Index: stable/11/sys/dev/mlx4/mlx4_core/mlx4_main.c =================================================================== --- stable/11/sys/dev/mlx4/mlx4_core/mlx4_main.c (revision 363150) +++ stable/11/sys/dev/mlx4/mlx4_core/mlx4_main.c (revision 363151) @@ -1,4236 +1,4236 @@ /* * Copyright (c) 2004, 2005 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005, 2006, 2007, 2008, 2014 Mellanox Technologies. All rights reserved. * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define LINUXKPI_PARAM_PREFIX mlx4_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mlx4.h" #include "fw.h" #include "icm.h" #include MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("Mellanox ConnectX HCA low-level driver"); MODULE_LICENSE("Dual BSD/GPL"); struct workqueue_struct *mlx4_wq; #ifdef CONFIG_MLX4_DEBUG int mlx4_debug_level = 0; module_param_named(debug_level, mlx4_debug_level, int, 0644); MODULE_PARM_DESC(debug_level, "Enable debug tracing if > 0"); #endif /* CONFIG_MLX4_DEBUG */ #ifdef CONFIG_PCI_MSI static int msi_x = 1; module_param(msi_x, int, 0444); MODULE_PARM_DESC(msi_x, "attempt to use MSI-X if nonzero"); #else /* CONFIG_PCI_MSI */ #define msi_x (0) #endif /* CONFIG_PCI_MSI */ static uint8_t num_vfs[3] = {0, 0, 0}; static int num_vfs_argc; module_param_array(num_vfs, byte , &num_vfs_argc, 0444); MODULE_PARM_DESC(num_vfs, "enable #num_vfs functions if num_vfs > 0\n" "num_vfs=port1,port2,port1+2"); static uint8_t probe_vf[3] = {0, 0, 0}; static int probe_vfs_argc; module_param_array(probe_vf, byte, &probe_vfs_argc, 0444); MODULE_PARM_DESC(probe_vf, "number of vfs to probe by pf driver (num_vfs > 0)\n" "probe_vf=port1,port2,port1+2"); int mlx4_log_num_mgm_entry_size = MLX4_DEFAULT_MGM_LOG_ENTRY_SIZE; module_param_named(log_num_mgm_entry_size, mlx4_log_num_mgm_entry_size, int, 0444); MODULE_PARM_DESC(log_num_mgm_entry_size, "log mgm size, that defines the num" " of qp per mcg, for example:" " 10 gives 248.range: 7 <=" " log_num_mgm_entry_size <= 12." " To activate device managed" " flow steering when available, set to -1"); static bool enable_64b_cqe_eqe = true; module_param(enable_64b_cqe_eqe, bool, 0444); MODULE_PARM_DESC(enable_64b_cqe_eqe, "Enable 64 byte CQEs/EQEs when the FW supports this (default: True)"); static bool enable_4k_uar; module_param(enable_4k_uar, bool, 0444); MODULE_PARM_DESC(enable_4k_uar, "Enable using 4K UAR. Should not be enabled if have VFs which do not support 4K UARs (default: false)"); #define PF_CONTEXT_BEHAVIOUR_MASK (MLX4_FUNC_CAP_64B_EQE_CQE | \ MLX4_FUNC_CAP_EQE_CQE_STRIDE | \ MLX4_FUNC_CAP_DMFS_A0_STATIC) #define RESET_PERSIST_MASK_FLAGS (MLX4_FLAG_SRIOV) static char mlx4_description[] = "Mellanox driver" " (" DRV_VERSION ")"; static char mlx4_version[] = DRV_NAME ": Mellanox ConnectX core driver v" DRV_VERSION " (" DRV_RELDATE ")\n"; static struct mlx4_profile default_profile = { .num_qp = 1 << 18, .num_srq = 1 << 16, .rdmarc_per_qp = 1 << 4, .num_cq = 1 << 16, .num_mcg = 1 << 13, .num_mpt = 1 << 19, .num_mtt = 1 << 20, /* It is really num mtt segements */ }; static struct mlx4_profile low_mem_profile = { .num_qp = 1 << 17, .num_srq = 1 << 6, .rdmarc_per_qp = 1 << 4, .num_cq = 1 << 8, .num_mcg = 1 << 8, .num_mpt = 1 << 9, .num_mtt = 1 << 7, }; static int log_num_mac = 7; module_param_named(log_num_mac, log_num_mac, int, 0444); MODULE_PARM_DESC(log_num_mac, "Log2 max number of MACs per ETH port (1-7)"); static int log_num_vlan; module_param_named(log_num_vlan, log_num_vlan, int, 0444); MODULE_PARM_DESC(log_num_vlan, "Log2 max number of VLANs per ETH port (0-7)"); /* Log2 max number of VLANs per ETH port (0-7) */ #define MLX4_LOG_NUM_VLANS 7 #define MLX4_MIN_LOG_NUM_VLANS 0 #define MLX4_MIN_LOG_NUM_MAC 1 static bool use_prio; module_param_named(use_prio, use_prio, bool, 0444); MODULE_PARM_DESC(use_prio, "Enable steering by VLAN priority on ETH ports (deprecated)"); int log_mtts_per_seg = ilog2(MLX4_MTT_ENTRY_PER_SEG); module_param_named(log_mtts_per_seg, log_mtts_per_seg, int, 0444); MODULE_PARM_DESC(log_mtts_per_seg, "Log2 number of MTT entries per segment (1-7)"); static int port_type_array[2] = {MLX4_PORT_TYPE_NONE, MLX4_PORT_TYPE_NONE}; struct mlx4_port_config { struct list_head list; enum mlx4_port_type port_type[MLX4_MAX_PORTS + 1]; struct pci_dev *pdev; }; static atomic_t pf_loading = ATOMIC_INIT(0); static inline void mlx4_set_num_reserved_uars(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap) { /* The reserved_uars is calculated by system page size unit. * Therefore, adjustment is added when the uar page size is less * than the system page size */ dev->caps.reserved_uars = max_t(int, mlx4_get_num_reserved_uar(dev), dev_cap->reserved_uars / (1 << (PAGE_SHIFT - dev->uar_page_shift))); } int mlx4_check_port_params(struct mlx4_dev *dev, enum mlx4_port_type *port_type) { int i; if (!(dev->caps.flags & MLX4_DEV_CAP_FLAG_DPDP)) { for (i = 0; i < dev->caps.num_ports - 1; i++) { if (port_type[i] != port_type[i + 1]) { mlx4_err(dev, "Only same port types supported on this HCA, aborting\n"); return -EINVAL; } } } for (i = 0; i < dev->caps.num_ports; i++) { if (!(port_type[i] & dev->caps.supported_type[i+1])) { mlx4_err(dev, "Requested port type for port %d is not supported on this HCA\n", i + 1); return -EINVAL; } } return 0; } static void mlx4_set_port_mask(struct mlx4_dev *dev) { int i; for (i = 1; i <= dev->caps.num_ports; ++i) dev->caps.port_mask[i] = dev->caps.port_type[i]; } enum { MLX4_QUERY_FUNC_NUM_SYS_EQS = 1 << 0, }; static int mlx4_query_func(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap) { int err = 0; struct mlx4_func func; if (dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_SYS_EQS) { err = mlx4_QUERY_FUNC(dev, &func, 0); if (err) { mlx4_err(dev, "QUERY_DEV_CAP command failed, aborting.\n"); return err; } dev_cap->max_eqs = func.max_eq; dev_cap->reserved_eqs = func.rsvd_eqs; dev_cap->reserved_uars = func.rsvd_uars; err |= MLX4_QUERY_FUNC_NUM_SYS_EQS; } return err; } static void mlx4_enable_cqe_eqe_stride(struct mlx4_dev *dev) { struct mlx4_caps *dev_cap = &dev->caps; /* FW not supporting or cancelled by user */ if (!(dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_EQE_STRIDE) || !(dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_CQE_STRIDE)) return; /* Must have 64B CQE_EQE enabled by FW to use bigger stride * When FW has NCSI it may decide not to report 64B CQE/EQEs */ if (!(dev_cap->flags & MLX4_DEV_CAP_FLAG_64B_EQE) || !(dev_cap->flags & MLX4_DEV_CAP_FLAG_64B_CQE)) { dev_cap->flags2 &= ~MLX4_DEV_CAP_FLAG2_CQE_STRIDE; dev_cap->flags2 &= ~MLX4_DEV_CAP_FLAG2_EQE_STRIDE; return; } if (cache_line_size() == 128 || cache_line_size() == 256) { mlx4_dbg(dev, "Enabling CQE stride cacheLine supported\n"); /* Changing the real data inside CQE size to 32B */ dev_cap->flags &= ~MLX4_DEV_CAP_FLAG_64B_CQE; dev_cap->flags &= ~MLX4_DEV_CAP_FLAG_64B_EQE; if (mlx4_is_master(dev)) dev_cap->function_caps |= MLX4_FUNC_CAP_EQE_CQE_STRIDE; } else { if (cache_line_size() != 32 && cache_line_size() != 64) mlx4_dbg(dev, "Disabling CQE stride, cacheLine size unsupported\n"); dev_cap->flags2 &= ~MLX4_DEV_CAP_FLAG2_CQE_STRIDE; dev_cap->flags2 &= ~MLX4_DEV_CAP_FLAG2_EQE_STRIDE; } } static int _mlx4_dev_port(struct mlx4_dev *dev, int port, struct mlx4_port_cap *port_cap) { dev->caps.vl_cap[port] = port_cap->max_vl; dev->caps.ib_mtu_cap[port] = port_cap->ib_mtu; dev->phys_caps.gid_phys_table_len[port] = port_cap->max_gids; dev->phys_caps.pkey_phys_table_len[port] = port_cap->max_pkeys; /* set gid and pkey table operating lengths by default * to non-sriov values */ dev->caps.gid_table_len[port] = port_cap->max_gids; dev->caps.pkey_table_len[port] = port_cap->max_pkeys; dev->caps.port_width_cap[port] = port_cap->max_port_width; dev->caps.eth_mtu_cap[port] = port_cap->eth_mtu; dev->caps.max_tc_eth = port_cap->max_tc_eth; dev->caps.def_mac[port] = port_cap->def_mac; dev->caps.supported_type[port] = port_cap->supported_port_types; dev->caps.suggested_type[port] = port_cap->suggested_type; dev->caps.default_sense[port] = port_cap->default_sense; dev->caps.trans_type[port] = port_cap->trans_type; dev->caps.vendor_oui[port] = port_cap->vendor_oui; dev->caps.wavelength[port] = port_cap->wavelength; dev->caps.trans_code[port] = port_cap->trans_code; return 0; } static int mlx4_dev_port(struct mlx4_dev *dev, int port, struct mlx4_port_cap *port_cap) { int err = 0; err = mlx4_QUERY_PORT(dev, port, port_cap); if (err) mlx4_err(dev, "QUERY_PORT command failed.\n"); return err; } static inline void mlx4_enable_ignore_fcs(struct mlx4_dev *dev) { if (!(dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_IGNORE_FCS)) return; if (mlx4_is_mfunc(dev)) { mlx4_dbg(dev, "SRIOV mode - Disabling Ignore FCS"); dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_IGNORE_FCS; return; } if (!(dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP)) { mlx4_dbg(dev, "Keep FCS is not supported - Disabling Ignore FCS"); dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_IGNORE_FCS; return; } } #define MLX4_A0_STEERING_TABLE_SIZE 256 static int mlx4_dev_cap(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap) { int err; int i; err = mlx4_QUERY_DEV_CAP(dev, dev_cap); if (err) { mlx4_err(dev, "QUERY_DEV_CAP command failed, aborting\n"); return err; } mlx4_dev_cap_dump(dev, dev_cap); if (dev_cap->min_page_sz > PAGE_SIZE) { mlx4_err(dev, "HCA minimum page size of %d bigger than kernel PAGE_SIZE of %ld, aborting\n", dev_cap->min_page_sz, (long)PAGE_SIZE); return -ENODEV; } if (dev_cap->num_ports > MLX4_MAX_PORTS) { mlx4_err(dev, "HCA has %d ports, but we only support %d, aborting\n", dev_cap->num_ports, MLX4_MAX_PORTS); return -ENODEV; } if (dev_cap->uar_size > pci_resource_len(dev->persist->pdev, 2)) { mlx4_err(dev, "HCA reported UAR size of 0x%x bigger than PCI resource 2 size of 0x%llx, aborting\n", dev_cap->uar_size, (unsigned long long) pci_resource_len(dev->persist->pdev, 2)); return -ENODEV; } dev->caps.num_ports = dev_cap->num_ports; dev->caps.num_sys_eqs = dev_cap->num_sys_eqs; dev->phys_caps.num_phys_eqs = dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_SYS_EQS ? dev->caps.num_sys_eqs : MLX4_MAX_EQ_NUM; for (i = 1; i <= dev->caps.num_ports; ++i) { err = _mlx4_dev_port(dev, i, dev_cap->port_cap + i); if (err) { mlx4_err(dev, "QUERY_PORT command failed, aborting\n"); return err; } } dev->caps.uar_page_size = PAGE_SIZE; dev->caps.num_uars = dev_cap->uar_size / PAGE_SIZE; dev->caps.local_ca_ack_delay = dev_cap->local_ca_ack_delay; dev->caps.bf_reg_size = dev_cap->bf_reg_size; dev->caps.bf_regs_per_page = dev_cap->bf_regs_per_page; dev->caps.max_sq_sg = dev_cap->max_sq_sg; dev->caps.max_rq_sg = dev_cap->max_rq_sg; dev->caps.max_wqes = dev_cap->max_qp_sz; dev->caps.max_qp_init_rdma = dev_cap->max_requester_per_qp; dev->caps.max_srq_wqes = dev_cap->max_srq_sz; dev->caps.max_srq_sge = dev_cap->max_rq_sg - 1; dev->caps.reserved_srqs = dev_cap->reserved_srqs; dev->caps.max_sq_desc_sz = dev_cap->max_sq_desc_sz; dev->caps.max_rq_desc_sz = dev_cap->max_rq_desc_sz; /* * Subtract 1 from the limit because we need to allocate a * spare CQE so the HCA HW can tell the difference between an * empty CQ and a full CQ. */ dev->caps.max_cqes = dev_cap->max_cq_sz - 1; dev->caps.reserved_cqs = dev_cap->reserved_cqs; dev->caps.reserved_eqs = dev_cap->reserved_eqs; dev->caps.reserved_mtts = dev_cap->reserved_mtts; dev->caps.reserved_mrws = dev_cap->reserved_mrws; dev->caps.reserved_pds = dev_cap->reserved_pds; dev->caps.reserved_xrcds = (dev->caps.flags & MLX4_DEV_CAP_FLAG_XRC) ? dev_cap->reserved_xrcds : 0; dev->caps.max_xrcds = (dev->caps.flags & MLX4_DEV_CAP_FLAG_XRC) ? dev_cap->max_xrcds : 0; dev->caps.mtt_entry_sz = dev_cap->mtt_entry_sz; dev->caps.max_msg_sz = dev_cap->max_msg_sz; dev->caps.page_size_cap = ~(u32) (dev_cap->min_page_sz - 1); dev->caps.flags = dev_cap->flags; dev->caps.flags2 = dev_cap->flags2; dev->caps.bmme_flags = dev_cap->bmme_flags; dev->caps.reserved_lkey = dev_cap->reserved_lkey; dev->caps.stat_rate_support = dev_cap->stat_rate_support; dev->caps.max_gso_sz = dev_cap->max_gso_sz; dev->caps.max_rss_tbl_sz = dev_cap->max_rss_tbl_sz; /* Save uar page shift */ if (!mlx4_is_slave(dev)) { /* Virtual PCI function needs to determine UAR page size from * firmware. Only master PCI function can set the uar page size */ if (enable_4k_uar) dev->uar_page_shift = DEFAULT_UAR_PAGE_SHIFT; else dev->uar_page_shift = PAGE_SHIFT; mlx4_set_num_reserved_uars(dev, dev_cap); } if (dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_PHV_EN) { struct mlx4_init_hca_param hca_param; memset(&hca_param, 0, sizeof(hca_param)); err = mlx4_QUERY_HCA(dev, &hca_param); /* Turn off PHV_EN flag in case phv_check_en is set. * phv_check_en is a HW check that parse the packet and verify * phv bit was reported correctly in the wqe. To allow QinQ * PHV_EN flag should be set and phv_check_en must be cleared * otherwise QinQ packets will be drop by the HW. */ if (err || hca_param.phv_check_en) dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_PHV_EN; } /* Sense port always allowed on supported devices for ConnectX-1 and -2 */ if (mlx4_priv(dev)->pci_dev_data & MLX4_PCI_DEV_FORCE_SENSE_PORT) dev->caps.flags |= MLX4_DEV_CAP_FLAG_SENSE_SUPPORT; /* Don't do sense port on multifunction devices (for now at least) */ if (mlx4_is_mfunc(dev)) dev->caps.flags &= ~MLX4_DEV_CAP_FLAG_SENSE_SUPPORT; if (mlx4_low_memory_profile()) { dev->caps.log_num_macs = MLX4_MIN_LOG_NUM_MAC; dev->caps.log_num_vlans = MLX4_MIN_LOG_NUM_VLANS; } else { dev->caps.log_num_macs = log_num_mac; dev->caps.log_num_vlans = MLX4_LOG_NUM_VLANS; } for (i = 1; i <= dev->caps.num_ports; ++i) { dev->caps.port_type[i] = MLX4_PORT_TYPE_NONE; if (dev->caps.supported_type[i]) { /* if only ETH is supported - assign ETH */ if (dev->caps.supported_type[i] == MLX4_PORT_TYPE_ETH) dev->caps.port_type[i] = MLX4_PORT_TYPE_ETH; /* if only IB is supported, assign IB */ else if (dev->caps.supported_type[i] == MLX4_PORT_TYPE_IB) dev->caps.port_type[i] = MLX4_PORT_TYPE_IB; else { /* if IB and ETH are supported, we set the port * type according to user selection of port type; * if user selected none, take the FW hint */ if (port_type_array[i - 1] == MLX4_PORT_TYPE_NONE) dev->caps.port_type[i] = dev->caps.suggested_type[i] ? MLX4_PORT_TYPE_ETH : MLX4_PORT_TYPE_IB; else dev->caps.port_type[i] = port_type_array[i - 1]; } } /* * Link sensing is allowed on the port if 3 conditions are true: * 1. Both protocols are supported on the port. * 2. Different types are supported on the port * 3. FW declared that it supports link sensing */ mlx4_priv(dev)->sense.sense_allowed[i] = ((dev->caps.supported_type[i] == MLX4_PORT_TYPE_AUTO) && (dev->caps.flags & MLX4_DEV_CAP_FLAG_DPDP) && (dev->caps.flags & MLX4_DEV_CAP_FLAG_SENSE_SUPPORT)); /* * If "default_sense" bit is set, we move the port to "AUTO" mode * and perform sense_port FW command to try and set the correct * port type from beginning */ if (mlx4_priv(dev)->sense.sense_allowed[i] && dev->caps.default_sense[i]) { enum mlx4_port_type sensed_port = MLX4_PORT_TYPE_NONE; dev->caps.possible_type[i] = MLX4_PORT_TYPE_AUTO; mlx4_SENSE_PORT(dev, i, &sensed_port); if (sensed_port != MLX4_PORT_TYPE_NONE) dev->caps.port_type[i] = sensed_port; } else { dev->caps.possible_type[i] = dev->caps.port_type[i]; } if (dev->caps.log_num_macs > dev_cap->port_cap[i].log_max_macs) { dev->caps.log_num_macs = dev_cap->port_cap[i].log_max_macs; mlx4_warn(dev, "Requested number of MACs is too much for port %d, reducing to %d\n", i, 1 << dev->caps.log_num_macs); } if (dev->caps.log_num_vlans > dev_cap->port_cap[i].log_max_vlans) { dev->caps.log_num_vlans = dev_cap->port_cap[i].log_max_vlans; mlx4_warn(dev, "Requested number of VLANs is too much for port %d, reducing to %d\n", i, 1 << dev->caps.log_num_vlans); } } if (mlx4_is_master(dev) && (dev->caps.num_ports == 2) && (port_type_array[0] == MLX4_PORT_TYPE_IB) && (port_type_array[1] == MLX4_PORT_TYPE_ETH)) { mlx4_warn(dev, "Granular QoS per VF not supported with IB/Eth configuration\n"); dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_QOS_VPP; } dev->caps.max_counters = dev_cap->max_counters; dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW] = dev_cap->reserved_qps; dev->caps.reserved_qps_cnt[MLX4_QP_REGION_ETH_ADDR] = dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FC_ADDR] = (1 << dev->caps.log_num_macs) * (1 << dev->caps.log_num_vlans) * dev->caps.num_ports; dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FC_EXCH] = MLX4_NUM_FEXCH; if (dev_cap->dmfs_high_rate_qpn_base > 0 && dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_FS_EN) dev->caps.dmfs_high_rate_qpn_base = dev_cap->dmfs_high_rate_qpn_base; else dev->caps.dmfs_high_rate_qpn_base = dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW]; if (dev_cap->dmfs_high_rate_qpn_range > 0 && dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_FS_EN) { dev->caps.dmfs_high_rate_qpn_range = dev_cap->dmfs_high_rate_qpn_range; dev->caps.dmfs_high_steer_mode = MLX4_STEERING_DMFS_A0_DEFAULT; dev->caps.flags2 |= MLX4_DEV_CAP_FLAG2_FS_A0; } else { dev->caps.dmfs_high_steer_mode = MLX4_STEERING_DMFS_A0_NOT_SUPPORTED; dev->caps.dmfs_high_rate_qpn_base = dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW]; dev->caps.dmfs_high_rate_qpn_range = MLX4_A0_STEERING_TABLE_SIZE; } dev->caps.rl_caps = dev_cap->rl_caps; dev->caps.reserved_qps_cnt[MLX4_QP_REGION_RSS_RAW_ETH] = dev->caps.dmfs_high_rate_qpn_range; dev->caps.reserved_qps = dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW] + dev->caps.reserved_qps_cnt[MLX4_QP_REGION_ETH_ADDR] + dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FC_ADDR] + dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FC_EXCH]; dev->caps.sqp_demux = (mlx4_is_master(dev)) ? MLX4_MAX_NUM_SLAVES : 0; if (!enable_64b_cqe_eqe && !mlx4_is_slave(dev)) { if (dev_cap->flags & (MLX4_DEV_CAP_FLAG_64B_CQE | MLX4_DEV_CAP_FLAG_64B_EQE)) { mlx4_warn(dev, "64B EQEs/CQEs supported by the device but not enabled\n"); dev->caps.flags &= ~MLX4_DEV_CAP_FLAG_64B_CQE; dev->caps.flags &= ~MLX4_DEV_CAP_FLAG_64B_EQE; } if (dev_cap->flags2 & (MLX4_DEV_CAP_FLAG2_CQE_STRIDE | MLX4_DEV_CAP_FLAG2_EQE_STRIDE)) { mlx4_warn(dev, "Disabling EQE/CQE stride per user request\n"); dev_cap->flags2 &= ~MLX4_DEV_CAP_FLAG2_CQE_STRIDE; dev_cap->flags2 &= ~MLX4_DEV_CAP_FLAG2_EQE_STRIDE; } } if ((dev->caps.flags & (MLX4_DEV_CAP_FLAG_64B_CQE | MLX4_DEV_CAP_FLAG_64B_EQE)) && mlx4_is_master(dev)) dev->caps.function_caps |= MLX4_FUNC_CAP_64B_EQE_CQE; if (!mlx4_is_slave(dev)) { mlx4_enable_cqe_eqe_stride(dev); dev->caps.alloc_res_qp_mask = (dev->caps.bf_reg_size ? MLX4_RESERVE_ETH_BF_QP : 0) | MLX4_RESERVE_A0_QP; if (!(dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_ETS_CFG) && dev->caps.flags & MLX4_DEV_CAP_FLAG_SET_ETH_SCHED) { mlx4_warn(dev, "Old device ETS support detected\n"); mlx4_warn(dev, "Consider upgrading device FW.\n"); dev->caps.flags2 |= MLX4_DEV_CAP_FLAG2_ETS_CFG; } } else { dev->caps.alloc_res_qp_mask = 0; } mlx4_enable_ignore_fcs(dev); return 0; } static int mlx4_get_pcie_dev_link_caps(struct mlx4_dev *dev, enum pci_bus_speed *speed, enum pcie_link_width *width) { u32 lnkcap1, lnkcap2; int err1, err2; #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ *speed = PCI_SPEED_UNKNOWN; *width = PCIE_LNK_WIDTH_UNKNOWN; err1 = pcie_capability_read_dword(dev->persist->pdev, PCI_EXP_LNKCAP, &lnkcap1); err2 = pcie_capability_read_dword(dev->persist->pdev, PCI_EXP_LNKCAP2, &lnkcap2); if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) *speed = PCIE_SPEED_8_0GT; else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) *speed = PCIE_SPEED_5_0GT; else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) *speed = PCIE_SPEED_2_5GT; } if (!err1) { *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; if (!lnkcap2) { /* pre-r3.0 */ if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) *speed = PCIE_SPEED_5_0GT; else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) *speed = PCIE_SPEED_2_5GT; } } if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) { return err1 ? err1 : err2 ? err2 : -EINVAL; } return 0; } static void mlx4_check_pcie_caps(struct mlx4_dev *dev) { enum pcie_link_width width, width_cap; enum pci_bus_speed speed, speed_cap; int err; #define PCIE_SPEED_STR(speed) \ (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ "Unknown") err = mlx4_get_pcie_dev_link_caps(dev, &speed_cap, &width_cap); if (err) { mlx4_warn(dev, "Unable to determine PCIe device BW capabilities\n"); return; } err = pcie_get_minimum_link(dev->persist->pdev, &speed, &width); if (err || speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { mlx4_warn(dev, "Unable to determine PCI device chain minimum BW\n"); return; } if (width != width_cap || speed != speed_cap) mlx4_warn(dev, "PCIe BW is different than device's capability\n"); mlx4_info(dev, "PCIe link speed is %s, device supports %s\n", PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); mlx4_info(dev, "PCIe link width is x%d, device supports x%d\n", width, width_cap); return; } /*The function checks if there are live vf, return the num of them*/ static int mlx4_how_many_lives_vf(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); struct mlx4_slave_state *s_state; int i; int ret = 0; for (i = 1/*the ppf is 0*/; i < dev->num_slaves; ++i) { s_state = &priv->mfunc.master.slave_state[i]; if (s_state->active && s_state->last_cmd != MLX4_COMM_CMD_RESET) { mlx4_warn(dev, "%s: slave: %d is still active\n", __func__, i); ret++; } } return ret; } int mlx4_get_parav_qkey(struct mlx4_dev *dev, u32 qpn, u32 *qkey) { u32 qk = MLX4_RESERVED_QKEY_BASE; if (qpn >= dev->phys_caps.base_tunnel_sqpn + 8 * MLX4_MFUNC_MAX || qpn < dev->phys_caps.base_proxy_sqpn) return -EINVAL; if (qpn >= dev->phys_caps.base_tunnel_sqpn) /* tunnel qp */ qk += qpn - dev->phys_caps.base_tunnel_sqpn; else qk += qpn - dev->phys_caps.base_proxy_sqpn; *qkey = qk; return 0; } EXPORT_SYMBOL(mlx4_get_parav_qkey); void mlx4_sync_pkey_table(struct mlx4_dev *dev, int slave, int port, int i, int val) { struct mlx4_priv *priv = container_of(dev, struct mlx4_priv, dev); if (!mlx4_is_master(dev)) return; priv->virt2phys_pkey[slave][port - 1][i] = val; } EXPORT_SYMBOL(mlx4_sync_pkey_table); void mlx4_put_slave_node_guid(struct mlx4_dev *dev, int slave, __be64 guid) { struct mlx4_priv *priv = container_of(dev, struct mlx4_priv, dev); if (!mlx4_is_master(dev)) return; priv->slave_node_guids[slave] = guid; } EXPORT_SYMBOL(mlx4_put_slave_node_guid); __be64 mlx4_get_slave_node_guid(struct mlx4_dev *dev, int slave) { struct mlx4_priv *priv = container_of(dev, struct mlx4_priv, dev); if (!mlx4_is_master(dev)) return 0; return priv->slave_node_guids[slave]; } EXPORT_SYMBOL(mlx4_get_slave_node_guid); int mlx4_is_slave_active(struct mlx4_dev *dev, int slave) { struct mlx4_priv *priv = mlx4_priv(dev); struct mlx4_slave_state *s_slave; if (!mlx4_is_master(dev)) return 0; s_slave = &priv->mfunc.master.slave_state[slave]; return !!s_slave->active; } EXPORT_SYMBOL(mlx4_is_slave_active); static void slave_adjust_steering_mode(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap, struct mlx4_init_hca_param *hca_param) { dev->caps.steering_mode = hca_param->steering_mode; if (dev->caps.steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED) { dev->caps.num_qp_per_mgm = dev_cap->fs_max_num_qp_per_entry; dev->caps.fs_log_max_ucast_qp_range_size = dev_cap->fs_log_max_ucast_qp_range_size; } else dev->caps.num_qp_per_mgm = 4 * ((1 << hca_param->log_mc_entry_sz)/16 - 2); mlx4_dbg(dev, "Steering mode is: %s\n", mlx4_steering_mode_str(dev->caps.steering_mode)); } static int mlx4_slave_cap(struct mlx4_dev *dev) { int err; u32 page_size; struct mlx4_dev_cap dev_cap; struct mlx4_func_cap func_cap; struct mlx4_init_hca_param hca_param; u8 i; memset(&hca_param, 0, sizeof(hca_param)); err = mlx4_QUERY_HCA(dev, &hca_param); if (err) { mlx4_err(dev, "QUERY_HCA command failed, aborting\n"); return err; } /* fail if the hca has an unknown global capability * at this time global_caps should be always zeroed */ if (hca_param.global_caps) { mlx4_err(dev, "Unknown hca global capabilities\n"); return -ENOSYS; } mlx4_log_num_mgm_entry_size = hca_param.log_mc_entry_sz; dev->caps.hca_core_clock = hca_param.hca_core_clock; memset(&dev_cap, 0, sizeof(dev_cap)); dev->caps.max_qp_dest_rdma = 1 << hca_param.log_rd_per_qp; err = mlx4_dev_cap(dev, &dev_cap); if (err) { mlx4_err(dev, "QUERY_DEV_CAP command failed, aborting\n"); return err; } err = mlx4_QUERY_FW(dev); if (err) mlx4_err(dev, "QUERY_FW command failed: could not get FW version\n"); page_size = ~dev->caps.page_size_cap + 1; mlx4_warn(dev, "HCA minimum page size:%d\n", page_size); if (page_size > PAGE_SIZE) { mlx4_err(dev, "HCA minimum page size of %d bigger than kernel PAGE_SIZE of %ld, aborting\n", page_size, (long)PAGE_SIZE); return -ENODEV; } /* Set uar_page_shift for VF */ dev->uar_page_shift = hca_param.uar_page_sz + 12; /* Make sure the master uar page size is valid */ if (dev->uar_page_shift > PAGE_SHIFT) { mlx4_err(dev, "Invalid configuration: uar page size is larger than system page size\n"); return -ENODEV; } /* Set reserved_uars based on the uar_page_shift */ mlx4_set_num_reserved_uars(dev, &dev_cap); /* Although uar page size in FW differs from system page size, * upper software layers (mlx4_ib, mlx4_en and part of mlx4_core) * still works with assumption that uar page size == system page size */ dev->caps.uar_page_size = PAGE_SIZE; memset(&func_cap, 0, sizeof(func_cap)); err = mlx4_QUERY_FUNC_CAP(dev, 0, &func_cap); if (err) { mlx4_err(dev, "QUERY_FUNC_CAP general command failed, aborting (%d)\n", err); return err; } if ((func_cap.pf_context_behaviour | PF_CONTEXT_BEHAVIOUR_MASK) != PF_CONTEXT_BEHAVIOUR_MASK) { mlx4_err(dev, "Unknown pf context behaviour %x known flags %x\n", func_cap.pf_context_behaviour, PF_CONTEXT_BEHAVIOUR_MASK); return -ENOSYS; } dev->caps.num_ports = func_cap.num_ports; dev->quotas.qp = func_cap.qp_quota; dev->quotas.srq = func_cap.srq_quota; dev->quotas.cq = func_cap.cq_quota; dev->quotas.mpt = func_cap.mpt_quota; dev->quotas.mtt = func_cap.mtt_quota; dev->caps.num_qps = 1 << hca_param.log_num_qps; dev->caps.num_srqs = 1 << hca_param.log_num_srqs; dev->caps.num_cqs = 1 << hca_param.log_num_cqs; dev->caps.num_mpts = 1 << hca_param.log_mpt_sz; dev->caps.num_eqs = func_cap.max_eq; dev->caps.reserved_eqs = func_cap.reserved_eq; dev->caps.reserved_lkey = func_cap.reserved_lkey; dev->caps.num_pds = MLX4_NUM_PDS; dev->caps.num_mgms = 0; dev->caps.num_amgms = 0; if (dev->caps.num_ports > MLX4_MAX_PORTS) { mlx4_err(dev, "HCA has %d ports, but we only support %d, aborting\n", dev->caps.num_ports, MLX4_MAX_PORTS); return -ENODEV; } mlx4_replace_zero_macs(dev); dev->caps.qp0_qkey = kcalloc(dev->caps.num_ports, sizeof(u32), GFP_KERNEL); dev->caps.qp0_tunnel = kcalloc(dev->caps.num_ports, sizeof (u32), GFP_KERNEL); dev->caps.qp0_proxy = kcalloc(dev->caps.num_ports, sizeof (u32), GFP_KERNEL); dev->caps.qp1_tunnel = kcalloc(dev->caps.num_ports, sizeof (u32), GFP_KERNEL); dev->caps.qp1_proxy = kcalloc(dev->caps.num_ports, sizeof (u32), GFP_KERNEL); if (!dev->caps.qp0_tunnel || !dev->caps.qp0_proxy || !dev->caps.qp1_tunnel || !dev->caps.qp1_proxy || !dev->caps.qp0_qkey) { err = -ENOMEM; goto err_mem; } for (i = 1; i <= dev->caps.num_ports; ++i) { err = mlx4_QUERY_FUNC_CAP(dev, i, &func_cap); if (err) { mlx4_err(dev, "QUERY_FUNC_CAP port command failed for port %d, aborting (%d)\n", i, err); goto err_mem; } dev->caps.qp0_qkey[i - 1] = func_cap.qp0_qkey; dev->caps.qp0_tunnel[i - 1] = func_cap.qp0_tunnel_qpn; dev->caps.qp0_proxy[i - 1] = func_cap.qp0_proxy_qpn; dev->caps.qp1_tunnel[i - 1] = func_cap.qp1_tunnel_qpn; dev->caps.qp1_proxy[i - 1] = func_cap.qp1_proxy_qpn; dev->caps.port_mask[i] = dev->caps.port_type[i]; dev->caps.phys_port_id[i] = func_cap.phys_port_id; err = mlx4_get_slave_pkey_gid_tbl_len(dev, i, &dev->caps.gid_table_len[i], &dev->caps.pkey_table_len[i]); if (err) goto err_mem; } if (dev->caps.uar_page_size * (dev->caps.num_uars - dev->caps.reserved_uars) > pci_resource_len(dev->persist->pdev, 2)) { mlx4_err(dev, "HCA reported UAR region size of 0x%x bigger than PCI resource 2 size of 0x%llx, aborting\n", dev->caps.uar_page_size * dev->caps.num_uars, (unsigned long long) pci_resource_len(dev->persist->pdev, 2)); err = -ENOMEM; goto err_mem; } if (hca_param.dev_cap_enabled & MLX4_DEV_CAP_64B_EQE_ENABLED) { dev->caps.eqe_size = 64; dev->caps.eqe_factor = 1; } else { dev->caps.eqe_size = 32; dev->caps.eqe_factor = 0; } if (hca_param.dev_cap_enabled & MLX4_DEV_CAP_64B_CQE_ENABLED) { dev->caps.cqe_size = 64; dev->caps.userspace_caps |= MLX4_USER_DEV_CAP_LARGE_CQE; } else { dev->caps.cqe_size = 32; } if (hca_param.dev_cap_enabled & MLX4_DEV_CAP_EQE_STRIDE_ENABLED) { dev->caps.eqe_size = hca_param.eqe_size; dev->caps.eqe_factor = 0; } if (hca_param.dev_cap_enabled & MLX4_DEV_CAP_CQE_STRIDE_ENABLED) { dev->caps.cqe_size = hca_param.cqe_size; /* User still need to know when CQE > 32B */ dev->caps.userspace_caps |= MLX4_USER_DEV_CAP_LARGE_CQE; } dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_TS; mlx4_warn(dev, "Timestamping is not supported in slave mode\n"); slave_adjust_steering_mode(dev, &dev_cap, &hca_param); mlx4_dbg(dev, "RSS support for IP fragments is %s\n", hca_param.rss_ip_frags ? "on" : "off"); if (func_cap.extra_flags & MLX4_QUERY_FUNC_FLAGS_BF_RES_QP && dev->caps.bf_reg_size) dev->caps.alloc_res_qp_mask |= MLX4_RESERVE_ETH_BF_QP; if (func_cap.extra_flags & MLX4_QUERY_FUNC_FLAGS_A0_RES_QP) dev->caps.alloc_res_qp_mask |= MLX4_RESERVE_A0_QP; return 0; err_mem: kfree(dev->caps.qp0_qkey); kfree(dev->caps.qp0_tunnel); kfree(dev->caps.qp0_proxy); kfree(dev->caps.qp1_tunnel); kfree(dev->caps.qp1_proxy); dev->caps.qp0_qkey = NULL; dev->caps.qp0_tunnel = NULL; dev->caps.qp0_proxy = NULL; dev->caps.qp1_tunnel = NULL; dev->caps.qp1_proxy = NULL; return err; } static void mlx4_request_modules(struct mlx4_dev *dev) { int port; int has_ib_port = false; int has_eth_port = false; #define EN_DRV_NAME "mlx4_en" #define IB_DRV_NAME "mlx4_ib" for (port = 1; port <= dev->caps.num_ports; port++) { if (dev->caps.port_type[port] == MLX4_PORT_TYPE_IB) has_ib_port = true; else if (dev->caps.port_type[port] == MLX4_PORT_TYPE_ETH) has_eth_port = true; } if (has_eth_port) request_module_nowait(EN_DRV_NAME); if (has_ib_port || (dev->caps.flags & MLX4_DEV_CAP_FLAG_IBOE)) request_module_nowait(IB_DRV_NAME); } /* * Change the port configuration of the device. * Every user of this function must hold the port mutex. */ int mlx4_change_port_types(struct mlx4_dev *dev, enum mlx4_port_type *port_types) { int err = 0; int change = 0; int port; for (port = 0; port < dev->caps.num_ports; port++) { /* Change the port type only if the new type is different * from the current, and not set to Auto */ if (port_types[port] != dev->caps.port_type[port + 1]) change = 1; } if (change) { mlx4_unregister_device(dev); for (port = 1; port <= dev->caps.num_ports; port++) { mlx4_CLOSE_PORT(dev, port); dev->caps.port_type[port] = port_types[port - 1]; err = mlx4_SET_PORT(dev, port, -1); if (err) { mlx4_err(dev, "Failed to set port %d, aborting\n", port); goto out; } } mlx4_set_port_mask(dev); err = mlx4_register_device(dev); if (err) { mlx4_err(dev, "Failed to register device\n"); goto out; } mlx4_request_modules(dev); } out: return err; } static ssize_t show_port_type(struct device *dev, struct device_attribute *attr, char *buf) { struct mlx4_port_info *info = container_of(attr, struct mlx4_port_info, port_attr); struct mlx4_dev *mdev = info->dev; char type[8]; sprintf(type, "%s", (mdev->caps.port_type[info->port] == MLX4_PORT_TYPE_IB) ? "ib" : "eth"); if (mdev->caps.possible_type[info->port] == MLX4_PORT_TYPE_AUTO) sprintf(buf, "auto (%s)\n", type); else sprintf(buf, "%s\n", type); return strlen(buf); } static int __set_port_type(struct mlx4_port_info *info, enum mlx4_port_type port_type) { struct mlx4_dev *mdev = info->dev; struct mlx4_priv *priv = mlx4_priv(mdev); enum mlx4_port_type types[MLX4_MAX_PORTS]; enum mlx4_port_type new_types[MLX4_MAX_PORTS]; int i; int err = 0; if ((port_type & mdev->caps.supported_type[info->port]) != port_type) { mlx4_err(mdev, "Requested port type for port %d is not supported on this HCA\n", info->port); err = -EINVAL; goto err_sup; } mlx4_stop_sense(mdev); mutex_lock(&priv->port_mutex); info->tmp_type = port_type; /* Possible type is always the one that was delivered */ mdev->caps.possible_type[info->port] = info->tmp_type; for (i = 0; i < mdev->caps.num_ports; i++) { types[i] = priv->port[i+1].tmp_type ? priv->port[i+1].tmp_type : mdev->caps.possible_type[i+1]; if (types[i] == MLX4_PORT_TYPE_AUTO) types[i] = mdev->caps.port_type[i+1]; } if (!(mdev->caps.flags & MLX4_DEV_CAP_FLAG_DPDP) && !(mdev->caps.flags & MLX4_DEV_CAP_FLAG_SENSE_SUPPORT)) { for (i = 1; i <= mdev->caps.num_ports; i++) { if (mdev->caps.possible_type[i] == MLX4_PORT_TYPE_AUTO) { mdev->caps.possible_type[i] = mdev->caps.port_type[i]; err = -EINVAL; } } } if (err) { mlx4_err(mdev, "Auto sensing is not supported on this HCA. Set only 'eth' or 'ib' for both ports (should be the same)\n"); goto out; } mlx4_do_sense_ports(mdev, new_types, types); err = mlx4_check_port_params(mdev, new_types); if (err) goto out; /* We are about to apply the changes after the configuration * was verified, no need to remember the temporary types * any more */ for (i = 0; i < mdev->caps.num_ports; i++) priv->port[i + 1].tmp_type = 0; err = mlx4_change_port_types(mdev, new_types); out: mutex_unlock(&priv->port_mutex); mlx4_start_sense(mdev); err_sup: return err; } static ssize_t set_port_type(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mlx4_port_info *info = container_of(attr, struct mlx4_port_info, port_attr); struct mlx4_dev *mdev = info->dev; enum mlx4_port_type port_type; static DEFINE_MUTEX(set_port_type_mutex); int err; mutex_lock(&set_port_type_mutex); if (!strcmp(buf, "ib\n")) { port_type = MLX4_PORT_TYPE_IB; } else if (!strcmp(buf, "eth\n")) { port_type = MLX4_PORT_TYPE_ETH; } else if (!strcmp(buf, "auto\n")) { port_type = MLX4_PORT_TYPE_AUTO; } else { mlx4_err(mdev, "%s is not supported port type\n", buf); err = -EINVAL; goto err_out; } err = __set_port_type(info, port_type); err_out: mutex_unlock(&set_port_type_mutex); return err ? err : count; } enum ibta_mtu { IB_MTU_256 = 1, IB_MTU_512 = 2, IB_MTU_1024 = 3, IB_MTU_2048 = 4, IB_MTU_4096 = 5 }; static inline int int_to_ibta_mtu(int mtu) { switch (mtu) { case 256: return IB_MTU_256; case 512: return IB_MTU_512; case 1024: return IB_MTU_1024; case 2048: return IB_MTU_2048; case 4096: return IB_MTU_4096; default: return -1; } } static inline int ibta_mtu_to_int(enum ibta_mtu mtu) { switch (mtu) { case IB_MTU_256: return 256; case IB_MTU_512: return 512; case IB_MTU_1024: return 1024; case IB_MTU_2048: return 2048; case IB_MTU_4096: return 4096; default: return -1; } } static ssize_t show_port_ib_mtu(struct device *dev, struct device_attribute *attr, char *buf) { struct mlx4_port_info *info = container_of(attr, struct mlx4_port_info, port_mtu_attr); struct mlx4_dev *mdev = info->dev; sprintf(buf, "%d\n", ibta_mtu_to_int(mdev->caps.port_ib_mtu[info->port])); return strlen(buf); } static ssize_t set_port_ib_mtu(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct mlx4_port_info *info = container_of(attr, struct mlx4_port_info, port_mtu_attr); struct mlx4_dev *mdev = info->dev; struct mlx4_priv *priv = mlx4_priv(mdev); int err, port, mtu, ibta_mtu = -1; if (mdev->caps.port_type[info->port] == MLX4_PORT_TYPE_ETH) { mlx4_warn(mdev, "port level mtu is only used for IB ports\n"); return -EINVAL; } err = kstrtoint(buf, 0, &mtu); if (!err) ibta_mtu = int_to_ibta_mtu(mtu); if (err || ibta_mtu < 0) { mlx4_err(mdev, "%s is invalid IBTA mtu\n", buf); return -EINVAL; } mdev->caps.port_ib_mtu[info->port] = ibta_mtu; mlx4_stop_sense(mdev); mutex_lock(&priv->port_mutex); mlx4_unregister_device(mdev); for (port = 1; port <= mdev->caps.num_ports; port++) { mlx4_CLOSE_PORT(mdev, port); err = mlx4_SET_PORT(mdev, port, -1); if (err) { mlx4_err(mdev, "Failed to set port %d, aborting\n", port); goto err_set_port; } } err = mlx4_register_device(mdev); err_set_port: mutex_unlock(&priv->port_mutex); mlx4_start_sense(mdev); return err ? err : count; } /* bond for multi-function device */ #define MAX_MF_BOND_ALLOWED_SLAVES 63 static int mlx4_mf_bond(struct mlx4_dev *dev) { int err = 0; int nvfs; struct mlx4_slaves_pport slaves_port1; struct mlx4_slaves_pport slaves_port2; DECLARE_BITMAP(slaves_port_1_2, MLX4_MFUNC_MAX); slaves_port1 = mlx4_phys_to_slaves_pport(dev, 1); slaves_port2 = mlx4_phys_to_slaves_pport(dev, 2); bitmap_and(slaves_port_1_2, slaves_port1.slaves, slaves_port2.slaves, dev->persist->num_vfs + 1); /* only single port vfs are allowed */ if (bitmap_weight(slaves_port_1_2, dev->persist->num_vfs + 1) > 1) { mlx4_warn(dev, "HA mode unsupported for dual ported VFs\n"); return -EINVAL; } /* number of virtual functions is number of total functions minus one * physical function for each port. */ nvfs = bitmap_weight(slaves_port1.slaves, dev->persist->num_vfs + 1) + bitmap_weight(slaves_port2.slaves, dev->persist->num_vfs + 1) - 2; /* limit on maximum allowed VFs */ if (nvfs > MAX_MF_BOND_ALLOWED_SLAVES) { mlx4_warn(dev, "HA mode is not supported for %d VFs (max %d are allowed)\n", nvfs, MAX_MF_BOND_ALLOWED_SLAVES); return -EINVAL; } if (dev->caps.steering_mode != MLX4_STEERING_MODE_DEVICE_MANAGED) { mlx4_warn(dev, "HA mode unsupported for NON DMFS steering\n"); return -EINVAL; } err = mlx4_bond_mac_table(dev); if (err) return err; err = mlx4_bond_vlan_table(dev); if (err) goto err1; err = mlx4_bond_fs_rules(dev); if (err) goto err2; return 0; err2: (void)mlx4_unbond_vlan_table(dev); err1: (void)mlx4_unbond_mac_table(dev); return err; } static int mlx4_mf_unbond(struct mlx4_dev *dev) { int ret, ret1; ret = mlx4_unbond_fs_rules(dev); if (ret) mlx4_warn(dev, "multifunction unbond for flow rules failedi (%d)\n", ret); ret1 = mlx4_unbond_mac_table(dev); if (ret1) { mlx4_warn(dev, "multifunction unbond for MAC table failed (%d)\n", ret1); ret = ret1; } ret1 = mlx4_unbond_vlan_table(dev); if (ret1) { mlx4_warn(dev, "multifunction unbond for VLAN table failed (%d)\n", ret1); ret = ret1; } return ret; } int mlx4_bond(struct mlx4_dev *dev) { int ret = 0; struct mlx4_priv *priv = mlx4_priv(dev); mutex_lock(&priv->bond_mutex); if (!mlx4_is_bonded(dev)) { ret = mlx4_do_bond(dev, true); if (ret) mlx4_err(dev, "Failed to bond device: %d\n", ret); if (!ret && mlx4_is_master(dev)) { ret = mlx4_mf_bond(dev); if (ret) { mlx4_err(dev, "bond for multifunction failed\n"); mlx4_do_bond(dev, false); } } } mutex_unlock(&priv->bond_mutex); if (!ret) mlx4_dbg(dev, "Device is bonded\n"); return ret; } EXPORT_SYMBOL_GPL(mlx4_bond); int mlx4_unbond(struct mlx4_dev *dev) { int ret = 0; struct mlx4_priv *priv = mlx4_priv(dev); mutex_lock(&priv->bond_mutex); if (mlx4_is_bonded(dev)) { int ret2 = 0; ret = mlx4_do_bond(dev, false); if (ret) mlx4_err(dev, "Failed to unbond device: %d\n", ret); if (mlx4_is_master(dev)) ret2 = mlx4_mf_unbond(dev); if (ret2) { mlx4_warn(dev, "Failed to unbond device for multifunction (%d)\n", ret2); ret = ret2; } } mutex_unlock(&priv->bond_mutex); if (!ret) mlx4_dbg(dev, "Device is unbonded\n"); return ret; } EXPORT_SYMBOL_GPL(mlx4_unbond); int mlx4_port_map_set(struct mlx4_dev *dev, struct mlx4_port_map *v2p) { u8 port1 = v2p->port1; u8 port2 = v2p->port2; struct mlx4_priv *priv = mlx4_priv(dev); int err; if (!(dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_PORT_REMAP)) return -ENOTSUPP; mutex_lock(&priv->bond_mutex); /* zero means keep current mapping for this port */ if (port1 == 0) port1 = priv->v2p.port1; if (port2 == 0) port2 = priv->v2p.port2; if ((port1 < 1) || (port1 > MLX4_MAX_PORTS) || (port2 < 1) || (port2 > MLX4_MAX_PORTS) || (port1 == 2 && port2 == 1)) { /* besides boundary checks cross mapping makes * no sense and therefore not allowed */ err = -EINVAL; } else if ((port1 == priv->v2p.port1) && (port2 == priv->v2p.port2)) { err = 0; } else { err = mlx4_virt2phy_port_map(dev, port1, port2); if (!err) { mlx4_dbg(dev, "port map changed: [%d][%d]\n", port1, port2); priv->v2p.port1 = port1; priv->v2p.port2 = port2; } else { mlx4_err(dev, "Failed to change port mape: %d\n", err); } } mutex_unlock(&priv->bond_mutex); return err; } EXPORT_SYMBOL_GPL(mlx4_port_map_set); static int mlx4_load_fw(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); int err; priv->fw.fw_icm = mlx4_alloc_icm(dev, priv->fw.fw_pages, GFP_HIGHUSER | __GFP_NOWARN, 0); if (!priv->fw.fw_icm) { mlx4_err(dev, "Couldn't allocate FW area, aborting\n"); return -ENOMEM; } err = mlx4_MAP_FA(dev, priv->fw.fw_icm); if (err) { mlx4_err(dev, "MAP_FA command failed, aborting\n"); goto err_free; } err = mlx4_RUN_FW(dev); if (err) { mlx4_err(dev, "RUN_FW command failed, aborting\n"); goto err_unmap_fa; } return 0; err_unmap_fa: mlx4_UNMAP_FA(dev); err_free: mlx4_free_icm(dev, priv->fw.fw_icm, 0); return err; } static int mlx4_init_cmpt_table(struct mlx4_dev *dev, u64 cmpt_base, int cmpt_entry_sz) { struct mlx4_priv *priv = mlx4_priv(dev); int err; int num_eqs; err = mlx4_init_icm_table(dev, &priv->qp_table.cmpt_table, cmpt_base + ((u64) (MLX4_CMPT_TYPE_QP * cmpt_entry_sz) << MLX4_CMPT_SHIFT), cmpt_entry_sz, dev->caps.num_qps, dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW], 0, 0); if (err) goto err; err = mlx4_init_icm_table(dev, &priv->srq_table.cmpt_table, cmpt_base + ((u64) (MLX4_CMPT_TYPE_SRQ * cmpt_entry_sz) << MLX4_CMPT_SHIFT), cmpt_entry_sz, dev->caps.num_srqs, dev->caps.reserved_srqs, 0, 0); if (err) goto err_qp; err = mlx4_init_icm_table(dev, &priv->cq_table.cmpt_table, cmpt_base + ((u64) (MLX4_CMPT_TYPE_CQ * cmpt_entry_sz) << MLX4_CMPT_SHIFT), cmpt_entry_sz, dev->caps.num_cqs, dev->caps.reserved_cqs, 0, 0); if (err) goto err_srq; num_eqs = dev->phys_caps.num_phys_eqs; err = mlx4_init_icm_table(dev, &priv->eq_table.cmpt_table, cmpt_base + ((u64) (MLX4_CMPT_TYPE_EQ * cmpt_entry_sz) << MLX4_CMPT_SHIFT), cmpt_entry_sz, num_eqs, num_eqs, 0, 0); if (err) goto err_cq; return 0; err_cq: mlx4_cleanup_icm_table(dev, &priv->cq_table.cmpt_table); err_srq: mlx4_cleanup_icm_table(dev, &priv->srq_table.cmpt_table); err_qp: mlx4_cleanup_icm_table(dev, &priv->qp_table.cmpt_table); err: return err; } static int mlx4_init_icm(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap, struct mlx4_init_hca_param *init_hca, u64 icm_size) { struct mlx4_priv *priv = mlx4_priv(dev); u64 aux_pages; int num_eqs; int err; err = mlx4_SET_ICM_SIZE(dev, icm_size, &aux_pages); if (err) { mlx4_err(dev, "SET_ICM_SIZE command failed, aborting\n"); return err; } mlx4_dbg(dev, "%lld KB of HCA context requires %lld KB aux memory\n", (unsigned long long) icm_size >> 10, (unsigned long long) aux_pages << 2); priv->fw.aux_icm = mlx4_alloc_icm(dev, aux_pages, GFP_HIGHUSER | __GFP_NOWARN, 0); if (!priv->fw.aux_icm) { mlx4_err(dev, "Couldn't allocate aux memory, aborting\n"); return -ENOMEM; } err = mlx4_MAP_ICM_AUX(dev, priv->fw.aux_icm); if (err) { mlx4_err(dev, "MAP_ICM_AUX command failed, aborting\n"); goto err_free_aux; } err = mlx4_init_cmpt_table(dev, init_hca->cmpt_base, dev_cap->cmpt_entry_sz); if (err) { mlx4_err(dev, "Failed to map cMPT context memory, aborting\n"); goto err_unmap_aux; } num_eqs = dev->phys_caps.num_phys_eqs; err = mlx4_init_icm_table(dev, &priv->eq_table.table, init_hca->eqc_base, dev_cap->eqc_entry_sz, num_eqs, num_eqs, 0, 0); if (err) { mlx4_err(dev, "Failed to map EQ context memory, aborting\n"); goto err_unmap_cmpt; } /* * Reserved MTT entries must be aligned up to a cacheline * boundary, since the FW will write to them, while the driver * writes to all other MTT entries. (The variable * dev->caps.mtt_entry_sz below is really the MTT segment * size, not the raw entry size) */ dev->caps.reserved_mtts = ALIGN(dev->caps.reserved_mtts * dev->caps.mtt_entry_sz, dma_get_cache_alignment()) / dev->caps.mtt_entry_sz; err = mlx4_init_icm_table(dev, &priv->mr_table.mtt_table, init_hca->mtt_base, dev->caps.mtt_entry_sz, dev->caps.num_mtts, dev->caps.reserved_mtts, 1, 0); if (err) { mlx4_err(dev, "Failed to map MTT context memory, aborting\n"); goto err_unmap_eq; } err = mlx4_init_icm_table(dev, &priv->mr_table.dmpt_table, init_hca->dmpt_base, dev_cap->dmpt_entry_sz, dev->caps.num_mpts, dev->caps.reserved_mrws, 1, 1); if (err) { mlx4_err(dev, "Failed to map dMPT context memory, aborting\n"); goto err_unmap_mtt; } err = mlx4_init_icm_table(dev, &priv->qp_table.qp_table, init_hca->qpc_base, dev_cap->qpc_entry_sz, dev->caps.num_qps, dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW], 0, 0); if (err) { mlx4_err(dev, "Failed to map QP context memory, aborting\n"); goto err_unmap_dmpt; } err = mlx4_init_icm_table(dev, &priv->qp_table.auxc_table, init_hca->auxc_base, dev_cap->aux_entry_sz, dev->caps.num_qps, dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW], 0, 0); if (err) { mlx4_err(dev, "Failed to map AUXC context memory, aborting\n"); goto err_unmap_qp; } err = mlx4_init_icm_table(dev, &priv->qp_table.altc_table, init_hca->altc_base, dev_cap->altc_entry_sz, dev->caps.num_qps, dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW], 0, 0); if (err) { mlx4_err(dev, "Failed to map ALTC context memory, aborting\n"); goto err_unmap_auxc; } err = mlx4_init_icm_table(dev, &priv->qp_table.rdmarc_table, init_hca->rdmarc_base, dev_cap->rdmarc_entry_sz << priv->qp_table.rdmarc_shift, dev->caps.num_qps, dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW], 0, 0); if (err) { mlx4_err(dev, "Failed to map RDMARC context memory, aborting\n"); goto err_unmap_altc; } err = mlx4_init_icm_table(dev, &priv->cq_table.table, init_hca->cqc_base, dev_cap->cqc_entry_sz, dev->caps.num_cqs, dev->caps.reserved_cqs, 0, 0); if (err) { mlx4_err(dev, "Failed to map CQ context memory, aborting\n"); goto err_unmap_rdmarc; } err = mlx4_init_icm_table(dev, &priv->srq_table.table, init_hca->srqc_base, dev_cap->srq_entry_sz, dev->caps.num_srqs, dev->caps.reserved_srqs, 0, 0); if (err) { mlx4_err(dev, "Failed to map SRQ context memory, aborting\n"); goto err_unmap_cq; } /* * For flow steering device managed mode it is required to use * mlx4_init_icm_table. For B0 steering mode it's not strictly * required, but for simplicity just map the whole multicast * group table now. The table isn't very big and it's a lot * easier than trying to track ref counts. */ err = mlx4_init_icm_table(dev, &priv->mcg_table.table, init_hca->mc_base, mlx4_get_mgm_entry_size(dev), dev->caps.num_mgms + dev->caps.num_amgms, dev->caps.num_mgms + dev->caps.num_amgms, 0, 0); if (err) { mlx4_err(dev, "Failed to map MCG context memory, aborting\n"); goto err_unmap_srq; } return 0; err_unmap_srq: mlx4_cleanup_icm_table(dev, &priv->srq_table.table); err_unmap_cq: mlx4_cleanup_icm_table(dev, &priv->cq_table.table); err_unmap_rdmarc: mlx4_cleanup_icm_table(dev, &priv->qp_table.rdmarc_table); err_unmap_altc: mlx4_cleanup_icm_table(dev, &priv->qp_table.altc_table); err_unmap_auxc: mlx4_cleanup_icm_table(dev, &priv->qp_table.auxc_table); err_unmap_qp: mlx4_cleanup_icm_table(dev, &priv->qp_table.qp_table); err_unmap_dmpt: mlx4_cleanup_icm_table(dev, &priv->mr_table.dmpt_table); err_unmap_mtt: mlx4_cleanup_icm_table(dev, &priv->mr_table.mtt_table); err_unmap_eq: mlx4_cleanup_icm_table(dev, &priv->eq_table.table); err_unmap_cmpt: mlx4_cleanup_icm_table(dev, &priv->eq_table.cmpt_table); mlx4_cleanup_icm_table(dev, &priv->cq_table.cmpt_table); mlx4_cleanup_icm_table(dev, &priv->srq_table.cmpt_table); mlx4_cleanup_icm_table(dev, &priv->qp_table.cmpt_table); err_unmap_aux: mlx4_UNMAP_ICM_AUX(dev); err_free_aux: mlx4_free_icm(dev, priv->fw.aux_icm, 0); return err; } static void mlx4_free_icms(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); mlx4_cleanup_icm_table(dev, &priv->mcg_table.table); mlx4_cleanup_icm_table(dev, &priv->srq_table.table); mlx4_cleanup_icm_table(dev, &priv->cq_table.table); mlx4_cleanup_icm_table(dev, &priv->qp_table.rdmarc_table); mlx4_cleanup_icm_table(dev, &priv->qp_table.altc_table); mlx4_cleanup_icm_table(dev, &priv->qp_table.auxc_table); mlx4_cleanup_icm_table(dev, &priv->qp_table.qp_table); mlx4_cleanup_icm_table(dev, &priv->mr_table.dmpt_table); mlx4_cleanup_icm_table(dev, &priv->mr_table.mtt_table); mlx4_cleanup_icm_table(dev, &priv->eq_table.table); mlx4_cleanup_icm_table(dev, &priv->eq_table.cmpt_table); mlx4_cleanup_icm_table(dev, &priv->cq_table.cmpt_table); mlx4_cleanup_icm_table(dev, &priv->srq_table.cmpt_table); mlx4_cleanup_icm_table(dev, &priv->qp_table.cmpt_table); mlx4_UNMAP_ICM_AUX(dev); mlx4_free_icm(dev, priv->fw.aux_icm, 0); } static void mlx4_slave_exit(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); mutex_lock(&priv->cmd.slave_cmd_mutex); if (mlx4_comm_cmd(dev, MLX4_COMM_CMD_RESET, 0, MLX4_COMM_CMD_NA_OP, MLX4_COMM_TIME)) mlx4_warn(dev, "Failed to close slave function\n"); mutex_unlock(&priv->cmd.slave_cmd_mutex); } static int map_bf_area(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); resource_size_t bf_start; resource_size_t bf_len; int err = 0; if (!dev->caps.bf_reg_size) return -ENXIO; bf_start = pci_resource_start(dev->persist->pdev, 2) + (dev->caps.num_uars << PAGE_SHIFT); bf_len = pci_resource_len(dev->persist->pdev, 2) - (dev->caps.num_uars << PAGE_SHIFT); priv->bf_mapping = io_mapping_create_wc(bf_start, bf_len); if (!priv->bf_mapping) err = -ENOMEM; return err; } static void unmap_bf_area(struct mlx4_dev *dev) { if (mlx4_priv(dev)->bf_mapping) io_mapping_free(mlx4_priv(dev)->bf_mapping); } s64 mlx4_read_clock(struct mlx4_dev *dev) { u32 clockhi, clocklo, clockhi1; s64 cycles; int i; struct mlx4_priv *priv = mlx4_priv(dev); if (!priv->clock_mapping) return -ENOTSUPP; for (i = 0; i < 10; i++) { clockhi = swab32(readl(priv->clock_mapping)); clocklo = swab32(readl(priv->clock_mapping + 4)); clockhi1 = swab32(readl(priv->clock_mapping)); if (clockhi == clockhi1) break; } cycles = (u64) clockhi << 32 | (u64) clocklo; return cycles & CORE_CLOCK_MASK; } EXPORT_SYMBOL_GPL(mlx4_read_clock); static int map_internal_clock(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); priv->clock_mapping = ioremap(pci_resource_start(dev->persist->pdev, priv->fw.clock_bar) + priv->fw.clock_offset, MLX4_CLOCK_SIZE); if (!priv->clock_mapping) return -ENOMEM; return 0; } int mlx4_get_internal_clock_params(struct mlx4_dev *dev, struct mlx4_clock_params *params) { struct mlx4_priv *priv = mlx4_priv(dev); if (mlx4_is_slave(dev)) return -ENOTSUPP; if (!params) return -EINVAL; params->bar = priv->fw.clock_bar; params->offset = priv->fw.clock_offset; params->size = MLX4_CLOCK_SIZE; return 0; } EXPORT_SYMBOL_GPL(mlx4_get_internal_clock_params); static void unmap_internal_clock(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); if (priv->clock_mapping) iounmap(priv->clock_mapping); } static void mlx4_close_hca(struct mlx4_dev *dev) { sysctl_ctx_free(&dev->hw_ctx); unmap_internal_clock(dev); unmap_bf_area(dev); if (mlx4_is_slave(dev)) mlx4_slave_exit(dev); else { mlx4_CLOSE_HCA(dev, 0); mlx4_free_icms(dev); } } static void mlx4_close_fw(struct mlx4_dev *dev) { if (!mlx4_is_slave(dev)) { mlx4_UNMAP_FA(dev); mlx4_free_icm(dev, mlx4_priv(dev)->fw.fw_icm, 0); } } static int mlx4_comm_check_offline(struct mlx4_dev *dev) { #define COMM_CHAN_OFFLINE_OFFSET 0x09 u32 comm_flags; u32 offline_bit; unsigned long end; struct mlx4_priv *priv = mlx4_priv(dev); end = msecs_to_jiffies(MLX4_COMM_OFFLINE_TIME_OUT) + jiffies; while (time_before(jiffies, end)) { comm_flags = swab32(readl((__iomem char *)priv->mfunc.comm + MLX4_COMM_CHAN_FLAGS)); offline_bit = (comm_flags & (u32)(1 << COMM_CHAN_OFFLINE_OFFSET)); if (!offline_bit) return 0; /* There are cases as part of AER/Reset flow that PF needs * around 100 msec to load. We therefore sleep for 100 msec * to allow other tasks to make use of that CPU during this * time interval. */ msleep(100); } mlx4_err(dev, "Communication channel is offline.\n"); return -EIO; } static void mlx4_reset_vf_support(struct mlx4_dev *dev) { #define COMM_CHAN_RST_OFFSET 0x1e struct mlx4_priv *priv = mlx4_priv(dev); u32 comm_rst; u32 comm_caps; comm_caps = swab32(readl((__iomem char *)priv->mfunc.comm + MLX4_COMM_CHAN_CAPS)); comm_rst = (comm_caps & (u32)(1 << COMM_CHAN_RST_OFFSET)); if (comm_rst) dev->caps.vf_caps |= MLX4_VF_CAP_FLAG_RESET; } static int mlx4_init_slave(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); u64 dma = (u64) priv->mfunc.vhcr_dma; int ret_from_reset = 0; u32 slave_read; u32 cmd_channel_ver; if (atomic_read(&pf_loading)) { mlx4_warn(dev, "PF is not ready - Deferring probe\n"); return -EAGAIN; } mutex_lock(&priv->cmd.slave_cmd_mutex); priv->cmd.max_cmds = 1; if (mlx4_comm_check_offline(dev)) { mlx4_err(dev, "PF is not responsive, skipping initialization\n"); goto err_offline; } mlx4_reset_vf_support(dev); mlx4_warn(dev, "Sending reset\n"); ret_from_reset = mlx4_comm_cmd(dev, MLX4_COMM_CMD_RESET, 0, MLX4_COMM_CMD_NA_OP, MLX4_COMM_TIME); /* if we are in the middle of flr the slave will try * NUM_OF_RESET_RETRIES times before leaving.*/ if (ret_from_reset) { if (MLX4_DELAY_RESET_SLAVE == ret_from_reset) { mlx4_warn(dev, "slave is currently in the middle of FLR - Deferring probe\n"); mutex_unlock(&priv->cmd.slave_cmd_mutex); return -EAGAIN; } else goto err; } /* check the driver version - the slave I/F revision * must match the master's */ slave_read = swab32(readl(&priv->mfunc.comm->slave_read)); cmd_channel_ver = mlx4_comm_get_version(); if (MLX4_COMM_GET_IF_REV(cmd_channel_ver) != MLX4_COMM_GET_IF_REV(slave_read)) { mlx4_err(dev, "slave driver version is not supported by the master\n"); goto err; } mlx4_warn(dev, "Sending vhcr0\n"); if (mlx4_comm_cmd(dev, MLX4_COMM_CMD_VHCR0, dma >> 48, MLX4_COMM_CMD_NA_OP, MLX4_COMM_TIME)) goto err; if (mlx4_comm_cmd(dev, MLX4_COMM_CMD_VHCR1, dma >> 32, MLX4_COMM_CMD_NA_OP, MLX4_COMM_TIME)) goto err; if (mlx4_comm_cmd(dev, MLX4_COMM_CMD_VHCR2, dma >> 16, MLX4_COMM_CMD_NA_OP, MLX4_COMM_TIME)) goto err; if (mlx4_comm_cmd(dev, MLX4_COMM_CMD_VHCR_EN, dma, MLX4_COMM_CMD_NA_OP, MLX4_COMM_TIME)) goto err; mutex_unlock(&priv->cmd.slave_cmd_mutex); return 0; err: mlx4_comm_cmd(dev, MLX4_COMM_CMD_RESET, 0, MLX4_COMM_CMD_NA_OP, 0); err_offline: mutex_unlock(&priv->cmd.slave_cmd_mutex); return -EIO; } static void mlx4_parav_master_pf_caps(struct mlx4_dev *dev) { int i; for (i = 1; i <= dev->caps.num_ports; i++) { if (dev->caps.port_type[i] == MLX4_PORT_TYPE_ETH) dev->caps.gid_table_len[i] = mlx4_get_slave_num_gids(dev, 0, i); else dev->caps.gid_table_len[i] = 1; dev->caps.pkey_table_len[i] = dev->phys_caps.pkey_phys_table_len[i] - 1; } } static int choose_log_fs_mgm_entry_size(int qp_per_entry) { int i = MLX4_MIN_MGM_LOG_ENTRY_SIZE; for (i = MLX4_MIN_MGM_LOG_ENTRY_SIZE; i <= MLX4_MAX_MGM_LOG_ENTRY_SIZE; i++) { if (qp_per_entry <= 4 * ((1 << i) / 16 - 2)) break; } return (i <= MLX4_MAX_MGM_LOG_ENTRY_SIZE) ? i : -1; } static const char *dmfs_high_rate_steering_mode_str(int dmfs_high_steer_mode) { switch (dmfs_high_steer_mode) { case MLX4_STEERING_DMFS_A0_DEFAULT: return "default performance"; case MLX4_STEERING_DMFS_A0_DYNAMIC: return "dynamic hybrid mode"; case MLX4_STEERING_DMFS_A0_STATIC: return "performance optimized for limited rule configuration (static)"; case MLX4_STEERING_DMFS_A0_DISABLE: return "disabled performance optimized steering"; case MLX4_STEERING_DMFS_A0_NOT_SUPPORTED: return "performance optimized steering not supported"; default: return "Unrecognized mode"; } } #define MLX4_DMFS_A0_STEERING (1UL << 2) static void choose_steering_mode(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap) { if (mlx4_log_num_mgm_entry_size <= 0) { if ((-mlx4_log_num_mgm_entry_size) & MLX4_DMFS_A0_STEERING) { if (dev->caps.dmfs_high_steer_mode == MLX4_STEERING_DMFS_A0_NOT_SUPPORTED) mlx4_err(dev, "DMFS high rate mode not supported\n"); else dev->caps.dmfs_high_steer_mode = MLX4_STEERING_DMFS_A0_STATIC; } } if (mlx4_log_num_mgm_entry_size <= 0 && dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_FS_EN && (!mlx4_is_mfunc(dev) || (dev_cap->fs_max_num_qp_per_entry >= (dev->persist->num_vfs + 1))) && choose_log_fs_mgm_entry_size(dev_cap->fs_max_num_qp_per_entry) >= MLX4_MIN_MGM_LOG_ENTRY_SIZE) { dev->oper_log_mgm_entry_size = choose_log_fs_mgm_entry_size(dev_cap->fs_max_num_qp_per_entry); dev->caps.steering_mode = MLX4_STEERING_MODE_DEVICE_MANAGED; dev->caps.num_qp_per_mgm = dev_cap->fs_max_num_qp_per_entry; dev->caps.fs_log_max_ucast_qp_range_size = dev_cap->fs_log_max_ucast_qp_range_size; } else { if (dev->caps.dmfs_high_steer_mode != MLX4_STEERING_DMFS_A0_NOT_SUPPORTED) dev->caps.dmfs_high_steer_mode = MLX4_STEERING_DMFS_A0_DISABLE; if (dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_UC_STEER && dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_MC_STEER) dev->caps.steering_mode = MLX4_STEERING_MODE_B0; else { dev->caps.steering_mode = MLX4_STEERING_MODE_A0; if (dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_UC_STEER || dev->caps.flags & MLX4_DEV_CAP_FLAG_VEP_MC_STEER) mlx4_warn(dev, "Must have both UC_STEER and MC_STEER flags set to use B0 steering - falling back to A0 steering mode\n"); } dev->oper_log_mgm_entry_size = mlx4_log_num_mgm_entry_size > 0 ? mlx4_log_num_mgm_entry_size : MLX4_DEFAULT_MGM_LOG_ENTRY_SIZE; dev->caps.num_qp_per_mgm = mlx4_get_qp_per_mgm(dev); } mlx4_dbg(dev, "Steering mode is: %s, oper_log_mgm_entry_size = %d, modparam log_num_mgm_entry_size = %d\n", mlx4_steering_mode_str(dev->caps.steering_mode), dev->oper_log_mgm_entry_size, mlx4_log_num_mgm_entry_size); } static void choose_tunnel_offload_mode(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap) { if (dev->caps.steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED && dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_VXLAN_OFFLOADS) dev->caps.tunnel_offload_mode = MLX4_TUNNEL_OFFLOAD_MODE_VXLAN; else dev->caps.tunnel_offload_mode = MLX4_TUNNEL_OFFLOAD_MODE_NONE; mlx4_dbg(dev, "Tunneling offload mode is: %s\n", (dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) ? "vxlan" : "none"); } static int mlx4_validate_optimized_steering(struct mlx4_dev *dev) { int i; struct mlx4_port_cap port_cap; if (dev->caps.dmfs_high_steer_mode == MLX4_STEERING_DMFS_A0_NOT_SUPPORTED) return -EINVAL; for (i = 1; i <= dev->caps.num_ports; i++) { if (mlx4_dev_port(dev, i, &port_cap)) { mlx4_err(dev, "QUERY_DEV_CAP command failed, can't veify DMFS high rate steering.\n"); } else if ((dev->caps.dmfs_high_steer_mode != MLX4_STEERING_DMFS_A0_DEFAULT) && (port_cap.dmfs_optimized_state == !!(dev->caps.dmfs_high_steer_mode == MLX4_STEERING_DMFS_A0_DISABLE))) { mlx4_err(dev, "DMFS high rate steer mode differ, driver requested %s but %s in FW.\n", dmfs_high_rate_steering_mode_str( dev->caps.dmfs_high_steer_mode), (port_cap.dmfs_optimized_state ? "enabled" : "disabled")); } } return 0; } static int mlx4_init_fw(struct mlx4_dev *dev) { struct mlx4_mod_stat_cfg mlx4_cfg; int err = 0; if (!mlx4_is_slave(dev)) { err = mlx4_QUERY_FW(dev); if (err) { if (err == -EACCES) mlx4_info(dev, "non-primary physical function, skipping\n"); else mlx4_err(dev, "QUERY_FW command failed, aborting\n"); return err; } err = mlx4_load_fw(dev); if (err) { mlx4_err(dev, "Failed to start FW, aborting\n"); return err; } mlx4_cfg.log_pg_sz_m = 1; mlx4_cfg.log_pg_sz = 0; err = mlx4_MOD_STAT_CFG(dev, &mlx4_cfg); if (err) mlx4_warn(dev, "Failed to override log_pg_sz parameter\n"); } return err; } static int mlx4_init_hca(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); struct mlx4_adapter adapter; struct mlx4_dev_cap dev_cap = {}; struct mlx4_profile profile; struct mlx4_init_hca_param init_hca; u64 icm_size; struct mlx4_config_dev_params params; int err; if (!mlx4_is_slave(dev)) { err = mlx4_dev_cap(dev, &dev_cap); if (err) { mlx4_err(dev, "QUERY_DEV_CAP command failed, aborting\n"); return err; } choose_steering_mode(dev, &dev_cap); choose_tunnel_offload_mode(dev, &dev_cap); if (dev->caps.dmfs_high_steer_mode == MLX4_STEERING_DMFS_A0_STATIC && mlx4_is_master(dev)) dev->caps.function_caps |= MLX4_FUNC_CAP_DMFS_A0_STATIC; err = mlx4_get_phys_port_id(dev); if (err) mlx4_err(dev, "Fail to get physical port id\n"); if (mlx4_is_master(dev)) mlx4_parav_master_pf_caps(dev); if (mlx4_low_memory_profile()) { mlx4_info(dev, "Running from within kdump kernel. Using low memory profile\n"); profile = low_mem_profile; } else { profile = default_profile; } if (dev->caps.steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED) profile.num_mcg = MLX4_FS_NUM_MCG; icm_size = mlx4_make_profile(dev, &profile, &dev_cap, &init_hca); if ((long long) icm_size < 0) { err = icm_size; return err; } dev->caps.max_fmr_maps = (1 << (32 - ilog2(dev->caps.num_mpts))) - 1; if (enable_4k_uar) { init_hca.log_uar_sz = ilog2(dev->caps.num_uars) + PAGE_SHIFT - DEFAULT_UAR_PAGE_SHIFT; init_hca.uar_page_sz = DEFAULT_UAR_PAGE_SHIFT - 12; } else { init_hca.log_uar_sz = ilog2(dev->caps.num_uars); init_hca.uar_page_sz = PAGE_SHIFT - 12; } init_hca.mw_enabled = 0; if (dev->caps.flags & MLX4_DEV_CAP_FLAG_MEM_WINDOW || dev->caps.bmme_flags & MLX4_BMME_FLAG_TYPE_2_WIN) init_hca.mw_enabled = INIT_HCA_TPT_MW_ENABLE; err = mlx4_init_icm(dev, &dev_cap, &init_hca, icm_size); if (err) return err; err = mlx4_INIT_HCA(dev, &init_hca); if (err) { mlx4_err(dev, "INIT_HCA command failed, aborting\n"); goto err_free_icm; } if (dev_cap.flags2 & MLX4_DEV_CAP_FLAG2_SYS_EQS) { err = mlx4_query_func(dev, &dev_cap); if (err < 0) { mlx4_err(dev, "QUERY_FUNC command failed, aborting.\n"); goto err_close; } else if (err & MLX4_QUERY_FUNC_NUM_SYS_EQS) { dev->caps.num_eqs = dev_cap.max_eqs; dev->caps.reserved_eqs = dev_cap.reserved_eqs; dev->caps.reserved_uars = dev_cap.reserved_uars; } } /* * If TS is supported by FW * read HCA frequency by QUERY_HCA command */ if (dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_TS) { memset(&init_hca, 0, sizeof(init_hca)); err = mlx4_QUERY_HCA(dev, &init_hca); if (err) { mlx4_err(dev, "QUERY_HCA command failed, disable timestamp\n"); dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_TS; } else { dev->caps.hca_core_clock = init_hca.hca_core_clock; } /* In case we got HCA frequency 0 - disable timestamping * to avoid dividing by zero */ if (!dev->caps.hca_core_clock) { dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_TS; mlx4_err(dev, "HCA frequency is 0 - timestamping is not supported\n"); } else if (map_internal_clock(dev)) { /* * Map internal clock, * in case of failure disable timestamping */ dev->caps.flags2 &= ~MLX4_DEV_CAP_FLAG2_TS; mlx4_err(dev, "Failed to map internal clock. Timestamping is not supported\n"); } } if (dev->caps.dmfs_high_steer_mode != MLX4_STEERING_DMFS_A0_NOT_SUPPORTED) { if (mlx4_validate_optimized_steering(dev)) mlx4_warn(dev, "Optimized steering validation failed\n"); if (dev->caps.dmfs_high_steer_mode == MLX4_STEERING_DMFS_A0_DISABLE) { dev->caps.dmfs_high_rate_qpn_base = dev->caps.reserved_qps_cnt[MLX4_QP_REGION_FW]; dev->caps.dmfs_high_rate_qpn_range = MLX4_A0_STEERING_TABLE_SIZE; } mlx4_dbg(dev, "DMFS high rate steer mode is: %s\n", dmfs_high_rate_steering_mode_str( dev->caps.dmfs_high_steer_mode)); } } else { err = mlx4_init_slave(dev); if (err) { if (err != -EAGAIN) mlx4_err(dev, "Failed to initialize slave\n"); return err; } err = mlx4_slave_cap(dev); if (err) { mlx4_err(dev, "Failed to obtain slave caps\n"); goto err_close; } } if (map_bf_area(dev)) mlx4_dbg(dev, "Failed to map blue flame area\n"); /*Only the master set the ports, all the rest got it from it.*/ if (!mlx4_is_slave(dev)) mlx4_set_port_mask(dev); err = mlx4_QUERY_ADAPTER(dev, &adapter); if (err) { mlx4_err(dev, "QUERY_ADAPTER command failed, aborting\n"); goto unmap_bf; } /* Query CONFIG_DEV parameters */ err = mlx4_config_dev_retrieval(dev, ¶ms); if (err && err != -ENOTSUPP) { mlx4_err(dev, "Failed to query CONFIG_DEV parameters\n"); } else if (!err) { dev->caps.rx_checksum_flags_port[1] = params.rx_csum_flags_port_1; dev->caps.rx_checksum_flags_port[2] = params.rx_csum_flags_port_2; } priv->eq_table.inta_pin = adapter.inta_pin; memcpy(dev->board_id, adapter.board_id, sizeof dev->board_id); return 0; unmap_bf: unmap_internal_clock(dev); unmap_bf_area(dev); if (mlx4_is_slave(dev)) { kfree(dev->caps.qp0_qkey); kfree(dev->caps.qp0_tunnel); kfree(dev->caps.qp0_proxy); kfree(dev->caps.qp1_tunnel); kfree(dev->caps.qp1_proxy); } err_close: if (mlx4_is_slave(dev)) mlx4_slave_exit(dev); else mlx4_CLOSE_HCA(dev, 0); err_free_icm: if (!mlx4_is_slave(dev)) mlx4_free_icms(dev); return err; } static int mlx4_init_counters_table(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); int nent_pow2; if (!(dev->caps.flags & MLX4_DEV_CAP_FLAG_COUNTERS)) return -ENOENT; if (!dev->caps.max_counters) return -ENOSPC; nent_pow2 = roundup_pow_of_two(dev->caps.max_counters); /* reserve last counter index for sink counter */ return mlx4_bitmap_init(&priv->counters_bitmap, nent_pow2, nent_pow2 - 1, 0, nent_pow2 - dev->caps.max_counters + 1); } static void mlx4_cleanup_counters_table(struct mlx4_dev *dev) { if (!(dev->caps.flags & MLX4_DEV_CAP_FLAG_COUNTERS)) return; if (!dev->caps.max_counters) return; mlx4_bitmap_cleanup(&mlx4_priv(dev)->counters_bitmap); } static void mlx4_cleanup_default_counters(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); int port; for (port = 0; port < dev->caps.num_ports; port++) if (priv->def_counter[port] != -1) mlx4_counter_free(dev, priv->def_counter[port]); } static int mlx4_allocate_default_counters(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); int port, err = 0; u32 idx; for (port = 0; port < dev->caps.num_ports; port++) priv->def_counter[port] = -1; for (port = 0; port < dev->caps.num_ports; port++) { err = mlx4_counter_alloc(dev, &idx); if (!err || err == -ENOSPC) { priv->def_counter[port] = idx; } else if (err == -ENOENT) { err = 0; continue; } else if (mlx4_is_slave(dev) && err == -EINVAL) { priv->def_counter[port] = MLX4_SINK_COUNTER_INDEX(dev); mlx4_warn(dev, "can't allocate counter from old PF driver, using index %d\n", MLX4_SINK_COUNTER_INDEX(dev)); err = 0; } else { mlx4_err(dev, "%s: failed to allocate default counter port %d err %d\n", __func__, port + 1, err); mlx4_cleanup_default_counters(dev); return err; } mlx4_dbg(dev, "%s: default counter index %d for port %d\n", __func__, priv->def_counter[port], port + 1); } return err; } int __mlx4_counter_alloc(struct mlx4_dev *dev, u32 *idx) { struct mlx4_priv *priv = mlx4_priv(dev); if (!(dev->caps.flags & MLX4_DEV_CAP_FLAG_COUNTERS)) return -ENOENT; *idx = mlx4_bitmap_alloc(&priv->counters_bitmap); if (*idx == -1) { *idx = MLX4_SINK_COUNTER_INDEX(dev); return -ENOSPC; } return 0; } int mlx4_counter_alloc(struct mlx4_dev *dev, u32 *idx) { u64 out_param; int err; if (mlx4_is_mfunc(dev)) { err = mlx4_cmd_imm(dev, 0, &out_param, RES_COUNTER, RES_OP_RESERVE, MLX4_CMD_ALLOC_RES, MLX4_CMD_TIME_CLASS_A, MLX4_CMD_WRAPPED); if (!err) *idx = get_param_l(&out_param); return err; } return __mlx4_counter_alloc(dev, idx); } EXPORT_SYMBOL_GPL(mlx4_counter_alloc); static int __mlx4_clear_if_stat(struct mlx4_dev *dev, u8 counter_index) { struct mlx4_cmd_mailbox *if_stat_mailbox; int err; u32 if_stat_in_mod = (counter_index & 0xff) | MLX4_QUERY_IF_STAT_RESET; if_stat_mailbox = mlx4_alloc_cmd_mailbox(dev); if (IS_ERR(if_stat_mailbox)) return PTR_ERR(if_stat_mailbox); err = mlx4_cmd_box(dev, 0, if_stat_mailbox->dma, if_stat_in_mod, 0, MLX4_CMD_QUERY_IF_STAT, MLX4_CMD_TIME_CLASS_C, MLX4_CMD_NATIVE); mlx4_free_cmd_mailbox(dev, if_stat_mailbox); return err; } void __mlx4_counter_free(struct mlx4_dev *dev, u32 idx) { if (!(dev->caps.flags & MLX4_DEV_CAP_FLAG_COUNTERS)) return; if (idx == MLX4_SINK_COUNTER_INDEX(dev)) return; __mlx4_clear_if_stat(dev, idx); mlx4_bitmap_free(&mlx4_priv(dev)->counters_bitmap, idx, MLX4_USE_RR); return; } void mlx4_counter_free(struct mlx4_dev *dev, u32 idx) { u64 in_param = 0; if (mlx4_is_mfunc(dev)) { set_param_l(&in_param, idx); mlx4_cmd(dev, in_param, RES_COUNTER, RES_OP_RESERVE, MLX4_CMD_FREE_RES, MLX4_CMD_TIME_CLASS_A, MLX4_CMD_WRAPPED); return; } __mlx4_counter_free(dev, idx); } EXPORT_SYMBOL_GPL(mlx4_counter_free); int mlx4_get_default_counter_index(struct mlx4_dev *dev, int port) { struct mlx4_priv *priv = mlx4_priv(dev); return priv->def_counter[port - 1]; } EXPORT_SYMBOL_GPL(mlx4_get_default_counter_index); void mlx4_set_admin_guid(struct mlx4_dev *dev, __be64 guid, int entry, int port) { struct mlx4_priv *priv = mlx4_priv(dev); priv->mfunc.master.vf_admin[entry].vport[port].guid = guid; } EXPORT_SYMBOL_GPL(mlx4_set_admin_guid); __be64 mlx4_get_admin_guid(struct mlx4_dev *dev, int entry, int port) { struct mlx4_priv *priv = mlx4_priv(dev); return priv->mfunc.master.vf_admin[entry].vport[port].guid; } EXPORT_SYMBOL_GPL(mlx4_get_admin_guid); void mlx4_set_random_admin_guid(struct mlx4_dev *dev, int entry, int port) { struct mlx4_priv *priv = mlx4_priv(dev); __be64 guid; /* hw GUID */ if (entry == 0) return; get_random_bytes((char *)&guid, sizeof(guid)); guid &= ~(cpu_to_be64(1ULL << 56)); guid |= cpu_to_be64(1ULL << 57); priv->mfunc.master.vf_admin[entry].vport[port].guid = guid; } static int mlx4_setup_hca(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); int err; int port; __be32 ib_port_default_caps; err = mlx4_init_uar_table(dev); if (err) { mlx4_err(dev, "Failed to initialize user access region table, aborting\n"); return err; } err = mlx4_uar_alloc(dev, &priv->driver_uar); if (err) { mlx4_err(dev, "Failed to allocate driver access region, aborting\n"); goto err_uar_table_free; } priv->kar = ioremap((phys_addr_t) priv->driver_uar.pfn << PAGE_SHIFT, PAGE_SIZE); if (!priv->kar) { mlx4_err(dev, "Couldn't map kernel access region, aborting\n"); err = -ENOMEM; goto err_uar_free; } err = mlx4_init_pd_table(dev); if (err) { mlx4_err(dev, "Failed to initialize protection domain table, aborting\n"); goto err_kar_unmap; } err = mlx4_init_xrcd_table(dev); if (err) { mlx4_err(dev, "Failed to initialize reliable connection domain table, aborting\n"); goto err_pd_table_free; } err = mlx4_init_mr_table(dev); if (err) { mlx4_err(dev, "Failed to initialize memory region table, aborting\n"); goto err_xrcd_table_free; } if (!mlx4_is_slave(dev)) { err = mlx4_init_mcg_table(dev); if (err) { mlx4_err(dev, "Failed to initialize multicast group table, aborting\n"); goto err_mr_table_free; } err = mlx4_config_mad_demux(dev); if (err) { mlx4_err(dev, "Failed in config_mad_demux, aborting\n"); goto err_mcg_table_free; } } err = mlx4_init_eq_table(dev); if (err) { mlx4_err(dev, "Failed to initialize event queue table, aborting\n"); goto err_mcg_table_free; } err = mlx4_cmd_use_events(dev); if (err) { mlx4_err(dev, "Failed to switch to event-driven firmware commands, aborting\n"); goto err_eq_table_free; } err = mlx4_NOP(dev); if (err) { if (dev->flags & MLX4_FLAG_MSI_X) { mlx4_warn(dev, "NOP command failed to generate MSI-X interrupt IRQ %d)\n", priv->eq_table.eq[MLX4_EQ_ASYNC].irq); mlx4_warn(dev, "Trying again without MSI-X\n"); } else { mlx4_err(dev, "NOP command failed to generate interrupt (IRQ %d), aborting\n", priv->eq_table.eq[MLX4_EQ_ASYNC].irq); mlx4_err(dev, "BIOS or ACPI interrupt routing problem?\n"); } goto err_cmd_poll; } mlx4_dbg(dev, "NOP command IRQ test passed\n"); err = mlx4_init_cq_table(dev); if (err) { mlx4_err(dev, "Failed to initialize completion queue table, aborting\n"); goto err_cmd_poll; } err = mlx4_init_srq_table(dev); if (err) { mlx4_err(dev, "Failed to initialize shared receive queue table, aborting\n"); goto err_cq_table_free; } err = mlx4_init_qp_table(dev); if (err) { mlx4_err(dev, "Failed to initialize queue pair table, aborting\n"); goto err_srq_table_free; } if (!mlx4_is_slave(dev)) { err = mlx4_init_counters_table(dev); if (err && err != -ENOENT) { mlx4_err(dev, "Failed to initialize counters table, aborting\n"); goto err_qp_table_free; } } err = mlx4_allocate_default_counters(dev); if (err) { mlx4_err(dev, "Failed to allocate default counters, aborting\n"); goto err_counters_table_free; } if (!mlx4_is_slave(dev)) { for (port = 1; port <= dev->caps.num_ports; port++) { ib_port_default_caps = 0; err = mlx4_get_port_ib_caps(dev, port, &ib_port_default_caps); if (err) mlx4_warn(dev, "failed to get port %d default ib capabilities (%d). Continuing with caps = 0\n", port, err); dev->caps.ib_port_def_cap[port] = ib_port_default_caps; /* initialize per-slave default ib port capabilities */ if (mlx4_is_master(dev)) { int i; for (i = 0; i < dev->num_slaves; i++) { if (i == mlx4_master_func_num(dev)) continue; priv->mfunc.master.slave_state[i].ib_cap_mask[port] = ib_port_default_caps; } } if (mlx4_is_mfunc(dev)) dev->caps.port_ib_mtu[port] = IB_MTU_2048; else dev->caps.port_ib_mtu[port] = IB_MTU_4096; err = mlx4_SET_PORT(dev, port, mlx4_is_master(dev) ? dev->caps.pkey_table_len[port] : -1); if (err) { mlx4_err(dev, "Failed to set port %d, aborting\n", port); goto err_default_countes_free; } } } return 0; err_default_countes_free: mlx4_cleanup_default_counters(dev); err_counters_table_free: if (!mlx4_is_slave(dev)) mlx4_cleanup_counters_table(dev); err_qp_table_free: mlx4_cleanup_qp_table(dev); err_srq_table_free: mlx4_cleanup_srq_table(dev); err_cq_table_free: mlx4_cleanup_cq_table(dev); err_cmd_poll: mlx4_cmd_use_polling(dev); err_eq_table_free: mlx4_cleanup_eq_table(dev); err_mcg_table_free: if (!mlx4_is_slave(dev)) mlx4_cleanup_mcg_table(dev); err_mr_table_free: mlx4_cleanup_mr_table(dev); err_xrcd_table_free: mlx4_cleanup_xrcd_table(dev); err_pd_table_free: mlx4_cleanup_pd_table(dev); err_kar_unmap: iounmap(priv->kar); err_uar_free: mlx4_uar_free(dev, &priv->driver_uar); err_uar_table_free: mlx4_cleanup_uar_table(dev); return err; } static int mlx4_init_affinity_hint(struct mlx4_dev *dev, int port, int eqn) { int requested_cpu = 0; struct mlx4_priv *priv = mlx4_priv(dev); struct mlx4_eq *eq; int off = 0; int i; if (eqn > dev->caps.num_comp_vectors) return -EINVAL; for (i = 1; i < port; i++) off += mlx4_get_eqs_per_port(dev, i); requested_cpu = eqn - off - !!(eqn > MLX4_EQ_ASYNC); /* Meaning EQs are shared, and this call comes from the second port */ if (requested_cpu < 0) return 0; eq = &priv->eq_table.eq[eqn]; eq->affinity_cpu_id = requested_cpu % num_online_cpus(); return 0; } static void mlx4_enable_msi_x(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); struct msix_entry *entries; int i; int port = 0; if (msi_x) { int nreq = dev->caps.num_ports * num_online_cpus() + 1; nreq = min_t(int, dev->caps.num_eqs - dev->caps.reserved_eqs, nreq); if (nreq > MAX_MSIX) nreq = MAX_MSIX; entries = kcalloc(nreq, sizeof *entries, GFP_KERNEL); if (!entries) goto no_msi; for (i = 0; i < nreq; ++i) entries[i].entry = i; nreq = pci_enable_msix_range(dev->persist->pdev, entries, 2, nreq); if (nreq < 0 || nreq < MLX4_EQ_ASYNC) { kfree(entries); goto no_msi; } /* 1 is reserved for events (asyncrounous EQ) */ dev->caps.num_comp_vectors = nreq - 1; priv->eq_table.eq[MLX4_EQ_ASYNC].irq = entries[0].vector; bitmap_zero(priv->eq_table.eq[MLX4_EQ_ASYNC].actv_ports.ports, dev->caps.num_ports); for (i = 0; i < dev->caps.num_comp_vectors + 1; i++) { if (i == MLX4_EQ_ASYNC) continue; priv->eq_table.eq[i].irq = entries[i + 1 - !!(i > MLX4_EQ_ASYNC)].vector; if (MLX4_IS_LEGACY_EQ_MODE(dev->caps)) { bitmap_fill(priv->eq_table.eq[i].actv_ports.ports, dev->caps.num_ports); /* We don't set affinity hint when there * aren't enough EQs */ } else { set_bit(port, priv->eq_table.eq[i].actv_ports.ports); if (mlx4_init_affinity_hint(dev, port + 1, i)) mlx4_warn(dev, "Couldn't init hint cpumask for EQ %d\n", i); } /* We divide the Eqs evenly between the two ports. * (dev->caps.num_comp_vectors / dev->caps.num_ports) * refers to the number of Eqs per port * (i.e eqs_per_port). Theoretically, we would like to * write something like (i + 1) % eqs_per_port == 0. * However, since there's an asynchronous Eq, we have * to skip over it by comparing this condition to * !!((i + 1) > MLX4_EQ_ASYNC). */ if ((dev->caps.num_comp_vectors > dev->caps.num_ports) && ((i + 1) % (dev->caps.num_comp_vectors / dev->caps.num_ports)) == !!((i + 1) > MLX4_EQ_ASYNC)) /* If dev->caps.num_comp_vectors < dev->caps.num_ports, * everything is shared anyway. */ port++; } dev->flags |= MLX4_FLAG_MSI_X; kfree(entries); return; } no_msi: dev->caps.num_comp_vectors = 1; BUG_ON(MLX4_EQ_ASYNC >= 2); for (i = 0; i < 2; ++i) { priv->eq_table.eq[i].irq = dev->persist->pdev->irq; if (i != MLX4_EQ_ASYNC) { bitmap_fill(priv->eq_table.eq[i].actv_ports.ports, dev->caps.num_ports); } } } static int mlx4_init_port_info(struct mlx4_dev *dev, int port) { struct mlx4_port_info *info = &mlx4_priv(dev)->port[port]; int err = 0; info->dev = dev; info->port = port; if (!mlx4_is_slave(dev)) { mlx4_init_mac_table(dev, &info->mac_table); mlx4_init_vlan_table(dev, &info->vlan_table); mlx4_init_roce_gid_table(dev, &info->gid_table); info->base_qpn = mlx4_get_base_qpn(dev, port); } sprintf(info->dev_name, "mlx4_port%d", port); info->port_attr.attr.name = info->dev_name; if (mlx4_is_mfunc(dev)) info->port_attr.attr.mode = S_IRUGO; else { info->port_attr.attr.mode = S_IRUGO | S_IWUSR; info->port_attr.store = set_port_type; } info->port_attr.show = show_port_type; sysfs_attr_init(&info->port_attr.attr); err = device_create_file(&dev->persist->pdev->dev, &info->port_attr); if (err) { mlx4_err(dev, "Failed to create file for port %d\n", port); info->port = -1; } sprintf(info->dev_mtu_name, "mlx4_port%d_mtu", port); info->port_mtu_attr.attr.name = info->dev_mtu_name; if (mlx4_is_mfunc(dev)) info->port_mtu_attr.attr.mode = S_IRUGO; else { info->port_mtu_attr.attr.mode = S_IRUGO | S_IWUSR; info->port_mtu_attr.store = set_port_ib_mtu; } info->port_mtu_attr.show = show_port_ib_mtu; sysfs_attr_init(&info->port_mtu_attr.attr); err = device_create_file(&dev->persist->pdev->dev, &info->port_mtu_attr); if (err) { mlx4_err(dev, "Failed to create mtu file for port %d\n", port); device_remove_file(&info->dev->persist->pdev->dev, &info->port_attr); info->port = -1; } return err; } static void mlx4_cleanup_port_info(struct mlx4_port_info *info) { if (info->port < 0) return; device_remove_file(&info->dev->persist->pdev->dev, &info->port_attr); device_remove_file(&info->dev->persist->pdev->dev, &info->port_mtu_attr); #ifdef CONFIG_RFS_ACCEL free_irq_cpu_rmap(info->rmap); info->rmap = NULL; #endif } static int mlx4_init_steering(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); int num_entries = dev->caps.num_ports; int i, j; priv->steer = kzalloc(sizeof(struct mlx4_steer) * num_entries, GFP_KERNEL); if (!priv->steer) return -ENOMEM; for (i = 0; i < num_entries; i++) for (j = 0; j < MLX4_NUM_STEERS; j++) { INIT_LIST_HEAD(&priv->steer[i].promisc_qps[j]); INIT_LIST_HEAD(&priv->steer[i].steer_entries[j]); } return 0; } static void mlx4_clear_steering(struct mlx4_dev *dev) { struct mlx4_priv *priv = mlx4_priv(dev); struct mlx4_steer_index *entry, *tmp_entry; struct mlx4_promisc_qp *pqp, *tmp_pqp; int num_entries = dev->caps.num_ports; int i, j; for (i = 0; i < num_entries; i++) { for (j = 0; j < MLX4_NUM_STEERS; j++) { list_for_each_entry_safe(pqp, tmp_pqp, &priv->steer[i].promisc_qps[j], list) { list_del(&pqp->list); kfree(pqp); } list_for_each_entry_safe(entry, tmp_entry, &priv->steer[i].steer_entries[j], list) { list_del(&entry->list); list_for_each_entry_safe(pqp, tmp_pqp, &entry->duplicates, list) { list_del(&pqp->list); kfree(pqp); } kfree(entry); } } } kfree(priv->steer); } static int extended_func_num(struct pci_dev *pdev) { return PCI_SLOT(pdev->devfn) * 8 + PCI_FUNC(pdev->devfn); } #define MLX4_OWNER_BASE 0x8069c #define MLX4_OWNER_SIZE 4 static int mlx4_get_ownership(struct mlx4_dev *dev) { void __iomem *owner; u32 ret; if (pci_channel_offline(dev->persist->pdev)) return -EIO; owner = ioremap(pci_resource_start(dev->persist->pdev, 0) + MLX4_OWNER_BASE, MLX4_OWNER_SIZE); if (!owner) { mlx4_err(dev, "Failed to obtain ownership bit\n"); return -ENOMEM; } ret = readl(owner); iounmap(owner); return (int) !!ret; } static void mlx4_free_ownership(struct mlx4_dev *dev) { void __iomem *owner; if (pci_channel_offline(dev->persist->pdev)) return; owner = ioremap(pci_resource_start(dev->persist->pdev, 0) + MLX4_OWNER_BASE, MLX4_OWNER_SIZE); if (!owner) { mlx4_err(dev, "Failed to obtain ownership bit\n"); return; } writel(0, owner); msleep(1000); iounmap(owner); } #define SRIOV_VALID_STATE(flags) (!!((flags) & MLX4_FLAG_SRIOV) ==\ !!((flags) & MLX4_FLAG_MASTER)) static u64 mlx4_enable_sriov(struct mlx4_dev *dev, struct pci_dev *pdev, u8 total_vfs, int existing_vfs, int reset_flow) { u64 dev_flags = dev->flags; int err = 0; if (reset_flow) { dev->dev_vfs = kcalloc(total_vfs, sizeof(*dev->dev_vfs), GFP_KERNEL); if (!dev->dev_vfs) goto free_mem; return dev_flags; } atomic_inc(&pf_loading); if (dev->flags & MLX4_FLAG_SRIOV) { if (existing_vfs != total_vfs) { mlx4_err(dev, "SR-IOV was already enabled, but with num_vfs (%d) different than requested (%d)\n", existing_vfs, total_vfs); total_vfs = existing_vfs; } } dev->dev_vfs = kzalloc(total_vfs * sizeof(*dev->dev_vfs), GFP_KERNEL); if (NULL == dev->dev_vfs) { mlx4_err(dev, "Failed to allocate memory for VFs\n"); goto disable_sriov; } if (!(dev->flags & MLX4_FLAG_SRIOV)) { mlx4_warn(dev, "Enabling SR-IOV with %d VFs\n", total_vfs); err = pci_enable_sriov(pdev, total_vfs); } if (err) { mlx4_err(dev, "Failed to enable SR-IOV, continuing without SR-IOV (err = %d)\n", err); goto disable_sriov; } else { mlx4_warn(dev, "Running in master mode\n"); dev_flags |= MLX4_FLAG_SRIOV | MLX4_FLAG_MASTER; dev_flags &= ~MLX4_FLAG_SLAVE; dev->persist->num_vfs = total_vfs; } return dev_flags; disable_sriov: atomic_dec(&pf_loading); free_mem: dev->persist->num_vfs = 0; kfree(dev->dev_vfs); dev->dev_vfs = NULL; return dev_flags & ~MLX4_FLAG_MASTER; } enum { MLX4_DEV_CAP_CHECK_NUM_VFS_ABOVE_64 = -1, }; static int mlx4_check_dev_cap(struct mlx4_dev *dev, struct mlx4_dev_cap *dev_cap, int *nvfs) { int requested_vfs = nvfs[0] + nvfs[1] + nvfs[2]; /* Checking for 64 VFs as a limitation of CX2 */ if (!(dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_80_VFS) && requested_vfs >= 64) { mlx4_err(dev, "Requested %d VFs, but FW does not support more than 64\n", requested_vfs); return MLX4_DEV_CAP_CHECK_NUM_VFS_ABOVE_64; } return 0; } static int mlx4_pci_enable_device(struct mlx4_dev *dev) { struct pci_dev *pdev = dev->persist->pdev; int err = 0; mutex_lock(&dev->persist->pci_status_mutex); if (dev->persist->pci_status == MLX4_PCI_STATUS_DISABLED) { err = pci_enable_device(pdev); if (!err) dev->persist->pci_status = MLX4_PCI_STATUS_ENABLED; } mutex_unlock(&dev->persist->pci_status_mutex); return err; } static void mlx4_pci_disable_device(struct mlx4_dev *dev) { struct pci_dev *pdev = dev->persist->pdev; mutex_lock(&dev->persist->pci_status_mutex); if (dev->persist->pci_status == MLX4_PCI_STATUS_ENABLED) { pci_disable_device(pdev); dev->persist->pci_status = MLX4_PCI_STATUS_DISABLED; } mutex_unlock(&dev->persist->pci_status_mutex); } static int mlx4_load_one(struct pci_dev *pdev, int pci_dev_data, int total_vfs, int *nvfs, struct mlx4_priv *priv, int reset_flow) { struct mlx4_dev *dev; unsigned sum = 0; int err; int port; int i; struct mlx4_dev_cap *dev_cap = NULL; int existing_vfs = 0; dev = &priv->dev; INIT_LIST_HEAD(&priv->ctx_list); spin_lock_init(&priv->ctx_lock); mutex_init(&priv->port_mutex); mutex_init(&priv->bond_mutex); INIT_LIST_HEAD(&priv->pgdir_list); mutex_init(&priv->pgdir_mutex); spin_lock_init(&priv->cmd.context_lock); INIT_LIST_HEAD(&priv->bf_list); mutex_init(&priv->bf_mutex); dev->rev_id = pdev->revision; dev->numa_node = dev_to_node(&pdev->dev); /* Detect if this device is a virtual function */ if (pci_dev_data & MLX4_PCI_DEV_IS_VF) { mlx4_warn(dev, "Detected virtual function - running in slave mode\n"); dev->flags |= MLX4_FLAG_SLAVE; } else { /* We reset the device and enable SRIOV only for physical * devices. Try to claim ownership on the device; * if already taken, skip -- do not allow multiple PFs */ err = mlx4_get_ownership(dev); if (err) { if (err < 0) return err; else { mlx4_warn(dev, "Multiple PFs not yet supported - Skipping PF\n"); return -EINVAL; } } atomic_set(&priv->opreq_count, 0); INIT_WORK(&priv->opreq_task, mlx4_opreq_action); /* * Now reset the HCA before we touch the PCI capabilities or * attempt a firmware command, since a boot ROM may have left * the HCA in an undefined state. */ err = mlx4_reset(dev); if (err) { mlx4_err(dev, "Failed to reset HCA, aborting\n"); goto err_sriov; } if (total_vfs) { dev->flags = MLX4_FLAG_MASTER; existing_vfs = pci_num_vf(pdev); if (existing_vfs) dev->flags |= MLX4_FLAG_SRIOV; dev->persist->num_vfs = total_vfs; } } /* on load remove any previous indication of internal error, * device is up. */ dev->persist->state = MLX4_DEVICE_STATE_UP; slave_start: err = mlx4_cmd_init(dev); if (err) { mlx4_err(dev, "Failed to init command interface, aborting\n"); goto err_sriov; } /* In slave functions, the communication channel must be initialized * before posting commands. Also, init num_slaves before calling * mlx4_init_hca */ if (mlx4_is_mfunc(dev)) { if (mlx4_is_master(dev)) { dev->num_slaves = MLX4_MAX_NUM_SLAVES; } else { dev->num_slaves = 0; err = mlx4_multi_func_init(dev); if (err) { mlx4_err(dev, "Failed to init slave mfunc interface, aborting\n"); goto err_cmd; } } } err = mlx4_init_fw(dev); if (err) { mlx4_err(dev, "Failed to init fw, aborting.\n"); goto err_mfunc; } if (mlx4_is_master(dev)) { /* when we hit the goto slave_start below, dev_cap already initialized */ if (!dev_cap) { dev_cap = kzalloc(sizeof(*dev_cap), GFP_KERNEL); if (!dev_cap) { err = -ENOMEM; goto err_fw; } err = mlx4_QUERY_DEV_CAP(dev, dev_cap); if (err) { mlx4_err(dev, "QUERY_DEV_CAP command failed, aborting.\n"); goto err_fw; } if (mlx4_check_dev_cap(dev, dev_cap, nvfs)) goto err_fw; if (!(dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_SYS_EQS)) { u64 dev_flags = mlx4_enable_sriov(dev, pdev, total_vfs, existing_vfs, reset_flow); mlx4_cmd_cleanup(dev, MLX4_CMD_CLEANUP_ALL); dev->flags = dev_flags; if (!SRIOV_VALID_STATE(dev->flags)) { mlx4_err(dev, "Invalid SRIOV state\n"); goto err_sriov; } err = mlx4_reset(dev); if (err) { mlx4_err(dev, "Failed to reset HCA, aborting.\n"); goto err_sriov; } goto slave_start; } } else { /* Legacy mode FW requires SRIOV to be enabled before * doing QUERY_DEV_CAP, since max_eq's value is different if * SRIOV is enabled. */ memset(dev_cap, 0, sizeof(*dev_cap)); err = mlx4_QUERY_DEV_CAP(dev, dev_cap); if (err) { mlx4_err(dev, "QUERY_DEV_CAP command failed, aborting.\n"); goto err_fw; } if (mlx4_check_dev_cap(dev, dev_cap, nvfs)) goto err_fw; } } err = mlx4_init_hca(dev); if (err) { if (err == -EACCES) { /* Not primary Physical function * Running in slave mode */ mlx4_cmd_cleanup(dev, MLX4_CMD_CLEANUP_ALL); /* We're not a PF */ if (dev->flags & MLX4_FLAG_SRIOV) { if (!existing_vfs) pci_disable_sriov(pdev); if (mlx4_is_master(dev) && !reset_flow) atomic_dec(&pf_loading); dev->flags &= ~MLX4_FLAG_SRIOV; } if (!mlx4_is_slave(dev)) mlx4_free_ownership(dev); dev->flags |= MLX4_FLAG_SLAVE; dev->flags &= ~MLX4_FLAG_MASTER; goto slave_start; } else goto err_fw; } if (mlx4_is_master(dev) && (dev_cap->flags2 & MLX4_DEV_CAP_FLAG2_SYS_EQS)) { u64 dev_flags = mlx4_enable_sriov(dev, pdev, total_vfs, existing_vfs, reset_flow); if ((dev->flags ^ dev_flags) & (MLX4_FLAG_MASTER | MLX4_FLAG_SLAVE)) { mlx4_cmd_cleanup(dev, MLX4_CMD_CLEANUP_VHCR); dev->flags = dev_flags; err = mlx4_cmd_init(dev); if (err) { /* Only VHCR is cleaned up, so could still * send FW commands */ mlx4_err(dev, "Failed to init VHCR command interface, aborting\n"); goto err_close; } } else { dev->flags = dev_flags; } if (!SRIOV_VALID_STATE(dev->flags)) { mlx4_err(dev, "Invalid SRIOV state\n"); goto err_close; } } /* check if the device is functioning at its maximum possible speed. * No return code for this call, just warn the user in case of PCI * express device capabilities are under-satisfied by the bus. */ if (!mlx4_is_slave(dev)) mlx4_check_pcie_caps(dev); /* In master functions, the communication channel must be initialized * after obtaining its address from fw */ if (mlx4_is_master(dev)) { if (dev->caps.num_ports < 2 && num_vfs_argc > 1) { err = -EINVAL; mlx4_err(dev, "Error: Trying to configure VFs on port 2, but HCA has only %d physical ports\n", dev->caps.num_ports); goto err_close; } memcpy(dev->persist->nvfs, nvfs, sizeof(dev->persist->nvfs)); for (i = 0; i < sizeof(dev->persist->nvfs)/ sizeof(dev->persist->nvfs[0]); i++) { unsigned j; for (j = 0; j < dev->persist->nvfs[i]; ++sum, ++j) { dev->dev_vfs[sum].min_port = i < 2 ? i + 1 : 1; dev->dev_vfs[sum].n_ports = i < 2 ? 1 : dev->caps.num_ports; } } /* In master functions, the communication channel * must be initialized after obtaining its address from fw */ err = mlx4_multi_func_init(dev); if (err) { mlx4_err(dev, "Failed to init master mfunc interface, aborting.\n"); goto err_close; } } err = mlx4_alloc_eq_table(dev); if (err) goto err_master_mfunc; bitmap_zero(priv->msix_ctl.pool_bm, MAX_MSIX); mutex_init(&priv->msix_ctl.pool_lock); mlx4_enable_msi_x(dev); if ((mlx4_is_mfunc(dev)) && !(dev->flags & MLX4_FLAG_MSI_X)) { err = -ENOSYS; mlx4_err(dev, "INTx is not supported in multi-function mode, aborting\n"); goto err_free_eq; } if (!mlx4_is_slave(dev)) { err = mlx4_init_steering(dev); if (err) goto err_disable_msix; } mlx4_init_quotas(dev); err = mlx4_setup_hca(dev); if (err == -EBUSY && (dev->flags & MLX4_FLAG_MSI_X) && !mlx4_is_mfunc(dev)) { dev->flags &= ~MLX4_FLAG_MSI_X; dev->caps.num_comp_vectors = 1; pci_disable_msix(pdev); err = mlx4_setup_hca(dev); } if (err) goto err_steer; /* When PF resources are ready arm its comm channel to enable * getting commands */ if (mlx4_is_master(dev)) { err = mlx4_ARM_COMM_CHANNEL(dev); if (err) { mlx4_err(dev, " Failed to arm comm channel eq: %x\n", err); goto err_steer; } } for (port = 1; port <= dev->caps.num_ports; port++) { err = mlx4_init_port_info(dev, port); if (err) goto err_port; } priv->v2p.port1 = 1; priv->v2p.port2 = 2; err = mlx4_register_device(dev); if (err) goto err_port; mlx4_request_modules(dev); mlx4_sense_init(dev); mlx4_start_sense(dev); priv->removed = 0; if (mlx4_is_master(dev) && dev->persist->num_vfs && !reset_flow) atomic_dec(&pf_loading); kfree(dev_cap); return 0; err_port: for (--port; port >= 1; --port) mlx4_cleanup_port_info(&priv->port[port]); mlx4_cleanup_counters_table(dev); mlx4_cleanup_qp_table(dev); mlx4_cleanup_srq_table(dev); mlx4_cleanup_cq_table(dev); mlx4_cmd_use_polling(dev); mlx4_cleanup_eq_table(dev); mlx4_cleanup_mcg_table(dev); mlx4_cleanup_mr_table(dev); mlx4_cleanup_xrcd_table(dev); mlx4_cleanup_pd_table(dev); mlx4_cleanup_uar_table(dev); err_steer: if (!mlx4_is_slave(dev)) mlx4_clear_steering(dev); err_disable_msix: if (dev->flags & MLX4_FLAG_MSI_X) pci_disable_msix(pdev); err_free_eq: mlx4_free_eq_table(dev); err_master_mfunc: if (mlx4_is_master(dev)) { mlx4_free_resource_tracker(dev, RES_TR_FREE_STRUCTS_ONLY); mlx4_multi_func_cleanup(dev); } if (mlx4_is_slave(dev)) { kfree(dev->caps.qp0_qkey); kfree(dev->caps.qp0_tunnel); kfree(dev->caps.qp0_proxy); kfree(dev->caps.qp1_tunnel); kfree(dev->caps.qp1_proxy); } err_close: mlx4_close_hca(dev); err_fw: mlx4_close_fw(dev); err_mfunc: if (mlx4_is_slave(dev)) mlx4_multi_func_cleanup(dev); err_cmd: mlx4_cmd_cleanup(dev, MLX4_CMD_CLEANUP_ALL); err_sriov: if (dev->flags & MLX4_FLAG_SRIOV && !existing_vfs) { pci_disable_sriov(pdev); dev->flags &= ~MLX4_FLAG_SRIOV; } if (mlx4_is_master(dev) && dev->persist->num_vfs && !reset_flow) atomic_dec(&pf_loading); kfree(priv->dev.dev_vfs); if (!mlx4_is_slave(dev)) mlx4_free_ownership(dev); kfree(dev_cap); return err; } static int __mlx4_init_one(struct pci_dev *pdev, int pci_dev_data, struct mlx4_priv *priv) { int err; int nvfs[MLX4_MAX_PORTS + 1] = {0, 0, 0}; int prb_vf[MLX4_MAX_PORTS + 1] = {0, 0, 0}; const int param_map[MLX4_MAX_PORTS + 1][MLX4_MAX_PORTS + 1] = { {2, 0, 0}, {0, 1, 2}, {0, 1, 2} }; unsigned total_vfs = 0; unsigned int i; pr_info(DRV_NAME ": Initializing %s\n", pci_name(pdev)); err = mlx4_pci_enable_device(&priv->dev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); return err; } /* Due to requirement that all VFs and the PF are *guaranteed* 2 MACS * per port, we must limit the number of VFs to 63 (since their are * 128 MACs) */ for (i = 0; i < sizeof(nvfs)/sizeof(nvfs[0]) && i < num_vfs_argc; total_vfs += nvfs[param_map[num_vfs_argc - 1][i]], i++) { nvfs[param_map[num_vfs_argc - 1][i]] = num_vfs[i]; if (nvfs[i] < 0) { dev_err(&pdev->dev, "num_vfs module parameter cannot be negative\n"); err = -EINVAL; goto err_disable_pdev; } } for (i = 0; i < sizeof(prb_vf)/sizeof(prb_vf[0]) && i < probe_vfs_argc; i++) { prb_vf[param_map[probe_vfs_argc - 1][i]] = probe_vf[i]; if (prb_vf[i] < 0 || prb_vf[i] > nvfs[i]) { dev_err(&pdev->dev, "probe_vf module parameter cannot be negative or greater than num_vfs\n"); err = -EINVAL; goto err_disable_pdev; } } if (total_vfs > MLX4_MAX_NUM_VF) { dev_err(&pdev->dev, "Requested more VF's (%d) than allowed by hw (%d)\n", total_vfs, MLX4_MAX_NUM_VF); err = -EINVAL; goto err_disable_pdev; } for (i = 0; i < MLX4_MAX_PORTS; i++) { if (nvfs[i] + nvfs[2] > MLX4_MAX_NUM_VF_P_PORT) { dev_err(&pdev->dev, "Requested more VF's (%d) for port (%d) than allowed by driver (%d)\n", nvfs[i] + nvfs[2], i + 1, MLX4_MAX_NUM_VF_P_PORT); err = -EINVAL; goto err_disable_pdev; } } /* Check for BARs. */ if (!(pci_dev_data & MLX4_PCI_DEV_IS_VF) && !(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Missing DCS, aborting (driver_data: 0x%x, pci_resource_flags(pdev, 0):0x%lx)\n", pci_dev_data, (long)pci_resource_flags(pdev, 0)); err = -ENODEV; goto err_disable_pdev; } if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Missing UAR, aborting\n"); err = -ENODEV; goto err_disable_pdev; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "Couldn't get PCI resources, aborting\n"); goto err_disable_pdev; } pci_set_master(pdev); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { dev_warn(&pdev->dev, "Warning: couldn't set 64-bit PCI DMA mask\n"); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "Can't set PCI DMA mask, aborting\n"); goto err_release_regions; } } err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { dev_warn(&pdev->dev, "Warning: couldn't set 64-bit consistent PCI DMA mask\n"); err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "Can't set consistent PCI DMA mask, aborting\n"); goto err_release_regions; } } /* Allow large DMA segments, up to the firmware limit of 1 GB */ dma_set_max_seg_size(&pdev->dev, 1024 * 1024 * 1024); /* Detect if this device is a virtual function */ if (pci_dev_data & MLX4_PCI_DEV_IS_VF) { /* When acting as pf, we normally skip vfs unless explicitly * requested to probe them. */ if (total_vfs) { unsigned vfs_offset = 0; for (i = 0; i < sizeof(nvfs)/sizeof(nvfs[0]) && vfs_offset + nvfs[i] < extended_func_num(pdev); vfs_offset += nvfs[i], i++) ; if (i == sizeof(nvfs)/sizeof(nvfs[0])) { err = -ENODEV; goto err_release_regions; } if ((extended_func_num(pdev) - vfs_offset) > prb_vf[i]) { dev_warn(&pdev->dev, "Skipping virtual function:%d\n", extended_func_num(pdev)); err = -ENODEV; goto err_release_regions; } } } err = mlx4_catas_init(&priv->dev); if (err) goto err_release_regions; err = mlx4_load_one(pdev, pci_dev_data, total_vfs, nvfs, priv, 0); if (err) goto err_catas; return 0; err_catas: mlx4_catas_end(&priv->dev); err_release_regions: pci_release_regions(pdev); err_disable_pdev: mlx4_pci_disable_device(&priv->dev); pci_set_drvdata(pdev, NULL); return err; } static int mlx4_init_one(struct pci_dev *pdev, const struct pci_device_id *id) { struct sysctl_ctx_list *ctx; struct sysctl_oid *node; struct sysctl_oid_list *node_list; struct mlx4_priv *priv; struct mlx4_dev *dev; int ret; printk_once(KERN_INFO "%s", mlx4_version); priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev = &priv->dev; dev->persist = kzalloc(sizeof(*dev->persist), GFP_KERNEL); if (!dev->persist) { kfree(priv); return -ENOMEM; } dev->persist->pdev = pdev; dev->persist->dev = dev; pci_set_drvdata(pdev, dev->persist); priv->pci_dev_data = id->driver_data; mutex_init(&dev->persist->device_state_mutex); mutex_init(&dev->persist->interface_state_mutex); mutex_init(&dev->persist->pci_status_mutex); ret = __mlx4_init_one(pdev, id->driver_data, priv); if (ret) { kfree(dev->persist); kfree(priv); return ret; } else { device_set_desc(pdev->dev.bsddev, mlx4_description); pci_save_state(pdev->dev.bsddev); } snprintf(dev->fw_str, sizeof(dev->fw_str), "%d.%d.%d", (int) (dev->caps.fw_ver >> 32), (int) (dev->caps.fw_ver >> 16) & 0xffff, (int) (dev->caps.fw_ver & 0xffff)); ctx = &dev->hw_ctx; sysctl_ctx_init(ctx); node = SYSCTL_ADD_NODE(ctx,SYSCTL_CHILDREN(pdev->dev.kobj.oidp), OID_AUTO, "hw" , CTLFLAG_RD, 0, "mlx4 dev hw information"); if (node != NULL) { node_list = SYSCTL_CHILDREN(node); SYSCTL_ADD_STRING(ctx, node_list, OID_AUTO, "fw_version", CTLFLAG_RD, dev->fw_str, 0, "Device firmware version"); SYSCTL_ADD_STRING(ctx, node_list, OID_AUTO, "board_id", CTLFLAG_RD, dev->board_id, 0, "Device board identifier"); } return ret; } static void mlx4_clean_dev(struct mlx4_dev *dev) { struct mlx4_dev_persistent *persist = dev->persist; struct mlx4_priv *priv = mlx4_priv(dev); unsigned long flags = (dev->flags & RESET_PERSIST_MASK_FLAGS); memset(priv, 0, sizeof(*priv)); priv->dev.persist = persist; priv->dev.flags = flags; } static void mlx4_unload_one(struct pci_dev *pdev) { struct mlx4_dev_persistent *persist = pci_get_drvdata(pdev); struct mlx4_dev *dev = persist->dev; struct mlx4_priv *priv = mlx4_priv(dev); int pci_dev_data; int p, i; if (priv->removed) return; /* saving current ports type for further use */ for (i = 0; i < dev->caps.num_ports; i++) { dev->persist->curr_port_type[i] = dev->caps.port_type[i + 1]; dev->persist->curr_port_poss_type[i] = dev->caps. possible_type[i + 1]; } pci_dev_data = priv->pci_dev_data; mlx4_stop_sense(dev); mlx4_unregister_device(dev); for (p = 1; p <= dev->caps.num_ports; p++) { mlx4_cleanup_port_info(&priv->port[p]); mlx4_CLOSE_PORT(dev, p); } if (mlx4_is_master(dev)) mlx4_free_resource_tracker(dev, RES_TR_FREE_SLAVES_ONLY); mlx4_cleanup_default_counters(dev); if (!mlx4_is_slave(dev)) mlx4_cleanup_counters_table(dev); mlx4_cleanup_qp_table(dev); mlx4_cleanup_srq_table(dev); mlx4_cleanup_cq_table(dev); mlx4_cmd_use_polling(dev); mlx4_cleanup_eq_table(dev); mlx4_cleanup_mcg_table(dev); mlx4_cleanup_mr_table(dev); mlx4_cleanup_xrcd_table(dev); mlx4_cleanup_pd_table(dev); if (mlx4_is_master(dev)) mlx4_free_resource_tracker(dev, RES_TR_FREE_STRUCTS_ONLY); iounmap(priv->kar); mlx4_uar_free(dev, &priv->driver_uar); mlx4_cleanup_uar_table(dev); if (!mlx4_is_slave(dev)) mlx4_clear_steering(dev); mlx4_free_eq_table(dev); if (mlx4_is_master(dev)) mlx4_multi_func_cleanup(dev); mlx4_close_hca(dev); mlx4_close_fw(dev); if (mlx4_is_slave(dev)) mlx4_multi_func_cleanup(dev); mlx4_cmd_cleanup(dev, MLX4_CMD_CLEANUP_ALL); if (dev->flags & MLX4_FLAG_MSI_X) pci_disable_msix(pdev); if (!mlx4_is_slave(dev)) mlx4_free_ownership(dev); kfree(dev->caps.qp0_qkey); kfree(dev->caps.qp0_tunnel); kfree(dev->caps.qp0_proxy); kfree(dev->caps.qp1_tunnel); kfree(dev->caps.qp1_proxy); kfree(dev->dev_vfs); mlx4_clean_dev(dev); priv->pci_dev_data = pci_dev_data; priv->removed = 1; } static void mlx4_remove_one(struct pci_dev *pdev) { struct mlx4_dev_persistent *persist = pci_get_drvdata(pdev); struct mlx4_dev *dev = persist->dev; struct mlx4_priv *priv = mlx4_priv(dev); int active_vfs = 0; mutex_lock(&persist->interface_state_mutex); persist->interface_state |= MLX4_INTERFACE_STATE_DELETION; mutex_unlock(&persist->interface_state_mutex); /* * Clear the device description to avoid use after free, * because the bsddev is not destroyed when this module is * unloaded: */ device_set_desc(pdev->dev.bsddev, NULL); /* Disabling SR-IOV is not allowed while there are active vf's */ if (mlx4_is_master(dev) && dev->flags & MLX4_FLAG_SRIOV) { active_vfs = mlx4_how_many_lives_vf(dev); if (active_vfs) { pr_warn("Removing PF when there are active VF's !!\n"); pr_warn("Will not disable SR-IOV.\n"); } } /* device marked to be under deletion running now without the lock * letting other tasks to be terminated */ if (persist->interface_state & MLX4_INTERFACE_STATE_UP) mlx4_unload_one(pdev); else mlx4_info(dev, "%s: interface is down\n", __func__); mlx4_catas_end(dev); if (dev->flags & MLX4_FLAG_SRIOV && !active_vfs) { mlx4_warn(dev, "Disabling SR-IOV\n"); pci_disable_sriov(pdev); } pci_release_regions(pdev); pci_disable_device(pdev); kfree(dev->persist); kfree(priv); pci_set_drvdata(pdev, NULL); } static int restore_current_port_types(struct mlx4_dev *dev, enum mlx4_port_type *types, enum mlx4_port_type *poss_types) { struct mlx4_priv *priv = mlx4_priv(dev); int err, i; mlx4_stop_sense(dev); mutex_lock(&priv->port_mutex); for (i = 0; i < dev->caps.num_ports; i++) dev->caps.possible_type[i + 1] = poss_types[i]; err = mlx4_change_port_types(dev, types); mutex_unlock(&priv->port_mutex); mlx4_start_sense(dev); return err; } int mlx4_restart_one(struct pci_dev *pdev) { struct mlx4_dev_persistent *persist = pci_get_drvdata(pdev); struct mlx4_dev *dev = persist->dev; struct mlx4_priv *priv = mlx4_priv(dev); int nvfs[MLX4_MAX_PORTS + 1] = {0, 0, 0}; int pci_dev_data, err, total_vfs; pci_dev_data = priv->pci_dev_data; total_vfs = dev->persist->num_vfs; memcpy(nvfs, dev->persist->nvfs, sizeof(dev->persist->nvfs)); mlx4_unload_one(pdev); err = mlx4_load_one(pdev, pci_dev_data, total_vfs, nvfs, priv, 1); if (err) { mlx4_err(dev, "%s: ERROR: mlx4_load_one failed, pci_name=%s, err=%d\n", __func__, pci_name(pdev), err); return err; } err = restore_current_port_types(dev, dev->persist->curr_port_type, dev->persist->curr_port_poss_type); if (err) mlx4_err(dev, "could not restore original port types (%d)\n", err); return err; } static DEFINE_PCI_DEVICE_TABLE(mlx4_pci_table) = { /* MT25408 "Hermon" SDR */ { PCI_VDEVICE(MELLANOX, 0x6340), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25408 "Hermon" DDR */ { PCI_VDEVICE(MELLANOX, 0x634a), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25408 "Hermon" QDR */ { PCI_VDEVICE(MELLANOX, 0x6354), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25408 "Hermon" DDR PCIe gen2 */ { PCI_VDEVICE(MELLANOX, 0x6732), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25408 "Hermon" QDR PCIe gen2 */ { PCI_VDEVICE(MELLANOX, 0x673c), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25408 "Hermon" EN 10GigE */ { PCI_VDEVICE(MELLANOX, 0x6368), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25408 "Hermon" EN 10GigE PCIe gen2 */ { PCI_VDEVICE(MELLANOX, 0x6750), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25458 ConnectX EN 10GBASE-T 10GigE */ { PCI_VDEVICE(MELLANOX, 0x6372), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25458 ConnectX EN 10GBASE-T+Gen2 10GigE */ { PCI_VDEVICE(MELLANOX, 0x675a), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT26468 ConnectX EN 10GigE PCIe gen2*/ { PCI_VDEVICE(MELLANOX, 0x6764), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT26438 ConnectX EN 40GigE PCIe gen2 5GT/s */ { PCI_VDEVICE(MELLANOX, 0x6746), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT26478 ConnectX2 40GigE PCIe gen2 */ { PCI_VDEVICE(MELLANOX, 0x676e), .driver_data = MLX4_PCI_DEV_FORCE_SENSE_PORT }, /* MT25400 Family [ConnectX-2 Virtual Function] */ { PCI_VDEVICE(MELLANOX, 0x1002), .driver_data = MLX4_PCI_DEV_IS_VF }, /* MT27500 Family [ConnectX-3] */ { PCI_VDEVICE(MELLANOX, 0x1003) }, /* MT27500 Family [ConnectX-3 Virtual Function] */ { PCI_VDEVICE(MELLANOX, 0x1004), .driver_data = MLX4_PCI_DEV_IS_VF }, { PCI_VDEVICE(MELLANOX, 0x1005) }, /* MT27510 Family */ { PCI_VDEVICE(MELLANOX, 0x1006) }, /* MT27511 Family */ { PCI_VDEVICE(MELLANOX, 0x1007) }, /* MT27520 Family */ { PCI_VDEVICE(MELLANOX, 0x1008) }, /* MT27521 Family */ { PCI_VDEVICE(MELLANOX, 0x1009) }, /* MT27530 Family */ { PCI_VDEVICE(MELLANOX, 0x100a) }, /* MT27531 Family */ { PCI_VDEVICE(MELLANOX, 0x100b) }, /* MT27540 Family */ { PCI_VDEVICE(MELLANOX, 0x100c) }, /* MT27541 Family */ { PCI_VDEVICE(MELLANOX, 0x100d) }, /* MT27550 Family */ { PCI_VDEVICE(MELLANOX, 0x100e) }, /* MT27551 Family */ { PCI_VDEVICE(MELLANOX, 0x100f) }, /* MT27560 Family */ { PCI_VDEVICE(MELLANOX, 0x1010) }, /* MT27561 Family */ { 0, } }; MODULE_DEVICE_TABLE(pci, mlx4_pci_table); static pci_ers_result_t mlx4_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct mlx4_dev_persistent *persist = pci_get_drvdata(pdev); mlx4_err(persist->dev, "mlx4_pci_err_detected was called\n"); mlx4_enter_error_state(persist); mutex_lock(&persist->interface_state_mutex); if (persist->interface_state & MLX4_INTERFACE_STATE_UP) mlx4_unload_one(pdev); mutex_unlock(&persist->interface_state_mutex); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; mlx4_pci_disable_device(persist->dev); return PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t mlx4_pci_slot_reset(struct pci_dev *pdev) { struct mlx4_dev_persistent *persist = pci_get_drvdata(pdev); struct mlx4_dev *dev = persist->dev; int err; mlx4_err(dev, "mlx4_pci_slot_reset was called\n"); err = mlx4_pci_enable_device(dev); if (err) { mlx4_err(dev, "Can not re-enable device, err=%d\n", err); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); return PCI_ERS_RESULT_RECOVERED; } static void mlx4_pci_resume(struct pci_dev *pdev) { struct mlx4_dev_persistent *persist = pci_get_drvdata(pdev); struct mlx4_dev *dev = persist->dev; struct mlx4_priv *priv = mlx4_priv(dev); int nvfs[MLX4_MAX_PORTS + 1] = {0, 0, 0}; int total_vfs; int err; mlx4_err(dev, "%s was called\n", __func__); total_vfs = dev->persist->num_vfs; memcpy(nvfs, dev->persist->nvfs, sizeof(dev->persist->nvfs)); mutex_lock(&persist->interface_state_mutex); if (!(persist->interface_state & MLX4_INTERFACE_STATE_UP)) { err = mlx4_load_one(pdev, priv->pci_dev_data, total_vfs, nvfs, priv, 1); if (err) { mlx4_err(dev, "%s: mlx4_load_one failed, err=%d\n", __func__, err); goto end; } err = restore_current_port_types(dev, dev->persist-> curr_port_type, dev->persist-> curr_port_poss_type); if (err) mlx4_err(dev, "could not restore original port types (%d)\n", err); } end: mutex_unlock(&persist->interface_state_mutex); } static void mlx4_shutdown(struct pci_dev *pdev) { struct mlx4_dev_persistent *persist = pci_get_drvdata(pdev); mlx4_info(persist->dev, "mlx4_shutdown was called\n"); mutex_lock(&persist->interface_state_mutex); if (persist->interface_state & MLX4_INTERFACE_STATE_UP) mlx4_unload_one(pdev); mutex_unlock(&persist->interface_state_mutex); } static const struct pci_error_handlers mlx4_err_handler = { .error_detected = mlx4_pci_err_detected, .slot_reset = mlx4_pci_slot_reset, .resume = mlx4_pci_resume, }; static struct pci_driver mlx4_driver = { .name = DRV_NAME, .id_table = mlx4_pci_table, .probe = mlx4_init_one, .shutdown = mlx4_shutdown, .remove = mlx4_remove_one, .err_handler = &mlx4_err_handler, }; static int __init mlx4_verify_params(void) { if ((log_num_mac < 0) || (log_num_mac > 7)) { pr_warn("mlx4_core: bad num_mac: %d\n", log_num_mac); return -1; } if (log_num_vlan != 0) pr_warn("mlx4_core: log_num_vlan - obsolete module param, using %d\n", MLX4_LOG_NUM_VLANS); if (use_prio != 0) pr_warn("mlx4_core: use_prio - obsolete module param, ignored\n"); if ((log_mtts_per_seg < 1) || (log_mtts_per_seg > 7)) { pr_warn("mlx4_core: bad log_mtts_per_seg: %d\n", log_mtts_per_seg); return -1; } /* Check if module param for ports type has legal combination */ if (port_type_array[0] == false && port_type_array[1] == true) { pr_warn("Module parameter configuration ETH/IB is not supported. Switching to default configuration IB/IB\n"); port_type_array[0] = true; } if (mlx4_log_num_mgm_entry_size < -7 || (mlx4_log_num_mgm_entry_size > 0 && (mlx4_log_num_mgm_entry_size < MLX4_MIN_MGM_LOG_ENTRY_SIZE || mlx4_log_num_mgm_entry_size > MLX4_MAX_MGM_LOG_ENTRY_SIZE))) { pr_warn("mlx4_core: mlx4_log_num_mgm_entry_size (%d) not in legal range (-7..0 or %d..%d)\n", mlx4_log_num_mgm_entry_size, MLX4_MIN_MGM_LOG_ENTRY_SIZE, MLX4_MAX_MGM_LOG_ENTRY_SIZE); return -1; } return 0; } static int __init mlx4_init(void) { int ret; if (mlx4_verify_params()) return -EINVAL; mlx4_wq = create_singlethread_workqueue("mlx4"); if (!mlx4_wq) return -ENOMEM; ret = pci_register_driver(&mlx4_driver); if (ret < 0) destroy_workqueue(mlx4_wq); return ret < 0 ? ret : 0; } static void __exit mlx4_cleanup(void) { pci_unregister_driver(&mlx4_driver); destroy_workqueue(mlx4_wq); } -module_init(mlx4_init); -module_exit(mlx4_cleanup); +module_init_order(mlx4_init, SI_ORDER_FIRST); +module_exit_order(mlx4_cleanup, SI_ORDER_FIRST); static int mlx4_evhand(module_t mod, int event, void *arg) { return (0); } static moduledata_t mlx4_mod = { .name = "mlx4", .evhand = mlx4_evhand, }; MODULE_VERSION(mlx4, 1); DECLARE_MODULE(mlx4, mlx4_mod, SI_SUB_OFED_PREINIT, SI_ORDER_ANY); MODULE_DEPEND(mlx4, linuxkpi, 1, 1, 1); Index: stable/11/sys/dev/mlx4/mlx4_en/mlx4_en_main.c =================================================================== --- stable/11/sys/dev/mlx4/mlx4_en/mlx4_en_main.c (revision 363150) +++ stable/11/sys/dev/mlx4/mlx4_en/mlx4_en_main.c (revision 363151) @@ -1,321 +1,321 @@ /* * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #define LINUXKPI_PARAM_PREFIX mlx4_ #include #include #include #include #include #include #include #include "en.h" /* Mellanox ConnectX HCA Ethernet driver */ #define MLX4_EN_PARM_INT(X, def_val, desc) \ static unsigned int X = def_val;\ module_param(X , uint, 0444); \ MODULE_PARM_DESC(X, desc); /* * Device scope module parameters */ /* Enable RSS UDP traffic */ MLX4_EN_PARM_INT(udp_rss, 1, "Enable RSS for incoming UDP traffic or disabled (0)"); /* Priority pausing */ MLX4_EN_PARM_INT(pfctx, 0, "Priority based Flow Control policy on TX[7:0]." " Per priority bit mask"); MLX4_EN_PARM_INT(pfcrx, 0, "Priority based Flow Control policy on RX[7:0]." " Per priority bit mask"); MLX4_EN_PARM_INT(inline_thold, MAX_INLINE, "Threshold for using inline data (range: 17-104, default: 104)"); #define MAX_PFC_TX 0xff #define MAX_PFC_RX 0xff static int mlx4_en_get_profile(struct mlx4_en_dev *mdev) { struct mlx4_en_profile *params = &mdev->profile; int i; params->udp_rss = udp_rss; params->num_tx_rings_p_up = min_t(int, mp_ncpus, MLX4_EN_MAX_TX_RING_P_UP); if (params->udp_rss && !(mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_UDP_RSS)) { mlx4_warn(mdev, "UDP RSS is not supported on this device.\n"); params->udp_rss = 0; } for (i = 1; i <= MLX4_MAX_PORTS; i++) { params->prof[i].rx_pause = 1; params->prof[i].rx_ppp = pfcrx; params->prof[i].tx_pause = 1; params->prof[i].tx_ppp = pfctx; params->prof[i].tx_ring_size = MLX4_EN_DEF_TX_RING_SIZE; params->prof[i].rx_ring_size = MLX4_EN_DEF_RX_RING_SIZE; params->prof[i].tx_ring_num = params->num_tx_rings_p_up * MLX4_EN_NUM_UP; params->prof[i].rss_rings = 0; params->prof[i].inline_thold = inline_thold; } return 0; } static void *mlx4_en_get_netdev(struct mlx4_dev *dev, void *ctx, u8 port) { struct mlx4_en_dev *endev = ctx; return endev->pndev[port]; } static void mlx4_en_event(struct mlx4_dev *dev, void *endev_ptr, enum mlx4_dev_event event, unsigned long port) { struct mlx4_en_dev *mdev = (struct mlx4_en_dev *) endev_ptr; struct mlx4_en_priv *priv; switch (event) { case MLX4_DEV_EVENT_PORT_UP: case MLX4_DEV_EVENT_PORT_DOWN: if (!mdev->pndev[port]) return; priv = netdev_priv(mdev->pndev[port]); /* To prevent races, we poll the link state in a separate task rather than changing it here */ priv->link_state = event; queue_work(mdev->workqueue, &priv->linkstate_task); break; case MLX4_DEV_EVENT_CATASTROPHIC_ERROR: mlx4_err(mdev, "Internal error detected, restarting device\n"); break; case MLX4_DEV_EVENT_SLAVE_INIT: case MLX4_DEV_EVENT_SLAVE_SHUTDOWN: break; default: if (port < 1 || port > dev->caps.num_ports || !mdev->pndev[port]) return; mlx4_warn(mdev, "Unhandled event %d for port %d\n", event, (int) port); } } static void mlx4_en_remove(struct mlx4_dev *dev, void *endev_ptr) { struct mlx4_en_dev *mdev = endev_ptr; int i; mutex_lock(&mdev->state_lock); mdev->device_up = false; mutex_unlock(&mdev->state_lock); mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) if (mdev->pndev[i]) mlx4_en_destroy_netdev(mdev->pndev[i]); flush_workqueue(mdev->workqueue); destroy_workqueue(mdev->workqueue); (void) mlx4_mr_free(dev, &mdev->mr); iounmap(mdev->uar_map); mlx4_uar_free(dev, &mdev->priv_uar); mlx4_pd_free(dev, mdev->priv_pdn); kfree(mdev); } static void mlx4_en_activate(struct mlx4_dev *dev, void *ctx) { int i; struct mlx4_en_dev *mdev = ctx; /* Create a netdev for each port */ mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) { mlx4_info(mdev, "Activating port:%d\n", i); if (mlx4_en_init_netdev(mdev, i, &mdev->profile.prof[i])) mdev->pndev[i] = NULL; } } static void *mlx4_en_add(struct mlx4_dev *dev) { struct mlx4_en_dev *mdev; int i; mdev = kzalloc(sizeof(*mdev), GFP_KERNEL); if (!mdev) goto err_free_res; if (mlx4_pd_alloc(dev, &mdev->priv_pdn)) goto err_free_dev; if (mlx4_uar_alloc(dev, &mdev->priv_uar)) goto err_pd; mdev->uar_map = ioremap((phys_addr_t) mdev->priv_uar.pfn << PAGE_SHIFT, PAGE_SIZE); if (!mdev->uar_map) goto err_uar; spin_lock_init(&mdev->uar_lock); mdev->dev = dev; mdev->dma_device = &dev->persist->pdev->dev; mdev->pdev = dev->persist->pdev; mdev->device_up = false; mdev->LSO_support = !!(dev->caps.flags & (1 << 15)); if (!mdev->LSO_support) mlx4_warn(mdev, "LSO not supported, please upgrade to later " "FW version to enable LSO\n"); if (mlx4_mr_alloc(mdev->dev, mdev->priv_pdn, 0, ~0ull, MLX4_PERM_LOCAL_WRITE | MLX4_PERM_LOCAL_READ, 0, 0, &mdev->mr)) { mlx4_err(mdev, "Failed allocating memory region\n"); goto err_map; } if (mlx4_mr_enable(mdev->dev, &mdev->mr)) { mlx4_err(mdev, "Failed enabling memory region\n"); goto err_mr; } /* Build device profile according to supplied module parameters */ if (mlx4_en_get_profile(mdev)) { mlx4_err(mdev, "Bad module parameters, aborting\n"); goto err_mr; } /* Configure which ports to start according to module parameters */ mdev->port_cnt = 0; mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) mdev->port_cnt++; /* Set default number of RX rings*/ mlx4_en_set_num_rx_rings(mdev); /* Create our own workqueue for reset/multicast tasks * Note: we cannot use the shared workqueue because of deadlocks caused * by the rtnl lock */ mdev->workqueue = create_singlethread_workqueue("mlx4_en"); if (!mdev->workqueue) goto err_mr; /* At this stage all non-port specific tasks are complete: * mark the card state as up */ mutex_init(&mdev->state_lock); mdev->device_up = true; return mdev; err_mr: (void) mlx4_mr_free(dev, &mdev->mr); err_map: if (mdev->uar_map) iounmap(mdev->uar_map); err_uar: mlx4_uar_free(dev, &mdev->priv_uar); err_pd: mlx4_pd_free(dev, mdev->priv_pdn); err_free_dev: kfree(mdev); err_free_res: return NULL; } static struct mlx4_interface mlx4_en_interface = { .add = mlx4_en_add, .remove = mlx4_en_remove, .event = mlx4_en_event, .get_dev = mlx4_en_get_netdev, .protocol = MLX4_PROT_ETH, .activate = mlx4_en_activate, }; static void mlx4_en_verify_params(void) { if (pfctx > MAX_PFC_TX) { pr_warn("mlx4_en: WARNING: illegal module parameter pfctx 0x%x - should be in range 0-0x%x, will be changed to default (0)\n", pfctx, MAX_PFC_TX); pfctx = 0; } if (pfcrx > MAX_PFC_RX) { pr_warn("mlx4_en: WARNING: illegal module parameter pfcrx 0x%x - should be in range 0-0x%x, will be changed to default (0)\n", pfcrx, MAX_PFC_RX); pfcrx = 0; } if (inline_thold < MIN_PKT_LEN || inline_thold > MAX_INLINE) { pr_warn("mlx4_en: WARNING: illegal module parameter inline_thold %d - should be in range %d-%d, will be changed to default (%d)\n", inline_thold, MIN_PKT_LEN, MAX_INLINE, MAX_INLINE); inline_thold = MAX_INLINE; } } static int __init mlx4_en_init(void) { mlx4_en_verify_params(); return mlx4_register_interface(&mlx4_en_interface); } static void __exit mlx4_en_cleanup(void) { mlx4_unregister_interface(&mlx4_en_interface); } -module_init(mlx4_en_init); -module_exit(mlx4_en_cleanup); +module_init_order(mlx4_en_init, SI_ORDER_SIXTH); +module_exit_order(mlx4_en_cleanup, SI_ORDER_SIXTH); static int mlx4en_evhand(module_t mod, int event, void *arg) { return (0); } static moduledata_t mlx4en_mod = { .name = "mlx4en", .evhand = mlx4en_evhand, }; DECLARE_MODULE(mlx4en, mlx4en_mod, SI_SUB_OFED_PREINIT, SI_ORDER_ANY); MODULE_DEPEND(mlx4en, mlx4, 1, 1, 1); MODULE_DEPEND(mlx4en, linuxkpi, 1, 1, 1); Index: stable/11/sys/dev/mlx4/mlx4_ib/mlx4_ib_main.c =================================================================== --- stable/11/sys/dev/mlx4/mlx4_ib/mlx4_ib_main.c (revision 363150) +++ stable/11/sys/dev/mlx4/mlx4_ib/mlx4_ib_main.c (revision 363151) @@ -1,3340 +1,3340 @@ /* * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define LINUXKPI_PARAM_PREFIX mlx4_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mlx4_ib.h" #include #include "wc.h" #define DRV_NAME MLX4_IB_DRV_NAME #ifndef DRV_VERSION #define DRV_VERSION "3.5.1" #endif #define DRV_RELDATE "April 2019" #define MLX4_IB_FLOW_MAX_PRIO 0xFFF #define MLX4_IB_FLOW_QPN_MASK 0xFFFFFF #define MLX4_IB_CARD_REV_A0 0xA0 MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("Mellanox ConnectX HCA InfiniBand driver"); MODULE_LICENSE("Dual BSD/GPL"); int mlx4_ib_sm_guid_assign = 0; module_param_named(sm_guid_assign, mlx4_ib_sm_guid_assign, int, 0444); MODULE_PARM_DESC(sm_guid_assign, "Enable SM alias_GUID assignment if sm_guid_assign > 0 (Default: 0)"); static const char mlx4_ib_version[] = DRV_NAME ": Mellanox ConnectX InfiniBand driver v" DRV_VERSION " (" DRV_RELDATE ")\n"; static void do_slave_init(struct mlx4_ib_dev *ibdev, int slave, int do_init); static struct workqueue_struct *wq; static void init_query_mad(struct ib_smp *mad) { mad->base_version = 1; mad->mgmt_class = IB_MGMT_CLASS_SUBN_LID_ROUTED; mad->class_version = 1; mad->method = IB_MGMT_METHOD_GET; } static int check_flow_steering_support(struct mlx4_dev *dev) { int eth_num_ports = 0; int ib_num_ports = 0; int dmfs = dev->caps.steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED; if (dmfs) { int i; mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) eth_num_ports++; mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_IB) ib_num_ports++; dmfs &= (!ib_num_ports || (dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_DMFS_IPOIB)) && (!eth_num_ports || (dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_FS_EN)); if (ib_num_ports && mlx4_is_mfunc(dev)) { pr_warn("Device managed flow steering is unavailable for IB port in multifunction env.\n"); dmfs = 0; } } return dmfs; } static int num_ib_ports(struct mlx4_dev *dev) { int ib_ports = 0; int i; mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_IB) ib_ports++; return ib_ports; } static struct net_device *mlx4_ib_get_netdev(struct ib_device *device, u8 port_num) { struct mlx4_ib_dev *ibdev = to_mdev(device); struct net_device *dev; rcu_read_lock(); dev = mlx4_get_protocol_dev(ibdev->dev, MLX4_PROT_ETH, port_num); #if 0 if (dev) { if (mlx4_is_bonded(ibdev->dev)) { struct net_device *upper = NULL; upper = netdev_master_upper_dev_get_rcu(dev); if (upper) { struct net_device *active; active = bond_option_active_slave_get_rcu(netdev_priv(upper)); if (active) dev = active; } } } #endif if (dev) dev_hold(dev); rcu_read_unlock(); return dev; } static int mlx4_ib_update_gids_v1(struct gid_entry *gids, struct mlx4_ib_dev *ibdev, u8 port_num) { struct mlx4_cmd_mailbox *mailbox; int err; struct mlx4_dev *dev = ibdev->dev; int i; union ib_gid *gid_tbl; mailbox = mlx4_alloc_cmd_mailbox(dev); if (IS_ERR(mailbox)) return -ENOMEM; gid_tbl = mailbox->buf; for (i = 0; i < MLX4_MAX_PORT_GIDS; ++i) memcpy(&gid_tbl[i], &gids[i].gid, sizeof(union ib_gid)); err = mlx4_cmd(dev, mailbox->dma, MLX4_SET_PORT_GID_TABLE << 8 | port_num, 1, MLX4_CMD_SET_PORT, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_WRAPPED); if (mlx4_is_bonded(dev)) err += mlx4_cmd(dev, mailbox->dma, MLX4_SET_PORT_GID_TABLE << 8 | 2, 1, MLX4_CMD_SET_PORT, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_WRAPPED); mlx4_free_cmd_mailbox(dev, mailbox); return err; } static int mlx4_ib_update_gids_v1_v2(struct gid_entry *gids, struct mlx4_ib_dev *ibdev, u8 port_num) { struct mlx4_cmd_mailbox *mailbox; int err; struct mlx4_dev *dev = ibdev->dev; int i; struct { union ib_gid gid; __be32 rsrvd1[2]; __be16 rsrvd2; u8 type; u8 version; __be32 rsrvd3; } *gid_tbl; mailbox = mlx4_alloc_cmd_mailbox(dev); if (IS_ERR(mailbox)) return -ENOMEM; gid_tbl = mailbox->buf; for (i = 0; i < MLX4_MAX_PORT_GIDS; ++i) { memcpy(&gid_tbl[i].gid, &gids[i].gid, sizeof(union ib_gid)); if (gids[i].gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { gid_tbl[i].version = 2; if (!ipv6_addr_v4mapped((struct in6_addr *)&gids[i].gid)) gid_tbl[i].type = 1; else memset(&gid_tbl[i].gid, 0, 12); } } err = mlx4_cmd(dev, mailbox->dma, MLX4_SET_PORT_ROCE_ADDR << 8 | port_num, 1, MLX4_CMD_SET_PORT, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_WRAPPED); if (mlx4_is_bonded(dev)) err += mlx4_cmd(dev, mailbox->dma, MLX4_SET_PORT_ROCE_ADDR << 8 | 2, 1, MLX4_CMD_SET_PORT, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_WRAPPED); mlx4_free_cmd_mailbox(dev, mailbox); return err; } static int mlx4_ib_update_gids(struct gid_entry *gids, struct mlx4_ib_dev *ibdev, u8 port_num) { if (ibdev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_ROCE_V1_V2) return mlx4_ib_update_gids_v1_v2(gids, ibdev, port_num); return mlx4_ib_update_gids_v1(gids, ibdev, port_num); } static int mlx4_ib_add_gid(struct ib_device *device, u8 port_num, unsigned int index, const union ib_gid *gid, const struct ib_gid_attr *attr, void **context) { struct mlx4_ib_dev *ibdev = to_mdev(device); struct mlx4_ib_iboe *iboe = &ibdev->iboe; struct mlx4_port_gid_table *port_gid_table; int free = -1, found = -1; int ret = 0; int hw_update = 0; int i; struct gid_entry *gids = NULL; if (!rdma_cap_roce_gid_table(device, port_num)) return -EINVAL; if (port_num > MLX4_MAX_PORTS) return -EINVAL; if (!context) return -EINVAL; port_gid_table = &iboe->gids[port_num - 1]; spin_lock_bh(&iboe->lock); for (i = 0; i < MLX4_MAX_PORT_GIDS; ++i) { if (!memcmp(&port_gid_table->gids[i].gid, gid, sizeof(*gid)) && (port_gid_table->gids[i].gid_type == attr->gid_type)) { found = i; break; } if (free < 0 && !memcmp(&port_gid_table->gids[i].gid, &zgid, sizeof(*gid))) free = i; /* HW has space */ } if (found < 0) { if (free < 0) { ret = -ENOSPC; } else { port_gid_table->gids[free].ctx = kmalloc(sizeof(*port_gid_table->gids[free].ctx), GFP_ATOMIC); if (!port_gid_table->gids[free].ctx) { ret = -ENOMEM; } else { *context = port_gid_table->gids[free].ctx; memcpy(&port_gid_table->gids[free].gid, gid, sizeof(*gid)); port_gid_table->gids[free].gid_type = attr->gid_type; port_gid_table->gids[free].ctx->real_index = free; port_gid_table->gids[free].ctx->refcount = 1; hw_update = 1; } } } else { struct gid_cache_context *ctx = port_gid_table->gids[found].ctx; *context = ctx; ctx->refcount++; } if (!ret && hw_update) { gids = kmalloc(sizeof(*gids) * MLX4_MAX_PORT_GIDS, GFP_ATOMIC); if (!gids) { ret = -ENOMEM; } else { for (i = 0; i < MLX4_MAX_PORT_GIDS; i++) { memcpy(&gids[i].gid, &port_gid_table->gids[i].gid, sizeof(union ib_gid)); gids[i].gid_type = port_gid_table->gids[i].gid_type; } } } spin_unlock_bh(&iboe->lock); if (!ret && hw_update) { ret = mlx4_ib_update_gids(gids, ibdev, port_num); kfree(gids); } return ret; } static int mlx4_ib_del_gid(struct ib_device *device, u8 port_num, unsigned int index, void **context) { struct gid_cache_context *ctx = *context; struct mlx4_ib_dev *ibdev = to_mdev(device); struct mlx4_ib_iboe *iboe = &ibdev->iboe; struct mlx4_port_gid_table *port_gid_table; int ret = 0; int hw_update = 0; struct gid_entry *gids = NULL; if (!rdma_cap_roce_gid_table(device, port_num)) return -EINVAL; if (port_num > MLX4_MAX_PORTS) return -EINVAL; port_gid_table = &iboe->gids[port_num - 1]; spin_lock_bh(&iboe->lock); if (ctx) { ctx->refcount--; if (!ctx->refcount) { unsigned int real_index = ctx->real_index; memcpy(&port_gid_table->gids[real_index].gid, &zgid, sizeof(zgid)); kfree(port_gid_table->gids[real_index].ctx); port_gid_table->gids[real_index].ctx = NULL; hw_update = 1; } } if (!ret && hw_update) { int i; gids = kmalloc(sizeof(*gids) * MLX4_MAX_PORT_GIDS, GFP_ATOMIC); if (!gids) { ret = -ENOMEM; } else { for (i = 0; i < MLX4_MAX_PORT_GIDS; i++) memcpy(&gids[i].gid, &port_gid_table->gids[i].gid, sizeof(union ib_gid)); } } spin_unlock_bh(&iboe->lock); if (!ret && hw_update) { ret = mlx4_ib_update_gids(gids, ibdev, port_num); kfree(gids); } return ret; } int mlx4_ib_gid_index_to_real_index(struct mlx4_ib_dev *ibdev, u8 port_num, int index) { struct mlx4_ib_iboe *iboe = &ibdev->iboe; struct gid_cache_context *ctx = NULL; union ib_gid gid; struct mlx4_port_gid_table *port_gid_table; int real_index = -EINVAL; int i; int ret; unsigned long flags; struct ib_gid_attr attr; if (port_num > MLX4_MAX_PORTS) return -EINVAL; if (mlx4_is_bonded(ibdev->dev)) port_num = 1; if (!rdma_cap_roce_gid_table(&ibdev->ib_dev, port_num)) return index; ret = ib_get_cached_gid(&ibdev->ib_dev, port_num, index, &gid, &attr); if (ret) return ret; if (attr.ndev) dev_put(attr.ndev); if (!memcmp(&gid, &zgid, sizeof(gid))) return -EINVAL; spin_lock_irqsave(&iboe->lock, flags); port_gid_table = &iboe->gids[port_num - 1]; for (i = 0; i < MLX4_MAX_PORT_GIDS; ++i) if (!memcmp(&port_gid_table->gids[i].gid, &gid, sizeof(gid)) && attr.gid_type == port_gid_table->gids[i].gid_type) { ctx = port_gid_table->gids[i].ctx; break; } if (ctx) real_index = ctx->real_index; spin_unlock_irqrestore(&iboe->lock, flags); return real_index; } static int mlx4_ib_query_device(struct ib_device *ibdev, struct ib_device_attr *props, struct ib_udata *uhw) { struct mlx4_ib_dev *dev = to_mdev(ibdev); struct ib_smp *in_mad = NULL; struct ib_smp *out_mad = NULL; int err = -ENOMEM; int have_ib_ports; struct mlx4_uverbs_ex_query_device cmd; struct mlx4_uverbs_ex_query_device_resp resp = {.comp_mask = 0}; struct mlx4_clock_params clock_params; if (uhw->inlen) { if (uhw->inlen < sizeof(cmd)) return -EINVAL; err = ib_copy_from_udata(&cmd, uhw, sizeof(cmd)); if (err) return err; if (cmd.comp_mask) return -EINVAL; if (cmd.reserved) return -EINVAL; } resp.response_length = offsetof(typeof(resp), response_length) + sizeof(resp.response_length); in_mad = kzalloc(sizeof *in_mad, GFP_KERNEL); out_mad = kmalloc(sizeof *out_mad, GFP_KERNEL); if (!in_mad || !out_mad) goto out; init_query_mad(in_mad); in_mad->attr_id = IB_SMP_ATTR_NODE_INFO; err = mlx4_MAD_IFC(to_mdev(ibdev), MLX4_MAD_IFC_IGNORE_KEYS, 1, NULL, NULL, in_mad, out_mad); if (err) goto out; memset(props, 0, sizeof *props); have_ib_ports = num_ib_ports(dev->dev); props->fw_ver = dev->dev->caps.fw_ver; props->device_cap_flags = IB_DEVICE_CHANGE_PHY_PORT | IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | IB_DEVICE_BLOCK_MULTICAST_LOOPBACK; if (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_BAD_PKEY_CNTR) props->device_cap_flags |= IB_DEVICE_BAD_PKEY_CNTR; if (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_BAD_QKEY_CNTR) props->device_cap_flags |= IB_DEVICE_BAD_QKEY_CNTR; if (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_APM && have_ib_ports) props->device_cap_flags |= IB_DEVICE_AUTO_PATH_MIG; if (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_UD_AV_PORT) props->device_cap_flags |= IB_DEVICE_UD_AV_PORT_ENFORCE; if (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_IPOIB_CSUM) props->device_cap_flags |= IB_DEVICE_UD_IP_CSUM; if (dev->dev->caps.max_gso_sz && (dev->dev->rev_id != MLX4_IB_CARD_REV_A0) && (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_BLH)) props->device_cap_flags |= IB_DEVICE_UD_TSO; if (dev->dev->caps.bmme_flags & MLX4_BMME_FLAG_RESERVED_LKEY) props->device_cap_flags |= IB_DEVICE_LOCAL_DMA_LKEY; if ((dev->dev->caps.bmme_flags & MLX4_BMME_FLAG_LOCAL_INV) && (dev->dev->caps.bmme_flags & MLX4_BMME_FLAG_REMOTE_INV) && (dev->dev->caps.bmme_flags & MLX4_BMME_FLAG_FAST_REG_WR)) props->device_cap_flags |= IB_DEVICE_MEM_MGT_EXTENSIONS; if (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_XRC) props->device_cap_flags |= IB_DEVICE_XRC; if (dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_MEM_WINDOW) props->device_cap_flags |= IB_DEVICE_MEM_WINDOW; if (dev->dev->caps.bmme_flags & MLX4_BMME_FLAG_TYPE_2_WIN) { if (dev->dev->caps.bmme_flags & MLX4_BMME_FLAG_WIN_TYPE_2B) props->device_cap_flags |= IB_DEVICE_MEM_WINDOW_TYPE_2B; else props->device_cap_flags |= IB_DEVICE_MEM_WINDOW_TYPE_2A; } if (dev->steering_support == MLX4_STEERING_MODE_DEVICE_MANAGED) props->device_cap_flags |= IB_DEVICE_MANAGED_FLOW_STEERING; props->device_cap_flags |= IB_DEVICE_RAW_IP_CSUM; props->vendor_id = be32_to_cpup((__be32 *) (out_mad->data + 36)) & 0xffffff; props->vendor_part_id = dev->dev->persist->pdev->device; props->hw_ver = be32_to_cpup((__be32 *) (out_mad->data + 32)); memcpy(&props->sys_image_guid, out_mad->data + 4, 8); props->max_mr_size = ~0ull; props->page_size_cap = dev->dev->caps.page_size_cap; props->max_qp = dev->dev->quotas.qp; props->max_qp_wr = dev->dev->caps.max_wqes - MLX4_IB_SQ_MAX_SPARE; props->max_sge = min(dev->dev->caps.max_sq_sg, dev->dev->caps.max_rq_sg); props->max_sge_rd = MLX4_MAX_SGE_RD; props->max_cq = dev->dev->quotas.cq; props->max_cqe = dev->dev->caps.max_cqes; props->max_mr = dev->dev->quotas.mpt; props->max_pd = dev->dev->caps.num_pds - dev->dev->caps.reserved_pds; props->max_qp_rd_atom = dev->dev->caps.max_qp_dest_rdma; props->max_qp_init_rd_atom = dev->dev->caps.max_qp_init_rdma; props->max_res_rd_atom = props->max_qp_rd_atom * props->max_qp; props->max_srq = dev->dev->quotas.srq; props->max_srq_wr = dev->dev->caps.max_srq_wqes - 1; props->max_srq_sge = dev->dev->caps.max_srq_sge; props->max_fast_reg_page_list_len = MLX4_MAX_FAST_REG_PAGES; props->local_ca_ack_delay = dev->dev->caps.local_ca_ack_delay; props->atomic_cap = dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_ATOMIC ? IB_ATOMIC_HCA : IB_ATOMIC_NONE; props->masked_atomic_cap = props->atomic_cap; props->max_pkeys = dev->dev->caps.pkey_table_len[1]; props->max_mcast_grp = dev->dev->caps.num_mgms + dev->dev->caps.num_amgms; props->max_mcast_qp_attach = dev->dev->caps.num_qp_per_mgm; props->max_total_mcast_qp_attach = props->max_mcast_qp_attach * props->max_mcast_grp; props->max_map_per_fmr = dev->dev->caps.max_fmr_maps; props->hca_core_clock = dev->dev->caps.hca_core_clock * 1000UL; props->timestamp_mask = 0xFFFFFFFFFFFFULL; if (!mlx4_is_slave(dev->dev)) err = mlx4_get_internal_clock_params(dev->dev, &clock_params); if (uhw->outlen >= resp.response_length + sizeof(resp.hca_core_clock_offset)) { resp.response_length += sizeof(resp.hca_core_clock_offset); if (!err && !mlx4_is_slave(dev->dev)) { resp.comp_mask |= QUERY_DEVICE_RESP_MASK_TIMESTAMP; resp.hca_core_clock_offset = clock_params.offset % PAGE_SIZE; } } if (uhw->outlen) { err = ib_copy_to_udata(uhw, &resp, resp.response_length); if (err) goto out; } out: kfree(in_mad); kfree(out_mad); return err; } static enum rdma_link_layer mlx4_ib_port_link_layer(struct ib_device *device, u8 port_num) { struct mlx4_dev *dev = to_mdev(device)->dev; return dev->caps.port_mask[port_num] == MLX4_PORT_TYPE_IB ? IB_LINK_LAYER_INFINIBAND : IB_LINK_LAYER_ETHERNET; } static int ib_link_query_port(struct ib_device *ibdev, u8 port, struct ib_port_attr *props, int netw_view) { struct ib_smp *in_mad = NULL; struct ib_smp *out_mad = NULL; int ext_active_speed; int mad_ifc_flags = MLX4_MAD_IFC_IGNORE_KEYS; int err = -ENOMEM; in_mad = kzalloc(sizeof *in_mad, GFP_KERNEL); out_mad = kmalloc(sizeof *out_mad, GFP_KERNEL); if (!in_mad || !out_mad) goto out; init_query_mad(in_mad); in_mad->attr_id = IB_SMP_ATTR_PORT_INFO; in_mad->attr_mod = cpu_to_be32(port); if (mlx4_is_mfunc(to_mdev(ibdev)->dev) && netw_view) mad_ifc_flags |= MLX4_MAD_IFC_NET_VIEW; err = mlx4_MAD_IFC(to_mdev(ibdev), mad_ifc_flags, port, NULL, NULL, in_mad, out_mad); if (err) goto out; props->lid = be16_to_cpup((__be16 *) (out_mad->data + 16)); props->lmc = out_mad->data[34] & 0x7; props->sm_lid = be16_to_cpup((__be16 *) (out_mad->data + 18)); props->sm_sl = out_mad->data[36] & 0xf; props->state = out_mad->data[32] & 0xf; props->phys_state = out_mad->data[33] >> 4; props->port_cap_flags = be32_to_cpup((__be32 *) (out_mad->data + 20)); if (netw_view) props->gid_tbl_len = out_mad->data[50]; else props->gid_tbl_len = to_mdev(ibdev)->dev->caps.gid_table_len[port]; props->max_msg_sz = to_mdev(ibdev)->dev->caps.max_msg_sz; props->pkey_tbl_len = to_mdev(ibdev)->dev->caps.pkey_table_len[port]; props->bad_pkey_cntr = be16_to_cpup((__be16 *) (out_mad->data + 46)); props->qkey_viol_cntr = be16_to_cpup((__be16 *) (out_mad->data + 48)); props->active_width = out_mad->data[31] & 0xf; props->active_speed = out_mad->data[35] >> 4; props->max_mtu = out_mad->data[41] & 0xf; props->active_mtu = out_mad->data[36] >> 4; props->subnet_timeout = out_mad->data[51] & 0x1f; props->max_vl_num = out_mad->data[37] >> 4; props->init_type_reply = out_mad->data[41] >> 4; /* Check if extended speeds (EDR/FDR/...) are supported */ if (props->port_cap_flags & IB_PORT_EXTENDED_SPEEDS_SUP) { ext_active_speed = out_mad->data[62] >> 4; switch (ext_active_speed) { case 1: props->active_speed = IB_SPEED_FDR; break; case 2: props->active_speed = IB_SPEED_EDR; break; } } /* If reported active speed is QDR, check if is FDR-10 */ if (props->active_speed == IB_SPEED_QDR) { init_query_mad(in_mad); in_mad->attr_id = MLX4_ATTR_EXTENDED_PORT_INFO; in_mad->attr_mod = cpu_to_be32(port); err = mlx4_MAD_IFC(to_mdev(ibdev), mad_ifc_flags, port, NULL, NULL, in_mad, out_mad); if (err) goto out; /* Checking LinkSpeedActive for FDR-10 */ if (out_mad->data[15] & 0x1) props->active_speed = IB_SPEED_FDR10; } /* Avoid wrong speed value returned by FW if the IB link is down. */ if (props->state == IB_PORT_DOWN) props->active_speed = IB_SPEED_SDR; out: kfree(in_mad); kfree(out_mad); return err; } static u8 state_to_phys_state(enum ib_port_state state) { return state == IB_PORT_ACTIVE ? 5 : 3; } static int eth_link_query_port(struct ib_device *ibdev, u8 port, struct ib_port_attr *props, int netw_view) { struct mlx4_ib_dev *mdev = to_mdev(ibdev); struct mlx4_ib_iboe *iboe = &mdev->iboe; struct net_device *ndev; enum ib_mtu tmp; struct mlx4_cmd_mailbox *mailbox; int err = 0; int is_bonded = mlx4_is_bonded(mdev->dev); mailbox = mlx4_alloc_cmd_mailbox(mdev->dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); err = mlx4_cmd_box(mdev->dev, 0, mailbox->dma, port, 0, MLX4_CMD_QUERY_PORT, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_WRAPPED); if (err) goto out; props->active_width = (((u8 *)mailbox->buf)[5] == 0x40) ? IB_WIDTH_4X : IB_WIDTH_1X; props->active_speed = IB_SPEED_QDR; props->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_IP_BASED_GIDS; props->gid_tbl_len = mdev->dev->caps.gid_table_len[port]; props->max_msg_sz = mdev->dev->caps.max_msg_sz; props->pkey_tbl_len = 1; props->max_mtu = IB_MTU_4096; props->max_vl_num = 2; props->state = IB_PORT_DOWN; props->phys_state = state_to_phys_state(props->state); props->active_mtu = IB_MTU_256; spin_lock_bh(&iboe->lock); ndev = iboe->netdevs[port - 1]; if (ndev && is_bonded) { #if 0 rcu_read_lock(); /* required to get upper dev */ ndev = netdev_master_upper_dev_get_rcu(ndev); rcu_read_unlock(); #endif } if (!ndev) goto out_unlock; tmp = iboe_get_mtu(ndev->if_mtu); props->active_mtu = tmp ? min(props->max_mtu, tmp) : IB_MTU_256; props->state = (netif_running(ndev) && netif_carrier_ok(ndev)) ? IB_PORT_ACTIVE : IB_PORT_DOWN; props->phys_state = state_to_phys_state(props->state); out_unlock: spin_unlock_bh(&iboe->lock); out: mlx4_free_cmd_mailbox(mdev->dev, mailbox); return err; } int __mlx4_ib_query_port(struct ib_device *ibdev, u8 port, struct ib_port_attr *props, int netw_view) { int err; memset(props, 0, sizeof *props); err = mlx4_ib_port_link_layer(ibdev, port) == IB_LINK_LAYER_INFINIBAND ? ib_link_query_port(ibdev, port, props, netw_view) : eth_link_query_port(ibdev, port, props, netw_view); return err; } static int mlx4_ib_query_port(struct ib_device *ibdev, u8 port, struct ib_port_attr *props) { /* returns host view */ return __mlx4_ib_query_port(ibdev, port, props, 0); } int __mlx4_ib_query_gid(struct ib_device *ibdev, u8 port, int index, union ib_gid *gid, int netw_view) { struct ib_smp *in_mad = NULL; struct ib_smp *out_mad = NULL; int err = -ENOMEM; struct mlx4_ib_dev *dev = to_mdev(ibdev); int clear = 0; int mad_ifc_flags = MLX4_MAD_IFC_IGNORE_KEYS; in_mad = kzalloc(sizeof *in_mad, GFP_KERNEL); out_mad = kmalloc(sizeof *out_mad, GFP_KERNEL); if (!in_mad || !out_mad) goto out; init_query_mad(in_mad); in_mad->attr_id = IB_SMP_ATTR_PORT_INFO; in_mad->attr_mod = cpu_to_be32(port); if (mlx4_is_mfunc(dev->dev) && netw_view) mad_ifc_flags |= MLX4_MAD_IFC_NET_VIEW; err = mlx4_MAD_IFC(dev, mad_ifc_flags, port, NULL, NULL, in_mad, out_mad); if (err) goto out; memcpy(gid->raw, out_mad->data + 8, 8); if (mlx4_is_mfunc(dev->dev) && !netw_view) { if (index) { /* For any index > 0, return the null guid */ err = 0; clear = 1; goto out; } } init_query_mad(in_mad); in_mad->attr_id = IB_SMP_ATTR_GUID_INFO; in_mad->attr_mod = cpu_to_be32(index / 8); err = mlx4_MAD_IFC(dev, mad_ifc_flags, port, NULL, NULL, in_mad, out_mad); if (err) goto out; memcpy(gid->raw + 8, out_mad->data + (index % 8) * 8, 8); out: if (clear) memset(gid->raw + 8, 0, 8); kfree(in_mad); kfree(out_mad); return err; } static int mlx4_ib_query_gid(struct ib_device *ibdev, u8 port, int index, union ib_gid *gid) { int ret; if (rdma_protocol_ib(ibdev, port)) return __mlx4_ib_query_gid(ibdev, port, index, gid, 0); if (!rdma_protocol_roce(ibdev, port)) return -ENODEV; if (!rdma_cap_roce_gid_table(ibdev, port)) return -ENODEV; ret = ib_get_cached_gid(ibdev, port, index, gid, NULL); if (ret == -EAGAIN) { memcpy(gid, &zgid, sizeof(*gid)); return 0; } return ret; } static int mlx4_ib_query_sl2vl(struct ib_device *ibdev, u8 port, u64 *sl2vl_tbl) { union sl2vl_tbl_to_u64 sl2vl64; struct ib_smp *in_mad = NULL; struct ib_smp *out_mad = NULL; int mad_ifc_flags = MLX4_MAD_IFC_IGNORE_KEYS; int err = -ENOMEM; int jj; if (mlx4_is_slave(to_mdev(ibdev)->dev)) { *sl2vl_tbl = 0; return 0; } in_mad = kzalloc(sizeof(*in_mad), GFP_KERNEL); out_mad = kmalloc(sizeof(*out_mad), GFP_KERNEL); if (!in_mad || !out_mad) goto out; init_query_mad(in_mad); in_mad->attr_id = IB_SMP_ATTR_SL_TO_VL_TABLE; in_mad->attr_mod = 0; if (mlx4_is_mfunc(to_mdev(ibdev)->dev)) mad_ifc_flags |= MLX4_MAD_IFC_NET_VIEW; err = mlx4_MAD_IFC(to_mdev(ibdev), mad_ifc_flags, port, NULL, NULL, in_mad, out_mad); if (err) goto out; for (jj = 0; jj < 8; jj++) sl2vl64.sl8[jj] = ((struct ib_smp *)out_mad)->data[jj]; *sl2vl_tbl = sl2vl64.sl64; out: kfree(in_mad); kfree(out_mad); return err; } static void mlx4_init_sl2vl_tbl(struct mlx4_ib_dev *mdev) { u64 sl2vl; int i; int err; for (i = 1; i <= mdev->dev->caps.num_ports; i++) { if (mdev->dev->caps.port_type[i] == MLX4_PORT_TYPE_ETH) continue; err = mlx4_ib_query_sl2vl(&mdev->ib_dev, i, &sl2vl); if (err) { pr_err("Unable to get default sl to vl mapping for port %d. Using all zeroes (%d)\n", i, err); sl2vl = 0; } atomic64_set(&mdev->sl2vl[i - 1], sl2vl); } } int __mlx4_ib_query_pkey(struct ib_device *ibdev, u8 port, u16 index, u16 *pkey, int netw_view) { struct ib_smp *in_mad = NULL; struct ib_smp *out_mad = NULL; int mad_ifc_flags = MLX4_MAD_IFC_IGNORE_KEYS; int err = -ENOMEM; in_mad = kzalloc(sizeof *in_mad, GFP_KERNEL); out_mad = kmalloc(sizeof *out_mad, GFP_KERNEL); if (!in_mad || !out_mad) goto out; init_query_mad(in_mad); in_mad->attr_id = IB_SMP_ATTR_PKEY_TABLE; in_mad->attr_mod = cpu_to_be32(index / 32); if (mlx4_is_mfunc(to_mdev(ibdev)->dev) && netw_view) mad_ifc_flags |= MLX4_MAD_IFC_NET_VIEW; err = mlx4_MAD_IFC(to_mdev(ibdev), mad_ifc_flags, port, NULL, NULL, in_mad, out_mad); if (err) goto out; *pkey = be16_to_cpu(((__be16 *) out_mad->data)[index % 32]); out: kfree(in_mad); kfree(out_mad); return err; } static int mlx4_ib_query_pkey(struct ib_device *ibdev, u8 port, u16 index, u16 *pkey) { return __mlx4_ib_query_pkey(ibdev, port, index, pkey, 0); } static int mlx4_ib_modify_device(struct ib_device *ibdev, int mask, struct ib_device_modify *props) { struct mlx4_cmd_mailbox *mailbox; unsigned long flags; if (mask & ~IB_DEVICE_MODIFY_NODE_DESC) return -EOPNOTSUPP; if (!(mask & IB_DEVICE_MODIFY_NODE_DESC)) return 0; if (mlx4_is_slave(to_mdev(ibdev)->dev)) return -EOPNOTSUPP; spin_lock_irqsave(&to_mdev(ibdev)->sm_lock, flags); memcpy(ibdev->node_desc, props->node_desc, IB_DEVICE_NODE_DESC_MAX); spin_unlock_irqrestore(&to_mdev(ibdev)->sm_lock, flags); /* * If possible, pass node desc to FW, so it can generate * a 144 trap. If cmd fails, just ignore. */ mailbox = mlx4_alloc_cmd_mailbox(to_mdev(ibdev)->dev); if (IS_ERR(mailbox)) return 0; memcpy(mailbox->buf, props->node_desc, IB_DEVICE_NODE_DESC_MAX); mlx4_cmd(to_mdev(ibdev)->dev, mailbox->dma, 1, 0, MLX4_CMD_SET_NODE, MLX4_CMD_TIME_CLASS_A, MLX4_CMD_NATIVE); mlx4_free_cmd_mailbox(to_mdev(ibdev)->dev, mailbox); return 0; } static int mlx4_ib_SET_PORT(struct mlx4_ib_dev *dev, u8 port, int reset_qkey_viols, u32 cap_mask) { struct mlx4_cmd_mailbox *mailbox; int err; mailbox = mlx4_alloc_cmd_mailbox(dev->dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); if (dev->dev->flags & MLX4_FLAG_OLD_PORT_CMDS) { *(u8 *) mailbox->buf = !!reset_qkey_viols << 6; ((__be32 *) mailbox->buf)[2] = cpu_to_be32(cap_mask); } else { ((u8 *) mailbox->buf)[3] = !!reset_qkey_viols; ((__be32 *) mailbox->buf)[1] = cpu_to_be32(cap_mask); } err = mlx4_cmd(dev->dev, mailbox->dma, port, MLX4_SET_PORT_IB_OPCODE, MLX4_CMD_SET_PORT, MLX4_CMD_TIME_CLASS_B, MLX4_CMD_WRAPPED); mlx4_free_cmd_mailbox(dev->dev, mailbox); return err; } static int mlx4_ib_modify_port(struct ib_device *ibdev, u8 port, int mask, struct ib_port_modify *props) { struct mlx4_ib_dev *mdev = to_mdev(ibdev); u8 is_eth = mdev->dev->caps.port_type[port] == MLX4_PORT_TYPE_ETH; struct ib_port_attr attr; u32 cap_mask; int err; /* return OK if this is RoCE. CM calls ib_modify_port() regardless * of whether port link layer is ETH or IB. For ETH ports, qkey * violations and port capabilities are not meaningful. */ if (is_eth) return 0; mutex_lock(&mdev->cap_mask_mutex); err = mlx4_ib_query_port(ibdev, port, &attr); if (err) goto out; cap_mask = (attr.port_cap_flags | props->set_port_cap_mask) & ~props->clr_port_cap_mask; err = mlx4_ib_SET_PORT(mdev, port, !!(mask & IB_PORT_RESET_QKEY_CNTR), cap_mask); out: mutex_unlock(&to_mdev(ibdev)->cap_mask_mutex); return err; } static struct ib_ucontext *mlx4_ib_alloc_ucontext(struct ib_device *ibdev, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(ibdev); struct mlx4_ib_ucontext *context; struct mlx4_ib_alloc_ucontext_resp_v3 resp_v3; struct mlx4_ib_alloc_ucontext_resp resp; int err; if (!dev->ib_active) return ERR_PTR(-EAGAIN); if (ibdev->uverbs_abi_ver == MLX4_IB_UVERBS_NO_DEV_CAPS_ABI_VERSION) { resp_v3.qp_tab_size = dev->dev->caps.num_qps; resp_v3.bf_reg_size = dev->dev->caps.bf_reg_size; resp_v3.bf_regs_per_page = dev->dev->caps.bf_regs_per_page; } else { resp.dev_caps = dev->dev->caps.userspace_caps; resp.qp_tab_size = dev->dev->caps.num_qps; resp.bf_reg_size = dev->dev->caps.bf_reg_size; resp.bf_regs_per_page = dev->dev->caps.bf_regs_per_page; resp.cqe_size = dev->dev->caps.cqe_size; } context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return ERR_PTR(-ENOMEM); err = mlx4_uar_alloc(to_mdev(ibdev)->dev, &context->uar); if (err) { kfree(context); return ERR_PTR(err); } INIT_LIST_HEAD(&context->db_page_list); mutex_init(&context->db_page_mutex); if (ibdev->uverbs_abi_ver == MLX4_IB_UVERBS_NO_DEV_CAPS_ABI_VERSION) err = ib_copy_to_udata(udata, &resp_v3, sizeof(resp_v3)); else err = ib_copy_to_udata(udata, &resp, sizeof(resp)); if (err) { mlx4_uar_free(to_mdev(ibdev)->dev, &context->uar); kfree(context); return ERR_PTR(-EFAULT); } return &context->ibucontext; } static int mlx4_ib_dealloc_ucontext(struct ib_ucontext *ibcontext) { struct mlx4_ib_ucontext *context = to_mucontext(ibcontext); mlx4_uar_free(to_mdev(ibcontext->device)->dev, &context->uar); kfree(context); return 0; } static void mlx4_ib_vma_open(struct vm_area_struct *area) { /* vma_open is called when a new VMA is created on top of our VMA. * This is done through either mremap flow or split_vma (usually due * to mlock, madvise, munmap, etc.). We do not support a clone of the * vma, as this VMA is strongly hardware related. Therefore we set the * vm_ops of the newly created/cloned VMA to NULL, to prevent it from * calling us again and trying to do incorrect actions. We assume that * the original vma size is exactly a single page that there will be no * "splitting" operations on. */ area->vm_ops = NULL; } static void mlx4_ib_vma_close(struct vm_area_struct *area) { struct mlx4_ib_vma_private_data *mlx4_ib_vma_priv_data; /* It's guaranteed that all VMAs opened on a FD are closed before the * file itself is closed, therefore no sync is needed with the regular * closing flow. (e.g. mlx4_ib_dealloc_ucontext) However need a sync * with accessing the vma as part of mlx4_ib_disassociate_ucontext. * The close operation is usually called under mm->mmap_sem except when * process is exiting. The exiting case is handled explicitly as part * of mlx4_ib_disassociate_ucontext. */ mlx4_ib_vma_priv_data = (struct mlx4_ib_vma_private_data *) area->vm_private_data; /* set the vma context pointer to null in the mlx4_ib driver's private * data to protect against a race condition in mlx4_ib_dissassociate_ucontext(). */ mlx4_ib_vma_priv_data->vma = NULL; } static const struct vm_operations_struct mlx4_ib_vm_ops = { .open = mlx4_ib_vma_open, .close = mlx4_ib_vma_close }; static void mlx4_ib_set_vma_data(struct vm_area_struct *vma, struct mlx4_ib_vma_private_data *vma_private_data) { vma_private_data->vma = vma; vma->vm_private_data = vma_private_data; vma->vm_ops = &mlx4_ib_vm_ops; } static int mlx4_ib_mmap(struct ib_ucontext *context, struct vm_area_struct *vma) { struct mlx4_ib_dev *dev = to_mdev(context->device); struct mlx4_ib_ucontext *mucontext = to_mucontext(context); if (vma->vm_end - vma->vm_start != PAGE_SIZE) return -EINVAL; if (vma->vm_pgoff == 0) { /* We prevent double mmaping on same context */ if (mucontext->hw_bar_info[HW_BAR_DB].vma) return -EINVAL; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (io_remap_pfn_range(vma, vma->vm_start, to_mucontext(context)->uar.pfn, PAGE_SIZE, vma->vm_page_prot)) return -EAGAIN; mlx4_ib_set_vma_data(vma, &mucontext->hw_bar_info[HW_BAR_DB]); } else if (vma->vm_pgoff == 1 && dev->dev->caps.bf_reg_size != 0) { /* We prevent double mmaping on same context */ if (mucontext->hw_bar_info[HW_BAR_BF].vma) return -EINVAL; vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); if (io_remap_pfn_range(vma, vma->vm_start, to_mucontext(context)->uar.pfn + dev->dev->caps.num_uars, PAGE_SIZE, vma->vm_page_prot)) return -EAGAIN; mlx4_ib_set_vma_data(vma, &mucontext->hw_bar_info[HW_BAR_BF]); } else if (vma->vm_pgoff == 3) { struct mlx4_clock_params params; int ret; /* We prevent double mmaping on same context */ if (mucontext->hw_bar_info[HW_BAR_CLOCK].vma) return -EINVAL; ret = mlx4_get_internal_clock_params(dev->dev, ¶ms); if (ret) return ret; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (io_remap_pfn_range(vma, vma->vm_start, (pci_resource_start(dev->dev->persist->pdev, params.bar) + params.offset) >> PAGE_SHIFT, PAGE_SIZE, vma->vm_page_prot)) return -EAGAIN; mlx4_ib_set_vma_data(vma, &mucontext->hw_bar_info[HW_BAR_CLOCK]); } else { return -EINVAL; } return 0; } static struct ib_pd *mlx4_ib_alloc_pd(struct ib_device *ibdev, struct ib_ucontext *context, struct ib_udata *udata) { struct mlx4_ib_pd *pd; int err; pd = kmalloc(sizeof *pd, GFP_KERNEL); if (!pd) return ERR_PTR(-ENOMEM); err = mlx4_pd_alloc(to_mdev(ibdev)->dev, &pd->pdn); if (err) { kfree(pd); return ERR_PTR(err); } if (context) if (ib_copy_to_udata(udata, &pd->pdn, sizeof (__u32))) { mlx4_pd_free(to_mdev(ibdev)->dev, pd->pdn); kfree(pd); return ERR_PTR(-EFAULT); } return &pd->ibpd; } static int mlx4_ib_dealloc_pd(struct ib_pd *pd) { mlx4_pd_free(to_mdev(pd->device)->dev, to_mpd(pd)->pdn); kfree(pd); return 0; } static struct ib_xrcd *mlx4_ib_alloc_xrcd(struct ib_device *ibdev, struct ib_ucontext *context, struct ib_udata *udata) { struct mlx4_ib_xrcd *xrcd; struct ib_cq_init_attr cq_attr = {}; int err; if (!(to_mdev(ibdev)->dev->caps.flags & MLX4_DEV_CAP_FLAG_XRC)) return ERR_PTR(-ENOSYS); xrcd = kmalloc(sizeof *xrcd, GFP_KERNEL); if (!xrcd) return ERR_PTR(-ENOMEM); err = mlx4_xrcd_alloc(to_mdev(ibdev)->dev, &xrcd->xrcdn); if (err) goto err1; xrcd->pd = ib_alloc_pd(ibdev, 0); if (IS_ERR(xrcd->pd)) { err = PTR_ERR(xrcd->pd); goto err2; } cq_attr.cqe = 1; xrcd->cq = ib_create_cq(ibdev, NULL, NULL, xrcd, &cq_attr); if (IS_ERR(xrcd->cq)) { err = PTR_ERR(xrcd->cq); goto err3; } return &xrcd->ibxrcd; err3: ib_dealloc_pd(xrcd->pd); err2: mlx4_xrcd_free(to_mdev(ibdev)->dev, xrcd->xrcdn); err1: kfree(xrcd); return ERR_PTR(err); } static int mlx4_ib_dealloc_xrcd(struct ib_xrcd *xrcd) { ib_destroy_cq(to_mxrcd(xrcd)->cq); ib_dealloc_pd(to_mxrcd(xrcd)->pd); mlx4_xrcd_free(to_mdev(xrcd->device)->dev, to_mxrcd(xrcd)->xrcdn); kfree(xrcd); return 0; } static int add_gid_entry(struct ib_qp *ibqp, union ib_gid *gid) { struct mlx4_ib_qp *mqp = to_mqp(ibqp); struct mlx4_ib_dev *mdev = to_mdev(ibqp->device); struct mlx4_ib_gid_entry *ge; ge = kzalloc(sizeof *ge, GFP_KERNEL); if (!ge) return -ENOMEM; ge->gid = *gid; if (mlx4_ib_add_mc(mdev, mqp, gid)) { ge->port = mqp->port; ge->added = 1; } mutex_lock(&mqp->mutex); list_add_tail(&ge->list, &mqp->gid_list); mutex_unlock(&mqp->mutex); return 0; } static void mlx4_ib_delete_counters_table(struct mlx4_ib_dev *ibdev, struct mlx4_ib_counters *ctr_table) { struct counter_index *counter, *tmp_count; mutex_lock(&ctr_table->mutex); list_for_each_entry_safe(counter, tmp_count, &ctr_table->counters_list, list) { if (counter->allocated) mlx4_counter_free(ibdev->dev, counter->index); list_del(&counter->list); kfree(counter); } mutex_unlock(&ctr_table->mutex); } int mlx4_ib_add_mc(struct mlx4_ib_dev *mdev, struct mlx4_ib_qp *mqp, union ib_gid *gid) { struct net_device *ndev; int ret = 0; if (!mqp->port) return 0; spin_lock_bh(&mdev->iboe.lock); ndev = mdev->iboe.netdevs[mqp->port - 1]; if (ndev) dev_hold(ndev); spin_unlock_bh(&mdev->iboe.lock); if (ndev) { ret = 1; dev_put(ndev); } return ret; } struct mlx4_ib_steering { struct list_head list; struct mlx4_flow_reg_id reg_id; union ib_gid gid; }; #define LAST_ETH_FIELD vlan_tag #define LAST_IB_FIELD sl #define LAST_IPV4_FIELD dst_ip #define LAST_TCP_UDP_FIELD src_port /* Field is the last supported field */ #define FIELDS_NOT_SUPPORTED(filter, field)\ memchr_inv((void *)&filter.field +\ sizeof(filter.field), 0,\ sizeof(filter) -\ offsetof(typeof(filter), field) -\ sizeof(filter.field)) static int parse_flow_attr(struct mlx4_dev *dev, u32 qp_num, union ib_flow_spec *ib_spec, struct _rule_hw *mlx4_spec) { enum mlx4_net_trans_rule_id type; switch (ib_spec->type) { case IB_FLOW_SPEC_ETH: if (FIELDS_NOT_SUPPORTED(ib_spec->eth.mask, LAST_ETH_FIELD)) return -ENOTSUPP; type = MLX4_NET_TRANS_RULE_ID_ETH; memcpy(mlx4_spec->eth.dst_mac, ib_spec->eth.val.dst_mac, ETH_ALEN); memcpy(mlx4_spec->eth.dst_mac_msk, ib_spec->eth.mask.dst_mac, ETH_ALEN); mlx4_spec->eth.vlan_tag = ib_spec->eth.val.vlan_tag; mlx4_spec->eth.vlan_tag_msk = ib_spec->eth.mask.vlan_tag; break; case IB_FLOW_SPEC_IB: if (FIELDS_NOT_SUPPORTED(ib_spec->ib.mask, LAST_IB_FIELD)) return -ENOTSUPP; type = MLX4_NET_TRANS_RULE_ID_IB; mlx4_spec->ib.l3_qpn = cpu_to_be32(qp_num); mlx4_spec->ib.qpn_mask = cpu_to_be32(MLX4_IB_FLOW_QPN_MASK); break; case IB_FLOW_SPEC_IPV4: if (FIELDS_NOT_SUPPORTED(ib_spec->ipv4.mask, LAST_IPV4_FIELD)) return -ENOTSUPP; type = MLX4_NET_TRANS_RULE_ID_IPV4; mlx4_spec->ipv4.src_ip = ib_spec->ipv4.val.src_ip; mlx4_spec->ipv4.src_ip_msk = ib_spec->ipv4.mask.src_ip; mlx4_spec->ipv4.dst_ip = ib_spec->ipv4.val.dst_ip; mlx4_spec->ipv4.dst_ip_msk = ib_spec->ipv4.mask.dst_ip; break; case IB_FLOW_SPEC_TCP: case IB_FLOW_SPEC_UDP: if (FIELDS_NOT_SUPPORTED(ib_spec->tcp_udp.mask, LAST_TCP_UDP_FIELD)) return -ENOTSUPP; type = ib_spec->type == IB_FLOW_SPEC_TCP ? MLX4_NET_TRANS_RULE_ID_TCP : MLX4_NET_TRANS_RULE_ID_UDP; mlx4_spec->tcp_udp.dst_port = ib_spec->tcp_udp.val.dst_port; mlx4_spec->tcp_udp.dst_port_msk = ib_spec->tcp_udp.mask.dst_port; mlx4_spec->tcp_udp.src_port = ib_spec->tcp_udp.val.src_port; mlx4_spec->tcp_udp.src_port_msk = ib_spec->tcp_udp.mask.src_port; break; default: return -EINVAL; } if (mlx4_map_sw_to_hw_steering_id(dev, type) < 0 || mlx4_hw_rule_sz(dev, type) < 0) return -EINVAL; mlx4_spec->id = cpu_to_be16(mlx4_map_sw_to_hw_steering_id(dev, type)); mlx4_spec->size = mlx4_hw_rule_sz(dev, type) >> 2; return mlx4_hw_rule_sz(dev, type); } struct default_rules { __u32 mandatory_fields[IB_FLOW_SPEC_SUPPORT_LAYERS]; __u32 mandatory_not_fields[IB_FLOW_SPEC_SUPPORT_LAYERS]; __u32 rules_create_list[IB_FLOW_SPEC_SUPPORT_LAYERS]; __u8 link_layer; }; static const struct default_rules default_table[] = { { .mandatory_fields = {IB_FLOW_SPEC_IPV4}, .mandatory_not_fields = {IB_FLOW_SPEC_ETH}, .rules_create_list = {IB_FLOW_SPEC_IB}, .link_layer = IB_LINK_LAYER_INFINIBAND } }; static int __mlx4_ib_default_rules_match(struct ib_qp *qp, struct ib_flow_attr *flow_attr) { int i, j, k; void *ib_flow; const struct default_rules *pdefault_rules = default_table; u8 link_layer = rdma_port_get_link_layer(qp->device, flow_attr->port); for (i = 0; i < ARRAY_SIZE(default_table); i++, pdefault_rules++) { __u32 field_types[IB_FLOW_SPEC_SUPPORT_LAYERS]; memset(&field_types, 0, sizeof(field_types)); if (link_layer != pdefault_rules->link_layer) continue; ib_flow = flow_attr + 1; /* we assume the specs are sorted */ for (j = 0, k = 0; k < IB_FLOW_SPEC_SUPPORT_LAYERS && j < flow_attr->num_of_specs; k++) { union ib_flow_spec *current_flow = (union ib_flow_spec *)ib_flow; /* same layer but different type */ if (((current_flow->type & IB_FLOW_SPEC_LAYER_MASK) == (pdefault_rules->mandatory_fields[k] & IB_FLOW_SPEC_LAYER_MASK)) && (current_flow->type != pdefault_rules->mandatory_fields[k])) goto out; /* same layer, try match next one */ if (current_flow->type == pdefault_rules->mandatory_fields[k]) { j++; ib_flow += ((union ib_flow_spec *)ib_flow)->size; } } ib_flow = flow_attr + 1; for (j = 0; j < flow_attr->num_of_specs; j++, ib_flow += ((union ib_flow_spec *)ib_flow)->size) for (k = 0; k < IB_FLOW_SPEC_SUPPORT_LAYERS; k++) /* same layer and same type */ if (((union ib_flow_spec *)ib_flow)->type == pdefault_rules->mandatory_not_fields[k]) goto out; return i; } out: return -1; } static int __mlx4_ib_create_default_rules( struct mlx4_ib_dev *mdev, struct ib_qp *qp, const struct default_rules *pdefault_rules, struct _rule_hw *mlx4_spec) { int size = 0; int i; for (i = 0; i < ARRAY_SIZE(pdefault_rules->rules_create_list); i++) { int ret; union ib_flow_spec ib_spec; switch (pdefault_rules->rules_create_list[i]) { case 0: /* no rule */ continue; case IB_FLOW_SPEC_IB: ib_spec.type = IB_FLOW_SPEC_IB; ib_spec.size = sizeof(struct ib_flow_spec_ib); break; default: /* invalid rule */ return -EINVAL; } /* We must put empty rule, qpn is being ignored */ ret = parse_flow_attr(mdev->dev, 0, &ib_spec, mlx4_spec); if (ret < 0) { pr_info("invalid parsing\n"); return -EINVAL; } mlx4_spec = (void *)mlx4_spec + ret; size += ret; } return size; } static int __mlx4_ib_create_flow(struct ib_qp *qp, struct ib_flow_attr *flow_attr, int domain, enum mlx4_net_trans_promisc_mode flow_type, u64 *reg_id) { int ret, i; int size = 0; void *ib_flow; struct mlx4_ib_dev *mdev = to_mdev(qp->device); struct mlx4_cmd_mailbox *mailbox; struct mlx4_net_trans_rule_hw_ctrl *ctrl; int default_flow; static const u16 __mlx4_domain[] = { [IB_FLOW_DOMAIN_USER] = MLX4_DOMAIN_UVERBS, [IB_FLOW_DOMAIN_ETHTOOL] = MLX4_DOMAIN_ETHTOOL, [IB_FLOW_DOMAIN_RFS] = MLX4_DOMAIN_RFS, [IB_FLOW_DOMAIN_NIC] = MLX4_DOMAIN_NIC, }; if (flow_attr->priority > MLX4_IB_FLOW_MAX_PRIO) { pr_err("Invalid priority value %d\n", flow_attr->priority); return -EINVAL; } if (domain >= IB_FLOW_DOMAIN_NUM) { pr_err("Invalid domain value %d\n", domain); return -EINVAL; } if (mlx4_map_sw_to_hw_steering_mode(mdev->dev, flow_type) < 0) return -EINVAL; mailbox = mlx4_alloc_cmd_mailbox(mdev->dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); ctrl = mailbox->buf; ctrl->prio = cpu_to_be16(__mlx4_domain[domain] | flow_attr->priority); ctrl->type = mlx4_map_sw_to_hw_steering_mode(mdev->dev, flow_type); ctrl->port = flow_attr->port; ctrl->qpn = cpu_to_be32(qp->qp_num); ib_flow = flow_attr + 1; size += sizeof(struct mlx4_net_trans_rule_hw_ctrl); /* Add default flows */ default_flow = __mlx4_ib_default_rules_match(qp, flow_attr); if (default_flow >= 0) { ret = __mlx4_ib_create_default_rules( mdev, qp, default_table + default_flow, mailbox->buf + size); if (ret < 0) { mlx4_free_cmd_mailbox(mdev->dev, mailbox); return -EINVAL; } size += ret; } for (i = 0; i < flow_attr->num_of_specs; i++) { ret = parse_flow_attr(mdev->dev, qp->qp_num, ib_flow, mailbox->buf + size); if (ret < 0) { mlx4_free_cmd_mailbox(mdev->dev, mailbox); return -EINVAL; } ib_flow += ((union ib_flow_spec *) ib_flow)->size; size += ret; } ret = mlx4_cmd_imm(mdev->dev, mailbox->dma, reg_id, size >> 2, 0, MLX4_QP_FLOW_STEERING_ATTACH, MLX4_CMD_TIME_CLASS_A, MLX4_CMD_WRAPPED); if (ret == -ENOMEM) pr_err("mcg table is full. Fail to register network rule.\n"); else if (ret == -ENXIO) pr_err("Device managed flow steering is disabled. Fail to register network rule.\n"); else if (ret) pr_err("Invalid argument. Fail to register network rule.\n"); mlx4_free_cmd_mailbox(mdev->dev, mailbox); return ret; } static int __mlx4_ib_destroy_flow(struct mlx4_dev *dev, u64 reg_id) { int err; err = mlx4_cmd(dev, reg_id, 0, 0, MLX4_QP_FLOW_STEERING_DETACH, MLX4_CMD_TIME_CLASS_A, MLX4_CMD_WRAPPED); if (err) pr_err("Fail to detach network rule. registration id = 0x%llx\n", (long long)reg_id); return err; } static int mlx4_ib_tunnel_steer_add(struct ib_qp *qp, struct ib_flow_attr *flow_attr, u64 *reg_id) { void *ib_flow; union ib_flow_spec *ib_spec; struct mlx4_dev *dev = to_mdev(qp->device)->dev; int err = 0; if (dev->caps.tunnel_offload_mode != MLX4_TUNNEL_OFFLOAD_MODE_VXLAN || dev->caps.dmfs_high_steer_mode == MLX4_STEERING_DMFS_A0_STATIC) return 0; /* do nothing */ ib_flow = flow_attr + 1; ib_spec = (union ib_flow_spec *)ib_flow; if (ib_spec->type != IB_FLOW_SPEC_ETH || flow_attr->num_of_specs != 1) return 0; /* do nothing */ err = mlx4_tunnel_steer_add(to_mdev(qp->device)->dev, ib_spec->eth.val.dst_mac, flow_attr->port, qp->qp_num, MLX4_DOMAIN_UVERBS | (flow_attr->priority & 0xff), reg_id); return err; } static int mlx4_ib_add_dont_trap_rule(struct mlx4_dev *dev, struct ib_flow_attr *flow_attr, enum mlx4_net_trans_promisc_mode *type) { int err = 0; if (!(dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_DMFS_UC_MC_SNIFFER) || (dev->caps.dmfs_high_steer_mode == MLX4_STEERING_DMFS_A0_STATIC) || (flow_attr->num_of_specs > 1) || (flow_attr->priority != 0)) { return -EOPNOTSUPP; } if (flow_attr->num_of_specs == 0) { type[0] = MLX4_FS_MC_SNIFFER; type[1] = MLX4_FS_UC_SNIFFER; } else { union ib_flow_spec *ib_spec; ib_spec = (union ib_flow_spec *)(flow_attr + 1); if (ib_spec->type != IB_FLOW_SPEC_ETH) return -EINVAL; /* if all is zero than MC and UC */ if (is_zero_ether_addr(ib_spec->eth.mask.dst_mac)) { type[0] = MLX4_FS_MC_SNIFFER; type[1] = MLX4_FS_UC_SNIFFER; } else { u8 mac[ETH_ALEN] = {ib_spec->eth.mask.dst_mac[0] ^ 0x01, ib_spec->eth.mask.dst_mac[1], ib_spec->eth.mask.dst_mac[2], ib_spec->eth.mask.dst_mac[3], ib_spec->eth.mask.dst_mac[4], ib_spec->eth.mask.dst_mac[5]}; /* Above xor was only on MC bit, non empty mask is valid * only if this bit is set and rest are zero. */ if (!is_zero_ether_addr(&mac[0])) return -EINVAL; if (is_multicast_ether_addr(ib_spec->eth.val.dst_mac)) type[0] = MLX4_FS_MC_SNIFFER; else type[0] = MLX4_FS_UC_SNIFFER; } } return err; } static struct ib_flow *mlx4_ib_create_flow(struct ib_qp *qp, struct ib_flow_attr *flow_attr, int domain) { int err = 0, i = 0, j = 0; struct mlx4_ib_flow *mflow; enum mlx4_net_trans_promisc_mode type[2]; struct mlx4_dev *dev = (to_mdev(qp->device))->dev; int is_bonded = mlx4_is_bonded(dev); if (flow_attr->port < 1 || flow_attr->port > qp->device->phys_port_cnt) return ERR_PTR(-EINVAL); if ((flow_attr->flags & IB_FLOW_ATTR_FLAGS_DONT_TRAP) && (flow_attr->type != IB_FLOW_ATTR_NORMAL)) return ERR_PTR(-EOPNOTSUPP); memset(type, 0, sizeof(type)); mflow = kzalloc(sizeof(*mflow), GFP_KERNEL); if (!mflow) { err = -ENOMEM; goto err_free; } switch (flow_attr->type) { case IB_FLOW_ATTR_NORMAL: /* If dont trap flag (continue match) is set, under specific * condition traffic be replicated to given qp, * without stealing it */ if (unlikely(flow_attr->flags & IB_FLOW_ATTR_FLAGS_DONT_TRAP)) { err = mlx4_ib_add_dont_trap_rule(dev, flow_attr, type); if (err) goto err_free; } else { type[0] = MLX4_FS_REGULAR; } break; case IB_FLOW_ATTR_ALL_DEFAULT: type[0] = MLX4_FS_ALL_DEFAULT; break; case IB_FLOW_ATTR_MC_DEFAULT: type[0] = MLX4_FS_MC_DEFAULT; break; case IB_FLOW_ATTR_SNIFFER: type[0] = MLX4_FS_MIRROR_RX_PORT; type[1] = MLX4_FS_MIRROR_SX_PORT; break; default: err = -EINVAL; goto err_free; } while (i < ARRAY_SIZE(type) && type[i]) { err = __mlx4_ib_create_flow(qp, flow_attr, domain, type[i], &mflow->reg_id[i].id); if (err) goto err_create_flow; if (is_bonded) { /* Application always sees one port so the mirror rule * must be on port #2 */ flow_attr->port = 2; err = __mlx4_ib_create_flow(qp, flow_attr, domain, type[j], &mflow->reg_id[j].mirror); flow_attr->port = 1; if (err) goto err_create_flow; j++; } i++; } if (i < ARRAY_SIZE(type) && flow_attr->type == IB_FLOW_ATTR_NORMAL) { err = mlx4_ib_tunnel_steer_add(qp, flow_attr, &mflow->reg_id[i].id); if (err) goto err_create_flow; if (is_bonded) { flow_attr->port = 2; err = mlx4_ib_tunnel_steer_add(qp, flow_attr, &mflow->reg_id[j].mirror); flow_attr->port = 1; if (err) goto err_create_flow; j++; } /* function to create mirror rule */ i++; } return &mflow->ibflow; err_create_flow: while (i) { (void)__mlx4_ib_destroy_flow(to_mdev(qp->device)->dev, mflow->reg_id[i].id); i--; } while (j) { (void)__mlx4_ib_destroy_flow(to_mdev(qp->device)->dev, mflow->reg_id[j].mirror); j--; } err_free: kfree(mflow); return ERR_PTR(err); } static int mlx4_ib_destroy_flow(struct ib_flow *flow_id) { int err, ret = 0; int i = 0; struct mlx4_ib_dev *mdev = to_mdev(flow_id->qp->device); struct mlx4_ib_flow *mflow = to_mflow(flow_id); while (i < ARRAY_SIZE(mflow->reg_id) && mflow->reg_id[i].id) { err = __mlx4_ib_destroy_flow(mdev->dev, mflow->reg_id[i].id); if (err) ret = err; if (mflow->reg_id[i].mirror) { err = __mlx4_ib_destroy_flow(mdev->dev, mflow->reg_id[i].mirror); if (err) ret = err; } i++; } kfree(mflow); return ret; } static int mlx4_ib_mcg_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid) { int err; struct mlx4_ib_dev *mdev = to_mdev(ibqp->device); struct mlx4_dev *dev = mdev->dev; struct mlx4_ib_qp *mqp = to_mqp(ibqp); struct mlx4_ib_steering *ib_steering = NULL; enum mlx4_protocol prot = MLX4_PROT_IB_IPV6; struct mlx4_flow_reg_id reg_id; if (mdev->dev->caps.steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED) { ib_steering = kmalloc(sizeof(*ib_steering), GFP_KERNEL); if (!ib_steering) return -ENOMEM; } err = mlx4_multicast_attach(mdev->dev, &mqp->mqp, gid->raw, mqp->port, !!(mqp->flags & MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK), prot, ®_id.id); if (err) { pr_err("multicast attach op failed, err %d\n", err); goto err_malloc; } reg_id.mirror = 0; if (mlx4_is_bonded(dev)) { err = mlx4_multicast_attach(mdev->dev, &mqp->mqp, gid->raw, (mqp->port == 1) ? 2 : 1, !!(mqp->flags & MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK), prot, ®_id.mirror); if (err) goto err_add; } err = add_gid_entry(ibqp, gid); if (err) goto err_add; if (ib_steering) { memcpy(ib_steering->gid.raw, gid->raw, 16); ib_steering->reg_id = reg_id; mutex_lock(&mqp->mutex); list_add(&ib_steering->list, &mqp->steering_rules); mutex_unlock(&mqp->mutex); } return 0; err_add: mlx4_multicast_detach(mdev->dev, &mqp->mqp, gid->raw, prot, reg_id.id); if (reg_id.mirror) mlx4_multicast_detach(mdev->dev, &mqp->mqp, gid->raw, prot, reg_id.mirror); err_malloc: kfree(ib_steering); return err; } static struct mlx4_ib_gid_entry *find_gid_entry(struct mlx4_ib_qp *qp, u8 *raw) { struct mlx4_ib_gid_entry *ge; struct mlx4_ib_gid_entry *tmp; struct mlx4_ib_gid_entry *ret = NULL; list_for_each_entry_safe(ge, tmp, &qp->gid_list, list) { if (!memcmp(raw, ge->gid.raw, 16)) { ret = ge; break; } } return ret; } static int mlx4_ib_mcg_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid) { int err; struct mlx4_ib_dev *mdev = to_mdev(ibqp->device); struct mlx4_dev *dev = mdev->dev; struct mlx4_ib_qp *mqp = to_mqp(ibqp); struct net_device *ndev; struct mlx4_ib_gid_entry *ge; struct mlx4_flow_reg_id reg_id = {0, 0}; enum mlx4_protocol prot = MLX4_PROT_IB_IPV6; if (mdev->dev->caps.steering_mode == MLX4_STEERING_MODE_DEVICE_MANAGED) { struct mlx4_ib_steering *ib_steering; mutex_lock(&mqp->mutex); list_for_each_entry(ib_steering, &mqp->steering_rules, list) { if (!memcmp(ib_steering->gid.raw, gid->raw, 16)) { list_del(&ib_steering->list); break; } } mutex_unlock(&mqp->mutex); if (&ib_steering->list == &mqp->steering_rules) { pr_err("Couldn't find reg_id for mgid. Steering rule is left attached\n"); return -EINVAL; } reg_id = ib_steering->reg_id; kfree(ib_steering); } err = mlx4_multicast_detach(mdev->dev, &mqp->mqp, gid->raw, prot, reg_id.id); if (err) return err; if (mlx4_is_bonded(dev)) { err = mlx4_multicast_detach(mdev->dev, &mqp->mqp, gid->raw, prot, reg_id.mirror); if (err) return err; } mutex_lock(&mqp->mutex); ge = find_gid_entry(mqp, gid->raw); if (ge) { spin_lock_bh(&mdev->iboe.lock); ndev = ge->added ? mdev->iboe.netdevs[ge->port - 1] : NULL; if (ndev) dev_hold(ndev); spin_unlock_bh(&mdev->iboe.lock); if (ndev) dev_put(ndev); list_del(&ge->list); kfree(ge); } else pr_warn("could not find mgid entry\n"); mutex_unlock(&mqp->mutex); return 0; } static int init_node_data(struct mlx4_ib_dev *dev) { struct ib_smp *in_mad = NULL; struct ib_smp *out_mad = NULL; int mad_ifc_flags = MLX4_MAD_IFC_IGNORE_KEYS; int err = -ENOMEM; in_mad = kzalloc(sizeof *in_mad, GFP_KERNEL); out_mad = kmalloc(sizeof *out_mad, GFP_KERNEL); if (!in_mad || !out_mad) goto out; init_query_mad(in_mad); in_mad->attr_id = IB_SMP_ATTR_NODE_DESC; if (mlx4_is_master(dev->dev)) mad_ifc_flags |= MLX4_MAD_IFC_NET_VIEW; err = mlx4_MAD_IFC(dev, mad_ifc_flags, 1, NULL, NULL, in_mad, out_mad); if (err) goto out; memcpy(dev->ib_dev.node_desc, out_mad->data, IB_DEVICE_NODE_DESC_MAX); in_mad->attr_id = IB_SMP_ATTR_NODE_INFO; err = mlx4_MAD_IFC(dev, mad_ifc_flags, 1, NULL, NULL, in_mad, out_mad); if (err) goto out; dev->dev->rev_id = be32_to_cpup((__be32 *) (out_mad->data + 32)); memcpy(&dev->ib_dev.node_guid, out_mad->data + 12, 8); out: kfree(in_mad); kfree(out_mad); return err; } static ssize_t show_hca(struct device *device, struct device_attribute *attr, char *buf) { struct mlx4_ib_dev *dev = container_of(device, struct mlx4_ib_dev, ib_dev.dev); return sprintf(buf, "MT%d\n", dev->dev->persist->pdev->device); } static ssize_t show_rev(struct device *device, struct device_attribute *attr, char *buf) { struct mlx4_ib_dev *dev = container_of(device, struct mlx4_ib_dev, ib_dev.dev); return sprintf(buf, "%x\n", dev->dev->rev_id); } static ssize_t show_board(struct device *device, struct device_attribute *attr, char *buf) { struct mlx4_ib_dev *dev = container_of(device, struct mlx4_ib_dev, ib_dev.dev); return sprintf(buf, "%.*s\n", MLX4_BOARD_ID_LEN, dev->dev->board_id); } static DEVICE_ATTR(hw_rev, S_IRUGO, show_rev, NULL); static DEVICE_ATTR(hca_type, S_IRUGO, show_hca, NULL); static DEVICE_ATTR(board_id, S_IRUGO, show_board, NULL); static struct device_attribute *mlx4_class_attributes[] = { &dev_attr_hw_rev, &dev_attr_hca_type, &dev_attr_board_id }; struct diag_counter { const char *name; u32 offset; }; #define DIAG_COUNTER(_name, _offset) \ { .name = #_name, .offset = _offset } static const struct diag_counter diag_basic[] = { DIAG_COUNTER(rq_num_lle, 0x00), DIAG_COUNTER(sq_num_lle, 0x04), DIAG_COUNTER(rq_num_lqpoe, 0x08), DIAG_COUNTER(sq_num_lqpoe, 0x0C), DIAG_COUNTER(rq_num_lpe, 0x18), DIAG_COUNTER(sq_num_lpe, 0x1C), DIAG_COUNTER(rq_num_wrfe, 0x20), DIAG_COUNTER(sq_num_wrfe, 0x24), DIAG_COUNTER(sq_num_mwbe, 0x2C), DIAG_COUNTER(sq_num_bre, 0x34), DIAG_COUNTER(sq_num_rire, 0x44), DIAG_COUNTER(rq_num_rire, 0x48), DIAG_COUNTER(sq_num_rae, 0x4C), DIAG_COUNTER(rq_num_rae, 0x50), DIAG_COUNTER(sq_num_roe, 0x54), DIAG_COUNTER(sq_num_tree, 0x5C), DIAG_COUNTER(sq_num_rree, 0x64), DIAG_COUNTER(rq_num_rnr, 0x68), DIAG_COUNTER(sq_num_rnr, 0x6C), DIAG_COUNTER(rq_num_oos, 0x100), DIAG_COUNTER(sq_num_oos, 0x104), }; static const struct diag_counter diag_ext[] = { DIAG_COUNTER(rq_num_dup, 0x130), DIAG_COUNTER(sq_num_to, 0x134), }; static const struct diag_counter diag_device_only[] = { DIAG_COUNTER(num_cqovf, 0x1A0), DIAG_COUNTER(rq_num_udsdprd, 0x118), }; static struct rdma_hw_stats *mlx4_ib_alloc_hw_stats(struct ib_device *ibdev, u8 port_num) { struct mlx4_ib_dev *dev = to_mdev(ibdev); struct mlx4_ib_diag_counters *diag = dev->diag_counters; if (!diag[!!port_num].name) return NULL; return rdma_alloc_hw_stats_struct(diag[!!port_num].name, diag[!!port_num].num_counters, RDMA_HW_STATS_DEFAULT_LIFESPAN); } static int mlx4_ib_get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, u8 port, int index) { struct mlx4_ib_dev *dev = to_mdev(ibdev); struct mlx4_ib_diag_counters *diag = dev->diag_counters; u32 hw_value[ARRAY_SIZE(diag_device_only) + ARRAY_SIZE(diag_ext) + ARRAY_SIZE(diag_basic)] = {}; int ret; int i; ret = mlx4_query_diag_counters(dev->dev, MLX4_OP_MOD_QUERY_TRANSPORT_CI_ERRORS, diag[!!port].offset, hw_value, diag[!!port].num_counters, port); if (ret) return ret; for (i = 0; i < diag[!!port].num_counters; i++) stats->value[i] = hw_value[i]; return diag[!!port].num_counters; } static int __mlx4_ib_alloc_diag_counters(struct mlx4_ib_dev *ibdev, const char ***name, u32 **offset, u32 *num, bool port) { u32 num_counters; num_counters = ARRAY_SIZE(diag_basic); if (ibdev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_DIAG_PER_PORT) num_counters += ARRAY_SIZE(diag_ext); if (!port) num_counters += ARRAY_SIZE(diag_device_only); *name = kcalloc(num_counters, sizeof(**name), GFP_KERNEL); if (!*name) return -ENOMEM; *offset = kcalloc(num_counters, sizeof(**offset), GFP_KERNEL); if (!*offset) goto err_name; *num = num_counters; return 0; err_name: kfree(*name); return -ENOMEM; } static void mlx4_ib_fill_diag_counters(struct mlx4_ib_dev *ibdev, const char **name, u32 *offset, bool port) { int i; int j; for (i = 0, j = 0; i < ARRAY_SIZE(diag_basic); i++, j++) { name[i] = diag_basic[i].name; offset[i] = diag_basic[i].offset; } if (ibdev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_DIAG_PER_PORT) { for (i = 0; i < ARRAY_SIZE(diag_ext); i++, j++) { name[j] = diag_ext[i].name; offset[j] = diag_ext[i].offset; } } if (!port) { for (i = 0; i < ARRAY_SIZE(diag_device_only); i++, j++) { name[j] = diag_device_only[i].name; offset[j] = diag_device_only[i].offset; } } } static int mlx4_ib_alloc_diag_counters(struct mlx4_ib_dev *ibdev) { struct mlx4_ib_diag_counters *diag = ibdev->diag_counters; int i; int ret; bool per_port = !!(ibdev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_DIAG_PER_PORT); if (mlx4_is_slave(ibdev->dev)) return 0; for (i = 0; i < MLX4_DIAG_COUNTERS_TYPES; i++) { /* i == 1 means we are building port counters */ if (i && !per_port) continue; ret = __mlx4_ib_alloc_diag_counters(ibdev, &diag[i].name, &diag[i].offset, &diag[i].num_counters, i); if (ret) goto err_alloc; mlx4_ib_fill_diag_counters(ibdev, diag[i].name, diag[i].offset, i); } ibdev->ib_dev.get_hw_stats = mlx4_ib_get_hw_stats; ibdev->ib_dev.alloc_hw_stats = mlx4_ib_alloc_hw_stats; return 0; err_alloc: if (i) { kfree(diag[i - 1].name); kfree(diag[i - 1].offset); } return ret; } static void mlx4_ib_diag_cleanup(struct mlx4_ib_dev *ibdev) { int i; for (i = 0; i < MLX4_DIAG_COUNTERS_TYPES; i++) { kfree(ibdev->diag_counters[i].offset); kfree(ibdev->diag_counters[i].name); } } #define MLX4_IB_INVALID_MAC ((u64)-1) static void mlx4_ib_update_qps(struct mlx4_ib_dev *ibdev, struct net_device *dev, int port) { u64 new_smac = 0; u64 release_mac = MLX4_IB_INVALID_MAC; struct mlx4_ib_qp *qp; new_smac = mlx4_mac_to_u64(IF_LLADDR(dev)); atomic64_set(&ibdev->iboe.mac[port - 1], new_smac); /* no need for update QP1 and mac registration in non-SRIOV */ if (!mlx4_is_mfunc(ibdev->dev)) return; mutex_lock(&ibdev->qp1_proxy_lock[port - 1]); qp = ibdev->qp1_proxy[port - 1]; if (qp) { int new_smac_index; u64 old_smac; struct mlx4_update_qp_params update_params; mutex_lock(&qp->mutex); old_smac = qp->pri.smac; if (new_smac == old_smac) goto unlock; new_smac_index = mlx4_register_mac(ibdev->dev, port, new_smac); if (new_smac_index < 0) goto unlock; update_params.smac_index = new_smac_index; if (mlx4_update_qp(ibdev->dev, qp->mqp.qpn, MLX4_UPDATE_QP_SMAC, &update_params)) { release_mac = new_smac; goto unlock; } /* if old port was zero, no mac was yet registered for this QP */ if (qp->pri.smac_port) release_mac = old_smac; qp->pri.smac = new_smac; qp->pri.smac_port = port; qp->pri.smac_index = new_smac_index; } unlock: if (release_mac != MLX4_IB_INVALID_MAC) mlx4_unregister_mac(ibdev->dev, port, release_mac); if (qp) mutex_unlock(&qp->mutex); mutex_unlock(&ibdev->qp1_proxy_lock[port - 1]); } static void mlx4_ib_scan_netdevs(struct mlx4_ib_dev *ibdev, struct net_device *dev, unsigned long event) { struct mlx4_ib_iboe *iboe; int update_qps_port = -1; int port; iboe = &ibdev->iboe; spin_lock_bh(&iboe->lock); mlx4_foreach_ib_transport_port(port, ibdev->dev) { iboe->netdevs[port - 1] = mlx4_get_protocol_dev(ibdev->dev, MLX4_PROT_ETH, port); if (dev == iboe->netdevs[port - 1] && (event == NETDEV_CHANGEADDR || event == NETDEV_REGISTER || event == NETDEV_UP || event == NETDEV_CHANGE)) update_qps_port = port; } spin_unlock_bh(&iboe->lock); if (update_qps_port > 0) mlx4_ib_update_qps(ibdev, dev, update_qps_port); } static int mlx4_ib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct mlx4_ib_dev *ibdev; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; ibdev = container_of(this, struct mlx4_ib_dev, iboe.nb); mlx4_ib_scan_netdevs(ibdev, dev, event); return NOTIFY_DONE; } static void init_pkeys(struct mlx4_ib_dev *ibdev) { int port; int slave; int i; if (mlx4_is_master(ibdev->dev)) { for (slave = 0; slave <= ibdev->dev->persist->num_vfs; ++slave) { for (port = 1; port <= ibdev->dev->caps.num_ports; ++port) { for (i = 0; i < ibdev->dev->phys_caps.pkey_phys_table_len[port]; ++i) { ibdev->pkeys.virt2phys_pkey[slave][port - 1][i] = /* master has the identity virt2phys pkey mapping */ (slave == mlx4_master_func_num(ibdev->dev) || !i) ? i : ibdev->dev->phys_caps.pkey_phys_table_len[port] - 1; mlx4_sync_pkey_table(ibdev->dev, slave, port, i, ibdev->pkeys.virt2phys_pkey[slave][port - 1][i]); } } } /* initialize pkey cache */ for (port = 1; port <= ibdev->dev->caps.num_ports; ++port) { for (i = 0; i < ibdev->dev->phys_caps.pkey_phys_table_len[port]; ++i) ibdev->pkeys.phys_pkey_cache[port-1][i] = (i) ? 0 : 0xFFFF; } } } static void mlx4_ib_alloc_eqs(struct mlx4_dev *dev, struct mlx4_ib_dev *ibdev) { int i, j, eq = 0, total_eqs = 0; ibdev->eq_table = kcalloc(dev->caps.num_comp_vectors, sizeof(ibdev->eq_table[0]), GFP_KERNEL); if (!ibdev->eq_table) return; for (i = 1; i <= dev->caps.num_ports; i++) { for (j = 0; j < mlx4_get_eqs_per_port(dev, i); j++, total_eqs++) { if (i > 1 && mlx4_is_eq_shared(dev, total_eqs)) continue; ibdev->eq_table[eq] = total_eqs; if (!mlx4_assign_eq(dev, i, &ibdev->eq_table[eq])) eq++; else ibdev->eq_table[eq] = -1; } } for (i = eq; i < dev->caps.num_comp_vectors; ibdev->eq_table[i++] = -1) ; /* Advertise the new number of EQs to clients */ ibdev->ib_dev.num_comp_vectors = eq; } static void mlx4_ib_free_eqs(struct mlx4_dev *dev, struct mlx4_ib_dev *ibdev) { int i; int total_eqs = ibdev->ib_dev.num_comp_vectors; /* no eqs were allocated */ if (!ibdev->eq_table) return; /* Reset the advertised EQ number */ ibdev->ib_dev.num_comp_vectors = 0; for (i = 0; i < total_eqs; i++) mlx4_release_eq(dev, ibdev->eq_table[i]); kfree(ibdev->eq_table); ibdev->eq_table = NULL; } static int mlx4_port_immutable(struct ib_device *ibdev, u8 port_num, struct ib_port_immutable *immutable) { struct ib_port_attr attr; struct mlx4_ib_dev *mdev = to_mdev(ibdev); int err; err = mlx4_ib_query_port(ibdev, port_num, &attr); if (err) return err; immutable->pkey_tbl_len = attr.pkey_tbl_len; immutable->gid_tbl_len = attr.gid_tbl_len; if (mlx4_ib_port_link_layer(ibdev, port_num) == IB_LINK_LAYER_INFINIBAND) { immutable->core_cap_flags = RDMA_CORE_PORT_IBA_IB; } else { if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_IBOE) immutable->core_cap_flags = RDMA_CORE_PORT_IBA_ROCE; if (mdev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_ROCE_V1_V2) immutable->core_cap_flags = RDMA_CORE_PORT_IBA_ROCE | RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP; } immutable->max_mad_size = IB_MGMT_MAD_SIZE; return 0; } static void get_fw_ver_str(struct ib_device *device, char *str, size_t str_len) { struct mlx4_ib_dev *dev = container_of(device, struct mlx4_ib_dev, ib_dev); snprintf(str, str_len, "%d.%d.%d", (int) (dev->dev->caps.fw_ver >> 32), (int) (dev->dev->caps.fw_ver >> 16) & 0xffff, (int) dev->dev->caps.fw_ver & 0xffff); } static void *mlx4_ib_add(struct mlx4_dev *dev) { struct mlx4_ib_dev *ibdev; int num_ports; int i, j; int err; struct mlx4_ib_iboe *iboe; int ib_num_ports = 0; int num_req_counters; int allocated; u32 counter_index; struct counter_index *new_counter_index = NULL; pr_info_once("%s", mlx4_ib_version); num_ports = 0; mlx4_foreach_ib_transport_port(i, dev) num_ports++; /* No point in registering a device with no ports... */ if (num_ports == 0) return NULL; ibdev = (struct mlx4_ib_dev *) ib_alloc_device(sizeof *ibdev); if (!ibdev) { dev_err(&dev->persist->pdev->dev, "Device struct alloc failed\n"); return NULL; } iboe = &ibdev->iboe; if (mlx4_pd_alloc(dev, &ibdev->priv_pdn)) goto err_dealloc; if (mlx4_uar_alloc(dev, &ibdev->priv_uar)) goto err_pd; ibdev->uar_map = ioremap((phys_addr_t) ibdev->priv_uar.pfn << PAGE_SHIFT, PAGE_SIZE); if (!ibdev->uar_map) goto err_uar; MLX4_INIT_DOORBELL_LOCK(&ibdev->uar_lock); ibdev->dev = dev; ibdev->bond_next_port = 0; strlcpy(ibdev->ib_dev.name, "mlx4_%d", IB_DEVICE_NAME_MAX); ibdev->ib_dev.owner = THIS_MODULE; ibdev->ib_dev.node_type = RDMA_NODE_IB_CA; ibdev->ib_dev.local_dma_lkey = dev->caps.reserved_lkey; ibdev->num_ports = num_ports; ibdev->ib_dev.phys_port_cnt = mlx4_is_bonded(dev) ? 1 : ibdev->num_ports; ibdev->ib_dev.num_comp_vectors = dev->caps.num_comp_vectors; ibdev->ib_dev.dma_device = &dev->persist->pdev->dev; ibdev->ib_dev.get_netdev = mlx4_ib_get_netdev; ibdev->ib_dev.add_gid = mlx4_ib_add_gid; ibdev->ib_dev.del_gid = mlx4_ib_del_gid; if (dev->caps.userspace_caps) ibdev->ib_dev.uverbs_abi_ver = MLX4_IB_UVERBS_ABI_VERSION; else ibdev->ib_dev.uverbs_abi_ver = MLX4_IB_UVERBS_NO_DEV_CAPS_ABI_VERSION; ibdev->ib_dev.uverbs_cmd_mask = (1ull << IB_USER_VERBS_CMD_GET_CONTEXT) | (1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) | (1ull << IB_USER_VERBS_CMD_QUERY_PORT) | (1ull << IB_USER_VERBS_CMD_ALLOC_PD) | (1ull << IB_USER_VERBS_CMD_DEALLOC_PD) | (1ull << IB_USER_VERBS_CMD_REG_MR) | (1ull << IB_USER_VERBS_CMD_REREG_MR) | (1ull << IB_USER_VERBS_CMD_DEREG_MR) | (1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | (1ull << IB_USER_VERBS_CMD_CREATE_CQ) | (1ull << IB_USER_VERBS_CMD_RESIZE_CQ) | (1ull << IB_USER_VERBS_CMD_DESTROY_CQ) | (1ull << IB_USER_VERBS_CMD_CREATE_QP) | (1ull << IB_USER_VERBS_CMD_MODIFY_QP) | (1ull << IB_USER_VERBS_CMD_QUERY_QP) | (1ull << IB_USER_VERBS_CMD_DESTROY_QP) | (1ull << IB_USER_VERBS_CMD_ATTACH_MCAST) | (1ull << IB_USER_VERBS_CMD_DETACH_MCAST) | (1ull << IB_USER_VERBS_CMD_CREATE_SRQ) | (1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) | (1ull << IB_USER_VERBS_CMD_QUERY_SRQ) | (1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) | (1ull << IB_USER_VERBS_CMD_CREATE_XSRQ) | (1ull << IB_USER_VERBS_CMD_OPEN_QP); ibdev->ib_dev.query_device = mlx4_ib_query_device; ibdev->ib_dev.query_port = mlx4_ib_query_port; ibdev->ib_dev.get_link_layer = mlx4_ib_port_link_layer; ibdev->ib_dev.query_gid = mlx4_ib_query_gid; ibdev->ib_dev.query_pkey = mlx4_ib_query_pkey; ibdev->ib_dev.modify_device = mlx4_ib_modify_device; ibdev->ib_dev.modify_port = mlx4_ib_modify_port; ibdev->ib_dev.alloc_ucontext = mlx4_ib_alloc_ucontext; ibdev->ib_dev.dealloc_ucontext = mlx4_ib_dealloc_ucontext; ibdev->ib_dev.mmap = mlx4_ib_mmap; ibdev->ib_dev.alloc_pd = mlx4_ib_alloc_pd; ibdev->ib_dev.dealloc_pd = mlx4_ib_dealloc_pd; ibdev->ib_dev.create_ah = mlx4_ib_create_ah; ibdev->ib_dev.query_ah = mlx4_ib_query_ah; ibdev->ib_dev.destroy_ah = mlx4_ib_destroy_ah; ibdev->ib_dev.create_srq = mlx4_ib_create_srq; ibdev->ib_dev.modify_srq = mlx4_ib_modify_srq; ibdev->ib_dev.query_srq = mlx4_ib_query_srq; ibdev->ib_dev.destroy_srq = mlx4_ib_destroy_srq; ibdev->ib_dev.post_srq_recv = mlx4_ib_post_srq_recv; ibdev->ib_dev.create_qp = mlx4_ib_create_qp; ibdev->ib_dev.modify_qp = mlx4_ib_modify_qp; ibdev->ib_dev.query_qp = mlx4_ib_query_qp; ibdev->ib_dev.destroy_qp = mlx4_ib_destroy_qp; ibdev->ib_dev.post_send = mlx4_ib_post_send; ibdev->ib_dev.post_recv = mlx4_ib_post_recv; ibdev->ib_dev.create_cq = mlx4_ib_create_cq; ibdev->ib_dev.modify_cq = mlx4_ib_modify_cq; ibdev->ib_dev.resize_cq = mlx4_ib_resize_cq; ibdev->ib_dev.destroy_cq = mlx4_ib_destroy_cq; ibdev->ib_dev.poll_cq = mlx4_ib_poll_cq; ibdev->ib_dev.req_notify_cq = mlx4_ib_arm_cq; ibdev->ib_dev.get_dma_mr = mlx4_ib_get_dma_mr; ibdev->ib_dev.reg_user_mr = mlx4_ib_reg_user_mr; ibdev->ib_dev.rereg_user_mr = mlx4_ib_rereg_user_mr; ibdev->ib_dev.reg_phys_mr = mlx4_ib_reg_phys_mr; ibdev->ib_dev.dereg_mr = mlx4_ib_dereg_mr; ibdev->ib_dev.alloc_mr = mlx4_ib_alloc_mr; ibdev->ib_dev.map_mr_sg = mlx4_ib_map_mr_sg; ibdev->ib_dev.attach_mcast = mlx4_ib_mcg_attach; ibdev->ib_dev.detach_mcast = mlx4_ib_mcg_detach; ibdev->ib_dev.process_mad = mlx4_ib_process_mad; ibdev->ib_dev.get_port_immutable = mlx4_port_immutable; ibdev->ib_dev.get_dev_fw_str = get_fw_ver_str; if (!mlx4_is_slave(ibdev->dev)) { ibdev->ib_dev.alloc_fmr = mlx4_ib_fmr_alloc; ibdev->ib_dev.map_phys_fmr = mlx4_ib_map_phys_fmr; ibdev->ib_dev.unmap_fmr = mlx4_ib_unmap_fmr; ibdev->ib_dev.dealloc_fmr = mlx4_ib_fmr_dealloc; } if (dev->caps.flags & MLX4_DEV_CAP_FLAG_MEM_WINDOW || dev->caps.bmme_flags & MLX4_BMME_FLAG_TYPE_2_WIN) { ibdev->ib_dev.alloc_mw = mlx4_ib_alloc_mw; ibdev->ib_dev.dealloc_mw = mlx4_ib_dealloc_mw; ibdev->ib_dev.uverbs_cmd_mask |= (1ull << IB_USER_VERBS_CMD_ALLOC_MW) | (1ull << IB_USER_VERBS_CMD_DEALLOC_MW); } if (dev->caps.flags & MLX4_DEV_CAP_FLAG_XRC) { ibdev->ib_dev.alloc_xrcd = mlx4_ib_alloc_xrcd; ibdev->ib_dev.dealloc_xrcd = mlx4_ib_dealloc_xrcd; ibdev->ib_dev.uverbs_cmd_mask |= (1ull << IB_USER_VERBS_CMD_OPEN_XRCD) | (1ull << IB_USER_VERBS_CMD_CLOSE_XRCD); } if (check_flow_steering_support(dev)) { ibdev->steering_support = MLX4_STEERING_MODE_DEVICE_MANAGED; ibdev->ib_dev.create_flow = mlx4_ib_create_flow; ibdev->ib_dev.destroy_flow = mlx4_ib_destroy_flow; ibdev->ib_dev.uverbs_ex_cmd_mask |= (1ull << IB_USER_VERBS_EX_CMD_CREATE_FLOW) | (1ull << IB_USER_VERBS_EX_CMD_DESTROY_FLOW); } ibdev->ib_dev.uverbs_ex_cmd_mask |= (1ull << IB_USER_VERBS_EX_CMD_QUERY_DEVICE) | (1ull << IB_USER_VERBS_EX_CMD_CREATE_CQ) | (1ull << IB_USER_VERBS_EX_CMD_CREATE_QP); mlx4_ib_alloc_eqs(dev, ibdev); spin_lock_init(&iboe->lock); if (init_node_data(ibdev)) goto err_map; mlx4_init_sl2vl_tbl(ibdev); for (i = 0; i < ibdev->num_ports; ++i) { mutex_init(&ibdev->counters_table[i].mutex); INIT_LIST_HEAD(&ibdev->counters_table[i].counters_list); } num_req_counters = mlx4_is_bonded(dev) ? 1 : ibdev->num_ports; for (i = 0; i < num_req_counters; ++i) { mutex_init(&ibdev->qp1_proxy_lock[i]); allocated = 0; if (mlx4_ib_port_link_layer(&ibdev->ib_dev, i + 1) == IB_LINK_LAYER_ETHERNET) { err = mlx4_counter_alloc(ibdev->dev, &counter_index); /* if failed to allocate a new counter, use default */ if (err) counter_index = mlx4_get_default_counter_index(dev, i + 1); else allocated = 1; } else { /* IB_LINK_LAYER_INFINIBAND use the default counter */ counter_index = mlx4_get_default_counter_index(dev, i + 1); } new_counter_index = kmalloc(sizeof(*new_counter_index), GFP_KERNEL); if (!new_counter_index) { if (allocated) mlx4_counter_free(ibdev->dev, counter_index); goto err_counter; } new_counter_index->index = counter_index; new_counter_index->allocated = allocated; list_add_tail(&new_counter_index->list, &ibdev->counters_table[i].counters_list); ibdev->counters_table[i].default_counter = counter_index; pr_info("counter index %d for port %d allocated %d\n", counter_index, i + 1, allocated); } if (mlx4_is_bonded(dev)) for (i = 1; i < ibdev->num_ports ; ++i) { new_counter_index = kmalloc(sizeof(struct counter_index), GFP_KERNEL); if (!new_counter_index) goto err_counter; new_counter_index->index = counter_index; new_counter_index->allocated = 0; list_add_tail(&new_counter_index->list, &ibdev->counters_table[i].counters_list); ibdev->counters_table[i].default_counter = counter_index; } mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_IB) ib_num_ports++; spin_lock_init(&ibdev->sm_lock); mutex_init(&ibdev->cap_mask_mutex); INIT_LIST_HEAD(&ibdev->qp_list); spin_lock_init(&ibdev->reset_flow_resource_lock); if (ibdev->steering_support == MLX4_STEERING_MODE_DEVICE_MANAGED && ib_num_ports) { ibdev->steer_qpn_count = MLX4_IB_UC_MAX_NUM_QPS; err = mlx4_qp_reserve_range(dev, ibdev->steer_qpn_count, MLX4_IB_UC_STEER_QPN_ALIGN, &ibdev->steer_qpn_base, 0); if (err) goto err_counter; ibdev->ib_uc_qpns_bitmap = kmalloc(BITS_TO_LONGS(ibdev->steer_qpn_count) * sizeof(long), GFP_KERNEL); if (!ibdev->ib_uc_qpns_bitmap) { dev_err(&dev->persist->pdev->dev, "bit map alloc failed\n"); goto err_steer_qp_release; } bitmap_zero(ibdev->ib_uc_qpns_bitmap, ibdev->steer_qpn_count); err = mlx4_FLOW_STEERING_IB_UC_QP_RANGE( dev, ibdev->steer_qpn_base, ibdev->steer_qpn_base + ibdev->steer_qpn_count - 1); if (err) goto err_steer_free_bitmap; } for (j = 1; j <= ibdev->dev->caps.num_ports; j++) atomic64_set(&iboe->mac[j - 1], ibdev->dev->caps.def_mac[j]); if (mlx4_ib_alloc_diag_counters(ibdev)) goto err_steer_free_bitmap; if (ib_register_device(&ibdev->ib_dev, NULL)) goto err_diag_counters; if (mlx4_ib_mad_init(ibdev)) goto err_reg; if (mlx4_ib_init_sriov(ibdev)) goto err_mad; if (dev->caps.flags & MLX4_DEV_CAP_FLAG_IBOE || dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_ROCE_V1_V2) { if (!iboe->nb.notifier_call) { iboe->nb.notifier_call = mlx4_ib_netdev_event; err = register_netdevice_notifier(&iboe->nb); if (err) { iboe->nb.notifier_call = NULL; goto err_notif; } } if (dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_ROCE_V1_V2) { err = mlx4_config_roce_v2_port(dev, ROCE_V2_UDP_DPORT); if (err) { goto err_notif; } } } for (j = 0; j < ARRAY_SIZE(mlx4_class_attributes); ++j) { if (device_create_file(&ibdev->ib_dev.dev, mlx4_class_attributes[j])) goto err_notif; } ibdev->ib_active = true; if (mlx4_is_mfunc(ibdev->dev)) init_pkeys(ibdev); /* create paravirt contexts for any VFs which are active */ if (mlx4_is_master(ibdev->dev)) { for (j = 0; j < MLX4_MFUNC_MAX; j++) { if (j == mlx4_master_func_num(ibdev->dev)) continue; if (mlx4_is_slave_active(ibdev->dev, j)) do_slave_init(ibdev, j, 1); } } return ibdev; err_notif: if (ibdev->iboe.nb.notifier_call) { if (unregister_netdevice_notifier(&ibdev->iboe.nb)) pr_warn("failure unregistering notifier\n"); ibdev->iboe.nb.notifier_call = NULL; } flush_workqueue(wq); mlx4_ib_close_sriov(ibdev); err_mad: mlx4_ib_mad_cleanup(ibdev); err_reg: ib_unregister_device(&ibdev->ib_dev); err_diag_counters: mlx4_ib_diag_cleanup(ibdev); err_steer_free_bitmap: kfree(ibdev->ib_uc_qpns_bitmap); err_steer_qp_release: if (ibdev->steering_support == MLX4_STEERING_MODE_DEVICE_MANAGED) mlx4_qp_release_range(dev, ibdev->steer_qpn_base, ibdev->steer_qpn_count); err_counter: for (i = 0; i < ibdev->num_ports; ++i) mlx4_ib_delete_counters_table(ibdev, &ibdev->counters_table[i]); err_map: iounmap(ibdev->uar_map); err_uar: mlx4_uar_free(dev, &ibdev->priv_uar); err_pd: mlx4_pd_free(dev, ibdev->priv_pdn); err_dealloc: ib_dealloc_device(&ibdev->ib_dev); return NULL; } int mlx4_ib_steer_qp_alloc(struct mlx4_ib_dev *dev, int count, int *qpn) { int offset; WARN_ON(!dev->ib_uc_qpns_bitmap); offset = bitmap_find_free_region(dev->ib_uc_qpns_bitmap, dev->steer_qpn_count, get_count_order(count)); if (offset < 0) return offset; *qpn = dev->steer_qpn_base + offset; return 0; } void mlx4_ib_steer_qp_free(struct mlx4_ib_dev *dev, u32 qpn, int count) { if (!qpn || dev->steering_support != MLX4_STEERING_MODE_DEVICE_MANAGED) return; BUG_ON(qpn < dev->steer_qpn_base); bitmap_release_region(dev->ib_uc_qpns_bitmap, qpn - dev->steer_qpn_base, get_count_order(count)); } int mlx4_ib_steer_qp_reg(struct mlx4_ib_dev *mdev, struct mlx4_ib_qp *mqp, int is_attach) { int err; size_t flow_size; struct ib_flow_attr *flow = NULL; struct ib_flow_spec_ib *ib_spec; if (is_attach) { flow_size = sizeof(struct ib_flow_attr) + sizeof(struct ib_flow_spec_ib); flow = kzalloc(flow_size, GFP_KERNEL); if (!flow) return -ENOMEM; flow->port = mqp->port; flow->num_of_specs = 1; flow->size = flow_size; ib_spec = (struct ib_flow_spec_ib *)(flow + 1); ib_spec->type = IB_FLOW_SPEC_IB; ib_spec->size = sizeof(struct ib_flow_spec_ib); /* Add an empty rule for IB L2 */ memset(&ib_spec->mask, 0, sizeof(ib_spec->mask)); err = __mlx4_ib_create_flow(&mqp->ibqp, flow, IB_FLOW_DOMAIN_NIC, MLX4_FS_REGULAR, &mqp->reg_id); } else { err = __mlx4_ib_destroy_flow(mdev->dev, mqp->reg_id); } kfree(flow); return err; } static void mlx4_ib_remove(struct mlx4_dev *dev, void *ibdev_ptr) { struct mlx4_ib_dev *ibdev = ibdev_ptr; int p; ibdev->ib_active = false; flush_workqueue(wq); mlx4_ib_close_sriov(ibdev); mlx4_ib_mad_cleanup(ibdev); ib_unregister_device(&ibdev->ib_dev); mlx4_ib_diag_cleanup(ibdev); if (ibdev->iboe.nb.notifier_call) { if (unregister_netdevice_notifier(&ibdev->iboe.nb)) pr_warn("failure unregistering notifier\n"); ibdev->iboe.nb.notifier_call = NULL; } if (ibdev->steering_support == MLX4_STEERING_MODE_DEVICE_MANAGED) { mlx4_qp_release_range(dev, ibdev->steer_qpn_base, ibdev->steer_qpn_count); kfree(ibdev->ib_uc_qpns_bitmap); } iounmap(ibdev->uar_map); for (p = 0; p < ibdev->num_ports; ++p) mlx4_ib_delete_counters_table(ibdev, &ibdev->counters_table[p]); mlx4_foreach_port(p, dev, MLX4_PORT_TYPE_IB) mlx4_CLOSE_PORT(dev, p); mlx4_ib_free_eqs(dev, ibdev); mlx4_uar_free(dev, &ibdev->priv_uar); mlx4_pd_free(dev, ibdev->priv_pdn); ib_dealloc_device(&ibdev->ib_dev); } static void do_slave_init(struct mlx4_ib_dev *ibdev, int slave, int do_init) { struct mlx4_ib_demux_work **dm = NULL; struct mlx4_dev *dev = ibdev->dev; int i; unsigned long flags; struct mlx4_active_ports actv_ports; unsigned int ports; unsigned int first_port; if (!mlx4_is_master(dev)) return; actv_ports = mlx4_get_active_ports(dev, slave); ports = bitmap_weight(actv_ports.ports, dev->caps.num_ports); first_port = find_first_bit(actv_ports.ports, dev->caps.num_ports); dm = kcalloc(ports, sizeof(*dm), GFP_ATOMIC); if (!dm) { pr_err("failed to allocate memory for tunneling qp update\n"); return; } for (i = 0; i < ports; i++) { dm[i] = kmalloc(sizeof (struct mlx4_ib_demux_work), GFP_ATOMIC); if (!dm[i]) { pr_err("failed to allocate memory for tunneling qp update work struct\n"); while (--i >= 0) kfree(dm[i]); goto out; } INIT_WORK(&dm[i]->work, mlx4_ib_tunnels_update_work); dm[i]->port = first_port + i + 1; dm[i]->slave = slave; dm[i]->do_init = do_init; dm[i]->dev = ibdev; } /* initialize or tear down tunnel QPs for the slave */ spin_lock_irqsave(&ibdev->sriov.going_down_lock, flags); if (!ibdev->sriov.is_going_down) { for (i = 0; i < ports; i++) queue_work(ibdev->sriov.demux[i].ud_wq, &dm[i]->work); spin_unlock_irqrestore(&ibdev->sriov.going_down_lock, flags); } else { spin_unlock_irqrestore(&ibdev->sriov.going_down_lock, flags); for (i = 0; i < ports; i++) kfree(dm[i]); } out: kfree(dm); return; } static void mlx4_ib_handle_catas_error(struct mlx4_ib_dev *ibdev) { struct mlx4_ib_qp *mqp; unsigned long flags_qp; unsigned long flags_cq; struct mlx4_ib_cq *send_mcq, *recv_mcq; struct list_head cq_notify_list; struct mlx4_cq *mcq; unsigned long flags; pr_warn("mlx4_ib_handle_catas_error was started\n"); INIT_LIST_HEAD(&cq_notify_list); /* Go over qp list reside on that ibdev, sync with create/destroy qp.*/ spin_lock_irqsave(&ibdev->reset_flow_resource_lock, flags); list_for_each_entry(mqp, &ibdev->qp_list, qps_list) { spin_lock_irqsave(&mqp->sq.lock, flags_qp); if (mqp->sq.tail != mqp->sq.head) { send_mcq = to_mcq(mqp->ibqp.send_cq); spin_lock_irqsave(&send_mcq->lock, flags_cq); if (send_mcq->mcq.comp && mqp->ibqp.send_cq->comp_handler) { if (!send_mcq->mcq.reset_notify_added) { send_mcq->mcq.reset_notify_added = 1; list_add_tail(&send_mcq->mcq.reset_notify, &cq_notify_list); } } spin_unlock_irqrestore(&send_mcq->lock, flags_cq); } spin_unlock_irqrestore(&mqp->sq.lock, flags_qp); /* Now, handle the QP's receive queue */ spin_lock_irqsave(&mqp->rq.lock, flags_qp); /* no handling is needed for SRQ */ if (!mqp->ibqp.srq) { if (mqp->rq.tail != mqp->rq.head) { recv_mcq = to_mcq(mqp->ibqp.recv_cq); spin_lock_irqsave(&recv_mcq->lock, flags_cq); if (recv_mcq->mcq.comp && mqp->ibqp.recv_cq->comp_handler) { if (!recv_mcq->mcq.reset_notify_added) { recv_mcq->mcq.reset_notify_added = 1; list_add_tail(&recv_mcq->mcq.reset_notify, &cq_notify_list); } } spin_unlock_irqrestore(&recv_mcq->lock, flags_cq); } } spin_unlock_irqrestore(&mqp->rq.lock, flags_qp); } list_for_each_entry(mcq, &cq_notify_list, reset_notify) { mcq->comp(mcq); } spin_unlock_irqrestore(&ibdev->reset_flow_resource_lock, flags); pr_warn("mlx4_ib_handle_catas_error ended\n"); } static void handle_bonded_port_state_event(struct work_struct *work) { struct ib_event_work *ew = container_of(work, struct ib_event_work, work); struct mlx4_ib_dev *ibdev = ew->ib_dev; enum ib_port_state bonded_port_state = IB_PORT_NOP; int i; struct ib_event ibev; kfree(ew); spin_lock_bh(&ibdev->iboe.lock); for (i = 0; i < MLX4_MAX_PORTS; ++i) { struct net_device *curr_netdev = ibdev->iboe.netdevs[i]; enum ib_port_state curr_port_state; if (!curr_netdev) continue; curr_port_state = (netif_running(curr_netdev) && netif_carrier_ok(curr_netdev)) ? IB_PORT_ACTIVE : IB_PORT_DOWN; bonded_port_state = (bonded_port_state != IB_PORT_ACTIVE) ? curr_port_state : IB_PORT_ACTIVE; } spin_unlock_bh(&ibdev->iboe.lock); ibev.device = &ibdev->ib_dev; ibev.element.port_num = 1; ibev.event = (bonded_port_state == IB_PORT_ACTIVE) ? IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR; ib_dispatch_event(&ibev); } void mlx4_ib_sl2vl_update(struct mlx4_ib_dev *mdev, int port) { u64 sl2vl; int err; err = mlx4_ib_query_sl2vl(&mdev->ib_dev, port, &sl2vl); if (err) { pr_err("Unable to get current sl to vl mapping for port %d. Using all zeroes (%d)\n", port, err); sl2vl = 0; } atomic64_set(&mdev->sl2vl[port - 1], sl2vl); } static void ib_sl2vl_update_work(struct work_struct *work) { struct ib_event_work *ew = container_of(work, struct ib_event_work, work); struct mlx4_ib_dev *mdev = ew->ib_dev; int port = ew->port; mlx4_ib_sl2vl_update(mdev, port); kfree(ew); } void mlx4_sched_ib_sl2vl_update_work(struct mlx4_ib_dev *ibdev, int port) { struct ib_event_work *ew; ew = kmalloc(sizeof(*ew), GFP_ATOMIC); if (ew) { INIT_WORK(&ew->work, ib_sl2vl_update_work); ew->port = port; ew->ib_dev = ibdev; queue_work(wq, &ew->work); } else { pr_err("failed to allocate memory for sl2vl update work\n"); } } static void mlx4_ib_event(struct mlx4_dev *dev, void *ibdev_ptr, enum mlx4_dev_event event, unsigned long param) { struct ib_event ibev; struct mlx4_ib_dev *ibdev = to_mdev((struct ib_device *) ibdev_ptr); struct mlx4_eqe *eqe = NULL; struct ib_event_work *ew; int p = 0; if (mlx4_is_bonded(dev) && ((event == MLX4_DEV_EVENT_PORT_UP) || (event == MLX4_DEV_EVENT_PORT_DOWN))) { ew = kmalloc(sizeof(*ew), GFP_ATOMIC); if (!ew) return; INIT_WORK(&ew->work, handle_bonded_port_state_event); ew->ib_dev = ibdev; queue_work(wq, &ew->work); return; } if (event == MLX4_DEV_EVENT_PORT_MGMT_CHANGE) eqe = (struct mlx4_eqe *)param; else p = (int) param; switch (event) { case MLX4_DEV_EVENT_PORT_UP: if (p > ibdev->num_ports) return; if (!mlx4_is_slave(dev) && rdma_port_get_link_layer(&ibdev->ib_dev, p) == IB_LINK_LAYER_INFINIBAND) { if (mlx4_is_master(dev)) mlx4_ib_invalidate_all_guid_record(ibdev, p); if (ibdev->dev->flags & MLX4_FLAG_SECURE_HOST && !(ibdev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_SL_TO_VL_CHANGE_EVENT)) mlx4_sched_ib_sl2vl_update_work(ibdev, p); } ibev.event = IB_EVENT_PORT_ACTIVE; break; case MLX4_DEV_EVENT_PORT_DOWN: if (p > ibdev->num_ports) return; ibev.event = IB_EVENT_PORT_ERR; break; case MLX4_DEV_EVENT_CATASTROPHIC_ERROR: ibdev->ib_active = false; ibev.event = IB_EVENT_DEVICE_FATAL; mlx4_ib_handle_catas_error(ibdev); break; case MLX4_DEV_EVENT_PORT_MGMT_CHANGE: ew = kmalloc(sizeof *ew, GFP_ATOMIC); if (!ew) { pr_err("failed to allocate memory for events work\n"); break; } INIT_WORK(&ew->work, handle_port_mgmt_change_event); memcpy(&ew->ib_eqe, eqe, sizeof *eqe); ew->ib_dev = ibdev; /* need to queue only for port owner, which uses GEN_EQE */ if (mlx4_is_master(dev)) queue_work(wq, &ew->work); else handle_port_mgmt_change_event(&ew->work); return; case MLX4_DEV_EVENT_SLAVE_INIT: /* here, p is the slave id */ do_slave_init(ibdev, p, 1); if (mlx4_is_master(dev)) { int i; for (i = 1; i <= ibdev->num_ports; i++) { if (rdma_port_get_link_layer(&ibdev->ib_dev, i) == IB_LINK_LAYER_INFINIBAND) mlx4_ib_slave_alias_guid_event(ibdev, p, i, 1); } } return; case MLX4_DEV_EVENT_SLAVE_SHUTDOWN: if (mlx4_is_master(dev)) { int i; for (i = 1; i <= ibdev->num_ports; i++) { if (rdma_port_get_link_layer(&ibdev->ib_dev, i) == IB_LINK_LAYER_INFINIBAND) mlx4_ib_slave_alias_guid_event(ibdev, p, i, 0); } } /* here, p is the slave id */ do_slave_init(ibdev, p, 0); return; default: return; } ibev.device = ibdev_ptr; ibev.element.port_num = mlx4_is_bonded(ibdev->dev) ? 1 : (u8)p; ib_dispatch_event(&ibev); } static struct mlx4_interface mlx4_ib_interface = { .add = mlx4_ib_add, .remove = mlx4_ib_remove, .event = mlx4_ib_event, .protocol = MLX4_PROT_IB_IPV6, .flags = MLX4_INTFF_BONDING }; static int __init mlx4_ib_init(void) { int err; wq = alloc_ordered_workqueue("mlx4_ib", WQ_MEM_RECLAIM); if (!wq) return -ENOMEM; err = mlx4_ib_mcg_init(); if (err) goto clean_wq; err = mlx4_register_interface(&mlx4_ib_interface); if (err) goto clean_mcg; return 0; clean_mcg: mlx4_ib_mcg_destroy(); clean_wq: destroy_workqueue(wq); return err; } static void __exit mlx4_ib_cleanup(void) { mlx4_unregister_interface(&mlx4_ib_interface); mlx4_ib_mcg_destroy(); destroy_workqueue(wq); } -module_init_order(mlx4_ib_init, SI_ORDER_THIRD); -module_exit(mlx4_ib_cleanup); +module_init_order(mlx4_ib_init, SI_ORDER_SEVENTH); +module_exit_order(mlx4_ib_cleanup, SI_ORDER_SEVENTH); static int mlx4ib_evhand(module_t mod, int event, void *arg) { return (0); } static moduledata_t mlx4ib_mod = { .name = "mlx4ib", .evhand = mlx4ib_evhand, }; DECLARE_MODULE(mlx4ib, mlx4ib_mod, SI_SUB_LAST, SI_ORDER_ANY); MODULE_DEPEND(mlx4ib, mlx4, 1, 1, 1); MODULE_DEPEND(mlx4ib, ibcore, 1, 1, 1); MODULE_DEPEND(mlx4ib, linuxkpi, 1, 1, 1); Index: stable/11/sys/dev/mlx5/mlx5_core/mlx5_main.c =================================================================== --- stable/11/sys/dev/mlx5/mlx5_core/mlx5_main.c (revision 363150) +++ stable/11/sys/dev/mlx5/mlx5_core/mlx5_main.c (revision 363151) @@ -1,2011 +1,2011 @@ /*- * Copyright (c) 2013-2019, Mellanox Technologies, Ltd. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS `AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mlx5_core.h" #include "eswitch.h" #include "fs_core.h" #ifdef PCI_IOV #include #include #include #endif static const char mlx5_version[] = "Mellanox Core driver " DRIVER_VERSION " (" DRIVER_RELDATE ")"; MODULE_AUTHOR("Eli Cohen "); MODULE_DESCRIPTION("Mellanox Connect-IB, ConnectX-4 core driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DEPEND(mlx5, linuxkpi, 1, 1, 1); MODULE_DEPEND(mlx5, mlxfw, 1, 1, 1); MODULE_DEPEND(mlx5, firmware, 1, 1, 1); MODULE_VERSION(mlx5, 1); SYSCTL_NODE(_hw, OID_AUTO, mlx5, CTLFLAG_RW, 0, "mlx5 hardware controls"); int mlx5_core_debug_mask; SYSCTL_INT(_hw_mlx5, OID_AUTO, debug_mask, CTLFLAG_RWTUN, &mlx5_core_debug_mask, 0, "debug mask: 1 = dump cmd data, 2 = dump cmd exec time, 3 = both. Default=0"); #define MLX5_DEFAULT_PROF 2 static int mlx5_prof_sel = MLX5_DEFAULT_PROF; SYSCTL_INT(_hw_mlx5, OID_AUTO, prof_sel, CTLFLAG_RWTUN, &mlx5_prof_sel, 0, "profile selector. Valid range 0 - 2"); static int mlx5_fast_unload_enabled = 1; SYSCTL_INT(_hw_mlx5, OID_AUTO, fast_unload_enabled, CTLFLAG_RWTUN, &mlx5_fast_unload_enabled, 0, "Set to enable fast unload. Clear to disable."); #define NUMA_NO_NODE -1 static LIST_HEAD(intf_list); static LIST_HEAD(dev_list); static DEFINE_MUTEX(intf_mutex); struct mlx5_device_context { struct list_head list; struct mlx5_interface *intf; void *context; }; enum { MLX5_ATOMIC_REQ_MODE_BE = 0x0, MLX5_ATOMIC_REQ_MODE_HOST_ENDIANNESS = 0x1, }; static struct mlx5_profile profiles[] = { [0] = { .mask = 0, }, [1] = { .mask = MLX5_PROF_MASK_QP_SIZE, .log_max_qp = 12, }, [2] = { .mask = MLX5_PROF_MASK_QP_SIZE | MLX5_PROF_MASK_MR_CACHE, .log_max_qp = 17, .mr_cache[0] = { .size = 500, .limit = 250 }, .mr_cache[1] = { .size = 500, .limit = 250 }, .mr_cache[2] = { .size = 500, .limit = 250 }, .mr_cache[3] = { .size = 500, .limit = 250 }, .mr_cache[4] = { .size = 500, .limit = 250 }, .mr_cache[5] = { .size = 500, .limit = 250 }, .mr_cache[6] = { .size = 500, .limit = 250 }, .mr_cache[7] = { .size = 500, .limit = 250 }, .mr_cache[8] = { .size = 500, .limit = 250 }, .mr_cache[9] = { .size = 500, .limit = 250 }, .mr_cache[10] = { .size = 500, .limit = 250 }, .mr_cache[11] = { .size = 500, .limit = 250 }, .mr_cache[12] = { .size = 64, .limit = 32 }, .mr_cache[13] = { .size = 32, .limit = 16 }, .mr_cache[14] = { .size = 16, .limit = 8 }, }, [3] = { .mask = MLX5_PROF_MASK_QP_SIZE, .log_max_qp = 17, }, }; #ifdef PCI_IOV static const char iov_mac_addr_name[] = "mac-addr"; #endif static int set_dma_caps(struct pci_dev *pdev) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); int err; err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { mlx5_core_warn(dev, "couldn't set 64-bit PCI DMA mask\n"); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { mlx5_core_err(dev, "Can't set PCI DMA mask, aborting\n"); return err; } } err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { mlx5_core_warn(dev, "couldn't set 64-bit consistent PCI DMA mask\n"); err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { mlx5_core_err(dev, "Can't set consistent PCI DMA mask, aborting\n"); return err; } } dma_set_max_seg_size(&pdev->dev, 2u * 1024 * 1024 * 1024); return err; } int mlx5_pci_read_power_status(struct mlx5_core_dev *dev, u16 *p_power, u8 *p_status) { u32 in[MLX5_ST_SZ_DW(mpein_reg)] = {}; u32 out[MLX5_ST_SZ_DW(mpein_reg)] = {}; int err; err = mlx5_core_access_reg(dev, in, sizeof(in), out, sizeof(out), MLX5_ACCESS_REG_SUMMARY_CTRL_ID_MPEIN, 0, 0); *p_status = MLX5_GET(mpein_reg, out, pwr_status); *p_power = MLX5_GET(mpein_reg, out, pci_power); return err; } static int mlx5_pci_enable_device(struct mlx5_core_dev *dev) { struct pci_dev *pdev = dev->pdev; int err = 0; mutex_lock(&dev->pci_status_mutex); if (dev->pci_status == MLX5_PCI_STATUS_DISABLED) { err = pci_enable_device(pdev); if (!err) dev->pci_status = MLX5_PCI_STATUS_ENABLED; } mutex_unlock(&dev->pci_status_mutex); return err; } static void mlx5_pci_disable_device(struct mlx5_core_dev *dev) { struct pci_dev *pdev = dev->pdev; mutex_lock(&dev->pci_status_mutex); if (dev->pci_status == MLX5_PCI_STATUS_ENABLED) { pci_disable_device(pdev); dev->pci_status = MLX5_PCI_STATUS_DISABLED; } mutex_unlock(&dev->pci_status_mutex); } static int request_bar(struct pci_dev *pdev) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); int err = 0; if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { mlx5_core_err(dev, "Missing registers BAR, aborting\n"); return -ENODEV; } err = pci_request_regions(pdev, DRIVER_NAME); if (err) mlx5_core_err(dev, "Couldn't get PCI resources, aborting\n"); return err; } static void release_bar(struct pci_dev *pdev) { pci_release_regions(pdev); } static int mlx5_enable_msix(struct mlx5_core_dev *dev) { struct mlx5_priv *priv = &dev->priv; struct mlx5_eq_table *table = &priv->eq_table; int num_eqs = 1 << MLX5_CAP_GEN(dev, log_max_eq); int limit = dev->msix_eqvec; int nvec = MLX5_EQ_VEC_COMP_BASE; int i; if (limit > 0) nvec += limit; else nvec += MLX5_CAP_GEN(dev, num_ports) * num_online_cpus(); if (nvec > num_eqs) nvec = num_eqs; if (nvec > 256) nvec = 256; /* limit of firmware API */ if (nvec <= MLX5_EQ_VEC_COMP_BASE) return -ENOMEM; priv->msix_arr = kzalloc(nvec * sizeof(*priv->msix_arr), GFP_KERNEL); for (i = 0; i < nvec; i++) priv->msix_arr[i].entry = i; nvec = pci_enable_msix_range(dev->pdev, priv->msix_arr, MLX5_EQ_VEC_COMP_BASE + 1, nvec); if (nvec < 0) return nvec; table->num_comp_vectors = nvec - MLX5_EQ_VEC_COMP_BASE; return 0; } static void mlx5_disable_msix(struct mlx5_core_dev *dev) { struct mlx5_priv *priv = &dev->priv; pci_disable_msix(dev->pdev); kfree(priv->msix_arr); } struct mlx5_reg_host_endianess { u8 he; u8 rsvd[15]; }; #define CAP_MASK(pos, size) ((u64)((1 << (size)) - 1) << (pos)) enum { MLX5_CAP_BITS_RW_MASK = CAP_MASK(MLX5_CAP_OFF_CMDIF_CSUM, 2) | MLX5_DEV_CAP_FLAG_DCT | MLX5_DEV_CAP_FLAG_DRAIN_SIGERR, }; static u16 to_fw_pkey_sz(struct mlx5_core_dev *dev, u32 size) { switch (size) { case 128: return 0; case 256: return 1; case 512: return 2; case 1024: return 3; case 2048: return 4; case 4096: return 5; default: mlx5_core_warn(dev, "invalid pkey table size %d\n", size); return 0; } } static int mlx5_core_get_caps_mode(struct mlx5_core_dev *dev, enum mlx5_cap_type cap_type, enum mlx5_cap_mode cap_mode) { u8 in[MLX5_ST_SZ_BYTES(query_hca_cap_in)]; int out_sz = MLX5_ST_SZ_BYTES(query_hca_cap_out); void *out, *hca_caps; u16 opmod = (cap_type << 1) | (cap_mode & 0x01); int err; memset(in, 0, sizeof(in)); out = kzalloc(out_sz, GFP_KERNEL); MLX5_SET(query_hca_cap_in, in, opcode, MLX5_CMD_OP_QUERY_HCA_CAP); MLX5_SET(query_hca_cap_in, in, op_mod, opmod); err = mlx5_cmd_exec(dev, in, sizeof(in), out, out_sz); if (err) { mlx5_core_warn(dev, "QUERY_HCA_CAP : type(%x) opmode(%x) Failed(%d)\n", cap_type, cap_mode, err); goto query_ex; } hca_caps = MLX5_ADDR_OF(query_hca_cap_out, out, capability); switch (cap_mode) { case HCA_CAP_OPMOD_GET_MAX: memcpy(dev->hca_caps_max[cap_type], hca_caps, MLX5_UN_SZ_BYTES(hca_cap_union)); break; case HCA_CAP_OPMOD_GET_CUR: memcpy(dev->hca_caps_cur[cap_type], hca_caps, MLX5_UN_SZ_BYTES(hca_cap_union)); break; default: mlx5_core_warn(dev, "Tried to query dev cap type(%x) with wrong opmode(%x)\n", cap_type, cap_mode); err = -EINVAL; break; } query_ex: kfree(out); return err; } int mlx5_core_get_caps(struct mlx5_core_dev *dev, enum mlx5_cap_type cap_type) { int ret; ret = mlx5_core_get_caps_mode(dev, cap_type, HCA_CAP_OPMOD_GET_CUR); if (ret) return ret; return mlx5_core_get_caps_mode(dev, cap_type, HCA_CAP_OPMOD_GET_MAX); } static int set_caps(struct mlx5_core_dev *dev, void *in, int in_sz) { u32 out[MLX5_ST_SZ_DW(set_hca_cap_out)] = {0}; MLX5_SET(set_hca_cap_in, in, opcode, MLX5_CMD_OP_SET_HCA_CAP); return mlx5_cmd_exec(dev, in, in_sz, out, sizeof(out)); } static int handle_hca_cap(struct mlx5_core_dev *dev) { void *set_ctx = NULL; struct mlx5_profile *prof = dev->profile; int err = -ENOMEM; int set_sz = MLX5_ST_SZ_BYTES(set_hca_cap_in); void *set_hca_cap; set_ctx = kzalloc(set_sz, GFP_KERNEL); err = mlx5_core_get_caps(dev, MLX5_CAP_GENERAL); if (err) goto query_ex; set_hca_cap = MLX5_ADDR_OF(set_hca_cap_in, set_ctx, capability); memcpy(set_hca_cap, dev->hca_caps_cur[MLX5_CAP_GENERAL], MLX5_ST_SZ_BYTES(cmd_hca_cap)); mlx5_core_dbg(dev, "Current Pkey table size %d Setting new size %d\n", mlx5_to_sw_pkey_sz(MLX5_CAP_GEN(dev, pkey_table_size)), 128); /* we limit the size of the pkey table to 128 entries for now */ MLX5_SET(cmd_hca_cap, set_hca_cap, pkey_table_size, to_fw_pkey_sz(dev, 128)); if (prof->mask & MLX5_PROF_MASK_QP_SIZE) MLX5_SET(cmd_hca_cap, set_hca_cap, log_max_qp, prof->log_max_qp); /* disable cmdif checksum */ MLX5_SET(cmd_hca_cap, set_hca_cap, cmdif_checksum, 0); /* enable drain sigerr */ MLX5_SET(cmd_hca_cap, set_hca_cap, drain_sigerr, 1); MLX5_SET(cmd_hca_cap, set_hca_cap, log_uar_page_sz, PAGE_SHIFT - 12); err = set_caps(dev, set_ctx, set_sz); query_ex: kfree(set_ctx); return err; } static int handle_hca_cap_atomic(struct mlx5_core_dev *dev) { void *set_ctx; void *set_hca_cap; int set_sz = MLX5_ST_SZ_BYTES(set_hca_cap_in); int req_endianness; int err; if (MLX5_CAP_GEN(dev, atomic)) { err = mlx5_core_get_caps(dev, MLX5_CAP_ATOMIC); if (err) return err; } else { return 0; } req_endianness = MLX5_CAP_ATOMIC(dev, supported_atomic_req_8B_endianess_mode_1); if (req_endianness != MLX5_ATOMIC_REQ_MODE_HOST_ENDIANNESS) return 0; set_ctx = kzalloc(set_sz, GFP_KERNEL); if (!set_ctx) return -ENOMEM; MLX5_SET(set_hca_cap_in, set_ctx, op_mod, MLX5_SET_HCA_CAP_OP_MOD_ATOMIC << 1); set_hca_cap = MLX5_ADDR_OF(set_hca_cap_in, set_ctx, capability); /* Set requestor to host endianness */ MLX5_SET(atomic_caps, set_hca_cap, atomic_req_8B_endianess_mode, MLX5_ATOMIC_REQ_MODE_HOST_ENDIANNESS); err = set_caps(dev, set_ctx, set_sz); kfree(set_ctx); return err; } static int set_hca_ctrl(struct mlx5_core_dev *dev) { struct mlx5_reg_host_endianess he_in; struct mlx5_reg_host_endianess he_out; int err; if (MLX5_CAP_GEN(dev, port_type) == MLX5_CAP_PORT_TYPE_ETH && !MLX5_CAP_GEN(dev, roce)) return 0; memset(&he_in, 0, sizeof(he_in)); he_in.he = MLX5_SET_HOST_ENDIANNESS; err = mlx5_core_access_reg(dev, &he_in, sizeof(he_in), &he_out, sizeof(he_out), MLX5_REG_HOST_ENDIANNESS, 0, 1); return err; } static int mlx5_core_enable_hca(struct mlx5_core_dev *dev, u16 func_id) { u32 out[MLX5_ST_SZ_DW(enable_hca_out)] = {0}; u32 in[MLX5_ST_SZ_DW(enable_hca_in)] = {0}; MLX5_SET(enable_hca_in, in, opcode, MLX5_CMD_OP_ENABLE_HCA); MLX5_SET(enable_hca_in, in, function_id, func_id); return mlx5_cmd_exec(dev, &in, sizeof(in), &out, sizeof(out)); } static int mlx5_core_disable_hca(struct mlx5_core_dev *dev) { u32 out[MLX5_ST_SZ_DW(disable_hca_out)] = {0}; u32 in[MLX5_ST_SZ_DW(disable_hca_in)] = {0}; MLX5_SET(disable_hca_in, in, opcode, MLX5_CMD_OP_DISABLE_HCA); return mlx5_cmd_exec(dev, in, sizeof(in), out, sizeof(out)); } static int mlx5_core_set_issi(struct mlx5_core_dev *dev) { u32 query_in[MLX5_ST_SZ_DW(query_issi_in)] = {0}; u32 query_out[MLX5_ST_SZ_DW(query_issi_out)] = {0}; u32 sup_issi; int err; MLX5_SET(query_issi_in, query_in, opcode, MLX5_CMD_OP_QUERY_ISSI); err = mlx5_cmd_exec(dev, query_in, sizeof(query_in), query_out, sizeof(query_out)); if (err) { u32 syndrome; u8 status; mlx5_cmd_mbox_status(query_out, &status, &syndrome); if (status == MLX5_CMD_STAT_BAD_OP_ERR) { mlx5_core_dbg(dev, "Only ISSI 0 is supported\n"); return 0; } mlx5_core_err(dev, "failed to query ISSI\n"); return err; } sup_issi = MLX5_GET(query_issi_out, query_out, supported_issi_dw0); if (sup_issi & (1 << 1)) { u32 set_in[MLX5_ST_SZ_DW(set_issi_in)] = {0}; u32 set_out[MLX5_ST_SZ_DW(set_issi_out)] = {0}; MLX5_SET(set_issi_in, set_in, opcode, MLX5_CMD_OP_SET_ISSI); MLX5_SET(set_issi_in, set_in, current_issi, 1); err = mlx5_cmd_exec(dev, set_in, sizeof(set_in), set_out, sizeof(set_out)); if (err) { mlx5_core_err(dev, "failed to set ISSI=1 err(%d)\n", err); return err; } dev->issi = 1; return 0; } else if (sup_issi & (1 << 0)) { return 0; } return -ENOTSUPP; } int mlx5_vector2eqn(struct mlx5_core_dev *dev, int vector, int *eqn, int *irqn) { struct mlx5_eq_table *table = &dev->priv.eq_table; struct mlx5_eq *eq; int err = -ENOENT; spin_lock(&table->lock); list_for_each_entry(eq, &table->comp_eqs_list, list) { if (eq->index == vector) { *eqn = eq->eqn; *irqn = eq->irqn; err = 0; break; } } spin_unlock(&table->lock); return err; } EXPORT_SYMBOL(mlx5_vector2eqn); static void free_comp_eqs(struct mlx5_core_dev *dev) { struct mlx5_eq_table *table = &dev->priv.eq_table; struct mlx5_eq *eq, *n; spin_lock(&table->lock); list_for_each_entry_safe(eq, n, &table->comp_eqs_list, list) { list_del(&eq->list); spin_unlock(&table->lock); if (mlx5_destroy_unmap_eq(dev, eq)) mlx5_core_warn(dev, "failed to destroy EQ 0x%x\n", eq->eqn); kfree(eq); spin_lock(&table->lock); } spin_unlock(&table->lock); } static int alloc_comp_eqs(struct mlx5_core_dev *dev) { struct mlx5_eq_table *table = &dev->priv.eq_table; struct mlx5_eq *eq; int ncomp_vec; int nent; int err; int i; INIT_LIST_HEAD(&table->comp_eqs_list); ncomp_vec = table->num_comp_vectors; nent = MLX5_COMP_EQ_SIZE; for (i = 0; i < ncomp_vec; i++) { eq = kzalloc(sizeof(*eq), GFP_KERNEL); err = mlx5_create_map_eq(dev, eq, i + MLX5_EQ_VEC_COMP_BASE, nent, 0, &dev->priv.uuari.uars[0]); if (err) { kfree(eq); goto clean; } mlx5_core_dbg(dev, "allocated completion EQN %d\n", eq->eqn); eq->index = i; spin_lock(&table->lock); list_add_tail(&eq->list, &table->comp_eqs_list); spin_unlock(&table->lock); } return 0; clean: free_comp_eqs(dev); return err; } static int map_bf_area(struct mlx5_core_dev *dev) { resource_size_t bf_start = pci_resource_start(dev->pdev, 0); resource_size_t bf_len = pci_resource_len(dev->pdev, 0); dev->priv.bf_mapping = io_mapping_create_wc(bf_start, bf_len); return dev->priv.bf_mapping ? 0 : -ENOMEM; } static void unmap_bf_area(struct mlx5_core_dev *dev) { if (dev->priv.bf_mapping) io_mapping_free(dev->priv.bf_mapping); } static inline int fw_initializing(struct mlx5_core_dev *dev) { return ioread32be(&dev->iseg->initializing) >> 31; } static int wait_fw_init(struct mlx5_core_dev *dev, u32 max_wait_mili, u32 warn_time_mili) { int warn = jiffies + msecs_to_jiffies(warn_time_mili); int end = jiffies + msecs_to_jiffies(max_wait_mili); int err = 0; MPASS(max_wait_mili > warn_time_mili); while (fw_initializing(dev) == 1) { if (time_after(jiffies, end)) { err = -EBUSY; break; } if (warn_time_mili && time_after(jiffies, warn)) { mlx5_core_warn(dev, "Waiting for FW initialization, timeout abort in %u s\n", (unsigned int)(jiffies_to_msecs(end - warn) / 1000)); warn = jiffies + msecs_to_jiffies(warn_time_mili); } msleep(FW_INIT_WAIT_MS); } if (err != 0) mlx5_core_dbg(dev, "Full initializing bit dword = 0x%x\n", ioread32be(&dev->iseg->initializing)); return err; } static void mlx5_add_device(struct mlx5_interface *intf, struct mlx5_priv *priv) { struct mlx5_device_context *dev_ctx; struct mlx5_core_dev *dev = container_of(priv, struct mlx5_core_dev, priv); dev_ctx = kzalloc(sizeof(*dev_ctx), GFP_KERNEL); if (!dev_ctx) return; dev_ctx->intf = intf; CURVNET_SET_QUIET(vnet0); dev_ctx->context = intf->add(dev); CURVNET_RESTORE(); if (dev_ctx->context) { spin_lock_irq(&priv->ctx_lock); list_add_tail(&dev_ctx->list, &priv->ctx_list); spin_unlock_irq(&priv->ctx_lock); } else { kfree(dev_ctx); } } static void mlx5_remove_device(struct mlx5_interface *intf, struct mlx5_priv *priv) { struct mlx5_device_context *dev_ctx; struct mlx5_core_dev *dev = container_of(priv, struct mlx5_core_dev, priv); list_for_each_entry(dev_ctx, &priv->ctx_list, list) if (dev_ctx->intf == intf) { spin_lock_irq(&priv->ctx_lock); list_del(&dev_ctx->list); spin_unlock_irq(&priv->ctx_lock); intf->remove(dev, dev_ctx->context); kfree(dev_ctx); return; } } int mlx5_register_device(struct mlx5_core_dev *dev) { struct mlx5_priv *priv = &dev->priv; struct mlx5_interface *intf; mutex_lock(&intf_mutex); list_add_tail(&priv->dev_list, &dev_list); list_for_each_entry(intf, &intf_list, list) mlx5_add_device(intf, priv); mutex_unlock(&intf_mutex); return 0; } void mlx5_unregister_device(struct mlx5_core_dev *dev) { struct mlx5_priv *priv = &dev->priv; struct mlx5_interface *intf; mutex_lock(&intf_mutex); list_for_each_entry(intf, &intf_list, list) mlx5_remove_device(intf, priv); list_del(&priv->dev_list); mutex_unlock(&intf_mutex); } int mlx5_register_interface(struct mlx5_interface *intf) { struct mlx5_priv *priv; if (!intf->add || !intf->remove) return -EINVAL; mutex_lock(&intf_mutex); list_add_tail(&intf->list, &intf_list); list_for_each_entry(priv, &dev_list, dev_list) mlx5_add_device(intf, priv); mutex_unlock(&intf_mutex); return 0; } EXPORT_SYMBOL(mlx5_register_interface); void mlx5_unregister_interface(struct mlx5_interface *intf) { struct mlx5_priv *priv; mutex_lock(&intf_mutex); list_for_each_entry(priv, &dev_list, dev_list) mlx5_remove_device(intf, priv); list_del(&intf->list); mutex_unlock(&intf_mutex); } EXPORT_SYMBOL(mlx5_unregister_interface); void *mlx5_get_protocol_dev(struct mlx5_core_dev *mdev, int protocol) { struct mlx5_priv *priv = &mdev->priv; struct mlx5_device_context *dev_ctx; unsigned long flags; void *result = NULL; spin_lock_irqsave(&priv->ctx_lock, flags); list_for_each_entry(dev_ctx, &mdev->priv.ctx_list, list) if ((dev_ctx->intf->protocol == protocol) && dev_ctx->intf->get_dev) { result = dev_ctx->intf->get_dev(dev_ctx->context); break; } spin_unlock_irqrestore(&priv->ctx_lock, flags); return result; } EXPORT_SYMBOL(mlx5_get_protocol_dev); static int mlx5_auto_fw_update; SYSCTL_INT(_hw_mlx5, OID_AUTO, auto_fw_update, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &mlx5_auto_fw_update, 0, "Allow automatic firmware update on driver start"); static int mlx5_firmware_update(struct mlx5_core_dev *dev) { const struct firmware *fw; int err; TUNABLE_INT_FETCH("hw.mlx5.auto_fw_update", &mlx5_auto_fw_update); if (!mlx5_auto_fw_update) return (0); fw = firmware_get("mlx5fw_mfa"); if (fw) { err = mlx5_firmware_flash(dev, fw); firmware_put(fw, FIRMWARE_UNLOAD); } else return (-ENOENT); return err; } static int mlx5_pci_init(struct mlx5_core_dev *dev, struct mlx5_priv *priv) { struct pci_dev *pdev = dev->pdev; device_t bsddev; int err; pdev = dev->pdev; bsddev = pdev->dev.bsddev; pci_set_drvdata(dev->pdev, dev); strncpy(priv->name, dev_name(&pdev->dev), MLX5_MAX_NAME_LEN); priv->name[MLX5_MAX_NAME_LEN - 1] = 0; mutex_init(&priv->pgdir_mutex); INIT_LIST_HEAD(&priv->pgdir_list); spin_lock_init(&priv->mkey_lock); priv->numa_node = NUMA_NO_NODE; err = mlx5_pci_enable_device(dev); if (err) { mlx5_core_err(dev, "Cannot enable PCI device, aborting\n"); goto err_dbg; } err = request_bar(pdev); if (err) { mlx5_core_err(dev, "error requesting BARs, aborting\n"); goto err_disable; } pci_set_master(pdev); err = set_dma_caps(pdev); if (err) { mlx5_core_err(dev, "Failed setting DMA capabilities mask, aborting\n"); goto err_clr_master; } dev->iseg_base = pci_resource_start(dev->pdev, 0); dev->iseg = ioremap(dev->iseg_base, sizeof(*dev->iseg)); if (!dev->iseg) { err = -ENOMEM; mlx5_core_err(dev, "Failed mapping initialization segment, aborting\n"); goto err_clr_master; } return 0; err_clr_master: release_bar(dev->pdev); err_disable: mlx5_pci_disable_device(dev); err_dbg: return err; } static void mlx5_pci_close(struct mlx5_core_dev *dev, struct mlx5_priv *priv) { #ifdef PCI_IOV if (MLX5_CAP_GEN(dev, eswitch_flow_table)) pci_iov_detach(dev->pdev->dev.bsddev); #endif iounmap(dev->iseg); release_bar(dev->pdev); mlx5_pci_disable_device(dev); } static int mlx5_init_once(struct mlx5_core_dev *dev, struct mlx5_priv *priv) { int err; err = mlx5_vsc_find_cap(dev); if (err) mlx5_core_err(dev, "Unable to find vendor specific capabilities\n"); err = mlx5_query_hca_caps(dev); if (err) { mlx5_core_err(dev, "query hca failed\n"); goto out; } err = mlx5_query_board_id(dev); if (err) { mlx5_core_err(dev, "query board id failed\n"); goto out; } err = mlx5_eq_init(dev); if (err) { mlx5_core_err(dev, "failed to initialize eq\n"); goto out; } MLX5_INIT_DOORBELL_LOCK(&priv->cq_uar_lock); err = mlx5_init_cq_table(dev); if (err) { mlx5_core_err(dev, "failed to initialize cq table\n"); goto err_eq_cleanup; } mlx5_init_qp_table(dev); mlx5_init_srq_table(dev); mlx5_init_mr_table(dev); mlx5_init_reserved_gids(dev); mlx5_fpga_init(dev); return 0; err_eq_cleanup: mlx5_eq_cleanup(dev); out: return err; } static void mlx5_cleanup_once(struct mlx5_core_dev *dev) { mlx5_fpga_cleanup(dev); mlx5_cleanup_reserved_gids(dev); mlx5_cleanup_mr_table(dev); mlx5_cleanup_srq_table(dev); mlx5_cleanup_qp_table(dev); mlx5_cleanup_cq_table(dev); mlx5_eq_cleanup(dev); } static int mlx5_load_one(struct mlx5_core_dev *dev, struct mlx5_priv *priv, bool boot) { int err; mutex_lock(&dev->intf_state_mutex); if (test_bit(MLX5_INTERFACE_STATE_UP, &dev->intf_state)) { mlx5_core_warn(dev, "interface is up, NOP\n"); goto out; } mlx5_core_dbg(dev, "firmware version: %d.%d.%d\n", fw_rev_maj(dev), fw_rev_min(dev), fw_rev_sub(dev)); /* * On load removing any previous indication of internal error, * device is up */ dev->state = MLX5_DEVICE_STATE_UP; /* wait for firmware to accept initialization segments configurations */ err = wait_fw_init(dev, FW_PRE_INIT_TIMEOUT_MILI, FW_INIT_WARN_MESSAGE_INTERVAL); if (err) { dev_err(&dev->pdev->dev, "Firmware over %d MS in pre-initializing state, aborting\n", FW_PRE_INIT_TIMEOUT_MILI); goto out_err; } err = mlx5_cmd_init(dev); if (err) { mlx5_core_err(dev, "Failed initializing command interface, aborting\n"); goto out_err; } err = wait_fw_init(dev, FW_INIT_TIMEOUT_MILI, 0); if (err) { mlx5_core_err(dev, "Firmware over %d MS in initializing state, aborting\n", FW_INIT_TIMEOUT_MILI); goto err_cmd_cleanup; } err = mlx5_core_enable_hca(dev, 0); if (err) { mlx5_core_err(dev, "enable hca failed\n"); goto err_cmd_cleanup; } err = mlx5_core_set_issi(dev); if (err) { mlx5_core_err(dev, "failed to set issi\n"); goto err_disable_hca; } err = mlx5_pagealloc_start(dev); if (err) { mlx5_core_err(dev, "mlx5_pagealloc_start failed\n"); goto err_disable_hca; } err = mlx5_satisfy_startup_pages(dev, 1); if (err) { mlx5_core_err(dev, "failed to allocate boot pages\n"); goto err_pagealloc_stop; } err = set_hca_ctrl(dev); if (err) { mlx5_core_err(dev, "set_hca_ctrl failed\n"); goto reclaim_boot_pages; } err = handle_hca_cap(dev); if (err) { mlx5_core_err(dev, "handle_hca_cap failed\n"); goto reclaim_boot_pages; } err = handle_hca_cap_atomic(dev); if (err) { mlx5_core_err(dev, "handle_hca_cap_atomic failed\n"); goto reclaim_boot_pages; } err = mlx5_satisfy_startup_pages(dev, 0); if (err) { mlx5_core_err(dev, "failed to allocate init pages\n"); goto reclaim_boot_pages; } err = mlx5_cmd_init_hca(dev); if (err) { mlx5_core_err(dev, "init hca failed\n"); goto reclaim_boot_pages; } mlx5_start_health_poll(dev); if (boot && mlx5_init_once(dev, priv)) { mlx5_core_err(dev, "sw objs init failed\n"); goto err_stop_poll; } err = mlx5_enable_msix(dev); if (err) { mlx5_core_err(dev, "enable msix failed\n"); goto err_cleanup_once; } err = mlx5_alloc_uuars(dev, &priv->uuari); if (err) { mlx5_core_err(dev, "Failed allocating uar, aborting\n"); goto err_disable_msix; } err = mlx5_start_eqs(dev); if (err) { mlx5_core_err(dev, "Failed to start pages and async EQs\n"); goto err_free_uar; } err = alloc_comp_eqs(dev); if (err) { mlx5_core_err(dev, "Failed to alloc completion EQs\n"); goto err_stop_eqs; } if (map_bf_area(dev)) mlx5_core_err(dev, "Failed to map blue flame area\n"); err = mlx5_init_fs(dev); if (err) { mlx5_core_err(dev, "flow steering init %d\n", err); goto err_free_comp_eqs; } err = mlx5_mpfs_init(dev); if (err) { mlx5_core_err(dev, "mpfs init failed %d\n", err); goto err_fs; } err = mlx5_fpga_device_start(dev); if (err) { mlx5_core_err(dev, "fpga device start failed %d\n", err); goto err_mpfs; } err = mlx5_register_device(dev); if (err) { mlx5_core_err(dev, "mlx5_register_device failed %d\n", err); goto err_fpga; } set_bit(MLX5_INTERFACE_STATE_UP, &dev->intf_state); out: mutex_unlock(&dev->intf_state_mutex); return 0; err_fpga: mlx5_fpga_device_stop(dev); err_mpfs: mlx5_mpfs_destroy(dev); err_fs: mlx5_cleanup_fs(dev); err_free_comp_eqs: free_comp_eqs(dev); unmap_bf_area(dev); err_stop_eqs: mlx5_stop_eqs(dev); err_free_uar: mlx5_free_uuars(dev, &priv->uuari); err_disable_msix: mlx5_disable_msix(dev); err_cleanup_once: if (boot) mlx5_cleanup_once(dev); err_stop_poll: mlx5_stop_health_poll(dev, boot); if (mlx5_cmd_teardown_hca(dev)) { mlx5_core_err(dev, "tear_down_hca failed, skip cleanup\n"); goto out_err; } reclaim_boot_pages: mlx5_reclaim_startup_pages(dev); err_pagealloc_stop: mlx5_pagealloc_stop(dev); err_disable_hca: mlx5_core_disable_hca(dev); err_cmd_cleanup: mlx5_cmd_cleanup(dev); out_err: dev->state = MLX5_DEVICE_STATE_INTERNAL_ERROR; mutex_unlock(&dev->intf_state_mutex); return err; } static int mlx5_unload_one(struct mlx5_core_dev *dev, struct mlx5_priv *priv, bool cleanup) { int err = 0; if (cleanup) mlx5_drain_health_recovery(dev); mutex_lock(&dev->intf_state_mutex); if (!test_bit(MLX5_INTERFACE_STATE_UP, &dev->intf_state)) { mlx5_core_warn(dev, "%s: interface is down, NOP\n", __func__); if (cleanup) mlx5_cleanup_once(dev); goto out; } mlx5_unregister_device(dev); mlx5_eswitch_cleanup(dev->priv.eswitch); mlx5_fpga_device_stop(dev); mlx5_mpfs_destroy(dev); mlx5_cleanup_fs(dev); unmap_bf_area(dev); mlx5_wait_for_reclaim_vfs_pages(dev); free_comp_eqs(dev); mlx5_stop_eqs(dev); mlx5_free_uuars(dev, &priv->uuari); mlx5_disable_msix(dev); if (cleanup) mlx5_cleanup_once(dev); mlx5_stop_health_poll(dev, cleanup); err = mlx5_cmd_teardown_hca(dev); if (err) { mlx5_core_err(dev, "tear_down_hca failed, skip cleanup\n"); goto out; } mlx5_pagealloc_stop(dev); mlx5_reclaim_startup_pages(dev); mlx5_core_disable_hca(dev); mlx5_cmd_cleanup(dev); out: clear_bit(MLX5_INTERFACE_STATE_UP, &dev->intf_state); mutex_unlock(&dev->intf_state_mutex); return err; } void mlx5_core_event(struct mlx5_core_dev *dev, enum mlx5_dev_event event, unsigned long param) { struct mlx5_priv *priv = &dev->priv; struct mlx5_device_context *dev_ctx; unsigned long flags; spin_lock_irqsave(&priv->ctx_lock, flags); list_for_each_entry(dev_ctx, &priv->ctx_list, list) if (dev_ctx->intf->event) dev_ctx->intf->event(dev, dev_ctx->context, event, param); spin_unlock_irqrestore(&priv->ctx_lock, flags); } struct mlx5_core_event_handler { void (*event)(struct mlx5_core_dev *dev, enum mlx5_dev_event event, void *data); }; #define MLX5_STATS_DESC(a, b, c, d, e, ...) d, e, #define MLX5_PORT_MODULE_ERROR_STATS(m) \ m(+1, u64, power_budget_exceeded, "power_budget", "Module Power Budget Exceeded") \ m(+1, u64, long_range, "long_range", "Module Long Range for non MLNX cable/module") \ m(+1, u64, bus_stuck, "bus_stuck", "Module Bus stuck(I2C or data shorted)") \ m(+1, u64, no_eeprom, "no_eeprom", "No EEPROM/retry timeout") \ m(+1, u64, enforce_part_number, "enforce_part_number", "Module Enforce part number list") \ m(+1, u64, unknown_id, "unknown_id", "Module Unknown identifier") \ m(+1, u64, high_temp, "high_temp", "Module High Temperature") \ m(+1, u64, cable_shorted, "cable_shorted", "Module Cable is shorted") \ m(+1, u64, pmd_type_not_enabled, "pmd_type_not_enabled", "PMD type is not enabled") \ m(+1, u64, laster_tec_failure, "laster_tec_failure", "Laster TEC failure") \ m(+1, u64, high_current, "high_current", "High current") \ m(+1, u64, high_voltage, "high_voltage", "High voltage") \ m(+1, u64, pcie_sys_power_slot_exceeded, "pcie_sys_power_slot_exceeded", "PCIe system power slot Exceeded") \ m(+1, u64, high_power, "high_power", "High power") \ m(+1, u64, module_state_machine_fault, "module_state_machine_fault", "Module State Machine fault") static const char *mlx5_pme_err_desc[] = { MLX5_PORT_MODULE_ERROR_STATS(MLX5_STATS_DESC) }; static int init_one(struct pci_dev *pdev, const struct pci_device_id *id) { struct mlx5_core_dev *dev; struct mlx5_priv *priv; device_t bsddev = pdev->dev.bsddev; #ifdef PCI_IOV nvlist_t *pf_schema, *vf_schema; int num_vfs, sriov_pos; #endif int i,err; struct sysctl_oid *pme_sysctl_node; struct sysctl_oid *pme_err_sysctl_node; struct sysctl_oid *cap_sysctl_node; struct sysctl_oid *current_cap_sysctl_node; struct sysctl_oid *max_cap_sysctl_node; dev = kzalloc(sizeof(*dev), GFP_KERNEL); priv = &dev->priv; if (id) priv->pci_dev_data = id->driver_data; if (mlx5_prof_sel < 0 || mlx5_prof_sel >= ARRAY_SIZE(profiles)) { device_printf(bsddev, "WARN: selected profile out of range, selecting default (%d)\n", MLX5_DEFAULT_PROF); mlx5_prof_sel = MLX5_DEFAULT_PROF; } dev->profile = &profiles[mlx5_prof_sel]; dev->pdev = pdev; dev->event = mlx5_core_event; /* Set desc */ device_set_desc(bsddev, mlx5_version); sysctl_ctx_init(&dev->sysctl_ctx); SYSCTL_ADD_INT(&dev->sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(bsddev)), OID_AUTO, "msix_eqvec", CTLFLAG_RDTUN, &dev->msix_eqvec, 0, "Maximum number of MSIX event queue vectors, if set"); SYSCTL_ADD_INT(&dev->sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(bsddev)), OID_AUTO, "power_status", CTLFLAG_RD, &dev->pwr_status, 0, "0:Invalid 1:Sufficient 2:Insufficient"); SYSCTL_ADD_INT(&dev->sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(bsddev)), OID_AUTO, "power_value", CTLFLAG_RD, &dev->pwr_value, 0, "Current power value in Watts"); pme_sysctl_node = SYSCTL_ADD_NODE(&dev->sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(bsddev)), OID_AUTO, "pme_stats", CTLFLAG_RD, NULL, "Port module event statistics"); if (pme_sysctl_node == NULL) { err = -ENOMEM; goto clean_sysctl_ctx; } pme_err_sysctl_node = SYSCTL_ADD_NODE(&dev->sysctl_ctx, SYSCTL_CHILDREN(pme_sysctl_node), OID_AUTO, "errors", CTLFLAG_RD, NULL, "Port module event error statistics"); if (pme_err_sysctl_node == NULL) { err = -ENOMEM; goto clean_sysctl_ctx; } SYSCTL_ADD_U64(&dev->sysctl_ctx, SYSCTL_CHILDREN(pme_sysctl_node), OID_AUTO, "module_plug", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->priv.pme_stats.status_counters[MLX5_MODULE_STATUS_PLUGGED_ENABLED], 0, "Number of time module plugged"); SYSCTL_ADD_U64(&dev->sysctl_ctx, SYSCTL_CHILDREN(pme_sysctl_node), OID_AUTO, "module_unplug", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->priv.pme_stats.status_counters[MLX5_MODULE_STATUS_UNPLUGGED], 0, "Number of time module unplugged"); for (i = 0 ; i < MLX5_MODULE_EVENT_ERROR_NUM; i++) { SYSCTL_ADD_U64(&dev->sysctl_ctx, SYSCTL_CHILDREN(pme_err_sysctl_node), OID_AUTO, mlx5_pme_err_desc[2 * i], CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->priv.pme_stats.error_counters[i], 0, mlx5_pme_err_desc[2 * i + 1]); } cap_sysctl_node = SYSCTL_ADD_NODE(&dev->sysctl_ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(bsddev)), OID_AUTO, "caps", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "hardware capabilities raw bitstrings"); if (cap_sysctl_node == NULL) { err = -ENOMEM; goto clean_sysctl_ctx; } current_cap_sysctl_node = SYSCTL_ADD_NODE(&dev->sysctl_ctx, SYSCTL_CHILDREN(cap_sysctl_node), OID_AUTO, "current", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); if (current_cap_sysctl_node == NULL) { err = -ENOMEM; goto clean_sysctl_ctx; } max_cap_sysctl_node = SYSCTL_ADD_NODE(&dev->sysctl_ctx, SYSCTL_CHILDREN(cap_sysctl_node), OID_AUTO, "max", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); if (max_cap_sysctl_node == NULL) { err = -ENOMEM; goto clean_sysctl_ctx; } SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "general", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_GENERAL], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "general", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_GENERAL], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "ether", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_ETHERNET_OFFLOADS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "ether", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_ETHERNET_OFFLOADS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "odp", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_ODP], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "odp", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_ODP], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "atomic", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_ATOMIC], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "atomic", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_ATOMIC], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "roce", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_ROCE], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "roce", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_ROCE], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "ipoib", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_IPOIB_OFFLOADS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "ipoib", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_IPOIB_OFFLOADS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "eoib", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_EOIB_OFFLOADS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "eoib", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_EOIB_OFFLOADS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "flow_table", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_FLOW_TABLE], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "flow_table", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_FLOW_TABLE], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "eswitch_flow_table", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_ESWITCH_FLOW_TABLE], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "eswitch_flow_table", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_ESWITCH_FLOW_TABLE], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "eswitch", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_ESWITCH], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "eswitch", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_ESWITCH], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "snapshot", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_SNAPSHOT], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "snapshot", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_SNAPSHOT], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "vector_calc", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_VECTOR_CALC], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "vector_calc", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_VECTOR_CALC], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "qos", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_QOS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "qos", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_QOS], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(current_cap_sysctl_node), OID_AUTO, "debug", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_cur[MLX5_CAP_DEBUG], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(max_cap_sysctl_node), OID_AUTO, "debug", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->hca_caps_max[MLX5_CAP_DEBUG], MLX5_UN_SZ_DW(hca_cap_union) * sizeof(u32), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(cap_sysctl_node), OID_AUTO, "pcam", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->caps.pcam, sizeof(dev->caps.pcam), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(cap_sysctl_node), OID_AUTO, "mcam", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->caps.mcam, sizeof(dev->caps.mcam), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(cap_sysctl_node), OID_AUTO, "qcam", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->caps.qcam, sizeof(dev->caps.qcam), "IU", ""); SYSCTL_ADD_OPAQUE(&dev->sysctl_ctx, SYSCTL_CHILDREN(cap_sysctl_node), OID_AUTO, "fpga", CTLFLAG_RD | CTLFLAG_MPSAFE, &dev->caps.fpga, sizeof(dev->caps.fpga), "IU", ""); INIT_LIST_HEAD(&priv->ctx_list); spin_lock_init(&priv->ctx_lock); mutex_init(&dev->pci_status_mutex); mutex_init(&dev->intf_state_mutex); mtx_init(&dev->dump_lock, "mlx5dmp", NULL, MTX_DEF | MTX_NEW); err = mlx5_pci_init(dev, priv); if (err) { mlx5_core_err(dev, "mlx5_pci_init failed %d\n", err); goto clean_dev; } err = mlx5_health_init(dev); if (err) { mlx5_core_err(dev, "mlx5_health_init failed %d\n", err); goto close_pci; } mlx5_pagealloc_init(dev); err = mlx5_load_one(dev, priv, true); if (err) { mlx5_core_err(dev, "mlx5_load_one failed %d\n", err); goto clean_health; } mlx5_fwdump_prep(dev); mlx5_firmware_update(dev); #ifdef PCI_IOV if (MLX5_CAP_GEN(dev, vport_group_manager)) { if (pci_find_extcap(bsddev, PCIZ_SRIOV, &sriov_pos) == 0) { num_vfs = pci_read_config(bsddev, sriov_pos + PCIR_SRIOV_TOTAL_VFS, 2); } else { mlx5_core_info(dev, "cannot find SR-IOV PCIe cap\n"); num_vfs = 0; } err = mlx5_eswitch_init(dev, 1 + num_vfs); if (err == 0) { pf_schema = pci_iov_schema_alloc_node(); vf_schema = pci_iov_schema_alloc_node(); pci_iov_schema_add_unicast_mac(vf_schema, iov_mac_addr_name, 0, NULL); err = pci_iov_attach(bsddev, pf_schema, vf_schema); if (err != 0) { device_printf(bsddev, "Failed to initialize SR-IOV support, error %d\n", err); } } else { mlx5_core_err(dev, "eswitch init failed, error %d\n", err); } } #endif pci_save_state(bsddev); return 0; clean_health: mlx5_pagealloc_cleanup(dev); mlx5_health_cleanup(dev); close_pci: mlx5_pci_close(dev, priv); clean_dev: mtx_destroy(&dev->dump_lock); clean_sysctl_ctx: sysctl_ctx_free(&dev->sysctl_ctx); kfree(dev); return err; } static void remove_one(struct pci_dev *pdev) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); struct mlx5_priv *priv = &dev->priv; if (mlx5_unload_one(dev, priv, true)) { mlx5_core_err(dev, "mlx5_unload_one failed\n"); mlx5_health_cleanup(dev); return; } mlx5_pagealloc_cleanup(dev); mlx5_health_cleanup(dev); mlx5_fwdump_clean(dev); mlx5_pci_close(dev, priv); mtx_destroy(&dev->dump_lock); pci_set_drvdata(pdev, NULL); sysctl_ctx_free(&dev->sysctl_ctx); kfree(dev); } static pci_ers_result_t mlx5_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); struct mlx5_priv *priv = &dev->priv; mlx5_core_info(dev, "%s was called\n", __func__); mlx5_enter_error_state(dev, false); mlx5_unload_one(dev, priv, false); if (state) { mlx5_drain_health_wq(dev); mlx5_pci_disable_device(dev); } return state == pci_channel_io_perm_failure ? PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t mlx5_pci_slot_reset(struct pci_dev *pdev) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); int err = 0; mlx5_core_info(dev,"%s was called\n", __func__); err = mlx5_pci_enable_device(dev); if (err) { mlx5_core_err(dev, "mlx5_pci_enable_device failed with error code: %d\n" ,err); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); pci_set_powerstate(pdev->dev.bsddev, PCI_POWERSTATE_D0); pci_restore_state(pdev->dev.bsddev); pci_save_state(pdev->dev.bsddev); return err ? PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_RECOVERED; } /* wait for the device to show vital signs. For now we check * that we can read the device ID and that the health buffer * shows a non zero value which is different than 0xffffffff */ static void wait_vital(struct pci_dev *pdev) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); struct mlx5_core_health *health = &dev->priv.health; const int niter = 100; u32 count; u16 did; int i; /* Wait for firmware to be ready after reset */ msleep(1000); for (i = 0; i < niter; i++) { if (pci_read_config_word(pdev, 2, &did)) { mlx5_core_warn(dev, "failed reading config word\n"); break; } if (did == pdev->device) { mlx5_core_info(dev, "device ID correctly read after %d iterations\n", i); break; } msleep(50); } if (i == niter) mlx5_core_warn(dev, "could not read device ID\n"); for (i = 0; i < niter; i++) { count = ioread32be(health->health_counter); if (count && count != 0xffffffff) { mlx5_core_info(dev, "Counter value 0x%x after %d iterations\n", count, i); break; } msleep(50); } if (i == niter) mlx5_core_warn(dev, "could not read device ID\n"); } static void mlx5_pci_resume(struct pci_dev *pdev) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); struct mlx5_priv *priv = &dev->priv; int err; mlx5_core_info(dev,"%s was called\n", __func__); wait_vital(pdev); err = mlx5_load_one(dev, priv, false); if (err) mlx5_core_err(dev, "mlx5_load_one failed with error code: %d\n" ,err); else mlx5_core_info(dev,"device recovered\n"); } static const struct pci_error_handlers mlx5_err_handler = { .error_detected = mlx5_pci_err_detected, .slot_reset = mlx5_pci_slot_reset, .resume = mlx5_pci_resume }; #ifdef PCI_IOV static int mlx5_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config) { struct pci_dev *pdev; struct mlx5_core_dev *core_dev; struct mlx5_priv *priv; int err; pdev = device_get_softc(dev); core_dev = pci_get_drvdata(pdev); priv = &core_dev->priv; if (priv->eswitch == NULL) return (ENXIO); if (priv->eswitch->total_vports < num_vfs + 1) num_vfs = priv->eswitch->total_vports - 1; err = mlx5_eswitch_enable_sriov(priv->eswitch, num_vfs); return (-err); } static void mlx5_iov_uninit(device_t dev) { struct pci_dev *pdev; struct mlx5_core_dev *core_dev; struct mlx5_priv *priv; pdev = device_get_softc(dev); core_dev = pci_get_drvdata(pdev); priv = &core_dev->priv; mlx5_eswitch_disable_sriov(priv->eswitch); } static int mlx5_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config) { struct pci_dev *pdev; struct mlx5_core_dev *core_dev; struct mlx5_priv *priv; const void *mac; size_t mac_size; int error; pdev = device_get_softc(dev); core_dev = pci_get_drvdata(pdev); priv = &core_dev->priv; if (vfnum + 1 >= priv->eswitch->total_vports) return (ENXIO); if (nvlist_exists_binary(vf_config, iov_mac_addr_name)) { mac = nvlist_get_binary(vf_config, iov_mac_addr_name, &mac_size); error = -mlx5_eswitch_set_vport_mac(priv->eswitch, vfnum + 1, __DECONST(u8 *, mac)); } error = -mlx5_eswitch_set_vport_state(priv->eswitch, vfnum + 1, VPORT_STATE_FOLLOW); if (error != 0) { mlx5_core_err(core_dev, "upping vport for VF %d failed, error %d\n", vfnum + 1, error); } error = -mlx5_core_enable_hca(core_dev, vfnum + 1); if (error != 0) { mlx5_core_err(core_dev, "enabling VF %d failed, error %d\n", vfnum + 1, error); } return (error); } #endif static int mlx5_try_fast_unload(struct mlx5_core_dev *dev) { bool fast_teardown, force_teardown; int err; if (!mlx5_fast_unload_enabled) { mlx5_core_dbg(dev, "fast unload is disabled by user\n"); return -EOPNOTSUPP; } fast_teardown = MLX5_CAP_GEN(dev, fast_teardown); force_teardown = MLX5_CAP_GEN(dev, force_teardown); mlx5_core_dbg(dev, "force teardown firmware support=%d\n", force_teardown); mlx5_core_dbg(dev, "fast teardown firmware support=%d\n", fast_teardown); if (!fast_teardown && !force_teardown) return -EOPNOTSUPP; if (dev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) { mlx5_core_dbg(dev, "Device in internal error state, giving up\n"); return -EAGAIN; } /* Panic tear down fw command will stop the PCI bus communication * with the HCA, so the health polll is no longer needed. */ mlx5_drain_health_wq(dev); mlx5_stop_health_poll(dev, false); err = mlx5_cmd_fast_teardown_hca(dev); if (!err) goto done; err = mlx5_cmd_force_teardown_hca(dev); if (!err) goto done; mlx5_core_dbg(dev, "Firmware couldn't do fast unload error: %d\n", err); mlx5_start_health_poll(dev); return err; done: mlx5_enter_error_state(dev, true); return 0; } static void mlx5_shutdown_disable_interrupts(struct mlx5_core_dev *mdev) { int nvec = mdev->priv.eq_table.num_comp_vectors + MLX5_EQ_VEC_COMP_BASE; int x; mdev->priv.disable_irqs = 1; /* wait for all IRQ handlers to finish processing */ for (x = 0; x != nvec; x++) synchronize_irq(mdev->priv.msix_arr[x].vector); } static void shutdown_one(struct pci_dev *pdev) { struct mlx5_core_dev *dev = pci_get_drvdata(pdev); struct mlx5_priv *priv = &dev->priv; int err; /* enter polling mode */ mlx5_cmd_use_polling(dev); set_bit(MLX5_INTERFACE_STATE_TEARDOWN, &dev->intf_state); /* disable all interrupts */ mlx5_shutdown_disable_interrupts(dev); err = mlx5_try_fast_unload(dev); if (err) mlx5_unload_one(dev, priv, false); mlx5_pci_disable_device(dev); } static const struct pci_device_id mlx5_core_pci_table[] = { { PCI_VDEVICE(MELLANOX, 4113) }, /* Connect-IB */ { PCI_VDEVICE(MELLANOX, 4114) }, /* Connect-IB VF */ { PCI_VDEVICE(MELLANOX, 4115) }, /* ConnectX-4 */ { PCI_VDEVICE(MELLANOX, 4116) }, /* ConnectX-4 VF */ { PCI_VDEVICE(MELLANOX, 4117) }, /* ConnectX-4LX */ { PCI_VDEVICE(MELLANOX, 4118) }, /* ConnectX-4LX VF */ { PCI_VDEVICE(MELLANOX, 4119) }, /* ConnectX-5 */ { PCI_VDEVICE(MELLANOX, 4120) }, /* ConnectX-5 VF */ { PCI_VDEVICE(MELLANOX, 4121) }, { PCI_VDEVICE(MELLANOX, 4122) }, { PCI_VDEVICE(MELLANOX, 4123) }, { PCI_VDEVICE(MELLANOX, 4124) }, { PCI_VDEVICE(MELLANOX, 4125) }, { PCI_VDEVICE(MELLANOX, 4126) }, { PCI_VDEVICE(MELLANOX, 4127) }, { PCI_VDEVICE(MELLANOX, 4128) }, { PCI_VDEVICE(MELLANOX, 4129) }, { PCI_VDEVICE(MELLANOX, 4130) }, { PCI_VDEVICE(MELLANOX, 4131) }, { PCI_VDEVICE(MELLANOX, 4132) }, { PCI_VDEVICE(MELLANOX, 4133) }, { PCI_VDEVICE(MELLANOX, 4134) }, { PCI_VDEVICE(MELLANOX, 4135) }, { PCI_VDEVICE(MELLANOX, 4136) }, { PCI_VDEVICE(MELLANOX, 4137) }, { PCI_VDEVICE(MELLANOX, 4138) }, { PCI_VDEVICE(MELLANOX, 4139) }, { PCI_VDEVICE(MELLANOX, 4140) }, { PCI_VDEVICE(MELLANOX, 4141) }, { PCI_VDEVICE(MELLANOX, 4142) }, { PCI_VDEVICE(MELLANOX, 4143) }, { PCI_VDEVICE(MELLANOX, 4144) }, { 0, } }; MODULE_DEVICE_TABLE(pci, mlx5_core_pci_table); void mlx5_disable_device(struct mlx5_core_dev *dev) { mlx5_pci_err_detected(dev->pdev, 0); } void mlx5_recover_device(struct mlx5_core_dev *dev) { mlx5_pci_disable_device(dev); if (mlx5_pci_slot_reset(dev->pdev) == PCI_ERS_RESULT_RECOVERED) mlx5_pci_resume(dev->pdev); } struct pci_driver mlx5_core_driver = { .name = DRIVER_NAME, .id_table = mlx5_core_pci_table, .shutdown = shutdown_one, .probe = init_one, .remove = remove_one, .err_handler = &mlx5_err_handler, #ifdef PCI_IOV .bsd_iov_init = mlx5_iov_init, .bsd_iov_uninit = mlx5_iov_uninit, .bsd_iov_add_vf = mlx5_iov_add_vf, #endif }; static int __init init(void) { int err; err = pci_register_driver(&mlx5_core_driver); if (err) goto err_debug; err = mlx5_ctl_init(); if (err) goto err_ctl; return 0; err_ctl: pci_unregister_driver(&mlx5_core_driver); err_debug: return err; } static void __exit cleanup(void) { mlx5_ctl_fini(); pci_unregister_driver(&mlx5_core_driver); } -module_init(init); -module_exit(cleanup); +module_init_order(init, SI_ORDER_FIRST); +module_exit_order(cleanup, SI_ORDER_FIRST); Index: stable/11/sys/dev/mlx5/mlx5_en/mlx5_en_main.c =================================================================== --- stable/11/sys/dev/mlx5/mlx5_en/mlx5_en_main.c (revision 363150) +++ stable/11/sys/dev/mlx5/mlx5_en/mlx5_en_main.c (revision 363151) @@ -1,4203 +1,4203 @@ /*- * Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS `AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include "en.h" #include #include #ifndef ETH_DRIVER_VERSION #define ETH_DRIVER_VERSION "3.5.2" #endif #define DRIVER_RELDATE "September 2019" static const char mlx5e_version[] = "mlx5en: Mellanox Ethernet driver " ETH_DRIVER_VERSION " (" DRIVER_RELDATE ")\n"; static int mlx5e_get_wqe_sz(struct mlx5e_priv *priv, u32 *wqe_sz, u32 *nsegs); struct mlx5e_channel_param { struct mlx5e_rq_param rq; struct mlx5e_sq_param sq; struct mlx5e_cq_param rx_cq; struct mlx5e_cq_param tx_cq; }; struct media { u32 subtype; u64 baudrate; }; static const struct media mlx5e_mode_table[MLX5E_LINK_SPEEDS_NUMBER][MLX5E_LINK_MODES_NUMBER] = { [MLX5E_1000BASE_CX_SGMII][MLX5E_SGMII] = { .subtype = IFM_1000_CX_SGMII, .baudrate = IF_Mbps(1000ULL), }, [MLX5E_1000BASE_KX][MLX5E_KX] = { .subtype = IFM_1000_KX, .baudrate = IF_Mbps(1000ULL), }, [MLX5E_10GBASE_CX4][MLX5E_CX4] = { .subtype = IFM_10G_CX4, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_KX4][MLX5E_KX4] = { .subtype = IFM_10G_KX4, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_KR][MLX5E_KR] = { .subtype = IFM_10G_KR, .baudrate = IF_Gbps(10ULL), }, [MLX5E_20GBASE_KR2][MLX5E_KR2] = { .subtype = IFM_20G_KR2, .baudrate = IF_Gbps(20ULL), }, [MLX5E_40GBASE_CR4][MLX5E_CR4] = { .subtype = IFM_40G_CR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_40GBASE_KR4][MLX5E_KR4] = { .subtype = IFM_40G_KR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_56GBASE_R4][MLX5E_R] = { .subtype = IFM_56G_R4, .baudrate = IF_Gbps(56ULL), }, [MLX5E_10GBASE_CR][MLX5E_CR1] = { .subtype = IFM_10G_CR1, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_SR][MLX5E_SR] = { .subtype = IFM_10G_SR, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_ER_LR][MLX5E_ER] = { .subtype = IFM_10G_ER, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_ER_LR][MLX5E_LR] = { .subtype = IFM_10G_LR, .baudrate = IF_Gbps(10ULL), }, [MLX5E_40GBASE_SR4][MLX5E_SR4] = { .subtype = IFM_40G_SR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_40GBASE_LR4_ER4][MLX5E_LR4] = { .subtype = IFM_40G_LR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_40GBASE_LR4_ER4][MLX5E_ER4] = { .subtype = IFM_40G_ER4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_100GBASE_CR4][MLX5E_CR4] = { .subtype = IFM_100G_CR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_100GBASE_SR4][MLX5E_SR4] = { .subtype = IFM_100G_SR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_100GBASE_KR4][MLX5E_KR4] = { .subtype = IFM_100G_KR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_100GBASE_LR4][MLX5E_LR4] = { .subtype = IFM_100G_LR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_100BASE_TX][MLX5E_TX] = { .subtype = IFM_100_TX, .baudrate = IF_Mbps(100ULL), }, [MLX5E_1000BASE_T][MLX5E_T] = { .subtype = IFM_1000_T, .baudrate = IF_Mbps(1000ULL), }, [MLX5E_10GBASE_T][MLX5E_T] = { .subtype = IFM_10G_T, .baudrate = IF_Gbps(10ULL), }, [MLX5E_25GBASE_CR][MLX5E_CR] = { .subtype = IFM_25G_CR, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GBASE_KR][MLX5E_KR] = { .subtype = IFM_25G_KR, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GBASE_SR][MLX5E_SR] = { .subtype = IFM_25G_SR, .baudrate = IF_Gbps(25ULL), }, [MLX5E_50GBASE_CR2][MLX5E_CR2] = { .subtype = IFM_50G_CR2, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GBASE_KR2][MLX5E_KR2] = { .subtype = IFM_50G_KR2, .baudrate = IF_Gbps(50ULL), }, }; static const struct media mlx5e_ext_mode_table[MLX5E_EXT_LINK_SPEEDS_NUMBER][MLX5E_LINK_MODES_NUMBER] = { [MLX5E_SGMII_100M][MLX5E_SGMII] = { .subtype = IFM_100_SGMII, .baudrate = IF_Mbps(100), }, [MLX5E_1000BASE_X_SGMII][MLX5E_KX] = { .subtype = IFM_1000_KX, .baudrate = IF_Mbps(1000), }, [MLX5E_1000BASE_X_SGMII][MLX5E_CX_SGMII] = { .subtype = IFM_1000_CX_SGMII, .baudrate = IF_Mbps(1000), }, [MLX5E_1000BASE_X_SGMII][MLX5E_CX] = { .subtype = IFM_1000_CX, .baudrate = IF_Mbps(1000), }, [MLX5E_1000BASE_X_SGMII][MLX5E_LX] = { .subtype = IFM_1000_LX, .baudrate = IF_Mbps(1000), }, [MLX5E_1000BASE_X_SGMII][MLX5E_SX] = { .subtype = IFM_1000_SX, .baudrate = IF_Mbps(1000), }, [MLX5E_1000BASE_X_SGMII][MLX5E_T] = { .subtype = IFM_1000_T, .baudrate = IF_Mbps(1000), }, [MLX5E_5GBASE_R][MLX5E_T] = { .subtype = IFM_5000_T, .baudrate = IF_Mbps(5000), }, [MLX5E_5GBASE_R][MLX5E_KR] = { .subtype = IFM_5000_KR, .baudrate = IF_Mbps(5000), }, [MLX5E_5GBASE_R][MLX5E_KR1] = { .subtype = IFM_5000_KR1, .baudrate = IF_Mbps(5000), }, [MLX5E_5GBASE_R][MLX5E_KR_S] = { .subtype = IFM_5000_KR_S, .baudrate = IF_Mbps(5000), }, [MLX5E_10GBASE_XFI_XAUI_1][MLX5E_ER] = { .subtype = IFM_10G_ER, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_XFI_XAUI_1][MLX5E_KR] = { .subtype = IFM_10G_KR, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_XFI_XAUI_1][MLX5E_LR] = { .subtype = IFM_10G_LR, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_XFI_XAUI_1][MLX5E_SR] = { .subtype = IFM_10G_SR, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_XFI_XAUI_1][MLX5E_T] = { .subtype = IFM_10G_T, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_XFI_XAUI_1][MLX5E_AOC] = { .subtype = IFM_10G_AOC, .baudrate = IF_Gbps(10ULL), }, [MLX5E_10GBASE_XFI_XAUI_1][MLX5E_CR1] = { .subtype = IFM_10G_CR1, .baudrate = IF_Gbps(10ULL), }, [MLX5E_40GBASE_XLAUI_4_XLPPI_4][MLX5E_CR4] = { .subtype = IFM_40G_CR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_40GBASE_XLAUI_4_XLPPI_4][MLX5E_KR4] = { .subtype = IFM_40G_KR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_40GBASE_XLAUI_4_XLPPI_4][MLX5E_LR4] = { .subtype = IFM_40G_LR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_40GBASE_XLAUI_4_XLPPI_4][MLX5E_SR4] = { .subtype = IFM_40G_SR4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_40GBASE_XLAUI_4_XLPPI_4][MLX5E_ER4] = { .subtype = IFM_40G_ER4, .baudrate = IF_Gbps(40ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_CR] = { .subtype = IFM_25G_CR, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_KR] = { .subtype = IFM_25G_KR, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_SR] = { .subtype = IFM_25G_SR, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_ACC] = { .subtype = IFM_25G_ACC, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_AOC] = { .subtype = IFM_25G_AOC, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_CR1] = { .subtype = IFM_25G_CR1, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_CR_S] = { .subtype = IFM_25G_CR_S, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_KR1] = { .subtype = IFM_5000_KR1, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_KR_S] = { .subtype = IFM_25G_KR_S, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_LR] = { .subtype = IFM_25G_LR, .baudrate = IF_Gbps(25ULL), }, [MLX5E_25GAUI_1_25GBASE_CR_KR][MLX5E_T] = { .subtype = IFM_25G_T, .baudrate = IF_Gbps(25ULL), }, [MLX5E_50GAUI_2_LAUI_2_50GBASE_CR2_KR2][MLX5E_CR2] = { .subtype = IFM_50G_CR2, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_2_LAUI_2_50GBASE_CR2_KR2][MLX5E_KR2] = { .subtype = IFM_50G_KR2, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_2_LAUI_2_50GBASE_CR2_KR2][MLX5E_SR2] = { .subtype = IFM_50G_SR2, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_2_LAUI_2_50GBASE_CR2_KR2][MLX5E_LR2] = { .subtype = IFM_50G_LR2, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_1_LAUI_1_50GBASE_CR_KR][MLX5E_LR] = { .subtype = IFM_50G_LR, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_1_LAUI_1_50GBASE_CR_KR][MLX5E_SR] = { .subtype = IFM_50G_SR, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_1_LAUI_1_50GBASE_CR_KR][MLX5E_CP] = { .subtype = IFM_50G_CP, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_1_LAUI_1_50GBASE_CR_KR][MLX5E_FR] = { .subtype = IFM_50G_FR, .baudrate = IF_Gbps(50ULL), }, [MLX5E_50GAUI_1_LAUI_1_50GBASE_CR_KR][MLX5E_KR_PAM4] = { .subtype = IFM_50G_KR_PAM4, .baudrate = IF_Gbps(50ULL), }, [MLX5E_CAUI_4_100GBASE_CR4_KR4][MLX5E_CR4] = { .subtype = IFM_100G_CR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_CAUI_4_100GBASE_CR4_KR4][MLX5E_KR4] = { .subtype = IFM_100G_KR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_CAUI_4_100GBASE_CR4_KR4][MLX5E_LR4] = { .subtype = IFM_100G_LR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_CAUI_4_100GBASE_CR4_KR4][MLX5E_SR4] = { .subtype = IFM_100G_SR4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_100GAUI_2_100GBASE_CR2_KR2][MLX5E_SR2] = { .subtype = IFM_100G_SR2, .baudrate = IF_Gbps(100ULL), }, [MLX5E_100GAUI_2_100GBASE_CR2_KR2][MLX5E_CP2] = { .subtype = IFM_100G_CP2, .baudrate = IF_Gbps(100ULL), }, [MLX5E_100GAUI_2_100GBASE_CR2_KR2][MLX5E_KR2_PAM4] = { .subtype = IFM_100G_KR2_PAM4, .baudrate = IF_Gbps(100ULL), }, [MLX5E_200GAUI_4_200GBASE_CR4_KR4][MLX5E_DR4] = { .subtype = IFM_200G_DR4, .baudrate = IF_Gbps(200ULL), }, [MLX5E_200GAUI_4_200GBASE_CR4_KR4][MLX5E_LR4] = { .subtype = IFM_200G_LR4, .baudrate = IF_Gbps(200ULL), }, [MLX5E_200GAUI_4_200GBASE_CR4_KR4][MLX5E_SR4] = { .subtype = IFM_200G_SR4, .baudrate = IF_Gbps(200ULL), }, [MLX5E_200GAUI_4_200GBASE_CR4_KR4][MLX5E_FR4] = { .subtype = IFM_200G_FR4, .baudrate = IF_Gbps(200ULL), }, [MLX5E_200GAUI_4_200GBASE_CR4_KR4][MLX5E_CR4_PAM4] = { .subtype = IFM_200G_CR4_PAM4, .baudrate = IF_Gbps(200ULL), }, [MLX5E_200GAUI_4_200GBASE_CR4_KR4][MLX5E_KR4_PAM4] = { .subtype = IFM_200G_KR4_PAM4, .baudrate = IF_Gbps(200ULL), }, }; MALLOC_DEFINE(M_MLX5EN, "MLX5EN", "MLX5 Ethernet"); static void mlx5e_update_carrier(struct mlx5e_priv *priv) { struct mlx5_core_dev *mdev = priv->mdev; u32 out[MLX5_ST_SZ_DW(ptys_reg)]; u32 eth_proto_oper; int error; u8 port_state; u8 is_er_type; u8 i, j; bool ext; struct media media_entry = {}; port_state = mlx5_query_vport_state(mdev, MLX5_QUERY_VPORT_STATE_IN_OP_MOD_VNIC_VPORT, 0); if (port_state == VPORT_STATE_UP) { priv->media_status_last |= IFM_ACTIVE; } else { priv->media_status_last &= ~IFM_ACTIVE; priv->media_active_last = IFM_ETHER; if_link_state_change(priv->ifp, LINK_STATE_DOWN); return; } error = mlx5_query_port_ptys(mdev, out, sizeof(out), MLX5_PTYS_EN, 1); if (error) { priv->media_active_last = IFM_ETHER; priv->ifp->if_baudrate = 1; mlx5_en_err(priv->ifp, "query port ptys failed: 0x%x\n", error); return; } ext = MLX5_CAP_PCAM_FEATURE(mdev, ptys_extended_ethernet); eth_proto_oper = MLX5_GET_ETH_PROTO(ptys_reg, out, ext, eth_proto_oper); i = ilog2(eth_proto_oper); for (j = 0; j != MLX5E_LINK_MODES_NUMBER; j++) { media_entry = ext ? mlx5e_ext_mode_table[i][j] : mlx5e_mode_table[i][j]; if (media_entry.baudrate != 0) break; } if (media_entry.subtype == 0) { mlx5_en_err(priv->ifp, "Could not find operational media subtype\n"); return; } switch (media_entry.subtype) { case IFM_10G_ER: error = mlx5_query_pddr_range_info(mdev, 1, &is_er_type); if (error != 0) { mlx5_en_err(priv->ifp, "query port pddr failed: %d\n", error); } if (error != 0 || is_er_type == 0) media_entry.subtype = IFM_10G_LR; break; case IFM_40G_LR4: error = mlx5_query_pddr_range_info(mdev, 1, &is_er_type); if (error != 0) { mlx5_en_err(priv->ifp, "query port pddr failed: %d\n", error); } if (error == 0 && is_er_type != 0) media_entry.subtype = IFM_40G_ER4; break; } priv->media_active_last = media_entry.subtype | IFM_ETHER | IFM_FDX; priv->ifp->if_baudrate = media_entry.baudrate; if_link_state_change(priv->ifp, LINK_STATE_UP); } static void mlx5e_media_status(struct ifnet *dev, struct ifmediareq *ifmr) { struct mlx5e_priv *priv = dev->if_softc; ifmr->ifm_status = priv->media_status_last; ifmr->ifm_active = priv->media_active_last | (priv->params.rx_pauseframe_control ? IFM_ETH_RXPAUSE : 0) | (priv->params.tx_pauseframe_control ? IFM_ETH_TXPAUSE : 0); } static u32 mlx5e_find_link_mode(u32 subtype, bool ext) { u32 i; u32 j; u32 link_mode = 0; u32 speeds_num = 0; struct media media_entry = {}; switch (subtype) { case IFM_10G_LR: subtype = IFM_10G_ER; break; case IFM_40G_ER4: subtype = IFM_40G_LR4; break; } speeds_num = ext ? MLX5E_EXT_LINK_SPEEDS_NUMBER : MLX5E_LINK_SPEEDS_NUMBER; for (i = 0; i != speeds_num; i++) { for (j = 0; j < MLX5E_LINK_MODES_NUMBER ; ++j) { media_entry = ext ? mlx5e_ext_mode_table[i][j] : mlx5e_mode_table[i][j]; if (media_entry.baudrate == 0) continue; if (media_entry.subtype == subtype) { link_mode |= MLX5E_PROT_MASK(i); } } } return (link_mode); } static int mlx5e_set_port_pause_and_pfc(struct mlx5e_priv *priv) { return (mlx5_set_port_pause_and_pfc(priv->mdev, 1, priv->params.rx_pauseframe_control, priv->params.tx_pauseframe_control, priv->params.rx_priority_flow_control, priv->params.tx_priority_flow_control)); } static int mlx5e_set_port_pfc(struct mlx5e_priv *priv) { int error; if (priv->gone != 0) { error = -ENXIO; } else if (priv->params.rx_pauseframe_control || priv->params.tx_pauseframe_control) { mlx5_en_err(priv->ifp, "Global pauseframes must be disabled before enabling PFC.\n"); error = -EINVAL; } else { error = mlx5e_set_port_pause_and_pfc(priv); } return (error); } static int mlx5e_media_change(struct ifnet *dev) { struct mlx5e_priv *priv = dev->if_softc; struct mlx5_core_dev *mdev = priv->mdev; u32 eth_proto_cap; u32 link_mode; u32 out[MLX5_ST_SZ_DW(ptys_reg)]; int was_opened; int locked; int error; bool ext; locked = PRIV_LOCKED(priv); if (!locked) PRIV_LOCK(priv); if (IFM_TYPE(priv->media.ifm_media) != IFM_ETHER) { error = EINVAL; goto done; } error = mlx5_query_port_ptys(mdev, out, sizeof(out), MLX5_PTYS_EN, 1); if (error != 0) { mlx5_en_err(dev, "Query port media capability failed\n"); goto done; } ext = MLX5_CAP_PCAM_FEATURE(mdev, ptys_extended_ethernet); link_mode = mlx5e_find_link_mode(IFM_SUBTYPE(priv->media.ifm_media), ext); /* query supported capabilities */ eth_proto_cap = MLX5_GET_ETH_PROTO(ptys_reg, out, ext, eth_proto_capability); /* check for autoselect */ if (IFM_SUBTYPE(priv->media.ifm_media) == IFM_AUTO) { link_mode = eth_proto_cap; if (link_mode == 0) { mlx5_en_err(dev, "Port media capability is zero\n"); error = EINVAL; goto done; } } else { link_mode = link_mode & eth_proto_cap; if (link_mode == 0) { mlx5_en_err(dev, "Not supported link mode requested\n"); error = EINVAL; goto done; } } if (priv->media.ifm_media & (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) { /* check if PFC is enabled */ if (priv->params.rx_priority_flow_control || priv->params.tx_priority_flow_control) { mlx5_en_err(dev, "PFC must be disabled before enabling global pauseframes.\n"); error = EINVAL; goto done; } } /* update pauseframe control bits */ priv->params.rx_pauseframe_control = (priv->media.ifm_media & IFM_ETH_RXPAUSE) ? 1 : 0; priv->params.tx_pauseframe_control = (priv->media.ifm_media & IFM_ETH_TXPAUSE) ? 1 : 0; /* check if device is opened */ was_opened = test_bit(MLX5E_STATE_OPENED, &priv->state); /* reconfigure the hardware */ mlx5_set_port_status(mdev, MLX5_PORT_DOWN); mlx5_set_port_proto(mdev, link_mode, MLX5_PTYS_EN, ext); error = -mlx5e_set_port_pause_and_pfc(priv); if (was_opened) mlx5_set_port_status(mdev, MLX5_PORT_UP); done: if (!locked) PRIV_UNLOCK(priv); return (error); } static void mlx5e_update_carrier_work(struct work_struct *work) { struct mlx5e_priv *priv = container_of(work, struct mlx5e_priv, update_carrier_work); PRIV_LOCK(priv); if (test_bit(MLX5E_STATE_OPENED, &priv->state)) mlx5e_update_carrier(priv); PRIV_UNLOCK(priv); } #define MLX5E_PCIE_PERF_GET_64(a,b,c,d,e,f) \ s_debug->c = MLX5_GET64(mpcnt_reg, out, counter_set.f.c); #define MLX5E_PCIE_PERF_GET_32(a,b,c,d,e,f) \ s_debug->c = MLX5_GET(mpcnt_reg, out, counter_set.f.c); static void mlx5e_update_pcie_counters(struct mlx5e_priv *priv) { struct mlx5_core_dev *mdev = priv->mdev; struct mlx5e_port_stats_debug *s_debug = &priv->stats.port_stats_debug; const unsigned sz = MLX5_ST_SZ_BYTES(mpcnt_reg); void *out; void *in; int err; /* allocate firmware request structures */ in = mlx5_vzalloc(sz); out = mlx5_vzalloc(sz); if (in == NULL || out == NULL) goto free_out; MLX5_SET(mpcnt_reg, in, grp, MLX5_PCIE_PERFORMANCE_COUNTERS_GROUP); err = mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_MPCNT, 0, 0); if (err != 0) goto free_out; MLX5E_PCIE_PERFORMANCE_COUNTERS_64(MLX5E_PCIE_PERF_GET_64) MLX5E_PCIE_PERFORMANCE_COUNTERS_32(MLX5E_PCIE_PERF_GET_32) MLX5_SET(mpcnt_reg, in, grp, MLX5_PCIE_TIMERS_AND_STATES_COUNTERS_GROUP); err = mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_MPCNT, 0, 0); if (err != 0) goto free_out; MLX5E_PCIE_TIMERS_AND_STATES_COUNTERS_32(MLX5E_PCIE_PERF_GET_32) MLX5_SET(mpcnt_reg, in, grp, MLX5_PCIE_LANE_COUNTERS_GROUP); err = mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_MPCNT, 0, 0); if (err != 0) goto free_out; MLX5E_PCIE_LANE_COUNTERS_32(MLX5E_PCIE_PERF_GET_32) free_out: /* free firmware request structures */ kvfree(in); kvfree(out); } /* * This function reads the physical port counters from the firmware * using a pre-defined layout defined by various MLX5E_PPORT_XXX() * macros. The output is converted from big-endian 64-bit values into * host endian ones and stored in the "priv->stats.pport" structure. */ static void mlx5e_update_pport_counters(struct mlx5e_priv *priv) { struct mlx5_core_dev *mdev = priv->mdev; struct mlx5e_pport_stats *s = &priv->stats.pport; struct mlx5e_port_stats_debug *s_debug = &priv->stats.port_stats_debug; u32 *in; u32 *out; const u64 *ptr; unsigned sz = MLX5_ST_SZ_BYTES(ppcnt_reg); unsigned x; unsigned y; unsigned z; /* allocate firmware request structures */ in = mlx5_vzalloc(sz); out = mlx5_vzalloc(sz); if (in == NULL || out == NULL) goto free_out; /* * Get pointer to the 64-bit counter set which is located at a * fixed offset in the output firmware request structure: */ ptr = (const uint64_t *)MLX5_ADDR_OF(ppcnt_reg, out, counter_set); MLX5_SET(ppcnt_reg, in, local_port, 1); /* read IEEE802_3 counter group using predefined counter layout */ MLX5_SET(ppcnt_reg, in, grp, MLX5_IEEE_802_3_COUNTERS_GROUP); mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_PPCNT, 0, 0); for (x = 0, y = MLX5E_PPORT_PER_PRIO_STATS_NUM; x != MLX5E_PPORT_IEEE802_3_STATS_NUM; x++, y++) s->arg[y] = be64toh(ptr[x]); /* read RFC2819 counter group using predefined counter layout */ MLX5_SET(ppcnt_reg, in, grp, MLX5_RFC_2819_COUNTERS_GROUP); mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_PPCNT, 0, 0); for (x = 0; x != MLX5E_PPORT_RFC2819_STATS_NUM; x++, y++) s->arg[y] = be64toh(ptr[x]); for (y = 0; x != MLX5E_PPORT_RFC2819_STATS_NUM + MLX5E_PPORT_RFC2819_STATS_DEBUG_NUM; x++, y++) s_debug->arg[y] = be64toh(ptr[x]); /* read RFC2863 counter group using predefined counter layout */ MLX5_SET(ppcnt_reg, in, grp, MLX5_RFC_2863_COUNTERS_GROUP); mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_PPCNT, 0, 0); for (x = 0; x != MLX5E_PPORT_RFC2863_STATS_DEBUG_NUM; x++, y++) s_debug->arg[y] = be64toh(ptr[x]); /* read physical layer stats counter group using predefined counter layout */ MLX5_SET(ppcnt_reg, in, grp, MLX5_PHYSICAL_LAYER_COUNTERS_GROUP); mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_PPCNT, 0, 0); for (x = 0; x != MLX5E_PPORT_PHYSICAL_LAYER_STATS_DEBUG_NUM; x++, y++) s_debug->arg[y] = be64toh(ptr[x]); /* read Extended Ethernet counter group using predefined counter layout */ MLX5_SET(ppcnt_reg, in, grp, MLX5_ETHERNET_EXTENDED_COUNTERS_GROUP); mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_PPCNT, 0, 0); for (x = 0; x != MLX5E_PPORT_ETHERNET_EXTENDED_STATS_DEBUG_NUM; x++, y++) s_debug->arg[y] = be64toh(ptr[x]); /* read Extended Statistical Group */ if (MLX5_CAP_GEN(mdev, pcam_reg) && MLX5_CAP_PCAM_FEATURE(mdev, ppcnt_statistical_group) && MLX5_CAP_PCAM_FEATURE(mdev, per_lane_error_counters)) { /* read Extended Statistical counter group using predefined counter layout */ MLX5_SET(ppcnt_reg, in, grp, MLX5_PHYSICAL_LAYER_STATISTICAL_GROUP); mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_PPCNT, 0, 0); for (x = 0; x != MLX5E_PPORT_STATISTICAL_DEBUG_NUM; x++, y++) s_debug->arg[y] = be64toh(ptr[x]); } /* read PCIE counters */ mlx5e_update_pcie_counters(priv); /* read per-priority counters */ MLX5_SET(ppcnt_reg, in, grp, MLX5_PER_PRIORITY_COUNTERS_GROUP); /* iterate all the priorities */ for (y = z = 0; z != MLX5E_PPORT_PER_PRIO_STATS_NUM_PRIO; z++) { MLX5_SET(ppcnt_reg, in, prio_tc, z); mlx5_core_access_reg(mdev, in, sz, out, sz, MLX5_REG_PPCNT, 0, 0); /* read per priority stats counter group using predefined counter layout */ for (x = 0; x != (MLX5E_PPORT_PER_PRIO_STATS_NUM / MLX5E_PPORT_PER_PRIO_STATS_NUM_PRIO); x++, y++) s->arg[y] = be64toh(ptr[x]); } free_out: /* free firmware request structures */ kvfree(in); kvfree(out); } static void mlx5e_grp_vnic_env_update_stats(struct mlx5e_priv *priv) { u32 out[MLX5_ST_SZ_DW(query_vnic_env_out)] = {}; u32 in[MLX5_ST_SZ_DW(query_vnic_env_in)] = {}; if (!MLX5_CAP_GEN(priv->mdev, nic_receive_steering_discard)) return; MLX5_SET(query_vnic_env_in, in, opcode, MLX5_CMD_OP_QUERY_VNIC_ENV); MLX5_SET(query_vnic_env_in, in, op_mod, 0); MLX5_SET(query_vnic_env_in, in, other_vport, 0); if (mlx5_cmd_exec(priv->mdev, in, sizeof(in), out, sizeof(out)) != 0) return; priv->stats.vport.rx_steer_missed_packets = MLX5_GET64(query_vnic_env_out, out, vport_env.nic_receive_steering_discard); } /* * This function is called regularly to collect all statistics * counters from the firmware. The values can be viewed through the * sysctl interface. Execution is serialized using the priv's global * configuration lock. */ static void mlx5e_update_stats_locked(struct mlx5e_priv *priv) { struct mlx5_core_dev *mdev = priv->mdev; struct mlx5e_vport_stats *s = &priv->stats.vport; struct mlx5e_sq_stats *sq_stats; #if (__FreeBSD_version < 1100000) struct ifnet *ifp = priv->ifp; #endif u32 in[MLX5_ST_SZ_DW(query_vport_counter_in)]; u32 *out; int outlen = MLX5_ST_SZ_BYTES(query_vport_counter_out); u64 tso_packets = 0; u64 tso_bytes = 0; u64 tx_queue_dropped = 0; u64 tx_defragged = 0; u64 tx_offload_none = 0; u64 lro_packets = 0; u64 lro_bytes = 0; u64 sw_lro_queued = 0; u64 sw_lro_flushed = 0; u64 rx_csum_none = 0; u64 rx_wqe_err = 0; u64 rx_packets = 0; u64 rx_bytes = 0; u32 rx_out_of_buffer = 0; int error; int i; int j; out = mlx5_vzalloc(outlen); if (out == NULL) goto free_out; /* Collect firts the SW counters and then HW for consistency */ for (i = 0; i < priv->params.num_channels; i++) { struct mlx5e_channel *pch = priv->channel + i; struct mlx5e_rq *rq = &pch->rq; struct mlx5e_rq_stats *rq_stats = &pch->rq.stats; /* collect stats from LRO */ rq_stats->sw_lro_queued = rq->lro.lro_queued; rq_stats->sw_lro_flushed = rq->lro.lro_flushed; sw_lro_queued += rq_stats->sw_lro_queued; sw_lro_flushed += rq_stats->sw_lro_flushed; lro_packets += rq_stats->lro_packets; lro_bytes += rq_stats->lro_bytes; rx_csum_none += rq_stats->csum_none; rx_wqe_err += rq_stats->wqe_err; rx_packets += rq_stats->packets; rx_bytes += rq_stats->bytes; for (j = 0; j < priv->num_tc; j++) { sq_stats = &pch->sq[j].stats; tso_packets += sq_stats->tso_packets; tso_bytes += sq_stats->tso_bytes; tx_queue_dropped += sq_stats->dropped; tx_queue_dropped += sq_stats->enobuf; tx_defragged += sq_stats->defragged; tx_offload_none += sq_stats->csum_offload_none; } } /* update counters */ s->tso_packets = tso_packets; s->tso_bytes = tso_bytes; s->tx_queue_dropped = tx_queue_dropped; s->tx_defragged = tx_defragged; s->lro_packets = lro_packets; s->lro_bytes = lro_bytes; s->sw_lro_queued = sw_lro_queued; s->sw_lro_flushed = sw_lro_flushed; s->rx_csum_none = rx_csum_none; s->rx_wqe_err = rx_wqe_err; s->rx_packets = rx_packets; s->rx_bytes = rx_bytes; mlx5e_grp_vnic_env_update_stats(priv); /* HW counters */ memset(in, 0, sizeof(in)); MLX5_SET(query_vport_counter_in, in, opcode, MLX5_CMD_OP_QUERY_VPORT_COUNTER); MLX5_SET(query_vport_counter_in, in, op_mod, 0); MLX5_SET(query_vport_counter_in, in, other_vport, 0); memset(out, 0, outlen); /* get number of out-of-buffer drops first */ if (test_bit(MLX5E_STATE_OPENED, &priv->state) != 0 && mlx5_vport_query_out_of_rx_buffer(mdev, priv->counter_set_id, &rx_out_of_buffer) == 0) { s->rx_out_of_buffer = rx_out_of_buffer; } /* get port statistics */ if (mlx5_cmd_exec(mdev, in, sizeof(in), out, outlen) == 0) { #define MLX5_GET_CTR(out, x) \ MLX5_GET64(query_vport_counter_out, out, x) s->rx_error_packets = MLX5_GET_CTR(out, received_errors.packets); s->rx_error_bytes = MLX5_GET_CTR(out, received_errors.octets); s->tx_error_packets = MLX5_GET_CTR(out, transmit_errors.packets); s->tx_error_bytes = MLX5_GET_CTR(out, transmit_errors.octets); s->rx_unicast_packets = MLX5_GET_CTR(out, received_eth_unicast.packets); s->rx_unicast_bytes = MLX5_GET_CTR(out, received_eth_unicast.octets); s->tx_unicast_packets = MLX5_GET_CTR(out, transmitted_eth_unicast.packets); s->tx_unicast_bytes = MLX5_GET_CTR(out, transmitted_eth_unicast.octets); s->rx_multicast_packets = MLX5_GET_CTR(out, received_eth_multicast.packets); s->rx_multicast_bytes = MLX5_GET_CTR(out, received_eth_multicast.octets); s->tx_multicast_packets = MLX5_GET_CTR(out, transmitted_eth_multicast.packets); s->tx_multicast_bytes = MLX5_GET_CTR(out, transmitted_eth_multicast.octets); s->rx_broadcast_packets = MLX5_GET_CTR(out, received_eth_broadcast.packets); s->rx_broadcast_bytes = MLX5_GET_CTR(out, received_eth_broadcast.octets); s->tx_broadcast_packets = MLX5_GET_CTR(out, transmitted_eth_broadcast.packets); s->tx_broadcast_bytes = MLX5_GET_CTR(out, transmitted_eth_broadcast.octets); s->tx_packets = s->tx_unicast_packets + s->tx_multicast_packets + s->tx_broadcast_packets; s->tx_bytes = s->tx_unicast_bytes + s->tx_multicast_bytes + s->tx_broadcast_bytes; /* Update calculated offload counters */ s->tx_csum_offload = s->tx_packets - tx_offload_none; s->rx_csum_good = s->rx_packets - s->rx_csum_none; } /* Get physical port counters */ mlx5e_update_pport_counters(priv); s->tx_jumbo_packets = priv->stats.port_stats_debug.tx_stat_p1519to2047octets + priv->stats.port_stats_debug.tx_stat_p2048to4095octets + priv->stats.port_stats_debug.tx_stat_p4096to8191octets + priv->stats.port_stats_debug.tx_stat_p8192to10239octets; #if (__FreeBSD_version < 1100000) /* no get_counters interface in fbsd 10 */ ifp->if_ipackets = s->rx_packets; ifp->if_ierrors = priv->stats.pport.in_range_len_errors + priv->stats.pport.out_of_range_len + priv->stats.pport.too_long_errors + priv->stats.pport.check_seq_err + priv->stats.pport.alignment_err; ifp->if_iqdrops = s->rx_out_of_buffer; ifp->if_opackets = s->tx_packets; ifp->if_oerrors = priv->stats.port_stats_debug.out_discards; ifp->if_snd.ifq_drops = s->tx_queue_dropped; ifp->if_ibytes = s->rx_bytes; ifp->if_obytes = s->tx_bytes; ifp->if_collisions = priv->stats.pport.collisions; #endif free_out: kvfree(out); /* Update diagnostics, if any */ if (priv->params_ethtool.diag_pci_enable || priv->params_ethtool.diag_general_enable) { error = mlx5_core_get_diagnostics_full(mdev, priv->params_ethtool.diag_pci_enable ? &priv->params_pci : NULL, priv->params_ethtool.diag_general_enable ? &priv->params_general : NULL); if (error != 0) mlx5_en_err(priv->ifp, "Failed reading diagnostics: %d\n", error); } /* Update FEC, if any */ error = mlx5e_fec_update(priv); if (error != 0 && error != EOPNOTSUPP) { mlx5_en_err(priv->ifp, "Updating FEC failed: %d\n", error); } /* Update temperature, if any */ if (priv->params_ethtool.hw_num_temp != 0) { error = mlx5e_hw_temperature_update(priv); if (error != 0 && error != EOPNOTSUPP) { mlx5_en_err(priv->ifp, "Updating temperature failed: %d\n", error); } } } static void mlx5e_update_stats_work(struct work_struct *work) { struct mlx5e_priv *priv; priv = container_of(work, struct mlx5e_priv, update_stats_work); PRIV_LOCK(priv); if (test_bit(MLX5E_STATE_OPENED, &priv->state) != 0 && !test_bit(MLX5_INTERFACE_STATE_TEARDOWN, &priv->mdev->intf_state)) mlx5e_update_stats_locked(priv); PRIV_UNLOCK(priv); } static void mlx5e_update_stats(void *arg) { struct mlx5e_priv *priv = arg; queue_work(priv->wq, &priv->update_stats_work); callout_reset(&priv->watchdog, hz, &mlx5e_update_stats, priv); } static void mlx5e_async_event_sub(struct mlx5e_priv *priv, enum mlx5_dev_event event) { switch (event) { case MLX5_DEV_EVENT_PORT_UP: case MLX5_DEV_EVENT_PORT_DOWN: queue_work(priv->wq, &priv->update_carrier_work); break; default: break; } } static void mlx5e_async_event(struct mlx5_core_dev *mdev, void *vpriv, enum mlx5_dev_event event, unsigned long param) { struct mlx5e_priv *priv = vpriv; mtx_lock(&priv->async_events_mtx); if (test_bit(MLX5E_STATE_ASYNC_EVENTS_ENABLE, &priv->state)) mlx5e_async_event_sub(priv, event); mtx_unlock(&priv->async_events_mtx); } static void mlx5e_enable_async_events(struct mlx5e_priv *priv) { set_bit(MLX5E_STATE_ASYNC_EVENTS_ENABLE, &priv->state); } static void mlx5e_disable_async_events(struct mlx5e_priv *priv) { mtx_lock(&priv->async_events_mtx); clear_bit(MLX5E_STATE_ASYNC_EVENTS_ENABLE, &priv->state); mtx_unlock(&priv->async_events_mtx); } static const char *mlx5e_rq_stats_desc[] = { MLX5E_RQ_STATS(MLX5E_STATS_DESC) }; static int mlx5e_create_rq(struct mlx5e_channel *c, struct mlx5e_rq_param *param, struct mlx5e_rq *rq) { struct mlx5e_priv *priv = c->priv; struct mlx5_core_dev *mdev = priv->mdev; char buffer[16]; void *rqc = param->rqc; void *rqc_wq = MLX5_ADDR_OF(rqc, rqc, wq); int wq_sz; int err; int i; u32 nsegs, wqe_sz; err = mlx5e_get_wqe_sz(priv, &wqe_sz, &nsegs); if (err != 0) goto done; /* Create DMA descriptor TAG */ if ((err = -bus_dma_tag_create( bus_get_dma_tag(mdev->pdev->dev.bsddev), 1, /* any alignment */ 0, /* no boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ nsegs * MLX5E_MAX_RX_BYTES, /* maxsize */ nsegs, /* nsegments */ nsegs * MLX5E_MAX_RX_BYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &rq->dma_tag))) goto done; err = mlx5_wq_ll_create(mdev, ¶m->wq, rqc_wq, &rq->wq, &rq->wq_ctrl); if (err) goto err_free_dma_tag; rq->wq.db = &rq->wq.db[MLX5_RCV_DBR]; err = mlx5e_get_wqe_sz(priv, &rq->wqe_sz, &rq->nsegs); if (err != 0) goto err_rq_wq_destroy; wq_sz = mlx5_wq_ll_get_size(&rq->wq); err = -tcp_lro_init_args(&rq->lro, c->ifp, TCP_LRO_ENTRIES, wq_sz); if (err) goto err_rq_wq_destroy; rq->mbuf = malloc(wq_sz * sizeof(rq->mbuf[0]), M_MLX5EN, M_WAITOK | M_ZERO); for (i = 0; i != wq_sz; i++) { struct mlx5e_rx_wqe *wqe = mlx5_wq_ll_get_wqe(&rq->wq, i); int j; err = -bus_dmamap_create(rq->dma_tag, 0, &rq->mbuf[i].dma_map); if (err != 0) { while (i--) bus_dmamap_destroy(rq->dma_tag, rq->mbuf[i].dma_map); goto err_rq_mbuf_free; } /* set value for constant fields */ for (j = 0; j < rq->nsegs; j++) wqe->data[j].lkey = cpu_to_be32(priv->mr.key); } INIT_WORK(&rq->dim.work, mlx5e_dim_work); if (priv->params.rx_cq_moderation_mode < 2) { rq->dim.mode = NET_DIM_CQ_PERIOD_MODE_DISABLED; } else { void *cqc = container_of(param, struct mlx5e_channel_param, rq)->rx_cq.cqc; switch (MLX5_GET(cqc, cqc, cq_period_mode)) { case MLX5_CQ_PERIOD_MODE_START_FROM_EQE: rq->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE; break; case MLX5_CQ_PERIOD_MODE_START_FROM_CQE: rq->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_CQE; break; default: rq->dim.mode = NET_DIM_CQ_PERIOD_MODE_DISABLED; break; } } rq->ifp = c->ifp; rq->channel = c; rq->ix = c->ix; snprintf(buffer, sizeof(buffer), "rxstat%d", c->ix); mlx5e_create_stats(&rq->stats.ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), buffer, mlx5e_rq_stats_desc, MLX5E_RQ_STATS_NUM, rq->stats.arg); return (0); err_rq_mbuf_free: free(rq->mbuf, M_MLX5EN); tcp_lro_free(&rq->lro); err_rq_wq_destroy: mlx5_wq_destroy(&rq->wq_ctrl); err_free_dma_tag: bus_dma_tag_destroy(rq->dma_tag); done: return (err); } static void mlx5e_destroy_rq(struct mlx5e_rq *rq) { int wq_sz; int i; /* destroy all sysctl nodes */ sysctl_ctx_free(&rq->stats.ctx); /* free leftover LRO packets, if any */ tcp_lro_free(&rq->lro); wq_sz = mlx5_wq_ll_get_size(&rq->wq); for (i = 0; i != wq_sz; i++) { if (rq->mbuf[i].mbuf != NULL) { bus_dmamap_unload(rq->dma_tag, rq->mbuf[i].dma_map); m_freem(rq->mbuf[i].mbuf); } bus_dmamap_destroy(rq->dma_tag, rq->mbuf[i].dma_map); } free(rq->mbuf, M_MLX5EN); mlx5_wq_destroy(&rq->wq_ctrl); bus_dma_tag_destroy(rq->dma_tag); } static int mlx5e_enable_rq(struct mlx5e_rq *rq, struct mlx5e_rq_param *param) { struct mlx5e_channel *c = rq->channel; struct mlx5e_priv *priv = c->priv; struct mlx5_core_dev *mdev = priv->mdev; void *in; void *rqc; void *wq; int inlen; int err; inlen = MLX5_ST_SZ_BYTES(create_rq_in) + sizeof(u64) * rq->wq_ctrl.buf.npages; in = mlx5_vzalloc(inlen); if (in == NULL) return (-ENOMEM); rqc = MLX5_ADDR_OF(create_rq_in, in, ctx); wq = MLX5_ADDR_OF(rqc, rqc, wq); memcpy(rqc, param->rqc, sizeof(param->rqc)); MLX5_SET(rqc, rqc, cqn, c->rq.cq.mcq.cqn); MLX5_SET(rqc, rqc, state, MLX5_RQC_STATE_RST); MLX5_SET(rqc, rqc, flush_in_error_en, 1); if (priv->counter_set_id >= 0) MLX5_SET(rqc, rqc, counter_set_id, priv->counter_set_id); MLX5_SET(wq, wq, log_wq_pg_sz, rq->wq_ctrl.buf.page_shift - PAGE_SHIFT); MLX5_SET64(wq, wq, dbr_addr, rq->wq_ctrl.db.dma); mlx5_fill_page_array(&rq->wq_ctrl.buf, (__be64 *) MLX5_ADDR_OF(wq, wq, pas)); err = mlx5_core_create_rq(mdev, in, inlen, &rq->rqn); kvfree(in); return (err); } static int mlx5e_modify_rq(struct mlx5e_rq *rq, int curr_state, int next_state) { struct mlx5e_channel *c = rq->channel; struct mlx5e_priv *priv = c->priv; struct mlx5_core_dev *mdev = priv->mdev; void *in; void *rqc; int inlen; int err; inlen = MLX5_ST_SZ_BYTES(modify_rq_in); in = mlx5_vzalloc(inlen); if (in == NULL) return (-ENOMEM); rqc = MLX5_ADDR_OF(modify_rq_in, in, ctx); MLX5_SET(modify_rq_in, in, rqn, rq->rqn); MLX5_SET(modify_rq_in, in, rq_state, curr_state); MLX5_SET(rqc, rqc, state, next_state); err = mlx5_core_modify_rq(mdev, in, inlen); kvfree(in); return (err); } static void mlx5e_disable_rq(struct mlx5e_rq *rq) { struct mlx5e_channel *c = rq->channel; struct mlx5e_priv *priv = c->priv; struct mlx5_core_dev *mdev = priv->mdev; mlx5_core_destroy_rq(mdev, rq->rqn); } static int mlx5e_wait_for_min_rx_wqes(struct mlx5e_rq *rq) { struct mlx5e_channel *c = rq->channel; struct mlx5e_priv *priv = c->priv; struct mlx5_wq_ll *wq = &rq->wq; int i; for (i = 0; i < 1000; i++) { if (wq->cur_sz >= priv->params.min_rx_wqes) return (0); msleep(4); } return (-ETIMEDOUT); } static int mlx5e_open_rq(struct mlx5e_channel *c, struct mlx5e_rq_param *param, struct mlx5e_rq *rq) { int err; err = mlx5e_create_rq(c, param, rq); if (err) return (err); err = mlx5e_enable_rq(rq, param); if (err) goto err_destroy_rq; err = mlx5e_modify_rq(rq, MLX5_RQC_STATE_RST, MLX5_RQC_STATE_RDY); if (err) goto err_disable_rq; c->rq.enabled = 1; return (0); err_disable_rq: mlx5e_disable_rq(rq); err_destroy_rq: mlx5e_destroy_rq(rq); return (err); } static void mlx5e_close_rq(struct mlx5e_rq *rq) { mtx_lock(&rq->mtx); rq->enabled = 0; callout_stop(&rq->watchdog); mtx_unlock(&rq->mtx); mlx5e_modify_rq(rq, MLX5_RQC_STATE_RDY, MLX5_RQC_STATE_ERR); } static void mlx5e_close_rq_wait(struct mlx5e_rq *rq) { mlx5e_disable_rq(rq); mlx5e_close_cq(&rq->cq); cancel_work_sync(&rq->dim.work); mlx5e_destroy_rq(rq); } void mlx5e_free_sq_db(struct mlx5e_sq *sq) { int wq_sz = mlx5_wq_cyc_get_size(&sq->wq); int x; for (x = 0; x != wq_sz; x++) { if (sq->mbuf[x].mbuf != NULL) { bus_dmamap_unload(sq->dma_tag, sq->mbuf[x].dma_map); m_freem(sq->mbuf[x].mbuf); } bus_dmamap_destroy(sq->dma_tag, sq->mbuf[x].dma_map); } free(sq->mbuf, M_MLX5EN); } int mlx5e_alloc_sq_db(struct mlx5e_sq *sq) { int wq_sz = mlx5_wq_cyc_get_size(&sq->wq); int err; int x; sq->mbuf = malloc(wq_sz * sizeof(sq->mbuf[0]), M_MLX5EN, M_WAITOK | M_ZERO); /* Create DMA descriptor MAPs */ for (x = 0; x != wq_sz; x++) { err = -bus_dmamap_create(sq->dma_tag, 0, &sq->mbuf[x].dma_map); if (err != 0) { while (x--) bus_dmamap_destroy(sq->dma_tag, sq->mbuf[x].dma_map); free(sq->mbuf, M_MLX5EN); return (err); } } return (0); } static const char *mlx5e_sq_stats_desc[] = { MLX5E_SQ_STATS(MLX5E_STATS_DESC) }; void mlx5e_update_sq_inline(struct mlx5e_sq *sq) { sq->max_inline = sq->priv->params.tx_max_inline; sq->min_inline_mode = sq->priv->params.tx_min_inline_mode; /* * Check if trust state is DSCP or if inline mode is NONE which * indicates CX-5 or newer hardware. */ if (sq->priv->params_ethtool.trust_state != MLX5_QPTS_TRUST_PCP || sq->min_inline_mode == MLX5_INLINE_MODE_NONE) { if (MLX5_CAP_ETH(sq->priv->mdev, wqe_vlan_insert)) sq->min_insert_caps = MLX5E_INSERT_VLAN | MLX5E_INSERT_NON_VLAN; else sq->min_insert_caps = MLX5E_INSERT_NON_VLAN; } else { sq->min_insert_caps = 0; } } static void mlx5e_refresh_sq_inline_sub(struct mlx5e_priv *priv, struct mlx5e_channel *c) { int i; for (i = 0; i != priv->num_tc; i++) { mtx_lock(&c->sq[i].lock); mlx5e_update_sq_inline(&c->sq[i]); mtx_unlock(&c->sq[i].lock); } } void mlx5e_refresh_sq_inline(struct mlx5e_priv *priv) { int i; /* check if channels are closed */ if (test_bit(MLX5E_STATE_OPENED, &priv->state) == 0) return; for (i = 0; i < priv->params.num_channels; i++) mlx5e_refresh_sq_inline_sub(priv, &priv->channel[i]); } static int mlx5e_create_sq(struct mlx5e_channel *c, int tc, struct mlx5e_sq_param *param, struct mlx5e_sq *sq) { struct mlx5e_priv *priv = c->priv; struct mlx5_core_dev *mdev = priv->mdev; char buffer[16]; void *sqc = param->sqc; void *sqc_wq = MLX5_ADDR_OF(sqc, sqc, wq); int err; /* Create DMA descriptor TAG */ if ((err = -bus_dma_tag_create( bus_get_dma_tag(mdev->pdev->dev.bsddev), 1, /* any alignment */ 0, /* no boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MLX5E_MAX_TX_PAYLOAD_SIZE, /* maxsize */ MLX5E_MAX_TX_MBUF_FRAGS, /* nsegments */ MLX5E_MAX_TX_MBUF_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &sq->dma_tag))) goto done; err = mlx5_alloc_map_uar(mdev, &sq->uar); if (err) goto err_free_dma_tag; err = mlx5_wq_cyc_create(mdev, ¶m->wq, sqc_wq, &sq->wq, &sq->wq_ctrl); if (err) goto err_unmap_free_uar; sq->wq.db = &sq->wq.db[MLX5_SND_DBR]; sq->bf_buf_size = (1 << MLX5_CAP_GEN(mdev, log_bf_reg_size)) / 2; err = mlx5e_alloc_sq_db(sq); if (err) goto err_sq_wq_destroy; sq->mkey_be = cpu_to_be32(priv->mr.key); sq->ifp = priv->ifp; sq->priv = priv; sq->tc = tc; mlx5e_update_sq_inline(sq); snprintf(buffer, sizeof(buffer), "txstat%dtc%d", c->ix, tc); mlx5e_create_stats(&sq->stats.ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), buffer, mlx5e_sq_stats_desc, MLX5E_SQ_STATS_NUM, sq->stats.arg); return (0); err_sq_wq_destroy: mlx5_wq_destroy(&sq->wq_ctrl); err_unmap_free_uar: mlx5_unmap_free_uar(mdev, &sq->uar); err_free_dma_tag: bus_dma_tag_destroy(sq->dma_tag); done: return (err); } static void mlx5e_destroy_sq(struct mlx5e_sq *sq) { /* destroy all sysctl nodes */ sysctl_ctx_free(&sq->stats.ctx); mlx5e_free_sq_db(sq); mlx5_wq_destroy(&sq->wq_ctrl); mlx5_unmap_free_uar(sq->priv->mdev, &sq->uar); bus_dma_tag_destroy(sq->dma_tag); } int mlx5e_enable_sq(struct mlx5e_sq *sq, struct mlx5e_sq_param *param, int tis_num) { void *in; void *sqc; void *wq; int inlen; int err; inlen = MLX5_ST_SZ_BYTES(create_sq_in) + sizeof(u64) * sq->wq_ctrl.buf.npages; in = mlx5_vzalloc(inlen); if (in == NULL) return (-ENOMEM); sqc = MLX5_ADDR_OF(create_sq_in, in, ctx); wq = MLX5_ADDR_OF(sqc, sqc, wq); memcpy(sqc, param->sqc, sizeof(param->sqc)); MLX5_SET(sqc, sqc, tis_num_0, tis_num); MLX5_SET(sqc, sqc, cqn, sq->cq.mcq.cqn); MLX5_SET(sqc, sqc, state, MLX5_SQC_STATE_RST); MLX5_SET(sqc, sqc, tis_lst_sz, 1); MLX5_SET(sqc, sqc, flush_in_error_en, 1); MLX5_SET(wq, wq, wq_type, MLX5_WQ_TYPE_CYCLIC); MLX5_SET(wq, wq, uar_page, sq->uar.index); MLX5_SET(wq, wq, log_wq_pg_sz, sq->wq_ctrl.buf.page_shift - PAGE_SHIFT); MLX5_SET64(wq, wq, dbr_addr, sq->wq_ctrl.db.dma); mlx5_fill_page_array(&sq->wq_ctrl.buf, (__be64 *) MLX5_ADDR_OF(wq, wq, pas)); err = mlx5_core_create_sq(sq->priv->mdev, in, inlen, &sq->sqn); kvfree(in); return (err); } int mlx5e_modify_sq(struct mlx5e_sq *sq, int curr_state, int next_state) { void *in; void *sqc; int inlen; int err; inlen = MLX5_ST_SZ_BYTES(modify_sq_in); in = mlx5_vzalloc(inlen); if (in == NULL) return (-ENOMEM); sqc = MLX5_ADDR_OF(modify_sq_in, in, ctx); MLX5_SET(modify_sq_in, in, sqn, sq->sqn); MLX5_SET(modify_sq_in, in, sq_state, curr_state); MLX5_SET(sqc, sqc, state, next_state); err = mlx5_core_modify_sq(sq->priv->mdev, in, inlen); kvfree(in); return (err); } void mlx5e_disable_sq(struct mlx5e_sq *sq) { mlx5_core_destroy_sq(sq->priv->mdev, sq->sqn); } static int mlx5e_open_sq(struct mlx5e_channel *c, int tc, struct mlx5e_sq_param *param, struct mlx5e_sq *sq) { int err; sq->cev_factor = c->priv->params_ethtool.tx_completion_fact; /* ensure the TX completion event factor is not zero */ if (sq->cev_factor == 0) sq->cev_factor = 1; err = mlx5e_create_sq(c, tc, param, sq); if (err) return (err); err = mlx5e_enable_sq(sq, param, c->priv->tisn[tc]); if (err) goto err_destroy_sq; err = mlx5e_modify_sq(sq, MLX5_SQC_STATE_RST, MLX5_SQC_STATE_RDY); if (err) goto err_disable_sq; WRITE_ONCE(sq->running, 1); return (0); err_disable_sq: mlx5e_disable_sq(sq); err_destroy_sq: mlx5e_destroy_sq(sq); return (err); } static void mlx5e_sq_send_nops_locked(struct mlx5e_sq *sq, int can_sleep) { /* fill up remainder with NOPs */ while (sq->cev_counter != 0) { while (!mlx5e_sq_has_room_for(sq, 1)) { if (can_sleep != 0) { mtx_unlock(&sq->lock); msleep(4); mtx_lock(&sq->lock); } else { goto done; } } /* send a single NOP */ mlx5e_send_nop(sq, 1); atomic_thread_fence_rel(); } done: /* Check if we need to write the doorbell */ if (likely(sq->doorbell.d64 != 0)) { mlx5e_tx_notify_hw(sq, sq->doorbell.d32, 0); sq->doorbell.d64 = 0; } } void mlx5e_sq_cev_timeout(void *arg) { struct mlx5e_sq *sq = arg; mtx_assert(&sq->lock, MA_OWNED); /* check next state */ switch (sq->cev_next_state) { case MLX5E_CEV_STATE_SEND_NOPS: /* fill TX ring with NOPs, if any */ mlx5e_sq_send_nops_locked(sq, 0); /* check if completed */ if (sq->cev_counter == 0) { sq->cev_next_state = MLX5E_CEV_STATE_INITIAL; return; } break; default: /* send NOPs on next timeout */ sq->cev_next_state = MLX5E_CEV_STATE_SEND_NOPS; break; } /* restart timer */ callout_reset_curcpu(&sq->cev_callout, hz, mlx5e_sq_cev_timeout, sq); } void mlx5e_drain_sq(struct mlx5e_sq *sq) { int error; struct mlx5_core_dev *mdev= sq->priv->mdev; /* * Check if already stopped. * * NOTE: Serialization of this function is managed by the * caller ensuring the priv's state lock is locked or in case * of rate limit support, a single thread manages drain and * resume of SQs. The "running" variable can therefore safely * be read without any locks. */ if (READ_ONCE(sq->running) == 0) return; /* don't put more packets into the SQ */ WRITE_ONCE(sq->running, 0); /* serialize access to DMA rings */ mtx_lock(&sq->lock); /* teardown event factor timer, if any */ sq->cev_next_state = MLX5E_CEV_STATE_HOLD_NOPS; callout_stop(&sq->cev_callout); /* send dummy NOPs in order to flush the transmit ring */ mlx5e_sq_send_nops_locked(sq, 1); mtx_unlock(&sq->lock); /* wait till SQ is empty or link is down */ mtx_lock(&sq->lock); while (sq->cc != sq->pc && (sq->priv->media_status_last & IFM_ACTIVE) != 0 && mdev->state != MLX5_DEVICE_STATE_INTERNAL_ERROR) { mtx_unlock(&sq->lock); msleep(1); sq->cq.mcq.comp(&sq->cq.mcq); mtx_lock(&sq->lock); } mtx_unlock(&sq->lock); /* error out remaining requests */ error = mlx5e_modify_sq(sq, MLX5_SQC_STATE_RDY, MLX5_SQC_STATE_ERR); if (error != 0) { mlx5_en_err(sq->ifp, "mlx5e_modify_sq() from RDY to ERR failed: %d\n", error); } /* wait till SQ is empty */ mtx_lock(&sq->lock); while (sq->cc != sq->pc && mdev->state != MLX5_DEVICE_STATE_INTERNAL_ERROR) { mtx_unlock(&sq->lock); msleep(1); sq->cq.mcq.comp(&sq->cq.mcq); mtx_lock(&sq->lock); } mtx_unlock(&sq->lock); } static void mlx5e_close_sq_wait(struct mlx5e_sq *sq) { mlx5e_drain_sq(sq); mlx5e_disable_sq(sq); mlx5e_destroy_sq(sq); } static int mlx5e_create_cq(struct mlx5e_priv *priv, struct mlx5e_cq_param *param, struct mlx5e_cq *cq, mlx5e_cq_comp_t *comp, int eq_ix) { struct mlx5_core_dev *mdev = priv->mdev; struct mlx5_core_cq *mcq = &cq->mcq; int eqn_not_used; int irqn; int err; u32 i; param->wq.buf_numa_node = 0; param->wq.db_numa_node = 0; err = mlx5_vector2eqn(mdev, eq_ix, &eqn_not_used, &irqn); if (err) return (err); err = mlx5_cqwq_create(mdev, ¶m->wq, param->cqc, &cq->wq, &cq->wq_ctrl); if (err) return (err); mcq->cqe_sz = 64; mcq->set_ci_db = cq->wq_ctrl.db.db; mcq->arm_db = cq->wq_ctrl.db.db + 1; *mcq->set_ci_db = 0; *mcq->arm_db = 0; mcq->vector = eq_ix; mcq->comp = comp; mcq->event = mlx5e_cq_error_event; mcq->irqn = irqn; mcq->uar = &priv->cq_uar; for (i = 0; i < mlx5_cqwq_get_size(&cq->wq); i++) { struct mlx5_cqe64 *cqe = mlx5_cqwq_get_wqe(&cq->wq, i); cqe->op_own = 0xf1; } cq->priv = priv; return (0); } static void mlx5e_destroy_cq(struct mlx5e_cq *cq) { mlx5_wq_destroy(&cq->wq_ctrl); } static int mlx5e_enable_cq(struct mlx5e_cq *cq, struct mlx5e_cq_param *param, int eq_ix) { struct mlx5_core_cq *mcq = &cq->mcq; void *in; void *cqc; int inlen; int irqn_not_used; int eqn; int err; inlen = MLX5_ST_SZ_BYTES(create_cq_in) + sizeof(u64) * cq->wq_ctrl.buf.npages; in = mlx5_vzalloc(inlen); if (in == NULL) return (-ENOMEM); cqc = MLX5_ADDR_OF(create_cq_in, in, cq_context); memcpy(cqc, param->cqc, sizeof(param->cqc)); mlx5_fill_page_array(&cq->wq_ctrl.buf, (__be64 *) MLX5_ADDR_OF(create_cq_in, in, pas)); mlx5_vector2eqn(cq->priv->mdev, eq_ix, &eqn, &irqn_not_used); MLX5_SET(cqc, cqc, c_eqn, eqn); MLX5_SET(cqc, cqc, uar_page, mcq->uar->index); MLX5_SET(cqc, cqc, log_page_size, cq->wq_ctrl.buf.page_shift - PAGE_SHIFT); MLX5_SET64(cqc, cqc, dbr_addr, cq->wq_ctrl.db.dma); err = mlx5_core_create_cq(cq->priv->mdev, mcq, in, inlen); kvfree(in); if (err) return (err); mlx5e_cq_arm(cq, MLX5_GET_DOORBELL_LOCK(&cq->priv->doorbell_lock)); return (0); } static void mlx5e_disable_cq(struct mlx5e_cq *cq) { mlx5_core_destroy_cq(cq->priv->mdev, &cq->mcq); } int mlx5e_open_cq(struct mlx5e_priv *priv, struct mlx5e_cq_param *param, struct mlx5e_cq *cq, mlx5e_cq_comp_t *comp, int eq_ix) { int err; err = mlx5e_create_cq(priv, param, cq, comp, eq_ix); if (err) return (err); err = mlx5e_enable_cq(cq, param, eq_ix); if (err) goto err_destroy_cq; return (0); err_destroy_cq: mlx5e_destroy_cq(cq); return (err); } void mlx5e_close_cq(struct mlx5e_cq *cq) { mlx5e_disable_cq(cq); mlx5e_destroy_cq(cq); } static int mlx5e_open_tx_cqs(struct mlx5e_channel *c, struct mlx5e_channel_param *cparam) { int err; int tc; for (tc = 0; tc < c->priv->num_tc; tc++) { /* open completion queue */ err = mlx5e_open_cq(c->priv, &cparam->tx_cq, &c->sq[tc].cq, &mlx5e_tx_cq_comp, c->ix); if (err) goto err_close_tx_cqs; } return (0); err_close_tx_cqs: for (tc--; tc >= 0; tc--) mlx5e_close_cq(&c->sq[tc].cq); return (err); } static void mlx5e_close_tx_cqs(struct mlx5e_channel *c) { int tc; for (tc = 0; tc < c->priv->num_tc; tc++) mlx5e_close_cq(&c->sq[tc].cq); } static int mlx5e_open_sqs(struct mlx5e_channel *c, struct mlx5e_channel_param *cparam) { int err; int tc; for (tc = 0; tc < c->priv->num_tc; tc++) { err = mlx5e_open_sq(c, tc, &cparam->sq, &c->sq[tc]); if (err) goto err_close_sqs; } return (0); err_close_sqs: for (tc--; tc >= 0; tc--) mlx5e_close_sq_wait(&c->sq[tc]); return (err); } static void mlx5e_close_sqs_wait(struct mlx5e_channel *c) { int tc; for (tc = 0; tc < c->priv->num_tc; tc++) mlx5e_close_sq_wait(&c->sq[tc]); } static void mlx5e_chan_static_init(struct mlx5e_priv *priv, struct mlx5e_channel *c, int ix) { int tc; /* setup priv and channel number */ c->priv = priv; c->ix = ix; c->ifp = priv->ifp; mtx_init(&c->rq.mtx, "mlx5rx", MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&c->rq.watchdog, &c->rq.mtx, 0); for (tc = 0; tc != MLX5E_MAX_TX_NUM_TC; tc++) { struct mlx5e_sq *sq = c->sq + tc; mtx_init(&sq->lock, "mlx5tx", MTX_NETWORK_LOCK " TX", MTX_DEF); mtx_init(&sq->comp_lock, "mlx5comp", MTX_NETWORK_LOCK " TX", MTX_DEF); callout_init_mtx(&sq->cev_callout, &sq->lock, 0); } } static void mlx5e_chan_static_destroy(struct mlx5e_channel *c) { int tc; callout_drain(&c->rq.watchdog); mtx_destroy(&c->rq.mtx); for (tc = 0; tc != MLX5E_MAX_TX_NUM_TC; tc++) { callout_drain(&c->sq[tc].cev_callout); mtx_destroy(&c->sq[tc].lock); mtx_destroy(&c->sq[tc].comp_lock); } } static int mlx5e_open_channel(struct mlx5e_priv *priv, struct mlx5e_channel_param *cparam, struct mlx5e_channel *c) { int i, err; /* zero non-persistant data */ MLX5E_ZERO(&c->rq, mlx5e_rq_zero_start); for (i = 0; i != priv->num_tc; i++) MLX5E_ZERO(&c->sq[i], mlx5e_sq_zero_start); /* open transmit completion queue */ err = mlx5e_open_tx_cqs(c, cparam); if (err) goto err_free; /* open receive completion queue */ err = mlx5e_open_cq(c->priv, &cparam->rx_cq, &c->rq.cq, &mlx5e_rx_cq_comp, c->ix); if (err) goto err_close_tx_cqs; err = mlx5e_open_sqs(c, cparam); if (err) goto err_close_rx_cq; err = mlx5e_open_rq(c, &cparam->rq, &c->rq); if (err) goto err_close_sqs; /* poll receive queue initially */ c->rq.cq.mcq.comp(&c->rq.cq.mcq); return (0); err_close_sqs: mlx5e_close_sqs_wait(c); err_close_rx_cq: mlx5e_close_cq(&c->rq.cq); err_close_tx_cqs: mlx5e_close_tx_cqs(c); err_free: return (err); } static void mlx5e_close_channel(struct mlx5e_channel *c) { mlx5e_close_rq(&c->rq); } static void mlx5e_close_channel_wait(struct mlx5e_channel *c) { mlx5e_close_rq_wait(&c->rq); mlx5e_close_sqs_wait(c); mlx5e_close_tx_cqs(c); } static int mlx5e_get_wqe_sz(struct mlx5e_priv *priv, u32 *wqe_sz, u32 *nsegs) { u32 r, n; r = priv->params.hw_lro_en ? priv->params.lro_wqe_sz : MLX5E_SW2MB_MTU(priv->ifp->if_mtu); if (r > MJUM16BYTES) return (-ENOMEM); if (r > MJUM9BYTES) r = MJUM16BYTES; else if (r > MJUMPAGESIZE) r = MJUM9BYTES; else if (r > MCLBYTES) r = MJUMPAGESIZE; else r = MCLBYTES; /* * n + 1 must be a power of two, because stride size must be. * Stride size is 16 * (n + 1), as the first segment is * control. */ for (n = howmany(r, MLX5E_MAX_RX_BYTES); !powerof2(n + 1); n++) ; if (n > MLX5E_MAX_BUSDMA_RX_SEGS) return (-ENOMEM); *wqe_sz = r; *nsegs = n; return (0); } static void mlx5e_build_rq_param(struct mlx5e_priv *priv, struct mlx5e_rq_param *param) { void *rqc = param->rqc; void *wq = MLX5_ADDR_OF(rqc, rqc, wq); u32 wqe_sz, nsegs; mlx5e_get_wqe_sz(priv, &wqe_sz, &nsegs); MLX5_SET(wq, wq, wq_type, MLX5_WQ_TYPE_LINKED_LIST); MLX5_SET(wq, wq, end_padding_mode, MLX5_WQ_END_PAD_MODE_ALIGN); MLX5_SET(wq, wq, log_wq_stride, ilog2(sizeof(struct mlx5e_rx_wqe) + nsegs * sizeof(struct mlx5_wqe_data_seg))); MLX5_SET(wq, wq, log_wq_sz, priv->params.log_rq_size); MLX5_SET(wq, wq, pd, priv->pdn); param->wq.buf_numa_node = 0; param->wq.db_numa_node = 0; param->wq.linear = 1; } static void mlx5e_build_sq_param(struct mlx5e_priv *priv, struct mlx5e_sq_param *param) { void *sqc = param->sqc; void *wq = MLX5_ADDR_OF(sqc, sqc, wq); MLX5_SET(wq, wq, log_wq_sz, priv->params.log_sq_size); MLX5_SET(wq, wq, log_wq_stride, ilog2(MLX5_SEND_WQE_BB)); MLX5_SET(wq, wq, pd, priv->pdn); param->wq.buf_numa_node = 0; param->wq.db_numa_node = 0; param->wq.linear = 1; } static void mlx5e_build_common_cq_param(struct mlx5e_priv *priv, struct mlx5e_cq_param *param) { void *cqc = param->cqc; MLX5_SET(cqc, cqc, uar_page, priv->cq_uar.index); } static void mlx5e_get_default_profile(struct mlx5e_priv *priv, int mode, struct net_dim_cq_moder *ptr) { *ptr = net_dim_get_profile(mode, MLX5E_DIM_DEFAULT_PROFILE); /* apply LRO restrictions */ if (priv->params.hw_lro_en && ptr->pkts > MLX5E_DIM_MAX_RX_CQ_MODERATION_PKTS_WITH_LRO) { ptr->pkts = MLX5E_DIM_MAX_RX_CQ_MODERATION_PKTS_WITH_LRO; } } static void mlx5e_build_rx_cq_param(struct mlx5e_priv *priv, struct mlx5e_cq_param *param) { struct net_dim_cq_moder curr; void *cqc = param->cqc; /* * We use MLX5_CQE_FORMAT_HASH because the RX hash mini CQE * format is more beneficial for FreeBSD use case. * * Adding support for MLX5_CQE_FORMAT_CSUM will require changes * in mlx5e_decompress_cqe. */ if (priv->params.cqe_zipping_en) { MLX5_SET(cqc, cqc, mini_cqe_res_format, MLX5_CQE_FORMAT_HASH); MLX5_SET(cqc, cqc, cqe_compression_en, 1); } MLX5_SET(cqc, cqc, log_cq_size, priv->params.log_rq_size); switch (priv->params.rx_cq_moderation_mode) { case 0: MLX5_SET(cqc, cqc, cq_period, priv->params.rx_cq_moderation_usec); MLX5_SET(cqc, cqc, cq_max_count, priv->params.rx_cq_moderation_pkts); MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_EQE); break; case 1: MLX5_SET(cqc, cqc, cq_period, priv->params.rx_cq_moderation_usec); MLX5_SET(cqc, cqc, cq_max_count, priv->params.rx_cq_moderation_pkts); if (MLX5_CAP_GEN(priv->mdev, cq_period_start_from_cqe)) MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_CQE); else MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_EQE); break; case 2: mlx5e_get_default_profile(priv, NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE, &curr); MLX5_SET(cqc, cqc, cq_period, curr.usec); MLX5_SET(cqc, cqc, cq_max_count, curr.pkts); MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_EQE); break; case 3: mlx5e_get_default_profile(priv, NET_DIM_CQ_PERIOD_MODE_START_FROM_CQE, &curr); MLX5_SET(cqc, cqc, cq_period, curr.usec); MLX5_SET(cqc, cqc, cq_max_count, curr.pkts); if (MLX5_CAP_GEN(priv->mdev, cq_period_start_from_cqe)) MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_CQE); else MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_EQE); break; default: break; } mlx5e_dim_build_cq_param(priv, param); mlx5e_build_common_cq_param(priv, param); } static void mlx5e_build_tx_cq_param(struct mlx5e_priv *priv, struct mlx5e_cq_param *param) { void *cqc = param->cqc; MLX5_SET(cqc, cqc, log_cq_size, priv->params.log_sq_size); MLX5_SET(cqc, cqc, cq_period, priv->params.tx_cq_moderation_usec); MLX5_SET(cqc, cqc, cq_max_count, priv->params.tx_cq_moderation_pkts); switch (priv->params.tx_cq_moderation_mode) { case 0: MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_EQE); break; default: if (MLX5_CAP_GEN(priv->mdev, cq_period_start_from_cqe)) MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_CQE); else MLX5_SET(cqc, cqc, cq_period_mode, MLX5_CQ_PERIOD_MODE_START_FROM_EQE); break; } mlx5e_build_common_cq_param(priv, param); } static void mlx5e_build_channel_param(struct mlx5e_priv *priv, struct mlx5e_channel_param *cparam) { memset(cparam, 0, sizeof(*cparam)); mlx5e_build_rq_param(priv, &cparam->rq); mlx5e_build_sq_param(priv, &cparam->sq); mlx5e_build_rx_cq_param(priv, &cparam->rx_cq); mlx5e_build_tx_cq_param(priv, &cparam->tx_cq); } static int mlx5e_open_channels(struct mlx5e_priv *priv) { struct mlx5e_channel_param *cparam; int err; int i; int j; cparam = malloc(sizeof(*cparam), M_MLX5EN, M_WAITOK); mlx5e_build_channel_param(priv, cparam); for (i = 0; i < priv->params.num_channels; i++) { err = mlx5e_open_channel(priv, cparam, &priv->channel[i]); if (err) goto err_close_channels; } for (j = 0; j < priv->params.num_channels; j++) { err = mlx5e_wait_for_min_rx_wqes(&priv->channel[j].rq); if (err) goto err_close_channels; } free(cparam, M_MLX5EN); return (0); err_close_channels: while (i--) { mlx5e_close_channel(&priv->channel[i]); mlx5e_close_channel_wait(&priv->channel[i]); } free(cparam, M_MLX5EN); return (err); } static void mlx5e_close_channels(struct mlx5e_priv *priv) { int i; for (i = 0; i < priv->params.num_channels; i++) mlx5e_close_channel(&priv->channel[i]); for (i = 0; i < priv->params.num_channels; i++) mlx5e_close_channel_wait(&priv->channel[i]); } static int mlx5e_refresh_sq_params(struct mlx5e_priv *priv, struct mlx5e_sq *sq) { if (MLX5_CAP_GEN(priv->mdev, cq_period_mode_modify)) { uint8_t cq_mode; switch (priv->params.tx_cq_moderation_mode) { case 0: case 2: cq_mode = MLX5_CQ_PERIOD_MODE_START_FROM_EQE; break; default: cq_mode = MLX5_CQ_PERIOD_MODE_START_FROM_CQE; break; } return (mlx5_core_modify_cq_moderation_mode(priv->mdev, &sq->cq.mcq, priv->params.tx_cq_moderation_usec, priv->params.tx_cq_moderation_pkts, cq_mode)); } return (mlx5_core_modify_cq_moderation(priv->mdev, &sq->cq.mcq, priv->params.tx_cq_moderation_usec, priv->params.tx_cq_moderation_pkts)); } static int mlx5e_refresh_rq_params(struct mlx5e_priv *priv, struct mlx5e_rq *rq) { if (MLX5_CAP_GEN(priv->mdev, cq_period_mode_modify)) { uint8_t cq_mode; uint8_t dim_mode; int retval; switch (priv->params.rx_cq_moderation_mode) { case 0: case 2: cq_mode = MLX5_CQ_PERIOD_MODE_START_FROM_EQE; dim_mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE; break; default: cq_mode = MLX5_CQ_PERIOD_MODE_START_FROM_CQE; dim_mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_CQE; break; } /* tear down dynamic interrupt moderation */ mtx_lock(&rq->mtx); rq->dim.mode = NET_DIM_CQ_PERIOD_MODE_DISABLED; mtx_unlock(&rq->mtx); /* wait for dynamic interrupt moderation work task, if any */ cancel_work_sync(&rq->dim.work); if (priv->params.rx_cq_moderation_mode >= 2) { struct net_dim_cq_moder curr; mlx5e_get_default_profile(priv, dim_mode, &curr); retval = mlx5_core_modify_cq_moderation_mode(priv->mdev, &rq->cq.mcq, curr.usec, curr.pkts, cq_mode); /* set dynamic interrupt moderation mode and zero defaults */ mtx_lock(&rq->mtx); rq->dim.mode = dim_mode; rq->dim.state = 0; rq->dim.profile_ix = MLX5E_DIM_DEFAULT_PROFILE; mtx_unlock(&rq->mtx); } else { retval = mlx5_core_modify_cq_moderation_mode(priv->mdev, &rq->cq.mcq, priv->params.rx_cq_moderation_usec, priv->params.rx_cq_moderation_pkts, cq_mode); } return (retval); } return (mlx5_core_modify_cq_moderation(priv->mdev, &rq->cq.mcq, priv->params.rx_cq_moderation_usec, priv->params.rx_cq_moderation_pkts)); } static int mlx5e_refresh_channel_params_sub(struct mlx5e_priv *priv, struct mlx5e_channel *c) { int err; int i; err = mlx5e_refresh_rq_params(priv, &c->rq); if (err) goto done; for (i = 0; i != priv->num_tc; i++) { err = mlx5e_refresh_sq_params(priv, &c->sq[i]); if (err) goto done; } done: return (err); } int mlx5e_refresh_channel_params(struct mlx5e_priv *priv) { int i; /* check if channels are closed */ if (test_bit(MLX5E_STATE_OPENED, &priv->state) == 0) return (EINVAL); for (i = 0; i < priv->params.num_channels; i++) { int err; err = mlx5e_refresh_channel_params_sub(priv, &priv->channel[i]); if (err) return (err); } return (0); } static int mlx5e_open_tis(struct mlx5e_priv *priv, int tc) { struct mlx5_core_dev *mdev = priv->mdev; u32 in[MLX5_ST_SZ_DW(create_tis_in)]; void *tisc = MLX5_ADDR_OF(create_tis_in, in, ctx); memset(in, 0, sizeof(in)); MLX5_SET(tisc, tisc, prio, tc); MLX5_SET(tisc, tisc, transport_domain, priv->tdn); return (mlx5_core_create_tis(mdev, in, sizeof(in), &priv->tisn[tc])); } static void mlx5e_close_tis(struct mlx5e_priv *priv, int tc) { mlx5_core_destroy_tis(priv->mdev, priv->tisn[tc]); } static int mlx5e_open_tises(struct mlx5e_priv *priv) { int num_tc = priv->num_tc; int err; int tc; for (tc = 0; tc < num_tc; tc++) { err = mlx5e_open_tis(priv, tc); if (err) goto err_close_tises; } return (0); err_close_tises: for (tc--; tc >= 0; tc--) mlx5e_close_tis(priv, tc); return (err); } static void mlx5e_close_tises(struct mlx5e_priv *priv) { int num_tc = priv->num_tc; int tc; for (tc = 0; tc < num_tc; tc++) mlx5e_close_tis(priv, tc); } static int mlx5e_open_rqt(struct mlx5e_priv *priv) { struct mlx5_core_dev *mdev = priv->mdev; u32 *in; u32 out[MLX5_ST_SZ_DW(create_rqt_out)] = {0}; void *rqtc; int inlen; int err; int sz; int i; sz = 1 << priv->params.rx_hash_log_tbl_sz; inlen = MLX5_ST_SZ_BYTES(create_rqt_in) + sizeof(u32) * sz; in = mlx5_vzalloc(inlen); if (in == NULL) return (-ENOMEM); rqtc = MLX5_ADDR_OF(create_rqt_in, in, rqt_context); MLX5_SET(rqtc, rqtc, rqt_actual_size, sz); MLX5_SET(rqtc, rqtc, rqt_max_size, sz); for (i = 0; i < sz; i++) { int ix = i; #ifdef RSS ix = rss_get_indirection_to_bucket(ix); #endif /* ensure we don't overflow */ ix %= priv->params.num_channels; /* apply receive side scaling stride, if any */ ix -= ix % (int)priv->params.channels_rsss; MLX5_SET(rqtc, rqtc, rq_num[i], priv->channel[ix].rq.rqn); } MLX5_SET(create_rqt_in, in, opcode, MLX5_CMD_OP_CREATE_RQT); err = mlx5_cmd_exec(mdev, in, inlen, out, sizeof(out)); if (!err) priv->rqtn = MLX5_GET(create_rqt_out, out, rqtn); kvfree(in); return (err); } static void mlx5e_close_rqt(struct mlx5e_priv *priv) { u32 in[MLX5_ST_SZ_DW(destroy_rqt_in)] = {0}; u32 out[MLX5_ST_SZ_DW(destroy_rqt_out)] = {0}; MLX5_SET(destroy_rqt_in, in, opcode, MLX5_CMD_OP_DESTROY_RQT); MLX5_SET(destroy_rqt_in, in, rqtn, priv->rqtn); mlx5_cmd_exec(priv->mdev, in, sizeof(in), out, sizeof(out)); } static void mlx5e_build_tir_ctx(struct mlx5e_priv *priv, u32 * tirc, int tt) { void *hfso = MLX5_ADDR_OF(tirc, tirc, rx_hash_field_selector_outer); __be32 *hkey; MLX5_SET(tirc, tirc, transport_domain, priv->tdn); #define ROUGH_MAX_L2_L3_HDR_SZ 256 #define MLX5_HASH_IP (MLX5_HASH_FIELD_SEL_SRC_IP |\ MLX5_HASH_FIELD_SEL_DST_IP) #define MLX5_HASH_ALL (MLX5_HASH_FIELD_SEL_SRC_IP |\ MLX5_HASH_FIELD_SEL_DST_IP |\ MLX5_HASH_FIELD_SEL_L4_SPORT |\ MLX5_HASH_FIELD_SEL_L4_DPORT) #define MLX5_HASH_IP_IPSEC_SPI (MLX5_HASH_FIELD_SEL_SRC_IP |\ MLX5_HASH_FIELD_SEL_DST_IP |\ MLX5_HASH_FIELD_SEL_IPSEC_SPI) if (priv->params.hw_lro_en) { MLX5_SET(tirc, tirc, lro_enable_mask, MLX5_TIRC_LRO_ENABLE_MASK_IPV4_LRO | MLX5_TIRC_LRO_ENABLE_MASK_IPV6_LRO); MLX5_SET(tirc, tirc, lro_max_msg_sz, (priv->params.lro_wqe_sz - ROUGH_MAX_L2_L3_HDR_SZ) >> 8); /* TODO: add the option to choose timer value dynamically */ MLX5_SET(tirc, tirc, lro_timeout_period_usecs, MLX5_CAP_ETH(priv->mdev, lro_timer_supported_periods[2])); } /* setup parameters for hashing TIR type, if any */ switch (tt) { case MLX5E_TT_ANY: MLX5_SET(tirc, tirc, disp_type, MLX5_TIRC_DISP_TYPE_DIRECT); MLX5_SET(tirc, tirc, inline_rqn, priv->channel[0].rq.rqn); break; default: MLX5_SET(tirc, tirc, disp_type, MLX5_TIRC_DISP_TYPE_INDIRECT); MLX5_SET(tirc, tirc, indirect_table, priv->rqtn); MLX5_SET(tirc, tirc, rx_hash_fn, MLX5_TIRC_RX_HASH_FN_HASH_TOEPLITZ); hkey = (__be32 *) MLX5_ADDR_OF(tirc, tirc, rx_hash_toeplitz_key); #ifdef RSS /* * The FreeBSD RSS implementation does currently not * support symmetric Toeplitz hashes: */ MLX5_SET(tirc, tirc, rx_hash_symmetric, 0); rss_getkey((uint8_t *)hkey); #else MLX5_SET(tirc, tirc, rx_hash_symmetric, 1); hkey[0] = cpu_to_be32(0xD181C62C); hkey[1] = cpu_to_be32(0xF7F4DB5B); hkey[2] = cpu_to_be32(0x1983A2FC); hkey[3] = cpu_to_be32(0x943E1ADB); hkey[4] = cpu_to_be32(0xD9389E6B); hkey[5] = cpu_to_be32(0xD1039C2C); hkey[6] = cpu_to_be32(0xA74499AD); hkey[7] = cpu_to_be32(0x593D56D9); hkey[8] = cpu_to_be32(0xF3253C06); hkey[9] = cpu_to_be32(0x2ADC1FFC); #endif break; } switch (tt) { case MLX5E_TT_IPV4_TCP: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV4); MLX5_SET(rx_hash_field_select, hfso, l4_prot_type, MLX5_L4_PROT_TYPE_TCP); #ifdef RSS if (!(rss_gethashconfig() & RSS_HASHTYPE_RSS_TCP_IPV4)) { MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP); } else #endif MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_ALL); break; case MLX5E_TT_IPV6_TCP: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV6); MLX5_SET(rx_hash_field_select, hfso, l4_prot_type, MLX5_L4_PROT_TYPE_TCP); #ifdef RSS if (!(rss_gethashconfig() & RSS_HASHTYPE_RSS_TCP_IPV6)) { MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP); } else #endif MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_ALL); break; case MLX5E_TT_IPV4_UDP: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV4); MLX5_SET(rx_hash_field_select, hfso, l4_prot_type, MLX5_L4_PROT_TYPE_UDP); #ifdef RSS if (!(rss_gethashconfig() & RSS_HASHTYPE_RSS_UDP_IPV4)) { MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP); } else #endif MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_ALL); break; case MLX5E_TT_IPV6_UDP: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV6); MLX5_SET(rx_hash_field_select, hfso, l4_prot_type, MLX5_L4_PROT_TYPE_UDP); #ifdef RSS if (!(rss_gethashconfig() & RSS_HASHTYPE_RSS_UDP_IPV6)) { MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP); } else #endif MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_ALL); break; case MLX5E_TT_IPV4_IPSEC_AH: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV4); MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP_IPSEC_SPI); break; case MLX5E_TT_IPV6_IPSEC_AH: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV6); MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP_IPSEC_SPI); break; case MLX5E_TT_IPV4_IPSEC_ESP: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV4); MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP_IPSEC_SPI); break; case MLX5E_TT_IPV6_IPSEC_ESP: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV6); MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP_IPSEC_SPI); break; case MLX5E_TT_IPV4: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV4); MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP); break; case MLX5E_TT_IPV6: MLX5_SET(rx_hash_field_select, hfso, l3_prot_type, MLX5_L3_PROT_TYPE_IPV6); MLX5_SET(rx_hash_field_select, hfso, selected_fields, MLX5_HASH_IP); break; default: break; } } static int mlx5e_open_tir(struct mlx5e_priv *priv, int tt) { struct mlx5_core_dev *mdev = priv->mdev; u32 *in; void *tirc; int inlen; int err; inlen = MLX5_ST_SZ_BYTES(create_tir_in); in = mlx5_vzalloc(inlen); if (in == NULL) return (-ENOMEM); tirc = MLX5_ADDR_OF(create_tir_in, in, tir_context); mlx5e_build_tir_ctx(priv, tirc, tt); err = mlx5_core_create_tir(mdev, in, inlen, &priv->tirn[tt]); kvfree(in); return (err); } static void mlx5e_close_tir(struct mlx5e_priv *priv, int tt) { mlx5_core_destroy_tir(priv->mdev, priv->tirn[tt]); } static int mlx5e_open_tirs(struct mlx5e_priv *priv) { int err; int i; for (i = 0; i < MLX5E_NUM_TT; i++) { err = mlx5e_open_tir(priv, i); if (err) goto err_close_tirs; } return (0); err_close_tirs: for (i--; i >= 0; i--) mlx5e_close_tir(priv, i); return (err); } static void mlx5e_close_tirs(struct mlx5e_priv *priv) { int i; for (i = 0; i < MLX5E_NUM_TT; i++) mlx5e_close_tir(priv, i); } /* * SW MTU does not include headers, * HW MTU includes all headers and checksums. */ static int mlx5e_set_dev_port_mtu(struct ifnet *ifp, int sw_mtu) { struct mlx5e_priv *priv = ifp->if_softc; struct mlx5_core_dev *mdev = priv->mdev; int hw_mtu; int err; hw_mtu = MLX5E_SW2HW_MTU(sw_mtu); err = mlx5_set_port_mtu(mdev, hw_mtu); if (err) { mlx5_en_err(ifp, "mlx5_set_port_mtu failed setting %d, err=%d\n", sw_mtu, err); return (err); } /* Update vport context MTU */ err = mlx5_set_vport_mtu(mdev, hw_mtu); if (err) { mlx5_en_err(ifp, "Failed updating vport context with MTU size, err=%d\n", err); } ifp->if_mtu = sw_mtu; err = mlx5_query_vport_mtu(mdev, &hw_mtu); if (err || !hw_mtu) { /* fallback to port oper mtu */ err = mlx5_query_port_oper_mtu(mdev, &hw_mtu); } if (err) { mlx5_en_err(ifp, "Query port MTU, after setting new MTU value, failed\n"); return (err); } else if (MLX5E_HW2SW_MTU(hw_mtu) < sw_mtu) { err = -E2BIG, mlx5_en_err(ifp, "Port MTU %d is smaller than ifp mtu %d\n", hw_mtu, sw_mtu); } else if (MLX5E_HW2SW_MTU(hw_mtu) > sw_mtu) { err = -EINVAL; mlx5_en_err(ifp, "Port MTU %d is bigger than ifp mtu %d\n", hw_mtu, sw_mtu); } priv->params_ethtool.hw_mtu = hw_mtu; return (err); } int mlx5e_open_locked(struct ifnet *ifp) { struct mlx5e_priv *priv = ifp->if_softc; int err; u16 set_id; /* check if already opened */ if (test_bit(MLX5E_STATE_OPENED, &priv->state) != 0) return (0); #ifdef RSS if (rss_getnumbuckets() > priv->params.num_channels) { mlx5_en_info(ifp, "NOTE: There are more RSS buckets(%u) than channels(%u) available\n", rss_getnumbuckets(), priv->params.num_channels); } #endif err = mlx5e_open_tises(priv); if (err) { mlx5_en_err(ifp, "mlx5e_open_tises failed, %d\n", err); return (err); } err = mlx5_vport_alloc_q_counter(priv->mdev, MLX5_INTERFACE_PROTOCOL_ETH, &set_id); if (err) { mlx5_en_err(priv->ifp, "mlx5_vport_alloc_q_counter failed: %d\n", err); goto err_close_tises; } /* store counter set ID */ priv->counter_set_id = set_id; err = mlx5e_open_channels(priv); if (err) { mlx5_en_err(ifp, "mlx5e_open_channels failed, %d\n", err); goto err_dalloc_q_counter; } err = mlx5e_open_rqt(priv); if (err) { mlx5_en_err(ifp, "mlx5e_open_rqt failed, %d\n", err); goto err_close_channels; } err = mlx5e_open_tirs(priv); if (err) { mlx5_en_err(ifp, "mlx5e_open_tir failed, %d\n", err); goto err_close_rqls; } err = mlx5e_open_flow_table(priv); if (err) { mlx5_en_err(ifp, "mlx5e_open_flow_table failed, %d\n", err); goto err_close_tirs; } err = mlx5e_add_all_vlan_rules(priv); if (err) { mlx5_en_err(ifp, "mlx5e_add_all_vlan_rules failed, %d\n", err); goto err_close_flow_table; } set_bit(MLX5E_STATE_OPENED, &priv->state); mlx5e_update_carrier(priv); mlx5e_set_rx_mode_core(priv); return (0); err_close_flow_table: mlx5e_close_flow_table(priv); err_close_tirs: mlx5e_close_tirs(priv); err_close_rqls: mlx5e_close_rqt(priv); err_close_channels: mlx5e_close_channels(priv); err_dalloc_q_counter: mlx5_vport_dealloc_q_counter(priv->mdev, MLX5_INTERFACE_PROTOCOL_ETH, priv->counter_set_id); err_close_tises: mlx5e_close_tises(priv); return (err); } static void mlx5e_open(void *arg) { struct mlx5e_priv *priv = arg; PRIV_LOCK(priv); if (mlx5_set_port_status(priv->mdev, MLX5_PORT_UP)) mlx5_en_err(priv->ifp, "Setting port status to up failed\n"); mlx5e_open_locked(priv->ifp); priv->ifp->if_drv_flags |= IFF_DRV_RUNNING; PRIV_UNLOCK(priv); } int mlx5e_close_locked(struct ifnet *ifp) { struct mlx5e_priv *priv = ifp->if_softc; /* check if already closed */ if (test_bit(MLX5E_STATE_OPENED, &priv->state) == 0) return (0); clear_bit(MLX5E_STATE_OPENED, &priv->state); mlx5e_set_rx_mode_core(priv); mlx5e_del_all_vlan_rules(priv); if_link_state_change(priv->ifp, LINK_STATE_DOWN); mlx5e_close_flow_table(priv); mlx5e_close_tirs(priv); mlx5e_close_rqt(priv); mlx5e_close_channels(priv); mlx5_vport_dealloc_q_counter(priv->mdev, MLX5_INTERFACE_PROTOCOL_ETH, priv->counter_set_id); mlx5e_close_tises(priv); return (0); } #if (__FreeBSD_version >= 1100000) static uint64_t mlx5e_get_counter(struct ifnet *ifp, ift_counter cnt) { struct mlx5e_priv *priv = ifp->if_softc; u64 retval; /* PRIV_LOCK(priv); XXX not allowed */ switch (cnt) { case IFCOUNTER_IPACKETS: retval = priv->stats.vport.rx_packets; break; case IFCOUNTER_IERRORS: retval = priv->stats.pport.in_range_len_errors + priv->stats.pport.out_of_range_len + priv->stats.pport.too_long_errors + priv->stats.pport.check_seq_err + priv->stats.pport.alignment_err; break; case IFCOUNTER_IQDROPS: retval = priv->stats.vport.rx_out_of_buffer; break; case IFCOUNTER_OPACKETS: retval = priv->stats.vport.tx_packets; break; case IFCOUNTER_OERRORS: retval = priv->stats.port_stats_debug.out_discards; break; case IFCOUNTER_IBYTES: retval = priv->stats.vport.rx_bytes; break; case IFCOUNTER_OBYTES: retval = priv->stats.vport.tx_bytes; break; case IFCOUNTER_IMCASTS: retval = priv->stats.vport.rx_multicast_packets; break; case IFCOUNTER_OMCASTS: retval = priv->stats.vport.tx_multicast_packets; break; case IFCOUNTER_OQDROPS: retval = priv->stats.vport.tx_queue_dropped; break; case IFCOUNTER_COLLISIONS: retval = priv->stats.pport.collisions; break; default: retval = if_get_counter_default(ifp, cnt); break; } /* PRIV_UNLOCK(priv); XXX not allowed */ return (retval); } #endif static void mlx5e_set_rx_mode(struct ifnet *ifp) { struct mlx5e_priv *priv = ifp->if_softc; queue_work(priv->wq, &priv->set_rx_mode_work); } static int mlx5e_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct mlx5e_priv *priv; struct ifreq *ifr; struct ifi2creq i2c; int error = 0; int mask = 0; int size_read = 0; int module_status; int module_num; int max_mtu; uint8_t read_addr; priv = ifp->if_softc; /* check if detaching */ if (priv == NULL || priv->gone != 0) return (ENXIO); switch (command) { case SIOCSIFMTU: ifr = (struct ifreq *)data; PRIV_LOCK(priv); mlx5_query_port_max_mtu(priv->mdev, &max_mtu); if (ifr->ifr_mtu >= MLX5E_MTU_MIN && ifr->ifr_mtu <= MIN(MLX5E_MTU_MAX, max_mtu)) { int was_opened; was_opened = test_bit(MLX5E_STATE_OPENED, &priv->state); if (was_opened) mlx5e_close_locked(ifp); /* set new MTU */ mlx5e_set_dev_port_mtu(ifp, ifr->ifr_mtu); if (was_opened) mlx5e_open_locked(ifp); } else { error = EINVAL; mlx5_en_err(ifp, "Invalid MTU value. Min val: %d, Max val: %d\n", MLX5E_MTU_MIN, MIN(MLX5E_MTU_MAX, max_mtu)); } PRIV_UNLOCK(priv); break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { mlx5e_set_rx_mode(ifp); break; } PRIV_LOCK(priv); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { if (test_bit(MLX5E_STATE_OPENED, &priv->state) == 0) mlx5e_open_locked(ifp); ifp->if_drv_flags |= IFF_DRV_RUNNING; mlx5_set_port_status(priv->mdev, MLX5_PORT_UP); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { mlx5_set_port_status(priv->mdev, MLX5_PORT_DOWN); if (test_bit(MLX5E_STATE_OPENED, &priv->state) != 0) mlx5e_close_locked(ifp); mlx5e_update_carrier(priv); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } } PRIV_UNLOCK(priv); break; case SIOCADDMULTI: case SIOCDELMULTI: mlx5e_set_rx_mode(ifp); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: case SIOCGIFXMEDIA: ifr = (struct ifreq *)data; error = ifmedia_ioctl(ifp, ifr, &priv->media, command); break; case SIOCSIFCAP: ifr = (struct ifreq *)data; PRIV_LOCK(priv); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); if (IFCAP_TSO4 & ifp->if_capenable && !(IFCAP_TXCSUM & ifp->if_capenable)) { mask &= ~IFCAP_TSO4; ifp->if_capenable &= ~IFCAP_TSO4; ifp->if_hwassist &= ~CSUM_IP_TSO; mlx5_en_err(ifp, "tso4 disabled due to -txcsum.\n"); } } if (mask & IFCAP_TXCSUM_IPV6) { ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); if (IFCAP_TSO6 & ifp->if_capenable && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { mask &= ~IFCAP_TSO6; ifp->if_capenable &= ~IFCAP_TSO6; ifp->if_hwassist &= ~CSUM_IP6_TSO; mlx5_en_err(ifp, "tso6 disabled due to -txcsum6.\n"); } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_RXCSUM_IPV6) ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; if (mask & IFCAP_TSO4) { if (!(IFCAP_TSO4 & ifp->if_capenable) && !(IFCAP_TXCSUM & ifp->if_capenable)) { mlx5_en_err(ifp, "enable txcsum first.\n"); error = EAGAIN; goto out; } ifp->if_capenable ^= IFCAP_TSO4; ifp->if_hwassist ^= CSUM_IP_TSO; } if (mask & IFCAP_TSO6) { if (!(IFCAP_TSO6 & ifp->if_capenable) && !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { mlx5_en_err(ifp, "enable txcsum6 first.\n"); error = EAGAIN; goto out; } ifp->if_capenable ^= IFCAP_TSO6; ifp->if_hwassist ^= CSUM_IP6_TSO; } if (mask & IFCAP_VLAN_HWFILTER) { if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) mlx5e_disable_vlan_filter(priv); else mlx5e_enable_vlan_filter(priv); ifp->if_capenable ^= IFCAP_VLAN_HWFILTER; } if (mask & IFCAP_VLAN_HWTAGGING) ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (mask & IFCAP_WOL_MAGIC) ifp->if_capenable ^= IFCAP_WOL_MAGIC; VLAN_CAPABILITIES(ifp); /* turn off LRO means also turn of HW LRO - if it's on */ if (mask & IFCAP_LRO) { int was_opened = test_bit(MLX5E_STATE_OPENED, &priv->state); bool need_restart = false; ifp->if_capenable ^= IFCAP_LRO; /* figure out if updating HW LRO is needed */ if (!(ifp->if_capenable & IFCAP_LRO)) { if (priv->params.hw_lro_en) { priv->params.hw_lro_en = false; need_restart = true; } } else { if (priv->params.hw_lro_en == false && priv->params_ethtool.hw_lro != 0) { priv->params.hw_lro_en = true; need_restart = true; } } if (was_opened && need_restart) { mlx5e_close_locked(ifp); mlx5e_open_locked(ifp); } } out: PRIV_UNLOCK(priv); break; case SIOCGI2C: ifr = (struct ifreq *)data; /* * Copy from the user-space address ifr_data to the * kernel-space address i2c */ error = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); if (error) break; if (i2c.len > sizeof(i2c.data)) { error = EINVAL; break; } PRIV_LOCK(priv); /* Get module_num which is required for the query_eeprom */ error = mlx5_query_module_num(priv->mdev, &module_num); if (error) { mlx5_en_err(ifp, "Query module num failed, eeprom reading is not supported\n"); error = EINVAL; goto err_i2c; } /* Check if module is present before doing an access */ module_status = mlx5_query_module_status(priv->mdev, module_num); if (module_status != MLX5_MODULE_STATUS_PLUGGED_ENABLED) { error = EINVAL; goto err_i2c; } /* * Currently 0XA0 and 0xA2 are the only addresses permitted. * The internal conversion is as follows: */ if (i2c.dev_addr == 0xA0) read_addr = MLX5_I2C_ADDR_LOW; else if (i2c.dev_addr == 0xA2) read_addr = MLX5_I2C_ADDR_HIGH; else { mlx5_en_err(ifp, "Query eeprom failed, Invalid Address: %X\n", i2c.dev_addr); error = EINVAL; goto err_i2c; } error = mlx5_query_eeprom(priv->mdev, read_addr, MLX5_EEPROM_LOW_PAGE, (uint32_t)i2c.offset, (uint32_t)i2c.len, module_num, (uint32_t *)i2c.data, &size_read); if (error) { mlx5_en_err(ifp, "Query eeprom failed, eeprom reading is not supported\n"); error = EINVAL; goto err_i2c; } if (i2c.len > MLX5_EEPROM_MAX_BYTES) { error = mlx5_query_eeprom(priv->mdev, read_addr, MLX5_EEPROM_LOW_PAGE, (uint32_t)(i2c.offset + size_read), (uint32_t)(i2c.len - size_read), module_num, (uint32_t *)(i2c.data + size_read), &size_read); } if (error) { mlx5_en_err(ifp, "Query eeprom failed, eeprom reading is not supported\n"); error = EINVAL; goto err_i2c; } error = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); err_i2c: PRIV_UNLOCK(priv); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static int mlx5e_check_required_hca_cap(struct mlx5_core_dev *mdev) { /* * TODO: uncoment once FW really sets all these bits if * (!mdev->caps.eth.rss_ind_tbl_cap || !mdev->caps.eth.csum_cap || * !mdev->caps.eth.max_lso_cap || !mdev->caps.eth.vlan_cap || * !(mdev->caps.gen.flags & MLX5_DEV_CAP_FLAG_SCQE_BRK_MOD)) return * -ENOTSUPP; */ /* TODO: add more must-to-have features */ if (MLX5_CAP_GEN(mdev, port_type) != MLX5_CAP_PORT_TYPE_ETH) return (-ENODEV); return (0); } static u16 mlx5e_get_max_inline_cap(struct mlx5_core_dev *mdev) { const int min_size = ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN; const int max_size = MLX5E_MAX_TX_INLINE; const int bf_buf_size = ((1U << MLX5_CAP_GEN(mdev, log_bf_reg_size)) / 2U) - (sizeof(struct mlx5e_tx_wqe) - 2); /* verify against driver limits */ if (bf_buf_size > max_size) return (max_size); else if (bf_buf_size < min_size) return (min_size); else return (bf_buf_size); } static int mlx5e_build_ifp_priv(struct mlx5_core_dev *mdev, struct mlx5e_priv *priv, int num_comp_vectors) { int err; /* * TODO: Consider link speed for setting "log_sq_size", * "log_rq_size" and "cq_moderation_xxx": */ priv->params.log_sq_size = MLX5E_PARAMS_DEFAULT_LOG_SQ_SIZE; priv->params.log_rq_size = MLX5E_PARAMS_DEFAULT_LOG_RQ_SIZE; priv->params.rx_cq_moderation_usec = MLX5_CAP_GEN(mdev, cq_period_start_from_cqe) ? MLX5E_PARAMS_DEFAULT_RX_CQ_MODERATION_USEC_FROM_CQE : MLX5E_PARAMS_DEFAULT_RX_CQ_MODERATION_USEC; priv->params.rx_cq_moderation_mode = MLX5_CAP_GEN(mdev, cq_period_start_from_cqe) ? 1 : 0; priv->params.rx_cq_moderation_pkts = MLX5E_PARAMS_DEFAULT_RX_CQ_MODERATION_PKTS; priv->params.tx_cq_moderation_usec = MLX5E_PARAMS_DEFAULT_TX_CQ_MODERATION_USEC; priv->params.tx_cq_moderation_pkts = MLX5E_PARAMS_DEFAULT_TX_CQ_MODERATION_PKTS; priv->params.min_rx_wqes = MLX5E_PARAMS_DEFAULT_MIN_RX_WQES; priv->params.rx_hash_log_tbl_sz = (order_base_2(num_comp_vectors) > MLX5E_PARAMS_DEFAULT_RX_HASH_LOG_TBL_SZ) ? order_base_2(num_comp_vectors) : MLX5E_PARAMS_DEFAULT_RX_HASH_LOG_TBL_SZ; priv->params.num_tc = 1; priv->params.default_vlan_prio = 0; priv->counter_set_id = -1; priv->params.tx_max_inline = mlx5e_get_max_inline_cap(mdev); err = mlx5_query_min_inline(mdev, &priv->params.tx_min_inline_mode); if (err) return (err); /* * hw lro is currently defaulted to off. when it won't anymore we * will consider the HW capability: "!!MLX5_CAP_ETH(mdev, lro_cap)" */ priv->params.hw_lro_en = false; priv->params.lro_wqe_sz = MLX5E_PARAMS_DEFAULT_LRO_WQE_SZ; /* * CQE zipping is currently defaulted to off. when it won't * anymore we will consider the HW capability: * "!!MLX5_CAP_GEN(mdev, cqe_compression)" */ priv->params.cqe_zipping_en = false; priv->mdev = mdev; priv->params.num_channels = num_comp_vectors; priv->params.channels_rsss = 1; priv->order_base_2_num_channels = order_base_2(num_comp_vectors); priv->queue_mapping_channel_mask = roundup_pow_of_two(num_comp_vectors) - 1; priv->num_tc = priv->params.num_tc; priv->default_vlan_prio = priv->params.default_vlan_prio; INIT_WORK(&priv->update_stats_work, mlx5e_update_stats_work); INIT_WORK(&priv->update_carrier_work, mlx5e_update_carrier_work); INIT_WORK(&priv->set_rx_mode_work, mlx5e_set_rx_mode_work); return (0); } static int mlx5e_create_mkey(struct mlx5e_priv *priv, u32 pdn, struct mlx5_core_mr *mkey) { struct ifnet *ifp = priv->ifp; struct mlx5_core_dev *mdev = priv->mdev; int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); void *mkc; u32 *in; int err; in = mlx5_vzalloc(inlen); if (in == NULL) { mlx5_en_err(ifp, "failed to allocate inbox\n"); return (-ENOMEM); } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode, MLX5_ACCESS_MODE_PA); MLX5_SET(mkc, mkc, lw, 1); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, pd, pdn); MLX5_SET(mkc, mkc, length64, 1); MLX5_SET(mkc, mkc, qpn, 0xffffff); err = mlx5_core_create_mkey(mdev, mkey, in, inlen); if (err) mlx5_en_err(ifp, "mlx5_core_create_mkey failed, %d\n", err); kvfree(in); return (err); } static const char *mlx5e_vport_stats_desc[] = { MLX5E_VPORT_STATS(MLX5E_STATS_DESC) }; static const char *mlx5e_pport_stats_desc[] = { MLX5E_PPORT_STATS(MLX5E_STATS_DESC) }; static void mlx5e_priv_static_init(struct mlx5e_priv *priv, const uint32_t channels) { uint32_t x; mtx_init(&priv->async_events_mtx, "mlx5async", MTX_NETWORK_LOCK, MTX_DEF); sx_init(&priv->state_lock, "mlx5state"); callout_init_mtx(&priv->watchdog, &priv->async_events_mtx, 0); MLX5_INIT_DOORBELL_LOCK(&priv->doorbell_lock); for (x = 0; x != channels; x++) mlx5e_chan_static_init(priv, &priv->channel[x], x); } static void mlx5e_priv_static_destroy(struct mlx5e_priv *priv, const uint32_t channels) { uint32_t x; for (x = 0; x != channels; x++) mlx5e_chan_static_destroy(&priv->channel[x]); callout_drain(&priv->watchdog); mtx_destroy(&priv->async_events_mtx); sx_destroy(&priv->state_lock); } static int sysctl_firmware(SYSCTL_HANDLER_ARGS) { /* * %d.%d%.d the string format. * fw_rev_{maj,min,sub} return u16, 2^16 = 65536. * We need at most 5 chars to store that. * It also has: two "." and NULL at the end, which means we need 18 * (5*3 + 3) chars at most. */ char fw[18]; struct mlx5e_priv *priv = arg1; int error; snprintf(fw, sizeof(fw), "%d.%d.%d", fw_rev_maj(priv->mdev), fw_rev_min(priv->mdev), fw_rev_sub(priv->mdev)); error = sysctl_handle_string(oidp, fw, sizeof(fw), req); return (error); } static void mlx5e_disable_tx_dma(struct mlx5e_channel *ch) { int i; for (i = 0; i < ch->priv->num_tc; i++) mlx5e_drain_sq(&ch->sq[i]); } static void mlx5e_reset_sq_doorbell_record(struct mlx5e_sq *sq) { sq->doorbell.d32[0] = cpu_to_be32(MLX5_OPCODE_NOP); sq->doorbell.d32[1] = cpu_to_be32(sq->sqn << 8); mlx5e_tx_notify_hw(sq, sq->doorbell.d32, 0); sq->doorbell.d64 = 0; } void mlx5e_resume_sq(struct mlx5e_sq *sq) { int err; /* check if already enabled */ if (READ_ONCE(sq->running) != 0) return; err = mlx5e_modify_sq(sq, MLX5_SQC_STATE_ERR, MLX5_SQC_STATE_RST); if (err != 0) { mlx5_en_err(sq->ifp, "mlx5e_modify_sq() from ERR to RST failed: %d\n", err); } sq->cc = 0; sq->pc = 0; /* reset doorbell prior to moving from RST to RDY */ mlx5e_reset_sq_doorbell_record(sq); err = mlx5e_modify_sq(sq, MLX5_SQC_STATE_RST, MLX5_SQC_STATE_RDY); if (err != 0) { mlx5_en_err(sq->ifp, "mlx5e_modify_sq() from RST to RDY failed: %d\n", err); } sq->cev_next_state = MLX5E_CEV_STATE_INITIAL; WRITE_ONCE(sq->running, 1); } static void mlx5e_enable_tx_dma(struct mlx5e_channel *ch) { int i; for (i = 0; i < ch->priv->num_tc; i++) mlx5e_resume_sq(&ch->sq[i]); } static void mlx5e_disable_rx_dma(struct mlx5e_channel *ch) { struct mlx5e_rq *rq = &ch->rq; int err; mtx_lock(&rq->mtx); rq->enabled = 0; callout_stop(&rq->watchdog); mtx_unlock(&rq->mtx); err = mlx5e_modify_rq(rq, MLX5_RQC_STATE_RDY, MLX5_RQC_STATE_ERR); if (err != 0) { mlx5_en_err(rq->ifp, "mlx5e_modify_rq() from RDY to RST failed: %d\n", err); } while (!mlx5_wq_ll_is_empty(&rq->wq)) { msleep(1); rq->cq.mcq.comp(&rq->cq.mcq); } /* * Transitioning into RST state will allow the FW to track less ERR state queues, * thus reducing the recv queue flushing time */ err = mlx5e_modify_rq(rq, MLX5_RQC_STATE_ERR, MLX5_RQC_STATE_RST); if (err != 0) { mlx5_en_err(rq->ifp, "mlx5e_modify_rq() from ERR to RST failed: %d\n", err); } } static void mlx5e_enable_rx_dma(struct mlx5e_channel *ch) { struct mlx5e_rq *rq = &ch->rq; int err; rq->wq.wqe_ctr = 0; mlx5_wq_ll_update_db_record(&rq->wq); err = mlx5e_modify_rq(rq, MLX5_RQC_STATE_RST, MLX5_RQC_STATE_RDY); if (err != 0) { mlx5_en_err(rq->ifp, "mlx5e_modify_rq() from RST to RDY failed: %d\n", err); } rq->enabled = 1; rq->cq.mcq.comp(&rq->cq.mcq); } void mlx5e_modify_tx_dma(struct mlx5e_priv *priv, uint8_t value) { int i; if (test_bit(MLX5E_STATE_OPENED, &priv->state) == 0) return; for (i = 0; i < priv->params.num_channels; i++) { if (value) mlx5e_disable_tx_dma(&priv->channel[i]); else mlx5e_enable_tx_dma(&priv->channel[i]); } } void mlx5e_modify_rx_dma(struct mlx5e_priv *priv, uint8_t value) { int i; if (test_bit(MLX5E_STATE_OPENED, &priv->state) == 0) return; for (i = 0; i < priv->params.num_channels; i++) { if (value) mlx5e_disable_rx_dma(&priv->channel[i]); else mlx5e_enable_rx_dma(&priv->channel[i]); } } static void mlx5e_add_hw_stats(struct mlx5e_priv *priv) { SYSCTL_ADD_PROC(&priv->sysctl_ctx, SYSCTL_CHILDREN(priv->sysctl_hw), OID_AUTO, "fw_version", CTLTYPE_STRING | CTLFLAG_RD, priv, 0, sysctl_firmware, "A", "HCA firmware version"); SYSCTL_ADD_STRING(&priv->sysctl_ctx, SYSCTL_CHILDREN(priv->sysctl_hw), OID_AUTO, "board_id", CTLFLAG_RD, priv->mdev->board_id, 0, "Board ID"); } static int mlx5e_sysctl_tx_priority_flow_control(SYSCTL_HANDLER_ARGS) { struct mlx5e_priv *priv = arg1; uint8_t temp[MLX5E_MAX_PRIORITY]; uint32_t tx_pfc; int err; int i; PRIV_LOCK(priv); tx_pfc = priv->params.tx_priority_flow_control; for (i = 0; i != MLX5E_MAX_PRIORITY; i++) temp[i] = (tx_pfc >> i) & 1; err = SYSCTL_OUT(req, temp, MLX5E_MAX_PRIORITY); if (err || !req->newptr) goto done; err = SYSCTL_IN(req, temp, MLX5E_MAX_PRIORITY); if (err) goto done; priv->params.tx_priority_flow_control = 0; /* range check input value */ for (i = 0; i != MLX5E_MAX_PRIORITY; i++) { if (temp[i] > 1) { err = ERANGE; goto done; } priv->params.tx_priority_flow_control |= (temp[i] << i); } /* check if update is required */ if (tx_pfc != priv->params.tx_priority_flow_control) err = -mlx5e_set_port_pfc(priv); done: if (err != 0) priv->params.tx_priority_flow_control= tx_pfc; PRIV_UNLOCK(priv); return (err); } static int mlx5e_sysctl_rx_priority_flow_control(SYSCTL_HANDLER_ARGS) { struct mlx5e_priv *priv = arg1; uint8_t temp[MLX5E_MAX_PRIORITY]; uint32_t rx_pfc; int err; int i; PRIV_LOCK(priv); rx_pfc = priv->params.rx_priority_flow_control; for (i = 0; i != MLX5E_MAX_PRIORITY; i++) temp[i] = (rx_pfc >> i) & 1; err = SYSCTL_OUT(req, temp, MLX5E_MAX_PRIORITY); if (err || !req->newptr) goto done; err = SYSCTL_IN(req, temp, MLX5E_MAX_PRIORITY); if (err) goto done; priv->params.rx_priority_flow_control = 0; /* range check input value */ for (i = 0; i != MLX5E_MAX_PRIORITY; i++) { if (temp[i] > 1) { err = ERANGE; goto done; } priv->params.rx_priority_flow_control |= (temp[i] << i); } /* check if update is required */ if (rx_pfc != priv->params.rx_priority_flow_control) { err = -mlx5e_set_port_pfc(priv); if (err == 0 && priv->sw_is_port_buf_owner) err = mlx5e_update_buf_lossy(priv); } done: if (err != 0) priv->params.rx_priority_flow_control= rx_pfc; PRIV_UNLOCK(priv); return (err); } static void mlx5e_setup_pauseframes(struct mlx5e_priv *priv) { #if (__FreeBSD_version < 1100000) char path[96]; #endif int error; /* enable pauseframes by default */ priv->params.tx_pauseframe_control = 1; priv->params.rx_pauseframe_control = 1; /* disable ports flow control, PFC, by default */ priv->params.tx_priority_flow_control = 0; priv->params.rx_priority_flow_control = 0; #if (__FreeBSD_version < 1100000) /* compute path for sysctl */ snprintf(path, sizeof(path), "dev.mce.%d.tx_pauseframe_control", device_get_unit(priv->mdev->pdev->dev.bsddev)); /* try to fetch tunable, if any */ TUNABLE_INT_FETCH(path, &priv->params.tx_pauseframe_control); /* compute path for sysctl */ snprintf(path, sizeof(path), "dev.mce.%d.rx_pauseframe_control", device_get_unit(priv->mdev->pdev->dev.bsddev)); /* try to fetch tunable, if any */ TUNABLE_INT_FETCH(path, &priv->params.rx_pauseframe_control); #endif /* register pauseframe SYSCTLs */ SYSCTL_ADD_INT(&priv->sysctl_ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), OID_AUTO, "tx_pauseframe_control", CTLFLAG_RDTUN, &priv->params.tx_pauseframe_control, 0, "Set to enable TX pause frames. Clear to disable."); SYSCTL_ADD_INT(&priv->sysctl_ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), OID_AUTO, "rx_pauseframe_control", CTLFLAG_RDTUN, &priv->params.rx_pauseframe_control, 0, "Set to enable RX pause frames. Clear to disable."); /* register priority flow control, PFC, SYSCTLs */ SYSCTL_ADD_PROC(&priv->sysctl_ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), OID_AUTO, "tx_priority_flow_control", CTLTYPE_U8 | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, priv, 0, &mlx5e_sysctl_tx_priority_flow_control, "CU", "Set to enable TX ports flow control frames for priorities 0..7. Clear to disable."); SYSCTL_ADD_PROC(&priv->sysctl_ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), OID_AUTO, "rx_priority_flow_control", CTLTYPE_U8 | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, priv, 0, &mlx5e_sysctl_rx_priority_flow_control, "CU", "Set to enable RX ports flow control frames for priorities 0..7. Clear to disable."); PRIV_LOCK(priv); /* range check */ priv->params.tx_pauseframe_control = priv->params.tx_pauseframe_control ? 1 : 0; priv->params.rx_pauseframe_control = priv->params.rx_pauseframe_control ? 1 : 0; /* update firmware */ error = mlx5e_set_port_pause_and_pfc(priv); if (error == -EINVAL) { mlx5_en_err(priv->ifp, "Global pauseframes must be disabled before enabling PFC.\n"); priv->params.rx_priority_flow_control = 0; priv->params.tx_priority_flow_control = 0; /* update firmware */ (void) mlx5e_set_port_pause_and_pfc(priv); } PRIV_UNLOCK(priv); } static void * mlx5e_create_ifp(struct mlx5_core_dev *mdev) { struct ifnet *ifp; struct mlx5e_priv *priv; u8 dev_addr[ETHER_ADDR_LEN] __aligned(4); u8 connector_type; struct sysctl_oid_list *child; int ncv = mdev->priv.eq_table.num_comp_vectors; char unit[16]; int err; int i,j; u32 eth_proto_cap; u32 out[MLX5_ST_SZ_DW(ptys_reg)]; bool ext = 0; u32 speeds_num; struct media media_entry = {}; if (mlx5e_check_required_hca_cap(mdev)) { mlx5_core_dbg(mdev, "mlx5e_check_required_hca_cap() failed\n"); return (NULL); } /* * Try to allocate the priv and make room for worst-case * number of channel structures: */ priv = malloc(sizeof(*priv) + (sizeof(priv->channel[0]) * mdev->priv.eq_table.num_comp_vectors), M_MLX5EN, M_WAITOK | M_ZERO); ifp = priv->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { mlx5_core_err(mdev, "if_alloc() failed\n"); goto err_free_priv; } /* setup all static fields */ mlx5e_priv_static_init(priv, mdev->priv.eq_table.num_comp_vectors); ifp->if_softc = priv; if_initname(ifp, "mce", device_get_unit(mdev->pdev->dev.bsddev)); ifp->if_mtu = ETHERMTU; ifp->if_init = mlx5e_open; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = mlx5e_ioctl; ifp->if_transmit = mlx5e_xmit; ifp->if_qflush = if_qflush; #if (__FreeBSD_version >= 1100000) ifp->if_get_counter = mlx5e_get_counter; #endif ifp->if_snd.ifq_maxlen = ifqmaxlen; /* * Set driver features */ ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6; ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; ifp->if_capabilities |= IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWFILTER; ifp->if_capabilities |= IFCAP_LINKSTATE | IFCAP_JUMBO_MTU; ifp->if_capabilities |= IFCAP_LRO; ifp->if_capabilities |= IFCAP_TSO | IFCAP_VLAN_HWTSO; ifp->if_capabilities |= IFCAP_HWSTATS; /* set TSO limits so that we don't have to drop TX packets */ ifp->if_hw_tsomax = MLX5E_MAX_TX_PAYLOAD_SIZE - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); ifp->if_hw_tsomaxsegcount = MLX5E_MAX_TX_MBUF_FRAGS - 1 /* hdr */; ifp->if_hw_tsomaxsegsize = MLX5E_MAX_TX_MBUF_SIZE; ifp->if_capenable = ifp->if_capabilities; ifp->if_hwassist = 0; if (ifp->if_capenable & IFCAP_TSO) ifp->if_hwassist |= CSUM_TSO; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP | CSUM_IP); if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) ifp->if_hwassist |= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); /* ifnet sysctl tree */ sysctl_ctx_init(&priv->sysctl_ctx); priv->sysctl_ifnet = SYSCTL_ADD_NODE(&priv->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, ifp->if_dname, CTLFLAG_RD, 0, "MLX5 ethernet - interface name"); if (priv->sysctl_ifnet == NULL) { mlx5_core_err(mdev, "SYSCTL_ADD_NODE() failed\n"); goto err_free_sysctl; } snprintf(unit, sizeof(unit), "%d", ifp->if_dunit); priv->sysctl_ifnet = SYSCTL_ADD_NODE(&priv->sysctl_ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), OID_AUTO, unit, CTLFLAG_RD, 0, "MLX5 ethernet - interface unit"); if (priv->sysctl_ifnet == NULL) { mlx5_core_err(mdev, "SYSCTL_ADD_NODE() failed\n"); goto err_free_sysctl; } /* HW sysctl tree */ child = SYSCTL_CHILDREN(device_get_sysctl_tree(mdev->pdev->dev.bsddev)); priv->sysctl_hw = SYSCTL_ADD_NODE(&priv->sysctl_ctx, child, OID_AUTO, "hw", CTLFLAG_RD, 0, "MLX5 ethernet dev hw"); if (priv->sysctl_hw == NULL) { mlx5_core_err(mdev, "SYSCTL_ADD_NODE() failed\n"); goto err_free_sysctl; } err = mlx5e_build_ifp_priv(mdev, priv, ncv); if (err) { mlx5_core_err(mdev, "mlx5e_build_ifp_priv() failed (%d)\n", err); goto err_free_sysctl; } /* reuse mlx5core's watchdog workqueue */ priv->wq = mdev->priv.health.wq_watchdog; err = mlx5_alloc_map_uar(mdev, &priv->cq_uar); if (err) { mlx5_en_err(ifp, "mlx5_alloc_map_uar failed, %d\n", err); goto err_free_wq; } err = mlx5_core_alloc_pd(mdev, &priv->pdn); if (err) { mlx5_en_err(ifp, "mlx5_core_alloc_pd failed, %d\n", err); goto err_unmap_free_uar; } err = mlx5_alloc_transport_domain(mdev, &priv->tdn); if (err) { mlx5_en_err(ifp, "mlx5_alloc_transport_domain failed, %d\n", err); goto err_dealloc_pd; } err = mlx5e_create_mkey(priv, priv->pdn, &priv->mr); if (err) { mlx5_en_err(ifp, "mlx5e_create_mkey failed, %d\n", err); goto err_dealloc_transport_domain; } mlx5_query_nic_vport_mac_address(priv->mdev, 0, dev_addr); /* check if we should generate a random MAC address */ if (MLX5_CAP_GEN(priv->mdev, vport_group_manager) == 0 && is_zero_ether_addr(dev_addr)) { random_ether_addr(dev_addr); mlx5_en_err(ifp, "Assigned random MAC address\n"); } /* set default MTU */ mlx5e_set_dev_port_mtu(ifp, ifp->if_mtu); /* Set default media status */ priv->media_status_last = IFM_AVALID; priv->media_active_last = IFM_ETHER | IFM_AUTO | IFM_ETH_RXPAUSE | IFM_FDX; /* setup default pauseframes configuration */ mlx5e_setup_pauseframes(priv); /* Setup supported medias */ //TODO: If we failed to query ptys is it ok to proceed?? if (!mlx5_query_port_ptys(mdev, out, sizeof(out), MLX5_PTYS_EN, 1)) { ext = MLX5_CAP_PCAM_FEATURE(mdev, ptys_extended_ethernet); eth_proto_cap = MLX5_GET_ETH_PROTO(ptys_reg, out, ext, eth_proto_capability); if (MLX5_CAP_PCAM_FEATURE(mdev, ptys_connector_type)) connector_type = MLX5_GET(ptys_reg, out, connector_type); } else { eth_proto_cap = 0; mlx5_en_err(ifp, "Query port media capability failed, %d\n", err); } ifmedia_init(&priv->media, IFM_IMASK | IFM_ETH_FMASK, mlx5e_media_change, mlx5e_media_status); speeds_num = ext ? MLX5E_EXT_LINK_SPEEDS_NUMBER : MLX5E_LINK_SPEEDS_NUMBER; for (i = 0; i != speeds_num; i++) { for (j = 0; j < MLX5E_LINK_MODES_NUMBER ; ++j) { media_entry = ext ? mlx5e_ext_mode_table[i][j] : mlx5e_mode_table[i][j]; if (media_entry.baudrate == 0) continue; if (MLX5E_PROT_MASK(i) & eth_proto_cap) { ifmedia_add(&priv->media, media_entry.subtype | IFM_ETHER, 0, NULL); ifmedia_add(&priv->media, media_entry.subtype | IFM_ETHER | IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE, 0, NULL); } } } ifmedia_add(&priv->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_add(&priv->media, IFM_ETHER | IFM_AUTO | IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE, 0, NULL); /* Set autoselect by default */ ifmedia_set(&priv->media, IFM_ETHER | IFM_AUTO | IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE); ether_ifattach(ifp, dev_addr); /* Register for VLAN events */ priv->vlan_attach = EVENTHANDLER_REGISTER(vlan_config, mlx5e_vlan_rx_add_vid, priv, EVENTHANDLER_PRI_FIRST); priv->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, mlx5e_vlan_rx_kill_vid, priv, EVENTHANDLER_PRI_FIRST); /* Link is down by default */ if_link_state_change(ifp, LINK_STATE_DOWN); mlx5e_enable_async_events(priv); mlx5e_add_hw_stats(priv); mlx5e_create_stats(&priv->stats.vport.ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), "vstats", mlx5e_vport_stats_desc, MLX5E_VPORT_STATS_NUM, priv->stats.vport.arg); mlx5e_create_stats(&priv->stats.pport.ctx, SYSCTL_CHILDREN(priv->sysctl_ifnet), "pstats", mlx5e_pport_stats_desc, MLX5E_PPORT_STATS_NUM, priv->stats.pport.arg); mlx5e_create_ethtool(priv); mtx_lock(&priv->async_events_mtx); mlx5e_update_stats(priv); mtx_unlock(&priv->async_events_mtx); return (priv); err_dealloc_transport_domain: mlx5_dealloc_transport_domain(mdev, priv->tdn); err_dealloc_pd: mlx5_core_dealloc_pd(mdev, priv->pdn); err_unmap_free_uar: mlx5_unmap_free_uar(mdev, &priv->cq_uar); err_free_wq: flush_workqueue(priv->wq); err_free_sysctl: sysctl_ctx_free(&priv->sysctl_ctx); if (priv->sysctl_debug) sysctl_ctx_free(&priv->stats.port_stats_debug.ctx); mlx5e_priv_static_destroy(priv, mdev->priv.eq_table.num_comp_vectors); if_free(ifp); err_free_priv: free(priv, M_MLX5EN); return (NULL); } static void mlx5e_destroy_ifp(struct mlx5_core_dev *mdev, void *vpriv) { struct mlx5e_priv *priv = vpriv; struct ifnet *ifp = priv->ifp; /* don't allow more IOCTLs */ priv->gone = 1; /* XXX wait a bit to allow IOCTL handlers to complete */ pause("W", hz); /* stop watchdog timer */ callout_drain(&priv->watchdog); if (priv->vlan_attach != NULL) EVENTHANDLER_DEREGISTER(vlan_config, priv->vlan_attach); if (priv->vlan_detach != NULL) EVENTHANDLER_DEREGISTER(vlan_unconfig, priv->vlan_detach); /* make sure device gets closed */ PRIV_LOCK(priv); mlx5e_close_locked(ifp); PRIV_UNLOCK(priv); /* unregister device */ ifmedia_removeall(&priv->media); ether_ifdetach(ifp); /* destroy all remaining sysctl nodes */ sysctl_ctx_free(&priv->stats.vport.ctx); sysctl_ctx_free(&priv->stats.pport.ctx); if (priv->sysctl_debug) sysctl_ctx_free(&priv->stats.port_stats_debug.ctx); sysctl_ctx_free(&priv->sysctl_ctx); mlx5_core_destroy_mkey(priv->mdev, &priv->mr); mlx5_dealloc_transport_domain(priv->mdev, priv->tdn); mlx5_core_dealloc_pd(priv->mdev, priv->pdn); mlx5_unmap_free_uar(priv->mdev, &priv->cq_uar); mlx5e_disable_async_events(priv); flush_workqueue(priv->wq); mlx5e_priv_static_destroy(priv, mdev->priv.eq_table.num_comp_vectors); if_free(ifp); free(priv, M_MLX5EN); } static void * mlx5e_get_ifp(void *vpriv) { struct mlx5e_priv *priv = vpriv; return (priv->ifp); } static struct mlx5_interface mlx5e_interface = { .add = mlx5e_create_ifp, .remove = mlx5e_destroy_ifp, .event = mlx5e_async_event, .protocol = MLX5_INTERFACE_PROTOCOL_ETH, .get_dev = mlx5e_get_ifp, }; void mlx5e_init(void) { mlx5_register_interface(&mlx5e_interface); } void mlx5e_cleanup(void) { mlx5_unregister_interface(&mlx5e_interface); } static void mlx5e_show_version(void __unused *arg) { printf("%s", mlx5e_version); } SYSINIT(mlx5e_show_version, SI_SUB_DRIVERS, SI_ORDER_ANY, mlx5e_show_version, NULL); -module_init_order(mlx5e_init, SI_ORDER_THIRD); -module_exit_order(mlx5e_cleanup, SI_ORDER_THIRD); +module_init_order(mlx5e_init, SI_ORDER_SIXTH); +module_exit_order(mlx5e_cleanup, SI_ORDER_SIXTH); #if (__FreeBSD_version >= 1100000) MODULE_DEPEND(mlx5en, linuxkpi, 1, 1, 1); #endif MODULE_DEPEND(mlx5en, mlx5, 1, 1, 1); MODULE_VERSION(mlx5en, 1); Index: stable/11/sys/dev/mlx5/mlx5_fpga_tools/mlx5fpga_tools_main.c =================================================================== --- stable/11/sys/dev/mlx5/mlx5_fpga_tools/mlx5fpga_tools_main.c (revision 363150) +++ stable/11/sys/dev/mlx5/mlx5_fpga_tools/mlx5fpga_tools_main.c (revision 363151) @@ -1,143 +1,143 @@ /*- * Copyright (c) 2017 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * $FreeBSD$ */ #include #include #include #if (__FreeBSD_version >= 1100000) MODULE_DEPEND(mlx5fpga_tools, linuxkpi, 1, 1, 1); #endif MODULE_DEPEND(mlx5fpga_tools, mlx5, 1, 1, 1); MODULE_DEPEND(mlx5fpga_tools, mlx5fpga, 1, 1, 1); MODULE_VERSION(mlx5fpga_tools, 1); static void mlx5_fpga_tools_create(struct mlx5_fpga_device *fdev); static int mlx5_fpga_tools_add(struct mlx5_fpga_device *fdev, u32 vid, u16 pid); static void mlx5_fpga_tools_remove(struct mlx5_fpga_device *fdev); static void mlx5_fpga_tools_destroy(struct mlx5_fpga_device *fdev); struct mlx5_fpga_tools_dev *mlx5_fpga_tools_alloc(struct mlx5_fpga_device *fdev); void mlx5_fpga_tools_free(struct mlx5_fpga_tools_dev *tdev); static struct mlx5_fpga_client mlx5_fpga_tools_client = { .name = MLX5_FPGA_TOOLS_DRIVER_NAME, .create = mlx5_fpga_tools_create, .add = mlx5_fpga_tools_add, .remove = mlx5_fpga_tools_remove, .destroy = mlx5_fpga_tools_destroy, }; struct mlx5_fpga_tools_dev *mlx5_fpga_tools_alloc(struct mlx5_fpga_device *fdev) { int ret; struct mlx5_fpga_tools_dev *tdev; tdev = kzalloc(sizeof(*tdev), GFP_KERNEL); if (!tdev) goto out; tdev->fdev = fdev; sx_init(&tdev->lock, "mlx5fpgat"); ret = mlx5_fpga_tools_char_add_one(tdev); if (ret) goto err_free; goto out; err_free: kfree(tdev); tdev = NULL; out: return tdev; } void mlx5_fpga_tools_free(struct mlx5_fpga_tools_dev *tdev) { mlx5_fpga_tools_char_remove_one(tdev); kfree(tdev); } static void mlx5_fpga_tools_create(struct mlx5_fpga_device *fdev) { struct mlx5_fpga_tools_dev *dev = NULL; dev_dbg(mlx5_fpga_dev(fdev), "tools_create\n"); dev = mlx5_fpga_tools_alloc(fdev); if (!dev) return; mlx5_fpga_client_data_set(fdev, &mlx5_fpga_tools_client, dev); } static int mlx5_fpga_tools_add(struct mlx5_fpga_device *fdev, u32 vid, u16 pid) { return 0; } static void mlx5_fpga_tools_remove(struct mlx5_fpga_device *fdev) { } static void mlx5_fpga_tools_destroy(struct mlx5_fpga_device *fdev) { struct mlx5_fpga_tools_dev *dev; dev_dbg(mlx5_fpga_dev(fdev), "tools_destroy\n"); dev = mlx5_fpga_client_data_get(fdev, &mlx5_fpga_tools_client); if (dev) mlx5_fpga_tools_free(dev); } static int __init mlx5_fpga_tools_init(void) { int ret = mlx5_fpga_tools_char_init(); if (ret) return ret; mlx5_fpga_client_register(&mlx5_fpga_tools_client); return 0; } static void __exit mlx5_fpga_tools_exit(void) { mlx5_fpga_client_unregister(&mlx5_fpga_tools_client); mlx5_fpga_tools_char_deinit(); } -module_init(mlx5_fpga_tools_init); -module_exit(mlx5_fpga_tools_exit); +module_init_order(mlx5_fpga_tools_init, SI_ORDER_SECOND); +module_exit_order(mlx5_fpga_tools_exit, SI_ORDER_SECOND); Index: stable/11/sys/dev/mlx5/mlx5_ib/mlx5_ib_main.c =================================================================== --- stable/11/sys/dev/mlx5/mlx5_ib/mlx5_ib_main.c (revision 363150) +++ stable/11/sys/dev/mlx5/mlx5_ib/mlx5_ib_main.c (revision 363151) @@ -1,3403 +1,3403 @@ /*- * Copyright (c) 2013-2015, Mellanox Technologies, Ltd. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS `AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #if defined(CONFIG_X86) #include #endif #include #include #include #undef inode #include #include #include #include #include #include #include #include #include #include #include #include "mlx5_ib.h" #define DRIVER_NAME "mlx5ib" #ifndef DRIVER_VERSION #define DRIVER_VERSION "3.5.2" #endif #define DRIVER_RELDATE "September 2019" MODULE_DESCRIPTION("Mellanox Connect-IB HCA IB driver"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DEPEND(mlx5ib, linuxkpi, 1, 1, 1); MODULE_DEPEND(mlx5ib, mlx5, 1, 1, 1); MODULE_DEPEND(mlx5ib, ibcore, 1, 1, 1); MODULE_VERSION(mlx5ib, 1); static const char mlx5_version[] = DRIVER_NAME ": Mellanox Connect-IB Infiniband driver " DRIVER_VERSION " (" DRIVER_RELDATE ")\n"; enum { MLX5_ATOMIC_SIZE_QP_8BYTES = 1 << 3, }; static enum rdma_link_layer mlx5_port_type_cap_to_rdma_ll(int port_type_cap) { switch (port_type_cap) { case MLX5_CAP_PORT_TYPE_IB: return IB_LINK_LAYER_INFINIBAND; case MLX5_CAP_PORT_TYPE_ETH: return IB_LINK_LAYER_ETHERNET; default: return IB_LINK_LAYER_UNSPECIFIED; } } static enum rdma_link_layer mlx5_ib_port_link_layer(struct ib_device *device, u8 port_num) { struct mlx5_ib_dev *dev = to_mdev(device); int port_type_cap = MLX5_CAP_GEN(dev->mdev, port_type); return mlx5_port_type_cap_to_rdma_ll(port_type_cap); } static bool mlx5_netdev_match(struct net_device *ndev, struct mlx5_core_dev *mdev, const char *dname) { return ndev->if_type == IFT_ETHER && ndev->if_dname != NULL && strcmp(ndev->if_dname, dname) == 0 && ndev->if_softc != NULL && *(struct mlx5_core_dev **)ndev->if_softc == mdev; } static int mlx5_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct mlx5_ib_dev *ibdev = container_of(this, struct mlx5_ib_dev, roce.nb); switch (event) { case NETDEV_REGISTER: case NETDEV_UNREGISTER: write_lock(&ibdev->roce.netdev_lock); /* check if network interface belongs to mlx5en */ if (mlx5_netdev_match(ndev, ibdev->mdev, "mce")) ibdev->roce.netdev = (event == NETDEV_UNREGISTER) ? NULL : ndev; write_unlock(&ibdev->roce.netdev_lock); break; case NETDEV_UP: case NETDEV_DOWN: { struct net_device *upper = NULL; if ((upper == ndev || (!upper && ndev == ibdev->roce.netdev)) && ibdev->ib_active) { struct ib_event ibev = {0}; ibev.device = &ibdev->ib_dev; ibev.event = (event == NETDEV_UP) ? IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR; ibev.element.port_num = 1; ib_dispatch_event(&ibev); } break; } default: break; } return NOTIFY_DONE; } static struct net_device *mlx5_ib_get_netdev(struct ib_device *device, u8 port_num) { struct mlx5_ib_dev *ibdev = to_mdev(device); struct net_device *ndev; /* Ensure ndev does not disappear before we invoke dev_hold() */ read_lock(&ibdev->roce.netdev_lock); ndev = ibdev->roce.netdev; if (ndev) dev_hold(ndev); read_unlock(&ibdev->roce.netdev_lock); return ndev; } static int translate_eth_proto_oper(u32 eth_proto_oper, u8 *active_speed, u8 *active_width) { switch (eth_proto_oper) { case MLX5E_PROT_MASK(MLX5E_1000BASE_CX_SGMII): case MLX5E_PROT_MASK(MLX5E_1000BASE_KX): case MLX5E_PROT_MASK(MLX5E_100BASE_TX): case MLX5E_PROT_MASK(MLX5E_1000BASE_T): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_SDR; break; case MLX5E_PROT_MASK(MLX5E_10GBASE_T): case MLX5E_PROT_MASK(MLX5E_10GBASE_CX4): case MLX5E_PROT_MASK(MLX5E_10GBASE_KX4): case MLX5E_PROT_MASK(MLX5E_10GBASE_KR): case MLX5E_PROT_MASK(MLX5E_10GBASE_CR): case MLX5E_PROT_MASK(MLX5E_10GBASE_SR): case MLX5E_PROT_MASK(MLX5E_10GBASE_ER_LR): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_QDR; break; case MLX5E_PROT_MASK(MLX5E_25GBASE_CR): case MLX5E_PROT_MASK(MLX5E_25GBASE_KR): case MLX5E_PROT_MASK(MLX5E_25GBASE_SR): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_EDR; break; case MLX5E_PROT_MASK(MLX5E_40GBASE_CR4): case MLX5E_PROT_MASK(MLX5E_40GBASE_KR4): case MLX5E_PROT_MASK(MLX5E_40GBASE_SR4): case MLX5E_PROT_MASK(MLX5E_40GBASE_LR4_ER4): *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_QDR; break; case MLX5E_PROT_MASK(MLX5E_50GBASE_CR2): case MLX5E_PROT_MASK(MLX5E_50GBASE_KR2): case MLX5E_PROT_MASK(MLX5E_50GBASE_SR2): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_HDR; break; case MLX5E_PROT_MASK(MLX5E_56GBASE_R4): *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_FDR; break; case MLX5E_PROT_MASK(MLX5E_100GBASE_CR4): case MLX5E_PROT_MASK(MLX5E_100GBASE_SR4): case MLX5E_PROT_MASK(MLX5E_100GBASE_KR4): case MLX5E_PROT_MASK(MLX5E_100GBASE_LR4): *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_EDR; break; default: *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_QDR; return -EINVAL; } return 0; } static int translate_eth_ext_proto_oper(u32 eth_proto_oper, u8 *active_speed, u8 *active_width) { switch (eth_proto_oper) { case MLX5E_PROT_MASK(MLX5E_SGMII_100M): case MLX5E_PROT_MASK(MLX5E_1000BASE_X_SGMII): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_SDR; break; case MLX5E_PROT_MASK(MLX5E_5GBASE_R): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_DDR; break; case MLX5E_PROT_MASK(MLX5E_10GBASE_XFI_XAUI_1): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_QDR; break; case MLX5E_PROT_MASK(MLX5E_40GBASE_XLAUI_4_XLPPI_4): *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_QDR; break; case MLX5E_PROT_MASK(MLX5E_25GAUI_1_25GBASE_CR_KR): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_EDR; break; case MLX5E_PROT_MASK(MLX5E_50GAUI_2_LAUI_2_50GBASE_CR2_KR2): *active_width = IB_WIDTH_2X; *active_speed = IB_SPEED_EDR; break; case MLX5E_PROT_MASK(MLX5E_50GAUI_1_LAUI_1_50GBASE_CR_KR): *active_width = IB_WIDTH_1X; *active_speed = IB_SPEED_HDR; break; case MLX5E_PROT_MASK(MLX5E_CAUI_4_100GBASE_CR4_KR4): *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_EDR; break; case MLX5E_PROT_MASK(MLX5E_100GAUI_2_100GBASE_CR2_KR2): *active_width = IB_WIDTH_2X; *active_speed = IB_SPEED_HDR; break; case MLX5E_PROT_MASK(MLX5E_200GAUI_4_200GBASE_CR4_KR4): *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_HDR; break; default: *active_width = IB_WIDTH_4X; *active_speed = IB_SPEED_QDR; return -EINVAL; } return 0; } static int mlx5_query_port_roce(struct ib_device *device, u8 port_num, struct ib_port_attr *props) { struct mlx5_ib_dev *dev = to_mdev(device); u32 out[MLX5_ST_SZ_DW(ptys_reg)] = {}; struct net_device *ndev; enum ib_mtu ndev_ib_mtu; u16 qkey_viol_cntr; u32 eth_prot_oper; bool ext; int err; memset(props, 0, sizeof(*props)); /* Possible bad flows are checked before filling out props so in case * of an error it will still be zeroed out. */ err = mlx5_query_port_ptys(dev->mdev, out, sizeof(out), MLX5_PTYS_EN, port_num); if (err) return err; ext = MLX5_CAP_PCAM_FEATURE(dev->mdev, ptys_extended_ethernet); eth_prot_oper = MLX5_GET_ETH_PROTO(ptys_reg, out, ext, eth_proto_oper); if (ext) translate_eth_ext_proto_oper(eth_prot_oper, &props->active_speed, &props->active_width); else translate_eth_proto_oper(eth_prot_oper, &props->active_speed, &props->active_width); props->port_cap_flags |= IB_PORT_CM_SUP; props->port_cap_flags |= IB_PORT_IP_BASED_GIDS; props->gid_tbl_len = MLX5_CAP_ROCE(dev->mdev, roce_address_table_size); props->max_mtu = IB_MTU_4096; props->max_msg_sz = 1 << MLX5_CAP_GEN(dev->mdev, log_max_msg); props->pkey_tbl_len = 1; props->state = IB_PORT_DOWN; props->phys_state = 3; mlx5_query_nic_vport_qkey_viol_cntr(dev->mdev, &qkey_viol_cntr); props->qkey_viol_cntr = qkey_viol_cntr; ndev = mlx5_ib_get_netdev(device, port_num); if (!ndev) return 0; if (netif_running(ndev) && netif_carrier_ok(ndev)) { props->state = IB_PORT_ACTIVE; props->phys_state = 5; } ndev_ib_mtu = iboe_get_mtu(ndev->if_mtu); dev_put(ndev); props->active_mtu = min(props->max_mtu, ndev_ib_mtu); return 0; } static void ib_gid_to_mlx5_roce_addr(const union ib_gid *gid, const struct ib_gid_attr *attr, void *mlx5_addr) { #define MLX5_SET_RA(p, f, v) MLX5_SET(roce_addr_layout, p, f, v) char *mlx5_addr_l3_addr = MLX5_ADDR_OF(roce_addr_layout, mlx5_addr, source_l3_address); void *mlx5_addr_mac = MLX5_ADDR_OF(roce_addr_layout, mlx5_addr, source_mac_47_32); u16 vlan_id; if (!gid) return; ether_addr_copy(mlx5_addr_mac, IF_LLADDR(attr->ndev)); vlan_id = rdma_vlan_dev_vlan_id(attr->ndev); if (vlan_id != 0xffff) { MLX5_SET_RA(mlx5_addr, vlan_valid, 1); MLX5_SET_RA(mlx5_addr, vlan_id, vlan_id); } switch (attr->gid_type) { case IB_GID_TYPE_IB: MLX5_SET_RA(mlx5_addr, roce_version, MLX5_ROCE_VERSION_1); break; case IB_GID_TYPE_ROCE_UDP_ENCAP: MLX5_SET_RA(mlx5_addr, roce_version, MLX5_ROCE_VERSION_2); break; default: WARN_ON(true); } if (attr->gid_type != IB_GID_TYPE_IB) { if (ipv6_addr_v4mapped((void *)gid)) MLX5_SET_RA(mlx5_addr, roce_l3_type, MLX5_ROCE_L3_TYPE_IPV4); else MLX5_SET_RA(mlx5_addr, roce_l3_type, MLX5_ROCE_L3_TYPE_IPV6); } if ((attr->gid_type == IB_GID_TYPE_IB) || !ipv6_addr_v4mapped((void *)gid)) memcpy(mlx5_addr_l3_addr, gid, sizeof(*gid)); else memcpy(&mlx5_addr_l3_addr[12], &gid->raw[12], 4); } static int set_roce_addr(struct ib_device *device, u8 port_num, unsigned int index, const union ib_gid *gid, const struct ib_gid_attr *attr) { struct mlx5_ib_dev *dev = to_mdev(device); u32 in[MLX5_ST_SZ_DW(set_roce_address_in)] = {0}; u32 out[MLX5_ST_SZ_DW(set_roce_address_out)] = {0}; void *in_addr = MLX5_ADDR_OF(set_roce_address_in, in, roce_address); enum rdma_link_layer ll = mlx5_ib_port_link_layer(device, port_num); if (ll != IB_LINK_LAYER_ETHERNET) return -EINVAL; ib_gid_to_mlx5_roce_addr(gid, attr, in_addr); MLX5_SET(set_roce_address_in, in, roce_address_index, index); MLX5_SET(set_roce_address_in, in, opcode, MLX5_CMD_OP_SET_ROCE_ADDRESS); return mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out)); } static int mlx5_ib_add_gid(struct ib_device *device, u8 port_num, unsigned int index, const union ib_gid *gid, const struct ib_gid_attr *attr, __always_unused void **context) { return set_roce_addr(device, port_num, index, gid, attr); } static int mlx5_ib_del_gid(struct ib_device *device, u8 port_num, unsigned int index, __always_unused void **context) { return set_roce_addr(device, port_num, index, NULL, NULL); } __be16 mlx5_get_roce_udp_sport(struct mlx5_ib_dev *dev, u8 port_num, int index) { struct ib_gid_attr attr; union ib_gid gid; if (ib_get_cached_gid(&dev->ib_dev, port_num, index, &gid, &attr)) return 0; if (!attr.ndev) return 0; dev_put(attr.ndev); if (attr.gid_type != IB_GID_TYPE_ROCE_UDP_ENCAP) return 0; return cpu_to_be16(MLX5_CAP_ROCE(dev->mdev, r_roce_min_src_udp_port)); } int mlx5_get_roce_gid_type(struct mlx5_ib_dev *dev, u8 port_num, int index, enum ib_gid_type *gid_type) { struct ib_gid_attr attr; union ib_gid gid; int ret; ret = ib_get_cached_gid(&dev->ib_dev, port_num, index, &gid, &attr); if (ret) return ret; if (!attr.ndev) return -ENODEV; dev_put(attr.ndev); *gid_type = attr.gid_type; return 0; } static int mlx5_use_mad_ifc(struct mlx5_ib_dev *dev) { if (MLX5_CAP_GEN(dev->mdev, port_type) == MLX5_CAP_PORT_TYPE_IB) return !MLX5_CAP_GEN(dev->mdev, ib_virt); return 0; } enum { MLX5_VPORT_ACCESS_METHOD_MAD, MLX5_VPORT_ACCESS_METHOD_HCA, MLX5_VPORT_ACCESS_METHOD_NIC, }; static int mlx5_get_vport_access_method(struct ib_device *ibdev) { if (mlx5_use_mad_ifc(to_mdev(ibdev))) return MLX5_VPORT_ACCESS_METHOD_MAD; if (mlx5_ib_port_link_layer(ibdev, 1) == IB_LINK_LAYER_ETHERNET) return MLX5_VPORT_ACCESS_METHOD_NIC; return MLX5_VPORT_ACCESS_METHOD_HCA; } static void get_atomic_caps(struct mlx5_ib_dev *dev, struct ib_device_attr *props) { u8 tmp; u8 atomic_operations = MLX5_CAP_ATOMIC(dev->mdev, atomic_operations); u8 atomic_size_qp = MLX5_CAP_ATOMIC(dev->mdev, atomic_size_qp); u8 atomic_req_8B_endianness_mode = MLX5_CAP_ATOMIC(dev->mdev, atomic_req_8B_endianess_mode); /* Check if HW supports 8 bytes standard atomic operations and capable * of host endianness respond */ tmp = MLX5_ATOMIC_OPS_CMP_SWAP | MLX5_ATOMIC_OPS_FETCH_ADD; if (((atomic_operations & tmp) == tmp) && (atomic_size_qp & MLX5_ATOMIC_SIZE_QP_8BYTES) && (atomic_req_8B_endianness_mode)) { props->atomic_cap = IB_ATOMIC_HCA; } else { props->atomic_cap = IB_ATOMIC_NONE; } } static int mlx5_query_system_image_guid(struct ib_device *ibdev, __be64 *sys_image_guid) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_core_dev *mdev = dev->mdev; u64 tmp; int err; switch (mlx5_get_vport_access_method(ibdev)) { case MLX5_VPORT_ACCESS_METHOD_MAD: return mlx5_query_mad_ifc_system_image_guid(ibdev, sys_image_guid); case MLX5_VPORT_ACCESS_METHOD_HCA: err = mlx5_query_hca_vport_system_image_guid(mdev, &tmp); break; case MLX5_VPORT_ACCESS_METHOD_NIC: err = mlx5_query_nic_vport_system_image_guid(mdev, &tmp); break; default: return -EINVAL; } if (!err) *sys_image_guid = cpu_to_be64(tmp); return err; } static int mlx5_query_max_pkeys(struct ib_device *ibdev, u16 *max_pkeys) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_core_dev *mdev = dev->mdev; switch (mlx5_get_vport_access_method(ibdev)) { case MLX5_VPORT_ACCESS_METHOD_MAD: return mlx5_query_mad_ifc_max_pkeys(ibdev, max_pkeys); case MLX5_VPORT_ACCESS_METHOD_HCA: case MLX5_VPORT_ACCESS_METHOD_NIC: *max_pkeys = mlx5_to_sw_pkey_sz(MLX5_CAP_GEN(mdev, pkey_table_size)); return 0; default: return -EINVAL; } } static int mlx5_query_vendor_id(struct ib_device *ibdev, u32 *vendor_id) { struct mlx5_ib_dev *dev = to_mdev(ibdev); switch (mlx5_get_vport_access_method(ibdev)) { case MLX5_VPORT_ACCESS_METHOD_MAD: return mlx5_query_mad_ifc_vendor_id(ibdev, vendor_id); case MLX5_VPORT_ACCESS_METHOD_HCA: case MLX5_VPORT_ACCESS_METHOD_NIC: return mlx5_core_query_vendor_id(dev->mdev, vendor_id); default: return -EINVAL; } } static int mlx5_query_node_guid(struct mlx5_ib_dev *dev, __be64 *node_guid) { u64 tmp; int err; switch (mlx5_get_vport_access_method(&dev->ib_dev)) { case MLX5_VPORT_ACCESS_METHOD_MAD: return mlx5_query_mad_ifc_node_guid(dev, node_guid); case MLX5_VPORT_ACCESS_METHOD_HCA: err = mlx5_query_hca_vport_node_guid(dev->mdev, &tmp); break; case MLX5_VPORT_ACCESS_METHOD_NIC: err = mlx5_query_nic_vport_node_guid(dev->mdev, &tmp); break; default: return -EINVAL; } if (!err) *node_guid = cpu_to_be64(tmp); return err; } struct mlx5_reg_node_desc { u8 desc[IB_DEVICE_NODE_DESC_MAX]; }; static int mlx5_query_node_desc(struct mlx5_ib_dev *dev, char *node_desc) { struct mlx5_reg_node_desc in; if (mlx5_use_mad_ifc(dev)) return mlx5_query_mad_ifc_node_desc(dev, node_desc); memset(&in, 0, sizeof(in)); return mlx5_core_access_reg(dev->mdev, &in, sizeof(in), node_desc, sizeof(struct mlx5_reg_node_desc), MLX5_REG_NODE_DESC, 0, 0); } static int mlx5_ib_query_device(struct ib_device *ibdev, struct ib_device_attr *props, struct ib_udata *uhw) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_core_dev *mdev = dev->mdev; int err = -ENOMEM; int max_sq_desc; int max_rq_sg; int max_sq_sg; u64 min_page_size = 1ull << MLX5_CAP_GEN(mdev, log_pg_sz); struct mlx5_ib_query_device_resp resp = {}; size_t resp_len; u64 max_tso; resp_len = sizeof(resp.comp_mask) + sizeof(resp.response_length); if (uhw->outlen && uhw->outlen < resp_len) return -EINVAL; else resp.response_length = resp_len; if (uhw->inlen && !ib_is_udata_cleared(uhw, 0, uhw->inlen)) return -EINVAL; memset(props, 0, sizeof(*props)); err = mlx5_query_system_image_guid(ibdev, &props->sys_image_guid); if (err) return err; err = mlx5_query_max_pkeys(ibdev, &props->max_pkeys); if (err) return err; err = mlx5_query_vendor_id(ibdev, &props->vendor_id); if (err) return err; props->fw_ver = ((u64)fw_rev_maj(dev->mdev) << 32) | ((u32)fw_rev_min(dev->mdev) << 16) | fw_rev_sub(dev->mdev); props->device_cap_flags = IB_DEVICE_CHANGE_PHY_PORT | IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN; if (MLX5_CAP_GEN(mdev, pkv)) props->device_cap_flags |= IB_DEVICE_BAD_PKEY_CNTR; if (MLX5_CAP_GEN(mdev, qkv)) props->device_cap_flags |= IB_DEVICE_BAD_QKEY_CNTR; if (MLX5_CAP_GEN(mdev, apm)) props->device_cap_flags |= IB_DEVICE_AUTO_PATH_MIG; if (MLX5_CAP_GEN(mdev, xrc)) props->device_cap_flags |= IB_DEVICE_XRC; if (MLX5_CAP_GEN(mdev, imaicl)) { props->device_cap_flags |= IB_DEVICE_MEM_WINDOW | IB_DEVICE_MEM_WINDOW_TYPE_2B; props->max_mw = 1 << MLX5_CAP_GEN(mdev, log_max_mkey); /* We support 'Gappy' memory registration too */ props->device_cap_flags |= IB_DEVICE_SG_GAPS_REG; } props->device_cap_flags |= IB_DEVICE_MEM_MGT_EXTENSIONS; if (MLX5_CAP_GEN(mdev, sho)) { props->device_cap_flags |= IB_DEVICE_SIGNATURE_HANDOVER; /* At this stage no support for signature handover */ props->sig_prot_cap = IB_PROT_T10DIF_TYPE_1 | IB_PROT_T10DIF_TYPE_2 | IB_PROT_T10DIF_TYPE_3; props->sig_guard_cap = IB_GUARD_T10DIF_CRC | IB_GUARD_T10DIF_CSUM; } if (MLX5_CAP_GEN(mdev, block_lb_mc)) props->device_cap_flags |= IB_DEVICE_BLOCK_MULTICAST_LOOPBACK; if (MLX5_CAP_GEN(dev->mdev, eth_net_offloads)) { if (MLX5_CAP_ETH(mdev, csum_cap)) props->device_cap_flags |= IB_DEVICE_RAW_IP_CSUM; if (field_avail(typeof(resp), tso_caps, uhw->outlen)) { max_tso = MLX5_CAP_ETH(mdev, max_lso_cap); if (max_tso) { resp.tso_caps.max_tso = 1 << max_tso; resp.tso_caps.supported_qpts |= 1 << IB_QPT_RAW_PACKET; resp.response_length += sizeof(resp.tso_caps); } } if (field_avail(typeof(resp), rss_caps, uhw->outlen)) { resp.rss_caps.rx_hash_function = MLX5_RX_HASH_FUNC_TOEPLITZ; resp.rss_caps.rx_hash_fields_mask = MLX5_RX_HASH_SRC_IPV4 | MLX5_RX_HASH_DST_IPV4 | MLX5_RX_HASH_SRC_IPV6 | MLX5_RX_HASH_DST_IPV6 | MLX5_RX_HASH_SRC_PORT_TCP | MLX5_RX_HASH_DST_PORT_TCP | MLX5_RX_HASH_SRC_PORT_UDP | MLX5_RX_HASH_DST_PORT_UDP; resp.response_length += sizeof(resp.rss_caps); } } else { if (field_avail(typeof(resp), tso_caps, uhw->outlen)) resp.response_length += sizeof(resp.tso_caps); if (field_avail(typeof(resp), rss_caps, uhw->outlen)) resp.response_length += sizeof(resp.rss_caps); } if (MLX5_CAP_GEN(mdev, ipoib_ipoib_offloads)) { props->device_cap_flags |= IB_DEVICE_UD_IP_CSUM; props->device_cap_flags |= IB_DEVICE_UD_TSO; } if (MLX5_CAP_GEN(dev->mdev, eth_net_offloads) && MLX5_CAP_ETH(dev->mdev, scatter_fcs)) props->device_cap_flags |= IB_DEVICE_RAW_SCATTER_FCS; if (mlx5_get_flow_namespace(dev->mdev, MLX5_FLOW_NAMESPACE_BYPASS)) props->device_cap_flags |= IB_DEVICE_MANAGED_FLOW_STEERING; props->vendor_part_id = mdev->pdev->device; props->hw_ver = mdev->pdev->revision; props->max_mr_size = ~0ull; props->page_size_cap = ~(min_page_size - 1); props->max_qp = 1 << MLX5_CAP_GEN(mdev, log_max_qp); props->max_qp_wr = 1 << MLX5_CAP_GEN(mdev, log_max_qp_sz); max_rq_sg = MLX5_CAP_GEN(mdev, max_wqe_sz_rq) / sizeof(struct mlx5_wqe_data_seg); max_sq_desc = min_t(int, MLX5_CAP_GEN(mdev, max_wqe_sz_sq), 512); max_sq_sg = (max_sq_desc - sizeof(struct mlx5_wqe_ctrl_seg) - sizeof(struct mlx5_wqe_raddr_seg)) / sizeof(struct mlx5_wqe_data_seg); props->max_sge = min(max_rq_sg, max_sq_sg); props->max_sge_rd = MLX5_MAX_SGE_RD; props->max_cq = 1 << MLX5_CAP_GEN(mdev, log_max_cq); props->max_cqe = (1 << MLX5_CAP_GEN(mdev, log_max_cq_sz)) - 1; props->max_mr = 1 << MLX5_CAP_GEN(mdev, log_max_mkey); props->max_pd = 1 << MLX5_CAP_GEN(mdev, log_max_pd); props->max_qp_rd_atom = 1 << MLX5_CAP_GEN(mdev, log_max_ra_req_qp); props->max_qp_init_rd_atom = 1 << MLX5_CAP_GEN(mdev, log_max_ra_res_qp); props->max_srq = 1 << MLX5_CAP_GEN(mdev, log_max_srq); props->max_srq_wr = (1 << MLX5_CAP_GEN(mdev, log_max_srq_sz)) - 1; props->local_ca_ack_delay = MLX5_CAP_GEN(mdev, local_ca_ack_delay); props->max_res_rd_atom = props->max_qp_rd_atom * props->max_qp; props->max_srq_sge = max_rq_sg - 1; props->max_fast_reg_page_list_len = 1 << MLX5_CAP_GEN(mdev, log_max_klm_list_size); get_atomic_caps(dev, props); props->masked_atomic_cap = IB_ATOMIC_NONE; props->max_mcast_grp = 1 << MLX5_CAP_GEN(mdev, log_max_mcg); props->max_mcast_qp_attach = MLX5_CAP_GEN(mdev, max_qp_mcg); props->max_total_mcast_qp_attach = props->max_mcast_qp_attach * props->max_mcast_grp; props->max_map_per_fmr = INT_MAX; /* no limit in ConnectIB */ props->hca_core_clock = MLX5_CAP_GEN(mdev, device_frequency_khz); props->timestamp_mask = 0x7FFFFFFFFFFFFFFFULL; #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING if (MLX5_CAP_GEN(mdev, pg)) props->device_cap_flags |= IB_DEVICE_ON_DEMAND_PAGING; props->odp_caps = dev->odp_caps; #endif if (MLX5_CAP_GEN(mdev, cd)) props->device_cap_flags |= IB_DEVICE_CROSS_CHANNEL; if (!mlx5_core_is_pf(mdev)) props->device_cap_flags |= IB_DEVICE_VIRTUAL_FUNCTION; if (mlx5_ib_port_link_layer(ibdev, 1) == IB_LINK_LAYER_ETHERNET) { props->rss_caps.max_rwq_indirection_tables = 1 << MLX5_CAP_GEN(dev->mdev, log_max_rqt); props->rss_caps.max_rwq_indirection_table_size = 1 << MLX5_CAP_GEN(dev->mdev, log_max_rqt_size); props->rss_caps.supported_qpts = 1 << IB_QPT_RAW_PACKET; props->max_wq_type_rq = 1 << MLX5_CAP_GEN(dev->mdev, log_max_rq); } if (uhw->outlen) { err = ib_copy_to_udata(uhw, &resp, resp.response_length); if (err) return err; } return 0; } enum mlx5_ib_width { MLX5_IB_WIDTH_1X = 1 << 0, MLX5_IB_WIDTH_2X = 1 << 1, MLX5_IB_WIDTH_4X = 1 << 2, MLX5_IB_WIDTH_8X = 1 << 3, MLX5_IB_WIDTH_12X = 1 << 4 }; static int translate_active_width(struct ib_device *ibdev, u8 active_width, u8 *ib_width) { struct mlx5_ib_dev *dev = to_mdev(ibdev); int err = 0; if (active_width & MLX5_IB_WIDTH_1X) { *ib_width = IB_WIDTH_1X; } else if (active_width & MLX5_IB_WIDTH_2X) { *ib_width = IB_WIDTH_2X; } else if (active_width & MLX5_IB_WIDTH_4X) { *ib_width = IB_WIDTH_4X; } else if (active_width & MLX5_IB_WIDTH_8X) { *ib_width = IB_WIDTH_8X; } else if (active_width & MLX5_IB_WIDTH_12X) { *ib_width = IB_WIDTH_12X; } else { mlx5_ib_dbg(dev, "Invalid active_width %d\n", (int)active_width); err = -EINVAL; } return err; } enum ib_max_vl_num { __IB_MAX_VL_0 = 1, __IB_MAX_VL_0_1 = 2, __IB_MAX_VL_0_3 = 3, __IB_MAX_VL_0_7 = 4, __IB_MAX_VL_0_14 = 5, }; enum mlx5_vl_hw_cap { MLX5_VL_HW_0 = 1, MLX5_VL_HW_0_1 = 2, MLX5_VL_HW_0_2 = 3, MLX5_VL_HW_0_3 = 4, MLX5_VL_HW_0_4 = 5, MLX5_VL_HW_0_5 = 6, MLX5_VL_HW_0_6 = 7, MLX5_VL_HW_0_7 = 8, MLX5_VL_HW_0_14 = 15 }; static int translate_max_vl_num(struct ib_device *ibdev, u8 vl_hw_cap, u8 *max_vl_num) { switch (vl_hw_cap) { case MLX5_VL_HW_0: *max_vl_num = __IB_MAX_VL_0; break; case MLX5_VL_HW_0_1: *max_vl_num = __IB_MAX_VL_0_1; break; case MLX5_VL_HW_0_3: *max_vl_num = __IB_MAX_VL_0_3; break; case MLX5_VL_HW_0_7: *max_vl_num = __IB_MAX_VL_0_7; break; case MLX5_VL_HW_0_14: *max_vl_num = __IB_MAX_VL_0_14; break; default: return -EINVAL; } return 0; } static int mlx5_query_hca_port(struct ib_device *ibdev, u8 port, struct ib_port_attr *props) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_core_dev *mdev = dev->mdev; u32 *rep; int replen = MLX5_ST_SZ_BYTES(query_hca_vport_context_out); struct mlx5_ptys_reg *ptys; struct mlx5_pmtu_reg *pmtu; struct mlx5_pvlc_reg pvlc; void *ctx; int err; rep = mlx5_vzalloc(replen); ptys = kzalloc(sizeof(*ptys), GFP_KERNEL); pmtu = kzalloc(sizeof(*pmtu), GFP_KERNEL); if (!rep || !ptys || !pmtu) { err = -ENOMEM; goto out; } memset(props, 0, sizeof(*props)); err = mlx5_query_hca_vport_context(mdev, port, 0, rep, replen); if (err) goto out; ctx = MLX5_ADDR_OF(query_hca_vport_context_out, rep, hca_vport_context); props->lid = MLX5_GET(hca_vport_context, ctx, lid); props->lmc = MLX5_GET(hca_vport_context, ctx, lmc); props->sm_lid = MLX5_GET(hca_vport_context, ctx, sm_lid); props->sm_sl = MLX5_GET(hca_vport_context, ctx, sm_sl); props->state = MLX5_GET(hca_vport_context, ctx, vport_state); props->phys_state = MLX5_GET(hca_vport_context, ctx, port_physical_state); props->port_cap_flags = MLX5_GET(hca_vport_context, ctx, cap_mask1); props->gid_tbl_len = mlx5_get_gid_table_len(MLX5_CAP_GEN(mdev, gid_table_size)); props->max_msg_sz = 1 << MLX5_CAP_GEN(mdev, log_max_msg); props->pkey_tbl_len = mlx5_to_sw_pkey_sz(MLX5_CAP_GEN(mdev, pkey_table_size)); props->bad_pkey_cntr = MLX5_GET(hca_vport_context, ctx, pkey_violation_counter); props->qkey_viol_cntr = MLX5_GET(hca_vport_context, ctx, qkey_violation_counter); props->subnet_timeout = MLX5_GET(hca_vport_context, ctx, subnet_timeout); props->init_type_reply = MLX5_GET(hca_vport_context, ctx, init_type_reply); props->grh_required = MLX5_GET(hca_vport_context, ctx, grh_required); ptys->proto_mask |= MLX5_PTYS_IB; ptys->local_port = port; err = mlx5_core_access_ptys(mdev, ptys, 0); if (err) goto out; err = translate_active_width(ibdev, ptys->ib_link_width_oper, &props->active_width); if (err) goto out; props->active_speed = (u8)ptys->ib_proto_oper; pmtu->local_port = port; err = mlx5_core_access_pmtu(mdev, pmtu, 0); if (err) goto out; props->max_mtu = pmtu->max_mtu; props->active_mtu = pmtu->oper_mtu; memset(&pvlc, 0, sizeof(pvlc)); pvlc.local_port = port; err = mlx5_core_access_pvlc(mdev, &pvlc, 0); if (err) goto out; err = translate_max_vl_num(ibdev, pvlc.vl_hw_cap, &props->max_vl_num); out: kvfree(rep); kfree(ptys); kfree(pmtu); return err; } int mlx5_ib_query_port(struct ib_device *ibdev, u8 port, struct ib_port_attr *props) { switch (mlx5_get_vport_access_method(ibdev)) { case MLX5_VPORT_ACCESS_METHOD_MAD: return mlx5_query_mad_ifc_port(ibdev, port, props); case MLX5_VPORT_ACCESS_METHOD_HCA: return mlx5_query_hca_port(ibdev, port, props); case MLX5_VPORT_ACCESS_METHOD_NIC: return mlx5_query_port_roce(ibdev, port, props); default: return -EINVAL; } } static int mlx5_ib_query_gid(struct ib_device *ibdev, u8 port, int index, union ib_gid *gid) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_core_dev *mdev = dev->mdev; switch (mlx5_get_vport_access_method(ibdev)) { case MLX5_VPORT_ACCESS_METHOD_MAD: return mlx5_query_mad_ifc_gids(ibdev, port, index, gid); case MLX5_VPORT_ACCESS_METHOD_HCA: return mlx5_query_hca_vport_gid(mdev, port, 0, index, gid); default: return -EINVAL; } } static int mlx5_ib_query_pkey(struct ib_device *ibdev, u8 port, u16 index, u16 *pkey) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_core_dev *mdev = dev->mdev; switch (mlx5_get_vport_access_method(ibdev)) { case MLX5_VPORT_ACCESS_METHOD_MAD: return mlx5_query_mad_ifc_pkey(ibdev, port, index, pkey); case MLX5_VPORT_ACCESS_METHOD_HCA: case MLX5_VPORT_ACCESS_METHOD_NIC: return mlx5_query_hca_vport_pkey(mdev, 0, port, 0, index, pkey); default: return -EINVAL; } } static int mlx5_ib_modify_device(struct ib_device *ibdev, int mask, struct ib_device_modify *props) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_reg_node_desc in; struct mlx5_reg_node_desc out; int err; if (mask & ~IB_DEVICE_MODIFY_NODE_DESC) return -EOPNOTSUPP; if (!(mask & IB_DEVICE_MODIFY_NODE_DESC)) return 0; /* * If possible, pass node desc to FW, so it can generate * a 144 trap. If cmd fails, just ignore. */ memcpy(&in, props->node_desc, IB_DEVICE_NODE_DESC_MAX); err = mlx5_core_access_reg(dev->mdev, &in, sizeof(in), &out, sizeof(out), MLX5_REG_NODE_DESC, 0, 1); if (err) return err; memcpy(ibdev->node_desc, props->node_desc, IB_DEVICE_NODE_DESC_MAX); return err; } static int mlx5_ib_modify_port(struct ib_device *ibdev, u8 port, int mask, struct ib_port_modify *props) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct ib_port_attr attr; u32 tmp; int err; /* * CM layer calls ib_modify_port() regardless of the link * layer. For Ethernet ports, qkey violation and Port * capabilities are meaningless. */ if (mlx5_ib_port_link_layer(ibdev, port) == IB_LINK_LAYER_ETHERNET) return 0; mutex_lock(&dev->cap_mask_mutex); err = mlx5_ib_query_port(ibdev, port, &attr); if (err) goto out; tmp = (attr.port_cap_flags | props->set_port_cap_mask) & ~props->clr_port_cap_mask; err = mlx5_set_port_caps(dev->mdev, port, tmp); out: mutex_unlock(&dev->cap_mask_mutex); return err; } static struct ib_ucontext *mlx5_ib_alloc_ucontext(struct ib_device *ibdev, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(ibdev); struct mlx5_ib_alloc_ucontext_req_v2 req = {}; struct mlx5_ib_alloc_ucontext_resp resp = {}; struct mlx5_ib_ucontext *context; struct mlx5_uuar_info *uuari; struct mlx5_uar *uars; int gross_uuars; int num_uars; int ver; int uuarn; int err; int i; size_t reqlen; size_t min_req_v2 = offsetof(struct mlx5_ib_alloc_ucontext_req_v2, max_cqe_version); if (!dev->ib_active) return ERR_PTR(-EAGAIN); if (udata->inlen < sizeof(struct ib_uverbs_cmd_hdr)) return ERR_PTR(-EINVAL); reqlen = udata->inlen - sizeof(struct ib_uverbs_cmd_hdr); if (reqlen == sizeof(struct mlx5_ib_alloc_ucontext_req)) ver = 0; else if (reqlen >= min_req_v2) ver = 2; else return ERR_PTR(-EINVAL); err = ib_copy_from_udata(&req, udata, min(reqlen, sizeof(req))); if (err) return ERR_PTR(err); if (req.flags) return ERR_PTR(-EINVAL); if (req.total_num_uuars > MLX5_MAX_UUARS) return ERR_PTR(-ENOMEM); if (req.total_num_uuars == 0) return ERR_PTR(-EINVAL); if (req.comp_mask || req.reserved0 || req.reserved1 || req.reserved2) return ERR_PTR(-EOPNOTSUPP); if (reqlen > sizeof(req) && !ib_is_udata_cleared(udata, sizeof(req), reqlen - sizeof(req))) return ERR_PTR(-EOPNOTSUPP); req.total_num_uuars = ALIGN(req.total_num_uuars, MLX5_NON_FP_BF_REGS_PER_PAGE); if (req.num_low_latency_uuars > req.total_num_uuars - 1) return ERR_PTR(-EINVAL); num_uars = req.total_num_uuars / MLX5_NON_FP_BF_REGS_PER_PAGE; gross_uuars = num_uars * MLX5_BF_REGS_PER_PAGE; resp.qp_tab_size = 1 << MLX5_CAP_GEN(dev->mdev, log_max_qp); if (mlx5_core_is_pf(dev->mdev) && MLX5_CAP_GEN(dev->mdev, bf)) resp.bf_reg_size = 1 << MLX5_CAP_GEN(dev->mdev, log_bf_reg_size); resp.cache_line_size = cache_line_size(); resp.max_sq_desc_sz = MLX5_CAP_GEN(dev->mdev, max_wqe_sz_sq); resp.max_rq_desc_sz = MLX5_CAP_GEN(dev->mdev, max_wqe_sz_rq); resp.max_send_wqebb = 1 << MLX5_CAP_GEN(dev->mdev, log_max_qp_sz); resp.max_recv_wr = 1 << MLX5_CAP_GEN(dev->mdev, log_max_qp_sz); resp.max_srq_recv_wr = 1 << MLX5_CAP_GEN(dev->mdev, log_max_srq_sz); resp.cqe_version = min_t(__u8, (__u8)MLX5_CAP_GEN(dev->mdev, cqe_version), req.max_cqe_version); resp.response_length = min(offsetof(typeof(resp), response_length) + sizeof(resp.response_length), udata->outlen); context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return ERR_PTR(-ENOMEM); uuari = &context->uuari; mutex_init(&uuari->lock); uars = kcalloc(num_uars, sizeof(*uars), GFP_KERNEL); if (!uars) { err = -ENOMEM; goto out_ctx; } uuari->bitmap = kcalloc(BITS_TO_LONGS(gross_uuars), sizeof(*uuari->bitmap), GFP_KERNEL); if (!uuari->bitmap) { err = -ENOMEM; goto out_uar_ctx; } /* * clear all fast path uuars */ for (i = 0; i < gross_uuars; i++) { uuarn = i & 3; if (uuarn == 2 || uuarn == 3) set_bit(i, uuari->bitmap); } uuari->count = kcalloc(gross_uuars, sizeof(*uuari->count), GFP_KERNEL); if (!uuari->count) { err = -ENOMEM; goto out_bitmap; } for (i = 0; i < num_uars; i++) { err = mlx5_cmd_alloc_uar(dev->mdev, &uars[i].index); if (err) goto out_count; } #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING context->ibucontext.invalidate_range = &mlx5_ib_invalidate_range; #endif if (MLX5_CAP_GEN(dev->mdev, log_max_transport_domain)) { err = mlx5_alloc_transport_domain(dev->mdev, &context->tdn); if (err) goto out_uars; } INIT_LIST_HEAD(&context->vma_private_list); INIT_LIST_HEAD(&context->db_page_list); mutex_init(&context->db_page_mutex); resp.tot_uuars = req.total_num_uuars; resp.num_ports = MLX5_CAP_GEN(dev->mdev, num_ports); if (field_avail(typeof(resp), cqe_version, udata->outlen)) resp.response_length += sizeof(resp.cqe_version); if (field_avail(typeof(resp), cmds_supp_uhw, udata->outlen)) { resp.cmds_supp_uhw |= MLX5_USER_CMDS_SUPP_UHW_QUERY_DEVICE | MLX5_USER_CMDS_SUPP_UHW_CREATE_AH; resp.response_length += sizeof(resp.cmds_supp_uhw); } /* * We don't want to expose information from the PCI bar that is located * after 4096 bytes, so if the arch only supports larger pages, let's * pretend we don't support reading the HCA's core clock. This is also * forced by mmap function. */ if (PAGE_SIZE <= 4096 && field_avail(typeof(resp), hca_core_clock_offset, udata->outlen)) { resp.comp_mask |= MLX5_IB_ALLOC_UCONTEXT_RESP_MASK_CORE_CLOCK_OFFSET; resp.hca_core_clock_offset = offsetof(struct mlx5_init_seg, internal_timer_h) % PAGE_SIZE; resp.response_length += sizeof(resp.hca_core_clock_offset) + sizeof(resp.reserved2); } err = ib_copy_to_udata(udata, &resp, resp.response_length); if (err) goto out_td; uuari->ver = ver; uuari->num_low_latency_uuars = req.num_low_latency_uuars; uuari->uars = uars; uuari->num_uars = num_uars; context->cqe_version = resp.cqe_version; return &context->ibucontext; out_td: if (MLX5_CAP_GEN(dev->mdev, log_max_transport_domain)) mlx5_dealloc_transport_domain(dev->mdev, context->tdn); out_uars: for (i--; i >= 0; i--) mlx5_cmd_free_uar(dev->mdev, uars[i].index); out_count: kfree(uuari->count); out_bitmap: kfree(uuari->bitmap); out_uar_ctx: kfree(uars); out_ctx: kfree(context); return ERR_PTR(err); } static int mlx5_ib_dealloc_ucontext(struct ib_ucontext *ibcontext) { struct mlx5_ib_ucontext *context = to_mucontext(ibcontext); struct mlx5_ib_dev *dev = to_mdev(ibcontext->device); struct mlx5_uuar_info *uuari = &context->uuari; int i; if (MLX5_CAP_GEN(dev->mdev, log_max_transport_domain)) mlx5_dealloc_transport_domain(dev->mdev, context->tdn); for (i = 0; i < uuari->num_uars; i++) { if (mlx5_cmd_free_uar(dev->mdev, uuari->uars[i].index)) mlx5_ib_warn(dev, "failed to free UAR 0x%x\n", uuari->uars[i].index); } kfree(uuari->count); kfree(uuari->bitmap); kfree(uuari->uars); kfree(context); return 0; } static phys_addr_t uar_index2pfn(struct mlx5_ib_dev *dev, int index) { return (pci_resource_start(dev->mdev->pdev, 0) >> PAGE_SHIFT) + index; } static int get_command(unsigned long offset) { return (offset >> MLX5_IB_MMAP_CMD_SHIFT) & MLX5_IB_MMAP_CMD_MASK; } static int get_arg(unsigned long offset) { return offset & ((1 << MLX5_IB_MMAP_CMD_SHIFT) - 1); } static int get_index(unsigned long offset) { return get_arg(offset); } static void mlx5_ib_vma_open(struct vm_area_struct *area) { /* vma_open is called when a new VMA is created on top of our VMA. This * is done through either mremap flow or split_vma (usually due to * mlock, madvise, munmap, etc.) We do not support a clone of the VMA, * as this VMA is strongly hardware related. Therefore we set the * vm_ops of the newly created/cloned VMA to NULL, to prevent it from * calling us again and trying to do incorrect actions. We assume that * the original VMA size is exactly a single page, and therefore all * "splitting" operation will not happen to it. */ area->vm_ops = NULL; } static void mlx5_ib_vma_close(struct vm_area_struct *area) { struct mlx5_ib_vma_private_data *mlx5_ib_vma_priv_data; /* It's guaranteed that all VMAs opened on a FD are closed before the * file itself is closed, therefore no sync is needed with the regular * closing flow. (e.g. mlx5 ib_dealloc_ucontext) * However need a sync with accessing the vma as part of * mlx5_ib_disassociate_ucontext. * The close operation is usually called under mm->mmap_sem except when * process is exiting. * The exiting case is handled explicitly as part of * mlx5_ib_disassociate_ucontext. */ mlx5_ib_vma_priv_data = (struct mlx5_ib_vma_private_data *)area->vm_private_data; /* setting the vma context pointer to null in the mlx5_ib driver's * private data, to protect a race condition in * mlx5_ib_disassociate_ucontext(). */ mlx5_ib_vma_priv_data->vma = NULL; list_del(&mlx5_ib_vma_priv_data->list); kfree(mlx5_ib_vma_priv_data); } static const struct vm_operations_struct mlx5_ib_vm_ops = { .open = mlx5_ib_vma_open, .close = mlx5_ib_vma_close }; static int mlx5_ib_set_vma_data(struct vm_area_struct *vma, struct mlx5_ib_ucontext *ctx) { struct mlx5_ib_vma_private_data *vma_prv; struct list_head *vma_head = &ctx->vma_private_list; vma_prv = kzalloc(sizeof(*vma_prv), GFP_KERNEL); if (!vma_prv) return -ENOMEM; vma_prv->vma = vma; vma->vm_private_data = vma_prv; vma->vm_ops = &mlx5_ib_vm_ops; list_add(&vma_prv->list, vma_head); return 0; } static void mlx5_ib_disassociate_ucontext(struct ib_ucontext *ibcontext) { int ret; struct vm_area_struct *vma; struct mlx5_ib_vma_private_data *vma_private, *n; struct mlx5_ib_ucontext *context = to_mucontext(ibcontext); struct task_struct *owning_process = NULL; struct mm_struct *owning_mm = NULL; owning_process = get_pid_task(ibcontext->tgid, PIDTYPE_PID); if (!owning_process) return; owning_mm = get_task_mm(owning_process); if (!owning_mm) { pr_info("no mm, disassociate ucontext is pending task termination\n"); while (1) { put_task_struct(owning_process); usleep_range(1000, 2000); owning_process = get_pid_task(ibcontext->tgid, PIDTYPE_PID); if (!owning_process || owning_process->task_thread-> td_proc->p_state == PRS_ZOMBIE) { pr_info("disassociate ucontext done, task was terminated\n"); /* in case task was dead need to release the * task struct. */ if (owning_process) put_task_struct(owning_process); return; } } } /* need to protect from a race on closing the vma as part of * mlx5_ib_vma_close. */ down_write(&owning_mm->mmap_sem); list_for_each_entry_safe(vma_private, n, &context->vma_private_list, list) { vma = vma_private->vma; ret = zap_vma_ptes(vma, vma->vm_start, PAGE_SIZE); if (ret == -ENOTSUP) { if (bootverbose) WARN_ONCE( "%s: zap_vma_ptes not implemented for unmanaged mappings", __func__); } else { WARN(ret, "%s: zap_vma_ptes failed, error %d", __func__, -ret); } /* context going to be destroyed, should * not access ops any more. */ /* XXXKIB vma->vm_flags &= ~(VM_SHARED | VM_MAYSHARE); */ vma->vm_ops = NULL; list_del(&vma_private->list); kfree(vma_private); } up_write(&owning_mm->mmap_sem); mmput(owning_mm); put_task_struct(owning_process); } static inline char *mmap_cmd2str(enum mlx5_ib_mmap_cmd cmd) { switch (cmd) { case MLX5_IB_MMAP_WC_PAGE: return "WC"; case MLX5_IB_MMAP_REGULAR_PAGE: return "best effort WC"; case MLX5_IB_MMAP_NC_PAGE: return "NC"; default: return NULL; } } static int uar_mmap(struct mlx5_ib_dev *dev, enum mlx5_ib_mmap_cmd cmd, struct vm_area_struct *vma, struct mlx5_ib_ucontext *context) { struct mlx5_uuar_info *uuari = &context->uuari; int err; unsigned long idx; phys_addr_t pfn, pa; pgprot_t prot; switch (cmd) { case MLX5_IB_MMAP_WC_PAGE: /* Some architectures don't support WC memory */ #if defined(CONFIG_X86) if (!pat_enabled()) return -EPERM; #elif !(defined(CONFIG_PPC) || (defined(CONFIG_ARM) && defined(CONFIG_MMU))) return -EPERM; #endif /* fall through */ case MLX5_IB_MMAP_REGULAR_PAGE: /* For MLX5_IB_MMAP_REGULAR_PAGE do the best effort to get WC */ prot = pgprot_writecombine(vma->vm_page_prot); break; case MLX5_IB_MMAP_NC_PAGE: prot = pgprot_noncached(vma->vm_page_prot); break; default: return -EINVAL; } if (vma->vm_end - vma->vm_start != PAGE_SIZE) return -EINVAL; idx = get_index(vma->vm_pgoff); if (idx >= uuari->num_uars) return -EINVAL; pfn = uar_index2pfn(dev, uuari->uars[idx].index); mlx5_ib_dbg(dev, "uar idx 0x%lx, pfn %pa\n", idx, &pfn); vma->vm_page_prot = prot; err = io_remap_pfn_range(vma, vma->vm_start, pfn, PAGE_SIZE, vma->vm_page_prot); if (err) { mlx5_ib_err(dev, "io_remap_pfn_range failed with error=%d, vm_start=0x%llx, pfn=%pa, mmap_cmd=%s\n", err, (unsigned long long)vma->vm_start, &pfn, mmap_cmd2str(cmd)); return -EAGAIN; } pa = pfn << PAGE_SHIFT; mlx5_ib_dbg(dev, "mapped %s at 0x%llx, PA %pa\n", mmap_cmd2str(cmd), (unsigned long long)vma->vm_start, &pa); return mlx5_ib_set_vma_data(vma, context); } static int mlx5_ib_mmap(struct ib_ucontext *ibcontext, struct vm_area_struct *vma) { struct mlx5_ib_ucontext *context = to_mucontext(ibcontext); struct mlx5_ib_dev *dev = to_mdev(ibcontext->device); unsigned long command; phys_addr_t pfn; command = get_command(vma->vm_pgoff); switch (command) { case MLX5_IB_MMAP_WC_PAGE: case MLX5_IB_MMAP_NC_PAGE: case MLX5_IB_MMAP_REGULAR_PAGE: return uar_mmap(dev, command, vma, context); case MLX5_IB_MMAP_GET_CONTIGUOUS_PAGES: return -ENOSYS; case MLX5_IB_MMAP_CORE_CLOCK: if (vma->vm_end - vma->vm_start != PAGE_SIZE) return -EINVAL; if (vma->vm_flags & VM_WRITE) return -EPERM; /* Don't expose to user-space information it shouldn't have */ if (PAGE_SIZE > 4096) return -EOPNOTSUPP; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); pfn = (dev->mdev->iseg_base + offsetof(struct mlx5_init_seg, internal_timer_h)) >> PAGE_SHIFT; if (io_remap_pfn_range(vma, vma->vm_start, pfn, PAGE_SIZE, vma->vm_page_prot)) return -EAGAIN; mlx5_ib_dbg(dev, "mapped internal timer at 0x%llx, PA 0x%llx\n", (unsigned long long)vma->vm_start, (unsigned long long)pfn << PAGE_SHIFT); break; default: return -EINVAL; } return 0; } static struct ib_pd *mlx5_ib_alloc_pd(struct ib_device *ibdev, struct ib_ucontext *context, struct ib_udata *udata) { struct mlx5_ib_alloc_pd_resp resp; struct mlx5_ib_pd *pd; int err; pd = kmalloc(sizeof(*pd), GFP_KERNEL); if (!pd) return ERR_PTR(-ENOMEM); err = mlx5_core_alloc_pd(to_mdev(ibdev)->mdev, &pd->pdn); if (err) { kfree(pd); return ERR_PTR(err); } if (context) { resp.pdn = pd->pdn; if (ib_copy_to_udata(udata, &resp, sizeof(resp))) { mlx5_core_dealloc_pd(to_mdev(ibdev)->mdev, pd->pdn); kfree(pd); return ERR_PTR(-EFAULT); } } return &pd->ibpd; } static int mlx5_ib_dealloc_pd(struct ib_pd *pd) { struct mlx5_ib_dev *mdev = to_mdev(pd->device); struct mlx5_ib_pd *mpd = to_mpd(pd); mlx5_core_dealloc_pd(mdev->mdev, mpd->pdn); kfree(mpd); return 0; } enum { MATCH_CRITERIA_ENABLE_OUTER_BIT, MATCH_CRITERIA_ENABLE_MISC_BIT, MATCH_CRITERIA_ENABLE_INNER_BIT }; #define HEADER_IS_ZERO(match_criteria, headers) \ !(memchr_inv(MLX5_ADDR_OF(fte_match_param, match_criteria, headers), \ 0, MLX5_FLD_SZ_BYTES(fte_match_param, headers))) \ static u8 get_match_criteria_enable(u32 *match_criteria) { u8 match_criteria_enable; match_criteria_enable = (!HEADER_IS_ZERO(match_criteria, outer_headers)) << MATCH_CRITERIA_ENABLE_OUTER_BIT; match_criteria_enable |= (!HEADER_IS_ZERO(match_criteria, misc_parameters)) << MATCH_CRITERIA_ENABLE_MISC_BIT; match_criteria_enable |= (!HEADER_IS_ZERO(match_criteria, inner_headers)) << MATCH_CRITERIA_ENABLE_INNER_BIT; return match_criteria_enable; } static void set_proto(void *outer_c, void *outer_v, u8 mask, u8 val) { MLX5_SET(fte_match_set_lyr_2_4, outer_c, ip_protocol, mask); MLX5_SET(fte_match_set_lyr_2_4, outer_v, ip_protocol, val); } static void set_tos(void *outer_c, void *outer_v, u8 mask, u8 val) { MLX5_SET(fte_match_set_lyr_2_4, outer_c, ip_ecn, mask); MLX5_SET(fte_match_set_lyr_2_4, outer_v, ip_ecn, val); MLX5_SET(fte_match_set_lyr_2_4, outer_c, ip_dscp, mask >> 2); MLX5_SET(fte_match_set_lyr_2_4, outer_v, ip_dscp, val >> 2); } #define LAST_ETH_FIELD vlan_tag #define LAST_IB_FIELD sl #define LAST_IPV4_FIELD tos #define LAST_IPV6_FIELD traffic_class #define LAST_TCP_UDP_FIELD src_port /* Field is the last supported field */ #define FIELDS_NOT_SUPPORTED(filter, field)\ memchr_inv((void *)&filter.field +\ sizeof(filter.field), 0,\ sizeof(filter) -\ offsetof(typeof(filter), field) -\ sizeof(filter.field)) static int parse_flow_attr(u32 *match_c, u32 *match_v, const union ib_flow_spec *ib_spec) { void *outer_headers_c = MLX5_ADDR_OF(fte_match_param, match_c, outer_headers); void *outer_headers_v = MLX5_ADDR_OF(fte_match_param, match_v, outer_headers); void *misc_params_c = MLX5_ADDR_OF(fte_match_param, match_c, misc_parameters); void *misc_params_v = MLX5_ADDR_OF(fte_match_param, match_v, misc_parameters); switch (ib_spec->type) { case IB_FLOW_SPEC_ETH: if (FIELDS_NOT_SUPPORTED(ib_spec->eth.mask, LAST_ETH_FIELD)) return -ENOTSUPP; ether_addr_copy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_c, dmac_47_16), ib_spec->eth.mask.dst_mac); ether_addr_copy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_v, dmac_47_16), ib_spec->eth.val.dst_mac); ether_addr_copy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_c, smac_47_16), ib_spec->eth.mask.src_mac); ether_addr_copy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_v, smac_47_16), ib_spec->eth.val.src_mac); if (ib_spec->eth.mask.vlan_tag) { MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, cvlan_tag, 1); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, cvlan_tag, 1); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, first_vid, ntohs(ib_spec->eth.mask.vlan_tag)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, first_vid, ntohs(ib_spec->eth.val.vlan_tag)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, first_cfi, ntohs(ib_spec->eth.mask.vlan_tag) >> 12); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, first_cfi, ntohs(ib_spec->eth.val.vlan_tag) >> 12); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, first_prio, ntohs(ib_spec->eth.mask.vlan_tag) >> 13); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, first_prio, ntohs(ib_spec->eth.val.vlan_tag) >> 13); } MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, ethertype, ntohs(ib_spec->eth.mask.ether_type)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, ethertype, ntohs(ib_spec->eth.val.ether_type)); break; case IB_FLOW_SPEC_IPV4: if (FIELDS_NOT_SUPPORTED(ib_spec->ipv4.mask, LAST_IPV4_FIELD)) return -ENOTSUPP; MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, ethertype, 0xffff); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, ethertype, ETH_P_IP); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_c, src_ipv4_src_ipv6.ipv4_layout.ipv4), &ib_spec->ipv4.mask.src_ip, sizeof(ib_spec->ipv4.mask.src_ip)); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_v, src_ipv4_src_ipv6.ipv4_layout.ipv4), &ib_spec->ipv4.val.src_ip, sizeof(ib_spec->ipv4.val.src_ip)); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_c, dst_ipv4_dst_ipv6.ipv4_layout.ipv4), &ib_spec->ipv4.mask.dst_ip, sizeof(ib_spec->ipv4.mask.dst_ip)); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_v, dst_ipv4_dst_ipv6.ipv4_layout.ipv4), &ib_spec->ipv4.val.dst_ip, sizeof(ib_spec->ipv4.val.dst_ip)); set_tos(outer_headers_c, outer_headers_v, ib_spec->ipv4.mask.tos, ib_spec->ipv4.val.tos); set_proto(outer_headers_c, outer_headers_v, ib_spec->ipv4.mask.proto, ib_spec->ipv4.val.proto); break; case IB_FLOW_SPEC_IPV6: if (FIELDS_NOT_SUPPORTED(ib_spec->ipv6.mask, LAST_IPV6_FIELD)) return -ENOTSUPP; MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, ethertype, 0xffff); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, ethertype, IPPROTO_IPV6); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_c, src_ipv4_src_ipv6.ipv6_layout.ipv6), &ib_spec->ipv6.mask.src_ip, sizeof(ib_spec->ipv6.mask.src_ip)); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_v, src_ipv4_src_ipv6.ipv6_layout.ipv6), &ib_spec->ipv6.val.src_ip, sizeof(ib_spec->ipv6.val.src_ip)); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_c, dst_ipv4_dst_ipv6.ipv6_layout.ipv6), &ib_spec->ipv6.mask.dst_ip, sizeof(ib_spec->ipv6.mask.dst_ip)); memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, outer_headers_v, dst_ipv4_dst_ipv6.ipv6_layout.ipv6), &ib_spec->ipv6.val.dst_ip, sizeof(ib_spec->ipv6.val.dst_ip)); set_tos(outer_headers_c, outer_headers_v, ib_spec->ipv6.mask.traffic_class, ib_spec->ipv6.val.traffic_class); set_proto(outer_headers_c, outer_headers_v, ib_spec->ipv6.mask.next_hdr, ib_spec->ipv6.val.next_hdr); MLX5_SET(fte_match_set_misc, misc_params_c, outer_ipv6_flow_label, ntohl(ib_spec->ipv6.mask.flow_label)); MLX5_SET(fte_match_set_misc, misc_params_v, outer_ipv6_flow_label, ntohl(ib_spec->ipv6.val.flow_label)); break; case IB_FLOW_SPEC_TCP: if (FIELDS_NOT_SUPPORTED(ib_spec->tcp_udp.mask, LAST_TCP_UDP_FIELD)) return -ENOTSUPP; MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, ip_protocol, 0xff); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, ip_protocol, IPPROTO_TCP); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, tcp_sport, ntohs(ib_spec->tcp_udp.mask.src_port)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, tcp_sport, ntohs(ib_spec->tcp_udp.val.src_port)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, tcp_dport, ntohs(ib_spec->tcp_udp.mask.dst_port)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, tcp_dport, ntohs(ib_spec->tcp_udp.val.dst_port)); break; case IB_FLOW_SPEC_UDP: if (FIELDS_NOT_SUPPORTED(ib_spec->tcp_udp.mask, LAST_TCP_UDP_FIELD)) return -ENOTSUPP; MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, ip_protocol, 0xff); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, ip_protocol, IPPROTO_UDP); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, udp_sport, ntohs(ib_spec->tcp_udp.mask.src_port)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, udp_sport, ntohs(ib_spec->tcp_udp.val.src_port)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_c, udp_dport, ntohs(ib_spec->tcp_udp.mask.dst_port)); MLX5_SET(fte_match_set_lyr_2_4, outer_headers_v, udp_dport, ntohs(ib_spec->tcp_udp.val.dst_port)); break; default: return -EINVAL; } return 0; } /* If a flow could catch both multicast and unicast packets, * it won't fall into the multicast flow steering table and this rule * could steal other multicast packets. */ static bool flow_is_multicast_only(struct ib_flow_attr *ib_attr) { struct ib_flow_spec_eth *eth_spec; if (ib_attr->type != IB_FLOW_ATTR_NORMAL || ib_attr->size < sizeof(struct ib_flow_attr) + sizeof(struct ib_flow_spec_eth) || ib_attr->num_of_specs < 1) return false; eth_spec = (struct ib_flow_spec_eth *)(ib_attr + 1); if (eth_spec->type != IB_FLOW_SPEC_ETH || eth_spec->size != sizeof(*eth_spec)) return false; return is_multicast_ether_addr(eth_spec->mask.dst_mac) && is_multicast_ether_addr(eth_spec->val.dst_mac); } static bool is_valid_attr(const struct ib_flow_attr *flow_attr) { union ib_flow_spec *ib_spec = (union ib_flow_spec *)(flow_attr + 1); bool has_ipv4_spec = false; bool eth_type_ipv4 = true; unsigned int spec_index; /* Validate that ethertype is correct */ for (spec_index = 0; spec_index < flow_attr->num_of_specs; spec_index++) { if (ib_spec->type == IB_FLOW_SPEC_ETH && ib_spec->eth.mask.ether_type) { if (!((ib_spec->eth.mask.ether_type == htons(0xffff)) && ib_spec->eth.val.ether_type == htons(ETH_P_IP))) eth_type_ipv4 = false; } else if (ib_spec->type == IB_FLOW_SPEC_IPV4) { has_ipv4_spec = true; } ib_spec = (void *)ib_spec + ib_spec->size; } return !has_ipv4_spec || eth_type_ipv4; } static void put_flow_table(struct mlx5_ib_dev *dev, struct mlx5_ib_flow_prio *prio, bool ft_added) { prio->refcount -= !!ft_added; if (!prio->refcount) { mlx5_destroy_flow_table(prio->flow_table); prio->flow_table = NULL; } } static int mlx5_ib_destroy_flow(struct ib_flow *flow_id) { struct mlx5_ib_dev *dev = to_mdev(flow_id->qp->device); struct mlx5_ib_flow_handler *handler = container_of(flow_id, struct mlx5_ib_flow_handler, ibflow); struct mlx5_ib_flow_handler *iter, *tmp; mutex_lock(&dev->flow_db.lock); list_for_each_entry_safe(iter, tmp, &handler->list, list) { mlx5_del_flow_rule(iter->rule); put_flow_table(dev, iter->prio, true); list_del(&iter->list); kfree(iter); } mlx5_del_flow_rule(handler->rule); put_flow_table(dev, handler->prio, true); mutex_unlock(&dev->flow_db.lock); kfree(handler); return 0; } static int ib_prio_to_core_prio(unsigned int priority, bool dont_trap) { priority *= 2; if (!dont_trap) priority++; return priority; } enum flow_table_type { MLX5_IB_FT_RX, MLX5_IB_FT_TX }; #define MLX5_FS_MAX_TYPES 10 #define MLX5_FS_MAX_ENTRIES 32000UL static struct mlx5_ib_flow_prio *get_flow_table(struct mlx5_ib_dev *dev, struct ib_flow_attr *flow_attr, enum flow_table_type ft_type) { bool dont_trap = flow_attr->flags & IB_FLOW_ATTR_FLAGS_DONT_TRAP; struct mlx5_flow_namespace *ns = NULL; struct mlx5_ib_flow_prio *prio; struct mlx5_flow_table *ft; int num_entries; int num_groups; int priority; int err = 0; if (flow_attr->type == IB_FLOW_ATTR_NORMAL) { if (flow_is_multicast_only(flow_attr) && !dont_trap) priority = MLX5_IB_FLOW_MCAST_PRIO; else priority = ib_prio_to_core_prio(flow_attr->priority, dont_trap); ns = mlx5_get_flow_namespace(dev->mdev, MLX5_FLOW_NAMESPACE_BYPASS); num_entries = MLX5_FS_MAX_ENTRIES; num_groups = MLX5_FS_MAX_TYPES; prio = &dev->flow_db.prios[priority]; } else if (flow_attr->type == IB_FLOW_ATTR_ALL_DEFAULT || flow_attr->type == IB_FLOW_ATTR_MC_DEFAULT) { ns = mlx5_get_flow_namespace(dev->mdev, MLX5_FLOW_NAMESPACE_LEFTOVERS); build_leftovers_ft_param("bypass", &priority, &num_entries, &num_groups); prio = &dev->flow_db.prios[MLX5_IB_FLOW_LEFTOVERS_PRIO]; } else if (flow_attr->type == IB_FLOW_ATTR_SNIFFER) { if (!MLX5_CAP_FLOWTABLE(dev->mdev, allow_sniffer_and_nic_rx_shared_tir)) return ERR_PTR(-ENOTSUPP); ns = mlx5_get_flow_namespace(dev->mdev, ft_type == MLX5_IB_FT_RX ? MLX5_FLOW_NAMESPACE_SNIFFER_RX : MLX5_FLOW_NAMESPACE_SNIFFER_TX); prio = &dev->flow_db.sniffer[ft_type]; priority = 0; num_entries = 1; num_groups = 1; } if (!ns) return ERR_PTR(-ENOTSUPP); ft = prio->flow_table; if (!ft) { ft = mlx5_create_auto_grouped_flow_table(ns, priority, "bypass", num_entries, num_groups); if (!IS_ERR(ft)) { prio->refcount = 0; prio->flow_table = ft; } else { err = PTR_ERR(ft); } } return err ? ERR_PTR(err) : prio; } static struct mlx5_ib_flow_handler *create_flow_rule(struct mlx5_ib_dev *dev, struct mlx5_ib_flow_prio *ft_prio, const struct ib_flow_attr *flow_attr, struct mlx5_flow_destination *dst) { struct mlx5_flow_table *ft = ft_prio->flow_table; struct mlx5_ib_flow_handler *handler; struct mlx5_flow_spec *spec; const void *ib_flow = (const void *)flow_attr + sizeof(*flow_attr); unsigned int spec_index; u32 action; int err = 0; if (!is_valid_attr(flow_attr)) return ERR_PTR(-EINVAL); spec = mlx5_vzalloc(sizeof(*spec)); handler = kzalloc(sizeof(*handler), GFP_KERNEL); if (!handler || !spec) { err = -ENOMEM; goto free; } INIT_LIST_HEAD(&handler->list); for (spec_index = 0; spec_index < flow_attr->num_of_specs; spec_index++) { err = parse_flow_attr(spec->match_criteria, spec->match_value, ib_flow); if (err < 0) goto free; ib_flow += ((union ib_flow_spec *)ib_flow)->size; } spec->match_criteria_enable = get_match_criteria_enable(spec->match_criteria); action = dst ? MLX5_FLOW_CONTEXT_ACTION_FWD_DEST : MLX5_FLOW_CONTEXT_ACTION_FWD_NEXT_PRIO; handler->rule = mlx5_add_flow_rule(ft, spec->match_criteria_enable, spec->match_criteria, spec->match_value, action, MLX5_FS_DEFAULT_FLOW_TAG, dst); if (IS_ERR(handler->rule)) { err = PTR_ERR(handler->rule); goto free; } ft_prio->refcount++; handler->prio = ft_prio; ft_prio->flow_table = ft; free: if (err) kfree(handler); kvfree(spec); return err ? ERR_PTR(err) : handler; } static struct mlx5_ib_flow_handler *create_dont_trap_rule(struct mlx5_ib_dev *dev, struct mlx5_ib_flow_prio *ft_prio, struct ib_flow_attr *flow_attr, struct mlx5_flow_destination *dst) { struct mlx5_ib_flow_handler *handler_dst = NULL; struct mlx5_ib_flow_handler *handler = NULL; handler = create_flow_rule(dev, ft_prio, flow_attr, NULL); if (!IS_ERR(handler)) { handler_dst = create_flow_rule(dev, ft_prio, flow_attr, dst); if (IS_ERR(handler_dst)) { mlx5_del_flow_rule(handler->rule); ft_prio->refcount--; kfree(handler); handler = handler_dst; } else { list_add(&handler_dst->list, &handler->list); } } return handler; } enum { LEFTOVERS_MC, LEFTOVERS_UC, }; static struct mlx5_ib_flow_handler *create_leftovers_rule(struct mlx5_ib_dev *dev, struct mlx5_ib_flow_prio *ft_prio, struct ib_flow_attr *flow_attr, struct mlx5_flow_destination *dst) { struct mlx5_ib_flow_handler *handler_ucast = NULL; struct mlx5_ib_flow_handler *handler = NULL; static struct { struct ib_flow_attr flow_attr; struct ib_flow_spec_eth eth_flow; } leftovers_specs[] = { [LEFTOVERS_MC] = { .flow_attr = { .num_of_specs = 1, .size = sizeof(leftovers_specs[0]) }, .eth_flow = { .type = IB_FLOW_SPEC_ETH, .size = sizeof(struct ib_flow_spec_eth), .mask = {.dst_mac = {0x1} }, .val = {.dst_mac = {0x1} } } }, [LEFTOVERS_UC] = { .flow_attr = { .num_of_specs = 1, .size = sizeof(leftovers_specs[0]) }, .eth_flow = { .type = IB_FLOW_SPEC_ETH, .size = sizeof(struct ib_flow_spec_eth), .mask = {.dst_mac = {0x1} }, .val = {.dst_mac = {} } } } }; handler = create_flow_rule(dev, ft_prio, &leftovers_specs[LEFTOVERS_MC].flow_attr, dst); if (!IS_ERR(handler) && flow_attr->type == IB_FLOW_ATTR_ALL_DEFAULT) { handler_ucast = create_flow_rule(dev, ft_prio, &leftovers_specs[LEFTOVERS_UC].flow_attr, dst); if (IS_ERR(handler_ucast)) { mlx5_del_flow_rule(handler->rule); ft_prio->refcount--; kfree(handler); handler = handler_ucast; } else { list_add(&handler_ucast->list, &handler->list); } } return handler; } static struct mlx5_ib_flow_handler *create_sniffer_rule(struct mlx5_ib_dev *dev, struct mlx5_ib_flow_prio *ft_rx, struct mlx5_ib_flow_prio *ft_tx, struct mlx5_flow_destination *dst) { struct mlx5_ib_flow_handler *handler_rx; struct mlx5_ib_flow_handler *handler_tx; int err; static const struct ib_flow_attr flow_attr = { .num_of_specs = 0, .size = sizeof(flow_attr) }; handler_rx = create_flow_rule(dev, ft_rx, &flow_attr, dst); if (IS_ERR(handler_rx)) { err = PTR_ERR(handler_rx); goto err; } handler_tx = create_flow_rule(dev, ft_tx, &flow_attr, dst); if (IS_ERR(handler_tx)) { err = PTR_ERR(handler_tx); goto err_tx; } list_add(&handler_tx->list, &handler_rx->list); return handler_rx; err_tx: mlx5_del_flow_rule(handler_rx->rule); ft_rx->refcount--; kfree(handler_rx); err: return ERR_PTR(err); } static struct ib_flow *mlx5_ib_create_flow(struct ib_qp *qp, struct ib_flow_attr *flow_attr, int domain) { struct mlx5_ib_dev *dev = to_mdev(qp->device); struct mlx5_ib_qp *mqp = to_mqp(qp); struct mlx5_ib_flow_handler *handler = NULL; struct mlx5_flow_destination *dst = NULL; struct mlx5_ib_flow_prio *ft_prio_tx = NULL; struct mlx5_ib_flow_prio *ft_prio; int err; if (flow_attr->priority > MLX5_IB_FLOW_LAST_PRIO) return ERR_PTR(-ENOSPC); if (domain != IB_FLOW_DOMAIN_USER || flow_attr->port > MLX5_CAP_GEN(dev->mdev, num_ports) || (flow_attr->flags & ~IB_FLOW_ATTR_FLAGS_DONT_TRAP)) return ERR_PTR(-EINVAL); dst = kzalloc(sizeof(*dst), GFP_KERNEL); if (!dst) return ERR_PTR(-ENOMEM); mutex_lock(&dev->flow_db.lock); ft_prio = get_flow_table(dev, flow_attr, MLX5_IB_FT_RX); if (IS_ERR(ft_prio)) { err = PTR_ERR(ft_prio); goto unlock; } if (flow_attr->type == IB_FLOW_ATTR_SNIFFER) { ft_prio_tx = get_flow_table(dev, flow_attr, MLX5_IB_FT_TX); if (IS_ERR(ft_prio_tx)) { err = PTR_ERR(ft_prio_tx); ft_prio_tx = NULL; goto destroy_ft; } } dst->type = MLX5_FLOW_DESTINATION_TYPE_TIR; if (mqp->flags & MLX5_IB_QP_RSS) dst->tir_num = mqp->rss_qp.tirn; else dst->tir_num = mqp->raw_packet_qp.rq.tirn; if (flow_attr->type == IB_FLOW_ATTR_NORMAL) { if (flow_attr->flags & IB_FLOW_ATTR_FLAGS_DONT_TRAP) { handler = create_dont_trap_rule(dev, ft_prio, flow_attr, dst); } else { handler = create_flow_rule(dev, ft_prio, flow_attr, dst); } } else if (flow_attr->type == IB_FLOW_ATTR_ALL_DEFAULT || flow_attr->type == IB_FLOW_ATTR_MC_DEFAULT) { handler = create_leftovers_rule(dev, ft_prio, flow_attr, dst); } else if (flow_attr->type == IB_FLOW_ATTR_SNIFFER) { handler = create_sniffer_rule(dev, ft_prio, ft_prio_tx, dst); } else { err = -EINVAL; goto destroy_ft; } if (IS_ERR(handler)) { err = PTR_ERR(handler); handler = NULL; goto destroy_ft; } mutex_unlock(&dev->flow_db.lock); kfree(dst); return &handler->ibflow; destroy_ft: put_flow_table(dev, ft_prio, false); if (ft_prio_tx) put_flow_table(dev, ft_prio_tx, false); unlock: mutex_unlock(&dev->flow_db.lock); kfree(dst); kfree(handler); return ERR_PTR(err); } static int mlx5_ib_mcg_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid) { struct mlx5_ib_dev *dev = to_mdev(ibqp->device); int err; err = mlx5_core_attach_mcg(dev->mdev, gid, ibqp->qp_num); if (err) mlx5_ib_warn(dev, "failed attaching QPN 0x%x, MGID %pI6\n", ibqp->qp_num, gid->raw); return err; } static int mlx5_ib_mcg_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid) { struct mlx5_ib_dev *dev = to_mdev(ibqp->device); int err; err = mlx5_core_detach_mcg(dev->mdev, gid, ibqp->qp_num); if (err) mlx5_ib_warn(dev, "failed detaching QPN 0x%x, MGID %pI6\n", ibqp->qp_num, gid->raw); return err; } static int init_node_data(struct mlx5_ib_dev *dev) { int err; err = mlx5_query_node_desc(dev, dev->ib_dev.node_desc); if (err) return err; return mlx5_query_node_guid(dev, &dev->ib_dev.node_guid); } static ssize_t show_fw_pages(struct device *device, struct device_attribute *attr, char *buf) { struct mlx5_ib_dev *dev = container_of(device, struct mlx5_ib_dev, ib_dev.dev); return sprintf(buf, "%lld\n", (long long)dev->mdev->priv.fw_pages); } static ssize_t show_reg_pages(struct device *device, struct device_attribute *attr, char *buf) { struct mlx5_ib_dev *dev = container_of(device, struct mlx5_ib_dev, ib_dev.dev); return sprintf(buf, "%d\n", atomic_read(&dev->mdev->priv.reg_pages)); } static ssize_t show_hca(struct device *device, struct device_attribute *attr, char *buf) { struct mlx5_ib_dev *dev = container_of(device, struct mlx5_ib_dev, ib_dev.dev); return sprintf(buf, "MT%d\n", dev->mdev->pdev->device); } static ssize_t show_rev(struct device *device, struct device_attribute *attr, char *buf) { struct mlx5_ib_dev *dev = container_of(device, struct mlx5_ib_dev, ib_dev.dev); return sprintf(buf, "%x\n", dev->mdev->pdev->revision); } static ssize_t show_board(struct device *device, struct device_attribute *attr, char *buf) { struct mlx5_ib_dev *dev = container_of(device, struct mlx5_ib_dev, ib_dev.dev); return sprintf(buf, "%.*s\n", MLX5_BOARD_ID_LEN, dev->mdev->board_id); } static DEVICE_ATTR(hw_rev, S_IRUGO, show_rev, NULL); static DEVICE_ATTR(hca_type, S_IRUGO, show_hca, NULL); static DEVICE_ATTR(board_id, S_IRUGO, show_board, NULL); static DEVICE_ATTR(fw_pages, S_IRUGO, show_fw_pages, NULL); static DEVICE_ATTR(reg_pages, S_IRUGO, show_reg_pages, NULL); static struct device_attribute *mlx5_class_attributes[] = { &dev_attr_hw_rev, &dev_attr_hca_type, &dev_attr_board_id, &dev_attr_fw_pages, &dev_attr_reg_pages, }; static void pkey_change_handler(struct work_struct *work) { struct mlx5_ib_port_resources *ports = container_of(work, struct mlx5_ib_port_resources, pkey_change_work); mutex_lock(&ports->devr->mutex); mlx5_ib_gsi_pkey_change(ports->gsi); mutex_unlock(&ports->devr->mutex); } static void mlx5_ib_handle_internal_error(struct mlx5_ib_dev *ibdev) { struct mlx5_ib_qp *mqp; struct mlx5_ib_cq *send_mcq, *recv_mcq; struct mlx5_core_cq *mcq; struct list_head cq_armed_list; unsigned long flags_qp; unsigned long flags_cq; unsigned long flags; INIT_LIST_HEAD(&cq_armed_list); /* Go over qp list reside on that ibdev, sync with create/destroy qp.*/ spin_lock_irqsave(&ibdev->reset_flow_resource_lock, flags); list_for_each_entry(mqp, &ibdev->qp_list, qps_list) { spin_lock_irqsave(&mqp->sq.lock, flags_qp); if (mqp->sq.tail != mqp->sq.head) { send_mcq = to_mcq(mqp->ibqp.send_cq); spin_lock_irqsave(&send_mcq->lock, flags_cq); if (send_mcq->mcq.comp && mqp->ibqp.send_cq->comp_handler) { if (!send_mcq->mcq.reset_notify_added) { send_mcq->mcq.reset_notify_added = 1; list_add_tail(&send_mcq->mcq.reset_notify, &cq_armed_list); } } spin_unlock_irqrestore(&send_mcq->lock, flags_cq); } spin_unlock_irqrestore(&mqp->sq.lock, flags_qp); spin_lock_irqsave(&mqp->rq.lock, flags_qp); /* no handling is needed for SRQ */ if (!mqp->ibqp.srq) { if (mqp->rq.tail != mqp->rq.head) { recv_mcq = to_mcq(mqp->ibqp.recv_cq); spin_lock_irqsave(&recv_mcq->lock, flags_cq); if (recv_mcq->mcq.comp && mqp->ibqp.recv_cq->comp_handler) { if (!recv_mcq->mcq.reset_notify_added) { recv_mcq->mcq.reset_notify_added = 1; list_add_tail(&recv_mcq->mcq.reset_notify, &cq_armed_list); } } spin_unlock_irqrestore(&recv_mcq->lock, flags_cq); } } spin_unlock_irqrestore(&mqp->rq.lock, flags_qp); } /*At that point all inflight post send were put to be executed as of we * lock/unlock above locks Now need to arm all involved CQs. */ list_for_each_entry(mcq, &cq_armed_list, reset_notify) { mcq->comp(mcq); } spin_unlock_irqrestore(&ibdev->reset_flow_resource_lock, flags); } static void mlx5_ib_event(struct mlx5_core_dev *dev, void *context, enum mlx5_dev_event event, unsigned long param) { struct mlx5_ib_dev *ibdev = (struct mlx5_ib_dev *)context; struct ib_event ibev; bool fatal = false; u8 port = (u8)param; switch (event) { case MLX5_DEV_EVENT_SYS_ERROR: ibev.event = IB_EVENT_DEVICE_FATAL; mlx5_ib_handle_internal_error(ibdev); fatal = true; break; case MLX5_DEV_EVENT_PORT_UP: case MLX5_DEV_EVENT_PORT_DOWN: case MLX5_DEV_EVENT_PORT_INITIALIZED: /* In RoCE, port up/down events are handled in * mlx5_netdev_event(). */ if (mlx5_ib_port_link_layer(&ibdev->ib_dev, port) == IB_LINK_LAYER_ETHERNET) return; ibev.event = (event == MLX5_DEV_EVENT_PORT_UP) ? IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR; break; case MLX5_DEV_EVENT_LID_CHANGE: ibev.event = IB_EVENT_LID_CHANGE; break; case MLX5_DEV_EVENT_PKEY_CHANGE: ibev.event = IB_EVENT_PKEY_CHANGE; schedule_work(&ibdev->devr.ports[port - 1].pkey_change_work); break; case MLX5_DEV_EVENT_GUID_CHANGE: ibev.event = IB_EVENT_GID_CHANGE; break; case MLX5_DEV_EVENT_CLIENT_REREG: ibev.event = IB_EVENT_CLIENT_REREGISTER; break; default: /* unsupported event */ return; } ibev.device = &ibdev->ib_dev; ibev.element.port_num = port; if (!rdma_is_port_valid(&ibdev->ib_dev, port)) { mlx5_ib_warn(ibdev, "warning: event(%d) on port %d\n", event, port); return; } if (ibdev->ib_active) ib_dispatch_event(&ibev); if (fatal) ibdev->ib_active = false; } static void get_ext_port_caps(struct mlx5_ib_dev *dev) { int port; for (port = 1; port <= MLX5_CAP_GEN(dev->mdev, num_ports); port++) mlx5_query_ext_port_caps(dev, port); } static int get_port_caps(struct mlx5_ib_dev *dev) { struct ib_device_attr *dprops = NULL; struct ib_port_attr *pprops = NULL; int err = -ENOMEM; int port; struct ib_udata uhw = {.inlen = 0, .outlen = 0}; pprops = kmalloc(sizeof(*pprops), GFP_KERNEL); if (!pprops) goto out; dprops = kmalloc(sizeof(*dprops), GFP_KERNEL); if (!dprops) goto out; err = mlx5_ib_query_device(&dev->ib_dev, dprops, &uhw); if (err) { mlx5_ib_warn(dev, "query_device failed %d\n", err); goto out; } for (port = 1; port <= MLX5_CAP_GEN(dev->mdev, num_ports); port++) { err = mlx5_ib_query_port(&dev->ib_dev, port, pprops); if (err) { mlx5_ib_warn(dev, "query_port %d failed %d\n", port, err); break; } dev->mdev->port_caps[port - 1].pkey_table_len = dprops->max_pkeys; dev->mdev->port_caps[port - 1].gid_table_len = pprops->gid_tbl_len; mlx5_ib_dbg(dev, "pkey_table_len %d, gid_table_len %d\n", dprops->max_pkeys, pprops->gid_tbl_len); } out: kfree(pprops); kfree(dprops); return err; } static void destroy_umrc_res(struct mlx5_ib_dev *dev) { int err; err = mlx5_mr_cache_cleanup(dev); if (err) mlx5_ib_warn(dev, "mr cache cleanup failed\n"); mlx5_ib_destroy_qp(dev->umrc.qp); ib_free_cq(dev->umrc.cq); ib_dealloc_pd(dev->umrc.pd); } enum { MAX_UMR_WR = 128, }; static int create_umr_res(struct mlx5_ib_dev *dev) { struct ib_qp_init_attr *init_attr = NULL; struct ib_qp_attr *attr = NULL; struct ib_pd *pd; struct ib_cq *cq; struct ib_qp *qp; int ret; attr = kzalloc(sizeof(*attr), GFP_KERNEL); init_attr = kzalloc(sizeof(*init_attr), GFP_KERNEL); if (!attr || !init_attr) { ret = -ENOMEM; goto error_0; } pd = ib_alloc_pd(&dev->ib_dev, 0); if (IS_ERR(pd)) { mlx5_ib_dbg(dev, "Couldn't create PD for sync UMR QP\n"); ret = PTR_ERR(pd); goto error_0; } cq = ib_alloc_cq(&dev->ib_dev, NULL, 128, 0, IB_POLL_SOFTIRQ); if (IS_ERR(cq)) { mlx5_ib_dbg(dev, "Couldn't create CQ for sync UMR QP\n"); ret = PTR_ERR(cq); goto error_2; } init_attr->send_cq = cq; init_attr->recv_cq = cq; init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; init_attr->cap.max_send_wr = MAX_UMR_WR; init_attr->cap.max_send_sge = 1; init_attr->qp_type = MLX5_IB_QPT_REG_UMR; init_attr->port_num = 1; qp = mlx5_ib_create_qp(pd, init_attr, NULL); if (IS_ERR(qp)) { mlx5_ib_dbg(dev, "Couldn't create sync UMR QP\n"); ret = PTR_ERR(qp); goto error_3; } qp->device = &dev->ib_dev; qp->real_qp = qp; qp->uobject = NULL; qp->qp_type = MLX5_IB_QPT_REG_UMR; attr->qp_state = IB_QPS_INIT; attr->port_num = 1; ret = mlx5_ib_modify_qp(qp, attr, IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT, NULL); if (ret) { mlx5_ib_dbg(dev, "Couldn't modify UMR QP\n"); goto error_4; } memset(attr, 0, sizeof(*attr)); attr->qp_state = IB_QPS_RTR; attr->path_mtu = IB_MTU_256; ret = mlx5_ib_modify_qp(qp, attr, IB_QP_STATE, NULL); if (ret) { mlx5_ib_dbg(dev, "Couldn't modify umr QP to rtr\n"); goto error_4; } memset(attr, 0, sizeof(*attr)); attr->qp_state = IB_QPS_RTS; ret = mlx5_ib_modify_qp(qp, attr, IB_QP_STATE, NULL); if (ret) { mlx5_ib_dbg(dev, "Couldn't modify umr QP to rts\n"); goto error_4; } dev->umrc.qp = qp; dev->umrc.cq = cq; dev->umrc.pd = pd; sema_init(&dev->umrc.sem, MAX_UMR_WR); ret = mlx5_mr_cache_init(dev); if (ret) { mlx5_ib_warn(dev, "mr cache init failed %d\n", ret); goto error_4; } kfree(attr); kfree(init_attr); return 0; error_4: mlx5_ib_destroy_qp(qp); error_3: ib_free_cq(cq); error_2: ib_dealloc_pd(pd); error_0: kfree(attr); kfree(init_attr); return ret; } static int create_dev_resources(struct mlx5_ib_resources *devr) { struct ib_srq_init_attr attr; struct mlx5_ib_dev *dev; struct ib_cq_init_attr cq_attr = {.cqe = 1}; int port; int ret = 0; dev = container_of(devr, struct mlx5_ib_dev, devr); mutex_init(&devr->mutex); devr->p0 = mlx5_ib_alloc_pd(&dev->ib_dev, NULL, NULL); if (IS_ERR(devr->p0)) { ret = PTR_ERR(devr->p0); goto error0; } devr->p0->device = &dev->ib_dev; devr->p0->uobject = NULL; atomic_set(&devr->p0->usecnt, 0); devr->c0 = mlx5_ib_create_cq(&dev->ib_dev, &cq_attr, NULL, NULL); if (IS_ERR(devr->c0)) { ret = PTR_ERR(devr->c0); goto error1; } devr->c0->device = &dev->ib_dev; devr->c0->uobject = NULL; devr->c0->comp_handler = NULL; devr->c0->event_handler = NULL; devr->c0->cq_context = NULL; atomic_set(&devr->c0->usecnt, 0); devr->x0 = mlx5_ib_alloc_xrcd(&dev->ib_dev, NULL, NULL); if (IS_ERR(devr->x0)) { ret = PTR_ERR(devr->x0); goto error2; } devr->x0->device = &dev->ib_dev; devr->x0->inode = NULL; atomic_set(&devr->x0->usecnt, 0); mutex_init(&devr->x0->tgt_qp_mutex); INIT_LIST_HEAD(&devr->x0->tgt_qp_list); devr->x1 = mlx5_ib_alloc_xrcd(&dev->ib_dev, NULL, NULL); if (IS_ERR(devr->x1)) { ret = PTR_ERR(devr->x1); goto error3; } devr->x1->device = &dev->ib_dev; devr->x1->inode = NULL; atomic_set(&devr->x1->usecnt, 0); mutex_init(&devr->x1->tgt_qp_mutex); INIT_LIST_HEAD(&devr->x1->tgt_qp_list); memset(&attr, 0, sizeof(attr)); attr.attr.max_sge = 1; attr.attr.max_wr = 1; attr.srq_type = IB_SRQT_XRC; attr.ext.xrc.cq = devr->c0; attr.ext.xrc.xrcd = devr->x0; devr->s0 = mlx5_ib_create_srq(devr->p0, &attr, NULL); if (IS_ERR(devr->s0)) { ret = PTR_ERR(devr->s0); goto error4; } devr->s0->device = &dev->ib_dev; devr->s0->pd = devr->p0; devr->s0->uobject = NULL; devr->s0->event_handler = NULL; devr->s0->srq_context = NULL; devr->s0->srq_type = IB_SRQT_XRC; devr->s0->ext.xrc.xrcd = devr->x0; devr->s0->ext.xrc.cq = devr->c0; atomic_inc(&devr->s0->ext.xrc.xrcd->usecnt); atomic_inc(&devr->s0->ext.xrc.cq->usecnt); atomic_inc(&devr->p0->usecnt); atomic_set(&devr->s0->usecnt, 0); memset(&attr, 0, sizeof(attr)); attr.attr.max_sge = 1; attr.attr.max_wr = 1; attr.srq_type = IB_SRQT_BASIC; devr->s1 = mlx5_ib_create_srq(devr->p0, &attr, NULL); if (IS_ERR(devr->s1)) { ret = PTR_ERR(devr->s1); goto error5; } devr->s1->device = &dev->ib_dev; devr->s1->pd = devr->p0; devr->s1->uobject = NULL; devr->s1->event_handler = NULL; devr->s1->srq_context = NULL; devr->s1->srq_type = IB_SRQT_BASIC; devr->s1->ext.xrc.cq = devr->c0; atomic_inc(&devr->p0->usecnt); atomic_set(&devr->s0->usecnt, 0); for (port = 0; port < ARRAY_SIZE(devr->ports); ++port) { INIT_WORK(&devr->ports[port].pkey_change_work, pkey_change_handler); devr->ports[port].devr = devr; } return 0; error5: mlx5_ib_destroy_srq(devr->s0); error4: mlx5_ib_dealloc_xrcd(devr->x1); error3: mlx5_ib_dealloc_xrcd(devr->x0); error2: mlx5_ib_destroy_cq(devr->c0); error1: mlx5_ib_dealloc_pd(devr->p0); error0: return ret; } static void destroy_dev_resources(struct mlx5_ib_resources *devr) { struct mlx5_ib_dev *dev = container_of(devr, struct mlx5_ib_dev, devr); int port; mlx5_ib_destroy_srq(devr->s1); mlx5_ib_destroy_srq(devr->s0); mlx5_ib_dealloc_xrcd(devr->x0); mlx5_ib_dealloc_xrcd(devr->x1); mlx5_ib_destroy_cq(devr->c0); mlx5_ib_dealloc_pd(devr->p0); /* Make sure no change P_Key work items are still executing */ for (port = 0; port < dev->num_ports; ++port) cancel_work_sync(&devr->ports[port].pkey_change_work); } static u32 get_core_cap_flags(struct ib_device *ibdev) { struct mlx5_ib_dev *dev = to_mdev(ibdev); enum rdma_link_layer ll = mlx5_ib_port_link_layer(ibdev, 1); u8 l3_type_cap = MLX5_CAP_ROCE(dev->mdev, l3_type); u8 roce_version_cap = MLX5_CAP_ROCE(dev->mdev, roce_version); u32 ret = 0; if (ll == IB_LINK_LAYER_INFINIBAND) return RDMA_CORE_PORT_IBA_IB; if (!(l3_type_cap & MLX5_ROCE_L3_TYPE_IPV4_CAP)) return 0; if (!(l3_type_cap & MLX5_ROCE_L3_TYPE_IPV6_CAP)) return 0; if (roce_version_cap & MLX5_ROCE_VERSION_1_CAP) ret |= RDMA_CORE_PORT_IBA_ROCE; if (roce_version_cap & MLX5_ROCE_VERSION_2_CAP) ret |= RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP; return ret; } static int mlx5_port_immutable(struct ib_device *ibdev, u8 port_num, struct ib_port_immutable *immutable) { struct ib_port_attr attr; int err; err = mlx5_ib_query_port(ibdev, port_num, &attr); if (err) return err; immutable->pkey_tbl_len = attr.pkey_tbl_len; immutable->gid_tbl_len = attr.gid_tbl_len; immutable->core_cap_flags = get_core_cap_flags(ibdev); immutable->max_mad_size = IB_MGMT_MAD_SIZE; return 0; } static void get_dev_fw_str(struct ib_device *ibdev, char *str, size_t str_len) { struct mlx5_ib_dev *dev = container_of(ibdev, struct mlx5_ib_dev, ib_dev); snprintf(str, str_len, "%d.%d.%04d", fw_rev_maj(dev->mdev), fw_rev_min(dev->mdev), fw_rev_sub(dev->mdev)); } static int mlx5_roce_lag_init(struct mlx5_ib_dev *dev) { return 0; } static void mlx5_roce_lag_cleanup(struct mlx5_ib_dev *dev) { } static void mlx5_remove_roce_notifier(struct mlx5_ib_dev *dev) { if (dev->roce.nb.notifier_call) { unregister_netdevice_notifier(&dev->roce.nb); dev->roce.nb.notifier_call = NULL; } } static int mlx5_enable_roce(struct mlx5_ib_dev *dev) { VNET_ITERATOR_DECL(vnet_iter); struct net_device *idev; int err; /* Check if mlx5en net device already exists */ VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { IFNET_RLOCK(); CURVNET_SET_QUIET(vnet_iter); TAILQ_FOREACH(idev, &V_ifnet, if_link) { /* check if network interface belongs to mlx5en */ if (!mlx5_netdev_match(idev, dev->mdev, "mce")) continue; write_lock(&dev->roce.netdev_lock); dev->roce.netdev = idev; write_unlock(&dev->roce.netdev_lock); } CURVNET_RESTORE(); IFNET_RUNLOCK(); } VNET_LIST_RUNLOCK(); dev->roce.nb.notifier_call = mlx5_netdev_event; err = register_netdevice_notifier(&dev->roce.nb); if (err) { dev->roce.nb.notifier_call = NULL; return err; } err = mlx5_nic_vport_enable_roce(dev->mdev); if (err) goto err_unregister_netdevice_notifier; err = mlx5_roce_lag_init(dev); if (err) goto err_disable_roce; return 0; err_disable_roce: mlx5_nic_vport_disable_roce(dev->mdev); err_unregister_netdevice_notifier: mlx5_remove_roce_notifier(dev); return err; } static void mlx5_disable_roce(struct mlx5_ib_dev *dev) { mlx5_roce_lag_cleanup(dev); mlx5_nic_vport_disable_roce(dev->mdev); } static void mlx5_ib_dealloc_q_port_counter(struct mlx5_ib_dev *dev, u8 port_num) { mlx5_vport_dealloc_q_counter(dev->mdev, MLX5_INTERFACE_PROTOCOL_IB, dev->port[port_num].q_cnt_id); dev->port[port_num].q_cnt_id = 0; } static void mlx5_ib_dealloc_q_counters(struct mlx5_ib_dev *dev) { unsigned int i; for (i = 0; i < dev->num_ports; i++) mlx5_ib_dealloc_q_port_counter(dev, i); } static int mlx5_ib_alloc_q_counters(struct mlx5_ib_dev *dev) { int i; int ret; for (i = 0; i < dev->num_ports; i++) { ret = mlx5_vport_alloc_q_counter(dev->mdev, MLX5_INTERFACE_PROTOCOL_IB, &dev->port[i].q_cnt_id); if (ret) { mlx5_ib_warn(dev, "couldn't allocate queue counter for port %d, err %d\n", i + 1, ret); goto dealloc_counters; } } return 0; dealloc_counters: while (--i >= 0) mlx5_ib_dealloc_q_port_counter(dev, i); return ret; } static const char * const names[] = { "rx_write_requests", "rx_read_requests", "rx_atomic_requests", "out_of_buffer", "out_of_sequence", "duplicate_request", "rnr_nak_retry_err", "packet_seq_err", "implied_nak_seq_err", "local_ack_timeout_err", }; static const size_t stats_offsets[] = { MLX5_BYTE_OFF(query_q_counter_out, rx_write_requests), MLX5_BYTE_OFF(query_q_counter_out, rx_read_requests), MLX5_BYTE_OFF(query_q_counter_out, rx_atomic_requests), MLX5_BYTE_OFF(query_q_counter_out, out_of_buffer), MLX5_BYTE_OFF(query_q_counter_out, out_of_sequence), MLX5_BYTE_OFF(query_q_counter_out, duplicate_request), MLX5_BYTE_OFF(query_q_counter_out, rnr_nak_retry_err), MLX5_BYTE_OFF(query_q_counter_out, packet_seq_err), MLX5_BYTE_OFF(query_q_counter_out, implied_nak_seq_err), MLX5_BYTE_OFF(query_q_counter_out, local_ack_timeout_err), }; static struct rdma_hw_stats *mlx5_ib_alloc_hw_stats(struct ib_device *ibdev, u8 port_num) { BUILD_BUG_ON(ARRAY_SIZE(names) != ARRAY_SIZE(stats_offsets)); /* We support only per port stats */ if (port_num == 0) return NULL; return rdma_alloc_hw_stats_struct(names, ARRAY_SIZE(names), RDMA_HW_STATS_DEFAULT_LIFESPAN); } static int mlx5_ib_get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, u8 port, int index) { struct mlx5_ib_dev *dev = to_mdev(ibdev); int outlen = MLX5_ST_SZ_BYTES(query_q_counter_out); void *out; __be32 val; int ret; int i; if (!port || !stats) return -ENOSYS; out = mlx5_vzalloc(outlen); if (!out) return -ENOMEM; ret = mlx5_vport_query_q_counter(dev->mdev, dev->port[port - 1].q_cnt_id, 0, out, outlen); if (ret) goto free; for (i = 0; i < ARRAY_SIZE(names); i++) { val = *(__be32 *)(out + stats_offsets[i]); stats->value[i] = (u64)be32_to_cpu(val); } free: kvfree(out); return ARRAY_SIZE(names); } static void *mlx5_ib_add(struct mlx5_core_dev *mdev) { struct mlx5_ib_dev *dev; enum rdma_link_layer ll; int port_type_cap; int err; int i; port_type_cap = MLX5_CAP_GEN(mdev, port_type); ll = mlx5_port_type_cap_to_rdma_ll(port_type_cap); if ((ll == IB_LINK_LAYER_ETHERNET) && !MLX5_CAP_GEN(mdev, roce)) return NULL; dev = (struct mlx5_ib_dev *)ib_alloc_device(sizeof(*dev)); if (!dev) return NULL; dev->mdev = mdev; dev->port = kcalloc(MLX5_CAP_GEN(mdev, num_ports), sizeof(*dev->port), GFP_KERNEL); if (!dev->port) goto err_dealloc; rwlock_init(&dev->roce.netdev_lock); err = get_port_caps(dev); if (err) goto err_free_port; if (mlx5_use_mad_ifc(dev)) get_ext_port_caps(dev); MLX5_INIT_DOORBELL_LOCK(&dev->uar_lock); snprintf(dev->ib_dev.name, IB_DEVICE_NAME_MAX, "mlx5_%d", device_get_unit(mdev->pdev->dev.bsddev)); dev->ib_dev.owner = THIS_MODULE; dev->ib_dev.node_type = RDMA_NODE_IB_CA; dev->ib_dev.local_dma_lkey = 0 /* not supported for now */; dev->num_ports = MLX5_CAP_GEN(mdev, num_ports); dev->ib_dev.phys_port_cnt = dev->num_ports; dev->ib_dev.num_comp_vectors = dev->mdev->priv.eq_table.num_comp_vectors; dev->ib_dev.dma_device = &mdev->pdev->dev; dev->ib_dev.uverbs_abi_ver = MLX5_IB_UVERBS_ABI_VERSION; dev->ib_dev.uverbs_cmd_mask = (1ull << IB_USER_VERBS_CMD_GET_CONTEXT) | (1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) | (1ull << IB_USER_VERBS_CMD_QUERY_PORT) | (1ull << IB_USER_VERBS_CMD_ALLOC_PD) | (1ull << IB_USER_VERBS_CMD_DEALLOC_PD) | (1ull << IB_USER_VERBS_CMD_CREATE_AH) | (1ull << IB_USER_VERBS_CMD_DESTROY_AH) | (1ull << IB_USER_VERBS_CMD_REG_MR) | (1ull << IB_USER_VERBS_CMD_REREG_MR) | (1ull << IB_USER_VERBS_CMD_DEREG_MR) | (1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | (1ull << IB_USER_VERBS_CMD_CREATE_CQ) | (1ull << IB_USER_VERBS_CMD_RESIZE_CQ) | (1ull << IB_USER_VERBS_CMD_DESTROY_CQ) | (1ull << IB_USER_VERBS_CMD_CREATE_QP) | (1ull << IB_USER_VERBS_CMD_MODIFY_QP) | (1ull << IB_USER_VERBS_CMD_QUERY_QP) | (1ull << IB_USER_VERBS_CMD_DESTROY_QP) | (1ull << IB_USER_VERBS_CMD_ATTACH_MCAST) | (1ull << IB_USER_VERBS_CMD_DETACH_MCAST) | (1ull << IB_USER_VERBS_CMD_CREATE_SRQ) | (1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) | (1ull << IB_USER_VERBS_CMD_QUERY_SRQ) | (1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) | (1ull << IB_USER_VERBS_CMD_CREATE_XSRQ) | (1ull << IB_USER_VERBS_CMD_OPEN_QP); dev->ib_dev.uverbs_ex_cmd_mask = (1ull << IB_USER_VERBS_EX_CMD_QUERY_DEVICE) | (1ull << IB_USER_VERBS_EX_CMD_CREATE_CQ) | (1ull << IB_USER_VERBS_EX_CMD_CREATE_QP); dev->ib_dev.query_device = mlx5_ib_query_device; dev->ib_dev.query_port = mlx5_ib_query_port; dev->ib_dev.get_link_layer = mlx5_ib_port_link_layer; if (ll == IB_LINK_LAYER_ETHERNET) dev->ib_dev.get_netdev = mlx5_ib_get_netdev; dev->ib_dev.query_gid = mlx5_ib_query_gid; dev->ib_dev.add_gid = mlx5_ib_add_gid; dev->ib_dev.del_gid = mlx5_ib_del_gid; dev->ib_dev.query_pkey = mlx5_ib_query_pkey; dev->ib_dev.modify_device = mlx5_ib_modify_device; dev->ib_dev.modify_port = mlx5_ib_modify_port; dev->ib_dev.alloc_ucontext = mlx5_ib_alloc_ucontext; dev->ib_dev.dealloc_ucontext = mlx5_ib_dealloc_ucontext; dev->ib_dev.mmap = mlx5_ib_mmap; dev->ib_dev.alloc_pd = mlx5_ib_alloc_pd; dev->ib_dev.dealloc_pd = mlx5_ib_dealloc_pd; dev->ib_dev.create_ah = mlx5_ib_create_ah; dev->ib_dev.query_ah = mlx5_ib_query_ah; dev->ib_dev.destroy_ah = mlx5_ib_destroy_ah; dev->ib_dev.create_srq = mlx5_ib_create_srq; dev->ib_dev.modify_srq = mlx5_ib_modify_srq; dev->ib_dev.query_srq = mlx5_ib_query_srq; dev->ib_dev.destroy_srq = mlx5_ib_destroy_srq; dev->ib_dev.post_srq_recv = mlx5_ib_post_srq_recv; dev->ib_dev.create_qp = mlx5_ib_create_qp; dev->ib_dev.modify_qp = mlx5_ib_modify_qp; dev->ib_dev.query_qp = mlx5_ib_query_qp; dev->ib_dev.destroy_qp = mlx5_ib_destroy_qp; dev->ib_dev.post_send = mlx5_ib_post_send; dev->ib_dev.post_recv = mlx5_ib_post_recv; dev->ib_dev.create_cq = mlx5_ib_create_cq; dev->ib_dev.modify_cq = mlx5_ib_modify_cq; dev->ib_dev.resize_cq = mlx5_ib_resize_cq; dev->ib_dev.destroy_cq = mlx5_ib_destroy_cq; dev->ib_dev.poll_cq = mlx5_ib_poll_cq; dev->ib_dev.req_notify_cq = mlx5_ib_arm_cq; dev->ib_dev.get_dma_mr = mlx5_ib_get_dma_mr; dev->ib_dev.reg_user_mr = mlx5_ib_reg_user_mr; dev->ib_dev.rereg_user_mr = mlx5_ib_rereg_user_mr; dev->ib_dev.reg_phys_mr = mlx5_ib_reg_phys_mr; dev->ib_dev.dereg_mr = mlx5_ib_dereg_mr; dev->ib_dev.attach_mcast = mlx5_ib_mcg_attach; dev->ib_dev.detach_mcast = mlx5_ib_mcg_detach; dev->ib_dev.process_mad = mlx5_ib_process_mad; dev->ib_dev.alloc_mr = mlx5_ib_alloc_mr; dev->ib_dev.map_mr_sg = mlx5_ib_map_mr_sg; dev->ib_dev.check_mr_status = mlx5_ib_check_mr_status; dev->ib_dev.get_port_immutable = mlx5_port_immutable; dev->ib_dev.get_dev_fw_str = get_dev_fw_str; if (mlx5_core_is_pf(mdev)) { dev->ib_dev.get_vf_config = mlx5_ib_get_vf_config; dev->ib_dev.set_vf_link_state = mlx5_ib_set_vf_link_state; dev->ib_dev.get_vf_stats = mlx5_ib_get_vf_stats; dev->ib_dev.set_vf_guid = mlx5_ib_set_vf_guid; } dev->ib_dev.disassociate_ucontext = mlx5_ib_disassociate_ucontext; mlx5_ib_internal_fill_odp_caps(dev); if (MLX5_CAP_GEN(mdev, imaicl)) { dev->ib_dev.alloc_mw = mlx5_ib_alloc_mw; dev->ib_dev.dealloc_mw = mlx5_ib_dealloc_mw; dev->ib_dev.uverbs_cmd_mask |= (1ull << IB_USER_VERBS_CMD_ALLOC_MW) | (1ull << IB_USER_VERBS_CMD_DEALLOC_MW); } if (MLX5_CAP_GEN(dev->mdev, out_of_seq_cnt) && MLX5_CAP_GEN(dev->mdev, retransmission_q_counters)) { dev->ib_dev.get_hw_stats = mlx5_ib_get_hw_stats; dev->ib_dev.alloc_hw_stats = mlx5_ib_alloc_hw_stats; } if (MLX5_CAP_GEN(mdev, xrc)) { dev->ib_dev.alloc_xrcd = mlx5_ib_alloc_xrcd; dev->ib_dev.dealloc_xrcd = mlx5_ib_dealloc_xrcd; dev->ib_dev.uverbs_cmd_mask |= (1ull << IB_USER_VERBS_CMD_OPEN_XRCD) | (1ull << IB_USER_VERBS_CMD_CLOSE_XRCD); } if (mlx5_ib_port_link_layer(&dev->ib_dev, 1) == IB_LINK_LAYER_ETHERNET) { dev->ib_dev.create_flow = mlx5_ib_create_flow; dev->ib_dev.destroy_flow = mlx5_ib_destroy_flow; dev->ib_dev.create_wq = mlx5_ib_create_wq; dev->ib_dev.modify_wq = mlx5_ib_modify_wq; dev->ib_dev.destroy_wq = mlx5_ib_destroy_wq; dev->ib_dev.create_rwq_ind_table = mlx5_ib_create_rwq_ind_table; dev->ib_dev.destroy_rwq_ind_table = mlx5_ib_destroy_rwq_ind_table; dev->ib_dev.uverbs_ex_cmd_mask |= (1ull << IB_USER_VERBS_EX_CMD_CREATE_FLOW) | (1ull << IB_USER_VERBS_EX_CMD_DESTROY_FLOW) | (1ull << IB_USER_VERBS_EX_CMD_CREATE_WQ) | (1ull << IB_USER_VERBS_EX_CMD_MODIFY_WQ) | (1ull << IB_USER_VERBS_EX_CMD_DESTROY_WQ) | (1ull << IB_USER_VERBS_EX_CMD_CREATE_RWQ_IND_TBL) | (1ull << IB_USER_VERBS_EX_CMD_DESTROY_RWQ_IND_TBL); } err = init_node_data(dev); if (err) goto err_free_port; mutex_init(&dev->flow_db.lock); mutex_init(&dev->cap_mask_mutex); INIT_LIST_HEAD(&dev->qp_list); spin_lock_init(&dev->reset_flow_resource_lock); if (ll == IB_LINK_LAYER_ETHERNET) { err = mlx5_enable_roce(dev); if (err) goto err_free_port; } err = create_dev_resources(&dev->devr); if (err) goto err_disable_roce; err = mlx5_ib_odp_init_one(dev); if (err) goto err_rsrc; err = mlx5_ib_alloc_q_counters(dev); if (err) goto err_odp; err = ib_register_device(&dev->ib_dev, NULL); if (err) goto err_q_cnt; err = create_umr_res(dev); if (err) goto err_dev; for (i = 0; i < ARRAY_SIZE(mlx5_class_attributes); i++) { err = device_create_file(&dev->ib_dev.dev, mlx5_class_attributes[i]); if (err) goto err_umrc; } err = mlx5_ib_init_congestion(dev); if (err) goto err_umrc; dev->ib_active = true; return dev; err_umrc: destroy_umrc_res(dev); err_dev: ib_unregister_device(&dev->ib_dev); err_q_cnt: mlx5_ib_dealloc_q_counters(dev); err_odp: mlx5_ib_odp_remove_one(dev); err_rsrc: destroy_dev_resources(&dev->devr); err_disable_roce: if (ll == IB_LINK_LAYER_ETHERNET) { mlx5_disable_roce(dev); mlx5_remove_roce_notifier(dev); } err_free_port: kfree(dev->port); err_dealloc: ib_dealloc_device((struct ib_device *)dev); return NULL; } static void mlx5_ib_remove(struct mlx5_core_dev *mdev, void *context) { struct mlx5_ib_dev *dev = context; enum rdma_link_layer ll = mlx5_ib_port_link_layer(&dev->ib_dev, 1); mlx5_ib_cleanup_congestion(dev); mlx5_remove_roce_notifier(dev); ib_unregister_device(&dev->ib_dev); mlx5_ib_dealloc_q_counters(dev); destroy_umrc_res(dev); mlx5_ib_odp_remove_one(dev); destroy_dev_resources(&dev->devr); if (ll == IB_LINK_LAYER_ETHERNET) mlx5_disable_roce(dev); kfree(dev->port); ib_dealloc_device(&dev->ib_dev); } static struct mlx5_interface mlx5_ib_interface = { .add = mlx5_ib_add, .remove = mlx5_ib_remove, .event = mlx5_ib_event, .protocol = MLX5_INTERFACE_PROTOCOL_IB, }; static int __init mlx5_ib_init(void) { int err; err = mlx5_ib_odp_init(); if (err) return err; err = mlx5_register_interface(&mlx5_ib_interface); if (err) goto clean_odp; return err; clean_odp: mlx5_ib_odp_cleanup(); return err; } static void __exit mlx5_ib_cleanup(void) { mlx5_unregister_interface(&mlx5_ib_interface); mlx5_ib_odp_cleanup(); } static void mlx5_ib_show_version(void __unused *arg) { printf("%s", mlx5_version); } SYSINIT(mlx5_ib_show_version, SI_SUB_DRIVERS, SI_ORDER_ANY, mlx5_ib_show_version, NULL); -module_init_order(mlx5_ib_init, SI_ORDER_THIRD); -module_exit_order(mlx5_ib_cleanup, SI_ORDER_THIRD); +module_init_order(mlx5_ib_init, SI_ORDER_SEVENTH); +module_exit_order(mlx5_ib_cleanup, SI_ORDER_SEVENTH); Index: stable/11/sys/dev/mthca/mthca_main.c =================================================================== --- stable/11/sys/dev/mthca/mthca_main.c (revision 363150) +++ stable/11/sys/dev/mthca/mthca_main.c (revision 363151) @@ -1,1279 +1,1279 @@ /* * Copyright (c) 2004, 2005 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define LINUXKPI_PARAM_PREFIX mthca_ #include #include #include #include #include #include "mthca_dev.h" #include "mthca_config_reg.h" #include "mthca_cmd.h" #include "mthca_profile.h" #include "mthca_memfree.h" #include "mthca_wqe.h" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("Mellanox InfiniBand HCA low-level driver"); MODULE_LICENSE("Dual BSD/GPL"); #ifdef CONFIG_INFINIBAND_MTHCA_DEBUG int mthca_debug_level = 0; module_param_named(debug_level, mthca_debug_level, int, 0644); MODULE_PARM_DESC(debug_level, "Enable debug tracing if > 0"); #endif /* CONFIG_INFINIBAND_MTHCA_DEBUG */ #ifdef CONFIG_PCI_MSI static int msi_x = 1; module_param(msi_x, int, 0444); MODULE_PARM_DESC(msi_x, "attempt to use MSI-X if nonzero"); #else /* CONFIG_PCI_MSI */ #define msi_x (0) #endif /* CONFIG_PCI_MSI */ static int tune_pci = 0; module_param(tune_pci, int, 0444); MODULE_PARM_DESC(tune_pci, "increase PCI burst from the default set by BIOS if nonzero"); DEFINE_MUTEX(mthca_device_mutex); #define MTHCA_DEFAULT_NUM_QP (1 << 16) #define MTHCA_DEFAULT_RDB_PER_QP (1 << 2) #define MTHCA_DEFAULT_NUM_CQ (1 << 16) #define MTHCA_DEFAULT_NUM_MCG (1 << 13) #define MTHCA_DEFAULT_NUM_MPT (1 << 17) #define MTHCA_DEFAULT_NUM_MTT (1 << 20) #define MTHCA_DEFAULT_NUM_UDAV (1 << 15) #define MTHCA_DEFAULT_NUM_RESERVED_MTTS (1 << 18) #define MTHCA_DEFAULT_NUM_UARC_SIZE (1 << 18) static struct mthca_profile hca_profile = { .num_qp = MTHCA_DEFAULT_NUM_QP, .rdb_per_qp = MTHCA_DEFAULT_RDB_PER_QP, .num_cq = MTHCA_DEFAULT_NUM_CQ, .num_mcg = MTHCA_DEFAULT_NUM_MCG, .num_mpt = MTHCA_DEFAULT_NUM_MPT, .num_mtt = MTHCA_DEFAULT_NUM_MTT, .num_udav = MTHCA_DEFAULT_NUM_UDAV, /* Tavor only */ .fmr_reserved_mtts = MTHCA_DEFAULT_NUM_RESERVED_MTTS, /* Tavor only */ .uarc_size = MTHCA_DEFAULT_NUM_UARC_SIZE, /* Arbel only */ }; module_param_named(num_qp, hca_profile.num_qp, int, 0444); MODULE_PARM_DESC(num_qp, "maximum number of QPs per HCA"); module_param_named(rdb_per_qp, hca_profile.rdb_per_qp, int, 0444); MODULE_PARM_DESC(rdb_per_qp, "number of RDB buffers per QP"); module_param_named(num_cq, hca_profile.num_cq, int, 0444); MODULE_PARM_DESC(num_cq, "maximum number of CQs per HCA"); module_param_named(num_mcg, hca_profile.num_mcg, int, 0444); MODULE_PARM_DESC(num_mcg, "maximum number of multicast groups per HCA"); module_param_named(num_mpt, hca_profile.num_mpt, int, 0444); MODULE_PARM_DESC(num_mpt, "maximum number of memory protection table entries per HCA"); module_param_named(num_mtt, hca_profile.num_mtt, int, 0444); MODULE_PARM_DESC(num_mtt, "maximum number of memory translation table segments per HCA"); module_param_named(num_udav, hca_profile.num_udav, int, 0444); MODULE_PARM_DESC(num_udav, "maximum number of UD address vectors per HCA"); module_param_named(fmr_reserved_mtts, hca_profile.fmr_reserved_mtts, int, 0444); MODULE_PARM_DESC(fmr_reserved_mtts, "number of memory translation table segments reserved for FMR"); static int log_mtts_per_seg = ilog2(MTHCA_MTT_SEG_SIZE / 8); module_param_named(log_mtts_per_seg, log_mtts_per_seg, int, 0444); MODULE_PARM_DESC(log_mtts_per_seg, "Log2 number of MTT entries per segment (1-5)"); static char mthca_version[] = DRV_NAME ": Mellanox InfiniBand HCA driver v" DRV_VERSION " (" DRV_RELDATE ")\n"; static int mthca_tune_pci(struct mthca_dev *mdev) { if (!tune_pci) return 0; /* First try to max out Read Byte Count */ if (pci_find_capability(mdev->pdev, PCI_CAP_ID_PCIX)) { if (pcix_set_mmrbc(mdev->pdev, pcix_get_max_mmrbc(mdev->pdev))) { mthca_err(mdev, "Couldn't set PCI-X max read count, " "aborting.\n"); return -ENODEV; } } else if (!(mdev->mthca_flags & MTHCA_FLAG_PCIE)) mthca_info(mdev, "No PCI-X capability, not setting RBC.\n"); if (pci_is_pcie(mdev->pdev)) { if (pcie_set_readrq(mdev->pdev, 4096)) { mthca_err(mdev, "Couldn't write PCI Express read request, " "aborting.\n"); return -ENODEV; } } else if (mdev->mthca_flags & MTHCA_FLAG_PCIE) mthca_info(mdev, "No PCI Express capability, " "not setting Max Read Request Size.\n"); return 0; } static int mthca_dev_lim(struct mthca_dev *mdev, struct mthca_dev_lim *dev_lim) { int err; mdev->limits.mtt_seg_size = (1 << log_mtts_per_seg) * 8; err = mthca_QUERY_DEV_LIM(mdev, dev_lim); if (err) { mthca_err(mdev, "QUERY_DEV_LIM command returned %d" ", aborting.\n", err); return err; } if (dev_lim->min_page_sz > PAGE_SIZE) { mthca_err(mdev, "HCA minimum page size of %d bigger than " "kernel PAGE_SIZE of %ld, aborting.\n", dev_lim->min_page_sz, (long)PAGE_SIZE); return -ENODEV; } if (dev_lim->num_ports > MTHCA_MAX_PORTS) { mthca_err(mdev, "HCA has %d ports, but we only support %d, " "aborting.\n", dev_lim->num_ports, MTHCA_MAX_PORTS); return -ENODEV; } if (dev_lim->uar_size > pci_resource_len(mdev->pdev, 2)) { mthca_err(mdev, "HCA reported UAR size of 0x%x bigger than " "PCI resource 2 size of 0x%llx, aborting.\n", dev_lim->uar_size, (unsigned long long)pci_resource_len(mdev->pdev, 2)); return -ENODEV; } mdev->limits.num_ports = dev_lim->num_ports; mdev->limits.vl_cap = dev_lim->max_vl; mdev->limits.mtu_cap = dev_lim->max_mtu; mdev->limits.gid_table_len = dev_lim->max_gids; mdev->limits.pkey_table_len = dev_lim->max_pkeys; mdev->limits.local_ca_ack_delay = dev_lim->local_ca_ack_delay; /* * Need to allow for worst case send WQE overhead and check * whether max_desc_sz imposes a lower limit than max_sg; UD * send has the biggest overhead. */ mdev->limits.max_sg = min_t(int, dev_lim->max_sg, (dev_lim->max_desc_sz - sizeof (struct mthca_next_seg) - (mthca_is_memfree(mdev) ? sizeof (struct mthca_arbel_ud_seg) : sizeof (struct mthca_tavor_ud_seg))) / sizeof (struct mthca_data_seg)); mdev->limits.max_wqes = dev_lim->max_qp_sz; mdev->limits.max_qp_init_rdma = dev_lim->max_requester_per_qp; mdev->limits.reserved_qps = dev_lim->reserved_qps; mdev->limits.max_srq_wqes = dev_lim->max_srq_sz; mdev->limits.reserved_srqs = dev_lim->reserved_srqs; mdev->limits.reserved_eecs = dev_lim->reserved_eecs; mdev->limits.max_desc_sz = dev_lim->max_desc_sz; mdev->limits.max_srq_sge = mthca_max_srq_sge(mdev); /* * Subtract 1 from the limit because we need to allocate a * spare CQE so the HCA HW can tell the difference between an * empty CQ and a full CQ. */ mdev->limits.max_cqes = dev_lim->max_cq_sz - 1; mdev->limits.reserved_cqs = dev_lim->reserved_cqs; mdev->limits.reserved_eqs = dev_lim->reserved_eqs; mdev->limits.reserved_mtts = dev_lim->reserved_mtts; mdev->limits.reserved_mrws = dev_lim->reserved_mrws; mdev->limits.reserved_uars = dev_lim->reserved_uars; mdev->limits.reserved_pds = dev_lim->reserved_pds; mdev->limits.port_width_cap = dev_lim->max_port_width; mdev->limits.page_size_cap = ~(u32) (dev_lim->min_page_sz - 1); mdev->limits.flags = dev_lim->flags; /* * For old FW that doesn't return static rate support, use a * value of 0x3 (only static rate values of 0 or 1 are handled), * except on Sinai, where even old FW can handle static rate * values of 2 and 3. */ if (dev_lim->stat_rate_support) mdev->limits.stat_rate_support = dev_lim->stat_rate_support; else if (mdev->mthca_flags & MTHCA_FLAG_SINAI_OPT) mdev->limits.stat_rate_support = 0xf; else mdev->limits.stat_rate_support = 0x3; /* IB_DEVICE_RESIZE_MAX_WR not supported by driver. May be doable since hardware supports it for SRQ. IB_DEVICE_N_NOTIFY_CQ is supported by hardware but not by driver. IB_DEVICE_SRQ_RESIZE is supported by hardware but SRQ is not supported by driver. */ mdev->device_cap_flags = IB_DEVICE_CHANGE_PHY_PORT | IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN; if (dev_lim->flags & DEV_LIM_FLAG_BAD_PKEY_CNTR) mdev->device_cap_flags |= IB_DEVICE_BAD_PKEY_CNTR; if (dev_lim->flags & DEV_LIM_FLAG_BAD_QKEY_CNTR) mdev->device_cap_flags |= IB_DEVICE_BAD_QKEY_CNTR; if (dev_lim->flags & DEV_LIM_FLAG_RAW_MULTI) mdev->device_cap_flags |= IB_DEVICE_RAW_MULTI; if (dev_lim->flags & DEV_LIM_FLAG_AUTO_PATH_MIG) mdev->device_cap_flags |= IB_DEVICE_AUTO_PATH_MIG; if (dev_lim->flags & DEV_LIM_FLAG_UD_AV_PORT_ENFORCE) mdev->device_cap_flags |= IB_DEVICE_UD_AV_PORT_ENFORCE; if (dev_lim->flags & DEV_LIM_FLAG_SRQ) mdev->mthca_flags |= MTHCA_FLAG_SRQ; if (mthca_is_memfree(mdev)) if (dev_lim->flags & DEV_LIM_FLAG_IPOIB_CSUM) mdev->device_cap_flags |= IB_DEVICE_UD_IP_CSUM; return 0; } static int mthca_init_tavor(struct mthca_dev *mdev) { s64 size; int err; struct mthca_dev_lim dev_lim; struct mthca_profile profile; struct mthca_init_hca_param init_hca; err = mthca_SYS_EN(mdev); if (err) { mthca_err(mdev, "SYS_EN command returned %d, aborting.\n", err); return err; } err = mthca_QUERY_FW(mdev); if (err) { mthca_err(mdev, "QUERY_FW command returned %d," " aborting.\n", err); goto err_disable; } err = mthca_QUERY_DDR(mdev); if (err) { mthca_err(mdev, "QUERY_DDR command returned %d, aborting.\n", err); goto err_disable; } err = mthca_dev_lim(mdev, &dev_lim); if (err) { mthca_err(mdev, "QUERY_DEV_LIM command returned %d, aborting.\n", err); goto err_disable; } profile = hca_profile; profile.num_uar = dev_lim.uar_size / PAGE_SIZE; profile.uarc_size = 0; if (mdev->mthca_flags & MTHCA_FLAG_SRQ) profile.num_srq = dev_lim.max_srqs; size = mthca_make_profile(mdev, &profile, &dev_lim, &init_hca); if (size < 0) { err = size; goto err_disable; } err = mthca_INIT_HCA(mdev, &init_hca); if (err) { mthca_err(mdev, "INIT_HCA command returned %d, aborting.\n", err); goto err_disable; } return 0; err_disable: mthca_SYS_DIS(mdev); return err; } static int mthca_load_fw(struct mthca_dev *mdev) { int err; /* FIXME: use HCA-attached memory for FW if present */ mdev->fw.arbel.fw_icm = mthca_alloc_icm(mdev, mdev->fw.arbel.fw_pages, GFP_HIGHUSER | __GFP_NOWARN, 0); if (!mdev->fw.arbel.fw_icm) { mthca_err(mdev, "Couldn't allocate FW area, aborting.\n"); return -ENOMEM; } err = mthca_MAP_FA(mdev, mdev->fw.arbel.fw_icm); if (err) { mthca_err(mdev, "MAP_FA command returned %d, aborting.\n", err); goto err_free; } err = mthca_RUN_FW(mdev); if (err) { mthca_err(mdev, "RUN_FW command returned %d, aborting.\n", err); goto err_unmap_fa; } return 0; err_unmap_fa: mthca_UNMAP_FA(mdev); err_free: mthca_free_icm(mdev, mdev->fw.arbel.fw_icm, 0); return err; } static int mthca_init_icm(struct mthca_dev *mdev, struct mthca_dev_lim *dev_lim, struct mthca_init_hca_param *init_hca, u64 icm_size) { u64 aux_pages; int err; err = mthca_SET_ICM_SIZE(mdev, icm_size, &aux_pages); if (err) { mthca_err(mdev, "SET_ICM_SIZE command returned %d, aborting.\n", err); return err; } mthca_dbg(mdev, "%lld KB of HCA context requires %lld KB aux memory.\n", (unsigned long long) icm_size >> 10, (unsigned long long) aux_pages << 2); mdev->fw.arbel.aux_icm = mthca_alloc_icm(mdev, aux_pages, GFP_HIGHUSER | __GFP_NOWARN, 0); if (!mdev->fw.arbel.aux_icm) { mthca_err(mdev, "Couldn't allocate aux memory, aborting.\n"); return -ENOMEM; } err = mthca_MAP_ICM_AUX(mdev, mdev->fw.arbel.aux_icm); if (err) { mthca_err(mdev, "MAP_ICM_AUX returned %d, aborting.\n", err); goto err_free_aux; } err = mthca_map_eq_icm(mdev, init_hca->eqc_base); if (err) { mthca_err(mdev, "Failed to map EQ context memory, aborting.\n"); goto err_unmap_aux; } /* CPU writes to non-reserved MTTs, while HCA might DMA to reserved mtts */ mdev->limits.reserved_mtts = ALIGN(mdev->limits.reserved_mtts * mdev->limits.mtt_seg_size, dma_get_cache_alignment()) / mdev->limits.mtt_seg_size; mdev->mr_table.mtt_table = mthca_alloc_icm_table(mdev, init_hca->mtt_base, mdev->limits.mtt_seg_size, mdev->limits.num_mtt_segs, mdev->limits.reserved_mtts, 1, 0); if (!mdev->mr_table.mtt_table) { mthca_err(mdev, "Failed to map MTT context memory, aborting.\n"); err = -ENOMEM; goto err_unmap_eq; } mdev->mr_table.mpt_table = mthca_alloc_icm_table(mdev, init_hca->mpt_base, dev_lim->mpt_entry_sz, mdev->limits.num_mpts, mdev->limits.reserved_mrws, 1, 1); if (!mdev->mr_table.mpt_table) { mthca_err(mdev, "Failed to map MPT context memory, aborting.\n"); err = -ENOMEM; goto err_unmap_mtt; } mdev->qp_table.qp_table = mthca_alloc_icm_table(mdev, init_hca->qpc_base, dev_lim->qpc_entry_sz, mdev->limits.num_qps, mdev->limits.reserved_qps, 0, 0); if (!mdev->qp_table.qp_table) { mthca_err(mdev, "Failed to map QP context memory, aborting.\n"); err = -ENOMEM; goto err_unmap_mpt; } mdev->qp_table.eqp_table = mthca_alloc_icm_table(mdev, init_hca->eqpc_base, dev_lim->eqpc_entry_sz, mdev->limits.num_qps, mdev->limits.reserved_qps, 0, 0); if (!mdev->qp_table.eqp_table) { mthca_err(mdev, "Failed to map EQP context memory, aborting.\n"); err = -ENOMEM; goto err_unmap_qp; } mdev->qp_table.rdb_table = mthca_alloc_icm_table(mdev, init_hca->rdb_base, MTHCA_RDB_ENTRY_SIZE, mdev->limits.num_qps << mdev->qp_table.rdb_shift, 0, 0, 0); if (!mdev->qp_table.rdb_table) { mthca_err(mdev, "Failed to map RDB context memory, aborting\n"); err = -ENOMEM; goto err_unmap_eqp; } mdev->cq_table.table = mthca_alloc_icm_table(mdev, init_hca->cqc_base, dev_lim->cqc_entry_sz, mdev->limits.num_cqs, mdev->limits.reserved_cqs, 0, 0); if (!mdev->cq_table.table) { mthca_err(mdev, "Failed to map CQ context memory, aborting.\n"); err = -ENOMEM; goto err_unmap_rdb; } if (mdev->mthca_flags & MTHCA_FLAG_SRQ) { mdev->srq_table.table = mthca_alloc_icm_table(mdev, init_hca->srqc_base, dev_lim->srq_entry_sz, mdev->limits.num_srqs, mdev->limits.reserved_srqs, 0, 0); if (!mdev->srq_table.table) { mthca_err(mdev, "Failed to map SRQ context memory, " "aborting.\n"); err = -ENOMEM; goto err_unmap_cq; } } /* * It's not strictly required, but for simplicity just map the * whole multicast group table now. The table isn't very big * and it's a lot easier than trying to track ref counts. */ mdev->mcg_table.table = mthca_alloc_icm_table(mdev, init_hca->mc_base, MTHCA_MGM_ENTRY_SIZE, mdev->limits.num_mgms + mdev->limits.num_amgms, mdev->limits.num_mgms + mdev->limits.num_amgms, 0, 0); if (!mdev->mcg_table.table) { mthca_err(mdev, "Failed to map MCG context memory, aborting.\n"); err = -ENOMEM; goto err_unmap_srq; } return 0; err_unmap_srq: if (mdev->mthca_flags & MTHCA_FLAG_SRQ) mthca_free_icm_table(mdev, mdev->srq_table.table); err_unmap_cq: mthca_free_icm_table(mdev, mdev->cq_table.table); err_unmap_rdb: mthca_free_icm_table(mdev, mdev->qp_table.rdb_table); err_unmap_eqp: mthca_free_icm_table(mdev, mdev->qp_table.eqp_table); err_unmap_qp: mthca_free_icm_table(mdev, mdev->qp_table.qp_table); err_unmap_mpt: mthca_free_icm_table(mdev, mdev->mr_table.mpt_table); err_unmap_mtt: mthca_free_icm_table(mdev, mdev->mr_table.mtt_table); err_unmap_eq: mthca_unmap_eq_icm(mdev); err_unmap_aux: mthca_UNMAP_ICM_AUX(mdev); err_free_aux: mthca_free_icm(mdev, mdev->fw.arbel.aux_icm, 0); return err; } static void mthca_free_icms(struct mthca_dev *mdev) { mthca_free_icm_table(mdev, mdev->mcg_table.table); if (mdev->mthca_flags & MTHCA_FLAG_SRQ) mthca_free_icm_table(mdev, mdev->srq_table.table); mthca_free_icm_table(mdev, mdev->cq_table.table); mthca_free_icm_table(mdev, mdev->qp_table.rdb_table); mthca_free_icm_table(mdev, mdev->qp_table.eqp_table); mthca_free_icm_table(mdev, mdev->qp_table.qp_table); mthca_free_icm_table(mdev, mdev->mr_table.mpt_table); mthca_free_icm_table(mdev, mdev->mr_table.mtt_table); mthca_unmap_eq_icm(mdev); mthca_UNMAP_ICM_AUX(mdev); mthca_free_icm(mdev, mdev->fw.arbel.aux_icm, 0); } static int mthca_init_arbel(struct mthca_dev *mdev) { struct mthca_dev_lim dev_lim; struct mthca_profile profile; struct mthca_init_hca_param init_hca; s64 icm_size; int err; err = mthca_QUERY_FW(mdev); if (err) { mthca_err(mdev, "QUERY_FW command failed %d, aborting.\n", err); return err; } err = mthca_ENABLE_LAM(mdev); if (err == -EAGAIN) { mthca_dbg(mdev, "No HCA-attached memory (running in MemFree mode)\n"); mdev->mthca_flags |= MTHCA_FLAG_NO_LAM; } else if (err) { mthca_err(mdev, "ENABLE_LAM returned %d, aborting.\n", err); return err; } err = mthca_load_fw(mdev); if (err) { mthca_err(mdev, "Loading FW returned %d, aborting.\n", err); goto err_disable; } err = mthca_dev_lim(mdev, &dev_lim); if (err) { mthca_err(mdev, "QUERY_DEV_LIM returned %d, aborting.\n", err); goto err_stop_fw; } profile = hca_profile; profile.num_uar = dev_lim.uar_size / PAGE_SIZE; profile.num_udav = 0; if (mdev->mthca_flags & MTHCA_FLAG_SRQ) profile.num_srq = dev_lim.max_srqs; icm_size = mthca_make_profile(mdev, &profile, &dev_lim, &init_hca); if (icm_size < 0) { err = icm_size; goto err_stop_fw; } err = mthca_init_icm(mdev, &dev_lim, &init_hca, icm_size); if (err) goto err_stop_fw; err = mthca_INIT_HCA(mdev, &init_hca); if (err) { mthca_err(mdev, "INIT_HCA command returned %d, aborting.\n", err); goto err_free_icm; } return 0; err_free_icm: mthca_free_icms(mdev); err_stop_fw: mthca_UNMAP_FA(mdev); mthca_free_icm(mdev, mdev->fw.arbel.fw_icm, 0); err_disable: if (!(mdev->mthca_flags & MTHCA_FLAG_NO_LAM)) mthca_DISABLE_LAM(mdev); return err; } static void mthca_close_hca(struct mthca_dev *mdev) { mthca_CLOSE_HCA(mdev, 0); if (mthca_is_memfree(mdev)) { mthca_free_icms(mdev); mthca_UNMAP_FA(mdev); mthca_free_icm(mdev, mdev->fw.arbel.fw_icm, 0); if (!(mdev->mthca_flags & MTHCA_FLAG_NO_LAM)) mthca_DISABLE_LAM(mdev); } else mthca_SYS_DIS(mdev); } static int mthca_init_hca(struct mthca_dev *mdev) { int err; struct mthca_adapter adapter; if (mthca_is_memfree(mdev)) err = mthca_init_arbel(mdev); else err = mthca_init_tavor(mdev); if (err) return err; err = mthca_QUERY_ADAPTER(mdev, &adapter); if (err) { mthca_err(mdev, "QUERY_ADAPTER command returned %d, aborting.\n", err); goto err_close; } mdev->eq_table.inta_pin = adapter.inta_pin; if (!mthca_is_memfree(mdev)) mdev->rev_id = adapter.revision_id; memcpy(mdev->board_id, adapter.board_id, sizeof mdev->board_id); return 0; err_close: mthca_close_hca(mdev); return err; } static int mthca_setup_hca(struct mthca_dev *dev) { int err; MTHCA_INIT_DOORBELL_LOCK(&dev->doorbell_lock); err = mthca_init_uar_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "user access region table, aborting.\n"); return err; } err = mthca_uar_alloc(dev, &dev->driver_uar); if (err) { mthca_err(dev, "Failed to allocate driver access region, " "aborting.\n"); goto err_uar_table_free; } dev->kar = ioremap((phys_addr_t) dev->driver_uar.pfn << PAGE_SHIFT, PAGE_SIZE); if (!dev->kar) { mthca_err(dev, "Couldn't map kernel access region, " "aborting.\n"); err = -ENOMEM; goto err_uar_free; } err = mthca_init_pd_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "protection domain table, aborting.\n"); goto err_kar_unmap; } err = mthca_init_mr_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "memory region table, aborting.\n"); goto err_pd_table_free; } err = mthca_pd_alloc(dev, 1, &dev->driver_pd); if (err) { mthca_err(dev, "Failed to create driver PD, " "aborting.\n"); goto err_mr_table_free; } err = mthca_init_eq_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "event queue table, aborting.\n"); goto err_pd_free; } err = mthca_cmd_use_events(dev); if (err) { mthca_err(dev, "Failed to switch to event-driven " "firmware commands, aborting.\n"); goto err_eq_table_free; } err = mthca_NOP(dev); if (err) { if (dev->mthca_flags & MTHCA_FLAG_MSI_X) { mthca_warn(dev, "NOP command failed to generate interrupt " "(IRQ %d).\n", dev->eq_table.eq[MTHCA_EQ_CMD].msi_x_vector); mthca_warn(dev, "Trying again with MSI-X disabled.\n"); } else { mthca_err(dev, "NOP command failed to generate interrupt " "(IRQ %d), aborting.\n", dev->pdev->irq); mthca_err(dev, "BIOS or ACPI interrupt routing problem?\n"); } goto err_cmd_poll; } mthca_dbg(dev, "NOP command IRQ test passed\n"); err = mthca_init_cq_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "completion queue table, aborting.\n"); goto err_cmd_poll; } err = mthca_init_srq_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "shared receive queue table, aborting.\n"); goto err_cq_table_free; } err = mthca_init_qp_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "queue pair table, aborting.\n"); goto err_srq_table_free; } err = mthca_init_av_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "address vector table, aborting.\n"); goto err_qp_table_free; } err = mthca_init_mcg_table(dev); if (err) { mthca_err(dev, "Failed to initialize " "multicast group table, aborting.\n"); goto err_av_table_free; } return 0; err_av_table_free: mthca_cleanup_av_table(dev); err_qp_table_free: mthca_cleanup_qp_table(dev); err_srq_table_free: mthca_cleanup_srq_table(dev); err_cq_table_free: mthca_cleanup_cq_table(dev); err_cmd_poll: mthca_cmd_use_polling(dev); err_eq_table_free: mthca_cleanup_eq_table(dev); err_pd_free: mthca_pd_free(dev, &dev->driver_pd); err_mr_table_free: mthca_cleanup_mr_table(dev); err_pd_table_free: mthca_cleanup_pd_table(dev); err_kar_unmap: iounmap(dev->kar); err_uar_free: mthca_uar_free(dev, &dev->driver_uar); err_uar_table_free: mthca_cleanup_uar_table(dev); return err; } static int mthca_enable_msi_x(struct mthca_dev *mdev) { struct msix_entry entries[3]; int err; entries[0].entry = 0; entries[1].entry = 1; entries[2].entry = 2; err = pci_enable_msix_range(mdev->pdev, entries, ARRAY_SIZE(entries), ARRAY_SIZE(entries)); if (err < 0) return err; mdev->eq_table.eq[MTHCA_EQ_COMP ].msi_x_vector = entries[0].vector; mdev->eq_table.eq[MTHCA_EQ_ASYNC].msi_x_vector = entries[1].vector; mdev->eq_table.eq[MTHCA_EQ_CMD ].msi_x_vector = entries[2].vector; return 0; } /* Types of supported HCA */ enum { TAVOR, /* MT23108 */ ARBEL_COMPAT, /* MT25208 in Tavor compat mode */ ARBEL_NATIVE, /* MT25208 with extended features */ SINAI /* MT25204 */ }; #define MTHCA_FW_VER(major, minor, subminor) \ (((u64) (major) << 32) | ((u64) (minor) << 16) | (u64) (subminor)) static struct { u64 latest_fw; u32 flags; } mthca_hca_table[] = { [TAVOR] = { .latest_fw = MTHCA_FW_VER(3, 5, 0), .flags = 0 }, [ARBEL_COMPAT] = { .latest_fw = MTHCA_FW_VER(4, 8, 200), .flags = MTHCA_FLAG_PCIE }, [ARBEL_NATIVE] = { .latest_fw = MTHCA_FW_VER(5, 3, 0), .flags = MTHCA_FLAG_MEMFREE | MTHCA_FLAG_PCIE }, [SINAI] = { .latest_fw = MTHCA_FW_VER(1, 2, 0), .flags = MTHCA_FLAG_MEMFREE | MTHCA_FLAG_PCIE | MTHCA_FLAG_SINAI_OPT } }; static int __mthca_init_one(struct pci_dev *pdev, int hca_type) { int ddr_hidden = 0; int err; struct mthca_dev *mdev; printk(KERN_INFO PFX "Initializing %s\n", pci_name(pdev)); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable PCI device, " "aborting.\n"); return err; } /* * Check for BARs. We expect 0: 1MB, 2: 8MB, 4: DDR (may not * be present) */ if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) || pci_resource_len(pdev, 0) != 1 << 20) { dev_err(&pdev->dev, "Missing DCS, aborting.\n"); err = -ENODEV; goto err_disable_pdev; } if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Missing UAR, aborting.\n"); err = -ENODEV; goto err_disable_pdev; } if (!(pci_resource_flags(pdev, 4) & IORESOURCE_MEM)) ddr_hidden = 1; err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "Cannot obtain PCI resources, " "aborting.\n"); goto err_disable_pdev; } pci_set_master(pdev); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { dev_warn(&pdev->dev, "Warning: couldn't set 64-bit PCI DMA mask.\n"); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "Can't set PCI DMA mask, aborting.\n"); goto err_free_res; } } err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { dev_warn(&pdev->dev, "Warning: couldn't set 64-bit " "consistent PCI DMA mask.\n"); err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "Can't set consistent PCI DMA mask, " "aborting.\n"); goto err_free_res; } } /* We can handle large RDMA requests, so allow larger segments. */ dma_set_max_seg_size(&pdev->dev, 1024 * 1024 * 1024); mdev = (struct mthca_dev *) ib_alloc_device(sizeof *mdev); if (!mdev) { dev_err(&pdev->dev, "Device struct alloc failed, " "aborting.\n"); err = -ENOMEM; goto err_free_res; } mdev->pdev = pdev; mdev->mthca_flags = mthca_hca_table[hca_type].flags; if (ddr_hidden) mdev->mthca_flags |= MTHCA_FLAG_DDR_HIDDEN; /* * Now reset the HCA before we touch the PCI capabilities or * attempt a firmware command, since a boot ROM may have left * the HCA in an undefined state. */ err = mthca_reset(mdev); if (err) { mthca_err(mdev, "Failed to reset HCA, aborting.\n"); goto err_free_dev; } if (mthca_cmd_init(mdev)) { mthca_err(mdev, "Failed to init command interface, aborting.\n"); goto err_free_dev; } err = mthca_tune_pci(mdev); if (err) goto err_cmd; err = mthca_init_hca(mdev); if (err) goto err_cmd; if (mdev->fw_ver < mthca_hca_table[hca_type].latest_fw) { mthca_warn(mdev, "HCA FW version %d.%d.%03d is old (%d.%d.%03d is current).\n", (int) (mdev->fw_ver >> 32), (int) (mdev->fw_ver >> 16) & 0xffff, (int) (mdev->fw_ver & 0xffff), (int) (mthca_hca_table[hca_type].latest_fw >> 32), (int) (mthca_hca_table[hca_type].latest_fw >> 16) & 0xffff, (int) (mthca_hca_table[hca_type].latest_fw & 0xffff)); mthca_warn(mdev, "If you have problems, try updating your HCA FW.\n"); } if (msi_x && !mthca_enable_msi_x(mdev)) mdev->mthca_flags |= MTHCA_FLAG_MSI_X; err = mthca_setup_hca(mdev); if (err == -EBUSY && (mdev->mthca_flags & MTHCA_FLAG_MSI_X)) { if (mdev->mthca_flags & MTHCA_FLAG_MSI_X) pci_disable_msix(pdev); mdev->mthca_flags &= ~MTHCA_FLAG_MSI_X; err = mthca_setup_hca(mdev); } if (err) goto err_close; err = mthca_register_device(mdev); if (err) goto err_cleanup; err = mthca_create_agents(mdev); if (err) goto err_unregister; pci_set_drvdata(pdev, mdev); mdev->hca_type = hca_type; mdev->active = true; return 0; err_unregister: mthca_unregister_device(mdev); err_cleanup: mthca_cleanup_mcg_table(mdev); mthca_cleanup_av_table(mdev); mthca_cleanup_qp_table(mdev); mthca_cleanup_srq_table(mdev); mthca_cleanup_cq_table(mdev); mthca_cmd_use_polling(mdev); mthca_cleanup_eq_table(mdev); mthca_pd_free(mdev, &mdev->driver_pd); mthca_cleanup_mr_table(mdev); mthca_cleanup_pd_table(mdev); mthca_cleanup_uar_table(mdev); err_close: if (mdev->mthca_flags & MTHCA_FLAG_MSI_X) pci_disable_msix(pdev); mthca_close_hca(mdev); err_cmd: mthca_cmd_cleanup(mdev); err_free_dev: ib_dealloc_device(&mdev->ib_dev); err_free_res: pci_release_regions(pdev); err_disable_pdev: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void __mthca_remove_one(struct pci_dev *pdev) { struct mthca_dev *mdev = pci_get_drvdata(pdev); int p; if (mdev) { mthca_free_agents(mdev); mthca_unregister_device(mdev); for (p = 1; p <= mdev->limits.num_ports; ++p) mthca_CLOSE_IB(mdev, p); mthca_cleanup_mcg_table(mdev); mthca_cleanup_av_table(mdev); mthca_cleanup_qp_table(mdev); mthca_cleanup_srq_table(mdev); mthca_cleanup_cq_table(mdev); mthca_cmd_use_polling(mdev); mthca_cleanup_eq_table(mdev); mthca_pd_free(mdev, &mdev->driver_pd); mthca_cleanup_mr_table(mdev); mthca_cleanup_pd_table(mdev); iounmap(mdev->kar); mthca_uar_free(mdev, &mdev->driver_uar); mthca_cleanup_uar_table(mdev); mthca_close_hca(mdev); mthca_cmd_cleanup(mdev); if (mdev->mthca_flags & MTHCA_FLAG_MSI_X) pci_disable_msix(pdev); ib_dealloc_device(&mdev->ib_dev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } int __mthca_restart_one(struct pci_dev *pdev) { struct mthca_dev *mdev; int hca_type; mdev = pci_get_drvdata(pdev); if (!mdev) return -ENODEV; hca_type = mdev->hca_type; __mthca_remove_one(pdev); return __mthca_init_one(pdev, hca_type); } static int mthca_init_one(struct pci_dev *pdev, const struct pci_device_id *id) { int ret; mutex_lock(&mthca_device_mutex); printk_once(KERN_INFO "%s", mthca_version); if (id->driver_data >= ARRAY_SIZE(mthca_hca_table)) { printk(KERN_ERR PFX "%s has invalid driver data %lx\n", pci_name(pdev), (long)id->driver_data); mutex_unlock(&mthca_device_mutex); return -ENODEV; } ret = __mthca_init_one(pdev, id->driver_data); mutex_unlock(&mthca_device_mutex); return ret; } static void mthca_remove_one(struct pci_dev *pdev) { mutex_lock(&mthca_device_mutex); __mthca_remove_one(pdev); mutex_unlock(&mthca_device_mutex); } static struct pci_device_id mthca_pci_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_MELLANOX, PCI_DEVICE_ID_MELLANOX_TAVOR), .driver_data = TAVOR }, { PCI_DEVICE(PCI_VENDOR_ID_TOPSPIN, PCI_DEVICE_ID_MELLANOX_TAVOR), .driver_data = TAVOR }, { PCI_DEVICE(PCI_VENDOR_ID_MELLANOX, PCI_DEVICE_ID_MELLANOX_ARBEL_COMPAT), .driver_data = ARBEL_COMPAT }, { PCI_DEVICE(PCI_VENDOR_ID_TOPSPIN, PCI_DEVICE_ID_MELLANOX_ARBEL_COMPAT), .driver_data = ARBEL_COMPAT }, { PCI_DEVICE(PCI_VENDOR_ID_MELLANOX, PCI_DEVICE_ID_MELLANOX_ARBEL), .driver_data = ARBEL_NATIVE }, { PCI_DEVICE(PCI_VENDOR_ID_TOPSPIN, PCI_DEVICE_ID_MELLANOX_ARBEL), .driver_data = ARBEL_NATIVE }, { PCI_DEVICE(PCI_VENDOR_ID_MELLANOX, PCI_DEVICE_ID_MELLANOX_SINAI), .driver_data = SINAI }, { PCI_DEVICE(PCI_VENDOR_ID_TOPSPIN, PCI_DEVICE_ID_MELLANOX_SINAI), .driver_data = SINAI }, { PCI_DEVICE(PCI_VENDOR_ID_MELLANOX, PCI_DEVICE_ID_MELLANOX_SINAI_OLD), .driver_data = SINAI }, { PCI_DEVICE(PCI_VENDOR_ID_TOPSPIN, PCI_DEVICE_ID_MELLANOX_SINAI_OLD), .driver_data = SINAI }, { 0, } }; MODULE_DEVICE_TABLE(pci, mthca_pci_table); static struct pci_driver mthca_driver = { .name = DRV_NAME, .id_table = mthca_pci_table, .probe = mthca_init_one, .remove = mthca_remove_one, }; static void __init __mthca_check_profile_val(const char *name, int *pval, int pval_default) { /* value must be positive and power of 2 */ int old_pval = *pval; if (old_pval <= 0) *pval = pval_default; else *pval = roundup_pow_of_two(old_pval); if (old_pval != *pval) { printk(KERN_WARNING PFX "Invalid value %d for %s in module parameter.\n", old_pval, name); printk(KERN_WARNING PFX "Corrected %s to %d.\n", name, *pval); } } #define mthca_check_profile_val(name, default) \ __mthca_check_profile_val(#name, &hca_profile.name, default) static void __init mthca_validate_profile(void) { mthca_check_profile_val(num_qp, MTHCA_DEFAULT_NUM_QP); mthca_check_profile_val(rdb_per_qp, MTHCA_DEFAULT_RDB_PER_QP); mthca_check_profile_val(num_cq, MTHCA_DEFAULT_NUM_CQ); mthca_check_profile_val(num_mcg, MTHCA_DEFAULT_NUM_MCG); mthca_check_profile_val(num_mpt, MTHCA_DEFAULT_NUM_MPT); mthca_check_profile_val(num_mtt, MTHCA_DEFAULT_NUM_MTT); mthca_check_profile_val(num_udav, MTHCA_DEFAULT_NUM_UDAV); mthca_check_profile_val(fmr_reserved_mtts, MTHCA_DEFAULT_NUM_RESERVED_MTTS); if (hca_profile.fmr_reserved_mtts >= hca_profile.num_mtt) { printk(KERN_WARNING PFX "Invalid fmr_reserved_mtts module parameter %d.\n", hca_profile.fmr_reserved_mtts); printk(KERN_WARNING PFX "(Must be smaller than num_mtt %d)\n", hca_profile.num_mtt); hca_profile.fmr_reserved_mtts = hca_profile.num_mtt / 2; printk(KERN_WARNING PFX "Corrected fmr_reserved_mtts to %d.\n", hca_profile.fmr_reserved_mtts); } if ((log_mtts_per_seg < 1) || (log_mtts_per_seg > 5)) { printk(KERN_WARNING PFX "bad log_mtts_per_seg (%d). Using default - %d\n", log_mtts_per_seg, ilog2(MTHCA_MTT_SEG_SIZE / 8)); log_mtts_per_seg = ilog2(MTHCA_MTT_SEG_SIZE / 8); } } static int __init mthca_init(void) { int ret; mthca_validate_profile(); ret = mthca_catas_init(); if (ret) return ret; ret = pci_register_driver(&mthca_driver); if (ret < 0) { mthca_catas_cleanup(); return ret; } return 0; } static void __exit mthca_cleanup(void) { pci_unregister_driver(&mthca_driver); mthca_catas_cleanup(); } -module_init_order(mthca_init, SI_ORDER_THIRD); -module_exit(mthca_cleanup); +module_init_order(mthca_init, SI_ORDER_SEVENTH); +module_exit_order(mthca_cleanup, SI_ORDER_SEVENTH); MODULE_VERSION(mthca, 1); MODULE_DEPEND(mthca, ibcore, 1, 1, 1); MODULE_DEPEND(mthca, linuxkpi, 1, 1, 1); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_cm.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_cm.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_cm.c (revision 363151) @@ -1,4184 +1,4184 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2004-2007 Intel Corporation. All rights reserved. * Copyright (c) 2004 Topspin Corporation. All rights reserved. * Copyright (c) 2004, 2005 Voltaire Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cm_msgs.h" MODULE_AUTHOR("Sean Hefty"); MODULE_DESCRIPTION("InfiniBand CM"); MODULE_LICENSE("Dual BSD/GPL"); static void cm_add_one(struct ib_device *device); static void cm_remove_one(struct ib_device *device, void *client_data); static struct ib_client cm_client = { .name = "cm", .add = cm_add_one, .remove = cm_remove_one }; static struct ib_cm { spinlock_t lock; struct list_head device_list; rwlock_t device_lock; struct rb_root listen_service_table; u64 listen_service_id; /* struct rb_root peer_service_table; todo: fix peer to peer */ struct rb_root remote_qp_table; struct rb_root remote_id_table; struct rb_root remote_sidr_table; struct idr local_id_table; __be32 random_id_operand; struct list_head timewait_list; struct workqueue_struct *wq; /* Sync on cm change port state */ spinlock_t state_lock; } cm; /* Counter indexes ordered by attribute ID */ enum { CM_REQ_COUNTER, CM_MRA_COUNTER, CM_REJ_COUNTER, CM_REP_COUNTER, CM_RTU_COUNTER, CM_DREQ_COUNTER, CM_DREP_COUNTER, CM_SIDR_REQ_COUNTER, CM_SIDR_REP_COUNTER, CM_LAP_COUNTER, CM_APR_COUNTER, CM_ATTR_COUNT, CM_ATTR_ID_OFFSET = 0x0010, }; enum { CM_XMIT, CM_XMIT_RETRIES, CM_RECV, CM_RECV_DUPLICATES, CM_COUNTER_GROUPS }; static char const counter_group_names[CM_COUNTER_GROUPS] [sizeof("cm_rx_duplicates")] = { "cm_tx_msgs", "cm_tx_retries", "cm_rx_msgs", "cm_rx_duplicates" }; struct cm_counter_group { struct kobject obj; atomic_long_t counter[CM_ATTR_COUNT]; }; struct cm_counter_attribute { struct attribute attr; int index; }; #define CM_COUNTER_ATTR(_name, _index) \ struct cm_counter_attribute cm_##_name##_counter_attr = { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .index = _index \ } static CM_COUNTER_ATTR(req, CM_REQ_COUNTER); static CM_COUNTER_ATTR(mra, CM_MRA_COUNTER); static CM_COUNTER_ATTR(rej, CM_REJ_COUNTER); static CM_COUNTER_ATTR(rep, CM_REP_COUNTER); static CM_COUNTER_ATTR(rtu, CM_RTU_COUNTER); static CM_COUNTER_ATTR(dreq, CM_DREQ_COUNTER); static CM_COUNTER_ATTR(drep, CM_DREP_COUNTER); static CM_COUNTER_ATTR(sidr_req, CM_SIDR_REQ_COUNTER); static CM_COUNTER_ATTR(sidr_rep, CM_SIDR_REP_COUNTER); static CM_COUNTER_ATTR(lap, CM_LAP_COUNTER); static CM_COUNTER_ATTR(apr, CM_APR_COUNTER); static struct attribute *cm_counter_default_attrs[] = { &cm_req_counter_attr.attr, &cm_mra_counter_attr.attr, &cm_rej_counter_attr.attr, &cm_rep_counter_attr.attr, &cm_rtu_counter_attr.attr, &cm_dreq_counter_attr.attr, &cm_drep_counter_attr.attr, &cm_sidr_req_counter_attr.attr, &cm_sidr_rep_counter_attr.attr, &cm_lap_counter_attr.attr, &cm_apr_counter_attr.attr, NULL }; struct cm_port { struct cm_device *cm_dev; struct ib_mad_agent *mad_agent; struct kobject port_obj; u8 port_num; struct list_head cm_priv_prim_list; struct list_head cm_priv_altr_list; struct cm_counter_group counter_group[CM_COUNTER_GROUPS]; }; struct cm_device { struct list_head list; struct ib_device *ib_device; struct device *device; u8 ack_delay; int going_down; struct cm_port *port[0]; }; struct cm_av { struct cm_port *port; union ib_gid dgid; struct ib_ah_attr ah_attr; u16 pkey_index; u8 timeout; }; struct cm_work { struct delayed_work work; struct list_head list; struct cm_port *port; struct ib_mad_recv_wc *mad_recv_wc; /* Received MADs */ __be32 local_id; /* Established / timewait */ __be32 remote_id; struct ib_cm_event cm_event; struct ib_sa_path_rec path[0]; }; struct cm_timewait_info { struct cm_work work; /* Must be first. */ struct list_head list; struct rb_node remote_qp_node; struct rb_node remote_id_node; __be64 remote_ca_guid; __be32 remote_qpn; u8 inserted_remote_qp; u8 inserted_remote_id; }; struct cm_id_private { struct ib_cm_id id; struct rb_node service_node; struct rb_node sidr_id_node; spinlock_t lock; /* Do not acquire inside cm.lock */ struct completion comp; atomic_t refcount; /* Number of clients sharing this ib_cm_id. Only valid for listeners. * Protected by the cm.lock spinlock. */ int listen_sharecount; struct ib_mad_send_buf *msg; struct cm_timewait_info *timewait_info; /* todo: use alternate port on send failure */ struct cm_av av; struct cm_av alt_av; void *private_data; __be64 tid; __be32 local_qpn; __be32 remote_qpn; enum ib_qp_type qp_type; __be32 sq_psn; __be32 rq_psn; int timeout_ms; enum ib_mtu path_mtu; __be16 pkey; u8 private_data_len; u8 max_cm_retries; u8 peer_to_peer; u8 responder_resources; u8 initiator_depth; u8 retry_count; u8 rnr_retry_count; u8 service_timeout; u8 target_ack_delay; struct list_head prim_list; struct list_head altr_list; /* Indicates that the send port mad is registered and av is set */ int prim_send_port_not_ready; int altr_send_port_not_ready; struct list_head work_list; atomic_t work_count; }; static void cm_work_handler(struct work_struct *work); static inline void cm_deref_id(struct cm_id_private *cm_id_priv) { if (atomic_dec_and_test(&cm_id_priv->refcount)) complete(&cm_id_priv->comp); } static int cm_alloc_msg(struct cm_id_private *cm_id_priv, struct ib_mad_send_buf **msg) { struct ib_mad_agent *mad_agent; struct ib_mad_send_buf *m; struct ib_ah *ah; struct cm_av *av; unsigned long flags, flags2; int ret = 0; /* don't let the port to be released till the agent is down */ spin_lock_irqsave(&cm.state_lock, flags2); spin_lock_irqsave(&cm.lock, flags); if (!cm_id_priv->prim_send_port_not_ready) av = &cm_id_priv->av; else if (!cm_id_priv->altr_send_port_not_ready && (cm_id_priv->alt_av.port)) av = &cm_id_priv->alt_av; else { pr_info("%s: not valid CM id\n", __func__); ret = -ENODEV; spin_unlock_irqrestore(&cm.lock, flags); goto out; } spin_unlock_irqrestore(&cm.lock, flags); /* Make sure the port haven't released the mad yet */ mad_agent = cm_id_priv->av.port->mad_agent; if (!mad_agent) { pr_info("%s: not a valid MAD agent\n", __func__); ret = -ENODEV; goto out; } ah = ib_create_ah(mad_agent->qp->pd, &av->ah_attr); if (IS_ERR(ah)) { ret = PTR_ERR(ah); goto out; } m = ib_create_send_mad(mad_agent, cm_id_priv->id.remote_cm_qpn, av->pkey_index, 0, IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA, GFP_ATOMIC, IB_MGMT_BASE_VERSION); if (IS_ERR(m)) { ib_destroy_ah(ah); ret = PTR_ERR(m); goto out; } /* Timeout set by caller if response is expected. */ m->ah = ah; m->retries = cm_id_priv->max_cm_retries; atomic_inc(&cm_id_priv->refcount); m->context[0] = cm_id_priv; *msg = m; out: spin_unlock_irqrestore(&cm.state_lock, flags2); return ret; } static struct ib_mad_send_buf *cm_alloc_response_msg_no_ah(struct cm_port *port, struct ib_mad_recv_wc *mad_recv_wc) { return ib_create_send_mad(port->mad_agent, 1, mad_recv_wc->wc->pkey_index, 0, IB_MGMT_MAD_HDR, IB_MGMT_MAD_DATA, GFP_ATOMIC, IB_MGMT_BASE_VERSION); } static int cm_create_response_msg_ah(struct cm_port *port, struct ib_mad_recv_wc *mad_recv_wc, struct ib_mad_send_buf *msg) { struct ib_ah *ah; ah = ib_create_ah_from_wc(port->mad_agent->qp->pd, mad_recv_wc->wc, mad_recv_wc->recv_buf.grh, port->port_num); if (IS_ERR(ah)) return PTR_ERR(ah); msg->ah = ah; return 0; } static void cm_free_msg(struct ib_mad_send_buf *msg) { if (msg->ah) ib_destroy_ah(msg->ah); if (msg->context[0]) cm_deref_id(msg->context[0]); ib_free_send_mad(msg); } static int cm_alloc_response_msg(struct cm_port *port, struct ib_mad_recv_wc *mad_recv_wc, struct ib_mad_send_buf **msg) { struct ib_mad_send_buf *m; int ret; m = cm_alloc_response_msg_no_ah(port, mad_recv_wc); if (IS_ERR(m)) return PTR_ERR(m); ret = cm_create_response_msg_ah(port, mad_recv_wc, m); if (ret) { cm_free_msg(m); return ret; } *msg = m; return 0; } static void * cm_copy_private_data(const void *private_data, u8 private_data_len) { void *data; if (!private_data || !private_data_len) return NULL; data = kmemdup(private_data, private_data_len, GFP_KERNEL); if (!data) return ERR_PTR(-ENOMEM); return data; } static void cm_set_private_data(struct cm_id_private *cm_id_priv, void *private_data, u8 private_data_len) { if (cm_id_priv->private_data && cm_id_priv->private_data_len) kfree(cm_id_priv->private_data); cm_id_priv->private_data = private_data; cm_id_priv->private_data_len = private_data_len; } static int cm_init_av_for_response(struct cm_port *port, struct ib_wc *wc, struct ib_grh *grh, struct cm_av *av) { av->port = port; av->pkey_index = wc->pkey_index; return ib_init_ah_from_wc(port->cm_dev->ib_device, port->port_num, wc, grh, &av->ah_attr); } static int cm_init_av_by_path(struct ib_sa_path_rec *path, struct cm_av *av, struct cm_id_private *cm_id_priv) { struct cm_device *cm_dev; struct cm_port *port = NULL; unsigned long flags; int ret; u8 p; struct net_device *ndev = ib_get_ndev_from_path(path); read_lock_irqsave(&cm.device_lock, flags); list_for_each_entry(cm_dev, &cm.device_list, list) { if (!ib_find_cached_gid(cm_dev->ib_device, &path->sgid, path->gid_type, ndev, &p, NULL)) { port = cm_dev->port[p-1]; break; } } read_unlock_irqrestore(&cm.device_lock, flags); if (ndev) dev_put(ndev); if (!port) return -EINVAL; ret = ib_find_cached_pkey(cm_dev->ib_device, port->port_num, be16_to_cpu(path->pkey), &av->pkey_index); if (ret) return ret; av->port = port; ret = ib_init_ah_from_path(cm_dev->ib_device, port->port_num, path, &av->ah_attr); if (ret) return ret; av->timeout = path->packet_life_time + 1; spin_lock_irqsave(&cm.lock, flags); if (&cm_id_priv->av == av) list_add_tail(&cm_id_priv->prim_list, &port->cm_priv_prim_list); else if (&cm_id_priv->alt_av == av) list_add_tail(&cm_id_priv->altr_list, &port->cm_priv_altr_list); else ret = -EINVAL; spin_unlock_irqrestore(&cm.lock, flags); return ret; } static int cm_alloc_id(struct cm_id_private *cm_id_priv) { unsigned long flags; int id; idr_preload(GFP_KERNEL); spin_lock_irqsave(&cm.lock, flags); id = idr_alloc_cyclic(&cm.local_id_table, cm_id_priv, 0, 0, GFP_NOWAIT); spin_unlock_irqrestore(&cm.lock, flags); idr_preload_end(); cm_id_priv->id.local_id = (__force __be32)id ^ cm.random_id_operand; return id < 0 ? id : 0; } static void cm_free_id(__be32 local_id) { spin_lock_irq(&cm.lock); idr_remove(&cm.local_id_table, (__force int) (local_id ^ cm.random_id_operand)); spin_unlock_irq(&cm.lock); } static struct cm_id_private * cm_get_id(__be32 local_id, __be32 remote_id) { struct cm_id_private *cm_id_priv; cm_id_priv = idr_find(&cm.local_id_table, (__force int) (local_id ^ cm.random_id_operand)); if (cm_id_priv) { if (cm_id_priv->id.remote_id == remote_id) atomic_inc(&cm_id_priv->refcount); else cm_id_priv = NULL; } return cm_id_priv; } static struct cm_id_private * cm_acquire_id(__be32 local_id, __be32 remote_id) { struct cm_id_private *cm_id_priv; spin_lock_irq(&cm.lock); cm_id_priv = cm_get_id(local_id, remote_id); spin_unlock_irq(&cm.lock); return cm_id_priv; } /* * Trivial helpers to strip endian annotation and compare; the * endianness doesn't actually matter since we just need a stable * order for the RB tree. */ static int be32_lt(__be32 a, __be32 b) { return (__force u32) a < (__force u32) b; } static int be32_gt(__be32 a, __be32 b) { return (__force u32) a > (__force u32) b; } static int be64_lt(__be64 a, __be64 b) { return (__force u64) a < (__force u64) b; } static int be64_gt(__be64 a, __be64 b) { return (__force u64) a > (__force u64) b; } static struct cm_id_private * cm_insert_listen(struct cm_id_private *cm_id_priv) { struct rb_node **link = &cm.listen_service_table.rb_node; struct rb_node *parent = NULL; struct cm_id_private *cur_cm_id_priv; __be64 service_id = cm_id_priv->id.service_id; __be64 service_mask = cm_id_priv->id.service_mask; while (*link) { parent = *link; cur_cm_id_priv = rb_entry(parent, struct cm_id_private, service_node); if ((cur_cm_id_priv->id.service_mask & service_id) == (service_mask & cur_cm_id_priv->id.service_id) && (cm_id_priv->id.device == cur_cm_id_priv->id.device)) return cur_cm_id_priv; if (cm_id_priv->id.device < cur_cm_id_priv->id.device) link = &(*link)->rb_left; else if (cm_id_priv->id.device > cur_cm_id_priv->id.device) link = &(*link)->rb_right; else if (be64_lt(service_id, cur_cm_id_priv->id.service_id)) link = &(*link)->rb_left; else if (be64_gt(service_id, cur_cm_id_priv->id.service_id)) link = &(*link)->rb_right; else link = &(*link)->rb_right; } rb_link_node(&cm_id_priv->service_node, parent, link); rb_insert_color(&cm_id_priv->service_node, &cm.listen_service_table); return NULL; } static struct cm_id_private * cm_find_listen(struct ib_device *device, __be64 service_id) { struct rb_node *node = cm.listen_service_table.rb_node; struct cm_id_private *cm_id_priv; while (node) { cm_id_priv = rb_entry(node, struct cm_id_private, service_node); if ((cm_id_priv->id.service_mask & service_id) == cm_id_priv->id.service_id && (cm_id_priv->id.device == device)) return cm_id_priv; if (device < cm_id_priv->id.device) node = node->rb_left; else if (device > cm_id_priv->id.device) node = node->rb_right; else if (be64_lt(service_id, cm_id_priv->id.service_id)) node = node->rb_left; else if (be64_gt(service_id, cm_id_priv->id.service_id)) node = node->rb_right; else node = node->rb_right; } return NULL; } static struct cm_timewait_info * cm_insert_remote_id(struct cm_timewait_info *timewait_info) { struct rb_node **link = &cm.remote_id_table.rb_node; struct rb_node *parent = NULL; struct cm_timewait_info *cur_timewait_info; __be64 remote_ca_guid = timewait_info->remote_ca_guid; __be32 remote_id = timewait_info->work.remote_id; while (*link) { parent = *link; cur_timewait_info = rb_entry(parent, struct cm_timewait_info, remote_id_node); if (be32_lt(remote_id, cur_timewait_info->work.remote_id)) link = &(*link)->rb_left; else if (be32_gt(remote_id, cur_timewait_info->work.remote_id)) link = &(*link)->rb_right; else if (be64_lt(remote_ca_guid, cur_timewait_info->remote_ca_guid)) link = &(*link)->rb_left; else if (be64_gt(remote_ca_guid, cur_timewait_info->remote_ca_guid)) link = &(*link)->rb_right; else return cur_timewait_info; } timewait_info->inserted_remote_id = 1; rb_link_node(&timewait_info->remote_id_node, parent, link); rb_insert_color(&timewait_info->remote_id_node, &cm.remote_id_table); return NULL; } static struct cm_timewait_info * cm_find_remote_id(__be64 remote_ca_guid, __be32 remote_id) { struct rb_node *node = cm.remote_id_table.rb_node; struct cm_timewait_info *timewait_info; while (node) { timewait_info = rb_entry(node, struct cm_timewait_info, remote_id_node); if (be32_lt(remote_id, timewait_info->work.remote_id)) node = node->rb_left; else if (be32_gt(remote_id, timewait_info->work.remote_id)) node = node->rb_right; else if (be64_lt(remote_ca_guid, timewait_info->remote_ca_guid)) node = node->rb_left; else if (be64_gt(remote_ca_guid, timewait_info->remote_ca_guid)) node = node->rb_right; else return timewait_info; } return NULL; } static struct cm_timewait_info * cm_insert_remote_qpn(struct cm_timewait_info *timewait_info) { struct rb_node **link = &cm.remote_qp_table.rb_node; struct rb_node *parent = NULL; struct cm_timewait_info *cur_timewait_info; __be64 remote_ca_guid = timewait_info->remote_ca_guid; __be32 remote_qpn = timewait_info->remote_qpn; while (*link) { parent = *link; cur_timewait_info = rb_entry(parent, struct cm_timewait_info, remote_qp_node); if (be32_lt(remote_qpn, cur_timewait_info->remote_qpn)) link = &(*link)->rb_left; else if (be32_gt(remote_qpn, cur_timewait_info->remote_qpn)) link = &(*link)->rb_right; else if (be64_lt(remote_ca_guid, cur_timewait_info->remote_ca_guid)) link = &(*link)->rb_left; else if (be64_gt(remote_ca_guid, cur_timewait_info->remote_ca_guid)) link = &(*link)->rb_right; else return cur_timewait_info; } timewait_info->inserted_remote_qp = 1; rb_link_node(&timewait_info->remote_qp_node, parent, link); rb_insert_color(&timewait_info->remote_qp_node, &cm.remote_qp_table); return NULL; } static struct cm_id_private * cm_insert_remote_sidr(struct cm_id_private *cm_id_priv) { struct rb_node **link = &cm.remote_sidr_table.rb_node; struct rb_node *parent = NULL; struct cm_id_private *cur_cm_id_priv; union ib_gid *port_gid = &cm_id_priv->av.dgid; __be32 remote_id = cm_id_priv->id.remote_id; while (*link) { parent = *link; cur_cm_id_priv = rb_entry(parent, struct cm_id_private, sidr_id_node); if (be32_lt(remote_id, cur_cm_id_priv->id.remote_id)) link = &(*link)->rb_left; else if (be32_gt(remote_id, cur_cm_id_priv->id.remote_id)) link = &(*link)->rb_right; else { int cmp; cmp = memcmp(port_gid, &cur_cm_id_priv->av.dgid, sizeof *port_gid); if (cmp < 0) link = &(*link)->rb_left; else if (cmp > 0) link = &(*link)->rb_right; else return cur_cm_id_priv; } } rb_link_node(&cm_id_priv->sidr_id_node, parent, link); rb_insert_color(&cm_id_priv->sidr_id_node, &cm.remote_sidr_table); return NULL; } static void cm_reject_sidr_req(struct cm_id_private *cm_id_priv, enum ib_cm_sidr_status status) { struct ib_cm_sidr_rep_param param; memset(¶m, 0, sizeof param); param.status = status; ib_send_cm_sidr_rep(&cm_id_priv->id, ¶m); } struct ib_cm_id *ib_create_cm_id(struct ib_device *device, ib_cm_handler cm_handler, void *context) { struct cm_id_private *cm_id_priv; int ret; cm_id_priv = kzalloc(sizeof *cm_id_priv, GFP_KERNEL); if (!cm_id_priv) return ERR_PTR(-ENOMEM); cm_id_priv->id.state = IB_CM_IDLE; cm_id_priv->id.device = device; cm_id_priv->id.cm_handler = cm_handler; cm_id_priv->id.context = context; cm_id_priv->id.remote_cm_qpn = 1; ret = cm_alloc_id(cm_id_priv); if (ret) goto error; spin_lock_init(&cm_id_priv->lock); init_completion(&cm_id_priv->comp); INIT_LIST_HEAD(&cm_id_priv->work_list); INIT_LIST_HEAD(&cm_id_priv->prim_list); INIT_LIST_HEAD(&cm_id_priv->altr_list); atomic_set(&cm_id_priv->work_count, -1); atomic_set(&cm_id_priv->refcount, 1); return &cm_id_priv->id; error: kfree(cm_id_priv); return ERR_PTR(-ENOMEM); } EXPORT_SYMBOL(ib_create_cm_id); static struct cm_work * cm_dequeue_work(struct cm_id_private *cm_id_priv) { struct cm_work *work; if (list_empty(&cm_id_priv->work_list)) return NULL; work = list_entry(cm_id_priv->work_list.next, struct cm_work, list); list_del(&work->list); return work; } static void cm_free_work(struct cm_work *work) { if (work->mad_recv_wc) ib_free_recv_mad(work->mad_recv_wc); kfree(work); } static inline int cm_convert_to_ms(int iba_time) { /* approximate conversion to ms from 4.096us x 2^iba_time */ return 1 << max(iba_time - 8, 0); } /* * calculate: 4.096x2^ack_timeout = 4.096x2^ack_delay + 2x4.096x2^life_time * Because of how ack_timeout is stored, adding one doubles the timeout. * To avoid large timeouts, select the max(ack_delay, life_time + 1), and * increment it (round up) only if the other is within 50%. */ static u8 cm_ack_timeout(u8 ca_ack_delay, u8 packet_life_time) { int ack_timeout = packet_life_time + 1; if (ack_timeout >= ca_ack_delay) ack_timeout += (ca_ack_delay >= (ack_timeout - 1)); else ack_timeout = ca_ack_delay + (ack_timeout >= (ca_ack_delay - 1)); return min(31, ack_timeout); } static void cm_cleanup_timewait(struct cm_timewait_info *timewait_info) { if (timewait_info->inserted_remote_id) { rb_erase(&timewait_info->remote_id_node, &cm.remote_id_table); timewait_info->inserted_remote_id = 0; } if (timewait_info->inserted_remote_qp) { rb_erase(&timewait_info->remote_qp_node, &cm.remote_qp_table); timewait_info->inserted_remote_qp = 0; } } static struct cm_timewait_info * cm_create_timewait_info(__be32 local_id) { struct cm_timewait_info *timewait_info; timewait_info = kzalloc(sizeof *timewait_info, GFP_KERNEL); if (!timewait_info) return ERR_PTR(-ENOMEM); timewait_info->work.local_id = local_id; INIT_DELAYED_WORK(&timewait_info->work.work, cm_work_handler); timewait_info->work.cm_event.event = IB_CM_TIMEWAIT_EXIT; return timewait_info; } static void cm_enter_timewait(struct cm_id_private *cm_id_priv) { int wait_time; unsigned long flags; struct cm_device *cm_dev; cm_dev = ib_get_client_data(cm_id_priv->id.device, &cm_client); if (!cm_dev) return; spin_lock_irqsave(&cm.lock, flags); cm_cleanup_timewait(cm_id_priv->timewait_info); list_add_tail(&cm_id_priv->timewait_info->list, &cm.timewait_list); spin_unlock_irqrestore(&cm.lock, flags); /* * The cm_id could be destroyed by the user before we exit timewait. * To protect against this, we search for the cm_id after exiting * timewait before notifying the user that we've exited timewait. */ cm_id_priv->id.state = IB_CM_TIMEWAIT; wait_time = cm_convert_to_ms(cm_id_priv->av.timeout); /* Check if the device started its remove_one */ spin_lock_irqsave(&cm.lock, flags); if (!cm_dev->going_down) queue_delayed_work(cm.wq, &cm_id_priv->timewait_info->work.work, msecs_to_jiffies(wait_time)); spin_unlock_irqrestore(&cm.lock, flags); cm_id_priv->timewait_info = NULL; } static void cm_reset_to_idle(struct cm_id_private *cm_id_priv) { unsigned long flags; cm_id_priv->id.state = IB_CM_IDLE; if (cm_id_priv->timewait_info) { spin_lock_irqsave(&cm.lock, flags); cm_cleanup_timewait(cm_id_priv->timewait_info); spin_unlock_irqrestore(&cm.lock, flags); kfree(cm_id_priv->timewait_info); cm_id_priv->timewait_info = NULL; } } static void cm_destroy_id(struct ib_cm_id *cm_id, int err) { struct cm_id_private *cm_id_priv; struct cm_work *work; cm_id_priv = container_of(cm_id, struct cm_id_private, id); retest: spin_lock_irq(&cm_id_priv->lock); switch (cm_id->state) { case IB_CM_LISTEN: spin_unlock_irq(&cm_id_priv->lock); spin_lock_irq(&cm.lock); if (--cm_id_priv->listen_sharecount > 0) { /* The id is still shared. */ cm_deref_id(cm_id_priv); spin_unlock_irq(&cm.lock); return; } rb_erase(&cm_id_priv->service_node, &cm.listen_service_table); spin_unlock_irq(&cm.lock); break; case IB_CM_SIDR_REQ_SENT: cm_id->state = IB_CM_IDLE; ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); spin_unlock_irq(&cm_id_priv->lock); break; case IB_CM_SIDR_REQ_RCVD: spin_unlock_irq(&cm_id_priv->lock); cm_reject_sidr_req(cm_id_priv, IB_SIDR_REJECT); spin_lock_irq(&cm.lock); if (!RB_EMPTY_NODE(&cm_id_priv->sidr_id_node)) rb_erase(&cm_id_priv->sidr_id_node, &cm.remote_sidr_table); spin_unlock_irq(&cm.lock); break; case IB_CM_REQ_SENT: case IB_CM_MRA_REQ_RCVD: ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); spin_unlock_irq(&cm_id_priv->lock); ib_send_cm_rej(cm_id, IB_CM_REJ_TIMEOUT, &cm_id_priv->id.device->node_guid, sizeof cm_id_priv->id.device->node_guid, NULL, 0); break; case IB_CM_REQ_RCVD: if (err == -ENOMEM) { /* Do not reject to allow future retries. */ cm_reset_to_idle(cm_id_priv); spin_unlock_irq(&cm_id_priv->lock); } else { spin_unlock_irq(&cm_id_priv->lock); ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, NULL, 0); } break; case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); /* Fall through */ case IB_CM_MRA_REQ_SENT: case IB_CM_REP_RCVD: case IB_CM_MRA_REP_SENT: spin_unlock_irq(&cm_id_priv->lock); ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, NULL, 0); break; case IB_CM_ESTABLISHED: spin_unlock_irq(&cm_id_priv->lock); if (cm_id_priv->qp_type == IB_QPT_XRC_TGT) break; ib_send_cm_dreq(cm_id, NULL, 0); goto retest; case IB_CM_DREQ_SENT: ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); cm_enter_timewait(cm_id_priv); spin_unlock_irq(&cm_id_priv->lock); break; case IB_CM_DREQ_RCVD: spin_unlock_irq(&cm_id_priv->lock); ib_send_cm_drep(cm_id, NULL, 0); break; default: spin_unlock_irq(&cm_id_priv->lock); break; } spin_lock_irq(&cm.lock); if (!list_empty(&cm_id_priv->altr_list) && (!cm_id_priv->altr_send_port_not_ready)) list_del(&cm_id_priv->altr_list); if (!list_empty(&cm_id_priv->prim_list) && (!cm_id_priv->prim_send_port_not_ready)) list_del(&cm_id_priv->prim_list); spin_unlock_irq(&cm.lock); cm_free_id(cm_id->local_id); cm_deref_id(cm_id_priv); wait_for_completion(&cm_id_priv->comp); while ((work = cm_dequeue_work(cm_id_priv)) != NULL) cm_free_work(work); kfree(cm_id_priv->private_data); kfree(cm_id_priv); } void ib_destroy_cm_id(struct ib_cm_id *cm_id) { cm_destroy_id(cm_id, 0); } EXPORT_SYMBOL(ib_destroy_cm_id); /** * __ib_cm_listen - Initiates listening on the specified service ID for * connection and service ID resolution requests. * @cm_id: Connection identifier associated with the listen request. * @service_id: Service identifier matched against incoming connection * and service ID resolution requests. The service ID should be specified * network-byte order. If set to IB_CM_ASSIGN_SERVICE_ID, the CM will * assign a service ID to the caller. * @service_mask: Mask applied to service ID used to listen across a * range of service IDs. If set to 0, the service ID is matched * exactly. This parameter is ignored if %service_id is set to * IB_CM_ASSIGN_SERVICE_ID. */ static int __ib_cm_listen(struct ib_cm_id *cm_id, __be64 service_id, __be64 service_mask) { struct cm_id_private *cm_id_priv, *cur_cm_id_priv; int ret = 0; service_mask = service_mask ? service_mask : ~cpu_to_be64(0); service_id &= service_mask; if ((service_id & IB_SERVICE_ID_AGN_MASK) == IB_CM_ASSIGN_SERVICE_ID && (service_id != IB_CM_ASSIGN_SERVICE_ID)) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); if (cm_id->state != IB_CM_IDLE) return -EINVAL; cm_id->state = IB_CM_LISTEN; ++cm_id_priv->listen_sharecount; if (service_id == IB_CM_ASSIGN_SERVICE_ID) { cm_id->service_id = cpu_to_be64(cm.listen_service_id++); cm_id->service_mask = ~cpu_to_be64(0); } else { cm_id->service_id = service_id; cm_id->service_mask = service_mask; } cur_cm_id_priv = cm_insert_listen(cm_id_priv); if (cur_cm_id_priv) { cm_id->state = IB_CM_IDLE; --cm_id_priv->listen_sharecount; ret = -EBUSY; } return ret; } int ib_cm_listen(struct ib_cm_id *cm_id, __be64 service_id, __be64 service_mask) { unsigned long flags; int ret; spin_lock_irqsave(&cm.lock, flags); ret = __ib_cm_listen(cm_id, service_id, service_mask); spin_unlock_irqrestore(&cm.lock, flags); return ret; } EXPORT_SYMBOL(ib_cm_listen); /** * Create a new listening ib_cm_id and listen on the given service ID. * * If there's an existing ID listening on that same device and service ID, * return it. * * @device: Device associated with the cm_id. All related communication will * be associated with the specified device. * @cm_handler: Callback invoked to notify the user of CM events. * @service_id: Service identifier matched against incoming connection * and service ID resolution requests. The service ID should be specified * network-byte order. If set to IB_CM_ASSIGN_SERVICE_ID, the CM will * assign a service ID to the caller. * * Callers should call ib_destroy_cm_id when done with the listener ID. */ struct ib_cm_id *ib_cm_insert_listen(struct ib_device *device, ib_cm_handler cm_handler, __be64 service_id) { struct cm_id_private *cm_id_priv; struct ib_cm_id *cm_id; unsigned long flags; int err = 0; /* Create an ID in advance, since the creation may sleep */ cm_id = ib_create_cm_id(device, cm_handler, NULL); if (IS_ERR(cm_id)) return cm_id; spin_lock_irqsave(&cm.lock, flags); if (service_id == IB_CM_ASSIGN_SERVICE_ID) goto new_id; /* Find an existing ID */ cm_id_priv = cm_find_listen(device, service_id); if (cm_id_priv) { if (cm_id->cm_handler != cm_handler || cm_id->context) { /* Sharing an ib_cm_id with different handlers is not * supported */ spin_unlock_irqrestore(&cm.lock, flags); return ERR_PTR(-EINVAL); } atomic_inc(&cm_id_priv->refcount); ++cm_id_priv->listen_sharecount; spin_unlock_irqrestore(&cm.lock, flags); ib_destroy_cm_id(cm_id); cm_id = &cm_id_priv->id; return cm_id; } new_id: /* Use newly created ID */ err = __ib_cm_listen(cm_id, service_id, 0); spin_unlock_irqrestore(&cm.lock, flags); if (err) { ib_destroy_cm_id(cm_id); return ERR_PTR(err); } return cm_id; } EXPORT_SYMBOL(ib_cm_insert_listen); static __be64 cm_form_tid(struct cm_id_private *cm_id_priv, enum cm_msg_sequence msg_seq) { u64 hi_tid, low_tid; hi_tid = ((u64) cm_id_priv->av.port->mad_agent->hi_tid) << 32; low_tid = (u64) ((__force u32)cm_id_priv->id.local_id | (msg_seq << 30)); return cpu_to_be64(hi_tid | low_tid); } static void cm_format_mad_hdr(struct ib_mad_hdr *hdr, __be16 attr_id, __be64 tid) { hdr->base_version = IB_MGMT_BASE_VERSION; hdr->mgmt_class = IB_MGMT_CLASS_CM; hdr->class_version = IB_CM_CLASS_VERSION; hdr->method = IB_MGMT_METHOD_SEND; hdr->attr_id = attr_id; hdr->tid = tid; } static void cm_format_req(struct cm_req_msg *req_msg, struct cm_id_private *cm_id_priv, struct ib_cm_req_param *param) { struct ib_sa_path_rec *pri_path = param->primary_path; struct ib_sa_path_rec *alt_path = param->alternate_path; cm_format_mad_hdr(&req_msg->hdr, CM_REQ_ATTR_ID, cm_form_tid(cm_id_priv, CM_MSG_SEQUENCE_REQ)); req_msg->local_comm_id = cm_id_priv->id.local_id; req_msg->service_id = param->service_id; req_msg->local_ca_guid = cm_id_priv->id.device->node_guid; cm_req_set_local_qpn(req_msg, cpu_to_be32(param->qp_num)); cm_req_set_init_depth(req_msg, param->initiator_depth); cm_req_set_remote_resp_timeout(req_msg, param->remote_cm_response_timeout); cm_req_set_qp_type(req_msg, param->qp_type); cm_req_set_flow_ctrl(req_msg, param->flow_control); cm_req_set_starting_psn(req_msg, cpu_to_be32(param->starting_psn)); cm_req_set_local_resp_timeout(req_msg, param->local_cm_response_timeout); req_msg->pkey = param->primary_path->pkey; cm_req_set_path_mtu(req_msg, param->primary_path->mtu); cm_req_set_max_cm_retries(req_msg, param->max_cm_retries); if (param->qp_type != IB_QPT_XRC_INI) { cm_req_set_resp_res(req_msg, param->responder_resources); cm_req_set_retry_count(req_msg, param->retry_count); cm_req_set_rnr_retry_count(req_msg, param->rnr_retry_count); cm_req_set_srq(req_msg, param->srq); } if (pri_path->hop_limit <= 1) { req_msg->primary_local_lid = pri_path->slid; req_msg->primary_remote_lid = pri_path->dlid; } else { /* Work-around until there's a way to obtain remote LID info */ req_msg->primary_local_lid = IB_LID_PERMISSIVE; req_msg->primary_remote_lid = IB_LID_PERMISSIVE; } req_msg->primary_local_gid = pri_path->sgid; req_msg->primary_remote_gid = pri_path->dgid; cm_req_set_primary_flow_label(req_msg, pri_path->flow_label); cm_req_set_primary_packet_rate(req_msg, pri_path->rate); req_msg->primary_traffic_class = pri_path->traffic_class; req_msg->primary_hop_limit = pri_path->hop_limit; cm_req_set_primary_sl(req_msg, pri_path->sl); cm_req_set_primary_subnet_local(req_msg, (pri_path->hop_limit <= 1)); cm_req_set_primary_local_ack_timeout(req_msg, cm_ack_timeout(cm_id_priv->av.port->cm_dev->ack_delay, pri_path->packet_life_time)); if (alt_path) { if (alt_path->hop_limit <= 1) { req_msg->alt_local_lid = alt_path->slid; req_msg->alt_remote_lid = alt_path->dlid; } else { req_msg->alt_local_lid = IB_LID_PERMISSIVE; req_msg->alt_remote_lid = IB_LID_PERMISSIVE; } req_msg->alt_local_gid = alt_path->sgid; req_msg->alt_remote_gid = alt_path->dgid; cm_req_set_alt_flow_label(req_msg, alt_path->flow_label); cm_req_set_alt_packet_rate(req_msg, alt_path->rate); req_msg->alt_traffic_class = alt_path->traffic_class; req_msg->alt_hop_limit = alt_path->hop_limit; cm_req_set_alt_sl(req_msg, alt_path->sl); cm_req_set_alt_subnet_local(req_msg, (alt_path->hop_limit <= 1)); cm_req_set_alt_local_ack_timeout(req_msg, cm_ack_timeout(cm_id_priv->av.port->cm_dev->ack_delay, alt_path->packet_life_time)); } if (param->private_data && param->private_data_len) memcpy(req_msg->private_data, param->private_data, param->private_data_len); } static int cm_validate_req_param(struct ib_cm_req_param *param) { /* peer-to-peer not supported */ if (param->peer_to_peer) return -EINVAL; if (!param->primary_path) return -EINVAL; if (param->qp_type != IB_QPT_RC && param->qp_type != IB_QPT_UC && param->qp_type != IB_QPT_XRC_INI) return -EINVAL; if (param->private_data && param->private_data_len > IB_CM_REQ_PRIVATE_DATA_SIZE) return -EINVAL; if (param->alternate_path && (param->alternate_path->pkey != param->primary_path->pkey || param->alternate_path->mtu != param->primary_path->mtu)) return -EINVAL; return 0; } int ib_send_cm_req(struct ib_cm_id *cm_id, struct ib_cm_req_param *param) { struct cm_id_private *cm_id_priv; struct cm_req_msg *req_msg; unsigned long flags; int ret; ret = cm_validate_req_param(param); if (ret) return ret; /* Verify that we're not in timewait. */ cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_IDLE) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = -EINVAL; goto out; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_id_priv->timewait_info = cm_create_timewait_info(cm_id_priv-> id.local_id); if (IS_ERR(cm_id_priv->timewait_info)) { ret = PTR_ERR(cm_id_priv->timewait_info); goto out; } ret = cm_init_av_by_path(param->primary_path, &cm_id_priv->av, cm_id_priv); if (ret) goto error1; if (param->alternate_path) { ret = cm_init_av_by_path(param->alternate_path, &cm_id_priv->alt_av, cm_id_priv); if (ret) goto error1; } cm_id->service_id = param->service_id; cm_id->service_mask = ~cpu_to_be64(0); cm_id_priv->timeout_ms = cm_convert_to_ms( param->primary_path->packet_life_time) * 2 + cm_convert_to_ms( param->remote_cm_response_timeout); cm_id_priv->max_cm_retries = param->max_cm_retries; cm_id_priv->initiator_depth = param->initiator_depth; cm_id_priv->responder_resources = param->responder_resources; cm_id_priv->retry_count = param->retry_count; cm_id_priv->path_mtu = param->primary_path->mtu; cm_id_priv->pkey = param->primary_path->pkey; cm_id_priv->qp_type = param->qp_type; ret = cm_alloc_msg(cm_id_priv, &cm_id_priv->msg); if (ret) goto error1; req_msg = (struct cm_req_msg *) cm_id_priv->msg->mad; cm_format_req(req_msg, cm_id_priv, param); cm_id_priv->tid = req_msg->hdr.tid; cm_id_priv->msg->timeout_ms = cm_id_priv->timeout_ms; cm_id_priv->msg->context[1] = (void *) (unsigned long) IB_CM_REQ_SENT; cm_id_priv->local_qpn = cm_req_get_local_qpn(req_msg); cm_id_priv->rq_psn = cm_req_get_starting_psn(req_msg); spin_lock_irqsave(&cm_id_priv->lock, flags); ret = ib_post_send_mad(cm_id_priv->msg, NULL); if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); goto error2; } BUG_ON(cm_id->state != IB_CM_IDLE); cm_id->state = IB_CM_REQ_SENT; spin_unlock_irqrestore(&cm_id_priv->lock, flags); return 0; error2: cm_free_msg(cm_id_priv->msg); error1: kfree(cm_id_priv->timewait_info); out: return ret; } EXPORT_SYMBOL(ib_send_cm_req); static int cm_issue_rej(struct cm_port *port, struct ib_mad_recv_wc *mad_recv_wc, enum ib_cm_rej_reason reason, enum cm_msg_response msg_rejected, void *ari, u8 ari_length) { struct ib_mad_send_buf *msg = NULL; struct cm_rej_msg *rej_msg, *rcv_msg; int ret; ret = cm_alloc_response_msg(port, mad_recv_wc, &msg); if (ret) return ret; /* We just need common CM header information. Cast to any message. */ rcv_msg = (struct cm_rej_msg *) mad_recv_wc->recv_buf.mad; rej_msg = (struct cm_rej_msg *) msg->mad; cm_format_mad_hdr(&rej_msg->hdr, CM_REJ_ATTR_ID, rcv_msg->hdr.tid); rej_msg->remote_comm_id = rcv_msg->local_comm_id; rej_msg->local_comm_id = rcv_msg->remote_comm_id; cm_rej_set_msg_rejected(rej_msg, msg_rejected); rej_msg->reason = cpu_to_be16(reason); if (ari && ari_length) { cm_rej_set_reject_info_len(rej_msg, ari_length); memcpy(rej_msg->ari, ari, ari_length); } ret = ib_post_send_mad(msg, NULL); if (ret) cm_free_msg(msg); return ret; } static void cm_format_paths_from_req(struct cm_req_msg *req_msg, struct ib_sa_path_rec *primary_path, struct ib_sa_path_rec *alt_path) { memset(primary_path, 0, sizeof *primary_path); primary_path->dgid = req_msg->primary_local_gid; primary_path->sgid = req_msg->primary_remote_gid; primary_path->dlid = req_msg->primary_local_lid; primary_path->slid = req_msg->primary_remote_lid; primary_path->flow_label = cm_req_get_primary_flow_label(req_msg); primary_path->hop_limit = req_msg->primary_hop_limit; primary_path->traffic_class = req_msg->primary_traffic_class; primary_path->reversible = 1; primary_path->pkey = req_msg->pkey; primary_path->sl = cm_req_get_primary_sl(req_msg); primary_path->mtu_selector = IB_SA_EQ; primary_path->mtu = cm_req_get_path_mtu(req_msg); primary_path->rate_selector = IB_SA_EQ; primary_path->rate = cm_req_get_primary_packet_rate(req_msg); primary_path->packet_life_time_selector = IB_SA_EQ; primary_path->packet_life_time = cm_req_get_primary_local_ack_timeout(req_msg); primary_path->packet_life_time -= (primary_path->packet_life_time > 0); primary_path->service_id = req_msg->service_id; if (req_msg->alt_local_lid) { memset(alt_path, 0, sizeof *alt_path); alt_path->dgid = req_msg->alt_local_gid; alt_path->sgid = req_msg->alt_remote_gid; alt_path->dlid = req_msg->alt_local_lid; alt_path->slid = req_msg->alt_remote_lid; alt_path->flow_label = cm_req_get_alt_flow_label(req_msg); alt_path->hop_limit = req_msg->alt_hop_limit; alt_path->traffic_class = req_msg->alt_traffic_class; alt_path->reversible = 1; alt_path->pkey = req_msg->pkey; alt_path->sl = cm_req_get_alt_sl(req_msg); alt_path->mtu_selector = IB_SA_EQ; alt_path->mtu = cm_req_get_path_mtu(req_msg); alt_path->rate_selector = IB_SA_EQ; alt_path->rate = cm_req_get_alt_packet_rate(req_msg); alt_path->packet_life_time_selector = IB_SA_EQ; alt_path->packet_life_time = cm_req_get_alt_local_ack_timeout(req_msg); alt_path->packet_life_time -= (alt_path->packet_life_time > 0); alt_path->service_id = req_msg->service_id; } } static u16 cm_get_bth_pkey(struct cm_work *work) { struct ib_device *ib_dev = work->port->cm_dev->ib_device; u8 port_num = work->port->port_num; u16 pkey_index = work->mad_recv_wc->wc->pkey_index; u16 pkey; int ret; ret = ib_get_cached_pkey(ib_dev, port_num, pkey_index, &pkey); if (ret) { dev_warn_ratelimited(&ib_dev->dev, "ib_cm: Couldn't retrieve pkey for incoming request (port %d, pkey index %d). %d\n", port_num, pkey_index, ret); return 0; } return pkey; } static void cm_format_req_event(struct cm_work *work, struct cm_id_private *cm_id_priv, struct ib_cm_id *listen_id) { struct cm_req_msg *req_msg; struct ib_cm_req_event_param *param; req_msg = (struct cm_req_msg *)work->mad_recv_wc->recv_buf.mad; param = &work->cm_event.param.req_rcvd; param->listen_id = listen_id; param->bth_pkey = cm_get_bth_pkey(work); param->port = cm_id_priv->av.port->port_num; param->primary_path = &work->path[0]; if (req_msg->alt_local_lid) param->alternate_path = &work->path[1]; else param->alternate_path = NULL; param->remote_ca_guid = req_msg->local_ca_guid; param->remote_qkey = be32_to_cpu(req_msg->local_qkey); param->remote_qpn = be32_to_cpu(cm_req_get_local_qpn(req_msg)); param->qp_type = cm_req_get_qp_type(req_msg); param->starting_psn = be32_to_cpu(cm_req_get_starting_psn(req_msg)); param->responder_resources = cm_req_get_init_depth(req_msg); param->initiator_depth = cm_req_get_resp_res(req_msg); param->local_cm_response_timeout = cm_req_get_remote_resp_timeout(req_msg); param->flow_control = cm_req_get_flow_ctrl(req_msg); param->remote_cm_response_timeout = cm_req_get_local_resp_timeout(req_msg); param->retry_count = cm_req_get_retry_count(req_msg); param->rnr_retry_count = cm_req_get_rnr_retry_count(req_msg); param->srq = cm_req_get_srq(req_msg); param->ppath_sgid_index = cm_id_priv->av.ah_attr.grh.sgid_index; work->cm_event.private_data = &req_msg->private_data; } static void cm_process_work(struct cm_id_private *cm_id_priv, struct cm_work *work) { int ret; /* We will typically only have the current event to report. */ ret = cm_id_priv->id.cm_handler(&cm_id_priv->id, &work->cm_event); cm_free_work(work); while (!ret && !atomic_add_negative(-1, &cm_id_priv->work_count)) { spin_lock_irq(&cm_id_priv->lock); work = cm_dequeue_work(cm_id_priv); spin_unlock_irq(&cm_id_priv->lock); BUG_ON(!work); ret = cm_id_priv->id.cm_handler(&cm_id_priv->id, &work->cm_event); cm_free_work(work); } cm_deref_id(cm_id_priv); if (ret) cm_destroy_id(&cm_id_priv->id, ret); } static void cm_format_mra(struct cm_mra_msg *mra_msg, struct cm_id_private *cm_id_priv, enum cm_msg_response msg_mraed, u8 service_timeout, const void *private_data, u8 private_data_len) { cm_format_mad_hdr(&mra_msg->hdr, CM_MRA_ATTR_ID, cm_id_priv->tid); cm_mra_set_msg_mraed(mra_msg, msg_mraed); mra_msg->local_comm_id = cm_id_priv->id.local_id; mra_msg->remote_comm_id = cm_id_priv->id.remote_id; cm_mra_set_service_timeout(mra_msg, service_timeout); if (private_data && private_data_len) memcpy(mra_msg->private_data, private_data, private_data_len); } static void cm_format_rej(struct cm_rej_msg *rej_msg, struct cm_id_private *cm_id_priv, enum ib_cm_rej_reason reason, void *ari, u8 ari_length, const void *private_data, u8 private_data_len) { cm_format_mad_hdr(&rej_msg->hdr, CM_REJ_ATTR_ID, cm_id_priv->tid); rej_msg->remote_comm_id = cm_id_priv->id.remote_id; switch(cm_id_priv->id.state) { case IB_CM_REQ_RCVD: rej_msg->local_comm_id = 0; cm_rej_set_msg_rejected(rej_msg, CM_MSG_RESPONSE_REQ); break; case IB_CM_MRA_REQ_SENT: rej_msg->local_comm_id = cm_id_priv->id.local_id; cm_rej_set_msg_rejected(rej_msg, CM_MSG_RESPONSE_REQ); break; case IB_CM_REP_RCVD: case IB_CM_MRA_REP_SENT: rej_msg->local_comm_id = cm_id_priv->id.local_id; cm_rej_set_msg_rejected(rej_msg, CM_MSG_RESPONSE_REP); break; default: rej_msg->local_comm_id = cm_id_priv->id.local_id; cm_rej_set_msg_rejected(rej_msg, CM_MSG_RESPONSE_OTHER); break; } rej_msg->reason = cpu_to_be16(reason); if (ari && ari_length) { cm_rej_set_reject_info_len(rej_msg, ari_length); memcpy(rej_msg->ari, ari, ari_length); } if (private_data && private_data_len) memcpy(rej_msg->private_data, private_data, private_data_len); } static void cm_dup_req_handler(struct cm_work *work, struct cm_id_private *cm_id_priv) { struct ib_mad_send_buf *msg = NULL; int ret; atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_REQ_COUNTER]); /* Quick state check to discard duplicate REQs. */ if (cm_id_priv->id.state == IB_CM_REQ_RCVD) return; ret = cm_alloc_response_msg(work->port, work->mad_recv_wc, &msg); if (ret) return; spin_lock_irq(&cm_id_priv->lock); switch (cm_id_priv->id.state) { case IB_CM_MRA_REQ_SENT: cm_format_mra((struct cm_mra_msg *) msg->mad, cm_id_priv, CM_MSG_RESPONSE_REQ, cm_id_priv->service_timeout, cm_id_priv->private_data, cm_id_priv->private_data_len); break; case IB_CM_TIMEWAIT: cm_format_rej((struct cm_rej_msg *) msg->mad, cm_id_priv, IB_CM_REJ_STALE_CONN, NULL, 0, NULL, 0); break; default: goto unlock; } spin_unlock_irq(&cm_id_priv->lock); ret = ib_post_send_mad(msg, NULL); if (ret) goto free; return; unlock: spin_unlock_irq(&cm_id_priv->lock); free: cm_free_msg(msg); } static struct cm_id_private * cm_match_req(struct cm_work *work, struct cm_id_private *cm_id_priv) { struct cm_id_private *listen_cm_id_priv, *cur_cm_id_priv; struct cm_timewait_info *timewait_info; struct cm_req_msg *req_msg; req_msg = (struct cm_req_msg *)work->mad_recv_wc->recv_buf.mad; /* Check for possible duplicate REQ. */ spin_lock_irq(&cm.lock); timewait_info = cm_insert_remote_id(cm_id_priv->timewait_info); if (timewait_info) { cur_cm_id_priv = cm_get_id(timewait_info->work.local_id, timewait_info->work.remote_id); spin_unlock_irq(&cm.lock); if (cur_cm_id_priv) { cm_dup_req_handler(work, cur_cm_id_priv); cm_deref_id(cur_cm_id_priv); } return NULL; } /* Check for stale connections. */ timewait_info = cm_insert_remote_qpn(cm_id_priv->timewait_info); if (timewait_info) { cm_cleanup_timewait(cm_id_priv->timewait_info); spin_unlock_irq(&cm.lock); cm_issue_rej(work->port, work->mad_recv_wc, IB_CM_REJ_STALE_CONN, CM_MSG_RESPONSE_REQ, NULL, 0); return NULL; } /* Find matching listen request. */ listen_cm_id_priv = cm_find_listen(cm_id_priv->id.device, req_msg->service_id); if (!listen_cm_id_priv) { cm_cleanup_timewait(cm_id_priv->timewait_info); spin_unlock_irq(&cm.lock); cm_issue_rej(work->port, work->mad_recv_wc, IB_CM_REJ_INVALID_SERVICE_ID, CM_MSG_RESPONSE_REQ, NULL, 0); goto out; } atomic_inc(&listen_cm_id_priv->refcount); atomic_inc(&cm_id_priv->refcount); cm_id_priv->id.state = IB_CM_REQ_RCVD; atomic_inc(&cm_id_priv->work_count); spin_unlock_irq(&cm.lock); out: return listen_cm_id_priv; } /* * Work-around for inter-subnet connections. If the LIDs are permissive, * we need to override the LID/SL data in the REQ with the LID information * in the work completion. */ static void cm_process_routed_req(struct cm_req_msg *req_msg, struct ib_wc *wc) { if (!cm_req_get_primary_subnet_local(req_msg)) { if (req_msg->primary_local_lid == IB_LID_PERMISSIVE) { req_msg->primary_local_lid = cpu_to_be16(wc->slid); cm_req_set_primary_sl(req_msg, wc->sl); } if (req_msg->primary_remote_lid == IB_LID_PERMISSIVE) req_msg->primary_remote_lid = cpu_to_be16(wc->dlid_path_bits); } if (!cm_req_get_alt_subnet_local(req_msg)) { if (req_msg->alt_local_lid == IB_LID_PERMISSIVE) { req_msg->alt_local_lid = cpu_to_be16(wc->slid); cm_req_set_alt_sl(req_msg, wc->sl); } if (req_msg->alt_remote_lid == IB_LID_PERMISSIVE) req_msg->alt_remote_lid = cpu_to_be16(wc->dlid_path_bits); } } static int cm_req_handler(struct cm_work *work) { struct ib_cm_id *cm_id; struct cm_id_private *cm_id_priv, *listen_cm_id_priv; struct cm_req_msg *req_msg; union ib_gid gid; struct ib_gid_attr gid_attr; int ret; req_msg = (struct cm_req_msg *)work->mad_recv_wc->recv_buf.mad; cm_id = ib_create_cm_id(work->port->cm_dev->ib_device, NULL, NULL); if (IS_ERR(cm_id)) return PTR_ERR(cm_id); cm_id_priv = container_of(cm_id, struct cm_id_private, id); cm_id_priv->id.remote_id = req_msg->local_comm_id; ret = cm_init_av_for_response(work->port, work->mad_recv_wc->wc, work->mad_recv_wc->recv_buf.grh, &cm_id_priv->av); if (ret) goto destroy; cm_id_priv->timewait_info = cm_create_timewait_info(cm_id_priv-> id.local_id); if (IS_ERR(cm_id_priv->timewait_info)) { ret = PTR_ERR(cm_id_priv->timewait_info); goto destroy; } cm_id_priv->timewait_info->work.remote_id = req_msg->local_comm_id; cm_id_priv->timewait_info->remote_ca_guid = req_msg->local_ca_guid; cm_id_priv->timewait_info->remote_qpn = cm_req_get_local_qpn(req_msg); listen_cm_id_priv = cm_match_req(work, cm_id_priv); if (!listen_cm_id_priv) { ret = -EINVAL; kfree(cm_id_priv->timewait_info); goto destroy; } cm_id_priv->id.cm_handler = listen_cm_id_priv->id.cm_handler; cm_id_priv->id.context = listen_cm_id_priv->id.context; cm_id_priv->id.service_id = req_msg->service_id; cm_id_priv->id.service_mask = ~cpu_to_be64(0); cm_process_routed_req(req_msg, work->mad_recv_wc->wc); cm_format_paths_from_req(req_msg, &work->path[0], &work->path[1]); memcpy(work->path[0].dmac, cm_id_priv->av.ah_attr.dmac, ETH_ALEN); work->path[0].hop_limit = cm_id_priv->av.ah_attr.grh.hop_limit; ret = ib_get_cached_gid(work->port->cm_dev->ib_device, work->port->port_num, cm_id_priv->av.ah_attr.grh.sgid_index, &gid, &gid_attr); if (!ret) { if (gid_attr.ndev) { work->path[0].ifindex = gid_attr.ndev->if_index; work->path[0].net = dev_net(gid_attr.ndev); dev_put(gid_attr.ndev); } work->path[0].gid_type = gid_attr.gid_type; ret = cm_init_av_by_path(&work->path[0], &cm_id_priv->av, cm_id_priv); } if (ret) { int err = ib_get_cached_gid(work->port->cm_dev->ib_device, work->port->port_num, 0, &work->path[0].sgid, &gid_attr); if (!err && gid_attr.ndev) { work->path[0].ifindex = gid_attr.ndev->if_index; work->path[0].net = dev_net(gid_attr.ndev); dev_put(gid_attr.ndev); } work->path[0].gid_type = gid_attr.gid_type; ib_send_cm_rej(cm_id, IB_CM_REJ_INVALID_GID, &work->path[0].sgid, sizeof work->path[0].sgid, NULL, 0); goto rejected; } if (req_msg->alt_local_lid) { ret = cm_init_av_by_path(&work->path[1], &cm_id_priv->alt_av, cm_id_priv); if (ret) { ib_send_cm_rej(cm_id, IB_CM_REJ_INVALID_ALT_GID, &work->path[0].sgid, sizeof work->path[0].sgid, NULL, 0); goto rejected; } } cm_id_priv->tid = req_msg->hdr.tid; cm_id_priv->timeout_ms = cm_convert_to_ms( cm_req_get_local_resp_timeout(req_msg)); cm_id_priv->max_cm_retries = cm_req_get_max_cm_retries(req_msg); cm_id_priv->remote_qpn = cm_req_get_local_qpn(req_msg); cm_id_priv->initiator_depth = cm_req_get_resp_res(req_msg); cm_id_priv->responder_resources = cm_req_get_init_depth(req_msg); cm_id_priv->path_mtu = cm_req_get_path_mtu(req_msg); cm_id_priv->pkey = req_msg->pkey; cm_id_priv->sq_psn = cm_req_get_starting_psn(req_msg); cm_id_priv->retry_count = cm_req_get_retry_count(req_msg); cm_id_priv->rnr_retry_count = cm_req_get_rnr_retry_count(req_msg); cm_id_priv->qp_type = cm_req_get_qp_type(req_msg); cm_format_req_event(work, cm_id_priv, &listen_cm_id_priv->id); cm_process_work(cm_id_priv, work); cm_deref_id(listen_cm_id_priv); return 0; rejected: atomic_dec(&cm_id_priv->refcount); cm_deref_id(listen_cm_id_priv); destroy: ib_destroy_cm_id(cm_id); return ret; } static void cm_format_rep(struct cm_rep_msg *rep_msg, struct cm_id_private *cm_id_priv, struct ib_cm_rep_param *param) { cm_format_mad_hdr(&rep_msg->hdr, CM_REP_ATTR_ID, cm_id_priv->tid); rep_msg->local_comm_id = cm_id_priv->id.local_id; rep_msg->remote_comm_id = cm_id_priv->id.remote_id; cm_rep_set_starting_psn(rep_msg, cpu_to_be32(param->starting_psn)); rep_msg->resp_resources = param->responder_resources; cm_rep_set_target_ack_delay(rep_msg, cm_id_priv->av.port->cm_dev->ack_delay); cm_rep_set_failover(rep_msg, param->failover_accepted); cm_rep_set_rnr_retry_count(rep_msg, param->rnr_retry_count); rep_msg->local_ca_guid = cm_id_priv->id.device->node_guid; if (cm_id_priv->qp_type != IB_QPT_XRC_TGT) { rep_msg->initiator_depth = param->initiator_depth; cm_rep_set_flow_ctrl(rep_msg, param->flow_control); cm_rep_set_srq(rep_msg, param->srq); cm_rep_set_local_qpn(rep_msg, cpu_to_be32(param->qp_num)); } else { cm_rep_set_srq(rep_msg, 1); cm_rep_set_local_eecn(rep_msg, cpu_to_be32(param->qp_num)); } if (param->private_data && param->private_data_len) memcpy(rep_msg->private_data, param->private_data, param->private_data_len); } int ib_send_cm_rep(struct ib_cm_id *cm_id, struct ib_cm_rep_param *param) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; struct cm_rep_msg *rep_msg; unsigned long flags; int ret; if (param->private_data && param->private_data_len > IB_CM_REP_PRIVATE_DATA_SIZE) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_REQ_RCVD && cm_id->state != IB_CM_MRA_REQ_SENT) { ret = -EINVAL; goto out; } ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto out; rep_msg = (struct cm_rep_msg *) msg->mad; cm_format_rep(rep_msg, cm_id_priv, param); msg->timeout_ms = cm_id_priv->timeout_ms; msg->context[1] = (void *) (unsigned long) IB_CM_REP_SENT; ret = ib_post_send_mad(msg, NULL); if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); return ret; } cm_id->state = IB_CM_REP_SENT; cm_id_priv->msg = msg; cm_id_priv->initiator_depth = param->initiator_depth; cm_id_priv->responder_resources = param->responder_resources; cm_id_priv->rq_psn = cm_rep_get_starting_psn(rep_msg); cm_id_priv->local_qpn = cpu_to_be32(param->qp_num & 0xFFFFFF); out: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(ib_send_cm_rep); static void cm_format_rtu(struct cm_rtu_msg *rtu_msg, struct cm_id_private *cm_id_priv, const void *private_data, u8 private_data_len) { cm_format_mad_hdr(&rtu_msg->hdr, CM_RTU_ATTR_ID, cm_id_priv->tid); rtu_msg->local_comm_id = cm_id_priv->id.local_id; rtu_msg->remote_comm_id = cm_id_priv->id.remote_id; if (private_data && private_data_len) memcpy(rtu_msg->private_data, private_data, private_data_len); } int ib_send_cm_rtu(struct ib_cm_id *cm_id, const void *private_data, u8 private_data_len) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; void *data; int ret; if (private_data && private_data_len > IB_CM_RTU_PRIVATE_DATA_SIZE) return -EINVAL; data = cm_copy_private_data(private_data, private_data_len); if (IS_ERR(data)) return PTR_ERR(data); cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_REP_RCVD && cm_id->state != IB_CM_MRA_REP_SENT) { ret = -EINVAL; goto error; } ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto error; cm_format_rtu((struct cm_rtu_msg *) msg->mad, cm_id_priv, private_data, private_data_len); ret = ib_post_send_mad(msg, NULL); if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); kfree(data); return ret; } cm_id->state = IB_CM_ESTABLISHED; cm_set_private_data(cm_id_priv, data, private_data_len); spin_unlock_irqrestore(&cm_id_priv->lock, flags); return 0; error: spin_unlock_irqrestore(&cm_id_priv->lock, flags); kfree(data); return ret; } EXPORT_SYMBOL(ib_send_cm_rtu); static void cm_format_rep_event(struct cm_work *work, enum ib_qp_type qp_type) { struct cm_rep_msg *rep_msg; struct ib_cm_rep_event_param *param; rep_msg = (struct cm_rep_msg *)work->mad_recv_wc->recv_buf.mad; param = &work->cm_event.param.rep_rcvd; param->remote_ca_guid = rep_msg->local_ca_guid; param->remote_qkey = be32_to_cpu(rep_msg->local_qkey); param->remote_qpn = be32_to_cpu(cm_rep_get_qpn(rep_msg, qp_type)); param->starting_psn = be32_to_cpu(cm_rep_get_starting_psn(rep_msg)); param->responder_resources = rep_msg->initiator_depth; param->initiator_depth = rep_msg->resp_resources; param->target_ack_delay = cm_rep_get_target_ack_delay(rep_msg); param->failover_accepted = cm_rep_get_failover(rep_msg); param->flow_control = cm_rep_get_flow_ctrl(rep_msg); param->rnr_retry_count = cm_rep_get_rnr_retry_count(rep_msg); param->srq = cm_rep_get_srq(rep_msg); work->cm_event.private_data = &rep_msg->private_data; } static void cm_dup_rep_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_rep_msg *rep_msg; struct ib_mad_send_buf *msg = NULL; int ret; rep_msg = (struct cm_rep_msg *) work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(rep_msg->remote_comm_id, rep_msg->local_comm_id); if (!cm_id_priv) return; atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_REP_COUNTER]); ret = cm_alloc_response_msg(work->port, work->mad_recv_wc, &msg); if (ret) goto deref; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state == IB_CM_ESTABLISHED) cm_format_rtu((struct cm_rtu_msg *) msg->mad, cm_id_priv, cm_id_priv->private_data, cm_id_priv->private_data_len); else if (cm_id_priv->id.state == IB_CM_MRA_REP_SENT) cm_format_mra((struct cm_mra_msg *) msg->mad, cm_id_priv, CM_MSG_RESPONSE_REP, cm_id_priv->service_timeout, cm_id_priv->private_data, cm_id_priv->private_data_len); else goto unlock; spin_unlock_irq(&cm_id_priv->lock); ret = ib_post_send_mad(msg, NULL); if (ret) goto free; goto deref; unlock: spin_unlock_irq(&cm_id_priv->lock); free: cm_free_msg(msg); deref: cm_deref_id(cm_id_priv); } static int cm_rep_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_rep_msg *rep_msg; int ret; rep_msg = (struct cm_rep_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(rep_msg->remote_comm_id, 0); if (!cm_id_priv) { cm_dup_rep_handler(work); return -EINVAL; } cm_format_rep_event(work, cm_id_priv->qp_type); spin_lock_irq(&cm_id_priv->lock); switch (cm_id_priv->id.state) { case IB_CM_REQ_SENT: case IB_CM_MRA_REQ_RCVD: break; default: spin_unlock_irq(&cm_id_priv->lock); ret = -EINVAL; goto error; } cm_id_priv->timewait_info->work.remote_id = rep_msg->local_comm_id; cm_id_priv->timewait_info->remote_ca_guid = rep_msg->local_ca_guid; cm_id_priv->timewait_info->remote_qpn = cm_rep_get_qpn(rep_msg, cm_id_priv->qp_type); spin_lock(&cm.lock); /* Check for duplicate REP. */ if (cm_insert_remote_id(cm_id_priv->timewait_info)) { spin_unlock(&cm.lock); spin_unlock_irq(&cm_id_priv->lock); ret = -EINVAL; goto error; } /* Check for a stale connection. */ if (cm_insert_remote_qpn(cm_id_priv->timewait_info)) { rb_erase(&cm_id_priv->timewait_info->remote_id_node, &cm.remote_id_table); cm_id_priv->timewait_info->inserted_remote_id = 0; spin_unlock(&cm.lock); spin_unlock_irq(&cm_id_priv->lock); cm_issue_rej(work->port, work->mad_recv_wc, IB_CM_REJ_STALE_CONN, CM_MSG_RESPONSE_REP, NULL, 0); ret = -EINVAL; goto error; } spin_unlock(&cm.lock); cm_id_priv->id.state = IB_CM_REP_RCVD; cm_id_priv->id.remote_id = rep_msg->local_comm_id; cm_id_priv->remote_qpn = cm_rep_get_qpn(rep_msg, cm_id_priv->qp_type); cm_id_priv->initiator_depth = rep_msg->resp_resources; cm_id_priv->responder_resources = rep_msg->initiator_depth; cm_id_priv->sq_psn = cm_rep_get_starting_psn(rep_msg); cm_id_priv->rnr_retry_count = cm_rep_get_rnr_retry_count(rep_msg); cm_id_priv->target_ack_delay = cm_rep_get_target_ack_delay(rep_msg); cm_id_priv->av.timeout = cm_ack_timeout(cm_id_priv->target_ack_delay, cm_id_priv->av.timeout - 1); cm_id_priv->alt_av.timeout = cm_ack_timeout(cm_id_priv->target_ack_delay, cm_id_priv->alt_av.timeout - 1); /* todo: handle peer_to_peer */ ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; error: cm_deref_id(cm_id_priv); return ret; } static int cm_establish_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; int ret; /* See comment in cm_establish about lookup. */ cm_id_priv = cm_acquire_id(work->local_id, work->remote_id); if (!cm_id_priv) return -EINVAL; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state != IB_CM_ESTABLISHED) { spin_unlock_irq(&cm_id_priv->lock); goto out; } ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; out: cm_deref_id(cm_id_priv); return -EINVAL; } static int cm_rtu_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_rtu_msg *rtu_msg; int ret; rtu_msg = (struct cm_rtu_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(rtu_msg->remote_comm_id, rtu_msg->local_comm_id); if (!cm_id_priv) return -EINVAL; work->cm_event.private_data = &rtu_msg->private_data; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state != IB_CM_REP_SENT && cm_id_priv->id.state != IB_CM_MRA_REP_RCVD) { spin_unlock_irq(&cm_id_priv->lock); atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_RTU_COUNTER]); goto out; } cm_id_priv->id.state = IB_CM_ESTABLISHED; ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; out: cm_deref_id(cm_id_priv); return -EINVAL; } static void cm_format_dreq(struct cm_dreq_msg *dreq_msg, struct cm_id_private *cm_id_priv, const void *private_data, u8 private_data_len) { cm_format_mad_hdr(&dreq_msg->hdr, CM_DREQ_ATTR_ID, cm_form_tid(cm_id_priv, CM_MSG_SEQUENCE_DREQ)); dreq_msg->local_comm_id = cm_id_priv->id.local_id; dreq_msg->remote_comm_id = cm_id_priv->id.remote_id; cm_dreq_set_remote_qpn(dreq_msg, cm_id_priv->remote_qpn); if (private_data && private_data_len) memcpy(dreq_msg->private_data, private_data, private_data_len); } int ib_send_cm_dreq(struct ib_cm_id *cm_id, const void *private_data, u8 private_data_len) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; int ret; if (private_data && private_data_len > IB_CM_DREQ_PRIVATE_DATA_SIZE) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_ESTABLISHED) { ret = -EINVAL; goto out; } if (cm_id->lap_state == IB_CM_LAP_SENT || cm_id->lap_state == IB_CM_MRA_LAP_RCVD) ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) { cm_enter_timewait(cm_id_priv); goto out; } cm_format_dreq((struct cm_dreq_msg *) msg->mad, cm_id_priv, private_data, private_data_len); msg->timeout_ms = cm_id_priv->timeout_ms; msg->context[1] = (void *) (unsigned long) IB_CM_DREQ_SENT; ret = ib_post_send_mad(msg, NULL); if (ret) { cm_enter_timewait(cm_id_priv); spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); return ret; } cm_id->state = IB_CM_DREQ_SENT; cm_id_priv->msg = msg; out: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(ib_send_cm_dreq); static void cm_format_drep(struct cm_drep_msg *drep_msg, struct cm_id_private *cm_id_priv, const void *private_data, u8 private_data_len) { cm_format_mad_hdr(&drep_msg->hdr, CM_DREP_ATTR_ID, cm_id_priv->tid); drep_msg->local_comm_id = cm_id_priv->id.local_id; drep_msg->remote_comm_id = cm_id_priv->id.remote_id; if (private_data && private_data_len) memcpy(drep_msg->private_data, private_data, private_data_len); } int ib_send_cm_drep(struct ib_cm_id *cm_id, const void *private_data, u8 private_data_len) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; void *data; int ret; if (private_data && private_data_len > IB_CM_DREP_PRIVATE_DATA_SIZE) return -EINVAL; data = cm_copy_private_data(private_data, private_data_len); if (IS_ERR(data)) return PTR_ERR(data); cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_DREQ_RCVD) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); kfree(data); return -EINVAL; } cm_set_private_data(cm_id_priv, data, private_data_len); cm_enter_timewait(cm_id_priv); ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto out; cm_format_drep((struct cm_drep_msg *) msg->mad, cm_id_priv, private_data, private_data_len); ret = ib_post_send_mad(msg, NULL); if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); return ret; } out: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(ib_send_cm_drep); static int cm_issue_drep(struct cm_port *port, struct ib_mad_recv_wc *mad_recv_wc) { struct ib_mad_send_buf *msg = NULL; struct cm_dreq_msg *dreq_msg; struct cm_drep_msg *drep_msg; int ret; ret = cm_alloc_response_msg(port, mad_recv_wc, &msg); if (ret) return ret; dreq_msg = (struct cm_dreq_msg *) mad_recv_wc->recv_buf.mad; drep_msg = (struct cm_drep_msg *) msg->mad; cm_format_mad_hdr(&drep_msg->hdr, CM_DREP_ATTR_ID, dreq_msg->hdr.tid); drep_msg->remote_comm_id = dreq_msg->local_comm_id; drep_msg->local_comm_id = dreq_msg->remote_comm_id; ret = ib_post_send_mad(msg, NULL); if (ret) cm_free_msg(msg); return ret; } static int cm_dreq_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_dreq_msg *dreq_msg; struct ib_mad_send_buf *msg = NULL; int ret; dreq_msg = (struct cm_dreq_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(dreq_msg->remote_comm_id, dreq_msg->local_comm_id); if (!cm_id_priv) { atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_DREQ_COUNTER]); cm_issue_drep(work->port, work->mad_recv_wc); return -EINVAL; } work->cm_event.private_data = &dreq_msg->private_data; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->local_qpn != cm_dreq_get_remote_qpn(dreq_msg)) goto unlock; switch (cm_id_priv->id.state) { case IB_CM_REP_SENT: case IB_CM_DREQ_SENT: ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); break; case IB_CM_ESTABLISHED: if (cm_id_priv->id.lap_state == IB_CM_LAP_SENT || cm_id_priv->id.lap_state == IB_CM_MRA_LAP_RCVD) ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); break; case IB_CM_MRA_REP_RCVD: break; case IB_CM_TIMEWAIT: atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_DREQ_COUNTER]); msg = cm_alloc_response_msg_no_ah(work->port, work->mad_recv_wc); if (IS_ERR(msg)) goto unlock; cm_format_drep((struct cm_drep_msg *) msg->mad, cm_id_priv, cm_id_priv->private_data, cm_id_priv->private_data_len); spin_unlock_irq(&cm_id_priv->lock); if (cm_create_response_msg_ah(work->port, work->mad_recv_wc, msg) || ib_post_send_mad(msg, NULL)) cm_free_msg(msg); goto deref; case IB_CM_DREQ_RCVD: atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_DREQ_COUNTER]); goto unlock; default: goto unlock; } cm_id_priv->id.state = IB_CM_DREQ_RCVD; cm_id_priv->tid = dreq_msg->hdr.tid; ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; unlock: spin_unlock_irq(&cm_id_priv->lock); deref: cm_deref_id(cm_id_priv); return -EINVAL; } static int cm_drep_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_drep_msg *drep_msg; int ret; drep_msg = (struct cm_drep_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(drep_msg->remote_comm_id, drep_msg->local_comm_id); if (!cm_id_priv) return -EINVAL; work->cm_event.private_data = &drep_msg->private_data; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state != IB_CM_DREQ_SENT && cm_id_priv->id.state != IB_CM_DREQ_RCVD) { spin_unlock_irq(&cm_id_priv->lock); goto out; } cm_enter_timewait(cm_id_priv); ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; out: cm_deref_id(cm_id_priv); return -EINVAL; } int ib_send_cm_rej(struct ib_cm_id *cm_id, enum ib_cm_rej_reason reason, void *ari, u8 ari_length, const void *private_data, u8 private_data_len) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; int ret; if ((private_data && private_data_len > IB_CM_REJ_PRIVATE_DATA_SIZE) || (ari && ari_length > IB_CM_REJ_ARI_LENGTH)) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id->state) { case IB_CM_REQ_SENT: case IB_CM_MRA_REQ_RCVD: case IB_CM_REQ_RCVD: case IB_CM_MRA_REQ_SENT: case IB_CM_REP_RCVD: case IB_CM_MRA_REP_SENT: ret = cm_alloc_msg(cm_id_priv, &msg); if (!ret) cm_format_rej((struct cm_rej_msg *) msg->mad, cm_id_priv, reason, ari, ari_length, private_data, private_data_len); cm_reset_to_idle(cm_id_priv); break; case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: ret = cm_alloc_msg(cm_id_priv, &msg); if (!ret) cm_format_rej((struct cm_rej_msg *) msg->mad, cm_id_priv, reason, ari, ari_length, private_data, private_data_len); cm_enter_timewait(cm_id_priv); break; default: ret = -EINVAL; goto out; } if (ret) goto out; ret = ib_post_send_mad(msg, NULL); if (ret) cm_free_msg(msg); out: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(ib_send_cm_rej); static void cm_format_rej_event(struct cm_work *work) { struct cm_rej_msg *rej_msg; struct ib_cm_rej_event_param *param; rej_msg = (struct cm_rej_msg *)work->mad_recv_wc->recv_buf.mad; param = &work->cm_event.param.rej_rcvd; param->ari = rej_msg->ari; param->ari_length = cm_rej_get_reject_info_len(rej_msg); param->reason = __be16_to_cpu(rej_msg->reason); work->cm_event.private_data = &rej_msg->private_data; } static struct cm_id_private * cm_acquire_rejected_id(struct cm_rej_msg *rej_msg) { struct cm_timewait_info *timewait_info; struct cm_id_private *cm_id_priv; __be32 remote_id; remote_id = rej_msg->local_comm_id; if (__be16_to_cpu(rej_msg->reason) == IB_CM_REJ_TIMEOUT) { spin_lock_irq(&cm.lock); timewait_info = cm_find_remote_id( *((__be64 *) rej_msg->ari), remote_id); if (!timewait_info) { spin_unlock_irq(&cm.lock); return NULL; } cm_id_priv = idr_find(&cm.local_id_table, (__force int) (timewait_info->work.local_id ^ cm.random_id_operand)); if (cm_id_priv) { if (cm_id_priv->id.remote_id == remote_id) atomic_inc(&cm_id_priv->refcount); else cm_id_priv = NULL; } spin_unlock_irq(&cm.lock); } else if (cm_rej_get_msg_rejected(rej_msg) == CM_MSG_RESPONSE_REQ) cm_id_priv = cm_acquire_id(rej_msg->remote_comm_id, 0); else cm_id_priv = cm_acquire_id(rej_msg->remote_comm_id, remote_id); return cm_id_priv; } static int cm_rej_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_rej_msg *rej_msg; int ret; rej_msg = (struct cm_rej_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_rejected_id(rej_msg); if (!cm_id_priv) return -EINVAL; cm_format_rej_event(work); spin_lock_irq(&cm_id_priv->lock); switch (cm_id_priv->id.state) { case IB_CM_REQ_SENT: case IB_CM_MRA_REQ_RCVD: case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); /* fall through */ case IB_CM_REQ_RCVD: case IB_CM_MRA_REQ_SENT: if (__be16_to_cpu(rej_msg->reason) == IB_CM_REJ_STALE_CONN) cm_enter_timewait(cm_id_priv); else cm_reset_to_idle(cm_id_priv); break; case IB_CM_DREQ_SENT: ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); /* fall through */ case IB_CM_REP_RCVD: case IB_CM_MRA_REP_SENT: cm_enter_timewait(cm_id_priv); break; case IB_CM_ESTABLISHED: if (cm_id_priv->id.lap_state == IB_CM_LAP_UNINIT || cm_id_priv->id.lap_state == IB_CM_LAP_SENT) { if (cm_id_priv->id.lap_state == IB_CM_LAP_SENT) ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); cm_enter_timewait(cm_id_priv); break; } /* fall through */ default: spin_unlock_irq(&cm_id_priv->lock); ret = -EINVAL; goto out; } ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; out: cm_deref_id(cm_id_priv); return -EINVAL; } int ib_send_cm_mra(struct ib_cm_id *cm_id, u8 service_timeout, const void *private_data, u8 private_data_len) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; enum ib_cm_state cm_state; enum ib_cm_lap_state lap_state; enum cm_msg_response msg_response; void *data; unsigned long flags; int ret; if (private_data && private_data_len > IB_CM_MRA_PRIVATE_DATA_SIZE) return -EINVAL; data = cm_copy_private_data(private_data, private_data_len); if (IS_ERR(data)) return PTR_ERR(data); cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); switch(cm_id_priv->id.state) { case IB_CM_REQ_RCVD: cm_state = IB_CM_MRA_REQ_SENT; lap_state = cm_id->lap_state; msg_response = CM_MSG_RESPONSE_REQ; break; case IB_CM_REP_RCVD: cm_state = IB_CM_MRA_REP_SENT; lap_state = cm_id->lap_state; msg_response = CM_MSG_RESPONSE_REP; break; case IB_CM_ESTABLISHED: if (cm_id->lap_state == IB_CM_LAP_RCVD) { cm_state = cm_id->state; lap_state = IB_CM_MRA_LAP_SENT; msg_response = CM_MSG_RESPONSE_OTHER; break; } default: ret = -EINVAL; goto error1; } if (!(service_timeout & IB_CM_MRA_FLAG_DELAY)) { ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto error1; cm_format_mra((struct cm_mra_msg *) msg->mad, cm_id_priv, msg_response, service_timeout, private_data, private_data_len); ret = ib_post_send_mad(msg, NULL); if (ret) goto error2; } cm_id->state = cm_state; cm_id->lap_state = lap_state; cm_id_priv->service_timeout = service_timeout; cm_set_private_data(cm_id_priv, data, private_data_len); spin_unlock_irqrestore(&cm_id_priv->lock, flags); return 0; error1: spin_unlock_irqrestore(&cm_id_priv->lock, flags); kfree(data); return ret; error2: spin_unlock_irqrestore(&cm_id_priv->lock, flags); kfree(data); cm_free_msg(msg); return ret; } EXPORT_SYMBOL(ib_send_cm_mra); static struct cm_id_private * cm_acquire_mraed_id(struct cm_mra_msg *mra_msg) { switch (cm_mra_get_msg_mraed(mra_msg)) { case CM_MSG_RESPONSE_REQ: return cm_acquire_id(mra_msg->remote_comm_id, 0); case CM_MSG_RESPONSE_REP: case CM_MSG_RESPONSE_OTHER: return cm_acquire_id(mra_msg->remote_comm_id, mra_msg->local_comm_id); default: return NULL; } } static int cm_mra_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_mra_msg *mra_msg; int timeout, ret; mra_msg = (struct cm_mra_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_mraed_id(mra_msg); if (!cm_id_priv) return -EINVAL; work->cm_event.private_data = &mra_msg->private_data; work->cm_event.param.mra_rcvd.service_timeout = cm_mra_get_service_timeout(mra_msg); timeout = cm_convert_to_ms(cm_mra_get_service_timeout(mra_msg)) + cm_convert_to_ms(cm_id_priv->av.timeout); spin_lock_irq(&cm_id_priv->lock); switch (cm_id_priv->id.state) { case IB_CM_REQ_SENT: if (cm_mra_get_msg_mraed(mra_msg) != CM_MSG_RESPONSE_REQ || ib_modify_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg, timeout)) goto out; cm_id_priv->id.state = IB_CM_MRA_REQ_RCVD; break; case IB_CM_REP_SENT: if (cm_mra_get_msg_mraed(mra_msg) != CM_MSG_RESPONSE_REP || ib_modify_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg, timeout)) goto out; cm_id_priv->id.state = IB_CM_MRA_REP_RCVD; break; case IB_CM_ESTABLISHED: if (cm_mra_get_msg_mraed(mra_msg) != CM_MSG_RESPONSE_OTHER || cm_id_priv->id.lap_state != IB_CM_LAP_SENT || ib_modify_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg, timeout)) { if (cm_id_priv->id.lap_state == IB_CM_MRA_LAP_RCVD) atomic_long_inc(&work->port-> counter_group[CM_RECV_DUPLICATES]. counter[CM_MRA_COUNTER]); goto out; } cm_id_priv->id.lap_state = IB_CM_MRA_LAP_RCVD; break; case IB_CM_MRA_REQ_RCVD: case IB_CM_MRA_REP_RCVD: atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_MRA_COUNTER]); /* fall through */ default: goto out; } cm_id_priv->msg->context[1] = (void *) (unsigned long) cm_id_priv->id.state; ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; out: spin_unlock_irq(&cm_id_priv->lock); cm_deref_id(cm_id_priv); return -EINVAL; } static void cm_format_lap(struct cm_lap_msg *lap_msg, struct cm_id_private *cm_id_priv, struct ib_sa_path_rec *alternate_path, const void *private_data, u8 private_data_len) { cm_format_mad_hdr(&lap_msg->hdr, CM_LAP_ATTR_ID, cm_form_tid(cm_id_priv, CM_MSG_SEQUENCE_LAP)); lap_msg->local_comm_id = cm_id_priv->id.local_id; lap_msg->remote_comm_id = cm_id_priv->id.remote_id; cm_lap_set_remote_qpn(lap_msg, cm_id_priv->remote_qpn); /* todo: need remote CM response timeout */ cm_lap_set_remote_resp_timeout(lap_msg, 0x1F); lap_msg->alt_local_lid = alternate_path->slid; lap_msg->alt_remote_lid = alternate_path->dlid; lap_msg->alt_local_gid = alternate_path->sgid; lap_msg->alt_remote_gid = alternate_path->dgid; cm_lap_set_flow_label(lap_msg, alternate_path->flow_label); cm_lap_set_traffic_class(lap_msg, alternate_path->traffic_class); lap_msg->alt_hop_limit = alternate_path->hop_limit; cm_lap_set_packet_rate(lap_msg, alternate_path->rate); cm_lap_set_sl(lap_msg, alternate_path->sl); cm_lap_set_subnet_local(lap_msg, 1); /* local only... */ cm_lap_set_local_ack_timeout(lap_msg, cm_ack_timeout(cm_id_priv->av.port->cm_dev->ack_delay, alternate_path->packet_life_time)); if (private_data && private_data_len) memcpy(lap_msg->private_data, private_data, private_data_len); } int ib_send_cm_lap(struct ib_cm_id *cm_id, struct ib_sa_path_rec *alternate_path, const void *private_data, u8 private_data_len) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; int ret; if (private_data && private_data_len > IB_CM_LAP_PRIVATE_DATA_SIZE) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_ESTABLISHED || (cm_id->lap_state != IB_CM_LAP_UNINIT && cm_id->lap_state != IB_CM_LAP_IDLE)) { ret = -EINVAL; goto out; } ret = cm_init_av_by_path(alternate_path, &cm_id_priv->alt_av, cm_id_priv); if (ret) goto out; cm_id_priv->alt_av.timeout = cm_ack_timeout(cm_id_priv->target_ack_delay, cm_id_priv->alt_av.timeout - 1); ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto out; cm_format_lap((struct cm_lap_msg *) msg->mad, cm_id_priv, alternate_path, private_data, private_data_len); msg->timeout_ms = cm_id_priv->timeout_ms; msg->context[1] = (void *) (unsigned long) IB_CM_ESTABLISHED; ret = ib_post_send_mad(msg, NULL); if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); return ret; } cm_id->lap_state = IB_CM_LAP_SENT; cm_id_priv->msg = msg; out: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(ib_send_cm_lap); static void cm_format_path_from_lap(struct cm_id_private *cm_id_priv, struct ib_sa_path_rec *path, struct cm_lap_msg *lap_msg) { memset(path, 0, sizeof *path); path->dgid = lap_msg->alt_local_gid; path->sgid = lap_msg->alt_remote_gid; path->dlid = lap_msg->alt_local_lid; path->slid = lap_msg->alt_remote_lid; path->flow_label = cm_lap_get_flow_label(lap_msg); path->hop_limit = lap_msg->alt_hop_limit; path->traffic_class = cm_lap_get_traffic_class(lap_msg); path->reversible = 1; path->pkey = cm_id_priv->pkey; path->sl = cm_lap_get_sl(lap_msg); path->mtu_selector = IB_SA_EQ; path->mtu = cm_id_priv->path_mtu; path->rate_selector = IB_SA_EQ; path->rate = cm_lap_get_packet_rate(lap_msg); path->packet_life_time_selector = IB_SA_EQ; path->packet_life_time = cm_lap_get_local_ack_timeout(lap_msg); path->packet_life_time -= (path->packet_life_time > 0); } static int cm_lap_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_lap_msg *lap_msg; struct ib_cm_lap_event_param *param; struct ib_mad_send_buf *msg = NULL; int ret; /* todo: verify LAP request and send reject APR if invalid. */ lap_msg = (struct cm_lap_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(lap_msg->remote_comm_id, lap_msg->local_comm_id); if (!cm_id_priv) return -EINVAL; param = &work->cm_event.param.lap_rcvd; param->alternate_path = &work->path[0]; cm_format_path_from_lap(cm_id_priv, param->alternate_path, lap_msg); work->cm_event.private_data = &lap_msg->private_data; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state != IB_CM_ESTABLISHED) goto unlock; switch (cm_id_priv->id.lap_state) { case IB_CM_LAP_UNINIT: case IB_CM_LAP_IDLE: break; case IB_CM_MRA_LAP_SENT: atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_LAP_COUNTER]); msg = cm_alloc_response_msg_no_ah(work->port, work->mad_recv_wc); if (IS_ERR(msg)) goto unlock; cm_format_mra((struct cm_mra_msg *) msg->mad, cm_id_priv, CM_MSG_RESPONSE_OTHER, cm_id_priv->service_timeout, cm_id_priv->private_data, cm_id_priv->private_data_len); spin_unlock_irq(&cm_id_priv->lock); if (cm_create_response_msg_ah(work->port, work->mad_recv_wc, msg) || ib_post_send_mad(msg, NULL)) cm_free_msg(msg); goto deref; case IB_CM_LAP_RCVD: atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_LAP_COUNTER]); goto unlock; default: goto unlock; } cm_id_priv->id.lap_state = IB_CM_LAP_RCVD; cm_id_priv->tid = lap_msg->hdr.tid; ret = cm_init_av_for_response(work->port, work->mad_recv_wc->wc, work->mad_recv_wc->recv_buf.grh, &cm_id_priv->av); if (ret) goto unlock; ret = cm_init_av_by_path(param->alternate_path, &cm_id_priv->alt_av, cm_id_priv); if (ret) goto unlock; ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; unlock: spin_unlock_irq(&cm_id_priv->lock); deref: cm_deref_id(cm_id_priv); return -EINVAL; } static void cm_format_apr(struct cm_apr_msg *apr_msg, struct cm_id_private *cm_id_priv, enum ib_cm_apr_status status, void *info, u8 info_length, const void *private_data, u8 private_data_len) { cm_format_mad_hdr(&apr_msg->hdr, CM_APR_ATTR_ID, cm_id_priv->tid); apr_msg->local_comm_id = cm_id_priv->id.local_id; apr_msg->remote_comm_id = cm_id_priv->id.remote_id; apr_msg->ap_status = (u8) status; if (info && info_length) { apr_msg->info_length = info_length; memcpy(apr_msg->info, info, info_length); } if (private_data && private_data_len) memcpy(apr_msg->private_data, private_data, private_data_len); } int ib_send_cm_apr(struct ib_cm_id *cm_id, enum ib_cm_apr_status status, void *info, u8 info_length, const void *private_data, u8 private_data_len) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; int ret; if ((private_data && private_data_len > IB_CM_APR_PRIVATE_DATA_SIZE) || (info && info_length > IB_CM_APR_INFO_LENGTH)) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_ESTABLISHED || (cm_id->lap_state != IB_CM_LAP_RCVD && cm_id->lap_state != IB_CM_MRA_LAP_SENT)) { ret = -EINVAL; goto out; } ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto out; cm_format_apr((struct cm_apr_msg *) msg->mad, cm_id_priv, status, info, info_length, private_data, private_data_len); ret = ib_post_send_mad(msg, NULL); if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); return ret; } cm_id->lap_state = IB_CM_LAP_IDLE; out: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(ib_send_cm_apr); static int cm_apr_handler(struct cm_work *work) { struct cm_id_private *cm_id_priv; struct cm_apr_msg *apr_msg; int ret; apr_msg = (struct cm_apr_msg *)work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(apr_msg->remote_comm_id, apr_msg->local_comm_id); if (!cm_id_priv) return -EINVAL; /* Unmatched reply. */ work->cm_event.param.apr_rcvd.ap_status = apr_msg->ap_status; work->cm_event.param.apr_rcvd.apr_info = &apr_msg->info; work->cm_event.param.apr_rcvd.info_len = apr_msg->info_length; work->cm_event.private_data = &apr_msg->private_data; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state != IB_CM_ESTABLISHED || (cm_id_priv->id.lap_state != IB_CM_LAP_SENT && cm_id_priv->id.lap_state != IB_CM_MRA_LAP_RCVD)) { spin_unlock_irq(&cm_id_priv->lock); goto out; } cm_id_priv->id.lap_state = IB_CM_LAP_IDLE; ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); cm_id_priv->msg = NULL; ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; out: cm_deref_id(cm_id_priv); return -EINVAL; } static int cm_timewait_handler(struct cm_work *work) { struct cm_timewait_info *timewait_info; struct cm_id_private *cm_id_priv; int ret; timewait_info = (struct cm_timewait_info *)work; spin_lock_irq(&cm.lock); list_del(&timewait_info->list); spin_unlock_irq(&cm.lock); cm_id_priv = cm_acquire_id(timewait_info->work.local_id, timewait_info->work.remote_id); if (!cm_id_priv) return -EINVAL; spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state != IB_CM_TIMEWAIT || cm_id_priv->remote_qpn != timewait_info->remote_qpn) { spin_unlock_irq(&cm_id_priv->lock); goto out; } cm_id_priv->id.state = IB_CM_IDLE; ret = atomic_inc_and_test(&cm_id_priv->work_count); if (!ret) list_add_tail(&work->list, &cm_id_priv->work_list); spin_unlock_irq(&cm_id_priv->lock); if (ret) cm_process_work(cm_id_priv, work); else cm_deref_id(cm_id_priv); return 0; out: cm_deref_id(cm_id_priv); return -EINVAL; } static void cm_format_sidr_req(struct cm_sidr_req_msg *sidr_req_msg, struct cm_id_private *cm_id_priv, struct ib_cm_sidr_req_param *param) { cm_format_mad_hdr(&sidr_req_msg->hdr, CM_SIDR_REQ_ATTR_ID, cm_form_tid(cm_id_priv, CM_MSG_SEQUENCE_SIDR)); sidr_req_msg->request_id = cm_id_priv->id.local_id; sidr_req_msg->pkey = param->path->pkey; sidr_req_msg->service_id = param->service_id; if (param->private_data && param->private_data_len) memcpy(sidr_req_msg->private_data, param->private_data, param->private_data_len); } int ib_send_cm_sidr_req(struct ib_cm_id *cm_id, struct ib_cm_sidr_req_param *param) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; int ret; if (!param->path || (param->private_data && param->private_data_len > IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE)) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); ret = cm_init_av_by_path(param->path, &cm_id_priv->av, cm_id_priv); if (ret) goto out; cm_id->service_id = param->service_id; cm_id->service_mask = ~cpu_to_be64(0); cm_id_priv->timeout_ms = param->timeout_ms; cm_id_priv->max_cm_retries = param->max_cm_retries; ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto out; cm_format_sidr_req((struct cm_sidr_req_msg *) msg->mad, cm_id_priv, param); msg->timeout_ms = cm_id_priv->timeout_ms; msg->context[1] = (void *) (unsigned long) IB_CM_SIDR_REQ_SENT; spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state == IB_CM_IDLE) ret = ib_post_send_mad(msg, NULL); else ret = -EINVAL; if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); goto out; } cm_id->state = IB_CM_SIDR_REQ_SENT; cm_id_priv->msg = msg; spin_unlock_irqrestore(&cm_id_priv->lock, flags); out: return ret; } EXPORT_SYMBOL(ib_send_cm_sidr_req); static void cm_format_sidr_req_event(struct cm_work *work, const struct cm_id_private *rx_cm_id, struct ib_cm_id *listen_id) { struct cm_sidr_req_msg *sidr_req_msg; struct ib_cm_sidr_req_event_param *param; sidr_req_msg = (struct cm_sidr_req_msg *) work->mad_recv_wc->recv_buf.mad; param = &work->cm_event.param.sidr_req_rcvd; param->pkey = __be16_to_cpu(sidr_req_msg->pkey); param->listen_id = listen_id; param->service_id = sidr_req_msg->service_id; param->bth_pkey = cm_get_bth_pkey(work); param->port = work->port->port_num; param->sgid_index = rx_cm_id->av.ah_attr.grh.sgid_index; work->cm_event.private_data = &sidr_req_msg->private_data; } static int cm_sidr_req_handler(struct cm_work *work) { struct ib_cm_id *cm_id; struct cm_id_private *cm_id_priv, *cur_cm_id_priv; struct cm_sidr_req_msg *sidr_req_msg; struct ib_wc *wc; int ret; cm_id = ib_create_cm_id(work->port->cm_dev->ib_device, NULL, NULL); if (IS_ERR(cm_id)) return PTR_ERR(cm_id); cm_id_priv = container_of(cm_id, struct cm_id_private, id); /* Record SGID/SLID and request ID for lookup. */ sidr_req_msg = (struct cm_sidr_req_msg *) work->mad_recv_wc->recv_buf.mad; wc = work->mad_recv_wc->wc; cm_id_priv->av.dgid.global.subnet_prefix = cpu_to_be64(wc->slid); cm_id_priv->av.dgid.global.interface_id = 0; ret = cm_init_av_for_response(work->port, work->mad_recv_wc->wc, work->mad_recv_wc->recv_buf.grh, &cm_id_priv->av); if (ret) goto out; cm_id_priv->id.remote_id = sidr_req_msg->request_id; cm_id_priv->tid = sidr_req_msg->hdr.tid; atomic_inc(&cm_id_priv->work_count); spin_lock_irq(&cm.lock); cur_cm_id_priv = cm_insert_remote_sidr(cm_id_priv); if (cur_cm_id_priv) { spin_unlock_irq(&cm.lock); atomic_long_inc(&work->port->counter_group[CM_RECV_DUPLICATES]. counter[CM_SIDR_REQ_COUNTER]); goto out; /* Duplicate message. */ } cm_id_priv->id.state = IB_CM_SIDR_REQ_RCVD; cur_cm_id_priv = cm_find_listen(cm_id->device, sidr_req_msg->service_id); if (!cur_cm_id_priv) { spin_unlock_irq(&cm.lock); cm_reject_sidr_req(cm_id_priv, IB_SIDR_UNSUPPORTED); goto out; /* No match. */ } atomic_inc(&cur_cm_id_priv->refcount); atomic_inc(&cm_id_priv->refcount); spin_unlock_irq(&cm.lock); cm_id_priv->id.cm_handler = cur_cm_id_priv->id.cm_handler; cm_id_priv->id.context = cur_cm_id_priv->id.context; cm_id_priv->id.service_id = sidr_req_msg->service_id; cm_id_priv->id.service_mask = ~cpu_to_be64(0); cm_format_sidr_req_event(work, cm_id_priv, &cur_cm_id_priv->id); cm_process_work(cm_id_priv, work); cm_deref_id(cur_cm_id_priv); return 0; out: ib_destroy_cm_id(&cm_id_priv->id); return -EINVAL; } static void cm_format_sidr_rep(struct cm_sidr_rep_msg *sidr_rep_msg, struct cm_id_private *cm_id_priv, struct ib_cm_sidr_rep_param *param) { cm_format_mad_hdr(&sidr_rep_msg->hdr, CM_SIDR_REP_ATTR_ID, cm_id_priv->tid); sidr_rep_msg->request_id = cm_id_priv->id.remote_id; sidr_rep_msg->status = param->status; cm_sidr_rep_set_qpn(sidr_rep_msg, cpu_to_be32(param->qp_num)); sidr_rep_msg->service_id = cm_id_priv->id.service_id; sidr_rep_msg->qkey = cpu_to_be32(param->qkey); if (param->info && param->info_length) memcpy(sidr_rep_msg->info, param->info, param->info_length); if (param->private_data && param->private_data_len) memcpy(sidr_rep_msg->private_data, param->private_data, param->private_data_len); } int ib_send_cm_sidr_rep(struct ib_cm_id *cm_id, struct ib_cm_sidr_rep_param *param) { struct cm_id_private *cm_id_priv; struct ib_mad_send_buf *msg; unsigned long flags; int ret; if ((param->info && param->info_length > IB_CM_SIDR_REP_INFO_LENGTH) || (param->private_data && param->private_data_len > IB_CM_SIDR_REP_PRIVATE_DATA_SIZE)) return -EINVAL; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state != IB_CM_SIDR_REQ_RCVD) { ret = -EINVAL; goto error; } ret = cm_alloc_msg(cm_id_priv, &msg); if (ret) goto error; cm_format_sidr_rep((struct cm_sidr_rep_msg *) msg->mad, cm_id_priv, param); ret = ib_post_send_mad(msg, NULL); if (ret) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_free_msg(msg); return ret; } cm_id->state = IB_CM_IDLE; spin_unlock_irqrestore(&cm_id_priv->lock, flags); spin_lock_irqsave(&cm.lock, flags); if (!RB_EMPTY_NODE(&cm_id_priv->sidr_id_node)) { rb_erase(&cm_id_priv->sidr_id_node, &cm.remote_sidr_table); RB_CLEAR_NODE(&cm_id_priv->sidr_id_node); } spin_unlock_irqrestore(&cm.lock, flags); return 0; error: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(ib_send_cm_sidr_rep); static void cm_format_sidr_rep_event(struct cm_work *work) { struct cm_sidr_rep_msg *sidr_rep_msg; struct ib_cm_sidr_rep_event_param *param; sidr_rep_msg = (struct cm_sidr_rep_msg *) work->mad_recv_wc->recv_buf.mad; param = &work->cm_event.param.sidr_rep_rcvd; param->status = sidr_rep_msg->status; param->qkey = be32_to_cpu(sidr_rep_msg->qkey); param->qpn = be32_to_cpu(cm_sidr_rep_get_qpn(sidr_rep_msg)); param->info = &sidr_rep_msg->info; param->info_len = sidr_rep_msg->info_length; work->cm_event.private_data = &sidr_rep_msg->private_data; } static int cm_sidr_rep_handler(struct cm_work *work) { struct cm_sidr_rep_msg *sidr_rep_msg; struct cm_id_private *cm_id_priv; sidr_rep_msg = (struct cm_sidr_rep_msg *) work->mad_recv_wc->recv_buf.mad; cm_id_priv = cm_acquire_id(sidr_rep_msg->request_id, 0); if (!cm_id_priv) return -EINVAL; /* Unmatched reply. */ spin_lock_irq(&cm_id_priv->lock); if (cm_id_priv->id.state != IB_CM_SIDR_REQ_SENT) { spin_unlock_irq(&cm_id_priv->lock); goto out; } cm_id_priv->id.state = IB_CM_IDLE; ib_cancel_mad(cm_id_priv->av.port->mad_agent, cm_id_priv->msg); spin_unlock_irq(&cm_id_priv->lock); cm_format_sidr_rep_event(work); cm_process_work(cm_id_priv, work); return 0; out: cm_deref_id(cm_id_priv); return -EINVAL; } static void cm_process_send_error(struct ib_mad_send_buf *msg, enum ib_wc_status wc_status) { struct cm_id_private *cm_id_priv; struct ib_cm_event cm_event; enum ib_cm_state state; int ret; memset(&cm_event, 0, sizeof cm_event); cm_id_priv = msg->context[0]; /* Discard old sends or ones without a response. */ spin_lock_irq(&cm_id_priv->lock); state = (enum ib_cm_state) (unsigned long) msg->context[1]; if (msg != cm_id_priv->msg || state != cm_id_priv->id.state) goto discard; switch (state) { case IB_CM_REQ_SENT: case IB_CM_MRA_REQ_RCVD: cm_reset_to_idle(cm_id_priv); cm_event.event = IB_CM_REQ_ERROR; break; case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: cm_reset_to_idle(cm_id_priv); cm_event.event = IB_CM_REP_ERROR; break; case IB_CM_DREQ_SENT: cm_enter_timewait(cm_id_priv); cm_event.event = IB_CM_DREQ_ERROR; break; case IB_CM_SIDR_REQ_SENT: cm_id_priv->id.state = IB_CM_IDLE; cm_event.event = IB_CM_SIDR_REQ_ERROR; break; default: goto discard; } spin_unlock_irq(&cm_id_priv->lock); cm_event.param.send_status = wc_status; /* No other events can occur on the cm_id at this point. */ ret = cm_id_priv->id.cm_handler(&cm_id_priv->id, &cm_event); cm_free_msg(msg); if (ret) ib_destroy_cm_id(&cm_id_priv->id); return; discard: spin_unlock_irq(&cm_id_priv->lock); cm_free_msg(msg); } static void cm_send_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_wc *mad_send_wc) { struct ib_mad_send_buf *msg = mad_send_wc->send_buf; struct cm_port *port; u16 attr_index; port = mad_agent->context; attr_index = be16_to_cpu(((struct ib_mad_hdr *) msg->mad)->attr_id) - CM_ATTR_ID_OFFSET; /* * If the send was in response to a received message (context[0] is not * set to a cm_id), and is not a REJ, then it is a send that was * manually retried. */ if (!msg->context[0] && (attr_index != CM_REJ_COUNTER)) msg->retries = 1; atomic_long_add(1 + msg->retries, &port->counter_group[CM_XMIT].counter[attr_index]); if (msg->retries) atomic_long_add(msg->retries, &port->counter_group[CM_XMIT_RETRIES]. counter[attr_index]); switch (mad_send_wc->status) { case IB_WC_SUCCESS: case IB_WC_WR_FLUSH_ERR: cm_free_msg(msg); break; default: if (msg->context[0] && msg->context[1]) cm_process_send_error(msg, mad_send_wc->status); else cm_free_msg(msg); break; } } static void cm_work_handler(struct work_struct *_work) { struct cm_work *work = container_of(_work, struct cm_work, work.work); int ret; switch (work->cm_event.event) { case IB_CM_REQ_RECEIVED: ret = cm_req_handler(work); break; case IB_CM_MRA_RECEIVED: ret = cm_mra_handler(work); break; case IB_CM_REJ_RECEIVED: ret = cm_rej_handler(work); break; case IB_CM_REP_RECEIVED: ret = cm_rep_handler(work); break; case IB_CM_RTU_RECEIVED: ret = cm_rtu_handler(work); break; case IB_CM_USER_ESTABLISHED: ret = cm_establish_handler(work); break; case IB_CM_DREQ_RECEIVED: ret = cm_dreq_handler(work); break; case IB_CM_DREP_RECEIVED: ret = cm_drep_handler(work); break; case IB_CM_SIDR_REQ_RECEIVED: ret = cm_sidr_req_handler(work); break; case IB_CM_SIDR_REP_RECEIVED: ret = cm_sidr_rep_handler(work); break; case IB_CM_LAP_RECEIVED: ret = cm_lap_handler(work); break; case IB_CM_APR_RECEIVED: ret = cm_apr_handler(work); break; case IB_CM_TIMEWAIT_EXIT: ret = cm_timewait_handler(work); break; default: ret = -EINVAL; break; } if (ret) cm_free_work(work); } static int cm_establish(struct ib_cm_id *cm_id) { struct cm_id_private *cm_id_priv; struct cm_work *work; unsigned long flags; int ret = 0; struct cm_device *cm_dev; cm_dev = ib_get_client_data(cm_id->device, &cm_client); if (!cm_dev) return -ENODEV; work = kmalloc(sizeof *work, GFP_ATOMIC); if (!work) return -ENOMEM; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id->state) { case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: cm_id->state = IB_CM_ESTABLISHED; break; case IB_CM_ESTABLISHED: ret = -EISCONN; break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); if (ret) { kfree(work); goto out; } /* * The CM worker thread may try to destroy the cm_id before it * can execute this work item. To prevent potential deadlock, * we need to find the cm_id once we're in the context of the * worker thread, rather than holding a reference on it. */ INIT_DELAYED_WORK(&work->work, cm_work_handler); work->local_id = cm_id->local_id; work->remote_id = cm_id->remote_id; work->mad_recv_wc = NULL; work->cm_event.event = IB_CM_USER_ESTABLISHED; /* Check if the device started its remove_one */ spin_lock_irqsave(&cm.lock, flags); if (!cm_dev->going_down) { queue_delayed_work(cm.wq, &work->work, 0); } else { kfree(work); ret = -ENODEV; } spin_unlock_irqrestore(&cm.lock, flags); out: return ret; } static int cm_migrate(struct ib_cm_id *cm_id) { struct cm_id_private *cm_id_priv; struct cm_av tmp_av; unsigned long flags; int tmp_send_port_not_ready; int ret = 0; cm_id_priv = container_of(cm_id, struct cm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id->state == IB_CM_ESTABLISHED && (cm_id->lap_state == IB_CM_LAP_UNINIT || cm_id->lap_state == IB_CM_LAP_IDLE)) { cm_id->lap_state = IB_CM_LAP_IDLE; /* Swap address vector */ tmp_av = cm_id_priv->av; cm_id_priv->av = cm_id_priv->alt_av; cm_id_priv->alt_av = tmp_av; /* Swap port send ready state */ tmp_send_port_not_ready = cm_id_priv->prim_send_port_not_ready; cm_id_priv->prim_send_port_not_ready = cm_id_priv->altr_send_port_not_ready; cm_id_priv->altr_send_port_not_ready = tmp_send_port_not_ready; } else ret = -EINVAL; spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } int ib_cm_notify(struct ib_cm_id *cm_id, enum ib_event_type event) { int ret; switch (event) { case IB_EVENT_COMM_EST: ret = cm_establish(cm_id); break; case IB_EVENT_PATH_MIG: ret = cm_migrate(cm_id); break; default: ret = -EINVAL; } return ret; } EXPORT_SYMBOL(ib_cm_notify); static void cm_recv_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_buf *send_buf, struct ib_mad_recv_wc *mad_recv_wc) { struct cm_port *port = mad_agent->context; struct cm_work *work; enum ib_cm_event_type event; u16 attr_id; int paths = 0; int going_down = 0; switch (mad_recv_wc->recv_buf.mad->mad_hdr.attr_id) { case CM_REQ_ATTR_ID: paths = 1 + (((struct cm_req_msg *) mad_recv_wc->recv_buf.mad)-> alt_local_lid != 0); event = IB_CM_REQ_RECEIVED; break; case CM_MRA_ATTR_ID: event = IB_CM_MRA_RECEIVED; break; case CM_REJ_ATTR_ID: event = IB_CM_REJ_RECEIVED; break; case CM_REP_ATTR_ID: event = IB_CM_REP_RECEIVED; break; case CM_RTU_ATTR_ID: event = IB_CM_RTU_RECEIVED; break; case CM_DREQ_ATTR_ID: event = IB_CM_DREQ_RECEIVED; break; case CM_DREP_ATTR_ID: event = IB_CM_DREP_RECEIVED; break; case CM_SIDR_REQ_ATTR_ID: event = IB_CM_SIDR_REQ_RECEIVED; break; case CM_SIDR_REP_ATTR_ID: event = IB_CM_SIDR_REP_RECEIVED; break; case CM_LAP_ATTR_ID: paths = 1; event = IB_CM_LAP_RECEIVED; break; case CM_APR_ATTR_ID: event = IB_CM_APR_RECEIVED; break; default: ib_free_recv_mad(mad_recv_wc); return; } attr_id = be16_to_cpu(mad_recv_wc->recv_buf.mad->mad_hdr.attr_id); atomic_long_inc(&port->counter_group[CM_RECV]. counter[attr_id - CM_ATTR_ID_OFFSET]); work = kmalloc(sizeof *work + sizeof(struct ib_sa_path_rec) * paths, GFP_KERNEL); if (!work) { ib_free_recv_mad(mad_recv_wc); return; } INIT_DELAYED_WORK(&work->work, cm_work_handler); work->cm_event.event = event; work->mad_recv_wc = mad_recv_wc; work->port = port; /* Check if the device started its remove_one */ spin_lock_irq(&cm.lock); if (!port->cm_dev->going_down) queue_delayed_work(cm.wq, &work->work, 0); else going_down = 1; spin_unlock_irq(&cm.lock); if (going_down) { kfree(work); ib_free_recv_mad(mad_recv_wc); } } static int cm_init_qp_init_attr(struct cm_id_private *cm_id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { unsigned long flags; int ret; spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->id.state) { case IB_CM_REQ_SENT: case IB_CM_MRA_REQ_RCVD: case IB_CM_REQ_RCVD: case IB_CM_MRA_REQ_SENT: case IB_CM_REP_RCVD: case IB_CM_MRA_REP_SENT: case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: case IB_CM_ESTABLISHED: *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PKEY_INDEX | IB_QP_PORT; qp_attr->qp_access_flags = IB_ACCESS_REMOTE_WRITE; if (cm_id_priv->responder_resources) qp_attr->qp_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_ATOMIC; qp_attr->pkey_index = cm_id_priv->av.pkey_index; qp_attr->port_num = cm_id_priv->av.port->port_num; ret = 0; break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } static int cm_init_qp_rtr_attr(struct cm_id_private *cm_id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { unsigned long flags; int ret; spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->id.state) { case IB_CM_REQ_RCVD: case IB_CM_MRA_REQ_SENT: case IB_CM_REP_RCVD: case IB_CM_MRA_REP_SENT: case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: case IB_CM_ESTABLISHED: *qp_attr_mask = IB_QP_STATE | IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN; qp_attr->ah_attr = cm_id_priv->av.ah_attr; qp_attr->path_mtu = cm_id_priv->path_mtu; qp_attr->dest_qp_num = be32_to_cpu(cm_id_priv->remote_qpn); qp_attr->rq_psn = be32_to_cpu(cm_id_priv->rq_psn); if (cm_id_priv->qp_type == IB_QPT_RC || cm_id_priv->qp_type == IB_QPT_XRC_TGT) { *qp_attr_mask |= IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER; qp_attr->max_dest_rd_atomic = cm_id_priv->responder_resources; qp_attr->min_rnr_timer = 0; } if (cm_id_priv->alt_av.ah_attr.dlid) { *qp_attr_mask |= IB_QP_ALT_PATH; qp_attr->alt_port_num = cm_id_priv->alt_av.port->port_num; qp_attr->alt_pkey_index = cm_id_priv->alt_av.pkey_index; qp_attr->alt_timeout = cm_id_priv->alt_av.timeout; qp_attr->alt_ah_attr = cm_id_priv->alt_av.ah_attr; } ret = 0; break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } static int cm_init_qp_rts_attr(struct cm_id_private *cm_id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { unsigned long flags; int ret; spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->id.state) { /* Allow transition to RTS before sending REP */ case IB_CM_REQ_RCVD: case IB_CM_MRA_REQ_SENT: case IB_CM_REP_RCVD: case IB_CM_MRA_REP_SENT: case IB_CM_REP_SENT: case IB_CM_MRA_REP_RCVD: case IB_CM_ESTABLISHED: if (cm_id_priv->id.lap_state == IB_CM_LAP_UNINIT) { *qp_attr_mask = IB_QP_STATE | IB_QP_SQ_PSN; qp_attr->sq_psn = be32_to_cpu(cm_id_priv->sq_psn); switch (cm_id_priv->qp_type) { case IB_QPT_RC: case IB_QPT_XRC_INI: *qp_attr_mask |= IB_QP_RETRY_CNT | IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC; qp_attr->retry_cnt = cm_id_priv->retry_count; qp_attr->rnr_retry = cm_id_priv->rnr_retry_count; qp_attr->max_rd_atomic = cm_id_priv->initiator_depth; /* fall through */ case IB_QPT_XRC_TGT: *qp_attr_mask |= IB_QP_TIMEOUT; qp_attr->timeout = cm_id_priv->av.timeout; break; default: break; } if (cm_id_priv->alt_av.ah_attr.dlid) { *qp_attr_mask |= IB_QP_PATH_MIG_STATE; qp_attr->path_mig_state = IB_MIG_REARM; } } else { *qp_attr_mask = IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE; qp_attr->alt_port_num = cm_id_priv->alt_av.port->port_num; qp_attr->alt_pkey_index = cm_id_priv->alt_av.pkey_index; qp_attr->alt_timeout = cm_id_priv->alt_av.timeout; qp_attr->alt_ah_attr = cm_id_priv->alt_av.ah_attr; qp_attr->path_mig_state = IB_MIG_REARM; } ret = 0; break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } int ib_cm_init_qp_attr(struct ib_cm_id *cm_id, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct cm_id_private *cm_id_priv; int ret; cm_id_priv = container_of(cm_id, struct cm_id_private, id); switch (qp_attr->qp_state) { case IB_QPS_INIT: ret = cm_init_qp_init_attr(cm_id_priv, qp_attr, qp_attr_mask); break; case IB_QPS_RTR: ret = cm_init_qp_rtr_attr(cm_id_priv, qp_attr, qp_attr_mask); break; case IB_QPS_RTS: ret = cm_init_qp_rts_attr(cm_id_priv, qp_attr, qp_attr_mask); break; default: ret = -EINVAL; break; } return ret; } EXPORT_SYMBOL(ib_cm_init_qp_attr); static ssize_t cm_show_counter(struct kobject *obj, struct attribute *attr, char *buf) { struct cm_counter_group *group; struct cm_counter_attribute *cm_attr; group = container_of(obj, struct cm_counter_group, obj); cm_attr = container_of(attr, struct cm_counter_attribute, attr); return sprintf(buf, "%ld\n", atomic_long_read(&group->counter[cm_attr->index])); } static const struct sysfs_ops cm_counter_ops = { .show = cm_show_counter }; static struct kobj_type cm_counter_obj_type = { .sysfs_ops = &cm_counter_ops, .default_attrs = cm_counter_default_attrs }; static void cm_release_port_obj(struct kobject *obj) { struct cm_port *cm_port; cm_port = container_of(obj, struct cm_port, port_obj); kfree(cm_port); } static struct kobj_type cm_port_obj_type = { .release = cm_release_port_obj }; static char *cm_devnode(struct device *dev, umode_t *mode) { if (mode) *mode = 0666; return kasprintf(GFP_KERNEL, "infiniband/%s", dev_name(dev)); } struct class cm_class = { .owner = THIS_MODULE, .name = "infiniband_cm", .devnode = cm_devnode, }; EXPORT_SYMBOL(cm_class); static int cm_create_port_fs(struct cm_port *port) { int i, ret; ret = kobject_init_and_add(&port->port_obj, &cm_port_obj_type, &port->cm_dev->device->kobj, "%d", port->port_num); if (ret) { kfree(port); return ret; } for (i = 0; i < CM_COUNTER_GROUPS; i++) { ret = kobject_init_and_add(&port->counter_group[i].obj, &cm_counter_obj_type, &port->port_obj, "%s", counter_group_names[i]); if (ret) goto error; } return 0; error: while (i--) kobject_put(&port->counter_group[i].obj); kobject_put(&port->port_obj); return ret; } static void cm_remove_port_fs(struct cm_port *port) { int i; for (i = 0; i < CM_COUNTER_GROUPS; i++) kobject_put(&port->counter_group[i].obj); kobject_put(&port->port_obj); } static void cm_add_one(struct ib_device *ib_device) { struct cm_device *cm_dev; struct cm_port *port; struct ib_mad_reg_req reg_req = { .mgmt_class = IB_MGMT_CLASS_CM, .mgmt_class_version = IB_CM_CLASS_VERSION, }; struct ib_port_modify port_modify = { .set_port_cap_mask = IB_PORT_CM_SUP }; unsigned long flags; int ret; int count = 0; u8 i; cm_dev = kzalloc(sizeof(*cm_dev) + sizeof(*port) * ib_device->phys_port_cnt, GFP_KERNEL); if (!cm_dev) return; cm_dev->ib_device = ib_device; cm_dev->ack_delay = ib_device->attrs.local_ca_ack_delay; cm_dev->going_down = 0; cm_dev->device = device_create(&cm_class, &ib_device->dev, MKDEV(0, 0), NULL, "%s", ib_device->name); if (IS_ERR(cm_dev->device)) { kfree(cm_dev); return; } set_bit(IB_MGMT_METHOD_SEND, reg_req.method_mask); for (i = 1; i <= ib_device->phys_port_cnt; i++) { if (!rdma_cap_ib_cm(ib_device, i)) continue; port = kzalloc(sizeof *port, GFP_KERNEL); if (!port) goto error1; cm_dev->port[i-1] = port; port->cm_dev = cm_dev; port->port_num = i; INIT_LIST_HEAD(&port->cm_priv_prim_list); INIT_LIST_HEAD(&port->cm_priv_altr_list); ret = cm_create_port_fs(port); if (ret) goto error1; port->mad_agent = ib_register_mad_agent(ib_device, i, IB_QPT_GSI, ®_req, 0, cm_send_handler, cm_recv_handler, port, 0); if (IS_ERR(port->mad_agent)) goto error2; ret = ib_modify_port(ib_device, i, 0, &port_modify); if (ret) goto error3; count++; } if (!count) goto free; ib_set_client_data(ib_device, &cm_client, cm_dev); write_lock_irqsave(&cm.device_lock, flags); list_add_tail(&cm_dev->list, &cm.device_list); write_unlock_irqrestore(&cm.device_lock, flags); return; error3: ib_unregister_mad_agent(port->mad_agent); error2: cm_remove_port_fs(port); error1: port_modify.set_port_cap_mask = 0; port_modify.clr_port_cap_mask = IB_PORT_CM_SUP; while (--i) { if (!rdma_cap_ib_cm(ib_device, i)) continue; port = cm_dev->port[i-1]; ib_modify_port(ib_device, port->port_num, 0, &port_modify); ib_unregister_mad_agent(port->mad_agent); cm_remove_port_fs(port); } free: device_unregister(cm_dev->device); kfree(cm_dev); } static void cm_remove_one(struct ib_device *ib_device, void *client_data) { struct cm_device *cm_dev = client_data; struct cm_port *port; struct cm_id_private *cm_id_priv; struct ib_mad_agent *cur_mad_agent; struct ib_port_modify port_modify = { .clr_port_cap_mask = IB_PORT_CM_SUP }; unsigned long flags; int i; if (!cm_dev) return; write_lock_irqsave(&cm.device_lock, flags); list_del(&cm_dev->list); write_unlock_irqrestore(&cm.device_lock, flags); spin_lock_irq(&cm.lock); cm_dev->going_down = 1; spin_unlock_irq(&cm.lock); for (i = 1; i <= ib_device->phys_port_cnt; i++) { if (!rdma_cap_ib_cm(ib_device, i)) continue; port = cm_dev->port[i-1]; ib_modify_port(ib_device, port->port_num, 0, &port_modify); /* Mark all the cm_id's as not valid */ spin_lock_irq(&cm.lock); list_for_each_entry(cm_id_priv, &port->cm_priv_altr_list, altr_list) cm_id_priv->altr_send_port_not_ready = 1; list_for_each_entry(cm_id_priv, &port->cm_priv_prim_list, prim_list) cm_id_priv->prim_send_port_not_ready = 1; spin_unlock_irq(&cm.lock); /* * We flush the queue here after the going_down set, this * verify that no new works will be queued in the recv handler, * after that we can call the unregister_mad_agent */ flush_workqueue(cm.wq); spin_lock_irq(&cm.state_lock); cur_mad_agent = port->mad_agent; port->mad_agent = NULL; spin_unlock_irq(&cm.state_lock); ib_unregister_mad_agent(cur_mad_agent); cm_remove_port_fs(port); } device_unregister(cm_dev->device); kfree(cm_dev); } static int __init ib_cm_init(void) { int ret; memset(&cm, 0, sizeof cm); INIT_LIST_HEAD(&cm.device_list); rwlock_init(&cm.device_lock); spin_lock_init(&cm.lock); spin_lock_init(&cm.state_lock); cm.listen_service_table = RB_ROOT; cm.listen_service_id = be64_to_cpu(IB_CM_ASSIGN_SERVICE_ID); cm.remote_id_table = RB_ROOT; cm.remote_qp_table = RB_ROOT; cm.remote_sidr_table = RB_ROOT; idr_init(&cm.local_id_table); get_random_bytes(&cm.random_id_operand, sizeof cm.random_id_operand); INIT_LIST_HEAD(&cm.timewait_list); ret = class_register(&cm_class); if (ret) { ret = -ENOMEM; goto error1; } cm.wq = create_workqueue("ib_cm"); if (!cm.wq) { ret = -ENOMEM; goto error2; } ret = ib_register_client(&cm_client); if (ret) goto error3; return 0; error3: destroy_workqueue(cm.wq); error2: class_unregister(&cm_class); error1: idr_destroy(&cm.local_id_table); return ret; } static void __exit ib_cm_cleanup(void) { struct cm_timewait_info *timewait_info, *tmp; spin_lock_irq(&cm.lock); list_for_each_entry(timewait_info, &cm.timewait_list, list) cancel_delayed_work(&timewait_info->work.work); spin_unlock_irq(&cm.lock); ib_unregister_client(&cm_client); destroy_workqueue(cm.wq); list_for_each_entry_safe(timewait_info, tmp, &cm.timewait_list, list) { cancel_delayed_work_sync(&timewait_info->work.work); list_del(&timewait_info->list); kfree(timewait_info); } class_unregister(&cm_class); idr_destroy(&cm.local_id_table); } module_init_order(ib_cm_init, SI_ORDER_SECOND); -module_exit_order(ib_cm_cleanup, SI_ORDER_FIRST); +module_exit_order(ib_cm_cleanup, SI_ORDER_SECOND); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_cma.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_cma.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_cma.c (revision 363151) @@ -1,4437 +1,4437 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #define LINUXKPI_PARAM_PREFIX ibcore_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core_priv.h" MODULE_AUTHOR("Sean Hefty"); MODULE_DESCRIPTION("Generic RDMA CM Agent"); MODULE_LICENSE("Dual BSD/GPL"); #define CMA_CM_RESPONSE_TIMEOUT 20 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000 #define CMA_MAX_CM_RETRIES 15 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) #define CMA_IBOE_PACKET_LIFETIME 18 static const char * const cma_events[] = { [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", [RDMA_CM_EVENT_ADDR_ERROR] = "address error", [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", [RDMA_CM_EVENT_REJECTED] = "rejected", [RDMA_CM_EVENT_ESTABLISHED] = "established", [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", }; const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) { size_t index = event; return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? cma_events[index] : "unrecognized event"; } EXPORT_SYMBOL(rdma_event_msg); static int cma_check_linklocal(struct rdma_dev_addr *, struct sockaddr *); static void cma_add_one(struct ib_device *device); static void cma_remove_one(struct ib_device *device, void *client_data); static struct ib_client cma_client = { .name = "cma", .add = cma_add_one, .remove = cma_remove_one }; static struct ib_sa_client sa_client; static struct rdma_addr_client addr_client; static LIST_HEAD(dev_list); static LIST_HEAD(listen_any_list); static DEFINE_MUTEX(lock); static struct workqueue_struct *cma_wq; struct cma_pernet { struct idr tcp_ps; struct idr udp_ps; struct idr ipoib_ps; struct idr ib_ps; }; VNET_DEFINE(struct cma_pernet, cma_pernet); static struct cma_pernet *cma_pernet_ptr(struct vnet *vnet) { struct cma_pernet *retval; CURVNET_SET_QUIET(vnet); retval = &VNET(cma_pernet); CURVNET_RESTORE(); return (retval); } static struct idr *cma_pernet_idr(struct vnet *net, enum rdma_port_space ps) { struct cma_pernet *pernet = cma_pernet_ptr(net); switch (ps) { case RDMA_PS_TCP: return &pernet->tcp_ps; case RDMA_PS_UDP: return &pernet->udp_ps; case RDMA_PS_IPOIB: return &pernet->ipoib_ps; case RDMA_PS_IB: return &pernet->ib_ps; default: return NULL; } } struct cma_device { struct list_head list; struct ib_device *device; struct completion comp; atomic_t refcount; struct list_head id_list; struct sysctl_ctx_list sysctl_ctx; enum ib_gid_type *default_gid_type; }; struct rdma_bind_list { enum rdma_port_space ps; struct hlist_head owners; unsigned short port; }; struct class_port_info_context { struct ib_class_port_info *class_port_info; struct ib_device *device; struct completion done; struct ib_sa_query *sa_query; u8 port_num; }; static int cma_ps_alloc(struct vnet *vnet, enum rdma_port_space ps, struct rdma_bind_list *bind_list, int snum) { struct idr *idr = cma_pernet_idr(vnet, ps); return idr_alloc(idr, bind_list, snum, snum + 1, GFP_KERNEL); } static struct rdma_bind_list *cma_ps_find(struct vnet *net, enum rdma_port_space ps, int snum) { struct idr *idr = cma_pernet_idr(net, ps); return idr_find(idr, snum); } static void cma_ps_remove(struct vnet *net, enum rdma_port_space ps, int snum) { struct idr *idr = cma_pernet_idr(net, ps); idr_remove(idr, snum); } enum { CMA_OPTION_AFONLY, }; void cma_ref_dev(struct cma_device *cma_dev) { atomic_inc(&cma_dev->refcount); } struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, void *cookie) { struct cma_device *cma_dev; struct cma_device *found_cma_dev = NULL; mutex_lock(&lock); list_for_each_entry(cma_dev, &dev_list, list) if (filter(cma_dev->device, cookie)) { found_cma_dev = cma_dev; break; } if (found_cma_dev) cma_ref_dev(found_cma_dev); mutex_unlock(&lock); return found_cma_dev; } int cma_get_default_gid_type(struct cma_device *cma_dev, unsigned int port) { if (port < rdma_start_port(cma_dev->device) || port > rdma_end_port(cma_dev->device)) return -EINVAL; return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; } int cma_set_default_gid_type(struct cma_device *cma_dev, unsigned int port, enum ib_gid_type default_gid_type) { unsigned long supported_gids; if (port < rdma_start_port(cma_dev->device) || port > rdma_end_port(cma_dev->device)) return -EINVAL; supported_gids = roce_gid_type_mask_support(cma_dev->device, port); if (!(supported_gids & 1 << default_gid_type)) return -EINVAL; cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = default_gid_type; return 0; } struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) { return cma_dev->device; } /* * Device removal can occur at anytime, so we need extra handling to * serialize notifying the user of device removal with other callbacks. * We do this by disabling removal notification while a callback is in process, * and reporting it after the callback completes. */ struct rdma_id_private { struct rdma_cm_id id; struct rdma_bind_list *bind_list; struct hlist_node node; struct list_head list; /* listen_any_list or cma_device.list */ struct list_head listen_list; /* per device listens */ struct cma_device *cma_dev; struct list_head mc_list; int internal_id; enum rdma_cm_state state; spinlock_t lock; struct mutex qp_mutex; struct completion comp; atomic_t refcount; struct mutex handler_mutex; int backlog; int timeout_ms; struct ib_sa_query *query; int query_id; union { struct ib_cm_id *ib; struct iw_cm_id *iw; } cm_id; u32 seq_num; u32 qkey; u32 qp_num; pid_t owner; u32 options; u8 srq; u8 tos; u8 reuseaddr; u8 afonly; enum ib_gid_type gid_type; }; struct cma_multicast { struct rdma_id_private *id_priv; union { struct ib_sa_multicast *ib; } multicast; struct list_head list; void *context; struct sockaddr_storage addr; struct kref mcref; bool igmp_joined; u8 join_state; }; struct cma_work { struct work_struct work; struct rdma_id_private *id; enum rdma_cm_state old_state; enum rdma_cm_state new_state; struct rdma_cm_event event; }; struct cma_ndev_work { struct work_struct work; struct rdma_id_private *id; struct rdma_cm_event event; }; struct iboe_mcast_work { struct work_struct work; struct rdma_id_private *id; struct cma_multicast *mc; }; union cma_ip_addr { struct in6_addr ip6; struct { __be32 pad[3]; __be32 addr; } ip4; }; struct cma_hdr { u8 cma_version; u8 ip_version; /* IP version: 7:4 */ __be16 port; union cma_ip_addr src_addr; union cma_ip_addr dst_addr; }; #define CMA_VERSION 0x00 struct cma_req_info { struct ib_device *device; int port; union ib_gid local_gid; __be64 service_id; u16 pkey; bool has_gid:1; }; static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); ret = (id_priv->state == comp); spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static int cma_comp_exch(struct rdma_id_private *id_priv, enum rdma_cm_state comp, enum rdma_cm_state exch) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); if ((ret = (id_priv->state == comp))) id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static enum rdma_cm_state cma_exch(struct rdma_id_private *id_priv, enum rdma_cm_state exch) { unsigned long flags; enum rdma_cm_state old; spin_lock_irqsave(&id_priv->lock, flags); old = id_priv->state; id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return old; } static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) { return hdr->ip_version >> 4; } static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) { hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); } static int cma_igmp_send(struct net_device *ndev, const union ib_gid *mgid, bool join) { int retval; if (ndev) { union { struct sockaddr sock; struct sockaddr_storage storage; } addr; rdma_gid2ip(&addr.sock, mgid); CURVNET_SET_QUIET(ndev->if_vnet); if (join) retval = -if_addmulti(ndev, &addr.sock, NULL); else retval = -if_delmulti(ndev, &addr.sock); CURVNET_RESTORE(); } else { retval = -ENODEV; } return retval; } static void _cma_attach_to_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { cma_ref_dev(cma_dev); id_priv->cma_dev = cma_dev; id_priv->gid_type = 0; id_priv->id.device = cma_dev->device; id_priv->id.route.addr.dev_addr.transport = rdma_node_get_transport(cma_dev->device->node_type); list_add_tail(&id_priv->list, &cma_dev->id_list); } static void cma_attach_to_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { _cma_attach_to_dev(id_priv, cma_dev); id_priv->gid_type = cma_dev->default_gid_type[id_priv->id.port_num - rdma_start_port(cma_dev->device)]; } void cma_deref_dev(struct cma_device *cma_dev) { if (atomic_dec_and_test(&cma_dev->refcount)) complete(&cma_dev->comp); } static inline void release_mc(struct kref *kref) { struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref); kfree(mc->multicast.ib); kfree(mc); } static void cma_release_dev(struct rdma_id_private *id_priv) { mutex_lock(&lock); list_del(&id_priv->list); cma_deref_dev(id_priv->cma_dev); id_priv->cma_dev = NULL; mutex_unlock(&lock); } static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) { return (struct sockaddr *) &id_priv->id.route.addr.src_addr; } static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) { return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; } static inline unsigned short cma_family(struct rdma_id_private *id_priv) { return id_priv->id.route.addr.src_addr.ss_family; } static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) { struct ib_sa_mcmember_rec rec; int ret = 0; if (id_priv->qkey) { if (qkey && id_priv->qkey != qkey) return -EINVAL; return 0; } if (qkey) { id_priv->qkey = qkey; return 0; } switch (id_priv->id.ps) { case RDMA_PS_UDP: case RDMA_PS_IB: id_priv->qkey = RDMA_UDP_QKEY; break; case RDMA_PS_IPOIB: ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (!ret) id_priv->qkey = be32_to_cpu(rec.qkey); break; default: break; } return ret; } static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) { dev_addr->dev_type = ARPHRD_INFINIBAND; rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); } static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) { int ret; if (addr->sa_family != AF_IB) { ret = rdma_translate_ip(addr, dev_addr); } else { cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); ret = 0; } return ret; } static inline int cma_validate_port(struct ib_device *device, u8 port, enum ib_gid_type gid_type, union ib_gid *gid, const struct rdma_dev_addr *dev_addr) { const int dev_type = dev_addr->dev_type; struct net_device *ndev; int ret = -ENODEV; if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) return ret; if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) return ret; if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); } else { ndev = NULL; gid_type = IB_GID_TYPE_IB; } ret = ib_find_cached_gid_by_port(device, gid, gid_type, port, ndev, NULL); if (ndev) dev_put(ndev); return ret; } static int cma_acquire_dev(struct rdma_id_private *id_priv, struct rdma_id_private *listen_id_priv) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct cma_device *cma_dev; union ib_gid gid, iboe_gid, *gidp; int ret = -ENODEV; u8 port; if (dev_addr->dev_type != ARPHRD_INFINIBAND && id_priv->id.ps == RDMA_PS_IPOIB) return -EINVAL; mutex_lock(&lock); rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, &iboe_gid); memcpy(&gid, dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof gid); if (listen_id_priv) { cma_dev = listen_id_priv->cma_dev; port = listen_id_priv->id.port_num; if (rdma_is_port_valid(cma_dev->device, port)) { gidp = rdma_protocol_roce(cma_dev->device, port) ? &iboe_gid : &gid; ret = cma_validate_port(cma_dev->device, port, rdma_protocol_ib(cma_dev->device, port) ? IB_GID_TYPE_IB : listen_id_priv->gid_type, gidp, dev_addr); if (!ret) { id_priv->id.port_num = port; goto out; } } } list_for_each_entry(cma_dev, &dev_list, list) { for (port = 1; port <= cma_dev->device->phys_port_cnt; ++port) { if (listen_id_priv && listen_id_priv->cma_dev == cma_dev && listen_id_priv->id.port_num == port) continue; gidp = rdma_protocol_roce(cma_dev->device, port) ? &iboe_gid : &gid; ret = cma_validate_port(cma_dev->device, port, rdma_protocol_ib(cma_dev->device, port) ? IB_GID_TYPE_IB : cma_dev->default_gid_type[port - 1], gidp, dev_addr); if (!ret) { id_priv->id.port_num = port; goto out; } } } out: if (!ret) cma_attach_to_dev(id_priv, cma_dev); mutex_unlock(&lock); return ret; } /* * Select the source IB device and address to reach the destination IB address. */ static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) { struct cma_device *cma_dev, *cur_dev; struct sockaddr_ib *addr; union ib_gid gid, sgid, *dgid; u16 pkey, index; u8 p; int i; cma_dev = NULL; addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); dgid = (union ib_gid *) &addr->sib_addr; pkey = ntohs(addr->sib_pkey); list_for_each_entry(cur_dev, &dev_list, list) { for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) { if (!rdma_cap_af_ib(cur_dev->device, p)) continue; if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) continue; for (i = 0; !ib_get_cached_gid(cur_dev->device, p, i, &gid, NULL); i++) { if (!memcmp(&gid, dgid, sizeof(gid))) { cma_dev = cur_dev; sgid = gid; id_priv->id.port_num = p; goto found; } if (!cma_dev && (gid.global.subnet_prefix == dgid->global.subnet_prefix)) { cma_dev = cur_dev; sgid = gid; id_priv->id.port_num = p; } } } } if (!cma_dev) return -ENODEV; found: cma_attach_to_dev(id_priv, cma_dev); addr = (struct sockaddr_ib *) cma_src_addr(id_priv); memcpy(&addr->sib_addr, &sgid, sizeof sgid); cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); return 0; } static void cma_deref_id(struct rdma_id_private *id_priv) { if (atomic_dec_and_test(&id_priv->refcount)) complete(&id_priv->comp); } struct rdma_cm_id *rdma_create_id(struct vnet *net, rdma_cm_event_handler event_handler, void *context, enum rdma_port_space ps, enum ib_qp_type qp_type) { struct rdma_id_private *id_priv; #ifdef VIMAGE if (net == NULL) return ERR_PTR(-EINVAL); #endif id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); if (!id_priv) return ERR_PTR(-ENOMEM); id_priv->owner = task_pid_nr(current); id_priv->state = RDMA_CM_IDLE; id_priv->id.context = context; id_priv->id.event_handler = event_handler; id_priv->id.ps = ps; id_priv->id.qp_type = qp_type; spin_lock_init(&id_priv->lock); mutex_init(&id_priv->qp_mutex); init_completion(&id_priv->comp); atomic_set(&id_priv->refcount, 1); mutex_init(&id_priv->handler_mutex); INIT_LIST_HEAD(&id_priv->listen_list); INIT_LIST_HEAD(&id_priv->mc_list); get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); id_priv->id.route.addr.dev_addr.net = net; return &id_priv->id; } EXPORT_SYMBOL(rdma_create_id); static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTR; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTS; qp_attr.sq_psn = 0; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); return ret; } static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; return ib_modify_qp(qp, &qp_attr, qp_attr_mask); } int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr) { struct rdma_id_private *id_priv; struct ib_qp *qp; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id->device != pd->device) return -EINVAL; qp_init_attr->port_num = id->port_num; qp = ib_create_qp(pd, qp_init_attr); if (IS_ERR(qp)) return PTR_ERR(qp); if (id->qp_type == IB_QPT_UD) ret = cma_init_ud_qp(id_priv, qp); else ret = cma_init_conn_qp(id_priv, qp); if (ret) goto err; id->qp = qp; id_priv->qp_num = qp->qp_num; id_priv->srq = (qp->srq != NULL); return 0; err: ib_destroy_qp(qp); return ret; } EXPORT_SYMBOL(rdma_create_qp); void rdma_destroy_qp(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); mutex_lock(&id_priv->qp_mutex); ib_destroy_qp(id_priv->id.qp); id_priv->id.qp = NULL; mutex_unlock(&id_priv->qp_mutex); } EXPORT_SYMBOL(rdma_destroy_qp); static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; union ib_gid sgid; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } /* Need to update QP attributes from default values. */ qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); if (ret) goto out; qp_attr.qp_state = IB_QPS_RTR; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; ret = ib_query_gid(id_priv->id.device, id_priv->id.port_num, qp_attr.ah_attr.grh.sgid_index, &sgid, NULL); if (ret) goto out; BUG_ON(id_priv->cma_dev->device != id_priv->id.device); if (conn_param) qp_attr.max_dest_rd_atomic = conn_param->responder_resources; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_rts(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_RTS; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; if (conn_param) qp_attr.max_rd_atomic = conn_param->initiator_depth; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_err(struct rdma_id_private *id_priv) { struct ib_qp_attr qp_attr; int ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_ERR; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int ret; u16 pkey; if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) pkey = 0xffff; else pkey = ib_addr_get_pkey(dev_addr); ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, pkey, &qp_attr->pkey_index); if (ret) return ret; qp_attr->port_num = id_priv->id.port_num; *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; if (id_priv->id.qp_type == IB_QPT_UD) { ret = cma_set_qkey(id_priv, 0); if (ret) return ret; qp_attr->qkey = id_priv->qkey; *qp_attr_mask |= IB_QP_QKEY; } else { qp_attr->qp_access_flags = 0; *qp_attr_mask |= IB_QP_ACCESS_FLAGS; } return 0; } int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_id_private *id_priv; int ret = 0; id_priv = container_of(id, struct rdma_id_private, id); if (rdma_cap_ib_cm(id->device, id->port_num)) { if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); else ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, qp_attr_mask); if (qp_attr->qp_state == IB_QPS_RTR) qp_attr->rq_psn = id_priv->seq_num; } else if (rdma_cap_iw_cm(id->device, id->port_num)) { if (!id_priv->cm_id.iw) { qp_attr->qp_access_flags = 0; *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; } else ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, qp_attr_mask); qp_attr->port_num = id_priv->id.port_num; *qp_attr_mask |= IB_QP_PORT; } else ret = -ENOSYS; return ret; } EXPORT_SYMBOL(rdma_init_qp_attr); static inline int cma_zero_addr(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); case AF_INET6: return ipv6_addr_any(&((struct sockaddr_in6 *) addr)->sin6_addr); case AF_IB: return ib_addr_any(&((struct sockaddr_ib *) addr)->sib_addr); default: return 0; } } static inline int cma_loopback_addr(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return ipv4_is_loopback(((struct sockaddr_in *) addr)->sin_addr.s_addr); case AF_INET6: return ipv6_addr_loopback(&((struct sockaddr_in6 *) addr)->sin6_addr); case AF_IB: return ib_addr_loopback(&((struct sockaddr_ib *) addr)->sib_addr); default: return 0; } } static inline int cma_any_addr(struct sockaddr *addr) { return cma_zero_addr(addr) || cma_loopback_addr(addr); } static int cma_addr_cmp(struct sockaddr *src, struct sockaddr *dst) { if (src->sa_family != dst->sa_family) return -1; switch (src->sa_family) { case AF_INET: return ((struct sockaddr_in *) src)->sin_addr.s_addr != ((struct sockaddr_in *) dst)->sin_addr.s_addr; case AF_INET6: return ipv6_addr_cmp(&((struct sockaddr_in6 *) src)->sin6_addr, &((struct sockaddr_in6 *) dst)->sin6_addr); default: return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, &((struct sockaddr_ib *) dst)->sib_addr); } } static __be16 cma_port(struct sockaddr *addr) { struct sockaddr_ib *sib; switch (addr->sa_family) { case AF_INET: return ((struct sockaddr_in *) addr)->sin_port; case AF_INET6: return ((struct sockaddr_in6 *) addr)->sin6_port; case AF_IB: sib = (struct sockaddr_ib *) addr; return htons((u16) (be64_to_cpu(sib->sib_sid) & be64_to_cpu(sib->sib_sid_mask))); default: return 0; } } static inline int cma_any_port(struct sockaddr *addr) { return !cma_port(addr); } static void cma_save_ib_info(struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_cm_id *listen_id, struct ib_sa_path_rec *path) { struct sockaddr_ib *listen_ib, *ib; listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; if (src_addr) { ib = (struct sockaddr_ib *)src_addr; ib->sib_family = AF_IB; if (path) { ib->sib_pkey = path->pkey; ib->sib_flowinfo = path->flow_label; memcpy(&ib->sib_addr, &path->sgid, 16); ib->sib_sid = path->service_id; ib->sib_scope_id = 0; } else { ib->sib_pkey = listen_ib->sib_pkey; ib->sib_flowinfo = listen_ib->sib_flowinfo; ib->sib_addr = listen_ib->sib_addr; ib->sib_sid = listen_ib->sib_sid; ib->sib_scope_id = listen_ib->sib_scope_id; } ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); } if (dst_addr) { ib = (struct sockaddr_ib *)dst_addr; ib->sib_family = AF_IB; if (path) { ib->sib_pkey = path->pkey; ib->sib_flowinfo = path->flow_label; memcpy(&ib->sib_addr, &path->dgid, 16); } } } static void cma_save_ip4_info(struct sockaddr_in *src_addr, struct sockaddr_in *dst_addr, struct cma_hdr *hdr, __be16 local_port) { if (src_addr) { *src_addr = (struct sockaddr_in) { .sin_len = sizeof(struct sockaddr_in), .sin_family = AF_INET, .sin_addr.s_addr = hdr->dst_addr.ip4.addr, .sin_port = local_port, }; } if (dst_addr) { *dst_addr = (struct sockaddr_in) { .sin_len = sizeof(struct sockaddr_in), .sin_family = AF_INET, .sin_addr.s_addr = hdr->src_addr.ip4.addr, .sin_port = hdr->port, }; } } static void cma_ip6_clear_scope_id(struct in6_addr *addr) { /* make sure link local scope ID gets zeroed */ if (IN6_IS_SCOPE_LINKLOCAL(addr) || IN6_IS_ADDR_MC_INTFACELOCAL(addr)) { /* use byte-access to be alignment safe */ addr->s6_addr[2] = 0; addr->s6_addr[3] = 0; } } static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, struct sockaddr_in6 *dst_addr, struct cma_hdr *hdr, __be16 local_port) { if (src_addr) { *src_addr = (struct sockaddr_in6) { .sin6_len = sizeof(struct sockaddr_in6), .sin6_family = AF_INET6, .sin6_addr = hdr->dst_addr.ip6, .sin6_port = local_port, }; cma_ip6_clear_scope_id(&src_addr->sin6_addr); } if (dst_addr) { *dst_addr = (struct sockaddr_in6) { .sin6_len = sizeof(struct sockaddr_in6), .sin6_family = AF_INET6, .sin6_addr = hdr->src_addr.ip6, .sin6_port = hdr->port, }; cma_ip6_clear_scope_id(&dst_addr->sin6_addr); } } static u16 cma_port_from_service_id(__be64 service_id) { return (u16)be64_to_cpu(service_id); } static int cma_save_ip_info(struct sockaddr *src_addr, struct sockaddr *dst_addr, struct ib_cm_event *ib_event, __be64 service_id) { struct cma_hdr *hdr; __be16 port; hdr = ib_event->private_data; if (hdr->cma_version != CMA_VERSION) return -EINVAL; port = htons(cma_port_from_service_id(service_id)); switch (cma_get_ip_ver(hdr)) { case 4: cma_save_ip4_info((struct sockaddr_in *)src_addr, (struct sockaddr_in *)dst_addr, hdr, port); break; case 6: cma_save_ip6_info((struct sockaddr_in6 *)src_addr, (struct sockaddr_in6 *)dst_addr, hdr, port); break; default: return -EAFNOSUPPORT; } return 0; } static int cma_save_net_info(struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event, sa_family_t sa_family, __be64 service_id) { if (sa_family == AF_IB) { if (ib_event->event == IB_CM_REQ_RECEIVED) cma_save_ib_info(src_addr, dst_addr, listen_id, ib_event->param.req_rcvd.primary_path); else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); return 0; } return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); } static int cma_save_req_info(const struct ib_cm_event *ib_event, struct cma_req_info *req) { const struct ib_cm_req_event_param *req_param = &ib_event->param.req_rcvd; const struct ib_cm_sidr_req_event_param *sidr_param = &ib_event->param.sidr_req_rcvd; switch (ib_event->event) { case IB_CM_REQ_RECEIVED: req->device = req_param->listen_id->device; req->port = req_param->port; memcpy(&req->local_gid, &req_param->primary_path->sgid, sizeof(req->local_gid)); req->has_gid = true; req->service_id = req_param->primary_path->service_id; req->pkey = be16_to_cpu(req_param->primary_path->pkey); if (req->pkey != req_param->bth_pkey) pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" "RDMA CMA: in the future this may cause the request to be dropped\n", req_param->bth_pkey, req->pkey); break; case IB_CM_SIDR_REQ_RECEIVED: req->device = sidr_param->listen_id->device; req->port = sidr_param->port; req->has_gid = false; req->service_id = sidr_param->service_id; req->pkey = sidr_param->pkey; if (req->pkey != sidr_param->bth_pkey) pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" "RDMA CMA: in the future this may cause the request to be dropped\n", sidr_param->bth_pkey, req->pkey); break; default: return -EINVAL; } return 0; } static bool validate_ipv4_net_dev(struct net_device *net_dev, const struct sockaddr_in *dst_addr, const struct sockaddr_in *src_addr) { #ifdef INET struct sockaddr_in src_tmp = *src_addr; __be32 daddr = dst_addr->sin_addr.s_addr, saddr = src_addr->sin_addr.s_addr; struct net_device *dst_dev; struct rtentry *rte; bool ret; if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || ipv4_is_loopback(saddr)) return false; dst_dev = ip_dev_find(net_dev->if_vnet, daddr); if (dst_dev != net_dev) { if (dst_dev != NULL) dev_put(dst_dev); return false; } dev_put(dst_dev); /* * Check for loopback. */ if (saddr == daddr) return true; /* * Make sure the socket address length field * is set, else rtalloc1() will fail. */ src_tmp.sin_len = sizeof(src_tmp); CURVNET_SET(net_dev->if_vnet); rte = rtalloc1((struct sockaddr *)&src_tmp, 1, 0); if (rte != NULL) { ret = (rte->rt_ifp == net_dev); RTFREE_LOCKED(rte); } else { ret = false; } CURVNET_RESTORE(); return ret; #else return false; #endif } static bool validate_ipv6_net_dev(struct net_device *net_dev, const struct sockaddr_in6 *dst_addr, const struct sockaddr_in6 *src_addr) { #ifdef INET6 struct sockaddr_in6 src_tmp = *src_addr; struct sockaddr_in6 dst_tmp = *dst_addr; struct net_device *dst_dev; struct rtentry *rte; bool ret; dst_dev = ip6_dev_find(net_dev->if_vnet, dst_tmp.sin6_addr, net_dev->if_index); if (dst_dev != net_dev) { if (dst_dev != NULL) dev_put(dst_dev); return false; } dev_put(dst_dev); CURVNET_SET(net_dev->if_vnet); /* * Make sure the socket address length field * is set, else rtalloc1() will fail. */ src_tmp.sin6_len = sizeof(src_tmp); /* * Make sure the scope ID gets embedded, else rtalloc1() will * resolve to the loopback interface. */ src_tmp.sin6_scope_id = net_dev->if_index; sa6_embedscope(&src_tmp, 0); dst_tmp.sin6_scope_id = net_dev->if_index; sa6_embedscope(&dst_tmp, 0); /* * Check for loopback after scope ID * has been embedded: */ if (memcmp(&src_tmp.sin6_addr, &dst_tmp.sin6_addr, sizeof(dst_tmp.sin6_addr)) == 0) { ret = true; } else { /* non-loopback case */ rte = rtalloc1((struct sockaddr *)&src_tmp, 1, 0); if (rte != NULL) { ret = (rte->rt_ifp == net_dev); RTFREE_LOCKED(rte); } else { ret = false; } } CURVNET_RESTORE(); return ret; #else return false; #endif } static bool validate_net_dev(struct net_device *net_dev, const struct sockaddr *daddr, const struct sockaddr *saddr) { const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; switch (daddr->sa_family) { case AF_INET: return saddr->sa_family == AF_INET && validate_ipv4_net_dev(net_dev, daddr4, saddr4); case AF_INET6: return saddr->sa_family == AF_INET6 && validate_ipv6_net_dev(net_dev, daddr6, saddr6); default: return false; } } static struct net_device * roce_get_net_dev_by_cm_event(struct ib_device *device, u8 port_num, const struct ib_cm_event *ib_event) { struct ib_gid_attr sgid_attr; union ib_gid sgid; int err = -EINVAL; if (ib_event->event == IB_CM_REQ_RECEIVED) { err = ib_get_cached_gid(device, port_num, ib_event->param.req_rcvd.ppath_sgid_index, &sgid, &sgid_attr); } else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { err = ib_get_cached_gid(device, port_num, ib_event->param.sidr_req_rcvd.sgid_index, &sgid, &sgid_attr); } if (err) return (NULL); return (sgid_attr.ndev); } static struct net_device *cma_get_net_dev(struct ib_cm_event *ib_event, const struct cma_req_info *req) { struct sockaddr_storage listen_addr_storage, src_addr_storage; struct sockaddr *listen_addr = (struct sockaddr *)&listen_addr_storage, *src_addr = (struct sockaddr *)&src_addr_storage; struct net_device *net_dev; const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; int err; err = cma_save_ip_info(listen_addr, src_addr, ib_event, req->service_id); if (err) return ERR_PTR(err); if (rdma_protocol_roce(req->device, req->port)) { net_dev = roce_get_net_dev_by_cm_event(req->device, req->port, ib_event); } else { net_dev = ib_get_net_dev_by_params(req->device, req->port, req->pkey, gid, listen_addr); } if (!net_dev) return ERR_PTR(-ENODEV); if (!validate_net_dev(net_dev, listen_addr, src_addr)) { dev_put(net_dev); return ERR_PTR(-EHOSTUNREACH); } return net_dev; } static enum rdma_port_space rdma_ps_from_service_id(__be64 service_id) { return (be64_to_cpu(service_id) >> 16) & 0xffff; } static bool cma_match_private_data(struct rdma_id_private *id_priv, const struct cma_hdr *hdr) { struct sockaddr *addr = cma_src_addr(id_priv); __be32 ip4_addr; struct in6_addr ip6_addr; if (cma_any_addr(addr) && !id_priv->afonly) return true; switch (addr->sa_family) { case AF_INET: ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (cma_get_ip_ver(hdr) != 4) return false; if (!cma_any_addr(addr) && hdr->dst_addr.ip4.addr != ip4_addr) return false; break; case AF_INET6: ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; if (cma_get_ip_ver(hdr) != 6) return false; cma_ip6_clear_scope_id(&ip6_addr); if (!cma_any_addr(addr) && memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) return false; break; case AF_IB: return true; default: return false; } return true; } static bool cma_protocol_roce_dev_port(struct ib_device *device, int port_num) { enum rdma_link_layer ll = rdma_port_get_link_layer(device, port_num); enum rdma_transport_type transport = rdma_node_get_transport(device->node_type); return ll == IB_LINK_LAYER_ETHERNET && transport == RDMA_TRANSPORT_IB; } static bool cma_protocol_roce(const struct rdma_cm_id *id) { struct ib_device *device = id->device; const int port_num = id->port_num ?: rdma_start_port(device); return cma_protocol_roce_dev_port(device, port_num); } static bool cma_match_net_dev(const struct rdma_cm_id *id, const struct net_device *net_dev, u8 port_num) { const struct rdma_addr *addr = &id->route.addr; if (!net_dev) /* This request is an AF_IB request or a RoCE request */ return (!id->port_num || id->port_num == port_num) && (addr->src_addr.ss_family == AF_IB || cma_protocol_roce_dev_port(id->device, port_num)); return !addr->dev_addr.bound_dev_if || (net_eq(dev_net(net_dev), addr->dev_addr.net) && addr->dev_addr.bound_dev_if == net_dev->if_index); } static struct rdma_id_private *cma_find_listener( const struct rdma_bind_list *bind_list, const struct ib_cm_id *cm_id, const struct ib_cm_event *ib_event, const struct cma_req_info *req, const struct net_device *net_dev) { struct rdma_id_private *id_priv, *id_priv_dev; if (!bind_list) return ERR_PTR(-EINVAL); hlist_for_each_entry(id_priv, &bind_list->owners, node) { if (cma_match_private_data(id_priv, ib_event->private_data)) { if (id_priv->id.device == cm_id->device && cma_match_net_dev(&id_priv->id, net_dev, req->port)) return id_priv; list_for_each_entry(id_priv_dev, &id_priv->listen_list, listen_list) { if (id_priv_dev->id.device == cm_id->device && cma_match_net_dev(&id_priv_dev->id, net_dev, req->port)) return id_priv_dev; } } } return ERR_PTR(-EINVAL); } static struct rdma_id_private *cma_id_from_event(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event, struct net_device **net_dev) { struct cma_req_info req; struct rdma_bind_list *bind_list; struct rdma_id_private *id_priv; int err; err = cma_save_req_info(ib_event, &req); if (err) return ERR_PTR(err); *net_dev = cma_get_net_dev(ib_event, &req); if (IS_ERR(*net_dev)) { if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { /* Assuming the protocol is AF_IB */ *net_dev = NULL; } else { return ERR_CAST(*net_dev); } } bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, rdma_ps_from_service_id(req.service_id), cma_port_from_service_id(req.service_id)); id_priv = cma_find_listener(bind_list, cm_id, ib_event, &req, *net_dev); if (IS_ERR(id_priv) && *net_dev) { dev_put(*net_dev); *net_dev = NULL; } return id_priv; } static inline int cma_user_data_offset(struct rdma_id_private *id_priv) { return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); } static void cma_cancel_route(struct rdma_id_private *id_priv) { if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { if (id_priv->query) ib_sa_cancel_query(id_priv->query_id, id_priv->query); } } static void cma_cancel_listens(struct rdma_id_private *id_priv) { struct rdma_id_private *dev_id_priv; /* * Remove from listen_any_list to prevent added devices from spawning * additional listen requests. */ mutex_lock(&lock); list_del(&id_priv->list); while (!list_empty(&id_priv->listen_list)) { dev_id_priv = list_entry(id_priv->listen_list.next, struct rdma_id_private, listen_list); /* sync with device removal to avoid duplicate destruction */ list_del_init(&dev_id_priv->list); list_del(&dev_id_priv->listen_list); mutex_unlock(&lock); rdma_destroy_id(&dev_id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); } static void cma_cancel_operation(struct rdma_id_private *id_priv, enum rdma_cm_state state) { switch (state) { case RDMA_CM_ADDR_QUERY: rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); break; case RDMA_CM_ROUTE_QUERY: cma_cancel_route(id_priv); break; case RDMA_CM_LISTEN: if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) cma_cancel_listens(id_priv); break; default: break; } } static void cma_release_port(struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list = id_priv->bind_list; struct vnet *net = id_priv->id.route.addr.dev_addr.net; if (!bind_list) return; mutex_lock(&lock); hlist_del(&id_priv->node); if (hlist_empty(&bind_list->owners)) { cma_ps_remove(net, bind_list->ps, bind_list->port); kfree(bind_list); } mutex_unlock(&lock); } static void cma_leave_mc_groups(struct rdma_id_private *id_priv) { struct cma_multicast *mc; while (!list_empty(&id_priv->mc_list)) { mc = container_of(id_priv->mc_list.next, struct cma_multicast, list); list_del(&mc->list); if (rdma_cap_ib_mcast(id_priv->cma_dev->device, id_priv->id.port_num)) { ib_sa_free_multicast(mc->multicast.ib); kfree(mc); } else { if (mc->igmp_joined) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct net_device *ndev = NULL; if (dev_addr->bound_dev_if) ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (ndev) { cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, false); dev_put(ndev); } } kref_put(&mc->mcref, release_mc); } } } void rdma_destroy_id(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; enum rdma_cm_state state; id_priv = container_of(id, struct rdma_id_private, id); state = cma_exch(id_priv, RDMA_CM_DESTROYING); cma_cancel_operation(id_priv, state); /* * Wait for any active callback to finish. New callbacks will find * the id_priv state set to destroying and abort. */ mutex_lock(&id_priv->handler_mutex); mutex_unlock(&id_priv->handler_mutex); if (id_priv->cma_dev) { if (rdma_cap_ib_cm(id_priv->id.device, 1)) { if (id_priv->cm_id.ib) ib_destroy_cm_id(id_priv->cm_id.ib); } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { if (id_priv->cm_id.iw) iw_destroy_cm_id(id_priv->cm_id.iw); } cma_leave_mc_groups(id_priv); cma_release_dev(id_priv); } cma_release_port(id_priv); cma_deref_id(id_priv); wait_for_completion(&id_priv->comp); if (id_priv->internal_id) cma_deref_id(id_priv->id.context); kfree(id_priv->id.route.path_rec); kfree(id_priv); } EXPORT_SYMBOL(rdma_destroy_id); static int cma_rep_recv(struct rdma_id_private *id_priv) { int ret; ret = cma_modify_qp_rtr(id_priv, NULL); if (ret) goto reject; ret = cma_modify_qp_rts(id_priv, NULL); if (ret) goto reject; ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, NULL, 0); return ret; } static void cma_set_rep_event_data(struct rdma_cm_event *event, struct ib_cm_rep_event_param *rep_data, void *private_data) { event->param.conn.private_data = private_data; event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; event->param.conn.responder_resources = rep_data->responder_resources; event->param.conn.initiator_depth = rep_data->initiator_depth; event->param.conn.flow_control = rep_data->flow_control; event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; event->param.conn.srq = rep_data->srq; event->param.conn.qp_num = rep_data->remote_qpn; } static int cma_ib_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; int ret = 0; mutex_lock(&id_priv->handler_mutex); if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && id_priv->state != RDMA_CM_CONNECT) || (ib_event->event == IB_CM_TIMEWAIT_EXIT && id_priv->state != RDMA_CM_DISCONNECT)) goto out; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_REQ_ERROR: case IB_CM_REP_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_REP_RECEIVED: if (id_priv->id.qp) { event.status = cma_rep_recv(id_priv); event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : RDMA_CM_EVENT_ESTABLISHED; } else { event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; } cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, ib_event->private_data); break; case IB_CM_RTU_RECEIVED: case IB_CM_USER_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; break; case IB_CM_DREQ_ERROR: event.status = -ETIMEDOUT; /* fall through */ case IB_CM_DREQ_RECEIVED: case IB_CM_DREP_RECEIVED: if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_DISCONNECT)) goto out; event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IB_CM_TIMEWAIT_EXIT: event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; break; case IB_CM_MRA_RECEIVED: /* ignore event */ goto out; case IB_CM_REJ_RECEIVED: cma_modify_qp_err(id_priv); event.status = ib_event->param.rej_rcvd.reason; event.event = RDMA_CM_EVENT_REJECTED; event.param.conn.private_data = ib_event->private_data; event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; break; default: pr_err("RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static struct rdma_id_private *cma_new_conn_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event, struct net_device *net_dev) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; struct rdma_route *rt; const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; const __be64 service_id = ib_event->param.req_rcvd.primary_path->service_id; int ret; id = rdma_create_id(listen_id->route.addr.dev_addr.net, listen_id->event_handler, listen_id->context, listen_id->ps, ib_event->param.req_rcvd.qp_type); if (IS_ERR(id)) return NULL; id_priv = container_of(id, struct rdma_id_private, id); if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, (struct sockaddr *)&id->route.addr.dst_addr, listen_id, ib_event, ss_family, service_id)) goto err; rt = &id->route; rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; rt->path_rec = kmalloc(sizeof *rt->path_rec * rt->num_paths, GFP_KERNEL); if (!rt->path_rec) goto err; rt->path_rec[0] = *ib_event->param.req_rcvd.primary_path; if (rt->num_paths == 2) rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; if (net_dev) { ret = rdma_copy_addr(&rt->addr.dev_addr, net_dev, NULL); if (ret) goto err; } else { if (!cma_protocol_roce(listen_id) && cma_any_addr(cma_src_addr(id_priv))) { rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); } else if (!cma_any_addr(cma_src_addr(id_priv))) { ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); if (ret) goto err; } } rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); id_priv->state = RDMA_CM_CONNECT; return id_priv; err: rdma_destroy_id(id); return NULL; } static struct rdma_id_private *cma_new_udp_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event, struct net_device *net_dev) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; struct vnet *net = listen_id->route.addr.dev_addr.net; int ret; id = rdma_create_id(net, listen_id->event_handler, listen_id->context, listen_id->ps, IB_QPT_UD); if (IS_ERR(id)) return NULL; id_priv = container_of(id, struct rdma_id_private, id); if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, (struct sockaddr *)&id->route.addr.dst_addr, listen_id, ib_event, ss_family, ib_event->param.sidr_req_rcvd.service_id)) goto err; if (net_dev) { ret = rdma_copy_addr(&id->route.addr.dev_addr, net_dev, NULL); if (ret) goto err; } else { if (!cma_any_addr(cma_src_addr(id_priv))) { ret = cma_translate_addr(cma_src_addr(id_priv), &id->route.addr.dev_addr); if (ret) goto err; } } id_priv->state = RDMA_CM_CONNECT; return id_priv; err: rdma_destroy_id(id); return NULL; } static void cma_set_req_event_data(struct rdma_cm_event *event, struct ib_cm_req_event_param *req_data, void *private_data, int offset) { event->param.conn.private_data = (char *)private_data + offset; event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; event->param.conn.responder_resources = req_data->responder_resources; event->param.conn.initiator_depth = req_data->initiator_depth; event->param.conn.flow_control = req_data->flow_control; event->param.conn.retry_count = req_data->retry_count; event->param.conn.rnr_retry_count = req_data->rnr_retry_count; event->param.conn.srq = req_data->srq; event->param.conn.qp_num = req_data->remote_qpn; } static int cma_check_req_qp_type(struct rdma_cm_id *id, struct ib_cm_event *ib_event) { return (((ib_event->event == IB_CM_REQ_RECEIVED) && (ib_event->param.req_rcvd.qp_type == id->qp_type)) || ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && (id->qp_type == IB_QPT_UD)) || (!id->qp_type)); } static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *listen_id, *conn_id = NULL; struct rdma_cm_event event; struct net_device *net_dev; int offset, ret; listen_id = cma_id_from_event(cm_id, ib_event, &net_dev); if (IS_ERR(listen_id)) return PTR_ERR(listen_id); if (!cma_check_req_qp_type(&listen_id->id, ib_event)) { ret = -EINVAL; goto net_dev_put; } mutex_lock(&listen_id->handler_mutex); if (listen_id->state != RDMA_CM_LISTEN) { ret = -ECONNABORTED; goto err1; } memset(&event, 0, sizeof event); offset = cma_user_data_offset(listen_id); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { conn_id = cma_new_udp_id(&listen_id->id, ib_event, net_dev); event.param.ud.private_data = (char *)ib_event->private_data + offset; event.param.ud.private_data_len = IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; } else { conn_id = cma_new_conn_id(&listen_id->id, ib_event, net_dev); cma_set_req_event_data(&event, &ib_event->param.req_rcvd, ib_event->private_data, offset); } if (!conn_id) { ret = -ENOMEM; goto err1; } mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); ret = cma_acquire_dev(conn_id, listen_id); if (ret) goto err2; conn_id->cm_id.ib = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_ib_handler; /* * Protect against the user destroying conn_id from another thread * until we're done accessing it. */ atomic_inc(&conn_id->refcount); ret = conn_id->id.event_handler(&conn_id->id, &event); if (ret) goto err3; /* * Acquire mutex to prevent user executing rdma_destroy_id() * while we're accessing the cm_id. */ mutex_lock(&lock); if (cma_comp(conn_id, RDMA_CM_CONNECT) && (conn_id->id.qp_type != IB_QPT_UD)) ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); mutex_unlock(&lock); mutex_unlock(&conn_id->handler_mutex); mutex_unlock(&listen_id->handler_mutex); cma_deref_id(conn_id); if (net_dev) dev_put(net_dev); return 0; err3: cma_deref_id(conn_id); /* Destroy the CM ID by returning a non-zero value. */ conn_id->cm_id.ib = NULL; err2: cma_exch(conn_id, RDMA_CM_DESTROYING); mutex_unlock(&conn_id->handler_mutex); err1: mutex_unlock(&listen_id->handler_mutex); if (conn_id) rdma_destroy_id(&conn_id->id); net_dev_put: if (net_dev) dev_put(net_dev); return ret; } __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) { if (addr->sa_family == AF_IB) return ((struct sockaddr_ib *) addr)->sib_sid; return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); } EXPORT_SYMBOL(rdma_get_service_id); static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) { struct rdma_id_private *id_priv = iw_id->context; struct rdma_cm_event event; int ret = 0; struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; mutex_lock(&id_priv->handler_mutex); if (id_priv->state != RDMA_CM_CONNECT) goto out; memset(&event, 0, sizeof event); switch (iw_event->event) { case IW_CM_EVENT_CLOSE: event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IW_CM_EVENT_CONNECT_REPLY: memcpy(cma_src_addr(id_priv), laddr, rdma_addr_size(laddr)); memcpy(cma_dst_addr(id_priv), raddr, rdma_addr_size(raddr)); switch (iw_event->status) { case 0: event.event = RDMA_CM_EVENT_ESTABLISHED; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; break; case -ECONNRESET: case -ECONNREFUSED: event.event = RDMA_CM_EVENT_REJECTED; break; case -ETIMEDOUT: event.event = RDMA_CM_EVENT_UNREACHABLE; break; default: event.event = RDMA_CM_EVENT_CONNECT_ERROR; break; } break; case IW_CM_EVENT_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; break; default: BUG_ON(1); } event.status = iw_event->status; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.iw = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static int iw_conn_req_handler(struct iw_cm_id *cm_id, struct iw_cm_event *iw_event) { struct rdma_cm_id *new_cm_id; struct rdma_id_private *listen_id, *conn_id; struct rdma_cm_event event; int ret = -ECONNABORTED; struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; listen_id = cm_id->context; mutex_lock(&listen_id->handler_mutex); if (listen_id->state != RDMA_CM_LISTEN) goto out; /* Create a new RDMA id for the new IW CM ID */ new_cm_id = rdma_create_id(listen_id->id.route.addr.dev_addr.net, listen_id->id.event_handler, listen_id->id.context, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(new_cm_id)) { ret = -ENOMEM; goto out; } conn_id = container_of(new_cm_id, struct rdma_id_private, id); mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); conn_id->state = RDMA_CM_CONNECT; ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } ret = cma_acquire_dev(conn_id, listen_id); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } conn_id->cm_id.iw = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_iw_handler; memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; /* * Protect against the user destroying conn_id from another thread * until we're done accessing it. */ atomic_inc(&conn_id->refcount); ret = conn_id->id.event_handler(&conn_id->id, &event); if (ret) { /* User wants to destroy the CM ID */ conn_id->cm_id.iw = NULL; cma_exch(conn_id, RDMA_CM_DESTROYING); mutex_unlock(&conn_id->handler_mutex); cma_deref_id(conn_id); rdma_destroy_id(&conn_id->id); goto out; } mutex_unlock(&conn_id->handler_mutex); cma_deref_id(conn_id); out: mutex_unlock(&listen_id->handler_mutex); return ret; } static int cma_ib_listen(struct rdma_id_private *id_priv) { struct sockaddr *addr; struct ib_cm_id *id; __be64 svc_id; addr = cma_src_addr(id_priv); svc_id = rdma_get_service_id(&id_priv->id, addr); id = ib_cm_insert_listen(id_priv->id.device, cma_req_handler, svc_id); if (IS_ERR(id)) return PTR_ERR(id); id_priv->cm_id.ib = id; return 0; } static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) { int ret; struct iw_cm_id *id; id = iw_create_cm_id(id_priv->id.device, iw_conn_req_handler, id_priv); if (IS_ERR(id)) return PTR_ERR(id); id->tos = id_priv->tos; id_priv->cm_id.iw = id; memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); ret = iw_cm_listen(id_priv->cm_id.iw, backlog); if (ret) { iw_destroy_cm_id(id_priv->cm_id.iw); id_priv->cm_id.iw = NULL; } return ret; } static int cma_listen_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) { struct rdma_id_private *id_priv = id->context; id->context = id_priv->id.context; id->event_handler = id_priv->id.event_handler; return id_priv->id.event_handler(id, event); } static void cma_listen_on_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { struct rdma_id_private *dev_id_priv; struct rdma_cm_id *id; struct vnet *net = id_priv->id.route.addr.dev_addr.net; int ret; if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) return; id = rdma_create_id(net, cma_listen_handler, id_priv, id_priv->id.ps, id_priv->id.qp_type); if (IS_ERR(id)) return; dev_id_priv = container_of(id, struct rdma_id_private, id); dev_id_priv->state = RDMA_CM_ADDR_BOUND; memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); _cma_attach_to_dev(dev_id_priv, cma_dev); list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); atomic_inc(&id_priv->refcount); dev_id_priv->internal_id = 1; dev_id_priv->afonly = id_priv->afonly; ret = rdma_listen(id, id_priv->backlog); if (ret) pr_warn("RDMA CMA: cma_listen_on_dev, error %d, listening on device %s\n", ret, cma_dev->device->name); } static void cma_listen_on_all(struct rdma_id_private *id_priv) { struct cma_device *cma_dev; mutex_lock(&lock); list_add_tail(&id_priv->list, &listen_any_list); list_for_each_entry(cma_dev, &dev_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); } void rdma_set_service_type(struct rdma_cm_id *id, int tos) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); id_priv->tos = (u8) tos; } EXPORT_SYMBOL(rdma_set_service_type); static void cma_query_handler(int status, struct ib_sa_path_rec *path_rec, void *context) { struct cma_work *work = context; struct rdma_route *route; route = &work->id->id.route; if (!status) { route->num_paths = 1; *route->path_rec = *path_rec; } else { work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; work->event.status = status; } queue_work(cma_wq, &work->work); } static int cma_query_ib_route(struct rdma_id_private *id_priv, int timeout_ms, struct cma_work *work) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct ib_sa_path_rec path_rec; ib_sa_comp_mask comp_mask; struct sockaddr_in6 *sin6; struct sockaddr_ib *sib; memset(&path_rec, 0, sizeof path_rec); rdma_addr_get_sgid(dev_addr, &path_rec.sgid); rdma_addr_get_dgid(dev_addr, &path_rec.dgid); path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); path_rec.numb_path = 1; path_rec.reversible = 1; path_rec.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; switch (cma_family(id_priv)) { case AF_INET: path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); comp_mask |= IB_SA_PATH_REC_QOS_CLASS; break; case AF_INET6: sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; break; case AF_IB: sib = (struct sockaddr_ib *) cma_src_addr(id_priv); path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; break; } id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, id_priv->id.port_num, &path_rec, comp_mask, timeout_ms, GFP_KERNEL, cma_query_handler, work, &id_priv->query); return (id_priv->query_id < 0) ? id_priv->query_id : 0; } static void cma_work_handler(struct work_struct *_work) { struct cma_work *work = container_of(_work, struct cma_work, work); struct rdma_id_private *id_priv = work->id; int destroy = 0; mutex_lock(&id_priv->handler_mutex); if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) goto out; if (id_priv->id.event_handler(&id_priv->id, &work->event)) { cma_exch(id_priv, RDMA_CM_DESTROYING); destroy = 1; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); if (destroy) rdma_destroy_id(&id_priv->id); kfree(work); } static int cma_resolve_ib_route(struct rdma_id_private *id_priv, int timeout_ms) { struct rdma_route *route = &id_priv->id.route; struct cma_work *work; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } ret = cma_query_ib_route(id_priv, timeout_ms, work); if (ret) goto err2; return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_set_ib_paths(struct rdma_cm_id *id, struct ib_sa_path_rec *path_rec, int num_paths) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_RESOLVED)) return -EINVAL; id->route.path_rec = kmemdup(path_rec, sizeof *path_rec * num_paths, GFP_KERNEL); if (!id->route.path_rec) { ret = -ENOMEM; goto err; } id->route.num_paths = num_paths; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_set_ib_paths); static int cma_resolve_iw_route(struct rdma_id_private *id_priv, int timeout_ms) { struct cma_work *work; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; queue_work(cma_wq, &work->work); return 0; } static int iboe_tos_to_sl(struct net_device *ndev, int tos) { /* get service level, SL, from IPv4 type of service, TOS */ int sl = (tos >> 5) & 0x7; /* final mappings are done by the vendor specific drivers */ return sl; } static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, unsigned long supported_gids, enum ib_gid_type default_gid) { if ((network_type == RDMA_NETWORK_IPV4 || network_type == RDMA_NETWORK_IPV6) && test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) return IB_GID_TYPE_ROCE_UDP_ENCAP; return default_gid; } static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) { struct rdma_route *route = &id_priv->id.route; struct rdma_addr *addr = &route->addr; struct cma_work *work; int ret; struct net_device *ndev = NULL; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } route->num_paths = 1; if (addr->dev_addr.bound_dev_if) { unsigned long supported_gids; ndev = dev_get_by_index(addr->dev_addr.net, addr->dev_addr.bound_dev_if); if (!ndev) { ret = -ENODEV; goto err2; } route->path_rec->net = ndev->if_vnet; route->path_rec->ifindex = ndev->if_index; supported_gids = roce_gid_type_mask_support(id_priv->id.device, id_priv->id.port_num); route->path_rec->gid_type = cma_route_gid_type(addr->dev_addr.network, supported_gids, id_priv->gid_type); } if (!ndev) { ret = -ENODEV; goto err2; } memcpy(route->path_rec->dmac, addr->dev_addr.dst_dev_addr, ETH_ALEN); rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, &route->path_rec->sgid); rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, &route->path_rec->dgid); /* Use the hint from IP Stack to select GID Type */ if (route->path_rec->gid_type < ib_network_to_gid_type(addr->dev_addr.network)) route->path_rec->gid_type = ib_network_to_gid_type(addr->dev_addr.network); if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) /* TODO: get the hoplimit from the inet/inet6 device */ route->path_rec->hop_limit = addr->dev_addr.hoplimit; else route->path_rec->hop_limit = 1; route->path_rec->reversible = 1; route->path_rec->pkey = cpu_to_be16(0xffff); route->path_rec->mtu_selector = IB_SA_EQ; route->path_rec->sl = iboe_tos_to_sl(ndev, id_priv->tos); route->path_rec->traffic_class = id_priv->tos; route->path_rec->mtu = iboe_get_mtu(ndev->if_mtu); route->path_rec->rate_selector = IB_SA_EQ; route->path_rec->rate = iboe_get_rate(ndev); dev_put(ndev); route->path_rec->packet_life_time_selector = IB_SA_EQ; route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; if (!route->path_rec->mtu) { ret = -EINVAL; goto err2; } work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; work->event.status = 0; queue_work(cma_wq, &work->work); return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); if (rdma_cap_ib_sa(id->device, id->port_num)) ret = cma_resolve_ib_route(id_priv, timeout_ms); else if (rdma_protocol_roce(id->device, id->port_num)) ret = cma_resolve_iboe_route(id_priv); else if (rdma_protocol_iwarp(id->device, id->port_num)) ret = cma_resolve_iw_route(id_priv, timeout_ms); else ret = -ENOSYS; if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_route); static void cma_set_loopback(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); break; case AF_INET6: ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 0, 0, 0, htonl(1)); break; default: ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 0, 0, 0, htonl(1)); break; } } static int cma_bind_loopback(struct rdma_id_private *id_priv) { struct cma_device *cma_dev, *cur_dev; struct ib_port_attr port_attr; union ib_gid gid; u16 pkey; int ret; u8 p; cma_dev = NULL; mutex_lock(&lock); list_for_each_entry(cur_dev, &dev_list, list) { if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cur_dev->device, 1)) continue; if (!cma_dev) cma_dev = cur_dev; for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) { if (!ib_query_port(cur_dev->device, p, &port_attr) && port_attr.state == IB_PORT_ACTIVE) { cma_dev = cur_dev; goto port_found; } } } if (!cma_dev) { ret = -ENODEV; goto out; } p = 1; port_found: ret = ib_get_cached_gid(cma_dev->device, p, 0, &gid, NULL); if (ret) goto out; ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); if (ret) goto out; id_priv->id.route.addr.dev_addr.dev_type = (rdma_protocol_ib(cma_dev->device, p)) ? ARPHRD_INFINIBAND : ARPHRD_ETHER; rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); id_priv->id.port_num = p; cma_attach_to_dev(id_priv, cma_dev); cma_set_loopback(cma_src_addr(id_priv)); out: mutex_unlock(&lock); return ret; } static void addr_handler(int status, struct sockaddr *src_addr, struct rdma_dev_addr *dev_addr, void *context) { struct rdma_id_private *id_priv = context; struct rdma_cm_event event; memset(&event, 0, sizeof event); mutex_lock(&id_priv->handler_mutex); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_RESOLVED)) goto out; memcpy(cma_src_addr(id_priv), src_addr, rdma_addr_size(src_addr)); if (!status && !id_priv->cma_dev) status = cma_acquire_dev(id_priv, NULL); if (status) { if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ADDR_BOUND)) goto out; event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = status; } else event.event = RDMA_CM_EVENT_ADDR_RESOLVED; if (id_priv->id.event_handler(&id_priv->id, &event)) { cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); rdma_destroy_id(&id_priv->id); return; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); } static int cma_resolve_loopback(struct rdma_id_private *id_priv) { struct cma_work *work; union ib_gid gid; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; if (!id_priv->cma_dev) { ret = cma_bind_loopback(id_priv); if (ret) goto err; } rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ADDR_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; queue_work(cma_wq, &work->work); return 0; err: kfree(work); return ret; } static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) { struct cma_work *work; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; if (!id_priv->cma_dev) { ret = cma_resolve_ib_dev(id_priv); if (ret) goto err; } rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ADDR_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; queue_work(cma_wq, &work->work); return 0; err: kfree(work); return ret; } static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr) { if (!src_addr || !src_addr->sa_family) { src_addr = (struct sockaddr *) &id->route.addr.src_addr; src_addr->sa_family = dst_addr->sa_family; if (dst_addr->sa_family == AF_INET6) { struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; if (IN6_IS_SCOPE_LINKLOCAL(&dst_addr6->sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&dst_addr6->sin6_addr)) id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; } else if (dst_addr->sa_family == AF_IB) { ((struct sockaddr_ib *) src_addr)->sib_pkey = ((struct sockaddr_ib *) dst_addr)->sib_pkey; } } return rdma_bind_addr(id, src_addr); } int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == RDMA_CM_IDLE) { ret = cma_bind_addr(id, src_addr, dst_addr); if (ret) return ret; } if (cma_family(id_priv) != dst_addr->sa_family) return -EINVAL; if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); if (cma_any_addr(dst_addr)) { ret = cma_resolve_loopback(id_priv); } else { if (dst_addr->sa_family == AF_IB) { ret = cma_resolve_ib_addr(id_priv); } else { ret = cma_check_linklocal(&id->route.addr.dev_addr, dst_addr); if (ret) goto err; ret = rdma_resolve_ip(&addr_client, cma_src_addr(id_priv), dst_addr, &id->route.addr.dev_addr, timeout_ms, addr_handler, id_priv); } } if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_addr); int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) { struct rdma_id_private *id_priv; unsigned long flags; int ret; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irqsave(&id_priv->lock, flags); if (reuse || id_priv->state == RDMA_CM_IDLE) { id_priv->reuseaddr = reuse; ret = 0; } else { ret = -EINVAL; } spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } EXPORT_SYMBOL(rdma_set_reuseaddr); int rdma_set_afonly(struct rdma_cm_id *id, int afonly) { struct rdma_id_private *id_priv; unsigned long flags; int ret; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irqsave(&id_priv->lock, flags); if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { id_priv->options |= (1 << CMA_OPTION_AFONLY); id_priv->afonly = afonly; ret = 0; } else { ret = -EINVAL; } spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } EXPORT_SYMBOL(rdma_set_afonly); static void cma_bind_port(struct rdma_bind_list *bind_list, struct rdma_id_private *id_priv) { struct sockaddr *addr; struct sockaddr_ib *sib; u64 sid, mask; __be16 port; addr = cma_src_addr(id_priv); port = htons(bind_list->port); switch (addr->sa_family) { case AF_INET: ((struct sockaddr_in *) addr)->sin_port = port; break; case AF_INET6: ((struct sockaddr_in6 *) addr)->sin6_port = port; break; case AF_IB: sib = (struct sockaddr_ib *) addr; sid = be64_to_cpu(sib->sib_sid); mask = be64_to_cpu(sib->sib_sid_mask); sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); sib->sib_sid_mask = cpu_to_be64(~0ULL); break; } id_priv->bind_list = bind_list; hlist_add_head(&id_priv->node, &bind_list->owners); } static int cma_alloc_port(enum rdma_port_space ps, struct rdma_id_private *id_priv, unsigned short snum) { struct rdma_bind_list *bind_list; int ret; bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); if (!bind_list) return -ENOMEM; ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, snum); if (ret < 0) goto err; bind_list->ps = ps; bind_list->port = (unsigned short)ret; cma_bind_port(bind_list, id_priv); return 0; err: kfree(bind_list); return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; } static int cma_alloc_any_port(enum rdma_port_space ps, struct rdma_id_private *id_priv) { static unsigned int last_used_port; int low, high, remaining; unsigned int rover; struct vnet *net = id_priv->id.route.addr.dev_addr.net; u32 rand; inet_get_local_port_range(net, &low, &high); remaining = (high - low) + 1; get_random_bytes(&rand, sizeof(rand)); rover = rand % remaining + low; retry: if (last_used_port != rover && !cma_ps_find(net, ps, (unsigned short)rover)) { int ret = cma_alloc_port(ps, id_priv, rover); /* * Remember previously used port number in order to avoid * re-using same port immediately after it is closed. */ if (!ret) last_used_port = rover; if (ret != -EADDRNOTAVAIL) return ret; } if (--remaining) { rover++; if ((rover < low) || (rover > high)) rover = low; goto retry; } return -EADDRNOTAVAIL; } /* * Check that the requested port is available. This is called when trying to * bind to a specific port, or when trying to listen on a bound port. In * the latter case, the provided id_priv may already be on the bind_list, but * we still need to check that it's okay to start listening. */ static int cma_check_port(struct rdma_bind_list *bind_list, struct rdma_id_private *id_priv, uint8_t reuseaddr) { struct rdma_id_private *cur_id; struct sockaddr *addr, *cur_addr; addr = cma_src_addr(id_priv); hlist_for_each_entry(cur_id, &bind_list->owners, node) { if (id_priv == cur_id) continue; if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr && cur_id->reuseaddr) continue; cur_addr = cma_src_addr(cur_id); if (id_priv->afonly && cur_id->afonly && (addr->sa_family != cur_addr->sa_family)) continue; if (cma_any_addr(addr) || cma_any_addr(cur_addr)) return -EADDRNOTAVAIL; if (!cma_addr_cmp(addr, cur_addr)) return -EADDRINUSE; } return 0; } static int cma_use_port(enum rdma_port_space ps, struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list; unsigned short snum; int ret; snum = ntohs(cma_port(cma_src_addr(id_priv))); if (snum < IPPORT_RESERVED && priv_check(curthread, PRIV_NETINET_BINDANY) != 0) return -EACCES; bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); if (!bind_list) { ret = cma_alloc_port(ps, id_priv, snum); } else { ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); if (!ret) cma_bind_port(bind_list, id_priv); } return ret; } static int cma_bind_listen(struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list = id_priv->bind_list; int ret = 0; mutex_lock(&lock); if (bind_list->owners.first->next) ret = cma_check_port(bind_list, id_priv, 0); mutex_unlock(&lock); return ret; } static enum rdma_port_space cma_select_inet_ps( struct rdma_id_private *id_priv) { switch (id_priv->id.ps) { case RDMA_PS_TCP: case RDMA_PS_UDP: case RDMA_PS_IPOIB: case RDMA_PS_IB: return id_priv->id.ps; default: return 0; } } static enum rdma_port_space cma_select_ib_ps(struct rdma_id_private *id_priv) { enum rdma_port_space ps = 0; struct sockaddr_ib *sib; u64 sid_ps, mask, sid; sib = (struct sockaddr_ib *) cma_src_addr(id_priv); mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; sid = be64_to_cpu(sib->sib_sid) & mask; if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { sid_ps = RDMA_IB_IP_PS_IB; ps = RDMA_PS_IB; } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && (sid == (RDMA_IB_IP_PS_TCP & mask))) { sid_ps = RDMA_IB_IP_PS_TCP; ps = RDMA_PS_TCP; } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && (sid == (RDMA_IB_IP_PS_UDP & mask))) { sid_ps = RDMA_IB_IP_PS_UDP; ps = RDMA_PS_UDP; } if (ps) { sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | be64_to_cpu(sib->sib_sid_mask)); } return ps; } static int cma_get_port(struct rdma_id_private *id_priv) { enum rdma_port_space ps; int ret; if (cma_family(id_priv) != AF_IB) ps = cma_select_inet_ps(id_priv); else ps = cma_select_ib_ps(id_priv); if (!ps) return -EPROTONOSUPPORT; mutex_lock(&lock); if (cma_any_port(cma_src_addr(id_priv))) ret = cma_alloc_any_port(ps, id_priv); else ret = cma_use_port(ps, id_priv); mutex_unlock(&lock); return ret; } static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, struct sockaddr *addr) { #ifdef INET6 struct sockaddr_in6 sin6; if (addr->sa_family != AF_INET6) return 0; sin6 = *(struct sockaddr_in6 *)addr; if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&sin6.sin6_addr)) { bool failure; CURVNET_SET_QUIET(dev_addr->net); failure = sa6_recoverscope(&sin6) || sin6.sin6_scope_id == 0; CURVNET_RESTORE(); /* check if IPv6 scope ID is not set */ if (failure) return -EINVAL; dev_addr->bound_dev_if = sin6.sin6_scope_id; } #endif return 0; } int rdma_listen(struct rdma_cm_id *id, int backlog) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == RDMA_CM_IDLE) { id->route.addr.src_addr.ss_family = AF_INET; ret = rdma_bind_addr(id, cma_src_addr(id_priv)); if (ret) return ret; } if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) return -EINVAL; if (id_priv->reuseaddr) { ret = cma_bind_listen(id_priv); if (ret) goto err; } id_priv->backlog = backlog; if (id->device) { if (rdma_cap_ib_cm(id->device, 1)) { ret = cma_ib_listen(id_priv); if (ret) goto err; } else if (rdma_cap_iw_cm(id->device, 1)) { ret = cma_iw_listen(id_priv, backlog); if (ret) goto err; } else { ret = -ENOSYS; goto err; } } else cma_listen_on_all(id_priv); return 0; err: id_priv->backlog = 0; cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); return ret; } EXPORT_SYMBOL(rdma_listen); int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; int ret; if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && addr->sa_family != AF_IB) return -EAFNOSUPPORT; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) return -EINVAL; ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); if (ret) goto err1; memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); if (!cma_any_addr(addr)) { ret = cma_translate_addr(addr, &id->route.addr.dev_addr); if (ret) goto err1; ret = cma_acquire_dev(id_priv, NULL); if (ret) goto err1; } if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { if (addr->sa_family == AF_INET) id_priv->afonly = 1; #ifdef INET6 else if (addr->sa_family == AF_INET6) { CURVNET_SET_QUIET(id_priv->id.route.addr.dev_addr.net); id_priv->afonly = V_ip6_v6only; CURVNET_RESTORE(); } #endif } ret = cma_get_port(id_priv); if (ret) goto err2; return 0; err2: if (id_priv->cma_dev) cma_release_dev(id_priv); err1: cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); return ret; } EXPORT_SYMBOL(rdma_bind_addr); static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) { struct cma_hdr *cma_hdr; cma_hdr = hdr; cma_hdr->cma_version = CMA_VERSION; if (cma_family(id_priv) == AF_INET) { struct sockaddr_in *src4, *dst4; src4 = (struct sockaddr_in *) cma_src_addr(id_priv); dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); cma_set_ip_ver(cma_hdr, 4); cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; cma_hdr->port = src4->sin_port; } else if (cma_family(id_priv) == AF_INET6) { struct sockaddr_in6 *src6, *dst6; src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); cma_set_ip_ver(cma_hdr, 6); cma_hdr->src_addr.ip6 = src6->sin6_addr; cma_hdr->dst_addr.ip6 = dst6->sin6_addr; cma_hdr->port = src6->sin6_port; cma_ip6_clear_scope_id(&cma_hdr->src_addr.ip6); cma_ip6_clear_scope_id(&cma_hdr->dst_addr.ip6); } return 0; } static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd; int ret = 0; mutex_lock(&id_priv->handler_mutex); if (id_priv->state != RDMA_CM_CONNECT) goto out; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_SIDR_REQ_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_SIDR_REP_RECEIVED: event.param.ud.private_data = ib_event->private_data; event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; if (rep->status != IB_SIDR_SUCCESS) { event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = ib_event->param.sidr_rep_rcvd.status; break; } ret = cma_set_qkey(id_priv, rep->qkey); if (ret) { event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = ret; break; } ret = ib_init_ah_from_path(id_priv->id.device, id_priv->id.port_num, id_priv->id.route.path_rec, &event.param.ud.ah_attr); if (ret) { event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = ret; break; } event.param.ud.qp_num = rep->qpn; event.param.ud.qkey = rep->qkey; event.event = RDMA_CM_EVENT_ESTABLISHED; event.status = 0; break; default: pr_err("RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_sidr_req_param req; struct ib_cm_id *id; void *private_data; int offset, ret; memset(&req, 0, sizeof req); offset = cma_user_data_offset(id_priv); req.private_data_len = offset + conn_param->private_data_len; if (req.private_data_len < conn_param->private_data_len) return -EINVAL; if (req.private_data_len) { private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!private_data) return -ENOMEM; } else { private_data = NULL; } if (conn_param->private_data && conn_param->private_data_len) memcpy((char *)private_data + offset, conn_param->private_data, conn_param->private_data_len); if (private_data) { ret = cma_format_hdr(private_data, id_priv); if (ret) goto out; req.private_data = private_data; } id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, id_priv); if (IS_ERR(id)) { ret = PTR_ERR(id); goto out; } id_priv->cm_id.ib = id; req.path = id_priv->id.route.path_rec; req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); req.max_cm_retries = CMA_MAX_CM_RETRIES; ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); if (ret) { ib_destroy_cm_id(id_priv->cm_id.ib); id_priv->cm_id.ib = NULL; } out: kfree(private_data); return ret; } static int cma_connect_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_req_param req; struct rdma_route *route; void *private_data; struct ib_cm_id *id; int offset, ret; memset(&req, 0, sizeof req); offset = cma_user_data_offset(id_priv); req.private_data_len = offset + conn_param->private_data_len; if (req.private_data_len < conn_param->private_data_len) return -EINVAL; if (req.private_data_len) { private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!private_data) return -ENOMEM; } else { private_data = NULL; } if (conn_param->private_data && conn_param->private_data_len) memcpy((char *)private_data + offset, conn_param->private_data, conn_param->private_data_len); id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); if (IS_ERR(id)) { ret = PTR_ERR(id); goto out; } id_priv->cm_id.ib = id; route = &id_priv->id.route; if (private_data) { ret = cma_format_hdr(private_data, id_priv); if (ret) goto out; req.private_data = private_data; } req.primary_path = &route->path_rec[0]; if (route->num_paths == 2) req.alternate_path = &route->path_rec[1]; req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); req.qp_num = id_priv->qp_num; req.qp_type = id_priv->id.qp_type; req.starting_psn = id_priv->seq_num; req.responder_resources = conn_param->responder_resources; req.initiator_depth = conn_param->initiator_depth; req.flow_control = conn_param->flow_control; req.retry_count = min_t(u8, 7, conn_param->retry_count); req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; req.max_cm_retries = CMA_MAX_CM_RETRIES; req.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_req(id_priv->cm_id.ib, &req); out: if (ret && !IS_ERR(id)) { ib_destroy_cm_id(id); id_priv->cm_id.ib = NULL; } kfree(private_data); return ret; } static int cma_connect_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_id *cm_id; int ret; struct iw_cm_conn_param iw_param; cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); if (IS_ERR(cm_id)) return PTR_ERR(cm_id); cm_id->tos = id_priv->tos; id_priv->cm_id.iw = cm_id; memcpy(&cm_id->local_addr, cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), rdma_addr_size(cma_dst_addr(id_priv))); ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; if (conn_param) { iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; } else { memset(&iw_param, 0, sizeof iw_param); iw_param.qpn = id_priv->qp_num; } ret = iw_cm_connect(cm_id, &iw_param); out: if (ret) { iw_destroy_cm_id(cm_id); id_priv->cm_id.iw = NULL; } return ret; } int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) return -EINVAL; if (!id->qp) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } if (rdma_cap_ib_cm(id->device, id->port_num)) { if (id->qp_type == IB_QPT_UD) ret = cma_resolve_ib_udp(id_priv, conn_param); else ret = cma_connect_ib(id_priv, conn_param); } else if (rdma_cap_iw_cm(id->device, id->port_num)) ret = cma_connect_iw(id_priv, conn_param); else ret = -ENOSYS; if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_connect); static int cma_accept_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_rep_param rep; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; ret = cma_modify_qp_rts(id_priv, conn_param); if (ret) goto out; memset(&rep, 0, sizeof rep); rep.qp_num = id_priv->qp_num; rep.starting_psn = id_priv->seq_num; rep.private_data = conn_param->private_data; rep.private_data_len = conn_param->private_data_len; rep.responder_resources = conn_param->responder_resources; rep.initiator_depth = conn_param->initiator_depth; rep.failover_accepted = 0; rep.flow_control = conn_param->flow_control; rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); rep.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); out: return ret; } static int cma_accept_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_conn_param iw_param; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) return ret; iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; if (id_priv->id.qp) { iw_param.qpn = id_priv->qp_num; } else iw_param.qpn = conn_param->qp_num; return iw_cm_accept(id_priv->cm_id.iw, &iw_param); } static int cma_send_sidr_rep(struct rdma_id_private *id_priv, enum ib_cm_sidr_status status, u32 qkey, const void *private_data, int private_data_len) { struct ib_cm_sidr_rep_param rep; int ret; memset(&rep, 0, sizeof rep); rep.status = status; if (status == IB_SIDR_SUCCESS) { ret = cma_set_qkey(id_priv, qkey); if (ret) return ret; rep.qp_num = id_priv->qp_num; rep.qkey = id_priv->qkey; } rep.private_data = private_data; rep.private_data_len = private_data_len; return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); } int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); id_priv->owner = task_pid_nr(current); if (!cma_comp(id_priv, RDMA_CM_CONNECT)) return -EINVAL; if (!id->qp && conn_param) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } if (rdma_cap_ib_cm(id->device, id->port_num)) { if (id->qp_type == IB_QPT_UD) { if (conn_param) ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, conn_param->qkey, conn_param->private_data, conn_param->private_data_len); else ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 0, NULL, 0); } else { if (conn_param) ret = cma_accept_ib(id_priv, conn_param); else ret = cma_rep_recv(id_priv); } } else if (rdma_cap_iw_cm(id->device, id->port_num)) ret = cma_accept_iw(id_priv, conn_param); else ret = -ENOSYS; if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); rdma_reject(id, NULL, 0); return ret; } EXPORT_SYMBOL(rdma_accept); int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; switch (id->device->node_type) { case RDMA_NODE_IB_CA: ret = ib_cm_notify(id_priv->cm_id.ib, event); break; default: ret = 0; break; } return ret; } EXPORT_SYMBOL(rdma_notify); int rdma_reject(struct rdma_cm_id *id, const void *private_data, u8 private_data_len) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; if (rdma_cap_ib_cm(id->device, id->port_num)) { if (id->qp_type == IB_QPT_UD) ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, private_data, private_data_len); else ret = ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, private_data, private_data_len); } else if (rdma_cap_iw_cm(id->device, id->port_num)) { ret = iw_cm_reject(id_priv->cm_id.iw, private_data, private_data_len); } else ret = -ENOSYS; return ret; } EXPORT_SYMBOL(rdma_reject); int rdma_disconnect(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; if (rdma_cap_ib_cm(id->device, id->port_num)) { ret = cma_modify_qp_err(id_priv); if (ret) goto out; /* Initiate or respond to a disconnect. */ if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0); } else if (rdma_cap_iw_cm(id->device, id->port_num)) { ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); } else ret = -EINVAL; out: return ret; } EXPORT_SYMBOL(rdma_disconnect); static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) { struct rdma_id_private *id_priv; struct cma_multicast *mc = multicast->context; struct rdma_cm_event event; int ret = 0; id_priv = mc->id_priv; mutex_lock(&id_priv->handler_mutex); if (id_priv->state != RDMA_CM_ADDR_BOUND && id_priv->state != RDMA_CM_ADDR_RESOLVED) goto out; if (!status) status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); mutex_lock(&id_priv->qp_mutex); if (!status && id_priv->id.qp) status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid, be16_to_cpu(multicast->rec.mlid)); mutex_unlock(&id_priv->qp_mutex); memset(&event, 0, sizeof event); event.status = status; event.param.ud.private_data = mc->context; if (!status) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct net_device *ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); enum ib_gid_type gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - rdma_start_port(id_priv->cma_dev->device)]; event.event = RDMA_CM_EVENT_MULTICAST_JOIN; ret = ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, &multicast->rec, ndev, gid_type, &event.param.ud.ah_attr); if (ret) event.event = RDMA_CM_EVENT_MULTICAST_ERROR; event.param.ud.qp_num = 0xFFFFFF; event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey); if (ndev) dev_put(ndev); } else event.event = RDMA_CM_EVENT_MULTICAST_ERROR; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return 0; } out: mutex_unlock(&id_priv->handler_mutex); return 0; } static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, union ib_gid *mgid) { unsigned char mc_map[MAX_ADDR_LEN]; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct sockaddr_in *sin = (struct sockaddr_in *) addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if ((addr->sa_family == AF_INET6) && ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 0xFF10A01B)) { /* IPv6 address is an SA assigned MGID. */ memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); } else if (addr->sa_family == AF_IB) { memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); } else if (addr->sa_family == AF_INET6) { ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } else { ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } } static void cma_query_sa_classport_info_cb(int status, struct ib_class_port_info *rec, void *context) { struct class_port_info_context *cb_ctx = context; WARN_ON(!context); if (status || !rec) { pr_debug("RDMA CM: %s port %u failed query ClassPortInfo status: %d\n", cb_ctx->device->name, cb_ctx->port_num, status); goto out; } memcpy(cb_ctx->class_port_info, rec, sizeof(struct ib_class_port_info)); out: complete(&cb_ctx->done); } static int cma_query_sa_classport_info(struct ib_device *device, u8 port_num, struct ib_class_port_info *class_port_info) { struct class_port_info_context *cb_ctx; int ret; cb_ctx = kmalloc(sizeof(*cb_ctx), GFP_KERNEL); if (!cb_ctx) return -ENOMEM; cb_ctx->device = device; cb_ctx->class_port_info = class_port_info; cb_ctx->port_num = port_num; init_completion(&cb_ctx->done); ret = ib_sa_classport_info_rec_query(&sa_client, device, port_num, CMA_QUERY_CLASSPORT_INFO_TIMEOUT, GFP_KERNEL, cma_query_sa_classport_info_cb, cb_ctx, &cb_ctx->sa_query); if (ret < 0) { pr_err("RDMA CM: %s port %u failed to send ClassPortInfo query, ret: %d\n", device->name, port_num, ret); goto out; } wait_for_completion(&cb_ctx->done); out: kfree(cb_ctx); return ret; } static int cma_join_ib_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct ib_sa_mcmember_rec rec; struct ib_class_port_info class_port_info; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; ib_sa_comp_mask comp_mask; int ret; ib_addr_get_mgid(dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (ret) return ret; ret = cma_set_qkey(id_priv, 0); if (ret) return ret; cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); rec.qkey = cpu_to_be32(id_priv->qkey); rdma_addr_get_sgid(dev_addr, &rec.port_gid); rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); rec.join_state = mc->join_state; if (rec.join_state == BIT(SENDONLY_FULLMEMBER_JOIN)) { ret = cma_query_sa_classport_info(id_priv->id.device, id_priv->id.port_num, &class_port_info); if (ret) return ret; if (!(ib_get_cpi_capmask2(&class_port_info) & IB_SA_CAP_MASK2_SENDONLY_FULL_MEM_SUPPORT)) { pr_warn("RDMA CM: %s port %u Unable to multicast join\n" "RDMA CM: SM doesn't support Send Only Full Member option\n", id_priv->id.device->name, id_priv->id.port_num); return -EOPNOTSUPP; } } comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | IB_SA_MCMEMBER_REC_FLOW_LABEL | IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; if (id_priv->id.ps == RDMA_PS_IPOIB) comp_mask |= IB_SA_MCMEMBER_REC_RATE | IB_SA_MCMEMBER_REC_RATE_SELECTOR | IB_SA_MCMEMBER_REC_MTU_SELECTOR | IB_SA_MCMEMBER_REC_MTU | IB_SA_MCMEMBER_REC_HOP_LIMIT; mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device, id_priv->id.port_num, &rec, comp_mask, GFP_KERNEL, cma_ib_mc_handler, mc); return PTR_ERR_OR_ZERO(mc->multicast.ib); } static void iboe_mcast_work_handler(struct work_struct *work) { struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work); struct cma_multicast *mc = mw->mc; struct ib_sa_multicast *m = mc->multicast.ib; mc->multicast.ib->context = mc; cma_ib_mc_handler(0, m); kref_put(&mc->mcref, release_mc); kfree(mw); } static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, enum ib_gid_type gid_type) { struct sockaddr_in *sin = (struct sockaddr_in *)addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if (addr->sa_family == AF_INET6) { memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); } else { mgid->raw[0] = (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; mgid->raw[1] = (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; mgid->raw[2] = 0; mgid->raw[3] = 0; mgid->raw[4] = 0; mgid->raw[5] = 0; mgid->raw[6] = 0; mgid->raw[7] = 0; mgid->raw[8] = 0; mgid->raw[9] = 0; mgid->raw[10] = 0xff; mgid->raw[11] = 0xff; *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; } } static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct iboe_mcast_work *work; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int err = 0; struct sockaddr *addr = (struct sockaddr *)&mc->addr; struct net_device *ndev = NULL; enum ib_gid_type gid_type; bool send_only; send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); if (cma_zero_addr((struct sockaddr *)&mc->addr)) return -EINVAL; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL); if (!mc->multicast.ib) { err = -ENOMEM; goto out1; } gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - rdma_start_port(id_priv->cma_dev->device)]; cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid, gid_type); mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff); if (id_priv->id.ps == RDMA_PS_UDP) mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); if (dev_addr->bound_dev_if) ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (!ndev) { err = -ENODEV; goto out2; } mc->multicast.ib->rec.rate = iboe_get_rate(ndev); mc->multicast.ib->rec.hop_limit = 1; mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->if_mtu); if (addr->sa_family == AF_INET || addr->sa_family == AF_INET6) { if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { mc->multicast.ib->rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; if (!send_only) { err = cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, true); if (!err) mc->igmp_joined = true; } } } else { if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) err = -ENOTSUPP; } dev_put(ndev); if (err || !mc->multicast.ib->rec.mtu) { if (!err) err = -EINVAL; goto out2; } rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, &mc->multicast.ib->rec.port_gid); work->id = id_priv; work->mc = mc; INIT_WORK(&work->work, iboe_mcast_work_handler); kref_get(&mc->mcref); queue_work(cma_wq, &work->work); return 0; out2: kfree(mc->multicast.ib); out1: kfree(work); return err; } int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, u8 join_state, void *context) { struct rdma_id_private *id_priv; struct cma_multicast *mc; int ret; if (!id->device) return -EINVAL; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) && !cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED)) return -EINVAL; mc = kmalloc(sizeof *mc, GFP_KERNEL); if (!mc) return -ENOMEM; memcpy(&mc->addr, addr, rdma_addr_size(addr)); mc->context = context; mc->id_priv = id_priv; mc->igmp_joined = false; mc->join_state = join_state; spin_lock(&id_priv->lock); list_add(&mc->list, &id_priv->mc_list); spin_unlock(&id_priv->lock); if (rdma_protocol_roce(id->device, id->port_num)) { kref_init(&mc->mcref); ret = cma_iboe_join_multicast(id_priv, mc); } else if (rdma_cap_ib_mcast(id->device, id->port_num)) ret = cma_join_ib_multicast(id_priv, mc); else ret = -ENOSYS; if (ret) { spin_lock_irq(&id_priv->lock); list_del(&mc->list); spin_unlock_irq(&id_priv->lock); kfree(mc); } return ret; } EXPORT_SYMBOL(rdma_join_multicast); void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; struct cma_multicast *mc; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irq(&id_priv->lock); list_for_each_entry(mc, &id_priv->mc_list, list) { if (!memcmp(&mc->addr, addr, rdma_addr_size(addr))) { list_del(&mc->list); spin_unlock_irq(&id_priv->lock); if (id->qp) ib_detach_mcast(id->qp, &mc->multicast.ib->rec.mgid, be16_to_cpu(mc->multicast.ib->rec.mlid)); BUG_ON(id_priv->cma_dev->device != id->device); if (rdma_cap_ib_mcast(id->device, id->port_num)) { ib_sa_free_multicast(mc->multicast.ib); kfree(mc); } else if (rdma_protocol_roce(id->device, id->port_num)) { if (mc->igmp_joined) { struct rdma_dev_addr *dev_addr = &id->route.addr.dev_addr; struct net_device *ndev = NULL; if (dev_addr->bound_dev_if) ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (ndev) { cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, false); dev_put(ndev); } mc->igmp_joined = false; } kref_put(&mc->mcref, release_mc); } return; } } spin_unlock_irq(&id_priv->lock); } EXPORT_SYMBOL(rdma_leave_multicast); static int sysctl_cma_default_roce_mode(SYSCTL_HANDLER_ARGS) { struct cma_device *cma_dev = arg1; const int port = arg2; char buf[64]; int error; strlcpy(buf, ib_cache_gid_type_str( cma_get_default_gid_type(cma_dev, port)), sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) goto done; error = ib_cache_gid_parse_type_str(buf); if (error < 0) { error = EINVAL; goto done; } cma_set_default_gid_type(cma_dev, port, error); error = 0; done: return (error); } static void cma_add_one(struct ib_device *device) { struct cma_device *cma_dev; struct rdma_id_private *id_priv; unsigned int i; cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL); if (!cma_dev) return; sysctl_ctx_init(&cma_dev->sysctl_ctx); cma_dev->device = device; cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, sizeof(*cma_dev->default_gid_type), GFP_KERNEL); if (!cma_dev->default_gid_type) { kfree(cma_dev); return; } for (i = rdma_start_port(device); i <= rdma_end_port(device); i++) { unsigned long supported_gids; unsigned int default_gid_type; supported_gids = roce_gid_type_mask_support(device, i); if (WARN_ON(!supported_gids)) { /* set something valid */ default_gid_type = 0; } else if (test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) { /* prefer RoCEv2, if supported */ default_gid_type = IB_GID_TYPE_ROCE_UDP_ENCAP; } else { default_gid_type = find_first_bit(&supported_gids, BITS_PER_LONG); } cma_dev->default_gid_type[i - rdma_start_port(device)] = default_gid_type; } init_completion(&cma_dev->comp); atomic_set(&cma_dev->refcount, 1); INIT_LIST_HEAD(&cma_dev->id_list); ib_set_client_data(device, &cma_client, cma_dev); mutex_lock(&lock); list_add_tail(&cma_dev->list, &dev_list); list_for_each_entry(id_priv, &listen_any_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); for (i = rdma_start_port(device); i <= rdma_end_port(device); i++) { char buf[64]; snprintf(buf, sizeof(buf), "default_roce_mode_port%d", i); (void) SYSCTL_ADD_PROC(&cma_dev->sysctl_ctx, SYSCTL_CHILDREN(device->ports_parent->parent->oidp), OID_AUTO, buf, CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, cma_dev, i, &sysctl_cma_default_roce_mode, "A", "Default RoCE mode. Valid values: IB/RoCE v1 and RoCE v2"); } } static int cma_remove_id_dev(struct rdma_id_private *id_priv) { struct rdma_cm_event event; enum rdma_cm_state state; int ret = 0; /* Record that we want to remove the device */ state = cma_exch(id_priv, RDMA_CM_DEVICE_REMOVAL); if (state == RDMA_CM_DESTROYING) return 0; cma_cancel_operation(id_priv, state); mutex_lock(&id_priv->handler_mutex); /* Check for destruction from another callback. */ if (!cma_comp(id_priv, RDMA_CM_DEVICE_REMOVAL)) goto out; memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_DEVICE_REMOVAL; ret = id_priv->id.event_handler(&id_priv->id, &event); out: mutex_unlock(&id_priv->handler_mutex); return ret; } static void cma_process_remove(struct cma_device *cma_dev) { struct rdma_id_private *id_priv; int ret; mutex_lock(&lock); while (!list_empty(&cma_dev->id_list)) { id_priv = list_entry(cma_dev->id_list.next, struct rdma_id_private, list); list_del(&id_priv->listen_list); list_del_init(&id_priv->list); atomic_inc(&id_priv->refcount); mutex_unlock(&lock); ret = id_priv->internal_id ? 1 : cma_remove_id_dev(id_priv); cma_deref_id(id_priv); if (ret) rdma_destroy_id(&id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); cma_deref_dev(cma_dev); wait_for_completion(&cma_dev->comp); } static void cma_remove_one(struct ib_device *device, void *client_data) { struct cma_device *cma_dev = client_data; if (!cma_dev) return; mutex_lock(&lock); list_del(&cma_dev->list); mutex_unlock(&lock); cma_process_remove(cma_dev); sysctl_ctx_free(&cma_dev->sysctl_ctx); kfree(cma_dev->default_gid_type); kfree(cma_dev); } static void cma_init_vnet(void *arg) { struct cma_pernet *pernet = &VNET(cma_pernet); idr_init(&pernet->tcp_ps); idr_init(&pernet->udp_ps); idr_init(&pernet->ipoib_ps); idr_init(&pernet->ib_ps); } VNET_SYSINIT(cma_init_vnet, SI_SUB_OFED_MODINIT - 1, SI_ORDER_FIRST, cma_init_vnet, NULL); static void cma_destroy_vnet(void *arg) { struct cma_pernet *pernet = &VNET(cma_pernet); idr_destroy(&pernet->tcp_ps); idr_destroy(&pernet->udp_ps); idr_destroy(&pernet->ipoib_ps); idr_destroy(&pernet->ib_ps); } VNET_SYSUNINIT(cma_destroy_vnet, SI_SUB_OFED_MODINIT - 1, SI_ORDER_SECOND, cma_destroy_vnet, NULL); static int __init cma_init(void) { int ret; cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); if (!cma_wq) return -ENOMEM; ib_sa_register_client(&sa_client); rdma_addr_register_client(&addr_client); ret = ib_register_client(&cma_client); if (ret) goto err; cma_configfs_init(); return 0; err: rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); return ret; } static void __exit cma_cleanup(void) { cma_configfs_exit(); ib_unregister_client(&cma_client); rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); } -module_init(cma_init); -module_exit(cma_cleanup); +module_init_order(cma_init, SI_ORDER_FOURTH); +module_exit_order(cma_cleanup, SI_ORDER_FOURTH); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_device.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_device.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_device.c (revision 363151) @@ -1,1067 +1,1084 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include "core_priv.h" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("core kernel InfiniBand API"); MODULE_LICENSE("Dual BSD/GPL"); struct ib_client_data { struct list_head list; struct ib_client *client; void * data; /* The device or client is going down. Do not call client or device * callbacks other than remove(). */ bool going_down; }; struct workqueue_struct *ib_comp_wq; struct workqueue_struct *ib_wq; EXPORT_SYMBOL_GPL(ib_wq); /* The device_list and client_list contain devices and clients after their * registration has completed, and the devices and clients are removed * during unregistration. */ static LIST_HEAD(device_list); static LIST_HEAD(client_list); /* * device_mutex and lists_rwsem protect access to both device_list and * client_list. device_mutex protects writer access by device and client * registration / de-registration. lists_rwsem protects reader access to * these lists. Iterators of these lists must lock it for read, while updates * to the lists must be done with a write lock. A special case is when the * device_mutex is locked. In this case locking the lists for read access is * not necessary as the device_mutex implies it. * * lists_rwsem also protects access to the client data list. */ static DEFINE_MUTEX(device_mutex); static DECLARE_RWSEM(lists_rwsem); static int ib_device_check_mandatory(struct ib_device *device) { #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device, x), #x } static const struct { size_t offset; char *name; } mandatory_table[] = { IB_MANDATORY_FUNC(query_device), IB_MANDATORY_FUNC(query_port), IB_MANDATORY_FUNC(query_pkey), IB_MANDATORY_FUNC(query_gid), IB_MANDATORY_FUNC(alloc_pd), IB_MANDATORY_FUNC(dealloc_pd), IB_MANDATORY_FUNC(create_ah), IB_MANDATORY_FUNC(destroy_ah), IB_MANDATORY_FUNC(create_qp), IB_MANDATORY_FUNC(modify_qp), IB_MANDATORY_FUNC(destroy_qp), IB_MANDATORY_FUNC(post_send), IB_MANDATORY_FUNC(post_recv), IB_MANDATORY_FUNC(create_cq), IB_MANDATORY_FUNC(destroy_cq), IB_MANDATORY_FUNC(poll_cq), IB_MANDATORY_FUNC(req_notify_cq), IB_MANDATORY_FUNC(get_dma_mr), IB_MANDATORY_FUNC(dereg_mr), IB_MANDATORY_FUNC(get_port_immutable) }; int i; for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { if (!*(void **) ((char *) device + mandatory_table[i].offset)) { pr_warn("Device %s is missing mandatory function %s\n", device->name, mandatory_table[i].name); return -EINVAL; } } return 0; } static struct ib_device *__ib_device_get_by_name(const char *name) { struct ib_device *device; list_for_each_entry(device, &device_list, core_list) if (!strncmp(name, device->name, IB_DEVICE_NAME_MAX)) return device; return NULL; } static int alloc_name(char *name) { unsigned long *inuse; char buf[IB_DEVICE_NAME_MAX]; struct ib_device *device; int i; inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL); if (!inuse) return -ENOMEM; list_for_each_entry(device, &device_list, core_list) { if (!sscanf(device->name, name, &i)) continue; if (i < 0 || i >= PAGE_SIZE * 8) continue; snprintf(buf, sizeof buf, name, i); if (!strncmp(buf, device->name, IB_DEVICE_NAME_MAX)) set_bit(i, inuse); } i = find_first_zero_bit(inuse, PAGE_SIZE * 8); free_page((unsigned long) inuse); snprintf(buf, sizeof buf, name, i); if (__ib_device_get_by_name(buf)) return -ENFILE; strlcpy(name, buf, IB_DEVICE_NAME_MAX); return 0; } static void ib_device_release(struct device *device) { struct ib_device *dev = container_of(device, struct ib_device, dev); WARN_ON(dev->reg_state == IB_DEV_REGISTERED); if (dev->reg_state == IB_DEV_UNREGISTERED) { /* * In IB_DEV_UNINITIALIZED state, cache or port table * is not even created. Free cache and port table only when * device reaches UNREGISTERED state. */ ib_cache_release_one(dev); kfree(dev->port_immutable); } kfree(dev); } static struct class ib_class = { .name = "infiniband", .dev_release = ib_device_release, }; /** * ib_alloc_device - allocate an IB device struct * @size:size of structure to allocate * * Low-level drivers should use ib_alloc_device() to allocate &struct * ib_device. @size is the size of the structure to be allocated, * including any private data used by the low-level driver. * ib_dealloc_device() must be used to free structures allocated with * ib_alloc_device(). */ struct ib_device *ib_alloc_device(size_t size) { struct ib_device *device; if (WARN_ON(size < sizeof(struct ib_device))) return NULL; device = kzalloc(size, GFP_KERNEL); if (!device) return NULL; device->dev.parent = &linux_root_device; device->dev.class = &ib_class; device_initialize(&device->dev); dev_set_drvdata(&device->dev, device); INIT_LIST_HEAD(&device->event_handler_list); spin_lock_init(&device->event_handler_lock); spin_lock_init(&device->client_data_lock); INIT_LIST_HEAD(&device->client_data_list); INIT_LIST_HEAD(&device->port_list); return device; } EXPORT_SYMBOL(ib_alloc_device); /** * ib_dealloc_device - free an IB device struct * @device:structure to free * * Free a structure allocated with ib_alloc_device(). */ void ib_dealloc_device(struct ib_device *device) { WARN_ON(device->reg_state != IB_DEV_UNREGISTERED && device->reg_state != IB_DEV_UNINITIALIZED); kobject_put(&device->dev.kobj); } EXPORT_SYMBOL(ib_dealloc_device); static int add_client_context(struct ib_device *device, struct ib_client *client) { struct ib_client_data *context; unsigned long flags; context = kmalloc(sizeof *context, GFP_KERNEL); if (!context) { pr_warn("Couldn't allocate client context for %s/%s\n", device->name, client->name); return -ENOMEM; } context->client = client; context->data = NULL; context->going_down = false; down_write(&lists_rwsem); spin_lock_irqsave(&device->client_data_lock, flags); list_add(&context->list, &device->client_data_list); spin_unlock_irqrestore(&device->client_data_lock, flags); up_write(&lists_rwsem); return 0; } static int verify_immutable(const struct ib_device *dev, u8 port) { return WARN_ON(!rdma_cap_ib_mad(dev, port) && rdma_max_mad_size(dev, port) != 0); } static int read_port_immutable(struct ib_device *device) { int ret; u8 start_port = rdma_start_port(device); u8 end_port = rdma_end_port(device); u8 port; /** * device->port_immutable is indexed directly by the port number to make * access to this data as efficient as possible. * * Therefore port_immutable is declared as a 1 based array with * potential empty slots at the beginning. */ device->port_immutable = kzalloc(sizeof(*device->port_immutable) * (end_port + 1), GFP_KERNEL); if (!device->port_immutable) return -ENOMEM; for (port = start_port; port <= end_port; ++port) { ret = device->get_port_immutable(device, port, &device->port_immutable[port]); if (ret) return ret; if (verify_immutable(device, port)) return -EINVAL; } return 0; } void ib_get_device_fw_str(struct ib_device *dev, char *str, size_t str_len) { if (dev->get_dev_fw_str) dev->get_dev_fw_str(dev, str, str_len); else str[0] = '\0'; } EXPORT_SYMBOL(ib_get_device_fw_str); /** * ib_register_device - Register an IB device with IB core * @device:Device to register * * Low-level drivers use ib_register_device() to register their * devices with the IB core. All registered clients will receive a * callback for each device that is added. @device must be allocated * with ib_alloc_device(). */ int ib_register_device(struct ib_device *device, int (*port_callback)(struct ib_device *, u8, struct kobject *)) { int ret; struct ib_client *client; struct ib_udata uhw = {.outlen = 0, .inlen = 0}; mutex_lock(&device_mutex); if (strchr(device->name, '%')) { ret = alloc_name(device->name); if (ret) goto out; } if (ib_device_check_mandatory(device)) { ret = -EINVAL; goto out; } ret = read_port_immutable(device); if (ret) { pr_warn("Couldn't create per port immutable data %s\n", device->name); goto out; } ret = ib_cache_setup_one(device); if (ret) { pr_warn("Couldn't set up InfiniBand P_Key/GID cache\n"); goto port_cleanup; } memset(&device->attrs, 0, sizeof(device->attrs)); ret = device->query_device(device, &device->attrs, &uhw); if (ret) { pr_warn("Couldn't query the device attributes\n"); goto cache_cleanup; } ret = ib_device_register_sysfs(device, port_callback); if (ret) { pr_warn("Couldn't register device %s with driver model\n", device->name); goto cache_cleanup; } device->reg_state = IB_DEV_REGISTERED; list_for_each_entry(client, &client_list, list) if (client->add && !add_client_context(device, client)) client->add(device); down_write(&lists_rwsem); list_add_tail(&device->core_list, &device_list); up_write(&lists_rwsem); mutex_unlock(&device_mutex); return 0; cache_cleanup: ib_cache_cleanup_one(device); ib_cache_release_one(device); port_cleanup: kfree(device->port_immutable); out: mutex_unlock(&device_mutex); return ret; } EXPORT_SYMBOL(ib_register_device); /** * ib_unregister_device - Unregister an IB device * @device:Device to unregister * * Unregister an IB device. All clients will receive a remove callback. */ void ib_unregister_device(struct ib_device *device) { struct ib_client_data *context, *tmp; unsigned long flags; mutex_lock(&device_mutex); down_write(&lists_rwsem); list_del(&device->core_list); spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry_safe(context, tmp, &device->client_data_list, list) context->going_down = true; spin_unlock_irqrestore(&device->client_data_lock, flags); downgrade_write(&lists_rwsem); list_for_each_entry_safe(context, tmp, &device->client_data_list, list) { if (context->client->remove) context->client->remove(device, context->data); } up_read(&lists_rwsem); mutex_unlock(&device_mutex); ib_device_unregister_sysfs(device); ib_cache_cleanup_one(device); down_write(&lists_rwsem); spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry_safe(context, tmp, &device->client_data_list, list) kfree(context); spin_unlock_irqrestore(&device->client_data_lock, flags); up_write(&lists_rwsem); device->reg_state = IB_DEV_UNREGISTERED; } EXPORT_SYMBOL(ib_unregister_device); /** * ib_register_client - Register an IB client * @client:Client to register * * Upper level users of the IB drivers can use ib_register_client() to * register callbacks for IB device addition and removal. When an IB * device is added, each registered client's add method will be called * (in the order the clients were registered), and when a device is * removed, each client's remove method will be called (in the reverse * order that clients were registered). In addition, when * ib_register_client() is called, the client will receive an add * callback for all devices already registered. */ int ib_register_client(struct ib_client *client) { struct ib_device *device; mutex_lock(&device_mutex); list_for_each_entry(device, &device_list, core_list) if (client->add && !add_client_context(device, client)) client->add(device); down_write(&lists_rwsem); list_add_tail(&client->list, &client_list); up_write(&lists_rwsem); mutex_unlock(&device_mutex); return 0; } EXPORT_SYMBOL(ib_register_client); /** * ib_unregister_client - Unregister an IB client * @client:Client to unregister * * Upper level users use ib_unregister_client() to remove their client * registration. When ib_unregister_client() is called, the client * will receive a remove callback for each IB device still registered. */ void ib_unregister_client(struct ib_client *client) { struct ib_client_data *context, *tmp; struct ib_device *device; unsigned long flags; mutex_lock(&device_mutex); down_write(&lists_rwsem); list_del(&client->list); up_write(&lists_rwsem); list_for_each_entry(device, &device_list, core_list) { struct ib_client_data *found_context = NULL; down_write(&lists_rwsem); spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry_safe(context, tmp, &device->client_data_list, list) if (context->client == client) { context->going_down = true; found_context = context; break; } spin_unlock_irqrestore(&device->client_data_lock, flags); up_write(&lists_rwsem); if (client->remove) client->remove(device, found_context ? found_context->data : NULL); if (!found_context) { pr_warn("No client context found for %s/%s\n", device->name, client->name); continue; } down_write(&lists_rwsem); spin_lock_irqsave(&device->client_data_lock, flags); list_del(&found_context->list); kfree(found_context); spin_unlock_irqrestore(&device->client_data_lock, flags); up_write(&lists_rwsem); } mutex_unlock(&device_mutex); } EXPORT_SYMBOL(ib_unregister_client); /** * ib_get_client_data - Get IB client context * @device:Device to get context for * @client:Client to get context for * * ib_get_client_data() returns client context set with * ib_set_client_data(). */ void *ib_get_client_data(struct ib_device *device, struct ib_client *client) { struct ib_client_data *context; void *ret = NULL; unsigned long flags; spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry(context, &device->client_data_list, list) if (context->client == client) { ret = context->data; break; } spin_unlock_irqrestore(&device->client_data_lock, flags); return ret; } EXPORT_SYMBOL(ib_get_client_data); /** * ib_set_client_data - Set IB client context * @device:Device to set context for * @client:Client to set context for * @data:Context to set * * ib_set_client_data() sets client context that can be retrieved with * ib_get_client_data(). */ void ib_set_client_data(struct ib_device *device, struct ib_client *client, void *data) { struct ib_client_data *context; unsigned long flags; spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry(context, &device->client_data_list, list) if (context->client == client) { context->data = data; goto out; } pr_warn("No client context found for %s/%s\n", device->name, client->name); out: spin_unlock_irqrestore(&device->client_data_lock, flags); } EXPORT_SYMBOL(ib_set_client_data); /** * ib_register_event_handler - Register an IB event handler * @event_handler:Handler to register * * ib_register_event_handler() registers an event handler that will be * called back when asynchronous IB events occur (as defined in * chapter 11 of the InfiniBand Architecture Specification). This * callback may occur in interrupt context. */ int ib_register_event_handler (struct ib_event_handler *event_handler) { unsigned long flags; spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); list_add_tail(&event_handler->list, &event_handler->device->event_handler_list); spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); return 0; } EXPORT_SYMBOL(ib_register_event_handler); /** * ib_unregister_event_handler - Unregister an event handler * @event_handler:Handler to unregister * * Unregister an event handler registered with * ib_register_event_handler(). */ int ib_unregister_event_handler(struct ib_event_handler *event_handler) { unsigned long flags; spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); list_del(&event_handler->list); spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); return 0; } EXPORT_SYMBOL(ib_unregister_event_handler); /** * ib_dispatch_event - Dispatch an asynchronous event * @event:Event to dispatch * * Low-level drivers must call ib_dispatch_event() to dispatch the * event to all registered event handlers when an asynchronous event * occurs. */ void ib_dispatch_event(struct ib_event *event) { unsigned long flags; struct ib_event_handler *handler; spin_lock_irqsave(&event->device->event_handler_lock, flags); list_for_each_entry(handler, &event->device->event_handler_list, list) handler->handler(handler, event); spin_unlock_irqrestore(&event->device->event_handler_lock, flags); } EXPORT_SYMBOL(ib_dispatch_event); /** * ib_query_port - Query IB port attributes * @device:Device to query * @port_num:Port number to query * @port_attr:Port attributes * * ib_query_port() returns the attributes of a port through the * @port_attr pointer. */ int ib_query_port(struct ib_device *device, u8 port_num, struct ib_port_attr *port_attr) { union ib_gid gid; int err; if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device)) return -EINVAL; memset(port_attr, 0, sizeof(*port_attr)); err = device->query_port(device, port_num, port_attr); if (err || port_attr->subnet_prefix) return err; if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND) return 0; err = ib_query_gid(device, port_num, 0, &gid, NULL); if (err) return err; port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); return 0; } EXPORT_SYMBOL(ib_query_port); /** * ib_query_gid - Get GID table entry * @device:Device to query * @port_num:Port number to query * @index:GID table index to query * @gid:Returned GID * @attr: Returned GID attributes related to this GID index (only in RoCE). * NULL means ignore. * * ib_query_gid() fetches the specified GID table entry. */ int ib_query_gid(struct ib_device *device, u8 port_num, int index, union ib_gid *gid, struct ib_gid_attr *attr) { if (rdma_cap_roce_gid_table(device, port_num)) return ib_get_cached_gid(device, port_num, index, gid, attr); if (attr) return -EINVAL; return device->query_gid(device, port_num, index, gid); } EXPORT_SYMBOL(ib_query_gid); /** * ib_enum_roce_netdev - enumerate all RoCE ports * @ib_dev : IB device we want to query * @filter: Should we call the callback? * @filter_cookie: Cookie passed to filter * @cb: Callback to call for each found RoCE ports * @cookie: Cookie passed back to the callback * * Enumerates all of the physical RoCE ports of ib_dev * which are related to netdevice and calls callback() on each * device for which filter() function returns non zero. */ void ib_enum_roce_netdev(struct ib_device *ib_dev, roce_netdev_filter filter, void *filter_cookie, roce_netdev_callback cb, void *cookie) { u8 port; for (port = rdma_start_port(ib_dev); port <= rdma_end_port(ib_dev); port++) if (rdma_protocol_roce(ib_dev, port)) { struct net_device *idev = NULL; if (ib_dev->get_netdev) idev = ib_dev->get_netdev(ib_dev, port); if (idev && (idev->if_flags & IFF_DYING)) { dev_put(idev); idev = NULL; } if (filter(ib_dev, port, idev, filter_cookie)) cb(ib_dev, port, idev, cookie); if (idev) dev_put(idev); } } /** * ib_enum_all_roce_netdevs - enumerate all RoCE devices * @filter: Should we call the callback? * @filter_cookie: Cookie passed to filter * @cb: Callback to call for each found RoCE ports * @cookie: Cookie passed back to the callback * * Enumerates all RoCE devices' physical ports which are related * to netdevices and calls callback() on each device for which * filter() function returns non zero. */ void ib_enum_all_roce_netdevs(roce_netdev_filter filter, void *filter_cookie, roce_netdev_callback cb, void *cookie) { struct ib_device *dev; down_read(&lists_rwsem); list_for_each_entry(dev, &device_list, core_list) ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); up_read(&lists_rwsem); } /** * ib_cache_gid_del_all_by_netdev - delete GIDs belonging a netdevice * * @ndev: Pointer to netdevice */ void ib_cache_gid_del_all_by_netdev(struct net_device *ndev) { struct ib_device *ib_dev; u8 port; down_read(&lists_rwsem); list_for_each_entry(ib_dev, &device_list, core_list) { for (port = rdma_start_port(ib_dev); port <= rdma_end_port(ib_dev); port++) { if (rdma_protocol_roce(ib_dev, port) == 0) continue; (void) ib_cache_gid_del_all_netdev_gids(ib_dev, port, ndev); } } up_read(&lists_rwsem); } /** * ib_query_pkey - Get P_Key table entry * @device:Device to query * @port_num:Port number to query * @index:P_Key table index to query * @pkey:Returned P_Key * * ib_query_pkey() fetches the specified P_Key table entry. */ int ib_query_pkey(struct ib_device *device, u8 port_num, u16 index, u16 *pkey) { return device->query_pkey(device, port_num, index, pkey); } EXPORT_SYMBOL(ib_query_pkey); /** * ib_modify_device - Change IB device attributes * @device:Device to modify * @device_modify_mask:Mask of attributes to change * @device_modify:New attribute values * * ib_modify_device() changes a device's attributes as specified by * the @device_modify_mask and @device_modify structure. */ int ib_modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify) { if (!device->modify_device) return -ENOSYS; return device->modify_device(device, device_modify_mask, device_modify); } EXPORT_SYMBOL(ib_modify_device); /** * ib_modify_port - Modifies the attributes for the specified port. * @device: The device to modify. * @port_num: The number of the port to modify. * @port_modify_mask: Mask used to specify which attributes of the port * to change. * @port_modify: New attribute values for the port. * * ib_modify_port() changes a port's attributes as specified by the * @port_modify_mask and @port_modify structure. */ int ib_modify_port(struct ib_device *device, u8 port_num, int port_modify_mask, struct ib_port_modify *port_modify) { if (!device->modify_port) return -ENOSYS; if (port_num < rdma_start_port(device) || port_num > rdma_end_port(device)) return -EINVAL; return device->modify_port(device, port_num, port_modify_mask, port_modify); } EXPORT_SYMBOL(ib_modify_port); /** * ib_find_gid - Returns the port number and GID table index where * a specified GID value occurs. * @device: The device to query. * @gid: The GID value to search for. * @gid_type: Type of GID. * @ndev: The ndev related to the GID to search for. * @port_num: The port number of the device where the GID value was found. * @index: The index into the GID table where the GID was found. This * parameter may be NULL. */ int ib_find_gid(struct ib_device *device, union ib_gid *gid, enum ib_gid_type gid_type, struct net_device *ndev, u8 *port_num, u16 *index) { union ib_gid tmp_gid; int ret, port, i; for (port = rdma_start_port(device); port <= rdma_end_port(device); ++port) { if (rdma_cap_roce_gid_table(device, port)) { if (!ib_find_cached_gid_by_port(device, gid, gid_type, port, ndev, index)) { *port_num = port; return 0; } } if (gid_type != IB_GID_TYPE_IB) continue; for (i = 0; i < device->port_immutable[port].gid_tbl_len; ++i) { ret = ib_query_gid(device, port, i, &tmp_gid, NULL); if (ret) return ret; if (!memcmp(&tmp_gid, gid, sizeof *gid)) { *port_num = port; if (index) *index = i; return 0; } } } return -ENOENT; } EXPORT_SYMBOL(ib_find_gid); /** * ib_find_pkey - Returns the PKey table index where a specified * PKey value occurs. * @device: The device to query. * @port_num: The port number of the device to search for the PKey. * @pkey: The PKey value to search for. * @index: The index into the PKey table where the PKey was found. */ int ib_find_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index) { int ret, i; u16 tmp_pkey; int partial_ix = -1; for (i = 0; i < device->port_immutable[port_num].pkey_tbl_len; ++i) { ret = ib_query_pkey(device, port_num, i, &tmp_pkey); if (ret) return ret; if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { /* if there is full-member pkey take it.*/ if (tmp_pkey & 0x8000) { *index = i; return 0; } if (partial_ix < 0) partial_ix = i; } } /*no full-member, if exists take the limited*/ if (partial_ix >= 0) { *index = partial_ix; return 0; } return -ENOENT; } EXPORT_SYMBOL(ib_find_pkey); /** * ib_get_net_dev_by_params() - Return the appropriate net_dev * for a received CM request * @dev: An RDMA device on which the request has been received. * @port: Port number on the RDMA device. * @pkey: The Pkey the request came on. * @gid: A GID that the net_dev uses to communicate. * @addr: Contains the IP address that the request specified as its * destination. */ struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr) { struct net_device *net_dev = NULL; struct ib_client_data *context; if (!rdma_protocol_ib(dev, port)) return NULL; down_read(&lists_rwsem); list_for_each_entry(context, &dev->client_data_list, list) { struct ib_client *client = context->client; if (context->going_down) continue; if (client->get_net_dev_by_params) { net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, addr, context->data); if (net_dev) break; } } up_read(&lists_rwsem); return net_dev; } EXPORT_SYMBOL(ib_get_net_dev_by_params); static int __init ib_core_init(void) { int ret; ib_wq = alloc_workqueue("infiniband", 0, 0); if (!ib_wq) return -ENOMEM; ib_comp_wq = alloc_workqueue("ib-comp-wq", WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM, mp_ncpus * 4 /* WQ_UNBOUND_MAX_ACTIVE */); if (!ib_comp_wq) { ret = -ENOMEM; goto err; } ret = class_register(&ib_class); if (ret) { pr_warn("Couldn't create InfiniBand device class\n"); goto err_comp; } ret = addr_init(); if (ret) { pr_warn("Could't init IB address resolution\n"); goto err_sysfs; } ret = ib_mad_init(); if (ret) { pr_warn("Couldn't init IB MAD\n"); goto err_addr; } ret = ib_sa_init(); if (ret) { pr_warn("Couldn't init SA\n"); goto err_mad; } ib_cache_setup(); return 0; err_mad: ib_mad_cleanup(); err_addr: addr_cleanup(); err_sysfs: class_unregister(&ib_class); err_comp: destroy_workqueue(ib_comp_wq); err: destroy_workqueue(ib_wq); return ret; } static void __exit ib_core_cleanup(void) { ib_cache_cleanup(); ib_sa_cleanup(); ib_mad_cleanup(); addr_cleanup(); class_unregister(&ib_class); destroy_workqueue(ib_comp_wq); /* Make sure that any pending umem accounting work is done. */ destroy_workqueue(ib_wq); } -module_init(ib_core_init); -module_exit(ib_core_cleanup); +/* + * Typical loading and unloading order values and their use: + * + * SI_ORDER_FIRST (default for module_init): + * Core modules (PCI, infiniband) + * SI_ORDER_SECOND (default for module_exit): + * Infiniband core modules (CM) + * SI_ORDER_THIRD: + * SI_ORDER_FOURTH: + * Infiniband core modules (CMA) + * SI_ORDER_FIFTH: + * Infiniband user-space modules (UCM,UCMA,UMAD,UVERBS,IPOIB) + * SI_ORDER_SIXTH: + * Network HW driver modules + * SI_ORDER_SEVENTH: + * Infiniband HW driver modules + */ +module_init_order(ib_core_init, SI_ORDER_FIRST); +module_exit_order(ib_core_cleanup, SI_ORDER_FIRST); MODULE_VERSION(ibcore, 1); MODULE_DEPEND(ibcore, linuxkpi, 1, 1, 1); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_iwcm.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_iwcm.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_iwcm.c (revision 363151) @@ -1,1056 +1,1056 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2004, 2005 Intel Corporation. All rights reserved. * Copyright (c) 2004 Topspin Corporation. All rights reserved. * Copyright (c) 2004, 2005 Voltaire Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005 Open Grid Computing, Inc. All rights reserved. * Copyright (c) 2005 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iwcm.h" MODULE_AUTHOR("Tom Tucker"); MODULE_DESCRIPTION("iWARP CM"); MODULE_LICENSE("Dual BSD/GPL"); static struct workqueue_struct *iwcm_wq; struct iwcm_work { struct work_struct work; struct iwcm_id_private *cm_id; struct list_head list; struct iw_cm_event event; struct list_head free_list; }; static unsigned int default_backlog = 256; /* * The following services provide a mechanism for pre-allocating iwcm_work * elements. The design pre-allocates them based on the cm_id type: * LISTENING IDS: Get enough elements preallocated to handle the * listen backlog. * ACTIVE IDS: 4: CONNECT_REPLY, ESTABLISHED, DISCONNECT, CLOSE * PASSIVE IDS: 3: ESTABLISHED, DISCONNECT, CLOSE * * Allocating them in connect and listen avoids having to deal * with allocation failures on the event upcall from the provider (which * is called in the interrupt context). * * One exception is when creating the cm_id for incoming connection requests. * There are two cases: * 1) in the event upcall, cm_event_handler(), for a listening cm_id. If * the backlog is exceeded, then no more connection request events will * be processed. cm_event_handler() returns -ENOMEM in this case. Its up * to the provider to reject the connection request. * 2) in the connection request workqueue handler, cm_conn_req_handler(). * If work elements cannot be allocated for the new connect request cm_id, * then IWCM will call the provider reject method. This is ok since * cm_conn_req_handler() runs in the workqueue thread context. */ static struct iwcm_work *get_work(struct iwcm_id_private *cm_id_priv) { struct iwcm_work *work; if (list_empty(&cm_id_priv->work_free_list)) return NULL; work = list_entry(cm_id_priv->work_free_list.next, struct iwcm_work, free_list); list_del_init(&work->free_list); return work; } static void put_work(struct iwcm_work *work) { list_add(&work->free_list, &work->cm_id->work_free_list); } static void dealloc_work_entries(struct iwcm_id_private *cm_id_priv) { struct list_head *e, *tmp; list_for_each_safe(e, tmp, &cm_id_priv->work_free_list) kfree(list_entry(e, struct iwcm_work, free_list)); } static int alloc_work_entries(struct iwcm_id_private *cm_id_priv, int count) { struct iwcm_work *work; BUG_ON(!list_empty(&cm_id_priv->work_free_list)); while (count--) { work = kmalloc(sizeof(struct iwcm_work), GFP_KERNEL); if (!work) { dealloc_work_entries(cm_id_priv); return -ENOMEM; } work->cm_id = cm_id_priv; INIT_LIST_HEAD(&work->list); put_work(work); } return 0; } /* * Save private data from incoming connection requests to * iw_cm_event, so the low level driver doesn't have to. Adjust * the event ptr to point to the local copy. */ static int copy_private_data(struct iw_cm_event *event) { void *p; p = kmemdup(event->private_data, event->private_data_len, GFP_ATOMIC); if (!p) return -ENOMEM; event->private_data = p; return 0; } static void free_cm_id(struct iwcm_id_private *cm_id_priv) { dealloc_work_entries(cm_id_priv); kfree(cm_id_priv); } /* * Release a reference on cm_id. If the last reference is being * released, free the cm_id and return 1. */ static int iwcm_deref_id(struct iwcm_id_private *cm_id_priv) { BUG_ON(atomic_read(&cm_id_priv->refcount)==0); if (atomic_dec_and_test(&cm_id_priv->refcount)) { BUG_ON(!list_empty(&cm_id_priv->work_list)); free_cm_id(cm_id_priv); return 1; } return 0; } static void add_ref(struct iw_cm_id *cm_id) { struct iwcm_id_private *cm_id_priv; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); atomic_inc(&cm_id_priv->refcount); } static void rem_ref(struct iw_cm_id *cm_id) { struct iwcm_id_private *cm_id_priv; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); (void)iwcm_deref_id(cm_id_priv); } static int cm_event_handler(struct iw_cm_id *cm_id, struct iw_cm_event *event); struct iw_cm_id *iw_create_cm_id(struct ib_device *device, iw_cm_handler cm_handler, void *context) { struct iwcm_id_private *cm_id_priv; cm_id_priv = kzalloc(sizeof(*cm_id_priv), GFP_KERNEL); if (!cm_id_priv) return ERR_PTR(-ENOMEM); cm_id_priv->state = IW_CM_STATE_IDLE; cm_id_priv->id.device = device; cm_id_priv->id.cm_handler = cm_handler; cm_id_priv->id.context = context; cm_id_priv->id.event_handler = cm_event_handler; cm_id_priv->id.add_ref = add_ref; cm_id_priv->id.rem_ref = rem_ref; spin_lock_init(&cm_id_priv->lock); atomic_set(&cm_id_priv->refcount, 1); init_waitqueue_head(&cm_id_priv->connect_wait); init_completion(&cm_id_priv->destroy_comp); INIT_LIST_HEAD(&cm_id_priv->work_list); INIT_LIST_HEAD(&cm_id_priv->work_free_list); return &cm_id_priv->id; } EXPORT_SYMBOL(iw_create_cm_id); static int iwcm_modify_qp_err(struct ib_qp *qp) { struct ib_qp_attr qp_attr; if (!qp) return -EINVAL; qp_attr.qp_state = IB_QPS_ERR; return ib_modify_qp(qp, &qp_attr, IB_QP_STATE); } /* * This is really the RDMAC CLOSING state. It is most similar to the * IB SQD QP state. */ static int iwcm_modify_qp_sqd(struct ib_qp *qp) { struct ib_qp_attr qp_attr; BUG_ON(qp == NULL); qp_attr.qp_state = IB_QPS_SQD; return ib_modify_qp(qp, &qp_attr, IB_QP_STATE); } /* * CM_ID <-- CLOSING * * Block if a passive or active connection is currently being processed. Then * process the event as follows: * - If we are ESTABLISHED, move to CLOSING and modify the QP state * based on the abrupt flag * - If the connection is already in the CLOSING or IDLE state, the peer is * disconnecting concurrently with us and we've already seen the * DISCONNECT event -- ignore the request and return 0 * - Disconnect on a listening endpoint returns -EINVAL */ int iw_cm_disconnect(struct iw_cm_id *cm_id, int abrupt) { struct iwcm_id_private *cm_id_priv; unsigned long flags; int ret = 0; struct ib_qp *qp = NULL; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); /* Wait if we're currently in a connect or accept downcall */ wait_event(cm_id_priv->connect_wait, !test_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags)); spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->state) { case IW_CM_STATE_ESTABLISHED: cm_id_priv->state = IW_CM_STATE_CLOSING; /* QP could be for user-mode client */ if (cm_id_priv->qp) qp = cm_id_priv->qp; else ret = -EINVAL; break; case IW_CM_STATE_LISTEN: ret = -EINVAL; break; case IW_CM_STATE_CLOSING: /* remote peer closed first */ case IW_CM_STATE_IDLE: /* accept or connect returned !0 */ break; case IW_CM_STATE_CONN_RECV: /* * App called disconnect before/without calling accept after * connect_request event delivered. */ break; case IW_CM_STATE_CONN_SENT: /* Can only get here if wait above fails */ default: BUG(); } spin_unlock_irqrestore(&cm_id_priv->lock, flags); if (qp) { if (abrupt) (void) iwcm_modify_qp_err(qp); else (void) iwcm_modify_qp_sqd(qp); /* * If both sides are disconnecting the QP could * already be in ERR or SQD states */ ret = 0; } return ret; } EXPORT_SYMBOL(iw_cm_disconnect); /* * CM_ID <-- DESTROYING * * Clean up all resources associated with the connection and release * the initial reference taken by iw_create_cm_id. */ static void destroy_cm_id(struct iw_cm_id *cm_id) { struct iwcm_id_private *cm_id_priv; unsigned long flags; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); /* * Wait if we're currently in a connect or accept downcall. A * listening endpoint should never block here. */ wait_event(cm_id_priv->connect_wait, !test_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags)); /* * Since we're deleting the cm_id, drop any events that * might arrive before the last dereference. */ set_bit(IWCM_F_DROP_EVENTS, &cm_id_priv->flags); spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->state) { case IW_CM_STATE_LISTEN: cm_id_priv->state = IW_CM_STATE_DESTROYING; spin_unlock_irqrestore(&cm_id_priv->lock, flags); /* destroy the listening endpoint */ cm_id->device->iwcm->destroy_listen(cm_id); spin_lock_irqsave(&cm_id_priv->lock, flags); break; case IW_CM_STATE_ESTABLISHED: cm_id_priv->state = IW_CM_STATE_DESTROYING; spin_unlock_irqrestore(&cm_id_priv->lock, flags); /* Abrupt close of the connection */ (void)iwcm_modify_qp_err(cm_id_priv->qp); spin_lock_irqsave(&cm_id_priv->lock, flags); break; case IW_CM_STATE_IDLE: case IW_CM_STATE_CLOSING: cm_id_priv->state = IW_CM_STATE_DESTROYING; break; case IW_CM_STATE_CONN_RECV: /* * App called destroy before/without calling accept after * receiving connection request event notification or * returned non zero from the event callback function. * In either case, must tell the provider to reject. */ cm_id_priv->state = IW_CM_STATE_DESTROYING; spin_unlock_irqrestore(&cm_id_priv->lock, flags); cm_id->device->iwcm->reject(cm_id, NULL, 0); spin_lock_irqsave(&cm_id_priv->lock, flags); break; case IW_CM_STATE_CONN_SENT: case IW_CM_STATE_DESTROYING: default: BUG(); break; } if (cm_id_priv->qp) { cm_id_priv->id.device->iwcm->rem_ref(cm_id_priv->qp); cm_id_priv->qp = NULL; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); (void)iwcm_deref_id(cm_id_priv); } /* * This function is only called by the application thread and cannot * be called by the event thread. The function will wait for all * references to be released on the cm_id and then kfree the cm_id * object. */ void iw_destroy_cm_id(struct iw_cm_id *cm_id) { struct iwcm_id_private *cm_id_priv; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); destroy_cm_id(cm_id); } EXPORT_SYMBOL(iw_destroy_cm_id); /** * iw_cm_map - Use portmapper to map the ports * @cm_id: connection manager pointer * @active: Indicates the active side when true * returns nonzero for error only if iwpm_create_mapinfo() fails * * Tries to add a mapping for a port using the Portmapper. If * successful in mapping the IP/Port it will check the remote * mapped IP address for a wildcard IP address and replace the * zero IP address with the remote_addr. */ static int iw_cm_map(struct iw_cm_id *cm_id, bool active) { cm_id->m_local_addr = cm_id->local_addr; cm_id->m_remote_addr = cm_id->remote_addr; return 0; } /* * CM_ID <-- LISTEN * * Start listening for connect requests. Generates one CONNECT_REQUEST * event for each inbound connect request. */ int iw_cm_listen(struct iw_cm_id *cm_id, int backlog) { struct iwcm_id_private *cm_id_priv; unsigned long flags; int ret; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); if (!backlog) backlog = default_backlog; ret = alloc_work_entries(cm_id_priv, backlog); if (ret) return ret; spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->state) { case IW_CM_STATE_IDLE: cm_id_priv->state = IW_CM_STATE_LISTEN; spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = iw_cm_map(cm_id, false); if (!ret) ret = cm_id->device->iwcm->create_listen(cm_id, backlog); if (ret) cm_id_priv->state = IW_CM_STATE_IDLE; spin_lock_irqsave(&cm_id_priv->lock, flags); break; default: ret = -EINVAL; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } EXPORT_SYMBOL(iw_cm_listen); /* * CM_ID <-- IDLE * * Rejects an inbound connection request. No events are generated. */ int iw_cm_reject(struct iw_cm_id *cm_id, const void *private_data, u8 private_data_len) { struct iwcm_id_private *cm_id_priv; unsigned long flags; int ret; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); set_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id_priv->state != IW_CM_STATE_CONN_RECV) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); wake_up_all(&cm_id_priv->connect_wait); return -EINVAL; } cm_id_priv->state = IW_CM_STATE_IDLE; spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = cm_id->device->iwcm->reject(cm_id, private_data, private_data_len); clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); wake_up_all(&cm_id_priv->connect_wait); return ret; } EXPORT_SYMBOL(iw_cm_reject); /* * CM_ID <-- ESTABLISHED * * Accepts an inbound connection request and generates an ESTABLISHED * event. Callers of iw_cm_disconnect and iw_destroy_cm_id will block * until the ESTABLISHED event is received from the provider. */ int iw_cm_accept(struct iw_cm_id *cm_id, struct iw_cm_conn_param *iw_param) { struct iwcm_id_private *cm_id_priv; struct ib_qp *qp; unsigned long flags; int ret; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); set_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id_priv->state != IW_CM_STATE_CONN_RECV) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); wake_up_all(&cm_id_priv->connect_wait); return -EINVAL; } /* Get the ib_qp given the QPN */ qp = cm_id->device->iwcm->get_qp(cm_id->device, iw_param->qpn); if (!qp) { spin_unlock_irqrestore(&cm_id_priv->lock, flags); clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); wake_up_all(&cm_id_priv->connect_wait); return -EINVAL; } cm_id->device->iwcm->add_ref(qp); cm_id_priv->qp = qp; spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = cm_id->device->iwcm->accept(cm_id, iw_param); if (ret) { /* An error on accept precludes provider events */ BUG_ON(cm_id_priv->state != IW_CM_STATE_CONN_RECV); cm_id_priv->state = IW_CM_STATE_IDLE; spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id_priv->qp) { cm_id->device->iwcm->rem_ref(qp); cm_id_priv->qp = NULL; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); wake_up_all(&cm_id_priv->connect_wait); } return ret; } EXPORT_SYMBOL(iw_cm_accept); /* * Active Side: CM_ID <-- CONN_SENT * * If successful, results in the generation of a CONNECT_REPLY * event. iw_cm_disconnect and iw_cm_destroy will block until the * CONNECT_REPLY event is received from the provider. */ int iw_cm_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *iw_param) { struct iwcm_id_private *cm_id_priv; int ret; unsigned long flags; struct ib_qp *qp; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); ret = alloc_work_entries(cm_id_priv, 4); if (ret) return ret; set_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id_priv->state != IW_CM_STATE_IDLE) { ret = -EINVAL; goto err; } /* Get the ib_qp given the QPN */ qp = cm_id->device->iwcm->get_qp(cm_id->device, iw_param->qpn); if (!qp) { ret = -EINVAL; goto err; } cm_id->device->iwcm->add_ref(qp); cm_id_priv->qp = qp; cm_id_priv->state = IW_CM_STATE_CONN_SENT; spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = iw_cm_map(cm_id, true); if (!ret) ret = cm_id->device->iwcm->connect(cm_id, iw_param); if (!ret) return 0; /* success */ spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id_priv->qp) { cm_id->device->iwcm->rem_ref(qp); cm_id_priv->qp = NULL; } cm_id_priv->state = IW_CM_STATE_IDLE; err: spin_unlock_irqrestore(&cm_id_priv->lock, flags); clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); wake_up_all(&cm_id_priv->connect_wait); return ret; } EXPORT_SYMBOL(iw_cm_connect); /* * Passive Side: new CM_ID <-- CONN_RECV * * Handles an inbound connect request. The function creates a new * iw_cm_id to represent the new connection and inherits the client * callback function and other attributes from the listening parent. * * The work item contains a pointer to the listen_cm_id and the event. The * listen_cm_id contains the client cm_handler, context and * device. These are copied when the device is cloned. The event * contains the new four tuple. * * An error on the child should not affect the parent, so this * function does not return a value. */ static void cm_conn_req_handler(struct iwcm_id_private *listen_id_priv, struct iw_cm_event *iw_event) { unsigned long flags; struct iw_cm_id *cm_id; struct iwcm_id_private *cm_id_priv; int ret; /* * The provider should never generate a connection request * event with a bad status. */ BUG_ON(iw_event->status); cm_id = iw_create_cm_id(listen_id_priv->id.device, listen_id_priv->id.cm_handler, listen_id_priv->id.context); /* If the cm_id could not be created, ignore the request */ if (IS_ERR(cm_id)) goto out; cm_id->provider_data = iw_event->provider_data; cm_id->m_local_addr = iw_event->local_addr; cm_id->m_remote_addr = iw_event->remote_addr; cm_id->local_addr = listen_id_priv->id.local_addr; cm_id->remote_addr = iw_event->remote_addr; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); cm_id_priv->state = IW_CM_STATE_CONN_RECV; /* * We could be destroying the listening id. If so, ignore this * upcall. */ spin_lock_irqsave(&listen_id_priv->lock, flags); if (listen_id_priv->state != IW_CM_STATE_LISTEN) { spin_unlock_irqrestore(&listen_id_priv->lock, flags); iw_cm_reject(cm_id, NULL, 0); iw_destroy_cm_id(cm_id); goto out; } spin_unlock_irqrestore(&listen_id_priv->lock, flags); ret = alloc_work_entries(cm_id_priv, 3); if (ret) { iw_cm_reject(cm_id, NULL, 0); iw_destroy_cm_id(cm_id); goto out; } /* Call the client CM handler */ ret = cm_id->cm_handler(cm_id, iw_event); if (ret) { iw_cm_reject(cm_id, NULL, 0); iw_destroy_cm_id(cm_id); } out: if (iw_event->private_data_len) kfree(iw_event->private_data); } /* * Passive Side: CM_ID <-- ESTABLISHED * * The provider generated an ESTABLISHED event which means that * the MPA negotion has completed successfully and we are now in MPA * FPDU mode. * * This event can only be received in the CONN_RECV state. If the * remote peer closed, the ESTABLISHED event would be received followed * by the CLOSE event. If the app closes, it will block until we wake * it up after processing this event. */ static int cm_conn_est_handler(struct iwcm_id_private *cm_id_priv, struct iw_cm_event *iw_event) { unsigned long flags; int ret; spin_lock_irqsave(&cm_id_priv->lock, flags); /* * We clear the CONNECT_WAIT bit here to allow the callback * function to call iw_cm_disconnect. Calling iw_destroy_cm_id * from a callback handler is not allowed. */ clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); BUG_ON(cm_id_priv->state != IW_CM_STATE_CONN_RECV); cm_id_priv->state = IW_CM_STATE_ESTABLISHED; spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = cm_id_priv->id.cm_handler(&cm_id_priv->id, iw_event); wake_up_all(&cm_id_priv->connect_wait); return ret; } /* * Active Side: CM_ID <-- ESTABLISHED * * The app has called connect and is waiting for the established event to * post it's requests to the server. This event will wake up anyone * blocked in iw_cm_disconnect or iw_destroy_id. */ static int cm_conn_rep_handler(struct iwcm_id_private *cm_id_priv, struct iw_cm_event *iw_event) { unsigned long flags; int ret; spin_lock_irqsave(&cm_id_priv->lock, flags); /* * Clear the connect wait bit so a callback function calling * iw_cm_disconnect will not wait and deadlock this thread */ clear_bit(IWCM_F_CONNECT_WAIT, &cm_id_priv->flags); BUG_ON(cm_id_priv->state != IW_CM_STATE_CONN_SENT); if (iw_event->status == 0) { cm_id_priv->id.m_local_addr = iw_event->local_addr; cm_id_priv->id.m_remote_addr = iw_event->remote_addr; iw_event->local_addr = cm_id_priv->id.local_addr; iw_event->remote_addr = cm_id_priv->id.remote_addr; cm_id_priv->state = IW_CM_STATE_ESTABLISHED; } else { /* REJECTED or RESET */ cm_id_priv->id.device->iwcm->rem_ref(cm_id_priv->qp); cm_id_priv->qp = NULL; cm_id_priv->state = IW_CM_STATE_IDLE; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = cm_id_priv->id.cm_handler(&cm_id_priv->id, iw_event); if (iw_event->private_data_len) kfree(iw_event->private_data); /* Wake up waiters on connect complete */ wake_up_all(&cm_id_priv->connect_wait); return ret; } /* * CM_ID <-- CLOSING * * If in the ESTABLISHED state, move to CLOSING. */ static void cm_disconnect_handler(struct iwcm_id_private *cm_id_priv, struct iw_cm_event *iw_event) { unsigned long flags; spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id_priv->state == IW_CM_STATE_ESTABLISHED) cm_id_priv->state = IW_CM_STATE_CLOSING; spin_unlock_irqrestore(&cm_id_priv->lock, flags); } /* * CM_ID <-- IDLE * * If in the ESTBLISHED or CLOSING states, the QP will have have been * moved by the provider to the ERR state. Disassociate the CM_ID from * the QP, move to IDLE, and remove the 'connected' reference. * * If in some other state, the cm_id was destroyed asynchronously. * This is the last reference that will result in waking up * the app thread blocked in iw_destroy_cm_id. */ static int cm_close_handler(struct iwcm_id_private *cm_id_priv, struct iw_cm_event *iw_event) { unsigned long flags; int ret = 0; spin_lock_irqsave(&cm_id_priv->lock, flags); if (cm_id_priv->qp) { cm_id_priv->id.device->iwcm->rem_ref(cm_id_priv->qp); cm_id_priv->qp = NULL; } switch (cm_id_priv->state) { case IW_CM_STATE_ESTABLISHED: case IW_CM_STATE_CLOSING: cm_id_priv->state = IW_CM_STATE_IDLE; spin_unlock_irqrestore(&cm_id_priv->lock, flags); ret = cm_id_priv->id.cm_handler(&cm_id_priv->id, iw_event); spin_lock_irqsave(&cm_id_priv->lock, flags); break; case IW_CM_STATE_DESTROYING: break; default: BUG(); } spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } static int process_event(struct iwcm_id_private *cm_id_priv, struct iw_cm_event *iw_event) { int ret = 0; switch (iw_event->event) { case IW_CM_EVENT_CONNECT_REQUEST: cm_conn_req_handler(cm_id_priv, iw_event); break; case IW_CM_EVENT_CONNECT_REPLY: ret = cm_conn_rep_handler(cm_id_priv, iw_event); break; case IW_CM_EVENT_ESTABLISHED: ret = cm_conn_est_handler(cm_id_priv, iw_event); break; case IW_CM_EVENT_DISCONNECT: cm_disconnect_handler(cm_id_priv, iw_event); break; case IW_CM_EVENT_CLOSE: ret = cm_close_handler(cm_id_priv, iw_event); break; default: BUG(); } return ret; } /* * Process events on the work_list for the cm_id. If the callback * function requests that the cm_id be deleted, a flag is set in the * cm_id flags to indicate that when the last reference is * removed, the cm_id is to be destroyed. This is necessary to * distinguish between an object that will be destroyed by the app * thread asleep on the destroy_comp list vs. an object destroyed * here synchronously when the last reference is removed. */ static void cm_work_handler(struct work_struct *_work) { struct iwcm_work *work = container_of(_work, struct iwcm_work, work); struct iw_cm_event levent; struct iwcm_id_private *cm_id_priv = work->cm_id; unsigned long flags; int empty; int ret = 0; spin_lock_irqsave(&cm_id_priv->lock, flags); empty = list_empty(&cm_id_priv->work_list); while (!empty) { work = list_entry(cm_id_priv->work_list.next, struct iwcm_work, list); list_del_init(&work->list); empty = list_empty(&cm_id_priv->work_list); levent = work->event; put_work(work); spin_unlock_irqrestore(&cm_id_priv->lock, flags); if (!test_bit(IWCM_F_DROP_EVENTS, &cm_id_priv->flags)) { ret = process_event(cm_id_priv, &levent); if (ret) destroy_cm_id(&cm_id_priv->id); } else pr_debug("dropping event %d\n", levent.event); if (iwcm_deref_id(cm_id_priv)) return; if (empty) return; spin_lock_irqsave(&cm_id_priv->lock, flags); } spin_unlock_irqrestore(&cm_id_priv->lock, flags); } /* * This function is called on interrupt context. Schedule events on * the iwcm_wq thread to allow callback functions to downcall into * the CM and/or block. Events are queued to a per-CM_ID * work_list. If this is the first event on the work_list, the work * element is also queued on the iwcm_wq thread. * * Each event holds a reference on the cm_id. Until the last posted * event has been delivered and processed, the cm_id cannot be * deleted. * * Returns: * 0 - the event was handled. * -ENOMEM - the event was not handled due to lack of resources. */ static int cm_event_handler(struct iw_cm_id *cm_id, struct iw_cm_event *iw_event) { struct iwcm_work *work; struct iwcm_id_private *cm_id_priv; unsigned long flags; int ret = 0; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); spin_lock_irqsave(&cm_id_priv->lock, flags); work = get_work(cm_id_priv); if (!work) { ret = -ENOMEM; goto out; } INIT_WORK(&work->work, cm_work_handler); work->cm_id = cm_id_priv; work->event = *iw_event; if ((work->event.event == IW_CM_EVENT_CONNECT_REQUEST || work->event.event == IW_CM_EVENT_CONNECT_REPLY) && work->event.private_data_len) { ret = copy_private_data(&work->event); if (ret) { put_work(work); goto out; } } atomic_inc(&cm_id_priv->refcount); if (list_empty(&cm_id_priv->work_list)) { list_add_tail(&work->list, &cm_id_priv->work_list); queue_work(iwcm_wq, &work->work); } else list_add_tail(&work->list, &cm_id_priv->work_list); out: spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } static int iwcm_init_qp_init_attr(struct iwcm_id_private *cm_id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { unsigned long flags; int ret; spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->state) { case IW_CM_STATE_IDLE: case IW_CM_STATE_CONN_SENT: case IW_CM_STATE_CONN_RECV: case IW_CM_STATE_ESTABLISHED: *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; qp_attr->qp_access_flags = IB_ACCESS_REMOTE_WRITE| IB_ACCESS_REMOTE_READ; ret = 0; break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } static int iwcm_init_qp_rts_attr(struct iwcm_id_private *cm_id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { unsigned long flags; int ret; spin_lock_irqsave(&cm_id_priv->lock, flags); switch (cm_id_priv->state) { case IW_CM_STATE_IDLE: case IW_CM_STATE_CONN_SENT: case IW_CM_STATE_CONN_RECV: case IW_CM_STATE_ESTABLISHED: *qp_attr_mask = 0; ret = 0; break; default: ret = -EINVAL; break; } spin_unlock_irqrestore(&cm_id_priv->lock, flags); return ret; } int iw_cm_init_qp_attr(struct iw_cm_id *cm_id, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct iwcm_id_private *cm_id_priv; int ret; cm_id_priv = container_of(cm_id, struct iwcm_id_private, id); switch (qp_attr->qp_state) { case IB_QPS_INIT: case IB_QPS_RTR: ret = iwcm_init_qp_init_attr(cm_id_priv, qp_attr, qp_attr_mask); break; case IB_QPS_RTS: ret = iwcm_init_qp_rts_attr(cm_id_priv, qp_attr, qp_attr_mask); break; default: ret = -EINVAL; break; } return ret; } EXPORT_SYMBOL(iw_cm_init_qp_attr); static int __init iw_cm_init(void) { iwcm_wq = alloc_ordered_workqueue("iw_cm_wq", WQ_MEM_RECLAIM); if (!iwcm_wq) return -ENOMEM; return 0; } static void __exit iw_cm_cleanup(void) { destroy_workqueue(iwcm_wq); } -module_init(iw_cm_init); -module_exit(iw_cm_cleanup); +module_init_order(iw_cm_init, SI_ORDER_FIRST); +module_exit_order(iw_cm_cleanup, SI_ORDER_FIRST); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_ucm.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_ucm.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_ucm.c (revision 363151) @@ -1,1375 +1,1375 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2005 Topspin Communications. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Libor Michalek"); MODULE_DESCRIPTION("InfiniBand userspace Connection Manager access"); MODULE_LICENSE("Dual BSD/GPL"); struct ib_ucm_device { int devnum; struct cdev cdev; struct device dev; struct ib_device *ib_dev; }; struct ib_ucm_file { struct mutex file_mutex; struct file *filp; struct ib_ucm_device *device; struct list_head ctxs; struct list_head events; wait_queue_head_t poll_wait; }; struct ib_ucm_context { int id; struct completion comp; atomic_t ref; int events_reported; struct ib_ucm_file *file; struct ib_cm_id *cm_id; __u64 uid; struct list_head events; /* list of pending events. */ struct list_head file_list; /* member in file ctx list */ }; struct ib_ucm_event { struct ib_ucm_context *ctx; struct list_head file_list; /* member in file event list */ struct list_head ctx_list; /* member in ctx event list */ struct ib_cm_id *cm_id; struct ib_ucm_event_resp resp; void *data; void *info; int data_len; int info_len; }; enum { IB_UCM_MAJOR = 231, IB_UCM_BASE_MINOR = 224, IB_UCM_MAX_DEVICES = 32 }; #define IB_UCM_BASE_DEV MKDEV(IB_UCM_MAJOR, IB_UCM_BASE_MINOR) static void ib_ucm_add_one(struct ib_device *device); static void ib_ucm_remove_one(struct ib_device *device, void *client_data); static struct ib_client ucm_client = { .name = "ucm", .add = ib_ucm_add_one, .remove = ib_ucm_remove_one }; static DEFINE_MUTEX(ctx_id_mutex); static DEFINE_IDR(ctx_id_table); static DECLARE_BITMAP(dev_map, IB_UCM_MAX_DEVICES); static struct ib_ucm_context *ib_ucm_ctx_get(struct ib_ucm_file *file, int id) { struct ib_ucm_context *ctx; mutex_lock(&ctx_id_mutex); ctx = idr_find(&ctx_id_table, id); if (!ctx) ctx = ERR_PTR(-ENOENT); else if (ctx->file != file) ctx = ERR_PTR(-EINVAL); else atomic_inc(&ctx->ref); mutex_unlock(&ctx_id_mutex); return ctx; } static void ib_ucm_ctx_put(struct ib_ucm_context *ctx) { if (atomic_dec_and_test(&ctx->ref)) complete(&ctx->comp); } static inline int ib_ucm_new_cm_id(int event) { return event == IB_CM_REQ_RECEIVED || event == IB_CM_SIDR_REQ_RECEIVED; } static void ib_ucm_cleanup_events(struct ib_ucm_context *ctx) { struct ib_ucm_event *uevent; mutex_lock(&ctx->file->file_mutex); list_del(&ctx->file_list); while (!list_empty(&ctx->events)) { uevent = list_entry(ctx->events.next, struct ib_ucm_event, ctx_list); list_del(&uevent->file_list); list_del(&uevent->ctx_list); mutex_unlock(&ctx->file->file_mutex); /* clear incoming connections. */ if (ib_ucm_new_cm_id(uevent->resp.event)) ib_destroy_cm_id(uevent->cm_id); kfree(uevent); mutex_lock(&ctx->file->file_mutex); } mutex_unlock(&ctx->file->file_mutex); } static struct ib_ucm_context *ib_ucm_ctx_alloc(struct ib_ucm_file *file) { struct ib_ucm_context *ctx; ctx = kzalloc(sizeof *ctx, GFP_KERNEL); if (!ctx) return NULL; atomic_set(&ctx->ref, 1); init_completion(&ctx->comp); ctx->file = file; INIT_LIST_HEAD(&ctx->events); mutex_lock(&ctx_id_mutex); ctx->id = idr_alloc(&ctx_id_table, ctx, 0, 0, GFP_KERNEL); mutex_unlock(&ctx_id_mutex); if (ctx->id < 0) goto error; list_add_tail(&ctx->file_list, &file->ctxs); return ctx; error: kfree(ctx); return NULL; } static void ib_ucm_event_req_get(struct ib_ucm_req_event_resp *ureq, struct ib_cm_req_event_param *kreq) { ureq->remote_ca_guid = kreq->remote_ca_guid; ureq->remote_qkey = kreq->remote_qkey; ureq->remote_qpn = kreq->remote_qpn; ureq->qp_type = kreq->qp_type; ureq->starting_psn = kreq->starting_psn; ureq->responder_resources = kreq->responder_resources; ureq->initiator_depth = kreq->initiator_depth; ureq->local_cm_response_timeout = kreq->local_cm_response_timeout; ureq->flow_control = kreq->flow_control; ureq->remote_cm_response_timeout = kreq->remote_cm_response_timeout; ureq->retry_count = kreq->retry_count; ureq->rnr_retry_count = kreq->rnr_retry_count; ureq->srq = kreq->srq; ureq->port = kreq->port; ib_copy_path_rec_to_user(&ureq->primary_path, kreq->primary_path); if (kreq->alternate_path) ib_copy_path_rec_to_user(&ureq->alternate_path, kreq->alternate_path); } static void ib_ucm_event_rep_get(struct ib_ucm_rep_event_resp *urep, struct ib_cm_rep_event_param *krep) { urep->remote_ca_guid = krep->remote_ca_guid; urep->remote_qkey = krep->remote_qkey; urep->remote_qpn = krep->remote_qpn; urep->starting_psn = krep->starting_psn; urep->responder_resources = krep->responder_resources; urep->initiator_depth = krep->initiator_depth; urep->target_ack_delay = krep->target_ack_delay; urep->failover_accepted = krep->failover_accepted; urep->flow_control = krep->flow_control; urep->rnr_retry_count = krep->rnr_retry_count; urep->srq = krep->srq; } static void ib_ucm_event_sidr_rep_get(struct ib_ucm_sidr_rep_event_resp *urep, struct ib_cm_sidr_rep_event_param *krep) { urep->status = krep->status; urep->qkey = krep->qkey; urep->qpn = krep->qpn; }; static int ib_ucm_event_process(struct ib_cm_event *evt, struct ib_ucm_event *uvt) { void *info = NULL; switch (evt->event) { case IB_CM_REQ_RECEIVED: ib_ucm_event_req_get(&uvt->resp.u.req_resp, &evt->param.req_rcvd); uvt->data_len = IB_CM_REQ_PRIVATE_DATA_SIZE; uvt->resp.present = IB_UCM_PRES_PRIMARY; uvt->resp.present |= (evt->param.req_rcvd.alternate_path ? IB_UCM_PRES_ALTERNATE : 0); break; case IB_CM_REP_RECEIVED: ib_ucm_event_rep_get(&uvt->resp.u.rep_resp, &evt->param.rep_rcvd); uvt->data_len = IB_CM_REP_PRIVATE_DATA_SIZE; break; case IB_CM_RTU_RECEIVED: uvt->data_len = IB_CM_RTU_PRIVATE_DATA_SIZE; uvt->resp.u.send_status = evt->param.send_status; break; case IB_CM_DREQ_RECEIVED: uvt->data_len = IB_CM_DREQ_PRIVATE_DATA_SIZE; uvt->resp.u.send_status = evt->param.send_status; break; case IB_CM_DREP_RECEIVED: uvt->data_len = IB_CM_DREP_PRIVATE_DATA_SIZE; uvt->resp.u.send_status = evt->param.send_status; break; case IB_CM_MRA_RECEIVED: uvt->resp.u.mra_resp.timeout = evt->param.mra_rcvd.service_timeout; uvt->data_len = IB_CM_MRA_PRIVATE_DATA_SIZE; break; case IB_CM_REJ_RECEIVED: uvt->resp.u.rej_resp.reason = evt->param.rej_rcvd.reason; uvt->data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; uvt->info_len = evt->param.rej_rcvd.ari_length; info = evt->param.rej_rcvd.ari; break; case IB_CM_LAP_RECEIVED: ib_copy_path_rec_to_user(&uvt->resp.u.lap_resp.path, evt->param.lap_rcvd.alternate_path); uvt->data_len = IB_CM_LAP_PRIVATE_DATA_SIZE; uvt->resp.present = IB_UCM_PRES_ALTERNATE; break; case IB_CM_APR_RECEIVED: uvt->resp.u.apr_resp.status = evt->param.apr_rcvd.ap_status; uvt->data_len = IB_CM_APR_PRIVATE_DATA_SIZE; uvt->info_len = evt->param.apr_rcvd.info_len; info = evt->param.apr_rcvd.apr_info; break; case IB_CM_SIDR_REQ_RECEIVED: uvt->resp.u.sidr_req_resp.pkey = evt->param.sidr_req_rcvd.pkey; uvt->resp.u.sidr_req_resp.port = evt->param.sidr_req_rcvd.port; uvt->data_len = IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE; break; case IB_CM_SIDR_REP_RECEIVED: ib_ucm_event_sidr_rep_get(&uvt->resp.u.sidr_rep_resp, &evt->param.sidr_rep_rcvd); uvt->data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; uvt->info_len = evt->param.sidr_rep_rcvd.info_len; info = evt->param.sidr_rep_rcvd.info; break; default: uvt->resp.u.send_status = evt->param.send_status; break; } if (uvt->data_len) { uvt->data = kmemdup(evt->private_data, uvt->data_len, GFP_KERNEL); if (!uvt->data) goto err1; uvt->resp.present |= IB_UCM_PRES_DATA; } if (uvt->info_len) { uvt->info = kmemdup(info, uvt->info_len, GFP_KERNEL); if (!uvt->info) goto err2; uvt->resp.present |= IB_UCM_PRES_INFO; } return 0; err2: kfree(uvt->data); err1: return -ENOMEM; } static int ib_ucm_event_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) { struct ib_ucm_event *uevent; struct ib_ucm_context *ctx; int result = 0; ctx = cm_id->context; uevent = kzalloc(sizeof *uevent, GFP_KERNEL); if (!uevent) goto err1; uevent->ctx = ctx; uevent->cm_id = cm_id; uevent->resp.uid = ctx->uid; uevent->resp.id = ctx->id; uevent->resp.event = event->event; result = ib_ucm_event_process(event, uevent); if (result) goto err2; mutex_lock(&ctx->file->file_mutex); list_add_tail(&uevent->file_list, &ctx->file->events); list_add_tail(&uevent->ctx_list, &ctx->events); wake_up_interruptible(&ctx->file->poll_wait); mutex_unlock(&ctx->file->file_mutex); return 0; err2: kfree(uevent); err1: /* Destroy new cm_id's */ return ib_ucm_new_cm_id(event->event); } static ssize_t ib_ucm_event(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_context *ctx; struct ib_ucm_event_get cmd; struct ib_ucm_event *uevent; int result = 0; if (out_len < sizeof(struct ib_ucm_event_resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; mutex_lock(&file->file_mutex); while (list_empty(&file->events)) { mutex_unlock(&file->file_mutex); if (file->filp->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(file->poll_wait, !list_empty(&file->events))) return -ERESTARTSYS; mutex_lock(&file->file_mutex); } uevent = list_entry(file->events.next, struct ib_ucm_event, file_list); if (ib_ucm_new_cm_id(uevent->resp.event)) { ctx = ib_ucm_ctx_alloc(file); if (!ctx) { result = -ENOMEM; goto done; } ctx->cm_id = uevent->cm_id; ctx->cm_id->context = ctx; uevent->resp.id = ctx->id; } if (copy_to_user((void __user *)(unsigned long)cmd.response, &uevent->resp, sizeof(uevent->resp))) { result = -EFAULT; goto done; } if (uevent->data) { if (cmd.data_len < uevent->data_len) { result = -ENOMEM; goto done; } if (copy_to_user((void __user *)(unsigned long)cmd.data, uevent->data, uevent->data_len)) { result = -EFAULT; goto done; } } if (uevent->info) { if (cmd.info_len < uevent->info_len) { result = -ENOMEM; goto done; } if (copy_to_user((void __user *)(unsigned long)cmd.info, uevent->info, uevent->info_len)) { result = -EFAULT; goto done; } } list_del(&uevent->file_list); list_del(&uevent->ctx_list); uevent->ctx->events_reported++; kfree(uevent->data); kfree(uevent->info); kfree(uevent); done: mutex_unlock(&file->file_mutex); return result; } static ssize_t ib_ucm_create_id(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_create_id cmd; struct ib_ucm_create_id_resp resp; struct ib_ucm_context *ctx; int result; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; mutex_lock(&file->file_mutex); ctx = ib_ucm_ctx_alloc(file); mutex_unlock(&file->file_mutex); if (!ctx) return -ENOMEM; ctx->uid = cmd.uid; ctx->cm_id = ib_create_cm_id(file->device->ib_dev, ib_ucm_event_handler, ctx); if (IS_ERR(ctx->cm_id)) { result = PTR_ERR(ctx->cm_id); goto err1; } resp.id = ctx->id; if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) { result = -EFAULT; goto err2; } return 0; err2: ib_destroy_cm_id(ctx->cm_id); err1: mutex_lock(&ctx_id_mutex); idr_remove(&ctx_id_table, ctx->id); mutex_unlock(&ctx_id_mutex); kfree(ctx); return result; } static ssize_t ib_ucm_destroy_id(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_destroy_id cmd; struct ib_ucm_destroy_id_resp resp; struct ib_ucm_context *ctx; int result = 0; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; mutex_lock(&ctx_id_mutex); ctx = idr_find(&ctx_id_table, cmd.id); if (!ctx) ctx = ERR_PTR(-ENOENT); else if (ctx->file != file) ctx = ERR_PTR(-EINVAL); else idr_remove(&ctx_id_table, ctx->id); mutex_unlock(&ctx_id_mutex); if (IS_ERR(ctx)) return PTR_ERR(ctx); ib_ucm_ctx_put(ctx); wait_for_completion(&ctx->comp); /* No new events will be generated after destroying the cm_id. */ ib_destroy_cm_id(ctx->cm_id); /* Cleanup events not yet reported to the user. */ ib_ucm_cleanup_events(ctx); resp.events_reported = ctx->events_reported; if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) result = -EFAULT; kfree(ctx); return result; } static ssize_t ib_ucm_attr_id(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_attr_id_resp resp; struct ib_ucm_attr_id cmd; struct ib_ucm_context *ctx; int result = 0; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ib_ucm_ctx_get(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); resp.service_id = ctx->cm_id->service_id; resp.service_mask = ctx->cm_id->service_mask; resp.local_id = ctx->cm_id->local_id; resp.remote_id = ctx->cm_id->remote_id; if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) result = -EFAULT; ib_ucm_ctx_put(ctx); return result; } static ssize_t ib_ucm_init_qp_attr(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_uverbs_qp_attr resp; struct ib_ucm_init_qp_attr cmd; struct ib_ucm_context *ctx; struct ib_qp_attr qp_attr; int result = 0; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ib_ucm_ctx_get(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); resp.qp_attr_mask = 0; memset(&qp_attr, 0, sizeof qp_attr); qp_attr.qp_state = cmd.qp_state; result = ib_cm_init_qp_attr(ctx->cm_id, &qp_attr, &resp.qp_attr_mask); if (result) goto out; ib_copy_qp_attr_to_user(&resp, &qp_attr); if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) result = -EFAULT; out: ib_ucm_ctx_put(ctx); return result; } static int ucm_validate_listen(__be64 service_id, __be64 service_mask) { service_id &= service_mask; if (((service_id & IB_CMA_SERVICE_ID_MASK) == IB_CMA_SERVICE_ID) || ((service_id & IB_SDP_SERVICE_ID_MASK) == IB_SDP_SERVICE_ID)) return -EINVAL; return 0; } static ssize_t ib_ucm_listen(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_listen cmd; struct ib_ucm_context *ctx; int result; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ib_ucm_ctx_get(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); result = ucm_validate_listen(cmd.service_id, cmd.service_mask); if (result) goto out; result = ib_cm_listen(ctx->cm_id, cmd.service_id, cmd.service_mask); out: ib_ucm_ctx_put(ctx); return result; } static ssize_t ib_ucm_notify(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_notify cmd; struct ib_ucm_context *ctx; int result; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ib_ucm_ctx_get(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); result = ib_cm_notify(ctx->cm_id, (enum ib_event_type) cmd.event); ib_ucm_ctx_put(ctx); return result; } static int ib_ucm_alloc_data(const void **dest, u64 src, u32 len) { void *data; *dest = NULL; if (!len) return 0; data = memdup_user((void __user *)(unsigned long)src, len); if (IS_ERR(data)) return PTR_ERR(data); *dest = data; return 0; } static int ib_ucm_path_get(struct ib_sa_path_rec **path, u64 src) { struct ib_user_path_rec upath; struct ib_sa_path_rec *sa_path; *path = NULL; if (!src) return 0; sa_path = kmalloc(sizeof(*sa_path), GFP_KERNEL); if (!sa_path) return -ENOMEM; if (copy_from_user(&upath, (void __user *)(unsigned long)src, sizeof(upath))) { kfree(sa_path); return -EFAULT; } ib_copy_path_rec_from_user(sa_path, &upath); *path = sa_path; return 0; } static ssize_t ib_ucm_send_req(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_cm_req_param param; struct ib_ucm_context *ctx; struct ib_ucm_req cmd; int result; param.private_data = NULL; param.primary_path = NULL; param.alternate_path = NULL; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(¶m.private_data, cmd.data, cmd.len); if (result) goto done; result = ib_ucm_path_get(¶m.primary_path, cmd.primary_path); if (result) goto done; result = ib_ucm_path_get(¶m.alternate_path, cmd.alternate_path); if (result) goto done; param.private_data_len = cmd.len; param.service_id = cmd.sid; param.qp_num = cmd.qpn; param.qp_type = cmd.qp_type; param.starting_psn = cmd.psn; param.peer_to_peer = cmd.peer_to_peer; param.responder_resources = cmd.responder_resources; param.initiator_depth = cmd.initiator_depth; param.remote_cm_response_timeout = cmd.remote_cm_response_timeout; param.flow_control = cmd.flow_control; param.local_cm_response_timeout = cmd.local_cm_response_timeout; param.retry_count = cmd.retry_count; param.rnr_retry_count = cmd.rnr_retry_count; param.max_cm_retries = cmd.max_cm_retries; param.srq = cmd.srq; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { result = ib_send_cm_req(ctx->cm_id, ¶m); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); done: kfree(param.private_data); kfree(param.primary_path); kfree(param.alternate_path); return result; } static ssize_t ib_ucm_send_rep(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_cm_rep_param param; struct ib_ucm_context *ctx; struct ib_ucm_rep cmd; int result; param.private_data = NULL; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(¶m.private_data, cmd.data, cmd.len); if (result) return result; param.qp_num = cmd.qpn; param.starting_psn = cmd.psn; param.private_data_len = cmd.len; param.responder_resources = cmd.responder_resources; param.initiator_depth = cmd.initiator_depth; param.failover_accepted = cmd.failover_accepted; param.flow_control = cmd.flow_control; param.rnr_retry_count = cmd.rnr_retry_count; param.srq = cmd.srq; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { ctx->uid = cmd.uid; result = ib_send_cm_rep(ctx->cm_id, ¶m); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); kfree(param.private_data); return result; } static ssize_t ib_ucm_send_private_data(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int (*func)(struct ib_cm_id *cm_id, const void *private_data, u8 private_data_len)) { struct ib_ucm_private_data cmd; struct ib_ucm_context *ctx; const void *private_data = NULL; int result; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(&private_data, cmd.data, cmd.len); if (result) return result; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { result = func(ctx->cm_id, private_data, cmd.len); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); kfree(private_data); return result; } static ssize_t ib_ucm_send_rtu(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { return ib_ucm_send_private_data(file, inbuf, in_len, ib_send_cm_rtu); } static ssize_t ib_ucm_send_dreq(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { return ib_ucm_send_private_data(file, inbuf, in_len, ib_send_cm_dreq); } static ssize_t ib_ucm_send_drep(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { return ib_ucm_send_private_data(file, inbuf, in_len, ib_send_cm_drep); } static ssize_t ib_ucm_send_info(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int (*func)(struct ib_cm_id *cm_id, int status, const void *info, u8 info_len, const void *data, u8 data_len)) { struct ib_ucm_context *ctx; struct ib_ucm_info cmd; const void *data = NULL; const void *info = NULL; int result; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(&data, cmd.data, cmd.data_len); if (result) goto done; result = ib_ucm_alloc_data(&info, cmd.info, cmd.info_len); if (result) goto done; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { result = func(ctx->cm_id, cmd.status, info, cmd.info_len, data, cmd.data_len); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); done: kfree(data); kfree(info); return result; } static ssize_t ib_ucm_send_rej(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { return ib_ucm_send_info(file, inbuf, in_len, (void *)ib_send_cm_rej); } static ssize_t ib_ucm_send_apr(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { return ib_ucm_send_info(file, inbuf, in_len, (void *)ib_send_cm_apr); } static ssize_t ib_ucm_send_mra(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_context *ctx; struct ib_ucm_mra cmd; const void *data = NULL; int result; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(&data, cmd.data, cmd.len); if (result) return result; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { result = ib_send_cm_mra(ctx->cm_id, cmd.timeout, data, cmd.len); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); kfree(data); return result; } static ssize_t ib_ucm_send_lap(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_ucm_context *ctx; struct ib_sa_path_rec *path = NULL; struct ib_ucm_lap cmd; const void *data = NULL; int result; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(&data, cmd.data, cmd.len); if (result) goto done; result = ib_ucm_path_get(&path, cmd.path); if (result) goto done; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { result = ib_send_cm_lap(ctx->cm_id, path, data, cmd.len); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); done: kfree(data); kfree(path); return result; } static ssize_t ib_ucm_send_sidr_req(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_cm_sidr_req_param param; struct ib_ucm_context *ctx; struct ib_ucm_sidr_req cmd; int result; param.private_data = NULL; param.path = NULL; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(¶m.private_data, cmd.data, cmd.len); if (result) goto done; result = ib_ucm_path_get(¶m.path, cmd.path); if (result) goto done; param.private_data_len = cmd.len; param.service_id = cmd.sid; param.timeout_ms = cmd.timeout; param.max_cm_retries = cmd.max_cm_retries; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { result = ib_send_cm_sidr_req(ctx->cm_id, ¶m); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); done: kfree(param.private_data); kfree(param.path); return result; } static ssize_t ib_ucm_send_sidr_rep(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) { struct ib_cm_sidr_rep_param param; struct ib_ucm_sidr_rep cmd; struct ib_ucm_context *ctx; int result; param.info = NULL; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; result = ib_ucm_alloc_data(¶m.private_data, cmd.data, cmd.data_len); if (result) goto done; result = ib_ucm_alloc_data(¶m.info, cmd.info, cmd.info_len); if (result) goto done; param.qp_num = cmd.qpn; param.qkey = cmd.qkey; param.status = cmd.status; param.info_length = cmd.info_len; param.private_data_len = cmd.data_len; ctx = ib_ucm_ctx_get(file, cmd.id); if (!IS_ERR(ctx)) { result = ib_send_cm_sidr_rep(ctx->cm_id, ¶m); ib_ucm_ctx_put(ctx); } else result = PTR_ERR(ctx); done: kfree(param.private_data); kfree(param.info); return result; } static ssize_t (*ucm_cmd_table[])(struct ib_ucm_file *file, const char __user *inbuf, int in_len, int out_len) = { [IB_USER_CM_CMD_CREATE_ID] = ib_ucm_create_id, [IB_USER_CM_CMD_DESTROY_ID] = ib_ucm_destroy_id, [IB_USER_CM_CMD_ATTR_ID] = ib_ucm_attr_id, [IB_USER_CM_CMD_LISTEN] = ib_ucm_listen, [IB_USER_CM_CMD_NOTIFY] = ib_ucm_notify, [IB_USER_CM_CMD_SEND_REQ] = ib_ucm_send_req, [IB_USER_CM_CMD_SEND_REP] = ib_ucm_send_rep, [IB_USER_CM_CMD_SEND_RTU] = ib_ucm_send_rtu, [IB_USER_CM_CMD_SEND_DREQ] = ib_ucm_send_dreq, [IB_USER_CM_CMD_SEND_DREP] = ib_ucm_send_drep, [IB_USER_CM_CMD_SEND_REJ] = ib_ucm_send_rej, [IB_USER_CM_CMD_SEND_MRA] = ib_ucm_send_mra, [IB_USER_CM_CMD_SEND_LAP] = ib_ucm_send_lap, [IB_USER_CM_CMD_SEND_APR] = ib_ucm_send_apr, [IB_USER_CM_CMD_SEND_SIDR_REQ] = ib_ucm_send_sidr_req, [IB_USER_CM_CMD_SEND_SIDR_REP] = ib_ucm_send_sidr_rep, [IB_USER_CM_CMD_EVENT] = ib_ucm_event, [IB_USER_CM_CMD_INIT_QP_ATTR] = ib_ucm_init_qp_attr, }; static ssize_t ib_ucm_write(struct file *filp, const char __user *buf, size_t len, loff_t *pos) { struct ib_ucm_file *file = filp->private_data; struct ib_ucm_cmd_hdr hdr; ssize_t result; if (WARN_ON_ONCE(!ib_safe_file_access(filp))) return -EACCES; if (len < sizeof(hdr)) return -EINVAL; if (copy_from_user(&hdr, buf, sizeof(hdr))) return -EFAULT; if (hdr.cmd >= ARRAY_SIZE(ucm_cmd_table)) return -EINVAL; if (hdr.in + sizeof(hdr) > len) return -EINVAL; result = ucm_cmd_table[hdr.cmd](file, buf + sizeof(hdr), hdr.in, hdr.out); if (!result) result = len; return result; } static unsigned int ib_ucm_poll(struct file *filp, struct poll_table_struct *wait) { struct ib_ucm_file *file = filp->private_data; unsigned int mask = 0; poll_wait(filp, &file->poll_wait, wait); if (!list_empty(&file->events)) mask = POLLIN | POLLRDNORM; return mask; } /* * ib_ucm_open() does not need the BKL: * * - no global state is referred to; * - there is no ioctl method to race against; * - no further module initialization is required for open to work * after the device is registered. */ static int ib_ucm_open(struct inode *inode, struct file *filp) { struct ib_ucm_file *file; file = kmalloc(sizeof(*file), GFP_KERNEL); if (!file) return -ENOMEM; INIT_LIST_HEAD(&file->events); INIT_LIST_HEAD(&file->ctxs); init_waitqueue_head(&file->poll_wait); mutex_init(&file->file_mutex); filp->private_data = file; file->filp = filp; file->device = container_of(inode->i_cdev->si_drv1, struct ib_ucm_device, cdev); return nonseekable_open(inode, filp); } static int ib_ucm_close(struct inode *inode, struct file *filp) { struct ib_ucm_file *file = filp->private_data; struct ib_ucm_context *ctx; mutex_lock(&file->file_mutex); while (!list_empty(&file->ctxs)) { ctx = list_entry(file->ctxs.next, struct ib_ucm_context, file_list); mutex_unlock(&file->file_mutex); mutex_lock(&ctx_id_mutex); idr_remove(&ctx_id_table, ctx->id); mutex_unlock(&ctx_id_mutex); ib_destroy_cm_id(ctx->cm_id); ib_ucm_cleanup_events(ctx); kfree(ctx); mutex_lock(&file->file_mutex); } mutex_unlock(&file->file_mutex); kfree(file); return 0; } static DECLARE_BITMAP(overflow_map, IB_UCM_MAX_DEVICES); static void ib_ucm_release_dev(struct device *dev) { struct ib_ucm_device *ucm_dev; ucm_dev = container_of(dev, struct ib_ucm_device, dev); cdev_del(&ucm_dev->cdev); if (ucm_dev->devnum < IB_UCM_MAX_DEVICES) clear_bit(ucm_dev->devnum, dev_map); else clear_bit(ucm_dev->devnum - IB_UCM_MAX_DEVICES, overflow_map); kfree(ucm_dev); } static const struct file_operations ucm_fops = { .owner = THIS_MODULE, .open = ib_ucm_open, .release = ib_ucm_close, .write = ib_ucm_write, .poll = ib_ucm_poll, .llseek = no_llseek, }; static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, char *buf) { struct ib_ucm_device *ucm_dev; ucm_dev = container_of(dev, struct ib_ucm_device, dev); return sprintf(buf, "%s\n", ucm_dev->ib_dev->name); } static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); static dev_t overflow_maj; static int find_overflow_devnum(void) { int ret; if (!overflow_maj) { ret = alloc_chrdev_region(&overflow_maj, 0, IB_UCM_MAX_DEVICES, "infiniband_cm"); if (ret) { pr_err("ucm: couldn't register dynamic device number\n"); return ret; } } ret = find_first_zero_bit(overflow_map, IB_UCM_MAX_DEVICES); if (ret >= IB_UCM_MAX_DEVICES) return -1; return ret; } static void ib_ucm_add_one(struct ib_device *device) { int devnum; dev_t base; struct ib_ucm_device *ucm_dev; if (!device->alloc_ucontext || !rdma_cap_ib_cm(device, 1)) return; ucm_dev = kzalloc(sizeof *ucm_dev, GFP_KERNEL); if (!ucm_dev) return; ucm_dev->ib_dev = device; devnum = find_first_zero_bit(dev_map, IB_UCM_MAX_DEVICES); if (devnum >= IB_UCM_MAX_DEVICES) { devnum = find_overflow_devnum(); if (devnum < 0) goto err; ucm_dev->devnum = devnum + IB_UCM_MAX_DEVICES; base = devnum + overflow_maj; set_bit(devnum, overflow_map); } else { ucm_dev->devnum = devnum; base = devnum + IB_UCM_BASE_DEV; set_bit(devnum, dev_map); } cdev_init(&ucm_dev->cdev, &ucm_fops); ucm_dev->cdev.owner = THIS_MODULE; kobject_set_name(&ucm_dev->cdev.kobj, "ucm%d", ucm_dev->devnum); if (cdev_add(&ucm_dev->cdev, base, 1)) goto err; ucm_dev->dev.class = &cm_class; ucm_dev->dev.parent = device->dma_device; ucm_dev->dev.devt = ucm_dev->cdev.dev; ucm_dev->dev.release = ib_ucm_release_dev; dev_set_name(&ucm_dev->dev, "ucm%d", ucm_dev->devnum); if (device_register(&ucm_dev->dev)) goto err_cdev; if (device_create_file(&ucm_dev->dev, &dev_attr_ibdev)) goto err_dev; ib_set_client_data(device, &ucm_client, ucm_dev); return; err_dev: device_unregister(&ucm_dev->dev); err_cdev: cdev_del(&ucm_dev->cdev); if (ucm_dev->devnum < IB_UCM_MAX_DEVICES) clear_bit(devnum, dev_map); else clear_bit(devnum, overflow_map); err: kfree(ucm_dev); return; } static void ib_ucm_remove_one(struct ib_device *device, void *client_data) { struct ib_ucm_device *ucm_dev = client_data; if (!ucm_dev) return; device_unregister(&ucm_dev->dev); } static CLASS_ATTR_STRING(abi_version, S_IRUGO, __stringify(IB_USER_CM_ABI_VERSION)); static int __init ib_ucm_init(void) { int ret; ret = register_chrdev_region(IB_UCM_BASE_DEV, IB_UCM_MAX_DEVICES, "infiniband_cm"); if (ret) { pr_err("ucm: couldn't register device number\n"); goto error1; } ret = class_create_file(&cm_class, &class_attr_abi_version.attr); if (ret) { pr_err("ucm: couldn't create abi_version attribute\n"); goto error2; } ret = ib_register_client(&ucm_client); if (ret) { pr_err("ucm: couldn't register client\n"); goto error3; } return 0; error3: class_remove_file(&cm_class, &class_attr_abi_version.attr); error2: unregister_chrdev_region(IB_UCM_BASE_DEV, IB_UCM_MAX_DEVICES); error1: return ret; } static void __exit ib_ucm_cleanup(void) { ib_unregister_client(&ucm_client); class_remove_file(&cm_class, &class_attr_abi_version.attr); unregister_chrdev_region(IB_UCM_BASE_DEV, IB_UCM_MAX_DEVICES); if (overflow_maj) unregister_chrdev_region(overflow_maj, IB_UCM_MAX_DEVICES); idr_destroy(&ctx_id_table); } -module_init_order(ib_ucm_init, SI_ORDER_THIRD); -module_exit(ib_ucm_cleanup); +module_init_order(ib_ucm_init, SI_ORDER_FIFTH); +module_exit_order(ib_ucm_cleanup, SI_ORDER_FIFTH); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_ucma.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_ucma.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_ucma.c (revision 363151) @@ -1,1786 +1,1786 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Sean Hefty"); MODULE_DESCRIPTION("RDMA Userspace Connection Manager Access"); MODULE_LICENSE("Dual BSD/GPL"); static unsigned int max_backlog = 1024; struct ucma_file { struct mutex mut; struct file *filp; struct list_head ctx_list; struct list_head event_list; wait_queue_head_t poll_wait; struct workqueue_struct *close_wq; }; struct ucma_context { int id; struct completion comp; atomic_t ref; int events_reported; int backlog; struct ucma_file *file; struct rdma_cm_id *cm_id; u64 uid; struct list_head list; struct list_head mc_list; /* mark that device is in process of destroying the internal HW * resources, protected by the global mut */ int closing; /* sync between removal event and id destroy, protected by file mut */ int destroying; struct work_struct close_work; }; struct ucma_multicast { struct ucma_context *ctx; int id; int events_reported; u64 uid; u8 join_state; struct list_head list; struct sockaddr_storage addr; }; struct ucma_event { struct ucma_context *ctx; struct ucma_multicast *mc; struct list_head list; struct rdma_cm_id *cm_id; struct rdma_ucm_event_resp resp; struct work_struct close_work; }; static DEFINE_MUTEX(mut); static DEFINE_IDR(ctx_idr); static DEFINE_IDR(multicast_idr); static inline struct ucma_context *_ucma_find_context(int id, struct ucma_file *file) { struct ucma_context *ctx; ctx = idr_find(&ctx_idr, id); if (!ctx) ctx = ERR_PTR(-ENOENT); else if (ctx->file != file || !ctx->cm_id) ctx = ERR_PTR(-EINVAL); return ctx; } static struct ucma_context *ucma_get_ctx(struct ucma_file *file, int id) { struct ucma_context *ctx; mutex_lock(&mut); ctx = _ucma_find_context(id, file); if (!IS_ERR(ctx)) { if (ctx->closing) ctx = ERR_PTR(-EIO); else atomic_inc(&ctx->ref); } mutex_unlock(&mut); return ctx; } static void ucma_put_ctx(struct ucma_context *ctx) { if (atomic_dec_and_test(&ctx->ref)) complete(&ctx->comp); } /* * Same as ucm_get_ctx but requires that ->cm_id->device is valid, eg that the * CM_ID is bound. */ static struct ucma_context *ucma_get_ctx_dev(struct ucma_file *file, int id) { struct ucma_context *ctx = ucma_get_ctx(file, id); if (IS_ERR(ctx)) return ctx; if (!ctx->cm_id->device) { ucma_put_ctx(ctx); return ERR_PTR(-EINVAL); } return ctx; } static void ucma_close_event_id(struct work_struct *work) { struct ucma_event *uevent_close = container_of(work, struct ucma_event, close_work); rdma_destroy_id(uevent_close->cm_id); kfree(uevent_close); } static void ucma_close_id(struct work_struct *work) { struct ucma_context *ctx = container_of(work, struct ucma_context, close_work); /* once all inflight tasks are finished, we close all underlying * resources. The context is still alive till its explicit destryoing * by its creator. */ ucma_put_ctx(ctx); wait_for_completion(&ctx->comp); /* No new events will be generated after destroying the id. */ rdma_destroy_id(ctx->cm_id); } static struct ucma_context *ucma_alloc_ctx(struct ucma_file *file) { struct ucma_context *ctx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; INIT_WORK(&ctx->close_work, ucma_close_id); atomic_set(&ctx->ref, 1); init_completion(&ctx->comp); INIT_LIST_HEAD(&ctx->mc_list); ctx->file = file; mutex_lock(&mut); ctx->id = idr_alloc(&ctx_idr, ctx, 0, 0, GFP_KERNEL); mutex_unlock(&mut); if (ctx->id < 0) goto error; list_add_tail(&ctx->list, &file->ctx_list); return ctx; error: kfree(ctx); return NULL; } static struct ucma_multicast* ucma_alloc_multicast(struct ucma_context *ctx) { struct ucma_multicast *mc; mc = kzalloc(sizeof(*mc), GFP_KERNEL); if (!mc) return NULL; mutex_lock(&mut); mc->id = idr_alloc(&multicast_idr, mc, 0, 0, GFP_KERNEL); mutex_unlock(&mut); if (mc->id < 0) goto error; mc->ctx = ctx; list_add_tail(&mc->list, &ctx->mc_list); return mc; error: kfree(mc); return NULL; } static void ucma_copy_conn_event(struct rdma_ucm_conn_param *dst, struct rdma_conn_param *src) { if (src->private_data_len) memcpy(dst->private_data, src->private_data, src->private_data_len); dst->private_data_len = src->private_data_len; dst->responder_resources =src->responder_resources; dst->initiator_depth = src->initiator_depth; dst->flow_control = src->flow_control; dst->retry_count = src->retry_count; dst->rnr_retry_count = src->rnr_retry_count; dst->srq = src->srq; dst->qp_num = src->qp_num; } static void ucma_copy_ud_event(struct rdma_ucm_ud_param *dst, struct rdma_ud_param *src) { if (src->private_data_len) memcpy(dst->private_data, src->private_data, src->private_data_len); dst->private_data_len = src->private_data_len; ib_copy_ah_attr_to_user(&dst->ah_attr, &src->ah_attr); dst->qp_num = src->qp_num; dst->qkey = src->qkey; } static void ucma_set_event_context(struct ucma_context *ctx, struct rdma_cm_event *event, struct ucma_event *uevent) { uevent->ctx = ctx; switch (event->event) { case RDMA_CM_EVENT_MULTICAST_JOIN: case RDMA_CM_EVENT_MULTICAST_ERROR: uevent->mc = __DECONST(struct ucma_multicast *, event->param.ud.private_data); uevent->resp.uid = uevent->mc->uid; uevent->resp.id = uevent->mc->id; break; default: uevent->resp.uid = ctx->uid; uevent->resp.id = ctx->id; break; } } /* Called with file->mut locked for the relevant context. */ static void ucma_removal_event_handler(struct rdma_cm_id *cm_id) { struct ucma_context *ctx = cm_id->context; struct ucma_event *con_req_eve; int event_found = 0; if (ctx->destroying) return; /* only if context is pointing to cm_id that it owns it and can be * queued to be closed, otherwise that cm_id is an inflight one that * is part of that context event list pending to be detached and * reattached to its new context as part of ucma_get_event, * handled separately below. */ if (ctx->cm_id == cm_id) { mutex_lock(&mut); ctx->closing = 1; mutex_unlock(&mut); queue_work(ctx->file->close_wq, &ctx->close_work); return; } list_for_each_entry(con_req_eve, &ctx->file->event_list, list) { if (con_req_eve->cm_id == cm_id && con_req_eve->resp.event == RDMA_CM_EVENT_CONNECT_REQUEST) { list_del(&con_req_eve->list); INIT_WORK(&con_req_eve->close_work, ucma_close_event_id); queue_work(ctx->file->close_wq, &con_req_eve->close_work); event_found = 1; break; } } if (!event_found) pr_err("ucma_removal_event_handler: warning: connect request event wasn't found\n"); } static int ucma_event_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct ucma_event *uevent; struct ucma_context *ctx = cm_id->context; int ret = 0; uevent = kzalloc(sizeof(*uevent), GFP_KERNEL); if (!uevent) return event->event == RDMA_CM_EVENT_CONNECT_REQUEST; mutex_lock(&ctx->file->mut); uevent->cm_id = cm_id; ucma_set_event_context(ctx, event, uevent); uevent->resp.event = event->event; uevent->resp.status = event->status; if (cm_id->qp_type == IB_QPT_UD) ucma_copy_ud_event(&uevent->resp.param.ud, &event->param.ud); else ucma_copy_conn_event(&uevent->resp.param.conn, &event->param.conn); if (event->event == RDMA_CM_EVENT_CONNECT_REQUEST) { if (!ctx->backlog) { ret = -ENOMEM; kfree(uevent); goto out; } ctx->backlog--; } else if (!ctx->uid || ctx->cm_id != cm_id) { /* * We ignore events for new connections until userspace has set * their context. This can only happen if an error occurs on a * new connection before the user accepts it. This is okay, * since the accept will just fail later. However, we do need * to release the underlying HW resources in case of a device * removal event. */ if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) ucma_removal_event_handler(cm_id); kfree(uevent); goto out; } list_add_tail(&uevent->list, &ctx->file->event_list); wake_up_interruptible(&ctx->file->poll_wait); if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) ucma_removal_event_handler(cm_id); out: mutex_unlock(&ctx->file->mut); return ret; } static ssize_t ucma_get_event(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct ucma_context *ctx; struct rdma_ucm_get_event cmd; struct ucma_event *uevent; int ret = 0; if (out_len < sizeof uevent->resp) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; mutex_lock(&file->mut); while (list_empty(&file->event_list)) { mutex_unlock(&file->mut); if (file->filp->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(file->poll_wait, !list_empty(&file->event_list))) return -ERESTARTSYS; mutex_lock(&file->mut); } uevent = list_entry(file->event_list.next, struct ucma_event, list); if (uevent->resp.event == RDMA_CM_EVENT_CONNECT_REQUEST) { ctx = ucma_alloc_ctx(file); if (!ctx) { ret = -ENOMEM; goto done; } uevent->ctx->backlog++; ctx->cm_id = uevent->cm_id; ctx->cm_id->context = ctx; uevent->resp.id = ctx->id; } if (copy_to_user((void __user *)(unsigned long)cmd.response, &uevent->resp, sizeof uevent->resp)) { ret = -EFAULT; goto done; } list_del(&uevent->list); uevent->ctx->events_reported++; if (uevent->mc) uevent->mc->events_reported++; kfree(uevent); done: mutex_unlock(&file->mut); return ret; } static int ucma_get_qp_type(struct rdma_ucm_create_id *cmd, enum ib_qp_type *qp_type) { switch (cmd->ps) { case RDMA_PS_TCP: *qp_type = IB_QPT_RC; return 0; case RDMA_PS_UDP: case RDMA_PS_IPOIB: *qp_type = IB_QPT_UD; return 0; case RDMA_PS_IB: *qp_type = cmd->qp_type; return 0; default: return -EINVAL; } } static ssize_t ucma_create_id(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_create_id cmd; struct rdma_ucm_create_id_resp resp; struct ucma_context *ctx; struct rdma_cm_id *cm_id; enum ib_qp_type qp_type; int ret; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ret = ucma_get_qp_type(&cmd, &qp_type); if (ret) return ret; mutex_lock(&file->mut); ctx = ucma_alloc_ctx(file); mutex_unlock(&file->mut); if (!ctx) return -ENOMEM; ctx->uid = cmd.uid; cm_id = rdma_create_id(TD_TO_VNET(curthread), ucma_event_handler, ctx, cmd.ps, qp_type); if (IS_ERR(cm_id)) { ret = PTR_ERR(cm_id); goto err1; } resp.id = ctx->id; if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) { ret = -EFAULT; goto err2; } ctx->cm_id = cm_id; return 0; err2: rdma_destroy_id(cm_id); err1: mutex_lock(&mut); idr_remove(&ctx_idr, ctx->id); mutex_unlock(&mut); kfree(ctx); return ret; } static void ucma_cleanup_multicast(struct ucma_context *ctx) { struct ucma_multicast *mc, *tmp; mutex_lock(&mut); list_for_each_entry_safe(mc, tmp, &ctx->mc_list, list) { list_del(&mc->list); idr_remove(&multicast_idr, mc->id); kfree(mc); } mutex_unlock(&mut); } static void ucma_cleanup_mc_events(struct ucma_multicast *mc) { struct ucma_event *uevent, *tmp; list_for_each_entry_safe(uevent, tmp, &mc->ctx->file->event_list, list) { if (uevent->mc != mc) continue; list_del(&uevent->list); kfree(uevent); } } /* * ucma_free_ctx is called after the underlying rdma CM-ID is destroyed. At * this point, no new events will be reported from the hardware. However, we * still need to cleanup the UCMA context for this ID. Specifically, there * might be events that have not yet been consumed by the user space software. * These might include pending connect requests which we have not completed * processing. We cannot call rdma_destroy_id while holding the lock of the * context (file->mut), as it might cause a deadlock. We therefore extract all * relevant events from the context pending events list while holding the * mutex. After that we release them as needed. */ static int ucma_free_ctx(struct ucma_context *ctx) { int events_reported; struct ucma_event *uevent, *tmp; LIST_HEAD(list); ucma_cleanup_multicast(ctx); /* Cleanup events not yet reported to the user. */ mutex_lock(&ctx->file->mut); list_for_each_entry_safe(uevent, tmp, &ctx->file->event_list, list) { if (uevent->ctx == ctx) list_move_tail(&uevent->list, &list); } list_del(&ctx->list); mutex_unlock(&ctx->file->mut); list_for_each_entry_safe(uevent, tmp, &list, list) { list_del(&uevent->list); if (uevent->resp.event == RDMA_CM_EVENT_CONNECT_REQUEST) rdma_destroy_id(uevent->cm_id); kfree(uevent); } events_reported = ctx->events_reported; kfree(ctx); return events_reported; } static ssize_t ucma_destroy_id(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_destroy_id cmd; struct rdma_ucm_destroy_id_resp resp; struct ucma_context *ctx; int ret = 0; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; mutex_lock(&mut); ctx = _ucma_find_context(cmd.id, file); if (!IS_ERR(ctx)) idr_remove(&ctx_idr, ctx->id); mutex_unlock(&mut); if (IS_ERR(ctx)) return PTR_ERR(ctx); mutex_lock(&ctx->file->mut); ctx->destroying = 1; mutex_unlock(&ctx->file->mut); flush_workqueue(ctx->file->close_wq); /* At this point it's guaranteed that there is no inflight * closing task */ mutex_lock(&mut); if (!ctx->closing) { mutex_unlock(&mut); ucma_put_ctx(ctx); wait_for_completion(&ctx->comp); rdma_destroy_id(ctx->cm_id); } else { mutex_unlock(&mut); } resp.events_reported = ucma_free_ctx(ctx); if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) ret = -EFAULT; return ret; } static ssize_t ucma_bind_ip(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_bind_ip cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; if (!rdma_addr_size_in6(&cmd.addr)) return -EINVAL; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_bind_addr(ctx->cm_id, (struct sockaddr *) &cmd.addr); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_bind(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_bind cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; if (cmd.reserved || !cmd.addr_size || cmd.addr_size != rdma_addr_size_kss(&cmd.addr)) return -EINVAL; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_bind_addr(ctx->cm_id, (struct sockaddr *) &cmd.addr); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_resolve_ip(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_resolve_ip cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; if ((cmd.src_addr.sin6_family && !rdma_addr_size_in6(&cmd.src_addr)) || !rdma_addr_size_in6(&cmd.dst_addr)) return -EINVAL; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_resolve_addr(ctx->cm_id, (struct sockaddr *) &cmd.src_addr, (struct sockaddr *) &cmd.dst_addr, cmd.timeout_ms); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_resolve_addr(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_resolve_addr cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; if (cmd.reserved || (cmd.src_size && (cmd.src_size != rdma_addr_size_kss(&cmd.src_addr))) || !cmd.dst_size || (cmd.dst_size != rdma_addr_size_kss(&cmd.dst_addr))) return -EINVAL; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_resolve_addr(ctx->cm_id, (struct sockaddr *) &cmd.src_addr, (struct sockaddr *) &cmd.dst_addr, cmd.timeout_ms); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_resolve_route(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_resolve_route cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx_dev(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_resolve_route(ctx->cm_id, cmd.timeout_ms); ucma_put_ctx(ctx); return ret; } static void ucma_copy_ib_route(struct rdma_ucm_query_route_resp *resp, struct rdma_route *route) { struct rdma_dev_addr *dev_addr; resp->num_paths = route->num_paths; switch (route->num_paths) { case 0: dev_addr = &route->addr.dev_addr; rdma_addr_get_dgid(dev_addr, (union ib_gid *) &resp->ib_route[0].dgid); rdma_addr_get_sgid(dev_addr, (union ib_gid *) &resp->ib_route[0].sgid); resp->ib_route[0].pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); break; case 2: ib_copy_path_rec_to_user(&resp->ib_route[1], &route->path_rec[1]); /* fall through */ case 1: ib_copy_path_rec_to_user(&resp->ib_route[0], &route->path_rec[0]); break; default: break; } } static void ucma_copy_iboe_route(struct rdma_ucm_query_route_resp *resp, struct rdma_route *route) { resp->num_paths = route->num_paths; switch (route->num_paths) { case 0: rdma_ip2gid((struct sockaddr *)&route->addr.dst_addr, (union ib_gid *)&resp->ib_route[0].dgid); rdma_ip2gid((struct sockaddr *)&route->addr.src_addr, (union ib_gid *)&resp->ib_route[0].sgid); resp->ib_route[0].pkey = cpu_to_be16(0xffff); break; case 2: ib_copy_path_rec_to_user(&resp->ib_route[1], &route->path_rec[1]); /* fall through */ case 1: ib_copy_path_rec_to_user(&resp->ib_route[0], &route->path_rec[0]); break; default: break; } } static void ucma_copy_iw_route(struct rdma_ucm_query_route_resp *resp, struct rdma_route *route) { struct rdma_dev_addr *dev_addr; dev_addr = &route->addr.dev_addr; rdma_addr_get_dgid(dev_addr, (union ib_gid *) &resp->ib_route[0].dgid); rdma_addr_get_sgid(dev_addr, (union ib_gid *) &resp->ib_route[0].sgid); } static ssize_t ucma_query_route(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_query cmd; struct rdma_ucm_query_route_resp resp; struct ucma_context *ctx; struct sockaddr *addr; int ret = 0; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); memset(&resp, 0, sizeof resp); addr = (struct sockaddr *) &ctx->cm_id->route.addr.src_addr; memcpy(&resp.src_addr, addr, addr->sa_family == AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)); addr = (struct sockaddr *) &ctx->cm_id->route.addr.dst_addr; memcpy(&resp.dst_addr, addr, addr->sa_family == AF_INET ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)); if (!ctx->cm_id->device) goto out; resp.node_guid = (__force __u64) ctx->cm_id->device->node_guid; resp.port_num = ctx->cm_id->port_num; if (rdma_cap_ib_sa(ctx->cm_id->device, ctx->cm_id->port_num)) ucma_copy_ib_route(&resp, &ctx->cm_id->route); else if (rdma_protocol_roce(ctx->cm_id->device, ctx->cm_id->port_num)) ucma_copy_iboe_route(&resp, &ctx->cm_id->route); else if (rdma_protocol_iwarp(ctx->cm_id->device, ctx->cm_id->port_num)) ucma_copy_iw_route(&resp, &ctx->cm_id->route); out: if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) ret = -EFAULT; ucma_put_ctx(ctx); return ret; } static void ucma_query_device_addr(struct rdma_cm_id *cm_id, struct rdma_ucm_query_addr_resp *resp) { if (!cm_id->device) return; resp->node_guid = (__force __u64) cm_id->device->node_guid; resp->port_num = cm_id->port_num; resp->pkey = (__force __u16) cpu_to_be16( ib_addr_get_pkey(&cm_id->route.addr.dev_addr)); } static ssize_t ucma_query_addr(struct ucma_context *ctx, void __user *response, int out_len) { struct rdma_ucm_query_addr_resp resp; struct sockaddr *addr; int ret = 0; if (out_len < sizeof(resp)) return -ENOSPC; memset(&resp, 0, sizeof resp); addr = (struct sockaddr *) &ctx->cm_id->route.addr.src_addr; resp.src_size = rdma_addr_size(addr); memcpy(&resp.src_addr, addr, resp.src_size); addr = (struct sockaddr *) &ctx->cm_id->route.addr.dst_addr; resp.dst_size = rdma_addr_size(addr); memcpy(&resp.dst_addr, addr, resp.dst_size); ucma_query_device_addr(ctx->cm_id, &resp); if (copy_to_user(response, &resp, sizeof(resp))) ret = -EFAULT; return ret; } static ssize_t ucma_query_path(struct ucma_context *ctx, void __user *response, int out_len) { struct rdma_ucm_query_path_resp *resp; int i, ret = 0; if (out_len < sizeof(*resp)) return -ENOSPC; resp = kzalloc(out_len, GFP_KERNEL); if (!resp) return -ENOMEM; resp->num_paths = ctx->cm_id->route.num_paths; for (i = 0, out_len -= sizeof(*resp); i < resp->num_paths && out_len > sizeof(struct ib_path_rec_data); i++, out_len -= sizeof(struct ib_path_rec_data)) { resp->path_data[i].flags = IB_PATH_GMP | IB_PATH_PRIMARY | IB_PATH_BIDIRECTIONAL; ib_sa_pack_path(&ctx->cm_id->route.path_rec[i], &resp->path_data[i].path_rec); } if (copy_to_user(response, resp, sizeof(*resp) + (i * sizeof(struct ib_path_rec_data)))) ret = -EFAULT; kfree(resp); return ret; } static ssize_t ucma_query_gid(struct ucma_context *ctx, void __user *response, int out_len) { struct rdma_ucm_query_addr_resp resp; struct sockaddr_ib *addr; int ret = 0; if (out_len < sizeof(resp)) return -ENOSPC; memset(&resp, 0, sizeof resp); ucma_query_device_addr(ctx->cm_id, &resp); addr = (struct sockaddr_ib *) &resp.src_addr; resp.src_size = sizeof(*addr); if (ctx->cm_id->route.addr.src_addr.ss_family == AF_IB) { memcpy(addr, &ctx->cm_id->route.addr.src_addr, resp.src_size); } else { addr->sib_family = AF_IB; addr->sib_pkey = (__force __be16) resp.pkey; rdma_addr_get_sgid(&ctx->cm_id->route.addr.dev_addr, (union ib_gid *) &addr->sib_addr); addr->sib_sid = rdma_get_service_id(ctx->cm_id, (struct sockaddr *) &ctx->cm_id->route.addr.src_addr); } addr = (struct sockaddr_ib *) &resp.dst_addr; resp.dst_size = sizeof(*addr); if (ctx->cm_id->route.addr.dst_addr.ss_family == AF_IB) { memcpy(addr, &ctx->cm_id->route.addr.dst_addr, resp.dst_size); } else { addr->sib_family = AF_IB; addr->sib_pkey = (__force __be16) resp.pkey; rdma_addr_get_dgid(&ctx->cm_id->route.addr.dev_addr, (union ib_gid *) &addr->sib_addr); addr->sib_sid = rdma_get_service_id(ctx->cm_id, (struct sockaddr *) &ctx->cm_id->route.addr.dst_addr); } if (copy_to_user(response, &resp, sizeof(resp))) ret = -EFAULT; return ret; } static ssize_t ucma_query(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_query cmd; struct ucma_context *ctx; void __user *response; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; response = (void __user *)(unsigned long) cmd.response; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); switch (cmd.option) { case RDMA_USER_CM_QUERY_ADDR: ret = ucma_query_addr(ctx, response, out_len); break; case RDMA_USER_CM_QUERY_PATH: ret = ucma_query_path(ctx, response, out_len); break; case RDMA_USER_CM_QUERY_GID: ret = ucma_query_gid(ctx, response, out_len); break; default: ret = -ENOSYS; break; } ucma_put_ctx(ctx); return ret; } static void ucma_copy_conn_param(struct rdma_cm_id *id, struct rdma_conn_param *dst, struct rdma_ucm_conn_param *src) { dst->private_data = src->private_data; dst->private_data_len = src->private_data_len; dst->responder_resources =src->responder_resources; dst->initiator_depth = src->initiator_depth; dst->flow_control = src->flow_control; dst->retry_count = src->retry_count; dst->rnr_retry_count = src->rnr_retry_count; dst->srq = src->srq; dst->qp_num = src->qp_num; dst->qkey = (id->route.addr.src_addr.ss_family == AF_IB) ? src->qkey : 0; } static ssize_t ucma_connect(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_connect cmd; struct rdma_conn_param conn_param; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; if (!cmd.conn_param.valid) return -EINVAL; ctx = ucma_get_ctx_dev(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ucma_copy_conn_param(ctx->cm_id, &conn_param, &cmd.conn_param); ret = rdma_connect(ctx->cm_id, &conn_param); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_listen(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_listen cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ctx->backlog = cmd.backlog > 0 && cmd.backlog < max_backlog ? cmd.backlog : max_backlog; ret = rdma_listen(ctx->cm_id, ctx->backlog); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_accept(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_accept cmd; struct rdma_conn_param conn_param; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx_dev(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); if (cmd.conn_param.valid) { ucma_copy_conn_param(ctx->cm_id, &conn_param, &cmd.conn_param); mutex_lock(&file->mut); ret = rdma_accept(ctx->cm_id, &conn_param); if (!ret) ctx->uid = cmd.uid; mutex_unlock(&file->mut); } else ret = rdma_accept(ctx->cm_id, NULL); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_reject(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_reject cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx_dev(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_reject(ctx->cm_id, cmd.private_data, cmd.private_data_len); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_disconnect(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_disconnect cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx_dev(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_disconnect(ctx->cm_id); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_init_qp_attr(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_init_qp_attr cmd; struct ib_uverbs_qp_attr resp; struct ucma_context *ctx; struct ib_qp_attr qp_attr; int ret; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx_dev(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); resp.qp_attr_mask = 0; memset(&qp_attr, 0, sizeof qp_attr); qp_attr.qp_state = cmd.qp_state; ret = rdma_init_qp_attr(ctx->cm_id, &qp_attr, &resp.qp_attr_mask); if (ret) goto out; ib_copy_qp_attr_to_user(&resp, &qp_attr); if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) ret = -EFAULT; out: ucma_put_ctx(ctx); return ret; } static int ucma_set_option_id(struct ucma_context *ctx, int optname, void *optval, size_t optlen) { int ret = 0; switch (optname) { case RDMA_OPTION_ID_TOS: if (optlen != sizeof(u8)) { ret = -EINVAL; break; } rdma_set_service_type(ctx->cm_id, *((u8 *) optval)); break; case RDMA_OPTION_ID_REUSEADDR: if (optlen != sizeof(int)) { ret = -EINVAL; break; } ret = rdma_set_reuseaddr(ctx->cm_id, *((int *) optval) ? 1 : 0); break; case RDMA_OPTION_ID_AFONLY: if (optlen != sizeof(int)) { ret = -EINVAL; break; } ret = rdma_set_afonly(ctx->cm_id, *((int *) optval) ? 1 : 0); break; default: ret = -ENOSYS; } return ret; } static int ucma_set_ib_path(struct ucma_context *ctx, struct ib_path_rec_data *path_data, size_t optlen) { struct ib_sa_path_rec sa_path; struct rdma_cm_event event; int ret; if (optlen % sizeof(*path_data)) return -EINVAL; for (; optlen; optlen -= sizeof(*path_data), path_data++) { if (path_data->flags == (IB_PATH_GMP | IB_PATH_PRIMARY | IB_PATH_BIDIRECTIONAL)) break; } if (!optlen) return -EINVAL; memset(&sa_path, 0, sizeof(sa_path)); ib_sa_unpack_path(path_data->path_rec, &sa_path); ret = rdma_set_ib_paths(ctx->cm_id, &sa_path, 1); if (ret) return ret; memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; return ucma_event_handler(ctx->cm_id, &event); } static int ucma_set_option_ib(struct ucma_context *ctx, int optname, void *optval, size_t optlen) { int ret; switch (optname) { case RDMA_OPTION_IB_PATH: ret = ucma_set_ib_path(ctx, optval, optlen); break; default: ret = -ENOSYS; } return ret; } static int ucma_set_option_level(struct ucma_context *ctx, int level, int optname, void *optval, size_t optlen) { int ret; switch (level) { case RDMA_OPTION_ID: ret = ucma_set_option_id(ctx, optname, optval, optlen); break; case RDMA_OPTION_IB: ret = ucma_set_option_ib(ctx, optname, optval, optlen); break; default: ret = -ENOSYS; } return ret; } static ssize_t ucma_set_option(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_set_option cmd; struct ucma_context *ctx; void *optval; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); optval = memdup_user((void __user *) (unsigned long) cmd.optval, cmd.optlen); if (IS_ERR(optval)) { ret = PTR_ERR(optval); goto out; } ret = ucma_set_option_level(ctx, cmd.level, cmd.optname, optval, cmd.optlen); kfree(optval); out: ucma_put_ctx(ctx); return ret; } static ssize_t ucma_notify(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_notify cmd; struct ucma_context *ctx; int ret; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; ctx = ucma_get_ctx(file, cmd.id); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = rdma_notify(ctx->cm_id, (enum ib_event_type) cmd.event); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_process_join(struct ucma_file *file, struct rdma_ucm_join_mcast *cmd, int out_len) { struct rdma_ucm_create_id_resp resp; struct ucma_context *ctx; struct ucma_multicast *mc; struct sockaddr *addr; int ret; u8 join_state; if (out_len < sizeof(resp)) return -ENOSPC; addr = (struct sockaddr *) &cmd->addr; if (!cmd->addr_size || (cmd->addr_size != rdma_addr_size(addr))) return -EINVAL; if (cmd->join_flags == RDMA_MC_JOIN_FLAG_FULLMEMBER) join_state = BIT(FULLMEMBER_JOIN); else if (cmd->join_flags == RDMA_MC_JOIN_FLAG_SENDONLY_FULLMEMBER) join_state = BIT(SENDONLY_FULLMEMBER_JOIN); else return -EINVAL; ctx = ucma_get_ctx_dev(file, cmd->id); if (IS_ERR(ctx)) return PTR_ERR(ctx); mutex_lock(&file->mut); mc = ucma_alloc_multicast(ctx); if (!mc) { ret = -ENOMEM; goto err1; } mc->join_state = join_state; mc->uid = cmd->uid; memcpy(&mc->addr, addr, cmd->addr_size); ret = rdma_join_multicast(ctx->cm_id, (struct sockaddr *)&mc->addr, join_state, mc); if (ret) goto err2; resp.id = mc->id; if (copy_to_user((void __user *)(unsigned long) cmd->response, &resp, sizeof(resp))) { ret = -EFAULT; goto err3; } mutex_unlock(&file->mut); ucma_put_ctx(ctx); return 0; err3: rdma_leave_multicast(ctx->cm_id, (struct sockaddr *) &mc->addr); ucma_cleanup_mc_events(mc); err2: mutex_lock(&mut); idr_remove(&multicast_idr, mc->id); mutex_unlock(&mut); list_del(&mc->list); kfree(mc); err1: mutex_unlock(&file->mut); ucma_put_ctx(ctx); return ret; } static ssize_t ucma_join_ip_multicast(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_join_ip_mcast cmd; struct rdma_ucm_join_mcast join_cmd; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; join_cmd.response = cmd.response; join_cmd.uid = cmd.uid; join_cmd.id = cmd.id; join_cmd.addr_size = rdma_addr_size_in6(&cmd.addr); join_cmd.join_flags = RDMA_MC_JOIN_FLAG_FULLMEMBER; memcpy(&join_cmd.addr, &cmd.addr, join_cmd.addr_size); return ucma_process_join(file, &join_cmd, out_len); } static ssize_t ucma_join_multicast(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_join_mcast cmd; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; if (!rdma_addr_size_kss(&cmd.addr)) return -EINVAL; return ucma_process_join(file, &cmd, out_len); } static ssize_t ucma_leave_multicast(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_destroy_id cmd; struct rdma_ucm_destroy_id_resp resp; struct ucma_multicast *mc; int ret = 0; if (out_len < sizeof(resp)) return -ENOSPC; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; mutex_lock(&mut); mc = idr_find(&multicast_idr, cmd.id); if (!mc) mc = ERR_PTR(-ENOENT); else if (mc->ctx->file != file) mc = ERR_PTR(-EINVAL); else if (!atomic_inc_not_zero(&mc->ctx->ref)) mc = ERR_PTR(-ENXIO); else idr_remove(&multicast_idr, mc->id); mutex_unlock(&mut); if (IS_ERR(mc)) { ret = PTR_ERR(mc); goto out; } rdma_leave_multicast(mc->ctx->cm_id, (struct sockaddr *) &mc->addr); mutex_lock(&mc->ctx->file->mut); ucma_cleanup_mc_events(mc); list_del(&mc->list); mutex_unlock(&mc->ctx->file->mut); ucma_put_ctx(mc->ctx); resp.events_reported = mc->events_reported; kfree(mc); if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) ret = -EFAULT; out: return ret; } static void ucma_lock_files(struct ucma_file *file1, struct ucma_file *file2) { /* Acquire mutex's based on pointer comparison to prevent deadlock. */ if (file1 < file2) { mutex_lock(&file1->mut); mutex_lock_nested(&file2->mut, SINGLE_DEPTH_NESTING); } else { mutex_lock(&file2->mut); mutex_lock_nested(&file1->mut, SINGLE_DEPTH_NESTING); } } static void ucma_unlock_files(struct ucma_file *file1, struct ucma_file *file2) { if (file1 < file2) { mutex_unlock(&file2->mut); mutex_unlock(&file1->mut); } else { mutex_unlock(&file1->mut); mutex_unlock(&file2->mut); } } static void ucma_move_events(struct ucma_context *ctx, struct ucma_file *file) { struct ucma_event *uevent, *tmp; list_for_each_entry_safe(uevent, tmp, &ctx->file->event_list, list) if (uevent->ctx == ctx) list_move_tail(&uevent->list, &file->event_list); } static ssize_t ucma_migrate_id(struct ucma_file *new_file, const char __user *inbuf, int in_len, int out_len) { struct rdma_ucm_migrate_id cmd; struct rdma_ucm_migrate_resp resp; struct ucma_context *ctx; struct fd f; struct ucma_file *cur_file; int ret = 0; if (copy_from_user(&cmd, inbuf, sizeof(cmd))) return -EFAULT; /* Get current fd to protect against it being closed */ f = fdget(cmd.fd); if (!f.file) return -ENOENT; /* Validate current fd and prevent destruction of id. */ ctx = ucma_get_ctx(f.file->private_data, cmd.id); if (IS_ERR(ctx)) { ret = PTR_ERR(ctx); goto file_put; } cur_file = ctx->file; if (cur_file == new_file) { resp.events_reported = ctx->events_reported; goto response; } /* * Migrate events between fd's, maintaining order, and avoiding new * events being added before existing events. */ ucma_lock_files(cur_file, new_file); mutex_lock(&mut); list_move_tail(&ctx->list, &new_file->ctx_list); ucma_move_events(ctx, new_file); ctx->file = new_file; resp.events_reported = ctx->events_reported; mutex_unlock(&mut); ucma_unlock_files(cur_file, new_file); response: if (copy_to_user((void __user *)(unsigned long)cmd.response, &resp, sizeof(resp))) ret = -EFAULT; ucma_put_ctx(ctx); file_put: fdput(f); return ret; } static ssize_t (*ucma_cmd_table[])(struct ucma_file *file, const char __user *inbuf, int in_len, int out_len) = { [RDMA_USER_CM_CMD_CREATE_ID] = ucma_create_id, [RDMA_USER_CM_CMD_DESTROY_ID] = ucma_destroy_id, [RDMA_USER_CM_CMD_BIND_IP] = ucma_bind_ip, [RDMA_USER_CM_CMD_RESOLVE_IP] = ucma_resolve_ip, [RDMA_USER_CM_CMD_RESOLVE_ROUTE] = ucma_resolve_route, [RDMA_USER_CM_CMD_QUERY_ROUTE] = ucma_query_route, [RDMA_USER_CM_CMD_CONNECT] = ucma_connect, [RDMA_USER_CM_CMD_LISTEN] = ucma_listen, [RDMA_USER_CM_CMD_ACCEPT] = ucma_accept, [RDMA_USER_CM_CMD_REJECT] = ucma_reject, [RDMA_USER_CM_CMD_DISCONNECT] = ucma_disconnect, [RDMA_USER_CM_CMD_INIT_QP_ATTR] = ucma_init_qp_attr, [RDMA_USER_CM_CMD_GET_EVENT] = ucma_get_event, [RDMA_USER_CM_CMD_GET_OPTION] = NULL, [RDMA_USER_CM_CMD_SET_OPTION] = ucma_set_option, [RDMA_USER_CM_CMD_NOTIFY] = ucma_notify, [RDMA_USER_CM_CMD_JOIN_IP_MCAST] = ucma_join_ip_multicast, [RDMA_USER_CM_CMD_LEAVE_MCAST] = ucma_leave_multicast, [RDMA_USER_CM_CMD_MIGRATE_ID] = ucma_migrate_id, [RDMA_USER_CM_CMD_QUERY] = ucma_query, [RDMA_USER_CM_CMD_BIND] = ucma_bind, [RDMA_USER_CM_CMD_RESOLVE_ADDR] = ucma_resolve_addr, [RDMA_USER_CM_CMD_JOIN_MCAST] = ucma_join_multicast }; static ssize_t ucma_write(struct file *filp, const char __user *buf, size_t len, loff_t *pos) { struct ucma_file *file = filp->private_data; struct rdma_ucm_cmd_hdr hdr; ssize_t ret; if (WARN_ON_ONCE(!ib_safe_file_access(filp))) return -EACCES; if (len < sizeof(hdr)) return -EINVAL; if (copy_from_user(&hdr, buf, sizeof(hdr))) return -EFAULT; if (hdr.cmd >= ARRAY_SIZE(ucma_cmd_table)) return -EINVAL; if (hdr.in + sizeof(hdr) > len) return -EINVAL; if (!ucma_cmd_table[hdr.cmd]) return -ENOSYS; ret = ucma_cmd_table[hdr.cmd](file, buf + sizeof(hdr), hdr.in, hdr.out); if (!ret) ret = len; return ret; } static unsigned int ucma_poll(struct file *filp, struct poll_table_struct *wait) { struct ucma_file *file = filp->private_data; unsigned int mask = 0; poll_wait(filp, &file->poll_wait, wait); if (!list_empty(&file->event_list)) mask = POLLIN | POLLRDNORM; return mask; } /* * ucma_open() does not need the BKL: * * - no global state is referred to; * - there is no ioctl method to race against; * - no further module initialization is required for open to work * after the device is registered. */ static int ucma_open(struct inode *inode, struct file *filp) { struct ucma_file *file; file = kmalloc(sizeof *file, GFP_KERNEL); if (!file) return -ENOMEM; file->close_wq = alloc_ordered_workqueue("ucma_close_id", WQ_MEM_RECLAIM); if (!file->close_wq) { kfree(file); return -ENOMEM; } INIT_LIST_HEAD(&file->event_list); INIT_LIST_HEAD(&file->ctx_list); init_waitqueue_head(&file->poll_wait); mutex_init(&file->mut); filp->private_data = file; file->filp = filp; return nonseekable_open(inode, filp); } static int ucma_close(struct inode *inode, struct file *filp) { struct ucma_file *file = filp->private_data; struct ucma_context *ctx, *tmp; mutex_lock(&file->mut); list_for_each_entry_safe(ctx, tmp, &file->ctx_list, list) { ctx->destroying = 1; mutex_unlock(&file->mut); mutex_lock(&mut); idr_remove(&ctx_idr, ctx->id); mutex_unlock(&mut); flush_workqueue(file->close_wq); /* At that step once ctx was marked as destroying and workqueue * was flushed we are safe from any inflights handlers that * might put other closing task. */ mutex_lock(&mut); if (!ctx->closing) { mutex_unlock(&mut); /* rdma_destroy_id ensures that no event handlers are * inflight for that id before releasing it. */ rdma_destroy_id(ctx->cm_id); } else { mutex_unlock(&mut); } ucma_free_ctx(ctx); mutex_lock(&file->mut); } mutex_unlock(&file->mut); destroy_workqueue(file->close_wq); kfree(file); return 0; } static long ucma_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { switch (cmd) { case FIONBIO: case FIOASYNC: return (0); default: return (-ENOTTY); } } static const struct file_operations ucma_fops = { .owner = THIS_MODULE, .open = ucma_open, .release = ucma_close, .write = ucma_write, .unlocked_ioctl = ucma_ioctl, .poll = ucma_poll, .llseek = no_llseek, }; static struct miscdevice ucma_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "rdma_cm", .nodename = "infiniband/rdma_cm", .mode = 0666, .fops = &ucma_fops, }; static ssize_t show_abi_version(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", RDMA_USER_CM_ABI_VERSION); } static DEVICE_ATTR(abi_version, S_IRUGO, show_abi_version, NULL); static int __init ucma_init(void) { int ret; ret = misc_register(&ucma_misc); if (ret) return ret; ret = device_create_file(ucma_misc.this_device, &dev_attr_abi_version); if (ret) { pr_err("rdma_ucm: couldn't create abi_version attr\n"); goto err1; } return 0; err1: misc_deregister(&ucma_misc); return ret; } static void __exit ucma_cleanup(void) { device_remove_file(ucma_misc.this_device, &dev_attr_abi_version); misc_deregister(&ucma_misc); idr_destroy(&ctx_idr); idr_destroy(&multicast_idr); } -module_init(ucma_init); -module_exit(ucma_cleanup); +module_init_order(ucma_init, SI_ORDER_FIFTH); +module_exit_order(ucma_cleanup, SI_ORDER_FIFTH); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_user_mad.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_user_mad.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_user_mad.c (revision 363151) @@ -1,1409 +1,1409 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Voltaire, Inc. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2008 Cisco. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #define pr_fmt(fmt) "user_mad: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("InfiniBand userspace MAD packet access"); MODULE_LICENSE("Dual BSD/GPL"); enum { IB_UMAD_MAX_PORTS = 64, IB_UMAD_MAX_AGENTS = 32, IB_UMAD_MAJOR = 231, IB_UMAD_MINOR_BASE = 0 }; /* * Our lifetime rules for these structs are the following: * device special file is opened, we take a reference on the * ib_umad_port's struct ib_umad_device. We drop these * references in the corresponding close(). * * In addition to references coming from open character devices, there * is one more reference to each ib_umad_device representing the * module's reference taken when allocating the ib_umad_device in * ib_umad_add_one(). * * When destroying an ib_umad_device, we drop the module's reference. */ struct ib_umad_port { struct cdev cdev; struct device *dev; struct cdev sm_cdev; struct device *sm_dev; struct semaphore sm_sem; struct mutex file_mutex; struct list_head file_list; struct ib_device *ib_dev; struct ib_umad_device *umad_dev; int dev_num; u8 port_num; }; struct ib_umad_device { struct kobject kobj; struct ib_umad_port port[0]; }; struct ib_umad_file { struct mutex mutex; struct ib_umad_port *port; struct list_head recv_list; struct list_head send_list; struct list_head port_list; spinlock_t send_lock; wait_queue_head_t recv_wait; struct ib_mad_agent *agent[IB_UMAD_MAX_AGENTS]; int agents_dead; u8 use_pkey_index; u8 already_used; }; struct ib_umad_packet { struct ib_mad_send_buf *msg; struct ib_mad_recv_wc *recv_wc; struct list_head list; int length; struct ib_user_mad mad; }; static struct class *umad_class; #define base_dev MKDEV(IB_UMAD_MAJOR, IB_UMAD_MINOR_BASE) static DEFINE_SPINLOCK(port_lock); static DECLARE_BITMAP(dev_map, IB_UMAD_MAX_PORTS); static void ib_umad_add_one(struct ib_device *device); static void ib_umad_remove_one(struct ib_device *device, void *client_data); static void ib_umad_release_dev(struct kobject *kobj) { struct ib_umad_device *dev = container_of(kobj, struct ib_umad_device, kobj); kfree(dev); } static struct kobj_type ib_umad_dev_ktype = { .release = ib_umad_release_dev, }; static int hdr_size(struct ib_umad_file *file) { return file->use_pkey_index ? sizeof (struct ib_user_mad_hdr) : sizeof (struct ib_user_mad_hdr_old); } /* caller must hold file->mutex */ static struct ib_mad_agent *__get_agent(struct ib_umad_file *file, int id) { return file->agents_dead ? NULL : file->agent[id]; } static int queue_packet(struct ib_umad_file *file, struct ib_mad_agent *agent, struct ib_umad_packet *packet) { int ret = 1; mutex_lock(&file->mutex); for (packet->mad.hdr.id = 0; packet->mad.hdr.id < IB_UMAD_MAX_AGENTS; packet->mad.hdr.id++) if (agent == __get_agent(file, packet->mad.hdr.id)) { list_add_tail(&packet->list, &file->recv_list); wake_up_interruptible(&file->recv_wait); ret = 0; break; } mutex_unlock(&file->mutex); return ret; } static void dequeue_send(struct ib_umad_file *file, struct ib_umad_packet *packet) { spin_lock_irq(&file->send_lock); list_del(&packet->list); spin_unlock_irq(&file->send_lock); } static void send_handler(struct ib_mad_agent *agent, struct ib_mad_send_wc *send_wc) { struct ib_umad_file *file = agent->context; struct ib_umad_packet *packet = send_wc->send_buf->context[0]; dequeue_send(file, packet); ib_destroy_ah(packet->msg->ah); ib_free_send_mad(packet->msg); if (send_wc->status == IB_WC_RESP_TIMEOUT_ERR) { packet->length = IB_MGMT_MAD_HDR; packet->mad.hdr.status = ETIMEDOUT; if (!queue_packet(file, agent, packet)) return; } kfree(packet); } static void recv_handler(struct ib_mad_agent *agent, struct ib_mad_send_buf *send_buf, struct ib_mad_recv_wc *mad_recv_wc) { struct ib_umad_file *file = agent->context; struct ib_umad_packet *packet; if (mad_recv_wc->wc->status != IB_WC_SUCCESS) goto err1; packet = kzalloc(sizeof *packet, GFP_KERNEL); if (!packet) goto err1; packet->length = mad_recv_wc->mad_len; packet->recv_wc = mad_recv_wc; packet->mad.hdr.status = 0; packet->mad.hdr.length = hdr_size(file) + mad_recv_wc->mad_len; packet->mad.hdr.qpn = cpu_to_be32(mad_recv_wc->wc->src_qp); packet->mad.hdr.lid = cpu_to_be16(mad_recv_wc->wc->slid); packet->mad.hdr.sl = mad_recv_wc->wc->sl; packet->mad.hdr.path_bits = mad_recv_wc->wc->dlid_path_bits; packet->mad.hdr.pkey_index = mad_recv_wc->wc->pkey_index; packet->mad.hdr.grh_present = !!(mad_recv_wc->wc->wc_flags & IB_WC_GRH); if (packet->mad.hdr.grh_present) { struct ib_ah_attr ah_attr; int ret; ret = ib_init_ah_from_wc(agent->device, agent->port_num, mad_recv_wc->wc, mad_recv_wc->recv_buf.grh, &ah_attr); if (ret) goto err2; packet->mad.hdr.gid_index = ah_attr.grh.sgid_index; packet->mad.hdr.hop_limit = ah_attr.grh.hop_limit; packet->mad.hdr.traffic_class = ah_attr.grh.traffic_class; memcpy(packet->mad.hdr.gid, &ah_attr.grh.dgid, 16); packet->mad.hdr.flow_label = cpu_to_be32(ah_attr.grh.flow_label); } if (queue_packet(file, agent, packet)) goto err2; return; err2: kfree(packet); err1: ib_free_recv_mad(mad_recv_wc); } static ssize_t copy_recv_mad(struct ib_umad_file *file, char __user *buf, struct ib_umad_packet *packet, size_t count) { struct ib_mad_recv_buf *recv_buf; int left, seg_payload, offset, max_seg_payload; size_t seg_size; recv_buf = &packet->recv_wc->recv_buf; seg_size = packet->recv_wc->mad_seg_size; /* We need enough room to copy the first (or only) MAD segment. */ if ((packet->length <= seg_size && count < hdr_size(file) + packet->length) || (packet->length > seg_size && count < hdr_size(file) + seg_size)) return -EINVAL; if (copy_to_user(buf, &packet->mad, hdr_size(file))) return -EFAULT; buf += hdr_size(file); seg_payload = min_t(int, packet->length, seg_size); if (copy_to_user(buf, recv_buf->mad, seg_payload)) return -EFAULT; if (seg_payload < packet->length) { /* * Multipacket RMPP MAD message. Copy remainder of message. * Note that last segment may have a shorter payload. */ if (count < hdr_size(file) + packet->length) { /* * The buffer is too small, return the first RMPP segment, * which includes the RMPP message length. */ return -ENOSPC; } offset = ib_get_mad_data_offset(recv_buf->mad->mad_hdr.mgmt_class); max_seg_payload = seg_size - offset; for (left = packet->length - seg_payload, buf += seg_payload; left; left -= seg_payload, buf += seg_payload) { recv_buf = container_of(recv_buf->list.next, struct ib_mad_recv_buf, list); seg_payload = min(left, max_seg_payload); if (copy_to_user(buf, (char *)recv_buf->mad + offset, seg_payload)) return -EFAULT; } } return hdr_size(file) + packet->length; } static ssize_t copy_send_mad(struct ib_umad_file *file, char __user *buf, struct ib_umad_packet *packet, size_t count) { ssize_t size = hdr_size(file) + packet->length; if (count < size) return -EINVAL; if (copy_to_user(buf, &packet->mad, hdr_size(file))) return -EFAULT; buf += hdr_size(file); if (copy_to_user(buf, packet->mad.data, packet->length)) return -EFAULT; return size; } static ssize_t ib_umad_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct ib_umad_file *file = filp->private_data; struct ib_umad_packet *packet; ssize_t ret; if (count < hdr_size(file)) return -EINVAL; mutex_lock(&file->mutex); while (list_empty(&file->recv_list)) { mutex_unlock(&file->mutex); if (filp->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(file->recv_wait, !list_empty(&file->recv_list))) return -ERESTARTSYS; mutex_lock(&file->mutex); } packet = list_entry(file->recv_list.next, struct ib_umad_packet, list); list_del(&packet->list); mutex_unlock(&file->mutex); if (packet->recv_wc) ret = copy_recv_mad(file, buf, packet, count); else ret = copy_send_mad(file, buf, packet, count); if (ret < 0) { /* Requeue packet */ mutex_lock(&file->mutex); list_add(&packet->list, &file->recv_list); mutex_unlock(&file->mutex); } else { if (packet->recv_wc) ib_free_recv_mad(packet->recv_wc); kfree(packet); } return ret; } static int copy_rmpp_mad(struct ib_mad_send_buf *msg, const char __user *buf) { int left, seg; /* Copy class specific header */ if ((msg->hdr_len > IB_MGMT_RMPP_HDR) && copy_from_user((char *)msg->mad + IB_MGMT_RMPP_HDR, buf + IB_MGMT_RMPP_HDR, msg->hdr_len - IB_MGMT_RMPP_HDR)) return -EFAULT; /* All headers are in place. Copy data segments. */ for (seg = 1, left = msg->data_len, buf += msg->hdr_len; left > 0; seg++, left -= msg->seg_size, buf += msg->seg_size) { if (copy_from_user(ib_get_rmpp_segment(msg, seg), buf, min(left, msg->seg_size))) return -EFAULT; } return 0; } static int same_destination(struct ib_user_mad_hdr *hdr1, struct ib_user_mad_hdr *hdr2) { if (!hdr1->grh_present && !hdr2->grh_present) return (hdr1->lid == hdr2->lid); if (hdr1->grh_present && hdr2->grh_present) return !memcmp(hdr1->gid, hdr2->gid, 16); return 0; } static int is_duplicate(struct ib_umad_file *file, struct ib_umad_packet *packet) { struct ib_umad_packet *sent_packet; struct ib_mad_hdr *sent_hdr, *hdr; hdr = (struct ib_mad_hdr *) packet->mad.data; list_for_each_entry(sent_packet, &file->send_list, list) { sent_hdr = (struct ib_mad_hdr *) sent_packet->mad.data; if ((hdr->tid != sent_hdr->tid) || (hdr->mgmt_class != sent_hdr->mgmt_class)) continue; /* * No need to be overly clever here. If two new operations have * the same TID, reject the second as a duplicate. This is more * restrictive than required by the spec. */ if (!ib_response_mad(hdr)) { if (!ib_response_mad(sent_hdr)) return 1; continue; } else if (!ib_response_mad(sent_hdr)) continue; if (same_destination(&packet->mad.hdr, &sent_packet->mad.hdr)) return 1; } return 0; } static ssize_t ib_umad_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct ib_umad_file *file = filp->private_data; struct ib_umad_packet *packet; struct ib_mad_agent *agent; struct ib_ah_attr ah_attr; struct ib_ah *ah; struct ib_rmpp_mad *rmpp_mad; __be64 *tid; int ret, data_len, hdr_len, copy_offset, rmpp_active; u8 base_version; if (count < hdr_size(file) + IB_MGMT_RMPP_HDR) return -EINVAL; packet = kzalloc(sizeof *packet + IB_MGMT_RMPP_HDR, GFP_KERNEL); if (!packet) return -ENOMEM; if (copy_from_user(&packet->mad, buf, hdr_size(file))) { ret = -EFAULT; goto err; } if (packet->mad.hdr.id >= IB_UMAD_MAX_AGENTS) { ret = -EINVAL; goto err; } buf += hdr_size(file); if (copy_from_user(packet->mad.data, buf, IB_MGMT_RMPP_HDR)) { ret = -EFAULT; goto err; } mutex_lock(&file->mutex); agent = __get_agent(file, packet->mad.hdr.id); if (!agent) { ret = -EINVAL; goto err_up; } memset(&ah_attr, 0, sizeof ah_attr); ah_attr.dlid = be16_to_cpu(packet->mad.hdr.lid); ah_attr.sl = packet->mad.hdr.sl; ah_attr.src_path_bits = packet->mad.hdr.path_bits; ah_attr.port_num = file->port->port_num; if (packet->mad.hdr.grh_present) { ah_attr.ah_flags = IB_AH_GRH; memcpy(ah_attr.grh.dgid.raw, packet->mad.hdr.gid, 16); ah_attr.grh.sgid_index = packet->mad.hdr.gid_index; ah_attr.grh.flow_label = be32_to_cpu(packet->mad.hdr.flow_label); ah_attr.grh.hop_limit = packet->mad.hdr.hop_limit; ah_attr.grh.traffic_class = packet->mad.hdr.traffic_class; } ah = ib_create_ah(agent->qp->pd, &ah_attr); if (IS_ERR(ah)) { ret = PTR_ERR(ah); goto err_up; } rmpp_mad = (struct ib_rmpp_mad *) packet->mad.data; hdr_len = ib_get_mad_data_offset(rmpp_mad->mad_hdr.mgmt_class); if (ib_is_mad_class_rmpp(rmpp_mad->mad_hdr.mgmt_class) && ib_mad_kernel_rmpp_agent(agent)) { copy_offset = IB_MGMT_RMPP_HDR; rmpp_active = ib_get_rmpp_flags(&rmpp_mad->rmpp_hdr) & IB_MGMT_RMPP_FLAG_ACTIVE; } else { copy_offset = IB_MGMT_MAD_HDR; rmpp_active = 0; } base_version = ((struct ib_mad_hdr *)&packet->mad.data)->base_version; data_len = count - hdr_size(file) - hdr_len; packet->msg = ib_create_send_mad(agent, be32_to_cpu(packet->mad.hdr.qpn), packet->mad.hdr.pkey_index, rmpp_active, hdr_len, data_len, GFP_KERNEL, base_version); if (IS_ERR(packet->msg)) { ret = PTR_ERR(packet->msg); goto err_ah; } packet->msg->ah = ah; packet->msg->timeout_ms = packet->mad.hdr.timeout_ms; packet->msg->retries = packet->mad.hdr.retries; packet->msg->context[0] = packet; /* Copy MAD header. Any RMPP header is already in place. */ memcpy(packet->msg->mad, packet->mad.data, IB_MGMT_MAD_HDR); if (!rmpp_active) { if (copy_from_user((char *)packet->msg->mad + copy_offset, buf + copy_offset, hdr_len + data_len - copy_offset)) { ret = -EFAULT; goto err_msg; } } else { ret = copy_rmpp_mad(packet->msg, buf); if (ret) goto err_msg; } /* * Set the high-order part of the transaction ID to make MADs from * different agents unique, and allow routing responses back to the * original requestor. */ if (!ib_response_mad(packet->msg->mad)) { tid = &((struct ib_mad_hdr *) packet->msg->mad)->tid; *tid = cpu_to_be64(((u64) agent->hi_tid) << 32 | (be64_to_cpup(tid) & 0xffffffff)); rmpp_mad->mad_hdr.tid = *tid; } if (!ib_mad_kernel_rmpp_agent(agent) && ib_is_mad_class_rmpp(rmpp_mad->mad_hdr.mgmt_class) && (ib_get_rmpp_flags(&rmpp_mad->rmpp_hdr) & IB_MGMT_RMPP_FLAG_ACTIVE)) { spin_lock_irq(&file->send_lock); list_add_tail(&packet->list, &file->send_list); spin_unlock_irq(&file->send_lock); } else { spin_lock_irq(&file->send_lock); ret = is_duplicate(file, packet); if (!ret) list_add_tail(&packet->list, &file->send_list); spin_unlock_irq(&file->send_lock); if (ret) { ret = -EINVAL; goto err_msg; } } ret = ib_post_send_mad(packet->msg, NULL); if (ret) goto err_send; mutex_unlock(&file->mutex); return count; err_send: dequeue_send(file, packet); err_msg: ib_free_send_mad(packet->msg); err_ah: ib_destroy_ah(ah); err_up: mutex_unlock(&file->mutex); err: kfree(packet); return ret; } static unsigned int ib_umad_poll(struct file *filp, struct poll_table_struct *wait) { struct ib_umad_file *file = filp->private_data; /* we will always be able to post a MAD send */ unsigned int mask = POLLOUT | POLLWRNORM; poll_wait(filp, &file->recv_wait, wait); if (!list_empty(&file->recv_list)) mask |= POLLIN | POLLRDNORM; return mask; } static int ib_umad_reg_agent(struct ib_umad_file *file, void __user *arg, int compat_method_mask) { struct ib_user_mad_reg_req ureq; struct ib_mad_reg_req req; struct ib_mad_agent *agent = NULL; int agent_id; int ret; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); if (!file->port->ib_dev) { dev_notice(file->port->dev, "ib_umad_reg_agent: invalid device\n"); ret = -EPIPE; goto out; } if (copy_from_user(&ureq, arg, sizeof ureq)) { ret = -EFAULT; goto out; } if (ureq.qpn != 0 && ureq.qpn != 1) { dev_notice(file->port->dev, "ib_umad_reg_agent: invalid QPN %d specified\n", ureq.qpn); ret = -EINVAL; goto out; } for (agent_id = 0; agent_id < IB_UMAD_MAX_AGENTS; ++agent_id) if (!__get_agent(file, agent_id)) goto found; dev_notice(file->port->dev, "ib_umad_reg_agent: Max Agents (%u) reached\n", IB_UMAD_MAX_AGENTS); ret = -ENOMEM; goto out; found: if (ureq.mgmt_class) { memset(&req, 0, sizeof(req)); req.mgmt_class = ureq.mgmt_class; req.mgmt_class_version = ureq.mgmt_class_version; memcpy(req.oui, ureq.oui, sizeof req.oui); if (compat_method_mask) { u32 *umm = (u32 *) ureq.method_mask; int i; for (i = 0; i < BITS_TO_LONGS(IB_MGMT_MAX_METHODS); ++i) req.method_mask[i] = umm[i * 2] | ((u64) umm[i * 2 + 1] << 32); } else memcpy(req.method_mask, ureq.method_mask, sizeof req.method_mask); } agent = ib_register_mad_agent(file->port->ib_dev, file->port->port_num, ureq.qpn ? IB_QPT_GSI : IB_QPT_SMI, ureq.mgmt_class ? &req : NULL, ureq.rmpp_version, send_handler, recv_handler, file, 0); if (IS_ERR(agent)) { ret = PTR_ERR(agent); agent = NULL; goto out; } if (put_user(agent_id, (u32 __user *) ((char *)arg + offsetof(struct ib_user_mad_reg_req, id)))) { ret = -EFAULT; goto out; } if (!file->already_used) { file->already_used = 1; if (!file->use_pkey_index) { dev_warn(file->port->dev, "process %s did not enable P_Key index support.\n", current->comm); dev_warn(file->port->dev, " Documentation/infiniband/user_mad.txt has info on the new ABI.\n"); } } file->agent[agent_id] = agent; ret = 0; out: mutex_unlock(&file->mutex); if (ret && agent) ib_unregister_mad_agent(agent); mutex_unlock(&file->port->file_mutex); return ret; } static int ib_umad_reg_agent2(struct ib_umad_file *file, void __user *arg) { struct ib_user_mad_reg_req2 ureq; struct ib_mad_reg_req req; struct ib_mad_agent *agent = NULL; int agent_id; int ret; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); if (!file->port->ib_dev) { dev_notice(file->port->dev, "ib_umad_reg_agent2: invalid device\n"); ret = -EPIPE; goto out; } if (copy_from_user(&ureq, arg, sizeof(ureq))) { ret = -EFAULT; goto out; } if (ureq.qpn != 0 && ureq.qpn != 1) { dev_notice(file->port->dev, "ib_umad_reg_agent2: invalid QPN %d specified\n", ureq.qpn); ret = -EINVAL; goto out; } if (ureq.flags & ~IB_USER_MAD_REG_FLAGS_CAP) { const u32 flags = IB_USER_MAD_REG_FLAGS_CAP; dev_notice(file->port->dev, "ib_umad_reg_agent2 failed: invalid registration flags specified 0x%x; supported 0x%x\n", ureq.flags, IB_USER_MAD_REG_FLAGS_CAP); ret = -EINVAL; if (put_user(flags, (u32 __user *) ((char *)arg + offsetof(struct ib_user_mad_reg_req2, flags)))) ret = -EFAULT; goto out; } for (agent_id = 0; agent_id < IB_UMAD_MAX_AGENTS; ++agent_id) if (!__get_agent(file, agent_id)) goto found; dev_notice(file->port->dev, "ib_umad_reg_agent2: Max Agents (%u) reached\n", IB_UMAD_MAX_AGENTS); ret = -ENOMEM; goto out; found: if (ureq.mgmt_class) { memset(&req, 0, sizeof(req)); req.mgmt_class = ureq.mgmt_class; req.mgmt_class_version = ureq.mgmt_class_version; if (ureq.oui & 0xff000000) { dev_notice(file->port->dev, "ib_umad_reg_agent2 failed: oui invalid 0x%08x\n", ureq.oui); ret = -EINVAL; goto out; } req.oui[2] = ureq.oui & 0x0000ff; req.oui[1] = (ureq.oui & 0x00ff00) >> 8; req.oui[0] = (ureq.oui & 0xff0000) >> 16; memcpy(req.method_mask, ureq.method_mask, sizeof(req.method_mask)); } agent = ib_register_mad_agent(file->port->ib_dev, file->port->port_num, ureq.qpn ? IB_QPT_GSI : IB_QPT_SMI, ureq.mgmt_class ? &req : NULL, ureq.rmpp_version, send_handler, recv_handler, file, ureq.flags); if (IS_ERR(agent)) { ret = PTR_ERR(agent); agent = NULL; goto out; } if (put_user(agent_id, (u32 __user *)((char *)arg + offsetof(struct ib_user_mad_reg_req2, id)))) { ret = -EFAULT; goto out; } if (!file->already_used) { file->already_used = 1; file->use_pkey_index = 1; } file->agent[agent_id] = agent; ret = 0; out: mutex_unlock(&file->mutex); if (ret && agent) ib_unregister_mad_agent(agent); mutex_unlock(&file->port->file_mutex); return ret; } static int ib_umad_unreg_agent(struct ib_umad_file *file, u32 __user *arg) { struct ib_mad_agent *agent = NULL; u32 id; int ret = 0; if (get_user(id, arg)) return -EFAULT; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); if (id >= IB_UMAD_MAX_AGENTS || !__get_agent(file, id)) { ret = -EINVAL; goto out; } agent = file->agent[id]; file->agent[id] = NULL; out: mutex_unlock(&file->mutex); if (agent) ib_unregister_mad_agent(agent); mutex_unlock(&file->port->file_mutex); return ret; } static long ib_umad_enable_pkey(struct ib_umad_file *file) { int ret = 0; mutex_lock(&file->mutex); if (file->already_used) ret = -EINVAL; else file->use_pkey_index = 1; mutex_unlock(&file->mutex); return ret; } static long ib_umad_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { switch (cmd) { case IB_USER_MAD_REGISTER_AGENT: return ib_umad_reg_agent(filp->private_data, (void __user *) arg, 0); case IB_USER_MAD_UNREGISTER_AGENT: return ib_umad_unreg_agent(filp->private_data, (__u32 __user *) arg); case IB_USER_MAD_ENABLE_PKEY: return ib_umad_enable_pkey(filp->private_data); case IB_USER_MAD_REGISTER_AGENT2: return ib_umad_reg_agent2(filp->private_data, (void __user *) arg); default: return -ENOIOCTLCMD; } } #ifdef CONFIG_COMPAT static long ib_umad_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { switch (cmd) { case IB_USER_MAD_REGISTER_AGENT: return ib_umad_reg_agent(filp->private_data, compat_ptr(arg), 1); case IB_USER_MAD_UNREGISTER_AGENT: return ib_umad_unreg_agent(filp->private_data, compat_ptr(arg)); case IB_USER_MAD_ENABLE_PKEY: return ib_umad_enable_pkey(filp->private_data); case IB_USER_MAD_REGISTER_AGENT2: return ib_umad_reg_agent2(filp->private_data, compat_ptr(arg)); default: return -ENOIOCTLCMD; } } #endif /* * ib_umad_open() does not need the BKL: * * - the ib_umad_port structures are properly reference counted, and * everything else is purely local to the file being created, so * races against other open calls are not a problem; * - the ioctl method does not affect any global state outside of the * file structure being operated on; */ static int ib_umad_open(struct inode *inode, struct file *filp) { struct ib_umad_port *port; struct ib_umad_file *file; int ret = -ENXIO; port = container_of(inode->i_cdev->si_drv1, struct ib_umad_port, cdev); mutex_lock(&port->file_mutex); if (!port->ib_dev) goto out; ret = -ENOMEM; file = kzalloc(sizeof *file, GFP_KERNEL); if (!file) goto out; mutex_init(&file->mutex); spin_lock_init(&file->send_lock); INIT_LIST_HEAD(&file->recv_list); INIT_LIST_HEAD(&file->send_list); init_waitqueue_head(&file->recv_wait); file->port = port; filp->private_data = file; list_add_tail(&file->port_list, &port->file_list); ret = nonseekable_open(inode, filp); if (ret) { list_del(&file->port_list); kfree(file); goto out; } kobject_get(&port->umad_dev->kobj); out: mutex_unlock(&port->file_mutex); return ret; } static int ib_umad_close(struct inode *inode, struct file *filp) { struct ib_umad_file *file = filp->private_data; struct ib_umad_device *dev = file->port->umad_dev; struct ib_umad_packet *packet, *tmp; int already_dead; int i; mutex_lock(&file->port->file_mutex); mutex_lock(&file->mutex); already_dead = file->agents_dead; file->agents_dead = 1; list_for_each_entry_safe(packet, tmp, &file->recv_list, list) { if (packet->recv_wc) ib_free_recv_mad(packet->recv_wc); kfree(packet); } list_del(&file->port_list); mutex_unlock(&file->mutex); if (!already_dead) for (i = 0; i < IB_UMAD_MAX_AGENTS; ++i) if (file->agent[i]) ib_unregister_mad_agent(file->agent[i]); mutex_unlock(&file->port->file_mutex); kfree(file); kobject_put(&dev->kobj); return 0; } static const struct file_operations umad_fops = { .owner = THIS_MODULE, .read = ib_umad_read, .write = ib_umad_write, .poll = ib_umad_poll, .unlocked_ioctl = ib_umad_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = ib_umad_compat_ioctl, #endif .open = ib_umad_open, .release = ib_umad_close, .llseek = no_llseek, }; static int ib_umad_sm_open(struct inode *inode, struct file *filp) { struct ib_umad_port *port; struct ib_port_modify props = { .set_port_cap_mask = IB_PORT_SM }; int ret; port = container_of(inode->i_cdev->si_drv1, struct ib_umad_port, sm_cdev); if (filp->f_flags & O_NONBLOCK) { if (down_trylock(&port->sm_sem)) { ret = -EAGAIN; goto fail; } } else { if (down_interruptible(&port->sm_sem)) { ret = -ERESTARTSYS; goto fail; } } ret = ib_modify_port(port->ib_dev, port->port_num, 0, &props); if (ret) goto err_up_sem; filp->private_data = port; ret = nonseekable_open(inode, filp); if (ret) goto err_clr_sm_cap; kobject_get(&port->umad_dev->kobj); return 0; err_clr_sm_cap: swap(props.set_port_cap_mask, props.clr_port_cap_mask); ib_modify_port(port->ib_dev, port->port_num, 0, &props); err_up_sem: up(&port->sm_sem); fail: return ret; } static int ib_umad_sm_close(struct inode *inode, struct file *filp) { struct ib_umad_port *port = filp->private_data; struct ib_port_modify props = { .clr_port_cap_mask = IB_PORT_SM }; int ret = 0; mutex_lock(&port->file_mutex); if (port->ib_dev) ret = ib_modify_port(port->ib_dev, port->port_num, 0, &props); mutex_unlock(&port->file_mutex); up(&port->sm_sem); kobject_put(&port->umad_dev->kobj); return ret; } static const struct file_operations umad_sm_fops = { .owner = THIS_MODULE, .open = ib_umad_sm_open, .release = ib_umad_sm_close, .llseek = no_llseek, }; static struct ib_client umad_client = { .name = "umad", .add = ib_umad_add_one, .remove = ib_umad_remove_one }; static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr, char *buf) { struct ib_umad_port *port = dev_get_drvdata(dev); if (!port) return -ENODEV; return sprintf(buf, "%s\n", port->ib_dev->name); } static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); static ssize_t show_port(struct device *dev, struct device_attribute *attr, char *buf) { struct ib_umad_port *port = dev_get_drvdata(dev); if (!port) return -ENODEV; return sprintf(buf, "%d\n", port->port_num); } static DEVICE_ATTR(port, S_IRUGO, show_port, NULL); static CLASS_ATTR_STRING(abi_version, S_IRUGO, __stringify(IB_USER_MAD_ABI_VERSION)); static dev_t overflow_maj; static DECLARE_BITMAP(overflow_map, IB_UMAD_MAX_PORTS); static int find_overflow_devnum(struct ib_device *device) { int ret; if (!overflow_maj) { ret = alloc_chrdev_region(&overflow_maj, 0, IB_UMAD_MAX_PORTS * 2, "infiniband_mad"); if (ret) { dev_err(&device->dev, "couldn't register dynamic device number\n"); return ret; } } ret = find_first_zero_bit(overflow_map, IB_UMAD_MAX_PORTS); if (ret >= IB_UMAD_MAX_PORTS) return -1; return ret; } static int ib_umad_init_port(struct ib_device *device, int port_num, struct ib_umad_device *umad_dev, struct ib_umad_port *port) { int devnum; dev_t base; spin_lock(&port_lock); devnum = find_first_zero_bit(dev_map, IB_UMAD_MAX_PORTS); if (devnum >= IB_UMAD_MAX_PORTS) { spin_unlock(&port_lock); devnum = find_overflow_devnum(device); if (devnum < 0) return -1; spin_lock(&port_lock); port->dev_num = devnum + IB_UMAD_MAX_PORTS; base = devnum + overflow_maj; set_bit(devnum, overflow_map); } else { port->dev_num = devnum; base = devnum + base_dev; set_bit(devnum, dev_map); } spin_unlock(&port_lock); port->ib_dev = device; port->port_num = port_num; sema_init(&port->sm_sem, 1); mutex_init(&port->file_mutex); INIT_LIST_HEAD(&port->file_list); cdev_init(&port->cdev, &umad_fops); port->cdev.owner = THIS_MODULE; port->cdev.kobj.parent = &umad_dev->kobj; kobject_set_name(&port->cdev.kobj, "umad%d", port->dev_num); if (cdev_add(&port->cdev, base, 1)) goto err_cdev; port->dev = device_create(umad_class, device->dma_device, port->cdev.dev, port, "umad%d", port->dev_num); if (IS_ERR(port->dev)) goto err_cdev; if (device_create_file(port->dev, &dev_attr_ibdev)) goto err_dev; if (device_create_file(port->dev, &dev_attr_port)) goto err_dev; base += IB_UMAD_MAX_PORTS; cdev_init(&port->sm_cdev, &umad_sm_fops); port->sm_cdev.owner = THIS_MODULE; port->sm_cdev.kobj.parent = &umad_dev->kobj; kobject_set_name(&port->sm_cdev.kobj, "issm%d", port->dev_num); if (cdev_add(&port->sm_cdev, base, 1)) goto err_sm_cdev; port->sm_dev = device_create(umad_class, device->dma_device, port->sm_cdev.dev, port, "issm%d", port->dev_num); if (IS_ERR(port->sm_dev)) goto err_sm_cdev; if (device_create_file(port->sm_dev, &dev_attr_ibdev)) goto err_sm_dev; if (device_create_file(port->sm_dev, &dev_attr_port)) goto err_sm_dev; return 0; err_sm_dev: device_destroy(umad_class, port->sm_cdev.dev); err_sm_cdev: cdev_del(&port->sm_cdev); err_dev: device_destroy(umad_class, port->cdev.dev); err_cdev: cdev_del(&port->cdev); if (port->dev_num < IB_UMAD_MAX_PORTS) clear_bit(devnum, dev_map); else clear_bit(devnum, overflow_map); return -1; } static void ib_umad_kill_port(struct ib_umad_port *port) { struct ib_umad_file *file; int id; dev_set_drvdata(port->dev, NULL); dev_set_drvdata(port->sm_dev, NULL); device_destroy(umad_class, port->cdev.dev); device_destroy(umad_class, port->sm_cdev.dev); cdev_del(&port->cdev); cdev_del(&port->sm_cdev); mutex_lock(&port->file_mutex); port->ib_dev = NULL; list_for_each_entry(file, &port->file_list, port_list) { mutex_lock(&file->mutex); file->agents_dead = 1; mutex_unlock(&file->mutex); for (id = 0; id < IB_UMAD_MAX_AGENTS; ++id) if (file->agent[id]) ib_unregister_mad_agent(file->agent[id]); } mutex_unlock(&port->file_mutex); if (port->dev_num < IB_UMAD_MAX_PORTS) clear_bit(port->dev_num, dev_map); else clear_bit(port->dev_num - IB_UMAD_MAX_PORTS, overflow_map); } static void ib_umad_add_one(struct ib_device *device) { struct ib_umad_device *umad_dev; int s, e, i; int count = 0; s = rdma_start_port(device); e = rdma_end_port(device); umad_dev = kzalloc(sizeof *umad_dev + (e - s + 1) * sizeof (struct ib_umad_port), GFP_KERNEL); if (!umad_dev) return; kobject_init(&umad_dev->kobj, &ib_umad_dev_ktype); for (i = s; i <= e; ++i) { if (!rdma_cap_ib_mad(device, i)) continue; umad_dev->port[i - s].umad_dev = umad_dev; if (ib_umad_init_port(device, i, umad_dev, &umad_dev->port[i - s])) goto err; count++; } if (!count) goto free; ib_set_client_data(device, &umad_client, umad_dev); return; err: while (--i >= s) { if (!rdma_cap_ib_mad(device, i)) continue; ib_umad_kill_port(&umad_dev->port[i - s]); } free: kobject_put(&umad_dev->kobj); } static void ib_umad_remove_one(struct ib_device *device, void *client_data) { struct ib_umad_device *umad_dev = client_data; int i; if (!umad_dev) return; for (i = 0; i <= rdma_end_port(device) - rdma_start_port(device); ++i) { if (rdma_cap_ib_mad(device, i + rdma_start_port(device))) ib_umad_kill_port(&umad_dev->port[i]); } kobject_put(&umad_dev->kobj); } static char *umad_devnode(struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "infiniband/%s", dev_name(dev)); } static int __init ib_umad_init(void) { int ret; ret = register_chrdev_region(base_dev, IB_UMAD_MAX_PORTS * 2, "infiniband_mad"); if (ret) { pr_err("couldn't register device number\n"); goto out; } umad_class = class_create(THIS_MODULE, "infiniband_mad"); if (IS_ERR(umad_class)) { ret = PTR_ERR(umad_class); pr_err("couldn't create class infiniband_mad\n"); goto out_chrdev; } umad_class->devnode = umad_devnode; ret = class_create_file(umad_class, &class_attr_abi_version.attr); if (ret) { pr_err("couldn't create abi_version attribute\n"); goto out_class; } ret = ib_register_client(&umad_client); if (ret) { pr_err("couldn't register ib_umad client\n"); goto out_class; } return 0; out_class: class_destroy(umad_class); out_chrdev: unregister_chrdev_region(base_dev, IB_UMAD_MAX_PORTS * 2); out: return ret; } static void __exit ib_umad_cleanup(void) { ib_unregister_client(&umad_client); class_destroy(umad_class); unregister_chrdev_region(base_dev, IB_UMAD_MAX_PORTS * 2); if (overflow_maj) unregister_chrdev_region(overflow_maj, IB_UMAD_MAX_PORTS * 2); } -module_init_order(ib_umad_init, SI_ORDER_THIRD); -module_exit(ib_umad_cleanup); +module_init_order(ib_umad_init, SI_ORDER_FIFTH); +module_exit_order(ib_umad_cleanup, SI_ORDER_FIFTH); Index: stable/11/sys/ofed/drivers/infiniband/core/ib_uverbs_main.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/core/ib_uverbs_main.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/core/ib_uverbs_main.c (revision 363151) @@ -1,1435 +1,1435 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2005 Topspin Communications. All rights reserved. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. * Copyright (c) 2005 Mellanox Technologies. All rights reserved. * Copyright (c) 2005 Voltaire, Inc. All rights reserved. * Copyright (c) 2005 PathScale, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include "uverbs.h" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("InfiniBand userspace verbs access"); MODULE_LICENSE("Dual BSD/GPL"); enum { IB_UVERBS_MAJOR = 231, IB_UVERBS_BASE_MINOR = 192, IB_UVERBS_MAX_DEVICES = 32 }; #define IB_UVERBS_BASE_DEV MKDEV(IB_UVERBS_MAJOR, IB_UVERBS_BASE_MINOR) static struct class *uverbs_class; DEFINE_SPINLOCK(ib_uverbs_idr_lock); DEFINE_IDR(ib_uverbs_pd_idr); DEFINE_IDR(ib_uverbs_mr_idr); DEFINE_IDR(ib_uverbs_mw_idr); DEFINE_IDR(ib_uverbs_ah_idr); DEFINE_IDR(ib_uverbs_cq_idr); DEFINE_IDR(ib_uverbs_qp_idr); DEFINE_IDR(ib_uverbs_srq_idr); DEFINE_IDR(ib_uverbs_xrcd_idr); DEFINE_IDR(ib_uverbs_rule_idr); DEFINE_IDR(ib_uverbs_wq_idr); DEFINE_IDR(ib_uverbs_rwq_ind_tbl_idr); static DEFINE_SPINLOCK(map_lock); static DECLARE_BITMAP(dev_map, IB_UVERBS_MAX_DEVICES); static ssize_t (*uverbs_cmd_table[])(struct ib_uverbs_file *file, struct ib_device *ib_dev, const char __user *buf, int in_len, int out_len) = { [IB_USER_VERBS_CMD_GET_CONTEXT] = ib_uverbs_get_context, [IB_USER_VERBS_CMD_QUERY_DEVICE] = ib_uverbs_query_device, [IB_USER_VERBS_CMD_QUERY_PORT] = ib_uverbs_query_port, [IB_USER_VERBS_CMD_ALLOC_PD] = ib_uverbs_alloc_pd, [IB_USER_VERBS_CMD_DEALLOC_PD] = ib_uverbs_dealloc_pd, [IB_USER_VERBS_CMD_REG_MR] = ib_uverbs_reg_mr, [IB_USER_VERBS_CMD_REREG_MR] = ib_uverbs_rereg_mr, [IB_USER_VERBS_CMD_DEREG_MR] = ib_uverbs_dereg_mr, [IB_USER_VERBS_CMD_ALLOC_MW] = ib_uverbs_alloc_mw, [IB_USER_VERBS_CMD_DEALLOC_MW] = ib_uverbs_dealloc_mw, [IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL] = ib_uverbs_create_comp_channel, [IB_USER_VERBS_CMD_CREATE_CQ] = ib_uverbs_create_cq, [IB_USER_VERBS_CMD_RESIZE_CQ] = ib_uverbs_resize_cq, [IB_USER_VERBS_CMD_POLL_CQ] = ib_uverbs_poll_cq, [IB_USER_VERBS_CMD_REQ_NOTIFY_CQ] = ib_uverbs_req_notify_cq, [IB_USER_VERBS_CMD_DESTROY_CQ] = ib_uverbs_destroy_cq, [IB_USER_VERBS_CMD_CREATE_QP] = ib_uverbs_create_qp, [IB_USER_VERBS_CMD_QUERY_QP] = ib_uverbs_query_qp, [IB_USER_VERBS_CMD_MODIFY_QP] = ib_uverbs_modify_qp, [IB_USER_VERBS_CMD_DESTROY_QP] = ib_uverbs_destroy_qp, [IB_USER_VERBS_CMD_POST_SEND] = ib_uverbs_post_send, [IB_USER_VERBS_CMD_POST_RECV] = ib_uverbs_post_recv, [IB_USER_VERBS_CMD_POST_SRQ_RECV] = ib_uverbs_post_srq_recv, [IB_USER_VERBS_CMD_CREATE_AH] = ib_uverbs_create_ah, [IB_USER_VERBS_CMD_DESTROY_AH] = ib_uverbs_destroy_ah, [IB_USER_VERBS_CMD_ATTACH_MCAST] = ib_uverbs_attach_mcast, [IB_USER_VERBS_CMD_DETACH_MCAST] = ib_uverbs_detach_mcast, [IB_USER_VERBS_CMD_CREATE_SRQ] = ib_uverbs_create_srq, [IB_USER_VERBS_CMD_MODIFY_SRQ] = ib_uverbs_modify_srq, [IB_USER_VERBS_CMD_QUERY_SRQ] = ib_uverbs_query_srq, [IB_USER_VERBS_CMD_DESTROY_SRQ] = ib_uverbs_destroy_srq, [IB_USER_VERBS_CMD_OPEN_XRCD] = ib_uverbs_open_xrcd, [IB_USER_VERBS_CMD_CLOSE_XRCD] = ib_uverbs_close_xrcd, [IB_USER_VERBS_CMD_CREATE_XSRQ] = ib_uverbs_create_xsrq, [IB_USER_VERBS_CMD_OPEN_QP] = ib_uverbs_open_qp, }; static int (*uverbs_ex_cmd_table[])(struct ib_uverbs_file *file, struct ib_device *ib_dev, struct ib_udata *ucore, struct ib_udata *uhw) = { [IB_USER_VERBS_EX_CMD_CREATE_FLOW] = ib_uverbs_ex_create_flow, [IB_USER_VERBS_EX_CMD_DESTROY_FLOW] = ib_uverbs_ex_destroy_flow, [IB_USER_VERBS_EX_CMD_QUERY_DEVICE] = ib_uverbs_ex_query_device, [IB_USER_VERBS_EX_CMD_CREATE_CQ] = ib_uverbs_ex_create_cq, [IB_USER_VERBS_EX_CMD_CREATE_QP] = ib_uverbs_ex_create_qp, [IB_USER_VERBS_EX_CMD_CREATE_WQ] = ib_uverbs_ex_create_wq, [IB_USER_VERBS_EX_CMD_MODIFY_WQ] = ib_uverbs_ex_modify_wq, [IB_USER_VERBS_EX_CMD_DESTROY_WQ] = ib_uverbs_ex_destroy_wq, [IB_USER_VERBS_EX_CMD_CREATE_RWQ_IND_TBL] = ib_uverbs_ex_create_rwq_ind_table, [IB_USER_VERBS_EX_CMD_DESTROY_RWQ_IND_TBL] = ib_uverbs_ex_destroy_rwq_ind_table, }; static void ib_uverbs_add_one(struct ib_device *device); static void ib_uverbs_remove_one(struct ib_device *device, void *client_data); int uverbs_dealloc_mw(struct ib_mw *mw) { struct ib_pd *pd = mw->pd; int ret; ret = mw->device->dealloc_mw(mw); if (!ret) atomic_dec(&pd->usecnt); return ret; } static void ib_uverbs_release_dev(struct kobject *kobj) { struct ib_uverbs_device *dev = container_of(kobj, struct ib_uverbs_device, kobj); cleanup_srcu_struct(&dev->disassociate_srcu); kfree(dev); } static struct kobj_type ib_uverbs_dev_ktype = { .release = ib_uverbs_release_dev, }; static void ib_uverbs_release_event_file(struct kref *ref) { struct ib_uverbs_event_file *file = container_of(ref, struct ib_uverbs_event_file, ref); kfree(file); } void ib_uverbs_release_ucq(struct ib_uverbs_file *file, struct ib_uverbs_event_file *ev_file, struct ib_ucq_object *uobj) { struct ib_uverbs_event *evt, *tmp; if (ev_file) { spin_lock_irq(&ev_file->lock); list_for_each_entry_safe(evt, tmp, &uobj->comp_list, obj_list) { list_del(&evt->list); kfree(evt); } spin_unlock_irq(&ev_file->lock); kref_put(&ev_file->ref, ib_uverbs_release_event_file); } spin_lock_irq(&file->async_file->lock); list_for_each_entry_safe(evt, tmp, &uobj->async_list, obj_list) { list_del(&evt->list); kfree(evt); } spin_unlock_irq(&file->async_file->lock); } void ib_uverbs_release_uevent(struct ib_uverbs_file *file, struct ib_uevent_object *uobj) { struct ib_uverbs_event *evt, *tmp; spin_lock_irq(&file->async_file->lock); list_for_each_entry_safe(evt, tmp, &uobj->event_list, obj_list) { list_del(&evt->list); kfree(evt); } spin_unlock_irq(&file->async_file->lock); } static void ib_uverbs_detach_umcast(struct ib_qp *qp, struct ib_uqp_object *uobj) { struct ib_uverbs_mcast_entry *mcast, *tmp; list_for_each_entry_safe(mcast, tmp, &uobj->mcast_list, list) { ib_detach_mcast(qp, &mcast->gid, mcast->lid); list_del(&mcast->list); kfree(mcast); } } static int ib_uverbs_cleanup_ucontext(struct ib_uverbs_file *file, struct ib_ucontext *context) { struct ib_uobject *uobj, *tmp; context->closing = 1; list_for_each_entry_safe(uobj, tmp, &context->ah_list, list) { struct ib_ah *ah = uobj->object; idr_remove_uobj(&ib_uverbs_ah_idr, uobj); ib_destroy_ah(ah); kfree(uobj); } /* Remove MWs before QPs, in order to support type 2A MWs. */ list_for_each_entry_safe(uobj, tmp, &context->mw_list, list) { struct ib_mw *mw = uobj->object; idr_remove_uobj(&ib_uverbs_mw_idr, uobj); uverbs_dealloc_mw(mw); kfree(uobj); } list_for_each_entry_safe(uobj, tmp, &context->rule_list, list) { struct ib_flow *flow_id = uobj->object; idr_remove_uobj(&ib_uverbs_rule_idr, uobj); ib_destroy_flow(flow_id); kfree(uobj); } list_for_each_entry_safe(uobj, tmp, &context->qp_list, list) { struct ib_qp *qp = uobj->object; struct ib_uqp_object *uqp = container_of(uobj, struct ib_uqp_object, uevent.uobject); idr_remove_uobj(&ib_uverbs_qp_idr, uobj); if (qp == qp->real_qp) ib_uverbs_detach_umcast(qp, uqp); ib_destroy_qp(qp); ib_uverbs_release_uevent(file, &uqp->uevent); kfree(uqp); } list_for_each_entry_safe(uobj, tmp, &context->rwq_ind_tbl_list, list) { struct ib_rwq_ind_table *rwq_ind_tbl = uobj->object; struct ib_wq **ind_tbl = rwq_ind_tbl->ind_tbl; idr_remove_uobj(&ib_uverbs_rwq_ind_tbl_idr, uobj); ib_destroy_rwq_ind_table(rwq_ind_tbl); kfree(ind_tbl); kfree(uobj); } list_for_each_entry_safe(uobj, tmp, &context->wq_list, list) { struct ib_wq *wq = uobj->object; struct ib_uwq_object *uwq = container_of(uobj, struct ib_uwq_object, uevent.uobject); idr_remove_uobj(&ib_uverbs_wq_idr, uobj); ib_destroy_wq(wq); ib_uverbs_release_uevent(file, &uwq->uevent); kfree(uwq); } list_for_each_entry_safe(uobj, tmp, &context->srq_list, list) { struct ib_srq *srq = uobj->object; struct ib_uevent_object *uevent = container_of(uobj, struct ib_uevent_object, uobject); idr_remove_uobj(&ib_uverbs_srq_idr, uobj); ib_destroy_srq(srq); ib_uverbs_release_uevent(file, uevent); kfree(uevent); } list_for_each_entry_safe(uobj, tmp, &context->cq_list, list) { struct ib_cq *cq = uobj->object; struct ib_uverbs_event_file *ev_file = cq->cq_context; struct ib_ucq_object *ucq = container_of(uobj, struct ib_ucq_object, uobject); idr_remove_uobj(&ib_uverbs_cq_idr, uobj); ib_destroy_cq(cq); ib_uverbs_release_ucq(file, ev_file, ucq); kfree(ucq); } list_for_each_entry_safe(uobj, tmp, &context->mr_list, list) { struct ib_mr *mr = uobj->object; idr_remove_uobj(&ib_uverbs_mr_idr, uobj); ib_dereg_mr(mr); kfree(uobj); } mutex_lock(&file->device->xrcd_tree_mutex); list_for_each_entry_safe(uobj, tmp, &context->xrcd_list, list) { struct ib_xrcd *xrcd = uobj->object; struct ib_uxrcd_object *uxrcd = container_of(uobj, struct ib_uxrcd_object, uobject); idr_remove_uobj(&ib_uverbs_xrcd_idr, uobj); ib_uverbs_dealloc_xrcd(file->device, xrcd); kfree(uxrcd); } mutex_unlock(&file->device->xrcd_tree_mutex); list_for_each_entry_safe(uobj, tmp, &context->pd_list, list) { struct ib_pd *pd = uobj->object; idr_remove_uobj(&ib_uverbs_pd_idr, uobj); ib_dealloc_pd(pd); kfree(uobj); } put_pid(context->tgid); return context->device->dealloc_ucontext(context); } static void ib_uverbs_comp_dev(struct ib_uverbs_device *dev) { complete(&dev->comp); } static void ib_uverbs_release_file(struct kref *ref) { struct ib_uverbs_file *file = container_of(ref, struct ib_uverbs_file, ref); struct ib_device *ib_dev; int srcu_key; srcu_key = srcu_read_lock(&file->device->disassociate_srcu); ib_dev = srcu_dereference(file->device->ib_dev, &file->device->disassociate_srcu); if (ib_dev && !ib_dev->disassociate_ucontext) module_put(ib_dev->owner); srcu_read_unlock(&file->device->disassociate_srcu, srcu_key); if (atomic_dec_and_test(&file->device->refcount)) ib_uverbs_comp_dev(file->device); kfree(file); } static ssize_t ib_uverbs_event_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct ib_uverbs_event_file *file = filp->private_data; struct ib_uverbs_event *event; int eventsz; int ret = 0; spin_lock_irq(&file->lock); while (list_empty(&file->event_list)) { spin_unlock_irq(&file->lock); if (filp->f_flags & O_NONBLOCK) return -EAGAIN; if (wait_event_interruptible(file->poll_wait, (!list_empty(&file->event_list) || /* The barriers built into wait_event_interruptible() * and wake_up() guarentee this will see the null set * without using RCU */ !file->uverbs_file->device->ib_dev))) return -ERESTARTSYS; /* If device was disassociated and no event exists set an error */ if (list_empty(&file->event_list) && !file->uverbs_file->device->ib_dev) return -EIO; spin_lock_irq(&file->lock); } event = list_entry(file->event_list.next, struct ib_uverbs_event, list); if (file->is_async) eventsz = sizeof (struct ib_uverbs_async_event_desc); else eventsz = sizeof (struct ib_uverbs_comp_event_desc); if (eventsz > count) { ret = -EINVAL; event = NULL; } else { list_del(file->event_list.next); if (event->counter) { ++(*event->counter); list_del(&event->obj_list); } } spin_unlock_irq(&file->lock); if (event) { if (copy_to_user(buf, event, eventsz)) ret = -EFAULT; else ret = eventsz; } kfree(event); return ret; } static unsigned int ib_uverbs_event_poll(struct file *filp, struct poll_table_struct *wait) { unsigned int pollflags = 0; struct ib_uverbs_event_file *file = filp->private_data; poll_wait(filp, &file->poll_wait, wait); spin_lock_irq(&file->lock); if (!list_empty(&file->event_list)) pollflags = POLLIN | POLLRDNORM; spin_unlock_irq(&file->lock); return pollflags; } static int ib_uverbs_event_fasync(int fd, struct file *filp, int on) { struct ib_uverbs_event_file *file = filp->private_data; return fasync_helper(fd, filp, on, &file->async_queue); } static int ib_uverbs_event_close(struct inode *inode, struct file *filp) { struct ib_uverbs_event_file *file = filp->private_data; struct ib_uverbs_event *entry, *tmp; int closed_already = 0; mutex_lock(&file->uverbs_file->device->lists_mutex); spin_lock_irq(&file->lock); closed_already = file->is_closed; file->is_closed = 1; list_for_each_entry_safe(entry, tmp, &file->event_list, list) { if (entry->counter) list_del(&entry->obj_list); kfree(entry); } spin_unlock_irq(&file->lock); if (!closed_already) { list_del(&file->list); if (file->is_async) ib_unregister_event_handler(&file->uverbs_file-> event_handler); } mutex_unlock(&file->uverbs_file->device->lists_mutex); kref_put(&file->uverbs_file->ref, ib_uverbs_release_file); kref_put(&file->ref, ib_uverbs_release_event_file); return 0; } static const struct file_operations uverbs_event_fops = { .owner = THIS_MODULE, .read = ib_uverbs_event_read, .poll = ib_uverbs_event_poll, .release = ib_uverbs_event_close, .fasync = ib_uverbs_event_fasync, .llseek = no_llseek, }; void ib_uverbs_comp_handler(struct ib_cq *cq, void *cq_context) { struct ib_uverbs_event_file *file = cq_context; struct ib_ucq_object *uobj; struct ib_uverbs_event *entry; unsigned long flags; if (!file) return; spin_lock_irqsave(&file->lock, flags); if (file->is_closed) { spin_unlock_irqrestore(&file->lock, flags); return; } entry = kmalloc(sizeof *entry, GFP_ATOMIC); if (!entry) { spin_unlock_irqrestore(&file->lock, flags); return; } uobj = container_of(cq->uobject, struct ib_ucq_object, uobject); entry->desc.comp.cq_handle = cq->uobject->user_handle; entry->counter = &uobj->comp_events_reported; list_add_tail(&entry->list, &file->event_list); list_add_tail(&entry->obj_list, &uobj->comp_list); spin_unlock_irqrestore(&file->lock, flags); wake_up_interruptible(&file->poll_wait); kill_fasync(&file->async_queue, SIGIO, POLL_IN); } static void ib_uverbs_async_handler(struct ib_uverbs_file *file, __u64 element, __u64 event, struct list_head *obj_list, u32 *counter) { struct ib_uverbs_event *entry; unsigned long flags; spin_lock_irqsave(&file->async_file->lock, flags); if (file->async_file->is_closed) { spin_unlock_irqrestore(&file->async_file->lock, flags); return; } entry = kmalloc(sizeof *entry, GFP_ATOMIC); if (!entry) { spin_unlock_irqrestore(&file->async_file->lock, flags); return; } entry->desc.async.element = element; entry->desc.async.event_type = event; entry->desc.async.reserved = 0; entry->counter = counter; list_add_tail(&entry->list, &file->async_file->event_list); if (obj_list) list_add_tail(&entry->obj_list, obj_list); spin_unlock_irqrestore(&file->async_file->lock, flags); wake_up_interruptible(&file->async_file->poll_wait); kill_fasync(&file->async_file->async_queue, SIGIO, POLL_IN); } void ib_uverbs_cq_event_handler(struct ib_event *event, void *context_ptr) { struct ib_ucq_object *uobj = container_of(event->element.cq->uobject, struct ib_ucq_object, uobject); ib_uverbs_async_handler(uobj->uverbs_file, uobj->uobject.user_handle, event->event, &uobj->async_list, &uobj->async_events_reported); } void ib_uverbs_qp_event_handler(struct ib_event *event, void *context_ptr) { struct ib_uevent_object *uobj; /* for XRC target qp's, check that qp is live */ if (!event->element.qp->uobject || !event->element.qp->uobject->live) return; uobj = container_of(event->element.qp->uobject, struct ib_uevent_object, uobject); ib_uverbs_async_handler(context_ptr, uobj->uobject.user_handle, event->event, &uobj->event_list, &uobj->events_reported); } void ib_uverbs_wq_event_handler(struct ib_event *event, void *context_ptr) { struct ib_uevent_object *uobj = container_of(event->element.wq->uobject, struct ib_uevent_object, uobject); ib_uverbs_async_handler(context_ptr, uobj->uobject.user_handle, event->event, &uobj->event_list, &uobj->events_reported); } void ib_uverbs_srq_event_handler(struct ib_event *event, void *context_ptr) { struct ib_uevent_object *uobj; uobj = container_of(event->element.srq->uobject, struct ib_uevent_object, uobject); ib_uverbs_async_handler(context_ptr, uobj->uobject.user_handle, event->event, &uobj->event_list, &uobj->events_reported); } void ib_uverbs_event_handler(struct ib_event_handler *handler, struct ib_event *event) { struct ib_uverbs_file *file = container_of(handler, struct ib_uverbs_file, event_handler); ib_uverbs_async_handler(file, event->element.port_num, event->event, NULL, NULL); } void ib_uverbs_free_async_event_file(struct ib_uverbs_file *file) { kref_put(&file->async_file->ref, ib_uverbs_release_event_file); file->async_file = NULL; } struct file *ib_uverbs_alloc_event_file(struct ib_uverbs_file *uverbs_file, struct ib_device *ib_dev, int is_async) { struct ib_uverbs_event_file *ev_file; struct file *filp; int ret; ev_file = kzalloc(sizeof(*ev_file), GFP_KERNEL); if (!ev_file) return ERR_PTR(-ENOMEM); kref_init(&ev_file->ref); spin_lock_init(&ev_file->lock); INIT_LIST_HEAD(&ev_file->event_list); init_waitqueue_head(&ev_file->poll_wait); ev_file->uverbs_file = uverbs_file; kref_get(&ev_file->uverbs_file->ref); ev_file->async_queue = NULL; ev_file->is_closed = 0; /* * fops_get() can't fail here, because we're coming from a * system call on a uverbs file, which will already have a * module reference. */ filp = alloc_file(FMODE_READ, fops_get(&uverbs_event_fops)); if (IS_ERR(filp)) goto err_put_refs; filp->private_data = ev_file; mutex_lock(&uverbs_file->device->lists_mutex); list_add_tail(&ev_file->list, &uverbs_file->device->uverbs_events_file_list); mutex_unlock(&uverbs_file->device->lists_mutex); if (is_async) { WARN_ON(uverbs_file->async_file); uverbs_file->async_file = ev_file; kref_get(&uverbs_file->async_file->ref); INIT_IB_EVENT_HANDLER(&uverbs_file->event_handler, ib_dev, ib_uverbs_event_handler); ret = ib_register_event_handler(&uverbs_file->event_handler); if (ret) goto err_put_file; /* At that point async file stuff was fully set */ ev_file->is_async = 1; } return filp; err_put_file: fput(filp); kref_put(&uverbs_file->async_file->ref, ib_uverbs_release_event_file); uverbs_file->async_file = NULL; return ERR_PTR(ret); err_put_refs: kref_put(&ev_file->uverbs_file->ref, ib_uverbs_release_file); kref_put(&ev_file->ref, ib_uverbs_release_event_file); return filp; } /* * Look up a completion event file by FD. If lookup is successful, * takes a ref to the event file struct that it returns; if * unsuccessful, returns NULL. */ struct ib_uverbs_event_file *ib_uverbs_lookup_comp_file(int fd) { struct ib_uverbs_event_file *ev_file = NULL; struct fd f = fdget(fd); if (!f.file) return NULL; if (f.file->f_op != &uverbs_event_fops) goto out; ev_file = f.file->private_data; if (ev_file->is_async) { ev_file = NULL; goto out; } kref_get(&ev_file->ref); out: fdput(f); return ev_file; } static int verify_command_mask(struct ib_device *ib_dev, __u32 command) { u64 mask; if (command <= IB_USER_VERBS_CMD_OPEN_QP) mask = ib_dev->uverbs_cmd_mask; else mask = ib_dev->uverbs_ex_cmd_mask; if (mask & ((u64)1 << command)) return 0; return -1; } static ssize_t ib_uverbs_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct ib_uverbs_file *file = filp->private_data; struct ib_device *ib_dev; struct ib_uverbs_cmd_hdr hdr; __u32 command; __u32 flags; int srcu_key; ssize_t ret; if (WARN_ON_ONCE(!ib_safe_file_access(filp))) return -EACCES; if (count < sizeof hdr) return -EINVAL; if (copy_from_user(&hdr, buf, sizeof hdr)) return -EFAULT; srcu_key = srcu_read_lock(&file->device->disassociate_srcu); ib_dev = srcu_dereference(file->device->ib_dev, &file->device->disassociate_srcu); if (!ib_dev) { ret = -EIO; goto out; } if (hdr.command & ~(__u32)(IB_USER_VERBS_CMD_FLAGS_MASK | IB_USER_VERBS_CMD_COMMAND_MASK)) { ret = -EINVAL; goto out; } command = hdr.command & IB_USER_VERBS_CMD_COMMAND_MASK; if (verify_command_mask(ib_dev, command)) { ret = -EOPNOTSUPP; goto out; } if (!file->ucontext && command != IB_USER_VERBS_CMD_GET_CONTEXT) { ret = -EINVAL; goto out; } flags = (hdr.command & IB_USER_VERBS_CMD_FLAGS_MASK) >> IB_USER_VERBS_CMD_FLAGS_SHIFT; if (!flags) { if (command >= ARRAY_SIZE(uverbs_cmd_table) || !uverbs_cmd_table[command]) { ret = -EINVAL; goto out; } if (hdr.in_words * 4 != count) { ret = -EINVAL; goto out; } ret = uverbs_cmd_table[command](file, ib_dev, buf + sizeof(hdr), hdr.in_words * 4, hdr.out_words * 4); } else if (flags == IB_USER_VERBS_CMD_FLAG_EXTENDED) { struct ib_uverbs_ex_cmd_hdr ex_hdr; struct ib_udata ucore; struct ib_udata uhw; size_t written_count = count; if (command >= ARRAY_SIZE(uverbs_ex_cmd_table) || !uverbs_ex_cmd_table[command]) { ret = -ENOSYS; goto out; } if (!file->ucontext) { ret = -EINVAL; goto out; } if (count < (sizeof(hdr) + sizeof(ex_hdr))) { ret = -EINVAL; goto out; } if (copy_from_user(&ex_hdr, buf + sizeof(hdr), sizeof(ex_hdr))) { ret = -EFAULT; goto out; } count -= sizeof(hdr) + sizeof(ex_hdr); buf += sizeof(hdr) + sizeof(ex_hdr); if ((hdr.in_words + ex_hdr.provider_in_words) * 8 != count) { ret = -EINVAL; goto out; } if (ex_hdr.cmd_hdr_reserved) { ret = -EINVAL; goto out; } if (ex_hdr.response) { if (!hdr.out_words && !ex_hdr.provider_out_words) { ret = -EINVAL; goto out; } if (!access_ok(VERIFY_WRITE, (void __user *) (unsigned long) ex_hdr.response, (hdr.out_words + ex_hdr.provider_out_words) * 8)) { ret = -EFAULT; goto out; } } else { if (hdr.out_words || ex_hdr.provider_out_words) { ret = -EINVAL; goto out; } } INIT_UDATA_BUF_OR_NULL(&ucore, buf, (unsigned long) ex_hdr.response, hdr.in_words * 8, hdr.out_words * 8); INIT_UDATA_BUF_OR_NULL(&uhw, buf + ucore.inlen, (unsigned long) ex_hdr.response + ucore.outlen, ex_hdr.provider_in_words * 8, ex_hdr.provider_out_words * 8); ret = uverbs_ex_cmd_table[command](file, ib_dev, &ucore, &uhw); if (!ret) ret = written_count; } else { ret = -ENOSYS; } out: srcu_read_unlock(&file->device->disassociate_srcu, srcu_key); return ret; } static int ib_uverbs_mmap(struct file *filp, struct vm_area_struct *vma) { struct ib_uverbs_file *file = filp->private_data; struct ib_device *ib_dev; int ret = 0; int srcu_key; srcu_key = srcu_read_lock(&file->device->disassociate_srcu); ib_dev = srcu_dereference(file->device->ib_dev, &file->device->disassociate_srcu); if (!ib_dev) { ret = -EIO; goto out; } if (!file->ucontext) ret = -ENODEV; else ret = ib_dev->mmap(file->ucontext, vma); out: srcu_read_unlock(&file->device->disassociate_srcu, srcu_key); return ret; } /* * ib_uverbs_open() does not need the BKL: * * - the ib_uverbs_device structures are properly reference counted and * everything else is purely local to the file being created, so * races against other open calls are not a problem; * - there is no ioctl method to race against; * - the open method will either immediately run -ENXIO, or all * required initialization will be done. */ static int ib_uverbs_open(struct inode *inode, struct file *filp) { struct ib_uverbs_device *dev; struct ib_uverbs_file *file; struct ib_device *ib_dev; int ret; int module_dependent; int srcu_key; dev = container_of(inode->i_cdev->si_drv1, struct ib_uverbs_device, cdev); if (!atomic_inc_not_zero(&dev->refcount)) return -ENXIO; srcu_key = srcu_read_lock(&dev->disassociate_srcu); mutex_lock(&dev->lists_mutex); ib_dev = srcu_dereference(dev->ib_dev, &dev->disassociate_srcu); if (!ib_dev) { ret = -EIO; goto err; } /* In case IB device supports disassociate ucontext, there is no hard * dependency between uverbs device and its low level device. */ module_dependent = !(ib_dev->disassociate_ucontext); if (module_dependent) { if (!try_module_get(ib_dev->owner)) { ret = -ENODEV; goto err; } } file = kzalloc(sizeof(*file), GFP_KERNEL); if (!file) { ret = -ENOMEM; if (module_dependent) goto err_module; goto err; } file->device = dev; file->ucontext = NULL; file->async_file = NULL; kref_init(&file->ref); mutex_init(&file->mutex); mutex_init(&file->cleanup_mutex); filp->private_data = file; kobject_get(&dev->kobj); list_add_tail(&file->list, &dev->uverbs_file_list); mutex_unlock(&dev->lists_mutex); srcu_read_unlock(&dev->disassociate_srcu, srcu_key); return nonseekable_open(inode, filp); err_module: module_put(ib_dev->owner); err: mutex_unlock(&dev->lists_mutex); srcu_read_unlock(&dev->disassociate_srcu, srcu_key); if (atomic_dec_and_test(&dev->refcount)) ib_uverbs_comp_dev(dev); return ret; } static int ib_uverbs_close(struct inode *inode, struct file *filp) { struct ib_uverbs_file *file = filp->private_data; struct ib_uverbs_device *dev = file->device; mutex_lock(&file->cleanup_mutex); if (file->ucontext) { ib_uverbs_cleanup_ucontext(file, file->ucontext); file->ucontext = NULL; } mutex_unlock(&file->cleanup_mutex); mutex_lock(&file->device->lists_mutex); if (!file->is_closed) { list_del(&file->list); file->is_closed = 1; } mutex_unlock(&file->device->lists_mutex); if (file->async_file) kref_put(&file->async_file->ref, ib_uverbs_release_event_file); kref_put(&file->ref, ib_uverbs_release_file); kobject_put(&dev->kobj); return 0; } static const struct file_operations uverbs_fops = { .owner = THIS_MODULE, .write = ib_uverbs_write, .open = ib_uverbs_open, .release = ib_uverbs_close, .llseek = no_llseek, }; static const struct file_operations uverbs_mmap_fops = { .owner = THIS_MODULE, .write = ib_uverbs_write, .mmap = ib_uverbs_mmap, .open = ib_uverbs_open, .release = ib_uverbs_close, .llseek = no_llseek, }; static struct ib_client uverbs_client = { .name = "uverbs", .add = ib_uverbs_add_one, .remove = ib_uverbs_remove_one }; static ssize_t show_ibdev(struct device *device, struct device_attribute *attr, char *buf) { int ret = -ENODEV; int srcu_key; struct ib_uverbs_device *dev = dev_get_drvdata(device); struct ib_device *ib_dev; if (!dev) return -ENODEV; srcu_key = srcu_read_lock(&dev->disassociate_srcu); ib_dev = srcu_dereference(dev->ib_dev, &dev->disassociate_srcu); if (ib_dev) ret = sprintf(buf, "%s\n", ib_dev->name); srcu_read_unlock(&dev->disassociate_srcu, srcu_key); return ret; } static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL); static ssize_t show_dev_abi_version(struct device *device, struct device_attribute *attr, char *buf) { struct ib_uverbs_device *dev = dev_get_drvdata(device); int ret = -ENODEV; int srcu_key; struct ib_device *ib_dev; if (!dev) return -ENODEV; srcu_key = srcu_read_lock(&dev->disassociate_srcu); ib_dev = srcu_dereference(dev->ib_dev, &dev->disassociate_srcu); if (ib_dev) ret = sprintf(buf, "%d\n", ib_dev->uverbs_abi_ver); srcu_read_unlock(&dev->disassociate_srcu, srcu_key); return ret; } static DEVICE_ATTR(abi_version, S_IRUGO, show_dev_abi_version, NULL); static CLASS_ATTR_STRING(abi_version, S_IRUGO, __stringify(IB_USER_VERBS_ABI_VERSION)); static dev_t overflow_maj; static DECLARE_BITMAP(overflow_map, IB_UVERBS_MAX_DEVICES); /* * If we have more than IB_UVERBS_MAX_DEVICES, dynamically overflow by * requesting a new major number and doubling the number of max devices we * support. It's stupid, but simple. */ static int find_overflow_devnum(void) { int ret; if (!overflow_maj) { ret = alloc_chrdev_region(&overflow_maj, 0, IB_UVERBS_MAX_DEVICES, "infiniband_verbs"); if (ret) { pr_err("user_verbs: couldn't register dynamic device number\n"); return ret; } } ret = find_first_zero_bit(overflow_map, IB_UVERBS_MAX_DEVICES); if (ret >= IB_UVERBS_MAX_DEVICES) return -1; return ret; } static ssize_t show_dev_device(struct device *device, struct device_attribute *attr, char *buf) { struct ib_uverbs_device *dev = dev_get_drvdata(device); if (!dev || !dev->ib_dev->dma_device) return -ENODEV; return sprintf(buf, "0x%04x\n", ((struct pci_dev *)dev->ib_dev->dma_device)->device); } static DEVICE_ATTR(device, S_IRUGO, show_dev_device, NULL); static ssize_t show_dev_vendor(struct device *device, struct device_attribute *attr, char *buf) { struct ib_uverbs_device *dev = dev_get_drvdata(device); if (!dev || !dev->ib_dev->dma_device) return -ENODEV; return sprintf(buf, "0x%04x\n", ((struct pci_dev *)dev->ib_dev->dma_device)->vendor); } static DEVICE_ATTR(vendor, S_IRUGO, show_dev_vendor, NULL); struct attribute *device_attrs[] = { &dev_attr_device.attr, &dev_attr_vendor.attr, NULL }; static struct attribute_group device_group = { .name = "device", .attrs = device_attrs }; static void ib_uverbs_add_one(struct ib_device *device) { int devnum; dev_t base; struct ib_uverbs_device *uverbs_dev; int ret; if (!device->alloc_ucontext) return; uverbs_dev = kzalloc(sizeof *uverbs_dev, GFP_KERNEL); if (!uverbs_dev) return; ret = init_srcu_struct(&uverbs_dev->disassociate_srcu); if (ret) { kfree(uverbs_dev); return; } atomic_set(&uverbs_dev->refcount, 1); init_completion(&uverbs_dev->comp); uverbs_dev->xrcd_tree = RB_ROOT; mutex_init(&uverbs_dev->xrcd_tree_mutex); kobject_init(&uverbs_dev->kobj, &ib_uverbs_dev_ktype); mutex_init(&uverbs_dev->lists_mutex); INIT_LIST_HEAD(&uverbs_dev->uverbs_file_list); INIT_LIST_HEAD(&uverbs_dev->uverbs_events_file_list); spin_lock(&map_lock); devnum = find_first_zero_bit(dev_map, IB_UVERBS_MAX_DEVICES); if (devnum >= IB_UVERBS_MAX_DEVICES) { spin_unlock(&map_lock); devnum = find_overflow_devnum(); if (devnum < 0) goto err; spin_lock(&map_lock); uverbs_dev->devnum = devnum + IB_UVERBS_MAX_DEVICES; base = devnum + overflow_maj; set_bit(devnum, overflow_map); } else { uverbs_dev->devnum = devnum; base = devnum + IB_UVERBS_BASE_DEV; set_bit(devnum, dev_map); } spin_unlock(&map_lock); rcu_assign_pointer(uverbs_dev->ib_dev, device); uverbs_dev->num_comp_vectors = device->num_comp_vectors; cdev_init(&uverbs_dev->cdev, NULL); uverbs_dev->cdev.owner = THIS_MODULE; uverbs_dev->cdev.ops = device->mmap ? &uverbs_mmap_fops : &uverbs_fops; uverbs_dev->cdev.kobj.parent = &uverbs_dev->kobj; kobject_set_name(&uverbs_dev->cdev.kobj, "uverbs%d", uverbs_dev->devnum); if (cdev_add(&uverbs_dev->cdev, base, 1)) goto err_cdev; uverbs_dev->dev = device_create(uverbs_class, device->dma_device, uverbs_dev->cdev.dev, uverbs_dev, "uverbs%d", uverbs_dev->devnum); if (IS_ERR(uverbs_dev->dev)) goto err_cdev; if (device_create_file(uverbs_dev->dev, &dev_attr_ibdev)) goto err_class; if (device_create_file(uverbs_dev->dev, &dev_attr_abi_version)) goto err_class; if (sysfs_create_group(&uverbs_dev->dev->kobj, &device_group)) goto err_class; ib_set_client_data(device, &uverbs_client, uverbs_dev); return; err_class: device_destroy(uverbs_class, uverbs_dev->cdev.dev); err_cdev: cdev_del(&uverbs_dev->cdev); if (uverbs_dev->devnum < IB_UVERBS_MAX_DEVICES) clear_bit(devnum, dev_map); else clear_bit(devnum, overflow_map); err: if (atomic_dec_and_test(&uverbs_dev->refcount)) ib_uverbs_comp_dev(uverbs_dev); wait_for_completion(&uverbs_dev->comp); kobject_put(&uverbs_dev->kobj); return; } static void ib_uverbs_free_hw_resources(struct ib_uverbs_device *uverbs_dev, struct ib_device *ib_dev) { struct ib_uverbs_file *file; struct ib_uverbs_event_file *event_file; struct ib_event event; /* Pending running commands to terminate */ synchronize_srcu(&uverbs_dev->disassociate_srcu); event.event = IB_EVENT_DEVICE_FATAL; event.element.port_num = 0; event.device = ib_dev; mutex_lock(&uverbs_dev->lists_mutex); while (!list_empty(&uverbs_dev->uverbs_file_list)) { struct ib_ucontext *ucontext; file = list_first_entry(&uverbs_dev->uverbs_file_list, struct ib_uverbs_file, list); file->is_closed = 1; list_del(&file->list); kref_get(&file->ref); mutex_unlock(&uverbs_dev->lists_mutex); mutex_lock(&file->cleanup_mutex); ucontext = file->ucontext; file->ucontext = NULL; mutex_unlock(&file->cleanup_mutex); /* At this point ib_uverbs_close cannot be running * ib_uverbs_cleanup_ucontext */ if (ucontext) { /* We must release the mutex before going ahead and * calling disassociate_ucontext. disassociate_ucontext * might end up indirectly calling uverbs_close, * for example due to freeing the resources * (e.g mmput). */ ib_uverbs_event_handler(&file->event_handler, &event); ib_dev->disassociate_ucontext(ucontext); ib_uverbs_cleanup_ucontext(file, ucontext); } mutex_lock(&uverbs_dev->lists_mutex); kref_put(&file->ref, ib_uverbs_release_file); } while (!list_empty(&uverbs_dev->uverbs_events_file_list)) { event_file = list_first_entry(&uverbs_dev-> uverbs_events_file_list, struct ib_uverbs_event_file, list); spin_lock_irq(&event_file->lock); event_file->is_closed = 1; spin_unlock_irq(&event_file->lock); list_del(&event_file->list); if (event_file->is_async) { ib_unregister_event_handler(&event_file->uverbs_file-> event_handler); event_file->uverbs_file->event_handler.device = NULL; } wake_up_interruptible(&event_file->poll_wait); kill_fasync(&event_file->async_queue, SIGIO, POLL_IN); } mutex_unlock(&uverbs_dev->lists_mutex); } static void ib_uverbs_remove_one(struct ib_device *device, void *client_data) { struct ib_uverbs_device *uverbs_dev = client_data; int wait_clients = 1; if (!uverbs_dev) return; sysfs_remove_group(&uverbs_dev->dev->kobj, &device_group); dev_set_drvdata(uverbs_dev->dev, NULL); device_destroy(uverbs_class, uverbs_dev->cdev.dev); cdev_del(&uverbs_dev->cdev); if (uverbs_dev->devnum < IB_UVERBS_MAX_DEVICES) clear_bit(uverbs_dev->devnum, dev_map); else clear_bit(uverbs_dev->devnum - IB_UVERBS_MAX_DEVICES, overflow_map); if (device->disassociate_ucontext) { /* We disassociate HW resources and immediately return. * Userspace will see a EIO errno for all future access. * Upon returning, ib_device may be freed internally and is not * valid any more. * uverbs_device is still available until all clients close * their files, then the uverbs device ref count will be zero * and its resources will be freed. * Note: At this point no more files can be opened since the * cdev was deleted, however active clients can still issue * commands and close their open files. */ rcu_assign_pointer(uverbs_dev->ib_dev, NULL); ib_uverbs_free_hw_resources(uverbs_dev, device); wait_clients = 0; } if (atomic_dec_and_test(&uverbs_dev->refcount)) ib_uverbs_comp_dev(uverbs_dev); if (wait_clients) wait_for_completion(&uverbs_dev->comp); kobject_put(&uverbs_dev->kobj); } static char *uverbs_devnode(struct device *dev, umode_t *mode) { if (mode) *mode = 0666; return kasprintf(GFP_KERNEL, "infiniband/%s", dev_name(dev)); } static int __init ib_uverbs_init(void) { int ret; ret = register_chrdev_region(IB_UVERBS_BASE_DEV, IB_UVERBS_MAX_DEVICES, "infiniband_verbs"); if (ret) { pr_err("user_verbs: couldn't register device number\n"); goto out; } uverbs_class = class_create(THIS_MODULE, "infiniband_verbs"); if (IS_ERR(uverbs_class)) { ret = PTR_ERR(uverbs_class); pr_err("user_verbs: couldn't create class infiniband_verbs\n"); goto out_chrdev; } uverbs_class->devnode = uverbs_devnode; ret = class_create_file(uverbs_class, &class_attr_abi_version.attr); if (ret) { pr_err("user_verbs: couldn't create abi_version attribute\n"); goto out_class; } ret = ib_register_client(&uverbs_client); if (ret) { pr_err("user_verbs: couldn't register client\n"); goto out_class; } return 0; out_class: class_destroy(uverbs_class); out_chrdev: unregister_chrdev_region(IB_UVERBS_BASE_DEV, IB_UVERBS_MAX_DEVICES); out: return ret; } static void __exit ib_uverbs_cleanup(void) { ib_unregister_client(&uverbs_client); class_destroy(uverbs_class); unregister_chrdev_region(IB_UVERBS_BASE_DEV, IB_UVERBS_MAX_DEVICES); if (overflow_maj) unregister_chrdev_region(overflow_maj, IB_UVERBS_MAX_DEVICES); idr_destroy(&ib_uverbs_pd_idr); idr_destroy(&ib_uverbs_mr_idr); idr_destroy(&ib_uverbs_mw_idr); idr_destroy(&ib_uverbs_ah_idr); idr_destroy(&ib_uverbs_cq_idr); idr_destroy(&ib_uverbs_qp_idr); idr_destroy(&ib_uverbs_srq_idr); } -module_init_order(ib_uverbs_init, SI_ORDER_THIRD); -module_exit(ib_uverbs_cleanup); +module_init_order(ib_uverbs_init, SI_ORDER_FIFTH); +module_exit_order(ib_uverbs_cleanup, SI_ORDER_FIFTH); Index: stable/11/sys/ofed/drivers/infiniband/ulp/ipoib/ipoib_main.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/ulp/ipoib/ipoib_main.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/ulp/ipoib/ipoib_main.c (revision 363151) @@ -1,1754 +1,1754 @@ /* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2004 Voltaire, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "ipoib.h" static int ipoib_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); #include #include #include #include #include /* For ARPHRD_xxx */ #include #include #include #include MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("IP-over-InfiniBand net driver"); MODULE_LICENSE("Dual BSD/GPL"); int ipoib_sendq_size = IPOIB_TX_RING_SIZE; int ipoib_recvq_size = IPOIB_RX_RING_SIZE; module_param_named(send_queue_size, ipoib_sendq_size, int, 0444); MODULE_PARM_DESC(send_queue_size, "Number of descriptors in send queue"); module_param_named(recv_queue_size, ipoib_recvq_size, int, 0444); MODULE_PARM_DESC(recv_queue_size, "Number of descriptors in receive queue"); #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG int ipoib_debug_level = 1; module_param_named(debug_level, ipoib_debug_level, int, 0644); MODULE_PARM_DESC(debug_level, "Enable debug tracing if > 0"); #endif struct ipoib_path_iter { struct ipoib_dev_priv *priv; struct ipoib_path path; }; static const u8 ipv4_bcast_addr[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0x12, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff }; struct workqueue_struct *ipoib_workqueue; struct ib_sa_client ipoib_sa_client; static void ipoib_add_one(struct ib_device *device); static void ipoib_remove_one(struct ib_device *device, void *client_data); static struct net_device *ipoib_get_net_dev_by_params( struct ib_device *dev, u8 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr, void *client_data); static void ipoib_start(struct ifnet *dev); static int ipoib_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro); static int ipoib_ioctl(struct ifnet *ifp, u_long command, caddr_t data); static void ipoib_input(struct ifnet *ifp, struct mbuf *m); #define IPOIB_MTAP(_ifp, _m) \ do { \ if (bpf_peers_present((_ifp)->if_bpf)) { \ M_ASSERTVALID(_m); \ ipoib_mtap_mb((_ifp), (_m)); \ } \ } while (0) static struct unrhdr *ipoib_unrhdr; static void ipoib_unrhdr_init(void *arg) { ipoib_unrhdr = new_unrhdr(0, 65535, NULL); } SYSINIT(ipoib_unrhdr_init, SI_SUB_KLD - 1, SI_ORDER_ANY, ipoib_unrhdr_init, NULL); static void ipoib_unrhdr_uninit(void *arg) { if (ipoib_unrhdr != NULL) { struct unrhdr *hdr; hdr = ipoib_unrhdr; ipoib_unrhdr = NULL; delete_unrhdr(hdr); } } SYSUNINIT(ipoib_unrhdr_uninit, SI_SUB_KLD - 1, SI_ORDER_ANY, ipoib_unrhdr_uninit, NULL); /* * This is for clients that have an ipoib_header in the mbuf. */ static void ipoib_mtap_mb(struct ifnet *ifp, struct mbuf *mb) { struct ipoib_header *ih; struct ether_header eh; ih = mtod(mb, struct ipoib_header *); eh.ether_type = ih->proto; bcopy(ih->hwaddr, &eh.ether_dhost, ETHER_ADDR_LEN); bzero(&eh.ether_shost, ETHER_ADDR_LEN); mb->m_data += sizeof(struct ipoib_header); mb->m_len -= sizeof(struct ipoib_header); bpf_mtap2(ifp->if_bpf, &eh, sizeof(eh), mb); mb->m_data -= sizeof(struct ipoib_header); mb->m_len += sizeof(struct ipoib_header); } void ipoib_mtap_proto(struct ifnet *ifp, struct mbuf *mb, uint16_t proto) { struct ether_header eh; eh.ether_type = proto; bzero(&eh.ether_shost, ETHER_ADDR_LEN); bzero(&eh.ether_dhost, ETHER_ADDR_LEN); bpf_mtap2(ifp->if_bpf, &eh, sizeof(eh), mb); } static struct ib_client ipoib_client = { .name = "ipoib", .add = ipoib_add_one, .remove = ipoib_remove_one, .get_net_dev_by_params = ipoib_get_net_dev_by_params, }; int ipoib_open(struct ipoib_dev_priv *priv) { struct ifnet *dev = priv->dev; ipoib_dbg(priv, "bringing up interface\n"); set_bit(IPOIB_FLAG_ADMIN_UP, &priv->flags); if (ipoib_pkey_dev_delay_open(priv)) return 0; if (ipoib_ib_dev_open(priv)) goto err_disable; if (ipoib_ib_dev_up(priv)) goto err_stop; if (!test_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags)) { struct ipoib_dev_priv *cpriv; /* Bring up any child interfaces too */ mutex_lock(&priv->vlan_mutex); list_for_each_entry(cpriv, &priv->child_intfs, list) if ((cpriv->dev->if_drv_flags & IFF_DRV_RUNNING) == 0) ipoib_open(cpriv); mutex_unlock(&priv->vlan_mutex); } dev->if_drv_flags |= IFF_DRV_RUNNING; dev->if_drv_flags &= ~IFF_DRV_OACTIVE; return 0; err_stop: ipoib_ib_dev_stop(priv, 1); err_disable: clear_bit(IPOIB_FLAG_ADMIN_UP, &priv->flags); return -EINVAL; } static void ipoib_init(void *arg) { struct ifnet *dev; struct ipoib_dev_priv *priv; priv = arg; dev = priv->dev; if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0) ipoib_open(priv); queue_work(ipoib_workqueue, &priv->flush_light); } static int ipoib_stop(struct ipoib_dev_priv *priv) { struct ifnet *dev = priv->dev; ipoib_dbg(priv, "stopping interface\n"); clear_bit(IPOIB_FLAG_ADMIN_UP, &priv->flags); dev->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); ipoib_ib_dev_down(priv, 0); ipoib_ib_dev_stop(priv, 0); if (!test_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags)) { struct ipoib_dev_priv *cpriv; /* Bring down any child interfaces too */ mutex_lock(&priv->vlan_mutex); list_for_each_entry(cpriv, &priv->child_intfs, list) if ((cpriv->dev->if_drv_flags & IFF_DRV_RUNNING) != 0) ipoib_stop(cpriv); mutex_unlock(&priv->vlan_mutex); } return 0; } static int ipoib_propagate_ifnet_mtu(struct ipoib_dev_priv *priv, int new_mtu, bool propagate) { struct ifnet *ifp; struct ifreq ifr; int error; ifp = priv->dev; if (ifp->if_mtu == new_mtu) return (0); if (propagate) { strlcpy(ifr.ifr_name, if_name(ifp), IFNAMSIZ); ifr.ifr_mtu = new_mtu; CURVNET_SET(ifp->if_vnet); error = ifhwioctl(SIOCSIFMTU, ifp, (caddr_t)&ifr, curthread); CURVNET_RESTORE(); } else { ifp->if_mtu = new_mtu; error = 0; } return (error); } int ipoib_change_mtu(struct ipoib_dev_priv *priv, int new_mtu, bool propagate) { int error, prev_admin_mtu; /* dev->if_mtu > 2K ==> connected mode */ if (ipoib_cm_admin_enabled(priv)) { if (new_mtu > IPOIB_CM_MTU(ipoib_cm_max_mtu(priv))) return -EINVAL; if (new_mtu > priv->mcast_mtu) ipoib_warn(priv, "mtu > %d will cause multicast packet drops.\n", priv->mcast_mtu); return (ipoib_propagate_ifnet_mtu(priv, new_mtu, propagate)); } if (new_mtu > IPOIB_UD_MTU(priv->max_ib_mtu)) return -EINVAL; prev_admin_mtu = priv->admin_mtu; priv->admin_mtu = new_mtu; error = ipoib_propagate_ifnet_mtu(priv, min(priv->mcast_mtu, priv->admin_mtu), propagate); if (error == 0) { /* check for MTU change to avoid infinite loop */ if (prev_admin_mtu != new_mtu) queue_work(ipoib_workqueue, &priv->flush_light); } else priv->admin_mtu = prev_admin_mtu; return (error); } static int ipoib_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ipoib_dev_priv *priv = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int error = 0; /* check if detaching */ if (priv == NULL || priv->gone != 0) return (ENXIO); switch (command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) error = -ipoib_open(priv); } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) ipoib_stop(priv); break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) queue_work(ipoib_workqueue, &priv->restart_task); break; case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], INFINIBAND_ALEN); break; case SIOCSIFMTU: /* * Set the interface MTU. */ error = -ipoib_change_mtu(priv, ifr->ifr_mtu, false); break; default: error = EINVAL; break; } return (error); } static struct ipoib_path * __path_find(struct ipoib_dev_priv *priv, void *gid) { struct rb_node *n = priv->path_tree.rb_node; struct ipoib_path *path; int ret; while (n) { path = rb_entry(n, struct ipoib_path, rb_node); ret = memcmp(gid, path->pathrec.dgid.raw, sizeof (union ib_gid)); if (ret < 0) n = n->rb_left; else if (ret > 0) n = n->rb_right; else return path; } return NULL; } static int __path_add(struct ipoib_dev_priv *priv, struct ipoib_path *path) { struct rb_node **n = &priv->path_tree.rb_node; struct rb_node *pn = NULL; struct ipoib_path *tpath; int ret; while (*n) { pn = *n; tpath = rb_entry(pn, struct ipoib_path, rb_node); ret = memcmp(path->pathrec.dgid.raw, tpath->pathrec.dgid.raw, sizeof (union ib_gid)); if (ret < 0) n = &pn->rb_left; else if (ret > 0) n = &pn->rb_right; else return -EEXIST; } rb_link_node(&path->rb_node, pn, n); rb_insert_color(&path->rb_node, &priv->path_tree); list_add_tail(&path->list, &priv->path_list); return 0; } void ipoib_path_free(struct ipoib_dev_priv *priv, struct ipoib_path *path) { _IF_DRAIN(&path->queue); if (path->ah) ipoib_put_ah(path->ah); if (ipoib_cm_get(path)) ipoib_cm_destroy_tx(ipoib_cm_get(path)); kfree(path); } #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG struct ipoib_path_iter * ipoib_path_iter_init(struct ipoib_dev_priv *priv) { struct ipoib_path_iter *iter; iter = kmalloc(sizeof *iter, GFP_KERNEL); if (!iter) return NULL; iter->priv = priv; memset(iter->path.pathrec.dgid.raw, 0, 16); if (ipoib_path_iter_next(iter)) { kfree(iter); return NULL; } return iter; } int ipoib_path_iter_next(struct ipoib_path_iter *iter) { struct ipoib_dev_priv *priv = iter->priv; struct rb_node *n; struct ipoib_path *path; int ret = 1; spin_lock_irq(&priv->lock); n = rb_first(&priv->path_tree); while (n) { path = rb_entry(n, struct ipoib_path, rb_node); if (memcmp(iter->path.pathrec.dgid.raw, path->pathrec.dgid.raw, sizeof (union ib_gid)) < 0) { iter->path = *path; ret = 0; break; } n = rb_next(n); } spin_unlock_irq(&priv->lock); return ret; } void ipoib_path_iter_read(struct ipoib_path_iter *iter, struct ipoib_path *path) { *path = iter->path; } #endif /* CONFIG_INFINIBAND_IPOIB_DEBUG */ void ipoib_mark_paths_invalid(struct ipoib_dev_priv *priv) { struct ipoib_path *path, *tp; spin_lock_irq(&priv->lock); list_for_each_entry_safe(path, tp, &priv->path_list, list) { ipoib_dbg(priv, "mark path LID 0x%04x GID %16D invalid\n", be16_to_cpu(path->pathrec.dlid), path->pathrec.dgid.raw, ":"); path->valid = 0; } spin_unlock_irq(&priv->lock); } void ipoib_flush_paths(struct ipoib_dev_priv *priv) { struct ipoib_path *path, *tp; LIST_HEAD(remove_list); unsigned long flags; spin_lock_irqsave(&priv->lock, flags); list_splice_init(&priv->path_list, &remove_list); list_for_each_entry(path, &remove_list, list) rb_erase(&path->rb_node, &priv->path_tree); list_for_each_entry_safe(path, tp, &remove_list, list) { if (path->query) ib_sa_cancel_query(path->query_id, path->query); spin_unlock_irqrestore(&priv->lock, flags); wait_for_completion(&path->done); ipoib_path_free(priv, path); spin_lock_irqsave(&priv->lock, flags); } spin_unlock_irqrestore(&priv->lock, flags); } static void path_rec_completion(int status, struct ib_sa_path_rec *pathrec, void *path_ptr) { struct ipoib_path *path = path_ptr; struct ipoib_dev_priv *priv = path->priv; struct ifnet *dev = priv->dev; struct ipoib_ah *ah = NULL; struct ipoib_ah *old_ah = NULL; struct ifqueue mbqueue; struct mbuf *mb; unsigned long flags; if (!status) ipoib_dbg(priv, "PathRec LID 0x%04x for GID %16D\n", be16_to_cpu(pathrec->dlid), pathrec->dgid.raw, ":"); else ipoib_dbg(priv, "PathRec status %d for GID %16D\n", status, path->pathrec.dgid.raw, ":"); bzero(&mbqueue, sizeof(mbqueue)); if (!status) { struct ib_ah_attr av; if (!ib_init_ah_from_path(priv->ca, priv->port, pathrec, &av)) ah = ipoib_create_ah(priv, priv->pd, &av); } spin_lock_irqsave(&priv->lock, flags); if (ah) { path->pathrec = *pathrec; old_ah = path->ah; path->ah = ah; ipoib_dbg(priv, "created address handle %p for LID 0x%04x, SL %d\n", ah, be16_to_cpu(pathrec->dlid), pathrec->sl); for (;;) { _IF_DEQUEUE(&path->queue, mb); if (mb == NULL) break; _IF_ENQUEUE(&mbqueue, mb); } #ifdef CONFIG_INFINIBAND_IPOIB_CM if (ipoib_cm_enabled(priv, path->hwaddr) && !ipoib_cm_get(path)) ipoib_cm_set(path, ipoib_cm_create_tx(priv, path)); #endif path->valid = 1; } path->query = NULL; complete(&path->done); spin_unlock_irqrestore(&priv->lock, flags); if (old_ah) ipoib_put_ah(old_ah); for (;;) { _IF_DEQUEUE(&mbqueue, mb); if (mb == NULL) break; mb->m_pkthdr.rcvif = dev; if (dev->if_transmit(dev, mb)) ipoib_warn(priv, "dev_queue_xmit failed " "to requeue packet\n"); } } static struct ipoib_path * path_rec_create(struct ipoib_dev_priv *priv, uint8_t *hwaddr) { struct ipoib_path *path; if (!priv->broadcast) return NULL; path = kzalloc(sizeof *path, GFP_ATOMIC); if (!path) return NULL; path->priv = priv; bzero(&path->queue, sizeof(path->queue)); #ifdef CONFIG_INFINIBAND_IPOIB_CM memcpy(&path->hwaddr, hwaddr, INFINIBAND_ALEN); #endif memcpy(path->pathrec.dgid.raw, &hwaddr[4], sizeof (union ib_gid)); path->pathrec.sgid = priv->local_gid; path->pathrec.pkey = cpu_to_be16(priv->pkey); path->pathrec.numb_path = 1; path->pathrec.traffic_class = priv->broadcast->mcmember.traffic_class; return path; } static int path_rec_start(struct ipoib_dev_priv *priv, struct ipoib_path *path) { struct ifnet *dev = priv->dev; ib_sa_comp_mask comp_mask = IB_SA_PATH_REC_MTU_SELECTOR | IB_SA_PATH_REC_MTU; struct ib_sa_path_rec p_rec; p_rec = path->pathrec; p_rec.mtu_selector = IB_SA_GT; switch (roundup_pow_of_two(dev->if_mtu + IPOIB_ENCAP_LEN)) { case 512: p_rec.mtu = IB_MTU_256; break; case 1024: p_rec.mtu = IB_MTU_512; break; case 2048: p_rec.mtu = IB_MTU_1024; break; case 4096: p_rec.mtu = IB_MTU_2048; break; default: /* Wildcard everything */ comp_mask = 0; p_rec.mtu = 0; p_rec.mtu_selector = 0; } ipoib_dbg(priv, "Start path record lookup for %16D MTU > %d\n", p_rec.dgid.raw, ":", comp_mask ? ib_mtu_enum_to_int(p_rec.mtu) : 0); init_completion(&path->done); path->query_id = ib_sa_path_rec_get(&ipoib_sa_client, priv->ca, priv->port, &p_rec, comp_mask | IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | IB_SA_PATH_REC_NUMB_PATH | IB_SA_PATH_REC_TRAFFIC_CLASS | IB_SA_PATH_REC_PKEY, 1000, GFP_ATOMIC, path_rec_completion, path, &path->query); if (path->query_id < 0) { ipoib_warn(priv, "ib_sa_path_rec_get failed: %d\n", path->query_id); path->query = NULL; complete(&path->done); return path->query_id; } return 0; } static void ipoib_unicast_send(struct mbuf *mb, struct ipoib_dev_priv *priv, struct ipoib_header *eh) { struct ipoib_path *path; path = __path_find(priv, eh->hwaddr + 4); if (!path || !path->valid) { int new_path = 0; if (!path) { path = path_rec_create(priv, eh->hwaddr); new_path = 1; } if (path) { if (_IF_QLEN(&path->queue) < IPOIB_MAX_PATH_REC_QUEUE) _IF_ENQUEUE(&path->queue, mb); else { if_inc_counter(priv->dev, IFCOUNTER_OERRORS, 1); m_freem(mb); } if (!path->query && path_rec_start(priv, path)) { if (new_path) ipoib_path_free(priv, path); return; } else __path_add(priv, path); } else { if_inc_counter(priv->dev, IFCOUNTER_OERRORS, 1); m_freem(mb); } return; } if (ipoib_cm_get(path) && ipoib_cm_up(path)) { ipoib_cm_send(priv, mb, ipoib_cm_get(path)); } else if (path->ah) { ipoib_send(priv, mb, path->ah, IPOIB_QPN(eh->hwaddr)); } else if ((path->query || !path_rec_start(priv, path)) && path->queue.ifq_len < IPOIB_MAX_PATH_REC_QUEUE) { _IF_ENQUEUE(&path->queue, mb); } else { if_inc_counter(priv->dev, IFCOUNTER_OERRORS, 1); m_freem(mb); } } static int ipoib_send_one(struct ipoib_dev_priv *priv, struct mbuf *mb) { struct ipoib_header *eh; eh = mtod(mb, struct ipoib_header *); if (IPOIB_IS_MULTICAST(eh->hwaddr)) { /* Add in the P_Key for multicast*/ eh->hwaddr[8] = (priv->pkey >> 8) & 0xff; eh->hwaddr[9] = priv->pkey & 0xff; ipoib_mcast_send(priv, eh->hwaddr + 4, mb); } else ipoib_unicast_send(mb, priv, eh); return 0; } void ipoib_start_locked(struct ifnet *dev, struct ipoib_dev_priv *priv) { struct mbuf *mb; assert_spin_locked(&priv->lock); while (!IFQ_DRV_IS_EMPTY(&dev->if_snd) && (dev->if_drv_flags & IFF_DRV_OACTIVE) == 0) { IFQ_DRV_DEQUEUE(&dev->if_snd, mb); if (mb == NULL) break; IPOIB_MTAP(dev, mb); ipoib_send_one(priv, mb); } } static void _ipoib_start(struct ifnet *dev, struct ipoib_dev_priv *priv) { if ((dev->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; spin_lock(&priv->lock); ipoib_start_locked(dev, priv); spin_unlock(&priv->lock); } static void ipoib_start(struct ifnet *dev) { _ipoib_start(dev, dev->if_softc); } static void ipoib_vlan_start(struct ifnet *dev) { struct ipoib_dev_priv *priv; struct mbuf *mb; priv = VLAN_COOKIE(dev); if (priv != NULL) return _ipoib_start(dev, priv); while (!IFQ_DRV_IS_EMPTY(&dev->if_snd)) { IFQ_DRV_DEQUEUE(&dev->if_snd, mb); if (mb == NULL) break; m_freem(mb); if_inc_counter(dev, IFCOUNTER_OERRORS, 1); } } int ipoib_dev_init(struct ipoib_dev_priv *priv, struct ib_device *ca, int port) { /* Allocate RX/TX "rings" to hold queued mbs */ priv->rx_ring = kzalloc(ipoib_recvq_size * sizeof *priv->rx_ring, GFP_KERNEL); if (!priv->rx_ring) { printk(KERN_WARNING "%s: failed to allocate RX ring (%d entries)\n", ca->name, ipoib_recvq_size); goto out; } priv->tx_ring = kzalloc(ipoib_sendq_size * sizeof *priv->tx_ring, GFP_KERNEL); if (!priv->tx_ring) { printk(KERN_WARNING "%s: failed to allocate TX ring (%d entries)\n", ca->name, ipoib_sendq_size); goto out_rx_ring_cleanup; } memset(priv->tx_ring, 0, ipoib_sendq_size * sizeof *priv->tx_ring); /* priv->tx_head, tx_tail & tx_outstanding are already 0 */ if (ipoib_ib_dev_init(priv, ca, port)) goto out_tx_ring_cleanup; return 0; out_tx_ring_cleanup: kfree(priv->tx_ring); out_rx_ring_cleanup: kfree(priv->rx_ring); out: return -ENOMEM; } static void ipoib_detach(struct ipoib_dev_priv *priv) { struct ifnet *dev; dev = priv->dev; if (!test_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags)) { priv->gone = 1; bpfdetach(dev); if_detach(dev); if_free(dev); free_unr(ipoib_unrhdr, priv->unit); } else VLAN_SETCOOKIE(priv->dev, NULL); free(priv, M_TEMP); } void ipoib_dev_cleanup(struct ipoib_dev_priv *priv) { struct ipoib_dev_priv *cpriv, *tcpriv; /* Delete any child interfaces first */ list_for_each_entry_safe(cpriv, tcpriv, &priv->child_intfs, list) { ipoib_dev_cleanup(cpriv); ipoib_detach(cpriv); } ipoib_ib_dev_cleanup(priv); kfree(priv->rx_ring); kfree(priv->tx_ring); priv->rx_ring = NULL; priv->tx_ring = NULL; } static struct ipoib_dev_priv * ipoib_priv_alloc(void) { struct ipoib_dev_priv *priv; priv = malloc(sizeof(struct ipoib_dev_priv), M_TEMP, M_ZERO|M_WAITOK); spin_lock_init(&priv->lock); spin_lock_init(&priv->drain_lock); mutex_init(&priv->vlan_mutex); INIT_LIST_HEAD(&priv->path_list); INIT_LIST_HEAD(&priv->child_intfs); INIT_LIST_HEAD(&priv->dead_ahs); INIT_LIST_HEAD(&priv->multicast_list); INIT_DELAYED_WORK(&priv->pkey_poll_task, ipoib_pkey_poll); INIT_DELAYED_WORK(&priv->mcast_task, ipoib_mcast_join_task); INIT_WORK(&priv->carrier_on_task, ipoib_mcast_carrier_on_task); INIT_WORK(&priv->flush_light, ipoib_ib_dev_flush_light); INIT_WORK(&priv->flush_normal, ipoib_ib_dev_flush_normal); INIT_WORK(&priv->flush_heavy, ipoib_ib_dev_flush_heavy); INIT_WORK(&priv->restart_task, ipoib_mcast_restart_task); INIT_DELAYED_WORK(&priv->ah_reap_task, ipoib_reap_ah); memcpy(priv->broadcastaddr, ipv4_bcast_addr, INFINIBAND_ALEN); return (priv); } struct ipoib_dev_priv * ipoib_intf_alloc(const char *name) { struct ipoib_dev_priv *priv; struct sockaddr_dl *sdl; struct ifnet *dev; priv = ipoib_priv_alloc(); dev = priv->dev = if_alloc(IFT_INFINIBAND); if (!dev) { free(priv, M_TEMP); return NULL; } dev->if_softc = priv; priv->unit = alloc_unr(ipoib_unrhdr); if (priv->unit == -1) { if_free(dev); free(priv, M_TEMP); return NULL; } if_initname(dev, name, priv->unit); dev->if_flags = IFF_BROADCAST | IFF_MULTICAST; dev->if_addrlen = INFINIBAND_ALEN; dev->if_hdrlen = IPOIB_HEADER_LEN; if_attach(dev); dev->if_init = ipoib_init; dev->if_ioctl = ipoib_ioctl; dev->if_start = ipoib_start; dev->if_output = ipoib_output; dev->if_input = ipoib_input; dev->if_resolvemulti = ipoib_resolvemulti; dev->if_baudrate = IF_Gbps(10); dev->if_broadcastaddr = priv->broadcastaddr; dev->if_snd.ifq_maxlen = ipoib_sendq_size * 2; sdl = (struct sockaddr_dl *)dev->if_addr->ifa_addr; sdl->sdl_type = IFT_INFINIBAND; sdl->sdl_alen = dev->if_addrlen; priv->dev = dev; if_link_state_change(dev, LINK_STATE_DOWN); bpfattach(dev, DLT_EN10MB, ETHER_HDR_LEN); return dev->if_softc; } int ipoib_set_dev_features(struct ipoib_dev_priv *priv, struct ib_device *hca) { struct ib_device_attr *device_attr = &hca->attrs; priv->hca_caps = device_attr->device_cap_flags; priv->dev->if_hwassist = 0; priv->dev->if_capabilities = 0; #ifndef CONFIG_INFINIBAND_IPOIB_CM if (priv->hca_caps & IB_DEVICE_UD_IP_CSUM) { set_bit(IPOIB_FLAG_CSUM, &priv->flags); priv->dev->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP; priv->dev->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM; } #if 0 if (priv->dev->features & NETIF_F_SG && priv->hca_caps & IB_DEVICE_UD_TSO) { priv->dev->if_capabilities |= IFCAP_TSO4; priv->dev->if_hwassist |= CSUM_TSO; } #endif #endif priv->dev->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_LINKSTATE; priv->dev->if_capenable = priv->dev->if_capabilities; return 0; } static struct ifnet * ipoib_add_port(const char *format, struct ib_device *hca, u8 port) { struct ipoib_dev_priv *priv; struct ib_port_attr attr; int result = -ENOMEM; priv = ipoib_intf_alloc(format); if (!priv) goto alloc_mem_failed; if (!ib_query_port(hca, port, &attr)) priv->max_ib_mtu = ib_mtu_enum_to_int(attr.max_mtu); else { printk(KERN_WARNING "%s: ib_query_port %d failed\n", hca->name, port); goto device_init_failed; } /* MTU will be reset when mcast join happens */ priv->dev->if_mtu = IPOIB_UD_MTU(priv->max_ib_mtu); priv->mcast_mtu = priv->admin_mtu = priv->dev->if_mtu; result = ib_query_pkey(hca, port, 0, &priv->pkey); if (result) { printk(KERN_WARNING "%s: ib_query_pkey port %d failed (ret = %d)\n", hca->name, port, result); goto device_init_failed; } if (ipoib_set_dev_features(priv, hca)) goto device_init_failed; /* * Set the full membership bit, so that we join the right * broadcast group, etc. */ priv->pkey |= 0x8000; priv->broadcastaddr[8] = priv->pkey >> 8; priv->broadcastaddr[9] = priv->pkey & 0xff; result = ib_query_gid(hca, port, 0, &priv->local_gid, NULL); if (result) { printk(KERN_WARNING "%s: ib_query_gid port %d failed (ret = %d)\n", hca->name, port, result); goto device_init_failed; } memcpy(IF_LLADDR(priv->dev) + 4, priv->local_gid.raw, sizeof (union ib_gid)); result = ipoib_dev_init(priv, hca, port); if (result < 0) { printk(KERN_WARNING "%s: failed to initialize port %d (ret = %d)\n", hca->name, port, result); goto device_init_failed; } if (ipoib_cm_admin_enabled(priv)) priv->dev->if_mtu = IPOIB_CM_MTU(ipoib_cm_max_mtu(priv)); INIT_IB_EVENT_HANDLER(&priv->event_handler, priv->ca, ipoib_event); result = ib_register_event_handler(&priv->event_handler); if (result < 0) { printk(KERN_WARNING "%s: ib_register_event_handler failed for " "port %d (ret = %d)\n", hca->name, port, result); goto event_failed; } if_printf(priv->dev, "Attached to %s port %d\n", hca->name, port); return priv->dev; event_failed: ipoib_dev_cleanup(priv); device_init_failed: ipoib_detach(priv); alloc_mem_failed: return ERR_PTR(result); } static void ipoib_add_one(struct ib_device *device) { struct list_head *dev_list; struct ifnet *dev; struct ipoib_dev_priv *priv; int s, e, p; if (rdma_node_get_transport(device->node_type) != RDMA_TRANSPORT_IB) return; dev_list = kmalloc(sizeof *dev_list, GFP_KERNEL); if (!dev_list) return; INIT_LIST_HEAD(dev_list); if (device->node_type == RDMA_NODE_IB_SWITCH) { s = 0; e = 0; } else { s = 1; e = device->phys_port_cnt; } for (p = s; p <= e; ++p) { if (rdma_port_get_link_layer(device, p) != IB_LINK_LAYER_INFINIBAND) continue; dev = ipoib_add_port("ib", device, p); if (!IS_ERR(dev)) { priv = dev->if_softc; list_add_tail(&priv->list, dev_list); } } ib_set_client_data(device, &ipoib_client, dev_list); } static void ipoib_remove_one(struct ib_device *device, void *client_data) { struct ipoib_dev_priv *priv, *tmp; struct list_head *dev_list = client_data; if (!dev_list) return; if (rdma_node_get_transport(device->node_type) != RDMA_TRANSPORT_IB) return; list_for_each_entry_safe(priv, tmp, dev_list, list) { if (rdma_port_get_link_layer(device, priv->port) != IB_LINK_LAYER_INFINIBAND) continue; ipoib_stop(priv); ib_unregister_event_handler(&priv->event_handler); /* dev_change_flags(priv->dev, priv->dev->flags & ~IFF_UP); */ flush_workqueue(ipoib_workqueue); ipoib_dev_cleanup(priv); ipoib_detach(priv); } kfree(dev_list); } static int ipoib_match_dev_addr(const struct sockaddr *addr, struct net_device *dev) { struct ifaddr *ifa; int retval = 0; CURVNET_SET(dev->if_vnet); IF_ADDR_RLOCK(dev); TAILQ_FOREACH(ifa, &dev->if_addrhead, ifa_link) { if (ifa->ifa_addr == NULL || ifa->ifa_addr->sa_family != addr->sa_family || ifa->ifa_addr->sa_len != addr->sa_len) { continue; } if (memcmp(ifa->ifa_addr, addr, addr->sa_len) == 0) { retval = 1; break; } } IF_ADDR_RUNLOCK(dev); CURVNET_RESTORE(); return (retval); } /* * ipoib_match_gid_pkey_addr - returns the number of IPoIB netdevs on * top a given ipoib device matching a pkey_index and address, if one * exists. * * @found_net_dev: contains a matching net_device if the return value * >= 1, with a reference held. */ static int ipoib_match_gid_pkey_addr(struct ipoib_dev_priv *priv, const union ib_gid *gid, u16 pkey_index, const struct sockaddr *addr, struct net_device **found_net_dev) { struct ipoib_dev_priv *child_priv; int matches = 0; if (priv->pkey_index == pkey_index && (!gid || !memcmp(gid, &priv->local_gid, sizeof(*gid)))) { if (addr == NULL || ipoib_match_dev_addr(addr, priv->dev) != 0) { if (*found_net_dev == NULL) { struct net_device *net_dev; if (priv->parent != NULL) net_dev = priv->parent; else net_dev = priv->dev; *found_net_dev = net_dev; dev_hold(net_dev); } matches++; } } /* Check child interfaces */ mutex_lock(&priv->vlan_mutex); list_for_each_entry(child_priv, &priv->child_intfs, list) { matches += ipoib_match_gid_pkey_addr(child_priv, gid, pkey_index, addr, found_net_dev); if (matches > 1) break; } mutex_unlock(&priv->vlan_mutex); return matches; } /* * __ipoib_get_net_dev_by_params - returns the number of matching * net_devs found (between 0 and 2). Also return the matching * net_device in the @net_dev parameter, holding a reference to the * net_device, if the number of matches >= 1 */ static int __ipoib_get_net_dev_by_params(struct list_head *dev_list, u8 port, u16 pkey_index, const union ib_gid *gid, const struct sockaddr *addr, struct net_device **net_dev) { struct ipoib_dev_priv *priv; int matches = 0; *net_dev = NULL; list_for_each_entry(priv, dev_list, list) { if (priv->port != port) continue; matches += ipoib_match_gid_pkey_addr(priv, gid, pkey_index, addr, net_dev); if (matches > 1) break; } return matches; } static struct net_device * ipoib_get_net_dev_by_params(struct ib_device *dev, u8 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr, void *client_data) { struct net_device *net_dev; struct list_head *dev_list = client_data; u16 pkey_index; int matches; int ret; if (!rdma_protocol_ib(dev, port)) return NULL; ret = ib_find_cached_pkey(dev, port, pkey, &pkey_index); if (ret) return NULL; if (!dev_list) return NULL; /* See if we can find a unique device matching the L2 parameters */ matches = __ipoib_get_net_dev_by_params(dev_list, port, pkey_index, gid, NULL, &net_dev); switch (matches) { case 0: return NULL; case 1: return net_dev; } dev_put(net_dev); /* Couldn't find a unique device with L2 parameters only. Use L3 * address to uniquely match the net device */ matches = __ipoib_get_net_dev_by_params(dev_list, port, pkey_index, gid, addr, &net_dev); switch (matches) { case 0: return NULL; default: dev_warn_ratelimited(&dev->dev, "duplicate IP address detected\n"); /* Fall through */ case 1: return net_dev; } } static void ipoib_config_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct ipoib_dev_priv *parent; struct ipoib_dev_priv *priv; struct ifnet *dev; uint16_t pkey; int error; if (ifp->if_type != IFT_INFINIBAND) return; dev = VLAN_DEVAT(ifp, vtag); if (dev == NULL) return; priv = NULL; error = 0; parent = ifp->if_softc; /* We only support 15 bits of pkey. */ if (vtag & 0x8000) return; pkey = vtag | 0x8000; /* Set full membership bit. */ if (pkey == parent->pkey) return; /* Check for dups */ mutex_lock(&parent->vlan_mutex); list_for_each_entry(priv, &parent->child_intfs, list) { if (priv->pkey == pkey) { priv = NULL; error = EBUSY; goto out; } } priv = ipoib_priv_alloc(); priv->dev = dev; priv->max_ib_mtu = parent->max_ib_mtu; priv->mcast_mtu = priv->admin_mtu = parent->dev->if_mtu; set_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags); error = ipoib_set_dev_features(priv, parent->ca); if (error) goto out; priv->pkey = pkey; priv->broadcastaddr[8] = pkey >> 8; priv->broadcastaddr[9] = pkey & 0xff; dev->if_broadcastaddr = priv->broadcastaddr; error = ipoib_dev_init(priv, parent->ca, parent->port); if (error) goto out; priv->parent = parent->dev; list_add_tail(&priv->list, &parent->child_intfs); VLAN_SETCOOKIE(dev, priv); dev->if_start = ipoib_vlan_start; dev->if_drv_flags &= ~IFF_DRV_RUNNING; dev->if_hdrlen = IPOIB_HEADER_LEN; if (ifp->if_drv_flags & IFF_DRV_RUNNING) ipoib_open(priv); mutex_unlock(&parent->vlan_mutex); return; out: mutex_unlock(&parent->vlan_mutex); if (priv) free(priv, M_TEMP); if (error) ipoib_warn(parent, "failed to initialize subinterface: device %s, port %d vtag 0x%X", parent->ca->name, parent->port, vtag); return; } static void ipoib_unconfig_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct ipoib_dev_priv *parent; struct ipoib_dev_priv *priv; struct ifnet *dev; uint16_t pkey; if (ifp->if_type != IFT_INFINIBAND) return; dev = VLAN_DEVAT(ifp, vtag); if (dev) VLAN_SETCOOKIE(dev, NULL); pkey = vtag | 0x8000; parent = ifp->if_softc; mutex_lock(&parent->vlan_mutex); list_for_each_entry(priv, &parent->child_intfs, list) { if (priv->pkey == pkey) { ipoib_dev_cleanup(priv); list_del(&priv->list); break; } } mutex_unlock(&parent->vlan_mutex); } eventhandler_tag ipoib_vlan_attach; eventhandler_tag ipoib_vlan_detach; static int __init ipoib_init_module(void) { int ret; ipoib_recvq_size = roundup_pow_of_two(ipoib_recvq_size); ipoib_recvq_size = min(ipoib_recvq_size, IPOIB_MAX_QUEUE_SIZE); ipoib_recvq_size = max(ipoib_recvq_size, IPOIB_MIN_QUEUE_SIZE); ipoib_sendq_size = roundup_pow_of_two(ipoib_sendq_size); ipoib_sendq_size = min(ipoib_sendq_size, IPOIB_MAX_QUEUE_SIZE); ipoib_sendq_size = max(ipoib_sendq_size, max(2 * MAX_SEND_CQE, IPOIB_MIN_QUEUE_SIZE)); #ifdef CONFIG_INFINIBAND_IPOIB_CM ipoib_max_conn_qp = min(ipoib_max_conn_qp, IPOIB_CM_MAX_CONN_QP); #endif ipoib_vlan_attach = EVENTHANDLER_REGISTER(vlan_config, ipoib_config_vlan, NULL, EVENTHANDLER_PRI_FIRST); ipoib_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, ipoib_unconfig_vlan, NULL, EVENTHANDLER_PRI_FIRST); /* * We create our own workqueue mainly because we want to be * able to flush it when devices are being removed. We can't * use schedule_work()/flush_scheduled_work() because both * unregister_netdev() and linkwatch_event take the rtnl lock, * so flush_scheduled_work() can deadlock during device * removal. */ ipoib_workqueue = create_singlethread_workqueue("ipoib"); if (!ipoib_workqueue) { ret = -ENOMEM; goto err_fs; } ib_sa_register_client(&ipoib_sa_client); ret = ib_register_client(&ipoib_client); if (ret) goto err_sa; return 0; err_sa: ib_sa_unregister_client(&ipoib_sa_client); destroy_workqueue(ipoib_workqueue); err_fs: return ret; } static void __exit ipoib_cleanup_module(void) { EVENTHANDLER_DEREGISTER(vlan_config, ipoib_vlan_attach); EVENTHANDLER_DEREGISTER(vlan_unconfig, ipoib_vlan_detach); ib_unregister_client(&ipoib_client); ib_sa_unregister_client(&ipoib_sa_client); destroy_workqueue(ipoib_workqueue); } /* * Infiniband output routine. */ static int ipoib_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { u_char edst[INFINIBAND_ALEN]; #if defined(INET) || defined(INET6) struct llentry *lle = NULL; #endif struct ipoib_header *eh; int error = 0, is_gw = 0; short type; if (ro != NULL) is_gw = (ro->ro_flags & RT_HAS_GW) != 0; #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) goto bad; #endif M_PROFILE(m); if (ifp->if_flags & IFF_MONITOR) { error = ENETDOWN; goto bad; } if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) { error = ENETDOWN; goto bad; } switch (dst->sa_family) { #ifdef INET case AF_INET: if (lle != NULL && (lle->la_flags & LLE_VALID)) memcpy(edst, lle->ll_addr, sizeof(edst)); else if (m->m_flags & M_MCAST) ip_ib_mc_map(((struct sockaddr_in *)dst)->sin_addr.s_addr, ifp->if_broadcastaddr, edst); else error = arpresolve(ifp, is_gw, m, dst, edst, NULL, NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); type = htons(ETHERTYPE_IP); break; case AF_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); ah->ar_hrd = htons(ARPHRD_INFINIBAND); switch(ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: type = htons(ETHERTYPE_REVARP); break; case ARPOP_REQUEST: case ARPOP_REPLY: default: type = htons(ETHERTYPE_ARP); break; } if (m->m_flags & M_BCAST) bcopy(ifp->if_broadcastaddr, edst, INFINIBAND_ALEN); else bcopy(ar_tha(ah), edst, INFINIBAND_ALEN); } break; #endif #ifdef INET6 case AF_INET6: if (lle != NULL && (lle->la_flags & LLE_VALID)) memcpy(edst, lle->ll_addr, sizeof(edst)); else if (m->m_flags & M_MCAST) ipv6_ib_mc_map(&((struct sockaddr_in6 *)dst)->sin6_addr, ifp->if_broadcastaddr, edst); else error = nd6_resolve(ifp, is_gw, m, dst, edst, NULL, NULL); if (error) return error; type = htons(ETHERTYPE_IPV6); break; #endif default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); error = EAFNOSUPPORT; goto bad; } /* * Add local net header. If no space in first mbuf, * allocate another. */ M_PREPEND(m, IPOIB_HEADER_LEN, M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto bad; } eh = mtod(m, struct ipoib_header *); (void)memcpy(&eh->proto, &type, sizeof(eh->proto)); (void)memcpy(&eh->hwaddr, edst, sizeof (edst)); /* * Queue message on interface, update output statistics if * successful, and start output if interface not yet active. */ return ((ifp->if_transmit)(ifp, m)); bad: if (m != NULL) m_freem(m); return (error); } /* * Upper layer processing for a received Infiniband packet. */ void ipoib_demux(struct ifnet *ifp, struct mbuf *m, u_short proto) { int isr; #ifdef MAC /* * Tag the mbuf with an appropriate MAC label before any other * consumers can get to it. */ mac_ifnet_create_mbuf(ifp, m); #endif /* Allow monitor mode to claim this frame, after stats are updated. */ if (ifp->if_flags & IFF_MONITOR) { if_printf(ifp, "discard frame at IFF_MONITOR\n"); m_freem(m); return; } /* * Dispatch frame to upper layer. */ switch (proto) { #ifdef INET case ETHERTYPE_IP: isr = NETISR_IP; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } isr = NETISR_ARP; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; break; #endif default: goto discard; } netisr_dispatch(isr, m); return; discard: m_freem(m); } /* * Process a received Infiniband packet. */ static void ipoib_input(struct ifnet *ifp, struct mbuf *m) { struct ipoib_header *eh; if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } CURVNET_SET_QUIET(ifp->if_vnet); /* Let BPF have it before we strip the header. */ IPOIB_MTAP(ifp, m); eh = mtod(m, struct ipoib_header *); /* * Reset layer specific mbuf flags to avoid confusing upper layers. * Strip off Infiniband header. */ m->m_flags &= ~M_VLANTAG; m_clrprotoflags(m); m_adj(m, IPOIB_HEADER_LEN); if (IPOIB_IS_MULTICAST(eh->hwaddr)) { if (memcmp(eh->hwaddr, ifp->if_broadcastaddr, ifp->if_addrlen) == 0) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } ipoib_demux(ifp, m, ntohs(eh->proto)); CURVNET_RESTORE(); } static int ipoib_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if (!IPOIB_IS_MULTICAST(e_addr)) return EADDRNOTAVAIL; *llsa = NULL; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_INFINIBAND); sdl->sdl_alen = INFINIBAND_ALEN; e_addr = LLADDR(sdl); ip_ib_mc_map(sin->sin_addr.s_addr, ifp->if_broadcastaddr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; /* * An IP6 address of 0 means listen to all * of the multicast address used for IP6. * This has no meaning in ipoib. */ if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) return EADDRNOTAVAIL; if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_INFINIBAND); sdl->sdl_alen = INFINIBAND_ALEN; e_addr = LLADDR(sdl); ipv6_ib_mc_map(&sin6->sin6_addr, ifp->if_broadcastaddr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif default: return EAFNOSUPPORT; } } -module_init(ipoib_init_module); -module_exit(ipoib_cleanup_module); +module_init_order(ipoib_init_module, SI_ORDER_FIFTH); +module_exit_order(ipoib_cleanup_module, SI_ORDER_FIFTH); static int ipoib_evhand(module_t mod, int event, void *arg) { return (0); } static moduledata_t ipoib_mod = { .name = "ipoib", .evhand = ipoib_evhand, }; DECLARE_MODULE(ipoib, ipoib_mod, SI_SUB_LAST, SI_ORDER_ANY); MODULE_DEPEND(ipoib, ibcore, 1, 1, 1); MODULE_DEPEND(ipoib, linuxkpi, 1, 1, 1); Index: stable/11/sys/ofed/drivers/infiniband/util/madeye.c =================================================================== --- stable/11/sys/ofed/drivers/infiniband/util/madeye.c (revision 363150) +++ stable/11/sys/ofed/drivers/infiniband/util/madeye.c (revision 363151) @@ -1,596 +1,596 @@ /* * Copyright (c) 2004, 2005 Intel Corporation. All rights reserved. * Copyright (c) 2005, 2006 Voltaire Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directorY of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * $Id$ */ #define LINUXKPI_PARAM_PREFIX ib_madeye_ #include #include #include #include #include #include MODULE_AUTHOR("Sean Hefty"); MODULE_DESCRIPTION("InfiniBand MAD viewer"); MODULE_LICENSE("Dual BSD/GPL"); static void madeye_remove_one(struct ib_device *device); static void madeye_add_one(struct ib_device *device); static struct ib_client madeye_client = { .name = "madeye", .add = madeye_add_one, .remove = madeye_remove_one }; struct madeye_port { struct ib_mad_agent *smi_agent; struct ib_mad_agent *gsi_agent; }; static int smp = 1; static int gmp = 1; static int mgmt_class = 0; static int attr_id = 0; static int data = 0; module_param(smp, int, 0444); module_param(gmp, int, 0444); module_param(mgmt_class, int, 0444); module_param(attr_id, int, 0444); module_param(data, int, 0444); MODULE_PARM_DESC(smp, "Display all SMPs (default=1)"); MODULE_PARM_DESC(gmp, "Display all GMPs (default=1)"); MODULE_PARM_DESC(mgmt_class, "Display all MADs of specified class (default=0)"); MODULE_PARM_DESC(attr_id, "Display add MADs of specified attribute ID (default=0)"); MODULE_PARM_DESC(data, "Display data area of MADs (default=0)"); static char * get_class_name(u8 mgmt_class) { switch(mgmt_class) { case IB_MGMT_CLASS_SUBN_LID_ROUTED: return "LID routed SMP"; case IB_MGMT_CLASS_SUBN_DIRECTED_ROUTE: return "Directed route SMP"; case IB_MGMT_CLASS_SUBN_ADM: return "Subnet admin."; case IB_MGMT_CLASS_PERF_MGMT: return "Perf. mgmt."; case IB_MGMT_CLASS_BM: return "Baseboard mgmt."; case IB_MGMT_CLASS_DEVICE_MGMT: return "Device mgmt."; case IB_MGMT_CLASS_CM: return "Comm. mgmt."; case IB_MGMT_CLASS_SNMP: return "SNMP"; default: return "Unknown vendor/application"; } } static char * get_method_name(u8 mgmt_class, u8 method) { switch(method) { case IB_MGMT_METHOD_GET: return "Get"; case IB_MGMT_METHOD_SET: return "Set"; case IB_MGMT_METHOD_GET_RESP: return "Get response"; case IB_MGMT_METHOD_SEND: return "Send"; case IB_MGMT_METHOD_SEND | IB_MGMT_METHOD_RESP: return "Send response"; case IB_MGMT_METHOD_TRAP: return "Trap"; case IB_MGMT_METHOD_REPORT: return "Report"; case IB_MGMT_METHOD_REPORT_RESP: return "Report response"; case IB_MGMT_METHOD_TRAP_REPRESS: return "Trap repress"; default: break; } switch (mgmt_class) { case IB_MGMT_CLASS_SUBN_ADM: switch (method) { case IB_SA_METHOD_GET_TABLE: return "Get table"; case IB_SA_METHOD_GET_TABLE_RESP: return "Get table response"; case IB_SA_METHOD_DELETE: return "Delete"; case IB_SA_METHOD_DELETE_RESP: return "Delete response"; case IB_SA_METHOD_GET_MULTI: return "Get Multi"; case IB_SA_METHOD_GET_MULTI_RESP: return "Get Multi response"; case IB_SA_METHOD_GET_TRACE_TBL: return "Get Trace Table response"; default: break; } default: break; } return "Unknown"; } static void print_status_details(u16 status) { if (status & 0x0001) printk(" busy\n"); if (status & 0x0002) printk(" redirection required\n"); switch((status & 0x001C) >> 2) { case 1: printk(" bad version\n"); break; case 2: printk(" method not supported\n"); break; case 3: printk(" method/attribute combo not supported\n"); break; case 7: printk(" invalid attribute/modifier value\n"); break; } } static char * get_sa_attr(__be16 attr) { switch(attr) { case IB_SA_ATTR_CLASS_PORTINFO: return "Class Port Info"; case IB_SA_ATTR_NOTICE: return "Notice"; case IB_SA_ATTR_INFORM_INFO: return "Inform Info"; case IB_SA_ATTR_NODE_REC: return "Node Record"; case IB_SA_ATTR_PORT_INFO_REC: return "PortInfo Record"; case IB_SA_ATTR_SL2VL_REC: return "SL to VL Record"; case IB_SA_ATTR_SWITCH_REC: return "Switch Record"; case IB_SA_ATTR_LINEAR_FDB_REC: return "Linear FDB Record"; case IB_SA_ATTR_RANDOM_FDB_REC: return "Random FDB Record"; case IB_SA_ATTR_MCAST_FDB_REC: return "Multicast FDB Record"; case IB_SA_ATTR_SM_INFO_REC: return "SM Info Record"; case IB_SA_ATTR_LINK_REC: return "Link Record"; case IB_SA_ATTR_GUID_INFO_REC: return "Guid Info Record"; case IB_SA_ATTR_SERVICE_REC: return "Service Record"; case IB_SA_ATTR_PARTITION_REC: return "Partition Record"; case IB_SA_ATTR_PATH_REC: return "Path Record"; case IB_SA_ATTR_VL_ARB_REC: return "VL Arb Record"; case IB_SA_ATTR_MC_MEMBER_REC: return "MC Member Record"; case IB_SA_ATTR_TRACE_REC: return "Trace Record"; case IB_SA_ATTR_MULTI_PATH_REC: return "Multi Path Record"; case IB_SA_ATTR_SERVICE_ASSOC_REC: return "Service Assoc Record"; case IB_SA_ATTR_INFORM_INFO_REC: return "Inform Info Record"; default: return ""; } } static void print_mad_hdr(struct ib_mad_hdr *mad_hdr) { printk("MAD version....0x%01x\n", mad_hdr->base_version); printk("Class..........0x%01x (%s)\n", mad_hdr->mgmt_class, get_class_name(mad_hdr->mgmt_class)); printk("Class version..0x%01x\n", mad_hdr->class_version); printk("Method.........0x%01x (%s)\n", mad_hdr->method, get_method_name(mad_hdr->mgmt_class, mad_hdr->method)); printk("Status.........0x%02x\n", be16_to_cpu(mad_hdr->status)); if (mad_hdr->status) print_status_details(be16_to_cpu(mad_hdr->status)); printk("Class specific.0x%02x\n", be16_to_cpu(mad_hdr->class_specific)); printk("Trans ID.......0x%llx\n", (unsigned long long)be64_to_cpu(mad_hdr->tid)); if (mad_hdr->mgmt_class == IB_MGMT_CLASS_SUBN_ADM) printk("Attr ID........0x%02x (%s)\n", be16_to_cpu(mad_hdr->attr_id), get_sa_attr(be16_to_cpu(mad_hdr->attr_id))); else printk("Attr ID........0x%02x\n", be16_to_cpu(mad_hdr->attr_id)); printk("Attr modifier..0x%04x\n", be32_to_cpu(mad_hdr->attr_mod)); } static char * get_rmpp_type(u8 rmpp_type) { switch (rmpp_type) { case IB_MGMT_RMPP_TYPE_DATA: return "Data"; case IB_MGMT_RMPP_TYPE_ACK: return "Ack"; case IB_MGMT_RMPP_TYPE_STOP: return "Stop"; case IB_MGMT_RMPP_TYPE_ABORT: return "Abort"; default: return "Unknown"; } } static char * get_rmpp_flags(u8 rmpp_flags) { if (rmpp_flags & IB_MGMT_RMPP_FLAG_ACTIVE) if (rmpp_flags & IB_MGMT_RMPP_FLAG_FIRST) if (rmpp_flags & IB_MGMT_RMPP_FLAG_LAST) return "Active - First & Last"; else return "Active - First"; else if (rmpp_flags & IB_MGMT_RMPP_FLAG_LAST) return "Active - Last"; else return "Active"; else return "Inactive"; } static void print_rmpp_hdr(struct ib_rmpp_hdr *rmpp_hdr) { printk("RMPP version...0x%01x\n", rmpp_hdr->rmpp_version); printk("RMPP type......0x%01x (%s)\n", rmpp_hdr->rmpp_type, get_rmpp_type(rmpp_hdr->rmpp_type)); printk("RMPP RRespTime.0x%01x\n", ib_get_rmpp_resptime(rmpp_hdr)); printk("RMPP flags.....0x%01x (%s)\n", ib_get_rmpp_flags(rmpp_hdr), get_rmpp_flags(ib_get_rmpp_flags(rmpp_hdr))); printk("RMPP status....0x%01x\n", rmpp_hdr->rmpp_status); printk("Seg number.....0x%04x\n", be32_to_cpu(rmpp_hdr->seg_num)); switch (rmpp_hdr->rmpp_type) { case IB_MGMT_RMPP_TYPE_DATA: printk("Payload len....0x%04x\n", be32_to_cpu(rmpp_hdr->paylen_newwin)); break; case IB_MGMT_RMPP_TYPE_ACK: printk("New window.....0x%04x\n", be32_to_cpu(rmpp_hdr->paylen_newwin)); break; default: printk("Data 2.........0x%04x\n", be32_to_cpu(rmpp_hdr->paylen_newwin)); break; } } static char * get_smp_attr(__be16 attr) { switch (attr) { case IB_SMP_ATTR_NOTICE: return "notice"; case IB_SMP_ATTR_NODE_DESC: return "node description"; case IB_SMP_ATTR_NODE_INFO: return "node info"; case IB_SMP_ATTR_SWITCH_INFO: return "switch info"; case IB_SMP_ATTR_GUID_INFO: return "GUID info"; case IB_SMP_ATTR_PORT_INFO: return "port info"; case IB_SMP_ATTR_PKEY_TABLE: return "pkey table"; case IB_SMP_ATTR_SL_TO_VL_TABLE: return "SL to VL table"; case IB_SMP_ATTR_VL_ARB_TABLE: return "VL arbitration table"; case IB_SMP_ATTR_LINEAR_FORWARD_TABLE: return "linear forwarding table"; case IB_SMP_ATTR_RANDOM_FORWARD_TABLE: return "random forward table"; case IB_SMP_ATTR_MCAST_FORWARD_TABLE: return "multicast forward table"; case IB_SMP_ATTR_SM_INFO: return "SM info"; case IB_SMP_ATTR_VENDOR_DIAG: return "vendor diags"; case IB_SMP_ATTR_LED_INFO: return "LED info"; default: return ""; } } static void print_smp(struct ib_smp *smp) { int i; printk("MAD version....0x%01x\n", smp->base_version); printk("Class..........0x%01x (%s)\n", smp->mgmt_class, get_class_name(smp->mgmt_class)); printk("Class version..0x%01x\n", smp->class_version); printk("Method.........0x%01x (%s)\n", smp->method, get_method_name(smp->mgmt_class, smp->method)); printk("Status.........0x%02x\n", be16_to_cpu(smp->status)); if (smp->status) print_status_details(be16_to_cpu(smp->status)); printk("Hop pointer....0x%01x\n", smp->hop_ptr); printk("Hop counter....0x%01x\n", smp->hop_cnt); printk("Trans ID.......0x%llx\n", (unsigned long long)be64_to_cpu(smp->tid)); printk("Attr ID........0x%02x (%s)\n", be16_to_cpu(smp->attr_id), get_smp_attr(smp->attr_id)); printk("Attr modifier..0x%04x\n", be32_to_cpu(smp->attr_mod)); printk("Mkey...........0x%llx\n", (unsigned long long)be64_to_cpu(smp->mkey)); printk("DR SLID........0x%02x\n", be16_to_cpu(smp->dr_slid)); printk("DR DLID........0x%02x", be16_to_cpu(smp->dr_dlid)); if (data) { for (i = 0; i < IB_SMP_DATA_SIZE; i++) { if (i % 16 == 0) printk("\nSMP Data......."); printk("%01x ", smp->data[i]); } for (i = 0; i < IB_SMP_MAX_PATH_HOPS; i++) { if (i % 16 == 0) printk("\nInitial path..."); printk("%01x ", smp->initial_path[i]); } for (i = 0; i < IB_SMP_MAX_PATH_HOPS; i++) { if (i % 16 == 0) printk("\nReturn path...."); printk("%01x ", smp->return_path[i]); } } printk("\n"); } static void snoop_smi_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_buf *send_buf, struct ib_mad_send_wc *mad_send_wc) { struct ib_mad_hdr *hdr = send_buf->mad; if (!smp && hdr->mgmt_class != mgmt_class) return; if (attr_id && be16_to_cpu(hdr->attr_id) != attr_id) return; printk("Madeye:sent SMP\n"); print_smp(send_buf->mad); } static void recv_smi_handler(struct ib_mad_agent *mad_agent, struct ib_mad_recv_wc *mad_recv_wc) { if (!smp && mad_recv_wc->recv_buf.mad->mad_hdr.mgmt_class != mgmt_class) return; if (attr_id && be16_to_cpu(mad_recv_wc->recv_buf.mad->mad_hdr.attr_id) != attr_id) return; printk("Madeye:recv SMP\n"); print_smp((struct ib_smp *)&mad_recv_wc->recv_buf.mad->mad_hdr); } static int is_rmpp_mad(struct ib_mad_hdr *mad_hdr) { if (mad_hdr->mgmt_class == IB_MGMT_CLASS_SUBN_ADM) { switch (mad_hdr->method) { case IB_SA_METHOD_GET_TABLE: case IB_SA_METHOD_GET_TABLE_RESP: case IB_SA_METHOD_GET_MULTI_RESP: return 1; default: break; } } else if ((mad_hdr->mgmt_class >= IB_MGMT_CLASS_VENDOR_RANGE2_START) && (mad_hdr->mgmt_class <= IB_MGMT_CLASS_VENDOR_RANGE2_END)) return 1; return 0; } static void snoop_gsi_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_buf *send_buf, struct ib_mad_send_wc *mad_send_wc) { struct ib_mad_hdr *hdr = send_buf->mad; if (!gmp && hdr->mgmt_class != mgmt_class) return; if (attr_id && be16_to_cpu(hdr->attr_id) != attr_id) return; printk("Madeye:sent GMP\n"); print_mad_hdr(hdr); if (is_rmpp_mad(hdr)) print_rmpp_hdr(&((struct ib_rmpp_mad *) hdr)->rmpp_hdr); } static void recv_gsi_handler(struct ib_mad_agent *mad_agent, struct ib_mad_recv_wc *mad_recv_wc) { struct ib_mad_hdr *hdr = &mad_recv_wc->recv_buf.mad->mad_hdr; struct ib_rmpp_mad *mad = NULL; struct ib_sa_mad *sa_mad; struct ib_vendor_mad *vendor_mad; u8 *mad_data; int i, j; if (!gmp && hdr->mgmt_class != mgmt_class) return; if (attr_id && be16_to_cpu(mad_recv_wc->recv_buf.mad->mad_hdr.attr_id) != attr_id) return; printk("Madeye:recv GMP\n"); print_mad_hdr(hdr); if (is_rmpp_mad(hdr)) { mad = (struct ib_rmpp_mad *) hdr; print_rmpp_hdr(&mad->rmpp_hdr); } if (data) { if (hdr->mgmt_class == IB_MGMT_CLASS_SUBN_ADM) { j = IB_MGMT_SA_DATA; /* Display SA header */ if (is_rmpp_mad(hdr) && mad->rmpp_hdr.rmpp_type != IB_MGMT_RMPP_TYPE_DATA) return; sa_mad = (struct ib_sa_mad *) &mad_recv_wc->recv_buf.mad; mad_data = sa_mad->data; } else { if (is_rmpp_mad(hdr)) { j = IB_MGMT_VENDOR_DATA; /* Display OUI */ vendor_mad = (struct ib_vendor_mad *) &mad_recv_wc->recv_buf.mad; printk("Vendor OUI......%01x %01x %01x\n", vendor_mad->oui[0], vendor_mad->oui[1], vendor_mad->oui[2]); mad_data = vendor_mad->data; } else { j = IB_MGMT_MAD_DATA; mad_data = mad_recv_wc->recv_buf.mad->data; } } for (i = 0; i < j; i++) { if (i % 16 == 0) printk("\nData..........."); printk("%01x ", mad_data[i]); } printk("\n"); } } static void madeye_add_one(struct ib_device *device) { struct madeye_port *port; int reg_flags; u8 i, s, e; if (device->node_type == RDMA_NODE_IB_SWITCH) { s = 0; e = 0; } else { s = 1; e = device->phys_port_cnt; } port = kmalloc(sizeof *port * (e - s + 1), GFP_KERNEL); if (!port) goto out; reg_flags = IB_MAD_SNOOP_SEND_COMPLETIONS | IB_MAD_SNOOP_RECVS; for (i = 0; i <= e - s; i++) { port[i].smi_agent = ib_register_mad_snoop(device, i + s, IB_QPT_SMI, reg_flags, snoop_smi_handler, recv_smi_handler, &port[i]); port[i].gsi_agent = ib_register_mad_snoop(device, i + s, IB_QPT_GSI, reg_flags, snoop_gsi_handler, recv_gsi_handler, &port[i]); } out: ib_set_client_data(device, &madeye_client, port); } static void madeye_remove_one(struct ib_device *device) { struct madeye_port *port; int i, s, e; port = (struct madeye_port *) ib_get_client_data(device, &madeye_client); if (!port) return; if (device->node_type == RDMA_NODE_IB_SWITCH) { s = 0; e = 0; } else { s = 1; e = device->phys_port_cnt; } for (i = 0; i <= e - s; i++) { if (!IS_ERR(port[i].smi_agent)) ib_unregister_mad_agent(port[i].smi_agent); if (!IS_ERR(port[i].gsi_agent)) ib_unregister_mad_agent(port[i].gsi_agent); } kfree(port); } static int __init ib_madeye_init(void) { return ib_register_client(&madeye_client); } static void __exit ib_madeye_cleanup(void) { ib_unregister_client(&madeye_client); } -module_init(ib_madeye_init); -module_exit(ib_madeye_cleanup); +module_init_order(ib_madeye_init, SI_ORDER_THIRD); +module_exit_order(ib_madeye_cleanup, SI_ORDER_THIRD); Index: stable/11 =================================================================== --- stable/11 (revision 363150) +++ stable/11 (revision 363151) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r362953