Index: stable/12/sys/dev/iwm/if_iwm.c =================================================================== --- stable/12/sys/dev/iwm/if_iwm.c (revision 361785) +++ stable/12/sys/dev/iwm/if_iwm.c (revision 361786) @@ -1,6664 +1,6699 @@ /* $OpenBSD: if_iwm.c,v 1.167 2017/04/04 00:40:52 claudio Exp $ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include "opt_iwm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* From DragonflyBSD */ #define mtodoff(m, t, off) ((t)((m)->m_data + (off))) const uint8_t iwm_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165 }; _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS, "IWM_NUM_CHANNELS is too small"); const uint8_t iwm_nvm_channels_8000[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181 }; _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000, "IWM_NUM_CHANNELS_8000 is too small"); #define IWM_NUM_2GHZ_CHANNELS 14 #define IWM_N_HW_ADDR_MASK 0xF /* * XXX For now, there's simply a fixed set of rate table entries * that are populated. */ const struct iwm_rate { uint8_t rate; uint8_t plcp; } iwm_rates[] = { { 2, IWM_RATE_1M_PLCP }, { 4, IWM_RATE_2M_PLCP }, { 11, IWM_RATE_5M_PLCP }, { 22, IWM_RATE_11M_PLCP }, { 12, IWM_RATE_6M_PLCP }, { 18, IWM_RATE_9M_PLCP }, { 24, IWM_RATE_12M_PLCP }, { 36, IWM_RATE_18M_PLCP }, { 48, IWM_RATE_24M_PLCP }, { 72, IWM_RATE_36M_PLCP }, { 96, IWM_RATE_48M_PLCP }, { 108, IWM_RATE_54M_PLCP }, }; #define IWM_RIDX_CCK 0 #define IWM_RIDX_OFDM 4 #define IWM_RIDX_MAX (nitems(iwm_rates)-1) #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) struct iwm_nvm_section { uint16_t length; uint8_t *data; }; #define IWM_UCODE_ALIVE_TIMEOUT hz #define IWM_UCODE_CALIB_TIMEOUT (2*hz) struct iwm_alive_data { int valid; uint32_t scd_base_addr; }; static int iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t); static int iwm_firmware_store_section(struct iwm_softc *, enum iwm_ucode_type, const uint8_t *, size_t); static int iwm_set_default_calib(struct iwm_softc *, const void *); static void iwm_fw_info_free(struct iwm_fw_info *); static int iwm_read_firmware(struct iwm_softc *); static int iwm_alloc_fwmem(struct iwm_softc *); static int iwm_alloc_sched(struct iwm_softc *); static int iwm_alloc_kw(struct iwm_softc *); static int iwm_alloc_ict(struct iwm_softc *); static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, int); static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); static void iwm_enable_interrupts(struct iwm_softc *); static void iwm_restore_interrupts(struct iwm_softc *); static void iwm_disable_interrupts(struct iwm_softc *); static void iwm_ict_reset(struct iwm_softc *); static int iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *); static void iwm_stop_device(struct iwm_softc *); static void iwm_nic_config(struct iwm_softc *); static int iwm_nic_rx_init(struct iwm_softc *); static int iwm_nic_tx_init(struct iwm_softc *); static int iwm_nic_init(struct iwm_softc *); static int iwm_trans_pcie_fw_alive(struct iwm_softc *, uint32_t); static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, uint16_t, uint8_t *, uint16_t *); static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, uint16_t *, uint32_t); static uint32_t iwm_eeprom_channel_flags(uint16_t); static void iwm_add_channel_band(struct iwm_softc *, struct ieee80211_channel[], int, int *, int, size_t, const uint8_t[]); static void iwm_init_channel_map(struct ieee80211com *, int, int *, struct ieee80211_channel[]); static struct iwm_nvm_data * iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *); static void iwm_free_nvm_data(struct iwm_nvm_data *); static void iwm_set_hw_address_family_8000(struct iwm_softc *, struct iwm_nvm_data *, const uint16_t *, const uint16_t *); static int iwm_get_sku(const struct iwm_softc *, const uint16_t *, const uint16_t *); static int iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *); static int iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *, const uint16_t *); static int iwm_get_n_hw_addrs(const struct iwm_softc *, const uint16_t *); static void iwm_set_radio_cfg(const struct iwm_softc *, struct iwm_nvm_data *, uint32_t); static struct iwm_nvm_data * iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *); static int iwm_nvm_init(struct iwm_softc *); static int iwm_pcie_load_section(struct iwm_softc *, uint8_t, const struct iwm_fw_desc *); static int iwm_pcie_load_firmware_chunk(struct iwm_softc *, uint32_t, bus_addr_t, uint32_t); static int iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, const struct iwm_fw_img *, int, int *); static int iwm_pcie_load_cpu_sections(struct iwm_softc *, const struct iwm_fw_img *, int, int *); static int iwm_pcie_load_given_ucode_8000(struct iwm_softc *, const struct iwm_fw_img *); static int iwm_pcie_load_given_ucode(struct iwm_softc *, const struct iwm_fw_img *); static int iwm_start_fw(struct iwm_softc *, const struct iwm_fw_img *); static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); static int iwm_send_phy_cfg_cmd(struct iwm_softc *); static int iwm_load_ucode_wait_alive(struct iwm_softc *, enum iwm_ucode_type); static int iwm_run_init_ucode(struct iwm_softc *, int); static int iwm_config_ltr(struct iwm_softc *sc); static int iwm_rx_addbuf(struct iwm_softc *, int, int); static void iwm_rx_rx_phy_cmd(struct iwm_softc *, struct iwm_rx_packet *); static int iwm_get_noise(struct iwm_softc *, const struct iwm_statistics_rx_non_phy *); static void iwm_handle_rx_statistics(struct iwm_softc *, struct iwm_rx_packet *); static bool iwm_rx_mpdu(struct iwm_softc *, struct mbuf *, uint32_t, bool); static int iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_node *); static void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *); static void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *); #if 0 static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, uint16_t); #endif static const struct iwm_rate * iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, struct mbuf *, struct iwm_tx_cmd *); static int iwm_tx(struct iwm_softc *, struct mbuf *, struct ieee80211_node *, int); static int iwm_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int iwm_update_quotas(struct iwm_softc *, struct iwm_vap *); static int iwm_auth(struct ieee80211vap *, struct iwm_softc *); static struct ieee80211_node * iwm_node_alloc(struct ieee80211vap *, const uint8_t[IEEE80211_ADDR_LEN]); static uint8_t iwm_rate_from_ucode_rate(uint32_t); static int iwm_rate2ridx(struct iwm_softc *, uint8_t); static void iwm_setrates(struct iwm_softc *, struct iwm_node *, int); static int iwm_media_change(struct ifnet *); static int iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void iwm_endscan_cb(void *, int); static int iwm_send_bt_init_conf(struct iwm_softc *); static boolean_t iwm_is_lar_supported(struct iwm_softc *); static boolean_t iwm_is_wifi_mcc_supported(struct iwm_softc *); static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *); static void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t); static int iwm_init_hw(struct iwm_softc *); static void iwm_init(struct iwm_softc *); static void iwm_start(struct iwm_softc *); static void iwm_stop(struct iwm_softc *); static void iwm_watchdog(void *); static void iwm_parent(struct ieee80211com *); #ifdef IWM_DEBUG static const char * iwm_desc_lookup(uint32_t); static void iwm_nic_error(struct iwm_softc *); static void iwm_nic_umac_error(struct iwm_softc *); #endif static void iwm_handle_rxb(struct iwm_softc *, struct mbuf *); static void iwm_notif_intr(struct iwm_softc *); static void iwm_intr(void *); static int iwm_attach(device_t); static int iwm_is_valid_ether_addr(uint8_t *); static void iwm_preinit(void *); static int iwm_detach_local(struct iwm_softc *sc, int); static void iwm_init_task(void *); static void iwm_radiotap_attach(struct iwm_softc *); static struct ieee80211vap * iwm_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void iwm_vap_delete(struct ieee80211vap *); static void iwm_xmit_queue_drain(struct iwm_softc *); static void iwm_scan_start(struct ieee80211com *); static void iwm_scan_end(struct ieee80211com *); static void iwm_update_mcast(struct ieee80211com *); static void iwm_set_channel(struct ieee80211com *); static void iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long); static void iwm_scan_mindwell(struct ieee80211_scan_state *); static int iwm_detach(device_t); static int iwm_lar_disable = 0; TUNABLE_INT("hw.iwm.lar.disable", &iwm_lar_disable); /* * Firmware parser. */ static int iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen) { const struct iwm_fw_cscheme_list *l = (const void *)data; if (dlen < sizeof(*l) || dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) return EINVAL; /* we don't actually store anything for now, always use s/w crypto */ return 0; } static int iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type, const uint8_t *data, size_t dlen) { struct iwm_fw_img *fws; struct iwm_fw_desc *fwone; if (type >= IWM_UCODE_TYPE_MAX) return EINVAL; if (dlen < sizeof(uint32_t)) return EINVAL; fws = &sc->sc_fw.img[type]; if (fws->fw_count >= IWM_UCODE_SECTION_MAX) return EINVAL; fwone = &fws->sec[fws->fw_count]; /* first 32bit are device load offset */ memcpy(&fwone->offset, data, sizeof(uint32_t)); /* rest is data */ fwone->data = data + sizeof(uint32_t); fwone->len = dlen - sizeof(uint32_t); fws->fw_count++; return 0; } #define IWM_DEFAULT_SCAN_CHANNELS 40 /* iwlwifi: iwl-drv.c */ struct iwm_tlv_calib_data { uint32_t ucode_type; struct iwm_tlv_calib_ctrl calib; } __packed; static int iwm_set_default_calib(struct iwm_softc *sc, const void *data) { const struct iwm_tlv_calib_data *def_calib = data; uint32_t ucode_type = le32toh(def_calib->ucode_type); if (ucode_type >= IWM_UCODE_TYPE_MAX) { device_printf(sc->sc_dev, "Wrong ucode_type %u for default " "calibration.\n", ucode_type); return EINVAL; } sc->sc_default_calib[ucode_type].flow_trigger = def_calib->calib.flow_trigger; sc->sc_default_calib[ucode_type].event_trigger = def_calib->calib.event_trigger; return 0; } static int iwm_set_ucode_api_flags(struct iwm_softc *sc, const uint8_t *data, struct iwm_ucode_capabilities *capa) { const struct iwm_ucode_api *ucode_api = (const void *)data; uint32_t api_index = le32toh(ucode_api->api_index); uint32_t api_flags = le32toh(ucode_api->api_flags); int i; if (api_index >= howmany(IWM_NUM_UCODE_TLV_API, 32)) { device_printf(sc->sc_dev, "api flags index %d larger than supported by driver\n", api_index); /* don't return an error so we can load FW that has more bits */ return 0; } for (i = 0; i < 32; i++) { if (api_flags & (1U << i)) setbit(capa->enabled_api, i + 32 * api_index); } return 0; } static int iwm_set_ucode_capabilities(struct iwm_softc *sc, const uint8_t *data, struct iwm_ucode_capabilities *capa) { const struct iwm_ucode_capa *ucode_capa = (const void *)data; uint32_t api_index = le32toh(ucode_capa->api_index); uint32_t api_flags = le32toh(ucode_capa->api_capa); int i; if (api_index >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) { device_printf(sc->sc_dev, "capa flags index %d larger than supported by driver\n", api_index); /* don't return an error so we can load FW that has more bits */ return 0; } for (i = 0; i < 32; i++) { if (api_flags & (1U << i)) setbit(capa->enabled_capa, i + 32 * api_index); } return 0; } static void iwm_fw_info_free(struct iwm_fw_info *fw) { firmware_put(fw->fw_fp, FIRMWARE_UNLOAD); fw->fw_fp = NULL; memset(fw->img, 0, sizeof(fw->img)); } static int iwm_read_firmware(struct iwm_softc *sc) { struct iwm_fw_info *fw = &sc->sc_fw; const struct iwm_tlv_ucode_header *uhdr; const struct iwm_ucode_tlv *tlv; struct iwm_ucode_capabilities *capa = &sc->sc_fw.ucode_capa; enum iwm_ucode_tlv_type tlv_type; const struct firmware *fwp; const uint8_t *data; uint32_t tlv_len; uint32_t usniffer_img; const uint8_t *tlv_data; uint32_t paging_mem_size; int num_of_cpus; int error = 0; size_t len; /* * Load firmware into driver memory. * fw_fp will be set. */ fwp = firmware_get(sc->cfg->fw_name); if (fwp == NULL) { device_printf(sc->sc_dev, "could not read firmware %s (error %d)\n", sc->cfg->fw_name, error); goto out; } fw->fw_fp = fwp; /* (Re-)Initialize default values. */ capa->flags = 0; capa->max_probe_length = IWM_DEFAULT_MAX_PROBE_LENGTH; capa->n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS; memset(capa->enabled_capa, 0, sizeof(capa->enabled_capa)); memset(capa->enabled_api, 0, sizeof(capa->enabled_api)); memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc)); /* * Parse firmware contents */ uhdr = (const void *)fw->fw_fp->data; if (*(const uint32_t *)fw->fw_fp->data != 0 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { device_printf(sc->sc_dev, "invalid firmware %s\n", sc->cfg->fw_name); error = EINVAL; goto out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u (API ver %u)", IWM_UCODE_MAJOR(le32toh(uhdr->ver)), IWM_UCODE_MINOR(le32toh(uhdr->ver)), IWM_UCODE_API(le32toh(uhdr->ver))); data = uhdr->data; len = fw->fw_fp->datasize - sizeof(*uhdr); while (len >= sizeof(*tlv)) { len -= sizeof(*tlv); tlv = (const void *)data; tlv_len = le32toh(tlv->length); tlv_type = le32toh(tlv->type); tlv_data = tlv->data; if (len < tlv_len) { device_printf(sc->sc_dev, "firmware too short: %zu bytes\n", len); error = EINVAL; goto parse_out; } len -= roundup2(tlv_len, 4); data += sizeof(*tlv) + roundup2(tlv_len, 4); switch ((int)tlv_type) { case IWM_UCODE_TLV_PROBE_MAX_LEN: if (tlv_len != sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: PROBE_MAX_LEN (%u) != sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } capa->max_probe_length = le32_to_cpup((const uint32_t *)tlv_data); /* limit it to something sensible */ if (capa->max_probe_length > IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) { IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, "%s: IWM_UCODE_TLV_PROBE_MAX_LEN " "ridiculous\n", __func__); error = EINVAL; goto parse_out; } break; case IWM_UCODE_TLV_PAN: if (tlv_len) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_PAN: tlv_len (%u) > 0\n", __func__, tlv_len); error = EINVAL; goto parse_out; } capa->flags |= IWM_UCODE_TLV_FLAGS_PAN; break; case IWM_UCODE_TLV_FLAGS: if (tlv_len < sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) < sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } if (tlv_len % sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%u) %% sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } /* * Apparently there can be many flags, but Linux driver * parses only the first one, and so do we. * * XXX: why does this override IWM_UCODE_TLV_PAN? * Intentional or a bug? Observations from * current firmware file: * 1) TLV_PAN is parsed first * 2) TLV_FLAGS contains TLV_FLAGS_PAN * ==> this resets TLV_PAN to itself... hnnnk */ capa->flags = le32_to_cpup((const uint32_t *)tlv_data); break; case IWM_UCODE_TLV_CSCHEME: if ((error = iwm_store_cscheme(sc, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: iwm_store_cscheme(): returned %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_NUM_OF_CPU: if (tlv_len != sizeof(uint32_t)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%u) != sizeof(uint32_t)\n", __func__, tlv_len); error = EINVAL; goto parse_out; } num_of_cpus = le32_to_cpup((const uint32_t *)tlv_data); if (num_of_cpus == 2) { fw->img[IWM_UCODE_REGULAR].is_dual_cpus = TRUE; fw->img[IWM_UCODE_INIT].is_dual_cpus = TRUE; fw->img[IWM_UCODE_WOWLAN].is_dual_cpus = TRUE; } else if ((num_of_cpus > 2) || (num_of_cpus < 1)) { device_printf(sc->sc_dev, "%s: Driver supports only 1 or 2 CPUs\n", __func__); error = EINVAL; goto parse_out; } break; case IWM_UCODE_TLV_SEC_RT: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_REGULAR, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: IWM_UCODE_REGULAR: iwm_firmware_store_section() failed; %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_SEC_INIT: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_INIT, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: IWM_UCODE_INIT: iwm_firmware_store_section() failed; %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_SEC_WOWLAN: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_WOWLAN, tlv_data, tlv_len)) != 0) { device_printf(sc->sc_dev, "%s: IWM_UCODE_WOWLAN: iwm_firmware_store_section() failed; %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_DEF_CALIB: if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%u) < sizeof(iwm_tlv_calib_data) (%zu)\n", __func__, tlv_len, sizeof(struct iwm_tlv_calib_data)); error = EINVAL; goto parse_out; } if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) { device_printf(sc->sc_dev, "%s: iwm_set_default_calib() failed: %d\n", __func__, error); goto parse_out; } break; case IWM_UCODE_TLV_PHY_SKU: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; device_printf(sc->sc_dev, "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%u) < sizeof(uint32_t)\n", __func__, tlv_len); goto parse_out; } sc->sc_fw.phy_config = le32_to_cpup((const uint32_t *)tlv_data); sc->sc_fw.valid_tx_ant = (sc->sc_fw.phy_config & IWM_FW_PHY_CFG_TX_CHAIN) >> IWM_FW_PHY_CFG_TX_CHAIN_POS; sc->sc_fw.valid_rx_ant = (sc->sc_fw.phy_config & IWM_FW_PHY_CFG_RX_CHAIN) >> IWM_FW_PHY_CFG_RX_CHAIN_POS; break; case IWM_UCODE_TLV_API_CHANGES_SET: { if (tlv_len != sizeof(struct iwm_ucode_api)) { error = EINVAL; goto parse_out; } if (iwm_set_ucode_api_flags(sc, tlv_data, capa)) { error = EINVAL; goto parse_out; } break; } case IWM_UCODE_TLV_ENABLED_CAPABILITIES: { if (tlv_len != sizeof(struct iwm_ucode_capa)) { error = EINVAL; goto parse_out; } if (iwm_set_ucode_capabilities(sc, tlv_data, capa)) { error = EINVAL; goto parse_out; } break; } case IWM_UCODE_TLV_CMD_VERSIONS: case IWM_UCODE_TLV_SDIO_ADMA_ADDR: case IWM_UCODE_TLV_FW_GSCAN_CAPA: /* ignore, not used by current driver */ break; case IWM_UCODE_TLV_SEC_RT_USNIFFER: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_REGULAR_USNIFFER, tlv_data, tlv_len)) != 0) goto parse_out; break; case IWM_UCODE_TLV_PAGING: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; goto parse_out; } paging_mem_size = le32_to_cpup((const uint32_t *)tlv_data); IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV, "%s: Paging: paging enabled (size = %u bytes)\n", __func__, paging_mem_size); if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) { device_printf(sc->sc_dev, "%s: Paging: driver supports up to %u bytes for paging image\n", __func__, IWM_MAX_PAGING_IMAGE_SIZE); error = EINVAL; goto out; } if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) { device_printf(sc->sc_dev, "%s: Paging: image isn't multiple %u\n", __func__, IWM_FW_PAGING_SIZE); error = EINVAL; goto out; } sc->sc_fw.img[IWM_UCODE_REGULAR].paging_mem_size = paging_mem_size; usniffer_img = IWM_UCODE_REGULAR_USNIFFER; sc->sc_fw.img[usniffer_img].paging_mem_size = paging_mem_size; break; case IWM_UCODE_TLV_N_SCAN_CHANNELS: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; goto parse_out; } capa->n_scan_channels = le32_to_cpup((const uint32_t *)tlv_data); break; case IWM_UCODE_TLV_FW_VERSION: if (tlv_len != sizeof(uint32_t) * 3) { error = EINVAL; goto parse_out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u.%u", le32toh(((const uint32_t *)tlv_data)[0]), le32toh(((const uint32_t *)tlv_data)[1]), le32toh(((const uint32_t *)tlv_data)[2])); break; case IWM_UCODE_TLV_FW_MEM_SEG: break; default: device_printf(sc->sc_dev, "%s: unknown firmware section %d, abort\n", __func__, tlv_type); error = EINVAL; goto parse_out; } } KASSERT(error == 0, ("unhandled error")); parse_out: if (error) { device_printf(sc->sc_dev, "firmware parse error %d, " "section type %d\n", error, tlv_type); } out: if (error) { if (fw->fw_fp != NULL) iwm_fw_info_free(fw); } return error; } /* * DMA resource routines */ /* fwmem is used to load firmware onto the card */ static int iwm_alloc_fwmem(struct iwm_softc *sc) { /* Must be aligned on a 16-byte boundary. */ return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, IWM_FH_MEM_TB_MAX_LENGTH, 16); } /* tx scheduler rings. not used? */ static int iwm_alloc_sched(struct iwm_softc *sc) { /* TX scheduler rings must be aligned on a 1KB boundary. */ return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); } /* keep-warm page is used internally by the card. see iwl-fh.h for more info */ static int iwm_alloc_kw(struct iwm_softc *sc) { return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); } /* interrupt cause table */ static int iwm_alloc_ict(struct iwm_softc *sc) { return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, IWM_ICT_SIZE, 1<cur = 0; if (sc->cfg->mqrx_supported) { count = IWM_RX_MQ_RING_COUNT; descsz = sizeof(uint64_t); } else { count = IWM_RX_LEGACY_RING_COUNT; descsz = sizeof(uint32_t); } /* Allocate RX descriptors (256-byte aligned). */ size = count * descsz; error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 256); if (error != 0) { device_printf(sc->sc_dev, "could not allocate RX ring DMA memory\n"); goto fail; } ring->desc = ring->free_desc_dma.vaddr; /* Allocate RX status area (16-byte aligned). */ error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, sizeof(*ring->stat), 16); if (error != 0) { device_printf(sc->sc_dev, "could not allocate RX status DMA memory\n"); goto fail; } ring->stat = ring->stat_dma.vaddr; if (sc->cfg->mqrx_supported) { size = count * sizeof(uint32_t); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma, size, 256); if (error != 0) { device_printf(sc->sc_dev, "could not allocate RX ring DMA memory\n"); goto fail; } } /* Create RX buffer DMA tag. */ error = bus_dma_tag_create(sc->sc_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA tag, error %d\n", __func__, error); goto fail; } /* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */ error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA map, error %d\n", __func__, error); goto fail; } /* * Allocate and map RX buffers. */ for (i = 0; i < count; i++) { struct iwm_rx_data *data = &ring->data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "%s: could not create RX buf DMA map, error %d\n", __func__, error); goto fail; } data->m = NULL; if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) { goto fail; } } return 0; fail: iwm_free_rx_ring(sc, ring); return error; } static void iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { /* Reset the ring state */ ring->cur = 0; /* * The hw rx ring index in shared memory must also be cleared, * otherwise the discrepancy can cause reprocessing chaos. */ if (sc->rxq.stat) memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); } static void iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { int count, i; iwm_dma_contig_free(&ring->free_desc_dma); iwm_dma_contig_free(&ring->stat_dma); iwm_dma_contig_free(&ring->used_desc_dma); count = sc->cfg->mqrx_supported ? IWM_RX_MQ_RING_COUNT : IWM_RX_LEGACY_RING_COUNT; for (i = 0; i < count; i++) { struct iwm_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) { bus_dmamap_destroy(ring->data_dmat, data->map); data->map = NULL; } } if (ring->spare_map != NULL) { bus_dmamap_destroy(ring->data_dmat, ring->spare_map); ring->spare_map = NULL; } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } static int iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; size_t maxsize; int nsegments; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; /* Allocate TX descriptors (256-byte aligned). */ size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); if (error != 0) { device_printf(sc->sc_dev, "could not allocate TX ring DMA memory\n"); goto fail; } ring->desc = ring->desc_dma.vaddr; /* * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need * to allocate commands space for other rings. */ if (qid > IWM_CMD_QUEUE) return 0; size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); if (error != 0) { device_printf(sc->sc_dev, "could not allocate TX cmd DMA memory\n"); goto fail; } ring->cmd = ring->cmd_dma.vaddr; /* FW commands may require more mapped space than packets. */ if (qid == IWM_CMD_QUEUE) { maxsize = IWM_RBUF_SIZE; nsegments = 1; } else { maxsize = MCLBYTES; nsegments = IWM_MAX_SCATTER - 2; } error = bus_dma_tag_create(sc->sc_dmat, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create TX buf DMA tag\n"); goto fail; } paddr = ring->cmd_dma.paddr; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; data->cmd_paddr = paddr; data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) + offsetof(struct iwm_tx_cmd, scratch); paddr += sizeof(struct iwm_device_cmd); error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create TX buf DMA map\n"); goto fail; } } KASSERT(paddr == ring->cmd_dma.paddr + size, ("invalid physical address")); return 0; fail: iwm_free_tx_ring(sc, ring); return error; } static void iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; if (ring->qid == IWM_CMD_QUEUE && sc->cmd_hold_nic_awake) iwm_pcie_clear_cmd_in_flight(sc); } static void iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; iwm_dma_contig_free(&ring->desc_dma); iwm_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) { bus_dmamap_destroy(ring->data_dmat, data->map); data->map = NULL; } } if (ring->data_dmat != NULL) { bus_dma_tag_destroy(ring->data_dmat); ring->data_dmat = NULL; } } /* * High-level hardware frobbing routines */ static void iwm_enable_interrupts(struct iwm_softc *sc) { sc->sc_intmask = IWM_CSR_INI_SET_MASK; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } static void iwm_restore_interrupts(struct iwm_softc *sc) { IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } static void iwm_disable_interrupts(struct iwm_softc *sc) { /* disable interrupts */ IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); /* acknowledge all interrupts */ IWM_WRITE(sc, IWM_CSR_INT, ~0); IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); } static void iwm_ict_reset(struct iwm_softc *sc) { iwm_disable_interrupts(sc); /* Reset ICT table. */ memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); sc->ict_cur = 0; /* Set physical address of ICT table (4KB aligned). */ IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, IWM_CSR_DRAM_INT_TBL_ENABLE | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); /* Switch to ICT interrupt mode in driver. */ sc->sc_flags |= IWM_FLAG_USE_ICT; /* Re-enable interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, ~0); iwm_enable_interrupts(sc); } /* iwlwifi pcie/trans.c */ /* * Since this .. hard-resets things, it's time to actually * mark the first vap (if any) as having no mac context. * It's annoying, but since the driver is potentially being * stop/start'ed whilst active (thanks openbsd port!) we * have to correctly track this. */ static void iwm_stop_device(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); int chnl, qid; uint32_t mask = 0; /* tell the device to stop sending interrupts */ iwm_disable_interrupts(sc); /* * FreeBSD-local: mark the first vap as not-uploaded, * so the next transition through auth/assoc * will correctly populate the MAC context. */ if (vap) { struct iwm_vap *iv = IWM_VAP(vap); iv->phy_ctxt = NULL; iv->is_uploaded = 0; } sc->sc_firmware_state = 0; sc->sc_flags &= ~IWM_FLAG_TE_ACTIVE; /* device going down, Stop using ICT table */ sc->sc_flags &= ~IWM_FLAG_USE_ICT; /* stop tx and rx. tx and rx bits, as usual, are from if_iwn */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Stop each Tx DMA channel */ for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl); } /* Wait for DMA channels to be idle */ if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask, 5000)) { device_printf(sc->sc_dev, "Failing on timeout while stopping DMA channel: [0x%08x]\n", IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG)); } iwm_nic_unlock(sc); } iwm_pcie_rx_stop(sc); /* Stop RX ring. */ iwm_reset_rx_ring(sc, &sc->rxq); /* Reset all TX rings. */ for (qid = 0; qid < nitems(sc->txq); qid++) iwm_reset_tx_ring(sc, &sc->txq[qid]); if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { /* Power-down device's busmaster DMA clocks */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); iwm_nic_unlock(sc); } DELAY(5); } /* Make sure (redundant) we've released our request to stay awake */ IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* Stop the device, and put it in low power state */ iwm_apm_stop(sc); /* stop and reset the on-board processor */ IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET); DELAY(5000); /* * Upon stop, the APM issues an interrupt if HW RF kill is set. */ iwm_disable_interrupts(sc); /* * Even if we stop the HW, we still want the RF kill * interrupt */ iwm_enable_rfkill_int(sc); iwm_check_rfkill(sc); iwm_prepare_card_hw(sc); } /* iwlwifi: mvm/ops.c */ static void iwm_nic_config(struct iwm_softc *sc) { uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; uint32_t reg_val = 0; uint32_t phy_config = iwm_get_phy_config(sc); radio_cfg_type = (phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> IWM_FW_PHY_CFG_RADIO_TYPE_POS; radio_cfg_step = (phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> IWM_FW_PHY_CFG_RADIO_STEP_POS; radio_cfg_dash = (phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> IWM_FW_PHY_CFG_RADIO_DASH_POS; /* SKU control */ reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; /* radio configuration */ reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH | IWM_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH | IWM_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE | IWM_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | IWM_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI | reg_val); IWM_DPRINTF(sc, IWM_DEBUG_RESET, "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, radio_cfg_step, radio_cfg_dash); /* * W/A : NIC is stuck in a reset state after Early PCIe power off * (PCIe power is lost before PERST# is asserted), causing ME FW * to lose ownership and not being able to obtain it back. */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); } } static int iwm_nic_rx_mq_init(struct iwm_softc *sc) { int enabled; if (!iwm_nic_lock(sc)) return EBUSY; /* Stop RX DMA. */ iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, 0); /* Disable RX used and free queue operation. */ iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, 0); iwm_write_prph64(sc, IWM_RFH_Q0_FRBDCB_BA_LSB, sc->rxq.free_desc_dma.paddr); iwm_write_prph64(sc, IWM_RFH_Q0_URBDCB_BA_LSB, sc->rxq.used_desc_dma.paddr); iwm_write_prph64(sc, IWM_RFH_Q0_URBD_STTS_WPTR_LSB, sc->rxq.stat_dma.paddr); iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_WIDX, 0); iwm_write_prph(sc, IWM_RFH_Q0_FRBDCB_RIDX, 0); iwm_write_prph(sc, IWM_RFH_Q0_URBDCB_WIDX, 0); /* We configure only queue 0 for now. */ enabled = ((1 << 0) << 16) | (1 << 0); /* Enable RX DMA, 4KB buffer size. */ iwm_write_prph(sc, IWM_RFH_RXF_DMA_CFG, IWM_RFH_DMA_EN_ENABLE_VAL | IWM_RFH_RXF_DMA_RB_SIZE_4K | IWM_RFH_RXF_DMA_MIN_RB_4_8 | IWM_RFH_RXF_DMA_DROP_TOO_LARGE_MASK | IWM_RFH_RXF_DMA_RBDCB_SIZE_512); /* Enable RX DMA snooping. */ iwm_write_prph(sc, IWM_RFH_GEN_CFG, IWM_RFH_GEN_CFG_RFH_DMA_SNOOP | IWM_RFH_GEN_CFG_SERVICE_DMA_SNOOP | (sc->cfg->integrated ? IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_64 : IWM_RFH_GEN_CFG_RB_CHUNK_SIZE_128)); /* Enable the configured queue(s). */ iwm_write_prph(sc, IWM_RFH_RXF_RXQ_ACTIVE, enabled); iwm_nic_unlock(sc); IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); IWM_WRITE(sc, IWM_RFH_Q0_FRBDCB_WIDX_TRG, 8); return (0); } static int iwm_nic_rx_legacy_init(struct iwm_softc *sc) { /* Stop Rx DMA */ iwm_pcie_rx_stop(sc); if (!iwm_nic_lock(sc)) return EBUSY; /* reset and flush pointers */ IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); /* Set physical address of RX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.free_desc_dma.paddr >> 8); /* Set physical address of RX status (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); /* Enable Rx DMA * XXX 5000 HW isn't supported by the iwm(4) driver. * IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in * the credit mechanism in 5000 HW RX FIFO * Direct rx interrupts to hosts * Rx buffer size 4 or 8k or 12k * RB timeout 0x10 * 256 RBDs */ IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); /* W/A for interrupt coalescing bug in 7260 and 3160 */ if (sc->cfg->host_interrupt_operation_mode) IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); iwm_nic_unlock(sc); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); return 0; } static int iwm_nic_rx_init(struct iwm_softc *sc) { if (sc->cfg->mqrx_supported) return iwm_nic_rx_mq_init(sc); else return iwm_nic_rx_legacy_init(sc); } static int iwm_nic_tx_init(struct iwm_softc *sc) { int qid; if (!iwm_nic_lock(sc)) return EBUSY; /* Deactivate TX scheduler. */ iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Set physical address of "keep warm" page (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); /* Initialize TX rings. */ for (qid = 0; qid < nitems(sc->txq); qid++) { struct iwm_tx_ring *txq = &sc->txq[qid]; /* Set physical address of TX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), txq->desc_dma.paddr >> 8); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: loading ring %d descriptors (%p) at %lx\n", __func__, qid, txq->desc, (unsigned long) (txq->desc_dma.paddr >> 8)); } iwm_set_bits_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE | IWM_SCD_GP_CTRL_ENABLE_31_QUEUES); iwm_nic_unlock(sc); return 0; } static int iwm_nic_init(struct iwm_softc *sc) { int error; iwm_apm_init(sc); if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) iwm_set_pwr(sc); iwm_nic_config(sc); if ((error = iwm_nic_rx_init(sc)) != 0) return error; /* * Ditto for TX, from iwn */ if ((error = iwm_nic_tx_init(sc)) != 0) return error; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "%s: shadow registers enabled\n", __func__); IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); return 0; } int iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo) { int qmsk; qmsk = 1 << qid; if (!iwm_nic_lock(sc)) { device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", __func__, qid); return EBUSY; } IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); if (qid == IWM_CMD_QUEUE) { /* Disable the scheduler. */ iwm_write_prph(sc, IWM_SCD_EN_CTRL, 0); /* Stop the TX queue prior to configuration. */ iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); iwm_nic_unlock(sc); /* Disable aggregations for this queue. */ iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, qmsk); if (!iwm_nic_lock(sc)) { device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", __func__, qid); return EBUSY; } iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); iwm_nic_unlock(sc); iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); /* Set scheduler window size and frame limit. */ iwm_write_mem32(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + sizeof(uint32_t), ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); if (!iwm_nic_lock(sc)) { device_printf(sc->sc_dev, "%s: cannot enable txq %d\n", __func__, qid); return EBUSY; } iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | IWM_SCD_QUEUE_STTS_REG_MSK); /* Enable the scheduler for this queue. */ iwm_write_prph(sc, IWM_SCD_EN_CTRL, qmsk); } else { struct iwm_scd_txq_cfg_cmd cmd; int error; iwm_nic_unlock(sc); memset(&cmd, 0, sizeof(cmd)); cmd.scd_queue = qid; cmd.enable = 1; cmd.sta_id = sta_id; cmd.tx_fifo = fifo; cmd.aggregate = 0; cmd.window = IWM_FRAME_LIMIT; error = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC, sizeof(cmd), &cmd); if (error) { device_printf(sc->sc_dev, "cannot enable txq %d\n", qid); return error; } if (!iwm_nic_lock(sc)) return EBUSY; } iwm_nic_unlock(sc); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n", __func__, qid, fifo); return 0; } static int iwm_trans_pcie_fw_alive(struct iwm_softc *sc, uint32_t scd_base_addr) { int error, chnl; int clear_dwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t); if (!iwm_nic_lock(sc)) return EBUSY; iwm_ict_reset(sc); sc->scd_base_addr = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR); if (scd_base_addr != 0 && scd_base_addr != sc->scd_base_addr) { device_printf(sc->sc_dev, "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n", __func__, sc->scd_base_addr, scd_base_addr); } iwm_nic_unlock(sc); /* reset context data, TX status and translation data */ error = iwm_write_mem(sc, sc->scd_base_addr + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, NULL, clear_dwords); if (error) return EBUSY; if (!iwm_nic_lock(sc)) return EBUSY; /* Set physical address of TX scheduler rings (1KB aligned). */ iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); iwm_nic_unlock(sc); /* enable command channel */ error = iwm_enable_txq(sc, 0 /* unused */, IWM_CMD_QUEUE, 7); if (error) return error; if (!iwm_nic_lock(sc)) return EBUSY; iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); /* Enable DMA channels. */ for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); } IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); iwm_nic_unlock(sc); /* Enable L1-Active */ if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); } return error; } /* * NVM read access and content parsing. We do not support * external NVM or writing NVM. * iwlwifi/mvm/nvm.c */ /* Default NVM size to read */ #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) #define IWM_NVM_WRITE_OPCODE 1 #define IWM_NVM_READ_OPCODE 0 /* load nvm chunk response */ enum { IWM_READ_NVM_CHUNK_SUCCEED = 0, IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 }; static int iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) { struct iwm_nvm_access_cmd nvm_access_cmd = { .offset = htole16(offset), .length = htole16(length), .type = htole16(section), .op_code = IWM_NVM_READ_OPCODE, }; struct iwm_nvm_access_resp *nvm_resp; struct iwm_rx_packet *pkt; struct iwm_host_cmd cmd = { .id = IWM_NVM_ACCESS_CMD, .flags = IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL, .data = { &nvm_access_cmd, }, }; int ret, bytes_read, offset_read; uint8_t *resp_data; cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); ret = iwm_send_cmd(sc, &cmd); if (ret) { device_printf(sc->sc_dev, "Could not send NVM_ACCESS command (error=%d)\n", ret); return ret; } pkt = cmd.resp_pkt; /* Extract NVM response */ nvm_resp = (void *)pkt->data; ret = le16toh(nvm_resp->status); bytes_read = le16toh(nvm_resp->length); offset_read = le16toh(nvm_resp->offset); resp_data = nvm_resp->data; if (ret) { if ((offset != 0) && (ret == IWM_READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { /* * meaning of NOT_VALID_ADDRESS: * driver try to read chunk from address that is * multiple of 2K and got an error since addr is empty. * meaning of (offset != 0): driver already * read valid data from another chunk so this case * is not an error. */ IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", offset); *len = 0; ret = 0; } else { IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "NVM access command failed with status %d\n", ret); ret = EIO; } goto exit; } if (offset_read != offset) { device_printf(sc->sc_dev, "NVM ACCESS response with invalid offset %d\n", offset_read); ret = EINVAL; goto exit; } if (bytes_read > length) { device_printf(sc->sc_dev, "NVM ACCESS response with too much data " "(%d bytes requested, %d bytes received)\n", length, bytes_read); ret = EINVAL; goto exit; } /* Write data to NVM */ memcpy(data + offset, resp_data, bytes_read); *len = bytes_read; exit: iwm_free_resp(sc, &cmd); return ret; } /* * Reads an NVM section completely. * NICs prior to 7000 family don't have a real NVM, but just read * section 0 which is the EEPROM. Because the EEPROM reading is unlimited * by uCode, we need to manually check in this case that we don't * overflow and try to read more than the EEPROM size. * For 7000 family NICs, we supply the maximal size we can read, and * the uCode fills the response with as much data as we can, * without overflowing, so no check is needed. */ static int iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data, uint16_t *len, uint32_t size_read) { uint16_t seglen, length, offset = 0; int ret; /* Set nvm section read length */ length = IWM_NVM_DEFAULT_CHUNK_SIZE; seglen = length; /* Read the NVM until exhausted (reading less than requested) */ while (seglen == length) { /* Check no memory assumptions fail and cause an overflow */ if ((size_read + offset + length) > sc->cfg->eeprom_size) { device_printf(sc->sc_dev, "EEPROM size is too small for NVM\n"); return ENOBUFS; } ret = iwm_nvm_read_chunk(sc, section, offset, length, data, &seglen); if (ret) { IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "Cannot read NVM from section %d offset %d, length %d\n", section, offset, length); return ret; } offset += seglen; } IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "NVM section %d read completed\n", section); *len = offset; return 0; } /* * BEGIN IWM_NVM_PARSE */ /* iwlwifi/iwl-nvm-parse.c */ /* NVM offsets (in words) definitions */ enum iwm_nvm_offsets { /* NVM HW-Section offset (in words) definitions */ IWM_HW_ADDR = 0x15, /* NVM SW-Section offset (in words) definitions */ IWM_NVM_SW_SECTION = 0x1C0, IWM_NVM_VERSION = 0, IWM_RADIO_CFG = 1, IWM_SKU = 2, IWM_N_HW_ADDRS = 3, IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION, /* NVM calibration section offset (in words) definitions */ IWM_NVM_CALIB_SECTION = 0x2B8, IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION }; enum iwm_8000_nvm_offsets { /* NVM HW-Section offset (in words) definitions */ IWM_HW_ADDR0_WFPM_8000 = 0x12, IWM_HW_ADDR1_WFPM_8000 = 0x16, IWM_HW_ADDR0_PCIE_8000 = 0x8A, IWM_HW_ADDR1_PCIE_8000 = 0x8E, IWM_MAC_ADDRESS_OVERRIDE_8000 = 1, /* NVM SW-Section offset (in words) definitions */ IWM_NVM_SW_SECTION_8000 = 0x1C0, IWM_NVM_VERSION_8000 = 0, IWM_RADIO_CFG_8000 = 0, IWM_SKU_8000 = 2, IWM_N_HW_ADDRS_8000 = 3, /* NVM REGULATORY -Section offset (in words) definitions */ IWM_NVM_CHANNELS_8000 = 0, IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7, IWM_NVM_LAR_OFFSET_8000 = 0x507, IWM_NVM_LAR_ENABLED_8000 = 0x7, /* NVM calibration section offset (in words) definitions */ IWM_NVM_CALIB_SECTION_8000 = 0x2B8, IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000 }; /* SKU Capabilities (actual values from NVM definition) */ enum nvm_sku_bits { IWM_NVM_SKU_CAP_BAND_24GHZ = (1 << 0), IWM_NVM_SKU_CAP_BAND_52GHZ = (1 << 1), IWM_NVM_SKU_CAP_11N_ENABLE = (1 << 2), IWM_NVM_SKU_CAP_11AC_ENABLE = (1 << 3), }; /* radio config bits (actual values from NVM definition) */ #define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */ #define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ #define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ #define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x) (x & 0xF) #define IWM_NVM_RF_CFG_DASH_MSK_8000(x) ((x >> 4) & 0xF) #define IWM_NVM_RF_CFG_STEP_MSK_8000(x) ((x >> 8) & 0xF) #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x) ((x >> 12) & 0xFFF) #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x) ((x >> 24) & 0xF) #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x) ((x >> 28) & 0xF) /** * enum iwm_nvm_channel_flags - channel flags in NVM * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed * @IWM_NVM_CHANNEL_RADAR: radar detection required * XXX cannot find this (DFS) flag in iwm-nvm-parse.c * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?) * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) */ enum iwm_nvm_channel_flags { IWM_NVM_CHANNEL_VALID = (1 << 0), IWM_NVM_CHANNEL_IBSS = (1 << 1), IWM_NVM_CHANNEL_ACTIVE = (1 << 3), IWM_NVM_CHANNEL_RADAR = (1 << 4), IWM_NVM_CHANNEL_DFS = (1 << 7), IWM_NVM_CHANNEL_WIDE = (1 << 8), IWM_NVM_CHANNEL_40MHZ = (1 << 9), IWM_NVM_CHANNEL_80MHZ = (1 << 10), IWM_NVM_CHANNEL_160MHZ = (1 << 11), }; /* * Translate EEPROM flags to net80211. */ static uint32_t iwm_eeprom_channel_flags(uint16_t ch_flags) { uint32_t nflags; nflags = 0; if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0) nflags |= IEEE80211_CHAN_PASSIVE; if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0) nflags |= IEEE80211_CHAN_NOADHOC; if (ch_flags & IWM_NVM_CHANNEL_RADAR) { nflags |= IEEE80211_CHAN_DFS; /* Just in case. */ nflags |= IEEE80211_CHAN_NOADHOC; } return (nflags); } static void iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[], int maxchans, int *nchans, int ch_idx, size_t ch_num, const uint8_t bands[]) { const uint16_t * const nvm_ch_flags = sc->nvm_data->nvm_ch_flags; uint32_t nflags; uint16_t ch_flags; uint8_t ieee; int error; for (; ch_idx < ch_num; ch_idx++) { ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) ieee = iwm_nvm_channels[ch_idx]; else ieee = iwm_nvm_channels_8000[ch_idx]; if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Ch. %d Flags %x [%sGHz] - No traffic\n", ieee, ch_flags, (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5.2" : "2.4"); continue; } nflags = iwm_eeprom_channel_flags(ch_flags); error = ieee80211_add_channel(chans, maxchans, nchans, ieee, 0, 0, nflags, bands); if (error != 0) break; IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Ch. %d Flags %x [%sGHz] - Added\n", ieee, ch_flags, (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5.2" : "2.4"); } } static void iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { struct iwm_softc *sc = ic->ic_softc; struct iwm_nvm_data *data = sc->nvm_data; uint8_t bands[IEEE80211_MODE_BYTES]; size_t ch_num; memset(bands, 0, sizeof(bands)); /* 1-13: 11b/g channels. */ setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); iwm_add_channel_band(sc, chans, maxchans, nchans, 0, IWM_NUM_2GHZ_CHANNELS - 1, bands); /* 14: 11b channel only. */ clrbit(bands, IEEE80211_MODE_11G); iwm_add_channel_band(sc, chans, maxchans, nchans, IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands); if (data->sku_cap_band_52GHz_enable) { if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) ch_num = nitems(iwm_nvm_channels); else ch_num = nitems(iwm_nvm_channels_8000); memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11A); iwm_add_channel_band(sc, chans, maxchans, nchans, IWM_NUM_2GHZ_CHANNELS, ch_num, bands); } } static void iwm_set_hw_address_family_8000(struct iwm_softc *sc, struct iwm_nvm_data *data, const uint16_t *mac_override, const uint16_t *nvm_hw) { const uint8_t *hw_addr; if (mac_override) { static const uint8_t reserved_mac[] = { 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 }; hw_addr = (const uint8_t *)(mac_override + IWM_MAC_ADDRESS_OVERRIDE_8000); /* * Store the MAC address from MAO section. * No byte swapping is required in MAO section */ IEEE80211_ADDR_COPY(data->hw_addr, hw_addr); /* * Force the use of the OTP MAC address in case of reserved MAC * address in the NVM, or if address is given but invalid. */ if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) && !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) && iwm_is_valid_ether_addr(data->hw_addr) && !IEEE80211_IS_MULTICAST(data->hw_addr)) return; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "%s: mac address from nvm override section invalid\n", __func__); } if (nvm_hw) { /* read the mac address from WFMP registers */ uint32_t mac_addr0 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0)); uint32_t mac_addr1 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1)); hw_addr = (const uint8_t *)&mac_addr0; data->hw_addr[0] = hw_addr[3]; data->hw_addr[1] = hw_addr[2]; data->hw_addr[2] = hw_addr[1]; data->hw_addr[3] = hw_addr[0]; hw_addr = (const uint8_t *)&mac_addr1; data->hw_addr[4] = hw_addr[1]; data->hw_addr[5] = hw_addr[0]; return; } device_printf(sc->sc_dev, "%s: mac address not found\n", __func__); memset(data->hw_addr, 0, sizeof(data->hw_addr)); } static int iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw, const uint16_t *phy_sku) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_SKU); return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000)); } static int iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_NVM_VERSION); else return le32_to_cpup((const uint32_t *)(nvm_sw + IWM_NVM_VERSION_8000)); } static int iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw, const uint16_t *phy_sku) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_RADIO_CFG); return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000)); } static int iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw) { int n_hw_addr; if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000)); return n_hw_addr & IWM_N_HW_ADDR_MASK; } static void iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data, uint32_t radio_cfg) { if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); return; } /* set the radio configuration for family 8000 */ data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg); data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg); data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg); data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg); data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg); data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg); } static int iwm_set_hw_address(struct iwm_softc *sc, struct iwm_nvm_data *data, const uint16_t *nvm_hw, const uint16_t *mac_override) { #ifdef notyet /* for FAMILY 9000 */ if (cfg->mac_addr_from_csr) { iwm_set_hw_address_from_csr(sc, data); } else #endif if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { const uint8_t *hw_addr = (const uint8_t *)(nvm_hw + IWM_HW_ADDR); /* The byte order is little endian 16 bit, meaning 214365 */ data->hw_addr[0] = hw_addr[1]; data->hw_addr[1] = hw_addr[0]; data->hw_addr[2] = hw_addr[3]; data->hw_addr[3] = hw_addr[2]; data->hw_addr[4] = hw_addr[5]; data->hw_addr[5] = hw_addr[4]; } else { iwm_set_hw_address_family_8000(sc, data, mac_override, nvm_hw); } if (!iwm_is_valid_ether_addr(data->hw_addr)) { device_printf(sc->sc_dev, "no valid mac address was found\n"); return EINVAL; } return 0; } static struct iwm_nvm_data * iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw, const uint16_t *nvm_sw, const uint16_t *nvm_calib, const uint16_t *mac_override, const uint16_t *phy_sku, const uint16_t *regulatory) { struct iwm_nvm_data *data; uint32_t sku, radio_cfg; uint16_t lar_config; if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { data = malloc(sizeof(*data) + IWM_NUM_CHANNELS * sizeof(uint16_t), M_DEVBUF, M_NOWAIT | M_ZERO); } else { data = malloc(sizeof(*data) + IWM_NUM_CHANNELS_8000 * sizeof(uint16_t), M_DEVBUF, M_NOWAIT | M_ZERO); } if (!data) return NULL; data->nvm_version = iwm_get_nvm_version(sc, nvm_sw); radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku); iwm_set_radio_cfg(sc, data, radio_cfg); sku = iwm_get_sku(sc, nvm_sw, phy_sku); data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; data->sku_cap_11n_enable = 0; data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw); if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { /* TODO: use IWL_NVM_EXT */ uint16_t lar_offset = data->nvm_version < 0xE39 ? IWM_NVM_LAR_OFFSET_8000_OLD : IWM_NVM_LAR_OFFSET_8000; lar_config = le16_to_cpup(regulatory + lar_offset); data->lar_enabled = !!(lar_config & IWM_NVM_LAR_ENABLED_8000); } /* If no valid mac address was found - bail out */ if (iwm_set_hw_address(sc, data, nvm_hw, mac_override)) { free(data, M_DEVBUF); return NULL; } if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { memcpy(data->nvm_ch_flags, sc->cfg->nvm_type == IWM_NVM_SDP ? ®ulatory[0] : &nvm_sw[IWM_NVM_CHANNELS], IWM_NUM_CHANNELS * sizeof(uint16_t)); } else { memcpy(data->nvm_ch_flags, ®ulatory[IWM_NVM_CHANNELS_8000], IWM_NUM_CHANNELS_8000 * sizeof(uint16_t)); } return data; } static void iwm_free_nvm_data(struct iwm_nvm_data *data) { if (data != NULL) free(data, M_DEVBUF); } static struct iwm_nvm_data * iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) { const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku; /* Checking for required sections */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) { if (!sections[IWM_NVM_SECTION_TYPE_SW].data || !sections[sc->cfg->nvm_hw_section_num].data) { device_printf(sc->sc_dev, "Can't parse empty OTP/NVM sections\n"); return NULL; } } else if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { /* SW and REGULATORY sections are mandatory */ if (!sections[IWM_NVM_SECTION_TYPE_SW].data || !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) { device_printf(sc->sc_dev, "Can't parse empty OTP/NVM sections\n"); return NULL; } /* MAC_OVERRIDE or at least HW section must exist */ if (!sections[sc->cfg->nvm_hw_section_num].data && !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) { device_printf(sc->sc_dev, "Can't parse mac_address, empty sections\n"); return NULL; } /* PHY_SKU section is mandatory in B0 */ if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) { device_printf(sc->sc_dev, "Can't parse phy_sku in B0, empty sections\n"); return NULL; } } else { panic("unknown device family %d\n", sc->cfg->device_family); } hw = (const uint16_t *) sections[sc->cfg->nvm_hw_section_num].data; sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; calib = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; regulatory = sc->cfg->nvm_type == IWM_NVM_SDP ? (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY_SDP].data : (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_REGULATORY].data; mac_override = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data; phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data; return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override, phy_sku, regulatory); } static int iwm_nvm_init(struct iwm_softc *sc) { struct iwm_nvm_section nvm_sections[IWM_NVM_MAX_NUM_SECTIONS]; int i, ret, section; uint32_t size_read = 0; uint8_t *nvm_buffer, *temp; uint16_t len; memset(nvm_sections, 0, sizeof(nvm_sections)); if (sc->cfg->nvm_hw_section_num >= IWM_NVM_MAX_NUM_SECTIONS) return EINVAL; /* load NVM values from nic */ /* Read From FW NVM */ IWM_DPRINTF(sc, IWM_DEBUG_EEPROM, "Read from NVM\n"); nvm_buffer = malloc(sc->cfg->eeprom_size, M_DEVBUF, M_NOWAIT | M_ZERO); if (!nvm_buffer) return ENOMEM; for (section = 0; section < IWM_NVM_MAX_NUM_SECTIONS; section++) { /* we override the constness for initial read */ ret = iwm_nvm_read_section(sc, section, nvm_buffer, &len, size_read); if (ret) continue; size_read += len; temp = malloc(len, M_DEVBUF, M_NOWAIT); if (!temp) { ret = ENOMEM; break; } memcpy(temp, nvm_buffer, len); nvm_sections[section].data = temp; nvm_sections[section].length = len; } if (!size_read) device_printf(sc->sc_dev, "OTP is blank\n"); free(nvm_buffer, M_DEVBUF); sc->nvm_data = iwm_parse_nvm_sections(sc, nvm_sections); if (!sc->nvm_data) return EINVAL; IWM_DPRINTF(sc, IWM_DEBUG_EEPROM | IWM_DEBUG_RESET, "nvm version = %x\n", sc->nvm_data->nvm_version); for (i = 0; i < IWM_NVM_MAX_NUM_SECTIONS; i++) { if (nvm_sections[i].data != NULL) free(nvm_sections[i].data, M_DEVBUF); } return 0; } static int iwm_pcie_load_section(struct iwm_softc *sc, uint8_t section_num, const struct iwm_fw_desc *section) { struct iwm_dma_info *dma = &sc->fw_dma; uint8_t *v_addr; bus_addr_t p_addr; uint32_t offset, chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, section->len); int ret = 0; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "%s: [%d] uCode section being loaded...\n", __func__, section_num); v_addr = dma->vaddr; p_addr = dma->paddr; for (offset = 0; offset < section->len; offset += chunk_sz) { uint32_t copy_size, dst_addr; int extended_addr = FALSE; copy_size = MIN(chunk_sz, section->len - offset); dst_addr = section->offset + offset; if (dst_addr >= IWM_FW_MEM_EXTENDED_START && dst_addr <= IWM_FW_MEM_EXTENDED_END) extended_addr = TRUE; if (extended_addr) iwm_set_bits_prph(sc, IWM_LMPM_CHICK, IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); memcpy(v_addr, (const uint8_t *)section->data + offset, copy_size); bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); ret = iwm_pcie_load_firmware_chunk(sc, dst_addr, p_addr, copy_size); if (extended_addr) iwm_clear_bits_prph(sc, IWM_LMPM_CHICK, IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); if (ret) { device_printf(sc->sc_dev, "%s: Could not load the [%d] uCode section\n", __func__, section_num); break; } } return ret; } /* * ucode */ static int iwm_pcie_load_firmware_chunk(struct iwm_softc *sc, uint32_t dst_addr, bus_addr_t phy_addr, uint32_t byte_cnt) { sc->sc_fw_chunk_done = 0; if (!iwm_nic_lock(sc)) return EBUSY; IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), dst_addr); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), phy_addr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), (iwm_get_dma_hi_addr(phy_addr) << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); iwm_nic_unlock(sc); /* wait up to 5s for this segment to load */ msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz * 5); if (!sc->sc_fw_chunk_done) { device_printf(sc->sc_dev, "fw chunk addr 0x%x len %d failed to load\n", dst_addr, byte_cnt); return ETIMEDOUT; } return 0; } static int iwm_pcie_load_cpu_sections_8000(struct iwm_softc *sc, const struct iwm_fw_img *image, int cpu, int *first_ucode_section) { int shift_param; int i, ret = 0, sec_num = 0x1; uint32_t val, last_read_idx = 0; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { last_read_idx = i; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!image->sec[i].data || image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { IWM_DPRINTF(sc, IWM_DEBUG_RESET, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwm_pcie_load_section(sc, i, &image->sec[i]); if (ret) return ret; /* Notify the ucode of the loaded section number and status */ if (iwm_nic_lock(sc)) { val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS); val = val | (sec_num << shift_param); IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val); sec_num = (sec_num << 1) | 0x1; iwm_nic_unlock(sc); } } *first_ucode_section = last_read_idx; iwm_enable_interrupts(sc); if (iwm_nic_lock(sc)) { if (cpu == 1) IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF); else IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); iwm_nic_unlock(sc); } return 0; } static int iwm_pcie_load_cpu_sections(struct iwm_softc *sc, const struct iwm_fw_img *image, int cpu, int *first_ucode_section) { int shift_param; int i, ret = 0; uint32_t last_read_idx = 0; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWM_UCODE_SECTION_MAX; i++) { last_read_idx = i; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!image->sec[i].data || image->sec[i].offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || image->sec[i].offset == IWM_PAGING_SEPARATOR_SECTION) { IWM_DPRINTF(sc, IWM_DEBUG_RESET, "Break since Data not valid or Empty section, sec = %d\n", i); break; } ret = iwm_pcie_load_section(sc, i, &image->sec[i]); if (ret) return ret; } *first_ucode_section = last_read_idx; return 0; } static int iwm_pcie_load_given_ucode(struct iwm_softc *sc, const struct iwm_fw_img *image) { int ret = 0; int first_ucode_section; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); /* load to FW the binary non secured sections of CPU1 */ ret = iwm_pcie_load_cpu_sections(sc, image, 1, &first_ucode_section); if (ret) return ret; if (image->is_dual_cpus) { /* set CPU2 header address */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE); iwm_nic_unlock(sc); } /* load to FW the binary sections of CPU2 */ ret = iwm_pcie_load_cpu_sections(sc, image, 2, &first_ucode_section); if (ret) return ret; } iwm_enable_interrupts(sc); /* release CPU reset */ IWM_WRITE(sc, IWM_CSR_RESET, 0); return 0; } int iwm_pcie_load_given_ucode_8000(struct iwm_softc *sc, const struct iwm_fw_img *image) { int ret = 0; int first_ucode_section; IWM_DPRINTF(sc, IWM_DEBUG_RESET, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single"); /* configure the ucode to be ready to get the secured image */ /* release CPU reset */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT); iwm_nic_unlock(sc); } /* load to FW the binary Secured sections of CPU1 */ ret = iwm_pcie_load_cpu_sections_8000(sc, image, 1, &first_ucode_section); if (ret) return ret; /* load to FW the binary sections of CPU2 */ return iwm_pcie_load_cpu_sections_8000(sc, image, 2, &first_ucode_section); } /* XXX Get rid of this definition */ static inline void iwm_enable_fw_load_int(struct iwm_softc *sc) { IWM_DPRINTF(sc, IWM_DEBUG_INTR, "Enabling FW load interrupt\n"); sc->sc_intmask = IWM_CSR_INT_BIT_FH_TX; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } /* XXX Add proper rfkill support code */ static int iwm_start_fw(struct iwm_softc *sc, const struct iwm_fw_img *fw) { int ret; /* This may fail if AMT took ownership of the device */ if (iwm_prepare_card_hw(sc)) { device_printf(sc->sc_dev, "%s: Exit HW not ready\n", __func__); ret = EIO; goto out; } IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); iwm_disable_interrupts(sc); /* make sure rfkill handshake bits are cleared */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ IWM_WRITE(sc, IWM_CSR_INT, 0xFFFFFFFF); ret = iwm_nic_init(sc); if (ret) { device_printf(sc->sc_dev, "%s: Unable to init nic\n", __func__); goto out; } /* * Now, we load the firmware and don't want to be interrupted, even * by the RF-Kill interrupt (hence mask all the interrupt besides the * FH_TX interrupt which is needed to load the firmware). If the * RF-Kill switch is toggled, we will find out after having loaded * the firmware and return the proper value to the caller. */ iwm_enable_fw_load_int(sc); /* really make sure rfkill handshake bits are cleared */ /* maybe we should write a few times more? just to make sure */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); /* Load the given image to the HW */ if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) ret = iwm_pcie_load_given_ucode_8000(sc, fw); else ret = iwm_pcie_load_given_ucode(sc, fw); /* XXX re-check RF-Kill state */ out: return ret; } static int iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) { struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { .valid = htole32(valid_tx_ant), }; return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd); } /* iwlwifi: mvm/fw.c */ static int iwm_send_phy_cfg_cmd(struct iwm_softc *sc) { struct iwm_phy_cfg_cmd phy_cfg_cmd; enum iwm_ucode_type ucode_type = sc->cur_ucode; /* Set parameters */ phy_cfg_cmd.phy_cfg = htole32(iwm_get_phy_config(sc)); phy_cfg_cmd.calib_control.event_trigger = sc->sc_default_calib[ucode_type].event_trigger; phy_cfg_cmd.calib_control.flow_trigger = sc->sc_default_calib[ucode_type].flow_trigger; IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET, "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg); return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC, sizeof(phy_cfg_cmd), &phy_cfg_cmd); } static int iwm_alive_fn(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data) { struct iwm_alive_data *alive_data = data; struct iwm_alive_resp_v3 *palive3; struct iwm_alive_resp *palive; struct iwm_umac_alive *umac; struct iwm_lmac_alive *lmac1; struct iwm_lmac_alive *lmac2 = NULL; uint16_t status; if (iwm_rx_packet_payload_len(pkt) == sizeof(*palive)) { palive = (void *)pkt->data; umac = &palive->umac_data; lmac1 = &palive->lmac_data[0]; lmac2 = &palive->lmac_data[1]; status = le16toh(palive->status); } else { palive3 = (void *)pkt->data; umac = &palive3->umac_data; lmac1 = &palive3->lmac_data; status = le16toh(palive3->status); } sc->error_event_table[0] = le32toh(lmac1->error_event_table_ptr); if (lmac2) sc->error_event_table[1] = le32toh(lmac2->error_event_table_ptr); sc->log_event_table = le32toh(lmac1->log_event_table_ptr); sc->umac_error_event_table = le32toh(umac->error_info_addr); alive_data->scd_base_addr = le32toh(lmac1->scd_base_ptr); alive_data->valid = status == IWM_ALIVE_STATUS_OK; if (sc->umac_error_event_table) sc->support_umac_log = TRUE; IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode status 0x%04x revision 0x%01X 0x%01X\n", status, lmac1->ver_type, lmac1->ver_subtype); if (lmac2) IWM_DPRINTF(sc, IWM_DEBUG_FW, "Alive ucode CDB\n"); IWM_DPRINTF(sc, IWM_DEBUG_FW, "UMAC version: Major - 0x%x, Minor - 0x%x\n", le32toh(umac->umac_major), le32toh(umac->umac_minor)); return TRUE; } static int iwm_wait_phy_db_entry(struct iwm_softc *sc, struct iwm_rx_packet *pkt, void *data) { struct iwm_phy_db *phy_db = data; if (pkt->hdr.code != IWM_CALIB_RES_NOTIF_PHY_DB) { if(pkt->hdr.code != IWM_INIT_COMPLETE_NOTIF) { device_printf(sc->sc_dev, "%s: Unexpected cmd: %d\n", __func__, pkt->hdr.code); } return TRUE; } if (iwm_phy_db_set_section(phy_db, pkt)) { device_printf(sc->sc_dev, "%s: iwm_phy_db_set_section failed\n", __func__); } return FALSE; } static int iwm_load_ucode_wait_alive(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_notification_wait alive_wait; struct iwm_alive_data alive_data; const struct iwm_fw_img *fw; enum iwm_ucode_type old_type = sc->cur_ucode; int error; static const uint16_t alive_cmd[] = { IWM_ALIVE }; fw = &sc->sc_fw.img[ucode_type]; sc->cur_ucode = ucode_type; sc->ucode_loaded = FALSE; memset(&alive_data, 0, sizeof(alive_data)); iwm_init_notification_wait(sc->sc_notif_wait, &alive_wait, alive_cmd, nitems(alive_cmd), iwm_alive_fn, &alive_data); error = iwm_start_fw(sc, fw); if (error) { device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error); sc->cur_ucode = old_type; iwm_remove_notification(sc->sc_notif_wait, &alive_wait); return error; } /* * Some things may run in the background now, but we * just wait for the ALIVE notification here. */ IWM_UNLOCK(sc); error = iwm_wait_notification(sc->sc_notif_wait, &alive_wait, IWM_UCODE_ALIVE_TIMEOUT); IWM_LOCK(sc); if (error) { if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { uint32_t a = 0x5a5a5a5a, b = 0x5a5a5a5a; if (iwm_nic_lock(sc)) { a = iwm_read_prph(sc, IWM_SB_CPU_1_STATUS); b = iwm_read_prph(sc, IWM_SB_CPU_2_STATUS); iwm_nic_unlock(sc); } device_printf(sc->sc_dev, "SecBoot CPU1 Status: 0x%x, CPU2 Status: 0x%x\n", a, b); } sc->cur_ucode = old_type; return error; } if (!alive_data.valid) { device_printf(sc->sc_dev, "%s: Loaded ucode is not valid\n", __func__); sc->cur_ucode = old_type; return EIO; } iwm_trans_pcie_fw_alive(sc, alive_data.scd_base_addr); /* * configure and operate fw paging mechanism. * driver configures the paging flow only once, CPU2 paging image * included in the IWM_UCODE_INIT image. */ if (fw->paging_mem_size) { error = iwm_save_fw_paging(sc, fw); if (error) { device_printf(sc->sc_dev, "%s: failed to save the FW paging image\n", __func__); return error; } error = iwm_send_paging_cmd(sc, fw); if (error) { device_printf(sc->sc_dev, "%s: failed to send the paging cmd\n", __func__); iwm_free_fw_paging(sc); return error; } } if (!error) sc->ucode_loaded = TRUE; return error; } /* * mvm misc bits */ /* * follows iwlwifi/fw.c */ static int iwm_run_init_ucode(struct iwm_softc *sc, int justnvm) { struct iwm_notification_wait calib_wait; static const uint16_t init_complete[] = { IWM_INIT_COMPLETE_NOTIF, IWM_CALIB_RES_NOTIF_PHY_DB }; int ret; /* do not operate with rfkill switch turned on */ if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { device_printf(sc->sc_dev, "radio is disabled by hardware switch\n"); return EPERM; } iwm_init_notification_wait(sc->sc_notif_wait, &calib_wait, init_complete, nitems(init_complete), iwm_wait_phy_db_entry, sc->sc_phy_db); /* Will also start the device */ ret = iwm_load_ucode_wait_alive(sc, IWM_UCODE_INIT); if (ret) { device_printf(sc->sc_dev, "Failed to start INIT ucode: %d\n", ret); goto error; } if (sc->cfg->device_family < IWM_DEVICE_FAMILY_8000) { ret = iwm_send_bt_init_conf(sc); if (ret) { device_printf(sc->sc_dev, "failed to send bt coex configuration: %d\n", ret); goto error; } } if (justnvm) { /* Read nvm */ ret = iwm_nvm_init(sc); if (ret) { device_printf(sc->sc_dev, "failed to read nvm\n"); goto error; } IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->nvm_data->hw_addr); goto error; } /* Send TX valid antennas before triggering calibrations */ ret = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); if (ret) { device_printf(sc->sc_dev, "failed to send antennas before calibration: %d\n", ret); goto error; } /* * Send phy configurations command to init uCode * to start the 16.0 uCode init image internal calibrations. */ ret = iwm_send_phy_cfg_cmd(sc); if (ret) { device_printf(sc->sc_dev, "%s: Failed to run INIT calibrations: %d\n", __func__, ret); goto error; } /* * Nothing to do but wait for the init complete notification * from the firmware. */ IWM_UNLOCK(sc); ret = iwm_wait_notification(sc->sc_notif_wait, &calib_wait, IWM_UCODE_CALIB_TIMEOUT); IWM_LOCK(sc); goto out; error: iwm_remove_notification(sc->sc_notif_wait, &calib_wait); out: return ret; } static int iwm_config_ltr(struct iwm_softc *sc) { struct iwm_ltr_config_cmd cmd = { .flags = htole32(IWM_LTR_CFG_FLAG_FEATURE_ENABLE), }; if (!sc->sc_ltr_enabled) return 0; return iwm_send_cmd_pdu(sc, IWM_LTR_CONFIG, 0, sizeof(cmd), &cmd); } /* * receive side */ /* (re)stock rx ring, called at init-time and at runtime */ static int iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) { struct iwm_rx_ring *ring = &sc->rxq; struct iwm_rx_data *data = &ring->data[idx]; struct mbuf *m; bus_dmamap_t dmamap; bus_dma_segment_t seg; int nsegs, error; m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE); if (m == NULL) return ENOBUFS; m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m, &seg, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "%s: can't map mbuf, error %d\n", __func__, error); m_freem(m); return error; } if (data->m != NULL) bus_dmamap_unload(ring->data_dmat, data->map); /* Swap ring->spare_map with data->map */ dmamap = data->map; data->map = ring->spare_map; ring->spare_map = dmamap; bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD); data->m = m; /* Update RX descriptor. */ KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned")); if (sc->cfg->mqrx_supported) ((uint64_t *)ring->desc)[idx] = htole64(seg.ds_addr); else ((uint32_t *)ring->desc)[idx] = htole32(seg.ds_addr >> 8); bus_dmamap_sync(ring->free_desc_dma.tag, ring->free_desc_dma.map, BUS_DMASYNC_PREWRITE); return 0; } static void iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_rx_phy_info *phy_info = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n"); memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); } /* * Retrieve the average noise (in dBm) among receivers. */ static int iwm_get_noise(struct iwm_softc *sc, const struct iwm_statistics_rx_non_phy *stats) { int i, total, nbant, noise; total = nbant = noise = 0; for (i = 0; i < 3; i++) { noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff; IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n", __func__, i, noise); if (noise) { total += noise; nbant++; } } IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n", __func__, nbant, total); #if 0 /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; #else /* For now, just hard-code it to -96 to be safe */ return (-96); #endif } static void iwm_handle_rx_statistics(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_notif_statistics_v10 *stats = (void *)&pkt->data; memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); sc->sc_noise = iwm_get_noise(sc, &stats->rx.general); } /* iwlwifi: mvm/rx.c */ /* * iwm_get_signal_strength - use new rx PHY INFO API * values are reported by the fw as positive values - need to negate * to obtain their dBM. Account for missing antennas by replacing 0 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. */ static int iwm_rx_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) { int energy_a, energy_b, energy_c, max_energy; uint32_t val; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> IWM_RX_INFO_ENERGY_ANT_A_POS; energy_a = energy_a ? -energy_a : -256; energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> IWM_RX_INFO_ENERGY_ANT_B_POS; energy_b = energy_b ? -energy_b : -256; energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> IWM_RX_INFO_ENERGY_ANT_C_POS; energy_c = energy_c ? -energy_c : -256; max_energy = MAX(energy_a, energy_b); max_energy = MAX(max_energy, energy_c); IWM_DPRINTF(sc, IWM_DEBUG_RECV, "energy In A %d B %d C %d , and max %d\n", energy_a, energy_b, energy_c, max_energy); return max_energy; } static int iwm_rxmq_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_mpdu_desc *desc) { int energy_a, energy_b; energy_a = desc->v1.energy_a; energy_b = desc->v1.energy_b; energy_a = energy_a ? -energy_a : -256; energy_b = energy_b ? -energy_b : -256; return MAX(energy_a, energy_b); } /* * iwm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler * * Handles the actual data of the Rx packet from the fw */ static bool iwm_rx_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, bool stolen) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_frame *wh; struct ieee80211_rx_stats rxs; struct iwm_rx_phy_info *phy_info; struct iwm_rx_mpdu_res_start *rx_res; struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset); uint32_t len; uint32_t rx_pkt_status; int rssi; phy_info = &sc->sc_last_phy_info; rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res)); len = le16toh(rx_res->byte_count); rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); if (__predict_false(phy_info->cfg_phy_cnt > 20)) { device_printf(sc->sc_dev, "dsp size out of range [0,20]: %d\n", phy_info->cfg_phy_cnt); return false; } if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status); return false; } rssi = iwm_rx_get_signal_strength(sc, phy_info); /* Map it to relative value */ rssi = rssi - sc->sc_noise; /* replenish ring for the buffer we're going to feed to the sharks */ if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { device_printf(sc->sc_dev, "%s: unable to add more buffers\n", __func__); return false; } m->m_data = pkt->data + sizeof(*rx_res); m->m_pkthdr.len = m->m_len = len; IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: phy_info: channel=%d, flags=0x%08x\n", __func__, le16toh(phy_info->channel), le16toh(phy_info->phy_flags)); /* * Populate an RX state struct with the provided information. */ bzero(&rxs, sizeof(rxs)); rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.c_ieee = le16toh(phy_info->channel); if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) { rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); } else { rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ); } /* rssi is in 1/2db units */ rxs.c_rssi = rssi * 2; rxs.c_nf = sc->sc_noise; if (ieee80211_add_rx_params(m, &rxs) == 0) return false; if (ieee80211_radiotap_active_vap(vap)) { struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(rxs.c_freq); /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; tap->wr_tsft = phy_info->system_timestamp; switch (phy_info->rate) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } } return true; } static bool iwm_rx_mpdu_mq(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, bool stolen) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_frame *wh; struct ieee80211_rx_stats rxs; struct iwm_rx_mpdu_desc *desc; struct iwm_rx_packet *pkt; int rssi; uint32_t hdrlen, len, rate_n_flags; uint16_t phy_info; uint8_t channel; pkt = mtodo(m, offset); desc = (void *)pkt->data; if (!(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_CRC_OK)) || !(desc->status & htole16(IWM_RX_MPDU_RES_STATUS_OVERRUN_OK))) { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "Bad CRC or FIFO: 0x%08X.\n", desc->status); return false; } channel = desc->v1.channel; len = le16toh(desc->mpdu_len); phy_info = le16toh(desc->phy_info); rate_n_flags = desc->v1.rate_n_flags; wh = mtodo(m, sizeof(*desc)); m->m_data = pkt->data + sizeof(*desc); m->m_pkthdr.len = m->m_len = len; m->m_len = len; /* Account for padding following the frame header. */ if ((desc->mac_flags2 & IWM_RX_MPDU_MFLG2_PAD)) { hdrlen = ieee80211_anyhdrsize(wh); memmove(mtodo(m, 2), mtodo(m, 0), hdrlen); m->m_data = mtodo(m, 2); wh = mtod(m, struct ieee80211_frame *); } /* Map it to relative value */ rssi = iwm_rxmq_get_signal_strength(sc, desc); rssi = rssi - sc->sc_noise; /* replenish ring for the buffer we're going to feed to the sharks */ if (!stolen && iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) { device_printf(sc->sc_dev, "%s: unable to add more buffers\n", __func__); return false; } IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise); /* * Populate an RX state struct with the provided information. */ bzero(&rxs, sizeof(rxs)); rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.c_ieee = channel; rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, channel <= 14 ? IEEE80211_CHAN_2GHZ : IEEE80211_CHAN_5GHZ); /* rssi is in 1/2db units */ rxs.c_rssi = rssi * 2; rxs.c_nf = sc->sc_noise; if (ieee80211_add_rx_params(m, &rxs) == 0) return false; if (ieee80211_radiotap_active_vap(vap)) { struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if ((phy_info & IWM_RX_MPDU_PHY_SHORT_PREAMBLE) != 0) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(rxs.c_freq); /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */ tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; tap->wr_tsft = desc->v1.gp2_on_air_rise; switch ((rate_n_flags & 0xff)) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } } return true; } static bool iwm_rx_mpdu(struct iwm_softc *sc, struct mbuf *m, uint32_t offset, bool stolen) { struct ieee80211com *ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; bool ret; ic = &sc->sc_ic; ret = sc->cfg->mqrx_supported ? iwm_rx_mpdu_mq(sc, m, offset, stolen) : iwm_rx_rx_mpdu(sc, m, offset, stolen); if (!ret) { counter_u64_add(ic->ic_ierrors, 1); return (ret); } wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); IWM_UNLOCK(sc); if (ni != NULL) { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m); ieee80211_input_mimo(ni, m); ieee80211_free_node(ni); } else { IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m); ieee80211_input_mimo_all(ic, m); } IWM_LOCK(sc); return true; } static int iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_node *in) { struct iwm_tx_resp *tx_resp = (void *)pkt->data; struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; struct ieee80211_node *ni = &in->in_ni; struct ieee80211vap *vap = ni->ni_vap; int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; int new_rate, cur_rate = vap->iv_bss->ni_txrate; boolean_t rate_matched; uint8_t tx_resp_rate; KASSERT(tx_resp->frame_count == 1, ("too many frames")); /* Update rate control statistics. */ IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n", __func__, (int) le16toh(tx_resp->status.status), (int) le16toh(tx_resp->status.sequence), tx_resp->frame_count, tx_resp->bt_kill_count, tx_resp->failure_rts, tx_resp->failure_frame, le32toh(tx_resp->initial_rate), (int) le16toh(tx_resp->wireless_media_time)); tx_resp_rate = iwm_rate_from_ucode_rate(le32toh(tx_resp->initial_rate)); /* For rate control, ignore frames sent at different initial rate */ rate_matched = (tx_resp_rate != 0 && tx_resp_rate == cur_rate); if (tx_resp_rate != 0 && cur_rate != 0 && !rate_matched) { IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "tx_resp_rate doesn't match ni_txrate (tx_resp_rate=%u " "ni_txrate=%d)\n", tx_resp_rate, cur_rate); } txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | IEEE80211_RATECTL_STATUS_LONG_RETRY; txs->short_retries = tx_resp->failure_rts; txs->long_retries = tx_resp->failure_frame; if (status != IWM_TX_STATUS_SUCCESS && status != IWM_TX_STATUS_DIRECT_DONE) { switch (status) { case IWM_TX_STATUS_FAIL_SHORT_LIMIT: txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; break; case IWM_TX_STATUS_FAIL_LONG_LIMIT: txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; break; case IWM_TX_STATUS_FAIL_LIFE_EXPIRE: txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; break; default: txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; break; } } else { txs->status = IEEE80211_RATECTL_TX_SUCCESS; } if (rate_matched) { ieee80211_ratectl_tx_complete(ni, txs); int rix = ieee80211_ratectl_rate(vap->iv_bss, NULL, 0); new_rate = vap->iv_bss->ni_txrate; if (new_rate != 0 && new_rate != cur_rate) { struct iwm_node *in = IWM_NODE(vap->iv_bss); iwm_setrates(sc, in, rix); iwm_send_lq_cmd(sc, &in->in_lq, FALSE); } } return (txs->status != IEEE80211_RATECTL_TX_SUCCESS); } static void iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_cmd_header *cmd_hdr; struct iwm_tx_ring *ring; struct iwm_tx_data *txd; struct iwm_node *in; struct mbuf *m; int idx, qid, qmsk, status; cmd_hdr = &pkt->hdr; idx = cmd_hdr->idx; qid = cmd_hdr->qid; ring = &sc->txq[qid]; txd = &ring->data[idx]; in = txd->in; m = txd->m; KASSERT(txd->done == 0, ("txd not done")); KASSERT(txd->in != NULL, ("txd without node")); KASSERT(txd->m != NULL, ("txd without mbuf")); sc->sc_tx_timer = 0; status = iwm_rx_tx_cmd_single(sc, pkt, in); /* Unmap and free mbuf. */ bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, txd->map); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "free txd %p, in %p\n", txd, txd->in); txd->done = 1; txd->m = NULL; txd->in = NULL; ieee80211_tx_complete(&in->in_ni, m, status); qmsk = 1 << qid; if (--ring->queued < IWM_TX_RING_LOMARK && (sc->qfullmsk & qmsk) != 0) { sc->qfullmsk &= ~qmsk; if (sc->qfullmsk == 0) iwm_start(sc); } } /* * transmit side */ /* * Process a "command done" firmware notification. This is where we wakeup * processes waiting for a synchronous command completion. * from if_iwn */ static void iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE]; struct iwm_tx_data *data; if (pkt->hdr.qid != IWM_CMD_QUEUE) { return; /* Not a command ack. */ } /* XXX wide commands? */ IWM_DPRINTF(sc, IWM_DEBUG_CMD, "cmd notification type 0x%x qid %d idx %d\n", pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx); data = &ring->data[pkt->hdr.idx]; /* If the command was mapped in an mbuf, free it. */ if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[pkt->hdr.idx]); if (((pkt->hdr.idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) { device_printf(sc->sc_dev, "%s: Some HCMDs skipped?: idx=%d queued=%d cur=%d\n", __func__, pkt->hdr.idx, ring->queued, ring->cur); /* XXX call iwm_force_nmi() */ } KASSERT(ring->queued > 0, ("ring->queued is empty?")); ring->queued--; if (ring->queued == 0) iwm_pcie_clear_cmd_in_flight(sc); } #if 0 /* * necessary only for block ack mode */ void iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, uint16_t len) { struct iwm_agn_scd_bc_tbl *scd_bc_tbl; uint16_t w_val; scd_bc_tbl = sc->sched_dma.vaddr; len += 8; /* magic numbers came naturally from paris */ len = roundup(len, 4) / 4; w_val = htole16(sta_id << 12 | len); /* Update TX scheduler. */ scd_bc_tbl[qid].tfd_offset[idx] = w_val; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); /* I really wonder what this is ?!? */ if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, BUS_DMASYNC_PREWRITE); } } #endif static int iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate) { int i; for (i = 0; i < nitems(iwm_rates); i++) { if (iwm_rates[i].rate == rate) return (i); } /* XXX error? */ IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, "%s: couldn't find an entry for rate=%d\n", __func__, rate); return (0); } /* * Fill in the rate related information for a transmit command. */ static const struct iwm_rate * iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, struct mbuf *m, struct iwm_tx_cmd *tx) { struct ieee80211_node *ni = &in->in_ni; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp = ni->ni_txparms; const struct iwm_rate *rinfo; int type; int ridx, rate_flags; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; if (type == IEEE80211_FC0_TYPE_MGT || type == IEEE80211_FC0_TYPE_CTL || (m->m_flags & M_EAPOL) != 0) { ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: MGT (%d)\n", __func__, tp->mgmtrate); } else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: MCAST (%d)\n", __func__, tp->mcastrate); } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate); } else { /* for data frames, use RS table */ IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__); ridx = iwm_rate2ridx(sc, ni->ni_txrate); if (ridx == -1) ridx = 0; /* This is the index into the programmed table */ tx->initial_rate_index = 0; tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); } IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE, "%s: frame type=%d txrate %d\n", __func__, type, iwm_rates[ridx].rate); rinfo = &iwm_rates[ridx]; IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n", __func__, ridx, rinfo->rate, !! (IWM_RIDX_IS_CCK(ridx)) ); /* XXX TODO: hard-coded TX antenna? */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_9000) rate_flags = IWM_RATE_MCS_ANT_B_MSK; else rate_flags = IWM_RATE_MCS_ANT_A_MSK; if (IWM_RIDX_IS_CCK(ridx)) rate_flags |= IWM_RATE_MCS_CCK_MSK; tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); return rinfo; } #define TB0_SIZE 16 static int iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_node *in = IWM_NODE(ni); struct iwm_tx_ring *ring; struct iwm_tx_data *data; struct iwm_tfd *desc; struct iwm_device_cmd *cmd; struct iwm_tx_cmd *tx; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct mbuf *m1; const struct iwm_rate *rinfo; uint32_t flags; u_int hdrlen; bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER]; int nsegs; uint8_t tid, type; int i, totlen, error, pad; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_anyhdrsize(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; tid = 0; ring = &sc->txq[ac]; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; /* Fill out iwm_tx_cmd to send to the firmware */ cmd = &ring->cmd[ring->cur]; cmd->hdr.code = IWM_TX_CMD; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = ring->cur; tx = (void *)cmd->data; memset(tx, 0, sizeof(*tx)); rinfo = iwm_tx_fill_cmd(sc, in, m, tx); /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* Retrieve key for TX && do software encryption. */ k = ieee80211_crypto_encap(ni, m); if (k == NULL) { m_freem(m); return (ENOBUFS); } /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); tap->wt_rate = rinfo->rate; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } flags = 0; totlen = m->m_pkthdr.len; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= IWM_TX_CMD_FLG_ACK; } if (type == IEEE80211_FC0_TYPE_DATA && totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; } tx->sta_id = IWM_STATION_ID; if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC); } else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); } else { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT); } } else { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); } if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ flags |= IWM_TX_CMD_FLG_MH_PAD; tx->offload_assist |= htole16(1 << IWM_TX_CMD_OFFLD_PAD); pad = 4 - (hdrlen & 3); } else { tx->offload_assist = 0; pad = 0; } tx->len = htole16(totlen); tx->tid_tspec = tid; tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); /* Set physical address of "scratch area". */ tx->dram_lsb_ptr = htole32(data->scratch_paddr); tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); /* Copy 802.11 header in TX command. */ memcpy((uint8_t *)tx + sizeof(*tx), wh, hdrlen); flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; tx->sec_ctl = 0; tx->tx_flags |= htole32(flags); /* Trim 802.11 header. */ m_adj(m, hdrlen); error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { if (error != EFBIG) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } /* Too many DMA segments, linearize mbuf. */ m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2); if (m1 == NULL) { device_printf(sc->sc_dev, "%s: could not defrag mbuf\n", __func__); m_freem(m); return (ENOBUFS); } m = m1; error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } } data->m = m; data->in = in; data->done = 0; IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "sending txd %p, in %p\n", data, data->in); KASSERT(data->in != NULL, ("node is NULL")); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n", ring->qid, ring->cur, totlen, nsegs, le32toh(tx->tx_flags), le32toh(tx->rate_n_flags), tx->initial_rate_index ); /* Fill TX descriptor. */ memset(desc, 0, sizeof(*desc)); desc->num_tbs = 2 + nsegs; desc->tbs[0].lo = htole32(data->cmd_paddr); desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | (TB0_SIZE << 4)); desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr) | ((sizeof(struct iwm_cmd_header) + sizeof(*tx) + hdrlen + pad - TB0_SIZE) << 4)); /* Other DMA segments are for data payload. */ for (i = 0; i < nsegs; i++) { seg = &segs[i]; desc->tbs[i + 2].lo = htole32(seg->ds_addr); desc->tbs[i + 2].hi_n_len = htole16(iwm_get_dma_hi_addr(seg->ds_addr)) | (seg->ds_len << 4); } bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, BUS_DMASYNC_PREWRITE); #if 0 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); #endif /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWM_TX_RING_HIMARK) { sc->qfullmsk |= 1 << ring->qid; } return 0; } static int iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct iwm_softc *sc = ic->ic_softc; int error = 0; IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "->%s begin\n", __func__); if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { m_freem(m); IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "<-%s not RUNNING\n", __func__); return (ENETDOWN); } IWM_LOCK(sc); /* XXX fix this */ if (params == NULL) { error = iwm_tx(sc, m, ni, 0); } else { error = iwm_tx(sc, m, ni, 0); } if (sc->sc_tx_timer == 0) callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); sc->sc_tx_timer = 5; IWM_UNLOCK(sc); return (error); } /* * mvm/tx.c */ /* * Note that there are transports that buffer frames before they reach * the firmware. This means that after flush_tx_path is called, the * queue might not be empty. The race-free way to handle this is to: * 1) set the station as draining * 2) flush the Tx path * 3) wait for the transport queues to be empty */ int iwm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags) { int ret; struct iwm_tx_path_flush_cmd flush_cmd = { .queues_ctl = htole32(tfd_msk), .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), }; ret = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags, sizeof(flush_cmd), &flush_cmd); if (ret) device_printf(sc->sc_dev, "Flushing tx queue failed: %d\n", ret); return ret; } /* * BEGIN mvm/quota.c */ static int iwm_update_quotas(struct iwm_softc *sc, struct iwm_vap *ivp) { struct iwm_time_quota_cmd cmd; int i, idx, ret, num_active_macs, quota, quota_rem; int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; int n_ifs[IWM_MAX_BINDINGS] = {0, }; uint16_t id; memset(&cmd, 0, sizeof(cmd)); /* currently, PHY ID == binding ID */ if (ivp) { id = ivp->phy_ctxt->id; KASSERT(id < IWM_MAX_BINDINGS, ("invalid id")); colors[id] = ivp->phy_ctxt->color; if (1) n_ifs[id] = 1; } /* * The FW's scheduling session consists of * IWM_MAX_QUOTA fragments. Divide these fragments * equally between all the bindings that require quota */ num_active_macs = 0; for (i = 0; i < IWM_MAX_BINDINGS; i++) { cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); num_active_macs += n_ifs[i]; } quota = 0; quota_rem = 0; if (num_active_macs) { quota = IWM_MAX_QUOTA / num_active_macs; quota_rem = IWM_MAX_QUOTA % num_active_macs; } for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { if (colors[i] < 0) continue; cmd.quotas[idx].id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); if (n_ifs[i] <= 0) { cmd.quotas[idx].quota = htole32(0); cmd.quotas[idx].max_duration = htole32(0); } else { cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); cmd.quotas[idx].max_duration = htole32(0); } idx++; } /* Give the remainder of the session to the first binding */ cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); ret = iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC, sizeof(cmd), &cmd); if (ret) device_printf(sc->sc_dev, "%s: Failed to send quota: %d\n", __func__, ret); return ret; } /* * END mvm/quota.c */ /* * ieee80211 routines */ /* * Change to AUTH state in 80211 state machine. Roughly matches what * Linux does in bss_info_changed(). */ static int iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc) { struct ieee80211_node *ni; struct iwm_node *in; struct iwm_vap *iv = IWM_VAP(vap); uint32_t duration; int error; /* * XXX i have a feeling that the vap node is being * freed from underneath us. Grr. */ ni = ieee80211_ref_node(vap->iv_bss); in = IWM_NODE(ni); IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE, "%s: called; vap=%p, bss ni=%p\n", __func__, vap, ni); IWM_DPRINTF(sc, IWM_DEBUG_STATE, "%s: Current node bssid: %s\n", __func__, ether_sprintf(ni->ni_bssid)); in->in_assoc = 0; iv->iv_auth = 1; /* * Firmware bug - it'll crash if the beacon interval is less * than 16. We can't avoid connecting at all, so refuse the * station state change, this will cause net80211 to abandon * attempts to connect to this AP, and eventually wpa_s will * blacklist the AP... */ if (ni->ni_intval < 16) { device_printf(sc->sc_dev, "AP %s beacon interval is %d, refusing due to firmware bug!\n", ether_sprintf(ni->ni_bssid), ni->ni_intval); error = EINVAL; goto out; } error = iwm_allow_mcast(vap, sc); if (error) { device_printf(sc->sc_dev, "%s: failed to set multicast\n", __func__); goto out; } /* * This is where it deviates from what Linux does. * * Linux iwlwifi doesn't reset the nic each time, nor does it * call ctxt_add() here. Instead, it adds it during vap creation, * and always does a mac_ctx_changed(). * * The openbsd port doesn't attempt to do that - it reset things * at odd states and does the add here. * * So, until the state handling is fixed (ie, we never reset * the NIC except for a firmware failure, which should drag * the NIC back to IDLE, re-setup and re-add all the mac/phy * contexts that are required), let's do a dirty hack here. */ if (iv->is_uploaded) { if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: failed to update MAC\n", __func__); goto out; } } else { if ((error = iwm_mac_ctxt_add(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: failed to add MAC\n", __func__); goto out; } } sc->sc_firmware_state = 1; if ((error = iwm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], in->in_ni.ni_chan, 1, 1)) != 0) { device_printf(sc->sc_dev, "%s: failed update phy ctxt\n", __func__); goto out; } iv->phy_ctxt = &sc->sc_phyctxt[0]; if ((error = iwm_binding_add_vif(sc, iv)) != 0) { device_printf(sc->sc_dev, "%s: binding update cmd\n", __func__); goto out; } sc->sc_firmware_state = 2; /* * Authentication becomes unreliable when powersaving is left enabled * here. Powersaving will be activated again when association has * finished or is aborted. */ iv->ps_disabled = TRUE; error = iwm_power_update_mac(sc); iv->ps_disabled = FALSE; if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update power management\n", __func__); goto out; } if ((error = iwm_add_sta(sc, in)) != 0) { device_printf(sc->sc_dev, "%s: failed to add sta\n", __func__); goto out; } sc->sc_firmware_state = 3; /* * Prevent the FW from wandering off channel during association * by "protecting" the session with a time event. */ /* XXX duration is in units of TU, not MS */ duration = IWM_TE_SESSION_PROTECTION_MAX_TIME_MS; iwm_protect_session(sc, iv, duration, 500 /* XXX magic number */, TRUE); error = 0; out: if (error != 0) iv->iv_auth = 0; ieee80211_free_node(ni); return (error); } static struct ieee80211_node * iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { return malloc(sizeof (struct iwm_node), M_80211_NODE, M_NOWAIT | M_ZERO); } static uint8_t iwm_rate_from_ucode_rate(uint32_t rate_n_flags) { uint8_t plcp = rate_n_flags & 0xff; int i; for (i = 0; i <= IWM_RIDX_MAX; i++) { if (iwm_rates[i].plcp == plcp) return iwm_rates[i].rate; } return 0; } uint8_t iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx) { int i; uint8_t rval; for (i = 0; i < rs->rs_nrates; i++) { rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); if (rval == iwm_rates[ridx].rate) return rs->rs_rates[i]; } return 0; } static int iwm_rate2ridx(struct iwm_softc *sc, uint8_t rate) { int i; for (i = 0; i <= IWM_RIDX_MAX; i++) { if (iwm_rates[i].rate == rate) return i; } device_printf(sc->sc_dev, "%s: WARNING: device rate for %u not found!\n", __func__, rate); return -1; } static void iwm_setrates(struct iwm_softc *sc, struct iwm_node *in, int rix) { struct ieee80211_node *ni = &in->in_ni; struct iwm_lq_cmd *lq = &in->in_lq; struct ieee80211_rateset *rs = &ni->ni_rates; int nrates = rs->rs_nrates; int i, ridx, tab = 0; // int txant = 0; KASSERT(rix >= 0 && rix < nrates, ("invalid rix")); if (nrates > nitems(lq->rs_table)) { device_printf(sc->sc_dev, "%s: node supports %d rates, driver handles " "only %zu\n", __func__, nrates, nitems(lq->rs_table)); return; } if (nrates == 0) { device_printf(sc->sc_dev, "%s: node supports 0 rates, odd!\n", __func__); return; } nrates = imin(rix + 1, nrates); IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: nrates=%d\n", __func__, nrates); /* then construct a lq_cmd based on those */ memset(lq, 0, sizeof(*lq)); lq->sta_id = IWM_STATION_ID; /* For HT, always enable RTS/CTS to avoid excessive retries. */ if (ni->ni_flags & IEEE80211_NODE_HT) lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK; /* * are these used? (we don't do SISO or MIMO) * need to set them to non-zero, though, or we get an error. */ lq->single_stream_ant_msk = 1; lq->dual_stream_ant_msk = 1; /* * Build the actual rate selection table. * The lowest bits are the rates. Additionally, * CCK needs bit 9 to be set. The rest of the bits * we add to the table select the tx antenna * Note that we add the rates in the highest rate first * (opposite of ni_rates). */ for (i = 0; i < nrates; i++) { int rate = rs->rs_rates[rix - i] & IEEE80211_RATE_VAL; int nextant; /* Map 802.11 rate to HW rate index. */ ridx = iwm_rate2ridx(sc, rate); if (ridx == -1) continue; #if 0 if (txant == 0) txant = iwm_get_valid_tx_ant(sc); nextant = 1<<(ffs(txant)-1); txant &= ~nextant; #else nextant = iwm_get_valid_tx_ant(sc); #endif tab = iwm_rates[ridx].plcp; tab |= nextant << IWM_RATE_MCS_ANT_POS; if (IWM_RIDX_IS_CCK(ridx)) tab |= IWM_RATE_MCS_CCK_MSK; IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "station rate i=%d, rate=%d, hw=%x\n", i, iwm_rates[ridx].rate, tab); lq->rs_table[i] = htole32(tab); } /* then fill the rest with the lowest possible rate */ for (i = nrates; i < nitems(lq->rs_table); i++) { KASSERT(tab != 0, ("invalid tab")); lq->rs_table[i] = htole32(tab); } } static int iwm_media_change(struct ifnet *ifp) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; struct iwm_softc *sc = ic->ic_softc; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; IWM_LOCK(sc); if (ic->ic_nrunning > 0) { iwm_stop(sc); iwm_init(sc); } IWM_UNLOCK(sc); return error; } static void iwm_bring_down_firmware(struct iwm_softc *sc, struct ieee80211vap *vap) { struct iwm_vap *ivp = IWM_VAP(vap); int error; /* Avoid Tx watchdog triggering, when transfers get dropped here. */ sc->sc_tx_timer = 0; ivp->iv_auth = 0; if (sc->sc_firmware_state == 3) { iwm_xmit_queue_drain(sc); // iwm_flush_tx_path(sc, 0xf, IWM_CMD_SYNC); error = iwm_rm_sta(sc, vap, TRUE); if (error) { device_printf(sc->sc_dev, "%s: Failed to remove station: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_mac_ctxt_changed(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to change mac context: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_sf_update(sc, vap, FALSE); if (error) { device_printf(sc->sc_dev, "%s: Failed to update smart FIFO: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_rm_sta_id(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to remove station id: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { error = iwm_update_quotas(sc, NULL); if (error) { device_printf(sc->sc_dev, "%s: Failed to update PHY quota: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { /* XXX Might need to specify bssid correctly. */ error = iwm_mac_ctxt_changed(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to change mac context: %d\n", __func__, error); } } if (sc->sc_firmware_state == 3) { sc->sc_firmware_state = 2; } if (sc->sc_firmware_state > 1) { error = iwm_binding_remove_vif(sc, ivp); if (error) { device_printf(sc->sc_dev, "%s: Failed to remove channel ctx: %d\n", __func__, error); } } if (sc->sc_firmware_state > 1) { sc->sc_firmware_state = 1; } ivp->phy_ctxt = NULL; if (sc->sc_firmware_state > 0) { error = iwm_mac_ctxt_changed(sc, vap); if (error) { device_printf(sc->sc_dev, "%s: Failed to change mac context: %d\n", __func__, error); } } if (sc->sc_firmware_state > 0) { error = iwm_power_update_mac(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update power management\n", __func__); } } sc->sc_firmware_state = 0; } static int iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct iwm_vap *ivp = IWM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct iwm_softc *sc = ic->ic_softc; struct iwm_node *in; int error; IWM_DPRINTF(sc, IWM_DEBUG_STATE, "switching state %s -> %s arg=0x%x\n", ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], arg); IEEE80211_UNLOCK(ic); IWM_LOCK(sc); if ((sc->sc_flags & IWM_FLAG_SCAN_RUNNING) && (nstate == IEEE80211_S_AUTH || nstate == IEEE80211_S_ASSOC || nstate == IEEE80211_S_RUN)) { /* Stop blinking for a scan, when authenticating. */ iwm_led_blink_stop(sc); } if (vap->iv_state == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { iwm_led_disable(sc); /* disable beacon filtering if we're hopping out of RUN */ iwm_disable_beacon_filter(sc); if (((in = IWM_NODE(vap->iv_bss)) != NULL)) in->in_assoc = 0; } if ((vap->iv_state == IEEE80211_S_AUTH || vap->iv_state == IEEE80211_S_ASSOC || vap->iv_state == IEEE80211_S_RUN) && (nstate == IEEE80211_S_INIT || nstate == IEEE80211_S_SCAN || nstate == IEEE80211_S_AUTH)) { iwm_stop_session_protection(sc, ivp); } if ((vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_ASSOC) && nstate == IEEE80211_S_INIT) { /* * In this case, iv_newstate() wants to send an 80211 frame on * the network that we are leaving. So we need to call it, * before tearing down all the firmware state. */ IWM_UNLOCK(sc); IEEE80211_LOCK(ic); ivp->iv_newstate(vap, nstate, arg); IEEE80211_UNLOCK(ic); IWM_LOCK(sc); iwm_bring_down_firmware(sc, vap); IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return 0; } switch (nstate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: break; case IEEE80211_S_AUTH: iwm_bring_down_firmware(sc, vap); if ((error = iwm_auth(vap, sc)) != 0) { device_printf(sc->sc_dev, "%s: could not move to auth state: %d\n", __func__, error); iwm_bring_down_firmware(sc, vap); IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return 1; } break; case IEEE80211_S_ASSOC: /* * EBS may be disabled due to previous failures reported by FW. * Reset EBS status here assuming environment has been changed. */ sc->last_ebs_successful = TRUE; break; case IEEE80211_S_RUN: in = IWM_NODE(vap->iv_bss); /* Update the association state, now we have it all */ /* (eg associd comes in at this point */ error = iwm_update_sta(sc, in); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update STA\n", __func__); IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return error; } in->in_assoc = 1; error = iwm_mac_ctxt_changed(sc, vap); if (error != 0) { device_printf(sc->sc_dev, "%s: failed to update MAC: %d\n", __func__, error); } iwm_sf_update(sc, vap, FALSE); iwm_enable_beacon_filter(sc, ivp); iwm_power_update_mac(sc); iwm_update_quotas(sc, ivp); int rix = ieee80211_ratectl_rate(&in->in_ni, NULL, 0); iwm_setrates(sc, in, rix); if ((error = iwm_send_lq_cmd(sc, &in->in_lq, TRUE)) != 0) { device_printf(sc->sc_dev, "%s: IWM_LQ_CMD failed: %d\n", __func__, error); } iwm_led_enable(sc); break; default: break; } IWM_UNLOCK(sc); IEEE80211_LOCK(ic); return (ivp->iv_newstate(vap, nstate, arg)); } void iwm_endscan_cb(void *arg, int pending) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE, "%s: scan ended\n", __func__); ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps)); } static int iwm_send_bt_init_conf(struct iwm_softc *sc) { struct iwm_bt_coex_cmd bt_cmd; bt_cmd.mode = htole32(IWM_BT_COEX_WIFI); bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET); return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), &bt_cmd); } static boolean_t iwm_is_lar_supported(struct iwm_softc *sc) { boolean_t nvm_lar = sc->nvm_data->lar_enabled; boolean_t tlv_lar = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT); if (iwm_lar_disable) return FALSE; /* * Enable LAR only if it is supported by the FW (TLV) && * enabled in the NVM */ if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) return nvm_lar && tlv_lar; else return tlv_lar; } static boolean_t iwm_is_wifi_mcc_supported(struct iwm_softc *sc) { return iwm_fw_has_api(sc, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) || iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC); } static int iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2) { struct iwm_mcc_update_cmd mcc_cmd; struct iwm_host_cmd hcmd = { .id = IWM_MCC_UPDATE_CMD, .flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB), .data = { &mcc_cmd }, }; int ret; #ifdef IWM_DEBUG struct iwm_rx_packet *pkt; struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL; struct iwm_mcc_update_resp *mcc_resp; int n_channels; uint16_t mcc; #endif int resp_v2 = iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2); if (!iwm_is_lar_supported(sc)) { IWM_DPRINTF(sc, IWM_DEBUG_LAR, "%s: no LAR support\n", __func__); return 0; } memset(&mcc_cmd, 0, sizeof(mcc_cmd)); mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]); if (iwm_is_wifi_mcc_supported(sc)) mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT; else mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW; if (resp_v2) hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd); else hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1); IWM_DPRINTF(sc, IWM_DEBUG_LAR, "send MCC update to FW with '%c%c' src = %d\n", alpha2[0], alpha2[1], mcc_cmd.source_id); ret = iwm_send_cmd(sc, &hcmd); if (ret) return ret; #ifdef IWM_DEBUG pkt = hcmd.resp_pkt; /* Extract MCC response */ if (resp_v2) { mcc_resp = (void *)pkt->data; mcc = mcc_resp->mcc; n_channels = le32toh(mcc_resp->n_channels); } else { mcc_resp_v1 = (void *)pkt->data; mcc = mcc_resp_v1->mcc; n_channels = le32toh(mcc_resp_v1->n_channels); } /* W/A for a FW/NVM issue - returns 0x00 for the world domain */ if (mcc == 0) mcc = 0x3030; /* "00" - world */ IWM_DPRINTF(sc, IWM_DEBUG_LAR, "regulatory domain '%c%c' (%d channels available)\n", mcc >> 8, mcc & 0xff, n_channels); #endif iwm_free_resp(sc, &hcmd); return 0; } static void iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff) { struct iwm_host_cmd cmd = { .id = IWM_REPLY_THERMAL_MNG_BACKOFF, .len = { sizeof(uint32_t), }, .data = { &backoff, }, }; if (iwm_send_cmd(sc, &cmd) != 0) { device_printf(sc->sc_dev, "failed to change thermal tx backoff\n"); } } static int iwm_init_hw(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int error, i, ac; sc->sf_state = IWM_SF_UNINIT; if ((error = iwm_start_hw(sc)) != 0) { printf("iwm_start_hw: failed %d\n", error); return error; } if ((error = iwm_run_init_ucode(sc, 0)) != 0) { printf("iwm_run_init_ucode: failed %d\n", error); return error; } /* * should stop and start HW since that INIT * image just loaded */ iwm_stop_device(sc); sc->sc_ps_disabled = FALSE; if ((error = iwm_start_hw(sc)) != 0) { device_printf(sc->sc_dev, "could not initialize hardware\n"); return error; } /* omstart, this time with the regular firmware */ error = iwm_load_ucode_wait_alive(sc, IWM_UCODE_REGULAR); if (error) { device_printf(sc->sc_dev, "could not load firmware\n"); goto error; } error = iwm_sf_update(sc, NULL, FALSE); if (error) device_printf(sc->sc_dev, "Failed to initialize Smart Fifo\n"); if ((error = iwm_send_bt_init_conf(sc)) != 0) { device_printf(sc->sc_dev, "bt init conf failed\n"); goto error; } error = iwm_send_tx_ant_cfg(sc, iwm_get_valid_tx_ant(sc)); if (error != 0) { device_printf(sc->sc_dev, "antenna config failed\n"); goto error; } /* Send phy db control command and then phy db calibration */ if ((error = iwm_send_phy_db_data(sc->sc_phy_db)) != 0) goto error; if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) { device_printf(sc->sc_dev, "phy_cfg_cmd failed\n"); goto error; } /* Add auxiliary station for scanning */ if ((error = iwm_add_aux_sta(sc)) != 0) { device_printf(sc->sc_dev, "add_aux_sta failed\n"); goto error; } for (i = 0; i < IWM_NUM_PHY_CTX; i++) { /* * The channel used here isn't relevant as it's * going to be overwritten in the other flows. * For now use the first channel we have. */ if ((error = iwm_phy_ctxt_add(sc, &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0) goto error; } /* Initialize tx backoffs to the minimum. */ if (sc->cfg->device_family == IWM_DEVICE_FAMILY_7000) iwm_tt_tx_backoff(sc, 0); if (iwm_config_ltr(sc) != 0) device_printf(sc->sc_dev, "PCIe LTR configuration failed\n"); error = iwm_power_update_device(sc); if (error) goto error; if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0) goto error; if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { if ((error = iwm_config_umac_scan(sc)) != 0) goto error; } /* Enable Tx queues. */ for (ac = 0; ac < WME_NUM_AC; ac++) { error = iwm_enable_txq(sc, IWM_STATION_ID, ac, iwm_ac_to_tx_fifo[ac]); if (error) goto error; } if ((error = iwm_disable_beacon_filter(sc)) != 0) { device_printf(sc->sc_dev, "failed to disable beacon filter\n"); goto error; } return 0; error: iwm_stop_device(sc); return error; } /* Allow multicast from our BSSID. */ static int iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc) { struct ieee80211_node *ni = vap->iv_bss; struct iwm_mcast_filter_cmd *cmd; size_t size; int error; size = roundup(sizeof(*cmd), 4); cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (cmd == NULL) return ENOMEM; cmd->filter_own = 1; cmd->port_id = 0; cmd->count = 0; cmd->pass_all = 1; IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); error = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, IWM_CMD_SYNC, size, cmd); free(cmd, M_DEVBUF); return (error); } /* * ifnet interfaces */ static void iwm_init(struct iwm_softc *sc) { int error; if (sc->sc_flags & IWM_FLAG_HW_INITED) { return; } sc->sc_generation++; sc->sc_flags &= ~IWM_FLAG_STOPPED; if ((error = iwm_init_hw(sc)) != 0) { printf("iwm_init_hw failed %d\n", error); iwm_stop(sc); return; } /* * Ok, firmware loaded and we are jogging */ sc->sc_flags |= IWM_FLAG_HW_INITED; } static int iwm_transmit(struct ieee80211com *ic, struct mbuf *m) { struct iwm_softc *sc; int error; sc = ic->ic_softc; IWM_LOCK(sc); if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) { IWM_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { IWM_UNLOCK(sc); return (error); } iwm_start(sc); IWM_UNLOCK(sc); return (0); } /* * Dequeue packets from sendq and call send. */ static void iwm_start(struct iwm_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; int ac = 0; IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__); while (sc->qfullmsk == 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (iwm_tx(sc, m, ni, ac) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); continue; } if (sc->sc_tx_timer == 0) { callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); } sc->sc_tx_timer = 15; } IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__); } static void iwm_stop(struct iwm_softc *sc) { sc->sc_flags &= ~IWM_FLAG_HW_INITED; sc->sc_flags |= IWM_FLAG_STOPPED; sc->sc_generation++; iwm_led_blink_stop(sc); sc->sc_tx_timer = 0; iwm_stop_device(sc); sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; } static void iwm_watchdog(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (sc->sc_attached == 0) return; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); #ifdef IWM_DEBUG iwm_nic_error(sc); #endif ieee80211_restart_all(ic); counter_u64_add(sc->sc_ic.ic_oerrors, 1); return; } callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc); } } static void iwm_parent(struct ieee80211com *ic) { struct iwm_softc *sc = ic->ic_softc; int startall = 0; + int rfkill = 0; IWM_LOCK(sc); if (ic->ic_nrunning > 0) { if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) { iwm_init(sc); - startall = 1; + rfkill = iwm_check_rfkill(sc); + if (!rfkill) + startall = 1; } } else if (sc->sc_flags & IWM_FLAG_HW_INITED) iwm_stop(sc); IWM_UNLOCK(sc); if (startall) ieee80211_start_all(ic); + else if (rfkill) + taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); } +static void +iwm_rftoggle_task(void *arg, int npending __unused) +{ + struct iwm_softc *sc = arg; + struct ieee80211com *ic = &sc->sc_ic; + int rfkill; + + IWM_LOCK(sc); + rfkill = iwm_check_rfkill(sc); + IWM_UNLOCK(sc); + if (rfkill) { + device_printf(sc->sc_dev, + "%s: rfkill switch, disabling interface\n", __func__); + ieee80211_suspend_all(ic); + ieee80211_notify_radio(ic, 0); + } else { + device_printf(sc->sc_dev, + "%s: rfkill cleared, re-enabling interface\n", __func__); + ieee80211_resume_all(ic); + ieee80211_notify_radio(ic, 1); + } +} + /* * The interrupt side of things */ /* * error dumping routines are from iwlwifi/mvm/utils.c */ /* * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with uint32_t-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwm_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t trm_hw_status0; /* TRM HW status */ uint32_t trm_hw_status1; /* TRM HW status */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t bcon_time; /* beacon timer */ uint32_t tsf_low; /* network timestamp function timer */ uint32_t tsf_hi; /* network timestamp function timer */ uint32_t gp1; /* GP1 timer register */ uint32_t gp2; /* GP2 timer register */ uint32_t fw_rev_type; /* firmware revision type */ uint32_t major; /* uCode version major */ uint32_t minor; /* uCode version minor */ uint32_t hw_ver; /* HW Silicon version */ uint32_t brd_ver; /* HW board version */ uint32_t log_pc; /* log program counter */ uint32_t frame_ptr; /* frame pointer */ uint32_t stack_ptr; /* stack pointer */ uint32_t hcmd; /* last host command header */ uint32_t isr0; /* isr status register LMPM_NIC_ISR0: * rxtx_flag */ uint32_t isr1; /* isr status register LMPM_NIC_ISR1: * host_flag */ uint32_t isr2; /* isr status register LMPM_NIC_ISR2: * enc_flag */ uint32_t isr3; /* isr status register LMPM_NIC_ISR3: * time_flag */ uint32_t isr4; /* isr status register LMPM_NIC_ISR4: * wico interrupt */ uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ uint32_t wait_event; /* wait event() caller address */ uint32_t l2p_control; /* L2pControlField */ uint32_t l2p_duration; /* L2pDurationField */ uint32_t l2p_mhvalid; /* L2pMhValidBits */ uint32_t l2p_addr_match; /* L2pAddrMatchStat */ uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on * (LMPM_PMG_SEL) */ uint32_t u_timestamp; /* indicate when the date and time of the * compilation */ uint32_t flow_handler; /* FH read/write pointers, RX credit */ } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; /* * UMAC error struct - relevant starting from family 8000 chip. * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with u32-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwm_umac_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t blink1; /* branch link */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t umac_major; uint32_t umac_minor; uint32_t frame_pointer; /* core register 27*/ uint32_t stack_pointer; /* core register 28 */ uint32_t cmd_header; /* latest host cmd sent to UMAC */ uint32_t nic_isr_pref; /* ISR status register */ } __packed; #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) #ifdef IWM_DEBUG struct { const char *name; uint8_t num; } advanced_lookup[] = { { "NMI_INTERRUPT_WDG", 0x34 }, { "SYSASSERT", 0x35 }, { "UCODE_VERSION_MISMATCH", 0x37 }, { "BAD_COMMAND", 0x38 }, { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, { "FATAL_ERROR", 0x3D }, { "NMI_TRM_HW_ERR", 0x46 }, { "NMI_INTERRUPT_TRM", 0x4C }, { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, { "NMI_INTERRUPT_HOST", 0x66 }, { "NMI_INTERRUPT_ACTION_PT", 0x7C }, { "NMI_INTERRUPT_UNKNOWN", 0x84 }, { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, { "ADVANCED_SYSASSERT", 0 }, }; static const char * iwm_desc_lookup(uint32_t num) { int i; for (i = 0; i < nitems(advanced_lookup) - 1; i++) if (advanced_lookup[i].num == num) return advanced_lookup[i].name; /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ return advanced_lookup[i].name; } static void iwm_nic_umac_error(struct iwm_softc *sc) { struct iwm_umac_error_event_table table; uint32_t base; base = sc->umac_error_event_table; if (base < 0x800000) { device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n", base); return; } if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { device_printf(sc->sc_dev, "reading errlog failed\n"); return; } if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n"); device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", sc->sc_flags, table.valid); } device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id, iwm_desc_lookup(table.error_id)); device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1); device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2); device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n", table.ilink1); device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n", table.ilink2); device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1); device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2); device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3); device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major); device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor); device_printf(sc->sc_dev, "0x%08X | frame pointer\n", table.frame_pointer); device_printf(sc->sc_dev, "0x%08X | stack pointer\n", table.stack_pointer); device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header); device_printf(sc->sc_dev, "0x%08X | isr status reg\n", table.nic_isr_pref); } /* * Support for dumping the error log seemed like a good idea ... * but it's mostly hex junk and the only sensible thing is the * hw/ucode revision (which we know anyway). Since it's here, * I'll just leave it in, just in case e.g. the Intel guys want to * help us decipher some "ADVANCED_SYSASSERT" later. */ static void iwm_nic_error(struct iwm_softc *sc) { struct iwm_error_event_table table; uint32_t base; device_printf(sc->sc_dev, "dumping device error log\n"); base = sc->error_event_table[0]; if (base < 0x800000) { device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n", base); return; } if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { device_printf(sc->sc_dev, "reading errlog failed\n"); return; } if (!table.valid) { device_printf(sc->sc_dev, "errlog not found, skipping\n"); return; } if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { device_printf(sc->sc_dev, "Start Error Log Dump:\n"); device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n", sc->sc_flags, table.valid); } device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id, iwm_desc_lookup(table.error_id)); device_printf(sc->sc_dev, "%08X | trm_hw_status0\n", table.trm_hw_status0); device_printf(sc->sc_dev, "%08X | trm_hw_status1\n", table.trm_hw_status1); device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2); device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1); device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2); device_printf(sc->sc_dev, "%08X | data1\n", table.data1); device_printf(sc->sc_dev, "%08X | data2\n", table.data2); device_printf(sc->sc_dev, "%08X | data3\n", table.data3); device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time); device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low); device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi); device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1); device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2); device_printf(sc->sc_dev, "%08X | uCode revision type\n", table.fw_rev_type); device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major); device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor); device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver); device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver); device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd); device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0); device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1); device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2); device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3); device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4); device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id); device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event); device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control); device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration); device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid); device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match); device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp); device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler); if (sc->umac_error_event_table) iwm_nic_umac_error(sc); } #endif static void iwm_handle_rxb(struct iwm_softc *sc, struct mbuf *m) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_cmd_response *cresp; struct mbuf *m1; uint32_t offset = 0; uint32_t maxoff = IWM_RBUF_SIZE; uint32_t nextoff; boolean_t stolen = FALSE; #define HAVEROOM(a) \ ((a) + sizeof(uint32_t) + sizeof(struct iwm_cmd_header) < maxoff) while (HAVEROOM(offset)) { struct iwm_rx_packet *pkt = mtodoff(m, struct iwm_rx_packet *, offset); int qid, idx, code, len; qid = pkt->hdr.qid; idx = pkt->hdr.idx; code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); /* * randomly get these from the firmware, no idea why. * they at least seem harmless, so just ignore them for now */ if ((pkt->hdr.code == 0 && (qid & ~0x80) == 0 && idx == 0) || pkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID)) { break; } IWM_DPRINTF(sc, IWM_DEBUG_INTR, "rx packet qid=%d idx=%d type=%x\n", qid & ~0x80, pkt->hdr.idx, code); len = iwm_rx_packet_len(pkt); len += sizeof(uint32_t); /* account for status word */ nextoff = offset + roundup2(len, IWM_FH_RSCSR_FRAME_ALIGN); iwm_notification_wait_notify(sc->sc_notif_wait, code, pkt); switch (code) { case IWM_REPLY_RX_PHY_CMD: iwm_rx_rx_phy_cmd(sc, pkt); break; case IWM_REPLY_RX_MPDU_CMD: { /* * If this is the last frame in the RX buffer, we * can directly feed the mbuf to the sharks here. */ struct iwm_rx_packet *nextpkt = mtodoff(m, struct iwm_rx_packet *, nextoff); if (!HAVEROOM(nextoff) || (nextpkt->hdr.code == 0 && (nextpkt->hdr.qid & ~0x80) == 0 && nextpkt->hdr.idx == 0) || (nextpkt->len_n_flags == htole32(IWM_FH_RSCSR_FRAME_INVALID))) { if (iwm_rx_mpdu(sc, m, offset, stolen)) { stolen = FALSE; /* Make sure we abort the loop */ nextoff = maxoff; } break; } /* * Use m_copym instead of m_split, because that * makes it easier to keep a valid rx buffer in * the ring, when iwm_rx_mpdu() fails. * * We need to start m_copym() at offset 0, to get the * M_PKTHDR flag preserved. */ m1 = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (m1) { if (iwm_rx_mpdu(sc, m1, offset, stolen)) stolen = TRUE; else m_freem(m1); } break; } case IWM_TX_CMD: iwm_rx_tx_cmd(sc, pkt); break; case IWM_MISSED_BEACONS_NOTIFICATION: { struct iwm_missed_beacons_notif *resp; int missed; /* XXX look at mac_id to determine interface ID */ struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); resp = (void *)pkt->data; missed = le32toh(resp->consec_missed_beacons); IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE, "%s: MISSED_BEACON: mac_id=%d, " "consec_since_last_rx=%d, consec=%d, num_expect=%d " "num_rx=%d\n", __func__, le32toh(resp->mac_id), le32toh(resp->consec_missed_beacons_since_last_rx), le32toh(resp->consec_missed_beacons), le32toh(resp->num_expected_beacons), le32toh(resp->num_recvd_beacons)); /* Be paranoid */ if (vap == NULL) break; /* XXX no net80211 locking? */ if (vap->iv_state == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_SCAN) == 0) { if (missed > vap->iv_bmissthreshold) { /* XXX bad locking; turn into task */ IWM_UNLOCK(sc); ieee80211_beacon_miss(ic); IWM_LOCK(sc); } } break; } case IWM_MFUART_LOAD_NOTIFICATION: break; case IWM_ALIVE: break; case IWM_CALIB_RES_NOTIF_PHY_DB: break; case IWM_STATISTICS_NOTIFICATION: iwm_handle_rx_statistics(sc, pkt); break; case IWM_NVM_ACCESS_CMD: case IWM_MCC_UPDATE_CMD: if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { memcpy(sc->sc_cmd_resp, pkt, sizeof(sc->sc_cmd_resp)); } break; case IWM_MCC_CHUB_UPDATE_CMD: { struct iwm_mcc_chub_notif *notif; notif = (void *)pkt->data; sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8; sc->sc_fw_mcc[1] = notif->mcc & 0xff; sc->sc_fw_mcc[2] = '\0'; IWM_DPRINTF(sc, IWM_DEBUG_LAR, "fw source %d sent CC '%s'\n", notif->source_id, sc->sc_fw_mcc); break; } case IWM_DTS_MEASUREMENT_NOTIFICATION: case IWM_WIDE_ID(IWM_PHY_OPS_GROUP, IWM_DTS_MEASUREMENT_NOTIF_WIDE): { struct iwm_dts_measurement_notif_v1 *notif; if (iwm_rx_packet_payload_len(pkt) < sizeof(*notif)) { device_printf(sc->sc_dev, "Invalid DTS_MEASUREMENT_NOTIFICATION\n"); break; } notif = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_TEMP, "IWM_DTS_MEASUREMENT_NOTIFICATION - %d\n", notif->temp); break; } case IWM_PHY_CONFIGURATION_CMD: case IWM_TX_ANT_CONFIGURATION_CMD: case IWM_ADD_STA: case IWM_MAC_CONTEXT_CMD: case IWM_REPLY_SF_CFG_CMD: case IWM_POWER_TABLE_CMD: case IWM_LTR_CONFIG: case IWM_PHY_CONTEXT_CMD: case IWM_BINDING_CONTEXT_CMD: case IWM_TIME_EVENT_CMD: case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD): case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC): case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC): case IWM_SCAN_OFFLOAD_REQUEST_CMD: case IWM_SCAN_OFFLOAD_ABORT_CMD: case IWM_REPLY_BEACON_FILTERING_CMD: case IWM_MAC_PM_POWER_TABLE: case IWM_TIME_QUOTA_CMD: case IWM_REMOVE_STA: case IWM_TXPATH_FLUSH: case IWM_LQ_CMD: case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_FW_PAGING_BLOCK_CMD): case IWM_BT_CONFIG: case IWM_REPLY_THERMAL_MNG_BACKOFF: cresp = (void *)pkt->data; if (sc->sc_wantresp == (((qid & ~0x80) << 16) | idx)) { memcpy(sc->sc_cmd_resp, pkt, sizeof(*pkt)+sizeof(*cresp)); } break; /* ignore */ case IWM_PHY_DB_CMD: break; case IWM_INIT_COMPLETE_NOTIF: break; case IWM_SCAN_OFFLOAD_COMPLETE: iwm_rx_lmac_scan_complete_notif(sc, pkt); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; ieee80211_runtask(ic, &sc->sc_es_task); } break; case IWM_SCAN_ITERATION_COMPLETE: { struct iwm_lmac_scan_complete_notif *notif; notif = (void *)pkt->data; break; } case IWM_SCAN_COMPLETE_UMAC: iwm_rx_umac_scan_complete_notif(sc, pkt); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; ieee80211_runtask(ic, &sc->sc_es_task); } break; case IWM_SCAN_ITERATION_COMPLETE_UMAC: { struct iwm_umac_scan_iter_complete_notif *notif; notif = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration " "complete, status=0x%x, %d channels scanned\n", notif->status, notif->scanned_channels); break; } case IWM_REPLY_ERROR: { struct iwm_error_resp *resp; resp = (void *)pkt->data; device_printf(sc->sc_dev, "firmware error 0x%x, cmd 0x%x\n", le32toh(resp->error_type), resp->cmd_id); break; } case IWM_TIME_EVENT_NOTIFICATION: iwm_rx_time_event_notif(sc, pkt); break; /* * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG * messages. Just ignore them for now. */ case IWM_DEBUG_LOG_MSG: break; case IWM_MCAST_FILTER_CMD: break; case IWM_SCD_QUEUE_CFG: { struct iwm_scd_txq_cfg_rsp *rsp; rsp = (void *)pkt->data; IWM_DPRINTF(sc, IWM_DEBUG_CMD, "queue cfg token=0x%x sta_id=%d " "tid=%d scd_queue=%d\n", rsp->token, rsp->sta_id, rsp->tid, rsp->scd_queue); break; } default: device_printf(sc->sc_dev, "code %x, frame %d/%d %x unhandled\n", code, qid & ~0x80, idx, pkt->len_n_flags); break; } /* * Why test bit 0x80? The Linux driver: * * There is one exception: uCode sets bit 15 when it * originates the response/notification, i.e. when the * response/notification is not a direct response to a * command sent by the driver. For example, uCode issues * IWM_REPLY_RX when it sends a received frame to the driver; * it is not a direct response to any driver command. * * Ok, so since when is 7 == 15? Well, the Linux driver * uses a slightly different format for pkt->hdr, and "qid" * is actually the upper byte of a two-byte field. */ if (!(qid & (1 << 7))) iwm_cmd_done(sc, pkt); offset = nextoff; } if (stolen) m_freem(m); #undef HAVEROOM } /* * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt. * Basic structure from if_iwn */ static void iwm_notif_intr(struct iwm_softc *sc) { int count; uint32_t wreg; uint16_t hw; bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, BUS_DMASYNC_POSTREAD); if (sc->cfg->mqrx_supported) { count = IWM_RX_MQ_RING_COUNT; wreg = IWM_RFH_Q0_FRBDCB_WIDX_TRG; } else { count = IWM_RX_LEGACY_RING_COUNT; wreg = IWM_FH_RSCSR_CHNL0_WPTR; } hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; /* * Process responses */ while (sc->rxq.cur != hw) { struct iwm_rx_ring *ring = &sc->rxq; struct iwm_rx_data *data = &ring->data[ring->cur]; bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); IWM_DPRINTF(sc, IWM_DEBUG_INTR, "%s: hw = %d cur = %d\n", __func__, hw, ring->cur); iwm_handle_rxb(sc, data->m); ring->cur = (ring->cur + 1) % count; } /* * Tell the firmware that it can reuse the ring entries that * we have just processed. * Seems like the hardware gets upset unless we align * the write by 8?? */ hw = (hw == 0) ? count - 1 : hw - 1; IWM_WRITE(sc, wreg, rounddown2(hw, 8)); } static void iwm_intr(void *arg) { struct iwm_softc *sc = arg; int handled = 0; int r1, r2, rv = 0; int isperiodic = 0; IWM_LOCK(sc); IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); if (sc->sc_flags & IWM_FLAG_USE_ICT) { uint32_t *ict = sc->ict_dma.vaddr; int tmp; tmp = htole32(ict[sc->ict_cur]); if (!tmp) goto out_ena; /* * ok, there was something. keep plowing until we have all. */ r1 = r2 = 0; while (tmp) { r1 |= tmp; ict[sc->ict_cur] = 0; sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT; tmp = htole32(ict[sc->ict_cur]); } /* this is where the fun begins. don't ask */ if (r1 == 0xffffffff) r1 = 0; /* i am not expected to understand this */ if (r1 & 0xc0000) r1 |= 0x8000; r1 = (0xff & r1) | ((0xff00 & r1) << 16); } else { r1 = IWM_READ(sc, IWM_CSR_INT); /* "hardware gone" (where, fishing?) */ if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) goto out; r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); } if (r1 == 0 && r2 == 0) { goto out_ena; } IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); /* Safely ignore these bits for debug checks below */ r1 &= ~(IWM_CSR_INT_BIT_ALIVE | IWM_CSR_INT_BIT_SCD); if (r1 & IWM_CSR_INT_BIT_SW_ERR) { int i; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); #ifdef IWM_DEBUG iwm_nic_error(sc); #endif /* Dump driver status (TX and RX rings) while we're here. */ device_printf(sc->sc_dev, "driver status:\n"); for (i = 0; i < IWM_MAX_QUEUES; i++) { struct iwm_tx_ring *ring = &sc->txq[i]; device_printf(sc->sc_dev, " tx ring %2d: qid=%-2d cur=%-3d " "queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } device_printf(sc->sc_dev, " rx ring: cur=%d\n", sc->rxq.cur); device_printf(sc->sc_dev, " 802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state); /* Reset our firmware state tracking. */ sc->sc_firmware_state = 0; /* Don't stop the device; just do a VAP restart */ IWM_UNLOCK(sc); if (vap == NULL) { printf("%s: null vap\n", __func__); return; } device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " "restarting\n", __func__, vap->iv_state); ieee80211_restart_all(ic); return; } if (r1 & IWM_CSR_INT_BIT_HW_ERR) { handled |= IWM_CSR_INT_BIT_HW_ERR; device_printf(sc->sc_dev, "hardware error, stopping device\n"); iwm_stop(sc); rv = 1; goto out; } /* firmware chunk loaded */ if (r1 & IWM_CSR_INT_BIT_FH_TX) { IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); handled |= IWM_CSR_INT_BIT_FH_TX; sc->sc_fw_chunk_done = 1; wakeup(&sc->sc_fw); } if (r1 & IWM_CSR_INT_BIT_RF_KILL) { handled |= IWM_CSR_INT_BIT_RF_KILL; - if (iwm_check_rfkill(sc)) { - device_printf(sc->sc_dev, - "%s: rfkill switch, disabling interface\n", - __func__); - iwm_stop(sc); - } + taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); } /* * The Linux driver uses periodic interrupts to avoid races. * We cargo-cult like it's going out of fashion. */ if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { handled |= IWM_CSR_INT_BIT_RX_PERIODIC; IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); isperiodic = 1; } if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX); IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); iwm_notif_intr(sc); /* enable periodic interrupt, see above */ if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_ENA); } if (__predict_false(r1 & ~handled)) IWM_DPRINTF(sc, IWM_DEBUG_INTR, "%s: unhandled interrupts: %x\n", __func__, r1); rv = 1; out_ena: iwm_restore_interrupts(sc); out: IWM_UNLOCK(sc); return; } /* * Autoconf glue-sniffing */ #define PCI_VENDOR_INTEL 0x8086 #define PCI_PRODUCT_INTEL_WL_3160_1 0x08b3 #define PCI_PRODUCT_INTEL_WL_3160_2 0x08b4 #define PCI_PRODUCT_INTEL_WL_3165_1 0x3165 #define PCI_PRODUCT_INTEL_WL_3165_2 0x3166 #define PCI_PRODUCT_INTEL_WL_3168_1 0x24fb #define PCI_PRODUCT_INTEL_WL_7260_1 0x08b1 #define PCI_PRODUCT_INTEL_WL_7260_2 0x08b2 #define PCI_PRODUCT_INTEL_WL_7265_1 0x095a #define PCI_PRODUCT_INTEL_WL_7265_2 0x095b #define PCI_PRODUCT_INTEL_WL_8260_1 0x24f3 #define PCI_PRODUCT_INTEL_WL_8260_2 0x24f4 #define PCI_PRODUCT_INTEL_WL_8265_1 0x24fd #define PCI_PRODUCT_INTEL_WL_9560_1 0x9df0 #define PCI_PRODUCT_INTEL_WL_9560_2 0xa370 #define PCI_PRODUCT_INTEL_WL_9260_1 0x2526 static const struct iwm_devices { uint16_t device; const struct iwm_cfg *cfg; } iwm_devices[] = { { PCI_PRODUCT_INTEL_WL_3160_1, &iwm3160_cfg }, { PCI_PRODUCT_INTEL_WL_3160_2, &iwm3160_cfg }, { PCI_PRODUCT_INTEL_WL_3165_1, &iwm3165_cfg }, { PCI_PRODUCT_INTEL_WL_3165_2, &iwm3165_cfg }, { PCI_PRODUCT_INTEL_WL_3168_1, &iwm3168_cfg }, { PCI_PRODUCT_INTEL_WL_7260_1, &iwm7260_cfg }, { PCI_PRODUCT_INTEL_WL_7260_2, &iwm7260_cfg }, { PCI_PRODUCT_INTEL_WL_7265_1, &iwm7265_cfg }, { PCI_PRODUCT_INTEL_WL_7265_2, &iwm7265_cfg }, { PCI_PRODUCT_INTEL_WL_8260_1, &iwm8260_cfg }, { PCI_PRODUCT_INTEL_WL_8260_2, &iwm8260_cfg }, { PCI_PRODUCT_INTEL_WL_8265_1, &iwm8265_cfg }, { PCI_PRODUCT_INTEL_WL_9560_1, &iwm9560_cfg }, { PCI_PRODUCT_INTEL_WL_9560_2, &iwm9560_cfg }, { PCI_PRODUCT_INTEL_WL_9260_1, &iwm9260_cfg }, }; static int iwm_probe(device_t dev) { int i; for (i = 0; i < nitems(iwm_devices); i++) { if (pci_get_vendor(dev) == PCI_VENDOR_INTEL && pci_get_device(dev) == iwm_devices[i].device) { device_set_desc(dev, iwm_devices[i].cfg->name); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int iwm_dev_check(device_t dev) { struct iwm_softc *sc; uint16_t devid; int i; sc = device_get_softc(dev); devid = pci_get_device(dev); for (i = 0; i < nitems(iwm_devices); i++) { if (iwm_devices[i].device == devid) { sc->cfg = iwm_devices[i].cfg; return (0); } } device_printf(dev, "unknown adapter type\n"); return ENXIO; } /* PCI registers */ #define PCI_CFG_RETRY_TIMEOUT 0x041 static int iwm_pci_attach(device_t dev) { struct iwm_softc *sc; int count, error, rid; uint16_t reg; sc = device_get_softc(dev); /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); /* Enable bus-mastering and hardware bug workaround. */ pci_enable_busmaster(dev); reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg)); /* if !MSI */ if (reg & PCIM_STATUS_INTxSTATE) { reg &= ~PCIM_STATUS_INTxSTATE; } pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg)); rid = PCIR_BAR(0); sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_mem == NULL) { device_printf(sc->sc_dev, "can't map mem space\n"); return (ENXIO); } sc->sc_st = rman_get_bustag(sc->sc_mem); sc->sc_sh = rman_get_bushandle(sc->sc_mem); /* Install interrupt handler. */ count = 1; rid = 0; if (pci_alloc_msi(dev, &count) == 0) rid = 1; sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); if (sc->sc_irq == NULL) { device_printf(dev, "can't map interrupt\n"); return (ENXIO); } error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, iwm_intr, sc, &sc->sc_ih); if (sc->sc_ih == NULL) { device_printf(dev, "can't establish interrupt"); return (ENXIO); } sc->sc_dmat = bus_get_dma_tag(sc->sc_dev); return (0); } static void iwm_pci_detach(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); if (sc->sc_irq != NULL) { bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->sc_irq), sc->sc_irq); pci_release_msi(dev); } if (sc->sc_mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->sc_mem), sc->sc_mem); } static int iwm_attach(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; int error; int txq_i, i; sc->sc_dev = dev; sc->sc_attached = 1; IWM_LOCK_INIT(sc); mbufq_init(&sc->sc_snd, ifqmaxlen); callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0); callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0); TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc); + TASK_INIT(&sc->sc_rftoggle_task, 0, iwm_rftoggle_task, sc); + sc->sc_tq = taskqueue_create("iwm_taskq", M_WAITOK, + taskqueue_thread_enqueue, &sc->sc_tq); + error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwm_taskq"); + if (error != 0) { + device_printf(dev, "can't start taskq thread, error %d\n", + error); + goto fail; + } + error = iwm_dev_check(dev); if (error != 0) goto fail; sc->sc_notif_wait = iwm_notification_wait_init(sc); if (sc->sc_notif_wait == NULL) { device_printf(dev, "failed to init notification wait struct\n"); goto fail; } sc->sf_state = IWM_SF_UNINIT; /* Init phy db */ sc->sc_phy_db = iwm_phy_db_init(sc); if (!sc->sc_phy_db) { device_printf(dev, "Cannot init phy_db\n"); goto fail; } /* Set EBS as successful as long as not stated otherwise by the FW. */ sc->last_ebs_successful = TRUE; /* PCI attach */ error = iwm_pci_attach(dev); if (error != 0) goto fail; sc->sc_wantresp = -1; sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); /* * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have * changed, and now the revision step also includes bit 0-1 (no more * "dash" value). To keep hw_rev backwards compatible - we'll store it * in the old format. */ if (sc->cfg->device_family >= IWM_DEVICE_FAMILY_8000) { int ret; uint32_t hw_step; sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2); if (iwm_prepare_card_hw(sc) != 0) { device_printf(dev, "could not initialize hardware\n"); goto fail; } /* * In order to recognize C step the driver should read the * chip version id located at the AUX bus MISC address. */ IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); DELAY(2); ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (!ret) { device_printf(sc->sc_dev, "Failed to wake up the nic\n"); goto fail; } if (iwm_nic_lock(sc)) { hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG); hw_step |= IWM_ENABLE_WFPM; iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step); hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG); hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF; if (hw_step == 0x3) sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | (IWM_SILICON_C_STEP << 2); iwm_nic_unlock(sc); } else { device_printf(sc->sc_dev, "Failed to lock the nic\n"); goto fail; } } /* special-case 7265D, it has the same PCI IDs. */ if (sc->cfg == &iwm7265_cfg && (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D) { sc->cfg = &iwm7265d_cfg; } /* Allocate DMA memory for firmware transfers. */ if ((error = iwm_alloc_fwmem(sc)) != 0) { device_printf(dev, "could not allocate memory for firmware\n"); goto fail; } /* Allocate "Keep Warm" page. */ if ((error = iwm_alloc_kw(sc)) != 0) { device_printf(dev, "could not allocate keep warm page\n"); goto fail; } /* We use ICT interrupts */ if ((error = iwm_alloc_ict(sc)) != 0) { device_printf(dev, "could not allocate ICT table\n"); goto fail; } /* Allocate TX scheduler "rings". */ if ((error = iwm_alloc_sched(sc)) != 0) { device_printf(dev, "could not allocate TX scheduler rings\n"); goto fail; } /* Allocate TX rings */ for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { if ((error = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i)) != 0) { device_printf(dev, "could not allocate TX ring %d\n", txq_i); goto fail; } } /* Allocate RX ring. */ if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) { device_printf(dev, "could not allocate RX ring\n"); goto fail; } /* Clear pending interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->sc_dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA | IEEE80211_C_WPA | /* WPA/RSN */ IEEE80211_C_WME | IEEE80211_C_PMGT | IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE /* short preamble supported */ // IEEE80211_C_BGSCAN /* capable of bg scanning */ ; /* Advertise full-offload scanning */ ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD; for (i = 0; i < nitems(sc->sc_phyctxt); i++) { sc->sc_phyctxt[i].id = i; sc->sc_phyctxt[i].color = 0; sc->sc_phyctxt[i].ref = 0; sc->sc_phyctxt[i].channel = NULL; } /* Default noise floor */ sc->sc_noise = -96; /* Max RSSI */ sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; #ifdef IWM_DEBUG SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging"); #endif error = iwm_read_firmware(sc); if (error) { goto fail; } else if (sc->sc_fw.fw_fp == NULL) { /* * XXX Add a solution for properly deferring firmware load * during bootup. */ goto fail; } else { sc->sc_preinit_hook.ich_func = iwm_preinit; sc->sc_preinit_hook.ich_arg = sc; if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) { device_printf(dev, "config_intrhook_establish failed\n"); goto fail; } } IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "<-%s\n", __func__); return 0; /* Free allocated memory if something failed during attachment. */ fail: iwm_detach_local(sc, 0); return ENXIO; } static int iwm_is_valid_ether_addr(uint8_t *addr) { char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 }; if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr)) return (FALSE); return (TRUE); } static int iwm_wme_update(struct ieee80211com *ic) { #define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct iwm_softc *sc = ic->ic_softc; struct chanAccParams chp; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_vap *ivp = IWM_VAP(vap); struct iwm_node *in; struct wmeParams tmp[WME_NUM_AC]; int aci, error; if (vap == NULL) return (0); ieee80211_wme_ic_getparams(ic, &chp); IEEE80211_LOCK(ic); for (aci = 0; aci < WME_NUM_AC; aci++) tmp[aci] = chp.cap_wmeParams[aci]; IEEE80211_UNLOCK(ic); IWM_LOCK(sc); for (aci = 0; aci < WME_NUM_AC; aci++) { const struct wmeParams *ac = &tmp[aci]; ivp->queue_params[aci].aifsn = ac->wmep_aifsn; ivp->queue_params[aci].cw_min = IWM_EXP2(ac->wmep_logcwmin); ivp->queue_params[aci].cw_max = IWM_EXP2(ac->wmep_logcwmax); ivp->queue_params[aci].edca_txop = IEEE80211_TXOP_TO_US(ac->wmep_txopLimit); } ivp->have_wme = TRUE; if (ivp->is_uploaded && vap->iv_bss != NULL) { in = IWM_NODE(vap->iv_bss); if (in->in_assoc) { if ((error = iwm_mac_ctxt_changed(sc, vap)) != 0) { device_printf(sc->sc_dev, "%s: failed to update MAC\n", __func__); } } } IWM_UNLOCK(sc); return (0); #undef IWM_EXP2 } static void iwm_preinit(void *arg) { struct iwm_softc *sc = arg; device_t dev = sc->sc_dev; struct ieee80211com *ic = &sc->sc_ic; int error; IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "->%s\n", __func__); IWM_LOCK(sc); if ((error = iwm_start_hw(sc)) != 0) { device_printf(dev, "could not initialize hardware\n"); IWM_UNLOCK(sc); goto fail; } error = iwm_run_init_ucode(sc, 1); iwm_stop_device(sc); if (error) { IWM_UNLOCK(sc); goto fail; } device_printf(dev, "hw rev 0x%x, fw ver %s, address %s\n", sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, sc->sc_fwver, ether_sprintf(sc->nvm_data->hw_addr)); /* not all hardware can do 5GHz band */ if (!sc->nvm_data->sku_cap_band_52GHz_enable) memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0, sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A])); IWM_UNLOCK(sc); iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); /* * At this point we've committed - if we fail to do setup, * we now also have to tear down the net80211 state. */ ieee80211_ifattach(ic); ic->ic_vap_create = iwm_vap_create; ic->ic_vap_delete = iwm_vap_delete; ic->ic_raw_xmit = iwm_raw_xmit; ic->ic_node_alloc = iwm_node_alloc; ic->ic_scan_start = iwm_scan_start; ic->ic_scan_end = iwm_scan_end; ic->ic_update_mcast = iwm_update_mcast; ic->ic_getradiocaps = iwm_init_channel_map; ic->ic_set_channel = iwm_set_channel; ic->ic_scan_curchan = iwm_scan_curchan; ic->ic_scan_mindwell = iwm_scan_mindwell; ic->ic_wme.wme_update = iwm_wme_update; ic->ic_parent = iwm_parent; ic->ic_transmit = iwm_transmit; iwm_radiotap_attach(sc); if (bootverbose) ieee80211_announce(ic); IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "<-%s\n", __func__); config_intrhook_disestablish(&sc->sc_preinit_hook); return; fail: config_intrhook_disestablish(&sc->sc_preinit_hook); iwm_detach_local(sc, 0); } /* * Attach the interface to 802.11 radiotap. */ static void iwm_radiotap_attach(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "->%s begin\n", __func__); ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), IWM_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), IWM_RX_RADIOTAP_PRESENT); IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE, "->%s end\n", __func__); } static struct ieee80211vap * iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwm_vap *ivp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &ivp->iv_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); vap->iv_bmissthreshold = 10; /* override default */ /* Override with driver methods. */ ivp->iv_newstate = vap->iv_newstate; vap->iv_newstate = iwm_newstate; ivp->id = IWM_DEFAULT_MACID; ivp->color = IWM_DEFAULT_COLOR; ivp->have_wme = FALSE; ivp->ps_disabled = FALSE; ieee80211_ratectl_init(vap); /* Complete setup. */ ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void iwm_vap_delete(struct ieee80211vap *vap) { struct iwm_vap *ivp = IWM_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static void iwm_xmit_queue_drain(struct iwm_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; ieee80211_free_node(ni); m_freem(m); } } static void iwm_scan_start(struct ieee80211com *ic) { struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_softc *sc = ic->ic_softc; int error; IWM_LOCK(sc); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { /* This should not be possible */ device_printf(sc->sc_dev, "%s: Previous scan not completed yet\n", __func__); } if (iwm_fw_has_capa(sc, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) error = iwm_umac_scan(sc); else error = iwm_lmac_scan(sc); if (error != 0) { device_printf(sc->sc_dev, "could not initiate scan\n"); IWM_UNLOCK(sc); ieee80211_cancel_scan(vap); } else { sc->sc_flags |= IWM_FLAG_SCAN_RUNNING; iwm_led_blink_start(sc); IWM_UNLOCK(sc); } } static void iwm_scan_end(struct ieee80211com *ic) { struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwm_softc *sc = ic->ic_softc; IWM_LOCK(sc); iwm_led_blink_stop(sc); if (vap->iv_state == IEEE80211_S_RUN) iwm_led_enable(sc); if (sc->sc_flags & IWM_FLAG_SCAN_RUNNING) { /* * Removing IWM_FLAG_SCAN_RUNNING now, is fine because * both iwm_scan_end and iwm_scan_start run in the ic->ic_tq * taskqueue. */ sc->sc_flags &= ~IWM_FLAG_SCAN_RUNNING; iwm_scan_stop_wait(sc); } IWM_UNLOCK(sc); /* * Make sure we don't race, if sc_es_task is still enqueued here. * This is to make sure that it won't call ieee80211_scan_done * when we have already started the next scan. */ taskqueue_cancel(ic->ic_tq, &sc->sc_es_task, NULL); } static void iwm_update_mcast(struct ieee80211com *ic) { } static void iwm_set_channel(struct ieee80211com *ic) { } static void iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { } static void iwm_scan_mindwell(struct ieee80211_scan_state *ss) { } void iwm_init_task(void *arg1) { struct iwm_softc *sc = arg1; IWM_LOCK(sc); while (sc->sc_flags & IWM_FLAG_BUSY) msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0); sc->sc_flags |= IWM_FLAG_BUSY; iwm_stop(sc); if (sc->sc_ic.ic_nrunning > 0) iwm_init(sc); sc->sc_flags &= ~IWM_FLAG_BUSY; wakeup(&sc->sc_flags); IWM_UNLOCK(sc); } static int iwm_resume(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); int do_reinit = 0; /* * We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state. */ pci_write_config(dev, PCI_CFG_RETRY_TIMEOUT, 0x00, 1); if (!sc->sc_attached) return 0; iwm_init_task(device_get_softc(dev)); IWM_LOCK(sc); if (sc->sc_flags & IWM_FLAG_SCANNING) { sc->sc_flags &= ~IWM_FLAG_SCANNING; do_reinit = 1; } IWM_UNLOCK(sc); if (do_reinit) ieee80211_resume_all(&sc->sc_ic); return 0; } static int iwm_suspend(device_t dev) { int do_stop = 0; struct iwm_softc *sc = device_get_softc(dev); do_stop = !! (sc->sc_ic.ic_nrunning > 0); if (!sc->sc_attached) return (0); ieee80211_suspend_all(&sc->sc_ic); if (do_stop) { IWM_LOCK(sc); iwm_stop(sc); sc->sc_flags |= IWM_FLAG_SCANNING; IWM_UNLOCK(sc); } return (0); } static int iwm_detach_local(struct iwm_softc *sc, int do_net80211) { struct iwm_fw_info *fw = &sc->sc_fw; device_t dev = sc->sc_dev; int i; if (!sc->sc_attached) return 0; sc->sc_attached = 0; if (do_net80211) { ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task); } iwm_stop_device(sc); + taskqueue_drain_all(sc->sc_tq); + taskqueue_free(sc->sc_tq); if (do_net80211) { IWM_LOCK(sc); iwm_xmit_queue_drain(sc); IWM_UNLOCK(sc); ieee80211_ifdetach(&sc->sc_ic); } callout_drain(&sc->sc_led_blink_to); callout_drain(&sc->sc_watchdog_to); iwm_phy_db_free(sc->sc_phy_db); sc->sc_phy_db = NULL; iwm_free_nvm_data(sc->nvm_data); /* Free descriptor rings */ iwm_free_rx_ring(sc, &sc->rxq); for (i = 0; i < nitems(sc->txq); i++) iwm_free_tx_ring(sc, &sc->txq[i]); /* Free firmware */ if (fw->fw_fp != NULL) iwm_fw_info_free(fw); /* Free scheduler */ iwm_dma_contig_free(&sc->sched_dma); iwm_dma_contig_free(&sc->ict_dma); iwm_dma_contig_free(&sc->kw_dma); iwm_dma_contig_free(&sc->fw_dma); iwm_free_fw_paging(sc); /* Finished with the hardware - detach things */ iwm_pci_detach(dev); if (sc->sc_notif_wait != NULL) { iwm_notification_wait_free(sc->sc_notif_wait); sc->sc_notif_wait = NULL; } IWM_LOCK_DESTROY(sc); return (0); } static int iwm_detach(device_t dev) { struct iwm_softc *sc = device_get_softc(dev); return (iwm_detach_local(sc, 1)); } static device_method_t iwm_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwm_probe), DEVMETHOD(device_attach, iwm_attach), DEVMETHOD(device_detach, iwm_detach), DEVMETHOD(device_suspend, iwm_suspend), DEVMETHOD(device_resume, iwm_resume), DEVMETHOD_END }; static driver_t iwm_pci_driver = { "iwm", iwm_pci_methods, sizeof (struct iwm_softc) }; static devclass_t iwm_devclass; DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL); MODULE_PNP_INFO("U16:device;P:#;T:vendor=0x8086", pci, iwm_pci_driver, iwm_devices, nitems(iwm_devices)); MODULE_DEPEND(iwm, firmware, 1, 1, 1); MODULE_DEPEND(iwm, pci, 1, 1, 1); MODULE_DEPEND(iwm, wlan, 1, 1, 1); Index: stable/12/sys/dev/iwm/if_iwmvar.h =================================================================== --- stable/12/sys/dev/iwm/if_iwmvar.h (revision 361785) +++ stable/12/sys/dev/iwm/if_iwmvar.h (revision 361786) @@ -1,578 +1,580 @@ /* $OpenBSD: if_iwmvar.h,v 1.7 2015/03/02 13:51:10 jsg Exp $ */ /* $FreeBSD$ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ struct iwm_rx_radiotap_header { struct ieee80211_radiotap_header wr_ihdr; uint64_t wr_tsft; uint8_t wr_flags; uint8_t wr_rate; uint16_t wr_chan_freq; uint16_t wr_chan_flags; int8_t wr_dbm_antsignal; int8_t wr_dbm_antnoise; } __packed __aligned(8); #define IWM_RX_RADIOTAP_PRESENT \ ((1 << IEEE80211_RADIOTAP_TSFT) | \ (1 << IEEE80211_RADIOTAP_FLAGS) | \ (1 << IEEE80211_RADIOTAP_RATE) | \ (1 << IEEE80211_RADIOTAP_CHANNEL) | \ (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | \ (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE)) struct iwm_tx_radiotap_header { struct ieee80211_radiotap_header wt_ihdr; uint8_t wt_flags; uint8_t wt_rate; uint16_t wt_chan_freq; uint16_t wt_chan_flags; } __packed; #define IWM_TX_RADIOTAP_PRESENT \ ((1 << IEEE80211_RADIOTAP_FLAGS) | \ (1 << IEEE80211_RADIOTAP_RATE) | \ (1 << IEEE80211_RADIOTAP_CHANNEL)) #define IWM_UCODE_SECTION_MAX 16 /** * enum iwm_ucode_type * * The type of ucode. * * @IWM_UCODE_REGULAR: Normal runtime ucode * @IWM_UCODE_INIT: Initial ucode * @IWM_UCODE_WOWLAN: Wake on Wireless enabled ucode * @IWM_UCODE_REGULAR_USNIFFER: Normal runtime ucode when using usniffer image */ enum iwm_ucode_type { IWM_UCODE_REGULAR, IWM_UCODE_INIT, IWM_UCODE_WOWLAN, IWM_UCODE_REGULAR_USNIFFER, IWM_UCODE_TYPE_MAX }; struct iwm_ucode_capabilities { uint32_t max_probe_length; uint32_t n_scan_channels; uint32_t flags; uint8_t enabled_api[howmany(IWM_NUM_UCODE_TLV_API, NBBY)]; uint8_t enabled_capa[howmany(IWM_NUM_UCODE_TLV_CAPA, NBBY)]; }; /* one for each uCode image (inst/data, init/runtime/wowlan) */ struct iwm_fw_desc { const void *data; /* vmalloc'ed data */ uint32_t len; /* size in bytes */ uint32_t offset; /* offset in the device */ }; struct iwm_fw_img { struct iwm_fw_desc sec[IWM_UCODE_SECTION_MAX]; int fw_count; int is_dual_cpus; uint32_t paging_mem_size; }; struct iwm_fw_info { const struct firmware *fw_fp; /* ucode images */ struct iwm_fw_img img[IWM_UCODE_TYPE_MAX]; struct iwm_ucode_capabilities ucode_capa; uint32_t phy_config; uint8_t valid_tx_ant; uint8_t valid_rx_ant; }; struct iwm_nvm_data { int n_hw_addrs; uint8_t hw_addr[IEEE80211_ADDR_LEN]; int sku_cap_band_24GHz_enable; int sku_cap_band_52GHz_enable; int sku_cap_11n_enable; int sku_cap_amt_enable; int sku_cap_ipan_enable; uint8_t radio_cfg_type; uint8_t radio_cfg_step; uint8_t radio_cfg_dash; uint8_t radio_cfg_pnum; uint8_t valid_tx_ant, valid_rx_ant; #define IWM_NUM_CHANNELS 39 #define IWM_NUM_CHANNELS_8000 51 uint16_t nvm_version; uint8_t max_tx_pwr_half_dbm; boolean_t lar_enabled; uint16_t nvm_ch_flags[]; }; /* max bufs per tfd the driver will use */ #define IWM_MAX_CMD_TBS_PER_TFD 2 struct iwm_rx_packet; struct iwm_host_cmd { const void *data[IWM_MAX_CMD_TBS_PER_TFD]; struct iwm_rx_packet *resp_pkt; unsigned long _rx_page_addr; uint32_t _rx_page_order; int handler_status; uint32_t flags; uint32_t id; uint16_t len[IWM_MAX_CMD_TBS_PER_TFD]; uint8_t dataflags[IWM_MAX_CMD_TBS_PER_TFD]; }; /* * DMA glue is from iwn */ typedef caddr_t iwm_caddr_t; typedef void *iwm_hookarg_t; struct iwm_dma_info { bus_dma_tag_t tag; bus_dmamap_t map; bus_dma_segment_t seg; bus_addr_t paddr; void *vaddr; bus_size_t size; }; /** * struct iwm_fw_paging * @fw_paging_block: dma memory info * @fw_paging_size: page size */ struct iwm_fw_paging { struct iwm_dma_info fw_paging_block; uint32_t fw_paging_size; }; #define IWM_TX_RING_COUNT 256 #define IWM_TX_RING_LOMARK 192 #define IWM_TX_RING_HIMARK 224 struct iwm_tx_data { bus_dmamap_t map; bus_addr_t cmd_paddr; bus_addr_t scratch_paddr; struct mbuf *m; struct iwm_node *in; int done; }; struct iwm_tx_ring { struct iwm_dma_info desc_dma; struct iwm_dma_info cmd_dma; struct iwm_tfd *desc; struct iwm_device_cmd *cmd; bus_dma_tag_t data_dmat; struct iwm_tx_data data[IWM_TX_RING_COUNT]; int qid; int queued; int cur; }; #define IWM_RX_LEGACY_RING_COUNT 256 #define IWM_RX_MQ_RING_COUNT 512 #define IWM_RBUF_SIZE 4096 #define IWM_MAX_SCATTER 20 struct iwm_rx_data { struct mbuf *m; bus_dmamap_t map; }; struct iwm_rx_ring { struct iwm_dma_info free_desc_dma; struct iwm_dma_info used_desc_dma; struct iwm_dma_info stat_dma; struct iwm_dma_info buf_dma; void *desc; struct iwm_rb_status *stat; struct iwm_rx_data data[512]; bus_dmamap_t spare_map; /* for iwm_rx_addbuf() */ bus_dma_tag_t data_dmat; int cur; }; #define IWM_CMD_RESP_MAX PAGE_SIZE #define IWM_TE_SESSION_PROTECTION_MAX_TIME_MS 500 #define IWM_TE_SESSION_PROTECTION_MIN_TIME_MS 400 /* * Command headers are in iwl-trans.h, which is full of all * kinds of other junk, so we just replicate the structures here. * First the software bits: */ enum IWM_CMD_MODE { IWM_CMD_SYNC = 0, IWM_CMD_ASYNC = (1 << 0), IWM_CMD_WANT_SKB = (1 << 1), IWM_CMD_SEND_IN_RFKILL = (1 << 2), }; enum iwm_hcmd_dataflag { IWM_HCMD_DFL_NOCOPY = (1 << 0), IWM_HCMD_DFL_DUP = (1 << 1), }; struct iwm_int_sta { uint32_t sta_id; uint32_t tfd_queue_msk; }; struct iwm_phy_ctxt { uint16_t id; uint16_t color; uint32_t ref; struct ieee80211_channel *channel; }; struct iwm_bf_data { int bf_enabled; /* filtering */ int ba_enabled; /* abort */ int ave_beacon_signal; int last_cqm_event; }; struct iwm_vap { struct ieee80211vap iv_vap; int is_uploaded; int iv_auth; int (*iv_newstate)(struct ieee80211vap *, enum ieee80211_state, int); struct iwm_phy_ctxt *phy_ctxt; uint16_t id; uint16_t color; boolean_t have_wme; /* * QoS data from net80211, need to store this here * as net80211 has a separate callback but we need * to have the data for the MAC context */ struct { uint16_t cw_min; uint16_t cw_max; uint16_t edca_txop; uint8_t aifsn; } queue_params[WME_NUM_AC]; /* indicates that this interface requires PS to be disabled */ boolean_t ps_disabled; }; #define IWM_VAP(_vap) ((struct iwm_vap *)(_vap)) struct iwm_node { struct ieee80211_node in_ni; /* status "bits" */ int in_assoc; struct iwm_lq_cmd in_lq; }; #define IWM_NODE(_ni) ((struct iwm_node *)(_ni)) #define IWM_STATION_ID 0 #define IWM_AUX_STA_ID 1 #define IWM_DEFAULT_MACID 0 #define IWM_DEFAULT_COLOR 0 #define IWM_DEFAULT_TSFID 0 #define IWM_ICT_SIZE 4096 #define IWM_ICT_COUNT (IWM_ICT_SIZE / sizeof (uint32_t)) #define IWM_ICT_PADDR_SHIFT 12 struct iwm_cfg; struct iwm_softc { device_t sc_dev; uint32_t sc_debug; int sc_attached; struct mtx sc_mtx; struct mbufq sc_snd; struct ieee80211com sc_ic; struct ieee80211_ratectl_tx_status sc_txs; int sc_flags; #define IWM_FLAG_USE_ICT (1 << 0) #define IWM_FLAG_HW_INITED (1 << 1) #define IWM_FLAG_STOPPED (1 << 2) #define IWM_FLAG_RFKILL (1 << 3) #define IWM_FLAG_BUSY (1 << 4) #define IWM_FLAG_SCANNING (1 << 5) #define IWM_FLAG_SCAN_RUNNING (1 << 6) #define IWM_FLAG_TE_ACTIVE (1 << 7) struct intr_config_hook sc_preinit_hook; struct callout sc_watchdog_to; struct callout sc_led_blink_to; struct task init_task; struct resource *sc_irq; struct resource *sc_mem; bus_space_tag_t sc_st; bus_space_handle_t sc_sh; bus_size_t sc_sz; bus_dma_tag_t sc_dmat; void *sc_ih; /* TX scheduler rings. */ struct iwm_dma_info sched_dma; uint32_t scd_base_addr; /* TX/RX rings. */ struct iwm_tx_ring txq[IWM_MAX_QUEUES]; struct iwm_rx_ring rxq; int qfullmsk; /* ICT table. */ struct iwm_dma_info ict_dma; int ict_cur; int sc_hw_rev; int sc_hw_id; struct iwm_dma_info kw_dma; struct iwm_dma_info fw_dma; int sc_fw_chunk_done; enum iwm_ucode_type cur_ucode; int ucode_loaded; char sc_fwver[32]; char sc_fw_mcc[3]; int sc_intmask; /* * So why do we need a separate stopped flag and a generation? * the former protects the device from issuing commands when it's * stopped (duh). The latter protects against race from a very * fast stop/unstop cycle where threads waiting for responses do * not have a chance to run in between. Notably: we want to stop * the device from interrupt context when it craps out, so we * don't have the luxury of waiting for quiescense. */ int sc_generation; struct iwm_fw_info sc_fw; struct iwm_tlv_calib_ctrl sc_default_calib[IWM_UCODE_TYPE_MAX]; const struct iwm_cfg *cfg; struct iwm_nvm_data *nvm_data; struct iwm_phy_db *sc_phy_db; struct iwm_bf_data sc_bf; int sc_tx_timer; int sc_scan_last_antenna; int sc_fixed_ridx; int sc_staid; int sc_nodecolor; uint8_t sc_cmd_resp[IWM_CMD_RESP_MAX]; int sc_wantresp; + struct taskqueue *sc_tq; struct task sc_es_task; + struct task sc_rftoggle_task; struct iwm_rx_phy_info sc_last_phy_info; int sc_ampdu_ref; struct iwm_int_sta sc_aux_sta; /* phy contexts. we only use the first one */ struct iwm_phy_ctxt sc_phyctxt[IWM_NUM_PHY_CTX]; struct iwm_notif_statistics_v10 sc_stats; int sc_noise; struct iwm_rx_radiotap_header sc_rxtap; struct iwm_tx_radiotap_header sc_txtap; int sc_max_rssi; struct iwm_notif_wait_data *sc_notif_wait; int cmd_hold_nic_awake; /* Firmware status */ uint32_t error_event_table[2]; uint32_t log_event_table; uint32_t umac_error_event_table; int support_umac_log; /* * Paging parameters - All of the parameters should be set by the * opmode when paging is enabled */ struct iwm_fw_paging fw_paging_db[IWM_NUM_OF_FW_PAGING_BLOCKS]; uint16_t num_of_paging_blk; uint16_t num_of_pages_in_last_blk; boolean_t last_ebs_successful; /* last smart fifo state that was successfully sent to firmware */ enum iwm_sf_state sf_state; /* Indicate if device power save is allowed */ boolean_t sc_ps_disabled; int sc_ltr_enabled; /* Track firmware state for STA association. */ int sc_firmware_state; /* Unique ID (assigned by the firmware) of the current Time Event. */ uint32_t sc_time_event_uid; /* Duration of the Time Event in TU. */ uint32_t sc_time_event_duration; /* Expected end of the Time Event in HZ ticks. */ int sc_time_event_end_ticks; }; #define IWM_LOCK_INIT(_sc) \ mtx_init(&(_sc)->sc_mtx, device_get_nameunit((_sc)->sc_dev), \ MTX_NETWORK_LOCK, MTX_DEF); #define IWM_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define IWM_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define IWM_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->sc_mtx) static inline bool iwm_fw_has_api(struct iwm_softc *sc, unsigned int api) { return isset(sc->sc_fw.ucode_capa.enabled_api, api); } static inline bool iwm_fw_has_capa(struct iwm_softc *sc, unsigned int capa) { return isset(sc->sc_fw.ucode_capa.enabled_capa, capa); } Index: stable/12 =================================================================== --- stable/12 (revision 361785) +++ stable/12 (revision 361786) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r361273