint32_t setto; /* Set ssthresh so we get into CA once we hit our target */ if (rack_probertt_use_min_rtt_exit == 1) { /* Set to min rtt */ rack_set_prtt_target(rack, segsiz, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt)); } else if (rack_probertt_use_min_rtt_exit == 2) { /* Set to current gp rtt */ rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_gp_srtt); } else if (rack_probertt_use_min_rtt_exit == 3) { /* Set to entry gp rtt */ rack_set_prtt_target(rack, segsiz, rack->r_ctl.rc_entry_gp_rtt); } else { uint64_t sum; uint32_t setval; sum = rack->r_ctl.rc_entry_gp_rtt; sum *= 10; sum /= (uint64_t)(max(1, rack->r_ctl.rc_gp_srtt)); if (sum >= 20) { /* * A highly buffered path needs * cwnd space for timely to work. * Lets set things up as if * we are heading back here again. */ setval = rack->r_ctl.rc_entry_gp_rtt; } else if (sum >= 15) { /* * Lets take the smaller of the * two since we are just somewhat * buffered. */ setval = rack->r_ctl.rc_gp_srtt; if (setval > rack->r_ctl.rc_entry_gp_rtt) setval = rack->r_ctl.rc_entry_gp_rtt; } else { /* * Here we are not highly buffered * and should pick the min we can to * keep from causing loss. */ setval = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); } rack_set_prtt_target(rack, segsiz, setval); } if (rack_probe_rtt_sets_cwnd > 1) { /* There is a percentage here to boost */ ebdp = rack->r_ctl.rc_target_probertt_flight; ebdp *= rack_probe_rtt_sets_cwnd; ebdp /= 100; setto = rack->r_ctl.rc_target_probertt_flight + ebdp; } else setto = rack->r_ctl.rc_target_probertt_flight; rack->rc_tp->snd_cwnd = roundup(setto, segsiz); if (rack->rc_tp->snd_cwnd < (segsiz * rack_timely_min_segs)) { /* Enforce a min */ rack->rc_tp->snd_cwnd = segsiz * rack_timely_min_segs; } /* If we set in the cwnd also set the ssthresh point so we are in CA */ rack->rc_tp->snd_ssthresh = (rack->rc_tp->snd_cwnd - 1); } rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), __LINE__, RACK_RTTS_EXITPROBE); /* Clear times last so log has all the info */ rack->r_ctl.rc_probertt_sndmax_atexit = rack->rc_tp->snd_max; rack->r_ctl.rc_time_probertt_entered = us_cts; rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts = us_cts; rack->r_ctl.rc_time_of_last_probertt = us_cts; } static void rack_check_probe_rtt(struct tcp_rack *rack, uint32_t us_cts) { /* Check in on probe-rtt */ if (rack->rc_gp_filled == 0) { /* We do not do p-rtt unless we have gp measurements */ return; } if (rack->in_probe_rtt) { uint64_t no_overflow; uint32_t endtime, must_stay; if (rack->r_ctl.rc_went_idle_time && ((us_cts - rack->r_ctl.rc_went_idle_time) > rack_min_probertt_hold)) { /* * We went idle during prtt, just exit now. */ rack_exit_probertt(rack, us_cts); } else if (rack_probe_rtt_safety_val && TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered) && ((us_cts - rack->r_ctl.rc_time_probertt_entered) > rack_probe_rtt_safety_val)) { /* * Probe RTT safety value triggered! */ rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), __LINE__, RACK_RTTS_SAFETY); rack_exit_probertt(rack, us_cts); } /* Calculate the max we will wait */ endtime = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_max_drain_wait); if (rack->rc_highly_buffered) endtime += (rack->r_ctl.rc_gp_srtt * rack_max_drain_hbp); /* Calculate the min we must wait */ must_stay = rack->r_ctl.rc_time_probertt_entered + (rack->r_ctl.rc_gp_srtt * rack_must_drain); if ((ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight) && TSTMP_LT(us_cts, endtime)) { uint32_t calc; /* Do we lower more? */ no_exit: if (TSTMP_GT(us_cts, rack->r_ctl.rc_time_probertt_entered)) calc = us_cts - rack->r_ctl.rc_time_probertt_entered; else calc = 0; calc /= max(rack->r_ctl.rc_gp_srtt, 1); if (calc) { /* Maybe */ calc *= rack_per_of_gp_probertt_reduce; rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt - calc; /* Limit it too */ if (rack->r_ctl.rack_per_of_gp_probertt < rack_per_of_gp_lowthresh) rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_lowthresh; } /* We must reach target or the time set */ return; } if (rack->r_ctl.rc_time_probertt_starts == 0) { if ((TSTMP_LT(us_cts, must_stay) && rack->rc_highly_buffered) || (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.rc_target_probertt_flight)) { /* We are not past the must_stay time */ goto no_exit; } rack_log_rtt_shrinks(rack, us_cts, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), __LINE__, RACK_RTTS_REACHTARGET); rack->r_ctl.rc_time_probertt_starts = us_cts; if (rack->r_ctl.rc_time_probertt_starts == 0) rack->r_ctl.rc_time_probertt_starts = 1; /* Restore back to our rate we want to pace at in prtt */ rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; } /* * Setup our end time, some number of gp_srtts plus 200ms. */ no_overflow = ((uint64_t)rack->r_ctl.rc_gp_srtt * (uint64_t)rack_probertt_gpsrtt_cnt_mul); if (rack_probertt_gpsrtt_cnt_div) endtime = (uint32_t)(no_overflow / (uint64_t)rack_probertt_gpsrtt_cnt_div); else endtime = 0; endtime += rack_min_probertt_hold; endtime += rack->r_ctl.rc_time_probertt_starts; if (TSTMP_GEQ(us_cts, endtime)) { /* yes, exit probertt */ rack_exit_probertt(rack, us_cts); } } else if((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= rack_time_between_probertt) { /* Go into probertt, its been too long since we went lower */ rack_enter_probertt(rack, us_cts); } } static void rack_update_multiplier(struct tcp_rack *rack, int32_t timely_says, uint64_t last_bw_est, uint32_t rtt, int32_t rtt_diff) { uint64_t cur_bw, up_bnd, low_bnd, subfr; uint32_t losses; if ((rack->rc_gp_dyn_mul == 0) || (rack->use_fixed_rate) || (rack->in_probe_rtt) || (rack->rc_always_pace == 0)) { /* No dynamic GP multipler in play */ return; } losses = rack->r_ctl.rc_loss_count - rack->r_ctl.rc_loss_at_start; cur_bw = rack_get_bw(rack); /* Calculate our up and down range */ up_bnd = rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_up; up_bnd /= 100; up_bnd += rack->r_ctl.last_gp_comp_bw; subfr = (uint64_t)rack->r_ctl.last_gp_comp_bw * (uint64_t)rack_gp_per_bw_mul_down; subfr /= 100; low_bnd = rack->r_ctl.last_gp_comp_bw - subfr; if ((timely_says == 2) && (rack->r_ctl.rc_no_push_at_mrtt)) { /* * This is the case where our RTT is above * the max target and we have been configured * to just do timely no bonus up stuff in that case. * * There are two configurations, set to 1, and we * just do timely if we are over our max. If its * set above 1 then we slam the multipliers down * to 100 and then decrement per timely. */ rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, __LINE__, 3); if (rack->r_ctl.rc_no_push_at_mrtt > 1) rack_validate_multipliers_at_or_below_100(rack); rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); } else if ((last_bw_est < low_bnd) && !losses) { /* * We are decreasing this is a bit complicated this * means we are loosing ground. This could be * because another flow entered and we are competing * for b/w with it. This will push the RTT up which * makes timely unusable unless we want to get shoved * into a corner and just be backed off (the age * old problem with delay based CC). * * On the other hand if it was a route change we * would like to stay somewhat contained and not * blow out the buffers. */ rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, __LINE__, 3); rack->r_ctl.last_gp_comp_bw = cur_bw; if (rack->rc_gp_bwred == 0) { /* Go into reduction counting */ rack->rc_gp_bwred = 1; rack->rc_gp_timely_dec_cnt = 0; } if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) || (timely_says == 0)) { /* * Push another time with a faster pacing * to try to gain back (we include override to * get a full raise factor). */ if ((rack->rc_gp_saw_ca && rack->r_ctl.rack_per_of_gp_ca <= rack_down_raise_thresh) || (rack->rc_gp_saw_ss && rack->r_ctl.rack_per_of_gp_ss <= rack_down_raise_thresh) || (timely_says == 0) || (rack_down_raise_thresh == 0)) { /* * Do an override up in b/w if we were * below the threshold or if the threshold * is zero we always do the raise. */ rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 1); } else { /* Log it stays the same */ rack_log_timely(rack, 0, last_bw_est, low_bnd, 0, __LINE__, 11); } rack->rc_gp_timely_dec_cnt++; /* We are not incrementing really no-count */ rack->rc_gp_incr = 0; rack->rc_gp_timely_inc_cnt = 0; } else { /* * Lets just use the RTT * information and give up * pushing. */ goto use_timely; } } else if ((timely_says != 2) && !losses && (last_bw_est > up_bnd)) { /* * We are increasing b/w lets keep going, updating * our b/w and ignoring any timely input, unless * of course we are at our max raise (if there is one). */ rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, __LINE__, 3); rack->r_ctl.last_gp_comp_bw = cur_bw; if (rack->rc_gp_saw_ss && rack_per_upper_bound_ss && (rack->r_ctl.rack_per_of_gp_ss == rack_per_upper_bound_ss)) { /* * In cases where we can't go higher * we should just use timely. */ goto use_timely; } if (rack->rc_gp_saw_ca && rack_per_upper_bound_ca && (rack->r_ctl.rack_per_of_gp_ca == rack_per_upper_bound_ca)) { /* * In cases where we can't go higher * we should just use timely. */ goto use_timely; } rack->rc_gp_bwred = 0; rack->rc_gp_timely_dec_cnt = 0; /* You get a set number of pushes if timely is trying to reduce */ if ((rack->rc_gp_incr < rack_timely_max_push_rise) || (timely_says == 0)) { rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); } else { /* Log it stays the same */ rack_log_timely(rack, 0, last_bw_est, up_bnd, 0, __LINE__, 12); } return; } else { /* * We are staying between the lower and upper range bounds * so use timely to decide. */ rack_log_timely(rack, timely_says, cur_bw, low_bnd, up_bnd, __LINE__, 3); use_timely: if (timely_says) { rack->rc_gp_incr = 0; rack->rc_gp_timely_inc_cnt = 0; if ((rack->rc_gp_timely_dec_cnt < rack_timely_max_push_drop) && !losses && (last_bw_est < low_bnd)) { /* We are loosing ground */ rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); rack->rc_gp_timely_dec_cnt++; /* We are not incrementing really no-count */ rack->rc_gp_incr = 0; rack->rc_gp_timely_inc_cnt = 0; } else rack_decrease_bw_mul(rack, timely_says, rtt, rtt_diff); } else { rack->rc_gp_bwred = 0; rack->rc_gp_timely_dec_cnt = 0; rack_increase_bw_mul(rack, timely_says, cur_bw, last_bw_est, 0); } } } static int32_t rack_make_timely_judgement(struct tcp_rack *rack, uint32_t rtt, int32_t rtt_diff, uint32_t prev_rtt) { int32_t timely_says; uint64_t log_mult, log_rtt_a_diff; log_rtt_a_diff = rtt; log_rtt_a_diff <<= 32; log_rtt_a_diff |= (uint32_t)rtt_diff; if (rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul)) { /* Reduce the b/w multipler */ timely_says = 2; log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_maxmul; log_mult <<= 32; log_mult |= prev_rtt; rack_log_timely(rack, timely_says, log_mult, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 4); } else if (rtt <= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / max(rack_gp_rtt_mindiv , 1)))) { /* Increase the b/w multipler */ log_mult = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) + ((get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack_gp_rtt_minmul) / max(rack_gp_rtt_mindiv , 1)); log_mult <<= 32; log_mult |= prev_rtt; timely_says = 0; rack_log_timely(rack, timely_says, log_mult , get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 5); } else { /* * Use a gradient to find it the timely gradient * is: * grad = rc_rtt_diff / min_rtt; * * anything below or equal to 0 will be * a increase indication. Anything above * zero is a decrease. Note we take care * of the actual gradient calculation * in the reduction (its not needed for * increase). */ log_mult = prev_rtt; if (rtt_diff <= 0) { /* * Rttdiff is less than zero, increase the * b/w multipler (its 0 or negative) */ timely_says = 0; rack_log_timely(rack, timely_says, log_mult, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 6); } else { /* Reduce the b/w multipler */ timely_says = 1; rack_log_timely(rack, timely_says, log_mult, get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt), log_rtt_a_diff, __LINE__, 7); } } return (timely_says); } static void rack_do_goodput_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq th_ack, int line) { uint64_t tim, bytes_ps, ltim, stim, utim; uint32_t segsiz, bytes, reqbytes, us_cts; int32_t gput, new_rtt_diff, timely_says; us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); if (TSTMP_GEQ(us_cts, tp->gput_ts)) tim = us_cts - tp->gput_ts; else tim = 0; if (TSTMP_GT(rack->r_ctl.rc_gp_cumack_ts, rack->r_ctl.rc_gp_output_ts)) stim = rack->r_ctl.rc_gp_cumack_ts - rack->r_ctl.rc_gp_output_ts; else stim = 0; /* * Use the larger of the send time or ack time. This prevents us * from being influenced by ack artifacts to come up with too * high of measurement. Note that since we are spanning over many more * bytes in most of our measurements hopefully that is less likely to * occur. */ if (tim > stim) utim = max(tim, 1); else utim = max(stim, 1); /* Lets validate utim */ ltim = max(1, (utim/HPTS_USEC_IN_MSEC)); gput = (((uint64_t) (th_ack - tp->gput_seq)) << 3) / ltim; reqbytes = min(rc_init_window(rack), (MIN_GP_WIN * segsiz)); if ((tim == 0) && (stim == 0)) { /* * Invalid measurement time, maybe * all on one ack/one send? */ bytes = 0; bytes_ps = 0; rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 0, 0, 0, 10, __LINE__, NULL); goto skip_measurement; } if (rack->r_ctl.rc_gp_lowrtt == 0xffffffff) { /* We never made a us_rtt measurement? */ bytes = 0; bytes_ps = 0; rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 0, 0, 0, 10, __LINE__, NULL); goto skip_measurement; } /* * Calculate the maximum possible b/w this connection * could have. We base our calculation on the lowest * rtt we have seen during the measurement and the * largest rwnd the client has given us in that time. This * forms a BDP that is the maximum that we could ever * get to the client. Anything larger is not valid. * * I originally had code here that rejected measurements * where the time was less than 1/2 the latest us_rtt. * But after thinking on that I realized its wrong since * say you had a 150Mbps or even 1Gbps link, and you * were a long way away.. example I am in Europe (100ms rtt) * talking to my 1Gbps link in S.C. Now measuring say 150,000 * bytes my time would be 1.2ms, and yet my rtt would say * the measurement was invalid the time was < 50ms. The * same thing is true for 150Mb (8ms of time). * * A better way I realized is to look at what the maximum * the connection could possibly do. This is gated on * the lowest RTT we have seen and the highest rwnd. * We should in theory never exceed that, if we are * then something on the path is storing up packets * and then feeding them all at once to our endpoint * messing up our measurement. */ rack->r_ctl.last_max_bw = rack->r_ctl.rc_gp_high_rwnd; rack->r_ctl.last_max_bw *= HPTS_USEC_IN_SEC; rack->r_ctl.last_max_bw /= rack->r_ctl.rc_gp_lowrtt; if (SEQ_LT(th_ack, tp->gput_seq)) { /* No measurement can be made */ bytes = 0; bytes_ps = 0; rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, 0, 0, 0, 10, __LINE__, NULL); goto skip_measurement; } else bytes = (th_ack - tp->gput_seq); bytes_ps = (uint64_t)bytes; /* * Don't measure a b/w for pacing unless we have gotten at least * an initial windows worth of data in this measurement interval. * * Small numbers of bytes get badly influenced by delayed ack and * other artifacts. Note we take the initial window or our * defined minimum GP (defaulting to 10 which hopefully is the * IW). */ if (rack->rc_gp_filled == 0) { /* * The initial estimate is special. We * have blasted out an IW worth of packets * without a real valid ack ts results. We * then setup the app_limited_needs_set flag, * this should get the first ack in (probably 2 * MSS worth) to be recorded as the timestamp. * We thus allow a smaller number of bytes i.e. * IW - 2MSS. */ reqbytes -= (2 * segsiz); /* Also lets fill previous for our first measurement to be neutral */ rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; } if ((bytes_ps < reqbytes) || rack->app_limited_needs_set) { rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, rack->r_ctl.rc_app_limited_cnt, 0, 0, 10, __LINE__, NULL); goto skip_measurement; } /* * We now need to calculate the Timely like status so * we can update (possibly) the b/w multipliers. */ new_rtt_diff = (int32_t)rack->r_ctl.rc_gp_srtt - (int32_t)rack->r_ctl.rc_prev_gp_srtt; if (rack->rc_gp_filled == 0) { /* No previous reading */ rack->r_ctl.rc_rtt_diff = new_rtt_diff; } else { if (rack->measure_saw_probe_rtt == 0) { /* * We don't want a probertt to be counted * since it will be negative incorrectly. We * expect to be reducing the RTT when we * pace at a slower rate. */ rack->r_ctl.rc_rtt_diff -= (rack->r_ctl.rc_rtt_diff / 8); rack->r_ctl.rc_rtt_diff += (new_rtt_diff / 8); } } timely_says = rack_make_timely_judgement(rack, rack->r_ctl.rc_gp_srtt, rack->r_ctl.rc_rtt_diff, rack->r_ctl.rc_prev_gp_srtt ); bytes_ps *= HPTS_USEC_IN_SEC; bytes_ps /= utim; if (bytes_ps > rack->r_ctl.last_max_bw) { /* * Something is on path playing * since this b/w is not possible based * on our BDP (highest rwnd and lowest rtt * we saw in the measurement window). * * Another option here would be to * instead skip the measurement. */ rack_log_pacing_delay_calc(rack, bytes, reqbytes, bytes_ps, rack->r_ctl.last_max_bw, 0, 11, __LINE__, NULL); bytes_ps = rack->r_ctl.last_max_bw; } /* We store gp for b/w in bytes per second */ if (rack->rc_gp_filled == 0) { /* Initial measurment */ if (bytes_ps) { rack->r_ctl.gp_bw = bytes_ps; rack->rc_gp_filled = 1; rack->r_ctl.num_avg = 1; rack_set_pace_segments(rack->rc_tp, rack, __LINE__); } else { rack_log_pacing_delay_calc(rack, bytes_ps, reqbytes, rack->r_ctl.rc_app_limited_cnt, 0, 0, 10, __LINE__, NULL); } if (rack->rc_inp->inp_in_hpts && (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { /* * Ok we can't trust the pacer in this case * where we transition from un-paced to paced. * Or for that matter when the burst mitigation * was making a wild guess and got it wrong. * Stop the pacer and clear up all the aggregate * delays etc. */ tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); rack->r_ctl.rc_hpts_flags = 0; rack->r_ctl.rc_last_output_to = 0; } } else if (rack->r_ctl.num_avg < RACK_REQ_AVG) { /* Still a small number run an average */ rack->r_ctl.gp_bw += bytes_ps; rack->r_ctl.num_avg++; if (rack->r_ctl.num_avg >= RACK_REQ_AVG) { /* We have collected enought to move forward */ rack->r_ctl.gp_bw /= (uint64_t)rack->r_ctl.num_avg; } } else { /* * We want to take 1/wma of the goodput and add in to 7/8th * of the old value weighted by the srtt. So if your measurement * period is say 2 SRTT's long you would get 1/4 as the * value, if it was like 1/2 SRTT then you would get 1/16th. * * But we must be careful not to take too much i.e. if the * srtt is say 20ms and the measurement is taken over * 400ms our weight would be 400/20 i.e. 20. On the * other hand if we get a measurement over 1ms with a * 10ms rtt we only want to take a much smaller portion. */ uint64_t resid_bw, subpart, addpart, srtt; srtt = ((uint64_t)TICKS_2_USEC(tp->t_srtt) >> TCP_RTT_SHIFT); if (srtt == 0) { /* * Strange why did t_srtt go back to zero? */ if (rack->r_ctl.rc_rack_min_rtt) srtt = (rack->r_ctl.rc_rack_min_rtt * HPTS_USEC_IN_MSEC); else srtt = HPTS_USEC_IN_MSEC; } /* * XXXrrs: Note for reviewers, in playing with * dynamic pacing I discovered this GP calculation * as done originally leads to some undesired results. * Basically you can get longer measurements contributing * too much to the WMA. Thus I changed it if you are doing * dynamic adjustments to only do the aportioned adjustment * if we have a very small (time wise) measurement. Longer * measurements just get there weight (defaulting to 1/8) * add to the WMA. We may want to think about changing * this to always do that for both sides i.e. dynamic * and non-dynamic... but considering lots of folks * were playing with this I did not want to change the * calculation per.se. without your thoughts.. Lawerence? * Peter?? */ if (rack->rc_gp_dyn_mul == 0) { subpart = rack->r_ctl.gp_bw * utim; subpart /= (srtt * 8); if (subpart < (rack->r_ctl.gp_bw / 2)) { /* * The b/w update takes no more * away then 1/2 our running total * so factor it in. */ addpart = bytes_ps * utim; addpart /= (srtt * 8); } else { /* * Don't allow a single measurement * to account for more than 1/2 of the * WMA. This could happen on a retransmission * where utim becomes huge compared to * srtt (multiple retransmissions when using * the sending rate which factors in all the * transmissions from the first one). */ subpart = rack->r_ctl.gp_bw / 2; addpart = bytes_ps / 2; } resid_bw = rack->r_ctl.gp_bw - subpart; rack->r_ctl.gp_bw = resid_bw + addpart; } else { if ((utim / srtt) <= 1) { /* * The b/w update was over a small period * of time. The idea here is to prevent a small * measurement time period from counting * too much. So we scale it based on the * time so it attributes less than 1/rack_wma_divisor * of its measurement. */ subpart = rack->r_ctl.gp_bw * utim; subpart /= (srtt * rack_wma_divisor); addpart = bytes_ps * utim; addpart /= (srtt * rack_wma_divisor); } else { /* * The scaled measurement was long * enough so lets just add in the * portion of the measurment i.e. 1/rack_wma_divisor */ subpart = rack->r_ctl.gp_bw / rack_wma_divisor; addpart = bytes_ps / rack_wma_divisor; } if ((rack->measure_saw_probe_rtt == 0) || (bytes_ps > rack->r_ctl.gp_bw)) { /* * For probe-rtt we only add it in * if its larger, all others we just * add in. */ resid_bw = rack->r_ctl.gp_bw - subpart; rack->r_ctl.gp_bw = resid_bw + addpart; } } } /* We do not update any multipliers if we are in or have seen a probe-rtt */ if ((rack->measure_saw_probe_rtt == 0) && rack->rc_gp_rtt_set) rack_update_multiplier(rack, timely_says, bytes_ps, rack->r_ctl.rc_gp_srtt, rack->r_ctl.rc_rtt_diff); rack_log_pacing_delay_calc(rack, bytes, tim, bytes_ps, stim, rack_get_bw(rack), 3, line, NULL); /* reset the gp srtt and setup the new prev */ rack->r_ctl.rc_prev_gp_srtt = rack->r_ctl.rc_gp_srtt; /* Record the lost count for the next measurement */ rack->r_ctl.rc_loss_at_start = rack->r_ctl.rc_loss_count; /* * We restart our diffs based on the gpsrtt in the * measurement window. */ rack->rc_gp_rtt_set = 0; rack->rc_gp_saw_rec = 0; rack->rc_gp_saw_ca = 0; rack->rc_gp_saw_ss = 0; rack->rc_dragged_bottom = 0; skip_measurement: #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT, gput); /* * XXXLAS: This is a temporary hack, and should be * chained off VOI_TCP_GPUT when stats(9) grows an * API to deal with chained VOIs. */ if (tp->t_stats_gput_prev > 0) stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_GPUT_ND, ((gput - tp->t_stats_gput_prev) * 100) / tp->t_stats_gput_prev); #endif tp->t_flags &= ~TF_GPUTINPROG; tp->t_stats_gput_prev = gput; /* * Now are we app limited now and there is space from where we * were to where we want to go? * * We don't do the other case i.e. non-applimited here since * the next send will trigger us picking up the missing data. */ if (rack->r_ctl.rc_first_appl && TCPS_HAVEESTABLISHED(tp->t_state) && rack->r_ctl.rc_app_limited_cnt && (SEQ_GT(rack->r_ctl.rc_first_appl->r_start, th_ack)) && ((rack->r_ctl.rc_first_appl->r_start - th_ack) > max(rc_init_window(rack), (MIN_GP_WIN * segsiz)))) { /* * Yep there is enough outstanding to make a measurement here. */ struct rack_sendmap *rsm, fe; tp->t_flags |= TF_GPUTINPROG; rack->r_ctl.rc_gp_lowrtt = 0xffffffff; rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); rack->app_limited_needs_set = 0; tp->gput_seq = th_ack; if (rack->in_probe_rtt) rack->measure_saw_probe_rtt = 1; else if ((rack->measure_saw_probe_rtt) && (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) rack->measure_saw_probe_rtt = 0; if ((rack->r_ctl.rc_first_appl->r_start - th_ack) >= rack_get_measure_window(tp, rack)) { /* There is a full window to gain info from */ tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); } else { /* We can only measure up to the applimited point */ tp->gput_ack = tp->gput_seq + (rack->r_ctl.rc_first_appl->r_start - th_ack); } /* * Now we need to find the timestamp of the send at tp->gput_seq * for the send based measurement. */ fe.r_start = tp->gput_seq; rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); if (rsm) { /* Ok send-based limit is set */ if (SEQ_LT(rsm->r_start, tp->gput_seq)) { /* * Move back to include the earlier part * so our ack time lines up right (this may * make an overlapping measurement but thats * ok). */ tp->gput_seq = rsm->r_start; } if (rsm->r_flags & RACK_ACKED) tp->gput_ts = rsm->r_ack_arrival; else rack->app_limited_needs_set = 1; rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send; } else { /* * If we don't find the rsm due to some * send-limit set the current time, which * basically disables the send-limit. */ rack->r_ctl.rc_gp_output_ts = tcp_get_usecs(NULL); } rack_log_pacing_delay_calc(rack, tp->gput_seq, tp->gput_ack, (uint64_t)rsm, tp->gput_ts, rack->r_ctl.rc_app_limited_cnt, 9, __LINE__, NULL); } } /* * CC wrapper hook functions */ static void rack_ack_received(struct tcpcb *tp, struct tcp_rack *rack, struct tcphdr *th, uint16_t nsegs, uint16_t type, int32_t recovery) { INP_WLOCK_ASSERT(tp->t_inpcb); tp->ccv->nsegs = nsegs; tp->ccv->bytes_this_ack = BYTES_THIS_ACK(tp, th); if ((recovery) && (rack->r_ctl.rc_early_recovery_segs)) { uint32_t max; max = rack->r_ctl.rc_early_recovery_segs * ctf_fixed_maxseg(tp); if (tp->ccv->bytes_this_ack > max) { tp->ccv->bytes_this_ack = max; } } if (rack->r_ctl.cwnd_to_use <= tp->snd_wnd) tp->ccv->flags |= CCF_CWND_LIMITED; else tp->ccv->flags &= ~CCF_CWND_LIMITED; #ifdef STATS stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF, ((int32_t)rack->r_ctl.cwnd_to_use) - tp->snd_wnd); #endif if ((tp->t_flags & TF_GPUTINPROG) && rack_enough_for_measurement(tp, rack, th->th_ack)) { /* Measure the Goodput */ rack_do_goodput_measurement(tp, rack, th->th_ack, __LINE__); #ifdef NETFLIX_PEAKRATE if ((type == CC_ACK) && (tp->t_maxpeakrate)) { /* * We update t_peakrate_thr. This gives us roughly * one update per round trip time. Note * it will only be used if pace_always is off i.e * we don't do this for paced flows. */ tcp_update_peakrate_thr(tp); } #endif } if (rack->r_ctl.cwnd_to_use > tp->snd_ssthresh) { - tp->t_bytes_acked += min(tp->ccv->bytes_this_ack, - nsegs * V_tcp_abc_l_var * ctf_fixed_maxseg(tp)); + tp->t_bytes_acked += tp->ccv->bytes_this_ack; if (tp->t_bytes_acked >= rack->r_ctl.cwnd_to_use) { tp->t_bytes_acked -= rack->r_ctl.cwnd_to_use; tp->ccv->flags |= CCF_ABC_SENTAWND; } } else { tp->ccv->flags &= ~CCF_ABC_SENTAWND; tp->t_bytes_acked = 0; } if (CC_ALGO(tp)->ack_received != NULL) { /* XXXLAS: Find a way to live without this */ tp->ccv->curack = th->th_ack; CC_ALGO(tp)->ack_received(tp->ccv, type); } #ifdef STATS stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, rack->r_ctl.cwnd_to_use); #endif if (rack->r_ctl.rc_rack_largest_cwnd < rack->r_ctl.cwnd_to_use) { rack->r_ctl.rc_rack_largest_cwnd = rack->r_ctl.cwnd_to_use; } #ifdef NETFLIX_PEAKRATE /* we enforce max peak rate if it is set and we are not pacing */ if ((rack->rc_always_pace == 0) && tp->t_peakrate_thr && (tp->snd_cwnd > tp->t_peakrate_thr)) { tp->snd_cwnd = tp->t_peakrate_thr; } #endif } static void tcp_rack_partialack(struct tcpcb *tp, struct tcphdr *th) { struct tcp_rack *rack; rack = (struct tcp_rack *)tp->t_fb_ptr; INP_WLOCK_ASSERT(tp->t_inpcb); /* * If we are doing PRR and have enough * room to send we are pacing and prr * is disabled we will want to see if we * can send data (by setting r_wanted_output to * true). */ if ((rack->r_ctl.rc_prr_sndcnt > 0) || rack->rack_no_prr) rack->r_wanted_output = 1; } static void rack_post_recovery(struct tcpcb *tp, struct tcphdr *th) { struct tcp_rack *rack; uint32_t orig_cwnd; orig_cwnd = tp->snd_cwnd; INP_WLOCK_ASSERT(tp->t_inpcb); rack = (struct tcp_rack *)tp->t_fb_ptr; if (rack->rc_not_backing_off == 0) { /* only alert CC if we alerted when we entered */ if (CC_ALGO(tp)->post_recovery != NULL) { tp->ccv->curack = th->th_ack; CC_ALGO(tp)->post_recovery(tp->ccv); } if (tp->snd_cwnd > tp->snd_ssthresh) { /* Drop us down to the ssthresh (1/2 cwnd at loss) */ tp->snd_cwnd = tp->snd_ssthresh; } } if ((rack->rack_no_prr == 0) && (rack->r_ctl.rc_prr_sndcnt > 0)) { /* Suck the next prr cnt back into cwnd */ tp->snd_cwnd += rack->r_ctl.rc_prr_sndcnt; rack->r_ctl.rc_prr_sndcnt = 0; rack_log_to_prr(rack, 1, 0); } rack_log_to_prr(rack, 14, orig_cwnd); tp->snd_recover = tp->snd_una; EXIT_RECOVERY(tp->t_flags); } static void rack_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type) { struct tcp_rack *rack; INP_WLOCK_ASSERT(tp->t_inpcb); rack = (struct tcp_rack *)tp->t_fb_ptr; switch (type) { case CC_NDUPACK: tp->t_flags &= ~TF_WASFRECOVERY; tp->t_flags &= ~TF_WASCRECOVERY; if (!IN_FASTRECOVERY(tp->t_flags)) { rack->r_ctl.rc_prr_delivered = 0; rack->r_ctl.rc_prr_out = 0; if (rack->rack_no_prr == 0) { rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); rack_log_to_prr(rack, 2, 0); } rack->r_ctl.rc_prr_recovery_fs = tp->snd_max - tp->snd_una; tp->snd_recover = tp->snd_max; if (tp->t_flags2 & TF2_ECN_PERMIT) tp->t_flags2 |= TF2_ECN_SND_CWR; } break; case CC_ECN: if (!IN_CONGRECOVERY(tp->t_flags) || /* * Allow ECN reaction on ACK to CWR, if * that data segment was also CE marked. */ SEQ_GEQ(th->th_ack, tp->snd_recover)) { EXIT_CONGRECOVERY(tp->t_flags); KMOD_TCPSTAT_INC(tcps_ecn_rcwnd); tp->snd_recover = tp->snd_max + 1; if (tp->t_flags2 & TF2_ECN_PERMIT) tp->t_flags2 |= TF2_ECN_SND_CWR; } break; case CC_RTO: tp->t_dupacks = 0; tp->t_bytes_acked = 0; EXIT_RECOVERY(tp->t_flags); tp->snd_ssthresh = max(2, min(tp->snd_wnd, rack->r_ctl.cwnd_to_use) / 2 / ctf_fixed_maxseg(tp)) * ctf_fixed_maxseg(tp); tp->snd_cwnd = ctf_fixed_maxseg(tp); if (tp->t_flags2 & TF2_ECN_PERMIT) tp->t_flags2 |= TF2_ECN_SND_CWR; break; case CC_RTO_ERR: KMOD_TCPSTAT_INC(tcps_sndrexmitbad); /* RTO was unnecessary, so reset everything. */ tp->snd_cwnd = tp->snd_cwnd_prev; tp->snd_ssthresh = tp->snd_ssthresh_prev; tp->snd_recover = tp->snd_recover_prev; if (tp->t_flags & TF_WASFRECOVERY) { ENTER_FASTRECOVERY(tp->t_flags); tp->t_flags &= ~TF_WASFRECOVERY; } if (tp->t_flags & TF_WASCRECOVERY) { ENTER_CONGRECOVERY(tp->t_flags); tp->t_flags &= ~TF_WASCRECOVERY; } tp->snd_nxt = tp->snd_max; tp->t_badrxtwin = 0; break; } /* * If we are below our max rtt, don't * signal the CC control to change things. * instead set it up so that we are in * recovery but not going to back off. */ if (rack->rc_highly_buffered) { /* * Do we use the higher rtt for * our threshold to not backoff (like CDG)? */ uint32_t rtt_mul, rtt_div; if (rack_use_max_for_nobackoff) { rtt_mul = (rack_gp_rtt_maxmul - 1); rtt_div = 1; } else { rtt_mul = rack_gp_rtt_minmul; rtt_div = max(rack_gp_rtt_mindiv , 1); } if (rack->r_ctl.rc_gp_srtt <= (rack->r_ctl.rc_lowest_us_rtt + ((rack->r_ctl.rc_lowest_us_rtt * rtt_mul) / rtt_div))) { /* below our min threshold */ rack->rc_not_backing_off = 1; ENTER_RECOVERY(rack->rc_tp->t_flags); rack_log_rtt_shrinks(rack, 0, rtt_mul, rtt_div, RACK_RTTS_NOBACKOFF); return; } } rack->rc_not_backing_off = 0; if (CC_ALGO(tp)->cong_signal != NULL) { if (th != NULL) tp->ccv->curack = th->th_ack; CC_ALGO(tp)->cong_signal(tp->ccv, type); } } static inline void rack_cc_after_idle(struct tcp_rack *rack, struct tcpcb *tp) { uint32_t i_cwnd; INP_WLOCK_ASSERT(tp->t_inpcb); #ifdef NETFLIX_STATS KMOD_TCPSTAT_INC(tcps_idle_restarts); if (tp->t_state == TCPS_ESTABLISHED) KMOD_TCPSTAT_INC(tcps_idle_estrestarts); #endif if (CC_ALGO(tp)->after_idle != NULL) CC_ALGO(tp)->after_idle(tp->ccv); if (tp->snd_cwnd == 1) i_cwnd = tp->t_maxseg; /* SYN(-ACK) lost */ else i_cwnd = rc_init_window(rack); /* * Being idle is no differnt than the initial window. If the cc * clamps it down below the initial window raise it to the initial * window. */ if (tp->snd_cwnd < i_cwnd) { tp->snd_cwnd = i_cwnd; } } /* * Indicate whether this ack should be delayed. We can delay the ack if * following conditions are met: * - There is no delayed ack timer in progress. * - Our last ack wasn't a 0-sized window. We never want to delay * the ack that opens up a 0-sized window. * - LRO wasn't used for this segment. We make sure by checking that the * segment size is not larger than the MSS. * - Delayed acks are enabled or this is a half-synchronized T/TCP * connection. */ #define DELAY_ACK(tp, tlen) \ (((tp->t_flags & TF_RXWIN0SENT) == 0) && \ ((tp->t_flags & TF_DELACK) == 0) && \ (tlen <= tp->t_maxseg) && \ (tp->t_delayed_ack || (tp->t_flags & TF_NEEDSYN))) static struct rack_sendmap * rack_find_lowest_rsm(struct tcp_rack *rack) { struct rack_sendmap *rsm; /* * Walk the time-order transmitted list looking for an rsm that is * not acked. This will be the one that was sent the longest time * ago that is still outstanding. */ TAILQ_FOREACH(rsm, &rack->r_ctl.rc_tmap, r_tnext) { if (rsm->r_flags & RACK_ACKED) { continue; } goto finish; } finish: return (rsm); } static struct rack_sendmap * rack_find_high_nonack(struct tcp_rack *rack, struct rack_sendmap *rsm) { struct rack_sendmap *prsm; /* * Walk the sequence order list backward until we hit and arrive at * the highest seq not acked. In theory when this is called it * should be the last segment (which it was not). */ counter_u64_add(rack_find_high, 1); prsm = rsm; RB_FOREACH_REVERSE_FROM(prsm, rack_rb_tree_head, rsm) { if (prsm->r_flags & (RACK_ACKED | RACK_HAS_FIN)) { continue; } return (prsm); } return (NULL); } static uint32_t rack_calc_thresh_rack(struct tcp_rack *rack, uint32_t srtt, uint32_t cts) { int32_t lro; uint32_t thresh; /* * lro is the flag we use to determine if we have seen reordering. * If it gets set we have seen reordering. The reorder logic either * works in one of two ways: * * If reorder-fade is configured, then we track the last time we saw * re-ordering occur. If we reach the point where enough time as * passed we no longer consider reordering has occuring. * * Or if reorder-face is 0, then once we see reordering we consider * the connection to alway be subject to reordering and just set lro * to 1. * * In the end if lro is non-zero we add the extra time for * reordering in. */ if (srtt == 0) srtt = 1; if (rack->r_ctl.rc_reorder_ts) { if (rack->r_ctl.rc_reorder_fade) { if (SEQ_GEQ(cts, rack->r_ctl.rc_reorder_ts)) { lro = cts - rack->r_ctl.rc_reorder_ts; if (lro == 0) { /* * No time as passed since the last * reorder, mark it as reordering. */ lro = 1; } } else { /* Negative time? */ lro = 0; } if (lro > rack->r_ctl.rc_reorder_fade) { /* Turn off reordering seen too */ rack->r_ctl.rc_reorder_ts = 0; lro = 0; } } else { /* Reodering does not fade */ lro = 1; } } else { lro = 0; } thresh = srtt + rack->r_ctl.rc_pkt_delay; if (lro) { /* It must be set, if not you get 1/4 rtt */ if (rack->r_ctl.rc_reorder_shift) thresh += (srtt >> rack->r_ctl.rc_reorder_shift); else thresh += (srtt >> 2); } else { thresh += 1; } /* We don't let the rack timeout be above a RTO */ if (thresh > TICKS_2_MSEC(rack->rc_tp->t_rxtcur)) { thresh = TICKS_2_MSEC(rack->rc_tp->t_rxtcur); } /* And we don't want it above the RTO max either */ if (thresh > rack_rto_max) { thresh = rack_rto_max; } return (thresh); } static uint32_t rack_calc_thresh_tlp(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t srtt) { struct rack_sendmap *prsm; uint32_t thresh, len; int segsiz; if (srtt == 0) srtt = 1; if (rack->r_ctl.rc_tlp_threshold) thresh = srtt + (srtt / rack->r_ctl.rc_tlp_threshold); else thresh = (srtt * 2); /* Get the previous sent packet, if any */ segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); counter_u64_add(rack_enter_tlp_calc, 1); len = rsm->r_end - rsm->r_start; if (rack->rack_tlp_threshold_use == TLP_USE_ID) { /* Exactly like the ID */ if (((tp->snd_max - tp->snd_una) - rack->r_ctl.rc_sacked + rack->r_ctl.rc_holes_rxt) <= segsiz) { uint32_t alt_thresh; /* * Compensate for delayed-ack with the d-ack time. */ counter_u64_add(rack_used_tlpmethod, 1); alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; if (alt_thresh > thresh) thresh = alt_thresh; } } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_ONE) { /* 2.1 behavior */ prsm = TAILQ_PREV(rsm, rack_head, r_tnext); if (prsm && (len <= segsiz)) { /* * Two packets outstanding, thresh should be (2*srtt) + * possible inter-packet delay (if any). */ uint32_t inter_gap = 0; int idx, nidx; counter_u64_add(rack_used_tlpmethod, 1); idx = rsm->r_rtr_cnt - 1; nidx = prsm->r_rtr_cnt - 1; if (TSTMP_GEQ(rsm->r_tim_lastsent[nidx], prsm->r_tim_lastsent[idx])) { /* Yes it was sent later (or at the same time) */ inter_gap = rsm->r_tim_lastsent[idx] - prsm->r_tim_lastsent[nidx]; } thresh += inter_gap; } else if (len <= segsiz) { /* * Possibly compensate for delayed-ack. */ uint32_t alt_thresh; counter_u64_add(rack_used_tlpmethod2, 1); alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; if (alt_thresh > thresh) thresh = alt_thresh; } } else if (rack->rack_tlp_threshold_use == TLP_USE_TWO_TWO) { /* 2.2 behavior */ if (len <= segsiz) { uint32_t alt_thresh; /* * Compensate for delayed-ack with the d-ack time. */ counter_u64_add(rack_used_tlpmethod, 1); alt_thresh = srtt + (srtt / 2) + rack_delayed_ack_time; if (alt_thresh > thresh) thresh = alt_thresh; } } /* Not above an RTO */ if (thresh > TICKS_2_MSEC(tp->t_rxtcur)) { thresh = TICKS_2_MSEC(tp->t_rxtcur); } /* Not above a RTO max */ if (thresh > rack_rto_max) { thresh = rack_rto_max; } /* Apply user supplied min TLP */ if (thresh < rack_tlp_min) { thresh = rack_tlp_min; } return (thresh); } static uint32_t rack_grab_rtt(struct tcpcb *tp, struct tcp_rack *rack) { /* * We want the rack_rtt which is the * last rtt we measured. However if that * does not exist we fallback to the srtt (which * we probably will never do) and then as a last * resort we use RACK_INITIAL_RTO if no srtt is * yet set. */ if (rack->rc_rack_rtt) return(rack->rc_rack_rtt); else if (tp->t_srtt == 0) return(RACK_INITIAL_RTO); return (TICKS_2_MSEC(tp->t_srtt >> TCP_RTT_SHIFT)); } static struct rack_sendmap * rack_check_recovery_mode(struct tcpcb *tp, uint32_t tsused) { /* * Check to see that we don't need to fall into recovery. We will * need to do so if our oldest transmit is past the time we should * have had an ack. */ struct tcp_rack *rack; struct rack_sendmap *rsm; int32_t idx; uint32_t srtt, thresh; rack = (struct tcp_rack *)tp->t_fb_ptr; if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { return (NULL); } rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); if (rsm == NULL) return (NULL); if (rsm->r_flags & RACK_ACKED) { rsm = rack_find_lowest_rsm(rack); if (rsm == NULL) return (NULL); } idx = rsm->r_rtr_cnt - 1; srtt = rack_grab_rtt(tp, rack); thresh = rack_calc_thresh_rack(rack, srtt, tsused); if (TSTMP_LT(tsused, rsm->r_tim_lastsent[idx])) { return (NULL); } if ((tsused - rsm->r_tim_lastsent[idx]) < thresh) { return (NULL); } /* Ok if we reach here we are over-due and this guy can be sent */ if (IN_RECOVERY(tp->t_flags) == 0) { /* * For the one that enters us into recovery record undo * info. */ rack->r_ctl.rc_rsm_start = rsm->r_start; rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; } rack_cong_signal(tp, NULL, CC_NDUPACK); return (rsm); } static uint32_t rack_get_persists_timer_val(struct tcpcb *tp, struct tcp_rack *rack) { int32_t t; int32_t tt; uint32_t ret_val; t = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT) + ((tp->t_rttvar * 4) >> TCP_RTT_SHIFT)); TCPT_RANGESET(tt, t * tcp_backoff[tp->t_rxtshift], rack_persist_min, rack_persist_max); if (tp->t_rxtshift < TCP_MAXRXTSHIFT) tp->t_rxtshift++; rack->r_ctl.rc_hpts_flags |= PACE_TMR_PERSIT; ret_val = (uint32_t)tt; return (ret_val); } static uint32_t rack_timer_start(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int sup_rack) { /* * Start the FR timer, we do this based on getting the first one in * the rc_tmap. Note that if its NULL we must stop the timer. in all * events we need to stop the running timer (if its running) before * starting the new one. */ uint32_t thresh, exp, to, srtt, time_since_sent, tstmp_touse; uint32_t srtt_cur; int32_t idx; int32_t is_tlp_timer = 0; struct rack_sendmap *rsm; if (rack->t_timers_stopped) { /* All timers have been stopped none are to run */ return (0); } if (rack->rc_in_persist) { /* We can't start any timer in persists */ return (rack_get_persists_timer_val(tp, rack)); } rack->rc_on_min_to = 0; if ((tp->t_state < TCPS_ESTABLISHED) || ((tp->t_flags & TF_SACK_PERMIT) == 0)) goto activate_rxt; rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); if ((rsm == NULL) || sup_rack) { /* Nothing on the send map */ activate_rxt: time_since_sent = 0; rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); if (rsm) { idx = rsm->r_rtr_cnt - 1; if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time)) tstmp_touse = rsm->r_tim_lastsent[idx]; else tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time; if (TSTMP_GT(cts, tstmp_touse)) time_since_sent = cts - tstmp_touse; } if (SEQ_LT(tp->snd_una, tp->snd_max) || sbavail(&(tp->t_inpcb->inp_socket->so_snd))) { rack->r_ctl.rc_hpts_flags |= PACE_TMR_RXT; to = TICKS_2_MSEC(tp->t_rxtcur); if (to > time_since_sent) to -= time_since_sent; else to = rack->r_ctl.rc_min_to; if (to == 0) to = 1; return (to); } return (0); } if (rsm->r_flags & RACK_ACKED) { rsm = rack_find_lowest_rsm(rack); if (rsm == NULL) { /* No lowest? */ goto activate_rxt; } } if (rack->sack_attack_disable) { /* * We don't want to do * any TLP's if you are an attacker. * Though if you are doing what * is expected you may still have * SACK-PASSED marks. */ goto activate_rxt; } /* Convert from ms to usecs */ if ((rsm->r_flags & RACK_SACK_PASSED) || (rsm->r_dupack >= DUP_ACK_THRESHOLD)) { if ((tp->t_flags & TF_SENTFIN) && ((tp->snd_max - tp->snd_una) == 1) && (rsm->r_flags & RACK_HAS_FIN)) { /* * We don't start a rack timer if all we have is a * FIN outstanding. */ goto activate_rxt; } if ((rack->use_rack_rr == 0) && (IN_RECOVERY(tp->t_flags)) && (rack->rack_no_prr == 0) && (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) { /* * We are not cheating, in recovery and * not enough ack's to yet get our next * retransmission out. * * Note that classified attackers do not * get to use the rack-cheat. */ goto activate_tlp; } srtt = rack_grab_rtt(tp, rack); thresh = rack_calc_thresh_rack(rack, srtt, cts); idx = rsm->r_rtr_cnt - 1; exp = rsm->r_tim_lastsent[idx] + thresh; if (SEQ_GEQ(exp, cts)) { to = exp - cts; if (to < rack->r_ctl.rc_min_to) { to = rack->r_ctl.rc_min_to; if (rack->r_rr_config == 3) rack->rc_on_min_to = 1; } } else { to = rack->r_ctl.rc_min_to; if (rack->r_rr_config == 3) rack->rc_on_min_to = 1; } } else { /* Ok we need to do a TLP not RACK */ activate_tlp: if ((rack->rc_tlp_in_progress != 0) && (rack->r_ctl.rc_tlp_cnt_out >= rack_tlp_limit)) { /* * The previous send was a TLP and we have sent * N TLP's without sending new data. */ goto activate_rxt; } rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); if (rsm == NULL) { /* We found no rsm to TLP with. */ goto activate_rxt; } if (rsm->r_flags & RACK_HAS_FIN) { /* If its a FIN we dont do TLP */ rsm = NULL; goto activate_rxt; } idx = rsm->r_rtr_cnt - 1; time_since_sent = 0; if (TSTMP_GEQ(rsm->r_tim_lastsent[idx], rack->r_ctl.rc_tlp_rxt_last_time)) tstmp_touse = rsm->r_tim_lastsent[idx]; else tstmp_touse = rack->r_ctl.rc_tlp_rxt_last_time; if (TSTMP_GT(cts, tstmp_touse)) time_since_sent = cts - tstmp_touse; is_tlp_timer = 1; if (tp->t_srtt) { srtt_cur = (tp->t_srtt >> TCP_RTT_SHIFT); srtt = TICKS_2_MSEC(srtt_cur); } else srtt = RACK_INITIAL_RTO; /* * If the SRTT is not keeping up and the * rack RTT has spiked we want to use * the last RTT not the smoothed one. */ if (rack_tlp_use_greater && (srtt < rack_grab_rtt(tp, rack))) srtt = rack_grab_rtt(tp, rack); thresh = rack_calc_thresh_tlp(tp, rack, rsm, srtt); if (thresh > time_since_sent) to = thresh - time_since_sent; else { to = rack->r_ctl.rc_min_to; rack_log_alt_to_to_cancel(rack, thresh, /* flex1 */ time_since_sent, /* flex2 */ tstmp_touse, /* flex3 */ rack->r_ctl.rc_tlp_rxt_last_time, /* flex4 */ rsm->r_tim_lastsent[idx], srtt, idx, 99); } if (to > TCPTV_REXMTMAX) { /* * If the TLP time works out to larger than the max * RTO lets not do TLP.. just RTO. */ goto activate_rxt; } } if (is_tlp_timer == 0) { rack->r_ctl.rc_hpts_flags |= PACE_TMR_RACK; } else { rack->r_ctl.rc_hpts_flags |= PACE_TMR_TLP; } if (to == 0) to = 1; return (to); } static void rack_enter_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { if (rack->rc_in_persist == 0) { if (tp->t_flags & TF_GPUTINPROG) { /* * Stop the goodput now, the calling of the * measurement function clears the flag. */ rack_do_goodput_measurement(tp, rack, tp->snd_una, __LINE__); } #ifdef NETFLIX_SHARED_CWND if (rack->r_ctl.rc_scw) { tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); rack->rack_scwnd_is_idle = 1; } #endif rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); if (rack->r_ctl.rc_went_idle_time == 0) rack->r_ctl.rc_went_idle_time = 1; rack_timer_cancel(tp, rack, cts, __LINE__); tp->t_rxtshift = 0; rack->rc_in_persist = 1; } } static void rack_exit_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { if (rack->rc_inp->inp_in_hpts) { tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); rack->r_ctl.rc_hpts_flags = 0; } #ifdef NETFLIX_SHARED_CWND if (rack->r_ctl.rc_scw) { tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); rack->rack_scwnd_is_idle = 0; } #endif if (rack->rc_gp_dyn_mul && (rack->use_fixed_rate == 0) && (rack->rc_always_pace)) { /* * Do we count this as if a probe-rtt just * finished? */ uint32_t time_idle, idle_min; time_idle = tcp_get_usecs(NULL) - rack->r_ctl.rc_went_idle_time; idle_min = rack_min_probertt_hold; if (rack_probertt_gpsrtt_cnt_div) { uint64_t extra; extra = (uint64_t)rack->r_ctl.rc_gp_srtt * (uint64_t)rack_probertt_gpsrtt_cnt_mul; extra /= (uint64_t)rack_probertt_gpsrtt_cnt_div; idle_min += (uint32_t)extra; } if (time_idle >= idle_min) { /* Yes, we count it as a probe-rtt. */ uint32_t us_cts; us_cts = tcp_get_usecs(NULL); if (rack->in_probe_rtt == 0) { rack->r_ctl.rc_lower_rtt_us_cts = us_cts; rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; } else { rack_exit_probertt(rack, us_cts); } } } rack->rc_in_persist = 0; rack->r_ctl.rc_went_idle_time = 0; tp->t_rxtshift = 0; rack->r_ctl.rc_agg_delayed = 0; rack->r_early = 0; rack->r_late = 0; rack->r_ctl.rc_agg_early = 0; } static void rack_log_hpts_diag(struct tcp_rack *rack, uint32_t cts, struct hpts_diag *diag, struct timeval *tv) { if (rack_verbose_logging && rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.flex1 = diag->p_nxt_slot; log.u_bbr.flex2 = diag->p_cur_slot; log.u_bbr.flex3 = diag->slot_req; log.u_bbr.flex4 = diag->inp_hptsslot; log.u_bbr.flex5 = diag->slot_remaining; log.u_bbr.flex6 = diag->need_new_to; log.u_bbr.flex7 = diag->p_hpts_active; log.u_bbr.flex8 = diag->p_on_min_sleep; /* Hijack other fields as needed */ log.u_bbr.epoch = diag->have_slept; log.u_bbr.lt_epoch = diag->yet_to_sleep; log.u_bbr.pkts_out = diag->co_ret; log.u_bbr.applimited = diag->hpts_sleep_time; log.u_bbr.delivered = diag->p_prev_slot; log.u_bbr.inflight = diag->p_runningtick; log.u_bbr.bw_inuse = diag->wheel_tick; log.u_bbr.rttProp = diag->wheel_cts; log.u_bbr.timeStamp = cts; log.u_bbr.delRate = diag->maxticks; log.u_bbr.cur_del_rate = diag->p_curtick; log.u_bbr.cur_del_rate <<= 32; log.u_bbr.cur_del_rate |= diag->p_lasttick; TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_HPTSDIAG, 0, 0, &log, false, tv); } } static void rack_start_hpts_timer(struct tcp_rack *rack, struct tcpcb *tp, uint32_t cts, int32_t slot, uint32_t tot_len_this_send, int sup_rack) { struct hpts_diag diag; struct inpcb *inp; struct timeval tv; uint32_t delayed_ack = 0; uint32_t hpts_timeout; uint8_t stopped; uint32_t left = 0; uint32_t us_cts; inp = tp->t_inpcb; if ((tp->t_state == TCPS_CLOSED) || (tp->t_state == TCPS_LISTEN)) { return; } if (inp->inp_in_hpts) { /* Already on the pacer */ return; } stopped = rack->rc_tmr_stopped; if (stopped && TSTMP_GT(rack->r_ctl.rc_timer_exp, cts)) { left = rack->r_ctl.rc_timer_exp - cts; } rack->r_ctl.rc_timer_exp = 0; rack->r_ctl.rc_hpts_flags = 0; us_cts = tcp_get_usecs(&tv); /* Now early/late accounting */ if (rack->r_early) { /* * We have a early carry over set, * we can always add more time so we * can always make this compensation. */ slot += rack->r_ctl.rc_agg_early; rack->r_early = 0; rack->r_ctl.rc_agg_early = 0; } if (rack->r_late) { /* * This is harder, we can * compensate some but it * really depends on what * the current pacing time is. */ if (rack->r_ctl.rc_agg_delayed >= slot) { /* * We can't compensate for it all. * And we have to have some time * on the clock. We always have a min * 10 slots (10 x 10 i.e. 100 usecs). */ if (slot <= HPTS_TICKS_PER_USEC) { /* We gain delay */ rack->r_ctl.rc_agg_delayed += (HPTS_TICKS_PER_USEC - slot); slot = HPTS_TICKS_PER_USEC; } else { /* We take off some */ rack->r_ctl.rc_agg_delayed -= (slot - HPTS_TICKS_PER_USEC); slot = HPTS_TICKS_PER_USEC; } } else { slot -= rack->r_ctl.rc_agg_delayed; rack->r_ctl.rc_agg_delayed = 0; /* Make sure we have 100 useconds at minimum */ if (slot < HPTS_TICKS_PER_USEC) { rack->r_ctl.rc_agg_delayed = HPTS_TICKS_PER_USEC - slot; slot = HPTS_TICKS_PER_USEC; } if (rack->r_ctl.rc_agg_delayed == 0) rack->r_late = 0; } } if (slot) { /* We are pacing too */ rack->r_ctl.rc_hpts_flags |= PACE_PKT_OUTPUT; } hpts_timeout = rack_timer_start(tp, rack, cts, sup_rack); #ifdef NETFLIX_EXP_DETECTION if (rack->sack_attack_disable && (slot < tcp_sad_pacing_interval)) { /* * We have a potential attacker on * the line. We have possibly some * (or now) pacing time set. We want to * slow down the processing of sacks by some * amount (if it is an attacker). Set the default * slot for attackers in place (unless the orginal * interval is longer). Its stored in * micro-seconds, so lets convert to msecs. */ slot = tcp_sad_pacing_interval; } #endif if (tp->t_flags & TF_DELACK) { delayed_ack = TICKS_2_MSEC(tcp_delacktime); rack->r_ctl.rc_hpts_flags |= PACE_TMR_DELACK; } if (delayed_ack && ((hpts_timeout == 0) || (delayed_ack < hpts_timeout))) hpts_timeout = delayed_ack; else rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; /* * If no timers are going to run and we will fall off the hptsi * wheel, we resort to a keep-alive timer if its configured. */ if ((hpts_timeout == 0) && (slot == 0)) { if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && (tp->t_state <= TCPS_CLOSING)) { /* * Ok we have no timer (persists, rack, tlp, rxt or * del-ack), we don't have segments being paced. So * all that is left is the keepalive timer. */ if (TCPS_HAVEESTABLISHED(tp->t_state)) { /* Get the established keep-alive time */ hpts_timeout = TP_KEEPIDLE(tp); } else { /* Get the initial setup keep-alive time */ hpts_timeout = TP_KEEPINIT(tp); } rack->r_ctl.rc_hpts_flags |= PACE_TMR_KEEP; if (rack->in_probe_rtt) { /* * We want to instead not wake up a long time from * now but to wake up about the time we would * exit probe-rtt and initiate a keep-alive ack. * This will get us out of probe-rtt and update * our min-rtt. */ hpts_timeout = (rack_min_probertt_hold / HPTS_USEC_IN_MSEC); } } } if (left && (stopped & (PACE_TMR_KEEP | PACE_TMR_DELACK)) == (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK)) { /* * RACK, TLP, persists and RXT timers all are restartable * based on actions input .. i.e we received a packet (ack * or sack) and that changes things (rw, or snd_una etc). * Thus we can restart them with a new value. For * keep-alive, delayed_ack we keep track of what was left * and restart the timer with a smaller value. */ if (left < hpts_timeout) hpts_timeout = left; } if (hpts_timeout) { /* * Hack alert for now we can't time-out over 2,147,483 * seconds (a bit more than 596 hours), which is probably ok * :). */ if (hpts_timeout > 0x7ffffffe) hpts_timeout = 0x7ffffffe; rack->r_ctl.rc_timer_exp = cts + hpts_timeout; } if ((rack->rc_gp_filled == 0) && (hpts_timeout < slot) && (rack->r_ctl.rc_hpts_flags & (PACE_TMR_TLP|PACE_TMR_RXT))) { /* * We have no good estimate yet for the * old clunky burst mitigation or the * real pacing. And the tlp or rxt is smaller * than the pacing calculation. Lets not * pace that long since we know the calculation * so far is not accurate. */ slot = hpts_timeout; } rack->r_ctl.last_pacing_time = slot; if (slot) { rack->r_ctl.rc_last_output_to = us_cts + slot; if (rack->rc_always_pace || rack->r_mbuf_queue) { if ((rack->rc_gp_filled == 0) || rack->pacing_longer_than_rtt) { inp->inp_flags2 &= ~(INP_DONT_SACK_QUEUE|INP_MBUF_QUEUE_READY); } else { inp->inp_flags2 |= INP_MBUF_QUEUE_READY; if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) && (rack->r_rr_config != 3)) inp->inp_flags2 |= INP_DONT_SACK_QUEUE; else inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE; } } if ((rack->use_rack_rr) && (rack->r_rr_config < 2) && ((hpts_timeout) && ((hpts_timeout * HPTS_USEC_IN_MSEC) < slot))) { /* * Arrange for the hpts to kick back in after the * t-o if the t-o does not cause a send. */ (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout), __LINE__, &diag); rack_log_hpts_diag(rack, us_cts, &diag, &tv); rack_log_to_start(rack, cts, hpts_timeout, slot, 0); } else { (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_USEC_TO_SLOTS(slot), __LINE__, &diag); rack_log_hpts_diag(rack, us_cts, &diag, &tv); rack_log_to_start(rack, cts, hpts_timeout, slot, 1); } } else if (hpts_timeout) { if (rack->rc_always_pace || rack->r_mbuf_queue) { if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK) { /* For a rack timer, don't wake us */ inp->inp_flags2 |= INP_MBUF_QUEUE_READY; if (rack->r_rr_config != 3) inp->inp_flags2 |= INP_DONT_SACK_QUEUE; else inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE; } else { /* All other timers wake us up */ inp->inp_flags2 &= ~INP_MBUF_QUEUE_READY; inp->inp_flags2 &= ~INP_DONT_SACK_QUEUE; } } (void)tcp_hpts_insert_diag(tp->t_inpcb, HPTS_MS_TO_SLOTS(hpts_timeout), __LINE__, &diag); rack_log_hpts_diag(rack, us_cts, &diag, &tv); rack_log_to_start(rack, cts, hpts_timeout, slot, 0); } else { /* No timer starting */ #ifdef INVARIANTS if (SEQ_GT(tp->snd_max, tp->snd_una)) { panic("tp:%p rack:%p tlts:%d cts:%u slot:%u pto:%u -- no timer started?", tp, rack, tot_len_this_send, cts, slot, hpts_timeout); } #endif } rack->rc_tmr_stopped = 0; if (slot) rack_log_type_bbrsnd(rack, tot_len_this_send, slot, us_cts, &tv); } /* * RACK Timer, here we simply do logging and house keeping. * the normal rack_output() function will call the * appropriate thing to check if we need to do a RACK retransmit. * We return 1, saying don't proceed with rack_output only * when all timers have been stopped (destroyed PCB?). */ static int rack_timeout_rack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { /* * This timer simply provides an internal trigger to send out data. * The check_recovery_mode call will see if there are needed * retransmissions, if so we will enter fast-recovery. The output * call may or may not do the same thing depending on sysctl * settings. */ struct rack_sendmap *rsm; int32_t recovery; if (tp->t_timers->tt_flags & TT_STOPPED) { return (1); } recovery = IN_RECOVERY(tp->t_flags); counter_u64_add(rack_to_tot, 1); if (rack->r_state && (rack->r_state != tp->t_state)) rack_set_state(tp, rack); rack->rc_on_min_to = 0; rsm = rack_check_recovery_mode(tp, cts); rack_log_to_event(rack, RACK_TO_FRM_RACK, rsm); if (rsm) { uint32_t rtt; rack->r_ctl.rc_resend = rsm; if (rack->use_rack_rr) { /* * Don't accumulate extra pacing delay * we are allowing the rack timer to * over-ride pacing i.e. rrr takes precedence * if the pacing interval is longer than the rrr * time (in other words we get the min pacing * time versus rrr pacing time). */ rack->r_timer_override = 1; rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; } rtt = rack->rc_rack_rtt; if (rtt == 0) rtt = 1; if (rack->rack_no_prr == 0) { if ((recovery == 0) && (rack->r_ctl.rc_prr_sndcnt < ctf_fixed_maxseg(tp))) { /* * The rack-timeout that enter's us into recovery * will force out one MSS and set us up so that we * can do one more send in 2*rtt (transitioning the * rack timeout into a rack-tlp). */ rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); rack->r_timer_override = 1; rack_log_to_prr(rack, 3, 0); } else if ((rack->r_ctl.rc_prr_sndcnt < (rsm->r_end - rsm->r_start)) && rack->use_rack_rr) { /* * When a rack timer goes, if the rack rr is * on, arrange it so we can send a full segment * overriding prr (though we pay a price for this * for future new sends). */ rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); rack_log_to_prr(rack, 4, 0); } } } rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RACK; if (rsm == NULL) { /* restart a timer and return 1 */ rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); return (1); } return (0); } static __inline void rack_clone_rsm(struct tcp_rack *rack, struct rack_sendmap *nrsm, struct rack_sendmap *rsm, uint32_t start) { int idx; nrsm->r_start = start; nrsm->r_end = rsm->r_end; nrsm->r_rtr_cnt = rsm->r_rtr_cnt; nrsm->r_flags = rsm->r_flags; nrsm->r_dupack = rsm->r_dupack; nrsm->usec_orig_send = rsm->usec_orig_send; nrsm->r_rtr_bytes = 0; rsm->r_end = nrsm->r_start; nrsm->r_just_ret = rsm->r_just_ret; for (idx = 0; idx < nrsm->r_rtr_cnt; idx++) { nrsm->r_tim_lastsent[idx] = rsm->r_tim_lastsent[idx]; } } static struct rack_sendmap * rack_merge_rsm(struct tcp_rack *rack, struct rack_sendmap *l_rsm, struct rack_sendmap *r_rsm) { /* * We are merging two ack'd RSM's, * the l_rsm is on the left (lower seq * values) and the r_rsm is on the right * (higher seq value). The simplest way * to merge these is to move the right * one into the left. I don't think there * is any reason we need to try to find * the oldest (or last oldest retransmitted). */ struct rack_sendmap *rm; l_rsm->r_end = r_rsm->r_end; if (l_rsm->r_dupack < r_rsm->r_dupack) l_rsm->r_dupack = r_rsm->r_dupack; if (r_rsm->r_rtr_bytes) l_rsm->r_rtr_bytes += r_rsm->r_rtr_bytes; if (r_rsm->r_in_tmap) { /* This really should not happen */ TAILQ_REMOVE(&rack->r_ctl.rc_tmap, r_rsm, r_tnext); r_rsm->r_in_tmap = 0; } /* Now the flags */ if (r_rsm->r_flags & RACK_HAS_FIN) l_rsm->r_flags |= RACK_HAS_FIN; if (r_rsm->r_flags & RACK_TLP) l_rsm->r_flags |= RACK_TLP; if (r_rsm->r_flags & RACK_RWND_COLLAPSED) l_rsm->r_flags |= RACK_RWND_COLLAPSED; if ((r_rsm->r_flags & RACK_APP_LIMITED) && ((l_rsm->r_flags & RACK_APP_LIMITED) == 0)) { /* * If both are app-limited then let the * free lower the count. If right is app * limited and left is not, transfer. */ l_rsm->r_flags |= RACK_APP_LIMITED; r_rsm->r_flags &= ~RACK_APP_LIMITED; if (r_rsm == rack->r_ctl.rc_first_appl) rack->r_ctl.rc_first_appl = l_rsm; } rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, r_rsm); #ifdef INVARIANTS if (rm != r_rsm) { panic("removing head in rack:%p rsm:%p rm:%p", rack, r_rsm, rm); } #endif if ((r_rsm->r_limit_type == 0) && (l_rsm->r_limit_type != 0)) { /* Transfer the split limit to the map we free */ r_rsm->r_limit_type = l_rsm->r_limit_type; l_rsm->r_limit_type = 0; } rack_free(rack, r_rsm); return(l_rsm); } /* * TLP Timer, here we simply setup what segment we want to * have the TLP expire on, the normal rack_output() will then * send it out. * * We return 1, saying don't proceed with rack_output only * when all timers have been stopped (destroyed PCB?). */ static int rack_timeout_tlp(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { /* * Tail Loss Probe. */ struct rack_sendmap *rsm = NULL; struct rack_sendmap *insret; struct socket *so; uint32_t amm, old_prr_snd = 0; uint32_t out, avail; int collapsed_win = 0; if (tp->t_timers->tt_flags & TT_STOPPED) { return (1); } if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { /* Its not time yet */ return (0); } if (ctf_progress_timeout_check(tp, true)) { rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); return (1); } /* * A TLP timer has expired. We have been idle for 2 rtts. So we now * need to figure out how to force a full MSS segment out. */ rack_log_to_event(rack, RACK_TO_FRM_TLP, NULL); counter_u64_add(rack_tlp_tot, 1); if (rack->r_state && (rack->r_state != tp->t_state)) rack_set_state(tp, rack); so = tp->t_inpcb->inp_socket; avail = sbavail(&so->so_snd); out = tp->snd_max - tp->snd_una; if (out > tp->snd_wnd) { /* special case, we need a retransmission */ collapsed_win = 1; goto need_retran; } /* * Check our send oldest always settings, and if * there is an oldest to send jump to the need_retran. */ if (rack_always_send_oldest && (TAILQ_EMPTY(&rack->r_ctl.rc_tmap) == 0)) goto need_retran; if (avail > out) { /* New data is available */ amm = avail - out; if (amm > ctf_fixed_maxseg(tp)) { amm = ctf_fixed_maxseg(tp); if ((amm + out) > tp->snd_wnd) { /* We are rwnd limited */ goto need_retran; } } else if (amm < ctf_fixed_maxseg(tp)) { /* not enough to fill a MTU */ goto need_retran; } if (IN_RECOVERY(tp->t_flags)) { /* Unlikely */ if (rack->rack_no_prr == 0) { old_prr_snd = rack->r_ctl.rc_prr_sndcnt; if (out + amm <= tp->snd_wnd) { rack->r_ctl.rc_prr_sndcnt = amm; rack_log_to_prr(rack, 4, 0); } } else goto need_retran; } else { /* Set the send-new override */ if (out + amm <= tp->snd_wnd) rack->r_ctl.rc_tlp_new_data = amm; else goto need_retran; } rack->r_ctl.rc_tlpsend = NULL; counter_u64_add(rack_tlp_newdata, 1); goto send; } need_retran: /* * Ok we need to arrange the last un-acked segment to be re-sent, or * optionally the first un-acked segment. */ if (collapsed_win == 0) { if (rack_always_send_oldest) rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); else { rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (rsm && (rsm->r_flags & (RACK_ACKED | RACK_HAS_FIN))) { rsm = rack_find_high_nonack(rack, rsm); } } if (rsm == NULL) { counter_u64_add(rack_tlp_does_nada, 1); #ifdef TCP_BLACKBOX tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); #endif goto out; } } else { /* * We must find the last segment * that was acceptable by the client. */ RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { if ((rsm->r_flags & RACK_RWND_COLLAPSED) == 0) { /* Found one */ break; } } if (rsm == NULL) { /* None? if so send the first */ rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (rsm == NULL) { counter_u64_add(rack_tlp_does_nada, 1); #ifdef TCP_BLACKBOX tcp_log_dump_tp_logbuf(tp, "nada counter trips", M_NOWAIT, true); #endif goto out; } } } if ((rsm->r_end - rsm->r_start) > ctf_fixed_maxseg(tp)) { /* * We need to split this the last segment in two. */ struct rack_sendmap *nrsm; nrsm = rack_alloc_full_limit(rack); if (nrsm == NULL) { /* * No memory to split, we will just exit and punt * off to the RXT timer. */ counter_u64_add(rack_tlp_does_nada, 1); goto out; } rack_clone_rsm(rack, nrsm, rsm, (rsm->r_end - ctf_fixed_maxseg(tp))); insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", nrsm, insret, rack, rsm); } #endif if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~RACK_HAS_FIN); rsm = nrsm; } rack->r_ctl.rc_tlpsend = rsm; send: rack->r_timer_override = 1; rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; return (0); out: rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_TLP; return (0); } /* * Delayed ack Timer, here we simply need to setup the * ACK_NOW flag and remove the DELACK flag. From there * the output routine will send the ack out. * * We only return 1, saying don't proceed, if all timers * are stopped (destroyed PCB?). */ static int rack_timeout_delack(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { if (tp->t_timers->tt_flags & TT_STOPPED) { return (1); } rack_log_to_event(rack, RACK_TO_FRM_DELACK, NULL); tp->t_flags &= ~TF_DELACK; tp->t_flags |= TF_ACKNOW; KMOD_TCPSTAT_INC(tcps_delack); rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_DELACK; return (0); } /* * Persists timer, here we simply send the * same thing as a keepalive will. * the one byte send. * * We only return 1, saying don't proceed, if all timers * are stopped (destroyed PCB?). */ static int rack_timeout_persist(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { struct tcptemp *t_template; struct inpcb *inp; int32_t retval = 1; inp = tp->t_inpcb; if (tp->t_timers->tt_flags & TT_STOPPED) { return (1); } if (rack->rc_in_persist == 0) return (0); if (ctf_progress_timeout_check(tp, false)) { tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(inp, ETIMEDOUT); return (1); } KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp)); /* * Persistence timer into zero window. Force a byte to be output, if * possible. */ KMOD_TCPSTAT_INC(tcps_persisttimeo); /* * Hack: if the peer is dead/unreachable, we do not time out if the * window is closed. After a full backoff, drop the connection if * the idle time (no responses to probes) reaches the maximum * backoff that we would use if retransmitting. */ if (tp->t_rxtshift == TCP_MAXRXTSHIFT && (ticks - tp->t_rcvtime >= tcp_maxpersistidle || ticks - tp->t_rcvtime >= TCP_REXMTVAL(tp) * tcp_totbackoff)) { KMOD_TCPSTAT_INC(tcps_persistdrop); retval = 1; tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); goto out; } if ((sbavail(&rack->rc_inp->inp_socket->so_snd) == 0) && tp->snd_una == tp->snd_max) rack_exit_persist(tp, rack, cts); rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_PERSIT; /* * If the user has closed the socket then drop a persisting * connection after a much reduced timeout. */ if (tp->t_state > TCPS_CLOSE_WAIT && (ticks - tp->t_rcvtime) >= TCPTV_PERSMAX) { retval = 1; KMOD_TCPSTAT_INC(tcps_persistdrop); tcp_log_end_status(tp, TCP_EI_STATUS_PERSIST_MAX); tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); goto out; } t_template = tcpip_maketemplate(rack->rc_inp); if (t_template) { /* only set it if we were answered */ if (rack->forced_ack == 0) { rack->forced_ack = 1; rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); } tcp_respond(tp, t_template->tt_ipgen, &t_template->tt_t, (struct mbuf *)NULL, tp->rcv_nxt, tp->snd_una - 1, 0); /* This sends an ack */ if (tp->t_flags & TF_DELACK) tp->t_flags &= ~TF_DELACK; free(t_template, M_TEMP); } if (tp->t_rxtshift < TCP_MAXRXTSHIFT) tp->t_rxtshift++; out: rack_log_to_event(rack, RACK_TO_FRM_PERSIST, NULL); rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); return (retval); } /* * If a keepalive goes off, we had no other timers * happening. We always return 1 here since this * routine either drops the connection or sends * out a segment with respond. */ static int rack_timeout_keepalive(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { struct tcptemp *t_template; struct inpcb *inp; if (tp->t_timers->tt_flags & TT_STOPPED) { return (1); } rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_KEEP; inp = tp->t_inpcb; rack_log_to_event(rack, RACK_TO_FRM_KEEP, NULL); /* * Keep-alive timer went off; send something or drop connection if * idle for too long. */ KMOD_TCPSTAT_INC(tcps_keeptimeo); if (tp->t_state < TCPS_ESTABLISHED) goto dropit; if ((V_tcp_always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) && tp->t_state <= TCPS_CLOSING) { if (ticks - tp->t_rcvtime >= TP_KEEPIDLE(tp) + TP_MAXIDLE(tp)) goto dropit; /* * Send a packet designed to force a response if the peer is * up and reachable: either an ACK if the connection is * still alive, or an RST if the peer has closed the * connection due to timeout or reboot. Using sequence * number tp->snd_una-1 causes the transmitted zero-length * segment to lie outside the receive window; by the * protocol spec, this requires the correspondent TCP to * respond. */ KMOD_TCPSTAT_INC(tcps_keepprobe); t_template = tcpip_maketemplate(inp); if (t_template) { if (rack->forced_ack == 0) { rack->forced_ack = 1; rack->r_ctl.forced_ack_ts = tcp_get_usecs(NULL); } tcp_respond(tp, t_template->tt_ipgen, &t_template->tt_t, (struct mbuf *)NULL, tp->rcv_nxt, tp->snd_una - 1, 0); free(t_template, M_TEMP); } } rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); return (1); dropit: KMOD_TCPSTAT_INC(tcps_keepdrops); tcp_log_end_status(tp, TCP_EI_STATUS_KEEP_MAX); tcp_set_inp_to_drop(rack->rc_inp, ETIMEDOUT); return (1); } /* * Retransmit helper function, clear up all the ack * flags and take care of important book keeping. */ static void rack_remxt_tmr(struct tcpcb *tp) { /* * The retransmit timer went off, all sack'd blocks must be * un-acked. */ struct rack_sendmap *rsm, *trsm = NULL; struct tcp_rack *rack; int32_t cnt = 0; rack = (struct tcp_rack *)tp->t_fb_ptr; rack_timer_cancel(tp, rack, tcp_ts_getticks(), __LINE__); rack_log_to_event(rack, RACK_TO_FRM_TMR, NULL); if (rack->r_state && (rack->r_state != tp->t_state)) rack_set_state(tp, rack); /* * Ideally we would like to be able to * mark SACK-PASS on anything not acked here. * However, if we do that we would burst out * all that data 1ms apart. This would be unwise, * so for now we will just let the normal rxt timer * and tlp timer take care of it. */ RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { if (rsm->r_flags & RACK_ACKED) { cnt++; rsm->r_dupack = 0; rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); if (rsm->r_in_tmap == 0) { /* We must re-add it back to the tlist */ if (trsm == NULL) { TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); } else { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, trsm, rsm, r_tnext); } rsm->r_in_tmap = 1; } } trsm = rsm; if (rsm->r_flags & RACK_ACKED) rsm->r_flags |= RACK_WAS_ACKED; rsm->r_flags &= ~(RACK_ACKED | RACK_SACK_PASSED | RACK_WAS_SACKPASS); } /* Clear the count (we just un-acked them) */ rack->r_ctl.rc_sacked = 0; rack->r_ctl.rc_agg_delayed = 0; rack->r_early = 0; rack->r_ctl.rc_agg_early = 0; rack->r_late = 0; /* Clear the tlp rtx mark */ rack->r_ctl.rc_resend = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); rack->r_ctl.rc_prr_sndcnt = 0; rack_log_to_prr(rack, 6, 0); rack->r_timer_override = 1; } static void rack_cc_conn_init(struct tcpcb *tp) { struct tcp_rack *rack; rack = (struct tcp_rack *)tp->t_fb_ptr; cc_conn_init(tp); /* * We want a chance to stay in slowstart as * we create a connection. TCP spec says that * initially ssthresh is infinite. For our * purposes that is the snd_wnd. */ if (tp->snd_ssthresh < tp->snd_wnd) { tp->snd_ssthresh = tp->snd_wnd; } /* * We also want to assure a IW worth of * data can get inflight. */ if (rc_init_window(rack) < tp->snd_cwnd) tp->snd_cwnd = rc_init_window(rack); } /* * Re-transmit timeout! If we drop the PCB we will return 1, otherwise * we will setup to retransmit the lowest seq number outstanding. */ static int rack_timeout_rxt(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts) { int32_t rexmt; struct inpcb *inp; int32_t retval = 0; bool isipv6; inp = tp->t_inpcb; if (tp->t_timers->tt_flags & TT_STOPPED) { return (1); } if (ctf_progress_timeout_check(tp, false)) { tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(inp, ETIMEDOUT); return (1); } rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_RXT; if (TCPS_HAVEESTABLISHED(tp->t_state) && (tp->snd_una == tp->snd_max)) { /* Nothing outstanding .. nothing to do */ return (0); } /* * Retransmission timer went off. Message has not been acked within * retransmit interval. Back off to a longer retransmit interval * and retransmit one segment. */ rack_remxt_tmr(tp); if ((rack->r_ctl.rc_resend == NULL) || ((rack->r_ctl.rc_resend->r_flags & RACK_RWND_COLLAPSED) == 0)) { /* * If the rwnd collapsed on * the one we are retransmitting * it does not count against the * rxt count. */ tp->t_rxtshift++; } if (tp->t_rxtshift > TCP_MAXRXTSHIFT) { tp->t_rxtshift = TCP_MAXRXTSHIFT; KMOD_TCPSTAT_INC(tcps_timeoutdrop); retval = 1; tcp_log_end_status(tp, TCP_EI_STATUS_RETRAN); tcp_set_inp_to_drop(rack->rc_inp, (tp->t_softerror ? (uint16_t) tp->t_softerror : ETIMEDOUT)); goto out; } if (tp->t_state == TCPS_SYN_SENT) { /* * If the SYN was retransmitted, indicate CWND to be limited * to 1 segment in cc_conn_init(). */ tp->snd_cwnd = 1; } else if (tp->t_rxtshift == 1) { /* * first retransmit; record ssthresh and cwnd so they can be * recovered if this turns out to be a "bad" retransmit. A * retransmit is considered "bad" if an ACK for this segment * is received within RTT/2 interval; the assumption here is * that the ACK was already in flight. See "On Estimating * End-to-End Network Path Properties" by Allman and Paxson * for more details. */ tp->snd_cwnd_prev = tp->snd_cwnd; tp->snd_ssthresh_prev = tp->snd_ssthresh; tp->snd_recover_prev = tp->snd_recover; if (IN_FASTRECOVERY(tp->t_flags)) tp->t_flags |= TF_WASFRECOVERY; else tp->t_flags &= ~TF_WASFRECOVERY; if (IN_CONGRECOVERY(tp->t_flags)) tp->t_flags |= TF_WASCRECOVERY; else tp->t_flags &= ~TF_WASCRECOVERY; tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1)); tp->t_flags |= TF_PREVVALID; } else tp->t_flags &= ~TF_PREVVALID; KMOD_TCPSTAT_INC(tcps_rexmttimeo); if ((tp->t_state == TCPS_SYN_SENT) || (tp->t_state == TCPS_SYN_RECEIVED)) rexmt = MSEC_2_TICKS(RACK_INITIAL_RTO * tcp_backoff[tp->t_rxtshift]); else rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift]; TCPT_RANGESET(tp->t_rxtcur, rexmt, max(MSEC_2_TICKS(rack_rto_min), rexmt), MSEC_2_TICKS(rack_rto_max)); /* * We enter the path for PLMTUD if connection is established or, if * connection is FIN_WAIT_1 status, reason for the last is that if * amount of data we send is very small, we could send it in couple * of packets and process straight to FIN. In that case we won't * catch ESTABLISHED state. */ #ifdef INET6 isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) ? true : false; #else isipv6 = false; #endif if (((V_tcp_pmtud_blackhole_detect == 1) || (V_tcp_pmtud_blackhole_detect == 2 && !isipv6) || (V_tcp_pmtud_blackhole_detect == 3 && isipv6)) && ((tp->t_state == TCPS_ESTABLISHED) || (tp->t_state == TCPS_FIN_WAIT_1))) { /* * Idea here is that at each stage of mtu probe (usually, * 1448 -> 1188 -> 524) should be given 2 chances to recover * before further clamping down. 'tp->t_rxtshift % 2 == 0' * should take care of that. */ if (((tp->t_flags2 & (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) == (TF2_PLPMTU_PMTUD | TF2_PLPMTU_MAXSEGSNT)) && (tp->t_rxtshift >= 2 && tp->t_rxtshift < 6 && tp->t_rxtshift % 2 == 0)) { /* * Enter Path MTU Black-hole Detection mechanism: - * Disable Path MTU Discovery (IP "DF" bit). - * Reduce MTU to lower value than what we negotiated * with peer. */ if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) == 0) { /* Record that we may have found a black hole. */ tp->t_flags2 |= TF2_PLPMTU_BLACKHOLE; /* Keep track of previous MSS. */ tp->t_pmtud_saved_maxseg = tp->t_maxseg; } /* * Reduce the MSS to blackhole value or to the * default in an attempt to retransmit. */ #ifdef INET6 if (isipv6 && tp->t_maxseg > V_tcp_v6pmtud_blackhole_mss) { /* Use the sysctl tuneable blackhole MSS. */ tp->t_maxseg = V_tcp_v6pmtud_blackhole_mss; KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); } else if (isipv6) { /* Use the default MSS. */ tp->t_maxseg = V_tcp_v6mssdflt; /* * Disable Path MTU Discovery when we switch * to minmss. */ tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET if (tp->t_maxseg > V_tcp_pmtud_blackhole_mss) { /* Use the sysctl tuneable blackhole MSS. */ tp->t_maxseg = V_tcp_pmtud_blackhole_mss; KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated); } else { /* Use the default MSS. */ tp->t_maxseg = V_tcp_mssdflt; /* * Disable Path MTU Discovery when we switch * to minmss. */ tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_activated_min_mss); } #endif } else { /* * If further retransmissions are still unsuccessful * with a lowered MTU, maybe this isn't a blackhole * and we restore the previous MSS and blackhole * detection flags. The limit '6' is determined by * giving each probe stage (1448, 1188, 524) 2 * chances to recover. */ if ((tp->t_flags2 & TF2_PLPMTU_BLACKHOLE) && (tp->t_rxtshift >= 6)) { tp->t_flags2 |= TF2_PLPMTU_PMTUD; tp->t_flags2 &= ~TF2_PLPMTU_BLACKHOLE; tp->t_maxseg = tp->t_pmtud_saved_maxseg; KMOD_TCPSTAT_INC(tcps_pmtud_blackhole_failed); } } } /* * If we backed off this far, our srtt estimate is probably bogus. * Clobber it so we'll take the next rtt measurement as our srtt; * move the current srtt into rttvar to keep the current retransmit * times until then. */ if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) { #ifdef INET6 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) in6_losing(tp->t_inpcb); else #endif in_losing(tp->t_inpcb); tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT); tp->t_srtt = 0; } sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); tp->snd_recover = tp->snd_max; tp->t_flags |= TF_ACKNOW; tp->t_rtttime = 0; rack_cong_signal(tp, NULL, CC_RTO); out: return (retval); } static int rack_process_timers(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, uint8_t hpts_calling) { int32_t ret = 0; int32_t timers = (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK); if (timers == 0) { return (0); } if (tp->t_state == TCPS_LISTEN) { /* no timers on listen sockets */ if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) return (0); return (1); } if ((timers & PACE_TMR_RACK) && rack->rc_on_min_to) { /* * For the rack timer when we * are on a min-timeout (which means rrr_conf = 3) * we don't want to check the timer. It may * be going off for a pace and thats ok we * want to send the retransmit (if its ready). * * If its on a normal rack timer (non-min) then * we will check if its expired. */ goto skip_time_check; } if (TSTMP_LT(cts, rack->r_ctl.rc_timer_exp)) { uint32_t left; if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { ret = -1; rack_log_to_processing(rack, cts, ret, 0); return (0); } if (hpts_calling == 0) { /* * A user send or queued mbuf (sack) has called us? We * return 0 and let the pacing guards * deal with it if they should or * should not cause a send. */ ret = -2; rack_log_to_processing(rack, cts, ret, 0); return (0); } /* * Ok our timer went off early and we are not paced false * alarm, go back to sleep. */ ret = -3; left = rack->r_ctl.rc_timer_exp - cts; tcp_hpts_insert(tp->t_inpcb, HPTS_MS_TO_SLOTS(left)); rack_log_to_processing(rack, cts, ret, left); return (1); } skip_time_check: rack->rc_tmr_stopped = 0; rack->r_ctl.rc_hpts_flags &= ~PACE_TMR_MASK; if (timers & PACE_TMR_DELACK) { ret = rack_timeout_delack(tp, rack, cts); } else if (timers & PACE_TMR_RACK) { rack->r_ctl.rc_tlp_rxt_last_time = cts; ret = rack_timeout_rack(tp, rack, cts); } else if (timers & PACE_TMR_TLP) { rack->r_ctl.rc_tlp_rxt_last_time = cts; ret = rack_timeout_tlp(tp, rack, cts); } else if (timers & PACE_TMR_RXT) { rack->r_ctl.rc_tlp_rxt_last_time = cts; ret = rack_timeout_rxt(tp, rack, cts); } else if (timers & PACE_TMR_PERSIT) { ret = rack_timeout_persist(tp, rack, cts); } else if (timers & PACE_TMR_KEEP) { ret = rack_timeout_keepalive(tp, rack, cts); } rack_log_to_processing(rack, cts, ret, timers); return (ret); } static void rack_timer_cancel(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cts, int line) { struct timeval tv; uint32_t us_cts, flags_on_entry; uint8_t hpts_removed = 0; flags_on_entry = rack->r_ctl.rc_hpts_flags; us_cts = tcp_get_usecs(&tv); if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && ((TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) || ((tp->snd_max - tp->snd_una) == 0))) { tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); hpts_removed = 1; /* If we were not delayed cancel out the flag. */ if ((tp->snd_max - tp->snd_una) == 0) rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); } if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { rack->rc_tmr_stopped = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; if (rack->rc_inp->inp_in_hpts && ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)) { /* * Canceling timer's when we have no output being * paced. We also must remove ourselves from the * hpts. */ tcp_hpts_remove(rack->rc_inp, HPTS_REMOVE_OUTPUT); hpts_removed = 1; } rack->r_ctl.rc_hpts_flags &= ~(PACE_TMR_MASK); } if (hpts_removed == 0) rack_log_to_cancel(rack, hpts_removed, line, us_cts, &tv, flags_on_entry); } static void rack_timer_stop(struct tcpcb *tp, uint32_t timer_type) { return; } static int rack_stopall(struct tcpcb *tp) { struct tcp_rack *rack; rack = (struct tcp_rack *)tp->t_fb_ptr; rack->t_timers_stopped = 1; return (0); } static void rack_timer_activate(struct tcpcb *tp, uint32_t timer_type, uint32_t delta) { return; } static int rack_timer_active(struct tcpcb *tp, uint32_t timer_type) { return (0); } static void rack_stop_all_timers(struct tcpcb *tp) { struct tcp_rack *rack; /* * Assure no timers are running. */ if (tcp_timer_active(tp, TT_PERSIST)) { /* We enter in persists, set the flag appropriately */ rack = (struct tcp_rack *)tp->t_fb_ptr; rack->rc_in_persist = 1; } tcp_timer_suspend(tp, TT_PERSIST); tcp_timer_suspend(tp, TT_REXMT); tcp_timer_suspend(tp, TT_KEEP); tcp_timer_suspend(tp, TT_DELACK); } static void rack_update_rsm(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t ts) { int32_t idx; rsm->r_rtr_cnt++; rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); rsm->r_dupack = 0; if (rsm->r_rtr_cnt > RACK_NUM_OF_RETRANS) { rsm->r_rtr_cnt = RACK_NUM_OF_RETRANS; rsm->r_flags |= RACK_OVERMAX; } if ((rsm->r_rtr_cnt > 1) && ((rsm->r_flags & RACK_TLP) == 0)) { rack->r_ctl.rc_holes_rxt += (rsm->r_end - rsm->r_start); rsm->r_rtr_bytes += (rsm->r_end - rsm->r_start); } idx = rsm->r_rtr_cnt - 1; rsm->r_tim_lastsent[idx] = ts; if (rsm->r_flags & RACK_ACKED) { /* Problably MTU discovery messing with us */ rsm->r_flags &= ~RACK_ACKED; rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); } if (rsm->r_in_tmap) { TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 1; if (rsm->r_flags & RACK_SACK_PASSED) { /* We have retransmitted due to the SACK pass */ rsm->r_flags &= ~RACK_SACK_PASSED; rsm->r_flags |= RACK_WAS_SACKPASS; } } static uint32_t rack_update_entry(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, uint32_t ts, int32_t *lenp) { /* * We (re-)transmitted starting at rsm->r_start for some length * (possibly less than r_end. */ struct rack_sendmap *nrsm, *insret; uint32_t c_end; int32_t len; len = *lenp; c_end = rsm->r_start + len; if (SEQ_GEQ(c_end, rsm->r_end)) { /* * We retransmitted the whole piece or more than the whole * slopping into the next rsm. */ rack_update_rsm(tp, rack, rsm, ts); if (c_end == rsm->r_end) { *lenp = 0; return (0); } else { int32_t act_len; /* Hangs over the end return whats left */ act_len = rsm->r_end - rsm->r_start; *lenp = (len - act_len); return (rsm->r_end); } /* We don't get out of this block. */ } /* * Here we retransmitted less than the whole thing which means we * have to split this into what was transmitted and what was not. */ nrsm = rack_alloc_full_limit(rack); if (nrsm == NULL) { /* * We can't get memory, so lets not proceed. */ *lenp = 0; return (0); } /* * So here we are going to take the original rsm and make it what we * retransmitted. nrsm will be the tail portion we did not * retransmit. For example say the chunk was 1, 11 (10 bytes). And * we retransmitted 5 bytes i.e. 1, 5. The original piece shrinks to * 1, 6 and the new piece will be 6, 11. */ rack_clone_rsm(rack, nrsm, rsm, c_end); nrsm->r_dupack = 0; rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", nrsm, insret, rack, rsm); } #endif if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~RACK_HAS_FIN); rack_update_rsm(tp, rack, rsm, ts); *lenp = 0; return (0); } static void rack_log_output(struct tcpcb *tp, struct tcpopt *to, int32_t len, uint32_t seq_out, uint8_t th_flags, int32_t err, uint32_t ts, uint8_t pass, struct rack_sendmap *hintrsm, uint32_t us_cts) { struct tcp_rack *rack; struct rack_sendmap *rsm, *nrsm, *insret, fe; register uint32_t snd_max, snd_una; /* * Add to the RACK log of packets in flight or retransmitted. If * there is a TS option we will use the TS echoed, if not we will * grab a TS. * * Retransmissions will increment the count and move the ts to its * proper place. Note that if options do not include TS's then we * won't be able to effectively use the ACK for an RTT on a retran. * * Notes about r_start and r_end. Lets consider a send starting at * sequence 1 for 10 bytes. In such an example the r_start would be * 1 (starting sequence) but the r_end would be r_start+len i.e. 11. * This means that r_end is actually the first sequence for the next * slot (11). * */ /* * If err is set what do we do XXXrrs? should we not add the thing? * -- i.e. return if err != 0 or should we pretend we sent it? -- * i.e. proceed with add ** do this for now. */ INP_WLOCK_ASSERT(tp->t_inpcb); if (err) /* * We don't log errors -- we could but snd_max does not * advance in this case either. */ return; if (th_flags & TH_RST) { /* * We don't log resets and we return immediately from * sending */ return; } rack = (struct tcp_rack *)tp->t_fb_ptr; snd_una = tp->snd_una; if (SEQ_LEQ((seq_out + len), snd_una)) { /* Are sending an old segment to induce an ack (keep-alive)? */ return; } if (SEQ_LT(seq_out, snd_una)) { /* huh? should we panic? */ uint32_t end; end = seq_out + len; seq_out = snd_una; if (SEQ_GEQ(end, seq_out)) len = end - seq_out; else len = 0; } snd_max = tp->snd_max; if (th_flags & (TH_SYN | TH_FIN)) { /* * The call to rack_log_output is made before bumping * snd_max. This means we can record one extra byte on a SYN * or FIN if seq_out is adding more on and a FIN is present * (and we are not resending). */ if ((th_flags & TH_SYN) && (seq_out == tp->iss)) len++; if (th_flags & TH_FIN) len++; if (SEQ_LT(snd_max, tp->snd_nxt)) { /* * The add/update as not been done for the FIN/SYN * yet. */ snd_max = tp->snd_nxt; } } if (len == 0) { /* We don't log zero window probes */ return; } rack->r_ctl.rc_time_last_sent = ts; if (IN_RECOVERY(tp->t_flags)) { rack->r_ctl.rc_prr_out += len; } /* First question is it a retransmission or new? */ if (seq_out == snd_max) { /* Its new */ again: rsm = rack_alloc(rack); if (rsm == NULL) { /* * Hmm out of memory and the tcb got destroyed while * we tried to wait. */ return; } if (th_flags & TH_FIN) { rsm->r_flags = RACK_HAS_FIN; } else { rsm->r_flags = 0; } rsm->r_tim_lastsent[0] = ts; rsm->r_rtr_cnt = 1; rsm->r_rtr_bytes = 0; rsm->usec_orig_send = us_cts; if (th_flags & TH_SYN) { /* The data space is one beyond snd_una */ rsm->r_flags |= RACK_HAS_SIN; rsm->r_start = seq_out + 1; rsm->r_end = rsm->r_start + (len - 1); } else { /* Normal case */ rsm->r_start = seq_out; rsm->r_end = rsm->r_start + len; } rsm->r_dupack = 0; rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", nrsm, insret, rack, rsm); } #endif TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 1; /* * Special case detection, is there just a single * packet outstanding when we are not in recovery? * * If this is true mark it so. */ if ((IN_RECOVERY(tp->t_flags) == 0) && (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) == ctf_fixed_maxseg(tp))) { struct rack_sendmap *prsm; prsm = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); if (prsm) prsm->r_one_out_nr = 1; } return; } /* * If we reach here its a retransmission and we need to find it. */ memset(&fe, 0, sizeof(fe)); more: if (hintrsm && (hintrsm->r_start == seq_out)) { rsm = hintrsm; hintrsm = NULL; } else { /* No hints sorry */ rsm = NULL; } if ((rsm) && (rsm->r_start == seq_out)) { seq_out = rack_update_entry(tp, rack, rsm, ts, &len); if (len == 0) { return; } else { goto more; } } /* Ok it was not the last pointer go through it the hard way. */ refind: fe.r_start = seq_out; rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); if (rsm) { if (rsm->r_start == seq_out) { seq_out = rack_update_entry(tp, rack, rsm, ts, &len); if (len == 0) { return; } else { goto refind; } } if (SEQ_GEQ(seq_out, rsm->r_start) && SEQ_LT(seq_out, rsm->r_end)) { /* Transmitted within this piece */ /* * Ok we must split off the front and then let the * update do the rest */ nrsm = rack_alloc_full_limit(rack); if (nrsm == NULL) { rack_update_rsm(tp, rack, rsm, ts); return; } /* * copy rsm to nrsm and then trim the front of rsm * to not include this part. */ rack_clone_rsm(rack, nrsm, rsm, seq_out); insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", nrsm, insret, rack, rsm); } #endif if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~RACK_HAS_FIN); seq_out = rack_update_entry(tp, rack, nrsm, ts, &len); if (len == 0) { return; } else if (len > 0) goto refind; } } /* * Hmm not found in map did they retransmit both old and on into the * new? */ if (seq_out == tp->snd_max) { goto again; } else if (SEQ_LT(seq_out, tp->snd_max)) { #ifdef INVARIANTS printf("seq_out:%u len:%d snd_una:%u snd_max:%u -- but rsm not found?\n", seq_out, len, tp->snd_una, tp->snd_max); printf("Starting Dump of all rack entries\n"); RB_FOREACH(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { printf("rsm:%p start:%u end:%u\n", rsm, rsm->r_start, rsm->r_end); } printf("Dump complete\n"); panic("seq_out not found rack:%p tp:%p", rack, tp); #endif } else { #ifdef INVARIANTS /* * Hmm beyond sndmax? (only if we are using the new rtt-pack * flag) */ panic("seq_out:%u(%d) is beyond snd_max:%u tp:%p", seq_out, len, tp->snd_max, tp); #endif } } /* * Record one of the RTT updates from an ack into * our sample structure. */ static void tcp_rack_xmit_timer(struct tcp_rack *rack, int32_t rtt, uint32_t len, uint32_t us_rtt, int confidence, struct rack_sendmap *rsm, uint16_t rtrcnt) { if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || (rack->r_ctl.rack_rs.rs_rtt_lowest > rtt)) { rack->r_ctl.rack_rs.rs_rtt_lowest = rtt; } if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || (rack->r_ctl.rack_rs.rs_rtt_highest < rtt)) { rack->r_ctl.rack_rs.rs_rtt_highest = rtt; } if (rack->rc_tp->t_flags & TF_GPUTINPROG) { if (us_rtt < rack->r_ctl.rc_gp_lowrtt) rack->r_ctl.rc_gp_lowrtt = us_rtt; if (rack->rc_tp->snd_wnd > rack->r_ctl.rc_gp_high_rwnd) rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; } if ((confidence == 1) && ((rsm == NULL) || (rsm->r_just_ret) || (rsm->r_one_out_nr && len < (ctf_fixed_maxseg(rack->rc_tp) * 2)))) { /* * If the rsm had a just return * hit it then we can't trust the * rtt measurement for buffer deterimination * Note that a confidence of 2, indicates * SACK'd which overrides the r_just_ret or * the r_one_out_nr. If it was a CUM-ACK and * we had only two outstanding, but get an * ack for only 1. Then that also lowers our * confidence. */ confidence = 0; } if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) || (rack->r_ctl.rack_rs.rs_us_rtt > us_rtt)) { if (rack->r_ctl.rack_rs.confidence == 0) { /* * We take anything with no current confidence * saved. */ rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; rack->r_ctl.rack_rs.confidence = confidence; rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; } else if (confidence || rack->r_ctl.rack_rs.confidence) { /* * Once we have a confident number, * we can update it with a smaller * value since this confident number * may include the DSACK time until * the next segment (the second one) arrived. */ rack->r_ctl.rack_rs.rs_us_rtt = us_rtt; rack->r_ctl.rack_rs.confidence = confidence; rack->r_ctl.rack_rs.rs_us_rtrcnt = rtrcnt; } } rack_log_rtt_upd(rack->rc_tp, rack, us_rtt, len, rsm, confidence); rack->r_ctl.rack_rs.rs_flags = RACK_RTT_VALID; rack->r_ctl.rack_rs.rs_rtt_tot += rtt; rack->r_ctl.rack_rs.rs_rtt_cnt++; } /* * Collect new round-trip time estimate * and update averages and current timeout. */ static void tcp_rack_xmit_timer_commit(struct tcp_rack *rack, struct tcpcb *tp) { int32_t delta; uint32_t o_srtt, o_var; int32_t hrtt_up = 0; int32_t rtt; if (rack->r_ctl.rack_rs.rs_flags & RACK_RTT_EMPTY) /* No valid sample */ return; if (rack->r_ctl.rc_rate_sample_method == USE_RTT_LOW) { /* We are to use the lowest RTT seen in a single ack */ rtt = rack->r_ctl.rack_rs.rs_rtt_lowest; } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_HIGH) { /* We are to use the highest RTT seen in a single ack */ rtt = rack->r_ctl.rack_rs.rs_rtt_highest; } else if (rack->r_ctl.rc_rate_sample_method == USE_RTT_AVG) { /* We are to use the average RTT seen in a single ack */ rtt = (int32_t)(rack->r_ctl.rack_rs.rs_rtt_tot / (uint64_t)rack->r_ctl.rack_rs.rs_rtt_cnt); } else { #ifdef INVARIANTS panic("Unknown rtt variant %d", rack->r_ctl.rc_rate_sample_method); #endif return; } if (rtt == 0) rtt = 1; if (rack->rc_gp_rtt_set == 0) { /* * With no RTT we have to accept * even one we are not confident of. */ rack->r_ctl.rc_gp_srtt = rack->r_ctl.rack_rs.rs_us_rtt; rack->rc_gp_rtt_set = 1; } else if (rack->r_ctl.rack_rs.confidence) { /* update the running gp srtt */ rack->r_ctl.rc_gp_srtt -= (rack->r_ctl.rc_gp_srtt/8); rack->r_ctl.rc_gp_srtt += rack->r_ctl.rack_rs.rs_us_rtt / 8; } if (rack->r_ctl.rack_rs.confidence) { /* * record the low and high for highly buffered path computation, * we only do this if we are confident (not a retransmission). */ if (rack->r_ctl.rc_highest_us_rtt < rack->r_ctl.rack_rs.rs_us_rtt) { rack->r_ctl.rc_highest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; hrtt_up = 1; } if (rack->rc_highly_buffered == 0) { /* * Currently once we declare a path has * highly buffered there is no going * back, which may be a problem... */ if ((rack->r_ctl.rc_highest_us_rtt / rack->r_ctl.rc_lowest_us_rtt) > rack_hbp_thresh) { rack_log_rtt_shrinks(rack, rack->r_ctl.rack_rs.rs_us_rtt, rack->r_ctl.rc_highest_us_rtt, rack->r_ctl.rc_lowest_us_rtt, RACK_RTTS_SEEHBP); rack->rc_highly_buffered = 1; } } } if ((rack->r_ctl.rack_rs.confidence) || (rack->r_ctl.rack_rs.rs_us_rtrcnt == 1)) { /* * If we are highly confident of it it was * never retransmitted we accept it as the last us_rtt. */ rack->r_ctl.rc_last_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; /* The lowest rtt can be set if its was not retransmited */ if (rack->r_ctl.rc_lowest_us_rtt > rack->r_ctl.rack_rs.rs_us_rtt) { rack->r_ctl.rc_lowest_us_rtt = rack->r_ctl.rack_rs.rs_us_rtt; if (rack->r_ctl.rc_lowest_us_rtt == 0) rack->r_ctl.rc_lowest_us_rtt = 1; } } rack_log_rtt_sample(rack, rtt); o_srtt = tp->t_srtt; o_var = tp->t_rttvar; rack = (struct tcp_rack *)tp->t_fb_ptr; if (tp->t_srtt != 0) { /* * srtt is stored as fixed point with 5 bits after the * binary point (i.e., scaled by 8). The following magic is * equivalent to the smoothing algorithm in rfc793 with an * alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed point). * Adjust rtt to origin 0. */ delta = ((rtt - 1) << TCP_DELTA_SHIFT) - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); tp->t_srtt += delta; if (tp->t_srtt <= 0) tp->t_srtt = 1; /* * We accumulate a smoothed rtt variance (actually, a * smoothed mean difference), then set the retransmit timer * to smoothed rtt + 4 times the smoothed variance. rttvar * is stored as fixed point with 4 bits after the binary * point (scaled by 16). The following is equivalent to * rfc793 smoothing with an alpha of .75 (rttvar = * rttvar*3/4 + |delta| / 4). This replaces rfc793's * wired-in beta. */ if (delta < 0) delta = -delta; delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); tp->t_rttvar += delta; if (tp->t_rttvar <= 0) tp->t_rttvar = 1; if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar) tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } else { /* * No rtt measurement yet - use the unsmoothed rtt. Set the * variance to half the rtt (so our first retransmit happens * at 3*rtt). */ tp->t_srtt = rtt << TCP_RTT_SHIFT; tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); tp->t_rttbest = tp->t_srtt + tp->t_rttvar; } KMOD_TCPSTAT_INC(tcps_rttupdated); tp->t_rttupdated++; #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT, imax(0, rtt)); #endif tp->t_rxtshift = 0; /* * the retransmit should happen at rtt + 4 * rttvar. Because of the * way we do the smoothing, srtt and rttvar will each average +1/2 * tick of bias. When we compute the retransmit timer, we want 1/2 * tick of rounding and 1 extra tick because of +-1/2 tick * uncertainty in the firing of the timer. The bias will give us * exactly the 1.5 tick we need. But, because the bias is * statistical, we have to test that we don't drop below the minimum * feasible timer (which is 2 ticks). */ TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), max(MSEC_2_TICKS(rack_rto_min), rtt + 2), MSEC_2_TICKS(rack_rto_max)); tp->t_softerror = 0; } static void rack_earlier_retran(struct tcpcb *tp, struct rack_sendmap *rsm, uint32_t t, uint32_t cts) { /* * For this RSM, we acknowledged the data from a previous * transmission, not the last one we made. This means we did a false * retransmit. */ struct tcp_rack *rack; if (rsm->r_flags & RACK_HAS_FIN) { /* * The sending of the FIN often is multiple sent when we * have everything outstanding ack'd. We ignore this case * since its over now. */ return; } if (rsm->r_flags & RACK_TLP) { /* * We expect TLP's to have this occur. */ return; } rack = (struct tcp_rack *)tp->t_fb_ptr; /* should we undo cc changes and exit recovery? */ if (IN_RECOVERY(tp->t_flags)) { if (rack->r_ctl.rc_rsm_start == rsm->r_start) { /* * Undo what we ratched down and exit recovery if * possible */ EXIT_RECOVERY(tp->t_flags); tp->snd_recover = tp->snd_una; if (rack->r_ctl.rc_cwnd_at > tp->snd_cwnd) tp->snd_cwnd = rack->r_ctl.rc_cwnd_at; if (rack->r_ctl.rc_ssthresh_at > tp->snd_ssthresh) tp->snd_ssthresh = rack->r_ctl.rc_ssthresh_at; } } if (rsm->r_flags & RACK_WAS_SACKPASS) { /* * We retransmitted based on a sack and the earlier * retransmission ack'd it - re-ordering is occuring. */ counter_u64_add(rack_reorder_seen, 1); rack->r_ctl.rc_reorder_ts = cts; } counter_u64_add(rack_badfr, 1); counter_u64_add(rack_badfr_bytes, (rsm->r_end - rsm->r_start)); } static void rack_apply_updated_usrtt(struct tcp_rack *rack, uint32_t us_rtt, uint32_t us_cts) { /* * Apply to filter the inbound us-rtt at us_cts. */ uint32_t old_rtt; old_rtt = get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt); apply_filter_min_small(&rack->r_ctl.rc_gp_min_rtt, us_rtt, us_cts); if (rack->r_ctl.last_pacing_time && rack->rc_gp_dyn_mul && (rack->r_ctl.last_pacing_time > us_rtt)) rack->pacing_longer_than_rtt = 1; else rack->pacing_longer_than_rtt = 0; if (old_rtt > us_rtt) { /* We just hit a new lower rtt time */ rack_log_rtt_shrinks(rack, us_cts, old_rtt, __LINE__, RACK_RTTS_NEWRTT); /* * Only count it if its lower than what we saw within our * calculated range. */ if ((old_rtt - us_rtt) > rack_min_rtt_movement) { if (rack_probertt_lower_within && rack->rc_gp_dyn_mul && (rack->use_fixed_rate == 0) && (rack->rc_always_pace)) { /* * We are seeing a new lower rtt very close * to the time that we would have entered probe-rtt. * This is probably due to the fact that a peer flow * has entered probe-rtt. Lets go in now too. */ uint32_t val; val = rack_probertt_lower_within * rack_time_between_probertt; val /= 100; if ((rack->in_probe_rtt == 0) && ((us_cts - rack->r_ctl.rc_lower_rtt_us_cts) >= (rack_time_between_probertt - val))) { rack_enter_probertt(rack, us_cts); } } rack->r_ctl.rc_lower_rtt_us_cts = us_cts; } } } static int rack_update_rtt(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, struct tcpopt *to, uint32_t cts, int32_t ack_type, tcp_seq th_ack) { int32_t i; uint32_t t, len_acked; if ((rsm->r_flags & RACK_ACKED) || (rsm->r_flags & RACK_WAS_ACKED)) /* Already done */ return (0); if (ack_type == CUM_ACKED) { if (SEQ_GT(th_ack, rsm->r_end)) len_acked = rsm->r_end - rsm->r_start; else len_acked = th_ack - rsm->r_start; } else len_acked = rsm->r_end - rsm->r_start; if (rsm->r_rtr_cnt == 1) { uint32_t us_rtt; t = cts - rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; if ((int)t <= 0) t = 1; if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { rack->r_ctl.rc_rack_min_rtt = t; if (rack->r_ctl.rc_rack_min_rtt == 0) { rack->r_ctl.rc_rack_min_rtt = 1; } } us_rtt = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time) - rsm->usec_orig_send; if (us_rtt == 0) us_rtt = 1; rack_apply_updated_usrtt(rack, us_rtt, tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time)); if (ack_type == SACKED) tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, 2 , rsm, rsm->r_rtr_cnt); else { /* * For cum-ack we are only confident if what * is being acked is included in a measurement. * Otherwise it could be an idle period that * includes Delayed-ack time. */ tcp_rack_xmit_timer(rack, t + 1, len_acked, us_rtt, (rack->app_limited_needs_set ? 0 : 1), rsm, rsm->r_rtr_cnt); } if ((rsm->r_flags & RACK_TLP) && (!IN_RECOVERY(tp->t_flags))) { /* Segment was a TLP and our retrans matched */ if (rack->r_ctl.rc_tlp_cwnd_reduce) { rack->r_ctl.rc_rsm_start = tp->snd_max; rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; rack_cong_signal(tp, NULL, CC_NDUPACK); /* * When we enter recovery we need to assure * we send one packet. */ if (rack->rack_no_prr == 0) { rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); rack_log_to_prr(rack, 7, 0); } } } if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { /* New more recent rack_tmit_time */ rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; rack->rc_rack_rtt = t; } return (1); } /* * We clear the soft/rxtshift since we got an ack. * There is no assurance we will call the commit() function * so we need to clear these to avoid incorrect handling. */ tp->t_rxtshift = 0; tp->t_softerror = 0; if ((to->to_flags & TOF_TS) && (ack_type == CUM_ACKED) && (to->to_tsecr) && ((rsm->r_flags & RACK_OVERMAX) == 0)) { /* * Now which timestamp does it match? In this block the ACK * must be coming from a previous transmission. */ for (i = 0; i < rsm->r_rtr_cnt; i++) { if (rsm->r_tim_lastsent[i] == to->to_tsecr) { t = cts - rsm->r_tim_lastsent[i]; if ((int)t <= 0) t = 1; if ((i + 1) < rsm->r_rtr_cnt) { /* Likely */ rack_earlier_retran(tp, rsm, t, cts); } if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { rack->r_ctl.rc_rack_min_rtt = t; if (rack->r_ctl.rc_rack_min_rtt == 0) { rack->r_ctl.rc_rack_min_rtt = 1; } } if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)])) { /* New more recent rack_tmit_time */ rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[(rsm->r_rtr_cnt - 1)]; rack->rc_rack_rtt = t; } tcp_rack_xmit_timer(rack, t + 1, len_acked, (t * HPTS_USEC_IN_MSEC), 0, rsm, rsm->r_rtr_cnt); return (1); } } goto ts_not_found; } else { /* * Ok its a SACK block that we retransmitted. or a windows * machine without timestamps. We can tell nothing from the * time-stamp since its not there or the time the peer last * recieved a segment that moved forward its cum-ack point. */ ts_not_found: i = rsm->r_rtr_cnt - 1; t = cts - rsm->r_tim_lastsent[i]; if ((int)t <= 0) t = 1; if (rack->r_ctl.rc_rack_min_rtt && SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { /* * We retransmitted and the ack came back in less * than the smallest rtt we have observed. We most * likey did an improper retransmit as outlined in * 4.2 Step 3 point 2 in the rack-draft. */ i = rsm->r_rtr_cnt - 2; t = cts - rsm->r_tim_lastsent[i]; rack_earlier_retran(tp, rsm, t, cts); } else if (rack->r_ctl.rc_rack_min_rtt) { /* * We retransmitted it and the retransmit did the * job. */ if (!rack->r_ctl.rc_rack_min_rtt || SEQ_LT(t, rack->r_ctl.rc_rack_min_rtt)) { rack->r_ctl.rc_rack_min_rtt = t; if (rack->r_ctl.rc_rack_min_rtt == 0) { rack->r_ctl.rc_rack_min_rtt = 1; } } if (SEQ_LT(rack->r_ctl.rc_rack_tmit_time, rsm->r_tim_lastsent[i])) { /* New more recent rack_tmit_time */ rack->r_ctl.rc_rack_tmit_time = rsm->r_tim_lastsent[i]; rack->rc_rack_rtt = t; } return (1); } } return (0); } /* * Mark the SACK_PASSED flag on all entries prior to rsm send wise. */ static void rack_log_sack_passed(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm) { struct rack_sendmap *nrsm; nrsm = rsm; TAILQ_FOREACH_REVERSE_FROM(nrsm, &rack->r_ctl.rc_tmap, rack_head, r_tnext) { if (nrsm == rsm) { /* Skip orginal segment he is acked */ continue; } if (nrsm->r_flags & RACK_ACKED) { /* * Skip ack'd segments, though we * should not see these, since tmap * should not have ack'd segments. */ continue; } if (nrsm->r_flags & RACK_SACK_PASSED) { /* * We found one that is already marked * passed, we have been here before and * so all others below this are marked. */ break; } nrsm->r_flags |= RACK_SACK_PASSED; nrsm->r_flags &= ~RACK_WAS_SACKPASS; } } static void rack_need_set_test(struct tcpcb *tp, struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack, int line, int use_which) { if ((tp->t_flags & TF_GPUTINPROG) && SEQ_GEQ(rsm->r_end, tp->gput_seq)) { /* * We were app limited, and this ack * butts up or goes beyond the point where we want * to start our next measurement. We need * to record the new gput_ts as here and * possibly update the start sequence. */ uint32_t seq, ts; if (rsm->r_rtr_cnt > 1) { /* * This is a retransmit, can we * really make any assessment at this * point? We are not really sure of * the timestamp, is it this or the * previous transmission? * * Lets wait for something better that * is not retransmitted. */ return; } seq = tp->gput_seq; ts = tp->gput_ts; rack->app_limited_needs_set = 0; tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); /* Do we start at a new end? */ if ((use_which == RACK_USE_BEG) && SEQ_GEQ(rsm->r_start, tp->gput_seq)) { /* * When we get an ACK that just eats * up some of the rsm, we set RACK_USE_BEG * since whats at r_start (i.e. th_ack) * is left unacked and thats where the * measurement not starts. */ tp->gput_seq = rsm->r_start; rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send; } if ((use_which == RACK_USE_END) && SEQ_GEQ(rsm->r_end, tp->gput_seq)) { /* * We use the end when the cumack * is moving forward and completely * deleting the rsm passed so basically * r_end holds th_ack. * * For SACK's we also want to use the end * since this piece just got sacked and * we want to target anything after that * in our measurement. */ tp->gput_seq = rsm->r_end; rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send; } if (use_which == RACK_USE_END_OR_THACK) { /* * special case for ack moving forward, * not a sack, we need to move all the * way up to where this ack cum-ack moves * to. */ if (SEQ_GT(th_ack, rsm->r_end)) tp->gput_seq = th_ack; else tp->gput_seq = rsm->r_end; rack->r_ctl.rc_gp_output_ts = rsm->usec_orig_send; } if (SEQ_GT(tp->gput_seq, tp->gput_ack)) { /* * We moved beyond this guy's range, re-calculate * the new end point. */ if (rack->rc_gp_filled == 0) { tp->gput_ack = tp->gput_seq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))); } else { tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); } } /* * We are moving the goal post, we may be able to clear the * measure_saw_probe_rtt flag. */ if ((rack->in_probe_rtt == 0) && (rack->measure_saw_probe_rtt) && (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) rack->measure_saw_probe_rtt = 0; rack_log_pacing_delay_calc(rack, ts, tp->gput_ts, seq, tp->gput_seq, 0, 5, line, NULL); if (rack->rc_gp_filled && ((tp->gput_ack - tp->gput_seq) < max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))))) { /* * There is no sense of continuing this measurement * because its too small to gain us anything we * trust. Skip it and that way we can start a new * measurement quicker. */ rack_log_pacing_delay_calc(rack, tp->gput_ack, tp->gput_seq, 0, 0, 0, 6, __LINE__, NULL); tp->t_flags &= ~TF_GPUTINPROG; } } } static uint32_t rack_proc_sack_blk(struct tcpcb *tp, struct tcp_rack *rack, struct sackblk *sack, struct tcpopt *to, struct rack_sendmap **prsm, uint32_t cts, int *moved_two) { uint32_t start, end, changed = 0; struct rack_sendmap stack_map; struct rack_sendmap *rsm, *nrsm, fe, *insret, *prev, *next; int32_t used_ref = 1; int moved = 0; start = sack->start; end = sack->end; rsm = *prsm; memset(&fe, 0, sizeof(fe)); do_rest_ofb: if ((rsm == NULL) || (SEQ_LT(end, rsm->r_start)) || (SEQ_GEQ(start, rsm->r_end)) || (SEQ_LT(start, rsm->r_start))) { /* * We are not in the right spot, * find the correct spot in the tree. */ used_ref = 0; fe.r_start = start; rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); moved++; } if (rsm == NULL) { /* TSNH */ goto out; } /* Ok we have an ACK for some piece of this rsm */ if (rsm->r_start != start) { if ((rsm->r_flags & RACK_ACKED) == 0) { /** * Need to split this in two pieces the before and after, * the before remains in the map, the after must be * added. In other words we have: * rsm |--------------| * sackblk |-------> * rsm will become * rsm |---| * and nrsm will be the sacked piece * nrsm |----------| * * But before we start down that path lets * see if the sack spans over on top of * the next guy and it is already sacked. */ next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); if (next && (next->r_flags & RACK_ACKED) && SEQ_GEQ(end, next->r_start)) { /** * So the next one is already acked, and * we can thus by hookery use our stack_map * to reflect the piece being sacked and * then adjust the two tree entries moving * the start and ends around. So we start like: * rsm |------------| (not-acked) * next |-----------| (acked) * sackblk |--------> * We want to end like so: * rsm |------| (not-acked) * next |-----------------| (acked) * nrsm |-----| * Where nrsm is a temporary stack piece we * use to update all the gizmos. */ /* Copy up our fudge block */ nrsm = &stack_map; memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); /* Now adjust our tree blocks */ rsm->r_end = start; next->r_start = start; /* Clear out the dup ack count of the remainder */ rsm->r_dupack = 0; rsm->r_just_ret = 0; rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); /* Now lets make sure our fudge block is right */ nrsm->r_start = start; /* Now lets update all the stats and such */ rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); if (rack->app_limited_needs_set) rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); changed += (nrsm->r_end - nrsm->r_start); rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); if (nrsm->r_flags & RACK_SACK_PASSED) { counter_u64_add(rack_reorder_seen, 1); rack->r_ctl.rc_reorder_ts = cts; } /* * Now we want to go up from rsm (the * one left un-acked) to the next one * in the tmap. We do this so when * we walk backwards we include marking * sack-passed on rsm (The one passed in * is skipped since it is generally called * on something sacked before removing it * from the tmap). */ if (rsm->r_in_tmap) { nrsm = TAILQ_NEXT(rsm, r_tnext); /* * Now that we have the next * one walk backwards from there. */ if (nrsm && nrsm->r_in_tmap) rack_log_sack_passed(tp, rack, nrsm); } /* Now are we done? */ if (SEQ_LT(end, next->r_end) || (end == next->r_end)) { /* Done with block */ goto out; } counter_u64_add(rack_sack_used_next_merge, 1); /* Postion for the next block */ start = next->r_end; rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, next); if (rsm == NULL) goto out; } else { /** * We can't use any hookery here, so we * need to split the map. We enter like * so: * rsm |--------| * sackblk |-----> * We will add the new block nrsm and * that will be the new portion, and then * fall through after reseting rsm. So we * split and look like this: * rsm |----| * sackblk |-----> * nrsm |---| * We then fall through reseting * rsm to nrsm, so the next block * picks it up. */ nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); if (nrsm == NULL) { /* * failed XXXrrs what can we do but loose the sack * info? */ goto out; } counter_u64_add(rack_sack_splits, 1); rack_clone_rsm(rack, nrsm, rsm, start); rsm->r_just_ret = 0; insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", nrsm, insret, rack, rsm); } #endif if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } rsm->r_flags &= (~RACK_HAS_FIN); /* Position us to point to the new nrsm that starts the sack blk */ rsm = nrsm; } } else { /* Already sacked this piece */ counter_u64_add(rack_sack_skipped_acked, 1); moved++; if (end == rsm->r_end) { /* Done with block */ rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); goto out; } else if (SEQ_LT(end, rsm->r_end)) { /* A partial sack to a already sacked block */ moved++; rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); goto out; } else { /* * The end goes beyond this guy * repostion the start to the * next block. */ start = rsm->r_end; rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); if (rsm == NULL) goto out; } } } if (SEQ_GEQ(end, rsm->r_end)) { /** * The end of this block is either beyond this guy or right * at this guy. I.e.: * rsm --- |-----| * end |-----| * * end |---------| */ if ((rsm->r_flags & RACK_ACKED) == 0) { rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); changed += (rsm->r_end - rsm->r_start); rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); if (rsm->r_in_tmap) /* should be true */ rack_log_sack_passed(tp, rack, rsm); /* Is Reordering occuring? */ if (rsm->r_flags & RACK_SACK_PASSED) { rsm->r_flags &= ~RACK_SACK_PASSED; counter_u64_add(rack_reorder_seen, 1); rack->r_ctl.rc_reorder_ts = cts; } if (rack->app_limited_needs_set) rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); rsm->r_ack_arrival = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); rsm->r_flags |= RACK_ACKED; rsm->r_flags &= ~RACK_TLP; if (rsm->r_in_tmap) { TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } } else { counter_u64_add(rack_sack_skipped_acked, 1); moved++; } if (end == rsm->r_end) { /* This block only - done, setup for next */ goto out; } /* * There is more not coverend by this rsm move on * to the next block in the RB tree. */ nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); start = rsm->r_end; rsm = nrsm; if (rsm == NULL) goto out; goto do_rest_ofb; } /** * The end of this sack block is smaller than * our rsm i.e.: * rsm --- |-----| * end |--| */ if ((rsm->r_flags & RACK_ACKED) == 0) { prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); if (prev && (prev->r_flags & RACK_ACKED)) { /** * Goal, we want the right remainder of rsm to shrink * in place and span from (rsm->r_start = end) to rsm->r_end. * We want to expand prev to go all the way * to prev->r_end <- end. * so in the tree we have before: * prev |--------| (acked) * rsm |-------| (non-acked) * sackblk |-| * We churn it so we end up with * prev |----------| (acked) * rsm |-----| (non-acked) * nrsm |-| (temporary) */ nrsm = &stack_map; memcpy(nrsm, rsm, sizeof(struct rack_sendmap)); prev->r_end = end; rsm->r_start = end; /* Now adjust nrsm (stack copy) to be * the one that is the small * piece that was "sacked". */ nrsm->r_end = end; rsm->r_dupack = 0; rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); /* * Now nrsm is our new little piece * that is acked (which was merged * to prev). Update the rtt and changed * based on that. Also check for reordering. */ rack_update_rtt(tp, rack, nrsm, to, cts, SACKED, 0); if (rack->app_limited_needs_set) rack_need_set_test(tp, rack, nrsm, tp->snd_una, __LINE__, RACK_USE_END); changed += (nrsm->r_end - nrsm->r_start); rack->r_ctl.rc_sacked += (nrsm->r_end - nrsm->r_start); if (nrsm->r_flags & RACK_SACK_PASSED) { counter_u64_add(rack_reorder_seen, 1); rack->r_ctl.rc_reorder_ts = cts; } rsm = prev; counter_u64_add(rack_sack_used_prev_merge, 1); } else { /** * This is the case where our previous * block is not acked either, so we must * split the block in two. */ nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); if (nrsm == NULL) { /* failed rrs what can we do but loose the sack info? */ goto out; } /** * In this case nrsm becomes * nrsm->r_start = end; * nrsm->r_end = rsm->r_end; * which is un-acked. * * rsm->r_end = nrsm->r_start; * i.e. the remaining un-acked * piece is left on the left * hand side. * * So we start like this * rsm |----------| (not acked) * sackblk |---| * build it so we have * rsm |---| (acked) * nrsm |------| (not acked) */ counter_u64_add(rack_sack_splits, 1); rack_clone_rsm(rack, nrsm, rsm, end); rsm->r_flags &= (~RACK_HAS_FIN); rsm->r_just_ret = 0; insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", nrsm, insret, rack, rsm); } #endif if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } nrsm->r_dupack = 0; rack_log_retran_reason(rack, nrsm, __LINE__, 0, 2); rack_update_rtt(tp, rack, rsm, to, cts, SACKED, 0); changed += (rsm->r_end - rsm->r_start); rack->r_ctl.rc_sacked += (rsm->r_end - rsm->r_start); if (rsm->r_in_tmap) /* should be true */ rack_log_sack_passed(tp, rack, rsm); /* Is Reordering occuring? */ if (rsm->r_flags & RACK_SACK_PASSED) { rsm->r_flags &= ~RACK_SACK_PASSED; counter_u64_add(rack_reorder_seen, 1); rack->r_ctl.rc_reorder_ts = cts; } if (rack->app_limited_needs_set) rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_END); rsm->r_ack_arrival = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); rsm->r_flags |= RACK_ACKED; rsm->r_flags &= ~RACK_TLP; if (rsm->r_in_tmap) { TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } } } else if (start != end){ /* * The block was already acked. */ counter_u64_add(rack_sack_skipped_acked, 1); moved++; } out: if (rsm && (rsm->r_flags & RACK_ACKED)) { /* * Now can we merge where we worked * with either the previous or * next block? */ next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); while (next) { if (next->r_flags & RACK_ACKED) { /* yep this and next can be merged */ rsm = rack_merge_rsm(rack, rsm, next); next = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); } else break; } /* Now what about the previous? */ prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); while (prev) { if (prev->r_flags & RACK_ACKED) { /* yep the previous and this can be merged */ rsm = rack_merge_rsm(rack, prev, rsm); prev = RB_PREV(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); } else break; } } if (used_ref == 0) { counter_u64_add(rack_sack_proc_all, 1); } else { counter_u64_add(rack_sack_proc_short, 1); } /* Save off the next one for quick reference. */ if (rsm) nrsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); else nrsm = NULL; *prsm = rack->r_ctl.rc_sacklast = nrsm; /* Pass back the moved. */ *moved_two = moved; return (changed); } static void inline rack_peer_reneges(struct tcp_rack *rack, struct rack_sendmap *rsm, tcp_seq th_ack) { struct rack_sendmap *tmap; tmap = NULL; while (rsm && (rsm->r_flags & RACK_ACKED)) { /* Its no longer sacked, mark it so */ rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); #ifdef INVARIANTS if (rsm->r_in_tmap) { panic("rack:%p rsm:%p flags:0x%x in tmap?", rack, rsm, rsm->r_flags); } #endif rsm->r_flags &= ~(RACK_ACKED|RACK_SACK_PASSED|RACK_WAS_SACKPASS); /* Rebuild it into our tmap */ if (tmap == NULL) { TAILQ_INSERT_HEAD(&rack->r_ctl.rc_tmap, rsm, r_tnext); tmap = rsm; } else { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, tmap, rsm, r_tnext); tmap = rsm; } tmap->r_in_tmap = 1; rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); } /* * Now lets possibly clear the sack filter so we start * recognizing sacks that cover this area. */ sack_filter_clear(&rack->r_ctl.rack_sf, th_ack); } static void rack_do_decay(struct tcp_rack *rack) { struct timeval res; #define timersub(tvp, uvp, vvp) \ do { \ (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ if ((vvp)->tv_usec < 0) { \ (vvp)->tv_sec--; \ (vvp)->tv_usec += 1000000; \ } \ } while (0) timersub(&rack->r_ctl.act_rcv_time, &rack->r_ctl.rc_last_time_decay, &res); #undef timersub rack->r_ctl.input_pkt++; if ((rack->rc_in_persist) || (res.tv_sec >= 1) || (rack->rc_tp->snd_max == rack->rc_tp->snd_una)) { /* * Check for decay of non-SAD, * we want all SAD detection metrics to * decay 1/4 per second (or more) passed. */ uint32_t pkt_delta; pkt_delta = rack->r_ctl.input_pkt - rack->r_ctl.saved_input_pkt; /* Update our saved tracking values */ rack->r_ctl.saved_input_pkt = rack->r_ctl.input_pkt; rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; /* Now do we escape without decay? */ #ifdef NETFLIX_EXP_DETECTION if (rack->rc_in_persist || (rack->rc_tp->snd_max == rack->rc_tp->snd_una) || (pkt_delta < tcp_sad_low_pps)){ /* * We don't decay idle connections * or ones that have a low input pps. */ return; } /* Decay the counters */ rack->r_ctl.ack_count = ctf_decay_count(rack->r_ctl.ack_count, tcp_sad_decay_val); rack->r_ctl.sack_count = ctf_decay_count(rack->r_ctl.sack_count, tcp_sad_decay_val); rack->r_ctl.sack_moved_extra = ctf_decay_count(rack->r_ctl.sack_moved_extra, tcp_sad_decay_val); rack->r_ctl.sack_noextra_move = ctf_decay_count(rack->r_ctl.sack_noextra_move, tcp_sad_decay_val); #endif } } static void rack_log_ack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th) { uint32_t changed, entered_recovery = 0; struct tcp_rack *rack; struct rack_sendmap *rsm, *rm; struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1]; register uint32_t th_ack; int32_t i, j, k, num_sack_blks = 0; uint32_t cts, acked, ack_point, sack_changed = 0; int loop_start = 0, moved_two = 0; uint32_t tsused; INP_WLOCK_ASSERT(tp->t_inpcb); if (th->th_flags & TH_RST) { /* We don't log resets */ return; } rack = (struct tcp_rack *)tp->t_fb_ptr; cts = tcp_ts_getticks(); rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); changed = 0; th_ack = th->th_ack; if (rack->sack_attack_disable == 0) rack_do_decay(rack); if (BYTES_THIS_ACK(tp, th) >= ctf_fixed_maxseg(rack->rc_tp)) { /* * You only get credit for * MSS and greater (and you get extra * credit for larger cum-ack moves). */ int ac; ac = BYTES_THIS_ACK(tp, th) / ctf_fixed_maxseg(rack->rc_tp); rack->r_ctl.ack_count += ac; counter_u64_add(rack_ack_total, ac); } if (rack->r_ctl.ack_count > 0xfff00000) { /* * reduce the number to keep us under * a uint32_t. */ rack->r_ctl.ack_count /= 2; rack->r_ctl.sack_count /= 2; } if (SEQ_GT(th_ack, tp->snd_una)) { rack_log_progress_event(rack, tp, ticks, PROGRESS_UPDATE, __LINE__); tp->t_acktime = ticks; } if (rsm && SEQ_GT(th_ack, rsm->r_start)) changed = th_ack - rsm->r_start; if (changed) { /* * The ACK point is advancing to th_ack, we must drop off * the packets in the rack log and calculate any eligble * RTT's. */ rack->r_wanted_output = 1; more: rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (rsm == NULL) { if ((th_ack - 1) == tp->iss) { /* * For the SYN incoming case we will not * have called tcp_output for the sending of * the SYN, so there will be no map. All * other cases should probably be a panic. */ goto proc_sack; } if (tp->t_flags & TF_SENTFIN) { /* if we send a FIN we will not hav a map */ goto proc_sack; } #ifdef INVARIANTS panic("No rack map tp:%p for th:%p state:%d rack:%p snd_una:%u snd_max:%u snd_nxt:%u chg:%d\n", tp, th, tp->t_state, rack, tp->snd_una, tp->snd_max, tp->snd_nxt, changed); #endif goto proc_sack; } if (SEQ_LT(th_ack, rsm->r_start)) { /* Huh map is missing this */ #ifdef INVARIANTS printf("Rack map starts at r_start:%u for th_ack:%u huh? ts:%d rs:%d\n", rsm->r_start, th_ack, tp->t_state, rack->r_state); #endif goto proc_sack; } rack_update_rtt(tp, rack, rsm, to, cts, CUM_ACKED, th_ack); /* Now do we consume the whole thing? */ if (SEQ_GEQ(th_ack, rsm->r_end)) { /* Its all consumed. */ uint32_t left; uint8_t newly_acked; rack->r_ctl.rc_holes_rxt -= rsm->r_rtr_bytes; rsm->r_rtr_bytes = 0; /* Record the time of highest cumack sent */ rack->r_ctl.rc_gp_cumack_ts = rsm->usec_orig_send; rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); #ifdef INVARIANTS if (rm != rsm) { panic("removing head in rack:%p rsm:%p rm:%p", rack, rsm, rm); } #endif if (rsm->r_in_tmap) { TAILQ_REMOVE(&rack->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 0; } newly_acked = 1; if (rsm->r_flags & RACK_ACKED) { /* * It was acked on the scoreboard -- remove * it from total */ rack->r_ctl.rc_sacked -= (rsm->r_end - rsm->r_start); newly_acked = 0; } else if (rsm->r_flags & RACK_SACK_PASSED) { /* * There are segments ACKED on the * scoreboard further up. We are seeing * reordering. */ rsm->r_flags &= ~RACK_SACK_PASSED; counter_u64_add(rack_reorder_seen, 1); rsm->r_ack_arrival = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); rsm->r_flags |= RACK_ACKED; rack->r_ctl.rc_reorder_ts = cts; } left = th_ack - rsm->r_end; if (rack->app_limited_needs_set && newly_acked) rack_need_set_test(tp, rack, rsm, th_ack, __LINE__, RACK_USE_END_OR_THACK); /* Free back to zone */ rack_free(rack, rsm); if (left) { goto more; } goto proc_sack; } if (rsm->r_flags & RACK_ACKED) { /* * It was acked on the scoreboard -- remove it from * total for the part being cum-acked. */ rack->r_ctl.rc_sacked -= (th_ack - rsm->r_start); } /* * Clear the dup ack count for * the piece that remains. */ rsm->r_dupack = 0; rack_log_retran_reason(rack, rsm, __LINE__, 0, 2); if (rsm->r_rtr_bytes) { /* * It was retransmitted adjust the * sack holes for what was acked. */ int ack_am; ack_am = (th_ack - rsm->r_start); if (ack_am >= rsm->r_rtr_bytes) { rack->r_ctl.rc_holes_rxt -= ack_am; rsm->r_rtr_bytes -= ack_am; } } /* * Update where the piece starts and record * the time of send of highest cumack sent. */ rack->r_ctl.rc_gp_cumack_ts = rsm->usec_orig_send; rsm->r_start = th_ack; if (rack->app_limited_needs_set) rack_need_set_test(tp, rack, rsm, tp->snd_una, __LINE__, RACK_USE_BEG); } proc_sack: /* Check for reneging */ rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (rsm && (rsm->r_flags & RACK_ACKED) && (th_ack == rsm->r_start)) { /* * The peer has moved snd_una up to * the edge of this send, i.e. one * that it had previously acked. The only * way that can be true if the peer threw * away data (space issues) that it had * previously sacked (else it would have * given us snd_una up to (rsm->r_end). * We need to undo the acked markings here. * * Note we have to look to make sure th_ack is * our rsm->r_start in case we get an old ack * where th_ack is behind snd_una. */ rack_peer_reneges(rack, rsm, th->th_ack); } if ((to->to_flags & TOF_SACK) == 0) { /* We are done nothing left */ goto out; } /* Sack block processing */ if (SEQ_GT(th_ack, tp->snd_una)) ack_point = th_ack; else ack_point = tp->snd_una; for (i = 0; i < to->to_nsacks; i++) { bcopy((to->to_sacks + i * TCPOLEN_SACK), &sack, sizeof(sack)); sack.start = ntohl(sack.start); sack.end = ntohl(sack.end); if (SEQ_GT(sack.end, sack.start) && SEQ_GT(sack.start, ack_point) && SEQ_LT(sack.start, tp->snd_max) && SEQ_GT(sack.end, ack_point) && SEQ_LEQ(sack.end, tp->snd_max)) { sack_blocks[num_sack_blks] = sack; num_sack_blks++; #ifdef NETFLIX_STATS } else if (SEQ_LEQ(sack.start, th_ack) && SEQ_LEQ(sack.end, th_ack)) { /* * Its a D-SACK block. */ tcp_record_dsack(sack.start, sack.end); #endif } } /* * Sort the SACK blocks so we can update the rack scoreboard with * just one pass. */ num_sack_blks = sack_filter_blks(&rack->r_ctl.rack_sf, sack_blocks, num_sack_blks, th->th_ack); ctf_log_sack_filter(rack->rc_tp, num_sack_blks, sack_blocks); if (num_sack_blks == 0) { /* Nothing to sack (DSACKs?) */ goto out_with_totals; } if (num_sack_blks < 2) { /* Only one, we don't need to sort */ goto do_sack_work; } /* Sort the sacks */ for (i = 0; i < num_sack_blks; i++) { for (j = i + 1; j < num_sack_blks; j++) { if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) { sack = sack_blocks[i]; sack_blocks[i] = sack_blocks[j]; sack_blocks[j] = sack; } } } /* * Now are any of the sack block ends the same (yes some * implementations send these)? */ again: if (num_sack_blks == 0) goto out_with_totals; if (num_sack_blks > 1) { for (i = 0; i < num_sack_blks; i++) { for (j = i + 1; j < num_sack_blks; j++) { if (sack_blocks[i].end == sack_blocks[j].end) { /* * Ok these two have the same end we * want the smallest end and then * throw away the larger and start * again. */ if (SEQ_LT(sack_blocks[j].start, sack_blocks[i].start)) { /* * The second block covers * more area use that */ sack_blocks[i].start = sack_blocks[j].start; } /* * Now collapse out the dup-sack and * lower the count */ for (k = (j + 1); k < num_sack_blks; k++) { sack_blocks[j].start = sack_blocks[k].start; sack_blocks[j].end = sack_blocks[k].end; j++; } num_sack_blks--; goto again; } } } } do_sack_work: /* * First lets look to see if * we have retransmitted and * can use the transmit next? */ rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); if (rsm && SEQ_GT(sack_blocks[0].end, rsm->r_start) && SEQ_LT(sack_blocks[0].start, rsm->r_end)) { /* * We probably did the FR and the next * SACK in continues as we would expect. */ acked = rack_proc_sack_blk(tp, rack, &sack_blocks[0], to, &rsm, cts, &moved_two); if (acked) { rack->r_wanted_output = 1; changed += acked; sack_changed += acked; } if (num_sack_blks == 1) { /* * This is what we would expect from * a normal implementation to happen * after we have retransmitted the FR, * i.e the sack-filter pushes down * to 1 block and the next to be retransmitted * is the sequence in the sack block (has more * are acked). Count this as ACK'd data to boost * up the chances of recovering any false positives. */ rack->r_ctl.ack_count += (acked / ctf_fixed_maxseg(rack->rc_tp)); counter_u64_add(rack_ack_total, (acked / ctf_fixed_maxseg(rack->rc_tp))); counter_u64_add(rack_express_sack, 1); if (rack->r_ctl.ack_count > 0xfff00000) { /* * reduce the number to keep us under * a uint32_t. */ rack->r_ctl.ack_count /= 2; rack->r_ctl.sack_count /= 2; } goto out_with_totals; } else { /* * Start the loop through the * rest of blocks, past the first block. */ moved_two = 0; loop_start = 1; } } /* Its a sack of some sort */ rack->r_ctl.sack_count++; if (rack->r_ctl.sack_count > 0xfff00000) { /* * reduce the number to keep us under * a uint32_t. */ rack->r_ctl.ack_count /= 2; rack->r_ctl.sack_count /= 2; } counter_u64_add(rack_sack_total, 1); if (rack->sack_attack_disable) { /* An attacker disablement is in place */ if (num_sack_blks > 1) { rack->r_ctl.sack_count += (num_sack_blks - 1); rack->r_ctl.sack_moved_extra++; counter_u64_add(rack_move_some, 1); if (rack->r_ctl.sack_moved_extra > 0xfff00000) { rack->r_ctl.sack_moved_extra /= 2; rack->r_ctl.sack_noextra_move /= 2; } } goto out; } rsm = rack->r_ctl.rc_sacklast; for (i = loop_start; i < num_sack_blks; i++) { acked = rack_proc_sack_blk(tp, rack, &sack_blocks[i], to, &rsm, cts, &moved_two); if (acked) { rack->r_wanted_output = 1; changed += acked; sack_changed += acked; } if (moved_two) { /* * If we did not get a SACK for at least a MSS and * had to move at all, or if we moved more than our * threshold, it counts against the "extra" move. */ rack->r_ctl.sack_moved_extra += moved_two; counter_u64_add(rack_move_some, 1); } else { /* * else we did not have to move * any more than we would expect. */ rack->r_ctl.sack_noextra_move++; counter_u64_add(rack_move_none, 1); } if (moved_two && (acked < ctf_fixed_maxseg(rack->rc_tp))) { /* * If the SACK was not a full MSS then * we add to sack_count the number of * MSS's (or possibly more than * a MSS if its a TSO send) we had to skip by. */ rack->r_ctl.sack_count += moved_two; counter_u64_add(rack_sack_total, moved_two); } /* * Now we need to setup for the next * round. First we make sure we won't * exceed the size of our uint32_t on * the various counts, and then clear out * moved_two. */ if ((rack->r_ctl.sack_moved_extra > 0xfff00000) || (rack->r_ctl.sack_noextra_move > 0xfff00000)) { rack->r_ctl.sack_moved_extra /= 2; rack->r_ctl.sack_noextra_move /= 2; } if (rack->r_ctl.sack_count > 0xfff00000) { rack->r_ctl.ack_count /= 2; rack->r_ctl.sack_count /= 2; } moved_two = 0; } out_with_totals: if (num_sack_blks > 1) { /* * You get an extra stroke if * you have more than one sack-blk, this * could be where we are skipping forward * and the sack-filter is still working, or * it could be an attacker constantly * moving us. */ rack->r_ctl.sack_moved_extra++; counter_u64_add(rack_move_some, 1); } out: #ifdef NETFLIX_EXP_DETECTION if ((rack->do_detection || tcp_force_detection) && tcp_sack_to_ack_thresh && tcp_sack_to_move_thresh && ((rack->r_ctl.rc_num_maps_alloced > tcp_map_minimum) || rack->sack_attack_disable)) { /* * We have thresholds set to find * possible attackers and disable sack. * Check them. */ uint64_t ackratio, moveratio, movetotal; /* Log detecting */ rack_log_sad(rack, 1); ackratio = (uint64_t)(rack->r_ctl.sack_count); ackratio *= (uint64_t)(1000); if (rack->r_ctl.ack_count) ackratio /= (uint64_t)(rack->r_ctl.ack_count); else { /* We really should not hit here */ ackratio = 1000; } if ((rack->sack_attack_disable == 0) && (ackratio > rack_highest_sack_thresh_seen)) rack_highest_sack_thresh_seen = (uint32_t)ackratio; movetotal = rack->r_ctl.sack_moved_extra; movetotal += rack->r_ctl.sack_noextra_move; moveratio = rack->r_ctl.sack_moved_extra; moveratio *= (uint64_t)1000; if (movetotal) moveratio /= movetotal; else { /* No moves, thats pretty good */ moveratio = 0; } if ((rack->sack_attack_disable == 0) && (moveratio > rack_highest_move_thresh_seen)) rack_highest_move_thresh_seen = (uint32_t)moveratio; if (rack->sack_attack_disable == 0) { if ((ackratio > tcp_sack_to_ack_thresh) && (moveratio > tcp_sack_to_move_thresh)) { /* Disable sack processing */ rack->sack_attack_disable = 1; if (rack->r_rep_attack == 0) { rack->r_rep_attack = 1; counter_u64_add(rack_sack_attacks_detected, 1); } if (tcp_attack_on_turns_on_logging) { /* * Turn on logging, used for debugging * false positives. */ rack->rc_tp->t_logstate = tcp_attack_on_turns_on_logging; } /* Clamp the cwnd at flight size */ rack->r_ctl.rc_saved_cwnd = rack->rc_tp->snd_cwnd; rack->rc_tp->snd_cwnd = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); rack_log_sad(rack, 2); } } else { /* We are sack-disabled check for false positives */ if ((ackratio <= tcp_restoral_thresh) || (rack->r_ctl.rc_num_maps_alloced < tcp_map_minimum)) { rack->sack_attack_disable = 0; rack_log_sad(rack, 3); /* Restart counting */ rack->r_ctl.sack_count = 0; rack->r_ctl.sack_moved_extra = 0; rack->r_ctl.sack_noextra_move = 1; rack->r_ctl.ack_count = max(1, (BYTES_THIS_ACK(tp, th)/ctf_fixed_maxseg(rack->rc_tp))); if (rack->r_rep_reverse == 0) { rack->r_rep_reverse = 1; counter_u64_add(rack_sack_attacks_reversed, 1); } /* Restore the cwnd */ if (rack->r_ctl.rc_saved_cwnd > rack->rc_tp->snd_cwnd) rack->rc_tp->snd_cwnd = rack->r_ctl.rc_saved_cwnd; } } } #endif if (changed) { /* Something changed cancel the rack timer */ rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); } tsused = tcp_ts_getticks(); rsm = tcp_rack_output(tp, rack, tsused); if ((!IN_RECOVERY(tp->t_flags)) && rsm) { /* Enter recovery */ rack->r_ctl.rc_rsm_start = rsm->r_start; rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; entered_recovery = 1; rack_cong_signal(tp, NULL, CC_NDUPACK); /* * When we enter recovery we need to assure we send * one packet. */ if (rack->rack_no_prr == 0) { rack->r_ctl.rc_prr_sndcnt = ctf_fixed_maxseg(tp); rack_log_to_prr(rack, 8, 0); } rack->r_timer_override = 1; rack->r_early = 0; rack->r_ctl.rc_agg_early = 0; } else if (IN_RECOVERY(tp->t_flags) && rsm && (rack->r_rr_config == 3)) { /* * Assure we can output and we get no * remembered pace time except the retransmit. */ rack->r_timer_override = 1; rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; rack->r_ctl.rc_resend = rsm; } if (IN_RECOVERY(tp->t_flags) && (rack->rack_no_prr == 0) && (entered_recovery == 0)) { /* Deal with PRR here (in recovery only) */ uint32_t pipe, snd_una; rack->r_ctl.rc_prr_delivered += changed; /* Compute prr_sndcnt */ if (SEQ_GT(tp->snd_una, th_ack)) { snd_una = tp->snd_una; } else { snd_una = th_ack; } pipe = ((tp->snd_max - snd_una) - rack->r_ctl.rc_sacked) + rack->r_ctl.rc_holes_rxt; if (pipe > tp->snd_ssthresh) { long sndcnt; sndcnt = rack->r_ctl.rc_prr_delivered * tp->snd_ssthresh; if (rack->r_ctl.rc_prr_recovery_fs > 0) sndcnt /= (long)rack->r_ctl.rc_prr_recovery_fs; else { rack->r_ctl.rc_prr_sndcnt = 0; rack_log_to_prr(rack, 9, 0); sndcnt = 0; } sndcnt++; if (sndcnt > (long)rack->r_ctl.rc_prr_out) sndcnt -= rack->r_ctl.rc_prr_out; else sndcnt = 0; rack->r_ctl.rc_prr_sndcnt = sndcnt; rack_log_to_prr(rack, 10, 0); } else { uint32_t limit; if (rack->r_ctl.rc_prr_delivered > rack->r_ctl.rc_prr_out) limit = (rack->r_ctl.rc_prr_delivered - rack->r_ctl.rc_prr_out); else limit = 0; if (changed > limit) limit = changed; limit += ctf_fixed_maxseg(tp); if (tp->snd_ssthresh > pipe) { rack->r_ctl.rc_prr_sndcnt = min((tp->snd_ssthresh - pipe), limit); rack_log_to_prr(rack, 11, 0); } else { rack->r_ctl.rc_prr_sndcnt = min(0, limit); rack_log_to_prr(rack, 12, 0); } } if ((rsm && (rack->r_ctl.rc_prr_sndcnt >= ctf_fixed_maxseg(tp)) && ((rack->rc_inp->inp_in_hpts == 0) && ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0)))) { /* * If you are pacing output you don't want * to override. */ rack->r_early = 0; rack->r_ctl.rc_agg_early = 0; rack->r_timer_override = 1; } } } static void rack_strike_dupack(struct tcp_rack *rack) { struct rack_sendmap *rsm; rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); if (rsm && (rsm->r_dupack < 0xff)) { rsm->r_dupack++; if (rsm->r_dupack >= DUP_ACK_THRESHOLD) { rack->r_wanted_output = 1; rack->r_timer_override = 1; rack_log_retran_reason(rack, rsm, __LINE__, 1, 3); } else { rack_log_retran_reason(rack, rsm, __LINE__, 0, 3); } } } static void rack_check_bottom_drag(struct tcpcb *tp, struct tcp_rack *rack, struct socket *so, int32_t acked) { uint32_t segsiz, minseg; segsiz = ctf_fixed_maxseg(tp); minseg = segsiz; if (tp->snd_max == tp->snd_una) { /* * We are doing dynamic pacing and we are way * under. Basically everything got acked while * we were still waiting on the pacer to expire. * * This means we need to boost the b/w in * addition to any earlier boosting of * the multipler. */ rack->rc_dragged_bottom = 1; rack_validate_multipliers_at_or_above100(rack); /* * Lets use the segment bytes acked plus * the lowest RTT seen as the basis to * form a b/w estimate. This will be off * due to the fact that the true estimate * should be around 1/2 the time of the RTT * but we can settle for that. */ if ((rack->r_ctl.rack_rs.rs_flags & RACK_RTT_VALID) && acked) { uint64_t bw, calc_bw, rtt; rtt = rack->r_ctl.rack_rs.rs_us_rtt; bw = acked; calc_bw = bw * 1000000; calc_bw /= rtt; if (rack->r_ctl.last_max_bw && (rack->r_ctl.last_max_bw < calc_bw)) { /* * If we have a last calculated max bw * enforce it. */ calc_bw = rack->r_ctl.last_max_bw; } /* now plop it in */ if (rack->rc_gp_filled == 0) { if (calc_bw > ONE_POINT_TWO_MEG) { /* * If we have no measurement * don't let us set in more than * 1.2Mbps. If we are still too * low after pacing with this we * will hopefully have a max b/w * available to sanity check things. */ calc_bw = ONE_POINT_TWO_MEG; } rack->r_ctl.rc_rtt_diff = 0; rack->r_ctl.gp_bw = calc_bw; rack->rc_gp_filled = 1; rack->r_ctl.num_avg = RACK_REQ_AVG; rack_set_pace_segments(rack->rc_tp, rack, __LINE__); } else if (calc_bw > rack->r_ctl.gp_bw) { rack->r_ctl.rc_rtt_diff = 0; rack->r_ctl.num_avg = RACK_REQ_AVG; rack->r_ctl.gp_bw = calc_bw; rack_set_pace_segments(rack->rc_tp, rack, __LINE__); } else rack_increase_bw_mul(rack, -1, 0, 0, 1); /* * For acks over 1mss we do a extra boost to simulate * where we would get 2 acks (we want 110 for the mul). */ if (acked > segsiz) rack_increase_bw_mul(rack, -1, 0, 0, 1); } else { /* * Huh, this should not be, settle * for just an old increase. */ rack_increase_bw_mul(rack, -1, 0, 0, 1); } } else if ((IN_RECOVERY(tp->t_flags) == 0) && (sbavail(&so->so_snd) > max((segsiz * (4 + rack_req_segs)), minseg)) && (rack->r_ctl.cwnd_to_use > max((segsiz * (rack_req_segs + 2)), minseg)) && (tp->snd_wnd > max((segsiz * (rack_req_segs + 2)), minseg)) && (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) <= (segsiz * rack_req_segs))) { /* * We are doing dynamic GP pacing and * we have everything except 1MSS or less * bytes left out. We are still pacing away. * And there is data that could be sent, This * means we are inserting delayed ack time in * our measurements because we are pacing too slow. */ rack_validate_multipliers_at_or_above100(rack); rack->rc_dragged_bottom = 1; rack_increase_bw_mul(rack, -1, 0, 0, 1); } } /* * Return value of 1, we do not need to call rack_process_data(). * return value of 0, rack_process_data can be called. * For ret_val if its 0 the TCP is locked, if its non-zero * its unlocked and probably unsafe to touch the TCB. */ static int rack_process_ack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, uint32_t tiwin, int32_t tlen, int32_t * ofia, int32_t thflags, int32_t * ret_val) { int32_t ourfinisacked = 0; int32_t nsegs, acked_amount; int32_t acked; struct mbuf *mfree; struct tcp_rack *rack; int32_t under_pacing = 0; int32_t recovery = 0; rack = (struct tcp_rack *)tp->t_fb_ptr; if (SEQ_GT(th->th_ack, tp->snd_max)) { ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val); rack->r_wanted_output = 1; return (1); } if (rack->rc_gp_filled && (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { under_pacing = 1; } if (SEQ_GEQ(th->th_ack, tp->snd_una) || to->to_nsacks) { if (rack->rc_in_persist) tp->t_rxtshift = 0; if ((th->th_ack == tp->snd_una) && (tiwin == tp->snd_wnd)) rack_strike_dupack(rack); rack_log_ack(tp, to, th); } if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { /* * Old ack, behind (or duplicate to) the last one rcv'd * Note: Should mark reordering is occuring! We should also * look for sack blocks arriving e.g. ack 1, 4-4 then ack 1, * 3-3, 4-4 would be reording. As well as ack 1, 3-3 ack 3 */ return (0); } /* * If we reach this point, ACK is not a duplicate, i.e., it ACKs * something we sent. */ if (tp->t_flags & TF_NEEDSYN) { /* * T/TCP: Connection was half-synchronized, and our SYN has * been ACK'd (so connection is now fully synchronized). Go * to non-starred state, increment snd_una for ACK of SYN, * and check if we can do window scaling. */ tp->t_flags &= ~TF_NEEDSYN; tp->snd_una++; /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; /* Send window already scaled. */ } } nsegs = max(1, m->m_pkthdr.lro_nsegs); INP_WLOCK_ASSERT(tp->t_inpcb); acked = BYTES_THIS_ACK(tp, th); KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); /* * If we just performed our first retransmit, and the ACK arrives * within our recovery window, then it was a mistake to do the * retransmit in the first place. Recover our original cwnd and * ssthresh, and proceed to transmit where we left off. */ if (tp->t_flags & TF_PREVVALID) { tp->t_flags &= ~TF_PREVVALID; if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0) rack_cong_signal(tp, th, CC_RTO_ERR); } if (acked) { /* assure we are not backed off */ tp->t_rxtshift = 0; rack->rc_tlp_in_progress = 0; rack->r_ctl.rc_tlp_cnt_out = 0; /* * If it is the RXT timer we want to * stop it, so we can restart a TLP. */ if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); #ifdef NETFLIX_HTTP_LOGGING tcp_http_check_for_comp(rack->rc_tp, th->th_ack); #endif } /* * If we have a timestamp reply, update smoothed round trip time. If * no timestamp is present but transmit timer is running and timed * sequence number was acked, update smoothed round trip time. Since * we now have an rtt measurement, cancel the timer backoff (cf., * Phil Karn's retransmit alg.). Recompute the initial retransmit * timer. * * Some boxes send broken timestamp replies during the SYN+ACK * phase, ignore timestamps of 0 or we could calculate a huge RTT * and blow up the retransmit timer. */ /* * If all outstanding data is acked, stop retransmit timer and * remember to restart (more output or persist). If there is more * data to be acked, restart retransmit timer, using current * (possibly backed-off) value. */ if (acked == 0) { if (ofia) *ofia = ourfinisacked; return (0); } if (rack->r_ctl.rc_early_recovery) { if (IN_RECOVERY(tp->t_flags)) { if (SEQ_LT(th->th_ack, tp->snd_recover) && (SEQ_LT(th->th_ack, tp->snd_max))) { tcp_rack_partialack(tp, th); } else { rack_post_recovery(tp, th); recovery = 1; } } } /* * Let the congestion control algorithm update congestion control * related information. This typically means increasing the * congestion window. */ rack_ack_received(tp, rack, th, nsegs, CC_ACK, recovery); SOCKBUF_LOCK(&so->so_snd); acked_amount = min(acked, (int)sbavail(&so->so_snd)); tp->snd_wnd -= acked_amount; mfree = sbcut_locked(&so->so_snd, acked_amount); if ((sbused(&so->so_snd) == 0) && (acked > acked_amount) && (tp->t_state >= TCPS_FIN_WAIT_1) && (tp->t_flags & TF_SENTFIN)) { /* * We must be sure our fin * was sent and acked (we can be * in FIN_WAIT_1 without having * sent the fin). */ ourfinisacked = 1; } /* NB: sowwakeup_locked() does an implicit unlock. */ sowwakeup_locked(so); m_freem(mfree); if (rack->r_ctl.rc_early_recovery == 0) { if (IN_RECOVERY(tp->t_flags)) { if (SEQ_LT(th->th_ack, tp->snd_recover) && (SEQ_LT(th->th_ack, tp->snd_max))) { tcp_rack_partialack(tp, th); } else { rack_post_recovery(tp, th); } } } tp->snd_una = th->th_ack; if (SEQ_GT(tp->snd_una, tp->snd_recover)) tp->snd_recover = tp->snd_una; if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { tp->snd_nxt = tp->snd_una; } if (under_pacing && (rack->use_fixed_rate == 0) && (rack->in_probe_rtt == 0) && rack->rc_gp_dyn_mul && rack->rc_always_pace) { /* Check if we are dragging bottom */ rack_check_bottom_drag(tp, rack, so, acked); } if (tp->snd_una == tp->snd_max) { /* Nothing left outstanding */ rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); if (rack->r_ctl.rc_went_idle_time == 0) rack->r_ctl.rc_went_idle_time = 1; rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) tp->t_acktime = 0; rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); /* Set need output so persist might get set */ rack->r_wanted_output = 1; sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); if ((tp->t_state >= TCPS_FIN_WAIT_1) && (sbavail(&so->so_snd) == 0) && (tp->t_flags2 & TF2_DROP_AF_DATA)) { /* * The socket was gone and the * peer sent data, time to * reset him. */ *ret_val = 1; /* tcp_close will kill the inp pre-log the Reset */ tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); tp = tcp_close(tp); ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, tlen); return (1); } } if (ofia) *ofia = ourfinisacked; return (0); } static void rack_collapsed_window(struct tcp_rack *rack) { /* * Now we must walk the * send map and divide the * ones left stranded. These * guys can't cause us to abort * the connection and are really * "unsent". However if a buggy * client actually did keep some * of the data i.e. collapsed the win * and refused to ack and then opened * the win and acked that data. We would * get into an ack war, the simplier * method then of just pretending we * did not send those segments something * won't work. */ struct rack_sendmap *rsm, *nrsm, fe, *insret; tcp_seq max_seq; max_seq = rack->rc_tp->snd_una + rack->rc_tp->snd_wnd; memset(&fe, 0, sizeof(fe)); fe.r_start = max_seq; /* Find the first seq past or at maxseq */ rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); if (rsm == NULL) { /* Nothing to do strange */ rack->rc_has_collapsed = 0; return; } /* * Now do we need to split at * the collapse point? */ if (SEQ_GT(max_seq, rsm->r_start)) { nrsm = rack_alloc_limit(rack, RACK_LIMIT_TYPE_SPLIT); if (nrsm == NULL) { /* We can't get a rsm, mark all? */ nrsm = rsm; goto no_split; } /* Clone it */ rack_clone_rsm(rack, nrsm, rsm, max_seq); insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree of %p fails ret:%p rack:%p rsm:%p", nrsm, insret, rack, rsm); } #endif if (rsm->r_in_tmap) { TAILQ_INSERT_AFTER(&rack->r_ctl.rc_tmap, rsm, nrsm, r_tnext); nrsm->r_in_tmap = 1; } /* * Set in the new RSM as the * collapsed starting point */ rsm = nrsm; } no_split: counter_u64_add(rack_collapsed_win, 1); RB_FOREACH_FROM(nrsm, rack_rb_tree_head, rsm) { nrsm->r_flags |= RACK_RWND_COLLAPSED; rack->rc_has_collapsed = 1; } } static void rack_un_collapse_window(struct tcp_rack *rack) { struct rack_sendmap *rsm; RB_FOREACH_REVERSE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree) { if (rsm->r_flags & RACK_RWND_COLLAPSED) rsm->r_flags &= ~RACK_RWND_COLLAPSED; else break; } rack->rc_has_collapsed = 0; } static void rack_handle_delayed_ack(struct tcpcb *tp, struct tcp_rack *rack, int32_t tlen, int32_t tfo_syn) { if (DELAY_ACK(tp, tlen) || tfo_syn) { if (rack->rc_dack_mode && (tlen > 500) && (rack->rc_dack_toggle == 1)) { goto no_delayed_ack; } rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); tp->t_flags |= TF_DELACK; } else { no_delayed_ack: rack->r_wanted_output = 1; tp->t_flags |= TF_ACKNOW; if (rack->rc_dack_mode) { if (tp->t_flags & TF_DELACK) rack->rc_dack_toggle = 1; else rack->rc_dack_toggle = 0; } } } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_process_data(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt) { /* * Update window information. Don't look at window if no ACK: TAC's * send garbage on first SYN. */ int32_t nsegs; int32_t tfo_syn; struct tcp_rack *rack; rack = (struct tcp_rack *)tp->t_fb_ptr; INP_WLOCK_ASSERT(tp->t_inpcb); nsegs = max(1, m->m_pkthdr.lro_nsegs); if ((thflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { /* keep track of pure window updates */ if (tlen == 0 && tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) KMOD_TCPSTAT_INC(tcps_rcvwinupd); tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; tp->snd_wl2 = th->th_ack; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; rack->r_wanted_output = 1; } else if (thflags & TH_ACK) { if ((tp->snd_wl2 == th->th_ack) && (tiwin < tp->snd_wnd)) { tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; tp->snd_wl2 = th->th_ack; } } if (tp->snd_wnd < ctf_outstanding(tp)) /* The peer collapsed the window */ rack_collapsed_window(rack); else if (rack->rc_has_collapsed) rack_un_collapse_window(rack); /* Was persist timer active and now we have window space? */ if ((rack->rc_in_persist != 0) && (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) { rack_exit_persist(tp, rack, rack->r_ctl.rc_rcvtime); tp->snd_nxt = tp->snd_max; /* Make sure we output to start the timer */ rack->r_wanted_output = 1; } /* Do we enter persists? */ if ((rack->rc_in_persist == 0) && (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && TCPS_HAVEESTABLISHED(tp->t_state) && (tp->snd_max == tp->snd_una) && sbavail(&tp->t_inpcb->inp_socket->so_snd) && (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { /* * Here the rwnd is less than * the pacing size, we are established, * nothing is outstanding, and there is * data to send. Enter persists. */ tp->snd_nxt = tp->snd_una; rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); } if (tp->t_flags2 & TF2_DROP_AF_DATA) { m_freem(m); return (0); } /* * don't process the URG bit, ignore them drag * along the up. */ tp->rcv_up = tp->rcv_nxt; INP_WLOCK_ASSERT(tp->t_inpcb); /* * Process the segment text, merging it into the TCP sequencing * queue, and arranging for acknowledgment of receipt if necessary. * This process logically involves adjusting tp->rcv_wnd as data is * presented to the user (this happens in tcp_usrreq.c, case * PRU_RCVD). If a FIN has already been received on this connection * then we just ignore the text. */ tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) && IS_FASTOPEN(tp->t_flags)); if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) && TCPS_HAVERCVDFIN(tp->t_state) == 0) { tcp_seq save_start = th->th_seq; tcp_seq save_rnxt = tp->rcv_nxt; int save_tlen = tlen; m_adj(m, drop_hdrlen); /* delayed header drop */ /* * Insert segment which includes th into TCP reassembly * queue with control block tp. Set thflags to whether * reassembly now includes a segment with FIN. This handles * the common case inline (segment is the next to be * received on an established connection, and the queue is * empty), avoiding linkage into and removal from the queue * and repetition of various conversions. Set DELACK for * segments received in order, but ack immediately when * segments are out of order (so fast retransmit can work). */ if (th->th_seq == tp->rcv_nxt && SEGQ_EMPTY(tp) && (TCPS_HAVEESTABLISHED(tp->t_state) || tfo_syn)) { #ifdef NETFLIX_SB_LIMITS u_int mcnt, appended; if (so->so_rcv.sb_shlim) { mcnt = m_memcnt(m); appended = 0; if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, CFO_NOSLEEP, NULL) == false) { counter_u64_add(tcp_sb_shlim_fails, 1); m_freem(m); return (0); } } #endif rack_handle_delayed_ack(tp, rack, tlen, tfo_syn); tp->rcv_nxt += tlen; if (tlen && ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && (tp->t_fbyte_in == 0)) { tp->t_fbyte_in = ticks; if (tp->t_fbyte_in == 0) tp->t_fbyte_in = 1; if (tp->t_fbyte_out && tp->t_fbyte_in) tp->t_flags2 |= TF2_FBYTES_COMPLETE; } thflags = th->th_flags & TH_FIN; KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { m_freem(m); } else #ifdef NETFLIX_SB_LIMITS appended = #endif sbappendstream_locked(&so->so_rcv, m, 0); /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); #ifdef NETFLIX_SB_LIMITS if (so->so_rcv.sb_shlim && appended != mcnt) counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); #endif } else { /* * XXX: Due to the header drop above "th" is * theoretically invalid by now. Fortunately * m_adj() doesn't actually frees any mbufs when * trimming from the head. */ tcp_seq temp = save_start; thflags = tcp_reass(tp, th, &temp, &tlen, m); tp->t_flags |= TF_ACKNOW; } if ((tp->t_flags & TF_SACK_PERMIT) && (save_tlen > 0)) { if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) { /* * DSACK actually handled in the fastpath * above. */ RACK_OPTS_INC(tcp_sack_path_1); tcp_update_sack_list(tp, save_start, save_start + save_tlen); } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) { if ((tp->rcv_numsacks >= 1) && (tp->sackblks[0].end == save_start)) { /* * Partial overlap, recorded at todrop * above. */ RACK_OPTS_INC(tcp_sack_path_2a); tcp_update_sack_list(tp, tp->sackblks[0].start, tp->sackblks[0].end); } else { RACK_OPTS_INC(tcp_sack_path_2b); tcp_update_dsack_list(tp, save_start, save_start + save_tlen); } } else if (tlen >= save_tlen) { /* Update of sackblks. */ RACK_OPTS_INC(tcp_sack_path_3); tcp_update_dsack_list(tp, save_start, save_start + save_tlen); } else if (tlen > 0) { RACK_OPTS_INC(tcp_sack_path_4); tcp_update_dsack_list(tp, save_start, save_start + tlen); } } } else { m_freem(m); thflags &= ~TH_FIN; } /* * If FIN is received ACK the FIN and let the user know that the * connection is closing. */ if (thflags & TH_FIN) { if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { socantrcvmore(so); /* * If connection is half-synchronized (ie NEEDSYN * flag on) then delay ACK, so it may be piggybacked * when SYN is sent. Otherwise, since we received a * FIN then no more input can be expected, send ACK * now. */ if (tp->t_flags & TF_NEEDSYN) { rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); tp->t_flags |= TF_DELACK; } else { tp->t_flags |= TF_ACKNOW; } tp->rcv_nxt++; } switch (tp->t_state) { /* * In SYN_RECEIVED and ESTABLISHED STATES enter the * CLOSE_WAIT state. */ case TCPS_SYN_RECEIVED: tp->t_starttime = ticks; /* FALLTHROUGH */ case TCPS_ESTABLISHED: rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); tcp_state_change(tp, TCPS_CLOSE_WAIT); break; /* * If still in FIN_WAIT_1 STATE FIN has not been * acked so enter the CLOSING state. */ case TCPS_FIN_WAIT_1: rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); tcp_state_change(tp, TCPS_CLOSING); break; /* * In FIN_WAIT_2 state enter the TIME_WAIT state, * starting the time-wait timer, turning off the * other standard timers. */ case TCPS_FIN_WAIT_2: rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); tcp_twstart(tp); return (1); } } /* * Return any desired output. */ if ((tp->t_flags & TF_ACKNOW) || (sbavail(&so->so_snd) > (tp->snd_max - tp->snd_una))) { rack->r_wanted_output = 1; } INP_WLOCK_ASSERT(tp->t_inpcb); return (0); } /* * Here nothing is really faster, its just that we * have broken out the fast-data path also just like * the fast-ack. */ static int rack_do_fastnewdata(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint8_t iptos) { int32_t nsegs; int32_t newsize = 0; /* automatic sockbuf scaling */ struct tcp_rack *rack; #ifdef NETFLIX_SB_LIMITS u_int mcnt, appended; #endif #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif /* * If last ACK falls within this segment's sequence numbers, record * the timestamp. NOTE that the test is modified according to the * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). */ if (__predict_false(th->th_seq != tp->rcv_nxt)) { return (0); } if (__predict_false(tp->snd_nxt != tp->snd_max)) { return (0); } if (tiwin && tiwin != tp->snd_wnd) { return (0); } if (__predict_false((tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN)))) { return (0); } if (__predict_false((to->to_flags & TOF_TS) && (TSTMP_LT(to->to_tsval, tp->ts_recent)))) { return (0); } if (__predict_false((th->th_ack != tp->snd_una))) { return (0); } if (__predict_false(tlen > sbspace(&so->so_rcv))) { return (0); } if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } rack = (struct tcp_rack *)tp->t_fb_ptr; /* * This is a pure, in-sequence data packet with nothing on the * reassembly queue and we have enough buffer space to take it. */ nsegs = max(1, m->m_pkthdr.lro_nsegs); #ifdef NETFLIX_SB_LIMITS if (so->so_rcv.sb_shlim) { mcnt = m_memcnt(m); appended = 0; if (counter_fo_get(so->so_rcv.sb_shlim, mcnt, CFO_NOSLEEP, NULL) == false) { counter_u64_add(tcp_sb_shlim_fails, 1); m_freem(m); return (1); } } #endif /* Clean receiver SACK report if present */ if (tp->rcv_numsacks) tcp_clean_sackreport(tp); KMOD_TCPSTAT_INC(tcps_preddat); tp->rcv_nxt += tlen; if (tlen && ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && (tp->t_fbyte_in == 0)) { tp->t_fbyte_in = ticks; if (tp->t_fbyte_in == 0) tp->t_fbyte_in = 1; if (tp->t_fbyte_out && tp->t_fbyte_in) tp->t_flags2 |= TF2_FBYTES_COMPLETE; } /* * Pull snd_wl1 up to prevent seq wrap relative to th_seq. */ tp->snd_wl1 = th->th_seq; /* * Pull rcv_up up to prevent seq wrap relative to rcv_nxt. */ tp->rcv_up = tp->rcv_nxt; KMOD_TCPSTAT_ADD(tcps_rcvpack, nsegs); KMOD_TCPSTAT_ADD(tcps_rcvbyte, tlen); #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif newsize = tcp_autorcvbuf(m, th, so, tp, tlen); /* Add data to socket buffer. */ SOCKBUF_LOCK(&so->so_rcv); if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { m_freem(m); } else { /* * Set new socket buffer size. Give up when limit is * reached. */ if (newsize) if (!sbreserve_locked(&so->so_rcv, newsize, so, NULL)) so->so_rcv.sb_flags &= ~SB_AUTOSIZE; m_adj(m, drop_hdrlen); /* delayed header drop */ #ifdef NETFLIX_SB_LIMITS appended = #endif sbappendstream_locked(&so->so_rcv, m, 0); ctf_calc_rwin(so, tp); } /* NB: sorwakeup_locked() does an implicit unlock. */ sorwakeup_locked(so); #ifdef NETFLIX_SB_LIMITS if (so->so_rcv.sb_shlim && mcnt != appended) counter_fo_release(so->so_rcv.sb_shlim, mcnt - appended); #endif rack_handle_delayed_ack(tp, rack, tlen, 0); if (tp->snd_una == tp->snd_max) sack_filter_clear(&rack->r_ctl.rack_sf, tp->snd_una); return (1); } /* * This subfunction is used to try to highly optimize the * fast path. We again allow window updates that are * in sequence to remain in the fast-path. We also add * in the __predict's to attempt to help the compiler. * Note that if we return a 0, then we can *not* process * it and the caller should push the packet into the * slow-path. */ static int rack_fastack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t nxt_pkt, uint32_t cts) { int32_t acked; int32_t nsegs; #ifdef TCPDEBUG /* * The size of tcp_saveipgen must be the size of the max ip header, * now IPv6. */ u_char tcp_saveipgen[IP6_HDR_LEN]; struct tcphdr tcp_savetcp; short ostate = 0; #endif int32_t under_pacing = 0; struct tcp_rack *rack; if (__predict_false(SEQ_LEQ(th->th_ack, tp->snd_una))) { /* Old ack, behind (or duplicate to) the last one rcv'd */ return (0); } if (__predict_false(SEQ_GT(th->th_ack, tp->snd_max))) { /* Above what we have sent? */ return (0); } if (__predict_false(tp->snd_nxt != tp->snd_max)) { /* We are retransmitting */ return (0); } if (__predict_false(tiwin == 0)) { /* zero window */ return (0); } if (__predict_false(tp->t_flags & (TF_NEEDSYN | TF_NEEDFIN))) { /* We need a SYN or a FIN, unlikely.. */ return (0); } if ((to->to_flags & TOF_TS) && __predict_false(TSTMP_LT(to->to_tsval, tp->ts_recent))) { /* Timestamp is behind .. old ack with seq wrap? */ return (0); } if (__predict_false(IN_RECOVERY(tp->t_flags))) { /* Still recovering */ return (0); } rack = (struct tcp_rack *)tp->t_fb_ptr; if (rack->r_ctl.rc_sacked) { /* We have sack holes on our scoreboard */ return (0); } /* Ok if we reach here, we can process a fast-ack */ if (rack->rc_gp_filled && (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { under_pacing = 1; } nsegs = max(1, m->m_pkthdr.lro_nsegs); rack_log_ack(tp, to, th); /* Did the window get updated? */ if (tiwin != tp->snd_wnd) { tp->snd_wnd = tiwin; tp->snd_wl1 = th->th_seq; if (tp->snd_wnd > tp->max_sndwnd) tp->max_sndwnd = tp->snd_wnd; } /* Do we exit persists? */ if ((rack->rc_in_persist != 0) && (tp->snd_wnd >= min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs))) { rack_exit_persist(tp, rack, cts); } /* Do we enter persists? */ if ((rack->rc_in_persist == 0) && (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), rack->r_ctl.rc_pace_min_segs)) && TCPS_HAVEESTABLISHED(tp->t_state) && (tp->snd_max == tp->snd_una) && sbavail(&tp->t_inpcb->inp_socket->so_snd) && (sbavail(&tp->t_inpcb->inp_socket->so_snd) > tp->snd_wnd)) { /* * Here the rwnd is less than * the pacing size, we are established, * nothing is outstanding, and there is * data to send. Enter persists. */ tp->snd_nxt = tp->snd_una; rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); } /* * If last ACK falls within this segment's sequence numbers, record * the timestamp. NOTE that the test is modified according to the * latest proposal of the tcplw@cray.com list (Braden 1993/04/26). */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } /* * This is a pure ack for outstanding data. */ KMOD_TCPSTAT_INC(tcps_predack); /* * "bad retransmit" recovery. */ if (tp->t_flags & TF_PREVVALID) { tp->t_flags &= ~TF_PREVVALID; if (tp->t_rxtshift == 1 && (int)(ticks - tp->t_badrxtwin) < 0) rack_cong_signal(tp, th, CC_RTO_ERR); } /* * Recalculate the transmit timer / rtt. * * Some boxes send broken timestamp replies during the SYN+ACK * phase, ignore timestamps of 0 or we could calculate a huge RTT * and blow up the retransmit timer. */ acked = BYTES_THIS_ACK(tp, th); #ifdef TCP_HHOOK /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */ hhook_run_tcp_est_in(tp, th, to); #endif KMOD_TCPSTAT_ADD(tcps_rcvackpack, nsegs); KMOD_TCPSTAT_ADD(tcps_rcvackbyte, acked); sbdrop(&so->so_snd, acked); if (acked) { /* assure we are not backed off */ tp->t_rxtshift = 0; rack->rc_tlp_in_progress = 0; rack->r_ctl.rc_tlp_cnt_out = 0; /* * If it is the RXT timer we want to * stop it, so we can restart a TLP. */ if (rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); #ifdef NETFLIX_HTTP_LOGGING tcp_http_check_for_comp(rack->rc_tp, th->th_ack); #endif } /* * Let the congestion control algorithm update congestion control * related information. This typically means increasing the * congestion window. */ rack_ack_received(tp, rack, th, nsegs, CC_ACK, 0); tp->snd_una = th->th_ack; if (tp->snd_wnd < ctf_outstanding(tp)) { /* The peer collapsed the window */ rack_collapsed_window(rack); } else if (rack->rc_has_collapsed) rack_un_collapse_window(rack); /* * Pull snd_wl2 up to prevent seq wrap relative to th_ack. */ tp->snd_wl2 = th->th_ack; tp->t_dupacks = 0; m_freem(m); /* ND6_HINT(tp); *//* Some progress has been made. */ /* * If all outstanding data are acked, stop retransmit timer, * otherwise restart timer using current (possibly backed-off) * value. If process is waiting for space, wakeup/selwakeup/signal. * If data are ready to send, let tcp_output decide between more * output or persist. */ #ifdef TCPDEBUG if (so->so_options & SO_DEBUG) tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, &tcp_savetcp, 0); #endif if (under_pacing && (rack->use_fixed_rate == 0) && (rack->in_probe_rtt == 0) && rack->rc_gp_dyn_mul && rack->rc_always_pace) { /* Check if we are dragging bottom */ rack_check_bottom_drag(tp, rack, so, acked); } if (tp->snd_una == tp->snd_max) { rack->r_ctl.rc_went_idle_time = tcp_get_usecs(NULL); if (rack->r_ctl.rc_went_idle_time == 0) rack->r_ctl.rc_went_idle_time = 1; rack_log_progress_event(rack, tp, 0, PROGRESS_CLEAR, __LINE__); if (sbavail(&tp->t_inpcb->inp_socket->so_snd) == 0) tp->t_acktime = 0; rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); } /* Wake up the socket if we have room to write more */ sowwakeup(so); if (sbavail(&so->so_snd)) { rack->r_wanted_output = 1; } return (1); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_syn_sent(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { int32_t ret_val = 0; int32_t todrop; int32_t ourfinisacked = 0; struct tcp_rack *rack; ctf_calc_rwin(so, tp); /* * If the state is SYN_SENT: if seg contains an ACK, but not for our * SYN, drop the input. if seg contains a RST, then drop the * connection. if seg does not contain SYN, then drop it. Otherwise * this is an acceptable SYN segment initialize tp->rcv_nxt and * tp->irs if seg contains ack then advance tp->snd_una if seg * contains an ECE and ECN support is enabled, the stream is ECN * capable. if SYN has been acked change to ESTABLISHED else * SYN_RCVD state arrange for segment to be acked (eventually) * continue processing rest of data/controls. */ if ((thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } if ((thflags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) { TCP_PROBE5(connect__refused, NULL, tp, mtod(m, const char *), tp, th); tp = tcp_drop(tp, ECONNREFUSED); ctf_do_drop(m, tp); return (1); } if (thflags & TH_RST) { ctf_do_drop(m, tp); return (1); } if (!(thflags & TH_SYN)) { ctf_do_drop(m, tp); return (1); } tp->irs = th->th_seq; tcp_rcvseqinit(tp); rack = (struct tcp_rack *)tp->t_fb_ptr; if (thflags & TH_ACK) { int tfo_partial = 0; KMOD_TCPSTAT_INC(tcps_connects); soisconnected(so); #ifdef MAC mac_socketpeer_set_from_mbuf(m, so); #endif /* Do window scaling on this connection? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; } tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale); /* * If not all the data that was sent in the TFO SYN * has been acked, resend the remainder right away. */ if (IS_FASTOPEN(tp->t_flags) && (tp->snd_una != tp->snd_max)) { tp->snd_nxt = th->th_ack; tfo_partial = 1; } /* * If there's data, delay ACK; if there's also a FIN ACKNOW * will be turned on later. */ if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial) { rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); tp->t_flags |= TF_DELACK; } else { rack->r_wanted_output = 1; tp->t_flags |= TF_ACKNOW; rack->rc_dack_toggle = 0; } if (((thflags & (TH_CWR | TH_ECE)) == TH_ECE) && (V_tcp_do_ecn == 1)) { tp->t_flags2 |= TF2_ECN_PERMIT; KMOD_TCPSTAT_INC(tcps_ecn_shs); } if (SEQ_GT(th->th_ack, tp->snd_una)) { /* * We advance snd_una for the * fast open case. If th_ack is * acknowledging data beyond * snd_una we can't just call * ack-processing since the * data stream in our send-map * will start at snd_una + 1 (one * beyond the SYN). If its just * equal we don't need to do that * and there is no send_map. */ tp->snd_una++; } /* * Received in SYN_SENT[*] state. Transitions: * SYN_SENT --> ESTABLISHED SYN_SENT* --> FIN_WAIT_1 */ tp->t_starttime = ticks; if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; thflags &= ~TH_SYN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(connect__established, NULL, tp, mtod(m, const char *), tp, th); rack_cc_conn_init(tp); } } else { /* * Received initial SYN in SYN-SENT[*] state => simultaneous * open. If segment contains CC option and there is a * cached CC, apply TAO test. If it succeeds, connection is * * half-synchronized. Otherwise, do 3-way handshake: * SYN-SENT -> SYN-RECEIVED SYN-SENT* -> SYN-RECEIVED* If * there was no CC option, clear cached CC value. */ tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN); tcp_state_change(tp, TCPS_SYN_RECEIVED); } INP_WLOCK_ASSERT(tp->t_inpcb); /* * Advance th->th_seq to correspond to first data byte. If data, * trim to stay within window, dropping FIN if necessary. */ th->th_seq++; if (tlen > tp->rcv_wnd) { todrop = tlen - tp->rcv_wnd; m_adj(m, -todrop); tlen = tp->rcv_wnd; thflags &= ~TH_FIN; KMOD_TCPSTAT_INC(tcps_rcvpackafterwin); KMOD_TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop); } tp->snd_wl1 = th->th_seq - 1; tp->rcv_up = th->th_seq; /* * Client side of transaction: already sent SYN and data. If the * remote host used T/TCP to validate the SYN, our data will be * ACK'd; if so, enter normal data segment processing in the middle * of step 5, ack processing. Otherwise, goto step 6. */ if (thflags & TH_ACK) { /* For syn-sent we need to possibly update the rtt */ if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { uint32_t t; t = tcp_ts_getticks() - to->to_tsecr; if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; tcp_rack_xmit_timer(rack, t + 1, 1, (t * HPTS_USEC_IN_MSEC), 0, NULL, 2); tcp_rack_xmit_timer_commit(rack, tp); } if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) return (ret_val); /* We may have changed to FIN_WAIT_1 above */ if (tp->t_state == TCPS_FIN_WAIT_1) { /* * In FIN_WAIT_1 STATE in addition to the processing * for the ESTABLISHED state if our FIN is now * acknowledged then enter FIN_WAIT_2. */ if (ourfinisacked) { /* * If we can't receive any more data, then * closing user can proceed. Starting the * timer is contrary to the specification, * but if we don't get a FIN we'll hang * forever. * * XXXjl: we should release the tp also, and * use a compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } } } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_syn_recv(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { struct tcp_rack *rack; int32_t ret_val = 0; int32_t ourfinisacked = 0; ctf_calc_rwin(so, tp); if ((thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->snd_una) || SEQ_GT(th->th_ack, tp->snd_max))) { tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } rack = (struct tcp_rack *)tp->t_fb_ptr; if (IS_FASTOPEN(tp->t_flags)) { /* * When a TFO connection is in SYN_RECEIVED, the * only valid packets are the initial SYN, a * retransmit/copy of the initial SYN (possibly with * a subset of the original data), a valid ACK, a * FIN, or a RST. */ if ((thflags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK)) { tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } else if (thflags & TH_SYN) { /* non-initial SYN is ignored */ if ((rack->r_ctl.rc_hpts_flags & PACE_TMR_RXT) || (rack->r_ctl.rc_hpts_flags & PACE_TMR_TLP) || (rack->r_ctl.rc_hpts_flags & PACE_TMR_RACK)) { ctf_do_drop(m, NULL); return (0); } } else if (!(thflags & (TH_ACK | TH_FIN | TH_RST))) { ctf_do_drop(m, NULL); return (0); } } if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } /* * In the SYN-RECEIVED state, validate that the packet belongs to * this connection before trimming the data to fit the receive * window. Check the sequence number versus IRS since we know the * sequence numbers haven't wrapped. This is a partial fix for the * "LAND" DoS attack. */ if (SEQ_LT(th->th_seq, tp->irs)) { tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } tp->snd_wnd = tiwin; /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (IS_FASTOPEN(tp->t_flags)) { rack_cc_conn_init(tp); } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } KMOD_TCPSTAT_INC(tcps_connects); soisconnected(so); /* Do window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; } /* * Make transitions: SYN-RECEIVED -> ESTABLISHED SYN-RECEIVED* -> * FIN-WAIT-1 */ tp->t_starttime = ticks; if (IS_FASTOPEN(tp->t_flags) && tp->t_tfo_pending) { tcp_fastopen_decrement_counter(tp->t_tfo_pending); tp->t_tfo_pending = NULL; } if (tp->t_flags & TF_NEEDFIN) { tcp_state_change(tp, TCPS_FIN_WAIT_1); tp->t_flags &= ~TF_NEEDFIN; } else { tcp_state_change(tp, TCPS_ESTABLISHED); TCP_PROBE5(accept__established, NULL, tp, mtod(m, const char *), tp, th); /* * TFO connections call cc_conn_init() during SYN * processing. Calling it again here for such connections * is not harmless as it would undo the snd_cwnd reduction * that occurs when a TFO SYN|ACK is retransmitted. */ if (!IS_FASTOPEN(tp->t_flags)) rack_cc_conn_init(tp); } /* * Account for the ACK of our SYN prior to * regular ACK processing below, except for * simultaneous SYN, which is handled later. */ if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN)) tp->snd_una++; /* * If segment contains data or ACK, will call tcp_reass() later; if * not, do so now to pass queued data to user. */ if (tlen == 0 && (thflags & TH_FIN) == 0) (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0, (struct mbuf *)0); tp->snd_wl1 = th->th_seq - 1; /* For syn-recv we need to possibly update the rtt */ if ((to->to_flags & TOF_TS) != 0 && to->to_tsecr) { uint32_t t; t = tcp_ts_getticks() - to->to_tsecr; if (!tp->t_rttlow || tp->t_rttlow > t) tp->t_rttlow = t; tcp_rack_xmit_timer(rack, t + 1, 1, (t * HPTS_USEC_IN_MSEC), 0, NULL, 2); tcp_rack_xmit_timer_commit(rack, tp); } if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (tp->t_state == TCPS_FIN_WAIT_1) { /* We could have went to FIN_WAIT_1 (or EST) above */ /* * In FIN_WAIT_1 STATE in addition to the processing for the * ESTABLISHED state if our FIN is now acknowledged then * enter FIN_WAIT_2. */ if (ourfinisacked) { /* * If we can't receive any more data, then closing * user can proceed. Starting the timer is contrary * to the specification, but if we don't get a FIN * we'll hang forever. * * XXXjl: we should release the tp also, and use a * compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_established(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { int32_t ret_val = 0; struct tcp_rack *rack; /* * Header prediction: check for the two common cases of a * uni-directional data xfer. If the packet has no control flags, * is in-sequence, the window didn't change and we're not * retransmitting, it's a candidate. If the length is zero and the * ack moved forward, we're the sender side of the xfer. Just free * the data acked & wake any higher level process that was blocked * waiting for space. If the length is non-zero and the ack didn't * move, we're the receiver side. If we're getting packets in-order * (the reassembly queue is empty), add the data toc The socket * buffer and note that we need a delayed ack. Make sure that the * hidden state-flags are also off. Since we check for * TCPS_ESTABLISHED first, it can only be TH_NEEDSYN. */ rack = (struct tcp_rack *)tp->t_fb_ptr; if (__predict_true(((to->to_flags & TOF_SACK) == 0)) && __predict_true((thflags & (TH_SYN | TH_FIN | TH_RST | TH_ACK)) == TH_ACK) && __predict_true(SEGQ_EMPTY(tp)) && __predict_true(th->th_seq == tp->rcv_nxt)) { if (tlen == 0) { if (rack_fastack(m, th, so, tp, to, drop_hdrlen, tlen, tiwin, nxt_pkt, rack->r_ctl.rc_rcvtime)) { return (0); } } else { if (rack_do_fastnewdata(m, th, so, tp, to, drop_hdrlen, tlen, tiwin, nxt_pkt, iptos)) { return (0); } } } ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output= 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { return (ret_val); } if (sbavail(&so->so_snd)) { if (ctf_progress_timeout_check(tp, true)) { rack_log_progress_event(rack, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } /* State changes only happen in rack_process_data() */ return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_close_wait(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { int32_t ret_val = 0; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, NULL, thflags, &ret_val)) { return (ret_val); } if (sbavail(&so->so_snd)) { if (ctf_progress_timeout_check(tp, true)) { rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } static int rack_check_data_after_close(struct mbuf *m, struct tcpcb *tp, int32_t *tlen, struct tcphdr *th, struct socket *so) { struct tcp_rack *rack; rack = (struct tcp_rack *)tp->t_fb_ptr; if (rack->rc_allow_data_af_clo == 0) { close_now: tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); /* tcp_close will kill the inp pre-log the Reset */ tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); tp = tcp_close(tp); KMOD_TCPSTAT_INC(tcps_rcvafterclose); ctf_do_dropwithreset(m, tp, th, BANDLIM_UNLIMITED, (*tlen)); return (1); } if (sbavail(&so->so_snd) == 0) goto close_now; /* Ok we allow data that is ignored and a followup reset */ tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE); tp->rcv_nxt = th->th_seq + *tlen; tp->t_flags2 |= TF2_DROP_AF_DATA; rack->r_wanted_output = 1; *tlen = 0; return (0); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_fin_wait_1(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { int32_t ret_val = 0; int32_t ourfinisacked = 0; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tlen) { if (rack_check_data_after_close(m, tp, &tlen, th, so)) return (1); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (ourfinisacked) { /* * If we can't receive any more data, then closing user can * proceed. Starting the timer is contrary to the * specification, but if we don't get a FIN we'll hang * forever. * * XXXjl: we should release the tp also, and use a * compressed state. */ if (so->so_rcv.sb_state & SBS_CANTRCVMORE) { soisdisconnected(so); tcp_timer_activate(tp, TT_2MSL, (tcp_fast_finwait2_recycle ? tcp_finwait2_timeout : TP_MAXIDLE(tp))); } tcp_state_change(tp, TCPS_FIN_WAIT_2); } if (sbavail(&so->so_snd)) { if (ctf_progress_timeout_check(tp, true)) { rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_closing(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { int32_t ret_val = 0; int32_t ourfinisacked = 0; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tlen) { if (rack_check_data_after_close(m, tp, &tlen, th, so)) return (1); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output= 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (ourfinisacked) { tcp_twstart(tp); m_freem(m); return (1); } if (sbavail(&so->so_snd)) { if (ctf_progress_timeout_check(tp, true)) { rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_lastack(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { int32_t ret_val = 0; int32_t ourfinisacked = 0; ctf_calc_rwin(so, tp); if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tlen) { if (rack_check_data_after_close(m, tp, &tlen, th, so)) return (1); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * case TCPS_LAST_ACK: Ack processing. */ if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (ourfinisacked) { tp = tcp_close(tp); ctf_do_drop(m, tp); return (1); } if (sbavail(&so->so_snd)) { if (ctf_progress_timeout_check(tp, true)) { rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } /* * Return value of 1, the TCB is unlocked and most * likely gone, return value of 0, the TCP is still * locked. */ static int rack_do_fin_wait_2(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, struct tcpopt *to, int32_t drop_hdrlen, int32_t tlen, uint32_t tiwin, int32_t thflags, int32_t nxt_pkt, uint8_t iptos) { int32_t ret_val = 0; int32_t ourfinisacked = 0; ctf_calc_rwin(so, tp); /* Reset receive buffer auto scaling when not in bulk receive mode. */ if ((thflags & TH_RST) || (tp->t_fin_is_rst && (thflags & TH_FIN))) return (ctf_process_rst(m, th, so, tp)); /* * RFC5961 Section 4.2 Send challenge ACK for any SYN in * synchronized state. */ if (thflags & TH_SYN) { ctf_challenge_ack(m, th, tp, &ret_val); return (ret_val); } /* * RFC 1323 PAWS: If we have a timestamp reply on this segment and * it's less than ts_recent, drop it. */ if ((to->to_flags & TOF_TS) != 0 && tp->ts_recent && TSTMP_LT(to->to_tsval, tp->ts_recent)) { if (ctf_ts_check(m, th, tp, tlen, thflags, &ret_val)) return (ret_val); } if (ctf_drop_checks(to, m, th, tp, &tlen, &thflags, &drop_hdrlen, &ret_val)) { return (ret_val); } /* * If new data are received on a connection after the user processes * are gone, then RST the other end. */ if ((so->so_state & SS_NOFDREF) && tlen) { if (rack_check_data_after_close(m, tp, &tlen, th, so)) return (1); } /* * If last ACK falls within this segment's sequence numbers, record * its timestamp. NOTE: 1) That the test incorporates suggestions * from the latest proposal of the tcplw@cray.com list (Braden * 1993/04/26). 2) That updating only on newer timestamps interferes * with our earlier PAWS tests, so this check should be solely * predicated on the sequence space of this segment. 3) That we * modify the segment boundary check to be Last.ACK.Sent <= SEG.SEQ * + SEG.Len instead of RFC1323's Last.ACK.Sent < SEG.SEQ + * SEG.Len, This modified check allows us to overcome RFC1323's * limitations as described in Stevens TCP/IP Illustrated Vol. 2 * p.869. In such cases, we can still calculate the RTT correctly * when RCV.NXT == Last.ACK.Sent. */ if ((to->to_flags & TOF_TS) != 0 && SEQ_LEQ(th->th_seq, tp->last_ack_sent) && SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + ((thflags & (TH_SYN | TH_FIN)) != 0))) { tp->ts_recent_age = tcp_ts_getticks(); tp->ts_recent = to->to_tsval; } /* * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN flag * is on (half-synchronized state), then queue data for later * processing; else drop segment and return. */ if ((thflags & TH_ACK) == 0) { if (tp->t_flags & TF_NEEDSYN) { return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } else if (tp->t_flags & TF_ACKNOW) { ctf_do_dropafterack(m, tp, th, thflags, tlen, &ret_val); ((struct tcp_rack *)tp->t_fb_ptr)->r_wanted_output = 1; return (ret_val); } else { ctf_do_drop(m, NULL); return (0); } } /* * Ack processing. */ if (rack_process_ack(m, th, so, tp, to, tiwin, tlen, &ourfinisacked, thflags, &ret_val)) { return (ret_val); } if (sbavail(&so->so_snd)) { if (ctf_progress_timeout_check(tp, true)) { rack_log_progress_event((struct tcp_rack *)tp->t_fb_ptr, tp, tick, PROGRESS_DROP, __LINE__); tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return (1); } } return (rack_process_data(m, th, so, tp, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt)); } static void inline rack_clear_rate_sample(struct tcp_rack *rack) { rack->r_ctl.rack_rs.rs_flags = RACK_RTT_EMPTY; rack->r_ctl.rack_rs.rs_rtt_cnt = 0; rack->r_ctl.rack_rs.rs_rtt_tot = 0; } static void rack_set_pace_segments(struct tcpcb *tp, struct tcp_rack *rack, uint32_t line) { uint64_t bw_est, rate_wanted; int chged = 0; uint32_t user_max; user_max = ctf_fixed_maxseg(tp) * rack->rc_user_set_max_segs; if (ctf_fixed_maxseg(tp) != rack->r_ctl.rc_pace_min_segs) chged = 1; rack->r_ctl.rc_pace_min_segs = ctf_fixed_maxseg(tp); if (rack->use_fixed_rate || rack->rc_force_max_seg) { if (user_max != rack->r_ctl.rc_pace_max_segs) chged = 1; } if (rack->rc_force_max_seg) { rack->r_ctl.rc_pace_max_segs = user_max; } else if (rack->use_fixed_rate) { bw_est = rack_get_bw(rack); if ((rack->r_ctl.crte == NULL) || (bw_est != rack->r_ctl.crte->rate)) { rack->r_ctl.rc_pace_max_segs = user_max; } else { /* We are pacing right at the hardware rate */ uint32_t segsiz; segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size( bw_est, segsiz, 0, rack->r_ctl.crte, NULL); } } else if (rack->rc_always_pace) { if (rack->r_ctl.gp_bw || #ifdef NETFLIX_PEAKRATE rack->rc_tp->t_maxpeakrate || #endif rack->r_ctl.init_rate) { /* We have a rate of some sort set */ uint32_t orig; bw_est = rack_get_bw(rack); orig = rack->r_ctl.rc_pace_max_segs; rate_wanted = rack_get_output_bw(rack, bw_est, NULL); if (rate_wanted) { /* We have something */ rack->r_ctl.rc_pace_max_segs = rack_get_pacing_len(rack, rate_wanted, ctf_fixed_maxseg(rack->rc_tp)); } else rack->r_ctl.rc_pace_max_segs = rack->r_ctl.rc_pace_min_segs; if (orig != rack->r_ctl.rc_pace_max_segs) chged = 1; } else if ((rack->r_ctl.gp_bw == 0) && (rack->r_ctl.rc_pace_max_segs == 0)) { /* * If we have nothing limit us to bursting * out IW sized pieces. */ chged = 1; rack->r_ctl.rc_pace_max_segs = rc_init_window(rack); } } if (rack->r_ctl.rc_pace_max_segs > PACE_MAX_IP_BYTES) { chged = 1; rack->r_ctl.rc_pace_max_segs = PACE_MAX_IP_BYTES; } if (chged) rack_log_type_hrdwtso(tp, rack, 0, rack->rc_inp->inp_socket->so_snd.sb_flags, line, 2); } static int rack_init(struct tcpcb *tp) { struct tcp_rack *rack = NULL; struct rack_sendmap *insret; uint32_t iwin, snt, us_cts; tp->t_fb_ptr = uma_zalloc(rack_pcb_zone, M_NOWAIT); if (tp->t_fb_ptr == NULL) { /* * We need to allocate memory but cant. The INP and INP_INFO * locks and they are recusive (happens during setup. So a * scheme to drop the locks fails :( * */ return (ENOMEM); } memset(tp->t_fb_ptr, 0, sizeof(struct tcp_rack)); rack = (struct tcp_rack *)tp->t_fb_ptr; RB_INIT(&rack->r_ctl.rc_mtree); TAILQ_INIT(&rack->r_ctl.rc_free); TAILQ_INIT(&rack->r_ctl.rc_tmap); rack->rc_tp = tp; if (tp->t_inpcb) { rack->rc_inp = tp->t_inpcb; } /* Probably not needed but lets be sure */ rack_clear_rate_sample(rack); rack->r_ctl.rc_reorder_fade = rack_reorder_fade; rack->rc_allow_data_af_clo = rack_ignore_data_after_close; rack->r_ctl.rc_tlp_threshold = rack_tlp_thresh; if (use_rack_rr) rack->use_rack_rr = 1; if (V_tcp_delack_enabled) tp->t_delayed_ack = 1; else tp->t_delayed_ack = 0; if (rack_enable_shared_cwnd) rack->rack_enable_scwnd = 1; rack->rc_user_set_max_segs = rack_hptsi_segments; rack->rc_force_max_seg = 0; if (rack_use_imac_dack) rack->rc_dack_mode = 1; rack->r_ctl.rc_reorder_shift = rack_reorder_thresh; rack->r_ctl.rc_pkt_delay = rack_pkt_delay; rack->r_ctl.rc_prop_reduce = rack_use_proportional_reduce; rack->r_ctl.rc_prop_rate = rack_proportional_rate; rack->r_ctl.rc_tlp_cwnd_reduce = rack_lower_cwnd_at_tlp; rack->r_ctl.rc_early_recovery = rack_early_recovery; rack->r_ctl.rc_lowest_us_rtt = 0xffffffff; rack->r_ctl.rc_highest_us_rtt = 0; if (rack_disable_prr) rack->rack_no_prr = 1; if (rack_gp_no_rec_chg) rack->rc_gp_no_rec_chg = 1; rack->rc_always_pace = rack_pace_every_seg; if (rack_enable_mqueue_for_nonpaced) rack->r_mbuf_queue = 1; else rack->r_mbuf_queue = 0; if (rack->r_mbuf_queue || rack->rc_always_pace) tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; else tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; rack_set_pace_segments(tp, rack, __LINE__); if (rack_limits_scwnd) rack->r_limit_scw = 1; else rack->r_limit_scw = 0; rack->r_ctl.rc_high_rwnd = tp->snd_wnd; rack->r_ctl.cwnd_to_use = tp->snd_cwnd; rack->r_ctl.rc_rate_sample_method = rack_rate_sample_method; rack->rack_tlp_threshold_use = rack_tlp_threshold_use; rack->r_ctl.rc_prr_sendalot = rack_send_a_lot_in_prr; rack->r_ctl.rc_min_to = rack_min_to; microuptime(&rack->r_ctl.act_rcv_time); rack->r_ctl.rc_last_time_decay = rack->r_ctl.act_rcv_time; rack->r_running_late = 0; rack->r_running_early = 0; rack->rc_init_win = rack_default_init_window; rack->r_ctl.rack_per_of_gp_ss = rack_per_of_gp_ss; if (rack_do_dyn_mul) { /* When dynamic adjustment is on CA needs to start at 100% */ rack->rc_gp_dyn_mul = 1; if (rack_do_dyn_mul >= 100) rack->r_ctl.rack_per_of_gp_ca = rack_do_dyn_mul; } else rack->r_ctl.rack_per_of_gp_ca = rack_per_of_gp_ca; rack->r_ctl.rack_per_of_gp_rec = rack_per_of_gp_rec; rack->r_ctl.rack_per_of_gp_probertt = rack_per_of_gp_probertt; rack->r_ctl.rc_tlp_rxt_last_time = tcp_tv_to_mssectick(&rack->r_ctl.act_rcv_time); setup_time_filter_small(&rack->r_ctl.rc_gp_min_rtt, FILTER_TYPE_MIN, rack_probertt_filter_life); us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); rack->r_ctl.rc_lower_rtt_us_cts = us_cts; rack->r_ctl.rc_time_of_last_probertt = us_cts; rack->r_ctl.rc_time_probertt_starts = 0; /* Do we force on detection? */ #ifdef NETFLIX_EXP_DETECTION if (tcp_force_detection) rack->do_detection = 1; else #endif rack->do_detection = 0; if (rack_non_rxt_use_cr) rack->rack_rec_nonrxt_use_cr = 1; if (tp->snd_una != tp->snd_max) { /* Create a send map for the current outstanding data */ struct rack_sendmap *rsm; rsm = rack_alloc(rack); if (rsm == NULL) { uma_zfree(rack_pcb_zone, tp->t_fb_ptr); tp->t_fb_ptr = NULL; return (ENOMEM); } rsm->r_flags = RACK_OVERMAX; rsm->r_tim_lastsent[0] = rack->r_ctl.rc_tlp_rxt_last_time; rsm->r_rtr_cnt = 1; rsm->r_rtr_bytes = 0; rsm->r_start = tp->snd_una; rsm->r_end = tp->snd_max; rsm->usec_orig_send = us_cts; rsm->r_dupack = 0; insret = RB_INSERT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); #ifdef INVARIANTS if (insret != NULL) { panic("Insert in rb tree fails ret:%p rack:%p rsm:%p", insret, rack, rsm); } #endif TAILQ_INSERT_TAIL(&rack->r_ctl.rc_tmap, rsm, r_tnext); rsm->r_in_tmap = 1; } /* Cancel the GP measurement in progress */ tp->t_flags &= ~TF_GPUTINPROG; if (SEQ_GT(tp->snd_max, tp->iss)) snt = tp->snd_max - tp->iss; else snt = 0; iwin = rc_init_window(rack); if (snt < iwin) { /* We are not past the initial window * so we need to make sure cwnd is * correct. */ if (tp->snd_cwnd < iwin) tp->snd_cwnd = iwin; /* * If we are within the initial window * we want ssthresh to be unlimited. Setting * it to the rwnd (which the default stack does * and older racks) is not really a good idea * since we want to be in SS and grow both the * cwnd and the rwnd (via dynamic rwnd growth). If * we set it to the rwnd then as the peer grows its * rwnd we will be stuck in CA and never hit SS. * * Its far better to raise it up high (this takes the * risk that there as been a loss already, probably * we should have an indicator in all stacks of loss * but we don't), but considering the normal use this * is a risk worth taking. The consequences of not * hitting SS are far worse than going one more time * into it early on (before we have sent even a IW). * It is highly unlikely that we will have had a loss * before getting the IW out. */ tp->snd_ssthresh = 0xffffffff; } rack_stop_all_timers(tp); rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0); rack_log_rtt_shrinks(rack, us_cts, 0, __LINE__, RACK_RTTS_INIT); return (0); } static int rack_handoff_ok(struct tcpcb *tp) { if ((tp->t_state == TCPS_CLOSED) || (tp->t_state == TCPS_LISTEN)) { /* Sure no problem though it may not stick */ return (0); } if ((tp->t_state == TCPS_SYN_SENT) || (tp->t_state == TCPS_SYN_RECEIVED)) { /* * We really don't know you have to get to ESTAB or beyond * to tell. */ return (EAGAIN); } if ((tp->t_flags & TF_SACK_PERMIT) || rack_sack_not_required){ return (0); } /* * If we reach here we don't do SACK on this connection so we can * never do rack. */ return (EINVAL); } static void rack_fini(struct tcpcb *tp, int32_t tcb_is_purged) { if (tp->t_fb_ptr) { struct tcp_rack *rack; struct rack_sendmap *rsm, *nrsm, *rm; rack = (struct tcp_rack *)tp->t_fb_ptr; #ifdef NETFLIX_SHARED_CWND if (rack->r_ctl.rc_scw) { uint32_t limit; if (rack->r_limit_scw) limit = max(1, rack->r_ctl.rc_lowest_us_rtt); else limit = 0; tcp_shared_cwnd_free_full(tp, rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index, limit); rack->r_ctl.rc_scw = NULL; } #endif /* rack does not use force data but other stacks may clear it */ tp->t_flags &= ~TF_FORCEDATA; if (tp->t_inpcb) { tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; tp->t_inpcb->inp_flags2 &= ~INP_MBUF_QUEUE_READY; tp->t_inpcb->inp_flags2 &= ~INP_DONT_SACK_QUEUE; } #ifdef TCP_BLACKBOX tcp_log_flowend(tp); #endif RB_FOREACH_SAFE(rsm, rack_rb_tree_head, &rack->r_ctl.rc_mtree, nrsm) { rm = RB_REMOVE(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rsm); #ifdef INVARIANTS if (rm != rsm) { panic("At fini, rack:%p rsm:%p rm:%p", rack, rsm, rm); } #endif uma_zfree(rack_zone, rsm); } rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); while (rsm) { TAILQ_REMOVE(&rack->r_ctl.rc_free, rsm, r_tnext); uma_zfree(rack_zone, rsm); rsm = TAILQ_FIRST(&rack->r_ctl.rc_free); } rack->rc_free_cnt = 0; uma_zfree(rack_pcb_zone, tp->t_fb_ptr); tp->t_fb_ptr = NULL; } /* Cancel the GP measurement in progress */ tp->t_flags &= ~TF_GPUTINPROG; /* Make sure snd_nxt is correctly set */ tp->snd_nxt = tp->snd_max; } static void rack_set_state(struct tcpcb *tp, struct tcp_rack *rack) { switch (tp->t_state) { case TCPS_SYN_SENT: rack->r_state = TCPS_SYN_SENT; rack->r_substate = rack_do_syn_sent; break; case TCPS_SYN_RECEIVED: rack->r_state = TCPS_SYN_RECEIVED; rack->r_substate = rack_do_syn_recv; break; case TCPS_ESTABLISHED: rack_set_pace_segments(tp, rack, __LINE__); rack->r_state = TCPS_ESTABLISHED; rack->r_substate = rack_do_established; break; case TCPS_CLOSE_WAIT: rack->r_state = TCPS_CLOSE_WAIT; rack->r_substate = rack_do_close_wait; break; case TCPS_FIN_WAIT_1: rack->r_state = TCPS_FIN_WAIT_1; rack->r_substate = rack_do_fin_wait_1; break; case TCPS_CLOSING: rack->r_state = TCPS_CLOSING; rack->r_substate = rack_do_closing; break; case TCPS_LAST_ACK: rack->r_state = TCPS_LAST_ACK; rack->r_substate = rack_do_lastack; break; case TCPS_FIN_WAIT_2: rack->r_state = TCPS_FIN_WAIT_2; rack->r_substate = rack_do_fin_wait_2; break; case TCPS_LISTEN: case TCPS_CLOSED: case TCPS_TIME_WAIT: default: break; }; } static void rack_timer_audit(struct tcpcb *tp, struct tcp_rack *rack, struct sockbuf *sb) { /* * We received an ack, and then did not * call send or were bounced out due to the * hpts was running. Now a timer is up as well, is * it the right timer? */ struct rack_sendmap *rsm; int tmr_up; tmr_up = rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK; if (rack->rc_in_persist && (tmr_up == PACE_TMR_PERSIT)) return; rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); if (((rsm == NULL) || (tp->t_state < TCPS_ESTABLISHED)) && (tmr_up == PACE_TMR_RXT)) { /* Should be an RXT */ return; } if (rsm == NULL) { /* Nothing outstanding? */ if (tp->t_flags & TF_DELACK) { if (tmr_up == PACE_TMR_DELACK) /* We are supposed to have delayed ack up and we do */ return; } else if (sbavail(&tp->t_inpcb->inp_socket->so_snd) && (tmr_up == PACE_TMR_RXT)) { /* * if we hit enobufs then we would expect the possiblity * of nothing outstanding and the RXT up (and the hptsi timer). */ return; } else if (((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && (tp->t_state <= TCPS_CLOSING)) && (tmr_up == PACE_TMR_KEEP) && (tp->snd_max == tp->snd_una)) { /* We should have keep alive up and we do */ return; } } if (SEQ_GT(tp->snd_max, tp->snd_una) && ((tmr_up == PACE_TMR_TLP) || (tmr_up == PACE_TMR_RACK) || (tmr_up == PACE_TMR_RXT))) { /* * Either a Rack, TLP or RXT is fine if we * have outstanding data. */ return; } else if (tmr_up == PACE_TMR_DELACK) { /* * If the delayed ack was going to go off * before the rtx/tlp/rack timer were going to * expire, then that would be the timer in control. * Note we don't check the time here trusting the * code is correct. */ return; } /* * Ok the timer originally started is not what we want now. * We will force the hpts to be stopped if any, and restart * with the slot set to what was in the saved slot. */ if (rack->rc_inp->inp_in_hpts) { if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { uint32_t us_cts; us_cts = tcp_get_usecs(NULL); if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { rack->r_early = 1; rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); } rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; } tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT); } rack_timer_cancel(tp, rack, rack->r_ctl.rc_rcvtime, __LINE__); rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0); } static int rack_do_segment_nounlock(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos, int32_t nxt_pkt, struct timeval *tv) { int32_t thflags, retval, did_out = 0; int32_t way_out = 0; uint32_t cts; uint32_t tiwin; struct timespec ts; struct tcpopt to; struct tcp_rack *rack; struct rack_sendmap *rsm; int32_t prev_state = 0; uint32_t us_cts; /* * tv passed from common code is from either M_TSTMP_LRO or * tcp_get_usecs() if no LRO m_pkthdr timestamp is present. The * rack_pacing stack assumes tv always refers to 'now', so we overwrite * tv here to guarantee that. */ if (m->m_flags & M_TSTMP_LRO) tcp_get_usecs(tv); cts = tcp_tv_to_mssectick(tv); rack = (struct tcp_rack *)tp->t_fb_ptr; if ((m->m_flags & M_TSTMP) || (m->m_flags & M_TSTMP_LRO)) { mbuf_tstmp2timespec(m, &ts); rack->r_ctl.act_rcv_time.tv_sec = ts.tv_sec; rack->r_ctl.act_rcv_time.tv_usec = ts.tv_nsec/1000; } else rack->r_ctl.act_rcv_time = *tv; kern_prefetch(rack, &prev_state); prev_state = 0; thflags = th->th_flags; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(tp->t_inpcb); KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN", __func__)); KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT", __func__)); if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval ltv; #ifdef NETFLIX_HTTP_LOGGING struct http_sendfile_track *http_req; if (SEQ_GT(th->th_ack, tp->snd_una)) { http_req = tcp_http_find_req_for_seq(tp, (th->th_ack-1)); } else { http_req = tcp_http_find_req_for_seq(tp, th->th_ack); } #endif memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; if (rack->rack_no_prr == 0) log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; else log.u_bbr.flex1 = 0; log.u_bbr.flex2 = rack->r_ctl.rc_num_maps_alloced; log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; log.u_bbr.flex3 = m->m_flags; log.u_bbr.flex4 = rack->r_ctl.rc_hpts_flags; if (m->m_flags & M_TSTMP) { /* Record the hardware timestamp if present */ mbuf_tstmp2timespec(m, &ts); ltv.tv_sec = ts.tv_sec; ltv.tv_usec = ts.tv_nsec / 1000; log.u_bbr.lt_epoch = tcp_tv_to_usectick(<v); } else if (m->m_flags & M_TSTMP_LRO) { /* Record the LRO the arrival timestamp */ mbuf_tstmp2timespec(m, &ts); ltv.tv_sec = ts.tv_sec; ltv.tv_usec = ts.tv_nsec / 1000; log.u_bbr.flex5 = tcp_tv_to_usectick(<v); } log.u_bbr.timeStamp = tcp_get_usecs(<v); /* Log the rcv time */ log.u_bbr.delRate = m->m_pkthdr.rcv_tstmp; #ifdef NETFLIX_HTTP_LOGGING log.u_bbr.applimited = tp->t_http_closed; log.u_bbr.applimited <<= 8; log.u_bbr.applimited |= tp->t_http_open; log.u_bbr.applimited <<= 8; log.u_bbr.applimited |= tp->t_http_req; if (http_req) { /* Copy out any client req info */ /* seconds */ log.u_bbr.pkt_epoch = (http_req->localtime / HPTS_USEC_IN_SEC); /* useconds */ log.u_bbr.delivered = (http_req->localtime % HPTS_USEC_IN_SEC); log.u_bbr.rttProp = http_req->timestamp; log.u_bbr.cur_del_rate = http_req->start; if (http_req->flags & TCP_HTTP_TRACK_FLG_OPEN) { log.u_bbr.flex8 |= 1; } else { log.u_bbr.flex8 |= 2; log.u_bbr.bw_inuse = http_req->end; } log.u_bbr.flex6 = http_req->start_seq; if (http_req->flags & TCP_HTTP_TRACK_FLG_COMP) { log.u_bbr.flex8 |= 4; log.u_bbr.epoch = http_req->end_seq; } } #endif TCP_LOG_EVENTP(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0, tlen, &log, true, <v); } if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) { way_out = 4; retval = 0; goto done_with_input; } /* * If a segment with the ACK-bit set arrives in the SYN-SENT state * check SEQ.ACK first as described on page 66 of RFC 793, section 3.9. */ if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) && (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) { tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT); ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen); return(1); } /* * Segment received on connection. Reset idle time and keep-alive * timer. XXX: This should be done after segment validation to * ignore broken/spoofed segs. */ if (tp->t_idle_reduce && (tp->snd_max == tp->snd_una) && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) { counter_u64_add(rack_input_idle_reduces, 1); rack_cc_after_idle(rack, tp); } tp->t_rcvtime = ticks; /* * Unscale the window into a 32-bit value. For the SYN_SENT state * the scale is zero. */ tiwin = th->th_win << tp->snd_scale; #ifdef STATS stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin); #endif if (tiwin > rack->r_ctl.rc_high_rwnd) rack->r_ctl.rc_high_rwnd = tiwin; /* * TCP ECN processing. XXXJTL: If we ever use ECN, we need to move * this to occur after we've validated the segment. */ if (tp->t_flags2 & TF2_ECN_PERMIT) { if (thflags & TH_CWR) { tp->t_flags2 &= ~TF2_ECN_SND_ECE; tp->t_flags |= TF_ACKNOW; } switch (iptos & IPTOS_ECN_MASK) { case IPTOS_ECN_CE: tp->t_flags2 |= TF2_ECN_SND_ECE; KMOD_TCPSTAT_INC(tcps_ecn_ce); break; case IPTOS_ECN_ECT0: KMOD_TCPSTAT_INC(tcps_ecn_ect0); break; case IPTOS_ECN_ECT1: KMOD_TCPSTAT_INC(tcps_ecn_ect1); break; } /* Process a packet differently from RFC3168. */ cc_ecnpkt_handler(tp, th, iptos); /* Congestion experienced. */ if (thflags & TH_ECE) { rack_cong_signal(tp, th, CC_ECN); } } /* * Parse options on any incoming segment. */ tcp_dooptions(&to, (u_char *)(th + 1), (th->th_off << 2) - sizeof(struct tcphdr), (thflags & TH_SYN) ? TO_SYN : 0); /* * If echoed timestamp is later than the current time, fall back to * non RFC1323 RTT calculation. Normalize timestamp if syncookies * were used when this connection was established. */ if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) { to.to_tsecr -= tp->ts_offset; if (TSTMP_GT(to.to_tsecr, cts)) to.to_tsecr = 0; } /* * If its the first time in we need to take care of options and * verify we can do SACK for rack! */ if (rack->r_state == 0) { /* Should be init'd by rack_init() */ KASSERT(rack->rc_inp != NULL, ("%s: rack->rc_inp unexpectedly NULL", __func__)); if (rack->rc_inp == NULL) { rack->rc_inp = tp->t_inpcb; } /* * Process options only when we get SYN/ACK back. The SYN * case for incoming connections is handled in tcp_syncache. * According to RFC1323 the window field in a SYN (i.e., a * or ) segment itself is never scaled. XXX * this is traditional behavior, may need to be cleaned up. */ if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { /* Handle parallel SYN for ECN */ if (!(thflags & TH_ACK) && ((thflags & (TH_CWR | TH_ECE)) == (TH_CWR | TH_ECE)) && ((V_tcp_do_ecn == 1) || (V_tcp_do_ecn == 2))) { tp->t_flags2 |= TF2_ECN_PERMIT; tp->t_flags2 |= TF2_ECN_SND_ECE; TCPSTAT_INC(tcps_ecn_shs); } if ((to.to_flags & TOF_SCALE) && (tp->t_flags & TF_REQ_SCALE)) { tp->t_flags |= TF_RCVD_SCALE; tp->snd_scale = to.to_wscale; } else tp->t_flags &= ~TF_REQ_SCALE; /* * Initial send window. It will be updated with the * next incoming segment to the scaled value. */ tp->snd_wnd = th->th_win; if ((to.to_flags & TOF_TS) && (tp->t_flags & TF_REQ_TSTMP)) { tp->t_flags |= TF_RCVD_TSTMP; tp->ts_recent = to.to_tsval; tp->ts_recent_age = cts; } else tp->t_flags &= ~TF_REQ_TSTMP; if (to.to_flags & TOF_MSS) tcp_mss(tp, to.to_mss); if ((tp->t_flags & TF_SACK_PERMIT) && (to.to_flags & TOF_SACKPERM) == 0) tp->t_flags &= ~TF_SACK_PERMIT; if (IS_FASTOPEN(tp->t_flags)) { if (to.to_flags & TOF_FASTOPEN) { uint16_t mss; if (to.to_flags & TOF_MSS) mss = to.to_mss; else if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) mss = TCP6_MSS; else mss = TCP_MSS; tcp_fastopen_update_cache(tp, mss, to.to_tfo_len, to.to_tfo_cookie); } else tcp_fastopen_disable_path(tp); } } /* * At this point we are at the initial call. Here we decide * if we are doing RACK or not. We do this by seeing if * TF_SACK_PERMIT is set and the sack-not-required is clear. * The code now does do dup-ack counting so if you don't * switch back you won't get rack & TLP, but you will still * get this stack. */ if ((rack_sack_not_required == 0) && ((tp->t_flags & TF_SACK_PERMIT) == 0)) { tcp_switch_back_to_default(tp); (*tp->t_fb->tfb_tcp_do_segment) (m, th, so, tp, drop_hdrlen, tlen, iptos); return (1); } /* Set the flag */ rack->r_is_v6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0; tcp_set_hpts(tp->t_inpcb); sack_filter_clear(&rack->r_ctl.rack_sf, th->th_ack); } if (thflags & TH_FIN) tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN); us_cts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); if ((rack->rc_gp_dyn_mul) && (rack->use_fixed_rate == 0) && (rack->rc_always_pace)) { /* Check in on probertt */ rack_check_probe_rtt(rack, us_cts); } if (rack->forced_ack) { uint32_t us_rtt; /* * A persist or keep-alive was forced out, update our * min rtt time. Note we do not worry about lost * retransmissions since KEEP-ALIVES and persists * are usually way long on times of sending (though * if we were really paranoid or worried we could * at least use timestamps if available to validate). */ rack->forced_ack = 0; us_rtt = us_cts - rack->r_ctl.forced_ack_ts; if (us_rtt == 0) us_rtt = 1; rack_log_rtt_upd(tp, rack, us_rtt, 0, NULL, 3); rack_apply_updated_usrtt(rack, us_rtt, us_cts); } /* * This is the one exception case where we set the rack state * always. All other times (timers etc) we must have a rack-state * set (so we assure we have done the checks above for SACK). */ rack->r_ctl.rc_rcvtime = cts; if (rack->r_state != tp->t_state) rack_set_state(tp, rack); if (SEQ_GT(th->th_ack, tp->snd_una) && (rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree)) != NULL) kern_prefetch(rsm, &prev_state); prev_state = rack->r_state; rack_clear_rate_sample(rack); retval = (*rack->r_substate) (m, th, so, tp, &to, drop_hdrlen, tlen, tiwin, thflags, nxt_pkt, iptos); #ifdef INVARIANTS if ((retval == 0) && (tp->t_inpcb == NULL)) { panic("retval:%d tp:%p t_inpcb:NULL state:%d", retval, tp, prev_state); } #endif if (retval == 0) { /* * If retval is 1 the tcb is unlocked and most likely the tp * is gone. */ INP_WLOCK_ASSERT(tp->t_inpcb); if ((rack->rc_gp_dyn_mul) && (rack->rc_always_pace) && (rack->use_fixed_rate == 0) && rack->in_probe_rtt && (rack->r_ctl.rc_time_probertt_starts == 0)) { /* * If we are going for target, lets recheck before * we output. */ rack_check_probe_rtt(rack, us_cts); } if (rack->set_pacing_done_a_iw == 0) { /* How much has been acked? */ if ((tp->snd_una - tp->iss) > (ctf_fixed_maxseg(tp) * 10)) { /* We have enough to set in the pacing segment size */ rack->set_pacing_done_a_iw = 1; rack_set_pace_segments(tp, rack, __LINE__); } } tcp_rack_xmit_timer_commit(rack, tp); if (nxt_pkt == 0) { if (rack->r_wanted_output != 0) { do_output_now: did_out = 1; (void)tp->t_fb->tfb_tcp_output(tp); } rack_start_hpts_timer(rack, tp, cts, 0, 0, 0); } if ((nxt_pkt == 0) && ((rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) == 0) && (SEQ_GT(tp->snd_max, tp->snd_una) || (tp->t_flags & TF_DELACK) || ((V_tcp_always_keepalive || rack->rc_inp->inp_socket->so_options & SO_KEEPALIVE) && (tp->t_state <= TCPS_CLOSING)))) { /* We could not send (probably in the hpts but stopped the timer earlier)? */ if ((tp->snd_max == tp->snd_una) && ((tp->t_flags & TF_DELACK) == 0) && (rack->rc_inp->inp_in_hpts) && (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT)) { /* keep alive not needed if we are hptsi output yet */ ; } else { int late = 0; if (rack->rc_inp->inp_in_hpts) { if (rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) { us_cts = tcp_get_usecs(NULL); if (TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { rack->r_early = 1; rack->r_ctl.rc_agg_early += (rack->r_ctl.rc_last_output_to - us_cts); } else late = 1; rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; } tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT); } if (late && (did_out == 0)) { /* * We are late in the sending * and we did not call the output * (this probably should not happen). */ goto do_output_now; } rack_start_hpts_timer(rack, tp, tcp_ts_getticks(), 0, 0, 0); } way_out = 1; } else if (nxt_pkt == 0) { /* Do we have the correct timer running? */ rack_timer_audit(tp, rack, &so->so_snd); way_out = 2; } done_with_input: rack_log_doseg_done(rack, cts, nxt_pkt, did_out, way_out); if (did_out) rack->r_wanted_output = 0; #ifdef INVARIANTS if (tp->t_inpcb == NULL) { panic("OP:%d retval:%d tp:%p t_inpcb:NULL state:%d", did_out, retval, tp, prev_state); } #endif } return (retval); } void rack_do_segment(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp, int32_t drop_hdrlen, int32_t tlen, uint8_t iptos) { struct timeval tv; /* First lets see if we have old packets */ if (tp->t_in_pkt) { if (ctf_do_queued_segments(so, tp, 1)) { m_freem(m); return; } } if (m->m_flags & M_TSTMP_LRO) { tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000; tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000; } else { /* Should not be should we kassert instead? */ tcp_get_usecs(&tv); } if(rack_do_segment_nounlock(m, th, so, tp, drop_hdrlen, tlen, iptos, 0, &tv) == 0) INP_WUNLOCK(tp->t_inpcb); } struct rack_sendmap * tcp_rack_output(struct tcpcb *tp, struct tcp_rack *rack, uint32_t tsused) { struct rack_sendmap *rsm = NULL; int32_t idx; uint32_t srtt = 0, thresh = 0, ts_low = 0; /* Return the next guy to be re-transmitted */ if (RB_EMPTY(&rack->r_ctl.rc_mtree)) { return (NULL); } if (tp->t_flags & TF_SENTFIN) { /* retran the end FIN? */ return (NULL); } /* ok lets look at this one */ rsm = TAILQ_FIRST(&rack->r_ctl.rc_tmap); if (rsm && ((rsm->r_flags & RACK_ACKED) == 0)) { goto check_it; } rsm = rack_find_lowest_rsm(rack); if (rsm == NULL) { return (NULL); } check_it: if (rsm->r_flags & RACK_ACKED) { return (NULL); } if (((rsm->r_flags & RACK_SACK_PASSED) == 0) && (rsm->r_dupack < DUP_ACK_THRESHOLD)) { /* Its not yet ready */ return (NULL); } srtt = rack_grab_rtt(tp, rack); idx = rsm->r_rtr_cnt - 1; ts_low = rsm->r_tim_lastsent[idx]; thresh = rack_calc_thresh_rack(rack, srtt, tsused); if ((tsused == ts_low) || (TSTMP_LT(tsused, ts_low))) { /* No time since sending */ return (NULL); } if ((tsused - ts_low) < thresh) { /* It has not been long enough yet */ return (NULL); } if ((rsm->r_dupack >= DUP_ACK_THRESHOLD) || ((rsm->r_flags & RACK_SACK_PASSED) && (rack->sack_attack_disable == 0))) { /* * We have passed the dup-ack threshold * a SACK has indicated this is missing. * Note that if you are a declared attacker * it is only the dup-ack threshold that * will cause retransmits. */ /* log retransmit reason */ rack_log_retran_reason(rack, rsm, (tsused - ts_low), thresh, 1); return (rsm); } return (NULL); } static void rack_log_pacing_delay_calc(struct tcp_rack *rack, uint32_t len, uint32_t slot, uint64_t bw_est, uint64_t bw, uint64_t len_time, int method, int line, struct rack_sendmap *rsm) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log, 0, sizeof(log)); log.u_bbr.flex1 = slot; log.u_bbr.flex2 = len; log.u_bbr.flex3 = rack->r_ctl.rc_pace_min_segs; log.u_bbr.flex4 = rack->r_ctl.rc_pace_max_segs; log.u_bbr.flex5 = rack->r_ctl.rack_per_of_gp_ss; log.u_bbr.flex6 = rack->r_ctl.rack_per_of_gp_ca; log.u_bbr.use_lt_bw = rack->app_limited_needs_set; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw = rack->rc_gp_filled; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->measure_saw_probe_rtt; log.u_bbr.use_lt_bw <<= 1; log.u_bbr.use_lt_bw |= rack->in_probe_rtt; log.u_bbr.pkt_epoch = line; log.u_bbr.applimited = rack->r_ctl.rack_per_of_gp_rec; log.u_bbr.bw_inuse = bw_est; log.u_bbr.delRate = bw; if (rack->r_ctl.gp_bw == 0) log.u_bbr.cur_del_rate = 0; else log.u_bbr.cur_del_rate = rack_get_bw(rack); log.u_bbr.rttProp = len_time; log.u_bbr.pkts_out = rack->r_ctl.rc_rack_min_rtt; log.u_bbr.lost = rack->r_ctl.rc_probertt_sndmax_atexit; log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); if (rack->r_ctl.cwnd_to_use < rack->rc_tp->snd_ssthresh) { /* We are in slow start */ log.u_bbr.flex7 = 1; } else { /* we are on congestion avoidance */ log.u_bbr.flex7 = 0; } log.u_bbr.flex8 = method; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); log.u_bbr.cwnd_gain = rack->rc_gp_saw_rec; log.u_bbr.cwnd_gain <<= 1; log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ss; log.u_bbr.cwnd_gain <<= 1; log.u_bbr.cwnd_gain |= rack->rc_gp_saw_ca; TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_HPTSI_CALC, 0, 0, &log, false, &tv); } } static uint32_t rack_get_pacing_len(struct tcp_rack *rack, uint64_t bw, uint32_t mss) { uint32_t new_tso, user_max; user_max = rack->rc_user_set_max_segs * mss; if (rack->rc_force_max_seg) { return (user_max); } if (rack->use_fixed_rate && ((rack->r_ctl.crte == NULL) || (bw != rack->r_ctl.crte->rate))) { /* Use the user mss since we are not exactly matched */ return (user_max); } new_tso = tcp_get_pacing_burst_size(bw, mss, rack_pace_one_seg, rack->r_ctl.crte, NULL); if (new_tso > user_max) new_tso = user_max; return(new_tso); } static void rack_log_hdwr_pacing(struct tcp_rack *rack, const struct ifnet *ifp, uint64_t rate, uint64_t hw_rate, int line, int error) { if (rack->rc_tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log, 0, sizeof(log)); log.u_bbr.flex1 = ((hw_rate >> 32) & 0x00000000ffffffff); log.u_bbr.flex2 = (hw_rate & 0x00000000ffffffff); log.u_bbr.flex3 = (((uint64_t)ifp >> 32) & 0x00000000ffffffff); log.u_bbr.flex4 = ((uint64_t)ifp & 0x00000000ffffffff); log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.bw_inuse = rate; log.u_bbr.flex5 = line; log.u_bbr.flex6 = error; log.u_bbr.applimited = rack->r_ctl.rc_pace_max_segs; log.u_bbr.flex8 = rack->use_fixed_rate; log.u_bbr.flex8 <<= 1; log.u_bbr.flex8 |= rack->rack_hdrw_pacing; log.u_bbr.pkts_out = rack->rc_tp->t_maxseg; TCP_LOG_EVENTP(rack->rc_tp, NULL, &rack->rc_inp->inp_socket->so_rcv, &rack->rc_inp->inp_socket->so_snd, BBR_LOG_HDWR_PACE, 0, 0, &log, false, &tv); } } static int32_t pace_to_fill_cwnd(struct tcp_rack *rack, int32_t slot, uint32_t len, uint32_t segsiz) { uint64_t lentim, fill_bw; /* Lets first see if we are full, if so continue with normal rate */ if (ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked) > rack->r_ctl.cwnd_to_use) return (slot); if ((ctf_outstanding(rack->rc_tp) + (segsiz-1)) > rack->rc_tp->snd_wnd) return (slot); if (rack->r_ctl.rc_last_us_rtt == 0) return (slot); if (rack->rc_pace_fill_if_rttin_range && (rack->r_ctl.rc_last_us_rtt >= (get_filter_value_small(&rack->r_ctl.rc_gp_min_rtt) * rack->rtt_limit_mul))) { /* The rtt is huge, N * smallest, lets not fill */ return (slot); } /* * first lets calculate the b/w based on the last us-rtt * and the sndwnd. */ fill_bw = rack->r_ctl.cwnd_to_use; /* Take the rwnd if its smaller */ if (fill_bw > rack->rc_tp->snd_wnd) fill_bw = rack->rc_tp->snd_wnd; fill_bw *= (uint64_t)HPTS_USEC_IN_SEC; fill_bw /= (uint64_t)rack->r_ctl.rc_last_us_rtt; /* We are below the min b/w */ if (fill_bw < RACK_MIN_BW) return (slot); /* * Ok fill_bw holds our mythical b/w to fill the cwnd * in a rtt, what does that time wise equate too? */ lentim = (uint64_t)(len) * (uint64_t)HPTS_USEC_IN_SEC; lentim /= fill_bw; if (lentim < slot) { rack_log_pacing_delay_calc(rack, len, slot, fill_bw, 0, lentim, 12, __LINE__, NULL); return ((int32_t)lentim); } else return (slot); } static int32_t rack_get_pacing_delay(struct tcp_rack *rack, struct tcpcb *tp, uint32_t len, struct rack_sendmap *rsm, uint32_t segsiz) { struct rack_sendmap *lrsm; int32_t slot = 0; int err; if (rack->rc_always_pace == 0) { /* * We use the most optimistic possible cwnd/srtt for * sending calculations. This will make our * calculation anticipate getting more through * quicker then possible. But thats ok we don't want * the peer to have a gap in data sending. */ uint32_t srtt, cwnd, tr_perms = 0; int32_t reduce = 0; old_method: /* * We keep no precise pacing with the old method * instead we use the pacer to mitigate bursts. */ rack->r_ctl.rc_agg_delayed = 0; rack->r_early = 0; rack->r_late = 0; rack->r_ctl.rc_agg_early = 0; if (rack->r_ctl.rc_rack_min_rtt) srtt = rack->r_ctl.rc_rack_min_rtt; else srtt = TICKS_2_MSEC((tp->t_srtt >> TCP_RTT_SHIFT)); if (rack->r_ctl.rc_rack_largest_cwnd) cwnd = rack->r_ctl.rc_rack_largest_cwnd; else cwnd = rack->r_ctl.cwnd_to_use; tr_perms = cwnd / srtt; if (tr_perms == 0) { tr_perms = ctf_fixed_maxseg(tp); } /* * Calculate how long this will take to drain, if * the calculation comes out to zero, thats ok we * will use send_a_lot to possibly spin around for * more increasing tot_len_this_send to the point * that its going to require a pace, or we hit the * cwnd. Which in that case we are just waiting for * a ACK. */ slot = len / tr_perms; /* Now do we reduce the time so we don't run dry? */ if (slot && rack_slot_reduction) { reduce = (slot / rack_slot_reduction); if (reduce < slot) { slot -= reduce; } else slot = 0; } slot *= HPTS_USEC_IN_MSEC; if (rsm == NULL) { /* * We always consider ourselves app limited with old style * that are not retransmits. This could be the initial * measurement, but thats ok its all setup and specially * handled. If another send leaks out, then that too will * be mark app-limited. */ lrsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (lrsm && ((lrsm->r_flags & RACK_APP_LIMITED) == 0)) { rack->r_ctl.rc_first_appl = lrsm; lrsm->r_flags |= RACK_APP_LIMITED; rack->r_ctl.rc_app_limited_cnt++; } } rack_log_pacing_delay_calc(rack, len, slot, tr_perms, reduce, 0, 7, __LINE__, NULL); } else { uint64_t bw_est, res, lentim, rate_wanted; uint32_t orig_val, srtt, segs, oh; if ((rack->r_rr_config == 1) && rsm) { return (rack->r_ctl.rc_min_to * HPTS_USEC_IN_MSEC); } if (rack->use_fixed_rate) { rate_wanted = bw_est = rack_get_fixed_pacing_bw(rack); } else if ((rack->r_ctl.init_rate == 0) && #ifdef NETFLIX_PEAKRATE (rack->rc_tp->t_maxpeakrate == 0) && #endif (rack->r_ctl.gp_bw == 0)) { /* no way to yet do an estimate */ bw_est = rate_wanted = 0; } else { bw_est = rack_get_bw(rack); rate_wanted = rack_get_output_bw(rack, bw_est, rsm); } if ((bw_est == 0) || (rate_wanted == 0)) { /* * No way yet to make a b/w estimate or * our raise is set incorrectly. */ goto old_method; } /* We need to account for all the overheads */ segs = (len + segsiz - 1) / segsiz; /* * We need the diff between 1514 bytes (e-mtu with e-hdr) * and how much data we put in each packet. Yes this * means we may be off if we are larger than 1500 bytes * or smaller. But this just makes us more conservative. */ if (ETHERNET_SEGMENT_SIZE > segsiz) oh = ETHERNET_SEGMENT_SIZE - segsiz; else oh = 0; segs *= oh; lentim = (uint64_t)(len + segs) * (uint64_t)HPTS_USEC_IN_SEC; res = lentim / rate_wanted; slot = (uint32_t)res; orig_val = rack->r_ctl.rc_pace_max_segs; rack_set_pace_segments(rack->rc_tp, rack, __LINE__); /* Did we change the TSO size, if so log it */ if (rack->r_ctl.rc_pace_max_segs != orig_val) rack_log_pacing_delay_calc(rack, len, slot, orig_val, 0, 0, 15, __LINE__, NULL); if ((rack->rc_pace_to_cwnd) && (rack->in_probe_rtt == 0) && (IN_RECOVERY(rack->rc_tp->t_flags) == 0)) { /* * We want to pace at our rate *or* faster to * fill the cwnd to the max if its not full. */ slot = pace_to_fill_cwnd(rack, slot, (len+segs), segsiz); } if ((rack->rc_inp->inp_route.ro_nh != NULL) && (rack->rc_inp->inp_route.ro_nh->nh_ifp != NULL)) { if ((rack->rack_hdw_pace_ena) && (rack->rack_hdrw_pacing == 0) && (rack->rack_attempt_hdwr_pace == 0)) { /* * Lets attempt to turn on hardware pacing * if we can. */ rack->rack_attempt_hdwr_pace = 1; rack->r_ctl.crte = tcp_set_pacing_rate(rack->rc_tp, rack->rc_inp->inp_route.ro_nh->nh_ifp, rate_wanted, RS_PACING_GEQ, &err); if (rack->r_ctl.crte) { rack->rack_hdrw_pacing = 1; rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(rate_wanted, segsiz, 0, rack->r_ctl.crte, NULL); rack_log_hdwr_pacing(rack, rack->rc_inp->inp_route.ro_nh->nh_ifp, rate_wanted, rack->r_ctl.crte->rate, __LINE__, err); } } else if (rack->rack_hdrw_pacing && (rack->r_ctl.crte->rate != rate_wanted)) { /* Do we need to adjust our rate? */ const struct tcp_hwrate_limit_table *nrte; nrte = tcp_chg_pacing_rate(rack->r_ctl.crte, rack->rc_tp, rack->rc_inp->inp_route.ro_nh->nh_ifp, rate_wanted, RS_PACING_GEQ, &err); if (nrte == NULL) { /* Lost the rate */ rack->rack_hdrw_pacing = 0; rack_set_pace_segments(rack->rc_tp, rack, __LINE__); } else if (nrte != rack->r_ctl.crte) { rack->r_ctl.crte = nrte; rack->r_ctl.rc_pace_max_segs = tcp_get_pacing_burst_size(rate_wanted, segsiz, 0, rack->r_ctl.crte, NULL); rack_log_hdwr_pacing(rack, rack->rc_inp->inp_route.ro_nh->nh_ifp, rate_wanted, rack->r_ctl.crte->rate, __LINE__, err); } } } if (rack_limit_time_with_srtt && (rack->use_fixed_rate == 0) && #ifdef NETFLIX_PEAKRATE (rack->rc_tp->t_maxpeakrate == 0) && #endif (rack->rack_hdrw_pacing == 0)) { /* * Sanity check, we do not allow the pacing delay * to be longer than the SRTT of the path. If it is * a slow path, then adding a packet should increase * the RTT and compensate for this i.e. the srtt will * be greater so the allowed pacing time will be greater. * * Note this restriction is not for where a peak rate * is set, we are doing fixed pacing or hardware pacing. */ if (rack->rc_tp->t_srtt) srtt = (TICKS_2_USEC(rack->rc_tp->t_srtt) >> TCP_RTT_SHIFT); else srtt = RACK_INITIAL_RTO * HPTS_USEC_IN_MSEC; /* its in ms convert */ if (srtt < slot) { rack_log_pacing_delay_calc(rack, srtt, slot, rate_wanted, bw_est, lentim, 99, __LINE__, NULL); slot = srtt; } } rack_log_pacing_delay_calc(rack, len, slot, rate_wanted, bw_est, lentim, 2, __LINE__, rsm); } if (slot) counter_u64_add(rack_calc_nonzero, 1); else counter_u64_add(rack_calc_zero, 1); return (slot); } static void rack_start_gp_measurement(struct tcpcb *tp, struct tcp_rack *rack, tcp_seq startseq, uint32_t sb_offset) { struct rack_sendmap *my_rsm = NULL; struct rack_sendmap fe; if (tp->t_state < TCPS_ESTABLISHED) { /* * We don't start any measurements if we are * not at least established. */ return; } tp->t_flags |= TF_GPUTINPROG; rack->r_ctl.rc_gp_lowrtt = 0xffffffff; rack->r_ctl.rc_gp_high_rwnd = rack->rc_tp->snd_wnd; tp->gput_seq = startseq; rack->app_limited_needs_set = 0; if (rack->in_probe_rtt) rack->measure_saw_probe_rtt = 1; else if ((rack->measure_saw_probe_rtt) && (SEQ_GEQ(tp->gput_seq, rack->r_ctl.rc_probertt_sndmax_atexit))) rack->measure_saw_probe_rtt = 0; if (rack->rc_gp_filled) tp->gput_ts = tcp_tv_to_usectick(&rack->r_ctl.act_rcv_time); else { /* Special case initial measurement */ rack->r_ctl.rc_gp_output_ts = tp->gput_ts = tcp_get_usecs(NULL); } /* * We take a guess out into the future, * if we have no measurement and no * initial rate, we measure the first * initial-windows worth of data to * speed up getting some GP measurement and * thus start pacing. */ if ((rack->rc_gp_filled == 0) && (rack->r_ctl.init_rate == 0)) { rack->app_limited_needs_set = 1; tp->gput_ack = startseq + max(rc_init_window(rack), (MIN_GP_WIN * ctf_fixed_maxseg(tp))); rack_log_pacing_delay_calc(rack, tp->gput_seq, tp->gput_ack, 0, tp->gput_ts, rack->r_ctl.rc_app_limited_cnt, 9, __LINE__, NULL); return; } if (sb_offset) { /* * We are out somewhere in the sb * can we use the already outstanding data? */ if (rack->r_ctl.rc_app_limited_cnt == 0) { /* * Yes first one is good and in this case * the tp->gput_ts is correctly set based on * the last ack that arrived (no need to * set things up when an ack comes in). */ my_rsm = RB_MIN(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if ((my_rsm == NULL) || (my_rsm->r_rtr_cnt != 1)) { /* retransmission? */ goto use_latest; } } else { if (rack->r_ctl.rc_first_appl == NULL) { /* * If rc_first_appl is NULL * then the cnt should be 0. * This is probably an error, maybe * a KASSERT would be approprate. */ goto use_latest; } /* * If we have a marker pointer to the last one that is * app limited we can use that, but we need to set * things up so that when it gets ack'ed we record * the ack time (if its not already acked). */ rack->app_limited_needs_set = 1; /* * We want to get to the rsm that is either * next with space i.e. over 1 MSS or the one * after that (after the app-limited). */ my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, rack->r_ctl.rc_first_appl); if (my_rsm) { if ((my_rsm->r_end - my_rsm->r_start) <= ctf_fixed_maxseg(tp)) /* Have to use the next one */ my_rsm = RB_NEXT(rack_rb_tree_head, &rack->r_ctl.rc_mtree, my_rsm); else { /* Use after the first MSS of it is acked */ tp->gput_seq = my_rsm->r_start + ctf_fixed_maxseg(tp); goto start_set; } } if ((my_rsm == NULL) || (my_rsm->r_rtr_cnt != 1)) { /* * Either its a retransmit or * the last is the app-limited one. */ goto use_latest; } } tp->gput_seq = my_rsm->r_start; start_set: if (my_rsm->r_flags & RACK_ACKED) { /* * This one has been acked use the arrival ack time */ tp->gput_ts = my_rsm->r_ack_arrival; rack->app_limited_needs_set = 0; } rack->r_ctl.rc_gp_output_ts = my_rsm->usec_orig_send; tp->gput_ack = tp->gput_seq + rack_get_measure_window(tp, rack); rack_log_pacing_delay_calc(rack, tp->gput_seq, tp->gput_ack, (uint64_t)my_rsm, tp->gput_ts, rack->r_ctl.rc_app_limited_cnt, 9, __LINE__, NULL); return; } use_latest: /* * We don't know how long we may have been * idle or if this is the first-send. Lets * setup the flag so we will trim off * the first ack'd data so we get a true * measurement. */ rack->app_limited_needs_set = 1; tp->gput_ack = startseq + rack_get_measure_window(tp, rack); /* Find this guy so we can pull the send time */ fe.r_start = startseq; my_rsm = RB_FIND(rack_rb_tree_head, &rack->r_ctl.rc_mtree, &fe); if (my_rsm) { rack->r_ctl.rc_gp_output_ts = my_rsm->usec_orig_send; if (my_rsm->r_flags & RACK_ACKED) { /* * Unlikely since its probably what was * just transmitted (but I am paranoid). */ tp->gput_ts = my_rsm->r_ack_arrival; rack->app_limited_needs_set = 0; } if (SEQ_LT(my_rsm->r_start, tp->gput_seq)) { /* This also is unlikely */ tp->gput_seq = my_rsm->r_start; } } else { /* * TSNH unless we have some send-map limit, * and even at that it should not be hitting * that limit (we should have stopped sending). */ rack->r_ctl.rc_gp_output_ts = tcp_get_usecs(NULL); } rack_log_pacing_delay_calc(rack, tp->gput_seq, tp->gput_ack, (uint64_t)my_rsm, tp->gput_ts, rack->r_ctl.rc_app_limited_cnt, 9, __LINE__, NULL); } static inline uint32_t rack_what_can_we_send(struct tcpcb *tp, struct tcp_rack *rack, uint32_t cwnd_to_use, uint32_t avail, int32_t sb_offset) { uint32_t len; uint32_t sendwin; if (tp->snd_wnd > cwnd_to_use) sendwin = cwnd_to_use; else sendwin = tp->snd_wnd; if (ctf_outstanding(tp) >= tp->snd_wnd) { /* We never want to go over our peers rcv-window */ len = 0; } else { uint32_t flight; flight = ctf_flight_size(tp, rack->r_ctl.rc_sacked); if (flight >= sendwin) { /* * We have in flight what we are allowed by cwnd (if * it was rwnd blocking it would have hit above out * >= tp->snd_wnd). */ return (0); } len = sendwin - flight; if ((len + ctf_outstanding(tp)) > tp->snd_wnd) { /* We would send too much (beyond the rwnd) */ len = tp->snd_wnd - ctf_outstanding(tp); } if ((len + sb_offset) > avail) { /* * We don't have that much in the SB, how much is * there? */ len = avail - sb_offset; } } return (len); } static int rack_output(struct tcpcb *tp) { struct socket *so; uint32_t recwin; uint32_t sb_offset; int32_t len, flags, error = 0; struct mbuf *m; struct mbuf *mb; uint32_t if_hw_tsomaxsegcount = 0; uint32_t if_hw_tsomaxsegsize; int32_t segsiz, minseg; long tot_len_this_send = 0; struct ip *ip = NULL; #ifdef TCPDEBUG struct ipovly *ipov = NULL; #endif struct udphdr *udp = NULL; struct tcp_rack *rack; struct tcphdr *th; uint8_t pass = 0; uint8_t mark = 0; uint8_t wanted_cookie = 0; u_char opt[TCP_MAXOLEN]; unsigned ipoptlen, optlen, hdrlen, ulen=0; uint32_t rack_seq; #if defined(IPSEC) || defined(IPSEC_SUPPORT) unsigned ipsec_optlen = 0; #endif int32_t idle, sendalot; int32_t sub_from_prr = 0; volatile int32_t sack_rxmit; struct rack_sendmap *rsm = NULL; int32_t tso, mtu; struct tcpopt to; int32_t slot = 0; int32_t sup_rack = 0; uint32_t cts, us_cts, delayed, early; uint8_t hpts_calling, new_data_tlp = 0, doing_tlp = 0; uint32_t cwnd_to_use; int32_t do_a_prefetch; int32_t prefetch_rsm = 0; int32_t orig_len; struct timeval tv; int32_t prefetch_so_done = 0; struct tcp_log_buffer *lgb = NULL; struct inpcb *inp; struct sockbuf *sb; #ifdef INET6 struct ip6_hdr *ip6 = NULL; int32_t isipv6; #endif uint8_t filled_all = 0; bool hw_tls = false; /* setup and take the cache hits here */ rack = (struct tcp_rack *)tp->t_fb_ptr; inp = rack->rc_inp; so = inp->inp_socket; sb = &so->so_snd; kern_prefetch(sb, &do_a_prefetch); do_a_prefetch = 1; hpts_calling = inp->inp_hpts_calls; hw_tls = (so->so_snd.sb_flags & SB_TLS_IFNET) != 0; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) return (tcp_offload_output(tp)); #endif /* * For TFO connections in SYN_RECEIVED, only allow the initial * SYN|ACK and those sent by the retransmit timer. */ if (IS_FASTOPEN(tp->t_flags) && (tp->t_state == TCPS_SYN_RECEIVED) && SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN|ACK sent */ (rack->r_ctl.rc_resend == NULL)) /* not a retransmit */ return (0); #ifdef INET6 if (rack->r_state) { /* Use the cache line loaded if possible */ isipv6 = rack->r_is_v6; } else { isipv6 = (inp->inp_vflag & INP_IPV6) != 0; } #endif early = 0; us_cts = tcp_get_usecs(&tv); cts = tcp_tv_to_mssectick(&tv); if (((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) == 0) && inp->inp_in_hpts) { /* * We are on the hpts for some timer but not hptsi output. * Remove from the hpts unconditionally. */ rack_timer_cancel(tp, rack, cts, __LINE__); } /* Are we pacing and late? */ if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && TSTMP_GEQ(us_cts, rack->r_ctl.rc_last_output_to)) { /* We are delayed */ delayed = us_cts - rack->r_ctl.rc_last_output_to; } else { delayed = 0; } /* Do the timers, which may override the pacer */ if (rack->r_ctl.rc_hpts_flags & PACE_TMR_MASK) { if (rack_process_timers(tp, rack, cts, hpts_calling)) { counter_u64_add(rack_out_size[TCP_MSS_ACCT_ATIMER], 1); return (0); } } if ((rack->r_timer_override) || (delayed) || (tp->t_state < TCPS_ESTABLISHED)) { if (tp->t_inpcb->inp_in_hpts) tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_OUTPUT); } else if (tp->t_inpcb->inp_in_hpts) { /* * On the hpts you can't pass even if ACKNOW is on, we will * when the hpts fires. */ counter_u64_add(rack_out_size[TCP_MSS_ACCT_INPACE], 1); return (0); } inp->inp_hpts_calls = 0; /* Finish out both pacing early and late accounting */ if ((rack->r_ctl.rc_hpts_flags & PACE_PKT_OUTPUT) && TSTMP_GT(rack->r_ctl.rc_last_output_to, us_cts)) { early = rack->r_ctl.rc_last_output_to - us_cts; } else early = 0; if (delayed) { rack->r_ctl.rc_agg_delayed += delayed; rack->r_late = 1; } else if (early) { rack->r_ctl.rc_agg_early += early; rack->r_early = 1; } /* Now that early/late accounting is done turn off the flag */ rack->r_ctl.rc_hpts_flags &= ~PACE_PKT_OUTPUT; rack->r_wanted_output = 0; rack->r_timer_override = 0; /* * For TFO connections in SYN_SENT or SYN_RECEIVED, * only allow the initial SYN or SYN|ACK and those sent * by the retransmit timer. */ if (IS_FASTOPEN(tp->t_flags) && ((tp->t_state == TCPS_SYN_RECEIVED) || (tp->t_state == TCPS_SYN_SENT)) && SEQ_GT(tp->snd_max, tp->snd_una) && /* initial SYN or SYN|ACK sent */ (tp->t_rxtshift == 0)) { /* not a retransmit */ cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; goto just_return_nolock; } /* * Determine length of data that should be transmitted, and flags * that will be used. If there is some data or critical controls * (SYN, RST) to send, then transmit; otherwise, investigate * further. */ idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); if (tp->t_idle_reduce) { if (idle && ((ticks - tp->t_rcvtime) >= tp->t_rxtcur)) rack_cc_after_idle(rack, tp); } tp->t_flags &= ~TF_LASTIDLE; if (idle) { if (tp->t_flags & TF_MORETOCOME) { tp->t_flags |= TF_LASTIDLE; idle = 0; } } if ((tp->snd_una == tp->snd_max) && rack->r_ctl.rc_went_idle_time && TSTMP_GT(us_cts, rack->r_ctl.rc_went_idle_time)) { idle = us_cts - rack->r_ctl.rc_went_idle_time; if (idle > rack_min_probertt_hold) { /* Count as a probe rtt */ if (rack->in_probe_rtt == 0) { rack->r_ctl.rc_lower_rtt_us_cts = us_cts; rack->r_ctl.rc_time_probertt_entered = rack->r_ctl.rc_lower_rtt_us_cts; rack->r_ctl.rc_time_probertt_starts = rack->r_ctl.rc_lower_rtt_us_cts; rack->r_ctl.rc_time_of_last_probertt = rack->r_ctl.rc_lower_rtt_us_cts; } else { rack_exit_probertt(rack, us_cts); } } idle = 0; } again: /* * If we've recently taken a timeout, snd_max will be greater than * snd_nxt. There may be SACK information that allows us to avoid * resending already delivered data. Adjust snd_nxt accordingly. */ sendalot = 0; us_cts = tcp_get_usecs(&tv); cts = tcp_tv_to_mssectick(&tv); tso = 0; mtu = 0; segsiz = min(ctf_fixed_maxseg(tp), rack->r_ctl.rc_pace_min_segs); minseg = segsiz; sb_offset = tp->snd_max - tp->snd_una; cwnd_to_use = rack->r_ctl.cwnd_to_use = tp->snd_cwnd; #ifdef NETFLIX_SHARED_CWND if ((tp->t_flags2 & TF2_TCP_SCWND_ALLOWED) && rack->rack_enable_scwnd) { /* We are doing cwnd sharing */ if (rack->rc_gp_filled && (rack->rack_attempted_scwnd == 0) && (rack->r_ctl.rc_scw == NULL) && tp->t_lib) { /* The pcbid is in, lets make an attempt */ counter_u64_add(rack_try_scwnd, 1); rack->rack_attempted_scwnd = 1; rack->r_ctl.rc_scw = tcp_shared_cwnd_alloc(tp, &rack->r_ctl.rc_scw_index, segsiz); } if (rack->r_ctl.rc_scw && (rack->rack_scwnd_is_idle == 1) && (rack->rc_in_persist == 0) && sbavail(sb)) { /* we are no longer out of data */ tcp_shared_cwnd_active(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); rack->rack_scwnd_is_idle = 0; } if (rack->r_ctl.rc_scw) { /* First lets update and get the cwnd */ rack->r_ctl.cwnd_to_use = cwnd_to_use = tcp_shared_cwnd_update(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index, tp->snd_cwnd, tp->snd_wnd, segsiz); } } #endif flags = tcp_outflags[tp->t_state]; while (rack->rc_free_cnt < rack_free_cache) { rsm = rack_alloc(rack); if (rsm == NULL) { if (inp->inp_hpts_calls) /* Retry in a ms */ slot = (1 * HPTS_USEC_IN_MSEC); goto just_return_nolock; } TAILQ_INSERT_TAIL(&rack->r_ctl.rc_free, rsm, r_tnext); rack->rc_free_cnt++; rsm = NULL; } if (inp->inp_hpts_calls) inp->inp_hpts_calls = 0; sack_rxmit = 0; len = 0; rsm = NULL; if (flags & TH_RST) { SOCKBUF_LOCK(sb); goto send; } if (rack->r_ctl.rc_resend) { /* Retransmit timer */ rsm = rack->r_ctl.rc_resend; rack->r_ctl.rc_resend = NULL; rsm->r_flags &= ~RACK_TLP; len = rsm->r_end - rsm->r_start; sack_rxmit = 1; sendalot = 0; KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", __func__, __LINE__, rsm->r_start, tp->snd_una, tp, rack, rsm)); sb_offset = rsm->r_start - tp->snd_una; if (len >= segsiz) len = segsiz; } else if ((rack->rc_in_persist == 0) && ((rsm = tcp_rack_output(tp, rack, cts)) != NULL)) { /* We have a retransmit that takes precedence */ rsm->r_flags &= ~RACK_TLP; if ((!IN_RECOVERY(tp->t_flags)) && ((tp->t_flags & (TF_WASFRECOVERY | TF_WASCRECOVERY)) == 0)) { /* Enter recovery if not induced by a time-out */ rack->r_ctl.rc_rsm_start = rsm->r_start; rack->r_ctl.rc_cwnd_at = tp->snd_cwnd; rack->r_ctl.rc_ssthresh_at = tp->snd_ssthresh; rack_cong_signal(tp, NULL, CC_NDUPACK); /* * When we enter recovery we need to assure we send * one packet. */ if (rack->rack_no_prr == 0) { rack->r_ctl.rc_prr_sndcnt = segsiz; rack_log_to_prr(rack, 13, 0); } } #ifdef INVARIANTS if (SEQ_LT(rsm->r_start, tp->snd_una)) { panic("Huh, tp:%p rack:%p rsm:%p start:%u < snd_una:%u\n", tp, rack, rsm, rsm->r_start, tp->snd_una); } #endif len = rsm->r_end - rsm->r_start; KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", __func__, __LINE__, rsm->r_start, tp->snd_una, tp, rack, rsm)); sb_offset = rsm->r_start - tp->snd_una; /* Can we send it within the PRR boundary? */ if (rack->rack_no_prr == 0) { if ((rack->use_rack_rr == 0) && (len > rack->r_ctl.rc_prr_sndcnt)) { /* It does not fit */ if ((ctf_flight_size(tp, rack->r_ctl.rc_sacked) > len) && (rack->r_ctl.rc_prr_sndcnt < segsiz)) { /* * prr is less than a segment, we * have more acks due in besides * what we need to resend. Lets not send * to avoid sending small pieces of * what we need to retransmit. */ len = 0; goto just_return_nolock; } len = rack->r_ctl.rc_prr_sndcnt; } } sendalot = 0; if (len >= segsiz) len = segsiz; if (len > 0) { sub_from_prr = 1; sack_rxmit = 1; KMOD_TCPSTAT_INC(tcps_sack_rexmits); KMOD_TCPSTAT_ADD(tcps_sack_rexmit_bytes, min(len, segsiz)); counter_u64_add(rack_rtm_prr_retran, 1); } } else if (rack->r_ctl.rc_tlpsend) { /* Tail loss probe */ long cwin; long tlen; doing_tlp = 1; /* * Check if we can do a TLP with a RACK'd packet * this can happen if we are not doing the rack * cheat and we skipped to a TLP and it * went off. */ rsm = rack->r_ctl.rc_tlpsend; rsm->r_flags |= RACK_TLP; rack->r_ctl.rc_tlpsend = NULL; sack_rxmit = 1; tlen = rsm->r_end - rsm->r_start; if (tlen > segsiz) tlen = segsiz; KASSERT(SEQ_LEQ(tp->snd_una, rsm->r_start), ("%s:%d: r.start:%u < SND.UNA:%u; tp:%p, rack:%p, rsm:%p", __func__, __LINE__, rsm->r_start, tp->snd_una, tp, rack, rsm)); sb_offset = rsm->r_start - tp->snd_una; cwin = min(tp->snd_wnd, tlen); len = cwin; } /* * Enforce a connection sendmap count limit if set * as long as we are not retransmiting. */ if ((rsm == NULL) && (rack->do_detection == 0) && (V_tcp_map_entries_limit > 0) && (rack->r_ctl.rc_num_maps_alloced >= V_tcp_map_entries_limit)) { counter_u64_add(rack_to_alloc_limited, 1); if (!rack->alloc_limit_reported) { rack->alloc_limit_reported = 1; counter_u64_add(rack_alloc_limited_conns, 1); } goto just_return_nolock; } if (rsm && (rsm->r_flags & RACK_HAS_FIN)) { /* we are retransmitting the fin */ len--; if (len) { /* * When retransmitting data do *not* include the * FIN. This could happen from a TLP probe. */ flags &= ~TH_FIN; } } #ifdef INVARIANTS /* For debugging */ rack->r_ctl.rc_rsm_at_retran = rsm; #endif /* * Get standard flags, and add SYN or FIN if requested by 'hidden' * state flags. */ if (tp->t_flags & TF_NEEDFIN) flags |= TH_FIN; if (tp->t_flags & TF_NEEDSYN) flags |= TH_SYN; if ((sack_rxmit == 0) && (prefetch_rsm == 0)) { void *end_rsm; end_rsm = TAILQ_LAST_FAST(&rack->r_ctl.rc_tmap, rack_sendmap, r_tnext); if (end_rsm) kern_prefetch(end_rsm, &prefetch_rsm); prefetch_rsm = 1; } SOCKBUF_LOCK(sb); /* * If snd_nxt == snd_max and we have transmitted a FIN, the * sb_offset will be > 0 even if so_snd.sb_cc is 0, resulting in a * negative length. This can also occur when TCP opens up its * congestion window while receiving additional duplicate acks after * fast-retransmit because TCP will reset snd_nxt to snd_max after * the fast-retransmit. * * In the normal retransmit-FIN-only case, however, snd_nxt will be * set to snd_una, the sb_offset will be 0, and the length may wind * up 0. * * If sack_rxmit is true we are retransmitting from the scoreboard * in which case len is already set. */ if ((sack_rxmit == 0) && TCPS_HAVEESTABLISHED(tp->t_state)) { uint32_t avail; avail = sbavail(sb); if (SEQ_GT(tp->snd_nxt, tp->snd_una) && avail) sb_offset = tp->snd_nxt - tp->snd_una; else sb_offset = 0; if ((IN_RECOVERY(tp->t_flags) == 0) || rack->rack_no_prr) { if (rack->r_ctl.rc_tlp_new_data) { /* TLP is forcing out new data */ if (rack->r_ctl.rc_tlp_new_data > (uint32_t) (avail - sb_offset)) { rack->r_ctl.rc_tlp_new_data = (uint32_t) (avail - sb_offset); } if (rack->r_ctl.rc_tlp_new_data > tp->snd_wnd) len = tp->snd_wnd; else len = rack->r_ctl.rc_tlp_new_data; rack->r_ctl.rc_tlp_new_data = 0; new_data_tlp = doing_tlp = 1; } else len = rack_what_can_we_send(tp, rack, cwnd_to_use, avail, sb_offset); if (IN_RECOVERY(tp->t_flags) && (len > segsiz)) { /* * For prr=off, we need to send only 1 MSS * at a time. We do this because another sack could * be arriving that causes us to send retransmits and * we don't want to be on a long pace due to a larger send * that keeps us from sending out the retransmit. */ len = segsiz; } } else { uint32_t outstanding; /* * We are inside of a SACK recovery episode and are * sending new data, having retransmitted all the * data possible so far in the scoreboard. */ outstanding = tp->snd_max - tp->snd_una; if ((rack->r_ctl.rc_prr_sndcnt + outstanding) > tp->snd_wnd) { if (tp->snd_wnd > outstanding) { len = tp->snd_wnd - outstanding; /* Check to see if we have the data */ if ((sb_offset + len) > avail) { /* It does not all fit */ if (avail > sb_offset) len = avail - sb_offset; else len = 0; } } else len = 0; } else if (avail > sb_offset) len = avail - sb_offset; else len = 0; if (len > 0) { if (len > rack->r_ctl.rc_prr_sndcnt) len = rack->r_ctl.rc_prr_sndcnt; if (len > 0) { sub_from_prr = 1; counter_u64_add(rack_rtm_prr_newdata, 1); } } if (len > segsiz) { /* * We should never send more than a MSS when * retransmitting or sending new data in prr * mode unless the override flag is on. Most * likely the PRR algorithm is not going to * let us send a lot as well :-) */ if (rack->r_ctl.rc_prr_sendalot == 0) len = segsiz; } else if (len < segsiz) { /* * Do we send any? The idea here is if the * send empty's the socket buffer we want to * do it. However if not then lets just wait * for our prr_sndcnt to get bigger. */ long leftinsb; leftinsb = sbavail(sb) - sb_offset; if (leftinsb > len) { /* This send does not empty the sb */ len = 0; } } } } else if (!TCPS_HAVEESTABLISHED(tp->t_state)) { /* * If you have not established * and are not doing FAST OPEN * no data please. */ if ((sack_rxmit == 0) && (!IS_FASTOPEN(tp->t_flags))){ len = 0; sb_offset = 0; } } if (prefetch_so_done == 0) { kern_prefetch(so, &prefetch_so_done); prefetch_so_done = 1; } /* * Lop off SYN bit if it has already been sent. However, if this is * SYN-SENT state and if segment contains data and if we don't know * that foreign host supports TAO, suppress sending segment. */ if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una) && ((sack_rxmit == 0) && (tp->t_rxtshift == 0))) { /* * When sending additional segments following a TFO SYN|ACK, * do not include the SYN bit. */ if (IS_FASTOPEN(tp->t_flags) && (tp->t_state == TCPS_SYN_RECEIVED)) flags &= ~TH_SYN; } /* * Be careful not to send data and/or FIN on SYN segments. This * measure is needed to prevent interoperability problems with not * fully conformant TCP implementations. */ if ((flags & TH_SYN) && (tp->t_flags & TF_NOOPT)) { len = 0; flags &= ~TH_FIN; } /* * On TFO sockets, ensure no data is sent in the following cases: * * - When retransmitting SYN|ACK on a passively-created socket * * - When retransmitting SYN on an actively created socket * * - When sending a zero-length cookie (cookie request) on an * actively created socket * * - When the socket is in the CLOSED state (RST is being sent) */ if (IS_FASTOPEN(tp->t_flags) && (((flags & TH_SYN) && (tp->t_rxtshift > 0)) || ((tp->t_state == TCPS_SYN_SENT) && (tp->t_tfo_client_cookie_len == 0)) || (flags & TH_RST))) { sack_rxmit = 0; len = 0; } /* Without fast-open there should never be data sent on a SYN */ if ((flags & TH_SYN) && (!IS_FASTOPEN(tp->t_flags))) { tp->snd_nxt = tp->iss; len = 0; } orig_len = len; if (len <= 0) { /* * If FIN has been sent but not acked, but we haven't been * called to retransmit, len will be < 0. Otherwise, window * shrank after we sent into it. If window shrank to 0, * cancel pending retransmit, pull snd_nxt back to (closed) * window, and set the persist timer if it isn't already * going. If the window didn't close completely, just wait * for an ACK. * * We also do a general check here to ensure that we will * set the persist timer when we have data to send, but a * 0-byte window. This makes sure the persist timer is set * even if the packet hits one of the "goto send" lines * below. */ len = 0; if ((tp->snd_wnd == 0) && (TCPS_HAVEESTABLISHED(tp->t_state)) && (tp->snd_una == tp->snd_max) && (sb_offset < (int)sbavail(sb))) { tp->snd_nxt = tp->snd_una; rack_enter_persist(tp, rack, cts); } } else if ((rsm == NULL) && ((doing_tlp == 0) || (new_data_tlp == 1)) && (len < rack->r_ctl.rc_pace_max_segs)) { /* * We are not sending a maximum sized segment for * some reason. Should we not send anything (think * sws or persists)? */ if ((tp->snd_wnd < min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), minseg)) && (TCPS_HAVEESTABLISHED(tp->t_state)) && (len < minseg) && (len < (int)(sbavail(sb) - sb_offset))) { /* * Here the rwnd is less than * the minimum pacing size, this is not a retransmit, * we are established and * the send is not the last in the socket buffer * we send nothing, and we may enter persists * if nothing is outstanding. */ len = 0; if (tp->snd_max == tp->snd_una) { /* * Nothing out we can * go into persists. */ rack_enter_persist(tp, rack, cts); tp->snd_nxt = tp->snd_una; } } else if ((cwnd_to_use >= max(minseg, (segsiz * 4))) && (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && (len < (int)(sbavail(sb) - sb_offset)) && (len < minseg)) { /* * Here we are not retransmitting, and * the cwnd is not so small that we could * not send at least a min size (rxt timer * not having gone off), We have 2 segments or * more already in flight, its not the tail end * of the socket buffer and the cwnd is blocking * us from sending out a minimum pacing segment size. * Lets not send anything. */ len = 0; } else if (((tp->snd_wnd - ctf_outstanding(tp)) < min((rack->r_ctl.rc_high_rwnd/2), minseg)) && (ctf_flight_size(tp, rack->r_ctl.rc_sacked) > (2 * segsiz)) && (len < (int)(sbavail(sb) - sb_offset)) && (TCPS_HAVEESTABLISHED(tp->t_state))) { /* * Here we have a send window but we have * filled it up and we can't send another pacing segment. * We also have in flight more than 2 segments * and we are not completing the sb i.e. we allow * the last bytes of the sb to go out even if * its not a full pacing segment. */ len = 0; } } /* len will be >= 0 after this point. */ KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); tcp_sndbuf_autoscale(tp, so, min(tp->snd_wnd, cwnd_to_use)); /* * Decide if we can use TCP Segmentation Offloading (if supported by * hardware). * * TSO may only be used if we are in a pure bulk sending state. The * presence of TCP-MD5, SACK retransmits, SACK advertizements and IP * options prevent using TSO. With TSO the TCP header is the same * (except for the sequence number) for all generated packets. This * makes it impossible to transmit any options which vary per * generated segment or packet. * * IPv4 handling has a clear separation of ip options and ip header * flags while IPv6 combines both in in6p_outputopts. ip6_optlen() does * the right thing below to provide length of just ip options and thus * checking for ipoptlen is enough to decide if ip options are present. */ #ifdef INET6 if (isipv6) ipoptlen = ip6_optlen(tp->t_inpcb); else #endif if (tp->t_inpcb->inp_options) ipoptlen = tp->t_inpcb->inp_options->m_len - offsetof(struct ipoption, ipopt_list); else ipoptlen = 0; #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * Pre-calculate here as we save another lookup into the darknesses * of IPsec that way and can actually decide if TSO is ok. */ #ifdef INET6 if (isipv6 && IPSEC_ENABLED(ipv6)) ipsec_optlen = IPSEC_HDRSIZE(ipv6, tp->t_inpcb); #ifdef INET else #endif #endif /* INET6 */ #ifdef INET if (IPSEC_ENABLED(ipv4)) ipsec_optlen = IPSEC_HDRSIZE(ipv4, tp->t_inpcb); #endif /* INET */ #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) ipoptlen += ipsec_optlen; #endif if ((tp->t_flags & TF_TSO) && V_tcp_do_tso && len > segsiz && (tp->t_port == 0) && ((tp->t_flags & TF_SIGNATURE) == 0) && tp->rcv_numsacks == 0 && sack_rxmit == 0 && ipoptlen == 0) tso = 1; { uint32_t outstanding; outstanding = tp->snd_max - tp->snd_una; if (tp->t_flags & TF_SENTFIN) { /* * If we sent a fin, snd_max is 1 higher than * snd_una */ outstanding--; } if (sack_rxmit) { if ((rsm->r_flags & RACK_HAS_FIN) == 0) flags &= ~TH_FIN; } else { if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + sbused(sb))) flags &= ~TH_FIN; } } recwin = lmin(lmax(sbspace(&so->so_rcv), 0), (long)TCP_MAXWIN << tp->rcv_scale); /* * Sender silly window avoidance. We transmit under the following * conditions when len is non-zero: * * - We have a full segment (or more with TSO) - This is the last * buffer in a write()/send() and we are either idle or running * NODELAY - we've timed out (e.g. persist timer) - we have more * then 1/2 the maximum send window's worth of data (receiver may be * limited the window size) - we need to retransmit */ if (len) { if (len >= segsiz) { goto send; } /* * NOTE! on localhost connections an 'ack' from the remote * end may occur synchronously with the output and cause us * to flush a buffer queued with moretocome. XXX * */ if (!(tp->t_flags & TF_MORETOCOME) && /* normal case */ (idle || (tp->t_flags & TF_NODELAY)) && ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && (tp->t_flags & TF_NOPUSH) == 0) { pass = 2; goto send; } if ((tp->snd_una == tp->snd_max) && len) { /* Nothing outstanding */ pass = 22; goto send; } if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { pass = 4; goto send; } if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { /* retransmit case */ pass = 5; goto send; } if (sack_rxmit) { pass = 6; goto send; } if (((tp->snd_wnd - ctf_outstanding(tp)) < segsiz) && (ctf_outstanding(tp) < (segsiz * 2))) { /* * We have less than two MSS outstanding (delayed ack) * and our rwnd will not let us send a full sized * MSS. Lets go ahead and let this small segment * out because we want to try to have at least two * packets inflight to not be caught by delayed ack. */ pass = 12; goto send; } } /* * Sending of standalone window updates. * * Window updates are important when we close our window due to a * full socket buffer and are opening it again after the application * reads data from it. Once the window has opened again and the * remote end starts to send again the ACK clock takes over and * provides the most current window information. * * We must avoid the silly window syndrome whereas every read from * the receive buffer, no matter how small, causes a window update * to be sent. We also should avoid sending a flurry of window * updates when the socket buffer had queued a lot of data and the * application is doing small reads. * * Prevent a flurry of pointless window updates by only sending an * update when we can increase the advertized window by more than * 1/4th of the socket buffer capacity. When the buffer is getting * full or is very small be more aggressive and send an update * whenever we can increase by two mss sized segments. In all other * situations the ACK's to new incoming data will carry further * window increases. * * Don't send an independent window update if a delayed ACK is * pending (it will get piggy-backed on it) or the remote side * already has done a half-close and won't send more data. Skip * this if the connection is in T/TCP half-open state. */ if (recwin > 0 && !(tp->t_flags & TF_NEEDSYN) && !(tp->t_flags & TF_DELACK) && !TCPS_HAVERCVDFIN(tp->t_state)) { /* * "adv" is the amount we could increase the window, taking * into account that we are limited by TCP_MAXWIN << * tp->rcv_scale. */ int32_t adv; int oldwin; adv = recwin; if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { oldwin = (tp->rcv_adv - tp->rcv_nxt); if (adv > oldwin) adv -= oldwin; else { /* We can't increase the window */ adv = 0; } } else oldwin = 0; /* * If the new window size ends up being the same as or less * than the old size when it is scaled, then don't force * a window update. */ if (oldwin >> tp->rcv_scale >= (adv + oldwin) >> tp->rcv_scale) goto dontupdate; if (adv >= (int32_t)(2 * segsiz) && (adv >= (int32_t)(so->so_rcv.sb_hiwat / 4) || recwin <= (int32_t)(so->so_rcv.sb_hiwat / 8) || so->so_rcv.sb_hiwat <= 8 * segsiz)) { pass = 7; goto send; } if (2 * adv >= (int32_t) so->so_rcv.sb_hiwat) { pass = 23; goto send; } } dontupdate: /* * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW * is also a catch-all for the retransmit timer timeout case. */ if (tp->t_flags & TF_ACKNOW) { pass = 8; goto send; } if (((flags & TH_SYN) && (tp->t_flags & TF_NEEDSYN) == 0)) { pass = 9; goto send; } /* * If our state indicates that FIN should be sent and we have not * yet done so, then we need to send. */ if ((flags & TH_FIN) && (tp->snd_nxt == tp->snd_una)) { pass = 11; goto send; } /* * No reason to send a segment, just return. */ just_return: SOCKBUF_UNLOCK(sb); just_return_nolock: { int app_limited = CTF_JR_SENT_DATA; if (tot_len_this_send > 0) { /* Make sure snd_nxt is up to max */ if (SEQ_GT(tp->snd_max, tp->snd_nxt)) tp->snd_nxt = tp->snd_max; slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, NULL, segsiz); } else { int end_window = 0; uint32_t seq = tp->gput_ack; rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (rsm) { /* * Mark the last sent that we just-returned (hinting * that delayed ack may play a role in any rtt measurement). */ rsm->r_just_ret = 1; } counter_u64_add(rack_out_size[TCP_MSS_ACCT_JUSTRET], 1); rack->r_ctl.rc_agg_delayed = 0; rack->r_early = 0; rack->r_late = 0; rack->r_ctl.rc_agg_early = 0; if ((ctf_outstanding(tp) + min(max(segsiz, (rack->r_ctl.rc_high_rwnd/2)), minseg)) >= tp->snd_wnd) { /* We are limited by the rwnd */ app_limited = CTF_JR_RWND_LIMITED; } else if (ctf_outstanding(tp) >= sbavail(sb)) { /* We are limited by whats available -- app limited */ app_limited = CTF_JR_APP_LIMITED; } else if ((idle == 0) && ((tp->t_flags & TF_NODELAY) == 0) && ((uint32_t)len + (uint32_t)sb_offset >= sbavail(sb)) && (len < segsiz)) { /* * No delay is not on and the * user is sending less than 1MSS. This * brings out SWS avoidance so we * don't send. Another app-limited case. */ app_limited = CTF_JR_APP_LIMITED; } else if (tp->t_flags & TF_NOPUSH) { /* * The user has requested no push of * the last segment and we are * at the last segment. Another app * limited case. */ app_limited = CTF_JR_APP_LIMITED; } else if ((ctf_outstanding(tp) + minseg) > cwnd_to_use) { /* Its the cwnd */ app_limited = CTF_JR_CWND_LIMITED; } else if (rack->rc_in_persist == 1) { /* We are in persists */ app_limited = CTF_JR_PERSISTS; } else if (IN_RECOVERY(tp->t_flags) && (rack->rack_no_prr == 0) && (rack->r_ctl.rc_prr_sndcnt < segsiz)) { app_limited = CTF_JR_PRR; } else { /* Now why here are we not sending? */ #ifdef NOW #ifdef INVARIANTS panic("rack:%p hit JR_ASSESSING case cwnd_to_use:%u?", rack, cwnd_to_use); #endif #endif app_limited = CTF_JR_ASSESSING; } /* * App limited in some fashion, for our pacing GP * measurements we don't want any gap (even cwnd). * Close down the measurement window. */ if (rack_cwnd_block_ends_measure && ((app_limited == CTF_JR_CWND_LIMITED) || (app_limited == CTF_JR_PRR))) { /* * The reason we are not sending is * the cwnd (or prr). We have been configured * to end the measurement window in * this case. */ end_window = 1; } else if (app_limited == CTF_JR_PERSISTS) { /* * We never end the measurement window * in persists, though in theory we * should be only entering after everything * is acknowledged (so we will probably * never come here). */ end_window = 0; } else if (rack_rwnd_block_ends_measure && (app_limited == CTF_JR_RWND_LIMITED)) { /* * We are rwnd limited and have been * configured to end the measurement * window in this case. */ end_window = 1; } else if (app_limited == CTF_JR_APP_LIMITED) { /* * A true application limited period, we have * ran out of data. */ end_window = 1; } else if (app_limited == CTF_JR_ASSESSING) { /* * In the assessing case we hit the end of * the if/else and had no known reason * This will panic us under invariants.. * * If we get this out in logs we need to * investagate which reason we missed. */ end_window = 1; } if (end_window) { uint8_t log = 0; if ((tp->t_flags & TF_GPUTINPROG) && SEQ_GT(tp->gput_ack, tp->snd_max)) { /* Mark the last packet has app limited */ tp->gput_ack = tp->snd_max; log = 1; } rsm = RB_MAX(rack_rb_tree_head, &rack->r_ctl.rc_mtree); if (rsm && ((rsm->r_flags & RACK_APP_LIMITED) == 0)) { if (rack->r_ctl.rc_app_limited_cnt == 0) rack->r_ctl.rc_end_appl = rack->r_ctl.rc_first_appl = rsm; else { /* * Go out to the end app limited and mark * this new one as next and move the end_appl up * to this guy. */ if (rack->r_ctl.rc_end_appl) rack->r_ctl.rc_end_appl->r_nseq_appl = rsm->r_start; rack->r_ctl.rc_end_appl = rsm; } rsm->r_flags |= RACK_APP_LIMITED; rack->r_ctl.rc_app_limited_cnt++; } if (log) rack_log_pacing_delay_calc(rack, rack->r_ctl.rc_app_limited_cnt, seq, tp->gput_ack, 0, 0, 4, __LINE__, NULL); } } if (slot) { /* set the rack tcb into the slot N */ counter_u64_add(rack_paced_segments, 1); } else if (tot_len_this_send) { counter_u64_add(rack_unpaced_segments, 1); } /* Check if we need to go into persists or not */ if ((rack->rc_in_persist == 0) && (tp->snd_max == tp->snd_una) && TCPS_HAVEESTABLISHED(tp->t_state) && sbavail(sb) && (sbavail(sb) > tp->snd_wnd) && (tp->snd_wnd < min((rack->r_ctl.rc_high_rwnd/2), minseg))) { /* Yes lets make sure to move to persist before timer-start */ rack_enter_persist(tp, rack, rack->r_ctl.rc_rcvtime); } rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, sup_rack); rack_log_type_just_return(rack, cts, tot_len_this_send, slot, hpts_calling, app_limited, cwnd_to_use); } #ifdef NETFLIX_SHARED_CWND if ((sbavail(sb) == 0) && rack->r_ctl.rc_scw) { tcp_shared_cwnd_idle(rack->r_ctl.rc_scw, rack->r_ctl.rc_scw_index); rack->rack_scwnd_is_idle = 1; } #endif return (0); send: if ((flags & TH_FIN) && sbavail(sb)) { /* * We do not transmit a FIN * with data outstanding. We * need to make it so all data * is acked first. */ flags &= ~TH_FIN; } /* Enforce stack imposed max seg size if we have one */ if (rack->r_ctl.rc_pace_max_segs && (len > rack->r_ctl.rc_pace_max_segs)) { mark = 1; len = rack->r_ctl.rc_pace_max_segs; } SOCKBUF_LOCK_ASSERT(sb); if (len > 0) { if (len >= segsiz) tp->t_flags2 |= TF2_PLPMTU_MAXSEGSNT; else tp->t_flags2 &= ~TF2_PLPMTU_MAXSEGSNT; } /* * Before ESTABLISHED, force sending of initial options unless TCP * set not to do any options. NOTE: we assume that the IP/TCP header * plus TCP options always fit in a single mbuf, leaving room for a * maximum link header, i.e. max_linkhdr + sizeof (struct tcpiphdr) * + optlen <= MCLBYTES */ optlen = 0; #ifdef INET6 if (isipv6) hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else #endif hdrlen = sizeof(struct tcpiphdr); /* * Compute options for segment. We only have to care about SYN and * established connection segments. Options for SYN-ACK segments * are handled in TCP syncache. */ to.to_flags = 0; if ((tp->t_flags & TF_NOOPT) == 0) { /* Maximum segment size. */ if (flags & TH_SYN) { tp->snd_nxt = tp->iss; to.to_mss = tcp_mssopt(&inp->inp_inc); #ifdef NETFLIX_TCPOUDP if (tp->t_port) to.to_mss -= V_tcp_udp_tunneling_overhead; #endif to.to_flags |= TOF_MSS; /* * On SYN or SYN|ACK transmits on TFO connections, * only include the TFO option if it is not a * retransmit, as the presence of the TFO option may * have caused the original SYN or SYN|ACK to have * been dropped by a middlebox. */ if (IS_FASTOPEN(tp->t_flags) && (tp->t_rxtshift == 0)) { if (tp->t_state == TCPS_SYN_RECEIVED) { to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN; to.to_tfo_cookie = (u_int8_t *)&tp->t_tfo_cookie.server; to.to_flags |= TOF_FASTOPEN; wanted_cookie = 1; } else if (tp->t_state == TCPS_SYN_SENT) { to.to_tfo_len = tp->t_tfo_client_cookie_len; to.to_tfo_cookie = tp->t_tfo_cookie.client; to.to_flags |= TOF_FASTOPEN; wanted_cookie = 1; /* * If we wind up having more data to * send with the SYN than can fit in * one segment, don't send any more * until the SYN|ACK comes back from * the other end. */ sendalot = 0; } } } /* Window scaling. */ if ((flags & TH_SYN) && (tp->t_flags & TF_REQ_SCALE)) { to.to_wscale = tp->request_r_scale; to.to_flags |= TOF_SCALE; } /* Timestamps. */ if ((tp->t_flags & TF_RCVD_TSTMP) || ((flags & TH_SYN) && (tp->t_flags & TF_REQ_TSTMP))) { to.to_tsval = cts + tp->ts_offset; to.to_tsecr = tp->ts_recent; to.to_flags |= TOF_TS; } /* Set receive buffer autosizing timestamp. */ if (tp->rfbuf_ts == 0 && (so->so_rcv.sb_flags & SB_AUTOSIZE)) tp->rfbuf_ts = tcp_ts_getticks(); /* Selective ACK's. */ if (flags & TH_SYN) to.to_flags |= TOF_SACKPERM; else if (TCPS_HAVEESTABLISHED(tp->t_state) && tp->rcv_numsacks > 0) { to.to_flags |= TOF_SACK; to.to_nsacks = tp->rcv_numsacks; to.to_sacks = (u_char *)tp->sackblks; } #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) /* TCP-MD5 (RFC2385). */ if (tp->t_flags & TF_SIGNATURE) to.to_flags |= TOF_SIGNATURE; #endif /* TCP_SIGNATURE */ /* Processing the options. */ hdrlen += optlen = tcp_addoptions(&to, opt); /* * If we wanted a TFO option to be added, but it was unable * to fit, ensure no data is sent. */ if (IS_FASTOPEN(tp->t_flags) && wanted_cookie && !(to.to_flags & TOF_FASTOPEN)) len = 0; } #ifdef NETFLIX_TCPOUDP if (tp->t_port) { if (V_tcp_udp_tunneling_port == 0) { /* The port was removed?? */ SOCKBUF_UNLOCK(&so->so_snd); return (EHOSTUNREACH); } hdrlen += sizeof(struct udphdr); } #endif #ifdef INET6 if (isipv6) ipoptlen = ip6_optlen(tp->t_inpcb); else #endif if (tp->t_inpcb->inp_options) ipoptlen = tp->t_inpcb->inp_options->m_len - offsetof(struct ipoption, ipopt_list); else ipoptlen = 0; #if defined(IPSEC) || defined(IPSEC_SUPPORT) ipoptlen += ipsec_optlen; #endif /* * Adjust data length if insertion of options will bump the packet * length beyond the t_maxseg length. Clear the FIN bit because we * cut off the tail of the segment. */ if (len + optlen + ipoptlen > tp->t_maxseg) { if (tso) { uint32_t if_hw_tsomax; uint32_t moff; int32_t max_len; /* extract TSO information */ if_hw_tsomax = tp->t_tsomax; if_hw_tsomaxsegcount = tp->t_tsomaxsegcount; if_hw_tsomaxsegsize = tp->t_tsomaxsegsize; KASSERT(ipoptlen == 0, ("%s: TSO can't do IP options", __func__)); /* * Check if we should limit by maximum payload * length: */ if (if_hw_tsomax != 0) { /* compute maximum TSO length */ max_len = (if_hw_tsomax - hdrlen - max_linkhdr); if (max_len <= 0) { len = 0; } else if (len > max_len) { sendalot = 1; len = max_len; mark = 2; } } /* * Prevent the last segment from being fractional * unless the send sockbuf can be emptied: */ max_len = (tp->t_maxseg - optlen); if ((sb_offset + len) < sbavail(sb)) { moff = len % (u_int)max_len; if (moff != 0) { mark = 3; len -= moff; } } /* * In case there are too many small fragments don't * use TSO: */ if (len <= segsiz) { mark = 4; tso = 0; } /* * Send the FIN in a separate segment after the bulk * sending is done. We don't trust the TSO * implementations to clear the FIN flag on all but * the last segment. */ if (tp->t_flags & TF_NEEDFIN) { sendalot = 4; } } else { mark = 5; if (optlen + ipoptlen >= tp->t_maxseg) { /* * Since we don't have enough space to put * the IP header chain and the TCP header in * one packet as required by RFC 7112, don't * send it. Also ensure that at least one * byte of the payload can be put into the * TCP segment. */ SOCKBUF_UNLOCK(&so->so_snd); error = EMSGSIZE; sack_rxmit = 0; goto out; } len = tp->t_maxseg - optlen - ipoptlen; sendalot = 5; } } else { tso = 0; mark = 6; } KASSERT(len + hdrlen + ipoptlen <= IP_MAXPACKET, ("%s: len > IP_MAXPACKET", __func__)); #ifdef DIAGNOSTIC #ifdef INET6 if (max_linkhdr + hdrlen > MCLBYTES) #else if (max_linkhdr + hdrlen > MHLEN) #endif panic("tcphdr too big"); #endif /* * This KASSERT is here to catch edge cases at a well defined place. * Before, those had triggered (random) panic conditions further * down. */ KASSERT(len >= 0, ("[%s:%d]: len < 0", __func__, __LINE__)); if ((len == 0) && (flags & TH_FIN) && (sbused(sb))) { /* * We have outstanding data, don't send a fin by itself!. */ goto just_return; } /* * Grab a header mbuf, attaching a copy of data to be transmitted, * and initialize the header from the template for sends on this * connection. */ if (len) { uint32_t max_val; uint32_t moff; if (rack->r_ctl.rc_pace_max_segs) max_val = rack->r_ctl.rc_pace_max_segs; else if (rack->rc_user_set_max_segs) max_val = rack->rc_user_set_max_segs * segsiz; else max_val = len; /* * We allow a limit on sending with hptsi. */ if (len > max_val) { mark = 7; len = max_val; } #ifdef INET6 if (MHLEN < hdrlen + max_linkhdr) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else #endif m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { SOCKBUF_UNLOCK(sb); error = ENOBUFS; sack_rxmit = 0; goto out; } m->m_data += max_linkhdr; m->m_len = hdrlen; /* * Start the m_copy functions from the closest mbuf to the * sb_offset in the socket buffer chain. */ mb = sbsndptr_noadv(sb, sb_offset, &moff); if (len <= MHLEN - hdrlen - max_linkhdr && !hw_tls) { m_copydata(mb, moff, (int)len, mtod(m, caddr_t)+hdrlen); if (SEQ_LT(tp->snd_nxt, tp->snd_max)) sbsndptr_adv(sb, mb, len); m->m_len += len; } else { struct sockbuf *msb; if (SEQ_LT(tp->snd_nxt, tp->snd_max)) msb = NULL; else msb = sb; m->m_next = tcp_m_copym( mb, moff, &len, if_hw_tsomaxsegcount, if_hw_tsomaxsegsize, msb, ((rsm == NULL) ? hw_tls : 0) #ifdef NETFLIX_COPY_ARGS , &filled_all #endif ); if (len <= (tp->t_maxseg - optlen)) { /* * Must have ran out of mbufs for the copy * shorten it to no longer need tso. Lets * not put on sendalot since we are low on * mbufs. */ tso = 0; } if (m->m_next == NULL) { SOCKBUF_UNLOCK(sb); (void)m_free(m); error = ENOBUFS; sack_rxmit = 0; goto out; } } if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { if (rsm && (rsm->r_flags & RACK_TLP)) { /* * TLP should not count in retran count, but * in its own bin */ counter_u64_add(rack_tlp_retran, 1); counter_u64_add(rack_tlp_retran_bytes, len); } else { tp->t_sndrexmitpack++; KMOD_TCPSTAT_INC(tcps_sndrexmitpack); KMOD_TCPSTAT_ADD(tcps_sndrexmitbyte, len); } #ifdef STATS stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RETXPB, len); #endif } else { KMOD_TCPSTAT_INC(tcps_sndpack); KMOD_TCPSTAT_ADD(tcps_sndbyte, len); #ifdef STATS stats_voi_update_abs_u64(tp->t_stats, VOI_TCP_TXPB, len); #endif } /* * If we're sending everything we've got, set PUSH. (This * will keep happy those implementations which only give * data to the user when a buffer fills or a PUSH comes in.) */ if (sb_offset + len == sbused(sb) && sbused(sb) && !(flags & TH_SYN)) flags |= TH_PUSH; SOCKBUF_UNLOCK(sb); } else { SOCKBUF_UNLOCK(sb); if (tp->t_flags & TF_ACKNOW) KMOD_TCPSTAT_INC(tcps_sndacks); else if (flags & (TH_SYN | TH_FIN | TH_RST)) KMOD_TCPSTAT_INC(tcps_sndctrl); else KMOD_TCPSTAT_INC(tcps_sndwinup); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; sack_rxmit = 0; goto out; } #ifdef INET6 if (isipv6 && (MHLEN < hdrlen + max_linkhdr) && MHLEN >= hdrlen) { M_ALIGN(m, hdrlen); } else #endif m->m_data += max_linkhdr; m->m_len = hdrlen; } SOCKBUF_UNLOCK_ASSERT(sb); m->m_pkthdr.rcvif = (struct ifnet *)0; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif #ifdef INET6 if (isipv6) { ip6 = mtod(m, struct ip6_hdr *); #ifdef NETFLIX_TCPOUDP if (tp->t_port) { udp = (struct udphdr *)((caddr_t)ip6 + ipoptlen + sizeof(struct ip6_hdr)); udp->uh_sport = htons(V_tcp_udp_tunneling_port); udp->uh_dport = tp->t_port; ulen = hdrlen + len - sizeof(struct ip6_hdr); udp->uh_ulen = htons(ulen); th = (struct tcphdr *)(udp + 1); } else #endif th = (struct tcphdr *)(ip6 + 1); tcpip_fillheaders(inp, #ifdef NETFLIX_TCPOUDP tp->t_port, #endif ip6, th); } else #endif /* INET6 */ { ip = mtod(m, struct ip *); #ifdef TCPDEBUG ipov = (struct ipovly *)ip; #endif #ifdef NETFLIX_TCPOUDP if (tp->t_port) { udp = (struct udphdr *)((caddr_t)ip + ipoptlen + sizeof(struct ip)); udp->uh_sport = htons(V_tcp_udp_tunneling_port); udp->uh_dport = tp->t_port; ulen = hdrlen + len - sizeof(struct ip); udp->uh_ulen = htons(ulen); th = (struct tcphdr *)(udp + 1); } else #endif th = (struct tcphdr *)(ip + 1); tcpip_fillheaders(inp, #ifdef NETFLIX_TCPOUDP tp->t_port, #endif ip, th); } /* * Fill in fields, remembering maximum advertised window for use in * delaying messages about window sizes. If resending a FIN, be sure * not to use a new sequence number. */ if (flags & TH_FIN && tp->t_flags & TF_SENTFIN && tp->snd_nxt == tp->snd_max) tp->snd_nxt--; /* * If we are starting a connection, send ECN setup SYN packet. If we * are on a retransmit, we may resend those bits a number of times * as per RFC 3168. */ if (tp->t_state == TCPS_SYN_SENT && V_tcp_do_ecn == 1) { if (tp->t_rxtshift >= 1) { if (tp->t_rxtshift <= V_tcp_ecn_maxretries) flags |= TH_ECE | TH_CWR; } else flags |= TH_ECE | TH_CWR; } /* Handle parallel SYN for ECN */ if ((tp->t_state == TCPS_SYN_RECEIVED) && (tp->t_flags2 & TF2_ECN_SND_ECE)) { flags |= TH_ECE; tp->t_flags2 &= ~TF2_ECN_SND_ECE; } if (tp->t_state == TCPS_ESTABLISHED && (tp->t_flags2 & TF2_ECN_PERMIT)) { /* * If the peer has ECN, mark data packets with ECN capable * transmission (ECT). Ignore pure ack packets, * retransmissions. */ if (len > 0 && SEQ_GEQ(tp->snd_nxt, tp->snd_max) && (sack_rxmit == 0)) { #ifdef INET6 if (isipv6) ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); else #endif ip->ip_tos |= IPTOS_ECN_ECT0; KMOD_TCPSTAT_INC(tcps_ecn_ect0); /* * Reply with proper ECN notifications. * Only set CWR on new data segments. */ if (tp->t_flags2 & TF2_ECN_SND_CWR) { flags |= TH_CWR; tp->t_flags2 &= ~TF2_ECN_SND_CWR; } } if (tp->t_flags2 & TF2_ECN_SND_ECE) flags |= TH_ECE; } /* * If we are doing retransmissions, then snd_nxt will not reflect * the first unsent octet. For ACK only packets, we do not want the * sequence number of the retransmitted packet, we want the sequence * number of the next unsent octet. So, if there is no data (and no * SYN or FIN), use snd_max instead of snd_nxt when filling in * ti_seq. But if we are in persist state, snd_max might reflect * one byte beyond the right edge of the window, so use snd_nxt in * that case, since we know we aren't doing a retransmission. * (retransmit and persist are mutually exclusive...) */ if (sack_rxmit == 0) { if (len || (flags & (TH_SYN | TH_FIN)) || rack->rc_in_persist) { th->th_seq = htonl(tp->snd_nxt); rack_seq = tp->snd_nxt; } else if (flags & TH_RST) { /* * For a Reset send the last cum ack in sequence * (this like any other choice may still generate a * challenge ack, if a ack-update packet is in * flight). */ th->th_seq = htonl(tp->snd_una); rack_seq = tp->snd_una; } else { th->th_seq = htonl(tp->snd_max); rack_seq = tp->snd_max; } } else { th->th_seq = htonl(rsm->r_start); rack_seq = rsm->r_start; } th->th_ack = htonl(tp->rcv_nxt); if (optlen) { bcopy(opt, th + 1, optlen); th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; } th->th_flags = flags; /* * Calculate receive window. Don't shrink window, but avoid silly * window syndrome. * If a RST segment is sent, advertise a window of zero. */ if (flags & TH_RST) { recwin = 0; } else { if (recwin < (long)(so->so_rcv.sb_hiwat / 4) && recwin < (long)segsiz) recwin = 0; if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt) && recwin < (long)(tp->rcv_adv - tp->rcv_nxt)) recwin = (long)(tp->rcv_adv - tp->rcv_nxt); } /* * According to RFC1323 the window field in a SYN (i.e., a or * ) segment itself is never scaled. The case is * handled in syncache. */ if (flags & TH_SYN) th->th_win = htons((u_short) (min(sbspace(&so->so_rcv), TCP_MAXWIN))); else { /* Avoid shrinking window with window scaling. */ recwin = roundup2(recwin, 1 << tp->rcv_scale); th->th_win = htons((u_short)(recwin >> tp->rcv_scale)); } /* * Adjust the RXWIN0SENT flag - indicate that we have advertised a 0 * window. This may cause the remote transmitter to stall. This * flag tells soreceive() to disable delayed acknowledgements when * draining the buffer. This can occur if the receiver is * attempting to read more data than can be buffered prior to * transmitting on the connection. */ if (th->th_win == 0) { tp->t_sndzerowin++; tp->t_flags |= TF_RXWIN0SENT; } else tp->t_flags &= ~TF_RXWIN0SENT; tp->snd_up = tp->snd_una; /* drag it along, its deprecated */ #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) if (to.to_flags & TOF_SIGNATURE) { /* * Calculate MD5 signature and put it into the place * determined before. * NOTE: since TCP options buffer doesn't point into * mbuf's data, calculate offset and use it. */ if (!TCPMD5_ENABLED() || TCPMD5_OUTPUT(m, th, (u_char *)(th + 1) + (to.to_signature - opt)) != 0) { /* * Do not send segment if the calculation of MD5 * digest has failed. */ goto out; } } #endif /* * Put TCP length in extended header, and then checksum extended * header and data. */ m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ #ifdef INET6 if (isipv6) { /* * ip6_plen is not need to be filled now, and will be filled * in ip6_output. */ if (tp->t_port) { m->m_pkthdr.csum_flags = CSUM_UDP_IPV6; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); udp->uh_sum = in6_cksum_pseudo(ip6, ulen, IPPROTO_UDP, 0); th->th_sum = htons(0); UDPSTAT_INC(udps_opackets); } else { m->m_pkthdr.csum_flags = CSUM_TCP_IPV6; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); th->th_sum = in6_cksum_pseudo(ip6, sizeof(struct tcphdr) + optlen + len, IPPROTO_TCP, 0); } } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET { if (tp->t_port) { m->m_pkthdr.csum_flags = CSUM_UDP; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); udp->uh_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(ulen + IPPROTO_UDP)); th->th_sum = htons(0); UDPSTAT_INC(udps_opackets); } else { m->m_pkthdr.csum_flags = CSUM_TCP; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(sizeof(struct tcphdr) + IPPROTO_TCP + len + optlen)); } /* IP version must be set here for ipv4/ipv6 checking later */ KASSERT(ip->ip_v == IPVERSION, ("%s: IP version incorrect: %d", __func__, ip->ip_v)); } #endif /* * Enable TSO and specify the size of the segments. The TCP pseudo * header checksum is always provided. XXX: Fixme: This is currently * not the case for IPv6. */ if (tso) { KASSERT(len > tp->t_maxseg - optlen, ("%s: len <= tso_segsz", __func__)); m->m_pkthdr.csum_flags |= CSUM_TSO; m->m_pkthdr.tso_segsz = tp->t_maxseg - optlen; } KASSERT(len + hdrlen == m_length(m, NULL), ("%s: mbuf chain different than expected: %d + %u != %u", __func__, len, hdrlen, m_length(m, NULL))); #ifdef TCP_HHOOK /* Run HHOOK_TCP_ESTABLISHED_OUT helper hooks. */ hhook_run_tcp_est_out(tp, th, &to, len, tso); #endif #ifdef TCPDEBUG /* * Trace. */ if (so->so_options & SO_DEBUG) { u_short save = 0; #ifdef INET6 if (!isipv6) #endif { save = ipov->ih_len; ipov->ih_len = htons(m->m_pkthdr.len /* - hdrlen + * (th->th_off << 2) */ ); } tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0); #ifdef INET6 if (!isipv6) #endif ipov->ih_len = save; } #endif /* TCPDEBUG */ /* We're getting ready to send; log now. */ if (tp->t_logstate != TCP_LOG_STATE_OFF) { union tcp_log_stackspecific log; struct timeval tv; memset(&log.u_bbr, 0, sizeof(log.u_bbr)); log.u_bbr.inhpts = rack->rc_inp->inp_in_hpts; log.u_bbr.ininput = rack->rc_inp->inp_in_input; if (rack->rack_no_prr) log.u_bbr.flex1 = 0; else log.u_bbr.flex1 = rack->r_ctl.rc_prr_sndcnt; log.u_bbr.flex2 = rack->r_ctl.rc_pace_min_segs; log.u_bbr.flex3 = rack->r_ctl.rc_pace_max_segs; log.u_bbr.flex4 = orig_len; if (filled_all) log.u_bbr.flex5 = 0x80000000; else log.u_bbr.flex5 = 0; /* Save off the early/late values */ log.u_bbr.flex6 = rack->r_ctl.rc_agg_early; log.u_bbr.applimited = rack->r_ctl.rc_agg_delayed; log.u_bbr.bw_inuse = rack_get_bw(rack); if (rsm || sack_rxmit) { if (doing_tlp) log.u_bbr.flex8 = 2; else log.u_bbr.flex8 = 1; } else { log.u_bbr.flex8 = 0; } log.u_bbr.pacing_gain = rack_get_output_gain(rack, rsm); log.u_bbr.flex7 = mark; log.u_bbr.pkts_out = tp->t_maxseg; log.u_bbr.timeStamp = tcp_get_usecs(&tv); log.u_bbr.inflight = ctf_flight_size(rack->rc_tp, rack->r_ctl.rc_sacked); log.u_bbr.lt_epoch = cwnd_to_use; log.u_bbr.delivered = sendalot; lgb = tcp_log_event_(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_OUT, ERRNO_UNK, len, &log, false, NULL, NULL, 0, &tv); } else lgb = NULL; /* * Fill in IP length and desired time to live and send to IP level. * There should be a better way to handle ttl and tos; we could keep * them in the template, but need a way to checksum without them. */ /* * m->m_pkthdr.len should have been set before cksum calcuration, * because in6_cksum() need it. */ #ifdef INET6 if (isipv6) { /* * we separately set hoplimit for every segment, since the * user might want to change the value via setsockopt. Also, * desired default hop limit might be changed via Neighbor * Discovery. */ ip6->ip6_hlim = in6_selecthlim(inp, NULL); /* * Set the packet size here for the benefit of DTrace * probes. ip6_output() will set it properly; it's supposed * to include the option header lengths as well. */ ip6->ip6_plen = htons(m->m_pkthdr.len - sizeof(*ip6)); if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) tp->t_flags2 |= TF2_PLPMTU_PMTUD; else tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; if (tp->t_state == TCPS_SYN_SENT) TCP_PROBE5(connect__request, NULL, tp, ip6, tp, th); TCP_PROBE5(send, NULL, tp, ip6, tp, th); /* TODO: IPv6 IP6TOS_ECT bit on */ error = ip6_output(m, inp->in6p_outputopts, &inp->inp_route6, ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), NULL, NULL, inp); if (error == EMSGSIZE && inp->inp_route6.ro_nh != NULL) mtu = inp->inp_route6.ro_nh->nh_mtu; } #endif /* INET6 */ #if defined(INET) && defined(INET6) else #endif #ifdef INET { ip->ip_len = htons(m->m_pkthdr.len); #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) ip->ip_ttl = in6_selecthlim(inp, NULL); #endif /* INET6 */ /* * If we do path MTU discovery, then we set DF on every * packet. This might not be the best thing to do according * to RFC3390 Section 2. However the tcp hostcache migitates * the problem so it affects only the first tcp connection * with a host. * * NB: Don't set DF on small MTU/MSS to have a safe * fallback. */ if (V_path_mtu_discovery && tp->t_maxseg > V_tcp_minmss) { tp->t_flags2 |= TF2_PLPMTU_PMTUD; if (tp->t_port == 0 || len < V_tcp_minmss) { ip->ip_off |= htons(IP_DF); } } else { tp->t_flags2 &= ~TF2_PLPMTU_PMTUD; } if (tp->t_state == TCPS_SYN_SENT) TCP_PROBE5(connect__request, NULL, tp, ip, tp, th); TCP_PROBE5(send, NULL, tp, ip, tp, th); error = ip_output(m, inp->inp_options, &inp->inp_route, ((rsm || sack_rxmit) ? IP_NO_SND_TAG_RL : 0), 0, inp); if (error == EMSGSIZE && inp->inp_route.ro_nh != NULL) mtu = inp->inp_route.ro_nh->nh_mtu; } #endif /* INET */ out: if (lgb) { lgb->tlb_errno = error; lgb = NULL; } /* * In transmit state, time the transmission and arrange for the * retransmit. In persist state, just set snd_max. */ if (error == 0) { rack->forced_ack = 0; /* If we send something zap the FA flag */ if (rsm && (doing_tlp == 0)) { /* Set we retransmitted */ rack->rc_gp_saw_rec = 1; } else { if (cwnd_to_use > tp->snd_ssthresh) { /* Set we sent in CA */ rack->rc_gp_saw_ca = 1; } else { /* Set we sent in SS */ rack->rc_gp_saw_ss = 1; } } if (TCPS_HAVEESTABLISHED(tp->t_state) && (tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks > 0) tcp_clean_dsack_blocks(tp); tot_len_this_send += len; if (len == 0) counter_u64_add(rack_out_size[TCP_MSS_ACCT_SNDACK], 1); else if (len == 1) { counter_u64_add(rack_out_size[TCP_MSS_ACCT_PERSIST], 1); } else if (len > 1) { int idx; idx = (len / segsiz) + 3; if (idx >= TCP_MSS_ACCT_ATIMER) counter_u64_add(rack_out_size[(TCP_MSS_ACCT_ATIMER-1)], 1); else counter_u64_add(rack_out_size[idx], 1); } } if (rack->rack_no_prr == 0) { if (sub_from_prr && (error == 0)) { if (rack->r_ctl.rc_prr_sndcnt >= len) rack->r_ctl.rc_prr_sndcnt -= len; else rack->r_ctl.rc_prr_sndcnt = 0; } } sub_from_prr = 0; rack_log_output(tp, &to, len, rack_seq, (uint8_t) flags, error, cts, pass, rsm, us_cts); if ((error == 0) && (len > 0) && (tp->snd_una == tp->snd_max)) rack->r_ctl.rc_tlp_rxt_last_time = cts; /* Now are we in persists? */ if (rack->rc_in_persist == 0) { tcp_seq startseq = tp->snd_nxt; /* Track our lost count */ if (rsm && (doing_tlp == 0)) rack->r_ctl.rc_loss_count += rsm->r_end - rsm->r_start; /* * Advance snd_nxt over sequence space of this segment. */ if (error) /* We don't log or do anything with errors */ goto nomore; if (doing_tlp == 0) { if (rsm == NULL) { /* * Not a retransmission of some * sort, new data is going out so * clear our TLP count and flag. */ rack->rc_tlp_in_progress = 0; rack->r_ctl.rc_tlp_cnt_out = 0; } } else { /* * We have just sent a TLP, mark that it is true * and make sure our in progress is set so we * continue to check the count. */ rack->rc_tlp_in_progress = 1; rack->r_ctl.rc_tlp_cnt_out++; } if (flags & (TH_SYN | TH_FIN)) { if (flags & TH_SYN) tp->snd_nxt++; if (flags & TH_FIN) { tp->snd_nxt++; tp->t_flags |= TF_SENTFIN; } } /* In the ENOBUFS case we do *not* update snd_max */ if (sack_rxmit) goto nomore; tp->snd_nxt += len; if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { if (tp->snd_una == tp->snd_max) { /* * Update the time we just added data since * none was outstanding. */ rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); tp->t_acktime = ticks; } tp->snd_max = tp->snd_nxt; /* * Time this transmission if not a retransmission and * not currently timing anything. * This is only relevant in case of switching back to * the base stack. */ if (tp->t_rtttime == 0) { tp->t_rtttime = ticks; tp->t_rtseq = startseq; KMOD_TCPSTAT_INC(tcps_segstimed); } if (len && ((tp->t_flags & TF_GPUTINPROG) == 0)) rack_start_gp_measurement(tp, rack, startseq, sb_offset); } } else { /* * Persist case, update snd_max but since we are in persist * mode (no window) we do not update snd_nxt. */ int32_t xlen = len; if (error) goto nomore; if (flags & TH_SYN) ++xlen; if (flags & TH_FIN) { ++xlen; tp->t_flags |= TF_SENTFIN; } /* In the ENOBUFS case we do *not* update snd_max */ if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) { if (tp->snd_una == tp->snd_max) { /* * Update the time we just added data since * none was outstanding. */ rack_log_progress_event(rack, tp, ticks, PROGRESS_START, __LINE__); tp->t_acktime = ticks; } tp->snd_max = tp->snd_nxt + len; } } nomore: if (error) { rack->r_ctl.rc_agg_delayed = 0; rack->r_early = 0; rack->r_late = 0; rack->r_ctl.rc_agg_early = 0; SOCKBUF_UNLOCK_ASSERT(sb); /* Check gotos. */ /* * Failures do not advance the seq counter above. For the * case of ENOBUFS we will fall out and retry in 1ms with * the hpts. Everything else will just have to retransmit * with the timer. * * In any case, we do not want to loop around for another * send without a good reason. */ sendalot = 0; switch (error) { case EPERM: tp->t_softerror = error; return (error); case ENOBUFS: if (slot == 0) { /* * Pace us right away to retry in a some * time */ slot = ((1 + rack->rc_enobuf) * HPTS_USEC_IN_MSEC); if (rack->rc_enobuf < 126) rack->rc_enobuf++; if (slot > ((rack->rc_rack_rtt / 2) * HPTS_USEC_IN_MSEC)) { slot = (rack->rc_rack_rtt / 2) * HPTS_USEC_IN_MSEC; } if (slot < (10 * HPTS_USEC_IN_MSEC)) slot = 10 * HPTS_USEC_IN_MSEC; } counter_u64_add(rack_saw_enobuf, 1); error = 0; goto enobufs; case EMSGSIZE: /* * For some reason the interface we used initially * to send segments changed to another or lowered * its MTU. If TSO was active we either got an * interface without TSO capabilits or TSO was * turned off. If we obtained mtu from ip_output() * then update it and try again. */ if (tso) tp->t_flags &= ~TF_TSO; if (mtu != 0) { tcp_mss_update(tp, -1, mtu, NULL, NULL); goto again; } slot = 10 * HPTS_USEC_IN_MSEC; rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); return (error); case ENETUNREACH: counter_u64_add(rack_saw_enetunreach, 1); case EHOSTDOWN: case EHOSTUNREACH: case ENETDOWN: if (TCPS_HAVERCVDSYN(tp->t_state)) { tp->t_softerror = error; } /* FALLTHROUGH */ default: slot = 10 * HPTS_USEC_IN_MSEC; rack_start_hpts_timer(rack, tp, cts, slot, 0, 0); return (error); } } else { rack->rc_enobuf = 0; } KMOD_TCPSTAT_INC(tcps_sndtotal); /* * Data sent (as far as we can tell). If this advertises a larger * window than any other segment, then remember the size of the * advertised window. Any pending ACK has now been sent. */ if (recwin > 0 && SEQ_GT(tp->rcv_nxt + recwin, tp->rcv_adv)) tp->rcv_adv = tp->rcv_nxt + recwin; tp->last_ack_sent = tp->rcv_nxt; tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); enobufs: /* Assure when we leave that snd_nxt will point to top */ if (SEQ_GT(tp->snd_max, tp->snd_nxt)) tp->snd_nxt = tp->snd_max; if (sendalot) { /* Do we need to turn off sendalot? */ if (rack->r_ctl.rc_pace_max_segs && (tot_len_this_send >= rack->r_ctl.rc_pace_max_segs)) { /* We hit our max. */ sendalot = 0; } else if ((rack->rc_user_set_max_segs) && (tot_len_this_send >= (rack->rc_user_set_max_segs * segsiz))) { /* We hit the user defined max */ sendalot = 0; } } if ((error == 0) && (flags & TH_FIN)) tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_FIN); if (flags & TH_RST) { /* * We don't send again after sending a RST. */ slot = 0; sendalot = 0; if (error == 0) tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST); } else if ((slot == 0) && (sendalot == 0) && tot_len_this_send) { /* * Get our pacing rate, if an error * occured in sending (ENOBUF) we would * hit the else if with slot preset. Other * errors return. */ slot = rack_get_pacing_delay(rack, tp, tot_len_this_send, rsm, segsiz); } if (rsm && rack->use_rack_rr) { /* Its a retransmit and we use the rack cheat? */ if ((slot == 0) || (rack->rc_always_pace == 0) || (rack->r_rr_config == 1)) { /* * We have no pacing set or we * are using old-style rack or * we are overriden to use the old 1ms pacing. */ slot = rack->r_ctl.rc_min_to * HPTS_USEC_IN_MSEC; } } if (slot) { /* set the rack tcb into the slot N */ counter_u64_add(rack_paced_segments, 1); } else if (sendalot) { if (len) counter_u64_add(rack_unpaced_segments, 1); sack_rxmit = 0; goto again; } else if (len) { counter_u64_add(rack_unpaced_segments, 1); } rack_start_hpts_timer(rack, tp, cts, slot, tot_len_this_send, 0); return (error); } static void rack_update_seg(struct tcp_rack *rack) { uint32_t orig_val; orig_val = rack->r_ctl.rc_pace_max_segs; rack_set_pace_segments(rack->rc_tp, rack, __LINE__); if (orig_val != rack->r_ctl.rc_pace_max_segs) rack_log_pacing_delay_calc(rack, 0, 0, orig_val, 0, 0, 15, __LINE__, NULL); } /* * rack_ctloutput() must drop the inpcb lock before performing copyin on * socket option arguments. When it re-acquires the lock after the copy, it * has to revalidate that the connection is still valid for the socket * option. */ static int rack_set_sockopt(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack) { struct epoch_tracker et; uint64_t val; int32_t error = 0, optval; uint16_t ca, ss; switch (sopt->sopt_name) { case TCP_RACK_PROP_RATE: /* URL:prop_rate */ case TCP_RACK_PROP : /* URL:prop */ case TCP_RACK_TLP_REDUCE: /* URL:tlp_reduce */ case TCP_RACK_EARLY_RECOV: /* URL:early_recov */ case TCP_RACK_PACE_REDUCE: /* Not used */ /* Pacing related ones */ case TCP_RACK_PACE_ALWAYS: /* URL:pace_always */ case TCP_BBR_RACK_INIT_RATE: /* URL:irate */ case TCP_BBR_IWINTSO: /* URL:tso_iwin */ case TCP_RACK_PACE_MAX_SEG: /* URL:pace_max_seg */ case TCP_RACK_FORCE_MSEG: /* URL:force_max_seg */ case TCP_RACK_PACE_RATE_CA: /* URL:pr_ca */ case TCP_RACK_PACE_RATE_SS: /* URL:pr_ss*/ case TCP_RACK_PACE_RATE_REC: /* URL:pr_rec */ case TCP_RACK_GP_INCREASE_CA: /* URL:gp_inc_ca */ case TCP_RACK_GP_INCREASE_SS: /* URL:gp_inc_ss */ case TCP_RACK_GP_INCREASE_REC: /* URL:gp_inc_rec */ case TCP_RACK_RR_CONF: /* URL:rrr_conf */ case TCP_BBR_HDWR_PACE: /* URL:hdwrpace */ /* End pacing related */ case TCP_DELACK: case TCP_RACK_PRR_SENDALOT: /* URL:prr_sendalot */ case TCP_RACK_MIN_TO: /* URL:min_to */ case TCP_RACK_EARLY_SEG: /* URL:early_seg */ case TCP_RACK_REORD_THRESH: /* URL:reord_thresh */ case TCP_RACK_REORD_FADE: /* URL:reord_fade */ case TCP_RACK_TLP_THRESH: /* URL:tlp_thresh */ case TCP_RACK_PKT_DELAY: /* URL:pkt_delay */ case TCP_RACK_TLP_USE: /* URL:tlp_use */ case TCP_RACK_TLP_INC_VAR: /* URL:tlp_inc_var */ case TCP_RACK_IDLE_REDUCE_HIGH: /* URL:idle_reduce_high */ case TCP_BBR_RACK_RTT_USE: /* URL:rttuse */ case TCP_BBR_USE_RACK_RR: /* URL:rackrr */ case TCP_RACK_DO_DETECTION: /* URL:detect */ case TCP_NO_PRR: /* URL:noprr */ case TCP_TIMELY_DYN_ADJ: /* URL:dynamic */ case TCP_DATA_AFTER_CLOSE: case TCP_RACK_NONRXT_CFG_RATE: /* URL:nonrxtcr */ case TCP_SHARED_CWND_ENABLE: /* URL:scwnd */ case TCP_RACK_MBUF_QUEUE: /* URL:mqueue */ case TCP_RACK_NO_PUSH_AT_MAX: /* URL:npush */ case TCP_RACK_PACE_TO_FILL: /* URL:fillcw */ case TCP_SHARED_CWND_TIME_LIMIT: /* URL:lscwnd */ case TCP_RACK_PROFILE: /* URL:profile */ break; default: return (tcp_default_ctloutput(so, sopt, inp, tp)); break; } INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) return (error); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); rack = (struct tcp_rack *)tp->t_fb_ptr; switch (sopt->sopt_name) { case TCP_RACK_PROFILE: RACK_OPTS_INC(tcp_profile); if (optval == 1) { /* pace_always=1 */ rack->rc_always_pace = 1; tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; /* scwnd=1 */ rack->rack_enable_scwnd = 1; /* dynamic=100 */ rack->rc_gp_dyn_mul = 1; rack->r_ctl.rack_per_of_gp_ca = 100; /* rrr_conf=3 */ rack->r_rr_config = 3; /* npush=2 */ rack->r_ctl.rc_no_push_at_mrtt = 2; /* fillcw=1 */ rack->rc_pace_to_cwnd = 1; rack->rc_pace_fill_if_rttin_range = 0; rack->rtt_limit_mul = 0; /* noprr=1 */ rack->rack_no_prr = 1; /* lscwnd=1 */ rack->r_limit_scw = 1; } else if (optval == 2) { /* pace_always=1 */ rack->rc_always_pace = 1; tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; /* scwnd=1 */ rack->rack_enable_scwnd = 1; /* dynamic=100 */ rack->rc_gp_dyn_mul = 1; rack->r_ctl.rack_per_of_gp_ca = 100; /* rrr_conf=3 */ rack->r_rr_config = 3; /* npush=2 */ rack->r_ctl.rc_no_push_at_mrtt = 2; /* fillcw=1 */ rack->rc_pace_to_cwnd = 1; rack->rc_pace_fill_if_rttin_range = 0; rack->rtt_limit_mul = 0; /* noprr=1 */ rack->rack_no_prr = 1; /* lscwnd=0 */ rack->r_limit_scw = 0; } break; case TCP_SHARED_CWND_TIME_LIMIT: RACK_OPTS_INC(tcp_lscwnd); if (optval) rack->r_limit_scw = 1; else rack->r_limit_scw = 0; break; case TCP_RACK_PACE_TO_FILL: RACK_OPTS_INC(tcp_fillcw); if (optval == 0) rack->rc_pace_to_cwnd = 0; else rack->rc_pace_to_cwnd = 1; if ((optval >= rack_gp_rtt_maxmul) && rack_gp_rtt_maxmul && (optval < 0xf)) { rack->rc_pace_fill_if_rttin_range = 1; rack->rtt_limit_mul = optval; } else { rack->rc_pace_fill_if_rttin_range = 0; rack->rtt_limit_mul = 0; } break; case TCP_RACK_NO_PUSH_AT_MAX: RACK_OPTS_INC(tcp_npush); if (optval == 0) rack->r_ctl.rc_no_push_at_mrtt = 0; else if (optval < 0xff) rack->r_ctl.rc_no_push_at_mrtt = optval; else error = EINVAL; break; case TCP_SHARED_CWND_ENABLE: RACK_OPTS_INC(tcp_rack_scwnd); if (optval == 0) rack->rack_enable_scwnd = 0; else rack->rack_enable_scwnd = 1; break; case TCP_RACK_MBUF_QUEUE: /* Now do we use the LRO mbuf-queue feature */ RACK_OPTS_INC(tcp_rack_mbufq); if (optval) rack->r_mbuf_queue = 1; else rack->r_mbuf_queue = 0; if (rack->r_mbuf_queue || rack->rc_always_pace) tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; else tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; break; case TCP_RACK_NONRXT_CFG_RATE: RACK_OPTS_INC(tcp_rack_cfg_rate); if (optval == 0) rack->rack_rec_nonrxt_use_cr = 0; else rack->rack_rec_nonrxt_use_cr = 1; break; case TCP_NO_PRR: RACK_OPTS_INC(tcp_rack_noprr); if (optval == 0) rack->rack_no_prr = 0; else rack->rack_no_prr = 1; break; case TCP_TIMELY_DYN_ADJ: RACK_OPTS_INC(tcp_timely_dyn); if (optval == 0) rack->rc_gp_dyn_mul = 0; else { rack->rc_gp_dyn_mul = 1; if (optval >= 100) { /* * If the user sets something 100 or more * its the gp_ca value. */ rack->r_ctl.rack_per_of_gp_ca = optval; } } break; case TCP_RACK_DO_DETECTION: RACK_OPTS_INC(tcp_rack_do_detection); if (optval == 0) rack->do_detection = 0; else rack->do_detection = 1; break; case TCP_RACK_PROP_RATE: if ((optval <= 0) || (optval >= 100)) { error = EINVAL; break; } RACK_OPTS_INC(tcp_rack_prop_rate); rack->r_ctl.rc_prop_rate = optval; break; case TCP_RACK_TLP_USE: if ((optval < TLP_USE_ID) || (optval > TLP_USE_TWO_TWO)) { error = EINVAL; break; } RACK_OPTS_INC(tcp_tlp_use); rack->rack_tlp_threshold_use = optval; break; case TCP_RACK_PROP: /* RACK proportional rate reduction (bool) */ RACK_OPTS_INC(tcp_rack_prop); rack->r_ctl.rc_prop_reduce = optval; break; case TCP_RACK_TLP_REDUCE: /* RACK TLP cwnd reduction (bool) */ RACK_OPTS_INC(tcp_rack_tlp_reduce); rack->r_ctl.rc_tlp_cwnd_reduce = optval; break; case TCP_RACK_EARLY_RECOV: /* Should recovery happen early (bool) */ RACK_OPTS_INC(tcp_rack_early_recov); rack->r_ctl.rc_early_recovery = optval; break; /* Pacing related ones */ case TCP_RACK_PACE_ALWAYS: /* * zero is old rack method, 1 is new * method using a pacing rate. */ RACK_OPTS_INC(tcp_rack_pace_always); if (optval > 0) rack->rc_always_pace = 1; else rack->rc_always_pace = 0; if (rack->r_mbuf_queue || rack->rc_always_pace) tp->t_inpcb->inp_flags2 |= INP_SUPPORTS_MBUFQ; else tp->t_inpcb->inp_flags2 &= ~INP_SUPPORTS_MBUFQ; /* A rate may be set irate or other, if so set seg size */ rack_update_seg(rack); break; case TCP_BBR_RACK_INIT_RATE: RACK_OPTS_INC(tcp_initial_rate); val = optval; /* Change from kbits per second to bytes per second */ val *= 1000; val /= 8; rack->r_ctl.init_rate = val; if (rack->rc_init_win != rack_default_init_window) { uint32_t win, snt; /* * Options don't always get applied * in the order you think. So in order * to assure we update a cwnd we need * to check and see if we are still * where we should raise the cwnd. */ win = rc_init_window(rack); if (SEQ_GT(tp->snd_max, tp->iss)) snt = tp->snd_max - tp->iss; else snt = 0; if ((snt < win) && (tp->snd_cwnd < win)) tp->snd_cwnd = win; } if (rack->rc_always_pace) rack_update_seg(rack); break; case TCP_BBR_IWINTSO: RACK_OPTS_INC(tcp_initial_win); if (optval && (optval <= 0xff)) { uint32_t win, snt; rack->rc_init_win = optval; win = rc_init_window(rack); if (SEQ_GT(tp->snd_max, tp->iss)) snt = tp->snd_max - tp->iss; else snt = 0; if ((snt < win) && (tp->t_srtt | #ifdef NETFLIX_PEAKRATE tp->t_maxpeakrate | #endif rack->r_ctl.init_rate)) { /* * We are not past the initial window * and we have some bases for pacing, * so we need to possibly adjust up * the cwnd. Note even if we don't set * the cwnd, its still ok to raise the rc_init_win * which can be used coming out of idle when we * would have a rate. */ if (tp->snd_cwnd < win) tp->snd_cwnd = win; } if (rack->rc_always_pace) rack_update_seg(rack); } else error = EINVAL; break; case TCP_RACK_FORCE_MSEG: RACK_OPTS_INC(tcp_rack_force_max_seg); if (optval) rack->rc_force_max_seg = 1; else rack->rc_force_max_seg = 0; break; case TCP_RACK_PACE_MAX_SEG: /* Max segments size in a pace in bytes */ RACK_OPTS_INC(tcp_rack_max_seg); rack->rc_user_set_max_segs = optval; rack_set_pace_segments(tp, rack, __LINE__); break; case TCP_RACK_PACE_RATE_REC: /* Set the fixed pacing rate in Bytes per second ca */ RACK_OPTS_INC(tcp_rack_pace_rate_rec); rack->r_ctl.rc_fixed_pacing_rate_rec = optval; if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) rack->r_ctl.rc_fixed_pacing_rate_ca = optval; if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) rack->r_ctl.rc_fixed_pacing_rate_ss = optval; rack->use_fixed_rate = 1; rack_log_pacing_delay_calc(rack, rack->r_ctl.rc_fixed_pacing_rate_ss, rack->r_ctl.rc_fixed_pacing_rate_ca, rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, __LINE__, NULL); break; case TCP_RACK_PACE_RATE_SS: /* Set the fixed pacing rate in Bytes per second ca */ RACK_OPTS_INC(tcp_rack_pace_rate_ss); rack->r_ctl.rc_fixed_pacing_rate_ss = optval; if (rack->r_ctl.rc_fixed_pacing_rate_ca == 0) rack->r_ctl.rc_fixed_pacing_rate_ca = optval; if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) rack->r_ctl.rc_fixed_pacing_rate_rec = optval; rack->use_fixed_rate = 1; rack_log_pacing_delay_calc(rack, rack->r_ctl.rc_fixed_pacing_rate_ss, rack->r_ctl.rc_fixed_pacing_rate_ca, rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, __LINE__, NULL); break; case TCP_RACK_PACE_RATE_CA: /* Set the fixed pacing rate in Bytes per second ca */ RACK_OPTS_INC(tcp_rack_pace_rate_ca); rack->r_ctl.rc_fixed_pacing_rate_ca = optval; if (rack->r_ctl.rc_fixed_pacing_rate_ss == 0) rack->r_ctl.rc_fixed_pacing_rate_ss = optval; if (rack->r_ctl.rc_fixed_pacing_rate_rec == 0) rack->r_ctl.rc_fixed_pacing_rate_rec = optval; rack->use_fixed_rate = 1; rack_log_pacing_delay_calc(rack, rack->r_ctl.rc_fixed_pacing_rate_ss, rack->r_ctl.rc_fixed_pacing_rate_ca, rack->r_ctl.rc_fixed_pacing_rate_rec, 0, 0, 8, __LINE__, NULL); break; case TCP_RACK_GP_INCREASE_REC: RACK_OPTS_INC(tcp_gp_inc_rec); rack->r_ctl.rack_per_of_gp_rec = optval; rack_log_pacing_delay_calc(rack, rack->r_ctl.rack_per_of_gp_ss, rack->r_ctl.rack_per_of_gp_ca, rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, __LINE__, NULL); break; case TCP_RACK_GP_INCREASE_CA: RACK_OPTS_INC(tcp_gp_inc_ca); ca = optval; if (ca < 100) { /* * We don't allow any reduction * over the GP b/w. */ error = EINVAL; break; } rack->r_ctl.rack_per_of_gp_ca = ca; rack_log_pacing_delay_calc(rack, rack->r_ctl.rack_per_of_gp_ss, rack->r_ctl.rack_per_of_gp_ca, rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, __LINE__, NULL); break; case TCP_RACK_GP_INCREASE_SS: RACK_OPTS_INC(tcp_gp_inc_ss); ss = optval; if (ss < 100) { /* * We don't allow any reduction * over the GP b/w. */ error = EINVAL; break; } rack->r_ctl.rack_per_of_gp_ss = ss; rack_log_pacing_delay_calc(rack, rack->r_ctl.rack_per_of_gp_ss, rack->r_ctl.rack_per_of_gp_ca, rack->r_ctl.rack_per_of_gp_rec, 0, 0, 1, __LINE__, NULL); break; case TCP_RACK_RR_CONF: RACK_OPTS_INC(tcp_rack_rrr_no_conf_rate); if (optval && optval <= 3) rack->r_rr_config = optval; else rack->r_rr_config = 0; break; case TCP_BBR_HDWR_PACE: RACK_OPTS_INC(tcp_hdwr_pacing); if (optval){ if (rack->rack_hdrw_pacing == 0) { rack->rack_hdw_pace_ena = 1; rack->rack_attempt_hdwr_pace = 0; } else error = EALREADY; } else { rack->rack_hdw_pace_ena = 0; #ifdef RATELIMIT if (rack->rack_hdrw_pacing) { rack->rack_hdrw_pacing = 0; in_pcbdetach_txrtlmt(rack->rc_inp); } #endif } break; /* End Pacing related ones */ case TCP_RACK_PRR_SENDALOT: /* Allow PRR to send more than one seg */ RACK_OPTS_INC(tcp_rack_prr_sendalot); rack->r_ctl.rc_prr_sendalot = optval; break; case TCP_RACK_MIN_TO: /* Minimum time between rack t-o's in ms */ RACK_OPTS_INC(tcp_rack_min_to); rack->r_ctl.rc_min_to = optval; break; case TCP_RACK_EARLY_SEG: /* If early recovery max segments */ RACK_OPTS_INC(tcp_rack_early_seg); rack->r_ctl.rc_early_recovery_segs = optval; break; case TCP_RACK_REORD_THRESH: /* RACK reorder threshold (shift amount) */ RACK_OPTS_INC(tcp_rack_reord_thresh); if ((optval > 0) && (optval < 31)) rack->r_ctl.rc_reorder_shift = optval; else error = EINVAL; break; case TCP_RACK_REORD_FADE: /* Does reordering fade after ms time */ RACK_OPTS_INC(tcp_rack_reord_fade); rack->r_ctl.rc_reorder_fade = optval; break; case TCP_RACK_TLP_THRESH: /* RACK TLP theshold i.e. srtt+(srtt/N) */ RACK_OPTS_INC(tcp_rack_tlp_thresh); if (optval) rack->r_ctl.rc_tlp_threshold = optval; else error = EINVAL; break; case TCP_BBR_USE_RACK_RR: RACK_OPTS_INC(tcp_rack_rr); if (optval) rack->use_rack_rr = 1; else rack->use_rack_rr = 0; break; case TCP_RACK_PKT_DELAY: /* RACK added ms i.e. rack-rtt + reord + N */ RACK_OPTS_INC(tcp_rack_pkt_delay); rack->r_ctl.rc_pkt_delay = optval; break; case TCP_RACK_TLP_INC_VAR: /* Does TLP include rtt variance in t-o */ error = EINVAL; break; case TCP_RACK_IDLE_REDUCE_HIGH: error = EINVAL; break; case TCP_DELACK: if (optval == 0) tp->t_delayed_ack = 0; else tp->t_delayed_ack = 1; if (tp->t_flags & TF_DELACK) { tp->t_flags &= ~TF_DELACK; tp->t_flags |= TF_ACKNOW; NET_EPOCH_ENTER(et); rack_output(tp); NET_EPOCH_EXIT(et); } break; case TCP_BBR_RACK_RTT_USE: if ((optval != USE_RTT_HIGH) && (optval != USE_RTT_LOW) && (optval != USE_RTT_AVG)) error = EINVAL; else rack->r_ctl.rc_rate_sample_method = optval; break; case TCP_DATA_AFTER_CLOSE: if (optval) rack->rc_allow_data_af_clo = 1; else rack->rc_allow_data_af_clo = 0; break; case TCP_RACK_PACE_REDUCE: /* sysctl only now */ error = EINVAL; break; default: return (tcp_default_ctloutput(so, sopt, inp, tp)); break; } #ifdef NETFLIX_STATS tcp_log_socket_option(tp, sopt->sopt_name, optval, error); #endif INP_WUNLOCK(inp); return (error); } static int rack_get_sockopt(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp, struct tcp_rack *rack) { int32_t error, optval; uint64_t val; /* * Because all our options are either boolean or an int, we can just * pull everything into optval and then unlock and copy. If we ever * add a option that is not a int, then this will have quite an * impact to this routine. */ error = 0; switch (sopt->sopt_name) { case TCP_RACK_PROFILE: /* You cannot retrieve a profile, its write only */ error = EINVAL; break; case TCP_RACK_PACE_TO_FILL: optval = rack->rc_pace_to_cwnd; break; case TCP_RACK_NO_PUSH_AT_MAX: optval = rack->r_ctl.rc_no_push_at_mrtt; break; case TCP_SHARED_CWND_ENABLE: optval = rack->rack_enable_scwnd; break; case TCP_RACK_NONRXT_CFG_RATE: optval = rack->rack_rec_nonrxt_use_cr; break; case TCP_NO_PRR: optval = rack->rack_no_prr; break; case TCP_RACK_DO_DETECTION: optval = rack->do_detection; break; case TCP_RACK_MBUF_QUEUE: /* Now do we use the LRO mbuf-queue feature */ optval = rack->r_mbuf_queue; break; case TCP_TIMELY_DYN_ADJ: optval = rack->rc_gp_dyn_mul; break; case TCP_BBR_IWINTSO: optval = rack->rc_init_win; break; case TCP_RACK_PROP_RATE: optval = rack->r_ctl.rc_prop_rate; break; case TCP_RACK_PROP: /* RACK proportional rate reduction (bool) */ optval = rack->r_ctl.rc_prop_reduce; break; case TCP_RACK_TLP_REDUCE: /* RACK TLP cwnd reduction (bool) */ optval = rack->r_ctl.rc_tlp_cwnd_reduce; break; case TCP_RACK_EARLY_RECOV: /* Should recovery happen early (bool) */ optval = rack->r_ctl.rc_early_recovery; break; case TCP_RACK_PACE_REDUCE: /* RACK Hptsi reduction factor (divisor) */ error = EINVAL; break; case TCP_BBR_RACK_INIT_RATE: val = rack->r_ctl.init_rate; /* convert to kbits per sec */ val *= 8; val /= 1000; optval = (uint32_t)val; break; case TCP_RACK_FORCE_MSEG: optval = rack->rc_force_max_seg; break; case TCP_RACK_PACE_MAX_SEG: /* Max segments in a pace */ optval = rack->rc_user_set_max_segs; break; case TCP_RACK_PACE_ALWAYS: /* Use the always pace method */ optval = rack->rc_always_pace; break; case TCP_RACK_PRR_SENDALOT: /* Allow PRR to send more than one seg */ optval = rack->r_ctl.rc_prr_sendalot; break; case TCP_RACK_MIN_TO: /* Minimum time between rack t-o's in ms */ optval = rack->r_ctl.rc_min_to; break; case TCP_RACK_EARLY_SEG: /* If early recovery max segments */ optval = rack->r_ctl.rc_early_recovery_segs; break; case TCP_RACK_REORD_THRESH: /* RACK reorder threshold (shift amount) */ optval = rack->r_ctl.rc_reorder_shift; break; case TCP_RACK_REORD_FADE: /* Does reordering fade after ms time */ optval = rack->r_ctl.rc_reorder_fade; break; case TCP_BBR_USE_RACK_RR: /* Do we use the rack cheat for rxt */ optval = rack->use_rack_rr; break; case TCP_RACK_RR_CONF: optval = rack->r_rr_config; break; case TCP_BBR_HDWR_PACE: optval = rack->rack_hdw_pace_ena; break; case TCP_RACK_TLP_THRESH: /* RACK TLP theshold i.e. srtt+(srtt/N) */ optval = rack->r_ctl.rc_tlp_threshold; break; case TCP_RACK_PKT_DELAY: /* RACK added ms i.e. rack-rtt + reord + N */ optval = rack->r_ctl.rc_pkt_delay; break; case TCP_RACK_TLP_USE: optval = rack->rack_tlp_threshold_use; break; case TCP_RACK_TLP_INC_VAR: /* Does TLP include rtt variance in t-o */ error = EINVAL; break; case TCP_RACK_IDLE_REDUCE_HIGH: error = EINVAL; break; case TCP_RACK_PACE_RATE_CA: optval = rack->r_ctl.rc_fixed_pacing_rate_ca; break; case TCP_RACK_PACE_RATE_SS: optval = rack->r_ctl.rc_fixed_pacing_rate_ss; break; case TCP_RACK_PACE_RATE_REC: optval = rack->r_ctl.rc_fixed_pacing_rate_rec; break; case TCP_RACK_GP_INCREASE_SS: optval = rack->r_ctl.rack_per_of_gp_ca; break; case TCP_RACK_GP_INCREASE_CA: optval = rack->r_ctl.rack_per_of_gp_ss; break; case TCP_BBR_RACK_RTT_USE: optval = rack->r_ctl.rc_rate_sample_method; break; case TCP_DELACK: optval = tp->t_delayed_ack; break; case TCP_DATA_AFTER_CLOSE: optval = rack->rc_allow_data_af_clo; break; case TCP_SHARED_CWND_TIME_LIMIT: optval = rack->r_limit_scw; break; default: return (tcp_default_ctloutput(so, sopt, inp, tp)); break; } INP_WUNLOCK(inp); if (error == 0) { error = sooptcopyout(sopt, &optval, sizeof optval); } return (error); } static int rack_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp) { int32_t error = EINVAL; struct tcp_rack *rack; rack = (struct tcp_rack *)tp->t_fb_ptr; if (rack == NULL) { /* Huh? */ goto out; } if (sopt->sopt_dir == SOPT_SET) { return (rack_set_sockopt(so, sopt, inp, tp, rack)); } else if (sopt->sopt_dir == SOPT_GET) { return (rack_get_sockopt(so, sopt, inp, tp, rack)); } out: INP_WUNLOCK(inp); return (error); } static int rack_pru_options(struct tcpcb *tp, int flags) { if (flags & PRUS_OOB) return (EOPNOTSUPP); return (0); } static struct tcp_function_block __tcp_rack = { .tfb_tcp_block_name = __XSTRING(STACKNAME), .tfb_tcp_output = rack_output, .tfb_do_queued_segments = ctf_do_queued_segments, .tfb_do_segment_nounlock = rack_do_segment_nounlock, .tfb_tcp_do_segment = rack_do_segment, .tfb_tcp_ctloutput = rack_ctloutput, .tfb_tcp_fb_init = rack_init, .tfb_tcp_fb_fini = rack_fini, .tfb_tcp_timer_stop_all = rack_stopall, .tfb_tcp_timer_activate = rack_timer_activate, .tfb_tcp_timer_active = rack_timer_active, .tfb_tcp_timer_stop = rack_timer_stop, .tfb_tcp_rexmit_tmr = rack_remxt_tmr, .tfb_tcp_handoff_ok = rack_handoff_ok, .tfb_pru_options = rack_pru_options, }; static const char *rack_stack_names[] = { __XSTRING(STACKNAME), #ifdef STACKALIAS __XSTRING(STACKALIAS), #endif }; static int rack_ctor(void *mem, int32_t size, void *arg, int32_t how) { memset(mem, 0, size); return (0); } static void rack_dtor(void *mem, int32_t size, void *arg) { } static bool rack_mod_inited = false; static int tcp_addrack(module_t mod, int32_t type, void *data) { int32_t err = 0; int num_stacks; switch (type) { case MOD_LOAD: rack_zone = uma_zcreate(__XSTRING(MODNAME) "_map", sizeof(struct rack_sendmap), rack_ctor, rack_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); rack_pcb_zone = uma_zcreate(__XSTRING(MODNAME) "_pcb", sizeof(struct tcp_rack), rack_ctor, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); sysctl_ctx_init(&rack_sysctl_ctx); rack_sysctl_root = SYSCTL_ADD_NODE(&rack_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_net_inet_tcp), OID_AUTO, #ifdef STACKALIAS __XSTRING(STACKALIAS), #else __XSTRING(STACKNAME), #endif CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); if (rack_sysctl_root == NULL) { printf("Failed to add sysctl node\n"); err = EFAULT; goto free_uma; } rack_init_sysctls(); num_stacks = nitems(rack_stack_names); err = register_tcp_functions_as_names(&__tcp_rack, M_WAITOK, rack_stack_names, &num_stacks); if (err) { printf("Failed to register %s stack name for " "%s module\n", rack_stack_names[num_stacks], __XSTRING(MODNAME)); sysctl_ctx_free(&rack_sysctl_ctx); free_uma: uma_zdestroy(rack_zone); uma_zdestroy(rack_pcb_zone); rack_counter_destroy(); printf("Failed to register rack module -- err:%d\n", err); return (err); } tcp_lro_reg_mbufq(); rack_mod_inited = true; break; case MOD_QUIESCE: err = deregister_tcp_functions(&__tcp_rack, true, false); break; case MOD_UNLOAD: err = deregister_tcp_functions(&__tcp_rack, false, true); if (err == EBUSY) break; if (rack_mod_inited) { uma_zdestroy(rack_zone); uma_zdestroy(rack_pcb_zone); sysctl_ctx_free(&rack_sysctl_ctx); rack_counter_destroy(); rack_mod_inited = false; } tcp_lro_dereg_mbufq(); err = 0; break; default: return (EOPNOTSUPP); } return (err); } static moduledata_t tcp_rack = { .name = __XSTRING(MODNAME), .evhand = tcp_addrack, .priv = 0 }; MODULE_VERSION(MODNAME, 1); DECLARE_MODULE(MODNAME, tcp_rack, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY); MODULE_DEPEND(MODNAME, tcphpts, 1, 1, 1);