Index: head/sys/dev/acpica/acpi_ec.c =================================================================== --- head/sys/dev/acpica/acpi_ec.c (revision 360130) +++ head/sys/dev/acpica/acpi_ec.c (revision 360131) @@ -1,1041 +1,1040 @@ /*- * Copyright (c) 2003-2007 Nate Lawson * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_EC ACPI_MODULE_NAME("EC") /* * EC_COMMAND: * ----------- */ typedef UINT8 EC_COMMAND; #define EC_COMMAND_UNKNOWN ((EC_COMMAND) 0x00) #define EC_COMMAND_READ ((EC_COMMAND) 0x80) #define EC_COMMAND_WRITE ((EC_COMMAND) 0x81) #define EC_COMMAND_BURST_ENABLE ((EC_COMMAND) 0x82) #define EC_COMMAND_BURST_DISABLE ((EC_COMMAND) 0x83) #define EC_COMMAND_QUERY ((EC_COMMAND) 0x84) /* * EC_STATUS: * ---------- * The encoding of the EC status register is illustrated below. * Note that a set bit (1) indicates the property is TRUE * (e.g. if bit 0 is set then the output buffer is full). * +-+-+-+-+-+-+-+-+ * |7|6|5|4|3|2|1|0| * +-+-+-+-+-+-+-+-+ * | | | | | | | | * | | | | | | | +- Output Buffer Full? * | | | | | | +--- Input Buffer Full? * | | | | | +----- * | | | | +------- Data Register is Command Byte? * | | | +--------- Burst Mode Enabled? * | | +----------- SCI Event? * | +------------- SMI Event? * +--------------- * */ typedef UINT8 EC_STATUS; #define EC_FLAG_OUTPUT_BUFFER ((EC_STATUS) 0x01) #define EC_FLAG_INPUT_BUFFER ((EC_STATUS) 0x02) #define EC_FLAG_DATA_IS_CMD ((EC_STATUS) 0x08) #define EC_FLAG_BURST_MODE ((EC_STATUS) 0x10) /* * EC_EVENT: * --------- */ typedef UINT8 EC_EVENT; #define EC_EVENT_UNKNOWN ((EC_EVENT) 0x00) #define EC_EVENT_OUTPUT_BUFFER_FULL ((EC_EVENT) 0x01) #define EC_EVENT_INPUT_BUFFER_EMPTY ((EC_EVENT) 0x02) #define EC_EVENT_SCI ((EC_EVENT) 0x20) #define EC_EVENT_SMI ((EC_EVENT) 0x40) /* Data byte returned after burst enable indicating it was successful. */ #define EC_BURST_ACK 0x90 /* * Register access primitives */ #define EC_GET_DATA(sc) \ bus_space_read_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0) #define EC_SET_DATA(sc, v) \ bus_space_write_1((sc)->ec_data_tag, (sc)->ec_data_handle, 0, (v)) #define EC_GET_CSR(sc) \ bus_space_read_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0) #define EC_SET_CSR(sc, v) \ bus_space_write_1((sc)->ec_csr_tag, (sc)->ec_csr_handle, 0, (v)) /* Additional params to pass from the probe routine */ struct acpi_ec_params { int glk; int gpe_bit; ACPI_HANDLE gpe_handle; int uid; }; /* * Driver softc. */ struct acpi_ec_softc { device_t ec_dev; ACPI_HANDLE ec_handle; int ec_uid; ACPI_HANDLE ec_gpehandle; UINT8 ec_gpebit; int ec_data_rid; struct resource *ec_data_res; bus_space_tag_t ec_data_tag; bus_space_handle_t ec_data_handle; int ec_csr_rid; struct resource *ec_csr_res; bus_space_tag_t ec_csr_tag; bus_space_handle_t ec_csr_handle; int ec_glk; int ec_glkhandle; int ec_burstactive; int ec_sci_pend; volatile u_int ec_gencount; int ec_suspending; }; /* * XXX njl * I couldn't find it in the spec but other implementations also use a * value of 1 ms for the time to acquire global lock. */ #define EC_LOCK_TIMEOUT 1000 /* Default delay in microseconds between each run of the status polling loop. */ #define EC_POLL_DELAY 50 /* Total time in ms spent waiting for a response from EC. */ #define EC_TIMEOUT 750 #define EVENT_READY(event, status) \ (((event) == EC_EVENT_OUTPUT_BUFFER_FULL && \ ((status) & EC_FLAG_OUTPUT_BUFFER) != 0) || \ ((event) == EC_EVENT_INPUT_BUFFER_EMPTY && \ ((status) & EC_FLAG_INPUT_BUFFER) == 0)) ACPI_SERIAL_DECL(ec, "ACPI embedded controller"); static SYSCTL_NODE(_debug_acpi, OID_AUTO, ec, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "EC debugging"); static int ec_burst_mode; SYSCTL_INT(_debug_acpi_ec, OID_AUTO, burst, CTLFLAG_RWTUN, &ec_burst_mode, 0, "Enable use of burst mode (faster for nearly all systems)"); static int ec_polled_mode; SYSCTL_INT(_debug_acpi_ec, OID_AUTO, polled, CTLFLAG_RWTUN, &ec_polled_mode, 0, "Force use of polled mode (only if interrupt mode doesn't work)"); static int ec_timeout = EC_TIMEOUT; SYSCTL_INT(_debug_acpi_ec, OID_AUTO, timeout, CTLFLAG_RWTUN, &ec_timeout, EC_TIMEOUT, "Total time spent waiting for a response (poll+sleep)"); static ACPI_STATUS EcLock(struct acpi_ec_softc *sc) { ACPI_STATUS status; /* If _GLK is non-zero, acquire the global lock. */ status = AE_OK; if (sc->ec_glk) { status = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT, &sc->ec_glkhandle); if (ACPI_FAILURE(status)) return (status); } ACPI_SERIAL_BEGIN(ec); return (status); } static void EcUnlock(struct acpi_ec_softc *sc) { ACPI_SERIAL_END(ec); if (sc->ec_glk) AcpiReleaseGlobalLock(sc->ec_glkhandle); } static UINT32 EcGpeHandler(ACPI_HANDLE, UINT32, void *); static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context, void **return_Context); static ACPI_STATUS EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 Width, UINT64 *Value, void *Context, void *RegionContext); static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event, u_int gen_count); static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd); static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data); static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 Data); static int acpi_ec_probe(device_t dev); static int acpi_ec_attach(device_t dev); static int acpi_ec_suspend(device_t dev); static int acpi_ec_resume(device_t dev); static int acpi_ec_shutdown(device_t dev); static int acpi_ec_read_method(device_t dev, u_int addr, UINT64 *val, int width); static int acpi_ec_write_method(device_t dev, u_int addr, UINT64 val, int width); static device_method_t acpi_ec_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_ec_probe), DEVMETHOD(device_attach, acpi_ec_attach), DEVMETHOD(device_suspend, acpi_ec_suspend), DEVMETHOD(device_resume, acpi_ec_resume), DEVMETHOD(device_shutdown, acpi_ec_shutdown), /* Embedded controller interface */ DEVMETHOD(acpi_ec_read, acpi_ec_read_method), DEVMETHOD(acpi_ec_write, acpi_ec_write_method), DEVMETHOD_END }; static driver_t acpi_ec_driver = { "acpi_ec", acpi_ec_methods, sizeof(struct acpi_ec_softc), }; static devclass_t acpi_ec_devclass; DRIVER_MODULE(acpi_ec, acpi, acpi_ec_driver, acpi_ec_devclass, 0, 0); MODULE_DEPEND(acpi_ec, acpi, 1, 1, 1); /* * Look for an ECDT and if we find one, set up default GPE and * space handlers to catch attempts to access EC space before * we have a real driver instance in place. * * TODO: Some old Gateway laptops need us to fake up an ECDT or * otherwise attach early so that _REG methods can run. */ void acpi_ec_ecdt_probe(device_t parent) { ACPI_TABLE_ECDT *ecdt; ACPI_STATUS status; device_t child; ACPI_HANDLE h; struct acpi_ec_params *params; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Find and validate the ECDT. */ status = AcpiGetTable(ACPI_SIG_ECDT, 1, (ACPI_TABLE_HEADER **)&ecdt); if (ACPI_FAILURE(status) || ecdt->Control.BitWidth != 8 || ecdt->Data.BitWidth != 8) { return; } /* Create the child device with the given unit number. */ child = BUS_ADD_CHILD(parent, 3, "acpi_ec", ecdt->Uid); if (child == NULL) { printf("%s: can't add child\n", __func__); return; } /* Find and save the ACPI handle for this device. */ status = AcpiGetHandle(NULL, ecdt->Id, &h); if (ACPI_FAILURE(status)) { device_delete_child(parent, child); printf("%s: can't get handle\n", __func__); return; } acpi_set_handle(child, h); /* Set the data and CSR register addresses. */ bus_set_resource(child, SYS_RES_IOPORT, 0, ecdt->Data.Address, /*count*/1); bus_set_resource(child, SYS_RES_IOPORT, 1, ecdt->Control.Address, /*count*/1); /* * Store values for the probe/attach routines to use. Store the * ECDT GPE bit and set the global lock flag according to _GLK. * Note that it is not perfectly correct to be evaluating a method * before initializing devices, but in practice this function * should be safe to call at this point. */ params = malloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO); params->gpe_handle = NULL; params->gpe_bit = ecdt->Gpe; params->uid = ecdt->Uid; acpi_GetInteger(h, "_GLK", ¶ms->glk); acpi_set_private(child, params); /* Finish the attach process. */ if (device_probe_and_attach(child) != 0) device_delete_child(parent, child); } static int acpi_ec_probe(device_t dev) { ACPI_BUFFER buf; ACPI_HANDLE h; ACPI_OBJECT *obj; ACPI_STATUS status; device_t peer; char desc[64]; int ecdt; - int ret; + int ret, rc; struct acpi_ec_params *params; static char *ec_ids[] = { "PNP0C09", NULL }; ret = ENXIO; /* Check that this is a device and that EC is not disabled. */ if (acpi_get_type(dev) != ACPI_TYPE_DEVICE || acpi_disabled("ec")) return (ret); if (device_is_devclass_fixed(dev)) { /* * If probed via ECDT, set description and continue. Otherwise, we can * access the namespace and make sure this is not a duplicate probe. */ ecdt = 1; params = acpi_get_private(dev); if (params != NULL) ret = 0; goto out; } else ecdt = 0; - ret = ACPI_ID_PROBE(device_get_parent(dev), dev, ec_ids, NULL); - if (ret > 0) - return (ret); + rc = ACPI_ID_PROBE(device_get_parent(dev), dev, ec_ids, NULL); + if (rc > 0) + return (rc); params = malloc(sizeof(struct acpi_ec_params), M_TEMP, M_WAITOK | M_ZERO); buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; h = acpi_get_handle(dev); /* * Read the unit ID to check for duplicate attach and the global lock value * to see if we should acquire it when accessing the EC. */ status = acpi_GetInteger(h, "_UID", ¶ms->uid); if (ACPI_FAILURE(status)) params->uid = 0; /* * Check for a duplicate probe. This can happen when a probe via ECDT * succeeded already. If this is a duplicate, disable this device. * * NB: It would seem device_disable would be sufficient to not get * duplicated devices, and ENXIO isn't needed, however, device_probe() only * checks DF_ENABLED at the start and so disabling it here is too late to * prevent device_attach() from being called. */ peer = devclass_get_device(acpi_ec_devclass, params->uid); if (peer != NULL && device_is_alive(peer)) { device_disable(dev); - ret = ENXIO; goto out; } status = acpi_GetInteger(h, "_GLK", ¶ms->glk); if (ACPI_FAILURE(status)) params->glk = 0; /* * Evaluate the _GPE method to find the GPE bit used by the EC to signal * status (SCI). If it's a package, it contains a reference and GPE bit, * similar to _PRW. */ status = AcpiEvaluateObject(h, "_GPE", NULL, &buf); if (ACPI_FAILURE(status)) { device_printf(dev, "can't evaluate _GPE - %s\n", AcpiFormatException(status)); goto out; } obj = (ACPI_OBJECT *)buf.Pointer; if (obj == NULL) goto out; switch (obj->Type) { case ACPI_TYPE_INTEGER: params->gpe_handle = NULL; params->gpe_bit = obj->Integer.Value; break; case ACPI_TYPE_PACKAGE: if (!ACPI_PKG_VALID(obj, 2)) goto out; params->gpe_handle = acpi_GetReference(NULL, &obj->Package.Elements[0]); if (params->gpe_handle == NULL || acpi_PkgInt32(obj, 1, ¶ms->gpe_bit) != 0) goto out; break; default: device_printf(dev, "_GPE has invalid type %d\n", obj->Type); goto out; } /* Store the values we got from the namespace for attach. */ acpi_set_private(dev, params); if (buf.Pointer) AcpiOsFree(buf.Pointer); out: if (ret <= 0) { snprintf(desc, sizeof(desc), "Embedded Controller: GPE %#x%s%s", params->gpe_bit, (params->glk) ? ", GLK" : "", ecdt ? ", ECDT" : ""); device_set_desc_copy(dev, desc); } else free(params, M_TEMP); return (ret); } static int acpi_ec_attach(device_t dev) { struct acpi_ec_softc *sc; struct acpi_ec_params *params; ACPI_STATUS Status; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Fetch/initialize softc (assumes softc is pre-zeroed). */ sc = device_get_softc(dev); params = acpi_get_private(dev); sc->ec_dev = dev; sc->ec_handle = acpi_get_handle(dev); /* Retrieve previously probed values via device ivars. */ sc->ec_glk = params->glk; sc->ec_gpebit = params->gpe_bit; sc->ec_gpehandle = params->gpe_handle; sc->ec_uid = params->uid; sc->ec_suspending = FALSE; acpi_set_private(dev, NULL); free(params, M_TEMP); /* Attach bus resources for data and command/status ports. */ sc->ec_data_rid = 0; sc->ec_data_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_data_rid, RF_ACTIVE); if (sc->ec_data_res == NULL) { device_printf(dev, "can't allocate data port\n"); goto error; } sc->ec_data_tag = rman_get_bustag(sc->ec_data_res); sc->ec_data_handle = rman_get_bushandle(sc->ec_data_res); sc->ec_csr_rid = 1; sc->ec_csr_res = bus_alloc_resource_any(sc->ec_dev, SYS_RES_IOPORT, &sc->ec_csr_rid, RF_ACTIVE); if (sc->ec_csr_res == NULL) { device_printf(dev, "can't allocate command/status port\n"); goto error; } sc->ec_csr_tag = rman_get_bustag(sc->ec_csr_res); sc->ec_csr_handle = rman_get_bushandle(sc->ec_csr_res); /* * Install a handler for this EC's GPE bit. We want edge-triggered * behavior. */ ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching GPE handler\n")); Status = AcpiInstallGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, ACPI_GPE_EDGE_TRIGGERED, EcGpeHandler, sc); if (ACPI_FAILURE(Status)) { device_printf(dev, "can't install GPE handler for %s - %s\n", acpi_name(sc->ec_handle), AcpiFormatException(Status)); goto error; } /* * Install address space handler */ ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "attaching address space handler\n")); Status = AcpiInstallAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC, &EcSpaceHandler, &EcSpaceSetup, sc); if (ACPI_FAILURE(Status)) { device_printf(dev, "can't install address space handler for %s - %s\n", acpi_name(sc->ec_handle), AcpiFormatException(Status)); goto error; } /* Enable runtime GPEs for the handler. */ Status = AcpiEnableGpe(sc->ec_gpehandle, sc->ec_gpebit); if (ACPI_FAILURE(Status)) { device_printf(dev, "AcpiEnableGpe failed: %s\n", AcpiFormatException(Status)); goto error; } ACPI_DEBUG_PRINT((ACPI_DB_RESOURCES, "acpi_ec_attach complete\n")); return (0); error: AcpiRemoveGpeHandler(sc->ec_gpehandle, sc->ec_gpebit, EcGpeHandler); AcpiRemoveAddressSpaceHandler(sc->ec_handle, ACPI_ADR_SPACE_EC, EcSpaceHandler); if (sc->ec_csr_res) bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_csr_rid, sc->ec_csr_res); if (sc->ec_data_res) bus_release_resource(sc->ec_dev, SYS_RES_IOPORT, sc->ec_data_rid, sc->ec_data_res); return (ENXIO); } static int acpi_ec_suspend(device_t dev) { struct acpi_ec_softc *sc; sc = device_get_softc(dev); sc->ec_suspending = TRUE; return (0); } static int acpi_ec_resume(device_t dev) { struct acpi_ec_softc *sc; sc = device_get_softc(dev); sc->ec_suspending = FALSE; return (0); } static int acpi_ec_shutdown(device_t dev) { struct acpi_ec_softc *sc; /* Disable the GPE so we don't get EC events during shutdown. */ sc = device_get_softc(dev); AcpiDisableGpe(sc->ec_gpehandle, sc->ec_gpebit); return (0); } /* Methods to allow other devices (e.g., smbat) to read/write EC space. */ static int acpi_ec_read_method(device_t dev, u_int addr, UINT64 *val, int width) { struct acpi_ec_softc *sc; ACPI_STATUS status; sc = device_get_softc(dev); status = EcSpaceHandler(ACPI_READ, addr, width * 8, val, sc, NULL); if (ACPI_FAILURE(status)) return (ENXIO); return (0); } static int acpi_ec_write_method(device_t dev, u_int addr, UINT64 val, int width) { struct acpi_ec_softc *sc; ACPI_STATUS status; sc = device_get_softc(dev); status = EcSpaceHandler(ACPI_WRITE, addr, width * 8, &val, sc, NULL); if (ACPI_FAILURE(status)) return (ENXIO); return (0); } static ACPI_STATUS EcCheckStatus(struct acpi_ec_softc *sc, const char *msg, EC_EVENT event) { ACPI_STATUS status; EC_STATUS ec_status; status = AE_NO_HARDWARE_RESPONSE; ec_status = EC_GET_CSR(sc); if (sc->ec_burstactive && !(ec_status & EC_FLAG_BURST_MODE)) { CTR1(KTR_ACPI, "ec burst disabled in waitevent (%s)", msg); sc->ec_burstactive = FALSE; } if (EVENT_READY(event, ec_status)) { CTR2(KTR_ACPI, "ec %s wait ready, status %#x", msg, ec_status); status = AE_OK; } return (status); } static void EcGpeQueryHandlerSub(struct acpi_ec_softc *sc) { UINT8 Data; ACPI_STATUS Status; int retry; char qxx[5]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Serialize user access with EcSpaceHandler(). */ Status = EcLock(sc); if (ACPI_FAILURE(Status)) { device_printf(sc->ec_dev, "GpeQuery lock error: %s\n", AcpiFormatException(Status)); return; } /* * Send a query command to the EC to find out which _Qxx call it * wants to make. This command clears the SCI bit and also the * interrupt source since we are edge-triggered. To prevent the GPE * that may arise from running the query from causing another query * to be queued, we clear the pending flag only after running it. */ for (retry = 0; retry < 2; retry++) { Status = EcCommand(sc, EC_COMMAND_QUERY); if (ACPI_SUCCESS(Status)) break; if (ACPI_FAILURE(EcCheckStatus(sc, "retr_check", EC_EVENT_INPUT_BUFFER_EMPTY))) break; } if (ACPI_FAILURE(Status)) { EcUnlock(sc); device_printf(sc->ec_dev, "GPE query failed: %s\n", AcpiFormatException(Status)); return; } Data = EC_GET_DATA(sc); /* * We have to unlock before running the _Qxx method below since that * method may attempt to read/write from EC address space, causing * recursive acquisition of the lock. */ EcUnlock(sc); /* Ignore the value for "no outstanding event". (13.3.5) */ CTR2(KTR_ACPI, "ec query ok,%s running _Q%02X", Data ? "" : " not", Data); if (Data == 0) return; /* Evaluate _Qxx to respond to the controller. */ snprintf(qxx, sizeof(qxx), "_Q%02X", Data); AcpiUtStrupr(qxx); Status = AcpiEvaluateObject(sc->ec_handle, qxx, NULL, NULL); if (ACPI_FAILURE(Status) && Status != AE_NOT_FOUND) { device_printf(sc->ec_dev, "evaluation of query method %s failed: %s\n", qxx, AcpiFormatException(Status)); } } static void EcGpeQueryHandler(void *Context) { struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context; int pending; KASSERT(Context != NULL, ("EcGpeQueryHandler called with NULL")); do { /* Read the current pending count */ pending = atomic_load_acq_int(&sc->ec_sci_pend); /* Call GPE handler function */ EcGpeQueryHandlerSub(sc); /* * Try to reset the pending count to zero. If this fails we * know another GPE event has occurred while handling the * current GPE event and need to loop. */ } while (!atomic_cmpset_int(&sc->ec_sci_pend, pending, 0)); } /* * The GPE handler is called when IBE/OBF or SCI events occur. We are * called from an unknown lock context. */ static UINT32 EcGpeHandler(ACPI_HANDLE GpeDevice, UINT32 GpeNumber, void *Context) { struct acpi_ec_softc *sc = Context; ACPI_STATUS Status; EC_STATUS EcStatus; KASSERT(Context != NULL, ("EcGpeHandler called with NULL")); CTR0(KTR_ACPI, "ec gpe handler start"); /* * Notify EcWaitEvent() that the status register is now fresh. If we * didn't do this, it wouldn't be possible to distinguish an old IBE * from a new one, for example when doing a write transaction (writing * address and then data values.) */ atomic_add_int(&sc->ec_gencount, 1); wakeup(sc); /* * If the EC_SCI bit of the status register is set, queue a query handler. * It will run the query and _Qxx method later, under the lock. */ EcStatus = EC_GET_CSR(sc); if ((EcStatus & EC_EVENT_SCI) && atomic_fetchadd_int(&sc->ec_sci_pend, 1) == 0) { CTR0(KTR_ACPI, "ec gpe queueing query handler"); Status = AcpiOsExecute(OSL_GPE_HANDLER, EcGpeQueryHandler, Context); if (ACPI_FAILURE(Status)) { printf("EcGpeHandler: queuing GPE query handler failed\n"); atomic_store_rel_int(&sc->ec_sci_pend, 0); } } return (ACPI_REENABLE_GPE); } static ACPI_STATUS EcSpaceSetup(ACPI_HANDLE Region, UINT32 Function, void *Context, void **RegionContext) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * If deactivating a region, always set the output to NULL. Otherwise, * just pass the context through. */ if (Function == ACPI_REGION_DEACTIVATE) *RegionContext = NULL; else *RegionContext = Context; return_ACPI_STATUS (AE_OK); } static ACPI_STATUS EcSpaceHandler(UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 Width, UINT64 *Value, void *Context, void *RegionContext) { struct acpi_ec_softc *sc = (struct acpi_ec_softc *)Context; ACPI_PHYSICAL_ADDRESS EcAddr; UINT8 *EcData; ACPI_STATUS Status; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, (UINT32)Address); if (Function != ACPI_READ && Function != ACPI_WRITE) return_ACPI_STATUS (AE_BAD_PARAMETER); if (Width % 8 != 0 || Value == NULL || Context == NULL) return_ACPI_STATUS (AE_BAD_PARAMETER); if (Address + Width / 8 > 256) return_ACPI_STATUS (AE_BAD_ADDRESS); /* * If booting, check if we need to run the query handler. If so, we * we call it directly here since our thread taskq is not active yet. */ if (cold || rebooting || sc->ec_suspending) { if ((EC_GET_CSR(sc) & EC_EVENT_SCI) && atomic_fetchadd_int(&sc->ec_sci_pend, 1) == 0) { CTR0(KTR_ACPI, "ec running gpe handler directly"); EcGpeQueryHandler(sc); } } /* Serialize with EcGpeQueryHandler() at transaction granularity. */ Status = EcLock(sc); if (ACPI_FAILURE(Status)) return_ACPI_STATUS (Status); /* If we can't start burst mode, continue anyway. */ Status = EcCommand(sc, EC_COMMAND_BURST_ENABLE); if (ACPI_SUCCESS(Status)) { if (EC_GET_DATA(sc) == EC_BURST_ACK) { CTR0(KTR_ACPI, "ec burst enabled"); sc->ec_burstactive = TRUE; } } /* Perform the transaction(s), based on Width. */ EcAddr = Address; EcData = (UINT8 *)Value; if (Function == ACPI_READ) *Value = 0; do { switch (Function) { case ACPI_READ: Status = EcRead(sc, EcAddr, EcData); break; case ACPI_WRITE: Status = EcWrite(sc, EcAddr, *EcData); break; } if (ACPI_FAILURE(Status)) break; EcAddr++; EcData++; } while (EcAddr < Address + Width / 8); if (sc->ec_burstactive) { sc->ec_burstactive = FALSE; if (ACPI_SUCCESS(EcCommand(sc, EC_COMMAND_BURST_DISABLE))) CTR0(KTR_ACPI, "ec disabled burst ok"); } EcUnlock(sc); return_ACPI_STATUS (Status); } static ACPI_STATUS EcWaitEvent(struct acpi_ec_softc *sc, EC_EVENT Event, u_int gen_count) { static int no_intr = 0; ACPI_STATUS Status; int count, i, need_poll, slp_ival; ACPI_SERIAL_ASSERT(ec); Status = AE_NO_HARDWARE_RESPONSE; need_poll = cold || rebooting || ec_polled_mode || sc->ec_suspending; /* Wait for event by polling or GPE (interrupt). */ if (need_poll) { count = (ec_timeout * 1000) / EC_POLL_DELAY; if (count == 0) count = 1; DELAY(10); for (i = 0; i < count; i++) { Status = EcCheckStatus(sc, "poll", Event); if (ACPI_SUCCESS(Status)) break; DELAY(EC_POLL_DELAY); } } else { slp_ival = hz / 1000; if (slp_ival != 0) { count = ec_timeout; } else { /* hz has less than 1 ms resolution so scale timeout. */ slp_ival = 1; count = ec_timeout / (1000 / hz); } /* * Wait for the GPE to signal the status changed, checking the * status register each time we get one. It's possible to get a * GPE for an event we're not interested in here (i.e., SCI for * EC query). */ for (i = 0; i < count; i++) { if (gen_count == sc->ec_gencount) tsleep(sc, 0, "ecgpe", slp_ival); /* * Record new generation count. It's possible the GPE was * just to notify us that a query is needed and we need to * wait for a second GPE to signal the completion of the * event we are actually waiting for. */ Status = EcCheckStatus(sc, "sleep", Event); if (ACPI_SUCCESS(Status)) { if (gen_count == sc->ec_gencount) no_intr++; else no_intr = 0; break; } gen_count = sc->ec_gencount; } /* * We finished waiting for the GPE and it never arrived. Try to * read the register once and trust whatever value we got. This is * the best we can do at this point. */ if (ACPI_FAILURE(Status)) Status = EcCheckStatus(sc, "sleep_end", Event); } if (!need_poll && no_intr > 10) { device_printf(sc->ec_dev, "not getting interrupts, switched to polled mode\n"); ec_polled_mode = 1; } if (ACPI_FAILURE(Status)) CTR0(KTR_ACPI, "error: ec wait timed out"); return (Status); } static ACPI_STATUS EcCommand(struct acpi_ec_softc *sc, EC_COMMAND cmd) { ACPI_STATUS status; EC_EVENT event; EC_STATUS ec_status; u_int gen_count; ACPI_SERIAL_ASSERT(ec); /* Don't use burst mode if user disabled it. */ if (!ec_burst_mode && cmd == EC_COMMAND_BURST_ENABLE) return (AE_ERROR); /* Decide what to wait for based on command type. */ switch (cmd) { case EC_COMMAND_READ: case EC_COMMAND_WRITE: case EC_COMMAND_BURST_DISABLE: event = EC_EVENT_INPUT_BUFFER_EMPTY; break; case EC_COMMAND_QUERY: case EC_COMMAND_BURST_ENABLE: event = EC_EVENT_OUTPUT_BUFFER_FULL; break; default: device_printf(sc->ec_dev, "EcCommand: invalid command %#x\n", cmd); return (AE_BAD_PARAMETER); } /* * Ensure empty input buffer before issuing command. * Use generation count of zero to force a quick check. */ status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY, 0); if (ACPI_FAILURE(status)) return (status); /* Run the command and wait for the chosen event. */ CTR1(KTR_ACPI, "ec running command %#x", cmd); gen_count = sc->ec_gencount; EC_SET_CSR(sc, cmd); status = EcWaitEvent(sc, event, gen_count); if (ACPI_SUCCESS(status)) { /* If we succeeded, burst flag should now be present. */ if (cmd == EC_COMMAND_BURST_ENABLE) { ec_status = EC_GET_CSR(sc); if ((ec_status & EC_FLAG_BURST_MODE) == 0) status = AE_ERROR; } } else device_printf(sc->ec_dev, "EcCommand: no response to %#x\n", cmd); return (status); } static ACPI_STATUS EcRead(struct acpi_ec_softc *sc, UINT8 Address, UINT8 *Data) { ACPI_STATUS status; u_int gen_count; int retry; ACPI_SERIAL_ASSERT(ec); CTR1(KTR_ACPI, "ec read from %#x", Address); for (retry = 0; retry < 2; retry++) { status = EcCommand(sc, EC_COMMAND_READ); if (ACPI_FAILURE(status)) return (status); gen_count = sc->ec_gencount; EC_SET_DATA(sc, Address); status = EcWaitEvent(sc, EC_EVENT_OUTPUT_BUFFER_FULL, gen_count); if (ACPI_SUCCESS(status)) { *Data = EC_GET_DATA(sc); return (AE_OK); } if (ACPI_FAILURE(EcCheckStatus(sc, "retr_check", EC_EVENT_INPUT_BUFFER_EMPTY))) break; } device_printf(sc->ec_dev, "EcRead: failed waiting to get data\n"); return (status); } static ACPI_STATUS EcWrite(struct acpi_ec_softc *sc, UINT8 Address, UINT8 Data) { ACPI_STATUS status; u_int gen_count; ACPI_SERIAL_ASSERT(ec); CTR2(KTR_ACPI, "ec write to %#x, data %#x", Address, Data); status = EcCommand(sc, EC_COMMAND_WRITE); if (ACPI_FAILURE(status)) return (status); gen_count = sc->ec_gencount; EC_SET_DATA(sc, Address); status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY, gen_count); if (ACPI_FAILURE(status)) { device_printf(sc->ec_dev, "EcWrite: failed waiting for sent address\n"); return (status); } gen_count = sc->ec_gencount; EC_SET_DATA(sc, Data); status = EcWaitEvent(sc, EC_EVENT_INPUT_BUFFER_EMPTY, gen_count); if (ACPI_FAILURE(status)) { device_printf(sc->ec_dev, "EcWrite: failed waiting for sent data\n"); return (status); } return (AE_OK); }