Index: head/sys/dev/iommu/busdma_iommu.c =================================================================== --- head/sys/dev/iommu/busdma_iommu.c (revision 363649) +++ head/sys/dev/iommu/busdma_iommu.c (revision 363650) @@ -1,1050 +1,1050 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__amd64__) || defined(__i386__) #include #include #include #include #include #include #endif /* * busdma_iommu.c, the implementation of the busdma(9) interface using * IOMMU units from Intel VT-d. */ static bool iommu_bus_dma_is_dev_disabled(int domain, int bus, int slot, int func) { char str[128], *env; int default_bounce; bool ret; static const char bounce_str[] = "bounce"; static const char iommu_str[] = "iommu"; static const char dmar_str[] = "dmar"; /* compatibility */ default_bounce = 0; env = kern_getenv("hw.busdma.default"); if (env != NULL) { if (strcmp(env, bounce_str) == 0) default_bounce = 1; else if (strcmp(env, iommu_str) == 0 || strcmp(env, dmar_str) == 0) default_bounce = 0; freeenv(env); } snprintf(str, sizeof(str), "hw.busdma.pci%d.%d.%d.%d", domain, bus, slot, func); env = kern_getenv(str); if (env == NULL) return (default_bounce != 0); if (strcmp(env, bounce_str) == 0) ret = true; else if (strcmp(env, iommu_str) == 0 || strcmp(env, dmar_str) == 0) ret = false; else ret = default_bounce != 0; freeenv(env); return (ret); } /* * Given original device, find the requester ID that will be seen by * the IOMMU unit and used for page table lookup. PCI bridges may take * ownership of transactions from downstream devices, so it may not be * the same as the BSF of the target device. In those cases, all * devices downstream of the bridge must share a single mapping * domain, and must collectively be assigned to use either IOMMU or * bounce mapping. */ device_t iommu_get_requester(device_t dev, uint16_t *rid) { devclass_t pci_class; device_t l, pci, pcib, pcip, pcibp, requester; int cap_offset; uint16_t pcie_flags; bool bridge_is_pcie; pci_class = devclass_find("pci"); l = requester = dev; *rid = pci_get_rid(dev); /* * Walk the bridge hierarchy from the target device to the * host port to find the translating bridge nearest the IOMMU * unit. */ for (;;) { pci = device_get_parent(l); KASSERT(pci != NULL, ("iommu_get_requester(%s): NULL parent " "for %s", device_get_name(dev), device_get_name(l))); KASSERT(device_get_devclass(pci) == pci_class, ("iommu_get_requester(%s): non-pci parent %s for %s", device_get_name(dev), device_get_name(pci), device_get_name(l))); pcib = device_get_parent(pci); KASSERT(pcib != NULL, ("iommu_get_requester(%s): NULL bridge " "for %s", device_get_name(dev), device_get_name(pci))); /* * The parent of our "bridge" isn't another PCI bus, * so pcib isn't a PCI->PCI bridge but rather a host * port, and the requester ID won't be translated * further. */ pcip = device_get_parent(pcib); if (device_get_devclass(pcip) != pci_class) break; pcibp = device_get_parent(pcip); if (pci_find_cap(l, PCIY_EXPRESS, &cap_offset) == 0) { /* * Do not stop the loop even if the target * device is PCIe, because it is possible (but * unlikely) to have a PCI->PCIe bridge * somewhere in the hierarchy. */ l = pcib; } else { /* * Device is not PCIe, it cannot be seen as a * requester by IOMMU unit. Check whether the * bridge is PCIe. */ bridge_is_pcie = pci_find_cap(pcib, PCIY_EXPRESS, &cap_offset) == 0; requester = pcib; /* * Check for a buggy PCIe/PCI bridge that * doesn't report the express capability. If * the bridge above it is express but isn't a * PCI bridge, then we know pcib is actually a * PCIe/PCI bridge. */ if (!bridge_is_pcie && pci_find_cap(pcibp, PCIY_EXPRESS, &cap_offset) == 0) { pcie_flags = pci_read_config(pcibp, cap_offset + PCIER_FLAGS, 2); if ((pcie_flags & PCIEM_FLAGS_TYPE) != PCIEM_TYPE_PCI_BRIDGE) bridge_is_pcie = true; } if (bridge_is_pcie) { /* * The current device is not PCIe, but * the bridge above it is. This is a * PCIe->PCI bridge. Assume that the * requester ID will be the secondary * bus number with slot and function * set to zero. * * XXX: Doesn't handle the case where * the bridge is PCIe->PCI-X, and the * bridge will only take ownership of * requests in some cases. We should * provide context entries with the * same page tables for taken and * non-taken transactions. */ *rid = PCI_RID(pci_get_bus(l), 0, 0); l = pcibp; } else { /* * Neither the device nor the bridge * above it are PCIe. This is a * conventional PCI->PCI bridge, which * will use the bridge's BSF as the * requester ID. */ *rid = pci_get_rid(pcib); l = pcib; } } } return (requester); } struct iommu_ctx * iommu_instantiate_ctx(struct iommu_unit *unit, device_t dev, bool rmrr) { device_t requester; struct iommu_ctx *ctx; bool disabled; uint16_t rid; requester = iommu_get_requester(dev, &rid); /* * If the user requested the IOMMU disabled for the device, we * cannot disable the IOMMU unit, due to possibility of other * devices on the same IOMMU unit still requiring translation. * Instead provide the identity mapping for the device * context. */ disabled = iommu_bus_dma_is_dev_disabled(pci_get_domain(requester), pci_get_bus(requester), pci_get_slot(requester), pci_get_function(requester)); ctx = iommu_get_ctx(unit, requester, rid, disabled, rmrr); if (ctx == NULL) return (NULL); if (disabled) { /* * Keep the first reference on context, release the * later refs. */ IOMMU_LOCK(unit); if ((ctx->flags & IOMMU_CTX_DISABLED) == 0) { ctx->flags |= IOMMU_CTX_DISABLED; IOMMU_UNLOCK(unit); } else { iommu_free_ctx_locked(unit, ctx); } ctx = NULL; } return (ctx); } bus_dma_tag_t acpi_iommu_get_dma_tag(device_t dev, device_t child) { struct iommu_unit *unit; struct iommu_ctx *ctx; bus_dma_tag_t res; unit = iommu_find(child, bootverbose); /* Not in scope of any IOMMU ? */ if (unit == NULL) return (NULL); if (!unit->dma_enabled) return (NULL); #if defined(__amd64__) || defined(__i386__) dmar_quirks_pre_use(unit); dmar_instantiate_rmrr_ctxs(unit); #endif ctx = iommu_instantiate_ctx(unit, child, false); res = ctx == NULL ? NULL : (bus_dma_tag_t)ctx->tag; return (res); } bool -bus_dma_dmar_set_buswide(device_t dev) +bus_dma_iommu_set_buswide(device_t dev) { struct iommu_unit *unit; device_t parent; u_int busno, slot, func; parent = device_get_parent(dev); if (device_get_devclass(parent) != devclass_find("pci")) return (false); unit = iommu_find(dev, bootverbose); if (unit == NULL) return (false); busno = pci_get_bus(dev); slot = pci_get_slot(dev); func = pci_get_function(dev); if (slot != 0 || func != 0) { if (bootverbose) { device_printf(dev, - "dmar%d pci%d:%d:%d requested buswide busdma\n", + "iommu%d pci%d:%d:%d requested buswide busdma\n", unit->unit, busno, slot, func); } return (false); } - dmar_set_buswide_ctx(unit, busno); + iommu_set_buswide_ctx(unit, busno); return (true); } static MALLOC_DEFINE(M_IOMMU_DMAMAP, "iommu_dmamap", "IOMMU DMA Map"); static void iommu_bus_schedule_dmamap(struct iommu_unit *unit, struct bus_dmamap_iommu *map); static int iommu_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { struct bus_dma_tag_iommu *newtag, *oldtag; int error; *dmat = NULL; error = common_bus_dma_tag_create(parent != NULL ? &((struct bus_dma_tag_iommu *)parent)->common : NULL, alignment, boundary, lowaddr, highaddr, filter, filterarg, maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg, sizeof(struct bus_dma_tag_iommu), (void **)&newtag); if (error != 0) goto out; oldtag = (struct bus_dma_tag_iommu *)parent; newtag->common.impl = &bus_dma_iommu_impl; newtag->ctx = oldtag->ctx; newtag->owner = oldtag->owner; *dmat = (bus_dma_tag_t)newtag; out: CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, (newtag != NULL ? newtag->common.flags : 0), error); return (error); } static int iommu_bus_dma_tag_set_domain(bus_dma_tag_t dmat) { return (0); } static int iommu_bus_dma_tag_destroy(bus_dma_tag_t dmat1) { struct bus_dma_tag_iommu *dmat, *dmat_copy, *parent; int error; error = 0; dmat_copy = dmat = (struct bus_dma_tag_iommu *)dmat1; if (dmat != NULL) { if (dmat->map_count != 0) { error = EBUSY; goto out; } while (dmat != NULL) { parent = (struct bus_dma_tag_iommu *)dmat->common.parent; if (atomic_fetchadd_int(&dmat->common.ref_count, -1) == 1) { if (dmat == dmat->ctx->tag) iommu_free_ctx(dmat->ctx); free_domain(dmat->segments, M_IOMMU_DMAMAP); free(dmat, M_DEVBUF); dmat = parent; } else dmat = NULL; } } out: CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error); return (error); } static bool iommu_bus_dma_id_mapped(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen) { return (false); } static int iommu_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; tag = (struct bus_dma_tag_iommu *)dmat; map = malloc_domainset(sizeof(*map), M_IOMMU_DMAMAP, DOMAINSET_PREF(tag->common.domain), M_NOWAIT | M_ZERO); if (map == NULL) { *mapp = NULL; return (ENOMEM); } if (tag->segments == NULL) { tag->segments = malloc_domainset(sizeof(bus_dma_segment_t) * tag->common.nsegments, M_IOMMU_DMAMAP, DOMAINSET_PREF(tag->common.domain), M_NOWAIT); if (tag->segments == NULL) { free_domain(map, M_IOMMU_DMAMAP); *mapp = NULL; return (ENOMEM); } } TAILQ_INIT(&map->map_entries); map->tag = tag; map->locked = true; map->cansleep = false; tag->map_count++; *mapp = (bus_dmamap_t)map; return (0); } static int iommu_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map1) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; struct iommu_domain *domain; tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)map1; if (map != NULL) { domain = tag->ctx->domain; IOMMU_DOMAIN_LOCK(domain); if (!TAILQ_EMPTY(&map->map_entries)) { IOMMU_DOMAIN_UNLOCK(domain); return (EBUSY); } IOMMU_DOMAIN_UNLOCK(domain); free_domain(map, M_IOMMU_DMAMAP); } tag->map_count--; return (0); } static int iommu_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; int error, mflags; vm_memattr_t attr; error = iommu_bus_dmamap_create(dmat, flags, mapp); if (error != 0) return (error); mflags = (flags & BUS_DMA_NOWAIT) != 0 ? M_NOWAIT : M_WAITOK; mflags |= (flags & BUS_DMA_ZERO) != 0 ? M_ZERO : 0; attr = (flags & BUS_DMA_NOCACHE) != 0 ? VM_MEMATTR_UNCACHEABLE : VM_MEMATTR_DEFAULT; tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)*mapp; if (tag->common.maxsize < PAGE_SIZE && tag->common.alignment <= tag->common.maxsize && attr == VM_MEMATTR_DEFAULT) { *vaddr = malloc_domainset(tag->common.maxsize, M_DEVBUF, DOMAINSET_PREF(tag->common.domain), mflags); map->flags |= BUS_DMAMAP_IOMMU_MALLOC; } else { *vaddr = (void *)kmem_alloc_attr_domainset( DOMAINSET_PREF(tag->common.domain), tag->common.maxsize, mflags, 0ul, BUS_SPACE_MAXADDR, attr); map->flags |= BUS_DMAMAP_IOMMU_KMEM_ALLOC; } if (*vaddr == NULL) { iommu_bus_dmamap_destroy(dmat, *mapp); *mapp = NULL; return (ENOMEM); } return (0); } static void iommu_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map1) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)map1; if ((map->flags & BUS_DMAMAP_IOMMU_MALLOC) != 0) { free_domain(vaddr, M_DEVBUF); map->flags &= ~BUS_DMAMAP_IOMMU_MALLOC; } else { KASSERT((map->flags & BUS_DMAMAP_IOMMU_KMEM_ALLOC) != 0, ("iommu_bus_dmamem_free for non alloced map %p", map)); kmem_free((vm_offset_t)vaddr, tag->common.maxsize); map->flags &= ~BUS_DMAMAP_IOMMU_KMEM_ALLOC; } iommu_bus_dmamap_destroy(dmat, map1); } static int iommu_bus_dmamap_load_something1(struct bus_dma_tag_iommu *tag, struct bus_dmamap_iommu *map, vm_page_t *ma, int offset, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp, struct iommu_map_entries_tailq *unroll_list) { struct iommu_ctx *ctx; struct iommu_domain *domain; struct iommu_map_entry *entry; iommu_gaddr_t size; bus_size_t buflen1; int error, idx, gas_flags, seg; KASSERT(offset < IOMMU_PAGE_SIZE, ("offset %d", offset)); if (segs == NULL) segs = tag->segments; ctx = tag->ctx; domain = ctx->domain; seg = *segp; error = 0; idx = 0; while (buflen > 0) { seg++; if (seg >= tag->common.nsegments) { error = EFBIG; break; } buflen1 = buflen > tag->common.maxsegsz ? tag->common.maxsegsz : buflen; size = round_page(offset + buflen1); /* * (Too) optimistically allow split if there are more * then one segments left. */ gas_flags = map->cansleep ? IOMMU_MF_CANWAIT : 0; if (seg + 1 < tag->common.nsegments) gas_flags |= IOMMU_MF_CANSPLIT; error = iommu_map(domain, &tag->common, size, offset, IOMMU_MAP_ENTRY_READ | ((flags & BUS_DMA_NOWRITE) == 0 ? IOMMU_MAP_ENTRY_WRITE : 0), gas_flags, ma + idx, &entry); if (error != 0) break; if ((gas_flags & IOMMU_MF_CANSPLIT) != 0) { KASSERT(size >= entry->end - entry->start, ("split increased entry size %jx %jx %jx", (uintmax_t)size, (uintmax_t)entry->start, (uintmax_t)entry->end)); size = entry->end - entry->start; if (buflen1 > size) buflen1 = size; } else { KASSERT(entry->end - entry->start == size, ("no split allowed %jx %jx %jx", (uintmax_t)size, (uintmax_t)entry->start, (uintmax_t)entry->end)); } if (offset + buflen1 > size) buflen1 = size - offset; if (buflen1 > tag->common.maxsegsz) buflen1 = tag->common.maxsegsz; KASSERT(((entry->start + offset) & (tag->common.alignment - 1)) == 0, ("alignment failed: ctx %p start 0x%jx offset %x " "align 0x%jx", ctx, (uintmax_t)entry->start, offset, (uintmax_t)tag->common.alignment)); KASSERT(entry->end <= tag->common.lowaddr || entry->start >= tag->common.highaddr, ("entry placement failed: ctx %p start 0x%jx end 0x%jx " "lowaddr 0x%jx highaddr 0x%jx", ctx, (uintmax_t)entry->start, (uintmax_t)entry->end, (uintmax_t)tag->common.lowaddr, (uintmax_t)tag->common.highaddr)); KASSERT(iommu_test_boundary(entry->start + offset, buflen1, tag->common.boundary), ("boundary failed: ctx %p start 0x%jx end 0x%jx " "boundary 0x%jx", ctx, (uintmax_t)entry->start, (uintmax_t)entry->end, (uintmax_t)tag->common.boundary)); KASSERT(buflen1 <= tag->common.maxsegsz, ("segment too large: ctx %p start 0x%jx end 0x%jx " "buflen1 0x%jx maxsegsz 0x%jx", ctx, (uintmax_t)entry->start, (uintmax_t)entry->end, (uintmax_t)buflen1, (uintmax_t)tag->common.maxsegsz)); IOMMU_DOMAIN_LOCK(domain); TAILQ_INSERT_TAIL(&map->map_entries, entry, dmamap_link); entry->flags |= IOMMU_MAP_ENTRY_MAP; IOMMU_DOMAIN_UNLOCK(domain); TAILQ_INSERT_TAIL(unroll_list, entry, unroll_link); segs[seg].ds_addr = entry->start + offset; segs[seg].ds_len = buflen1; idx += OFF_TO_IDX(trunc_page(offset + buflen1)); offset += buflen1; offset &= IOMMU_PAGE_MASK; buflen -= buflen1; } if (error == 0) *segp = seg; return (error); } static int iommu_bus_dmamap_load_something(struct bus_dma_tag_iommu *tag, struct bus_dmamap_iommu *map, vm_page_t *ma, int offset, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { struct iommu_ctx *ctx; struct iommu_domain *domain; struct iommu_map_entry *entry, *entry1; struct iommu_map_entries_tailq unroll_list; int error; ctx = tag->ctx; domain = ctx->domain; atomic_add_long(&ctx->loads, 1); TAILQ_INIT(&unroll_list); error = iommu_bus_dmamap_load_something1(tag, map, ma, offset, buflen, flags, segs, segp, &unroll_list); if (error != 0) { /* * The busdma interface does not allow us to report * partial buffer load, so unfortunately we have to * revert all work done. */ IOMMU_DOMAIN_LOCK(domain); TAILQ_FOREACH_SAFE(entry, &unroll_list, unroll_link, entry1) { /* * No entries other than what we have created * during the failed run might have been * inserted there in between, since we own ctx * pglock. */ TAILQ_REMOVE(&map->map_entries, entry, dmamap_link); TAILQ_REMOVE(&unroll_list, entry, unroll_link); TAILQ_INSERT_TAIL(&domain->unload_entries, entry, dmamap_link); } IOMMU_DOMAIN_UNLOCK(domain); taskqueue_enqueue(domain->iommu->delayed_taskqueue, &domain->unload_task); } if (error == ENOMEM && (flags & BUS_DMA_NOWAIT) == 0 && !map->cansleep) error = EINPROGRESS; if (error == EINPROGRESS) iommu_bus_schedule_dmamap(domain->iommu, map); return (error); } static int iommu_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map1, struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags, bus_dma_segment_t *segs, int *segp) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)map1; return (iommu_bus_dmamap_load_something(tag, map, ma, ma_offs, tlen, flags, segs, segp)); } static int iommu_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map1, vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; vm_page_t *ma, fma; vm_paddr_t pstart, pend, paddr; int error, i, ma_cnt, mflags, offset; tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)map1; pstart = trunc_page(buf); pend = round_page(buf + buflen); offset = buf & PAGE_MASK; ma_cnt = OFF_TO_IDX(pend - pstart); mflags = map->cansleep ? M_WAITOK : M_NOWAIT; ma = malloc(sizeof(vm_page_t) * ma_cnt, M_DEVBUF, mflags); if (ma == NULL) return (ENOMEM); fma = NULL; for (i = 0; i < ma_cnt; i++) { paddr = pstart + ptoa(i); ma[i] = PHYS_TO_VM_PAGE(paddr); if (ma[i] == NULL || VM_PAGE_TO_PHYS(ma[i]) != paddr) { /* * If PHYS_TO_VM_PAGE() returned NULL or the * vm_page was not initialized we'll use a * fake page. */ if (fma == NULL) { fma = malloc(sizeof(struct vm_page) * ma_cnt, M_DEVBUF, M_ZERO | mflags); if (fma == NULL) { free(ma, M_DEVBUF); return (ENOMEM); } } vm_page_initfake(&fma[i], pstart + ptoa(i), VM_MEMATTR_DEFAULT); ma[i] = &fma[i]; } } error = iommu_bus_dmamap_load_something(tag, map, ma, offset, buflen, flags, segs, segp); free(fma, M_DEVBUF); free(ma, M_DEVBUF); return (error); } static int iommu_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map1, void *buf, bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs, int *segp) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; vm_page_t *ma, fma; vm_paddr_t pstart, pend, paddr; int error, i, ma_cnt, mflags, offset; tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)map1; pstart = trunc_page((vm_offset_t)buf); pend = round_page((vm_offset_t)buf + buflen); offset = (vm_offset_t)buf & PAGE_MASK; ma_cnt = OFF_TO_IDX(pend - pstart); mflags = map->cansleep ? M_WAITOK : M_NOWAIT; ma = malloc(sizeof(vm_page_t) * ma_cnt, M_DEVBUF, mflags); if (ma == NULL) return (ENOMEM); fma = NULL; for (i = 0; i < ma_cnt; i++, pstart += PAGE_SIZE) { if (pmap == kernel_pmap) paddr = pmap_kextract(pstart); else paddr = pmap_extract(pmap, pstart); ma[i] = PHYS_TO_VM_PAGE(paddr); if (ma[i] == NULL || VM_PAGE_TO_PHYS(ma[i]) != paddr) { /* * If PHYS_TO_VM_PAGE() returned NULL or the * vm_page was not initialized we'll use a * fake page. */ if (fma == NULL) { fma = malloc(sizeof(struct vm_page) * ma_cnt, M_DEVBUF, M_ZERO | mflags); if (fma == NULL) { free(ma, M_DEVBUF); return (ENOMEM); } } vm_page_initfake(&fma[i], paddr, VM_MEMATTR_DEFAULT); ma[i] = &fma[i]; } } error = iommu_bus_dmamap_load_something(tag, map, ma, offset, buflen, flags, segs, segp); free(ma, M_DEVBUF); free(fma, M_DEVBUF); return (error); } static void iommu_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map1, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg) { struct bus_dmamap_iommu *map; if (map1 == NULL) return; map = (struct bus_dmamap_iommu *)map1; map->mem = *mem; map->tag = (struct bus_dma_tag_iommu *)dmat; map->callback = callback; map->callback_arg = callback_arg; } static bus_dma_segment_t * iommu_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map1, bus_dma_segment_t *segs, int nsegs, int error) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)map1; if (!map->locked) { KASSERT(map->cansleep, ("map not locked and not sleepable context %p", map)); /* * We are called from the delayed context. Relock the * driver. */ (tag->common.lockfunc)(tag->common.lockfuncarg, BUS_DMA_LOCK); map->locked = true; } if (segs == NULL) segs = tag->segments; return (segs); } /* * The limitations of busdma KPI forces the iommu to perform the actual * unload, consisting of the unmapping of the map entries page tables, * from the delayed context on i386, since page table page mapping * might require a sleep to be successfull. The unfortunate * consequence is that the DMA requests can be served some time after * the bus_dmamap_unload() call returned. * * On amd64, we assume that sf allocation cannot fail. */ static void iommu_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map1) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; struct iommu_ctx *ctx; struct iommu_domain *domain; #if defined(__amd64__) struct iommu_map_entries_tailq entries; #endif tag = (struct bus_dma_tag_iommu *)dmat; map = (struct bus_dmamap_iommu *)map1; ctx = tag->ctx; domain = ctx->domain; atomic_add_long(&ctx->unloads, 1); #if defined(__i386__) IOMMU_DOMAIN_LOCK(domain); TAILQ_CONCAT(&domain->unload_entries, &map->map_entries, dmamap_link); IOMMU_DOMAIN_UNLOCK(domain); taskqueue_enqueue(domain->iommu->delayed_taskqueue, &domain->unload_task); #else /* defined(__amd64__) */ TAILQ_INIT(&entries); IOMMU_DOMAIN_LOCK(domain); TAILQ_CONCAT(&entries, &map->map_entries, dmamap_link); IOMMU_DOMAIN_UNLOCK(domain); THREAD_NO_SLEEPING(); iommu_domain_unload(domain, &entries, false); THREAD_SLEEPING_OK(); KASSERT(TAILQ_EMPTY(&entries), ("lazy iommu_ctx_unload %p", ctx)); #endif } static void iommu_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { } struct bus_dma_impl bus_dma_iommu_impl = { .tag_create = iommu_bus_dma_tag_create, .tag_destroy = iommu_bus_dma_tag_destroy, .tag_set_domain = iommu_bus_dma_tag_set_domain, .id_mapped = iommu_bus_dma_id_mapped, .map_create = iommu_bus_dmamap_create, .map_destroy = iommu_bus_dmamap_destroy, .mem_alloc = iommu_bus_dmamem_alloc, .mem_free = iommu_bus_dmamem_free, .load_phys = iommu_bus_dmamap_load_phys, .load_buffer = iommu_bus_dmamap_load_buffer, .load_ma = iommu_bus_dmamap_load_ma, .map_waitok = iommu_bus_dmamap_waitok, .map_complete = iommu_bus_dmamap_complete, .map_unload = iommu_bus_dmamap_unload, .map_sync = iommu_bus_dmamap_sync, }; static void iommu_bus_task_dmamap(void *arg, int pending) { struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; struct iommu_unit *unit; unit = arg; IOMMU_LOCK(unit); while ((map = TAILQ_FIRST(&unit->delayed_maps)) != NULL) { TAILQ_REMOVE(&unit->delayed_maps, map, delay_link); IOMMU_UNLOCK(unit); tag = map->tag; map->cansleep = true; map->locked = false; bus_dmamap_load_mem((bus_dma_tag_t)tag, (bus_dmamap_t)map, &map->mem, map->callback, map->callback_arg, BUS_DMA_WAITOK); map->cansleep = false; if (map->locked) { (tag->common.lockfunc)(tag->common.lockfuncarg, BUS_DMA_UNLOCK); } else map->locked = true; map->cansleep = false; IOMMU_LOCK(unit); } IOMMU_UNLOCK(unit); } static void iommu_bus_schedule_dmamap(struct iommu_unit *unit, struct bus_dmamap_iommu *map) { map->locked = false; IOMMU_LOCK(unit); TAILQ_INSERT_TAIL(&unit->delayed_maps, map, delay_link); IOMMU_UNLOCK(unit); taskqueue_enqueue(unit->delayed_taskqueue, &unit->dmamap_load_task); } int iommu_init_busdma(struct iommu_unit *unit) { int error; unit->dma_enabled = 1; error = TUNABLE_INT_FETCH("hw.iommu.dma", &unit->dma_enabled); if (error == 0) /* compatibility */ TUNABLE_INT_FETCH("hw.dmar.dma", &unit->dma_enabled); TAILQ_INIT(&unit->delayed_maps); TASK_INIT(&unit->dmamap_load_task, 0, iommu_bus_task_dmamap, unit); unit->delayed_taskqueue = taskqueue_create("iommu", M_WAITOK, taskqueue_thread_enqueue, &unit->delayed_taskqueue); taskqueue_start_threads(&unit->delayed_taskqueue, 1, PI_DISK, "iommu%d busdma taskq", unit->unit); return (0); } void iommu_fini_busdma(struct iommu_unit *unit) { if (unit->delayed_taskqueue == NULL) return; taskqueue_drain(unit->delayed_taskqueue, &unit->dmamap_load_task); taskqueue_free(unit->delayed_taskqueue); unit->delayed_taskqueue = NULL; } int -bus_dma_dmar_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map1, +bus_dma_iommu_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map1, vm_paddr_t start, vm_size_t length, int flags) { struct bus_dma_tag_common *tc; struct bus_dma_tag_iommu *tag; struct bus_dmamap_iommu *map; struct iommu_ctx *ctx; struct iommu_domain *domain; struct iommu_map_entry *entry; vm_page_t *ma; vm_size_t i; int error; bool waitok; MPASS((start & PAGE_MASK) == 0); MPASS((length & PAGE_MASK) == 0); MPASS(length > 0); MPASS(start + length >= start); MPASS((flags & ~(BUS_DMA_NOWAIT | BUS_DMA_NOWRITE)) == 0); tc = (struct bus_dma_tag_common *)dmat; if (tc->impl != &bus_dma_iommu_impl) return (0); tag = (struct bus_dma_tag_iommu *)dmat; ctx = tag->ctx; domain = ctx->domain; map = (struct bus_dmamap_iommu *)map1; waitok = (flags & BUS_DMA_NOWAIT) != 0; entry = iommu_map_alloc_entry(domain, waitok ? 0 : IOMMU_PGF_WAITOK); if (entry == NULL) return (ENOMEM); entry->start = start; entry->end = start + length; ma = malloc(sizeof(vm_page_t) * atop(length), M_TEMP, waitok ? M_WAITOK : M_NOWAIT); if (ma == NULL) { iommu_map_free_entry(domain, entry); return (ENOMEM); } for (i = 0; i < atop(length); i++) { ma[i] = vm_page_getfake(entry->start + PAGE_SIZE * i, VM_MEMATTR_DEFAULT); } error = iommu_map_region(domain, entry, IOMMU_MAP_ENTRY_READ | ((flags & BUS_DMA_NOWRITE) ? 0 : IOMMU_MAP_ENTRY_WRITE), waitok ? IOMMU_MF_CANWAIT : 0, ma); if (error == 0) { IOMMU_DOMAIN_LOCK(domain); TAILQ_INSERT_TAIL(&map->map_entries, entry, dmamap_link); entry->flags |= IOMMU_MAP_ENTRY_MAP; IOMMU_DOMAIN_UNLOCK(domain); } else { iommu_domain_unload_entry(entry, true); } for (i = 0; i < atop(length); i++) vm_page_putfake(ma[i]); free(ma, M_TEMP); return (error); } Index: head/sys/dev/iommu/iommu.h =================================================================== --- head/sys/dev/iommu/iommu.h (revision 363649) +++ head/sys/dev/iommu/iommu.h (revision 363650) @@ -1,216 +1,226 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_IOMMU_H_ #define _SYS_IOMMU_H_ +#include #include #include #include #include -#include +#include + /* Host or physical memory address, after translation. */ typedef uint64_t iommu_haddr_t; /* Guest or bus address, before translation. */ typedef uint64_t iommu_gaddr_t; struct bus_dma_tag_common; struct iommu_map_entry; TAILQ_HEAD(iommu_map_entries_tailq, iommu_map_entry); RB_HEAD(iommu_gas_entries_tree, iommu_map_entry); RB_PROTOTYPE(iommu_gas_entries_tree, iommu_map_entry, rb_entry, iommu_gas_cmp_entries); struct iommu_qi_genseq { u_int gen; uint32_t seq; }; struct iommu_map_entry { iommu_gaddr_t start; iommu_gaddr_t end; iommu_gaddr_t first; /* Least start in subtree */ iommu_gaddr_t last; /* Greatest end in subtree */ iommu_gaddr_t free_down; /* Max free space below the current R/B tree node */ u_int flags; TAILQ_ENTRY(iommu_map_entry) dmamap_link; /* Link for dmamap entries */ RB_ENTRY(iommu_map_entry) rb_entry; /* Links for domain entries */ TAILQ_ENTRY(iommu_map_entry) unroll_link; /* Link for unroll after dmamap_load failure */ struct iommu_domain *domain; struct iommu_qi_genseq gseq; }; #define IOMMU_MAP_ENTRY_PLACE 0x0001 /* Fake entry */ #define IOMMU_MAP_ENTRY_RMRR 0x0002 /* Permanent, not linked by dmamap_link */ #define IOMMU_MAP_ENTRY_MAP 0x0004 /* Busdma created, linked by dmamap_link */ #define IOMMU_MAP_ENTRY_UNMAPPED 0x0010 /* No backing pages */ #define IOMMU_MAP_ENTRY_QI_NF 0x0020 /* qi task, do not free entry */ #define IOMMU_MAP_ENTRY_READ 0x1000 /* Read permitted */ #define IOMMU_MAP_ENTRY_WRITE 0x2000 /* Write permitted */ #define IOMMU_MAP_ENTRY_SNOOP 0x4000 /* Snoop */ #define IOMMU_MAP_ENTRY_TM 0x8000 /* Transient */ struct iommu_unit { struct mtx lock; int unit; int dma_enabled; /* Busdma delayed map load */ struct task dmamap_load_task; TAILQ_HEAD(, bus_dmamap_iommu) delayed_maps; struct taskqueue *delayed_taskqueue; + + /* + * Bitmap of buses for which context must ignore slot:func, + * duplicating the page table pointer into all context table + * entries. This is a client-controlled quirk to support some + * NTBs. + */ + uint32_t buswide_ctxs[(PCI_BUSMAX + 1) / NBBY / sizeof(uint32_t)]; }; /* * Locking annotations: * (u) - Protected by iommu unit lock * (d) - Protected by domain lock * (c) - Immutable after initialization */ struct iommu_domain { struct iommu_unit *iommu; /* (c) */ struct mtx lock; /* (c) */ struct task unload_task; /* (c) */ u_int entries_cnt; /* (d) */ struct iommu_map_entries_tailq unload_entries; /* (d) Entries to unload */ struct iommu_gas_entries_tree rb_root; /* (d) */ iommu_gaddr_t end; /* (c) Highest address + 1 in the guest AS */ struct iommu_map_entry *first_place, *last_place; /* (d) */ u_int flags; /* (u) */ }; struct iommu_ctx { struct iommu_domain *domain; /* (c) */ struct bus_dma_tag_iommu *tag; /* (c) Root tag */ u_long loads; /* atomic updates, for stat only */ u_long unloads; /* same */ u_int flags; /* (u) */ }; /* struct iommu_ctx flags */ #define IOMMU_CTX_FAULTED 0x0001 /* Fault was reported, last_fault_rec is valid */ #define IOMMU_CTX_DISABLED 0x0002 /* Device is disabled, the ephemeral reference is kept to prevent context destruction */ #define IOMMU_DOMAIN_GAS_INITED 0x0001 #define IOMMU_DOMAIN_PGTBL_INITED 0x0002 #define IOMMU_DOMAIN_IDMAP 0x0010 /* Domain uses identity page table */ #define IOMMU_DOMAIN_RMRR 0x0020 /* Domain contains RMRR entry, cannot be turned off */ /* Map flags */ #define IOMMU_MF_CANWAIT 0x0001 #define IOMMU_MF_CANSPLIT 0x0002 #define IOMMU_MF_RMRR 0x0004 #define IOMMU_PGF_WAITOK 0x0001 #define IOMMU_PGF_ZERO 0x0002 #define IOMMU_PGF_ALLOC 0x0004 #define IOMMU_PGF_NOALLOC 0x0008 #define IOMMU_PGF_OBJL 0x0010 #define IOMMU_LOCK(unit) mtx_lock(&(unit)->lock) #define IOMMU_UNLOCK(unit) mtx_unlock(&(unit)->lock) #define IOMMU_ASSERT_LOCKED(unit) mtx_assert(&(unit)->lock, MA_OWNED) #define IOMMU_DOMAIN_LOCK(dom) mtx_lock(&(dom)->lock) #define IOMMU_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->lock) #define IOMMU_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->lock, MA_OWNED) static inline bool iommu_test_boundary(iommu_gaddr_t start, iommu_gaddr_t size, iommu_gaddr_t boundary) { if (boundary == 0) return (true); return (start + size <= ((start + boundary) & ~(boundary - 1))); } void iommu_free_ctx(struct iommu_ctx *ctx); void iommu_free_ctx_locked(struct iommu_unit *iommu, struct iommu_ctx *ctx); struct iommu_ctx *iommu_get_ctx(struct iommu_unit *, device_t dev, uint16_t rid, bool id_mapped, bool rmrr_init); struct iommu_unit *iommu_find(device_t dev, bool verbose); void iommu_domain_unload_entry(struct iommu_map_entry *entry, bool free); void iommu_domain_unload(struct iommu_domain *domain, struct iommu_map_entries_tailq *entries, bool cansleep); struct iommu_ctx *iommu_instantiate_ctx(struct iommu_unit *iommu, device_t dev, bool rmrr); device_t iommu_get_requester(device_t dev, uint16_t *rid); int iommu_init_busdma(struct iommu_unit *unit); void iommu_fini_busdma(struct iommu_unit *unit); struct iommu_map_entry *iommu_map_alloc_entry(struct iommu_domain *iodom, u_int flags); void iommu_map_free_entry(struct iommu_domain *, struct iommu_map_entry *); int iommu_map(struct iommu_domain *iodom, const struct bus_dma_tag_common *common, iommu_gaddr_t size, int offset, u_int eflags, u_int flags, vm_page_t *ma, struct iommu_map_entry **res); int iommu_map_region(struct iommu_domain *domain, struct iommu_map_entry *entry, u_int eflags, u_int flags, vm_page_t *ma); void iommu_gas_init_domain(struct iommu_domain *domain); void iommu_gas_fini_domain(struct iommu_domain *domain); struct iommu_map_entry *iommu_gas_alloc_entry(struct iommu_domain *domain, u_int flags); void iommu_gas_free_entry(struct iommu_domain *domain, struct iommu_map_entry *entry); void iommu_gas_free_space(struct iommu_domain *domain, struct iommu_map_entry *entry); int iommu_gas_map(struct iommu_domain *domain, const struct bus_dma_tag_common *common, iommu_gaddr_t size, int offset, u_int eflags, u_int flags, vm_page_t *ma, struct iommu_map_entry **res); void iommu_gas_free_region(struct iommu_domain *domain, struct iommu_map_entry *entry); int iommu_gas_map_region(struct iommu_domain *domain, struct iommu_map_entry *entry, u_int eflags, u_int flags, vm_page_t *ma); int iommu_gas_reserve_region(struct iommu_domain *domain, iommu_gaddr_t start, iommu_gaddr_t end); SYSCTL_DECL(_hw_iommu); #endif /* !_SYS_IOMMU_H_ */ Index: head/sys/dev/ntb/ntb_hw/ntb_hw_intel.c =================================================================== --- head/sys/dev/ntb/ntb_hw/ntb_hw_intel.c (revision 363649) +++ head/sys/dev/ntb/ntb_hw/ntb_hw_intel.c (revision 363650) @@ -1,3215 +1,3215 @@ /*- * Copyright (c) 2016-2017 Alexander Motin * Copyright (C) 2013 Intel Corporation * Copyright (C) 2015 EMC Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The Non-Transparent Bridge (NTB) is a device that allows you to connect * two or more systems using a PCI-e links, providing remote memory access. * * This module contains a driver for NTB hardware in Intel Xeon/Atom CPUs. * * NOTE: Much of the code in this module is shared with Linux. Any patches may * be picked up and redistributed in Linux with a dual GPL/BSD license. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ntb_hw_intel.h" #include "../ntb.h" #define MAX_MSIX_INTERRUPTS MAX(XEON_DB_COUNT, ATOM_DB_COUNT) #define NTB_HB_TIMEOUT 1 /* second */ #define ATOM_LINK_RECOVERY_TIME 500 /* ms */ #define BAR_HIGH_MASK (~((1ull << 12) - 1)) #define NTB_MSIX_VER_GUARD 0xaabbccdd #define NTB_MSIX_RECEIVED 0xe0f0e0f0 /* * PCI constants could be somewhere more generic, but aren't defined/used in * pci.c. */ #define PCI_MSIX_ENTRY_SIZE 16 #define PCI_MSIX_ENTRY_LOWER_ADDR 0 #define PCI_MSIX_ENTRY_UPPER_ADDR 4 #define PCI_MSIX_ENTRY_DATA 8 enum ntb_device_type { NTB_XEON, NTB_ATOM }; /* ntb_conn_type are hardware numbers, cannot change. */ enum ntb_conn_type { NTB_CONN_TRANSPARENT = 0, NTB_CONN_B2B = 1, NTB_CONN_RP = 2, }; enum ntb_b2b_direction { NTB_DEV_USD = 0, NTB_DEV_DSD = 1, }; enum ntb_bar { NTB_CONFIG_BAR = 0, NTB_B2B_BAR_1, NTB_B2B_BAR_2, NTB_B2B_BAR_3, NTB_MAX_BARS }; enum { NTB_MSIX_GUARD = 0, NTB_MSIX_DATA0, NTB_MSIX_DATA1, NTB_MSIX_DATA2, NTB_MSIX_OFS0, NTB_MSIX_OFS1, NTB_MSIX_OFS2, NTB_MSIX_DONE, NTB_MAX_MSIX_SPAD }; /* Device features and workarounds */ #define HAS_FEATURE(ntb, feature) \ (((ntb)->features & (feature)) != 0) struct ntb_hw_info { uint32_t device_id; const char *desc; enum ntb_device_type type; uint32_t features; }; struct ntb_pci_bar_info { bus_space_tag_t pci_bus_tag; bus_space_handle_t pci_bus_handle; int pci_resource_id; struct resource *pci_resource; vm_paddr_t pbase; caddr_t vbase; vm_size_t size; vm_memattr_t map_mode; /* Configuration register offsets */ uint32_t psz_off; uint32_t ssz_off; uint32_t pbarxlat_off; }; struct ntb_int_info { struct resource *res; int rid; void *tag; }; struct ntb_vec { struct ntb_softc *ntb; uint32_t num; unsigned masked; }; struct ntb_reg { uint32_t ntb_ctl; uint32_t lnk_sta; uint8_t db_size; unsigned mw_bar[NTB_MAX_BARS]; }; struct ntb_alt_reg { uint32_t db_bell; uint32_t db_mask; uint32_t spad; }; struct ntb_xlat_reg { uint32_t bar0_base; uint32_t bar2_base; uint32_t bar4_base; uint32_t bar5_base; uint32_t bar2_xlat; uint32_t bar4_xlat; uint32_t bar5_xlat; uint32_t bar2_limit; uint32_t bar4_limit; uint32_t bar5_limit; }; struct ntb_b2b_addr { uint64_t bar0_addr; uint64_t bar2_addr64; uint64_t bar4_addr64; uint64_t bar4_addr32; uint64_t bar5_addr32; }; struct ntb_msix_data { uint32_t nmd_ofs; uint32_t nmd_data; }; struct ntb_softc { /* ntb.c context. Do not move! Must go first! */ void *ntb_store; device_t device; enum ntb_device_type type; uint32_t features; struct ntb_pci_bar_info bar_info[NTB_MAX_BARS]; struct ntb_int_info int_info[MAX_MSIX_INTERRUPTS]; uint32_t allocated_interrupts; struct ntb_msix_data peer_msix_data[XEON_NONLINK_DB_MSIX_BITS]; struct ntb_msix_data msix_data[XEON_NONLINK_DB_MSIX_BITS]; bool peer_msix_good; bool peer_msix_done; struct ntb_pci_bar_info *peer_lapic_bar; struct callout peer_msix_work; bus_dma_tag_t bar0_dma_tag; bus_dmamap_t bar0_dma_map; struct callout heartbeat_timer; struct callout lr_timer; struct ntb_vec *msix_vec; uint32_t ppd; enum ntb_conn_type conn_type; enum ntb_b2b_direction dev_type; /* Offset of peer bar0 in B2B BAR */ uint64_t b2b_off; /* Memory window used to access peer bar0 */ #define B2B_MW_DISABLED UINT8_MAX uint8_t b2b_mw_idx; uint32_t msix_xlat; uint8_t msix_mw_idx; uint8_t mw_count; uint8_t spad_count; uint8_t db_count; uint8_t db_vec_count; uint8_t db_vec_shift; /* Protects local db_mask. */ #define DB_MASK_LOCK(sc) mtx_lock_spin(&(sc)->db_mask_lock) #define DB_MASK_UNLOCK(sc) mtx_unlock_spin(&(sc)->db_mask_lock) #define DB_MASK_ASSERT(sc,f) mtx_assert(&(sc)->db_mask_lock, (f)) struct mtx db_mask_lock; volatile uint32_t ntb_ctl; volatile uint32_t lnk_sta; uint64_t db_valid_mask; uint64_t db_link_mask; uint64_t db_mask; uint64_t fake_db; /* NTB_SB01BASE_LOCKUP*/ uint64_t force_db; /* NTB_SB01BASE_LOCKUP*/ int last_ts; /* ticks @ last irq */ const struct ntb_reg *reg; const struct ntb_alt_reg *self_reg; const struct ntb_alt_reg *peer_reg; const struct ntb_xlat_reg *xlat_reg; }; #ifdef __i386__ static __inline uint64_t bus_space_read_8(bus_space_tag_t tag, bus_space_handle_t handle, bus_size_t offset) { return (bus_space_read_4(tag, handle, offset) | ((uint64_t)bus_space_read_4(tag, handle, offset + 4)) << 32); } static __inline void bus_space_write_8(bus_space_tag_t tag, bus_space_handle_t handle, bus_size_t offset, uint64_t val) { bus_space_write_4(tag, handle, offset, val); bus_space_write_4(tag, handle, offset + 4, val >> 32); } #endif #define intel_ntb_bar_read(SIZE, bar, offset) \ bus_space_read_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \ ntb->bar_info[(bar)].pci_bus_handle, (offset)) #define intel_ntb_bar_write(SIZE, bar, offset, val) \ bus_space_write_ ## SIZE (ntb->bar_info[(bar)].pci_bus_tag, \ ntb->bar_info[(bar)].pci_bus_handle, (offset), (val)) #define intel_ntb_reg_read(SIZE, offset) \ intel_ntb_bar_read(SIZE, NTB_CONFIG_BAR, offset) #define intel_ntb_reg_write(SIZE, offset, val) \ intel_ntb_bar_write(SIZE, NTB_CONFIG_BAR, offset, val) #define intel_ntb_mw_read(SIZE, offset) \ intel_ntb_bar_read(SIZE, intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), \ offset) #define intel_ntb_mw_write(SIZE, offset, val) \ intel_ntb_bar_write(SIZE, intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx), \ offset, val) static int intel_ntb_probe(device_t device); static int intel_ntb_attach(device_t device); static int intel_ntb_detach(device_t device); static uint64_t intel_ntb_db_valid_mask(device_t dev); static void intel_ntb_spad_clear(device_t dev); static uint64_t intel_ntb_db_vector_mask(device_t dev, uint32_t vector); static bool intel_ntb_link_is_up(device_t dev, enum ntb_speed *speed, enum ntb_width *width); static int intel_ntb_link_enable(device_t dev, enum ntb_speed speed, enum ntb_width width); static int intel_ntb_link_disable(device_t dev); static int intel_ntb_spad_read(device_t dev, unsigned int idx, uint32_t *val); static int intel_ntb_peer_spad_write(device_t dev, unsigned int idx, uint32_t val); static unsigned intel_ntb_user_mw_to_idx(struct ntb_softc *, unsigned uidx); static inline enum ntb_bar intel_ntb_mw_to_bar(struct ntb_softc *, unsigned mw); static inline bool bar_is_64bit(struct ntb_softc *, enum ntb_bar); static inline void bar_get_xlat_params(struct ntb_softc *, enum ntb_bar, uint32_t *base, uint32_t *xlat, uint32_t *lmt); static int intel_ntb_map_pci_bars(struct ntb_softc *ntb); static int intel_ntb_mw_set_wc_internal(struct ntb_softc *, unsigned idx, vm_memattr_t); static void print_map_success(struct ntb_softc *, struct ntb_pci_bar_info *, const char *); static int map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar); static int map_memory_window_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar); static void intel_ntb_unmap_pci_bar(struct ntb_softc *ntb); static int intel_ntb_remap_msix(device_t, uint32_t desired, uint32_t avail); static int intel_ntb_init_isr(struct ntb_softc *ntb); static int intel_ntb_setup_legacy_interrupt(struct ntb_softc *ntb); static int intel_ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors); static void intel_ntb_teardown_interrupts(struct ntb_softc *ntb); static inline uint64_t intel_ntb_vec_mask(struct ntb_softc *, uint64_t db_vector); static void intel_ntb_interrupt(struct ntb_softc *, uint32_t vec); static void ndev_vec_isr(void *arg); static void ndev_irq_isr(void *arg); static inline uint64_t db_ioread(struct ntb_softc *, uint64_t regoff); static inline void db_iowrite(struct ntb_softc *, uint64_t regoff, uint64_t); static inline void db_iowrite_raw(struct ntb_softc *, uint64_t regoff, uint64_t); static int intel_ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors); static void intel_ntb_free_msix_vec(struct ntb_softc *ntb); static void intel_ntb_get_msix_info(struct ntb_softc *ntb); static void intel_ntb_exchange_msix(void *); static struct ntb_hw_info *intel_ntb_get_device_info(uint32_t device_id); static void intel_ntb_detect_max_mw(struct ntb_softc *ntb); static int intel_ntb_detect_xeon(struct ntb_softc *ntb); static int intel_ntb_detect_atom(struct ntb_softc *ntb); static int intel_ntb_xeon_init_dev(struct ntb_softc *ntb); static int intel_ntb_atom_init_dev(struct ntb_softc *ntb); static void intel_ntb_teardown_xeon(struct ntb_softc *ntb); static void configure_atom_secondary_side_bars(struct ntb_softc *ntb); static void xeon_reset_sbar_size(struct ntb_softc *, enum ntb_bar idx, enum ntb_bar regbar); static void xeon_set_sbar_base_and_limit(struct ntb_softc *, uint64_t base_addr, enum ntb_bar idx, enum ntb_bar regbar); static void xeon_set_pbar_xlat(struct ntb_softc *, uint64_t base_addr, enum ntb_bar idx); static int xeon_setup_b2b_mw(struct ntb_softc *, const struct ntb_b2b_addr *addr, const struct ntb_b2b_addr *peer_addr); static inline bool link_is_up(struct ntb_softc *ntb); static inline bool _xeon_link_is_up(struct ntb_softc *ntb); static inline bool atom_link_is_err(struct ntb_softc *ntb); static inline enum ntb_speed intel_ntb_link_sta_speed(struct ntb_softc *); static inline enum ntb_width intel_ntb_link_sta_width(struct ntb_softc *); static void atom_link_hb(void *arg); static void recover_atom_link(void *arg); static bool intel_ntb_poll_link(struct ntb_softc *ntb); static void save_bar_parameters(struct ntb_pci_bar_info *bar); static void intel_ntb_sysctl_init(struct ntb_softc *); static int sysctl_handle_features(SYSCTL_HANDLER_ARGS); static int sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS); static int sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS); static int sysctl_handle_link_status(SYSCTL_HANDLER_ARGS); static int sysctl_handle_register(SYSCTL_HANDLER_ARGS); static unsigned g_ntb_hw_debug_level; SYSCTL_UINT(_hw_ntb, OID_AUTO, debug_level, CTLFLAG_RWTUN, &g_ntb_hw_debug_level, 0, "ntb_hw log level -- higher is more verbose"); #define intel_ntb_printf(lvl, ...) do { \ if ((lvl) <= g_ntb_hw_debug_level) { \ device_printf(ntb->device, __VA_ARGS__); \ } \ } while (0) #define _NTB_PAT_UC 0 #define _NTB_PAT_WC 1 #define _NTB_PAT_WT 4 #define _NTB_PAT_WP 5 #define _NTB_PAT_WB 6 #define _NTB_PAT_UCM 7 static unsigned g_ntb_mw_pat = _NTB_PAT_UC; SYSCTL_UINT(_hw_ntb, OID_AUTO, default_mw_pat, CTLFLAG_RDTUN, &g_ntb_mw_pat, 0, "Configure the default memory window cache flags (PAT): " "UC: " __XSTRING(_NTB_PAT_UC) ", " "WC: " __XSTRING(_NTB_PAT_WC) ", " "WT: " __XSTRING(_NTB_PAT_WT) ", " "WP: " __XSTRING(_NTB_PAT_WP) ", " "WB: " __XSTRING(_NTB_PAT_WB) ", " "UC-: " __XSTRING(_NTB_PAT_UCM)); static inline vm_memattr_t intel_ntb_pat_flags(void) { switch (g_ntb_mw_pat) { case _NTB_PAT_WC: return (VM_MEMATTR_WRITE_COMBINING); case _NTB_PAT_WT: return (VM_MEMATTR_WRITE_THROUGH); case _NTB_PAT_WP: return (VM_MEMATTR_WRITE_PROTECTED); case _NTB_PAT_WB: return (VM_MEMATTR_WRITE_BACK); case _NTB_PAT_UCM: return (VM_MEMATTR_WEAK_UNCACHEABLE); case _NTB_PAT_UC: /* FALLTHROUGH */ default: return (VM_MEMATTR_UNCACHEABLE); } } /* * Well, this obviously doesn't belong here, but it doesn't seem to exist * anywhere better yet. */ static inline const char * intel_ntb_vm_memattr_to_str(vm_memattr_t pat) { switch (pat) { case VM_MEMATTR_WRITE_COMBINING: return ("WRITE_COMBINING"); case VM_MEMATTR_WRITE_THROUGH: return ("WRITE_THROUGH"); case VM_MEMATTR_WRITE_PROTECTED: return ("WRITE_PROTECTED"); case VM_MEMATTR_WRITE_BACK: return ("WRITE_BACK"); case VM_MEMATTR_WEAK_UNCACHEABLE: return ("UNCACHED"); case VM_MEMATTR_UNCACHEABLE: return ("UNCACHEABLE"); default: return ("UNKNOWN"); } } static int g_ntb_msix_idx = 1; SYSCTL_INT(_hw_ntb, OID_AUTO, msix_mw_idx, CTLFLAG_RDTUN, &g_ntb_msix_idx, 0, "Use this memory window to access the peer MSIX message complex on " "certain Xeon-based NTB systems, as a workaround for a hardware errata. " "Like b2b_mw_idx, negative values index from the last available memory " "window. (Applies on Xeon platforms with SB01BASE_LOCKUP errata.)"); static int g_ntb_mw_idx = -1; SYSCTL_INT(_hw_ntb, OID_AUTO, b2b_mw_idx, CTLFLAG_RDTUN, &g_ntb_mw_idx, 0, "Use this memory window to access the peer NTB registers. A " "non-negative value starts from the first MW index; a negative value " "starts from the last MW index. The default is -1, i.e., the last " "available memory window. Both sides of the NTB MUST set the same " "value here! (Applies on Xeon platforms with SDOORBELL_LOCKUP errata.)"); /* Hardware owns the low 16 bits of features. */ #define NTB_BAR_SIZE_4K (1 << 0) #define NTB_SDOORBELL_LOCKUP (1 << 1) #define NTB_SB01BASE_LOCKUP (1 << 2) #define NTB_B2BDOORBELL_BIT14 (1 << 3) /* Software/configuration owns the top 16 bits. */ #define NTB_SPLIT_BAR (1ull << 16) #define NTB_FEATURES_STR \ "\20\21SPLIT_BAR4\04B2B_DOORBELL_BIT14\03SB01BASE_LOCKUP" \ "\02SDOORBELL_LOCKUP\01BAR_SIZE_4K" static struct ntb_hw_info pci_ids[] = { /* XXX: PS/SS IDs left out until they are supported. */ { 0x0C4E8086, "BWD Atom Processor S1200 Non-Transparent Bridge B2B", NTB_ATOM, 0 }, { 0x37258086, "JSF Xeon C35xx/C55xx Non-Transparent Bridge B2B", NTB_XEON, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 }, { 0x3C0D8086, "SNB Xeon E5/Core i7 Non-Transparent Bridge B2B", NTB_XEON, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 }, { 0x0E0D8086, "IVT Xeon E5 V2 Non-Transparent Bridge B2B", NTB_XEON, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 | NTB_SB01BASE_LOCKUP | NTB_BAR_SIZE_4K }, { 0x2F0D8086, "HSX Xeon E5 V3 Non-Transparent Bridge B2B", NTB_XEON, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 | NTB_SB01BASE_LOCKUP }, { 0x6F0D8086, "BDX Xeon E5 V4 Non-Transparent Bridge B2B", NTB_XEON, NTB_SDOORBELL_LOCKUP | NTB_B2BDOORBELL_BIT14 | NTB_SB01BASE_LOCKUP }, }; static const struct ntb_reg atom_reg = { .ntb_ctl = ATOM_NTBCNTL_OFFSET, .lnk_sta = ATOM_LINK_STATUS_OFFSET, .db_size = sizeof(uint64_t), .mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2 }, }; static const struct ntb_alt_reg atom_pri_reg = { .db_bell = ATOM_PDOORBELL_OFFSET, .db_mask = ATOM_PDBMSK_OFFSET, .spad = ATOM_SPAD_OFFSET, }; static const struct ntb_alt_reg atom_b2b_reg = { .db_bell = ATOM_B2B_DOORBELL_OFFSET, .spad = ATOM_B2B_SPAD_OFFSET, }; static const struct ntb_xlat_reg atom_sec_xlat = { #if 0 /* "FIXME" says the Linux driver. */ .bar0_base = ATOM_SBAR0BASE_OFFSET, .bar2_base = ATOM_SBAR2BASE_OFFSET, .bar4_base = ATOM_SBAR4BASE_OFFSET, .bar2_limit = ATOM_SBAR2LMT_OFFSET, .bar4_limit = ATOM_SBAR4LMT_OFFSET, #endif .bar2_xlat = ATOM_SBAR2XLAT_OFFSET, .bar4_xlat = ATOM_SBAR4XLAT_OFFSET, }; static const struct ntb_reg xeon_reg = { .ntb_ctl = XEON_NTBCNTL_OFFSET, .lnk_sta = XEON_LINK_STATUS_OFFSET, .db_size = sizeof(uint16_t), .mw_bar = { NTB_B2B_BAR_1, NTB_B2B_BAR_2, NTB_B2B_BAR_3 }, }; static const struct ntb_alt_reg xeon_pri_reg = { .db_bell = XEON_PDOORBELL_OFFSET, .db_mask = XEON_PDBMSK_OFFSET, .spad = XEON_SPAD_OFFSET, }; static const struct ntb_alt_reg xeon_b2b_reg = { .db_bell = XEON_B2B_DOORBELL_OFFSET, .spad = XEON_B2B_SPAD_OFFSET, }; static const struct ntb_xlat_reg xeon_sec_xlat = { .bar0_base = XEON_SBAR0BASE_OFFSET, .bar2_base = XEON_SBAR2BASE_OFFSET, .bar4_base = XEON_SBAR4BASE_OFFSET, .bar5_base = XEON_SBAR5BASE_OFFSET, .bar2_limit = XEON_SBAR2LMT_OFFSET, .bar4_limit = XEON_SBAR4LMT_OFFSET, .bar5_limit = XEON_SBAR5LMT_OFFSET, .bar2_xlat = XEON_SBAR2XLAT_OFFSET, .bar4_xlat = XEON_SBAR4XLAT_OFFSET, .bar5_xlat = XEON_SBAR5XLAT_OFFSET, }; static struct ntb_b2b_addr xeon_b2b_usd_addr = { .bar0_addr = XEON_B2B_BAR0_ADDR, .bar2_addr64 = XEON_B2B_BAR2_ADDR64, .bar4_addr64 = XEON_B2B_BAR4_ADDR64, .bar4_addr32 = XEON_B2B_BAR4_ADDR32, .bar5_addr32 = XEON_B2B_BAR5_ADDR32, }; static struct ntb_b2b_addr xeon_b2b_dsd_addr = { .bar0_addr = XEON_B2B_BAR0_ADDR, .bar2_addr64 = XEON_B2B_BAR2_ADDR64, .bar4_addr64 = XEON_B2B_BAR4_ADDR64, .bar4_addr32 = XEON_B2B_BAR4_ADDR32, .bar5_addr32 = XEON_B2B_BAR5_ADDR32, }; SYSCTL_NODE(_hw_ntb, OID_AUTO, xeon_b2b, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "B2B MW segment overrides -- MUST be the same on both sides"); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar2_addr64, CTLFLAG_RDTUN, &xeon_b2b_usd_addr.bar2_addr64, 0, "If using B2B topology on Xeon " "hardware, use this 64-bit address on the bus between the NTB devices for " "the window at BAR2, on the upstream side of the link. MUST be the same " "address on both sides."); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr64, CTLFLAG_RDTUN, &xeon_b2b_usd_addr.bar4_addr64, 0, "See usd_bar2_addr64, but BAR4."); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar4_addr32, CTLFLAG_RDTUN, &xeon_b2b_usd_addr.bar4_addr32, 0, "See usd_bar2_addr64, but BAR4 " "(split-BAR mode)."); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, usd_bar5_addr32, CTLFLAG_RDTUN, &xeon_b2b_usd_addr.bar5_addr32, 0, "See usd_bar2_addr64, but BAR5 " "(split-BAR mode)."); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar2_addr64, CTLFLAG_RDTUN, &xeon_b2b_dsd_addr.bar2_addr64, 0, "If using B2B topology on Xeon " "hardware, use this 64-bit address on the bus between the NTB devices for " "the window at BAR2, on the downstream side of the link. MUST be the same" " address on both sides."); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr64, CTLFLAG_RDTUN, &xeon_b2b_dsd_addr.bar4_addr64, 0, "See dsd_bar2_addr64, but BAR4."); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar4_addr32, CTLFLAG_RDTUN, &xeon_b2b_dsd_addr.bar4_addr32, 0, "See dsd_bar2_addr64, but BAR4 " "(split-BAR mode)."); SYSCTL_UQUAD(_hw_ntb_xeon_b2b, OID_AUTO, dsd_bar5_addr32, CTLFLAG_RDTUN, &xeon_b2b_dsd_addr.bar5_addr32, 0, "See dsd_bar2_addr64, but BAR5 " "(split-BAR mode)."); /* * OS <-> Driver interface structures */ MALLOC_DEFINE(M_NTB, "ntb_hw", "ntb_hw driver memory allocations"); /* * OS <-> Driver linkage functions */ static int intel_ntb_probe(device_t device) { struct ntb_hw_info *p; p = intel_ntb_get_device_info(pci_get_devid(device)); if (p == NULL) return (ENXIO); device_set_desc(device, p->desc); return (0); } static int intel_ntb_attach(device_t device) { struct ntb_softc *ntb; struct ntb_hw_info *p; int error; ntb = device_get_softc(device); p = intel_ntb_get_device_info(pci_get_devid(device)); ntb->device = device; ntb->type = p->type; ntb->features = p->features; ntb->b2b_mw_idx = B2B_MW_DISABLED; ntb->msix_mw_idx = B2B_MW_DISABLED; /* Heartbeat timer for NTB_ATOM since there is no link interrupt */ callout_init(&ntb->heartbeat_timer, 1); callout_init(&ntb->lr_timer, 1); callout_init(&ntb->peer_msix_work, 1); mtx_init(&ntb->db_mask_lock, "ntb hw bits", NULL, MTX_SPIN); if (ntb->type == NTB_ATOM) error = intel_ntb_detect_atom(ntb); else error = intel_ntb_detect_xeon(ntb); if (error != 0) goto out; intel_ntb_detect_max_mw(ntb); pci_enable_busmaster(ntb->device); error = intel_ntb_map_pci_bars(ntb); if (error != 0) goto out; if (ntb->type == NTB_ATOM) error = intel_ntb_atom_init_dev(ntb); else error = intel_ntb_xeon_init_dev(ntb); if (error != 0) goto out; intel_ntb_spad_clear(device); intel_ntb_poll_link(ntb); intel_ntb_sysctl_init(ntb); /* Attach children to this controller */ error = ntb_register_device(device); out: if (error != 0) intel_ntb_detach(device); return (error); } static int intel_ntb_detach(device_t device) { struct ntb_softc *ntb; ntb = device_get_softc(device); /* Detach & delete all children */ ntb_unregister_device(device); if (ntb->self_reg != NULL) { DB_MASK_LOCK(ntb); db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_valid_mask); DB_MASK_UNLOCK(ntb); } callout_drain(&ntb->heartbeat_timer); callout_drain(&ntb->lr_timer); callout_drain(&ntb->peer_msix_work); pci_disable_busmaster(ntb->device); if (ntb->type == NTB_XEON) intel_ntb_teardown_xeon(ntb); intel_ntb_teardown_interrupts(ntb); mtx_destroy(&ntb->db_mask_lock); intel_ntb_unmap_pci_bar(ntb); return (0); } /* * Driver internal routines */ static inline enum ntb_bar intel_ntb_mw_to_bar(struct ntb_softc *ntb, unsigned mw) { KASSERT(mw < ntb->mw_count, ("%s: mw:%u > count:%u", __func__, mw, (unsigned)ntb->mw_count)); KASSERT(ntb->reg->mw_bar[mw] != 0, ("invalid mw")); return (ntb->reg->mw_bar[mw]); } static inline bool bar_is_64bit(struct ntb_softc *ntb, enum ntb_bar bar) { /* XXX This assertion could be stronger. */ KASSERT(bar < NTB_MAX_BARS, ("bogus bar")); return (bar < NTB_B2B_BAR_2 || !HAS_FEATURE(ntb, NTB_SPLIT_BAR)); } static inline void bar_get_xlat_params(struct ntb_softc *ntb, enum ntb_bar bar, uint32_t *base, uint32_t *xlat, uint32_t *lmt) { uint32_t basev, lmtv, xlatv; switch (bar) { case NTB_B2B_BAR_1: basev = ntb->xlat_reg->bar2_base; lmtv = ntb->xlat_reg->bar2_limit; xlatv = ntb->xlat_reg->bar2_xlat; break; case NTB_B2B_BAR_2: basev = ntb->xlat_reg->bar4_base; lmtv = ntb->xlat_reg->bar4_limit; xlatv = ntb->xlat_reg->bar4_xlat; break; case NTB_B2B_BAR_3: basev = ntb->xlat_reg->bar5_base; lmtv = ntb->xlat_reg->bar5_limit; xlatv = ntb->xlat_reg->bar5_xlat; break; default: KASSERT(bar >= NTB_B2B_BAR_1 && bar < NTB_MAX_BARS, ("bad bar")); basev = lmtv = xlatv = 0; break; } if (base != NULL) *base = basev; if (xlat != NULL) *xlat = xlatv; if (lmt != NULL) *lmt = lmtv; } static int intel_ntb_map_pci_bars(struct ntb_softc *ntb) { struct ntb_pci_bar_info *bar; int rc; bar = &ntb->bar_info[NTB_CONFIG_BAR]; bar->pci_resource_id = PCIR_BAR(0); rc = map_mmr_bar(ntb, bar); if (rc != 0) goto out; /* * At least on Xeon v4 NTB device leaks to host some remote side * BAR0 writes supposed to update scratchpad registers. I am not * sure why it happens, but it may be related to the fact that * on a link side BAR0 is 32KB, while on a host side it is 64KB. * Without this hack DMAR blocks those accesses as not allowed. */ if (bus_dma_tag_create(bus_get_dma_tag(ntb->device), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, bar->size, 1, bar->size, 0, NULL, NULL, &ntb->bar0_dma_tag)) { device_printf(ntb->device, "Unable to create BAR0 tag\n"); return (ENOMEM); } if (bus_dmamap_create(ntb->bar0_dma_tag, 0, &ntb->bar0_dma_map)) { device_printf(ntb->device, "Unable to create BAR0 map\n"); return (ENOMEM); } - if (bus_dma_dmar_load_ident(ntb->bar0_dma_tag, ntb->bar0_dma_map, + if (bus_dma_iommu_load_ident(ntb->bar0_dma_tag, ntb->bar0_dma_map, bar->pbase, bar->size, 0)) { device_printf(ntb->device, "Unable to load BAR0 map\n"); return (ENOMEM); } bar = &ntb->bar_info[NTB_B2B_BAR_1]; bar->pci_resource_id = PCIR_BAR(2); rc = map_memory_window_bar(ntb, bar); if (rc != 0) goto out; bar->psz_off = XEON_PBAR23SZ_OFFSET; bar->ssz_off = XEON_SBAR23SZ_OFFSET; bar->pbarxlat_off = XEON_PBAR2XLAT_OFFSET; bar = &ntb->bar_info[NTB_B2B_BAR_2]; bar->pci_resource_id = PCIR_BAR(4); rc = map_memory_window_bar(ntb, bar); if (rc != 0) goto out; bar->psz_off = XEON_PBAR4SZ_OFFSET; bar->ssz_off = XEON_SBAR4SZ_OFFSET; bar->pbarxlat_off = XEON_PBAR4XLAT_OFFSET; if (!HAS_FEATURE(ntb, NTB_SPLIT_BAR)) goto out; bar = &ntb->bar_info[NTB_B2B_BAR_3]; bar->pci_resource_id = PCIR_BAR(5); rc = map_memory_window_bar(ntb, bar); bar->psz_off = XEON_PBAR5SZ_OFFSET; bar->ssz_off = XEON_SBAR5SZ_OFFSET; bar->pbarxlat_off = XEON_PBAR5XLAT_OFFSET; out: if (rc != 0) device_printf(ntb->device, "unable to allocate pci resource\n"); return (rc); } static void print_map_success(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar, const char *kind) { device_printf(ntb->device, "Mapped BAR%d v:[%p-%p] p:[%p-%p] (0x%jx bytes) (%s)\n", PCI_RID2BAR(bar->pci_resource_id), bar->vbase, (char *)bar->vbase + bar->size - 1, (void *)bar->pbase, (void *)(bar->pbase + bar->size - 1), (uintmax_t)bar->size, kind); } static int map_mmr_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar) { bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY, &bar->pci_resource_id, RF_ACTIVE); if (bar->pci_resource == NULL) return (ENXIO); save_bar_parameters(bar); bar->map_mode = VM_MEMATTR_UNCACHEABLE; print_map_success(ntb, bar, "mmr"); return (0); } static int map_memory_window_bar(struct ntb_softc *ntb, struct ntb_pci_bar_info *bar) { int rc; vm_memattr_t mapmode; uint8_t bar_size_bits = 0; bar->pci_resource = bus_alloc_resource_any(ntb->device, SYS_RES_MEMORY, &bar->pci_resource_id, RF_ACTIVE); if (bar->pci_resource == NULL) return (ENXIO); save_bar_parameters(bar); /* * Ivytown NTB BAR sizes are misreported by the hardware due to a * hardware issue. To work around this, query the size it should be * configured to by the device and modify the resource to correspond to * this new size. The BIOS on systems with this problem is required to * provide enough address space to allow the driver to make this change * safely. * * Ideally I could have just specified the size when I allocated the * resource like: * bus_alloc_resource(ntb->device, * SYS_RES_MEMORY, &bar->pci_resource_id, 0ul, ~0ul, * 1ul << bar_size_bits, RF_ACTIVE); * but the PCI driver does not honor the size in this call, so we have * to modify it after the fact. */ if (HAS_FEATURE(ntb, NTB_BAR_SIZE_4K)) { if (bar->pci_resource_id == PCIR_BAR(2)) bar_size_bits = pci_read_config(ntb->device, XEON_PBAR23SZ_OFFSET, 1); else bar_size_bits = pci_read_config(ntb->device, XEON_PBAR45SZ_OFFSET, 1); rc = bus_adjust_resource(ntb->device, SYS_RES_MEMORY, bar->pci_resource, bar->pbase, bar->pbase + (1ul << bar_size_bits) - 1); if (rc != 0) { device_printf(ntb->device, "unable to resize bar\n"); return (rc); } save_bar_parameters(bar); } bar->map_mode = VM_MEMATTR_UNCACHEABLE; print_map_success(ntb, bar, "mw"); /* * Optionally, mark MW BARs as anything other than UC to improve * performance. */ mapmode = intel_ntb_pat_flags(); if (mapmode == bar->map_mode) return (0); rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mapmode); if (rc == 0) { bar->map_mode = mapmode; device_printf(ntb->device, "Marked BAR%d v:[%p-%p] p:[%p-%p] as " "%s.\n", PCI_RID2BAR(bar->pci_resource_id), bar->vbase, (char *)bar->vbase + bar->size - 1, (void *)bar->pbase, (void *)(bar->pbase + bar->size - 1), intel_ntb_vm_memattr_to_str(mapmode)); } else device_printf(ntb->device, "Unable to mark BAR%d v:[%p-%p] p:[%p-%p] as " "%s: %d\n", PCI_RID2BAR(bar->pci_resource_id), bar->vbase, (char *)bar->vbase + bar->size - 1, (void *)bar->pbase, (void *)(bar->pbase + bar->size - 1), intel_ntb_vm_memattr_to_str(mapmode), rc); /* Proceed anyway */ return (0); } static void intel_ntb_unmap_pci_bar(struct ntb_softc *ntb) { struct ntb_pci_bar_info *bar; int i; if (ntb->bar0_dma_map != NULL) { bus_dmamap_unload(ntb->bar0_dma_tag, ntb->bar0_dma_map); bus_dmamap_destroy(ntb->bar0_dma_tag, ntb->bar0_dma_map); } if (ntb->bar0_dma_tag != NULL) bus_dma_tag_destroy(ntb->bar0_dma_tag); for (i = 0; i < NTB_MAX_BARS; i++) { bar = &ntb->bar_info[i]; if (bar->pci_resource != NULL) bus_release_resource(ntb->device, SYS_RES_MEMORY, bar->pci_resource_id, bar->pci_resource); } } static int intel_ntb_setup_msix(struct ntb_softc *ntb, uint32_t num_vectors) { uint32_t i; int rc; for (i = 0; i < num_vectors; i++) { ntb->int_info[i].rid = i + 1; ntb->int_info[i].res = bus_alloc_resource_any(ntb->device, SYS_RES_IRQ, &ntb->int_info[i].rid, RF_ACTIVE); if (ntb->int_info[i].res == NULL) { device_printf(ntb->device, "bus_alloc_resource failed\n"); return (ENOMEM); } ntb->int_info[i].tag = NULL; ntb->allocated_interrupts++; rc = bus_setup_intr(ntb->device, ntb->int_info[i].res, INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_vec_isr, &ntb->msix_vec[i], &ntb->int_info[i].tag); if (rc != 0) { device_printf(ntb->device, "bus_setup_intr failed\n"); return (ENXIO); } } return (0); } /* * The Linux NTB driver drops from MSI-X to legacy INTx if a unique vector * cannot be allocated for each MSI-X message. JHB seems to think remapping * should be okay. This tunable should enable us to test that hypothesis * when someone gets their hands on some Xeon hardware. */ static int ntb_force_remap_mode; SYSCTL_INT(_hw_ntb, OID_AUTO, force_remap_mode, CTLFLAG_RDTUN, &ntb_force_remap_mode, 0, "If enabled, force MSI-X messages to be remapped" " to a smaller number of ithreads, even if the desired number are " "available"); /* * In case it is NOT ok, give consumers an abort button. */ static int ntb_prefer_intx; SYSCTL_INT(_hw_ntb, OID_AUTO, prefer_intx_to_remap, CTLFLAG_RDTUN, &ntb_prefer_intx, 0, "If enabled, prefer to use legacy INTx mode rather " "than remapping MSI-X messages over available slots (match Linux driver " "behavior)"); /* * Remap the desired number of MSI-X messages to available ithreads in a simple * round-robin fashion. */ static int intel_ntb_remap_msix(device_t dev, uint32_t desired, uint32_t avail) { u_int *vectors; uint32_t i; int rc; if (ntb_prefer_intx != 0) return (ENXIO); vectors = malloc(desired * sizeof(*vectors), M_NTB, M_ZERO | M_WAITOK); for (i = 0; i < desired; i++) vectors[i] = (i % avail) + 1; rc = pci_remap_msix(dev, desired, vectors); free(vectors, M_NTB); return (rc); } static int intel_ntb_init_isr(struct ntb_softc *ntb) { uint32_t desired_vectors, num_vectors; int rc; ntb->allocated_interrupts = 0; ntb->last_ts = ticks; /* * Mask all doorbell interrupts. (Except link events!) */ DB_MASK_LOCK(ntb); ntb->db_mask = ntb->db_valid_mask; db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask); DB_MASK_UNLOCK(ntb); num_vectors = desired_vectors = MIN(pci_msix_count(ntb->device), ntb->db_count); if (desired_vectors >= 1) { rc = pci_alloc_msix(ntb->device, &num_vectors); if (ntb_force_remap_mode != 0 && rc == 0 && num_vectors == desired_vectors) num_vectors--; if (rc == 0 && num_vectors < desired_vectors) { rc = intel_ntb_remap_msix(ntb->device, desired_vectors, num_vectors); if (rc == 0) num_vectors = desired_vectors; else pci_release_msi(ntb->device); } if (rc != 0) num_vectors = 1; } else num_vectors = 1; if (ntb->type == NTB_XEON && num_vectors < ntb->db_vec_count) { if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { device_printf(ntb->device, "Errata workaround does not support MSI or INTX\n"); return (EINVAL); } ntb->db_vec_count = 1; ntb->db_vec_shift = XEON_DB_TOTAL_SHIFT; rc = intel_ntb_setup_legacy_interrupt(ntb); } else { if (num_vectors - 1 != XEON_NONLINK_DB_MSIX_BITS && HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { device_printf(ntb->device, "Errata workaround expects %d doorbell bits\n", XEON_NONLINK_DB_MSIX_BITS); return (EINVAL); } intel_ntb_create_msix_vec(ntb, num_vectors); rc = intel_ntb_setup_msix(ntb, num_vectors); } if (rc != 0) { device_printf(ntb->device, "Error allocating interrupts: %d\n", rc); intel_ntb_free_msix_vec(ntb); } return (rc); } static int intel_ntb_setup_legacy_interrupt(struct ntb_softc *ntb) { int rc; ntb->int_info[0].rid = 0; ntb->int_info[0].res = bus_alloc_resource_any(ntb->device, SYS_RES_IRQ, &ntb->int_info[0].rid, RF_SHAREABLE|RF_ACTIVE); if (ntb->int_info[0].res == NULL) { device_printf(ntb->device, "bus_alloc_resource failed\n"); return (ENOMEM); } ntb->int_info[0].tag = NULL; ntb->allocated_interrupts = 1; rc = bus_setup_intr(ntb->device, ntb->int_info[0].res, INTR_MPSAFE | INTR_TYPE_MISC, NULL, ndev_irq_isr, ntb, &ntb->int_info[0].tag); if (rc != 0) { device_printf(ntb->device, "bus_setup_intr failed\n"); return (ENXIO); } return (0); } static void intel_ntb_teardown_interrupts(struct ntb_softc *ntb) { struct ntb_int_info *current_int; int i; for (i = 0; i < ntb->allocated_interrupts; i++) { current_int = &ntb->int_info[i]; if (current_int->tag != NULL) bus_teardown_intr(ntb->device, current_int->res, current_int->tag); if (current_int->res != NULL) bus_release_resource(ntb->device, SYS_RES_IRQ, rman_get_rid(current_int->res), current_int->res); } intel_ntb_free_msix_vec(ntb); pci_release_msi(ntb->device); } /* * Doorbell register and mask are 64-bit on Atom, 16-bit on Xeon. Abstract it * out to make code clearer. */ static inline uint64_t db_ioread(struct ntb_softc *ntb, uint64_t regoff) { if (ntb->type == NTB_ATOM) return (intel_ntb_reg_read(8, regoff)); KASSERT(ntb->type == NTB_XEON, ("bad ntb type")); return (intel_ntb_reg_read(2, regoff)); } static inline void db_iowrite(struct ntb_softc *ntb, uint64_t regoff, uint64_t val) { KASSERT((val & ~ntb->db_valid_mask) == 0, ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__, (uintmax_t)(val & ~ntb->db_valid_mask), (uintmax_t)ntb->db_valid_mask)); if (regoff == ntb->self_reg->db_mask) DB_MASK_ASSERT(ntb, MA_OWNED); db_iowrite_raw(ntb, regoff, val); } static inline void db_iowrite_raw(struct ntb_softc *ntb, uint64_t regoff, uint64_t val) { if (ntb->type == NTB_ATOM) { intel_ntb_reg_write(8, regoff, val); return; } KASSERT(ntb->type == NTB_XEON, ("bad ntb type")); intel_ntb_reg_write(2, regoff, (uint16_t)val); } static void intel_ntb_db_set_mask(device_t dev, uint64_t bits) { struct ntb_softc *ntb = device_get_softc(dev); DB_MASK_LOCK(ntb); ntb->db_mask |= bits; if (!HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask); DB_MASK_UNLOCK(ntb); } static void intel_ntb_db_clear_mask(device_t dev, uint64_t bits) { struct ntb_softc *ntb = device_get_softc(dev); uint64_t ibits; int i; KASSERT((bits & ~ntb->db_valid_mask) == 0, ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__, (uintmax_t)(bits & ~ntb->db_valid_mask), (uintmax_t)ntb->db_valid_mask)); DB_MASK_LOCK(ntb); ibits = ntb->fake_db & ntb->db_mask & bits; ntb->db_mask &= ~bits; if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { /* Simulate fake interrupts if unmasked DB bits are set. */ ntb->force_db |= ibits; for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) { if ((ibits & intel_ntb_db_vector_mask(dev, i)) != 0) swi_sched(ntb->int_info[i].tag, 0); } } else { db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask); } DB_MASK_UNLOCK(ntb); } static uint64_t intel_ntb_db_read(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) return (ntb->fake_db); return (db_ioread(ntb, ntb->self_reg->db_bell)); } static void intel_ntb_db_clear(device_t dev, uint64_t bits) { struct ntb_softc *ntb = device_get_softc(dev); KASSERT((bits & ~ntb->db_valid_mask) == 0, ("%s: Invalid bits 0x%jx (valid: 0x%jx)", __func__, (uintmax_t)(bits & ~ntb->db_valid_mask), (uintmax_t)ntb->db_valid_mask)); if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { DB_MASK_LOCK(ntb); ntb->fake_db &= ~bits; DB_MASK_UNLOCK(ntb); return; } db_iowrite(ntb, ntb->self_reg->db_bell, bits); } static inline uint64_t intel_ntb_vec_mask(struct ntb_softc *ntb, uint64_t db_vector) { uint64_t shift, mask; if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { /* * Remap vectors in custom way to make at least first * three doorbells to not generate stray events. * This breaks Linux compatibility (if one existed) * when more then one DB is used (not by if_ntb). */ if (db_vector < XEON_NONLINK_DB_MSIX_BITS - 1) return (1 << db_vector); if (db_vector == XEON_NONLINK_DB_MSIX_BITS - 1) return (0x7ffc); } shift = ntb->db_vec_shift; mask = (1ull << shift) - 1; return (mask << (shift * db_vector)); } static void intel_ntb_interrupt(struct ntb_softc *ntb, uint32_t vec) { uint64_t vec_mask; ntb->last_ts = ticks; vec_mask = intel_ntb_vec_mask(ntb, vec); if ((vec_mask & ntb->db_link_mask) != 0) { if (intel_ntb_poll_link(ntb)) ntb_link_event(ntb->device); } if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP) && (vec_mask & ntb->db_link_mask) == 0) { DB_MASK_LOCK(ntb); /* * Do not report same DB events again if not cleared yet, * unless the mask was just cleared for them and this * interrupt handler call can be the consequence of it. */ vec_mask &= ~ntb->fake_db | ntb->force_db; ntb->force_db &= ~vec_mask; /* Update our internal doorbell register. */ ntb->fake_db |= vec_mask; /* Do not report masked DB events. */ vec_mask &= ~ntb->db_mask; DB_MASK_UNLOCK(ntb); } if ((vec_mask & ntb->db_valid_mask) != 0) ntb_db_event(ntb->device, vec); } static void ndev_vec_isr(void *arg) { struct ntb_vec *nvec = arg; intel_ntb_interrupt(nvec->ntb, nvec->num); } static void ndev_irq_isr(void *arg) { /* If we couldn't set up MSI-X, we only have the one vector. */ intel_ntb_interrupt(arg, 0); } static int intel_ntb_create_msix_vec(struct ntb_softc *ntb, uint32_t num_vectors) { uint32_t i; ntb->msix_vec = malloc(num_vectors * sizeof(*ntb->msix_vec), M_NTB, M_ZERO | M_WAITOK); for (i = 0; i < num_vectors; i++) { ntb->msix_vec[i].num = i; ntb->msix_vec[i].ntb = ntb; } return (0); } static void intel_ntb_free_msix_vec(struct ntb_softc *ntb) { if (ntb->msix_vec == NULL) return; free(ntb->msix_vec, M_NTB); ntb->msix_vec = NULL; } static void intel_ntb_get_msix_info(struct ntb_softc *ntb) { struct pci_devinfo *dinfo; struct pcicfg_msix *msix; uint32_t laddr, data, i, offset; dinfo = device_get_ivars(ntb->device); msix = &dinfo->cfg.msix; CTASSERT(XEON_NONLINK_DB_MSIX_BITS == nitems(ntb->msix_data)); for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) { offset = msix->msix_table_offset + i * PCI_MSIX_ENTRY_SIZE; laddr = bus_read_4(msix->msix_table_res, offset + PCI_MSIX_ENTRY_LOWER_ADDR); intel_ntb_printf(2, "local MSIX addr(%u): 0x%x\n", i, laddr); KASSERT((laddr & MSI_INTEL_ADDR_BASE) == MSI_INTEL_ADDR_BASE, ("local MSIX addr 0x%x not in MSI base 0x%x", laddr, MSI_INTEL_ADDR_BASE)); ntb->msix_data[i].nmd_ofs = laddr; data = bus_read_4(msix->msix_table_res, offset + PCI_MSIX_ENTRY_DATA); intel_ntb_printf(2, "local MSIX data(%u): 0x%x\n", i, data); ntb->msix_data[i].nmd_data = data; } } static struct ntb_hw_info * intel_ntb_get_device_info(uint32_t device_id) { struct ntb_hw_info *ep; for (ep = pci_ids; ep < &pci_ids[nitems(pci_ids)]; ep++) { if (ep->device_id == device_id) return (ep); } return (NULL); } static void intel_ntb_teardown_xeon(struct ntb_softc *ntb) { if (ntb->reg != NULL) intel_ntb_link_disable(ntb->device); } static void intel_ntb_detect_max_mw(struct ntb_softc *ntb) { if (ntb->type == NTB_ATOM) { ntb->mw_count = ATOM_MW_COUNT; return; } if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) ntb->mw_count = XEON_HSX_SPLIT_MW_COUNT; else ntb->mw_count = XEON_SNB_MW_COUNT; } static int intel_ntb_detect_xeon(struct ntb_softc *ntb) { uint8_t ppd, conn_type; ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 1); ntb->ppd = ppd; if ((ppd & XEON_PPD_DEV_TYPE) != 0) ntb->dev_type = NTB_DEV_DSD; else ntb->dev_type = NTB_DEV_USD; if ((ppd & XEON_PPD_SPLIT_BAR) != 0) ntb->features |= NTB_SPLIT_BAR; if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP) && !HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { device_printf(ntb->device, "Can not apply SB01BASE_LOCKUP workaround " "with split BARs disabled!\n"); device_printf(ntb->device, "Expect system hangs under heavy NTB traffic!\n"); ntb->features &= ~NTB_SB01BASE_LOCKUP; } /* * SDOORBELL errata workaround gets in the way of SB01BASE_LOCKUP * errata workaround; only do one at a time. */ if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) ntb->features &= ~NTB_SDOORBELL_LOCKUP; conn_type = ppd & XEON_PPD_CONN_TYPE; switch (conn_type) { case NTB_CONN_B2B: ntb->conn_type = conn_type; break; case NTB_CONN_RP: case NTB_CONN_TRANSPARENT: default: device_printf(ntb->device, "Unsupported connection type: %u\n", (unsigned)conn_type); return (ENXIO); } return (0); } static int intel_ntb_detect_atom(struct ntb_softc *ntb) { uint32_t ppd, conn_type; ppd = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4); ntb->ppd = ppd; if ((ppd & ATOM_PPD_DEV_TYPE) != 0) ntb->dev_type = NTB_DEV_DSD; else ntb->dev_type = NTB_DEV_USD; conn_type = (ppd & ATOM_PPD_CONN_TYPE) >> 8; switch (conn_type) { case NTB_CONN_B2B: ntb->conn_type = conn_type; break; default: device_printf(ntb->device, "Unsupported NTB configuration\n"); return (ENXIO); } return (0); } static int intel_ntb_xeon_init_dev(struct ntb_softc *ntb) { int rc; ntb->spad_count = XEON_SPAD_COUNT; ntb->db_count = XEON_DB_COUNT; ntb->db_link_mask = XEON_DB_LINK_BIT; ntb->db_vec_count = XEON_DB_MSIX_VECTOR_COUNT; ntb->db_vec_shift = XEON_DB_MSIX_VECTOR_SHIFT; if (ntb->conn_type != NTB_CONN_B2B) { device_printf(ntb->device, "Connection type %d not supported\n", ntb->conn_type); return (ENXIO); } ntb->reg = &xeon_reg; ntb->self_reg = &xeon_pri_reg; ntb->peer_reg = &xeon_b2b_reg; ntb->xlat_reg = &xeon_sec_xlat; if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { ntb->force_db = ntb->fake_db = 0; ntb->msix_mw_idx = (ntb->mw_count + g_ntb_msix_idx) % ntb->mw_count; intel_ntb_printf(2, "Setting up MSIX mw idx %d means %u\n", g_ntb_msix_idx, ntb->msix_mw_idx); rc = intel_ntb_mw_set_wc_internal(ntb, ntb->msix_mw_idx, VM_MEMATTR_UNCACHEABLE); KASSERT(rc == 0, ("shouldn't fail")); } else if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) { /* * There is a Xeon hardware errata related to writes to SDOORBELL or * B2BDOORBELL in conjunction with inbound access to NTB MMIO space, * which may hang the system. To workaround this, use a memory * window to access the interrupt and scratch pad registers on the * remote system. */ ntb->b2b_mw_idx = (ntb->mw_count + g_ntb_mw_idx) % ntb->mw_count; intel_ntb_printf(2, "Setting up b2b mw idx %d means %u\n", g_ntb_mw_idx, ntb->b2b_mw_idx); rc = intel_ntb_mw_set_wc_internal(ntb, ntb->b2b_mw_idx, VM_MEMATTR_UNCACHEABLE); KASSERT(rc == 0, ("shouldn't fail")); } else if (HAS_FEATURE(ntb, NTB_B2BDOORBELL_BIT14)) /* * HW Errata on bit 14 of b2bdoorbell register. Writes will not be * mirrored to the remote system. Shrink the number of bits by one, * since bit 14 is the last bit. * * On REGS_THRU_MW errata mode, we don't use the b2bdoorbell register * anyway. Nor for non-B2B connection types. */ ntb->db_count = XEON_DB_COUNT - 1; ntb->db_valid_mask = (1ull << ntb->db_count) - 1; if (ntb->dev_type == NTB_DEV_USD) rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_dsd_addr, &xeon_b2b_usd_addr); else rc = xeon_setup_b2b_mw(ntb, &xeon_b2b_usd_addr, &xeon_b2b_dsd_addr); if (rc != 0) return (rc); /* Enable Bus Master and Memory Space on the secondary side */ intel_ntb_reg_write(2, XEON_SPCICMD_OFFSET, PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); /* * Mask all doorbell interrupts. */ DB_MASK_LOCK(ntb); ntb->db_mask = ntb->db_valid_mask; db_iowrite(ntb, ntb->self_reg->db_mask, ntb->db_mask); DB_MASK_UNLOCK(ntb); rc = intel_ntb_init_isr(ntb); return (rc); } static int intel_ntb_atom_init_dev(struct ntb_softc *ntb) { int error; KASSERT(ntb->conn_type == NTB_CONN_B2B, ("Unsupported NTB configuration (%d)\n", ntb->conn_type)); ntb->spad_count = ATOM_SPAD_COUNT; ntb->db_count = ATOM_DB_COUNT; ntb->db_vec_count = ATOM_DB_MSIX_VECTOR_COUNT; ntb->db_vec_shift = ATOM_DB_MSIX_VECTOR_SHIFT; ntb->db_valid_mask = (1ull << ntb->db_count) - 1; ntb->reg = &atom_reg; ntb->self_reg = &atom_pri_reg; ntb->peer_reg = &atom_b2b_reg; ntb->xlat_reg = &atom_sec_xlat; /* * FIXME - MSI-X bug on early Atom HW, remove once internal issue is * resolved. Mask transaction layer internal parity errors. */ pci_write_config(ntb->device, 0xFC, 0x4, 4); configure_atom_secondary_side_bars(ntb); /* Enable Bus Master and Memory Space on the secondary side */ intel_ntb_reg_write(2, ATOM_SPCICMD_OFFSET, PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); error = intel_ntb_init_isr(ntb); if (error != 0) return (error); /* Initiate PCI-E link training */ intel_ntb_link_enable(ntb->device, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); callout_reset(&ntb->heartbeat_timer, 0, atom_link_hb, ntb); return (0); } /* XXX: Linux driver doesn't seem to do any of this for Atom. */ static void configure_atom_secondary_side_bars(struct ntb_softc *ntb) { if (ntb->dev_type == NTB_DEV_USD) { intel_ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET, XEON_B2B_BAR2_ADDR64); intel_ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET, XEON_B2B_BAR4_ADDR64); intel_ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64); intel_ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64); } else { intel_ntb_reg_write(8, ATOM_PBAR2XLAT_OFFSET, XEON_B2B_BAR2_ADDR64); intel_ntb_reg_write(8, ATOM_PBAR4XLAT_OFFSET, XEON_B2B_BAR4_ADDR64); intel_ntb_reg_write(8, ATOM_MBAR23_OFFSET, XEON_B2B_BAR2_ADDR64); intel_ntb_reg_write(8, ATOM_MBAR45_OFFSET, XEON_B2B_BAR4_ADDR64); } } /* * When working around Xeon SDOORBELL errata by remapping remote registers in a * MW, limit the B2B MW to half a MW. By sharing a MW, half the shared MW * remains for use by a higher layer. * * Will only be used if working around SDOORBELL errata and the BIOS-configured * MW size is sufficiently large. */ static unsigned int ntb_b2b_mw_share; SYSCTL_UINT(_hw_ntb, OID_AUTO, b2b_mw_share, CTLFLAG_RDTUN, &ntb_b2b_mw_share, 0, "If enabled (non-zero), prefer to share half of the B2B peer register " "MW with higher level consumers. Both sides of the NTB MUST set the same " "value here."); static void xeon_reset_sbar_size(struct ntb_softc *ntb, enum ntb_bar idx, enum ntb_bar regbar) { struct ntb_pci_bar_info *bar; uint8_t bar_sz; if (!HAS_FEATURE(ntb, NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_3) return; bar = &ntb->bar_info[idx]; bar_sz = pci_read_config(ntb->device, bar->psz_off, 1); if (idx == regbar) { if (ntb->b2b_off != 0) bar_sz--; else bar_sz = 0; } pci_write_config(ntb->device, bar->ssz_off, bar_sz, 1); bar_sz = pci_read_config(ntb->device, bar->ssz_off, 1); (void)bar_sz; } static void xeon_set_sbar_base_and_limit(struct ntb_softc *ntb, uint64_t bar_addr, enum ntb_bar idx, enum ntb_bar regbar) { uint64_t reg_val; uint32_t base_reg, lmt_reg; bar_get_xlat_params(ntb, idx, &base_reg, NULL, &lmt_reg); if (idx == regbar) { if (ntb->b2b_off) bar_addr += ntb->b2b_off; else bar_addr = 0; } if (!bar_is_64bit(ntb, idx)) { intel_ntb_reg_write(4, base_reg, bar_addr); reg_val = intel_ntb_reg_read(4, base_reg); (void)reg_val; intel_ntb_reg_write(4, lmt_reg, bar_addr); reg_val = intel_ntb_reg_read(4, lmt_reg); (void)reg_val; } else { intel_ntb_reg_write(8, base_reg, bar_addr); reg_val = intel_ntb_reg_read(8, base_reg); (void)reg_val; intel_ntb_reg_write(8, lmt_reg, bar_addr); reg_val = intel_ntb_reg_read(8, lmt_reg); (void)reg_val; } } static void xeon_set_pbar_xlat(struct ntb_softc *ntb, uint64_t base_addr, enum ntb_bar idx) { struct ntb_pci_bar_info *bar; bar = &ntb->bar_info[idx]; if (HAS_FEATURE(ntb, NTB_SPLIT_BAR) && idx >= NTB_B2B_BAR_2) { intel_ntb_reg_write(4, bar->pbarxlat_off, base_addr); base_addr = intel_ntb_reg_read(4, bar->pbarxlat_off); } else { intel_ntb_reg_write(8, bar->pbarxlat_off, base_addr); base_addr = intel_ntb_reg_read(8, bar->pbarxlat_off); } (void)base_addr; } static int xeon_setup_b2b_mw(struct ntb_softc *ntb, const struct ntb_b2b_addr *addr, const struct ntb_b2b_addr *peer_addr) { struct ntb_pci_bar_info *b2b_bar; vm_size_t bar_size; uint64_t bar_addr; enum ntb_bar b2b_bar_num, i; if (ntb->b2b_mw_idx == B2B_MW_DISABLED) { b2b_bar = NULL; b2b_bar_num = NTB_CONFIG_BAR; ntb->b2b_off = 0; } else { b2b_bar_num = intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx); KASSERT(b2b_bar_num > 0 && b2b_bar_num < NTB_MAX_BARS, ("invalid b2b mw bar")); b2b_bar = &ntb->bar_info[b2b_bar_num]; bar_size = b2b_bar->size; if (ntb_b2b_mw_share != 0 && (bar_size >> 1) >= XEON_B2B_MIN_SIZE) ntb->b2b_off = bar_size >> 1; else if (bar_size >= XEON_B2B_MIN_SIZE) { ntb->b2b_off = 0; } else { device_printf(ntb->device, "B2B bar size is too small!\n"); return (EIO); } } /* * Reset the secondary bar sizes to match the primary bar sizes. * (Except, disable or halve the size of the B2B secondary bar.) */ for (i = NTB_B2B_BAR_1; i < NTB_MAX_BARS; i++) xeon_reset_sbar_size(ntb, i, b2b_bar_num); bar_addr = 0; if (b2b_bar_num == NTB_CONFIG_BAR) bar_addr = addr->bar0_addr; else if (b2b_bar_num == NTB_B2B_BAR_1) bar_addr = addr->bar2_addr64; else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(ntb, NTB_SPLIT_BAR)) bar_addr = addr->bar4_addr64; else if (b2b_bar_num == NTB_B2B_BAR_2) bar_addr = addr->bar4_addr32; else if (b2b_bar_num == NTB_B2B_BAR_3) bar_addr = addr->bar5_addr32; else KASSERT(false, ("invalid bar")); intel_ntb_reg_write(8, XEON_SBAR0BASE_OFFSET, bar_addr); /* * Other SBARs are normally hit by the PBAR xlat, except for the b2b * register BAR. The B2B BAR is either disabled above or configured * half-size. It starts at PBAR xlat + offset. * * Also set up incoming BAR limits == base (zero length window). */ xeon_set_sbar_base_and_limit(ntb, addr->bar2_addr64, NTB_B2B_BAR_1, b2b_bar_num); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr32, NTB_B2B_BAR_2, b2b_bar_num); xeon_set_sbar_base_and_limit(ntb, addr->bar5_addr32, NTB_B2B_BAR_3, b2b_bar_num); } else xeon_set_sbar_base_and_limit(ntb, addr->bar4_addr64, NTB_B2B_BAR_2, b2b_bar_num); /* Zero incoming translation addrs */ intel_ntb_reg_write(8, XEON_SBAR2XLAT_OFFSET, 0); intel_ntb_reg_write(8, XEON_SBAR4XLAT_OFFSET, 0); if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { uint32_t xlat_reg, lmt_reg; enum ntb_bar bar_num; /* * We point the chosen MSIX MW BAR xlat to remote LAPIC for * workaround */ bar_num = intel_ntb_mw_to_bar(ntb, ntb->msix_mw_idx); bar_get_xlat_params(ntb, bar_num, NULL, &xlat_reg, &lmt_reg); if (bar_is_64bit(ntb, bar_num)) { intel_ntb_reg_write(8, xlat_reg, MSI_INTEL_ADDR_BASE); ntb->msix_xlat = intel_ntb_reg_read(8, xlat_reg); intel_ntb_reg_write(8, lmt_reg, 0); } else { intel_ntb_reg_write(4, xlat_reg, MSI_INTEL_ADDR_BASE); ntb->msix_xlat = intel_ntb_reg_read(4, xlat_reg); intel_ntb_reg_write(4, lmt_reg, 0); } ntb->peer_lapic_bar = &ntb->bar_info[bar_num]; } (void)intel_ntb_reg_read(8, XEON_SBAR2XLAT_OFFSET); (void)intel_ntb_reg_read(8, XEON_SBAR4XLAT_OFFSET); /* Zero outgoing translation limits (whole bar size windows) */ intel_ntb_reg_write(8, XEON_PBAR2LMT_OFFSET, 0); intel_ntb_reg_write(8, XEON_PBAR4LMT_OFFSET, 0); /* Set outgoing translation offsets */ xeon_set_pbar_xlat(ntb, peer_addr->bar2_addr64, NTB_B2B_BAR_1); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr32, NTB_B2B_BAR_2); xeon_set_pbar_xlat(ntb, peer_addr->bar5_addr32, NTB_B2B_BAR_3); } else xeon_set_pbar_xlat(ntb, peer_addr->bar4_addr64, NTB_B2B_BAR_2); /* Set the translation offset for B2B registers */ bar_addr = 0; if (b2b_bar_num == NTB_CONFIG_BAR) bar_addr = peer_addr->bar0_addr; else if (b2b_bar_num == NTB_B2B_BAR_1) bar_addr = peer_addr->bar2_addr64; else if (b2b_bar_num == NTB_B2B_BAR_2 && !HAS_FEATURE(ntb, NTB_SPLIT_BAR)) bar_addr = peer_addr->bar4_addr64; else if (b2b_bar_num == NTB_B2B_BAR_2) bar_addr = peer_addr->bar4_addr32; else if (b2b_bar_num == NTB_B2B_BAR_3) bar_addr = peer_addr->bar5_addr32; else KASSERT(false, ("invalid bar")); /* * B2B_XLAT_OFFSET is a 64-bit register but can only be written 32 bits * at a time. */ intel_ntb_reg_write(4, XEON_B2B_XLAT_OFFSETL, bar_addr & 0xffffffff); intel_ntb_reg_write(4, XEON_B2B_XLAT_OFFSETU, bar_addr >> 32); return (0); } static inline bool _xeon_link_is_up(struct ntb_softc *ntb) { if (ntb->conn_type == NTB_CONN_TRANSPARENT) return (true); return ((ntb->lnk_sta & NTB_LINK_STATUS_ACTIVE) != 0); } static inline bool link_is_up(struct ntb_softc *ntb) { if (ntb->type == NTB_XEON) return (_xeon_link_is_up(ntb) && (ntb->peer_msix_good || !HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP))); KASSERT(ntb->type == NTB_ATOM, ("ntb type")); return ((ntb->ntb_ctl & ATOM_CNTL_LINK_DOWN) == 0); } static inline bool atom_link_is_err(struct ntb_softc *ntb) { uint32_t status; KASSERT(ntb->type == NTB_ATOM, ("ntb type")); status = intel_ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET); if ((status & ATOM_LTSSMSTATEJMP_FORCEDETECT) != 0) return (true); status = intel_ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET); return ((status & ATOM_IBIST_ERR_OFLOW) != 0); } /* Atom does not have link status interrupt, poll on that platform */ static void atom_link_hb(void *arg) { struct ntb_softc *ntb = arg; sbintime_t timo, poll_ts; timo = NTB_HB_TIMEOUT * hz; poll_ts = ntb->last_ts + timo; /* * Delay polling the link status if an interrupt was received, unless * the cached link status says the link is down. */ if ((sbintime_t)ticks - poll_ts < 0 && link_is_up(ntb)) { timo = poll_ts - ticks; goto out; } if (intel_ntb_poll_link(ntb)) ntb_link_event(ntb->device); if (!link_is_up(ntb) && atom_link_is_err(ntb)) { /* Link is down with error, proceed with recovery */ callout_reset(&ntb->lr_timer, 0, recover_atom_link, ntb); return; } out: callout_reset(&ntb->heartbeat_timer, timo, atom_link_hb, ntb); } static void atom_perform_link_restart(struct ntb_softc *ntb) { uint32_t status; /* Driver resets the NTB ModPhy lanes - magic! */ intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0xe0); intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x40); intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG4, 0x60); intel_ntb_reg_write(1, ATOM_MODPHY_PCSREG6, 0x60); /* Driver waits 100ms to allow the NTB ModPhy to settle */ pause("ModPhy", hz / 10); /* Clear AER Errors, write to clear */ status = intel_ntb_reg_read(4, ATOM_ERRCORSTS_OFFSET); status &= PCIM_AER_COR_REPLAY_ROLLOVER; intel_ntb_reg_write(4, ATOM_ERRCORSTS_OFFSET, status); /* Clear unexpected electrical idle event in LTSSM, write to clear */ status = intel_ntb_reg_read(4, ATOM_LTSSMERRSTS0_OFFSET); status |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI; intel_ntb_reg_write(4, ATOM_LTSSMERRSTS0_OFFSET, status); /* Clear DeSkew Buffer error, write to clear */ status = intel_ntb_reg_read(4, ATOM_DESKEWSTS_OFFSET); status |= ATOM_DESKEWSTS_DBERR; intel_ntb_reg_write(4, ATOM_DESKEWSTS_OFFSET, status); status = intel_ntb_reg_read(4, ATOM_IBSTERRRCRVSTS0_OFFSET); status &= ATOM_IBIST_ERR_OFLOW; intel_ntb_reg_write(4, ATOM_IBSTERRRCRVSTS0_OFFSET, status); /* Releases the NTB state machine to allow the link to retrain */ status = intel_ntb_reg_read(4, ATOM_LTSSMSTATEJMP_OFFSET); status &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT; intel_ntb_reg_write(4, ATOM_LTSSMSTATEJMP_OFFSET, status); } static int intel_ntb_port_number(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); return (ntb->dev_type == NTB_DEV_USD ? 0 : 1); } static int intel_ntb_peer_port_count(device_t dev) { return (1); } static int intel_ntb_peer_port_number(device_t dev, int pidx) { struct ntb_softc *ntb = device_get_softc(dev); if (pidx != 0) return (-EINVAL); return (ntb->dev_type == NTB_DEV_USD ? 1 : 0); } static int intel_ntb_peer_port_idx(device_t dev, int port) { int peer_port; peer_port = intel_ntb_peer_port_number(dev, 0); if (peer_port == -EINVAL || port != peer_port) return (-EINVAL); return (0); } static int intel_ntb_link_enable(device_t dev, enum ntb_speed speed __unused, enum ntb_width width __unused) { struct ntb_softc *ntb = device_get_softc(dev); uint32_t cntl; intel_ntb_printf(2, "%s\n", __func__); if (ntb->type == NTB_ATOM) { pci_write_config(ntb->device, NTB_PPD_OFFSET, ntb->ppd | ATOM_PPD_INIT_LINK, 4); return (0); } if (ntb->conn_type == NTB_CONN_TRANSPARENT) { ntb_link_event(dev); return (0); } cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl); cntl &= ~(NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK); cntl |= NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP; cntl |= NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP; if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) cntl |= NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP; intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl); return (0); } static int intel_ntb_link_disable(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); uint32_t cntl; intel_ntb_printf(2, "%s\n", __func__); if (ntb->conn_type == NTB_CONN_TRANSPARENT) { ntb_link_event(dev); return (0); } cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl); cntl &= ~(NTB_CNTL_P2S_BAR23_SNOOP | NTB_CNTL_S2P_BAR23_SNOOP); cntl &= ~(NTB_CNTL_P2S_BAR4_SNOOP | NTB_CNTL_S2P_BAR4_SNOOP); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) cntl &= ~(NTB_CNTL_P2S_BAR5_SNOOP | NTB_CNTL_S2P_BAR5_SNOOP); cntl |= NTB_CNTL_LINK_DISABLE | NTB_CNTL_CFG_LOCK; intel_ntb_reg_write(4, ntb->reg->ntb_ctl, cntl); return (0); } static bool intel_ntb_link_enabled(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); uint32_t cntl; if (ntb->type == NTB_ATOM) { cntl = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4); return ((cntl & ATOM_PPD_INIT_LINK) != 0); } if (ntb->conn_type == NTB_CONN_TRANSPARENT) return (true); cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl); return ((cntl & NTB_CNTL_LINK_DISABLE) == 0); } static void recover_atom_link(void *arg) { struct ntb_softc *ntb = arg; unsigned speed, width, oldspeed, oldwidth; uint32_t status32; atom_perform_link_restart(ntb); /* * There is a potential race between the 2 NTB devices recovering at * the same time. If the times are the same, the link will not recover * and the driver will be stuck in this loop forever. Add a random * interval to the recovery time to prevent this race. */ status32 = arc4random() % ATOM_LINK_RECOVERY_TIME; pause("Link", (ATOM_LINK_RECOVERY_TIME + status32) * hz / 1000); if (atom_link_is_err(ntb)) goto retry; status32 = intel_ntb_reg_read(4, ntb->reg->ntb_ctl); if ((status32 & ATOM_CNTL_LINK_DOWN) != 0) goto out; status32 = intel_ntb_reg_read(4, ntb->reg->lnk_sta); width = NTB_LNK_STA_WIDTH(status32); speed = status32 & NTB_LINK_SPEED_MASK; oldwidth = NTB_LNK_STA_WIDTH(ntb->lnk_sta); oldspeed = ntb->lnk_sta & NTB_LINK_SPEED_MASK; if (oldwidth != width || oldspeed != speed) goto retry; out: callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz, atom_link_hb, ntb); return; retry: callout_reset(&ntb->lr_timer, NTB_HB_TIMEOUT * hz, recover_atom_link, ntb); } /* * Polls the HW link status register(s); returns true if something has changed. */ static bool intel_ntb_poll_link(struct ntb_softc *ntb) { uint32_t ntb_cntl; uint16_t reg_val; if (ntb->type == NTB_ATOM) { ntb_cntl = intel_ntb_reg_read(4, ntb->reg->ntb_ctl); if (ntb_cntl == ntb->ntb_ctl) return (false); ntb->ntb_ctl = ntb_cntl; ntb->lnk_sta = intel_ntb_reg_read(4, ntb->reg->lnk_sta); } else { db_iowrite_raw(ntb, ntb->self_reg->db_bell, ntb->db_link_mask); reg_val = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2); if (reg_val == ntb->lnk_sta) return (false); ntb->lnk_sta = reg_val; if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { if (_xeon_link_is_up(ntb)) { if (!ntb->peer_msix_good) { callout_reset(&ntb->peer_msix_work, 0, intel_ntb_exchange_msix, ntb); return (false); } } else { ntb->peer_msix_good = false; ntb->peer_msix_done = false; } } } return (true); } static inline enum ntb_speed intel_ntb_link_sta_speed(struct ntb_softc *ntb) { if (!link_is_up(ntb)) return (NTB_SPEED_NONE); return (ntb->lnk_sta & NTB_LINK_SPEED_MASK); } static inline enum ntb_width intel_ntb_link_sta_width(struct ntb_softc *ntb) { if (!link_is_up(ntb)) return (NTB_WIDTH_NONE); return (NTB_LNK_STA_WIDTH(ntb->lnk_sta)); } SYSCTL_NODE(_hw_ntb, OID_AUTO, debug_info, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Driver state, statistics, and HW registers"); #define NTB_REGSZ_MASK (3ul << 30) #define NTB_REG_64 (1ul << 30) #define NTB_REG_32 (2ul << 30) #define NTB_REG_16 (3ul << 30) #define NTB_REG_8 (0ul << 30) #define NTB_DB_READ (1ul << 29) #define NTB_PCI_REG (1ul << 28) #define NTB_REGFLAGS_MASK (NTB_REGSZ_MASK | NTB_DB_READ | NTB_PCI_REG) static void intel_ntb_sysctl_init(struct ntb_softc *ntb) { struct sysctl_oid_list *globals, *tree_par, *regpar, *statpar, *errpar; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree, *tmptree; ctx = device_get_sysctl_ctx(ntb->device); globals = SYSCTL_CHILDREN(device_get_sysctl_tree(ntb->device)); SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "link_status", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, ntb, 0, sysctl_handle_link_status_human, "A", "Link status (human readable)"); SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "active", CTLFLAG_RD | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, ntb, 0, sysctl_handle_link_status, "IU", "Link status (1=active, 0=inactive)"); SYSCTL_ADD_PROC(ctx, globals, OID_AUTO, "admin_up", CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_NEEDGIANT, ntb, 0, sysctl_handle_link_admin, "IU", "Set/get interface status (1=UP, 0=DOWN)"); tree = SYSCTL_ADD_NODE(ctx, globals, OID_AUTO, "debug_info", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Driver state, statistics, and HW registers"); tree_par = SYSCTL_CHILDREN(tree); SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "conn_type", CTLFLAG_RD, &ntb->conn_type, 0, "0 - Transparent; 1 - B2B; 2 - Root Port"); SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "dev_type", CTLFLAG_RD, &ntb->dev_type, 0, "0 - USD; 1 - DSD"); SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ppd", CTLFLAG_RD, &ntb->ppd, 0, "Raw PPD register (cached)"); if (ntb->b2b_mw_idx != B2B_MW_DISABLED) { SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "b2b_idx", CTLFLAG_RD, &ntb->b2b_mw_idx, 0, "Index of the MW used for B2B remote register access"); SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "b2b_off", CTLFLAG_RD, &ntb->b2b_off, "If non-zero, offset of B2B register region in shared MW"); } SYSCTL_ADD_PROC(ctx, tree_par, OID_AUTO, "features", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, ntb, 0, sysctl_handle_features, "A", "Features/errata of this NTB device"); SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "ntb_ctl", CTLFLAG_RD, __DEVOLATILE(uint32_t *, &ntb->ntb_ctl), 0, "NTB CTL register (cached)"); SYSCTL_ADD_UINT(ctx, tree_par, OID_AUTO, "lnk_sta", CTLFLAG_RD, __DEVOLATILE(uint32_t *, &ntb->lnk_sta), 0, "LNK STA register (cached)"); SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "mw_count", CTLFLAG_RD, &ntb->mw_count, 0, "MW count"); SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "spad_count", CTLFLAG_RD, &ntb->spad_count, 0, "Scratchpad count"); SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_count", CTLFLAG_RD, &ntb->db_count, 0, "Doorbell count"); SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_count", CTLFLAG_RD, &ntb->db_vec_count, 0, "Doorbell vector count"); SYSCTL_ADD_U8(ctx, tree_par, OID_AUTO, "db_vec_shift", CTLFLAG_RD, &ntb->db_vec_shift, 0, "Doorbell vector shift"); SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_valid_mask", CTLFLAG_RD, &ntb->db_valid_mask, "Doorbell valid mask"); SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_link_mask", CTLFLAG_RD, &ntb->db_link_mask, "Doorbell link mask"); SYSCTL_ADD_UQUAD(ctx, tree_par, OID_AUTO, "db_mask", CTLFLAG_RD, &ntb->db_mask, "Doorbell mask (cached)"); tmptree = SYSCTL_ADD_NODE(ctx, tree_par, OID_AUTO, "registers", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Raw HW registers (big-endian)"); regpar = SYSCTL_CHILDREN(tmptree); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ntbcntl", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->reg->ntb_ctl, sysctl_handle_register, "IU", "NTB Control register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcap", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | 0x19c, sysctl_handle_register, "IU", "NTB Link Capabilities"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnkcon", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | 0x1a0, sysctl_handle_register, "IU", "NTB Link Control register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_mask", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_mask, sysctl_handle_register, "QU", "Doorbell mask register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "db_bell", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | NTB_DB_READ | ntb->self_reg->db_bell, sysctl_handle_register, "QU", "Doorbell register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat23", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->xlat_reg->bar2_xlat, sysctl_handle_register, "QU", "Incoming XLAT23 register"); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat4", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->xlat_reg->bar4_xlat, sysctl_handle_register, "IU", "Incoming XLAT4 register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat5", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->xlat_reg->bar5_xlat, sysctl_handle_register, "IU", "Incoming XLAT5 register"); } else { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_xlat45", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->xlat_reg->bar4_xlat, sysctl_handle_register, "QU", "Incoming XLAT45 register"); } SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt23", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->xlat_reg->bar2_limit, sysctl_handle_register, "QU", "Incoming LMT23 register"); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt4", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->xlat_reg->bar4_limit, sysctl_handle_register, "IU", "Incoming LMT4 register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt5", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->xlat_reg->bar5_limit, sysctl_handle_register, "IU", "Incoming LMT5 register"); } else { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "incoming_lmt45", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->xlat_reg->bar4_limit, sysctl_handle_register, "QU", "Incoming LMT45 register"); } if (ntb->type == NTB_ATOM) return; tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Xeon HW statistics"); statpar = SYSCTL_CHILDREN(tmptree); SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "upstream_mem_miss", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_16 | XEON_USMEMMISS_OFFSET, sysctl_handle_register, "SU", "Upstream Memory Miss"); tmptree = SYSCTL_ADD_NODE(ctx, regpar, OID_AUTO, "xeon_hw_err", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Xeon HW errors"); errpar = SYSCTL_CHILDREN(tmptree); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "ppd", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_8 | NTB_PCI_REG | NTB_PPD_OFFSET, sysctl_handle_register, "CU", "PPD"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar23_sz", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_8 | NTB_PCI_REG | XEON_PBAR23SZ_OFFSET, sysctl_handle_register, "CU", "PBAR23 SZ (log2)"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar4_sz", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_8 | NTB_PCI_REG | XEON_PBAR4SZ_OFFSET, sysctl_handle_register, "CU", "PBAR4 SZ (log2)"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "pbar5_sz", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_8 | NTB_PCI_REG | XEON_PBAR5SZ_OFFSET, sysctl_handle_register, "CU", "PBAR5 SZ (log2)"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_sz", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_8 | NTB_PCI_REG | XEON_SBAR23SZ_OFFSET, sysctl_handle_register, "CU", "SBAR23 SZ (log2)"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_sz", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_8 | NTB_PCI_REG | XEON_SBAR4SZ_OFFSET, sysctl_handle_register, "CU", "SBAR4 SZ (log2)"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_sz", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_8 | NTB_PCI_REG | XEON_SBAR5SZ_OFFSET, sysctl_handle_register, "CU", "SBAR5 SZ (log2)"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "devsts", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_16 | NTB_PCI_REG | XEON_DEVSTS_OFFSET, sysctl_handle_register, "SU", "DEVSTS"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "lnksts", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_16 | NTB_PCI_REG | XEON_LINK_STATUS_OFFSET, sysctl_handle_register, "SU", "LNKSTS"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "slnksts", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_16 | NTB_PCI_REG | XEON_SLINK_STATUS_OFFSET, sysctl_handle_register, "SU", "SLNKSTS"); SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "uncerrsts", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | NTB_PCI_REG | XEON_UNCERRSTS_OFFSET, sysctl_handle_register, "IU", "UNCERRSTS"); SYSCTL_ADD_PROC(ctx, errpar, OID_AUTO, "corerrsts", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | NTB_PCI_REG | XEON_CORERRSTS_OFFSET, sysctl_handle_register, "IU", "CORERRSTS"); if (ntb->conn_type != NTB_CONN_B2B) return; SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat01l", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | XEON_B2B_XLAT_OFFSETL, sysctl_handle_register, "IU", "Outgoing XLAT0L register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat01u", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | XEON_B2B_XLAT_OFFSETU, sysctl_handle_register, "IU", "Outgoing XLAT0U register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat23", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_1].pbarxlat_off, sysctl_handle_register, "QU", "Outgoing XLAT23 register"); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat4", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off, sysctl_handle_register, "IU", "Outgoing XLAT4 register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat5", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->bar_info[NTB_B2B_BAR_3].pbarxlat_off, sysctl_handle_register, "IU", "Outgoing XLAT5 register"); } else { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_xlat45", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->bar_info[NTB_B2B_BAR_2].pbarxlat_off, sysctl_handle_register, "QU", "Outgoing XLAT45 register"); } SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt23", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | XEON_PBAR2LMT_OFFSET, sysctl_handle_register, "QU", "Outgoing LMT23 register"); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt4", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | XEON_PBAR4LMT_OFFSET, sysctl_handle_register, "IU", "Outgoing LMT4 register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt5", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | XEON_PBAR5LMT_OFFSET, sysctl_handle_register, "IU", "Outgoing LMT5 register"); } else { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "outgoing_lmt45", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | XEON_PBAR4LMT_OFFSET, sysctl_handle_register, "QU", "Outgoing LMT45 register"); } SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar01_base", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->xlat_reg->bar0_base, sysctl_handle_register, "QU", "Secondary BAR01 base register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar23_base", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->xlat_reg->bar2_base, sysctl_handle_register, "QU", "Secondary BAR23 base register"); if (HAS_FEATURE(ntb, NTB_SPLIT_BAR)) { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar4_base", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->xlat_reg->bar4_base, sysctl_handle_register, "IU", "Secondary BAR4 base register"); SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar5_base", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_32 | ntb->xlat_reg->bar5_base, sysctl_handle_register, "IU", "Secondary BAR5 base register"); } else { SYSCTL_ADD_PROC(ctx, regpar, OID_AUTO, "sbar45_base", CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_NEEDGIANT, ntb, NTB_REG_64 | ntb->xlat_reg->bar4_base, sysctl_handle_register, "QU", "Secondary BAR45 base register"); } } static int sysctl_handle_features(SYSCTL_HANDLER_ARGS) { struct ntb_softc *ntb = arg1; struct sbuf sb; int error; sbuf_new_for_sysctl(&sb, NULL, 256, req); sbuf_printf(&sb, "%b", ntb->features, NTB_FEATURES_STR); error = sbuf_finish(&sb); sbuf_delete(&sb); if (error || !req->newptr) return (error); return (EINVAL); } static int sysctl_handle_link_admin(SYSCTL_HANDLER_ARGS) { struct ntb_softc *ntb = arg1; unsigned old, new; int error; old = intel_ntb_link_enabled(ntb->device); error = SYSCTL_OUT(req, &old, sizeof(old)); if (error != 0 || req->newptr == NULL) return (error); error = SYSCTL_IN(req, &new, sizeof(new)); if (error != 0) return (error); intel_ntb_printf(0, "Admin set interface state to '%sabled'\n", (new != 0)? "en" : "dis"); if (new != 0) error = intel_ntb_link_enable(ntb->device, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); else error = intel_ntb_link_disable(ntb->device); return (error); } static int sysctl_handle_link_status_human(SYSCTL_HANDLER_ARGS) { struct ntb_softc *ntb = arg1; struct sbuf sb; enum ntb_speed speed; enum ntb_width width; int error; sbuf_new_for_sysctl(&sb, NULL, 32, req); if (intel_ntb_link_is_up(ntb->device, &speed, &width)) sbuf_printf(&sb, "up / PCIe Gen %u / Width x%u", (unsigned)speed, (unsigned)width); else sbuf_printf(&sb, "down"); error = sbuf_finish(&sb); sbuf_delete(&sb); if (error || !req->newptr) return (error); return (EINVAL); } static int sysctl_handle_link_status(SYSCTL_HANDLER_ARGS) { struct ntb_softc *ntb = arg1; unsigned res; int error; res = intel_ntb_link_is_up(ntb->device, NULL, NULL); error = SYSCTL_OUT(req, &res, sizeof(res)); if (error || !req->newptr) return (error); return (EINVAL); } static int sysctl_handle_register(SYSCTL_HANDLER_ARGS) { struct ntb_softc *ntb; const void *outp; uintptr_t sz; uint64_t umv; char be[sizeof(umv)]; size_t outsz; uint32_t reg; bool db, pci; int error; ntb = arg1; reg = arg2 & ~NTB_REGFLAGS_MASK; sz = arg2 & NTB_REGSZ_MASK; db = (arg2 & NTB_DB_READ) != 0; pci = (arg2 & NTB_PCI_REG) != 0; KASSERT(!(db && pci), ("bogus")); if (db) { KASSERT(sz == NTB_REG_64, ("bogus")); umv = db_ioread(ntb, reg); outsz = sizeof(uint64_t); } else { switch (sz) { case NTB_REG_64: if (pci) umv = pci_read_config(ntb->device, reg, 8); else umv = intel_ntb_reg_read(8, reg); outsz = sizeof(uint64_t); break; case NTB_REG_32: if (pci) umv = pci_read_config(ntb->device, reg, 4); else umv = intel_ntb_reg_read(4, reg); outsz = sizeof(uint32_t); break; case NTB_REG_16: if (pci) umv = pci_read_config(ntb->device, reg, 2); else umv = intel_ntb_reg_read(2, reg); outsz = sizeof(uint16_t); break; case NTB_REG_8: if (pci) umv = pci_read_config(ntb->device, reg, 1); else umv = intel_ntb_reg_read(1, reg); outsz = sizeof(uint8_t); break; default: panic("bogus"); break; } } /* Encode bigendian so that sysctl -x is legible. */ be64enc(be, umv); outp = ((char *)be) + sizeof(umv) - outsz; error = SYSCTL_OUT(req, outp, outsz); if (error || !req->newptr) return (error); return (EINVAL); } static unsigned intel_ntb_user_mw_to_idx(struct ntb_softc *ntb, unsigned uidx) { if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 && uidx >= ntb->b2b_mw_idx) || (ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx)) uidx++; if ((ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0 && uidx >= ntb->b2b_mw_idx) && (ntb->msix_mw_idx != B2B_MW_DISABLED && uidx >= ntb->msix_mw_idx)) uidx++; return (uidx); } #ifndef EARLY_AP_STARTUP static int msix_ready; static void intel_ntb_msix_ready(void *arg __unused) { msix_ready = 1; } SYSINIT(intel_ntb_msix_ready, SI_SUB_SMP, SI_ORDER_ANY, intel_ntb_msix_ready, NULL); #endif static void intel_ntb_exchange_msix(void *ctx) { struct ntb_softc *ntb; uint32_t val; unsigned i; ntb = ctx; if (ntb->peer_msix_good) goto msix_good; if (ntb->peer_msix_done) goto msix_done; #ifndef EARLY_AP_STARTUP /* Block MSIX negotiation until SMP started and IRQ reshuffled. */ if (!msix_ready) goto reschedule; #endif intel_ntb_get_msix_info(ntb); for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) { intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_DATA0 + i, ntb->msix_data[i].nmd_data); intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_OFS0 + i, ntb->msix_data[i].nmd_ofs - ntb->msix_xlat); } intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_GUARD, NTB_MSIX_VER_GUARD); intel_ntb_spad_read(ntb->device, NTB_MSIX_GUARD, &val); if (val != NTB_MSIX_VER_GUARD) goto reschedule; for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) { intel_ntb_spad_read(ntb->device, NTB_MSIX_DATA0 + i, &val); intel_ntb_printf(2, "remote MSIX data(%u): 0x%x\n", i, val); ntb->peer_msix_data[i].nmd_data = val; intel_ntb_spad_read(ntb->device, NTB_MSIX_OFS0 + i, &val); intel_ntb_printf(2, "remote MSIX addr(%u): 0x%x\n", i, val); ntb->peer_msix_data[i].nmd_ofs = val; } ntb->peer_msix_done = true; msix_done: intel_ntb_peer_spad_write(ntb->device, NTB_MSIX_DONE, NTB_MSIX_RECEIVED); intel_ntb_spad_read(ntb->device, NTB_MSIX_DONE, &val); if (val != NTB_MSIX_RECEIVED) goto reschedule; intel_ntb_spad_clear(ntb->device); ntb->peer_msix_good = true; /* Give peer time to see our NTB_MSIX_RECEIVED. */ goto reschedule; msix_good: intel_ntb_poll_link(ntb); ntb_link_event(ntb->device); return; reschedule: ntb->lnk_sta = pci_read_config(ntb->device, ntb->reg->lnk_sta, 2); if (_xeon_link_is_up(ntb)) { callout_reset(&ntb->peer_msix_work, hz * (ntb->peer_msix_good ? 2 : 1) / 10, intel_ntb_exchange_msix, ntb); } else intel_ntb_spad_clear(ntb->device); } /* * Public API to the rest of the OS */ static uint8_t intel_ntb_spad_count(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); return (ntb->spad_count); } static uint8_t intel_ntb_mw_count(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); uint8_t res; res = ntb->mw_count; if (ntb->b2b_mw_idx != B2B_MW_DISABLED && ntb->b2b_off == 0) res--; if (ntb->msix_mw_idx != B2B_MW_DISABLED) res--; return (res); } static int intel_ntb_spad_write(device_t dev, unsigned int idx, uint32_t val) { struct ntb_softc *ntb = device_get_softc(dev); if (idx >= ntb->spad_count) return (EINVAL); intel_ntb_reg_write(4, ntb->self_reg->spad + idx * 4, val); return (0); } /* * Zeros the local scratchpad. */ static void intel_ntb_spad_clear(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); unsigned i; for (i = 0; i < ntb->spad_count; i++) intel_ntb_spad_write(dev, i, 0); } static int intel_ntb_spad_read(device_t dev, unsigned int idx, uint32_t *val) { struct ntb_softc *ntb = device_get_softc(dev); if (idx >= ntb->spad_count) return (EINVAL); *val = intel_ntb_reg_read(4, ntb->self_reg->spad + idx * 4); return (0); } static int intel_ntb_peer_spad_write(device_t dev, unsigned int idx, uint32_t val) { struct ntb_softc *ntb = device_get_softc(dev); if (idx >= ntb->spad_count) return (EINVAL); if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) intel_ntb_mw_write(4, XEON_SPAD_OFFSET + idx * 4, val); else intel_ntb_reg_write(4, ntb->peer_reg->spad + idx * 4, val); return (0); } static int intel_ntb_peer_spad_read(device_t dev, unsigned int idx, uint32_t *val) { struct ntb_softc *ntb = device_get_softc(dev); if (idx >= ntb->spad_count) return (EINVAL); if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) *val = intel_ntb_mw_read(4, XEON_SPAD_OFFSET + idx * 4); else *val = intel_ntb_reg_read(4, ntb->peer_reg->spad + idx * 4); return (0); } static int intel_ntb_mw_get_range(device_t dev, unsigned mw_idx, vm_paddr_t *base, caddr_t *vbase, size_t *size, size_t *align, size_t *align_size, bus_addr_t *plimit) { struct ntb_softc *ntb = device_get_softc(dev); struct ntb_pci_bar_info *bar; bus_addr_t limit; size_t bar_b2b_off; enum ntb_bar bar_num; if (mw_idx >= intel_ntb_mw_count(dev)) return (EINVAL); mw_idx = intel_ntb_user_mw_to_idx(ntb, mw_idx); bar_num = intel_ntb_mw_to_bar(ntb, mw_idx); bar = &ntb->bar_info[bar_num]; bar_b2b_off = 0; if (mw_idx == ntb->b2b_mw_idx) { KASSERT(ntb->b2b_off != 0, ("user shouldn't get non-shared b2b mw")); bar_b2b_off = ntb->b2b_off; } if (bar_is_64bit(ntb, bar_num)) limit = BUS_SPACE_MAXADDR; else limit = BUS_SPACE_MAXADDR_32BIT; if (base != NULL) *base = bar->pbase + bar_b2b_off; if (vbase != NULL) *vbase = bar->vbase + bar_b2b_off; if (size != NULL) *size = bar->size - bar_b2b_off; if (align != NULL) *align = bar->size; if (align_size != NULL) *align_size = 1; if (plimit != NULL) *plimit = limit; return (0); } static int intel_ntb_mw_set_trans(device_t dev, unsigned idx, bus_addr_t addr, size_t size) { struct ntb_softc *ntb = device_get_softc(dev); struct ntb_pci_bar_info *bar; uint64_t base, limit, reg_val; size_t bar_size, mw_size; uint32_t base_reg, xlat_reg, limit_reg; enum ntb_bar bar_num; if (idx >= intel_ntb_mw_count(dev)) return (EINVAL); idx = intel_ntb_user_mw_to_idx(ntb, idx); bar_num = intel_ntb_mw_to_bar(ntb, idx); bar = &ntb->bar_info[bar_num]; bar_size = bar->size; if (idx == ntb->b2b_mw_idx) mw_size = bar_size - ntb->b2b_off; else mw_size = bar_size; /* Hardware requires that addr is aligned to bar size */ if ((addr & (bar_size - 1)) != 0) return (EINVAL); if (size > mw_size) return (EINVAL); bar_get_xlat_params(ntb, bar_num, &base_reg, &xlat_reg, &limit_reg); limit = 0; if (bar_is_64bit(ntb, bar_num)) { base = intel_ntb_reg_read(8, base_reg) & BAR_HIGH_MASK; if (limit_reg != 0 && size != mw_size) limit = base + size; /* Set and verify translation address */ intel_ntb_reg_write(8, xlat_reg, addr); reg_val = intel_ntb_reg_read(8, xlat_reg) & BAR_HIGH_MASK; if (reg_val != addr) { intel_ntb_reg_write(8, xlat_reg, 0); return (EIO); } /* Set and verify the limit */ intel_ntb_reg_write(8, limit_reg, limit); reg_val = intel_ntb_reg_read(8, limit_reg) & BAR_HIGH_MASK; if (reg_val != limit) { intel_ntb_reg_write(8, limit_reg, base); intel_ntb_reg_write(8, xlat_reg, 0); return (EIO); } } else { /* Configure 32-bit (split) BAR MW */ if ((addr & UINT32_MAX) != addr) return (ERANGE); if (((addr + size) & UINT32_MAX) != (addr + size)) return (ERANGE); base = intel_ntb_reg_read(4, base_reg) & BAR_HIGH_MASK; if (limit_reg != 0 && size != mw_size) limit = base + size; /* Set and verify translation address */ intel_ntb_reg_write(4, xlat_reg, addr); reg_val = intel_ntb_reg_read(4, xlat_reg) & BAR_HIGH_MASK; if (reg_val != addr) { intel_ntb_reg_write(4, xlat_reg, 0); return (EIO); } /* Set and verify the limit */ intel_ntb_reg_write(4, limit_reg, limit); reg_val = intel_ntb_reg_read(4, limit_reg) & BAR_HIGH_MASK; if (reg_val != limit) { intel_ntb_reg_write(4, limit_reg, base); intel_ntb_reg_write(4, xlat_reg, 0); return (EIO); } } return (0); } static int intel_ntb_mw_clear_trans(device_t dev, unsigned mw_idx) { return (intel_ntb_mw_set_trans(dev, mw_idx, 0, 0)); } static int intel_ntb_mw_get_wc(device_t dev, unsigned idx, vm_memattr_t *mode) { struct ntb_softc *ntb = device_get_softc(dev); struct ntb_pci_bar_info *bar; if (idx >= intel_ntb_mw_count(dev)) return (EINVAL); idx = intel_ntb_user_mw_to_idx(ntb, idx); bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, idx)]; *mode = bar->map_mode; return (0); } static int intel_ntb_mw_set_wc(device_t dev, unsigned idx, vm_memattr_t mode) { struct ntb_softc *ntb = device_get_softc(dev); if (idx >= intel_ntb_mw_count(dev)) return (EINVAL); idx = intel_ntb_user_mw_to_idx(ntb, idx); return (intel_ntb_mw_set_wc_internal(ntb, idx, mode)); } static int intel_ntb_mw_set_wc_internal(struct ntb_softc *ntb, unsigned idx, vm_memattr_t mode) { struct ntb_pci_bar_info *bar; int rc; bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, idx)]; if (bar->map_mode == mode) return (0); rc = pmap_change_attr((vm_offset_t)bar->vbase, bar->size, mode); if (rc == 0) bar->map_mode = mode; return (rc); } static void intel_ntb_peer_db_set(device_t dev, uint64_t bit) { struct ntb_softc *ntb = device_get_softc(dev); if (HAS_FEATURE(ntb, NTB_SB01BASE_LOCKUP)) { struct ntb_pci_bar_info *lapic; unsigned i; lapic = ntb->peer_lapic_bar; for (i = 0; i < XEON_NONLINK_DB_MSIX_BITS; i++) { if ((bit & intel_ntb_db_vector_mask(dev, i)) != 0) bus_space_write_4(lapic->pci_bus_tag, lapic->pci_bus_handle, ntb->peer_msix_data[i].nmd_ofs, ntb->peer_msix_data[i].nmd_data); } return; } if (HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) { intel_ntb_mw_write(2, XEON_PDOORBELL_OFFSET, bit); return; } db_iowrite(ntb, ntb->peer_reg->db_bell, bit); } static int intel_ntb_peer_db_addr(device_t dev, bus_addr_t *db_addr, vm_size_t *db_size) { struct ntb_softc *ntb = device_get_softc(dev); struct ntb_pci_bar_info *bar; uint64_t regoff; KASSERT((db_addr != NULL && db_size != NULL), ("must be non-NULL")); if (!HAS_FEATURE(ntb, NTB_SDOORBELL_LOCKUP)) { bar = &ntb->bar_info[NTB_CONFIG_BAR]; regoff = ntb->peer_reg->db_bell; } else { KASSERT(ntb->b2b_mw_idx != B2B_MW_DISABLED, ("invalid b2b idx")); bar = &ntb->bar_info[intel_ntb_mw_to_bar(ntb, ntb->b2b_mw_idx)]; regoff = XEON_PDOORBELL_OFFSET; } KASSERT(bar->pci_bus_tag != X86_BUS_SPACE_IO, ("uh oh")); /* HACK: Specific to current x86 bus implementation. */ *db_addr = ((uint64_t)bar->pci_bus_handle + regoff); *db_size = ntb->reg->db_size; return (0); } static uint64_t intel_ntb_db_valid_mask(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); return (ntb->db_valid_mask); } static int intel_ntb_db_vector_count(device_t dev) { struct ntb_softc *ntb = device_get_softc(dev); return (ntb->db_vec_count); } static uint64_t intel_ntb_db_vector_mask(device_t dev, uint32_t vector) { struct ntb_softc *ntb = device_get_softc(dev); if (vector > ntb->db_vec_count) return (0); return (ntb->db_valid_mask & intel_ntb_vec_mask(ntb, vector)); } static bool intel_ntb_link_is_up(device_t dev, enum ntb_speed *speed, enum ntb_width *width) { struct ntb_softc *ntb = device_get_softc(dev); if (speed != NULL) *speed = intel_ntb_link_sta_speed(ntb); if (width != NULL) *width = intel_ntb_link_sta_width(ntb); return (link_is_up(ntb)); } static void save_bar_parameters(struct ntb_pci_bar_info *bar) { bar->pci_bus_tag = rman_get_bustag(bar->pci_resource); bar->pci_bus_handle = rman_get_bushandle(bar->pci_resource); bar->pbase = rman_get_start(bar->pci_resource); bar->size = rman_get_size(bar->pci_resource); bar->vbase = rman_get_virtual(bar->pci_resource); } static device_method_t ntb_intel_methods[] = { /* Device interface */ DEVMETHOD(device_probe, intel_ntb_probe), DEVMETHOD(device_attach, intel_ntb_attach), DEVMETHOD(device_detach, intel_ntb_detach), /* Bus interface */ DEVMETHOD(bus_child_location_str, ntb_child_location_str), DEVMETHOD(bus_print_child, ntb_print_child), DEVMETHOD(bus_get_dma_tag, ntb_get_dma_tag), /* NTB interface */ DEVMETHOD(ntb_port_number, intel_ntb_port_number), DEVMETHOD(ntb_peer_port_count, intel_ntb_peer_port_count), DEVMETHOD(ntb_peer_port_number, intel_ntb_peer_port_number), DEVMETHOD(ntb_peer_port_idx, intel_ntb_peer_port_idx), DEVMETHOD(ntb_link_is_up, intel_ntb_link_is_up), DEVMETHOD(ntb_link_enable, intel_ntb_link_enable), DEVMETHOD(ntb_link_disable, intel_ntb_link_disable), DEVMETHOD(ntb_link_enabled, intel_ntb_link_enabled), DEVMETHOD(ntb_mw_count, intel_ntb_mw_count), DEVMETHOD(ntb_mw_get_range, intel_ntb_mw_get_range), DEVMETHOD(ntb_mw_set_trans, intel_ntb_mw_set_trans), DEVMETHOD(ntb_mw_clear_trans, intel_ntb_mw_clear_trans), DEVMETHOD(ntb_mw_get_wc, intel_ntb_mw_get_wc), DEVMETHOD(ntb_mw_set_wc, intel_ntb_mw_set_wc), DEVMETHOD(ntb_spad_count, intel_ntb_spad_count), DEVMETHOD(ntb_spad_clear, intel_ntb_spad_clear), DEVMETHOD(ntb_spad_write, intel_ntb_spad_write), DEVMETHOD(ntb_spad_read, intel_ntb_spad_read), DEVMETHOD(ntb_peer_spad_write, intel_ntb_peer_spad_write), DEVMETHOD(ntb_peer_spad_read, intel_ntb_peer_spad_read), DEVMETHOD(ntb_db_valid_mask, intel_ntb_db_valid_mask), DEVMETHOD(ntb_db_vector_count, intel_ntb_db_vector_count), DEVMETHOD(ntb_db_vector_mask, intel_ntb_db_vector_mask), DEVMETHOD(ntb_db_clear, intel_ntb_db_clear), DEVMETHOD(ntb_db_clear_mask, intel_ntb_db_clear_mask), DEVMETHOD(ntb_db_read, intel_ntb_db_read), DEVMETHOD(ntb_db_set_mask, intel_ntb_db_set_mask), DEVMETHOD(ntb_peer_db_addr, intel_ntb_peer_db_addr), DEVMETHOD(ntb_peer_db_set, intel_ntb_peer_db_set), DEVMETHOD_END }; static DEFINE_CLASS_0(ntb_hw, ntb_intel_driver, ntb_intel_methods, sizeof(struct ntb_softc)); DRIVER_MODULE(ntb_hw_intel, pci, ntb_intel_driver, ntb_hw_devclass, NULL, NULL); MODULE_DEPEND(ntb_hw_intel, ntb, 1, 1, 1); MODULE_VERSION(ntb_hw_intel, 1); MODULE_PNP_INFO("W32:vendor/device;D:#", pci, ntb_hw_intel, pci_ids, nitems(pci_ids)); Index: head/sys/dev/ntb/ntb_hw/ntb_hw_plx.c =================================================================== --- head/sys/dev/ntb/ntb_hw/ntb_hw_plx.c (revision 363649) +++ head/sys/dev/ntb/ntb_hw/ntb_hw_plx.c (revision 363650) @@ -1,1093 +1,1093 @@ /*- * Copyright (c) 2017-2019 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The Non-Transparent Bridge (NTB) is a device that allows you to connect * two or more systems using a PCI-e links, providing remote memory access. * * This module contains a driver for NTBs in PLX/Avago/Broadcom PCIe bridges. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../ntb.h" #define PLX_MAX_BARS 4 /* There are at most 4 data BARs. */ #define PLX_NUM_SPAD 8 /* There are 8 scratchpads. */ #define PLX_NUM_SPAD_PATT 4 /* Use test pattern as 4 more. */ #define PLX_NUM_DB 16 /* There are 16 doorbells. */ #define PLX_MAX_SPLIT 128 /* Allow are at most 128 splits. */ struct ntb_plx_mw_info { int mw_bar; int mw_64bit; int mw_rid; struct resource *mw_res; vm_paddr_t mw_pbase; caddr_t mw_vbase; vm_size_t mw_size; struct { vm_memattr_t mw_map_mode; bus_addr_t mw_xlat_addr; bus_size_t mw_xlat_size; } splits[PLX_MAX_SPLIT]; }; struct ntb_plx_softc { /* ntb.c context. Do not move! Must go first! */ void *ntb_store; device_t dev; struct resource *conf_res; int conf_rid; u_int ntx; /* NTx number within chip. */ u_int link; /* Link v/s Virtual side. */ u_int port; /* Port number within chip. */ u_int alut; /* A-LUT is enabled for NTx */ u_int split; /* split BAR2 into 2^x parts */ int int_rid; struct resource *int_res; void *int_tag; struct ntb_plx_mw_info mw_info[PLX_MAX_BARS]; int mw_count; /* Number of memory windows. */ int spad_count1; /* Number of standard spads. */ int spad_count2; /* Number of extra spads. */ uint32_t spad_off1; /* Offset of our spads. */ uint32_t spad_off2; /* Offset of our extra spads. */ uint32_t spad_offp1; /* Offset of peer spads. */ uint32_t spad_offp2; /* Offset of peer extra spads. */ /* Parameters of window shared with peer config access in B2B mode. */ int b2b_mw; /* Shared window number. */ uint64_t b2b_off; /* Offset in shared window. */ }; #define PLX_NT0_BASE 0x3E000 #define PLX_NT1_BASE 0x3C000 #define PLX_NTX_BASE(sc) ((sc)->ntx ? PLX_NT1_BASE : PLX_NT0_BASE) #define PLX_NTX_LINK_OFFSET 0x01000 /* Bases of NTx our/peer interface registers */ #define PLX_NTX_OUR_BASE(sc) \ (PLX_NTX_BASE(sc) + ((sc)->link ? PLX_NTX_LINK_OFFSET : 0)) #define PLX_NTX_PEER_BASE(sc) \ (PLX_NTX_BASE(sc) + ((sc)->link ? 0 : PLX_NTX_LINK_OFFSET)) /* Read/write NTx our interface registers */ #define NTX_READ(sc, reg) \ bus_read_4((sc)->conf_res, PLX_NTX_OUR_BASE(sc) + (reg)) #define NTX_WRITE(sc, reg, val) \ bus_write_4((sc)->conf_res, PLX_NTX_OUR_BASE(sc) + (reg), (val)) /* Read/write NTx peer interface registers */ #define PNTX_READ(sc, reg) \ bus_read_4((sc)->conf_res, PLX_NTX_PEER_BASE(sc) + (reg)) #define PNTX_WRITE(sc, reg, val) \ bus_write_4((sc)->conf_res, PLX_NTX_PEER_BASE(sc) + (reg), (val)) /* Read/write B2B NTx registers */ #define BNTX_READ(sc, reg) \ bus_read_4((sc)->mw_info[(sc)->b2b_mw].mw_res, \ PLX_NTX_BASE(sc) + (reg)) #define BNTX_WRITE(sc, reg, val) \ bus_write_4((sc)->mw_info[(sc)->b2b_mw].mw_res, \ PLX_NTX_BASE(sc) + (reg), (val)) #define PLX_PORT_BASE(p) ((p) << 12) #define PLX_STATION_PORT_BASE(sc) PLX_PORT_BASE((sc)->port & ~7) #define PLX_PORT_CONTROL(sc) (PLX_STATION_PORT_BASE(sc) + 0x208) static int ntb_plx_init(device_t dev); static int ntb_plx_detach(device_t dev); static int ntb_plx_mw_set_trans_internal(device_t dev, unsigned mw_idx); static int ntb_plx_probe(device_t dev) { switch (pci_get_devid(dev)) { case 0x87a010b5: device_set_desc(dev, "PLX Non-Transparent Bridge NT0 Link"); return (BUS_PROBE_DEFAULT); case 0x87a110b5: device_set_desc(dev, "PLX Non-Transparent Bridge NT1 Link"); return (BUS_PROBE_DEFAULT); case 0x87b010b5: device_set_desc(dev, "PLX Non-Transparent Bridge NT0 Virtual"); return (BUS_PROBE_DEFAULT); case 0x87b110b5: device_set_desc(dev, "PLX Non-Transparent Bridge NT1 Virtual"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int ntb_plx_init(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; uint64_t val64; int i; uint32_t val; if (sc->b2b_mw >= 0) { /* Set peer BAR0/1 size and address for B2B NTx access. */ mw = &sc->mw_info[sc->b2b_mw]; if (mw->mw_64bit) { PNTX_WRITE(sc, 0xe4, 0x3); /* 64-bit */ val64 = 0x2000000000000000 * mw->mw_bar | 0x4; PNTX_WRITE(sc, PCIR_BAR(0), val64); PNTX_WRITE(sc, PCIR_BAR(0) + 4, val64 >> 32); } else { PNTX_WRITE(sc, 0xe4, 0x2); /* 32-bit */ val = 0x20000000 * mw->mw_bar; PNTX_WRITE(sc, PCIR_BAR(0), val); } /* Set Virtual to Link address translation for B2B. */ for (i = 0; i < sc->mw_count; i++) { mw = &sc->mw_info[i]; if (mw->mw_64bit) { val64 = 0x2000000000000000 * mw->mw_bar; NTX_WRITE(sc, 0xc3c + (mw->mw_bar - 2) * 4, val64); NTX_WRITE(sc, 0xc3c + (mw->mw_bar - 2) * 4 + 4, val64 >> 32); } else { val = 0x20000000 * mw->mw_bar; NTX_WRITE(sc, 0xc3c + (mw->mw_bar - 2) * 4, val); } } /* Make sure Virtual to Link A-LUT is disabled. */ if (sc->alut) PNTX_WRITE(sc, 0xc94, 0); /* Enable all Link Interface LUT entries for peer. */ for (i = 0; i < 32; i += 2) { PNTX_WRITE(sc, 0xdb4 + i * 2, 0x00010001 | ((i + 1) << 19) | (i << 3)); } } /* * Enable Virtual Interface LUT entry 0 for 0:0.*. * entry 1 for our Requester ID reported by the chip, * entries 2-5 for 0/64/128/192:4.* of I/OAT DMA engines. * XXX: Its a hack, we can't know all DMA engines, but this covers all * I/OAT of Xeon E5/E7 at least from Sandy Bridge till Skylake I saw. */ val = (NTX_READ(sc, 0xc90) << 16) | 0x00010001; NTX_WRITE(sc, sc->link ? 0xdb4 : 0xd94, val); NTX_WRITE(sc, sc->link ? 0xdb8 : 0xd98, 0x40210021); NTX_WRITE(sc, sc->link ? 0xdbc : 0xd9c, 0xc0218021); /* Set Link to Virtual address translation. */ for (i = 0; i < sc->mw_count; i++) ntb_plx_mw_set_trans_internal(dev, i); pci_enable_busmaster(dev); if (sc->b2b_mw >= 0) PNTX_WRITE(sc, PCIR_COMMAND, PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); return (0); } static void ntb_plx_isr(void *arg) { device_t dev = arg; struct ntb_plx_softc *sc = device_get_softc(dev); uint32_t val; ntb_db_event((device_t)arg, 0); if (sc->link) /* Link Interface has no Link Error registers. */ return; val = NTX_READ(sc, 0xfe0); if (val == 0) return; NTX_WRITE(sc, 0xfe0, val); if (val & 1) device_printf(dev, "Correctable Error\n"); if (val & 2) device_printf(dev, "Uncorrectable Error\n"); if (val & 4) { /* DL_Down resets link side registers, have to reinit. */ ntb_plx_init(dev); ntb_link_event(dev); } if (val & 8) device_printf(dev, "Uncorrectable Error Message Drop\n"); } static int ntb_plx_setup_intr(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); int error; /* * XXX: This hardware supports MSI, but I found it unusable. * It generates new MSI only when doorbell register goes from * zero, but does not generate it when another bit is set or on * partial clear. It makes operation very racy and unreliable. * The data book mentions some mask juggling magic to workaround * that, but I failed to make it work. */ sc->int_rid = 0; sc->int_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->int_rid, RF_SHAREABLE|RF_ACTIVE); if (sc->int_res == NULL) { device_printf(dev, "bus_alloc_resource failed\n"); return (ENOMEM); } error = bus_setup_intr(dev, sc->int_res, INTR_MPSAFE | INTR_TYPE_MISC, NULL, ntb_plx_isr, dev, &sc->int_tag); if (error != 0) { device_printf(dev, "bus_setup_intr failed: %d\n", error); return (error); } if (!sc->link) { /* Link Interface has no Link Error registers. */ NTX_WRITE(sc, 0xfe0, 0xf); /* Clear link interrupts. */ NTX_WRITE(sc, 0xfe4, 0x0); /* Unmask link interrupts. */ } return (0); } static void ntb_plx_teardown_intr(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); if (!sc->link) /* Link Interface has no Link Error registers. */ NTX_WRITE(sc, 0xfe4, 0xf); /* Mask link interrupts. */ if (sc->int_res) { bus_teardown_intr(dev, sc->int_res, sc->int_tag); bus_release_resource(dev, SYS_RES_IRQ, sc->int_rid, sc->int_res); } } static int ntb_plx_attach(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; int error = 0, i, j; uint32_t val; char buf[32]; /* Identify what we are (what side of what NTx). */ sc->dev = dev; val = pci_read_config(dev, 0xc8c, 4); sc->ntx = (val & 1) != 0; sc->link = (val & 0x80000000) != 0; /* Get access to whole 256KB of chip configuration space via BAR0/1. */ sc->conf_rid = PCIR_BAR(0); sc->conf_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->conf_rid, RF_ACTIVE); if (sc->conf_res == NULL) { device_printf(dev, "Can't allocate configuration BAR.\n"); return (ENXIO); } /* * The device occupies whole bus. In translated TLP slot field * keeps LUT index (original bus/slot), function is passed through. */ - bus_dma_dmar_set_buswide(dev); + bus_dma_iommu_set_buswide(dev); /* Identify chip port we are connected to. */ val = bus_read_4(sc->conf_res, 0x360); sc->port = (val >> ((sc->ntx == 0) ? 8 : 16)) & 0x1f; /* Detect A-LUT enable and size. */ val >>= 30; sc->alut = (val == 0x3) ? 1 : ((val & (1 << sc->ntx)) ? 2 : 0); if (sc->alut) device_printf(dev, "%u A-LUT entries\n", 128 * sc->alut); /* Find configured memory windows at BAR2-5. */ sc->mw_count = 0; for (i = 2; i <= 5; i++) { mw = &sc->mw_info[sc->mw_count]; mw->mw_bar = i; mw->mw_rid = PCIR_BAR(mw->mw_bar); mw->mw_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &mw->mw_rid, RF_ACTIVE); if (mw->mw_res == NULL) continue; mw->mw_pbase = rman_get_start(mw->mw_res); mw->mw_size = rman_get_size(mw->mw_res); mw->mw_vbase = rman_get_virtual(mw->mw_res); for (j = 0; j < PLX_MAX_SPLIT; j++) mw->splits[j].mw_map_mode = VM_MEMATTR_UNCACHEABLE; sc->mw_count++; /* Skip over adjacent BAR for 64-bit BARs. */ val = pci_read_config(dev, PCIR_BAR(mw->mw_bar), 4); if ((val & PCIM_BAR_MEM_TYPE) == PCIM_BAR_MEM_64) { mw->mw_64bit = 1; i++; } } /* Try to identify B2B mode. */ i = 1; snprintf(buf, sizeof(buf), "hint.%s.%d.b2b", device_get_name(dev), device_get_unit(dev)); TUNABLE_INT_FETCH(buf, &i); if (sc->link) { device_printf(dev, "NTB-to-Root Port mode (Link Interface)\n"); sc->b2b_mw = -1; } else if (i == 0) { device_printf(dev, "NTB-to-Root Port mode (Virtual Interface)\n"); sc->b2b_mw = -1; } else { device_printf(dev, "NTB-to-NTB (back-to-back) mode\n"); /* We need at least one memory window for B2B peer access. */ if (sc->mw_count == 0) { device_printf(dev, "No memory window BARs enabled.\n"); error = ENXIO; goto out; } sc->b2b_mw = sc->mw_count - 1; /* Use half of the window for B2B, but no less then 1MB. */ mw = &sc->mw_info[sc->b2b_mw]; if (mw->mw_size >= 2 * 1024 * 1024) sc->b2b_off = mw->mw_size / 2; else sc->b2b_off = 0; } snprintf(buf, sizeof(buf), "hint.%s.%d.split", device_get_name(dev), device_get_unit(dev)); TUNABLE_INT_FETCH(buf, &sc->split); if (sc->split > 7) { device_printf(dev, "Split value is too high (%u)\n", sc->split); sc->split = 0; } else if (sc->split > 0 && sc->alut == 0) { device_printf(dev, "Can't split with disabled A-LUT\n"); sc->split = 0; } else if (sc->split > 0 && (sc->mw_count == 0 || sc->mw_info[0].mw_bar != 2)) { device_printf(dev, "Can't split disabled BAR2\n"); sc->split = 0; } else if (sc->split > 0 && (sc->b2b_mw == 0 && sc->b2b_off == 0)) { device_printf(dev, "Can't split BAR2 consumed by B2B\n"); sc->split = 0; } else if (sc->split > 0) { device_printf(dev, "Splitting BAR2 into %d memory windows\n", 1 << sc->split); } /* * Use Physical Layer User Test Pattern as additional scratchpad. * Make sure they are present and enabled by writing to them. * XXX: Its a hack, but standard 8 registers are not enough. */ sc->spad_offp1 = sc->spad_off1 = PLX_NTX_OUR_BASE(sc) + 0xc6c; sc->spad_offp2 = sc->spad_off2 = PLX_PORT_BASE(sc->ntx * 8) + 0x20c; if (sc->b2b_mw >= 0) { /* In NTB-to-NTB mode each side has own scratchpads. */ sc->spad_count1 = PLX_NUM_SPAD; bus_write_4(sc->conf_res, sc->spad_off2, 0x12345678); if (bus_read_4(sc->conf_res, sc->spad_off2) == 0x12345678) sc->spad_count2 = PLX_NUM_SPAD_PATT; } else { /* Otherwise we have share scratchpads with the peer. */ if (sc->link) { sc->spad_off1 += PLX_NUM_SPAD / 2 * 4; sc->spad_off2 += PLX_NUM_SPAD_PATT / 2 * 4; } else { sc->spad_offp1 += PLX_NUM_SPAD / 2 * 4; sc->spad_offp2 += PLX_NUM_SPAD_PATT / 2 * 4; } sc->spad_count1 = PLX_NUM_SPAD / 2; bus_write_4(sc->conf_res, sc->spad_off2, 0x12345678); if (bus_read_4(sc->conf_res, sc->spad_off2) == 0x12345678) sc->spad_count2 = PLX_NUM_SPAD_PATT / 2; } /* Apply static part of NTB configuration. */ ntb_plx_init(dev); /* Allocate and setup interrupts. */ error = ntb_plx_setup_intr(dev); if (error) goto out; /* Attach children to this controller */ error = ntb_register_device(dev); out: if (error != 0) ntb_plx_detach(dev); return (error); } static int ntb_plx_detach(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; int i; /* Detach & delete all children */ ntb_unregister_device(dev); /* Disable and free interrupts. */ ntb_plx_teardown_intr(dev); /* Free memory resources. */ for (i = 0; i < sc->mw_count; i++) { mw = &sc->mw_info[i]; bus_release_resource(dev, SYS_RES_MEMORY, mw->mw_rid, mw->mw_res); } bus_release_resource(dev, SYS_RES_MEMORY, sc->conf_rid, sc->conf_res); return (0); } static int ntb_plx_port_number(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); return (sc->link ? 1 : 0); } static int ntb_plx_peer_port_count(device_t dev) { return (1); } static int ntb_plx_peer_port_number(device_t dev, int pidx) { struct ntb_plx_softc *sc = device_get_softc(dev); if (pidx != 0) return (-EINVAL); return (sc->link ? 0 : 1); } static int ntb_plx_peer_port_idx(device_t dev, int port) { int peer_port; peer_port = ntb_plx_peer_port_number(dev, 0); if (peer_port == -EINVAL || port != peer_port) return (-EINVAL); return (0); } static bool ntb_plx_link_is_up(device_t dev, enum ntb_speed *speed, enum ntb_width *width) { uint16_t link; link = pcie_read_config(dev, PCIER_LINK_STA, 2); if (speed != NULL) *speed = (link & PCIEM_LINK_STA_SPEED); if (width != NULL) *width = (link & PCIEM_LINK_STA_WIDTH) >> 4; return ((link & PCIEM_LINK_STA_WIDTH) != 0); } static int ntb_plx_link_enable(device_t dev, enum ntb_speed speed __unused, enum ntb_width width __unused) { struct ntb_plx_softc *sc = device_get_softc(dev); uint32_t reg, val; /* The fact that we see the Link Interface means link is enabled. */ if (sc->link) { ntb_link_event(dev); return (0); } reg = PLX_PORT_CONTROL(sc); val = bus_read_4(sc->conf_res, reg); if ((val & (1 << (sc->port & 7))) == 0) { /* If already enabled, generate fake link event and exit. */ ntb_link_event(dev); return (0); } val &= ~(1 << (sc->port & 7)); bus_write_4(sc->conf_res, reg, val); return (0); } static int ntb_plx_link_disable(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); uint32_t reg, val; /* Link disable for Link Interface would be suicidal. */ if (sc->link) return (0); reg = PLX_PORT_CONTROL(sc); val = bus_read_4(sc->conf_res, reg); val |= (1 << (sc->port & 7)); bus_write_4(sc->conf_res, reg, val); return (0); } static bool ntb_plx_link_enabled(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); uint32_t reg, val; /* The fact that we see the Link Interface means link is enabled. */ if (sc->link) return (TRUE); reg = PLX_PORT_CONTROL(sc); val = bus_read_4(sc->conf_res, reg); return ((val & (1 << (sc->port & 7))) == 0); } static uint8_t ntb_plx_mw_count(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); uint8_t res; res = sc->mw_count; res += (1 << sc->split) - 1; if (sc->b2b_mw >= 0 && sc->b2b_off == 0) res--; /* B2B consumed whole window. */ return (res); } static unsigned ntb_plx_user_mw_to_idx(struct ntb_plx_softc *sc, unsigned uidx, unsigned *sp) { unsigned t; t = 1 << sc->split; if (uidx < t) { *sp = uidx; return (0); } *sp = 0; return (uidx - (t - 1)); } static int ntb_plx_mw_get_range(device_t dev, unsigned mw_idx, vm_paddr_t *base, caddr_t *vbase, size_t *size, size_t *align, size_t *align_size, bus_addr_t *plimit) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; size_t off, ss; unsigned sp, split; mw_idx = ntb_plx_user_mw_to_idx(sc, mw_idx, &sp); if (mw_idx >= sc->mw_count) return (EINVAL); off = 0; if (mw_idx == sc->b2b_mw) { KASSERT(sc->b2b_off != 0, ("user shouldn't get non-shared b2b mw")); off = sc->b2b_off; } mw = &sc->mw_info[mw_idx]; split = (mw->mw_bar == 2) ? sc->split : 0; ss = (mw->mw_size - off) >> split; /* Local to remote memory window parameters. */ if (base != NULL) *base = mw->mw_pbase + off + ss * sp; if (vbase != NULL) *vbase = mw->mw_vbase + off + ss * sp; if (size != NULL) *size = ss; /* * Remote to local memory window translation address alignment. * Translation address has to be aligned to the BAR size, but A-LUT * entries re-map addresses can be aligned to 1/128 or 1/256 of it. * XXX: In B2B mode we can change BAR size (and so alignmet) live, * but there is no way to report it here, so report safe value. */ if (align != NULL) { if (sc->alut && mw->mw_bar == 2) *align = (mw->mw_size - off) / 128 / sc->alut; else *align = mw->mw_size - off; } /* * Remote to local memory window size alignment. * The chip has no limit registers, but A-LUT, when available, allows * access control with granularity of 1/128 or 1/256 of the BAR size. * XXX: In B2B case we can change BAR size live, but there is no way * to report it, so report half of the BAR size, that should be safe. * In non-B2B case there is no control at all, so report the BAR size. */ if (align_size != NULL) { if (sc->alut && mw->mw_bar == 2) *align_size = (mw->mw_size - off) / 128 / sc->alut; else if (sc->b2b_mw >= 0) *align_size = (mw->mw_size - off) / 2; else *align_size = mw->mw_size - off; } /* Remote to local memory window translation address upper limit. */ if (plimit != NULL) *plimit = mw->mw_64bit ? BUS_SPACE_MAXADDR : BUS_SPACE_MAXADDR_32BIT; return (0); } static int ntb_plx_mw_set_trans_internal(device_t dev, unsigned mw_idx) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; uint64_t addr, eaddr, off, size, bsize, esize, val64; uint32_t val; unsigned i, sp, split; mw = &sc->mw_info[mw_idx]; off = (mw_idx == sc->b2b_mw) ? sc->b2b_off : 0; split = (mw->mw_bar == 2) ? sc->split : 0; /* Get BAR size. In case of split or B2RP we can't change it. */ if (split || sc->b2b_mw < 0) { bsize = mw->mw_size - off; } else { bsize = mw->splits[0].mw_xlat_size; if (!powerof2(bsize)) bsize = 1LL << flsll(bsize); if (bsize > 0 && bsize < 1024 * 1024) bsize = 1024 * 1024; } /* * While for B2B we can set any BAR size on a link side, for shared * window we can't go above preconfigured size due to BAR address * alignment requirements. */ if ((off & (bsize - 1)) != 0) return (EINVAL); /* In B2B mode set Link Interface BAR size/address. */ if (sc->b2b_mw >= 0 && mw->mw_64bit) { val64 = 0; if (bsize > 0) val64 = (~(bsize - 1) & ~0xfffff); val64 |= 0xc; PNTX_WRITE(sc, 0xe8 + (mw->mw_bar - 2) * 4, val64); PNTX_WRITE(sc, 0xe8 + (mw->mw_bar - 2) * 4 + 4, val64 >> 32); val64 = 0x2000000000000000 * mw->mw_bar + off; PNTX_WRITE(sc, PCIR_BAR(mw->mw_bar), val64); PNTX_WRITE(sc, PCIR_BAR(mw->mw_bar) + 4, val64 >> 32); } else if (sc->b2b_mw >= 0) { val = 0; if (bsize > 0) val = (~(bsize - 1) & ~0xfffff); PNTX_WRITE(sc, 0xe8 + (mw->mw_bar - 2) * 4, val); val64 = 0x20000000 * mw->mw_bar + off; PNTX_WRITE(sc, PCIR_BAR(mw->mw_bar), val64); } /* Set BARs address translation */ addr = split ? UINT64_MAX : mw->splits[0].mw_xlat_addr; if (mw->mw_64bit) { PNTX_WRITE(sc, 0xc3c + (mw->mw_bar - 2) * 4, addr); PNTX_WRITE(sc, 0xc3c + (mw->mw_bar - 2) * 4 + 4, addr >> 32); } else { PNTX_WRITE(sc, 0xc3c + (mw->mw_bar - 2) * 4, addr); } /* Configure and enable A-LUT if we need it. */ size = split ? 0 : mw->splits[0].mw_xlat_size; if (sc->alut && mw->mw_bar == 2 && (sc->split > 0 || ((addr & (bsize - 1)) != 0 || size != bsize))) { esize = bsize / (128 * sc->alut); for (i = sp = 0; i < 128 * sc->alut; i++) { if (i % (128 * sc->alut >> sc->split) == 0) { eaddr = addr = mw->splits[sp].mw_xlat_addr; size = mw->splits[sp++].mw_xlat_size; } val = sc->link ? 0 : 1; if (sc->alut == 1) val += 2 * sc->ntx; val *= 0x1000 * sc->alut; val += 0x38000 + i * 4 + (i >= 128 ? 0x0e00 : 0); bus_write_4(sc->conf_res, val, eaddr); bus_write_4(sc->conf_res, val + 0x400, eaddr >> 32); bus_write_4(sc->conf_res, val + 0x800, (eaddr < addr + size) ? 0x3 : 0); eaddr += esize; } NTX_WRITE(sc, 0xc94, 0x10000000); } else if (sc->alut && mw->mw_bar == 2) NTX_WRITE(sc, 0xc94, 0); return (0); } static int ntb_plx_mw_set_trans(device_t dev, unsigned mw_idx, bus_addr_t addr, size_t size) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; unsigned sp; mw_idx = ntb_plx_user_mw_to_idx(sc, mw_idx, &sp); if (mw_idx >= sc->mw_count) return (EINVAL); mw = &sc->mw_info[mw_idx]; if (!mw->mw_64bit && ((addr & UINT32_MAX) != addr || ((addr + size) & UINT32_MAX) != (addr + size))) return (ERANGE); mw->splits[sp].mw_xlat_addr = addr; mw->splits[sp].mw_xlat_size = size; return (ntb_plx_mw_set_trans_internal(dev, mw_idx)); } static int ntb_plx_mw_clear_trans(device_t dev, unsigned mw_idx) { return (ntb_plx_mw_set_trans(dev, mw_idx, 0, 0)); } static int ntb_plx_mw_get_wc(device_t dev, unsigned mw_idx, vm_memattr_t *mode) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; unsigned sp; mw_idx = ntb_plx_user_mw_to_idx(sc, mw_idx, &sp); if (mw_idx >= sc->mw_count) return (EINVAL); mw = &sc->mw_info[mw_idx]; *mode = mw->splits[sp].mw_map_mode; return (0); } static int ntb_plx_mw_set_wc(device_t dev, unsigned mw_idx, vm_memattr_t mode) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; uint64_t off, ss; int rc; unsigned sp, split; mw_idx = ntb_plx_user_mw_to_idx(sc, mw_idx, &sp); if (mw_idx >= sc->mw_count) return (EINVAL); mw = &sc->mw_info[mw_idx]; if (mw->splits[sp].mw_map_mode == mode) return (0); off = 0; if (mw_idx == sc->b2b_mw) { KASSERT(sc->b2b_off != 0, ("user shouldn't get non-shared b2b mw")); off = sc->b2b_off; } split = (mw->mw_bar == 2) ? sc->split : 0; ss = (mw->mw_size - off) >> split; rc = pmap_change_attr((vm_offset_t)mw->mw_vbase + off + ss * sp, ss, mode); if (rc == 0) mw->splits[sp].mw_map_mode = mode; return (rc); } static uint8_t ntb_plx_spad_count(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); return (sc->spad_count1 + sc->spad_count2); } static int ntb_plx_spad_write(device_t dev, unsigned int idx, uint32_t val) { struct ntb_plx_softc *sc = device_get_softc(dev); u_int off; if (idx >= sc->spad_count1 + sc->spad_count2) return (EINVAL); if (idx < sc->spad_count1) off = sc->spad_off1 + idx * 4; else off = sc->spad_off2 + (idx - sc->spad_count1) * 4; bus_write_4(sc->conf_res, off, val); return (0); } static void ntb_plx_spad_clear(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); int i; for (i = 0; i < sc->spad_count1 + sc->spad_count2; i++) ntb_plx_spad_write(dev, i, 0); } static int ntb_plx_spad_read(device_t dev, unsigned int idx, uint32_t *val) { struct ntb_plx_softc *sc = device_get_softc(dev); u_int off; if (idx >= sc->spad_count1 + sc->spad_count2) return (EINVAL); if (idx < sc->spad_count1) off = sc->spad_off1 + idx * 4; else off = sc->spad_off2 + (idx - sc->spad_count1) * 4; *val = bus_read_4(sc->conf_res, off); return (0); } static int ntb_plx_peer_spad_write(device_t dev, unsigned int idx, uint32_t val) { struct ntb_plx_softc *sc = device_get_softc(dev); u_int off; if (idx >= sc->spad_count1 + sc->spad_count2) return (EINVAL); if (idx < sc->spad_count1) off = sc->spad_offp1 + idx * 4; else off = sc->spad_offp2 + (idx - sc->spad_count1) * 4; if (sc->b2b_mw >= 0) bus_write_4(sc->mw_info[sc->b2b_mw].mw_res, off, val); else bus_write_4(sc->conf_res, off, val); return (0); } static int ntb_plx_peer_spad_read(device_t dev, unsigned int idx, uint32_t *val) { struct ntb_plx_softc *sc = device_get_softc(dev); u_int off; if (idx >= sc->spad_count1 + sc->spad_count2) return (EINVAL); if (idx < sc->spad_count1) off = sc->spad_offp1 + idx * 4; else off = sc->spad_offp2 + (idx - sc->spad_count1) * 4; if (sc->b2b_mw >= 0) *val = bus_read_4(sc->mw_info[sc->b2b_mw].mw_res, off); else *val = bus_read_4(sc->conf_res, off); return (0); } static uint64_t ntb_plx_db_valid_mask(device_t dev) { return ((1LL << PLX_NUM_DB) - 1); } static int ntb_plx_db_vector_count(device_t dev) { return (1); } static uint64_t ntb_plx_db_vector_mask(device_t dev, uint32_t vector) { if (vector > 0) return (0); return ((1LL << PLX_NUM_DB) - 1); } static void ntb_plx_db_clear(device_t dev, uint64_t bits) { struct ntb_plx_softc *sc = device_get_softc(dev); NTX_WRITE(sc, sc->link ? 0xc60 : 0xc50, bits); } static void ntb_plx_db_clear_mask(device_t dev, uint64_t bits) { struct ntb_plx_softc *sc = device_get_softc(dev); NTX_WRITE(sc, sc->link ? 0xc68 : 0xc58, bits); } static uint64_t ntb_plx_db_read(device_t dev) { struct ntb_plx_softc *sc = device_get_softc(dev); return (NTX_READ(sc, sc->link ? 0xc5c : 0xc4c)); } static void ntb_plx_db_set_mask(device_t dev, uint64_t bits) { struct ntb_plx_softc *sc = device_get_softc(dev); NTX_WRITE(sc, sc->link ? 0xc64 : 0xc54, bits); } static int ntb_plx_peer_db_addr(device_t dev, bus_addr_t *db_addr, vm_size_t *db_size) { struct ntb_plx_softc *sc = device_get_softc(dev); struct ntb_plx_mw_info *mw; KASSERT((db_addr != NULL && db_size != NULL), ("must be non-NULL")); if (sc->b2b_mw >= 0) { mw = &sc->mw_info[sc->b2b_mw]; *db_addr = (uint64_t)mw->mw_pbase + PLX_NTX_BASE(sc) + 0xc4c; } else { *db_addr = rman_get_start(sc->conf_res) + PLX_NTX_BASE(sc); *db_addr += sc->link ? 0xc4c : 0xc5c; } *db_size = 4; return (0); } static void ntb_plx_peer_db_set(device_t dev, uint64_t bit) { struct ntb_plx_softc *sc = device_get_softc(dev); if (sc->b2b_mw >= 0) BNTX_WRITE(sc, 0xc4c, bit); else NTX_WRITE(sc, sc->link ? 0xc4c : 0xc5c, bit); } static device_method_t ntb_plx_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ntb_plx_probe), DEVMETHOD(device_attach, ntb_plx_attach), DEVMETHOD(device_detach, ntb_plx_detach), /* Bus interface */ DEVMETHOD(bus_child_location_str, ntb_child_location_str), DEVMETHOD(bus_print_child, ntb_print_child), DEVMETHOD(bus_get_dma_tag, ntb_get_dma_tag), /* NTB interface */ DEVMETHOD(ntb_port_number, ntb_plx_port_number), DEVMETHOD(ntb_peer_port_count, ntb_plx_peer_port_count), DEVMETHOD(ntb_peer_port_number, ntb_plx_peer_port_number), DEVMETHOD(ntb_peer_port_idx, ntb_plx_peer_port_idx), DEVMETHOD(ntb_link_is_up, ntb_plx_link_is_up), DEVMETHOD(ntb_link_enable, ntb_plx_link_enable), DEVMETHOD(ntb_link_disable, ntb_plx_link_disable), DEVMETHOD(ntb_link_enabled, ntb_plx_link_enabled), DEVMETHOD(ntb_mw_count, ntb_plx_mw_count), DEVMETHOD(ntb_mw_get_range, ntb_plx_mw_get_range), DEVMETHOD(ntb_mw_set_trans, ntb_plx_mw_set_trans), DEVMETHOD(ntb_mw_clear_trans, ntb_plx_mw_clear_trans), DEVMETHOD(ntb_mw_get_wc, ntb_plx_mw_get_wc), DEVMETHOD(ntb_mw_set_wc, ntb_plx_mw_set_wc), DEVMETHOD(ntb_spad_count, ntb_plx_spad_count), DEVMETHOD(ntb_spad_clear, ntb_plx_spad_clear), DEVMETHOD(ntb_spad_write, ntb_plx_spad_write), DEVMETHOD(ntb_spad_read, ntb_plx_spad_read), DEVMETHOD(ntb_peer_spad_write, ntb_plx_peer_spad_write), DEVMETHOD(ntb_peer_spad_read, ntb_plx_peer_spad_read), DEVMETHOD(ntb_db_valid_mask, ntb_plx_db_valid_mask), DEVMETHOD(ntb_db_vector_count, ntb_plx_db_vector_count), DEVMETHOD(ntb_db_vector_mask, ntb_plx_db_vector_mask), DEVMETHOD(ntb_db_clear, ntb_plx_db_clear), DEVMETHOD(ntb_db_clear_mask, ntb_plx_db_clear_mask), DEVMETHOD(ntb_db_read, ntb_plx_db_read), DEVMETHOD(ntb_db_set_mask, ntb_plx_db_set_mask), DEVMETHOD(ntb_peer_db_addr, ntb_plx_peer_db_addr), DEVMETHOD(ntb_peer_db_set, ntb_plx_peer_db_set), DEVMETHOD_END }; static DEFINE_CLASS_0(ntb_hw, ntb_plx_driver, ntb_plx_methods, sizeof(struct ntb_plx_softc)); DRIVER_MODULE(ntb_hw_plx, pci, ntb_plx_driver, ntb_hw_devclass, NULL, NULL); MODULE_DEPEND(ntb_hw_plx, ntb, 1, 1, 1); MODULE_VERSION(ntb_hw_plx, 1); Index: head/sys/x86/include/bus_dma.h =================================================================== --- head/sys/x86/include/bus_dma.h (revision 363649) +++ head/sys/x86/include/bus_dma.h (revision 363650) @@ -1,201 +1,201 @@ /*- * Copyright (c) 2017 Jason A. Harmening. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _X86_BUS_DMA_H_ #define _X86_BUS_DMA_H_ #define WANT_INLINE_DMAMAP #include #include #include /* * Is DMA address 1:1 mapping of physical address */ static inline bool bus_dma_id_mapped(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->id_mapped(dmat, buf, buflen)); } /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ static inline int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->map_create(dmat, flags, mapp)); } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ static inline int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->map_destroy(dmat, map)); } /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ static inline int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->mem_alloc(dmat, vaddr, flags, mapp)); } /* * Free a piece of memory and it's allociated dmamap, that was allocated * via bus_dmamem_alloc. Make the same choice for free/contigfree. */ static inline void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; tc->impl->mem_free(dmat, vaddr, map); } /* * Release the mapping held by map. */ static inline void bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bus_dma_tag_common *tc; if (map != NULL) { tc = (struct bus_dma_tag_common *)dmat; tc->impl->map_unload(dmat, map); } } static inline void bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bus_dma_tag_common *tc; if (map != NULL) { tc = (struct bus_dma_tag_common *)dmat; tc->impl->map_sync(dmat, map, op); } } /* * Utility function to load a physical buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static inline int _bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->load_phys(dmat, map, buf, buflen, flags, segs, segp)); } static inline int _bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map, struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags, bus_dma_segment_t *segs, int *segp) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->load_ma(dmat, map, ma, tlen, ma_offs, flags, segs, segp)); } /* * Utility function to load a linear buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static inline int _bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, struct pmap *pmap, int flags, bus_dma_segment_t *segs, int *segp) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->load_buffer(dmat, map, buf, buflen, pmap, flags, segs, segp)); } static inline void _bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg) { struct bus_dma_tag_common *tc; if (map != NULL) { tc = (struct bus_dma_tag_common *)dmat; tc->impl->map_waitok(dmat, map, mem, callback, callback_arg); } } static inline bus_dma_segment_t * _bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, int error) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->map_complete(dmat, map, segs, nsegs, error)); } #ifdef _KERNEL -bool bus_dma_dmar_set_buswide(device_t dev); -int bus_dma_dmar_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map, +bool bus_dma_iommu_set_buswide(device_t dev); +int bus_dma_iommu_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t start, vm_size_t length, int flags); #endif #endif /* !_X86_BUS_DMA_H_ */ Index: head/sys/x86/iommu/intel_ctx.c =================================================================== --- head/sys/x86/iommu/intel_ctx.c (revision 363649) +++ head/sys/x86/iommu/intel_ctx.c (revision 363650) @@ -1,949 +1,951 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_DMAR_CTX, "dmar_ctx", "Intel DMAR Context"); static MALLOC_DEFINE(M_DMAR_DOMAIN, "dmar_dom", "Intel DMAR Domain"); static void dmar_domain_unload_task(void *arg, int pending); static void dmar_unref_domain_locked(struct dmar_unit *dmar, struct dmar_domain *domain); static void dmar_domain_destroy(struct dmar_domain *domain); static void dmar_ensure_ctx_page(struct dmar_unit *dmar, int bus) { struct sf_buf *sf; dmar_root_entry_t *re; vm_page_t ctxm; /* * Allocated context page must be linked. */ ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, IOMMU_PGF_NOALLOC); if (ctxm != NULL) return; /* * Page not present, allocate and link. Note that other * thread might execute this sequence in parallel. This * should be safe, because the context entries written by both * threads are equal. */ TD_PREP_PINNED_ASSERT; ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, IOMMU_PGF_ZERO | IOMMU_PGF_WAITOK); re = dmar_map_pgtbl(dmar->ctx_obj, 0, IOMMU_PGF_NOALLOC, &sf); re += bus; dmar_pte_store(&re->r1, DMAR_ROOT_R1_P | (DMAR_ROOT_R1_CTP_MASK & VM_PAGE_TO_PHYS(ctxm))); dmar_flush_root_to_ram(dmar, re); dmar_unmap_pgtbl(sf); TD_PINNED_ASSERT; } static dmar_ctx_entry_t * dmar_map_ctx_entry(struct dmar_ctx *ctx, struct sf_buf **sfp) { struct dmar_unit *dmar; dmar_ctx_entry_t *ctxp; dmar = (struct dmar_unit *)ctx->context.domain->iommu; ctxp = dmar_map_pgtbl(dmar->ctx_obj, 1 + PCI_RID2BUS(ctx->rid), IOMMU_PGF_NOALLOC | IOMMU_PGF_WAITOK, sfp); ctxp += ctx->rid & 0xff; return (ctxp); } static void device_tag_init(struct dmar_ctx *ctx, device_t dev) { struct dmar_domain *domain; bus_addr_t maxaddr; domain = (struct dmar_domain *)ctx->context.domain; maxaddr = MIN(domain->iodom.end, BUS_SPACE_MAXADDR); ctx->context.tag->common.ref_count = 1; /* Prevent free */ ctx->context.tag->common.impl = &bus_dma_iommu_impl; ctx->context.tag->common.boundary = 0; ctx->context.tag->common.lowaddr = maxaddr; ctx->context.tag->common.highaddr = maxaddr; ctx->context.tag->common.maxsize = maxaddr; ctx->context.tag->common.nsegments = BUS_SPACE_UNRESTRICTED; ctx->context.tag->common.maxsegsz = maxaddr; ctx->context.tag->ctx = (struct iommu_ctx *)ctx; ctx->context.tag->owner = dev; } static void ctx_id_entry_init_one(dmar_ctx_entry_t *ctxp, struct dmar_domain *domain, vm_page_t ctx_root) { /* * For update due to move, the store is not atomic. It is * possible that DMAR read upper doubleword, while low * doubleword is not yet updated. The domain id is stored in * the upper doubleword, while the table pointer in the lower. * * There is no good solution, for the same reason it is wrong * to clear P bit in the ctx entry for update. */ dmar_pte_store1(&ctxp->ctx2, DMAR_CTX2_DID(domain->domain) | domain->awlvl); if (ctx_root == NULL) { dmar_pte_store1(&ctxp->ctx1, DMAR_CTX1_T_PASS | DMAR_CTX1_P); } else { dmar_pte_store1(&ctxp->ctx1, DMAR_CTX1_T_UNTR | (DMAR_CTX1_ASR_MASK & VM_PAGE_TO_PHYS(ctx_root)) | DMAR_CTX1_P); } } static void ctx_id_entry_init(struct dmar_ctx *ctx, dmar_ctx_entry_t *ctxp, bool move, int busno) { struct dmar_unit *unit; struct dmar_domain *domain; vm_page_t ctx_root; int i; domain = (struct dmar_domain *)ctx->context.domain; unit = (struct dmar_unit *)domain->iodom.iommu; KASSERT(move || (ctxp->ctx1 == 0 && ctxp->ctx2 == 0), ("dmar%d: initialized ctx entry %d:%d:%d 0x%jx 0x%jx", unit->iommu.unit, busno, pci_get_slot(ctx->context.tag->owner), pci_get_function(ctx->context.tag->owner), ctxp->ctx1, ctxp->ctx2)); if ((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0 && (unit->hw_ecap & DMAR_ECAP_PT) != 0) { KASSERT(domain->pgtbl_obj == NULL, ("ctx %p non-null pgtbl_obj", ctx)); ctx_root = NULL; } else { ctx_root = dmar_pgalloc(domain->pgtbl_obj, 0, IOMMU_PGF_NOALLOC); } - if (dmar_is_buswide_ctx(unit, busno)) { + if (iommu_is_buswide_ctx((struct iommu_unit *)unit, busno)) { MPASS(!move); for (i = 0; i <= PCI_BUSMAX; i++) { ctx_id_entry_init_one(&ctxp[i], domain, ctx_root); } } else { ctx_id_entry_init_one(ctxp, domain, ctx_root); } dmar_flush_ctx_to_ram(unit, ctxp); } static int dmar_flush_for_ctx_entry(struct dmar_unit *dmar, bool force) { int error; /* * If dmar declares Caching Mode as Set, follow 11.5 "Caching * Mode Consideration" and do the (global) invalidation of the * negative TLB entries. */ if ((dmar->hw_cap & DMAR_CAP_CM) == 0 && !force) return (0); if (dmar->qi_enabled) { dmar_qi_invalidate_ctx_glob_locked(dmar); if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0 || force) dmar_qi_invalidate_iotlb_glob_locked(dmar); return (0); } error = dmar_inv_ctx_glob(dmar); if (error == 0 && ((dmar->hw_ecap & DMAR_ECAP_DI) != 0 || force)) error = dmar_inv_iotlb_glob(dmar); return (error); } static int domain_init_rmrr(struct dmar_domain *domain, device_t dev, int bus, int slot, int func, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len) { struct iommu_map_entries_tailq rmrr_entries; struct iommu_map_entry *entry, *entry1; vm_page_t *ma; iommu_gaddr_t start, end; vm_pindex_t size, i; int error, error1; error = 0; TAILQ_INIT(&rmrr_entries); dmar_dev_parse_rmrr(domain, dev_domain, dev_busno, dev_path, dev_path_len, &rmrr_entries); TAILQ_FOREACH_SAFE(entry, &rmrr_entries, unroll_link, entry1) { /* * VT-d specification requires that the start of an * RMRR entry is 4k-aligned. Buggy BIOSes put * anything into the start and end fields. Truncate * and round as neccesary. * * We also allow the overlapping RMRR entries, see * iommu_gas_alloc_region(). */ start = entry->start; end = entry->end; if (bootverbose) printf("dmar%d ctx pci%d:%d:%d RMRR [%#jx, %#jx]\n", domain->iodom.iommu->unit, bus, slot, func, (uintmax_t)start, (uintmax_t)end); entry->start = trunc_page(start); entry->end = round_page(end); if (entry->start == entry->end) { /* Workaround for some AMI (?) BIOSes */ if (bootverbose) { if (dev != NULL) device_printf(dev, ""); printf("pci%d:%d:%d ", bus, slot, func); printf("BIOS bug: dmar%d RMRR " "region (%jx, %jx) corrected\n", domain->iodom.iommu->unit, start, end); } entry->end += DMAR_PAGE_SIZE * 0x20; } size = OFF_TO_IDX(entry->end - entry->start); ma = malloc(sizeof(vm_page_t) * size, M_TEMP, M_WAITOK); for (i = 0; i < size; i++) { ma[i] = vm_page_getfake(entry->start + PAGE_SIZE * i, VM_MEMATTR_DEFAULT); } error1 = iommu_gas_map_region((struct iommu_domain *)domain, entry, IOMMU_MAP_ENTRY_READ | IOMMU_MAP_ENTRY_WRITE, IOMMU_MF_CANWAIT | IOMMU_MF_RMRR, ma); /* * Non-failed RMRR entries are owned by context rb * tree. Get rid of the failed entry, but do not stop * the loop. Rest of the parsed RMRR entries are * loaded and removed on the context destruction. */ if (error1 == 0 && entry->end != entry->start) { IOMMU_LOCK(domain->iodom.iommu); domain->refs++; /* XXXKIB prevent free */ domain->iodom.flags |= IOMMU_DOMAIN_RMRR; IOMMU_UNLOCK(domain->iodom.iommu); } else { if (error1 != 0) { if (dev != NULL) device_printf(dev, ""); printf("pci%d:%d:%d ", bus, slot, func); printf( "dmar%d failed to map RMRR region (%jx, %jx) %d\n", domain->iodom.iommu->unit, start, end, error1); error = error1; } TAILQ_REMOVE(&rmrr_entries, entry, unroll_link); iommu_gas_free_entry((struct iommu_domain *)domain, entry); } for (i = 0; i < size; i++) vm_page_putfake(ma[i]); free(ma, M_TEMP); } return (error); } static struct dmar_domain * dmar_domain_alloc(struct dmar_unit *dmar, bool id_mapped) { struct iommu_domain *iodom; struct dmar_domain *domain; int error, id, mgaw; id = alloc_unr(dmar->domids); if (id == -1) return (NULL); domain = malloc(sizeof(*domain), M_DMAR_DOMAIN, M_WAITOK | M_ZERO); iodom = (struct iommu_domain *)domain; domain->domain = id; LIST_INIT(&domain->contexts); RB_INIT(&domain->iodom.rb_root); TAILQ_INIT(&domain->iodom.unload_entries); TASK_INIT(&domain->iodom.unload_task, 0, dmar_domain_unload_task, domain); mtx_init(&domain->iodom.lock, "dmardom", NULL, MTX_DEF); domain->dmar = dmar; domain->iodom.iommu = &dmar->iommu; /* * For now, use the maximal usable physical address of the * installed memory to calculate the mgaw on id_mapped domain. * It is useful for the identity mapping, and less so for the * virtualized bus address space. */ domain->iodom.end = id_mapped ? ptoa(Maxmem) : BUS_SPACE_MAXADDR; mgaw = dmar_maxaddr2mgaw(dmar, domain->iodom.end, !id_mapped); error = domain_set_agaw(domain, mgaw); if (error != 0) goto fail; if (!id_mapped) /* Use all supported address space for remapping. */ domain->iodom.end = 1ULL << (domain->agaw - 1); iommu_gas_init_domain((struct iommu_domain *)domain); if (id_mapped) { if ((dmar->hw_ecap & DMAR_ECAP_PT) == 0) { domain->pgtbl_obj = domain_get_idmap_pgtbl(domain, domain->iodom.end); } domain->iodom.flags |= IOMMU_DOMAIN_IDMAP; } else { error = domain_alloc_pgtbl(domain); if (error != 0) goto fail; /* Disable local apic region access */ error = iommu_gas_reserve_region(iodom, 0xfee00000, 0xfeefffff + 1); if (error != 0) goto fail; } return (domain); fail: dmar_domain_destroy(domain); return (NULL); } static struct dmar_ctx * dmar_ctx_alloc(struct dmar_domain *domain, uint16_t rid) { struct dmar_ctx *ctx; ctx = malloc(sizeof(*ctx), M_DMAR_CTX, M_WAITOK | M_ZERO); ctx->context.domain = (struct iommu_domain *)domain; ctx->context.tag = malloc(sizeof(struct bus_dma_tag_iommu), M_DMAR_CTX, M_WAITOK | M_ZERO); ctx->rid = rid; ctx->refs = 1; return (ctx); } static void dmar_ctx_link(struct dmar_ctx *ctx) { struct dmar_domain *domain; domain = (struct dmar_domain *)ctx->context.domain; IOMMU_ASSERT_LOCKED(domain->iodom.iommu); KASSERT(domain->refs >= domain->ctx_cnt, ("dom %p ref underflow %d %d", domain, domain->refs, domain->ctx_cnt)); domain->refs++; domain->ctx_cnt++; LIST_INSERT_HEAD(&domain->contexts, ctx, link); } static void dmar_ctx_unlink(struct dmar_ctx *ctx) { struct dmar_domain *domain; domain = (struct dmar_domain *)ctx->context.domain; IOMMU_ASSERT_LOCKED(domain->iodom.iommu); KASSERT(domain->refs > 0, ("domain %p ctx dtr refs %d", domain, domain->refs)); KASSERT(domain->ctx_cnt >= domain->refs, ("domain %p ctx dtr refs %d ctx_cnt %d", domain, domain->refs, domain->ctx_cnt)); domain->refs--; domain->ctx_cnt--; LIST_REMOVE(ctx, link); } static void dmar_domain_destroy(struct dmar_domain *domain) { struct dmar_unit *dmar; KASSERT(TAILQ_EMPTY(&domain->iodom.unload_entries), ("unfinished unloads %p", domain)); KASSERT(LIST_EMPTY(&domain->contexts), ("destroying dom %p with contexts", domain)); KASSERT(domain->ctx_cnt == 0, ("destroying dom %p with ctx_cnt %d", domain, domain->ctx_cnt)); KASSERT(domain->refs == 0, ("destroying dom %p with refs %d", domain, domain->refs)); if ((domain->iodom.flags & IOMMU_DOMAIN_GAS_INITED) != 0) { DMAR_DOMAIN_LOCK(domain); iommu_gas_fini_domain((struct iommu_domain *)domain); DMAR_DOMAIN_UNLOCK(domain); } if ((domain->iodom.flags & IOMMU_DOMAIN_PGTBL_INITED) != 0) { if (domain->pgtbl_obj != NULL) DMAR_DOMAIN_PGLOCK(domain); domain_free_pgtbl(domain); } mtx_destroy(&domain->iodom.lock); dmar = (struct dmar_unit *)domain->iodom.iommu; free_unr(dmar->domids, domain->domain); free(domain, M_DMAR_DOMAIN); } static struct dmar_ctx * dmar_get_ctx_for_dev1(struct dmar_unit *dmar, device_t dev, uint16_t rid, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, bool id_mapped, bool rmrr_init) { struct dmar_domain *domain, *domain1; struct dmar_ctx *ctx, *ctx1; + struct iommu_unit *unit; dmar_ctx_entry_t *ctxp; struct sf_buf *sf; int bus, slot, func, error; bool enable; if (dev != NULL) { bus = pci_get_bus(dev); slot = pci_get_slot(dev); func = pci_get_function(dev); } else { bus = PCI_RID2BUS(rid); slot = PCI_RID2SLOT(rid); func = PCI_RID2FUNC(rid); } enable = false; TD_PREP_PINNED_ASSERT; + unit = (struct iommu_unit *)dmar; DMAR_LOCK(dmar); - KASSERT(!dmar_is_buswide_ctx(dmar, bus) || (slot == 0 && func == 0), - ("dmar%d pci%d:%d:%d get_ctx for buswide", dmar->iommu.unit, bus, + KASSERT(!iommu_is_buswide_ctx(unit, bus) || (slot == 0 && func == 0), + ("iommu%d pci%d:%d:%d get_ctx for buswide", dmar->iommu.unit, bus, slot, func)); ctx = dmar_find_ctx_locked(dmar, rid); error = 0; if (ctx == NULL) { /* * Perform the allocations which require sleep or have * higher chance to succeed if the sleep is allowed. */ DMAR_UNLOCK(dmar); dmar_ensure_ctx_page(dmar, PCI_RID2BUS(rid)); domain1 = dmar_domain_alloc(dmar, id_mapped); if (domain1 == NULL) { TD_PINNED_ASSERT; return (NULL); } if (!id_mapped) { error = domain_init_rmrr(domain1, dev, bus, slot, func, dev_domain, dev_busno, dev_path, dev_path_len); if (error != 0) { dmar_domain_destroy(domain1); TD_PINNED_ASSERT; return (NULL); } } ctx1 = dmar_ctx_alloc(domain1, rid); ctxp = dmar_map_ctx_entry(ctx1, &sf); DMAR_LOCK(dmar); /* * Recheck the contexts, other thread might have * already allocated needed one. */ ctx = dmar_find_ctx_locked(dmar, rid); if (ctx == NULL) { domain = domain1; ctx = ctx1; dmar_ctx_link(ctx); ctx->context.tag->owner = dev; device_tag_init(ctx, dev); /* * This is the first activated context for the * DMAR unit. Enable the translation after * everything is set up. */ if (LIST_EMPTY(&dmar->domains)) enable = true; LIST_INSERT_HEAD(&dmar->domains, domain, link); ctx_id_entry_init(ctx, ctxp, false, bus); if (dev != NULL) { device_printf(dev, "dmar%d pci%d:%d:%d:%d rid %x domain %d mgaw %d " "agaw %d %s-mapped\n", dmar->iommu.unit, dmar->segment, bus, slot, func, rid, domain->domain, domain->mgaw, domain->agaw, id_mapped ? "id" : "re"); } dmar_unmap_pgtbl(sf); } else { dmar_unmap_pgtbl(sf); dmar_domain_destroy(domain1); /* Nothing needs to be done to destroy ctx1. */ free(ctx1, M_DMAR_CTX); domain = (struct dmar_domain *)ctx->context.domain; ctx->refs++; /* tag referenced us */ } } else { domain = (struct dmar_domain *)ctx->context.domain; if (ctx->context.tag->owner == NULL) ctx->context.tag->owner = dev; ctx->refs++; /* tag referenced us */ } error = dmar_flush_for_ctx_entry(dmar, enable); if (error != 0) { dmar_free_ctx_locked(dmar, ctx); TD_PINNED_ASSERT; return (NULL); } /* * The dmar lock was potentially dropped between check for the * empty context list and now. Recheck the state of GCMD_TE * to avoid unneeded command. */ if (enable && !rmrr_init && (dmar->hw_gcmd & DMAR_GCMD_TE) == 0) { error = dmar_enable_translation(dmar); if (error == 0) { if (bootverbose) { printf("dmar%d: enabled translation\n", dmar->iommu.unit); } } else { printf("dmar%d: enabling translation failed, " "error %d\n", dmar->iommu.unit, error); dmar_free_ctx_locked(dmar, ctx); TD_PINNED_ASSERT; return (NULL); } } DMAR_UNLOCK(dmar); TD_PINNED_ASSERT; return (ctx); } struct dmar_ctx * dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, uint16_t rid, bool id_mapped, bool rmrr_init) { int dev_domain, dev_path_len, dev_busno; dev_domain = pci_get_domain(dev); dev_path_len = dmar_dev_depth(dev); ACPI_DMAR_PCI_PATH dev_path[dev_path_len]; dmar_dev_path(dev, &dev_busno, dev_path, dev_path_len); return (dmar_get_ctx_for_dev1(dmar, dev, rid, dev_domain, dev_busno, dev_path, dev_path_len, id_mapped, rmrr_init)); } struct dmar_ctx * dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, bool id_mapped, bool rmrr_init) { return (dmar_get_ctx_for_dev1(dmar, NULL, rid, dev_domain, dev_busno, dev_path, dev_path_len, id_mapped, rmrr_init)); } int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx) { struct dmar_unit *dmar; struct dmar_domain *old_domain; dmar_ctx_entry_t *ctxp; struct sf_buf *sf; int error; dmar = domain->dmar; old_domain = (struct dmar_domain *)ctx->context.domain; if (domain == old_domain) return (0); KASSERT(old_domain->iodom.iommu == domain->iodom.iommu, ("domain %p %u moving between dmars %u %u", domain, domain->domain, old_domain->iodom.iommu->unit, domain->iodom.iommu->unit)); TD_PREP_PINNED_ASSERT; ctxp = dmar_map_ctx_entry(ctx, &sf); DMAR_LOCK(dmar); dmar_ctx_unlink(ctx); ctx->context.domain = &domain->iodom; dmar_ctx_link(ctx); ctx_id_entry_init(ctx, ctxp, true, PCI_BUSMAX + 100); dmar_unmap_pgtbl(sf); error = dmar_flush_for_ctx_entry(dmar, true); /* If flush failed, rolling back would not work as well. */ printf("dmar%d rid %x domain %d->%d %s-mapped\n", dmar->iommu.unit, ctx->rid, old_domain->domain, domain->domain, (domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0 ? "id" : "re"); dmar_unref_domain_locked(dmar, old_domain); TD_PINNED_ASSERT; return (error); } static void dmar_unref_domain_locked(struct dmar_unit *dmar, struct dmar_domain *domain) { DMAR_ASSERT_LOCKED(dmar); KASSERT(domain->refs >= 1, ("dmar %d domain %p refs %u", dmar->iommu.unit, domain, domain->refs)); KASSERT(domain->refs > domain->ctx_cnt, ("dmar %d domain %p refs %d ctx_cnt %d", dmar->iommu.unit, domain, domain->refs, domain->ctx_cnt)); if (domain->refs > 1) { domain->refs--; DMAR_UNLOCK(dmar); return; } KASSERT((domain->iodom.flags & IOMMU_DOMAIN_RMRR) == 0, ("lost ref on RMRR domain %p", domain)); LIST_REMOVE(domain, link); DMAR_UNLOCK(dmar); taskqueue_drain(dmar->iommu.delayed_taskqueue, &domain->iodom.unload_task); dmar_domain_destroy(domain); } void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx) { struct sf_buf *sf; dmar_ctx_entry_t *ctxp; struct dmar_domain *domain; DMAR_ASSERT_LOCKED(dmar); KASSERT(ctx->refs >= 1, ("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs)); /* * If our reference is not last, only the dereference should * be performed. */ if (ctx->refs > 1) { ctx->refs--; DMAR_UNLOCK(dmar); return; } KASSERT((ctx->context.flags & IOMMU_CTX_DISABLED) == 0, ("lost ref on disabled ctx %p", ctx)); /* * Otherwise, the context entry must be cleared before the * page table is destroyed. The mapping of the context * entries page could require sleep, unlock the dmar. */ DMAR_UNLOCK(dmar); TD_PREP_PINNED_ASSERT; ctxp = dmar_map_ctx_entry(ctx, &sf); DMAR_LOCK(dmar); KASSERT(ctx->refs >= 1, ("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs)); /* * Other thread might have referenced the context, in which * case again only the dereference should be performed. */ if (ctx->refs > 1) { ctx->refs--; DMAR_UNLOCK(dmar); dmar_unmap_pgtbl(sf); TD_PINNED_ASSERT; return; } KASSERT((ctx->context.flags & IOMMU_CTX_DISABLED) == 0, ("lost ref on disabled ctx %p", ctx)); /* * Clear the context pointer and flush the caches. * XXXKIB: cannot do this if any RMRR entries are still present. */ dmar_pte_clear(&ctxp->ctx1); ctxp->ctx2 = 0; dmar_flush_ctx_to_ram(dmar, ctxp); dmar_inv_ctx_glob(dmar); if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0) { if (dmar->qi_enabled) dmar_qi_invalidate_iotlb_glob_locked(dmar); else dmar_inv_iotlb_glob(dmar); } dmar_unmap_pgtbl(sf); domain = (struct dmar_domain *)ctx->context.domain; dmar_ctx_unlink(ctx); free(ctx->context.tag, M_DMAR_CTX); free(ctx, M_DMAR_CTX); dmar_unref_domain_locked(dmar, domain); TD_PINNED_ASSERT; } void dmar_free_ctx(struct dmar_ctx *ctx) { struct dmar_unit *dmar; dmar = (struct dmar_unit *)ctx->context.domain->iommu; DMAR_LOCK(dmar); dmar_free_ctx_locked(dmar, ctx); } /* * Returns with the domain locked. */ struct dmar_ctx * dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid) { struct dmar_domain *domain; struct dmar_ctx *ctx; DMAR_ASSERT_LOCKED(dmar); LIST_FOREACH(domain, &dmar->domains, link) { LIST_FOREACH(ctx, &domain->contexts, link) { if (ctx->rid == rid) return (ctx); } } return (NULL); } void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free) { struct iommu_domain *domain; domain = entry->domain; IOMMU_DOMAIN_LOCK(domain); if ((entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0) iommu_gas_free_region(domain, entry); else iommu_gas_free_space(domain, entry); IOMMU_DOMAIN_UNLOCK(domain); if (free) iommu_gas_free_entry(domain, entry); else entry->flags = 0; } void dmar_domain_unload_entry(struct iommu_map_entry *entry, bool free) { struct dmar_domain *domain; struct dmar_unit *unit; domain = (struct dmar_domain *)entry->domain; unit = (struct dmar_unit *)domain->iodom.iommu; if (unit->qi_enabled) { DMAR_LOCK(unit); dmar_qi_invalidate_locked((struct dmar_domain *)entry->domain, entry->start, entry->end - entry->start, &entry->gseq, true); if (!free) entry->flags |= IOMMU_MAP_ENTRY_QI_NF; TAILQ_INSERT_TAIL(&unit->tlb_flush_entries, entry, dmamap_link); DMAR_UNLOCK(unit); } else { domain_flush_iotlb_sync((struct dmar_domain *)entry->domain, entry->start, entry->end - entry->start); dmar_domain_free_entry(entry, free); } } static bool dmar_domain_unload_emit_wait(struct dmar_domain *domain, struct iommu_map_entry *entry) { if (TAILQ_NEXT(entry, dmamap_link) == NULL) return (true); return (domain->batch_no++ % dmar_batch_coalesce == 0); } void dmar_domain_unload(struct dmar_domain *domain, struct iommu_map_entries_tailq *entries, bool cansleep) { struct dmar_unit *unit; struct iommu_map_entry *entry, *entry1; int error; unit = (struct dmar_unit *)domain->iodom.iommu; TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) { KASSERT((entry->flags & IOMMU_MAP_ENTRY_MAP) != 0, ("not mapped entry %p %p", domain, entry)); error = domain_unmap_buf(domain, entry->start, entry->end - entry->start, cansleep ? IOMMU_PGF_WAITOK : 0); KASSERT(error == 0, ("unmap %p error %d", domain, error)); if (!unit->qi_enabled) { domain_flush_iotlb_sync(domain, entry->start, entry->end - entry->start); TAILQ_REMOVE(entries, entry, dmamap_link); dmar_domain_free_entry(entry, true); } } if (TAILQ_EMPTY(entries)) return; KASSERT(unit->qi_enabled, ("loaded entry left")); DMAR_LOCK(unit); TAILQ_FOREACH(entry, entries, dmamap_link) { dmar_qi_invalidate_locked(domain, entry->start, entry->end - entry->start, &entry->gseq, dmar_domain_unload_emit_wait(domain, entry)); } TAILQ_CONCAT(&unit->tlb_flush_entries, entries, dmamap_link); DMAR_UNLOCK(unit); } static void dmar_domain_unload_task(void *arg, int pending) { struct dmar_domain *domain; struct iommu_map_entries_tailq entries; domain = arg; TAILQ_INIT(&entries); for (;;) { DMAR_DOMAIN_LOCK(domain); TAILQ_SWAP(&domain->iodom.unload_entries, &entries, iommu_map_entry, dmamap_link); DMAR_DOMAIN_UNLOCK(domain); if (TAILQ_EMPTY(&entries)) break; dmar_domain_unload(domain, &entries, true); } } struct iommu_ctx * iommu_get_ctx(struct iommu_unit *iommu, device_t dev, uint16_t rid, bool id_mapped, bool rmrr_init) { struct dmar_unit *dmar; struct dmar_ctx *ret; dmar = (struct dmar_unit *)iommu; ret = dmar_get_ctx_for_dev(dmar, dev, rid, id_mapped, rmrr_init); return ((struct iommu_ctx *)ret); } void iommu_free_ctx_locked(struct iommu_unit *iommu, struct iommu_ctx *context) { struct dmar_unit *dmar; struct dmar_ctx *ctx; dmar = (struct dmar_unit *)iommu; ctx = (struct dmar_ctx *)context; dmar_free_ctx_locked(dmar, ctx); } void iommu_free_ctx(struct iommu_ctx *context) { struct dmar_unit *dmar; struct dmar_ctx *ctx; ctx = (struct dmar_ctx *)context; dmar = (struct dmar_unit *)ctx->context.domain->iommu; dmar_free_ctx(ctx); } void iommu_domain_unload_entry(struct iommu_map_entry *entry, bool free) { dmar_domain_unload_entry(entry, free); } void iommu_domain_unload(struct iommu_domain *iodom, struct iommu_map_entries_tailq *entries, bool cansleep) { struct dmar_domain *domain; domain = (struct dmar_domain *)iodom; dmar_domain_unload(domain, entries, cansleep); } Index: head/sys/x86/iommu/intel_dmar.h =================================================================== --- head/sys/x86/iommu/intel_dmar.h (revision 363649) +++ head/sys/x86/iommu/intel_dmar.h (revision 363650) @@ -1,458 +1,449 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013-2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef __X86_IOMMU_INTEL_DMAR_H #define __X86_IOMMU_INTEL_DMAR_H #include struct dmar_unit; /* * Locking annotations: * (u) - Protected by iommu unit lock * (d) - Protected by domain lock * (c) - Immutable after initialization */ /* * The domain abstraction. Most non-constant members of the domain * are protected by owning dmar unit lock, not by the domain lock. * Most important, the dmar lock protects the contexts list. * * The domain lock protects the address map for the domain, and list * of unload entries delayed. * * Page tables pages and pages content is protected by the vm object * lock pgtbl_obj, which contains the page tables pages. */ struct dmar_domain { struct iommu_domain iodom; int domain; /* (c) DID, written in context entry */ int mgaw; /* (c) Real max address width */ int agaw; /* (c) Adjusted guest address width */ int pglvl; /* (c) The pagelevel */ int awlvl; /* (c) The pagelevel as the bitmask, to set in context entry */ u_int ctx_cnt; /* (u) Number of contexts owned */ u_int refs; /* (u) Refs, including ctx */ struct dmar_unit *dmar; /* (c) */ LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */ LIST_HEAD(, dmar_ctx) contexts; /* (u) */ vm_object_t pgtbl_obj; /* (c) Page table pages */ u_int batch_no; }; struct dmar_ctx { struct iommu_ctx context; uint16_t rid; /* (c) pci RID */ uint64_t last_fault_rec[2]; /* Last fault reported */ LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */ u_int refs; /* (u) References from tags */ }; #define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \ VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj) #define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->iodom.lock) #define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->iodom.lock) #define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED) struct dmar_msi_data { int irq; int irq_rid; struct resource *irq_res; void *intr_handle; int (*handler)(void *); int msi_data_reg; int msi_addr_reg; int msi_uaddr_reg; void (*enable_intr)(struct dmar_unit *); void (*disable_intr)(struct dmar_unit *); const char *name; }; #define DMAR_INTR_FAULT 0 #define DMAR_INTR_QI 1 #define DMAR_INTR_TOTAL 2 struct dmar_unit { struct iommu_unit iommu; device_t dev; uint16_t segment; uint64_t base; /* Resources */ int reg_rid; struct resource *regs; struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; /* Hardware registers cache */ uint32_t hw_ver; uint64_t hw_cap; uint64_t hw_ecap; uint32_t hw_gcmd; /* Data for being a dmar */ LIST_HEAD(, dmar_domain) domains; struct unrhdr *domids; vm_object_t ctx_obj; u_int barrier_flags; /* Fault handler data */ struct mtx fault_lock; uint64_t *fault_log; int fault_log_head; int fault_log_tail; int fault_log_size; struct task fault_task; struct taskqueue *fault_taskqueue; /* QI */ int qi_enabled; vm_offset_t inv_queue; vm_size_t inv_queue_size; uint32_t inv_queue_avail; uint32_t inv_queue_tail; volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait descr completion */ uint64_t inv_waitd_seq_hw_phys; uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ u_int inv_seq_waiters; /* count of waiters for seq */ u_int inv_queue_full; /* informational counter */ /* IR */ int ir_enabled; vm_paddr_t irt_phys; dmar_irte_t *irt; u_int irte_cnt; vmem_t *irtids; /* Delayed freeing of map entries queue processing */ struct iommu_map_entries_tailq tlb_flush_entries; struct task qi_task; struct taskqueue *qi_taskqueue; - - /* - * Bitmap of buses for which context must ignore slot:func, - * duplicating the page table pointer into all context table - * entries. This is a client-controlled quirk to support some - * NTBs. - */ - uint32_t buswide_ctxs[(PCI_BUSMAX + 1) / NBBY / sizeof(uint32_t)]; - }; #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->iommu.lock) #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->iommu.lock) #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED) #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) #define DMAR_X2APIC(dmar) \ (x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0) /* Barrier ids */ #define DMAR_BARRIER_RMRR 0 #define DMAR_BARRIER_USEQ 1 struct dmar_unit *dmar_find(device_t dev, bool verbose); struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid); struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid); u_int dmar_nd2mask(u_int nd); bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); int domain_set_agaw(struct dmar_domain *domain, int mgaw); int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less); vm_pindex_t pglvl_max_pages(int pglvl); int domain_is_sp_lvl(struct dmar_domain *domain, int lvl); iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl); iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl); int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, iommu_gaddr_t *isizep); struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags); void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags); void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags, struct sf_buf **sf); void dmar_unmap_pgtbl(struct sf_buf *sf); int dmar_load_root_entry_ptr(struct dmar_unit *unit); int dmar_inv_ctx_glob(struct dmar_unit *unit); int dmar_inv_iotlb_glob(struct dmar_unit *unit); int dmar_flush_write_bufs(struct dmar_unit *unit); void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst); void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst); void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst); int dmar_enable_translation(struct dmar_unit *unit); int dmar_disable_translation(struct dmar_unit *unit); int dmar_load_irt_ptr(struct dmar_unit *unit); int dmar_enable_ir(struct dmar_unit *unit); int dmar_disable_ir(struct dmar_unit *unit); bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); uint64_t dmar_get_timeout(void); void dmar_update_timeout(uint64_t newval); int dmar_fault_intr(void *arg); void dmar_enable_fault_intr(struct dmar_unit *unit); void dmar_disable_fault_intr(struct dmar_unit *unit); int dmar_init_fault_log(struct dmar_unit *unit); void dmar_fini_fault_log(struct dmar_unit *unit); int dmar_qi_intr(void *arg); void dmar_enable_qi_intr(struct dmar_unit *unit); void dmar_disable_qi_intr(struct dmar_unit *unit); int dmar_init_qi(struct dmar_unit *unit); void dmar_fini_qi(struct dmar_unit *unit); void dmar_qi_invalidate_locked(struct dmar_domain *domain, iommu_gaddr_t start, iommu_gaddr_t size, struct iommu_qi_genseq *psec, bool emit_wait); void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit); void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt); vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain, iommu_gaddr_t maxaddr); void put_idmap_pgtbl(vm_object_t obj); int domain_map_buf(struct iommu_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags); int domain_unmap_buf(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size, int flags); void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size); int domain_alloc_pgtbl(struct dmar_domain *domain); void domain_free_pgtbl(struct dmar_domain *domain); int dmar_dev_depth(device_t child); void dmar_dev_path(device_t child, int *busno, void *path1, int depth); struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, uint16_t rid, bool id_mapped, bool rmrr_init); struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, bool id_mapped, bool rmrr_init); int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx); void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); void dmar_free_ctx(struct dmar_ctx *ctx); struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid); void dmar_domain_unload_entry(struct iommu_map_entry *entry, bool free); void dmar_domain_unload(struct dmar_domain *domain, struct iommu_map_entries_tailq *entries, bool cansleep); void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free); void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, struct iommu_map_entries_tailq *rmrr_entries); int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar); void dmar_quirks_post_ident(struct dmar_unit *dmar); void dmar_quirks_pre_use(struct iommu_unit *dmar); int dmar_init_irt(struct dmar_unit *unit); void dmar_fini_irt(struct dmar_unit *unit); -void dmar_set_buswide_ctx(struct iommu_unit *unit, u_int busno); -bool dmar_is_buswide_ctx(struct dmar_unit *unit, u_int busno); +void iommu_set_buswide_ctx(struct iommu_unit *unit, u_int busno); +bool iommu_is_buswide_ctx(struct iommu_unit *unit, u_int busno); extern iommu_haddr_t dmar_high; extern int haw; extern int dmar_tbl_pagecnt; extern int dmar_batch_coalesce; static inline uint32_t dmar_read4(const struct dmar_unit *unit, int reg) { return (bus_read_4(unit->regs, reg)); } static inline uint64_t dmar_read8(const struct dmar_unit *unit, int reg) { #ifdef __i386__ uint32_t high, low; low = bus_read_4(unit->regs, reg); high = bus_read_4(unit->regs, reg + 4); return (low | ((uint64_t)high << 32)); #else return (bus_read_8(unit->regs, reg)); #endif } static inline void dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) { KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == (unit->hw_gcmd & DMAR_GCMD_TE), ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit, unit->hw_gcmd, val)); bus_write_4(unit->regs, reg, val); } static inline void dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) { KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); #ifdef __i386__ uint32_t high, low; low = val; high = val >> 32; bus_write_4(unit->regs, reg, low); bus_write_4(unit->regs, reg + 4, high); #else bus_write_8(unit->regs, reg, val); #endif } /* * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes * are issued in the correct order. For store, the lower word, * containing the P or R and W bits, is set only after the high word * is written. For clear, the P bit is cleared first, then the high * word is cleared. * * dmar_pte_update updates the pte. For amd64, the update is atomic. * For i386, it first disables the entry by clearing the word * containing the P bit, and then defer to dmar_pte_store. The locked * cmpxchg8b is probably available on any machine having DMAR support, * but interrupt translation table may be mapped uncached. */ static inline void dmar_pte_store1(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; uint32_t hi, lo; hi = val >> 32; lo = val; p = (volatile uint32_t *)dst; *(p + 1) = hi; *p = lo; #else *dst = val; #endif } static inline void dmar_pte_store(volatile uint64_t *dst, uint64_t val) { KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", dst, (uintmax_t)*dst, (uintmax_t)val)); dmar_pte_store1(dst, val); } static inline void dmar_pte_update(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; #endif dmar_pte_store1(dst, val); } static inline void dmar_pte_clear(volatile uint64_t *dst) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; *(p + 1) = 0; #else *dst = 0; #endif } extern struct timespec dmar_hw_timeout; #define DMAR_WAIT_UNTIL(cond) \ { \ struct timespec last, curr; \ bool forever; \ \ if (dmar_hw_timeout.tv_sec == 0 && \ dmar_hw_timeout.tv_nsec == 0) { \ forever = true; \ } else { \ forever = false; \ nanouptime(&curr); \ timespecadd(&curr, &dmar_hw_timeout, &last); \ } \ for (;;) { \ if (cond) { \ error = 0; \ break; \ } \ nanouptime(&curr); \ if (!forever && timespeccmp(&last, &curr, <)) { \ error = ETIMEDOUT; \ break; \ } \ cpu_spinwait(); \ } \ } #ifdef INVARIANTS #define TD_PREP_PINNED_ASSERT \ int old_td_pinned; \ old_td_pinned = curthread->td_pinned #define TD_PINNED_ASSERT \ KASSERT(curthread->td_pinned == old_td_pinned, \ ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ old_td_pinned, __FILE__, __LINE__)) #else #define TD_PREP_PINNED_ASSERT #define TD_PINNED_ASSERT #endif #endif Index: head/sys/x86/iommu/intel_drv.c =================================================================== --- head/sys/x86/iommu/intel_drv.c (revision 363649) +++ head/sys/x86/iommu/intel_drv.c (revision 363650) @@ -1,1363 +1,1360 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013-2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #if defined(__amd64__) #define DEV_APIC #else #include "opt_apic.h" #endif #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_APIC #include "pcib_if.h" #include #include #include #endif #define DMAR_FAULT_IRQ_RID 0 #define DMAR_QI_IRQ_RID 1 #define DMAR_REG_RID 2 static devclass_t dmar_devclass; static device_t *dmar_devs; static int dmar_devcnt; typedef int (*dmar_iter_t)(ACPI_DMAR_HEADER *, void *); static void dmar_iterate_tbl(dmar_iter_t iter, void *arg) { ACPI_TABLE_DMAR *dmartbl; ACPI_DMAR_HEADER *dmarh; char *ptr, *ptrend; ACPI_STATUS status; status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl); if (ACPI_FAILURE(status)) return; ptr = (char *)dmartbl + sizeof(*dmartbl); ptrend = (char *)dmartbl + dmartbl->Header.Length; for (;;) { if (ptr >= ptrend) break; dmarh = (ACPI_DMAR_HEADER *)ptr; if (dmarh->Length <= 0) { printf("dmar_identify: corrupted DMAR table, l %d\n", dmarh->Length); break; } ptr += dmarh->Length; if (!iter(dmarh, arg)) break; } AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl); } struct find_iter_args { int i; ACPI_DMAR_HARDWARE_UNIT *res; }; static int dmar_find_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { struct find_iter_args *fia; if (dmarh->Type != ACPI_DMAR_TYPE_HARDWARE_UNIT) return (1); fia = arg; if (fia->i == 0) { fia->res = (ACPI_DMAR_HARDWARE_UNIT *)dmarh; return (0); } fia->i--; return (1); } static ACPI_DMAR_HARDWARE_UNIT * dmar_find_by_index(int idx) { struct find_iter_args fia; fia.i = idx; fia.res = NULL; dmar_iterate_tbl(dmar_find_iter, &fia); return (fia.res); } static int dmar_count_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { if (dmarh->Type == ACPI_DMAR_TYPE_HARDWARE_UNIT) dmar_devcnt++; return (1); } static int dmar_enable = 0; static void dmar_identify(driver_t *driver, device_t parent) { ACPI_TABLE_DMAR *dmartbl; ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_STATUS status; int i, error; if (acpi_disabled("dmar")) return; TUNABLE_INT_FETCH("hw.dmar.enable", &dmar_enable); if (!dmar_enable) return; status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl); if (ACPI_FAILURE(status)) return; haw = dmartbl->Width + 1; if ((1ULL << (haw + 1)) > BUS_SPACE_MAXADDR) dmar_high = BUS_SPACE_MAXADDR; else dmar_high = 1ULL << (haw + 1); if (bootverbose) { printf("DMAR HAW=%d flags=<%b>\n", dmartbl->Width, (unsigned)dmartbl->Flags, "\020\001INTR_REMAP\002X2APIC_OPT_OUT"); } AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl); dmar_iterate_tbl(dmar_count_iter, NULL); if (dmar_devcnt == 0) return; dmar_devs = malloc(sizeof(device_t) * dmar_devcnt, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < dmar_devcnt; i++) { dmarh = dmar_find_by_index(i); if (dmarh == NULL) { printf("dmar_identify: cannot find HWUNIT %d\n", i); continue; } dmar_devs[i] = BUS_ADD_CHILD(parent, 1, "dmar", i); if (dmar_devs[i] == NULL) { printf("dmar_identify: cannot create instance %d\n", i); continue; } error = bus_set_resource(dmar_devs[i], SYS_RES_MEMORY, DMAR_REG_RID, dmarh->Address, PAGE_SIZE); if (error != 0) { printf( "dmar%d: unable to alloc register window at 0x%08jx: error %d\n", i, (uintmax_t)dmarh->Address, error); device_delete_child(parent, dmar_devs[i]); dmar_devs[i] = NULL; } } } static int dmar_probe(device_t dev) { if (acpi_get_handle(dev) != NULL) return (ENXIO); device_set_desc(dev, "DMA remap"); return (BUS_PROBE_NOWILDCARD); } static void dmar_release_intr(device_t dev, struct dmar_unit *unit, int idx) { struct dmar_msi_data *dmd; dmd = &unit->intrs[idx]; if (dmd->irq == -1) return; bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle); bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res); bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid); PCIB_RELEASE_MSIX(device_get_parent(device_get_parent(dev)), dev, dmd->irq); dmd->irq = -1; } static void dmar_release_resources(device_t dev, struct dmar_unit *unit) { int i; iommu_fini_busdma(&unit->iommu); dmar_fini_irt(unit); dmar_fini_qi(unit); dmar_fini_fault_log(unit); for (i = 0; i < DMAR_INTR_TOTAL; i++) dmar_release_intr(dev, unit, i); if (unit->regs != NULL) { bus_deactivate_resource(dev, SYS_RES_MEMORY, unit->reg_rid, unit->regs); bus_release_resource(dev, SYS_RES_MEMORY, unit->reg_rid, unit->regs); unit->regs = NULL; } if (unit->domids != NULL) { delete_unrhdr(unit->domids); unit->domids = NULL; } if (unit->ctx_obj != NULL) { vm_object_deallocate(unit->ctx_obj); unit->ctx_obj = NULL; } } static int dmar_alloc_irq(device_t dev, struct dmar_unit *unit, int idx) { device_t pcib; struct dmar_msi_data *dmd; uint64_t msi_addr; uint32_t msi_data; int error; dmd = &unit->intrs[idx]; pcib = device_get_parent(device_get_parent(dev)); /* Really not pcib */ error = PCIB_ALLOC_MSIX(pcib, dev, &dmd->irq); if (error != 0) { device_printf(dev, "cannot allocate %s interrupt, %d\n", dmd->name, error); goto err1; } error = bus_set_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq, 1); if (error != 0) { device_printf(dev, "cannot set %s interrupt resource, %d\n", dmd->name, error); goto err2; } dmd->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &dmd->irq_rid, RF_ACTIVE); if (dmd->irq_res == NULL) { device_printf(dev, "cannot allocate resource for %s interrupt\n", dmd->name); error = ENXIO; goto err3; } error = bus_setup_intr(dev, dmd->irq_res, INTR_TYPE_MISC, dmd->handler, NULL, unit, &dmd->intr_handle); if (error != 0) { device_printf(dev, "cannot setup %s interrupt, %d\n", dmd->name, error); goto err4; } bus_describe_intr(dev, dmd->irq_res, dmd->intr_handle, "%s", dmd->name); error = PCIB_MAP_MSI(pcib, dev, dmd->irq, &msi_addr, &msi_data); if (error != 0) { device_printf(dev, "cannot map %s interrupt, %d\n", dmd->name, error); goto err5; } dmar_write4(unit, dmd->msi_data_reg, msi_data); dmar_write4(unit, dmd->msi_addr_reg, msi_addr); /* Only for xAPIC mode */ dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32); return (0); err5: bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle); err4: bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res); err3: bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid); err2: PCIB_RELEASE_MSIX(pcib, dev, dmd->irq); dmd->irq = -1; err1: return (error); } #ifdef DEV_APIC static int dmar_remap_intr(device_t dev, device_t child, u_int irq) { struct dmar_unit *unit; struct dmar_msi_data *dmd; uint64_t msi_addr; uint32_t msi_data; int i, error; unit = device_get_softc(dev); for (i = 0; i < DMAR_INTR_TOTAL; i++) { dmd = &unit->intrs[i]; if (irq == dmd->irq) { error = PCIB_MAP_MSI(device_get_parent( device_get_parent(dev)), dev, irq, &msi_addr, &msi_data); if (error != 0) return (error); DMAR_LOCK(unit); (dmd->disable_intr)(unit); dmar_write4(unit, dmd->msi_data_reg, msi_data); dmar_write4(unit, dmd->msi_addr_reg, msi_addr); dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32); (dmd->enable_intr)(unit); DMAR_UNLOCK(unit); return (0); } } return (ENOENT); } #endif static void dmar_print_caps(device_t dev, struct dmar_unit *unit, ACPI_DMAR_HARDWARE_UNIT *dmaru) { uint32_t caphi, ecaphi; device_printf(dev, "regs@0x%08jx, ver=%d.%d, seg=%d, flags=<%b>\n", (uintmax_t)dmaru->Address, DMAR_MAJOR_VER(unit->hw_ver), DMAR_MINOR_VER(unit->hw_ver), dmaru->Segment, dmaru->Flags, "\020\001INCLUDE_ALL_PCI"); caphi = unit->hw_cap >> 32; device_printf(dev, "cap=%b,", (u_int)unit->hw_cap, "\020\004AFL\005WBF\006PLMR\007PHMR\010CM\027ZLR\030ISOCH"); printf("%b, ", caphi, "\020\010PSI\027DWD\030DRD\031FL1GP\034PSI"); printf("ndoms=%d, sagaw=%d, mgaw=%d, fro=%d, nfr=%d, superp=%d", DMAR_CAP_ND(unit->hw_cap), DMAR_CAP_SAGAW(unit->hw_cap), DMAR_CAP_MGAW(unit->hw_cap), DMAR_CAP_FRO(unit->hw_cap), DMAR_CAP_NFR(unit->hw_cap), DMAR_CAP_SPS(unit->hw_cap)); if ((unit->hw_cap & DMAR_CAP_PSI) != 0) printf(", mamv=%d", DMAR_CAP_MAMV(unit->hw_cap)); printf("\n"); ecaphi = unit->hw_ecap >> 32; device_printf(dev, "ecap=%b,", (u_int)unit->hw_ecap, "\020\001C\002QI\003DI\004IR\005EIM\007PT\010SC\031ECS\032MTS" "\033NEST\034DIS\035PASID\036PRS\037ERS\040SRS"); printf("%b, ", ecaphi, "\020\002NWFS\003EAFS"); printf("mhmw=%d, iro=%d\n", DMAR_ECAP_MHMV(unit->hw_ecap), DMAR_ECAP_IRO(unit->hw_ecap)); } static int dmar_attach(device_t dev) { struct dmar_unit *unit; ACPI_DMAR_HARDWARE_UNIT *dmaru; uint64_t timeout; int i, error; unit = device_get_softc(dev); unit->dev = dev; unit->iommu.unit = device_get_unit(dev); dmaru = dmar_find_by_index(unit->iommu.unit); if (dmaru == NULL) return (EINVAL); unit->segment = dmaru->Segment; unit->base = dmaru->Address; unit->reg_rid = DMAR_REG_RID; unit->regs = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &unit->reg_rid, RF_ACTIVE); if (unit->regs == NULL) { device_printf(dev, "cannot allocate register window\n"); return (ENOMEM); } unit->hw_ver = dmar_read4(unit, DMAR_VER_REG); unit->hw_cap = dmar_read8(unit, DMAR_CAP_REG); unit->hw_ecap = dmar_read8(unit, DMAR_ECAP_REG); if (bootverbose) dmar_print_caps(dev, unit, dmaru); dmar_quirks_post_ident(unit); timeout = dmar_get_timeout(); TUNABLE_UINT64_FETCH("hw.dmar.timeout", &timeout); dmar_update_timeout(timeout); for (i = 0; i < DMAR_INTR_TOTAL; i++) unit->intrs[i].irq = -1; unit->intrs[DMAR_INTR_FAULT].name = "fault"; unit->intrs[DMAR_INTR_FAULT].irq_rid = DMAR_FAULT_IRQ_RID; unit->intrs[DMAR_INTR_FAULT].handler = dmar_fault_intr; unit->intrs[DMAR_INTR_FAULT].msi_data_reg = DMAR_FEDATA_REG; unit->intrs[DMAR_INTR_FAULT].msi_addr_reg = DMAR_FEADDR_REG; unit->intrs[DMAR_INTR_FAULT].msi_uaddr_reg = DMAR_FEUADDR_REG; unit->intrs[DMAR_INTR_FAULT].enable_intr = dmar_enable_fault_intr; unit->intrs[DMAR_INTR_FAULT].disable_intr = dmar_disable_fault_intr; error = dmar_alloc_irq(dev, unit, DMAR_INTR_FAULT); if (error != 0) { dmar_release_resources(dev, unit); return (error); } if (DMAR_HAS_QI(unit)) { unit->intrs[DMAR_INTR_QI].name = "qi"; unit->intrs[DMAR_INTR_QI].irq_rid = DMAR_QI_IRQ_RID; unit->intrs[DMAR_INTR_QI].handler = dmar_qi_intr; unit->intrs[DMAR_INTR_QI].msi_data_reg = DMAR_IEDATA_REG; unit->intrs[DMAR_INTR_QI].msi_addr_reg = DMAR_IEADDR_REG; unit->intrs[DMAR_INTR_QI].msi_uaddr_reg = DMAR_IEUADDR_REG; unit->intrs[DMAR_INTR_QI].enable_intr = dmar_enable_qi_intr; unit->intrs[DMAR_INTR_QI].disable_intr = dmar_disable_qi_intr; error = dmar_alloc_irq(dev, unit, DMAR_INTR_QI); if (error != 0) { dmar_release_resources(dev, unit); return (error); } } mtx_init(&unit->iommu.lock, "dmarhw", NULL, MTX_DEF); unit->domids = new_unrhdr(0, dmar_nd2mask(DMAR_CAP_ND(unit->hw_cap)), &unit->iommu.lock); LIST_INIT(&unit->domains); /* * 9.2 "Context Entry": * When Caching Mode (CM) field is reported as Set, the * domain-id value of zero is architecturally reserved. * Software must not use domain-id value of zero * when CM is Set. */ if ((unit->hw_cap & DMAR_CAP_CM) != 0) alloc_unr_specific(unit->domids, 0); unit->ctx_obj = vm_pager_allocate(OBJT_PHYS, NULL, IDX_TO_OFF(1 + DMAR_CTX_CNT), 0, 0, NULL); /* * Allocate and load the root entry table pointer. Enable the * address translation after the required invalidations are * done. */ dmar_pgalloc(unit->ctx_obj, 0, IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO); DMAR_LOCK(unit); error = dmar_load_root_entry_ptr(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } error = dmar_inv_ctx_glob(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } if ((unit->hw_ecap & DMAR_ECAP_DI) != 0) { error = dmar_inv_iotlb_glob(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } } DMAR_UNLOCK(unit); error = dmar_init_fault_log(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = dmar_init_qi(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = dmar_init_irt(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = iommu_init_busdma(&unit->iommu); if (error != 0) { dmar_release_resources(dev, unit); return (error); } #ifdef NOTYET DMAR_LOCK(unit); error = dmar_enable_translation(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } DMAR_UNLOCK(unit); #endif return (0); } static int dmar_detach(device_t dev) { return (EBUSY); } static int dmar_suspend(device_t dev) { return (0); } static int dmar_resume(device_t dev) { /* XXXKIB */ return (0); } static device_method_t dmar_methods[] = { DEVMETHOD(device_identify, dmar_identify), DEVMETHOD(device_probe, dmar_probe), DEVMETHOD(device_attach, dmar_attach), DEVMETHOD(device_detach, dmar_detach), DEVMETHOD(device_suspend, dmar_suspend), DEVMETHOD(device_resume, dmar_resume), #ifdef DEV_APIC DEVMETHOD(bus_remap_intr, dmar_remap_intr), #endif DEVMETHOD_END }; static driver_t dmar_driver = { "dmar", dmar_methods, sizeof(struct dmar_unit), }; DRIVER_MODULE(dmar, acpi, dmar_driver, dmar_devclass, 0, 0); MODULE_DEPEND(dmar, acpi, 1, 1, 1); void -dmar_set_buswide_ctx(struct iommu_unit *unit, u_int busno) +iommu_set_buswide_ctx(struct iommu_unit *unit, u_int busno) { - struct dmar_unit *dmar; - dmar = (struct dmar_unit *)unit; - MPASS(busno <= PCI_BUSMAX); - DMAR_LOCK(dmar); - dmar->buswide_ctxs[busno / NBBY / sizeof(uint32_t)] |= + IOMMU_LOCK(unit); + unit->buswide_ctxs[busno / NBBY / sizeof(uint32_t)] |= 1 << (busno % (NBBY * sizeof(uint32_t))); - DMAR_UNLOCK(dmar); + IOMMU_UNLOCK(unit); } bool -dmar_is_buswide_ctx(struct dmar_unit *unit, u_int busno) +iommu_is_buswide_ctx(struct iommu_unit *unit, u_int busno) { MPASS(busno <= PCI_BUSMAX); return ((unit->buswide_ctxs[busno / NBBY / sizeof(uint32_t)] & (1U << (busno % (NBBY * sizeof(uint32_t))))) != 0); } static void dmar_print_path(int busno, int depth, const ACPI_DMAR_PCI_PATH *path) { int i; printf("[%d, ", busno); for (i = 0; i < depth; i++) { if (i != 0) printf(", "); printf("(%d, %d)", path[i].Device, path[i].Function); } printf("]"); } int dmar_dev_depth(device_t child) { devclass_t pci_class; device_t bus, pcib; int depth; pci_class = devclass_find("pci"); for (depth = 1; ; depth++) { bus = device_get_parent(child); pcib = device_get_parent(bus); if (device_get_devclass(device_get_parent(pcib)) != pci_class) return (depth); child = pcib; } } void dmar_dev_path(device_t child, int *busno, void *path1, int depth) { devclass_t pci_class; device_t bus, pcib; ACPI_DMAR_PCI_PATH *path; pci_class = devclass_find("pci"); path = path1; for (depth--; depth != -1; depth--) { path[depth].Device = pci_get_slot(child); path[depth].Function = pci_get_function(child); bus = device_get_parent(child); pcib = device_get_parent(bus); if (device_get_devclass(device_get_parent(pcib)) != pci_class) { /* reached a host bridge */ *busno = pcib_get_bus(bus); return; } child = pcib; } panic("wrong depth"); } static int dmar_match_pathes(int busno1, const ACPI_DMAR_PCI_PATH *path1, int depth1, int busno2, const ACPI_DMAR_PCI_PATH *path2, int depth2, enum AcpiDmarScopeType scope_type) { int i, depth; if (busno1 != busno2) return (0); if (scope_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && depth1 != depth2) return (0); depth = depth1; if (depth2 < depth) depth = depth2; for (i = 0; i < depth; i++) { if (path1[i].Device != path2[i].Device || path1[i].Function != path2[i].Function) return (0); } return (1); } static int dmar_match_devscope(ACPI_DMAR_DEVICE_SCOPE *devscope, int dev_busno, const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len) { ACPI_DMAR_PCI_PATH *path; int path_len; if (devscope->Length < sizeof(*devscope)) { printf("dmar_match_devscope: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_BRIDGE) return (0); path_len = devscope->Length - sizeof(*devscope); if (path_len % 2 != 0) { printf("dmar_match_devscope: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } path_len /= 2; path = (ACPI_DMAR_PCI_PATH *)(devscope + 1); if (path_len == 0) { printf("dmar_match_devscope: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } return (dmar_match_pathes(devscope->Bus, path, path_len, dev_busno, dev_path, dev_path_len, devscope->EntryType)); } static bool dmar_match_by_path(struct dmar_unit *unit, int dev_domain, int dev_busno, const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len, const char **banner) { ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_DMAR_DEVICE_SCOPE *devscope; char *ptr, *ptrend; int match; dmarh = dmar_find_by_index(unit->iommu.unit); if (dmarh == NULL) return (false); if (dmarh->Segment != dev_domain) return (false); if ((dmarh->Flags & ACPI_DMAR_INCLUDE_ALL) != 0) { if (banner != NULL) *banner = "INCLUDE_ALL"; return (true); } ptr = (char *)dmarh + sizeof(*dmarh); ptrend = (char *)dmarh + dmarh->Header.Length; while (ptr < ptrend) { devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; match = dmar_match_devscope(devscope, dev_busno, dev_path, dev_path_len); if (match == -1) return (false); if (match == 1) { if (banner != NULL) *banner = "specific match"; return (true); } } return (false); } static struct dmar_unit * dmar_find_by_scope(int dev_domain, int dev_busno, const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len) { struct dmar_unit *unit; int i; for (i = 0; i < dmar_devcnt; i++) { if (dmar_devs[i] == NULL) continue; unit = device_get_softc(dmar_devs[i]); if (dmar_match_by_path(unit, dev_domain, dev_busno, dev_path, dev_path_len, NULL)) return (unit); } return (NULL); } struct dmar_unit * dmar_find(device_t dev, bool verbose) { device_t dmar_dev; struct dmar_unit *unit; const char *banner; int i, dev_domain, dev_busno, dev_path_len; /* * This function can only handle PCI(e) devices. */ if (device_get_devclass(device_get_parent(dev)) != devclass_find("pci")) return (NULL); dmar_dev = NULL; dev_domain = pci_get_domain(dev); dev_path_len = dmar_dev_depth(dev); ACPI_DMAR_PCI_PATH dev_path[dev_path_len]; dmar_dev_path(dev, &dev_busno, dev_path, dev_path_len); banner = ""; for (i = 0; i < dmar_devcnt; i++) { if (dmar_devs[i] == NULL) continue; unit = device_get_softc(dmar_devs[i]); if (dmar_match_by_path(unit, dev_domain, dev_busno, dev_path, dev_path_len, &banner)) break; } if (i == dmar_devcnt) return (NULL); if (verbose) { device_printf(dev, "pci%d:%d:%d:%d matched dmar%d by %s", dev_domain, pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), unit->iommu.unit, banner); printf(" scope path "); dmar_print_path(dev_busno, dev_path_len, dev_path); printf("\n"); } return (unit); } static struct dmar_unit * dmar_find_nonpci(u_int id, u_int entry_type, uint16_t *rid) { device_t dmar_dev; struct dmar_unit *unit; ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_DMAR_DEVICE_SCOPE *devscope; ACPI_DMAR_PCI_PATH *path; char *ptr, *ptrend; #ifdef DEV_APIC int error; #endif int i; for (i = 0; i < dmar_devcnt; i++) { dmar_dev = dmar_devs[i]; if (dmar_dev == NULL) continue; unit = (struct dmar_unit *)device_get_softc(dmar_dev); dmarh = dmar_find_by_index(i); if (dmarh == NULL) continue; ptr = (char *)dmarh + sizeof(*dmarh); ptrend = (char *)dmarh + dmarh->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; if (devscope->EntryType != entry_type) continue; if (devscope->EnumerationId != id) continue; #ifdef DEV_APIC if (entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) { error = ioapic_get_rid(id, rid); /* * If our IOAPIC has PCI bindings then * use the PCI device rid. */ if (error == 0) return (unit); } #endif if (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE) == 2) { if (rid != NULL) { path = (ACPI_DMAR_PCI_PATH *) (devscope + 1); *rid = PCI_RID(devscope->Bus, path->Device, path->Function); } return (unit); } printf( "dmar_find_nonpci: id %d type %d path length != 2\n", id, entry_type); break; } } return (NULL); } struct dmar_unit * dmar_find_hpet(device_t dev, uint16_t *rid) { return (dmar_find_nonpci(hpet_get_uid(dev), ACPI_DMAR_SCOPE_TYPE_HPET, rid)); } struct dmar_unit * dmar_find_ioapic(u_int apic_id, uint16_t *rid) { return (dmar_find_nonpci(apic_id, ACPI_DMAR_SCOPE_TYPE_IOAPIC, rid)); } struct rmrr_iter_args { struct dmar_domain *domain; int dev_domain; int dev_busno; const ACPI_DMAR_PCI_PATH *dev_path; int dev_path_len; struct iommu_map_entries_tailq *rmrr_entries; }; static int dmar_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { struct rmrr_iter_args *ria; ACPI_DMAR_RESERVED_MEMORY *resmem; ACPI_DMAR_DEVICE_SCOPE *devscope; struct iommu_map_entry *entry; char *ptr, *ptrend; int match; if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY) return (1); ria = arg; resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh; if (resmem->Segment != ria->dev_domain) return (1); ptr = (char *)resmem + sizeof(*resmem); ptrend = (char *)resmem + resmem->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; match = dmar_match_devscope(devscope, ria->dev_busno, ria->dev_path, ria->dev_path_len); if (match == 1) { entry = iommu_gas_alloc_entry( (struct iommu_domain *)ria->domain, IOMMU_PGF_WAITOK); entry->start = resmem->BaseAddress; /* The RMRR entry end address is inclusive. */ entry->end = resmem->EndAddress; TAILQ_INSERT_TAIL(ria->rmrr_entries, entry, unroll_link); } } return (1); } void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, struct iommu_map_entries_tailq *rmrr_entries) { struct rmrr_iter_args ria; ria.domain = domain; ria.dev_domain = dev_domain; ria.dev_busno = dev_busno; ria.dev_path = (const ACPI_DMAR_PCI_PATH *)dev_path; ria.dev_path_len = dev_path_len; ria.rmrr_entries = rmrr_entries; dmar_iterate_tbl(dmar_rmrr_iter, &ria); } struct inst_rmrr_iter_args { struct dmar_unit *dmar; }; static device_t dmar_path_dev(int segment, int path_len, int busno, const ACPI_DMAR_PCI_PATH *path, uint16_t *rid) { device_t dev; int i; dev = NULL; for (i = 0; i < path_len; i++) { dev = pci_find_dbsf(segment, busno, path->Device, path->Function); if (i != path_len - 1) { busno = pci_cfgregread(busno, path->Device, path->Function, PCIR_SECBUS_1, 1); path++; } } *rid = PCI_RID(busno, path->Device, path->Function); return (dev); } static int dmar_inst_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { const ACPI_DMAR_RESERVED_MEMORY *resmem; const ACPI_DMAR_DEVICE_SCOPE *devscope; struct inst_rmrr_iter_args *iria; const char *ptr, *ptrend; device_t dev; struct dmar_unit *unit; int dev_path_len; uint16_t rid; iria = arg; if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY) return (1); resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh; if (resmem->Segment != iria->dmar->segment) return (1); ptr = (const char *)resmem + sizeof(*resmem); ptrend = (const char *)resmem + resmem->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (const ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; /* XXXKIB bridge */ if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT) continue; rid = 0; dev_path_len = (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE)) / 2; dev = dmar_path_dev(resmem->Segment, dev_path_len, devscope->Bus, (const ACPI_DMAR_PCI_PATH *)(devscope + 1), &rid); if (dev == NULL) { if (bootverbose) { printf("dmar%d no dev found for RMRR " "[%#jx, %#jx] rid %#x scope path ", iria->dmar->iommu.unit, (uintmax_t)resmem->BaseAddress, (uintmax_t)resmem->EndAddress, rid); dmar_print_path(devscope->Bus, dev_path_len, (const ACPI_DMAR_PCI_PATH *)(devscope + 1)); printf("\n"); } unit = dmar_find_by_scope(resmem->Segment, devscope->Bus, (const ACPI_DMAR_PCI_PATH *)(devscope + 1), dev_path_len); if (iria->dmar != unit) continue; dmar_get_ctx_for_devpath(iria->dmar, rid, resmem->Segment, devscope->Bus, (const ACPI_DMAR_PCI_PATH *)(devscope + 1), dev_path_len, false, true); } else { unit = dmar_find(dev, false); if (iria->dmar != unit) continue; iommu_instantiate_ctx(&(iria)->dmar->iommu, dev, true); } } return (1); } /* * Pre-create all contexts for the DMAR which have RMRR entries. */ int dmar_instantiate_rmrr_ctxs(struct iommu_unit *unit) { struct dmar_unit *dmar; struct inst_rmrr_iter_args iria; int error; dmar = (struct dmar_unit *)unit; if (!dmar_barrier_enter(dmar, DMAR_BARRIER_RMRR)) return (0); error = 0; iria.dmar = dmar; dmar_iterate_tbl(dmar_inst_rmrr_iter, &iria); DMAR_LOCK(dmar); if (!LIST_EMPTY(&dmar->domains)) { KASSERT((dmar->hw_gcmd & DMAR_GCMD_TE) == 0, ("dmar%d: RMRR not handled but translation is already enabled", dmar->iommu.unit)); error = dmar_enable_translation(dmar); if (bootverbose) { if (error == 0) { printf("dmar%d: enabled translation\n", dmar->iommu.unit); } else { printf("dmar%d: enabling translation failed, " "error %d\n", dmar->iommu.unit, error); } } } dmar_barrier_exit(dmar, DMAR_BARRIER_RMRR); return (error); } #ifdef DDB #include #include static void dmar_print_domain_entry(const struct iommu_map_entry *entry) { struct iommu_map_entry *l, *r; db_printf( " start %jx end %jx first %jx last %jx free_down %jx flags %x ", entry->start, entry->end, entry->first, entry->last, entry->free_down, entry->flags); db_printf("left "); l = RB_LEFT(entry, rb_entry); if (l == NULL) db_printf("NULL "); else db_printf("%jx ", l->start); db_printf("right "); r = RB_RIGHT(entry, rb_entry); if (r == NULL) db_printf("NULL"); else db_printf("%jx", r->start); db_printf("\n"); } static void dmar_print_ctx(struct dmar_ctx *ctx) { db_printf( " @%p pci%d:%d:%d refs %d flags %x loads %lu unloads %lu\n", ctx, pci_get_bus(ctx->context.tag->owner), pci_get_slot(ctx->context.tag->owner), pci_get_function(ctx->context.tag->owner), ctx->refs, ctx->context.flags, ctx->context.loads, ctx->context.unloads); } static void dmar_print_domain(struct dmar_domain *domain, bool show_mappings) { struct iommu_domain *iodom; struct iommu_map_entry *entry; struct dmar_ctx *ctx; iodom = (struct iommu_domain *)domain; db_printf( " @%p dom %d mgaw %d agaw %d pglvl %d end %jx refs %d\n" " ctx_cnt %d flags %x pgobj %p map_ents %u\n", domain, domain->domain, domain->mgaw, domain->agaw, domain->pglvl, (uintmax_t)domain->iodom.end, domain->refs, domain->ctx_cnt, domain->iodom.flags, domain->pgtbl_obj, domain->iodom.entries_cnt); if (!LIST_EMPTY(&domain->contexts)) { db_printf(" Contexts:\n"); LIST_FOREACH(ctx, &domain->contexts, link) dmar_print_ctx(ctx); } if (!show_mappings) return; db_printf(" mapped:\n"); RB_FOREACH(entry, iommu_gas_entries_tree, &iodom->rb_root) { dmar_print_domain_entry(entry); if (db_pager_quit) break; } if (db_pager_quit) return; db_printf(" unloading:\n"); TAILQ_FOREACH(entry, &domain->iodom.unload_entries, dmamap_link) { dmar_print_domain_entry(entry); if (db_pager_quit) break; } } DB_FUNC(dmar_domain, db_dmar_print_domain, db_show_table, CS_OWN, NULL) { struct dmar_unit *unit; struct dmar_domain *domain; struct dmar_ctx *ctx; bool show_mappings, valid; int pci_domain, bus, device, function, i, t; db_expr_t radix; valid = false; radix = db_radix; db_radix = 10; t = db_read_token(); if (t == tSLASH) { t = db_read_token(); if (t != tIDENT) { db_printf("Bad modifier\n"); db_radix = radix; db_skip_to_eol(); return; } show_mappings = strchr(db_tok_string, 'm') != NULL; t = db_read_token(); } else { show_mappings = false; } if (t == tNUMBER) { pci_domain = db_tok_number; t = db_read_token(); if (t == tNUMBER) { bus = db_tok_number; t = db_read_token(); if (t == tNUMBER) { device = db_tok_number; t = db_read_token(); if (t == tNUMBER) { function = db_tok_number; valid = true; } } } } db_radix = radix; db_skip_to_eol(); if (!valid) { db_printf("usage: show dmar_domain [/m] " " \n"); return; } for (i = 0; i < dmar_devcnt; i++) { unit = device_get_softc(dmar_devs[i]); LIST_FOREACH(domain, &unit->domains, link) { LIST_FOREACH(ctx, &domain->contexts, link) { if (pci_domain == unit->segment && bus == pci_get_bus(ctx->context.tag->owner) && device == pci_get_slot(ctx->context.tag->owner) && function == pci_get_function(ctx->context.tag->owner)) { dmar_print_domain(domain, show_mappings); goto out; } } } } out:; } static void dmar_print_one(int idx, bool show_domains, bool show_mappings) { struct dmar_unit *unit; struct dmar_domain *domain; int i, frir; unit = device_get_softc(dmar_devs[idx]); db_printf("dmar%d at %p, root at 0x%jx, ver 0x%x\n", unit->iommu.unit, unit, dmar_read8(unit, DMAR_RTADDR_REG), dmar_read4(unit, DMAR_VER_REG)); db_printf("cap 0x%jx ecap 0x%jx gsts 0x%x fsts 0x%x fectl 0x%x\n", (uintmax_t)dmar_read8(unit, DMAR_CAP_REG), (uintmax_t)dmar_read8(unit, DMAR_ECAP_REG), dmar_read4(unit, DMAR_GSTS_REG), dmar_read4(unit, DMAR_FSTS_REG), dmar_read4(unit, DMAR_FECTL_REG)); if (unit->ir_enabled) { db_printf("ir is enabled; IRT @%p phys 0x%jx maxcnt %d\n", unit->irt, (uintmax_t)unit->irt_phys, unit->irte_cnt); } db_printf("fed 0x%x fea 0x%x feua 0x%x\n", dmar_read4(unit, DMAR_FEDATA_REG), dmar_read4(unit, DMAR_FEADDR_REG), dmar_read4(unit, DMAR_FEUADDR_REG)); db_printf("primary fault log:\n"); for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) { frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16; db_printf(" %d at 0x%x: %jx %jx\n", i, frir, (uintmax_t)dmar_read8(unit, frir), (uintmax_t)dmar_read8(unit, frir + 8)); } if (DMAR_HAS_QI(unit)) { db_printf("ied 0x%x iea 0x%x ieua 0x%x\n", dmar_read4(unit, DMAR_IEDATA_REG), dmar_read4(unit, DMAR_IEADDR_REG), dmar_read4(unit, DMAR_IEUADDR_REG)); if (unit->qi_enabled) { db_printf("qi is enabled: queue @0x%jx (IQA 0x%jx) " "size 0x%jx\n" " head 0x%x tail 0x%x avail 0x%x status 0x%x ctrl 0x%x\n" " hw compl 0x%x@%p/phys@%jx next seq 0x%x gen 0x%x\n", (uintmax_t)unit->inv_queue, (uintmax_t)dmar_read8(unit, DMAR_IQA_REG), (uintmax_t)unit->inv_queue_size, dmar_read4(unit, DMAR_IQH_REG), dmar_read4(unit, DMAR_IQT_REG), unit->inv_queue_avail, dmar_read4(unit, DMAR_ICS_REG), dmar_read4(unit, DMAR_IECTL_REG), unit->inv_waitd_seq_hw, &unit->inv_waitd_seq_hw, (uintmax_t)unit->inv_waitd_seq_hw_phys, unit->inv_waitd_seq, unit->inv_waitd_gen); } else { db_printf("qi is disabled\n"); } } if (show_domains) { db_printf("domains:\n"); LIST_FOREACH(domain, &unit->domains, link) { dmar_print_domain(domain, show_mappings); if (db_pager_quit) break; } } } DB_SHOW_COMMAND(dmar, db_dmar_print) { bool show_domains, show_mappings; show_domains = strchr(modif, 'd') != NULL; show_mappings = strchr(modif, 'm') != NULL; if (!have_addr) { db_printf("usage: show dmar [/d] [/m] index\n"); return; } dmar_print_one((int)addr, show_domains, show_mappings); } DB_SHOW_ALL_COMMAND(dmars, db_show_all_dmars) { int i; bool show_domains, show_mappings; show_domains = strchr(modif, 'd') != NULL; show_mappings = strchr(modif, 'm') != NULL; for (i = 0; i < dmar_devcnt; i++) { dmar_print_one(i, show_domains, show_mappings); if (db_pager_quit) break; } } #endif struct iommu_unit * iommu_find(device_t dev, bool verbose) { struct dmar_unit *dmar; dmar = dmar_find(dev, verbose); return (&dmar->iommu); } Index: head/sys/x86/x86/busdma_machdep.c =================================================================== --- head/sys/x86/x86/busdma_machdep.c (revision 363649) +++ head/sys/x86/x86/busdma_machdep.c (revision 363650) @@ -1,315 +1,315 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, 1998 Justin T. Gibbs. * Copyright (c) 2013 The FreeBSD Foundation * All rights reserved. * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Convenience function for manipulating driver locks from busdma (during * busdma_swi, for example). Drivers that don't provide their own locks * should specify &Giant to dmat->lockfuncarg. Drivers that use their own * non-mutex locking scheme don't have to use this at all. */ void busdma_lock_mutex(void *arg, bus_dma_lock_op_t op) { struct mtx *dmtx; dmtx = (struct mtx *)arg; switch (op) { case BUS_DMA_LOCK: mtx_lock(dmtx); break; case BUS_DMA_UNLOCK: mtx_unlock(dmtx); break; default: panic("Unknown operation 0x%x for busdma_lock_mutex!", op); } } /* * dflt_lock should never get called. It gets put into the dma tag when * lockfunc == NULL, which is only valid if the maps that are associated * with the tag are meant to never be defered. * XXX Should have a way to identify which driver is responsible here. */ void bus_dma_dflt_lock(void *arg, bus_dma_lock_op_t op) { panic("driver error: busdma dflt_lock called"); } /* * Return true if a match is made. * * To find a match walk the chain of bus_dma_tag_t's looking for 'paddr'. * * If paddr is within the bounds of the dma tag then call the filter callback * to check for a match, if there is no filter callback then assume a match. */ int bus_dma_run_filter(struct bus_dma_tag_common *tc, vm_paddr_t paddr) { int retval; retval = 0; do { if ((paddr >= BUS_SPACE_MAXADDR || (paddr > tc->lowaddr && paddr <= tc->highaddr) || (paddr & (tc->alignment - 1)) != 0) && (tc->filter == NULL || (*tc->filter)(tc->filterarg, paddr) != 0)) retval = 1; tc = tc->parent; } while (retval == 0 && tc != NULL); return (retval); } int common_bus_dma_tag_create(struct bus_dma_tag_common *parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, size_t sz, void **dmat) { void *newtag; struct bus_dma_tag_common *common; KASSERT(sz >= sizeof(struct bus_dma_tag_common), ("sz")); /* Basic sanity checking */ if (boundary != 0 && boundary < maxsegsz) maxsegsz = boundary; if (maxsegsz == 0) return (EINVAL); /* Return a NULL tag on failure */ *dmat = NULL; newtag = malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT); if (newtag == NULL) { CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, 0, ENOMEM); return (ENOMEM); } common = newtag; common->impl = &bus_dma_bounce_impl; common->parent = parent; common->alignment = alignment; common->boundary = boundary; common->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1); common->highaddr = trunc_page((vm_paddr_t)highaddr) + (PAGE_SIZE - 1); common->filter = filter; common->filterarg = filterarg; common->maxsize = maxsize; common->nsegments = nsegments; common->maxsegsz = maxsegsz; common->flags = flags; common->ref_count = 1; /* Count ourself */ if (lockfunc != NULL) { common->lockfunc = lockfunc; common->lockfuncarg = lockfuncarg; } else { common->lockfunc = bus_dma_dflt_lock; common->lockfuncarg = NULL; } /* Take into account any restrictions imposed by our parent tag */ if (parent != NULL) { common->impl = parent->impl; common->lowaddr = MIN(parent->lowaddr, common->lowaddr); common->highaddr = MAX(parent->highaddr, common->highaddr); if (common->boundary == 0) common->boundary = parent->boundary; else if (parent->boundary != 0) { common->boundary = MIN(parent->boundary, common->boundary); } if (common->filter == NULL) { /* * Short circuit looking at our parent directly * since we have encapsulated all of its information */ common->filter = parent->filter; common->filterarg = parent->filterarg; common->parent = parent->parent; } common->domain = parent->domain; atomic_add_int(&parent->ref_count, 1); } common->domain = vm_phys_domain_match(common->domain, 0ul, common->lowaddr); *dmat = common; return (0); } int bus_dma_tag_set_domain(bus_dma_tag_t dmat, int domain) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; domain = vm_phys_domain_match(domain, 0ul, tc->lowaddr); /* Only call the callback if it changes. */ if (domain == tc->domain) return (0); tc->domain = domain; return (tc->impl->tag_set_domain(dmat)); } /* * Allocate a device specific dma_tag. */ int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { struct bus_dma_tag_common *tc; int error; if (parent == NULL) { error = bus_dma_bounce_impl.tag_create(parent, alignment, boundary, lowaddr, highaddr, filter, filterarg, maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg, dmat); } else { tc = (struct bus_dma_tag_common *)parent; error = tc->impl->tag_create(parent, alignment, boundary, lowaddr, highaddr, filter, filterarg, maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg, dmat); } return (error); } void bus_dma_template_init(bus_dma_tag_template_t *t, bus_dma_tag_t parent) { if (t == NULL) return; t->parent = parent; t->alignment = 1; t->boundary = 0; t->lowaddr = t->highaddr = BUS_SPACE_MAXADDR; t->maxsize = t->maxsegsize = BUS_SPACE_MAXSIZE; t->nsegments = BUS_SPACE_UNRESTRICTED; t->lockfunc = NULL; t->lockfuncarg = NULL; t->flags = 0; } int bus_dma_template_tag(bus_dma_tag_template_t *t, bus_dma_tag_t *dmat) { if (t == NULL || dmat == NULL) return (EINVAL); return (bus_dma_tag_create(t->parent, t->alignment, t->boundary, t->lowaddr, t->highaddr, NULL, NULL, t->maxsize, t->nsegments, t->maxsegsize, t->flags, t->lockfunc, t->lockfuncarg, dmat)); } void bus_dma_template_clone(bus_dma_tag_template_t *t, bus_dma_tag_t dmat) { struct bus_dma_tag_common *common; if (t == NULL || dmat == NULL) return; common = (struct bus_dma_tag_common *)dmat; t->parent = (bus_dma_tag_t)common->parent; t->alignment = common->alignment; t->boundary = common->boundary; t->lowaddr = common->lowaddr; t->highaddr = common->highaddr; t->maxsize = common->maxsize; t->nsegments = common->nsegments; t->maxsegsize = common->maxsegsz; t->flags = common->flags; t->lockfunc = common->lockfunc; t->lockfuncarg = common->lockfuncarg; } int bus_dma_tag_destroy(bus_dma_tag_t dmat) { struct bus_dma_tag_common *tc; tc = (struct bus_dma_tag_common *)dmat; return (tc->impl->tag_destroy(dmat)); } #ifndef ACPI_DMAR bool -bus_dma_dmar_set_buswide(device_t dev) +bus_dma_iommu_set_buswide(device_t dev) { return (false); } int -bus_dma_dmar_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map, +bus_dma_iommu_load_ident(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t start, vm_size_t length, int flags) { return (0); } #endif