Index: head/sys/arm/arm/physmem.c =================================================================== --- head/sys/arm/arm/physmem.c (revision 360081) +++ head/sys/arm/arm/physmem.c (nonexistent) @@ -1,406 +0,0 @@ -/*- - * SPDX-License-Identifier: BSD-2-Clause-FreeBSD - * - * Copyright (c) 2014 Ian Lepore - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ - -#include -__FBSDID("$FreeBSD$"); - -#include "opt_acpi.h" -#include "opt_ddb.h" - -/* - * Routines for describing and initializing anything related to physical memory. - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -/* - * These structures are used internally to keep track of regions of physical - * ram, and regions within the physical ram that need to be excluded. An - * exclusion region can be excluded from crash dumps, from the vm pool of pages - * that can be allocated, or both, depending on the exclusion flags associated - * with the region. - */ -#ifdef DEV_ACPI -#define MAX_HWCNT 32 /* ACPI needs more regions */ -#define MAX_EXCNT 32 -#else -#define MAX_HWCNT 16 -#define MAX_EXCNT 16 -#endif - -#if defined(__arm__) -#define MAX_PHYS_ADDR 0xFFFFFFFFull -#define pm_btop(x) arm32_btop(x) -#elif defined(__aarch64__) -#define MAX_PHYS_ADDR 0xFFFFFFFFFFFFFFFFull -#define pm_btop(x) arm64_btop(x) -#endif - -struct region { - vm_paddr_t addr; - vm_size_t size; - uint32_t flags; -}; - -static struct region hwregions[MAX_HWCNT]; -static struct region exregions[MAX_EXCNT]; - -static size_t hwcnt; -static size_t excnt; - -/* - * realmem is the total number of hardware pages, excluded or not. - * Maxmem is one greater than the last physical page number. - */ -long realmem; -long Maxmem; - -/* The address at which the kernel was loaded. Set early in initarm(). */ -vm_paddr_t arm_physmem_kernaddr; - -/* - * Print the contents of the physical and excluded region tables using the - * provided printf-like output function (which will be either printf or - * db_printf). - */ -static void -physmem_dump_tables(int (*prfunc)(const char *, ...)) -{ - int flags, i; - uintmax_t addr, size; - const unsigned int mbyte = 1024 * 1024; - - prfunc("Physical memory chunk(s):\n"); - for (i = 0; i < hwcnt; ++i) { - addr = hwregions[i].addr; - size = hwregions[i].size; - prfunc(" 0x%08jx - 0x%08jx, %5ju MB (%7ju pages)\n", addr, - addr + size - 1, size / mbyte, size / PAGE_SIZE); - } - - prfunc("Excluded memory regions:\n"); - for (i = 0; i < excnt; ++i) { - addr = exregions[i].addr; - size = exregions[i].size; - flags = exregions[i].flags; - prfunc(" 0x%08jx - 0x%08jx, %5ju MB (%7ju pages) %s %s\n", - addr, addr + size - 1, size / mbyte, size / PAGE_SIZE, - (flags & EXFLAG_NOALLOC) ? "NoAlloc" : "", - (flags & EXFLAG_NODUMP) ? "NoDump" : ""); - } - -#ifdef DEBUG - prfunc("Avail lists:\n"); - for (i = 0; phys_avail[i] != 0; ++i) { - prfunc(" phys_avail[%d] 0x%08x\n", i, phys_avail[i]); - } - for (i = 0; dump_avail[i] != 0; ++i) { - prfunc(" dump_avail[%d] 0x%08x\n", i, dump_avail[i]); - } -#endif -} - -/* - * Print the contents of the static mapping table. Used for bootverbose. - */ -void -arm_physmem_print_tables(void) -{ - - physmem_dump_tables(printf); -} - -/* - * Walk the list of hardware regions, processing it against the list of - * exclusions that contain the given exflags, and generating an "avail list". - * - * Updates the value at *pavail with the sum of all pages in all hw regions. - * - * Returns the number of pages of non-excluded memory added to the avail list. - */ -static size_t -regions_to_avail(vm_paddr_t *avail, uint32_t exflags, size_t maxavail, - long *pavail, long *prealmem) -{ - size_t acnt, exi, hwi; - uint64_t end, start, xend, xstart; - long availmem, totalmem; - const struct region *exp, *hwp; - - totalmem = 0; - availmem = 0; - acnt = 0; - for (hwi = 0, hwp = hwregions; hwi < hwcnt; ++hwi, ++hwp) { - start = hwp->addr; - end = hwp->size + start; - totalmem += pm_btop((vm_offset_t)(end - start)); - for (exi = 0, exp = exregions; exi < excnt; ++exi, ++exp) { - /* - * If the excluded region does not match given flags, - * continue checking with the next excluded region. - */ - if ((exp->flags & exflags) == 0) - continue; - xstart = exp->addr; - xend = exp->size + xstart; - /* - * If the excluded region ends before this hw region, - * continue checking with the next excluded region. - */ - if (xend <= start) - continue; - /* - * If the excluded region begins after this hw region - * we're done because both lists are sorted. - */ - if (xstart >= end) - break; - /* - * If the excluded region completely covers this hw - * region, shrink this hw region to zero size. - */ - if ((start >= xstart) && (end <= xend)) { - start = xend; - end = xend; - break; - } - /* - * If the excluded region falls wholly within this hw - * region without abutting or overlapping the beginning - * or end, create an available entry from the leading - * fragment, then adjust the start of this hw region to - * the end of the excluded region, and continue checking - * the next excluded region because another exclusion - * could affect the remainder of this hw region. - */ - if ((xstart > start) && (xend < end)) { - if (acnt > 0 && - avail[acnt - 1] == (vm_paddr_t)start) { - avail[acnt - 1] = (vm_paddr_t)xstart; - } else { - avail[acnt++] = (vm_paddr_t)start; - avail[acnt++] = (vm_paddr_t)xstart; - } - availmem += - pm_btop((vm_offset_t)(xstart - start)); - start = xend; - continue; - } - /* - * We know the excluded region overlaps either the start - * or end of this hardware region (but not both), trim - * the excluded portion off the appropriate end. - */ - if (xstart <= start) - start = xend; - else - end = xstart; - } - /* - * If the trimming actions above left a non-zero size, create an - * available entry for it. - */ - if (end > start) { - if (acnt > 0 && avail[acnt - 1] == (vm_paddr_t)start) { - avail[acnt - 1] = (vm_paddr_t)end; - } else { - avail[acnt++] = (vm_paddr_t)start; - avail[acnt++] = (vm_paddr_t)end; - } - availmem += pm_btop((vm_offset_t)(end - start)); - } - if (acnt >= maxavail) - panic("Not enough space in the dump/phys_avail arrays"); - } - - if (pavail != NULL) - *pavail = availmem; - if (prealmem != NULL) - *prealmem = totalmem; - return (acnt); -} - -/* - * Insertion-sort a new entry into a regions list; sorted by start address. - */ -static size_t -insert_region(struct region *regions, size_t rcnt, vm_paddr_t addr, - vm_size_t size, uint32_t flags) -{ - size_t i; - struct region *ep, *rp; - - ep = regions + rcnt; - for (i = 0, rp = regions; i < rcnt; ++i, ++rp) { - if (rp->addr == addr && rp->size == size) /* Pure dup. */ - return (rcnt); - if (flags == rp->flags) { - if (addr + size == rp->addr) { - rp->addr = addr; - rp->size += size; - return (rcnt); - } else if (rp->addr + rp->size == addr) { - rp->size += size; - return (rcnt); - } - } - if (addr < rp->addr) { - bcopy(rp, rp + 1, (ep - rp) * sizeof(*rp)); - break; - } - } - rp->addr = addr; - rp->size = size; - rp->flags = flags; - rcnt++; - - return (rcnt); -} - -/* - * Add a hardware memory region. - */ -void -arm_physmem_hardware_region(uint64_t pa, uint64_t sz) -{ - vm_offset_t adj; - - /* - * Filter out the page at PA 0x00000000. The VM can't handle it, as - * pmap_extract() == 0 means failure. - */ - if (pa == 0) { - if (sz <= PAGE_SIZE) - return; - pa = PAGE_SIZE; - sz -= PAGE_SIZE; - } else if (pa > MAX_PHYS_ADDR) { - /* This range is past usable memory, ignore it */ - return; - } - - /* - * Also filter out the page at the end of the physical address space -- - * if addr is non-zero and addr+size is zero we wrapped to the next byte - * beyond what vm_paddr_t can express. That leads to a NULL pointer - * deref early in startup; work around it by leaving the last page out. - * - * XXX This just in: subtract out a whole megabyte, not just 1 page. - * Reducing the size by anything less than 1MB results in the NULL - * pointer deref in _vm_map_lock_read(). Better to give up a megabyte - * than leave some folks with an unusable system while we investigate. - */ - if ((pa + sz) > (MAX_PHYS_ADDR - 1024 * 1024)) { - sz = MAX_PHYS_ADDR - pa + 1; - if (sz <= 1024 * 1024) - return; - sz -= 1024 * 1024; - } - - /* - * Round the starting address up to a page boundary, and truncate the - * ending page down to a page boundary. - */ - adj = round_page(pa) - pa; - pa = round_page(pa); - sz = trunc_page(sz - adj); - - if (sz > 0 && hwcnt < nitems(hwregions)) - hwcnt = insert_region(hwregions, hwcnt, pa, sz, 0); -} - -/* - * Add an exclusion region. - */ -void -arm_physmem_exclude_region(vm_paddr_t pa, vm_size_t sz, uint32_t exflags) -{ - vm_offset_t adj; - - /* - * Truncate the starting address down to a page boundary, and round the - * ending page up to a page boundary. - */ - adj = pa - trunc_page(pa); - pa = trunc_page(pa); - sz = round_page(sz + adj); - - if (excnt >= nitems(exregions)) - panic("failed to exclude region %#jx-%#jx", (uintmax_t)pa, - (uintmax_t)(pa + sz)); - excnt = insert_region(exregions, excnt, pa, sz, exflags); -} - -size_t -arm_physmem_avail(vm_paddr_t *avail, size_t maxavail) -{ - - return (regions_to_avail(avail, EXFLAG_NOALLOC, maxavail, NULL, NULL)); -} - -/* - * Process all the regions added earlier into the global avail lists. - * - * Updates the kernel global 'physmem' with the number of physical pages - * available for use (all pages not in any exclusion region). - * - * Updates the kernel global 'Maxmem' with the page number one greater then the - * last page of physical memory in the system. - */ -void -arm_physmem_init_kernel_globals(void) -{ - size_t nextidx; - - regions_to_avail(dump_avail, EXFLAG_NODUMP, PHYS_AVAIL_ENTRIES, NULL, - NULL); - nextidx = regions_to_avail(phys_avail, EXFLAG_NOALLOC, - PHYS_AVAIL_ENTRIES, &physmem, &realmem); - if (nextidx == 0) - panic("No memory entries in phys_avail"); - Maxmem = atop(phys_avail[nextidx - 1]); -} - -#ifdef DDB -#include - -DB_SHOW_COMMAND(physmem, db_show_physmem) -{ - - physmem_dump_tables(db_printf); -} - -#endif /* DDB */ - Property changes on: head/sys/arm/arm/physmem.c ___________________________________________________________________ Deleted: svn:eol-style ## -1 +0,0 ## -native \ No newline at end of property Deleted: svn:keywords ## -1 +0,0 ## -FreeBSD=%H \ No newline at end of property Deleted: svn:mime-type ## -1 +0,0 ## -text/plain \ No newline at end of property Index: head/sys/arm/arm/machdep.c =================================================================== --- head/sys/arm/arm/machdep.c (revision 360081) +++ head/sys/arm/arm/machdep.c (revision 360082) @@ -1,1307 +1,1309 @@ /* $NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $ */ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 2004 Olivier Houchard * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependent functions for kernel setup * * Created : 17/09/94 * Updated : 18/04/01 updated for new wscons */ #include "opt_ddb.h" #include "opt_kstack_pages.h" #include "opt_platform.h" #include "opt_sched.h" #include "opt_timer.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #ifdef FDT #include #include #endif #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \ defined(COMPAT_FREEBSD9) #error FreeBSD/arm doesn't provide compatibility with releases prior to 10 #endif #if __ARM_ARCH >= 6 && !defined(INTRNG) #error armv6 requires INTRNG #endif #ifndef _ARM_ARCH_5E #error FreeBSD requires ARMv5 or later #endif struct pcpu __pcpu[MAXCPU]; struct pcpu *pcpup = &__pcpu[0]; static struct trapframe proc0_tf; uint32_t cpu_reset_address = 0; int cold = 1; vm_offset_t vector_page; +/* The address at which the kernel was loaded. Set early in initarm(). */ +vm_paddr_t arm_physmem_kernaddr; + int (*_arm_memcpy)(void *, void *, int, int) = NULL; int (*_arm_bzero)(void *, int, int) = NULL; int _min_memcpy_size = 0; int _min_bzero_size = 0; extern int *end; #ifdef FDT vm_paddr_t pmap_pa; #if __ARM_ARCH >= 6 vm_offset_t systempage; vm_offset_t irqstack; vm_offset_t undstack; vm_offset_t abtstack; #else /* * This is the number of L2 page tables required for covering max * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf, * stacks etc.), uprounded to be divisible by 4. */ #define KERNEL_PT_MAX 78 static struct pv_addr kernel_pt_table[KERNEL_PT_MAX]; struct pv_addr systempage; static struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; static struct pv_addr kernelstack; #endif /* __ARM_ARCH >= 6 */ #endif /* FDT */ #ifdef PLATFORM static delay_func *delay_impl; static void *delay_arg; #endif struct kva_md_info kmi; - /* * arm32_vector_init: * * Initialize the vector page, and select whether or not to * relocate the vectors. * * NOTE: We expect the vector page to be mapped at its expected * destination. */ extern unsigned int page0[], page0_data[]; void arm_vector_init(vm_offset_t va, int which) { unsigned int *vectors = (int *) va; unsigned int *vectors_data = vectors + (page0_data - page0); int vec; /* * Loop through the vectors we're taking over, and copy the * vector's insn and data word. */ for (vec = 0; vec < ARM_NVEC; vec++) { if ((which & (1 << vec)) == 0) { /* Don't want to take over this vector. */ continue; } vectors[vec] = page0[vec]; vectors_data[vec] = page0_data[vec]; } /* Now sync the vectors. */ icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int)); vector_page = va; #if __ARM_ARCH < 6 if (va == ARM_VECTORS_HIGH) { /* * Enable high vectors in the system control reg (SCTLR). * * Assume the MD caller knows what it's doing here, and really * does want the vector page relocated. * * Note: This has to be done here (and not just in * cpu_setup()) because the vector page needs to be * accessible *before* cpu_startup() is called. * Think ddb(9) ... */ cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC); } #endif } static void cpu_startup(void *dummy) { struct pcb *pcb = thread0.td_pcb; const unsigned int mbyte = 1024 * 1024; #if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE) vm_page_t m; #endif identify_arm_cpu(); vm_ksubmap_init(&kmi); /* * Display the RAM layout. */ printf("real memory = %ju (%ju MB)\n", (uintmax_t)arm32_ptob(realmem), (uintmax_t)arm32_ptob(realmem) / mbyte); printf("avail memory = %ju (%ju MB)\n", (uintmax_t)arm32_ptob(vm_free_count()), (uintmax_t)arm32_ptob(vm_free_count()) / mbyte); if (bootverbose) { - arm_physmem_print_tables(); + physmem_print_tables(); devmap_print_table(); } bufinit(); vm_pager_bufferinit(); pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack + USPACE_SVC_STACK_TOP; pmap_set_pcb_pagedir(kernel_pmap, pcb); #if __ARM_ARCH < 6 vector_page_setprot(VM_PROT_READ); pmap_postinit(); #ifdef ARM_CACHE_LOCK_ENABLE pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS); arm_lock_cache_line(ARM_TP_ADDRESS); #else m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO); pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m)); #endif *(uint32_t *)ARM_RAS_START = 0; *(uint32_t *)ARM_RAS_END = 0xffffffff; #endif } SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len); } /* Get current clock frequency for the given cpu id. */ int cpu_est_clockrate(int cpu_id, uint64_t *rate) { #if __ARM_ARCH >= 6 struct pcpu *pc; pc = pcpu_find(cpu_id); if (pc == NULL || rate == NULL) return (EINVAL); if (pc->pc_clock == 0) return (EOPNOTSUPP); *rate = pc->pc_clock; return (0); #else return (ENXIO); #endif } void cpu_idle(int busy) { CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu); spinlock_enter(); #ifndef NO_EVENTTIMERS if (!busy) cpu_idleclock(); #endif if (!sched_runnable()) cpu_sleep(0); #ifndef NO_EVENTTIMERS if (!busy) cpu_activeclock(); #endif spinlock_exit(); CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu); } int cpu_idle_wakeup(int cpu) { return (0); } #ifdef NO_EVENTTIMERS /* * Most ARM platforms don't need to do anything special to init their clocks * (they get intialized during normal device attachment), and by not defining a * cpu_initclocks() function they get this generic one. Any platform that needs * to do something special can just provide their own implementation, which will * override this one due to the weak linkage. */ void arm_generic_initclocks(void) { } __weak_reference(arm_generic_initclocks, cpu_initclocks); #else void cpu_initclocks(void) { #ifdef SMP if (PCPU_GET(cpuid) == 0) cpu_initclocks_bsp(); else cpu_initclocks_ap(); #else cpu_initclocks_bsp(); #endif } #endif #ifdef PLATFORM void arm_set_delay(delay_func *impl, void *arg) { KASSERT(impl != NULL, ("No DELAY implementation")); delay_impl = impl; delay_arg = arg; } void DELAY(int usec) { TSENTER(); delay_impl(usec, delay_arg); TSEXIT(); } #endif void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { } void spinlock_enter(void) { struct thread *td; register_t cspr; td = curthread; if (td->td_md.md_spinlock_count == 0) { cspr = disable_interrupts(PSR_I | PSR_F); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_cspr = cspr; critical_enter(); } else td->td_md.md_spinlock_count++; } void spinlock_exit(void) { struct thread *td; register_t cspr; td = curthread; cspr = td->td_md.md_saved_cspr; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) { critical_exit(); restore_interrupts(cspr); } } /* * Clear registers on exec */ void exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *tf = td->td_frame; memset(tf, 0, sizeof(*tf)); tf->tf_usr_sp = stack; tf->tf_usr_lr = imgp->entry_addr; tf->tf_svc_lr = 0x77777777; tf->tf_pc = imgp->entry_addr; tf->tf_spsr = PSR_USR32_MODE; } #ifdef VFP /* * Get machine VFP context. */ void get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp) { struct pcb *pcb; pcb = td->td_pcb; if (td == curthread) { critical_enter(); vfp_store(&pcb->pcb_vfpstate, false); critical_exit(); } else MPASS(TD_IS_SUSPENDED(td)); memcpy(vfp->mcv_reg, pcb->pcb_vfpstate.reg, sizeof(vfp->mcv_reg)); vfp->mcv_fpscr = pcb->pcb_vfpstate.fpscr; } /* * Set machine VFP context. */ void set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp) { struct pcb *pcb; pcb = td->td_pcb; if (td == curthread) { critical_enter(); vfp_discard(td); critical_exit(); } else MPASS(TD_IS_SUSPENDED(td)); memcpy(pcb->pcb_vfpstate.reg, vfp->mcv_reg, sizeof(pcb->pcb_vfpstate.reg)); pcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr; } #endif int arm_get_vfpstate(struct thread *td, void *args) { int rv; struct arm_get_vfpstate_args ua; mcontext_vfp_t mcontext_vfp; rv = copyin(args, &ua, sizeof(ua)); if (rv != 0) return (rv); if (ua.mc_vfp_size != sizeof(mcontext_vfp_t)) return (EINVAL); #ifdef VFP get_vfpcontext(td, &mcontext_vfp); #else bzero(&mcontext_vfp, sizeof(mcontext_vfp)); #endif rv = copyout(&mcontext_vfp, ua.mc_vfp, sizeof(mcontext_vfp)); if (rv != 0) return (rv); return (0); } /* * Get machine context. */ int get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret) { struct trapframe *tf = td->td_frame; __greg_t *gr = mcp->__gregs; if (clear_ret & GET_MC_CLEAR_RET) { gr[_REG_R0] = 0; gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C; } else { gr[_REG_R0] = tf->tf_r0; gr[_REG_CPSR] = tf->tf_spsr; } gr[_REG_R1] = tf->tf_r1; gr[_REG_R2] = tf->tf_r2; gr[_REG_R3] = tf->tf_r3; gr[_REG_R4] = tf->tf_r4; gr[_REG_R5] = tf->tf_r5; gr[_REG_R6] = tf->tf_r6; gr[_REG_R7] = tf->tf_r7; gr[_REG_R8] = tf->tf_r8; gr[_REG_R9] = tf->tf_r9; gr[_REG_R10] = tf->tf_r10; gr[_REG_R11] = tf->tf_r11; gr[_REG_R12] = tf->tf_r12; gr[_REG_SP] = tf->tf_usr_sp; gr[_REG_LR] = tf->tf_usr_lr; gr[_REG_PC] = tf->tf_pc; mcp->mc_vfp_size = 0; mcp->mc_vfp_ptr = NULL; memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare)); return (0); } /* * Set machine context. * * However, we don't set any but the user modifiable flags, and we won't * touch the cs selector. */ int set_mcontext(struct thread *td, mcontext_t *mcp) { mcontext_vfp_t mc_vfp, *vfp; struct trapframe *tf = td->td_frame; const __greg_t *gr = mcp->__gregs; int spsr; /* * Make sure the processor mode has not been tampered with and * interrupts have not been disabled. */ spsr = gr[_REG_CPSR]; if ((spsr & PSR_MODE) != PSR_USR32_MODE || (spsr & (PSR_I | PSR_F)) != 0) return (EINVAL); #ifdef WITNESS if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) { printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n", td->td_proc->p_comm, __func__, mcp->mc_vfp_size, mcp->mc_vfp_size); } else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) { printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n", td->td_proc->p_comm, __func__); } #endif if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) { if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0) return (EFAULT); vfp = &mc_vfp; } else { vfp = NULL; } tf->tf_r0 = gr[_REG_R0]; tf->tf_r1 = gr[_REG_R1]; tf->tf_r2 = gr[_REG_R2]; tf->tf_r3 = gr[_REG_R3]; tf->tf_r4 = gr[_REG_R4]; tf->tf_r5 = gr[_REG_R5]; tf->tf_r6 = gr[_REG_R6]; tf->tf_r7 = gr[_REG_R7]; tf->tf_r8 = gr[_REG_R8]; tf->tf_r9 = gr[_REG_R9]; tf->tf_r10 = gr[_REG_R10]; tf->tf_r11 = gr[_REG_R11]; tf->tf_r12 = gr[_REG_R12]; tf->tf_usr_sp = gr[_REG_SP]; tf->tf_usr_lr = gr[_REG_LR]; tf->tf_pc = gr[_REG_PC]; tf->tf_spsr = gr[_REG_CPSR]; #ifdef VFP if (vfp != NULL) set_vfpcontext(td, vfp); #endif return (0); } void sendsig(catcher, ksi, mask) sig_t catcher; ksiginfo_t *ksi; sigset_t *mask; { struct thread *td; struct proc *p; struct trapframe *tf; struct sigframe *fp, frame; struct sigacts *psp; struct sysentvec *sysent; int onstack; int sig; int code; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; code = ksi->ksi_code; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); tf = td->td_frame; onstack = sigonstack(tf->tf_usr_sp); CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm, catcher, sig); /* Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size); #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else fp = (struct sigframe *)td->td_frame->tf_usr_sp; /* make room on the stack */ fp--; /* make the stack aligned */ fp = (struct sigframe *)STACKALIGN(fp); /* Populate the siginfo frame. */ bzero(&frame, sizeof(frame)); get_mcontext(td, &frame.sf_uc.uc_mcontext, 0); #ifdef VFP get_vfpcontext(td, &frame.sf_vfp); frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp); frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp; #else frame.sf_uc.uc_mcontext.mc_vfp_size = 0; frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL; #endif frame.sf_si = ksi->ksi_info; frame.sf_uc.uc_sigmask = *mask; frame.sf_uc.uc_stack = td->td_sigstk; frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) != 0 ? (onstack ? SS_ONSTACK : 0) : SS_DISABLE; mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(td->td_proc); /* Copy the sigframe out to the user's stack. */ if (copyout(&frame, fp, sizeof(*fp)) != 0) { /* Process has trashed its stack. Kill it. */ CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp); PROC_LOCK(p); sigexit(td, SIGILL); } /* * Build context to run handler in. We invoke the handler * directly, only returning via the trampoline. Note the * trampoline version numbers are coordinated with machine- * dependent code in libc. */ tf->tf_r0 = sig; tf->tf_r1 = (register_t)&fp->sf_si; tf->tf_r2 = (register_t)&fp->sf_uc; /* the trampoline uses r5 as the uc address */ tf->tf_r5 = (register_t)&fp->sf_uc; tf->tf_pc = (register_t)catcher; tf->tf_usr_sp = (register_t)fp; sysent = p->p_sysent; if (sysent->sv_sigcode_base != 0) tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base; else tf->tf_usr_lr = (register_t)(sysent->sv_psstrings - *(sysent->sv_szsigcode)); /* Set the mode to enter in the signal handler */ #if __ARM_ARCH >= 7 if ((register_t)catcher & 1) tf->tf_spsr |= PSR_T; else tf->tf_spsr &= ~PSR_T; #endif CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr, tf->tf_usr_sp); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } int sys_sigreturn(td, uap) struct thread *td; struct sigreturn_args /* { const struct __ucontext *sigcntxp; } */ *uap; { ucontext_t uc; int error; if (uap == NULL) return (EFAULT); if (copyin(uap->sigcntxp, &uc, sizeof(uc))) return (EFAULT); /* Restore register context. */ error = set_mcontext(td, &uc.uc_mcontext); if (error != 0) return (error); /* Restore signal mask. */ kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); return (EJUSTRETURN); } /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_regs.sf_r4 = tf->tf_r4; pcb->pcb_regs.sf_r5 = tf->tf_r5; pcb->pcb_regs.sf_r6 = tf->tf_r6; pcb->pcb_regs.sf_r7 = tf->tf_r7; pcb->pcb_regs.sf_r8 = tf->tf_r8; pcb->pcb_regs.sf_r9 = tf->tf_r9; pcb->pcb_regs.sf_r10 = tf->tf_r10; pcb->pcb_regs.sf_r11 = tf->tf_r11; pcb->pcb_regs.sf_r12 = tf->tf_r12; pcb->pcb_regs.sf_pc = tf->tf_pc; pcb->pcb_regs.sf_lr = tf->tf_usr_lr; pcb->pcb_regs.sf_sp = tf->tf_usr_sp; } void pcpu0_init(void) { #if __ARM_ARCH >= 6 set_curthread(&thread0); #endif pcpu_init(pcpup, 0, sizeof(struct pcpu)); PCPU_SET(curthread, &thread0); } /* * Initialize proc0 */ void init_proc0(vm_offset_t kstack) { proc_linkup0(&proc0, &thread0); thread0.td_kstack = kstack; thread0.td_kstack_pages = kstack_pages; thread0.td_pcb = (struct pcb *)(thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE) - 1; thread0.td_pcb->pcb_flags = 0; thread0.td_pcb->pcb_vfpcpu = -1; thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; } #if __ARM_ARCH >= 6 void set_stackptrs(int cpu) { set_stackptr(PSR_IRQ32_MODE, irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); set_stackptr(PSR_ABT32_MODE, abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); set_stackptr(PSR_UND32_MODE, undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); } #else void set_stackptrs(int cpu) { set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); set_stackptr(PSR_UND32_MODE, undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1))); } #endif static void arm_kdb_init(void) { kdb_init(); #ifdef KDB if (boothowto & RB_KDB) kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); #endif } #ifdef FDT #if __ARM_ARCH < 6 void * initarm(struct arm_boot_params *abp) { struct mem_region mem_regions[FDT_MEM_REGIONS]; struct pv_addr kernel_l1pt; struct pv_addr dpcpu; vm_offset_t dtbp, freemempos, l2_start, lastaddr; uint64_t memsize; uint32_t l2size; char *env; void *kmdp; u_int l1pagetable; int i, j, err_devmap, mem_regions_sz; lastaddr = parse_boot_param(abp); arm_physmem_kernaddr = abp->abp_physaddr; memsize = 0; cpuinfo_init(); set_cpufuncs(); /* * Find the dtb passed in by the boot loader. */ kmdp = preload_search_by_type("elf kernel"); if (kmdp != NULL) dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t); else dtbp = (vm_offset_t)NULL; #if defined(FDT_DTB_STATIC) /* * In case the device tree blob was not retrieved (from metadata) try * to use the statically embedded one. */ if (dtbp == (vm_offset_t)NULL) dtbp = (vm_offset_t)&fdt_static_dtb; #endif if (OF_install(OFW_FDT, 0) == FALSE) panic("Cannot install FDT"); if (OF_init((void *)dtbp) != 0) panic("OF_init failed with the found device tree"); /* Grab physical memory regions information from device tree. */ if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0) panic("Cannot get physical memory regions"); - arm_physmem_hardware_regions(mem_regions, mem_regions_sz); + physmem_hardware_regions(mem_regions, mem_regions_sz); /* Grab reserved memory regions information from device tree. */ if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0) - arm_physmem_exclude_regions(mem_regions, mem_regions_sz, + physmem_exclude_regions(mem_regions, mem_regions_sz, EXFLAG_NODUMP | EXFLAG_NOALLOC); /* Platform-specific initialisation */ platform_probe_and_attach(); pcpu0_init(); /* Do basic tuning, hz etc */ init_param1(); /* Calculate number of L2 tables needed for mapping vm_page_array */ l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page); l2size = (l2size >> L1_S_SHIFT) + 1; /* * Add one table for end of kernel map, one for stacks, msgbuf and * L1 and L2 tables map, one for vectors map and two for * l2 structures from pmap_bootstrap. */ l2size += 5; /* Make it divisible by 4 */ l2size = (l2size + 3) & ~3; freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (i = 0, j = 0; i < l2size; ++i) { if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[i], L2_TABLE_SIZE / PAGE_SIZE); j = i; } else { kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va + L2_TABLE_SIZE_REAL * (i - j); kernel_pt_table[i].pv_pa = kernel_pt_table[i].pv_va - KERNVIRTADDR + abp->abp_physaddr; } } /* * Allocate a page for the system page mapped to 0x00000000 * or 0xffff0000. This page will just contain the system vectors * and can be shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU); valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU); valloc_pages(undstack, UND_STACK_SIZE * MAXCPU); valloc_pages(kernelstack, kstack_pages); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* * Try to map as much as possible of kernel text and data using * 1MB section mapping and for the rest of initial kernel address * space use L2 coarse tables. * * Link L2 tables for mapping remainder of kernel (modulo 1MB) * and kernel structures */ l2_start = lastaddr & ~(L1_S_OFFSET); for (i = 0 ; i < l2size - 1; i++) pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE, &kernel_pt_table[i]); pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE; /* Map kernel code and data */ pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr, (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map L1 directory and allocated L2 page tables */ pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va, kernel_pt_table[0].pv_pa, L2_TABLE_SIZE_REAL * l2size, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); /* Map allocated DPCPU, stacks and msgbuf */ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, freemempos - dpcpu.pv_va, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Link and map the vector page */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH, &kernel_pt_table[l2size - 1]); pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE); /* Establish static device mappings. */ err_devmap = platform_devmap_init(); devmap_bootstrap(l1pagetable, NULL); vm_max_kernel_address = platform_lastaddr(); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT); pmap_pa = kernel_l1pt.pv_pa; cpu_setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)); /* * Now that proper page tables are installed, call cpu_setup() to enable * instruction and data caches and other chip-specific features. */ cpu_setup(); /* * Only after the SOC registers block is mapped we can perform device * tree fixups, as they may attempt to read parameters from hardware. */ OF_interpret("perform-fixup", 0); platform_gpio_init(); cninit(); debugf("initarm: console initialized\n"); debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp); debugf(" boothowto = 0x%08x\n", boothowto); debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp); arm_print_kenv(); env = kern_getenv("kernelname"); if (env != NULL) { strlcpy(kernelname, env, sizeof(kernelname)); freeenv(env); } if (err_devmap != 0) printf("WARNING: could not fully configure devmap, error=%d\n", err_devmap); platform_late_init(); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE); set_stackptrs(0); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in cpu_setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); undefined_init(); init_proc0(kernelstack.pv_va); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_bootstrap(freemempos, &kernel_l1pt); msgbufp = (void *)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); /* * Exclude the kernel (and all the things we allocated which immediately * follow the kernel) from the VM allocation pool but not from crash * dumps. virtual_avail is a global variable which tracks the kva we've * "allocated" while setting up pmaps. * * Prepare the list of physical memory available to the vm subsystem. */ - arm_physmem_exclude_region(abp->abp_physaddr, + physmem_exclude_region(abp->abp_physaddr, (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC); - arm_physmem_init_kernel_globals(); + physmem_init_kernel_globals(); init_param2(physmem); dbg_monitor_init(); arm_kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); } #else /* __ARM_ARCH < 6 */ void * initarm(struct arm_boot_params *abp) { struct mem_region mem_regions[FDT_MEM_REGIONS]; vm_paddr_t lastaddr; vm_offset_t dtbp, kernelstack, dpcpu; char *env; void *kmdp; int err_devmap, mem_regions_sz; #ifdef EFI struct efi_map_header *efihdr; #endif /* get last allocated physical address */ arm_physmem_kernaddr = abp->abp_physaddr; lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr; set_cpufuncs(); cpuinfo_init(); /* * Find the dtb passed in by the boot loader. */ kmdp = preload_search_by_type("elf kernel"); dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t); #if defined(FDT_DTB_STATIC) /* * In case the device tree blob was not retrieved (from metadata) try * to use the statically embedded one. */ if (dtbp == (vm_offset_t)NULL) dtbp = (vm_offset_t)&fdt_static_dtb; #endif if (OF_install(OFW_FDT, 0) == FALSE) panic("Cannot install FDT"); if (OF_init((void *)dtbp) != 0) panic("OF_init failed with the found device tree"); #if defined(LINUX_BOOT_ABI) arm_parse_fdt_bootargs(); #endif #ifdef EFI efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); if (efihdr != NULL) { arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz); } else #endif { /* Grab physical memory regions information from device tree. */ if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0) panic("Cannot get physical memory regions"); } - arm_physmem_hardware_regions(mem_regions, mem_regions_sz); + physmem_hardware_regions(mem_regions, mem_regions_sz); /* Grab reserved memory regions information from device tree. */ if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0) - arm_physmem_exclude_regions(mem_regions, mem_regions_sz, + physmem_exclude_regions(mem_regions, mem_regions_sz, EXFLAG_NODUMP | EXFLAG_NOALLOC); /* * Set TEX remapping registers. * Setup kernel page tables and switch to kernel L1 page table. */ pmap_set_tex(); pmap_bootstrap_prepare(lastaddr); /* * If EARLY_PRINTF support is enabled, we need to re-establish the * mapping after pmap_bootstrap_prepare() switches to new page tables. * Note that we can only do the remapping if the VA is outside the * kernel, now that we have real virtual (not VA=PA) mappings in effect. * Early printf does not work between the time pmap_set_tex() does * cp15_prrr_set() and this code remaps the VA. */ #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE pmap_preboot_map_attr(SOCDEV_PA, SOCDEV_VA, 1024 * 1024, VM_PROT_READ | VM_PROT_WRITE, VM_MEMATTR_DEVICE); #endif /* * Now that proper page tables are installed, call cpu_setup() to enable * instruction and data caches and other chip-specific features. */ cpu_setup(); /* Platform-specific initialisation */ platform_probe_and_attach(); pcpu0_init(); /* Do basic tuning, hz etc */ init_param1(); /* * Allocate a page for the system page mapped to 0xffff0000 * This page will just contain the system vectors and can be * shared by all processes. */ systempage = pmap_preboot_get_pages(1); /* Map the vector page. */ pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH, 1); if (virtual_end >= ARM_VECTORS_HIGH) virtual_end = ARM_VECTORS_HIGH - 1; /* Allocate dynamic per-cpu area. */ dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu, 0); /* Allocate stacks for all modes */ irqstack = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU); abtstack = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU); undstack = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU ); kernelstack = pmap_preboot_get_vpages(kstack_pages); /* Allocate message buffer. */ msgbufp = (void *)pmap_preboot_get_vpages( round_page(msgbufsize) / PAGE_SIZE); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ set_stackptrs(0); mutex_init(); /* Establish static device mappings. */ err_devmap = platform_devmap_init(); devmap_bootstrap(0, NULL); vm_max_kernel_address = platform_lastaddr(); /* * Only after the SOC registers block is mapped we can perform device * tree fixups, as they may attempt to read parameters from hardware. */ OF_interpret("perform-fixup", 0); platform_gpio_init(); cninit(); /* * If we made a mapping for EARLY_PRINTF after pmap_bootstrap_prepare(), * undo it now that the normal console printf works. */ #if defined(EARLY_PRINTF) && defined(SOCDEV_PA) && defined(SOCDEV_VA) && SOCDEV_VA < KERNBASE pmap_kremove(SOCDEV_VA); #endif debugf("initarm: console initialized\n"); debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp); debugf(" boothowto = 0x%08x\n", boothowto); debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp); debugf(" lastaddr1: 0x%08x\n", lastaddr); arm_print_kenv(); env = kern_getenv("kernelname"); if (env != NULL) strlcpy(kernelname, env, sizeof(kernelname)); if (err_devmap != 0) printf("WARNING: could not fully configure devmap, error=%d\n", err_devmap); platform_late_init(); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in cpu_setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ /* Set stack for exception handlers */ undefined_init(); init_proc0(kernelstack); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); enable_interrupts(PSR_A); pmap_bootstrap(0); /* Exclude the kernel (and all the things we allocated which immediately * follow the kernel) from the VM allocation pool but not from crash * dumps. virtual_avail is a global variable which tracks the kva we've * "allocated" while setting up pmaps. * * Prepare the list of physical memory available to the vm subsystem. */ - arm_physmem_exclude_region(abp->abp_physaddr, + physmem_exclude_region(abp->abp_physaddr, pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC); - arm_physmem_init_kernel_globals(); + physmem_init_kernel_globals(); init_param2(physmem); /* Init message buffer. */ msgbufinit(msgbufp, msgbufsize); dbg_monitor_init(); arm_kdb_init(); /* Apply possible BP hardening. */ cpuinfo_init_bp_hardening(); return ((void *)STACKALIGN(thread0.td_pcb)); } #endif /* __ARM_ARCH < 6 */ #endif /* FDT */ Index: head/sys/arm/arm/machdep_boot.c =================================================================== --- head/sys/arm/arm/machdep_boot.c (revision 360081) +++ head/sys/arm/arm/machdep_boot.c (revision 360082) @@ -1,517 +1,517 @@ /*- * Copyright (c) 2004 Olivier Houchard * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_platform.h" #include "opt_ddb.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include +#include #include #include #if defined(LINUX_BOOT_ABI) #include #endif #include #include #include #include -#include #include /* For KERNVIRTADDR */ #ifdef FDT #include #include #endif #ifdef EFI #include #endif #ifdef DDB #include #endif #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif #ifdef LINUX_BOOT_ABI static char static_kenv[4096]; #endif extern int *end; static uint32_t board_revision; /* hex representation of uint64_t */ static char board_serial[32]; static char *loader_envp; #if defined(LINUX_BOOT_ABI) #define LBABI_MAX_BANKS 10 #define CMDLINE_GUARD "FreeBSD:" static uint32_t board_id; static struct arm_lbabi_tag *atag_list; static char linux_command_line[LBABI_MAX_COMMAND_LINE + 1]; static char atags[LBABI_MAX_COMMAND_LINE * 2]; #endif /* defined(LINUX_BOOT_ABI) */ SYSCTL_NODE(_hw, OID_AUTO, board, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Board attributes"); SYSCTL_UINT(_hw_board, OID_AUTO, revision, CTLFLAG_RD, &board_revision, 0, "Board revision"); SYSCTL_STRING(_hw_board, OID_AUTO, serial, CTLFLAG_RD, board_serial, 0, "Board serial"); int vfp_exists; SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD, &vfp_exists, 0, "Floating point support enabled"); void board_set_serial(uint64_t serial) { snprintf(board_serial, sizeof(board_serial)-1, "%016jx", serial); } void board_set_revision(uint32_t revision) { board_revision = revision; } static char * kenv_next(char *cp) { if (cp != NULL) { while (*cp != 0) cp++; cp++; if (*cp == 0) cp = NULL; } return (cp); } void arm_print_kenv(void) { char *cp; debugf("loader passed (static) kenv:\n"); if (loader_envp == NULL) { debugf(" no env, null ptr\n"); return; } debugf(" loader_envp = 0x%08x\n", (uint32_t)loader_envp); for (cp = loader_envp; cp != NULL; cp = kenv_next(cp)) debugf(" %x %s\n", (uint32_t)cp, cp); } #if defined(LINUX_BOOT_ABI) /* Convert the U-Boot command line into FreeBSD kenv and boot options. */ static void cmdline_set_env(char *cmdline, const char *guard) { size_t guard_len; /* Skip leading spaces. */ while (isspace(*cmdline)) cmdline++; /* Test and remove guard. */ if (guard != NULL && guard[0] != '\0') { guard_len = strlen(guard); if (strncasecmp(cmdline, guard, guard_len) != 0) return; cmdline += guard_len; } boothowto |= boot_parse_cmdline(cmdline); } /* * Called for armv6 and newer. */ void arm_parse_fdt_bootargs(void) { #ifdef FDT if (loader_envp == NULL && fdt_get_chosen_bootargs(linux_command_line, LBABI_MAX_COMMAND_LINE) == 0) { init_static_kenv(static_kenv, sizeof(static_kenv)); cmdline_set_env(linux_command_line, CMDLINE_GUARD); } #endif } /* * Called for armv[45]. */ static vm_offset_t linux_parse_boot_param(struct arm_boot_params *abp) { struct arm_lbabi_tag *walker; uint32_t revision; uint64_t serial; int size; vm_offset_t lastaddr; #ifdef FDT struct fdt_header *dtb_ptr; uint32_t dtb_size; #endif /* * Linux boot ABI: r0 = 0, r1 is the board type (!= 0) and r2 * is atags or dtb pointer. If all of these aren't satisfied, * then punt. Unfortunately, it looks like DT enabled kernels * doesn't uses board type and U-Boot delivers 0 in r1 for them. */ if (abp->abp_r0 != 0 || abp->abp_r2 == 0) return (0); #ifdef FDT /* Test if r2 point to valid DTB. */ dtb_ptr = (struct fdt_header *)abp->abp_r2; if (fdt_check_header(dtb_ptr) == 0) { dtb_size = fdt_totalsize(dtb_ptr); return (fake_preload_metadata(abp, dtb_ptr, dtb_size)); } #endif board_id = abp->abp_r1; walker = (struct arm_lbabi_tag *)abp->abp_r2; if (ATAG_TAG(walker) != ATAG_CORE) return 0; atag_list = walker; while (ATAG_TAG(walker) != ATAG_NONE) { switch (ATAG_TAG(walker)) { case ATAG_CORE: break; case ATAG_MEM: - arm_physmem_hardware_region(walker->u.tag_mem.start, + physmem_hardware_region(walker->u.tag_mem.start, walker->u.tag_mem.size); break; case ATAG_INITRD2: break; case ATAG_SERIAL: serial = walker->u.tag_sn.high; serial <<= 32; serial |= walker->u.tag_sn.low; board_set_serial(serial); break; case ATAG_REVISION: revision = walker->u.tag_rev.rev; board_set_revision(revision); break; case ATAG_CMDLINE: size = ATAG_SIZE(walker) - sizeof(struct arm_lbabi_header); size = min(size, LBABI_MAX_COMMAND_LINE); strncpy(linux_command_line, walker->u.tag_cmd.command, size); linux_command_line[size] = '\0'; break; default: break; } walker = ATAG_NEXT(walker); } /* Save a copy for later */ bcopy(atag_list, atags, (char *)walker - (char *)atag_list + ATAG_SIZE(walker)); lastaddr = fake_preload_metadata(abp, NULL, 0); init_static_kenv(static_kenv, sizeof(static_kenv)); cmdline_set_env(linux_command_line, CMDLINE_GUARD); return lastaddr; } #endif #if defined(FREEBSD_BOOT_LOADER) static vm_offset_t freebsd_parse_boot_param(struct arm_boot_params *abp) { vm_offset_t lastaddr = 0; void *mdp; void *kmdp; #ifdef DDB vm_offset_t ksym_start; vm_offset_t ksym_end; #endif /* * Mask metadata pointer: it is supposed to be on page boundary. If * the first argument (mdp) doesn't point to a valid address the * bootloader must have passed us something else than the metadata * ptr, so we give up. Also give up if we cannot find metadta section * the loader creates that we get all this data out of. */ if ((mdp = (void *)(abp->abp_r0 & ~PAGE_MASK)) == NULL) return 0; preload_metadata = mdp; kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) return 0; boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); loader_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); init_static_kenv(loader_envp, 0); lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t); #ifdef DDB ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t); ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t); db_fetch_ksymtab(ksym_start, ksym_end); #endif return lastaddr; } #endif vm_offset_t default_parse_boot_param(struct arm_boot_params *abp) { vm_offset_t lastaddr; #if defined(LINUX_BOOT_ABI) if ((lastaddr = linux_parse_boot_param(abp)) != 0) return lastaddr; #endif #if defined(FREEBSD_BOOT_LOADER) if ((lastaddr = freebsd_parse_boot_param(abp)) != 0) return lastaddr; #endif /* Fall back to hardcoded metadata. */ lastaddr = fake_preload_metadata(abp, NULL, 0); return lastaddr; } /* * Stub version of the boot parameter parsing routine. We are * called early in initarm, before even VM has been initialized. * This routine needs to preserve any data that the boot loader * has passed in before the kernel starts to grow past the end * of the BSS, traditionally the place boot-loaders put this data. * * Since this is called so early, things that depend on the vm system * being setup (including access to some SoC's serial ports), about * all that can be done in this routine is to copy the arguments. * * This is the default boot parameter parsing routine. Individual * kernels/boards can override this weak function with one of their * own. We just fake metadata... */ __weak_reference(default_parse_boot_param, parse_boot_param); /* * Fake up a boot descriptor table */ vm_offset_t fake_preload_metadata(struct arm_boot_params *abp __unused, void *dtb_ptr, size_t dtb_size) { #ifdef DDB vm_offset_t zstart = 0, zend = 0; #endif vm_offset_t lastaddr; int i = 0; static uint32_t fake_preload[35]; fake_preload[i++] = MODINFO_NAME; fake_preload[i++] = strlen("kernel") + 1; strcpy((char*)&fake_preload[i++], "kernel"); i += 1; fake_preload[i++] = MODINFO_TYPE; fake_preload[i++] = strlen("elf kernel") + 1; strcpy((char*)&fake_preload[i++], "elf kernel"); i += 2; fake_preload[i++] = MODINFO_ADDR; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = KERNVIRTADDR; fake_preload[i++] = MODINFO_SIZE; fake_preload[i++] = sizeof(uint32_t); fake_preload[i++] = (uint32_t)&end - KERNVIRTADDR; #ifdef DDB if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) { fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4); fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM; fake_preload[i++] = sizeof(vm_offset_t); fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8); lastaddr = *(uint32_t *)(KERNVIRTADDR + 8); zend = lastaddr; zstart = *(uint32_t *)(KERNVIRTADDR + 4); db_fetch_ksymtab(zstart, zend); } else #endif lastaddr = (vm_offset_t)&end; if (dtb_ptr != NULL) { /* Copy DTB to KVA space and insert it into module chain. */ lastaddr = roundup(lastaddr, sizeof(int)); fake_preload[i++] = MODINFO_METADATA | MODINFOMD_DTBP; fake_preload[i++] = sizeof(uint32_t); fake_preload[i++] = (uint32_t)lastaddr; memmove((void *)lastaddr, dtb_ptr, dtb_size); lastaddr += dtb_size; lastaddr = roundup(lastaddr, sizeof(int)); } fake_preload[i++] = 0; fake_preload[i] = 0; preload_metadata = (void *)fake_preload; init_static_kenv(NULL, 0); return (lastaddr); } #ifdef EFI void arm_add_efi_map_entries(struct efi_map_header *efihdr, struct mem_region *mr, int *mrcnt) { struct efi_md *map, *p; const char *type; size_t efisz, memory_size; int ndesc, i, j; static const char *types[] = { "Reserved", "LoaderCode", "LoaderData", "BootServicesCode", "BootServicesData", "RuntimeServicesCode", "RuntimeServicesData", "ConventionalMemory", "UnusableMemory", "ACPIReclaimMemory", "ACPIMemoryNVS", "MemoryMappedIO", "MemoryMappedIOPortSpace", "PalCode", "PersistentMemory" }; *mrcnt = 0; /* * Memory map data provided by UEFI via the GetMemoryMap * Boot Services API. */ efisz = roundup2(sizeof(struct efi_map_header), 0x10); map = (struct efi_md *)((uint8_t *)efihdr + efisz); if (efihdr->descriptor_size == 0) return; ndesc = efihdr->memory_size / efihdr->descriptor_size; if (boothowto & RB_VERBOSE) printf("%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); memory_size = 0; for (i = 0, j = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p, efihdr->descriptor_size)) { if (boothowto & RB_VERBOSE) { if (p->md_type < nitems(types)) type = types[p->md_type]; else type = ""; printf("%23s %012llx %12p %08llx ", type, p->md_phys, p->md_virt, p->md_pages); if (p->md_attr & EFI_MD_ATTR_UC) printf("UC "); if (p->md_attr & EFI_MD_ATTR_WC) printf("WC "); if (p->md_attr & EFI_MD_ATTR_WT) printf("WT "); if (p->md_attr & EFI_MD_ATTR_WB) printf("WB "); if (p->md_attr & EFI_MD_ATTR_UCE) printf("UCE "); if (p->md_attr & EFI_MD_ATTR_WP) printf("WP "); if (p->md_attr & EFI_MD_ATTR_RP) printf("RP "); if (p->md_attr & EFI_MD_ATTR_XP) printf("XP "); if (p->md_attr & EFI_MD_ATTR_NV) printf("NV "); if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE) printf("MORE_RELIABLE "); if (p->md_attr & EFI_MD_ATTR_RO) printf("RO "); if (p->md_attr & EFI_MD_ATTR_RT) printf("RUNTIME"); printf("\n"); } switch (p->md_type) { case EFI_MD_TYPE_CODE: case EFI_MD_TYPE_DATA: case EFI_MD_TYPE_BS_CODE: case EFI_MD_TYPE_BS_DATA: case EFI_MD_TYPE_FREE: /* * We're allowed to use any entry with these types. */ break; default: continue; } j++; if (j >= FDT_MEM_REGIONS) break; mr[j].mr_start = p->md_phys; mr[j].mr_size = p->md_pages * PAGE_SIZE; memory_size += mr[j].mr_size; } *mrcnt = j; } #endif /* EFI */ Index: head/sys/arm/arm/mp_machdep.c =================================================================== --- head/sys/arm/arm/mp_machdep.c (revision 360081) +++ head/sys/arm/arm/mp_machdep.c (revision 360082) @@ -1,399 +1,398 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 Semihalf. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_ddb.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include -#include #include #include #ifdef VFP #include #endif #ifdef CPU_MV_PJ4B #include #endif /* used to hold the AP's until we are ready to release them */ struct mtx ap_boot_mtx; struct pcb stoppcbs[MAXCPU]; /* # of Applications processors */ volatile int mp_naps; /* Set to 1 once we're ready to let the APs out of the pen. */ volatile int aps_ready = 0; void set_stackptrs(int cpu); /* Temporary variables for init_secondary() */ void *dpcpu[MAXCPU - 1]; /* Determine if we running MP machine */ int cpu_mp_probe(void) { KASSERT(mp_ncpus != 0, ("cpu_mp_probe: mp_ncpus is unset")); CPU_SETOF(0, &all_cpus); return (mp_ncpus > 1); } /* Start Application Processor via platform specific function */ static int check_ap(void) { uint32_t ms; for (ms = 0; ms < 2000; ++ms) { if ((mp_naps + 1) == mp_ncpus) return (0); /* success */ else DELAY(1000); } return (-2); } /* Initialize and fire up non-boot processors */ void cpu_mp_start(void) { int error, i; mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN); /* Reserve memory for application processors */ for(i = 0; i < (mp_ncpus - 1); i++) dpcpu[i] = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO); dcache_wbinv_poc_all(); /* Initialize boot code and start up processors */ platform_mp_start_ap(); /* Check if ap's started properly */ error = check_ap(); if (error) printf("WARNING: Some AP's failed to start\n"); else for (i = 1; i < mp_ncpus; i++) CPU_SET(i, &all_cpus); } /* Introduce rest of cores to the world */ void cpu_mp_announce(void) { } extern vm_paddr_t pmap_pa; void init_secondary(int cpu) { struct pcpu *pc; uint32_t loop_counter; pmap_set_tex(); cpuinfo_reinit_mmu(pmap_kern_ttb); cpu_setup(); /* Provide stack pointers for other processor modes. */ set_stackptrs(cpu); enable_interrupts(PSR_A); pc = &__pcpu[cpu]; /* * pcpu_init() updates queue, so it should not be executed in parallel * on several cores */ while(mp_naps < (cpu - 1)) ; pcpu_init(pc, cpu, sizeof(struct pcpu)); dpcpu_init(dpcpu[cpu - 1], cpu); #if __ARM_ARCH >= 6 && defined(DDB) dbg_monitor_init_secondary(); #endif /* Signal our startup to BSP */ atomic_add_rel_32(&mp_naps, 1); /* Spin until the BSP releases the APs */ while (!atomic_load_acq_int(&aps_ready)) { #if __ARM_ARCH >= 7 __asm __volatile("wfe"); #endif } /* Initialize curthread */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); pc->pc_curthread = pc->pc_idlethread; pc->pc_curpcb = pc->pc_idlethread->td_pcb; set_curthread(pc->pc_idlethread); #ifdef VFP vfp_init(); #endif /* Configure the interrupt controller */ intr_pic_init_secondary(); /* Apply possible BP hardening */ cpuinfo_init_bp_hardening(); mtx_lock_spin(&ap_boot_mtx); atomic_add_rel_32(&smp_cpus, 1); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } mtx_unlock_spin(&ap_boot_mtx); enable_interrupts(PSR_I); loop_counter = 0; while (smp_started == 0) { DELAY(100); loop_counter++; if (loop_counter == 1000) CTR0(KTR_SMP, "AP still wait for smp_started"); } /* Start per-CPU event timers. */ cpu_initclocks_ap(); CTR0(KTR_SMP, "go into scheduler"); /* Enter the scheduler */ sched_throw(NULL); panic("scheduler returned us to %s", __func__); /* NOTREACHED */ } static void ipi_rendezvous(void *dummy __unused) { CTR0(KTR_SMP, "IPI_RENDEZVOUS"); smp_rendezvous_action(); } static void ipi_ast(void *dummy __unused) { CTR0(KTR_SMP, "IPI_AST"); } static void ipi_stop(void *dummy __unused) { u_int cpu; /* * IPI_STOP_HARD is mapped to IPI_STOP. */ CTR0(KTR_SMP, "IPI_STOP or IPI_STOP_HARD"); cpu = PCPU_GET(cpuid); savectx(&stoppcbs[cpu]); /* * CPUs are stopped when entering the debugger and at * system shutdown, both events which can precede a * panic dump. For the dump to be correct, all caches * must be flushed and invalidated, but on ARM there's * no way to broadcast a wbinv_all to other cores. * Instead, we have each core do the local wbinv_all as * part of stopping the core. The core requesting the * stop will do the l2 cache flush after all other cores * have done their l1 flushes and stopped. */ dcache_wbinv_poc_all(); /* Indicate we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) cpu_spinwait(); CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); #ifdef DDB dbg_resume_dbreg(); #endif CTR0(KTR_SMP, "IPI_STOP (restart)"); } static void ipi_preempt(void *arg) { struct trapframe *oldframe; struct thread *td; critical_enter(); td = curthread; td->td_intr_nesting_level++; oldframe = td->td_intr_frame; td->td_intr_frame = (struct trapframe *)arg; CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__); sched_preempt(td); td->td_intr_frame = oldframe; td->td_intr_nesting_level--; critical_exit(); } static void ipi_hardclock(void *arg) { struct trapframe *oldframe; struct thread *td; critical_enter(); td = curthread; td->td_intr_nesting_level++; oldframe = td->td_intr_frame; td->td_intr_frame = (struct trapframe *)arg; CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__); hardclockintr(); td->td_intr_frame = oldframe; td->td_intr_nesting_level--; critical_exit(); } static void release_aps(void *dummy __unused) { uint32_t loop_counter; if (mp_ncpus == 1) return; intr_pic_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL); intr_pic_ipi_setup(IPI_AST, "ast", ipi_ast, NULL); intr_pic_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL); intr_pic_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL); intr_pic_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL); atomic_store_rel_int(&aps_ready, 1); /* Wake the other threads up */ dsb(); sev(); printf("Release APs\n"); for (loop_counter = 0; loop_counter < 2000; loop_counter++) { if (smp_started) return; DELAY(1000); } printf("AP's not started\n"); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); struct cpu_group * cpu_topo(void) { return (smp_topo_1level(CG_SHARE_L2, mp_ncpus, 0)); } void cpu_mp_setmaxid(void) { platform_mp_setmaxid(); } /* Sending IPI */ void ipi_all_but_self(u_int ipi) { cpuset_t other_cpus; other_cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &other_cpus); CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi); intr_ipi_send(other_cpus, ipi); } void ipi_cpu(int cpu, u_int ipi) { cpuset_t cpus; CPU_ZERO(&cpus); CPU_SET(cpu, &cpus); CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi); intr_ipi_send(cpus, ipi); } void ipi_selected(cpuset_t cpus, u_int ipi) { CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi); intr_ipi_send(cpus, ipi); } Index: head/sys/arm/arm/pmap-v6.c =================================================================== --- head/sys/arm/arm/pmap-v6.c (revision 360081) +++ head/sys/arm/arm/pmap-v6.c (revision 360082) @@ -1,6961 +1,6959 @@ /*- * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause-FreeBSD * * Copyright (c) 1991 Regents of the University of California. * Copyright (c) 1994 John S. Dyson * Copyright (c) 1994 David Greenman * Copyright (c) 2005-2010 Alan L. Cox * Copyright (c) 2014-2016 Svatopluk Kraus * Copyright (c) 2014-2016 Michal Meloun * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 */ /*- * Copyright (c) 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Jake Burkholder, * Safeport Network Services, and Network Associates Laboratories, the * Security Research Division of Network Associates, Inc. under * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA * CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ #include "opt_vm.h" #include "opt_pmap.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif -#include - #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SMP #include #endif #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif #ifndef DIAGNOSTIC #define PMAP_INLINE __inline #else #define PMAP_INLINE #endif #ifdef PMAP_DEBUG static void pmap_zero_page_check(vm_page_t m); void pmap_debug(int level); int pmap_pid_dump(int pid); #define PDEBUG(_lev_,_stat_) \ if (pmap_debug_level >= (_lev_)) \ ((_stat_)) #define dprintf printf int pmap_debug_level = 1; #else /* PMAP_DEBUG */ #define PDEBUG(_lev_,_stat_) /* Nothing */ #define dprintf(x, arg...) #endif /* PMAP_DEBUG */ /* * Level 2 page tables map definion ('max' is excluded). */ #define PT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP) #define PT2V_MAX_ADDRESS ((vm_offset_t)PT2MAP + PT2MAP_SIZE) #define UPT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP) #define UPT2V_MAX_ADDRESS \ ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT))) /* * Promotion to a 1MB (PTE1) page mapping requires that the corresponding * 4KB (PTE2) page mappings have identical settings for the following fields: */ #define PTE2_PROMOTE (PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG | \ PTE2_NX | PTE2_RO | PTE2_U | PTE2_W | \ PTE2_ATTR_MASK) #define PTE1_PROMOTE (PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG | \ PTE1_NX | PTE1_RO | PTE1_U | PTE1_W | \ PTE1_ATTR_MASK) #define ATTR_TO_L1(l2_attr) ((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \ (((l2_attr) & L2_C) ? L1_S_C : 0) | \ (((l2_attr) & L2_B) ? L1_S_B : 0) | \ (((l2_attr) & PTE2_A) ? PTE1_A : 0) | \ (((l2_attr) & PTE2_NM) ? PTE1_NM : 0) | \ (((l2_attr) & PTE2_S) ? PTE1_S : 0) | \ (((l2_attr) & PTE2_NG) ? PTE1_NG : 0) | \ (((l2_attr) & PTE2_NX) ? PTE1_NX : 0) | \ (((l2_attr) & PTE2_RO) ? PTE1_RO : 0) | \ (((l2_attr) & PTE2_U) ? PTE1_U : 0) | \ (((l2_attr) & PTE2_W) ? PTE1_W : 0)) #define ATTR_TO_L2(l1_attr) ((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \ (((l1_attr) & L1_S_C) ? L2_C : 0) | \ (((l1_attr) & L1_S_B) ? L2_B : 0) | \ (((l1_attr) & PTE1_A) ? PTE2_A : 0) | \ (((l1_attr) & PTE1_NM) ? PTE2_NM : 0) | \ (((l1_attr) & PTE1_S) ? PTE2_S : 0) | \ (((l1_attr) & PTE1_NG) ? PTE2_NG : 0) | \ (((l1_attr) & PTE1_NX) ? PTE2_NX : 0) | \ (((l1_attr) & PTE1_RO) ? PTE2_RO : 0) | \ (((l1_attr) & PTE1_U) ? PTE2_U : 0) | \ (((l1_attr) & PTE1_W) ? PTE2_W : 0)) /* * PTE2 descriptors creation macros. */ #define PTE2_ATTR_DEFAULT vm_memattr_to_pte2(VM_MEMATTR_DEFAULT) #define PTE2_ATTR_PT vm_memattr_to_pte2(pt_memattr) #define PTE2_KPT(pa) PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT) #define PTE2_KPT_NG(pa) PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT) #define PTE2_KRW(pa) PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT) #define PTE2_KRO(pa) PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT) #define PV_STATS #ifdef PV_STATS #define PV_STAT(x) do { x ; } while (0) #else #define PV_STAT(x) do { } while (0) #endif /* * The boot_pt1 is used temporary in very early boot stage as L1 page table. * We can init many things with no memory allocation thanks to its static * allocation and this brings two main advantages: * (1) other cores can be started very simply, * (2) various boot loaders can be supported as its arguments can be processed * in virtual address space and can be moved to safe location before * first allocation happened. * Only disadvantage is that boot_pt1 is used only in very early boot stage. * However, the table is uninitialized and so lays in bss. Therefore kernel * image size is not influenced. * * QQQ: In the future, maybe, boot_pt1 can be used for soft reset and * CPU suspend/resume game. */ extern pt1_entry_t boot_pt1[]; vm_paddr_t base_pt1; pt1_entry_t *kern_pt1; pt2_entry_t *kern_pt2tab; pt2_entry_t *PT2MAP; static uint32_t ttb_flags; static vm_memattr_t pt_memattr; ttb_entry_t pmap_kern_ttb; struct pmap kernel_pmap_store; LIST_HEAD(pmaplist, pmap); static struct pmaplist allpmaps; static struct mtx allpmaps_lock; vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ static vm_offset_t kernel_vm_end_new; vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE; vm_offset_t vm_max_kernel_address; vm_paddr_t kernel_l1pa; static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock; /* * Data for the pv entry allocation mechanism */ static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks); static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */ static int shpgperproc = PMAP_SHPGPERPROC; struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */ int pv_maxchunks; /* How many chunks we have KVA for */ vm_offset_t pv_vafree; /* freelist stored in the PTE */ vm_paddr_t first_managed_pa; #define pa_to_pvh(pa) (&pv_table[pte1_index(pa - first_managed_pa)]) /* * All those kernel PT submaps that BSD is so fond of */ caddr_t _tmppt = 0; /* * Crashdump maps. */ static caddr_t crashdumpmap; static pt2_entry_t *PMAP1 = NULL, *PMAP2; static pt2_entry_t *PADDR1 = NULL, *PADDR2; #ifdef DDB static pt2_entry_t *PMAP3; static pt2_entry_t *PADDR3; static int PMAP3cpu __unused; /* for SMP only */ #endif #ifdef SMP static int PMAP1cpu; static int PMAP1changedcpu; SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD, &PMAP1changedcpu, 0, "Number of times pmap_pte2_quick changed CPU with same PMAP1"); #endif static int PMAP1changed; SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD, &PMAP1changed, 0, "Number of times pmap_pte2_quick changed PMAP1"); static int PMAP1unchanged; SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD, &PMAP1unchanged, 0, "Number of times pmap_pte2_quick didn't change PMAP1"); static struct mtx PMAP2mutex; /* * Internal flags for pmap_enter()'s helper functions. */ #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */ #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */ static __inline void pt2_wirecount_init(vm_page_t m); static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va); static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags, vm_page_t m); void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size); /* * Function to set the debug level of the pmap code. */ #ifdef PMAP_DEBUG void pmap_debug(int level) { pmap_debug_level = level; dprintf("pmap_debug: level=%d\n", pmap_debug_level); } #endif /* PMAP_DEBUG */ /* * This table must corespond with memory attribute configuration in vm.h. * First entry is used for normal system mapping. * * Device memory is always marked as shared. * Normal memory is shared only in SMP . * Not outer shareable bits are not used yet. * Class 6 cannot be used on ARM11. */ #define TEXDEF_TYPE_SHIFT 0 #define TEXDEF_TYPE_MASK 0x3 #define TEXDEF_INNER_SHIFT 2 #define TEXDEF_INNER_MASK 0x3 #define TEXDEF_OUTER_SHIFT 4 #define TEXDEF_OUTER_MASK 0x3 #define TEXDEF_NOS_SHIFT 6 #define TEXDEF_NOS_MASK 0x1 #define TEX(t, i, o, s) \ ((t) << TEXDEF_TYPE_SHIFT) | \ ((i) << TEXDEF_INNER_SHIFT) | \ ((o) << TEXDEF_OUTER_SHIFT | \ ((s) << TEXDEF_NOS_SHIFT)) static uint32_t tex_class[8] = { /* type inner cache outer cache */ TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0), /* 0 - ATTR_WB_WA */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 1 - ATTR_NOCACHE */ TEX(PRRR_DEV, NMRR_NC, NMRR_NC, 0), /* 2 - ATTR_DEVICE */ TEX(PRRR_SO, NMRR_NC, NMRR_NC, 0), /* 3 - ATTR_SO */ TEX(PRRR_MEM, NMRR_WT, NMRR_WT, 0), /* 4 - ATTR_WT */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 5 - NOT USED YET */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 6 - NOT USED YET */ TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 7 - NOT USED YET */ }; #undef TEX static uint32_t pte2_attr_tab[8] = { PTE2_ATTR_WB_WA, /* 0 - VM_MEMATTR_WB_WA */ PTE2_ATTR_NOCACHE, /* 1 - VM_MEMATTR_NOCACHE */ PTE2_ATTR_DEVICE, /* 2 - VM_MEMATTR_DEVICE */ PTE2_ATTR_SO, /* 3 - VM_MEMATTR_SO */ PTE2_ATTR_WT, /* 4 - VM_MEMATTR_WRITE_THROUGH */ 0, /* 5 - NOT USED YET */ 0, /* 6 - NOT USED YET */ 0 /* 7 - NOT USED YET */ }; CTASSERT(VM_MEMATTR_WB_WA == 0); CTASSERT(VM_MEMATTR_NOCACHE == 1); CTASSERT(VM_MEMATTR_DEVICE == 2); CTASSERT(VM_MEMATTR_SO == 3); CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4); #define VM_MEMATTR_END (VM_MEMATTR_WRITE_THROUGH + 1) boolean_t pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode) { return (mode >= 0 && mode < VM_MEMATTR_END); } static inline uint32_t vm_memattr_to_pte2(vm_memattr_t ma) { KASSERT((u_int)ma < VM_MEMATTR_END, ("%s: bad vm_memattr_t %d", __func__, ma)); return (pte2_attr_tab[(u_int)ma]); } static inline uint32_t vm_page_pte2_attr(vm_page_t m) { return (vm_memattr_to_pte2(m->md.pat_mode)); } /* * Convert TEX definition entry to TTB flags. */ static uint32_t encode_ttb_flags(int idx) { uint32_t inner, outer, nos, reg; inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) & TEXDEF_INNER_MASK; outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) & TEXDEF_OUTER_MASK; nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) & TEXDEF_NOS_MASK; reg = nos << 5; reg |= outer << 3; if (cpuinfo.coherent_walk) reg |= (inner & 0x1) << 6; reg |= (inner & 0x2) >> 1; #ifdef SMP ARM_SMP_UP( reg |= 1 << 1, ); #endif return reg; } /* * Set TEX remapping registers in current CPU. */ void pmap_set_tex(void) { uint32_t prrr, nmrr; uint32_t type, inner, outer, nos; int i; #ifdef PMAP_PTE_NOCACHE /* XXX fixme */ if (cpuinfo.coherent_walk) { pt_memattr = VM_MEMATTR_WB_WA; ttb_flags = encode_ttb_flags(0); } else { pt_memattr = VM_MEMATTR_NOCACHE; ttb_flags = encode_ttb_flags(1); } #else pt_memattr = VM_MEMATTR_WB_WA; ttb_flags = encode_ttb_flags(0); #endif prrr = 0; nmrr = 0; /* Build remapping register from TEX classes. */ for (i = 0; i < 8; i++) { type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) & TEXDEF_TYPE_MASK; inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) & TEXDEF_INNER_MASK; outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) & TEXDEF_OUTER_MASK; nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) & TEXDEF_NOS_MASK; prrr |= type << (i * 2); prrr |= nos << (i + 24); nmrr |= inner << (i * 2); nmrr |= outer << (i * 2 + 16); } /* Add shareable bits for device memory. */ prrr |= PRRR_DS0 | PRRR_DS1; /* Add shareable bits for normal memory in SMP case. */ #ifdef SMP ARM_SMP_UP( prrr |= PRRR_NS1, ); #endif cp15_prrr_set(prrr); cp15_nmrr_set(nmrr); /* Caches are disabled, so full TLB flush should be enough. */ tlb_flush_all_local(); } /* * Remap one vm_meattr class to another one. This can be useful as * workaround for SOC errata, e.g. if devices must be accessed using * SO memory class. * * !!! Please note that this function is absolutely last resort thing. * It should not be used under normal circumstances. !!! * * Usage rules: * - it shall be called after pmap_bootstrap_prepare() and before * cpu_mp_start() (thus only on boot CPU). In practice, it's expected * to be called from platform_attach() or platform_late_init(). * * - if remapping doesn't change caching mode, or until uncached class * is remapped to any kind of cached one, then no other restriction exists. * * - if pmap_remap_vm_attr() changes caching mode, but both (original and * remapped) remain cached, then caller is resposible for calling * of dcache_wbinv_poc_all(). * * - remapping of any kind of cached class to uncached is not permitted. */ void pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr) { int old_idx, new_idx; /* Map VM memattrs to indexes to tex_class table. */ old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]); new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]); /* Replace TEX attribute and apply it. */ tex_class[old_idx] = tex_class[new_idx]; pmap_set_tex(); } /* * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words, * KERNBASE is mapped by first L2 page table in L2 page table page. It * meets same constrain due to PT2MAP being placed just under KERNBASE. */ CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0); CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE); /* * In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general. * For now, anyhow, the following check must be fulfilled. */ CTASSERT(PAGE_SIZE == PTE2_SIZE); /* * We don't want to mess up MI code with all MMU and PMAP definitions, * so some things, which depend on other ones, are defined independently. * Now, it is time to check that we don't screw up something. */ CTASSERT(PDRSHIFT == PTE1_SHIFT); /* * Check L1 and L2 page table entries definitions consistency. */ CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1)); CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2)); /* * Check L2 page tables page consistency. */ CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2)); CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG); /* * Check PT2TAB consistency. * PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG. * This should be done without remainder. */ CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG)); /* * A PT2MAP magic. * * All level 2 page tables (PT2s) are mapped continuously and accordingly * into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can * be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page * must be used together, but not necessary at once. The first PT2 in a page * must map things on correctly aligned address and the others must follow * in right order. */ #define NB_IN_PT2TAB (PT2TAB_ENTRIES * sizeof(pt2_entry_t)) #define NPT2_IN_PT2TAB (NB_IN_PT2TAB / NB_IN_PT2) #define NPG_IN_PT2TAB (NB_IN_PT2TAB / PAGE_SIZE) /* * Check PT2TAB consistency. * NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2. * NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE. * The both should be done without remainder. */ CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2)); CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE)); /* * The implementation was made general, however, with the assumption * bellow in mind. In case of another value of NPG_IN_PT2TAB, * the code should be once more rechecked. */ CTASSERT(NPG_IN_PT2TAB == 1); /* * Get offset of PT2 in a page * associated with given PT1 index. */ static __inline u_int page_pt2off(u_int pt1_idx) { return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2); } /* * Get physical address of PT2 * associated with given PT2s page and PT1 index. */ static __inline vm_paddr_t page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx) { return (pgpa + page_pt2off(pt1_idx)); } /* * Get first entry of PT2 * associated with given PT2s page and PT1 index. */ static __inline pt2_entry_t * page_pt2(vm_offset_t pgva, u_int pt1_idx) { return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx))); } /* * Get virtual address of PT2s page (mapped in PT2MAP) * which holds PT2 which holds entry which maps given virtual address. */ static __inline vm_offset_t pt2map_pt2pg(vm_offset_t va) { va &= ~(NPT2_IN_PG * PTE1_SIZE - 1); return ((vm_offset_t)pt2map_entry(va)); } /***************************************************************************** * * THREE pmap initialization milestones exist: * * locore.S * -> fundamental init (including MMU) in ASM * * initarm() * -> fundamental init continues in C * -> first available physical address is known * * pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins) * -> basic (safe) interface for physical address allocation is made * -> basic (safe) interface for virtual mapping is made * -> limited not SMP coherent work is possible * * -> more fundamental init continues in C * -> locks and some more things are available * -> all fundamental allocations and mappings are done * * pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins) * -> phys_avail[] and virtual_avail is set * -> control is passed to vm subsystem * -> physical and virtual address allocation are off limit * -> low level mapping functions, some SMP coherent, * are available, which cannot be used before vm subsystem * is being inited * * mi_startup() * -> vm subsystem is being inited * * pmap_init() -> THIRD PMAP MILESTONE (third epoch begins) * -> pmap is fully inited * *****************************************************************************/ /***************************************************************************** * * PMAP first stage initialization and utility functions * for pre-bootstrap epoch. * * After pmap_bootstrap_prepare() is called, the following functions * can be used: * * (1) strictly only for this stage functions for physical page allocations, * virtual space allocations, and mappings: * * vm_paddr_t pmap_preboot_get_pages(u_int num); * void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num); * vm_offset_t pmap_preboot_reserve_pages(u_int num); * vm_offset_t pmap_preboot_get_vpages(u_int num); * void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size, * vm_prot_t prot, vm_memattr_t attr); * * (2) for all stages: * * vm_paddr_t pmap_kextract(vm_offset_t va); * * NOTE: This is not SMP coherent stage. * *****************************************************************************/ #define KERNEL_P2V(pa) \ ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR)) #define KERNEL_V2P(va) \ ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr)) static vm_paddr_t last_paddr; /* * Pre-bootstrap epoch page allocator. */ vm_paddr_t pmap_preboot_get_pages(u_int num) { vm_paddr_t ret; ret = last_paddr; last_paddr += num * PAGE_SIZE; return (ret); } /* * The fundamental initialization of PMAP stuff. * * Some things already happened in locore.S and some things could happen * before pmap_bootstrap_prepare() is called, so let's recall what is done: * 1. Caches are disabled. * 2. We are running on virtual addresses already with 'boot_pt1' * as L1 page table. * 3. So far, all virtual addresses can be converted to physical ones and * vice versa by the following macros: * KERNEL_P2V(pa) .... physical to virtual ones, * KERNEL_V2P(va) .... virtual to physical ones. * * What is done herein: * 1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'. * 2. PT2MAP magic is brought to live. * 3. Basic preboot functions for page allocations and mappings can be used. * 4. Everything is prepared for L1 cache enabling. * * Variations: * 1. To use second TTB register, so kernel and users page tables will be * separated. This way process forking - pmap_pinit() - could be faster, * it saves physical pages and KVA per a process, and it's simple change. * However, it will lead, due to hardware matter, to the following: * (a) 2G space for kernel and 2G space for users. * (b) 1G space for kernel in low addresses and 3G for users above it. * A question is: Is the case (b) really an option? Note that case (b) * does save neither physical memory and KVA. */ void pmap_bootstrap_prepare(vm_paddr_t last) { vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size; vm_offset_t pt2pg_va; pt1_entry_t *pte1p; pt2_entry_t *pte2p; u_int i; uint32_t l1_attr; /* * Now, we are going to make real kernel mapping. Note that we are * already running on some mapping made in locore.S and we expect * that it's large enough to ensure nofault access to physical memory * allocated herein before switch. * * As kernel image and everything needed before are and will be mapped * by section mappings, we align last physical address to PTE1_SIZE. */ last_paddr = pte1_roundup(last); /* * Allocate and zero page(s) for kernel L1 page table. * * Note that it's first allocation on space which was PTE1_SIZE * aligned and as such base_pt1 is aligned to NB_IN_PT1 too. */ base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1); kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1); bzero((void*)kern_pt1, NB_IN_PT1); pte1_sync_range(kern_pt1, NB_IN_PT1); /* Allocate and zero page(s) for kernel PT2TAB. */ pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB); kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa); bzero(kern_pt2tab, NB_IN_PT2TAB); pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB); /* Allocate and zero page(s) for kernel L2 page tables. */ pt2pg_pa = pmap_preboot_get_pages(NKPT2PG); pt2pg_va = KERNEL_P2V(pt2pg_pa); size = NKPT2PG * PAGE_SIZE; bzero((void*)pt2pg_va, size); pte2_sync_range((pt2_entry_t *)pt2pg_va, size); /* * Add a physical memory segment (vm_phys_seg) corresponding to the * preallocated pages for kernel L2 page tables so that vm_page * structures representing these pages will be created. The vm_page * structures are required for promotion of the corresponding kernel * virtual addresses to section mappings. */ vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0)); /* * Insert allocated L2 page table pages to PT2TAB and make * link to all PT2s in L1 page table. See how kernel_vm_end * is initialized. * * We play simple and safe. So every KVA will have underlaying * L2 page table, even kernel image mapped by sections. */ pte2p = kern_pt2tab_entry(KERNBASE); for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE) pt2tab_store(pte2p++, PTE2_KPT(pa)); pte1p = kern_pte1(KERNBASE); for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2) pte1_store(pte1p++, PTE1_LINK(pa)); /* Make section mappings for kernel. */ l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT); pte1p = kern_pte1(KERNBASE); for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE) pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr)); /* * Get free and aligned space for PT2MAP and make L1 page table links * to L2 page tables held in PT2TAB. * * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus * each entry in PT2TAB maps all PT2s in a page. This implies that * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE. */ PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE); pte1p = kern_pte1((vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) { pte1_store(pte1p++, PTE1_LINK(pa)); } /* * Store PT2TAB in PT2TAB itself, i.e. self reference mapping. * Each pmap will hold own PT2TAB, so the mapping should be not global. */ pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) { pt2tab_store(pte2p++, PTE2_KPT_NG(pa)); } /* * Choose correct L2 page table and make mappings for allocations * made herein which replaces temporary locore.S mappings after a while. * Note that PT2MAP cannot be used until we switch to kern_pt1. * * Note, that these allocations started aligned on 1M section and * kernel PT1 was allocated first. Making of mappings must follow * order of physical allocations as we've used KERNEL_P2V() macro * for virtual addresses resolution. */ pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1); pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p))); pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1)); /* Make mapping for kernel L1 page table. */ for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE) pte2_store(pte2p++, PTE2_KPT(pa)); /* Make mapping for kernel PT2TAB. */ for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) pte2_store(pte2p++, PTE2_KPT(pa)); /* Finally, switch from 'boot_pt1' to 'kern_pt1'. */ pmap_kern_ttb = base_pt1 | ttb_flags; cpuinfo_reinit_mmu(pmap_kern_ttb); /* * Initialize the first available KVA. As kernel image is mapped by * sections, we are leaving some gap behind. */ virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE; } /* * Setup L2 page table page for given KVA. * Used in pre-bootstrap epoch. * * Note that we have allocated NKPT2PG pages for L2 page tables in advance * and used them for mapping KVA starting from KERNBASE. However, this is not * enough. Vectors and devices need L2 page tables too. Note that they are * even above VM_MAX_KERNEL_ADDRESS. */ static __inline vm_paddr_t pmap_preboot_pt2pg_setup(vm_offset_t va) { pt2_entry_t *pte2p, pte2; vm_paddr_t pt2pg_pa; /* Get associated entry in PT2TAB. */ pte2p = kern_pt2tab_entry(va); /* Just return, if PT2s page exists already. */ pte2 = pt2tab_load(pte2p); if (pte2_is_valid(pte2)) return (pte2_pa(pte2)); KASSERT(va >= VM_MAX_KERNEL_ADDRESS, ("%s: NKPT2PG too small", __func__)); /* * Allocate page for PT2s and insert it to PT2TAB. * In other words, map it into PT2MAP space. */ pt2pg_pa = pmap_preboot_get_pages(1); pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa)); /* Zero all PT2s in allocated page. */ bzero((void*)pt2map_pt2pg(va), PAGE_SIZE); pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE); return (pt2pg_pa); } /* * Setup L2 page table for given KVA. * Used in pre-bootstrap epoch. */ static void pmap_preboot_pt2_setup(vm_offset_t va) { pt1_entry_t *pte1p; vm_paddr_t pt2pg_pa, pt2_pa; /* Setup PT2's page. */ pt2pg_pa = pmap_preboot_pt2pg_setup(va); pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va)); /* Insert PT2 to PT1. */ pte1p = kern_pte1(va); pte1_store(pte1p, PTE1_LINK(pt2_pa)); } /* * Get L2 page entry associated with given KVA. * Used in pre-bootstrap epoch. */ static __inline pt2_entry_t* pmap_preboot_vtopte2(vm_offset_t va) { pt1_entry_t *pte1p; /* Setup PT2 if needed. */ pte1p = kern_pte1(va); if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */ pmap_preboot_pt2_setup(va); return (pt2map_entry(va)); } /* * Pre-bootstrap epoch page(s) mapping(s). */ void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num) { u_int i; pt2_entry_t *pte2p; /* Map all the pages. */ for (i = 0; i < num; i++) { pte2p = pmap_preboot_vtopte2(va); pte2_store(pte2p, PTE2_KRW(pa)); va += PAGE_SIZE; pa += PAGE_SIZE; } } /* * Pre-bootstrap epoch virtual space alocator. */ vm_offset_t pmap_preboot_reserve_pages(u_int num) { u_int i; vm_offset_t start, va; pt2_entry_t *pte2p; /* Allocate virtual space. */ start = va = virtual_avail; virtual_avail += num * PAGE_SIZE; /* Zero the mapping. */ for (i = 0; i < num; i++) { pte2p = pmap_preboot_vtopte2(va); pte2_store(pte2p, 0); va += PAGE_SIZE; } return (start); } /* * Pre-bootstrap epoch page(s) allocation and mapping(s). */ vm_offset_t pmap_preboot_get_vpages(u_int num) { vm_paddr_t pa; vm_offset_t va; /* Allocate physical page(s). */ pa = pmap_preboot_get_pages(num); /* Allocate virtual space. */ va = virtual_avail; virtual_avail += num * PAGE_SIZE; /* Map and zero all. */ pmap_preboot_map_pages(pa, va, num); bzero((void *)va, num * PAGE_SIZE); return (va); } /* * Pre-bootstrap epoch page mapping(s) with attributes. */ void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size, vm_prot_t prot, vm_memattr_t attr) { u_int num; u_int l1_attr, l1_prot, l2_prot, l2_attr; pt1_entry_t *pte1p; pt2_entry_t *pte2p; l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR; l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX; l2_attr = vm_memattr_to_pte2(attr); l1_prot = ATTR_TO_L1(l2_prot); l1_attr = ATTR_TO_L1(l2_attr); /* Map all the pages. */ num = round_page(size); while (num > 0) { if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) { pte1p = kern_pte1(va); pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr)); va += PTE1_SIZE; pa += PTE1_SIZE; num -= PTE1_SIZE; } else { pte2p = pmap_preboot_vtopte2(va); pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr)); va += PAGE_SIZE; pa += PAGE_SIZE; num -= PAGE_SIZE; } } } /* * Extract from the kernel page table the physical address * that is mapped by the given virtual address "va". */ vm_paddr_t pmap_kextract(vm_offset_t va) { vm_paddr_t pa; pt1_entry_t pte1; pt2_entry_t pte2; pte1 = pte1_load(kern_pte1(va)); if (pte1_is_section(pte1)) { pa = pte1_pa(pte1) | (va & PTE1_OFFSET); } else if (pte1_is_link(pte1)) { /* * We should beware of concurrent promotion that changes * pte1 at this point. However, it's not a problem as PT2 * page is preserved by promotion in PT2TAB. So even if * it happens, using of PT2MAP is still safe. * * QQQ: However, concurrent removing is a problem which * ends in abort on PT2MAP space. Locking must be used * to deal with this. */ pte2 = pte2_load(pt2map_entry(va)); pa = pte2_pa(pte2) | (va & PTE2_OFFSET); } else { panic("%s: va %#x pte1 %#x", __func__, va, pte1); } return (pa); } /* * Extract from the kernel page table the physical address * that is mapped by the given virtual address "va". Also * return L2 page table entry which maps the address. * * This is only intended to be used for panic dumps. */ vm_paddr_t pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p) { vm_paddr_t pa; pt1_entry_t pte1; pt2_entry_t pte2; pte1 = pte1_load(kern_pte1(va)); if (pte1_is_section(pte1)) { pa = pte1_pa(pte1) | (va & PTE1_OFFSET); pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V; } else if (pte1_is_link(pte1)) { pte2 = pte2_load(pt2map_entry(va)); pa = pte2_pa(pte2); } else { pte2 = 0; pa = 0; } if (pte2p != NULL) *pte2p = pte2; return (pa); } /***************************************************************************** * * PMAP second stage initialization and utility functions * for bootstrap epoch. * * After pmap_bootstrap() is called, the following functions for * mappings can be used: * * void pmap_kenter(vm_offset_t va, vm_paddr_t pa); * void pmap_kremove(vm_offset_t va); * vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, * int prot); * * NOTE: This is not SMP coherent stage. And physical page allocation is not * allowed during this stage. * *****************************************************************************/ /* * Initialize kernel PMAP locks and lists, kernel_pmap itself, and * reserve various virtual spaces for temporary mappings. */ void pmap_bootstrap(vm_offset_t firstaddr) { pt2_entry_t *unused __unused; struct pcpu *pc; /* * Initialize the kernel pmap (which is statically allocated). */ PMAP_LOCK_INIT(kernel_pmap); kernel_l1pa = (vm_paddr_t)kern_pt1; /* for libkvm */ kernel_pmap->pm_pt1 = kern_pt1; kernel_pmap->pm_pt2tab = kern_pt2tab; CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */ TAILQ_INIT(&kernel_pmap->pm_pvchunk); /* * Initialize the global pv list lock. */ rw_init(&pvh_global_lock, "pmap pv global"); LIST_INIT(&allpmaps); /* * Request a spin mutex so that changes to allpmaps cannot be * preempted by smp_rendezvous_cpus(). */ mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN); mtx_lock_spin(&allpmaps_lock); LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); /* * Reserve some special page table entries/VA space for temporary * mapping of pages. */ #define SYSMAP(c, p, v, n) do { \ v = (c)pmap_preboot_reserve_pages(n); \ p = pt2map_entry((vm_offset_t)v); \ } while (0) /* * Local CMAP1/CMAP2 are used for zeroing and copying pages. * Local CMAP2 is also used for data cache cleaning. */ pc = get_pcpu(); mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF); SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1); SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1); SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1); /* * Crashdump maps. */ SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS); /* * _tmppt is used for reading arbitrary physical pages via /dev/mem. */ SYSMAP(caddr_t, unused, _tmppt, 1); /* * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(), * respectively. PADDR3 is used by pmap_pte2_ddb(). */ SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1); SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1); #ifdef DDB SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1); #endif mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF); /* * Note that in very short time in initarm(), we are going to * initialize phys_avail[] array and no further page allocation * can happen after that until vm subsystem will be initialized. */ kernel_vm_end_new = kernel_vm_end; virtual_end = vm_max_kernel_address; } static void pmap_init_reserved_pages(void) { struct pcpu *pc; vm_offset_t pages; int i; CPU_FOREACH(i) { pc = pcpu_find(i); /* * Skip if the mapping has already been initialized, * i.e. this is the BSP. */ if (pc->pc_cmap1_addr != 0) continue; mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF); pages = kva_alloc(PAGE_SIZE * 3); if (pages == 0) panic("%s: unable to allocate KVA", __func__); pc->pc_cmap1_pte2p = pt2map_entry(pages); pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE); pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2)); pc->pc_cmap1_addr = (caddr_t)pages; pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE); pc->pc_qmap_addr = pages + (PAGE_SIZE * 2); } } SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL); /* * The function can already be use in second initialization stage. * As such, the function DOES NOT call pmap_growkernel() where PT2 * allocation can happen. So if used, be sure that PT2 for given * virtual address is allocated already! * * Add a wired page to the kva. * Note: not SMP coherent. */ static __inline void pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot, uint32_t attr) { pt1_entry_t *pte1p; pt2_entry_t *pte2p; pte1p = kern_pte1(va); if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */ /* * This is a very low level function, so PT2 and particularly * PT2PG associated with given virtual address must be already * allocated. It's a pain mainly during pmap initialization * stage. However, called after pmap initialization with * virtual address not under kernel_vm_end will lead to * the same misery. */ if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va)))) panic("%s: kernel PT2 not allocated!", __func__); } pte2p = pt2map_entry(va); pte2_store(pte2p, PTE2_KERN(pa, prot, attr)); } PMAP_INLINE void pmap_kenter(vm_offset_t va, vm_paddr_t pa) { pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT); } /* * Remove a page from the kernel pagetables. * Note: not SMP coherent. */ PMAP_INLINE void pmap_kremove(vm_offset_t va) { pt1_entry_t *pte1p; pt2_entry_t *pte2p; pte1p = kern_pte1(va); if (pte1_is_section(pte1_load(pte1p))) { pte1_clear(pte1p); } else { pte2p = pt2map_entry(va); pte2_clear(pte2p); } } /* * Share new kernel PT2PG with all pmaps. * The caller is responsible for maintaining TLB consistency. */ static void pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2) { pmap_t pmap; pt2_entry_t *pte2p; mtx_lock_spin(&allpmaps_lock); LIST_FOREACH(pmap, &allpmaps, pm_list) { pte2p = pmap_pt2tab_entry(pmap, va); pt2tab_store(pte2p, npte2); } mtx_unlock_spin(&allpmaps_lock); } /* * Share new kernel PTE1 with all pmaps. * The caller is responsible for maintaining TLB consistency. */ static void pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1) { pmap_t pmap; pt1_entry_t *pte1p; mtx_lock_spin(&allpmaps_lock); LIST_FOREACH(pmap, &allpmaps, pm_list) { pte1p = pmap_pte1(pmap, va); pte1_store(pte1p, npte1); } mtx_unlock_spin(&allpmaps_lock); } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. * * NOTE: Read the comments above pmap_kenter_prot_attr() as * the function is used herein! */ vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot) { vm_offset_t va, sva; vm_paddr_t pte1_offset; pt1_entry_t npte1; uint32_t l1prot, l2prot; uint32_t l1attr, l2attr; PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x)," " prot = %d\n", __func__, *virt, start, end, end - start, prot)); l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR; l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX; l1prot = ATTR_TO_L1(l2prot); l2attr = PTE2_ATTR_DEFAULT; l1attr = ATTR_TO_L1(l2attr); va = *virt; /* * Does the physical address range's size and alignment permit at * least one section mapping to be created? */ pte1_offset = start & PTE1_OFFSET; if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >= PTE1_SIZE) { /* * Increase the starting virtual address so that its alignment * does not preclude the use of section mappings. */ if ((va & PTE1_OFFSET) < pte1_offset) va = pte1_trunc(va) + pte1_offset; else if ((va & PTE1_OFFSET) > pte1_offset) va = pte1_roundup(va) + pte1_offset; } sva = va; while (start < end) { if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) { KASSERT((va & PTE1_OFFSET) == 0, ("%s: misaligned va %#x", __func__, va)); npte1 = PTE1_KERN(start, l1prot, l1attr); pmap_kenter_pte1(va, npte1); va += PTE1_SIZE; start += PTE1_SIZE; } else { pmap_kenter_prot_attr(va, start, l2prot, l2attr); va += PAGE_SIZE; start += PAGE_SIZE; } } tlb_flush_range(sva, va - sva); *virt = va; return (sva); } /* * Make a temporary mapping for a physical address. * This is only intended to be used for panic dumps. */ void * pmap_kenter_temporary(vm_paddr_t pa, int i) { vm_offset_t va; /* QQQ: 'i' should be less or equal to MAXDUMPPGS. */ va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE); pmap_kenter(va, pa); tlb_flush_local(va); return ((void *)crashdumpmap); } /************************************* * * TLB & cache maintenance routines. * *************************************/ /* * We inline these within pmap.c for speed. */ PMAP_INLINE void pmap_tlb_flush(pmap_t pmap, vm_offset_t va) { if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active)) tlb_flush(va); } PMAP_INLINE void pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size) { if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active)) tlb_flush_range(sva, size); } /* * Abuse the pte2 nodes for unmapped kva to thread a kva freelist through. * Requirements: * - Must deal with pages in order to ensure that none of the PTE2_* bits * are ever set, PTE2_V in particular. * - Assumes we can write to pte2s without pte2_store() atomic ops. * - Assumes nothing will ever test these addresses for 0 to indicate * no mapping instead of correctly checking PTE2_V. * - Assumes a vm_offset_t will fit in a pte2 (true for arm). * Because PTE2_V is never set, there can be no mappings to invalidate. */ static vm_offset_t pmap_pte2list_alloc(vm_offset_t *head) { pt2_entry_t *pte2p; vm_offset_t va; va = *head; if (va == 0) panic("pmap_ptelist_alloc: exhausted ptelist KVA"); pte2p = pt2map_entry(va); *head = *pte2p; if (*head & PTE2_V) panic("%s: va with PTE2_V set!", __func__); *pte2p = 0; return (va); } static void pmap_pte2list_free(vm_offset_t *head, vm_offset_t va) { pt2_entry_t *pte2p; if (va & PTE2_V) panic("%s: freeing va with PTE2_V set!", __func__); pte2p = pt2map_entry(va); *pte2p = *head; /* virtual! PTE2_V is 0 though */ *head = va; } static void pmap_pte2list_init(vm_offset_t *head, void *base, int npages) { int i; vm_offset_t va; *head = 0; for (i = npages - 1; i >= 0; i--) { va = (vm_offset_t)base + i * PAGE_SIZE; pmap_pte2list_free(head, va); } } /***************************************************************************** * * PMAP third and final stage initialization. * * After pmap_init() is called, PMAP subsystem is fully initialized. * *****************************************************************************/ SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "VM/pmap parameters"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0, "Max number of PV entries"); SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0, "Page share factor per proc"); static u_long nkpt2pg = NKPT2PG; SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD, &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s"); static int sp_enabled = 1; SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &sp_enabled, 0, "Are large page mappings enabled?"); bool pmap_ps_enabled(pmap_t pmap __unused) { return (sp_enabled != 0); } static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "1MB page mapping counters"); static u_long pmap_pte1_demotions; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD, &pmap_pte1_demotions, 0, "1MB page demotions"); static u_long pmap_pte1_mappings; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD, &pmap_pte1_mappings, 0, "1MB page mappings"); static u_long pmap_pte1_p_failures; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD, &pmap_pte1_p_failures, 0, "1MB page promotion failures"); static u_long pmap_pte1_promotions; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD, &pmap_pte1_promotions, 0, "1MB page promotions"); static u_long pmap_pte1_kern_demotions; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD, &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions"); static u_long pmap_pte1_kern_promotions; SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD, &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions"); static __inline ttb_entry_t pmap_ttb_get(pmap_t pmap) { return (vtophys(pmap->pm_pt1) | ttb_flags); } /* * Initialize a vm_page's machine-dependent fields. * * Variations: * 1. Pages for L2 page tables are always not managed. So, pv_list and * pt2_wirecount can share same physical space. However, proper * initialization on a page alloc for page tables and reinitialization * on the page free must be ensured. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); pt2_wirecount_init(m); m->md.pat_mode = VM_MEMATTR_DEFAULT; } /* * Virtualization for faster way how to zero whole page. */ static __inline void pagezero(void *page) { bzero(page, PAGE_SIZE); } /* * Zero L2 page table page. * Use same KVA as in pmap_zero_page(). */ static __inline vm_paddr_t pmap_pt2pg_zero(vm_page_t m) { pt2_entry_t *cmap2_pte2p; vm_paddr_t pa; struct pcpu *pc; pa = VM_PAGE_TO_PHYS(m); /* * XXX: For now, we map whole page even if it's already zero, * to sync it even if the sync is only DSB. */ sched_pin(); pc = get_pcpu(); cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap2_pte2p) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, vm_page_pte2_attr(m))); /* Even VM_ALLOC_ZERO request is only advisory. */ if ((m->flags & PG_ZERO) == 0) pagezero(pc->pc_cmap2_addr); pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); /* * Unpin the thread before releasing the lock. Otherwise the thread * could be rescheduled while still bound to the current CPU, only * to unpin itself immediately upon resuming execution. */ sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); return (pa); } /* * Init just allocated page as L2 page table(s) holder * and return its physical address. */ static __inline vm_paddr_t pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m) { vm_paddr_t pa; pt2_entry_t *pte2p; /* Check page attributes. */ if (m->md.pat_mode != pt_memattr) pmap_page_set_memattr(m, pt_memattr); /* Zero page and init wire counts. */ pa = pmap_pt2pg_zero(m); pt2_wirecount_init(m); /* * Map page to PT2MAP address space for given pmap. * Note that PT2MAP space is shared with all pmaps. */ if (pmap == kernel_pmap) pmap_kenter_pt2tab(va, PTE2_KPT(pa)); else { pte2p = pmap_pt2tab_entry(pmap, va); pt2tab_store(pte2p, PTE2_KPT_NG(pa)); } return (pa); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { vm_size_t s; pt2_entry_t *pte2p, pte2; u_int i, pte1_idx, pv_npg; PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR)); /* * Initialize the vm page array entries for kernel pmap's * L2 page table pages allocated in advance. */ pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE); pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE); for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) { vm_paddr_t pa; vm_page_t m; pte2 = pte2_load(pte2p); KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__)); pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size], ("%s: L2 page table page is out of range", __func__)); m->pindex = pte1_idx; m->phys_addr = pa; pte1_idx += NPT2_IN_PG; } /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); pv_entry_max = roundup(pv_entry_max, _NPCPV); pv_entry_high_water = 9 * (pv_entry_max / 10); /* * Are large page mappings enabled? */ TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled); if (sp_enabled) { KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0, ("%s: can't assign to pagesizes[1]", __func__)); pagesizes[1] = PTE1_SIZE; } /* * Calculate the size of the pv head table for sections. * Handle the possibility that "vm_phys_segs[...].end" is zero. * Note that the table is only for sections which could be promoted. */ first_managed_pa = pte1_trunc(vm_phys_segs[0].start); pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE) - first_managed_pa) / PTE1_SIZE + 1; /* * Allocate memory for the pv head table for sections. */ s = (vm_size_t)(pv_npg * sizeof(struct md_page)); s = round_page(s); pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO); for (i = 0; i < pv_npg; i++) TAILQ_INIT(&pv_table[i].pv_list); pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc); pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks); if (pv_chunkbase == NULL) panic("%s: not enough kvm for pv chunks", __func__); pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count) { u_int anychanged; pt2_entry_t *epte2p, *pte2p, pte2; vm_page_t m; vm_paddr_t pa; anychanged = 0; pte2p = pt2map_entry(sva); epte2p = pte2p + count; while (pte2p < epte2p) { m = *ma++; pa = VM_PAGE_TO_PHYS(m); pte2 = pte2_load(pte2p); if ((pte2_pa(pte2) != pa) || (pte2_attr(pte2) != vm_page_pte2_attr(m))) { anychanged++; pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW, vm_page_pte2_attr(m))); } pte2p++; } if (__predict_false(anychanged)) tlb_flush_range(sva, count * PAGE_SIZE); } /* * This routine tears out page mappings from the * kernel -- it is meant only for temporary mappings. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qremove(vm_offset_t sva, int count) { vm_offset_t va; va = sva; while (count-- > 0) { pmap_kremove(va); va += PAGE_SIZE; } tlb_flush_range(sva, va - sva); } /* * Are we current address space or kernel? */ static __inline int pmap_is_current(pmap_t pmap) { return (pmap == kernel_pmap || (pmap == vmspace_pmap(curthread->td_proc->p_vmspace))); } /* * If the given pmap is not the current or kernel pmap, the returned * pte2 must be released by passing it to pmap_pte2_release(). */ static pt2_entry_t * pmap_pte2(pmap_t pmap, vm_offset_t va) { pt1_entry_t pte1; vm_paddr_t pt2pg_pa; pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) panic("%s: attempt to map PTE1", __func__); if (pte1_is_link(pte1)) { /* Are we current address space or kernel? */ if (pmap_is_current(pmap)) return (pt2map_entry(va)); /* Note that L2 page table size is not equal to PAGE_SIZE. */ pt2pg_pa = trunc_page(pte1_link_pa(pte1)); mtx_lock(&PMAP2mutex); if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) { pte2_store(PMAP2, PTE2_KPT(pt2pg_pa)); tlb_flush((vm_offset_t)PADDR2); } return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1))); } return (NULL); } /* * Releases a pte2 that was obtained from pmap_pte2(). * Be prepared for the pte2p being NULL. */ static __inline void pmap_pte2_release(pt2_entry_t *pte2p) { if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) { mtx_unlock(&PMAP2mutex); } } /* * Super fast pmap_pte2 routine best used when scanning * the pv lists. This eliminates many coarse-grained * invltlb calls. Note that many of the pv list * scans are across different pmaps. It is very wasteful * to do an entire tlb flush for checking a single mapping. * * If the given pmap is not the current pmap, pvh_global_lock * must be held and curthread pinned to a CPU. */ static pt2_entry_t * pmap_pte2_quick(pmap_t pmap, vm_offset_t va) { pt1_entry_t pte1; vm_paddr_t pt2pg_pa; pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) panic("%s: attempt to map PTE1", __func__); if (pte1_is_link(pte1)) { /* Are we current address space or kernel? */ if (pmap_is_current(pmap)) return (pt2map_entry(va)); rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT(curthread->td_pinned > 0, ("%s: curthread not pinned", __func__)); /* Note that L2 page table size is not equal to PAGE_SIZE. */ pt2pg_pa = trunc_page(pte1_link_pa(pte1)); if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) { pte2_store(PMAP1, PTE2_KPT(pt2pg_pa)); #ifdef SMP PMAP1cpu = PCPU_GET(cpuid); #endif tlb_flush_local((vm_offset_t)PADDR1); PMAP1changed++; } else #ifdef SMP if (PMAP1cpu != PCPU_GET(cpuid)) { PMAP1cpu = PCPU_GET(cpuid); tlb_flush_local((vm_offset_t)PADDR1); PMAP1changedcpu++; } else #endif PMAP1unchanged++; return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1))); } return (NULL); } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pmap, vm_offset_t va) { vm_paddr_t pa; pt1_entry_t pte1; pt2_entry_t *pte2p; PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) pa = pte1_pa(pte1) | (va & PTE1_OFFSET); else if (pte1_is_link(pte1)) { pte2p = pmap_pte2(pmap, va); pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET); pmap_pte2_release(pte2p); } else pa = 0; PMAP_UNLOCK(pmap); return (pa); } /* * Routine: pmap_extract_and_hold * Function: * Atomically extract and hold the physical page * with the given pmap and virtual address pair * if that mapping permits the given protection. */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { vm_paddr_t pa; pt1_entry_t pte1; pt2_entry_t pte2, *pte2p; vm_page_t m; m = NULL; PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, va)); if (pte1_is_section(pte1)) { if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) { pa = pte1_pa(pte1) | (va & PTE1_OFFSET); m = PHYS_TO_VM_PAGE(pa); if (!vm_page_wire_mapped(m)) m = NULL; } } else if (pte1_is_link(pte1)) { pte2p = pmap_pte2(pmap, va); pte2 = pte2_load(pte2p); pmap_pte2_release(pte2p); if (pte2_is_valid(pte2) && (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) { pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); if (!vm_page_wire_mapped(m)) m = NULL; } } PMAP_UNLOCK(pmap); return (m); } /* * Grow the number of kernel L2 page table entries, if needed. */ void pmap_growkernel(vm_offset_t addr) { vm_page_t m; vm_paddr_t pt2pg_pa, pt2_pa; pt1_entry_t pte1; pt2_entry_t pte2; PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr)); /* * All the time kernel_vm_end is first KVA for which underlying * L2 page table is either not allocated or linked from L1 page table * (not considering sections). Except for two possible cases: * * (1) in the very beginning as long as pmap_growkernel() was * not called, it could be first unused KVA (which is not * rounded up to PTE1_SIZE), * * (2) when all KVA space is mapped and vm_map_max(kernel_map) * address is not rounded up to PTE1_SIZE. (For example, * it could be 0xFFFFFFFF.) */ kernel_vm_end = pte1_roundup(kernel_vm_end); mtx_assert(&kernel_map->system_mtx, MA_OWNED); addr = roundup2(addr, PTE1_SIZE); if (addr - 1 >= vm_map_max(kernel_map)) addr = vm_map_max(kernel_map); while (kernel_vm_end < addr) { pte1 = pte1_load(kern_pte1(kernel_vm_end)); if (pte1_is_valid(pte1)) { kernel_vm_end += PTE1_SIZE; if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) { kernel_vm_end = vm_map_max(kernel_map); break; } continue; } /* * kernel_vm_end_new is used in pmap_pinit() when kernel * mappings are entered to new pmap all at once to avoid race * between pmap_kenter_pte1() and kernel_vm_end increase. * The same aplies to pmap_kenter_pt2tab(). */ kernel_vm_end_new = kernel_vm_end + PTE1_SIZE; pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end)); if (!pte2_is_valid(pte2)) { /* * Install new PT2s page into kernel PT2TAB. */ m = vm_page_alloc(NULL, pte1_index(kernel_vm_end) & ~PT2PG_MASK, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (m == NULL) panic("%s: no memory to grow kernel", __func__); /* * QQQ: To link all new L2 page tables from L1 page * table now and so pmap_kenter_pte1() them * at once together with pmap_kenter_pt2tab() * could be nice speed up. However, * pmap_growkernel() does not happen so often... * QQQ: The other TTBR is another option. */ pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end, m); } else pt2pg_pa = pte2_pa(pte2); pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end)); pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa)); kernel_vm_end = kernel_vm_end_new; if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) { kernel_vm_end = vm_map_max(kernel_map); break; } } } static int kvm_size(SYSCTL_HANDLER_ARGS) { unsigned long ksize = vm_max_kernel_address - KERNBASE; return (sysctl_handle_long(oidp, &ksize, 0, req)); } SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_size, "IU", "Size of KVM"); static int kvm_free(SYSCTL_HANDLER_ARGS) { unsigned long kfree = vm_max_kernel_address - kernel_vm_end; return (sysctl_handle_long(oidp, &kfree, 0, req)); } SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_free, "IU", "Amount of KVM free"); /*********************************************** * * Pmap allocation/deallocation routines. * ***********************************************/ /* * Initialize the pmap for the swapper process. */ void pmap_pinit0(pmap_t pmap) { PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap)); PMAP_LOCK_INIT(pmap); /* * Kernel page table directory and pmap stuff around is already * initialized, we are using it right now and here. So, finish * only PMAP structures initialization for process0 ... * * Since the L1 page table and PT2TAB is shared with the kernel pmap, * which is already included in the list "allpmaps", this pmap does * not need to be inserted into that list. */ pmap->pm_pt1 = kern_pt1; pmap->pm_pt2tab = kern_pt2tab; CPU_ZERO(&pmap->pm_active); PCPU_SET(curpmap, pmap); TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); CPU_SET(0, &pmap->pm_active); } static __inline void pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva, vm_offset_t eva) { u_int idx, count; idx = pte1_index(sva); count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t); bcopy(spte1p + idx, dpte1p + idx, count); } static __inline void pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva, vm_offset_t eva) { u_int idx, count; idx = pt2tab_index(sva); count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t); bcopy(spte2p + idx, dpte2p + idx, count); } /* * Initialize a preallocated and zeroed pmap structure, * such as one in a vmspace structure. */ int pmap_pinit(pmap_t pmap) { pt1_entry_t *pte1p; pt2_entry_t *pte2p; vm_paddr_t pa, pt2tab_pa; u_int i; PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap, pmap->pm_pt1)); /* * No need to allocate L2 page table space yet but we do need * a valid L1 page table and PT2TAB table. * * Install shared kernel mappings to these tables. It's a little * tricky as some parts of KVA are reserved for vectors, devices, * and whatever else. These parts are supposed to be above * vm_max_kernel_address. Thus two regions should be installed: * * (1) . * * QQQ: The second region should be stable enough to be installed * only once in time when the tables are allocated. * QQQ: Maybe copy of both regions at once could be faster ... * QQQ: Maybe the other TTBR is an option. * * Finally, install own PT2TAB table to these tables. */ if (pmap->pm_pt1 == NULL) { pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr); if (pmap->pm_pt1 == NULL) return (0); } if (pmap->pm_pt2tab == NULL) { /* * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page * only, what should be the only size for 32 bit systems, * then we could allocate it with vm_page_alloc() and all * the stuff needed as other L2 page table pages. * (2) Note that a process PT2TAB is special L2 page table * page. Its mapping in kernel_arena is permanent and can * be used no matter which process is current. Its mapping * in PT2MAP can be used only for current process. */ pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr); if (pmap->pm_pt2tab == NULL) { /* * QQQ: As struct pmap is allocated from UMA with * UMA_ZONE_NOFREE flag, it's important to leave * no allocation in pmap if initialization failed. */ kmem_free((vm_offset_t)pmap->pm_pt1, NB_IN_PT1); pmap->pm_pt1 = NULL; return (0); } /* * QQQ: Each L2 page table page vm_page_t has pindex set to * pte1 index of virtual address mapped by this page. * It's not valid for non kernel PT2TABs themselves. * The pindex of these pages can not be altered because * of the way how they are allocated now. However, it * should not be a problem. */ } mtx_lock_spin(&allpmaps_lock); /* * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(), * kernel_vm_end_new is used here instead of kernel_vm_end. */ pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE, kernel_vm_end_new - 1); pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address, 0xFFFFFFFF); pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE, kernel_vm_end_new - 1); pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address, 0xFFFFFFFF); LIST_INSERT_HEAD(&allpmaps, pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); /* * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself. * I.e. self reference mapping. The PT2TAB is private, however mapped * into shared PT2MAP space, so the mapping should be not global. */ pt2tab_pa = vtophys(pmap->pm_pt2tab); pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) { pt2tab_store(pte2p++, PTE2_KPT_NG(pa)); } /* Insert PT2MAP PT2s into pmap PT1. */ pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP); for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) { pte1_store(pte1p++, PTE1_LINK(pa)); } /* * Now synchronize new mapping which was made above. */ pte1_sync_range(pmap->pm_pt1, NB_IN_PT1); pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB); CPU_ZERO(&pmap->pm_active); TAILQ_INIT(&pmap->pm_pvchunk); bzero(&pmap->pm_stats, sizeof pmap->pm_stats); return (1); } #ifdef INVARIANTS static boolean_t pt2tab_user_is_empty(pt2_entry_t *tab) { u_int i, end; end = pt2tab_index(VM_MAXUSER_ADDRESS); for (i = 0; i < end; i++) if (tab[i] != 0) return (FALSE); return (TRUE); } #endif /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { #ifdef INVARIANTS vm_offset_t start, end; #endif KASSERT(pmap->pm_stats.resident_count == 0, ("%s: pmap resident count %ld != 0", __func__, pmap->pm_stats.resident_count)); KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab), ("%s: has allocated user PT2(s)", __func__)); KASSERT(CPU_EMPTY(&pmap->pm_active), ("%s: pmap %p is active on some CPU(s)", __func__, pmap)); mtx_lock_spin(&allpmaps_lock); LIST_REMOVE(pmap, pm_list); mtx_unlock_spin(&allpmaps_lock); #ifdef INVARIANTS start = pte1_index(KERNBASE) * sizeof(pt1_entry_t); end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t); bzero((char *)pmap->pm_pt1 + start, end - start); start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t); end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t); bzero((char *)pmap->pm_pt2tab + start, end - start); #endif /* * We are leaving PT1 and PT2TAB allocated on released pmap, * so hopefully UMA vmspace_zone will always be inited with * UMA_ZONE_NOFREE flag. */ } /********************************************************* * * L2 table pages and their pages management routines. * *********************************************************/ /* * Virtual interface for L2 page table wire counting. * * Each L2 page table in a page has own counter which counts a number of * valid mappings in a table. Global page counter counts mappings in all * tables in a page plus a single itself mapping in PT2TAB. * * During a promotion we leave the associated L2 page table counter * untouched, so the table (strictly speaking a page which holds it) * is never freed if promoted. * * If a page m->ref_count == 1 then no valid mappings exist in any L2 page * table in the page and the page itself is only mapped in PT2TAB. */ static __inline void pt2_wirecount_init(vm_page_t m) { u_int i; /* * Note: A page m is allocated with VM_ALLOC_WIRED flag and * m->ref_count should be already set correctly. * So, there is no need to set it again herein. */ for (i = 0; i < NPT2_IN_PG; i++) m->md.pt2_wirecount[i] = 0; } static __inline void pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx) { /* * Note: A just modificated pte2 (i.e. already allocated) * is acquiring one extra reference which must be * explicitly cleared. It influences the KASSERTs herein. * All L2 page tables in a page always belong to the same * pmap, so we allow only one extra reference for the page. */ KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1), ("%s: PT2 is overflowing ...", __func__)); KASSERT(m->ref_count <= (NPTE2_IN_PG + 1), ("%s: PT2PG is overflowing ...", __func__)); m->ref_count++; m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++; } static __inline void pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx) { KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0, ("%s: PT2 is underflowing ...", __func__)); KASSERT(m->ref_count > 1, ("%s: PT2PG is underflowing ...", __func__)); m->ref_count--; m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--; } static __inline void pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count) { KASSERT(count <= NPTE2_IN_PT2, ("%s: invalid count %u", __func__, count)); KASSERT(m->ref_count > m->md.pt2_wirecount[pte1_idx & PT2PG_MASK], ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->ref_count, m->md.pt2_wirecount[pte1_idx & PT2PG_MASK])); m->ref_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]; m->ref_count += count; m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count; KASSERT(m->ref_count <= (NPTE2_IN_PG + 1), ("%s: PT2PG is overflowed (%u) ...", __func__, m->ref_count)); } static __inline uint32_t pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx) { return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]); } static __inline boolean_t pt2_is_empty(vm_page_t m, vm_offset_t va) { return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0); } static __inline boolean_t pt2_is_full(vm_page_t m, vm_offset_t va) { return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == NPTE2_IN_PT2); } static __inline boolean_t pt2pg_is_empty(vm_page_t m) { return (m->ref_count == 1); } /* * This routine is called if the L2 page table * is not mapped correctly. */ static vm_page_t _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags) { uint32_t pte1_idx; pt1_entry_t *pte1p; pt2_entry_t pte2; vm_page_t m; vm_paddr_t pt2pg_pa, pt2_pa; pte1_idx = pte1_index(va); pte1p = pmap->pm_pt1 + pte1_idx; KASSERT(pte1_load(pte1p) == 0, ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx, pte1_load(pte1p))); pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va)); if (!pte2_is_valid(pte2)) { /* * Install new PT2s page into pmap PT2TAB. */ m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (m == NULL) { if ((flags & PMAP_ENTER_NOSLEEP) == 0) { PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); vm_wait(NULL); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); } /* * Indicate the need to retry. While waiting, * the L2 page table page may have been allocated. */ return (NULL); } pmap->pm_stats.resident_count++; pt2pg_pa = pmap_pt2pg_init(pmap, va, m); } else { pt2pg_pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pt2pg_pa); } pt2_wirecount_inc(m, pte1_idx); pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx); pte1_store(pte1p, PTE1_LINK(pt2_pa)); return (m); } static vm_page_t pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags) { u_int pte1_idx; pt1_entry_t *pte1p, pte1; vm_page_t m; pte1_idx = pte1_index(va); retry: pte1p = pmap->pm_pt1 + pte1_idx; pte1 = pte1_load(pte1p); /* * This supports switching from a 1MB page to a * normal 4K page. */ if (pte1_is_section(pte1)) { (void)pmap_demote_pte1(pmap, pte1p, va); /* * Reload pte1 after demotion. * * Note: Demotion can even fail as either PT2 is not find for * the virtual address or PT2PG can not be allocated. */ pte1 = pte1_load(pte1p); } /* * If the L2 page table page is mapped, we just increment the * hold count, and activate it. */ if (pte1_is_link(pte1)) { m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); pt2_wirecount_inc(m, pte1_idx); } else { /* * Here if the PT2 isn't mapped, or if it has * been deallocated. */ m = _pmap_allocpte2(pmap, va, flags); if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0) goto retry; } return (m); } /* * Schedule the specified unused L2 page table page to be freed. Specifically, * add the page to the specified list of pages that will be released to the * physical memory manager after the TLB has been updated. */ static __inline void pmap_add_delayed_free_list(vm_page_t m, struct spglist *free) { /* * Put page on a list so that it is released after * *ALL* TLB shootdown is done */ #ifdef PMAP_DEBUG pmap_zero_page_check(m); #endif m->flags |= PG_ZERO; SLIST_INSERT_HEAD(free, m, plinks.s.ss); } /* * Unwire L2 page tables page. */ static void pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m) { pt1_entry_t *pte1p, opte1 __unused; pt2_entry_t *pte2p; uint32_t i; KASSERT(pt2pg_is_empty(m), ("%s: pmap %p PT2PG %p wired", __func__, pmap, m)); /* * Unmap all L2 page tables in the page from L1 page table. * * QQQ: Individual L2 page tables (except the last one) can be unmapped * earlier. However, we are doing that this way. */ KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK), ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m)); pte1p = pmap->pm_pt1 + m->pindex; for (i = 0; i < NPT2_IN_PG; i++, pte1p++) { KASSERT(m->md.pt2_wirecount[i] == 0, ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m)); opte1 = pte1_load(pte1p); if (pte1_is_link(opte1)) { pte1_clear(pte1p); /* * Flush intermediate TLB cache. */ pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT); } #ifdef INVARIANTS else KASSERT((opte1 == 0) || pte1_is_section(opte1), ("%s: pmap %p va %#x bad pte1 %x at %u", __func__, pmap, va, opte1, i)); #endif } /* * Unmap the page from PT2TAB. */ pte2p = pmap_pt2tab_entry(pmap, va); (void)pt2tab_load_clear(pte2p); pmap_tlb_flush(pmap, pt2map_pt2pg(va)); m->ref_count = 0; pmap->pm_stats.resident_count--; /* * This barrier is so that the ordinary store unmapping * the L2 page table page is globally performed before TLB shoot- * down is begun. */ wmb(); vm_wire_sub(1); } /* * Decrements a L2 page table page's wire count, which is used to record the * number of valid page table entries within the page. If the wire count * drops to zero, then the page table page is unmapped. Returns TRUE if the * page table page was unmapped and FALSE otherwise. */ static __inline boolean_t pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { pt2_wirecount_dec(m, pte1_index(va)); if (pt2pg_is_empty(m)) { /* * QQQ: Wire count is zero, so whole page should be zero and * we can set PG_ZERO flag to it. * Note that when promotion is enabled, it takes some * more efforts. See pmap_unwire_pt2_all() below. */ pmap_unwire_pt2pg(pmap, va, m); pmap_add_delayed_free_list(m, free); return (TRUE); } else return (FALSE); } /* * Drop a L2 page table page's wire count at once, which is used to record * the number of valid L2 page table entries within the page. If the wire * count drops to zero, then the L2 page table page is unmapped. */ static __inline void pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { u_int pte1_idx = pte1_index(va); KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK), ("%s: PT2 page's pindex is wrong", __func__)); KASSERT(m->ref_count > pt2_wirecount_get(m, pte1_idx), ("%s: bad pt2 wire count %u > %u", __func__, m->ref_count, pt2_wirecount_get(m, pte1_idx))); /* * It's possible that the L2 page table was never used. * It happened in case that a section was created without promotion. */ if (pt2_is_full(m, va)) { pt2_wirecount_set(m, pte1_idx, 0); /* * QQQ: We clear L2 page table now, so when L2 page table page * is going to be freed, we can set it PG_ZERO flag ... * This function is called only on section mappings, so * hopefully it's not to big overload. * * XXX: If pmap is current, existing PT2MAP mapping could be * used for zeroing. */ pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2); } #ifdef INVARIANTS else KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)", __func__, pt2_wirecount_get(m, pte1_idx))); #endif if (pt2pg_is_empty(m)) { pmap_unwire_pt2pg(pmap, va, m); pmap_add_delayed_free_list(m, free); } } /* * After removing a L2 page table entry, this routine is used to * conditionally free the page, and manage the hold/wire counts. */ static boolean_t pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free) { pt1_entry_t pte1; vm_page_t mpte; if (va >= VM_MAXUSER_ADDRESS) return (FALSE); pte1 = pte1_load(pmap_pte1(pmap, va)); mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); return (pmap_unwire_pt2(pmap, va, mpte, free)); } /************************************* * * Page management routines. * *************************************/ CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE); CTASSERT(_NPCM == 11); CTASSERT(_NPCPV == 336); static __inline struct pv_chunk * pv_to_chunk(pv_entry_t pv) { return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK)); } #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap) #define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */ #define PC_FREE10 0x0000fffful /* Free values for index 10 */ static const uint32_t pc_freemask[_NPCM] = { PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE0_9, PC_FREE10 }; SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0, "Current number of pv entries"); #ifdef PV_STATS static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail; SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0, "Current number of pv entry chunks"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0, "Current number of pv entry chunks allocated"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0, "Current number of pv entry chunks frees"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0, "Number of times tried to get a chunk page but failed."); static long pv_entry_frees, pv_entry_allocs; static int pv_entry_spare; SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0, "Current number of pv entry frees"); SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0, "Current number of pv entry allocs"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0, "Current number of spare pv entries"); #endif /* * Is given page managed? */ static __inline bool is_managed(vm_paddr_t pa) { vm_page_t m; m = PHYS_TO_VM_PAGE(pa); if (m == NULL) return (false); return ((m->oflags & VPO_UNMANAGED) == 0); } static __inline bool pte1_is_managed(pt1_entry_t pte1) { return (is_managed(pte1_pa(pte1))); } static __inline bool pte2_is_managed(pt2_entry_t pte2) { return (is_managed(pte2_pa(pte2))); } /* * We are in a serious low memory condition. Resort to * drastic measures to free some pages so we can allocate * another pv entry chunk. */ static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap) { struct pch newtail; struct pv_chunk *pc; struct md_page *pvh; pt1_entry_t *pte1p; pmap_t pmap; pt2_entry_t *pte2p, tpte2; pv_entry_t pv; vm_offset_t va; vm_page_t m, m_pc; struct spglist free; uint32_t inuse; int bit, field, freed; PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED); pmap = NULL; m_pc = NULL; SLIST_INIT(&free); TAILQ_INIT(&newtail); while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 || SLIST_EMPTY(&free))) { TAILQ_REMOVE(&pv_chunks, pc, pc_lru); if (pmap != pc->pc_pmap) { if (pmap != NULL) { if (pmap != locked_pmap) PMAP_UNLOCK(pmap); } pmap = pc->pc_pmap; /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) PMAP_LOCK(pmap); else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) { pmap = NULL; TAILQ_INSERT_TAIL(&newtail, pc, pc_lru); continue; } } /* * Destroy every non-wired, 4 KB page mapping in the chunk. */ freed = 0; for (field = 0; field < _NPCM; field++) { for (inuse = ~pc->pc_map[field] & pc_freemask[field]; inuse != 0; inuse &= ~(1UL << bit)) { bit = ffs(inuse) - 1; pv = &pc->pc_pventry[field * 32 + bit]; va = pv->pv_va; pte1p = pmap_pte1(pmap, va); if (pte1_is_section(pte1_load(pte1p))) continue; pte2p = pmap_pte2(pmap, va); tpte2 = pte2_load(pte2p); if ((tpte2 & PTE2_W) == 0) tpte2 = pte2_load_clear(pte2p); pmap_pte2_release(pte2p); if ((tpte2 & PTE2_W) != 0) continue; KASSERT(tpte2 != 0, ("pmap_pv_reclaim: pmap %p va %#x zero pte", pmap, va)); pmap_tlb_flush(pmap, va); m = PHYS_TO_VM_PAGE(pte2_pa(tpte2)); if (pte2_is_dirty(tpte2)) vm_page_dirty(m); if ((tpte2 & PTE2_A) != 0) vm_page_aflag_set(m, PGA_REFERENCED); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) { vm_page_aflag_clear(m, PGA_WRITEABLE); } } pc->pc_map[field] |= 1UL << bit; pmap_unuse_pt2(pmap, va, &free); freed++; } } if (freed == 0) { TAILQ_INSERT_TAIL(&newtail, pc, pc_lru); continue; } /* Every freed mapping is for a 4 KB page. */ pmap->pm_stats.resident_count -= freed; PV_STAT(pv_entry_frees += freed); PV_STAT(pv_entry_spare += freed); pv_entry_count -= freed; TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); for (field = 0; field < _NPCM; field++) if (pc->pc_map[field] != pc_freemask[field]) { TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&newtail, pc, pc_lru); /* * One freed pv entry in locked_pmap is * sufficient. */ if (pmap == locked_pmap) goto out; break; } if (field == _NPCM) { PV_STAT(pv_entry_spare -= _NPCPV); PV_STAT(pc_chunk_count--); PV_STAT(pc_chunk_frees++); /* Entire chunk is free; return it. */ m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc)); pmap_qremove((vm_offset_t)pc, 1); pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc); break; } } out: TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru); if (pmap != NULL) { if (pmap != locked_pmap) PMAP_UNLOCK(pmap); } if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) { m_pc = SLIST_FIRST(&free); SLIST_REMOVE_HEAD(&free, plinks.s.ss); /* Recycle a freed page table page. */ m_pc->ref_count = 1; vm_wire_add(1); } vm_page_free_pages_toq(&free, false); return (m_pc); } static void free_pv_chunk(struct pv_chunk *pc) { vm_page_t m; TAILQ_REMOVE(&pv_chunks, pc, pc_lru); PV_STAT(pv_entry_spare -= _NPCPV); PV_STAT(pc_chunk_count--); PV_STAT(pc_chunk_frees++); /* entire chunk is free, return it */ m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc)); pmap_qremove((vm_offset_t)pc, 1); vm_page_unwire_noq(m); vm_page_free(m); pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc); } /* * Free the pv_entry back to the free list. */ static void free_pv_entry(pmap_t pmap, pv_entry_t pv) { struct pv_chunk *pc; int idx, field, bit; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(pv_entry_frees++); PV_STAT(pv_entry_spare++); pv_entry_count--; pc = pv_to_chunk(pv); idx = pv - &pc->pc_pventry[0]; field = idx / 32; bit = idx % 32; pc->pc_map[field] |= 1ul << bit; for (idx = 0; idx < _NPCM; idx++) if (pc->pc_map[idx] != pc_freemask[idx]) { /* * 98% of the time, pc is already at the head of the * list. If it isn't already, move it to the head. */ if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) != pc)) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); } return; } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } /* * Get a new pv_entry, allocating a block from the system * when needed. */ static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try) { static const struct timeval printinterval = { 60, 0 }; static struct timeval lastprint; int bit, field; pv_entry_t pv; struct pv_chunk *pc; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(pv_entry_allocs++); pv_entry_count++; if (pv_entry_count > pv_entry_high_water) if (ratecheck(&lastprint, &printinterval)) printf("Approaching the limit on PV entries, consider " "increasing either the vm.pmap.shpgperproc or the " "vm.pmap.pv_entries tunable.\n"); retry: pc = TAILQ_FIRST(&pmap->pm_pvchunk); if (pc != NULL) { for (field = 0; field < _NPCM; field++) { if (pc->pc_map[field]) { bit = ffs(pc->pc_map[field]) - 1; break; } } if (field < _NPCM) { pv = &pc->pc_pventry[field * 32 + bit]; pc->pc_map[field] &= ~(1ul << bit); /* If this was the last item, move it to tail */ for (field = 0; field < _NPCM; field++) if (pc->pc_map[field] != 0) { PV_STAT(pv_entry_spare--); return (pv); /* not full, return */ } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(pv_entry_spare--); return (pv); } } /* * Access to the pte2list "pv_vafree" is synchronized by the pvh * global lock. If "pv_vafree" is currently non-empty, it will * remain non-empty until pmap_pte2list_alloc() completes. */ if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { if (try) { pv_entry_count--; PV_STAT(pc_chunk_tryfail++); return (NULL); } m = pmap_pv_reclaim(pmap); if (m == NULL) goto retry; } PV_STAT(pc_chunk_count++); PV_STAT(pc_chunk_allocs++); pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree); pmap_qenter((vm_offset_t)pc, &m, 1); pc->pc_pmap = pmap; pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */ for (field = 1; field < _NPCM; field++) pc->pc_map[field] = pc_freemask[field]; TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru); pv = &pc->pc_pventry[0]; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(pv_entry_spare += _NPCPV - 1); return (pv); } /* * Create a pv entry for page at pa for * (pmap, va). */ static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); pv = get_pv_entry(pmap, FALSE); pv->pv_va = va; TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); } static __inline pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (pmap == PV_PMAP(pv) && va == pv->pv_va) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); break; } } return (pv); } static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pvh_free: pv not found")); free_pv_entry(pmap, pv); } static void pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va) { struct md_page *pvh; rw_assert(&pvh_global_lock, RA_WLOCKED); pmap_pvh_free(&m->md, pmap, va); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } static void pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa) { struct md_page *pvh; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT((pa & PTE1_OFFSET) == 0, ("pmap_pv_demote_pte1: pa is not 1mpage aligned")); /* * Transfer the 1mpage's pv entry for this mapping to the first * page's pv list. */ pvh = pa_to_pvh(pa); va = pte1_trunc(va); pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found")); m = PHYS_TO_VM_PAGE(pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); /* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */ va_last = va + PTE1_SIZE - PAGE_SIZE; do { m++; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_pv_demote_pte1: page %p is not managed", m)); va += PAGE_SIZE; pmap_insert_entry(pmap, va, m); } while (va < va_last); } #if VM_NRESERVLEVEL > 0 static void pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa) { struct md_page *pvh; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT((pa & PTE1_OFFSET) == 0, ("pmap_pv_promote_pte1: pa is not 1mpage aligned")); /* * Transfer the first page's pv entry for this mapping to the * 1mpage's pv list. Aside from avoiding the cost of a call * to get_pv_entry(), a transfer avoids the possibility that * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim() * removes one of the mappings that is being promoted. */ m = PHYS_TO_VM_PAGE(pa); va = pte1_trunc(va); pv = pmap_pvh_remove(&m->md, pmap, va); KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found")); pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); /* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */ va_last = va + PTE1_SIZE - PAGE_SIZE; do { m++; va += PAGE_SIZE; pmap_pvh_free(&m->md, pmap, va); } while (va < va_last); } #endif /* * Conditionally create a pv entry. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m) { pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if (pv_entry_count < pv_entry_high_water && (pv = get_pv_entry(pmap, TRUE)) != NULL) { pv->pv_va = va; TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); return (TRUE); } else return (FALSE); } /* * Create the pv entries for each of the pages within a section. */ static bool pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags) { struct md_page *pvh; pv_entry_t pv; bool noreclaim; rw_assert(&pvh_global_lock, RA_WLOCKED); noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0; if ((noreclaim && pv_entry_count >= pv_entry_high_water) || (pv = get_pv_entry(pmap, noreclaim)) == NULL) return (false); pv->pv_va = va; pvh = pa_to_pvh(pte1_pa(pte1)); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); return (true); } static inline void pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1) { /* Kill all the small mappings or the big one only. */ if (pte1_is_section(npte1)) pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE); else pmap_tlb_flush(pmap, pte1_trunc(va)); } /* * Update kernel pte1 on all pmaps. * * The following function is called only on one cpu with disabled interrupts. * In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way * nobody can invoke explicit hardware table walk during the update of pte1. * Unsolicited hardware table walk can still happen, invoked by speculative * data or instruction prefetch or even by speculative hardware table walk. * * The break-before-make approach should be implemented here. However, it's * not so easy to do that for kernel mappings as it would be unhappy to unmap * itself unexpectedly but voluntarily. */ static void pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1) { pmap_t pmap; pt1_entry_t *pte1p; /* * Get current pmap. Interrupts should be disabled here * so PCPU_GET() is done atomically. */ pmap = PCPU_GET(curpmap); if (pmap == NULL) pmap = kernel_pmap; /* * (1) Change pte1 on current pmap. * (2) Flush all obsolete TLB entries on current CPU. * (3) Change pte1 on all pmaps. * (4) Flush all obsolete TLB entries on all CPUs in SMP case. */ pte1p = pmap_pte1(pmap, va); pte1_store(pte1p, npte1); /* Kill all the small mappings or the big one only. */ if (pte1_is_section(npte1)) { pmap_pte1_kern_promotions++; tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE); } else { pmap_pte1_kern_demotions++; tlb_flush_local(pte1_trunc(va)); } /* * In SMP case, this function is called when all cpus are at smp * rendezvous, so there is no need to use 'allpmaps_lock' lock here. * In UP case, the function is called with this lock locked. */ LIST_FOREACH(pmap, &allpmaps, pm_list) { pte1p = pmap_pte1(pmap, va); pte1_store(pte1p, npte1); } #ifdef SMP /* Kill all the small mappings or the big one only. */ if (pte1_is_section(npte1)) tlb_flush_range(pte1_trunc(va), PTE1_SIZE); else tlb_flush(pte1_trunc(va)); #endif } #ifdef SMP struct pte1_action { vm_offset_t va; pt1_entry_t npte1; u_int update; /* CPU that updates the PTE1 */ }; static void pmap_update_pte1_action(void *arg) { struct pte1_action *act = arg; if (act->update == PCPU_GET(cpuid)) pmap_update_pte1_kernel(act->va, act->npte1); } /* * Change pte1 on current pmap. * Note that kernel pte1 must be changed on all pmaps. * * According to the architecture reference manual published by ARM, * the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA. * According to this manual, UNPREDICTABLE behaviours must never happen in * a viable system. In contrast, on x86 processors, it is not specified which * TLB entry mapping the virtual address will be used, but the MMU doesn't * generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone * Black). * * It's a problem when either promotion or demotion is being done. The pte1 * update and appropriate TLB flush must be done atomically in general. */ static void pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va, pt1_entry_t npte1) { if (pmap == kernel_pmap) { struct pte1_action act; sched_pin(); act.va = va; act.npte1 = npte1; act.update = PCPU_GET(cpuid); smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier, pmap_update_pte1_action, NULL, &act); sched_unpin(); } else { register_t cspr; /* * Use break-before-make approach for changing userland * mappings. It can cause L1 translation aborts on other * cores in SMP case. So, special treatment is implemented * in pmap_fault(). To reduce the likelihood that another core * will be affected by the broken mapping, disable interrupts * until the mapping change is completed. */ cspr = disable_interrupts(PSR_I | PSR_F); pte1_clear(pte1p); pmap_tlb_flush_pte1(pmap, va, npte1); pte1_store(pte1p, npte1); restore_interrupts(cspr); } } #else static void pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va, pt1_entry_t npte1) { if (pmap == kernel_pmap) { mtx_lock_spin(&allpmaps_lock); pmap_update_pte1_kernel(va, npte1); mtx_unlock_spin(&allpmaps_lock); } else { register_t cspr; /* * Use break-before-make approach for changing userland * mappings. It's absolutely safe in UP case when interrupts * are disabled. */ cspr = disable_interrupts(PSR_I | PSR_F); pte1_clear(pte1p); pmap_tlb_flush_pte1(pmap, va, npte1); pte1_store(pte1p, npte1); restore_interrupts(cspr); } } #endif #if VM_NRESERVLEVEL > 0 /* * Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are * within a single page table page (PT2) to a single 1MB page mapping. * For promotion to occur, two conditions must be met: (1) the 4KB page * mappings must map aligned, contiguous physical memory and (2) the 4KB page * mappings must have identical characteristics. * * Managed (PG_MANAGED) mappings within the kernel address space are not * promoted. The reason is that kernel PTE1s are replicated in each pmap but * pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only * read the PTE1 from the kernel pmap. */ static void pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va) { pt1_entry_t npte1; pt2_entry_t *fpte2p, fpte2, fpte2_fav; pt2_entry_t *pte2p, pte2; vm_offset_t pteva __unused; vm_page_t m __unused; PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__, pmap, va, pte1_load(pte1p), pte1p)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is * either invalid, unused, or does not map the first 4KB physical page * within a 1MB page. */ fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va)); fpte2 = pte2_load(fpte2p); if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) != (PTE2_A | PTE2_V)) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p", __func__, va, pmap); return; } if (pte2_is_managed(fpte2) && pmap == kernel_pmap) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p", __func__, va, pmap); return; } if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) { /* * When page is not modified, PTE2_RO can be set without * a TLB invalidation. */ fpte2 |= PTE2_RO; pte2_store(fpte2p, fpte2); } /* * Examine each of the other PTE2s in the specified PT2. Abort if this * PTE2 maps an unexpected 4KB physical page or does not have identical * characteristics to the first PTE2. */ fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V)); fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */ for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) { pte2 = pte2_load(pte2p); if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p", __func__, va, pmap); return; } if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) { /* * When page is not modified, PTE2_RO can be set * without a TLB invalidation. See note above. */ pte2 |= PTE2_RO; pte2_store(pte2p, pte2); pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET & PTE2_FRAME); CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p", __func__, pteva, pmap); } if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) { pmap_pte1_p_failures++; CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p", __func__, va, pmap); return; } fpte2_fav -= PTE2_SIZE; } /* * The page table page in its current state will stay in PT2TAB * until the PTE1 mapping the section is demoted by pmap_demote_pte1() * or destroyed by pmap_remove_pte1(). * * Note that L2 page table size is not equal to PAGE_SIZE. */ m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p)))); KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size], ("%s: PT2 page is out of range", __func__)); KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK), ("%s: PT2 page's pindex is wrong", __func__)); /* * Get pte1 from pte2 format. */ npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V; /* * Promote the pv entries. */ if (pte2_is_managed(fpte2)) pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1)); /* * Promote the mappings. */ pmap_change_pte1(pmap, pte1p, va, npte1); pmap_pte1_promotions++; CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p", __func__, va, pmap); PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n", __func__, pmap, va, npte1, pte1_load(pte1p), pte1p)); } #endif /* VM_NRESERVLEVEL > 0 */ /* * Zero L2 page table page. */ static __inline void pmap_clear_pt2(pt2_entry_t *fpte2p) { pt2_entry_t *pte2p; for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) pte2_clear(pte2p); } /* * Removes a 1MB page mapping from the kernel pmap. */ static void pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va) { vm_page_t m; uint32_t pte1_idx; pt2_entry_t *fpte2p; vm_paddr_t pt2_pa; PMAP_LOCK_ASSERT(pmap, MA_OWNED); m = pmap_pt2_page(pmap, va); if (m == NULL) /* * QQQ: Is this function called only on promoted pte1? * We certainly do section mappings directly * (without promotion) in kernel !!! */ panic("%s: missing pt2 page", __func__); pte1_idx = pte1_index(va); /* * Initialize the L2 page table. */ fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx); pmap_clear_pt2(fpte2p); /* * Remove the mapping. */ pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx); pmap_kenter_pte1(va, PTE1_LINK(pt2_pa)); /* * QQQ: We do not need to invalidate PT2MAP mapping * as we did not change it. I.e. the L2 page table page * was and still is mapped the same way. */ } /* * Do the things to unmap a section in a process */ static void pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva, struct spglist *free) { pt1_entry_t opte1; struct md_page *pvh; vm_offset_t eva, va; vm_page_t m; PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva, pte1_load(pte1p), pte1p)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & PTE1_OFFSET) == 0, ("%s: sva is not 1mpage aligned", __func__)); /* * Clear and invalidate the mapping. It should occupy one and only TLB * entry. So, pmap_tlb_flush() called with aligned address should be * sufficient. */ opte1 = pte1_load_clear(pte1p); pmap_tlb_flush(pmap, sva); if (pte1_is_wired(opte1)) pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE; pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE; if (pte1_is_managed(opte1)) { pvh = pa_to_pvh(pte1_pa(opte1)); pmap_pvh_free(pvh, pmap, sva); eva = sva + PTE1_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1)); va < eva; va += PAGE_SIZE, m++) { if (pte1_is_dirty(opte1)) vm_page_dirty(m); if (opte1 & PTE1_A) vm_page_aflag_set(m, PGA_REFERENCED); if (TAILQ_EMPTY(&m->md.pv_list) && TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } if (pmap == kernel_pmap) { /* * L2 page table(s) can't be removed from kernel map as * kernel counts on it (stuff around pmap_growkernel()). */ pmap_remove_kernel_pte1(pmap, pte1p, sva); } else { /* * Get associated L2 page table page. * It's possible that the page was never allocated. */ m = pmap_pt2_page(pmap, sva); if (m != NULL) pmap_unwire_pt2_all(pmap, sva, m, free); } } /* * Fills L2 page table page with mappings to consecutive physical pages. */ static __inline void pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2) { pt2_entry_t *pte2p; for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) { pte2_store(pte2p, npte2); npte2 += PTE2_SIZE; } } /* * Tries to demote a 1MB page mapping. If demotion fails, the * 1MB page mapping is invalidated. */ static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va) { pt1_entry_t opte1, npte1; pt2_entry_t *fpte2p, npte2; vm_paddr_t pt2pg_pa, pt2_pa; vm_page_t m; struct spglist free; uint32_t pte1_idx, isnew = 0; PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__, pmap, va, pte1_load(pte1p), pte1p)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); opte1 = pte1_load(pte1p); KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__)); if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) { KASSERT(!pte1_is_wired(opte1), ("%s: PT2 page for a wired mapping is missing", __func__)); /* * Invalidate the 1MB page mapping and return * "failure" if the mapping was never accessed or the * allocation of the new page table page fails. */ if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL, pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) { SLIST_INIT(&free); pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free); vm_page_free_pages_toq(&free, false); CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p", __func__, va, pmap); return (FALSE); } if (va < VM_MAXUSER_ADDRESS) pmap->pm_stats.resident_count++; isnew = 1; /* * We init all L2 page tables in the page even if * we are going to change everything for one L2 page * table in a while. */ pt2pg_pa = pmap_pt2pg_init(pmap, va, m); } else { if (va < VM_MAXUSER_ADDRESS) { if (pt2_is_empty(m, va)) isnew = 1; /* Demoting section w/o promotion. */ #ifdef INVARIANTS else KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire" " count %u", __func__, pt2_wirecount_get(m, pte1_index(va)))); #endif } } pt2pg_pa = VM_PAGE_TO_PHYS(m); pte1_idx = pte1_index(va); /* * If the pmap is current, then the PT2MAP can provide access to * the page table page (promoted L2 page tables are not unmapped). * Otherwise, temporarily map the L2 page table page (m) into * the kernel's address space at either PADDR1 or PADDR2. * * Note that L2 page table size is not equal to PAGE_SIZE. */ if (pmap_is_current(pmap)) fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx); else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) { if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) { pte2_store(PMAP1, PTE2_KPT(pt2pg_pa)); #ifdef SMP PMAP1cpu = PCPU_GET(cpuid); #endif tlb_flush_local((vm_offset_t)PADDR1); PMAP1changed++; } else #ifdef SMP if (PMAP1cpu != PCPU_GET(cpuid)) { PMAP1cpu = PCPU_GET(cpuid); tlb_flush_local((vm_offset_t)PADDR1); PMAP1changedcpu++; } else #endif PMAP1unchanged++; fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx); } else { mtx_lock(&PMAP2mutex); if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) { pte2_store(PMAP2, PTE2_KPT(pt2pg_pa)); tlb_flush((vm_offset_t)PADDR2); } fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx); } pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx); npte1 = PTE1_LINK(pt2_pa); KASSERT((opte1 & PTE1_A) != 0, ("%s: opte1 is missing PTE1_A", __func__)); KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM, ("%s: opte1 has PTE1_NM", __func__)); /* * Get pte2 from pte1 format. */ npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V; /* * If the L2 page table page is new, initialize it. If the mapping * has changed attributes, update the page table entries. */ if (isnew != 0) { pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2); pmap_fill_pt2(fpte2p, npte2); } else if ((pte2_load(fpte2p) & PTE2_PROMOTE) != (npte2 & PTE2_PROMOTE)) pmap_fill_pt2(fpte2p, npte2); KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2), ("%s: fpte2p and npte2 map different physical addresses", __func__)); if (fpte2p == PADDR2) mtx_unlock(&PMAP2mutex); /* * Demote the mapping. This pmap is locked. The old PTE1 has * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also * has not PTE1_NM set. Thus, there is no danger of a race with * another processor changing the setting of PTE1_A and/or PTE1_NM * between the read above and the store below. */ pmap_change_pte1(pmap, pte1p, va, npte1); /* * Demote the pv entry. This depends on the earlier demotion * of the mapping. Specifically, the (re)creation of a per- * page pv entry might trigger the execution of pmap_pv_reclaim(), * which might reclaim a newly (re)created per-page pv entry * and destroy the associated mapping. In order to destroy * the mapping, the PTE1 must have already changed from mapping * the 1mpage to referencing the page table page. */ if (pte1_is_managed(opte1)) pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1)); pmap_pte1_demotions++; CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p", __func__, va, pmap); PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n", __func__, pmap, va, npte1, pte1_load(pte1p), pte1p)); return (TRUE); } /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ int pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { pt1_entry_t *pte1p; pt2_entry_t *pte2p; pt2_entry_t npte2, opte2; pv_entry_t pv; vm_paddr_t opa, pa; vm_page_t mpte2, om; int rv; va = trunc_page(va); KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__)); KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS, ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__, va)); KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva || va >= kmi.clean_eva, ("%s: managed mapping within the clean submap", __func__)); if ((m->oflags & VPO_UNMANAGED) == 0) VM_PAGE_OBJECT_BUSY_ASSERT(m); KASSERT((flags & PMAP_ENTER_RESERVED) == 0, ("%s: flags %u has reserved bits set", __func__, flags)); pa = VM_PAGE_TO_PHYS(m); npte2 = PTE2(pa, PTE2_A, vm_page_pte2_attr(m)); if ((flags & VM_PROT_WRITE) == 0) npte2 |= PTE2_NM; if ((prot & VM_PROT_WRITE) == 0) npte2 |= PTE2_RO; KASSERT((npte2 & (PTE2_NM | PTE2_RO)) != PTE2_RO, ("%s: flags includes VM_PROT_WRITE but prot doesn't", __func__)); if ((prot & VM_PROT_EXECUTE) == 0) npte2 |= PTE2_NX; if ((flags & PMAP_ENTER_WIRED) != 0) npte2 |= PTE2_W; if (va < VM_MAXUSER_ADDRESS) npte2 |= PTE2_U; if (pmap != kernel_pmap) npte2 |= PTE2_NG; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); sched_pin(); if (psind == 1) { /* Assert the required virtual and physical alignment. */ KASSERT((va & PTE1_OFFSET) == 0, ("%s: va unaligned", __func__)); KASSERT(m->psind > 0, ("%s: m->psind < psind", __func__)); rv = pmap_enter_pte1(pmap, va, PTE1_PA(pa) | ATTR_TO_L1(npte2) | PTE1_V, flags, m); goto out; } /* * In the case that a page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { mpte2 = pmap_allocpte2(pmap, va, flags); if (mpte2 == NULL) { KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0, ("pmap_allocpte2 failed with sleep allowed")); rv = KERN_RESOURCE_SHORTAGE; goto out; } } else mpte2 = NULL; pte1p = pmap_pte1(pmap, va); if (pte1_is_section(pte1_load(pte1p))) panic("%s: attempted on 1MB page", __func__); pte2p = pmap_pte2_quick(pmap, va); if (pte2p == NULL) panic("%s: invalid L1 page table entry va=%#x", __func__, va); om = NULL; opte2 = pte2_load(pte2p); opa = pte2_pa(opte2); /* * Mapping has not changed, must be protection or wiring change. */ if (pte2_is_valid(opte2) && (opa == pa)) { /* * Wiring change, just update stats. We don't worry about * wiring PT2 pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is wired, * the PT2 page will be also. */ if (pte2_is_wired(npte2) && !pte2_is_wired(opte2)) pmap->pm_stats.wired_count++; else if (!pte2_is_wired(npte2) && pte2_is_wired(opte2)) pmap->pm_stats.wired_count--; /* * Remove extra pte2 reference */ if (mpte2) pt2_wirecount_dec(mpte2, pte1_index(va)); if ((m->oflags & VPO_UNMANAGED) == 0) om = m; goto validate; } /* * QQQ: We think that changing physical address on writeable mapping * is not safe. Well, maybe on kernel address space with correct * locking, it can make a sense. However, we have no idea why * anyone should do that on user address space. Are we wrong? */ KASSERT((opa == 0) || (opa == pa) || !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0), ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!", __func__, pmap, va, opte2, opa, pa, flags, prot)); pv = NULL; /* * Mapping has changed, invalidate old range and fall through to * handle validating new mapping. */ if (opa) { if (pte2_is_wired(opte2)) pmap->pm_stats.wired_count--; om = PHYS_TO_VM_PAGE(opa); if (om != NULL && (om->oflags & VPO_UNMANAGED) != 0) om = NULL; if (om != NULL) pv = pmap_pvh_remove(&om->md, pmap, va); /* * Remove extra pte2 reference */ if (mpte2 != NULL) pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT); } else pmap->pm_stats.resident_count++; /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { if (pv == NULL) { pv = get_pv_entry(pmap, FALSE); pv->pv_va = va; } TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); } else if (pv != NULL) free_pv_entry(pmap, pv); /* * Increment counters */ if (pte2_is_wired(npte2)) pmap->pm_stats.wired_count++; validate: /* * Now validate mapping with desired protection/wiring. */ if (prot & VM_PROT_WRITE) { if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); } /* * If the mapping or permission bits are different, we need * to update the pte2. * * QQQ: Think again and again what to do * if the mapping is going to be changed! */ if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) { /* * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA * is set. Do it now, before the mapping is stored and made * valid for hardware table walk. If done later, there is a race * for other threads of current process in lazy loading case. * Don't do it for kernel memory which is mapped with exec * permission even if the memory isn't going to hold executable * code. The only time when icache sync is needed is after * kernel module is loaded and the relocation info is processed. * And it's done in elf_cpu_load_file(). * * QQQ: (1) Does it exist any better way where * or how to sync icache? * (2) Now, we do it on a page basis. */ if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap && m->md.pat_mode == VM_MEMATTR_WB_WA && (opa != pa || (opte2 & PTE2_NX))) cache_icache_sync_fresh(va, pa, PAGE_SIZE); if (opte2 & PTE2_V) { /* Change mapping with break-before-make approach. */ opte2 = pte2_load_clear(pte2p); pmap_tlb_flush(pmap, va); pte2_store(pte2p, npte2); if (om != NULL) { KASSERT((om->oflags & VPO_UNMANAGED) == 0, ("%s: om %p unmanaged", __func__, om)); if ((opte2 & PTE2_A) != 0) vm_page_aflag_set(om, PGA_REFERENCED); if (pte2_is_dirty(opte2)) vm_page_dirty(om); if (TAILQ_EMPTY(&om->md.pv_list) && ((om->flags & PG_FICTITIOUS) != 0 || TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list))) vm_page_aflag_clear(om, PGA_WRITEABLE); } } else pte2_store(pte2p, npte2); } #if 0 else { /* * QQQ: In time when both access and not mofified bits are * emulated by software, this should not happen. Some * analysis is need, if this really happen. Missing * tlb flush somewhere could be the reason. */ panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap, va, opte2, npte2); } #endif #if VM_NRESERVLEVEL > 0 /* * If both the L2 page table page and the reservation are fully * populated, then attempt promotion. */ if ((mpte2 == NULL || pt2_is_full(mpte2, va)) && sp_enabled && (m->flags & PG_FICTITIOUS) == 0 && vm_reserv_level_iffullpop(m) == 0) pmap_promote_pte1(pmap, pte1p, va); #endif rv = KERN_SUCCESS; out: sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); return (rv); } /* * Do the things to unmap a page in a process. */ static int pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va, struct spglist *free) { pt2_entry_t opte2; vm_page_t m; rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Clear and invalidate the mapping. */ opte2 = pte2_load_clear(pte2p); pmap_tlb_flush(pmap, va); KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x", __func__, pmap, va, opte2)); if (opte2 & PTE2_W) pmap->pm_stats.wired_count -= 1; pmap->pm_stats.resident_count -= 1; if (pte2_is_managed(opte2)) { m = PHYS_TO_VM_PAGE(pte2_pa(opte2)); if (pte2_is_dirty(opte2)) vm_page_dirty(m); if (opte2 & PTE2_A) vm_page_aflag_set(m, PGA_REFERENCED); pmap_remove_entry(pmap, m, va); } return (pmap_unuse_pt2(pmap, va, free)); } /* * Remove a single page from a process address space. */ static void pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free) { pt2_entry_t *pte2p; rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT(curthread->td_pinned > 0, ("%s: curthread not pinned", __func__)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL || !pte2_is_valid(pte2_load(pte2p))) return; pmap_remove_pte2(pmap, pte2p, va, free); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ void pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t nextva; pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; struct spglist free; /* * Perform an unsynchronized read. This is, however, safe. */ if (pmap->pm_stats.resident_count == 0) return; SLIST_INIT(&free); rw_wlock(&pvh_global_lock); sched_pin(); PMAP_LOCK(pmap); /* * Special handling of removing one page. A very common * operation and easy to short circuit some code. */ if (sva + PAGE_SIZE == eva) { pte1 = pte1_load(pmap_pte1(pmap, sva)); if (pte1_is_link(pte1)) { pmap_remove_page(pmap, sva, &free); goto out; } } for (; sva < eva; sva = nextva) { /* * Calculate address for next L2 page table. */ nextva = pte1_trunc(sva + PTE1_SIZE); if (nextva < sva) nextva = eva; if (pmap->pm_stats.resident_count == 0) break; pte1p = pmap_pte1(pmap, sva); pte1 = pte1_load(pte1p); /* * Weed out invalid mappings. Note: we assume that the L1 page * table is always allocated, and in kernel virtual. */ if (pte1 == 0) continue; if (pte1_is_section(pte1)) { /* * Are we removing the entire large page? If not, * demote the mapping and fall through. */ if (sva + PTE1_SIZE == nextva && eva >= nextva) { pmap_remove_pte1(pmap, pte1p, sva, &free); continue; } else if (!pmap_demote_pte1(pmap, pte1p, sva)) { /* The large page mapping was destroyed. */ continue; } #ifdef INVARIANTS else { /* Update pte1 after demotion. */ pte1 = pte1_load(pte1p); } #endif } KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p" " is not link", __func__, pmap, sva, pte1, pte1p)); /* * Limit our scan to either the end of the va represented * by the current L2 page table page, or to the end of the * range being removed. */ if (nextva > eva) nextva = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++, sva += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2)) continue; if (pmap_remove_pte2(pmap, pte2p, sva, &free)) break; } } out: sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, false); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { struct md_page *pvh; pv_entry_t pv; pmap_t pmap; pt2_entry_t *pte2p, opte2; pt1_entry_t *pte1p; vm_offset_t va; struct spglist free; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); SLIST_INIT(&free); rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0) goto small_mappings; pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) { va = pv->pv_va; pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, va); (void)pmap_demote_pte1(pmap, pte1p, va); PMAP_UNLOCK(pmap); } small_mappings: while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pmap->pm_stats.resident_count--; pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found " "a 1mpage in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); opte2 = pte2_load_clear(pte2p); pmap_tlb_flush(pmap, pv->pv_va); KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2", __func__, pmap, pv->pv_va)); if (pte2_is_wired(opte2)) pmap->pm_stats.wired_count--; if (opte2 & PTE2_A) vm_page_aflag_set(m, PGA_REFERENCED); /* * Update the vm_page_t clean and reference bits. */ if (pte2_is_dirty(opte2)) vm_page_dirty(m); pmap_unuse_pt2(pmap, pv->pv_va, &free); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); free_pv_entry(pmap, pv); PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); sched_unpin(); rw_wunlock(&pvh_global_lock); vm_page_free_pages_toq(&free, false); } /* * Just subroutine for pmap_remove_pages() to reasonably satisfy * good coding style, a.k.a. 80 character line width limit hell. */ static __inline void pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv, struct spglist *free) { vm_paddr_t pa; vm_page_t m, mt, mpt2pg; struct md_page *pvh; pa = pte1_pa(pte1); m = PHYS_TO_VM_PAGE(pa); KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x", __func__, m, m->phys_addr, pa)); KASSERT((m->flags & PG_FICTITIOUS) != 0 || m < &vm_page_array[vm_page_array_size], ("%s: bad pte1 %#x", __func__, pte1)); if (pte1_is_dirty(pte1)) { for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++) vm_page_dirty(mt); } pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE; pvh = pa_to_pvh(pa); TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); if (TAILQ_EMPTY(&pvh->pv_list)) { for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++) if (TAILQ_EMPTY(&mt->md.pv_list)) vm_page_aflag_clear(mt, PGA_WRITEABLE); } mpt2pg = pmap_pt2_page(pmap, pv->pv_va); if (mpt2pg != NULL) pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free); } /* * Just subroutine for pmap_remove_pages() to reasonably satisfy * good coding style, a.k.a. 80 character line width limit hell. */ static __inline void pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv, struct spglist *free) { vm_paddr_t pa; vm_page_t m; struct md_page *pvh; pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x", __func__, m, m->phys_addr, pa)); KASSERT((m->flags & PG_FICTITIOUS) != 0 || m < &vm_page_array[vm_page_array_size], ("%s: bad pte2 %#x", __func__, pte2)); if (pte2_is_dirty(pte2)) vm_page_dirty(m); pmap->pm_stats.resident_count--; TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(pa); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } pmap_unuse_pt2(pmap, pv->pv_va, free); } /* * Remove all pages from specified address space this aids process * exit speeds. Also, this code is special cased for current process * only, but can have the more generic (and slightly slower) mode enabled. * This is much faster than pmap_remove in the case of running down * an entire address space. */ void pmap_remove_pages(pmap_t pmap) { pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; pv_entry_t pv; struct pv_chunk *pc, *npc; struct spglist free; int field, idx; int32_t bit; uint32_t inuse, bitmask; boolean_t allfree; /* * Assert that the given pmap is only active on the current * CPU. Unfortunately, we cannot block another CPU from * activating the pmap while this function is executing. */ KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace), ("%s: non-current pmap %p", __func__, pmap)); #if defined(SMP) && defined(INVARIANTS) { cpuset_t other_cpus; sched_pin(); other_cpus = pmap->pm_active; CPU_CLR(PCPU_GET(cpuid), &other_cpus); sched_unpin(); KASSERT(CPU_EMPTY(&other_cpus), ("%s: pmap %p active on other cpus", __func__, pmap)); } #endif SLIST_INIT(&free); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); sched_pin(); TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) { KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p", __func__, pmap, pc->pc_pmap)); allfree = TRUE; for (field = 0; field < _NPCM; field++) { inuse = (~(pc->pc_map[field])) & pc_freemask[field]; while (inuse != 0) { bit = ffs(inuse) - 1; bitmask = 1UL << bit; idx = field * 32 + bit; pv = &pc->pc_pventry[idx]; inuse &= ~bitmask; /* * Note that we cannot remove wired pages * from a process' mapping at this time */ pte1p = pmap_pte1(pmap, pv->pv_va); pte1 = pte1_load(pte1p); if (pte1_is_section(pte1)) { if (pte1_is_wired(pte1)) { allfree = FALSE; continue; } pte1_clear(pte1p); pmap_remove_pte1_quick(pmap, pte1, pv, &free); } else if (pte1_is_link(pte1)) { pte2p = pt2map_entry(pv->pv_va); pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2)) { printf("%s: pmap %p va %#x " "pte2 %#x\n", __func__, pmap, pv->pv_va, pte2); panic("bad pte2"); } if (pte2_is_wired(pte2)) { allfree = FALSE; continue; } pte2_clear(pte2p); pmap_remove_pte2_quick(pmap, pte2, pv, &free); } else { printf("%s: pmap %p va %#x pte1 %#x\n", __func__, pmap, pv->pv_va, pte1); panic("bad pte1"); } /* Mark free */ PV_STAT(pv_entry_frees++); PV_STAT(pv_entry_spare++); pv_entry_count--; pc->pc_map[field] |= bitmask; } } if (allfree) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } } tlb_flush_all_ng_local(); sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, false); } /* * This code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No L2 page table pages. * but is *MUCH* faster than pmap_enter... */ static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpt2pg) { pt2_entry_t *pte2p, pte2; vm_paddr_t pa; struct spglist free; uint32_t l2prot; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0, ("%s: managed mapping within the clean submap", __func__)); rw_assert(&pvh_global_lock, RA_WLOCKED); PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * In the case that a L2 page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { u_int pte1_idx; pt1_entry_t pte1, *pte1p; vm_paddr_t pt2_pa; /* * Get L1 page table things. */ pte1_idx = pte1_index(va); pte1p = pmap_pte1(pmap, va); pte1 = pte1_load(pte1p); if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) { /* * Each of NPT2_IN_PG L2 page tables on the page can * come here. Make sure that associated L1 page table * link is established. * * QQQ: It comes that we don't establish all links to * L2 page tables for newly allocated L2 page * tables page. */ KASSERT(!pte1_is_section(pte1), ("%s: pte1 %#x is section", __func__, pte1)); if (!pte1_is_link(pte1)) { pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg), pte1_idx); pte1_store(pte1p, PTE1_LINK(pt2_pa)); } pt2_wirecount_inc(mpt2pg, pte1_idx); } else { /* * If the L2 page table page is mapped, we just * increment the hold count, and activate it. */ if (pte1_is_section(pte1)) { return (NULL); } else if (pte1_is_link(pte1)) { mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); pt2_wirecount_inc(mpt2pg, pte1_idx); } else { mpt2pg = _pmap_allocpte2(pmap, va, PMAP_ENTER_NOSLEEP); if (mpt2pg == NULL) return (NULL); } } } else { mpt2pg = NULL; } /* * This call to pt2map_entry() makes the assumption that we are * entering the page into the current pmap. In order to support * quick entry into any pmap, one would likely use pmap_pte2_quick(). * But that isn't as quick as pt2map_entry(). */ pte2p = pt2map_entry(va); pte2 = pte2_load(pte2p); if (pte2_is_valid(pte2)) { if (mpt2pg != NULL) { /* * Remove extra pte2 reference */ pt2_wirecount_dec(mpt2pg, pte1_index(va)); mpt2pg = NULL; } return (NULL); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0 && !pmap_try_insert_pv_entry(pmap, va, m)) { if (mpt2pg != NULL) { SLIST_INIT(&free); if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) { pmap_tlb_flush(pmap, va); vm_page_free_pages_toq(&free, false); } mpt2pg = NULL; } return (NULL); } /* * Increment counters */ pmap->pm_stats.resident_count++; /* * Now validate mapping with RO protection */ pa = VM_PAGE_TO_PHYS(m); l2prot = PTE2_RO | PTE2_NM; if (va < VM_MAXUSER_ADDRESS) l2prot |= PTE2_U | PTE2_NG; if ((prot & VM_PROT_EXECUTE) == 0) l2prot |= PTE2_NX; else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) { /* * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA * is set. QQQ: For more info, see comments in pmap_enter(). */ cache_icache_sync_fresh(va, pa, PAGE_SIZE); } pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m))); return (mpt2pg); } void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } /* * Tries to create a read- and/or execute-only 1 MB page mapping. Returns * true if successful. Returns false if (1) a mapping already exists at the * specified virtual address or (2) a PV entry cannot be allocated without * reclaiming another PV entry. */ static bool pmap_enter_1mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { pt1_entry_t pte1; vm_paddr_t pa; PMAP_LOCK_ASSERT(pmap, MA_OWNED); pa = VM_PAGE_TO_PHYS(m); pte1 = PTE1(pa, PTE1_NM | PTE1_RO, ATTR_TO_L1(vm_page_pte2_attr(m))); if ((prot & VM_PROT_EXECUTE) == 0) pte1 |= PTE1_NX; if (va < VM_MAXUSER_ADDRESS) pte1 |= PTE1_U; if (pmap != kernel_pmap) pte1 |= PTE1_NG; return (pmap_enter_pte1(pmap, va, pte1, PMAP_ENTER_NOSLEEP | PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m) == KERN_SUCCESS); } /* * Tries to create the specified 1 MB page mapping. Returns KERN_SUCCESS if * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE * otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and * a mapping already exists at the specified virtual address. Returns * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and PV entry * allocation failed. */ static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags, vm_page_t m) { struct spglist free; pt1_entry_t opte1, *pte1p; pt2_entry_t pte2, *pte2p; vm_offset_t cur, end; vm_page_t mt; rw_assert(&pvh_global_lock, RA_WLOCKED); KASSERT((pte1 & (PTE1_NM | PTE1_RO)) == 0 || (pte1 & (PTE1_NM | PTE1_RO)) == (PTE1_NM | PTE1_RO), ("%s: pte1 has inconsistent NM and RO attributes", __func__)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); pte1p = pmap_pte1(pmap, va); opte1 = pte1_load(pte1p); if (pte1_is_valid(opte1)) { if ((flags & PMAP_ENTER_NOREPLACE) != 0) { CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__, va, pmap); return (KERN_FAILURE); } /* Break the existing mapping(s). */ SLIST_INIT(&free); if (pte1_is_section(opte1)) { /* * If the section resulted from a promotion, then a * reserved PT page could be freed. */ pmap_remove_pte1(pmap, pte1p, va, &free); } else { sched_pin(); end = va + PTE1_SIZE; for (cur = va, pte2p = pmap_pte2_quick(pmap, va); cur != end; cur += PAGE_SIZE, pte2p++) { pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2)) continue; if (pmap_remove_pte2(pmap, pte2p, cur, &free)) break; } sched_unpin(); } vm_page_free_pages_toq(&free, false); } if ((m->oflags & VPO_UNMANAGED) == 0) { /* * Abort this mapping if its PV entry could not be created. */ if (!pmap_pv_insert_pte1(pmap, va, pte1, flags)) { CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__, va, pmap); return (KERN_RESOURCE_SHORTAGE); } if ((pte1 & PTE1_RO) == 0) { for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++) vm_page_aflag_set(mt, PGA_WRITEABLE); } } /* * Increment counters. */ if (pte1_is_wired(pte1)) pmap->pm_stats.wired_count += PTE1_SIZE / PAGE_SIZE; pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE; /* * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA * is set. QQQ: For more info, see comments in pmap_enter(). */ if ((pte1 & PTE1_NX) == 0 && m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap && (!pte1_is_section(opte1) || pte1_pa(opte1) != VM_PAGE_TO_PHYS(m) || (opte1 & PTE2_NX) != 0)) cache_icache_sync_fresh(va, VM_PAGE_TO_PHYS(m), PTE1_SIZE); /* * Map the section. */ pte1_store(pte1p, pte1); pmap_pte1_mappings++; CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va, pmap); return (KERN_SUCCESS); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_offset_t va; vm_page_t m, mpt2pg; vm_pindex_t diff, psize; PDEBUG(6, printf("%s: pmap %p start %#x end %#x m %p prot %#x\n", __func__, pmap, start, end, m_start, prot)); VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); mpt2pg = NULL; m = m_start; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { va = start + ptoa(diff); if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end && m->psind == 1 && sp_enabled && pmap_enter_1mpage(pmap, va, m, prot)) m = &m[PTE1_SIZE / PAGE_SIZE - 1]; else mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot, mpt2pg); m = TAILQ_NEXT(m, listq); } rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(pmap); } /* * This code maps large physical mmap regions into the * processor address space. Note that some shortcuts * are taken, but the code works. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { pt1_entry_t *pte1p; vm_paddr_t pa, pte2_pa; vm_page_t p; vm_memattr_t pat_mode; u_int l1attr, l1prot; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("%s: non-device object", __func__)); if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) { if (!vm_object_populate(object, pindex, pindex + atop(size))) return; p = vm_page_lookup(object, pindex); KASSERT(p->valid == VM_PAGE_BITS_ALL, ("%s: invalid page %p", __func__, p)); pat_mode = p->md.pat_mode; /* * Abort the mapping if the first page is not physically * aligned to a 1MB page boundary. */ pte2_pa = VM_PAGE_TO_PHYS(p); if (pte2_pa & PTE1_OFFSET) return; /* * Skip the first page. Abort the mapping if the rest of * the pages are not physically contiguous or have differing * memory attributes. */ p = TAILQ_NEXT(p, listq); for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size; pa += PAGE_SIZE) { KASSERT(p->valid == VM_PAGE_BITS_ALL, ("%s: invalid page %p", __func__, p)); if (pa != VM_PAGE_TO_PHYS(p) || pat_mode != p->md.pat_mode) return; p = TAILQ_NEXT(p, listq); } /* * Map using 1MB pages. * * QQQ: Well, we are mapping a section, so same condition must * be hold like during promotion. It looks that only RW mapping * is done here, so readonly mapping must be done elsewhere. */ l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A; l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode)); PMAP_LOCK(pmap); for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) { pte1p = pmap_pte1(pmap, addr); if (!pte1_is_valid(pte1_load(pte1p))) { pte1_store(pte1p, PTE1(pa, l1prot, l1attr)); pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE; pmap_pte1_mappings++; } /* Else continue on if the PTE1 is already valid. */ addr += PTE1_SIZE; } PMAP_UNLOCK(pmap); } } /* * Do the things to protect a 1mpage in a process. */ static void pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva, vm_prot_t prot) { pt1_entry_t npte1, opte1; vm_offset_t eva, va; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & PTE1_OFFSET) == 0, ("%s: sva is not 1mpage aligned", __func__)); opte1 = npte1 = pte1_load(pte1p); if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) { eva = sva + PTE1_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1)); va < eva; va += PAGE_SIZE, m++) vm_page_dirty(m); } if ((prot & VM_PROT_WRITE) == 0) npte1 |= PTE1_RO | PTE1_NM; if ((prot & VM_PROT_EXECUTE) == 0) npte1 |= PTE1_NX; /* * QQQ: Herein, execute permission is never set. * It only can be cleared. So, no icache * syncing is needed. */ if (npte1 != opte1) { pte1_store(pte1p, npte1); pmap_tlb_flush(pmap, sva); } } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { boolean_t pv_lists_locked; vm_offset_t nextva; pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, opte2, npte2; KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot)); if (prot == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); return; } if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) return; if (pmap_is_current(pmap)) pv_lists_locked = FALSE; else { pv_lists_locked = TRUE; resume: rw_wlock(&pvh_global_lock); sched_pin(); } PMAP_LOCK(pmap); for (; sva < eva; sva = nextva) { /* * Calculate address for next L2 page table. */ nextva = pte1_trunc(sva + PTE1_SIZE); if (nextva < sva) nextva = eva; pte1p = pmap_pte1(pmap, sva); pte1 = pte1_load(pte1p); /* * Weed out invalid mappings. Note: we assume that L1 page * page table is always allocated, and in kernel virtual. */ if (pte1 == 0) continue; if (pte1_is_section(pte1)) { /* * Are we protecting the entire large page? If not, * demote the mapping and fall through. */ if (sva + PTE1_SIZE == nextva && eva >= nextva) { pmap_protect_pte1(pmap, pte1p, sva, prot); continue; } else { if (!pv_lists_locked) { pv_lists_locked = TRUE; if (!rw_try_wlock(&pvh_global_lock)) { PMAP_UNLOCK(pmap); goto resume; } sched_pin(); } if (!pmap_demote_pte1(pmap, pte1p, sva)) { /* * The large page mapping * was destroyed. */ continue; } #ifdef INVARIANTS else { /* Update pte1 after demotion */ pte1 = pte1_load(pte1p); } #endif } } KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p" " is not link", __func__, pmap, sva, pte1, pte1p)); /* * Limit our scan to either the end of the va represented * by the current L2 page table page, or to the end of the * range being protected. */ if (nextva > eva) nextva = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++, sva += PAGE_SIZE) { vm_page_t m; opte2 = npte2 = pte2_load(pte2p); if (!pte2_is_valid(opte2)) continue; if ((prot & VM_PROT_WRITE) == 0) { if (pte2_is_managed(opte2) && pte2_is_dirty(opte2)) { m = PHYS_TO_VM_PAGE(pte2_pa(opte2)); vm_page_dirty(m); } npte2 |= PTE2_RO | PTE2_NM; } if ((prot & VM_PROT_EXECUTE) == 0) npte2 |= PTE2_NX; /* * QQQ: Herein, execute permission is never set. * It only can be cleared. So, no icache * syncing is needed. */ if (npte2 != opte2) { pte2_store(pte2p, npte2); pmap_tlb_flush(pmap, sva); } } } if (pv_lists_locked) { sched_unpin(); rw_wunlock(&pvh_global_lock); } PMAP_UNLOCK(pmap); } /* * pmap_pvh_wired_mappings: * * Return the updated number "count" of managed mappings that are wired. */ static int pmap_pvh_wired_mappings(struct md_page *pvh, int count) { pmap_t pmap; pt1_entry_t pte1; pt2_entry_t pte2; pv_entry_t pv; rw_assert(&pvh_global_lock, RA_WLOCKED); sched_pin(); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va)); if (pte1_is_section(pte1)) { if (pte1_is_wired(pte1)) count++; } else { KASSERT(pte1_is_link(pte1), ("%s: pte1 %#x is not link", __func__, pte1)); pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va)); if (pte2_is_wired(pte2)) count++; } PMAP_UNLOCK(pmap); } sched_unpin(); return (count); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { int count; count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); rw_wlock(&pvh_global_lock); count = pmap_pvh_wired_mappings(&m->md, count); if ((m->flags & PG_FICTITIOUS) == 0) { count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count); } rw_wunlock(&pvh_global_lock); return (count); } /* * Returns TRUE if any of the given mappings were used to modify * physical memory. Otherwise, returns FALSE. Both page and 1mpage * mappings are supported. */ static boolean_t pmap_is_modified_pvh(struct md_page *pvh) { pv_entry_t pv; pt1_entry_t pte1; pt2_entry_t pte2; pmap_t pmap; boolean_t rv; rw_assert(&pvh_global_lock, RA_WLOCKED); rv = FALSE; sched_pin(); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va)); if (pte1_is_section(pte1)) { rv = pte1_is_dirty(pte1); } else { KASSERT(pte1_is_link(pte1), ("%s: pte1 %#x is not link", __func__, pte1)); pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va)); rv = pte2_is_dirty(pte2); } PMAP_UNLOCK(pmap); if (rv) break; } sched_unpin(); return (rv); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t pmap_is_modified(vm_page_t m) { boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); /* * If the page is not busied then this check is racy. */ if (!pmap_page_is_write_mapped(m)) return (FALSE); rw_wlock(&pvh_global_lock); rv = pmap_is_modified_pvh(&m->md) || ((m->flags & PG_FICTITIOUS) == 0 && pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)))); rw_wunlock(&pvh_global_lock); return (rv); } /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is eligible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pt1_entry_t pte1; pt2_entry_t pte2; boolean_t rv; rv = FALSE; PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, addr)); if (pte1_is_link(pte1)) { pte2 = pte2_load(pt2map_entry(addr)); rv = !pte2_is_valid(pte2) ; } PMAP_UNLOCK(pmap); return (rv); } /* * Returns TRUE if any of the given mappings were referenced and FALSE * otherwise. Both page and 1mpage mappings are supported. */ static boolean_t pmap_is_referenced_pvh(struct md_page *pvh) { pv_entry_t pv; pt1_entry_t pte1; pt2_entry_t pte2; pmap_t pmap; boolean_t rv; rw_assert(&pvh_global_lock, RA_WLOCKED); rv = FALSE; sched_pin(); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va)); if (pte1_is_section(pte1)) { rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V); } else { pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va)); rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V); } PMAP_UNLOCK(pmap); if (rv) break; } sched_unpin(); return (rv); } /* * pmap_is_referenced: * * Return whether or not the specified physical page was referenced * in any physical maps. */ boolean_t pmap_is_referenced(vm_page_t m) { boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); rw_wlock(&pvh_global_lock); rv = pmap_is_referenced_pvh(&m->md) || ((m->flags & PG_FICTITIOUS) == 0 && pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m)))); rw_wunlock(&pvh_global_lock); return (rv); } /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * As an optimization, update the page's dirty field if a modified bit is * found while counting reference bits. This opportunistic update can be * performed at low cost and can eliminate the need for some future calls * to pmap_is_modified(). However, since this function stops after * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some * dirty pages. Those dirty pages will only be detected by a future call * to pmap_is_modified(). */ int pmap_ts_referenced(vm_page_t m) { struct md_page *pvh; pv_entry_t pv, pvf; pmap_t pmap; pt1_entry_t *pte1p, opte1; pt2_entry_t *pte2p, opte2; vm_paddr_t pa; int rtval = 0; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); pa = VM_PAGE_TO_PHYS(m); pvh = pa_to_pvh(pa); rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0 || (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL) goto small_mappings; pv = pvf; do { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); opte1 = pte1_load(pte1p); if (pte1_is_dirty(opte1)) { /* * Although "opte1" is mapping a 1MB page, because * this function is called at a 4KB page granularity, * we only update the 4KB page under test. */ vm_page_dirty(m); } if ((opte1 & PTE1_A) != 0) { /* * Since this reference bit is shared by 256 4KB pages, * it should not be cleared every time it is tested. * Apply a simple "hash" function on the physical page * number, the virtual section number, and the pmap * address to select one 4KB page out of the 256 * on which testing the reference bit will result * in clearing that bit. This function is designed * to avoid the selection of the same 4KB page * for every 1MB page mapping. * * On demotion, a mapping that hasn't been referenced * is simply destroyed. To avoid the possibility of a * subsequent page fault on a demoted wired mapping, * always leave its reference bit set. Moreover, * since the section is wired, the current state of * its reference bit won't affect page replacement. */ if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^ (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 && !pte1_is_wired(opte1)) { pte1_clear_bit(pte1p, PTE1_A); pmap_tlb_flush(pmap, pv->pv_va); } rtval++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); } if (rtval >= PMAP_TS_REFERENCED_MAX) goto out; } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf); small_mappings: if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL) goto out; pv = pvf; do { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(pte1_is_link(pte1_load(pte1p)), ("%s: not found a link in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); opte2 = pte2_load(pte2p); if (pte2_is_dirty(opte2)) vm_page_dirty(m); if ((opte2 & PTE2_A) != 0) { pte2_clear_bit(pte2p, PTE2_A); pmap_tlb_flush(pmap, pv->pv_va); rtval++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); } } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval < PMAP_TS_REFERENCED_MAX); out: sched_unpin(); rw_wunlock(&pvh_global_lock); return (rtval); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range * must have the wired attribute set. In contrast, invalid mappings * cannot have the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware feature, * so there is no need to invalidate any TLB entries. */ void pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t nextva; pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; boolean_t pv_lists_locked; if (pmap_is_current(pmap)) pv_lists_locked = FALSE; else { pv_lists_locked = TRUE; resume: rw_wlock(&pvh_global_lock); sched_pin(); } PMAP_LOCK(pmap); for (; sva < eva; sva = nextva) { nextva = pte1_trunc(sva + PTE1_SIZE); if (nextva < sva) nextva = eva; pte1p = pmap_pte1(pmap, sva); pte1 = pte1_load(pte1p); /* * Weed out invalid mappings. Note: we assume that L1 page * page table is always allocated, and in kernel virtual. */ if (pte1 == 0) continue; if (pte1_is_section(pte1)) { if (!pte1_is_wired(pte1)) panic("%s: pte1 %#x not wired", __func__, pte1); /* * Are we unwiring the entire large page? If not, * demote the mapping and fall through. */ if (sva + PTE1_SIZE == nextva && eva >= nextva) { pte1_clear_bit(pte1p, PTE1_W); pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE; continue; } else { if (!pv_lists_locked) { pv_lists_locked = TRUE; if (!rw_try_wlock(&pvh_global_lock)) { PMAP_UNLOCK(pmap); /* Repeat sva. */ goto resume; } sched_pin(); } if (!pmap_demote_pte1(pmap, pte1p, sva)) panic("%s: demotion failed", __func__); #ifdef INVARIANTS else { /* Update pte1 after demotion */ pte1 = pte1_load(pte1p); } #endif } } KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p" " is not link", __func__, pmap, sva, pte1, pte1p)); /* * Limit our scan to either the end of the va represented * by the current L2 page table page, or to the end of the * range being protected. */ if (nextva > eva) nextva = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++, sva += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2)) continue; if (!pte2_is_wired(pte2)) panic("%s: pte2 %#x is missing PTE2_W", __func__, pte2); /* * PTE2_W must be cleared atomically. Although the pmap * lock synchronizes access to PTE2_W, another processor * could be changing PTE2_NM and/or PTE2_A concurrently. */ pte2_clear_bit(pte2p, PTE2_W); pmap->pm_stats.wired_count--; } } if (pv_lists_locked) { sched_unpin(); rw_wunlock(&pvh_global_lock); } PMAP_UNLOCK(pmap); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { struct md_page *pvh; pv_entry_t next_pv, pv; pmap_t pmap; pt1_entry_t *pte1p; pt2_entry_t *pte2p, opte2; vm_offset_t va; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0) goto small_mappings; pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) { va = pv->pv_va; pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, va); if (!(pte1_load(pte1p) & PTE1_RO)) (void)pmap_demote_pte1(pmap, pte1p, va); PMAP_UNLOCK(pmap); } small_mappings: TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found" " a section in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); opte2 = pte2_load(pte2p); if (!(opte2 & PTE2_RO)) { pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM); if (pte2_is_dirty(opte2)) vm_page_dirty(m); pmap_tlb_flush(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); sched_unpin(); rw_wunlock(&pvh_global_lock); } /* * Apply the given advice to the specified range of addresses within the * given pmap. Depending on the advice, clear the referenced and/or * modified flags in each mapping and set the mapped page's dirty field. */ void pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice) { pt1_entry_t *pte1p, opte1; pt2_entry_t *pte2p, pte2; vm_offset_t pdnxt; vm_page_t m; boolean_t pv_lists_locked; if (advice != MADV_DONTNEED && advice != MADV_FREE) return; if (pmap_is_current(pmap)) pv_lists_locked = FALSE; else { pv_lists_locked = TRUE; resume: rw_wlock(&pvh_global_lock); sched_pin(); } PMAP_LOCK(pmap); for (; sva < eva; sva = pdnxt) { pdnxt = pte1_trunc(sva + PTE1_SIZE); if (pdnxt < sva) pdnxt = eva; pte1p = pmap_pte1(pmap, sva); opte1 = pte1_load(pte1p); if (!pte1_is_valid(opte1)) /* XXX */ continue; else if (pte1_is_section(opte1)) { if (!pte1_is_managed(opte1)) continue; if (!pv_lists_locked) { pv_lists_locked = TRUE; if (!rw_try_wlock(&pvh_global_lock)) { PMAP_UNLOCK(pmap); goto resume; } sched_pin(); } if (!pmap_demote_pte1(pmap, pte1p, sva)) { /* * The large page mapping was destroyed. */ continue; } /* * Unless the page mappings are wired, remove the * mapping to a single page so that a subsequent * access may repromote. Since the underlying L2 page * table is fully populated, this removal never * frees a L2 page table page. */ if (!pte1_is_wired(opte1)) { pte2p = pmap_pte2_quick(pmap, sva); KASSERT(pte2_is_valid(pte2_load(pte2p)), ("%s: invalid PTE2", __func__)); pmap_remove_pte2(pmap, pte2p, sva, NULL); } } if (pdnxt > eva) pdnxt = eva; for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++, sva += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2)) continue; else if (pte2_is_dirty(pte2)) { if (advice == MADV_DONTNEED) { /* * Future calls to pmap_is_modified() * can be avoided by making the page * dirty now. */ m = PHYS_TO_VM_PAGE(pte2_pa(pte2)); vm_page_dirty(m); } pte2_set_bit(pte2p, PTE2_NM); pte2_clear_bit(pte2p, PTE2_A); } else if ((pte2 & PTE2_A) != 0) pte2_clear_bit(pte2p, PTE2_A); else continue; pmap_tlb_flush(pmap, sva); } } if (pv_lists_locked) { sched_unpin(); rw_wunlock(&pvh_global_lock); } PMAP_UNLOCK(pmap); } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { struct md_page *pvh; pv_entry_t next_pv, pv; pmap_t pmap; pt1_entry_t *pte1p, opte1; pt2_entry_t *pte2p, opte2; vm_offset_t va; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; rw_wlock(&pvh_global_lock); sched_pin(); if ((m->flags & PG_FICTITIOUS) != 0) goto small_mappings; pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) { va = pv->pv_va; pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, va); opte1 = pte1_load(pte1p); if (!(opte1 & PTE1_RO)) { if (pmap_demote_pte1(pmap, pte1p, va) && !pte1_is_wired(opte1)) { /* * Write protect the mapping to a * single page so that a subsequent * write access may repromote. */ va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1); pte2p = pmap_pte2_quick(pmap, va); opte2 = pte2_load(pte2p); if ((opte2 & PTE2_V)) { pte2_set_bit(pte2p, PTE2_NM | PTE2_RO); vm_page_dirty(m); pmap_tlb_flush(pmap, va); } } } PMAP_UNLOCK(pmap); } small_mappings: TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, pv->pv_va); KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found" " a section in page %p's pv list", __func__, m)); pte2p = pmap_pte2_quick(pmap, pv->pv_va); if (pte2_is_dirty(pte2_load(pte2p))) { pte2_set_bit(pte2p, PTE2_NM); pmap_tlb_flush(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } sched_unpin(); rw_wunlock(&pvh_global_lock); } /* * Sets the memory attribute for the specified page. */ void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma) { pt2_entry_t *cmap2_pte2p; vm_memattr_t oma; vm_paddr_t pa; struct pcpu *pc; oma = m->md.pat_mode; m->md.pat_mode = ma; CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m, VM_PAGE_TO_PHYS(m), oma, ma); if ((m->flags & PG_FICTITIOUS) != 0) return; #if 0 /* * If "m" is a normal page, flush it from the cache. * * First, try to find an existing mapping of the page by sf * buffer. sf_buf_invalidate_cache() modifies mapping and * flushes the cache. */ if (sf_buf_invalidate_cache(m, oma)) return; #endif /* * If page is not mapped by sf buffer, map the page * transient and do invalidation. */ if (ma != oma) { pa = VM_PAGE_TO_PHYS(m); sched_pin(); pc = get_pcpu(); cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap2_pte2p) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, vm_memattr_to_pte2(ma))); dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); } } /* * Miscellaneous support routines follow */ /* * Returns TRUE if the given page is mapped individually or as part of * a 1mpage. Otherwise, returns FALSE. */ boolean_t pmap_page_is_mapped(vm_page_t m) { boolean_t rv; if ((m->oflags & VPO_UNMANAGED) != 0) return (FALSE); rw_wlock(&pvh_global_lock); rv = !TAILQ_EMPTY(&m->md.pv_list) || ((m->flags & PG_FICTITIOUS) == 0 && !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list)); rw_wunlock(&pvh_global_lock); return (rv); } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { struct md_page *pvh; pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("%s: page %p is not managed", __func__, m)); rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } } rw_wunlock(&pvh_global_lock); return (rv); } /* * pmap_zero_page zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. */ void pmap_zero_page(vm_page_t m) { pt2_entry_t *cmap2_pte2p; struct pcpu *pc; sched_pin(); pc = get_pcpu(); cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap2_pte2p) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, vm_page_pte2_attr(m))); pagezero(pc->pc_cmap2_addr); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); } /* * pmap_zero_page_area zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * off and size may not cover an area beyond a single hardware page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { pt2_entry_t *cmap2_pte2p; struct pcpu *pc; sched_pin(); pc = get_pcpu(); cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap2_pte2p) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, vm_page_pte2_attr(m))); if (off == 0 && size == PAGE_SIZE) pagezero(pc->pc_cmap2_addr); else bzero(pc->pc_cmap2_addr + off, size); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); } /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. */ void pmap_copy_page(vm_page_t src, vm_page_t dst) { pt2_entry_t *cmap1_pte2p, *cmap2_pte2p; struct pcpu *pc; sched_pin(); pc = get_pcpu(); cmap1_pte2p = pc->pc_cmap1_pte2p; cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap1_pte2p) != 0) panic("%s: CMAP1 busy", __func__); if (pte2_load(cmap2_pte2p) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src), PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src))); pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst), PTE2_AP_KRW, vm_page_pte2_attr(dst))); bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE); pte2_clear(cmap1_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap1_addr); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); } int unmapped_buf_allowed = 1; void pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[], vm_offset_t b_offset, int xfersize) { pt2_entry_t *cmap1_pte2p, *cmap2_pte2p; vm_page_t a_pg, b_pg; char *a_cp, *b_cp; vm_offset_t a_pg_offset, b_pg_offset; struct pcpu *pc; int cnt; sched_pin(); pc = get_pcpu(); cmap1_pte2p = pc->pc_cmap1_pte2p; cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap1_pte2p) != 0) panic("pmap_copy_pages: CMAP1 busy"); if (pte2_load(cmap2_pte2p) != 0) panic("pmap_copy_pages: CMAP2 busy"); while (xfersize > 0) { a_pg = ma[a_offset >> PAGE_SHIFT]; a_pg_offset = a_offset & PAGE_MASK; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); b_pg = mb[b_offset >> PAGE_SHIFT]; b_pg_offset = b_offset & PAGE_MASK; cnt = min(cnt, PAGE_SIZE - b_pg_offset); pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg), PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg))); tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr); pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg), PTE2_AP_KRW, vm_page_pte2_attr(b_pg))); tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr); a_cp = pc->pc_cmap1_addr + a_pg_offset; b_cp = pc->pc_cmap2_addr + b_pg_offset; bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } pte2_clear(cmap1_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap1_addr); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); } vm_offset_t pmap_quick_enter_page(vm_page_t m) { struct pcpu *pc; pt2_entry_t *pte2p; critical_enter(); pc = get_pcpu(); pte2p = pc->pc_qmap_pte2p; KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__)); pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, vm_page_pte2_attr(m))); return (pc->pc_qmap_addr); } void pmap_quick_remove_page(vm_offset_t addr) { struct pcpu *pc; pt2_entry_t *pte2p; pc = get_pcpu(); pte2p = pc->pc_qmap_pte2p; KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__)); KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__)); pte2_clear(pte2p); tlb_flush(pc->pc_qmap_addr); critical_exit(); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { struct spglist free; vm_offset_t addr; vm_offset_t end_addr = src_addr + len; vm_offset_t nextva; if (dst_addr != src_addr) return; if (!pmap_is_current(src_pmap)) return; rw_wlock(&pvh_global_lock); if (dst_pmap < src_pmap) { PMAP_LOCK(dst_pmap); PMAP_LOCK(src_pmap); } else { PMAP_LOCK(src_pmap); PMAP_LOCK(dst_pmap); } sched_pin(); for (addr = src_addr; addr < end_addr; addr = nextva) { pt2_entry_t *src_pte2p, *dst_pte2p; vm_page_t dst_mpt2pg, src_mpt2pg; pt1_entry_t src_pte1; u_int pte1_idx; KASSERT(addr < VM_MAXUSER_ADDRESS, ("%s: invalid to pmap_copy page tables", __func__)); nextva = pte1_trunc(addr + PTE1_SIZE); if (nextva < addr) nextva = end_addr; pte1_idx = pte1_index(addr); src_pte1 = src_pmap->pm_pt1[pte1_idx]; if (pte1_is_section(src_pte1)) { if ((addr & PTE1_OFFSET) != 0 || (addr + PTE1_SIZE) > end_addr) continue; if (dst_pmap->pm_pt1[pte1_idx] == 0 && (!pte1_is_managed(src_pte1) || pmap_pv_insert_pte1(dst_pmap, addr, src_pte1, PMAP_ENTER_NORECLAIM))) { dst_pmap->pm_pt1[pte1_idx] = src_pte1 & ~PTE1_W; dst_pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE; pmap_pte1_mappings++; } continue; } else if (!pte1_is_link(src_pte1)) continue; src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1)); /* * We leave PT2s to be linked from PT1 even if they are not * referenced until all PT2s in a page are without reference. * * QQQ: It could be changed ... */ #if 0 /* single_pt2_link_is_cleared */ KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0, ("%s: source page table page is unused", __func__)); #else if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0) continue; #endif if (nextva > end_addr) nextva = end_addr; src_pte2p = pt2map_entry(addr); while (addr < nextva) { pt2_entry_t temp_pte2; temp_pte2 = pte2_load(src_pte2p); /* * we only virtual copy managed pages */ if (pte2_is_managed(temp_pte2)) { dst_mpt2pg = pmap_allocpte2(dst_pmap, addr, PMAP_ENTER_NOSLEEP); if (dst_mpt2pg == NULL) goto out; dst_pte2p = pmap_pte2_quick(dst_pmap, addr); if (!pte2_is_valid(pte2_load(dst_pte2p)) && pmap_try_insert_pv_entry(dst_pmap, addr, PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) { /* * Clear the wired, modified, and * accessed (referenced) bits * during the copy. */ temp_pte2 &= ~(PTE2_W | PTE2_A); temp_pte2 |= PTE2_NM; pte2_store(dst_pte2p, temp_pte2); dst_pmap->pm_stats.resident_count++; } else { SLIST_INIT(&free); if (pmap_unwire_pt2(dst_pmap, addr, dst_mpt2pg, &free)) { pmap_tlb_flush(dst_pmap, addr); vm_page_free_pages_toq(&free, false); } goto out; } if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >= pt2_wirecount_get(src_mpt2pg, pte1_idx)) break; } addr += PAGE_SIZE; src_pte2p++; } } out: sched_unpin(); rw_wunlock(&pvh_global_lock); PMAP_UNLOCK(src_pmap); PMAP_UNLOCK(dst_pmap); } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more section mappings. */ void pmap_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { vm_offset_t pte1_offset; if (size < PTE1_SIZE) return; if (object != NULL && (object->flags & OBJ_COLORED) != 0) offset += ptoa(object->pg_color); pte1_offset = offset & PTE1_OFFSET; if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE || (*addr & PTE1_OFFSET) == pte1_offset) return; if ((*addr & PTE1_OFFSET) < pte1_offset) *addr = pte1_trunc(*addr) + pte1_offset; else *addr = pte1_roundup(*addr) + pte1_offset; } void pmap_activate(struct thread *td) { pmap_t pmap, oldpmap; u_int cpuid, ttb; PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td)); critical_enter(); pmap = vmspace_pmap(td->td_proc->p_vmspace); oldpmap = PCPU_GET(curpmap); cpuid = PCPU_GET(cpuid); #if defined(SMP) CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active); CPU_SET_ATOMIC(cpuid, &pmap->pm_active); #else CPU_CLR(cpuid, &oldpmap->pm_active); CPU_SET(cpuid, &pmap->pm_active); #endif ttb = pmap_ttb_get(pmap); /* * pmap_activate is for the current thread on the current cpu */ td->td_pcb->pcb_pagedir = ttb; cp15_ttbr_set(ttb); PCPU_SET(curpmap, pmap); critical_exit(); } /* * Perform the pmap work for mincore(2). If the page is not both referenced and * modified by this pmap, returns its physical address so that the caller can * find other mappings. */ int pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap) { pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; vm_paddr_t pa; bool managed; int val; PMAP_LOCK(pmap); pte1p = pmap_pte1(pmap, addr); pte1 = pte1_load(pte1p); if (pte1_is_section(pte1)) { pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET)); managed = pte1_is_managed(pte1); val = MINCORE_SUPER | MINCORE_INCORE; if (pte1_is_dirty(pte1)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if (pte1 & PTE1_A) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } else if (pte1_is_link(pte1)) { pte2p = pmap_pte2(pmap, addr); pte2 = pte2_load(pte2p); pmap_pte2_release(pte2p); pa = pte2_pa(pte2); managed = pte2_is_managed(pte2); val = MINCORE_INCORE; if (pte2_is_dirty(pte2)) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if (pte2 & PTE2_A) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; } else { managed = false; val = 0; } if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) { *pap = pa; } PMAP_UNLOCK(pmap); return (val); } void pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa) { vm_offset_t sva; uint32_t l2attr; KASSERT((size & PAGE_MASK) == 0, ("%s: device mapping not page-sized", __func__)); sva = va; l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE); while (size != 0) { pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr); va += PAGE_SIZE; pa += PAGE_SIZE; size -= PAGE_SIZE; } tlb_flush_range(sva, va - sva); } void pmap_kremove_device(vm_offset_t va, vm_size_t size) { vm_offset_t sva; KASSERT((size & PAGE_MASK) == 0, ("%s: device mapping not page-sized", __func__)); sva = va; while (size != 0) { pmap_kremove(va); va += PAGE_SIZE; size -= PAGE_SIZE; } tlb_flush_range(sva, va - sva); } void pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb) { pcb->pcb_pagedir = pmap_ttb_get(pmap); } /* * Clean L1 data cache range by physical address. * The range must be within a single page. */ static void pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr) { pt2_entry_t *cmap2_pte2p; struct pcpu *pc; KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE, ("%s: not on single page", __func__)); sched_pin(); pc = get_pcpu(); cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap2_pte2p) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr)); dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); } /* * Sync instruction cache range which is not mapped yet. */ void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size) { uint32_t len, offset; vm_page_t m; /* Write back d-cache on given address range. */ offset = pa & PAGE_MASK; for ( ; size != 0; size -= len, pa += len, offset = 0) { len = min(PAGE_SIZE - offset, size); m = PHYS_TO_VM_PAGE(pa); KASSERT(m != NULL, ("%s: vm_page_t is null for %#x", __func__, pa)); pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m)); } /* * I-cache is VIPT. Only way how to flush all virtual mappings * on given physical address is to invalidate all i-cache. */ icache_inv_all(); } void pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size) { /* Write back d-cache on given address range. */ if (va >= VM_MIN_KERNEL_ADDRESS) { dcache_wb_pou(va, size); } else { uint32_t len, offset; vm_paddr_t pa; vm_page_t m; offset = va & PAGE_MASK; for ( ; size != 0; size -= len, va += len, offset = 0) { pa = pmap_extract(pmap, va); /* offset is preserved */ len = min(PAGE_SIZE - offset, size); m = PHYS_TO_VM_PAGE(pa); KASSERT(m != NULL, ("%s: vm_page_t is null for %#x", __func__, pa)); pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m)); } } /* * I-cache is VIPT. Only way how to flush all virtual mappings * on given physical address is to invalidate all i-cache. */ icache_inv_all(); } /* * The implementation of pmap_fault() uses IN_RANGE2() macro which * depends on the fact that given range size is a power of 2. */ CTASSERT(powerof2(NB_IN_PT1)); CTASSERT(powerof2(PT2MAP_SIZE)); #define IN_RANGE2(addr, start, size) \ ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1))) /* * Handle access and R/W emulation faults. */ int pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode) { pt1_entry_t *pte1p, pte1; pt2_entry_t *pte2p, pte2; if (pmap == NULL) pmap = kernel_pmap; /* * In kernel, we should never get abort with FAR which is in range of * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here * and print out a useful abort message and even get to the debugger * otherwise it likely ends with never ending loop of aborts. */ if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) { /* * All L1 tables should always be mapped and present. * However, we check only current one herein. For user mode, * only permission abort from malicious user is not fatal. * And alignment abort as it may have higher priority. */ if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) { CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x", __func__, pmap, pmap->pm_pt1, far); panic("%s: pm_pt1 abort", __func__); } return (KERN_INVALID_ADDRESS); } if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) { /* * PT2MAP should be always mapped and present in current * L1 table. However, only existing L2 tables are mapped * in PT2MAP. For user mode, only L2 translation abort and * permission abort from malicious user is not fatal. * And alignment abort as it may have higher priority. */ if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) { CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x", __func__, pmap, PT2MAP, far); panic("%s: PT2MAP abort", __func__); } return (KERN_INVALID_ADDRESS); } /* * A pmap lock is used below for handling of access and R/W emulation * aborts. They were handled by atomic operations before so some * analysis of new situation is needed to answer the following question: * Is it safe to use the lock even for these aborts? * * There may happen two cases in general: * * (1) Aborts while the pmap lock is locked already - this should not * happen as pmap lock is not recursive. However, under pmap lock only * internal kernel data should be accessed and such data should be * mapped with A bit set and NM bit cleared. If double abort happens, * then a mapping of data which has caused it must be fixed. Further, * all new mappings are always made with A bit set and the bit can be * cleared only on managed mappings. * * (2) Aborts while another lock(s) is/are locked - this already can * happen. However, there is no difference here if it's either access or * R/W emulation abort, or if it's some other abort. */ PMAP_LOCK(pmap); #ifdef INVARIANTS pte1 = pte1_load(pmap_pte1(pmap, far)); if (pte1_is_link(pte1)) { /* * Check in advance that associated L2 page table is mapped into * PT2MAP space. Note that faulty access to not mapped L2 page * table is caught in more general check above where "far" is * checked that it does not lay in PT2MAP space. Note also that * L1 page table and PT2TAB always exist and are mapped. */ pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far)); if (!pte2_is_valid(pte2)) panic("%s: missing L2 page table (%p, %#x)", __func__, pmap, far); } #endif #ifdef SMP /* * Special treatment is due to break-before-make approach done when * pte1 is updated for userland mapping during section promotion or * demotion. If not caught here, pmap_enter() can find a section * mapping on faulting address. That is not allowed. */ if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) { PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } #endif /* * Accesss bits for page and section. Note that the entry * is not in TLB yet, so TLB flush is not necessary. * * QQQ: This is hardware emulation, we do not call userret() * for aborts from user mode. */ if (idx == FAULT_ACCESS_L2) { pte1 = pte1_load(pmap_pte1(pmap, far)); if (pte1_is_link(pte1)) { /* L2 page table should exist and be mapped. */ pte2p = pt2map_entry(far); pte2 = pte2_load(pte2p); if (pte2_is_valid(pte2)) { pte2_store(pte2p, pte2 | PTE2_A); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } } else { /* * We got L2 access fault but PTE1 is not a link. * Probably some race happened, do nothing. */ CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x", __func__, pmap, far); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } } if (idx == FAULT_ACCESS_L1) { pte1p = pmap_pte1(pmap, far); pte1 = pte1_load(pte1p); if (pte1_is_section(pte1)) { pte1_store(pte1p, pte1 | PTE1_A); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } else { /* * We got L1 access fault but PTE1 is not section * mapping. Probably some race happened, do nothing. */ CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x", __func__, pmap, far); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } } /* * Handle modify bits for page and section. Note that the modify * bit is emulated by software. So PTEx_RO is software read only * bit and PTEx_NM flag is real hardware read only bit. * * QQQ: This is hardware emulation, we do not call userret() * for aborts from user mode. */ if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) { pte1 = pte1_load(pmap_pte1(pmap, far)); if (pte1_is_link(pte1)) { /* L2 page table should exist and be mapped. */ pte2p = pt2map_entry(far); pte2 = pte2_load(pte2p); if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) && (pte2 & PTE2_NM)) { pte2_store(pte2p, pte2 & ~PTE2_NM); tlb_flush(trunc_page(far)); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } } else { /* * We got L2 permission fault but PTE1 is not a link. * Probably some race happened, do nothing. */ CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x", __func__, pmap, far); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } } if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) { pte1p = pmap_pte1(pmap, far); pte1 = pte1_load(pte1p); if (pte1_is_section(pte1)) { if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) { pte1_store(pte1p, pte1 & ~PTE1_NM); tlb_flush(pte1_trunc(far)); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } } else { /* * We got L1 permission fault but PTE1 is not section * mapping. Probably some race happened, do nothing. */ CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x", __func__, pmap, far); PMAP_UNLOCK(pmap); return (KERN_SUCCESS); } } /* * QQQ: The previous code, mainly fast handling of access and * modify bits aborts, could be moved to ASM. Now we are * starting to deal with not fast aborts. */ PMAP_UNLOCK(pmap); return (KERN_FAILURE); } #if defined(PMAP_DEBUG) /* * Reusing of KVA used in pmap_zero_page function !!! */ static void pmap_zero_page_check(vm_page_t m) { pt2_entry_t *cmap2_pte2p; uint32_t *p, *end; struct pcpu *pc; sched_pin(); pc = get_pcpu(); cmap2_pte2p = pc->pc_cmap2_pte2p; mtx_lock(&pc->pc_cmap_lock); if (pte2_load(cmap2_pte2p) != 0) panic("%s: CMAP2 busy", __func__); pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW, vm_page_pte2_attr(m))); end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE); for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++) if (*p != 0) panic("%s: page %p not zero, va: %p", __func__, m, pc->pc_cmap2_addr); pte2_clear(cmap2_pte2p); tlb_flush((vm_offset_t)pc->pc_cmap2_addr); sched_unpin(); mtx_unlock(&pc->pc_cmap_lock); } int pmap_pid_dump(int pid) { pmap_t pmap; struct proc *p; int npte2 = 0; int i, j, index; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { if (p->p_pid != pid || p->p_vmspace == NULL) continue; index = 0; pmap = vmspace_pmap(p->p_vmspace); for (i = 0; i < NPTE1_IN_PT1; i++) { pt1_entry_t pte1; pt2_entry_t *pte2p, pte2; vm_offset_t base, va; vm_paddr_t pa; vm_page_t m; base = i << PTE1_SHIFT; pte1 = pte1_load(&pmap->pm_pt1[i]); if (pte1_is_section(pte1)) { /* * QQQ: Do something here! */ } else if (pte1_is_link(pte1)) { for (j = 0; j < NPTE2_IN_PT2; j++) { va = base + (j << PAGE_SHIFT); if (va >= VM_MIN_KERNEL_ADDRESS) { if (index) { index = 0; printf("\n"); } sx_sunlock(&allproc_lock); return (npte2); } pte2p = pmap_pte2(pmap, va); pte2 = pte2_load(pte2p); pmap_pte2_release(pte2p); if (!pte2_is_valid(pte2)) continue; pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); printf("va: 0x%x, pa: 0x%x, w: %d, " "f: 0x%x", va, pa, m->ref_count, m->flags); npte2++; index++; if (index >= 2) { index = 0; printf("\n"); } else { printf(" "); } } } } } sx_sunlock(&allproc_lock); return (npte2); } #endif #ifdef DDB static pt2_entry_t * pmap_pte2_ddb(pmap_t pmap, vm_offset_t va) { pt1_entry_t pte1; vm_paddr_t pt2pg_pa; pte1 = pte1_load(pmap_pte1(pmap, va)); if (!pte1_is_link(pte1)) return (NULL); if (pmap_is_current(pmap)) return (pt2map_entry(va)); /* Note that L2 page table size is not equal to PAGE_SIZE. */ pt2pg_pa = trunc_page(pte1_link_pa(pte1)); if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) { pte2_store(PMAP3, PTE2_KPT(pt2pg_pa)); #ifdef SMP PMAP3cpu = PCPU_GET(cpuid); #endif tlb_flush_local((vm_offset_t)PADDR3); } #ifdef SMP else if (PMAP3cpu != PCPU_GET(cpuid)) { PMAP3cpu = PCPU_GET(cpuid); tlb_flush_local((vm_offset_t)PADDR3); } #endif return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1))); } static void dump_pmap(pmap_t pmap) { printf("pmap %p\n", pmap); printf(" pm_pt1: %p\n", pmap->pm_pt1); printf(" pm_pt2tab: %p\n", pmap->pm_pt2tab); printf(" pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]); } DB_SHOW_COMMAND(pmaps, pmap_list_pmaps) { pmap_t pmap; LIST_FOREACH(pmap, &allpmaps, pm_list) { dump_pmap(pmap); } } static int pte2_class(pt2_entry_t pte2) { int cls; cls = (pte2 >> 2) & 0x03; cls |= (pte2 >> 4) & 0x04; return (cls); } static void dump_section(pmap_t pmap, uint32_t pte1_idx) { } static void dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok) { uint32_t i; vm_offset_t va; pt2_entry_t *pte2p, pte2; vm_page_t m; va = pte1_idx << PTE1_SHIFT; pte2p = pmap_pte2_ddb(pmap, va); for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) { pte2 = pte2_load(pte2p); if (pte2 == 0) continue; if (!pte2_is_valid(pte2)) { printf(" 0x%08X: 0x%08X", va, pte2); if (!invalid_ok) printf(" - not valid !!!"); printf("\n"); continue; } m = PHYS_TO_VM_PAGE(pte2_pa(pte2)); printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2, pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m); if (m != NULL) { printf(" v:%d w:%d f:0x%04X\n", m->valid, m->ref_count, m->flags); } else { printf("\n"); } } } static __inline boolean_t is_pv_chunk_space(vm_offset_t va) { if ((((vm_offset_t)pv_chunkbase) <= va) && (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks))) return (TRUE); return (FALSE); } DB_SHOW_COMMAND(pmap, pmap_pmap_print) { /* XXX convert args. */ pmap_t pmap = (pmap_t)addr; pt1_entry_t pte1; pt2_entry_t pte2; vm_offset_t va, eva; vm_page_t m; uint32_t i; boolean_t invalid_ok, dump_link_ok, dump_pv_chunk; if (have_addr) { pmap_t pm; LIST_FOREACH(pm, &allpmaps, pm_list) if (pm == pmap) break; if (pm == NULL) { printf("given pmap %p is not in allpmaps list\n", pmap); return; } } else pmap = PCPU_GET(curpmap); eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF; dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */ printf("pmap: 0x%08X\n", (uint32_t)pmap); printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP); printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab); for(i = 0; i < NPTE1_IN_PT1; i++) { pte1 = pte1_load(&pmap->pm_pt1[i]); if (pte1 == 0) continue; va = i << PTE1_SHIFT; if (va >= eva) break; if (pte1_is_section(pte1)) { printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1, !!(pte1 & PTE1_S), !(pte1 & PTE1_NG)); dump_section(pmap, i); } else if (pte1_is_link(pte1)) { dump_link_ok = TRUE; invalid_ok = FALSE; pte2 = pte2_load(pmap_pt2tab_entry(pmap, va)); m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1)); printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p", va, pte1, pte2, m); if (is_pv_chunk_space(va)) { printf(" - pv_chunk space"); if (dump_pv_chunk) invalid_ok = TRUE; else dump_link_ok = FALSE; } else if (m != NULL) printf(" w:%d w2:%u", m->ref_count, pt2_wirecount_get(m, pte1_index(va))); if (pte2 == 0) printf(" !!! pt2tab entry is ZERO"); else if (pte2_pa(pte1) != pte2_pa(pte2)) printf(" !!! pt2tab entry is DIFFERENT - m: %p", PHYS_TO_VM_PAGE(pte2_pa(pte2))); printf("\n"); if (dump_link_ok) dump_link(pmap, i, invalid_ok); } else printf("0x%08X: Invalid entry 0x%08X\n", va, pte1); } } static void dump_pt2tab(pmap_t pmap) { uint32_t i; pt2_entry_t pte2; vm_offset_t va; vm_paddr_t pa; vm_page_t m; printf("PT2TAB:\n"); for (i = 0; i < PT2TAB_ENTRIES; i++) { pte2 = pte2_load(&pmap->pm_pt2tab[i]); if (!pte2_is_valid(pte2)) continue; va = i << PT2TAB_SHIFT; pa = pte2_pa(pte2); m = PHYS_TO_VM_PAGE(pa); printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2, pte2_class(pte2), !!(pte2 & PTE2_S), m); if (m != NULL) printf(" , w: %d, f: 0x%04X pidx: %lld", m->ref_count, m->flags, m->pindex); printf("\n"); } } DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print) { /* XXX convert args. */ pmap_t pmap = (pmap_t)addr; pt1_entry_t pte1; pt2_entry_t pte2; vm_offset_t va; uint32_t i, start; if (have_addr) { printf("supported only on current pmap\n"); return; } pmap = PCPU_GET(curpmap); printf("curpmap: 0x%08X\n", (uint32_t)pmap); printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP); printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab); start = pte1_index((vm_offset_t)PT2MAP); for (i = start; i < (start + NPT2_IN_PT2TAB); i++) { pte1 = pte1_load(&pmap->pm_pt1[i]); if (pte1 == 0) continue; va = i << PTE1_SHIFT; if (pte1_is_section(pte1)) { printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1, !!(pte1 & PTE1_S)); dump_section(pmap, i); } else if (pte1_is_link(pte1)) { pte2 = pte2_load(pmap_pt2tab_entry(pmap, va)); printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va, pte1, pte2); if (pte2 == 0) printf(" !!! pt2tab entry is ZERO\n"); } else printf("0x%08X: Invalid entry 0x%08X\n", va, pte1); } dump_pt2tab(pmap); } #endif Index: head/sys/arm/include/physmem.h =================================================================== --- head/sys/arm/include/physmem.h (revision 360081) +++ head/sys/arm/include/physmem.h (nonexistent) @@ -1,94 +0,0 @@ -/*- - * SPDX-License-Identifier: BSD-2-Clause-FreeBSD - * - * Copyright (c) 2014 Ian Lepore - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * $FreeBSD$ - */ - -#ifndef _MACHINE_PHYSMEM_H_ -#define _MACHINE_PHYSMEM_H_ - -/* - * The physical address at which the kernel was loaded. - */ -extern vm_paddr_t arm_physmem_kernaddr; - -/* - * Routines to help configure physical ram. - * - * Multiple regions of contiguous physical ram can be added (in any order). - * - * Multiple regions of physical ram that should be excluded from crash dumps, or - * memory allocation, or both, can be added (in any order). - * - * After all early kernel init is done and it's time to configure all - * remainining non-excluded physical ram for use by other parts of the kernel, - * arm_physmem_init_kernel_globals() processes the hardware regions and - * exclusion regions to generate the global dump_avail and phys_avail arrays - * that communicate physical ram configuration to other parts of the kernel. - */ - -#define EXFLAG_NODUMP 0x01 -#define EXFLAG_NOALLOC 0x02 - -void arm_physmem_hardware_region(uint64_t pa, uint64_t sz); -void arm_physmem_exclude_region(vm_paddr_t pa, vm_size_t sz, uint32_t flags); -size_t arm_physmem_avail(vm_paddr_t *avail, size_t maxavail); -void arm_physmem_init_kernel_globals(void); -void arm_physmem_print_tables(void); - -/* - * Convenience routines for FDT. - */ - -#ifdef FDT - -#include - -static inline void -arm_physmem_hardware_regions(struct mem_region * mrptr, int mrcount) -{ - while (mrcount--) { - arm_physmem_hardware_region(mrptr->mr_start, mrptr->mr_size); - ++mrptr; - } -} - -static inline void -arm_physmem_exclude_regions(struct mem_region * mrptr, int mrcount, - uint32_t exflags) -{ - while (mrcount--) { - arm_physmem_exclude_region(mrptr->mr_start, mrptr->mr_size, - exflags); - ++mrptr; - } -} - -#endif /* FDT */ - -#endif - Property changes on: head/sys/arm/include/physmem.h ___________________________________________________________________ Deleted: svn:eol-style ## -1 +0,0 ## -native \ No newline at end of property Deleted: svn:keywords ## -1 +0,0 ## -FreeBSD=%H \ No newline at end of property Deleted: svn:mime-type ## -1 +0,0 ## -text/plain \ No newline at end of property Index: head/sys/arm/include/md_var.h =================================================================== --- head/sys/arm/include/md_var.h (revision 360081) +++ head/sys/arm/include/md_var.h (revision 360082) @@ -1,80 +1,81 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1995 Bruce D. Evans. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: FreeBSD: src/sys/i386/include/md_var.h,v 1.40 2001/07/12 * $FreeBSD$ */ #ifndef _MACHINE_MD_VAR_H_ #define _MACHINE_MD_VAR_H_ extern long Maxmem; extern char sigcode[]; extern int szsigcode; extern uint32_t *vm_page_dump; extern int vm_page_dump_size; extern u_long elf_hwcap; extern u_long elf_hwcap2; +extern vm_paddr_t arm_physmem_kernaddr; extern int (*_arm_memcpy)(void *, void *, int, int); extern int (*_arm_bzero)(void *, int, int); extern int _min_memcpy_size; extern int _min_bzero_size; #define DST_IS_USER 0x1 #define SRC_IS_USER 0x2 #define IS_PHYSICAL 0x4 enum cpu_class { CPU_CLASS_NONE, CPU_CLASS_ARM9TDMI, CPU_CLASS_ARM9ES, CPU_CLASS_ARM9EJS, CPU_CLASS_ARM10E, CPU_CLASS_ARM10EJ, CPU_CLASS_CORTEXA, CPU_CLASS_KRAIT, CPU_CLASS_XSCALE, CPU_CLASS_ARM11J, CPU_CLASS_MARVELL }; extern enum cpu_class cpu_class; struct dumperinfo; extern int busdma_swi_pending; void busdma_swi(void); void dump_add_page(vm_paddr_t); void dump_drop_page(vm_paddr_t); int minidumpsys(struct dumperinfo *); extern uint32_t initial_fpscr; #endif /* !_MACHINE_MD_VAR_H_ */ Index: head/sys/arm64/arm64/machdep.c =================================================================== --- head/sys/arm64/arm64/machdep.c (revision 360081) +++ head/sys/arm64/arm64/machdep.c (revision 360082) @@ -1,1298 +1,1297 @@ /*- * Copyright (c) 2014 Andrew Turner * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "opt_acpi.h" #include "opt_platform.h" #include "opt_ddb.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include -#include - #ifdef VFP #include #endif #ifdef DEV_ACPI #include #include #endif #ifdef FDT #include #include #endif static void get_fpcontext(struct thread *td, mcontext_t *mcp); static void set_fpcontext(struct thread *td, mcontext_t *mcp); enum arm64_bus arm64_bus_method = ARM64_BUS_NONE; struct pcpu __pcpu[MAXCPU]; static struct trapframe proc0_tf; int early_boot = 1; int cold = 1; static int boot_el; struct kva_md_info kmi; int64_t dczva_line_size; /* The size of cache line the dc zva zeroes */ int has_pan; /* * Physical address of the EFI System Table. Stashed from the metadata hints * passed into the kernel and used by the EFI code to call runtime services. */ vm_paddr_t efi_systbl_phys; /* pagezero_* implementations are provided in support.S */ void pagezero_simple(void *); void pagezero_cache(void *); /* pagezero_simple is default pagezero */ void (*pagezero)(void *p) = pagezero_simple; static void pan_setup(void) { uint64_t id_aa64mfr1; id_aa64mfr1 = READ_SPECIALREG(id_aa64mmfr1_el1); if (ID_AA64MMFR1_PAN_VAL(id_aa64mfr1) != ID_AA64MMFR1_PAN_NONE) has_pan = 1; } void pan_enable(void) { /* * The LLVM integrated assembler doesn't understand the PAN * PSTATE field. Because of this we need to manually create * the instruction in an asm block. This is equivalent to: * msr pan, #1 * * This sets the PAN bit, stopping the kernel from accessing * memory when userspace can also access it unless the kernel * uses the userspace load/store instructions. */ if (has_pan) { WRITE_SPECIALREG(sctlr_el1, READ_SPECIALREG(sctlr_el1) & ~SCTLR_SPAN); __asm __volatile(".inst 0xd500409f | (0x1 << 8)"); } } bool has_hyp(void) { return (boot_el == 2); } static void cpu_startup(void *dummy) { undef_init(); identify_cpu(); install_cpu_errata(); vm_ksubmap_init(&kmi); bufinit(); vm_pager_bufferinit(); } SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); int cpu_idle_wakeup(int cpu) { return (0); } int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *frame; frame = td->td_frame; regs->sp = frame->tf_sp; regs->lr = frame->tf_lr; regs->elr = frame->tf_elr; regs->spsr = frame->tf_spsr; memcpy(regs->x, frame->tf_x, sizeof(regs->x)); #ifdef COMPAT_FREEBSD32 /* * We may be called here for a 32bits process, if we're using a * 64bits debugger. If so, put PC and SPSR where it expects it. */ if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { regs->x[15] = frame->tf_elr; regs->x[16] = frame->tf_spsr; } #endif return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *frame; frame = td->td_frame; frame->tf_sp = regs->sp; frame->tf_lr = regs->lr; frame->tf_elr = regs->elr; frame->tf_spsr &= ~PSR_FLAGS; frame->tf_spsr |= regs->spsr & PSR_FLAGS; memcpy(frame->tf_x, regs->x, sizeof(frame->tf_x)); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { /* * We may be called for a 32bits process if we're using * a 64bits debugger. If so, get PC and SPSR from where * it put it. */ frame->tf_elr = regs->x[15]; frame->tf_spsr = regs->x[16] & PSR_FLAGS; } #endif return (0); } int fill_fpregs(struct thread *td, struct fpreg *regs) { #ifdef VFP struct pcb *pcb; pcb = td->td_pcb; if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) { /* * If we have just been running VFP instructions we will * need to save the state to memcpy it below. */ if (td == curthread) vfp_save_state(td, pcb); KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate, ("Called fill_fpregs while the kernel is using the VFP")); memcpy(regs->fp_q, pcb->pcb_fpustate.vfp_regs, sizeof(regs->fp_q)); regs->fp_cr = pcb->pcb_fpustate.vfp_fpcr; regs->fp_sr = pcb->pcb_fpustate.vfp_fpsr; } else #endif memset(regs, 0, sizeof(*regs)); return (0); } int set_fpregs(struct thread *td, struct fpreg *regs) { #ifdef VFP struct pcb *pcb; pcb = td->td_pcb; KASSERT(pcb->pcb_fpusaved == &pcb->pcb_fpustate, ("Called set_fpregs while the kernel is using the VFP")); memcpy(pcb->pcb_fpustate.vfp_regs, regs->fp_q, sizeof(regs->fp_q)); pcb->pcb_fpustate.vfp_fpcr = regs->fp_cr; pcb->pcb_fpustate.vfp_fpsr = regs->fp_sr; #endif return (0); } int fill_dbregs(struct thread *td, struct dbreg *regs) { struct debug_monitor_state *monitor; int count, i; uint8_t debug_ver, nbkpts; memset(regs, 0, sizeof(*regs)); extract_user_id_field(ID_AA64DFR0_EL1, ID_AA64DFR0_DebugVer_SHIFT, &debug_ver); extract_user_id_field(ID_AA64DFR0_EL1, ID_AA64DFR0_BRPs_SHIFT, &nbkpts); /* * The BRPs field contains the number of breakpoints - 1. Armv8-A * allows the hardware to provide 2-16 breakpoints so this won't * overflow an 8 bit value. */ count = nbkpts + 1; regs->db_info = debug_ver; regs->db_info <<= 8; regs->db_info |= count; monitor = &td->td_pcb->pcb_dbg_regs; if ((monitor->dbg_flags & DBGMON_ENABLED) != 0) { for (i = 0; i < count; i++) { regs->db_regs[i].dbr_addr = monitor->dbg_bvr[i]; regs->db_regs[i].dbr_ctrl = monitor->dbg_bcr[i]; } } return (0); } int set_dbregs(struct thread *td, struct dbreg *regs) { struct debug_monitor_state *monitor; int count; int i; monitor = &td->td_pcb->pcb_dbg_regs; count = 0; monitor->dbg_enable_count = 0; for (i = 0; i < DBG_BRP_MAX; i++) { /* TODO: Check these values */ monitor->dbg_bvr[i] = regs->db_regs[i].dbr_addr; monitor->dbg_bcr[i] = regs->db_regs[i].dbr_ctrl; if ((monitor->dbg_bcr[i] & 1) != 0) monitor->dbg_enable_count++; } if (monitor->dbg_enable_count > 0) monitor->dbg_flags |= DBGMON_ENABLED; return (0); } #ifdef COMPAT_FREEBSD32 int fill_regs32(struct thread *td, struct reg32 *regs) { int i; struct trapframe *tf; tf = td->td_frame; for (i = 0; i < 13; i++) regs->r[i] = tf->tf_x[i]; /* For arm32, SP is r13 and LR is r14 */ regs->r_sp = tf->tf_x[13]; regs->r_lr = tf->tf_x[14]; regs->r_pc = tf->tf_elr; regs->r_cpsr = tf->tf_spsr; return (0); } int set_regs32(struct thread *td, struct reg32 *regs) { int i; struct trapframe *tf; tf = td->td_frame; for (i = 0; i < 13; i++) tf->tf_x[i] = regs->r[i]; /* For arm 32, SP is r13 an LR is r14 */ tf->tf_x[13] = regs->r_sp; tf->tf_x[14] = regs->r_lr; tf->tf_elr = regs->r_pc; tf->tf_spsr = regs->r_cpsr; return (0); } int fill_fpregs32(struct thread *td, struct fpreg32 *regs) { printf("ARM64TODO: fill_fpregs32"); return (EDOOFUS); } int set_fpregs32(struct thread *td, struct fpreg32 *regs) { printf("ARM64TODO: set_fpregs32"); return (EDOOFUS); } int fill_dbregs32(struct thread *td, struct dbreg32 *regs) { printf("ARM64TODO: fill_dbregs32"); return (EDOOFUS); } int set_dbregs32(struct thread *td, struct dbreg32 *regs) { printf("ARM64TODO: set_dbregs32"); return (EDOOFUS); } #endif int ptrace_set_pc(struct thread *td, u_long addr) { td->td_frame->tf_elr = addr; return (0); } int ptrace_single_step(struct thread *td) { td->td_frame->tf_spsr |= PSR_SS; td->td_pcb->pcb_flags |= PCB_SINGLE_STEP; return (0); } int ptrace_clear_single_step(struct thread *td) { td->td_frame->tf_spsr &= ~PSR_SS; td->td_pcb->pcb_flags &= ~PCB_SINGLE_STEP; return (0); } void exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *tf = td->td_frame; memset(tf, 0, sizeof(struct trapframe)); tf->tf_x[0] = stack; tf->tf_sp = STACKALIGN(stack); tf->tf_lr = imgp->entry_addr; tf->tf_elr = imgp->entry_addr; } /* Sanity check these are the same size, they will be memcpy'd to and fro */ CTASSERT(sizeof(((struct trapframe *)0)->tf_x) == sizeof((struct gpregs *)0)->gp_x); CTASSERT(sizeof(((struct trapframe *)0)->tf_x) == sizeof((struct reg *)0)->x); int get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret) { struct trapframe *tf = td->td_frame; if (clear_ret & GET_MC_CLEAR_RET) { mcp->mc_gpregs.gp_x[0] = 0; mcp->mc_gpregs.gp_spsr = tf->tf_spsr & ~PSR_C; } else { mcp->mc_gpregs.gp_x[0] = tf->tf_x[0]; mcp->mc_gpregs.gp_spsr = tf->tf_spsr; } memcpy(&mcp->mc_gpregs.gp_x[1], &tf->tf_x[1], sizeof(mcp->mc_gpregs.gp_x[1]) * (nitems(mcp->mc_gpregs.gp_x) - 1)); mcp->mc_gpregs.gp_sp = tf->tf_sp; mcp->mc_gpregs.gp_lr = tf->tf_lr; mcp->mc_gpregs.gp_elr = tf->tf_elr; get_fpcontext(td, mcp); return (0); } int set_mcontext(struct thread *td, mcontext_t *mcp) { struct trapframe *tf = td->td_frame; uint32_t spsr; spsr = mcp->mc_gpregs.gp_spsr; if ((spsr & PSR_M_MASK) != PSR_M_EL0t || (spsr & PSR_AARCH32) != 0 || (spsr & PSR_DAIF) != (td->td_frame->tf_spsr & PSR_DAIF)) return (EINVAL); memcpy(tf->tf_x, mcp->mc_gpregs.gp_x, sizeof(tf->tf_x)); tf->tf_sp = mcp->mc_gpregs.gp_sp; tf->tf_lr = mcp->mc_gpregs.gp_lr; tf->tf_elr = mcp->mc_gpregs.gp_elr; tf->tf_spsr = mcp->mc_gpregs.gp_spsr; set_fpcontext(td, mcp); return (0); } static void get_fpcontext(struct thread *td, mcontext_t *mcp) { #ifdef VFP struct pcb *curpcb; critical_enter(); curpcb = curthread->td_pcb; if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) { /* * If we have just been running VFP instructions we will * need to save the state to memcpy it below. */ vfp_save_state(td, curpcb); KASSERT(curpcb->pcb_fpusaved == &curpcb->pcb_fpustate, ("Called get_fpcontext while the kernel is using the VFP")); KASSERT((curpcb->pcb_fpflags & ~PCB_FP_USERMASK) == 0, ("Non-userspace FPU flags set in get_fpcontext")); memcpy(mcp->mc_fpregs.fp_q, curpcb->pcb_fpustate.vfp_regs, sizeof(mcp->mc_fpregs)); mcp->mc_fpregs.fp_cr = curpcb->pcb_fpustate.vfp_fpcr; mcp->mc_fpregs.fp_sr = curpcb->pcb_fpustate.vfp_fpsr; mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags; mcp->mc_flags |= _MC_FP_VALID; } critical_exit(); #endif } static void set_fpcontext(struct thread *td, mcontext_t *mcp) { #ifdef VFP struct pcb *curpcb; critical_enter(); if ((mcp->mc_flags & _MC_FP_VALID) != 0) { curpcb = curthread->td_pcb; /* * Discard any vfp state for the current thread, we * are about to override it. */ vfp_discard(td); KASSERT(curpcb->pcb_fpusaved == &curpcb->pcb_fpustate, ("Called set_fpcontext while the kernel is using the VFP")); memcpy(curpcb->pcb_fpustate.vfp_regs, mcp->mc_fpregs.fp_q, sizeof(mcp->mc_fpregs)); curpcb->pcb_fpustate.vfp_fpcr = mcp->mc_fpregs.fp_cr; curpcb->pcb_fpustate.vfp_fpsr = mcp->mc_fpregs.fp_sr; curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags & PCB_FP_USERMASK; } critical_exit(); #endif } void cpu_idle(int busy) { spinlock_enter(); if (!busy) cpu_idleclock(); if (!sched_runnable()) __asm __volatile( "dsb sy \n" "wfi \n"); if (!busy) cpu_activeclock(); spinlock_exit(); } void cpu_halt(void) { /* We should have shutdown by now, if not enter a low power sleep */ intr_disable(); while (1) { __asm __volatile("wfi"); } } /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { /* ARM64TODO TBD */ } /* Get current clock frequency for the given CPU ID. */ int cpu_est_clockrate(int cpu_id, uint64_t *rate) { struct pcpu *pc; pc = pcpu_find(cpu_id); if (pc == NULL || rate == NULL) return (EINVAL); if (pc->pc_clock == 0) return (EOPNOTSUPP); *rate = pc->pc_clock; return (0); } void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { pcpu->pc_acpi_id = 0xffffffff; } void spinlock_enter(void) { struct thread *td; register_t daif; td = curthread; if (td->td_md.md_spinlock_count == 0) { daif = intr_disable(); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_daif = daif; critical_enter(); } else td->td_md.md_spinlock_count++; } void spinlock_exit(void) { struct thread *td; register_t daif; td = curthread; daif = td->td_md.md_saved_daif; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) { critical_exit(); intr_restore(daif); } } #ifndef _SYS_SYSPROTO_H_ struct sigreturn_args { ucontext_t *ucp; }; #endif int sys_sigreturn(struct thread *td, struct sigreturn_args *uap) { ucontext_t uc; int error; if (copyin(uap->sigcntxp, &uc, sizeof(uc))) return (EFAULT); error = set_mcontext(td, &uc.uc_mcontext); if (error != 0) return (error); /* Restore signal mask. */ kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); return (EJUSTRETURN); } /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { int i; for (i = 0; i < PCB_LR; i++) pcb->pcb_x[i] = tf->tf_x[i]; pcb->pcb_x[PCB_LR] = tf->tf_lr; pcb->pcb_pc = tf->tf_elr; pcb->pcb_sp = tf->tf_sp; } void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct thread *td; struct proc *p; struct trapframe *tf; struct sigframe *fp, frame; struct sigacts *psp; struct sysentvec *sysent; int onstack, sig; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); tf = td->td_frame; onstack = sigonstack(tf->tf_sp); CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm, catcher, sig); /* Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size); #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else { fp = (struct sigframe *)td->td_frame->tf_sp; } /* Make room, keeping the stack aligned */ fp--; fp = (struct sigframe *)STACKALIGN(fp); /* Fill in the frame to copy out */ bzero(&frame, sizeof(frame)); get_mcontext(td, &frame.sf_uc.uc_mcontext, 0); frame.sf_si = ksi->ksi_info; frame.sf_uc.uc_sigmask = *mask; frame.sf_uc.uc_stack = td->td_sigstk; frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) != 0 ? (onstack ? SS_ONSTACK : 0) : SS_DISABLE; mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(td->td_proc); /* Copy the sigframe out to the user's stack. */ if (copyout(&frame, fp, sizeof(*fp)) != 0) { /* Process has trashed its stack. Kill it. */ CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp); PROC_LOCK(p); sigexit(td, SIGILL); } tf->tf_x[0]= sig; tf->tf_x[1] = (register_t)&fp->sf_si; tf->tf_x[2] = (register_t)&fp->sf_uc; tf->tf_elr = (register_t)catcher; tf->tf_sp = (register_t)fp; sysent = p->p_sysent; if (sysent->sv_sigcode_base != 0) tf->tf_lr = (register_t)sysent->sv_sigcode_base; else tf->tf_lr = (register_t)(sysent->sv_psstrings - *(sysent->sv_szsigcode)); CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_elr, tf->tf_sp); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } static void init_proc0(vm_offset_t kstack) { struct pcpu *pcpup = &__pcpu[0]; proc_linkup0(&proc0, &thread0); thread0.td_kstack = kstack; thread0.td_kstack_pages = KSTACK_PAGES; thread0.td_pcb = (struct pcb *)(thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE) - 1; thread0.td_pcb->pcb_fpflags = 0; thread0.td_pcb->pcb_fpusaved = &thread0.td_pcb->pcb_fpustate; thread0.td_pcb->pcb_vfpcpu = UINT_MAX; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; } typedef struct { uint32_t type; uint64_t phys_start; uint64_t virt_start; uint64_t num_pages; uint64_t attr; } EFI_MEMORY_DESCRIPTOR; typedef void (*efi_map_entry_cb)(struct efi_md *); static void foreach_efi_map_entry(struct efi_map_header *efihdr, efi_map_entry_cb cb) { struct efi_md *map, *p; size_t efisz; int ndesc, i; /* * Memory map data provided by UEFI via the GetMemoryMap * Boot Services API. */ efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf; map = (struct efi_md *)((uint8_t *)efihdr + efisz); if (efihdr->descriptor_size == 0) return; ndesc = efihdr->memory_size / efihdr->descriptor_size; for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p, efihdr->descriptor_size)) { cb(p); } } static void exclude_efi_map_entry(struct efi_md *p) { switch (p->md_type) { case EFI_MD_TYPE_CODE: case EFI_MD_TYPE_DATA: case EFI_MD_TYPE_BS_CODE: case EFI_MD_TYPE_BS_DATA: case EFI_MD_TYPE_FREE: /* * We're allowed to use any entry with these types. */ break; default: - arm_physmem_exclude_region(p->md_phys, p->md_pages * PAGE_SIZE, + physmem_exclude_region(p->md_phys, p->md_pages * PAGE_SIZE, EXFLAG_NOALLOC); } } static void exclude_efi_map_entries(struct efi_map_header *efihdr) { foreach_efi_map_entry(efihdr, exclude_efi_map_entry); } static void add_efi_map_entry(struct efi_md *p) { switch (p->md_type) { case EFI_MD_TYPE_RT_DATA: /* * Runtime data will be excluded after the DMAP * region is created to stop it from being added * to phys_avail. */ case EFI_MD_TYPE_CODE: case EFI_MD_TYPE_DATA: case EFI_MD_TYPE_BS_CODE: case EFI_MD_TYPE_BS_DATA: case EFI_MD_TYPE_FREE: /* * We're allowed to use any entry with these types. */ - arm_physmem_hardware_region(p->md_phys, + physmem_hardware_region(p->md_phys, p->md_pages * PAGE_SIZE); break; } } static void add_efi_map_entries(struct efi_map_header *efihdr) { foreach_efi_map_entry(efihdr, add_efi_map_entry); } static void print_efi_map_entry(struct efi_md *p) { const char *type; static const char *types[] = { "Reserved", "LoaderCode", "LoaderData", "BootServicesCode", "BootServicesData", "RuntimeServicesCode", "RuntimeServicesData", "ConventionalMemory", "UnusableMemory", "ACPIReclaimMemory", "ACPIMemoryNVS", "MemoryMappedIO", "MemoryMappedIOPortSpace", "PalCode", "PersistentMemory" }; if (p->md_type < nitems(types)) type = types[p->md_type]; else type = ""; printf("%23s %012lx %12p %08lx ", type, p->md_phys, p->md_virt, p->md_pages); if (p->md_attr & EFI_MD_ATTR_UC) printf("UC "); if (p->md_attr & EFI_MD_ATTR_WC) printf("WC "); if (p->md_attr & EFI_MD_ATTR_WT) printf("WT "); if (p->md_attr & EFI_MD_ATTR_WB) printf("WB "); if (p->md_attr & EFI_MD_ATTR_UCE) printf("UCE "); if (p->md_attr & EFI_MD_ATTR_WP) printf("WP "); if (p->md_attr & EFI_MD_ATTR_RP) printf("RP "); if (p->md_attr & EFI_MD_ATTR_XP) printf("XP "); if (p->md_attr & EFI_MD_ATTR_NV) printf("NV "); if (p->md_attr & EFI_MD_ATTR_MORE_RELIABLE) printf("MORE_RELIABLE "); if (p->md_attr & EFI_MD_ATTR_RO) printf("RO "); if (p->md_attr & EFI_MD_ATTR_RT) printf("RUNTIME"); printf("\n"); } static void print_efi_map_entries(struct efi_map_header *efihdr) { printf("%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); foreach_efi_map_entry(efihdr, print_efi_map_entry); } #ifdef FDT static void try_load_dtb(caddr_t kmdp) { vm_offset_t dtbp; dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t); #if defined(FDT_DTB_STATIC) /* * In case the device tree blob was not retrieved (from metadata) try * to use the statically embedded one. */ if (dtbp == 0) dtbp = (vm_offset_t)&fdt_static_dtb; #endif if (dtbp == (vm_offset_t)NULL) { printf("ERROR loading DTB\n"); return; } if (OF_install(OFW_FDT, 0) == FALSE) panic("Cannot install FDT"); if (OF_init((void *)dtbp) != 0) panic("OF_init failed with the found device tree"); parse_fdt_bootargs(); } #endif static bool bus_probe(void) { bool has_acpi, has_fdt; char *order, *env; has_acpi = has_fdt = false; #ifdef FDT has_fdt = (OF_peer(0) != 0); #endif #ifdef DEV_ACPI has_acpi = (acpi_find_table(ACPI_SIG_SPCR) != 0); #endif env = kern_getenv("kern.cfg.order"); if (env != NULL) { order = env; while (order != NULL) { if (has_acpi && strncmp(order, "acpi", 4) == 0 && (order[4] == ',' || order[4] == '\0')) { arm64_bus_method = ARM64_BUS_ACPI; break; } if (has_fdt && strncmp(order, "fdt", 3) == 0 && (order[3] == ',' || order[3] == '\0')) { arm64_bus_method = ARM64_BUS_FDT; break; } order = strchr(order, ','); } freeenv(env); /* If we set the bus method it is valid */ if (arm64_bus_method != ARM64_BUS_NONE) return (true); } /* If no order or an invalid order was set use the default */ if (arm64_bus_method == ARM64_BUS_NONE) { if (has_fdt) arm64_bus_method = ARM64_BUS_FDT; else if (has_acpi) arm64_bus_method = ARM64_BUS_ACPI; } /* * If no option was set the default is valid, otherwise we are * setting one to get cninit() working, then calling panic to tell * the user about the invalid bus setup. */ return (env == NULL); } static void cache_setup(void) { int dczva_line_shift; uint32_t dczid_el0; identify_cache(READ_SPECIALREG(ctr_el0)); dczid_el0 = READ_SPECIALREG(dczid_el0); /* Check if dc zva is not prohibited */ if (dczid_el0 & DCZID_DZP) dczva_line_size = 0; else { /* Same as with above calculations */ dczva_line_shift = DCZID_BS_SIZE(dczid_el0); dczva_line_size = sizeof(int) << dczva_line_shift; /* Change pagezero function */ pagezero = pagezero_cache; } } void initarm(struct arm64_bootparams *abp) { struct efi_fb *efifb; struct efi_map_header *efihdr; struct pcpu *pcpup; char *env; #ifdef FDT struct mem_region mem_regions[FDT_MEM_REGIONS]; int mem_regions_sz; #endif vm_offset_t lastaddr; caddr_t kmdp; bool valid; boot_el = abp->boot_el; /* Parse loader or FDT boot parametes. Determine last used address. */ lastaddr = parse_boot_param(abp); /* Find the kernel address */ kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); link_elf_ireloc(kmdp); try_load_dtb(kmdp); efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t); /* Load the physical memory ranges */ efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); if (efihdr != NULL) add_efi_map_entries(efihdr); #ifdef FDT else { /* Grab physical memory regions information from device tree. */ if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, NULL) != 0) panic("Cannot get physical memory regions"); - arm_physmem_hardware_regions(mem_regions, mem_regions_sz); + physmem_hardware_regions(mem_regions, mem_regions_sz); } if (fdt_get_reserved_mem(mem_regions, &mem_regions_sz) == 0) - arm_physmem_exclude_regions(mem_regions, mem_regions_sz, + physmem_exclude_regions(mem_regions, mem_regions_sz, EXFLAG_NODUMP | EXFLAG_NOALLOC); #endif /* Exclude the EFI framebuffer from our view of physical memory. */ efifb = (struct efi_fb *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_FB); if (efifb != NULL) - arm_physmem_exclude_region(efifb->fb_addr, efifb->fb_size, + physmem_exclude_region(efifb->fb_addr, efifb->fb_size, EXFLAG_NOALLOC); /* Set the pcpu data, this is needed by pmap_bootstrap */ pcpup = &__pcpu[0]; pcpu_init(pcpup, 0, sizeof(struct pcpu)); /* * Set the pcpu pointer with a backup in tpidr_el1 to be * loaded when entering the kernel from userland. */ __asm __volatile( "mov x18, %0 \n" "msr tpidr_el1, %0" :: "r"(pcpup)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); cache_setup(); pan_setup(); /* Bootstrap enough of pmap to enter the kernel proper */ pmap_bootstrap(abp->kern_l0pt, abp->kern_l1pt, KERNBASE - abp->kern_delta, lastaddr - KERNBASE); /* Exclude entries neexed in teh DMAP region, but not phys_avail */ if (efihdr != NULL) exclude_efi_map_entries(efihdr); - arm_physmem_init_kernel_globals(); + physmem_init_kernel_globals(); devmap_bootstrap(0, NULL); valid = bus_probe(); cninit(); if (!valid) panic("Invalid bus configuration: %s", kern_getenv("kern.cfg.order")); init_proc0(abp->kern_stack); msgbufinit(msgbufp, msgbufsize); mutex_init(); init_param2(physmem); dbg_init(); kdb_init(); pan_enable(); kcsan_cpu_init(0); env = kern_getenv("kernelname"); if (env != NULL) strlcpy(kernelname, env, sizeof(kernelname)); if (boothowto & RB_VERBOSE) { print_efi_map_entries(efihdr); - arm_physmem_print_tables(); + physmem_print_tables(); } early_boot = 0; } void dbg_init(void) { /* Clear OS lock */ WRITE_SPECIALREG(oslar_el1, 0); /* This permits DDB to use debug registers for watchpoints. */ dbg_monitor_init(); /* TODO: Eventually will need to initialize debug registers here. */ } #ifdef DDB #include DB_SHOW_COMMAND(specialregs, db_show_spregs) { #define PRINT_REG(reg) \ db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg)) PRINT_REG(actlr_el1); PRINT_REG(afsr0_el1); PRINT_REG(afsr1_el1); PRINT_REG(aidr_el1); PRINT_REG(amair_el1); PRINT_REG(ccsidr_el1); PRINT_REG(clidr_el1); PRINT_REG(contextidr_el1); PRINT_REG(cpacr_el1); PRINT_REG(csselr_el1); PRINT_REG(ctr_el0); PRINT_REG(currentel); PRINT_REG(daif); PRINT_REG(dczid_el0); PRINT_REG(elr_el1); PRINT_REG(esr_el1); PRINT_REG(far_el1); #if 0 /* ARM64TODO: Enable VFP before reading floating-point registers */ PRINT_REG(fpcr); PRINT_REG(fpsr); #endif PRINT_REG(id_aa64afr0_el1); PRINT_REG(id_aa64afr1_el1); PRINT_REG(id_aa64dfr0_el1); PRINT_REG(id_aa64dfr1_el1); PRINT_REG(id_aa64isar0_el1); PRINT_REG(id_aa64isar1_el1); PRINT_REG(id_aa64pfr0_el1); PRINT_REG(id_aa64pfr1_el1); PRINT_REG(id_afr0_el1); PRINT_REG(id_dfr0_el1); PRINT_REG(id_isar0_el1); PRINT_REG(id_isar1_el1); PRINT_REG(id_isar2_el1); PRINT_REG(id_isar3_el1); PRINT_REG(id_isar4_el1); PRINT_REG(id_isar5_el1); PRINT_REG(id_mmfr0_el1); PRINT_REG(id_mmfr1_el1); PRINT_REG(id_mmfr2_el1); PRINT_REG(id_mmfr3_el1); #if 0 /* Missing from llvm */ PRINT_REG(id_mmfr4_el1); #endif PRINT_REG(id_pfr0_el1); PRINT_REG(id_pfr1_el1); PRINT_REG(isr_el1); PRINT_REG(mair_el1); PRINT_REG(midr_el1); PRINT_REG(mpidr_el1); PRINT_REG(mvfr0_el1); PRINT_REG(mvfr1_el1); PRINT_REG(mvfr2_el1); PRINT_REG(revidr_el1); PRINT_REG(sctlr_el1); PRINT_REG(sp_el0); PRINT_REG(spsel); PRINT_REG(spsr_el1); PRINT_REG(tcr_el1); PRINT_REG(tpidr_el0); PRINT_REG(tpidr_el1); PRINT_REG(tpidrro_el0); PRINT_REG(ttbr0_el1); PRINT_REG(ttbr1_el1); PRINT_REG(vbar_el1); #undef PRINT_REG } DB_SHOW_COMMAND(vtop, db_show_vtop) { uint64_t phys; if (have_addr) { phys = arm64_address_translate_s1e1r(addr); db_printf("EL1 physical address reg (read): 0x%016lx\n", phys); phys = arm64_address_translate_s1e1w(addr); db_printf("EL1 physical address reg (write): 0x%016lx\n", phys); phys = arm64_address_translate_s1e0r(addr); db_printf("EL0 physical address reg (read): 0x%016lx\n", phys); phys = arm64_address_translate_s1e0w(addr); db_printf("EL0 physical address reg (write): 0x%016lx\n", phys); } else db_printf("show vtop \n"); } #endif Index: head/sys/arm64/arm64/pmap.c =================================================================== --- head/sys/arm64/arm64/pmap.c (revision 360081) +++ head/sys/arm64/arm64/pmap.c (revision 360082) @@ -1,6488 +1,6487 @@ /*- * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * Copyright (c) 2003 Peter Wemm * All rights reserved. * Copyright (c) 2005-2010 Alan L. Cox * All rights reserved. * Copyright (c) 2014 Andrew Turner * All rights reserved. * Copyright (c) 2014-2016 The FreeBSD Foundation * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * This software was developed by Andrew Turner under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)pmap.c 7.7 (Berkeley) 5/12/91 */ /*- * Copyright (c) 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Jake Burkholder, * Safeport Network Services, and Network Associates Laboratories, the * Security Research Division of Network Associates, Inc. under * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA * CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Manages physical address maps. * * Since the information managed by this module is * also stored by the logical address mapping module, * this module may throw away valid virtual-to-physical * mappings at almost any time. However, invalidations * of virtual-to-physical mappings must be done as * requested. * * In order to cope with hardware architectures which * make virtual-to-physical map invalidates expensive, * this module may delay invalidate or reduced protection * operations until such time as they are actually * necessary. This module is given full information as * to which processors are currently using which maps, * and to when physical maps must be made correct. */ #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include -#include - #define PMAP_ASSERT_STAGE1(pmap) MPASS((pmap)->pm_stage == PM_STAGE1) #define NL0PG (PAGE_SIZE/(sizeof (pd_entry_t))) #define NL1PG (PAGE_SIZE/(sizeof (pd_entry_t))) #define NL2PG (PAGE_SIZE/(sizeof (pd_entry_t))) #define NL3PG (PAGE_SIZE/(sizeof (pt_entry_t))) #define NUL0E L0_ENTRIES #define NUL1E (NUL0E * NL1PG) #define NUL2E (NUL1E * NL2PG) #if !defined(DIAGNOSTIC) #ifdef __GNUC_GNU_INLINE__ #define PMAP_INLINE __attribute__((__gnu_inline__)) inline #else #define PMAP_INLINE extern inline #endif #else #define PMAP_INLINE #endif #ifdef PV_STATS #define PV_STAT(x) do { x ; } while (0) #else #define PV_STAT(x) do { } while (0) #endif #define pmap_l2_pindex(v) ((v) >> L2_SHIFT) #define pa_to_pvh(pa) (&pv_table[pmap_l2_pindex(pa)]) #define NPV_LIST_LOCKS MAXCPU #define PHYS_TO_PV_LIST_LOCK(pa) \ (&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS]) #define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \ struct rwlock **_lockp = (lockp); \ struct rwlock *_new_lock; \ \ _new_lock = PHYS_TO_PV_LIST_LOCK(pa); \ if (_new_lock != *_lockp) { \ if (*_lockp != NULL) \ rw_wunlock(*_lockp); \ *_lockp = _new_lock; \ rw_wlock(*_lockp); \ } \ } while (0) #define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \ CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m)) #define RELEASE_PV_LIST_LOCK(lockp) do { \ struct rwlock **_lockp = (lockp); \ \ if (*_lockp != NULL) { \ rw_wunlock(*_lockp); \ *_lockp = NULL; \ } \ } while (0) #define VM_PAGE_TO_PV_LIST_LOCK(m) \ PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m)) /* * The presence of this flag indicates that the mapping is writeable. * If the ATTR_S1_AP_RO bit is also set, then the mapping is clean, otherwise * it is dirty. This flag may only be set on managed mappings. * * The DBM bit is reserved on ARMv8.0 but it seems we can safely treat it * as a software managed bit. */ #define ATTR_SW_DBM ATTR_DBM struct pmap kernel_pmap_store; /* Used for mapping ACPI memory before VM is initialized */ #define PMAP_PREINIT_MAPPING_COUNT 32 #define PMAP_PREINIT_MAPPING_SIZE (PMAP_PREINIT_MAPPING_COUNT * L2_SIZE) static vm_offset_t preinit_map_va; /* Start VA of pre-init mapping space */ static int vm_initialized = 0; /* No need to use pre-init maps when set */ /* * Reserve a few L2 blocks starting from 'preinit_map_va' pointer. * Always map entire L2 block for simplicity. * VA of L2 block = preinit_map_va + i * L2_SIZE */ static struct pmap_preinit_mapping { vm_paddr_t pa; vm_offset_t va; vm_size_t size; } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT]; vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */ vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */ vm_offset_t kernel_vm_end = 0; /* * Data for the pv entry allocation mechanism. */ static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks); static struct mtx pv_chunks_mutex; static struct rwlock pv_list_locks[NPV_LIST_LOCKS]; static struct md_page *pv_table; static struct md_page pv_dummy; vm_paddr_t dmap_phys_base; /* The start of the dmap region */ vm_paddr_t dmap_phys_max; /* The limit of the dmap region */ vm_offset_t dmap_max_addr; /* The virtual address limit of the dmap */ /* This code assumes all L1 DMAP entries will be used */ CTASSERT((DMAP_MIN_ADDRESS & ~L0_OFFSET) == DMAP_MIN_ADDRESS); CTASSERT((DMAP_MAX_ADDRESS & ~L0_OFFSET) == DMAP_MAX_ADDRESS); #define DMAP_TABLES ((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT) extern pt_entry_t pagetable_dmap[]; #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1)) static vm_paddr_t physmap[PHYSMAP_SIZE]; static u_int physmap_idx; static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "VM/pmap parameters"); /* * This ASID allocator uses a bit vector ("asid_set") to remember which ASIDs * that it has currently allocated to a pmap, a cursor ("asid_next") to * optimize its search for a free ASID in the bit vector, and an epoch number * ("asid_epoch") to indicate when it has reclaimed all previously allocated * ASIDs that are not currently active on a processor. * * The current epoch number is always in the range [0, INT_MAX). Negative * numbers and INT_MAX are reserved for special cases that are described * below. */ struct asid_set { int asid_bits; bitstr_t *asid_set; int asid_set_size; int asid_next; int asid_epoch; struct mtx asid_set_mutex; }; static struct asid_set asids; static SYSCTL_NODE(_vm_pmap, OID_AUTO, asid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "ASID allocator"); SYSCTL_INT(_vm_pmap_asid, OID_AUTO, bits, CTLFLAG_RD, &asids.asid_bits, 0, "The number of bits in an ASID"); SYSCTL_INT(_vm_pmap_asid, OID_AUTO, next, CTLFLAG_RD, &asids.asid_next, 0, "The last allocated ASID plus one"); SYSCTL_INT(_vm_pmap_asid, OID_AUTO, epoch, CTLFLAG_RD, &asids.asid_epoch, 0, "The current epoch number"); /* * A pmap's cookie encodes an ASID and epoch number. Cookies for reserved * ASIDs have a negative epoch number, specifically, INT_MIN. Cookies for * dynamically allocated ASIDs have a non-negative epoch number. * * An invalid ASID is represented by -1. * * There are two special-case cookie values: (1) COOKIE_FROM(-1, INT_MIN), * which indicates that an ASID should never be allocated to the pmap, and * (2) COOKIE_FROM(-1, INT_MAX), which indicates that an ASID should be * allocated when the pmap is next activated. */ #define COOKIE_FROM(asid, epoch) ((long)((u_int)(asid) | \ ((u_long)(epoch) << 32))) #define COOKIE_TO_ASID(cookie) ((int)(cookie)) #define COOKIE_TO_EPOCH(cookie) ((int)((u_long)(cookie) >> 32)) static int superpages_enabled = 1; SYSCTL_INT(_vm_pmap, OID_AUTO, superpages_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &superpages_enabled, 0, "Are large page mappings enabled?"); /* * Internal flags for pmap_enter()'s helper functions. */ #define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */ #define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */ static void free_pv_chunk(struct pv_chunk *pc); static void free_pv_entry(pmap_t pmap, pv_entry_t pv); static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp); static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp); static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va); static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va); static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte); static bool pmap_activate_int(pmap_t pmap); static void pmap_alloc_asid(pmap_t pmap); static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode); static pt_entry_t *pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va); static pt_entry_t *pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va, struct rwlock **lockp); static pt_entry_t *pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va); static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp); static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags, vm_page_t m, struct rwlock **lockp); static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pd_entry_t l1e, struct spglist *free, struct rwlock **lockp); static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t sva, pd_entry_t l2e, struct spglist *free, struct rwlock **lockp); static void pmap_reset_asid_set(pmap_t pmap); static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m, struct rwlock **lockp); static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp); static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free); static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *); static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va); /* * These load the old table data and store the new value. * They need to be atomic as the System MMU may write to the table at * the same time as the CPU. */ #define pmap_clear(table) atomic_store_64(table, 0) #define pmap_clear_bits(table, bits) atomic_clear_64(table, bits) #define pmap_load(table) (*table) #define pmap_load_clear(table) atomic_swap_64(table, 0) #define pmap_load_store(table, entry) atomic_swap_64(table, entry) #define pmap_set_bits(table, bits) atomic_set_64(table, bits) #define pmap_store(table, entry) atomic_store_64(table, entry) /********************/ /* Inline functions */ /********************/ static __inline void pagecopy(void *s, void *d) { memcpy(d, s, PAGE_SIZE); } static __inline pd_entry_t * pmap_l0(pmap_t pmap, vm_offset_t va) { return (&pmap->pm_l0[pmap_l0_index(va)]); } static __inline pd_entry_t * pmap_l0_to_l1(pd_entry_t *l0, vm_offset_t va) { pd_entry_t *l1; l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK); return (&l1[pmap_l1_index(va)]); } static __inline pd_entry_t * pmap_l1(pmap_t pmap, vm_offset_t va) { pd_entry_t *l0; l0 = pmap_l0(pmap, va); if ((pmap_load(l0) & ATTR_DESCR_MASK) != L0_TABLE) return (NULL); return (pmap_l0_to_l1(l0, va)); } static __inline pd_entry_t * pmap_l1_to_l2(pd_entry_t *l1, vm_offset_t va) { pd_entry_t *l2; l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK); return (&l2[pmap_l2_index(va)]); } static __inline pd_entry_t * pmap_l2(pmap_t pmap, vm_offset_t va) { pd_entry_t *l1; l1 = pmap_l1(pmap, va); if ((pmap_load(l1) & ATTR_DESCR_MASK) != L1_TABLE) return (NULL); return (pmap_l1_to_l2(l1, va)); } static __inline pt_entry_t * pmap_l2_to_l3(pd_entry_t *l2, vm_offset_t va) { pt_entry_t *l3; l3 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l2) & ~ATTR_MASK); return (&l3[pmap_l3_index(va)]); } /* * Returns the lowest valid pde for a given virtual address. * The next level may or may not point to a valid page or block. */ static __inline pd_entry_t * pmap_pde(pmap_t pmap, vm_offset_t va, int *level) { pd_entry_t *l0, *l1, *l2, desc; l0 = pmap_l0(pmap, va); desc = pmap_load(l0) & ATTR_DESCR_MASK; if (desc != L0_TABLE) { *level = -1; return (NULL); } l1 = pmap_l0_to_l1(l0, va); desc = pmap_load(l1) & ATTR_DESCR_MASK; if (desc != L1_TABLE) { *level = 0; return (l0); } l2 = pmap_l1_to_l2(l1, va); desc = pmap_load(l2) & ATTR_DESCR_MASK; if (desc != L2_TABLE) { *level = 1; return (l1); } *level = 2; return (l2); } /* * Returns the lowest valid pte block or table entry for a given virtual * address. If there are no valid entries return NULL and set the level to * the first invalid level. */ static __inline pt_entry_t * pmap_pte(pmap_t pmap, vm_offset_t va, int *level) { pd_entry_t *l1, *l2, desc; pt_entry_t *l3; l1 = pmap_l1(pmap, va); if (l1 == NULL) { *level = 0; return (NULL); } desc = pmap_load(l1) & ATTR_DESCR_MASK; if (desc == L1_BLOCK) { *level = 1; return (l1); } if (desc != L1_TABLE) { *level = 1; return (NULL); } l2 = pmap_l1_to_l2(l1, va); desc = pmap_load(l2) & ATTR_DESCR_MASK; if (desc == L2_BLOCK) { *level = 2; return (l2); } if (desc != L2_TABLE) { *level = 2; return (NULL); } *level = 3; l3 = pmap_l2_to_l3(l2, va); if ((pmap_load(l3) & ATTR_DESCR_MASK) != L3_PAGE) return (NULL); return (l3); } bool pmap_ps_enabled(pmap_t pmap __unused) { return (superpages_enabled != 0); } bool pmap_get_tables(pmap_t pmap, vm_offset_t va, pd_entry_t **l0, pd_entry_t **l1, pd_entry_t **l2, pt_entry_t **l3) { pd_entry_t *l0p, *l1p, *l2p; if (pmap->pm_l0 == NULL) return (false); l0p = pmap_l0(pmap, va); *l0 = l0p; if ((pmap_load(l0p) & ATTR_DESCR_MASK) != L0_TABLE) return (false); l1p = pmap_l0_to_l1(l0p, va); *l1 = l1p; if ((pmap_load(l1p) & ATTR_DESCR_MASK) == L1_BLOCK) { *l2 = NULL; *l3 = NULL; return (true); } if ((pmap_load(l1p) & ATTR_DESCR_MASK) != L1_TABLE) return (false); l2p = pmap_l1_to_l2(l1p, va); *l2 = l2p; if ((pmap_load(l2p) & ATTR_DESCR_MASK) == L2_BLOCK) { *l3 = NULL; return (true); } if ((pmap_load(l2p) & ATTR_DESCR_MASK) != L2_TABLE) return (false); *l3 = pmap_l2_to_l3(l2p, va); return (true); } static __inline int pmap_l3_valid(pt_entry_t l3) { return ((l3 & ATTR_DESCR_MASK) == L3_PAGE); } CTASSERT(L1_BLOCK == L2_BLOCK); /* * Checks if the PTE is dirty. */ static inline int pmap_pte_dirty(pmap_t pmap, pt_entry_t pte) { PMAP_ASSERT_STAGE1(pmap); KASSERT((pte & ATTR_SW_MANAGED) != 0, ("pte %#lx is unmanaged", pte)); KASSERT((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) != 0, ("pte %#lx is writeable and missing ATTR_SW_DBM", pte)); return ((pte & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == (ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_SW_DBM)); } static __inline void pmap_resident_count_inc(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); pmap->pm_stats.resident_count += count; } static __inline void pmap_resident_count_dec(pmap_t pmap, int count) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(pmap->pm_stats.resident_count >= count, ("pmap %p resident count underflow %ld %d", pmap, pmap->pm_stats.resident_count, count)); pmap->pm_stats.resident_count -= count; } static pt_entry_t * pmap_early_page_idx(vm_offset_t l1pt, vm_offset_t va, u_int *l1_slot, u_int *l2_slot) { pt_entry_t *l2; pd_entry_t *l1; l1 = (pd_entry_t *)l1pt; *l1_slot = (va >> L1_SHIFT) & Ln_ADDR_MASK; /* Check locore has used a table L1 map */ KASSERT((l1[*l1_slot] & ATTR_DESCR_MASK) == L1_TABLE, ("Invalid bootstrap L1 table")); /* Find the address of the L2 table */ l2 = (pt_entry_t *)init_pt_va; *l2_slot = pmap_l2_index(va); return (l2); } static vm_paddr_t pmap_early_vtophys(vm_offset_t l1pt, vm_offset_t va) { u_int l1_slot, l2_slot; pt_entry_t *l2; l2 = pmap_early_page_idx(l1pt, va, &l1_slot, &l2_slot); return ((l2[l2_slot] & ~ATTR_MASK) + (va & L2_OFFSET)); } static vm_offset_t pmap_bootstrap_dmap(vm_offset_t kern_l1, vm_paddr_t min_pa, vm_offset_t freemempos) { pt_entry_t *l2; vm_offset_t va; vm_paddr_t l2_pa, pa; u_int l1_slot, l2_slot, prev_l1_slot; int i; dmap_phys_base = min_pa & ~L1_OFFSET; dmap_phys_max = 0; dmap_max_addr = 0; l2 = NULL; prev_l1_slot = -1; #define DMAP_TABLES ((DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS) >> L0_SHIFT) memset(pagetable_dmap, 0, PAGE_SIZE * DMAP_TABLES); for (i = 0; i < (physmap_idx * 2); i += 2) { pa = physmap[i] & ~L2_OFFSET; va = pa - dmap_phys_base + DMAP_MIN_ADDRESS; /* Create L2 mappings at the start of the region */ if ((pa & L1_OFFSET) != 0) { l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT); if (l1_slot != prev_l1_slot) { prev_l1_slot = l1_slot; l2 = (pt_entry_t *)freemempos; l2_pa = pmap_early_vtophys(kern_l1, (vm_offset_t)l2); freemempos += PAGE_SIZE; pmap_store(&pagetable_dmap[l1_slot], (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE); memset(l2, 0, PAGE_SIZE); } KASSERT(l2 != NULL, ("pmap_bootstrap_dmap: NULL l2 map")); for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1]; pa += L2_SIZE, va += L2_SIZE) { /* * We are on a boundary, stop to * create a level 1 block */ if ((pa & L1_OFFSET) == 0) break; l2_slot = pmap_l2_index(va); KASSERT(l2_slot != 0, ("...")); pmap_store(&l2[l2_slot], (pa & ~L2_OFFSET) | ATTR_DEFAULT | ATTR_S1_XN | ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK); } KASSERT(va == (pa - dmap_phys_base + DMAP_MIN_ADDRESS), ("...")); } for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1] && (physmap[i + 1] - pa) >= L1_SIZE; pa += L1_SIZE, va += L1_SIZE) { l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT); pmap_store(&pagetable_dmap[l1_slot], (pa & ~L1_OFFSET) | ATTR_DEFAULT | ATTR_S1_XN | ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L1_BLOCK); } /* Create L2 mappings at the end of the region */ if (pa < physmap[i + 1]) { l1_slot = ((va - DMAP_MIN_ADDRESS) >> L1_SHIFT); if (l1_slot != prev_l1_slot) { prev_l1_slot = l1_slot; l2 = (pt_entry_t *)freemempos; l2_pa = pmap_early_vtophys(kern_l1, (vm_offset_t)l2); freemempos += PAGE_SIZE; pmap_store(&pagetable_dmap[l1_slot], (l2_pa & ~Ln_TABLE_MASK) | L1_TABLE); memset(l2, 0, PAGE_SIZE); } KASSERT(l2 != NULL, ("pmap_bootstrap_dmap: NULL l2 map")); for (; va < DMAP_MAX_ADDRESS && pa < physmap[i + 1]; pa += L2_SIZE, va += L2_SIZE) { l2_slot = pmap_l2_index(va); pmap_store(&l2[l2_slot], (pa & ~L2_OFFSET) | ATTR_DEFAULT | ATTR_S1_XN | ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK); } } if (pa > dmap_phys_max) { dmap_phys_max = pa; dmap_max_addr = va; } } cpu_tlb_flushID(); return (freemempos); } static vm_offset_t pmap_bootstrap_l2(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l2_start) { vm_offset_t l2pt; vm_paddr_t pa; pd_entry_t *l1; u_int l1_slot; KASSERT((va & L1_OFFSET) == 0, ("Invalid virtual address")); l1 = (pd_entry_t *)l1pt; l1_slot = pmap_l1_index(va); l2pt = l2_start; for (; va < VM_MAX_KERNEL_ADDRESS; l1_slot++, va += L1_SIZE) { KASSERT(l1_slot < Ln_ENTRIES, ("Invalid L1 index")); pa = pmap_early_vtophys(l1pt, l2pt); pmap_store(&l1[l1_slot], (pa & ~Ln_TABLE_MASK) | L1_TABLE); l2pt += PAGE_SIZE; } /* Clean the L2 page table */ memset((void *)l2_start, 0, l2pt - l2_start); return l2pt; } static vm_offset_t pmap_bootstrap_l3(vm_offset_t l1pt, vm_offset_t va, vm_offset_t l3_start) { vm_offset_t l3pt; vm_paddr_t pa; pd_entry_t *l2; u_int l2_slot; KASSERT((va & L2_OFFSET) == 0, ("Invalid virtual address")); l2 = pmap_l2(kernel_pmap, va); l2 = (pd_entry_t *)rounddown2((uintptr_t)l2, PAGE_SIZE); l2_slot = pmap_l2_index(va); l3pt = l3_start; for (; va < VM_MAX_KERNEL_ADDRESS; l2_slot++, va += L2_SIZE) { KASSERT(l2_slot < Ln_ENTRIES, ("Invalid L2 index")); pa = pmap_early_vtophys(l1pt, l3pt); pmap_store(&l2[l2_slot], (pa & ~Ln_TABLE_MASK) | ATTR_S1_UXN | L2_TABLE); l3pt += PAGE_SIZE; } /* Clean the L2 page table */ memset((void *)l3_start, 0, l3pt - l3_start); return l3pt; } /* * Bootstrap the system enough to run with virtual memory. */ void pmap_bootstrap(vm_offset_t l0pt, vm_offset_t l1pt, vm_paddr_t kernstart, vm_size_t kernlen) { u_int l1_slot, l2_slot; pt_entry_t *l2; vm_offset_t va, freemempos; vm_offset_t dpcpu, msgbufpv; vm_paddr_t start_pa, pa, min_pa; uint64_t kern_delta; int i; /* Verify that the ASID is set through TTBR0. */ KASSERT((READ_SPECIALREG(tcr_el1) & TCR_A1) == 0, ("pmap_bootstrap: TCR_EL1.A1 != 0")); kern_delta = KERNBASE - kernstart; printf("pmap_bootstrap %lx %lx %lx\n", l1pt, kernstart, kernlen); printf("%lx\n", l1pt); printf("%lx\n", (KERNBASE >> L1_SHIFT) & Ln_ADDR_MASK); /* Set this early so we can use the pagetable walking functions */ kernel_pmap_store.pm_l0 = (pd_entry_t *)l0pt; PMAP_LOCK_INIT(kernel_pmap); kernel_pmap->pm_l0_paddr = l0pt - kern_delta; kernel_pmap->pm_cookie = COOKIE_FROM(-1, INT_MIN); kernel_pmap->pm_stage = PM_STAGE1; kernel_pmap->pm_asid_set = &asids; /* Assume the address we were loaded to is a valid physical address */ min_pa = KERNBASE - kern_delta; - physmap_idx = arm_physmem_avail(physmap, nitems(physmap)); + physmap_idx = physmem_avail(physmap, nitems(physmap)); physmap_idx /= 2; /* * Find the minimum physical address. physmap is sorted, * but may contain empty ranges. */ for (i = 0; i < (physmap_idx * 2); i += 2) { if (physmap[i] == physmap[i + 1]) continue; if (physmap[i] <= min_pa) min_pa = physmap[i]; } freemempos = KERNBASE + kernlen; freemempos = roundup2(freemempos, PAGE_SIZE); /* Create a direct map region early so we can use it for pa -> va */ freemempos = pmap_bootstrap_dmap(l1pt, min_pa, freemempos); va = KERNBASE; start_pa = pa = KERNBASE - kern_delta; /* * Read the page table to find out what is already mapped. * This assumes we have mapped a block of memory from KERNBASE * using a single L1 entry. */ l2 = pmap_early_page_idx(l1pt, KERNBASE, &l1_slot, &l2_slot); /* Sanity check the index, KERNBASE should be the first VA */ KASSERT(l2_slot == 0, ("The L2 index is non-zero")); /* Find how many pages we have mapped */ for (; l2_slot < Ln_ENTRIES; l2_slot++) { if ((l2[l2_slot] & ATTR_DESCR_MASK) == 0) break; /* Check locore used L2 blocks */ KASSERT((l2[l2_slot] & ATTR_DESCR_MASK) == L2_BLOCK, ("Invalid bootstrap L2 table")); KASSERT((l2[l2_slot] & ~ATTR_MASK) == pa, ("Incorrect PA in L2 table")); va += L2_SIZE; pa += L2_SIZE; } va = roundup2(va, L1_SIZE); /* Create the l2 tables up to VM_MAX_KERNEL_ADDRESS */ freemempos = pmap_bootstrap_l2(l1pt, va, freemempos); /* And the l3 tables for the early devmap */ freemempos = pmap_bootstrap_l3(l1pt, VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE), freemempos); cpu_tlb_flushID(); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); /* Allocate dynamic per-cpu area. */ alloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu, 0); /* Allocate memory for the msgbuf, e.g. for /sbin/dmesg */ alloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); msgbufp = (void *)msgbufpv; /* Reserve some VA space for early BIOS/ACPI mapping */ preinit_map_va = roundup2(freemempos, L2_SIZE); virtual_avail = preinit_map_va + PMAP_PREINIT_MAPPING_SIZE; virtual_avail = roundup2(virtual_avail, L1_SIZE); virtual_end = VM_MAX_KERNEL_ADDRESS - (PMAP_MAPDEV_EARLY_SIZE); kernel_vm_end = virtual_avail; pa = pmap_early_vtophys(l1pt, freemempos); - arm_physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC); + physmem_exclude_region(start_pa, pa - start_pa, EXFLAG_NOALLOC); cpu_tlb_flushID(); } /* * Initialize a vm_page's machine-dependent fields. */ void pmap_page_init(vm_page_t m) { TAILQ_INIT(&m->md.pv_list); m->md.pv_memattr = VM_MEMATTR_WRITE_BACK; } static void pmap_init_asids(struct asid_set *set, int bits) { int i; set->asid_bits = bits; /* * We may be too early in the overall initialization process to use * bit_alloc(). */ set->asid_set_size = 1 << set->asid_bits; set->asid_set = (bitstr_t *)kmem_malloc(bitstr_size(set->asid_set_size), M_WAITOK | M_ZERO); for (i = 0; i < ASID_FIRST_AVAILABLE; i++) bit_set(set->asid_set, i); set->asid_next = ASID_FIRST_AVAILABLE; mtx_init(&set->asid_set_mutex, "asid set", NULL, MTX_SPIN); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ void pmap_init(void) { vm_size_t s; int i, pv_npg; /* * Are large page mappings enabled? */ TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled); if (superpages_enabled) { KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0, ("pmap_init: can't assign to pagesizes[1]")); pagesizes[1] = L2_SIZE; } /* * Initialize the ASID allocator. */ pmap_init_asids(&asids, (READ_SPECIALREG(tcr_el1) & TCR_ASID_16) != 0 ? 16 : 8); /* * Initialize the pv chunk list mutex. */ mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF); /* * Initialize the pool of pv list locks. */ for (i = 0; i < NPV_LIST_LOCKS; i++) rw_init(&pv_list_locks[i], "pmap pv list"); /* * Calculate the size of the pv head table for superpages. */ pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, L2_SIZE); /* * Allocate memory for the pv head table for superpages. */ s = (vm_size_t)(pv_npg * sizeof(struct md_page)); s = round_page(s); pv_table = (struct md_page *)kmem_malloc(s, M_WAITOK | M_ZERO); for (i = 0; i < pv_npg; i++) TAILQ_INIT(&pv_table[i].pv_list); TAILQ_INIT(&pv_dummy.pv_list); vm_initialized = 1; } static SYSCTL_NODE(_vm_pmap, OID_AUTO, l2, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "2MB page mapping counters"); static u_long pmap_l2_demotions; SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, demotions, CTLFLAG_RD, &pmap_l2_demotions, 0, "2MB page demotions"); static u_long pmap_l2_mappings; SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, mappings, CTLFLAG_RD, &pmap_l2_mappings, 0, "2MB page mappings"); static u_long pmap_l2_p_failures; SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, p_failures, CTLFLAG_RD, &pmap_l2_p_failures, 0, "2MB page promotion failures"); static u_long pmap_l2_promotions; SYSCTL_ULONG(_vm_pmap_l2, OID_AUTO, promotions, CTLFLAG_RD, &pmap_l2_promotions, 0, "2MB page promotions"); /* * Invalidate a single TLB entry. */ static __inline void pmap_invalidate_page(pmap_t pmap, vm_offset_t va) { uint64_t r; PMAP_ASSERT_STAGE1(pmap); dsb(ishst); if (pmap == kernel_pmap) { r = atop(va); __asm __volatile("tlbi vaae1is, %0" : : "r" (r)); } else { r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) | atop(va); __asm __volatile("tlbi vae1is, %0" : : "r" (r)); } dsb(ish); isb(); } static __inline void pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { uint64_t end, r, start; PMAP_ASSERT_STAGE1(pmap); dsb(ishst); if (pmap == kernel_pmap) { start = atop(sva); end = atop(eva); for (r = start; r < end; r++) __asm __volatile("tlbi vaae1is, %0" : : "r" (r)); } else { start = end = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)); start |= atop(sva); end |= atop(eva); for (r = start; r < end; r++) __asm __volatile("tlbi vae1is, %0" : : "r" (r)); } dsb(ish); isb(); } static __inline void pmap_invalidate_all(pmap_t pmap) { uint64_t r; PMAP_ASSERT_STAGE1(pmap); dsb(ishst); if (pmap == kernel_pmap) { __asm __volatile("tlbi vmalle1is"); } else { r = ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)); __asm __volatile("tlbi aside1is, %0" : : "r" (r)); } dsb(ish); isb(); } /* * Routine: pmap_extract * Function: * Extract the physical page address associated * with the given map/virtual_address pair. */ vm_paddr_t pmap_extract(pmap_t pmap, vm_offset_t va) { pt_entry_t *pte, tpte; vm_paddr_t pa; int lvl; pa = 0; PMAP_LOCK(pmap); /* * Find the block or page map for this virtual address. pmap_pte * will return either a valid block/page entry, or NULL. */ pte = pmap_pte(pmap, va, &lvl); if (pte != NULL) { tpte = pmap_load(pte); pa = tpte & ~ATTR_MASK; switch(lvl) { case 1: KASSERT((tpte & ATTR_DESCR_MASK) == L1_BLOCK, ("pmap_extract: Invalid L1 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L1_OFFSET); break; case 2: KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK, ("pmap_extract: Invalid L2 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L2_OFFSET); break; case 3: KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE, ("pmap_extract: Invalid L3 pte found: %lx", tpte & ATTR_DESCR_MASK)); pa |= (va & L3_OFFSET); break; } } PMAP_UNLOCK(pmap); return (pa); } /* * Routine: pmap_extract_and_hold * Function: * Atomically extract and hold the physical page * with the given pmap and virtual address pair * if that mapping permits the given protection. */ vm_page_t pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pt_entry_t *pte, tpte; vm_offset_t off; vm_page_t m; int lvl; PMAP_ASSERT_STAGE1(pmap); m = NULL; PMAP_LOCK(pmap); pte = pmap_pte(pmap, va, &lvl); if (pte != NULL) { tpte = pmap_load(pte); KASSERT(lvl > 0 && lvl <= 3, ("pmap_extract_and_hold: Invalid level %d", lvl)); CTASSERT(L1_BLOCK == L2_BLOCK); KASSERT((lvl == 3 && (tpte & ATTR_DESCR_MASK) == L3_PAGE) || (lvl < 3 && (tpte & ATTR_DESCR_MASK) == L1_BLOCK), ("pmap_extract_and_hold: Invalid pte at L%d: %lx", lvl, tpte & ATTR_DESCR_MASK)); if (((tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)) || ((prot & VM_PROT_WRITE) == 0)) { switch(lvl) { case 1: off = va & L1_OFFSET; break; case 2: off = va & L2_OFFSET; break; case 3: default: off = 0; } m = PHYS_TO_VM_PAGE((tpte & ~ATTR_MASK) | off); if (!vm_page_wire_mapped(m)) m = NULL; } } PMAP_UNLOCK(pmap); return (m); } vm_paddr_t pmap_kextract(vm_offset_t va) { pt_entry_t *pte, tpte; if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) return (DMAP_TO_PHYS(va)); pte = pmap_l1(kernel_pmap, va); if (pte == NULL) return (0); /* * A concurrent pmap_update_entry() will clear the entry's valid bit * but leave the rest of the entry unchanged. Therefore, we treat a * non-zero entry as being valid, and we ignore the valid bit when * determining whether the entry maps a block, page, or table. */ tpte = pmap_load(pte); if (tpte == 0) return (0); if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) return ((tpte & ~ATTR_MASK) | (va & L1_OFFSET)); pte = pmap_l1_to_l2(&tpte, va); tpte = pmap_load(pte); if (tpte == 0) return (0); if ((tpte & ATTR_DESCR_TYPE_MASK) == ATTR_DESCR_TYPE_BLOCK) return ((tpte & ~ATTR_MASK) | (va & L2_OFFSET)); pte = pmap_l2_to_l3(&tpte, va); tpte = pmap_load(pte); if (tpte == 0) return (0); return ((tpte & ~ATTR_MASK) | (va & L3_OFFSET)); } /*************************************************** * Low level mapping routines..... ***************************************************/ void pmap_kenter(vm_offset_t sva, vm_size_t size, vm_paddr_t pa, int mode) { pd_entry_t *pde; pt_entry_t *pte, attr; vm_offset_t va; int lvl; KASSERT((pa & L3_OFFSET) == 0, ("pmap_kenter: Invalid physical address")); KASSERT((sva & L3_OFFSET) == 0, ("pmap_kenter: Invalid virtual address")); KASSERT((size & PAGE_MASK) == 0, ("pmap_kenter: Mapping is not page-sized")); attr = ATTR_DEFAULT | ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN | ATTR_S1_IDX(mode) | L3_PAGE; va = sva; while (size != 0) { pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_kenter: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_kenter: Invalid level %d", lvl)); pte = pmap_l2_to_l3(pde, va); pmap_load_store(pte, (pa & ~L3_OFFSET) | attr); va += PAGE_SIZE; pa += PAGE_SIZE; size -= PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } void pmap_kenter_device(vm_offset_t sva, vm_size_t size, vm_paddr_t pa) { pmap_kenter(sva, size, pa, VM_MEMATTR_DEVICE); } /* * Remove a page from the kernel pagetables. */ PMAP_INLINE void pmap_kremove(vm_offset_t va) { pt_entry_t *pte; int lvl; pte = pmap_pte(kernel_pmap, va, &lvl); KASSERT(pte != NULL, ("pmap_kremove: Invalid address")); KASSERT(lvl == 3, ("pmap_kremove: Invalid pte level %d", lvl)); pmap_clear(pte); pmap_invalidate_page(kernel_pmap, va); } void pmap_kremove_device(vm_offset_t sva, vm_size_t size) { pt_entry_t *pte; vm_offset_t va; int lvl; KASSERT((sva & L3_OFFSET) == 0, ("pmap_kremove_device: Invalid virtual address")); KASSERT((size & PAGE_MASK) == 0, ("pmap_kremove_device: Mapping is not page-sized")); va = sva; while (size != 0) { pte = pmap_pte(kernel_pmap, va, &lvl); KASSERT(pte != NULL, ("Invalid page table, va: 0x%lx", va)); KASSERT(lvl == 3, ("Invalid device pagetable level: %d != 3", lvl)); pmap_clear(pte); va += PAGE_SIZE; size -= PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /* * Used to map a range of physical addresses into kernel * virtual address space. * * The value passed in '*virt' is a suggested virtual address for * the mapping. Architectures which can support a direct-mapped * physical to virtual region can return the appropriate address * within that region, leaving '*virt' unchanged. Other * architectures should map the pages starting at '*virt' and * update '*virt' with the first usable address after the mapped * region. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot) { return PHYS_TO_DMAP(start); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. * Note: SMP coherent. Uses a ranged shootdown IPI. */ void pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count) { pd_entry_t *pde; pt_entry_t *pte, pa; vm_offset_t va; vm_page_t m; int i, lvl; va = sva; for (i = 0; i < count; i++) { pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_qenter: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_qenter: Invalid level %d", lvl)); m = ma[i]; pa = VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_S1_AP(ATTR_S1_AP_RW) | ATTR_S1_XN | ATTR_S1_IDX(m->md.pv_memattr) | L3_PAGE; pte = pmap_l2_to_l3(pde, va); pmap_load_store(pte, pa); va += L3_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /* * This routine tears out page mappings from the * kernel -- it is meant only for temporary mappings. */ void pmap_qremove(vm_offset_t sva, int count) { pt_entry_t *pte; vm_offset_t va; int lvl; KASSERT(sva >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", sva)); va = sva; while (count-- > 0) { pte = pmap_pte(kernel_pmap, va, &lvl); KASSERT(lvl == 3, ("Invalid device pagetable level: %d != 3", lvl)); if (pte != NULL) { pmap_clear(pte); } va += PAGE_SIZE; } pmap_invalidate_range(kernel_pmap, sva, va); } /*************************************************** * Page table page management routines..... ***************************************************/ /* * Schedule the specified unused page table page to be freed. Specifically, * add the page to the specified list of pages that will be released to the * physical memory manager after the TLB has been updated. */ static __inline void pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, boolean_t set_PG_ZERO) { if (set_PG_ZERO) m->flags |= PG_ZERO; else m->flags &= ~PG_ZERO; SLIST_INSERT_HEAD(free, m, plinks.s.ss); } /* * Decrements a page table page's reference count, which is used to record the * number of valid page table entries within the page. If the reference count * drops to zero, then the page table page is unmapped. Returns TRUE if the * page table page was unmapped and FALSE otherwise. */ static inline boolean_t pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { --m->ref_count; if (m->ref_count == 0) { _pmap_unwire_l3(pmap, va, m, free); return (TRUE); } else return (FALSE); } static void _pmap_unwire_l3(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * unmap the page table page */ if (m->pindex >= (NUL2E + NUL1E)) { /* l1 page */ pd_entry_t *l0; l0 = pmap_l0(pmap, va); pmap_clear(l0); } else if (m->pindex >= NUL2E) { /* l2 page */ pd_entry_t *l1; l1 = pmap_l1(pmap, va); pmap_clear(l1); } else { /* l3 page */ pd_entry_t *l2; l2 = pmap_l2(pmap, va); pmap_clear(l2); } pmap_resident_count_dec(pmap, 1); if (m->pindex < NUL2E) { /* We just released an l3, unhold the matching l2 */ pd_entry_t *l1, tl1; vm_page_t l2pg; l1 = pmap_l1(pmap, va); tl1 = pmap_load(l1); l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK); pmap_unwire_l3(pmap, va, l2pg, free); } else if (m->pindex < (NUL2E + NUL1E)) { /* We just released an l2, unhold the matching l1 */ pd_entry_t *l0, tl0; vm_page_t l1pg; l0 = pmap_l0(pmap, va); tl0 = pmap_load(l0); l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK); pmap_unwire_l3(pmap, va, l1pg, free); } pmap_invalidate_page(pmap, va); /* * Put page on a list so that it is released after * *ALL* TLB shootdown is done */ pmap_add_delayed_free_list(m, free, TRUE); } /* * After removing a page table entry, this routine is used to * conditionally free the page, and manage the reference count. */ static int pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde, struct spglist *free) { vm_page_t mpte; if (va >= VM_MAXUSER_ADDRESS) return (0); KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0")); mpte = PHYS_TO_VM_PAGE(ptepde & ~ATTR_MASK); return (pmap_unwire_l3(pmap, va, mpte, free)); } /* * Release a page table page reference after a failed attempt to create a * mapping. */ static void pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte) { struct spglist free; SLIST_INIT(&free); if (pmap_unwire_l3(pmap, va, mpte, &free)) { /* * Although "va" was never mapped, the TLB could nonetheless * have intermediate entries that refer to the freed page * table pages. Invalidate those entries. * * XXX redundant invalidation (See _pmap_unwire_l3().) */ pmap_invalidate_page(pmap, va); vm_page_free_pages_toq(&free, true); } } void pmap_pinit0(pmap_t pmap) { PMAP_LOCK_INIT(pmap); bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); pmap->pm_l0_paddr = READ_SPECIALREG(ttbr0_el1); pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr); pmap->pm_root.rt_root = 0; pmap->pm_cookie = COOKIE_FROM(ASID_RESERVED_FOR_PID_0, INT_MIN); pmap->pm_stage = PM_STAGE1; pmap->pm_asid_set = &asids; PCPU_SET(curpmap, pmap); } int pmap_pinit(pmap_t pmap) { vm_page_t l0pt; /* * allocate the l0 page */ while ((l0pt = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) vm_wait(NULL); pmap->pm_l0_paddr = VM_PAGE_TO_PHYS(l0pt); pmap->pm_l0 = (pd_entry_t *)PHYS_TO_DMAP(pmap->pm_l0_paddr); if ((l0pt->flags & PG_ZERO) == 0) pagezero(pmap->pm_l0); pmap->pm_root.rt_root = 0; bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); pmap->pm_cookie = COOKIE_FROM(-1, INT_MAX); pmap->pm_stage = PM_STAGE1; pmap->pm_asid_set = &asids; /* XXX Temporarily disable deferred ASID allocation. */ pmap_alloc_asid(pmap); return (1); } /* * This routine is called if the desired page table page does not exist. * * If page table page allocation fails, this routine may sleep before * returning NULL. It sleeps only if a lock pointer was given. * * Note: If a page allocation fails at page table level two or three, * one or two pages may be held during the wait, only to be released * afterwards. This conservative approach is easily argued to avoid * race conditions. */ static vm_page_t _pmap_alloc_l3(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp) { vm_page_t m, l1pg, l2pg; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Allocate a page table page. */ if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) { if (lockp != NULL) { RELEASE_PV_LIST_LOCK(lockp); PMAP_UNLOCK(pmap); vm_wait(NULL); PMAP_LOCK(pmap); } /* * Indicate the need to retry. While waiting, the page table * page may have been allocated. */ return (NULL); } if ((m->flags & PG_ZERO) == 0) pmap_zero_page(m); /* * Because of AArch64's weak memory consistency model, we must have a * barrier here to ensure that the stores for zeroing "m", whether by * pmap_zero_page() or an earlier function, are visible before adding * "m" to the page table. Otherwise, a page table walk by another * processor's MMU could see the mapping to "m" and a stale, non-zero * PTE within "m". */ dmb(ishst); /* * Map the pagetable page into the process address space, if * it isn't already there. */ if (ptepindex >= (NUL2E + NUL1E)) { pd_entry_t *l0; vm_pindex_t l0index; l0index = ptepindex - (NUL2E + NUL1E); l0 = &pmap->pm_l0[l0index]; pmap_store(l0, VM_PAGE_TO_PHYS(m) | L0_TABLE); } else if (ptepindex >= NUL2E) { vm_pindex_t l0index, l1index; pd_entry_t *l0, *l1; pd_entry_t tl0; l1index = ptepindex - NUL2E; l0index = l1index >> L0_ENTRIES_SHIFT; l0 = &pmap->pm_l0[l0index]; tl0 = pmap_load(l0); if (tl0 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + NUL1E + l0index, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { l1pg = PHYS_TO_VM_PAGE(tl0 & ~ATTR_MASK); l1pg->ref_count++; } l1 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l0) & ~ATTR_MASK); l1 = &l1[ptepindex & Ln_ADDR_MASK]; pmap_store(l1, VM_PAGE_TO_PHYS(m) | L1_TABLE); } else { vm_pindex_t l0index, l1index; pd_entry_t *l0, *l1, *l2; pd_entry_t tl0, tl1; l1index = ptepindex >> Ln_ENTRIES_SHIFT; l0index = l1index >> L0_ENTRIES_SHIFT; l0 = &pmap->pm_l0[l0index]; tl0 = pmap_load(l0); if (tl0 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + l1index, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } tl0 = pmap_load(l0); l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK); l1 = &l1[l1index & Ln_ADDR_MASK]; } else { l1 = (pd_entry_t *)PHYS_TO_DMAP(tl0 & ~ATTR_MASK); l1 = &l1[l1index & Ln_ADDR_MASK]; tl1 = pmap_load(l1); if (tl1 == 0) { /* recurse for allocating page dir */ if (_pmap_alloc_l3(pmap, NUL2E + l1index, lockp) == NULL) { vm_page_unwire_noq(m); vm_page_free_zero(m); return (NULL); } } else { l2pg = PHYS_TO_VM_PAGE(tl1 & ~ATTR_MASK); l2pg->ref_count++; } } l2 = (pd_entry_t *)PHYS_TO_DMAP(pmap_load(l1) & ~ATTR_MASK); l2 = &l2[ptepindex & Ln_ADDR_MASK]; pmap_store(l2, VM_PAGE_TO_PHYS(m) | L2_TABLE); } pmap_resident_count_inc(pmap, 1); return (m); } static pd_entry_t * pmap_alloc_l2(pmap_t pmap, vm_offset_t va, vm_page_t *l2pgp, struct rwlock **lockp) { pd_entry_t *l1, *l2; vm_page_t l2pg; vm_pindex_t l2pindex; retry: l1 = pmap_l1(pmap, va); if (l1 != NULL && (pmap_load(l1) & ATTR_DESCR_MASK) == L1_TABLE) { l2 = pmap_l1_to_l2(l1, va); if (va < VM_MAXUSER_ADDRESS) { /* Add a reference to the L2 page. */ l2pg = PHYS_TO_VM_PAGE(pmap_load(l1) & ~ATTR_MASK); l2pg->ref_count++; } else l2pg = NULL; } else if (va < VM_MAXUSER_ADDRESS) { /* Allocate a L2 page. */ l2pindex = pmap_l2_pindex(va) >> Ln_ENTRIES_SHIFT; l2pg = _pmap_alloc_l3(pmap, NUL2E + l2pindex, lockp); if (l2pg == NULL) { if (lockp != NULL) goto retry; else return (NULL); } l2 = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(l2pg)); l2 = &l2[pmap_l2_index(va)]; } else panic("pmap_alloc_l2: missing page table page for va %#lx", va); *l2pgp = l2pg; return (l2); } static vm_page_t pmap_alloc_l3(pmap_t pmap, vm_offset_t va, struct rwlock **lockp) { vm_pindex_t ptepindex; pd_entry_t *pde, tpde; #ifdef INVARIANTS pt_entry_t *pte; #endif vm_page_t m; int lvl; /* * Calculate pagetable page index */ ptepindex = pmap_l2_pindex(va); retry: /* * Get the page directory entry */ pde = pmap_pde(pmap, va, &lvl); /* * If the page table page is mapped, we just increment the hold count, * and activate it. If we get a level 2 pde it will point to a level 3 * table. */ switch (lvl) { case -1: break; case 0: #ifdef INVARIANTS pte = pmap_l0_to_l1(pde, va); KASSERT(pmap_load(pte) == 0, ("pmap_alloc_l3: TODO: l0 superpages")); #endif break; case 1: #ifdef INVARIANTS pte = pmap_l1_to_l2(pde, va); KASSERT(pmap_load(pte) == 0, ("pmap_alloc_l3: TODO: l1 superpages")); #endif break; case 2: tpde = pmap_load(pde); if (tpde != 0) { m = PHYS_TO_VM_PAGE(tpde & ~ATTR_MASK); m->ref_count++; return (m); } break; default: panic("pmap_alloc_l3: Invalid level %d", lvl); } /* * Here if the pte page isn't mapped, or if it has been deallocated. */ m = _pmap_alloc_l3(pmap, ptepindex, lockp); if (m == NULL && lockp != NULL) goto retry; return (m); } /*************************************************** * Pmap allocation/deallocation routines. ***************************************************/ /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. * Should only be called if the map contains no valid mappings. */ void pmap_release(pmap_t pmap) { struct asid_set *set; vm_page_t m; int asid; KASSERT(pmap->pm_stats.resident_count == 0, ("pmap_release: pmap resident count %ld != 0", pmap->pm_stats.resident_count)); KASSERT(vm_radix_is_empty(&pmap->pm_root), ("pmap_release: pmap has reserved page table page(s)")); PMAP_ASSERT_STAGE1(pmap); set = pmap->pm_asid_set; KASSERT(set != NULL, ("%s: NULL asid set", __func__)); mtx_lock_spin(&set->asid_set_mutex); if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch) { asid = COOKIE_TO_ASID(pmap->pm_cookie); KASSERT(asid >= ASID_FIRST_AVAILABLE && asid < set->asid_set_size, ("pmap_release: pmap cookie has out-of-range asid")); bit_clear(set->asid_set, asid); } mtx_unlock_spin(&set->asid_set_mutex); m = PHYS_TO_VM_PAGE(pmap->pm_l0_paddr); vm_page_unwire_noq(m); vm_page_free_zero(m); } static int kvm_size(SYSCTL_HANDLER_ARGS) { unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; return sysctl_handle_long(oidp, &ksize, 0, req); } SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, kvm_size, "LU", "Size of KVM"); static int kvm_free(SYSCTL_HANDLER_ARGS) { unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end; return sysctl_handle_long(oidp, &kfree, 0, req); } SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, kvm_free, "LU", "Amount of KVM free"); /* * grow the number of kernel page table entries, if needed */ void pmap_growkernel(vm_offset_t addr) { vm_paddr_t paddr; vm_page_t nkpg; pd_entry_t *l0, *l1, *l2; mtx_assert(&kernel_map->system_mtx, MA_OWNED); addr = roundup2(addr, L2_SIZE); if (addr - 1 >= vm_map_max(kernel_map)) addr = vm_map_max(kernel_map); while (kernel_vm_end < addr) { l0 = pmap_l0(kernel_pmap, kernel_vm_end); KASSERT(pmap_load(l0) != 0, ("pmap_growkernel: No level 0 kernel entry")); l1 = pmap_l0_to_l1(l0, kernel_vm_end); if (pmap_load(l1) == 0) { /* We need a new PDP entry */ nkpg = vm_page_alloc(NULL, kernel_vm_end >> L1_SHIFT, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (nkpg == NULL) panic("pmap_growkernel: no memory to grow kernel"); if ((nkpg->flags & PG_ZERO) == 0) pmap_zero_page(nkpg); /* See the dmb() in _pmap_alloc_l3(). */ dmb(ishst); paddr = VM_PAGE_TO_PHYS(nkpg); pmap_store(l1, paddr | L1_TABLE); continue; /* try again */ } l2 = pmap_l1_to_l2(l1, kernel_vm_end); if (pmap_load(l2) != 0) { kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET; if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) { kernel_vm_end = vm_map_max(kernel_map); break; } continue; } nkpg = vm_page_alloc(NULL, kernel_vm_end >> L2_SHIFT, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO); if (nkpg == NULL) panic("pmap_growkernel: no memory to grow kernel"); if ((nkpg->flags & PG_ZERO) == 0) pmap_zero_page(nkpg); /* See the dmb() in _pmap_alloc_l3(). */ dmb(ishst); paddr = VM_PAGE_TO_PHYS(nkpg); pmap_store(l2, paddr | L2_TABLE); kernel_vm_end = (kernel_vm_end + L2_SIZE) & ~L2_OFFSET; if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) { kernel_vm_end = vm_map_max(kernel_map); break; } } } /*************************************************** * page management routines. ***************************************************/ CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE); CTASSERT(_NPCM == 3); CTASSERT(_NPCPV == 168); static __inline struct pv_chunk * pv_to_chunk(pv_entry_t pv) { return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK)); } #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap) #define PC_FREE0 0xfffffffffffffffful #define PC_FREE1 0xfffffffffffffffful #define PC_FREE2 0x000000fffffffffful static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 }; #if 0 #ifdef PV_STATS static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail; SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0, "Current number of pv entry chunks"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0, "Current number of pv entry chunks allocated"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0, "Current number of pv entry chunks frees"); SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0, "Number of times tried to get a chunk page but failed."); static long pv_entry_frees, pv_entry_allocs, pv_entry_count; static int pv_entry_spare; SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0, "Current number of pv entry frees"); SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0, "Current number of pv entry allocs"); SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0, "Current number of pv entries"); SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0, "Current number of spare pv entries"); #endif #endif /* 0 */ /* * We are in a serious low memory condition. Resort to * drastic measures to free some pages so we can allocate * another pv entry chunk. * * Returns NULL if PV entries were reclaimed from the specified pmap. * * We do not, however, unmap 2mpages because subsequent accesses will * allocate per-page pv entries until repromotion occurs, thereby * exacerbating the shortage of free pv entries. */ static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp) { struct pv_chunk *pc, *pc_marker, *pc_marker_end; struct pv_chunk_header pc_marker_b, pc_marker_end_b; struct md_page *pvh; pd_entry_t *pde; pmap_t next_pmap, pmap; pt_entry_t *pte, tpte; pv_entry_t pv; vm_offset_t va; vm_page_t m, m_pc; struct spglist free; uint64_t inuse; int bit, field, freed, lvl; static int active_reclaims = 0; PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED); KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL")); pmap = NULL; m_pc = NULL; SLIST_INIT(&free); bzero(&pc_marker_b, sizeof(pc_marker_b)); bzero(&pc_marker_end_b, sizeof(pc_marker_end_b)); pc_marker = (struct pv_chunk *)&pc_marker_b; pc_marker_end = (struct pv_chunk *)&pc_marker_end_b; mtx_lock(&pv_chunks_mutex); active_reclaims++; TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru); TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru); while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end && SLIST_EMPTY(&free)) { next_pmap = pc->pc_pmap; if (next_pmap == NULL) { /* * The next chunk is a marker. However, it is * not our marker, so active_reclaims must be * > 1. Consequently, the next_chunk code * will not rotate the pv_chunks list. */ goto next_chunk; } mtx_unlock(&pv_chunks_mutex); /* * A pv_chunk can only be removed from the pc_lru list * when both pv_chunks_mutex is owned and the * corresponding pmap is locked. */ if (pmap != next_pmap) { if (pmap != NULL && pmap != locked_pmap) PMAP_UNLOCK(pmap); pmap = next_pmap; /* Avoid deadlock and lock recursion. */ if (pmap > locked_pmap) { RELEASE_PV_LIST_LOCK(lockp); PMAP_LOCK(pmap); mtx_lock(&pv_chunks_mutex); continue; } else if (pmap != locked_pmap) { if (PMAP_TRYLOCK(pmap)) { mtx_lock(&pv_chunks_mutex); continue; } else { pmap = NULL; /* pmap is not locked */ mtx_lock(&pv_chunks_mutex); pc = TAILQ_NEXT(pc_marker, pc_lru); if (pc == NULL || pc->pc_pmap != next_pmap) continue; goto next_chunk; } } } /* * Destroy every non-wired, 4 KB page mapping in the chunk. */ freed = 0; for (field = 0; field < _NPCM; field++) { for (inuse = ~pc->pc_map[field] & pc_freemask[field]; inuse != 0; inuse &= ~(1UL << bit)) { bit = ffsl(inuse) - 1; pv = &pc->pc_pventry[field * 64 + bit]; va = pv->pv_va; pde = pmap_pde(pmap, va, &lvl); if (lvl != 2) continue; pte = pmap_l2_to_l3(pde, va); tpte = pmap_load(pte); if ((tpte & ATTR_SW_WIRED) != 0) continue; tpte = pmap_load_clear(pte); m = PHYS_TO_VM_PAGE(tpte & ~ATTR_MASK); if (pmap_pte_dirty(pmap, tpte)) vm_page_dirty(m); if ((tpte & ATTR_AF) != 0) { pmap_invalidate_page(pmap, va); vm_page_aflag_set(m, PGA_REFERENCED); } CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) { vm_page_aflag_clear(m, PGA_WRITEABLE); } } pc->pc_map[field] |= 1UL << bit; pmap_unuse_pt(pmap, va, pmap_load(pde), &free); freed++; } } if (freed == 0) { mtx_lock(&pv_chunks_mutex); goto next_chunk; } /* Every freed mapping is for a 4 KB page. */ pmap_resident_count_dec(pmap, freed); PV_STAT(atomic_add_long(&pv_entry_frees, freed)); PV_STAT(atomic_add_int(&pv_entry_spare, freed)); PV_STAT(atomic_subtract_long(&pv_entry_count, freed)); TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 && pc->pc_map[2] == PC_FREE2) { PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV)); PV_STAT(atomic_subtract_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_frees, 1)); /* Entire chunk is free; return it. */ m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc)); dump_drop_page(m_pc->phys_addr); mtx_lock(&pv_chunks_mutex); TAILQ_REMOVE(&pv_chunks, pc, pc_lru); break; } TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); mtx_lock(&pv_chunks_mutex); /* One freed pv entry in locked_pmap is sufficient. */ if (pmap == locked_pmap) break; next_chunk: TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru); TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru); if (active_reclaims == 1 && pmap != NULL) { /* * Rotate the pv chunks list so that we do not * scan the same pv chunks that could not be * freed (because they contained a wired * and/or superpage mapping) on every * invocation of reclaim_pv_chunk(). */ while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) { MPASS(pc->pc_pmap != NULL); TAILQ_REMOVE(&pv_chunks, pc, pc_lru); TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru); } } } TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru); TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru); active_reclaims--; mtx_unlock(&pv_chunks_mutex); if (pmap != NULL && pmap != locked_pmap) PMAP_UNLOCK(pmap); if (m_pc == NULL && !SLIST_EMPTY(&free)) { m_pc = SLIST_FIRST(&free); SLIST_REMOVE_HEAD(&free, plinks.s.ss); /* Recycle a freed page table page. */ m_pc->ref_count = 1; } vm_page_free_pages_toq(&free, true); return (m_pc); } /* * free the pv_entry back to the free list */ static void free_pv_entry(pmap_t pmap, pv_entry_t pv) { struct pv_chunk *pc; int idx, field, bit; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(atomic_add_long(&pv_entry_frees, 1)); PV_STAT(atomic_add_int(&pv_entry_spare, 1)); PV_STAT(atomic_subtract_long(&pv_entry_count, 1)); pc = pv_to_chunk(pv); idx = pv - &pc->pc_pventry[0]; field = idx / 64; bit = idx % 64; pc->pc_map[field] |= 1ul << bit; if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 || pc->pc_map[2] != PC_FREE2) { /* 98% of the time, pc is already at the head of the list. */ if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); } return; } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } static void free_pv_chunk(struct pv_chunk *pc) { vm_page_t m; mtx_lock(&pv_chunks_mutex); TAILQ_REMOVE(&pv_chunks, pc, pc_lru); mtx_unlock(&pv_chunks_mutex); PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV)); PV_STAT(atomic_subtract_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_frees, 1)); /* entire chunk is free, return it */ m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc)); dump_drop_page(m->phys_addr); vm_page_unwire_noq(m); vm_page_free(m); } /* * Returns a new PV entry, allocating a new PV chunk from the system when * needed. If this PV chunk allocation fails and a PV list lock pointer was * given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is * returned. * * The given PV list lock may be released. */ static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp) { int bit, field; pv_entry_t pv; struct pv_chunk *pc; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PV_STAT(atomic_add_long(&pv_entry_allocs, 1)); retry: pc = TAILQ_FIRST(&pmap->pm_pvchunk); if (pc != NULL) { for (field = 0; field < _NPCM; field++) { if (pc->pc_map[field]) { bit = ffsl(pc->pc_map[field]) - 1; break; } } if (field < _NPCM) { pv = &pc->pc_pventry[field * 64 + bit]; pc->pc_map[field] &= ~(1ul << bit); /* If this was the last item, move it to tail */ if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } PV_STAT(atomic_add_long(&pv_entry_count, 1)); PV_STAT(atomic_subtract_int(&pv_entry_spare, 1)); return (pv); } } /* No free items, allocate another chunk */ m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (m == NULL) { if (lockp == NULL) { PV_STAT(pc_chunk_tryfail++); return (NULL); } m = reclaim_pv_chunk(pmap, lockp); if (m == NULL) goto retry; } PV_STAT(atomic_add_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_allocs, 1)); dump_add_page(m->phys_addr); pc = (void *)PHYS_TO_DMAP(m->phys_addr); pc->pc_pmap = pmap; pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */ pc->pc_map[1] = PC_FREE1; pc->pc_map[2] = PC_FREE2; mtx_lock(&pv_chunks_mutex); TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru); mtx_unlock(&pv_chunks_mutex); pv = &pc->pc_pventry[0]; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); PV_STAT(atomic_add_long(&pv_entry_count, 1)); PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1)); return (pv); } /* * Ensure that the number of spare PV entries in the specified pmap meets or * exceeds the given count, "needed". * * The given PV list lock may be released. */ static void reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp) { struct pch new_tail; struct pv_chunk *pc; vm_page_t m; int avail, free; bool reclaimed; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL")); /* * Newly allocated PV chunks must be stored in a private list until * the required number of PV chunks have been allocated. Otherwise, * reclaim_pv_chunk() could recycle one of these chunks. In * contrast, these chunks must be added to the pmap upon allocation. */ TAILQ_INIT(&new_tail); retry: avail = 0; TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) { bit_count((bitstr_t *)pc->pc_map, 0, sizeof(pc->pc_map) * NBBY, &free); if (free == 0) break; avail += free; if (avail >= needed) break; } for (reclaimed = false; avail < needed; avail += _NPCPV) { m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); if (m == NULL) { m = reclaim_pv_chunk(pmap, lockp); if (m == NULL) goto retry; reclaimed = true; } PV_STAT(atomic_add_int(&pc_chunk_count, 1)); PV_STAT(atomic_add_int(&pc_chunk_allocs, 1)); dump_add_page(m->phys_addr); pc = (void *)PHYS_TO_DMAP(m->phys_addr); pc->pc_pmap = pmap; pc->pc_map[0] = PC_FREE0; pc->pc_map[1] = PC_FREE1; pc->pc_map[2] = PC_FREE2; TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru); PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV)); /* * The reclaim might have freed a chunk from the current pmap. * If that chunk contained available entries, we need to * re-count the number of available entries. */ if (reclaimed) goto retry; } if (!TAILQ_EMPTY(&new_tail)) { mtx_lock(&pv_chunks_mutex); TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru); mtx_unlock(&pv_chunks_mutex); } } /* * First find and then remove the pv entry for the specified pmap and virtual * address from the specified pv list. Returns the pv entry if found and NULL * otherwise. This operation can be performed on pv lists for either 4KB or * 2MB page mappings. */ static __inline pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (pmap == PV_PMAP(pv) && va == pv->pv_va) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); pvh->pv_gen++; break; } } return (pv); } /* * After demotion from a 2MB page mapping to 512 4KB page mappings, * destroy the pv entry for the 2MB page mapping and reinstantiate the pv * entries for each of the 4KB page mappings. */ static void pmap_pv_demote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, struct rwlock **lockp) { struct md_page *pvh; struct pv_chunk *pc; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; int bit, field; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((va & L2_OFFSET) == 0, ("pmap_pv_demote_l2: va is not 2mpage aligned")); KASSERT((pa & L2_OFFSET) == 0, ("pmap_pv_demote_l2: pa is not 2mpage aligned")); CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); /* * Transfer the 2mpage's pv entry for this mapping to the first * page's pv list. Once this transfer begins, the pv list lock * must not be released until the last pv entry is reinstantiated. */ pvh = pa_to_pvh(pa); pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pv_demote_l2: pv not found")); m = PHYS_TO_VM_PAGE(pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; /* Instantiate the remaining Ln_ENTRIES - 1 pv entries. */ PV_STAT(atomic_add_long(&pv_entry_allocs, Ln_ENTRIES - 1)); va_last = va + L2_SIZE - PAGE_SIZE; for (;;) { pc = TAILQ_FIRST(&pmap->pm_pvchunk); KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 || pc->pc_map[2] != 0, ("pmap_pv_demote_l2: missing spare")); for (field = 0; field < _NPCM; field++) { while (pc->pc_map[field]) { bit = ffsl(pc->pc_map[field]) - 1; pc->pc_map[field] &= ~(1ul << bit); pv = &pc->pc_pventry[field * 64 + bit]; va += PAGE_SIZE; pv->pv_va = va; m++; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_pv_demote_l2: page %p is not managed", m)); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if (va == va_last) goto out; } } TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } out: if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list); } PV_STAT(atomic_add_long(&pv_entry_count, Ln_ENTRIES - 1)); PV_STAT(atomic_subtract_int(&pv_entry_spare, Ln_ENTRIES - 1)); } /* * First find and then destroy the pv entry for the specified pmap and virtual * address. This operation can be performed on pv lists for either 4KB or 2MB * page mappings. */ static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va) { pv_entry_t pv; pv = pmap_pvh_remove(pvh, pmap, va); KASSERT(pv != NULL, ("pmap_pvh_free: pv not found")); free_pv_entry(pmap, pv); } /* * Conditionally create the PV entry for a 4KB page mapping if the required * memory can be allocated without resorting to reclamation. */ static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m, struct rwlock **lockp) { pv_entry_t pv; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Pass NULL instead of the lock pointer to disable reclamation. */ if ((pv = get_pv_entry(pmap, NULL)) != NULL) { pv->pv_va = va; CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; return (TRUE); } else return (FALSE); } /* * Create the PV entry for a 2MB page mapping. Always returns true unless the * flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns * false if the PV entry cannot be allocated without resorting to reclamation. */ static bool pmap_pv_insert_l2(pmap_t pmap, vm_offset_t va, pd_entry_t l2e, u_int flags, struct rwlock **lockp) { struct md_page *pvh; pv_entry_t pv; vm_paddr_t pa; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* Pass NULL instead of the lock pointer to disable reclamation. */ if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ? NULL : lockp)) == NULL) return (false); pv->pv_va = va; pa = l2e & ~ATTR_MASK; CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); pvh->pv_gen++; return (true); } static void pmap_remove_kernel_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va) { pt_entry_t newl2, oldl2; vm_page_t ml3; vm_paddr_t ml3pa; KASSERT(!VIRT_IN_DMAP(va), ("removing direct mapping of %#lx", va)); KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap)); PMAP_LOCK_ASSERT(pmap, MA_OWNED); ml3 = pmap_remove_pt_page(pmap, va); if (ml3 == NULL) panic("pmap_remove_kernel_l2: Missing pt page"); ml3pa = VM_PAGE_TO_PHYS(ml3); newl2 = ml3pa | L2_TABLE; /* * If this page table page was unmapped by a promotion, then it * contains valid mappings. Zero it to invalidate those mappings. */ if (ml3->valid != 0) pagezero((void *)PHYS_TO_DMAP(ml3pa)); /* * Demote the mapping. The caller must have already invalidated the * mapping (i.e., the "break" in break-before-make). */ oldl2 = pmap_load_store(l2, newl2); KASSERT(oldl2 == 0, ("%s: found existing mapping at %p: %#lx", __func__, l2, oldl2)); } /* * pmap_remove_l2: Do the things to unmap a level 2 superpage. */ static int pmap_remove_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pd_entry_t l1e, struct spglist *free, struct rwlock **lockp) { struct md_page *pvh; pt_entry_t old_l2; vm_offset_t eva, va; vm_page_t m, ml3; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT((sva & L2_OFFSET) == 0, ("pmap_remove_l2: sva is not aligned")); old_l2 = pmap_load_clear(l2); KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK, ("pmap_remove_l2: L2e %lx is not a block mapping", old_l2)); /* * Since a promotion must break the 4KB page mappings before making * the 2MB page mapping, a pmap_invalidate_page() suffices. */ pmap_invalidate_page(pmap, sva); if (old_l2 & ATTR_SW_WIRED) pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE; pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE); if (old_l2 & ATTR_SW_MANAGED) { CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, old_l2 & ~ATTR_MASK); pvh = pa_to_pvh(old_l2 & ~ATTR_MASK); pmap_pvh_free(pvh, pmap, sva); eva = sva + L2_SIZE; for (va = sva, m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK); va < eva; va += PAGE_SIZE, m++) { if (pmap_pte_dirty(pmap, old_l2)) vm_page_dirty(m); if (old_l2 & ATTR_AF) vm_page_aflag_set(m, PGA_REFERENCED); if (TAILQ_EMPTY(&m->md.pv_list) && TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } if (pmap == kernel_pmap) { pmap_remove_kernel_l2(pmap, l2, sva); } else { ml3 = pmap_remove_pt_page(pmap, sva); if (ml3 != NULL) { KASSERT(ml3->valid == VM_PAGE_BITS_ALL, ("pmap_remove_l2: l3 page not promoted")); pmap_resident_count_dec(pmap, 1); KASSERT(ml3->ref_count == NL3PG, ("pmap_remove_l2: l3 page ref count error")); ml3->ref_count = 0; pmap_add_delayed_free_list(ml3, free, FALSE); } } return (pmap_unuse_pt(pmap, sva, l1e, free)); } /* * pmap_remove_l3: do the things to unmap a page in a process */ static int pmap_remove_l3(pmap_t pmap, pt_entry_t *l3, vm_offset_t va, pd_entry_t l2e, struct spglist *free, struct rwlock **lockp) { struct md_page *pvh; pt_entry_t old_l3; vm_page_t m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); old_l3 = pmap_load_clear(l3); pmap_invalidate_page(pmap, va); if (old_l3 & ATTR_SW_WIRED) pmap->pm_stats.wired_count -= 1; pmap_resident_count_dec(pmap, 1); if (old_l3 & ATTR_SW_MANAGED) { m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK); if (pmap_pte_dirty(pmap, old_l3)) vm_page_dirty(m); if (old_l3 & ATTR_AF) vm_page_aflag_set(m, PGA_REFERENCED); CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m); pmap_pvh_free(&m->md, pmap, va); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } return (pmap_unuse_pt(pmap, va, l2e, free)); } /* * Remove the specified range of addresses from the L3 page table that is * identified by the given L2 entry. */ static void pmap_remove_l3_range(pmap_t pmap, pd_entry_t l2e, vm_offset_t sva, vm_offset_t eva, struct spglist *free, struct rwlock **lockp) { struct md_page *pvh; struct rwlock *new_lock; pt_entry_t *l3, old_l3; vm_offset_t va; vm_page_t l3pg, m; PMAP_LOCK_ASSERT(pmap, MA_OWNED); KASSERT(rounddown2(sva, L2_SIZE) + L2_SIZE == roundup2(eva, L2_SIZE), ("pmap_remove_l3_range: range crosses an L3 page table boundary")); l3pg = sva < VM_MAXUSER_ADDRESS ? PHYS_TO_VM_PAGE(l2e & ~ATTR_MASK) : NULL; va = eva; for (l3 = pmap_l2_to_l3(&l2e, sva); sva != eva; l3++, sva += L3_SIZE) { if (!pmap_l3_valid(pmap_load(l3))) { if (va != eva) { pmap_invalidate_range(pmap, va, sva); va = eva; } continue; } old_l3 = pmap_load_clear(l3); if ((old_l3 & ATTR_SW_WIRED) != 0) pmap->pm_stats.wired_count--; pmap_resident_count_dec(pmap, 1); if ((old_l3 & ATTR_SW_MANAGED) != 0) { m = PHYS_TO_VM_PAGE(old_l3 & ~ATTR_MASK); if (pmap_pte_dirty(pmap, old_l3)) vm_page_dirty(m); if ((old_l3 & ATTR_AF) != 0) vm_page_aflag_set(m, PGA_REFERENCED); new_lock = PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m)); if (new_lock != *lockp) { if (*lockp != NULL) { /* * Pending TLB invalidations must be * performed before the PV list lock is * released. Otherwise, a concurrent * pmap_remove_all() on a physical page * could return while a stale TLB entry * still provides access to that page. */ if (va != eva) { pmap_invalidate_range(pmap, va, sva); va = eva; } rw_wunlock(*lockp); } *lockp = new_lock; rw_wlock(*lockp); } pmap_pvh_free(&m->md, pmap, sva); if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } } if (va == eva) va = sva; if (l3pg != NULL && pmap_unwire_l3(pmap, sva, l3pg, free)) { sva += L3_SIZE; break; } } if (va != eva) pmap_invalidate_range(pmap, va, sva); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly * rounded to the page size. */ void pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { struct rwlock *lock; vm_offset_t va_next; pd_entry_t *l0, *l1, *l2; pt_entry_t l3_paddr; struct spglist free; /* * Perform an unsynchronized read. This is, however, safe. */ if (pmap->pm_stats.resident_count == 0) return; SLIST_INIT(&free); PMAP_LOCK(pmap); lock = NULL; for (; sva < eva; sva = va_next) { if (pmap->pm_stats.resident_count == 0) break; l0 = pmap_l0(pmap, sva); if (pmap_load(l0) == 0) { va_next = (sva + L0_SIZE) & ~L0_OFFSET; if (va_next < sva) va_next = eva; continue; } l1 = pmap_l0_to_l1(l0, sva); if (pmap_load(l1) == 0) { va_next = (sva + L1_SIZE) & ~L1_OFFSET; if (va_next < sva) va_next = eva; continue; } /* * Calculate index for next page table. */ va_next = (sva + L2_SIZE) & ~L2_OFFSET; if (va_next < sva) va_next = eva; l2 = pmap_l1_to_l2(l1, sva); if (l2 == NULL) continue; l3_paddr = pmap_load(l2); if ((l3_paddr & ATTR_DESCR_MASK) == L2_BLOCK) { if (sva + L2_SIZE == va_next && eva >= va_next) { pmap_remove_l2(pmap, l2, sva, pmap_load(l1), &free, &lock); continue; } else if (pmap_demote_l2_locked(pmap, l2, sva, &lock) == NULL) continue; l3_paddr = pmap_load(l2); } /* * Weed out invalid mappings. */ if ((l3_paddr & ATTR_DESCR_MASK) != L2_TABLE) continue; /* * Limit our scan to either the end of the va represented * by the current page table page, or to the end of the * range being removed. */ if (va_next > eva) va_next = eva; pmap_remove_l3_range(pmap, l3_paddr, sva, va_next, &free, &lock); } if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, true); } /* * Routine: pmap_remove_all * Function: * Removes this physical page from * all physical maps in which it resides. * Reflects back modify bits to the pager. * * Notes: * Original versions of this routine were very * inefficient because they iteratively called * pmap_remove (slow...) */ void pmap_remove_all(vm_page_t m) { struct md_page *pvh; pv_entry_t pv; pmap_t pmap; struct rwlock *lock; pd_entry_t *pde, tpde; pt_entry_t *pte, tpte; vm_offset_t va; struct spglist free; int lvl, pvh_gen, md_gen; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_all: page %p is not managed", m)); SLIST_INIT(&free); lock = VM_PAGE_TO_PV_LIST_LOCK(m); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); retry: rw_wlock(lock); while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { rw_wunlock(lock); PMAP_UNLOCK(pmap); goto retry; } } va = pv->pv_va; pte = pmap_pte(pmap, va, &lvl); KASSERT(pte != NULL, ("pmap_remove_all: no page table entry found")); KASSERT(lvl == 2, ("pmap_remove_all: invalid pte level %d", lvl)); pmap_demote_l2_locked(pmap, pte, va, &lock); PMAP_UNLOCK(pmap); } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) { pmap = PV_PMAP(pv); PMAP_ASSERT_STAGE1(pmap); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { rw_wunlock(lock); PMAP_UNLOCK(pmap); goto retry; } } pmap_resident_count_dec(pmap, 1); pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("pmap_remove_all: no page directory entry found")); KASSERT(lvl == 2, ("pmap_remove_all: invalid pde level %d", lvl)); tpde = pmap_load(pde); pte = pmap_l2_to_l3(pde, pv->pv_va); tpte = pmap_load_clear(pte); if (tpte & ATTR_SW_WIRED) pmap->pm_stats.wired_count--; if ((tpte & ATTR_AF) != 0) { pmap_invalidate_page(pmap, pv->pv_va); vm_page_aflag_set(m, PGA_REFERENCED); } /* * Update the vm_page_t clean and reference bits. */ if (pmap_pte_dirty(pmap, tpte)) vm_page_dirty(m); pmap_unuse_pt(pmap, pv->pv_va, tpde, &free); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; free_pv_entry(pmap, pv); PMAP_UNLOCK(pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(lock); vm_page_free_pages_toq(&free, true); } /* * pmap_protect_l2: do the things to protect a 2MB page in a pmap */ static void pmap_protect_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t sva, pt_entry_t mask, pt_entry_t nbits) { pd_entry_t old_l2; vm_page_t m, mt; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PMAP_ASSERT_STAGE1(pmap); KASSERT((sva & L2_OFFSET) == 0, ("pmap_protect_l2: sva is not 2mpage aligned")); old_l2 = pmap_load(l2); KASSERT((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK, ("pmap_protect_l2: L2e %lx is not a block mapping", old_l2)); /* * Return if the L2 entry already has the desired access restrictions * in place. */ retry: if ((old_l2 & mask) == nbits) return; /* * When a dirty read/write superpage mapping is write protected, * update the dirty field of each of the superpage's constituent 4KB * pages. */ if ((old_l2 & ATTR_SW_MANAGED) != 0 && (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 && pmap_pte_dirty(pmap, old_l2)) { m = PHYS_TO_VM_PAGE(old_l2 & ~ATTR_MASK); for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) vm_page_dirty(mt); } if (!atomic_fcmpset_64(l2, &old_l2, (old_l2 & ~mask) | nbits)) goto retry; /* * Since a promotion must break the 4KB page mappings before making * the 2MB page mapping, a pmap_invalidate_page() suffices. */ pmap_invalidate_page(pmap, sva); } /* * Set the physical protection on the * specified range of this map as requested. */ void pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { vm_offset_t va, va_next; pd_entry_t *l0, *l1, *l2; pt_entry_t *l3p, l3, mask, nbits; PMAP_ASSERT_STAGE1(pmap); KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot)); if (prot == VM_PROT_NONE) { pmap_remove(pmap, sva, eva); return; } mask = nbits = 0; if ((prot & VM_PROT_WRITE) == 0) { mask |= ATTR_S1_AP_RW_BIT | ATTR_SW_DBM; nbits |= ATTR_S1_AP(ATTR_S1_AP_RO); } if ((prot & VM_PROT_EXECUTE) == 0) { mask |= ATTR_S1_XN; nbits |= ATTR_S1_XN; } if (mask == 0) return; PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l0 = pmap_l0(pmap, sva); if (pmap_load(l0) == 0) { va_next = (sva + L0_SIZE) & ~L0_OFFSET; if (va_next < sva) va_next = eva; continue; } l1 = pmap_l0_to_l1(l0, sva); if (pmap_load(l1) == 0) { va_next = (sva + L1_SIZE) & ~L1_OFFSET; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L2_SIZE) & ~L2_OFFSET; if (va_next < sva) va_next = eva; l2 = pmap_l1_to_l2(l1, sva); if (pmap_load(l2) == 0) continue; if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) { if (sva + L2_SIZE == va_next && eva >= va_next) { pmap_protect_l2(pmap, l2, sva, mask, nbits); continue; } else if (pmap_demote_l2(pmap, l2, sva) == NULL) continue; } KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_protect: Invalid L2 entry after demotion")); if (va_next > eva) va_next = eva; va = va_next; for (l3p = pmap_l2_to_l3(l2, sva); sva != va_next; l3p++, sva += L3_SIZE) { l3 = pmap_load(l3p); retry: /* * Go to the next L3 entry if the current one is * invalid or already has the desired access * restrictions in place. (The latter case occurs * frequently. For example, in a "buildworld" * workload, almost 1 out of 4 L3 entries already * have the desired restrictions.) */ if (!pmap_l3_valid(l3) || (l3 & mask) == nbits) { if (va != va_next) { pmap_invalidate_range(pmap, va, sva); va = va_next; } continue; } /* * When a dirty read/write mapping is write protected, * update the page's dirty field. */ if ((l3 & ATTR_SW_MANAGED) != 0 && (nbits & ATTR_S1_AP(ATTR_S1_AP_RO)) != 0 && pmap_pte_dirty(pmap, l3)) vm_page_dirty(PHYS_TO_VM_PAGE(l3 & ~ATTR_MASK)); if (!atomic_fcmpset_64(l3p, &l3, (l3 & ~mask) | nbits)) goto retry; if (va == va_next) va = sva; } if (va != va_next) pmap_invalidate_range(pmap, va, sva); } PMAP_UNLOCK(pmap); } /* * Inserts the specified page table page into the specified pmap's collection * of idle page table pages. Each of a pmap's page table pages is responsible * for mapping a distinct range of virtual addresses. The pmap's collection is * ordered by this virtual address range. * * If "promoted" is false, then the page table page "mpte" must be zero filled. */ static __inline int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); mpte->valid = promoted ? VM_PAGE_BITS_ALL : 0; return (vm_radix_insert(&pmap->pm_root, mpte)); } /* * Removes the page table page mapping the specified virtual address from the * specified pmap's collection of idle page table pages, and returns it. * Otherwise, returns NULL if there is no page table page corresponding to the * specified virtual address. */ static __inline vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va) { PMAP_LOCK_ASSERT(pmap, MA_OWNED); return (vm_radix_remove(&pmap->pm_root, pmap_l2_pindex(va))); } /* * Performs a break-before-make update of a pmap entry. This is needed when * either promoting or demoting pages to ensure the TLB doesn't get into an * inconsistent state. */ static void pmap_update_entry(pmap_t pmap, pd_entry_t *pte, pd_entry_t newpte, vm_offset_t va, vm_size_t size) { register_t intr; PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * Ensure we don't get switched out with the page table in an * inconsistent state. We also need to ensure no interrupts fire * as they may make use of an address we are about to invalidate. */ intr = intr_disable(); /* * Clear the old mapping's valid bit, but leave the rest of the entry * unchanged, so that a lockless, concurrent pmap_kextract() can still * lookup the physical address. */ pmap_clear_bits(pte, ATTR_DESCR_VALID); pmap_invalidate_range(pmap, va, va + size); /* Create the new mapping */ pmap_store(pte, newpte); dsb(ishst); intr_restore(intr); } #if VM_NRESERVLEVEL > 0 /* * After promotion from 512 4KB page mappings to a single 2MB page mapping, * replace the many pv entries for the 4KB page mappings by a single pv entry * for the 2MB page mapping. */ static void pmap_pv_promote_l2(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, struct rwlock **lockp) { struct md_page *pvh; pv_entry_t pv; vm_offset_t va_last; vm_page_t m; KASSERT((pa & L2_OFFSET) == 0, ("pmap_pv_promote_l2: pa is not 2mpage aligned")); CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa); /* * Transfer the first page's pv entry for this mapping to the 2mpage's * pv list. Aside from avoiding the cost of a call to get_pv_entry(), * a transfer avoids the possibility that get_pv_entry() calls * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the * mappings that is being promoted. */ m = PHYS_TO_VM_PAGE(pa); va = va & ~L2_OFFSET; pv = pmap_pvh_remove(&m->md, pmap, va); KASSERT(pv != NULL, ("pmap_pv_promote_l2: pv not found")); pvh = pa_to_pvh(pa); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); pvh->pv_gen++; /* Free the remaining NPTEPG - 1 pv entries. */ va_last = va + L2_SIZE - PAGE_SIZE; do { m++; va += PAGE_SIZE; pmap_pvh_free(&m->md, pmap, va); } while (va < va_last); } /* * Tries to promote the 512, contiguous 4KB page mappings that are within a * single level 2 table entry to a single 2MB page mapping. For promotion * to occur, two conditions must be met: (1) the 4KB page mappings must map * aligned, contiguous physical memory and (2) the 4KB page mappings must have * identical characteristics. */ static void pmap_promote_l2(pmap_t pmap, pd_entry_t *l2, vm_offset_t va, struct rwlock **lockp) { pt_entry_t *firstl3, *l3, newl2, oldl3, pa; vm_page_t mpte; vm_offset_t sva; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PMAP_ASSERT_STAGE1(pmap); sva = va & ~L2_OFFSET; firstl3 = pmap_l2_to_l3(l2, sva); newl2 = pmap_load(firstl3); setl2: if (((newl2 & (~ATTR_MASK | ATTR_AF)) & L2_OFFSET) != ATTR_AF) { atomic_add_long(&pmap_l2_p_failures, 1); CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx" " in pmap %p", va, pmap); return; } if ((newl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) { if (!atomic_fcmpset_64(l2, &newl2, newl2 & ~ATTR_SW_DBM)) goto setl2; newl2 &= ~ATTR_SW_DBM; } pa = newl2 + L2_SIZE - PAGE_SIZE; for (l3 = firstl3 + NL3PG - 1; l3 > firstl3; l3--) { oldl3 = pmap_load(l3); setl3: if ((oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM)) { if (!atomic_fcmpset_64(l3, &oldl3, oldl3 & ~ATTR_SW_DBM)) goto setl3; oldl3 &= ~ATTR_SW_DBM; } if (oldl3 != pa) { atomic_add_long(&pmap_l2_p_failures, 1); CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx" " in pmap %p", va, pmap); return; } pa -= PAGE_SIZE; } /* * Save the page table page in its current state until the L2 * mapping the superpage is demoted by pmap_demote_l2() or * destroyed by pmap_remove_l3(). */ mpte = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK); KASSERT(mpte >= vm_page_array && mpte < &vm_page_array[vm_page_array_size], ("pmap_promote_l2: page table page is out of range")); KASSERT(mpte->pindex == pmap_l2_pindex(va), ("pmap_promote_l2: page table page's pindex is wrong")); if (pmap_insert_pt_page(pmap, mpte, true)) { atomic_add_long(&pmap_l2_p_failures, 1); CTR2(KTR_PMAP, "pmap_promote_l2: failure for va %#lx in pmap %p", va, pmap); return; } if ((newl2 & ATTR_SW_MANAGED) != 0) pmap_pv_promote_l2(pmap, va, newl2 & ~ATTR_MASK, lockp); newl2 &= ~ATTR_DESCR_MASK; newl2 |= L2_BLOCK; pmap_update_entry(pmap, l2, newl2, sva, L2_SIZE); atomic_add_long(&pmap_l2_promotions, 1); CTR2(KTR_PMAP, "pmap_promote_l2: success for va %#lx in pmap %p", va, pmap); } #endif /* VM_NRESERVLEVEL > 0 */ /* * Insert the given physical page (p) at * the specified virtual address (v) in the * target physical map with the protection requested. * * If specified, the page will be wired down, meaning * that the related pte can not be reclaimed. * * NB: This is the only routine which MAY NOT lazy-evaluate * or lose information. That is, this routine must actually * insert this page into the given map NOW. */ int pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { struct rwlock *lock; pd_entry_t *pde; pt_entry_t new_l3, orig_l3; pt_entry_t *l2, *l3; pv_entry_t pv; vm_paddr_t opa, pa; vm_page_t mpte, om; boolean_t nosleep; int lvl, rv; PMAP_ASSERT_STAGE1(pmap); va = trunc_page(va); if ((m->oflags & VPO_UNMANAGED) == 0) VM_PAGE_OBJECT_BUSY_ASSERT(m); pa = VM_PAGE_TO_PHYS(m); new_l3 = (pt_entry_t)(pa | ATTR_DEFAULT | ATTR_S1_IDX(m->md.pv_memattr) | L3_PAGE); if ((prot & VM_PROT_WRITE) == 0) new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO); if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == VM_MEMATTR_DEVICE) new_l3 |= ATTR_S1_XN; if ((flags & PMAP_ENTER_WIRED) != 0) new_l3 |= ATTR_SW_WIRED; if (va < VM_MAXUSER_ADDRESS) new_l3 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN; else new_l3 |= ATTR_S1_UXN; if (pmap != kernel_pmap) new_l3 |= ATTR_S1_nG; if ((m->oflags & VPO_UNMANAGED) == 0) { new_l3 |= ATTR_SW_MANAGED; if ((prot & VM_PROT_WRITE) != 0) { new_l3 |= ATTR_SW_DBM; if ((flags & VM_PROT_WRITE) == 0) new_l3 |= ATTR_S1_AP(ATTR_S1_AP_RO); } } CTR2(KTR_PMAP, "pmap_enter: %.16lx -> %.16lx", va, pa); lock = NULL; PMAP_LOCK(pmap); if (psind == 1) { /* Assert the required virtual and physical alignment. */ KASSERT((va & L2_OFFSET) == 0, ("pmap_enter: va unaligned")); KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind")); rv = pmap_enter_l2(pmap, va, (new_l3 & ~L3_PAGE) | L2_BLOCK, flags, m, &lock); goto out; } mpte = NULL; /* * In the case that a page table page is not * resident, we are creating it here. */ retry: pde = pmap_pde(pmap, va, &lvl); if (pde != NULL && lvl == 2) { l3 = pmap_l2_to_l3(pde, va); if (va < VM_MAXUSER_ADDRESS && mpte == NULL) { mpte = PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK); mpte->ref_count++; } goto havel3; } else if (pde != NULL && lvl == 1) { l2 = pmap_l1_to_l2(pde, va); if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK && (l3 = pmap_demote_l2_locked(pmap, l2, va, &lock)) != NULL) { l3 = &l3[pmap_l3_index(va)]; if (va < VM_MAXUSER_ADDRESS) { mpte = PHYS_TO_VM_PAGE( pmap_load(l2) & ~ATTR_MASK); mpte->ref_count++; } goto havel3; } /* We need to allocate an L3 table. */ } if (va < VM_MAXUSER_ADDRESS) { nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0; /* * We use _pmap_alloc_l3() instead of pmap_alloc_l3() in order * to handle the possibility that a superpage mapping for "va" * was created while we slept. */ mpte = _pmap_alloc_l3(pmap, pmap_l2_pindex(va), nosleep ? NULL : &lock); if (mpte == NULL && nosleep) { CTR0(KTR_PMAP, "pmap_enter: mpte == NULL"); rv = KERN_RESOURCE_SHORTAGE; goto out; } goto retry; } else panic("pmap_enter: missing L3 table for kernel va %#lx", va); havel3: orig_l3 = pmap_load(l3); opa = orig_l3 & ~ATTR_MASK; pv = NULL; /* * Is the specified virtual address already mapped? */ if (pmap_l3_valid(orig_l3)) { /* * Wiring change, just update stats. We don't worry about * wiring PT pages as they remain resident as long as there * are valid mappings in them. Hence, if a user page is wired, * the PT page will be also. */ if ((flags & PMAP_ENTER_WIRED) != 0 && (orig_l3 & ATTR_SW_WIRED) == 0) pmap->pm_stats.wired_count++; else if ((flags & PMAP_ENTER_WIRED) == 0 && (orig_l3 & ATTR_SW_WIRED) != 0) pmap->pm_stats.wired_count--; /* * Remove the extra PT page reference. */ if (mpte != NULL) { mpte->ref_count--; KASSERT(mpte->ref_count > 0, ("pmap_enter: missing reference to page table page," " va: 0x%lx", va)); } /* * Has the physical page changed? */ if (opa == pa) { /* * No, might be a protection or wiring change. */ if ((orig_l3 & ATTR_SW_MANAGED) != 0 && (new_l3 & ATTR_SW_DBM) != 0) vm_page_aflag_set(m, PGA_WRITEABLE); goto validate; } /* * The physical page has changed. Temporarily invalidate * the mapping. */ orig_l3 = pmap_load_clear(l3); KASSERT((orig_l3 & ~ATTR_MASK) == opa, ("pmap_enter: unexpected pa update for %#lx", va)); if ((orig_l3 & ATTR_SW_MANAGED) != 0) { om = PHYS_TO_VM_PAGE(opa); /* * The pmap lock is sufficient to synchronize with * concurrent calls to pmap_page_test_mappings() and * pmap_ts_referenced(). */ if (pmap_pte_dirty(pmap, orig_l3)) vm_page_dirty(om); if ((orig_l3 & ATTR_AF) != 0) { pmap_invalidate_page(pmap, va); vm_page_aflag_set(om, PGA_REFERENCED); } CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa); pv = pmap_pvh_remove(&om->md, pmap, va); if ((m->oflags & VPO_UNMANAGED) != 0) free_pv_entry(pmap, pv); if ((om->a.flags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&om->md.pv_list) && ((om->flags & PG_FICTITIOUS) != 0 || TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list))) vm_page_aflag_clear(om, PGA_WRITEABLE); } else { KASSERT((orig_l3 & ATTR_AF) != 0, ("pmap_enter: unmanaged mapping lacks ATTR_AF")); pmap_invalidate_page(pmap, va); } orig_l3 = 0; } else { /* * Increment the counters. */ if ((new_l3 & ATTR_SW_WIRED) != 0) pmap->pm_stats.wired_count++; pmap_resident_count_inc(pmap, 1); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0) { if (pv == NULL) { pv = get_pv_entry(pmap, &lock); pv->pv_va = va; } CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if ((new_l3 & ATTR_SW_DBM) != 0) vm_page_aflag_set(m, PGA_WRITEABLE); } validate: /* * Sync icache if exec permission and attribute VM_MEMATTR_WRITE_BACK * is set. Do it now, before the mapping is stored and made * valid for hardware table walk. If done later, then other can * access this page before caches are properly synced. * Don't do it for kernel memory which is mapped with exec * permission even if the memory isn't going to hold executable * code. The only time when icache sync is needed is after * kernel module is loaded and the relocation info is processed. * And it's done in elf_cpu_load_file(). */ if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap && m->md.pv_memattr == VM_MEMATTR_WRITE_BACK && (opa != pa || (orig_l3 & ATTR_S1_XN))) cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE); /* * Update the L3 entry */ if (pmap_l3_valid(orig_l3)) { KASSERT(opa == pa, ("pmap_enter: invalid update")); if ((orig_l3 & ~ATTR_AF) != (new_l3 & ~ATTR_AF)) { /* same PA, different attributes */ orig_l3 = pmap_load_store(l3, new_l3); pmap_invalidate_page(pmap, va); if ((orig_l3 & ATTR_SW_MANAGED) != 0 && pmap_pte_dirty(pmap, orig_l3)) vm_page_dirty(m); } else { /* * orig_l3 == new_l3 * This can happens if multiple threads simultaneously * access not yet mapped page. This bad for performance * since this can cause full demotion-NOP-promotion * cycle. * Another possible reasons are: * - VM and pmap memory layout are diverged * - tlb flush is missing somewhere and CPU doesn't see * actual mapping. */ CTR4(KTR_PMAP, "%s: already mapped page - " "pmap %p va 0x%#lx pte 0x%lx", __func__, pmap, va, new_l3); } } else { /* New mapping */ pmap_store(l3, new_l3); dsb(ishst); } #if VM_NRESERVLEVEL > 0 if ((mpte == NULL || mpte->ref_count == NL3PG) && pmap_ps_enabled(pmap) && (m->flags & PG_FICTITIOUS) == 0 && vm_reserv_level_iffullpop(m) == 0) { pmap_promote_l2(pmap, pde, va, &lock); } #endif rv = KERN_SUCCESS; out: if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); return (rv); } /* * Tries to create a read- and/or execute-only 2MB page mapping. Returns true * if successful. Returns false if (1) a page table page cannot be allocated * without sleeping, (2) a mapping already exists at the specified virtual * address, or (3) a PV entry cannot be allocated without reclaiming another * PV entry. */ static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, struct rwlock **lockp) { pd_entry_t new_l2; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PMAP_ASSERT_STAGE1(pmap); new_l2 = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | ATTR_DEFAULT | ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) | L2_BLOCK); if ((m->oflags & VPO_UNMANAGED) == 0) { new_l2 |= ATTR_SW_MANAGED; new_l2 &= ~ATTR_AF; } if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == VM_MEMATTR_DEVICE) new_l2 |= ATTR_S1_XN; if (va < VM_MAXUSER_ADDRESS) new_l2 |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN; else new_l2 |= ATTR_S1_UXN; if (pmap != kernel_pmap) new_l2 |= ATTR_S1_nG; return (pmap_enter_l2(pmap, va, new_l2, PMAP_ENTER_NOSLEEP | PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) == KERN_SUCCESS); } /* * Returns true if every page table entry in the specified page table is * zero. */ static bool pmap_every_pte_zero(vm_paddr_t pa) { pt_entry_t *pt_end, *pte; KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned")); pte = (pt_entry_t *)PHYS_TO_DMAP(pa); for (pt_end = pte + Ln_ENTRIES; pte < pt_end; pte++) { if (*pte != 0) return (false); } return (true); } /* * Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if * the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE * otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and * a mapping already exists at the specified virtual address. Returns * KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table * page allocation failed. Returns KERN_RESOURCE_SHORTAGE if * PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed. * * The parameter "m" is only used when creating a managed, writeable mapping. */ static int pmap_enter_l2(pmap_t pmap, vm_offset_t va, pd_entry_t new_l2, u_int flags, vm_page_t m, struct rwlock **lockp) { struct spglist free; pd_entry_t *l2, old_l2; vm_page_t l2pg, mt; PMAP_LOCK_ASSERT(pmap, MA_OWNED); if ((l2 = pmap_alloc_l2(pmap, va, &l2pg, (flags & PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) { CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p", va, pmap); return (KERN_RESOURCE_SHORTAGE); } /* * If there are existing mappings, either abort or remove them. */ if ((old_l2 = pmap_load(l2)) != 0) { KASSERT(l2pg == NULL || l2pg->ref_count > 1, ("pmap_enter_l2: l2pg's ref count is too low")); if ((flags & PMAP_ENTER_NOREPLACE) != 0 && (va < VM_MAXUSER_ADDRESS || (old_l2 & ATTR_DESCR_MASK) == L2_BLOCK || !pmap_every_pte_zero(old_l2 & ~ATTR_MASK))) { if (l2pg != NULL) l2pg->ref_count--; CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx" " in pmap %p", va, pmap); return (KERN_FAILURE); } SLIST_INIT(&free); if ((old_l2 & ATTR_DESCR_MASK) == L2_BLOCK) (void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free, lockp); else pmap_remove_l3_range(pmap, old_l2, va, va + L2_SIZE, &free, lockp); if (va < VM_MAXUSER_ADDRESS) { vm_page_free_pages_toq(&free, true); KASSERT(pmap_load(l2) == 0, ("pmap_enter_l2: non-zero L2 entry %p", l2)); } else { KASSERT(SLIST_EMPTY(&free), ("pmap_enter_l2: freed kernel page table page")); /* * Both pmap_remove_l2() and pmap_remove_l3_range() * will leave the kernel page table page zero filled. * Nonetheless, the TLB could have an intermediate * entry for the kernel page table page. */ mt = PHYS_TO_VM_PAGE(pmap_load(l2) & ~ATTR_MASK); if (pmap_insert_pt_page(pmap, mt, false)) panic("pmap_enter_l2: trie insert failed"); pmap_clear(l2); pmap_invalidate_page(pmap, va); } } if ((new_l2 & ATTR_SW_MANAGED) != 0) { /* * Abort this mapping if its PV entry could not be created. */ if (!pmap_pv_insert_l2(pmap, va, new_l2, flags, lockp)) { if (l2pg != NULL) pmap_abort_ptp(pmap, va, l2pg); CTR2(KTR_PMAP, "pmap_enter_l2: failure for va %#lx in pmap %p", va, pmap); return (KERN_RESOURCE_SHORTAGE); } if ((new_l2 & ATTR_SW_DBM) != 0) for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) vm_page_aflag_set(mt, PGA_WRITEABLE); } /* * Increment counters. */ if ((new_l2 & ATTR_SW_WIRED) != 0) pmap->pm_stats.wired_count += L2_SIZE / PAGE_SIZE; pmap->pm_stats.resident_count += L2_SIZE / PAGE_SIZE; /* * Map the superpage. */ pmap_store(l2, new_l2); dsb(ishst); atomic_add_long(&pmap_l2_mappings, 1); CTR2(KTR_PMAP, "pmap_enter_l2: success for va %#lx in pmap %p", va, pmap); return (KERN_SUCCESS); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ void pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { struct rwlock *lock; vm_offset_t va; vm_page_t m, mpte; vm_pindex_t diff, psize; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); mpte = NULL; m = m_start; lock = NULL; PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { va = start + ptoa(diff); if ((va & L2_OFFSET) == 0 && va + L2_SIZE <= end && m->psind == 1 && pmap_ps_enabled(pmap) && pmap_enter_2mpage(pmap, va, m, prot, &lock)) m = &m[L2_SIZE / PAGE_SIZE - 1]; else mpte = pmap_enter_quick_locked(pmap, va, m, prot, mpte, &lock); m = TAILQ_NEXT(m, listq); } if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); } /* * this code makes some *MAJOR* assumptions: * 1. Current pmap & pmap exists. * 2. Not wired. * 3. Read access. * 4. No page table pages. * but is *MUCH* faster than pmap_enter... */ void pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { struct rwlock *lock; lock = NULL; PMAP_LOCK(pmap); (void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock); if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(pmap); } static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp) { pd_entry_t *pde; pt_entry_t *l2, *l3, l3_val; vm_paddr_t pa; int lvl; KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva || (m->oflags & VPO_UNMANAGED) != 0, ("pmap_enter_quick_locked: managed mapping within the clean submap")); PMAP_LOCK_ASSERT(pmap, MA_OWNED); PMAP_ASSERT_STAGE1(pmap); CTR2(KTR_PMAP, "pmap_enter_quick_locked: %p %lx", pmap, va); /* * In the case that a page table page is not * resident, we are creating it here. */ if (va < VM_MAXUSER_ADDRESS) { vm_pindex_t l2pindex; /* * Calculate pagetable page index */ l2pindex = pmap_l2_pindex(va); if (mpte && (mpte->pindex == l2pindex)) { mpte->ref_count++; } else { /* * Get the l2 entry */ pde = pmap_pde(pmap, va, &lvl); /* * If the page table page is mapped, we just increment * the hold count, and activate it. Otherwise, we * attempt to allocate a page table page. If this * attempt fails, we don't retry. Instead, we give up. */ if (lvl == 1) { l2 = pmap_l1_to_l2(pde, va); if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) return (NULL); } if (lvl == 2 && pmap_load(pde) != 0) { mpte = PHYS_TO_VM_PAGE(pmap_load(pde) & ~ATTR_MASK); mpte->ref_count++; } else { /* * Pass NULL instead of the PV list lock * pointer, because we don't intend to sleep. */ mpte = _pmap_alloc_l3(pmap, l2pindex, NULL); if (mpte == NULL) return (mpte); } } l3 = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte)); l3 = &l3[pmap_l3_index(va)]; } else { mpte = NULL; pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_enter_quick_locked: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_enter_quick_locked: Invalid level %d", lvl)); l3 = pmap_l2_to_l3(pde, va); } /* * Abort if a mapping already exists. */ if (pmap_load(l3) != 0) { if (mpte != NULL) mpte->ref_count--; return (NULL); } /* * Enter on the PV list if part of our managed memory. */ if ((m->oflags & VPO_UNMANAGED) == 0 && !pmap_try_insert_pv_entry(pmap, va, m, lockp)) { if (mpte != NULL) pmap_abort_ptp(pmap, va, mpte); return (NULL); } /* * Increment counters */ pmap_resident_count_inc(pmap, 1); pa = VM_PAGE_TO_PHYS(m); l3_val = pa | ATTR_DEFAULT | ATTR_S1_IDX(m->md.pv_memattr) | ATTR_S1_AP(ATTR_S1_AP_RO) | L3_PAGE; if ((prot & VM_PROT_EXECUTE) == 0 || m->md.pv_memattr == VM_MEMATTR_DEVICE) l3_val |= ATTR_S1_XN; if (va < VM_MAXUSER_ADDRESS) l3_val |= ATTR_S1_AP(ATTR_S1_AP_USER) | ATTR_S1_PXN; else l3_val |= ATTR_S1_UXN; if (pmap != kernel_pmap) l3_val |= ATTR_S1_nG; /* * Now validate mapping with RO protection */ if ((m->oflags & VPO_UNMANAGED) == 0) { l3_val |= ATTR_SW_MANAGED; l3_val &= ~ATTR_AF; } /* Sync icache before the mapping is stored to PTE */ if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap && m->md.pv_memattr == VM_MEMATTR_WRITE_BACK) cpu_icache_sync_range(PHYS_TO_DMAP(pa), PAGE_SIZE); pmap_store(l3, l3_val); dsb(ishst); return (mpte); } /* * This code maps large physical mmap regions into the * processor address space. Note that some shortcuts * are taken, but the code works. */ void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("pmap_object_init_pt: non-device object")); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range * must have the wired attribute set. In contrast, invalid mappings * cannot have the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware feature, * so there is no need to invalidate any TLB entries. */ void pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t va_next; pd_entry_t *l0, *l1, *l2; pt_entry_t *l3; PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l0 = pmap_l0(pmap, sva); if (pmap_load(l0) == 0) { va_next = (sva + L0_SIZE) & ~L0_OFFSET; if (va_next < sva) va_next = eva; continue; } l1 = pmap_l0_to_l1(l0, sva); if (pmap_load(l1) == 0) { va_next = (sva + L1_SIZE) & ~L1_OFFSET; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L2_SIZE) & ~L2_OFFSET; if (va_next < sva) va_next = eva; l2 = pmap_l1_to_l2(l1, sva); if (pmap_load(l2) == 0) continue; if ((pmap_load(l2) & ATTR_DESCR_MASK) == L2_BLOCK) { if ((pmap_load(l2) & ATTR_SW_WIRED) == 0) panic("pmap_unwire: l2 %#jx is missing " "ATTR_SW_WIRED", (uintmax_t)pmap_load(l2)); /* * Are we unwiring the entire large page? If not, * demote the mapping and fall through. */ if (sva + L2_SIZE == va_next && eva >= va_next) { pmap_clear_bits(l2, ATTR_SW_WIRED); pmap->pm_stats.wired_count -= L2_SIZE / PAGE_SIZE; continue; } else if (pmap_demote_l2(pmap, l2, sva) == NULL) panic("pmap_unwire: demotion failed"); } KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_unwire: Invalid l2 entry after demotion")); if (va_next > eva) va_next = eva; for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++, sva += L3_SIZE) { if (pmap_load(l3) == 0) continue; if ((pmap_load(l3) & ATTR_SW_WIRED) == 0) panic("pmap_unwire: l3 %#jx is missing " "ATTR_SW_WIRED", (uintmax_t)pmap_load(l3)); /* * ATTR_SW_WIRED must be cleared atomically. Although * the pmap lock synchronizes access to ATTR_SW_WIRED, * the System MMU may write to the entry concurrently. */ pmap_clear_bits(l3, ATTR_SW_WIRED); pmap->pm_stats.wired_count--; } } PMAP_UNLOCK(pmap); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. * * Because the executable mappings created by this routine are copied, * it should not have to flush the instruction cache. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { struct rwlock *lock; pd_entry_t *l0, *l1, *l2, srcptepaddr; pt_entry_t *dst_pte, mask, nbits, ptetemp, *src_pte; vm_offset_t addr, end_addr, va_next; vm_page_t dst_l2pg, dstmpte, srcmpte; PMAP_ASSERT_STAGE1(dst_pmap); PMAP_ASSERT_STAGE1(src_pmap); if (dst_addr != src_addr) return; end_addr = src_addr + len; lock = NULL; if (dst_pmap < src_pmap) { PMAP_LOCK(dst_pmap); PMAP_LOCK(src_pmap); } else { PMAP_LOCK(src_pmap); PMAP_LOCK(dst_pmap); } for (addr = src_addr; addr < end_addr; addr = va_next) { l0 = pmap_l0(src_pmap, addr); if (pmap_load(l0) == 0) { va_next = (addr + L0_SIZE) & ~L0_OFFSET; if (va_next < addr) va_next = end_addr; continue; } l1 = pmap_l0_to_l1(l0, addr); if (pmap_load(l1) == 0) { va_next = (addr + L1_SIZE) & ~L1_OFFSET; if (va_next < addr) va_next = end_addr; continue; } va_next = (addr + L2_SIZE) & ~L2_OFFSET; if (va_next < addr) va_next = end_addr; l2 = pmap_l1_to_l2(l1, addr); srcptepaddr = pmap_load(l2); if (srcptepaddr == 0) continue; if ((srcptepaddr & ATTR_DESCR_MASK) == L2_BLOCK) { if ((addr & L2_OFFSET) != 0 || addr + L2_SIZE > end_addr) continue; l2 = pmap_alloc_l2(dst_pmap, addr, &dst_l2pg, NULL); if (l2 == NULL) break; if (pmap_load(l2) == 0 && ((srcptepaddr & ATTR_SW_MANAGED) == 0 || pmap_pv_insert_l2(dst_pmap, addr, srcptepaddr, PMAP_ENTER_NORECLAIM, &lock))) { mask = ATTR_AF | ATTR_SW_WIRED; nbits = 0; if ((srcptepaddr & ATTR_SW_DBM) != 0) nbits |= ATTR_S1_AP_RW_BIT; pmap_store(l2, (srcptepaddr & ~mask) | nbits); pmap_resident_count_inc(dst_pmap, L2_SIZE / PAGE_SIZE); atomic_add_long(&pmap_l2_mappings, 1); } else pmap_abort_ptp(dst_pmap, addr, dst_l2pg); continue; } KASSERT((srcptepaddr & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_copy: invalid L2 entry")); srcptepaddr &= ~ATTR_MASK; srcmpte = PHYS_TO_VM_PAGE(srcptepaddr); KASSERT(srcmpte->ref_count > 0, ("pmap_copy: source page table page is unused")); if (va_next > end_addr) va_next = end_addr; src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr); src_pte = &src_pte[pmap_l3_index(addr)]; dstmpte = NULL; for (; addr < va_next; addr += PAGE_SIZE, src_pte++) { ptetemp = pmap_load(src_pte); /* * We only virtual copy managed pages. */ if ((ptetemp & ATTR_SW_MANAGED) == 0) continue; if (dstmpte != NULL) { KASSERT(dstmpte->pindex == pmap_l2_pindex(addr), ("dstmpte pindex/addr mismatch")); dstmpte->ref_count++; } else if ((dstmpte = pmap_alloc_l3(dst_pmap, addr, NULL)) == NULL) goto out; dst_pte = (pt_entry_t *) PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte)); dst_pte = &dst_pte[pmap_l3_index(addr)]; if (pmap_load(dst_pte) == 0 && pmap_try_insert_pv_entry(dst_pmap, addr, PHYS_TO_VM_PAGE(ptetemp & ~ATTR_MASK), &lock)) { /* * Clear the wired, modified, and accessed * (referenced) bits during the copy. */ mask = ATTR_AF | ATTR_SW_WIRED; nbits = 0; if ((ptetemp & ATTR_SW_DBM) != 0) nbits |= ATTR_S1_AP_RW_BIT; pmap_store(dst_pte, (ptetemp & ~mask) | nbits); pmap_resident_count_inc(dst_pmap, 1); } else { pmap_abort_ptp(dst_pmap, addr, dstmpte); goto out; } /* Have we copied all of the valid mappings? */ if (dstmpte->ref_count >= srcmpte->ref_count) break; } } out: /* * XXX This barrier may not be needed because the destination pmap is * not active. */ dsb(ishst); if (lock != NULL) rw_wunlock(lock); PMAP_UNLOCK(src_pmap); PMAP_UNLOCK(dst_pmap); } /* * pmap_zero_page zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. */ void pmap_zero_page(vm_page_t m) { vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); pagezero((void *)va); } /* * pmap_zero_page_area zeros the specified hardware page by mapping * the page into KVM and using bzero to clear its contents. * * off and size may not cover an area beyond a single hardware page. */ void pmap_zero_page_area(vm_page_t m, int off, int size) { vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); if (off == 0 && size == PAGE_SIZE) pagezero((void *)va); else bzero((char *)va + off, size); } /* * pmap_copy_page copies the specified (machine independent) * page by mapping the page into virtual memory and using * bcopy to copy the page, one machine dependent page at a * time. */ void pmap_copy_page(vm_page_t msrc, vm_page_t mdst) { vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc)); vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst)); pagecopy((void *)src, (void *)dst); } int unmapped_buf_allowed = 1; void pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[], vm_offset_t b_offset, int xfersize) { void *a_cp, *b_cp; vm_page_t m_a, m_b; vm_paddr_t p_a, p_b; vm_offset_t a_pg_offset, b_pg_offset; int cnt; while (xfersize > 0) { a_pg_offset = a_offset & PAGE_MASK; m_a = ma[a_offset >> PAGE_SHIFT]; p_a = m_a->phys_addr; b_pg_offset = b_offset & PAGE_MASK; m_b = mb[b_offset >> PAGE_SHIFT]; p_b = m_b->phys_addr; cnt = min(xfersize, PAGE_SIZE - a_pg_offset); cnt = min(cnt, PAGE_SIZE - b_pg_offset); if (__predict_false(!PHYS_IN_DMAP(p_a))) { panic("!DMAP a %lx", p_a); } else { a_cp = (char *)PHYS_TO_DMAP(p_a) + a_pg_offset; } if (__predict_false(!PHYS_IN_DMAP(p_b))) { panic("!DMAP b %lx", p_b); } else { b_cp = (char *)PHYS_TO_DMAP(p_b) + b_pg_offset; } bcopy(a_cp, b_cp, cnt); a_offset += cnt; b_offset += cnt; xfersize -= cnt; } } vm_offset_t pmap_quick_enter_page(vm_page_t m) { return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); } void pmap_quick_remove_page(vm_offset_t addr) { } /* * Returns true if the pmap's pv is one of the first * 16 pvs linked to from this page. This count may * be changed upwards or downwards in the future; it * is only necessary that true be returned for a small * subset of pmaps for proper page aging. */ boolean_t pmap_page_exists_quick(pmap_t pmap, vm_page_t m) { struct md_page *pvh; struct rwlock *lock; pv_entry_t pv; int loops = 0; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_page_exists_quick: page %p is not managed", m)); rv = FALSE; lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { if (PV_PMAP(pv) == pmap) { rv = TRUE; break; } loops++; if (loops >= 16) break; } } rw_runlock(lock); return (rv); } /* * pmap_page_wired_mappings: * * Return the number of managed mappings to the given physical page * that are wired. */ int pmap_page_wired_mappings(vm_page_t m) { struct rwlock *lock; struct md_page *pvh; pmap_t pmap; pt_entry_t *pte; pv_entry_t pv; int count, lvl, md_gen, pvh_gen; if ((m->oflags & VPO_UNMANAGED) != 0) return (0); lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); restart: count = 0; TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0) count++; PMAP_UNLOCK(pmap); } if ((m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen || pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); if (pte != NULL && (pmap_load(pte) & ATTR_SW_WIRED) != 0) count++; PMAP_UNLOCK(pmap); } } rw_runlock(lock); return (count); } /* * Returns true if the given page is mapped individually or as part of * a 2mpage. Otherwise, returns false. */ bool pmap_page_is_mapped(vm_page_t m) { struct rwlock *lock; bool rv; if ((m->oflags & VPO_UNMANAGED) != 0) return (false); lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); rv = !TAILQ_EMPTY(&m->md.pv_list) || ((m->flags & PG_FICTITIOUS) == 0 && !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list)); rw_runlock(lock); return (rv); } /* * Destroy all managed, non-wired mappings in the given user-space * pmap. This pmap cannot be active on any processor besides the * caller. * * This function cannot be applied to the kernel pmap. Moreover, it * is not intended for general use. It is only to be used during * process termination. Consequently, it can be implemented in ways * that make it faster than pmap_remove(). First, it can more quickly * destroy mappings by iterating over the pmap's collection of PV * entries, rather than searching the page table. Second, it doesn't * have to test and clear the page table entries atomically, because * no processor is currently accessing the user address space. In * particular, a page table entry's dirty bit won't change state once * this function starts. */ void pmap_remove_pages(pmap_t pmap) { pd_entry_t *pde; pt_entry_t *pte, tpte; struct spglist free; vm_page_t m, ml3, mt; pv_entry_t pv; struct md_page *pvh; struct pv_chunk *pc, *npc; struct rwlock *lock; int64_t bit; uint64_t inuse, bitmask; int allfree, field, freed, idx, lvl; vm_paddr_t pa; KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap)); lock = NULL; SLIST_INIT(&free); PMAP_LOCK(pmap); TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) { allfree = 1; freed = 0; for (field = 0; field < _NPCM; field++) { inuse = ~pc->pc_map[field] & pc_freemask[field]; while (inuse != 0) { bit = ffsl(inuse) - 1; bitmask = 1UL << bit; idx = field * 64 + bit; pv = &pc->pc_pventry[idx]; inuse &= ~bitmask; pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("Attempting to remove an unmapped page")); switch(lvl) { case 1: pte = pmap_l1_to_l2(pde, pv->pv_va); tpte = pmap_load(pte); KASSERT((tpte & ATTR_DESCR_MASK) == L2_BLOCK, ("Attempting to remove an invalid " "block: %lx", tpte)); break; case 2: pte = pmap_l2_to_l3(pde, pv->pv_va); tpte = pmap_load(pte); KASSERT((tpte & ATTR_DESCR_MASK) == L3_PAGE, ("Attempting to remove an invalid " "page: %lx", tpte)); break; default: panic( "Invalid page directory level: %d", lvl); } /* * We cannot remove wired pages from a process' mapping at this time */ if (tpte & ATTR_SW_WIRED) { allfree = 0; continue; } pa = tpte & ~ATTR_MASK; m = PHYS_TO_VM_PAGE(pa); KASSERT(m->phys_addr == pa, ("vm_page_t %p phys_addr mismatch %016jx %016jx", m, (uintmax_t)m->phys_addr, (uintmax_t)tpte)); KASSERT((m->flags & PG_FICTITIOUS) != 0 || m < &vm_page_array[vm_page_array_size], ("pmap_remove_pages: bad pte %#jx", (uintmax_t)tpte)); /* * Because this pmap is not active on other * processors, the dirty bit cannot have * changed state since we last loaded pte. */ pmap_clear(pte); /* * Update the vm_page_t clean/reference bits. */ if (pmap_pte_dirty(pmap, tpte)) { switch (lvl) { case 1: for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) vm_page_dirty(mt); break; case 2: vm_page_dirty(m); break; } } CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m); /* Mark free */ pc->pc_map[field] |= bitmask; switch (lvl) { case 1: pmap_resident_count_dec(pmap, L2_SIZE / PAGE_SIZE); pvh = pa_to_pvh(tpte & ~ATTR_MASK); TAILQ_REMOVE(&pvh->pv_list, pv,pv_next); pvh->pv_gen++; if (TAILQ_EMPTY(&pvh->pv_list)) { for (mt = m; mt < &m[L2_SIZE / PAGE_SIZE]; mt++) if ((mt->a.flags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&mt->md.pv_list)) vm_page_aflag_clear(mt, PGA_WRITEABLE); } ml3 = pmap_remove_pt_page(pmap, pv->pv_va); if (ml3 != NULL) { KASSERT(ml3->valid == VM_PAGE_BITS_ALL, ("pmap_remove_pages: l3 page not promoted")); pmap_resident_count_dec(pmap,1); KASSERT(ml3->ref_count == NL3PG, ("pmap_remove_pages: l3 page ref count error")); ml3->ref_count = 0; pmap_add_delayed_free_list(ml3, &free, FALSE); } break; case 2: pmap_resident_count_dec(pmap, 1); TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; if ((m->a.flags & PGA_WRITEABLE) != 0 && TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh( VM_PAGE_TO_PHYS(m)); if (TAILQ_EMPTY(&pvh->pv_list)) vm_page_aflag_clear(m, PGA_WRITEABLE); } break; } pmap_unuse_pt(pmap, pv->pv_va, pmap_load(pde), &free); freed++; } } PV_STAT(atomic_add_long(&pv_entry_frees, freed)); PV_STAT(atomic_add_int(&pv_entry_spare, freed)); PV_STAT(atomic_subtract_long(&pv_entry_count, freed)); if (allfree) { TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list); free_pv_chunk(pc); } } if (lock != NULL) rw_wunlock(lock); pmap_invalidate_all(pmap); PMAP_UNLOCK(pmap); vm_page_free_pages_toq(&free, true); } /* * This is used to check if a page has been accessed or modified. */ static boolean_t pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified) { struct rwlock *lock; pv_entry_t pv; struct md_page *pvh; pt_entry_t *pte, mask, value; pmap_t pmap; int lvl, md_gen, pvh_gen; boolean_t rv; rv = FALSE; lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_rlock(lock); restart: TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_ASSERT_STAGE1(pmap); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); KASSERT(lvl == 3, ("pmap_page_test_mappings: Invalid level %d", lvl)); mask = 0; value = 0; if (modified) { mask |= ATTR_S1_AP_RW_BIT; value |= ATTR_S1_AP(ATTR_S1_AP_RW); } if (accessed) { mask |= ATTR_AF | ATTR_DESCR_MASK; value |= ATTR_AF | L3_PAGE; } rv = (pmap_load(pte) & mask) == value; PMAP_UNLOCK(pmap); if (rv) goto out; } if ((m->flags & PG_FICTITIOUS) == 0) { pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m)); TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_ASSERT_STAGE1(pmap); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_runlock(lock); PMAP_LOCK(pmap); rw_rlock(lock); if (md_gen != m->md.pv_gen || pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); KASSERT(lvl == 2, ("pmap_page_test_mappings: Invalid level %d", lvl)); mask = 0; value = 0; if (modified) { mask |= ATTR_S1_AP_RW_BIT; value |= ATTR_S1_AP(ATTR_S1_AP_RW); } if (accessed) { mask |= ATTR_AF | ATTR_DESCR_MASK; value |= ATTR_AF | L2_BLOCK; } rv = (pmap_load(pte) & mask) == value; PMAP_UNLOCK(pmap); if (rv) goto out; } } out: rw_runlock(lock); return (rv); } /* * pmap_is_modified: * * Return whether or not the specified physical page was modified * in any physical maps. */ boolean_t pmap_is_modified(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_modified: page %p is not managed", m)); /* * If the page is not busied then this check is racy. */ if (!pmap_page_is_write_mapped(m)) return (FALSE); return (pmap_page_test_mappings(m, FALSE, TRUE)); } /* * pmap_is_prefaultable: * * Return whether or not the specified virtual address is eligible * for prefault. */ boolean_t pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr) { pt_entry_t *pte; boolean_t rv; int lvl; rv = FALSE; PMAP_LOCK(pmap); pte = pmap_pte(pmap, addr, &lvl); if (pte != NULL && pmap_load(pte) != 0) { rv = TRUE; } PMAP_UNLOCK(pmap); return (rv); } /* * pmap_is_referenced: * * Return whether or not the specified physical page was referenced * in any physical maps. */ boolean_t pmap_is_referenced(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_is_referenced: page %p is not managed", m)); return (pmap_page_test_mappings(m, TRUE, FALSE)); } /* * Clear the write and modified bits in each of the given page's mappings. */ void pmap_remove_write(vm_page_t m) { struct md_page *pvh; pmap_t pmap; struct rwlock *lock; pv_entry_t next_pv, pv; pt_entry_t oldpte, *pte; vm_offset_t va; int lvl, md_gen, pvh_gen; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_remove_write: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; lock = VM_PAGE_TO_PV_LIST_LOCK(m); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); retry_pv_loop: rw_wlock(lock); TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) { pmap = PV_PMAP(pv); PMAP_ASSERT_STAGE1(pmap); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); rw_wunlock(lock); goto retry_pv_loop; } } va = pv->pv_va; pte = pmap_pte(pmap, pv->pv_va, &lvl); if ((pmap_load(pte) & ATTR_SW_DBM) != 0) (void)pmap_demote_l2_locked(pmap, pte, va, &lock); KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m), ("inconsistent pv lock %p %p for page %p", lock, VM_PAGE_TO_PV_LIST_LOCK(m), m)); PMAP_UNLOCK(pmap); } TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_ASSERT_STAGE1(pmap); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); rw_wunlock(lock); goto retry_pv_loop; } } pte = pmap_pte(pmap, pv->pv_va, &lvl); oldpte = pmap_load(pte); retry: if ((oldpte & ATTR_SW_DBM) != 0) { if (!atomic_fcmpset_long(pte, &oldpte, (oldpte | ATTR_S1_AP_RW_BIT) & ~ATTR_SW_DBM)) goto retry; if ((oldpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW)) vm_page_dirty(m); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } rw_wunlock(lock); vm_page_aflag_clear(m, PGA_WRITEABLE); } /* * pmap_ts_referenced: * * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * As an optimization, update the page's dirty field if a modified bit is * found while counting reference bits. This opportunistic update can be * performed at low cost and can eliminate the need for some future calls * to pmap_is_modified(). However, since this function stops after * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some * dirty pages. Those dirty pages will only be detected by a future call * to pmap_is_modified(). */ int pmap_ts_referenced(vm_page_t m) { struct md_page *pvh; pv_entry_t pv, pvf; pmap_t pmap; struct rwlock *lock; pd_entry_t *pde, tpde; pt_entry_t *pte, tpte; vm_offset_t va; vm_paddr_t pa; int cleared, lvl, md_gen, not_cleared, pvh_gen; struct spglist free; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_ts_referenced: page %p is not managed", m)); SLIST_INIT(&free); cleared = 0; pa = VM_PAGE_TO_PHYS(m); lock = PHYS_TO_PV_LIST_LOCK(pa); pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa); rw_wlock(lock); retry: not_cleared = 0; if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL) goto small_mappings; pv = pvf; do { if (pvf == NULL) pvf = pv; pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto retry; } } va = pv->pv_va; pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("pmap_ts_referenced: no l1 table found")); KASSERT(lvl == 1, ("pmap_ts_referenced: invalid pde level %d", lvl)); tpde = pmap_load(pde); KASSERT((tpde & ATTR_DESCR_MASK) == L1_TABLE, ("pmap_ts_referenced: found an invalid l1 table")); pte = pmap_l1_to_l2(pde, pv->pv_va); tpte = pmap_load(pte); if (pmap_pte_dirty(pmap, tpte)) { /* * Although "tpte" is mapping a 2MB page, because * this function is called at a 4KB page granularity, * we only update the 4KB page under test. */ vm_page_dirty(m); } if ((tpte & ATTR_AF) != 0) { /* * Since this reference bit is shared by 512 4KB pages, * it should not be cleared every time it is tested. * Apply a simple "hash" function on the physical page * number, the virtual superpage number, and the pmap * address to select one 4KB page out of the 512 on * which testing the reference bit will result in * clearing that reference bit. This function is * designed to avoid the selection of the same 4KB page * for every 2MB page mapping. * * On demotion, a mapping that hasn't been referenced * is simply destroyed. To avoid the possibility of a * subsequent page fault on a demoted wired mapping, * always leave its reference bit set. Moreover, * since the superpage is wired, the current state of * its reference bit won't affect page replacement. */ if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> L2_SHIFT) ^ (uintptr_t)pmap) & (Ln_ENTRIES - 1)) == 0 && (tpte & ATTR_SW_WIRED) == 0) { pmap_clear_bits(pte, ATTR_AF); pmap_invalidate_page(pmap, pv->pv_va); cleared++; } else not_cleared++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&pvh->pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next); pvh->pv_gen++; } if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX) goto out; } while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf); small_mappings: if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL) goto out; pv = pvf; do { if (pvf == NULL) pvf = pv; pmap = PV_PMAP(pv); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; md_gen = m->md.pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto retry; } } pde = pmap_pde(pmap, pv->pv_va, &lvl); KASSERT(pde != NULL, ("pmap_ts_referenced: no l2 table found")); KASSERT(lvl == 2, ("pmap_ts_referenced: invalid pde level %d", lvl)); tpde = pmap_load(pde); KASSERT((tpde & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_ts_referenced: found an invalid l2 table")); pte = pmap_l2_to_l3(pde, pv->pv_va); tpte = pmap_load(pte); if (pmap_pte_dirty(pmap, tpte)) vm_page_dirty(m); if ((tpte & ATTR_AF) != 0) { if ((tpte & ATTR_SW_WIRED) == 0) { pmap_clear_bits(pte, ATTR_AF); pmap_invalidate_page(pmap, pv->pv_va); cleared++; } else not_cleared++; } PMAP_UNLOCK(pmap); /* Rotate the PV list if it has more than one entry. */ if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) { TAILQ_REMOVE(&m->md.pv_list, pv, pv_next); TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next); m->md.pv_gen++; } } while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared + not_cleared < PMAP_TS_REFERENCED_MAX); out: rw_wunlock(lock); vm_page_free_pages_toq(&free, true); return (cleared + not_cleared); } /* * Apply the given advice to the specified range of addresses within the * given pmap. Depending on the advice, clear the referenced and/or * modified flags in each mapping and set the mapped page's dirty field. */ void pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice) { struct rwlock *lock; vm_offset_t va, va_next; vm_page_t m; pd_entry_t *l0, *l1, *l2, oldl2; pt_entry_t *l3, oldl3; PMAP_ASSERT_STAGE1(pmap); if (advice != MADV_DONTNEED && advice != MADV_FREE) return; PMAP_LOCK(pmap); for (; sva < eva; sva = va_next) { l0 = pmap_l0(pmap, sva); if (pmap_load(l0) == 0) { va_next = (sva + L0_SIZE) & ~L0_OFFSET; if (va_next < sva) va_next = eva; continue; } l1 = pmap_l0_to_l1(l0, sva); if (pmap_load(l1) == 0) { va_next = (sva + L1_SIZE) & ~L1_OFFSET; if (va_next < sva) va_next = eva; continue; } va_next = (sva + L2_SIZE) & ~L2_OFFSET; if (va_next < sva) va_next = eva; l2 = pmap_l1_to_l2(l1, sva); oldl2 = pmap_load(l2); if (oldl2 == 0) continue; if ((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK) { if ((oldl2 & ATTR_SW_MANAGED) == 0) continue; lock = NULL; if (!pmap_demote_l2_locked(pmap, l2, sva, &lock)) { if (lock != NULL) rw_wunlock(lock); /* * The 2MB page mapping was destroyed. */ continue; } /* * Unless the page mappings are wired, remove the * mapping to a single page so that a subsequent * access may repromote. Choosing the last page * within the address range [sva, min(va_next, eva)) * generally results in more repromotions. Since the * underlying page table page is fully populated, this * removal never frees a page table page. */ if ((oldl2 & ATTR_SW_WIRED) == 0) { va = eva; if (va > va_next) va = va_next; va -= PAGE_SIZE; KASSERT(va >= sva, ("pmap_advise: no address gap")); l3 = pmap_l2_to_l3(l2, va); KASSERT(pmap_load(l3) != 0, ("pmap_advise: invalid PTE")); pmap_remove_l3(pmap, l3, va, pmap_load(l2), NULL, &lock); } if (lock != NULL) rw_wunlock(lock); } KASSERT((pmap_load(l2) & ATTR_DESCR_MASK) == L2_TABLE, ("pmap_advise: invalid L2 entry after demotion")); if (va_next > eva) va_next = eva; va = va_next; for (l3 = pmap_l2_to_l3(l2, sva); sva != va_next; l3++, sva += L3_SIZE) { oldl3 = pmap_load(l3); if ((oldl3 & (ATTR_SW_MANAGED | ATTR_DESCR_MASK)) != (ATTR_SW_MANAGED | L3_PAGE)) goto maybe_invlrng; else if (pmap_pte_dirty(pmap, oldl3)) { if (advice == MADV_DONTNEED) { /* * Future calls to pmap_is_modified() * can be avoided by making the page * dirty now. */ m = PHYS_TO_VM_PAGE(oldl3 & ~ATTR_MASK); vm_page_dirty(m); } while (!atomic_fcmpset_long(l3, &oldl3, (oldl3 & ~ATTR_AF) | ATTR_S1_AP(ATTR_S1_AP_RO))) cpu_spinwait(); } else if ((oldl3 & ATTR_AF) != 0) pmap_clear_bits(l3, ATTR_AF); else goto maybe_invlrng; if (va == va_next) va = sva; continue; maybe_invlrng: if (va != va_next) { pmap_invalidate_range(pmap, va, sva); va = va_next; } } if (va != va_next) pmap_invalidate_range(pmap, va, sva); } PMAP_UNLOCK(pmap); } /* * Clear the modify bits on the specified physical page. */ void pmap_clear_modify(vm_page_t m) { struct md_page *pvh; struct rwlock *lock; pmap_t pmap; pv_entry_t next_pv, pv; pd_entry_t *l2, oldl2; pt_entry_t *l3, oldl3; vm_offset_t va; int md_gen, pvh_gen; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("pmap_clear_modify: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(VM_PAGE_TO_PHYS(m)); lock = VM_PAGE_TO_PV_LIST_LOCK(m); rw_wlock(lock); restart: TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) { pmap = PV_PMAP(pv); PMAP_ASSERT_STAGE1(pmap); if (!PMAP_TRYLOCK(pmap)) { pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } va = pv->pv_va; l2 = pmap_l2(pmap, va); oldl2 = pmap_load(l2); /* If oldl2 has ATTR_SW_DBM set, then it is also dirty. */ if ((oldl2 & ATTR_SW_DBM) != 0 && pmap_demote_l2_locked(pmap, l2, va, &lock) && (oldl2 & ATTR_SW_WIRED) == 0) { /* * Write protect the mapping to a single page so that * a subsequent write access may repromote. */ va += VM_PAGE_TO_PHYS(m) - (oldl2 & ~ATTR_MASK); l3 = pmap_l2_to_l3(l2, va); oldl3 = pmap_load(l3); while (!atomic_fcmpset_long(l3, &oldl3, (oldl3 & ~ATTR_SW_DBM) | ATTR_S1_AP(ATTR_S1_AP_RO))) cpu_spinwait(); vm_page_dirty(m); pmap_invalidate_page(pmap, va); } PMAP_UNLOCK(pmap); } TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) { pmap = PV_PMAP(pv); PMAP_ASSERT_STAGE1(pmap); if (!PMAP_TRYLOCK(pmap)) { md_gen = m->md.pv_gen; pvh_gen = pvh->pv_gen; rw_wunlock(lock); PMAP_LOCK(pmap); rw_wlock(lock); if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) { PMAP_UNLOCK(pmap); goto restart; } } l2 = pmap_l2(pmap, pv->pv_va); l3 = pmap_l2_to_l3(l2, pv->pv_va); oldl3 = pmap_load(l3); if (pmap_l3_valid(oldl3) && (oldl3 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) == ATTR_SW_DBM){ pmap_set_bits(l3, ATTR_S1_AP(ATTR_S1_AP_RO)); pmap_invalidate_page(pmap, pv->pv_va); } PMAP_UNLOCK(pmap); } rw_wunlock(lock); } void * pmap_mapbios(vm_paddr_t pa, vm_size_t size) { struct pmap_preinit_mapping *ppim; vm_offset_t va, offset; pd_entry_t *pde; pt_entry_t *l2; int i, lvl, l2_blocks, free_l2_count, start_idx; if (!vm_initialized) { /* * No L3 ptables so map entire L2 blocks where start VA is: * preinit_map_va + start_idx * L2_SIZE * There may be duplicate mappings (multiple VA -> same PA) but * ARM64 dcache is always PIPT so that's acceptable. */ if (size == 0) return (NULL); /* Calculate how many L2 blocks are needed for the mapping */ l2_blocks = (roundup2(pa + size, L2_SIZE) - rounddown2(pa, L2_SIZE)) >> L2_SHIFT; offset = pa & L2_OFFSET; if (preinit_map_va == 0) return (NULL); /* Map 2MiB L2 blocks from reserved VA space */ free_l2_count = 0; start_idx = -1; /* Find enough free contiguous VA space */ for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) { ppim = pmap_preinit_mapping + i; if (free_l2_count > 0 && ppim->pa != 0) { /* Not enough space here */ free_l2_count = 0; start_idx = -1; continue; } if (ppim->pa == 0) { /* Free L2 block */ if (start_idx == -1) start_idx = i; free_l2_count++; if (free_l2_count == l2_blocks) break; } } if (free_l2_count != l2_blocks) panic("%s: too many preinit mappings", __func__); va = preinit_map_va + (start_idx * L2_SIZE); for (i = start_idx; i < start_idx + l2_blocks; i++) { /* Mark entries as allocated */ ppim = pmap_preinit_mapping + i; ppim->pa = pa; ppim->va = va + offset; ppim->size = size; } /* Map L2 blocks */ pa = rounddown2(pa, L2_SIZE); for (i = 0; i < l2_blocks; i++) { pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_mapbios: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 1, ("pmap_mapbios: Invalid level %d", lvl)); /* Insert L2_BLOCK */ l2 = pmap_l1_to_l2(pde, va); pmap_load_store(l2, pa | ATTR_DEFAULT | ATTR_S1_XN | ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK) | L2_BLOCK); va += L2_SIZE; pa += L2_SIZE; } pmap_invalidate_all(kernel_pmap); va = preinit_map_va + (start_idx * L2_SIZE); } else { /* kva_alloc may be used to map the pages */ offset = pa & PAGE_MASK; size = round_page(offset + size); va = kva_alloc(size); if (va == 0) panic("%s: Couldn't allocate KVA", __func__); pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(lvl == 2, ("pmap_mapbios: Invalid level %d", lvl)); /* L3 table is linked */ va = trunc_page(va); pa = trunc_page(pa); pmap_kenter(va, size, pa, VM_MEMATTR_WRITE_BACK); } return ((void *)(va + offset)); } void pmap_unmapbios(vm_offset_t va, vm_size_t size) { struct pmap_preinit_mapping *ppim; vm_offset_t offset, tmpsize, va_trunc; pd_entry_t *pde; pt_entry_t *l2; int i, lvl, l2_blocks, block; bool preinit_map; l2_blocks = (roundup2(va + size, L2_SIZE) - rounddown2(va, L2_SIZE)) >> L2_SHIFT; KASSERT(l2_blocks > 0, ("pmap_unmapbios: invalid size %lx", size)); /* Remove preinit mapping */ preinit_map = false; block = 0; for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) { ppim = pmap_preinit_mapping + i; if (ppim->va == va) { KASSERT(ppim->size == size, ("pmap_unmapbios: size mismatch")); ppim->va = 0; ppim->pa = 0; ppim->size = 0; preinit_map = true; offset = block * L2_SIZE; va_trunc = rounddown2(va, L2_SIZE) + offset; /* Remove L2_BLOCK */ pde = pmap_pde(kernel_pmap, va_trunc, &lvl); KASSERT(pde != NULL, ("pmap_unmapbios: Invalid page entry, va: 0x%lx", va_trunc)); l2 = pmap_l1_to_l2(pde, va_trunc); pmap_clear(l2); if (block == (l2_blocks - 1)) break; block++; } } if (preinit_map) { pmap_invalidate_all(kernel_pmap); return; } /* Unmap the pages reserved with kva_alloc. */ if (vm_initialized) { offset = va & PAGE_MASK; size = round_page(offset + size); va = trunc_page(va); pde = pmap_pde(kernel_pmap, va, &lvl); KASSERT(pde != NULL, ("pmap_unmapbios: Invalid page entry, va: 0x%lx", va)); KASSERT(lvl == 2, ("pmap_unmapbios: Invalid level %d", lvl)); /* Unmap and invalidate the pages */ for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE) pmap_kremove(va + tmpsize); kva_free(va, size); } } /* * Sets the memory attribute for the specified page. */ void pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma) { m->md.pv_memattr = ma; /* * If "m" is a normal page, update its direct mapping. This update * can be relied upon to perform any cache operations that are * required for data coherence. */ if ((m->flags & PG_FICTITIOUS) == 0 && pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE, m->md.pv_memattr) != 0) panic("memory attribute change on the direct map failed"); } /* * Changes the specified virtual address range's memory type to that given by * the parameter "mode". The specified virtual address range must be * completely contained within either the direct map or the kernel map. If * the virtual address range is contained within the kernel map, then the * memory type for each of the corresponding ranges of the direct map is also * changed. (The corresponding ranges of the direct map are those ranges that * map the same physical pages as the specified virtual address range.) These * changes to the direct map are necessary because Intel describes the * behavior of their processors as "undefined" if two or more mappings to the * same physical page have different memory types. * * Returns zero if the change completed successfully, and either EINVAL or * ENOMEM if the change failed. Specifically, EINVAL is returned if some part * of the virtual address range was not mapped, and ENOMEM is returned if * there was insufficient memory available to complete the change. In the * latter case, the memory type may have been changed on some part of the * virtual address range or the direct map. */ int pmap_change_attr(vm_offset_t va, vm_size_t size, int mode) { int error; PMAP_LOCK(kernel_pmap); error = pmap_change_attr_locked(va, size, mode); PMAP_UNLOCK(kernel_pmap); return (error); } static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode) { vm_offset_t base, offset, tmpva; pt_entry_t l3, *pte, *newpte; int lvl; PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED); base = trunc_page(va); offset = va & PAGE_MASK; size = round_page(offset + size); if (!VIRT_IN_DMAP(base) && !(base >= VM_MIN_KERNEL_ADDRESS && base < VM_MAX_KERNEL_ADDRESS)) return (EINVAL); for (tmpva = base; tmpva < base + size; ) { pte = pmap_pte(kernel_pmap, tmpva, &lvl); if (pte == NULL) return (EINVAL); if ((pmap_load(pte) & ATTR_S1_IDX_MASK) == ATTR_S1_IDX(mode)) { /* * We already have the correct attribute, * ignore this entry. */ switch (lvl) { default: panic("Invalid DMAP table level: %d\n", lvl); case 1: tmpva = (tmpva & ~L1_OFFSET) + L1_SIZE; break; case 2: tmpva = (tmpva & ~L2_OFFSET) + L2_SIZE; break; case 3: tmpva += PAGE_SIZE; break; } } else { /* * Split the entry to an level 3 table, then * set the new attribute. */ switch (lvl) { default: panic("Invalid DMAP table level: %d\n", lvl); case 1: newpte = pmap_demote_l1(kernel_pmap, pte, tmpva & ~L1_OFFSET); if (newpte == NULL) return (EINVAL); pte = pmap_l1_to_l2(pte, tmpva); case 2: newpte = pmap_demote_l2(kernel_pmap, pte, tmpva); if (newpte == NULL) return (EINVAL); pte = pmap_l2_to_l3(pte, tmpva); case 3: /* Update the entry */ l3 = pmap_load(pte); l3 &= ~ATTR_S1_IDX_MASK; l3 |= ATTR_S1_IDX(mode); if (mode == VM_MEMATTR_DEVICE) l3 |= ATTR_S1_XN; pmap_update_entry(kernel_pmap, pte, l3, tmpva, PAGE_SIZE); /* * If moving to a non-cacheable entry flush * the cache. */ if (mode == VM_MEMATTR_UNCACHEABLE) cpu_dcache_wbinv_range(tmpva, L3_SIZE); break; } tmpva += PAGE_SIZE; } } return (0); } /* * Create an L2 table to map all addresses within an L1 mapping. */ static pt_entry_t * pmap_demote_l1(pmap_t pmap, pt_entry_t *l1, vm_offset_t va) { pt_entry_t *l2, newl2, oldl1; vm_offset_t tmpl1; vm_paddr_t l2phys, phys; vm_page_t ml2; int i; PMAP_LOCK_ASSERT(pmap, MA_OWNED); oldl1 = pmap_load(l1); KASSERT((oldl1 & ATTR_DESCR_MASK) == L1_BLOCK, ("pmap_demote_l1: Demoting a non-block entry")); KASSERT((va & L1_OFFSET) == 0, ("pmap_demote_l1: Invalid virtual address %#lx", va)); KASSERT((oldl1 & ATTR_SW_MANAGED) == 0, ("pmap_demote_l1: Level 1 table shouldn't be managed")); tmpl1 = 0; if (va <= (vm_offset_t)l1 && va + L1_SIZE > (vm_offset_t)l1) { tmpl1 = kva_alloc(PAGE_SIZE); if (tmpl1 == 0) return (NULL); } if ((ml2 = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { CTR2(KTR_PMAP, "pmap_demote_l1: failure for va %#lx" " in pmap %p", va, pmap); return (NULL); } l2phys = VM_PAGE_TO_PHYS(ml2); l2 = (pt_entry_t *)PHYS_TO_DMAP(l2phys); /* Address the range points at */ phys = oldl1 & ~ATTR_MASK; /* The attributed from the old l1 table to be copied */ newl2 = oldl1 & ATTR_MASK; /* Create the new entries */ for (i = 0; i < Ln_ENTRIES; i++) { l2[i] = newl2 | phys; phys += L2_SIZE; } KASSERT(l2[0] == ((oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK), ("Invalid l2 page (%lx != %lx)", l2[0], (oldl1 & ~ATTR_DESCR_MASK) | L2_BLOCK)); if (tmpl1 != 0) { pmap_kenter(tmpl1, PAGE_SIZE, DMAP_TO_PHYS((vm_offset_t)l1) & ~L3_OFFSET, VM_MEMATTR_WRITE_BACK); l1 = (pt_entry_t *)(tmpl1 + ((vm_offset_t)l1 & PAGE_MASK)); } pmap_update_entry(pmap, l1, l2phys | L1_TABLE, va, PAGE_SIZE); if (tmpl1 != 0) { pmap_kremove(tmpl1); kva_free(tmpl1, PAGE_SIZE); } return (l2); } static void pmap_fill_l3(pt_entry_t *firstl3, pt_entry_t newl3) { pt_entry_t *l3; for (l3 = firstl3; l3 - firstl3 < Ln_ENTRIES; l3++) { *l3 = newl3; newl3 += L3_SIZE; } } static void pmap_demote_l2_abort(pmap_t pmap, vm_offset_t va, pt_entry_t *l2, struct rwlock **lockp) { struct spglist free; SLIST_INIT(&free); (void)pmap_remove_l2(pmap, l2, va, pmap_load(pmap_l1(pmap, va)), &free, lockp); vm_page_free_pages_toq(&free, true); } /* * Create an L3 table to map all addresses within an L2 mapping. */ static pt_entry_t * pmap_demote_l2_locked(pmap_t pmap, pt_entry_t *l2, vm_offset_t va, struct rwlock **lockp) { pt_entry_t *l3, newl3, oldl2; vm_offset_t tmpl2; vm_paddr_t l3phys; vm_page_t ml3; PMAP_LOCK_ASSERT(pmap, MA_OWNED); PMAP_ASSERT_STAGE1(pmap); l3 = NULL; oldl2 = pmap_load(l2); KASSERT((oldl2 & ATTR_DESCR_MASK) == L2_BLOCK, ("pmap_demote_l2: Demoting a non-block entry")); va &= ~L2_OFFSET; tmpl2 = 0; if (va <= (vm_offset_t)l2 && va + L2_SIZE > (vm_offset_t)l2) { tmpl2 = kva_alloc(PAGE_SIZE); if (tmpl2 == 0) return (NULL); } /* * Invalidate the 2MB page mapping and return "failure" if the * mapping was never accessed. */ if ((oldl2 & ATTR_AF) == 0) { KASSERT((oldl2 & ATTR_SW_WIRED) == 0, ("pmap_demote_l2: a wired mapping is missing ATTR_AF")); pmap_demote_l2_abort(pmap, va, l2, lockp); CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx in pmap %p", va, pmap); goto fail; } if ((ml3 = pmap_remove_pt_page(pmap, va)) == NULL) { KASSERT((oldl2 & ATTR_SW_WIRED) == 0, ("pmap_demote_l2: page table page for a wired mapping" " is missing")); /* * If the page table page is missing and the mapping * is for a kernel address, the mapping must belong to * the direct map. Page table pages are preallocated * for every other part of the kernel address space, * so the direct map region is the only part of the * kernel address space that must be handled here. */ KASSERT(va < VM_MAXUSER_ADDRESS || VIRT_IN_DMAP(va), ("pmap_demote_l2: No saved mpte for va %#lx", va)); /* * If the 2MB page mapping belongs to the direct map * region of the kernel's address space, then the page * allocation request specifies the highest possible * priority (VM_ALLOC_INTERRUPT). Otherwise, the * priority is normal. */ ml3 = vm_page_alloc(NULL, pmap_l2_pindex(va), (VIRT_IN_DMAP(va) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED); /* * If the allocation of the new page table page fails, * invalidate the 2MB page mapping and return "failure". */ if (ml3 == NULL) { pmap_demote_l2_abort(pmap, va, l2, lockp); CTR2(KTR_PMAP, "pmap_demote_l2: failure for va %#lx" " in pmap %p", va, pmap); goto fail; } if (va < VM_MAXUSER_ADDRESS) { ml3->ref_count = NL3PG; pmap_resident_count_inc(pmap, 1); } } l3phys = VM_PAGE_TO_PHYS(ml3); l3 = (pt_entry_t *)PHYS_TO_DMAP(l3phys); newl3 = (oldl2 & ~ATTR_DESCR_MASK) | L3_PAGE; KASSERT((oldl2 & (ATTR_S1_AP_RW_BIT | ATTR_SW_DBM)) != (ATTR_S1_AP(ATTR_S1_AP_RO) | ATTR_SW_DBM), ("pmap_demote_l2: L2 entry is writeable but not dirty")); /* * If the page table page is not leftover from an earlier promotion, * or the mapping attributes have changed, (re)initialize the L3 table. * * When pmap_update_entry() clears the old L2 mapping, it (indirectly) * performs a dsb(). That dsb() ensures that the stores for filling * "l3" are visible before "l3" is added to the page table. */ if (ml3->valid == 0 || (l3[0] & ATTR_MASK) != (newl3 & ATTR_MASK)) pmap_fill_l3(l3, newl3); /* * Map the temporary page so we don't lose access to the l2 table. */ if (tmpl2 != 0) { pmap_kenter(tmpl2, PAGE_SIZE, DMAP_TO_PHYS((vm_offset_t)l2) & ~L3_OFFSET, VM_MEMATTR_WRITE_BACK); l2 = (pt_entry_t *)(tmpl2 + ((vm_offset_t)l2 & PAGE_MASK)); } /* * The spare PV entries must be reserved prior to demoting the * mapping, that is, prior to changing the PDE. Otherwise, the state * of the L2 and the PV lists will be inconsistent, which can result * in reclaim_pv_chunk() attempting to remove a PV entry from the * wrong PV list and pmap_pv_demote_l2() failing to find the expected * PV entry for the 2MB page mapping that is being demoted. */ if ((oldl2 & ATTR_SW_MANAGED) != 0) reserve_pv_entries(pmap, Ln_ENTRIES - 1, lockp); /* * Pass PAGE_SIZE so that a single TLB invalidation is performed on * the 2MB page mapping. */ pmap_update_entry(pmap, l2, l3phys | L2_TABLE, va, PAGE_SIZE); /* * Demote the PV entry. */ if ((oldl2 & ATTR_SW_MANAGED) != 0) pmap_pv_demote_l2(pmap, va, oldl2 & ~ATTR_MASK, lockp); atomic_add_long(&pmap_l2_demotions, 1); CTR3(KTR_PMAP, "pmap_demote_l2: success for va %#lx" " in pmap %p %lx", va, pmap, l3[0]); fail: if (tmpl2 != 0) { pmap_kremove(tmpl2); kva_free(tmpl2, PAGE_SIZE); } return (l3); } static pt_entry_t * pmap_demote_l2(pmap_t pmap, pt_entry_t *l2, vm_offset_t va) { struct rwlock *lock; pt_entry_t *l3; lock = NULL; l3 = pmap_demote_l2_locked(pmap, l2, va, &lock); if (lock != NULL) rw_wunlock(lock); return (l3); } /* * Perform the pmap work for mincore(2). If the page is not both referenced and * modified by this pmap, returns its physical address so that the caller can * find other mappings. */ int pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap) { pt_entry_t *pte, tpte; vm_paddr_t mask, pa; int lvl, val; bool managed; PMAP_ASSERT_STAGE1(pmap); PMAP_LOCK(pmap); pte = pmap_pte(pmap, addr, &lvl); if (pte != NULL) { tpte = pmap_load(pte); switch (lvl) { case 3: mask = L3_OFFSET; break; case 2: mask = L2_OFFSET; break; case 1: mask = L1_OFFSET; break; default: panic("pmap_mincore: invalid level %d", lvl); } managed = (tpte & ATTR_SW_MANAGED) != 0; val = MINCORE_INCORE; if (lvl != 3) val |= MINCORE_SUPER; if ((managed && pmap_pte_dirty(pmap, tpte)) || (!managed && (tpte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RW))) val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; if ((tpte & ATTR_AF) == ATTR_AF) val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; pa = (tpte & ~ATTR_MASK) | (addr & mask); } else { managed = false; val = 0; } if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) { *pap = pa; } PMAP_UNLOCK(pmap); return (val); } /* * Garbage collect every ASID that is neither active on a processor nor * reserved. */ static void pmap_reset_asid_set(pmap_t pmap) { pmap_t curpmap; int asid, cpuid, epoch; struct asid_set *set; PMAP_ASSERT_STAGE1(pmap); set = pmap->pm_asid_set; KASSERT(set != NULL, ("%s: NULL asid set", __func__)); mtx_assert(&set->asid_set_mutex, MA_OWNED); /* * Ensure that the store to asid_epoch is globally visible before the * loads from pc_curpmap are performed. */ epoch = set->asid_epoch + 1; if (epoch == INT_MAX) epoch = 0; set->asid_epoch = epoch; dsb(ishst); __asm __volatile("tlbi vmalle1is"); dsb(ish); bit_nclear(set->asid_set, ASID_FIRST_AVAILABLE, set->asid_set_size - 1); CPU_FOREACH(cpuid) { if (cpuid == curcpu) continue; curpmap = pcpu_find(cpuid)->pc_curpmap; KASSERT(curpmap->pm_asid_set == set, ("Incorrect set")); asid = COOKIE_TO_ASID(curpmap->pm_cookie); if (asid == -1) continue; bit_set(set->asid_set, asid); curpmap->pm_cookie = COOKIE_FROM(asid, epoch); } } /* * Allocate a new ASID for the specified pmap. */ static void pmap_alloc_asid(pmap_t pmap) { struct asid_set *set; int new_asid; PMAP_ASSERT_STAGE1(pmap); set = pmap->pm_asid_set; KASSERT(set != NULL, ("%s: NULL asid set", __func__)); mtx_lock_spin(&set->asid_set_mutex); /* * While this processor was waiting to acquire the asid set mutex, * pmap_reset_asid_set() running on another processor might have * updated this pmap's cookie to the current epoch. In which case, we * don't need to allocate a new ASID. */ if (COOKIE_TO_EPOCH(pmap->pm_cookie) == set->asid_epoch) goto out; bit_ffc_at(set->asid_set, set->asid_next, set->asid_set_size, &new_asid); if (new_asid == -1) { bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE, set->asid_next, &new_asid); if (new_asid == -1) { pmap_reset_asid_set(pmap); bit_ffc_at(set->asid_set, ASID_FIRST_AVAILABLE, set->asid_set_size, &new_asid); KASSERT(new_asid != -1, ("ASID allocation failure")); } } bit_set(set->asid_set, new_asid); set->asid_next = new_asid + 1; pmap->pm_cookie = COOKIE_FROM(new_asid, set->asid_epoch); out: mtx_unlock_spin(&set->asid_set_mutex); } /* * Compute the value that should be stored in ttbr0 to activate the specified * pmap. This value may change from time to time. */ uint64_t pmap_to_ttbr0(pmap_t pmap) { PMAP_ASSERT_STAGE1(pmap); return (ASID_TO_OPERAND(COOKIE_TO_ASID(pmap->pm_cookie)) | pmap->pm_l0_paddr); } static bool pmap_activate_int(pmap_t pmap) { struct asid_set *set; int epoch; PMAP_ASSERT_STAGE1(pmap); KASSERT(PCPU_GET(curpmap) != NULL, ("no active pmap")); KASSERT(pmap != kernel_pmap, ("kernel pmap activation")); if (pmap == PCPU_GET(curpmap)) { /* * Handle the possibility that the old thread was preempted * after an "ic" or "tlbi" instruction but before it performed * a "dsb" instruction. If the old thread migrates to a new * processor, its completion of a "dsb" instruction on that * new processor does not guarantee that the "ic" or "tlbi" * instructions performed on the old processor have completed. */ dsb(ish); return (false); } set = pmap->pm_asid_set; KASSERT(set != NULL, ("%s: NULL asid set", __func__)); /* * Ensure that the store to curpmap is globally visible before the * load from asid_epoch is performed. */ PCPU_SET(curpmap, pmap); dsb(ish); epoch = COOKIE_TO_EPOCH(pmap->pm_cookie); if (epoch >= 0 && epoch != set->asid_epoch) pmap_alloc_asid(pmap); set_ttbr0(pmap_to_ttbr0(pmap)); if (PCPU_GET(bcast_tlbi_workaround) != 0) invalidate_local_icache(); return (true); } void pmap_activate(struct thread *td) { pmap_t pmap; pmap = vmspace_pmap(td->td_proc->p_vmspace); PMAP_ASSERT_STAGE1(pmap); critical_enter(); (void)pmap_activate_int(pmap); critical_exit(); } /* * To eliminate the unused parameter "old", we would have to add an instruction * to cpu_switch(). */ struct pcb * pmap_switch(struct thread *old __unused, struct thread *new) { pcpu_bp_harden bp_harden; struct pcb *pcb; /* Store the new curthread */ PCPU_SET(curthread, new); /* And the new pcb */ pcb = new->td_pcb; PCPU_SET(curpcb, pcb); /* * TODO: We may need to flush the cache here if switching * to a user process. */ if (pmap_activate_int(vmspace_pmap(new->td_proc->p_vmspace))) { /* * Stop userspace from training the branch predictor against * other processes. This will call into a CPU specific * function that clears the branch predictor state. */ bp_harden = PCPU_GET(bp_harden); if (bp_harden != NULL) bp_harden(); } return (pcb); } void pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t sz) { PMAP_ASSERT_STAGE1(pmap); if (va >= VM_MIN_KERNEL_ADDRESS) { cpu_icache_sync_range(va, sz); } else { u_int len, offset; vm_paddr_t pa; /* Find the length of data in this page to flush */ offset = va & PAGE_MASK; len = imin(PAGE_SIZE - offset, sz); while (sz != 0) { /* Extract the physical address & find it in the DMAP */ pa = pmap_extract(pmap, va); if (pa != 0) cpu_icache_sync_range(PHYS_TO_DMAP(pa), len); /* Move to the next page */ sz -= len; va += len; /* Set the length for the next iteration */ len = imin(PAGE_SIZE, sz); } } } int pmap_fault(pmap_t pmap, uint64_t esr, uint64_t far) { pt_entry_t pte, *ptep; register_t intr; uint64_t ec, par; int lvl, rv; PMAP_ASSERT_STAGE1(pmap); rv = KERN_FAILURE; ec = ESR_ELx_EXCEPTION(esr); switch (ec) { case EXCP_INSN_ABORT_L: case EXCP_INSN_ABORT: case EXCP_DATA_ABORT_L: case EXCP_DATA_ABORT: break; default: return (rv); } /* Data and insn aborts use same encoding for FSC field. */ switch (esr & ISS_DATA_DFSC_MASK) { case ISS_DATA_DFSC_AFF_L1: case ISS_DATA_DFSC_AFF_L2: case ISS_DATA_DFSC_AFF_L3: PMAP_LOCK(pmap); ptep = pmap_pte(pmap, far, &lvl); if (ptep != NULL) { pmap_set_bits(ptep, ATTR_AF); rv = KERN_SUCCESS; /* * XXXMJ as an optimization we could mark the entry * dirty if this is a write fault. */ } PMAP_UNLOCK(pmap); break; case ISS_DATA_DFSC_PF_L1: case ISS_DATA_DFSC_PF_L2: case ISS_DATA_DFSC_PF_L3: if ((ec != EXCP_DATA_ABORT_L && ec != EXCP_DATA_ABORT) || (esr & ISS_DATA_WnR) == 0) return (rv); PMAP_LOCK(pmap); ptep = pmap_pte(pmap, far, &lvl); if (ptep != NULL && ((pte = pmap_load(ptep)) & ATTR_SW_DBM) != 0) { if ((pte & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP(ATTR_S1_AP_RO)) { pmap_clear_bits(ptep, ATTR_S1_AP_RW_BIT); pmap_invalidate_page(pmap, far); } rv = KERN_SUCCESS; } PMAP_UNLOCK(pmap); break; case ISS_DATA_DFSC_TF_L0: case ISS_DATA_DFSC_TF_L1: case ISS_DATA_DFSC_TF_L2: case ISS_DATA_DFSC_TF_L3: /* * Retry the translation. A break-before-make sequence can * produce a transient fault. */ if (pmap == kernel_pmap) { /* * The translation fault may have occurred within a * critical section. Therefore, we must check the * address without acquiring the kernel pmap's lock. */ if (pmap_kextract(far) != 0) rv = KERN_SUCCESS; } else { PMAP_LOCK(pmap); /* Ask the MMU to check the address. */ intr = intr_disable(); par = arm64_address_translate_s1e0r(far); intr_restore(intr); PMAP_UNLOCK(pmap); /* * If the translation was successful, then we can * return success to the trap handler. */ if (PAR_SUCCESS(par)) rv = KERN_SUCCESS; } break; } return (rv); } /* * Increase the starting virtual address of the given mapping if a * different alignment might result in more superpage mappings. */ void pmap_align_superpage(vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t size) { vm_offset_t superpage_offset; if (size < L2_SIZE) return; if (object != NULL && (object->flags & OBJ_COLORED) != 0) offset += ptoa(object->pg_color); superpage_offset = offset & L2_OFFSET; if (size - ((L2_SIZE - superpage_offset) & L2_OFFSET) < L2_SIZE || (*addr & L2_OFFSET) == superpage_offset) return; if ((*addr & L2_OFFSET) < superpage_offset) *addr = (*addr & ~L2_OFFSET) + superpage_offset; else *addr = ((*addr + L2_OFFSET) & ~L2_OFFSET) + superpage_offset; } /** * Get the kernel virtual address of a set of physical pages. If there are * physical addresses not covered by the DMAP perform a transient mapping * that will be removed when calling pmap_unmap_io_transient. * * \param page The pages the caller wishes to obtain the virtual * address on the kernel memory map. * \param vaddr On return contains the kernel virtual memory address * of the pages passed in the page parameter. * \param count Number of pages passed in. * \param can_fault TRUE if the thread using the mapped pages can take * page faults, FALSE otherwise. * * \returns TRUE if the caller must call pmap_unmap_io_transient when * finished or FALSE otherwise. * */ boolean_t pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count, boolean_t can_fault) { vm_paddr_t paddr; boolean_t needs_mapping; int error, i; /* * Allocate any KVA space that we need, this is done in a separate * loop to prevent calling vmem_alloc while pinned. */ needs_mapping = FALSE; for (i = 0; i < count; i++) { paddr = VM_PAGE_TO_PHYS(page[i]); if (__predict_false(!PHYS_IN_DMAP(paddr))) { error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK, &vaddr[i]); KASSERT(error == 0, ("vmem_alloc failed: %d", error)); needs_mapping = TRUE; } else { vaddr[i] = PHYS_TO_DMAP(paddr); } } /* Exit early if everything is covered by the DMAP */ if (!needs_mapping) return (FALSE); if (!can_fault) sched_pin(); for (i = 0; i < count; i++) { paddr = VM_PAGE_TO_PHYS(page[i]); if (!PHYS_IN_DMAP(paddr)) { panic( "pmap_map_io_transient: TODO: Map out of DMAP data"); } } return (needs_mapping); } void pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count, boolean_t can_fault) { vm_paddr_t paddr; int i; if (!can_fault) sched_unpin(); for (i = 0; i < count; i++) { paddr = VM_PAGE_TO_PHYS(page[i]); if (!PHYS_IN_DMAP(paddr)) { panic("ARM64TODO: pmap_unmap_io_transient: Unmap data"); } } } boolean_t pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode) { return (mode >= VM_MEMATTR_DEVICE && mode <= VM_MEMATTR_WRITE_THROUGH); } /* * Track a range of the kernel's virtual address space that is contiguous * in various mapping attributes. */ struct pmap_kernel_map_range { vm_offset_t sva; pt_entry_t attrs; int l3pages; int l3contig; int l2blocks; int l1blocks; }; static void sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range, vm_offset_t eva) { const char *mode; int index; if (eva <= range->sva) return; index = range->attrs & ATTR_S1_IDX_MASK; switch (index) { case ATTR_S1_IDX(VM_MEMATTR_DEVICE): mode = "DEV"; break; case ATTR_S1_IDX(VM_MEMATTR_UNCACHEABLE): mode = "UC"; break; case ATTR_S1_IDX(VM_MEMATTR_WRITE_BACK): mode = "WB"; break; case ATTR_S1_IDX(VM_MEMATTR_WRITE_THROUGH): mode = "WT"; break; default: printf( "%s: unknown memory type %x for range 0x%016lx-0x%016lx\n", __func__, index, range->sva, eva); mode = "??"; break; } sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c %3s %d %d %d %d\n", range->sva, eva, (range->attrs & ATTR_S1_AP_RW_BIT) == ATTR_S1_AP_RW ? 'w' : '-', (range->attrs & ATTR_S1_PXN) != 0 ? '-' : 'x', (range->attrs & ATTR_S1_AP_USER) != 0 ? 'u' : 's', mode, range->l1blocks, range->l2blocks, range->l3contig, range->l3pages); /* Reset to sentinel value. */ range->sva = 0xfffffffffffffffful; } /* * Determine whether the attributes specified by a page table entry match those * being tracked by the current range. */ static bool sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs) { return (range->attrs == attrs); } static void sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va, pt_entry_t attrs) { memset(range, 0, sizeof(*range)); range->sva = va; range->attrs = attrs; } /* * Given a leaf PTE, derive the mapping's attributes. If they do not match * those of the current run, dump the address range and its attributes, and * begin a new run. */ static void sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range, vm_offset_t va, pd_entry_t l0e, pd_entry_t l1e, pd_entry_t l2e, pt_entry_t l3e) { pt_entry_t attrs; attrs = l0e & (ATTR_S1_AP_MASK | ATTR_S1_XN); attrs |= l1e & (ATTR_S1_AP_MASK | ATTR_S1_XN); if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) attrs |= l1e & ATTR_S1_IDX_MASK; attrs |= l2e & (ATTR_S1_AP_MASK | ATTR_S1_XN); if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK) attrs |= l2e & ATTR_S1_IDX_MASK; attrs |= l3e & (ATTR_S1_AP_MASK | ATTR_S1_XN | ATTR_S1_IDX_MASK); if (range->sva > va || !sysctl_kmaps_match(range, attrs)) { sysctl_kmaps_dump(sb, range, va); sysctl_kmaps_reinit(range, va, attrs); } } static int sysctl_kmaps(SYSCTL_HANDLER_ARGS) { struct pmap_kernel_map_range range; struct sbuf sbuf, *sb; pd_entry_t l0e, *l1, l1e, *l2, l2e; pt_entry_t *l3, l3e; vm_offset_t sva; vm_paddr_t pa; int error, i, j, k, l; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sb = &sbuf; sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req); /* Sentinel value. */ range.sva = 0xfffffffffffffffful; /* * Iterate over the kernel page tables without holding the kernel pmap * lock. Kernel page table pages are never freed, so at worst we will * observe inconsistencies in the output. */ for (sva = 0xffff000000000000ul, i = pmap_l0_index(sva); i < Ln_ENTRIES; i++) { if (i == pmap_l0_index(DMAP_MIN_ADDRESS)) sbuf_printf(sb, "\nDirect map:\n"); else if (i == pmap_l0_index(VM_MIN_KERNEL_ADDRESS)) sbuf_printf(sb, "\nKernel map:\n"); l0e = kernel_pmap->pm_l0[i]; if ((l0e & ATTR_DESCR_VALID) == 0) { sysctl_kmaps_dump(sb, &range, sva); sva += L0_SIZE; continue; } pa = l0e & ~ATTR_MASK; l1 = (pd_entry_t *)PHYS_TO_DMAP(pa); for (j = pmap_l1_index(sva); j < Ln_ENTRIES; j++) { l1e = l1[j]; if ((l1e & ATTR_DESCR_VALID) == 0) { sysctl_kmaps_dump(sb, &range, sva); sva += L1_SIZE; continue; } if ((l1e & ATTR_DESCR_MASK) == L1_BLOCK) { sysctl_kmaps_check(sb, &range, sva, l0e, l1e, 0, 0); range.l1blocks++; sva += L1_SIZE; continue; } pa = l1e & ~ATTR_MASK; l2 = (pd_entry_t *)PHYS_TO_DMAP(pa); for (k = pmap_l2_index(sva); k < Ln_ENTRIES; k++) { l2e = l2[k]; if ((l2e & ATTR_DESCR_VALID) == 0) { sysctl_kmaps_dump(sb, &range, sva); sva += L2_SIZE; continue; } if ((l2e & ATTR_DESCR_MASK) == L2_BLOCK) { sysctl_kmaps_check(sb, &range, sva, l0e, l1e, l2e, 0); range.l2blocks++; sva += L2_SIZE; continue; } pa = l2e & ~ATTR_MASK; l3 = (pt_entry_t *)PHYS_TO_DMAP(pa); for (l = pmap_l3_index(sva); l < Ln_ENTRIES; l++, sva += L3_SIZE) { l3e = l3[l]; if ((l3e & ATTR_DESCR_VALID) == 0) { sysctl_kmaps_dump(sb, &range, sva); continue; } sysctl_kmaps_check(sb, &range, sva, l0e, l1e, l2e, l3e); if ((l3e & ATTR_CONTIGUOUS) != 0) range.l3contig += l % 16 == 0 ? 1 : 0; else range.l3pages++; } } } } error = sbuf_finish(sb); sbuf_delete(sb); return (error); } SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_kmaps, "A", "Dump kernel address layout"); Index: head/sys/conf/files.arm =================================================================== --- head/sys/conf/files.arm (revision 360081) +++ head/sys/conf/files.arm (revision 360082) @@ -1,166 +1,166 @@ # $FreeBSD$ kern/kern_clocksource.c standard arm/arm/autoconf.c standard arm/arm/bcopy_page.S standard arm/arm/bcopyinout.S standard arm/arm/blockio.S standard arm/arm/bus_space_asm_generic.S standard arm/arm/bus_space_base.c optional fdt arm/arm/bus_space_generic.c standard arm/arm/busdma_machdep.c standard arm/arm/copystr.S standard arm/arm/cpufunc.c standard arm/arm/cpufunc_asm.S standard arm/arm/cpufunc_asm_arm9.S optional cpu_arm9e arm/arm/cpufunc_asm_arm11x6.S optional cpu_arm1176 arm/arm/cpufunc_asm_armv4.S optional cpu_arm9e arm/arm/cpufunc_asm_armv5_ec.S optional cpu_arm9e arm/arm/cpufunc_asm_armv7.S optional cpu_cortexa | cpu_krait | cpu_mv_pj4b arm/arm/cpufunc_asm_pj4b.S optional cpu_mv_pj4b arm/arm/cpufunc_asm_sheeva.S optional cpu_arm9e arm/arm/cpuinfo.c standard arm/arm/cpu_asm-v6.S optional armv7 | armv6 arm/arm/db_disasm.c optional ddb arm/arm/db_interface.c optional ddb arm/arm/db_trace.c optional ddb arm/arm/debug_monitor.c optional ddb armv6 arm/arm/debug_monitor.c optional ddb armv7 arm/arm/disassem.c optional ddb arm/arm/dump_machdep.c standard arm/arm/elf_machdep.c standard arm/arm/elf_note.S standard arm/arm/exception.S standard arm/arm/fiq.c standard arm/arm/fiq_subr.S standard arm/arm/fusu.S standard arm/arm/gdb_machdep.c optional gdb arm/arm/generic_timer.c optional generic_timer arm/arm/gic.c optional gic arm/arm/gic_fdt.c optional gic fdt arm/arm/identcpu-v4.c optional !armv7 !armv6 arm/arm/identcpu-v6.c optional armv7 | armv6 arm/arm/in_cksum.c optional inet | inet6 arm/arm/in_cksum_arm.S optional inet | inet6 arm/arm/intr.c optional !intrng kern/subr_intr.c optional intrng arm/arm/locore.S standard no-obj arm/arm/hypervisor-stub.S optional armv7 | armv6 arm/arm/machdep.c standard arm/arm/machdep_boot.c standard arm/arm/machdep_kdb.c standard arm/arm/machdep_intr.c standard arm/arm/machdep_ptrace.c standard arm/arm/mem.c optional mem arm/arm/minidump_machdep.c standard arm/arm/mp_machdep.c optional smp arm/arm/mpcore_timer.c optional mpcore_timer arm/arm/nexus.c standard arm/arm/ofw_machdep.c optional fdt -arm/arm/physmem.c standard arm/arm/pl190.c optional pl190 arm/arm/pl310.c optional pl310 arm/arm/platform.c optional platform arm/arm/platform_if.m optional platform arm/arm/platform_pl310_if.m optional platform pl310 arm/arm/pmap-v4.c optional !armv7 !armv6 arm/arm/pmap-v6.c optional armv7 | armv6 arm/arm/pmu.c optional pmu | fdt hwpmc arm/arm/ptrace_machdep.c standard arm/arm/sc_machdep.c optional sc arm/arm/setcpsr.S standard arm/arm/setstack.s standard arm/arm/stack_machdep.c optional ddb | stack arm/arm/stdatomic.c standard \ compile-with "${NORMAL_C:N-Wmissing-prototypes}" arm/arm/support.S standard arm/arm/swtch.S standard arm/arm/swtch-v4.S optional !armv7 !armv6 arm/arm/swtch-v6.S optional armv7 | armv6 arm/arm/sys_machdep.c standard arm/arm/syscall.c standard arm/arm/trap-v4.c optional !armv7 !armv6 arm/arm/trap-v6.c optional armv7 | armv6 arm/arm/uio_machdep.c standard arm/arm/undefined.c standard arm/arm/unwind.c optional ddb | kdtrace_hooks | stack arm/arm/vm_machdep.c standard arm/arm/vfp.c standard arm/cloudabi32/cloudabi32_sysvec.c optional compat_cloudabi32 cddl/compat/opensolaris/kern/opensolaris_atomic.c optional !armv7 !armv6 zfs | !armv7 !armv6 dtrace compile-with "${CDDL_C}" cddl/dev/dtrace/arm/dtrace_asm.S optional dtrace compile-with "${DTRACE_S}" cddl/dev/dtrace/arm/dtrace_subr.c optional dtrace compile-with "${DTRACE_C}" cddl/dev/fbt/arm/fbt_isa.c optional dtrace_fbt | dtraceall compile-with "${FBT_C}" crypto/blowfish/bf_enc.c optional crypto | ipsec | ipsec_support crypto/des/des_enc.c optional crypto | ipsec | ipsec_support | netsmb dev/cpufreq/cpufreq_dt.c optional cpufreq fdt dev/dwc/if_dwc.c optional dwc dev/dwc/if_dwc_if.m optional dwc dev/fb/fb.c optional sc dev/fdt/fdt_arm_platform.c optional platform fdt dev/hdmi/hdmi_if.m optional hdmi dev/hwpmc/hwpmc_arm.c optional hwpmc dev/hwpmc/hwpmc_armv7.c optional hwpmc armv6 dev/hwpmc/hwpmc_armv7.c optional hwpmc armv7 dev/iicbus/twsi/twsi.c optional twsi dev/ofw/ofwpci.c optional fdt pci dev/pci/pci_host_generic.c optional pci_host_generic pci dev/pci/pci_host_generic_fdt.c optional pci_host_generic pci fdt dev/psci/psci.c optional psci dev/psci/smccc_arm.S optional psci dev/syscons/scgfbrndr.c optional sc dev/uart/uart_cpu_fdt.c optional uart fdt kern/msi_if.m optional intrng kern/pic_if.m optional intrng kern/subr_busdma_bufalloc.c standard kern/subr_devmap.c standard +kern/subr_physmem.c standard kern/subr_sfbuf.c standard libkern/arm/aeabi_unwind.c standard libkern/arm/divsi3.S standard libkern/arm/ffs.S optional !armv7 !armv6 libkern/arm/ldivmod.S standard libkern/arm/ldivmod_helper.c standard libkern/arm/memclr.S standard libkern/arm/memcpy.S standard libkern/arm/memset.S standard libkern/arm/muldi3.c standard libkern/ashldi3.c standard libkern/ashrdi3.c standard libkern/divdi3.c standard libkern/ffsl.c optional !armv7 !armv6 libkern/ffsll.c optional !armv7 !armv6 libkern/fls.c optional !armv7 !armv6 libkern/flsl.c optional !armv7 !armv6 libkern/flsll.c optional !armv7 !armv6 libkern/lshrdi3.c standard libkern/memcmp.c standard libkern/moddi3.c standard libkern/qdivrem.c standard libkern/ucmpdi2.c standard libkern/udivdi3.c standard libkern/umoddi3.c standard # CloudABI support cloudabi32_vdso.o optional compat_cloudabi32 \ dependency "$S/contrib/cloudabi/cloudabi_vdso_armv6.S" \ compile-with "${CC} -x assembler-with-cpp -shared -nostdinc -nostdlib -Wl,-T$S/compat/cloudabi/cloudabi_vdso.lds $S/contrib/cloudabi/cloudabi_vdso_armv6.S -o ${.TARGET}" \ no-obj no-implicit-rule \ clean "cloudabi32_vdso.o" # cloudabi32_vdso_blob.o optional compat_cloudabi32 \ dependency "cloudabi32_vdso.o" \ compile-with "${OBJCOPY} --input-target binary --output-target elf32-littlearm --binary-architecture arm cloudabi32_vdso.o ${.TARGET}" \ no-implicit-rule \ clean "cloudabi32_vdso_blob.o" # # Annapurna support arm/annapurna/alpine/alpine_ccu.c optional al_ccu fdt arm/annapurna/alpine/alpine_nb_service.c optional al_nb_service fdt arm/annapurna/alpine/alpine_pci.c optional al_pci fdt arm/annapurna/alpine/alpine_pci_msix.c optional al_pci fdt arm/annapurna/alpine/alpine_serdes.c optional al_serdes fdt \ no-depend \ compile-with "${CC} -c -o ${.TARGET} ${CFLAGS} -I$S/contrib/alpine-hal -I$S/contrib/alpine-hal/eth ${PROF} ${.IMPSRC}" Index: head/sys/conf/files.arm64 =================================================================== --- head/sys/conf/files.arm64 (revision 360081) +++ head/sys/conf/files.arm64 (revision 360082) @@ -1,335 +1,335 @@ # $FreeBSD$ cloudabi32_vdso.o optional compat_cloudabi32 \ dependency "$S/contrib/cloudabi/cloudabi_vdso_armv6_on_64bit.S" \ compile-with "${CC} -x assembler-with-cpp -m32 -shared -nostdinc -nostdlib -Wl,-T$S/compat/cloudabi/cloudabi_vdso.lds $S/contrib/cloudabi/cloudabi_vdso_armv6_on_64bit.S -o ${.TARGET}" \ no-obj no-implicit-rule \ clean "cloudabi32_vdso.o" # cloudabi32_vdso_blob.o optional compat_cloudabi32 \ dependency "cloudabi32_vdso.o" \ compile-with "${OBJCOPY} --input-target binary --output-target elf64-littleaarch64 --binary-architecture aarch64 cloudabi32_vdso.o ${.TARGET}" \ no-implicit-rule \ clean "cloudabi32_vdso_blob.o" # cloudabi64_vdso.o optional compat_cloudabi64 \ dependency "$S/contrib/cloudabi/cloudabi_vdso_aarch64.S" \ compile-with "${CC} -x assembler-with-cpp -shared -nostdinc -nostdlib -Wl,-T$S/compat/cloudabi/cloudabi_vdso.lds $S/contrib/cloudabi/cloudabi_vdso_aarch64.S -o ${.TARGET}" \ no-obj no-implicit-rule \ clean "cloudabi64_vdso.o" # cloudabi64_vdso_blob.o optional compat_cloudabi64 \ dependency "cloudabi64_vdso.o" \ compile-with "${OBJCOPY} --input-target binary --output-target elf64-littleaarch64 --binary-architecture aarch64 cloudabi64_vdso.o ${.TARGET}" \ no-implicit-rule \ clean "cloudabi64_vdso_blob.o" # # Allwinner common files arm/allwinner/a10_timer.c optional a10_timer fdt arm/allwinner/a10_codec.c optional sound a10_codec arm/allwinner/a31_dmac.c optional a31_dmac arm/allwinner/sunxi_dma_if.m optional a31_dmac arm/allwinner/aw_cir.c optional evdev aw_cir fdt arm/allwinner/aw_dwc3.c optional aw_dwc3 fdt arm/allwinner/aw_gpio.c optional gpio aw_gpio fdt arm/allwinner/aw_mmc.c optional mmc aw_mmc fdt | mmccam aw_mmc fdt arm/allwinner/aw_nmi.c optional aw_nmi fdt \ compile-with "${NORMAL_C} -I$S/gnu/dts/include" arm/allwinner/aw_pwm.c optional aw_pwm fdt arm/allwinner/aw_rsb.c optional aw_rsb fdt arm/allwinner/aw_rtc.c optional aw_rtc fdt arm/allwinner/aw_sid.c optional aw_sid nvmem fdt arm/allwinner/aw_spi.c optional aw_spi fdt arm/allwinner/aw_syscon.c optional aw_syscon ext_resources syscon fdt arm/allwinner/aw_thermal.c optional aw_thermal nvmem fdt arm/allwinner/aw_usbphy.c optional ehci aw_usbphy fdt arm/allwinner/aw_usb3phy.c optional xhci aw_usbphy fdt arm/allwinner/aw_wdog.c optional aw_wdog fdt arm/allwinner/axp81x.c optional axp81x fdt arm/allwinner/if_awg.c optional awg ext_resources syscon aw_sid nvmem fdt # Allwinner clock driver arm/allwinner/clkng/aw_ccung.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_frac.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_m.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_mipi.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_nkmp.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_nm.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_nmm.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_np.c optional aw_ccu fdt arm/allwinner/clkng/aw_clk_prediv_mux.c optional aw_ccu fdt arm/allwinner/clkng/ccu_a64.c optional soc_allwinner_a64 aw_ccu fdt arm/allwinner/clkng/ccu_h3.c optional soc_allwinner_h5 aw_ccu fdt arm/allwinner/clkng/ccu_h6.c optional soc_allwinner_h6 aw_ccu fdt arm/allwinner/clkng/ccu_h6_r.c optional soc_allwinner_h6 aw_ccu fdt arm/allwinner/clkng/ccu_sun8i_r.c optional aw_ccu fdt arm/allwinner/clkng/ccu_de2.c optional aw_ccu fdt # Allwinner padconf files arm/allwinner/a64/a64_padconf.c optional soc_allwinner_a64 fdt arm/allwinner/a64/a64_r_padconf.c optional soc_allwinner_a64 fdt arm/allwinner/h3/h3_padconf.c optional soc_allwinner_h5 fdt arm/allwinner/h3/h3_r_padconf.c optional soc_allwinner_h5 fdt arm/allwinner/h6/h6_padconf.c optional soc_allwinner_h6 fdt arm/allwinner/h6/h6_r_padconf.c optional soc_allwinner_h6 fdt arm/annapurna/alpine/alpine_ccu.c optional al_ccu fdt arm/annapurna/alpine/alpine_nb_service.c optional al_nb_service fdt arm/annapurna/alpine/alpine_pci.c optional al_pci fdt arm/annapurna/alpine/alpine_pci_msix.c optional al_pci fdt arm/annapurna/alpine/alpine_serdes.c optional al_serdes fdt \ no-depend \ compile-with "${CC} -c -o ${.TARGET} ${CFLAGS} -I$S/contrib/alpine-hal -I$S/contrib/alpine-hal/eth ${PROF} ${.IMPSRC}" arm/arm/generic_timer.c standard arm/arm/gic.c standard arm/arm/gic_acpi.c optional acpi arm/arm/gic_fdt.c optional fdt arm/arm/pmu.c standard -arm/arm/physmem.c standard arm/broadcom/bcm2835/bcm2835_audio.c optional sound vchiq fdt \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" arm/broadcom/bcm2835/bcm2835_bsc.c optional bcm2835_bsc fdt arm/broadcom/bcm2835/bcm2835_clkman.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_cpufreq.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_dma.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_fbd.c optional vt soc_brcm_bcm2837 fdt | vt soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_ft5406.c optional evdev bcm2835_ft5406 fdt arm/broadcom/bcm2835/bcm2835_gpio.c optional gpio soc_brcm_bcm2837 fdt | gpio soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_intr.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_mbox.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_rng.c optional !random_loadable soc_brcm_bcm2837 fdt | !random_loadable soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_sdhci.c optional sdhci soc_brcm_bcm2837 fdt | sdhci soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_sdhost.c optional sdhci soc_brcm_bcm2837 fdt | sdhci soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_spi.c optional bcm2835_spi fdt arm/broadcom/bcm2835/bcm2835_vcbus.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_vcio.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2835_wdog.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm2836.c optional soc_brcm_bcm2837 fdt | soc_brcm_bcm2838 fdt arm/broadcom/bcm2835/bcm283x_dwc_fdt.c optional dwcotg fdt soc_brcm_bcm2837 | dwcotg fdt soc_brcm_bcm2838 arm/mv/a37x0_gpio.c optional a37x0_gpio gpio fdt arm/mv/a37x0_iic.c optional a37x0_iic iicbus fdt arm/mv/a37x0_spi.c optional a37x0_spi spibus fdt arm/mv/armada38x/armada38x_rtc.c optional mv_rtc fdt arm/mv/gpio.c optional mv_gpio fdt arm/mv/mvebu_pinctrl.c optional mvebu_pinctrl fdt arm/mv/mv_ap806_clock.c optional SOC_MARVELL_8K fdt arm/mv/mv_ap806_gicp.c optional mv_ap806_gicp fdt arm/mv/mv_ap806_sei.c optional mv_ap806_sei fdt arm/mv/mv_cp110_clock.c optional SOC_MARVELL_8K fdt arm/mv/mv_cp110_icu.c optional mv_cp110_icu fdt arm/mv/mv_cp110_icu_bus.c optional mv_cp110_icu fdt arm/mv/mv_thermal.c optional SOC_MARVELL_8K mv_thermal fdt arm/mv/armada38x/armada38x_rtc.c optional mv_rtc fdt arm/xilinx/uart_dev_cdnc.c optional uart soc_xilinx_zynq arm64/acpica/acpi_iort.c optional acpi arm64/acpica/acpi_machdep.c optional acpi arm64/acpica/OsdEnvironment.c optional acpi arm64/acpica/acpi_wakeup.c optional acpi arm64/acpica/pci_cfgreg.c optional acpi pci arm64/arm64/autoconf.c standard arm64/arm64/bus_machdep.c standard arm64/arm64/bus_space_asm.S standard arm64/arm64/busdma_bounce.c standard arm64/arm64/busdma_machdep.c standard arm64/arm64/bzero.S standard arm64/arm64/clock.c standard arm64/arm64/copyinout.S standard arm64/arm64/copystr.c standard arm64/arm64/cpu_errata.c standard arm64/arm64/cpufunc_asm.S standard arm64/arm64/db_disasm.c optional ddb arm64/arm64/db_interface.c optional ddb arm64/arm64/db_trace.c optional ddb arm64/arm64/debug_monitor.c standard arm64/arm64/disassem.c optional ddb arm64/arm64/dump_machdep.c standard arm64/arm64/efirt_machdep.c optional efirt arm64/arm64/elf32_machdep.c optional compat_freebsd32 arm64/arm64/elf_machdep.c standard arm64/arm64/exception.S standard arm64/arm64/freebsd32_machdep.c optional compat_freebsd32 arm64/arm64/gicv3_its.c optional intrng fdt arm64/arm64/gic_v3.c standard arm64/arm64/gic_v3_acpi.c optional acpi arm64/arm64/gic_v3_fdt.c optional fdt arm64/arm64/identcpu.c standard arm64/arm64/in_cksum.c optional inet | inet6 arm64/arm64/locore.S standard no-obj arm64/arm64/machdep.c standard arm64/arm64/machdep_boot.c standard arm64/arm64/mem.c standard arm64/arm64/memcpy.S standard arm64/arm64/memmove.S standard arm64/arm64/minidump_machdep.c standard arm64/arm64/mp_machdep.c optional smp arm64/arm64/nexus.c standard arm64/arm64/ofw_machdep.c optional fdt arm64/arm64/pmap.c standard arm64/arm64/stack_machdep.c optional ddb | stack arm64/arm64/support.S standard arm64/arm64/swtch.S standard arm64/arm64/sys_machdep.c standard arm64/arm64/trap.c standard arm64/arm64/uio_machdep.c standard arm64/arm64/uma_machdep.c standard arm64/arm64/undefined.c standard arm64/arm64/unwind.c optional ddb | kdtrace_hooks | stack arm64/arm64/vfp.c standard arm64/arm64/vm_machdep.c standard arm64/broadcom/brcmmdio/mdio_mux_iproc.c optional fdt arm64/broadcom/brcmmdio/mdio_nexus_iproc.c optional fdt arm64/broadcom/brcmmdio/mdio_ns2_pcie_phy.c optional fdt pci arm64/cavium/thunder_pcie_fdt.c optional soc_cavm_thunderx pci fdt arm64/cavium/thunder_pcie_pem.c optional soc_cavm_thunderx pci arm64/cavium/thunder_pcie_pem_fdt.c optional soc_cavm_thunderx pci fdt arm64/cavium/thunder_pcie_common.c optional soc_cavm_thunderx pci arm64/cloudabi32/cloudabi32_sysvec.c optional compat_cloudabi32 arm64/cloudabi64/cloudabi64_sysvec.c optional compat_cloudabi64 arm64/coresight/coresight.c standard arm64/coresight/coresight_if.m standard arm64/coresight/coresight-cmd.c standard arm64/coresight/coresight-cpu-debug.c standard arm64/coresight/coresight-dynamic-replicator.c standard arm64/coresight/coresight-etm4x.c standard arm64/coresight/coresight-funnel.c standard arm64/coresight/coresight-tmc.c standard arm64/intel/firmware.c optional soc_intel_stratix10 arm64/intel/stratix10-soc-fpga-mgr.c optional soc_intel_stratix10 arm64/intel/stratix10-svc.c optional soc_intel_stratix10 arm64/qualcomm/qcom_gcc.c optional qcom_gcc fdt contrib/vchiq/interface/compat/vchi_bsd.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_2835_arm.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -Wno-unused -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_arm.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -Wno-unused -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_connected.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_core.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_kern_lib.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_kmod.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_shim.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" contrib/vchiq/interface/vchiq_arm/vchiq_util.c optional vchiq soc_brcm_bcm2837 \ compile-with "${NORMAL_C} -DUSE_VCHIQ_ARM -D__VCCOREVER__=0x04000000 -I$S/contrib/vchiq" crypto/armv8/armv8_crypto.c optional armv8crypto armv8_crypto_wrap.o optional armv8crypto \ dependency "$S/crypto/armv8/armv8_crypto_wrap.c" \ compile-with "${CC} -c ${CFLAGS:C/^-O2$/-O3/:N-nostdinc:N-mgeneral-regs-only} -I$S/crypto/armv8/ ${WERROR} ${NO_WCAST_QUAL} ${PROF} -march=armv8-a+crypto ${.IMPSRC}" \ no-implicit-rule \ clean "armv8_crypto_wrap.o" crypto/blowfish/bf_enc.c optional crypto | ipsec | ipsec_support crypto/des/des_enc.c optional crypto | ipsec | ipsec_support | netsmb dev/acpica/acpi_bus_if.m optional acpi dev/acpica/acpi_if.m optional acpi dev/acpica/acpi_pci_link.c optional acpi pci dev/acpica/acpi_pcib.c optional acpi pci dev/acpica/acpi_pxm.c optional acpi dev/ahci/ahci_generic.c optional ahci dev/altera/dwc/if_dwc_socfpga.c optional fdt dwc_socfpga dev/axgbe/if_axgbe.c optional axgbe dev/axgbe/xgbe-desc.c optional axgbe dev/axgbe/xgbe-dev.c optional axgbe dev/axgbe/xgbe-drv.c optional axgbe dev/axgbe/xgbe-mdio.c optional axgbe dev/cpufreq/cpufreq_dt.c optional cpufreq fdt dev/iicbus/sy8106a.c optional sy8106a fdt dev/iicbus/twsi/mv_twsi.c optional twsi fdt dev/iicbus/twsi/a10_twsi.c optional twsi fdt dev/iicbus/twsi/twsi.c optional twsi fdt dev/hwpmc/hwpmc_arm64.c optional hwpmc dev/hwpmc/hwpmc_arm64_md.c optional hwpmc dev/mbox/mbox_if.m optional soc_brcm_bcm2837 dev/mmc/host/dwmmc.c optional dwmmc fdt dev/mmc/host/dwmmc_altera.c optional dwmmc dwmmc_altera fdt dev/mmc/host/dwmmc_hisi.c optional dwmmc dwmmc_hisi fdt dev/mmc/host/dwmmc_rockchip.c optional dwmmc rk_dwmmc fdt dev/neta/if_mvneta_fdt.c optional neta fdt dev/neta/if_mvneta.c optional neta mdio mii dev/ofw/ofw_cpu.c optional fdt dev/ofw/ofwpci.c optional fdt pci dev/pci/controller/pci_n1sdp.c optional pci_n1sdp acpi dev/pci/pci_host_generic.c optional pci dev/pci/pci_host_generic_acpi.c optional pci acpi dev/pci/pci_host_generic_fdt.c optional pci fdt dev/pci/pci_dw_mv.c optional pci fdt dev/pci/pci_dw.c optional pci fdt dev/pci/pci_dw_if.m optional pci fdt dev/psci/psci.c standard dev/psci/smccc_arm64.S standard dev/psci/smccc.c standard dev/sdhci/sdhci_xenon.c optional sdhci_xenon sdhci fdt dev/uart/uart_cpu_arm64.c optional uart dev/uart/uart_dev_mu.c optional uart uart_mu dev/uart/uart_dev_pl011.c optional uart pl011 dev/usb/controller/dwc_otg_hisi.c optional dwcotg fdt soc_hisi_hi6220 dev/usb/controller/dwc3.c optional fdt dwc3 dev/usb/controller/ehci_mv.c optional ehci_mv fdt dev/usb/controller/generic_ehci.c optional ehci dev/usb/controller/generic_ehci_acpi.c optional ehci acpi dev/usb/controller/generic_ehci_fdt.c optional ehci fdt dev/usb/controller/generic_ohci.c optional ohci fdt dev/usb/controller/generic_usb_if.m optional ohci fdt dev/usb/controller/usb_nop_xceiv.c optional fdt ext_resources dev/usb/controller/generic_xhci.c optional xhci dev/usb/controller/generic_xhci_acpi.c optional xhci acpi dev/usb/controller/generic_xhci_fdt.c optional xhci fdt dev/vnic/mrml_bridge.c optional vnic fdt dev/vnic/nic_main.c optional vnic pci dev/vnic/nicvf_main.c optional vnic pci pci_iov dev/vnic/nicvf_queues.c optional vnic pci pci_iov dev/vnic/thunder_bgx_fdt.c optional vnic fdt dev/vnic/thunder_bgx.c optional vnic pci dev/vnic/thunder_mdio_fdt.c optional vnic fdt dev/vnic/thunder_mdio.c optional vnic dev/vnic/lmac_if.m optional inet | inet6 | vnic kern/kern_clocksource.c standard kern/msi_if.m optional intrng kern/pic_if.m optional intrng kern/subr_devmap.c standard kern/subr_intr.c optional intrng +kern/subr_physmem.c standard libkern/bcmp.c standard libkern/memcmp.c standard \ compile-with "${NORMAL_C:N-fsanitize*}" libkern/memset.c standard \ compile-with "${NORMAL_C:N-fsanitize*}" libkern/arm64/crc32c_armv8.S standard cddl/dev/dtrace/aarch64/dtrace_asm.S optional dtrace compile-with "${DTRACE_S}" cddl/dev/dtrace/aarch64/dtrace_subr.c optional dtrace compile-with "${DTRACE_C}" cddl/dev/fbt/aarch64/fbt_isa.c optional dtrace_fbt | dtraceall compile-with "${FBT_C}" # RockChip Drivers arm64/rockchip/rk3399_emmcphy.c optional fdt rk_emmcphy soc_rockchip_rk3399 arm64/rockchip/rk_dwc3.c optional fdt rk_dwc3 soc_rockchip_rk3399 arm64/rockchip/rk_i2c.c optional fdt rk_i2c soc_rockchip_rk3328 | fdt rk_i2c soc_rockchip_rk3399 arm64/rockchip/rk805.c optional fdt rk805 soc_rockchip_rk3328 | fdt rk805 soc_rockchip_rk3399 arm64/rockchip/rk_grf.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/rk_pinctrl.c optional fdt rk_pinctrl soc_rockchip_rk3328 | fdt rk_pinctrl soc_rockchip_rk3399 arm64/rockchip/rk_gpio.c optional fdt rk_gpio soc_rockchip_rk3328 | fdt rk_gpio soc_rockchip_rk3399 arm64/rockchip/rk_iodomain.c optional fdt rk_iodomain arm64/rockchip/rk_spi.c optional fdt rk_spi arm64/rockchip/rk_usb2phy.c optional fdt rk_usb2phy soc_rockchip_rk3328 | soc_rockchip_rk3399 arm64/rockchip/rk_typec_phy.c optional fdt rk_typec_phy soc_rockchip_rk3399 arm64/rockchip/if_dwc_rk.c optional fdt dwc_rk soc_rockchip_rk3328 | fdt dwc_rk soc_rockchip_rk3399 arm64/rockchip/rk_tsadc_if.m optional fdt soc_rockchip_rk3399 arm64/rockchip/rk_tsadc.c optional fdt soc_rockchip_rk3399 arm64/rockchip/rk_pwm.c optional fdt rk_pwm arm64/rockchip/rk_pcie.c optional fdt pci soc_rockchip_rk3399 arm64/rockchip/rk_pcie_phy.c optional fdt pci soc_rockchip_rk3399 dev/dwc/if_dwc.c optional fdt dwc_rk soc_rockchip_rk3328 | fdt dwc_rk soc_rockchip_rk3399 dev/dwc/if_dwc_if.m optional fdt dwc_rk soc_rockchip_rk3328 | fdt dwc_rk soc_rockchip_rk3399 # RockChip Clock support arm64/rockchip/clk/rk_cru.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk_clk_armclk.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk_clk_composite.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk_clk_fract.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk_clk_gate.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk_clk_mux.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk_clk_pll.c optional fdt soc_rockchip_rk3328 | fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk3328_cru.c optional fdt soc_rockchip_rk3328 arm64/rockchip/clk/rk3399_cru.c optional fdt soc_rockchip_rk3399 arm64/rockchip/clk/rk3399_pmucru.c optional fdt soc_rockchip_rk3399 Index: head/sys/kern/subr_physmem.c =================================================================== --- head/sys/kern/subr_physmem.c (nonexistent) +++ head/sys/kern/subr_physmem.c (revision 360082) @@ -0,0 +1,399 @@ +/*- + * SPDX-License-Identifier: BSD-2-Clause-FreeBSD + * + * Copyright (c) 2014 Ian Lepore + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +__FBSDID("$FreeBSD$"); + +#include "opt_acpi.h" +#include "opt_ddb.h" + +/* + * Routines for describing and initializing anything related to physical memory. + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * These structures are used internally to keep track of regions of physical + * ram, and regions within the physical ram that need to be excluded. An + * exclusion region can be excluded from crash dumps, from the vm pool of pages + * that can be allocated, or both, depending on the exclusion flags associated + * with the region. + */ +#ifdef DEV_ACPI +#define MAX_HWCNT 32 /* ACPI needs more regions */ +#define MAX_EXCNT 32 +#else +#define MAX_HWCNT 16 +#define MAX_EXCNT 16 +#endif + +#if defined(__arm__) +#define MAX_PHYS_ADDR 0xFFFFFFFFull +#elif defined(__aarch64__) || defined(__riscv) +#define MAX_PHYS_ADDR 0xFFFFFFFFFFFFFFFFull +#endif + +struct region { + vm_paddr_t addr; + vm_size_t size; + uint32_t flags; +}; + +static struct region hwregions[MAX_HWCNT]; +static struct region exregions[MAX_EXCNT]; + +static size_t hwcnt; +static size_t excnt; + +/* + * realmem is the total number of hardware pages, excluded or not. + * Maxmem is one greater than the last physical page number. + */ +long realmem; +long Maxmem; + +/* + * Print the contents of the physical and excluded region tables using the + * provided printf-like output function (which will be either printf or + * db_printf). + */ +static void +physmem_dump_tables(int (*prfunc)(const char *, ...)) +{ + int flags, i; + uintmax_t addr, size; + const unsigned int mbyte = 1024 * 1024; + + prfunc("Physical memory chunk(s):\n"); + for (i = 0; i < hwcnt; ++i) { + addr = hwregions[i].addr; + size = hwregions[i].size; + prfunc(" 0x%08jx - 0x%08jx, %5ju MB (%7ju pages)\n", addr, + addr + size - 1, size / mbyte, size / PAGE_SIZE); + } + + prfunc("Excluded memory regions:\n"); + for (i = 0; i < excnt; ++i) { + addr = exregions[i].addr; + size = exregions[i].size; + flags = exregions[i].flags; + prfunc(" 0x%08jx - 0x%08jx, %5ju MB (%7ju pages) %s %s\n", + addr, addr + size - 1, size / mbyte, size / PAGE_SIZE, + (flags & EXFLAG_NOALLOC) ? "NoAlloc" : "", + (flags & EXFLAG_NODUMP) ? "NoDump" : ""); + } + +#ifdef DEBUG + prfunc("Avail lists:\n"); + for (i = 0; phys_avail[i] != 0; ++i) { + prfunc(" phys_avail[%d] 0x%08x\n", i, phys_avail[i]); + } + for (i = 0; dump_avail[i] != 0; ++i) { + prfunc(" dump_avail[%d] 0x%08x\n", i, dump_avail[i]); + } +#endif +} + +/* + * Print the contents of the static mapping table. Used for bootverbose. + */ +void +physmem_print_tables(void) +{ + + physmem_dump_tables(printf); +} + +/* + * Walk the list of hardware regions, processing it against the list of + * exclusions that contain the given exflags, and generating an "avail list". + * + * Updates the value at *pavail with the sum of all pages in all hw regions. + * + * Returns the number of pages of non-excluded memory added to the avail list. + */ +static size_t +regions_to_avail(vm_paddr_t *avail, uint32_t exflags, size_t maxavail, + long *pavail, long *prealmem) +{ + size_t acnt, exi, hwi; + uint64_t end, start, xend, xstart; + long availmem, totalmem; + const struct region *exp, *hwp; + + totalmem = 0; + availmem = 0; + acnt = 0; + for (hwi = 0, hwp = hwregions; hwi < hwcnt; ++hwi, ++hwp) { + start = hwp->addr; + end = hwp->size + start; + totalmem += atop((vm_offset_t)(end - start)); + for (exi = 0, exp = exregions; exi < excnt; ++exi, ++exp) { + /* + * If the excluded region does not match given flags, + * continue checking with the next excluded region. + */ + if ((exp->flags & exflags) == 0) + continue; + xstart = exp->addr; + xend = exp->size + xstart; + /* + * If the excluded region ends before this hw region, + * continue checking with the next excluded region. + */ + if (xend <= start) + continue; + /* + * If the excluded region begins after this hw region + * we're done because both lists are sorted. + */ + if (xstart >= end) + break; + /* + * If the excluded region completely covers this hw + * region, shrink this hw region to zero size. + */ + if ((start >= xstart) && (end <= xend)) { + start = xend; + end = xend; + break; + } + /* + * If the excluded region falls wholly within this hw + * region without abutting or overlapping the beginning + * or end, create an available entry from the leading + * fragment, then adjust the start of this hw region to + * the end of the excluded region, and continue checking + * the next excluded region because another exclusion + * could affect the remainder of this hw region. + */ + if ((xstart > start) && (xend < end)) { + if (acnt > 0 && + avail[acnt - 1] == (vm_paddr_t)start) { + avail[acnt - 1] = (vm_paddr_t)xstart; + } else { + avail[acnt++] = (vm_paddr_t)start; + avail[acnt++] = (vm_paddr_t)xstart; + } + availmem += atop((vm_offset_t)(xstart - start)); + start = xend; + continue; + } + /* + * We know the excluded region overlaps either the start + * or end of this hardware region (but not both), trim + * the excluded portion off the appropriate end. + */ + if (xstart <= start) + start = xend; + else + end = xstart; + } + /* + * If the trimming actions above left a non-zero size, create an + * available entry for it. + */ + if (end > start) { + if (acnt > 0 && avail[acnt - 1] == (vm_paddr_t)start) { + avail[acnt - 1] = (vm_paddr_t)end; + } else { + avail[acnt++] = (vm_paddr_t)start; + avail[acnt++] = (vm_paddr_t)end; + } + availmem += atop((vm_offset_t)(end - start)); + } + if (acnt >= maxavail) + panic("Not enough space in the dump/phys_avail arrays"); + } + + if (pavail != NULL) + *pavail = availmem; + if (prealmem != NULL) + *prealmem = totalmem; + return (acnt); +} + +/* + * Insertion-sort a new entry into a regions list; sorted by start address. + */ +static size_t +insert_region(struct region *regions, size_t rcnt, vm_paddr_t addr, + vm_size_t size, uint32_t flags) +{ + size_t i; + struct region *ep, *rp; + + ep = regions + rcnt; + for (i = 0, rp = regions; i < rcnt; ++i, ++rp) { + if (rp->addr == addr && rp->size == size) /* Pure dup. */ + return (rcnt); + if (flags == rp->flags) { + if (addr + size == rp->addr) { + rp->addr = addr; + rp->size += size; + return (rcnt); + } else if (rp->addr + rp->size == addr) { + rp->size += size; + return (rcnt); + } + } + if (addr < rp->addr) { + bcopy(rp, rp + 1, (ep - rp) * sizeof(*rp)); + break; + } + } + rp->addr = addr; + rp->size = size; + rp->flags = flags; + rcnt++; + + return (rcnt); +} + +/* + * Add a hardware memory region. + */ +void +physmem_hardware_region(uint64_t pa, uint64_t sz) +{ + vm_offset_t adj; + + /* + * Filter out the page at PA 0x00000000. The VM can't handle it, as + * pmap_extract() == 0 means failure. + */ + if (pa == 0) { + if (sz <= PAGE_SIZE) + return; + pa = PAGE_SIZE; + sz -= PAGE_SIZE; + } else if (pa > MAX_PHYS_ADDR) { + /* This range is past usable memory, ignore it */ + return; + } + + /* + * Also filter out the page at the end of the physical address space -- + * if addr is non-zero and addr+size is zero we wrapped to the next byte + * beyond what vm_paddr_t can express. That leads to a NULL pointer + * deref early in startup; work around it by leaving the last page out. + * + * XXX This just in: subtract out a whole megabyte, not just 1 page. + * Reducing the size by anything less than 1MB results in the NULL + * pointer deref in _vm_map_lock_read(). Better to give up a megabyte + * than leave some folks with an unusable system while we investigate. + */ + if ((pa + sz) > (MAX_PHYS_ADDR - 1024 * 1024)) { + sz = MAX_PHYS_ADDR - pa + 1; + if (sz <= 1024 * 1024) + return; + sz -= 1024 * 1024; + } + + /* + * Round the starting address up to a page boundary, and truncate the + * ending page down to a page boundary. + */ + adj = round_page(pa) - pa; + pa = round_page(pa); + sz = trunc_page(sz - adj); + + if (sz > 0 && hwcnt < nitems(hwregions)) + hwcnt = insert_region(hwregions, hwcnt, pa, sz, 0); +} + +/* + * Add an exclusion region. + */ +void +physmem_exclude_region(vm_paddr_t pa, vm_size_t sz, uint32_t exflags) +{ + vm_offset_t adj; + + /* + * Truncate the starting address down to a page boundary, and round the + * ending page up to a page boundary. + */ + adj = pa - trunc_page(pa); + pa = trunc_page(pa); + sz = round_page(sz + adj); + + if (excnt >= nitems(exregions)) + panic("failed to exclude region %#jx-%#jx", (uintmax_t)pa, + (uintmax_t)(pa + sz)); + excnt = insert_region(exregions, excnt, pa, sz, exflags); +} + +size_t +physmem_avail(vm_paddr_t *avail, size_t maxavail) +{ + + return (regions_to_avail(avail, EXFLAG_NOALLOC, maxavail, NULL, NULL)); +} + +/* + * Process all the regions added earlier into the global avail lists. + * + * Updates the kernel global 'physmem' with the number of physical pages + * available for use (all pages not in any exclusion region). + * + * Updates the kernel global 'Maxmem' with the page number one greater then the + * last page of physical memory in the system. + */ +void +physmem_init_kernel_globals(void) +{ + size_t nextidx; + + regions_to_avail(dump_avail, EXFLAG_NODUMP, PHYS_AVAIL_ENTRIES, NULL, + NULL); + nextidx = regions_to_avail(phys_avail, EXFLAG_NOALLOC, + PHYS_AVAIL_ENTRIES, &physmem, &realmem); + if (nextidx == 0) + panic("No memory entries in phys_avail"); + Maxmem = atop(phys_avail[nextidx - 1]); +} + +#ifdef DDB +#include + +DB_SHOW_COMMAND(physmem, db_show_physmem) +{ + + physmem_dump_tables(db_printf); +} + +#endif /* DDB */ Property changes on: head/sys/kern/subr_physmem.c ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: head/sys/sys/physmem.h =================================================================== --- head/sys/sys/physmem.h (nonexistent) +++ head/sys/sys/physmem.h (revision 360082) @@ -0,0 +1,88 @@ +/*- + * SPDX-License-Identifier: BSD-2-Clause-FreeBSD + * + * Copyright (c) 2014 Ian Lepore + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * $FreeBSD$ + */ + +#ifndef _SYS_PHYSMEM_H_ +#define _SYS_PHYSMEM_H_ + +/* + * Routines to help configure physical ram. + * + * Multiple regions of contiguous physical ram can be added (in any order). + * + * Multiple regions of physical ram that should be excluded from crash dumps, or + * memory allocation, or both, can be added (in any order). + * + * After all early kernel init is done and it's time to configure all + * remainining non-excluded physical ram for use by other parts of the kernel, + * physmem_init_kernel_globals() processes the hardware regions and + * exclusion regions to generate the global dump_avail and phys_avail arrays + * that communicate physical ram configuration to other parts of the kernel. + */ + +#define EXFLAG_NODUMP 0x01 +#define EXFLAG_NOALLOC 0x02 + +void physmem_hardware_region(uint64_t pa, uint64_t sz); +void physmem_exclude_region(vm_paddr_t pa, vm_size_t sz, uint32_t flags); +size_t physmem_avail(vm_paddr_t *avail, size_t maxavail); +void physmem_init_kernel_globals(void); +void physmem_print_tables(void); + +/* + * Convenience routines for FDT. + */ + +#ifdef FDT + +#include + +static inline void +physmem_hardware_regions(struct mem_region * mrptr, int mrcount) +{ + while (mrcount--) { + physmem_hardware_region(mrptr->mr_start, mrptr->mr_size); + ++mrptr; + } +} + +static inline void +physmem_exclude_regions(struct mem_region * mrptr, int mrcount, + uint32_t exflags) +{ + while (mrcount--) { + physmem_exclude_region(mrptr->mr_start, mrptr->mr_size, + exflags); + ++mrptr; + } +} + +#endif /* FDT */ + +#endif /* !_SYS_PHYSMEM_H_ */ Property changes on: head/sys/sys/physmem.h ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property