Index: head/sys/kern/vfs_default.c =================================================================== --- head/sys/kern/vfs_default.c (revision 359465) +++ head/sys/kern/vfs_default.c (revision 359466) @@ -1,1460 +1,1461 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed * to Berkeley by John Heidemann of the UCLA Ficus project. * * Source: * @(#)i405_init.c 2.10 92/04/27 UCLA Ficus project * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int vop_nolookup(struct vop_lookup_args *); static int vop_norename(struct vop_rename_args *); static int vop_nostrategy(struct vop_strategy_args *); static int get_next_dirent(struct vnode *vp, struct dirent **dpp, char *dirbuf, int dirbuflen, off_t *off, char **cpos, int *len, int *eofflag, struct thread *td); static int dirent_exists(struct vnode *vp, const char *dirname, struct thread *td); #define DIRENT_MINSIZE (sizeof(struct dirent) - (MAXNAMLEN+1) + 4) static int vop_stdis_text(struct vop_is_text_args *ap); static int vop_stdunset_text(struct vop_unset_text_args *ap); static int vop_stdadd_writecount(struct vop_add_writecount_args *ap); static int vop_stdcopy_file_range(struct vop_copy_file_range_args *ap); static int vop_stdfdatasync(struct vop_fdatasync_args *ap); static int vop_stdgetpages_async(struct vop_getpages_async_args *ap); /* * This vnode table stores what we want to do if the filesystem doesn't * implement a particular VOP. * * If there is no specific entry here, we will return EOPNOTSUPP. * * Note that every filesystem has to implement either vop_access * or vop_accessx; failing to do so will result in immediate crash * due to stack overflow, as vop_stdaccess() calls vop_stdaccessx(), * which calls vop_stdaccess() etc. */ struct vop_vector default_vnodeops = { .vop_default = NULL, .vop_bypass = VOP_EOPNOTSUPP, .vop_access = vop_stdaccess, .vop_accessx = vop_stdaccessx, .vop_advise = vop_stdadvise, .vop_advlock = vop_stdadvlock, .vop_advlockasync = vop_stdadvlockasync, .vop_advlockpurge = vop_stdadvlockpurge, .vop_allocate = vop_stdallocate, .vop_bmap = vop_stdbmap, .vop_close = VOP_NULL, .vop_fsync = VOP_NULL, .vop_fdatasync = vop_stdfdatasync, .vop_getpages = vop_stdgetpages, .vop_getpages_async = vop_stdgetpages_async, .vop_getwritemount = vop_stdgetwritemount, .vop_inactive = VOP_NULL, .vop_need_inactive = vop_stdneed_inactive, .vop_ioctl = vop_stdioctl, .vop_kqfilter = vop_stdkqfilter, .vop_islocked = vop_stdislocked, .vop_lock1 = vop_stdlock, .vop_lookup = vop_nolookup, .vop_open = VOP_NULL, .vop_pathconf = VOP_EINVAL, .vop_poll = vop_nopoll, .vop_putpages = vop_stdputpages, .vop_readlink = VOP_EINVAL, .vop_rename = vop_norename, .vop_revoke = VOP_PANIC, .vop_strategy = vop_nostrategy, .vop_unlock = vop_stdunlock, .vop_vptocnp = vop_stdvptocnp, .vop_vptofh = vop_stdvptofh, .vop_unp_bind = vop_stdunp_bind, .vop_unp_connect = vop_stdunp_connect, .vop_unp_detach = vop_stdunp_detach, .vop_is_text = vop_stdis_text, .vop_set_text = vop_stdset_text, .vop_unset_text = vop_stdunset_text, .vop_add_writecount = vop_stdadd_writecount, .vop_copy_file_range = vop_stdcopy_file_range, }; VFS_VOP_VECTOR_REGISTER(default_vnodeops); /* * Series of placeholder functions for various error returns for * VOPs. */ int vop_eopnotsupp(struct vop_generic_args *ap) { /* printf("vop_notsupp[%s]\n", ap->a_desc->vdesc_name); */ return (EOPNOTSUPP); } int vop_ebadf(struct vop_generic_args *ap) { return (EBADF); } int vop_enotty(struct vop_generic_args *ap) { return (ENOTTY); } int vop_einval(struct vop_generic_args *ap) { return (EINVAL); } int vop_enoent(struct vop_generic_args *ap) { return (ENOENT); } int vop_null(struct vop_generic_args *ap) { return (0); } /* * Helper function to panic on some bad VOPs in some filesystems. */ int vop_panic(struct vop_generic_args *ap) { panic("filesystem goof: vop_panic[%s]", ap->a_desc->vdesc_name); } /* * vop_std and vop_no are default functions for use by * filesystems that need the "default reasonable" implementation for a * particular operation. * * The documentation for the operations they implement exists (if it exists) * in the VOP_(9) manpage (all uppercase). */ /* * Default vop for filesystems that do not support name lookup */ static int vop_nolookup(ap) struct vop_lookup_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; } */ *ap; { *ap->a_vpp = NULL; return (ENOTDIR); } /* * vop_norename: * * Handle unlock and reference counting for arguments of vop_rename * for filesystems that do not implement rename operation. */ static int vop_norename(struct vop_rename_args *ap) { vop_rename_fail(ap); return (EOPNOTSUPP); } /* * vop_nostrategy: * * Strategy routine for VFS devices that have none. * * BIO_ERROR and B_INVAL must be cleared prior to calling any strategy * routine. Typically this is done for a BIO_READ strategy call. * Typically B_INVAL is assumed to already be clear prior to a write * and should not be cleared manually unless you just made the buffer * invalid. BIO_ERROR should be cleared either way. */ static int vop_nostrategy (struct vop_strategy_args *ap) { printf("No strategy for buffer at %p\n", ap->a_bp); vn_printf(ap->a_vp, "vnode "); ap->a_bp->b_ioflags |= BIO_ERROR; ap->a_bp->b_error = EOPNOTSUPP; bufdone(ap->a_bp); return (EOPNOTSUPP); } static int get_next_dirent(struct vnode *vp, struct dirent **dpp, char *dirbuf, int dirbuflen, off_t *off, char **cpos, int *len, int *eofflag, struct thread *td) { int error, reclen; struct uio uio; struct iovec iov; struct dirent *dp; KASSERT(VOP_ISLOCKED(vp), ("vp %p is not locked", vp)); KASSERT(vp->v_type == VDIR, ("vp %p is not a directory", vp)); if (*len == 0) { iov.iov_base = dirbuf; iov.iov_len = dirbuflen; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = *off; uio.uio_resid = dirbuflen; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; *eofflag = 0; #ifdef MAC error = mac_vnode_check_readdir(td->td_ucred, vp); if (error == 0) #endif error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag, NULL, NULL); if (error) return (error); *off = uio.uio_offset; *cpos = dirbuf; *len = (dirbuflen - uio.uio_resid); if (*len == 0) return (ENOENT); } dp = (struct dirent *)(*cpos); reclen = dp->d_reclen; *dpp = dp; /* check for malformed directory.. */ if (reclen < DIRENT_MINSIZE) return (EINVAL); *cpos += reclen; *len -= reclen; return (0); } /* * Check if a named file exists in a given directory vnode. */ static int dirent_exists(struct vnode *vp, const char *dirname, struct thread *td) { char *dirbuf, *cpos; int error, eofflag, dirbuflen, len, found; off_t off; struct dirent *dp; struct vattr va; KASSERT(VOP_ISLOCKED(vp), ("vp %p is not locked", vp)); KASSERT(vp->v_type == VDIR, ("vp %p is not a directory", vp)); found = 0; error = VOP_GETATTR(vp, &va, td->td_ucred); if (error) return (found); dirbuflen = DEV_BSIZE; if (dirbuflen < va.va_blocksize) dirbuflen = va.va_blocksize; dirbuf = (char *)malloc(dirbuflen, M_TEMP, M_WAITOK); off = 0; len = 0; do { error = get_next_dirent(vp, &dp, dirbuf, dirbuflen, &off, &cpos, &len, &eofflag, td); if (error) goto out; if (dp->d_type != DT_WHT && dp->d_fileno != 0 && strcmp(dp->d_name, dirname) == 0) { found = 1; goto out; } } while (len > 0 || !eofflag); out: free(dirbuf, M_TEMP); return (found); } int vop_stdaccess(struct vop_access_args *ap) { KASSERT((ap->a_accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, ("invalid bit in accmode")); return (VOP_ACCESSX(ap->a_vp, ap->a_accmode, ap->a_cred, ap->a_td)); } int vop_stdaccessx(struct vop_accessx_args *ap) { int error; accmode_t accmode = ap->a_accmode; error = vfs_unixify_accmode(&accmode); if (error != 0) return (error); if (accmode == 0) return (0); return (VOP_ACCESS(ap->a_vp, accmode, ap->a_cred, ap->a_td)); } /* * Advisory record locking support */ int vop_stdadvlock(struct vop_advlock_args *ap) { struct vnode *vp; struct vattr vattr; int error; vp = ap->a_vp; if (ap->a_fl->l_whence == SEEK_END) { /* * The NFSv4 server must avoid doing a vn_lock() here, since it * can deadlock the nfsd threads, due to a LOR. Fortunately * the NFSv4 server always uses SEEK_SET and this code is * only required for the SEEK_END case. */ vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, curthread->td_ucred); VOP_UNLOCK(vp); if (error) return (error); } else vattr.va_size = 0; return (lf_advlock(ap, &(vp->v_lockf), vattr.va_size)); } int vop_stdadvlockasync(struct vop_advlockasync_args *ap) { struct vnode *vp; struct vattr vattr; int error; vp = ap->a_vp; if (ap->a_fl->l_whence == SEEK_END) { /* The size argument is only needed for SEEK_END. */ vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, curthread->td_ucred); VOP_UNLOCK(vp); if (error) return (error); } else vattr.va_size = 0; return (lf_advlockasync(ap, &(vp->v_lockf), vattr.va_size)); } int vop_stdadvlockpurge(struct vop_advlockpurge_args *ap) { struct vnode *vp; vp = ap->a_vp; lf_purgelocks(vp, &vp->v_lockf); return (0); } /* * vop_stdpathconf: * * Standard implementation of POSIX pathconf, to get information about limits * for a filesystem. * Override per filesystem for the case where the filesystem has smaller * limits. */ int vop_stdpathconf(ap) struct vop_pathconf_args /* { struct vnode *a_vp; int a_name; int *a_retval; } */ *ap; { switch (ap->a_name) { case _PC_ASYNC_IO: *ap->a_retval = _POSIX_ASYNCHRONOUS_IO; return (0); case _PC_PATH_MAX: *ap->a_retval = PATH_MAX; return (0); case _PC_ACL_EXTENDED: case _PC_ACL_NFS4: case _PC_CAP_PRESENT: case _PC_INF_PRESENT: case _PC_MAC_PRESENT: *ap->a_retval = 0; return (0); default: return (EINVAL); } /* NOTREACHED */ } /* * Standard lock, unlock and islocked functions. */ int vop_stdlock(ap) struct vop_lock1_args /* { struct vnode *a_vp; int a_flags; char *file; int line; } */ *ap; { struct vnode *vp = ap->a_vp; struct mtx *ilk; ilk = VI_MTX(vp); return (lockmgr_lock_flags(vp->v_vnlock, ap->a_flags, &ilk->lock_object, ap->a_file, ap->a_line)); } /* See above. */ int vop_stdunlock(ap) struct vop_unlock_args /* { struct vnode *a_vp; } */ *ap; { struct vnode *vp = ap->a_vp; return (lockmgr_unlock(vp->v_vnlock)); } /* See above. */ int vop_stdislocked(ap) struct vop_islocked_args /* { struct vnode *a_vp; } */ *ap; { return (lockstatus(ap->a_vp->v_vnlock)); } /* * Variants of the above set. * * Differences are: * - shared locking disablement is not supported * - v_vnlock pointer is not honored */ int vop_lock(ap) struct vop_lock1_args /* { struct vnode *a_vp; int a_flags; char *file; int line; } */ *ap; { struct vnode *vp = ap->a_vp; int flags = ap->a_flags; struct mtx *ilk; MPASS(vp->v_vnlock == &vp->v_lock); if (__predict_false((flags & ~(LK_TYPE_MASK | LK_NODDLKTREAT | LK_RETRY)) != 0)) goto other; switch (flags & LK_TYPE_MASK) { case LK_SHARED: return (lockmgr_slock(&vp->v_lock, flags, ap->a_file, ap->a_line)); case LK_EXCLUSIVE: return (lockmgr_xlock(&vp->v_lock, flags, ap->a_file, ap->a_line)); } other: ilk = VI_MTX(vp); return (lockmgr_lock_flags(&vp->v_lock, flags, &ilk->lock_object, ap->a_file, ap->a_line)); } int vop_unlock(ap) struct vop_unlock_args /* { struct vnode *a_vp; } */ *ap; { struct vnode *vp = ap->a_vp; MPASS(vp->v_vnlock == &vp->v_lock); return (lockmgr_unlock(&vp->v_lock)); } int vop_islocked(ap) struct vop_islocked_args /* { struct vnode *a_vp; } */ *ap; { struct vnode *vp = ap->a_vp; MPASS(vp->v_vnlock == &vp->v_lock); return (lockstatus(&vp->v_lock)); } /* * Return true for select/poll. */ int vop_nopoll(ap) struct vop_poll_args /* { struct vnode *a_vp; int a_events; struct ucred *a_cred; struct thread *a_td; } */ *ap; { return (poll_no_poll(ap->a_events)); } /* * Implement poll for local filesystems that support it. */ int vop_stdpoll(ap) struct vop_poll_args /* { struct vnode *a_vp; int a_events; struct ucred *a_cred; struct thread *a_td; } */ *ap; { if (ap->a_events & ~POLLSTANDARD) return (vn_pollrecord(ap->a_vp, ap->a_td, ap->a_events)); return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); } /* * Return our mount point, as we will take charge of the writes. */ int vop_stdgetwritemount(ap) struct vop_getwritemount_args /* { struct vnode *a_vp; struct mount **a_mpp; } */ *ap; { struct mount *mp; struct vnode *vp; /* * Note that having a reference does not prevent forced unmount from * setting ->v_mount to NULL after the lock gets released. This is of * no consequence for typical consumers (most notably vn_start_write) * since in this case the vnode is VIRF_DOOMED. Unmount might have * progressed far enough that its completion is only delayed by the * reference obtained here. The consumer only needs to concern itself * with releasing it. */ vp = ap->a_vp; mp = vp->v_mount; if (mp == NULL) { *(ap->a_mpp) = NULL; return (0); } if (vfs_op_thread_enter(mp)) { if (mp == vp->v_mount) { vfs_mp_count_add_pcpu(mp, ref, 1); vfs_op_thread_exit(mp); } else { vfs_op_thread_exit(mp); mp = NULL; } } else { MNT_ILOCK(mp); if (mp == vp->v_mount) { MNT_REF(mp); MNT_IUNLOCK(mp); } else { MNT_IUNLOCK(mp); mp = NULL; } } *(ap->a_mpp) = mp; return (0); } /* * If the file system doesn't implement VOP_BMAP, then return sensible defaults: * - Return the vnode's bufobj instead of any underlying device's bufobj * - Calculate the physical block number as if there were equal size * consecutive blocks, but * - Report no contiguous runs of blocks. */ int vop_stdbmap(ap) struct vop_bmap_args /* { struct vnode *a_vp; daddr_t a_bn; struct bufobj **a_bop; daddr_t *a_bnp; int *a_runp; int *a_runb; } */ *ap; { if (ap->a_bop != NULL) *ap->a_bop = &ap->a_vp->v_bufobj; if (ap->a_bnp != NULL) *ap->a_bnp = ap->a_bn * btodb(ap->a_vp->v_mount->mnt_stat.f_iosize); if (ap->a_runp != NULL) *ap->a_runp = 0; if (ap->a_runb != NULL) *ap->a_runb = 0; return (0); } int vop_stdfsync(ap) struct vop_fsync_args /* { struct vnode *a_vp; int a_waitfor; struct thread *a_td; } */ *ap; { return (vn_fsync_buf(ap->a_vp, ap->a_waitfor)); } static int vop_stdfdatasync(struct vop_fdatasync_args *ap) { return (VOP_FSYNC(ap->a_vp, MNT_WAIT, ap->a_td)); } int vop_stdfdatasync_buf(struct vop_fdatasync_args *ap) { return (vn_fsync_buf(ap->a_vp, MNT_WAIT)); } /* XXX Needs good comment and more info in the manpage (VOP_GETPAGES(9)). */ int vop_stdgetpages(ap) struct vop_getpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int *a_rbehind; int *a_rahead; } */ *ap; { return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, NULL, NULL); } static int vop_stdgetpages_async(struct vop_getpages_async_args *ap) { int error; error = VOP_GETPAGES(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead); - ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); + if (ap->a_iodone != NULL) + ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); return (error); } int vop_stdkqfilter(struct vop_kqfilter_args *ap) { return vfs_kqfilter(ap); } /* XXX Needs good comment and more info in the manpage (VOP_PUTPAGES(9)). */ int vop_stdputpages(ap) struct vop_putpages_args /* { struct vnode *a_vp; vm_page_t *a_m; int a_count; int a_sync; int *a_rtvals; } */ *ap; { return vnode_pager_generic_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync, ap->a_rtvals); } int vop_stdvptofh(struct vop_vptofh_args *ap) { return (EOPNOTSUPP); } int vop_stdvptocnp(struct vop_vptocnp_args *ap) { struct vnode *vp = ap->a_vp; struct vnode **dvp = ap->a_vpp; struct ucred *cred = ap->a_cred; char *buf = ap->a_buf; size_t *buflen = ap->a_buflen; char *dirbuf, *cpos; int i, error, eofflag, dirbuflen, flags, locked, len, covered; off_t off; ino_t fileno; struct vattr va; struct nameidata nd; struct thread *td; struct dirent *dp; struct vnode *mvp; i = *buflen; error = 0; covered = 0; td = curthread; if (vp->v_type != VDIR) return (ENOENT); error = VOP_GETATTR(vp, &va, cred); if (error) return (error); VREF(vp); locked = VOP_ISLOCKED(vp); VOP_UNLOCK(vp); NDINIT_ATVP(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF, UIO_SYSSPACE, "..", vp, td); flags = FREAD; error = vn_open_cred(&nd, &flags, 0, VN_OPEN_NOAUDIT, cred, NULL); if (error) { vn_lock(vp, locked | LK_RETRY); return (error); } NDFREE(&nd, NDF_ONLY_PNBUF); mvp = *dvp = nd.ni_vp; if (vp->v_mount != (*dvp)->v_mount && ((*dvp)->v_vflag & VV_ROOT) && ((*dvp)->v_mount->mnt_flag & MNT_UNION)) { *dvp = (*dvp)->v_mount->mnt_vnodecovered; VREF(mvp); VOP_UNLOCK(mvp); vn_close(mvp, FREAD, cred, td); VREF(*dvp); vn_lock(*dvp, LK_SHARED | LK_RETRY); covered = 1; } fileno = va.va_fileid; dirbuflen = DEV_BSIZE; if (dirbuflen < va.va_blocksize) dirbuflen = va.va_blocksize; dirbuf = (char *)malloc(dirbuflen, M_TEMP, M_WAITOK); if ((*dvp)->v_type != VDIR) { error = ENOENT; goto out; } off = 0; len = 0; do { /* call VOP_READDIR of parent */ error = get_next_dirent(*dvp, &dp, dirbuf, dirbuflen, &off, &cpos, &len, &eofflag, td); if (error) goto out; if ((dp->d_type != DT_WHT) && (dp->d_fileno == fileno)) { if (covered) { VOP_UNLOCK(*dvp); vn_lock(mvp, LK_SHARED | LK_RETRY); if (dirent_exists(mvp, dp->d_name, td)) { error = ENOENT; VOP_UNLOCK(mvp); vn_lock(*dvp, LK_SHARED | LK_RETRY); goto out; } VOP_UNLOCK(mvp); vn_lock(*dvp, LK_SHARED | LK_RETRY); } i -= dp->d_namlen; if (i < 0) { error = ENOMEM; goto out; } if (dp->d_namlen == 1 && dp->d_name[0] == '.') { error = ENOENT; } else { bcopy(dp->d_name, buf + i, dp->d_namlen); error = 0; } goto out; } } while (len > 0 || !eofflag); error = ENOENT; out: free(dirbuf, M_TEMP); if (!error) { *buflen = i; vref(*dvp); } if (covered) { vput(*dvp); vrele(mvp); } else { VOP_UNLOCK(mvp); vn_close(mvp, FREAD, cred, td); } vn_lock(vp, locked | LK_RETRY); return (error); } int vop_stdallocate(struct vop_allocate_args *ap) { #ifdef __notyet__ struct statfs *sfs; off_t maxfilesize = 0; #endif struct iovec aiov; struct vattr vattr, *vap; struct uio auio; off_t fsize, len, cur, offset; uint8_t *buf; struct thread *td; struct vnode *vp; size_t iosize; int error; buf = NULL; error = 0; td = curthread; vap = &vattr; vp = ap->a_vp; len = *ap->a_len; offset = *ap->a_offset; error = VOP_GETATTR(vp, vap, td->td_ucred); if (error != 0) goto out; fsize = vap->va_size; iosize = vap->va_blocksize; if (iosize == 0) iosize = BLKDEV_IOSIZE; if (iosize > MAXPHYS) iosize = MAXPHYS; buf = malloc(iosize, M_TEMP, M_WAITOK); #ifdef __notyet__ /* * Check if the filesystem sets f_maxfilesize; if not use * VOP_SETATTR to perform the check. */ sfs = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); error = VFS_STATFS(vp->v_mount, sfs, td); if (error == 0) maxfilesize = sfs->f_maxfilesize; free(sfs, M_STATFS); if (error != 0) goto out; if (maxfilesize) { if (offset > maxfilesize || len > maxfilesize || offset + len > maxfilesize) { error = EFBIG; goto out; } } else #endif if (offset + len > vap->va_size) { /* * Test offset + len against the filesystem's maxfilesize. */ VATTR_NULL(vap); vap->va_size = offset + len; error = VOP_SETATTR(vp, vap, td->td_ucred); if (error != 0) goto out; VATTR_NULL(vap); vap->va_size = fsize; error = VOP_SETATTR(vp, vap, td->td_ucred); if (error != 0) goto out; } for (;;) { /* * Read and write back anything below the nominal file * size. There's currently no way outside the filesystem * to know whether this area is sparse or not. */ cur = iosize; if ((offset % iosize) != 0) cur -= (offset % iosize); if (cur > len) cur = len; if (offset < fsize) { aiov.iov_base = buf; aiov.iov_len = cur; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = offset; auio.uio_resid = cur; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; error = VOP_READ(vp, &auio, 0, td->td_ucred); if (error != 0) break; if (auio.uio_resid > 0) { bzero(buf + cur - auio.uio_resid, auio.uio_resid); } } else { bzero(buf, cur); } aiov.iov_base = buf; aiov.iov_len = cur; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = offset; auio.uio_resid = cur; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_WRITE; auio.uio_td = td; error = VOP_WRITE(vp, &auio, 0, td->td_ucred); if (error != 0) break; len -= cur; offset += cur; if (len == 0) break; if (should_yield()) break; } out: *ap->a_len = len; *ap->a_offset = offset; free(buf, M_TEMP); return (error); } int vop_stdadvise(struct vop_advise_args *ap) { struct vnode *vp; struct bufobj *bo; daddr_t startn, endn; off_t bstart, bend, start, end; int bsize, error; vp = ap->a_vp; switch (ap->a_advice) { case POSIX_FADV_WILLNEED: /* * Do nothing for now. Filesystems should provide a * custom method which starts an asynchronous read of * the requested region. */ error = 0; break; case POSIX_FADV_DONTNEED: error = 0; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (VN_IS_DOOMED(vp)) { VOP_UNLOCK(vp); break; } /* * Round to block boundaries (and later possibly further to * page boundaries). Applications cannot reasonably be aware * of the boundaries, and the rounding must be to expand at * both extremities to cover enough. It still doesn't cover * read-ahead. For partial blocks, this gives unnecessary * discarding of buffers but is efficient enough since the * pages usually remain in VMIO for some time. */ bsize = vp->v_bufobj.bo_bsize; bstart = rounddown(ap->a_start, bsize); bend = roundup(ap->a_end, bsize); /* * Deactivate pages in the specified range from the backing VM * object. Pages that are resident in the buffer cache will * remain wired until their corresponding buffers are released * below. */ if (vp->v_object != NULL) { start = trunc_page(bstart); end = round_page(bend); VM_OBJECT_RLOCK(vp->v_object); vm_object_page_noreuse(vp->v_object, OFF_TO_IDX(start), OFF_TO_IDX(end)); VM_OBJECT_RUNLOCK(vp->v_object); } bo = &vp->v_bufobj; BO_RLOCK(bo); startn = bstart / bsize; endn = bend / bsize; error = bnoreuselist(&bo->bo_clean, bo, startn, endn); if (error == 0) error = bnoreuselist(&bo->bo_dirty, bo, startn, endn); BO_RUNLOCK(bo); VOP_UNLOCK(vp); break; default: error = EINVAL; break; } return (error); } int vop_stdunp_bind(struct vop_unp_bind_args *ap) { ap->a_vp->v_unpcb = ap->a_unpcb; return (0); } int vop_stdunp_connect(struct vop_unp_connect_args *ap) { *ap->a_unpcb = ap->a_vp->v_unpcb; return (0); } int vop_stdunp_detach(struct vop_unp_detach_args *ap) { ap->a_vp->v_unpcb = NULL; return (0); } static int vop_stdis_text(struct vop_is_text_args *ap) { return (ap->a_vp->v_writecount < 0); } int vop_stdset_text(struct vop_set_text_args *ap) { struct vnode *vp; struct mount *mp; int error; vp = ap->a_vp; VI_LOCK(vp); if (vp->v_writecount > 0) { error = ETXTBSY; } else { /* * If requested by fs, keep a use reference to the * vnode until the last text reference is released. */ mp = vp->v_mount; if (mp != NULL && (mp->mnt_kern_flag & MNTK_TEXT_REFS) != 0 && vp->v_writecount == 0) { vp->v_iflag |= VI_TEXT_REF; vrefl(vp); } vp->v_writecount--; error = 0; } VI_UNLOCK(vp); return (error); } static int vop_stdunset_text(struct vop_unset_text_args *ap) { struct vnode *vp; int error; bool last; vp = ap->a_vp; last = false; VI_LOCK(vp); if (vp->v_writecount < 0) { if ((vp->v_iflag & VI_TEXT_REF) != 0 && vp->v_writecount == -1) { last = true; vp->v_iflag &= ~VI_TEXT_REF; } vp->v_writecount++; error = 0; } else { error = EINVAL; } VI_UNLOCK(vp); if (last) vunref(vp); return (error); } static int vop_stdadd_writecount(struct vop_add_writecount_args *ap) { struct vnode *vp; struct mount *mp; int error; vp = ap->a_vp; VI_LOCK_FLAGS(vp, MTX_DUPOK); if (vp->v_writecount < 0) { error = ETXTBSY; } else { VNASSERT(vp->v_writecount + ap->a_inc >= 0, vp, ("neg writecount increment %d", ap->a_inc)); if (vp->v_writecount == 0) { mp = vp->v_mount; if (mp != NULL && (mp->mnt_kern_flag & MNTK_NOMSYNC) == 0) vlazy(vp); } vp->v_writecount += ap->a_inc; error = 0; } VI_UNLOCK(vp); return (error); } int vop_stdneed_inactive(struct vop_need_inactive_args *ap) { return (1); } int vop_stdioctl(struct vop_ioctl_args *ap) { struct vnode *vp; struct vattr va; off_t *offp; int error; switch (ap->a_command) { case FIOSEEKDATA: case FIOSEEKHOLE: vp = ap->a_vp; error = vn_lock(vp, LK_SHARED); if (error != 0) return (EBADF); if (vp->v_type == VREG) error = VOP_GETATTR(vp, &va, ap->a_cred); else error = ENOTTY; if (error == 0) { offp = ap->a_data; if (*offp < 0 || *offp >= va.va_size) error = ENXIO; else if (ap->a_command == FIOSEEKHOLE) *offp = va.va_size; } VOP_UNLOCK(vp); break; default: error = ENOTTY; break; } return (error); } /* * vfs default ops * used to fill the vfs function table to get reasonable default return values. */ int vfs_stdroot (mp, flags, vpp) struct mount *mp; int flags; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdstatfs (mp, sbp) struct mount *mp; struct statfs *sbp; { return (EOPNOTSUPP); } int vfs_stdquotactl (mp, cmds, uid, arg) struct mount *mp; int cmds; uid_t uid; void *arg; { return (EOPNOTSUPP); } int vfs_stdsync(mp, waitfor) struct mount *mp; int waitfor; { struct vnode *vp, *mvp; struct thread *td; int error, lockreq, allerror = 0; td = curthread; lockreq = LK_EXCLUSIVE | LK_INTERLOCK; if (waitfor != MNT_WAIT) lockreq |= LK_NOWAIT; /* * Force stale buffer cache information to be flushed. */ loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { if (vp->v_bufobj.bo_dirty.bv_cnt == 0) { VI_UNLOCK(vp); continue; } if ((error = vget(vp, lockreq, td)) != 0) { if (error == ENOENT) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } continue; } error = VOP_FSYNC(vp, waitfor, td); if (error) allerror = error; vput(vp); } return (allerror); } int vfs_stdnosync (mp, waitfor) struct mount *mp; int waitfor; { return (0); } static int vop_stdcopy_file_range(struct vop_copy_file_range_args *ap) { int error; error = vn_generic_copy_file_range(ap->a_invp, ap->a_inoffp, ap->a_outvp, ap->a_outoffp, ap->a_lenp, ap->a_flags, ap->a_incred, ap->a_outcred, ap->a_fsizetd); return (error); } int vfs_stdvget (mp, ino, flags, vpp) struct mount *mp; ino_t ino; int flags; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdfhtovp (mp, fhp, flags, vpp) struct mount *mp; struct fid *fhp; int flags; struct vnode **vpp; { return (EOPNOTSUPP); } int vfs_stdinit (vfsp) struct vfsconf *vfsp; { return (0); } int vfs_stduninit (vfsp) struct vfsconf *vfsp; { return(0); } int vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, attrname) struct mount *mp; int cmd; struct vnode *filename_vp; int attrnamespace; const char *attrname; { if (filename_vp != NULL) VOP_UNLOCK(filename_vp); return (EOPNOTSUPP); } int vfs_stdsysctl(mp, op, req) struct mount *mp; fsctlop_t op; struct sysctl_req *req; { return (EOPNOTSUPP); } static vop_bypass_t * bp_by_off(struct vop_vector *vop, struct vop_generic_args *a) { return (*(vop_bypass_t **)((char *)vop + a->a_desc->vdesc_vop_offset)); } int vop_sigdefer(struct vop_vector *vop, struct vop_generic_args *a) { vop_bypass_t *bp; int prev_stops, rc; bp = bp_by_off(vop, a); MPASS(bp != NULL); prev_stops = sigdeferstop(SIGDEFERSTOP_SILENT); rc = bp(a); sigallowstop(prev_stops); return (rc); } Index: head/sys/ufs/ffs/ffs_vnops.c =================================================================== --- head/sys/ufs/ffs/ffs_vnops.c (revision 359465) +++ head/sys/ufs/ffs/ffs_vnops.c (revision 359466) @@ -1,1798 +1,1805 @@ /*- * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) * * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_directio.h" #include "opt_ffs.h" #define ALIGNED_TO(ptr, s) \ (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) #ifdef DIRECTIO extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); #endif static vop_fdatasync_t ffs_fdatasync; static vop_fsync_t ffs_fsync; static vop_getpages_t ffs_getpages; static vop_getpages_async_t ffs_getpages_async; static vop_lock1_t ffs_lock; #ifdef INVARIANTS static vop_unlock_t ffs_unlock_debug; #endif static vop_read_t ffs_read; static vop_write_t ffs_write; static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred); static vop_strategy_t ffsext_strategy; static vop_closeextattr_t ffs_closeextattr; static vop_deleteextattr_t ffs_deleteextattr; static vop_getextattr_t ffs_getextattr; static vop_listextattr_t ffs_listextattr; static vop_openextattr_t ffs_openextattr; static vop_setextattr_t ffs_setextattr; static vop_vptofh_t ffs_vptofh; /* Global vfs data structures for ufs. */ struct vop_vector ffs_vnodeops1 = { .vop_default = &ufs_vnodeops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_getpages = ffs_getpages, .vop_getpages_async = ffs_getpages_async, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_read = ffs_read, .vop_reallocblks = ffs_reallocblks, .vop_write = ffs_write, .vop_vptofh = ffs_vptofh, }; VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); struct vop_vector ffs_fifoops1 = { .vop_default = &ufs_fifoops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_vptofh = ffs_vptofh, }; VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); /* Global vfs data structures for ufs. */ struct vop_vector ffs_vnodeops2 = { .vop_default = &ufs_vnodeops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_getpages = ffs_getpages, .vop_getpages_async = ffs_getpages_async, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_read = ffs_read, .vop_reallocblks = ffs_reallocblks, .vop_write = ffs_write, .vop_closeextattr = ffs_closeextattr, .vop_deleteextattr = ffs_deleteextattr, .vop_getextattr = ffs_getextattr, .vop_listextattr = ffs_listextattr, .vop_openextattr = ffs_openextattr, .vop_setextattr = ffs_setextattr, .vop_vptofh = ffs_vptofh, }; VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); struct vop_vector ffs_fifoops2 = { .vop_default = &ufs_fifoops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_reallocblks = ffs_reallocblks, .vop_strategy = ffsext_strategy, .vop_closeextattr = ffs_closeextattr, .vop_deleteextattr = ffs_deleteextattr, .vop_getextattr = ffs_getextattr, .vop_listextattr = ffs_listextattr, .vop_openextattr = ffs_openextattr, .vop_setextattr = ffs_setextattr, .vop_vptofh = ffs_vptofh, }; VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); /* * Synch an open file. */ /* ARGSUSED */ static int ffs_fsync(struct vop_fsync_args *ap) { struct vnode *vp; struct bufobj *bo; int error; vp = ap->a_vp; bo = &vp->v_bufobj; retry: error = ffs_syncvnode(vp, ap->a_waitfor, 0); if (error) return (error); if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { error = softdep_fsync(vp); if (error) return (error); /* * The softdep_fsync() function may drop vp lock, * allowing for dirty buffers to reappear on the * bo_dirty list. Recheck and resync as needed. */ BO_LOCK(bo); if ((vp->v_type == VREG || vp->v_type == VDIR) && (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { BO_UNLOCK(bo); goto retry; } BO_UNLOCK(bo); } return (0); } int ffs_syncvnode(struct vnode *vp, int waitfor, int flags) { struct inode *ip; struct bufobj *bo; struct buf *bp, *nbp; ufs_lbn_t lbn; int error, passes; bool still_dirty, wait; ip = VTOI(vp); ip->i_flag &= ~IN_NEEDSYNC; bo = &vp->v_bufobj; /* * When doing MNT_WAIT we must first flush all dependencies * on the inode. */ if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && (error = softdep_sync_metadata(vp)) != 0) return (error); /* * Flush all dirty buffers associated with a vnode. */ error = 0; passes = 0; wait = false; /* Always do an async pass first. */ lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); BO_LOCK(bo); loop: TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) bp->b_vflags &= ~BV_SCANNED; TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { /* * Reasons to skip this buffer: it has already been considered * on this pass, the buffer has dependencies that will cause * it to be redirtied and it has not already been deferred, * or it is already being written. */ if ((bp->b_vflags & BV_SCANNED) != 0) continue; bp->b_vflags |= BV_SCANNED; /* * Flush indirects in order, if requested. * * Note that if only datasync is requested, we can * skip indirect blocks when softupdates are not * active. Otherwise we must flush them with data, * since dependencies prevent data block writes. */ if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && (lbn_level(bp->b_lblkno) >= passes || ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) continue; if (bp->b_lblkno > lbn) panic("ffs_syncvnode: syncing truncated data."); if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { BO_UNLOCK(bo); } else if (wait) { if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)) != 0) { bp->b_vflags &= ~BV_SCANNED; goto next; } } else continue; if ((bp->b_flags & B_DELWRI) == 0) panic("ffs_fsync: not dirty"); /* * Check for dependencies and potentially complete them. */ if (!LIST_EMPTY(&bp->b_dep) && (error = softdep_sync_buf(vp, bp, wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { /* I/O error. */ if (error != EBUSY) { BUF_UNLOCK(bp); return (error); } /* If we deferred once, don't defer again. */ if ((bp->b_flags & B_DEFERRED) == 0) { bp->b_flags |= B_DEFERRED; BUF_UNLOCK(bp); goto next; } } if (wait) { bremfree(bp); if ((error = bwrite(bp)) != 0) return (error); } else if ((bp->b_flags & B_CLUSTEROK)) { (void) vfs_bio_awrite(bp); } else { bremfree(bp); (void) bawrite(bp); } next: /* * Since we may have slept during the I/O, we need * to start from a known point. */ BO_LOCK(bo); nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); } if (waitfor != MNT_WAIT) { BO_UNLOCK(bo); if ((flags & NO_INO_UPDT) != 0) return (0); else return (ffs_update(vp, 0)); } /* Drain IO to see if we're done. */ bufobj_wwait(bo, 0, 0); /* * Block devices associated with filesystems may have new I/O * requests posted for them even if the vnode is locked, so no * amount of trying will get them clean. We make several passes * as a best effort. * * Regular files may need multiple passes to flush all dependency * work as it is possible that we must write once per indirect * level, once for the leaf, and once for the inode and each of * these will be done with one sync and one async pass. */ if (bo->bo_dirty.bv_cnt > 0) { if ((flags & DATA_ONLY) == 0) { still_dirty = true; } else { /* * For data-only sync, dirty indirect buffers * are ignored. */ still_dirty = false; TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { if (bp->b_lblkno > -UFS_NDADDR) { still_dirty = true; break; } } } if (still_dirty) { /* Write the inode after sync passes to flush deps. */ if (wait && DOINGSOFTDEP(vp) && (flags & NO_INO_UPDT) == 0) { BO_UNLOCK(bo); ffs_update(vp, 1); BO_LOCK(bo); } /* switch between sync/async. */ wait = !wait; if (wait || ++passes < UFS_NIADDR + 2) goto loop; } } BO_UNLOCK(bo); error = 0; if ((flags & DATA_ONLY) == 0) { if ((flags & NO_INO_UPDT) == 0) error = ffs_update(vp, 1); if (DOINGSUJ(vp)) softdep_journal_fsync(VTOI(vp)); } return (error); } static int ffs_fdatasync(struct vop_fdatasync_args *ap) { return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); } static int ffs_lock(ap) struct vop_lock1_args /* { struct vnode *a_vp; int a_flags; struct thread *a_td; char *file; int line; } */ *ap; { #ifndef NO_FFS_SNAPSHOT struct vnode *vp; int flags; struct lock *lkp; int result; switch (ap->a_flags & LK_TYPE_MASK) { case LK_SHARED: case LK_UPGRADE: case LK_EXCLUSIVE: vp = ap->a_vp; flags = ap->a_flags; for (;;) { #ifdef DEBUG_VFS_LOCKS VNPASS(vp->v_holdcnt != 0, vp); #endif lkp = vp->v_vnlock; result = lockmgr_lock_flags(lkp, flags, &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); if (lkp == vp->v_vnlock || result != 0) break; /* * Apparent success, except that the vnode * mutated between snapshot file vnode and * regular file vnode while this process * slept. The lock currently held is not the * right lock. Release it, and try to get the * new lock. */ lockmgr_unlock(lkp); if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == (LK_INTERLOCK | LK_NOWAIT)) return (EBUSY); if ((flags & LK_TYPE_MASK) == LK_UPGRADE) flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; flags &= ~LK_INTERLOCK; } break; default: result = VOP_LOCK1_APV(&ufs_vnodeops, ap); } return (result); #else return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); #endif } #ifdef INVARIANTS static int ffs_unlock_debug(struct vop_unlock_args *ap) { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { if ((vp->v_mflag & VMP_LAZYLIST) == 0) { VI_LOCK(vp); VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, ("%s: modified vnode (%x) not on lazy list", __func__, ip->i_flag)); VI_UNLOCK(vp); } } return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); } #endif static int ffs_read_hole(struct uio *uio, long xfersize, long *size) { ssize_t saved_resid, tlen; int error; while (xfersize > 0) { tlen = min(xfersize, ZERO_REGION_SIZE); saved_resid = uio->uio_resid; error = vn_io_fault_uiomove(__DECONST(void *, zero_region), tlen, uio); if (error != 0) return (error); tlen = saved_resid - uio->uio_resid; xfersize -= tlen; *size -= tlen; } return (0); } /* * Vnode op for reading. */ static int ffs_read(ap) struct vop_read_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap; { struct vnode *vp; struct inode *ip; struct uio *uio; struct fs *fs; struct buf *bp; ufs_lbn_t lbn, nextlbn; off_t bytesinfile; long size, xfersize, blkoffset; ssize_t orig_resid; int bflag, error, ioflag, seqcount; vp = ap->a_vp; uio = ap->a_uio; ioflag = ap->a_ioflag; if (ap->a_ioflag & IO_EXT) #ifdef notyet return (ffs_extread(vp, uio, ioflag)); #else panic("ffs_read+IO_EXT"); #endif #ifdef DIRECTIO if ((ioflag & IO_DIRECT) != 0) { int workdone; error = ffs_rawread(vp, uio, &workdone); if (error != 0 || workdone != 0) return error; } #endif seqcount = ap->a_ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_READ) panic("ffs_read: mode"); if (vp->v_type == VLNK) { if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) panic("ffs_read: short symlink"); } else if (vp->v_type != VREG && vp->v_type != VDIR) panic("ffs_read: type %d", vp->v_type); #endif orig_resid = uio->uio_resid; KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); if (orig_resid == 0) return (0); KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); fs = ITOFS(ip); if (uio->uio_offset < ip->i_size && uio->uio_offset >= fs->fs_maxfilesize) return (EOVERFLOW); bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) break; lbn = lblkno(fs, uio->uio_offset); nextlbn = lbn + 1; /* * size of buffer. The buffer representing the * end of the file is rounded up to the size of * the block type ( fragment or full block, * depending ). */ size = blksize(fs, ip, lbn); blkoffset = blkoff(fs, uio->uio_offset); /* * The amount we want to transfer in this iteration is * one FS block less the amount of the data before * our startpoint (duh!) */ xfersize = fs->fs_bsize - blkoffset; /* * But if we actually want less than the block, * or the file doesn't have a whole block more of data, * then use the lesser number. */ if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (bytesinfile < xfersize) xfersize = bytesinfile; if (lblktosize(fs, nextlbn) >= ip->i_size) { /* * Don't do readahead if this is the end of the file. */ error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { /* * Otherwise if we are allowed to cluster, * grab as much as we can. * * XXX This may not be a win if we are not * doing sequential access. */ error = cluster_read(vp, ip->i_size, lbn, size, NOCRED, blkoffset + uio->uio_resid, seqcount, bflag, &bp); } else if (seqcount > 1) { /* * If we are NOT allowed to cluster, then * if we appear to be acting sequentially, * fire off a request for a readahead * as well as a read. Note that the 4th and 5th * arguments point to arrays of the size specified in * the 6th argument. */ u_int nextsize = blksize(fs, ip, nextlbn); error = breadn_flags(vp, lbn, lbn, size, &nextlbn, &nextsize, 1, NOCRED, bflag, NULL, &bp); } else { /* * Failing all of the above, just read what the * user asked for. Interestingly, the same as * the first option above. */ error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); } if (error == EJUSTRETURN) { error = ffs_read_hole(uio, xfersize, &size); if (error == 0) continue; } if (error != 0) { brelse(bp); bp = NULL; break; } /* * We should only get non-zero b_resid when an I/O error * has occurred, which should cause us to break above. * However, if the short read did not cause an error, * then we want to ensure that we do not uiomove bad * or uninitialized data. */ size -= bp->b_resid; if (size < xfersize) { if (size == 0) break; xfersize = size; } if (buf_mapped(bp)) { error = vn_io_fault_uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); } else { error = vn_io_fault_pgmove(bp->b_pages, blkoffset, (int)xfersize, uio); } if (error) break; vfs_bio_brelse(bp, ioflag); } /* * This can only happen in the case of an error * because the loop above resets bp to NULL on each iteration * and on normal completion has not set a new value into it. * so it must have come from a 'break' statement */ if (bp != NULL) vfs_bio_brelse(bp, ioflag); if ((error == 0 || uio->uio_resid != orig_resid) && (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); return (error); } /* * Vnode op for writing. */ static int ffs_write(ap) struct vop_write_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap; { struct vnode *vp; struct uio *uio; struct inode *ip; struct fs *fs; struct buf *bp; ufs_lbn_t lbn; off_t osize; ssize_t resid; int seqcount; int blkoffset, error, flags, ioflag, size, xfersize; vp = ap->a_vp; uio = ap->a_uio; ioflag = ap->a_ioflag; if (ap->a_ioflag & IO_EXT) #ifdef notyet return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); #else panic("ffs_write+IO_EXT"); #endif seqcount = ap->a_ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_WRITE) panic("ffs_write: mode"); #endif switch (vp->v_type) { case VREG: if (ioflag & IO_APPEND) uio->uio_offset = ip->i_size; if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) return (EPERM); /* FALLTHROUGH */ case VLNK: break; case VDIR: panic("ffs_write: dir write"); break; default: panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, (int)uio->uio_offset, (int)uio->uio_resid ); } KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); fs = ITOFS(ip); if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) return (EFBIG); /* * Maybe this should be above the vnode op call, but so long as * file servers have no limits, I don't think it matters. */ if (vn_rlimit_fsize(vp, uio, uio->uio_td)) return (EFBIG); resid = uio->uio_resid; osize = ip->i_size; if (seqcount > BA_SEQMAX) flags = BA_SEQMAX << BA_SEQSHIFT; else flags = seqcount << BA_SEQSHIFT; if (ioflag & IO_SYNC) flags |= IO_SYNC; flags |= BA_UNMAPPED; for (error = 0; uio->uio_resid > 0;) { lbn = lblkno(fs, uio->uio_offset); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->fs_bsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (uio->uio_offset + xfersize > ip->i_size) vnode_pager_setsize(vp, uio->uio_offset + xfersize); /* * We must perform a read-before-write if the transfer size * does not cover the entire buffer. */ if (fs->fs_bsize > xfersize) flags |= BA_CLRBUF; else flags &= ~BA_CLRBUF; /* XXX is uio->uio_offset the right thing here? */ error = UFS_BALLOC(vp, uio->uio_offset, xfersize, ap->a_cred, flags, &bp); if (error != 0) { vnode_pager_setsize(vp, ip->i_size); break; } if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) bp->b_flags |= B_NOCACHE; if (uio->uio_offset + xfersize > ip->i_size) { ip->i_size = uio->uio_offset + xfersize; DIP_SET(ip, i_size, ip->i_size); } size = blksize(fs, ip, lbn) - bp->b_resid; if (size < xfersize) xfersize = size; if (buf_mapped(bp)) { error = vn_io_fault_uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); } else { error = vn_io_fault_pgmove(bp->b_pages, blkoffset, (int)xfersize, uio); } /* * If the buffer is not already filled and we encounter an * error while trying to fill it, we have to clear out any * garbage data from the pages instantiated for the buffer. * If we do not, a failed uiomove() during a write can leave * the prior contents of the pages exposed to a userland mmap. * * Note that we need only clear buffers with a transfer size * equal to the block size because buffers with a shorter * transfer size were cleared above by the call to UFS_BALLOC() * with the BA_CLRBUF flag set. * * If the source region for uiomove identically mmaps the * buffer, uiomove() performed the NOP copy, and the buffer * content remains valid because the page fault handler * validated the pages. */ if (error != 0 && (bp->b_flags & B_CACHE) == 0 && fs->fs_bsize == xfersize) vfs_bio_clrbuf(bp); vfs_bio_set_flags(bp, ioflag); /* * If IO_SYNC each buffer is written synchronously. Otherwise * if we have a severe page deficiency write the buffer * asynchronously. Otherwise try to cluster, and if that * doesn't do it then either do an async write (if O_DIRECT), * or a delayed write (if not). */ if (ioflag & IO_SYNC) { (void)bwrite(bp); } else if (vm_page_count_severe() || buf_dirty_count_severe() || (ioflag & IO_ASYNC)) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else if (xfersize + blkoffset == fs->fs_bsize) { if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { bp->b_flags |= B_CLUSTEROK; cluster_write(vp, bp, ip->i_size, seqcount, GB_UNMAPPED); } else { bawrite(bp); } } else if (ioflag & IO_DIRECT) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else { bp->b_flags |= B_CLUSTEROK; bdwrite(bp); } if (error || xfersize == 0) break; UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); } /* * If we successfully wrote any data, and we are not the superuser * we clear the setuid and setgid bits as a precaution against * tampering. */ if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ap->a_cred) { if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { ip->i_mode &= ~(ISUID | ISGID); DIP_SET(ip, i_mode, ip->i_mode); } } if (error) { if (ioflag & IO_UNIT) { (void)ffs_truncate(vp, osize, IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); uio->uio_offset -= resid - uio->uio_resid; uio->uio_resid = resid; } } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) error = ffs_update(vp, 1); return (error); } /* * Extended attribute area reading. */ static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) { struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct buf *bp; ufs_lbn_t lbn, nextlbn; off_t bytesinfile; long size, xfersize, blkoffset; ssize_t orig_resid; int error; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; #ifdef INVARIANTS if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_extread: mode"); #endif orig_resid = uio->uio_resid; KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); if (orig_resid == 0) return (0); KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) break; lbn = lblkno(fs, uio->uio_offset); nextlbn = lbn + 1; /* * size of buffer. The buffer representing the * end of the file is rounded up to the size of * the block type ( fragment or full block, * depending ). */ size = sblksize(fs, dp->di_extsize, lbn); blkoffset = blkoff(fs, uio->uio_offset); /* * The amount we want to transfer in this iteration is * one FS block less the amount of the data before * our startpoint (duh!) */ xfersize = fs->fs_bsize - blkoffset; /* * But if we actually want less than the block, * or the file doesn't have a whole block more of data, * then use the lesser number. */ if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (bytesinfile < xfersize) xfersize = bytesinfile; if (lblktosize(fs, nextlbn) >= dp->di_extsize) { /* * Don't do readahead if this is the end of the info. */ error = bread(vp, -1 - lbn, size, NOCRED, &bp); } else { /* * If we have a second block, then * fire off a request for a readahead * as well as a read. Note that the 4th and 5th * arguments point to arrays of the size specified in * the 6th argument. */ u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); nextlbn = -1 - nextlbn; error = breadn(vp, -1 - lbn, size, &nextlbn, &nextsize, 1, NOCRED, &bp); } if (error) { brelse(bp); bp = NULL; break; } /* * We should only get non-zero b_resid when an I/O error * has occurred, which should cause us to break above. * However, if the short read did not cause an error, * then we want to ensure that we do not uiomove bad * or uninitialized data. */ size -= bp->b_resid; if (size < xfersize) { if (size == 0) break; xfersize = size; } error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); if (error) break; vfs_bio_brelse(bp, ioflag); } /* * This can only happen in the case of an error * because the loop above resets bp to NULL on each iteration * and on normal completion has not set a new value into it. * so it must have come from a 'break' statement */ if (bp != NULL) vfs_bio_brelse(bp, ioflag); return (error); } /* * Extended attribute area writing. */ static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) { struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct buf *bp; ufs_lbn_t lbn; off_t osize; ssize_t resid; int blkoffset, error, flags, size, xfersize; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; #ifdef INVARIANTS if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_extwrite: mode"); #endif if (ioflag & IO_APPEND) uio->uio_offset = dp->di_extsize; KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); if ((uoff_t)uio->uio_offset + uio->uio_resid > UFS_NXADDR * fs->fs_bsize) return (EFBIG); resid = uio->uio_resid; osize = dp->di_extsize; flags = IO_EXT; if (ioflag & IO_SYNC) flags |= IO_SYNC; for (error = 0; uio->uio_resid > 0;) { lbn = lblkno(fs, uio->uio_offset); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->fs_bsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; /* * We must perform a read-before-write if the transfer size * does not cover the entire buffer. */ if (fs->fs_bsize > xfersize) flags |= BA_CLRBUF; else flags &= ~BA_CLRBUF; error = UFS_BALLOC(vp, uio->uio_offset, xfersize, ucred, flags, &bp); if (error != 0) break; /* * If the buffer is not valid we have to clear out any * garbage data from the pages instantiated for the buffer. * If we do not, a failed uiomove() during a write can leave * the prior contents of the pages exposed to a userland * mmap(). XXX deal with uiomove() errors a better way. */ if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) vfs_bio_clrbuf(bp); if (uio->uio_offset + xfersize > dp->di_extsize) dp->di_extsize = uio->uio_offset + xfersize; size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; if (size < xfersize) xfersize = size; error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); vfs_bio_set_flags(bp, ioflag); /* * If IO_SYNC each buffer is written synchronously. Otherwise * if we have a severe page deficiency write the buffer * asynchronously. Otherwise try to cluster, and if that * doesn't do it then either do an async write (if O_DIRECT), * or a delayed write (if not). */ if (ioflag & IO_SYNC) { (void)bwrite(bp); } else if (vm_page_count_severe() || buf_dirty_count_severe() || xfersize + blkoffset == fs->fs_bsize || (ioflag & (IO_ASYNC | IO_DIRECT))) bawrite(bp); else bdwrite(bp); if (error || xfersize == 0) break; UFS_INODE_SET_FLAG(ip, IN_CHANGE); } /* * If we successfully wrote any data, and we are not the superuser * we clear the setuid and setgid bits as a precaution against * tampering. */ if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { ip->i_mode &= ~(ISUID | ISGID); dp->di_mode = ip->i_mode; } } if (error) { if (ioflag & IO_UNIT) { (void)ffs_truncate(vp, osize, IO_EXT | (ioflag&IO_SYNC), ucred); uio->uio_offset -= resid - uio->uio_resid; uio->uio_resid = resid; } } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) error = ffs_update(vp, 1); return (error); } /* * Vnode operating to retrieve a named extended attribute. * * Locate a particular EA (nspace:name) in the area (ptr:length), and return * the length of the EA, and possibly the pointer to the entry and to the data. */ static int ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, struct extattr **eapp, u_char **eac) { struct extattr *eap, *eaend; size_t nlen; nlen = strlen(name); KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); eap = (struct extattr *)ptr; eaend = (struct extattr *)(ptr + length); for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { /* make sure this entry is complete */ if (EXTATTR_NEXT(eap) > eaend) break; if (eap->ea_namespace != nspace || eap->ea_namelength != nlen || memcmp(eap->ea_name, name, nlen) != 0) continue; if (eapp != NULL) *eapp = eap; if (eac != NULL) *eac = EXTATTR_CONTENT(eap); return (EXTATTR_CONTENT_SIZE(eap)); } return (-1); } static int ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) { struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct uio luio; struct iovec liovec; u_int easize; int error; u_char *eae; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; easize = dp->di_extsize; if ((uoff_t)easize + extra > UFS_NXADDR * fs->fs_bsize) return (EFBIG); eae = malloc(easize + extra, M_TEMP, M_WAITOK); liovec.iov_base = eae; liovec.iov_len = easize; luio.uio_iov = &liovec; luio.uio_iovcnt = 1; luio.uio_offset = 0; luio.uio_resid = easize; luio.uio_segflg = UIO_SYSSPACE; luio.uio_rw = UIO_READ; luio.uio_td = td; error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); if (error) { free(eae, M_TEMP); return(error); } *p = eae; return (0); } static void ffs_lock_ea(struct vnode *vp) { struct inode *ip; ip = VTOI(vp); VI_LOCK(vp); while (ip->i_flag & IN_EA_LOCKED) { UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 0); } UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); VI_UNLOCK(vp); } static void ffs_unlock_ea(struct vnode *vp) { struct inode *ip; ip = VTOI(vp); VI_LOCK(vp); if (ip->i_flag & IN_EA_LOCKWAIT) wakeup(&ip->i_ea_refs); ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); VI_UNLOCK(vp); } static int ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) { struct inode *ip; struct ufs2_dinode *dp; int error; ip = VTOI(vp); ffs_lock_ea(vp); if (ip->i_ea_area != NULL) { ip->i_ea_refs++; ffs_unlock_ea(vp); return (0); } dp = ip->i_din2; error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); if (error) { ffs_unlock_ea(vp); return (error); } ip->i_ea_len = dp->di_extsize; ip->i_ea_error = 0; ip->i_ea_refs++; ffs_unlock_ea(vp); return (0); } /* * Vnode extattr transaction commit/abort */ static int ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) { struct inode *ip; struct uio luio; struct iovec liovec; int error; struct ufs2_dinode *dp; ip = VTOI(vp); ffs_lock_ea(vp); if (ip->i_ea_area == NULL) { ffs_unlock_ea(vp); return (EINVAL); } dp = ip->i_din2; error = ip->i_ea_error; if (commit && error == 0) { ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); if (cred == NOCRED) cred = vp->v_mount->mnt_cred; liovec.iov_base = ip->i_ea_area; liovec.iov_len = ip->i_ea_len; luio.uio_iov = &liovec; luio.uio_iovcnt = 1; luio.uio_offset = 0; luio.uio_resid = ip->i_ea_len; luio.uio_segflg = UIO_SYSSPACE; luio.uio_rw = UIO_WRITE; luio.uio_td = td; /* XXX: I'm not happy about truncating to zero size */ if (ip->i_ea_len < dp->di_extsize) error = ffs_truncate(vp, 0, IO_EXT, cred); error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); } if (--ip->i_ea_refs == 0) { free(ip->i_ea_area, M_TEMP); ip->i_ea_area = NULL; ip->i_ea_len = 0; ip->i_ea_error = 0; } ffs_unlock_ea(vp); return (error); } /* * Vnode extattr strategy routine for fifos. * * We need to check for a read or write of the external attributes. * Otherwise we just fall through and do the usual thing. */ static int ffsext_strategy(struct vop_strategy_args *ap) /* struct vop_strategy_args { struct vnodeop_desc *a_desc; struct vnode *a_vp; struct buf *a_bp; }; */ { struct vnode *vp; daddr_t lbn; vp = ap->a_vp; lbn = ap->a_bp->b_lblkno; if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); if (vp->v_type == VFIFO) return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); panic("spec nodes went here"); } /* * Vnode extattr transaction commit/abort */ static int ffs_openextattr(struct vop_openextattr_args *ap) /* struct vop_openextattr_args { struct vnodeop_desc *a_desc; struct vnode *a_vp; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); } /* * Vnode extattr transaction commit/abort */ static int ffs_closeextattr(struct vop_closeextattr_args *ap) /* struct vop_closeextattr_args { struct vnodeop_desc *a_desc; struct vnode *a_vp; int a_commit; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) return (EROFS); return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); } /* * Vnode operation to remove a named attribute. */ static int ffs_deleteextattr(struct vop_deleteextattr_args *ap) /* vop_deleteextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct inode *ip; struct extattr *eap; uint32_t ul; int olen, error, i, easize; u_char *eae; void *tmp; ip = VTOI(ap->a_vp); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); if (strlen(ap->a_name) == 0) return (EINVAL); if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) { /* * ffs_lock_ea is not needed there, because the vnode * must be exclusively locked. */ if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); /* CEM: delete could be done in-place instead */ eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); bcopy(ip->i_ea_area, eae, ip->i_ea_len); easize = ip->i_ea_len; olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, &eap, NULL); if (olen == -1) { /* delete but nonexistent */ free(eae, M_TEMP); ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); return (ENOATTR); } ul = eap->ea_length; i = (u_char *)EXTATTR_NEXT(eap) - eae; bcopy(EXTATTR_NEXT(eap), eap, easize - i); easize -= ul; tmp = ip->i_ea_area; ip->i_ea_area = eae; ip->i_ea_len = easize; free(tmp, M_TEMP); error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to retrieve a named extended attribute. */ static int ffs_getextattr(struct vop_getextattr_args *ap) /* vop_getextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct inode *ip; u_char *eae, *p; unsigned easize; int error, ealen; ip = VTOI(ap->a_vp); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); eae = ip->i_ea_area; easize = ip->i_ea_len; ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, NULL, &p); if (ealen >= 0) { error = 0; if (ap->a_size != NULL) *ap->a_size = ealen; else if (ap->a_uio != NULL) error = uiomove(p, ealen, ap->a_uio); } else error = ENOATTR; ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to retrieve extended attributes on a vnode. */ static int ffs_listextattr(struct vop_listextattr_args *ap) /* vop_listextattr { IN struct vnode *a_vp; IN int a_attrnamespace; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct inode *ip; struct extattr *eap, *eaend; int error, ealen; ip = VTOI(ap->a_vp); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); error = 0; if (ap->a_size != NULL) *ap->a_size = 0; KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); eap = (struct extattr *)ip->i_ea_area; eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { /* make sure this entry is complete */ if (EXTATTR_NEXT(eap) > eaend) break; if (eap->ea_namespace != ap->a_attrnamespace) continue; ealen = eap->ea_namelength; if (ap->a_size != NULL) *ap->a_size += ealen + 1; else if (ap->a_uio != NULL) error = uiomove(&eap->ea_namelength, ealen + 1, ap->a_uio); } ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to set a named attribute. */ static int ffs_setextattr(struct vop_setextattr_args *ap) /* vop_setextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct inode *ip; struct fs *fs; struct extattr *eap; uint32_t ealength, ul; ssize_t ealen; int olen, eapad1, eapad2, error, i, easize; u_char *eae; void *tmp; ip = VTOI(ap->a_vp); fs = ITOFS(ip); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); if (strlen(ap->a_name) == 0) return (EINVAL); /* XXX Now unsupported API to delete EAs using NULL uio. */ if (ap->a_uio == NULL) return (EOPNOTSUPP); if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); ealen = ap->a_uio->uio_resid; if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) return (EINVAL); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) { /* * ffs_lock_ea is not needed there, because the vnode * must be exclusively locked. */ if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); eapad1 = roundup2(ealength, 8) - ealength; eapad2 = roundup2(ealen, 8) - ealen; ealength += eapad1 + ealen + eapad2; /* * CEM: rewrites of the same size or smaller could be done in-place * instead. (We don't acquire any fine-grained locks in here either, * so we could also do bigger writes in-place.) */ eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); bcopy(ip->i_ea_area, eae, ip->i_ea_len); easize = ip->i_ea_len; olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, &eap, NULL); if (olen == -1) { /* new, append at end */ KASSERT(ALIGNED_TO(eae + easize, struct extattr), ("unaligned")); eap = (struct extattr *)(eae + easize); easize += ealength; } else { ul = eap->ea_length; i = (u_char *)EXTATTR_NEXT(eap) - eae; if (ul != ealength) { bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, easize - i); easize += (ealength - ul); } } if (easize > lblktosize(fs, UFS_NXADDR)) { free(eae, M_TEMP); ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = ENOSPC; return (ENOSPC); } eap->ea_length = ealength; eap->ea_namespace = ap->a_attrnamespace; eap->ea_contentpadlen = eapad2; eap->ea_namelength = strlen(ap->a_name); memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); if (error) { free(eae, M_TEMP); ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); tmp = ip->i_ea_area; ip->i_ea_area = eae; ip->i_ea_len = easize; free(tmp, M_TEMP); error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); return (error); } /* * Vnode pointer to File handle */ static int ffs_vptofh(struct vop_vptofh_args *ap) /* vop_vptofh { IN struct vnode *a_vp; IN struct fid *a_fhp; }; */ { struct inode *ip; struct ufid *ufhp; ip = VTOI(ap->a_vp); ufhp = (struct ufid *)ap->a_fhp; ufhp->ufid_len = sizeof(struct ufid); ufhp->ufid_ino = ip->i_number; ufhp->ufid_gen = ip->i_gen; return (0); } SYSCTL_DECL(_vfs_ffs); static int use_buf_pager = 1; SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, "Always use buffer pager instead of bmap"); static daddr_t ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) { return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); } static int ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn) { return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn)); } static int ffs_getpages(struct vop_getpages_args *ap) { struct vnode *vp; struct ufsmount *um; vp = ap->a_vp; um = VFSTOUFS(vp->v_mount); if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, NULL, NULL)); return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); } static int ffs_getpages_async(struct vop_getpages_async_args *ap) { struct vnode *vp; struct ufsmount *um; + bool do_iodone; int error; vp = ap->a_vp; um = VFSTOUFS(vp->v_mount); + do_iodone = true; - if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) - return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, - ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); - - error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, - ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz); - ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); + if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { + error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, + ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); + if (error == 0) + do_iodone = false; + } else { + error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, + ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, + ffs_gbp_getblksz); + } + if (do_iodone && ap->a_iodone != NULL) + ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); return (error); } Index: head/sys/vm/vnode_pager.c =================================================================== --- head/sys/vm/vnode_pager.c (revision 359465) +++ head/sys/vm/vnode_pager.c (revision 359466) @@ -1,1584 +1,1588 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1990 University of Utah. * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * Copyright (c) 1993, 1994 John S. Dyson * Copyright (c) 1995, David Greenman * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 */ /* * Page to/from files (vnodes). */ /* * TODO: * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will * greatly re-simplify the vnode_pager. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, int *run); static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); static int vnode_pager_input_old(vm_object_t object, vm_page_t m); static void vnode_pager_dealloc(vm_object_t); static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, int *, vop_getpages_iodone_t, void *); static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t, struct ucred *cred); static int vnode_pager_generic_getpages_done(struct buf *); static void vnode_pager_generic_getpages_done_async(struct buf *); static void vnode_pager_update_writecount(vm_object_t, vm_offset_t, vm_offset_t); static void vnode_pager_release_writecount(vm_object_t, vm_offset_t, vm_offset_t); struct pagerops vnodepagerops = { .pgo_alloc = vnode_pager_alloc, .pgo_dealloc = vnode_pager_dealloc, .pgo_getpages = vnode_pager_getpages, .pgo_getpages_async = vnode_pager_getpages_async, .pgo_putpages = vnode_pager_putpages, .pgo_haspage = vnode_pager_haspage, .pgo_update_writecount = vnode_pager_update_writecount, .pgo_release_writecount = vnode_pager_release_writecount, }; static struct domainset *vnode_domainset = NULL; SYSCTL_PROC(_debug, OID_AUTO, vnode_domainset, CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_RW, &vnode_domainset, 0, sysctl_handle_domainset, "A", "Default vnode NUMA policy"); static int nvnpbufs; SYSCTL_INT(_vm, OID_AUTO, vnode_pbufs, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &nvnpbufs, 0, "number of physical buffers allocated for vnode pager"); static uma_zone_t vnode_pbuf_zone; static void vnode_pager_init(void *dummy) { #ifdef __LP64__ nvnpbufs = nswbuf * 2; #else nvnpbufs = nswbuf / 2; #endif TUNABLE_INT_FETCH("vm.vnode_pbufs", &nvnpbufs); vnode_pbuf_zone = pbuf_zsecond_create("vnpbuf", nvnpbufs); } SYSINIT(vnode_pager, SI_SUB_CPU, SI_ORDER_ANY, vnode_pager_init, NULL); /* Create the VM system backing object for this vnode */ int vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) { vm_object_t object; vm_ooffset_t size = isize; struct vattr va; bool last; if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) return (0); object = vp->v_object; if (object != NULL) return (0); if (size == 0) { if (vn_isdisk(vp, NULL)) { size = IDX_TO_OFF(INT_MAX); } else { if (VOP_GETATTR(vp, &va, td->td_ucred)) return (0); size = va.va_size; } } object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); /* * Dereference the reference we just created. This assumes * that the object is associated with the vp. We still have * to serialize with vnode_pager_dealloc() for the last * potential reference. */ VM_OBJECT_RLOCK(object); last = refcount_release(&object->ref_count); VM_OBJECT_RUNLOCK(object); if (last) vrele(vp); KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); return (0); } void vnode_destroy_vobject(struct vnode *vp) { struct vm_object *obj; obj = vp->v_object; if (obj == NULL || obj->handle != vp) return; ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); VM_OBJECT_WLOCK(obj); MPASS(obj->type == OBJT_VNODE); umtx_shm_object_terminated(obj); if (obj->ref_count == 0) { KASSERT((obj->flags & OBJ_DEAD) == 0, ("vnode_destroy_vobject: Terminating dead object")); vm_object_set_flag(obj, OBJ_DEAD); /* * Clean pages and flush buffers. */ vm_object_page_clean(obj, 0, 0, OBJPC_SYNC); VM_OBJECT_WUNLOCK(obj); vinvalbuf(vp, V_SAVE, 0, 0); BO_LOCK(&vp->v_bufobj); vp->v_bufobj.bo_flag |= BO_DEAD; BO_UNLOCK(&vp->v_bufobj); VM_OBJECT_WLOCK(obj); vm_object_terminate(obj); } else { /* * Woe to the process that tries to page now :-). */ vm_pager_deallocate(obj); VM_OBJECT_WUNLOCK(obj); } KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); } /* * Allocate (or lookup) pager for a vnode. * Handle is a vnode pointer. */ vm_object_t vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, vm_ooffset_t offset, struct ucred *cred) { vm_object_t object; struct vnode *vp; /* * Pageout to vnode, no can do yet. */ if (handle == NULL) return (NULL); vp = (struct vnode *)handle; ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc"); VNPASS(vp->v_usecount > 0, vp); retry: object = vp->v_object; if (object == NULL) { /* * Add an object of the appropriate size */ object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); object->un_pager.vnp.vnp_size = size; object->un_pager.vnp.writemappings = 0; object->domain.dr_policy = vnode_domainset; object->handle = handle; if ((vp->v_vflag & VV_VMSIZEVNLOCK) != 0) { VM_OBJECT_WLOCK(object); vm_object_set_flag(object, OBJ_SIZEVNLOCK); VM_OBJECT_WUNLOCK(object); } VI_LOCK(vp); if (vp->v_object != NULL) { /* * Object has been created while we were allocating. */ VI_UNLOCK(vp); VM_OBJECT_WLOCK(object); KASSERT(object->ref_count == 1, ("leaked ref %p %d", object, object->ref_count)); object->type = OBJT_DEAD; refcount_init(&object->ref_count, 0); VM_OBJECT_WUNLOCK(object); vm_object_destroy(object); goto retry; } vp->v_object = object; VI_UNLOCK(vp); vrefact(vp); } else { vm_object_reference(object); #if VM_NRESERVLEVEL > 0 if ((object->flags & OBJ_COLORED) == 0) { VM_OBJECT_WLOCK(object); vm_object_color(object, 0); VM_OBJECT_WUNLOCK(object); } #endif } return (object); } /* * The object must be locked. */ static void vnode_pager_dealloc(vm_object_t object) { struct vnode *vp; int refs; vp = object->handle; if (vp == NULL) panic("vnode_pager_dealloc: pager already dealloced"); VM_OBJECT_ASSERT_WLOCKED(object); vm_object_pip_wait(object, "vnpdea"); refs = object->ref_count; object->handle = NULL; object->type = OBJT_DEAD; ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); if (object->un_pager.vnp.writemappings > 0) { object->un_pager.vnp.writemappings = 0; VOP_ADD_WRITECOUNT_CHECKED(vp, -1); CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", __func__, vp, vp->v_writecount); } vp->v_object = NULL; VI_LOCK(vp); /* * vm_map_entry_set_vnode_text() cannot reach this vnode by * following object->handle. Clear all text references now. * This also clears the transient references from * kern_execve(), which is fine because dead_vnodeops uses nop * for VOP_UNSET_TEXT(). */ if (vp->v_writecount < 0) vp->v_writecount = 0; VI_UNLOCK(vp); VM_OBJECT_WUNLOCK(object); if (refs > 0) vunref(vp); VM_OBJECT_WLOCK(object); } static boolean_t vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) { struct vnode *vp = object->handle; daddr_t bn; uintptr_t lockstate; int err; daddr_t reqblock; int poff; int bsize; int pagesperblock, blocksperpage; VM_OBJECT_ASSERT_LOCKED(object); /* * If no vp or vp is doomed or marked transparent to VM, we do not * have the page. */ if (vp == NULL || VN_IS_DOOMED(vp)) return FALSE; /* * If the offset is beyond end of file we do * not have the page. */ if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) return FALSE; bsize = vp->v_mount->mnt_stat.f_iosize; pagesperblock = bsize / PAGE_SIZE; blocksperpage = 0; if (pagesperblock > 0) { reqblock = pindex / pagesperblock; } else { blocksperpage = (PAGE_SIZE / bsize); reqblock = pindex * blocksperpage; } lockstate = VM_OBJECT_DROP(object); err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); VM_OBJECT_PICKUP(object, lockstate); if (err) return TRUE; if (bn == -1) return FALSE; if (pagesperblock > 0) { poff = pindex - (reqblock * pagesperblock); if (before) { *before *= pagesperblock; *before += poff; } if (after) { /* * The BMAP vop can report a partial block in the * 'after', but must not report blocks after EOF. * Assert the latter, and truncate 'after' in case * of the former. */ KASSERT((reqblock + *after) * pagesperblock < roundup2(object->size, pagesperblock), ("%s: reqblock %jd after %d size %ju", __func__, (intmax_t )reqblock, *after, (uintmax_t )object->size)); *after *= pagesperblock; *after += pagesperblock - (poff + 1); if (pindex + *after >= object->size) *after = object->size - 1 - pindex; } } else { if (before) { *before /= blocksperpage; } if (after) { *after /= blocksperpage; } } return TRUE; } /* * Lets the VM system know about a change in size for a file. * We adjust our own internal size and flush any cached pages in * the associated object that are affected by the size change. * * Note: this routine may be invoked as a result of a pager put * operation (possibly at object termination time), so we must be careful. */ void vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) { vm_object_t object; vm_page_t m; vm_pindex_t nobjsize; if ((object = vp->v_object) == NULL) return; #ifdef DEBUG_VFS_LOCKS { struct mount *mp; mp = vp->v_mount; if (mp != NULL && (mp->mnt_kern_flag & MNTK_VMSETSIZE_BUG) == 0) assert_vop_elocked(vp, "vnode_pager_setsize and not locked vnode"); } #endif VM_OBJECT_WLOCK(object); if (object->type == OBJT_DEAD) { VM_OBJECT_WUNLOCK(object); return; } KASSERT(object->type == OBJT_VNODE, ("not vnode-backed object %p", object)); if (nsize == object->un_pager.vnp.vnp_size) { /* * Hasn't changed size */ VM_OBJECT_WUNLOCK(object); return; } nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); if (nsize < object->un_pager.vnp.vnp_size) { /* * File has shrunk. Toss any cached pages beyond the new EOF. */ if (nobjsize < object->size) vm_object_page_remove(object, nobjsize, object->size, 0); /* * this gets rid of garbage at the end of a page that is now * only partially backed by the vnode. * * XXX for some reason (I don't know yet), if we take a * completely invalid page and mark it partially valid * it can screw up NFS reads, so we don't allow the case. */ if (!(nsize & PAGE_MASK)) goto out; m = vm_page_grab(object, OFF_TO_IDX(nsize), VM_ALLOC_NOCREAT); if (m == NULL) goto out; if (!vm_page_none_valid(m)) { int base = (int)nsize & PAGE_MASK; int size = PAGE_SIZE - base; /* * Clear out partial-page garbage in case * the page has been mapped. */ pmap_zero_page_area(m, base, size); /* * Update the valid bits to reflect the blocks that * have been zeroed. Some of these valid bits may * have already been set. */ vm_page_set_valid_range(m, base, size); /* * Round "base" to the next block boundary so that the * dirty bit for a partially zeroed block is not * cleared. */ base = roundup2(base, DEV_BSIZE); /* * Clear out partial-page dirty bits. * * note that we do not clear out the valid * bits. This would prevent bogus_page * replacement from working properly. */ vm_page_clear_dirty(m, base, PAGE_SIZE - base); } vm_page_xunbusy(m); } out: object->un_pager.vnp.vnp_size = nsize; object->size = nobjsize; VM_OBJECT_WUNLOCK(object); } /* * calculate the linear (byte) disk address of specified virtual * file address */ static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, int *run) { int bsize; int err; daddr_t vblock; daddr_t voffset; if (address < 0) return -1; if (VN_IS_DOOMED(vp)) return -1; bsize = vp->v_mount->mnt_stat.f_iosize; vblock = address / bsize; voffset = address % bsize; err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); if (err == 0) { if (*rtaddress != -1) *rtaddress += voffset / DEV_BSIZE; if (run) { *run += 1; *run *= bsize / PAGE_SIZE; *run -= voffset / PAGE_SIZE; } } return (err); } /* * small block filesystem vnode pager input */ static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) { struct vnode *vp; struct bufobj *bo; struct buf *bp; struct sf_buf *sf; daddr_t fileaddr; vm_offset_t bsize; vm_page_bits_t bits; int error, i; error = 0; vp = object->handle; if (VN_IS_DOOMED(vp)) return VM_PAGER_BAD; bsize = vp->v_mount->mnt_stat.f_iosize; VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); sf = sf_buf_alloc(m, 0); for (i = 0; i < PAGE_SIZE / bsize; i++) { vm_ooffset_t address; bits = vm_page_bits(i * bsize, bsize); if (m->valid & bits) continue; address = IDX_TO_OFF(m->pindex) + i * bsize; if (address >= object->un_pager.vnp.vnp_size) { fileaddr = -1; } else { error = vnode_pager_addr(vp, address, &fileaddr, NULL); if (error) break; } if (fileaddr != -1) { bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); /* build a minimal buffer header */ bp->b_iocmd = BIO_READ; bp->b_iodone = bdone; KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); bp->b_rcred = crhold(curthread->td_ucred); bp->b_wcred = crhold(curthread->td_ucred); bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; bp->b_blkno = fileaddr; pbgetbo(bo, bp); bp->b_vp = vp; bp->b_bcount = bsize; bp->b_bufsize = bsize; bp->b_runningbufspace = bp->b_bufsize; atomic_add_long(&runningbufspace, bp->b_runningbufspace); /* do the input */ bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); bwait(bp, PVM, "vnsrd"); if ((bp->b_ioflags & BIO_ERROR) != 0) { KASSERT(bp->b_error != 0, ("%s: buf error but b_error == 0\n", __func__)); error = bp->b_error; } /* * free the buffer header back to the swap buffer pool */ bp->b_vp = NULL; pbrelbo(bp); uma_zfree(vnode_pbuf_zone, bp); if (error) break; } else bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); KASSERT((m->dirty & bits) == 0, ("vnode_pager_input_smlfs: page %p is dirty", m)); vm_page_bits_set(m, &m->valid, bits); } sf_buf_free(sf); if (error) { return VM_PAGER_ERROR; } return VM_PAGER_OK; } /* * old style vnode pager input routine */ static int vnode_pager_input_old(vm_object_t object, vm_page_t m) { struct uio auio; struct iovec aiov; int error; int size; struct sf_buf *sf; struct vnode *vp; VM_OBJECT_ASSERT_WLOCKED(object); error = 0; /* * Return failure if beyond current EOF */ if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { return VM_PAGER_BAD; } else { size = PAGE_SIZE; if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); vp = object->handle; VM_OBJECT_WUNLOCK(object); /* * Allocate a kernel virtual address and initialize so that * we can use VOP_READ/WRITE routines. */ sf = sf_buf_alloc(m, 0); aiov.iov_base = (caddr_t)sf_buf_kva(sf); aiov.iov_len = size; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = IDX_TO_OFF(m->pindex); auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_resid = size; auio.uio_td = curthread; error = VOP_READ(vp, &auio, 0, curthread->td_ucred); if (!error) { int count = size - auio.uio_resid; if (count == 0) error = EINVAL; else if (count != PAGE_SIZE) bzero((caddr_t)sf_buf_kva(sf) + count, PAGE_SIZE - count); } sf_buf_free(sf); VM_OBJECT_WLOCK(object); } KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); if (!error) vm_page_valid(m); return error ? VM_PAGER_ERROR : VM_PAGER_OK; } /* * generic vnode pager input routine */ /* * Local media VFS's that do not implement their own VOP_GETPAGES * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() * to implement the previous behaviour. * * All other FS's should use the bypass to get to the local media * backing vp's VOP_GETPAGES. */ static int vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, int *rahead) { struct vnode *vp; int rtval; /* Handle is stable with paging in progress. */ vp = object->handle; rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); KASSERT(rtval != EOPNOTSUPP, ("vnode_pager: FS getpages not implemented\n")); return rtval; } static int vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) { struct vnode *vp; int rtval; vp = object->handle; rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); KASSERT(rtval != EOPNOTSUPP, ("vnode_pager: FS getpages_async not implemented\n")); return (rtval); } /* * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for * local filesystems, where partially valid pages can only occur at * the end of file. */ int vnode_pager_local_getpages(struct vop_getpages_args *ap) { return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, NULL, NULL)); } int vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) { + int error; - return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, - ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); + error = vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, + ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); + if (error != 0 && ap->a_iodone != NULL) + ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); + return (error); } /* * This is now called from local media FS's to operate against their * own vnodes if they fail to implement VOP_GETPAGES. */ int vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) { vm_object_t object; struct bufobj *bo; struct buf *bp; off_t foff; #ifdef INVARIANTS off_t blkno0; #endif int bsize, pagesperblock; int error, before, after, rbehind, rahead, poff, i; int bytecount, secmask; KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, ("%s does not support devices", __func__)); if (VN_IS_DOOMED(vp)) return (VM_PAGER_BAD); object = vp->v_object; foff = IDX_TO_OFF(m[0]->pindex); bsize = vp->v_mount->mnt_stat.f_iosize; pagesperblock = bsize / PAGE_SIZE; KASSERT(foff < object->un_pager.vnp.vnp_size, ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); KASSERT(count <= nitems(bp->b_pages), ("%s: requested %d pages", __func__, count)); /* * The last page has valid blocks. Invalid part can only * exist at the end of file, and the page is made fully valid * by zeroing in vm_pager_get_pages(). */ if (!vm_page_none_valid(m[count - 1]) && --count == 0) { if (iodone != NULL) iodone(arg, m, 1, 0); return (VM_PAGER_OK); } bp = uma_zalloc(vnode_pbuf_zone, M_WAITOK); /* * Get the underlying device blocks for the file with VOP_BMAP(). * If the file system doesn't support VOP_BMAP, use old way of * getting pages via VOP_READ. */ error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); if (error == EOPNOTSUPP) { uma_zfree(vnode_pbuf_zone, bp); VM_OBJECT_WLOCK(object); for (i = 0; i < count; i++) { VM_CNT_INC(v_vnodein); VM_CNT_INC(v_vnodepgsin); error = vnode_pager_input_old(object, m[i]); if (error) break; } VM_OBJECT_WUNLOCK(object); return (error); } else if (error != 0) { uma_zfree(vnode_pbuf_zone, bp); return (VM_PAGER_ERROR); } /* * If the file system supports BMAP, but blocksize is smaller * than a page size, then use special small filesystem code. */ if (pagesperblock == 0) { uma_zfree(vnode_pbuf_zone, bp); for (i = 0; i < count; i++) { VM_CNT_INC(v_vnodein); VM_CNT_INC(v_vnodepgsin); error = vnode_pager_input_smlfs(object, m[i]); if (error) break; } return (error); } /* * A sparse file can be encountered only for a single page request, * which may not be preceded by call to vm_pager_haspage(). */ if (bp->b_blkno == -1) { KASSERT(count == 1, ("%s: array[%d] request to a sparse file %p", __func__, count, vp)); uma_zfree(vnode_pbuf_zone, bp); pmap_zero_page(m[0]); KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", __func__, m[0])); vm_page_valid(m[0]); return (VM_PAGER_OK); } #ifdef INVARIANTS blkno0 = bp->b_blkno; #endif bp->b_blkno += (foff % bsize) / DEV_BSIZE; /* Recalculate blocks available after/before to pages. */ poff = (foff % bsize) / PAGE_SIZE; before *= pagesperblock; before += poff; after *= pagesperblock; after += pagesperblock - (poff + 1); if (m[0]->pindex + after >= object->size) after = object->size - 1 - m[0]->pindex; KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", __func__, count, after + 1)); after -= count - 1; /* Trim requested rbehind/rahead to possible values. */ rbehind = a_rbehind ? *a_rbehind : 0; rahead = a_rahead ? *a_rahead : 0; rbehind = min(rbehind, before); rbehind = min(rbehind, m[0]->pindex); rahead = min(rahead, after); rahead = min(rahead, object->size - m[count - 1]->pindex); /* * Check that total amount of pages fit into buf. Trim rbehind and * rahead evenly if not. */ if (rbehind + rahead + count > nitems(bp->b_pages)) { int trim, sum; trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; sum = rbehind + rahead; if (rbehind == before) { /* Roundup rbehind trim to block size. */ rbehind -= roundup(trim * rbehind / sum, pagesperblock); if (rbehind < 0) rbehind = 0; } else rbehind -= trim * rbehind / sum; rahead -= trim * rahead / sum; } KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), ("%s: behind %d ahead %d count %d", __func__, rbehind, rahead, count)); /* * Fill in the bp->b_pages[] array with requested and optional * read behind or read ahead pages. Read behind pages are looked * up in a backward direction, down to a first cached page. Same * for read ahead pages, but there is no need to shift the array * in case of encountering a cached page. */ i = bp->b_npages = 0; if (rbehind) { vm_pindex_t startpindex, tpindex; vm_page_t p; VM_OBJECT_WLOCK(object); startpindex = m[0]->pindex - rbehind; if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && p->pindex >= startpindex) startpindex = p->pindex + 1; /* tpindex is unsigned; beware of numeric underflow. */ for (tpindex = m[0]->pindex - 1; tpindex >= startpindex && tpindex < m[0]->pindex; tpindex--, i++) { p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); if (p == NULL) { /* Shift the array. */ for (int j = 0; j < i; j++) bp->b_pages[j] = bp->b_pages[j + tpindex + 1 - startpindex]; break; } bp->b_pages[tpindex - startpindex] = p; } bp->b_pgbefore = i; bp->b_npages += i; bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; } else bp->b_pgbefore = 0; /* Requested pages. */ for (int j = 0; j < count; j++, i++) bp->b_pages[i] = m[j]; bp->b_npages += count; if (rahead) { vm_pindex_t endpindex, tpindex; vm_page_t p; if (!VM_OBJECT_WOWNED(object)) VM_OBJECT_WLOCK(object); endpindex = m[count - 1]->pindex + rahead + 1; if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && p->pindex < endpindex) endpindex = p->pindex; if (endpindex > object->size) endpindex = object->size; for (tpindex = m[count - 1]->pindex + 1; tpindex < endpindex; i++, tpindex++) { p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); if (p == NULL) break; bp->b_pages[i] = p; } bp->b_pgafter = i - bp->b_npages; bp->b_npages = i; } else bp->b_pgafter = 0; if (VM_OBJECT_WOWNED(object)) VM_OBJECT_WUNLOCK(object); /* Report back actual behind/ahead read. */ if (a_rbehind) *a_rbehind = bp->b_pgbefore; if (a_rahead) *a_rahead = bp->b_pgafter; #ifdef INVARIANTS KASSERT(bp->b_npages <= nitems(bp->b_pages), ("%s: buf %p overflowed", __func__, bp)); for (int j = 1, prev = 0; j < bp->b_npages; j++) { if (bp->b_pages[j] == bogus_page) continue; KASSERT(bp->b_pages[j]->pindex - bp->b_pages[prev]->pindex == j - prev, ("%s: pages array not consecutive, bp %p", __func__, bp)); prev = j; } #endif /* * Recalculate first offset and bytecount with regards to read behind. * Truncate bytecount to vnode real size and round up physical size * for real devices. */ foff = IDX_TO_OFF(bp->b_pages[0]->pindex); bytecount = bp->b_npages << PAGE_SHIFT; if ((foff + bytecount) > object->un_pager.vnp.vnp_size) bytecount = object->un_pager.vnp.vnp_size - foff; secmask = bo->bo_bsize - 1; KASSERT(secmask < PAGE_SIZE && secmask > 0, ("%s: sector size %d too large", __func__, secmask + 1)); bytecount = (bytecount + secmask) & ~secmask; /* * And map the pages to be read into the kva, if the filesystem * requires mapped buffers. */ if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && unmapped_buf_allowed) { bp->b_data = unmapped_buf; bp->b_offset = 0; } else { bp->b_data = bp->b_kvabase; pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); } /* Build a minimal buffer header. */ bp->b_iocmd = BIO_READ; KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); bp->b_rcred = crhold(curthread->td_ucred); bp->b_wcred = crhold(curthread->td_ucred); pbgetbo(bo, bp); bp->b_vp = vp; bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; bp->b_iooffset = dbtob(bp->b_blkno); KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == (blkno0 - bp->b_blkno) * DEV_BSIZE + IDX_TO_OFF(m[0]->pindex) % bsize, ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " "blkno0 %ju b_blkno %ju", bsize, (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); atomic_add_long(&runningbufspace, bp->b_runningbufspace); VM_CNT_INC(v_vnodein); VM_CNT_ADD(v_vnodepgsin, bp->b_npages); if (iodone != NULL) { /* async */ bp->b_pgiodone = iodone; bp->b_caller1 = arg; bp->b_iodone = vnode_pager_generic_getpages_done_async; bp->b_flags |= B_ASYNC; BUF_KERNPROC(bp); bstrategy(bp); return (VM_PAGER_OK); } else { bp->b_iodone = bdone; bstrategy(bp); bwait(bp, PVM, "vnread"); error = vnode_pager_generic_getpages_done(bp); for (i = 0; i < bp->b_npages; i++) bp->b_pages[i] = NULL; bp->b_vp = NULL; pbrelbo(bp); uma_zfree(vnode_pbuf_zone, bp); return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); } } static void vnode_pager_generic_getpages_done_async(struct buf *bp) { int error; error = vnode_pager_generic_getpages_done(bp); /* Run the iodone upon the requested range. */ bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); for (int i = 0; i < bp->b_npages; i++) bp->b_pages[i] = NULL; bp->b_vp = NULL; pbrelbo(bp); uma_zfree(vnode_pbuf_zone, bp); } static int vnode_pager_generic_getpages_done(struct buf *bp) { vm_object_t object; off_t tfoff, nextoff; int i, error; KASSERT((bp->b_ioflags & BIO_ERROR) == 0 || bp->b_error != 0, ("%s: buf error but b_error == 0\n", __func__)); error = (bp->b_ioflags & BIO_ERROR) != 0 ? bp->b_error : 0; object = bp->b_vp->v_object; if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { if (!buf_mapped(bp)) { bp->b_data = bp->b_kvabase; pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); } bzero(bp->b_data + bp->b_bcount, PAGE_SIZE * bp->b_npages - bp->b_bcount); } if (buf_mapped(bp)) { pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); bp->b_data = unmapped_buf; } /* Read lock to protect size. */ VM_OBJECT_RLOCK(object); for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); i < bp->b_npages; i++, tfoff = nextoff) { vm_page_t mt; nextoff = tfoff + PAGE_SIZE; mt = bp->b_pages[i]; if (mt == bogus_page) continue; if (nextoff <= object->un_pager.vnp.vnp_size) { /* * Read filled up entire page. */ vm_page_valid(mt); KASSERT(mt->dirty == 0, ("%s: page %p is dirty", __func__, mt)); KASSERT(!pmap_page_is_mapped(mt), ("%s: page %p is mapped", __func__, mt)); } else { /* * Read did not fill up entire page. * * Currently we do not set the entire page valid, * we just try to clear the piece that we couldn't * read. */ vm_page_set_valid_range(mt, 0, object->un_pager.vnp.vnp_size - tfoff); KASSERT((mt->dirty & vm_page_bits(0, object->un_pager.vnp.vnp_size - tfoff)) == 0, ("%s: page %p is dirty", __func__, mt)); } if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) vm_page_readahead_finish(mt); } VM_OBJECT_RUNLOCK(object); return (error); } /* * EOPNOTSUPP is no longer legal. For local media VFS's that do not * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to * vnode_pager_generic_putpages() to implement the previous behaviour. * * All other FS's should use the bypass to get to the local media * backing vp's VOP_PUTPAGES. */ static void vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, int flags, int *rtvals) { int rtval; struct vnode *vp; int bytes = count * PAGE_SIZE; /* * Force synchronous operation if we are extremely low on memory * to prevent a low-memory deadlock. VOP operations often need to * allocate more memory to initiate the I/O ( i.e. do a BMAP * operation ). The swapper handles the case by limiting the amount * of asynchronous I/O, but that sort of solution doesn't scale well * for the vnode pager without a lot of work. * * Also, the backing vnode's iodone routine may not wake the pageout * daemon up. This should be probably be addressed XXX. */ if (vm_page_count_min()) flags |= VM_PAGER_PUT_SYNC; /* * Call device-specific putpages function */ vp = object->handle; VM_OBJECT_WUNLOCK(object); rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); KASSERT(rtval != EOPNOTSUPP, ("vnode_pager: stale FS putpages\n")); VM_OBJECT_WLOCK(object); } static int vn_off2bidx(vm_ooffset_t offset) { return ((offset & PAGE_MASK) / DEV_BSIZE); } static bool vn_dirty_blk(vm_page_t m, vm_ooffset_t offset) { KASSERT(IDX_TO_OFF(m->pindex) <= offset && offset < IDX_TO_OFF(m->pindex + 1), ("page %p pidx %ju offset %ju", m, (uintmax_t)m->pindex, (uintmax_t)offset)); return ((m->dirty & ((vm_page_bits_t)1 << vn_off2bidx(offset))) != 0); } /* * This is now called from local media FS's to operate against their * own vnodes if they fail to implement VOP_PUTPAGES. * * This is typically called indirectly via the pageout daemon and * clustering has already typically occurred, so in general we ask the * underlying filesystem to write the data out asynchronously rather * then delayed. */ int vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, int flags, int *rtvals) { vm_object_t object; vm_page_t m; vm_ooffset_t maxblksz, next_offset, poffset, prev_offset; struct uio auio; struct iovec aiov; off_t prev_resid, wrsz; int count, error, i, maxsize, ncount, pgoff, ppscheck; bool in_hole; static struct timeval lastfail; static int curfail; object = vp->v_object; count = bytecount / PAGE_SIZE; for (i = 0; i < count; i++) rtvals[i] = VM_PAGER_ERROR; if ((int64_t)ma[0]->pindex < 0) { printf("vnode_pager_generic_putpages: " "attempt to write meta-data 0x%jx(%lx)\n", (uintmax_t)ma[0]->pindex, (u_long)ma[0]->dirty); rtvals[0] = VM_PAGER_BAD; return (VM_PAGER_BAD); } maxsize = count * PAGE_SIZE; ncount = count; poffset = IDX_TO_OFF(ma[0]->pindex); /* * If the page-aligned write is larger then the actual file we * have to invalidate pages occurring beyond the file EOF. However, * there is an edge case where a file may not be page-aligned where * the last page is partially invalid. In this case the filesystem * may not properly clear the dirty bits for the entire page (which * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). * With the page locked we are free to fix-up the dirty bits here. * * We do not under any circumstances truncate the valid bits, as * this will screw up bogus page replacement. */ VM_OBJECT_RLOCK(object); if (maxsize + poffset > object->un_pager.vnp.vnp_size) { if (object->un_pager.vnp.vnp_size > poffset) { maxsize = object->un_pager.vnp.vnp_size - poffset; ncount = btoc(maxsize); if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { pgoff = roundup2(pgoff, DEV_BSIZE); /* * If the page is busy and the following * conditions hold, then the page's dirty * field cannot be concurrently changed by a * pmap operation. */ m = ma[ncount - 1]; vm_page_assert_sbusied(m); KASSERT(!pmap_page_is_write_mapped(m), ("vnode_pager_generic_putpages: page %p is not read-only", m)); MPASS(m->dirty != 0); vm_page_clear_dirty(m, pgoff, PAGE_SIZE - pgoff); } } else { maxsize = 0; ncount = 0; } for (i = ncount; i < count; i++) rtvals[i] = VM_PAGER_BAD; } VM_OBJECT_RUNLOCK(object); auio.uio_iov = &aiov; auio.uio_segflg = UIO_NOCOPY; auio.uio_rw = UIO_WRITE; auio.uio_td = NULL; maxblksz = roundup2(poffset + maxsize, DEV_BSIZE); for (prev_offset = poffset; prev_offset < maxblksz;) { /* Skip clean blocks. */ for (in_hole = true; in_hole && prev_offset < maxblksz;) { m = ma[OFF_TO_IDX(prev_offset - poffset)]; for (i = vn_off2bidx(prev_offset); i < sizeof(vm_page_bits_t) * NBBY && prev_offset < maxblksz; i++) { if (vn_dirty_blk(m, prev_offset)) { in_hole = false; break; } prev_offset += DEV_BSIZE; } } if (in_hole) goto write_done; /* Find longest run of dirty blocks. */ for (next_offset = prev_offset; next_offset < maxblksz;) { m = ma[OFF_TO_IDX(next_offset - poffset)]; for (i = vn_off2bidx(next_offset); i < sizeof(vm_page_bits_t) * NBBY && next_offset < maxblksz; i++) { if (!vn_dirty_blk(m, next_offset)) goto start_write; next_offset += DEV_BSIZE; } } start_write: if (next_offset > poffset + maxsize) next_offset = poffset + maxsize; /* * Getting here requires finding a dirty block in the * 'skip clean blocks' loop. */ MPASS(prev_offset < next_offset); aiov.iov_base = NULL; auio.uio_iovcnt = 1; auio.uio_offset = prev_offset; prev_resid = auio.uio_resid = aiov.iov_len = next_offset - prev_offset; error = VOP_WRITE(vp, &auio, vnode_pager_putpages_ioflags(flags), curthread->td_ucred); wrsz = prev_resid - auio.uio_resid; if (wrsz == 0) { if (ppsratecheck(&lastfail, &curfail, 1) != 0) { vn_printf(vp, "vnode_pager_putpages: " "zero-length write at %ju resid %zd\n", auio.uio_offset, auio.uio_resid); } break; } /* Adjust the starting offset for next iteration. */ prev_offset += wrsz; MPASS(auio.uio_offset == prev_offset); ppscheck = 0; if (error != 0 && (ppscheck = ppsratecheck(&lastfail, &curfail, 1)) != 0) vn_printf(vp, "vnode_pager_putpages: I/O error %d\n", error); if (auio.uio_resid != 0 && (ppscheck != 0 || ppsratecheck(&lastfail, &curfail, 1) != 0)) vn_printf(vp, "vnode_pager_putpages: residual I/O %zd " "at %ju\n", auio.uio_resid, (uintmax_t)ma[0]->pindex); if (error != 0 || auio.uio_resid != 0) break; } write_done: /* Mark completely processed pages. */ for (i = 0; i < OFF_TO_IDX(prev_offset - poffset); i++) rtvals[i] = VM_PAGER_OK; /* Mark partial EOF page. */ if (prev_offset == poffset + maxsize && (prev_offset & PAGE_MASK) != 0) rtvals[i++] = VM_PAGER_OK; /* Unwritten pages in range, free bonus if the page is clean. */ for (; i < ncount; i++) rtvals[i] = ma[i]->dirty == 0 ? VM_PAGER_OK : VM_PAGER_ERROR; VM_CNT_ADD(v_vnodepgsout, i); VM_CNT_INC(v_vnodeout); return (rtvals[0]); } int vnode_pager_putpages_ioflags(int pager_flags) { int ioflags; /* * Pageouts are already clustered, use IO_ASYNC to force a * bawrite() rather then a bdwrite() to prevent paging I/O * from saturating the buffer cache. Dummy-up the sequential * heuristic to cause large ranges to cluster. If neither * IO_SYNC or IO_ASYNC is set, the system decides how to * cluster. */ ioflags = IO_VMIO; if ((pager_flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) != 0) ioflags |= IO_SYNC; else if ((pager_flags & VM_PAGER_CLUSTER_OK) == 0) ioflags |= IO_ASYNC; ioflags |= (pager_flags & VM_PAGER_PUT_INVAL) != 0 ? IO_INVAL: 0; ioflags |= (pager_flags & VM_PAGER_PUT_NOREUSE) != 0 ? IO_NOREUSE : 0; ioflags |= IO_SEQMAX << IO_SEQSHIFT; return (ioflags); } /* * vnode_pager_undirty_pages(). * * A helper to mark pages as clean after pageout that was possibly * done with a short write. The lpos argument specifies the page run * length in bytes, and the written argument specifies how many bytes * were actually written. eof is the offset past the last valid byte * in the vnode using the absolute file position of the first byte in * the run as the base from which it is computed. */ void vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written, off_t eof, int lpos) { vm_object_t obj; int i, pos, pos_devb; if (written == 0 && eof >= lpos) return; obj = ma[0]->object; for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { if (pos < trunc_page(written)) { rtvals[i] = VM_PAGER_OK; vm_page_undirty(ma[i]); } else { /* Partially written page. */ rtvals[i] = VM_PAGER_AGAIN; vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); } } if (eof >= lpos) /* avoid truncation */ return; for (pos = eof, i = OFF_TO_IDX(trunc_page(pos)); pos < lpos; i++) { if (pos != trunc_page(pos)) { /* * The page contains the last valid byte in * the vnode, mark the rest of the page as * clean, potentially making the whole page * clean. */ pos_devb = roundup2(pos & PAGE_MASK, DEV_BSIZE); vm_page_clear_dirty(ma[i], pos_devb, PAGE_SIZE - pos_devb); /* * If the page was cleaned, report the pageout * on it as successful. msync() no longer * needs to write out the page, endlessly * creating write requests and dirty buffers. */ if (ma[i]->dirty == 0) rtvals[i] = VM_PAGER_OK; pos = round_page(pos); } else { /* vm_pageout_flush() clears dirty */ rtvals[i] = VM_PAGER_BAD; pos += PAGE_SIZE; } } } static void vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, vm_offset_t end) { struct vnode *vp; vm_ooffset_t old_wm; VM_OBJECT_WLOCK(object); if (object->type != OBJT_VNODE) { VM_OBJECT_WUNLOCK(object); return; } old_wm = object->un_pager.vnp.writemappings; object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; vp = object->handle; if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { ASSERT_VOP_LOCKED(vp, "v_writecount inc"); VOP_ADD_WRITECOUNT_CHECKED(vp, 1); CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", __func__, vp, vp->v_writecount); } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { ASSERT_VOP_LOCKED(vp, "v_writecount dec"); VOP_ADD_WRITECOUNT_CHECKED(vp, -1); CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", __func__, vp, vp->v_writecount); } VM_OBJECT_WUNLOCK(object); } static void vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, vm_offset_t end) { struct vnode *vp; struct mount *mp; vm_offset_t inc; VM_OBJECT_WLOCK(object); /* * First, recheck the object type to account for the race when * the vnode is reclaimed. */ if (object->type != OBJT_VNODE) { VM_OBJECT_WUNLOCK(object); return; } /* * Optimize for the case when writemappings is not going to * zero. */ inc = end - start; if (object->un_pager.vnp.writemappings != inc) { object->un_pager.vnp.writemappings -= inc; VM_OBJECT_WUNLOCK(object); return; } vp = object->handle; vhold(vp); VM_OBJECT_WUNLOCK(object); mp = NULL; vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_SHARED | LK_RETRY); /* * Decrement the object's writemappings, by swapping the start * and end arguments for vnode_pager_update_writecount(). If * there was not a race with vnode reclaimation, then the * vnode's v_writecount is decremented. */ vnode_pager_update_writecount(object, end, start); VOP_UNLOCK(vp); vdrop(vp); if (mp != NULL) vn_finished_write(mp); }