Index: head/sys/riscv/riscv/mp_machdep.c
===================================================================
--- head/sys/riscv/riscv/mp_machdep.c (revision 360552)
+++ head/sys/riscv/riscv/mp_machdep.c (revision 360553)
@@ -1,530 +1,550 @@
/*-
* Copyright (c) 2015 The FreeBSD Foundation
* Copyright (c) 2016 Ruslan Bukin
* All rights reserved.
*
* Portions of this software were developed by Andrew Turner under
* sponsorship from the FreeBSD Foundation.
*
* Portions of this software were developed by SRI International and the
* University of Cambridge Computer Laboratory under DARPA/AFRL contract
* FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Portions of this software were developed by the University of Cambridge
* Computer Laboratory as part of the CTSRD Project, with support from the
* UK Higher Education Innovation Fund (HEIF).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_kstack_pages.h"
#include "opt_platform.h"
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef FDT
#include
#include
#endif
boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *);
uint32_t __riscv_boot_ap[MAXCPU];
static enum {
CPUS_UNKNOWN,
#ifdef FDT
CPUS_FDT,
#endif
} cpu_enum_method;
static device_identify_t riscv64_cpu_identify;
static device_probe_t riscv64_cpu_probe;
static device_attach_t riscv64_cpu_attach;
static int ipi_handler(void *);
struct pcb stoppcbs[MAXCPU];
extern uint32_t boot_hart;
extern cpuset_t all_harts;
#ifdef INVARIANTS
static uint32_t cpu_reg[MAXCPU][2];
#endif
static device_t cpu_list[MAXCPU];
+void mpentry(u_long hartid);
void init_secondary(uint64_t);
static struct mtx ap_boot_mtx;
/* Stacks for AP initialization, discarded once idle threads are started. */
void *bootstack;
static void *bootstacks[MAXCPU];
/* Count of started APs, used to synchronize access to bootstack. */
static volatile int aps_started;
/* Set to 1 once we're ready to let the APs out of the pen. */
static volatile int aps_ready;
/* Temporary variables for init_secondary() */
void *dpcpu[MAXCPU - 1];
static device_method_t riscv64_cpu_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, riscv64_cpu_identify),
DEVMETHOD(device_probe, riscv64_cpu_probe),
DEVMETHOD(device_attach, riscv64_cpu_attach),
DEVMETHOD_END
};
static devclass_t riscv64_cpu_devclass;
static driver_t riscv64_cpu_driver = {
"riscv64_cpu",
riscv64_cpu_methods,
0
};
DRIVER_MODULE(riscv64_cpu, cpu, riscv64_cpu_driver, riscv64_cpu_devclass, 0, 0);
static void
riscv64_cpu_identify(driver_t *driver, device_t parent)
{
if (device_find_child(parent, "riscv64_cpu", -1) != NULL)
return;
if (BUS_ADD_CHILD(parent, 0, "riscv64_cpu", -1) == NULL)
device_printf(parent, "add child failed\n");
}
static int
riscv64_cpu_probe(device_t dev)
{
u_int cpuid;
cpuid = device_get_unit(dev);
if (cpuid >= MAXCPU || cpuid > mp_maxid)
return (EINVAL);
device_quiet(dev);
return (0);
}
static int
riscv64_cpu_attach(device_t dev)
{
const uint32_t *reg;
size_t reg_size;
u_int cpuid;
int i;
cpuid = device_get_unit(dev);
if (cpuid >= MAXCPU || cpuid > mp_maxid)
return (EINVAL);
KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid));
reg = cpu_get_cpuid(dev, ®_size);
if (reg == NULL)
return (EINVAL);
if (bootverbose) {
device_printf(dev, "register <");
for (i = 0; i < reg_size; i++)
printf("%s%x", (i == 0) ? "" : " ", reg[i]);
printf(">\n");
}
/* Set the device to start it later */
cpu_list[cpuid] = dev;
return (0);
}
static void
release_aps(void *dummy __unused)
{
cpuset_t mask;
int i;
if (mp_ncpus == 1)
return;
/* Setup the IPI handler */
riscv_setup_ipihandler(ipi_handler);
atomic_store_rel_int(&aps_ready, 1);
/* Wake up the other CPUs */
mask = all_harts;
CPU_CLR(boot_hart, &mask);
printf("Release APs\n");
sbi_send_ipi(mask.__bits);
for (i = 0; i < 2000; i++) {
if (smp_started)
return;
DELAY(1000);
}
printf("APs not started\n");
}
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
void
init_secondary(uint64_t hart)
{
struct pcpu *pcpup;
u_int cpuid;
/* Renumber this cpu */
cpuid = hart;
if (cpuid < boot_hart)
cpuid += mp_maxid + 1;
cpuid -= boot_hart;
/* Setup the pcpu pointer */
pcpup = &__pcpu[cpuid];
__asm __volatile("mv tp, %0" :: "r"(pcpup));
/* Workaround: make sure wfi doesn't halt the hart */
csr_set(sie, SIE_SSIE);
csr_set(sip, SIE_SSIE);
/* Signal the BSP and spin until it has released all APs. */
atomic_add_int(&aps_started, 1);
while (!atomic_load_int(&aps_ready))
__asm __volatile("wfi");
/* Initialize curthread */
KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
pcpup->pc_curthread = pcpup->pc_idlethread;
/*
* Identify current CPU. This is necessary to setup
* affinity registers and to provide support for
* runtime chip identification.
*/
identify_cpu();
/* Enable software interrupts */
riscv_unmask_ipi();
#ifndef EARLY_AP_STARTUP
/* Start per-CPU event timers. */
cpu_initclocks_ap();
#endif
/* Enable external (PLIC) interrupts */
csr_set(sie, SIE_SEIE);
/* Activate process 0's pmap. */
pmap_activate_boot(vmspace_pmap(proc0.p_vmspace));
mtx_lock_spin(&ap_boot_mtx);
atomic_add_rel_32(&smp_cpus, 1);
if (smp_cpus == mp_ncpus) {
/* enable IPI's, tlb shootdown, freezes etc */
atomic_store_rel_int(&smp_started, 1);
}
mtx_unlock_spin(&ap_boot_mtx);
/*
* Assert that smp_after_idle_runnable condition is reasonable.
*/
MPASS(PCPU_GET(curpcb) == NULL);
/* Enter the scheduler */
sched_throw(NULL);
panic("scheduler returned us to init_secondary");
/* NOTREACHED */
}
static void
smp_after_idle_runnable(void *arg __unused)
{
struct pcpu *pc;
int cpu;
- for (cpu = 1; cpu < mp_ncpus; cpu++) {
+ for (cpu = 1; cpu <= mp_maxid; cpu++) {
if (bootstacks[cpu] != NULL) {
pc = pcpu_find(cpu);
while (atomic_load_ptr(&pc->pc_curpcb) == NULL)
cpu_spinwait();
kmem_free((vm_offset_t)bootstacks[cpu], PAGE_SIZE);
}
}
}
SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY,
smp_after_idle_runnable, NULL);
static int
ipi_handler(void *arg)
{
u_int ipi_bitmap;
u_int cpu, ipi;
int bit;
sbi_clear_ipi();
cpu = PCPU_GET(cpuid);
mb();
ipi_bitmap = atomic_readandclear_int(PCPU_PTR(pending_ipis));
if (ipi_bitmap == 0)
return (FILTER_HANDLED);
while ((bit = ffs(ipi_bitmap))) {
bit = (bit - 1);
ipi = (1 << bit);
ipi_bitmap &= ~ipi;
mb();
switch (ipi) {
case IPI_AST:
CTR0(KTR_SMP, "IPI_AST");
break;
case IPI_PREEMPT:
CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
sched_preempt(curthread);
break;
case IPI_RENDEZVOUS:
CTR0(KTR_SMP, "IPI_RENDEZVOUS");
smp_rendezvous_action();
break;
case IPI_STOP:
case IPI_STOP_HARD:
CTR0(KTR_SMP, (ipi == IPI_STOP) ? "IPI_STOP" : "IPI_STOP_HARD");
savectx(&stoppcbs[cpu]);
/* Indicate we are stopped */
CPU_SET_ATOMIC(cpu, &stopped_cpus);
/* Wait for restart */
while (!CPU_ISSET(cpu, &started_cpus))
cpu_spinwait();
CPU_CLR_ATOMIC(cpu, &started_cpus);
CPU_CLR_ATOMIC(cpu, &stopped_cpus);
CTR0(KTR_SMP, "IPI_STOP (restart)");
/*
* The kernel debugger might have set a breakpoint,
* so flush the instruction cache.
*/
fence_i();
break;
case IPI_HARDCLOCK:
CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
hardclockintr();
break;
default:
panic("Unknown IPI %#0x on cpu %d", ipi, curcpu);
}
}
return (FILTER_HANDLED);
}
struct cpu_group *
cpu_topo(void)
{
return (smp_topo_none());
}
/* Determine if we running MP machine */
int
cpu_mp_probe(void)
{
return (mp_ncpus > 1);
}
#ifdef FDT
static boolean_t
cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
{
struct pcpu *pcpup;
+ vm_paddr_t start_addr;
uint64_t hart;
u_int cpuid;
int naps;
+ int error;
/* Check if this hart supports MMU. */
if (OF_getproplen(node, "mmu-type") < 0)
return (0);
KASSERT(id < MAXCPU, ("Too many CPUs"));
KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size"));
#ifdef INVARIANTS
cpu_reg[id][0] = reg[0];
if (addr_size == 2)
cpu_reg[id][1] = reg[1];
#endif
hart = reg[0];
if (addr_size == 2) {
hart <<= 32;
hart |= reg[1];
}
KASSERT(hart < MAXCPU, ("Too many harts."));
/* We are already running on this cpu */
if (hart == boot_hart)
return (1);
/*
* Rotate the CPU IDs to put the boot CPU as CPU 0.
* We keep the other CPUs ordered.
*/
cpuid = hart;
if (cpuid < boot_hart)
cpuid += mp_maxid + 1;
cpuid -= boot_hart;
/* Check if we are able to start this cpu */
if (cpuid > mp_maxid)
return (0);
+
+ /*
+ * Depending on the SBI implementation, APs are waiting either in
+ * locore.S or to be activated explicitly, via SBI call.
+ */
+ if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0) {
+ start_addr = pmap_kextract((vm_offset_t)mpentry);
+ error = sbi_hsm_hart_start(hart, start_addr, 0);
+ if (error != 0) {
+ mp_ncpus--;
+
+ /* Send a warning to the user and continue. */
+ printf("AP %u (hart %lu) failed to start, error %d\n",
+ cpuid, hart, error);
+ return (0);
+ }
+ }
pcpup = &__pcpu[cpuid];
pcpu_init(pcpup, cpuid, sizeof(struct pcpu));
pcpup->pc_hart = hart;
dpcpu[cpuid - 1] = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO);
dpcpu_init(dpcpu[cpuid - 1], cpuid);
bootstacks[cpuid] = (void *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO);
naps = atomic_load_int(&aps_started);
bootstack = (char *)bootstacks[cpuid] + PAGE_SIZE;
printf("Starting CPU %u (hart %lx)\n", cpuid, hart);
atomic_store_32(&__riscv_boot_ap[hart], 1);
/* Wait for the AP to switch to its boot stack. */
while (atomic_load_int(&aps_started) < naps + 1)
cpu_spinwait();
CPU_SET(cpuid, &all_cpus);
CPU_SET(hart, &all_harts);
return (1);
}
#endif
/* Initialize and fire up non-boot processors */
void
cpu_mp_start(void)
{
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
CPU_SET(0, &all_cpus);
CPU_SET(boot_hart, &all_harts);
switch(cpu_enum_method) {
#ifdef FDT
case CPUS_FDT:
ofw_cpu_early_foreach(cpu_init_fdt, true);
break;
#endif
case CPUS_UNKNOWN:
break;
}
}
/* Introduce rest of cores to the world */
void
cpu_mp_announce(void)
{
}
static boolean_t
cpu_check_mmu(u_int id, phandle_t node, u_int addr_size, pcell_t *reg)
{
/* Check if this hart supports MMU. */
if (OF_getproplen(node, "mmu-type") < 0)
return (0);
return (1);
}
void
cpu_mp_setmaxid(void)
{
#ifdef FDT
int cores;
cores = ofw_cpu_early_foreach(cpu_check_mmu, true);
if (cores > 0) {
cores = MIN(cores, MAXCPU);
if (bootverbose)
printf("Found %d CPUs in the device tree\n", cores);
mp_ncpus = cores;
mp_maxid = cores - 1;
cpu_enum_method = CPUS_FDT;
return;
}
#endif
if (bootverbose)
printf("No CPU data, limiting to 1 core\n");
mp_ncpus = 1;
mp_maxid = 0;
}