Index: head/sys/sys/tree.h =================================================================== --- head/sys/sys/tree.h (revision 361996) +++ head/sys/sys/tree.h (revision 361997) @@ -1,801 +1,807 @@ /* $NetBSD: tree.h,v 1.8 2004/03/28 19:38:30 provos Exp $ */ /* $OpenBSD: tree.h,v 1.7 2002/10/17 21:51:54 art Exp $ */ /* $FreeBSD$ */ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 2002 Niels Provos * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _SYS_TREE_H_ #define _SYS_TREE_H_ #include /* * This file defines data structures for different types of trees: * splay trees and red-black trees. * * A splay tree is a self-organizing data structure. Every operation * on the tree causes a splay to happen. The splay moves the requested * node to the root of the tree and partly rebalances it. * * This has the benefit that request locality causes faster lookups as * the requested nodes move to the top of the tree. On the other hand, * every lookup causes memory writes. * * The Balance Theorem bounds the total access time for m operations * and n inserts on an initially empty tree as O((m + n)lg n). The * amortized cost for a sequence of m accesses to a splay tree is O(lg n); * * A red-black tree is a binary search tree with the node color as an * extra attribute. It fulfills a set of conditions: * - every search path from the root to a leaf consists of the * same number of black nodes, * - each red node (except for the root) has a black parent, * - each leaf node is black. * * Every operation on a red-black tree is bounded as O(lg n). * The maximum height of a red-black tree is 2lg (n+1). */ #define SPLAY_HEAD(name, type) \ struct name { \ struct type *sph_root; /* root of the tree */ \ } #define SPLAY_INITIALIZER(root) \ { NULL } #define SPLAY_INIT(root) do { \ (root)->sph_root = NULL; \ } while (/*CONSTCOND*/ 0) #define SPLAY_ENTRY(type) \ struct { \ struct type *spe_left; /* left element */ \ struct type *spe_right; /* right element */ \ } #define SPLAY_LEFT(elm, field) (elm)->field.spe_left #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right #define SPLAY_ROOT(head) (head)->sph_root #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL) /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */ #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \ } while (/*CONSTCOND*/ 0) #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ (head)->sph_root = tmp; \ } while (/*CONSTCOND*/ 0) #define SPLAY_LINKLEFT(head, tmp, field) do { \ SPLAY_LEFT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \ } while (/*CONSTCOND*/ 0) #define SPLAY_LINKRIGHT(head, tmp, field) do { \ SPLAY_RIGHT(tmp, field) = (head)->sph_root; \ tmp = (head)->sph_root; \ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \ } while (/*CONSTCOND*/ 0) #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \ SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \ SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\ SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \ SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \ } while (/*CONSTCOND*/ 0) /* Generates prototypes and inline functions */ #define SPLAY_PROTOTYPE(name, type, field, cmp) \ void name##_SPLAY(struct name *, struct type *); \ void name##_SPLAY_MINMAX(struct name *, int); \ struct type *name##_SPLAY_INSERT(struct name *, struct type *); \ struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \ \ /* Finds the node with the same key as elm */ \ static __unused __inline struct type * \ name##_SPLAY_FIND(struct name *head, struct type *elm) \ { \ if (SPLAY_EMPTY(head)) \ return(NULL); \ name##_SPLAY(head, elm); \ if ((cmp)(elm, (head)->sph_root) == 0) \ return (head->sph_root); \ return (NULL); \ } \ \ static __unused __inline struct type * \ name##_SPLAY_NEXT(struct name *head, struct type *elm) \ { \ name##_SPLAY(head, elm); \ if (SPLAY_RIGHT(elm, field) != NULL) { \ elm = SPLAY_RIGHT(elm, field); \ while (SPLAY_LEFT(elm, field) != NULL) { \ elm = SPLAY_LEFT(elm, field); \ } \ } else \ elm = NULL; \ return (elm); \ } \ \ static __unused __inline struct type * \ name##_SPLAY_MIN_MAX(struct name *head, int val) \ { \ name##_SPLAY_MINMAX(head, val); \ return (SPLAY_ROOT(head)); \ } /* Main splay operation. * Moves node close to the key of elm to top */ #define SPLAY_GENERATE(name, type, field, cmp) \ struct type * \ name##_SPLAY_INSERT(struct name *head, struct type *elm) \ { \ if (SPLAY_EMPTY(head)) { \ SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \ } else { \ int __comp; \ name##_SPLAY(head, elm); \ __comp = (cmp)(elm, (head)->sph_root); \ if(__comp < 0) { \ SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\ SPLAY_RIGHT(elm, field) = (head)->sph_root; \ SPLAY_LEFT((head)->sph_root, field) = NULL; \ } else if (__comp > 0) { \ SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\ SPLAY_LEFT(elm, field) = (head)->sph_root; \ SPLAY_RIGHT((head)->sph_root, field) = NULL; \ } else \ return ((head)->sph_root); \ } \ (head)->sph_root = (elm); \ return (NULL); \ } \ \ struct type * \ name##_SPLAY_REMOVE(struct name *head, struct type *elm) \ { \ struct type *__tmp; \ if (SPLAY_EMPTY(head)) \ return (NULL); \ name##_SPLAY(head, elm); \ if ((cmp)(elm, (head)->sph_root) == 0) { \ if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \ (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\ } else { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\ name##_SPLAY(head, elm); \ SPLAY_RIGHT((head)->sph_root, field) = __tmp; \ } \ return (elm); \ } \ return (NULL); \ } \ \ void \ name##_SPLAY(struct name *head, struct type *elm) \ { \ struct type __node, *__left, *__right, *__tmp; \ int __comp; \ \ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\ __left = __right = &__node; \ \ while ((__comp = (cmp)(elm, (head)->sph_root)) != 0) { \ if (__comp < 0) { \ __tmp = SPLAY_LEFT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if ((cmp)(elm, __tmp) < 0){ \ SPLAY_ROTATE_RIGHT(head, __tmp, field); \ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKLEFT(head, __right, field); \ } else if (__comp > 0) { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if ((cmp)(elm, __tmp) > 0){ \ SPLAY_ROTATE_LEFT(head, __tmp, field); \ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKRIGHT(head, __left, field); \ } \ } \ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \ } \ \ /* Splay with either the minimum or the maximum element \ * Used to find minimum or maximum element in tree. \ */ \ void name##_SPLAY_MINMAX(struct name *head, int __comp) \ { \ struct type __node, *__left, *__right, *__tmp; \ \ SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\ __left = __right = &__node; \ \ while (1) { \ if (__comp < 0) { \ __tmp = SPLAY_LEFT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if (__comp < 0){ \ SPLAY_ROTATE_RIGHT(head, __tmp, field); \ if (SPLAY_LEFT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKLEFT(head, __right, field); \ } else if (__comp > 0) { \ __tmp = SPLAY_RIGHT((head)->sph_root, field); \ if (__tmp == NULL) \ break; \ if (__comp > 0) { \ SPLAY_ROTATE_LEFT(head, __tmp, field); \ if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\ break; \ } \ SPLAY_LINKRIGHT(head, __left, field); \ } \ } \ SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \ } #define SPLAY_NEGINF -1 #define SPLAY_INF 1 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y) #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y) #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y) #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y) #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \ : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF)) #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \ : name##_SPLAY_MIN_MAX(x, SPLAY_INF)) #define SPLAY_FOREACH(x, name, head) \ for ((x) = SPLAY_MIN(name, head); \ (x) != NULL; \ (x) = SPLAY_NEXT(name, head, x)) /* Macros that define a red-black tree */ #define RB_HEAD(name, type) \ struct name { \ struct type *rbh_root; /* root of the tree */ \ } #define RB_INITIALIZER(root) \ { NULL } #define RB_INIT(root) do { \ (root)->rbh_root = NULL; \ } while (/*CONSTCOND*/ 0) #define RB_ENTRY(type) \ struct { \ struct type *rbe_left; /* left element */ \ struct type *rbe_right; /* right element */ \ struct type *rbe_parent; /* parent element */ \ } #define RB_LF(elm, field) (elm)->field.rbe_left #define RB_RT(elm, field) (elm)->field.rbe_right #define RB_FLIP(elm) (*(__uintptr_t *)&(elm) ^= 1) #define RB_FLIP_LF(elm, field) RB_FLIP(RB_LF(elm, field)) #define RB_FLIP_RT(elm, field) RB_FLIP(RB_RT(elm, field)) #define RB_ISRED(elm) ((*(__uintptr_t *)&(elm) & 1) != 0) #define RB_RED_LF(elm, field) RB_ISRED(RB_LF(elm, field)) #define RB_RED_RT(elm, field) RB_ISRED(RB_RT(elm, field)) #define RB_PTR(elm, field) ((__typeof(elm->field.rbe_parent)) \ ((__uintptr_t)(elm) & ~(__uintptr_t)1)) #define RB_LEFT(elm, field) RB_PTR(RB_LF(elm, field), field) #define RB_RIGHT(elm, field) RB_PTR(RB_RT(elm, field), field) #define RB_PARENT(elm, field) (elm)->field.rbe_parent #define RB_ROOT(head) (head)->rbh_root #define RB_EMPTY(head) (RB_ROOT(head) == NULL) #define RB_BOOL int #define RB_TRUE 1 #define RB_FALSE 0 +/* For debugging support */ +#define RB_COLOR(elm, field) (RB_PARENT(elm, field) == NULL ? RB_FALSE : \ + RB_LEFT(RB_PARENT(elm, field), field) == elm ? \ + RB_RED_LF(RB_PARENT(elm, field), field) : \ + RB_RED_RT(RB_PARENT(elm, field), field) + /* * Something to be invoked in a loop at the root of every modified subtree, * from the bottom up to the root, to update augmented node data. */ #ifndef RB_AUGMENT #define RB_AUGMENT(x) break #endif /* * Fix pointers to a parent, and from a parent, as part of rotation. */ #define RB_ROTATE_PARENT(head, elm, tmp, field) do { \ if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field)) == NULL) \ RB_ROOT(head) = (tmp); \ else if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \ RB_LF(RB_PARENT(elm, field), field) = (tmp); \ else \ RB_RT(RB_PARENT(elm, field), field) = (tmp); \ RB_PARENT(elm, field) = (tmp); \ } while (/*CONSTCOND*/ 0) /* * Rotation makes the descending node red, and the ascending * node not-red. */ #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \ (tmp) = RB_RIGHT(elm, field); \ if ((RB_RT(elm, field) = RB_LF(tmp, field)) != NULL) { \ RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \ } \ RB_ROTATE_PARENT(head, elm, tmp, field); \ RB_LF(tmp, field) = (elm); \ RB_FLIP_LF(tmp, field); \ RB_AUGMENT(elm); \ } while (/*CONSTCOND*/ 0) #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \ (tmp) = RB_LEFT(elm, field); \ if ((RB_LF(elm, field) = RB_RT(tmp, field)) != NULL) { \ RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \ } \ RB_ROTATE_PARENT(head, elm, tmp, field); \ RB_RT(tmp, field) = (elm); \ RB_FLIP_RT(tmp, field); \ RB_AUGMENT(elm); \ } while (/*CONSTCOND*/ 0) /* Generates prototypes and inline functions */ #define RB_PROTOTYPE(name, type, field, cmp) \ RB_PROTOTYPE_INTERNAL(name, type, field, cmp,) #define RB_PROTOTYPE_STATIC(name, type, field, cmp) \ RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __unused static) #define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \ RB_PROTOTYPE_INSERT_COLOR(name, type, attr); \ RB_PROTOTYPE_REMOVE_COLOR(name, type, attr); \ RB_PROTOTYPE_INSERT(name, type, attr); \ RB_PROTOTYPE_REMOVE(name, type, attr); \ RB_PROTOTYPE_FIND(name, type, attr); \ RB_PROTOTYPE_NFIND(name, type, attr); \ RB_PROTOTYPE_NEXT(name, type, attr); \ RB_PROTOTYPE_PREV(name, type, attr); \ RB_PROTOTYPE_MINMAX(name, type, attr); \ RB_PROTOTYPE_REINSERT(name, type, attr); #define RB_PROTOTYPE_INSERT_COLOR(name, type, attr) \ attr void name##_RB_INSERT_COLOR(struct name *, struct type *) #define RB_PROTOTYPE_REMOVE_COLOR(name, type, attr) \ attr void name##_RB_REMOVE_COLOR(struct name *, struct type *) #define RB_PROTOTYPE_REMOVE(name, type, attr) \ attr struct type *name##_RB_REMOVE(struct name *, struct type *) #define RB_PROTOTYPE_INSERT(name, type, attr) \ attr struct type *name##_RB_INSERT(struct name *, struct type *) #define RB_PROTOTYPE_FIND(name, type, attr) \ attr struct type *name##_RB_FIND(struct name *, struct type *) #define RB_PROTOTYPE_NFIND(name, type, attr) \ attr struct type *name##_RB_NFIND(struct name *, struct type *) #define RB_PROTOTYPE_NEXT(name, type, attr) \ attr struct type *name##_RB_NEXT(struct type *) #define RB_PROTOTYPE_PREV(name, type, attr) \ attr struct type *name##_RB_PREV(struct type *) #define RB_PROTOTYPE_MINMAX(name, type, attr) \ attr struct type *name##_RB_MINMAX(struct name *, int) #define RB_PROTOTYPE_REINSERT(name, type, attr) \ attr struct type *name##_RB_REINSERT(struct name *, struct type *) /* Main rb operation. * Moves node close to the key of elm to top */ #define RB_GENERATE(name, type, field, cmp) \ RB_GENERATE_INTERNAL(name, type, field, cmp,) #define RB_GENERATE_STATIC(name, type, field, cmp) \ RB_GENERATE_INTERNAL(name, type, field, cmp, __unused static) #define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \ RB_GENERATE_INSERT_COLOR(name, type, field, attr) \ RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \ RB_GENERATE_INSERT(name, type, field, cmp, attr) \ RB_GENERATE_REMOVE(name, type, field, attr) \ RB_GENERATE_FIND(name, type, field, cmp, attr) \ RB_GENERATE_NFIND(name, type, field, cmp, attr) \ RB_GENERATE_NEXT(name, type, field, attr) \ RB_GENERATE_PREV(name, type, field, attr) \ RB_GENERATE_MINMAX(name, type, field, attr) \ RB_GENERATE_REINSERT(name, type, field, cmp, attr) #define RB_GENERATE_INSERT_COLOR(name, type, field, attr) \ attr void \ name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \ { \ struct type *gparent, *parent; \ while ((parent = RB_PARENT(elm, field)) != NULL) { \ if (RB_LEFT(parent, field) == elm) \ RB_FLIP_LF(parent, field); \ else \ RB_FLIP_RT(parent, field); \ if ((gparent = RB_PARENT(parent, field)) == NULL) \ break; \ if (RB_RED_LF(gparent, field) && \ RB_RED_RT(gparent, field)) { \ RB_FLIP_LF(gparent, field); \ RB_FLIP_RT(gparent, field); \ elm = gparent; \ continue; \ } \ if (RB_RED_LF(gparent, field) && \ parent == RB_LEFT(gparent, field)) { \ if (RB_RIGHT(parent, field) == elm) { \ RB_ROTATE_LEFT(head, parent, elm, field);\ parent = elm; \ } \ RB_ROTATE_RIGHT(head, gparent, parent, field); \ } else if (RB_RED_RT(gparent, field) && \ parent == RB_RIGHT(gparent, field)) { \ if (RB_LEFT(parent, field) == elm) { \ RB_ROTATE_RIGHT(head, parent, elm, field);\ parent = elm; \ } \ RB_ROTATE_LEFT(head, gparent, parent, field); \ } \ break; \ } \ } #define RB_GENERATE_REMOVE_COLOR(name, type, field, attr) \ attr void \ name##_RB_REMOVE_COLOR(struct name *head, struct type *elm) \ { \ struct type *par, *sib, *tmp; \ RB_BOOL go_left, left_child, red_par; \ left_child = (RB_LEFT(elm, field) == NULL); \ do { \ go_left = left_child; \ if (go_left ? \ !RB_RED_RT(elm, field) : \ !RB_RED_LF(elm, field)) { \ par = RB_PARENT(elm, field); \ left_child = par != NULL && \ RB_LEFT(par, field) == elm; \ red_par = left_child ? RB_RED_LF(par, field) : \ par == NULL ? RB_TRUE : \ RB_RED_RT(par, field); \ } \ if (go_left) { \ if (RB_RED_RT(elm, field)) { \ red_par = RB_TRUE; \ RB_ROTATE_LEFT(head, elm, par, field); \ } \ sib = RB_RIGHT(elm, field); \ if (RB_RED_LF(sib, field)) { \ RB_ROTATE_RIGHT(head, sib, tmp, field); \ sib = tmp; \ } else if (!RB_RED_RT(sib, field)) { \ RB_FLIP_RT(elm, field); \ elm = par; \ continue; \ } \ if (RB_RED_RT(sib, field)) \ RB_FLIP_RT(sib, field); \ RB_ROTATE_LEFT(head, elm, sib, field); \ RB_FLIP_LF(sib, field); \ break; \ } else { \ if (RB_RED_LF(elm, field)) { \ red_par = RB_TRUE; \ RB_ROTATE_RIGHT(head, elm, par, field); \ } \ sib = RB_LEFT(elm, field); \ if (RB_RED_RT(sib, field)) { \ RB_ROTATE_LEFT(head, sib, tmp, field); \ sib = tmp; \ } else if (!RB_RED_LF(sib, field)) { \ RB_FLIP_LF(elm, field); \ elm = par; \ continue; \ } \ if (RB_RED_LF(sib, field)) \ RB_FLIP_LF(sib, field); \ RB_ROTATE_RIGHT(head, elm, sib, field); \ RB_FLIP_RT(sib, field); \ break; \ } \ } while (!red_par); \ if (par != NULL && red_par) { \ if (left_child) \ RB_FLIP_LF(par, field); \ else \ RB_FLIP_RT(par, field); \ } \ } #define RB_GENERATE_REMOVE(name, type, field, attr) \ attr struct type * \ name##_RB_REMOVE(struct name *head, struct type *elm) \ { \ struct type *child, *old, *parent, *parent_old, *right; \ RB_BOOL old_red, red; \ \ old = elm; \ parent_old = parent = RB_PARENT(elm, field); \ right = RB_RIGHT(elm, field); \ if (RB_LEFT(elm, field) == NULL) \ elm = child = right; \ else if (right == NULL) \ elm = child = RB_LEFT(elm, field); \ else { \ if ((child = RB_LEFT(right, field)) == NULL) { \ child = RB_RIGHT(right, field); \ red = RB_RED_RT(old, field); \ RB_RT(old, field) = child; \ parent = elm = right; \ } else { \ do \ elm = child; \ while ((child = RB_LEFT(elm, field)) != NULL); \ child = RB_RIGHT(elm, field); \ parent = RB_PARENT(elm, field); \ red = RB_RED_LF(parent, field); \ RB_LF(parent, field) = child; \ RB_PARENT(RB_RIGHT(old, field), field) = elm; \ } \ RB_PARENT(RB_LEFT(old, field), field) = elm; \ elm->field = old->field; \ } \ if (parent_old == NULL) { \ RB_ROOT(head) = elm; \ old_red = RB_FALSE; \ } else if (RB_LEFT(parent_old, field) == old) { \ old_red = RB_RED_LF(parent_old, field); \ RB_LF(parent_old, field) = elm; \ if (old_red && parent != parent_old) \ RB_FLIP_LF(parent_old, field); \ } else { \ old_red = RB_RED_RT(parent_old, field); \ RB_RT(parent_old, field) = elm; \ if (old_red && parent != parent_old) \ RB_FLIP_RT(parent_old, field); \ } \ if (child != NULL) \ RB_PARENT(child, field) = parent; \ else if (parent != NULL && \ (parent != parent_old ? !red : !old_red)) \ name##_RB_REMOVE_COLOR(head, parent); \ while (parent != NULL) { \ RB_AUGMENT(parent); \ parent = RB_PARENT(parent, field); \ } \ return (old); \ } #define RB_GENERATE_INSERT(name, type, field, cmp, attr) \ /* Inserts a node into the RB tree */ \ attr struct type * \ name##_RB_INSERT(struct name *head, struct type *elm) \ { \ struct type *tmp; \ struct type *parent = NULL; \ int comp = 0; \ tmp = RB_ROOT(head); \ while (tmp) { \ parent = tmp; \ comp = (cmp)(elm, parent); \ if (comp < 0) \ tmp = RB_LEFT(tmp, field); \ else if (comp > 0) \ tmp = RB_RIGHT(tmp, field); \ else \ return (tmp); \ } \ RB_PARENT(elm, field) = parent; \ RB_LF(elm, field) = RB_RT(elm, field) = NULL; \ if (parent == NULL) \ RB_ROOT(head) = elm; \ else if (comp < 0) \ RB_LF(parent, field) = elm; \ else \ RB_RT(parent, field) = elm; \ name##_RB_INSERT_COLOR(head, elm); \ while (elm != NULL) { \ RB_AUGMENT(elm); \ elm = RB_PARENT(elm, field); \ } \ return (NULL); \ } #define RB_GENERATE_FIND(name, type, field, cmp, attr) \ /* Finds the node with the same key as elm */ \ attr struct type * \ name##_RB_FIND(struct name *head, struct type *elm) \ { \ struct type *tmp = RB_ROOT(head); \ int comp; \ while (tmp) { \ comp = cmp(elm, tmp); \ if (comp < 0) \ tmp = RB_LEFT(tmp, field); \ else if (comp > 0) \ tmp = RB_RIGHT(tmp, field); \ else \ return (tmp); \ } \ return (NULL); \ } #define RB_GENERATE_NFIND(name, type, field, cmp, attr) \ /* Finds the first node greater than or equal to the search key */ \ attr struct type * \ name##_RB_NFIND(struct name *head, struct type *elm) \ { \ struct type *tmp = RB_ROOT(head); \ struct type *res = NULL; \ int comp; \ while (tmp) { \ comp = cmp(elm, tmp); \ if (comp < 0) { \ res = tmp; \ tmp = RB_LEFT(tmp, field); \ } \ else if (comp > 0) \ tmp = RB_RIGHT(tmp, field); \ else \ return (tmp); \ } \ return (res); \ } #define RB_GENERATE_NEXT(name, type, field, attr) \ /* ARGSUSED */ \ attr struct type * \ name##_RB_NEXT(struct type *elm) \ { \ if (RB_RIGHT(elm, field)) { \ elm = RB_RIGHT(elm, field); \ while (RB_LEFT(elm, field)) \ elm = RB_LEFT(elm, field); \ } else { \ if (RB_PARENT(elm, field) && \ (elm == RB_LEFT(RB_PARENT(elm, field), field))) \ elm = RB_PARENT(elm, field); \ else { \ while (RB_PARENT(elm, field) && \ (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\ elm = RB_PARENT(elm, field); \ elm = RB_PARENT(elm, field); \ } \ } \ return (elm); \ } #define RB_GENERATE_PREV(name, type, field, attr) \ /* ARGSUSED */ \ attr struct type * \ name##_RB_PREV(struct type *elm) \ { \ if (RB_LEFT(elm, field)) { \ elm = RB_LEFT(elm, field); \ while (RB_RIGHT(elm, field)) \ elm = RB_RIGHT(elm, field); \ } else { \ if (RB_PARENT(elm, field) && \ (elm == RB_RIGHT(RB_PARENT(elm, field), field))) \ elm = RB_PARENT(elm, field); \ else { \ while (RB_PARENT(elm, field) && \ (elm == RB_LEFT(RB_PARENT(elm, field), field)))\ elm = RB_PARENT(elm, field); \ elm = RB_PARENT(elm, field); \ } \ } \ return (elm); \ } #define RB_GENERATE_MINMAX(name, type, field, attr) \ attr struct type * \ name##_RB_MINMAX(struct name *head, int val) \ { \ struct type *tmp = RB_ROOT(head); \ struct type *parent = NULL; \ while (tmp) { \ parent = tmp; \ if (val < 0) \ tmp = RB_LEFT(tmp, field); \ else \ tmp = RB_RIGHT(tmp, field); \ } \ return (parent); \ } #define RB_GENERATE_REINSERT(name, type, field, cmp, attr) \ attr struct type * \ name##_RB_REINSERT(struct name *head, struct type *elm) \ { \ struct type *cmpelm; \ if (((cmpelm = RB_PREV(name, head, elm)) != NULL && \ cmp(cmpelm, elm) >= 0) || \ ((cmpelm = RB_NEXT(name, head, elm)) != NULL && \ cmp(elm, cmpelm) >= 0)) { \ /* XXXLAS: Remove/insert is heavy handed. */ \ RB_REMOVE(name, head, elm); \ return (RB_INSERT(name, head, elm)); \ } \ return (NULL); \ } \ #define RB_NEGINF -1 #define RB_INF 1 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y) #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y) #define RB_FIND(name, x, y) name##_RB_FIND(x, y) #define RB_NFIND(name, x, y) name##_RB_NFIND(x, y) #define RB_NEXT(name, x, y) name##_RB_NEXT(y) #define RB_PREV(name, x, y) name##_RB_PREV(y) #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF) #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF) #define RB_REINSERT(name, x, y) name##_RB_REINSERT(x, y) #define RB_FOREACH(x, name, head) \ for ((x) = RB_MIN(name, head); \ (x) != NULL; \ (x) = name##_RB_NEXT(x)) #define RB_FOREACH_FROM(x, name, y) \ for ((x) = (y); \ ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \ (x) = (y)) #define RB_FOREACH_SAFE(x, name, head, y) \ for ((x) = RB_MIN(name, head); \ ((x) != NULL) && ((y) = name##_RB_NEXT(x), (x) != NULL); \ (x) = (y)) #define RB_FOREACH_REVERSE(x, name, head) \ for ((x) = RB_MAX(name, head); \ (x) != NULL; \ (x) = name##_RB_PREV(x)) #define RB_FOREACH_REVERSE_FROM(x, name, y) \ for ((x) = (y); \ ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \ (x) = (y)) #define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \ for ((x) = RB_MAX(name, head); \ ((x) != NULL) && ((y) = name##_RB_PREV(x), (x) != NULL); \ (x) = (y)) #endif /* _SYS_TREE_H_ */