Index: head/sys/netinet/in.c =================================================================== --- head/sys/netinet/in.c (revision 364072) +++ head/sys/netinet/in.c (revision 364073) @@ -1,1513 +1,1520 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * Copyright (C) 2001 WIDE Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_mpath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int in_aifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_difaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static void in_socktrim(struct sockaddr_in *); static void in_purgemaddrs(struct ifnet *); VNET_DEFINE_STATIC(int, nosameprefix); #define V_nosameprefix VNET(nosameprefix) SYSCTL_INT(_net_inet_ip, OID_AUTO, no_same_prefix, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nosameprefix), 0, "Refuse to create same prefixes on different interfaces"); VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static struct sx in_control_sx; SX_SYSINIT(in_control_sx, &in_control_sx, "in_control"); /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). */ int in_localaddr(struct in_addr in) { struct rm_priotracker in_ifa_tracker; u_long i = ntohl(in.s_addr); struct in_ifaddr *ia; IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((i & ia->ia_subnetmask) == ia->ia_subnet) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (1); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (0); } /* * Return 1 if an internet address is for the local host and configured * on one of its interfaces. */ int in_localip(struct in_addr in) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) { if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (1); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (0); } /* * Return 1 if an internet address is configured on an interface. */ int in_ifhasaddr(struct ifnet *ifp, struct in_addr in) { struct ifaddr *ifa; struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == in.s_addr) return (1); } return (0); } /* * Return a reference to the interface address which is different to * the supplied one but with same IP address value. */ static struct in_ifaddr * in_localip_more(struct in_ifaddr *ia) { struct rm_priotracker in_ifa_tracker; in_addr_t in = IA_SIN(ia)->sin_addr.s_addr; struct in_ifaddr *it; IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(it, INADDR_HASH(in), ia_hash) { if (it != ia && IA_SIN(it)->sin_addr.s_addr == in) { ifa_ref(&it->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (it); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (NULL); } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { u_long i = ntohl(in.s_addr); if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i) || IN_LINKLOCAL(i) || IN_ZERONET(i) || IN_LOOPBACK(i)) return (0); return (1); } /* * Trim a mask in a sockaddr */ static void in_socktrim(struct sockaddr_in *ap) { char *cplim = (char *) &ap->sin_addr; char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } /* * Generic internet control operations (ioctl's). */ int in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_in *addr = (struct sockaddr_in *)&ifr->ifr_addr; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; int error; if (ifp == NULL) return (EADDRNOTAVAIL); /* * Filter out 4 ioctls we implement directly. Forward the rest * to specific functions and ifp->if_ioctl(). */ switch (cmd) { case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFDSTADDR: case SIOCGIFNETMASK: break; case SIOCDIFADDR: sx_xlock(&in_control_sx); error = in_difaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case OSIOCAIFADDR: /* 9.x compat */ case SIOCAIFADDR: sx_xlock(&in_control_sx); error = in_aifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFDSTADDR: case SIOCSIFNETMASK: /* We no longer support that old commands. */ return (EINVAL); default: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); } if (addr->sin_addr.s_addr != INADDR_ANY && prison_check_ip4(td->td_ucred, &addr->sin_addr) != 0) return (EADDRNOTAVAIL); /* * Find address for this interface, if it exists. If an * address was specified, find that one instead of the * first one on the interface, if possible. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr) break; } if (ifa == NULL) CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET) { ia = (struct in_ifaddr *)ifa; if (prison_check_ip4(td->td_ucred, &ia->ia_addr.sin_addr) == 0) break; } if (ifa == NULL) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } error = 0; switch (cmd) { case SIOCGIFADDR: *addr = ia->ia_addr; break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; break; } *addr = ia->ia_broadaddr; break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; break; } *addr = ia->ia_dstaddr; break; case SIOCGIFNETMASK: *addr = ia->ia_sockmask; break; } NET_EPOCH_EXIT(et); return (error); } static int in_aifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; const struct sockaddr_in *broadaddr = &ifra->ifra_broadaddr; const struct sockaddr_in *mask = &ifra->ifra_mask; const struct sockaddr_in *dstaddr = &ifra->ifra_dstaddr; const int vhid = (cmd == SIOCAIFADDR) ? ifra->ifra_vhid : 0; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; bool iaIsFirst; int error = 0; error = priv_check(td, PRIV_NET_ADDIFADDR); if (error) return (error); /* * ifra_addr must be present and be of INET family. * ifra_broadaddr/ifra_dstaddr and ifra_mask are optional. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); if (broadaddr->sin_len != 0 && (broadaddr->sin_len != sizeof(struct sockaddr_in) || broadaddr->sin_family != AF_INET)) return (EINVAL); if (mask->sin_len != 0 && (mask->sin_len != sizeof(struct sockaddr_in) || mask->sin_family != AF_INET)) return (EINVAL); if ((ifp->if_flags & IFF_POINTOPOINT) && (dstaddr->sin_len != sizeof(struct sockaddr_in) || dstaddr->sin_addr.s_addr == INADDR_ANY)) return (EDESTADDRREQ); if (vhid > 0 && carp_attach_p == NULL) return (EPROTONOSUPPORT); /* * See whether address already exist. */ iaIsFirst = true; ia = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; iaIsFirst = false; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) ia = it; } NET_EPOCH_EXIT(et); if (ia != NULL) (void )in_difaddr_ioctl(cmd, data, ifp, td); ifa = ifa_alloc(sizeof(struct in_ifaddr), M_WAITOK); ia = (struct in_ifaddr *)ifa; ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask; callout_init_rw(&ia->ia_garp_timer, &ifp->if_addr_lock, CALLOUT_RETURNUNLOCKED); ia->ia_ifp = ifp; ia->ia_addr = *addr; if (mask->sin_len != 0) { ia->ia_sockmask = *mask; ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr); } else { in_addr_t i = ntohl(addr->sin_addr.s_addr); /* * Be compatible with network classes, if netmask isn't * supplied, guess it based on classes. */ if (IN_CLASSA(i)) ia->ia_subnetmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_subnetmask = IN_CLASSB_NET; else ia->ia_subnetmask = IN_CLASSC_NET; ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask); } ia->ia_subnet = ntohl(addr->sin_addr.s_addr) & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); if (ifp->if_flags & IFF_BROADCAST) { if (broadaddr->sin_len != 0) { ia->ia_broadaddr = *broadaddr; } else if (ia->ia_subnetmask == IN_RFC3021_MASK) { ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST; ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } else { ia->ia_broadaddr.sin_addr.s_addr = htonl(ia->ia_subnet | ~ia->ia_subnetmask); ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } } if (ifp->if_flags & IFF_POINTOPOINT) ia->ia_dstaddr = *dstaddr; /* XXXGL: rtinit() needs this strange assignment. */ if (ifp->if_flags & IFF_LOOPBACK) ia->ia_dstaddr = ia->ia_addr; if (vhid != 0) { error = (*carp_attach_p)(&ia->ia_ifa, vhid); if (error) return (error); } /* if_addrhead is already referenced by ifa_alloc() */ IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_ref(ifa); /* in_ifaddrhead */ IN_IFADDR_WLOCK(); CK_STAILQ_INSERT_TAIL(&V_in_ifaddrhead, ia, ia_link); LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); IN_IFADDR_WUNLOCK(); /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if (ifp->if_ioctl != NULL) { error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); if (error) goto fail1; } /* * Add route for the network. */ if (vhid == 0) { int flags = RTF_UP; if (ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT)) flags |= RTF_HOST; error = in_addprefix(ia, flags); if (error) goto fail1; } /* * Add a loopback route to self. */ if (vhid == 0 && (ifp->if_flags & IFF_LOOPBACK) == 0 && ia->ia_addr.sin_addr.s_addr != INADDR_ANY && !((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)) { struct in_ifaddr *eia; eia = in_localip_more(ia); if (eia == NULL) { error = ifa_add_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error) goto fail2; } else ifa_free(&eia->ia_ifa); } if (iaIsFirst && (ifp->if_flags & IFF_MULTICAST)) { struct in_addr allhosts_addr; struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); allhosts_addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP); error = in_joingroup(ifp, &allhosts_addr, NULL, &ii->ii_allhosts); } /* * Note: we don't need extra reference for ifa, since we called * with sx lock held, and ifaddr can not be deleted in concurrent * thread. */ EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, ifa, IFADDR_EVENT_ADD); return (error); fail2: if (vhid == 0) (void )in_scrubprefix(ia, LLE_STATIC); fail1: if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, false); IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ IN_IFADDR_WLOCK(); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); LIST_REMOVE(ia, ia_hash); IN_IFADDR_WUNLOCK(); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (error); } static int in_difaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct ifreq *ifr = (struct ifreq *)data; const struct sockaddr_in *addr = (const struct sockaddr_in *) &ifr->ifr_addr; struct ifaddr *ifa; struct in_ifaddr *ia; bool deleteAny, iaIsLast; int error; if (td != NULL) { error = priv_check(td, PRIV_NET_DELIFADDR); if (error) return (error); } if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) deleteAny = true; else deleteAny = false; iaIsLast = true; ia = NULL; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (deleteAny && ia == NULL && (td == NULL || prison_check_ip4(td->td_ucred, &it->ia_addr.sin_addr) == 0)) ia = it; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && (td == NULL || prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0)) ia = it; if (it != ia) iaIsLast = false; } if (ia == NULL) { IF_ADDR_WUNLOCK(ifp); return (EADDRNOTAVAIL); } CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ IN_IFADDR_WLOCK(); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); LIST_REMOVE(ia, ia_hash); IN_IFADDR_WUNLOCK(); /* * in_scrubprefix() kills the interface route. */ in_scrubprefix(ia, LLE_STATIC); /* * in_ifadown gets rid of all the rest of * the routes. This is not quite the right * thing to do, but at least if we are running * a routing process they will come back. */ in_ifadown(&ia->ia_ifa, 1); if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, cmd == SIOCAIFADDR); /* * If this is the last IPv4 address configured on this * interface, leave the all-hosts group. * No state-change report need be transmitted. */ if (iaIsLast && (ifp->if_flags & IFF_MULTICAST)) { struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); if (ii->ii_allhosts) { (void)in_leavegroup(ii->ii_allhosts, NULL); ii->ii_allhosts = NULL; } } IF_ADDR_WLOCK(ifp); if (callout_stop(&ia->ia_garp_timer) == 1) { ifa_free(&ia->ia_ifa); } IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, IFADDR_EVENT_DEL); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (0); } #define rtinitflags(x) \ ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \ ? RTF_HOST : 0) /* * Check if we have a route for the given prefix already or add one accordingly. */ int in_addprefix(struct in_ifaddr *target, int flags) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; int error; if ((flags & RTF_HOST) != 0) { prefix = target->ia_dstaddr.sin_addr; mask.s_addr = 0; } else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } IN_IFADDR_RLOCK(&in_ifa_tracker); /* Look for an existing address with the same prefix, mask, and fib */ CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (rtinitflags(ia)) { p = ia->ia_dstaddr.sin_addr; if (prefix.s_addr != p.s_addr) continue; } else { p = ia->ia_addr.sin_addr; m = ia->ia_sockmask.sin_addr; p.s_addr &= m.s_addr; if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; } if (target->ia_ifp->if_fib != ia->ia_ifp->if_fib) continue; /* * If we got a matching prefix route inserted by other * interface address, we are done here. */ if (ia->ia_flags & IFA_ROUTE) { #ifdef RADIX_MPATH if (ia->ia_addr.sin_addr.s_addr == target->ia_addr.sin_addr.s_addr) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (EEXIST); } else break; #endif if (V_nosameprefix) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (EEXIST); } else { int fibnum; fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : target->ia_ifp->if_fib; rt_addrmsg(RTM_ADD, &target->ia_ifa, fibnum); IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (0); } } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * No-one seem to have this prefix route, so we try to insert it. */ error = rtinit(&target->ia_ifa, (int)RTM_ADD, flags); if (!error) target->ia_flags |= IFA_ROUTE; return (error); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ static void in_scrubprefixlle(struct in_ifaddr *ia, int all, u_int flags) { struct sockaddr_in addr, mask; struct sockaddr *saddr, *smask; struct ifnet *ifp; saddr = (struct sockaddr *)&addr; bzero(&addr, sizeof(addr)); addr.sin_len = sizeof(addr); addr.sin_family = AF_INET; smask = (struct sockaddr *)&mask; bzero(&mask, sizeof(mask)); mask.sin_len = sizeof(mask); mask.sin_family = AF_INET; mask.sin_addr.s_addr = ia->ia_subnetmask; ifp = ia->ia_ifp; if (all) { /* * Remove all L2 entries matching given prefix. * Convert address to host representation to avoid * doing this on every callback. ia_subnetmask is already * stored in host representation. */ addr.sin_addr.s_addr = ntohl(ia->ia_addr.sin_addr.s_addr); lltable_prefix_free(AF_INET, saddr, smask, flags); } else { /* Remove interface address only */ addr.sin_addr.s_addr = ia->ia_addr.sin_addr.s_addr; lltable_delete_addr(LLTABLE(ifp), LLE_IFADDR, saddr); } } /* * If there is no other address in the system that can serve a route to the * same prefix, remove the route. Hand over the route to the new address * otherwise. */ int in_scrubprefix(struct in_ifaddr *target, u_int flags) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; int error = 0; /* * Remove the loopback route to the interface address. */ if ((target->ia_addr.sin_addr.s_addr != INADDR_ANY) && !(target->ia_ifp->if_flags & IFF_LOOPBACK) && (flags & LLE_STATIC)) { struct in_ifaddr *eia; /* * XXXME: add fib-aware in_localip. * We definitely don't want to switch between * prefixes in different fibs. */ eia = in_localip_more(target); if (eia != NULL) { error = ifa_switch_loopback_route((struct ifaddr *)eia, (struct sockaddr *)&target->ia_addr); ifa_free(&eia->ia_ifa); } else { error = ifa_del_loopback_route((struct ifaddr *)target, (struct sockaddr *)&target->ia_addr); } } if (rtinitflags(target)) { prefix = target->ia_dstaddr.sin_addr; mask.s_addr = 0; } else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } if ((target->ia_flags & IFA_ROUTE) == 0) { int fibnum; fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : target->ia_ifp->if_fib; rt_addrmsg(RTM_DELETE, &target->ia_ifa, fibnum); /* * Removing address from !IFF_UP interface or * prefix which exists on other interface (along with route). * No entries should exist here except target addr. * Given that, delete this entry only. */ in_scrubprefixlle(target, 0, flags); return (0); } IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (rtinitflags(ia)) { p = ia->ia_dstaddr.sin_addr; if (prefix.s_addr != p.s_addr) continue; } else { p = ia->ia_addr.sin_addr; m = ia->ia_sockmask.sin_addr; p.s_addr &= m.s_addr; if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; } if ((ia->ia_ifp->if_flags & IFF_UP) == 0) continue; /* * If we got a matching prefix address, move IFA_ROUTE and * the route itself to it. Make sure that routing daemons * get a heads-up. */ if ((ia->ia_flags & IFA_ROUTE) == 0) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); error = rtinit(&(target->ia_ifa), (int)RTM_DELETE, rtinitflags(target)); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, old prefix delete failed\n", error); /* Scrub all entries IFF interface is different */ in_scrubprefixlle(target, target->ia_ifp != ia->ia_ifp, flags); error = rtinit(&ia->ia_ifa, (int)RTM_ADD, rtinitflags(ia) | RTF_UP); if (error == 0) ia->ia_flags |= IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, new prefix add failed\n", error); ifa_free(&ia->ia_ifa); return (error); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * remove all L2 entries on the given prefix */ in_scrubprefixlle(target, 1, flags); /* * As no-one seem to have this prefix, we can remove the route. */ error = rtinit(&(target->ia_ifa), (int)RTM_DELETE, rtinitflags(target)); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, prefix delete failed\n", error); return (error); } #undef rtinitflags void in_ifscrub_all(void) { struct ifnet *ifp; struct ifaddr *ifa, *nifa; struct ifaliasreq ifr; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { /* Cannot lock here - lock recursion. */ /* NET_EPOCH_ENTER(et); */ CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { if (ifa->ifa_addr->sa_family != AF_INET) continue; /* * This is ugly but the only way for legacy IP to * cleanly remove addresses and everything attached. */ bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; (void)in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL); } /* NET_EPOCH_EXIT(et); */ in_purgemaddrs(ifp); igmp_domifdetach(ifp); } IFNET_RUNLOCK(); } int in_ifaddr_broadcast(struct in_addr in, struct in_ifaddr *ia) { return ((in.s_addr == ia->ia_broadaddr.sin_addr.s_addr || /* * Check for old-style (host 0) broadcast, but * taking into account that RFC 3021 obsoletes it. */ (ia->ia_subnetmask != IN_RFC3021_MASK && ntohl(in.s_addr) == ia->ia_subnet)) && /* * Check for an all one subnetmask. These * only exist when an interface gets a secondary * address. */ ia->ia_subnetmask != (u_long)0xffffffff); } /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(struct in_addr in, struct ifnet *ifp) { struct ifaddr *ifa; int found; NET_EPOCH_ASSERT(); if (in.s_addr == INADDR_BROADCAST || in.s_addr == INADDR_ANY) return (1); if ((ifp->if_flags & IFF_BROADCAST) == 0) return (0); found = 0; /* * Look through the list of addresses for a match * with a broadcast address. */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && in_ifaddr_broadcast(in, (struct in_ifaddr *)ifa)) { found = 1; break; } return (found); } /* * On interface removal, clean up IPv4 data structures hung off of the ifnet. */ void in_ifdetach(struct ifnet *ifp) { IN_MULTI_LOCK(); in_pcbpurgeif0(&V_ripcbinfo, ifp); in_pcbpurgeif0(&V_udbinfo, ifp); in_pcbpurgeif0(&V_ulitecbinfo, ifp); in_purgemaddrs(ifp); IN_MULTI_UNLOCK(); + + /* + * Make sure all multicast deletions invoking if_ioctl() are + * completed before returning. Else we risk accessing a freed + * ifnet structure pointer. + */ + inm_release_wait(NULL); } /* * Delete all IPv4 multicast address records, and associated link-layer * multicast address records, associated with ifp. * XXX It looks like domifdetach runs AFTER the link layer cleanup. * XXX This should not race with ifma_protospec being set during * a new allocation, if it does, we have bigger problems. */ static void in_purgemaddrs(struct ifnet *ifp) { struct in_multi_head purgeinms; struct in_multi *inm; struct ifmultiaddr *ifma, *next; SLIST_INIT(&purgeinms); IN_MULTI_LIST_LOCK(); /* * Extract list of in_multi associated with the detaching ifp * which the PF_INET layer is about to release. * We need to do this as IF_ADDR_LOCK() may be re-acquired * by code further down. */ IF_ADDR_WLOCK(ifp); restart: CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; inm_rele_locked(&purgeinms, inm); if (__predict_false(ifma_restart)) { ifma_restart = true; goto restart; } } IF_ADDR_WUNLOCK(ifp); inm_release_list_deferred(&purgeinms); igmp_ifdetach(ifp); IN_MULTI_LIST_UNLOCK(); } struct in_llentry { struct llentry base; }; #define IN_LLTBL_DEFAULT_HSIZE 32 #define IN_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. */ static void in_lltable_destroy_lle_unlocked(epoch_context_t ctx) { struct llentry *lle; lle = __containerof(ctx, struct llentry, lle_epoch_ctx); LLE_LOCK_DESTROY(lle); LLE_REQ_DESTROY(lle); free(lle, M_LLTABLE); } /* * Called by the datapath to indicate that * the entry was used. */ static void in_lltable_mark_used(struct llentry *lle) { LLE_REQ_LOCK(lle); lle->r_skip_req = 0; LLE_REQ_UNLOCK(lle); } /* * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in_lltable_destroy_lle(struct llentry *lle) { LLE_WUNLOCK(lle); NET_EPOCH_CALL(in_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); } static struct llentry * in_lltable_new(struct in_addr addr4, u_int flags) { struct in_llentry *lle; lle = malloc(sizeof(struct in_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); if (lle == NULL) /* NB: caller generates msg */ return NULL; /* * For IPv4 this will trigger "arpresolve" to generate * an ARP request. */ lle->base.la_expire = time_uptime; /* mark expired */ lle->base.r_l3addr.addr4 = addr4; lle->base.lle_refcnt = 1; lle->base.lle_free = in_lltable_destroy_lle; LLE_LOCK_INIT(&lle->base); LLE_REQ_INIT(&lle->base); callout_init(&lle->base.lle_timer, 1); return (&lle->base); } #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ ((((d).s_addr ^ (a).s_addr) & (m).s_addr)) == 0 ) static int in_lltable_match_prefix(const struct sockaddr *saddr, const struct sockaddr *smask, u_int flags, struct llentry *lle) { struct in_addr addr, mask, lle_addr; addr = ((const struct sockaddr_in *)saddr)->sin_addr; mask = ((const struct sockaddr_in *)smask)->sin_addr; lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr); if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) return (0); if (lle->la_flags & LLE_IFADDR) { /* * Delete LLE_IFADDR records IFF address & flag matches. * Note that addr is the interface address within prefix * being matched. * Note also we should handle 'ifdown' cases without removing * ifaddr macs. */ if (addr.s_addr == lle_addr.s_addr && (flags & LLE_STATIC) != 0) return (1); return (0); } /* flags & LLE_STATIC means deleting both dynamic and static entries */ if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) return (1); return (0); } static void in_lltable_free_entry(struct lltable *llt, struct llentry *lle) { size_t pkts_dropped; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL, ("lltable is NULL")); /* Unlink entry from table if not already */ if ((lle->la_flags & LLE_LINKED) != 0) { IF_AFDATA_WLOCK_ASSERT(llt->llt_ifp); lltable_unlink_entry(llt, lle); } /* Drop hold queue */ pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); } static int in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) { struct rt_addrinfo info; struct sockaddr_in rt_key, rt_mask; struct sockaddr rt_gateway; int rt_flags; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); bzero(&rt_key, sizeof(rt_key)); rt_key.sin_len = sizeof(rt_key); bzero(&rt_mask, sizeof(rt_mask)); rt_mask.sin_len = sizeof(rt_mask); bzero(&rt_gateway, sizeof(rt_gateway)); rt_gateway.sa_len = sizeof(rt_gateway); bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&rt_mask; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&rt_gateway; if (rib_lookup_info(ifp->if_fib, l3addr, NHR_REF, 0, &info) != 0) return (EINVAL); rt_flags = info.rti_flags; /* * If the gateway for an existing host route matches the target L3 * address, which is a special route inserted by some implementation * such as MANET, and the interface is of the correct type, then * allow for ARP to proceed. */ if (rt_flags & RTF_GATEWAY) { if (!(rt_flags & RTF_HOST) || !info.rti_ifp || info.rti_ifp->if_type != IFT_ETHER || (info.rti_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 || memcmp(rt_gateway.sa_data, l3addr->sa_data, sizeof(in_addr_t)) != 0) { rib_free_info(&info); return (EINVAL); } } rib_free_info(&info); /* * Make sure that at least the destination address is covered * by the route. This is for handling the case where 2 or more * interfaces have the same prefix. An incoming packet arrives * on one interface and the corresponding outgoing packet leaves * another interface. */ if (!(rt_flags & RTF_HOST) && info.rti_ifp != ifp) { const char *sa, *mask, *addr, *lim; const struct sockaddr_in *l3sin; mask = (const char *)&rt_mask; /* * Just being extra cautious to avoid some custom * code getting into trouble. */ if ((info.rti_addrs & RTA_NETMASK) == 0) return (EINVAL); sa = (const char *)&rt_key; addr = (const char *)l3addr; l3sin = (const struct sockaddr_in *)l3addr; lim = addr + l3sin->sin_len; for ( ; addr < lim; sa++, mask++, addr++) { if ((*sa ^ *addr) & *mask) { #ifdef DIAGNOSTIC char addrbuf[INET_ADDRSTRLEN]; log(LOG_INFO, "IPv4 address: \"%s\" " "is not on the network\n", inet_ntoa_r(l3sin->sin_addr, addrbuf)); #endif return (EINVAL); } } } return (0); } static inline uint32_t in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) { return (IN_LLTBL_HASH(dst.s_addr, hsize)); } static uint32_t in_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); } static void in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sa; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = lle->r_l3addr.addr4; } static inline struct llentry * in_lltable_find_dst(struct lltable *llt, struct in_addr dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; CK_LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (lle->r_l3addr.addr4.s_addr == dst.s_addr) break; } return (lle); } static void in_lltable_delete_entry(struct lltable *llt, struct llentry *lle) { lle->la_flags |= LLE_DELETED; EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); #ifdef DIAGNOSTIC log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); #endif llentry_free(lle); } static struct llentry * in_lltable_alloc(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in_lltable_rtcheck(ifp, flags, l3addr) != 0) return (NULL); lle = in_lltable_new(sin->sin_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if (flags & LLE_STATIC) lle->r_flags |= RLLE_VALID; if ((flags & LLE_IFADDR) == LLE_IFADDR) { linkhdrsize = LLE_MAX_LINKHDR; if (lltable_calc_llheader(ifp, AF_INET, IF_LLADDR(ifp), linkhdr, &linkhdrsize, &lladdr_off) != 0) { NET_EPOCH_CALL(in_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); return (NULL); } lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); lle->la_flags |= LLE_STATIC; lle->r_flags |= (RLLE_VALID | RLLE_IFADDR); } return (lle); } /* * Return NULL if not found or marked for deletion. * If found return lle read locked. */ static struct llentry * in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); KASSERT((flags & (LLE_UNLOCKED | LLE_EXCLUSIVE)) != (LLE_UNLOCKED | LLE_EXCLUSIVE), ("wrong lle request flags: %#x", flags)); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle == NULL) return (NULL); if (flags & LLE_UNLOCKED) return (lle); if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); /* * If the afdata lock is not held, the LLE may have been unlinked while * we were blocked on the LLE lock. Check for this case. */ if (__predict_false((lle->la_flags & LLE_LINKED) == 0)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(lle); else LLE_RUNLOCK(lle); return (NULL); } return (lle); } static int in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct sysctl_req *wr) { struct ifnet *ifp = llt->llt_ifp; /* XXX stack use */ struct { struct rt_msghdr rtm; struct sockaddr_in sin; struct sockaddr_dl sdl; } arpc; struct sockaddr_dl *sdl; int error; bzero(&arpc, sizeof(arpc)); /* skip deleted entries */ if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) return (0); /* Skip if jailed and not a valid IP of the prison. */ lltable_fill_sa_entry(lle,(struct sockaddr *)&arpc.sin); if (prison_if(wr->td->td_ucred, (struct sockaddr *)&arpc.sin) != 0) return (0); /* * produce a msg made of: * struct rt_msghdr; * struct sockaddr_in; (IPv4) * struct sockaddr_dl; */ arpc.rtm.rtm_msglen = sizeof(arpc); arpc.rtm.rtm_version = RTM_VERSION; arpc.rtm.rtm_type = RTM_GET; arpc.rtm.rtm_flags = RTF_UP; arpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; /* publish */ if (lle->la_flags & LLE_PUB) arpc.rtm.rtm_flags |= RTF_ANNOUNCE; sdl = &arpc.sdl; sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(*sdl); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; if ((lle->la_flags & LLE_VALID) == LLE_VALID) { sdl->sdl_alen = ifp->if_addrlen; bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); } else { sdl->sdl_alen = 0; bzero(LLADDR(sdl), ifp->if_addrlen); } arpc.rtm.rtm_rmx.rmx_expire = lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; arpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); if (lle->la_flags & LLE_STATIC) arpc.rtm.rtm_flags |= RTF_STATIC; if (lle->la_flags & LLE_IFADDR) arpc.rtm.rtm_flags |= RTF_PINNED; arpc.rtm.rtm_index = ifp->if_index; error = SYSCTL_OUT(wr, &arpc, sizeof(arpc)); return (error); } static struct lltable * in_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET; llt->llt_ifp = ifp; llt->llt_lookup = in_lltable_lookup; llt->llt_alloc_entry = in_lltable_alloc; llt->llt_delete_entry = in_lltable_delete_entry; llt->llt_dump_entry = in_lltable_dump_entry; llt->llt_hash = in_lltable_hash; llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; llt->llt_free_entry = in_lltable_free_entry; llt->llt_match_prefix = in_lltable_match_prefix; llt->llt_mark_used = in_lltable_mark_used; lltable_link(llt); return (llt); } void * in_domifattach(struct ifnet *ifp) { struct in_ifinfo *ii; ii = malloc(sizeof(struct in_ifinfo), M_IFADDR, M_WAITOK|M_ZERO); ii->ii_llt = in_lltattach(ifp); ii->ii_igmp = igmp_domifattach(ifp); return (ii); } void in_domifdetach(struct ifnet *ifp, void *aux) { struct in_ifinfo *ii = (struct in_ifinfo *)aux; igmp_domifdetach(ifp); lltable_free(ii->ii_llt); free(ii, M_IFADDR); } Index: head/sys/netinet/in_mcast.c =================================================================== --- head/sys/netinet/in_mcast.c (revision 364072) +++ head/sys/netinet/in_mcast.c (revision 364073) @@ -1,3063 +1,3082 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2007-2009 Bruce Simpson. * Copyright (c) 2005 Robert N. M. Watson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv4 multicast socket, group, and socket option processing module. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_IGMPV3 #define KTR_IGMPV3 KTR_INET #endif #ifndef __SOCKUNION_DECLARED union sockunion { struct sockaddr_storage ss; struct sockaddr sa; struct sockaddr_dl sdl; struct sockaddr_in sin; }; typedef union sockunion sockunion_t; #define __SOCKUNION_DECLARED #endif /* __SOCKUNION_DECLARED */ static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", "IPv4 multicast PCB-layer source filter"); static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", "IPv4 multicast IGMP-layer source filter"); /* * Locking: * * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however * it can be taken by code in net/if.c also. * - ip_moptions and in_mfilter are covered by the INP_WLOCK. * * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly * any need for in_multi itself to be virtualized -- it is bound to an ifp * anyway no matter what happens. */ struct mtx in_multi_list_mtx; MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); struct mtx in_multi_free_mtx; MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); struct sx in_multi_sx; SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); int ifma_restart; /* * Functions with non-static linkage defined in this file should be * declared in in_var.h: * imo_multi_filter() * in_addmulti() * in_delmulti() * in_joingroup() * in_joingroup_locked() * in_leavegroup() * in_leavegroup_locked() * and ip_var.h: * inp_freemoptions() * inp_getmoptions() * inp_setmoptions() * * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti() * and in_delmulti(). */ static void imf_commit(struct in_mfilter *); static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **); static struct in_msource * imf_graft(struct in_mfilter *, const uint8_t, const struct sockaddr_in *); static void imf_leave(struct in_mfilter *); static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); static void imf_purge(struct in_mfilter *); static void imf_rollback(struct in_mfilter *); static void imf_reap(struct in_mfilter *); static struct in_mfilter * imo_match_group(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *); static struct in_msource * imo_match_source(struct in_mfilter *, const struct sockaddr *); static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback); static int in_getmulti(struct ifnet *, const struct in_addr *, struct in_multi **); static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims); #ifdef KTR static int inm_is_ifp_detached(const struct in_multi *); #endif static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); static void inm_purge(struct in_multi *); static void inm_reap(struct in_multi *); static void inm_release(struct in_multi *); static struct ip_moptions * inp_findmoptions(struct inpcb *); static int inp_get_source_filters(struct inpcb *, struct sockopt *); static int inp_join_group(struct inpcb *, struct sockopt *); static int inp_leave_group(struct inpcb *, struct sockopt *); static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in *, const struct in_addr); static int inp_block_unblock_source(struct inpcb *, struct sockopt *); static int inp_set_multicast_if(struct inpcb *, struct sockopt *); static int inp_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IPv4 multicast"); static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, "Max source filters per group"); static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, "Max source filters per socket"); int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, &in_mcast_loop, 0, "Loopback multicast datagrams by default"); static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, "Per-interface stack-wide source filters"); #ifdef KTR /* * Inline function which wraps assertions for a valid ifp. * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp * is detached. */ static int __inline inm_is_ifp_detached(const struct in_multi *inm) { struct ifnet *ifp; KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->inm_ifma->ifma_ifp; if (ifp != NULL) { /* * Sanity check that netinet's notion of ifp is the * same as net's. */ KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); } return (ifp == NULL); } #endif -static struct task free_task; +/* + * Interface detach can happen in a taskqueue thread context, so we must use a + * dedicated thread to avoid deadlocks when draining inm_release tasks. + */ +TASKQUEUE_DEFINE_THREAD(inm_free); +static struct task inm_free_task; static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER(); static void inm_release_task(void *arg __unused, int pending __unused); static void inm_init(void *arg __unused) { - TASK_INIT(&free_task, 0, inm_release_task, NULL); + TASK_INIT(&inm_free_task, 0, inm_release_task, NULL); } SYSINIT(inm_init, SI_SUB_TASKQ, SI_ORDER_ANY, inm_init, NULL); void +inm_release_wait(void *arg __unused) +{ + + /* + * Make sure all pending multicast addresses are freed before + * the VNET or network device is destroyed: + */ + taskqueue_drain(taskqueue_inm_free, &inm_free_task); +} +#ifdef VIMAGE +VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL); +#endif + +void inm_release_list_deferred(struct in_multi_head *inmh) { if (SLIST_EMPTY(inmh)) return; mtx_lock(&in_multi_free_mtx); SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); mtx_unlock(&in_multi_free_mtx); - taskqueue_enqueue(taskqueue_thread, &free_task); + taskqueue_enqueue(taskqueue_inm_free, &inm_free_task); } void inm_disconnect(struct in_multi *inm) { struct ifnet *ifp; struct ifmultiaddr *ifma, *ll_ifma; ifp = inm->inm_ifp; IF_ADDR_WLOCK_ASSERT(ifp); ifma = inm->inm_ifma; if_ref(ifp); if (ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); if ((ll_ifma = ifma->ifma_llifma) != NULL) { MPASS(ifma != ll_ifma); ifma->ifma_llifma = NULL; MPASS(ll_ifma->ifma_llifma == NULL); MPASS(ll_ifma->ifma_ifp == ifp); if (--ll_ifma->ifma_refcount == 0) { if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); if_freemulti(ll_ifma); ifma_restart = true; } } } void inm_release_deferred(struct in_multi *inm) { struct in_multi_head tmp; IN_MULTI_LIST_LOCK_ASSERT(); MPASS(inm->inm_refcount > 0); if (--inm->inm_refcount == 0) { SLIST_INIT(&tmp); inm_disconnect(inm); inm->inm_ifma->ifma_protospec = NULL; SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); inm_release_list_deferred(&tmp); } } static void inm_release_task(void *arg __unused, int pending __unused) { struct in_multi_head inm_free_tmp; struct in_multi *inm, *tinm; SLIST_INIT(&inm_free_tmp); mtx_lock(&in_multi_free_mtx); SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); mtx_unlock(&in_multi_free_mtx); IN_MULTI_LOCK(); SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); MPASS(inm); inm_release(inm); } IN_MULTI_UNLOCK(); } /* * Initialize an in_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline void imf_init(struct in_mfilter *imf, const int st0, const int st1) { memset(imf, 0, sizeof(struct in_mfilter)); RB_INIT(&imf->imf_sources); imf->imf_st[0] = st0; imf->imf_st[1] = st1; } struct in_mfilter * ip_mfilter_alloc(const int mflags, const int st0, const int st1) { struct in_mfilter *imf; imf = malloc(sizeof(*imf), M_INMFILTER, mflags); if (imf != NULL) imf_init(imf, st0, st1); return (imf); } void ip_mfilter_free(struct in_mfilter *imf) { imf_purge(imf); free(imf, M_INMFILTER); } /* * Function for looking up an in_multi record for an IPv4 multicast address * on a given interface. ifp must be valid. If no record found, return NULL. * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. */ struct in_multi * inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) { struct ifmultiaddr *ifma; struct in_multi *inm; IN_MULTI_LIST_LOCK_ASSERT(); IF_ADDR_LOCK_ASSERT(ifp); inm = NULL; CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_addr.s_addr == ina.s_addr) break; inm = NULL; } return (inm); } /* * Wrapper for inm_lookup_locked(). * The IF_ADDR_LOCK will be taken on ifp and released on return. */ struct in_multi * inm_lookup(struct ifnet *ifp, const struct in_addr ina) { struct epoch_tracker et; struct in_multi *inm; IN_MULTI_LIST_LOCK_ASSERT(); NET_EPOCH_ENTER(et); inm = inm_lookup_locked(ifp, ina); NET_EPOCH_EXIT(et); return (inm); } /* * Find an IPv4 multicast group entry for this ip_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static struct in_mfilter * imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group) { const struct sockaddr_in *gsin; struct in_mfilter *imf; struct in_multi *inm; gsin = (const struct sockaddr_in *)group; IP_MFILTER_FOREACH(imf, &imo->imo_head) { inm = imf->imf_inm; if (inm == NULL) continue; if ((ifp == NULL || (inm->inm_ifp == ifp)) && in_hosteq(inm->inm_addr, gsin->sin_addr)) { break; } } return (imf); } /* * Find an IPv4 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in_msource * imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) { struct ip_msource find; struct ip_msource *ims; const sockunion_t *psa; KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); /* Source trees are keyed in host byte order. */ psa = (const sockunion_t *)src; find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); return ((struct in_msource *)ims); } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group, const struct sockaddr *src) { struct in_mfilter *imf; struct in_msource *ims; int mode; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); imf = imo_match_group(imo, ifp, group); if (imf == NULL) return (MCAST_NOTGMEMBER); /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at IGMP t1 (now) * with socket-layer t0 (since last downcall). */ mode = imf->imf_st[1]; ims = imo_match_source(imf, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->imsl_st[0] != mode)) return (MCAST_NOTSMEMBER); return (MCAST_PASS); } /* * Find and return a reference to an in_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Assumes the IN_MULTI lock is held across the call. * Return 0 if successful, otherwise return an appropriate error code. */ static int in_getmulti(struct ifnet *ifp, const struct in_addr *group, struct in_multi **pinm) { struct sockaddr_in gsin; struct ifmultiaddr *ifma; struct in_ifinfo *ii; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; IN_MULTI_LIST_LOCK(); inm = inm_lookup(ifp, *group); if (inm != NULL) { /* * If we already joined this group, just bump the * refcount and return it. */ KASSERT(inm->inm_refcount >= 1, ("%s: bad refcount %d", __func__, inm->inm_refcount)); inm_acquire_locked(inm); *pinm = inm; } IN_MULTI_LIST_UNLOCK(); if (inm != NULL) return (0); memset(&gsin, 0, sizeof(gsin)); gsin.sin_family = AF_INET; gsin.sin_len = sizeof(struct sockaddr_in); gsin.sin_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); if (error != 0) return (error); /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ IN_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); /* * If something other than netinet is occupying the link-layer * group, print a meaningful error message and back out of * the allocation. * Otherwise, bump the refcount on the existing network-layer * group association and return it. */ if (ifma->ifma_protospec != NULL) { inm = (struct in_multi *)ifma->ifma_protospec; #ifdef INVARIANTS KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", __func__)); KASSERT(ifma->ifma_addr->sa_family == AF_INET, ("%s: ifma not AF_INET", __func__)); KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || !in_hosteq(inm->inm_addr, *group)) { char addrbuf[INET_ADDRSTRLEN]; panic("%s: ifma %p is inconsistent with %p (%s)", __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); } #endif inm_acquire_locked(inm); *pinm = inm; goto out_locked; } IF_ADDR_WLOCK_ASSERT(ifp); /* * A new in_multi record is needed; allocate and initialize it. * We DO NOT perform an IGMP join as the in_ layer may need to * push an initial source list down to IGMP to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. */ inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); if (inm == NULL) { IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); if_delmulti_ifma(ifma); return (ENOMEM); } inm->inm_addr = *group; inm->inm_ifp = ifp; inm->inm_igi = ii->ii_igmp; inm->inm_ifma = ifma; inm->inm_refcount = 1; inm->inm_state = IGMP_NOT_MEMBER; mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->inm_srcs); ifma->ifma_protospec = inm; *pinm = inm; out_locked: IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); return (0); } /* * Drop a reference to an in_multi record. * * If the refcount drops to 0, free the in_multi record and * delete the underlying link-layer membership. */ static void inm_release(struct in_multi *inm) { struct ifmultiaddr *ifma; struct ifnet *ifp; CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); MPASS(inm->inm_refcount == 0); CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); ifma = inm->inm_ifma; ifp = inm->inm_ifp; /* XXX this access is not covered by IF_ADDR_LOCK */ CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); if (ifp != NULL) { CURVNET_SET(ifp->if_vnet); inm_purge(inm); free(inm, M_IPMADDR); if_delmulti_ifma_flags(ifma, 1); CURVNET_RESTORE(); if_rele(ifp); } else { inm_purge(inm); free(inm, M_IPMADDR); if_delmulti_ifma_flags(ifma, 1); } } /* * Clear recorded source entries for a group. * Used by the IGMP code. Caller must hold the IN_MULTI lock. * FIXME: Should reap. */ void inm_clear_recorded(struct in_multi *inm) { struct ip_msource *ims; IN_MULTI_LIST_LOCK_ASSERT(); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { if (ims->ims_stp) { ims->ims_stp = 0; --inm->inm_st[1].iss_rec; } } KASSERT(inm->inm_st[1].iss_rec == 0, ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); } /* * Record a source as pending for a Source-Group IGMPv3 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet.igmp.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. * This turns off the allocation of a recorded source entry if * the group has not been joined. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occurred (negated errno code). */ int inm_record_source(struct in_multi *inm, const in_addr_t naddr) { struct ip_msource find; struct ip_msource *ims, *nims; IN_MULTI_LIST_LOCK_ASSERT(); find.ims_haddr = ntohl(naddr); ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims && ims->ims_stp) return (0); if (ims == NULL) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (-ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (-ENOMEM); nims->ims_haddr = find.ims_haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->ims_stp; ++inm->inm_st[1].iss_rec; return (1); } /* * Return a pointer to an in_msource owned by an in_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * haddr is the source address in *host* byte-order. * * SMPng: May be called with locks held; malloc must not block. */ static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **plims) { struct ip_msource find; struct ip_msource *ims, *nims; struct in_msource *lims; int error; error = 0; ims = NULL; lims = NULL; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); lims = (struct in_msource *)ims; if (lims == NULL) { if (imf->imf_nsrc == in_mcast_maxsocksrc) return (ENOSPC); nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); lims = (struct in_msource *)nims; lims->ims_haddr = find.ims_haddr; lims->imsl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; } *plims = lims; return (error); } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. */ static struct in_msource * imf_graft(struct in_mfilter *imf, const uint8_t st1, const struct sockaddr_in *psin) { struct ip_msource *nims; struct in_msource *lims; nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (NULL); lims = (struct in_msource *)nims; lims->ims_haddr = ntohl(psin->sin_addr.s_addr); lims->imsl_st[0] = MCAST_UNDEFINED; lims->imsl_st[1] = st1; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; return (lims); } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. */ static int imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) { struct ip_msource find; struct ip_msource *ims; struct in_msource *lims; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); if (ims == NULL) return (ENOENT); lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; return (0); } /* * Revert socket-layer filter set deltas at t1 to t0 state. */ static void imf_rollback(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) { /* no change at t1 */ continue; } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->imsl_st[1] = lims->imsl_st[0]; } else { /* revert source added t1 */ CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } imf->imf_st[1] = imf->imf_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. */ static void imf_leave(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; } imf->imf_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. */ static void imf_commit(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[0] = lims->imsl_st[1]; } imf->imf_st[0] = imf->imf_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. */ static void imf_reap(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if ((lims->imsl_st[0] == MCAST_UNDEFINED) && (lims->imsl_st[1] == MCAST_UNDEFINED)) { CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } } /* * Purge socket-layer filter set. */ static void imf_purge(struct in_mfilter *imf) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; KASSERT(RB_EMPTY(&imf->imf_sources), ("%s: imf_sources not empty", __func__)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * haddr is the host-byte-order IPv4 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * SMPng: NOTE: may be called with locks held. * Return 0 if successful, otherwise return a non-zero error code. */ static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims) { struct ip_msource find; struct ip_msource *ims, *nims; find.ims_haddr = haddr; ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims == NULL && !noalloc) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); nims->ims_haddr = haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; #ifdef KTR CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, haddr, ims); #endif } *pims = ims; return (0); } /* * Merge socket-layer source into IGMP-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback) { int n = rollback ? -1 : 1; if (lims->imsl_st[0] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].ex -= n; } else if (lims->imsl_st[0] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].in -= n; } if (lims->imsl_st[1] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].ex += n; } else if (lims->imsl_st[1] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].in += n; } } /* * Atomically update the global in_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct ip_msource *ims, *nims; struct in_msource *lims; int schanged, error; int nsrc0, nsrc1; schanged = 0; error = 0; nsrc1 = nsrc0 = 0; IN_MULTI_LIST_LOCK_ASSERT(); /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; error = inm_get_source(inm, lims->ims_haddr, 0, &nims); ++schanged; if (error) break; ims_merge(nims, lims, 0); } if (error) { struct ip_msource *bims; RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); if (bims == NULL) continue; ims_merge(bims, lims, 1); } goto out_reap; } CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", __func__, nsrc0, nsrc1); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->imf_st[0] == imf->imf_st[1] && imf->imf_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->imf_st[0] != imf->imf_st[1]) { CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", __func__, imf->imf_st[0], imf->imf_st[1]); if (imf->imf_st[0] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); --inm->inm_st[1].iss_ex; } else if (imf->imf_st[0] == MCAST_INCLUDE) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } if (imf->imf_st[1] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); inm->inm_st[1].iss_ex++; } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); inm->inm_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the IGMP lifecycle for this group should finish. */ if (inm->inm_st[1].iss_ex > 0) { CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->inm_st[1].iss_in > 0) { CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); inm->inm_st[1].iss_fmode = MCAST_INCLUDE; } else { CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->imf_st[1] != MCAST_EXCLUDE) || (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); --inm->inm_st[1].iss_asm; } } /* Increment ASM listener count on transition to ASM mode. */ if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); inm->inm_st[1].iss_asm++; } CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); inm_print(inm); out_reap: if (schanged > 0) { CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); inm_reap(inm); } return (error); } /* * Mark an in_multi's filter set deltas as committed. * Called by IGMP after a state change has been enqueued. */ void inm_commit(struct in_multi *inm) { struct ip_msource *ims; CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); inm_print(inm); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { ims->ims_st[0] = ims->ims_st[1]; } inm->inm_st[0] = inm->inm_st[1]; } /* * Reap unreferenced nodes from an in_multi's filter set. */ static void inm_reap(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || ims->ims_stp != 0) continue; CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Purge all source nodes from an in_multi's filter set. */ static void inm_purge(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Join a multicast group; unlocked entry point. * * SMPng: XXX: in_joingroup() is called from in_control() when Giant * is not held. Fortunately, ifp is unlikely to have been detached * at this point, so we assume it's OK to recurse. */ int in_joingroup(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { int error; IN_MULTI_LOCK(); error = in_joingroup_locked(ifp, gina, imf, pinm); IN_MULTI_UNLOCK(); return (error); } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the IGMP downcall fails, the group is not joined, and an error * code is returned. */ int in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { struct in_mfilter timf; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); IN_MULTI_LIST_UNLOCK_ASSERT(); CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, ntohl(gina->s_addr), ifp, ifp->if_xname); error = 0; inm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in_getmulti(ifp, gina, &inm); if (error) { CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); return (error); } IN_MULTI_LIST_LOCK(); CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_inm_release; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) { CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); goto out_inm_release; } out_inm_release: if (error) { CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); IF_ADDR_WLOCK(ifp); inm_release_deferred(inm); IF_ADDR_WUNLOCK(ifp); } else { *pinm = inm; } IN_MULTI_LIST_UNLOCK(); return (error); } /* * Leave a multicast group; unlocked entry point. */ int in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { int error; IN_MULTI_LOCK(); error = in_leavegroup_locked(inm, imf); IN_MULTI_UNLOCK(); return (error); } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Holding the write lock for the INP which contains imf * is highly advisable. We can't assert for it as imf does not * contain a back-pointer to the owning inp. * * Note: This is not the same as inm_release(*) as this function also * makes a state change downcall into IGMP. */ int in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct in_mfilter timf; int error; IN_MULTI_LOCK_ASSERT(); IN_MULTI_LIST_UNLOCK_ASSERT(); error = 0; CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, inm, ntohl(inm->inm_addr.s_addr), (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), imf); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at IGMP layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); CURVNET_SET(inm->inm_ifp->if_vnet); error = igmp_change_state(inm); IF_ADDR_WLOCK(inm->inm_ifp); inm_release_deferred(inm); IF_ADDR_WUNLOCK(inm->inm_ifp); IN_MULTI_LIST_UNLOCK(); CURVNET_RESTORE(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); return (error); } /*#ifndef BURN_BRIDGES*/ /* * Join an IPv4 multicast group in (*,G) exclusive mode. * The group must be a 224.0.0.0/24 link-scope group. * This KPI is for legacy kernel consumers only. */ struct in_multi * in_addmulti(struct in_addr *ap, struct ifnet *ifp) { struct in_multi *pinm; int error; #ifdef INVARIANTS char addrbuf[INET_ADDRSTRLEN]; #endif KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)), ("%s: %s not in 224.0.0.0/24", __func__, inet_ntoa_r(*ap, addrbuf))); error = in_joingroup(ifp, ap, NULL, &pinm); if (error != 0) pinm = NULL; return (pinm); } /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An IGMP downcall will be performed. * * SMPng: NOTE: Must take Giant as a join may create a new ifma. * * Return 0 if successful, otherwise return an appropriate error code. */ static int inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct rm_priotracker in_ifa_tracker; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; uint16_t fmode; int error, doblock; ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; ssa = (sockunion_t *)&gsr.gsr_source; switch (sopt->sopt_name) { case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; if (!in_nullhost(mreqs.imr_interface)) { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(mreqs.imr_interface, ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); } if (sopt->sopt_name == IP_BLOCK_SOURCE) doblock = 1; CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; } case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (sopt->sopt_name == MCAST_BLOCK_SOURCE) doblock = 1; break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); IN_MULTI_LOCK(); /* * Check if we are actually a member of this group. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->imf_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = imo_match_source(imf, &ssa->sa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at socket layer. */ if (doblock) { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); ims = imf_graft(imf, fmode, &ssa->sin); if (ims == NULL) error = ENOMEM; } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); error = imf_prune(imf, &ssa->sin); } if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_imf_rollback; } /* * Begin state merge transaction at IGMP layer. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); goto out_imf_rollback; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); IN_MULTI_UNLOCK(); return (error); } /* * Given an inpcb, return its multicast options structure pointer. Accepts * an unlocked inpcb pointer, but will return it locked. May sleep. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. * SMPng: NOTE: Returns with the INP write lock held. */ static struct ip_moptions * inp_findmoptions(struct inpcb *inp) { struct ip_moptions *imo; INP_WLOCK(inp); if (inp->inp_moptions != NULL) return (inp->inp_moptions); INP_WUNLOCK(inp); imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); imo->imo_multicast_ifp = NULL; imo->imo_multicast_addr.s_addr = INADDR_ANY; imo->imo_multicast_vif = -1; imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; imo->imo_multicast_loop = in_mcast_loop; STAILQ_INIT(&imo->imo_head); INP_WLOCK(inp); if (inp->inp_moptions != NULL) { free(imo, M_IPMOPTS); return (inp->inp_moptions); } inp->inp_moptions = imo; return (imo); } static void inp_gcmoptions(struct ip_moptions *imo) { struct in_mfilter *imf; struct in_multi *inm; struct ifnet *ifp; while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { ip_mfilter_remove(&imo->imo_head, imf); imf_leave(imf); if ((inm = imf->imf_inm) != NULL) { if ((ifp = inm->inm_ifp) != NULL) { CURVNET_SET(ifp->if_vnet); (void)in_leavegroup(inm, imf); CURVNET_RESTORE(); } else { (void)in_leavegroup(inm, imf); } } ip_mfilter_free(imf); } free(imo, M_IPMOPTS); } /* * Discard the IP multicast options (and source filters). To minimize * the amount of work done while holding locks such as the INP's * pcbinfo lock (which is used in the receive path), the free * operation is deferred to the epoch callback task. */ void inp_freemoptions(struct ip_moptions *imo) { if (imo == NULL) return; inp_gcmoptions(imo); } /* * Atomically get source filters on a socket for an IPv4 multicast group. * Called with INP lock held; returns with lock released. */ static int inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct ip_moptions *imo; struct in_mfilter *imf; struct ip_msource *ims; struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t nsrcs, ncsrcs; INP_WLOCK_ASSERT(inp); imo = inp->inp_moptions; KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); INP_WUNLOCK(inp); error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EINVAL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EINVAL); INP_WLOCK(inp); /* * Lookup group on the socket. */ gsa = (sockunion_t *)&msfr.msfr_group; imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { INP_WUNLOCK(inp); return (EADDRNOTAVAIL); } /* * Ignore memberships which are in limbo. */ if (imf->imf_st[1] == MCAST_UNDEFINED) { INP_WUNLOCK(inp); return (EAGAIN); } msfr.msfr_fmode = imf->imf_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) msfr.msfr_nsrcs = in_mcast_maxsocksrc; tss = NULL; if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_NOWAIT | M_ZERO); if (tss == NULL) { INP_WUNLOCK(inp); return (ENOBUFS); } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == MCAST_UNDEFINED || lims->imsl_st[0] != imf->imf_st[0]) continue; ++ncsrcs; if (tss != NULL && nsrcs > 0) { psin = (struct sockaddr_in *)ptss; psin->sin_family = AF_INET; psin->sin_len = sizeof(struct sockaddr_in); psin->sin_addr.s_addr = htonl(lims->ims_haddr); psin->sin_port = 0; ++ptss; --nsrcs; } } INP_WUNLOCK(inp); if (tss != NULL) { error = copyout(tss, msfr.msfr_srcs, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); free(tss, M_TEMP); if (error) return (error); } msfr.msfr_nsrcs = ncsrcs; error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); return (error); } /* * Return the IP multicast options in response to user getsockopt(). */ int inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) { struct rm_priotracker in_ifa_tracker; struct ip_mreqn mreqn; struct ip_moptions *imo; struct ifnet *ifp; struct in_ifaddr *ia; int error, optval; u_char coptval; INP_WLOCK(inp); imo = inp->inp_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { INP_WUNLOCK(inp); return (EOPNOTSUPP); } error = 0; switch (sopt->sopt_name) { case IP_MULTICAST_VIF: if (imo != NULL) optval = imo->imo_multicast_vif; else optval = -1; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_IF: memset(&mreqn, 0, sizeof(struct ip_mreqn)); if (imo != NULL) { ifp = imo->imo_multicast_ifp; if (!in_nullhost(imo->imo_multicast_addr)) { mreqn.imr_address = imo->imo_multicast_addr; } else if (ifp != NULL) { struct epoch_tracker et; mreqn.imr_ifindex = ifp->if_index; NET_EPOCH_ENTER(et); IFP_TO_IA(ifp, ia, &in_ifa_tracker); if (ia != NULL) mreqn.imr_address = IA_SIN(ia)->sin_addr; NET_EPOCH_EXIT(et); } } INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { error = sooptcopyout(sopt, &mreqn, sizeof(struct ip_mreqn)); } else { error = sooptcopyout(sopt, &mreqn.imr_address, sizeof(struct in_addr)); } break; case IP_MULTICAST_TTL: if (imo == NULL) optval = coptval = IP_DEFAULT_MULTICAST_TTL; else optval = coptval = imo->imo_multicast_ttl; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_LOOP: if (imo == NULL) optval = coptval = IP_DEFAULT_MULTICAST_LOOP; else optval = coptval = imo->imo_multicast_loop; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MSFILTER: if (imo == NULL) { error = EADDRNOTAVAIL; INP_WUNLOCK(inp); } else { error = inp_get_source_filters(inp, sopt); } break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Look up the ifnet to use for a multicast group membership, * given the IPv4 address of an interface, and the IPv4 group address. * * This routine exists to support legacy multicast applications * which do not understand that multicast memberships are scoped to * specific physical links in the networking stack, or which need * to join link-scope groups before IPv4 addresses are configured. * * If inp is non-NULL, use this socket's current FIB number for any * required FIB lookup. * If ina is INADDR_ANY, look up the group address in the unicast FIB, * and use its ifp; usually, this points to the default next-hop. * * If the FIB lookup fails, attempt to use the first non-loopback * interface with multicast capability in the system as a * last resort. The legacy IPv4 ASM API requires that we do * this in order to allow groups to be joined when the routing * table has not yet been populated during boot. * * Returns NULL if no ifp could be found. * * FUTURE: Implement IPv4 source-address selection. */ static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in *gsin, const struct in_addr ina) { struct rm_priotracker in_ifa_tracker; struct ifnet *ifp; struct nhop_object *nh; uint32_t fibnum; KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), ("%s: not multicast", __func__)); ifp = NULL; if (!in_nullhost(ina)) { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(ina, ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); } else { fibnum = inp ? inp->inp_inc.inc_fibnum : 0; nh = fib4_lookup(fibnum, gsin->sin_addr, 0, 0, 0); if (nh != NULL) ifp = nh->nh_ifp; else { struct in_ifaddr *ia; struct ifnet *mifp; mifp = NULL; IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { mifp = ia->ia_ifp; if (!(mifp->if_flags & IFF_LOOPBACK) && (mifp->if_flags & IFF_MULTICAST)) { ifp = mifp; break; } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } return (ifp); } /* * Join an IPv4 multicast group, possibly with a source. */ static int inp_join_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; struct in_msource *lims; int error, is_new; ifp = NULL; lims = NULL; error = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_ADD_MEMBERSHIP: { struct ip_mreqn mreqn; if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); else error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqn.imr_multiaddr; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && mreqn.imr_ifindex != 0) ifp = ifnet_byindex(mreqn.imr_ifindex); else ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, mreqn.imr_address); break; } case IP_ADD_SOURCE_MEMBERSHIP: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) return (error); gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; gsa->sin.sin_len = ssa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); ssa->sin.sin_addr = mreqs.imr_sourceaddr; ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, mreqs.imr_interface); CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; } case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); /* * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. */ gsa->sin.sin_port = 0; if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); ssa->sin.sin_port = 0; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) return (EADDRNOTAVAIL); IN_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { is_new = 1; inm = NULL; if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { error = ENOMEM; goto out_inp_locked; } } else { is_new = 0; inm = imf->imf_inm; if (ssa->ss.ss_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->imf_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in_msource is transactioned just as for anything * else in SSM -- but note naive use of inm_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = imo_match_source(imf, &ssa->sa); if (lims != NULL /*&& lims->imsl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_inp_locked; } } else { /* * MCAST_JOIN_GROUP on an existing exclusive * membership is an error; return EADDRINUSE * to preserve 4.4BSD API idempotence, and * avoid tedious detour to code below. * NOTE: This is bending RFC 3678 a bit. * * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; if (imf->imf_st[1] == MCAST_EXCLUDE) error = EADDRINUSE; goto out_inp_locked; } } /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * Graft new source into filter list for this inpcb's * membership of the group. The in_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. * * Note: Grafting of exclusive mode filters doesn't happen * in this path. * XXX: Should check for non-NULL lims (node exists but may * not be in-mode) for interop with full-state API. */ if (ssa->ss.ss_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); if (imf == NULL) { error = ENOMEM; goto out_inp_locked; } } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); } lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); if (lims == NULL) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); error = ENOMEM; goto out_inp_locked; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); if (imf == NULL) { error = ENOMEM; goto out_inp_locked; } } } /* * Begin state merge transaction at IGMP layer. */ if (is_new) { in_pcbref(inp); INP_WUNLOCK(inp); error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, &imf->imf_inm); INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) { error = ENXIO; goto out_inp_unlocked; } if (error) { CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", __func__); goto out_inp_locked; } /* * NOTE: Refcount from in_joingroup_locked() * is protecting membership. */ ip_mfilter_insert(&imo->imo_head, imf); } else { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } } imf_commit(imf); imf = NULL; out_inp_locked: INP_WUNLOCK(inp); out_inp_unlocked: IN_MULTI_UNLOCK(); if (is_new && imf) { if (imf->imf_inm != NULL) { IN_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); inm_release_deferred(imf->imf_inm); IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); } ip_mfilter_free(imf); } return (error); } /* * Leave an IPv4 multicast group on an inpcb, possibly with a source. */ static int inp_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct ip_mreq_source mreqs; struct rm_priotracker in_ifa_tracker; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; int error; bool is_final; ifp = NULL; error = 0; is_final = true; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); /* * Swap interface and sourceaddr arguments, * as ip_mreq and ip_mreq_source are laid * out differently. */ mreqs.imr_interface = mreqs.imr_sourceaddr; mreqs.imr_sourceaddr.s_addr = INADDR_ANY; } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); } if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; } /* * Attempt to look up hinted ifp from interface address. * Fallthrough with null ifp iff lookup fails, to * preserve 4.4BSD mcast API idempotence. * XXX NOTE WELL: The RFC 3678 API is preferred because * using an IPv4 address as a key is racy. */ if (!in_nullhost(mreqs.imr_interface)) { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(mreqs.imr_interface, ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); } CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); } if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (ifp == NULL) return (EADDRNOTAVAIL); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); IN_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; if (ssa->ss.ss_family != AF_UNSPEC) is_final = false; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { ip_mfilter_remove(&imo->imo_head, imf); imf_leave(imf); /* * Give up the multicast address record to which * the membership points. */ (void) in_leavegroup_locked(imf->imf_inm, imf); } else { if (imf->imf_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_inp_locked; } ims = imo_match_source(imf, &ssa->sa); if (ims == NULL) { CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); error = imf_prune(imf, &ssa->sin); if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_inp_locked; } } /* * Begin state merge transaction at IGMP layer. */ if (!is_final) { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } } imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); if (is_final && imf) ip_mfilter_free(imf); IN_MULTI_UNLOCK(); return (error); } /* * Select the interface for transmitting IPv4 multicast datagrams. * * Either an instance of struct in_addr or an instance of struct ip_mreqn * may be passed to this socket option. An address of INADDR_ANY or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { struct rm_priotracker in_ifa_tracker; struct in_addr addr; struct ip_mreqn mreqn; struct ifnet *ifp; struct ip_moptions *imo; int error; if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { /* * An interface index was specified using the * Linux-derived ip_mreqn structure. */ error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); if (error) return (error); if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) return (EINVAL); if (mreqn.imr_ifindex == 0) { ifp = NULL; } else { ifp = ifnet_byindex(mreqn.imr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); } } else { /* * An interface was specified by IPv4 address. * This is the traditional BSD usage. */ error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), sizeof(struct in_addr)); if (error) return (error); if (in_nullhost(addr)) { ifp = NULL; } else { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(addr, ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (ifp == NULL) return (EADDRNOTAVAIL); } CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, ntohl(addr.s_addr)); } /* Reject interfaces which do not support multicast. */ if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); imo = inp_findmoptions(inp); imo->imo_multicast_ifp = ifp; imo->imo_multicast_addr.s_addr = INADDR_ANY; INP_WUNLOCK(inp); return (0); } /* * Atomically set source filters on a socket for an IPv4 multicast group. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. */ static int inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; int error; error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) return (ENOBUFS); if ((msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE)) return (EINVAL); if (msfr.msfr_group.ss_family != AF_INET || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); gsa->sin.sin_port = 0; /* ignore port */ if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); IN_MULTI_LOCK(); /* * Take the INP write lock. * Check if this socket is a member of this group. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); imf->imf_st[1] = msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *kss, *pkss; int i; INP_WUNLOCK(inp); CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", __func__, (unsigned long)msfr.msfr_nsrcs); kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_WAITOK); error = copyin(msfr.msfr_srcs, kss, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); if (error) { free(kss, M_TEMP); return (error); } INP_WLOCK(inp); /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as imf_leave() * will set it to INCLUDE. */ imf_leave(imf); imf->imf_st[1] = msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { psin = (struct sockaddr_in *)pkss; if (psin->sin_family != AF_INET) { error = EAFNOSUPPORT; break; } if (psin->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; break; } error = imf_get_source(imf, psin, &lims); if (error) break; lims->imsl_st[1] = imf->imf_st[1]; } free(kss, M_TEMP); } if (error) goto out_imf_rollback; INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at IGMP layer. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); goto out_imf_rollback; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); IN_MULTI_UNLOCK(); return (error); } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv4 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. * * SMPng: XXX: Unlocked read of inp_socket believed OK. * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING * is refactored to no longer use vifs. */ int inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip_moptions *imo; int error; struct epoch_tracker et; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) return (EOPNOTSUPP); switch (sopt->sopt_name) { case IP_MULTICAST_VIF: { int vifi; /* * Select a multicast VIF for transmission. * Only useful if multicast forwarding is active. */ if (legal_vif_num == NULL) { error = EOPNOTSUPP; break; } error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); if (error) break; if (!legal_vif_num(vifi) && (vifi != -1)) { error = EINVAL; break; } imo = inp_findmoptions(inp); imo->imo_multicast_vif = vifi; INP_WUNLOCK(inp); break; } case IP_MULTICAST_IF: error = inp_set_multicast_if(inp, sopt); break; case IP_MULTICAST_TTL: { u_char ttl; /* * Set the IP time-to-live for outgoing multicast packets. * The original multicast API required a char argument, * which is inconsistent with the rest of the socket API. * We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &ttl, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int ittl; error = sooptcopyin(sopt, &ittl, sizeof(u_int), sizeof(u_int)); if (error) break; if (ittl > 255) { error = EINVAL; break; } ttl = (u_char)ittl; } imo = inp_findmoptions(inp); imo->imo_multicast_ttl = ttl; INP_WUNLOCK(inp); break; } case IP_MULTICAST_LOOP: { u_char loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. The original multicast API required a * char argument, which is inconsistent with the rest * of the socket API. We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &loop, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int iloop; error = sooptcopyin(sopt, &iloop, sizeof(u_int), sizeof(u_int)); if (error) break; loop = (u_char)iloop; } imo = inp_findmoptions(inp); imo->imo_multicast_loop = !!loop; INP_WUNLOCK(inp); break; } case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: NET_EPOCH_ENTER(et); error = inp_join_group(inp, sopt); NET_EPOCH_EXIT(et); break; case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = inp_leave_group(inp, sopt); break; case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_block_unblock_source(inp, sopt); break; case IP_MSFILTER: error = inp_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Expose IGMP's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in_addr. * For use by ifmcstat(8). * SMPng: NOTE: unlocked read of ifindex space. */ static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) { struct in_addr src, group; struct epoch_tracker et; struct ifnet *ifp; struct ifmultiaddr *ifma; struct in_multi *inm; struct ip_msource *ims; int *name; int retval; u_int namelen; uint32_t fmode, ifindex; name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); if (namelen != 2) return (EINVAL); ifindex = name[0]; if (ifindex <= 0 || ifindex > V_if_index) { CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", __func__, ifindex); return (ENOENT); } group.s_addr = name[1]; if (!IN_MULTICAST(ntohl(group.s_addr))) { CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", __func__, ntohl(group.s_addr)); return (EINVAL); } NET_EPOCH_ENTER(et); ifp = ifnet_byindex(ifindex); if (ifp == NULL) { NET_EPOCH_EXIT(et); CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", __func__, ifindex); return (ENOENT); } retval = sysctl_wire_old_buffer(req, sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); if (retval) { NET_EPOCH_EXIT(et); return (retval); } IN_MULTI_LIST_LOCK(); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (!in_hosteq(inm->inm_addr, group)) continue; fmode = inm->inm_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) break; RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, ims->ims_haddr); /* * Only copy-out sources which are in-mode. */ if (fmode != ims_get_mode(inm, ims, 1)) { CTR1(KTR_IGMPV3, "%s: skip non-in-mode", __func__); continue; } src.s_addr = htonl(ims->ims_haddr); retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); if (retval != 0) break; } } IN_MULTI_LIST_UNLOCK(); NET_EPOCH_EXIT(et); return (retval); } #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) static const char *inm_modestrs[] = { [MCAST_UNDEFINED] = "un", [MCAST_INCLUDE] = "in", [MCAST_EXCLUDE] = "ex", }; _Static_assert(MCAST_UNDEFINED == 0 && MCAST_EXCLUDE + 1 == nitems(inm_modestrs), "inm_modestrs: no longer matches #defines"); static const char * inm_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) return (inm_modestrs[mode]); return ("??"); } static const char *inm_statestrs[] = { [IGMP_NOT_MEMBER] = "not-member", [IGMP_SILENT_MEMBER] = "silent", [IGMP_REPORTING_MEMBER] = "reporting", [IGMP_IDLE_MEMBER] = "idle", [IGMP_LAZY_MEMBER] = "lazy", [IGMP_SLEEPING_MEMBER] = "sleeping", [IGMP_AWAKENING_MEMBER] = "awakening", [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", [IGMP_LEAVING_MEMBER] = "leaving", }; _Static_assert(IGMP_NOT_MEMBER == 0 && IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), "inm_statetrs: no longer matches #defines"); static const char * inm_state_str(const int state) { if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) return (inm_statestrs[state]); return ("??"); } /* * Dump an in_multi structure to the console. */ void inm_print(const struct in_multi *inm) { int t; char addrbuf[INET_ADDRSTRLEN]; if ((ktr_mask & KTR_IGMPV3) == 0) return; printf("%s: --- begin inm %p ---\n", __func__, inm); printf("addr %s ifp %p(%s) ifma %p\n", inet_ntoa_r(inm->inm_addr, addrbuf), inm->inm_ifp, inm->inm_ifp->if_xname, inm->inm_ifma); printf("timer %u state %s refcount %u scq.len %u\n", inm->inm_timer, inm_state_str(inm->inm_state), inm->inm_refcount, inm->inm_scq.mq_len); printf("igi %p nsrc %lu sctimer %u scrv %u\n", inm->inm_igi, inm->inm_nsrc, inm->inm_sctimer, inm->inm_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, inm_mode_str(inm->inm_st[t].iss_fmode), inm->inm_st[t].iss_asm, inm->inm_st[t].iss_ex, inm->inm_st[t].iss_in, inm->inm_st[t].iss_rec); } printf("%s: --- end inm %p ---\n", __func__, inm); } #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ void inm_print(const struct in_multi *inm) { } #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); Index: head/sys/netinet/in_var.h =================================================================== --- head/sys/netinet/in_var.h (revision 364072) +++ head/sys/netinet/in_var.h (revision 364073) @@ -1,479 +1,480 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.2 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NETINET_IN_VAR_H_ #define _NETINET_IN_VAR_H_ /* * Argument structure for SIOCAIFADDR. */ struct in_aliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr_in ifra_addr; struct sockaddr_in ifra_broadaddr; #define ifra_dstaddr ifra_broadaddr struct sockaddr_in ifra_mask; int ifra_vhid; }; #ifdef _KERNEL #include #include #include struct igmp_ifsoftc; struct in_multi; struct lltable; SLIST_HEAD(in_multi_head, in_multi); /* * IPv4 per-interface state. */ struct in_ifinfo { struct lltable *ii_llt; /* ARP state */ struct igmp_ifsoftc *ii_igmp; /* IGMP state */ struct in_multi *ii_allhosts; /* 224.0.0.1 membership */ }; /* * Interface address, Internet version. One of these structures * is allocated for each Internet address on an interface. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ struct in_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags /* ia_subnet{,mask} in host order */ u_long ia_subnet; /* subnet address */ u_long ia_subnetmask; /* mask of subnet */ LIST_ENTRY(in_ifaddr) ia_hash; /* entry in bucket of inet addresses */ CK_STAILQ_ENTRY(in_ifaddr) ia_link; /* list of internet addresses */ struct sockaddr_in ia_addr; /* reserve space for interface name */ struct sockaddr_in ia_dstaddr; /* reserve space for broadcast addr */ #define ia_broadaddr ia_dstaddr struct sockaddr_in ia_sockmask; /* reserve space for general netmask */ struct callout ia_garp_timer; /* timer for retransmitting GARPs */ int ia_garp_count; /* count of retransmitted GARPs */ }; /* * Given a pointer to an in_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in. */ #define IA_SIN(ia) (&(((struct in_ifaddr *)(ia))->ia_addr)) #define IA_DSTSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_dstaddr)) #define IA_MASKSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_sockmask)) #define IN_LNAOF(in, ifa) \ ((ntohl((in).s_addr) & ~((struct in_ifaddr *)(ifa)->ia_subnetmask)) extern u_char inetctlerrmap[]; #define LLTABLE(ifp) \ ((struct in_ifinfo *)(ifp)->if_afdata[AF_INET])->ii_llt /* * Hash table for IP addresses. */ CK_STAILQ_HEAD(in_ifaddrhead, in_ifaddr); LIST_HEAD(in_ifaddrhashhead, in_ifaddr); VNET_DECLARE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); VNET_DECLARE(struct in_ifaddrhead, in_ifaddrhead); VNET_DECLARE(u_long, in_ifaddrhmask); /* mask for hash table */ #define V_in_ifaddrhashtbl VNET(in_ifaddrhashtbl) #define V_in_ifaddrhead VNET(in_ifaddrhead) #define V_in_ifaddrhmask VNET(in_ifaddrhmask) #define INADDR_NHASH_LOG2 9 #define INADDR_NHASH (1 << INADDR_NHASH_LOG2) #define INADDR_HASHVAL(x) fnv_32_buf((&(x)), sizeof(x), FNV1_32_INIT) #define INADDR_HASH(x) \ (&V_in_ifaddrhashtbl[INADDR_HASHVAL(x) & V_in_ifaddrhmask]) extern struct rmlock in_ifaddr_lock; #define IN_IFADDR_LOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_LOCKED) #define IN_IFADDR_RLOCK(t) rm_rlock(&in_ifaddr_lock, (t)) #define IN_IFADDR_RLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_RLOCKED) #define IN_IFADDR_RUNLOCK(t) rm_runlock(&in_ifaddr_lock, (t)) #define IN_IFADDR_WLOCK() rm_wlock(&in_ifaddr_lock) #define IN_IFADDR_WLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_WLOCKED) #define IN_IFADDR_WUNLOCK() rm_wunlock(&in_ifaddr_lock) /* * Macro for finding the internet address structure (in_ifaddr) * corresponding to one of our IP addresses (in_addr). */ #define INADDR_TO_IFADDR(addr, ia) \ /* struct in_addr addr; */ \ /* struct in_ifaddr *ia; */ \ do { \ \ LIST_FOREACH(ia, INADDR_HASH((addr).s_addr), ia_hash) \ if (IA_SIN(ia)->sin_addr.s_addr == (addr).s_addr) \ break; \ } while (0) /* * Macro for finding the interface (ifnet structure) corresponding to one * of our IP addresses. */ #define INADDR_TO_IFP(addr, ifp) \ /* struct in_addr addr; */ \ /* struct ifnet *ifp; */ \ { \ struct in_ifaddr *ia; \ \ INADDR_TO_IFADDR(addr, ia); \ (ifp) = (ia == NULL) ? NULL : ia->ia_ifp; \ } /* * Macro for finding the internet address structure (in_ifaddr) corresponding * to a given interface (ifnet structure). */ #define IFP_TO_IA(ifp, ia, t) \ /* struct ifnet *ifp; */ \ /* struct in_ifaddr *ia; */ \ /* struct rm_priotracker *t; */ \ do { \ NET_EPOCH_ASSERT(); \ IN_IFADDR_RLOCK((t)); \ for ((ia) = CK_STAILQ_FIRST(&V_in_ifaddrhead); \ (ia) != NULL && (ia)->ia_ifp != (ifp); \ (ia) = CK_STAILQ_NEXT((ia), ia_link)) \ continue; \ IN_IFADDR_RUNLOCK((t)); \ } while (0) /* * Legacy IPv4 IGMP per-link structure. */ struct router_info { struct ifnet *rti_ifp; int rti_type; /* type of router which is querier on this interface */ int rti_time; /* # of slow timeouts since last old query */ SLIST_ENTRY(router_info) rti_list; }; /* * IPv4 multicast IGMP-layer source entry. */ struct ip_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ struct ims_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } ims_st[2]; /* state at t0, t1 */ uint8_t ims_stp; /* pending query */ }; /* * IPv4 multicast PCB-layer source entry. */ struct in_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ uint8_t imsl_st[2]; /* state before/at commit */ }; RB_HEAD(ip_msource_tree, ip_msource); /* define struct ip_msource_tree */ static __inline int ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b) { if (a->ims_haddr < b->ims_haddr) return (-1); if (a->ims_haddr == b->ims_haddr) return (0); return (1); } RB_PROTOTYPE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); /* * IPv4 multicast PCB-layer group filter descriptor. */ struct in_mfilter { struct ip_msource_tree imf_sources; /* source list for (S,G) */ u_long imf_nsrc; /* # of source entries */ uint8_t imf_st[2]; /* state before/at commit */ struct in_multi *imf_inm; /* associated multicast address */ STAILQ_ENTRY(in_mfilter) imf_entry; /* list entry */ }; /* * Helper types and functions for IPv4 multicast filters. */ STAILQ_HEAD(ip_mfilter_head, in_mfilter); struct in_mfilter *ip_mfilter_alloc(int mflags, int st0, int st1); void ip_mfilter_free(struct in_mfilter *); static inline void ip_mfilter_init(struct ip_mfilter_head *head) { STAILQ_INIT(head); } static inline struct in_mfilter * ip_mfilter_first(const struct ip_mfilter_head *head) { return (STAILQ_FIRST(head)); } static inline void ip_mfilter_insert(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_INSERT_TAIL(head, imf, imf_entry); } static inline void ip_mfilter_remove(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_REMOVE(head, imf, in_mfilter, imf_entry); } #define IP_MFILTER_FOREACH(imf, head) \ STAILQ_FOREACH(imf, head, imf_entry) static inline size_t ip_mfilter_count(struct ip_mfilter_head *head) { struct in_mfilter *imf; size_t num = 0; STAILQ_FOREACH(imf, head, imf_entry) num++; return (num); } /* * IPv4 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When IGMPv3 is active, inm_timer is the response to group query timer. * The state-change timer inm_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: inm_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in_multi { LIST_ENTRY(in_multi) inm_link; /* to-be-released by in_ifdetach */ struct in_addr inm_addr; /* IP multicast address, convenience */ struct ifnet *inm_ifp; /* back pointer to ifnet */ struct ifmultiaddr *inm_ifma; /* back pointer to ifmultiaddr */ u_int inm_timer; /* IGMPv1/v2 group / v3 query timer */ u_int inm_state; /* state of the membership */ void *inm_rti; /* unused, legacy field */ u_int inm_refcount; /* reference count */ /* New fields for IGMPv3 follow. */ struct igmp_ifsoftc *inm_igi; /* IGMP info */ SLIST_ENTRY(in_multi) inm_nrele; /* to-be-released by IGMP */ struct ip_msource_tree inm_srcs; /* tree of sources */ u_long inm_nsrc; /* # of tree entries */ struct mbufq inm_scq; /* queue of pending * state-change packets */ struct timeval inm_lastgsrtv; /* Time of last G-S-R query */ uint16_t inm_sctimer; /* state-change timer */ uint16_t inm_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing IGMPv3 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct inm_st { uint16_t iss_fmode; /* IGMP filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } inm_st[2]; /* state at t0, t1 */ }; /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims, uint8_t t) { t = !!t; if (inm->inm_st[t].iss_ex > 0 && inm->inm_st[t].iss_ex == ims->ims_st[t].ex) return (MCAST_EXCLUDE); else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_DECL(_net_inet_raw); #endif /* * Lock macros for IPv4 layer multicast address lists. IPv4 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in_multi_list_mtx; extern struct sx in_multi_sx; #define IN_MULTI_LIST_LOCK() mtx_lock(&in_multi_list_mtx) #define IN_MULTI_LIST_UNLOCK() mtx_unlock(&in_multi_list_mtx) #define IN_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_OWNED) #define IN_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_NOTOWNED) #define IN_MULTI_LOCK() sx_xlock(&in_multi_sx) #define IN_MULTI_UNLOCK() sx_xunlock(&in_multi_sx) #define IN_MULTI_LOCK_ASSERT() sx_assert(&in_multi_sx, SA_XLOCKED) #define IN_MULTI_UNLOCK_ASSERT() sx_assert(&in_multi_sx, SA_XUNLOCKED) void inm_disconnect(struct in_multi *inm); extern int ifma_restart; /* Acquire an in_multi record. */ static __inline void inm_acquire_locked(struct in_multi *inm) { IN_MULTI_LIST_LOCK_ASSERT(); ++inm->inm_refcount; } static __inline void inm_acquire(struct in_multi *inm) { IN_MULTI_LIST_LOCK(); inm_acquire_locked(inm); IN_MULTI_LIST_UNLOCK(); } static __inline void inm_rele_locked(struct in_multi_head *inmh, struct in_multi *inm) { MPASS(inm->inm_refcount > 0); IN_MULTI_LIST_LOCK_ASSERT(); if (--inm->inm_refcount == 0) { MPASS(inmh != NULL); inm_disconnect(inm); inm->inm_ifma->ifma_protospec = NULL; SLIST_INSERT_HEAD(inmh, inm, inm_nrele); } } /* * Return values for imo_multi_filter(). */ #define MCAST_PASS 0 /* Pass */ #define MCAST_NOTGMEMBER 1 /* This host not a member of group */ #define MCAST_NOTSMEMBER 2 /* This host excluded source */ #define MCAST_MUTED 3 /* [deprecated] */ struct rtentry; struct route; struct ip_moptions; struct in_multi *inm_lookup_locked(struct ifnet *, const struct in_addr); struct in_multi *inm_lookup(struct ifnet *, const struct in_addr); int imo_multi_filter(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); void inm_commit(struct in_multi *); void inm_clear_recorded(struct in_multi *); void inm_print(const struct in_multi *); int inm_record_source(struct in_multi *inm, const in_addr_t); void inm_release_deferred(struct in_multi *); void inm_release_list_deferred(struct in_multi_head *); +void inm_release_wait(void *); struct in_multi * in_addmulti(struct in_addr *, struct ifnet *); int in_joingroup(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_joingroup_locked(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_leavegroup(struct in_multi *, /*const*/ struct in_mfilter *); int in_leavegroup_locked(struct in_multi *, /*const*/ struct in_mfilter *); int in_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in_addprefix(struct in_ifaddr *, int); int in_scrubprefix(struct in_ifaddr *, u_int); void in_ifscrub_all(void); void ip_input(struct mbuf *); void ip_direct_input(struct mbuf *); void in_ifadown(struct ifaddr *ifa, int); struct mbuf *ip_tryforward(struct mbuf *); void *in_domifattach(struct ifnet *); void in_domifdetach(struct ifnet *, void *); #endif /* _KERNEL */ /* INET6 stuff */ #include #endif /* _NETINET_IN_VAR_H_ */ Index: head/sys/netinet6/in6_ifattach.c =================================================================== --- head/sys/netinet6/in6_ifattach.c (revision 364072) +++ head/sys/netinet6/in6_ifattach.c (revision 364073) @@ -1,901 +1,901 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_ifattach.c,v 1.118 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VNET_DEFINE(unsigned long, in6_maxmtu) = 0; #ifdef IP6_AUTO_LINKLOCAL VNET_DEFINE(int, ip6_auto_linklocal) = IP6_AUTO_LINKLOCAL; #else VNET_DEFINE(int, ip6_auto_linklocal) = 1; /* enabled by default */ #endif VNET_DEFINE(struct callout, in6_tmpaddrtimer_ch); #define V_in6_tmpaddrtimer_ch VNET(in6_tmpaddrtimer_ch) VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static int get_rand_ifid(struct ifnet *, struct in6_addr *); static int generate_tmp_ifid(u_int8_t *, const u_int8_t *, u_int8_t *); static int get_ifid(struct ifnet *, struct ifnet *, struct in6_addr *); static int in6_ifattach_linklocal(struct ifnet *, struct ifnet *); static int in6_ifattach_loopback(struct ifnet *); static void in6_purgemaddrs(struct ifnet *); #define EUI64_GBIT 0x01 #define EUI64_UBIT 0x02 #define EUI64_TO_IFID(in6) do {(in6)->s6_addr[8] ^= EUI64_UBIT; } while (0) #define EUI64_GROUP(in6) ((in6)->s6_addr[8] & EUI64_GBIT) #define EUI64_INDIVIDUAL(in6) (!EUI64_GROUP(in6)) #define EUI64_LOCAL(in6) ((in6)->s6_addr[8] & EUI64_UBIT) #define EUI64_UNIVERSAL(in6) (!EUI64_LOCAL(in6)) #define IFID_LOCAL(in6) (!EUI64_LOCAL(in6)) #define IFID_UNIVERSAL(in6) (!EUI64_UNIVERSAL(in6)) /* * Generate a last-resort interface identifier, when the machine has no * IEEE802/EUI64 address sources. * The goal here is to get an interface identifier that is * (1) random enough and (2) does not change across reboot. * We currently use MD5(hostname) for it. * * in6 - upper 64bits are preserved */ static int get_rand_ifid(struct ifnet *ifp, struct in6_addr *in6) { MD5_CTX ctxt; struct prison *pr; u_int8_t digest[16]; int hostnamelen; pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); hostnamelen = strlen(pr->pr_hostname); #if 0 /* we need at least several letters as seed for ifid */ if (hostnamelen < 3) { mtx_unlock(&pr->pr_mtx); return -1; } #endif /* generate 8 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, pr->pr_hostname, hostnamelen); mtx_unlock(&pr->pr_mtx); MD5Final(digest, &ctxt); /* assumes sizeof(digest) > sizeof(ifid) */ bcopy(digest, &in6->s6_addr[8], 8); /* make sure to set "u" bit to local, and "g" bit to individual. */ in6->s6_addr[8] &= ~EUI64_GBIT; /* g bit to "individual" */ in6->s6_addr[8] |= EUI64_UBIT; /* u bit to "local" */ /* convert EUI64 into IPv6 interface identifier */ EUI64_TO_IFID(in6); return 0; } static int generate_tmp_ifid(u_int8_t *seed0, const u_int8_t *seed1, u_int8_t *ret) { MD5_CTX ctxt; u_int8_t seed[16], digest[16], nullbuf[8]; u_int32_t val32; /* If there's no history, start with a random seed. */ bzero(nullbuf, sizeof(nullbuf)); if (bcmp(nullbuf, seed0, sizeof(nullbuf)) == 0) { int i; for (i = 0; i < 2; i++) { val32 = arc4random(); bcopy(&val32, seed + sizeof(val32) * i, sizeof(val32)); } } else bcopy(seed0, seed, 8); /* copy the right-most 64-bits of the given address */ /* XXX assumption on the size of IFID */ bcopy(seed1, &seed[8], 8); if (0) { /* for debugging purposes only */ int i; printf("generate_tmp_ifid: new randomized ID from: "); for (i = 0; i < 16; i++) printf("%02x", seed[i]); printf(" "); } /* generate 16 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, seed, sizeof(seed)); MD5Final(digest, &ctxt); /* * RFC 3041 3.2.1. (3) * Take the left-most 64-bits of the MD5 digest and set bit 6 (the * left-most bit is numbered 0) to zero. */ bcopy(digest, ret, 8); ret[0] &= ~EUI64_UBIT; /* * XXX: we'd like to ensure that the generated value is not zero * for simplicity. If the caclculated digest happens to be zero, * use a random non-zero value as the last resort. */ if (bcmp(nullbuf, ret, sizeof(nullbuf)) == 0) { nd6log((LOG_INFO, "generate_tmp_ifid: computed MD5 value is zero.\n")); val32 = arc4random(); val32 = 1 + (val32 % (0xffffffff - 1)); } /* * RFC 3041 3.2.1. (4) * Take the rightmost 64-bits of the MD5 digest and save them in * stable storage as the history value to be used in the next * iteration of the algorithm. */ bcopy(&digest[8], seed0, 8); if (0) { /* for debugging purposes only */ int i; printf("to: "); for (i = 0; i < 16; i++) printf("%02x", digest[i]); printf("\n"); } return 0; } /* * Get interface identifier for the specified interface. * XXX assumes single sockaddr_dl (AF_LINK address) per an interface * * in6 - upper 64bits are preserved */ int in6_get_hw_ifid(struct ifnet *ifp, struct in6_addr *in6) { struct ifaddr *ifa; struct sockaddr_dl *sdl; u_int8_t *addr; size_t addrlen; static u_int8_t allzero[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static u_int8_t allone[8] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) continue; if (sdl->sdl_alen == 0) continue; goto found; } return -1; found: addr = LLADDR(sdl); addrlen = sdl->sdl_alen; /* get EUI64 */ switch (ifp->if_type) { case IFT_BRIDGE: case IFT_ETHER: case IFT_L2VLAN: case IFT_ATM: case IFT_IEEE1394: /* IEEE802/EUI64 cases - what others? */ /* IEEE1394 uses 16byte length address starting with EUI64 */ if (addrlen > 8) addrlen = 8; /* look at IEEE802/EUI64 only */ if (addrlen != 8 && addrlen != 6) return -1; /* * check for invalid MAC address - on bsdi, we see it a lot * since wildboar configures all-zero MAC on pccard before * card insertion. */ if (bcmp(addr, allzero, addrlen) == 0) return -1; if (bcmp(addr, allone, addrlen) == 0) return -1; /* make EUI64 address */ if (addrlen == 8) bcopy(addr, &in6->s6_addr[8], 8); else if (addrlen == 6) { in6->s6_addr[8] = addr[0]; in6->s6_addr[9] = addr[1]; in6->s6_addr[10] = addr[2]; in6->s6_addr[11] = 0xff; in6->s6_addr[12] = 0xfe; in6->s6_addr[13] = addr[3]; in6->s6_addr[14] = addr[4]; in6->s6_addr[15] = addr[5]; } break; case IFT_GIF: case IFT_STF: /* * RFC2893 says: "SHOULD use IPv4 address as ifid source". * however, IPv4 address is not very suitable as unique * identifier source (can be renumbered). * we don't do this. */ return -1; case IFT_INFINIBAND: if (addrlen != 20) return -1; bcopy(addr + 12, &in6->s6_addr[8], 8); break; default: return -1; } /* sanity check: g bit must not indicate "group" */ if (EUI64_GROUP(in6)) return -1; /* convert EUI64 into IPv6 interface identifier */ EUI64_TO_IFID(in6); /* * sanity check: ifid must not be all zero, avoid conflict with * subnet router anycast */ if ((in6->s6_addr[8] & ~(EUI64_GBIT | EUI64_UBIT)) == 0x00 && bcmp(&in6->s6_addr[9], allzero, 7) == 0) return -1; return 0; } /* * Get interface identifier for the specified interface. If it is not * available on ifp0, borrow interface identifier from other information * sources. * * altifp - secondary EUI64 source */ static int get_ifid(struct ifnet *ifp0, struct ifnet *altifp, struct in6_addr *in6) { struct ifnet *ifp; NET_EPOCH_ASSERT(); /* first, try to get it from the interface itself */ if (in6_get_hw_ifid(ifp0, in6) == 0) { nd6log((LOG_DEBUG, "%s: got interface identifier from itself\n", if_name(ifp0))); goto success; } /* try secondary EUI64 source. this basically is for ATM PVC */ if (altifp && in6_get_hw_ifid(altifp, in6) == 0) { nd6log((LOG_DEBUG, "%s: got interface identifier from %s\n", if_name(ifp0), if_name(altifp))); goto success; } /* next, try to get it from some other hardware interface */ CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp == ifp0) continue; if (in6_get_hw_ifid(ifp, in6) != 0) continue; /* * to borrow ifid from other interface, ifid needs to be * globally unique */ if (IFID_UNIVERSAL(in6)) { nd6log((LOG_DEBUG, "%s: borrow interface identifier from %s\n", if_name(ifp0), if_name(ifp))); goto success; } } /* last resort: get from random number source */ if (get_rand_ifid(ifp, in6) == 0) { nd6log((LOG_DEBUG, "%s: interface identifier generated by random number\n", if_name(ifp0))); goto success; } printf("%s: failed to get interface identifier\n", if_name(ifp0)); return -1; success: nd6log((LOG_INFO, "%s: ifid: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", if_name(ifp0), in6->s6_addr[8], in6->s6_addr[9], in6->s6_addr[10], in6->s6_addr[11], in6->s6_addr[12], in6->s6_addr[13], in6->s6_addr[14], in6->s6_addr[15])); return 0; } /* * altifp - secondary EUI64 source */ static int in6_ifattach_linklocal(struct ifnet *ifp, struct ifnet *altifp) { struct in6_ifaddr *ia; struct in6_aliasreq ifra; struct nd_prefixctl pr0; struct epoch_tracker et; struct nd_prefix *pr; int error; /* * configure link-local address. */ in6_prepare_ifra(&ifra, NULL, &in6mask64); ifra.ifra_addr.sin6_addr.s6_addr32[0] = htonl(0xfe800000); ifra.ifra_addr.sin6_addr.s6_addr32[1] = 0; if ((ifp->if_flags & IFF_LOOPBACK) != 0) { ifra.ifra_addr.sin6_addr.s6_addr32[2] = 0; ifra.ifra_addr.sin6_addr.s6_addr32[3] = htonl(1); } else { NET_EPOCH_ENTER(et); error = get_ifid(ifp, altifp, &ifra.ifra_addr.sin6_addr); NET_EPOCH_EXIT(et); if (error != 0) { nd6log((LOG_ERR, "%s: no ifid available\n", if_name(ifp))); return (-1); } } if (in6_setscope(&ifra.ifra_addr.sin6_addr, ifp, NULL)) return (-1); /* link-local addresses should NEVER expire. */ ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME; ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME; /* * Now call in6_update_ifa() to do a bunch of procedures to configure * a link-local address. We can set the 3rd argument to NULL, because * we know there's no other link-local address on the interface * and therefore we are adding one (instead of updating one). */ if ((error = in6_update_ifa(ifp, &ifra, NULL, IN6_IFAUPDATE_DADDELAY)) != 0) { /* * XXX: When the interface does not support IPv6, this call * would fail in the SIOCSIFADDR ioctl. I believe the * notification is rather confusing in this case, so just * suppress it. (jinmei@kame.net 20010130) */ if (error != EAFNOSUPPORT) nd6log((LOG_NOTICE, "in6_ifattach_linklocal: failed to " "configure a link-local address on %s " "(errno=%d)\n", if_name(ifp), error)); return (-1); } NET_EPOCH_ENTER(et); ia = in6ifa_ifpforlinklocal(ifp, 0); NET_EPOCH_EXIT(et); if (ia == NULL) { /* * Another thread removed the address that we just added. * This should be rare, but it happens. */ nd6log((LOG_NOTICE, "%s: %s: new link-local address " "disappeared\n", __func__, if_name(ifp))); return (-1); } ifa_free(&ia->ia_ifa); /* * Make the link-local prefix (fe80::%link/64) as on-link. * Since we'd like to manage prefixes separately from addresses, * we make an ND6 prefix structure for the link-local prefix, * and add it to the prefix list as a never-expire prefix. * XXX: this change might affect some existing code base... */ bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; /* this should be 64 at this moment. */ pr0.ndpr_plen = in6_mask2len(&ifra.ifra_prefixmask.sin6_addr, NULL); pr0.ndpr_prefix = ifra.ifra_addr; /* apply the mask for safety. (nd6_prelist_add will apply it again) */ IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, &in6mask64); /* * Initialize parameters. The link-local prefix must always be * on-link, and its lifetimes never expire. */ pr0.ndpr_raf_onlink = 1; pr0.ndpr_raf_auto = 1; /* probably meaningless */ pr0.ndpr_vltime = ND6_INFINITE_LIFETIME; pr0.ndpr_pltime = ND6_INFINITE_LIFETIME; /* * Since there is no other link-local addresses, nd6_prefix_lookup() * probably returns NULL. However, we cannot always expect the result. * For example, if we first remove the (only) existing link-local * address, and then reconfigure another one, the prefix is still * valid with referring to the old link-local address. */ if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { if ((error = nd6_prelist_add(&pr0, NULL, NULL)) != 0) return (error); } else nd6_prefix_rele(pr); return 0; } /* * ifp - must be IFT_LOOP */ static int in6_ifattach_loopback(struct ifnet *ifp) { struct in6_aliasreq ifra; int error; in6_prepare_ifra(&ifra, &in6addr_loopback, &in6mask128); /* * Always initialize ia_dstaddr (= broadcast address) to loopback * address. Follows IPv4 practice - see in_ifinit(). */ ifra.ifra_dstaddr.sin6_len = sizeof(struct sockaddr_in6); ifra.ifra_dstaddr.sin6_family = AF_INET6; ifra.ifra_dstaddr.sin6_addr = in6addr_loopback; /* the loopback address should NEVER expire. */ ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME; ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME; /* * We are sure that this is a newly assigned address, so we can set * NULL to the 3rd arg. */ if ((error = in6_update_ifa(ifp, &ifra, NULL, 0)) != 0) { nd6log((LOG_ERR, "in6_ifattach_loopback: failed to configure " "the loopback address on %s (errno=%d)\n", if_name(ifp), error)); return (-1); } return 0; } /* * compute NI group address, based on the current hostname setting. * see RFC 4620. * * when ifp == NULL, the caller is responsible for filling scopeid. * * If oldmcprefix == 1, FF02:0:0:0:0:2::/96 is used for NI group address * while it is FF02:0:0:0:0:2:FF00::/104 in RFC 4620. */ static int in6_nigroup0(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6, int oldmcprefix) { struct prison *pr; const char *p; u_char *q; MD5_CTX ctxt; u_int8_t digest[16]; char l; char n[64]; /* a single label must not exceed 63 chars */ /* * If no name is given and namelen is -1, * we try to do the hostname lookup ourselves. */ if (!name && namelen == -1) { pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); name = pr->pr_hostname; namelen = strlen(name); } else pr = NULL; if (!name || !namelen) { if (pr != NULL) mtx_unlock(&pr->pr_mtx); return -1; } p = name; while (p && *p && *p != '.' && p - name < namelen) p++; if (p == name || p - name > sizeof(n) - 1) { if (pr != NULL) mtx_unlock(&pr->pr_mtx); return -1; /* label too long */ } l = p - name; strncpy(n, name, l); if (pr != NULL) mtx_unlock(&pr->pr_mtx); n[(int)l] = '\0'; for (q = n; *q; q++) { if ('A' <= *q && *q <= 'Z') *q = *q - 'A' + 'a'; } /* generate 16 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, &l, sizeof(l)); MD5Update(&ctxt, n, l); MD5Final(digest, &ctxt); bzero(in6, sizeof(*in6)); in6->s6_addr16[0] = IPV6_ADDR_INT16_MLL; in6->s6_addr8[11] = 2; if (oldmcprefix == 0) { in6->s6_addr8[12] = 0xff; /* Copy the first 24 bits of 128-bit hash into the address. */ bcopy(digest, &in6->s6_addr8[13], 3); } else { /* Copy the first 32 bits of 128-bit hash into the address. */ bcopy(digest, &in6->s6_addr32[3], sizeof(in6->s6_addr32[3])); } if (in6_setscope(in6, ifp, NULL)) return (-1); /* XXX: should not fail */ return 0; } int in6_nigroup(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6) { return (in6_nigroup0(ifp, name, namelen, in6, 0)); } int in6_nigroup_oldmcprefix(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6) { return (in6_nigroup0(ifp, name, namelen, in6, 1)); } /* * XXX multiple loopback interface needs more care. for instance, * nodelocal address needs to be configured onto only one of them. * XXX multiple link-local address case * * altifp - secondary EUI64 source */ void in6_ifattach(struct ifnet *ifp, struct ifnet *altifp) { struct in6_ifaddr *ia; if (ifp->if_afdata[AF_INET6] == NULL) return; /* * quirks based on interface type */ switch (ifp->if_type) { case IFT_STF: /* * 6to4 interface is a very special kind of beast. * no multicast, no linklocal. RFC2529 specifies how to make * linklocals for 6to4 interface, but there's no use and * it is rather harmful to have one. */ ND_IFINFO(ifp)->flags &= ~ND6_IFF_AUTO_LINKLOCAL; ND_IFINFO(ifp)->flags |= ND6_IFF_NO_DAD; break; default: break; } /* * usually, we require multicast capability to the interface */ if ((ifp->if_flags & IFF_MULTICAST) == 0) { nd6log((LOG_INFO, "in6_ifattach: " "%s is not multicast capable, IPv6 not enabled\n", if_name(ifp))); return; } /* * assign loopback address for loopback interface. */ if ((ifp->if_flags & IFF_LOOPBACK) != 0) { /* * check that loopback address doesn't exist yet. */ ia = in6ifa_ifwithaddr(&in6addr_loopback, 0); if (ia == NULL) in6_ifattach_loopback(ifp); else ifa_free(&ia->ia_ifa); } /* * assign a link-local address, if there's none. */ if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL) { struct epoch_tracker et; NET_EPOCH_ENTER(et); ia = in6ifa_ifpforlinklocal(ifp, 0); NET_EPOCH_EXIT(et); if (ia == NULL) in6_ifattach_linklocal(ifp, altifp); else ifa_free(&ia->ia_ifa); } /* update dynamically. */ if (V_in6_maxmtu < ifp->if_mtu) V_in6_maxmtu = ifp->if_mtu; } /* * NOTE: in6_ifdetach() does not support loopback if at this moment. * * When shutting down a VNET we clean up layers top-down. In that case * upper layer protocols (ulp) are cleaned up already and locks are destroyed * and we must not call into these cleanup functions anymore, thus purgeulp * is set to 0 in that case by in6_ifdetach_destroy(). * The normal case of destroying a (cloned) interface still needs to cleanup * everything related to the interface and will have purgeulp set to 1. */ static void _in6_ifdetach(struct ifnet *ifp, int purgeulp) { struct ifaddr *ifa, *next; if (ifp->if_afdata[AF_INET6] == NULL) return; /* * nuke any of IPv6 addresses we have */ CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; in6_purgeaddr(ifa); } if (purgeulp) { IN6_MULTI_LOCK(); in6_pcbpurgeif0(&V_udbinfo, ifp); in6_pcbpurgeif0(&V_ulitecbinfo, ifp); in6_pcbpurgeif0(&V_ripcbinfo, ifp); IN6_MULTI_UNLOCK(); } /* leave from all multicast groups joined */ in6_purgemaddrs(ifp); /* * Remove neighbor management table. * Enabling the nd6_purge will panic on vmove for interfaces on VNET * teardown as the IPv6 layer is cleaned up already and the locks * are destroyed. */ if (purgeulp) nd6_purge(ifp); } void in6_ifdetach(struct ifnet *ifp) { _in6_ifdetach(ifp, 1); } void in6_ifdetach_destroy(struct ifnet *ifp) { _in6_ifdetach(ifp, 0); } int in6_get_tmpifid(struct ifnet *ifp, u_int8_t *retbuf, const u_int8_t *baseid, int generate) { u_int8_t nullbuf[8]; struct nd_ifinfo *ndi = ND_IFINFO(ifp); bzero(nullbuf, sizeof(nullbuf)); if (bcmp(ndi->randomid, nullbuf, sizeof(nullbuf)) == 0) { /* we've never created a random ID. Create a new one. */ generate = 1; } if (generate) { bcopy(baseid, ndi->randomseed1, sizeof(ndi->randomseed1)); /* generate_tmp_ifid will update seedn and buf */ (void)generate_tmp_ifid(ndi->randomseed0, ndi->randomseed1, ndi->randomid); } bcopy(ndi->randomid, retbuf, 8); return (0); } void in6_tmpaddrtimer(void *arg) { CURVNET_SET((struct vnet *) arg); struct nd_ifinfo *ndi; u_int8_t nullbuf[8]; struct ifnet *ifp; callout_reset(&V_in6_tmpaddrtimer_ch, (V_ip6_temp_preferred_lifetime - V_ip6_desync_factor - V_ip6_temp_regen_advance) * hz, in6_tmpaddrtimer, curvnet); bzero(nullbuf, sizeof(nullbuf)); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_afdata[AF_INET6] == NULL) continue; ndi = ND_IFINFO(ifp); if (bcmp(ndi->randomid, nullbuf, sizeof(nullbuf)) != 0) { /* * We've been generating a random ID on this interface. * Create a new one. */ (void)generate_tmp_ifid(ndi->randomseed0, ndi->randomseed1, ndi->randomid); } } CURVNET_RESTORE(); } static void in6_purgemaddrs(struct ifnet *ifp) { struct in6_multi_head inmh; SLIST_INIT(&inmh); IN6_MULTI_LOCK(); IN6_MULTI_LIST_LOCK(); mld_ifdetach(ifp, &inmh); IN6_MULTI_LIST_UNLOCK(); IN6_MULTI_UNLOCK(); in6m_release_list_deferred(&inmh); /* * Make sure all multicast deletions invoking if_ioctl() are * completed before returning. Else we risk accessing a freed * ifnet structure pointer. */ - in6m_release_wait(); + in6m_release_wait(NULL); } void in6_ifattach_destroy(void) { callout_drain(&V_in6_tmpaddrtimer_ch); } static void in6_ifattach_init(void *dummy) { /* Timer for regeneranation of temporary addresses randomize ID. */ callout_init(&V_in6_tmpaddrtimer_ch, 0); callout_reset(&V_in6_tmpaddrtimer_ch, (V_ip6_temp_preferred_lifetime - V_ip6_desync_factor - V_ip6_temp_regen_advance) * hz, in6_tmpaddrtimer, curvnet); } /* * Cheat. * This must be after route_init(), which is now SI_ORDER_THIRD. */ SYSINIT(in6_ifattach_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, in6_ifattach_init, NULL); Index: head/sys/netinet6/in6_mcast.c =================================================================== --- head/sys/netinet6/in6_mcast.c (revision 364072) +++ head/sys/netinet6/in6_mcast.c (revision 364073) @@ -1,2902 +1,2910 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2009 Bruce Simpson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv6 multicast socket, group, and socket option processing module. * Normative references: RFC 2292, RFC 3492, RFC 3542, RFC 3678, RFC 3810. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_MLD #define KTR_MLD KTR_INET6 #endif #ifndef __SOCKUNION_DECLARED union sockunion { struct sockaddr_storage ss; struct sockaddr sa; struct sockaddr_dl sdl; struct sockaddr_in6 sin6; }; typedef union sockunion sockunion_t; #define __SOCKUNION_DECLARED #endif /* __SOCKUNION_DECLARED */ static MALLOC_DEFINE(M_IN6MFILTER, "in6_mfilter", "IPv6 multicast PCB-layer source filter"); MALLOC_DEFINE(M_IP6MADDR, "in6_multi", "IPv6 multicast group"); static MALLOC_DEFINE(M_IP6MOPTS, "ip6_moptions", "IPv6 multicast options"); static MALLOC_DEFINE(M_IP6MSOURCE, "ip6_msource", "IPv6 multicast MLD-layer source filter"); RB_GENERATE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); /* * Locking: * - Lock order is: Giant, IN6_MULTI_LOCK, INP_WLOCK, * IN6_MULTI_LIST_LOCK, MLD_LOCK, IF_ADDR_LOCK. * - The IF_ADDR_LOCK is implicitly taken by in6m_lookup() earlier, however * it can be taken by code in net/if.c also. * - ip6_moptions and in6_mfilter are covered by the INP_WLOCK. * * struct in6_multi is covered by IN6_MULTI_LOCK. There isn't strictly * any need for in6_multi itself to be virtualized -- it is bound to an ifp * anyway no matter what happens. */ struct mtx in6_multi_list_mtx; MTX_SYSINIT(in6_multi_mtx, &in6_multi_list_mtx, "in6_multi_list_mtx", MTX_DEF); struct mtx in6_multi_free_mtx; MTX_SYSINIT(in6_multi_free_mtx, &in6_multi_free_mtx, "in6_multi_free_mtx", MTX_DEF); struct sx in6_multi_sx; SX_SYSINIT(in6_multi_sx, &in6_multi_sx, "in6_multi_sx"); static void im6f_commit(struct in6_mfilter *); static int im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, struct in6_msource **); static struct in6_msource * im6f_graft(struct in6_mfilter *, const uint8_t, const struct sockaddr_in6 *); static void im6f_leave(struct in6_mfilter *); static int im6f_prune(struct in6_mfilter *, const struct sockaddr_in6 *); static void im6f_purge(struct in6_mfilter *); static void im6f_rollback(struct in6_mfilter *); static void im6f_reap(struct in6_mfilter *); static struct in6_mfilter * im6o_match_group(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr *); static struct in6_msource * im6o_match_source(struct in6_mfilter *, const struct sockaddr *); static void im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, const int rollback); static int in6_getmulti(struct ifnet *, const struct in6_addr *, struct in6_multi **); static int in6_joingroup_locked(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); static int in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, const int noalloc, struct ip6_msource **pims); #ifdef KTR static int in6m_is_ifp_detached(const struct in6_multi *); #endif static int in6m_merge(struct in6_multi *, /*const*/ struct in6_mfilter *); static void in6m_purge(struct in6_multi *); static void in6m_reap(struct in6_multi *); static struct ip6_moptions * in6p_findmoptions(struct inpcb *); static int in6p_get_source_filters(struct inpcb *, struct sockopt *); static int in6p_join_group(struct inpcb *, struct sockopt *); static int in6p_leave_group(struct inpcb *, struct sockopt *); static struct ifnet * in6p_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in6 *); static int in6p_block_unblock_source(struct inpcb *, struct sockopt *); static int in6p_set_multicast_if(struct inpcb *, struct sockopt *); static int in6p_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS); SYSCTL_DECL(_net_inet6_ip6); /* XXX Not in any common header. */ static SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IPv6 multicast"); static u_long in6_mcast_maxgrpsrc = IPV6_MAX_GROUP_SRC_FILTER; SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RWTUN, &in6_mcast_maxgrpsrc, 0, "Max source filters per group"); static u_long in6_mcast_maxsocksrc = IPV6_MAX_SOCK_SRC_FILTER; SYSCTL_ULONG(_net_inet6_ip6_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RWTUN, &in6_mcast_maxsocksrc, 0, "Max source filters per socket"); /* TODO Virtualize this switch. */ int in6_mcast_loop = IPV6_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet6_ip6_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, &in6_mcast_loop, 0, "Loopback multicast datagrams by default"); static SYSCTL_NODE(_net_inet6_ip6_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip6_mcast_filters, "Per-interface stack-wide source filters"); #ifdef KTR /* * Inline function which wraps assertions for a valid ifp. * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp * is detached. */ static int __inline in6m_is_ifp_detached(const struct in6_multi *inm) { struct ifnet *ifp; KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->in6m_ifma->ifma_ifp; if (ifp != NULL) { /* * Sanity check that network-layer notion of ifp is the * same as that of link-layer. */ KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); } return (ifp == NULL); } #endif /* * Initialize an in6_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline void im6f_init(struct in6_mfilter *imf, const int st0, const int st1) { memset(imf, 0, sizeof(struct in6_mfilter)); RB_INIT(&imf->im6f_sources); imf->im6f_st[0] = st0; imf->im6f_st[1] = st1; } struct in6_mfilter * ip6_mfilter_alloc(const int mflags, const int st0, const int st1) { struct in6_mfilter *imf; imf = malloc(sizeof(*imf), M_IN6MFILTER, mflags); if (imf != NULL) im6f_init(imf, st0, st1); return (imf); } void ip6_mfilter_free(struct in6_mfilter *imf) { im6f_purge(imf); free(imf, M_IN6MFILTER); } /* * Find an IPv6 multicast group entry for this ip6_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static struct in6_mfilter * im6o_match_group(const struct ip6_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group) { const struct sockaddr_in6 *gsin6; struct in6_mfilter *imf; struct in6_multi *inm; gsin6 = (const struct sockaddr_in6 *)group; IP6_MFILTER_FOREACH(imf, &imo->im6o_head) { inm = imf->im6f_in6m; if (inm == NULL) continue; if ((ifp == NULL || (inm->in6m_ifp == ifp)) && IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &gsin6->sin6_addr)) { break; } } return (imf); } /* * Find an IPv6 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * XXX TODO: The scope ID, if present in src, is stripped before * any comparison. We SHOULD enforce scope/zone checks where the source * filter entry has a link scope. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in6_msource * im6o_match_source(struct in6_mfilter *imf, const struct sockaddr *src) { struct ip6_msource find; struct ip6_msource *ims; const sockunion_t *psa; KASSERT(src->sa_family == AF_INET6, ("%s: !AF_INET6", __func__)); psa = (const sockunion_t *)src; find.im6s_addr = psa->sin6.sin6_addr; in6_clearscope(&find.im6s_addr); /* XXX */ ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); return ((struct in6_msource *)ims); } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int im6o_mc_filter(const struct ip6_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group, const struct sockaddr *src) { struct in6_mfilter *imf; struct in6_msource *ims; int mode; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); imf = im6o_match_group(imo, ifp, group); if (imf == NULL) return (MCAST_NOTGMEMBER); /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at MLD t1 (now) * with socket-layer t0 (since last downcall). */ mode = imf->im6f_st[1]; ims = im6o_match_source(imf, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->im6sl_st[0] != mode)) return (MCAST_NOTSMEMBER); return (MCAST_PASS); } /* * Find and return a reference to an in6_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Assumes the IN6_MULTI lock is held across the call. * Return 0 if successful, otherwise return an appropriate error code. */ static int in6_getmulti(struct ifnet *ifp, const struct in6_addr *group, struct in6_multi **pinm) { struct epoch_tracker et; struct sockaddr_in6 gsin6; struct ifmultiaddr *ifma; struct in6_multi *inm; int error; error = 0; /* * XXX: Accesses to ifma_protospec must be covered by IF_ADDR_LOCK; * if_addmulti() takes this mutex itself, so we must drop and * re-acquire around the call. */ IN6_MULTI_LOCK_ASSERT(); IN6_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); NET_EPOCH_ENTER(et); inm = in6m_lookup_locked(ifp, group); NET_EPOCH_EXIT(et); if (inm != NULL) { /* * If we already joined this group, just bump the * refcount and return it. */ KASSERT(inm->in6m_refcount >= 1, ("%s: bad refcount %d", __func__, inm->in6m_refcount)); in6m_acquire_locked(inm); *pinm = inm; goto out_locked; } memset(&gsin6, 0, sizeof(gsin6)); gsin6.sin6_family = AF_INET6; gsin6.sin6_len = sizeof(struct sockaddr_in6); gsin6.sin6_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ IN6_MULTI_LIST_UNLOCK(); IF_ADDR_WUNLOCK(ifp); error = if_addmulti(ifp, (struct sockaddr *)&gsin6, &ifma); if (error != 0) return (error); IN6_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); /* * If something other than netinet6 is occupying the link-layer * group, print a meaningful error message and back out of * the allocation. * Otherwise, bump the refcount on the existing network-layer * group association and return it. */ if (ifma->ifma_protospec != NULL) { inm = (struct in6_multi *)ifma->ifma_protospec; #ifdef INVARIANTS KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", __func__)); KASSERT(ifma->ifma_addr->sa_family == AF_INET6, ("%s: ifma not AF_INET6", __func__)); KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); if (inm->in6m_ifma != ifma || inm->in6m_ifp != ifp || !IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, group)) panic("%s: ifma %p is inconsistent with %p (%p)", __func__, ifma, inm, group); #endif in6m_acquire_locked(inm); *pinm = inm; goto out_locked; } IF_ADDR_WLOCK_ASSERT(ifp); /* * A new in6_multi record is needed; allocate and initialize it. * We DO NOT perform an MLD join as the in6_ layer may need to * push an initial source list down to MLD to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. * Pending state-changes per group are subject to a bounds check. */ inm = malloc(sizeof(*inm), M_IP6MADDR, M_NOWAIT | M_ZERO); if (inm == NULL) { IN6_MULTI_LIST_UNLOCK(); IF_ADDR_WUNLOCK(ifp); if_delmulti_ifma(ifma); return (ENOMEM); } inm->in6m_addr = *group; inm->in6m_ifp = ifp; inm->in6m_mli = MLD_IFINFO(ifp); inm->in6m_ifma = ifma; inm->in6m_refcount = 1; inm->in6m_state = MLD_NOT_MEMBER; mbufq_init(&inm->in6m_scq, MLD_MAX_STATE_CHANGES); inm->in6m_st[0].iss_fmode = MCAST_UNDEFINED; inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->in6m_srcs); ifma->ifma_protospec = inm; *pinm = inm; out_locked: IN6_MULTI_LIST_UNLOCK(); IF_ADDR_WUNLOCK(ifp); return (error); } /* * Drop a reference to an in6_multi record. * * If the refcount drops to 0, free the in6_multi record and * delete the underlying link-layer membership. */ static void in6m_release(struct in6_multi *inm) { struct ifmultiaddr *ifma; struct ifnet *ifp; CTR2(KTR_MLD, "%s: refcount is %d", __func__, inm->in6m_refcount); MPASS(inm->in6m_refcount == 0); CTR2(KTR_MLD, "%s: freeing inm %p", __func__, inm); ifma = inm->in6m_ifma; ifp = inm->in6m_ifp; MPASS(ifma->ifma_llifma == NULL); /* XXX this access is not covered by IF_ADDR_LOCK */ CTR2(KTR_MLD, "%s: purging ifma %p", __func__, ifma); KASSERT(ifma->ifma_protospec == NULL, ("%s: ifma_protospec != NULL", __func__)); if (ifp == NULL) ifp = ifma->ifma_ifp; if (ifp != NULL) { CURVNET_SET(ifp->if_vnet); in6m_purge(inm); free(inm, M_IP6MADDR); if_delmulti_ifma_flags(ifma, 1); CURVNET_RESTORE(); if_rele(ifp); } else { in6m_purge(inm); free(inm, M_IP6MADDR); if_delmulti_ifma_flags(ifma, 1); } } /* * Interface detach can happen in a taskqueue thread context, so we must use a * dedicated thread to avoid deadlocks when draining in6m_release tasks. */ TASKQUEUE_DEFINE_THREAD(in6m_free); static struct task in6m_free_task; static struct in6_multi_head in6m_free_list = SLIST_HEAD_INITIALIZER(); static void in6m_release_task(void *arg __unused, int pending __unused); static void in6m_init(void *arg __unused) { TASK_INIT(&in6m_free_task, 0, in6m_release_task, NULL); } SYSINIT(in6m_init, SI_SUB_TASKQ, SI_ORDER_ANY, in6m_init, NULL); void in6m_release_list_deferred(struct in6_multi_head *inmh) { if (SLIST_EMPTY(inmh)) return; mtx_lock(&in6_multi_free_mtx); SLIST_CONCAT(&in6m_free_list, inmh, in6_multi, in6m_nrele); mtx_unlock(&in6_multi_free_mtx); taskqueue_enqueue(taskqueue_in6m_free, &in6m_free_task); } void -in6m_release_wait(void) +in6m_release_wait(void *arg __unused) { + + /* + * Make sure all pending multicast addresses are freed before + * the VNET or network device is destroyed: + */ taskqueue_drain_all(taskqueue_in6m_free); } +#ifdef VIMAGE +VNET_SYSUNINIT(in6m_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, in6m_release_wait, NULL); +#endif void in6m_disconnect_locked(struct in6_multi_head *inmh, struct in6_multi *inm) { struct ifnet *ifp; struct ifaddr *ifa; struct in6_ifaddr *ifa6; struct in6_multi_mship *imm, *imm_tmp; struct ifmultiaddr *ifma, *ll_ifma; IN6_MULTI_LIST_LOCK_ASSERT(); ifp = inm->in6m_ifp; if (ifp == NULL) return; /* already called */ inm->in6m_ifp = NULL; IF_ADDR_WLOCK_ASSERT(ifp); ifma = inm->in6m_ifma; if (ifma == NULL) return; if_ref(ifp); if (ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); if ((ll_ifma = ifma->ifma_llifma) != NULL) { MPASS(ifma != ll_ifma); ifma->ifma_llifma = NULL; MPASS(ll_ifma->ifma_llifma == NULL); MPASS(ll_ifma->ifma_ifp == ifp); if (--ll_ifma->ifma_refcount == 0) { if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); if_freemulti(ll_ifma); } } CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ifa6 = (void *)ifa; LIST_FOREACH_SAFE(imm, &ifa6->ia6_memberships, i6mm_chain, imm_tmp) { if (inm == imm->i6mm_maddr) { LIST_REMOVE(imm, i6mm_chain); free(imm, M_IP6MADDR); in6m_rele_locked(inmh, inm); } } } } static void in6m_release_task(void *arg __unused, int pending __unused) { struct in6_multi_head in6m_free_tmp; struct in6_multi *inm, *tinm; SLIST_INIT(&in6m_free_tmp); mtx_lock(&in6_multi_free_mtx); SLIST_CONCAT(&in6m_free_tmp, &in6m_free_list, in6_multi, in6m_nrele); mtx_unlock(&in6_multi_free_mtx); IN6_MULTI_LOCK(); SLIST_FOREACH_SAFE(inm, &in6m_free_tmp, in6m_nrele, tinm) { SLIST_REMOVE_HEAD(&in6m_free_tmp, in6m_nrele); in6m_release(inm); } IN6_MULTI_UNLOCK(); } /* * Clear recorded source entries for a group. * Used by the MLD code. Caller must hold the IN6_MULTI lock. * FIXME: Should reap. */ void in6m_clear_recorded(struct in6_multi *inm) { struct ip6_msource *ims; IN6_MULTI_LIST_LOCK_ASSERT(); RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { if (ims->im6s_stp) { ims->im6s_stp = 0; --inm->in6m_st[1].iss_rec; } } KASSERT(inm->in6m_st[1].iss_rec == 0, ("%s: iss_rec %d not 0", __func__, inm->in6m_st[1].iss_rec)); } /* * Record a source as pending for a Source-Group MLDv2 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet6.mld.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * VIMAGE: XXX: Currently the mld_sgalloc feature has been removed. * This turns off the allocation of a recorded source entry if * the group has not been joined. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occurred (negated errno code). */ int in6m_record_source(struct in6_multi *inm, const struct in6_addr *addr) { struct ip6_msource find; struct ip6_msource *ims, *nims; IN6_MULTI_LIST_LOCK_ASSERT(); find.im6s_addr = *addr; ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); if (ims && ims->im6s_stp) return (0); if (ims == NULL) { if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) return (-ENOSPC); nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (-ENOMEM); nims->im6s_addr = find.im6s_addr; RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); ++inm->in6m_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->im6s_stp; ++inm->in6m_st[1].iss_rec; return (1); } /* * Return a pointer to an in6_msource owned by an in6_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * addr is the source address. * * SMPng: May be called with locks held; malloc must not block. */ static int im6f_get_source(struct in6_mfilter *imf, const struct sockaddr_in6 *psin, struct in6_msource **plims) { struct ip6_msource find; struct ip6_msource *ims, *nims; struct in6_msource *lims; int error; error = 0; ims = NULL; lims = NULL; find.im6s_addr = psin->sin6_addr; ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); lims = (struct in6_msource *)ims; if (lims == NULL) { if (imf->im6f_nsrc == in6_mcast_maxsocksrc) return (ENOSPC); nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); lims = (struct in6_msource *)nims; lims->im6s_addr = find.im6s_addr; lims->im6sl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); ++imf->im6f_nsrc; } *plims = lims; return (error); } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. */ static struct in6_msource * im6f_graft(struct in6_mfilter *imf, const uint8_t st1, const struct sockaddr_in6 *psin) { struct ip6_msource *nims; struct in6_msource *lims; nims = malloc(sizeof(struct in6_msource), M_IN6MFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (NULL); lims = (struct in6_msource *)nims; lims->im6s_addr = psin->sin6_addr; lims->im6sl_st[0] = MCAST_UNDEFINED; lims->im6sl_st[1] = st1; RB_INSERT(ip6_msource_tree, &imf->im6f_sources, nims); ++imf->im6f_nsrc; return (lims); } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. */ static int im6f_prune(struct in6_mfilter *imf, const struct sockaddr_in6 *psin) { struct ip6_msource find; struct ip6_msource *ims; struct in6_msource *lims; find.im6s_addr = psin->sin6_addr; ims = RB_FIND(ip6_msource_tree, &imf->im6f_sources, &find); if (ims == NULL) return (ENOENT); lims = (struct in6_msource *)ims; lims->im6sl_st[1] = MCAST_UNDEFINED; return (0); } /* * Revert socket-layer filter set deltas at t1 to t0 state. */ static void im6f_rollback(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; struct in6_msource *lims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == lims->im6sl_st[1]) { /* no change at t1 */ continue; } else if (lims->im6sl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->im6sl_st[1] = lims->im6sl_st[0]; } else { /* revert source added t1 */ CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); free(ims, M_IN6MFILTER); imf->im6f_nsrc--; } } imf->im6f_st[1] = imf->im6f_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. */ static void im6f_leave(struct in6_mfilter *imf) { struct ip6_msource *ims; struct in6_msource *lims; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; lims->im6sl_st[1] = MCAST_UNDEFINED; } imf->im6f_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. */ static void im6f_commit(struct in6_mfilter *imf) { struct ip6_msource *ims; struct in6_msource *lims; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; lims->im6sl_st[0] = lims->im6sl_st[1]; } imf->im6f_st[0] = imf->im6f_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. */ static void im6f_reap(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; struct in6_msource *lims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { lims = (struct in6_msource *)ims; if ((lims->im6sl_st[0] == MCAST_UNDEFINED) && (lims->im6sl_st[1] == MCAST_UNDEFINED)) { CTR2(KTR_MLD, "%s: free lims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); free(ims, M_IN6MFILTER); imf->im6f_nsrc--; } } } /* * Purge socket-layer filter set. */ static void im6f_purge(struct in6_mfilter *imf) { struct ip6_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &imf->im6f_sources, tims) { CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &imf->im6f_sources, ims); free(ims, M_IN6MFILTER); imf->im6f_nsrc--; } imf->im6f_st[0] = imf->im6f_st[1] = MCAST_UNDEFINED; KASSERT(RB_EMPTY(&imf->im6f_sources), ("%s: im6f_sources not empty", __func__)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * addr is the IPv6 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * SMPng: NOTE: may be called with locks held. * Return 0 if successful, otherwise return a non-zero error code. */ static int in6m_get_source(struct in6_multi *inm, const struct in6_addr *addr, const int noalloc, struct ip6_msource **pims) { struct ip6_msource find; struct ip6_msource *ims, *nims; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif find.im6s_addr = *addr; ims = RB_FIND(ip6_msource_tree, &inm->in6m_srcs, &find); if (ims == NULL && !noalloc) { if (inm->in6m_nsrc == in6_mcast_maxgrpsrc) return (ENOSPC); nims = malloc(sizeof(struct ip6_msource), M_IP6MSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); nims->im6s_addr = *addr; RB_INSERT(ip6_msource_tree, &inm->in6m_srcs, nims); ++inm->in6m_nsrc; ims = nims; CTR3(KTR_MLD, "%s: allocated %s as %p", __func__, ip6_sprintf(ip6tbuf, addr), ims); } *pims = ims; return (0); } /* * Merge socket-layer source into MLD-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void im6s_merge(struct ip6_msource *ims, const struct in6_msource *lims, const int rollback) { int n = rollback ? -1 : 1; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; ip6_sprintf(ip6tbuf, &lims->im6s_addr); #endif if (lims->im6sl_st[0] == MCAST_EXCLUDE) { CTR3(KTR_MLD, "%s: t1 ex -= %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].ex -= n; } else if (lims->im6sl_st[0] == MCAST_INCLUDE) { CTR3(KTR_MLD, "%s: t1 in -= %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].in -= n; } if (lims->im6sl_st[1] == MCAST_EXCLUDE) { CTR3(KTR_MLD, "%s: t1 ex += %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].ex += n; } else if (lims->im6sl_st[1] == MCAST_INCLUDE) { CTR3(KTR_MLD, "%s: t1 in += %d on %s", __func__, n, ip6tbuf); ims->im6s_st[1].in += n; } } /* * Atomically update the global in6_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int in6m_merge(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { struct ip6_msource *ims, *nims; struct in6_msource *lims; int schanged, error; int nsrc0, nsrc1; schanged = 0; error = 0; nsrc1 = nsrc0 = 0; IN6_MULTI_LIST_LOCK_ASSERT(); /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == imf->im6f_st[0]) nsrc0++; if (lims->im6sl_st[1] == imf->im6f_st[1]) nsrc1++; if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; error = in6m_get_source(inm, &lims->im6s_addr, 0, &nims); ++schanged; if (error) break; im6s_merge(nims, lims, 0); } if (error) { struct ip6_msource *bims; RB_FOREACH_REVERSE_FROM(ims, ip6_msource_tree, nims) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == lims->im6sl_st[1]) continue; (void)in6m_get_source(inm, &lims->im6s_addr, 1, &bims); if (bims == NULL) continue; im6s_merge(bims, lims, 1); } goto out_reap; } CTR3(KTR_MLD, "%s: imf filters in-mode: %d at t0, %d at t1", __func__, nsrc0, nsrc1); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->im6f_st[0] == imf->im6f_st[1] && imf->im6f_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); --inm->in6m_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->im6f_st[0] != imf->im6f_st[1]) { CTR3(KTR_MLD, "%s: imf transition %d to %d", __func__, imf->im6f_st[0], imf->im6f_st[1]); if (imf->im6f_st[0] == MCAST_EXCLUDE) { CTR1(KTR_MLD, "%s: --ex on inm at t1", __func__); --inm->in6m_st[1].iss_ex; } else if (imf->im6f_st[0] == MCAST_INCLUDE) { CTR1(KTR_MLD, "%s: --in on inm at t1", __func__); --inm->in6m_st[1].iss_in; } if (imf->im6f_st[1] == MCAST_EXCLUDE) { CTR1(KTR_MLD, "%s: ex++ on inm at t1", __func__); inm->in6m_st[1].iss_ex++; } else if (imf->im6f_st[1] == MCAST_INCLUDE && nsrc1 > 0) { CTR1(KTR_MLD, "%s: in++ on inm at t1", __func__); inm->in6m_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the MLD lifecycle for this group should finish. */ if (inm->in6m_st[1].iss_ex > 0) { CTR1(KTR_MLD, "%s: transition to EX", __func__); inm->in6m_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->in6m_st[1].iss_in > 0) { CTR1(KTR_MLD, "%s: transition to IN", __func__); inm->in6m_st[1].iss_fmode = MCAST_INCLUDE; } else { CTR1(KTR_MLD, "%s: transition to UNDEF", __func__); inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->im6f_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->im6f_st[1] != MCAST_EXCLUDE) || (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { CTR1(KTR_MLD, "%s: --asm on inm at t1", __func__); --inm->in6m_st[1].iss_asm; } } /* Increment ASM listener count on transition to ASM mode. */ if (imf->im6f_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { CTR1(KTR_MLD, "%s: asm++ on inm at t1", __func__); inm->in6m_st[1].iss_asm++; } CTR3(KTR_MLD, "%s: merged imf %p to inm %p", __func__, imf, inm); in6m_print(inm); out_reap: if (schanged > 0) { CTR1(KTR_MLD, "%s: sources changed; reaping", __func__); in6m_reap(inm); } return (error); } /* * Mark an in6_multi's filter set deltas as committed. * Called by MLD after a state change has been enqueued. */ void in6m_commit(struct in6_multi *inm) { struct ip6_msource *ims; CTR2(KTR_MLD, "%s: commit inm %p", __func__, inm); CTR1(KTR_MLD, "%s: pre commit:", __func__); in6m_print(inm); RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { ims->im6s_st[0] = ims->im6s_st[1]; } inm->in6m_st[0] = inm->in6m_st[1]; } /* * Reap unreferenced nodes from an in6_multi's filter set. */ static void in6m_reap(struct in6_multi *inm) { struct ip6_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { if (ims->im6s_st[0].ex > 0 || ims->im6s_st[0].in > 0 || ims->im6s_st[1].ex > 0 || ims->im6s_st[1].in > 0 || ims->im6s_stp != 0) continue; CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); free(ims, M_IP6MSOURCE); inm->in6m_nsrc--; } } /* * Purge all source nodes from an in6_multi's filter set. */ static void in6m_purge(struct in6_multi *inm) { struct ip6_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, tims) { CTR2(KTR_MLD, "%s: free ims %p", __func__, ims); RB_REMOVE(ip6_msource_tree, &inm->in6m_srcs, ims); free(ims, M_IP6MSOURCE); inm->in6m_nsrc--; } /* Free state-change requests that might be queued. */ mbufq_drain(&inm->in6m_scq); } /* * Join a multicast address w/o sources. * KAME compatibility entry point. * * SMPng: Assume no mc locks held by caller. */ int in6_joingroup(struct ifnet *ifp, const struct in6_addr *mcaddr, /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, const int delay) { int error; IN6_MULTI_LOCK(); error = in6_joingroup_locked(ifp, mcaddr, NULL, pinm, delay); IN6_MULTI_UNLOCK(); return (error); } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the MLD downcall fails, the group is not joined, and an error * code is returned. */ static int in6_joingroup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr, /*const*/ struct in6_mfilter *imf, struct in6_multi **pinm, const int delay) { struct in6_multi_head inmh; struct in6_mfilter timf; struct in6_multi *inm; struct ifmultiaddr *ifma; int error; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif /* * Sanity: Check scope zone ID was set for ifp, if and * only if group is scoped to an interface. */ KASSERT(IN6_IS_ADDR_MULTICAST(mcaddr), ("%s: not a multicast address", __func__)); if (IN6_IS_ADDR_MC_LINKLOCAL(mcaddr) || IN6_IS_ADDR_MC_INTFACELOCAL(mcaddr)) { KASSERT(mcaddr->s6_addr16[1] != 0, ("%s: scope zone ID not set", __func__)); } IN6_MULTI_LOCK_ASSERT(); IN6_MULTI_LIST_UNLOCK_ASSERT(); CTR4(KTR_MLD, "%s: join %s on %p(%s))", __func__, ip6_sprintf(ip6tbuf, mcaddr), ifp, if_name(ifp)); error = 0; inm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { im6f_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in6_getmulti(ifp, mcaddr, &inm); if (error) { CTR1(KTR_MLD, "%s: in6_getmulti() failure", __func__); return (error); } IN6_MULTI_LIST_LOCK(); CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); if (error) { CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); goto out_in6m_release; } CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, delay); if (error) { CTR1(KTR_MLD, "%s: failed to update source", __func__); goto out_in6m_release; } out_in6m_release: SLIST_INIT(&inmh); if (error) { struct epoch_tracker et; CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); IF_ADDR_WLOCK(ifp); NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_protospec == inm) { ifma->ifma_protospec = NULL; break; } } in6m_disconnect_locked(&inmh, inm); in6m_rele_locked(&inmh, inm); NET_EPOCH_EXIT(et); IF_ADDR_WUNLOCK(ifp); } else { *pinm = inm; } IN6_MULTI_LIST_UNLOCK(); in6m_release_list_deferred(&inmh); return (error); } /* * Leave a multicast group; unlocked entry point. */ int in6_leavegroup(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { int error; IN6_MULTI_LOCK(); error = in6_leavegroup_locked(inm, imf); IN6_MULTI_UNLOCK(); return (error); } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Holding the write lock for the INP which contains imf * is highly advisable. We can't assert for it as imf does not * contain a back-pointer to the owning inp. * * Note: This is not the same as in6m_release(*) as this function also * makes a state change downcall into MLD. */ int in6_leavegroup_locked(struct in6_multi *inm, /*const*/ struct in6_mfilter *imf) { struct in6_multi_head inmh; struct in6_mfilter timf; struct ifnet *ifp; int error; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif error = 0; IN6_MULTI_LOCK_ASSERT(); CTR5(KTR_MLD, "%s: leave inm %p, %s/%s, imf %p", __func__, inm, ip6_sprintf(ip6tbuf, &inm->in6m_addr), (in6m_is_ifp_detached(inm) ? "null" : if_name(inm->in6m_ifp)), imf); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { im6f_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at MLD layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ ifp = inm->in6m_ifp; IN6_MULTI_LIST_LOCK(); CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = 0; if (ifp) error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); CTR2(KTR_MLD, "%s: dropping ref on %p", __func__, inm); if (ifp) IF_ADDR_WLOCK(ifp); SLIST_INIT(&inmh); if (inm->in6m_refcount == 1) in6m_disconnect_locked(&inmh, inm); in6m_rele_locked(&inmh, inm); if (ifp) IF_ADDR_WUNLOCK(ifp); IN6_MULTI_LIST_UNLOCK(); in6m_release_list_deferred(&inmh); return (error); } /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An MLD downcall will be performed. * * SMPng: NOTE: Must take Giant as a join may create a new ifma. * * Return 0 if successful, otherwise return an appropriate error code. */ static int in6p_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_msource *ims; struct in6_multi *inm; uint16_t fmode; int error, doblock; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; ssa = (sockunion_t *)&gsr.gsr_source; switch (sopt->sopt_name) { case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) return (error); if (gsa->sin6.sin6_family != AF_INET6 || gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (ssa->sin6.sin6_family != AF_INET6 || ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (sopt->sopt_name == MCAST_BLOCK_SOURCE) doblock = 1; break; default: CTR2(KTR_MLD, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); /* * Check if we are actually a member of this group. */ imo = in6p_findmoptions(inp); imf = im6o_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_in6p_locked; } inm = imf->im6f_in6m; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->im6f_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_in6p_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = im6o_match_source(imf, &ssa->sa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { CTR3(KTR_MLD, "%s: source %s %spresent", __func__, ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), doblock ? "" : "not "); error = EADDRNOTAVAIL; goto out_in6p_locked; } INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at socket layer. */ if (doblock) { CTR2(KTR_MLD, "%s: %s source", __func__, "block"); ims = im6f_graft(imf, fmode, &ssa->sin6); if (ims == NULL) error = ENOMEM; } else { CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); error = im6f_prune(imf, &ssa->sin6); } if (error) { CTR1(KTR_MLD, "%s: merge imf state failed", __func__); goto out_im6f_rollback; } /* * Begin state merge transaction at MLD layer. */ IN6_MULTI_LIST_LOCK(); CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); if (error) CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); else { CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); } IN6_MULTI_LIST_UNLOCK(); out_im6f_rollback: if (error) im6f_rollback(imf); else im6f_commit(imf); im6f_reap(imf); out_in6p_locked: INP_WUNLOCK(inp); return (error); } /* * Given an inpcb, return its multicast options structure pointer. Accepts * an unlocked inpcb pointer, but will return it locked. May sleep. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. * SMPng: NOTE: Returns with the INP write lock held. */ static struct ip6_moptions * in6p_findmoptions(struct inpcb *inp) { struct ip6_moptions *imo; INP_WLOCK(inp); if (inp->in6p_moptions != NULL) return (inp->in6p_moptions); INP_WUNLOCK(inp); imo = malloc(sizeof(*imo), M_IP6MOPTS, M_WAITOK); imo->im6o_multicast_ifp = NULL; imo->im6o_multicast_hlim = V_ip6_defmcasthlim; imo->im6o_multicast_loop = in6_mcast_loop; STAILQ_INIT(&imo->im6o_head); INP_WLOCK(inp); if (inp->in6p_moptions != NULL) { free(imo, M_IP6MOPTS); return (inp->in6p_moptions); } inp->in6p_moptions = imo; return (imo); } /* * Discard the IPv6 multicast options (and source filters). * * SMPng: NOTE: assumes INP write lock is held. * * XXX can all be safely deferred to epoch_call * */ static void inp_gcmoptions(struct ip6_moptions *imo) { struct in6_mfilter *imf; struct in6_multi *inm; struct ifnet *ifp; while ((imf = ip6_mfilter_first(&imo->im6o_head)) != NULL) { ip6_mfilter_remove(&imo->im6o_head, imf); im6f_leave(imf); if ((inm = imf->im6f_in6m) != NULL) { if ((ifp = inm->in6m_ifp) != NULL) { CURVNET_SET(ifp->if_vnet); (void)in6_leavegroup(inm, imf); CURVNET_RESTORE(); } else { (void)in6_leavegroup(inm, imf); } } ip6_mfilter_free(imf); } free(imo, M_IP6MOPTS); } void ip6_freemoptions(struct ip6_moptions *imo) { if (imo == NULL) return; inp_gcmoptions(imo); } /* * Atomically get source filters on a socket for an IPv6 multicast group. * Called with INP lock held; returns with lock released. */ static int in6p_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct ip6_moptions *imo; struct in6_mfilter *imf; struct ip6_msource *ims; struct in6_msource *lims; struct sockaddr_in6 *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t nsrcs, ncsrcs; INP_WLOCK_ASSERT(inp); imo = inp->in6p_moptions; KASSERT(imo != NULL, ("%s: null ip6_moptions", __func__)); INP_WUNLOCK(inp); error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_group.ss_family != AF_INET6 || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); INP_WLOCK(inp); /* * Lookup group on the socket. */ imf = im6o_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { INP_WUNLOCK(inp); return (EADDRNOTAVAIL); } /* * Ignore memberships which are in limbo. */ if (imf->im6f_st[1] == MCAST_UNDEFINED) { INP_WUNLOCK(inp); return (EAGAIN); } msfr.msfr_fmode = imf->im6f_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) msfr.msfr_nsrcs = in6_mcast_maxsocksrc; tss = NULL; if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_NOWAIT | M_ZERO); if (tss == NULL) { INP_WUNLOCK(inp); return (ENOBUFS); } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip6_msource_tree, &imf->im6f_sources) { lims = (struct in6_msource *)ims; if (lims->im6sl_st[0] == MCAST_UNDEFINED || lims->im6sl_st[0] != imf->im6f_st[0]) continue; ++ncsrcs; if (tss != NULL && nsrcs > 0) { psin = (struct sockaddr_in6 *)ptss; psin->sin6_family = AF_INET6; psin->sin6_len = sizeof(struct sockaddr_in6); psin->sin6_addr = lims->im6s_addr; psin->sin6_port = 0; --nsrcs; ++ptss; } } INP_WUNLOCK(inp); if (tss != NULL) { error = copyout(tss, msfr.msfr_srcs, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); free(tss, M_TEMP); if (error) return (error); } msfr.msfr_nsrcs = ncsrcs; error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); return (error); } /* * Return the IP multicast options in response to user getsockopt(). */ int ip6_getmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip6_moptions *im6o; int error; u_int optval; INP_WLOCK(inp); im6o = inp->in6p_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { INP_WUNLOCK(inp); return (EOPNOTSUPP); } error = 0; switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) { optval = 0; } else { optval = im6o->im6o_multicast_ifp->if_index; } INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MULTICAST_HOPS: if (im6o == NULL) optval = V_ip6_defmcasthlim; else optval = im6o->im6o_multicast_hlim; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MULTICAST_LOOP: if (im6o == NULL) optval = in6_mcast_loop; /* XXX VIMAGE */ else optval = im6o->im6o_multicast_loop; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(u_int)); break; case IPV6_MSFILTER: if (im6o == NULL) { error = EADDRNOTAVAIL; INP_WUNLOCK(inp); } else { error = in6p_get_source_filters(inp, sopt); } break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Look up the ifnet to use for a multicast group membership, * given the address of an IPv6 group. * * This routine exists to support legacy IPv6 multicast applications. * * Use the socket's current FIB number for any required FIB lookup. Look up the * group address in the unicast FIB, and use its ifp; usually, this points to * the default next-hop. If the FIB lookup fails, return NULL. * * FUTURE: Support multiple forwarding tables for IPv6. * * Returns NULL if no ifp could be found. */ static struct ifnet * in6p_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in6 *gsin6) { struct nhop_object *nh; struct in6_addr dst; uint32_t scopeid; uint32_t fibnum; KASSERT(gsin6->sin6_family == AF_INET6, ("%s: not AF_INET6 group", __func__)); in6_splitscope(&gsin6->sin6_addr, &dst, &scopeid); fibnum = inp->inp_inc.inc_fibnum; nh = fib6_lookup(fibnum, &dst, scopeid, 0, 0); return (nh ? nh->nh_ifp : NULL); } /* * Join an IPv6 multicast group, possibly with a source. * * FIXME: The KAME use of the unspecified address (::) * to join *all* multicast groups is currently unsupported. */ static int in6p_join_group(struct inpcb *inp, struct sockopt *sopt) { struct in6_multi_head inmh; struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_multi *inm; struct in6_msource *lims; int error, is_new; SLIST_INIT(&inmh); ifp = NULL; lims = NULL; error = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; /* * Chew everything into struct group_source_req. * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. * Ignore passed-in scope ID. */ switch (sopt->sopt_name) { case IPV6_JOIN_GROUP: { struct ipv6_mreq mreq; error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), sizeof(struct ipv6_mreq)); if (error) return (error); gsa->sin6.sin6_family = AF_INET6; gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; if (mreq.ipv6mr_interface == 0) { ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); } else { if (V_if_index < mreq.ipv6mr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(mreq.ipv6mr_interface); } CTR3(KTR_MLD, "%s: ipv6mr_interface = %d, ifp = %p", __func__, mreq.ipv6mr_interface, ifp); } break; case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin6.sin6_family != AF_INET6 || gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin6.sin6_family != AF_INET6 || ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) return (EINVAL); /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&ssa->sin6.sin6_addr); ssa->sin6.sin6_port = 0; ssa->sin6.sin6_scope_id = 0; } if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); break; default: CTR2(KTR_MLD, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) return (EADDRNOTAVAIL); gsa->sin6.sin6_port = 0; gsa->sin6.sin6_scope_id = 0; /* * Always set the scope zone ID on memberships created from userland. * Use the passed-in ifp to do this. * XXX The in6_setscope() return value is meaningless. * XXX SCOPE6_LOCK() is taken by in6_setscope(). */ (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); IN6_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = in6p_findmoptions(inp); imf = im6o_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { is_new = 1; inm = NULL; if (ip6_mfilter_count(&imo->im6o_head) >= IPV6_MAX_MEMBERSHIPS) { error = ENOMEM; goto out_in6p_locked; } } else { is_new = 0; inm = imf->im6f_in6m; if (ssa->ss.ss_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->im6f_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_in6p_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in6_msource is transactioned just as for anything * else in SSM -- but note naive use of in6m_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = im6o_match_source(imf, &ssa->sa); if (lims != NULL /*&& lims->im6sl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_in6p_locked; } } else { /* * MCAST_JOIN_GROUP alone, on any existing membership, * is rejected, to stop the same inpcb tying up * multiple refs to the in_multi. * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; goto out_in6p_locked; } } /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * Graft new source into filter list for this inpcb's * membership of the group. The in6_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. * * Note: Grafting of exclusive mode filters doesn't happen * in this path. * XXX: Should check for non-NULL lims (node exists but may * not be in-mode) for interop with full-state API. */ if (ssa->ss.ss_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { CTR1(KTR_MLD, "%s: new join w/source", __func__); imf = ip6_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); if (imf == NULL) { error = ENOMEM; goto out_in6p_locked; } } else { CTR2(KTR_MLD, "%s: %s source", __func__, "allow"); } lims = im6f_graft(imf, MCAST_INCLUDE, &ssa->sin6); if (lims == NULL) { CTR1(KTR_MLD, "%s: merge imf state failed", __func__); error = ENOMEM; goto out_in6p_locked; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { CTR1(KTR_MLD, "%s: new join w/o source", __func__); imf = ip6_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); if (imf == NULL) { error = ENOMEM; goto out_in6p_locked; } } } /* * Begin state merge transaction at MLD layer. */ if (is_new) { in_pcbref(inp); INP_WUNLOCK(inp); error = in6_joingroup_locked(ifp, &gsa->sin6.sin6_addr, imf, &imf->im6f_in6m, 0); INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) { error = ENXIO; goto out_in6p_unlocked; } if (error) { goto out_in6p_locked; } /* * NOTE: Refcount from in6_joingroup_locked() * is protecting membership. */ ip6_mfilter_insert(&imo->im6o_head, imf); } else { CTR1(KTR_MLD, "%s: merge inm state", __func__); IN6_MULTI_LIST_LOCK(); error = in6m_merge(inm, imf); if (error) { CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); IN6_MULTI_LIST_UNLOCK(); im6f_rollback(imf); im6f_reap(imf); goto out_in6p_locked; } CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); IN6_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_MLD, "%s: failed mld downcall", __func__); im6f_rollback(imf); im6f_reap(imf); goto out_in6p_locked; } } im6f_commit(imf); imf = NULL; out_in6p_locked: INP_WUNLOCK(inp); out_in6p_unlocked: IN6_MULTI_UNLOCK(); if (is_new && imf) { if (imf->im6f_in6m != NULL) { struct in6_multi_head inmh; SLIST_INIT(&inmh); SLIST_INSERT_HEAD(&inmh, imf->im6f_in6m, in6m_defer); in6m_release_list_deferred(&inmh); } ip6_mfilter_free(imf); } return (error); } /* * Leave an IPv6 multicast group on an inpcb, possibly with a source. */ static int in6p_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct ipv6_mreq mreq; struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_msource *ims; struct in6_multi *inm; uint32_t ifindex; int error; bool is_final; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif ifp = NULL; ifindex = 0; error = 0; is_final = true; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; /* * Chew everything passed in up into a struct group_source_req * as that is easier to process. * Note: Any embedded scope ID in the multicast group passed * in by userland is ignored, the interface index is the recommended * mechanism to specify an interface; see below. */ switch (sopt->sopt_name) { case IPV6_LEAVE_GROUP: error = sooptcopyin(sopt, &mreq, sizeof(struct ipv6_mreq), sizeof(struct ipv6_mreq)); if (error) return (error); gsa->sin6.sin6_family = AF_INET6; gsa->sin6.sin6_len = sizeof(struct sockaddr_in6); gsa->sin6.sin6_addr = mreq.ipv6mr_multiaddr; gsa->sin6.sin6_port = 0; gsa->sin6.sin6_scope_id = 0; ifindex = mreq.ipv6mr_interface; break; case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin6.sin6_family != AF_INET6 || gsa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin6.sin6_family != AF_INET6 || ssa->sin6.sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_MULTICAST(&ssa->sin6.sin6_addr)) return (EINVAL); /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&ssa->sin6.sin6_addr); } gsa->sin6.sin6_port = 0; gsa->sin6.sin6_scope_id = 0; ifindex = gsr.gsr_interface; break; default: CTR2(KTR_MLD, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); /* * Validate interface index if provided. If no interface index * was provided separately, attempt to look the membership up * from the default scope as a last resort to disambiguate * the membership we are being asked to leave. * XXX SCOPE6 lock potentially taken here. */ if (ifindex != 0) { if (V_if_index < ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); } else { error = sa6_embedscope(&gsa->sin6, V_ip6_use_defzone); if (error) return (EADDRNOTAVAIL); /* * Some badly behaved applications don't pass an ifindex * or a scope ID, which is an API violation. In this case, * perform a lookup as per a v6 join. * * XXX For now, stomp on zone ID for the corner case. * This is not the 'KAME way', but we need to see the ifp * directly until such time as this implementation is * refactored, assuming the scope IDs are the way to go. */ ifindex = ntohs(gsa->sin6.sin6_addr.s6_addr16[1]); if (ifindex == 0) { CTR2(KTR_MLD, "%s: warning: no ifindex, looking up " "ifp for group %s.", __func__, ip6_sprintf(ip6tbuf, &gsa->sin6.sin6_addr)); ifp = in6p_lookup_mcast_ifp(inp, &gsa->sin6); } else { ifp = ifnet_byindex(ifindex); } if (ifp == NULL) return (EADDRNOTAVAIL); } CTR2(KTR_MLD, "%s: ifp = %p", __func__, ifp); KASSERT(ifp != NULL, ("%s: ifp did not resolve", __func__)); IN6_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = in6p_findmoptions(inp); imf = im6o_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_in6p_locked; } inm = imf->im6f_in6m; if (ssa->ss.ss_family != AF_UNSPEC) is_final = false; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { ip6_mfilter_remove(&imo->im6o_head, imf); im6f_leave(imf); /* * Give up the multicast address record to which * the membership points. */ (void)in6_leavegroup_locked(inm, imf); } else { if (imf->im6f_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_in6p_locked; } ims = im6o_match_source(imf, &ssa->sa); if (ims == NULL) { CTR3(KTR_MLD, "%s: source %p %spresent", __func__, ip6_sprintf(ip6tbuf, &ssa->sin6.sin6_addr), "not "); error = EADDRNOTAVAIL; goto out_in6p_locked; } CTR2(KTR_MLD, "%s: %s source", __func__, "block"); error = im6f_prune(imf, &ssa->sin6); if (error) { CTR1(KTR_MLD, "%s: merge imf state failed", __func__); goto out_in6p_locked; } } /* * Begin state merge transaction at MLD layer. */ if (!is_final) { CTR1(KTR_MLD, "%s: merge inm state", __func__); IN6_MULTI_LIST_LOCK(); error = in6m_merge(inm, imf); if (error) { CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); IN6_MULTI_LIST_UNLOCK(); im6f_rollback(imf); im6f_reap(imf); goto out_in6p_locked; } CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); IN6_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_MLD, "%s: failed mld downcall", __func__); im6f_rollback(imf); im6f_reap(imf); goto out_in6p_locked; } } im6f_commit(imf); im6f_reap(imf); out_in6p_locked: INP_WUNLOCK(inp); if (is_final && imf) ip6_mfilter_free(imf); IN6_MULTI_UNLOCK(); return (error); } /* * Select the interface for transmitting IPv6 multicast datagrams. * * Either an instance of struct in6_addr or an instance of struct ipv6_mreqn * may be passed to this socket option. An address of in6addr_any or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int in6p_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { struct ifnet *ifp; struct ip6_moptions *imo; u_int ifindex; int error; if (sopt->sopt_valsize != sizeof(u_int)) return (EINVAL); error = sooptcopyin(sopt, &ifindex, sizeof(u_int), sizeof(u_int)); if (error) return (error); if (V_if_index < ifindex) return (EINVAL); if (ifindex == 0) ifp = NULL; else { ifp = ifnet_byindex(ifindex); if (ifp == NULL) return (EINVAL); if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EADDRNOTAVAIL); } imo = in6p_findmoptions(inp); imo->im6o_multicast_ifp = ifp; INP_WUNLOCK(inp); return (0); } /* * Atomically set source filters on a socket for an IPv6 multicast group. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. */ static int in6p_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct in6_mfilter *imf; struct ip6_moptions *imo; struct in6_multi *inm; int error; error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_nsrcs > in6_mcast_maxsocksrc) return (ENOBUFS); if (msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE) return (EINVAL); if (msfr.msfr_group.ss_family != AF_INET6 || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in6)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN6_IS_ADDR_MULTICAST(&gsa->sin6.sin6_addr)) return (EINVAL); gsa->sin6.sin6_port = 0; /* ignore port */ if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); (void)in6_setscope(&gsa->sin6.sin6_addr, ifp, NULL); /* * Take the INP write lock. * Check if this socket is a member of this group. */ imo = in6p_findmoptions(inp); imf = im6o_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_in6p_locked; } inm = imf->im6f_in6m; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); imf->im6f_st[1] = msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in6_msource *lims; struct sockaddr_in6 *psin; struct sockaddr_storage *kss, *pkss; int i; INP_WUNLOCK(inp); CTR2(KTR_MLD, "%s: loading %lu source list entries", __func__, (unsigned long)msfr.msfr_nsrcs); kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_WAITOK); error = copyin(msfr.msfr_srcs, kss, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); if (error) { free(kss, M_TEMP); return (error); } INP_WLOCK(inp); /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as im6f_leave() * will set it to INCLUDE. */ im6f_leave(imf); imf->im6f_st[1] = msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { psin = (struct sockaddr_in6 *)pkss; if (psin->sin6_family != AF_INET6) { error = EAFNOSUPPORT; break; } if (psin->sin6_len != sizeof(struct sockaddr_in6)) { error = EINVAL; break; } if (IN6_IS_ADDR_MULTICAST(&psin->sin6_addr)) { error = EINVAL; break; } /* * TODO: Validate embedded scope ID in source * list entry against passed-in ifp, if and only * if source list filter entry is iface or node local. */ in6_clearscope(&psin->sin6_addr); error = im6f_get_source(imf, psin, &lims); if (error) break; lims->im6sl_st[1] = imf->im6f_st[1]; } free(kss, M_TEMP); } if (error) goto out_im6f_rollback; INP_WLOCK_ASSERT(inp); IN6_MULTI_LIST_LOCK(); /* * Begin state merge transaction at MLD layer. */ CTR1(KTR_MLD, "%s: merge inm state", __func__); error = in6m_merge(inm, imf); if (error) CTR1(KTR_MLD, "%s: failed to merge inm state", __func__); else { CTR1(KTR_MLD, "%s: doing mld downcall", __func__); error = mld_change_state(inm, 0); if (error) CTR1(KTR_MLD, "%s: failed mld downcall", __func__); } IN6_MULTI_LIST_UNLOCK(); out_im6f_rollback: if (error) im6f_rollback(imf); else im6f_commit(imf); im6f_reap(imf); out_in6p_locked: INP_WUNLOCK(inp); return (error); } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv6 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. * * SMPng: XXX: Unlocked read of inp_socket believed OK. */ int ip6_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip6_moptions *im6o; int error; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) return (EOPNOTSUPP); switch (sopt->sopt_name) { case IPV6_MULTICAST_IF: error = in6p_set_multicast_if(inp, sopt); break; case IPV6_MULTICAST_HOPS: { int hlim; if (sopt->sopt_valsize != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &hlim, sizeof(hlim), sizeof(int)); if (error) break; if (hlim < -1 || hlim > 255) { error = EINVAL; break; } else if (hlim == -1) { hlim = V_ip6_defmcasthlim; } im6o = in6p_findmoptions(inp); im6o->im6o_multicast_hlim = hlim; INP_WUNLOCK(inp); break; } case IPV6_MULTICAST_LOOP: { u_int loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. */ if (sopt->sopt_valsize != sizeof(u_int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &loop, sizeof(u_int), sizeof(u_int)); if (error) break; if (loop > 1) { error = EINVAL; break; } im6o = in6p_findmoptions(inp); im6o->im6o_multicast_loop = loop; INP_WUNLOCK(inp); break; } case IPV6_JOIN_GROUP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: error = in6p_join_group(inp, sopt); break; case IPV6_LEAVE_GROUP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = in6p_leave_group(inp, sopt); break; case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = in6p_block_unblock_source(inp, sopt); break; case IPV6_MSFILTER: error = in6p_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Expose MLD's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in6_addr. * For use by ifmcstat(8). * SMPng: NOTE: unlocked read of ifindex space. */ static int sysctl_ip6_mcast_filters(SYSCTL_HANDLER_ARGS) { struct in6_addr mcaddr; struct in6_addr src; struct epoch_tracker et; struct ifnet *ifp; struct ifmultiaddr *ifma; struct in6_multi *inm; struct ip6_msource *ims; int *name; int retval; u_int namelen; uint32_t fmode, ifindex; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); /* int: ifindex + 4 * 32 bits of IPv6 address */ if (namelen != 5) return (EINVAL); ifindex = name[0]; if (ifindex <= 0 || ifindex > V_if_index) { CTR2(KTR_MLD, "%s: ifindex %u out of range", __func__, ifindex); return (ENOENT); } memcpy(&mcaddr, &name[1], sizeof(struct in6_addr)); if (!IN6_IS_ADDR_MULTICAST(&mcaddr)) { CTR2(KTR_MLD, "%s: group %s is not multicast", __func__, ip6_sprintf(ip6tbuf, &mcaddr)); return (EINVAL); } NET_EPOCH_ENTER(et); ifp = ifnet_byindex(ifindex); if (ifp == NULL) { NET_EPOCH_EXIT(et); CTR2(KTR_MLD, "%s: no ifp for ifindex %u", __func__, ifindex); return (ENOENT); } /* * Internal MLD lookups require that scope/zone ID is set. */ (void)in6_setscope(&mcaddr, ifp, NULL); retval = sysctl_wire_old_buffer(req, sizeof(uint32_t) + (in6_mcast_maxgrpsrc * sizeof(struct in6_addr))); if (retval) { NET_EPOCH_EXIT(et); return (retval); } IN6_MULTI_LOCK(); IN6_MULTI_LIST_LOCK(); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { inm = in6m_ifmultiaddr_get_inm(ifma); if (inm == NULL) continue; if (!IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, &mcaddr)) continue; fmode = inm->in6m_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) break; RB_FOREACH(ims, ip6_msource_tree, &inm->in6m_srcs) { CTR2(KTR_MLD, "%s: visit node %p", __func__, ims); /* * Only copy-out sources which are in-mode. */ if (fmode != im6s_get_mode(inm, ims, 1)) { CTR1(KTR_MLD, "%s: skip non-in-mode", __func__); continue; } src = ims->im6s_addr; retval = SYSCTL_OUT(req, &src, sizeof(struct in6_addr)); if (retval != 0) break; } } IN6_MULTI_LIST_UNLOCK(); IN6_MULTI_UNLOCK(); NET_EPOCH_EXIT(et); return (retval); } #ifdef KTR static const char *in6m_modestrs[] = { "un", "in", "ex" }; static const char * in6m_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) return (in6m_modestrs[mode]); return ("??"); } static const char *in6m_statestrs[] = { "not-member", "silent", "idle", "lazy", "sleeping", "awakening", "query-pending", "sg-query-pending", "leaving" }; static const char * in6m_state_str(const int state) { if (state >= MLD_NOT_MEMBER && state <= MLD_LEAVING_MEMBER) return (in6m_statestrs[state]); return ("??"); } /* * Dump an in6_multi structure to the console. */ void in6m_print(const struct in6_multi *inm) { int t; char ip6tbuf[INET6_ADDRSTRLEN]; if ((ktr_mask & KTR_MLD) == 0) return; printf("%s: --- begin in6m %p ---\n", __func__, inm); printf("addr %s ifp %p(%s) ifma %p\n", ip6_sprintf(ip6tbuf, &inm->in6m_addr), inm->in6m_ifp, if_name(inm->in6m_ifp), inm->in6m_ifma); printf("timer %u state %s refcount %u scq.len %u\n", inm->in6m_timer, in6m_state_str(inm->in6m_state), inm->in6m_refcount, mbufq_len(&inm->in6m_scq)); printf("mli %p nsrc %lu sctimer %u scrv %u\n", inm->in6m_mli, inm->in6m_nsrc, inm->in6m_sctimer, inm->in6m_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, in6m_mode_str(inm->in6m_st[t].iss_fmode), inm->in6m_st[t].iss_asm, inm->in6m_st[t].iss_ex, inm->in6m_st[t].iss_in, inm->in6m_st[t].iss_rec); } printf("%s: --- end in6m %p ---\n", __func__, inm); } #else /* !KTR */ void in6m_print(const struct in6_multi *inm) { } #endif /* KTR */ Index: head/sys/netinet6/in6_var.h =================================================================== --- head/sys/netinet6/in6_var.h (revision 364072) +++ head/sys/netinet6/in6_var.h (revision 364073) @@ -1,920 +1,920 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_var.h,v 1.56 2001/03/29 05:34:31 itojun Exp $ */ /*- * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET6_IN6_VAR_H_ #define _NETINET6_IN6_VAR_H_ #include #include #ifdef _KERNEL #include #include #endif /* * Interface address, Internet version. One of these structures * is allocated for each interface with an Internet address. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ /* * pltime/vltime are just for future reference (required to implements 2 * hour rule for hosts). they should never be modified by nd6_timeout or * anywhere else. * userland -> kernel: accept pltime/vltime * kernel -> userland: throw up everything * in kernel: modify preferred/expire only */ struct in6_addrlifetime { time_t ia6t_expire; /* valid lifetime expiration time */ time_t ia6t_preferred; /* preferred lifetime expiration time */ u_int32_t ia6t_vltime; /* valid lifetime */ u_int32_t ia6t_pltime; /* prefix lifetime */ }; struct nd_ifinfo; struct scope6_id; struct lltable; struct mld_ifsoftc; struct in6_multi; struct in6_ifextra { counter_u64_t *in6_ifstat; counter_u64_t *icmp6_ifstat; struct nd_ifinfo *nd_ifinfo; struct scope6_id *scope6_id; struct lltable *lltable; struct mld_ifsoftc *mld_ifinfo; }; #define LLTABLE6(ifp) (((struct in6_ifextra *)(ifp)->if_afdata[AF_INET6])->lltable) #ifdef _KERNEL SLIST_HEAD(in6_multi_head, in6_multi); MALLOC_DECLARE(M_IP6MADDR); struct in6_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags struct sockaddr_in6 ia_addr; /* interface address */ struct sockaddr_in6 ia_net; /* network number of interface */ struct sockaddr_in6 ia_dstaddr; /* space for destination addr */ struct sockaddr_in6 ia_prefixmask; /* prefix mask */ u_int32_t ia_plen; /* prefix length */ CK_STAILQ_ENTRY(in6_ifaddr) ia_link; /* list of IPv6 addresses */ int ia6_flags; struct in6_addrlifetime ia6_lifetime; time_t ia6_createtime; /* the creation time of this address, which is * currently used for temporary addresses only. */ time_t ia6_updatetime; /* back pointer to the ND prefix (for autoconfigured addresses only) */ struct nd_prefix *ia6_ndpr; /* multicast addresses joined from the kernel */ LIST_HEAD(, in6_multi_mship) ia6_memberships; /* entry in bucket of inet6 addresses */ CK_LIST_ENTRY(in6_ifaddr) ia6_hash; }; /* List of in6_ifaddr's. */ CK_STAILQ_HEAD(in6_ifaddrhead, in6_ifaddr); CK_LIST_HEAD(in6_ifaddrlisthead, in6_ifaddr); #endif /* _KERNEL */ /* control structure to manage address selection policy */ struct in6_addrpolicy { struct sockaddr_in6 addr; /* prefix address */ struct sockaddr_in6 addrmask; /* prefix mask */ int preced; /* precedence */ int label; /* matching label */ u_quad_t use; /* statistics */ }; /* * IPv6 interface statistics, as defined in RFC2465 Ipv6IfStatsEntry (p12). */ struct in6_ifstat { uint64_t ifs6_in_receive; /* # of total input datagram */ uint64_t ifs6_in_hdrerr; /* # of datagrams with invalid hdr */ uint64_t ifs6_in_toobig; /* # of datagrams exceeded MTU */ uint64_t ifs6_in_noroute; /* # of datagrams with no route */ uint64_t ifs6_in_addrerr; /* # of datagrams with invalid dst */ uint64_t ifs6_in_protounknown; /* # of datagrams with unknown proto */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_truncated; /* # of truncated datagrams */ uint64_t ifs6_in_discard; /* # of discarded datagrams */ /* NOTE: fragment timeout is not here */ uint64_t ifs6_in_deliver; /* # of datagrams delivered to ULP */ /* NOTE: increment on final dst if */ uint64_t ifs6_out_forward; /* # of datagrams forwarded */ /* NOTE: increment on outgoing if */ uint64_t ifs6_out_request; /* # of outgoing datagrams from ULP */ /* NOTE: does not include forwrads */ uint64_t ifs6_out_discard; /* # of discarded datagrams */ uint64_t ifs6_out_fragok; /* # of datagrams fragmented */ uint64_t ifs6_out_fragfail; /* # of datagrams failed on fragment */ uint64_t ifs6_out_fragcreat; /* # of fragment datagrams */ /* NOTE: this is # after fragment */ uint64_t ifs6_reass_reqd; /* # of incoming fragmented packets */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_ok; /* # of reassembled packets */ /* NOTE: this is # after reass */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_fail; /* # of reass failures */ /* NOTE: may not be packet count */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_mcast; /* # of inbound multicast datagrams */ uint64_t ifs6_out_mcast; /* # of outbound multicast datagrams */ }; /* * ICMPv6 interface statistics, as defined in RFC2466 Ipv6IfIcmpEntry. * XXX: I'm not sure if this file is the right place for this structure... */ struct icmp6_ifstat { /* * Input statistics */ /* ipv6IfIcmpInMsgs, total # of input messages */ uint64_t ifs6_in_msg; /* ipv6IfIcmpInErrors, # of input error messages */ uint64_t ifs6_in_error; /* ipv6IfIcmpInDestUnreachs, # of input dest unreach errors */ uint64_t ifs6_in_dstunreach; /* ipv6IfIcmpInAdminProhibs, # of input administratively prohibited errs */ uint64_t ifs6_in_adminprohib; /* ipv6IfIcmpInTimeExcds, # of input time exceeded errors */ uint64_t ifs6_in_timeexceed; /* ipv6IfIcmpInParmProblems, # of input parameter problem errors */ uint64_t ifs6_in_paramprob; /* ipv6IfIcmpInPktTooBigs, # of input packet too big errors */ uint64_t ifs6_in_pkttoobig; /* ipv6IfIcmpInEchos, # of input echo requests */ uint64_t ifs6_in_echo; /* ipv6IfIcmpInEchoReplies, # of input echo replies */ uint64_t ifs6_in_echoreply; /* ipv6IfIcmpInRouterSolicits, # of input router solicitations */ uint64_t ifs6_in_routersolicit; /* ipv6IfIcmpInRouterAdvertisements, # of input router advertisements */ uint64_t ifs6_in_routeradvert; /* ipv6IfIcmpInNeighborSolicits, # of input neighbor solicitations */ uint64_t ifs6_in_neighborsolicit; /* ipv6IfIcmpInNeighborAdvertisements, # of input neighbor advertisements */ uint64_t ifs6_in_neighboradvert; /* ipv6IfIcmpInRedirects, # of input redirects */ uint64_t ifs6_in_redirect; /* ipv6IfIcmpInGroupMembQueries, # of input MLD queries */ uint64_t ifs6_in_mldquery; /* ipv6IfIcmpInGroupMembResponses, # of input MLD reports */ uint64_t ifs6_in_mldreport; /* ipv6IfIcmpInGroupMembReductions, # of input MLD done */ uint64_t ifs6_in_mlddone; /* * Output statistics. We should solve unresolved routing problem... */ /* ipv6IfIcmpOutMsgs, total # of output messages */ uint64_t ifs6_out_msg; /* ipv6IfIcmpOutErrors, # of output error messages */ uint64_t ifs6_out_error; /* ipv6IfIcmpOutDestUnreachs, # of output dest unreach errors */ uint64_t ifs6_out_dstunreach; /* ipv6IfIcmpOutAdminProhibs, # of output administratively prohibited errs */ uint64_t ifs6_out_adminprohib; /* ipv6IfIcmpOutTimeExcds, # of output time exceeded errors */ uint64_t ifs6_out_timeexceed; /* ipv6IfIcmpOutParmProblems, # of output parameter problem errors */ uint64_t ifs6_out_paramprob; /* ipv6IfIcmpOutPktTooBigs, # of output packet too big errors */ uint64_t ifs6_out_pkttoobig; /* ipv6IfIcmpOutEchos, # of output echo requests */ uint64_t ifs6_out_echo; /* ipv6IfIcmpOutEchoReplies, # of output echo replies */ uint64_t ifs6_out_echoreply; /* ipv6IfIcmpOutRouterSolicits, # of output router solicitations */ uint64_t ifs6_out_routersolicit; /* ipv6IfIcmpOutRouterAdvertisements, # of output router advertisements */ uint64_t ifs6_out_routeradvert; /* ipv6IfIcmpOutNeighborSolicits, # of output neighbor solicitations */ uint64_t ifs6_out_neighborsolicit; /* ipv6IfIcmpOutNeighborAdvertisements, # of output neighbor advertisements */ uint64_t ifs6_out_neighboradvert; /* ipv6IfIcmpOutRedirects, # of output redirects */ uint64_t ifs6_out_redirect; /* ipv6IfIcmpOutGroupMembQueries, # of output MLD queries */ uint64_t ifs6_out_mldquery; /* ipv6IfIcmpOutGroupMembResponses, # of output MLD reports */ uint64_t ifs6_out_mldreport; /* ipv6IfIcmpOutGroupMembReductions, # of output MLD done */ uint64_t ifs6_out_mlddone; }; struct in6_ifreq { char ifr_name[IFNAMSIZ]; union { struct sockaddr_in6 ifru_addr; struct sockaddr_in6 ifru_dstaddr; int ifru_flags; int ifru_flags6; int ifru_metric; caddr_t ifru_data; struct in6_addrlifetime ifru_lifetime; struct in6_ifstat ifru_stat; struct icmp6_ifstat ifru_icmp6stat; u_int32_t ifru_scope_id[16]; } ifr_ifru; }; struct in6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; int ifra_vhid; }; /* pre-10.x compat */ struct oin6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; }; /* prefix type macro */ #define IN6_PREFIX_ND 1 #define IN6_PREFIX_RR 2 /* * prefix related flags passed between kernel(NDP related part) and * user land command(ifconfig) and daemon(rtadvd). */ struct in6_prflags { struct prf_ra { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } prf_ra; u_char prf_reserved1; u_short prf_reserved2; /* want to put this on 4byte offset */ struct prf_rr { u_char decrvalid : 1; u_char decrprefd : 1; u_char reserved : 6; } prf_rr; u_char prf_reserved3; u_short prf_reserved4; }; struct in6_prefixreq { char ipr_name[IFNAMSIZ]; u_char ipr_origin; u_char ipr_plen; u_int32_t ipr_vltime; u_int32_t ipr_pltime; struct in6_prflags ipr_flags; struct sockaddr_in6 ipr_prefix; }; #define PR_ORIG_RA 0 #define PR_ORIG_RR 1 #define PR_ORIG_STATIC 2 #define PR_ORIG_KERNEL 3 #define ipr_raf_onlink ipr_flags.prf_ra.onlink #define ipr_raf_auto ipr_flags.prf_ra.autonomous #define ipr_statef_onlink ipr_flags.prf_state.onlink #define ipr_rrf_decrvalid ipr_flags.prf_rr.decrvalid #define ipr_rrf_decrprefd ipr_flags.prf_rr.decrprefd struct in6_rrenumreq { char irr_name[IFNAMSIZ]; u_char irr_origin; u_char irr_m_len; /* match len for matchprefix */ u_char irr_m_minlen; /* minlen for matching prefix */ u_char irr_m_maxlen; /* maxlen for matching prefix */ u_char irr_u_uselen; /* uselen for adding prefix */ u_char irr_u_keeplen; /* keeplen from matching prefix */ struct irr_raflagmask { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } irr_raflagmask; u_int32_t irr_vltime; u_int32_t irr_pltime; struct in6_prflags irr_flags; struct sockaddr_in6 irr_matchprefix; struct sockaddr_in6 irr_useprefix; }; #define irr_raf_mask_onlink irr_raflagmask.onlink #define irr_raf_mask_auto irr_raflagmask.autonomous #define irr_raf_mask_reserved irr_raflagmask.reserved #define irr_raf_onlink irr_flags.prf_ra.onlink #define irr_raf_auto irr_flags.prf_ra.autonomous #define irr_statef_onlink irr_flags.prf_state.onlink #define irr_rrf irr_flags.prf_rr #define irr_rrf_decrvalid irr_flags.prf_rr.decrvalid #define irr_rrf_decrprefd irr_flags.prf_rr.decrprefd /* * Given a pointer to an in6_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in6 */ #define IA6_IN6(ia) (&((ia)->ia_addr.sin6_addr)) #define IA6_DSTIN6(ia) (&((ia)->ia_dstaddr.sin6_addr)) #define IA6_MASKIN6(ia) (&((ia)->ia_prefixmask.sin6_addr)) #define IA6_SIN6(ia) (&((ia)->ia_addr)) #define IA6_DSTSIN6(ia) (&((ia)->ia_dstaddr)) #define IFA_IN6(x) (&((struct sockaddr_in6 *)((x)->ifa_addr))->sin6_addr) #define IFA_DSTIN6(x) (&((struct sockaddr_in6 *)((x)->ifa_dstaddr))->sin6_addr) #define IFPR_IN6(x) (&((struct sockaddr_in6 *)((x)->ifpr_prefix))->sin6_addr) #ifdef _KERNEL #define IN6_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ (((d)->s6_addr32[0] ^ (a)->s6_addr32[0]) & (m)->s6_addr32[0]) == 0 && \ (((d)->s6_addr32[1] ^ (a)->s6_addr32[1]) & (m)->s6_addr32[1]) == 0 && \ (((d)->s6_addr32[2] ^ (a)->s6_addr32[2]) & (m)->s6_addr32[2]) == 0 && \ (((d)->s6_addr32[3] ^ (a)->s6_addr32[3]) & (m)->s6_addr32[3]) == 0 ) #define IN6_MASK_ADDR(a, m) do { \ (a)->s6_addr32[0] &= (m)->s6_addr32[0]; \ (a)->s6_addr32[1] &= (m)->s6_addr32[1]; \ (a)->s6_addr32[2] &= (m)->s6_addr32[2]; \ (a)->s6_addr32[3] &= (m)->s6_addr32[3]; \ } while (0) #endif #define SIOCSIFADDR_IN6 _IOW('i', 12, struct in6_ifreq) #define SIOCGIFADDR_IN6 _IOWR('i', 33, struct in6_ifreq) #ifdef _KERNEL /* * SIOCSxxx ioctls should be unused (see comments in in6.c), but * we do not shift numbers for binary compatibility. */ #define SIOCSIFDSTADDR_IN6 _IOW('i', 14, struct in6_ifreq) #define SIOCSIFNETMASK_IN6 _IOW('i', 22, struct in6_ifreq) #endif #define SIOCGIFDSTADDR_IN6 _IOWR('i', 34, struct in6_ifreq) #define SIOCGIFNETMASK_IN6 _IOWR('i', 37, struct in6_ifreq) #define SIOCDIFADDR_IN6 _IOW('i', 25, struct in6_ifreq) #define OSIOCAIFADDR_IN6 _IOW('i', 26, struct oin6_aliasreq) #define SIOCAIFADDR_IN6 _IOW('i', 27, struct in6_aliasreq) #define SIOCSIFPHYADDR_IN6 _IOW('i', 70, struct in6_aliasreq) #define SIOCGIFPSRCADDR_IN6 _IOWR('i', 71, struct in6_ifreq) #define SIOCGIFPDSTADDR_IN6 _IOWR('i', 72, struct in6_ifreq) #define SIOCGIFAFLAG_IN6 _IOWR('i', 73, struct in6_ifreq) #ifdef _KERNEL #define OSIOCGIFINFO_IN6 _IOWR('i', 76, struct in6_ondireq) #endif #define SIOCGIFINFO_IN6 _IOWR('i', 108, struct in6_ndireq) #define SIOCSIFINFO_IN6 _IOWR('i', 109, struct in6_ndireq) #define SIOCSNDFLUSH_IN6 _IOWR('i', 77, struct in6_ifreq) #define SIOCGNBRINFO_IN6 _IOWR('i', 78, struct in6_nbrinfo) #define SIOCSPFXFLUSH_IN6 _IOWR('i', 79, struct in6_ifreq) #define SIOCSRTRFLUSH_IN6 _IOWR('i', 80, struct in6_ifreq) #define SIOCGIFALIFETIME_IN6 _IOWR('i', 81, struct in6_ifreq) #define SIOCGIFSTAT_IN6 _IOWR('i', 83, struct in6_ifreq) #define SIOCGIFSTAT_ICMP6 _IOWR('i', 84, struct in6_ifreq) #define SIOCSDEFIFACE_IN6 _IOWR('i', 85, struct in6_ndifreq) #define SIOCGDEFIFACE_IN6 _IOWR('i', 86, struct in6_ndifreq) #define SIOCSIFINFO_FLAGS _IOWR('i', 87, struct in6_ndireq) /* XXX */ #define SIOCSSCOPE6 _IOW('i', 88, struct in6_ifreq) #define SIOCGSCOPE6 _IOWR('i', 89, struct in6_ifreq) #define SIOCGSCOPE6DEF _IOWR('i', 90, struct in6_ifreq) #define SIOCSIFPREFIX_IN6 _IOW('i', 100, struct in6_prefixreq) /* set */ #define SIOCGIFPREFIX_IN6 _IOWR('i', 101, struct in6_prefixreq) /* get */ #define SIOCDIFPREFIX_IN6 _IOW('i', 102, struct in6_prefixreq) /* del */ #define SIOCAIFPREFIX_IN6 _IOW('i', 103, struct in6_rrenumreq) /* add */ #define SIOCCIFPREFIX_IN6 _IOW('i', 104, \ struct in6_rrenumreq) /* change */ #define SIOCSGIFPREFIX_IN6 _IOW('i', 105, \ struct in6_rrenumreq) /* set global */ #define SIOCGETSGCNT_IN6 _IOWR('u', 106, \ struct sioc_sg_req6) /* get s,g pkt cnt */ #define SIOCGETMIFCNT_IN6 _IOWR('u', 107, \ struct sioc_mif_req6) /* get pkt cnt per if */ #define SIOCAADDRCTL_POLICY _IOW('u', 108, struct in6_addrpolicy) #define SIOCDADDRCTL_POLICY _IOW('u', 109, struct in6_addrpolicy) #define IN6_IFF_ANYCAST 0x01 /* anycast address */ #define IN6_IFF_TENTATIVE 0x02 /* tentative address */ #define IN6_IFF_DUPLICATED 0x04 /* DAD detected duplicate */ #define IN6_IFF_DETACHED 0x08 /* may be detached from the link */ #define IN6_IFF_DEPRECATED 0x10 /* deprecated address */ #define IN6_IFF_NODAD 0x20 /* don't perform DAD on this address * (obsolete) */ #define IN6_IFF_AUTOCONF 0x40 /* autoconfigurable address. */ #define IN6_IFF_TEMPORARY 0x80 /* temporary (anonymous) address. */ #define IN6_IFF_PREFER_SOURCE 0x0100 /* preferred address for SAS */ /* do not input/output */ #define IN6_IFF_NOTREADY (IN6_IFF_TENTATIVE|IN6_IFF_DUPLICATED) #ifdef _KERNEL #define IN6_ARE_SCOPE_CMP(a,b) ((a)-(b)) #define IN6_ARE_SCOPE_EQUAL(a,b) ((a)==(b)) #endif #ifdef _KERNEL VNET_DECLARE(struct in6_ifaddrhead, in6_ifaddrhead); VNET_DECLARE(struct in6_ifaddrlisthead *, in6_ifaddrhashtbl); VNET_DECLARE(u_long, in6_ifaddrhmask); #define V_in6_ifaddrhead VNET(in6_ifaddrhead) #define V_in6_ifaddrhashtbl VNET(in6_ifaddrhashtbl) #define V_in6_ifaddrhmask VNET(in6_ifaddrhmask) #define IN6ADDR_NHASH_LOG2 8 #define IN6ADDR_NHASH (1 << IN6ADDR_NHASH_LOG2) #define IN6ADDR_HASHVAL(x) (in6_addrhash(x)) #define IN6ADDR_HASH(x) \ (&V_in6_ifaddrhashtbl[IN6ADDR_HASHVAL(x) & V_in6_ifaddrhmask]) static __inline uint32_t in6_addrhash(const struct in6_addr *in6) { uint32_t x; x = in6->s6_addr32[0] ^ in6->s6_addr32[1] ^ in6->s6_addr32[2] ^ in6->s6_addr32[3]; return (fnv_32_buf(&x, sizeof(x), FNV1_32_INIT)); } extern struct rmlock in6_ifaddr_lock; #define IN6_IFADDR_LOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_LOCKED) #define IN6_IFADDR_RLOCK(t) rm_rlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_RLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_RLOCKED) #define IN6_IFADDR_RUNLOCK(t) rm_runlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_WLOCK() rm_wlock(&in6_ifaddr_lock) #define IN6_IFADDR_WLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_WLOCKED) #define IN6_IFADDR_WUNLOCK() rm_wunlock(&in6_ifaddr_lock) #define in6_ifstat_inc(ifp, tag) \ do { \ if (ifp) \ counter_u64_add(((struct in6_ifextra *) \ ((ifp)->if_afdata[AF_INET6]))->in6_ifstat[ \ offsetof(struct in6_ifstat, tag) / sizeof(uint64_t)], 1);\ } while (/*CONSTCOND*/ 0) extern u_char inet6ctlerrmap[]; VNET_DECLARE(unsigned long, in6_maxmtu); #define V_in6_maxmtu VNET(in6_maxmtu) #endif /* _KERNEL */ /* * IPv6 multicast MLD-layer source entry. */ struct ip6_msource { RB_ENTRY(ip6_msource) im6s_link; /* RB tree links */ struct in6_addr im6s_addr; struct im6s_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } im6s_st[2]; /* state at t0, t1 */ uint8_t im6s_stp; /* pending query */ }; RB_HEAD(ip6_msource_tree, ip6_msource); /* * IPv6 multicast PCB-layer source entry. * * NOTE: overlapping use of struct ip6_msource fields at start. */ struct in6_msource { RB_ENTRY(ip6_msource) im6s_link; /* Common field */ struct in6_addr im6s_addr; /* Common field */ uint8_t im6sl_st[2]; /* state before/at commit */ }; #ifdef _KERNEL /* * IPv6 source tree comparison function. * * An ordered predicate is necessary; bcmp() is not documented to return * an indication of order, memcmp() is, and is an ISO C99 requirement. */ static __inline int ip6_msource_cmp(const struct ip6_msource *a, const struct ip6_msource *b) { return (memcmp(&a->im6s_addr, &b->im6s_addr, sizeof(struct in6_addr))); } RB_PROTOTYPE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); /* * IPv6 multicast PCB-layer group filter descriptor. */ struct in6_mfilter { struct ip6_msource_tree im6f_sources; /* source list for (S,G) */ u_long im6f_nsrc; /* # of source entries */ uint8_t im6f_st[2]; /* state before/at commit */ struct in6_multi *im6f_in6m; /* associated multicast address */ STAILQ_ENTRY(in6_mfilter) im6f_entry; /* list entry */ }; /* * Helper types and functions for IPv4 multicast filters. */ STAILQ_HEAD(ip6_mfilter_head, in6_mfilter); struct in6_mfilter *ip6_mfilter_alloc(int mflags, int st0, int st1); void ip6_mfilter_free(struct in6_mfilter *); static inline void ip6_mfilter_init(struct ip6_mfilter_head *head) { STAILQ_INIT(head); } static inline struct in6_mfilter * ip6_mfilter_first(const struct ip6_mfilter_head *head) { return (STAILQ_FIRST(head)); } static inline void ip6_mfilter_insert(struct ip6_mfilter_head *head, struct in6_mfilter *imf) { STAILQ_INSERT_TAIL(head, imf, im6f_entry); } static inline void ip6_mfilter_remove(struct ip6_mfilter_head *head, struct in6_mfilter *imf) { STAILQ_REMOVE(head, imf, in6_mfilter, im6f_entry); } #define IP6_MFILTER_FOREACH(imf, head) \ STAILQ_FOREACH(imf, head, im6f_entry) static inline size_t ip6_mfilter_count(struct ip6_mfilter_head *head) { struct in6_mfilter *imf; size_t num = 0; STAILQ_FOREACH(imf, head, im6f_entry) num++; return (num); } /* * Legacy KAME IPv6 multicast membership descriptor. */ struct in6_multi_mship { struct in6_multi *i6mm_maddr; LIST_ENTRY(in6_multi_mship) i6mm_chain; }; /* * IPv6 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When MLDv2 is active, in6m_timer is the response to group query timer. * The state-change timer in6m_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: in6m_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in6_multi { struct in6_addr in6m_addr; /* IPv6 multicast address */ struct ifnet *in6m_ifp; /* back pointer to ifnet */ struct ifmultiaddr *in6m_ifma; /* back pointer to ifmultiaddr */ u_int in6m_refcount; /* reference count */ u_int in6m_state; /* state of the membership */ u_int in6m_timer; /* MLD6 listener report timer */ /* New fields for MLDv2 follow. */ struct mld_ifsoftc *in6m_mli; /* MLD info */ SLIST_ENTRY(in6_multi) in6m_nrele; /* to-be-released by MLD */ SLIST_ENTRY(in6_multi) in6m_defer; /* deferred MLDv1 */ struct ip6_msource_tree in6m_srcs; /* tree of sources */ u_long in6m_nsrc; /* # of tree entries */ struct mbufq in6m_scq; /* queue of pending * state-change packets */ struct timeval in6m_lastgsrtv; /* last G-S-R query */ uint16_t in6m_sctimer; /* state-change timer */ uint16_t in6m_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing MLDv2 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct in6m_st { uint16_t iss_fmode; /* MLD filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } in6m_st[2]; /* state at t0, t1 */ }; void in6m_disconnect_locked(struct in6_multi_head *inmh, struct in6_multi *inm); /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t im6s_get_mode(const struct in6_multi *inm, const struct ip6_msource *ims, uint8_t t) { t = !!t; if (inm->in6m_st[t].iss_ex > 0 && inm->in6m_st[t].iss_ex == ims->im6s_st[t].ex) return (MCAST_EXCLUDE); else if (ims->im6s_st[t].in > 0 && ims->im6s_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } /* * Lock macros for IPv6 layer multicast address lists. IPv6 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in6_multi_list_mtx; extern struct sx in6_multi_sx; #define IN6_MULTI_LIST_LOCK() mtx_lock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_UNLOCK() mtx_unlock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_OWNED) #define IN6_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_NOTOWNED) #define IN6_MULTI_LOCK() sx_xlock(&in6_multi_sx) #define IN6_MULTI_UNLOCK() sx_xunlock(&in6_multi_sx) #define IN6_MULTI_LOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XLOCKED) #define IN6_MULTI_UNLOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XUNLOCKED) /* * Get the in6_multi pointer from a ifmultiaddr. * Returns NULL if ifmultiaddr is no longer valid. */ static __inline struct in6_multi * in6m_ifmultiaddr_get_inm(struct ifmultiaddr *ifma) { NET_EPOCH_ASSERT(); return ((ifma->ifma_addr->sa_family != AF_INET6 || (ifma->ifma_flags & IFMA_F_ENQUEUED) == 0) ? NULL : ifma->ifma_protospec); } /* * Look up an in6_multi record for an IPv6 multicast address * on the interface ifp. * If no record found, return NULL. * * SMPng: The IN6_MULTI_LOCK and must be held and must be in network epoch. */ static __inline struct in6_multi * in6m_lookup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct ifmultiaddr *ifma; struct in6_multi *inm; CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { inm = in6m_ifmultiaddr_get_inm(ifma); if (inm == NULL) continue; if (IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, mcaddr)) return (inm); } return (NULL); } /* * Wrapper for in6m_lookup_locked(). * * SMPng: Assumes network epoch entered and that IN6_MULTI_LOCK() isn't held. */ static __inline struct in6_multi * in6m_lookup(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct in6_multi *inm; NET_EPOCH_ASSERT(); IN6_MULTI_LIST_LOCK(); inm = in6m_lookup_locked(ifp, mcaddr); IN6_MULTI_LIST_UNLOCK(); return (inm); } /* Acquire an in6_multi record. */ static __inline void in6m_acquire_locked(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK_ASSERT(); ++inm->in6m_refcount; } static __inline void in6m_acquire(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK(); in6m_acquire_locked(inm); IN6_MULTI_LIST_UNLOCK(); } static __inline void in6m_rele_locked(struct in6_multi_head *inmh, struct in6_multi *inm) { KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); IN6_MULTI_LIST_LOCK_ASSERT(); if (--inm->in6m_refcount == 0) { MPASS(inm->in6m_ifp == NULL); inm->in6m_ifma->ifma_protospec = NULL; MPASS(inm->in6m_ifma->ifma_llifma == NULL); SLIST_INSERT_HEAD(inmh, inm, in6m_nrele); } } struct ip6_moptions; struct sockopt; struct inpcbinfo; /* Multicast KPIs. */ int im6o_mc_filter(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); int in6_joingroup(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); int in6_leavegroup(struct in6_multi *, struct in6_mfilter *); int in6_leavegroup_locked(struct in6_multi *, struct in6_mfilter *); void in6m_clear_recorded(struct in6_multi *); void in6m_commit(struct in6_multi *); void in6m_print(const struct in6_multi *); int in6m_record_source(struct in6_multi *, const struct in6_addr *); void in6m_release_list_deferred(struct in6_multi_head *); -void in6m_release_wait(void); +void in6m_release_wait(void *); void ip6_freemoptions(struct ip6_moptions *); int ip6_getmoptions(struct inpcb *, struct sockopt *); int ip6_setmoptions(struct inpcb *, struct sockopt *); /* flags to in6_update_ifa */ #define IN6_IFAUPDATE_DADDELAY 0x1 /* first time to configure an address */ int in6_mask2len(struct in6_addr *, u_char *); int in6_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in6_update_ifa(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); void in6_prepare_ifra(struct in6_aliasreq *, const struct in6_addr *, const struct in6_addr *); void in6_purgeaddr(struct ifaddr *); int in6if_do_dad(struct ifnet *); void in6_savemkludge(struct in6_ifaddr *); void *in6_domifattach(struct ifnet *); void in6_domifdetach(struct ifnet *, void *); int in6_domifmtu(struct ifnet *); void in6_setmaxmtu(void); int in6_if2idlen(struct ifnet *); struct in6_ifaddr *in6ifa_ifpforlinklocal(struct ifnet *, int); struct in6_ifaddr *in6ifa_ifpwithaddr(struct ifnet *, const struct in6_addr *); struct in6_ifaddr *in6ifa_ifwithaddr(const struct in6_addr *, uint32_t); struct in6_ifaddr *in6ifa_llaonifp(struct ifnet *); int in6_addr2zoneid(struct ifnet *, struct in6_addr *, u_int32_t *); int in6_matchlen(struct in6_addr *, struct in6_addr *); int in6_are_prefix_equal(struct in6_addr *, struct in6_addr *, int); void in6_prefixlen2mask(struct in6_addr *, int); int in6_prefix_ioctl(struct socket *, u_long, caddr_t, struct ifnet *); int in6_prefix_add_ifid(int, struct in6_ifaddr *); void in6_prefix_remove_ifid(int, struct in6_ifaddr *); void in6_purgeprefix(struct ifnet *); int in6_is_addr_deprecated(struct sockaddr_in6 *); int in6_src_ioctl(u_long, caddr_t); void in6_newaddrmsg(struct in6_ifaddr *, int); /* * Extended API for IPv6 FIB support. */ struct mbuf *ip6_tryforward(struct mbuf *); #endif /* _KERNEL */ #endif /* _NETINET6_IN6_VAR_H_ */