Index: head/sys/arm/allwinner/aw_cir.c
===================================================================
--- head/sys/arm/allwinner/aw_cir.c	(revision 364147)
+++ head/sys/arm/allwinner/aw_cir.c	(revision 364148)
@@ -1,551 +1,553 @@
 /*-
  * Copyright (c) 2016 Ganbold Tsagaankhuu <ganbold@freebsd.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * Allwinner Consumer IR controller
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/bus.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 #include <sys/rman.h>
 #include <sys/sysctl.h>
 #include <machine/bus.h>
 
 #include <dev/ofw/openfirm.h>
 #include <dev/ofw/ofw_bus.h>
 #include <dev/ofw/ofw_bus_subr.h>
 #include <dev/extres/clk/clk.h>
 #include <dev/extres/hwreset/hwreset.h>
 
 #include <dev/evdev/input.h>
 #include <dev/evdev/evdev.h>
 
 #define	READ(_sc, _r)		bus_read_4((_sc)->res[0], (_r))
 #define	WRITE(_sc, _r, _v)	bus_write_4((_sc)->res[0], (_r), (_v))
 
 /* IR Control */
 #define	AW_IR_CTL			0x00
 /* Global Enable */
 #define	 AW_IR_CTL_GEN			(1 << 0)
 /* RX enable */
 #define	 AW_IR_CTL_RXEN			(1 << 1)
 /* CIR mode enable */
 #define	 AW_IR_CTL_MD			(1 << 4) | (1 << 5)
 
 /* RX Config Reg */
 #define	AW_IR_RXCTL			0x10
 /* Pulse Polarity Invert flag */
 #define	 AW_IR_RXCTL_RPPI		(1 << 2)
 
 /* RX Data */
 #define	AW_IR_RXFIFO			0x20
 
 /* RX Interrupt Control */
 #define	AW_IR_RXINT			0x2C
 /* RX FIFO Overflow */
 #define	 AW_IR_RXINT_ROI_EN		(1 << 0)
 /* RX Packet End */
 #define	 AW_IR_RXINT_RPEI_EN		(1 << 1)
 /* RX FIFO Data Available */
 #define	 AW_IR_RXINT_RAI_EN		(1 << 4)
 /* RX FIFO available byte level */
 #define	 AW_IR_RXINT_RAL(val)		((val) << 8)
 
 /* RX Interrupt Status Reg */
 #define	AW_IR_RXSTA			0x30
 /* RX FIFO Get Available Counter */
 #define	 AW_IR_RXSTA_COUNTER(val)	(((val) >> 8) & (sc->fifo_size * 2 - 1))
 /* Clear all interrupt status */
 #define	 AW_IR_RXSTA_CLEARALL		0xff
 
 /* IR Sample Configure Reg */
 #define	AW_IR_CIR			0x34
 
 /*
  * Frequency sample: 23437.5Hz (Cycle: 42.7us)
  * Pulse of NEC Remote > 560us
  */
 /* Filter Threshold = 8 * 42.7 = ~341us < 500us */
 #define	 AW_IR_RXFILT_VAL		(((8) & 0x3f) << 2)
 /* Idle Threshold = (2 + 1) * 128 * 42.7 = ~16.4ms > 9ms */
 #define	 AW_IR_RXIDLE_VAL		(((2) & 0xff) << 8)
 
 /* Bit 15 - value (pulse/space) */
 #define	VAL_MASK			0x80
 /* Bits 0:14 - sample duration  */
 #define	PERIOD_MASK			0x7f
 
 /* Clock rate for IR0 or IR1 clock in CIR mode */
 #define	AW_IR_BASE_CLK			3000000
 /* Frequency sample 3MHz/64 = 46875Hz (21.3us) */
 #define	AW_IR_SAMPLE_64			(0 << 0)
 /* Frequency sample 3MHz/128 = 23437.5Hz (42.7us) */
 #define	AW_IR_SAMPLE_128		(1 << 0)
 
 #define	AW_IR_ERROR_CODE		0xffffffff
 #define	AW_IR_REPEAT_CODE		0x0
 
 /* 80 * 42.7 = ~3.4ms, Lead1(4.5ms) > AW_IR_L1_MIN */
 #define	AW_IR_L1_MIN			80
 /* 40 * 42.7 = ~1.7ms, Lead0(4.5ms) Lead0R(2.25ms) > AW_IR_L0_MIN */
 #define	AW_IR_L0_MIN			40
 /* 26 * 42.7 = ~1109us ~= 561 * 2, Pulse < AW_IR_PMAX */
 #define	AW_IR_PMAX			26
 /* 26 * 42.7 = ~1109us ~= 561 * 2, D1 > AW_IR_DMID, D0 <= AW_IR_DMID */
 #define	AW_IR_DMID			26
 /* 53 * 42.7 = ~2263us ~= 561 * 4, D < AW_IR_DMAX */
 #define	AW_IR_DMAX			53
 
 /* Active Thresholds */
-#define	AW_IR_ACTIVE_T			((0 & 0xff) << 16)
-#define	AW_IR_ACTIVE_T_C		((1 & 0xff) << 23)
+#define	AW_IR_ACTIVE_T_VAL		AW_IR_L1_MIN
+#define	AW_IR_ACTIVE_T			(((AW_IR_ACTIVE_T_VAL - 1) & 0xff) << 16)
+#define	AW_IR_ACTIVE_T_C_VAL		0
+#define	AW_IR_ACTIVE_T_C		((AW_IR_ACTIVE_T_C_VAL & 0xff) << 23)
 
 /* Code masks */
 #define	CODE_MASK			0x00ff00ff
 #define	INV_CODE_MASK			0xff00ff00
 #define	VALID_CODE_MASK			0x00ff0000
 
 enum {
 	A10_IR = 1,
 	A13_IR,
 	A31_IR,
 };
 
 #define	AW_IR_RAW_BUF_SIZE		128
 
 struct aw_ir_softc {
 	device_t		dev;
 	struct resource		*res[2];
 	void *			intrhand;
 	int			fifo_size;
 	int			dcnt;	/* Packet Count */
 	unsigned char		buf[AW_IR_RAW_BUF_SIZE];
 	struct evdev_dev	*sc_evdev;
 };
 
 static struct resource_spec aw_ir_spec[] = {
 	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
 	{ SYS_RES_IRQ,		0,	RF_ACTIVE | RF_SHAREABLE },
 	{ -1, 0 }
 };
 
 static struct ofw_compat_data compat_data[] = {
 	{ "allwinner,sun4i-a10-ir",	A10_IR },
 	{ "allwinner,sun5i-a13-ir",	A13_IR },
 	{ "allwinner,sun6i-a31-ir",	A31_IR },
 	{ NULL,				0 }
 };
 
 static void
 aw_ir_buf_reset(struct aw_ir_softc *sc)
 {
 
 	sc->dcnt = 0;
 }
 
 static void
 aw_ir_buf_write(struct aw_ir_softc *sc, unsigned char data)
 {
 
 	if (sc->dcnt < AW_IR_RAW_BUF_SIZE)
 		sc->buf[sc->dcnt++] = data;
 	else
 		if (bootverbose)
 			device_printf(sc->dev, "IR RX Buffer Full!\n");
 }
 
 static int
 aw_ir_buf_full(struct aw_ir_softc *sc)
 {
 
 	return (sc->dcnt >= AW_IR_RAW_BUF_SIZE);
 }
 
 static unsigned char
 aw_ir_read_data(struct aw_ir_softc *sc)
 {
 
 	return (unsigned char)(READ(sc, AW_IR_RXFIFO) & 0xff);
 }
 
 static unsigned long
 aw_ir_decode_packets(struct aw_ir_softc *sc)
 {
 	unsigned long len, code;
 	unsigned char val, last;
 	unsigned int active_delay;
 	int i, bitcount;
 
 	if (bootverbose)
 		device_printf(sc->dev, "sc->dcnt = %d\n", sc->dcnt);
 
 	/* Find Lead 1 (bit separator) */
-	active_delay = (AW_IR_ACTIVE_T + 1) * (AW_IR_ACTIVE_T_C != 0 ? 128 : 1);
-	len = 0;
-	len += (active_delay >> 1);
+	active_delay = AW_IR_ACTIVE_T_VAL *
+	    (AW_IR_ACTIVE_T_C_VAL != 0 ? 128 : 1);
+	len = active_delay;
 	if (bootverbose)
 		device_printf(sc->dev, "Initial len: %ld\n", len);
 	for (i = 0;  i < sc->dcnt; i++) {
 		val = sc->buf[i];
 		if (val & VAL_MASK)
 			len += val & PERIOD_MASK;
 		else {
 			if (len > AW_IR_L1_MIN)
 				break;
 			len = 0;
 		}
 	}
 	if (bootverbose)
 		device_printf(sc->dev, "len = %ld\n", len);
 	if ((val & VAL_MASK) || (len <= AW_IR_L1_MIN)) {
 		if (bootverbose)
 			device_printf(sc->dev, "Bit separator error\n");
 		goto error_code;
 	}
 
 	/* Find Lead 0 (bit length) */
 	len = 0;
 	for (; i < sc->dcnt; i++) {
 		val = sc->buf[i];
 		if (val & VAL_MASK) {
 			if(len > AW_IR_L0_MIN)
 				break;
 			len = 0;
 		} else
 			len += val & PERIOD_MASK;
 	}
 	if ((!(val & VAL_MASK)) || (len <= AW_IR_L0_MIN)) {
 		if (bootverbose)
 			device_printf(sc->dev, "Bit length error\n");
 		goto error_code;
 	}
 
 	/* Start decoding */
 	code = 0;
 	bitcount = 0;
 	last = 1;
 	len = 0;
 	for (; i < sc->dcnt; i++) {
 		val = sc->buf[i];
 		if (last) {
 			if (val & VAL_MASK)
 				len += val & PERIOD_MASK;
 			else {
 				if (len > AW_IR_PMAX) {
 					if (bootverbose)
 						device_printf(sc->dev,
 						    "Pulse error\n");
 					goto error_code;
 				}
 				last = 0;
 				len = val & PERIOD_MASK;
 			}
 		} else {
 			if (val & VAL_MASK) {
 				if (len > AW_IR_DMAX) {
 					if (bootverbose)
 						device_printf(sc->dev,
 						    "Distant error\n");
 					goto error_code;
 				} else {
 					if (len > AW_IR_DMID) {
 						/* Decode */
 						code |= 1 << bitcount;
 					}
 					bitcount++;
 					if (bitcount == 32)
 						break;  /* Finish decoding */
 				}
 				last = 1;
 				len = val & PERIOD_MASK;
 			} else
 				len += val & PERIOD_MASK;
 		}
 	}
 	return (code);
 
 error_code:
 
 	return (AW_IR_ERROR_CODE);
 }
 
 static int
 aw_ir_validate_code(unsigned long code)
 {
 	unsigned long v1, v2;
 
 	/* Don't check address */
 	v1 = code & CODE_MASK;
 	v2 = (code & INV_CODE_MASK) >> 8;
 
 	if (((v1 ^ v2) & VALID_CODE_MASK) == VALID_CODE_MASK)
 		return (0);	/* valid */
 	else
 		return (1);	/* invalid */
 }
 
 static void
 aw_ir_intr(void *arg)
 {
 	struct aw_ir_softc *sc;
 	uint32_t val;
 	int i, dcnt;
 	unsigned long ir_code;
 	int stat;
 
 	sc = (struct aw_ir_softc *)arg;
 
 	/* Read RX interrupt status */
 	val = READ(sc, AW_IR_RXSTA);
 	if (bootverbose)
 		device_printf(sc->dev, "RX interrupt status: %x\n", val);
 
 	/* Clean all pending interrupt statuses */
 	WRITE(sc, AW_IR_RXSTA, val | AW_IR_RXSTA_CLEARALL);
 
 	/* When Rx FIFO Data available or Packet end */
 	if (val & (AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RPEI_EN)) {
 		if (bootverbose)
 			device_printf(sc->dev,
 			    "RX FIFO Data available or Packet end\n");
 		/* Get available message count in RX FIFO */
 		dcnt  = AW_IR_RXSTA_COUNTER(val);
 		/* Read FIFO */
 		for (i = 0; i < dcnt; i++) {
 			if (aw_ir_buf_full(sc)) {
 				if (bootverbose)
 					device_printf(sc->dev,
 					    "raw buffer full\n");
 				break;
 			} else
 				aw_ir_buf_write(sc, aw_ir_read_data(sc));
 		}
 	}
 
 	if (val & AW_IR_RXINT_RPEI_EN) {
 		/* RX Packet end */
 		if (bootverbose)
 			device_printf(sc->dev, "RX Packet end\n");
 		ir_code = aw_ir_decode_packets(sc);
 		stat = aw_ir_validate_code(ir_code);
 		if (stat == 0) {
 			evdev_push_event(sc->sc_evdev,
 			    EV_MSC, MSC_SCAN, ir_code);
 			evdev_sync(sc->sc_evdev);
 		}
 		if (bootverbose) {
 			device_printf(sc->dev, "Final IR code: %lx\n",
 			    ir_code);
 			device_printf(sc->dev, "IR code status: %d\n",
 			    stat);
 		}
 		aw_ir_buf_reset(sc);
 	}
 	if (val & AW_IR_RXINT_ROI_EN) {
 		/* RX FIFO overflow */
 		if (bootverbose)
 			device_printf(sc->dev, "RX FIFO overflow\n");
 		/* Flush raw buffer */
 		aw_ir_buf_reset(sc);
 	}
 }
 
 static int
 aw_ir_probe(device_t dev)
 {
 
 	if (!ofw_bus_status_okay(dev))
 		return (ENXIO);
 
 	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
 		return (ENXIO);
 
 	device_set_desc(dev, "Allwinner CIR controller");
 	return (BUS_PROBE_DEFAULT);
 }
 
 static int
 aw_ir_attach(device_t dev)
 {
 	struct aw_ir_softc *sc;
 	hwreset_t rst_apb;
 	clk_t clk_ir, clk_gate;
 	int err;
 	uint32_t val = 0;
 
 	clk_ir = clk_gate = NULL;
 	rst_apb = NULL;
 
 	sc = device_get_softc(dev);
 	sc->dev = dev;
 
 	if (bus_alloc_resources(dev, aw_ir_spec, sc->res) != 0) {
 		device_printf(dev, "could not allocate memory resource\n");
 		return (ENXIO);
 	}
 
 	switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
 	case A10_IR:
 		sc->fifo_size = 16;
 		break;
 	case A13_IR:
 	case A31_IR:
 		sc->fifo_size = 64;
 		break;
 	}
 
 	/* De-assert reset */
 	if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst_apb) == 0) {
 		err = hwreset_deassert(rst_apb);
 		if (err != 0) {
 			device_printf(dev, "cannot de-assert reset\n");
 			goto error;
 		}
 	}
 
 	/* Reset buffer */
 	aw_ir_buf_reset(sc);
 
 	/* Get clocks and enable them */
 	err = clk_get_by_ofw_name(dev, 0, "apb", &clk_gate);
 	if (err != 0) {
 		device_printf(dev, "Cannot get gate clock\n");
 		goto error;
 	}
 	err = clk_get_by_ofw_name(dev, 0, "ir", &clk_ir);
 	if (err != 0) {
 		device_printf(dev, "Cannot get IR clock\n");
 		goto error;
 	}
 	/* Set clock rate */
 	err = clk_set_freq(clk_ir, AW_IR_BASE_CLK, 0);
 	if (err != 0) {
 		device_printf(dev, "cannot set IR clock rate\n");
 		goto error;
 	}
 	/* Enable clocks */
 	err = clk_enable(clk_gate);
 	if (err != 0) {
 		device_printf(dev, "Cannot enable clk gate\n");
 		goto error;
 	}
 	err = clk_enable(clk_ir);
 	if (err != 0) {
 		device_printf(dev, "Cannot enable IR clock\n");
 		goto error;
 	}
 
 	if (bus_setup_intr(dev, sc->res[1],
 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, aw_ir_intr, sc,
 	    &sc->intrhand)) {
 		bus_release_resources(dev, aw_ir_spec, sc->res);
 		device_printf(dev, "cannot setup interrupt handler\n");
 		err = ENXIO;
 		goto error;
 	}
 
 	/* Enable CIR Mode */
 	WRITE(sc, AW_IR_CTL, AW_IR_CTL_MD);
 
 	/*
 	 * Set clock sample, filter, idle thresholds.
 	 * Frequency sample = 3MHz/128 = 23437.5Hz (42.7us)
 	 */
 	val = AW_IR_SAMPLE_128;
 	val |= (AW_IR_RXFILT_VAL | AW_IR_RXIDLE_VAL);
 	val |= (AW_IR_ACTIVE_T | AW_IR_ACTIVE_T_C);
 	WRITE(sc, AW_IR_CIR, val);
 
 	/* Invert Input Signal */
 	WRITE(sc, AW_IR_RXCTL, AW_IR_RXCTL_RPPI);
 
 	/* Clear All RX Interrupt Status */
 	WRITE(sc, AW_IR_RXSTA, AW_IR_RXSTA_CLEARALL);
 
 	/*
 	 * Enable RX interrupt in case of overflow, packet end
 	 * and FIFO available.
 	 * RX FIFO Threshold = FIFO size / 2
 	 */
 	WRITE(sc, AW_IR_RXINT, AW_IR_RXINT_ROI_EN | AW_IR_RXINT_RPEI_EN |
 	    AW_IR_RXINT_RAI_EN | AW_IR_RXINT_RAL((sc->fifo_size >> 1) - 1));
 
 	/* Enable IR Module */
 	val = READ(sc, AW_IR_CTL);
 	WRITE(sc, AW_IR_CTL, val | AW_IR_CTL_GEN | AW_IR_CTL_RXEN);
 
 	sc->sc_evdev = evdev_alloc();
 	evdev_set_name(sc->sc_evdev, device_get_desc(sc->dev));
 	evdev_set_phys(sc->sc_evdev, device_get_nameunit(sc->dev));
 	evdev_set_id(sc->sc_evdev, BUS_HOST, 0, 0, 0);
 	evdev_support_event(sc->sc_evdev, EV_SYN);
 	evdev_support_event(sc->sc_evdev, EV_MSC);
 	evdev_support_msc(sc->sc_evdev, MSC_SCAN);
 
 	err = evdev_register(sc->sc_evdev);
 	if (err) {
 		device_printf(dev,
 		    "failed to register evdev: error=%d\n", err);
 		goto error;
 	}
 
 	return (0);
 error:
 	if (clk_gate != NULL)
 		clk_release(clk_gate);
 	if (clk_ir != NULL)
 		clk_release(clk_ir);
 	if (rst_apb != NULL)
 		hwreset_release(rst_apb);
 	evdev_free(sc->sc_evdev);
 	sc->sc_evdev = NULL;	/* Avoid double free */
 
 	bus_release_resources(dev, aw_ir_spec, sc->res);
 	return (ENXIO);
 }
 
 static device_method_t aw_ir_methods[] = {
 	DEVMETHOD(device_probe, aw_ir_probe),
 	DEVMETHOD(device_attach, aw_ir_attach),
 
 	DEVMETHOD_END
 };
 
 static driver_t aw_ir_driver = {
 	"aw_ir",
 	aw_ir_methods,
 	sizeof(struct aw_ir_softc),
 };
 static devclass_t aw_ir_devclass;
 
 DRIVER_MODULE(aw_ir, simplebus, aw_ir_driver, aw_ir_devclass, 0, 0);
 MODULE_DEPEND(aw_ir, evdev, 1, 1, 1);