Index: head/sys/fs/nfsclient/nfs_clvfsops.c =================================================================== --- head/sys/fs/nfsclient/nfs_clvfsops.c (revision 363402) +++ head/sys/fs/nfsclient/nfs_clvfsops.c (revision 363403) @@ -1,2054 +1,2061 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from nfs_vfsops.c 8.12 (Berkeley) 5/20/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_bootp.h" #include "opt_nfsroot.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include FEATURE(nfscl, "NFSv4 client"); extern int nfscl_ticks; extern struct timeval nfsboottime; extern int nfsrv_useacl; extern int nfscl_debuglevel; extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; extern struct mtx ncl_iod_mutex; NFSCLSTATEMUTEX; extern struct mtx nfsrv_dslock_mtx; MALLOC_DEFINE(M_NEWNFSREQ, "newnfsclient_req", "NFS request header"); MALLOC_DEFINE(M_NEWNFSMNT, "newnfsmnt", "NFS mount struct"); SYSCTL_DECL(_vfs_nfs); static int nfs_ip_paranoia = 1; SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_ip_paranoia, CTLFLAG_RW, &nfs_ip_paranoia, 0, ""); static int nfs_tprintf_initial_delay = NFS_TPRINTF_INITIAL_DELAY; SYSCTL_INT(_vfs_nfs, NFS_TPRINTF_INITIAL_DELAY, downdelayinitial, CTLFLAG_RW, &nfs_tprintf_initial_delay, 0, ""); /* how long between console messages "nfs server foo not responding" */ static int nfs_tprintf_delay = NFS_TPRINTF_DELAY; SYSCTL_INT(_vfs_nfs, NFS_TPRINTF_DELAY, downdelayinterval, CTLFLAG_RW, &nfs_tprintf_delay, 0, ""); #ifdef NFS_DEBUG int nfs_debug; SYSCTL_INT(_vfs_nfs, OID_AUTO, debug, CTLFLAG_RW, &nfs_debug, 0, "Toggle debug flag"); #endif static int nfs_mountroot(struct mount *); static void nfs_sec_name(char *, int *); static void nfs_decode_args(struct mount *mp, struct nfsmount *nmp, struct nfs_args *argp, const char *, struct ucred *, struct thread *); static int mountnfs(struct nfs_args *, struct mount *, struct sockaddr *, char *, u_char *, int, u_char *, int, u_char *, int, struct vnode **, struct ucred *, struct thread *, int, int, int); static void nfs_getnlminfo(struct vnode *, uint8_t *, size_t *, struct sockaddr_storage *, int *, off_t *, struct timeval *); static vfs_mount_t nfs_mount; static vfs_cmount_t nfs_cmount; static vfs_unmount_t nfs_unmount; static vfs_root_t nfs_root; static vfs_statfs_t nfs_statfs; static vfs_sync_t nfs_sync; static vfs_sysctl_t nfs_sysctl; static vfs_purge_t nfs_purge; /* * nfs vfs operations. */ static struct vfsops nfs_vfsops = { .vfs_init = ncl_init, .vfs_mount = nfs_mount, .vfs_cmount = nfs_cmount, .vfs_root = vfs_cache_root, .vfs_cachedroot = nfs_root, .vfs_statfs = nfs_statfs, .vfs_sync = nfs_sync, .vfs_uninit = ncl_uninit, .vfs_unmount = nfs_unmount, .vfs_sysctl = nfs_sysctl, .vfs_purge = nfs_purge, }; VFS_SET(nfs_vfsops, nfs, VFCF_NETWORK | VFCF_SBDRY); /* So that loader and kldload(2) can find us, wherever we are.. */ MODULE_VERSION(nfs, 1); MODULE_DEPEND(nfs, nfscommon, 1, 1, 1); MODULE_DEPEND(nfs, krpc, 1, 1, 1); MODULE_DEPEND(nfs, nfssvc, 1, 1, 1); /* * This structure is now defined in sys/nfs/nfs_diskless.c so that it * can be shared by both NFS clients. It is declared here so that it * will be defined for kernels built without NFS_ROOT, although it * isn't used in that case. */ #if !defined(NFS_ROOT) struct nfs_diskless nfs_diskless = { { { 0 } } }; struct nfsv3_diskless nfsv3_diskless = { { { 0 } } }; int nfs_diskless_valid = 0; #endif SYSCTL_INT(_vfs_nfs, OID_AUTO, diskless_valid, CTLFLAG_RD, &nfs_diskless_valid, 0, "Has the diskless struct been filled correctly"); SYSCTL_STRING(_vfs_nfs, OID_AUTO, diskless_rootpath, CTLFLAG_RD, nfsv3_diskless.root_hostnam, 0, "Path to nfs root"); SYSCTL_OPAQUE(_vfs_nfs, OID_AUTO, diskless_rootaddr, CTLFLAG_RD, &nfsv3_diskless.root_saddr, sizeof(nfsv3_diskless.root_saddr), "%Ssockaddr_in", "Diskless root nfs address"); void newnfsargs_ntoh(struct nfs_args *); static int nfs_mountdiskless(char *, struct sockaddr_in *, struct nfs_args *, struct thread *, struct vnode **, struct mount *); static void nfs_convert_diskless(void); static void nfs_convert_oargs(struct nfs_args *args, struct onfs_args *oargs); int newnfs_iosize(struct nfsmount *nmp) { int iosize, maxio; /* First, set the upper limit for iosize */ if (nmp->nm_flag & NFSMNT_NFSV4) { maxio = NFS_MAXBSIZE; } else if (nmp->nm_flag & NFSMNT_NFSV3) { if (nmp->nm_sotype == SOCK_DGRAM) maxio = NFS_MAXDGRAMDATA; else maxio = NFS_MAXBSIZE; } else { maxio = NFS_V2MAXDATA; } if (nmp->nm_rsize > maxio || nmp->nm_rsize == 0) nmp->nm_rsize = maxio; if (nmp->nm_rsize > NFS_MAXBSIZE) nmp->nm_rsize = NFS_MAXBSIZE; if (nmp->nm_readdirsize > maxio || nmp->nm_readdirsize == 0) nmp->nm_readdirsize = maxio; if (nmp->nm_readdirsize > nmp->nm_rsize) nmp->nm_readdirsize = nmp->nm_rsize; if (nmp->nm_wsize > maxio || nmp->nm_wsize == 0) nmp->nm_wsize = maxio; if (nmp->nm_wsize > NFS_MAXBSIZE) nmp->nm_wsize = NFS_MAXBSIZE; /* * Calculate the size used for io buffers. Use the larger * of the two sizes to minimise nfs requests but make sure * that it is at least one VM page to avoid wasting buffer * space. It must also be at least NFS_DIRBLKSIZ, since * that is the buffer size used for directories. */ iosize = imax(nmp->nm_rsize, nmp->nm_wsize); iosize = imax(iosize, PAGE_SIZE); iosize = imax(iosize, NFS_DIRBLKSIZ); nmp->nm_mountp->mnt_stat.f_iosize = iosize; return (iosize); } static void nfs_convert_oargs(struct nfs_args *args, struct onfs_args *oargs) { args->version = NFS_ARGSVERSION; args->addr = oargs->addr; args->addrlen = oargs->addrlen; args->sotype = oargs->sotype; args->proto = oargs->proto; args->fh = oargs->fh; args->fhsize = oargs->fhsize; args->flags = oargs->flags; args->wsize = oargs->wsize; args->rsize = oargs->rsize; args->readdirsize = oargs->readdirsize; args->timeo = oargs->timeo; args->retrans = oargs->retrans; args->readahead = oargs->readahead; args->hostname = oargs->hostname; } static void nfs_convert_diskless(void) { bcopy(&nfs_diskless.myif, &nfsv3_diskless.myif, sizeof(struct ifaliasreq)); bcopy(&nfs_diskless.mygateway, &nfsv3_diskless.mygateway, sizeof(struct sockaddr_in)); nfs_convert_oargs(&nfsv3_diskless.root_args,&nfs_diskless.root_args); if (nfsv3_diskless.root_args.flags & NFSMNT_NFSV3) { nfsv3_diskless.root_fhsize = NFSX_MYFH; bcopy(nfs_diskless.root_fh, nfsv3_diskless.root_fh, NFSX_MYFH); } else { nfsv3_diskless.root_fhsize = NFSX_V2FH; bcopy(nfs_diskless.root_fh, nfsv3_diskless.root_fh, NFSX_V2FH); } bcopy(&nfs_diskless.root_saddr,&nfsv3_diskless.root_saddr, sizeof(struct sockaddr_in)); bcopy(nfs_diskless.root_hostnam, nfsv3_diskless.root_hostnam, MNAMELEN); nfsv3_diskless.root_time = nfs_diskless.root_time; bcopy(nfs_diskless.my_hostnam, nfsv3_diskless.my_hostnam, MAXHOSTNAMELEN); nfs_diskless_valid = 3; } /* * nfs statfs call */ static int nfs_statfs(struct mount *mp, struct statfs *sbp) { struct vnode *vp; struct thread *td; struct nfsmount *nmp = VFSTONFS(mp); struct nfsvattr nfsva; struct nfsfsinfo fs; struct nfsstatfs sb; int error = 0, attrflag, gotfsinfo = 0, ret; struct nfsnode *np; td = curthread; error = vfs_busy(mp, MBF_NOWAIT); if (error) return (error); error = ncl_nget(mp, nmp->nm_fh, nmp->nm_fhsize, &np, LK_EXCLUSIVE); if (error) { vfs_unbusy(mp); return (error); } vp = NFSTOV(np); mtx_lock(&nmp->nm_mtx); if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) { mtx_unlock(&nmp->nm_mtx); error = nfsrpc_fsinfo(vp, &fs, td->td_ucred, td, &nfsva, &attrflag, NULL); if (!error) gotfsinfo = 1; } else mtx_unlock(&nmp->nm_mtx); if (!error) error = nfsrpc_statfs(vp, &sb, &fs, td->td_ucred, td, &nfsva, &attrflag, NULL); if (error != 0) NFSCL_DEBUG(2, "statfs=%d\n", error); if (attrflag == 0) { ret = nfsrpc_getattrnovp(nmp, nmp->nm_fh, nmp->nm_fhsize, 1, td->td_ucred, td, &nfsva, NULL, NULL); if (ret) { /* * Just set default values to get things going. */ NFSBZERO((caddr_t)&nfsva, sizeof (struct nfsvattr)); nfsva.na_vattr.va_type = VDIR; nfsva.na_vattr.va_mode = 0777; nfsva.na_vattr.va_nlink = 100; nfsva.na_vattr.va_uid = (uid_t)0; nfsva.na_vattr.va_gid = (gid_t)0; nfsva.na_vattr.va_fileid = 2; nfsva.na_vattr.va_gen = 1; nfsva.na_vattr.va_blocksize = NFS_FABLKSIZE; nfsva.na_vattr.va_size = 512 * 1024; } } (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); if (!error) { mtx_lock(&nmp->nm_mtx); if (gotfsinfo || (nmp->nm_flag & NFSMNT_NFSV4)) nfscl_loadfsinfo(nmp, &fs); nfscl_loadsbinfo(nmp, &sb, sbp); sbp->f_iosize = newnfs_iosize(nmp); mtx_unlock(&nmp->nm_mtx); if (sbp != &mp->mnt_stat) { bcopy(mp->mnt_stat.f_mntonname, sbp->f_mntonname, MNAMELEN); bcopy(mp->mnt_stat.f_mntfromname, sbp->f_mntfromname, MNAMELEN); } strncpy(&sbp->f_fstypename[0], mp->mnt_vfc->vfc_name, MFSNAMELEN); } else if (NFS_ISV4(vp)) { error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0); } vput(vp); vfs_unbusy(mp); return (error); } /* * nfs version 3 fsinfo rpc call */ int ncl_fsinfo(struct nfsmount *nmp, struct vnode *vp, struct ucred *cred, struct thread *td) { struct nfsfsinfo fs; struct nfsvattr nfsva; int error, attrflag; error = nfsrpc_fsinfo(vp, &fs, cred, td, &nfsva, &attrflag, NULL); if (!error) { if (attrflag) (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1); mtx_lock(&nmp->nm_mtx); nfscl_loadfsinfo(nmp, &fs); mtx_unlock(&nmp->nm_mtx); } return (error); } /* * Mount a remote root fs via. nfs. This depends on the info in the * nfs_diskless structure that has been filled in properly by some primary * bootstrap. * It goes something like this: * - do enough of "ifconfig" by calling ifioctl() so that the system * can talk to the server * - If nfs_diskless.mygateway is filled in, use that address as * a default gateway. * - build the rootfs mount point and call mountnfs() to do the rest. * * It is assumed to be safe to read, modify, and write the nfsv3_diskless * structure, as well as other global NFS client variables here, as * nfs_mountroot() will be called once in the boot before any other NFS * client activity occurs. */ static int nfs_mountroot(struct mount *mp) { struct thread *td = curthread; struct nfsv3_diskless *nd = &nfsv3_diskless; struct socket *so; struct vnode *vp; struct ifreq ir; int error; u_long l; char buf[128]; char *cp; #if defined(BOOTP_NFSROOT) && defined(BOOTP) bootpc_init(); /* use bootp to get nfs_diskless filled in */ #elif defined(NFS_ROOT) nfs_setup_diskless(); #endif if (nfs_diskless_valid == 0) return (-1); if (nfs_diskless_valid == 1) nfs_convert_diskless(); /* * Do enough of ifconfig(8) so that the critical net interface can * talk to the server. */ error = socreate(nd->myif.ifra_addr.sa_family, &so, nd->root_args.sotype, 0, td->td_ucred, td); if (error) panic("nfs_mountroot: socreate(%04x): %d", nd->myif.ifra_addr.sa_family, error); #if 0 /* XXX Bad idea */ /* * We might not have been told the right interface, so we pass * over the first ten interfaces of the same kind, until we get * one of them configured. */ for (i = strlen(nd->myif.ifra_name) - 1; nd->myif.ifra_name[i] >= '0' && nd->myif.ifra_name[i] <= '9'; nd->myif.ifra_name[i] ++) { error = ifioctl(so, SIOCAIFADDR, (caddr_t)&nd->myif, td); if(!error) break; } #endif error = ifioctl(so, SIOCAIFADDR, (caddr_t)&nd->myif, td); if (error) panic("nfs_mountroot: SIOCAIFADDR: %d", error); if ((cp = kern_getenv("boot.netif.mtu")) != NULL) { ir.ifr_mtu = strtol(cp, NULL, 10); bcopy(nd->myif.ifra_name, ir.ifr_name, IFNAMSIZ); freeenv(cp); error = ifioctl(so, SIOCSIFMTU, (caddr_t)&ir, td); if (error) printf("nfs_mountroot: SIOCSIFMTU: %d", error); } soclose(so); /* * If the gateway field is filled in, set it as the default route. * Note that pxeboot will set a default route of 0 if the route * is not set by the DHCP server. Check also for a value of 0 * to avoid panicking inappropriately in that situation. */ if (nd->mygateway.sin_len != 0 && nd->mygateway.sin_addr.s_addr != 0) { struct sockaddr_in mask, sin; struct epoch_tracker et; + struct rt_addrinfo info; + struct rib_cmd_info rc; bzero((caddr_t)&mask, sizeof(mask)); sin = mask; sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); /* XXX MRT use table 0 for this sort of thing */ NET_EPOCH_ENTER(et); CURVNET_SET(TD_TO_VNET(td)); - error = rtrequest_fib(RTM_ADD, (struct sockaddr *)&sin, - (struct sockaddr *)&nd->mygateway, - (struct sockaddr *)&mask, - RTF_UP | RTF_GATEWAY, NULL, RT_DEFAULT_FIB); + + bzero((caddr_t)&info, sizeof(info)); + info.rti_flags = RTF_UP | RTF_GATEWAY; + info.rti_info[RTAX_DST] = (struct sockaddr *)&sin; + info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&nd->mygateway; + info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&mask; + + error = rib_action(RT_DEFAULT_FIB, RTM_ADD, &info, &rc); CURVNET_RESTORE(); NET_EPOCH_EXIT(et); if (error) panic("nfs_mountroot: RTM_ADD: %d", error); } /* * Create the rootfs mount point. */ nd->root_args.fh = nd->root_fh; nd->root_args.fhsize = nd->root_fhsize; l = ntohl(nd->root_saddr.sin_addr.s_addr); snprintf(buf, sizeof(buf), "%ld.%ld.%ld.%ld:%s", (l >> 24) & 0xff, (l >> 16) & 0xff, (l >> 8) & 0xff, (l >> 0) & 0xff, nd->root_hostnam); printf("NFS ROOT: %s\n", buf); nd->root_args.hostname = buf; if ((error = nfs_mountdiskless(buf, &nd->root_saddr, &nd->root_args, td, &vp, mp)) != 0) { return (error); } /* * This is not really an nfs issue, but it is much easier to * set hostname here and then let the "/etc/rc.xxx" files * mount the right /var based upon its preset value. */ mtx_lock(&prison0.pr_mtx); strlcpy(prison0.pr_hostname, nd->my_hostnam, sizeof(prison0.pr_hostname)); mtx_unlock(&prison0.pr_mtx); inittodr(ntohl(nd->root_time)); return (0); } /* * Internal version of mount system call for diskless setup. */ static int nfs_mountdiskless(char *path, struct sockaddr_in *sin, struct nfs_args *args, struct thread *td, struct vnode **vpp, struct mount *mp) { struct sockaddr *nam; int dirlen, error; char *dirpath; /* * Find the directory path in "path", which also has the server's * name/ip address in it. */ dirpath = strchr(path, ':'); if (dirpath != NULL) dirlen = strlen(++dirpath); else dirlen = 0; nam = sodupsockaddr((struct sockaddr *)sin, M_WAITOK); if ((error = mountnfs(args, mp, nam, path, NULL, 0, dirpath, dirlen, NULL, 0, vpp, td->td_ucred, td, NFS_DEFAULT_NAMETIMEO, NFS_DEFAULT_NEGNAMETIMEO, 0)) != 0) { printf("nfs_mountroot: mount %s on /: %d\n", path, error); return (error); } return (0); } static void nfs_sec_name(char *sec, int *flagsp) { if (!strcmp(sec, "krb5")) *flagsp |= NFSMNT_KERB; else if (!strcmp(sec, "krb5i")) *flagsp |= (NFSMNT_KERB | NFSMNT_INTEGRITY); else if (!strcmp(sec, "krb5p")) *flagsp |= (NFSMNT_KERB | NFSMNT_PRIVACY); } static void nfs_decode_args(struct mount *mp, struct nfsmount *nmp, struct nfs_args *argp, const char *hostname, struct ucred *cred, struct thread *td) { int adjsock; char *p; /* * Set read-only flag if requested; otherwise, clear it if this is * an update. If this is not an update, then either the read-only * flag is already clear, or this is a root mount and it was set * intentionally at some previous point. */ if (vfs_getopt(mp->mnt_optnew, "ro", NULL, NULL) == 0) { MNT_ILOCK(mp); mp->mnt_flag |= MNT_RDONLY; MNT_IUNLOCK(mp); } else if (mp->mnt_flag & MNT_UPDATE) { MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_RDONLY; MNT_IUNLOCK(mp); } /* * Silently clear NFSMNT_NOCONN if it's a TCP mount, it makes * no sense in that context. Also, set up appropriate retransmit * and soft timeout behavior. */ if (argp->sotype == SOCK_STREAM) { nmp->nm_flag &= ~NFSMNT_NOCONN; nmp->nm_timeo = NFS_MAXTIMEO; if ((argp->flags & NFSMNT_NFSV4) != 0) nmp->nm_retry = INT_MAX; else nmp->nm_retry = NFS_RETRANS_TCP; } /* Also clear RDIRPLUS if NFSv2, it crashes some servers */ if ((argp->flags & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) == 0) { argp->flags &= ~NFSMNT_RDIRPLUS; nmp->nm_flag &= ~NFSMNT_RDIRPLUS; } /* Clear ONEOPENOWN for NFSv2, 3 and 4.0. */ if (nmp->nm_minorvers == 0) { argp->flags &= ~NFSMNT_ONEOPENOWN; nmp->nm_flag &= ~NFSMNT_ONEOPENOWN; } /* Re-bind if rsrvd port requested and wasn't on one */ adjsock = !(nmp->nm_flag & NFSMNT_RESVPORT) && (argp->flags & NFSMNT_RESVPORT); /* Also re-bind if we're switching to/from a connected UDP socket */ adjsock |= ((nmp->nm_flag & NFSMNT_NOCONN) != (argp->flags & NFSMNT_NOCONN)); /* Update flags atomically. Don't change the lock bits. */ nmp->nm_flag = argp->flags | nmp->nm_flag; if ((argp->flags & NFSMNT_TIMEO) && argp->timeo > 0) { nmp->nm_timeo = (argp->timeo * NFS_HZ + 5) / 10; if (nmp->nm_timeo < NFS_MINTIMEO) nmp->nm_timeo = NFS_MINTIMEO; else if (nmp->nm_timeo > NFS_MAXTIMEO) nmp->nm_timeo = NFS_MAXTIMEO; } if ((argp->flags & NFSMNT_RETRANS) && argp->retrans > 1) { nmp->nm_retry = argp->retrans; if (nmp->nm_retry > NFS_MAXREXMIT) nmp->nm_retry = NFS_MAXREXMIT; } if ((argp->flags & NFSMNT_WSIZE) && argp->wsize > 0) { nmp->nm_wsize = argp->wsize; /* * Clip at the power of 2 below the size. There is an * issue (not isolated) that causes intermittent page * faults if this is not done. */ if (nmp->nm_wsize > NFS_FABLKSIZE) nmp->nm_wsize = 1 << (fls(nmp->nm_wsize) - 1); else nmp->nm_wsize = NFS_FABLKSIZE; } if ((argp->flags & NFSMNT_RSIZE) && argp->rsize > 0) { nmp->nm_rsize = argp->rsize; /* * Clip at the power of 2 below the size. There is an * issue (not isolated) that causes intermittent page * faults if this is not done. */ if (nmp->nm_rsize > NFS_FABLKSIZE) nmp->nm_rsize = 1 << (fls(nmp->nm_rsize) - 1); else nmp->nm_rsize = NFS_FABLKSIZE; } if ((argp->flags & NFSMNT_READDIRSIZE) && argp->readdirsize > 0) { nmp->nm_readdirsize = argp->readdirsize; } if ((argp->flags & NFSMNT_ACREGMIN) && argp->acregmin >= 0) nmp->nm_acregmin = argp->acregmin; else nmp->nm_acregmin = NFS_MINATTRTIMO; if ((argp->flags & NFSMNT_ACREGMAX) && argp->acregmax >= 0) nmp->nm_acregmax = argp->acregmax; else nmp->nm_acregmax = NFS_MAXATTRTIMO; if ((argp->flags & NFSMNT_ACDIRMIN) && argp->acdirmin >= 0) nmp->nm_acdirmin = argp->acdirmin; else nmp->nm_acdirmin = NFS_MINDIRATTRTIMO; if ((argp->flags & NFSMNT_ACDIRMAX) && argp->acdirmax >= 0) nmp->nm_acdirmax = argp->acdirmax; else nmp->nm_acdirmax = NFS_MAXDIRATTRTIMO; if (nmp->nm_acdirmin > nmp->nm_acdirmax) nmp->nm_acdirmin = nmp->nm_acdirmax; if (nmp->nm_acregmin > nmp->nm_acregmax) nmp->nm_acregmin = nmp->nm_acregmax; if ((argp->flags & NFSMNT_READAHEAD) && argp->readahead >= 0) { if (argp->readahead <= NFS_MAXRAHEAD) nmp->nm_readahead = argp->readahead; else nmp->nm_readahead = NFS_MAXRAHEAD; } if ((argp->flags & NFSMNT_WCOMMITSIZE) && argp->wcommitsize >= 0) { if (argp->wcommitsize < nmp->nm_wsize) nmp->nm_wcommitsize = nmp->nm_wsize; else nmp->nm_wcommitsize = argp->wcommitsize; } adjsock |= ((nmp->nm_sotype != argp->sotype) || (nmp->nm_soproto != argp->proto)); if (nmp->nm_client != NULL && adjsock) { int haslock = 0, error = 0; if (nmp->nm_sotype == SOCK_STREAM) { error = newnfs_sndlock(&nmp->nm_sockreq.nr_lock); if (!error) haslock = 1; } if (!error) { newnfs_disconnect(&nmp->nm_sockreq); if (haslock) newnfs_sndunlock(&nmp->nm_sockreq.nr_lock); nmp->nm_sotype = argp->sotype; nmp->nm_soproto = argp->proto; if (nmp->nm_sotype == SOCK_DGRAM) while (newnfs_connect(nmp, &nmp->nm_sockreq, cred, td, 0)) { printf("newnfs_args: retrying connect\n"); (void) nfs_catnap(PSOCK, 0, "nfscon"); } } } else { nmp->nm_sotype = argp->sotype; nmp->nm_soproto = argp->proto; } if (hostname != NULL) { strlcpy(nmp->nm_hostname, hostname, sizeof(nmp->nm_hostname)); p = strchr(nmp->nm_hostname, ':'); if (p != NULL) *p = '\0'; } } static const char *nfs_opts[] = { "from", "nfs_args", "noac", "noatime", "noexec", "suiddir", "nosuid", "nosymfollow", "union", "noclusterr", "noclusterw", "multilabel", "acls", "force", "update", "async", "noconn", "nolockd", "conn", "lockd", "intr", "rdirplus", "readdirsize", "soft", "hard", "mntudp", "tcp", "udp", "wsize", "rsize", "retrans", "actimeo", "acregmin", "acregmax", "acdirmin", "acdirmax", "resvport", "readahead", "hostname", "timeo", "timeout", "addr", "fh", "nfsv3", "sec", "principal", "nfsv4", "gssname", "allgssname", "dirpath", "minorversion", "nametimeo", "negnametimeo", "nocto", "noncontigwr", "pnfs", "wcommitsize", "oneopenown", NULL }; /* * Parse the "from" mountarg, passed by the generic mount(8) program * or the mountroot code. This is used when rerooting into NFS. * * Note that the "hostname" is actually a "hostname:/share/path" string. */ static int nfs_mount_parse_from(struct vfsoptlist *opts, char **hostnamep, struct sockaddr_in **sinp, char *dirpath, size_t dirpathsize, int *dirlenp) { char *nam, *delimp, *hostp, *spec; int error, have_bracket = 0, offset, rv, speclen; struct sockaddr_in *sin; size_t len; error = vfs_getopt(opts, "from", (void **)&spec, &speclen); if (error != 0) return (error); nam = malloc(MNAMELEN + 1, M_TEMP, M_WAITOK); /* * This part comes from sbin/mount_nfs/mount_nfs.c:getnfsargs(). */ if (*spec == '[' && (delimp = strchr(spec + 1, ']')) != NULL && *(delimp + 1) == ':') { hostp = spec + 1; spec = delimp + 2; have_bracket = 1; } else if ((delimp = strrchr(spec, ':')) != NULL) { hostp = spec; spec = delimp + 1; } else if ((delimp = strrchr(spec, '@')) != NULL) { printf("%s: path@server syntax is deprecated, " "use server:path\n", __func__); hostp = delimp + 1; } else { printf("%s: no : nfs-name\n", __func__); free(nam, M_TEMP); return (EINVAL); } *delimp = '\0'; /* * If there has been a trailing slash at mounttime it seems * that some mountd implementations fail to remove the mount * entries from their mountlist while unmounting. */ for (speclen = strlen(spec); speclen > 1 && spec[speclen - 1] == '/'; speclen--) spec[speclen - 1] = '\0'; if (strlen(hostp) + strlen(spec) + 1 > MNAMELEN) { printf("%s: %s:%s: name too long", __func__, hostp, spec); free(nam, M_TEMP); return (EINVAL); } /* Make both '@' and ':' notations equal */ if (*hostp != '\0') { len = strlen(hostp); offset = 0; if (have_bracket) nam[offset++] = '['; memmove(nam + offset, hostp, len); if (have_bracket) nam[len + offset++] = ']'; nam[len + offset++] = ':'; memmove(nam + len + offset, spec, speclen); nam[len + speclen + offset] = '\0'; } else nam[0] = '\0'; /* * XXX: IPv6 */ sin = malloc(sizeof(*sin), M_SONAME, M_WAITOK); rv = inet_pton(AF_INET, hostp, &sin->sin_addr); if (rv != 1) { printf("%s: cannot parse '%s', inet_pton() returned %d\n", __func__, hostp, rv); free(nam, M_TEMP); free(sin, M_SONAME); return (EINVAL); } sin->sin_len = sizeof(*sin); sin->sin_family = AF_INET; /* * XXX: hardcoded port number. */ sin->sin_port = htons(2049); *hostnamep = strdup(nam, M_NEWNFSMNT); *sinp = sin; strlcpy(dirpath, spec, dirpathsize); *dirlenp = strlen(dirpath); free(nam, M_TEMP); return (0); } /* * VFS Operations. * * mount system call * It seems a bit dumb to copyinstr() the host and path here and then * bcopy() them in mountnfs(), but I wanted to detect errors before * doing the getsockaddr() call because getsockaddr() allocates an mbuf and * an error after that means that I have to release the mbuf. */ /* ARGSUSED */ static int nfs_mount(struct mount *mp) { struct nfs_args args = { .version = NFS_ARGSVERSION, .addr = NULL, .addrlen = sizeof (struct sockaddr_in), .sotype = SOCK_STREAM, .proto = 0, .fh = NULL, .fhsize = 0, .flags = NFSMNT_RESVPORT, .wsize = NFS_WSIZE, .rsize = NFS_RSIZE, .readdirsize = NFS_READDIRSIZE, .timeo = 10, .retrans = NFS_RETRANS, .readahead = NFS_DEFRAHEAD, .wcommitsize = 0, /* was: NQ_DEFLEASE */ .hostname = NULL, .acregmin = NFS_MINATTRTIMO, .acregmax = NFS_MAXATTRTIMO, .acdirmin = NFS_MINDIRATTRTIMO, .acdirmax = NFS_MAXDIRATTRTIMO, }; int error = 0, ret, len; struct sockaddr *nam = NULL; struct vnode *vp; struct thread *td; char *hst; u_char nfh[NFSX_FHMAX], krbname[100], dirpath[100], srvkrbname[100]; char *cp, *opt, *name, *secname; int nametimeo = NFS_DEFAULT_NAMETIMEO; int negnametimeo = NFS_DEFAULT_NEGNAMETIMEO; int minvers = 0; int dirlen, has_nfs_args_opt, has_nfs_from_opt, krbnamelen, srvkrbnamelen; size_t hstlen; has_nfs_args_opt = 0; has_nfs_from_opt = 0; hst = malloc(MNAMELEN, M_TEMP, M_WAITOK); if (vfs_filteropt(mp->mnt_optnew, nfs_opts)) { error = EINVAL; goto out; } td = curthread; if ((mp->mnt_flag & (MNT_ROOTFS | MNT_UPDATE)) == MNT_ROOTFS && nfs_diskless_valid != 0) { error = nfs_mountroot(mp); goto out; } nfscl_init(); /* * The old mount_nfs program passed the struct nfs_args * from userspace to kernel. The new mount_nfs program * passes string options via nmount() from userspace to kernel * and we populate the struct nfs_args in the kernel. */ if (vfs_getopt(mp->mnt_optnew, "nfs_args", NULL, NULL) == 0) { error = vfs_copyopt(mp->mnt_optnew, "nfs_args", &args, sizeof(args)); if (error != 0) goto out; if (args.version != NFS_ARGSVERSION) { error = EPROGMISMATCH; goto out; } has_nfs_args_opt = 1; } /* Handle the new style options. */ if (vfs_getopt(mp->mnt_optnew, "noac", NULL, NULL) == 0) { args.acdirmin = args.acdirmax = args.acregmin = args.acregmax = 0; args.flags |= NFSMNT_ACDIRMIN | NFSMNT_ACDIRMAX | NFSMNT_ACREGMIN | NFSMNT_ACREGMAX; } if (vfs_getopt(mp->mnt_optnew, "noconn", NULL, NULL) == 0) args.flags |= NFSMNT_NOCONN; if (vfs_getopt(mp->mnt_optnew, "conn", NULL, NULL) == 0) args.flags &= ~NFSMNT_NOCONN; if (vfs_getopt(mp->mnt_optnew, "nolockd", NULL, NULL) == 0) args.flags |= NFSMNT_NOLOCKD; if (vfs_getopt(mp->mnt_optnew, "lockd", NULL, NULL) == 0) args.flags &= ~NFSMNT_NOLOCKD; if (vfs_getopt(mp->mnt_optnew, "intr", NULL, NULL) == 0) args.flags |= NFSMNT_INT; if (vfs_getopt(mp->mnt_optnew, "rdirplus", NULL, NULL) == 0) args.flags |= NFSMNT_RDIRPLUS; if (vfs_getopt(mp->mnt_optnew, "resvport", NULL, NULL) == 0) args.flags |= NFSMNT_RESVPORT; if (vfs_getopt(mp->mnt_optnew, "noresvport", NULL, NULL) == 0) args.flags &= ~NFSMNT_RESVPORT; if (vfs_getopt(mp->mnt_optnew, "soft", NULL, NULL) == 0) args.flags |= NFSMNT_SOFT; if (vfs_getopt(mp->mnt_optnew, "hard", NULL, NULL) == 0) args.flags &= ~NFSMNT_SOFT; if (vfs_getopt(mp->mnt_optnew, "mntudp", NULL, NULL) == 0) args.sotype = SOCK_DGRAM; if (vfs_getopt(mp->mnt_optnew, "udp", NULL, NULL) == 0) args.sotype = SOCK_DGRAM; if (vfs_getopt(mp->mnt_optnew, "tcp", NULL, NULL) == 0) args.sotype = SOCK_STREAM; if (vfs_getopt(mp->mnt_optnew, "nfsv3", NULL, NULL) == 0) args.flags |= NFSMNT_NFSV3; if (vfs_getopt(mp->mnt_optnew, "nfsv4", NULL, NULL) == 0) { args.flags |= NFSMNT_NFSV4; args.sotype = SOCK_STREAM; } if (vfs_getopt(mp->mnt_optnew, "allgssname", NULL, NULL) == 0) args.flags |= NFSMNT_ALLGSSNAME; if (vfs_getopt(mp->mnt_optnew, "nocto", NULL, NULL) == 0) args.flags |= NFSMNT_NOCTO; if (vfs_getopt(mp->mnt_optnew, "noncontigwr", NULL, NULL) == 0) args.flags |= NFSMNT_NONCONTIGWR; if (vfs_getopt(mp->mnt_optnew, "pnfs", NULL, NULL) == 0) args.flags |= NFSMNT_PNFS; if (vfs_getopt(mp->mnt_optnew, "oneopenown", NULL, NULL) == 0) args.flags |= NFSMNT_ONEOPENOWN; if (vfs_getopt(mp->mnt_optnew, "readdirsize", (void **)&opt, NULL) == 0) { if (opt == NULL) { vfs_mount_error(mp, "illegal readdirsize"); error = EINVAL; goto out; } ret = sscanf(opt, "%d", &args.readdirsize); if (ret != 1 || args.readdirsize <= 0) { vfs_mount_error(mp, "illegal readdirsize: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_READDIRSIZE; } if (vfs_getopt(mp->mnt_optnew, "readahead", (void **)&opt, NULL) == 0) { if (opt == NULL) { vfs_mount_error(mp, "illegal readahead"); error = EINVAL; goto out; } ret = sscanf(opt, "%d", &args.readahead); if (ret != 1 || args.readahead <= 0) { vfs_mount_error(mp, "illegal readahead: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_READAHEAD; } if (vfs_getopt(mp->mnt_optnew, "wsize", (void **)&opt, NULL) == 0) { if (opt == NULL) { vfs_mount_error(mp, "illegal wsize"); error = EINVAL; goto out; } ret = sscanf(opt, "%d", &args.wsize); if (ret != 1 || args.wsize <= 0) { vfs_mount_error(mp, "illegal wsize: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_WSIZE; } if (vfs_getopt(mp->mnt_optnew, "rsize", (void **)&opt, NULL) == 0) { if (opt == NULL) { vfs_mount_error(mp, "illegal rsize"); error = EINVAL; goto out; } ret = sscanf(opt, "%d", &args.rsize); if (ret != 1 || args.rsize <= 0) { vfs_mount_error(mp, "illegal wsize: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_RSIZE; } if (vfs_getopt(mp->mnt_optnew, "retrans", (void **)&opt, NULL) == 0) { if (opt == NULL) { vfs_mount_error(mp, "illegal retrans"); error = EINVAL; goto out; } ret = sscanf(opt, "%d", &args.retrans); if (ret != 1 || args.retrans <= 0) { vfs_mount_error(mp, "illegal retrans: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_RETRANS; } if (vfs_getopt(mp->mnt_optnew, "actimeo", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.acregmin); if (ret != 1 || args.acregmin < 0) { vfs_mount_error(mp, "illegal actimeo: %s", opt); error = EINVAL; goto out; } args.acdirmin = args.acdirmax = args.acregmax = args.acregmin; args.flags |= NFSMNT_ACDIRMIN | NFSMNT_ACDIRMAX | NFSMNT_ACREGMIN | NFSMNT_ACREGMAX; } if (vfs_getopt(mp->mnt_optnew, "acregmin", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.acregmin); if (ret != 1 || args.acregmin < 0) { vfs_mount_error(mp, "illegal acregmin: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_ACREGMIN; } if (vfs_getopt(mp->mnt_optnew, "acregmax", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.acregmax); if (ret != 1 || args.acregmax < 0) { vfs_mount_error(mp, "illegal acregmax: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_ACREGMAX; } if (vfs_getopt(mp->mnt_optnew, "acdirmin", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.acdirmin); if (ret != 1 || args.acdirmin < 0) { vfs_mount_error(mp, "illegal acdirmin: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_ACDIRMIN; } if (vfs_getopt(mp->mnt_optnew, "acdirmax", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.acdirmax); if (ret != 1 || args.acdirmax < 0) { vfs_mount_error(mp, "illegal acdirmax: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_ACDIRMAX; } if (vfs_getopt(mp->mnt_optnew, "wcommitsize", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.wcommitsize); if (ret != 1 || args.wcommitsize < 0) { vfs_mount_error(mp, "illegal wcommitsize: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_WCOMMITSIZE; } if (vfs_getopt(mp->mnt_optnew, "timeo", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.timeo); if (ret != 1 || args.timeo <= 0) { vfs_mount_error(mp, "illegal timeo: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_TIMEO; } if (vfs_getopt(mp->mnt_optnew, "timeout", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &args.timeo); if (ret != 1 || args.timeo <= 0) { vfs_mount_error(mp, "illegal timeout: %s", opt); error = EINVAL; goto out; } args.flags |= NFSMNT_TIMEO; } if (vfs_getopt(mp->mnt_optnew, "nametimeo", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &nametimeo); if (ret != 1 || nametimeo < 0) { vfs_mount_error(mp, "illegal nametimeo: %s", opt); error = EINVAL; goto out; } } if (vfs_getopt(mp->mnt_optnew, "negnametimeo", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &negnametimeo); if (ret != 1 || negnametimeo < 0) { vfs_mount_error(mp, "illegal negnametimeo: %s", opt); error = EINVAL; goto out; } } if (vfs_getopt(mp->mnt_optnew, "minorversion", (void **)&opt, NULL) == 0) { ret = sscanf(opt, "%d", &minvers); if (ret != 1 || minvers < 0 || minvers > 2 || (args.flags & NFSMNT_NFSV4) == 0) { vfs_mount_error(mp, "illegal minorversion: %s", opt); error = EINVAL; goto out; } } if (vfs_getopt(mp->mnt_optnew, "sec", (void **) &secname, NULL) == 0) nfs_sec_name(secname, &args.flags); if (mp->mnt_flag & MNT_UPDATE) { struct nfsmount *nmp = VFSTONFS(mp); if (nmp == NULL) { error = EIO; goto out; } /* * If a change from TCP->UDP is done and there are thread(s) * that have I/O RPC(s) in progress with a transfer size * greater than NFS_MAXDGRAMDATA, those thread(s) will be * hung, retrying the RPC(s) forever. Usually these threads * will be seen doing an uninterruptible sleep on wait channel * "nfsreq". */ if (args.sotype == SOCK_DGRAM && nmp->nm_sotype == SOCK_STREAM) tprintf(td->td_proc, LOG_WARNING, "Warning: mount -u that changes TCP->UDP can result in hung threads\n"); /* * When doing an update, we can't change version, * security, switch lockd strategies, change cookie * translation or switch oneopenown. */ args.flags = (args.flags & ~(NFSMNT_NFSV3 | NFSMNT_NFSV4 | NFSMNT_KERB | NFSMNT_INTEGRITY | NFSMNT_PRIVACY | NFSMNT_ONEOPENOWN | NFSMNT_NOLOCKD /*|NFSMNT_XLATECOOKIE*/)) | (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4 | NFSMNT_KERB | NFSMNT_INTEGRITY | NFSMNT_PRIVACY | NFSMNT_ONEOPENOWN | NFSMNT_NOLOCKD /*|NFSMNT_XLATECOOKIE*/)); nfs_decode_args(mp, nmp, &args, NULL, td->td_ucred, td); goto out; } /* * Make the nfs_ip_paranoia sysctl serve as the default connection * or no-connection mode for those protocols that support * no-connection mode (the flag will be cleared later for protocols * that do not support no-connection mode). This will allow a client * to receive replies from a different IP then the request was * sent to. Note: default value for nfs_ip_paranoia is 1 (paranoid), * not 0. */ if (nfs_ip_paranoia == 0) args.flags |= NFSMNT_NOCONN; if (has_nfs_args_opt != 0) { /* * In the 'nfs_args' case, the pointers in the args * structure are in userland - we copy them in here. */ if (args.fhsize < 0 || args.fhsize > NFSX_V3FHMAX) { vfs_mount_error(mp, "Bad file handle"); error = EINVAL; goto out; } error = copyin((caddr_t)args.fh, (caddr_t)nfh, args.fhsize); if (error != 0) goto out; error = copyinstr(args.hostname, hst, MNAMELEN - 1, &hstlen); if (error != 0) goto out; bzero(&hst[hstlen], MNAMELEN - hstlen); args.hostname = hst; /* getsockaddr() call must be after above copyin() calls */ error = getsockaddr(&nam, args.addr, args.addrlen); if (error != 0) goto out; } else if (nfs_mount_parse_from(mp->mnt_optnew, &args.hostname, (struct sockaddr_in **)&nam, dirpath, sizeof(dirpath), &dirlen) == 0) { has_nfs_from_opt = 1; bcopy(args.hostname, hst, MNAMELEN); hst[MNAMELEN - 1] = '\0'; /* * This only works with NFSv4 for now. */ args.fhsize = 0; args.flags |= NFSMNT_NFSV4; args.sotype = SOCK_STREAM; } else { if (vfs_getopt(mp->mnt_optnew, "fh", (void **)&args.fh, &args.fhsize) == 0) { if (args.fhsize < 0 || args.fhsize > NFSX_FHMAX) { vfs_mount_error(mp, "Bad file handle"); error = EINVAL; goto out; } bcopy(args.fh, nfh, args.fhsize); } else { args.fhsize = 0; } (void) vfs_getopt(mp->mnt_optnew, "hostname", (void **)&args.hostname, &len); if (args.hostname == NULL) { vfs_mount_error(mp, "Invalid hostname"); error = EINVAL; goto out; } if (len >= MNAMELEN) { vfs_mount_error(mp, "Hostname too long"); error = EINVAL; goto out; } bcopy(args.hostname, hst, len); hst[len] = '\0'; } if (vfs_getopt(mp->mnt_optnew, "principal", (void **)&name, NULL) == 0) strlcpy(srvkrbname, name, sizeof (srvkrbname)); else { snprintf(srvkrbname, sizeof (srvkrbname), "nfs@%s", hst); cp = strchr(srvkrbname, ':'); if (cp != NULL) *cp = '\0'; } srvkrbnamelen = strlen(srvkrbname); if (vfs_getopt(mp->mnt_optnew, "gssname", (void **)&name, NULL) == 0) strlcpy(krbname, name, sizeof (krbname)); else krbname[0] = '\0'; krbnamelen = strlen(krbname); if (has_nfs_from_opt == 0) { if (vfs_getopt(mp->mnt_optnew, "dirpath", (void **)&name, NULL) == 0) strlcpy(dirpath, name, sizeof (dirpath)); else dirpath[0] = '\0'; dirlen = strlen(dirpath); } if (has_nfs_args_opt == 0 && has_nfs_from_opt == 0) { if (vfs_getopt(mp->mnt_optnew, "addr", (void **)&args.addr, &args.addrlen) == 0) { if (args.addrlen > SOCK_MAXADDRLEN) { error = ENAMETOOLONG; goto out; } nam = malloc(args.addrlen, M_SONAME, M_WAITOK); bcopy(args.addr, nam, args.addrlen); nam->sa_len = args.addrlen; } else { vfs_mount_error(mp, "No server address"); error = EINVAL; goto out; } } args.fh = nfh; error = mountnfs(&args, mp, nam, hst, krbname, krbnamelen, dirpath, dirlen, srvkrbname, srvkrbnamelen, &vp, td->td_ucred, td, nametimeo, negnametimeo, minvers); out: if (!error) { MNT_ILOCK(mp); mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_NO_IOPF | MNTK_USES_BCACHE; if ((VFSTONFS(mp)->nm_flag & NFSMNT_NFSV4) != 0) mp->mnt_kern_flag |= MNTK_NULL_NOCACHE; MNT_IUNLOCK(mp); } free(hst, M_TEMP); return (error); } /* * VFS Operations. * * mount system call * It seems a bit dumb to copyinstr() the host and path here and then * bcopy() them in mountnfs(), but I wanted to detect errors before * doing the getsockaddr() call because getsockaddr() allocates an mbuf and * an error after that means that I have to release the mbuf. */ /* ARGSUSED */ static int nfs_cmount(struct mntarg *ma, void *data, uint64_t flags) { int error; struct nfs_args args; error = copyin(data, &args, sizeof (struct nfs_args)); if (error) return error; ma = mount_arg(ma, "nfs_args", &args, sizeof args); error = kernel_mount(ma, flags); return (error); } /* * Common code for mount and mountroot */ static int mountnfs(struct nfs_args *argp, struct mount *mp, struct sockaddr *nam, char *hst, u_char *krbname, int krbnamelen, u_char *dirpath, int dirlen, u_char *srvkrbname, int srvkrbnamelen, struct vnode **vpp, struct ucred *cred, struct thread *td, int nametimeo, int negnametimeo, int minvers) { struct nfsmount *nmp; struct nfsnode *np; int error, trycnt, ret; struct nfsvattr nfsva; struct nfsclclient *clp; struct nfsclds *dsp, *tdsp; uint32_t lease; static u_int64_t clval = 0; NFSCL_DEBUG(3, "in mnt\n"); clp = NULL; if (mp->mnt_flag & MNT_UPDATE) { nmp = VFSTONFS(mp); printf("%s: MNT_UPDATE is no longer handled here\n", __func__); free(nam, M_SONAME); return (0); } else { nmp = malloc(sizeof (struct nfsmount) + krbnamelen + dirlen + srvkrbnamelen + 2, M_NEWNFSMNT, M_WAITOK | M_ZERO); TAILQ_INIT(&nmp->nm_bufq); TAILQ_INIT(&nmp->nm_sess); if (clval == 0) clval = (u_int64_t)nfsboottime.tv_sec; nmp->nm_clval = clval++; nmp->nm_krbnamelen = krbnamelen; nmp->nm_dirpathlen = dirlen; nmp->nm_srvkrbnamelen = srvkrbnamelen; if (td->td_ucred->cr_uid != (uid_t)0) { /* * nm_uid is used to get KerberosV credentials for * the nfsv4 state handling operations if there is * no host based principal set. Use the uid of * this user if not root, since they are doing the * mount. I don't think setting this for root will * work, since root normally does not have user * credentials in a credentials cache. */ nmp->nm_uid = td->td_ucred->cr_uid; } else { /* * Just set to -1, so it won't be used. */ nmp->nm_uid = (uid_t)-1; } /* Copy and null terminate all the names */ if (nmp->nm_krbnamelen > 0) { bcopy(krbname, nmp->nm_krbname, nmp->nm_krbnamelen); nmp->nm_name[nmp->nm_krbnamelen] = '\0'; } if (nmp->nm_dirpathlen > 0) { bcopy(dirpath, NFSMNT_DIRPATH(nmp), nmp->nm_dirpathlen); nmp->nm_name[nmp->nm_krbnamelen + nmp->nm_dirpathlen + 1] = '\0'; } if (nmp->nm_srvkrbnamelen > 0) { bcopy(srvkrbname, NFSMNT_SRVKRBNAME(nmp), nmp->nm_srvkrbnamelen); nmp->nm_name[nmp->nm_krbnamelen + nmp->nm_dirpathlen + nmp->nm_srvkrbnamelen + 2] = '\0'; } nmp->nm_sockreq.nr_cred = crhold(cred); mtx_init(&nmp->nm_sockreq.nr_mtx, "nfssock", NULL, MTX_DEF); mp->mnt_data = nmp; nmp->nm_getinfo = nfs_getnlminfo; nmp->nm_vinvalbuf = ncl_vinvalbuf; } vfs_getnewfsid(mp); nmp->nm_mountp = mp; mtx_init(&nmp->nm_mtx, "NFSmount lock", NULL, MTX_DEF | MTX_DUPOK); /* * Since nfs_decode_args() might optionally set them, these * need to be set to defaults before the call, so that the * optional settings aren't overwritten. */ nmp->nm_nametimeo = nametimeo; nmp->nm_negnametimeo = negnametimeo; nmp->nm_timeo = NFS_TIMEO; nmp->nm_retry = NFS_RETRANS; nmp->nm_readahead = NFS_DEFRAHEAD; /* This is empirical approximation of sqrt(hibufspace) * 256. */ nmp->nm_wcommitsize = NFS_MAXBSIZE / 256; while ((long)nmp->nm_wcommitsize * nmp->nm_wcommitsize < hibufspace) nmp->nm_wcommitsize *= 2; nmp->nm_wcommitsize *= 256; if ((argp->flags & NFSMNT_NFSV4) != 0) nmp->nm_minorvers = minvers; else nmp->nm_minorvers = 0; nfs_decode_args(mp, nmp, argp, hst, cred, td); /* * V2 can only handle 32 bit filesizes. A 4GB-1 limit may be too * high, depending on whether we end up with negative offsets in * the client or server somewhere. 2GB-1 may be safer. * * For V3, ncl_fsinfo will adjust this as necessary. Assume maximum * that we can handle until we find out otherwise. */ if ((argp->flags & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) == 0) nmp->nm_maxfilesize = 0xffffffffLL; else nmp->nm_maxfilesize = OFF_MAX; if ((argp->flags & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) == 0) { nmp->nm_wsize = NFS_WSIZE; nmp->nm_rsize = NFS_RSIZE; nmp->nm_readdirsize = NFS_READDIRSIZE; } nmp->nm_numgrps = NFS_MAXGRPS; nmp->nm_tprintf_delay = nfs_tprintf_delay; if (nmp->nm_tprintf_delay < 0) nmp->nm_tprintf_delay = 0; nmp->nm_tprintf_initial_delay = nfs_tprintf_initial_delay; if (nmp->nm_tprintf_initial_delay < 0) nmp->nm_tprintf_initial_delay = 0; nmp->nm_fhsize = argp->fhsize; if (nmp->nm_fhsize > 0) bcopy((caddr_t)argp->fh, (caddr_t)nmp->nm_fh, argp->fhsize); bcopy(hst, mp->mnt_stat.f_mntfromname, MNAMELEN); nmp->nm_nam = nam; /* Set up the sockets and per-host congestion */ nmp->nm_sotype = argp->sotype; nmp->nm_soproto = argp->proto; nmp->nm_sockreq.nr_prog = NFS_PROG; if ((argp->flags & NFSMNT_NFSV4)) nmp->nm_sockreq.nr_vers = NFS_VER4; else if ((argp->flags & NFSMNT_NFSV3)) nmp->nm_sockreq.nr_vers = NFS_VER3; else nmp->nm_sockreq.nr_vers = NFS_VER2; if ((error = newnfs_connect(nmp, &nmp->nm_sockreq, cred, td, 0))) goto bad; /* For NFSv4.1, get the clientid now. */ if (nmp->nm_minorvers > 0) { NFSCL_DEBUG(3, "at getcl\n"); error = nfscl_getcl(mp, cred, td, 0, &clp); NFSCL_DEBUG(3, "aft getcl=%d\n", error); if (error != 0) goto bad; } if (nmp->nm_fhsize == 0 && (nmp->nm_flag & NFSMNT_NFSV4) && nmp->nm_dirpathlen > 0) { NFSCL_DEBUG(3, "in dirp\n"); /* * If the fhsize on the mount point == 0 for V4, the mount * path needs to be looked up. */ trycnt = 3; do { error = nfsrpc_getdirpath(nmp, NFSMNT_DIRPATH(nmp), cred, td); NFSCL_DEBUG(3, "aft dirp=%d\n", error); if (error) (void) nfs_catnap(PZERO, error, "nfsgetdirp"); } while (error && --trycnt > 0); if (error) goto bad; } /* * A reference count is needed on the nfsnode representing the * remote root. If this object is not persistent, then backward * traversals of the mount point (i.e. "..") will not work if * the nfsnode gets flushed out of the cache. Ufs does not have * this problem, because one can identify root inodes by their * number == UFS_ROOTINO (2). */ if (nmp->nm_fhsize > 0) { /* * Set f_iosize to NFS_DIRBLKSIZ so that bo_bsize gets set * non-zero for the root vnode. f_iosize will be set correctly * by nfs_statfs() before any I/O occurs. */ mp->mnt_stat.f_iosize = NFS_DIRBLKSIZ; error = ncl_nget(mp, nmp->nm_fh, nmp->nm_fhsize, &np, LK_EXCLUSIVE); if (error) goto bad; *vpp = NFSTOV(np); /* * Get file attributes and transfer parameters for the * mountpoint. This has the side effect of filling in * (*vpp)->v_type with the correct value. */ ret = nfsrpc_getattrnovp(nmp, nmp->nm_fh, nmp->nm_fhsize, 1, cred, td, &nfsva, NULL, &lease); if (ret) { /* * Just set default values to get things going. */ NFSBZERO((caddr_t)&nfsva, sizeof (struct nfsvattr)); nfsva.na_vattr.va_type = VDIR; nfsva.na_vattr.va_mode = 0777; nfsva.na_vattr.va_nlink = 100; nfsva.na_vattr.va_uid = (uid_t)0; nfsva.na_vattr.va_gid = (gid_t)0; nfsva.na_vattr.va_fileid = 2; nfsva.na_vattr.va_gen = 1; nfsva.na_vattr.va_blocksize = NFS_FABLKSIZE; nfsva.na_vattr.va_size = 512 * 1024; lease = 60; } (void) nfscl_loadattrcache(vpp, &nfsva, NULL, NULL, 0, 1); if (nmp->nm_minorvers > 0) { NFSCL_DEBUG(3, "lease=%d\n", (int)lease); NFSLOCKCLSTATE(); clp->nfsc_renew = NFSCL_RENEW(lease); clp->nfsc_expire = NFSD_MONOSEC + clp->nfsc_renew; clp->nfsc_clientidrev++; if (clp->nfsc_clientidrev == 0) clp->nfsc_clientidrev++; NFSUNLOCKCLSTATE(); /* * Mount will succeed, so the renew thread can be * started now. */ nfscl_start_renewthread(clp); nfscl_clientrelease(clp); } if (argp->flags & NFSMNT_NFSV3) ncl_fsinfo(nmp, *vpp, cred, td); /* Mark if the mount point supports NFSv4 ACLs. */ if ((argp->flags & NFSMNT_NFSV4) != 0 && nfsrv_useacl != 0 && ret == 0 && NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL)) { MNT_ILOCK(mp); mp->mnt_flag |= MNT_NFS4ACLS; MNT_IUNLOCK(mp); } /* * Lose the lock but keep the ref. */ NFSVOPUNLOCK(*vpp); vfs_cache_root_set(mp, *vpp); return (0); } error = EIO; bad: if (clp != NULL) nfscl_clientrelease(clp); newnfs_disconnect(&nmp->nm_sockreq); crfree(nmp->nm_sockreq.nr_cred); if (nmp->nm_sockreq.nr_auth != NULL) AUTH_DESTROY(nmp->nm_sockreq.nr_auth); mtx_destroy(&nmp->nm_sockreq.nr_mtx); mtx_destroy(&nmp->nm_mtx); if (nmp->nm_clp != NULL) { NFSLOCKCLSTATE(); LIST_REMOVE(nmp->nm_clp, nfsc_list); NFSUNLOCKCLSTATE(); free(nmp->nm_clp, M_NFSCLCLIENT); } TAILQ_FOREACH_SAFE(dsp, &nmp->nm_sess, nfsclds_list, tdsp) { if (dsp != TAILQ_FIRST(&nmp->nm_sess) && dsp->nfsclds_sockp != NULL) newnfs_disconnect(dsp->nfsclds_sockp); nfscl_freenfsclds(dsp); } free(nmp, M_NEWNFSMNT); free(nam, M_SONAME); return (error); } /* * unmount system call */ static int nfs_unmount(struct mount *mp, int mntflags) { struct thread *td; struct nfsmount *nmp; int error, flags = 0, i, trycnt = 0; struct nfsclds *dsp, *tdsp; td = curthread; if (mntflags & MNT_FORCE) flags |= FORCECLOSE; nmp = VFSTONFS(mp); error = 0; /* * Goes something like this.. * - Call vflush() to clear out vnodes for this filesystem * - Close the socket * - Free up the data structures */ /* In the forced case, cancel any outstanding requests. */ if (mntflags & MNT_FORCE) { NFSDDSLOCK(); if (nfsv4_findmirror(nmp) != NULL) error = ENXIO; NFSDDSUNLOCK(); if (error) goto out; error = newnfs_nmcancelreqs(nmp); if (error) goto out; /* For a forced close, get rid of the renew thread now */ nfscl_umount(nmp, td); } /* We hold 1 extra ref on the root vnode; see comment in mountnfs(). */ do { error = vflush(mp, 1, flags, td); if ((mntflags & MNT_FORCE) && error != 0 && ++trycnt < 30) (void) nfs_catnap(PSOCK, error, "newndm"); } while ((mntflags & MNT_FORCE) && error != 0 && trycnt < 30); if (error) goto out; /* * We are now committed to the unmount. */ if ((mntflags & MNT_FORCE) == 0) nfscl_umount(nmp, td); else { mtx_lock(&nmp->nm_mtx); nmp->nm_privflag |= NFSMNTP_FORCEDISM; mtx_unlock(&nmp->nm_mtx); } /* Make sure no nfsiods are assigned to this mount. */ NFSLOCKIOD(); for (i = 0; i < NFS_MAXASYNCDAEMON; i++) if (ncl_iodmount[i] == nmp) { ncl_iodwant[i] = NFSIOD_AVAILABLE; ncl_iodmount[i] = NULL; } NFSUNLOCKIOD(); /* * We can now set mnt_data to NULL and wait for * nfssvc(NFSSVC_FORCEDISM) to complete. */ mtx_lock(&mountlist_mtx); mtx_lock(&nmp->nm_mtx); mp->mnt_data = NULL; mtx_unlock(&mountlist_mtx); while ((nmp->nm_privflag & NFSMNTP_CANCELRPCS) != 0) msleep(nmp, &nmp->nm_mtx, PVFS, "nfsfdism", 0); mtx_unlock(&nmp->nm_mtx); newnfs_disconnect(&nmp->nm_sockreq); crfree(nmp->nm_sockreq.nr_cred); free(nmp->nm_nam, M_SONAME); if (nmp->nm_sockreq.nr_auth != NULL) AUTH_DESTROY(nmp->nm_sockreq.nr_auth); mtx_destroy(&nmp->nm_sockreq.nr_mtx); mtx_destroy(&nmp->nm_mtx); TAILQ_FOREACH_SAFE(dsp, &nmp->nm_sess, nfsclds_list, tdsp) { if (dsp != TAILQ_FIRST(&nmp->nm_sess) && dsp->nfsclds_sockp != NULL) newnfs_disconnect(dsp->nfsclds_sockp); nfscl_freenfsclds(dsp); } free(nmp, M_NEWNFSMNT); out: return (error); } /* * Return root of a filesystem */ static int nfs_root(struct mount *mp, int flags, struct vnode **vpp) { struct vnode *vp; struct nfsmount *nmp; struct nfsnode *np; int error; nmp = VFSTONFS(mp); error = ncl_nget(mp, nmp->nm_fh, nmp->nm_fhsize, &np, flags); if (error) return error; vp = NFSTOV(np); /* * Get transfer parameters and attributes for root vnode once. */ mtx_lock(&nmp->nm_mtx); if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp)) { mtx_unlock(&nmp->nm_mtx); ncl_fsinfo(nmp, vp, curthread->td_ucred, curthread); } else mtx_unlock(&nmp->nm_mtx); if (vp->v_type == VNON) vp->v_type = VDIR; vp->v_vflag |= VV_ROOT; *vpp = vp; return (0); } /* * Flush out the buffer cache */ /* ARGSUSED */ static int nfs_sync(struct mount *mp, int waitfor) { struct vnode *vp, *mvp; struct thread *td; int error, allerror = 0; td = curthread; MNT_ILOCK(mp); /* * If a forced dismount is in progress, return from here so that * the umount(2) syscall doesn't get stuck in VFS_SYNC() before * calling VFS_UNMOUNT(). */ if (NFSCL_FORCEDISM(mp)) { MNT_IUNLOCK(mp); return (EBADF); } MNT_IUNLOCK(mp); /* * Force stale buffer cache information to be flushed. */ loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { /* XXX Racy bv_cnt check. */ if (NFSVOPISLOCKED(vp) || vp->v_bufobj.bo_dirty.bv_cnt == 0 || waitfor == MNT_LAZY) { VI_UNLOCK(vp); continue; } if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK, td)) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } error = VOP_FSYNC(vp, waitfor, td); if (error) allerror = error; NFSVOPUNLOCK(vp); vrele(vp); } return (allerror); } static int nfs_sysctl(struct mount *mp, fsctlop_t op, struct sysctl_req *req) { struct nfsmount *nmp = VFSTONFS(mp); struct vfsquery vq; int error; bzero(&vq, sizeof(vq)); switch (op) { #if 0 case VFS_CTL_NOLOCKS: val = (nmp->nm_flag & NFSMNT_NOLOCKS) ? 1 : 0; if (req->oldptr != NULL) { error = SYSCTL_OUT(req, &val, sizeof(val)); if (error) return (error); } if (req->newptr != NULL) { error = SYSCTL_IN(req, &val, sizeof(val)); if (error) return (error); if (val) nmp->nm_flag |= NFSMNT_NOLOCKS; else nmp->nm_flag &= ~NFSMNT_NOLOCKS; } break; #endif case VFS_CTL_QUERY: mtx_lock(&nmp->nm_mtx); if (nmp->nm_state & NFSSTA_TIMEO) vq.vq_flags |= VQ_NOTRESP; mtx_unlock(&nmp->nm_mtx); #if 0 if (!(nmp->nm_flag & NFSMNT_NOLOCKS) && (nmp->nm_state & NFSSTA_LOCKTIMEO)) vq.vq_flags |= VQ_NOTRESPLOCK; #endif error = SYSCTL_OUT(req, &vq, sizeof(vq)); break; case VFS_CTL_TIMEO: if (req->oldptr != NULL) { error = SYSCTL_OUT(req, &nmp->nm_tprintf_initial_delay, sizeof(nmp->nm_tprintf_initial_delay)); if (error) return (error); } if (req->newptr != NULL) { error = vfs_suser(mp, req->td); if (error) return (error); error = SYSCTL_IN(req, &nmp->nm_tprintf_initial_delay, sizeof(nmp->nm_tprintf_initial_delay)); if (error) return (error); if (nmp->nm_tprintf_initial_delay < 0) nmp->nm_tprintf_initial_delay = 0; } break; default: return (ENOTSUP); } return (0); } /* * Purge any RPCs in progress, so that they will all return errors. * This allows dounmount() to continue as far as VFS_UNMOUNT() for a * forced dismount. */ static void nfs_purge(struct mount *mp) { struct nfsmount *nmp = VFSTONFS(mp); newnfs_nmcancelreqs(nmp); } /* * Extract the information needed by the nlm from the nfs vnode. */ static void nfs_getnlminfo(struct vnode *vp, uint8_t *fhp, size_t *fhlenp, struct sockaddr_storage *sp, int *is_v3p, off_t *sizep, struct timeval *timeop) { struct nfsmount *nmp; struct nfsnode *np = VTONFS(vp); nmp = VFSTONFS(vp->v_mount); if (fhlenp != NULL) *fhlenp = (size_t)np->n_fhp->nfh_len; if (fhp != NULL) bcopy(np->n_fhp->nfh_fh, fhp, np->n_fhp->nfh_len); if (sp != NULL) bcopy(nmp->nm_nam, sp, min(nmp->nm_nam->sa_len, sizeof(*sp))); if (is_v3p != NULL) *is_v3p = NFS_ISV3(vp); if (sizep != NULL) *sizep = np->n_size; if (timeop != NULL) { timeop->tv_sec = nmp->nm_timeo / NFS_HZ; timeop->tv_usec = (nmp->nm_timeo % NFS_HZ) * (1000000 / NFS_HZ); } } /* * This function prints out an option name, based on the conditional * argument. */ static __inline void nfscl_printopt(struct nfsmount *nmp, int testval, char *opt, char **buf, size_t *blen) { int len; if (testval != 0 && *blen > strlen(opt)) { len = snprintf(*buf, *blen, "%s", opt); if (len != strlen(opt)) printf("EEK!!\n"); *buf += len; *blen -= len; } } /* * This function printf out an options integer value. */ static __inline void nfscl_printoptval(struct nfsmount *nmp, int optval, char *opt, char **buf, size_t *blen) { int len; if (*blen > strlen(opt) + 1) { /* Could result in truncated output string. */ len = snprintf(*buf, *blen, "%s=%d", opt, optval); if (len < *blen) { *buf += len; *blen -= len; } } } /* * Load the option flags and values into the buffer. */ void nfscl_retopts(struct nfsmount *nmp, char *buffer, size_t buflen) { char *buf; size_t blen; buf = buffer; blen = buflen; nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_NFSV4) != 0, "nfsv4", &buf, &blen); if ((nmp->nm_flag & NFSMNT_NFSV4) != 0) { nfscl_printoptval(nmp, nmp->nm_minorvers, ",minorversion", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_PNFS) != 0, ",pnfs", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_ONEOPENOWN) != 0 && nmp->nm_minorvers > 0, ",oneopenown", &buf, &blen); } nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_NFSV3) != 0, "nfsv3", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) == 0, "nfsv2", &buf, &blen); nfscl_printopt(nmp, nmp->nm_sotype == SOCK_STREAM, ",tcp", &buf, &blen); nfscl_printopt(nmp, nmp->nm_sotype != SOCK_STREAM, ",udp", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_RESVPORT) != 0, ",resvport", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_NOCONN) != 0, ",noconn", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_SOFT) == 0, ",hard", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_SOFT) != 0, ",soft", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_INT) != 0, ",intr", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_NOCTO) == 0, ",cto", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_NOCTO) != 0, ",nocto", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0, ",noncontigwr", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & (NFSMNT_NOLOCKD | NFSMNT_NFSV4)) == 0, ",lockd", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & (NFSMNT_NOLOCKD | NFSMNT_NFSV4)) == NFSMNT_NOLOCKD, ",nolockd", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_RDIRPLUS) != 0, ",rdirplus", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & NFSMNT_KERB) == 0, ",sec=sys", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & (NFSMNT_KERB | NFSMNT_INTEGRITY | NFSMNT_PRIVACY)) == NFSMNT_KERB, ",sec=krb5", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & (NFSMNT_KERB | NFSMNT_INTEGRITY | NFSMNT_PRIVACY)) == (NFSMNT_KERB | NFSMNT_INTEGRITY), ",sec=krb5i", &buf, &blen); nfscl_printopt(nmp, (nmp->nm_flag & (NFSMNT_KERB | NFSMNT_INTEGRITY | NFSMNT_PRIVACY)) == (NFSMNT_KERB | NFSMNT_PRIVACY), ",sec=krb5p", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_acdirmin, ",acdirmin", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_acdirmax, ",acdirmax", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_acregmin, ",acregmin", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_acregmax, ",acregmax", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_nametimeo, ",nametimeo", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_negnametimeo, ",negnametimeo", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_rsize, ",rsize", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_wsize, ",wsize", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_readdirsize, ",readdirsize", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_readahead, ",readahead", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_wcommitsize, ",wcommitsize", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_timeo, ",timeout", &buf, &blen); nfscl_printoptval(nmp, nmp->nm_retry, ",retrans", &buf, &blen); } Index: head/sys/net/if.c =================================================================== --- head/sys/net/if.c (revision 363402) +++ head/sys/net/if.c (revision 363403) @@ -1,4575 +1,4577 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_bpf.h" #include "opt_inet6.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #ifdef INET #include #include #endif /* INET */ #ifdef INET6 #include #include #endif /* INET6 */ #endif /* INET || INET6 */ #include /* * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name * and ifr_ifru when it is used in SIOCGIFCONF. */ _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); __read_mostly epoch_t net_epoch_preempt; #ifdef COMPAT_FREEBSD32 #include #include struct ifreq_buffer32 { uint32_t length; /* (size_t) */ uint32_t buffer; /* (void *) */ }; /* * Interface request structure used for socket * ioctl's. All interface ioctl's must have parameter * definitions which begin with ifr_name. The * remainder may be interface specific. */ struct ifreq32 { char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct ifreq_buffer32 ifru_buffer; short ifru_flags[2]; short ifru_index; int ifru_jid; int ifru_metric; int ifru_mtu; int ifru_phys; int ifru_media; uint32_t ifru_data; int ifru_cap[2]; u_int ifru_fib; u_char ifru_vlan_pcp; } ifr_ifru; }; CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); CTASSERT(__offsetof(struct ifreq, ifr_ifru) == __offsetof(struct ifreq32, ifr_ifru)); struct ifgroupreq32 { char ifgr_name[IFNAMSIZ]; u_int ifgr_len; union { char ifgru_group[IFNAMSIZ]; uint32_t ifgru_groups; } ifgr_ifgru; }; struct ifmediareq32 { char ifm_name[IFNAMSIZ]; int ifm_current; int ifm_mask; int ifm_status; int ifm_active; int ifm_count; uint32_t ifm_ulist; /* (int *) */ }; #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) #define _CASE_IOC_IFGROUPREQ_32(cmd) \ _IOC_NEWTYPE((cmd), struct ifgroupreq32): case #else /* !COMPAT_FREEBSD32 */ #define _CASE_IOC_IFGROUPREQ_32(cmd) #endif /* !COMPAT_FREEBSD32 */ #define CASE_IOC_IFGROUPREQ(cmd) \ _CASE_IOC_IFGROUPREQ_32(cmd) \ (cmd) union ifreq_union { struct ifreq ifr; #ifdef COMPAT_FREEBSD32 struct ifreq32 ifr32; #endif }; union ifgroupreq_union { struct ifgroupreq ifgr; #ifdef COMPAT_FREEBSD32 struct ifgroupreq32 ifgr32; #endif }; SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Generic link-management"); SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, &ifqmaxlen, 0, "max send queue size"); /* Log link state change events */ static int log_link_state_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, &log_link_state_change, 0, "log interface link state change events"); /* Log promiscuous mode change events */ static int log_promisc_mode_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, &log_promisc_mode_change, 1, "log promiscuous mode change events"); /* Interface description */ static unsigned int ifdescr_maxlen = 1024; SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, &ifdescr_maxlen, 0, "administrative maximum length for interface description"); static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); /* global sx for non-critical path ifdescr */ static struct sx ifdescr_sx; SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); void (*lagg_linkstate_p)(struct ifnet *ifp, int state); /* These are external hooks for CARP. */ void (*carp_linkstate_p)(struct ifnet *ifp); void (*carp_demote_adj_p)(int, char *); int (*carp_master_p)(struct ifaddr *); #if defined(INET) || defined(INET6) int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa); int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); int (*carp_attach_p)(struct ifaddr *, int); void (*carp_detach_p)(struct ifaddr *, bool); #endif #ifdef INET int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); #endif #ifdef INET6 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr); #endif struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; /* * XXX: Style; these should be sorted alphabetically, and unprototyped * static functions should be prototyped. Currently they are sorted by * declaration order. */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void *if_grow(void); static void if_input_default(struct ifnet *, struct mbuf *); static int if_requestencap_default(struct ifnet *, struct if_encap_req *); static void if_route(struct ifnet *, int flag, int fam); static int if_setflag(struct ifnet *, int, int, int *, int); static int if_transmit(struct ifnet *ifp, struct mbuf *m); static void if_unroute(struct ifnet *, int flag, int fam); static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); static void do_link_state_change(void *, int); static int if_getgroup(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); static void if_delgroups(struct ifnet *); static void if_attach_internal(struct ifnet *, int, struct if_clone *); static int if_detach_internal(struct ifnet *, int, struct if_clone **); static void if_siocaddmulti(void *, int); #ifdef VIMAGE static int if_vmove(struct ifnet *, struct vnet *); #endif #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif /* ipsec helper hooks */ VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); VNET_DEFINE(int, if_index); int ifqmaxlen = IFQ_MAXLEN; VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ VNET_DEFINE(struct ifgrouphead, ifg_head); VNET_DEFINE_STATIC(int, if_indexlim) = 8; /* Table of ifnet by index. */ VNET_DEFINE(struct ifnet **, ifindex_table); #define V_if_indexlim VNET(if_indexlim) #define V_ifindex_table VNET(ifindex_table) /* * The global network interface list (V_ifnet) and related state (such as * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and * an rwlock. Either may be acquired shared to stablize the list, but both * must be acquired writable to modify the list. This model allows us to * both stablize the interface list during interrupt thread processing, but * also to stablize it over long-running ioctls, without introducing priority * inversions and deadlocks. */ struct rwlock ifnet_rwlock; RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE); struct sx ifnet_sxlock; SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); /* * The allocation of network interfaces is a rather non-atomic affair; we * need to select an index before we are ready to expose the interface for * use, so will use this pointer value to indicate reservation. */ #define IFNET_HOLD (void *)(uintptr_t)(-1) #ifdef VIMAGE #define VNET_IS_SHUTTING_DOWN(_vnet) \ ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) #endif static if_com_alloc_t *if_com_alloc[256]; static if_com_free_t *if_com_free[256]; static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); struct ifnet * ifnet_byindex(u_short idx) { struct ifnet *ifp; if (__predict_false(idx > V_if_index)) return (NULL); ifp = *(struct ifnet * const volatile *)(V_ifindex_table + idx); return (__predict_false(ifp == IFNET_HOLD) ? NULL : ifp); } struct ifnet * ifnet_byindex_ref(u_short idx) { struct ifnet *ifp; NET_EPOCH_ASSERT(); ifp = ifnet_byindex(idx); if (ifp == NULL || (ifp->if_flags & IFF_DYING)) return (NULL); if_ref(ifp); return (ifp); } /* * Allocate an ifindex array entry; return 0 on success or an error on * failure. */ static u_short ifindex_alloc(void **old) { u_short idx; IFNET_WLOCK_ASSERT(); /* * Try to find an empty slot below V_if_index. If we fail, take the * next slot. */ for (idx = 1; idx <= V_if_index; idx++) { if (V_ifindex_table[idx] == NULL) break; } /* Catch if_index overflow. */ if (idx >= V_if_indexlim) { *old = if_grow(); return (USHRT_MAX); } if (idx > V_if_index) V_if_index = idx; return (idx); } static void ifindex_free_locked(u_short idx) { IFNET_WLOCK_ASSERT(); V_ifindex_table[idx] = NULL; while (V_if_index > 0 && V_ifindex_table[V_if_index] == NULL) V_if_index--; } static void ifindex_free(u_short idx) { IFNET_WLOCK(); ifindex_free_locked(idx); IFNET_WUNLOCK(); } static void ifnet_setbyindex(u_short idx, struct ifnet *ifp) { V_ifindex_table[idx] = ifp; } struct ifaddr * ifaddr_byindex(u_short idx) { struct ifnet *ifp; struct ifaddr *ifa = NULL; NET_EPOCH_ASSERT(); ifp = ifnet_byindex(idx); if (ifp != NULL && (ifa = ifp->if_addr) != NULL) ifa_ref(ifa); return (ifa); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ static void vnet_if_init(const void *unused __unused) { void *old; CK_STAILQ_INIT(&V_ifnet); CK_STAILQ_INIT(&V_ifg_head); IFNET_WLOCK(); old = if_grow(); /* create initial table */ IFNET_WUNLOCK(); epoch_wait_preempt(net_epoch_preempt); free(old, M_IFNET); vnet_if_clone_init(); } VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, NULL); #ifdef VIMAGE static void vnet_if_uninit(const void *unused __unused) { VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " "not empty", __func__, __LINE__, &V_ifnet)); VNET_ASSERT(CK_STAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " "not empty", __func__, __LINE__, &V_ifg_head)); free((caddr_t)V_ifindex_table, M_IFNET); } VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, vnet_if_uninit, NULL); static void vnet_if_return(const void *unused __unused) { struct ifnet *ifp, *nifp; /* Return all inherited interfaces to their parent vnets. */ CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { if (ifp->if_home_vnet != ifp->if_vnet) if_vmove(ifp, ifp->if_home_vnet); } } VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_if_return, NULL); #endif static void * if_grow(void) { int oldlim; u_int n; struct ifnet **e; void *old; old = NULL; IFNET_WLOCK_ASSERT(); oldlim = V_if_indexlim; IFNET_WUNLOCK(); n = (oldlim << 1) * sizeof(*e); e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); IFNET_WLOCK(); if (V_if_indexlim != oldlim) { free(e, M_IFNET); return (NULL); } if (V_ifindex_table != NULL) { memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); old = V_ifindex_table; } V_if_indexlim <<= 1; V_ifindex_table = e; return (old); } /* * Allocate a struct ifnet and an index for an interface. A layer 2 * common structure will also be allocated if an allocation routine is * registered for the passed type. */ struct ifnet * if_alloc_domain(u_char type, int numa_domain) { struct ifnet *ifp; u_short idx; void *old; KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); if (numa_domain == IF_NODOM) ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK | M_ZERO); else ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); restart: IFNET_WLOCK(); idx = ifindex_alloc(&old); if (__predict_false(idx == USHRT_MAX)) { IFNET_WUNLOCK(); epoch_wait_preempt(net_epoch_preempt); free(old, M_IFNET); goto restart; } ifnet_setbyindex(idx, IFNET_HOLD); IFNET_WUNLOCK(); ifp->if_index = idx; ifp->if_type = type; ifp->if_alloctype = type; ifp->if_numa_domain = numa_domain; #ifdef VIMAGE ifp->if_vnet = curvnet; #endif if (if_com_alloc[type] != NULL) { ifp->if_l2com = if_com_alloc[type](type, ifp); if (ifp->if_l2com == NULL) { free(ifp, M_IFNET); ifindex_free(idx); return (NULL); } } IF_ADDR_LOCK_INIT(ifp); TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); ifp->if_afdata_initialized = 0; IF_AFDATA_LOCK_INIT(ifp); CK_STAILQ_INIT(&ifp->if_addrhead); CK_STAILQ_INIT(&ifp->if_multiaddrs); CK_STAILQ_INIT(&ifp->if_groups); #ifdef MAC mac_ifnet_init(ifp); #endif ifq_init(&ifp->if_snd, ifp); refcount_init(&ifp->if_refcount, 1); /* Index reference. */ for (int i = 0; i < IFCOUNTERS; i++) ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); ifp->if_get_counter = if_get_counter_default; ifp->if_pcp = IFNET_PCP_NONE; ifnet_setbyindex(ifp->if_index, ifp); return (ifp); } struct ifnet * if_alloc_dev(u_char type, device_t dev) { int numa_domain; if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) return (if_alloc_domain(type, IF_NODOM)); return (if_alloc_domain(type, numa_domain)); } struct ifnet * if_alloc(u_char type) { return (if_alloc_domain(type, IF_NODOM)); } /* * Do the actual work of freeing a struct ifnet, and layer 2 common * structure. This call is made when the last reference to an * interface is released. */ static void if_free_internal(struct ifnet *ifp) { KASSERT((ifp->if_flags & IFF_DYING), ("if_free_internal: interface not dying")); if (if_com_free[ifp->if_alloctype] != NULL) if_com_free[ifp->if_alloctype](ifp->if_l2com, ifp->if_alloctype); #ifdef MAC mac_ifnet_destroy(ifp); #endif /* MAC */ IF_AFDATA_DESTROY(ifp); IF_ADDR_LOCK_DESTROY(ifp); ifq_delete(&ifp->if_snd); for (int i = 0; i < IFCOUNTERS; i++) counter_u64_free(ifp->if_counters[i]); free(ifp->if_description, M_IFDESCR); free(ifp->if_hw_addr, M_IFADDR); if (ifp->if_numa_domain == IF_NODOM) free(ifp, M_IFNET); else free_domain(ifp, M_IFNET); } static void if_destroy(epoch_context_t ctx) { struct ifnet *ifp; ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); if_free_internal(ifp); } /* * Deregister an interface and free the associated storage. */ void if_free(struct ifnet *ifp) { ifp->if_flags |= IFF_DYING; /* XXX: Locking */ CURVNET_SET_QUIET(ifp->if_vnet); IFNET_WLOCK(); KASSERT(ifp == ifnet_byindex(ifp->if_index), ("%s: freeing unallocated ifnet", ifp->if_xname)); ifindex_free_locked(ifp->if_index); IFNET_WUNLOCK(); if (refcount_release(&ifp->if_refcount)) NET_EPOCH_CALL(if_destroy, &ifp->if_epoch_ctx); CURVNET_RESTORE(); } /* * Interfaces to keep an ifnet type-stable despite the possibility of the * driver calling if_free(). If there are additional references, we defer * freeing the underlying data structure. */ void if_ref(struct ifnet *ifp) { /* We don't assert the ifnet list lock here, but arguably should. */ refcount_acquire(&ifp->if_refcount); } void if_rele(struct ifnet *ifp) { if (!refcount_release(&ifp->if_refcount)) return; NET_EPOCH_CALL(if_destroy, &ifp->if_epoch_ctx); } void ifq_init(struct ifaltq *ifq, struct ifnet *ifp) { mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); if (ifq->ifq_maxlen == 0) ifq->ifq_maxlen = ifqmaxlen; ifq->altq_type = 0; ifq->altq_disc = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; ifq->altq_tbr = NULL; ifq->altq_ifp = ifp; } void ifq_delete(struct ifaltq *ifq) { mtx_destroy(&ifq->ifq_mtx); } /* * Perform generic interface initialization tasks and attach the interface * to the list of "active" interfaces. If vmove flag is set on entry * to if_attach_internal(), perform only a limited subset of initialization * tasks, given that we are moving from one vnet to another an ifnet which * has already been fully initialized. * * Note that if_detach_internal() removes group membership unconditionally * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. * Thus, when if_vmove() is applied to a cloned interface, group membership * is lost while a cloned one always joins a group whose name is * ifc->ifc_name. To recover this after if_detach_internal() and * if_attach_internal(), the cloner should be specified to * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() * attempts to join a group whose name is ifc->ifc_name. * * XXX: * - The decision to return void and thus require this function to * succeed is questionable. * - We should probably do more sanity checking. For instance we don't * do anything to insure if_xname is unique or non-empty. */ void if_attach(struct ifnet *ifp) { if_attach_internal(ifp, 0, NULL); } /* * Compute the least common TSO limit. */ void if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) { /* * 1) If there is no limit currently, take the limit from * the network adapter. * * 2) If the network adapter has a limit below the current * limit, apply it. */ if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && ifp->if_hw_tsomax < pmax->tsomaxbytes)) { pmax->tsomaxbytes = ifp->if_hw_tsomax; } if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; } if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } /* * Update TSO limit of a network adapter. * * Returns zero if no change. Else non-zero. */ int if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) { int retval = 0; if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { ifp->if_hw_tsomax = pmax->tsomaxbytes; retval++; } if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; retval++; } if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; retval++; } return (retval); } static void if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc) { unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) panic ("%s: BUG: if_attach called without if_alloc'd input()\n", ifp->if_xname); #ifdef VIMAGE ifp->if_vnet = curvnet; if (ifp->if_home_vnet == NULL) ifp->if_home_vnet = curvnet; #endif if_addgroup(ifp, IFG_ALL); /* Restore group membership for cloned interfaces. */ if (vmove && ifc != NULL) if_clone_addgroup(ifp, ifc); getmicrotime(&ifp->if_lastchange); ifp->if_epoch = time_uptime; KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || (ifp->if_transmit != NULL && ifp->if_qflush != NULL), ("transmit and qflush must both either be set or both be NULL")); if (ifp->if_transmit == NULL) { ifp->if_transmit = if_transmit; ifp->if_qflush = if_qflush; } if (ifp->if_input == NULL) ifp->if_input = if_input_default; if (ifp->if_requestencap == NULL) ifp->if_requestencap = if_requestencap_default; if (!vmove) { #ifdef MAC mac_ifnet_create(ifp); #endif /* * Create a Link Level name for this device. */ namelen = strlen(ifp->if_xname); /* * Always save enough space for any possiable name so we * can do a rename in place later. */ masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = ifa_alloc(ifasize, M_WAITOK); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifp->if_addr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); /* Reliably crash if used uninitialized. */ ifp->if_broadcastaddr = NULL; if (ifp->if_type == IFT_ETHER) { ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, M_WAITOK | M_ZERO); } #if defined(INET) || defined(INET6) /* Use defaults for TSO, if nothing is set */ if (ifp->if_hw_tsomax == 0 && ifp->if_hw_tsomaxsegcount == 0 && ifp->if_hw_tsomaxsegsize == 0) { /* * The TSO defaults needs to be such that an * NFS mbuf list of 35 mbufs totalling just * below 64K works and that a chain of mbufs * can be defragged into at most 32 segments: */ ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); ifp->if_hw_tsomaxsegcount = 35; ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ /* XXX some drivers set IFCAP_TSO after ethernet attach */ if (ifp->if_capabilities & IFCAP_TSO) { if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", ifp->if_hw_tsomax, ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); } } #endif } #ifdef VIMAGE else { /* * Update the interface index in the link layer address * of the interface. */ for (ifa = ifp->if_addr; ifa != NULL; ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { if (ifa->ifa_addr->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_index = ifp->if_index; } } } #endif IFNET_WLOCK(); CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); #ifdef VIMAGE curvnet->vnet_ifcnt++; #endif IFNET_WUNLOCK(); if (domain_init_status >= 2) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_epochalloc(void *dummy __unused) { net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); } SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); static void if_attachdomain(void *dummy) { struct ifnet *ifp; CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) if_attachdomain1(ifp); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ IF_AFDATA_LOCK(ifp); if (ifp->if_afdata_initialized >= domain_init_status) { IF_AFDATA_UNLOCK(ifp); log(LOG_WARNING, "%s called more than once on %s\n", __func__, ifp->if_xname); return; } ifp->if_afdata_initialized = domain_init_status; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } } /* * Remove any unicast or broadcast network addresses from an interface. */ void if_purgeaddrs(struct ifnet *ifp) { struct ifaddr *ifa; while (1) { struct epoch_tracker et; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) break; } NET_EPOCH_EXIT(et); if (ifa == NULL) break; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeaddr(ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } } /* * Remove any multicast network addresses from an interface when an ifnet * is going away. */ static void if_purgemaddrs(struct ifnet *ifp) { struct ifmultiaddr *ifma; IF_ADDR_WLOCK(ifp); while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); if_delmulti_locked(ifp, ifma, 1); } IF_ADDR_WUNLOCK(ifp); } /* * Detach an interface, removing it from the list of "active" interfaces. * If vmove flag is set on entry to if_detach_internal(), perform only a * limited subset of cleanup tasks, given that we are moving an ifnet from * one vnet to another, where it must be fully operational. * * XXXRW: There are some significant questions about event ordering, and * how to prevent things from starting to use the interface during detach. */ void if_detach(struct ifnet *ifp) { CURVNET_SET_QUIET(ifp->if_vnet); if_detach_internal(ifp, 0, NULL); CURVNET_RESTORE(); } /* * The vmove flag, if set, indicates that we are called from a callpath * that is moving an interface to a different vnet instance. * * The shutdown flag, if set, indicates that we are called in the * process of shutting down a vnet instance. Currently only the * vnet_if_return SYSUNINIT function sets it. Note: we can be called * on a vnet instance shutdown without this flag being set, e.g., when * the cloned interfaces are destoyed as first thing of teardown. */ static int if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp) { struct ifaddr *ifa; int i; struct domain *dp; struct ifnet *iter; int found = 0; #ifdef VIMAGE bool shutdown; shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); #endif IFNET_WLOCK(); CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) if (iter == ifp) { CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); if (!vmove) ifp->if_flags |= IFF_DYING; found = 1; break; } IFNET_WUNLOCK(); if (!found) { /* * While we would want to panic here, we cannot * guarantee that the interface is indeed still on * the list given we don't hold locks all the way. */ return (ENOENT); #if 0 if (vmove) panic("%s: ifp=%p not on the ifnet tailq %p", __func__, ifp, &V_ifnet); else return; /* XXX this should panic as well? */ #endif } /* * At this point we know the interface still was on the ifnet list * and we removed it so we are in a stable state. */ #ifdef VIMAGE curvnet->vnet_ifcnt--; #endif epoch_wait_preempt(net_epoch_preempt); /* * Ensure all pending EPOCH(9) callbacks have been executed. This * fixes issues about late destruction of multicast options * which lead to leave group calls, which in turn access the * belonging ifnet structure: */ epoch_drain_callbacks(net_epoch_preempt); /* * In any case (destroy or vmove) detach us from the groups * and remove/wait for pending events on the taskq. * XXX-BZ in theory an interface could still enqueue a taskq change? */ if_delgroups(ifp); taskqueue_drain(taskqueue_swi, &ifp->if_linktask); taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); /* * Check if this is a cloned interface or not. Must do even if * shutting down as a if_vmove_reclaim() would move the ifp and * the if_clone_addgroup() will have a corrupted string overwise * from a gibberish pointer. */ if (vmove && ifcp != NULL) *ifcp = if_clone_findifc(ifp); if_down(ifp); #ifdef VIMAGE /* * On VNET shutdown abort here as the stack teardown will do all * the work top-down for us. */ if (shutdown) { /* Give interface users the chance to clean up. */ EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); /* * In case of a vmove we are done here without error. * If we would signal an error it would lead to the same * abort as if we did not find the ifnet anymore. * if_detach() calls us in void context and does not care * about an early abort notification, so life is splendid :) */ goto finish_vnet_shutdown; } #endif /* * At this point we are not tearing down a VNET and are either * going to destroy or vmove the interface and have to cleanup * accordingly. */ /* * Remove routes and flush queues. */ #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif if_purgeaddrs(ifp); #ifdef INET in_ifdetach(ifp); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif if_purgemaddrs(ifp); /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); if (!vmove) { /* * Prevent further calls into the device driver via ifnet. */ if_dead(ifp); /* * Clean up all addresses. */ IF_ADDR_WLOCK(ifp); if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } else IF_ADDR_WUNLOCK(ifp); } rt_flushifroutes(ifp); #ifdef VIMAGE finish_vnet_shutdown: #endif /* * We cannot hold the lock over dom_ifdetach calls as they might * sleep, for example trying to drain a callout, thus open up the * theoretical race with re-attaching. */ IF_AFDATA_LOCK(ifp); i = ifp->if_afdata_initialized; ifp->if_afdata_initialized = 0; IF_AFDATA_UNLOCK(ifp); for (dp = domains; i > 0 && dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); ifp->if_afdata[dp->dom_family] = NULL; } } return (0); } #ifdef VIMAGE /* * if_vmove() performs a limited version of if_detach() in current * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. * An attempt is made to shrink if_index in current vnet, find an * unused if_index in target vnet and calls if_grow() if necessary, * and finally find an unused if_xname for the target vnet. */ static int if_vmove(struct ifnet *ifp, struct vnet *new_vnet) { struct if_clone *ifc; #ifdef DEV_BPF u_int bif_dlt, bif_hdrlen; #endif void *old; int rc; #ifdef DEV_BPF /* * if_detach_internal() will call the eventhandler to notify * interface departure. That will detach if_bpf. We need to * safe the dlt and hdrlen so we can re-attach it later. */ bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); #endif /* * Detach from current vnet, but preserve LLADDR info, do not * mark as dead etc. so that the ifnet can be reattached later. * If we cannot find it, we lost the race to someone else. */ rc = if_detach_internal(ifp, 1, &ifc); if (rc != 0) return (rc); /* * Unlink the ifnet from ifindex_table[] in current vnet, and shrink * the if_index for that vnet if possible. * * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, * or we'd lock on one vnet and unlock on another. */ IFNET_WLOCK(); ifindex_free_locked(ifp->if_index); IFNET_WUNLOCK(); /* * Perform interface-specific reassignment tasks, if provided by * the driver. */ if (ifp->if_reassign != NULL) ifp->if_reassign(ifp, new_vnet, NULL); /* * Switch to the context of the target vnet. */ CURVNET_SET_QUIET(new_vnet); restart: IFNET_WLOCK(); ifp->if_index = ifindex_alloc(&old); if (__predict_false(ifp->if_index == USHRT_MAX)) { IFNET_WUNLOCK(); epoch_wait_preempt(net_epoch_preempt); free(old, M_IFNET); goto restart; } ifnet_setbyindex(ifp->if_index, ifp); IFNET_WUNLOCK(); if_attach_internal(ifp, 1, ifc); #ifdef DEV_BPF if (ifp->if_bpf == NULL) bpfattach(ifp, bif_dlt, bif_hdrlen); #endif CURVNET_RESTORE(); return (0); } /* * Move an ifnet to or from another child prison/vnet, specified by the jail id. */ static int if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) { struct prison *pr; struct ifnet *difp; int error; bool shutdown; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Do not try to move the iface from and to the same prison. */ if (pr->pr_vnet == ifp->if_vnet) { prison_free(pr); return (EEXIST); } /* Make sure the named iface does not exists in the dst. prison/vnet. */ /* XXX Lock interfaces to avoid races. */ CURVNET_SET_QUIET(pr->pr_vnet); difp = ifunit(ifname); if (difp != NULL) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); if (shutdown) { CURVNET_RESTORE(); prison_free(pr); return (EBUSY); } CURVNET_RESTORE(); /* Move the interface into the child jail/vnet. */ error = if_vmove(ifp, pr->pr_vnet); /* Report the new if_xname back to the userland on success. */ if (error == 0) sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (error); } static int if_vmove_reclaim(struct thread *td, char *ifname, int jid) { struct prison *pr; struct vnet *vnet_dst; struct ifnet *ifp; int error; bool shutdown; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Make sure the named iface exists in the source prison/vnet. */ CURVNET_SET(pr->pr_vnet); ifp = ifunit(ifname); /* XXX Lock to avoid races. */ if (ifp == NULL) { CURVNET_RESTORE(); prison_free(pr); return (ENXIO); } /* Do not try to move the iface from and to the same prison. */ vnet_dst = TD_TO_VNET(td); if (vnet_dst == ifp->if_vnet) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); if (shutdown) { CURVNET_RESTORE(); prison_free(pr); return (EBUSY); } /* Get interface back from child jail/vnet. */ error = if_vmove(ifp, vnet_dst); CURVNET_RESTORE(); /* Report the new if_xname back to the userland on success. */ if (error == 0) sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (error); } #endif /* VIMAGE */ /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; int new = 0; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); IFNET_WLOCK(); CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { IFNET_WUNLOCK(); return (EEXIST); } if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { IFNET_WUNLOCK(); return (ENOMEM); } if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL) { if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); free(ifgm, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; CK_STAILQ_INIT(&ifg->ifg_members); CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); new = 1; } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); IFNET_WUNLOCK(); if (new) EVENTHANDLER_INVOKE(group_attach_event, ifg); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Helper function to remove a group out of an interface. Expects the global * ifnet lock to be write-locked, and drops it before returning. */ static void _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, const char *groupname) { struct ifg_member *ifgm; bool freeifgl; IFNET_WLOCK_ASSERT(); IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); IF_ADDR_WUNLOCK(ifp); CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { if (ifgm->ifgm_ifp == ifp) { CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifg_member, ifgm_next); break; } } if (--ifgl->ifgl_group->ifg_refcnt == 0) { CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, ifg_next); freeifgl = true; } else { freeifgl = false; } IFNET_WUNLOCK(); epoch_wait_preempt(net_epoch_preempt); if (freeifgl) { EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } free(ifgm, M_TEMP); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; IFNET_WLOCK(); CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) break; if (ifgl == NULL) { IFNET_WUNLOCK(); return (ENOENT); } _if_delgroup_locked(ifp, ifgl, groupname); return (0); } /* * Remove an interface from all groups */ static void if_delgroups(struct ifnet *ifp) { struct ifg_list *ifgl; char groupname[IFNAMSIZ]; IFNET_WLOCK(); while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); _if_delgroup_locked(ifp, ifgl, groupname); IFNET_WLOCK(); } IFNET_WUNLOCK(); } static char * ifgr_group_get(void *ifgrp) { union ifgroupreq_union *ifgrup; ifgrup = ifgrp; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return (&ifgrup->ifgr32.ifgr_ifgru.ifgru_group[0]); #endif return (&ifgrup->ifgr.ifgr_ifgru.ifgru_group[0]); } static struct ifg_req * ifgr_groups_get(void *ifgrp) { union ifgroupreq_union *ifgrup; ifgrup = ifgrp; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return ((struct ifg_req *)(uintptr_t) ifgrup->ifgr32.ifgr_ifgru.ifgru_groups); #endif return (ifgrup->ifgr.ifgr_ifgru.ifgru_groups); } /* * Stores all groups from an interface in memory pointed to by ifgr. */ static int if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; NET_EPOCH_ASSERT(); if (ifgr->ifgr_len == 0) { CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); return (0); } len = ifgr->ifgr_len; ifgp = ifgr_groups_get(ifgr); /* XXX: wire */ CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) return (EINVAL); bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) return (error); len -= sizeof(ifgrq); ifgp++; } return (0); } /* * Stores all members of a group in memory pointed to by igfr */ static int if_getgroupmembers(struct ifgroupreq *ifgr) { struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) break; if (ifg == NULL) { IFNET_RUNLOCK(); return (ENOENT); } if (ifgr->ifgr_len == 0) { CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); IFNET_RUNLOCK(); return (0); } len = ifgr->ifgr_len; ifgp = ifgr_groups_get(ifgr); CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) { IFNET_RUNLOCK(); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IFNET_RUNLOCK(); return (error); } len -= sizeof(ifgrq); ifgp++; } IFNET_RUNLOCK(); return (0); } /* * Return counter values from counter(9)s stored in ifnet. */ uint64_t if_get_counter_default(struct ifnet *ifp, ift_counter cnt) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); return (counter_u64_fetch(ifp->if_counters[cnt])); } /* * Increase an ifnet counter. Usually used for counters shared * between the stack and a driver, but function supports them all. */ void if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); counter_u64_add(ifp->if_counters[cnt], inc); } /* * Copy data from ifnet to userland API structure if_data. */ void if_data_copy(struct ifnet *ifp, struct if_data *ifd) { ifd->ifi_type = ifp->if_type; ifd->ifi_physical = 0; ifd->ifi_addrlen = ifp->if_addrlen; ifd->ifi_hdrlen = ifp->if_hdrlen; ifd->ifi_link_state = ifp->if_link_state; ifd->ifi_vhid = 0; ifd->ifi_datalen = sizeof(struct if_data); ifd->ifi_mtu = ifp->if_mtu; ifd->ifi_metric = ifp->if_metric; ifd->ifi_baudrate = ifp->if_baudrate; ifd->ifi_hwassist = ifp->if_hwassist; ifd->ifi_epoch = ifp->if_epoch; ifd->ifi_lastchange = ifp->if_lastchange; ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); } /* * Initialization, destruction and refcounting functions for ifaddrs. */ struct ifaddr * ifa_alloc(size_t size, int flags) { struct ifaddr *ifa; KASSERT(size >= sizeof(struct ifaddr), ("%s: invalid size %zu", __func__, size)); ifa = malloc(size, M_IFADDR, M_ZERO | flags); if (ifa == NULL) return (NULL); if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) goto fail; refcount_init(&ifa->ifa_refcnt, 1); return (ifa); fail: /* free(NULL) is okay */ counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); return (NULL); } void ifa_ref(struct ifaddr *ifa) { refcount_acquire(&ifa->ifa_refcnt); } static void ifa_destroy(epoch_context_t ctx) { struct ifaddr *ifa; ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); } void ifa_free(struct ifaddr *ifa) { if (refcount_release(&ifa->ifa_refcnt)) NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); } static int ifa_maintain_loopback_route(int cmd, const char *otype, struct ifaddr *ifa, struct sockaddr *ia) { + struct rib_cmd_info rc; struct epoch_tracker et; int error; struct rt_addrinfo info; struct sockaddr_dl null_sdl; struct ifnet *ifp; struct ifaddr *rti_ifa = NULL; ifp = ifa->ifa_ifp; NET_EPOCH_ENTER(et); bzero(&info, sizeof(info)); if (cmd != RTM_DELETE) info.rti_ifp = V_loif; if (cmd == RTM_ADD) { /* explicitly specify (loopback) ifa */ if (info.rti_ifp != NULL) { rti_ifa = ifaof_ifpforaddr(ifa->ifa_addr, info.rti_ifp); if (rti_ifa != NULL) ifa_ref(rti_ifa); info.rti_ifa = rti_ifa; } } info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC | RTF_PINNED; info.rti_info[RTAX_DST] = ia; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; link_init_sdl(ifp, (struct sockaddr *)&null_sdl, ifp->if_type); - error = rtrequest1_fib(cmd, &info, NULL, ifp->if_fib); + error = rib_action(ifp->if_fib, cmd, &info, &rc); NET_EPOCH_EXIT(et); if (rti_ifa != NULL) ifa_free(rti_ifa); if (error == 0 || (cmd == RTM_ADD && error == EEXIST) || (cmd == RTM_DELETE && (error == ENOENT || error == ESRCH))) return (error); log(LOG_DEBUG, "%s: %s failed for interface %s: %u\n", __func__, otype, if_name(ifp), error); return (error); } int ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { return (ifa_maintain_loopback_route(RTM_ADD, "insertion", ifa, ia)); } int ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { return (ifa_maintain_loopback_route(RTM_DELETE, "deletion", ifa, ia)); } int ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { return (ifa_maintain_loopback_route(RTM_CHANGE, "switch", ifa, ia)); } /* * XXX: Because sockaddr_dl has deeper structure than the sockaddr * structs used to represent other address families, it is necessary * to perform a different comparison. */ #define sa_dl_equal(a1, a2) \ ((((const struct sockaddr_dl *)(a1))->sdl_len == \ ((const struct sockaddr_dl *)(a2))->sdl_len) && \ (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ CLLADDR((const struct sockaddr_dl *)(a2)), \ ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) { goto done; } /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { goto done; } } } ifa = NULL; done: return (ifa); } int ifa_ifwithaddr_check(const struct sockaddr *addr) { struct epoch_tracker et; int rc; NET_EPOCH_ENTER(et); rc = (ifa_ifwithaddr(addr) != NULL); NET_EPOCH_EXIT(et); return (rc); } /* * Locate an interface based on the broadcast address. */ /* ARGSUSED */ struct ifaddr * ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { goto done; } } } ifa = NULL; done: return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { goto done; } } } ifa = NULL; done: return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; const char *addr_data = addr->sa_data, *cplim; NET_EPOCH_ASSERT(); /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= V_if_index) return (ifaddr_byindex(sdl->sdl_index)); } /* * Scan though each interface, looking for ones that have addresses * in this address family and the requested fib. */ CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { const char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { goto done; } } else { /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one), or if the virtual status * of new prefix is better than of the old one, * then remember the new one before continuing * to search for an even better one. */ if (ifa_maybe == NULL || ifa_preferred(ifa_maybe, ifa) || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) { ifa_maybe = ifa; } } } } ifa = ifa_maybe; ifa_maybe = NULL; done: return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; const char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (NULL); NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: return (ifa); } /* * See whether new ifa is better than current one: * 1) A non-virtual one is preferred over virtual. * 2) A virtual in master state preferred over any other state. * * Used in several address selecting functions. */ int ifa_preferred(struct ifaddr *cur, struct ifaddr *next) { return (cur->ifa_carp && (!next->ifa_carp || ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); } struct sockaddr_dl * link_alloc_sdl(size_t size, int flags) { return (malloc(size, M_TEMP, flags)); } void link_free_sdl(struct sockaddr *sa) { free(sa, M_TEMP); } /* * Fills in given sdl with interface basic info. * Returns pointer to filled sdl. */ struct sockaddr_dl * link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)paddr; memset(sdl, 0, sizeof(struct sockaddr_dl)); sdl->sdl_len = sizeof(struct sockaddr_dl); sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = iftype; return (sdl); } /* * Mark an interface down and notify protocols of * the transition. */ static void if_unroute(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); ifp->if_qflush(ifp); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. */ static void if_route(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFUP, ifa->ifa_addr); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); int (*vlan_tag_p)(struct ifnet *, uint16_t *); int (*vlan_pcp_p)(struct ifnet *, uint16_t *); int (*vlan_setcookie_p)(struct ifnet *, void *); void *(*vlan_cookie_p)(struct ifnet *); /* * Handle a change in the interface link state. To avoid LORs * between driver lock and upper layer locks, as well as possible * recursions, we post event to taskqueue, and all job * is done in static do_link_state_change(). */ void if_link_state_change(struct ifnet *ifp, int link_state) { /* Return if state hasn't changed. */ if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; /* XXXGL: reference ifp? */ taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); } static void do_link_state_change(void *arg, int pending) { struct ifnet *ifp; int link_state; ifp = arg; link_state = ifp->if_link_state; CURVNET_SET(ifp->if_vnet); rt_ifmsg(ifp); if (ifp->if_vlantrunk != NULL) (*vlan_link_state_p)(ifp); if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && ifp->if_l2com != NULL) (*ng_ether_link_state_p)(ifp, link_state); if (ifp->if_carp) (*carp_linkstate_p)(ifp); if (ifp->if_bridge) ifp->if_bridge_linkstate(ifp); if (ifp->if_lagg) (*lagg_linkstate_p)(ifp, link_state); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); if (pending > 1) if_printf(ifp, "%d link states coalesced\n", pending); if (log_link_state_change) if_printf(ifp, "link state changed to %s\n", (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); CURVNET_RESTORE(); } /* * Mark an interface down and notify protocols of * the transition. */ void if_down(struct ifnet *ifp) { EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); } /* * Flush an interface queue. */ void if_qflush(struct ifnet *ifp) { struct mbuf *m, *n; struct ifaltq *ifq; ifq = &ifp->if_snd; IFQ_LOCK(ifq); #ifdef ALTQ if (ALTQ_IS_ENABLED(ifq)) ALTQ_PURGE(ifq); #endif n = ifq->ifq_head; while ((m = n) != NULL) { n = m->m_nextpkt; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; IFQ_UNLOCK(ifq); } /* * Map interface name to interface structure pointer, with or without * returning a reference. */ struct ifnet * ifunit_ref(const char *name) { struct epoch_tracker et; struct ifnet *ifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && !(ifp->if_flags & IFF_DYING)) break; } if (ifp != NULL) if_ref(ifp); NET_EPOCH_EXIT(et); return (ifp); } struct ifnet * ifunit(const char *name) { struct epoch_tracker et; struct ifnet *ifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } NET_EPOCH_EXIT(et); return (ifp); } void * ifr_buffer_get_buffer(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return ((void *)(uintptr_t) ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); #endif return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); } static void ifr_buffer_set_buffer_null(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; else #endif ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; } size_t ifr_buffer_get_length(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); #endif return (ifrup->ifr.ifr_ifru.ifru_buffer.length); } static void ifr_buffer_set_length(void *data, size_t len) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; else #endif ifrup->ifr.ifr_ifru.ifru_buffer.length = len; } void * ifr_data_get_ptr(void *ifrp) { union ifreq_union *ifrup; ifrup = ifrp; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return ((void *)(uintptr_t) ifrup->ifr32.ifr_ifru.ifru_data); #endif return (ifrup->ifr.ifr_ifru.ifru_data); } /* * Hardware specific interface ioctls. */ int ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) { struct ifreq *ifr; int error = 0, do_ifup = 0; int new_flags, temp_flags; size_t namelen, onamelen; size_t descrlen; char *descrbuf, *odescrbuf; char new_name[IFNAMSIZ]; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: temp_flags = ifp->if_flags | ifp->if_drv_flags; ifr->ifr_flags = temp_flags & 0xffff; ifr->ifr_flagshigh = temp_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; #ifdef MAC case SIOCGIFMAC: error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: /* XXXGL: did this ever worked? */ ifr->ifr_phys = 0; break; case SIOCGIFDESCR: error = 0; sx_slock(&ifdescr_sx); if (ifp->if_description == NULL) error = ENOMSG; else { /* space for terminating nul */ descrlen = strlen(ifp->if_description) + 1; if (ifr_buffer_get_length(ifr) < descrlen) ifr_buffer_set_buffer_null(ifr); else error = copyout(ifp->if_description, ifr_buffer_get_buffer(ifr), descrlen); ifr_buffer_set_length(ifr, descrlen); } sx_sunlock(&ifdescr_sx); break; case SIOCSIFDESCR: error = priv_check(td, PRIV_NET_SETIFDESCR); if (error) return (error); /* * Copy only (length-1) bytes to make sure that * if_description is always nul terminated. The * length parameter is supposed to count the * terminating nul in. */ if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) return (ENAMETOOLONG); else if (ifr_buffer_get_length(ifr) == 0) descrbuf = NULL; else { descrbuf = malloc(ifr_buffer_get_length(ifr), M_IFDESCR, M_WAITOK | M_ZERO); error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, ifr_buffer_get_length(ifr) - 1); if (error) { free(descrbuf, M_IFDESCR); break; } } sx_xlock(&ifdescr_sx); odescrbuf = ifp->if_description; ifp->if_description = descrbuf; sx_xunlock(&ifdescr_sx); getmicrotime(&ifp->if_lastchange); free(odescrbuf, M_IFDESCR); break; case SIOCGIFFIB: ifr->ifr_fib = ifp->if_fib; break; case SIOCSIFFIB: error = priv_check(td, PRIV_NET_SETIFFIB); if (error) return (error); if (ifr->ifr_fib >= rt_numfibs) return (EINVAL); ifp->if_fib = ifr->ifr_fib; break; case SIOCSIFFLAGS: error = priv_check(td, PRIV_NET_SETIFFLAGS); if (error) return (error); /* * Currently, no driver owned flags pass the IFF_CANTCHANGE * check, so we don't need special handling here yet. */ new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { if_down(ifp); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { do_ifup = 1; } /* See if permanently promiscuous mode bit is about to flip */ if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { if (new_flags & IFF_PPROMISC) ifp->if_flags |= IFF_PROMISC; else if (ifp->if_pcount == 0) ifp->if_flags &= ~IFF_PROMISC; if (log_promisc_mode_change) if_printf(ifp, "permanently promiscuous mode %s\n", ((new_flags & IFF_PPROMISC) ? "enabled" : "disabled")); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) { (void) (*ifp->if_ioctl)(ifp, cmd, data); } if (do_ifup) if_up(ifp); getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = priv_check(td, PRIV_NET_SETIFCAP); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; #ifdef MAC case SIOCSIFMAC: error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = priv_check(td, PRIV_NET_SETIFNAME); if (error) return (error); error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (new_name[IFNAMSIZ-1] != '\0') { new_name[IFNAMSIZ-1] = '\0'; if (strlen(new_name) == IFNAMSIZ-1) return (EINVAL); } if (strcmp(new_name, ifp->if_xname) == 0) break; if (ifunit(new_name) != NULL) return (EEXIST); /* * XXX: Locking. Nothing else seems to lock if_flags, * and there are numerous other races with the * ifunit() checks not being atomic with namespace * changes (renames, vmoves, if_attach, etc). */ ifp->if_flags |= IFF_RENAMING; /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if_printf(ifp, "changing name to '%s'\n", new_name); IF_ADDR_WLOCK(ifp); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); ifp->if_flags &= ~IFF_RENAMING; break; #ifdef VIMAGE case SIOCSIFVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error) return (error); error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); break; #endif case SIOCSIFMETRIC: error = priv_check(td, PRIV_NET_SETIFMETRIC); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check(td, PRIV_NET_SETIFPHYS); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); #ifdef INET DEBUGNET_NOTIFY_MTU(ifp); #endif } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif rt_updatemtu(ifp); } break; } case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = priv_check(td, PRIV_NET_ADDMULTI); else error = priv_check(td, PRIV_NET_DELMULTI); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct epoch_tracker et; struct ifmultiaddr *ifma; /* * Userland is only permitted to join groups once * via the if_addmulti() KPI, because it cannot hold * struct ifmultiaddr * between calls. It may also * lose a race while we check if the membership * already exists. */ NET_EPOCH_ENTER(et); ifma = if_findmulti(ifp, &ifr->ifr_addr); NET_EPOCH_EXIT(et); if (ifma != NULL) error = EADDRINUSE; else error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check(td, PRIV_NET_HWIOCTL); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGIFMEDIA: case SIOCGIFXMEDIA: case SIOCGIFGENERIC: case SIOCGIFRSSKEY: case SIOCGIFRSSHASH: case SIOCGIFDOWNREASON: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCSIFLLADDR: error = priv_check(td, PRIV_NET_SETLLADDR); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); break; case SIOCGHWADDR: error = if_gethwaddr(ifp, ifr); break; case CASE_IOC_IFGROUPREQ(SIOCAIFGROUP): error = priv_check(td, PRIV_NET_ADDIFGROUP); if (error) return (error); if ((error = if_addgroup(ifp, ifgr_group_get((struct ifgroupreq *)data)))) return (error); break; case CASE_IOC_IFGROUPREQ(SIOCGIFGROUP): { struct epoch_tracker et; NET_EPOCH_ENTER(et); error = if_getgroup((struct ifgroupreq *)data, ifp); NET_EPOCH_EXIT(et); break; } case CASE_IOC_IFGROUPREQ(SIOCDIFGROUP): error = priv_check(td, PRIV_NET_DELIFGROUP); if (error) return (error); if ((error = if_delgroup(ifp, ifgr_group_get((struct ifgroupreq *)data)))) return (error); break; default: error = ENOIOCTL; break; } return (error); } #ifdef COMPAT_FREEBSD32 struct ifconf32 { int32_t ifc_len; union { uint32_t ifcu_buf; uint32_t ifcu_req; } ifc_ifcu; }; #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) #endif #ifdef COMPAT_FREEBSD32 static void ifmr_init(struct ifmediareq *ifmr, caddr_t data) { struct ifmediareq32 *ifmr32; ifmr32 = (struct ifmediareq32 *)data; memcpy(ifmr->ifm_name, ifmr32->ifm_name, sizeof(ifmr->ifm_name)); ifmr->ifm_current = ifmr32->ifm_current; ifmr->ifm_mask = ifmr32->ifm_mask; ifmr->ifm_status = ifmr32->ifm_status; ifmr->ifm_active = ifmr32->ifm_active; ifmr->ifm_count = ifmr32->ifm_count; ifmr->ifm_ulist = (int *)(uintptr_t)ifmr32->ifm_ulist; } static void ifmr_update(const struct ifmediareq *ifmr, caddr_t data) { struct ifmediareq32 *ifmr32; ifmr32 = (struct ifmediareq32 *)data; ifmr32->ifm_current = ifmr->ifm_current; ifmr32->ifm_mask = ifmr->ifm_mask; ifmr32->ifm_status = ifmr->ifm_status; ifmr32->ifm_active = ifmr->ifm_active; ifmr32->ifm_count = ifmr->ifm_count; } #endif /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { #ifdef COMPAT_FREEBSD32 caddr_t saved_data = NULL; struct ifmediareq ifmr; struct ifmediareq *ifmrp = NULL; #endif struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; #ifdef VIMAGE bool shutdown; #endif CURVNET_SET(so->so_vnet); #ifdef VIMAGE /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); if (shutdown) { CURVNET_RESTORE(); return (EBUSY); } #endif switch (cmd) { case SIOCGIFCONF: error = ifconf(cmd, data); goto out_noref; #ifdef COMPAT_FREEBSD32 case SIOCGIFCONF32: { struct ifconf32 *ifc32; struct ifconf ifc; ifc32 = (struct ifconf32 *)data; ifc.ifc_len = ifc32->ifc_len; ifc.ifc_buf = PTRIN(ifc32->ifc_buf); error = ifconf(SIOCGIFCONF, (void *)&ifc); if (error == 0) ifc32->ifc_len = ifc.ifc_len; goto out_noref; } #endif } #ifdef COMPAT_FREEBSD32 switch (cmd) { case SIOCGIFMEDIA32: case SIOCGIFXMEDIA32: ifmrp = &ifmr; ifmr_init(ifmrp, data); cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); saved_data = data; data = (caddr_t)ifmrp; } #endif ifr = (struct ifreq *)data; switch (cmd) { #ifdef VIMAGE case SIOCSIFRVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error == 0) error = if_vmove_reclaim(td, ifr->ifr_name, ifr->ifr_jid); goto out_noref; #endif case SIOCIFCREATE: case SIOCIFCREATE2: error = priv_check(td, PRIV_NET_IFCREATE); if (error == 0) error = if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr_data_get_ptr(ifr) : NULL); goto out_noref; case SIOCIFDESTROY: error = priv_check(td, PRIV_NET_IFDESTROY); if (error == 0) error = if_clone_destroy(ifr->ifr_name); goto out_noref; case SIOCIFGCLONERS: error = if_clone_list((struct if_clonereq *)data); goto out_noref; case CASE_IOC_IFGROUPREQ(SIOCGIFGMEMB): error = if_getgroupmembers((struct ifgroupreq *)data); goto out_noref; #if defined(INET) || defined(INET6) case SIOCSVH: case SIOCGVH: if (carp_ioctl_p == NULL) error = EPROTONOSUPPORT; else error = (*carp_ioctl_p)(ifr, cmd, td); goto out_noref; #endif } ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) { error = ENXIO; goto out_noref; } error = ifhwioctl(cmd, ifp, data, td); if (error != ENOIOCTL) goto out_ref; oif_flags = ifp->if_flags; if (so->so_proto == NULL) { error = EOPNOTSUPP; goto out_ref; } /* * Pass the request on to the socket control method, and if the * latter returns EOPNOTSUPP, directly to the interface. * * Make an exception for the legacy SIOCSIF* requests. Drivers * trust SIOCSIFADDR et al to come from an already privileged * layer, and do not perform any credentials checks or input * validation. */ error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) error = (*ifp->if_ioctl)(ifp, cmd, data); if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 if (ifp->if_flags & IFF_UP) in6_if_up(ifp); #endif } out_ref: if_rele(ifp); out_noref: #ifdef COMPAT_FREEBSD32 if (ifmrp != NULL) { KASSERT((cmd == SIOCGIFMEDIA || cmd == SIOCGIFXMEDIA), ("ifmrp non-NULL, but cmd is not an ifmedia req 0x%lx", cmd)); data = saved_data; ifmr_update(ifmrp, data); } #endif CURVNET_RESTORE(); return (error); } /* * The code common to handling reference counted flags, * e.g., in ifpromisc() and if_allmulti(). * The "pflag" argument can specify a permanent mode flag to check, * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. * * Only to be used on stack-owned flags, not driver-owned flags. */ static int if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) { struct ifreq ifr; int error; int oldflags, oldcount; /* Sanity checks to catch programming errors */ KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, ("%s: setting driver-owned flag %d", __func__, flag)); if (onswitch) KASSERT(*refcount >= 0, ("%s: increment negative refcount %d for flag %d", __func__, *refcount, flag)); else KASSERT(*refcount > 0, ("%s: decrement non-positive refcount %d for flag %d", __func__, *refcount, flag)); /* In case this mode is permanent, just touch refcount */ if (ifp->if_flags & pflag) { *refcount += onswitch ? 1 : -1; return (0); } /* Save ifnet parameters for if_ioctl() may fail */ oldcount = *refcount; oldflags = ifp->if_flags; /* * See if we aren't the only and touching refcount is enough. * Actually toggle interface flag if we are the first or last. */ if (onswitch) { if ((*refcount)++) return (0); ifp->if_flags |= flag; } else { if (--(*refcount)) return (0); ifp->if_flags &= ~flag; } /* Call down the driver since we've changed interface flags */ if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto recover; } ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); if (error) goto recover; /* Notify userland that interface flags have changed */ rt_ifmsg(ifp); return (0); recover: /* Recover after driver error */ *refcount = oldcount; ifp->if_flags = oldflags; return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int error; int oldflags = ifp->if_flags; error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, &ifp->if_pcount, pswitch); /* If promiscuous mode status has changed, log a message */ if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && log_promisc_mode_change) if_printf(ifp, "promiscuous mode %s\n", (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ max_len = MAXPHYS - 1; /* Prevent hostile input from being able to crash the system */ if (ifc->ifc_len <= 0) return (EINVAL); again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { struct epoch_tracker et; int addrs; /* * Zero the ifr to make sure we don't disclose the contents * of the stack. */ memset(&ifr, 0, sizeof(ifr)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { sbuf_delete(sb); IFNET_RUNLOCK(); return (ENAMETOOLONG); } addrs = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (prison_if(curthread->td_ucred, sa) != 0) continue; addrs++; if (sa->sa_len <= sizeof(*sa)) { if (sa->sa_len < sizeof(*sa)) { memset(&ifr.ifr_ifru.ifru_addr, 0, sizeof(ifr.ifr_ifru.ifru_addr)); memcpy(&ifr.ifr_ifru.ifru_addr, sa, sa->sa_len); } else ifr.ifr_ifru.ifru_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } NET_EPOCH_EXIT(et); if (addrs == 0) { sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like ifpromisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); } struct ifmultiaddr * if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) { struct ifmultiaddr *ifma; IF_ADDR_LOCK_ASSERT(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa->sa_family == AF_LINK) { if (sa_dl_equal(ifma->ifma_addr, sa)) break; } else { if (sa_equal(ifma->ifma_addr, sa)) break; } } return ifma; } /* * Allocate a new ifmultiaddr and initialize based on passed arguments. We * make copies of passed sockaddrs. The ifmultiaddr will not be added to * the ifnet multicast address list here, so the caller must do that and * other setup work (such as notifying the device driver). The reference * count is initialized to 1. */ static struct ifmultiaddr * if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, int mflags) { struct ifmultiaddr *ifma; struct sockaddr *dupsa; ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | M_ZERO); if (ifma == NULL) return (NULL); dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma, M_IFMADDR); return (NULL); } bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; if (llsa == NULL) { ifma->ifma_lladdr = NULL; return (ifma); } dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); return (NULL); } bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_lladdr = dupsa; return (ifma); } /* * if_freemulti: free ifmultiaddr structure and possibly attached related * addresses. The caller is responsible for implementing reference * counting, notifying the driver, handling routing messages, and releasing * any dependent link layer state. */ #ifdef MCAST_VERBOSE extern void kdb_backtrace(void); #endif static void if_freemulti_internal(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", ifma->ifma_refcount)); if (ifma->ifma_lladdr != NULL) free(ifma->ifma_lladdr, M_IFMADDR); #ifdef MCAST_VERBOSE kdb_backtrace(); printf("%s freeing ifma: %p\n", __func__, ifma); #endif free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); } static void if_destroymulti(epoch_context_t ctx) { struct ifmultiaddr *ifma; ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); if_freemulti_internal(ifma); } void if_freemulti(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", ifma->ifma_refcount)); NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); } /* * Register an additional multicast address with a network interface. * * - If the address is already present, bump the reference count on the * address and return. * - If the address is not link-layer, look up a link layer address. * - Allocate address structures for one or both addresses, and attach to the * multicast address list on the interface. If automatically adding a link * layer address, the protocol address will own a reference to the link * layer address, to be freed when it is freed. * - Notify the network device driver of an addition to the multicast address * list. * * 'sa' points to caller-owned memory with the desired multicast address. * * 'retifma' will be used to return a pointer to the resulting multicast * address reference, if desired. */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct ifmultiaddr *ifma, *ll_ifma; struct sockaddr *llsa; struct sockaddr_dl sdl; int error; #ifdef INET IN_MULTI_LIST_UNLOCK_ASSERT(); #endif #ifdef INET6 IN6_MULTI_LIST_UNLOCK_ASSERT(); #endif /* * If the address is already present, return a new reference to it; * otherwise, allocate storage and set up a new address. */ IF_ADDR_WLOCK(ifp); ifma = if_findmulti(ifp, sa); if (ifma != NULL) { ifma->ifma_refcount++; if (retifma != NULL) *retifma = ifma; IF_ADDR_WUNLOCK(ifp); return (0); } /* * The address isn't already present; resolve the protocol address * into a link layer address, and then look that up, bump its * refcount or allocate an ifma for that also. * Most link layer resolving functions returns address data which * fits inside default sockaddr_dl structure. However callback * can allocate another sockaddr structure, in that case we need to * free it later. */ llsa = NULL; ll_ifma = NULL; if (ifp->if_resolvemulti != NULL) { /* Provide called function with buffer size information */ sdl.sdl_len = sizeof(sdl); llsa = (struct sockaddr *)&sdl; error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) goto unlock_out; } /* * Allocate the new address. Don't hook it up yet, as we may also * need to allocate a link layer multicast address. */ ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); if (ifma == NULL) { error = ENOMEM; goto free_llsa_out; } /* * If a link layer address is found, we'll need to see if it's * already present in the address list, or allocate is as well. * When this block finishes, the link layer address will be on the * list. */ if (llsa != NULL) { ll_ifma = if_findmulti(ifp, llsa); if (ll_ifma == NULL) { ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); if (ll_ifma == NULL) { --ifma->ifma_refcount; if_freemulti(ifma); error = ENOMEM; goto free_llsa_out; } ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, ifma_link); } else ll_ifma->ifma_refcount++; ifma->ifma_llifma = ll_ifma; } /* * We now have a new multicast address, ifma, and possibly a new or * referenced link layer address. Add the primary address to the * ifnet address list. */ ifma->ifma_flags |= IFMA_F_ENQUEUED; CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma != NULL) *retifma = ifma; /* * Must generate the message while holding the lock so that 'ifma' * pointer is still valid. */ rt_newmaddrmsg(RTM_NEWMADDR, ifma); IF_ADDR_WUNLOCK(ifp); /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if (ifp->if_ioctl != NULL) { if (THREAD_CAN_SLEEP()) (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); else taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); } if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); return (0); free_llsa_out: if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); unlock_out: IF_ADDR_WUNLOCK(ifp); return (error); } static void if_siocaddmulti(void *arg, int pending) { struct ifnet *ifp; ifp = arg; #ifdef DIAGNOSTIC if (pending > 1) if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); #endif CURVNET_SET(ifp->if_vnet); (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); CURVNET_RESTORE(); } /* * Delete a multicast group membership by network-layer group address. * * Returns ENOENT if the entry could not be found. If ifp no longer * exists, results are undefined. This entry point should only be used * from subsystems which do appropriate locking to hold ifp for the * duration of the call. * Network-layer protocol domains must use if_delmulti_ifma(). */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int lastref; KASSERT(ifp, ("%s: NULL ifp", __func__)); IF_ADDR_WLOCK(ifp); lastref = 0; ifma = if_findmulti(ifp, sa); if (ifma != NULL) lastref = if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); if (ifma == NULL) return (ENOENT); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } return (0); } /* * Delete all multicast group membership for an interface. * Should be used to quickly flush all multicast filters. */ void if_delallmulti(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); } void if_delmulti_ifma(struct ifmultiaddr *ifma) { if_delmulti_ifma_flags(ifma, 0); } /* * Delete a multicast group membership by group membership pointer. * Network-layer protocol domains must use this routine. * * It is safe to call this routine if the ifp disappeared. */ void if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) { struct ifnet *ifp; int lastref; MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); #ifdef INET IN_MULTI_LIST_UNLOCK_ASSERT(); #endif ifp = ifma->ifma_ifp; #ifdef DIAGNOSTIC if (ifp == NULL) { printf("%s: ifma_ifp seems to be detached\n", __func__); } else { struct epoch_tracker et; struct ifnet *oifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; NET_EPOCH_EXIT(et); if (ifp != oifp) ifp = NULL; } #endif /* * If and only if the ifnet instance exists: Acquire the address lock. */ if (ifp != NULL) IF_ADDR_WLOCK(ifp); lastref = if_delmulti_locked(ifp, ifma, flags); if (ifp != NULL) { /* * If and only if the ifnet instance exists: * Release the address lock. * If the group was left: update the hardware hash filter. */ IF_ADDR_WUNLOCK(ifp); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } } } /* * Perform deletion of network-layer and/or link-layer multicast address. * * Return 0 if the reference count was decremented. * Return 1 if the final reference was released, indicating that the * hardware hash filter should be reprogrammed. */ static int if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) { struct ifmultiaddr *ll_ifma; if (ifp != NULL && ifma->ifma_ifp != NULL) { KASSERT(ifma->ifma_ifp == ifp, ("%s: inconsistent ifp %p", __func__, ifp)); IF_ADDR_WLOCK_ASSERT(ifp); } ifp = ifma->ifma_ifp; MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); /* * If the ifnet is detaching, null out references to ifnet, * so that upper protocol layers will notice, and not attempt * to obtain locks for an ifnet which no longer exists. The * routing socket announcement must happen before the ifnet * instance is detached from the system. */ if (detaching) { #ifdef DIAGNOSTIC printf("%s: detaching ifnet instance %p\n", __func__, ifp); #endif /* * ifp may already be nulled out if we are being reentered * to delete the ll_ifma. */ if (ifp != NULL) { rt_newmaddrmsg(RTM_DELMADDR, ifma); ifma->ifma_ifp = NULL; } } if (--ifma->ifma_refcount > 0) return 0; if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } /* * If this ifma is a network-layer ifma, a link-layer ifma may * have been associated with it. Release it first if so. */ ll_ifma = ifma->ifma_llifma; if (ll_ifma != NULL) { KASSERT(ifma->ifma_lladdr != NULL, ("%s: llifma w/o lladdr", __func__)); if (detaching) ll_ifma->ifma_ifp = NULL; /* XXX */ if (--ll_ifma->ifma_refcount == 0) { if (ifp != NULL) { if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } } if_freemulti(ll_ifma); } } #ifdef INVARIANTS if (ifp) { struct ifmultiaddr *ifmatmp; CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) MPASS(ifma != ifmatmp); } #endif if_freemulti(ifma); /* * The last reference to this instance of struct ifmultiaddr * was released; the hardware should be notified of this change. */ return 1; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. * * Set noinline to be dtrace-friendly */ __noinline int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; ifa = ifp->if_addr; if (ifa == NULL) return (EINVAL); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) return (EINVAL); if (len != sdl->sdl_alen) /* don't allow length to change */ return (EINVAL); switch (ifp->if_type) { case IFT_ETHER: case IFT_XETHER: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_IEEE8023ADLAG: bcopy(lladdr, LLADDR(sdl), len); break; default: return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { if (ifp->if_ioctl) { ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); } } EVENTHANDLER_INVOKE(iflladdr_event, ifp); return (0); } /* * Compat function for handling basic encapsulation requests. * Not converted stacks (FDDI, IB, ..) supports traditional * output model: ARP (and other similar L2 protocols) are handled * inside output routine, arpresolve/nd6_resolve() returns MAC * address instead of full prepend. * * This function creates calculated header==MAC for IPv4/IPv6 and * returns EAFNOSUPPORT (which is then handled in ARP code) for other * address families. */ static int if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) { if (req->rtype != IFENCAP_LL) return (EOPNOTSUPP); if (req->bufsize < req->lladdr_len) return (ENOMEM); switch (req->family) { case AF_INET: case AF_INET6: break; default: return (EAFNOSUPPORT); } /* Copy lladdr to storage as is */ memmove(req->buf, req->lladdr, req->lladdr_len); req->bufsize = req->lladdr_len; req->lladdr_off = 0; return (0); } /* * Tunnel interfaces can nest, also they may cause infinite recursion * calls when misconfigured. We'll prevent this by detecting loops. * High nesting level may cause stack exhaustion. We'll prevent this * by introducing upper limit. * * Return 0, if tunnel nesting count is equal or less than limit. */ int if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, int limit) { struct m_tag *mtag; int count; count = 1; mtag = NULL; while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { if (*(struct ifnet **)(mtag + 1) == ifp) { log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); return (EIO); } count++; } if (count > limit) { log(LOG_NOTICE, "%s: if_output recursively called too many times(%d)\n", if_name(ifp), count); return (EIO); } mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); if (mtag == NULL) return (ENOMEM); *(struct ifnet **)(mtag + 1) = ifp; m_tag_prepend(m, mtag); return (0); } /* * Get the link layer address that was read from the hardware at attach. * * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type * their component interfaces as IFT_IEEE8023ADLAG. */ int if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) { if (ifp->if_hw_addr == NULL) return (ENODEV); switch (ifp->if_type) { case IFT_ETHER: case IFT_IEEE8023ADLAG: bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); return (0); default: return (ENODEV); } } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } int if_printf(struct ifnet *ifp, const char *fmt, ...) { char if_fmt[256]; va_list ap; snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); va_start(ap, fmt); vlog(LOG_INFO, if_fmt, ap); va_end(ap); return (0); } void if_start(struct ifnet *ifp) { (*(ifp)->if_start)(ifp); } /* * Backwards compatibility interface for drivers * that have not implemented it */ static int if_transmit(struct ifnet *ifp, struct mbuf *m) { int error; IFQ_HANDOFF(ifp, m, error); return (error); } static void if_input_default(struct ifnet *ifp __unused, struct mbuf *m) { m_freem(m); } int if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) { int active = 0; IF_LOCK(ifq); if (_IF_QFULL(ifq)) { IF_UNLOCK(ifq); if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); m_freem(m); return (0); } if (ifp != NULL) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); if (m->m_flags & (M_BCAST|M_MCAST)) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); active = ifp->if_drv_flags & IFF_DRV_OACTIVE; } _IF_ENQUEUE(ifq, m); IF_UNLOCK(ifq); if (ifp != NULL && !active) (*(ifp)->if_start)(ifp); return (1); } void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f) { KASSERT(if_com_alloc[type] == NULL, ("if_register_com_alloc: %d already registered", type)); KASSERT(if_com_free[type] == NULL, ("if_register_com_alloc: %d free already registered", type)); if_com_alloc[type] = a; if_com_free[type] = f; } void if_deregister_com_alloc(u_char type) { KASSERT(if_com_alloc[type] != NULL, ("if_deregister_com_alloc: %d not registered", type)); KASSERT(if_com_free[type] != NULL, ("if_deregister_com_alloc: %d free not registered", type)); if_com_alloc[type] = NULL; if_com_free[type] = NULL; } /* API for driver access to network stack owned ifnet.*/ uint64_t if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) { uint64_t oldbrate; oldbrate = ifp->if_baudrate; ifp->if_baudrate = baudrate; return (oldbrate); } uint64_t if_getbaudrate(if_t ifp) { return (((struct ifnet *)ifp)->if_baudrate); } int if_setcapabilities(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capabilities = capabilities; return (0); } int if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) { ((struct ifnet *)ifp)->if_capabilities |= setbit; ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; return (0); } int if_getcapabilities(if_t ifp) { return ((struct ifnet *)ifp)->if_capabilities; } int if_setcapenable(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capenable = capabilities; return (0); } int if_setcapenablebit(if_t ifp, int setcap, int clearcap) { if(setcap) ((struct ifnet *)ifp)->if_capenable |= setcap; if(clearcap) ((struct ifnet *)ifp)->if_capenable &= ~clearcap; return (0); } const char * if_getdname(if_t ifp) { return ((struct ifnet *)ifp)->if_dname; } int if_togglecapenable(if_t ifp, int togglecap) { ((struct ifnet *)ifp)->if_capenable ^= togglecap; return (0); } int if_getcapenable(if_t ifp) { return ((struct ifnet *)ifp)->if_capenable; } /* * This is largely undesirable because it ties ifnet to a device, but does * provide flexiblity for an embedded product vendor. Should be used with * the understanding that it violates the interface boundaries, and should be * a last resort only. */ int if_setdev(if_t ifp, void *dev) { return (0); } int if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) { ((struct ifnet *)ifp)->if_drv_flags |= set_flags; ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; return (0); } int if_getdrvflags(if_t ifp) { return ((struct ifnet *)ifp)->if_drv_flags; } int if_setdrvflags(if_t ifp, int flags) { ((struct ifnet *)ifp)->if_drv_flags = flags; return (0); } int if_setflags(if_t ifp, int flags) { ifp->if_flags = flags; return (0); } int if_setflagbits(if_t ifp, int set, int clear) { ((struct ifnet *)ifp)->if_flags |= set; ((struct ifnet *)ifp)->if_flags &= ~clear; return (0); } int if_getflags(if_t ifp) { return ((struct ifnet *)ifp)->if_flags; } int if_clearhwassist(if_t ifp) { ((struct ifnet *)ifp)->if_hwassist = 0; return (0); } int if_sethwassistbits(if_t ifp, int toset, int toclear) { ((struct ifnet *)ifp)->if_hwassist |= toset; ((struct ifnet *)ifp)->if_hwassist &= ~toclear; return (0); } int if_sethwassist(if_t ifp, int hwassist_bit) { ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; return (0); } int if_gethwassist(if_t ifp) { return ((struct ifnet *)ifp)->if_hwassist; } int if_setmtu(if_t ifp, int mtu) { ((struct ifnet *)ifp)->if_mtu = mtu; return (0); } int if_getmtu(if_t ifp) { return ((struct ifnet *)ifp)->if_mtu; } int if_getmtu_family(if_t ifp, int family) { struct domain *dp; for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_family == family && dp->dom_ifmtu != NULL) return (dp->dom_ifmtu((struct ifnet *)ifp)); } return (((struct ifnet *)ifp)->if_mtu); } /* * Methods for drivers to access interface unicast and multicast * link level addresses. Driver shall not know 'struct ifaddr' neither * 'struct ifmultiaddr'. */ u_int if_lladdr_count(if_t ifp) { struct epoch_tracker et; struct ifaddr *ifa; u_int count; count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_LINK) count++; NET_EPOCH_EXIT(et); return (count); } u_int if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) { struct epoch_tracker et; struct ifaddr *ifa; u_int count; MPASS(cb); count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, count); } NET_EPOCH_EXIT(et); return (count); } u_int if_llmaddr_count(if_t ifp) { struct epoch_tracker et; struct ifmultiaddr *ifma; int count; count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (ifma->ifma_addr->sa_family == AF_LINK) count++; NET_EPOCH_EXIT(et); return (count); } u_int if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) { struct epoch_tracker et; struct ifmultiaddr *ifma; u_int count; MPASS(cb); count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, count); } NET_EPOCH_EXIT(et); return (count); } int if_setsoftc(if_t ifp, void *softc) { ((struct ifnet *)ifp)->if_softc = softc; return (0); } void * if_getsoftc(if_t ifp) { return ((struct ifnet *)ifp)->if_softc; } void if_setrcvif(struct mbuf *m, if_t ifp) { MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m->m_pkthdr.rcvif = (struct ifnet *)ifp; } void if_setvtag(struct mbuf *m, uint16_t tag) { m->m_pkthdr.ether_vtag = tag; } uint16_t if_getvtag(struct mbuf *m) { return (m->m_pkthdr.ether_vtag); } int if_sendq_empty(if_t ifp) { return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); } struct ifaddr * if_getifaddr(if_t ifp) { return ((struct ifnet *)ifp)->if_addr; } int if_getamcount(if_t ifp) { return ((struct ifnet *)ifp)->if_amcount; } int if_setsendqready(if_t ifp) { IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); return (0); } int if_setsendqlen(if_t ifp, int tx_desc_count) { IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; return (0); } int if_vlantrunkinuse(if_t ifp) { return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; } int if_input(if_t ifp, struct mbuf* sendmp) { (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); return (0); } struct mbuf * if_dequeue(if_t ifp) { struct mbuf *m; IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); return (m); } int if_sendq_prepend(if_t ifp, struct mbuf *m) { IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); return (0); } int if_setifheaderlen(if_t ifp, int len) { ((struct ifnet *)ifp)->if_hdrlen = len; return (0); } caddr_t if_getlladdr(if_t ifp) { return (IF_LLADDR((struct ifnet *)ifp)); } void * if_gethandle(u_char type) { return (if_alloc(type)); } void if_bpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; BPF_MTAP(ifp, m); } void if_etherbpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; ETHER_BPF_MTAP(ifp, m); } void if_vlancap(if_t ifh) { struct ifnet *ifp = (struct ifnet *)ifh; VLAN_CAPABILITIES(ifp); } int if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) { ((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax; return (0); } int if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) { ((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; return (0); } int if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) { ((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; return (0); } u_int if_gethwtsomax(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomax); } u_int if_gethwtsomaxsegcount(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount); } u_int if_gethwtsomaxsegsize(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize); } void if_setinitfn(if_t ifp, void (*init_fn)(void *)) { ((struct ifnet *)ifp)->if_init = init_fn; } void if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) { ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; } void if_setstartfn(if_t ifp, void (*start_fn)(if_t)) { ((struct ifnet *)ifp)->if_start = (void *)start_fn; } void if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) { ((struct ifnet *)ifp)->if_transmit = start_fn; } void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) { ((struct ifnet *)ifp)->if_qflush = flush_fn; } void if_setgetcounterfn(if_t ifp, if_get_counter_t fn) { ifp->if_get_counter = fn; } /* Revisit these - These are inline functions originally. */ int drbr_inuse_drv(if_t ifh, struct buf_ring *br) { return drbr_inuse(ifh, br); } struct mbuf* drbr_dequeue_drv(if_t ifh, struct buf_ring *br) { return drbr_dequeue(ifh, br); } int drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) { return drbr_needs_enqueue(ifh, br); } int drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) { return drbr_enqueue(ifh, br, m); } Index: head/sys/net/route.c =================================================================== --- head/sys/net/route.c (revision 363402) +++ head/sys/net/route.c (revision 363403) @@ -1,1538 +1,1445 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1980, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.c 8.3.1.1 (Berkeley) 2/23/95 * $FreeBSD$ */ /************************************************************************ * Note: In this file a 'fib' is a "forwarding information base" * * Which is the new name for an in kernel routing (next hop) table. * ***********************************************************************/ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_mrouting.h" #include "opt_mpath.h" #include "opt_route.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RADIX_MPATH #include #endif #include #include #include #define RT_MAXFIBS UINT16_MAX /* Kernel config default option. */ #ifdef ROUTETABLES #if ROUTETABLES <= 0 #error "ROUTETABLES defined too low" #endif #if ROUTETABLES > RT_MAXFIBS #error "ROUTETABLES defined too big" #endif #define RT_NUMFIBS ROUTETABLES #endif /* ROUTETABLES */ /* Initialize to default if not otherwise set. */ #ifndef RT_NUMFIBS #define RT_NUMFIBS 1 #endif /* This is read-only.. */ u_int rt_numfibs = RT_NUMFIBS; SYSCTL_UINT(_net, OID_AUTO, fibs, CTLFLAG_RDTUN, &rt_numfibs, 0, ""); /* * By default add routes to all fibs for new interfaces. * Once this is set to 0 then only allocate routes on interface * changes for the FIB of the caller when adding a new set of addresses * to an interface. XXX this is a shotgun aproach to a problem that needs * a more fine grained solution.. that will come. * XXX also has the problems getting the FIB from curthread which will not * always work given the fib can be overridden and prefixes can be added * from the network stack context. */ VNET_DEFINE(u_int, rt_add_addr_allfibs) = 1; SYSCTL_UINT(_net, OID_AUTO, add_addr_allfibs, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(rt_add_addr_allfibs), 0, ""); VNET_PCPUSTAT_DEFINE(struct rtstat, rtstat); VNET_PCPUSTAT_SYSINIT(rtstat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(rtstat); #endif VNET_DEFINE(struct rib_head *, rt_tables); #define V_rt_tables VNET(rt_tables) VNET_DEFINE(uma_zone_t, rtzone); /* Routing table UMA zone. */ #define V_rtzone VNET(rtzone) EVENTHANDLER_LIST_DEFINE(rt_addrmsg); static int rt_ifdelroute(const struct rtentry *rt, const struct nhop_object *, void *arg); static void destroy_rtentry_epoch(epoch_context_t ctx); static int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags); /* * handler for net.my_fibnum */ static int sysctl_my_fibnum(SYSCTL_HANDLER_ARGS) { int fibnum; int error; fibnum = curthread->td_proc->p_fibnum; error = sysctl_handle_int(oidp, &fibnum, 0, req); return (error); } SYSCTL_PROC(_net, OID_AUTO, my_fibnum, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, &sysctl_my_fibnum, "I", "default FIB of caller"); static __inline struct rib_head ** rt_tables_get_rnh_ptr(int table, int fam) { struct rib_head **rnh; KASSERT(table >= 0 && table < rt_numfibs, ("%s: table out of bounds (0 <= %d < %d)", __func__, table, rt_numfibs)); KASSERT(fam >= 0 && fam < (AF_MAX + 1), ("%s: fam out of bounds (0 <= %d < %d)", __func__, fam, AF_MAX+1)); /* rnh is [fib=0][af=0]. */ rnh = (struct rib_head **)V_rt_tables; /* Get the offset to the requested table and fam. */ rnh += table * (AF_MAX+1) + fam; return (rnh); } struct rib_head * rt_tables_get_rnh(int table, int fam) { return (*rt_tables_get_rnh_ptr(table, fam)); } u_int rt_tables_get_gen(int table, int fam) { struct rib_head *rnh; rnh = *rt_tables_get_rnh_ptr(table, fam); KASSERT(rnh != NULL, ("%s: NULL rib_head pointer table %d fam %d", __func__, table, fam)); return (rnh->rnh_gen); } /* * route initialization must occur before ip6_init2(), which happenas at * SI_ORDER_MIDDLE. */ static void route_init(void) { /* whack the tunable ints into line. */ if (rt_numfibs > RT_MAXFIBS) rt_numfibs = RT_MAXFIBS; if (rt_numfibs == 0) rt_numfibs = 1; nhops_init(); } SYSINIT(route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, route_init, NULL); static int rtentry_zinit(void *mem, int size, int how) { struct rtentry *rt = mem; RT_LOCK_INIT(rt); return (0); } static void rtentry_zfini(void *mem, int size) { struct rtentry *rt = mem; RT_LOCK_DESTROY(rt); } static int rtentry_ctor(void *mem, int size, void *arg, int how) { struct rtentry *rt = mem; bzero(rt, offsetof(struct rtentry, rt_endzero)); rt->rt_chain = NULL; return (0); } static void rtentry_dtor(void *mem, int size, void *arg) { struct rtentry *rt = mem; RT_UNLOCK_COND(rt); } static void vnet_route_init(const void *unused __unused) { struct domain *dom; struct rib_head **rnh; int table; int fam; V_rt_tables = malloc(rt_numfibs * (AF_MAX+1) * sizeof(struct rib_head *), M_RTABLE, M_WAITOK|M_ZERO); V_rtzone = uma_zcreate("rtentry", sizeof(struct rtentry), rtentry_ctor, rtentry_dtor, rtentry_zinit, rtentry_zfini, UMA_ALIGN_PTR, 0); for (dom = domains; dom; dom = dom->dom_next) { if (dom->dom_rtattach == NULL) continue; for (table = 0; table < rt_numfibs; table++) { fam = dom->dom_family; if (table != 0 && fam != AF_INET6 && fam != AF_INET) break; rnh = rt_tables_get_rnh_ptr(table, fam); if (rnh == NULL) panic("%s: rnh NULL", __func__); dom->dom_rtattach((void **)rnh, 0, table); } } } VNET_SYSINIT(vnet_route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, vnet_route_init, 0); #ifdef VIMAGE static void vnet_route_uninit(const void *unused __unused) { int table; int fam; struct domain *dom; struct rib_head **rnh; for (dom = domains; dom; dom = dom->dom_next) { if (dom->dom_rtdetach == NULL) continue; for (table = 0; table < rt_numfibs; table++) { fam = dom->dom_family; if (table != 0 && fam != AF_INET6 && fam != AF_INET) break; rnh = rt_tables_get_rnh_ptr(table, fam); if (rnh == NULL) panic("%s: rnh NULL", __func__); dom->dom_rtdetach((void **)rnh, 0); } } /* * dom_rtdetach calls rt_table_destroy(), which * schedules deletion for all rtentries, nexthops and control * structures. Wait for the destruction callbacks to fire. * Note that this should result in freeing all rtentries, but * nexthops deletions will be scheduled for the next epoch run * and will be completed after vnet teardown. */ epoch_drain_callbacks(net_epoch_preempt); free(V_rt_tables, M_RTABLE); uma_zdestroy(V_rtzone); } VNET_SYSUNINIT(vnet_route_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, vnet_route_uninit, 0); #endif struct rib_head * rt_table_init(int offset, int family, u_int fibnum) { struct rib_head *rh; rh = malloc(sizeof(struct rib_head), M_RTABLE, M_WAITOK | M_ZERO); /* TODO: These details should be hidded inside radix.c */ /* Init masks tree */ rn_inithead_internal(&rh->head, rh->rnh_nodes, offset); rn_inithead_internal(&rh->rmhead.head, rh->rmhead.mask_nodes, 0); rh->head.rnh_masks = &rh->rmhead; /* Save metadata associated with this routing table. */ rh->rib_family = family; rh->rib_fibnum = fibnum; #ifdef VIMAGE rh->rib_vnet = curvnet; #endif tmproutes_init(rh); /* Init locks */ RIB_LOCK_INIT(rh); nhops_init_rib(rh); /* Init subscription system */ rib_init_subscriptions(rh); /* Finally, set base callbacks */ rh->rnh_addaddr = rn_addroute; rh->rnh_deladdr = rn_delete; rh->rnh_matchaddr = rn_match; rh->rnh_lookup = rn_lookup; rh->rnh_walktree = rn_walktree; rh->rnh_walktree_from = rn_walktree_from; return (rh); } static int rt_freeentry(struct radix_node *rn, void *arg) { struct radix_head * const rnh = arg; struct radix_node *x; x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); if (x != NULL) R_Free(x); return (0); } void rt_table_destroy(struct rib_head *rh) { tmproutes_destroy(rh); rn_walktree(&rh->rmhead.head, rt_freeentry, &rh->rmhead.head); nhops_destroy_rib(rh); rib_destroy_subscriptions(rh); /* Assume table is already empty */ RIB_LOCK_DESTROY(rh); free(rh, M_RTABLE); } #ifndef _SYS_SYSPROTO_H_ struct setfib_args { int fibnum; }; #endif int sys_setfib(struct thread *td, struct setfib_args *uap) { if (uap->fibnum < 0 || uap->fibnum >= rt_numfibs) return EINVAL; td->td_proc->p_fibnum = uap->fibnum; return (0); } /* * Remove a reference count from an rtentry. * If the count gets low enough, take it out of the routing table */ void rtfree(struct rtentry *rt) { KASSERT(rt != NULL,("%s: NULL rt", __func__)); RT_LOCK_ASSERT(rt); RT_UNLOCK(rt); epoch_call(net_epoch_preempt, destroy_rtentry_epoch, &rt->rt_epoch_ctx); } static void destroy_rtentry(struct rtentry *rt) { /* * At this moment rnh, nh_control may be already freed. * nhop interface may have been migrated to a different vnet. * Use vnet stored in the nexthop to delete the entry. */ CURVNET_SET(nhop_get_vnet(rt->rt_nhop)); /* Unreference nexthop */ nhop_free(rt->rt_nhop); uma_zfree(V_rtzone, rt); CURVNET_RESTORE(); } /* * Epoch callback indicating rtentry is safe to destroy */ static void destroy_rtentry_epoch(epoch_context_t ctx) { struct rtentry *rt; rt = __containerof(ctx, struct rtentry, rt_epoch_ctx); destroy_rtentry(rt); } /* * Adds a temporal redirect entry to the routing table. * @fibnum: fib number * @dst: destination to install redirect to * @gateway: gateway to go via * @author: sockaddr of originating router, can be NULL * @ifp: interface to use for the redirected route * @flags: set of flags to add. Allowed: RTF_GATEWAY * @lifetime_sec: time in seconds to expire this redirect. * * Retuns 0 on success, errno otherwise. */ int rib_add_redirect(u_int fibnum, struct sockaddr *dst, struct sockaddr *gateway, struct sockaddr *author, struct ifnet *ifp, int flags, int lifetime_sec) { - struct rtentry *rt; + struct rib_cmd_info rc; int error; struct rt_addrinfo info; struct rt_metrics rti_rmx; struct ifaddr *ifa; NET_EPOCH_ASSERT(); if (rt_tables_get_rnh(fibnum, dst->sa_family) == NULL) return (EAFNOSUPPORT); /* Verify the allowed flag mask. */ KASSERT(((flags & ~(RTF_GATEWAY)) == 0), ("invalid redirect flags: %x", flags)); /* Get the best ifa for the given interface and gateway. */ if ((ifa = ifaof_ifpforaddr(gateway, ifp)) == NULL) return (ENETUNREACH); ifa_ref(ifa); bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_ifa = ifa; info.rti_ifp = ifp; info.rti_flags = flags | RTF_HOST | RTF_DYNAMIC; /* Setup route metrics to define expire time. */ bzero(&rti_rmx, sizeof(rti_rmx)); /* Set expire time as absolute. */ rti_rmx.rmx_expire = lifetime_sec + time_second; info.rti_mflags |= RTV_EXPIRE; info.rti_rmx = &rti_rmx; - error = rtrequest1_fib(RTM_ADD, &info, &rt, fibnum); + error = rib_action(fibnum, RTM_ADD, &info, &rc); ifa_free(ifa); if (error != 0) { /* TODO: add per-fib redirect stats. */ return (error); } - RT_LOCK(rt); - flags = rt->rt_flags; - RT_UNLOCK(rt); + RT_LOCK(rc.rc_rt); + flags = rc.rc_rt->rt_flags; + RT_UNLOCK(rc.rc_rt); RTSTAT_INC(rts_dynamic); /* Send notification of a route addition to userland. */ bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_AUTHOR] = author; rt_missmsg_fib(RTM_REDIRECT, &info, flags, error, fibnum); return (0); } /* * Routing table ioctl interface. */ int rtioctl_fib(u_long req, caddr_t data, u_int fibnum) { /* * If more ioctl commands are added here, make sure the proper * super-user checks are being performed because it is possible for * prison-root to make it this far if raw sockets have been enabled * in jails. */ #ifdef INET /* Multicast goop, grrr... */ return mrt_ioctl ? mrt_ioctl(req, data, fibnum) : EOPNOTSUPP; #else /* INET */ return ENXIO; #endif /* INET */ } struct ifaddr * ifa_ifwithroute(int flags, const struct sockaddr *dst, const struct sockaddr *gateway, u_int fibnum) { struct ifaddr *ifa; NET_EPOCH_ASSERT(); if ((flags & RTF_GATEWAY) == 0) { /* * If we are adding a route to an interface, * and the interface is a pt to pt link * we should search for the destination * as our clue to the interface. Otherwise * we can use the local address. */ ifa = NULL; if (flags & RTF_HOST) ifa = ifa_ifwithdstaddr(dst, fibnum); if (ifa == NULL) ifa = ifa_ifwithaddr(gateway); } else { /* * If we are adding a route to a remote net * or host, the gateway may still be on the * other end of a pt to pt link. */ ifa = ifa_ifwithdstaddr(gateway, fibnum); } if (ifa == NULL) ifa = ifa_ifwithnet(gateway, 0, fibnum); if (ifa == NULL) { struct nhop_object *nh; nh = rib_lookup(fibnum, gateway, NHR_NONE, 0); /* * dismiss a gateway that is reachable only * through the default router */ if ((nh == NULL) || (nh->nh_flags & NHF_DEFAULT)) return (NULL); ifa = nh->nh_ifa; } if (ifa->ifa_addr->sa_family != dst->sa_family) { struct ifaddr *oifa = ifa; ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); if (ifa == NULL) ifa = oifa; } return (ifa); } -/* - * Do appropriate manipulations of a routing tree given - * all the bits of info needed - */ -int -rtrequest_fib(int req, - struct sockaddr *dst, - struct sockaddr *gateway, - struct sockaddr *netmask, - int flags, - struct rtentry **ret_nrt, - u_int fibnum) -{ - struct rt_addrinfo info; - if (dst->sa_len == 0) - return(EINVAL); - - bzero((caddr_t)&info, sizeof(info)); - info.rti_flags = flags; - info.rti_info[RTAX_DST] = dst; - info.rti_info[RTAX_GATEWAY] = gateway; - info.rti_info[RTAX_NETMASK] = netmask; - return rtrequest1_fib(req, &info, ret_nrt, fibnum); -} - - /* * Copy most of @rt data into @info. * * If @flags contains NHR_COPY, copies dst,netmask and gw to the * pointers specified by @info structure. Assume such pointers * are zeroed sockaddr-like structures with sa_len field initialized * to reflect size of the provided buffer. if no NHR_COPY is specified, * point dst,netmask and gw @info fields to appropriate @rt values. * * if @flags contains NHR_REF, do refcouting on rt_ifp and rt_ifa. * * Returns 0 on success. */ int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags) { struct rt_metrics *rmx; struct sockaddr *src, *dst; struct nhop_object *nh; int sa_len; if (flags & NHR_COPY) { /* Copy destination if dst is non-zero */ src = rt_key(rt); dst = info->rti_info[RTAX_DST]; sa_len = src->sa_len; if (dst != NULL) { if (src->sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_DST; } /* Copy mask if set && dst is non-zero */ src = rt_mask(rt); dst = info->rti_info[RTAX_NETMASK]; if (src != NULL && dst != NULL) { /* * Radix stores different value in sa_len, * assume rt_mask() to have the same length * as rt_key() */ if (sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_NETMASK; } /* Copy gateway is set && dst is non-zero */ src = &rt->rt_nhop->gw_sa; dst = info->rti_info[RTAX_GATEWAY]; if ((rt->rt_flags & RTF_GATEWAY) && src != NULL && dst != NULL){ if (src->sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_GATEWAY; } } else { info->rti_info[RTAX_DST] = rt_key(rt); info->rti_addrs |= RTA_DST; if (rt_mask(rt) != NULL) { info->rti_info[RTAX_NETMASK] = rt_mask(rt); info->rti_addrs |= RTA_NETMASK; } if (rt->rt_flags & RTF_GATEWAY) { info->rti_info[RTAX_GATEWAY] = &rt->rt_nhop->gw_sa; info->rti_addrs |= RTA_GATEWAY; } } nh = rt->rt_nhop; rmx = info->rti_rmx; if (rmx != NULL) { info->rti_mflags |= RTV_MTU; rmx->rmx_mtu = nh->nh_mtu; } info->rti_flags = rt->rt_flags | nhop_get_rtflags(nh); info->rti_ifp = nh->nh_ifp; info->rti_ifa = nh->nh_ifa; if (flags & NHR_REF) { if_ref(info->rti_ifp); ifa_ref(info->rti_ifa); } return (0); } /* * Lookups up route entry for @dst in RIB database for fib @fibnum. * Exports entry data to @info using rt_exportinfo(). * * If @flags contains NHR_REF, refcouting is performed on rt_ifp and rt_ifa. * All references can be released later by calling rib_free_info(). * * Returns 0 on success. * Returns ENOENT for lookup failure, ENOMEM for export failure. */ int rib_lookup_info(uint32_t fibnum, const struct sockaddr *dst, uint32_t flags, uint32_t flowid, struct rt_addrinfo *info) { RIB_RLOCK_TRACKER; struct rib_head *rh; struct radix_node *rn; struct rtentry *rt; int error; KASSERT((fibnum < rt_numfibs), ("rib_lookup_rte: bad fibnum")); rh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rh == NULL) return (ENOENT); RIB_RLOCK(rh); rn = rh->rnh_matchaddr(__DECONST(void *, dst), &rh->head); if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { rt = RNTORT(rn); /* Ensure route & ifp is UP */ if (RT_LINK_IS_UP(rt->rt_nhop->nh_ifp)) { flags = (flags & NHR_REF) | NHR_COPY; error = rt_exportinfo(rt, info, flags); RIB_RUNLOCK(rh); return (error); } } RIB_RUNLOCK(rh); return (ENOENT); } /* * Releases all references acquired by rib_lookup_info() when * called with NHR_REF flags. */ void rib_free_info(struct rt_addrinfo *info) { ifa_free(info->rti_ifa); if_rele(info->rti_ifp); } /* * Iterates over all existing fibs in system calling * @setwa_f function prior to traversing each fib. * Calls @wa_f function for each element in current fib. * If af is not AF_UNSPEC, iterates over fibs in particular * address family. */ void rt_foreach_fib_walk(int af, rt_setwarg_t *setwa_f, rt_walktree_f_t *wa_f, void *arg) { struct rib_head *rnh; uint32_t fibnum; int i; for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { /* Do we want some specific family? */ if (af != AF_UNSPEC) { rnh = rt_tables_get_rnh(fibnum, af); if (rnh == NULL) continue; if (setwa_f != NULL) setwa_f(rnh, fibnum, af, arg); RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, (walktree_f_t *)wa_f,arg); RIB_WUNLOCK(rnh); continue; } for (i = 1; i <= AF_MAX; i++) { rnh = rt_tables_get_rnh(fibnum, i); if (rnh == NULL) continue; if (setwa_f != NULL) setwa_f(rnh, fibnum, i, arg); RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, (walktree_f_t *)wa_f,arg); RIB_WUNLOCK(rnh); } } } /* * Iterates over all existing fibs in system and deletes each element * for which @filter_f function returns non-zero value. * If @family is not AF_UNSPEC, iterates over fibs in particular * address family. */ void rt_foreach_fib_walk_del(int family, rt_filter_f_t *filter_f, void *arg) { u_int fibnum; int i, start, end; for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { /* Do we want some specific family? */ if (family != AF_UNSPEC) { start = family; end = family; } else { start = 1; end = AF_MAX; } for (i = start; i <= end; i++) { if (rt_tables_get_rnh(fibnum, i) == NULL) continue; rib_walk_del(fibnum, i, filter_f, arg, 0); } } } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rt pointer to rtentry * nh pointer to nhop * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated */ static int rt_ifdelroute(const struct rtentry *rt, const struct nhop_object *nh, void *arg) { struct ifnet *ifp = arg; if (nh->nh_ifp != ifp) return (0); /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if ((rt->rt_flags & RTF_UP) == 0) return (0); return (1); } /* * Delete all remaining routes using this interface * Unfortuneatly the only way to do this is to slog through * the entire routing table looking for routes which point * to this interface...oh well... */ void rt_flushifroutes_af(struct ifnet *ifp, int af) { KASSERT((af >= 1 && af <= AF_MAX), ("%s: af %d not >= 1 and <= %d", __func__, af, AF_MAX)); rt_foreach_fib_walk_del(af, rt_ifdelroute, ifp); } void rt_flushifroutes(struct ifnet *ifp) { rt_foreach_fib_walk_del(AF_UNSPEC, rt_ifdelroute, ifp); } /* * Look up rt_addrinfo for a specific fib. Note that if rti_ifa is defined, * it will be referenced so the caller must free it. * * Assume basic consistency checks are executed by callers: * RTAX_DST exists, if RTF_GATEWAY is set, RTAX_GATEWAY exists as well. */ int rt_getifa_fib(struct rt_addrinfo *info, u_int fibnum) { const struct sockaddr *dst, *gateway, *ifpaddr, *ifaaddr; struct epoch_tracker et; int needref, error, flags; dst = info->rti_info[RTAX_DST]; gateway = info->rti_info[RTAX_GATEWAY]; ifpaddr = info->rti_info[RTAX_IFP]; ifaaddr = info->rti_info[RTAX_IFA]; flags = info->rti_flags; /* * ifp may be specified by sockaddr_dl * when protocol address is ambiguous. */ error = 0; needref = (info->rti_ifa == NULL); NET_EPOCH_ENTER(et); /* If we have interface specified by the ifindex in the address, use it */ if (info->rti_ifp == NULL && ifpaddr != NULL && ifpaddr->sa_family == AF_LINK) { const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)ifpaddr; if (sdl->sdl_index != 0) info->rti_ifp = ifnet_byindex(sdl->sdl_index); } /* * If we have source address specified, try to find it * TODO: avoid enumerating all ifas on all interfaces. */ if (info->rti_ifa == NULL && ifaaddr != NULL) info->rti_ifa = ifa_ifwithaddr(ifaaddr); if (info->rti_ifa == NULL) { const struct sockaddr *sa; /* * Most common use case for the userland-supplied routes. * * Choose sockaddr to select ifa. * -- if ifp is set -- * Order of preference: * 1) IFA address * 2) gateway address * Note: for interface routes link-level gateway address * is specified to indicate the interface index without * specifying RTF_GATEWAY. In this case, ignore gateway * Note: gateway AF may be different from dst AF. In this case, * ignore gateway * 3) final destination. * 4) if all of these fails, try to get at least link-level ifa. * -- else -- * try to lookup gateway or dst in the routing table to get ifa */ if (info->rti_info[RTAX_IFA] != NULL) sa = info->rti_info[RTAX_IFA]; else if ((info->rti_flags & RTF_GATEWAY) != 0 && gateway->sa_family == dst->sa_family) sa = gateway; else sa = dst; if (info->rti_ifp != NULL) { info->rti_ifa = ifaof_ifpforaddr(sa, info->rti_ifp); /* Case 4 */ if (info->rti_ifa == NULL && gateway != NULL) info->rti_ifa = ifaof_ifpforaddr(gateway, info->rti_ifp); } else if (dst != NULL && gateway != NULL) info->rti_ifa = ifa_ifwithroute(flags, dst, gateway, fibnum); else if (sa != NULL) info->rti_ifa = ifa_ifwithroute(flags, sa, sa, fibnum); } if (needref && info->rti_ifa != NULL) { if (info->rti_ifp == NULL) info->rti_ifp = info->rti_ifa->ifa_ifp; ifa_ref(info->rti_ifa); } else error = ENETUNREACH; NET_EPOCH_EXIT(et); return (error); } void rt_updatemtu(struct ifnet *ifp) { struct rib_head *rnh; int mtu; int i, j; /* * Try to update rt_mtu for all routes using this interface * Unfortunately the only way to do this is to traverse all * routing tables in all fibs/domains. */ for (i = 1; i <= AF_MAX; i++) { mtu = if_getmtu_family(ifp, i); for (j = 0; j < rt_numfibs; j++) { rnh = rt_tables_get_rnh(j, i); if (rnh == NULL) continue; nhops_update_ifmtu(rnh, ifp, mtu); } } } #if 0 int p_sockaddr(char *buf, int buflen, struct sockaddr *s); int rt_print(char *buf, int buflen, struct rtentry *rt); int p_sockaddr(char *buf, int buflen, struct sockaddr *s) { void *paddr = NULL; switch (s->sa_family) { case AF_INET: paddr = &((struct sockaddr_in *)s)->sin_addr; break; case AF_INET6: paddr = &((struct sockaddr_in6 *)s)->sin6_addr; break; } if (paddr == NULL) return (0); if (inet_ntop(s->sa_family, paddr, buf, buflen) == NULL) return (0); return (strlen(buf)); } int rt_print(char *buf, int buflen, struct rtentry *rt) { struct sockaddr *addr, *mask; int i = 0; addr = rt_key(rt); mask = rt_mask(rt); i = p_sockaddr(buf, buflen, addr); if (!(rt->rt_flags & RTF_HOST)) { buf[i++] = '/'; i += p_sockaddr(buf + i, buflen - i, mask); } if (rt->rt_flags & RTF_GATEWAY) { buf[i++] = '>'; i += p_sockaddr(buf + i, buflen - i, &rt->rt_nhop->gw_sa); } return (i); } #endif #ifdef RADIX_MPATH /* * Deletes key for single-path routes, unlinks rtentry with * gateway specified in @info from multi-path routes. * * Returnes unlinked entry. In case of failure, returns NULL * and sets @perror to ESRCH. */ struct radix_node * rt_mpath_unlink(struct rib_head *rnh, struct rt_addrinfo *info, struct rtentry *rto, int *perror) { /* * if we got multipath routes, we require users to specify * a matching RTAX_GATEWAY. */ struct rtentry *rt; // *rto = NULL; struct radix_node *rn; struct sockaddr *gw; gw = info->rti_info[RTAX_GATEWAY]; rt = rt_mpath_matchgate(rto, gw); if (rt == NULL) { *perror = ESRCH; return (NULL); } /* * this is the first entry in the chain */ if (rto == rt) { rn = rn_mpath_next((struct radix_node *)rt); /* * there is another entry, now it's active */ if (rn) { rto = RNTORT(rn); RT_LOCK(rto); rto->rt_flags |= RTF_UP; RT_UNLOCK(rto); } else if (rt->rt_flags & RTF_GATEWAY) { /* * For gateway routes, we need to * make sure that we we are deleting * the correct gateway. * rt_mpath_matchgate() does not * check the case when there is only * one route in the chain. */ if (gw && (rt->rt_nhop->gw_sa.sa_len != gw->sa_len || memcmp(&rt->rt_nhop->gw_sa, gw, gw->sa_len))) { *perror = ESRCH; return (NULL); } } /* * use the normal delete code to remove * the first entry */ rn = rnh->rnh_deladdr(info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], &rnh->head); *perror = 0; return (rn); } /* * if the entry is 2nd and on up */ if (rt_mpath_deldup(rto, rt) == 0) panic ("rtrequest1: rt_mpath_deldup"); *perror = 0; rn = (struct radix_node *)rt; return (rn); } #endif -int -rtrequest1_fib(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt, - u_int fibnum) -{ - const struct sockaddr *dst; - struct rib_head *rnh; - struct rib_cmd_info rc; - int error; - - KASSERT((fibnum < rt_numfibs), ("rtrequest1_fib: bad fibnum")); - KASSERT((info->rti_flags & RTF_RNH_LOCKED) == 0, ("rtrequest1_fib: locked")); - NET_EPOCH_ASSERT(); - - dst = info->rti_info[RTAX_DST]; - - switch (dst->sa_family) { - case AF_INET6: - case AF_INET: - /* We support multiple FIBs. */ - break; - default: - fibnum = RT_DEFAULT_FIB; - break; - } - - /* - * Find the correct routing tree to use for this Address Family - */ - rnh = rt_tables_get_rnh(fibnum, dst->sa_family); - if (rnh == NULL) - return (EAFNOSUPPORT); - - /* - * If we are adding a host route then we don't want to put - * a netmask in the tree, nor do we want to clone it. - */ - if (info->rti_flags & RTF_HOST) - info->rti_info[RTAX_NETMASK] = NULL; - - bzero(&rc, sizeof(struct rib_cmd_info)); - error = 0; - switch (req) { - case RTM_DELETE: - error = del_route(rnh, info, &rc); - break; - case RTM_RESOLVE: - /* - * resolve was only used for route cloning - * here for compat - */ - break; - case RTM_ADD: - error = add_route(rnh, info, &rc); - break; - case RTM_CHANGE: - error = change_route(rnh, info, &rc); - break; - default: - error = EOPNOTSUPP; - } - - if (ret_nrt != NULL) - *ret_nrt = rc.rc_rt; - - return (error); -} - void rt_setmetrics(const struct rt_addrinfo *info, struct rtentry *rt) { if (info->rti_mflags & RTV_WEIGHT) rt->rt_weight = info->rti_rmx->rmx_weight; /* Kernel -> userland timebase conversion. */ if (info->rti_mflags & RTV_EXPIRE) rt->rt_expire = info->rti_rmx->rmx_expire ? info->rti_rmx->rmx_expire - time_second + time_uptime : 0; } void rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, struct sockaddr *netmask) { u_char *cp1 = (u_char *)src; u_char *cp2 = (u_char *)dst; u_char *cp3 = (u_char *)netmask; u_char *cplim = cp2 + *cp3; u_char *cplim2 = cp2 + *cp1; *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ cp3 += 2; if (cplim > cplim2) cplim = cplim2; while (cp2 < cplim) *cp2++ = *cp1++ & *cp3++; if (cp2 < cplim2) bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2)); } /* * Set up a routing table entry, normally * for an interface. */ #define _SOCKADDR_TMPSIZE 128 /* Not too big.. kernel stack size is limited */ static inline int rtinit1(struct ifaddr *ifa, int cmd, int flags, int fibnum) { RIB_RLOCK_TRACKER; struct epoch_tracker et; struct sockaddr *dst; struct sockaddr *netmask; - struct rtentry *rt = NULL; + struct rib_cmd_info rc; struct rt_addrinfo info; int error = 0; int startfib, endfib; char tempbuf[_SOCKADDR_TMPSIZE]; int didwork = 0; int a_failure = 0; struct sockaddr_dl_short *sdl = NULL; struct rib_head *rnh; if (flags & RTF_HOST) { dst = ifa->ifa_dstaddr; netmask = NULL; } else { dst = ifa->ifa_addr; netmask = ifa->ifa_netmask; } if (dst->sa_len == 0) return(EINVAL); switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We support multiple FIBs. */ break; default: fibnum = RT_DEFAULT_FIB; break; } if (fibnum == RT_ALL_FIBS) { if (V_rt_add_addr_allfibs == 0 && cmd == (int)RTM_ADD) startfib = endfib = ifa->ifa_ifp->if_fib; else { startfib = 0; endfib = rt_numfibs - 1; } } else { KASSERT((fibnum < rt_numfibs), ("rtinit1: bad fibnum")); startfib = fibnum; endfib = fibnum; } /* * If it's a delete, check that if it exists, * it's on the correct interface or we might scrub * a route to another ifa which would * be confusing at best and possibly worse. */ if (cmd == RTM_DELETE) { /* * It's a delete, so it should already exist.. * If it's a net, mask off the host bits * (Assuming we have a mask) * XXX this is kinda inet specific.. */ if (netmask != NULL) { rt_maskedcopy(dst, (struct sockaddr *)tempbuf, netmask); dst = (struct sockaddr *)tempbuf; } } else if (cmd == RTM_ADD) { sdl = (struct sockaddr_dl_short *)tempbuf; bzero(sdl, sizeof(struct sockaddr_dl_short)); sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(struct sockaddr_dl_short); sdl->sdl_type = ifa->ifa_ifp->if_type; sdl->sdl_index = ifa->ifa_ifp->if_index; } /* * Now go through all the requested tables (fibs) and do the * requested action. Realistically, this will either be fib 0 * for protocols that don't do multiple tables or all the * tables for those that do. */ for ( fibnum = startfib; fibnum <= endfib; fibnum++) { if (cmd == RTM_DELETE) { struct radix_node *rn; /* * Look up an rtentry that is in the routing tree and * contains the correct info. */ rnh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rnh == NULL) /* this table doesn't exist but others might */ continue; RIB_RLOCK(rnh); rn = rnh->rnh_lookup(dst, netmask, &rnh->head); #ifdef RADIX_MPATH if (rt_mpath_capable(rnh)) { if (rn == NULL) error = ESRCH; else { - rt = RNTORT(rn); + struct rtentry *rt = RNTORT(rn); /* * for interface route the gateway * gateway is sockaddr_dl, so * rt_mpath_matchgate must use the * interface address */ rt = rt_mpath_matchgate(rt, ifa->ifa_addr); if (rt == NULL) error = ESRCH; } } #endif error = (rn == NULL || (rn->rn_flags & RNF_ROOT) || RNTORT(rn)->rt_nhop->nh_ifa != ifa); RIB_RUNLOCK(rnh); if (error) { /* this is only an error if bad on ALL tables */ continue; } } /* * Do the actual request */ bzero((caddr_t)&info, sizeof(info)); info.rti_ifa = ifa; info.rti_flags = flags | (ifa->ifa_flags & ~IFA_RTSELF) | RTF_PINNED; info.rti_info[RTAX_DST] = dst; /* * doing this for compatibility reasons */ if (cmd == RTM_ADD) info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)sdl; else info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = netmask; NET_EPOCH_ENTER(et); - error = rtrequest1_fib(cmd, &info, &rt, fibnum); - if (error == 0 && rt != NULL) { + error = rib_action(fibnum, cmd, &info, &rc); + if (error == 0 && rc.rc_rt != NULL) { /* * notify any listening routing agents of the change */ /* TODO: interface routes/aliases */ - rt_newaddrmsg_fib(cmd, ifa, rt, fibnum); + rt_newaddrmsg_fib(cmd, ifa, rc.rc_rt, fibnum); didwork = 1; } NET_EPOCH_EXIT(et); if (error) a_failure = error; } if (cmd == RTM_DELETE) { if (didwork) { error = 0; } else { /* we only give an error if it wasn't in any table */ error = ((flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH); } } else { if (a_failure) { /* return an error if any of them failed */ error = a_failure; } } return (error); } /* * Set up a routing table entry, normally * for an interface. */ int rtinit(struct ifaddr *ifa, int cmd, int flags) { struct sockaddr *dst; int fib = RT_DEFAULT_FIB; if (flags & RTF_HOST) { dst = ifa->ifa_dstaddr; } else { dst = ifa->ifa_addr; } switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We do support multiple FIBs. */ fib = RT_ALL_FIBS; break; } return (rtinit1(ifa, cmd, flags, fib)); } /* * Announce interface address arrival/withdraw * Returns 0 on success. */ int rt_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %d", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); EVENTHANDLER_DIRECT_INVOKE(rt_addrmsg, ifa, cmd); return (rtsock_addrmsg(cmd, ifa, fibnum)); } /* * Announce kernel-originated route addition/removal to rtsock based on @rt data. * cmd: RTM_ cmd * @rt: valid rtentry * @ifp: target route interface * @fibnum: fib id or RT_ALL_FIBS * * Returns 0 on success. */ int rt_routemsg(int cmd, struct rtentry *rt, struct ifnet *ifp, int rti_addrs, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %d", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); KASSERT(rt_key(rt) != NULL, (":%s: rt_key must be supplied", __func__)); return (rtsock_routemsg(cmd, rt, ifp, 0, fibnum)); } /* * Announce kernel-originated route addition/removal to rtsock based on @rt data. * cmd: RTM_ cmd * @info: addrinfo structure with valid data. * @fibnum: fib id or RT_ALL_FIBS * * Returns 0 on success. */ int rt_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE || cmd == RTM_CHANGE, ("unexpected cmd %d", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); KASSERT(info->rti_info[RTAX_DST] != NULL, (":%s: RTAX_DST must be supplied", __func__)); return (rtsock_routemsg_info(cmd, info, fibnum)); } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. */ void rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, struct rtentry *rt, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %u", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); if (cmd == RTM_ADD) { rt_addrmsg(cmd, ifa, fibnum); if (rt != NULL) rt_routemsg(cmd, rt, ifa->ifa_ifp, 0, fibnum); } else { if (rt != NULL) rt_routemsg(cmd, rt, ifa->ifa_ifp, 0, fibnum); rt_addrmsg(cmd, ifa, fibnum); } } Index: head/sys/net/route.h =================================================================== --- head/sys/net/route.h (revision 363402) +++ head/sys/net/route.h (revision 363403) @@ -1,426 +1,423 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.h 8.4 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NET_ROUTE_H_ #define _NET_ROUTE_H_ #include /* * Kernel resident routing tables. * * The routing tables are initialized when interface addresses * are set by making entries for all directly connected interfaces. */ /* * Struct route consiste of a destination address, * a route entry pointer, link-layer prepend data pointer along * with its length. */ struct route { struct nhop_object *ro_nh; struct llentry *ro_lle; /* * ro_prepend and ro_plen are only used for bpf to pass in a * preformed header. They are not cacheable. */ char *ro_prepend; uint16_t ro_plen; uint16_t ro_flags; uint16_t ro_mtu; /* saved ro_rt mtu */ uint16_t spare; struct sockaddr ro_dst; }; #define RT_L2_ME_BIT 2 /* dst L2 addr is our address */ #define RT_MAY_LOOP_BIT 3 /* dst may require loop copy */ #define RT_HAS_HEADER_BIT 4 /* mbuf already have its header prepended */ #define RT_L2_ME (1 << RT_L2_ME_BIT) /* 0x0004 */ #define RT_MAY_LOOP (1 << RT_MAY_LOOP_BIT) /* 0x0008 */ #define RT_HAS_HEADER (1 << RT_HAS_HEADER_BIT) /* 0x0010 */ #define RT_REJECT 0x0020 /* Destination is reject */ #define RT_BLACKHOLE 0x0040 /* Destination is blackhole */ #define RT_HAS_GW 0x0080 /* Destination has GW */ #define RT_LLE_CACHE 0x0100 /* Cache link layer */ struct rt_metrics { u_long rmx_locks; /* Kernel must leave these values alone */ u_long rmx_mtu; /* MTU for this path */ u_long rmx_hopcount; /* max hops expected */ u_long rmx_expire; /* lifetime for route, e.g. redirect */ u_long rmx_recvpipe; /* inbound delay-bandwidth product */ u_long rmx_sendpipe; /* outbound delay-bandwidth product */ u_long rmx_ssthresh; /* outbound gateway buffer limit */ u_long rmx_rtt; /* estimated round trip time */ u_long rmx_rttvar; /* estimated rtt variance */ u_long rmx_pksent; /* packets sent using this route */ u_long rmx_weight; /* route weight */ u_long rmx_nhidx; /* route nexhop index */ u_long rmx_filler[2]; /* will be used for T/TCP later */ }; /* * rmx_rtt and rmx_rttvar are stored as microseconds; * RTTTOPRHZ(rtt) converts to a value suitable for use * by a protocol slowtimo counter. */ #define RTM_RTTUNIT 1000000 /* units for rtt, rttvar, as units per sec */ #define RTTTOPRHZ(r) ((r) / (RTM_RTTUNIT / PR_SLOWHZ)) /* lle state is exported in rmx_state rt_metrics field */ #define rmx_state rmx_weight /* * Keep a generation count of routing table, incremented on route addition, * so we can invalidate caches. This is accessed without a lock, as precision * is not required. */ typedef volatile u_int rt_gen_t; /* tree generation (for adds) */ #define RT_GEN(fibnum, af) rt_tables_get_gen(fibnum, af) #define RT_DEFAULT_FIB 0 /* Explicitly mark fib=0 restricted cases */ #define RT_ALL_FIBS -1 /* Announce event for every fib */ #ifdef _KERNEL extern u_int rt_numfibs; /* number of usable routing tables */ VNET_DECLARE(u_int, rt_add_addr_allfibs); /* Announce interfaces to all fibs */ #define V_rt_add_addr_allfibs VNET(rt_add_addr_allfibs) #endif /* * We distinguish between routes to hosts and routes to networks, * preferring the former if available. For each route we infer * the interface to use from the gateway address supplied when * the route was entered. Routes that forward packets through * gateways are marked so that the output routines know to address the * gateway rather than the ultimate destination. */ #define RTF_UP 0x1 /* route usable */ #define RTF_GATEWAY 0x2 /* destination is a gateway */ #define RTF_HOST 0x4 /* host entry (net otherwise) */ #define RTF_REJECT 0x8 /* host or net unreachable */ #define RTF_DYNAMIC 0x10 /* created dynamically (by redirect) */ #define RTF_MODIFIED 0x20 /* modified dynamically (by redirect) */ #define RTF_DONE 0x40 /* message confirmed */ /* 0x80 unused, was RTF_DELCLONE */ /* 0x100 unused, was RTF_CLONING */ #define RTF_XRESOLVE 0x200 /* external daemon resolves name */ #define RTF_LLINFO 0x400 /* DEPRECATED - exists ONLY for backward compatibility */ #define RTF_LLDATA 0x400 /* used by apps to add/del L2 entries */ #define RTF_STATIC 0x800 /* manually added */ #define RTF_BLACKHOLE 0x1000 /* just discard pkts (during updates) */ #define RTF_PROTO2 0x4000 /* protocol specific routing flag */ #define RTF_PROTO1 0x8000 /* protocol specific routing flag */ /* 0x10000 unused, was RTF_PRCLONING */ /* 0x20000 unused, was RTF_WASCLONED */ #define RTF_PROTO3 0x40000 /* protocol specific routing flag */ #define RTF_FIXEDMTU 0x80000 /* MTU was explicitly specified */ #define RTF_PINNED 0x100000 /* route is immutable */ #define RTF_LOCAL 0x200000 /* route represents a local address */ #define RTF_BROADCAST 0x400000 /* route represents a bcast address */ #define RTF_MULTICAST 0x800000 /* route represents a mcast address */ /* 0x8000000 and up unassigned */ #define RTF_STICKY 0x10000000 /* always route dst->src */ #define RTF_RNH_LOCKED 0x40000000 /* radix node head is locked */ #define RTF_GWFLAG_COMPAT 0x80000000 /* a compatibility bit for interacting with existing routing apps */ /* Mask of RTF flags that are allowed to be modified by RTM_CHANGE. */ #define RTF_FMASK \ (RTF_PROTO1 | RTF_PROTO2 | RTF_PROTO3 | RTF_BLACKHOLE | \ RTF_REJECT | RTF_STATIC | RTF_STICKY) /* * fib_ nexthop API flags. */ /* Consumer-visible nexthop info flags */ #define NHF_REJECT 0x0010 /* RTF_REJECT */ #define NHF_BLACKHOLE 0x0020 /* RTF_BLACKHOLE */ #define NHF_REDIRECT 0x0040 /* RTF_DYNAMIC|RTF_MODIFIED */ #define NHF_DEFAULT 0x0080 /* Default route */ #define NHF_BROADCAST 0x0100 /* RTF_BROADCAST */ #define NHF_GATEWAY 0x0200 /* RTF_GATEWAY */ #define NHF_HOST 0x0400 /* RTF_HOST */ /* Nexthop request flags */ #define NHR_NONE 0x00 /* empty flags field */ #define NHR_IFAIF 0x01 /* Return ifa_ifp interface */ #define NHR_REF 0x02 /* For future use */ /* uRPF */ #define NHR_NODEFAULT 0x04 /* do not consider default route */ /* Control plane route request flags */ #define NHR_COPY 0x100 /* Copy rte data */ /* * Routing statistics. */ struct rtstat { uint64_t rts_badredirect; /* bogus redirect calls */ uint64_t rts_dynamic; /* routes created by redirects */ uint64_t rts_newgateway; /* routes modified by redirects */ uint64_t rts_unreach; /* lookups which failed */ uint64_t rts_wildcard; /* lookups satisfied by a wildcard */ uint64_t rts_nh_idx_alloc_failure; /* nexthop index alloc failure*/ uint64_t rts_nh_alloc_failure; /* nexthop allocation failure*/ }; /* * Structures for routing messages. */ struct rt_msghdr { u_short rtm_msglen; /* to skip over non-understood messages */ u_char rtm_version; /* future binary compatibility */ u_char rtm_type; /* message type */ u_short rtm_index; /* index for associated ifp */ u_short _rtm_spare1; int rtm_flags; /* flags, incl. kern & message, e.g. DONE */ int rtm_addrs; /* bitmask identifying sockaddrs in msg */ pid_t rtm_pid; /* identify sender */ int rtm_seq; /* for sender to identify action */ int rtm_errno; /* why failed */ int rtm_fmask; /* bitmask used in RTM_CHANGE message */ u_long rtm_inits; /* which metrics we are initializing */ struct rt_metrics rtm_rmx; /* metrics themselves */ }; #define RTM_VERSION 5 /* Up the ante and ignore older versions */ /* * Message types. * * The format for each message is annotated below using the following * identifiers: * * (1) struct rt_msghdr * (2) struct ifa_msghdr * (3) struct if_msghdr * (4) struct ifma_msghdr * (5) struct if_announcemsghdr * */ #define RTM_ADD 0x1 /* (1) Add Route */ #define RTM_DELETE 0x2 /* (1) Delete Route */ #define RTM_CHANGE 0x3 /* (1) Change Metrics or flags */ #define RTM_GET 0x4 /* (1) Report Metrics */ #define RTM_LOSING 0x5 /* (1) Kernel Suspects Partitioning */ #define RTM_REDIRECT 0x6 /* (1) Told to use different route */ #define RTM_MISS 0x7 /* (1) Lookup failed on this address */ #define RTM_LOCK 0x8 /* (1) fix specified metrics */ /* 0x9 */ /* 0xa */ #define RTM_RESOLVE 0xb /* (1) req to resolve dst to LL addr */ #define RTM_NEWADDR 0xc /* (2) address being added to iface */ #define RTM_DELADDR 0xd /* (2) address being removed from iface */ #define RTM_IFINFO 0xe /* (3) iface going up/down etc. */ #define RTM_NEWMADDR 0xf /* (4) mcast group membership being added to if */ #define RTM_DELMADDR 0x10 /* (4) mcast group membership being deleted */ #define RTM_IFANNOUNCE 0x11 /* (5) iface arrival/departure */ #define RTM_IEEE80211 0x12 /* (5) IEEE80211 wireless event */ /* * Bitmask values for rtm_inits and rmx_locks. */ #define RTV_MTU 0x1 /* init or lock _mtu */ #define RTV_HOPCOUNT 0x2 /* init or lock _hopcount */ #define RTV_EXPIRE 0x4 /* init or lock _expire */ #define RTV_RPIPE 0x8 /* init or lock _recvpipe */ #define RTV_SPIPE 0x10 /* init or lock _sendpipe */ #define RTV_SSTHRESH 0x20 /* init or lock _ssthresh */ #define RTV_RTT 0x40 /* init or lock _rtt */ #define RTV_RTTVAR 0x80 /* init or lock _rttvar */ #define RTV_WEIGHT 0x100 /* init or lock _weight */ /* * Bitmask values for rtm_addrs. */ #define RTA_DST 0x1 /* destination sockaddr present */ #define RTA_GATEWAY 0x2 /* gateway sockaddr present */ #define RTA_NETMASK 0x4 /* netmask sockaddr present */ #define RTA_GENMASK 0x8 /* cloning mask sockaddr present */ #define RTA_IFP 0x10 /* interface name sockaddr present */ #define RTA_IFA 0x20 /* interface addr sockaddr present */ #define RTA_AUTHOR 0x40 /* sockaddr for author of redirect */ #define RTA_BRD 0x80 /* for NEWADDR, broadcast or p-p dest addr */ /* * Index offsets for sockaddr array for alternate internal encoding. */ #define RTAX_DST 0 /* destination sockaddr present */ #define RTAX_GATEWAY 1 /* gateway sockaddr present */ #define RTAX_NETMASK 2 /* netmask sockaddr present */ #define RTAX_GENMASK 3 /* cloning mask sockaddr present */ #define RTAX_IFP 4 /* interface name sockaddr present */ #define RTAX_IFA 5 /* interface addr sockaddr present */ #define RTAX_AUTHOR 6 /* sockaddr for author of redirect */ #define RTAX_BRD 7 /* for NEWADDR, broadcast or p-p dest addr */ #define RTAX_MAX 8 /* size of array to allocate */ struct rtentry; struct nhop_object; typedef int rt_filter_f_t(const struct rtentry *, const struct nhop_object *, void *); struct rt_addrinfo { int rti_addrs; /* Route RTF_ flags */ int rti_flags; /* Route RTF_ flags */ struct sockaddr *rti_info[RTAX_MAX]; /* Sockaddr data */ struct ifaddr *rti_ifa; /* value of rt_ifa addr */ struct ifnet *rti_ifp; /* route interface */ rt_filter_f_t *rti_filter; /* filter function */ void *rti_filterdata; /* filter paramenters */ u_long rti_mflags; /* metrics RTV_ flags */ u_long rti_spare; /* Will be used for fib */ struct rt_metrics *rti_rmx; /* Pointer to route metrics */ }; /* * This macro returns the size of a struct sockaddr when passed * through a routing socket. Basically we round up sa_len to * a multiple of sizeof(long), with a minimum of sizeof(long). * The case sa_len == 0 should only apply to empty structures. */ #define SA_SIZE(sa) \ ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ sizeof(long) : \ 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(long) - 1) ) ) #define sa_equal(a, b) ( \ (((const struct sockaddr *)(a))->sa_len == ((const struct sockaddr *)(b))->sa_len) && \ (bcmp((a), (b), ((const struct sockaddr *)(b))->sa_len) == 0)) #ifdef _KERNEL #define RT_LINK_IS_UP(ifp) (!((ifp)->if_capabilities & IFCAP_LINKSTATE) \ || (ifp)->if_link_state == LINK_STATE_UP) #define RO_NHFREE(_ro) do { \ if ((_ro)->ro_nh) { \ NH_FREE((_ro)->ro_nh); \ (_ro)->ro_nh = NULL; \ } \ } while (0) #define RO_INVALIDATE_CACHE(ro) do { \ if ((ro)->ro_lle != NULL) { \ LLE_FREE((ro)->ro_lle); \ (ro)->ro_lle = NULL; \ } \ if ((ro)->ro_nh != NULL) { \ NH_FREE((ro)->ro_nh); \ (ro)->ro_nh = NULL; \ } \ } while (0) /* * Validate a cached route based on a supplied cookie. If there is an * out-of-date cache, simply free it. Update the generation number * for the new allocation */ #define NH_VALIDATE(ro, cookiep, fibnum) do { \ rt_gen_t cookie = RT_GEN(fibnum, (ro)->ro_dst.sa_family); \ if (*(cookiep) != cookie) { \ RO_INVALIDATE_CACHE(ro); \ *(cookiep) = cookie; \ } \ } while (0) struct ifmultiaddr; struct rib_head; void rt_ieee80211msg(struct ifnet *, int, void *, size_t); void rt_ifannouncemsg(struct ifnet *, int); void rt_ifmsg(struct ifnet *); void rt_missmsg(int, struct rt_addrinfo *, int, int); void rt_missmsg_fib(int, struct rt_addrinfo *, int, int, int); void rt_newaddrmsg_fib(int, struct ifaddr *, struct rtentry *, int); int rt_addrmsg(int, struct ifaddr *, int); int rt_routemsg(int, struct rtentry *, struct ifnet *ifp, int, int); int rt_routemsg_info(int, struct rt_addrinfo *, int); void rt_newmaddrmsg(int, struct ifmultiaddr *); void rt_maskedcopy(struct sockaddr *, struct sockaddr *, struct sockaddr *); struct rib_head *rt_table_init(int, int, u_int); void rt_table_destroy(struct rib_head *); u_int rt_tables_get_gen(int table, int fam); int rtsock_addrmsg(int, struct ifaddr *, int); int rtsock_routemsg(int, struct rtentry *, struct ifnet *ifp, int, int); int rtsock_routemsg_info(int, struct rt_addrinfo *, int); struct sockaddr *rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, struct sockaddr_storage *dmask); /* * Note the following locking behavior: * * rtfree() and RTFREE_LOCKED() require a locked rtentry * * RTFREE() uses an unlocked entry. */ void rtfree(struct rtentry *); void rtfree_func(struct rtentry *); void rt_updatemtu(struct ifnet *); void rt_flushifroutes_af(struct ifnet *, int); void rt_flushifroutes(struct ifnet *ifp); /* XXX MRT COMPAT VERSIONS THAT SET UNIVERSE to 0 */ /* Thes are used by old code not yet converted to use multiple FIBS */ int rtinit(struct ifaddr *, int, int); /* XXX MRT NEW VERSIONS THAT USE FIBs * For now the protocol indepedent versions are the same as the AF_INET ones * but this will change.. */ int rtioctl_fib(u_long, caddr_t, u_int); -int rtrequest_fib(int, struct sockaddr *, - struct sockaddr *, struct sockaddr *, int, struct rtentry **, u_int); -int rtrequest1_fib(int, struct rt_addrinfo *, struct rtentry **, u_int); int rib_lookup_info(uint32_t, const struct sockaddr *, uint32_t, uint32_t, struct rt_addrinfo *); void rib_free_info(struct rt_addrinfo *info); /* New API */ struct nhop_object *rib_lookup(uint32_t fibnum, const struct sockaddr *dst, uint32_t flags, uint32_t flowid); #endif #endif Index: head/sys/netinet6/in6_rmx.c =================================================================== --- head/sys/netinet6/in6_rmx.c (revision 363402) +++ head/sys/netinet6/in6_rmx.c (revision 363403) @@ -1,198 +1,187 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_rmx.c,v 1.11 2001/07/26 06:53:16 jinmei Exp $ */ /*- * Copyright 1994, 1995 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_mpath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int in6_inithead(void **head, int off, u_int fibnum); #ifdef VIMAGE extern int in6_detachhead(void **head, int off); #endif static int rib6_preadd(u_int fibnum, const struct sockaddr *addr, const struct sockaddr *mask, struct nhop_object *nh) { uint16_t nh_type; /* XXX: RTF_LOCAL */ /* * Check route MTU: * inherit interface MTU if not set or * check if MTU is too large. */ if (nh->nh_mtu == 0) { nh->nh_mtu = IN6_LINKMTU(nh->nh_ifp); } else if (nh->nh_mtu > IN6_LINKMTU(nh->nh_ifp)) nh->nh_mtu = IN6_LINKMTU(nh->nh_ifp); /* Ensure that default route nhop has special flag */ const struct sockaddr_in6 *mask6 = (const struct sockaddr_in6 *)mask; if ((nhop_get_rtflags(nh) & RTF_HOST) == 0 && mask6 != NULL && IN6_IS_ADDR_UNSPECIFIED(&mask6->sin6_addr)) nh->nh_flags |= NHF_DEFAULT; /* Set nexthop type */ if (nhop_get_type(nh) == 0) { if (nh->nh_flags & NHF_GATEWAY) nh_type = NH_TYPE_IPV6_ETHER_NHOP; else nh_type = NH_TYPE_IPV6_ETHER_RSLV; nhop_set_type(nh, nh_type); } return (0); } /* * Initialize our routing tree. */ int in6_inithead(void **head, int off, u_int fibnum) { struct epoch_tracker et; struct rib_head *rh; rh = rt_table_init(offsetof(struct sockaddr_in6, sin6_addr) << 3, AF_INET6, fibnum); if (rh == NULL) return (0); rh->rnh_preadd = rib6_preadd; #ifdef RADIX_MPATH rt_mpath_init_rnh(rh); #endif *head = (void *)rh; NET_EPOCH_ENTER(et); if (rib_subscribe(fibnum, AF_INET6, nd6_subscription_cb, NULL, RIB_NOTIFY_IMMEDIATE, M_NOWAIT) == NULL) log(LOG_ERR, "in6_inithead(): unable to subscribe to fib %u\n", fibnum); NET_EPOCH_EXIT(et); return (1); } #ifdef VIMAGE int in6_detachhead(void **head, int off) { rt_table_destroy((struct rib_head *)(*head)); return (1); } #endif -/* - * Extended API for IPv6 FIB support. - */ -int -in6_rtrequest(int req, struct sockaddr *dst, struct sockaddr *gw, - struct sockaddr *mask, int flags, struct rtentry **ret_nrt, u_int fibnum) -{ - - return (rtrequest_fib(req, dst, gw, mask, flags, ret_nrt, fibnum)); -} - Index: head/sys/netinet6/in6_var.h =================================================================== --- head/sys/netinet6/in6_var.h (revision 363402) +++ head/sys/netinet6/in6_var.h (revision 363403) @@ -1,922 +1,920 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_var.h,v 1.56 2001/03/29 05:34:31 itojun Exp $ */ /*- * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #ifndef _NETINET6_IN6_VAR_H_ #define _NETINET6_IN6_VAR_H_ #include #include #ifdef _KERNEL #include #include #endif /* * Interface address, Internet version. One of these structures * is allocated for each interface with an Internet address. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ /* * pltime/vltime are just for future reference (required to implements 2 * hour rule for hosts). they should never be modified by nd6_timeout or * anywhere else. * userland -> kernel: accept pltime/vltime * kernel -> userland: throw up everything * in kernel: modify preferred/expire only */ struct in6_addrlifetime { time_t ia6t_expire; /* valid lifetime expiration time */ time_t ia6t_preferred; /* preferred lifetime expiration time */ u_int32_t ia6t_vltime; /* valid lifetime */ u_int32_t ia6t_pltime; /* prefix lifetime */ }; struct nd_ifinfo; struct scope6_id; struct lltable; struct mld_ifsoftc; struct in6_multi; struct in6_ifextra { counter_u64_t *in6_ifstat; counter_u64_t *icmp6_ifstat; struct nd_ifinfo *nd_ifinfo; struct scope6_id *scope6_id; struct lltable *lltable; struct mld_ifsoftc *mld_ifinfo; }; #define LLTABLE6(ifp) (((struct in6_ifextra *)(ifp)->if_afdata[AF_INET6])->lltable) #ifdef _KERNEL SLIST_HEAD(in6_multi_head, in6_multi); MALLOC_DECLARE(M_IP6MADDR); struct in6_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags struct sockaddr_in6 ia_addr; /* interface address */ struct sockaddr_in6 ia_net; /* network number of interface */ struct sockaddr_in6 ia_dstaddr; /* space for destination addr */ struct sockaddr_in6 ia_prefixmask; /* prefix mask */ u_int32_t ia_plen; /* prefix length */ CK_STAILQ_ENTRY(in6_ifaddr) ia_link; /* list of IPv6 addresses */ int ia6_flags; struct in6_addrlifetime ia6_lifetime; time_t ia6_createtime; /* the creation time of this address, which is * currently used for temporary addresses only. */ time_t ia6_updatetime; /* back pointer to the ND prefix (for autoconfigured addresses only) */ struct nd_prefix *ia6_ndpr; /* multicast addresses joined from the kernel */ LIST_HEAD(, in6_multi_mship) ia6_memberships; /* entry in bucket of inet6 addresses */ CK_LIST_ENTRY(in6_ifaddr) ia6_hash; }; /* List of in6_ifaddr's. */ CK_STAILQ_HEAD(in6_ifaddrhead, in6_ifaddr); CK_LIST_HEAD(in6_ifaddrlisthead, in6_ifaddr); #endif /* _KERNEL */ /* control structure to manage address selection policy */ struct in6_addrpolicy { struct sockaddr_in6 addr; /* prefix address */ struct sockaddr_in6 addrmask; /* prefix mask */ int preced; /* precedence */ int label; /* matching label */ u_quad_t use; /* statistics */ }; /* * IPv6 interface statistics, as defined in RFC2465 Ipv6IfStatsEntry (p12). */ struct in6_ifstat { uint64_t ifs6_in_receive; /* # of total input datagram */ uint64_t ifs6_in_hdrerr; /* # of datagrams with invalid hdr */ uint64_t ifs6_in_toobig; /* # of datagrams exceeded MTU */ uint64_t ifs6_in_noroute; /* # of datagrams with no route */ uint64_t ifs6_in_addrerr; /* # of datagrams with invalid dst */ uint64_t ifs6_in_protounknown; /* # of datagrams with unknown proto */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_truncated; /* # of truncated datagrams */ uint64_t ifs6_in_discard; /* # of discarded datagrams */ /* NOTE: fragment timeout is not here */ uint64_t ifs6_in_deliver; /* # of datagrams delivered to ULP */ /* NOTE: increment on final dst if */ uint64_t ifs6_out_forward; /* # of datagrams forwarded */ /* NOTE: increment on outgoing if */ uint64_t ifs6_out_request; /* # of outgoing datagrams from ULP */ /* NOTE: does not include forwrads */ uint64_t ifs6_out_discard; /* # of discarded datagrams */ uint64_t ifs6_out_fragok; /* # of datagrams fragmented */ uint64_t ifs6_out_fragfail; /* # of datagrams failed on fragment */ uint64_t ifs6_out_fragcreat; /* # of fragment datagrams */ /* NOTE: this is # after fragment */ uint64_t ifs6_reass_reqd; /* # of incoming fragmented packets */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_ok; /* # of reassembled packets */ /* NOTE: this is # after reass */ /* NOTE: increment on final dst if */ uint64_t ifs6_reass_fail; /* # of reass failures */ /* NOTE: may not be packet count */ /* NOTE: increment on final dst if */ uint64_t ifs6_in_mcast; /* # of inbound multicast datagrams */ uint64_t ifs6_out_mcast; /* # of outbound multicast datagrams */ }; /* * ICMPv6 interface statistics, as defined in RFC2466 Ipv6IfIcmpEntry. * XXX: I'm not sure if this file is the right place for this structure... */ struct icmp6_ifstat { /* * Input statistics */ /* ipv6IfIcmpInMsgs, total # of input messages */ uint64_t ifs6_in_msg; /* ipv6IfIcmpInErrors, # of input error messages */ uint64_t ifs6_in_error; /* ipv6IfIcmpInDestUnreachs, # of input dest unreach errors */ uint64_t ifs6_in_dstunreach; /* ipv6IfIcmpInAdminProhibs, # of input administratively prohibited errs */ uint64_t ifs6_in_adminprohib; /* ipv6IfIcmpInTimeExcds, # of input time exceeded errors */ uint64_t ifs6_in_timeexceed; /* ipv6IfIcmpInParmProblems, # of input parameter problem errors */ uint64_t ifs6_in_paramprob; /* ipv6IfIcmpInPktTooBigs, # of input packet too big errors */ uint64_t ifs6_in_pkttoobig; /* ipv6IfIcmpInEchos, # of input echo requests */ uint64_t ifs6_in_echo; /* ipv6IfIcmpInEchoReplies, # of input echo replies */ uint64_t ifs6_in_echoreply; /* ipv6IfIcmpInRouterSolicits, # of input router solicitations */ uint64_t ifs6_in_routersolicit; /* ipv6IfIcmpInRouterAdvertisements, # of input router advertisements */ uint64_t ifs6_in_routeradvert; /* ipv6IfIcmpInNeighborSolicits, # of input neighbor solicitations */ uint64_t ifs6_in_neighborsolicit; /* ipv6IfIcmpInNeighborAdvertisements, # of input neighbor advertisements */ uint64_t ifs6_in_neighboradvert; /* ipv6IfIcmpInRedirects, # of input redirects */ uint64_t ifs6_in_redirect; /* ipv6IfIcmpInGroupMembQueries, # of input MLD queries */ uint64_t ifs6_in_mldquery; /* ipv6IfIcmpInGroupMembResponses, # of input MLD reports */ uint64_t ifs6_in_mldreport; /* ipv6IfIcmpInGroupMembReductions, # of input MLD done */ uint64_t ifs6_in_mlddone; /* * Output statistics. We should solve unresolved routing problem... */ /* ipv6IfIcmpOutMsgs, total # of output messages */ uint64_t ifs6_out_msg; /* ipv6IfIcmpOutErrors, # of output error messages */ uint64_t ifs6_out_error; /* ipv6IfIcmpOutDestUnreachs, # of output dest unreach errors */ uint64_t ifs6_out_dstunreach; /* ipv6IfIcmpOutAdminProhibs, # of output administratively prohibited errs */ uint64_t ifs6_out_adminprohib; /* ipv6IfIcmpOutTimeExcds, # of output time exceeded errors */ uint64_t ifs6_out_timeexceed; /* ipv6IfIcmpOutParmProblems, # of output parameter problem errors */ uint64_t ifs6_out_paramprob; /* ipv6IfIcmpOutPktTooBigs, # of output packet too big errors */ uint64_t ifs6_out_pkttoobig; /* ipv6IfIcmpOutEchos, # of output echo requests */ uint64_t ifs6_out_echo; /* ipv6IfIcmpOutEchoReplies, # of output echo replies */ uint64_t ifs6_out_echoreply; /* ipv6IfIcmpOutRouterSolicits, # of output router solicitations */ uint64_t ifs6_out_routersolicit; /* ipv6IfIcmpOutRouterAdvertisements, # of output router advertisements */ uint64_t ifs6_out_routeradvert; /* ipv6IfIcmpOutNeighborSolicits, # of output neighbor solicitations */ uint64_t ifs6_out_neighborsolicit; /* ipv6IfIcmpOutNeighborAdvertisements, # of output neighbor advertisements */ uint64_t ifs6_out_neighboradvert; /* ipv6IfIcmpOutRedirects, # of output redirects */ uint64_t ifs6_out_redirect; /* ipv6IfIcmpOutGroupMembQueries, # of output MLD queries */ uint64_t ifs6_out_mldquery; /* ipv6IfIcmpOutGroupMembResponses, # of output MLD reports */ uint64_t ifs6_out_mldreport; /* ipv6IfIcmpOutGroupMembReductions, # of output MLD done */ uint64_t ifs6_out_mlddone; }; struct in6_ifreq { char ifr_name[IFNAMSIZ]; union { struct sockaddr_in6 ifru_addr; struct sockaddr_in6 ifru_dstaddr; int ifru_flags; int ifru_flags6; int ifru_metric; caddr_t ifru_data; struct in6_addrlifetime ifru_lifetime; struct in6_ifstat ifru_stat; struct icmp6_ifstat ifru_icmp6stat; u_int32_t ifru_scope_id[16]; } ifr_ifru; }; struct in6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; int ifra_vhid; }; /* pre-10.x compat */ struct oin6_aliasreq { char ifra_name[IFNAMSIZ]; struct sockaddr_in6 ifra_addr; struct sockaddr_in6 ifra_dstaddr; struct sockaddr_in6 ifra_prefixmask; int ifra_flags; struct in6_addrlifetime ifra_lifetime; }; /* prefix type macro */ #define IN6_PREFIX_ND 1 #define IN6_PREFIX_RR 2 /* * prefix related flags passed between kernel(NDP related part) and * user land command(ifconfig) and daemon(rtadvd). */ struct in6_prflags { struct prf_ra { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } prf_ra; u_char prf_reserved1; u_short prf_reserved2; /* want to put this on 4byte offset */ struct prf_rr { u_char decrvalid : 1; u_char decrprefd : 1; u_char reserved : 6; } prf_rr; u_char prf_reserved3; u_short prf_reserved4; }; struct in6_prefixreq { char ipr_name[IFNAMSIZ]; u_char ipr_origin; u_char ipr_plen; u_int32_t ipr_vltime; u_int32_t ipr_pltime; struct in6_prflags ipr_flags; struct sockaddr_in6 ipr_prefix; }; #define PR_ORIG_RA 0 #define PR_ORIG_RR 1 #define PR_ORIG_STATIC 2 #define PR_ORIG_KERNEL 3 #define ipr_raf_onlink ipr_flags.prf_ra.onlink #define ipr_raf_auto ipr_flags.prf_ra.autonomous #define ipr_statef_onlink ipr_flags.prf_state.onlink #define ipr_rrf_decrvalid ipr_flags.prf_rr.decrvalid #define ipr_rrf_decrprefd ipr_flags.prf_rr.decrprefd struct in6_rrenumreq { char irr_name[IFNAMSIZ]; u_char irr_origin; u_char irr_m_len; /* match len for matchprefix */ u_char irr_m_minlen; /* minlen for matching prefix */ u_char irr_m_maxlen; /* maxlen for matching prefix */ u_char irr_u_uselen; /* uselen for adding prefix */ u_char irr_u_keeplen; /* keeplen from matching prefix */ struct irr_raflagmask { u_char onlink : 1; u_char autonomous : 1; u_char reserved : 6; } irr_raflagmask; u_int32_t irr_vltime; u_int32_t irr_pltime; struct in6_prflags irr_flags; struct sockaddr_in6 irr_matchprefix; struct sockaddr_in6 irr_useprefix; }; #define irr_raf_mask_onlink irr_raflagmask.onlink #define irr_raf_mask_auto irr_raflagmask.autonomous #define irr_raf_mask_reserved irr_raflagmask.reserved #define irr_raf_onlink irr_flags.prf_ra.onlink #define irr_raf_auto irr_flags.prf_ra.autonomous #define irr_statef_onlink irr_flags.prf_state.onlink #define irr_rrf irr_flags.prf_rr #define irr_rrf_decrvalid irr_flags.prf_rr.decrvalid #define irr_rrf_decrprefd irr_flags.prf_rr.decrprefd /* * Given a pointer to an in6_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in6 */ #define IA6_IN6(ia) (&((ia)->ia_addr.sin6_addr)) #define IA6_DSTIN6(ia) (&((ia)->ia_dstaddr.sin6_addr)) #define IA6_MASKIN6(ia) (&((ia)->ia_prefixmask.sin6_addr)) #define IA6_SIN6(ia) (&((ia)->ia_addr)) #define IA6_DSTSIN6(ia) (&((ia)->ia_dstaddr)) #define IFA_IN6(x) (&((struct sockaddr_in6 *)((x)->ifa_addr))->sin6_addr) #define IFA_DSTIN6(x) (&((struct sockaddr_in6 *)((x)->ifa_dstaddr))->sin6_addr) #define IFPR_IN6(x) (&((struct sockaddr_in6 *)((x)->ifpr_prefix))->sin6_addr) #ifdef _KERNEL #define IN6_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ (((d)->s6_addr32[0] ^ (a)->s6_addr32[0]) & (m)->s6_addr32[0]) == 0 && \ (((d)->s6_addr32[1] ^ (a)->s6_addr32[1]) & (m)->s6_addr32[1]) == 0 && \ (((d)->s6_addr32[2] ^ (a)->s6_addr32[2]) & (m)->s6_addr32[2]) == 0 && \ (((d)->s6_addr32[3] ^ (a)->s6_addr32[3]) & (m)->s6_addr32[3]) == 0 ) #define IN6_MASK_ADDR(a, m) do { \ (a)->s6_addr32[0] &= (m)->s6_addr32[0]; \ (a)->s6_addr32[1] &= (m)->s6_addr32[1]; \ (a)->s6_addr32[2] &= (m)->s6_addr32[2]; \ (a)->s6_addr32[3] &= (m)->s6_addr32[3]; \ } while (0) #endif #define SIOCSIFADDR_IN6 _IOW('i', 12, struct in6_ifreq) #define SIOCGIFADDR_IN6 _IOWR('i', 33, struct in6_ifreq) #ifdef _KERNEL /* * SIOCSxxx ioctls should be unused (see comments in in6.c), but * we do not shift numbers for binary compatibility. */ #define SIOCSIFDSTADDR_IN6 _IOW('i', 14, struct in6_ifreq) #define SIOCSIFNETMASK_IN6 _IOW('i', 22, struct in6_ifreq) #endif #define SIOCGIFDSTADDR_IN6 _IOWR('i', 34, struct in6_ifreq) #define SIOCGIFNETMASK_IN6 _IOWR('i', 37, struct in6_ifreq) #define SIOCDIFADDR_IN6 _IOW('i', 25, struct in6_ifreq) #define OSIOCAIFADDR_IN6 _IOW('i', 26, struct oin6_aliasreq) #define SIOCAIFADDR_IN6 _IOW('i', 27, struct in6_aliasreq) #define SIOCSIFPHYADDR_IN6 _IOW('i', 70, struct in6_aliasreq) #define SIOCGIFPSRCADDR_IN6 _IOWR('i', 71, struct in6_ifreq) #define SIOCGIFPDSTADDR_IN6 _IOWR('i', 72, struct in6_ifreq) #define SIOCGIFAFLAG_IN6 _IOWR('i', 73, struct in6_ifreq) #ifdef _KERNEL #define OSIOCGIFINFO_IN6 _IOWR('i', 76, struct in6_ondireq) #endif #define SIOCGIFINFO_IN6 _IOWR('i', 108, struct in6_ndireq) #define SIOCSIFINFO_IN6 _IOWR('i', 109, struct in6_ndireq) #define SIOCSNDFLUSH_IN6 _IOWR('i', 77, struct in6_ifreq) #define SIOCGNBRINFO_IN6 _IOWR('i', 78, struct in6_nbrinfo) #define SIOCSPFXFLUSH_IN6 _IOWR('i', 79, struct in6_ifreq) #define SIOCSRTRFLUSH_IN6 _IOWR('i', 80, struct in6_ifreq) #define SIOCGIFALIFETIME_IN6 _IOWR('i', 81, struct in6_ifreq) #define SIOCGIFSTAT_IN6 _IOWR('i', 83, struct in6_ifreq) #define SIOCGIFSTAT_ICMP6 _IOWR('i', 84, struct in6_ifreq) #define SIOCSDEFIFACE_IN6 _IOWR('i', 85, struct in6_ndifreq) #define SIOCGDEFIFACE_IN6 _IOWR('i', 86, struct in6_ndifreq) #define SIOCSIFINFO_FLAGS _IOWR('i', 87, struct in6_ndireq) /* XXX */ #define SIOCSSCOPE6 _IOW('i', 88, struct in6_ifreq) #define SIOCGSCOPE6 _IOWR('i', 89, struct in6_ifreq) #define SIOCGSCOPE6DEF _IOWR('i', 90, struct in6_ifreq) #define SIOCSIFPREFIX_IN6 _IOW('i', 100, struct in6_prefixreq) /* set */ #define SIOCGIFPREFIX_IN6 _IOWR('i', 101, struct in6_prefixreq) /* get */ #define SIOCDIFPREFIX_IN6 _IOW('i', 102, struct in6_prefixreq) /* del */ #define SIOCAIFPREFIX_IN6 _IOW('i', 103, struct in6_rrenumreq) /* add */ #define SIOCCIFPREFIX_IN6 _IOW('i', 104, \ struct in6_rrenumreq) /* change */ #define SIOCSGIFPREFIX_IN6 _IOW('i', 105, \ struct in6_rrenumreq) /* set global */ #define SIOCGETSGCNT_IN6 _IOWR('u', 106, \ struct sioc_sg_req6) /* get s,g pkt cnt */ #define SIOCGETMIFCNT_IN6 _IOWR('u', 107, \ struct sioc_mif_req6) /* get pkt cnt per if */ #define SIOCAADDRCTL_POLICY _IOW('u', 108, struct in6_addrpolicy) #define SIOCDADDRCTL_POLICY _IOW('u', 109, struct in6_addrpolicy) #define IN6_IFF_ANYCAST 0x01 /* anycast address */ #define IN6_IFF_TENTATIVE 0x02 /* tentative address */ #define IN6_IFF_DUPLICATED 0x04 /* DAD detected duplicate */ #define IN6_IFF_DETACHED 0x08 /* may be detached from the link */ #define IN6_IFF_DEPRECATED 0x10 /* deprecated address */ #define IN6_IFF_NODAD 0x20 /* don't perform DAD on this address * (obsolete) */ #define IN6_IFF_AUTOCONF 0x40 /* autoconfigurable address. */ #define IN6_IFF_TEMPORARY 0x80 /* temporary (anonymous) address. */ #define IN6_IFF_PREFER_SOURCE 0x0100 /* preferred address for SAS */ /* do not input/output */ #define IN6_IFF_NOTREADY (IN6_IFF_TENTATIVE|IN6_IFF_DUPLICATED) #ifdef _KERNEL #define IN6_ARE_SCOPE_CMP(a,b) ((a)-(b)) #define IN6_ARE_SCOPE_EQUAL(a,b) ((a)==(b)) #endif #ifdef _KERNEL VNET_DECLARE(struct in6_ifaddrhead, in6_ifaddrhead); VNET_DECLARE(struct in6_ifaddrlisthead *, in6_ifaddrhashtbl); VNET_DECLARE(u_long, in6_ifaddrhmask); #define V_in6_ifaddrhead VNET(in6_ifaddrhead) #define V_in6_ifaddrhashtbl VNET(in6_ifaddrhashtbl) #define V_in6_ifaddrhmask VNET(in6_ifaddrhmask) #define IN6ADDR_NHASH_LOG2 8 #define IN6ADDR_NHASH (1 << IN6ADDR_NHASH_LOG2) #define IN6ADDR_HASHVAL(x) (in6_addrhash(x)) #define IN6ADDR_HASH(x) \ (&V_in6_ifaddrhashtbl[IN6ADDR_HASHVAL(x) & V_in6_ifaddrhmask]) static __inline uint32_t in6_addrhash(const struct in6_addr *in6) { uint32_t x; x = in6->s6_addr32[0] ^ in6->s6_addr32[1] ^ in6->s6_addr32[2] ^ in6->s6_addr32[3]; return (fnv_32_buf(&x, sizeof(x), FNV1_32_INIT)); } extern struct rmlock in6_ifaddr_lock; #define IN6_IFADDR_LOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_LOCKED) #define IN6_IFADDR_RLOCK(t) rm_rlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_RLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_RLOCKED) #define IN6_IFADDR_RUNLOCK(t) rm_runlock(&in6_ifaddr_lock, (t)) #define IN6_IFADDR_WLOCK() rm_wlock(&in6_ifaddr_lock) #define IN6_IFADDR_WLOCK_ASSERT() rm_assert(&in6_ifaddr_lock, RA_WLOCKED) #define IN6_IFADDR_WUNLOCK() rm_wunlock(&in6_ifaddr_lock) #define in6_ifstat_inc(ifp, tag) \ do { \ if (ifp) \ counter_u64_add(((struct in6_ifextra *) \ ((ifp)->if_afdata[AF_INET6]))->in6_ifstat[ \ offsetof(struct in6_ifstat, tag) / sizeof(uint64_t)], 1);\ } while (/*CONSTCOND*/ 0) extern u_char inet6ctlerrmap[]; VNET_DECLARE(unsigned long, in6_maxmtu); #define V_in6_maxmtu VNET(in6_maxmtu) #endif /* _KERNEL */ /* * IPv6 multicast MLD-layer source entry. */ struct ip6_msource { RB_ENTRY(ip6_msource) im6s_link; /* RB tree links */ struct in6_addr im6s_addr; struct im6s_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } im6s_st[2]; /* state at t0, t1 */ uint8_t im6s_stp; /* pending query */ }; RB_HEAD(ip6_msource_tree, ip6_msource); /* * IPv6 multicast PCB-layer source entry. * * NOTE: overlapping use of struct ip6_msource fields at start. */ struct in6_msource { RB_ENTRY(ip6_msource) im6s_link; /* Common field */ struct in6_addr im6s_addr; /* Common field */ uint8_t im6sl_st[2]; /* state before/at commit */ }; #ifdef _KERNEL /* * IPv6 source tree comparison function. * * An ordered predicate is necessary; bcmp() is not documented to return * an indication of order, memcmp() is, and is an ISO C99 requirement. */ static __inline int ip6_msource_cmp(const struct ip6_msource *a, const struct ip6_msource *b) { return (memcmp(&a->im6s_addr, &b->im6s_addr, sizeof(struct in6_addr))); } RB_PROTOTYPE(ip6_msource_tree, ip6_msource, im6s_link, ip6_msource_cmp); /* * IPv6 multicast PCB-layer group filter descriptor. */ struct in6_mfilter { struct ip6_msource_tree im6f_sources; /* source list for (S,G) */ u_long im6f_nsrc; /* # of source entries */ uint8_t im6f_st[2]; /* state before/at commit */ struct in6_multi *im6f_in6m; /* associated multicast address */ STAILQ_ENTRY(in6_mfilter) im6f_entry; /* list entry */ }; /* * Helper types and functions for IPv4 multicast filters. */ STAILQ_HEAD(ip6_mfilter_head, in6_mfilter); struct in6_mfilter *ip6_mfilter_alloc(int mflags, int st0, int st1); void ip6_mfilter_free(struct in6_mfilter *); static inline void ip6_mfilter_init(struct ip6_mfilter_head *head) { STAILQ_INIT(head); } static inline struct in6_mfilter * ip6_mfilter_first(const struct ip6_mfilter_head *head) { return (STAILQ_FIRST(head)); } static inline void ip6_mfilter_insert(struct ip6_mfilter_head *head, struct in6_mfilter *imf) { STAILQ_INSERT_TAIL(head, imf, im6f_entry); } static inline void ip6_mfilter_remove(struct ip6_mfilter_head *head, struct in6_mfilter *imf) { STAILQ_REMOVE(head, imf, in6_mfilter, im6f_entry); } #define IP6_MFILTER_FOREACH(imf, head) \ STAILQ_FOREACH(imf, head, im6f_entry) static inline size_t ip6_mfilter_count(struct ip6_mfilter_head *head) { struct in6_mfilter *imf; size_t num = 0; STAILQ_FOREACH(imf, head, im6f_entry) num++; return (num); } /* * Legacy KAME IPv6 multicast membership descriptor. */ struct in6_multi_mship { struct in6_multi *i6mm_maddr; LIST_ENTRY(in6_multi_mship) i6mm_chain; }; /* * IPv6 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When MLDv2 is active, in6m_timer is the response to group query timer. * The state-change timer in6m_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: in6m_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in6_multi { struct in6_addr in6m_addr; /* IPv6 multicast address */ struct ifnet *in6m_ifp; /* back pointer to ifnet */ struct ifmultiaddr *in6m_ifma; /* back pointer to ifmultiaddr */ u_int in6m_refcount; /* reference count */ u_int in6m_state; /* state of the membership */ u_int in6m_timer; /* MLD6 listener report timer */ /* New fields for MLDv2 follow. */ struct mld_ifsoftc *in6m_mli; /* MLD info */ SLIST_ENTRY(in6_multi) in6m_nrele; /* to-be-released by MLD */ SLIST_ENTRY(in6_multi) in6m_defer; /* deferred MLDv1 */ struct ip6_msource_tree in6m_srcs; /* tree of sources */ u_long in6m_nsrc; /* # of tree entries */ struct mbufq in6m_scq; /* queue of pending * state-change packets */ struct timeval in6m_lastgsrtv; /* last G-S-R query */ uint16_t in6m_sctimer; /* state-change timer */ uint16_t in6m_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing MLDv2 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct in6m_st { uint16_t iss_fmode; /* MLD filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } in6m_st[2]; /* state at t0, t1 */ }; void in6m_disconnect_locked(struct in6_multi_head *inmh, struct in6_multi *inm); /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t im6s_get_mode(const struct in6_multi *inm, const struct ip6_msource *ims, uint8_t t) { t = !!t; if (inm->in6m_st[t].iss_ex > 0 && inm->in6m_st[t].iss_ex == ims->im6s_st[t].ex) return (MCAST_EXCLUDE); else if (ims->im6s_st[t].in > 0 && ims->im6s_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } /* * Lock macros for IPv6 layer multicast address lists. IPv6 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in6_multi_list_mtx; extern struct sx in6_multi_sx; #define IN6_MULTI_LIST_LOCK() mtx_lock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_UNLOCK() mtx_unlock(&in6_multi_list_mtx) #define IN6_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_OWNED) #define IN6_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in6_multi_list_mtx, MA_NOTOWNED) #define IN6_MULTI_LOCK() sx_xlock(&in6_multi_sx) #define IN6_MULTI_UNLOCK() sx_xunlock(&in6_multi_sx) #define IN6_MULTI_LOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XLOCKED) #define IN6_MULTI_UNLOCK_ASSERT() sx_assert(&in6_multi_sx, SA_XUNLOCKED) /* * Get the in6_multi pointer from a ifmultiaddr. * Returns NULL if ifmultiaddr is no longer valid. */ static __inline struct in6_multi * in6m_ifmultiaddr_get_inm(struct ifmultiaddr *ifma) { NET_EPOCH_ASSERT(); return ((ifma->ifma_addr->sa_family != AF_INET6 || (ifma->ifma_flags & IFMA_F_ENQUEUED) == 0) ? NULL : ifma->ifma_protospec); } /* * Look up an in6_multi record for an IPv6 multicast address * on the interface ifp. * If no record found, return NULL. * * SMPng: The IN6_MULTI_LOCK and must be held and must be in network epoch. */ static __inline struct in6_multi * in6m_lookup_locked(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct ifmultiaddr *ifma; struct in6_multi *inm; CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { inm = in6m_ifmultiaddr_get_inm(ifma); if (inm == NULL) continue; if (IN6_ARE_ADDR_EQUAL(&inm->in6m_addr, mcaddr)) return (inm); } return (NULL); } /* * Wrapper for in6m_lookup_locked(). * * SMPng: Assumes network epoch entered and that IN6_MULTI_LOCK() isn't held. */ static __inline struct in6_multi * in6m_lookup(struct ifnet *ifp, const struct in6_addr *mcaddr) { struct in6_multi *inm; NET_EPOCH_ASSERT(); IN6_MULTI_LIST_LOCK(); inm = in6m_lookup_locked(ifp, mcaddr); IN6_MULTI_LIST_UNLOCK(); return (inm); } /* Acquire an in6_multi record. */ static __inline void in6m_acquire_locked(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK_ASSERT(); ++inm->in6m_refcount; } static __inline void in6m_acquire(struct in6_multi *inm) { IN6_MULTI_LIST_LOCK(); in6m_acquire_locked(inm); IN6_MULTI_LIST_UNLOCK(); } static __inline void in6m_rele_locked(struct in6_multi_head *inmh, struct in6_multi *inm) { KASSERT(inm->in6m_refcount > 0, ("refcount == %d inm: %p", inm->in6m_refcount, inm)); IN6_MULTI_LIST_LOCK_ASSERT(); if (--inm->in6m_refcount == 0) { MPASS(inm->in6m_ifp == NULL); inm->in6m_ifma->ifma_protospec = NULL; MPASS(inm->in6m_ifma->ifma_llifma == NULL); SLIST_INSERT_HEAD(inmh, inm, in6m_nrele); } } struct ip6_moptions; struct sockopt; struct inpcbinfo; /* Multicast KPIs. */ int im6o_mc_filter(const struct ip6_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); int in6_joingroup(struct ifnet *, const struct in6_addr *, struct in6_mfilter *, struct in6_multi **, int); int in6_leavegroup(struct in6_multi *, struct in6_mfilter *); int in6_leavegroup_locked(struct in6_multi *, struct in6_mfilter *); void in6m_clear_recorded(struct in6_multi *); void in6m_commit(struct in6_multi *); void in6m_print(const struct in6_multi *); int in6m_record_source(struct in6_multi *, const struct in6_addr *); void in6m_release_list_deferred(struct in6_multi_head *); void in6m_release_wait(void); void ip6_freemoptions(struct ip6_moptions *); int ip6_getmoptions(struct inpcb *, struct sockopt *); int ip6_setmoptions(struct inpcb *, struct sockopt *); /* flags to in6_update_ifa */ #define IN6_IFAUPDATE_DADDELAY 0x1 /* first time to configure an address */ int in6_mask2len(struct in6_addr *, u_char *); int in6_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in6_update_ifa(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); void in6_prepare_ifra(struct in6_aliasreq *, const struct in6_addr *, const struct in6_addr *); void in6_purgeaddr(struct ifaddr *); int in6if_do_dad(struct ifnet *); void in6_savemkludge(struct in6_ifaddr *); void *in6_domifattach(struct ifnet *); void in6_domifdetach(struct ifnet *, void *); int in6_domifmtu(struct ifnet *); void in6_setmaxmtu(void); int in6_if2idlen(struct ifnet *); struct in6_ifaddr *in6ifa_ifpforlinklocal(struct ifnet *, int); struct in6_ifaddr *in6ifa_ifpwithaddr(struct ifnet *, const struct in6_addr *); struct in6_ifaddr *in6ifa_ifwithaddr(const struct in6_addr *, uint32_t); struct in6_ifaddr *in6ifa_llaonifp(struct ifnet *); int in6_addr2zoneid(struct ifnet *, struct in6_addr *, u_int32_t *); int in6_matchlen(struct in6_addr *, struct in6_addr *); int in6_are_prefix_equal(struct in6_addr *, struct in6_addr *, int); void in6_prefixlen2mask(struct in6_addr *, int); int in6_prefix_ioctl(struct socket *, u_long, caddr_t, struct ifnet *); int in6_prefix_add_ifid(int, struct in6_ifaddr *); void in6_prefix_remove_ifid(int, struct in6_ifaddr *); void in6_purgeprefix(struct ifnet *); int in6_is_addr_deprecated(struct sockaddr_in6 *); int in6_src_ioctl(u_long, caddr_t); void in6_newaddrmsg(struct in6_ifaddr *, int); /* * Extended API for IPv6 FIB support. */ struct mbuf *ip6_tryforward(struct mbuf *); -int in6_rtrequest(int, struct sockaddr *, struct sockaddr *, - struct sockaddr *, int, struct rtentry **, u_int); #endif /* _KERNEL */ #endif /* _NETINET6_IN6_VAR_H_ */ Index: head/sys/netinet6/nd6.c =================================================================== --- head/sys/netinet6/nd6.c (revision 363402) +++ head/sys/netinet6/nd6.c (revision 363403) @@ -1,2659 +1,2660 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ #define SIN6(s) ((const struct sockaddr_in6 *)(s)) MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); /* timer values */ VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for * local traffic */ VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage * collection timer */ /* preventing too many loops in ND option parsing */ VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper * layer hints */ VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved * ND entries */ #define V_nd6_maxndopt VNET(nd6_maxndopt) #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) #ifdef ND6_DEBUG VNET_DEFINE(int, nd6_debug) = 1; #else VNET_DEFINE(int, nd6_debug) = 0; #endif static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; VNET_DEFINE(struct nd_prhead, nd_prefix); VNET_DEFINE(struct rwlock, nd6_lock); VNET_DEFINE(uint64_t, nd6_list_genid); VNET_DEFINE(struct mtx, nd6_onlink_mtx); VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, struct ifnet *); static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); static void nd6_slowtimo(void *); static int regen_tmpaddr(struct in6_ifaddr *); static void nd6_free(struct llentry **, int); static void nd6_free_redirect(const struct llentry *); static void nd6_llinfo_timer(void *); static void nd6_llinfo_settimer_locked(struct llentry *, long); static void clear_llinfo_pqueue(struct llentry *); static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); static int nd6_need_cache(struct ifnet *); VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); #define V_nd6_timer_ch VNET(nd6_timer_ch) SYSCTL_DECL(_net_inet6_icmp6); static void nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) { struct rt_addrinfo rtinfo; struct sockaddr_in6 dst; struct sockaddr_dl gw; struct ifnet *ifp; int type; int fibnum; LLE_WLOCK_ASSERT(lle); if (lltable_get_af(lle->lle_tbl) != AF_INET6) return; switch (evt) { case LLENTRY_RESOLVED: type = RTM_ADD; KASSERT(lle->la_flags & LLE_VALID, ("%s: %p resolved but not valid?", __func__, lle)); break; case LLENTRY_EXPIRED: type = RTM_DELETE; break; default: return; } ifp = lltable_get_ifp(lle->lle_tbl); bzero(&dst, sizeof(dst)); bzero(&gw, sizeof(gw)); bzero(&rtinfo, sizeof(rtinfo)); lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); dst.sin6_scope_id = in6_getscopezone(ifp, in6_addrscope(&dst.sin6_addr)); gw.sdl_len = sizeof(struct sockaddr_dl); gw.sdl_family = AF_LINK; gw.sdl_alen = ifp->if_addrlen; gw.sdl_index = ifp->if_index; gw.sdl_type = ifp->if_type; if (evt == LLENTRY_RESOLVED) bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( type == RTM_ADD ? RTF_UP: 0), 0, fibnum); } /* * A handler for interface link layer address change event. */ static void nd6_iflladdr(void *arg __unused, struct ifnet *ifp) { lltable_update_ifaddr(LLTABLE6(ifp)); } void nd6_init(void) { mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); rw_init(&V_nd6_lock, "nd6 list"); LIST_INIT(&V_nd_prefix); nd6_defrouter_init(); /* Start timers. */ callout_init(&V_nd6_slowtimo_ch, 0); callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); callout_init(&V_nd6_timer_ch, 0); callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); nd6_dad_init(); if (IS_DEFAULT_VNET(curvnet)) { lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, NULL, EVENTHANDLER_PRI_ANY); iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); } } #ifdef VIMAGE void nd6_destroy() { callout_drain(&V_nd6_slowtimo_ch); callout_drain(&V_nd6_timer_ch); if (IS_DEFAULT_VNET(curvnet)) { EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); } rw_destroy(&V_nd6_lock); mtx_destroy(&V_nd6_onlink_mtx); } #endif struct nd_ifinfo * nd6_ifattach(struct ifnet *ifp) { struct nd_ifinfo *nd; nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); nd->initialized = 1; nd->chlim = IPV6_DEFHLIM; nd->basereachable = REACHABLE_TIME; nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); nd->retrans = RETRANS_TIMER; nd->flags = ND6_IFF_PERFORMNUD; /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by * default regardless of the V_ip6_auto_linklocal configuration to * give a reasonable default behavior. */ if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || (ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_AUTO_LINKLOCAL; /* * A loopback interface does not need to accept RTADV. * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by * default regardless of the V_ip6_accept_rtadv configuration to * prevent the interface from accepting RA messages arrived * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. */ if (V_ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK) && (ifp->if_type != IFT_BRIDGE)) nd->flags |= ND6_IFF_ACCEPT_RTADV; if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_NO_RADR; /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ nd6_setmtu0(ifp, nd); return nd; } void nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) { struct epoch_tracker et; struct ifaddr *ifa, *next; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; /* stop DAD processing */ nd6_dad_stop(ifa); } NET_EPOCH_EXIT(et); free(nd, M_IP6NDP); } /* * Reset ND level link MTU. This function is called when the physical MTU * changes, which means we might have to adjust the ND level MTU. */ void nd6_setmtu(struct ifnet *ifp) { if (ifp->if_afdata[AF_INET6] == NULL) return; nd6_setmtu0(ifp, ND_IFINFO(ifp)); } /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ void nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) { u_int32_t omaxmtu; omaxmtu = ndi->maxmtu; ndi->maxmtu = ifp->if_mtu; /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for omaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu0: " "new link MTU on %s (%lu) is too small for IPv6\n", if_name(ifp), (unsigned long)ndi->maxmtu); } if (ndi->maxmtu > V_in6_maxmtu) in6_setmaxmtu(); /* check all interfaces just in case */ } void nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) { bzero(ndopts, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return NULL; if (ndopts->nd_opts_done) return NULL; nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { bzero(ndopts, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ bzero(ndopts, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ bzero(ndopts, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return 0; while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ ICMP6STAT_INC(icp6s_nd_badopt); bzero(ndopts, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) goto skip1; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: case ND_OPT_NONCE: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log((LOG_INFO, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type)); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ case ND_OPT_RDNSS: /* RFC 6106 */ case ND_OPT_DNSSL: /* RFC 6106 */ /* * Silently ignore options we know and do not care about * in the kernel. */ break; default: /* * Unknown options must be silently ignored, * to accommodate future extension to the protocol. */ nd6log((LOG_DEBUG, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type)); } skip1: i++; if (i > V_nd6_maxndopt) { ICMP6STAT_INC(icp6s_nd_toomanyopt); nd6log((LOG_INFO, "too many loop in nd opt\n")); break; } if (ndopts->nd_opts_done) break; } return 0; } /* * ND6 timer routine to handle ND6 entries */ static void nd6_llinfo_settimer_locked(struct llentry *ln, long tick) { int canceled; LLE_WLOCK_ASSERT(ln); if (tick < 0) { ln->la_expire = 0; ln->ln_ntick = 0; canceled = callout_stop(&ln->lle_timer); } else { ln->la_expire = time_uptime + tick / hz; LLE_ADDREF(ln); if (tick > INT_MAX) { ln->ln_ntick = tick - INT_MAX; canceled = callout_reset(&ln->lle_timer, INT_MAX, nd6_llinfo_timer, ln); } else { ln->ln_ntick = 0; canceled = callout_reset(&ln->lle_timer, tick, nd6_llinfo_timer, ln); } } if (canceled > 0) LLE_REMREF(ln); } /* * Gets source address of the first packet in hold queue * and stores it in @src. * Returns pointer to @src (if hold queue is not empty) or NULL. * * Set noinline to be dtrace-friendly */ static __noinline struct in6_addr * nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) { struct ip6_hdr hdr; struct mbuf *m; if (ln->la_hold == NULL) return (NULL); /* * assume every packet in la_hold has the same IP header */ m = ln->la_hold; if (sizeof(hdr) > m->m_len) return (NULL); m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); *src = hdr.ip6_src; return (src); } /* * Checks if we need to switch from STALE state. * * RFC 4861 requires switching from STALE to DELAY state * on first packet matching entry, waiting V_nd6_delay and * transition to PROBE state (if upper layer confirmation was * not received). * * This code performs a bit differently: * On packet hit we don't change state (but desired state * can be guessed by control plane). However, after V_nd6_delay * seconds code will transition to PROBE state (so DELAY state * is kinda skipped in most situations). * * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so * we perform the following upon entering STALE state: * * 1) Arm timer to run each V_nd6_delay seconds to make sure that * if packet was transmitted at the start of given interval, we * would be able to switch to PROBE state in V_nd6_delay seconds * as user expects. * * 2) Reschedule timer until original V_nd6_gctimer expires keeping * lle in STALE state (remaining timer value stored in lle_remtime). * * 3) Reschedule timer if packet was transmitted less that V_nd6_delay * seconds ago. * * Returns non-zero value if the entry is still STALE (storing * the next timer interval in @pdelay). * * Returns zero value if original timer expired or we need to switch to * PROBE (store that in @do_switch variable). */ static int nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) { int nd_delay, nd_gctimer, r_skip_req; time_t lle_hittime; long delay; *do_switch = 0; nd_gctimer = V_nd6_gctimer; nd_delay = V_nd6_delay; LLE_REQ_LOCK(lle); r_skip_req = lle->r_skip_req; lle_hittime = lle->lle_hittime; LLE_REQ_UNLOCK(lle); if (r_skip_req > 0) { /* * Nonzero r_skip_req value was set upon entering * STALE state. Since value was not changed, no * packets were passed using this lle. Ask for * timer reschedule and keep STALE state. */ delay = (long)(MIN(nd_gctimer, nd_delay)); delay *= hz; if (lle->lle_remtime > delay) lle->lle_remtime -= delay; else { delay = lle->lle_remtime; lle->lle_remtime = 0; } if (delay == 0) { /* * The original ng6_gctime timeout ended, * no more rescheduling. */ return (0); } *pdelay = delay; return (1); } /* * Packet received. Verify timestamp */ delay = (long)(time_uptime - lle_hittime); if (delay < nd_delay) { /* * V_nd6_delay still not passed since the first * hit in STALE state. * Reshedule timer and return. */ *pdelay = (long)(nd_delay - delay) * hz; return (1); } /* Request switching to probe */ *do_switch = 1; return (0); } /* * Switch @lle state to new state optionally arming timers. * * Set noinline to be dtrace-friendly */ __noinline void nd6_llinfo_setstate(struct llentry *lle, int newstate) { struct ifnet *ifp; int nd_gctimer, nd_delay; long delay, remtime; delay = 0; remtime = 0; switch (newstate) { case ND6_LLINFO_INCOMPLETE: ifp = lle->lle_tbl->llt_ifp; delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(lle)) { ifp = lle->lle_tbl->llt_ifp; delay = (long)ND_IFINFO(ifp)->reachable * hz; } break; case ND6_LLINFO_STALE: /* * Notify fast path that we want to know if any packet * is transmitted by setting r_skip_req. */ LLE_REQ_LOCK(lle); lle->r_skip_req = 1; LLE_REQ_UNLOCK(lle); nd_delay = V_nd6_delay; nd_gctimer = V_nd6_gctimer; delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; remtime = (long)nd_gctimer * hz - delay; break; case ND6_LLINFO_DELAY: lle->la_asked = 0; delay = (long)V_nd6_delay * hz; break; } if (delay > 0) nd6_llinfo_settimer_locked(lle, delay); lle->lle_remtime = remtime; lle->ln_state = newstate; } /* * Timer-dependent part of nd state machine. * * Set noinline to be dtrace-friendly */ static __noinline void nd6_llinfo_timer(void *arg) { struct epoch_tracker et; struct llentry *ln; struct in6_addr *dst, *pdst, *psrc, src; struct ifnet *ifp; struct nd_ifinfo *ndi; int do_switch, send_ns; long delay; KASSERT(arg != NULL, ("%s: arg NULL", __func__)); ln = (struct llentry *)arg; ifp = lltable_get_ifp(ln->lle_tbl); CURVNET_SET(ifp->if_vnet); ND6_RLOCK(); LLE_WLOCK(ln); if (callout_pending(&ln->lle_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by nd6_llinfo_settimer_locked above since canceled * would have been 1. */ LLE_WUNLOCK(ln); ND6_RUNLOCK(); CURVNET_RESTORE(); return; } NET_EPOCH_ENTER(et); ndi = ND_IFINFO(ifp); send_ns = 0; dst = &ln->r_l3addr.addr6; pdst = dst; if (ln->ln_ntick > 0) { if (ln->ln_ntick > INT_MAX) { ln->ln_ntick -= INT_MAX; nd6_llinfo_settimer_locked(ln, INT_MAX); } else { ln->ln_ntick = 0; nd6_llinfo_settimer_locked(ln, ln->ln_ntick); } goto done; } if (ln->la_flags & LLE_STATIC) { goto done; } if (ln->la_flags & LLE_DELETED) { nd6_free(&ln, 0); goto done; } switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->la_asked < V_nd6_mmaxtries) { ln->la_asked++; send_ns = 1; /* Send NS to multicast address */ pdst = NULL; } else { struct mbuf *m = ln->la_hold; if (m) { struct mbuf *m0; /* * assuming every packet in la_hold has the * same IP header. Send error after unlock. */ m0 = m->m_nextpkt; m->m_nextpkt = NULL; ln->la_hold = m0; clear_llinfo_pqueue(ln); } nd6_free(&ln, 0); if (m != NULL) { struct mbuf *n = m; /* * if there are any ummapped mbufs, we * must free them, rather than using * them for an ICMP, as they cannot be * checksummed. */ while ((n = n->m_next) != NULL) { if (n->m_flags & M_EXTPG) break; } if (n != NULL) { m_freem(m); m = NULL; } else { icmp6_error2(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0, ifp); } } } break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(ln)) nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); break; case ND6_LLINFO_STALE: if (nd6_is_stale(ln, &delay, &do_switch) != 0) { /* * No packet has used this entry and GC timeout * has not been passed. Reshedule timer and * return. */ nd6_llinfo_settimer_locked(ln, delay); break; } if (do_switch == 0) { /* * GC timer has ended and entry hasn't been used. * Run Garbage collector (RFC 4861, 5.3) */ if (!ND6_LLINFO_PERMANENT(ln)) nd6_free(&ln, 1); break; } /* Entry has been used AND delay timer has ended. */ /* FALLTHROUGH */ case ND6_LLINFO_DELAY: if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->la_asked = 1; nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); send_ns = 1; } else nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ break; case ND6_LLINFO_PROBE: if (ln->la_asked < V_nd6_umaxtries) { ln->la_asked++; send_ns = 1; } else { nd6_free(&ln, 0); } break; default: panic("%s: paths in a dark night can be confusing: %d", __func__, ln->ln_state); } done: if (ln != NULL) ND6_RUNLOCK(); if (send_ns != 0) { nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); psrc = nd6_llinfo_get_holdsrc(ln, &src); LLE_FREE_LOCKED(ln); ln = NULL; nd6_ns_output(ifp, psrc, pdst, dst, NULL); } if (ln != NULL) LLE_FREE_LOCKED(ln); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } /* * ND6 timer routine to expire default route list and prefix list */ void nd6_timer(void *arg) { CURVNET_SET((struct vnet *) arg); struct epoch_tracker et; struct nd_prhead prl; struct nd_prefix *pr, *npr; struct ifnet *ifp; struct in6_ifaddr *ia6, *nia6; uint64_t genid; LIST_INIT(&prl); NET_EPOCH_ENTER(et); nd6_defrouter_timer(); /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. * * XXXRW: in6_ifaddrhead locking. */ addrloop: CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { /* check address lifetime */ if (IFA6_IS_INVALID(ia6)) { int regen = 0; /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { if (regen_tmpaddr(ia6) == 0) regen = 1; } in6_purgeaddr(&ia6->ia_ifa); if (regen) goto addrloop; /* XXX: see below */ } else if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; ia6->ia6_flags |= IN6_IFF_DEPRECATED; /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ goto addrloop; } } } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { /* * Schedule DAD for a tentative address. This happens * if the interface was down or not running * when the address was configured. */ int delay; delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); nd6_dad_start((struct ifaddr *)ia6, delay); } else { /* * Check status of the interface. If it is down, * mark the address as tentative for future DAD. */ ifp = ia6->ia_ifp; if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && ((ifp->if_flags & IFF_UP) == 0 || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; ia6->ia6_flags |= IN6_IFF_TENTATIVE; } /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; } } NET_EPOCH_EXIT(et); ND6_WLOCK(); restart: LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { /* * Expire prefixes. Since the pltime is only used for * autoconfigured addresses, pltime processing for prefixes is * not necessary. * * Only unlink after all derived addresses have expired. This * may not occur until two hours after the prefix has expired * per RFC 4862. If the prefix expires before its derived * addresses, mark it off-link. This will be done automatically * after unlinking if no address references remain. */ if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) continue; if (pr->ndpr_addrcnt == 0) { nd6_prefix_unlink(pr, &prl); continue; } if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { genid = V_nd6_list_genid; nd6_prefix_ref(pr); ND6_WUNLOCK(); ND6_ONLINK_LOCK(); (void)nd6_prefix_offlink(pr); ND6_ONLINK_UNLOCK(); ND6_WLOCK(); nd6_prefix_rele(pr); if (genid != V_nd6_list_genid) goto restart; } } ND6_WUNLOCK(); while ((pr = LIST_FIRST(&prl)) != NULL) { LIST_REMOVE(pr, ndpr_entry); nd6_prefix_del(pr); } callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, nd6_timer, curvnet); CURVNET_RESTORE(); } /* * ia6 - deprecated/invalidated temporary address */ static int regen_tmpaddr(struct in6_ifaddr *ia6) { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; NET_EPOCH_ASSERT(); ifp = ia6->ia_ifa.ifa_ifp; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in6_ifaddr *it6; if (ifa->ifa_addr->sa_family != AF_INET6) continue; it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) continue; /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) public_ifa6 = it6; } if (public_ifa6 != NULL) ifa_ref(&public_ifa6->ia_ifa); if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { ifa_free(&public_ifa6->ia_ifa); log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); return (-1); } ifa_free(&public_ifa6->ia_ifa); return (0); } return (-1); } /* * Remove prefix and default router list entries corresponding to ifp. Neighbor * cache entries are freed in in6_domifdetach(). */ void nd6_purge(struct ifnet *ifp) { struct nd_prhead prl; struct nd_prefix *pr, *npr; LIST_INIT(&prl); /* Purge default router list entries toward ifp. */ nd6_defrouter_purge(ifp); ND6_WLOCK(); /* * Remove prefixes on ifp. We should have already removed addresses on * this interface, so no addresses should be referencing these prefixes. */ LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { if (pr->ndpr_ifp == ifp) nd6_prefix_unlink(pr, &prl); } ND6_WUNLOCK(); /* Delete the unlinked prefix objects. */ while ((pr = LIST_FIRST(&prl)) != NULL) { LIST_REMOVE(pr, ndpr_entry); nd6_prefix_del(pr); } /* cancel default outgoing interface setting */ if (V_nd6_defifindex == ifp->if_index) nd6_setdefaultiface(0); if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* Refresh default router list. */ defrouter_select_fib(ifp->if_fib); } } /* * the caller acquires and releases the lock on the lltbls * Returns the llentry locked */ struct llentry * nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; IF_AFDATA_LOCK_ASSERT(ifp); ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); return (ln); } static struct llentry * nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); if (ln != NULL) ln->ln_state = ND6_LLINFO_NOSTATE; return (ln); } /* * Test whether a given IPv6 address is a neighbor or not, ignoring * the actual neighbor cache. The neighbor cache is ignored in order * to not reenter the routing code from within itself. */ static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct ifaddr *ifa; struct rt_addrinfo info; struct sockaddr_in6 rt_key; const struct sockaddr *dst6; uint64_t genid; int error, fibnum; /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy)) return (0); /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return (0); if (sin6_copy.sin6_scope_id == zone) return (1); else return (0); } bzero(&rt_key, sizeof(rt_key)); bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; /* * If the address matches one of our addresses, * it should be a neighbor. * If the address matches one of our on-link prefixes, it should be a * neighbor. */ ND6_RLOCK(); restart: LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (pr->ndpr_ifp != ifp) continue; if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { dst6 = (const struct sockaddr *)&pr->ndpr_prefix; /* * We only need to check all FIBs if add_addr_allfibs * is unset. If set, checking any FIB will suffice. */ fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; for (; fibnum < rt_numfibs; fibnum++) { genid = V_nd6_list_genid; ND6_RUNLOCK(); /* * Restore length field before * retrying lookup */ rt_key.sin6_len = sizeof(rt_key); error = rib_lookup_info(fibnum, dst6, 0, 0, &info); ND6_RLOCK(); if (genid != V_nd6_list_genid) goto restart; if (error == 0) break; } if (error != 0) continue; /* * This is the case where multiple interfaces * have the same prefix, but only one is installed * into the routing table and that prefix entry * is not the one being examined here. In the case * where RADIX_MPATH is enabled, multiple route * entries (of the same rt_key value) will be * installed because the interface addresses all * differ. */ if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &rt_key.sin6_addr)) continue; } if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) { ND6_RUNLOCK(); return (1); } } ND6_RUNLOCK(); /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ if (ifp->if_flags & IFF_POINTOPOINT) { struct epoch_tracker et; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sin6_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { NET_EPOCH_EXIT(et); return 1; } } NET_EPOCH_EXIT(et); } /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. */ if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && nd6_defrouter_list_empty() && V_nd6_defifindex == ifp->if_index) { return (1); } return (0); } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { struct llentry *lle; int rc = 0; NET_EPOCH_ASSERT(); IF_AFDATA_UNLOCK_ASSERT(ifp); if (nd6_is_new_addr_neighbor(addr, ifp)) return (1); /* * Even if the address matches none of our addresses, it might be * in the neighbor cache. */ if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { LLE_RUNLOCK(lle); rc = 1; } return (rc); } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. * * Set noinline to be dtrace-friendly */ static __noinline void nd6_free(struct llentry **lnp, int gc) { struct ifnet *ifp; struct llentry *ln; struct nd_defrouter *dr; ln = *lnp; *lnp = NULL; LLE_WLOCK_ASSERT(ln); ND6_RLOCK_ASSERT(); ifp = lltable_get_ifp(ln->lle_tbl); if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); else dr = NULL; ND6_RUNLOCK(); if ((ln->la_flags & LLE_DELETED) == 0) EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); /* * we used to have pfctlinput(PRC_HOSTDEAD) here. * even though it is not harmful, it was not really necessary. */ /* cancel timer */ nd6_llinfo_settimer_locked(ln, -1); if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { if (dr != NULL && dr->expire && ln->ln_state == ND6_LLINFO_STALE && gc) { /* * If the reason for the deletion is just garbage * collection, and the neighbor is an active default * router, do not delete it. Instead, reset the GC * timer using the router's lifetime. * Simply deleting the entry would affect default * router selection, which is not necessarily a good * thing, especially when we're using router preference * values. * XXX: the check for ln_state would be redundant, * but we intentionally keep it just in case. */ if (dr->expire > time_uptime) nd6_llinfo_settimer_locked(ln, (dr->expire - time_uptime) * hz); else nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); LLE_REMREF(ln); LLE_WUNLOCK(ln); defrouter_rele(dr); return; } if (dr) { /* * Unreachablity of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ ln->ln_state = ND6_LLINFO_INCOMPLETE; } if (ln->ln_router || dr) { /* * We need to unlock to avoid a LOR with rt6_flush() with the * rnh and for the calls to pfxlist_onlink_check() and * defrouter_select_fib() in the block further down for calls * into nd6_lookup(). We still hold a ref. */ LLE_WUNLOCK(ln); /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ rt6_flush(&ln->r_l3addr.addr6, ifp); } if (dr) { /* * Since defrouter_select_fib() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ pfxlist_onlink_check(); /* * Refresh default router list. */ defrouter_select_fib(dr->ifp->if_fib); } /* * If this entry was added by an on-link redirect, remove the * corresponding host route. */ if (ln->la_flags & LLE_REDIRECT) nd6_free_redirect(ln); if (ln->ln_router || dr) LLE_WLOCK(ln); } /* * Save to unlock. We still hold an extra reference and will not * free(9) in llentry_free() if someone else holds one as well. */ LLE_WUNLOCK(ln); IF_AFDATA_LOCK(ifp); LLE_WLOCK(ln); /* Guard against race with other llentry_free(). */ if (ln->la_flags & LLE_LINKED) { /* Remove callout reference */ LLE_REMREF(ln); lltable_unlink_entry(ln->lle_tbl, ln); } IF_AFDATA_UNLOCK(ifp); llentry_free(ln); if (dr != NULL) defrouter_rele(dr); } static int nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) { if (nh->nh_flags & NHF_REDIRECT) return (1); return (0); } /* * Remove the rtentry for the given llentry, * both of which were installed by a redirect. */ static void nd6_free_redirect(const struct llentry *ln) { int fibnum; struct sockaddr_in6 sin6; struct rt_addrinfo info; + struct rib_cmd_info rc; struct epoch_tracker et; lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; info.rti_filter = nd6_isdynrte; NET_EPOCH_ENTER(et); for (fibnum = 0; fibnum < rt_numfibs; fibnum++) - rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); + rib_action(fibnum, RTM_DELETE, &info, &rc); NET_EPOCH_EXIT(et); } /* * Updates status of the default router route. */ void nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) { struct nd_defrouter *dr; struct nhop_object *nh; if (rc->rc_cmd == RTM_DELETE) { nh = rc->rc_nh_old; if (nh->nh_flags & NHF_DEFAULT) { dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); if (dr != NULL) { dr->installed = 0; defrouter_rele(dr); } } } } int nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) { struct in6_ndireq *ndi = (struct in6_ndireq *)data; struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; struct epoch_tracker et; int error = 0; if (ifp->if_afdata[AF_INET6] == NULL) return (EPFNOSUPPORT); switch (cmd) { case OSIOCGIFINFO_IN6: #define ND ndi->ndi /* XXX: old ndp(8) assumes a positive value for linkmtu. */ bzero(&ND, sizeof(ND)); ND.linkmtu = IN6_LINKMTU(ifp); ND.maxmtu = ND_IFINFO(ifp)->maxmtu; ND.basereachable = ND_IFINFO(ifp)->basereachable; ND.reachable = ND_IFINFO(ifp)->reachable; ND.retrans = ND_IFINFO(ifp)->retrans; ND.flags = ND_IFINFO(ifp)->flags; ND.recalctm = ND_IFINFO(ifp)->recalctm; ND.chlim = ND_IFINFO(ifp)->chlim; break; case SIOCGIFINFO_IN6: ND = *ND_IFINFO(ifp); break; case SIOCSIFINFO_IN6: /* * used to change host variables from userland. * intended for a use on router to reflect RA configurations. */ /* 0 means 'unspecified' */ if (ND.linkmtu != 0) { if (ND.linkmtu < IPV6_MMTU || ND.linkmtu > IN6_LINKMTU(ifp)) { error = EINVAL; break; } ND_IFINFO(ifp)->linkmtu = ND.linkmtu; } if (ND.basereachable != 0) { int obasereachable = ND_IFINFO(ifp)->basereachable; ND_IFINFO(ifp)->basereachable = ND.basereachable; if (ND.basereachable != obasereachable) ND_IFINFO(ifp)->reachable = ND_COMPUTE_RTIME(ND.basereachable); } if (ND.retrans != 0) ND_IFINFO(ifp)->retrans = ND.retrans; if (ND.chlim != 0) ND_IFINFO(ifp)->chlim = ND.chlim; /* FALLTHROUGH */ case SIOCSIFINFO_FLAGS: { struct ifaddr *ifa; struct in6_ifaddr *ia; if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && !(ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 1->0 transision */ /* * If the interface is marked as ND6_IFF_IFDISABLED and * has an link-local address with IN6_IFF_DUPLICATED, * do not clear ND6_IFF_IFDISABLED. * See RFC 4862, Section 5.4.5. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) break; } NET_EPOCH_EXIT(et); if (ifa != NULL) { /* LLA is duplicated. */ ND.flags |= ND6_IFF_IFDISABLED; log(LOG_ERR, "Cannot enable an interface" " with a link-local address marked" " duplicate.\n"); } else { ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; if (ifp->if_flags & IFF_UP) in6_if_up(ifp); } } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && (ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 0->1 transision */ /* Mark all IPv6 address as tentative. */ ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; if (V_ip6_dad_count > 0 && (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; ia->ia6_flags |= IN6_IFF_TENTATIVE; } NET_EPOCH_EXIT(et); } } if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { /* auto_linklocal 0->1 transision */ /* If no link-local address on ifp, configure */ ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; in6_ifattach(ifp, NULL); } else if (!(ND.flags & ND6_IFF_IFDISABLED) && ifp->if_flags & IFF_UP) { /* * When the IF already has * ND6_IFF_AUTO_LINKLOCAL, no link-local * address is assigned, and IFF_UP, try to * assign one. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) break; } NET_EPOCH_EXIT(et); if (ifa != NULL) /* No LLA is configured. */ in6_ifattach(ifp, NULL); } } ND_IFINFO(ifp)->flags = ND.flags; break; } #undef ND case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ /* sync kernel routing table with the default router list */ defrouter_reset(); defrouter_select_fib(RT_ALL_FIBS); break; case SIOCSPFXFLUSH_IN6: { /* flush all the prefix advertised by routers */ struct in6_ifaddr *ia, *ia_next; struct nd_prefix *pr, *next; struct nd_prhead prl; LIST_INIT(&prl); ND6_WLOCK(); LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) continue; /* XXX */ nd6_prefix_unlink(pr, &prl); } ND6_WUNLOCK(); while ((pr = LIST_FIRST(&prl)) != NULL) { LIST_REMOVE(pr, ndpr_entry); /* XXXRW: in6_ifaddrhead locking. */ CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, ia_next) { if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ia->ia6_ndpr == pr) in6_purgeaddr(&ia->ia_ifa); } nd6_prefix_del(pr); } break; } case SIOCSRTRFLUSH_IN6: { /* flush all the default routers */ defrouter_reset(); nd6_defrouter_flush_all(); defrouter_select_fib(RT_ALL_FIBS); break; } case SIOCGNBRINFO_IN6: { struct llentry *ln; struct in6_addr nb_addr = nbi->addr; /* make local for safety */ if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) return (error); NET_EPOCH_ENTER(et); ln = nd6_lookup(&nb_addr, 0, ifp); NET_EPOCH_EXIT(et); if (ln == NULL) { error = EINVAL; break; } nbi->state = ln->ln_state; nbi->asked = ln->la_asked; nbi->isrouter = ln->ln_router; if (ln->la_expire == 0) nbi->expire = 0; else nbi->expire = ln->la_expire + ln->lle_remtime / hz + (time_second - time_uptime); LLE_RUNLOCK(ln); break; } case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ ndif->ifindex = V_nd6_defifindex; break; case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ return (nd6_setdefaultiface(ndif->ifindex)); } return (error); } /* * Calculates new isRouter value based on provided parameters and * returns it. */ static int nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, int ln_router) { /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * is_new old_addr new_addr NS RS RA redir * D R * 0 n n (1) c ? s * 0 y n (2) c s s * 0 n y (3) c s s * 0 y y (4) c s s * 0 y y (5) c s s * 1 -- n (6) c c c s * 1 -- y (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_new) /* (6-7) */ ln_router = 0; break; case ND_REDIRECT: /* * If the icmp is a redirect to a better router, always set the * is_router flag. Otherwise, if the entry is newly created, * clear the flag. [RFC 2461, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) ln_router = 1; else { if (is_new) /* (6-7) */ ln_router = 0; } break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ (is_new && new_addr)) { /* (7) */ ln_router = 1; } break; } return (ln_router); } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) * * type - ICMP6 type * code - type dependent information * */ void nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, int lladdrlen, int type, int code) { struct llentry *ln = NULL, *ln_tmp; int is_newentry; int do_update; int olladdr; int llchange; int flags; uint16_t router = 0; struct sockaddr_in6 sin6; struct mbuf *chain = NULL; u_char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; NET_EPOCH_ASSERT(); IF_AFDATA_UNLOCK_ASSERT(ifp); KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); KASSERT(from != NULL, ("%s: from == NULL", __func__)); /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) return; /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. * * XXX If the link does not have link-layer adderss, what should * we do? (ifp->if_addrlen == 0) * Spec says nothing in sections for RA, RS and NA. There's small * description on it in NS section (RFC 2461 7.2.3). */ flags = lladdr ? LLE_EXCLUSIVE : 0; ln = nd6_lookup(from, flags, ifp); is_newentry = 0; if (ln == NULL) { flags |= LLE_EXCLUSIVE; ln = nd6_alloc(from, 0, ifp); if (ln == NULL) return; /* * Since we already know all the data for the new entry, * fill it before insertion. */ if (lladdr != NULL) { linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET6, lladdr, linkhdr, &linkhdrsize, &lladdr_off) != 0) return; lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, lladdr_off); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(ln); /* Prefer any existing lle over newly-created one */ ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); if (ln_tmp == NULL) lltable_link_entry(LLTABLE6(ifp), ln); IF_AFDATA_WUNLOCK(ifp); if (ln_tmp == NULL) { /* No existing lle, mark as new entry (6,7) */ is_newentry = 1; if (lladdr != NULL) { /* (7) */ nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); } } else { lltable_free_entry(LLTABLE6(ifp), ln); ln = ln_tmp; ln_tmp = NULL; } } /* do nothing if static ndp is set */ if ((ln->la_flags & LLE_STATIC)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); return; } olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; if (olladdr && lladdr) { llchange = bcmp(lladdr, ln->ll_addr, ifp->if_addrlen); } else if (!olladdr && lladdr) llchange = 1; else llchange = 0; /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y y (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ do_update = 0; if (is_newentry == 0 && llchange != 0) { do_update = 1; /* (3,5) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET6, lladdr, linkhdr, &linkhdrsize, &lladdr_off) != 0) return; if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, lladdr_off) == 0) { /* Entry was deleted */ return; } nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); if (ln->la_hold != NULL) nd6_grab_holdchain(ln, &chain, &sin6); } /* Calculates new router status */ router = nd6_is_router(type, code, is_newentry, olladdr, lladdr != NULL ? 1 : 0, ln->ln_router); ln->ln_router = router; /* Mark non-router redirects with special flag */ if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) ln->la_flags |= LLE_REDIRECT; if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); if (chain != NULL) nd6_flush_holdchain(ifp, chain, &sin6); /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * XXX: when we hear an RA from a new router with the link-layer * address option, defrouter_select_fib() is called twice, since * defrtrlist_update called the function as well. However, I believe * we can compromise the overhead, since it only happens the first * time. * XXX: although defrouter_select_fib() should not have a bad effect * for those are not autoconfigured hosts, we explicitly avoid such * cases for safety. */ if ((do_update || is_newentry) && router && ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* * guaranteed recursion */ defrouter_select_fib(ifp->if_fib); } } static void nd6_slowtimo(void *arg) { struct epoch_tracker et; CURVNET_SET((struct vnet *) arg); struct nd_ifinfo *nd6if; struct ifnet *ifp; callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_afdata[AF_INET6] == NULL) continue; nd6if = ND_IFINFO(ifp); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 2461, 6.3.4) */ nd6if->recalctm = V_nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } } NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } void nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, struct sockaddr_in6 *sin6) { LLE_WLOCK_ASSERT(ln); *chain = ln->la_hold; ln->la_hold = NULL; lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); if (ln->ln_state == ND6_LLINFO_STALE) { /* * The first time we send a packet to a * neighbor whose entry is STALE, we have * to change the state to DELAY and a sets * a timer to expire in DELAY_FIRST_PROBE_TIME * seconds to ensure do neighbor unreachability * detection on expiration. * (RFC 2461 7.3.3) */ nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); } } int nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, struct route *ro) { int error; int ip6len; struct ip6_hdr *ip6; struct m_tag *mtag; #ifdef MAC mac_netinet6_nd6_send(ifp, m); #endif /* * If called from nd6_ns_output() (NS), nd6_na_output() (NA), * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA * as handled by rtsol and rtadvd), mbufs will be tagged for SeND * to be diverted to user space. When re-injected into the kernel, * send_output() will directly dispatch them to the outgoing interface. */ if (send_sendso_input_hook != NULL) { mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); if (mtag != NULL) { ip6 = mtod(m, struct ip6_hdr *); ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); /* Use the SEND socket */ error = send_sendso_input_hook(m, ifp, SND_OUT, ip6len); /* -1 == no app on SEND socket */ if (error == 0 || error != -1) return (error); } } m_clrprotoflags(m); /* Avoid confusing lower layers. */ IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, mtod(m, struct ip6_hdr *)); if ((ifp->if_flags & IFF_LOOPBACK) == 0) origifp = ifp; error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); return (error); } /* * Lookup link headerfor @sa_dst address. Stores found * data in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * If destination LLE does not exists or lle state modification * is required, call "slow" version. * * Return values: * - 0 on success (address copied to buffer). * - EWOULDBLOCK (no local error, but address is still unresolved) * - other errors (alloc failure, etc) */ int nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *ln = NULL; const struct sockaddr_in6 *dst6; NET_EPOCH_ASSERT(); if (pflags != NULL) *pflags = 0; dst6 = (const struct sockaddr_in6 *)sa_dst; /* discard the packet if IPv6 operation is disabled on the interface */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { m_freem(m); return (ENETDOWN); /* better error? */ } if (m != NULL && m->m_flags & M_MCAST) { switch (ifp->if_type) { case IFT_ETHER: case IFT_L2VLAN: case IFT_BRIDGE: ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, desten); return (0); default: m_freem(m); return (EAFNOSUPPORT); } } ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, ifp); if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { /* Entry found, let's copy lle info */ bcopy(ln->r_linkdata, desten, ln->r_hdrlen); if (pflags != NULL) *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); /* Check if we have feedback request from nd6 timer */ if (ln->r_skip_req != 0) { LLE_REQ_LOCK(ln); ln->r_skip_req = 0; /* Notify that entry was used */ ln->lle_hittime = time_uptime; LLE_REQ_UNLOCK(ln); } if (plle) { LLE_ADDREF(ln); *plle = ln; LLE_WUNLOCK(ln); } return (0); } else if (plle && ln) LLE_WUNLOCK(ln); return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); } /* * Do L2 address resolution for @sa_dst address. Stores found * address in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * Heavy version. * Function assume that destination LLE does not exist, * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. * * Set noinline to be dtrace-friendly */ static __noinline int nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *lle = NULL, *lle_tmp; struct in6_addr *psrc, src; int send_ns, ll_len; char *lladdr; NET_EPOCH_ASSERT(); /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ if (lle == NULL) { lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. */ lle = nd6_alloc(&dst->sin6_addr, 0, ifp); if (lle == NULL) { char ip6buf[INET6_ADDRSTRLEN]; log(LOG_DEBUG, "nd6_output: can't allocate llinfo for %s " "(ln=%p)\n", ip6_sprintf(ip6buf, &dst->sin6_addr), lle); m_freem(m); return (ENOBUFS); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); /* Prefer any existing entry over newly-created one */ lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); if (lle_tmp == NULL) lltable_link_entry(LLTABLE6(ifp), lle); IF_AFDATA_WUNLOCK(ifp); if (lle_tmp != NULL) { lltable_free_entry(LLTABLE6(ifp), lle); lle = lle_tmp; lle_tmp = NULL; } } } if (lle == NULL) { m_freem(m); return (ENOBUFS); } LLE_WLOCK_ASSERT(lle); /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 2461 7.3.3) */ if (lle->ln_state == ND6_LLINFO_STALE) nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { if (flags & LLE_ADDRONLY) { lladdr = lle->ll_addr; ll_len = ifp->if_addrlen; } else { lladdr = lle->r_linkdata; ll_len = lle->r_hdrlen; } bcopy(lladdr, desten, ll_len); if (pflags != NULL) *pflags = lle->la_flags; if (plle) { LLE_ADDREF(lle); *plle = lle; } LLE_WUNLOCK(lle); return (0); } /* * There is a neighbor cache entry, but no ethernet address * response yet. Append this latest packet to the end of the * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, * the oldest packet in the queue will be removed. */ if (lle->la_hold != NULL) { struct mbuf *m_hold; int i; i = 0; for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ i++; if (m_hold->m_nextpkt == NULL) { m_hold->m_nextpkt = m; break; } } while (i >= V_nd6_maxqueuelen) { m_hold = lle->la_hold; lle->la_hold = lle->la_hold->m_nextpkt; m_freem(m_hold); i--; } } else { lle->la_hold = m; } /* * If there has been no NS for the neighbor after entering the * INCOMPLETE state, send the first solicitation. * Note that for newly-created lle la_asked will be 0, * so we will transition from ND6_LLINFO_NOSTATE to * ND6_LLINFO_INCOMPLETE state here. */ psrc = NULL; send_ns = 0; if (lle->la_asked == 0) { lle->la_asked++; send_ns = 1; psrc = nd6_llinfo_get_holdsrc(lle, &src); nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); } LLE_WUNLOCK(lle); if (send_ns != 0) nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); return (EWOULDBLOCK); } /* * Do L2 address resolution for @sa_dst address. Stores found * address in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * Return values: * - 0 on success (address copied to buffer). * - EWOULDBLOCK (no local error, but address is still unresolved) * - other errors (alloc failure, etc) */ int nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, char *desten, uint32_t *pflags) { int error; flags |= LLE_ADDRONLY; error = nd6_resolve_slow(ifp, flags, NULL, (const struct sockaddr_in6 *)dst, desten, pflags, NULL); return (error); } int nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, struct sockaddr_in6 *dst) { struct mbuf *m, *m_head; int error = 0; m_head = chain; while (m_head) { m = m_head; m_head = m_head->m_nextpkt; error = nd6_output_ifp(ifp, ifp, m, dst, NULL); } /* * XXX * note that intermediate errors are blindly ignored */ return (error); } static int nd6_need_cache(struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than Ethernet and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ETHER: case IFT_IEEE1394: case IFT_L2VLAN: case IFT_INFINIBAND: case IFT_BRIDGE: case IFT_PROPVIRTUAL: return (1); default: return (0); } } /* * Add pernament ND6 link-layer record for given * interface address. * * Very similar to IPv4 arp_ifinit(), but: * 1) IPv6 DAD is performed in different place * 2) It is called by IPv6 protocol stack in contrast to * arp_ifinit() which is typically called in SIOCSIFADDR * driver ioctl handler. * */ int nd6_add_ifa_lle(struct in6_ifaddr *ia) { struct ifnet *ifp; struct llentry *ln, *ln_tmp; struct sockaddr *dst; ifp = ia->ia_ifa.ifa_ifp; if (nd6_need_cache(ifp) == 0) return (0); dst = (struct sockaddr *)&ia->ia_addr; ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); if (ln == NULL) return (ENOBUFS); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(ln); /* Unlink any entry if exists */ ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); if (ln_tmp != NULL) lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); lltable_link_entry(LLTABLE6(ifp), ln); IF_AFDATA_WUNLOCK(ifp); if (ln_tmp != NULL) EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); LLE_WUNLOCK(ln); if (ln_tmp != NULL) llentry_free(ln_tmp); return (0); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ void nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) { struct sockaddr_in6 mask, addr; struct sockaddr *saddr, *smask; struct ifnet *ifp; ifp = ia->ia_ifa.ifa_ifp; memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); saddr = (struct sockaddr *)&addr; smask = (struct sockaddr *)&mask; if (all != 0) lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); else lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); } static void clear_llinfo_pqueue(struct llentry *ln) { struct mbuf *m_hold, *m_hold_next; for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_freem(m_hold); } ln->la_hold = NULL; } static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) { struct in6_prefix p; struct sockaddr_in6 s6; struct nd_prefix *pr; struct nd_pfxrouter *pfr; time_t maxexpire; int error; char ip6buf[INET6_ADDRSTRLEN]; if (req->newptr) return (EPERM); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); bzero(&p, sizeof(p)); p.origin = PR_ORIG_RA; bzero(&s6, sizeof(s6)); s6.sin6_family = AF_INET6; s6.sin6_len = sizeof(s6); ND6_RLOCK(); LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { p.prefix = pr->ndpr_prefix; if (sa6_recoverscope(&p.prefix)) { log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); /* XXX: press on... */ } p.raflags = pr->ndpr_raf; p.prefixlen = pr->ndpr_plen; p.vltime = pr->ndpr_vltime; p.pltime = pr->ndpr_pltime; p.if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) p.expire = 0; else { /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) p.expire = pr->ndpr_lastupdate + pr->ndpr_vltime + (time_second - time_uptime); else p.expire = maxexpire; } p.refcnt = pr->ndpr_addrcnt; p.flags = pr->ndpr_stateflags; p.advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) p.advrtrs++; error = SYSCTL_OUT(req, &p, sizeof(p)); if (error != 0) break; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { s6.sin6_addr = pfr->router->rtaddr; if (sa6_recoverscope(&s6)) log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &pfr->router->rtaddr)); error = SYSCTL_OUT(req, &s6, sizeof(s6)); if (error != 0) goto out; } } out: ND6_RUNLOCK(); return (error); } SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", "NDP prefix list"); SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); Index: head/sys/netinet6/nd6_rtr.c =================================================================== --- head/sys/netinet6/nd6_rtr.c (revision 363402) +++ head/sys/netinet6/nd6_rtr.c (revision 363403) @@ -1,2597 +1,2620 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6_rtr.c,v 1.111 2001/04/27 01:37:15 jinmei Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct nd_defrouter *defrtrlist_update(struct nd_defrouter *); static int prelist_update(struct nd_prefixctl *, struct nd_defrouter *, struct mbuf *, int); static int nd6_prefix_onlink(struct nd_prefix *); TAILQ_HEAD(nd6_drhead, nd_defrouter); VNET_DEFINE_STATIC(struct nd6_drhead, nd6_defrouter); #define V_nd6_defrouter VNET(nd6_defrouter) VNET_DECLARE(int, nd6_recalc_reachtm_interval); #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) VNET_DEFINE_STATIC(struct ifnet *, nd6_defifp); VNET_DEFINE(int, nd6_defifindex); #define V_nd6_defifp VNET(nd6_defifp) VNET_DEFINE(int, ip6_use_tempaddr) = 0; VNET_DEFINE(int, ip6_desync_factor); VNET_DEFINE(u_int32_t, ip6_temp_preferred_lifetime) = DEF_TEMP_PREFERRED_LIFETIME; VNET_DEFINE(u_int32_t, ip6_temp_valid_lifetime) = DEF_TEMP_VALID_LIFETIME; VNET_DEFINE(int, ip6_temp_regen_advance) = TEMPADDR_REGEN_ADVANCE; #ifdef EXPERIMENTAL VNET_DEFINE(int, nd6_ignore_ipv6_only_ra) = 1; #endif SYSCTL_DECL(_net_inet6_icmp6); /* RTPREF_MEDIUM has to be 0! */ #define RTPREF_HIGH 1 #define RTPREF_MEDIUM 0 #define RTPREF_LOW (-1) #define RTPREF_RESERVED (-2) #define RTPREF_INVALID (-3) /* internal */ static void defrouter_ref(struct nd_defrouter *dr) { refcount_acquire(&dr->refcnt); } void defrouter_rele(struct nd_defrouter *dr) { if (refcount_release(&dr->refcnt)) free(dr, M_IP6NDP); } /* * Remove a router from the global list and optionally stash it in a * caller-supplied queue. */ static void defrouter_unlink(struct nd_defrouter *dr, struct nd6_drhead *drq) { ND6_WLOCK_ASSERT(); TAILQ_REMOVE(&V_nd6_defrouter, dr, dr_entry); V_nd6_list_genid++; if (drq != NULL) TAILQ_INSERT_TAIL(drq, dr, dr_entry); } /* * Receive Router Solicitation Message - just for routers. * Router solicitation/advertisement is mostly managed by userland program * (rtadvd) so here we have no function like nd6_ra_output(). * * Based on RFC 2461 */ void nd6_rs_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp; struct ip6_hdr *ip6; struct nd_router_solicit *nd_rs; struct in6_addr saddr6; union nd_opts ndopts; char ip6bufs[INET6_ADDRSTRLEN], ip6bufd[INET6_ADDRSTRLEN]; char *lladdr; int lladdrlen; ifp = m->m_pkthdr.rcvif; /* * Accept RS only when V_ip6_forwarding=1 and the interface has * no ND6_IFF_ACCEPT_RTADV. */ if (!V_ip6_forwarding || ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) goto freeit; /* RFC 6980: Nodes MUST silently ignore fragments */ if(m->m_flags & M_FRAGMENTED) goto freeit; /* Sanity checks */ ip6 = mtod(m, struct ip6_hdr *); if (ip6->ip6_hlim != 255) { nd6log((LOG_ERR, "%s: invalid hlim (%d) from %s to %s on %s\n", __func__, ip6->ip6_hlim, ip6_sprintf(ip6bufs, &ip6->ip6_src), ip6_sprintf(ip6bufd, &ip6->ip6_dst), if_name(ifp))); goto bad; } /* * Don't update the neighbor cache, if src = ::. * This indicates that the src has no IP address assigned yet. */ saddr6 = ip6->ip6_src; if (IN6_IS_ADDR_UNSPECIFIED(&saddr6)) goto freeit; if (m->m_len < off + icmp6len) { m = m_pullup(m, off + icmp6len); if (m == NULL) { IP6STAT_INC(ip6s_exthdrtoolong); return; } } ip6 = mtod(m, struct ip6_hdr *); nd_rs = (struct nd_router_solicit *)((caddr_t)ip6 + off); icmp6len -= sizeof(*nd_rs); nd6_option_init(nd_rs + 1, icmp6len, &ndopts); if (nd6_options(&ndopts) < 0) { nd6log((LOG_INFO, "%s: invalid ND option, ignored\n", __func__)); /* nd6_options have incremented stats */ goto freeit; } lladdr = NULL; lladdrlen = 0; if (ndopts.nd_opts_src_lladdr) { lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1); lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3; } if (lladdr && ((ifp->if_addrlen + 2 + 7) & ~7) != lladdrlen) { nd6log((LOG_INFO, "%s: lladdrlen mismatch for %s (if %d, RS packet %d)\n", __func__, ip6_sprintf(ip6bufs, &saddr6), ifp->if_addrlen, lladdrlen - 2)); goto bad; } nd6_cache_lladdr(ifp, &saddr6, lladdr, lladdrlen, ND_ROUTER_SOLICIT, 0); freeit: m_freem(m); return; bad: ICMP6STAT_INC(icp6s_badrs); m_freem(m); } #ifdef EXPERIMENTAL /* * An initial update routine for draft-ietf-6man-ipv6only-flag. * We need to iterate over all default routers for the given * interface to see whether they are all advertising the "S" * (IPv6-Only) flag. If they do set, otherwise unset, the * interface flag we later use to filter on. */ static void defrtr_ipv6_only_ifp(struct ifnet *ifp) { struct nd_defrouter *dr; bool ipv6_only, ipv6_only_old; #ifdef INET struct epoch_tracker et; struct ifaddr *ifa; bool has_ipv4_addr; #endif if (V_nd6_ignore_ipv6_only_ra != 0) return; ipv6_only = true; ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) if (dr->ifp == ifp && (dr->raflags & ND_RA_FLAG_IPV6_ONLY) == 0) ipv6_only = false; ND6_RUNLOCK(); IF_AFDATA_WLOCK(ifp); ipv6_only_old = ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY; IF_AFDATA_WUNLOCK(ifp); /* If nothing changed, we have an early exit. */ if (ipv6_only == ipv6_only_old) return; #ifdef INET /* * Should we want to set the IPV6-ONLY flag, check if the * interface has a non-0/0 and non-link-local IPv4 address * configured on it. If it has we will assume working * IPv4 operations and will clear the interface flag. */ has_ipv4_addr = false; if (ipv6_only) { NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (in_canforward( satosin(ifa->ifa_addr)->sin_addr)) { has_ipv4_addr = true; break; } } NET_EPOCH_EXIT(et); } if (ipv6_only && has_ipv4_addr) { log(LOG_NOTICE, "%s rcvd RA w/ IPv6-Only flag set but has IPv4 " "configured, ignoring IPv6-Only flag.\n", ifp->if_xname); ipv6_only = false; } #endif IF_AFDATA_WLOCK(ifp); if (ipv6_only) ND_IFINFO(ifp)->flags |= ND6_IFF_IPV6_ONLY; else ND_IFINFO(ifp)->flags &= ~ND6_IFF_IPV6_ONLY; IF_AFDATA_WUNLOCK(ifp); #ifdef notyet /* Send notification of flag change. */ #endif } static void defrtr_ipv6_only_ipf_down(struct ifnet *ifp) { IF_AFDATA_WLOCK(ifp); ND_IFINFO(ifp)->flags &= ~ND6_IFF_IPV6_ONLY; IF_AFDATA_WUNLOCK(ifp); } #endif /* EXPERIMENTAL */ void nd6_ifnet_link_event(void *arg __unused, struct ifnet *ifp, int linkstate) { /* * XXX-BZ we might want to trigger re-evaluation of our default router * availability. E.g., on link down the default router might be * unreachable but a different interface might still have connectivity. */ #ifdef EXPERIMENTAL if (linkstate == LINK_STATE_DOWN) defrtr_ipv6_only_ipf_down(ifp); #endif } /* * Receive Router Advertisement Message. * * Based on RFC 2461 * TODO: on-link bit on prefix information * TODO: ND_RA_FLAG_{OTHER,MANAGED} processing */ void nd6_ra_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp; struct nd_ifinfo *ndi; struct ip6_hdr *ip6; struct nd_router_advert *nd_ra; struct in6_addr saddr6; struct nd_defrouter *dr; union nd_opts ndopts; char ip6bufs[INET6_ADDRSTRLEN], ip6bufd[INET6_ADDRSTRLEN]; int mcast; /* * We only accept RAs only when the per-interface flag * ND6_IFF_ACCEPT_RTADV is on the receiving interface. */ ifp = m->m_pkthdr.rcvif; ndi = ND_IFINFO(ifp); if (!(ndi->flags & ND6_IFF_ACCEPT_RTADV)) goto freeit; /* RFC 6980: Nodes MUST silently ignore fragments */ if(m->m_flags & M_FRAGMENTED) goto freeit; ip6 = mtod(m, struct ip6_hdr *); if (ip6->ip6_hlim != 255) { nd6log((LOG_ERR, "%s: invalid hlim (%d) from %s to %s on %s\n", __func__, ip6->ip6_hlim, ip6_sprintf(ip6bufs, &ip6->ip6_src), ip6_sprintf(ip6bufd, &ip6->ip6_dst), if_name(ifp))); goto bad; } saddr6 = ip6->ip6_src; if (!IN6_IS_ADDR_LINKLOCAL(&saddr6)) { nd6log((LOG_ERR, "%s: src %s is not link-local\n", __func__, ip6_sprintf(ip6bufs, &saddr6))); goto bad; } if (m->m_len < off + icmp6len) { m = m_pullup(m, off + icmp6len); if (m == NULL) { IP6STAT_INC(ip6s_exthdrtoolong); return; } } ip6 = mtod(m, struct ip6_hdr *); nd_ra = (struct nd_router_advert *)((caddr_t)ip6 + off); icmp6len -= sizeof(*nd_ra); nd6_option_init(nd_ra + 1, icmp6len, &ndopts); if (nd6_options(&ndopts) < 0) { nd6log((LOG_INFO, "%s: invalid ND option, ignored\n", __func__)); /* nd6_options have incremented stats */ goto freeit; } mcast = 0; dr = NULL; { struct nd_defrouter dr0; u_int32_t advreachable = nd_ra->nd_ra_reachable; /* remember if this is a multicasted advertisement */ if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) mcast = 1; bzero(&dr0, sizeof(dr0)); dr0.rtaddr = saddr6; dr0.raflags = nd_ra->nd_ra_flags_reserved; /* * Effectively-disable routes from RA messages when * ND6_IFF_NO_RADR enabled on the receiving interface or * (ip6.forwarding == 1 && ip6.rfc6204w3 != 1). */ if (ndi->flags & ND6_IFF_NO_RADR) dr0.rtlifetime = 0; else if (V_ip6_forwarding && !V_ip6_rfc6204w3) dr0.rtlifetime = 0; else dr0.rtlifetime = ntohs(nd_ra->nd_ra_router_lifetime); dr0.expire = time_uptime + dr0.rtlifetime; dr0.ifp = ifp; /* unspecified or not? (RFC 2461 6.3.4) */ if (advreachable) { advreachable = ntohl(advreachable); if (advreachable <= MAX_REACHABLE_TIME && ndi->basereachable != advreachable) { ndi->basereachable = advreachable; ndi->reachable = ND_COMPUTE_RTIME(ndi->basereachable); ndi->recalctm = V_nd6_recalc_reachtm_interval; /* reset */ } } if (nd_ra->nd_ra_retransmit) ndi->retrans = ntohl(nd_ra->nd_ra_retransmit); if (nd_ra->nd_ra_curhoplimit) { if (ndi->chlim < nd_ra->nd_ra_curhoplimit) ndi->chlim = nd_ra->nd_ra_curhoplimit; else if (ndi->chlim != nd_ra->nd_ra_curhoplimit) { log(LOG_ERR, "RA with a lower CurHopLimit sent from " "%s on %s (current = %d, received = %d). " "Ignored.\n", ip6_sprintf(ip6bufs, &ip6->ip6_src), if_name(ifp), ndi->chlim, nd_ra->nd_ra_curhoplimit); } } dr = defrtrlist_update(&dr0); #ifdef EXPERIMENTAL defrtr_ipv6_only_ifp(ifp); #endif } /* * prefix */ if (ndopts.nd_opts_pi) { struct nd_opt_hdr *pt; struct nd_opt_prefix_info *pi = NULL; struct nd_prefixctl pr; for (pt = (struct nd_opt_hdr *)ndopts.nd_opts_pi; pt <= (struct nd_opt_hdr *)ndopts.nd_opts_pi_end; pt = (struct nd_opt_hdr *)((caddr_t)pt + (pt->nd_opt_len << 3))) { if (pt->nd_opt_type != ND_OPT_PREFIX_INFORMATION) continue; pi = (struct nd_opt_prefix_info *)pt; if (pi->nd_opt_pi_len != 4) { nd6log((LOG_INFO, "%s: invalid option len %d for prefix " "information option, ignored\n", __func__, pi->nd_opt_pi_len)); continue; } if (128 < pi->nd_opt_pi_prefix_len) { nd6log((LOG_INFO, "%s: invalid prefix len %d for prefix " "information option, ignored\n", __func__, pi->nd_opt_pi_prefix_len)); continue; } if (IN6_IS_ADDR_MULTICAST(&pi->nd_opt_pi_prefix) || IN6_IS_ADDR_LINKLOCAL(&pi->nd_opt_pi_prefix)) { nd6log((LOG_INFO, "%s: invalid prefix %s, ignored\n", __func__, ip6_sprintf(ip6bufs, &pi->nd_opt_pi_prefix))); continue; } bzero(&pr, sizeof(pr)); pr.ndpr_prefix.sin6_family = AF_INET6; pr.ndpr_prefix.sin6_len = sizeof(pr.ndpr_prefix); pr.ndpr_prefix.sin6_addr = pi->nd_opt_pi_prefix; pr.ndpr_ifp = (struct ifnet *)m->m_pkthdr.rcvif; pr.ndpr_raf_onlink = (pi->nd_opt_pi_flags_reserved & ND_OPT_PI_FLAG_ONLINK) ? 1 : 0; pr.ndpr_raf_auto = (pi->nd_opt_pi_flags_reserved & ND_OPT_PI_FLAG_AUTO) ? 1 : 0; pr.ndpr_plen = pi->nd_opt_pi_prefix_len; pr.ndpr_vltime = ntohl(pi->nd_opt_pi_valid_time); pr.ndpr_pltime = ntohl(pi->nd_opt_pi_preferred_time); (void)prelist_update(&pr, dr, m, mcast); } } if (dr != NULL) { defrouter_rele(dr); dr = NULL; } /* * MTU */ if (ndopts.nd_opts_mtu && ndopts.nd_opts_mtu->nd_opt_mtu_len == 1) { u_long mtu; u_long maxmtu; mtu = (u_long)ntohl(ndopts.nd_opts_mtu->nd_opt_mtu_mtu); /* lower bound */ if (mtu < IPV6_MMTU) { nd6log((LOG_INFO, "%s: bogus mtu option mtu=%lu sent " "from %s, ignoring\n", __func__, mtu, ip6_sprintf(ip6bufs, &ip6->ip6_src))); goto skip; } /* upper bound */ maxmtu = (ndi->maxmtu && ndi->maxmtu < ifp->if_mtu) ? ndi->maxmtu : ifp->if_mtu; if (mtu <= maxmtu) { int change = (ndi->linkmtu != mtu); ndi->linkmtu = mtu; if (change) { /* in6_maxmtu may change */ in6_setmaxmtu(); rt_updatemtu(ifp); } } else { nd6log((LOG_INFO, "%s: bogus mtu=%lu sent from %s; " "exceeds maxmtu %lu, ignoring\n", __func__, mtu, ip6_sprintf(ip6bufs, &ip6->ip6_src), maxmtu)); } } skip: /* * Source link layer address */ { char *lladdr = NULL; int lladdrlen = 0; if (ndopts.nd_opts_src_lladdr) { lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1); lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3; } if (lladdr && ((ifp->if_addrlen + 2 + 7) & ~7) != lladdrlen) { nd6log((LOG_INFO, "%s: lladdrlen mismatch for %s (if %d, RA packet %d)\n", __func__, ip6_sprintf(ip6bufs, &saddr6), ifp->if_addrlen, lladdrlen - 2)); goto bad; } nd6_cache_lladdr(ifp, &saddr6, lladdr, lladdrlen, ND_ROUTER_ADVERT, 0); /* * Installing a link-layer address might change the state of the * router's neighbor cache, which might also affect our on-link * detection of adveritsed prefixes. */ pfxlist_onlink_check(); } freeit: m_freem(m); return; bad: ICMP6STAT_INC(icp6s_badra); m_freem(m); } /* PFXRTR */ static struct nd_pfxrouter * pfxrtr_lookup(struct nd_prefix *pr, struct nd_defrouter *dr) { struct nd_pfxrouter *search; ND6_LOCK_ASSERT(); LIST_FOREACH(search, &pr->ndpr_advrtrs, pfr_entry) { if (search->router == dr) break; } return (search); } static void pfxrtr_add(struct nd_prefix *pr, struct nd_defrouter *dr) { struct nd_pfxrouter *new; bool update; ND6_UNLOCK_ASSERT(); ND6_RLOCK(); if (pfxrtr_lookup(pr, dr) != NULL) { ND6_RUNLOCK(); return; } ND6_RUNLOCK(); new = malloc(sizeof(*new), M_IP6NDP, M_NOWAIT | M_ZERO); if (new == NULL) return; defrouter_ref(dr); new->router = dr; ND6_WLOCK(); if (pfxrtr_lookup(pr, dr) == NULL) { LIST_INSERT_HEAD(&pr->ndpr_advrtrs, new, pfr_entry); update = true; } else { /* We lost a race to add the reference. */ defrouter_rele(dr); free(new, M_IP6NDP); update = false; } ND6_WUNLOCK(); if (update) pfxlist_onlink_check(); } static void pfxrtr_del(struct nd_pfxrouter *pfr) { ND6_WLOCK_ASSERT(); LIST_REMOVE(pfr, pfr_entry); defrouter_rele(pfr->router); free(pfr, M_IP6NDP); } /* Default router list processing sub routines. */ static void defrouter_addreq(struct nd_defrouter *new) { struct sockaddr_in6 def, mask, gate; - struct rtentry *newrt = NULL; + struct rt_addrinfo info; + struct rib_cmd_info rc; unsigned int fibnum; int error; bzero(&def, sizeof(def)); bzero(&mask, sizeof(mask)); bzero(&gate, sizeof(gate)); def.sin6_len = mask.sin6_len = gate.sin6_len = sizeof(struct sockaddr_in6); def.sin6_family = gate.sin6_family = AF_INET6; gate.sin6_addr = new->rtaddr; fibnum = new->ifp->if_fib; - error = in6_rtrequest(RTM_ADD, (struct sockaddr *)&def, - (struct sockaddr *)&gate, (struct sockaddr *)&mask, - RTF_GATEWAY, &newrt, fibnum); - if (newrt != NULL) - rt_routemsg(RTM_ADD, newrt, new->ifp, 0, fibnum); + bzero((caddr_t)&info, sizeof(info)); + info.rti_flags = RTF_GATEWAY; + info.rti_info[RTAX_DST] = (struct sockaddr *)&def; + info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gate; + info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&mask; + + NET_EPOCH_ASSERT(); + error = rib_action(fibnum, RTM_ADD, &info, &rc); + if (rc.rc_rt != NULL) + rt_routemsg(RTM_ADD, rc.rc_rt, new->ifp, 0, fibnum); if (error == 0) new->installed = 1; } /* * Remove the default route for a given router. * This is just a subroutine function for defrouter_select_fib(), and * should not be called from anywhere else. */ static void defrouter_delreq(struct nd_defrouter *dr) { struct sockaddr_in6 def, mask, gate; - struct rtentry *oldrt = NULL; + struct rt_addrinfo info; + struct rib_cmd_info rc; struct epoch_tracker et; unsigned int fibnum; bzero(&def, sizeof(def)); bzero(&mask, sizeof(mask)); bzero(&gate, sizeof(gate)); def.sin6_len = mask.sin6_len = gate.sin6_len = sizeof(struct sockaddr_in6); def.sin6_family = gate.sin6_family = AF_INET6; gate.sin6_addr = dr->rtaddr; fibnum = dr->ifp->if_fib; + bzero((caddr_t)&info, sizeof(info)); + info.rti_flags = RTF_GATEWAY; + info.rti_info[RTAX_DST] = (struct sockaddr *)&def; + info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gate; + info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&mask; + NET_EPOCH_ENTER(et); - in6_rtrequest(RTM_DELETE, (struct sockaddr *)&def, - (struct sockaddr *)&gate, - (struct sockaddr *)&mask, RTF_GATEWAY, &oldrt, fibnum); - if (oldrt != NULL) - rt_routemsg(RTM_DELETE, oldrt, dr->ifp, 0, fibnum); + rib_action(fibnum, RTM_DELETE, &info, &rc); + if (rc.rc_rt != NULL) + rt_routemsg(RTM_DELETE, rc.rc_rt, dr->ifp, 0, fibnum); NET_EPOCH_EXIT(et); dr->installed = 0; } static void defrouter_del(struct nd_defrouter *dr) { struct nd_defrouter *deldr = NULL; struct nd_prefix *pr; struct nd_pfxrouter *pfxrtr; ND6_UNLOCK_ASSERT(); /* * Flush all the routing table entries that use the router * as a next hop. */ if (ND_IFINFO(dr->ifp)->flags & ND6_IFF_ACCEPT_RTADV) rt6_flush(&dr->rtaddr, dr->ifp); #ifdef EXPERIMENTAL defrtr_ipv6_only_ifp(dr->ifp); #endif if (dr->installed) { deldr = dr; defrouter_delreq(dr); } /* * Also delete all the pointers to the router in each prefix lists. */ ND6_WLOCK(); LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if ((pfxrtr = pfxrtr_lookup(pr, dr)) != NULL) pfxrtr_del(pfxrtr); } ND6_WUNLOCK(); pfxlist_onlink_check(); /* * If the router is the primary one, choose a new one. * Note that defrouter_select_fib() will remove the current * gateway from the routing table. */ if (deldr) defrouter_select_fib(deldr->ifp->if_fib); /* * Release the list reference. */ defrouter_rele(dr); } struct nd_defrouter * defrouter_lookup_locked(const struct in6_addr *addr, struct ifnet *ifp) { struct nd_defrouter *dr; ND6_LOCK_ASSERT(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) if (dr->ifp == ifp && IN6_ARE_ADDR_EQUAL(addr, &dr->rtaddr)) { defrouter_ref(dr); return (dr); } return (NULL); } struct nd_defrouter * defrouter_lookup(const struct in6_addr *addr, struct ifnet *ifp) { struct nd_defrouter *dr; ND6_RLOCK(); dr = defrouter_lookup_locked(addr, ifp); ND6_RUNLOCK(); return (dr); } /* * Remove all default routes from default router list. */ void defrouter_reset(void) { struct nd_defrouter *dr, **dra; int count, i; count = i = 0; /* * We can't delete routes with the ND lock held, so make a copy of the * current default router list and use that when deleting routes. */ ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) count++; ND6_RUNLOCK(); dra = malloc(count * sizeof(*dra), M_TEMP, M_WAITOK | M_ZERO); ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { if (i == count) break; defrouter_ref(dr); dra[i++] = dr; } ND6_RUNLOCK(); for (i = 0; i < count && dra[i] != NULL; i++) { defrouter_delreq(dra[i]); defrouter_rele(dra[i]); } free(dra, M_TEMP); /* * XXX should we also nuke any default routers in the kernel, by * going through them by rtalloc1()? */ } /* * Look up a matching default router list entry and remove it. Returns true if a * matching entry was found, false otherwise. */ bool defrouter_remove(struct in6_addr *addr, struct ifnet *ifp) { struct nd_defrouter *dr; ND6_WLOCK(); dr = defrouter_lookup_locked(addr, ifp); if (dr == NULL) { ND6_WUNLOCK(); return (false); } defrouter_unlink(dr, NULL); ND6_WUNLOCK(); defrouter_del(dr); defrouter_rele(dr); return (true); } /* * for default router selection * regards router-preference field as a 2-bit signed integer */ static int rtpref(struct nd_defrouter *dr) { switch (dr->raflags & ND_RA_FLAG_RTPREF_MASK) { case ND_RA_FLAG_RTPREF_HIGH: return (RTPREF_HIGH); case ND_RA_FLAG_RTPREF_MEDIUM: case ND_RA_FLAG_RTPREF_RSV: return (RTPREF_MEDIUM); case ND_RA_FLAG_RTPREF_LOW: return (RTPREF_LOW); default: /* * This case should never happen. If it did, it would mean a * serious bug of kernel internal. We thus always bark here. * Or, can we even panic? */ log(LOG_ERR, "rtpref: impossible RA flag %x\n", dr->raflags); return (RTPREF_INVALID); } /* NOTREACHED */ } /* * Default Router Selection according to Section 6.3.6 of RFC 2461 and * draft-ietf-ipngwg-router-selection: * 1) Routers that are reachable or probably reachable should be preferred. * If we have more than one (probably) reachable router, prefer ones * with the highest router preference. * 2) When no routers on the list are known to be reachable or * probably reachable, routers SHOULD be selected in a round-robin * fashion, regardless of router preference values. * 3) If the Default Router List is empty, assume that all * destinations are on-link. * * We assume nd_defrouter is sorted by router preference value. * Since the code below covers both with and without router preference cases, * we do not need to classify the cases by ifdef. * * At this moment, we do not try to install more than one default router, * even when the multipath routing is available, because we're not sure about * the benefits for stub hosts comparing to the risk of making the code * complicated and the possibility of introducing bugs. * * We maintain a single list of routers for multiple FIBs, only considering one * at a time based on the receiving interface's FIB. If @fibnum is RT_ALL_FIBS, * we do the whole thing multiple times. */ void defrouter_select_fib(int fibnum) { struct epoch_tracker et; struct nd_defrouter *dr, *selected_dr, *installed_dr; struct llentry *ln = NULL; if (fibnum == RT_ALL_FIBS) { for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { defrouter_select_fib(fibnum); } } ND6_RLOCK(); /* * Let's handle easy case (3) first: * If default router list is empty, there's nothing to be done. */ if (TAILQ_EMPTY(&V_nd6_defrouter)) { ND6_RUNLOCK(); return; } /* * Search for a (probably) reachable router from the list. * We just pick up the first reachable one (if any), assuming that * the ordering rule of the list described in defrtrlist_update(). */ selected_dr = installed_dr = NULL; TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { NET_EPOCH_ENTER(et); if (selected_dr == NULL && dr->ifp->if_fib == fibnum && (ln = nd6_lookup(&dr->rtaddr, 0, dr->ifp)) && ND6_IS_LLINFO_PROBREACH(ln)) { selected_dr = dr; defrouter_ref(selected_dr); } NET_EPOCH_EXIT(et); if (ln != NULL) { LLE_RUNLOCK(ln); ln = NULL; } if (dr->installed && dr->ifp->if_fib == fibnum) { if (installed_dr == NULL) { installed_dr = dr; defrouter_ref(installed_dr); } else { /* * this should not happen. * warn for diagnosis. */ log(LOG_ERR, "defrouter_select_fib: more than " "one router is installed\n"); } } } /* * If none of the default routers was found to be reachable, * round-robin the list regardless of preference. * Otherwise, if we have an installed router, check if the selected * (reachable) router should really be preferred to the installed one. * We only prefer the new router when the old one is not reachable * or when the new one has a really higher preference value. */ if (selected_dr == NULL) { if (installed_dr == NULL || TAILQ_NEXT(installed_dr, dr_entry) == NULL) dr = TAILQ_FIRST(&V_nd6_defrouter); else dr = TAILQ_NEXT(installed_dr, dr_entry); /* Ensure we select a router for this FIB. */ TAILQ_FOREACH_FROM(dr, &V_nd6_defrouter, dr_entry) { if (dr->ifp->if_fib == fibnum) { selected_dr = dr; defrouter_ref(selected_dr); break; } } } else if (installed_dr != NULL) { NET_EPOCH_ENTER(et); if ((ln = nd6_lookup(&installed_dr->rtaddr, 0, installed_dr->ifp)) && ND6_IS_LLINFO_PROBREACH(ln) && installed_dr->ifp->if_fib == fibnum && rtpref(selected_dr) <= rtpref(installed_dr)) { defrouter_rele(selected_dr); selected_dr = installed_dr; } NET_EPOCH_EXIT(et); if (ln != NULL) LLE_RUNLOCK(ln); } ND6_RUNLOCK(); NET_EPOCH_ENTER(et); /* * If we selected a router for this FIB and it's different * than the installed one, remove the installed router and * install the selected one in its place. */ if (installed_dr != selected_dr) { if (installed_dr != NULL) { defrouter_delreq(installed_dr); defrouter_rele(installed_dr); } if (selected_dr != NULL) defrouter_addreq(selected_dr); } if (selected_dr != NULL) defrouter_rele(selected_dr); NET_EPOCH_EXIT(et); } static struct nd_defrouter * defrtrlist_update(struct nd_defrouter *new) { struct nd_defrouter *dr, *n; uint64_t genid; int oldpref; bool writelocked; if (new->rtlifetime == 0) { defrouter_remove(&new->rtaddr, new->ifp); return (NULL); } ND6_RLOCK(); writelocked = false; restart: dr = defrouter_lookup_locked(&new->rtaddr, new->ifp); if (dr != NULL) { oldpref = rtpref(dr); /* override */ dr->raflags = new->raflags; /* XXX flag check */ dr->rtlifetime = new->rtlifetime; dr->expire = new->expire; /* * If the preference does not change, there's no need * to sort the entries. Also make sure the selected * router is still installed in the kernel. */ if (dr->installed && rtpref(new) == oldpref) { if (writelocked) ND6_WUNLOCK(); else ND6_RUNLOCK(); return (dr); } } /* * The router needs to be reinserted into the default router * list, so upgrade to a write lock. If that fails and the list * has potentially changed while the lock was dropped, we'll * redo the lookup with the write lock held. */ if (!writelocked) { writelocked = true; if (!ND6_TRY_UPGRADE()) { genid = V_nd6_list_genid; ND6_RUNLOCK(); ND6_WLOCK(); if (genid != V_nd6_list_genid) goto restart; } } if (dr != NULL) { /* * The preferred router may have changed, so relocate this * router. */ TAILQ_REMOVE(&V_nd6_defrouter, dr, dr_entry); n = dr; } else { n = malloc(sizeof(*n), M_IP6NDP, M_NOWAIT | M_ZERO); if (n == NULL) { ND6_WUNLOCK(); return (NULL); } memcpy(n, new, sizeof(*n)); /* Initialize with an extra reference for the caller. */ refcount_init(&n->refcnt, 2); } /* * Insert the new router in the Default Router List; * The Default Router List should be in the descending order * of router-preferece. Routers with the same preference are * sorted in the arriving time order. */ /* insert at the end of the group */ TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { if (rtpref(n) > rtpref(dr)) break; } if (dr != NULL) TAILQ_INSERT_BEFORE(dr, n, dr_entry); else TAILQ_INSERT_TAIL(&V_nd6_defrouter, n, dr_entry); V_nd6_list_genid++; ND6_WUNLOCK(); defrouter_select_fib(new->ifp->if_fib); return (n); } static int in6_init_prefix_ltimes(struct nd_prefix *ndpr) { if (ndpr->ndpr_pltime == ND6_INFINITE_LIFETIME) ndpr->ndpr_preferred = 0; else ndpr->ndpr_preferred = time_uptime + ndpr->ndpr_pltime; if (ndpr->ndpr_vltime == ND6_INFINITE_LIFETIME) ndpr->ndpr_expire = 0; else ndpr->ndpr_expire = time_uptime + ndpr->ndpr_vltime; return 0; } static void in6_init_address_ltimes(struct nd_prefix *new, struct in6_addrlifetime *lt6) { /* init ia6t_expire */ if (lt6->ia6t_vltime == ND6_INFINITE_LIFETIME) lt6->ia6t_expire = 0; else { lt6->ia6t_expire = time_uptime; lt6->ia6t_expire += lt6->ia6t_vltime; } /* init ia6t_preferred */ if (lt6->ia6t_pltime == ND6_INFINITE_LIFETIME) lt6->ia6t_preferred = 0; else { lt6->ia6t_preferred = time_uptime; lt6->ia6t_preferred += lt6->ia6t_pltime; } } static struct in6_ifaddr * in6_ifadd(struct nd_prefixctl *pr, int mcast) { struct ifnet *ifp = pr->ndpr_ifp; struct ifaddr *ifa; struct in6_aliasreq ifra; struct in6_ifaddr *ia, *ib; int error, plen0; struct in6_addr mask; int prefixlen = pr->ndpr_plen; int updateflags; char ip6buf[INET6_ADDRSTRLEN]; in6_prefixlen2mask(&mask, prefixlen); /* * find a link-local address (will be interface ID). * Is it really mandatory? Theoretically, a global or a site-local * address can be configured without a link-local address, if we * have a unique interface identifier... * * it is not mandatory to have a link-local address, we can generate * interface identifier on the fly. we do this because: * (1) it should be the easiest way to find interface identifier. * (2) RFC2462 5.4 suggesting the use of the same interface identifier * for multiple addresses on a single interface, and possible shortcut * of DAD. we omitted DAD for this reason in the past. * (3) a user can prevent autoconfiguration of global address * by removing link-local address by hand (this is partly because we * don't have other way to control the use of IPv6 on an interface. * this has been our design choice - cf. NRL's "ifconfig auto"). * (4) it is easier to manage when an interface has addresses * with the same interface identifier, than to have multiple addresses * with different interface identifiers. */ ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0); /* 0 is OK? */ if (ifa) ib = (struct in6_ifaddr *)ifa; else return NULL; /* prefixlen + ifidlen must be equal to 128 */ plen0 = in6_mask2len(&ib->ia_prefixmask.sin6_addr, NULL); if (prefixlen != plen0) { ifa_free(ifa); nd6log((LOG_INFO, "%s: wrong prefixlen for %s (prefix=%d ifid=%d)\n", __func__, if_name(ifp), prefixlen, 128 - plen0)); return NULL; } /* make ifaddr */ in6_prepare_ifra(&ifra, &pr->ndpr_prefix.sin6_addr, &mask); IN6_MASK_ADDR(&ifra.ifra_addr.sin6_addr, &mask); /* interface ID */ ifra.ifra_addr.sin6_addr.s6_addr32[0] |= (ib->ia_addr.sin6_addr.s6_addr32[0] & ~mask.s6_addr32[0]); ifra.ifra_addr.sin6_addr.s6_addr32[1] |= (ib->ia_addr.sin6_addr.s6_addr32[1] & ~mask.s6_addr32[1]); ifra.ifra_addr.sin6_addr.s6_addr32[2] |= (ib->ia_addr.sin6_addr.s6_addr32[2] & ~mask.s6_addr32[2]); ifra.ifra_addr.sin6_addr.s6_addr32[3] |= (ib->ia_addr.sin6_addr.s6_addr32[3] & ~mask.s6_addr32[3]); ifa_free(ifa); /* lifetimes. */ ifra.ifra_lifetime.ia6t_vltime = pr->ndpr_vltime; ifra.ifra_lifetime.ia6t_pltime = pr->ndpr_pltime; /* XXX: scope zone ID? */ ifra.ifra_flags |= IN6_IFF_AUTOCONF; /* obey autoconf */ /* * Make sure that we do not have this address already. This should * usually not happen, but we can still see this case, e.g., if we * have manually configured the exact address to be configured. */ ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, &ifra.ifra_addr.sin6_addr); if (ifa != NULL) { ifa_free(ifa); /* this should be rare enough to make an explicit log */ log(LOG_INFO, "in6_ifadd: %s is already configured\n", ip6_sprintf(ip6buf, &ifra.ifra_addr.sin6_addr)); return (NULL); } /* * Allocate ifaddr structure, link into chain, etc. * If we are going to create a new address upon receiving a multicasted * RA, we need to impose a random delay before starting DAD. * [draft-ietf-ipv6-rfc2462bis-02.txt, Section 5.4.2] */ updateflags = 0; if (mcast) updateflags |= IN6_IFAUPDATE_DADDELAY; if ((error = in6_update_ifa(ifp, &ifra, NULL, updateflags)) != 0) { nd6log((LOG_ERR, "%s: failed to make ifaddr %s on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &ifra.ifra_addr.sin6_addr), if_name(ifp), error)); return (NULL); /* ifaddr must not have been allocated. */ } ia = in6ifa_ifpwithaddr(ifp, &ifra.ifra_addr.sin6_addr); /* * XXXRW: Assumption of non-NULLness here might not be true with * fine-grained locking -- should we validate it? Or just return * earlier ifa rather than looking it up again? */ return (ia); /* this is always non-NULL and referenced. */ } static struct nd_prefix * nd6_prefix_lookup_locked(struct nd_prefixctl *key) { struct nd_prefix *search; ND6_LOCK_ASSERT(); LIST_FOREACH(search, &V_nd_prefix, ndpr_entry) { if (key->ndpr_ifp == search->ndpr_ifp && key->ndpr_plen == search->ndpr_plen && in6_are_prefix_equal(&key->ndpr_prefix.sin6_addr, &search->ndpr_prefix.sin6_addr, key->ndpr_plen)) { nd6_prefix_ref(search); break; } } return (search); } struct nd_prefix * nd6_prefix_lookup(struct nd_prefixctl *key) { struct nd_prefix *search; ND6_RLOCK(); search = nd6_prefix_lookup_locked(key); ND6_RUNLOCK(); return (search); } void nd6_prefix_ref(struct nd_prefix *pr) { refcount_acquire(&pr->ndpr_refcnt); } void nd6_prefix_rele(struct nd_prefix *pr) { if (refcount_release(&pr->ndpr_refcnt)) { KASSERT(LIST_EMPTY(&pr->ndpr_advrtrs), ("prefix %p has advertising routers", pr)); free(pr, M_IP6NDP); } } int nd6_prelist_add(struct nd_prefixctl *pr, struct nd_defrouter *dr, struct nd_prefix **newp) { struct nd_prefix *new; char ip6buf[INET6_ADDRSTRLEN]; int error; new = malloc(sizeof(*new), M_IP6NDP, M_NOWAIT | M_ZERO); if (new == NULL) return (ENOMEM); refcount_init(&new->ndpr_refcnt, newp != NULL ? 2 : 1); new->ndpr_ifp = pr->ndpr_ifp; new->ndpr_prefix = pr->ndpr_prefix; new->ndpr_plen = pr->ndpr_plen; new->ndpr_vltime = pr->ndpr_vltime; new->ndpr_pltime = pr->ndpr_pltime; new->ndpr_flags = pr->ndpr_flags; if ((error = in6_init_prefix_ltimes(new)) != 0) { free(new, M_IP6NDP); return (error); } new->ndpr_lastupdate = time_uptime; /* initialization */ LIST_INIT(&new->ndpr_advrtrs); in6_prefixlen2mask(&new->ndpr_mask, new->ndpr_plen); /* make prefix in the canonical form */ IN6_MASK_ADDR(&new->ndpr_prefix.sin6_addr, &new->ndpr_mask); ND6_WLOCK(); LIST_INSERT_HEAD(&V_nd_prefix, new, ndpr_entry); V_nd6_list_genid++; ND6_WUNLOCK(); /* ND_OPT_PI_FLAG_ONLINK processing */ if (new->ndpr_raf_onlink) { struct epoch_tracker et; ND6_ONLINK_LOCK(); NET_EPOCH_ENTER(et); if ((error = nd6_prefix_onlink(new)) != 0) { nd6log((LOG_ERR, "%s: failed to make the prefix %s/%d " "on-link on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(pr->ndpr_ifp), error)); /* proceed anyway. XXX: is it correct? */ } NET_EPOCH_EXIT(et); ND6_ONLINK_UNLOCK(); } if (dr != NULL) pfxrtr_add(new, dr); if (newp != NULL) *newp = new; return (0); } /* * Remove a prefix from the prefix list and optionally stash it in a * caller-provided list. * * The ND6 lock must be held. */ void nd6_prefix_unlink(struct nd_prefix *pr, struct nd_prhead *list) { ND6_WLOCK_ASSERT(); LIST_REMOVE(pr, ndpr_entry); V_nd6_list_genid++; if (list != NULL) LIST_INSERT_HEAD(list, pr, ndpr_entry); } /* * Free an unlinked prefix, first marking it off-link if necessary. */ void nd6_prefix_del(struct nd_prefix *pr) { struct nd_pfxrouter *pfr, *next; int e; char ip6buf[INET6_ADDRSTRLEN]; KASSERT(pr->ndpr_addrcnt == 0, ("prefix %p has referencing addresses", pr)); ND6_UNLOCK_ASSERT(); /* * Though these flags are now meaningless, we'd rather keep the value * of pr->ndpr_raf_onlink and pr->ndpr_raf_auto not to confuse users * when executing "ndp -p". */ if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { ND6_ONLINK_LOCK(); if ((e = nd6_prefix_offlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make the prefix %s/%d offlink on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(pr->ndpr_ifp), e)); /* what should we do? */ } ND6_ONLINK_UNLOCK(); } /* Release references to routers that have advertised this prefix. */ ND6_WLOCK(); LIST_FOREACH_SAFE(pfr, &pr->ndpr_advrtrs, pfr_entry, next) pfxrtr_del(pfr); ND6_WUNLOCK(); nd6_prefix_rele(pr); pfxlist_onlink_check(); } static int prelist_update(struct nd_prefixctl *new, struct nd_defrouter *dr, struct mbuf *m, int mcast) { struct in6_ifaddr *ia6 = NULL, *ia6_match = NULL; struct ifaddr *ifa; struct ifnet *ifp = new->ndpr_ifp; struct nd_prefix *pr; int error = 0; int auth; struct in6_addrlifetime lt6_tmp; char ip6buf[INET6_ADDRSTRLEN]; NET_EPOCH_ASSERT(); auth = 0; if (m) { /* * Authenticity for NA consists authentication for * both IP header and IP datagrams, doesn't it ? */ #if defined(M_AUTHIPHDR) && defined(M_AUTHIPDGM) auth = ((m->m_flags & M_AUTHIPHDR) && (m->m_flags & M_AUTHIPDGM)); #endif } if ((pr = nd6_prefix_lookup(new)) != NULL) { /* * nd6_prefix_lookup() ensures that pr and new have the same * prefix on a same interface. */ /* * Update prefix information. Note that the on-link (L) bit * and the autonomous (A) bit should NOT be changed from 1 * to 0. */ if (new->ndpr_raf_onlink == 1) pr->ndpr_raf_onlink = 1; if (new->ndpr_raf_auto == 1) pr->ndpr_raf_auto = 1; if (new->ndpr_raf_onlink) { pr->ndpr_vltime = new->ndpr_vltime; pr->ndpr_pltime = new->ndpr_pltime; (void)in6_init_prefix_ltimes(pr); /* XXX error case? */ pr->ndpr_lastupdate = time_uptime; } if (new->ndpr_raf_onlink && (pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { ND6_ONLINK_LOCK(); if ((error = nd6_prefix_onlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make the prefix %s/%d " "on-link on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(pr->ndpr_ifp), error)); /* proceed anyway. XXX: is it correct? */ } ND6_ONLINK_UNLOCK(); } if (dr != NULL) pfxrtr_add(pr, dr); } else { if (new->ndpr_vltime == 0) goto end; if (new->ndpr_raf_onlink == 0 && new->ndpr_raf_auto == 0) goto end; error = nd6_prelist_add(new, dr, &pr); if (error != 0) { nd6log((LOG_NOTICE, "%s: nd6_prelist_add() failed for " "the prefix %s/%d on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &new->ndpr_prefix.sin6_addr), new->ndpr_plen, if_name(new->ndpr_ifp), error)); goto end; /* we should just give up in this case. */ } /* * XXX: from the ND point of view, we can ignore a prefix * with the on-link bit being zero. However, we need a * prefix structure for references from autoconfigured * addresses. Thus, we explicitly make sure that the prefix * itself expires now. */ if (pr->ndpr_raf_onlink == 0) { pr->ndpr_vltime = 0; pr->ndpr_pltime = 0; in6_init_prefix_ltimes(pr); } } /* * Address autoconfiguration based on Section 5.5.3 of RFC 2462. * Note that pr must be non NULL at this point. */ /* 5.5.3 (a). Ignore the prefix without the A bit set. */ if (!new->ndpr_raf_auto) goto end; /* * 5.5.3 (b). the link-local prefix should have been ignored in * nd6_ra_input. */ /* 5.5.3 (c). Consistency check on lifetimes: pltime <= vltime. */ if (new->ndpr_pltime > new->ndpr_vltime) { error = EINVAL; /* XXX: won't be used */ goto end; } /* * 5.5.3 (d). If the prefix advertised is not equal to the prefix of * an address configured by stateless autoconfiguration already in the * list of addresses associated with the interface, and the Valid * Lifetime is not 0, form an address. We first check if we have * a matching prefix. * Note: we apply a clarification in rfc2462bis-02 here. We only * consider autoconfigured addresses while RFC2462 simply said * "address". */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in6_ifaddr *ifa6; u_int32_t remaininglifetime; if (ifa->ifa_addr->sa_family != AF_INET6) continue; ifa6 = (struct in6_ifaddr *)ifa; /* * We only consider autoconfigured addresses as per rfc2462bis. */ if (!(ifa6->ia6_flags & IN6_IFF_AUTOCONF)) continue; /* * Spec is not clear here, but I believe we should concentrate * on unicast (i.e. not anycast) addresses. * XXX: other ia6_flags? detached or duplicated? */ if ((ifa6->ia6_flags & IN6_IFF_ANYCAST) != 0) continue; /* * Ignore the address if it is not associated with a prefix * or is associated with a prefix that is different from this * one. (pr is never NULL here) */ if (ifa6->ia6_ndpr != pr) continue; if (ia6_match == NULL) /* remember the first one */ ia6_match = ifa6; /* * An already autoconfigured address matched. Now that we * are sure there is at least one matched address, we can * proceed to 5.5.3. (e): update the lifetimes according to the * "two hours" rule and the privacy extension. * We apply some clarifications in rfc2462bis: * - use remaininglifetime instead of storedlifetime as a * variable name * - remove the dead code in the "two-hour" rule */ #define TWOHOUR (120*60) lt6_tmp = ifa6->ia6_lifetime; if (lt6_tmp.ia6t_vltime == ND6_INFINITE_LIFETIME) remaininglifetime = ND6_INFINITE_LIFETIME; else if (time_uptime - ifa6->ia6_updatetime > lt6_tmp.ia6t_vltime) { /* * The case of "invalid" address. We should usually * not see this case. */ remaininglifetime = 0; } else remaininglifetime = lt6_tmp.ia6t_vltime - (time_uptime - ifa6->ia6_updatetime); /* when not updating, keep the current stored lifetime. */ lt6_tmp.ia6t_vltime = remaininglifetime; if (TWOHOUR < new->ndpr_vltime || remaininglifetime < new->ndpr_vltime) { lt6_tmp.ia6t_vltime = new->ndpr_vltime; } else if (remaininglifetime <= TWOHOUR) { if (auth) { lt6_tmp.ia6t_vltime = new->ndpr_vltime; } } else { /* * new->ndpr_vltime <= TWOHOUR && * TWOHOUR < remaininglifetime */ lt6_tmp.ia6t_vltime = TWOHOUR; } /* The 2 hour rule is not imposed for preferred lifetime. */ lt6_tmp.ia6t_pltime = new->ndpr_pltime; in6_init_address_ltimes(pr, <6_tmp); /* * We need to treat lifetimes for temporary addresses * differently, according to * draft-ietf-ipv6-privacy-addrs-v2-01.txt 3.3 (1); * we only update the lifetimes when they are in the maximum * intervals. */ if ((ifa6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { u_int32_t maxvltime, maxpltime; if (V_ip6_temp_valid_lifetime > (u_int32_t)((time_uptime - ifa6->ia6_createtime) + V_ip6_desync_factor)) { maxvltime = V_ip6_temp_valid_lifetime - (time_uptime - ifa6->ia6_createtime) - V_ip6_desync_factor; } else maxvltime = 0; if (V_ip6_temp_preferred_lifetime > (u_int32_t)((time_uptime - ifa6->ia6_createtime) + V_ip6_desync_factor)) { maxpltime = V_ip6_temp_preferred_lifetime - (time_uptime - ifa6->ia6_createtime) - V_ip6_desync_factor; } else maxpltime = 0; if (lt6_tmp.ia6t_vltime == ND6_INFINITE_LIFETIME || lt6_tmp.ia6t_vltime > maxvltime) { lt6_tmp.ia6t_vltime = maxvltime; } if (lt6_tmp.ia6t_pltime == ND6_INFINITE_LIFETIME || lt6_tmp.ia6t_pltime > maxpltime) { lt6_tmp.ia6t_pltime = maxpltime; } } ifa6->ia6_lifetime = lt6_tmp; ifa6->ia6_updatetime = time_uptime; } if (ia6_match == NULL && new->ndpr_vltime) { int ifidlen; /* * 5.5.3 (d) (continued) * No address matched and the valid lifetime is non-zero. * Create a new address. */ /* * Prefix Length check: * If the sum of the prefix length and interface identifier * length does not equal 128 bits, the Prefix Information * option MUST be ignored. The length of the interface * identifier is defined in a separate link-type specific * document. */ ifidlen = in6_if2idlen(ifp); if (ifidlen < 0) { /* this should not happen, so we always log it. */ log(LOG_ERR, "prelist_update: IFID undefined (%s)\n", if_name(ifp)); goto end; } if (ifidlen + pr->ndpr_plen != 128) { nd6log((LOG_INFO, "%s: invalid prefixlen %d for %s, ignored\n", __func__, pr->ndpr_plen, if_name(ifp))); goto end; } if ((ia6 = in6_ifadd(new, mcast)) != NULL) { /* * note that we should use pr (not new) for reference. */ pr->ndpr_addrcnt++; ia6->ia6_ndpr = pr; /* * RFC 3041 3.3 (2). * When a new public address is created as described * in RFC2462, also create a new temporary address. * * RFC 3041 3.5. * When an interface connects to a new link, a new * randomized interface identifier should be generated * immediately together with a new set of temporary * addresses. Thus, we specifiy 1 as the 2nd arg of * in6_tmpifadd(). */ if (V_ip6_use_tempaddr) { int e; if ((e = in6_tmpifadd(ia6, 1, 1)) != 0) { nd6log((LOG_NOTICE, "%s: failed to " "create a temporary address " "(errno=%d)\n", __func__, e)); } } ifa_free(&ia6->ia_ifa); /* * A newly added address might affect the status * of other addresses, so we check and update it. * XXX: what if address duplication happens? */ pfxlist_onlink_check(); } else { /* just set an error. do not bark here. */ error = EADDRNOTAVAIL; /* XXX: might be unused. */ } } end: if (pr != NULL) nd6_prefix_rele(pr); return (error); } /* * A supplement function used in the on-link detection below; * detect if a given prefix has a (probably) reachable advertising router. * XXX: lengthy function name... */ static struct nd_pfxrouter * find_pfxlist_reachable_router(struct nd_prefix *pr) { struct epoch_tracker et; struct nd_pfxrouter *pfxrtr; struct llentry *ln; int canreach; ND6_LOCK_ASSERT(); NET_EPOCH_ENTER(et); LIST_FOREACH(pfxrtr, &pr->ndpr_advrtrs, pfr_entry) { ln = nd6_lookup(&pfxrtr->router->rtaddr, 0, pfxrtr->router->ifp); if (ln == NULL) continue; canreach = ND6_IS_LLINFO_PROBREACH(ln); LLE_RUNLOCK(ln); if (canreach) break; } NET_EPOCH_EXIT(et); return (pfxrtr); } /* * Check if each prefix in the prefix list has at least one available router * that advertised the prefix (a router is "available" if its neighbor cache * entry is reachable or probably reachable). * If the check fails, the prefix may be off-link, because, for example, * we have moved from the network but the lifetime of the prefix has not * expired yet. So we should not use the prefix if there is another prefix * that has an available router. * But, if there is no prefix that has an available router, we still regard * all the prefixes as on-link. This is because we can't tell if all the * routers are simply dead or if we really moved from the network and there * is no router around us. */ void pfxlist_onlink_check(void) { struct nd_prefix *pr; struct in6_ifaddr *ifa; struct nd_defrouter *dr; struct nd_pfxrouter *pfxrtr = NULL; struct rm_priotracker in6_ifa_tracker; uint64_t genid; uint32_t flags; ND6_ONLINK_LOCK(); ND6_RLOCK(); /* * Check if there is a prefix that has a reachable advertising * router. */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (pr->ndpr_raf_onlink && find_pfxlist_reachable_router(pr)) break; } /* * If we have no such prefix, check whether we still have a router * that does not advertise any prefixes. */ if (pr == NULL) { TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { struct nd_prefix *pr0; LIST_FOREACH(pr0, &V_nd_prefix, ndpr_entry) { if ((pfxrtr = pfxrtr_lookup(pr0, dr)) != NULL) break; } if (pfxrtr != NULL) break; } } if (pr != NULL || (!TAILQ_EMPTY(&V_nd6_defrouter) && pfxrtr == NULL)) { /* * There is at least one prefix that has a reachable router, * or at least a router which probably does not advertise * any prefixes. The latter would be the case when we move * to a new link where we have a router that does not provide * prefixes and we configure an address by hand. * Detach prefixes which have no reachable advertising * router, and attach other prefixes. */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { /* XXX: a link-local prefix should never be detached */ if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) || pr->ndpr_raf_onlink == 0 || pr->ndpr_raf_auto == 0) continue; if ((pr->ndpr_stateflags & NDPRF_DETACHED) == 0 && find_pfxlist_reachable_router(pr) == NULL) pr->ndpr_stateflags |= NDPRF_DETACHED; else if ((pr->ndpr_stateflags & NDPRF_DETACHED) != 0 && find_pfxlist_reachable_router(pr) != NULL) pr->ndpr_stateflags &= ~NDPRF_DETACHED; } } else { /* there is no prefix that has a reachable router */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) || pr->ndpr_raf_onlink == 0 || pr->ndpr_raf_auto == 0) continue; pr->ndpr_stateflags &= ~NDPRF_DETACHED; } } /* * Remove each interface route associated with a (just) detached * prefix, and reinstall the interface route for a (just) attached * prefix. Note that all attempt of reinstallation does not * necessarily success, when a same prefix is shared among multiple * interfaces. Such cases will be handled in nd6_prefix_onlink, * so we don't have to care about them. */ restart: LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { char ip6buf[INET6_ADDRSTRLEN]; int e; if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr) || pr->ndpr_raf_onlink == 0 || pr->ndpr_raf_auto == 0) continue; flags = pr->ndpr_stateflags & (NDPRF_DETACHED | NDPRF_ONLINK); if (flags == 0 || flags == (NDPRF_DETACHED | NDPRF_ONLINK)) { genid = V_nd6_list_genid; ND6_RUNLOCK(); if ((flags & NDPRF_ONLINK) != 0 && (e = nd6_prefix_offlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make %s/%d offlink " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, e)); } else if ((flags & NDPRF_ONLINK) == 0 && (e = nd6_prefix_onlink(pr)) != 0) { nd6log((LOG_ERR, "%s: failed to make %s/%d onlink " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, e)); } ND6_RLOCK(); if (genid != V_nd6_list_genid) goto restart; } } /* * Changes on the prefix status might affect address status as well. * Make sure that all addresses derived from an attached prefix are * attached, and that all addresses derived from a detached prefix are * detached. Note, however, that a manually configured address should * always be attached. * The precise detection logic is same as the one for prefixes. */ IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_STAILQ_FOREACH(ifa, &V_in6_ifaddrhead, ia_link) { if (!(ifa->ia6_flags & IN6_IFF_AUTOCONF)) continue; if (ifa->ia6_ndpr == NULL) { /* * This can happen when we first configure the address * (i.e. the address exists, but the prefix does not). * XXX: complicated relationships... */ continue; } if (find_pfxlist_reachable_router(ifa->ia6_ndpr)) break; } if (ifa) { CK_STAILQ_FOREACH(ifa, &V_in6_ifaddrhead, ia_link) { if ((ifa->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ifa->ia6_ndpr == NULL) /* XXX: see above. */ continue; if (find_pfxlist_reachable_router(ifa->ia6_ndpr)) { if (ifa->ia6_flags & IN6_IFF_DETACHED) { ifa->ia6_flags &= ~IN6_IFF_DETACHED; ifa->ia6_flags |= IN6_IFF_TENTATIVE; nd6_dad_start((struct ifaddr *)ifa, 0); } } else { ifa->ia6_flags |= IN6_IFF_DETACHED; } } } else { CK_STAILQ_FOREACH(ifa, &V_in6_ifaddrhead, ia_link) { if ((ifa->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ifa->ia6_flags & IN6_IFF_DETACHED) { ifa->ia6_flags &= ~IN6_IFF_DETACHED; ifa->ia6_flags |= IN6_IFF_TENTATIVE; /* Do we need a delay in this case? */ nd6_dad_start((struct ifaddr *)ifa, 0); } } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); ND6_RUNLOCK(); ND6_ONLINK_UNLOCK(); } static int nd6_prefix_onlink_rtrequest(struct nd_prefix *pr, struct ifaddr *ifa) { struct sockaddr_dl_short sdl; - struct rtentry *rt; struct sockaddr_in6 mask6; u_long rtflags; int error, a_failure, fibnum, maxfib; bzero(&mask6, sizeof(mask6)); mask6.sin6_len = sizeof(mask6); mask6.sin6_addr = pr->ndpr_mask; rtflags = (ifa->ifa_flags & ~IFA_RTSELF) | RTF_UP; bzero(&sdl, sizeof(struct sockaddr_dl_short)); sdl.sdl_len = sizeof(struct sockaddr_dl_short); sdl.sdl_family = AF_LINK; sdl.sdl_type = ifa->ifa_ifp->if_type; sdl.sdl_index = ifa->ifa_ifp->if_index; if(V_rt_add_addr_allfibs) { fibnum = 0; maxfib = rt_numfibs; } else { fibnum = ifa->ifa_ifp->if_fib; maxfib = fibnum + 1; } a_failure = 0; for (; fibnum < maxfib; fibnum++) { + struct rt_addrinfo info; + struct rib_cmd_info rc; - rt = NULL; - error = in6_rtrequest(RTM_ADD, - (struct sockaddr *)&pr->ndpr_prefix, (struct sockaddr *)&sdl, - (struct sockaddr *)&mask6, rtflags, &rt, fibnum); + bzero((caddr_t)&info, sizeof(info)); + info.rti_flags = rtflags; + info.rti_info[RTAX_DST] = (struct sockaddr *)&pr->ndpr_prefix; + info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&sdl; + info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&mask6; + + NET_EPOCH_ASSERT(); + error = rib_action(fibnum, RTM_ADD, &info, &rc); if (error != 0) { char ip6buf[INET6_ADDRSTRLEN]; char ip6bufg[INET6_ADDRSTRLEN]; char ip6bufm[INET6_ADDRSTRLEN]; struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; nd6log((LOG_ERR, "%s: failed to add " "route for a prefix (%s/%d) on %s, gw=%s, mask=%s, " "flags=%lx errno = %d\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(pr->ndpr_ifp), ip6_sprintf(ip6bufg, &sin6->sin6_addr), ip6_sprintf(ip6bufm, &mask6.sin6_addr), rtflags, error)); /* Save last error to return, see rtinit(). */ a_failure = error; continue; } pr->ndpr_stateflags |= NDPRF_ONLINK; - rt_routemsg(RTM_ADD, rt, pr->ndpr_ifp, 0, fibnum); + rt_routemsg(RTM_ADD, rc.rc_rt, pr->ndpr_ifp, 0, fibnum); } /* Return the last error we got. */ return (a_failure); } static int nd6_prefix_onlink(struct nd_prefix *pr) { struct epoch_tracker et; struct ifaddr *ifa; struct ifnet *ifp = pr->ndpr_ifp; struct nd_prefix *opr; char ip6buf[INET6_ADDRSTRLEN]; int error; ND6_ONLINK_LOCK_ASSERT(); ND6_UNLOCK_ASSERT(); if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) return (EEXIST); /* * Add the interface route associated with the prefix. Before * installing the route, check if there's the same prefix on another * interface, and the prefix has already installed the interface route. * Although such a configuration is expected to be rare, we explicitly * allow it. */ ND6_RLOCK(); LIST_FOREACH(opr, &V_nd_prefix, ndpr_entry) { if (opr == pr) continue; if ((opr->ndpr_stateflags & NDPRF_ONLINK) == 0) continue; if (!V_rt_add_addr_allfibs && opr->ndpr_ifp->if_fib != pr->ndpr_ifp->if_fib) continue; if (opr->ndpr_plen == pr->ndpr_plen && in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, &opr->ndpr_prefix.sin6_addr, pr->ndpr_plen)) { ND6_RUNLOCK(); return (0); } } ND6_RUNLOCK(); /* * We prefer link-local addresses as the associated interface address. */ /* search for a link-local addr */ NET_EPOCH_ENTER(et); ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY | IN6_IFF_ANYCAST); if (ifa == NULL) { /* XXX: freebsd does not have ifa_ifwithaf */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET6) { ifa_ref(ifa); break; } } /* should we care about ia6_flags? */ } if (ifa == NULL) { /* * This can still happen, when, for example, we receive an RA * containing a prefix with the L bit set and the A bit clear, * after removing all IPv6 addresses on the receiving * interface. This should, of course, be rare though. */ nd6log((LOG_NOTICE, "%s: failed to find any ifaddr to add route for a " "prefix(%s/%d) on %s\n", __func__, ip6_sprintf(ip6buf, &pr->ndpr_prefix.sin6_addr), pr->ndpr_plen, if_name(ifp))); error = 0; } else { error = nd6_prefix_onlink_rtrequest(pr, ifa); ifa_free(ifa); } NET_EPOCH_EXIT(et); return (error); } int nd6_prefix_offlink(struct nd_prefix *pr) { int error = 0; struct ifnet *ifp = pr->ndpr_ifp; struct nd_prefix *opr; struct sockaddr_in6 sa6, mask6; - struct rtentry *rt; char ip6buf[INET6_ADDRSTRLEN]; uint64_t genid; int fibnum, maxfib, a_failure; struct epoch_tracker et; ND6_ONLINK_LOCK_ASSERT(); ND6_UNLOCK_ASSERT(); if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) return (EEXIST); bzero(&sa6, sizeof(sa6)); sa6.sin6_family = AF_INET6; sa6.sin6_len = sizeof(sa6); bcopy(&pr->ndpr_prefix.sin6_addr, &sa6.sin6_addr, sizeof(struct in6_addr)); bzero(&mask6, sizeof(mask6)); mask6.sin6_family = AF_INET6; mask6.sin6_len = sizeof(sa6); bcopy(&pr->ndpr_mask, &mask6.sin6_addr, sizeof(struct in6_addr)); if (V_rt_add_addr_allfibs) { fibnum = 0; maxfib = rt_numfibs; } else { fibnum = ifp->if_fib; maxfib = fibnum + 1; } a_failure = 0; NET_EPOCH_ENTER(et); for (; fibnum < maxfib; fibnum++) { - rt = NULL; - error = in6_rtrequest(RTM_DELETE, (struct sockaddr *)&sa6, NULL, - (struct sockaddr *)&mask6, 0, &rt, fibnum); + struct rt_addrinfo info; + struct rib_cmd_info rc; + + bzero((caddr_t)&info, sizeof(info)); + info.rti_flags = RTF_GATEWAY; + info.rti_info[RTAX_DST] = (struct sockaddr *)&sa6; + info.rti_info[RTAX_GATEWAY] = NULL; + info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&mask6; + + NET_EPOCH_ASSERT(); + error = rib_action(fibnum, RTM_DELETE, &info, &rc); if (error != 0) { /* Save last error to return, see rtinit(). */ a_failure = error; continue; } /* report route deletion to the routing socket. */ - rt_routemsg(RTM_DELETE, rt, ifp, 0, fibnum); + rt_routemsg(RTM_DELETE, rc.rc_rt, ifp, 0, fibnum); } NET_EPOCH_EXIT(et); error = a_failure; a_failure = 1; if (error == 0) { pr->ndpr_stateflags &= ~NDPRF_ONLINK; /* * There might be the same prefix on another interface, * the prefix which could not be on-link just because we have * the interface route (see comments in nd6_prefix_onlink). * If there's one, try to make the prefix on-link on the * interface. */ ND6_RLOCK(); restart: LIST_FOREACH(opr, &V_nd_prefix, ndpr_entry) { /* * KAME specific: detached prefixes should not be * on-link. */ if (opr == pr || (opr->ndpr_stateflags & (NDPRF_ONLINK | NDPRF_DETACHED)) != 0) continue; if (opr->ndpr_plen == pr->ndpr_plen && in6_are_prefix_equal(&pr->ndpr_prefix.sin6_addr, &opr->ndpr_prefix.sin6_addr, pr->ndpr_plen)) { int e; genid = V_nd6_list_genid; ND6_RUNLOCK(); if ((e = nd6_prefix_onlink(opr)) != 0) { nd6log((LOG_ERR, "%s: failed to recover a prefix " "%s/%d from %s to %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &opr->ndpr_prefix.sin6_addr), opr->ndpr_plen, if_name(ifp), if_name(opr->ndpr_ifp), e)); } else a_failure = 0; ND6_RLOCK(); if (genid != V_nd6_list_genid) goto restart; } } ND6_RUNLOCK(); } else { /* XXX: can we still set the NDPRF_ONLINK flag? */ nd6log((LOG_ERR, "%s: failed to delete route: %s/%d on %s (errno=%d)\n", __func__, ip6_sprintf(ip6buf, &sa6.sin6_addr), pr->ndpr_plen, if_name(ifp), error)); } if (a_failure) lltable_prefix_free(AF_INET6, (struct sockaddr *)&sa6, (struct sockaddr *)&mask6, LLE_STATIC); return (error); } /* * ia0 - corresponding public address */ int in6_tmpifadd(const struct in6_ifaddr *ia0, int forcegen, int delay) { struct ifnet *ifp = ia0->ia_ifa.ifa_ifp; struct in6_ifaddr *newia; struct in6_aliasreq ifra; int error; int trylimit = 3; /* XXX: adhoc value */ int updateflags; u_int32_t randid[2]; time_t vltime0, pltime0; in6_prepare_ifra(&ifra, &ia0->ia_addr.sin6_addr, &ia0->ia_prefixmask.sin6_addr); ifra.ifra_addr = ia0->ia_addr; /* XXX: do we need this ? */ /* clear the old IFID */ IN6_MASK_ADDR(&ifra.ifra_addr.sin6_addr, &ifra.ifra_prefixmask.sin6_addr); again: if (in6_get_tmpifid(ifp, (u_int8_t *)randid, (const u_int8_t *)&ia0->ia_addr.sin6_addr.s6_addr[8], forcegen)) { nd6log((LOG_NOTICE, "%s: failed to find a good random IFID\n", __func__)); return (EINVAL); } ifra.ifra_addr.sin6_addr.s6_addr32[2] |= (randid[0] & ~(ifra.ifra_prefixmask.sin6_addr.s6_addr32[2])); ifra.ifra_addr.sin6_addr.s6_addr32[3] |= (randid[1] & ~(ifra.ifra_prefixmask.sin6_addr.s6_addr32[3])); /* * in6_get_tmpifid() quite likely provided a unique interface ID. * However, we may still have a chance to see collision, because * there may be a time lag between generation of the ID and generation * of the address. So, we'll do one more sanity check. */ if (in6_localip(&ifra.ifra_addr.sin6_addr) != 0) { if (trylimit-- > 0) { forcegen = 1; goto again; } /* Give up. Something strange should have happened. */ nd6log((LOG_NOTICE, "%s: failed to find a unique random IFID\n", __func__)); return (EEXIST); } /* * The Valid Lifetime is the lower of the Valid Lifetime of the * public address or TEMP_VALID_LIFETIME. * The Preferred Lifetime is the lower of the Preferred Lifetime * of the public address or TEMP_PREFERRED_LIFETIME - * DESYNC_FACTOR. */ if (ia0->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { vltime0 = IFA6_IS_INVALID(ia0) ? 0 : (ia0->ia6_lifetime.ia6t_vltime - (time_uptime - ia0->ia6_updatetime)); if (vltime0 > V_ip6_temp_valid_lifetime) vltime0 = V_ip6_temp_valid_lifetime; } else vltime0 = V_ip6_temp_valid_lifetime; if (ia0->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { pltime0 = IFA6_IS_DEPRECATED(ia0) ? 0 : (ia0->ia6_lifetime.ia6t_pltime - (time_uptime - ia0->ia6_updatetime)); if (pltime0 > V_ip6_temp_preferred_lifetime - V_ip6_desync_factor){ pltime0 = V_ip6_temp_preferred_lifetime - V_ip6_desync_factor; } } else pltime0 = V_ip6_temp_preferred_lifetime - V_ip6_desync_factor; ifra.ifra_lifetime.ia6t_vltime = vltime0; ifra.ifra_lifetime.ia6t_pltime = pltime0; /* * A temporary address is created only if this calculated Preferred * Lifetime is greater than REGEN_ADVANCE time units. */ if (ifra.ifra_lifetime.ia6t_pltime <= V_ip6_temp_regen_advance) return (0); /* XXX: scope zone ID? */ ifra.ifra_flags |= (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY); /* allocate ifaddr structure, link into chain, etc. */ updateflags = 0; if (delay) updateflags |= IN6_IFAUPDATE_DADDELAY; if ((error = in6_update_ifa(ifp, &ifra, NULL, updateflags)) != 0) return (error); newia = in6ifa_ifpwithaddr(ifp, &ifra.ifra_addr.sin6_addr); if (newia == NULL) { /* XXX: can it happen? */ nd6log((LOG_ERR, "%s: ifa update succeeded, but we got no ifaddr\n", __func__)); return (EINVAL); /* XXX */ } newia->ia6_ndpr = ia0->ia6_ndpr; newia->ia6_ndpr->ndpr_addrcnt++; ifa_free(&newia->ia_ifa); /* * A newly added address might affect the status of other addresses. * XXX: when the temporary address is generated with a new public * address, the onlink check is redundant. However, it would be safe * to do the check explicitly everywhere a new address is generated, * and, in fact, we surely need the check when we create a new * temporary address due to deprecation of an old temporary address. */ pfxlist_onlink_check(); return (0); } static int rt6_deleteroute(const struct rtentry *rt, const struct nhop_object *nh, void *arg) { struct in6_addr *gate = (struct in6_addr *)arg; int nh_rt_flags; if (nh->gw_sa.sa_family != AF_INET6) return (0); if (!IN6_ARE_ADDR_EQUAL(gate, &nh->gw6_sa.sin6_addr)) { return (0); } /* * Do not delete a static route. * XXX: this seems to be a bit ad-hoc. Should we consider the * 'cloned' bit instead? */ nh_rt_flags = nhop_get_rtflags(nh); if ((nh_rt_flags & RTF_STATIC) != 0) return (0); /* * We delete only host route. This means, in particular, we don't * delete default route. */ if ((nh_rt_flags & RTF_HOST) == 0) return (0); return (1); #undef SIN6 } /* * Delete all the routing table entries that use the specified gateway. * XXX: this function causes search through all entries of routing table, so * it shouldn't be called when acting as a router. */ void rt6_flush(struct in6_addr *gateway, struct ifnet *ifp) { /* We'll care only link-local addresses */ if (!IN6_IS_ADDR_LINKLOCAL(gateway)) return; /* XXX Do we really need to walk any but the default FIB? */ rt_foreach_fib_walk_del(AF_INET6, rt6_deleteroute, (void *)gateway); } int nd6_setdefaultiface(int ifindex) { int error = 0; if (ifindex < 0 || V_if_index < ifindex) return (EINVAL); if (ifindex != 0 && !ifnet_byindex(ifindex)) return (EINVAL); if (V_nd6_defifindex != ifindex) { V_nd6_defifindex = ifindex; if (V_nd6_defifindex > 0) V_nd6_defifp = ifnet_byindex(V_nd6_defifindex); else V_nd6_defifp = NULL; /* * Our current implementation assumes one-to-one maping between * interfaces and links, so it would be natural to use the * default interface as the default link. */ scope6_setdefault(V_nd6_defifp); } return (error); } bool nd6_defrouter_list_empty(void) { return (TAILQ_EMPTY(&V_nd6_defrouter)); } void nd6_defrouter_timer(void) { struct nd_defrouter *dr, *ndr; struct nd6_drhead drq; TAILQ_INIT(&drq); ND6_WLOCK(); TAILQ_FOREACH_SAFE(dr, &V_nd6_defrouter, dr_entry, ndr) if (dr->expire && dr->expire < time_uptime) defrouter_unlink(dr, &drq); ND6_WUNLOCK(); while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } } /* * Nuke default router list entries toward ifp. * We defer removal of default router list entries that is installed in the * routing table, in order to keep additional side effects as small as possible. */ void nd6_defrouter_purge(struct ifnet *ifp) { struct nd_defrouter *dr, *ndr; struct nd6_drhead drq; TAILQ_INIT(&drq); ND6_WLOCK(); TAILQ_FOREACH_SAFE(dr, &V_nd6_defrouter, dr_entry, ndr) { if (dr->installed) continue; if (dr->ifp == ifp) defrouter_unlink(dr, &drq); } TAILQ_FOREACH_SAFE(dr, &V_nd6_defrouter, dr_entry, ndr) { if (!dr->installed) continue; if (dr->ifp == ifp) defrouter_unlink(dr, &drq); } ND6_WUNLOCK(); /* Delete the unlinked router objects. */ while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } } void nd6_defrouter_flush_all(void) { struct nd_defrouter *dr; struct nd6_drhead drq; TAILQ_INIT(&drq); ND6_WLOCK(); while ((dr = TAILQ_FIRST(&V_nd6_defrouter)) != NULL) defrouter_unlink(dr, &drq); ND6_WUNLOCK(); while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } } void nd6_defrouter_init(void) { TAILQ_INIT(&V_nd6_defrouter); } static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) { struct in6_defrouter d; struct nd_defrouter *dr; int error; if (req->newptr != NULL) return (EPERM); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); bzero(&d, sizeof(d)); d.rtaddr.sin6_family = AF_INET6; d.rtaddr.sin6_len = sizeof(d.rtaddr); ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd6_defrouter, dr_entry) { d.rtaddr.sin6_addr = dr->rtaddr; error = sa6_recoverscope(&d.rtaddr); if (error != 0) break; d.flags = dr->raflags; d.rtlifetime = dr->rtlifetime; d.expire = dr->expire + (time_second - time_uptime); d.if_index = dr->ifp->if_index; error = SYSCTL_OUT(req, &d, sizeof(d)); if (error != 0) break; } ND6_RUNLOCK(); return (error); } SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", "NDP default router list"); Index: head/sys/nfs/bootp_subr.c =================================================================== --- head/sys/nfs/bootp_subr.c (revision 363402) +++ head/sys/nfs/bootp_subr.c (revision 363403) @@ -1,1811 +1,1825 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1995 Gordon Ross, Adam Glass * Copyright (c) 1992 Regents of the University of California. * All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * based on: * nfs/krpc_subr.c * $NetBSD: krpc_subr.c,v 1.10 1995/08/08 20:43:43 gwr Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_bootp.h" #include "opt_nfs.h" #include "opt_rootdevname.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #define BOOTP_MIN_LEN 300 /* Minimum size of bootp udp packet */ #ifndef BOOTP_SETTLE_DELAY #define BOOTP_SETTLE_DELAY 3 #endif /* * Wait 10 seconds for interface appearance * USB ethernet adapters might require some time to pop up */ #ifndef BOOTP_IFACE_WAIT_TIMEOUT #define BOOTP_IFACE_WAIT_TIMEOUT 10 #endif /* * What is the longest we will wait before re-sending a request? * Note this is also the frequency of "RPC timeout" messages. * The re-send loop count sup linearly to this maximum, so the * first complaint will happen after (1+2+3+4+5)=15 seconds. */ #define MAX_RESEND_DELAY 5 /* seconds */ /* Definitions from RFC951 */ struct bootp_packet { u_int8_t op; u_int8_t htype; u_int8_t hlen; u_int8_t hops; u_int32_t xid; u_int16_t secs; u_int16_t flags; struct in_addr ciaddr; struct in_addr yiaddr; struct in_addr siaddr; struct in_addr giaddr; unsigned char chaddr[16]; char sname[64]; char file[128]; unsigned char vend[1222]; }; struct bootpc_ifcontext { STAILQ_ENTRY(bootpc_ifcontext) next; struct bootp_packet call; struct bootp_packet reply; int replylen; int overload; union { struct ifreq _ifreq; struct in_aliasreq _in_alias_req; } _req; #define ireq _req._ifreq #define iareq _req._in_alias_req struct ifnet *ifp; struct sockaddr_dl *sdl; struct sockaddr_in myaddr; struct sockaddr_in netmask; struct sockaddr_in gw; int gotgw; int gotnetmask; int gotrootpath; int outstanding; int sentmsg; u_int32_t xid; enum { IF_BOOTP_UNRESOLVED, IF_BOOTP_RESOLVED, IF_BOOTP_FAILED, IF_DHCP_UNRESOLVED, IF_DHCP_OFFERED, IF_DHCP_RESOLVED, IF_DHCP_FAILED, } state; int dhcpquerytype; /* dhcp type sent */ struct in_addr dhcpserver; int gotdhcpserver; uint16_t mtu; }; #define TAG_MAXLEN 1024 struct bootpc_tagcontext { char buf[TAG_MAXLEN + 1]; int overload; int badopt; int badtag; int foundopt; int taglen; }; struct bootpc_globalcontext { STAILQ_HEAD(, bootpc_ifcontext) interfaces; u_int32_t xid; int any_root_overrides; int gotrootpath; int gotgw; int ifnum; int secs; int starttime; struct bootp_packet reply; int replylen; struct bootpc_ifcontext *setrootfs; struct bootpc_ifcontext *sethostname; struct bootpc_tagcontext tmptag; struct bootpc_tagcontext tag; }; #define IPPORT_BOOTPC 68 #define IPPORT_BOOTPS 67 #define BOOTP_REQUEST 1 #define BOOTP_REPLY 2 /* Common tags */ #define TAG_PAD 0 /* Pad option, implicit length 1 */ #define TAG_SUBNETMASK 1 /* RFC 950 subnet mask */ #define TAG_ROUTERS 3 /* Routers (in order of preference) */ #define TAG_HOSTNAME 12 /* Client host name */ #define TAG_ROOT 17 /* Root path */ #define TAG_INTF_MTU 26 /* Interface MTU Size (RFC2132) */ /* DHCP specific tags */ #define TAG_OVERLOAD 52 /* Option Overload */ #define TAG_MAXMSGSIZE 57 /* Maximum DHCP Message Size */ #define TAG_END 255 /* End Option (i.e. no more options) */ /* Overload values */ #define OVERLOAD_FILE 1 #define OVERLOAD_SNAME 2 /* Site specific tags: */ #define TAG_ROOTOPTS 130 #define TAG_COOKIE 134 /* ascii info for userland, via sysctl */ #define TAG_DHCP_MSGTYPE 53 #define TAG_DHCP_REQ_ADDR 50 #define TAG_DHCP_SERVERID 54 #define TAG_DHCP_LEASETIME 51 #define TAG_VENDOR_INDENTIFIER 60 #define DHCP_NOMSG 0 #define DHCP_DISCOVER 1 #define DHCP_OFFER 2 #define DHCP_REQUEST 3 #define DHCP_ACK 5 /* NFS read/write block size */ #ifndef BOOTP_BLOCKSIZE #define BOOTP_BLOCKSIZE 8192 #endif static char bootp_cookie[128]; static struct socket *bootp_so; SYSCTL_STRING(_kern, OID_AUTO, bootp_cookie, CTLFLAG_RD, bootp_cookie, 0, "Cookie (T134) supplied by bootp server"); /* mountd RPC */ static int md_mount(struct sockaddr_in *mdsin, char *path, u_char *fhp, int *fhsizep, struct nfs_args *args, struct thread *td); static int setfs(struct sockaddr_in *addr, char *path, char *p, const struct in_addr *siaddr); static int getdec(char **ptr); static int getip(char **ptr, struct in_addr *ip); static void mountopts(struct nfs_args *args, char *p); static int xdr_opaque_decode(struct mbuf **ptr, u_char *buf, int len); static int xdr_int_decode(struct mbuf **ptr, int *iptr); static void print_in_addr(struct in_addr addr); static void print_sin_addr(struct sockaddr_in *addr); static void clear_sinaddr(struct sockaddr_in *sin); static void allocifctx(struct bootpc_globalcontext *gctx); static void bootpc_compose_query(struct bootpc_ifcontext *ifctx, struct thread *td); static unsigned char *bootpc_tag(struct bootpc_tagcontext *tctx, struct bootp_packet *bp, int len, int tag); static void bootpc_tag_helper(struct bootpc_tagcontext *tctx, unsigned char *start, int len, int tag); #ifdef BOOTP_DEBUG void bootpboot_p_if(struct ifnet *ifp, struct ifaddr *ifa); void bootpboot_p_iflist(void); #endif static int bootpc_call(struct bootpc_globalcontext *gctx, struct thread *td); static void bootpc_fakeup_interface(struct bootpc_ifcontext *ifctx, struct thread *td); static void bootpc_adjust_interface(struct bootpc_ifcontext *ifctx, struct bootpc_globalcontext *gctx, struct thread *td); static void bootpc_decode_reply(struct nfsv3_diskless *nd, struct bootpc_ifcontext *ifctx, struct bootpc_globalcontext *gctx); static int bootpc_received(struct bootpc_globalcontext *gctx, struct bootpc_ifcontext *ifctx); static __inline int bootpc_ifctx_isresolved(struct bootpc_ifcontext *ifctx); static __inline int bootpc_ifctx_isunresolved(struct bootpc_ifcontext *ifctx); static __inline int bootpc_ifctx_isfailed(struct bootpc_ifcontext *ifctx); /* * In order to have multiple active interfaces with address 0.0.0.0 * and be able to send data to a selected interface, we first set * mask to /8 on all interfaces, and temporarily set it to /0 when * doing sosend(). */ #ifdef BOOTP_DEBUG void bootpboot_p_if(struct ifnet *ifp, struct ifaddr *ifa) { printf("%s flags %x, addr ", ifp->if_xname, ifp->if_flags); print_sin_addr((struct sockaddr_in *) ifa->ifa_addr); printf(", broadcast "); print_sin_addr((struct sockaddr_in *) ifa->ifa_dstaddr); printf(", netmask "); print_sin_addr((struct sockaddr_in *) ifa->ifa_netmask); printf("\n"); } void bootpboot_p_iflist(void) { struct ifnet *ifp; struct ifaddr *ifa; printf("Interface list:\n"); IFNET_RLOCK(); for (ifp = CK_STAILQ_FIRST(&V_ifnet); ifp != NULL; ifp = CK_STAILQ_NEXT(ifp, if_link)) { for (ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); ifa != NULL; ifa = CK_STAILQ_NEXT(ifa, ifa_link)) if (ifa->ifa_addr->sa_family == AF_INET) bootpboot_p_if(ifp, ifa); } IFNET_RUNLOCK(); } #endif /* defined(BOOTP_DEBUG) */ static void clear_sinaddr(struct sockaddr_in *sin) { bzero(sin, sizeof(*sin)); sin->sin_len = sizeof(*sin); sin->sin_family = AF_INET; sin->sin_addr.s_addr = INADDR_ANY; /* XXX: htonl(INAADDR_ANY) ? */ sin->sin_port = 0; } static void allocifctx(struct bootpc_globalcontext *gctx) { struct bootpc_ifcontext *ifctx; ifctx = malloc(sizeof(*ifctx), M_TEMP, M_WAITOK | M_ZERO); ifctx->xid = gctx->xid; #ifdef BOOTP_NO_DHCP ifctx->state = IF_BOOTP_UNRESOLVED; #else ifctx->state = IF_DHCP_UNRESOLVED; #endif gctx->xid += 0x100; STAILQ_INSERT_TAIL(&gctx->interfaces, ifctx, next); } static __inline int bootpc_ifctx_isresolved(struct bootpc_ifcontext *ifctx) { if (ifctx->state == IF_BOOTP_RESOLVED || ifctx->state == IF_DHCP_RESOLVED) return 1; return 0; } static __inline int bootpc_ifctx_isunresolved(struct bootpc_ifcontext *ifctx) { if (ifctx->state == IF_BOOTP_UNRESOLVED || ifctx->state == IF_DHCP_UNRESOLVED) return 1; return 0; } static __inline int bootpc_ifctx_isfailed(struct bootpc_ifcontext *ifctx) { if (ifctx->state == IF_BOOTP_FAILED || ifctx->state == IF_DHCP_FAILED) return 1; return 0; } static int bootpc_received(struct bootpc_globalcontext *gctx, struct bootpc_ifcontext *ifctx) { unsigned char dhcpreplytype; char *p; /* * Need timeout for fallback to less * desirable alternative. */ /* This call used for the side effect (badopt flag) */ (void) bootpc_tag(&gctx->tmptag, &gctx->reply, gctx->replylen, TAG_END); /* If packet is invalid, ignore it */ if (gctx->tmptag.badopt != 0) return 0; p = bootpc_tag(&gctx->tmptag, &gctx->reply, gctx->replylen, TAG_DHCP_MSGTYPE); if (p != NULL) dhcpreplytype = *p; else dhcpreplytype = DHCP_NOMSG; switch (ifctx->dhcpquerytype) { case DHCP_DISCOVER: if (dhcpreplytype != DHCP_OFFER /* Normal DHCP offer */ #ifndef BOOTP_FORCE_DHCP && dhcpreplytype != DHCP_NOMSG /* Fallback to BOOTP */ #endif ) return 0; break; case DHCP_REQUEST: if (dhcpreplytype != DHCP_ACK) return 0; case DHCP_NOMSG: break; } /* Ignore packet unless it gives us a root tag we didn't have */ if ((ifctx->state == IF_BOOTP_RESOLVED || (ifctx->dhcpquerytype == DHCP_DISCOVER && (ifctx->state == IF_DHCP_OFFERED || ifctx->state == IF_DHCP_RESOLVED))) && (bootpc_tag(&gctx->tmptag, &ifctx->reply, ifctx->replylen, TAG_ROOT) != NULL || bootpc_tag(&gctx->tmptag, &gctx->reply, gctx->replylen, TAG_ROOT) == NULL)) return 0; bcopy(&gctx->reply, &ifctx->reply, gctx->replylen); ifctx->replylen = gctx->replylen; /* XXX: Only reset if 'perfect' response */ if (ifctx->state == IF_BOOTP_UNRESOLVED) ifctx->state = IF_BOOTP_RESOLVED; else if (ifctx->state == IF_DHCP_UNRESOLVED && ifctx->dhcpquerytype == DHCP_DISCOVER) { if (dhcpreplytype == DHCP_OFFER) ifctx->state = IF_DHCP_OFFERED; else ifctx->state = IF_BOOTP_RESOLVED; /* Fallback */ } else if (ifctx->state == IF_DHCP_OFFERED && ifctx->dhcpquerytype == DHCP_REQUEST) ifctx->state = IF_DHCP_RESOLVED; if (ifctx->dhcpquerytype == DHCP_DISCOVER && ifctx->state != IF_BOOTP_RESOLVED) { p = bootpc_tag(&gctx->tmptag, &ifctx->reply, ifctx->replylen, TAG_DHCP_SERVERID); if (p != NULL && gctx->tmptag.taglen == 4) { memcpy(&ifctx->dhcpserver, p, 4); ifctx->gotdhcpserver = 1; } else ifctx->gotdhcpserver = 0; return 1; } ifctx->gotrootpath = (bootpc_tag(&gctx->tmptag, &ifctx->reply, ifctx->replylen, TAG_ROOT) != NULL); ifctx->gotgw = (bootpc_tag(&gctx->tmptag, &ifctx->reply, ifctx->replylen, TAG_ROUTERS) != NULL); ifctx->gotnetmask = (bootpc_tag(&gctx->tmptag, &ifctx->reply, ifctx->replylen, TAG_SUBNETMASK) != NULL); return 1; } static int bootpc_call(struct bootpc_globalcontext *gctx, struct thread *td) { struct sockaddr_in *sin, dst; struct uio auio; struct sockopt sopt; struct iovec aio; int error, on, rcvflg, timo, len; time_t atimo; time_t rtimo; struct timeval tv; struct bootpc_ifcontext *ifctx; int outstanding; int gotrootpath; int retry; const char *s; tv.tv_sec = 1; tv.tv_usec = 0; bzero(&sopt, sizeof(sopt)); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = SOL_SOCKET; sopt.sopt_name = SO_RCVTIMEO; sopt.sopt_val = &tv; sopt.sopt_valsize = sizeof tv; error = sosetopt(bootp_so, &sopt); if (error != 0) goto out; /* * Enable broadcast. */ on = 1; sopt.sopt_name = SO_BROADCAST; sopt.sopt_val = &on; sopt.sopt_valsize = sizeof on; error = sosetopt(bootp_so, &sopt); if (error != 0) goto out; /* * Disable routing. */ on = 1; sopt.sopt_name = SO_DONTROUTE; sopt.sopt_val = &on; sopt.sopt_valsize = sizeof on; error = sosetopt(bootp_so, &sopt); if (error != 0) goto out; /* * Bind the local endpoint to a bootp client port. */ sin = &dst; clear_sinaddr(sin); sin->sin_port = htons(IPPORT_BOOTPC); error = sobind(bootp_so, (struct sockaddr *)sin, td); if (error != 0) { printf("bind failed\n"); goto out; } /* * Setup socket address for the server. */ sin = &dst; clear_sinaddr(sin); sin->sin_addr.s_addr = INADDR_BROADCAST; sin->sin_port = htons(IPPORT_BOOTPS); /* * Send it, repeatedly, until a reply is received, * but delay each re-send by an increasing amount. * If the delay hits the maximum, start complaining. */ timo = 0; rtimo = 0; for (;;) { outstanding = 0; gotrootpath = 0; STAILQ_FOREACH(ifctx, &gctx->interfaces, next) { if (bootpc_ifctx_isresolved(ifctx) != 0 && bootpc_tag(&gctx->tmptag, &ifctx->reply, ifctx->replylen, TAG_ROOT) != NULL) gotrootpath = 1; } STAILQ_FOREACH(ifctx, &gctx->interfaces, next) { struct in_aliasreq *ifra = &ifctx->iareq; sin = (struct sockaddr_in *)&ifra->ifra_mask; ifctx->outstanding = 0; if (bootpc_ifctx_isresolved(ifctx) != 0 && gotrootpath != 0) { continue; } if (bootpc_ifctx_isfailed(ifctx) != 0) continue; outstanding++; ifctx->outstanding = 1; /* Proceed to next step in DHCP negotiation */ if ((ifctx->state == IF_DHCP_OFFERED && ifctx->dhcpquerytype != DHCP_REQUEST) || (ifctx->state == IF_DHCP_UNRESOLVED && ifctx->dhcpquerytype != DHCP_DISCOVER) || (ifctx->state == IF_BOOTP_UNRESOLVED && ifctx->dhcpquerytype != DHCP_NOMSG)) { ifctx->sentmsg = 0; bootpc_compose_query(ifctx, td); } /* Send BOOTP request (or re-send). */ if (ifctx->sentmsg == 0) { switch(ifctx->dhcpquerytype) { case DHCP_DISCOVER: s = "DHCP Discover"; break; case DHCP_REQUEST: s = "DHCP Request"; break; case DHCP_NOMSG: default: s = "BOOTP Query"; break; } printf("Sending %s packet from " "interface %s (%*D)\n", s, ifctx->ireq.ifr_name, ifctx->sdl->sdl_alen, (unsigned char *) LLADDR(ifctx->sdl), ":"); ifctx->sentmsg = 1; } aio.iov_base = (caddr_t) &ifctx->call; aio.iov_len = sizeof(ifctx->call); auio.uio_iov = &aio; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_WRITE; auio.uio_offset = 0; auio.uio_resid = sizeof(ifctx->call); auio.uio_td = td; /* Set netmask to 0.0.0.0 */ clear_sinaddr(sin); error = ifioctl(bootp_so, SIOCAIFADDR, (caddr_t)ifra, td); if (error != 0) panic("%s: SIOCAIFADDR, error=%d", __func__, error); error = sosend(bootp_so, (struct sockaddr *) &dst, &auio, NULL, NULL, 0, td); if (error != 0) printf("%s: sosend: %d state %08x\n", __func__, error, (int )bootp_so->so_state); /* Set netmask to 255.0.0.0 */ sin->sin_addr.s_addr = htonl(IN_CLASSA_NET); error = ifioctl(bootp_so, SIOCAIFADDR, (caddr_t)ifra, td); if (error != 0) panic("%s: SIOCAIFADDR, error=%d", __func__, error); } if (outstanding == 0 && (rtimo == 0 || time_second >= rtimo)) { error = 0; goto out; } /* Determine new timeout. */ if (timo < MAX_RESEND_DELAY) timo++; else { printf("DHCP/BOOTP timeout for server "); print_sin_addr(&dst); printf("\n"); } /* * Wait for up to timo seconds for a reply. * The socket receive timeout was set to 1 second. */ atimo = timo + time_second; while (time_second < atimo) { aio.iov_base = (caddr_t) &gctx->reply; aio.iov_len = sizeof(gctx->reply); auio.uio_iov = &aio; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_offset = 0; auio.uio_resid = sizeof(gctx->reply); auio.uio_td = td; rcvflg = 0; error = soreceive(bootp_so, NULL, &auio, NULL, NULL, &rcvflg); gctx->secs = time_second - gctx->starttime; STAILQ_FOREACH(ifctx, &gctx->interfaces, next) { if (bootpc_ifctx_isresolved(ifctx) != 0 || bootpc_ifctx_isfailed(ifctx) != 0) continue; ifctx->call.secs = htons(gctx->secs); } if (error == EWOULDBLOCK) continue; if (error != 0) goto out; len = sizeof(gctx->reply) - auio.uio_resid; /* Do we have the required number of bytes ? */ if (len < BOOTP_MIN_LEN) continue; gctx->replylen = len; /* Is it a reply? */ if (gctx->reply.op != BOOTP_REPLY) continue; /* Is this an answer to our query */ STAILQ_FOREACH(ifctx, &gctx->interfaces, next) { if (gctx->reply.xid != ifctx->call.xid) continue; /* Same HW address size ? */ if (gctx->reply.hlen != ifctx->call.hlen) continue; /* Correct HW address ? */ if (bcmp(gctx->reply.chaddr, ifctx->call.chaddr, ifctx->call.hlen) != 0) continue; break; } if (ifctx != NULL) { s = bootpc_tag(&gctx->tmptag, &gctx->reply, gctx->replylen, TAG_DHCP_MSGTYPE); if (s != NULL) { switch (*s) { case DHCP_OFFER: s = "DHCP Offer"; break; case DHCP_ACK: s = "DHCP Ack"; break; default: s = "DHCP (unexpected)"; break; } } else s = "BOOTP Reply"; printf("Received %s packet" " on %s from ", s, ifctx->ireq.ifr_name); print_in_addr(gctx->reply.siaddr); if (gctx->reply.giaddr.s_addr != htonl(INADDR_ANY)) { printf(" via "); print_in_addr(gctx->reply.giaddr); } if (bootpc_received(gctx, ifctx) != 0) { printf(" (accepted)"); if (ifctx->outstanding) { ifctx->outstanding = 0; outstanding--; } /* Network settle delay */ if (outstanding == 0) atimo = time_second + BOOTP_SETTLE_DELAY; } else printf(" (ignored)"); if (ifctx->gotrootpath || gctx->any_root_overrides) { gotrootpath = 1; rtimo = time_second + BOOTP_SETTLE_DELAY; if (ifctx->gotrootpath) printf(" (got root path)"); } printf("\n"); } } /* while secs */ #ifdef BOOTP_TIMEOUT if (gctx->secs > BOOTP_TIMEOUT && BOOTP_TIMEOUT > 0) break; #endif /* Force a retry if halfway in DHCP negotiation */ retry = 0; STAILQ_FOREACH(ifctx, &gctx->interfaces, next) if (ifctx->state == IF_DHCP_OFFERED) { if (ifctx->dhcpquerytype == DHCP_DISCOVER) retry = 1; else ifctx->state = IF_DHCP_UNRESOLVED; } if (retry != 0) continue; if (gotrootpath != 0) { gctx->gotrootpath = gotrootpath; if (rtimo != 0 && time_second >= rtimo) break; } } /* forever send/receive */ /* * XXX: These are errors of varying seriousness being silently * ignored */ STAILQ_FOREACH(ifctx, &gctx->interfaces, next) if (bootpc_ifctx_isresolved(ifctx) == 0) { printf("%s timeout for interface %s\n", ifctx->dhcpquerytype != DHCP_NOMSG ? "DHCP" : "BOOTP", ifctx->ireq.ifr_name); } if (gctx->gotrootpath != 0) { #if 0 printf("Got a root path, ignoring remaining timeout\n"); #endif error = 0; goto out; } #ifndef BOOTP_NFSROOT STAILQ_FOREACH(ifctx, &gctx->interfaces, next) if (bootpc_ifctx_isresolved(ifctx) != 0) { error = 0; goto out; } #endif error = ETIMEDOUT; out: return (error); } static void bootpc_fakeup_interface(struct bootpc_ifcontext *ifctx, struct thread *td) { struct ifreq *ifr; struct in_aliasreq *ifra; struct sockaddr_in *sin; int error; ifr = &ifctx->ireq; ifra = &ifctx->iareq; /* * Bring up the interface. * * Get the old interface flags and or IFF_UP into them; if * IFF_UP set blindly, interface selection can be clobbered. */ error = ifioctl(bootp_so, SIOCGIFFLAGS, (caddr_t)ifr, td); if (error != 0) panic("%s: SIOCGIFFLAGS, error=%d", __func__, error); ifr->ifr_flags |= IFF_UP; error = ifioctl(bootp_so, SIOCSIFFLAGS, (caddr_t)ifr, td); if (error != 0) panic("%s: SIOCSIFFLAGS, error=%d", __func__, error); /* * Do enough of ifconfig(8) so that the chosen interface * can talk to the servers. Set address to 0.0.0.0/8 and * broadcast address to local broadcast. */ sin = (struct sockaddr_in *)&ifra->ifra_addr; clear_sinaddr(sin); sin = (struct sockaddr_in *)&ifra->ifra_mask; clear_sinaddr(sin); sin->sin_addr.s_addr = htonl(IN_CLASSA_NET); sin = (struct sockaddr_in *)&ifra->ifra_broadaddr; clear_sinaddr(sin); sin->sin_addr.s_addr = htonl(INADDR_BROADCAST); error = ifioctl(bootp_so, SIOCAIFADDR, (caddr_t)ifra, td); if (error != 0) panic("%s: SIOCAIFADDR, error=%d", __func__, error); } static void bootpc_shutdown_interface(struct bootpc_ifcontext *ifctx, struct thread *td) { struct ifreq *ifr; struct sockaddr_in *sin; int error; ifr = &ifctx->ireq; printf("Shutdown interface %s\n", ifctx->ireq.ifr_name); error = ifioctl(bootp_so, SIOCGIFFLAGS, (caddr_t)ifr, td); if (error != 0) panic("%s: SIOCGIFFLAGS, error=%d", __func__, error); ifr->ifr_flags &= ~IFF_UP; error = ifioctl(bootp_so, SIOCSIFFLAGS, (caddr_t)ifr, td); if (error != 0) panic("%s: SIOCSIFFLAGS, error=%d", __func__, error); sin = (struct sockaddr_in *) &ifr->ifr_addr; clear_sinaddr(sin); error = ifioctl(bootp_so, SIOCDIFADDR, (caddr_t) ifr, td); if (error != 0) panic("%s: SIOCDIFADDR, error=%d", __func__, error); } static void bootpc_adjust_interface(struct bootpc_ifcontext *ifctx, struct bootpc_globalcontext *gctx, struct thread *td) { int error; struct sockaddr_in *sin; struct ifreq *ifr; struct in_aliasreq *ifra; struct sockaddr_in *myaddr; struct sockaddr_in *netmask; ifr = &ifctx->ireq; ifra = &ifctx->iareq; myaddr = &ifctx->myaddr; netmask = &ifctx->netmask; if (bootpc_ifctx_isresolved(ifctx) == 0) { /* Shutdown interfaces where BOOTP failed */ bootpc_shutdown_interface(ifctx, td); return; } printf("Adjusted interface %s", ifctx->ireq.ifr_name); /* Do BOOTP interface options */ if (ifctx->mtu != 0) { printf(" (MTU=%d%s)", ifctx->mtu, (ifctx->mtu > 1514) ? "/JUMBO" : ""); ifr->ifr_mtu = ifctx->mtu; error = ifioctl(bootp_so, SIOCSIFMTU, (caddr_t) ifr, td); if (error != 0) panic("%s: SIOCSIFMTU, error=%d", __func__, error); } printf("\n"); /* * Do enough of ifconfig(8) so that the chosen interface * can talk to the servers. (just set the address) */ sin = (struct sockaddr_in *) &ifr->ifr_addr; clear_sinaddr(sin); error = ifioctl(bootp_so, SIOCDIFADDR, (caddr_t) ifr, td); if (error != 0) panic("%s: SIOCDIFADDR, error=%d", __func__, error); bcopy(myaddr, &ifra->ifra_addr, sizeof(*myaddr)); bcopy(netmask, &ifra->ifra_mask, sizeof(*netmask)); clear_sinaddr(&ifra->ifra_broadaddr); ifra->ifra_broadaddr.sin_addr.s_addr = myaddr->sin_addr.s_addr | ~netmask->sin_addr.s_addr; error = ifioctl(bootp_so, SIOCAIFADDR, (caddr_t)ifra, td); if (error != 0) panic("%s: SIOCAIFADDR, error=%d", __func__, error); } static void bootpc_add_default_route(struct bootpc_ifcontext *ifctx) { int error; struct sockaddr_in defdst; struct sockaddr_in defmask; + struct rt_addrinfo info; + struct rib_cmd_info rc; if (ifctx->gw.sin_addr.s_addr == htonl(INADDR_ANY)) return; clear_sinaddr(&defdst); clear_sinaddr(&defmask); - error = rtrequest_fib(RTM_ADD, (struct sockaddr *)&defdst, - (struct sockaddr *) &ifctx->gw, (struct sockaddr *)&defmask, - (RTF_UP | RTF_GATEWAY | RTF_STATIC), NULL, RT_DEFAULT_FIB); + bzero((caddr_t)&info, sizeof(info)); + info.rti_flags = RTF_UP | RTF_GATEWAY | RTF_STATIC; + info.rti_info[RTAX_DST] = (struct sockaddr *)&defdst; + info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&defmask; + info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ifctx->gw; + + error = rib_action(RT_DEFAULT_FIB, RTM_ADD, &info, &rc); + if (error != 0) { printf("%s: RTM_ADD, error=%d\n", __func__, error); } } static void bootpc_remove_default_route(struct bootpc_ifcontext *ifctx) { int error; struct sockaddr_in defdst; struct sockaddr_in defmask; + struct rt_addrinfo info; + struct rib_cmd_info rc; if (ifctx->gw.sin_addr.s_addr == htonl(INADDR_ANY)) return; clear_sinaddr(&defdst); clear_sinaddr(&defmask); - error = rtrequest_fib(RTM_DELETE, (struct sockaddr *)&defdst, - (struct sockaddr *) &ifctx->gw, (struct sockaddr *)&defmask, - (RTF_UP | RTF_GATEWAY | RTF_STATIC), NULL, RT_DEFAULT_FIB); + bzero((caddr_t)&info, sizeof(info)); + info.rti_flags = RTF_UP | RTF_GATEWAY | RTF_STATIC; + info.rti_info[RTAX_DST] = (struct sockaddr *)&defdst; + info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&defmask; + info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ifctx->gw; + + error = rib_action(RT_DEFAULT_FIB, RTM_DELETE, &info, &rc); if (error != 0) { printf("%s: RTM_DELETE, error=%d\n", __func__, error); } } static int setfs(struct sockaddr_in *addr, char *path, char *p, const struct in_addr *siaddr) { if (getip(&p, &addr->sin_addr) == 0) { if (siaddr != NULL && *p == '/') bcopy(siaddr, &addr->sin_addr, sizeof(struct in_addr)); else return 0; } else { if (*p != ':') return 0; p++; } addr->sin_len = sizeof(struct sockaddr_in); addr->sin_family = AF_INET; strlcpy(path, p, MNAMELEN); return 1; } static int getip(char **ptr, struct in_addr *addr) { char *p; unsigned int ip; int val; p = *ptr; ip = 0; if (((val = getdec(&p)) < 0) || (val > 255)) return 0; ip = val << 24; if (*p != '.') return 0; p++; if (((val = getdec(&p)) < 0) || (val > 255)) return 0; ip |= (val << 16); if (*p != '.') return 0; p++; if (((val = getdec(&p)) < 0) || (val > 255)) return 0; ip |= (val << 8); if (*p != '.') return 0; p++; if (((val = getdec(&p)) < 0) || (val > 255)) return 0; ip |= val; addr->s_addr = htonl(ip); *ptr = p; return 1; } static int getdec(char **ptr) { char *p; int ret; p = *ptr; ret = 0; if ((*p < '0') || (*p > '9')) return -1; while ((*p >= '0') && (*p <= '9')) { ret = ret * 10 + (*p - '0'); p++; } *ptr = p; return ret; } static void mountopts(struct nfs_args *args, char *p) { args->version = NFS_ARGSVERSION; args->rsize = BOOTP_BLOCKSIZE; args->wsize = BOOTP_BLOCKSIZE; args->flags = NFSMNT_RSIZE | NFSMNT_WSIZE | NFSMNT_RESVPORT; args->sotype = SOCK_DGRAM; if (p != NULL) nfs_parse_options(p, args); } static int xdr_opaque_decode(struct mbuf **mptr, u_char *buf, int len) { struct mbuf *m; int alignedlen; m = *mptr; alignedlen = ( len + 3 ) & ~3; if (m->m_len < alignedlen) { m = m_pullup(m, alignedlen); if (m == NULL) { *mptr = NULL; return EBADRPC; } } bcopy(mtod(m, u_char *), buf, len); m_adj(m, alignedlen); *mptr = m; return 0; } static int xdr_int_decode(struct mbuf **mptr, int *iptr) { u_int32_t i; if (xdr_opaque_decode(mptr, (u_char *) &i, sizeof(u_int32_t)) != 0) return EBADRPC; *iptr = fxdr_unsigned(u_int32_t, i); return 0; } static void print_sin_addr(struct sockaddr_in *sin) { print_in_addr(sin->sin_addr); } static void print_in_addr(struct in_addr addr) { unsigned int ip; ip = ntohl(addr.s_addr); printf("%d.%d.%d.%d", ip >> 24, (ip >> 16) & 255, (ip >> 8) & 255, ip & 255); } static void bootpc_compose_query(struct bootpc_ifcontext *ifctx, struct thread *td) { unsigned char *vendp; unsigned char vendor_client[64]; uint32_t leasetime; uint8_t vendor_client_len; ifctx->gotrootpath = 0; bzero((caddr_t) &ifctx->call, sizeof(ifctx->call)); /* bootpc part */ ifctx->call.op = BOOTP_REQUEST; /* BOOTREQUEST */ ifctx->call.htype = 1; /* 10mb ethernet */ ifctx->call.hlen = ifctx->sdl->sdl_alen;/* Hardware address length */ ifctx->call.hops = 0; if (bootpc_ifctx_isunresolved(ifctx) != 0) ifctx->xid++; ifctx->call.xid = txdr_unsigned(ifctx->xid); bcopy(LLADDR(ifctx->sdl), &ifctx->call.chaddr, ifctx->sdl->sdl_alen); vendp = ifctx->call.vend; *vendp++ = 99; /* RFC1048 cookie */ *vendp++ = 130; *vendp++ = 83; *vendp++ = 99; *vendp++ = TAG_MAXMSGSIZE; *vendp++ = 2; *vendp++ = (sizeof(struct bootp_packet) >> 8) & 255; *vendp++ = sizeof(struct bootp_packet) & 255; snprintf(vendor_client, sizeof(vendor_client), "%s:%s:%s", ostype, MACHINE, osrelease); vendor_client_len = strlen(vendor_client); *vendp++ = TAG_VENDOR_INDENTIFIER; *vendp++ = vendor_client_len; memcpy(vendp, vendor_client, vendor_client_len); vendp += vendor_client_len; ifctx->dhcpquerytype = DHCP_NOMSG; switch (ifctx->state) { case IF_DHCP_UNRESOLVED: *vendp++ = TAG_DHCP_MSGTYPE; *vendp++ = 1; *vendp++ = DHCP_DISCOVER; ifctx->dhcpquerytype = DHCP_DISCOVER; ifctx->gotdhcpserver = 0; break; case IF_DHCP_OFFERED: *vendp++ = TAG_DHCP_MSGTYPE; *vendp++ = 1; *vendp++ = DHCP_REQUEST; ifctx->dhcpquerytype = DHCP_REQUEST; *vendp++ = TAG_DHCP_REQ_ADDR; *vendp++ = 4; memcpy(vendp, &ifctx->reply.yiaddr, 4); vendp += 4; if (ifctx->gotdhcpserver != 0) { *vendp++ = TAG_DHCP_SERVERID; *vendp++ = 4; memcpy(vendp, &ifctx->dhcpserver, 4); vendp += 4; } *vendp++ = TAG_DHCP_LEASETIME; *vendp++ = 4; leasetime = htonl(300); memcpy(vendp, &leasetime, 4); vendp += 4; break; default: break; } *vendp = TAG_END; ifctx->call.secs = 0; ifctx->call.flags = htons(0x8000); /* We need a broadcast answer */ } static int bootpc_hascookie(struct bootp_packet *bp) { return (bp->vend[0] == 99 && bp->vend[1] == 130 && bp->vend[2] == 83 && bp->vend[3] == 99); } static void bootpc_tag_helper(struct bootpc_tagcontext *tctx, unsigned char *start, int len, int tag) { unsigned char *j; unsigned char *ej; unsigned char code; if (tctx->badtag != 0 || tctx->badopt != 0) return; j = start; ej = j + len; while (j < ej) { code = *j++; if (code == TAG_PAD) continue; if (code == TAG_END) return; if (j >= ej || j + *j + 1 > ej) { tctx->badopt = 1; return; } len = *j++; if (code == tag) { if (tctx->taglen + len > TAG_MAXLEN) { tctx->badtag = 1; return; } tctx->foundopt = 1; if (len > 0) memcpy(tctx->buf + tctx->taglen, j, len); tctx->taglen += len; } if (code == TAG_OVERLOAD) tctx->overload = *j; j += len; } } static unsigned char * bootpc_tag(struct bootpc_tagcontext *tctx, struct bootp_packet *bp, int len, int tag) { tctx->overload = 0; tctx->badopt = 0; tctx->badtag = 0; tctx->foundopt = 0; tctx->taglen = 0; if (bootpc_hascookie(bp) == 0) return NULL; bootpc_tag_helper(tctx, &bp->vend[4], (unsigned char *) bp + len - &bp->vend[4], tag); if ((tctx->overload & OVERLOAD_FILE) != 0) bootpc_tag_helper(tctx, (unsigned char *) bp->file, sizeof(bp->file), tag); if ((tctx->overload & OVERLOAD_SNAME) != 0) bootpc_tag_helper(tctx, (unsigned char *) bp->sname, sizeof(bp->sname), tag); if (tctx->badopt != 0 || tctx->badtag != 0 || tctx->foundopt == 0) return NULL; tctx->buf[tctx->taglen] = '\0'; return tctx->buf; } static void bootpc_decode_reply(struct nfsv3_diskless *nd, struct bootpc_ifcontext *ifctx, struct bootpc_globalcontext *gctx) { char *p, *s; unsigned int ip; ifctx->gotgw = 0; ifctx->gotnetmask = 0; clear_sinaddr(&ifctx->myaddr); clear_sinaddr(&ifctx->netmask); clear_sinaddr(&ifctx->gw); ifctx->myaddr.sin_addr = ifctx->reply.yiaddr; ip = ntohl(ifctx->myaddr.sin_addr.s_addr); printf("%s at ", ifctx->ireq.ifr_name); print_sin_addr(&ifctx->myaddr); printf(" server "); print_in_addr(ifctx->reply.siaddr); ifctx->gw.sin_addr = ifctx->reply.giaddr; if (ifctx->reply.giaddr.s_addr != htonl(INADDR_ANY)) { printf(" via gateway "); print_in_addr(ifctx->reply.giaddr); } /* This call used for the side effect (overload flag) */ (void) bootpc_tag(&gctx->tmptag, &ifctx->reply, ifctx->replylen, TAG_END); if ((gctx->tmptag.overload & OVERLOAD_SNAME) == 0) if (ifctx->reply.sname[0] != '\0') printf(" server name %s", ifctx->reply.sname); if ((gctx->tmptag.overload & OVERLOAD_FILE) == 0) if (ifctx->reply.file[0] != '\0') printf(" boot file %s", ifctx->reply.file); printf("\n"); p = bootpc_tag(&gctx->tag, &ifctx->reply, ifctx->replylen, TAG_SUBNETMASK); if (p != NULL) { if (gctx->tag.taglen != 4) panic("bootpc: subnet mask len is %d", gctx->tag.taglen); bcopy(p, &ifctx->netmask.sin_addr, 4); ifctx->gotnetmask = 1; printf("subnet mask "); print_sin_addr(&ifctx->netmask); printf(" "); } p = bootpc_tag(&gctx->tag, &ifctx->reply, ifctx->replylen, TAG_ROUTERS); if (p != NULL) { /* Routers */ if (gctx->tag.taglen % 4) panic("bootpc: Router Len is %d", gctx->tag.taglen); if (gctx->tag.taglen > 0) { bcopy(p, &ifctx->gw.sin_addr, 4); printf("router "); print_sin_addr(&ifctx->gw); printf(" "); ifctx->gotgw = 1; gctx->gotgw = 1; } } /* * Choose a root filesystem. If a value is forced in the environment * and it contains "nfs:", use it unconditionally. Otherwise, if the * kernel is compiled with the ROOTDEVNAME option, then use it if: * - The server doesn't provide a pathname. * - The boothowto flags include RB_DFLTROOT (user said to override * the server value). */ p = NULL; if ((s = kern_getenv("vfs.root.mountfrom")) != NULL) { if ((p = strstr(s, "nfs:")) != NULL) p = strdup(p + 4, M_TEMP); freeenv(s); } if (p == NULL) { p = bootpc_tag(&gctx->tag, &ifctx->reply, ifctx->replylen, TAG_ROOT); if (p != NULL) ifctx->gotrootpath = 1; } #ifdef ROOTDEVNAME if ((p == NULL || (boothowto & RB_DFLTROOT) != 0) && (p = strstr(ROOTDEVNAME, "nfs:")) != NULL) { p += 4; } #endif if (p != NULL) { if (gctx->setrootfs != NULL) { printf("rootfs %s (ignored) ", p); } else if (setfs(&nd->root_saddr, nd->root_hostnam, p, &ifctx->reply.siaddr)) { if (*p == '/') { printf("root_server "); print_sin_addr(&nd->root_saddr); printf(" "); } printf("rootfs %s ", p); gctx->gotrootpath = 1; gctx->setrootfs = ifctx; p = bootpc_tag(&gctx->tag, &ifctx->reply, ifctx->replylen, TAG_ROOTOPTS); if (p != NULL) { mountopts(&nd->root_args, p); printf("rootopts %s ", p); } } else panic("Failed to set rootfs to %s", p); } p = bootpc_tag(&gctx->tag, &ifctx->reply, ifctx->replylen, TAG_HOSTNAME); if (p != NULL) { if (gctx->tag.taglen >= MAXHOSTNAMELEN) panic("bootpc: hostname >= %d bytes", MAXHOSTNAMELEN); if (gctx->sethostname != NULL) { printf("hostname %s (ignored) ", p); } else { strcpy(nd->my_hostnam, p); mtx_lock(&prison0.pr_mtx); strcpy(prison0.pr_hostname, p); mtx_unlock(&prison0.pr_mtx); printf("hostname %s ", p); gctx->sethostname = ifctx; } } p = bootpc_tag(&gctx->tag, &ifctx->reply, ifctx->replylen, TAG_COOKIE); if (p != NULL) { /* store in a sysctl variable */ int i, l = sizeof(bootp_cookie) - 1; for (i = 0; i < l && p[i] != '\0'; i++) bootp_cookie[i] = p[i]; p[i] = '\0'; } p = bootpc_tag(&gctx->tag, &ifctx->reply, ifctx->replylen, TAG_INTF_MTU); if (p != NULL) { ifctx->mtu = be16dec(p); } printf("\n"); if (ifctx->gotnetmask == 0) { if (IN_CLASSA(ntohl(ifctx->myaddr.sin_addr.s_addr))) ifctx->netmask.sin_addr.s_addr = htonl(IN_CLASSA_NET); else if (IN_CLASSB(ntohl(ifctx->myaddr.sin_addr.s_addr))) ifctx->netmask.sin_addr.s_addr = htonl(IN_CLASSB_NET); else ifctx->netmask.sin_addr.s_addr = htonl(IN_CLASSC_NET); } } void bootpc_init(void) { struct bootpc_ifcontext *ifctx; /* Interface BOOTP contexts */ struct bootpc_globalcontext *gctx; /* Global BOOTP context */ struct ifnet *ifp; struct sockaddr_dl *sdl; struct ifaddr *ifa; int error; #ifndef BOOTP_WIRED_TO int ifcnt; #endif struct nfsv3_diskless *nd; struct thread *td; int timeout; int delay; timeout = BOOTP_IFACE_WAIT_TIMEOUT * hz; delay = hz / 10; nd = &nfsv3_diskless; td = curthread; /* * If already filled in, don't touch it here */ if (nfs_diskless_valid != 0) return; gctx = malloc(sizeof(*gctx), M_TEMP, M_WAITOK | M_ZERO); STAILQ_INIT(&gctx->interfaces); gctx->xid = ~0xFFFF; gctx->starttime = time_second; /* * If ROOTDEVNAME is defined or vfs.root.mountfrom is set then we have * root-path overrides that can potentially let us boot even if we don't * get a root path from the server, so we can treat that as a non-error. */ #ifdef ROOTDEVNAME gctx->any_root_overrides = 1; #else gctx->any_root_overrides = testenv("vfs.root.mountfrom"); #endif /* * Find a network interface. */ CURVNET_SET(TD_TO_VNET(td)); #ifdef BOOTP_WIRED_TO printf("%s: wired to interface '%s'\n", __func__, __XSTRING(BOOTP_WIRED_TO)); allocifctx(gctx); #else /* * Preallocate interface context storage, if another interface * attaches and wins the race, it won't be eligible for bootp. */ ifcnt = 0; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT | IFF_BROADCAST)) != IFF_BROADCAST) continue; switch (ifp->if_alloctype) { case IFT_ETHER: break; default: continue; } ifcnt++; } IFNET_RUNLOCK(); if (ifcnt == 0) panic("%s: no eligible interfaces", __func__); for (; ifcnt > 0; ifcnt--) allocifctx(gctx); #endif retry: ifctx = STAILQ_FIRST(&gctx->interfaces); IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifctx == NULL) break; #ifdef BOOTP_WIRED_TO if (strcmp(ifp->if_xname, __XSTRING(BOOTP_WIRED_TO)) != 0) continue; #else if ((ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT | IFF_BROADCAST)) != IFF_BROADCAST) continue; switch (ifp->if_alloctype) { case IFT_ETHER: break; default: continue; } #endif strlcpy(ifctx->ireq.ifr_name, ifp->if_xname, sizeof(ifctx->ireq.ifr_name)); ifctx->ifp = ifp; /* Get HW address */ sdl = NULL; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl->sdl_type == IFT_ETHER) break; } if (sdl == NULL) panic("bootpc: Unable to find HW address for %s", ifctx->ireq.ifr_name); ifctx->sdl = sdl; ifctx = STAILQ_NEXT(ifctx, next); } IFNET_RUNLOCK(); CURVNET_RESTORE(); if (STAILQ_EMPTY(&gctx->interfaces) || STAILQ_FIRST(&gctx->interfaces)->ifp == NULL) { if (timeout > 0) { pause("bootpc", delay); timeout -= delay; goto retry; } #ifdef BOOTP_WIRED_TO panic("%s: Could not find interface specified " "by BOOTP_WIRED_TO: " __XSTRING(BOOTP_WIRED_TO), __func__); #else panic("%s: no suitable interface", __func__); #endif } error = socreate(AF_INET, &bootp_so, SOCK_DGRAM, 0, td->td_ucred, td); if (error != 0) panic("%s: socreate, error=%d", __func__, error); STAILQ_FOREACH(ifctx, &gctx->interfaces, next) bootpc_fakeup_interface(ifctx, td); STAILQ_FOREACH(ifctx, &gctx->interfaces, next) bootpc_compose_query(ifctx, td); error = bootpc_call(gctx, td); if (error != 0) { printf("BOOTP call failed\n"); } mountopts(&nd->root_args, NULL); STAILQ_FOREACH(ifctx, &gctx->interfaces, next) if (bootpc_ifctx_isresolved(ifctx) != 0) bootpc_decode_reply(nd, ifctx, gctx); #ifdef BOOTP_NFSROOT if (gctx->gotrootpath == 0 && gctx->any_root_overrides == 0) panic("bootpc: No root path offered"); #endif STAILQ_FOREACH(ifctx, &gctx->interfaces, next) bootpc_adjust_interface(ifctx, gctx, td); soclose(bootp_so); STAILQ_FOREACH(ifctx, &gctx->interfaces, next) if (ifctx->gotrootpath != 0) break; if (ifctx == NULL) { STAILQ_FOREACH(ifctx, &gctx->interfaces, next) if (bootpc_ifctx_isresolved(ifctx) != 0) break; } if (ifctx == NULL) goto out; if (gctx->gotrootpath != 0) { struct epoch_tracker et; kern_setenv("boot.netif.name", ifctx->ifp->if_xname); NET_EPOCH_ENTER(et); bootpc_add_default_route(ifctx); error = md_mount(&nd->root_saddr, nd->root_hostnam, nd->root_fh, &nd->root_fhsize, &nd->root_args, td); bootpc_remove_default_route(ifctx); NET_EPOCH_EXIT(et); if (error != 0) { if (gctx->any_root_overrides == 0) panic("nfs_boot: mount root, error=%d", error); else goto out; } rootdevnames[0] = "nfs:"; nfs_diskless_valid = 3; } strcpy(nd->myif.ifra_name, ifctx->ireq.ifr_name); bcopy(&ifctx->myaddr, &nd->myif.ifra_addr, sizeof(ifctx->myaddr)); bcopy(&ifctx->myaddr, &nd->myif.ifra_broadaddr, sizeof(ifctx->myaddr)); ((struct sockaddr_in *) &nd->myif.ifra_broadaddr)->sin_addr.s_addr = ifctx->myaddr.sin_addr.s_addr | ~ ifctx->netmask.sin_addr.s_addr; bcopy(&ifctx->netmask, &nd->myif.ifra_mask, sizeof(ifctx->netmask)); bcopy(&ifctx->gw, &nd->mygateway, sizeof(ifctx->gw)); out: while((ifctx = STAILQ_FIRST(&gctx->interfaces)) != NULL) { STAILQ_REMOVE_HEAD(&gctx->interfaces, next); free(ifctx, M_TEMP); } free(gctx, M_TEMP); } /* * RPC: mountd/mount * Given a server pathname, get an NFS file handle. * Also, sets sin->sin_port to the NFS service port. */ static int md_mount(struct sockaddr_in *mdsin, char *path, u_char *fhp, int *fhsizep, struct nfs_args *args, struct thread *td) { struct mbuf *m; int error; int authunixok; int authcount; int authver; #define RPCPROG_MNT 100005 #define RPCMNT_VER1 1 #define RPCMNT_VER3 3 #define RPCMNT_MOUNT 1 #define AUTH_SYS 1 /* unix style (uid, gids) */ #define AUTH_UNIX AUTH_SYS /* XXX honor v2/v3 flags in args->flags? */ #ifdef BOOTP_NFSV3 /* First try NFS v3 */ /* Get port number for MOUNTD. */ error = krpc_portmap(mdsin, RPCPROG_MNT, RPCMNT_VER3, &mdsin->sin_port, td); if (error == 0) { m = xdr_string_encode(path, strlen(path)); /* Do RPC to mountd. */ error = krpc_call(mdsin, RPCPROG_MNT, RPCMNT_VER3, RPCMNT_MOUNT, &m, NULL, td); } if (error == 0) { args->flags |= NFSMNT_NFSV3; } else { #endif /* Fallback to NFS v2 */ /* Get port number for MOUNTD. */ error = krpc_portmap(mdsin, RPCPROG_MNT, RPCMNT_VER1, &mdsin->sin_port, td); if (error != 0) return error; m = xdr_string_encode(path, strlen(path)); /* Do RPC to mountd. */ error = krpc_call(mdsin, RPCPROG_MNT, RPCMNT_VER1, RPCMNT_MOUNT, &m, NULL, td); if (error != 0) return error; /* message already freed */ #ifdef BOOTP_NFSV3 } #endif if (xdr_int_decode(&m, &error) != 0 || error != 0) goto bad; if ((args->flags & NFSMNT_NFSV3) != 0) { if (xdr_int_decode(&m, fhsizep) != 0 || *fhsizep > NFSX_V3FHMAX || *fhsizep <= 0) goto bad; } else *fhsizep = NFSX_V2FH; if (xdr_opaque_decode(&m, fhp, *fhsizep) != 0) goto bad; if (args->flags & NFSMNT_NFSV3) { if (xdr_int_decode(&m, &authcount) != 0) goto bad; authunixok = 0; if (authcount < 0 || authcount > 100) goto bad; while (authcount > 0) { if (xdr_int_decode(&m, &authver) != 0) goto bad; if (authver == AUTH_UNIX) authunixok = 1; authcount--; } if (authunixok == 0) goto bad; } /* Set port number for NFS use. */ error = krpc_portmap(mdsin, NFS_PROG, (args->flags & NFSMNT_NFSV3) ? NFS_VER3 : NFS_VER2, &mdsin->sin_port, td); goto out; bad: error = EBADRPC; out: m_freem(m); return error; } SYSINIT(bootp_rootconf, SI_SUB_ROOT_CONF, SI_ORDER_FIRST, bootpc_init, NULL);