Index: head/contrib/llvm-project/clang/include/clang/Sema/Sema.h =================================================================== --- head/contrib/llvm-project/clang/include/clang/Sema/Sema.h (revision 359337) +++ head/contrib/llvm-project/clang/include/clang/Sema/Sema.h (revision 359338) @@ -1,12154 +1,12156 @@ //===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the Sema class, which performs semantic analysis and // builds ASTs. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_SEMA_H #define LLVM_CLANG_SEMA_SEMA_H #include "clang/AST/ASTConcept.h" #include "clang/AST/Attr.h" #include "clang/AST/Availability.h" #include "clang/AST/ComparisonCategories.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprConcepts.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/LocInfoType.h" #include "clang/AST/MangleNumberingContext.h" #include "clang/AST/NSAPI.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/TypeOrdering.h" #include "clang/Basic/BitmaskEnum.h" #include "clang/Basic/ExpressionTraits.h" #include "clang/Basic/Module.h" #include "clang/Basic/OpenMPKinds.h" #include "clang/Basic/PragmaKinds.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TemplateKinds.h" #include "clang/Basic/TypeTraits.h" #include "clang/Sema/AnalysisBasedWarnings.h" #include "clang/Sema/CleanupInfo.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/IdentifierResolver.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/Scope.h" #include "clang/Sema/SemaConcept.h" #include "clang/Sema/TypoCorrection.h" #include "clang/Sema/Weak.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/Frontend/OpenMP/OMPConstants.h" #include #include #include #include #include namespace llvm { class APSInt; template struct DenseMapInfo; template class DenseSet; class SmallBitVector; struct InlineAsmIdentifierInfo; } namespace clang { class ADLResult; class ASTConsumer; class ASTContext; class ASTMutationListener; class ASTReader; class ASTWriter; class ArrayType; class ParsedAttr; class BindingDecl; class BlockDecl; class CapturedDecl; class CXXBasePath; class CXXBasePaths; class CXXBindTemporaryExpr; typedef SmallVector CXXCastPath; class CXXConstructorDecl; class CXXConversionDecl; class CXXDeleteExpr; class CXXDestructorDecl; class CXXFieldCollector; class CXXMemberCallExpr; class CXXMethodDecl; class CXXScopeSpec; class CXXTemporary; class CXXTryStmt; class CallExpr; class ClassTemplateDecl; class ClassTemplatePartialSpecializationDecl; class ClassTemplateSpecializationDecl; class VarTemplatePartialSpecializationDecl; class CodeCompleteConsumer; class CodeCompletionAllocator; class CodeCompletionTUInfo; class CodeCompletionResult; class CoroutineBodyStmt; class Decl; class DeclAccessPair; class DeclContext; class DeclRefExpr; class DeclaratorDecl; class DeducedTemplateArgument; class DependentDiagnostic; class DesignatedInitExpr; class Designation; class EnableIfAttr; class EnumConstantDecl; class Expr; class ExtVectorType; class FormatAttr; class FriendDecl; class FunctionDecl; class FunctionProtoType; class FunctionTemplateDecl; class ImplicitConversionSequence; typedef MutableArrayRef ConversionSequenceList; class InitListExpr; class InitializationKind; class InitializationSequence; class InitializedEntity; class IntegerLiteral; class LabelStmt; class LambdaExpr; class LangOptions; class LocalInstantiationScope; class LookupResult; class MacroInfo; typedef ArrayRef> ModuleIdPath; class ModuleLoader; class MultiLevelTemplateArgumentList; class NamedDecl; class ObjCCategoryDecl; class ObjCCategoryImplDecl; class ObjCCompatibleAliasDecl; class ObjCContainerDecl; class ObjCImplDecl; class ObjCImplementationDecl; class ObjCInterfaceDecl; class ObjCIvarDecl; template class ObjCList; class ObjCMessageExpr; class ObjCMethodDecl; class ObjCPropertyDecl; class ObjCProtocolDecl; class OMPThreadPrivateDecl; class OMPRequiresDecl; class OMPDeclareReductionDecl; class OMPDeclareSimdDecl; class OMPClause; struct OMPVarListLocTy; struct OverloadCandidate; enum class OverloadCandidateParamOrder : char; enum OverloadCandidateRewriteKind : unsigned; class OverloadCandidateSet; class OverloadExpr; class ParenListExpr; class ParmVarDecl; class Preprocessor; class PseudoDestructorTypeStorage; class PseudoObjectExpr; class QualType; class StandardConversionSequence; class Stmt; class StringLiteral; class SwitchStmt; class TemplateArgument; class TemplateArgumentList; class TemplateArgumentLoc; class TemplateDecl; class TemplateInstantiationCallback; class TemplateParameterList; class TemplatePartialOrderingContext; class TemplateTemplateParmDecl; class Token; class TypeAliasDecl; class TypedefDecl; class TypedefNameDecl; class TypeLoc; class TypoCorrectionConsumer; class UnqualifiedId; class UnresolvedLookupExpr; class UnresolvedMemberExpr; class UnresolvedSetImpl; class UnresolvedSetIterator; class UsingDecl; class UsingShadowDecl; class ValueDecl; class VarDecl; class VarTemplateSpecializationDecl; class VisibilityAttr; class VisibleDeclConsumer; class IndirectFieldDecl; struct DeductionFailureInfo; class TemplateSpecCandidateSet; namespace sema { class AccessedEntity; class BlockScopeInfo; class Capture; class CapturedRegionScopeInfo; class CapturingScopeInfo; class CompoundScopeInfo; class DelayedDiagnostic; class DelayedDiagnosticPool; class FunctionScopeInfo; class LambdaScopeInfo; class PossiblyUnreachableDiag; class SemaPPCallbacks; class TemplateDeductionInfo; } namespace threadSafety { class BeforeSet; void threadSafetyCleanup(BeforeSet* Cache); } // FIXME: No way to easily map from TemplateTypeParmTypes to // TemplateTypeParmDecls, so we have this horrible PointerUnion. typedef std::pair, SourceLocation> UnexpandedParameterPack; /// Describes whether we've seen any nullability information for the given /// file. struct FileNullability { /// The first pointer declarator (of any pointer kind) in the file that does /// not have a corresponding nullability annotation. SourceLocation PointerLoc; /// The end location for the first pointer declarator in the file. Used for /// placing fix-its. SourceLocation PointerEndLoc; /// Which kind of pointer declarator we saw. uint8_t PointerKind; /// Whether we saw any type nullability annotations in the given file. bool SawTypeNullability = false; }; /// A mapping from file IDs to a record of whether we've seen nullability /// information in that file. class FileNullabilityMap { /// A mapping from file IDs to the nullability information for each file ID. llvm::DenseMap Map; /// A single-element cache based on the file ID. struct { FileID File; FileNullability Nullability; } Cache; public: FileNullability &operator[](FileID file) { // Check the single-element cache. if (file == Cache.File) return Cache.Nullability; // It's not in the single-element cache; flush the cache if we have one. if (!Cache.File.isInvalid()) { Map[Cache.File] = Cache.Nullability; } // Pull this entry into the cache. Cache.File = file; Cache.Nullability = Map[file]; return Cache.Nullability; } }; /// Keeps track of expected type during expression parsing. The type is tied to /// a particular token, all functions that update or consume the type take a /// start location of the token they are looking at as a parameter. This allows /// to avoid updating the type on hot paths in the parser. class PreferredTypeBuilder { public: PreferredTypeBuilder() = default; explicit PreferredTypeBuilder(QualType Type) : Type(Type) {} void enterCondition(Sema &S, SourceLocation Tok); void enterReturn(Sema &S, SourceLocation Tok); void enterVariableInit(SourceLocation Tok, Decl *D); /// Computing a type for the function argument may require running /// overloading, so we postpone its computation until it is actually needed. /// /// Clients should be very careful when using this funciton, as it stores a /// function_ref, clients should make sure all calls to get() with the same /// location happen while function_ref is alive. void enterFunctionArgument(SourceLocation Tok, llvm::function_ref ComputeType); void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc); void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind, SourceLocation OpLoc); void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op); void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base); void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS); /// Handles all type casts, including C-style cast, C++ casts, etc. void enterTypeCast(SourceLocation Tok, QualType CastType); QualType get(SourceLocation Tok) const { if (Tok != ExpectedLoc) return QualType(); if (!Type.isNull()) return Type; if (ComputeType) return ComputeType(); return QualType(); } private: /// Start position of a token for which we store expected type. SourceLocation ExpectedLoc; /// Expected type for a token starting at ExpectedLoc. QualType Type; /// A function to compute expected type at ExpectedLoc. It is only considered /// if Type is null. llvm::function_ref ComputeType; }; /// Sema - This implements semantic analysis and AST building for C. class Sema final { Sema(const Sema &) = delete; void operator=(const Sema &) = delete; /// A key method to reduce duplicate debug info from Sema. virtual void anchor(); ///Source of additional semantic information. ExternalSemaSource *ExternalSource; ///Whether Sema has generated a multiplexer and has to delete it. bool isMultiplexExternalSource; static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD); bool isVisibleSlow(const NamedDecl *D); /// Determine whether two declarations should be linked together, given that /// the old declaration might not be visible and the new declaration might /// not have external linkage. bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old, const NamedDecl *New) { if (isVisible(Old)) return true; // See comment in below overload for why it's safe to compute the linkage // of the new declaration here. if (New->isExternallyDeclarable()) { assert(Old->isExternallyDeclarable() && "should not have found a non-externally-declarable previous decl"); return true; } return false; } bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New); void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, QualType ResultTy, ArrayRef Args); public: typedef OpaquePtr DeclGroupPtrTy; typedef OpaquePtr TemplateTy; typedef OpaquePtr TypeTy; OpenCLOptions OpenCLFeatures; FPOptions FPFeatures; const LangOptions &LangOpts; Preprocessor &PP; ASTContext &Context; ASTConsumer &Consumer; DiagnosticsEngine &Diags; SourceManager &SourceMgr; /// Flag indicating whether or not to collect detailed statistics. bool CollectStats; /// Code-completion consumer. CodeCompleteConsumer *CodeCompleter; /// CurContext - This is the current declaration context of parsing. DeclContext *CurContext; /// Generally null except when we temporarily switch decl contexts, /// like in \see ActOnObjCTemporaryExitContainerContext. DeclContext *OriginalLexicalContext; /// VAListTagName - The declaration name corresponding to __va_list_tag. /// This is used as part of a hack to omit that class from ADL results. DeclarationName VAListTagName; bool MSStructPragmaOn; // True when \#pragma ms_struct on /// Controls member pointer representation format under the MS ABI. LangOptions::PragmaMSPointersToMembersKind MSPointerToMemberRepresentationMethod; /// Stack of active SEH __finally scopes. Can be empty. SmallVector CurrentSEHFinally; /// Source location for newly created implicit MSInheritanceAttrs SourceLocation ImplicitMSInheritanceAttrLoc; /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by /// `TransformTypos` in order to keep track of any TypoExprs that are created /// recursively during typo correction and wipe them away if the correction /// fails. llvm::SmallVector TypoExprs; /// pragma clang section kind enum PragmaClangSectionKind { PCSK_Invalid = 0, PCSK_BSS = 1, PCSK_Data = 2, PCSK_Rodata = 3, PCSK_Text = 4, PCSK_Relro = 5 }; enum PragmaClangSectionAction { PCSA_Set = 0, PCSA_Clear = 1 }; struct PragmaClangSection { std::string SectionName; bool Valid = false; SourceLocation PragmaLocation; void Act(SourceLocation PragmaLocation, PragmaClangSectionAction Action, StringLiteral* Name); }; PragmaClangSection PragmaClangBSSSection; PragmaClangSection PragmaClangDataSection; PragmaClangSection PragmaClangRodataSection; PragmaClangSection PragmaClangRelroSection; PragmaClangSection PragmaClangTextSection; enum PragmaMsStackAction { PSK_Reset = 0x0, // #pragma () PSK_Set = 0x1, // #pragma (value) PSK_Push = 0x2, // #pragma (push[, id]) PSK_Pop = 0x4, // #pragma (pop[, id]) PSK_Show = 0x8, // #pragma (show) -- only for "pack"! PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value) PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value) }; template struct PragmaStack { struct Slot { llvm::StringRef StackSlotLabel; ValueType Value; SourceLocation PragmaLocation; SourceLocation PragmaPushLocation; Slot(llvm::StringRef StackSlotLabel, ValueType Value, SourceLocation PragmaLocation, SourceLocation PragmaPushLocation) : StackSlotLabel(StackSlotLabel), Value(Value), PragmaLocation(PragmaLocation), PragmaPushLocation(PragmaPushLocation) {} }; void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action, llvm::StringRef StackSlotLabel, ValueType Value); // MSVC seems to add artificial slots to #pragma stacks on entering a C++ // method body to restore the stacks on exit, so it works like this: // // struct S { // #pragma (push, InternalPragmaSlot, ) // void Method {} // #pragma (pop, InternalPragmaSlot) // }; // // It works even with #pragma vtordisp, although MSVC doesn't support // #pragma vtordisp(push [, id], n) // syntax. // // Push / pop a named sentinel slot. void SentinelAction(PragmaMsStackAction Action, StringRef Label) { assert((Action == PSK_Push || Action == PSK_Pop) && "Can only push / pop #pragma stack sentinels!"); Act(CurrentPragmaLocation, Action, Label, CurrentValue); } // Constructors. explicit PragmaStack(const ValueType &Default) : DefaultValue(Default), CurrentValue(Default) {} bool hasValue() const { return CurrentValue != DefaultValue; } SmallVector Stack; ValueType DefaultValue; // Value used for PSK_Reset action. ValueType CurrentValue; SourceLocation CurrentPragmaLocation; }; // FIXME: We should serialize / deserialize these if they occur in a PCH (but // we shouldn't do so if they're in a module). /// Whether to insert vtordisps prior to virtual bases in the Microsoft /// C++ ABI. Possible values are 0, 1, and 2, which mean: /// /// 0: Suppress all vtordisps /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial /// structors /// 2: Always insert vtordisps to support RTTI on partially constructed /// objects PragmaStack VtorDispStack; // #pragma pack. // Sentinel to represent when the stack is set to mac68k alignment. static const unsigned kMac68kAlignmentSentinel = ~0U; PragmaStack PackStack; // The current #pragma pack values and locations at each #include. struct PackIncludeState { unsigned CurrentValue; SourceLocation CurrentPragmaLocation; bool HasNonDefaultValue, ShouldWarnOnInclude; }; SmallVector PackIncludeStack; // Segment #pragmas. PragmaStack DataSegStack; PragmaStack BSSSegStack; PragmaStack ConstSegStack; PragmaStack CodeSegStack; // RAII object to push / pop sentinel slots for all MS #pragma stacks. // Actions should be performed only if we enter / exit a C++ method body. class PragmaStackSentinelRAII { public: PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct); ~PragmaStackSentinelRAII(); private: Sema &S; StringRef SlotLabel; bool ShouldAct; }; /// A mapping that describes the nullability we've seen in each header file. FileNullabilityMap NullabilityMap; /// Last section used with #pragma init_seg. StringLiteral *CurInitSeg; SourceLocation CurInitSegLoc; /// VisContext - Manages the stack for \#pragma GCC visibility. void *VisContext; // Really a "PragmaVisStack*" /// This an attribute introduced by \#pragma clang attribute. struct PragmaAttributeEntry { SourceLocation Loc; ParsedAttr *Attribute; SmallVector MatchRules; bool IsUsed; }; /// A push'd group of PragmaAttributeEntries. struct PragmaAttributeGroup { /// The location of the push attribute. SourceLocation Loc; /// The namespace of this push group. const IdentifierInfo *Namespace; SmallVector Entries; }; SmallVector PragmaAttributeStack; /// The declaration that is currently receiving an attribute from the /// #pragma attribute stack. const Decl *PragmaAttributeCurrentTargetDecl; /// This represents the last location of a "#pragma clang optimize off" /// directive if such a directive has not been closed by an "on" yet. If /// optimizations are currently "on", this is set to an invalid location. SourceLocation OptimizeOffPragmaLocation; /// Flag indicating if Sema is building a recovery call expression. /// /// This flag is used to avoid building recovery call expressions /// if Sema is already doing so, which would cause infinite recursions. bool IsBuildingRecoveryCallExpr; /// Used to control the generation of ExprWithCleanups. CleanupInfo Cleanup; /// ExprCleanupObjects - This is the stack of objects requiring /// cleanup that are created by the current full expression. The /// element type here is ExprWithCleanups::Object. SmallVector ExprCleanupObjects; /// Store a set of either DeclRefExprs or MemberExprs that contain a reference /// to a variable (constant) that may or may not be odr-used in this Expr, and /// we won't know until all lvalue-to-rvalue and discarded value conversions /// have been applied to all subexpressions of the enclosing full expression. /// This is cleared at the end of each full expression. using MaybeODRUseExprSet = llvm::SmallPtrSet; MaybeODRUseExprSet MaybeODRUseExprs; std::unique_ptr CachedFunctionScope; /// Stack containing information about each of the nested /// function, block, and method scopes that are currently active. SmallVector FunctionScopes; /// The index of the first FunctionScope that corresponds to the current /// context. unsigned FunctionScopesStart = 0; ArrayRef getFunctionScopes() const { return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart, FunctionScopes.end()); } /// Stack containing information needed when in C++2a an 'auto' is encountered /// in a function declaration parameter type specifier in order to invent a /// corresponding template parameter in the enclosing abbreviated function /// template. This information is also present in LambdaScopeInfo, stored in /// the FunctionScopes stack. SmallVector InventedParameterInfos; /// The index of the first InventedParameterInfo that refers to the current /// context. unsigned InventedParameterInfosStart = 0; ArrayRef getInventedParameterInfos() const { return llvm::makeArrayRef(InventedParameterInfos.begin() + InventedParameterInfosStart, InventedParameterInfos.end()); } typedef LazyVector ExtVectorDeclsType; /// ExtVectorDecls - This is a list all the extended vector types. This allows /// us to associate a raw vector type with one of the ext_vector type names. /// This is only necessary for issuing pretty diagnostics. ExtVectorDeclsType ExtVectorDecls; /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes. std::unique_ptr FieldCollector; typedef llvm::SmallSetVector NamedDeclSetType; /// Set containing all declared private fields that are not used. NamedDeclSetType UnusedPrivateFields; /// Set containing all typedefs that are likely unused. llvm::SmallSetVector UnusedLocalTypedefNameCandidates; /// Delete-expressions to be analyzed at the end of translation unit /// /// This list contains class members, and locations of delete-expressions /// that could not be proven as to whether they mismatch with new-expression /// used in initializer of the field. typedef std::pair DeleteExprLoc; typedef llvm::SmallVector DeleteLocs; llvm::MapVector DeleteExprs; typedef llvm::SmallPtrSet RecordDeclSetTy; /// PureVirtualClassDiagSet - a set of class declarations which we have /// emitted a list of pure virtual functions. Used to prevent emitting the /// same list more than once. std::unique_ptr PureVirtualClassDiagSet; /// ParsingInitForAutoVars - a set of declarations with auto types for which /// we are currently parsing the initializer. llvm::SmallPtrSet ParsingInitForAutoVars; /// Look for a locally scoped extern "C" declaration by the given name. NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name); typedef LazyVector TentativeDefinitionsType; /// All the tentative definitions encountered in the TU. TentativeDefinitionsType TentativeDefinitions; /// All the external declarations encoutered and used in the TU. SmallVector ExternalDeclarations; typedef LazyVector UnusedFileScopedDeclsType; /// The set of file scoped decls seen so far that have not been used /// and must warn if not used. Only contains the first declaration. UnusedFileScopedDeclsType UnusedFileScopedDecls; typedef LazyVector DelegatingCtorDeclsType; /// All the delegating constructors seen so far in the file, used for /// cycle detection at the end of the TU. DelegatingCtorDeclsType DelegatingCtorDecls; /// All the overriding functions seen during a class definition /// that had their exception spec checks delayed, plus the overridden /// function. SmallVector, 2> DelayedOverridingExceptionSpecChecks; /// All the function redeclarations seen during a class definition that had /// their exception spec checks delayed, plus the prior declaration they /// should be checked against. Except during error recovery, the new decl /// should always be a friend declaration, as that's the only valid way to /// redeclare a special member before its class is complete. SmallVector, 2> DelayedEquivalentExceptionSpecChecks; typedef llvm::MapVector> LateParsedTemplateMapT; LateParsedTemplateMapT LateParsedTemplateMap; /// Callback to the parser to parse templated functions when needed. typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT); typedef void LateTemplateParserCleanupCB(void *P); LateTemplateParserCB *LateTemplateParser; LateTemplateParserCleanupCB *LateTemplateParserCleanup; void *OpaqueParser; void SetLateTemplateParser(LateTemplateParserCB *LTP, LateTemplateParserCleanupCB *LTPCleanup, void *P) { LateTemplateParser = LTP; LateTemplateParserCleanup = LTPCleanup; OpaqueParser = P; } class DelayedDiagnostics; class DelayedDiagnosticsState { sema::DelayedDiagnosticPool *SavedPool; friend class Sema::DelayedDiagnostics; }; typedef DelayedDiagnosticsState ParsingDeclState; typedef DelayedDiagnosticsState ProcessingContextState; /// A class which encapsulates the logic for delaying diagnostics /// during parsing and other processing. class DelayedDiagnostics { /// The current pool of diagnostics into which delayed /// diagnostics should go. sema::DelayedDiagnosticPool *CurPool; public: DelayedDiagnostics() : CurPool(nullptr) {} /// Adds a delayed diagnostic. void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h /// Determines whether diagnostics should be delayed. bool shouldDelayDiagnostics() { return CurPool != nullptr; } /// Returns the current delayed-diagnostics pool. sema::DelayedDiagnosticPool *getCurrentPool() const { return CurPool; } /// Enter a new scope. Access and deprecation diagnostics will be /// collected in this pool. DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) { DelayedDiagnosticsState state; state.SavedPool = CurPool; CurPool = &pool; return state; } /// Leave a delayed-diagnostic state that was previously pushed. /// Do not emit any of the diagnostics. This is performed as part /// of the bookkeeping of popping a pool "properly". void popWithoutEmitting(DelayedDiagnosticsState state) { CurPool = state.SavedPool; } /// Enter a new scope where access and deprecation diagnostics are /// not delayed. DelayedDiagnosticsState pushUndelayed() { DelayedDiagnosticsState state; state.SavedPool = CurPool; CurPool = nullptr; return state; } /// Undo a previous pushUndelayed(). void popUndelayed(DelayedDiagnosticsState state) { assert(CurPool == nullptr); CurPool = state.SavedPool; } } DelayedDiagnostics; /// A RAII object to temporarily push a declaration context. class ContextRAII { private: Sema &S; DeclContext *SavedContext; ProcessingContextState SavedContextState; QualType SavedCXXThisTypeOverride; unsigned SavedFunctionScopesStart; unsigned SavedInventedParameterInfosStart; public: ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true) : S(S), SavedContext(S.CurContext), SavedContextState(S.DelayedDiagnostics.pushUndelayed()), SavedCXXThisTypeOverride(S.CXXThisTypeOverride), SavedFunctionScopesStart(S.FunctionScopesStart), SavedInventedParameterInfosStart(S.InventedParameterInfosStart) { assert(ContextToPush && "pushing null context"); S.CurContext = ContextToPush; if (NewThisContext) S.CXXThisTypeOverride = QualType(); // Any saved FunctionScopes do not refer to this context. S.FunctionScopesStart = S.FunctionScopes.size(); S.InventedParameterInfosStart = S.InventedParameterInfos.size(); } void pop() { if (!SavedContext) return; S.CurContext = SavedContext; S.DelayedDiagnostics.popUndelayed(SavedContextState); S.CXXThisTypeOverride = SavedCXXThisTypeOverride; S.FunctionScopesStart = SavedFunctionScopesStart; S.InventedParameterInfosStart = SavedInventedParameterInfosStart; SavedContext = nullptr; } ~ContextRAII() { pop(); } }; /// Used to change context to isConstantEvaluated without pushing a heavy /// ExpressionEvaluationContextRecord object. bool isConstantEvaluatedOverride; bool isConstantEvaluated() { return ExprEvalContexts.back().isConstantEvaluated() || isConstantEvaluatedOverride; } /// RAII object to handle the state changes required to synthesize /// a function body. class SynthesizedFunctionScope { Sema &S; Sema::ContextRAII SavedContext; bool PushedCodeSynthesisContext = false; public: SynthesizedFunctionScope(Sema &S, DeclContext *DC) : S(S), SavedContext(S, DC) { S.PushFunctionScope(); S.PushExpressionEvaluationContext( Sema::ExpressionEvaluationContext::PotentiallyEvaluated); if (auto *FD = dyn_cast(DC)) FD->setWillHaveBody(true); else assert(isa(DC)); } void addContextNote(SourceLocation UseLoc) { assert(!PushedCodeSynthesisContext); Sema::CodeSynthesisContext Ctx; Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction; Ctx.PointOfInstantiation = UseLoc; Ctx.Entity = cast(S.CurContext); S.pushCodeSynthesisContext(Ctx); PushedCodeSynthesisContext = true; } ~SynthesizedFunctionScope() { if (PushedCodeSynthesisContext) S.popCodeSynthesisContext(); if (auto *FD = dyn_cast(S.CurContext)) FD->setWillHaveBody(false); S.PopExpressionEvaluationContext(); S.PopFunctionScopeInfo(); } }; /// WeakUndeclaredIdentifiers - Identifiers contained in /// \#pragma weak before declared. rare. may alias another /// identifier, declared or undeclared llvm::MapVector WeakUndeclaredIdentifiers; /// ExtnameUndeclaredIdentifiers - Identifiers contained in /// \#pragma redefine_extname before declared. Used in Solaris system headers /// to define functions that occur in multiple standards to call the version /// in the currently selected standard. llvm::DenseMap ExtnameUndeclaredIdentifiers; /// Load weak undeclared identifiers from the external source. void LoadExternalWeakUndeclaredIdentifiers(); /// WeakTopLevelDecl - Translation-unit scoped declarations generated by /// \#pragma weak during processing of other Decls. /// I couldn't figure out a clean way to generate these in-line, so /// we store them here and handle separately -- which is a hack. /// It would be best to refactor this. SmallVector WeakTopLevelDecl; IdentifierResolver IdResolver; /// Translation Unit Scope - useful to Objective-C actions that need /// to lookup file scope declarations in the "ordinary" C decl namespace. /// For example, user-defined classes, built-in "id" type, etc. Scope *TUScope; /// The C++ "std" namespace, where the standard library resides. LazyDeclPtr StdNamespace; /// The C++ "std::bad_alloc" class, which is defined by the C++ /// standard library. LazyDeclPtr StdBadAlloc; /// The C++ "std::align_val_t" enum class, which is defined by the C++ /// standard library. LazyDeclPtr StdAlignValT; /// The C++ "std::experimental" namespace, where the experimental parts /// of the standard library resides. NamespaceDecl *StdExperimentalNamespaceCache; /// The C++ "std::initializer_list" template, which is defined in /// \. ClassTemplateDecl *StdInitializerList; /// The C++ "std::coroutine_traits" template, which is defined in /// \ ClassTemplateDecl *StdCoroutineTraitsCache; /// The C++ "type_info" declaration, which is defined in \. RecordDecl *CXXTypeInfoDecl; /// The MSVC "_GUID" struct, which is defined in MSVC header files. RecordDecl *MSVCGuidDecl; /// Caches identifiers/selectors for NSFoundation APIs. std::unique_ptr NSAPIObj; /// The declaration of the Objective-C NSNumber class. ObjCInterfaceDecl *NSNumberDecl; /// The declaration of the Objective-C NSValue class. ObjCInterfaceDecl *NSValueDecl; /// Pointer to NSNumber type (NSNumber *). QualType NSNumberPointer; /// Pointer to NSValue type (NSValue *). QualType NSValuePointer; /// The Objective-C NSNumber methods used to create NSNumber literals. ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods]; /// The declaration of the Objective-C NSString class. ObjCInterfaceDecl *NSStringDecl; /// Pointer to NSString type (NSString *). QualType NSStringPointer; /// The declaration of the stringWithUTF8String: method. ObjCMethodDecl *StringWithUTF8StringMethod; /// The declaration of the valueWithBytes:objCType: method. ObjCMethodDecl *ValueWithBytesObjCTypeMethod; /// The declaration of the Objective-C NSArray class. ObjCInterfaceDecl *NSArrayDecl; /// The declaration of the arrayWithObjects:count: method. ObjCMethodDecl *ArrayWithObjectsMethod; /// The declaration of the Objective-C NSDictionary class. ObjCInterfaceDecl *NSDictionaryDecl; /// The declaration of the dictionaryWithObjects:forKeys:count: method. ObjCMethodDecl *DictionaryWithObjectsMethod; /// id type. QualType QIDNSCopying; /// will hold 'respondsToSelector:' Selector RespondsToSelectorSel; /// A flag to remember whether the implicit forms of operator new and delete /// have been declared. bool GlobalNewDeleteDeclared; /// A flag to indicate that we're in a context that permits abstract /// references to fields. This is really a bool AllowAbstractFieldReference; /// Describes how the expressions currently being parsed are /// evaluated at run-time, if at all. enum class ExpressionEvaluationContext { /// The current expression and its subexpressions occur within an /// unevaluated operand (C++11 [expr]p7), such as the subexpression of /// \c sizeof, where the type of the expression may be significant but /// no code will be generated to evaluate the value of the expression at /// run time. Unevaluated, /// The current expression occurs within a braced-init-list within /// an unevaluated operand. This is mostly like a regular unevaluated /// context, except that we still instantiate constexpr functions that are /// referenced here so that we can perform narrowing checks correctly. UnevaluatedList, /// The current expression occurs within a discarded statement. /// This behaves largely similarly to an unevaluated operand in preventing /// definitions from being required, but not in other ways. DiscardedStatement, /// The current expression occurs within an unevaluated /// operand that unconditionally permits abstract references to /// fields, such as a SIZE operator in MS-style inline assembly. UnevaluatedAbstract, /// The current context is "potentially evaluated" in C++11 terms, /// but the expression is evaluated at compile-time (like the values of /// cases in a switch statement). ConstantEvaluated, /// The current expression is potentially evaluated at run time, /// which means that code may be generated to evaluate the value of the /// expression at run time. PotentiallyEvaluated, /// The current expression is potentially evaluated, but any /// declarations referenced inside that expression are only used if /// in fact the current expression is used. /// /// This value is used when parsing default function arguments, for which /// we would like to provide diagnostics (e.g., passing non-POD arguments /// through varargs) but do not want to mark declarations as "referenced" /// until the default argument is used. PotentiallyEvaluatedIfUsed }; /// Data structure used to record current or nested /// expression evaluation contexts. struct ExpressionEvaluationContextRecord { /// The expression evaluation context. ExpressionEvaluationContext Context; /// Whether the enclosing context needed a cleanup. CleanupInfo ParentCleanup; /// Whether we are in a decltype expression. bool IsDecltype; /// The number of active cleanup objects when we entered /// this expression evaluation context. unsigned NumCleanupObjects; /// The number of typos encountered during this expression evaluation /// context (i.e. the number of TypoExprs created). unsigned NumTypos; MaybeODRUseExprSet SavedMaybeODRUseExprs; /// The lambdas that are present within this context, if it /// is indeed an unevaluated context. SmallVector Lambdas; /// The declaration that provides context for lambda expressions /// and block literals if the normal declaration context does not /// suffice, e.g., in a default function argument. Decl *ManglingContextDecl; /// If we are processing a decltype type, a set of call expressions /// for which we have deferred checking the completeness of the return type. SmallVector DelayedDecltypeCalls; /// If we are processing a decltype type, a set of temporary binding /// expressions for which we have deferred checking the destructor. SmallVector DelayedDecltypeBinds; llvm::SmallPtrSet PossibleDerefs; /// Expressions appearing as the LHS of a volatile assignment in this /// context. We produce a warning for these when popping the context if /// they are not discarded-value expressions nor unevaluated operands. SmallVector VolatileAssignmentLHSs; /// \brief Describes whether we are in an expression constext which we have /// to handle differently. enum ExpressionKind { EK_Decltype, EK_TemplateArgument, EK_Other } ExprContext; ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context, unsigned NumCleanupObjects, CleanupInfo ParentCleanup, Decl *ManglingContextDecl, ExpressionKind ExprContext) : Context(Context), ParentCleanup(ParentCleanup), NumCleanupObjects(NumCleanupObjects), NumTypos(0), ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {} bool isUnevaluated() const { return Context == ExpressionEvaluationContext::Unevaluated || Context == ExpressionEvaluationContext::UnevaluatedAbstract || Context == ExpressionEvaluationContext::UnevaluatedList; } bool isConstantEvaluated() const { return Context == ExpressionEvaluationContext::ConstantEvaluated; } }; /// A stack of expression evaluation contexts. SmallVector ExprEvalContexts; /// Emit a warning for all pending noderef expressions that we recorded. void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec); /// Compute the mangling number context for a lambda expression or /// block literal. Also return the extra mangling decl if any. /// /// \param DC - The DeclContext containing the lambda expression or /// block literal. std::tuple getCurrentMangleNumberContext(const DeclContext *DC); /// SpecialMemberOverloadResult - The overloading result for a special member /// function. /// /// This is basically a wrapper around PointerIntPair. The lowest bits of the /// integer are used to determine whether overload resolution succeeded. class SpecialMemberOverloadResult { public: enum Kind { NoMemberOrDeleted, Ambiguous, Success }; private: llvm::PointerIntPair Pair; public: SpecialMemberOverloadResult() : Pair() {} SpecialMemberOverloadResult(CXXMethodDecl *MD) : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {} CXXMethodDecl *getMethod() const { return Pair.getPointer(); } void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); } Kind getKind() const { return static_cast(Pair.getInt()); } void setKind(Kind K) { Pair.setInt(K); } }; class SpecialMemberOverloadResultEntry : public llvm::FastFoldingSetNode, public SpecialMemberOverloadResult { public: SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID) : FastFoldingSetNode(ID) {} }; /// A cache of special member function overload resolution results /// for C++ records. llvm::FoldingSet SpecialMemberCache; /// A cache of the flags available in enumerations with the flag_bits /// attribute. mutable llvm::DenseMap FlagBitsCache; /// The kind of translation unit we are processing. /// /// When we're processing a complete translation unit, Sema will perform /// end-of-translation-unit semantic tasks (such as creating /// initializers for tentative definitions in C) once parsing has /// completed. Modules and precompiled headers perform different kinds of /// checks. TranslationUnitKind TUKind; llvm::BumpPtrAllocator BumpAlloc; /// The number of SFINAE diagnostics that have been trapped. unsigned NumSFINAEErrors; typedef llvm::DenseMap> UnparsedDefaultArgInstantiationsMap; /// A mapping from parameters with unparsed default arguments to the /// set of instantiations of each parameter. /// /// This mapping is a temporary data structure used when parsing /// nested class templates or nested classes of class templates, /// where we might end up instantiating an inner class before the /// default arguments of its methods have been parsed. UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations; // Contains the locations of the beginning of unparsed default // argument locations. llvm::DenseMap UnparsedDefaultArgLocs; /// UndefinedInternals - all the used, undefined objects which require a /// definition in this translation unit. llvm::MapVector UndefinedButUsed; /// Determine if VD, which must be a variable or function, is an external /// symbol that nonetheless can't be referenced from outside this translation /// unit because its type has no linkage and it's not extern "C". bool isExternalWithNoLinkageType(ValueDecl *VD); /// Obtain a sorted list of functions that are undefined but ODR-used. void getUndefinedButUsed( SmallVectorImpl > &Undefined); /// Retrieves list of suspicious delete-expressions that will be checked at /// the end of translation unit. const llvm::MapVector & getMismatchingDeleteExpressions() const; typedef std::pair GlobalMethods; typedef llvm::DenseMap GlobalMethodPool; /// Method Pool - allows efficient lookup when typechecking messages to "id". /// We need to maintain a list, since selectors can have differing signatures /// across classes. In Cocoa, this happens to be extremely uncommon (only 1% /// of selectors are "overloaded"). /// At the head of the list it is recorded whether there were 0, 1, or >= 2 /// methods inside categories with a particular selector. GlobalMethodPool MethodPool; /// Method selectors used in a \@selector expression. Used for implementation /// of -Wselector. llvm::MapVector ReferencedSelectors; /// List of SourceLocations where 'self' is implicitly retained inside a /// block. llvm::SmallVector, 1> ImplicitlyRetainedSelfLocs; /// Kinds of C++ special members. enum CXXSpecialMember { CXXDefaultConstructor, CXXCopyConstructor, CXXMoveConstructor, CXXCopyAssignment, CXXMoveAssignment, CXXDestructor, CXXInvalid }; typedef llvm::PointerIntPair SpecialMemberDecl; /// The C++ special members which we are currently in the process of /// declaring. If this process recursively triggers the declaration of the /// same special member, we should act as if it is not yet declared. llvm::SmallPtrSet SpecialMembersBeingDeclared; /// Kinds of defaulted comparison operator functions. enum class DefaultedComparisonKind : unsigned char { /// This is not a defaultable comparison operator. None, /// This is an operator== that should be implemented as a series of /// subobject comparisons. Equal, /// This is an operator<=> that should be implemented as a series of /// subobject comparisons. ThreeWay, /// This is an operator!= that should be implemented as a rewrite in terms /// of a == comparison. NotEqual, /// This is an <, <=, >, or >= that should be implemented as a rewrite in /// terms of a <=> comparison. Relational, }; /// The function definitions which were renamed as part of typo-correction /// to match their respective declarations. We want to keep track of them /// to ensure that we don't emit a "redefinition" error if we encounter a /// correctly named definition after the renamed definition. llvm::SmallPtrSet TypoCorrectedFunctionDefinitions; /// Stack of types that correspond to the parameter entities that are /// currently being copy-initialized. Can be empty. llvm::SmallVector CurrentParameterCopyTypes; void ReadMethodPool(Selector Sel); void updateOutOfDateSelector(Selector Sel); /// Private Helper predicate to check for 'self'. bool isSelfExpr(Expr *RExpr); bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method); /// Cause the active diagnostic on the DiagosticsEngine to be /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and /// should not be used elsewhere. void EmitCurrentDiagnostic(unsigned DiagID); /// Records and restores the FP_CONTRACT state on entry/exit of compound /// statements. class FPContractStateRAII { public: FPContractStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.FPFeatures) {} ~FPContractStateRAII() { S.FPFeatures = OldFPFeaturesState; } private: Sema& S; FPOptions OldFPFeaturesState; }; void addImplicitTypedef(StringRef Name, QualType T); bool WarnedStackExhausted = false; public: Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, TranslationUnitKind TUKind = TU_Complete, CodeCompleteConsumer *CompletionConsumer = nullptr); ~Sema(); /// Perform initialization that occurs after the parser has been /// initialized but before it parses anything. void Initialize(); const LangOptions &getLangOpts() const { return LangOpts; } OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; } FPOptions &getFPOptions() { return FPFeatures; } DiagnosticsEngine &getDiagnostics() const { return Diags; } SourceManager &getSourceManager() const { return SourceMgr; } Preprocessor &getPreprocessor() const { return PP; } ASTContext &getASTContext() const { return Context; } ASTConsumer &getASTConsumer() const { return Consumer; } ASTMutationListener *getASTMutationListener() const; ExternalSemaSource* getExternalSource() const { return ExternalSource; } ///Registers an external source. If an external source already exists, /// creates a multiplex external source and appends to it. /// ///\param[in] E - A non-null external sema source. /// void addExternalSource(ExternalSemaSource *E); void PrintStats() const; /// Warn that the stack is nearly exhausted. void warnStackExhausted(SourceLocation Loc); /// Run some code with "sufficient" stack space. (Currently, at least 256K is /// guaranteed). Produces a warning if we're low on stack space and allocates /// more in that case. Use this in code that may recurse deeply (for example, /// in template instantiation) to avoid stack overflow. void runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref Fn); /// Helper class that creates diagnostics with optional /// template instantiation stacks. /// /// This class provides a wrapper around the basic DiagnosticBuilder /// class that emits diagnostics. SemaDiagnosticBuilder is /// responsible for emitting the diagnostic (as DiagnosticBuilder /// does) and, if the diagnostic comes from inside a template /// instantiation, printing the template instantiation stack as /// well. class SemaDiagnosticBuilder : public DiagnosticBuilder { Sema &SemaRef; unsigned DiagID; public: SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID) : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { } // This is a cunning lie. DiagnosticBuilder actually performs move // construction in its copy constructor (but due to varied uses, it's not // possible to conveniently express this as actual move construction). So // the default copy ctor here is fine, because the base class disables the // source anyway, so the user-defined ~SemaDiagnosticBuilder is a safe no-op // in that case anwyay. SemaDiagnosticBuilder(const SemaDiagnosticBuilder&) = default; ~SemaDiagnosticBuilder() { // If we aren't active, there is nothing to do. if (!isActive()) return; // Otherwise, we need to emit the diagnostic. First flush the underlying // DiagnosticBuilder data, and clear the diagnostic builder itself so it // won't emit the diagnostic in its own destructor. // // This seems wasteful, in that as written the DiagnosticBuilder dtor will // do its own needless checks to see if the diagnostic needs to be // emitted. However, because we take care to ensure that the builder // objects never escape, a sufficiently smart compiler will be able to // eliminate that code. FlushCounts(); Clear(); // Dispatch to Sema to emit the diagnostic. SemaRef.EmitCurrentDiagnostic(DiagID); } /// Teach operator<< to produce an object of the correct type. template friend const SemaDiagnosticBuilder &operator<<( const SemaDiagnosticBuilder &Diag, const T &Value) { const DiagnosticBuilder &BaseDiag = Diag; BaseDiag << Value; return Diag; } }; /// Emit a diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) { DiagnosticBuilder DB = Diags.Report(Loc, DiagID); return SemaDiagnosticBuilder(DB, *this, DiagID); } /// Emit a partial diagnostic. SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD); /// Build a partial diagnostic. PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h bool findMacroSpelling(SourceLocation &loc, StringRef name); /// Get a string to suggest for zero-initialization of a type. std::string getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const; std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const; /// Calls \c Lexer::getLocForEndOfToken() SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0); /// Retrieve the module loader associated with the preprocessor. ModuleLoader &getModuleLoader() const; /// Invent a new identifier for parameters of abbreviated templates. IdentifierInfo * InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName, unsigned Index); void emitAndClearUnusedLocalTypedefWarnings(); enum TUFragmentKind { /// The global module fragment, between 'module;' and a module-declaration. Global, /// A normal translation unit fragment. For a non-module unit, this is the /// entire translation unit. Otherwise, it runs from the module-declaration /// to the private-module-fragment (if any) or the end of the TU (if not). Normal, /// The private module fragment, between 'module :private;' and the end of /// the translation unit. Private }; void ActOnStartOfTranslationUnit(); void ActOnEndOfTranslationUnit(); void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind); void CheckDelegatingCtorCycles(); Scope *getScopeForContext(DeclContext *Ctx); void PushFunctionScope(); void PushBlockScope(Scope *BlockScope, BlockDecl *Block); sema::LambdaScopeInfo *PushLambdaScope(); /// This is used to inform Sema what the current TemplateParameterDepth /// is during Parsing. Currently it is used to pass on the depth /// when parsing generic lambda 'auto' parameters. void RecordParsingTemplateParameterDepth(unsigned Depth); void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD, RecordDecl *RD, CapturedRegionKind K, unsigned OpenMPCaptureLevel = 0); /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short /// time after they've been popped. class PoppedFunctionScopeDeleter { Sema *Self; public: explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {} void operator()(sema::FunctionScopeInfo *Scope) const; }; using PoppedFunctionScopePtr = std::unique_ptr; PoppedFunctionScopePtr PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr, const Decl *D = nullptr, QualType BlockType = QualType()); sema::FunctionScopeInfo *getCurFunction() const { return FunctionScopes.empty() ? nullptr : FunctionScopes.back(); } sema::FunctionScopeInfo *getEnclosingFunction() const; void setFunctionHasBranchIntoScope(); void setFunctionHasBranchProtectedScope(); void setFunctionHasIndirectGoto(); void PushCompoundScope(bool IsStmtExpr); void PopCompoundScope(); sema::CompoundScopeInfo &getCurCompoundScope() const; bool hasAnyUnrecoverableErrorsInThisFunction() const; /// Retrieve the current block, if any. sema::BlockScopeInfo *getCurBlock(); /// Get the innermost lambda enclosing the current location, if any. This /// looks through intervening non-lambda scopes such as local functions and /// blocks. sema::LambdaScopeInfo *getEnclosingLambda() const; /// Retrieve the current lambda scope info, if any. /// \param IgnoreNonLambdaCapturingScope true if should find the top-most /// lambda scope info ignoring all inner capturing scopes that are not /// lambda scopes. sema::LambdaScopeInfo * getCurLambda(bool IgnoreNonLambdaCapturingScope = false); /// Retrieve the current generic lambda info, if any. sema::LambdaScopeInfo *getCurGenericLambda(); /// Retrieve the current captured region, if any. sema::CapturedRegionScopeInfo *getCurCapturedRegion(); /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls SmallVectorImpl &WeakTopLevelDecls() { return WeakTopLevelDecl; } /// Called before parsing a function declarator belonging to a function /// declaration. void ActOnStartFunctionDeclarationDeclarator(Declarator &D, unsigned TemplateParameterDepth); /// Called after parsing a function declarator belonging to a function /// declaration. void ActOnFinishFunctionDeclarationDeclarator(Declarator &D); void ActOnComment(SourceRange Comment); //===--------------------------------------------------------------------===// // Type Analysis / Processing: SemaType.cpp. // QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs, const DeclSpec *DS = nullptr); QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA, const DeclSpec *DS = nullptr); QualType BuildPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildReferenceType(QualType T, bool LValueRef, SourceLocation Loc, DeclarationName Entity); QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM, Expr *ArraySize, unsigned Quals, SourceRange Brackets, DeclarationName Entity); QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc); QualType BuildExtVectorType(QualType T, Expr *ArraySize, SourceLocation AttrLoc); QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, SourceLocation AttrLoc); /// Same as above, but constructs the AddressSpace index if not provided. QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, SourceLocation AttrLoc); bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc); bool CheckFunctionReturnType(QualType T, SourceLocation Loc); /// Build a function type. /// /// This routine checks the function type according to C++ rules and /// under the assumption that the result type and parameter types have /// just been instantiated from a template. It therefore duplicates /// some of the behavior of GetTypeForDeclarator, but in a much /// simpler form that is only suitable for this narrow use case. /// /// \param T The return type of the function. /// /// \param ParamTypes The parameter types of the function. This array /// will be modified to account for adjustments to the types of the /// function parameters. /// /// \param Loc The location of the entity whose type involves this /// function type or, if there is no such entity, the location of the /// type that will have function type. /// /// \param Entity The name of the entity that involves the function /// type, if known. /// /// \param EPI Extra information about the function type. Usually this will /// be taken from an existing function with the same prototype. /// /// \returns A suitable function type, if there are no errors. The /// unqualified type will always be a FunctionProtoType. /// Otherwise, returns a NULL type. QualType BuildFunctionType(QualType T, MutableArrayRef ParamTypes, SourceLocation Loc, DeclarationName Entity, const FunctionProtoType::ExtProtoInfo &EPI); QualType BuildMemberPointerType(QualType T, QualType Class, SourceLocation Loc, DeclarationName Entity); QualType BuildBlockPointerType(QualType T, SourceLocation Loc, DeclarationName Entity); QualType BuildParenType(QualType T); QualType BuildAtomicType(QualType T, SourceLocation Loc); QualType BuildReadPipeType(QualType T, SourceLocation Loc); QualType BuildWritePipeType(QualType T, SourceLocation Loc); TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S); TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy); /// Package the given type and TSI into a ParsedType. ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo); DeclarationNameInfo GetNameForDeclarator(Declarator &D); DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name); static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo = nullptr); CanThrowResult canThrow(const Stmt *E); const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT); void UpdateExceptionSpec(FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI); bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range); bool CheckDistantExceptionSpec(QualType T); bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New); bool CheckEquivalentExceptionSpec( const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool CheckEquivalentExceptionSpec( const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID, const FunctionProtoType *Old, SourceLocation OldLoc, const FunctionProtoType *New, SourceLocation NewLoc); bool handlerCanCatch(QualType HandlerType, QualType ExceptionType); bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID, const FunctionProtoType *Superset, SourceLocation SuperLoc, const FunctionProtoType *Subset, SourceLocation SubLoc); bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID, const PartialDiagnostic &NoteID, const FunctionProtoType *Target, SourceLocation TargetLoc, const FunctionProtoType *Source, SourceLocation SourceLoc); TypeResult ActOnTypeName(Scope *S, Declarator &D); /// The parser has parsed the context-sensitive type 'instancetype' /// in an Objective-C message declaration. Return the appropriate type. ParsedType ActOnObjCInstanceType(SourceLocation Loc); /// Abstract class used to diagnose incomplete types. struct TypeDiagnoser { TypeDiagnoser() {} virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0; virtual ~TypeDiagnoser() {} }; static int getPrintable(int I) { return I; } static unsigned getPrintable(unsigned I) { return I; } static bool getPrintable(bool B) { return B; } static const char * getPrintable(const char *S) { return S; } static StringRef getPrintable(StringRef S) { return S; } static const std::string &getPrintable(const std::string &S) { return S; } static const IdentifierInfo *getPrintable(const IdentifierInfo *II) { return II; } static DeclarationName getPrintable(DeclarationName N) { return N; } static QualType getPrintable(QualType T) { return T; } static SourceRange getPrintable(SourceRange R) { return R; } static SourceRange getPrintable(SourceLocation L) { return L; } static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); } static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();} template class BoundTypeDiagnoser : public TypeDiagnoser { unsigned DiagID; std::tuple Args; template void emit(const SemaDiagnosticBuilder &DB, std::index_sequence) const { // Apply all tuple elements to the builder in order. bool Dummy[] = {false, (DB << getPrintable(std::get(Args)))...}; (void)Dummy; } public: BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args) : TypeDiagnoser(), DiagID(DiagID), Args(Args...) { assert(DiagID != 0 && "no diagnostic for type diagnoser"); } void diagnose(Sema &S, SourceLocation Loc, QualType T) override { const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID); emit(DB, std::index_sequence_for()); DB << T; } }; private: /// Methods for marking which expressions involve dereferencing a pointer /// marked with the 'noderef' attribute. Expressions are checked bottom up as /// they are parsed, meaning that a noderef pointer may not be accessed. For /// example, in `&*p` where `p` is a noderef pointer, we will first parse the /// `*p`, but need to check that `address of` is called on it. This requires /// keeping a container of all pending expressions and checking if the address /// of them are eventually taken. void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E); void CheckAddressOfNoDeref(const Expr *E); void CheckMemberAccessOfNoDeref(const MemberExpr *E); bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T, TypeDiagnoser *Diagnoser); struct ModuleScope { SourceLocation BeginLoc; clang::Module *Module = nullptr; bool ModuleInterface = false; bool ImplicitGlobalModuleFragment = false; VisibleModuleSet OuterVisibleModules; }; /// The modules we're currently parsing. llvm::SmallVector ModuleScopes; /// Namespace definitions that we will export when they finish. llvm::SmallPtrSet DeferredExportedNamespaces; /// Get the module whose scope we are currently within. Module *getCurrentModule() const { return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module; } VisibleModuleSet VisibleModules; public: /// Get the module owning an entity. Module *getOwningModule(const Decl *Entity) { return Entity->getOwningModule(); } /// Make a merged definition of an existing hidden definition \p ND /// visible at the specified location. void makeMergedDefinitionVisible(NamedDecl *ND); bool isModuleVisible(const Module *M, bool ModulePrivate = false); /// Determine whether a declaration is visible to name lookup. bool isVisible(const NamedDecl *D) { return !D->isHidden() || isVisibleSlow(D); } /// Determine whether any declaration of an entity is visible. bool hasVisibleDeclaration(const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr) { return isVisible(D) || hasVisibleDeclarationSlow(D, Modules); } bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl *Modules); bool hasVisibleMergedDefinition(NamedDecl *Def); bool hasMergedDefinitionInCurrentModule(NamedDecl *Def); /// Determine if \p D and \p Suggested have a structurally compatible /// layout as described in C11 6.2.7/1. bool hasStructuralCompatLayout(Decl *D, Decl *Suggested); /// Determine if \p D has a visible definition. If not, suggest a declaration /// that should be made visible to expose the definition. bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, bool OnlyNeedComplete = false); bool hasVisibleDefinition(const NamedDecl *D) { NamedDecl *Hidden; return hasVisibleDefinition(const_cast(D), &Hidden); } /// Determine if the template parameter \p D has a visible default argument. bool hasVisibleDefaultArgument(const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if there is a visible declaration of \p D that is an explicit /// specialization declaration for a specialization of a template. (For a /// member specialization, use hasVisibleMemberSpecialization.) bool hasVisibleExplicitSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if there is a visible declaration of \p D that is a member /// specialization declaration (as opposed to an instantiated declaration). bool hasVisibleMemberSpecialization( const NamedDecl *D, llvm::SmallVectorImpl *Modules = nullptr); /// Determine if \p A and \p B are equivalent internal linkage declarations /// from different modules, and thus an ambiguity error can be downgraded to /// an extension warning. bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A, const NamedDecl *B); void diagnoseEquivalentInternalLinkageDeclarations( SourceLocation Loc, const NamedDecl *D, ArrayRef Equiv); bool isUsualDeallocationFunction(const CXXMethodDecl *FD); bool isCompleteType(SourceLocation Loc, QualType T) { return !RequireCompleteTypeImpl(Loc, T, nullptr); } bool RequireCompleteType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID); template bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteType(Loc, T, Diagnoser); } void completeExprArrayBound(Expr *E); bool RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser); bool RequireCompleteExprType(Expr *E, unsigned DiagID); template bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireCompleteExprType(E, Diagnoser); } bool RequireLiteralType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID); template bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireLiteralType(Loc, T, Diagnoser); } QualType getElaboratedType(ElaboratedTypeKeyword Keyword, const CXXScopeSpec &SS, QualType T, TagDecl *OwnedTagDecl = nullptr); QualType BuildTypeofExprType(Expr *E, SourceLocation Loc); /// If AsUnevaluated is false, E is treated as though it were an evaluated /// context, such as when building a type for decltype(auto). QualType BuildDecltypeType(Expr *E, SourceLocation Loc, bool AsUnevaluated = true); QualType BuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc); //===--------------------------------------------------------------------===// // Symbol table / Decl tracking callbacks: SemaDecl.cpp. // struct SkipBodyInfo { SkipBodyInfo() : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr), New(nullptr) {} bool ShouldSkip; bool CheckSameAsPrevious; NamedDecl *Previous; NamedDecl *New; }; DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr); void DiagnoseUseOfUnimplementedSelectors(); bool isSimpleTypeSpecifier(tok::TokenKind Kind) const; ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec *SS = nullptr, bool isClassName = false, bool HasTrailingDot = false, ParsedType ObjectType = nullptr, bool IsCtorOrDtorName = false, bool WantNontrivialTypeSourceInfo = false, bool IsClassTemplateDeductionContext = true, IdentifierInfo **CorrectedII = nullptr); TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S); bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S); void DiagnoseUnknownTypeName(IdentifierInfo *&II, SourceLocation IILoc, Scope *S, CXXScopeSpec *SS, ParsedType &SuggestedType, bool IsTemplateName = false); /// Attempt to behave like MSVC in situations where lookup of an unqualified /// type name has failed in a dependent context. In these situations, we /// automatically form a DependentTypeName that will retry lookup in a related /// scope during instantiation. ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II, SourceLocation NameLoc, bool IsTemplateTypeArg); /// Describes the result of the name lookup and resolution performed /// by \c ClassifyName(). enum NameClassificationKind { /// This name is not a type or template in this context, but might be /// something else. NC_Unknown, /// Classification failed; an error has been produced. NC_Error, /// The name has been typo-corrected to a keyword. NC_Keyword, /// The name was classified as a type. NC_Type, /// The name was classified as a specific non-type, non-template /// declaration. ActOnNameClassifiedAsNonType should be called to /// convert the declaration to an expression. NC_NonType, /// The name was classified as an ADL-only function name. /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the /// result to an expression. NC_UndeclaredNonType, /// The name denotes a member of a dependent type that could not be /// resolved. ActOnNameClassifiedAsDependentNonType should be called to /// convert the result to an expression. NC_DependentNonType, /// The name was classified as a non-type, and an expression representing /// that name has been formed. NC_ContextIndependentExpr, /// The name was classified as a template whose specializations are types. NC_TypeTemplate, /// The name was classified as a variable template name. NC_VarTemplate, /// The name was classified as a function template name. NC_FunctionTemplate, /// The name was classified as an ADL-only function template name. NC_UndeclaredTemplate, /// The name was classified as a concept name. NC_Concept, }; class NameClassification { NameClassificationKind Kind; union { ExprResult Expr; NamedDecl *NonTypeDecl; TemplateName Template; ParsedType Type; }; explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {} public: NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {} NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {} static NameClassification Error() { return NameClassification(NC_Error); } static NameClassification Unknown() { return NameClassification(NC_Unknown); } static NameClassification ContextIndependentExpr(ExprResult E) { NameClassification Result(NC_ContextIndependentExpr); Result.Expr = E; return Result; } static NameClassification NonType(NamedDecl *D) { NameClassification Result(NC_NonType); Result.NonTypeDecl = D; return Result; } static NameClassification UndeclaredNonType() { return NameClassification(NC_UndeclaredNonType); } static NameClassification DependentNonType() { return NameClassification(NC_DependentNonType); } static NameClassification TypeTemplate(TemplateName Name) { NameClassification Result(NC_TypeTemplate); Result.Template = Name; return Result; } static NameClassification VarTemplate(TemplateName Name) { NameClassification Result(NC_VarTemplate); Result.Template = Name; return Result; } static NameClassification FunctionTemplate(TemplateName Name) { NameClassification Result(NC_FunctionTemplate); Result.Template = Name; return Result; } static NameClassification Concept(TemplateName Name) { NameClassification Result(NC_Concept); Result.Template = Name; return Result; } static NameClassification UndeclaredTemplate(TemplateName Name) { NameClassification Result(NC_UndeclaredTemplate); Result.Template = Name; return Result; } NameClassificationKind getKind() const { return Kind; } ExprResult getExpression() const { assert(Kind == NC_ContextIndependentExpr); return Expr; } ParsedType getType() const { assert(Kind == NC_Type); return Type; } NamedDecl *getNonTypeDecl() const { assert(Kind == NC_NonType); return NonTypeDecl; } TemplateName getTemplateName() const { assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate || Kind == NC_VarTemplate || Kind == NC_Concept || Kind == NC_UndeclaredTemplate); return Template; } TemplateNameKind getTemplateNameKind() const { switch (Kind) { case NC_TypeTemplate: return TNK_Type_template; case NC_FunctionTemplate: return TNK_Function_template; case NC_VarTemplate: return TNK_Var_template; case NC_Concept: return TNK_Concept_template; case NC_UndeclaredTemplate: return TNK_Undeclared_template; default: llvm_unreachable("unsupported name classification."); } } }; /// Perform name lookup on the given name, classifying it based on /// the results of name lookup and the following token. /// /// This routine is used by the parser to resolve identifiers and help direct /// parsing. When the identifier cannot be found, this routine will attempt /// to correct the typo and classify based on the resulting name. /// /// \param S The scope in which we're performing name lookup. /// /// \param SS The nested-name-specifier that precedes the name. /// /// \param Name The identifier. If typo correction finds an alternative name, /// this pointer parameter will be updated accordingly. /// /// \param NameLoc The location of the identifier. /// /// \param NextToken The token following the identifier. Used to help /// disambiguate the name. /// /// \param CCC The correction callback, if typo correction is desired. NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, SourceLocation NameLoc, const Token &NextToken, CorrectionCandidateCallback *CCC = nullptr); /// Act on the result of classifying a name as an undeclared (ADL-only) /// non-type declaration. ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, SourceLocation NameLoc); /// Act on the result of classifying a name as an undeclared member of a /// dependent base class. ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, bool IsAddressOfOperand); /// Act on the result of classifying a name as a specific non-type /// declaration. ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, NamedDecl *Found, SourceLocation NameLoc, const Token &NextToken); /// Describes the detailed kind of a template name. Used in diagnostics. enum class TemplateNameKindForDiagnostics { ClassTemplate, FunctionTemplate, VarTemplate, AliasTemplate, TemplateTemplateParam, Concept, DependentTemplate }; TemplateNameKindForDiagnostics getTemplateNameKindForDiagnostics(TemplateName Name); /// Determine whether it's plausible that E was intended to be a /// template-name. bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) { if (!getLangOpts().CPlusPlus || E.isInvalid()) return false; Dependent = false; if (auto *DRE = dyn_cast(E.get())) return !DRE->hasExplicitTemplateArgs(); if (auto *ME = dyn_cast(E.get())) return !ME->hasExplicitTemplateArgs(); Dependent = true; if (auto *DSDRE = dyn_cast(E.get())) return !DSDRE->hasExplicitTemplateArgs(); if (auto *DSME = dyn_cast(E.get())) return !DSME->hasExplicitTemplateArgs(); // Any additional cases recognized here should also be handled by // diagnoseExprIntendedAsTemplateName. return false; } void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, SourceLocation Less, SourceLocation Greater); Decl *ActOnDeclarator(Scope *S, Declarator &D); NamedDecl *HandleDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists); void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S); bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info); bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, DeclarationName Name, SourceLocation Loc, bool IsTemplateId); void diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, SourceLocation FallbackLoc, SourceLocation ConstQualLoc = SourceLocation(), SourceLocation VolatileQualLoc = SourceLocation(), SourceLocation RestrictQualLoc = SourceLocation(), SourceLocation AtomicQualLoc = SourceLocation(), SourceLocation UnalignedQualLoc = SourceLocation()); static bool adjustContextForLocalExternDecl(DeclContext *&DC); void DiagnoseFunctionSpecifiers(const DeclSpec &DS); NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D, const LookupResult &R); NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R); void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, const LookupResult &R); void CheckShadow(Scope *S, VarDecl *D); /// Warn if 'E', which is an expression that is about to be modified, refers /// to a shadowing declaration. void CheckShadowingDeclModification(Expr *E, SourceLocation Loc); void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI); private: /// Map of current shadowing declarations to shadowed declarations. Warn if /// it looks like the user is trying to modify the shadowing declaration. llvm::DenseMap ShadowingDecls; public: void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange); void handleTagNumbering(const TagDecl *Tag, Scope *TagScope); void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, TypedefNameDecl *NewTD); void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D); NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous); NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D, LookupResult &Previous, bool &Redeclaration); NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope, ArrayRef Bindings = None); NamedDecl * ActOnDecompositionDeclarator(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists); // Returns true if the variable declaration is a redeclaration bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous); void CheckVariableDeclarationType(VarDecl *NewVD); bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, Expr *Init); void CheckCompleteVariableDeclaration(VarDecl *VD); void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD); void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D); NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC, TypeSourceInfo *TInfo, LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, bool &AddToScope); bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD); enum class CheckConstexprKind { /// Diagnose issues that are non-constant or that are extensions. Diagnose, /// Identify whether this function satisfies the formal rules for constexpr /// functions in the current lanugage mode (with no extensions). CheckValid }; bool CheckConstexprFunctionDefinition(const FunctionDecl *FD, CheckConstexprKind Kind); void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD); void FindHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods); void NoteHiddenVirtualMethods(CXXMethodDecl *MD, SmallVectorImpl &OverloadedMethods); // Returns true if the function declaration is a redeclaration bool CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, LookupResult &Previous, bool IsMemberSpecialization); bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl); bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, QualType NewT, QualType OldT); void CheckMain(FunctionDecl *FD, const DeclSpec &D); void CheckMSVCRTEntryPoint(FunctionDecl *FD); Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, bool IsDefinition); void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D); Decl *ActOnParamDeclarator(Scope *S, Declarator &D); ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T); ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc, SourceLocation NameLoc, IdentifierInfo *Name, QualType T, TypeSourceInfo *TSInfo, StorageClass SC); void ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, Expr *defarg); void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, SourceLocation ArgLoc); void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc); bool SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg, SourceLocation EqualLoc); // Contexts where using non-trivial C union types can be disallowed. This is // passed to err_non_trivial_c_union_in_invalid_context. enum NonTrivialCUnionContext { // Function parameter. NTCUC_FunctionParam, // Function return. NTCUC_FunctionReturn, // Default-initialized object. NTCUC_DefaultInitializedObject, // Variable with automatic storage duration. NTCUC_AutoVar, // Initializer expression that might copy from another object. NTCUC_CopyInit, // Assignment. NTCUC_Assignment, // Compound literal. NTCUC_CompoundLiteral, // Block capture. NTCUC_BlockCapture, // lvalue-to-rvalue conversion of volatile type. NTCUC_LValueToRValueVolatile, }; /// Emit diagnostics if the initializer or any of its explicit or /// implicitly-generated subexpressions require copying or /// default-initializing a type that is or contains a C union type that is /// non-trivial to copy or default-initialize. void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc); // These flags are passed to checkNonTrivialCUnion. enum NonTrivialCUnionKind { NTCUK_Init = 0x1, NTCUK_Destruct = 0x2, NTCUK_Copy = 0x4, }; /// Emit diagnostics if a non-trivial C union type or a struct that contains /// a non-trivial C union is used in an invalid context. void checkNonTrivialCUnion(QualType QT, SourceLocation Loc, NonTrivialCUnionContext UseContext, unsigned NonTrivialKind); void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit); void ActOnUninitializedDecl(Decl *dcl); void ActOnInitializerError(Decl *Dcl); void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc); void ActOnCXXForRangeDecl(Decl *D); StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, IdentifierInfo *Ident, ParsedAttributes &Attrs, SourceLocation AttrEnd); void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc); void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc); void CheckStaticLocalForDllExport(VarDecl *VD); void FinalizeDeclaration(Decl *D); DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, ArrayRef Group); DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef Group); /// Should be called on all declarations that might have attached /// documentation comments. void ActOnDocumentableDecl(Decl *D); void ActOnDocumentableDecls(ArrayRef Group); void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, SourceLocation LocAfterDecls); void CheckForFunctionRedefinition( FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D, SkipBodyInfo *SkipBody = nullptr); void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D); ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr); void ActOnStartOfObjCMethodDef(Scope *S, Decl *D); bool isObjCMethodDecl(Decl *D) { return D && isa(D); } /// Determine whether we can delay parsing the body of a function or /// function template until it is used, assuming we don't care about emitting /// code for that function. /// /// This will be \c false if we may need the body of the function in the /// middle of parsing an expression (where it's impractical to switch to /// parsing a different function), for instance, if it's constexpr in C++11 /// or has an 'auto' return type in C++14. These cases are essentially bugs. bool canDelayFunctionBody(const Declarator &D); /// Determine whether we can skip parsing the body of a function /// definition, assuming we don't care about analyzing its body or emitting /// code for that function. /// /// This will be \c false only if we may need the body of the function in /// order to parse the rest of the program (for instance, if it is /// \c constexpr in C++11 or has an 'auto' return type in C++14). bool canSkipFunctionBody(Decl *D); void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body); Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation); Decl *ActOnSkippedFunctionBody(Decl *Decl); void ActOnFinishInlineFunctionDef(FunctionDecl *D); /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an /// attribute for which parsing is delayed. void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs); /// Diagnose any unused parameters in the given sequence of /// ParmVarDecl pointers. void DiagnoseUnusedParameters(ArrayRef Parameters); /// Diagnose whether the size of parameters or return value of a /// function or obj-c method definition is pass-by-value and larger than a /// specified threshold. void DiagnoseSizeOfParametersAndReturnValue(ArrayRef Parameters, QualType ReturnTy, NamedDecl *D); void DiagnoseInvalidJumps(Stmt *Body); Decl *ActOnFileScopeAsmDecl(Expr *expr, SourceLocation AsmLoc, SourceLocation RParenLoc); /// Handle a C++11 empty-declaration and attribute-declaration. Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList, SourceLocation SemiLoc); enum class ModuleDeclKind { Interface, ///< 'export module X;' Implementation, ///< 'module X;' }; /// The parser has processed a module-declaration that begins the definition /// of a module interface or implementation. DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, ModuleDeclKind MDK, ModuleIdPath Path, bool IsFirstDecl); /// The parser has processed a global-module-fragment declaration that begins /// the definition of the global module fragment of the current module unit. /// \param ModuleLoc The location of the 'module' keyword. DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc); /// The parser has processed a private-module-fragment declaration that begins /// the definition of the private module fragment of the current module unit. /// \param ModuleLoc The location of the 'module' keyword. /// \param PrivateLoc The location of the 'private' keyword. DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, SourceLocation PrivateLoc); /// The parser has processed a module import declaration. /// /// \param StartLoc The location of the first token in the declaration. This /// could be the location of an '@', 'export', or 'import'. /// \param ExportLoc The location of the 'export' keyword, if any. /// \param ImportLoc The location of the 'import' keyword. /// \param Path The module access path. DeclResult ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, ModuleIdPath Path); DeclResult ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, Module *M, ModuleIdPath Path = {}); /// The parser has processed a module import translated from a /// #include or similar preprocessing directive. void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod); void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod); /// The parsed has entered a submodule. void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod); /// The parser has left a submodule. void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod); /// Create an implicit import of the given module at the given /// source location, for error recovery, if possible. /// /// This routine is typically used when an entity found by name lookup /// is actually hidden within a module that we know about but the user /// has forgotten to import. void createImplicitModuleImportForErrorRecovery(SourceLocation Loc, Module *Mod); /// Kinds of missing import. Note, the values of these enumerators correspond /// to %select values in diagnostics. enum class MissingImportKind { Declaration, Definition, DefaultArgument, ExplicitSpecialization, PartialSpecialization }; /// Diagnose that the specified declaration needs to be visible but /// isn't, and suggest a module import that would resolve the problem. void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, MissingImportKind MIK, bool Recover = true); void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl, SourceLocation DeclLoc, ArrayRef Modules, MissingImportKind MIK, bool Recover); Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, SourceLocation LBraceLoc); Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl, SourceLocation RBraceLoc); /// We've found a use of a templated declaration that would trigger an /// implicit instantiation. Check that any relevant explicit specializations /// and partial specializations are visible, and diagnose if not. void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec); /// We've found a use of a template specialization that would select a /// partial specialization. Check that the partial specialization is visible, /// and diagnose if not. void checkPartialSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec); /// Retrieve a suitable printing policy for diagnostics. PrintingPolicy getPrintingPolicy() const { return getPrintingPolicy(Context, PP); } /// Retrieve a suitable printing policy for diagnostics. static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx, const Preprocessor &PP); /// Scope actions. void ActOnPopScope(SourceLocation Loc, Scope *S); void ActOnTranslationUnitScope(Scope *S); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, RecordDecl *&AnonRecord); Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, MultiTemplateParamsArg TemplateParams, bool IsExplicitInstantiation, RecordDecl *&AnonRecord); Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, AccessSpecifier AS, RecordDecl *Record, const PrintingPolicy &Policy); Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, RecordDecl *Record); /// Common ways to introduce type names without a tag for use in diagnostics. /// Keep in sync with err_tag_reference_non_tag. enum NonTagKind { NTK_NonStruct, NTK_NonClass, NTK_NonUnion, NTK_NonEnum, NTK_Typedef, NTK_TypeAlias, NTK_Template, NTK_TypeAliasTemplate, NTK_TemplateTemplateArgument, }; /// Given a non-tag type declaration, returns an enum useful for indicating /// what kind of non-tag type this is. NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK); bool isAcceptableTagRedeclaration(const TagDecl *Previous, TagTypeKind NewTag, bool isDefinition, SourceLocation NewTagLoc, const IdentifierInfo *Name); enum TagUseKind { TUK_Reference, // Reference to a tag: 'struct foo *X;' TUK_Declaration, // Fwd decl of a tag: 'struct foo;' TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;' TUK_Friend // Friend declaration: 'friend struct foo;' }; Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, AccessSpecifier AS, SourceLocation ModulePrivateLoc, MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, bool &IsDependent, SourceLocation ScopedEnumKWLoc, bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, bool IsTypeSpecifier, bool IsTemplateParamOrArg, SkipBodyInfo *SkipBody = nullptr); Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists); TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, const CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation TagLoc, SourceLocation NameLoc); void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl &Decls); Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth); FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, InClassInitStyle InitStyle, AccessSpecifier AS); MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, InClassInitStyle InitStyle, AccessSpecifier AS, const ParsedAttr &MSPropertyAttr); FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T, TypeSourceInfo *TInfo, RecordDecl *Record, SourceLocation Loc, bool Mutable, Expr *BitfieldWidth, InClassInitStyle InitStyle, SourceLocation TSSL, AccessSpecifier AS, NamedDecl *PrevDecl, Declarator *D = nullptr); bool CheckNontrivialField(FieldDecl *FD); void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM); enum TrivialABIHandling { /// The triviality of a method unaffected by "trivial_abi". TAH_IgnoreTrivialABI, /// The triviality of a method affected by "trivial_abi". TAH_ConsiderTrivialABI }; bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM, TrivialABIHandling TAH = TAH_IgnoreTrivialABI, bool Diagnose = false); /// For a defaulted function, the kind of defaulted function that it is. class DefaultedFunctionKind { CXXSpecialMember SpecialMember : 8; DefaultedComparisonKind Comparison : 8; public: DefaultedFunctionKind() : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) { } DefaultedFunctionKind(CXXSpecialMember CSM) : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {} DefaultedFunctionKind(DefaultedComparisonKind Comp) : SpecialMember(CXXInvalid), Comparison(Comp) {} bool isSpecialMember() const { return SpecialMember != CXXInvalid; } bool isComparison() const { return Comparison != DefaultedComparisonKind::None; } explicit operator bool() const { return isSpecialMember() || isComparison(); } CXXSpecialMember asSpecialMember() const { return SpecialMember; } DefaultedComparisonKind asComparison() const { return Comparison; } /// Get the index of this function kind for use in diagnostics. unsigned getDiagnosticIndex() const { static_assert(CXXInvalid > CXXDestructor, "invalid should have highest index"); static_assert((unsigned)DefaultedComparisonKind::None == 0, "none should be equal to zero"); return SpecialMember + (unsigned)Comparison; } }; DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD); CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) { return getDefaultedFunctionKind(MD).asSpecialMember(); } DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) { return getDefaultedFunctionKind(FD).asComparison(); } void ActOnLastBitfield(SourceLocation DeclStart, SmallVectorImpl &AllIvarDecls); Decl *ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth, tok::ObjCKeywordKind visibility); // This is used for both record definitions and ObjC interface declarations. void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl, ArrayRef Fields, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList); /// ActOnTagStartDefinition - Invoked when we have entered the /// scope of a tag's definition (e.g., for an enumeration, class, /// struct, or union). void ActOnTagStartDefinition(Scope *S, Decl *TagDecl); /// Perform ODR-like check for C/ObjC when merging tag types from modules. /// Differently from C++, actually parse the body and reject / error out /// in case of a structural mismatch. bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, SkipBodyInfo &SkipBody); typedef void *SkippedDefinitionContext; /// Invoked when we enter a tag definition that we're skipping. SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD); Decl *ActOnObjCContainerStartDefinition(Decl *IDecl); /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a /// C++ record definition's base-specifiers clause and are starting its /// member declarations. void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl, SourceLocation FinalLoc, bool IsFinalSpelledSealed, SourceLocation LBraceLoc); /// ActOnTagFinishDefinition - Invoked once we have finished parsing /// the definition of a tag (enumeration, class, struct, or union). void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl, SourceRange BraceRange); void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context); void ActOnObjCContainerFinishDefinition(); /// Invoked when we must temporarily exit the objective-c container /// scope for parsing/looking-up C constructs. /// /// Must be followed by a call to \see ActOnObjCReenterContainerContext void ActOnObjCTemporaryExitContainerContext(DeclContext *DC); void ActOnObjCReenterContainerContext(DeclContext *DC); /// ActOnTagDefinitionError - Invoked when there was an unrecoverable /// error parsing the definition of a tag. void ActOnTagDefinitionError(Scope *S, Decl *TagDecl); EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum, EnumConstantDecl *LastEnumConst, SourceLocation IdLoc, IdentifierInfo *Id, Expr *val); bool CheckEnumUnderlyingType(TypeSourceInfo *TI); bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy, bool IsFixed, const EnumDecl *Prev); /// Determine whether the body of an anonymous enumeration should be skipped. /// \param II The name of the first enumerator. SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, SourceLocation IILoc); Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, const ParsedAttributesView &Attrs, SourceLocation EqualLoc, Expr *Val); void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, Decl *EnumDecl, ArrayRef Elements, Scope *S, const ParsedAttributesView &Attr); DeclContext *getContainingDC(DeclContext *DC); /// Set the current declaration context until it gets popped. void PushDeclContext(Scope *S, DeclContext *DC); void PopDeclContext(); /// EnterDeclaratorContext - Used when we must lookup names in the context /// of a declarator's nested name specifier. void EnterDeclaratorContext(Scope *S, DeclContext *DC); void ExitDeclaratorContext(Scope *S); /// Push the parameters of D, which must be a function, into scope. void ActOnReenterFunctionContext(Scope* S, Decl* D); void ActOnExitFunctionContext(); DeclContext *getFunctionLevelDeclContext(); /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *getCurFunctionDecl(); /// getCurMethodDecl - If inside of a method body, this returns a pointer to /// the method decl for the method being parsed. If we're currently /// in a 'block', this returns the containing context. ObjCMethodDecl *getCurMethodDecl(); /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method /// or C function we're in, otherwise return null. If we're currently /// in a 'block', this returns the containing context. NamedDecl *getCurFunctionOrMethodDecl(); /// Add this decl to the scope shadowed decl chains. void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true); /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns /// true if 'D' belongs to the given declaration context. /// /// \param AllowInlineNamespace If \c true, allow the declaration to be in the /// enclosing namespace set of the context, rather than contained /// directly within it. bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr, bool AllowInlineNamespace = false); /// Finds the scope corresponding to the given decl context, if it /// happens to be an enclosing scope. Otherwise return NULL. static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC); /// Subroutines of ActOnDeclarator(). TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T, TypeSourceInfo *TInfo); bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New); /// Describes the kind of merge to perform for availability /// attributes (including "deprecated", "unavailable", and "availability"). enum AvailabilityMergeKind { /// Don't merge availability attributes at all. AMK_None, /// Merge availability attributes for a redeclaration, which requires /// an exact match. AMK_Redeclaration, /// Merge availability attributes for an override, which requires /// an exact match or a weakening of constraints. AMK_Override, /// Merge availability attributes for an implementation of /// a protocol requirement. AMK_ProtocolImplementation, }; /// Describes the kind of priority given to an availability attribute. /// /// The sum of priorities deteremines the final priority of the attribute. /// The final priority determines how the attribute will be merged. /// An attribute with a lower priority will always remove higher priority /// attributes for the specified platform when it is being applied. An /// attribute with a higher priority will not be applied if the declaration /// already has an availability attribute with a lower priority for the /// specified platform. The final prirority values are not expected to match /// the values in this enumeration, but instead should be treated as a plain /// integer value. This enumeration just names the priority weights that are /// used to calculate that final vaue. enum AvailabilityPriority : int { /// The availability attribute was specified explicitly next to the /// declaration. AP_Explicit = 0, /// The availability attribute was applied using '#pragma clang attribute'. AP_PragmaClangAttribute = 1, /// The availability attribute for a specific platform was inferred from /// an availability attribute for another platform. AP_InferredFromOtherPlatform = 2 }; /// Attribute merging methods. Return true if a new attribute was added. AvailabilityAttr * mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority); TypeVisibilityAttr * mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis); VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis); UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Uuid); DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI); DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI); MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceModel Model); FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg); SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name); CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name); AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident); MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI); NoSpeculativeLoadHardeningAttr * mergeNoSpeculativeLoadHardeningAttr(Decl *D, const NoSpeculativeLoadHardeningAttr &AL); SpeculativeLoadHardeningAttr * mergeSpeculativeLoadHardeningAttr(Decl *D, const SpeculativeLoadHardeningAttr &AL); OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI); InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL); InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL); CommonAttr *mergeCommonAttr(Decl *D, const ParsedAttr &AL); CommonAttr *mergeCommonAttr(Decl *D, const CommonAttr &AL); void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK = AMK_Redeclaration); void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, LookupResult &OldDecls); bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S, bool MergeTypeWithOld); bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, Scope *S, bool MergeTypeWithOld); void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old); void MergeVarDecl(VarDecl *New, LookupResult &Previous); void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld); void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old); bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn); void notePreviousDefinition(const NamedDecl *Old, SourceLocation New); bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S); // AssignmentAction - This is used by all the assignment diagnostic functions // to represent what is actually causing the operation enum AssignmentAction { AA_Assigning, AA_Passing, AA_Returning, AA_Converting, AA_Initializing, AA_Sending, AA_Casting, AA_Passing_CFAudited }; /// C++ Overloading. enum OverloadKind { /// This is a legitimate overload: the existing declarations are /// functions or function templates with different signatures. Ovl_Overload, /// This is not an overload because the signature exactly matches /// an existing declaration. Ovl_Match, /// This is not an overload because the lookup results contain a /// non-function. Ovl_NonFunction }; OverloadKind CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &OldDecls, NamedDecl *&OldDecl, bool IsForUsingDecl); bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl, bool ConsiderCudaAttrs = true, bool ConsiderRequiresClauses = true); ImplicitConversionSequence TryImplicitConversion(Expr *From, QualType ToType, bool SuppressUserConversions, bool AllowExplicit, bool InOverloadResolution, bool CStyle, bool AllowObjCWritebackConversion); bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType); bool IsFloatingPointPromotion(QualType FromType, QualType ToType); bool IsComplexPromotion(QualType FromType, QualType ToType); bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType, bool &IncompatibleObjC); bool isObjCWritebackConversion(QualType FromType, QualType ToType, QualType &ConvertedType); bool IsBlockPointerConversion(QualType FromType, QualType ToType, QualType& ConvertedType); bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType, const FunctionProtoType *NewType, unsigned *ArgPos = nullptr); void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, QualType FromType, QualType ToType); void maybeExtendBlockObject(ExprResult &E); CastKind PrepareCastToObjCObjectPointer(ExprResult &E); bool CheckPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath& BasePath, bool IgnoreBaseAccess, bool Diagnose = true); bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType, bool InOverloadResolution, QualType &ConvertedType); bool CheckMemberPointerConversion(Expr *From, QualType ToType, CastKind &Kind, CXXCastPath &BasePath, bool IgnoreBaseAccess); bool IsQualificationConversion(QualType FromType, QualType ToType, bool CStyle, bool &ObjCLifetimeConversion); bool IsFunctionConversion(QualType FromType, QualType ToType, QualType &ResultTy); bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType); bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg); ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity, const VarDecl *NRVOCandidate, QualType ResultType, Expr *Value, bool AllowNRVO = true); bool CanPerformAggregateInitializationForOverloadResolution( const InitializedEntity &Entity, InitListExpr *From); bool CanPerformCopyInitialization(const InitializedEntity &Entity, ExprResult Init); ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList = false, bool AllowExplicit = false); ExprResult PerformObjectArgumentInitialization(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, CXXMethodDecl *Method); /// Check that the lifetime of the initializer (and its subobjects) is /// sufficient for initializing the entity, and perform lifetime extension /// (when permitted) if not. void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init); ExprResult PerformContextuallyConvertToBool(Expr *From); ExprResult PerformContextuallyConvertToObjCPointer(Expr *From); /// Contexts in which a converted constant expression is required. enum CCEKind { CCEK_CaseValue, ///< Expression in a case label. CCEK_Enumerator, ///< Enumerator value with fixed underlying type. CCEK_TemplateArg, ///< Value of a non-type template parameter. CCEK_NewExpr, ///< Constant expression in a noptr-new-declarator. CCEK_ConstexprIf, ///< Condition in a constexpr if statement. CCEK_ExplicitBool ///< Condition in an explicit(bool) specifier. }; ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, llvm::APSInt &Value, CCEKind CCE); ExprResult CheckConvertedConstantExpression(Expr *From, QualType T, APValue &Value, CCEKind CCE); /// Abstract base class used to perform a contextual implicit /// conversion from an expression to any type passing a filter. class ContextualImplicitConverter { public: bool Suppress; bool SuppressConversion; ContextualImplicitConverter(bool Suppress = false, bool SuppressConversion = false) : Suppress(Suppress), SuppressConversion(SuppressConversion) {} /// Determine whether the specified type is a valid destination type /// for this conversion. virtual bool match(QualType T) = 0; /// Emits a diagnostic complaining that the expression does not have /// integral or enumeration type. virtual SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a diagnostic when the expression has incomplete class type. virtual SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a diagnostic when the only matching conversion function /// is explicit. virtual SemaDiagnosticBuilder diagnoseExplicitConv( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; /// Emits a note for the explicit conversion function. virtual SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; /// Emits a diagnostic when there are multiple possible conversion /// functions. virtual SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0; /// Emits a note for one of the candidate conversions. virtual SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0; /// Emits a diagnostic when we picked a conversion function /// (for cases when we are not allowed to pick a conversion function). virtual SemaDiagnosticBuilder diagnoseConversion( Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0; virtual ~ContextualImplicitConverter() {} }; class ICEConvertDiagnoser : public ContextualImplicitConverter { bool AllowScopedEnumerations; public: ICEConvertDiagnoser(bool AllowScopedEnumerations, bool Suppress, bool SuppressConversion) : ContextualImplicitConverter(Suppress, SuppressConversion), AllowScopedEnumerations(AllowScopedEnumerations) {} /// Match an integral or (possibly scoped) enumeration type. bool match(QualType T) override; SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override { return diagnoseNotInt(S, Loc, T); } /// Emits a diagnostic complaining that the expression does not have /// integral or enumeration type. virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0; }; /// Perform a contextual implicit conversion. ExprResult PerformContextualImplicitConversion( SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter); enum ObjCSubscriptKind { OS_Array, OS_Dictionary, OS_Error }; ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE); // Note that LK_String is intentionally after the other literals, as // this is used for diagnostics logic. enum ObjCLiteralKind { LK_Array, LK_Dictionary, LK_Numeric, LK_Boxed, LK_String, LK_Block, LK_None }; ObjCLiteralKind CheckLiteralKind(Expr *FromE); ExprResult PerformObjectMemberConversion(Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, NamedDecl *Member); // Members have to be NamespaceDecl* or TranslationUnitDecl*. // TODO: make this is a typesafe union. typedef llvm::SmallSetVector AssociatedNamespaceSet; typedef llvm::SmallSetVector AssociatedClassSet; using ADLCallKind = CallExpr::ADLCallKind; void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, bool AllowExplicit = true, bool AllowExplicitConversion = false, ADLCallKind IsADLCandidate = ADLCallKind::NotADL, ConversionSequenceList EarlyConversions = None, OverloadCandidateParamOrder PO = {}); void AddFunctionCandidates(const UnresolvedSetImpl &Functions, ArrayRef Args, OverloadCandidateSet &CandidateSet, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, bool SuppressUserConversions = false, bool PartialOverloading = false, bool FirstArgumentIsBase = false); void AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversion = false, OverloadCandidateParamOrder PO = {}); void AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, ConversionSequenceList EarlyConversions = None, OverloadCandidateParamOrder PO = {}); void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, Expr::Classification ObjectClassification, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, OverloadCandidateParamOrder PO = {}); void AddTemplateOverloadCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false, bool PartialOverloading = false, bool AllowExplicit = true, ADLCallKind IsADLCandidate = ADLCallKind::NotADL, OverloadCandidateParamOrder PO = {}); bool CheckNonDependentConversions( FunctionTemplateDecl *FunctionTemplate, ArrayRef ParamTypes, ArrayRef Args, OverloadCandidateSet &CandidateSet, ConversionSequenceList &Conversions, bool SuppressUserConversions, CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(), Expr::Classification ObjectClassification = {}, OverloadCandidateParamOrder PO = {}); void AddConversionCandidate( CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion = true); void AddTemplateConversionCandidate( FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, Expr *From, QualType ToType, OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, bool AllowExplicit, bool AllowResultConversion = true); void AddSurrogateCandidate(CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, CXXRecordDecl *ActingContext, const FunctionProtoType *Proto, Expr *Object, ArrayRef Args, OverloadCandidateSet& CandidateSet); void AddNonMemberOperatorCandidates( const UnresolvedSetImpl &Functions, ArrayRef Args, OverloadCandidateSet &CandidateSet, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr); void AddMemberOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet &CandidateSet, OverloadCandidateParamOrder PO = {}); void AddBuiltinCandidate(QualType *ParamTys, ArrayRef Args, OverloadCandidateSet& CandidateSet, bool IsAssignmentOperator = false, unsigned NumContextualBoolArguments = 0); void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, SourceLocation OpLoc, ArrayRef Args, OverloadCandidateSet& CandidateSet); void AddArgumentDependentLookupCandidates(DeclarationName Name, SourceLocation Loc, ArrayRef Args, TemplateArgumentListInfo *ExplicitTemplateArgs, OverloadCandidateSet& CandidateSet, bool PartialOverloading = false); // Emit as a 'note' the specific overload candidate void NoteOverloadCandidate( NamedDecl *Found, FunctionDecl *Fn, OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(), QualType DestType = QualType(), bool TakingAddress = false); // Emit as a series of 'note's all template and non-templates identified by // the expression Expr void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(), bool TakingAddress = false); /// Check the enable_if expressions on the given function. Returns the first /// failing attribute, or NULL if they were all successful. EnableIfAttr *CheckEnableIf(FunctionDecl *Function, ArrayRef Args, bool MissingImplicitThis = false); /// Find the failed Boolean condition within a given Boolean /// constant expression, and describe it with a string. std::pair findFailedBooleanCondition(Expr *Cond); /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any /// non-ArgDependent DiagnoseIfAttrs. /// /// Argument-dependent diagnose_if attributes should be checked each time a /// function is used as a direct callee of a function call. /// /// Returns true if any errors were emitted. bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, const Expr *ThisArg, ArrayRef Args, SourceLocation Loc); /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any /// ArgDependent DiagnoseIfAttrs. /// /// Argument-independent diagnose_if attributes should be checked on every use /// of a function. /// /// Returns true if any errors were emitted. bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, SourceLocation Loc); /// Returns whether the given function's address can be taken or not, /// optionally emitting a diagnostic if the address can't be taken. /// /// Returns false if taking the address of the function is illegal. bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, bool Complain = false, SourceLocation Loc = SourceLocation()); // [PossiblyAFunctionType] --> [Return] // NonFunctionType --> NonFunctionType // R (A) --> R(A) // R (*)(A) --> R (A) // R (&)(A) --> R (A) // R (S::*)(A) --> R (A) QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType); FunctionDecl * ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, bool Complain, DeclAccessPair &Found, bool *pHadMultipleCandidates = nullptr); FunctionDecl * resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult); bool resolveAndFixAddressOfSingleOverloadCandidate( ExprResult &SrcExpr, bool DoFunctionPointerConversion = false); FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain = false, DeclAccessPair *Found = nullptr); bool ResolveAndFixSingleFunctionTemplateSpecialization( ExprResult &SrcExpr, bool DoFunctionPointerConverion = false, bool Complain = false, SourceRange OpRangeForComplaining = SourceRange(), QualType DestTypeForComplaining = QualType(), unsigned DiagIDForComplaining = 0); Expr *FixOverloadedFunctionReference(Expr *E, DeclAccessPair FoundDecl, FunctionDecl *Fn); ExprResult FixOverloadedFunctionReference(ExprResult, DeclAccessPair FoundDecl, FunctionDecl *Fn); void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, ArrayRef Args, OverloadCandidateSet &CandidateSet, bool PartialOverloading = false); // An enum used to represent the different possible results of building a // range-based for loop. enum ForRangeStatus { FRS_Success, FRS_NoViableFunction, FRS_DiagnosticIssued }; ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc, SourceLocation RangeLoc, const DeclarationNameInfo &NameInfo, LookupResult &MemberLookup, OverloadCandidateSet *CandidateSet, Expr *Range, ExprResult *CallExpr); ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig, bool AllowTypoCorrection=true, bool CalleesAddressIsTaken=false); bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, MultiExprArg Args, SourceLocation RParenLoc, OverloadCandidateSet *CandidateSet, ExprResult *Result); ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *input, bool RequiresADL = true); void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, OverloadedOperatorKind Op, const UnresolvedSetImpl &Fns, ArrayRef Args, bool RequiresADL = true); ExprResult CreateOverloadedBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, bool RequiresADL = true, bool AllowRewrittenCandidates = true, FunctionDecl *DefaultedFn = nullptr); ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, FunctionDecl *DefaultedFn); ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, SourceLocation RLoc, Expr *Base,Expr *Idx); ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc); ExprResult BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc); ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, bool *NoArrowOperatorFound = nullptr); /// CheckCallReturnType - Checks that a call expression's return type is /// complete. Returns true on failure. The location passed in is the location /// that best represents the call. bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc, CallExpr *CE, FunctionDecl *FD); /// Helpers for dealing with blocks and functions. bool CheckParmsForFunctionDef(ArrayRef Parameters, bool CheckParameterNames); void CheckCXXDefaultArguments(FunctionDecl *FD); void CheckExtraCXXDefaultArguments(Declarator &D); Scope *getNonFieldDeclScope(Scope *S); /// \name Name lookup /// /// These routines provide name lookup that is used during semantic /// analysis to resolve the various kinds of names (identifiers, /// overloaded operator names, constructor names, etc.) into zero or /// more declarations within a particular scope. The major entry /// points are LookupName, which performs unqualified name lookup, /// and LookupQualifiedName, which performs qualified name lookup. /// /// All name lookup is performed based on some specific criteria, /// which specify what names will be visible to name lookup and how /// far name lookup should work. These criteria are important both /// for capturing language semantics (certain lookups will ignore /// certain names, for example) and for performance, since name /// lookup is often a bottleneck in the compilation of C++. Name /// lookup criteria is specified via the LookupCriteria enumeration. /// /// The results of name lookup can vary based on the kind of name /// lookup performed, the current language, and the translation /// unit. In C, for example, name lookup will either return nothing /// (no entity found) or a single declaration. In C++, name lookup /// can additionally refer to a set of overloaded functions or /// result in an ambiguity. All of the possible results of name /// lookup are captured by the LookupResult class, which provides /// the ability to distinguish among them. //@{ /// Describes the kind of name lookup to perform. enum LookupNameKind { /// Ordinary name lookup, which finds ordinary names (functions, /// variables, typedefs, etc.) in C and most kinds of names /// (functions, variables, members, types, etc.) in C++. LookupOrdinaryName = 0, /// Tag name lookup, which finds the names of enums, classes, /// structs, and unions. LookupTagName, /// Label name lookup. LookupLabel, /// Member name lookup, which finds the names of /// class/struct/union members. LookupMemberName, /// Look up of an operator name (e.g., operator+) for use with /// operator overloading. This lookup is similar to ordinary name /// lookup, but will ignore any declarations that are class members. LookupOperatorName, /// Look up of a name that precedes the '::' scope resolution /// operator in C++. This lookup completely ignores operator, object, /// function, and enumerator names (C++ [basic.lookup.qual]p1). LookupNestedNameSpecifierName, /// Look up a namespace name within a C++ using directive or /// namespace alias definition, ignoring non-namespace names (C++ /// [basic.lookup.udir]p1). LookupNamespaceName, /// Look up all declarations in a scope with the given name, /// including resolved using declarations. This is appropriate /// for checking redeclarations for a using declaration. LookupUsingDeclName, /// Look up an ordinary name that is going to be redeclared as a /// name with linkage. This lookup ignores any declarations that /// are outside of the current scope unless they have linkage. See /// C99 6.2.2p4-5 and C++ [basic.link]p6. LookupRedeclarationWithLinkage, /// Look up a friend of a local class. This lookup does not look /// outside the innermost non-class scope. See C++11 [class.friend]p11. LookupLocalFriendName, /// Look up the name of an Objective-C protocol. LookupObjCProtocolName, /// Look up implicit 'self' parameter of an objective-c method. LookupObjCImplicitSelfParam, /// Look up the name of an OpenMP user-defined reduction operation. LookupOMPReductionName, /// Look up the name of an OpenMP user-defined mapper. LookupOMPMapperName, /// Look up any declaration with any name. LookupAnyName }; /// Specifies whether (or how) name lookup is being performed for a /// redeclaration (vs. a reference). enum RedeclarationKind { /// The lookup is a reference to this name that is not for the /// purpose of redeclaring the name. NotForRedeclaration = 0, /// The lookup results will be used for redeclaration of a name, /// if an entity by that name already exists and is visible. ForVisibleRedeclaration, /// The lookup results will be used for redeclaration of a name /// with external linkage; non-visible lookup results with external linkage /// may also be found. ForExternalRedeclaration }; RedeclarationKind forRedeclarationInCurContext() { // A declaration with an owning module for linkage can never link against // anything that is not visible. We don't need to check linkage here; if // the context has internal linkage, redeclaration lookup won't find things // from other TUs, and we can't safely compute linkage yet in general. if (cast(CurContext) ->getOwningModuleForLinkage(/*IgnoreLinkage*/true)) return ForVisibleRedeclaration; return ForExternalRedeclaration; } /// The possible outcomes of name lookup for a literal operator. enum LiteralOperatorLookupResult { /// The lookup resulted in an error. LOLR_Error, /// The lookup found no match but no diagnostic was issued. LOLR_ErrorNoDiagnostic, /// The lookup found a single 'cooked' literal operator, which /// expects a normal literal to be built and passed to it. LOLR_Cooked, /// The lookup found a single 'raw' literal operator, which expects /// a string literal containing the spelling of the literal token. LOLR_Raw, /// The lookup found an overload set of literal operator templates, /// which expect the characters of the spelling of the literal token to be /// passed as a non-type template argument pack. LOLR_Template, /// The lookup found an overload set of literal operator templates, /// which expect the character type and characters of the spelling of the /// string literal token to be passed as template arguments. LOLR_StringTemplate }; SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D, CXXSpecialMember SM, bool ConstArg, bool VolatileArg, bool RValueThis, bool ConstThis, bool VolatileThis); typedef std::function TypoDiagnosticGenerator; typedef std::function TypoRecoveryCallback; private: bool CppLookupName(LookupResult &R, Scope *S); struct TypoExprState { std::unique_ptr Consumer; TypoDiagnosticGenerator DiagHandler; TypoRecoveryCallback RecoveryHandler; TypoExprState(); TypoExprState(TypoExprState &&other) noexcept; TypoExprState &operator=(TypoExprState &&other) noexcept; }; /// The set of unhandled TypoExprs and their associated state. llvm::MapVector DelayedTypos; /// Creates a new TypoExpr AST node. TypoExpr *createDelayedTypo(std::unique_ptr TCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC); // The set of known/encountered (unique, canonicalized) NamespaceDecls. // // The boolean value will be true to indicate that the namespace was loaded // from an AST/PCH file, or false otherwise. llvm::MapVector KnownNamespaces; /// Whether we have already loaded known namespaces from an extenal /// source. bool LoadedExternalKnownNamespaces; /// Helper for CorrectTypo and CorrectTypoDelayed used to create and /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction /// should be skipped entirely. std::unique_ptr makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, DeclContext *MemberContext, bool EnteringContext, const ObjCObjectPointerType *OPT, bool ErrorRecovery); public: const TypoExprState &getTypoExprState(TypoExpr *TE) const; /// Clears the state of the given TypoExpr. void clearDelayedTypo(TypoExpr *TE); /// Look up a name, looking for a single declaration. Return /// null if the results were absent, ambiguous, or overloaded. /// /// It is preferable to use the elaborated form and explicitly handle /// ambiguity and overloaded. NamedDecl *LookupSingleName(Scope *S, DeclarationName Name, SourceLocation Loc, LookupNameKind NameKind, RedeclarationKind Redecl = NotForRedeclaration); bool LookupBuiltin(LookupResult &R); bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, bool InUnqualifiedLookup = false); bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, CXXScopeSpec &SS); bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation = false, bool EnteringContext = false); ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc, RedeclarationKind Redecl = NotForRedeclaration); bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class); void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, QualType T1, QualType T2, UnresolvedSetImpl &Functions); LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc = SourceLocation()); DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class); CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class); CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class, unsigned Quals); CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals); CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals); CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals); CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class); bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id); LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef ArgTys, bool AllowRaw, bool AllowTemplate, bool AllowStringTemplate, bool DiagnoseMissing); bool isKnownName(StringRef name); /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs. enum class FunctionEmissionStatus { Emitted, CUDADiscarded, // Discarded due to CUDA/HIP hostness OMPDiscarded, // Discarded due to OpenMP hostness TemplateDiscarded, // Discarded due to uninstantiated templates Unknown, }; FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl); // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check. bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee); void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef Args, ADLResult &Functions); void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true, bool LoadExternal = true); void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope = true, bool IncludeDependentBases = false, bool LoadExternal = true); enum CorrectTypoKind { CTK_NonError, // CorrectTypo used in a non error recovery situation. CTK_ErrorRecovery // CorrectTypo used in normal error recovery. }; TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, CorrectTypoKind Mode, DeclContext *MemberContext = nullptr, bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr, bool RecordFailure = true); TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo, Sema::LookupNameKind LookupKind, Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, DeclContext *MemberContext = nullptr, bool EnteringContext = false, const ObjCObjectPointerType *OPT = nullptr); /// Process any TypoExprs in the given Expr and its children, /// generating diagnostics as appropriate and returning a new Expr if there /// were typos that were all successfully corrected and ExprError if one or /// more typos could not be corrected. /// /// \param E The Expr to check for TypoExprs. /// /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its /// initializer. /// /// \param Filter A function applied to a newly rebuilt Expr to determine if /// it is an acceptable/usable result from a single combination of typo /// corrections. As long as the filter returns ExprError, different /// combinations of corrections will be tried until all are exhausted. ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl = nullptr, llvm::function_ref Filter = [](Expr *E) -> ExprResult { return E; }); ExprResult CorrectDelayedTyposInExpr(Expr *E, llvm::function_ref Filter) { return CorrectDelayedTyposInExpr(E, nullptr, Filter); } ExprResult CorrectDelayedTyposInExpr(ExprResult ER, VarDecl *InitDecl = nullptr, llvm::function_ref Filter = [](Expr *E) -> ExprResult { return E; }) { return ER.isInvalid() ? ER : CorrectDelayedTyposInExpr(ER.get(), Filter); } ExprResult CorrectDelayedTyposInExpr(ExprResult ER, llvm::function_ref Filter) { return CorrectDelayedTyposInExpr(ER, nullptr, Filter); } void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, bool ErrorRecovery = true); void diagnoseTypo(const TypoCorrection &Correction, const PartialDiagnostic &TypoDiag, const PartialDiagnostic &PrevNote, bool ErrorRecovery = true); void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F); void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc, ArrayRef Args, AssociatedNamespaceSet &AssociatedNamespaces, AssociatedClassSet &AssociatedClasses); void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, bool ConsiderLinkage, bool AllowInlineNamespace); bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old); void DiagnoseAmbiguousLookup(LookupResult &Result); //@} ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id, SourceLocation IdLoc, bool TypoCorrection = false); NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc); NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S); void AddKnownFunctionAttributes(FunctionDecl *FD); // More parsing and symbol table subroutines. void ProcessPragmaWeak(Scope *S, Decl *D); // Decl attributes - this routine is the top level dispatcher. void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD); // Helper for delayed processing of attributes. void ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList); void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL, bool IncludeCXX11Attributes = true); bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList); void checkUnusedDeclAttributes(Declarator &D); /// Determine if type T is a valid subject for a nonnull and similar /// attributes. By default, we look through references (the behavior used by /// nonnull), but if the second parameter is true, then we treat a reference /// type as valid. bool isValidPointerAttrType(QualType T, bool RefOkay = false); bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value); bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD = nullptr); bool CheckAttrTarget(const ParsedAttr &CurrAttr); bool CheckAttrNoArgs(const ParsedAttr &CurrAttr); bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum, StringRef &Str, SourceLocation *ArgLocation = nullptr); bool checkSectionName(SourceLocation LiteralLoc, StringRef Str); bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str); bool checkMSInheritanceAttrOnDefinition( CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceModel SemanticSpelling); void CheckAlignasUnderalignment(Decl *D); /// Adjust the calling convention of a method to be the ABI default if it /// wasn't specified explicitly. This handles method types formed from /// function type typedefs and typename template arguments. void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor, SourceLocation Loc); // Check if there is an explicit attribute, but only look through parens. // The intent is to look for an attribute on the current declarator, but not // one that came from a typedef. bool hasExplicitCallingConv(QualType T); /// Get the outermost AttributedType node that sets a calling convention. /// Valid types should not have multiple attributes with different CCs. const AttributedType *getCallingConvAttributedType(QualType T) const; /// Stmt attributes - this routine is the top level dispatcher. StmtResult ProcessStmtAttributes(Stmt *Stmt, const ParsedAttributesView &Attrs, SourceRange Range); void WarnConflictingTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); void CheckConflictingOverridingMethod(ObjCMethodDecl *Method, ObjCMethodDecl *Overridden, bool IsProtocolMethodDecl); /// WarnExactTypedMethods - This routine issues a warning if method /// implementation declaration matches exactly that of its declaration. void WarnExactTypedMethods(ObjCMethodDecl *Method, ObjCMethodDecl *MethodDecl, bool IsProtocolMethodDecl); typedef llvm::SmallPtrSet SelectorSet; /// CheckImplementationIvars - This routine checks if the instance variables /// listed in the implelementation match those listed in the interface. void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, ObjCIvarDecl **Fields, unsigned nIvars, SourceLocation Loc); /// ImplMethodsVsClassMethods - This is main routine to warn if any method /// remains unimplemented in the class or category \@implementation. void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool IncompleteImpl = false); /// DiagnoseUnimplementedProperties - This routine warns on those properties /// which must be implemented by this implementation. void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl, ObjCContainerDecl *CDecl, bool SynthesizeProperties); /// Diagnose any null-resettable synthesized setters. void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl); /// DefaultSynthesizeProperties - This routine default synthesizes all /// properties which must be synthesized in the class's \@implementation. void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl, ObjCInterfaceDecl *IDecl, SourceLocation AtEnd); void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd); /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is /// an ivar synthesized for 'Method' and 'Method' is a property accessor /// declared in class 'IFace'. bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace, ObjCMethodDecl *Method, ObjCIvarDecl *IV); /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which /// backs the property is not used in the property's accessor. void DiagnoseUnusedBackingIvarInAccessor(Scope *S, const ObjCImplementationDecl *ImplD); /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and /// it property has a backing ivar, returns this ivar; otherwise, returns NULL. /// It also returns ivar's property on success. ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const; /// Called by ActOnProperty to handle \@property declarations in /// class extensions. ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, SourceLocation GetterNameLoc, Selector SetterSel, SourceLocation SetterNameLoc, const bool isReadWrite, unsigned &Attributes, const unsigned AttributesAsWritten, QualType T, TypeSourceInfo *TSI, tok::ObjCKeywordKind MethodImplKind); /// Called by ActOnProperty and HandlePropertyInClassExtension to /// handle creating the ObjcPropertyDecl for a category or \@interface. ObjCPropertyDecl *CreatePropertyDecl(Scope *S, ObjCContainerDecl *CDecl, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, Selector GetterSel, SourceLocation GetterNameLoc, Selector SetterSel, SourceLocation SetterNameLoc, const bool isReadWrite, const unsigned Attributes, const unsigned AttributesAsWritten, QualType T, TypeSourceInfo *TSI, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = nullptr); /// AtomicPropertySetterGetterRules - This routine enforces the rule (via /// warning) when atomic property has one but not the other user-declared /// setter or getter. void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl, ObjCInterfaceDecl* IDecl); void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D); void DiagnoseMissingDesignatedInitOverrides( const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD); void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID); enum MethodMatchStrategy { MMS_loose, MMS_strict }; /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns /// true, or false, accordingly. bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method, const ObjCMethodDecl *PrevMethod, MethodMatchStrategy strategy = MMS_strict); /// MatchAllMethodDeclarations - Check methods declaraed in interface or /// or protocol against those declared in their implementations. void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl* IMPDecl, ObjCContainerDecl* IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false); /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in /// category matches with those implemented in its primary class and /// warns each time an exact match is found. void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP); /// Add the given method to the list of globally-known methods. void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method); /// Returns default addr space for method qualifiers. LangAS getDefaultCXXMethodAddrSpace() const; private: /// AddMethodToGlobalPool - Add an instance or factory method to the global /// pool. See descriptoin of AddInstanceMethodToGlobalPool. void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance); /// LookupMethodInGlobalPool - Returns the instance or factory method and /// optionally warns if there are multiple signatures. ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass, bool instance); public: /// - Returns instance or factory methods in global method pool for /// given selector. It checks the desired kind first, if none is found, and /// parameter checkTheOther is set, it then checks the other kind. If no such /// method or only one method is found, function returns false; otherwise, it /// returns true. bool CollectMultipleMethodsInGlobalPool(Selector Sel, SmallVectorImpl& Methods, bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound = nullptr); bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl& Methods); void DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl &Methods, Selector Sel, SourceRange R, bool receiverIdOrClass); private: /// - Returns a selector which best matches given argument list or /// nullptr if none could be found ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, SmallVectorImpl& Methods); /// Record the typo correction failure and return an empty correction. TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc, bool RecordFailure = true) { if (RecordFailure) TypoCorrectionFailures[Typo].insert(TypoLoc); return TypoCorrection(); } public: /// AddInstanceMethodToGlobalPool - All instance methods in a translation /// unit are added to a global pool. This allows us to efficiently associate /// a selector with a method declaraation for purposes of typechecking /// messages sent to "id" (where the class of the object is unknown). void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/true); } /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods. void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) { AddMethodToGlobalPool(Method, impl, /*instance*/false); } /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global /// pool. void AddAnyMethodToGlobalPool(Decl *D); /// LookupInstanceMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, /*instance*/true); } /// LookupFactoryMethodInGlobalPool - Returns the method and warns if /// there are multiple signatures. ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R, bool receiverIdOrClass=false) { return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass, /*instance*/false); } const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel, QualType ObjectType=QualType()); /// LookupImplementedMethodInGlobalPool - Returns the method which has an /// implementation. ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel); /// CollectIvarsToConstructOrDestruct - Collect those ivars which require /// initialization. void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl &Ivars); //===--------------------------------------------------------------------===// // Statement Parsing Callbacks: SemaStmt.cpp. public: class FullExprArg { public: FullExprArg() : E(nullptr) { } FullExprArg(Sema &actions) : E(nullptr) { } ExprResult release() { return E; } Expr *get() const { return E; } Expr *operator->() { return E; } private: // FIXME: No need to make the entire Sema class a friend when it's just // Sema::MakeFullExpr that needs access to the constructor below. friend class Sema; explicit FullExprArg(Expr *expr) : E(expr) {} Expr *E; }; FullExprArg MakeFullExpr(Expr *Arg) { return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation()); } FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) { return FullExprArg( ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get()); } FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) { ExprResult FE = ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(), /*DiscardedValue*/ true); return FullExprArg(FE.get()); } StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true); StmtResult ActOnExprStmtError(); StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro = false); void ActOnStartOfCompoundStmt(bool IsStmtExpr); void ActOnFinishOfCompoundStmt(); StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R, ArrayRef Elts, bool isStmtExpr); /// A RAII object to enter scope of a compound statement. class CompoundScopeRAII { public: CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) { S.ActOnStartOfCompoundStmt(IsStmtExpr); } ~CompoundScopeRAII() { S.ActOnFinishOfCompoundStmt(); } private: Sema &S; }; /// An RAII helper that pops function a function scope on exit. struct FunctionScopeRAII { Sema &S; bool Active; FunctionScopeRAII(Sema &S) : S(S), Active(true) {} ~FunctionScopeRAII() { if (Active) S.PopFunctionScopeInfo(); } void disable() { Active = false; } }; StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc); void ActOnForEachDeclStmt(DeclGroupPtrTy Decl); StmtResult ActOnForEachLValueExpr(Expr *E); ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val); StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS, SourceLocation DotDotDotLoc, ExprResult RHS, SourceLocation ColonLoc); void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt); StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt, Scope *CurScope); StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl, SourceLocation ColonLoc, Stmt *SubStmt); StmtResult ActOnAttributedStmt(SourceLocation AttrLoc, ArrayRef Attrs, Stmt *SubStmt); class ConditionResult; StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt, ConditionResult Cond, Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal); StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Stmt *InitStmt, ConditionResult Cond); StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body); StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond, Stmt *Body); StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation CondLParen, Expr *Cond, SourceLocation CondRParen); StmtResult ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *First, ConditionResult Second, FullExprArg Third, SourceLocation RParenLoc, Stmt *Body); ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection); StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc, Stmt *First, Expr *collection, SourceLocation RParenLoc); StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body); enum BuildForRangeKind { /// Initial building of a for-range statement. BFRK_Build, /// Instantiation or recovery rebuild of a for-range statement. Don't /// attempt any typo-correction. BFRK_Rebuild, /// Determining whether a for-range statement could be built. Avoid any /// unnecessary or irreversible actions. BFRK_Check }; StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, Stmt *LoopVar, SourceLocation ColonLoc, Expr *Collection, SourceLocation RParenLoc, BuildForRangeKind Kind); StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc, Stmt *InitStmt, SourceLocation ColonLoc, Stmt *RangeDecl, Stmt *Begin, Stmt *End, Expr *Cond, Expr *Inc, Stmt *LoopVarDecl, SourceLocation RParenLoc, BuildForRangeKind Kind); StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body); StmtResult ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *TheDecl); StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *DestExp); StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope); StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope); void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, unsigned NumParams); typedef std::pair CapturedParamNameType; void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope, CapturedRegionKind Kind, ArrayRef Params, unsigned OpenMPCaptureLevel = 0); StmtResult ActOnCapturedRegionEnd(Stmt *S); void ActOnCapturedRegionError(); RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc, unsigned NumParams); enum CopyElisionSemanticsKind { CES_Strict = 0, CES_AllowParameters = 1, CES_AllowDifferentTypes = 2, CES_AllowExceptionVariables = 4, CES_FormerDefault = (CES_AllowParameters), CES_Default = (CES_AllowParameters | CES_AllowDifferentTypes), CES_AsIfByStdMove = (CES_AllowParameters | CES_AllowDifferentTypes | CES_AllowExceptionVariables), }; VarDecl *getCopyElisionCandidate(QualType ReturnType, Expr *E, CopyElisionSemanticsKind CESK); bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD, CopyElisionSemanticsKind CESK); StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp, Scope *CurScope); StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp); StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg Constraints, MultiExprArg Exprs, Expr *AsmString, MultiExprArg Clobbers, unsigned NumLabels, SourceLocation RParenLoc); void FillInlineAsmIdentifierInfo(Expr *Res, llvm::InlineAsmIdentifierInfo &Info); ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool IsUnevaluatedContext); bool LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset, SourceLocation AsmLoc); ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member, SourceLocation AsmLoc); StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef AsmToks, StringRef AsmString, unsigned NumOutputs, unsigned NumInputs, ArrayRef Constraints, ArrayRef Clobbers, ArrayRef Exprs, SourceLocation EndLoc); LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName, SourceLocation Location, bool AlwaysCreate); VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, bool Invalid = false); Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D); StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen, Decl *Parm, Stmt *Body); StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body); StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try, MultiStmtArg Catch, Stmt *Finally); StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw); StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw, Scope *CurScope); ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand); StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SynchExpr, Stmt *SynchBody); StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body); VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id); Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D); StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl, Stmt *HandlerBlock); StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock, ArrayRef Handlers); StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ? SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler); StmtResult ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr, Stmt *Block); void ActOnStartSEHFinallyBlock(); void ActOnAbortSEHFinallyBlock(); StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block); StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope); void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock); bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const; /// If it's a file scoped decl that must warn if not used, keep track /// of it. void MarkUnusedFileScopedDecl(const DeclaratorDecl *D); /// DiagnoseUnusedExprResult - If the statement passed in is an expression /// whose result is unused, warn. void DiagnoseUnusedExprResult(const Stmt *S); void DiagnoseUnusedNestedTypedefs(const RecordDecl *D); void DiagnoseUnusedDecl(const NamedDecl *ND); /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null /// statement as a \p Body, and it is located on the same line. /// /// This helps prevent bugs due to typos, such as: /// if (condition); /// do_stuff(); void DiagnoseEmptyStmtBody(SourceLocation StmtLoc, const Stmt *Body, unsigned DiagID); /// Warn if a for/while loop statement \p S, which is followed by /// \p PossibleBody, has a suspicious null statement as a body. void DiagnoseEmptyLoopBody(const Stmt *S, const Stmt *PossibleBody); /// Warn if a value is moved to itself. void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, SourceLocation OpLoc); /// Warn if we're implicitly casting from a _Nullable pointer type to a /// _Nonnull one. void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType, SourceLocation Loc); /// Warn when implicitly casting 0 to nullptr. void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E); ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) { return DelayedDiagnostics.push(pool); } void PopParsingDeclaration(ParsingDeclState state, Decl *decl); typedef ProcessingContextState ParsingClassState; ParsingClassState PushParsingClass() { ParsingClassDepth++; return DelayedDiagnostics.pushUndelayed(); } void PopParsingClass(ParsingClassState state) { ParsingClassDepth--; DelayedDiagnostics.popUndelayed(state); } void redelayDiagnostics(sema::DelayedDiagnosticPool &pool); void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef Locs, const ObjCInterfaceDecl *UnknownObjCClass, bool ObjCPropertyAccess, bool AvoidPartialAvailabilityChecks = false, ObjCInterfaceDecl *ClassReceiver = nullptr); bool makeUnavailableInSystemHeader(SourceLocation loc, UnavailableAttr::ImplicitReason reason); /// Issue any -Wunguarded-availability warnings in \c FD void DiagnoseUnguardedAvailabilityViolations(Decl *FD); //===--------------------------------------------------------------------===// // Expression Parsing Callbacks: SemaExpr.cpp. bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid); bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef Locs, const ObjCInterfaceDecl *UnknownObjCClass = nullptr, bool ObjCPropertyAccess = false, bool AvoidPartialAvailabilityChecks = false, ObjCInterfaceDecl *ClassReciever = nullptr); void NoteDeletedFunction(FunctionDecl *FD); void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD); bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD, ObjCMethodDecl *Getter, SourceLocation Loc); void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, ArrayRef Args); void PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr, ExpressionEvaluationContextRecord::ExpressionKind Type = ExpressionEvaluationContextRecord::EK_Other); enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl }; void PushExpressionEvaluationContext( ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t, ExpressionEvaluationContextRecord::ExpressionKind Type = ExpressionEvaluationContextRecord::EK_Other); void PopExpressionEvaluationContext(); void DiscardCleanupsInEvaluationContext(); ExprResult TransformToPotentiallyEvaluated(Expr *E); ExprResult HandleExprEvaluationContextForTypeof(Expr *E); ExprResult CheckUnevaluatedOperand(Expr *E); void CheckUnusedVolatileAssignment(Expr *E); ExprResult ActOnConstantExpression(ExprResult Res); // Functions for marking a declaration referenced. These functions also // contain the relevant logic for marking if a reference to a function or // variable is an odr-use (in the C++11 sense). There are separate variants // for expressions referring to a decl; these exist because odr-use marking // needs to be delayed for some constant variables when we build one of the // named expressions. // // MightBeOdrUse indicates whether the use could possibly be an odr-use, and // should usually be true. This only needs to be set to false if the lack of // odr-use cannot be determined from the current context (for instance, // because the name denotes a virtual function and was written without an // explicit nested-name-specifier). void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse); void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func, bool MightBeOdrUse = true); void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var); void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr); void MarkMemberReferenced(MemberExpr *E); void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E); void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc, unsigned CapturingScopeIndex); ExprResult CheckLValueToRValueConversionOperand(Expr *E); void CleanupVarDeclMarking(); enum TryCaptureKind { TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef }; /// Try to capture the given variable. /// /// \param Var The variable to capture. /// /// \param Loc The location at which the capture occurs. /// /// \param Kind The kind of capture, which may be implicit (for either a /// block or a lambda), or explicit by-value or by-reference (for a lambda). /// /// \param EllipsisLoc The location of the ellipsis, if one is provided in /// an explicit lambda capture. /// /// \param BuildAndDiagnose Whether we are actually supposed to add the /// captures or diagnose errors. If false, this routine merely check whether /// the capture can occur without performing the capture itself or complaining /// if the variable cannot be captured. /// /// \param CaptureType Will be set to the type of the field used to capture /// this variable in the innermost block or lambda. Only valid when the /// variable can be captured. /// /// \param DeclRefType Will be set to the type of a reference to the capture /// from within the current scope. Only valid when the variable can be /// captured. /// /// \param FunctionScopeIndexToStopAt If non-null, it points to the index /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. /// This is useful when enclosing lambdas must speculatively capture /// variables that may or may not be used in certain specializations of /// a nested generic lambda. /// /// \returns true if an error occurred (i.e., the variable cannot be /// captured) and false if the capture succeeded. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind, SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt); /// Try to capture the given variable. bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind = TryCapture_Implicit, SourceLocation EllipsisLoc = SourceLocation()); /// Checks if the variable must be captured. bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc); /// Given a variable, determine the type that a reference to that /// variable will have in the given scope. QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc); /// Mark all of the declarations referenced within a particular AST node as /// referenced. Used when template instantiation instantiates a non-dependent /// type -- entities referenced by the type are now referenced. void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T); void MarkDeclarationsReferencedInExpr(Expr *E, bool SkipLocalVariables = false); /// Try to recover by turning the given expression into a /// call. Returns true if recovery was attempted or an error was /// emitted; this may also leave the ExprResult invalid. bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, bool ForceComplain = false, bool (*IsPlausibleResult)(QualType) = nullptr); /// Figure out if an expression could be turned into a call. bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy, UnresolvedSetImpl &NonTemplateOverloads); /// Conditionally issue a diagnostic based on the current /// evaluation context. /// /// \param Statement If Statement is non-null, delay reporting the /// diagnostic until the function body is parsed, and then do a basic /// reachability analysis to determine if the statement is reachable. /// If it is unreachable, the diagnostic will not be emitted. bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement, const PartialDiagnostic &PD); /// Similar, but diagnostic is only produced if all the specified statements /// are reachable. bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef Stmts, const PartialDiagnostic &PD); // Primary Expressions. SourceRange getExprRange(Expr *E) const; ExprResult ActOnIdExpression( Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC = nullptr, bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr); void DecomposeUnqualifiedId(const UnqualifiedId &Id, TemplateArgumentListInfo &Buffer, DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *&TemplateArgs); bool DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, CorrectionCandidateCallback &CCC, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr, ArrayRef Args = None, TypoExpr **Out = nullptr); DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, IdentifierInfo *II); ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV); ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S, IdentifierInfo *II, bool AllowBuiltinCreation=false); ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool isAddressOfOperand, const TemplateArgumentListInfo *TemplateArgs); /// If \p D cannot be odr-used in the current expression evaluation context, /// return a reason explaining why. Otherwise, return NOUR_None. NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D); DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, SourceLocation Loc, const CXXScopeSpec *SS = nullptr); DeclRefExpr * BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, const CXXScopeSpec *SS = nullptr, NamedDecl *FoundD = nullptr, SourceLocation TemplateKWLoc = SourceLocation(), const TemplateArgumentListInfo *TemplateArgs = nullptr); DeclRefExpr * BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, const DeclarationNameInfo &NameInfo, NestedNameSpecifierLoc NNS, NamedDecl *FoundD = nullptr, SourceLocation TemplateKWLoc = SourceLocation(), const TemplateArgumentListInfo *TemplateArgs = nullptr); ExprResult BuildAnonymousStructUnionMemberReference( const CXXScopeSpec &SS, SourceLocation nameLoc, IndirectFieldDecl *indirectField, DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none), Expr *baseObjectExpr = nullptr, SourceLocation opLoc = SourceLocation()); ExprResult BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S); ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, bool IsDefiniteInstance, const Scope *S); bool UseArgumentDependentLookup(const CXXScopeSpec &SS, const LookupResult &R, bool HasTrailingLParen); ExprResult BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI = nullptr); ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool NeedsADL, bool AcceptInvalidDecl = false); ExprResult BuildDeclarationNameExpr( const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, NamedDecl *FoundD = nullptr, const TemplateArgumentListInfo *TemplateArgs = nullptr, bool AcceptInvalidDecl = false); ExprResult BuildLiteralOperatorCall(LookupResult &R, DeclarationNameInfo &SuffixInfo, ArrayRef Args, SourceLocation LitEndLoc, TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr); ExprResult BuildPredefinedExpr(SourceLocation Loc, PredefinedExpr::IdentKind IK); ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind); ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val); bool CheckLoopHintExpr(Expr *E, SourceLocation Loc); ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr); ExprResult ActOnCharacterConstant(const Token &Tok, Scope *UDLScope = nullptr); ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E); ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val); /// ActOnStringLiteral - The specified tokens were lexed as pasted string /// fragments (e.g. "foo" "bar" L"baz"). ExprResult ActOnStringLiteral(ArrayRef StringToks, Scope *UDLScope = nullptr); ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef ArgTypes, ArrayRef ArgExprs); ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef Types, ArrayRef Exprs); // Binary/Unary Operators. 'Tok' is the token for the operator. ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *InputExpr); ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *Input); ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input); bool isQualifiedMemberAccess(Expr *E); QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc); ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R); ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, bool IsType, void *TyOrEx, SourceRange ArgRange); ExprResult CheckPlaceholderExpr(Expr *E); bool CheckVecStepExpr(Expr *E); bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind); bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc, SourceRange ExprRange, UnaryExprOrTypeTrait ExprKind); ExprResult ActOnSizeofParameterPackExpr(Scope *S, SourceLocation OpLoc, IdentifierInfo &Name, SourceLocation NameLoc, SourceLocation RParenLoc); ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Kind, Expr *Input); ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc); ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, Expr *Idx, SourceLocation RLoc); ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, Expr *LowerBound, SourceLocation ColonLoc, Expr *Length, SourceLocation RBLoc); // This struct is for use by ActOnMemberAccess to allow // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after // changing the access operator from a '.' to a '->' (to see if that is the // change needed to fix an error about an unknown member, e.g. when the class // defines a custom operator->). struct ActOnMemberAccessExtraArgs { Scope *S; UnqualifiedId &Id; Decl *ObjCImpDecl; }; ExprResult BuildMemberReferenceExpr( Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); ExprResult BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs, const Scope *S, bool SuppressQualifierCheck = false, ActOnMemberAccessExtraArgs *ExtraArgs = nullptr); ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, FieldDecl *Field, DeclAccessPair FoundDecl, const DeclarationNameInfo &MemberNameInfo); ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow); bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType, const CXXScopeSpec &SS, const LookupResult &R); ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Member, Decl *ObjCImpDecl); MemberExpr * BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS, SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr); MemberExpr * BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl, bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK, ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr); void ActOnDefaultCtorInitializers(Decl *CDtorDecl); bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, FunctionDecl *FDecl, const FunctionProtoType *Proto, ArrayRef Args, SourceLocation RParenLoc, bool ExecConfig = false); void CheckStaticArrayArgument(SourceLocation CallLoc, ParmVarDecl *Param, const Expr *ArgExpr); /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. /// This provides the location of the left/right parens and a list of comma /// locations. ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig = nullptr); ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc, MultiExprArg ArgExprs, SourceLocation RParenLoc, Expr *ExecConfig = nullptr, bool IsExecConfig = false); enum class AtomicArgumentOrder { API, AST }; ExprResult BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, SourceLocation RParenLoc, MultiExprArg Args, AtomicExpr::AtomicOp Op, AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API); ExprResult BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc, ArrayRef Arg, SourceLocation RParenLoc, Expr *Config = nullptr, bool IsExecConfig = false, ADLCallKind UsesADL = ADLCallKind::NotADL); ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc, MultiExprArg ExecConfig, SourceLocation GGGLoc); ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D, ParsedType &Ty, SourceLocation RParenLoc, Expr *CastExpr); ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty, SourceLocation RParenLoc, Expr *Op); CastKind PrepareScalarCast(ExprResult &src, QualType destType); /// Build an altivec or OpenCL literal. ExprResult BuildVectorLiteral(SourceLocation LParenLoc, SourceLocation RParenLoc, Expr *E, TypeSourceInfo *TInfo); ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME); ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc, Expr *InitExpr); ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *LiteralExpr); ExprResult ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc); ExprResult BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, SourceLocation RBraceLoc); ExprResult ActOnDesignatedInitializer(Designation &Desig, SourceLocation EqualOrColonLoc, bool GNUSyntax, ExprResult Init); private: static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind); public: ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr); ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr); void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc); /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null /// in the case of a the GNU conditional expr extension. ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr); /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc, LabelDecl *TheDecl); void ActOnStartStmtExpr(); ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc); ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt, SourceLocation RPLoc, unsigned TemplateDepth); // Handle the final expression in a statement expression. ExprResult ActOnStmtExprResult(ExprResult E); void ActOnStmtExprError(); // __builtin_offsetof(type, identifier(.identifier|[expr])*) struct OffsetOfComponent { SourceLocation LocStart, LocEnd; bool isBrackets; // true if [expr], false if .ident union { IdentifierInfo *IdentInfo; Expr *E; } U; }; /// __builtin_offsetof(type, a.b[123][456].c) ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc, TypeSourceInfo *TInfo, ArrayRef Components, SourceLocation RParenLoc); ExprResult ActOnBuiltinOffsetOf(Scope *S, SourceLocation BuiltinLoc, SourceLocation TypeLoc, ParsedType ParsedArgTy, ArrayRef Components, SourceLocation RParenLoc); // __builtin_choose_expr(constExpr, expr1, expr2) ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr, SourceLocation RPLoc); // __builtin_va_arg(expr, type) ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty, SourceLocation RPLoc); ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E, TypeSourceInfo *TInfo, SourceLocation RPLoc); // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(), // __builtin_COLUMN() ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind, SourceLocation BuiltinLoc, SourceLocation RPLoc); // Build a potentially resolved SourceLocExpr. ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind, SourceLocation BuiltinLoc, SourceLocation RPLoc, DeclContext *ParentContext); // __null ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc); bool CheckCaseExpression(Expr *E); /// Describes the result of an "if-exists" condition check. enum IfExistsResult { /// The symbol exists. IER_Exists, /// The symbol does not exist. IER_DoesNotExist, /// The name is a dependent name, so the results will differ /// from one instantiation to the next. IER_Dependent, /// An error occurred. IER_Error }; IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS, const DeclarationNameInfo &TargetNameInfo); IfExistsResult CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name); StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested); StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, CXXScopeSpec &SS, UnqualifiedId &Name, Stmt *Nested); //===------------------------- "Block" Extension ------------------------===// /// ActOnBlockStart - This callback is invoked when a block literal is /// started. void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockArguments - This callback allows processing of block arguments. /// If there are no arguments, this is still invoked. void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo, Scope *CurScope); /// ActOnBlockError - If there is an error parsing a block, this callback /// is invoked to pop the information about the block from the action impl. void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope); /// ActOnBlockStmtExpr - This is called when the body of a block statement /// literal was successfully completed. ^(int x){...} ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body, Scope *CurScope); //===---------------------------- Clang Extensions ----------------------===// /// __builtin_convertvector(...) ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); //===---------------------------- OpenCL Features -----------------------===// /// __builtin_astype(...) ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, SourceLocation BuiltinLoc, SourceLocation RParenLoc); //===---------------------------- C++ Features --------------------------===// // Act on C++ namespaces Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc, SourceLocation NamespaceLoc, SourceLocation IdentLoc, IdentifierInfo *Ident, SourceLocation LBrace, const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UsingDecl); void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace); NamespaceDecl *getStdNamespace() const; NamespaceDecl *getOrCreateStdNamespace(); NamespaceDecl *lookupStdExperimentalNamespace(); CXXRecordDecl *getStdBadAlloc() const; EnumDecl *getStdAlignValT() const; private: // A cache representing if we've fully checked the various comparison category // types stored in ASTContext. The bit-index corresponds to the integer value // of a ComparisonCategoryType enumerator. llvm::SmallBitVector FullyCheckedComparisonCategories; ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, CXXScopeSpec &SS, ParsedType TemplateTypeTy, IdentifierInfo *MemberOrBase); public: enum class ComparisonCategoryUsage { /// The '<=>' operator was used in an expression and a builtin operator /// was selected. OperatorInExpression, /// A defaulted 'operator<=>' needed the comparison category. This /// typically only applies to 'std::strong_ordering', due to the implicit /// fallback return value. DefaultedOperator, }; /// Lookup the specified comparison category types in the standard /// library, an check the VarDecls possibly returned by the operator<=> /// builtins for that type. /// /// \return The type of the comparison category type corresponding to the /// specified Kind, or a null type if an error occurs QualType CheckComparisonCategoryType(ComparisonCategoryType Kind, SourceLocation Loc, ComparisonCategoryUsage Usage); /// Tests whether Ty is an instance of std::initializer_list and, if /// it is and Element is not NULL, assigns the element type to Element. bool isStdInitializerList(QualType Ty, QualType *Element); /// Looks for the std::initializer_list template and instantiates it /// with Element, or emits an error if it's not found. /// /// \returns The instantiated template, or null on error. QualType BuildStdInitializerList(QualType Element, SourceLocation Loc); /// Determine whether Ctor is an initializer-list constructor, as /// defined in [dcl.init.list]p2. bool isInitListConstructor(const FunctionDecl *Ctor); Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc, SourceLocation NamespcLoc, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *NamespcName, const ParsedAttributesView &AttrList); void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir); Decl *ActOnNamespaceAliasDef(Scope *CurScope, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, CXXScopeSpec &SS, SourceLocation IdentLoc, IdentifierInfo *Ident); void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow); bool CheckUsingShadowDecl(UsingDecl *UD, NamedDecl *Target, const LookupResult &PreviousDecls, UsingShadowDecl *&PrevShadow); UsingShadowDecl *BuildUsingShadowDecl(Scope *S, UsingDecl *UD, NamedDecl *Target, UsingShadowDecl *PrevDecl); bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc, bool HasTypenameKeyword, const CXXScopeSpec &SS, SourceLocation NameLoc, const LookupResult &Previous); bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, SourceLocation NameLoc); NamedDecl *BuildUsingDeclaration( Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList, bool IsInstantiation); NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom, ArrayRef Expansions); bool CheckInheritingConstructorUsingDecl(UsingDecl *UD); /// Given a derived-class using shadow declaration for a constructor and the /// correspnding base class constructor, find or create the implicit /// synthesized derived class constructor to use for this initialization. CXXConstructorDecl * findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor, ConstructorUsingShadowDecl *DerivedShadow); Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS, SourceLocation UsingLoc, SourceLocation TypenameLoc, CXXScopeSpec &SS, UnqualifiedId &Name, SourceLocation EllipsisLoc, const ParsedAttributesView &AttrList); Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS, MultiTemplateParamsArg TemplateParams, SourceLocation UsingLoc, UnqualifiedId &Name, const ParsedAttributesView &AttrList, TypeResult Type, Decl *DeclFromDeclSpec); /// BuildCXXConstructExpr - Creates a complete call to a constructor, /// including handling of its default argument expressions. /// /// \param ConstructKind - a CXXConstructExpr::ConstructionKind ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); /// Build a CXXConstructExpr whose constructor has already been resolved if /// it denotes an inherited constructor. ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if // the constructor can be elidable? ExprResult BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg Exprs, bool HadMultipleCandidates, bool IsListInitialization, bool IsStdInitListInitialization, bool RequiresZeroInit, unsigned ConstructKind, SourceRange ParenRange); ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field); /// Instantiate or parse a C++ default argument expression as necessary. /// Return true on error. bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating /// the default expr if needed. ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, ParmVarDecl *Param); /// FinalizeVarWithDestructor - Prepare for calling destructor on the /// constructed variable. void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType); /// Helper class that collects exception specifications for /// implicitly-declared special member functions. class ImplicitExceptionSpecification { // Pointer to allow copying Sema *Self; // We order exception specifications thus: // noexcept is the most restrictive, but is only used in C++11. // throw() comes next. // Then a throw(collected exceptions) // Finally no specification, which is expressed as noexcept(false). // throw(...) is used instead if any called function uses it. ExceptionSpecificationType ComputedEST; llvm::SmallPtrSet ExceptionsSeen; SmallVector Exceptions; void ClearExceptions() { ExceptionsSeen.clear(); Exceptions.clear(); } public: explicit ImplicitExceptionSpecification(Sema &Self) : Self(&Self), ComputedEST(EST_BasicNoexcept) { if (!Self.getLangOpts().CPlusPlus11) ComputedEST = EST_DynamicNone; } /// Get the computed exception specification type. ExceptionSpecificationType getExceptionSpecType() const { assert(!isComputedNoexcept(ComputedEST) && "noexcept(expr) should not be a possible result"); return ComputedEST; } /// The number of exceptions in the exception specification. unsigned size() const { return Exceptions.size(); } /// The set of exceptions in the exception specification. const QualType *data() const { return Exceptions.data(); } /// Integrate another called method into the collected data. void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method); /// Integrate an invoked expression into the collected data. void CalledExpr(Expr *E) { CalledStmt(E); } /// Integrate an invoked statement into the collected data. void CalledStmt(Stmt *S); /// Overwrite an EPI's exception specification with this /// computed exception specification. FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const { FunctionProtoType::ExceptionSpecInfo ESI; ESI.Type = getExceptionSpecType(); if (ESI.Type == EST_Dynamic) { ESI.Exceptions = Exceptions; } else if (ESI.Type == EST_None) { /// C++11 [except.spec]p14: /// The exception-specification is noexcept(false) if the set of /// potential exceptions of the special member function contains "any" ESI.Type = EST_NoexceptFalse; ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(), tok::kw_false).get(); } return ESI; } }; /// Determine what sort of exception specification a defaulted /// copy constructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted /// default constructor of a class will have, and whether the parameter /// will be const. ImplicitExceptionSpecification ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted /// copy assignment operator of a class will have, and whether the /// parameter will be const. ImplicitExceptionSpecification ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted move /// constructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted move /// assignment operator of a class will have. ImplicitExceptionSpecification ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification a defaulted /// destructor of a class will have. ImplicitExceptionSpecification ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD); /// Determine what sort of exception specification an inheriting /// constructor of a class will have. ImplicitExceptionSpecification ComputeInheritingCtorExceptionSpec(SourceLocation Loc, CXXConstructorDecl *CD); /// Evaluate the implicit exception specification for a defaulted /// special member function. void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD); /// Check the given noexcept-specifier, convert its expression, and compute /// the appropriate ExceptionSpecificationType. ExprResult ActOnNoexceptSpec(SourceLocation NoexceptLoc, Expr *NoexceptExpr, ExceptionSpecificationType &EST); /// Check the given exception-specification and update the /// exception specification information with the results. void checkExceptionSpecification(bool IsTopLevel, ExceptionSpecificationType EST, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr, SmallVectorImpl &Exceptions, FunctionProtoType::ExceptionSpecInfo &ESI); /// Determine if we're in a case where we need to (incorrectly) eagerly /// parse an exception specification to work around a libstdc++ bug. bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D); /// Add an exception-specification to the given member function /// (or member function template). The exception-specification was parsed /// after the method itself was declared. void actOnDelayedExceptionSpecification(Decl *Method, ExceptionSpecificationType EST, SourceRange SpecificationRange, ArrayRef DynamicExceptions, ArrayRef DynamicExceptionRanges, Expr *NoexceptExpr); class InheritedConstructorInfo; /// Determine if a special member function should have a deleted /// definition when it is defaulted. bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM, InheritedConstructorInfo *ICI = nullptr, bool Diagnose = false); /// Produce notes explaining why a defaulted function was defined as deleted. void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD); /// Declare the implicit default constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// default constructor will be added. /// /// \returns The implicitly-declared default constructor. CXXConstructorDecl *DeclareImplicitDefaultConstructor( CXXRecordDecl *ClassDecl); /// DefineImplicitDefaultConstructor - Checks for feasibility of /// defining this constructor as the default constructor. void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit destructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// destructor will be added. /// /// \returns The implicitly-declared destructor. CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl); /// DefineImplicitDestructor - Checks for feasibility of /// defining this destructor as the default destructor. void DefineImplicitDestructor(SourceLocation CurrentLocation, CXXDestructorDecl *Destructor); /// Build an exception spec for destructors that don't have one. /// /// C++11 says that user-defined destructors with no exception spec get one /// that looks as if the destructor was implicitly declared. void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor); /// Define the specified inheriting constructor. void DefineInheritingConstructor(SourceLocation UseLoc, CXXConstructorDecl *Constructor); /// Declare the implicit copy constructor for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy constructor will be added. /// /// \returns The implicitly-declared copy constructor. CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitCopyConstructor - Checks for feasibility of /// defining this constructor as the copy constructor. void DefineImplicitCopyConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit move constructor for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move constructor will be added. /// /// \returns The implicitly-declared move constructor, or NULL if it wasn't /// declared. CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl); /// DefineImplicitMoveConstructor - Checks for feasibility of /// defining this constructor as the move constructor. void DefineImplicitMoveConstructor(SourceLocation CurrentLocation, CXXConstructorDecl *Constructor); /// Declare the implicit copy assignment operator for the given class. /// /// \param ClassDecl The class declaration into which the implicit /// copy assignment operator will be added. /// /// \returns The implicitly-declared copy assignment operator. CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl); /// Defines an implicitly-declared copy assignment operator. void DefineImplicitCopyAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// Declare the implicit move assignment operator for the given class. /// /// \param ClassDecl The Class declaration into which the implicit /// move assignment operator will be added. /// /// \returns The implicitly-declared move assignment operator, or NULL if it /// wasn't declared. CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl); /// Defines an implicitly-declared move assignment operator. void DefineImplicitMoveAssignment(SourceLocation CurrentLocation, CXXMethodDecl *MethodDecl); /// Force the declaration of any implicitly-declared members of this /// class. void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class); /// Check a completed declaration of an implicit special member. void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD); /// Determine whether the given function is an implicitly-deleted /// special member function. bool isImplicitlyDeleted(FunctionDecl *FD); /// Check whether 'this' shows up in the type of a static member /// function after the (naturally empty) cv-qualifier-seq would be. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method); /// Whether this' shows up in the exception specification of a static /// member function. bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method); /// Check whether 'this' shows up in the attributes of the given /// static member function. /// /// \returns true if an error occurred. bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method); /// MaybeBindToTemporary - If the passed in expression has a record type with /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise /// it simply returns the passed in expression. ExprResult MaybeBindToTemporary(Expr *E); bool CompleteConstructorCall(CXXConstructorDecl *Constructor, MultiExprArg ArgsPtr, SourceLocation Loc, SmallVectorImpl &ConvertedArgs, bool AllowExplicit = false, bool IsListInitialization = false); ParsedType getInheritingConstructorName(CXXScopeSpec &SS, SourceLocation NameLoc, IdentifierInfo &Name); ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, bool EnteringContext); ParsedType getDestructorName(SourceLocation TildeLoc, IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, ParsedType ObjectType, bool EnteringContext); ParsedType getDestructorTypeForDecltype(const DeclSpec &DS, ParsedType ObjectType); // Checks that reinterpret casts don't have undefined behavior. void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, bool IsDereference, SourceRange Range); /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, Declarator &D, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, Expr *E, SourceLocation RParenLoc); ExprResult BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, TypeSourceInfo *Ty, Expr *E, SourceRange AngleBrackets, SourceRange Parens); ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl, ExprResult Operand, SourceLocation RParenLoc); ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI, Expr *Operand, SourceLocation RParenLoc); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXTypeid - Parse typeid( something ). ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc); ExprResult BuildCXXUuidof(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc); /// ActOnCXXUuidof - Parse __uuidof( something ). ExprResult ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc); /// Handle a C++1z fold-expression: ( expr op ... op expr ). ExprResult ActOnCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS, tok::TokenKind Operator, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc); ExprResult BuildCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Operator, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc, Optional NumExpansions); ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc, BinaryOperatorKind Operator); //// ActOnCXXThis - Parse 'this' pointer. ExprResult ActOnCXXThis(SourceLocation loc); /// Build a CXXThisExpr and mark it referenced in the current context. Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit); void MarkThisReferenced(CXXThisExpr *This); /// Try to retrieve the type of the 'this' pointer. /// /// \returns The type of 'this', if possible. Otherwise, returns a NULL type. QualType getCurrentThisType(); /// When non-NULL, the C++ 'this' expression is allowed despite the /// current context not being a non-static member function. In such cases, /// this provides the type used for 'this'. QualType CXXThisTypeOverride; /// RAII object used to temporarily allow the C++ 'this' expression /// to be used, with the given qualifiers on the current class type. class CXXThisScopeRAII { Sema &S; QualType OldCXXThisTypeOverride; bool Enabled; public: /// Introduce a new scope where 'this' may be allowed (when enabled), /// using the given declaration (which is either a class template or a /// class) along with the given qualifiers. /// along with the qualifiers placed on '*this'. CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals, bool Enabled = true); ~CXXThisScopeRAII(); }; /// Make sure the value of 'this' is actually available in the current /// context, if it is a potentially evaluated context. /// /// \param Loc The location at which the capture of 'this' occurs. /// /// \param Explicit Whether 'this' is explicitly captured in a lambda /// capture list. /// /// \param FunctionScopeIndexToStopAt If non-null, it points to the index /// of the FunctionScopeInfo stack beyond which we do not attempt to capture. /// This is useful when enclosing lambdas must speculatively capture /// 'this' that may or may not be used in certain specializations of /// a nested generic lambda (depending on whether the name resolves to /// a non-static member function or a static function). /// \return returns 'true' if failed, 'false' if success. bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false, bool BuildAndDiagnose = true, const unsigned *const FunctionScopeIndexToStopAt = nullptr, bool ByCopy = false); /// Determine whether the given type is the type of *this that is used /// outside of the body of a member function for a type that is currently /// being defined. bool isThisOutsideMemberFunctionBody(QualType BaseType); /// ActOnCXXBoolLiteral - Parse {true,false} literals. ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals. ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind); ExprResult ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef AvailSpecs, SourceLocation AtLoc, SourceLocation RParen); /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc); //// ActOnCXXThrow - Parse throw expressions. ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr); ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, bool IsThrownVarInScope); bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E); /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep, SourceLocation LParenOrBraceLoc, MultiExprArg Exprs, SourceLocation RParenOrBraceLoc, bool ListInitialization); ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type, SourceLocation LParenLoc, MultiExprArg Exprs, SourceLocation RParenLoc, bool ListInitialization); /// ActOnCXXNew - Parsed a C++ 'new' expression. ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, Declarator &D, Expr *Initializer); ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocType, TypeSourceInfo *AllocTypeInfo, Optional ArraySize, SourceRange DirectInitRange, Expr *Initializer); /// Determine whether \p FD is an aligned allocation or deallocation /// function that is unavailable. bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const; /// Produce diagnostics if \p FD is an aligned allocation or deallocation /// function that is unavailable. void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, SourceLocation Loc); bool CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R); /// The scope in which to find allocation functions. enum AllocationFunctionScope { /// Only look for allocation functions in the global scope. AFS_Global, /// Only look for allocation functions in the scope of the /// allocated class. AFS_Class, /// Look for allocation functions in both the global scope /// and in the scope of the allocated class. AFS_Both }; /// Finds the overloads of operator new and delete that are appropriate /// for the allocation. bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, AllocationFunctionScope NewScope, AllocationFunctionScope DeleteScope, QualType AllocType, bool IsArray, bool &PassAlignment, MultiExprArg PlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete, bool Diagnose = true); void DeclareGlobalNewDelete(); void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, ArrayRef Params); bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator, bool Diagnose = true); FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc, bool CanProvideSize, bool Overaligned, DeclarationName Name); FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc, CXXRecordDecl *RD); /// ActOnCXXDelete - Parsed a C++ 'delete' expression ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, Expr *Operand); void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, bool IsDelete, bool CallCanBeVirtual, bool WarnOnNonAbstractTypes, SourceLocation DtorLoc); ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen, Expr *Operand, SourceLocation RParen); ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, SourceLocation RParen); /// Parsed one of the type trait support pseudo-functions. ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef Args, SourceLocation RParenLoc); /// ActOnArrayTypeTrait - Parsed one of the binary type trait support /// pseudo-functions. ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, ParsedType LhsTy, Expr *DimExpr, SourceLocation RParen); ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, TypeSourceInfo *TSInfo, Expr *DimExpr, SourceLocation RParen); /// ActOnExpressionTrait - Parsed one of the unary type trait support /// pseudo-functions. ExprResult ActOnExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult BuildExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen); ExprResult ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, ParsedType &ObjectType, bool &MayBePseudoDestructor); ExprResult BuildPseudoDestructorExpr(Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, const CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage DestroyedType); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc, SourceLocation TildeLoc, UnqualifiedId &SecondTypeName); ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, SourceLocation TildeLoc, const DeclSpec& DS); /// MaybeCreateExprWithCleanups - If the current full-expression /// requires any cleanups, surround it with a ExprWithCleanups node. /// Otherwise, just returns the passed-in expression. Expr *MaybeCreateExprWithCleanups(Expr *SubExpr); Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt); ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr); MaterializeTemporaryExpr * CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, bool BoundToLvalueReference); ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) { return ActOnFinishFullExpr( Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue); } ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC, bool DiscardedValue, bool IsConstexpr = false); StmtResult ActOnFinishFullStmt(Stmt *Stmt); // Marks SS invalid if it represents an incomplete type. bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC); DeclContext *computeDeclContext(QualType T); DeclContext *computeDeclContext(const CXXScopeSpec &SS, bool EnteringContext = false); bool isDependentScopeSpecifier(const CXXScopeSpec &SS); CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS); /// The parser has parsed a global nested-name-specifier '::'. /// /// \param CCLoc The location of the '::'. /// /// \param SS The nested-name-specifier, which will be updated in-place /// to reflect the parsed nested-name-specifier. /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS); /// The parser has parsed a '__super' nested-name-specifier. /// /// \param SuperLoc The location of the '__super' keyword. /// /// \param ColonColonLoc The location of the '::'. /// /// \param SS The nested-name-specifier, which will be updated in-place /// to reflect the parsed nested-name-specifier. /// /// \returns true if an error occurred, false otherwise. bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc, SourceLocation ColonColonLoc, CXXScopeSpec &SS); bool isAcceptableNestedNameSpecifier(const NamedDecl *SD, bool *CanCorrect = nullptr); NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS); /// Keeps information about an identifier in a nested-name-spec. /// struct NestedNameSpecInfo { /// The type of the object, if we're parsing nested-name-specifier in /// a member access expression. ParsedType ObjectType; /// The identifier preceding the '::'. IdentifierInfo *Identifier; /// The location of the identifier. SourceLocation IdentifierLoc; /// The location of the '::'. SourceLocation CCLoc; /// Creates info object for the most typical case. NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType()) : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) { } NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc, SourceLocation ColonColonLoc, QualType ObjectType) : ObjectType(ParsedType::make(ObjectType)), Identifier(II), IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) { } }; bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo); bool BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, NamedDecl *ScopeLookupResult, bool ErrorRecoveryLookup, bool *IsCorrectedToColon = nullptr, bool OnlyNamespace = false); /// The parser has parsed a nested-name-specifier 'identifier::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param IdInfo Parser information about an identifier in the /// nested-name-spec. /// /// \param EnteringContext Whether we're entering the context nominated by /// this nested-name-specifier. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \param ErrorRecoveryLookup If true, then this method is called to improve /// error recovery. In this case do not emit error message. /// /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':' /// are allowed. The bool value pointed by this parameter is set to 'true' /// if the identifier is treated as if it was followed by ':', not '::'. /// /// \param OnlyNamespace If true, only considers namespaces in lookup. /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, bool ErrorRecoveryLookup = false, bool *IsCorrectedToColon = nullptr, bool OnlyNamespace = false); ExprResult ActOnDecltypeExpression(Expr *E); bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, const DeclSpec &DS, SourceLocation ColonColonLoc); bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo, bool EnteringContext); /// The parser has parsed a nested-name-specifier /// 'template[opt] template-name < template-args >::'. /// /// \param S The scope in which this nested-name-specifier occurs. /// /// \param SS The nested-name-specifier, which is both an input /// parameter (the nested-name-specifier before this type) and an /// output parameter (containing the full nested-name-specifier, /// including this new type). /// /// \param TemplateKWLoc the location of the 'template' keyword, if any. /// \param TemplateName the template name. /// \param TemplateNameLoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). /// \param CCLoc The location of the '::'. /// /// \param EnteringContext Whether we're entering the context of the /// nested-name-specifier. /// /// /// \returns true if an error occurred, false otherwise. bool ActOnCXXNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateName, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, SourceLocation CCLoc, bool EnteringContext); /// Given a C++ nested-name-specifier, produce an annotation value /// that the parser can use later to reconstruct the given /// nested-name-specifier. /// /// \param SS A nested-name-specifier. /// /// \returns A pointer containing all of the information in the /// nested-name-specifier \p SS. void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS); /// Given an annotation pointer for a nested-name-specifier, restore /// the nested-name-specifier structure. /// /// \param Annotation The annotation pointer, produced by /// \c SaveNestedNameSpecifierAnnotation(). /// /// \param AnnotationRange The source range corresponding to the annotation. /// /// \param SS The nested-name-specifier that will be updated with the contents /// of the annotation pointer. void RestoreNestedNameSpecifierAnnotation(void *Annotation, SourceRange AnnotationRange, CXXScopeSpec &SS); bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global /// scope or nested-name-specifier) is parsed, part of a declarator-id. /// After this method is called, according to [C++ 3.4.3p3], names should be /// looked up in the declarator-id's scope, until the declarator is parsed and /// ActOnCXXExitDeclaratorScope is called. /// The 'SS' should be a non-empty valid CXXScopeSpec. bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS); /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. /// Used to indicate that names should revert to being looked up in the /// defining scope. void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS); /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an /// initializer for the declaration 'Dcl'. /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a /// static data member of class X, names should be looked up in the scope of /// class X. void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl); /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an /// initializer for the declaration 'Dcl'. void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl); /// Create a new lambda closure type. CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info, bool KnownDependent, LambdaCaptureDefault CaptureDefault); /// Start the definition of a lambda expression. CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class, SourceRange IntroducerRange, TypeSourceInfo *MethodType, SourceLocation EndLoc, ArrayRef Params, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause); /// Number lambda for linkage purposes if necessary. void handleLambdaNumbering( CXXRecordDecl *Class, CXXMethodDecl *Method, Optional> Mangling = None); /// Endow the lambda scope info with the relevant properties. void buildLambdaScope(sema::LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator, SourceRange IntroducerRange, LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc, bool ExplicitParams, bool ExplicitResultType, bool Mutable); /// Perform initialization analysis of the init-capture and perform /// any implicit conversions such as an lvalue-to-rvalue conversion if /// not being used to initialize a reference. ParsedType actOnLambdaInitCaptureInitialization( SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) { return ParsedType::make(buildLambdaInitCaptureInitialization( Loc, ByRef, EllipsisLoc, None, Id, InitKind != LambdaCaptureInitKind::CopyInit, Init)); } QualType buildLambdaInitCaptureInitialization( SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, Optional NumExpansions, IdentifierInfo *Id, bool DirectInit, Expr *&Init); /// Create a dummy variable within the declcontext of the lambda's /// call operator, for name lookup purposes for a lambda init capture. /// /// CodeGen handles emission of lambda captures, ignoring these dummy /// variables appropriately. VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc, IdentifierInfo *Id, unsigned InitStyle, Expr *Init); /// Add an init-capture to a lambda scope. void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var); /// Note that we have finished the explicit captures for the /// given lambda. void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI); /// \brief This is called after parsing the explicit template parameter list /// on a lambda (if it exists) in C++2a. void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, ArrayRef TParams, SourceLocation RAngleLoc); /// Introduce the lambda parameters into scope. void addLambdaParameters( ArrayRef Captures, CXXMethodDecl *CallOperator, Scope *CurScope); /// Deduce a block or lambda's return type based on the return /// statements present in the body. void deduceClosureReturnType(sema::CapturingScopeInfo &CSI); /// ActOnStartOfLambdaDefinition - This is called just before we start /// parsing the body of a lambda; it analyzes the explicit captures and /// arguments, and sets up various data-structures for the body of the /// lambda. void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope); /// ActOnLambdaError - If there is an error parsing a lambda, this callback /// is invoked to pop the information about the lambda. void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation = false); /// ActOnLambdaExpr - This is called when the body of a lambda expression /// was successfully completed. ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope); /// Does copying/destroying the captured variable have side effects? bool CaptureHasSideEffects(const sema::Capture &From); /// Diagnose if an explicit lambda capture is unused. Returns true if a /// diagnostic is emitted. bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange, const sema::Capture &From); /// Build a FieldDecl suitable to hold the given capture. FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture); /// Initialize the given capture with a suitable expression. ExprResult BuildCaptureInit(const sema::Capture &Capture, SourceLocation ImplicitCaptureLoc, bool IsOpenMPMapping = false); /// Complete a lambda-expression having processed and attached the /// lambda body. ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc, sema::LambdaScopeInfo *LSI); /// Get the return type to use for a lambda's conversion function(s) to /// function pointer type, given the type of the call operator. QualType getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType); /// Define the "body" of the conversion from a lambda object to a /// function pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToFunctionPointerConversion( SourceLocation CurrentLoc, CXXConversionDecl *Conv); /// Define the "body" of the conversion from a lambda object to a /// block pointer. /// /// This routine doesn't actually define a sensible body; rather, it fills /// in the initialization expression needed to copy the lambda object into /// the block, and IR generation actually generates the real body of the /// block pointer conversion. void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc, CXXConversionDecl *Conv); ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation, SourceLocation ConvLocation, CXXConversionDecl *Conv, Expr *Src); /// Check whether the given expression is a valid constraint expression. /// A diagnostic is emitted if it is not, false is returned, and /// PossibleNonPrimary will be set to true if the failure might be due to a /// non-primary expression being used as an atomic constraint. bool CheckConstraintExpression(Expr *CE, Token NextToken = Token(), bool *PossibleNonPrimary = nullptr, bool IsTrailingRequiresClause = false); /// Check whether the given type-dependent expression will be the name of a /// function or another callable function-like entity (e.g. a function // template or overload set) for any substitution. bool IsDependentFunctionNameExpr(Expr *E); private: /// Caches pairs of template-like decls whose associated constraints were /// checked for subsumption and whether or not the first's constraints did in /// fact subsume the second's. llvm::DenseMap, bool> SubsumptionCache; /// Caches the normalized associated constraints of declarations (concepts or /// constrained declarations). If an error occurred while normalizing the /// associated constraints of the template or concept, nullptr will be cached /// here. llvm::DenseMap NormalizationCache; llvm::ContextualFoldingSet SatisfactionCache; public: const NormalizedConstraint * getNormalizedAssociatedConstraints( NamedDecl *ConstrainedDecl, ArrayRef AssociatedConstraints); /// \brief Check whether the given declaration's associated constraints are /// at least as constrained than another declaration's according to the /// partial ordering of constraints. /// /// \param Result If no error occurred, receives the result of true if D1 is /// at least constrained than D2, and false otherwise. /// /// \returns true if an error occurred, false otherwise. bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef AC1, NamedDecl *D2, ArrayRef AC2, bool &Result); /// If D1 was not at least as constrained as D2, but would've been if a pair /// of atomic constraints involved had been declared in a concept and not /// repeated in two separate places in code. /// \returns true if such a diagnostic was emitted, false otherwise. bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1, ArrayRef AC1, NamedDecl *D2, ArrayRef AC2); /// \brief Check whether the given list of constraint expressions are /// satisfied (as if in a 'conjunction') given template arguments. /// \param Template the template-like entity that triggered the constraints /// check (either a concept or a constrained entity). /// \param ConstraintExprs a list of constraint expressions, treated as if /// they were 'AND'ed together. /// \param TemplateArgs the list of template arguments to substitute into the /// constraint expression. /// \param TemplateIDRange The source range of the template id that /// caused the constraints check. /// \param Satisfaction if true is returned, will contain details of the /// satisfaction, with enough information to diagnose an unsatisfied /// expression. /// \returns true if an error occurred and satisfaction could not be checked, /// false otherwise. bool CheckConstraintSatisfaction( const NamedDecl *Template, ArrayRef ConstraintExprs, ArrayRef TemplateArgs, SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction); /// \brief Check whether the given non-dependent constraint expression is /// satisfied. Returns false and updates Satisfaction with the satisfaction /// verdict if successful, emits a diagnostic and returns true if an error /// occured and satisfaction could not be determined. /// /// \returns true if an error occurred, false otherwise. bool CheckConstraintSatisfaction(const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction); /// Check whether the given function decl's trailing requires clause is /// satisfied, if any. Returns false and updates Satisfaction with the /// satisfaction verdict if successful, emits a diagnostic and returns true if /// an error occured and satisfaction could not be determined. /// /// \returns true if an error occurred, false otherwise. bool CheckFunctionConstraints(const FunctionDecl *FD, ConstraintSatisfaction &Satisfaction, SourceLocation UsageLoc = SourceLocation()); /// \brief Ensure that the given template arguments satisfy the constraints /// associated with the given template, emitting a diagnostic if they do not. /// /// \param Template The template to which the template arguments are being /// provided. /// /// \param TemplateArgs The converted, canonicalized template arguments. /// /// \param TemplateIDRange The source range of the template id that /// caused the constraints check. /// /// \returns true if the constrains are not satisfied or could not be checked /// for satisfaction, false if the constraints are satisfied. bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template, ArrayRef TemplateArgs, SourceRange TemplateIDRange); /// \brief Emit diagnostics explaining why a constraint expression was deemed /// unsatisfied. /// \param First whether this is the first time an unsatisfied constraint is /// diagnosed for this error. void DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction, bool First = true); /// \brief Emit diagnostics explaining why a constraint expression was deemed /// unsatisfied. void DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction, bool First = true); /// \brief Emit diagnostics explaining why a constraint expression was deemed /// unsatisfied because it was ill-formed. void DiagnoseUnsatisfiedIllFormedConstraint(SourceLocation DiagnosticLocation, StringRef Diagnostic); void DiagnoseRedeclarationConstraintMismatch(SourceLocation Old, SourceLocation New); // ParseObjCStringLiteral - Parse Objective-C string literals. ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs, ArrayRef Strings); ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S); /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the /// numeric literal expression. Type of the expression will be "NSNumber *" /// or "id" if NSNumber is unavailable. ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number); ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc, bool Value); ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements); /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the /// '@' prefixed parenthesized expression. The type of the expression will /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type /// of ValueType, which is allowed to be a built-in numeric type, "char *", /// "const char *" or C structure with attribute 'objc_boxable'. ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr); ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr, Expr *IndexExpr, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod); ExprResult BuildObjCDictionaryLiteral(SourceRange SR, MutableArrayRef Elements); ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc, TypeSourceInfo *EncodedTypeInfo, SourceLocation RParenLoc); ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl, CXXConversionDecl *Method, bool HadMultipleCandidates); ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc, SourceLocation EncodeLoc, SourceLocation LParenLoc, ParsedType Ty, SourceLocation RParenLoc); /// ParseObjCSelectorExpression - Build selector expression for \@selector ExprResult ParseObjCSelectorExpression(Selector Sel, SourceLocation AtLoc, SourceLocation SelLoc, SourceLocation LParenLoc, SourceLocation RParenLoc, bool WarnMultipleSelectors); /// ParseObjCProtocolExpression - Build protocol expression for \@protocol ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName, SourceLocation AtLoc, SourceLocation ProtoLoc, SourceLocation LParenLoc, SourceLocation ProtoIdLoc, SourceLocation RParenLoc); //===--------------------------------------------------------------------===// // C++ Declarations // Decl *ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, Expr *LangStr, SourceLocation LBraceLoc); Decl *ActOnFinishLinkageSpecification(Scope *S, Decl *LinkageSpec, SourceLocation RBraceLoc); //===--------------------------------------------------------------------===// // C++ Classes // CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS); bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS = nullptr); bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS); bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, SourceLocation ColonLoc, const ParsedAttributesView &Attrs); NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, MultiTemplateParamsArg TemplateParameterLists, Expr *BitfieldWidth, const VirtSpecifiers &VS, InClassInitStyle InitStyle); void ActOnStartCXXInClassMemberInitializer(); void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl, SourceLocation EqualLoc, Expr *Init); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, SourceLocation LParenLoc, ArrayRef Args, SourceLocation RParenLoc, SourceLocation EllipsisLoc); MemInitResult ActOnMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *InitList, SourceLocation EllipsisLoc); MemInitResult BuildMemInitializer(Decl *ConstructorD, Scope *S, CXXScopeSpec &SS, IdentifierInfo *MemberOrBase, ParsedType TemplateTypeTy, const DeclSpec &DS, SourceLocation IdLoc, Expr *Init, SourceLocation EllipsisLoc); MemInitResult BuildMemberInitializer(ValueDecl *Member, Expr *Init, SourceLocation IdLoc); MemInitResult BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, Expr *Init, CXXRecordDecl *ClassDecl, SourceLocation EllipsisLoc); MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, CXXRecordDecl *ClassDecl); bool SetDelegatingInitializer(CXXConstructorDecl *Constructor, CXXCtorInitializer *Initializer); bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, ArrayRef Initializers = None); void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation); /// MarkBaseAndMemberDestructorsReferenced - Given a record decl, /// mark all the non-trivial destructors of its members and bases as /// referenced. void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc, CXXRecordDecl *Record); /// The list of classes whose vtables have been used within /// this translation unit, and the source locations at which the /// first use occurred. typedef std::pair VTableUse; /// The list of vtables that are required but have not yet been /// materialized. SmallVector VTableUses; /// The set of classes whose vtables have been used within /// this translation unit, and a bit that will be true if the vtable is /// required to be emitted (otherwise, it should be emitted only if needed /// by code generation). llvm::DenseMap VTablesUsed; /// Load any externally-stored vtable uses. void LoadExternalVTableUses(); /// Note that the vtable for the given class was used at the /// given location. void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, bool DefinitionRequired = false); /// Mark the exception specifications of all virtual member functions /// in the given class as needed. void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, const CXXRecordDecl *RD); /// MarkVirtualMembersReferenced - Will mark all members of the given /// CXXRecordDecl referenced. void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD, bool ConstexprOnly = false); /// Define all of the vtables that have been used in this /// translation unit and reference any virtual members used by those /// vtables. /// /// \returns true if any work was done, false otherwise. bool DefineUsedVTables(); void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl); void ActOnMemInitializers(Decl *ConstructorDecl, SourceLocation ColonLoc, ArrayRef MemInits, bool AnyErrors); /// Check class-level dllimport/dllexport attribute. The caller must /// ensure that referenceDLLExportedClassMethods is called some point later /// when all outer classes of Class are complete. void checkClassLevelDLLAttribute(CXXRecordDecl *Class); void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class); void referenceDLLExportedClassMethods(); void propagateDLLAttrToBaseClassTemplate( CXXRecordDecl *Class, Attr *ClassAttr, ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc); /// Add gsl::Pointer attribute to std::container::iterator /// \param ND The declaration that introduces the name /// std::container::iterator. \param UnderlyingRecord The record named by ND. void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord); /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types. void inferGslOwnerPointerAttribute(CXXRecordDecl *Record); /// Add [[gsl::Pointer]] attributes for std:: types. void inferGslPointerAttribute(TypedefNameDecl *TD); void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record); /// Check that the C++ class annoated with "trivial_abi" satisfies all the /// conditions that are needed for the attribute to have an effect. void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD); void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList); void ActOnFinishCXXMemberDecls(); void ActOnFinishCXXNonNestedClass(); void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param); unsigned ActOnReenterTemplateScope(Scope *S, Decl *Template); void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param); void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record); void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method); void ActOnFinishDelayedMemberInitializers(Decl *Record); void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, CachedTokens &Toks); void UnmarkAsLateParsedTemplate(FunctionDecl *FD); bool IsInsideALocalClassWithinATemplateFunction(); Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, Expr *AssertMessageExpr, SourceLocation RParenLoc); Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *AssertMessageExpr, SourceLocation RParenLoc, bool Failed); FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart, SourceLocation FriendLoc, TypeSourceInfo *TSInfo); Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, MultiTemplateParamsArg TemplateParams); NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParams); QualType CheckConstructorDeclarator(Declarator &D, QualType R, StorageClass& SC); void CheckConstructor(CXXConstructorDecl *Constructor); QualType CheckDestructorDeclarator(Declarator &D, QualType R, StorageClass& SC); bool CheckDestructor(CXXDestructorDecl *Destructor); void CheckConversionDeclarator(Declarator &D, QualType &R, StorageClass& SC); Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion); void CheckDeductionGuideDeclarator(Declarator &D, QualType &R, StorageClass &SC); void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD); void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD); bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM); void CheckDelayedMemberExceptionSpecs(); bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD, DefaultedComparisonKind DCK); void DeclareImplicitEqualityComparison(CXXRecordDecl *RD, FunctionDecl *Spaceship); void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD, DefaultedComparisonKind DCK); //===--------------------------------------------------------------------===// // C++ Derived Classes // /// ActOnBaseSpecifier - Parsed a base specifier CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class, SourceRange SpecifierRange, bool Virtual, AccessSpecifier Access, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc); BaseResult ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, ParsedAttributes &Attrs, bool Virtual, AccessSpecifier Access, ParsedType basetype, SourceLocation BaseLoc, SourceLocation EllipsisLoc); bool AttachBaseSpecifiers(CXXRecordDecl *Class, MutableArrayRef Bases); void ActOnBaseSpecifiers(Decl *ClassDecl, MutableArrayRef Bases); bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base); bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, CXXBasePaths &Paths); // FIXME: I don't like this name. void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, SourceLocation Loc, SourceRange Range, CXXCastPath *BasePath = nullptr, bool IgnoreAccess = false); bool CheckDerivedToBaseConversion(QualType Derived, QualType Base, unsigned InaccessibleBaseID, unsigned AmbigiousBaseConvID, SourceLocation Loc, SourceRange Range, DeclarationName Name, CXXCastPath *BasePath, bool IgnoreAccess = false); std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths); bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionReturnType - Checks whether the return types are /// covariant, according to C++ [class.virtual]p5. bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New, const CXXMethodDecl *Old); /// CheckOverridingFunctionExceptionSpec - Checks whether the exception /// spec is a subset of base spec. bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, const CXXMethodDecl *Old); bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange); /// CheckOverrideControl - Check C++11 override control semantics. void CheckOverrideControl(NamedDecl *D); /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was /// not used in the declaration of an overriding method. void DiagnoseAbsenceOfOverrideControl(NamedDecl *D); /// CheckForFunctionMarkedFinal - Checks whether a virtual member function /// overrides a virtual member function marked 'final', according to /// C++11 [class.virtual]p4. bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, const CXXMethodDecl *Old); //===--------------------------------------------------------------------===// // C++ Access Control // enum AccessResult { AR_accessible, AR_inaccessible, AR_dependent, AR_delayed }; bool SetMemberAccessSpecifier(NamedDecl *MemberDecl, NamedDecl *PrevMemberDecl, AccessSpecifier LexicalAS); AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E, DeclAccessPair FoundDecl); AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E, DeclAccessPair FoundDecl); AccessResult CheckAllocationAccess(SourceLocation OperatorLoc, SourceRange PlacementRange, CXXRecordDecl *NamingClass, DeclAccessPair FoundDecl, bool Diagnose = true); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, DeclAccessPair FoundDecl, const InitializedEntity &Entity, bool IsCopyBindingRefToTemp = false); AccessResult CheckConstructorAccess(SourceLocation Loc, CXXConstructorDecl *D, DeclAccessPair FoundDecl, const InitializedEntity &Entity, const PartialDiagnostic &PDiag); AccessResult CheckDestructorAccess(SourceLocation Loc, CXXDestructorDecl *Dtor, const PartialDiagnostic &PDiag, QualType objectType = QualType()); AccessResult CheckFriendAccess(NamedDecl *D); AccessResult CheckMemberAccess(SourceLocation UseLoc, CXXRecordDecl *NamingClass, DeclAccessPair Found); AccessResult CheckStructuredBindingMemberAccess(SourceLocation UseLoc, CXXRecordDecl *DecomposedClass, DeclAccessPair Field); AccessResult CheckMemberOperatorAccess(SourceLocation Loc, Expr *ObjectExpr, Expr *ArgExpr, DeclAccessPair FoundDecl); AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr, DeclAccessPair FoundDecl); AccessResult CheckBaseClassAccess(SourceLocation AccessLoc, QualType Base, QualType Derived, const CXXBasePath &Path, unsigned DiagID, bool ForceCheck = false, bool ForceUnprivileged = false); void CheckLookupAccess(const LookupResult &R); bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass, QualType BaseType); bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, DeclAccessPair Found, QualType ObjectType, SourceLocation Loc, const PartialDiagnostic &Diag); bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass, DeclAccessPair Found, QualType ObjectType) { return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType, SourceLocation(), PDiag()); } void HandleDependentAccessCheck(const DependentDiagnostic &DD, const MultiLevelTemplateArgumentList &TemplateArgs); void PerformDependentDiagnostics(const DeclContext *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx); /// When true, access checking violations are treated as SFINAE /// failures rather than hard errors. bool AccessCheckingSFINAE; enum AbstractDiagSelID { AbstractNone = -1, AbstractReturnType, AbstractParamType, AbstractVariableType, AbstractFieldType, AbstractIvarType, AbstractSynthesizedIvarType, AbstractArrayType }; bool isAbstractType(SourceLocation Loc, QualType T); bool RequireNonAbstractType(SourceLocation Loc, QualType T, TypeDiagnoser &Diagnoser); template bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID, const Ts &...Args) { BoundTypeDiagnoser Diagnoser(DiagID, Args...); return RequireNonAbstractType(Loc, T, Diagnoser); } void DiagnoseAbstractType(const CXXRecordDecl *RD); //===--------------------------------------------------------------------===// // C++ Overloaded Operators [C++ 13.5] // bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl); bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl); //===--------------------------------------------------------------------===// // C++ Templates [C++ 14] // void FilterAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true, bool AllowDependent = true); bool hasAnyAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates = true, bool AllowDependent = true, bool AllowNonTemplateFunctions = false); /// Try to interpret the lookup result D as a template-name. /// /// \param D A declaration found by name lookup. /// \param AllowFunctionTemplates Whether function templates should be /// considered valid results. /// \param AllowDependent Whether unresolved using declarations (that might /// name templates) should be considered valid results. NamedDecl *getAsTemplateNameDecl(NamedDecl *D, bool AllowFunctionTemplates = true, bool AllowDependent = true); enum class AssumedTemplateKind { /// This is not assumed to be a template name. None, /// This is assumed to be a template name because lookup found nothing. FoundNothing, /// This is assumed to be a template name because lookup found one or more /// functions (but no function templates). FoundFunctions, }; bool LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType, bool EnteringContext, bool &MemberOfUnknownSpecialization, SourceLocation TemplateKWLoc = SourceLocation(), - AssumedTemplateKind *ATK = nullptr); + AssumedTemplateKind *ATK = nullptr, + bool Disambiguation = false); TemplateNameKind isTemplateName(Scope *S, CXXScopeSpec &SS, bool hasTemplateKeyword, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, - bool &MemberOfUnknownSpecialization); + bool &MemberOfUnknownSpecialization, + bool Disambiguation = false); /// Try to resolve an undeclared template name as a type template. /// /// Sets II to the identifier corresponding to the template name, and updates /// Name to a corresponding (typo-corrected) type template name and TNK to /// the corresponding kind, if possible. void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name, TemplateNameKind &TNK, SourceLocation NameLoc, IdentifierInfo *&II); bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, SourceLocation NameLoc, bool Diagnose = true); /// Determine whether a particular identifier might be the name in a C++1z /// deduction-guide declaration. bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name, SourceLocation NameLoc, ParsedTemplateTy *Template = nullptr); bool DiagnoseUnknownTemplateName(const IdentifierInfo &II, SourceLocation IILoc, Scope *S, const CXXScopeSpec *SS, TemplateTy &SuggestedTemplate, TemplateNameKind &SuggestedKind); bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, NamedDecl *Instantiation, bool InstantiatedFromMember, const NamedDecl *Pattern, const NamedDecl *PatternDef, TemplateSpecializationKind TSK, bool Complain = true); void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl); TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl); NamedDecl *ActOnTypeParameter(Scope *S, bool Typename, SourceLocation EllipsisLoc, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedType DefaultArg, bool HasTypeConstraint); bool ActOnTypeConstraint(const CXXScopeSpec &SS, TemplateIdAnnotation *TypeConstraint, TemplateTypeParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc); bool AttachTypeConstraint(NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, ConceptDecl *NamedConcept, const TemplateArgumentListInfo *TemplateArgs, TemplateTypeParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc); bool AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc); QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, SourceLocation Loc); QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc); NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position, SourceLocation EqualLoc, Expr *DefaultArg); NamedDecl *ActOnTemplateTemplateParameter(Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, SourceLocation EllipsisLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedTemplateArgument DefaultArg); TemplateParameterList * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef Params, SourceLocation RAngleLoc, Expr *RequiresClause); /// The context in which we are checking a template parameter list. enum TemplateParamListContext { TPC_ClassTemplate, TPC_VarTemplate, TPC_FunctionTemplate, TPC_ClassTemplateMember, TPC_FriendClassTemplate, TPC_FriendFunctionTemplate, TPC_FriendFunctionTemplateDefinition, TPC_TypeAliasTemplate }; bool CheckTemplateParameterList(TemplateParameterList *NewParams, TemplateParameterList *OldParams, TemplateParamListContext TPC, SkipBodyInfo *SkipBody = nullptr); TemplateParameterList *MatchTemplateParametersToScopeSpecifier( SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId, ArrayRef ParamLists, bool IsFriend, bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic = false); DeclResult CheckClassTemplate( Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, AccessSpecifier AS, SourceLocation ModulePrivateLoc, SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody = nullptr); TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, QualType NTTPType, SourceLocation Loc); /// Get a template argument mapping the given template parameter to itself, /// e.g. for X in \c template, this would return an expression template /// argument referencing X. TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param, SourceLocation Location); void translateTemplateArguments(const ASTTemplateArgsPtr &In, TemplateArgumentListInfo &Out); ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType); void NoteAllFoundTemplates(TemplateName Name); QualType CheckTemplateIdType(TemplateName Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs); TypeResult ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy Template, IdentifierInfo *TemplateII, SourceLocation TemplateIILoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, bool IsCtorOrDtorName = false, bool IsClassName = false); /// Parsed an elaborated-type-specifier that refers to a template-id, /// such as \c class T::template apply. TypeResult ActOnTagTemplateIdType(TagUseKind TUK, TypeSpecifierType TagSpec, SourceLocation TagLoc, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy TemplateD, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc); DeclResult ActOnVarTemplateSpecialization( Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, StorageClass SC, bool IsPartialSpecialization); DeclResult CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation TemplateNameLoc, const TemplateArgumentListInfo &TemplateArgs); ExprResult CheckVarTemplateId(const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, VarTemplateDecl *Template, SourceLocation TemplateLoc, const TemplateArgumentListInfo *TemplateArgs); ExprResult CheckConceptTemplateId(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &ConceptNameInfo, NamedDecl *FoundDecl, ConceptDecl *NamedConcept, const TemplateArgumentListInfo *TemplateArgs); void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc); ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs); ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs); TemplateNameKind ActOnDependentTemplateName( Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool AllowInjectedClassName = false); DeclResult ActOnClassTemplateSpecialization( Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody = nullptr); bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc, TemplateDecl *PrimaryTemplate, unsigned NumExplicitArgs, ArrayRef Args); void CheckTemplatePartialSpecialization( ClassTemplatePartialSpecializationDecl *Partial); void CheckTemplatePartialSpecialization( VarTemplatePartialSpecializationDecl *Partial); Decl *ActOnTemplateDeclarator(Scope *S, MultiTemplateParamsArg TemplateParameterLists, Declarator &D); bool CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, TemplateSpecializationKind NewTSK, NamedDecl *PrevDecl, TemplateSpecializationKind PrevTSK, SourceLocation PrevPtOfInstantiation, bool &SuppressNew); bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, const TemplateArgumentListInfo &ExplicitTemplateArgs, LookupResult &Previous); bool CheckFunctionTemplateSpecialization( FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, LookupResult &Previous, bool QualifiedFriend = false); bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous); void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous); DeclResult ActOnExplicitInstantiation( Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, const ParsedAttributesView &Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr); DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, Declarator &D); TemplateArgumentLoc SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, Decl *Param, SmallVectorImpl &Converted, bool &HasDefaultArg); /// Specifies the context in which a particular template /// argument is being checked. enum CheckTemplateArgumentKind { /// The template argument was specified in the code or was /// instantiated with some deduced template arguments. CTAK_Specified, /// The template argument was deduced via template argument /// deduction. CTAK_Deduced, /// The template argument was deduced from an array bound /// via template argument deduction. CTAK_DeducedFromArrayBound }; bool CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, SourceLocation TemplateLoc, SourceLocation RAngleLoc, unsigned ArgumentPackIndex, SmallVectorImpl &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); /// Check that the given template arguments can be be provided to /// the given template, converting the arguments along the way. /// /// \param Template The template to which the template arguments are being /// provided. /// /// \param TemplateLoc The location of the template name in the source. /// /// \param TemplateArgs The list of template arguments. If the template is /// a template template parameter, this function may extend the set of /// template arguments to also include substituted, defaulted template /// arguments. /// /// \param PartialTemplateArgs True if the list of template arguments is /// intentionally partial, e.g., because we're checking just the initial /// set of template arguments. /// /// \param Converted Will receive the converted, canonicalized template /// arguments. /// /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to /// contain the converted forms of the template arguments as written. /// Otherwise, \p TemplateArgs will not be modified. /// /// \param ConstraintsNotSatisfied If provided, and an error occured, will /// receive true if the cause for the error is the associated constraints of /// the template not being satisfied by the template arguments. /// /// \returns true if an error occurred, false otherwise. bool CheckTemplateArgumentList(TemplateDecl *Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, SmallVectorImpl &Converted, bool UpdateArgsWithConversions = true, bool *ConstraintsNotSatisfied = nullptr); bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, TemplateArgumentLoc &Arg, SmallVectorImpl &Converted); bool CheckTemplateArgument(TemplateTypeParmDecl *Param, TypeSourceInfo *Arg); ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param, QualType InstantiatedParamType, Expr *Arg, TemplateArgument &Converted, CheckTemplateArgumentKind CTAK = CTAK_Specified); bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, TemplateParameterList *Params, TemplateArgumentLoc &Arg); ExprResult BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc); ExprResult BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, SourceLocation Loc); /// Enumeration describing how template parameter lists are compared /// for equality. enum TemplateParameterListEqualKind { /// We are matching the template parameter lists of two templates /// that might be redeclarations. /// /// \code /// template struct X; /// template struct X; /// \endcode TPL_TemplateMatch, /// We are matching the template parameter lists of two template /// template parameters as part of matching the template parameter lists /// of two templates that might be redeclarations. /// /// \code /// template class TT> struct X; /// template class Other> struct X; /// \endcode TPL_TemplateTemplateParmMatch, /// We are matching the template parameter lists of a template /// template argument against the template parameter lists of a template /// template parameter. /// /// \code /// template class Metafun> struct X; /// template struct integer_c; /// X xic; /// \endcode TPL_TemplateTemplateArgumentMatch }; bool TemplateParameterListsAreEqual(TemplateParameterList *New, TemplateParameterList *Old, bool Complain, TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc = SourceLocation()); bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams); /// Called when the parser has parsed a C++ typename /// specifier, e.g., "typename T::type". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param II the identifier we're retrieving (e.g., 'type' in the example). /// \param IdLoc the location of the identifier. TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, const IdentifierInfo &II, SourceLocation IdLoc); /// Called when the parser has parsed a C++ typename /// specifier that ends in a template-id, e.g., /// "typename MetaFun::template apply". /// /// \param S The scope in which this typename type occurs. /// \param TypenameLoc the location of the 'typename' keyword /// \param SS the nested-name-specifier following the typename (e.g., 'T::'). /// \param TemplateLoc the location of the 'template' keyword, if any. /// \param TemplateName The template name. /// \param TemplateII The identifier used to name the template. /// \param TemplateIILoc The location of the template name. /// \param LAngleLoc The location of the opening angle bracket ('<'). /// \param TemplateArgs The template arguments. /// \param RAngleLoc The location of the closing angle bracket ('>'). TypeResult ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, const CXXScopeSpec &SS, SourceLocation TemplateLoc, TemplateTy TemplateName, IdentifierInfo *TemplateII, SourceLocation TemplateIILoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc); QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo &II, SourceLocation IILoc, TypeSourceInfo **TSI, bool DeducedTSTContext); QualType CheckTypenameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo &II, SourceLocation IILoc, bool DeducedTSTContext = true); TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, SourceLocation Loc, DeclarationName Name); bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS); ExprResult RebuildExprInCurrentInstantiation(Expr *E); bool RebuildTemplateParamsInCurrentInstantiation( TemplateParameterList *Params); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgumentList &Args); std::string getTemplateArgumentBindingsText(const TemplateParameterList *Params, const TemplateArgument *Args, unsigned NumArgs); //===--------------------------------------------------------------------===// // C++ Concepts //===--------------------------------------------------------------------===// Decl *ActOnConceptDefinition( Scope *S, MultiTemplateParamsArg TemplateParameterLists, IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr); RequiresExprBodyDecl * ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, ArrayRef LocalParameters, Scope *BodyScope); void ActOnFinishRequiresExpr(); concepts::Requirement *ActOnSimpleRequirement(Expr *E); concepts::Requirement *ActOnTypeRequirement( SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc, IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId); concepts::Requirement *ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc); concepts::Requirement * ActOnCompoundRequirement( Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, TemplateIdAnnotation *TypeConstraint, unsigned Depth); concepts::Requirement *ActOnNestedRequirement(Expr *Constraint); concepts::ExprRequirement * BuildExprRequirement( Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc, concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement); concepts::ExprRequirement * BuildExprRequirement( concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag, bool IsSatisfied, SourceLocation NoexceptLoc, concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement); concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type); concepts::TypeRequirement * BuildTypeRequirement( concepts::Requirement::SubstitutionDiagnostic *SubstDiag); concepts::NestedRequirement *BuildNestedRequirement(Expr *E); concepts::NestedRequirement * BuildNestedRequirement( concepts::Requirement::SubstitutionDiagnostic *SubstDiag); ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body, ArrayRef LocalParameters, ArrayRef Requirements, SourceLocation ClosingBraceLoc); //===--------------------------------------------------------------------===// // C++ Variadic Templates (C++0x [temp.variadic]) //===--------------------------------------------------------------------===// /// Determine whether an unexpanded parameter pack might be permitted in this /// location. Useful for error recovery. bool isUnexpandedParameterPackPermitted(); /// The context in which an unexpanded parameter pack is /// being diagnosed. /// /// Note that the values of this enumeration line up with the first /// argument to the \c err_unexpanded_parameter_pack diagnostic. enum UnexpandedParameterPackContext { /// An arbitrary expression. UPPC_Expression = 0, /// The base type of a class type. UPPC_BaseType, /// The type of an arbitrary declaration. UPPC_DeclarationType, /// The type of a data member. UPPC_DataMemberType, /// The size of a bit-field. UPPC_BitFieldWidth, /// The expression in a static assertion. UPPC_StaticAssertExpression, /// The fixed underlying type of an enumeration. UPPC_FixedUnderlyingType, /// The enumerator value. UPPC_EnumeratorValue, /// A using declaration. UPPC_UsingDeclaration, /// A friend declaration. UPPC_FriendDeclaration, /// A declaration qualifier. UPPC_DeclarationQualifier, /// An initializer. UPPC_Initializer, /// A default argument. UPPC_DefaultArgument, /// The type of a non-type template parameter. UPPC_NonTypeTemplateParameterType, /// The type of an exception. UPPC_ExceptionType, /// Partial specialization. UPPC_PartialSpecialization, /// Microsoft __if_exists. UPPC_IfExists, /// Microsoft __if_not_exists. UPPC_IfNotExists, /// Lambda expression. UPPC_Lambda, /// Block expression, UPPC_Block, /// A type constraint, UPPC_TypeConstraint }; /// Diagnose unexpanded parameter packs. /// /// \param Loc The location at which we should emit the diagnostic. /// /// \param UPPC The context in which we are diagnosing unexpanded /// parameter packs. /// /// \param Unexpanded the set of unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc, UnexpandedParameterPackContext UPPC, ArrayRef Unexpanded); /// If the given type contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The source location where a diagnostc should be emitted. /// /// \param T The type that is being checked for unexpanded parameter /// packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC); /// If the given expression contains an unexpanded parameter /// pack, diagnose the error. /// /// \param E The expression that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(Expr *E, UnexpandedParameterPackContext UPPC = UPPC_Expression); /// If the given nested-name-specifier contains an unexpanded /// parameter pack, diagnose the error. /// /// \param SS The nested-name-specifier that is being checked for /// unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS, UnexpandedParameterPackContext UPPC); /// If the given name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param NameInfo The name (with source location information) that /// is being checked for unexpanded parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo, UnexpandedParameterPackContext UPPC); /// If the given template name contains an unexpanded parameter pack, /// diagnose the error. /// /// \param Loc The location of the template name. /// /// \param Template The template name that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TemplateName Template, UnexpandedParameterPackContext UPPC); /// If the given template argument contains an unexpanded parameter /// pack, diagnose the error. /// /// \param Arg The template argument that is being checked for unexpanded /// parameter packs. /// /// \returns true if an error occurred, false otherwise. bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg, UnexpandedParameterPackContext UPPC); /// Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgument Arg, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// template argument. /// /// \param Arg The template argument that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// type. /// /// \param T The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(QualType T, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// type. /// /// \param TL The type that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(TypeLoc TL, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// nested-name-specifier. /// /// \param NNS The nested-name-specifier that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS, SmallVectorImpl &Unexpanded); /// Collect the set of unexpanded parameter packs within the given /// name. /// /// \param NameInfo The name that will be traversed to find /// unexpanded parameter packs. void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo, SmallVectorImpl &Unexpanded); /// Invoked when parsing a template argument followed by an /// ellipsis, which creates a pack expansion. /// /// \param Arg The template argument preceding the ellipsis, which /// may already be invalid. /// /// \param EllipsisLoc The location of the ellipsis. ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg, SourceLocation EllipsisLoc); /// Invoked when parsing a type followed by an ellipsis, which /// creates a pack expansion. /// /// \param Type The type preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc); /// Construct a pack expansion type from the pattern of the pack /// expansion. TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern, SourceLocation EllipsisLoc, Optional NumExpansions); /// Construct a pack expansion type from the pattern of the pack /// expansion. QualType CheckPackExpansion(QualType Pattern, SourceRange PatternRange, SourceLocation EllipsisLoc, Optional NumExpansions); /// Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc); /// Invoked when parsing an expression followed by an ellipsis, which /// creates a pack expansion. /// /// \param Pattern The expression preceding the ellipsis, which will become /// the pattern of the pack expansion. /// /// \param EllipsisLoc The location of the ellipsis. ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, Optional NumExpansions); /// Determine whether we could expand a pack expansion with the /// given set of parameter packs into separate arguments by repeatedly /// transforming the pattern. /// /// \param EllipsisLoc The location of the ellipsis that identifies the /// pack expansion. /// /// \param PatternRange The source range that covers the entire pattern of /// the pack expansion. /// /// \param Unexpanded The set of unexpanded parameter packs within the /// pattern. /// /// \param ShouldExpand Will be set to \c true if the transformer should /// expand the corresponding pack expansions into separate arguments. When /// set, \c NumExpansions must also be set. /// /// \param RetainExpansion Whether the caller should add an unexpanded /// pack expansion after all of the expanded arguments. This is used /// when extending explicitly-specified template argument packs per /// C++0x [temp.arg.explicit]p9. /// /// \param NumExpansions The number of separate arguments that will be in /// the expanded form of the corresponding pack expansion. This is both an /// input and an output parameter, which can be set by the caller if the /// number of expansions is known a priori (e.g., due to a prior substitution) /// and will be set by the callee when the number of expansions is known. /// The callee must set this value when \c ShouldExpand is \c true; it may /// set this value in other cases. /// /// \returns true if an error occurred (e.g., because the parameter packs /// are to be instantiated with arguments of different lengths), false /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) /// must be set. bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc, SourceRange PatternRange, ArrayRef Unexpanded, const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand, bool &RetainExpansion, Optional &NumExpansions); /// Determine the number of arguments in the given pack expansion /// type. /// /// This routine assumes that the number of arguments in the expansion is /// consistent across all of the unexpanded parameter packs in its pattern. /// /// Returns an empty Optional if the type can't be expanded. Optional getNumArgumentsInExpansion(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs); /// Determine whether the given declarator contains any unexpanded /// parameter packs. /// /// This routine is used by the parser to disambiguate function declarators /// with an ellipsis prior to the ')', e.g., /// /// \code /// void f(T...); /// \endcode /// /// To determine whether we have an (unnamed) function parameter pack or /// a variadic function. /// /// \returns true if the declarator contains any unexpanded parameter packs, /// false otherwise. bool containsUnexpandedParameterPacks(Declarator &D); /// Returns the pattern of the pack expansion for a template argument. /// /// \param OrigLoc The template argument to expand. /// /// \param Ellipsis Will be set to the location of the ellipsis. /// /// \param NumExpansions Will be set to the number of expansions that will /// be generated from this pack expansion, if known a priori. TemplateArgumentLoc getTemplateArgumentPackExpansionPattern( TemplateArgumentLoc OrigLoc, SourceLocation &Ellipsis, Optional &NumExpansions) const; /// Given a template argument that contains an unexpanded parameter pack, but /// which has already been substituted, attempt to determine the number of /// elements that will be produced once this argument is fully-expanded. /// /// This is intended for use when transforming 'sizeof...(Arg)' in order to /// avoid actually expanding the pack where possible. Optional getFullyPackExpandedSize(TemplateArgument Arg); //===--------------------------------------------------------------------===// // C++ Template Argument Deduction (C++ [temp.deduct]) //===--------------------------------------------------------------------===// /// Adjust the type \p ArgFunctionType to match the calling convention, /// noreturn, and optionally the exception specification of \p FunctionType. /// Deduction often wants to ignore these properties when matching function /// types. QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType, bool AdjustExceptionSpec = false); /// Describes the result of template argument deduction. /// /// The TemplateDeductionResult enumeration describes the result of /// template argument deduction, as returned from /// DeduceTemplateArguments(). The separate TemplateDeductionInfo /// structure provides additional information about the results of /// template argument deduction, e.g., the deduced template argument /// list (if successful) or the specific template parameters or /// deduced arguments that were involved in the failure. enum TemplateDeductionResult { /// Template argument deduction was successful. TDK_Success = 0, /// The declaration was invalid; do nothing. TDK_Invalid, /// Template argument deduction exceeded the maximum template /// instantiation depth (which has already been diagnosed). TDK_InstantiationDepth, /// Template argument deduction did not deduce a value /// for every template parameter. TDK_Incomplete, /// Template argument deduction did not deduce a value for every /// expansion of an expanded template parameter pack. TDK_IncompletePack, /// Template argument deduction produced inconsistent /// deduced values for the given template parameter. TDK_Inconsistent, /// Template argument deduction failed due to inconsistent /// cv-qualifiers on a template parameter type that would /// otherwise be deduced, e.g., we tried to deduce T in "const T" /// but were given a non-const "X". TDK_Underqualified, /// Substitution of the deduced template argument values /// resulted in an error. TDK_SubstitutionFailure, /// After substituting deduced template arguments, a dependent /// parameter type did not match the corresponding argument. TDK_DeducedMismatch, /// After substituting deduced template arguments, an element of /// a dependent parameter type did not match the corresponding element /// of the corresponding argument (when deducing from an initializer list). TDK_DeducedMismatchNested, /// A non-depnedent component of the parameter did not match the /// corresponding component of the argument. TDK_NonDeducedMismatch, /// When performing template argument deduction for a function /// template, there were too many call arguments. TDK_TooManyArguments, /// When performing template argument deduction for a function /// template, there were too few call arguments. TDK_TooFewArguments, /// The explicitly-specified template arguments were not valid /// template arguments for the given template. TDK_InvalidExplicitArguments, /// Checking non-dependent argument conversions failed. TDK_NonDependentConversionFailure, /// The deduced arguments did not satisfy the constraints associated /// with the template. TDK_ConstraintsNotSatisfied, /// Deduction failed; that's all we know. TDK_MiscellaneousDeductionFailure, /// CUDA Target attributes do not match. TDK_CUDATargetMismatch }; TemplateDeductionResult DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, const TemplateArgumentList &TemplateArgs, sema::TemplateDeductionInfo &Info); TemplateDeductionResult SubstituteExplicitTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo &ExplicitTemplateArgs, SmallVectorImpl &Deduced, SmallVectorImpl &ParamTypes, QualType *FunctionType, sema::TemplateDeductionInfo &Info); /// brief A function argument from which we performed template argument // deduction for a call. struct OriginalCallArg { OriginalCallArg(QualType OriginalParamType, bool DecomposedParam, unsigned ArgIdx, QualType OriginalArgType) : OriginalParamType(OriginalParamType), DecomposedParam(DecomposedParam), ArgIdx(ArgIdx), OriginalArgType(OriginalArgType) {} QualType OriginalParamType; bool DecomposedParam; unsigned ArgIdx; QualType OriginalArgType; }; TemplateDeductionResult FinishTemplateArgumentDeduction( FunctionTemplateDecl *FunctionTemplate, SmallVectorImpl &Deduced, unsigned NumExplicitlySpecified, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, SmallVectorImpl const *OriginalCallArgs = nullptr, bool PartialOverloading = false, llvm::function_ref CheckNonDependent = []{ return false; }); TemplateDeductionResult DeduceTemplateArguments( FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef Args, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool PartialOverloading, llvm::function_ref)> CheckNonDependent); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool IsAddressOfFunction = false); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, QualType ToType, CXXConversionDecl *&Specialization, sema::TemplateDeductionInfo &Info); TemplateDeductionResult DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, TemplateArgumentListInfo *ExplicitTemplateArgs, FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info, bool IsAddressOfFunction = false); /// Substitute Replacement for \p auto in \p TypeWithAuto QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement); /// Substitute Replacement for auto in TypeWithAuto TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, QualType Replacement); /// Completely replace the \c auto in \p TypeWithAuto by /// \p Replacement. This does not retain any \c auto type sugar. QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement); /// Result type of DeduceAutoType. enum DeduceAutoResult { DAR_Succeeded, DAR_Failed, DAR_FailedAlreadyDiagnosed }; DeduceAutoResult DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result, Optional DependentDeductionDepth = None, bool IgnoreConstraints = false); DeduceAutoResult DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result, Optional DependentDeductionDepth = None, bool IgnoreConstraints = false); void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init); bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, bool Diagnose = true); /// Declare implicit deduction guides for a class template if we've /// not already done so. void DeclareImplicitDeductionGuides(TemplateDecl *Template, SourceLocation Loc); QualType DeduceTemplateSpecializationFromInitializer( TypeSourceInfo *TInfo, const InitializedEntity &Entity, const InitializationKind &Kind, MultiExprArg Init); QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name, QualType Type, TypeSourceInfo *TSI, SourceRange Range, bool DirectInit, Expr *Init); TypeLoc getReturnTypeLoc(FunctionDecl *FD) const; bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD, SourceLocation ReturnLoc, Expr *&RetExpr, AutoType *AT); FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc, TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1, unsigned NumCallArguments2); UnresolvedSetIterator getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd, TemplateSpecCandidateSet &FailedCandidates, SourceLocation Loc, const PartialDiagnostic &NoneDiag, const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, bool Complain = true, QualType TargetType = QualType()); ClassTemplatePartialSpecializationDecl * getMoreSpecializedPartialSpecialization( ClassTemplatePartialSpecializationDecl *PS1, ClassTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info); VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization( VarTemplatePartialSpecializationDecl *PS1, VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc); bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T, sema::TemplateDeductionInfo &Info); bool isTemplateTemplateParameterAtLeastAsSpecializedAs( TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc); void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used); void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, bool OnlyDeduced, unsigned Depth, llvm::SmallBitVector &Used); void MarkDeducedTemplateParameters( const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced) { return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced); } static void MarkDeducedTemplateParameters(ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, llvm::SmallBitVector &Deduced); //===--------------------------------------------------------------------===// // C++ Template Instantiation // MultiLevelTemplateArgumentList getTemplateInstantiationArgs(NamedDecl *D, const TemplateArgumentList *Innermost = nullptr, bool RelativeToPrimary = false, const FunctionDecl *Pattern = nullptr); /// A context in which code is being synthesized (where a source location /// alone is not sufficient to identify the context). This covers template /// instantiation and various forms of implicitly-generated functions. struct CodeSynthesisContext { /// The kind of template instantiation we are performing enum SynthesisKind { /// We are instantiating a template declaration. The entity is /// the declaration we're instantiating (e.g., a CXXRecordDecl). TemplateInstantiation, /// We are instantiating a default argument for a template /// parameter. The Entity is the template parameter whose argument is /// being instantiated, the Template is the template, and the /// TemplateArgs/NumTemplateArguments provide the template arguments as /// specified. DefaultTemplateArgumentInstantiation, /// We are instantiating a default argument for a function. /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs /// provides the template arguments as specified. DefaultFunctionArgumentInstantiation, /// We are substituting explicit template arguments provided for /// a function template. The entity is a FunctionTemplateDecl. ExplicitTemplateArgumentSubstitution, /// We are substituting template argument determined as part of /// template argument deduction for either a class template /// partial specialization or a function template. The /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or /// a TemplateDecl. DeducedTemplateArgumentSubstitution, /// We are substituting prior template arguments into a new /// template parameter. The template parameter itself is either a /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl. PriorTemplateArgumentSubstitution, /// We are checking the validity of a default template argument that /// has been used when naming a template-id. DefaultTemplateArgumentChecking, /// We are computing the exception specification for a defaulted special /// member function. ExceptionSpecEvaluation, /// We are instantiating the exception specification for a function /// template which was deferred until it was needed. ExceptionSpecInstantiation, /// We are instantiating a requirement of a requires expression. RequirementInstantiation, /// We are checking the satisfaction of a nested requirement of a requires /// expression. NestedRequirementConstraintsCheck, /// We are declaring an implicit special member function. DeclaringSpecialMember, /// We are declaring an implicit 'operator==' for a defaulted /// 'operator<=>'. DeclaringImplicitEqualityComparison, /// We are defining a synthesized function (such as a defaulted special /// member). DefiningSynthesizedFunction, // We are checking the constraints associated with a constrained entity or // the constraint expression of a concept. This includes the checks that // atomic constraints have the type 'bool' and that they can be constant // evaluated. ConstraintsCheck, // We are substituting template arguments into a constraint expression. ConstraintSubstitution, // We are normalizing a constraint expression. ConstraintNormalization, // We are substituting into the parameter mapping of an atomic constraint // during normalization. ParameterMappingSubstitution, /// We are rewriting a comparison operator in terms of an operator<=>. RewritingOperatorAsSpaceship, /// Added for Template instantiation observation. /// Memoization means we are _not_ instantiating a template because /// it is already instantiated (but we entered a context where we /// would have had to if it was not already instantiated). Memoization } Kind; /// Was the enclosing context a non-instantiation SFINAE context? bool SavedInNonInstantiationSFINAEContext; /// The point of instantiation or synthesis within the source code. SourceLocation PointOfInstantiation; /// The entity that is being synthesized. Decl *Entity; /// The template (or partial specialization) in which we are /// performing the instantiation, for substitutions of prior template /// arguments. NamedDecl *Template; /// The list of template arguments we are substituting, if they /// are not part of the entity. const TemplateArgument *TemplateArgs; // FIXME: Wrap this union around more members, or perhaps store the // kind-specific members in the RAII object owning the context. union { /// The number of template arguments in TemplateArgs. unsigned NumTemplateArgs; /// The special member being declared or defined. CXXSpecialMember SpecialMember; }; ArrayRef template_arguments() const { assert(Kind != DeclaringSpecialMember); return {TemplateArgs, NumTemplateArgs}; } /// The template deduction info object associated with the /// substitution or checking of explicit or deduced template arguments. sema::TemplateDeductionInfo *DeductionInfo; /// The source range that covers the construct that cause /// the instantiation, e.g., the template-id that causes a class /// template instantiation. SourceRange InstantiationRange; CodeSynthesisContext() : Kind(TemplateInstantiation), SavedInNonInstantiationSFINAEContext(false), Entity(nullptr), Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0), DeductionInfo(nullptr) {} /// Determines whether this template is an actual instantiation /// that should be counted toward the maximum instantiation depth. bool isInstantiationRecord() const; }; /// List of active code synthesis contexts. /// /// This vector is treated as a stack. As synthesis of one entity requires /// synthesis of another, additional contexts are pushed onto the stack. SmallVector CodeSynthesisContexts; /// Specializations whose definitions are currently being instantiated. llvm::DenseSet> InstantiatingSpecializations; /// Non-dependent types used in templates that have already been instantiated /// by some template instantiation. llvm::DenseSet InstantiatedNonDependentTypes; /// Extra modules inspected when performing a lookup during a template /// instantiation. Computed lazily. SmallVector CodeSynthesisContextLookupModules; /// Cache of additional modules that should be used for name lookup /// within the current template instantiation. Computed lazily; use /// getLookupModules() to get a complete set. llvm::DenseSet LookupModulesCache; /// Get the set of additional modules that should be checked during /// name lookup. A module and its imports become visible when instanting a /// template defined within it. llvm::DenseSet &getLookupModules(); /// Map from the most recent declaration of a namespace to the most /// recent visible declaration of that namespace. llvm::DenseMap VisibleNamespaceCache; /// Whether we are in a SFINAE context that is not associated with /// template instantiation. /// /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside /// of a template instantiation or template argument deduction. bool InNonInstantiationSFINAEContext; /// The number of \p CodeSynthesisContexts that are not template /// instantiations and, therefore, should not be counted as part of the /// instantiation depth. /// /// When the instantiation depth reaches the user-configurable limit /// \p LangOptions::InstantiationDepth we will abort instantiation. // FIXME: Should we have a similar limit for other forms of synthesis? unsigned NonInstantiationEntries; /// The depth of the context stack at the point when the most recent /// error or warning was produced. /// /// This value is used to suppress printing of redundant context stacks /// when there are multiple errors or warnings in the same instantiation. // FIXME: Does this belong in Sema? It's tough to implement it anywhere else. unsigned LastEmittedCodeSynthesisContextDepth = 0; /// The template instantiation callbacks to trace or track /// instantiations (objects can be chained). /// /// This callbacks is used to print, trace or track template /// instantiations as they are being constructed. std::vector> TemplateInstCallbacks; /// The current index into pack expansion arguments that will be /// used for substitution of parameter packs. /// /// The pack expansion index will be -1 to indicate that parameter packs /// should be instantiated as themselves. Otherwise, the index specifies /// which argument within the parameter pack will be used for substitution. int ArgumentPackSubstitutionIndex; /// RAII object used to change the argument pack substitution index /// within a \c Sema object. /// /// See \c ArgumentPackSubstitutionIndex for more information. class ArgumentPackSubstitutionIndexRAII { Sema &Self; int OldSubstitutionIndex; public: ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex) : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) { Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex; } ~ArgumentPackSubstitutionIndexRAII() { Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex; } }; friend class ArgumentPackSubstitutionRAII; /// For each declaration that involved template argument deduction, the /// set of diagnostics that were suppressed during that template argument /// deduction. /// /// FIXME: Serialize this structure to the AST file. typedef llvm::DenseMap > SuppressedDiagnosticsMap; SuppressedDiagnosticsMap SuppressedDiagnostics; /// A stack object to be created when performing template /// instantiation. /// /// Construction of an object of type \c InstantiatingTemplate /// pushes the current instantiation onto the stack of active /// instantiations. If the size of this stack exceeds the maximum /// number of recursive template instantiations, construction /// produces an error and evaluates true. /// /// Destruction of this object will pop the named instantiation off /// the stack. struct InstantiatingTemplate { /// Note that we are instantiating a class template, /// function template, variable template, alias template, /// or a member thereof. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, Decl *Entity, SourceRange InstantiationRange = SourceRange()); struct ExceptionSpecification {}; /// Note that we are instantiating an exception specification /// of a function template. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionDecl *Entity, ExceptionSpecification, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating a default argument in a /// template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateParameter Param, TemplateDecl *Template, ArrayRef TemplateArgs, SourceRange InstantiationRange = SourceRange()); /// Note that we are substituting either explicitly-specified or /// deduced template arguments during function template argument deduction. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, FunctionTemplateDecl *FunctionTemplate, ArrayRef TemplateArgs, CodeSynthesisContext::SynthesisKind Kind, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a class template declaration. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a class template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ClassTemplatePartialSpecializationDecl *PartialSpec, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating as part of template /// argument deduction for a variable template partial /// specialization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, VarTemplatePartialSpecializationDecl *PartialSpec, ArrayRef TemplateArgs, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// Note that we are instantiating a default argument for a function /// parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ParmVarDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange = SourceRange()); /// Note that we are substituting prior template arguments into a /// non-type parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, NonTypeTemplateParmDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); /// Note that we are substituting prior template arguments into a /// template template parameter. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, NamedDecl *Template, TemplateTemplateParmDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); /// Note that we are checking the default template argument /// against the template parameter for a given template-id. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, TemplateDecl *Template, NamedDecl *Param, ArrayRef TemplateArgs, SourceRange InstantiationRange); struct ConstraintsCheck {}; /// \brief Note that we are checking the constraints associated with some /// constrained entity (a concept declaration or a template with associated /// constraints). InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ConstraintsCheck, NamedDecl *Template, ArrayRef TemplateArgs, SourceRange InstantiationRange); struct ConstraintSubstitution {}; /// \brief Note that we are checking a constraint expression associated /// with a template declaration or as part of the satisfaction check of a /// concept. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ConstraintSubstitution, NamedDecl *Template, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange); struct ConstraintNormalization {}; /// \brief Note that we are normalizing a constraint expression. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ConstraintNormalization, NamedDecl *Template, SourceRange InstantiationRange); struct ParameterMappingSubstitution {}; /// \brief Note that we are subtituting into the parameter mapping of an /// atomic constraint during constraint normalization. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, ParameterMappingSubstitution, NamedDecl *Template, SourceRange InstantiationRange); /// \brief Note that we are substituting template arguments into a part of /// a requirement of a requires expression. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, concepts::Requirement *Req, sema::TemplateDeductionInfo &DeductionInfo, SourceRange InstantiationRange = SourceRange()); /// \brief Note that we are checking the satisfaction of the constraint /// expression inside of a nested requirement. InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, concepts::NestedRequirement *Req, ConstraintsCheck, SourceRange InstantiationRange = SourceRange()); /// Note that we have finished instantiating this template. void Clear(); ~InstantiatingTemplate() { Clear(); } /// Determines whether we have exceeded the maximum /// recursive template instantiations. bool isInvalid() const { return Invalid; } /// Determine whether we are already instantiating this /// specialization in some surrounding active instantiation. bool isAlreadyInstantiating() const { return AlreadyInstantiating; } private: Sema &SemaRef; bool Invalid; bool AlreadyInstantiating; bool CheckInstantiationDepth(SourceLocation PointOfInstantiation, SourceRange InstantiationRange); InstantiatingTemplate( Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind, SourceLocation PointOfInstantiation, SourceRange InstantiationRange, Decl *Entity, NamedDecl *Template = nullptr, ArrayRef TemplateArgs = None, sema::TemplateDeductionInfo *DeductionInfo = nullptr); InstantiatingTemplate(const InstantiatingTemplate&) = delete; InstantiatingTemplate& operator=(const InstantiatingTemplate&) = delete; }; void pushCodeSynthesisContext(CodeSynthesisContext Ctx); void popCodeSynthesisContext(); /// Determine whether we are currently performing template instantiation. bool inTemplateInstantiation() const { return CodeSynthesisContexts.size() > NonInstantiationEntries; } void PrintContextStack() { if (!CodeSynthesisContexts.empty() && CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) { PrintInstantiationStack(); LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size(); } if (PragmaAttributeCurrentTargetDecl) PrintPragmaAttributeInstantiationPoint(); } void PrintInstantiationStack(); void PrintPragmaAttributeInstantiationPoint(); /// Determines whether we are currently in a context where /// template argument substitution failures are not considered /// errors. /// /// \returns An empty \c Optional if we're not in a SFINAE context. /// Otherwise, contains a pointer that, if non-NULL, contains the nearest /// template-deduction context object, which can be used to capture /// diagnostics that will be suppressed. Optional isSFINAEContext() const; /// Determines whether we are currently in a context that /// is not evaluated as per C++ [expr] p5. bool isUnevaluatedContext() const { assert(!ExprEvalContexts.empty() && "Must be in an expression evaluation context"); return ExprEvalContexts.back().isUnevaluated(); } /// RAII class used to determine whether SFINAE has /// trapped any errors that occur during template argument /// deduction. class SFINAETrap { Sema &SemaRef; unsigned PrevSFINAEErrors; bool PrevInNonInstantiationSFINAEContext; bool PrevAccessCheckingSFINAE; bool PrevLastDiagnosticIgnored; public: explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false) : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors), PrevInNonInstantiationSFINAEContext( SemaRef.InNonInstantiationSFINAEContext), PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE), PrevLastDiagnosticIgnored( SemaRef.getDiagnostics().isLastDiagnosticIgnored()) { if (!SemaRef.isSFINAEContext()) SemaRef.InNonInstantiationSFINAEContext = true; SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE; } ~SFINAETrap() { SemaRef.NumSFINAEErrors = PrevSFINAEErrors; SemaRef.InNonInstantiationSFINAEContext = PrevInNonInstantiationSFINAEContext; SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE; SemaRef.getDiagnostics().setLastDiagnosticIgnored( PrevLastDiagnosticIgnored); } /// Determine whether any SFINAE errors have been trapped. bool hasErrorOccurred() const { return SemaRef.NumSFINAEErrors > PrevSFINAEErrors; } }; /// RAII class used to indicate that we are performing provisional /// semantic analysis to determine the validity of a construct, so /// typo-correction and diagnostics in the immediate context (not within /// implicitly-instantiated templates) should be suppressed. class TentativeAnalysisScope { Sema &SemaRef; // FIXME: Using a SFINAETrap for this is a hack. SFINAETrap Trap; bool PrevDisableTypoCorrection; public: explicit TentativeAnalysisScope(Sema &SemaRef) : SemaRef(SemaRef), Trap(SemaRef, true), PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) { SemaRef.DisableTypoCorrection = true; } ~TentativeAnalysisScope() { SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection; } }; /// The current instantiation scope used to store local /// variables. LocalInstantiationScope *CurrentInstantiationScope; /// Tracks whether we are in a context where typo correction is /// disabled. bool DisableTypoCorrection; /// The number of typos corrected by CorrectTypo. unsigned TyposCorrected; typedef llvm::SmallSet SrcLocSet; typedef llvm::DenseMap IdentifierSourceLocations; /// A cache containing identifiers for which typo correction failed and /// their locations, so that repeated attempts to correct an identifier in a /// given location are ignored if typo correction already failed for it. IdentifierSourceLocations TypoCorrectionFailures; /// Worker object for performing CFG-based warnings. sema::AnalysisBasedWarnings AnalysisWarnings; threadSafety::BeforeSet *ThreadSafetyDeclCache; /// An entity for which implicit template instantiation is required. /// /// The source location associated with the declaration is the first place in /// the source code where the declaration was "used". It is not necessarily /// the point of instantiation (which will be either before or after the /// namespace-scope declaration that triggered this implicit instantiation), /// However, it is the location that diagnostics should generally refer to, /// because users will need to know what code triggered the instantiation. typedef std::pair PendingImplicitInstantiation; /// The queue of implicit template instantiations that are required /// but have not yet been performed. std::deque PendingInstantiations; /// Queue of implicit template instantiations that cannot be performed /// eagerly. SmallVector LateParsedInstantiations; class GlobalEagerInstantiationScope { public: GlobalEagerInstantiationScope(Sema &S, bool Enabled) : S(S), Enabled(Enabled) { if (!Enabled) return; SavedPendingInstantiations.swap(S.PendingInstantiations); SavedVTableUses.swap(S.VTableUses); } void perform() { if (Enabled) { S.DefineUsedVTables(); S.PerformPendingInstantiations(); } } ~GlobalEagerInstantiationScope() { if (!Enabled) return; // Restore the set of pending vtables. assert(S.VTableUses.empty() && "VTableUses should be empty before it is discarded."); S.VTableUses.swap(SavedVTableUses); // Restore the set of pending implicit instantiations. assert(S.PendingInstantiations.empty() && "PendingInstantiations should be empty before it is discarded."); S.PendingInstantiations.swap(SavedPendingInstantiations); } private: Sema &S; SmallVector SavedVTableUses; std::deque SavedPendingInstantiations; bool Enabled; }; /// The queue of implicit template instantiations that are required /// and must be performed within the current local scope. /// /// This queue is only used for member functions of local classes in /// templates, which must be instantiated in the same scope as their /// enclosing function, so that they can reference function-local /// types, static variables, enumerators, etc. std::deque PendingLocalImplicitInstantiations; class LocalEagerInstantiationScope { public: LocalEagerInstantiationScope(Sema &S) : S(S) { SavedPendingLocalImplicitInstantiations.swap( S.PendingLocalImplicitInstantiations); } void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); } ~LocalEagerInstantiationScope() { assert(S.PendingLocalImplicitInstantiations.empty() && "there shouldn't be any pending local implicit instantiations"); SavedPendingLocalImplicitInstantiations.swap( S.PendingLocalImplicitInstantiations); } private: Sema &S; std::deque SavedPendingLocalImplicitInstantiations; }; /// A helper class for building up ExtParameterInfos. class ExtParameterInfoBuilder { SmallVector Infos; bool HasInteresting = false; public: /// Set the ExtParameterInfo for the parameter at the given index, /// void set(unsigned index, FunctionProtoType::ExtParameterInfo info) { assert(Infos.size() <= index); Infos.resize(index); Infos.push_back(info); if (!HasInteresting) HasInteresting = (info != FunctionProtoType::ExtParameterInfo()); } /// Return a pointer (suitable for setting in an ExtProtoInfo) to the /// ExtParameterInfo array we've built up. const FunctionProtoType::ExtParameterInfo * getPointerOrNull(unsigned numParams) { if (!HasInteresting) return nullptr; Infos.resize(numParams); return Infos.data(); } }; void PerformPendingInstantiations(bool LocalOnly = false); TypeSourceInfo *SubstType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, bool AllowDeducedTST = false); QualType SubstType(QualType T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstType(TypeLoc TL, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity); TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T, const MultiLevelTemplateArgumentList &TemplateArgs, SourceLocation Loc, DeclarationName Entity, CXXRecordDecl *ThisContext, Qualifiers ThisTypeQuals); void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto, const MultiLevelTemplateArgumentList &Args); bool SubstExceptionSpec(SourceLocation Loc, FunctionProtoType::ExceptionSpecInfo &ESI, SmallVectorImpl &ExceptionStorage, const MultiLevelTemplateArgumentList &Args); ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, int indexAdjustment, Optional NumExpansions, bool ExpectParameterPack); bool SubstParmTypes(SourceLocation Loc, ArrayRef Params, const FunctionProtoType::ExtParameterInfo *ExtParamInfos, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &ParamTypes, SmallVectorImpl *OutParams, ExtParameterInfoBuilder &ParamInfos); ExprResult SubstExpr(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs); /// Substitute the given template arguments into a list of /// expressions, expanding pack expansions if required. /// /// \param Exprs The list of expressions to substitute into. /// /// \param IsCall Whether this is some form of call, in which case /// default arguments will be dropped. /// /// \param TemplateArgs The set of template arguments to substitute. /// /// \param Outputs Will receive all of the substituted arguments. /// /// \returns true if an error occurred, false otherwise. bool SubstExprs(ArrayRef Exprs, bool IsCall, const MultiLevelTemplateArgumentList &TemplateArgs, SmallVectorImpl &Outputs); StmtResult SubstStmt(Stmt *S, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateParameterList * SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); bool SubstTemplateArguments(ArrayRef Args, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateArgumentListInfo &Outputs); Decl *SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs); /// Substitute the name and return type of a defaulted 'operator<=>' to form /// an implicit 'operator=='. FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD, FunctionDecl *Spaceship); ExprResult SubstInitializer(Expr *E, const MultiLevelTemplateArgumentList &TemplateArgs, bool CXXDirectInit); bool SubstBaseSpecifiers(CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); bool InstantiateClass(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK, bool Complain = true); bool InstantiateEnum(SourceLocation PointOfInstantiation, EnumDecl *Instantiation, EnumDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); bool InstantiateInClassInitializer( SourceLocation PointOfInstantiation, FieldDecl *Instantiation, FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs); struct LateInstantiatedAttribute { const Attr *TmplAttr; LocalInstantiationScope *Scope; Decl *NewDecl; LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S, Decl *D) : TmplAttr(A), Scope(S), NewDecl(D) { } }; typedef SmallVector LateInstantiatedAttrVec; void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Pattern, Decl *Inst, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *OuterMostScope = nullptr); void InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Pattern, Decl *Inst, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *OuterMostScope = nullptr); bool usesPartialOrExplicitSpecialization( SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec); bool InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK, bool Complain = true); void InstantiateClassMembers(SourceLocation PointOfInstantiation, CXXRecordDecl *Instantiation, const MultiLevelTemplateArgumentList &TemplateArgs, TemplateSpecializationKind TSK); void InstantiateClassTemplateSpecializationMembers( SourceLocation PointOfInstantiation, ClassTemplateSpecializationDecl *ClassTemplateSpec, TemplateSpecializationKind TSK); NestedNameSpecifierLoc SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS, const MultiLevelTemplateArgumentList &TemplateArgs); DeclarationNameInfo SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo, const MultiLevelTemplateArgumentList &TemplateArgs); TemplateName SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name, SourceLocation Loc, const MultiLevelTemplateArgumentList &TemplateArgs); bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs, TemplateArgumentListInfo &Result, const MultiLevelTemplateArgumentList &TemplateArgs); void InstantiateExceptionSpec(SourceLocation PointOfInstantiation, FunctionDecl *Function); bool CheckInstantiatedFunctionTemplateConstraints( SourceLocation PointOfInstantiation, FunctionDecl *Decl, ArrayRef TemplateArgs, ConstraintSatisfaction &Satisfaction); FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD, const TemplateArgumentList *Args, SourceLocation Loc); void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive = false, bool DefinitionRequired = false, bool AtEndOfTU = false); VarTemplateSpecializationDecl *BuildVarTemplateInstantiation( VarTemplateDecl *VarTemplate, VarDecl *FromVar, const TemplateArgumentList &TemplateArgList, const TemplateArgumentListInfo &TemplateArgsInfo, SmallVectorImpl &Converted, SourceLocation PointOfInstantiation, void *InsertPos, LateInstantiatedAttrVec *LateAttrs = nullptr, LocalInstantiationScope *StartingScope = nullptr); VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, const MultiLevelTemplateArgumentList &TemplateArgs); void BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs, LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, LocalInstantiationScope *StartingScope, bool InstantiatingVarTemplate = false, VarTemplateSpecializationDecl *PrevVTSD = nullptr); VarDecl *getVarTemplateSpecialization( VarTemplateDecl *VarTempl, const TemplateArgumentListInfo *TemplateArgs, const DeclarationNameInfo &MemberNameInfo, SourceLocation TemplateKWLoc); void InstantiateVariableInitializer( VarDecl *Var, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs); void InstantiateVariableDefinition(SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive = false, bool DefinitionRequired = false, bool AtEndOfTU = false); void InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs); NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs, bool FindingInstantiatedContext = false); DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC, const MultiLevelTemplateArgumentList &TemplateArgs); // Objective-C declarations. enum ObjCContainerKind { OCK_None = -1, OCK_Interface = 0, OCK_Protocol, OCK_Category, OCK_ClassExtension, OCK_Implementation, OCK_CategoryImplementation }; ObjCContainerKind getObjCContainerKind() const; DeclResult actOnObjCTypeParam(Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc, unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc, SourceLocation colonLoc, ParsedType typeBound); ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef typeParams, SourceLocation rAngleLoc); void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList); Decl *ActOnStartClassInterface( Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef SuperTypeArgs, SourceRange SuperTypeArgsRange, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); void ActOnSuperClassOfClassInterface(Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperName, SourceLocation SuperLoc, ArrayRef SuperTypeArgs, SourceRange SuperTypeArgsRange); void ActOnTypedefedProtocols(SmallVectorImpl &ProtocolRefs, SmallVectorImpl &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc); Decl *ActOnCompatibilityAlias( SourceLocation AtCompatibilityAliasLoc, IdentifierInfo *AliasName, SourceLocation AliasLocation, IdentifierInfo *ClassName, SourceLocation ClassLocation); bool CheckForwardProtocolDeclarationForCircularDependency( IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList &PList); Decl *ActOnStartProtocolInterface( SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, Decl *const *ProtoRefNames, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); Decl *ActOnStartCategoryInterface( SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList); Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *SuperClassname, SourceLocation SuperClassLoc, const ParsedAttributesView &AttrList); Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc, const ParsedAttributesView &AttrList); DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef Decls); DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef TypeParamLists, unsigned NumElts); DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, ArrayRef IdentList, const ParsedAttributesView &attrList); void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, ArrayRef ProtocolId, SmallVectorImpl &Protocols); void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, SourceLocation ProtocolLoc, IdentifierInfo *TypeArgId, SourceLocation TypeArgLoc, bool SelectProtocolFirst = false); /// Given a list of identifiers (and their locations), resolve the /// names to either Objective-C protocol qualifiers or type /// arguments, as appropriate. void actOnObjCTypeArgsOrProtocolQualifiers( Scope *S, ParsedType baseType, SourceLocation lAngleLoc, ArrayRef identifiers, ArrayRef identifierLocs, SourceLocation rAngleLoc, SourceLocation &typeArgsLAngleLoc, SmallVectorImpl &typeArgs, SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc, SmallVectorImpl &protocols, SourceLocation &protocolRAngleLoc, bool warnOnIncompleteProtocols); /// Build a an Objective-C protocol-qualified 'id' type where no /// base type was specified. TypeResult actOnObjCProtocolQualifierType( SourceLocation lAngleLoc, ArrayRef protocols, ArrayRef protocolLocs, SourceLocation rAngleLoc); /// Build a specialized and/or protocol-qualified Objective-C type. TypeResult actOnObjCTypeArgsAndProtocolQualifiers( Scope *S, SourceLocation Loc, ParsedType BaseType, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc); /// Build an Objective-C type parameter type. QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError = false); /// Build an Objective-C object pointer type. QualType BuildObjCObjectType(QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc, ArrayRef TypeArgs, SourceLocation TypeArgsRAngleLoc, SourceLocation ProtocolLAngleLoc, ArrayRef Protocols, ArrayRef ProtocolLocs, SourceLocation ProtocolRAngleLoc, bool FailOnError = false); /// Ensure attributes are consistent with type. /// \param [in, out] Attributes The attributes to check; they will /// be modified to be consistent with \p PropertyTy. void CheckObjCPropertyAttributes(Decl *PropertyPtrTy, SourceLocation Loc, unsigned &Attributes, bool propertyInPrimaryClass); /// Process the specified property declaration and create decls for the /// setters and getters as needed. /// \param property The property declaration being processed void ProcessPropertyDecl(ObjCPropertyDecl *property); void DiagnosePropertyMismatch(ObjCPropertyDecl *Property, ObjCPropertyDecl *SuperProperty, const IdentifierInfo *Name, bool OverridingProtocolProperty); void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID); Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef allMethods = None, ArrayRef allTUVars = None); Decl *ActOnProperty(Scope *S, SourceLocation AtLoc, SourceLocation LParenLoc, FieldDeclarator &FD, ObjCDeclSpec &ODS, Selector GetterSel, Selector SetterSel, tok::ObjCKeywordKind MethodImplKind, DeclContext *lexicalDC = nullptr); Decl *ActOnPropertyImplDecl(Scope *S, SourceLocation AtLoc, SourceLocation PropertyLoc, bool ImplKind, IdentifierInfo *PropertyId, IdentifierInfo *PropertyIvar, SourceLocation PropertyIvarLoc, ObjCPropertyQueryKind QueryKind); enum ObjCSpecialMethodKind { OSMK_None, OSMK_Alloc, OSMK_New, OSMK_Copy, OSMK_RetainingInit, OSMK_NonRetainingInit }; struct ObjCArgInfo { IdentifierInfo *Name; SourceLocation NameLoc; // The Type is null if no type was specified, and the DeclSpec is invalid // in this case. ParsedType Type; ObjCDeclSpec DeclSpec; /// ArgAttrs - Attribute list for this argument. ParsedAttributesView ArgAttrs; }; Decl *ActOnMethodDeclaration( Scope *S, SourceLocation BeginLoc, // location of the + or -. SourceLocation EndLoc, // location of the ; or {. tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, ArrayRef SelectorLocs, Selector Sel, // optional arguments. The number of types/arguments is obtained // from the Sel.getNumArgs(). ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind, bool isVariadic, bool MethodDefinition); ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel, const ObjCObjectPointerType *OPT, bool IsInstance); ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance); bool CheckARCMethodDecl(ObjCMethodDecl *method); bool inferObjCARCLifetime(ValueDecl *decl); void deduceOpenCLAddressSpace(ValueDecl *decl); ExprResult HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, Expr *BaseExpr, SourceLocation OpLoc, DeclarationName MemberName, SourceLocation MemberLoc, SourceLocation SuperLoc, QualType SuperType, bool Super); ExprResult ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, IdentifierInfo &propertyName, SourceLocation receiverNameLoc, SourceLocation propertyNameLoc); ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc); /// Describes the kind of message expression indicated by a message /// send that starts with an identifier. enum ObjCMessageKind { /// The message is sent to 'super'. ObjCSuperMessage, /// The message is an instance message. ObjCInstanceMessage, /// The message is a class message, and the identifier is a type /// name. ObjCClassMessage }; ObjCMessageKind getObjCMessageKind(Scope *S, IdentifierInfo *Name, SourceLocation NameLoc, bool IsSuper, bool HasTrailingDot, ParsedType &ReceiverType); ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildClassMessageImplicit(QualType ReceiverType, bool isSuperReceiver, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnClassMessage(Scope *S, ParsedType Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildInstanceMessage(Expr *Receiver, QualType ReceiverType, SourceLocation SuperLoc, Selector Sel, ObjCMethodDecl *Method, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args, bool isImplicit = false); ExprResult BuildInstanceMessageImplicit(Expr *Receiver, QualType ReceiverType, SourceLocation Loc, Selector Sel, ObjCMethodDecl *Method, MultiExprArg Args); ExprResult ActOnInstanceMessage(Scope *S, Expr *Receiver, Selector Sel, SourceLocation LBracLoc, ArrayRef SelectorLocs, SourceLocation RBracLoc, MultiExprArg Args); ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, TypeSourceInfo *TSInfo, Expr *SubExpr); ExprResult ActOnObjCBridgedCast(Scope *S, SourceLocation LParenLoc, ObjCBridgeCastKind Kind, SourceLocation BridgeKeywordLoc, ParsedType Type, SourceLocation RParenLoc, Expr *SubExpr); void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr); void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr); bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr, CastKind &Kind); bool checkObjCBridgeRelatedComponents(SourceLocation Loc, QualType DestType, QualType SrcType, ObjCInterfaceDecl *&RelatedClass, ObjCMethodDecl *&ClassMethod, ObjCMethodDecl *&InstanceMethod, TypedefNameDecl *&TDNDecl, bool CfToNs, bool Diagnose = true); bool CheckObjCBridgeRelatedConversions(SourceLocation Loc, QualType DestType, QualType SrcType, Expr *&SrcExpr, bool Diagnose = true); bool ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&SrcExpr, bool Diagnose = true); bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall); /// Check whether the given new method is a valid override of the /// given overridden method, and set any properties that should be inherited. void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, const ObjCMethodDecl *Overridden); /// Describes the compatibility of a result type with its method. enum ResultTypeCompatibilityKind { RTC_Compatible, RTC_Incompatible, RTC_Unknown }; void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, ObjCMethodDecl *overridden); void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, ObjCInterfaceDecl *CurrentClass, ResultTypeCompatibilityKind RTC); enum PragmaOptionsAlignKind { POAK_Native, // #pragma options align=native POAK_Natural, // #pragma options align=natural POAK_Packed, // #pragma options align=packed POAK_Power, // #pragma options align=power POAK_Mac68k, // #pragma options align=mac68k POAK_Reset // #pragma options align=reset }; /// ActOnPragmaClangSection - Called on well formed \#pragma clang section void ActOnPragmaClangSection(SourceLocation PragmaLoc, PragmaClangSectionAction Action, PragmaClangSectionKind SecKind, StringRef SecName); /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align. void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind, SourceLocation PragmaLoc); /// ActOnPragmaPack - Called on well formed \#pragma pack(...). void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action, StringRef SlotLabel, Expr *Alignment); enum class PragmaPackDiagnoseKind { NonDefaultStateAtInclude, ChangedStateAtExit }; void DiagnoseNonDefaultPragmaPack(PragmaPackDiagnoseKind Kind, SourceLocation IncludeLoc); void DiagnoseUnterminatedPragmaPack(); /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off]. void ActOnPragmaMSStruct(PragmaMSStructKind Kind); /// ActOnPragmaMSComment - Called on well formed /// \#pragma comment(kind, "arg"). void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind, StringRef Arg); /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma /// pointers_to_members(representation method[, general purpose /// representation]). void ActOnPragmaMSPointersToMembers( LangOptions::PragmaMSPointersToMembersKind Kind, SourceLocation PragmaLoc); /// Called on well formed \#pragma vtordisp(). void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action, SourceLocation PragmaLoc, MSVtorDispMode Value); enum PragmaSectionKind { PSK_DataSeg, PSK_BSSSeg, PSK_ConstSeg, PSK_CodeSeg, }; bool UnifySection(StringRef SectionName, int SectionFlags, DeclaratorDecl *TheDecl); bool UnifySection(StringRef SectionName, int SectionFlags, SourceLocation PragmaSectionLocation); /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg. void ActOnPragmaMSSeg(SourceLocation PragmaLocation, PragmaMsStackAction Action, llvm::StringRef StackSlotLabel, StringLiteral *SegmentName, llvm::StringRef PragmaName); /// Called on well formed \#pragma section(). void ActOnPragmaMSSection(SourceLocation PragmaLocation, int SectionFlags, StringLiteral *SegmentName); /// Called on well-formed \#pragma init_seg(). void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation, StringLiteral *SegmentName); /// Called on #pragma clang __debug dump II void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II); /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name, StringRef Value); /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'. void ActOnPragmaUnused(const Token &Identifier, Scope *curScope, SourceLocation PragmaLoc); /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... . void ActOnPragmaVisibility(const IdentifierInfo* VisType, SourceLocation PragmaLoc); NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, SourceLocation Loc); void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W); /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident. void ActOnPragmaWeakID(IdentifierInfo* WeakName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc); /// ActOnPragmaRedefineExtname - Called on well formed /// \#pragma redefine_extname oldname newname. void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident. void ActOnPragmaWeakAlias(IdentifierInfo* WeakName, IdentifierInfo* AliasName, SourceLocation PragmaLoc, SourceLocation WeakNameLoc, SourceLocation AliasNameLoc); /// ActOnPragmaFPContract - Called on well formed /// \#pragma {STDC,OPENCL} FP_CONTRACT and /// \#pragma clang fp contract void ActOnPragmaFPContract(LangOptions::FPContractModeKind FPC); /// ActOnPragmaFenvAccess - Called on well formed /// \#pragma STDC FENV_ACCESS void ActOnPragmaFEnvAccess(LangOptions::FEnvAccessModeKind FPC); /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'. void AddAlignmentAttributesForRecord(RecordDecl *RD); /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record. void AddMsStructLayoutForRecord(RecordDecl *RD); /// FreePackedContext - Deallocate and null out PackContext. void FreePackedContext(); /// PushNamespaceVisibilityAttr - Note that we've entered a /// namespace with a visibility attribute. void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr, SourceLocation Loc); /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used, /// add an appropriate visibility attribute. void AddPushedVisibilityAttribute(Decl *RD); /// PopPragmaVisibility - Pop the top element of the visibility stack; used /// for '\#pragma GCC visibility' and visibility attributes on namespaces. void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc); /// FreeVisContext - Deallocate and null out VisContext. void FreeVisContext(); /// AddCFAuditedAttribute - Check whether we're currently within /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding /// the appropriate attribute. void AddCFAuditedAttribute(Decl *D); void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute, SourceLocation PragmaLoc, attr::ParsedSubjectMatchRuleSet Rules); void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc, const IdentifierInfo *Namespace); /// Called on well-formed '\#pragma clang attribute pop'. void ActOnPragmaAttributePop(SourceLocation PragmaLoc, const IdentifierInfo *Namespace); /// Adds the attributes that have been specified using the /// '\#pragma clang attribute push' directives to the given declaration. void AddPragmaAttributes(Scope *S, Decl *D); void DiagnoseUnterminatedPragmaAttribute(); /// Called on well formed \#pragma clang optimize. void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc); /// Get the location for the currently active "\#pragma clang optimize /// off". If this location is invalid, then the state of the pragma is "on". SourceLocation getOptimizeOffPragmaLocation() const { return OptimizeOffPragmaLocation; } /// Only called on function definitions; if there is a pragma in scope /// with the effect of a range-based optnone, consider marking the function /// with attribute optnone. void AddRangeBasedOptnone(FunctionDecl *FD); /// Adds the 'optnone' attribute to the function declaration if there /// are no conflicts; Loc represents the location causing the 'optnone' /// attribute to be added (usually because of a pragma). void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc); /// AddAlignedAttr - Adds an aligned attribute to a particular declaration. void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion); void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T, bool IsPackExpansion); /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular /// declaration. void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE); /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular /// declaration. void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr); /// AddAlignValueAttr - Adds an align_value attribute to a particular /// declaration. void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E); /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular /// declaration. void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks); /// AddModeAttr - Adds a mode attribute to a particular declaration. void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation = false); void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, ParameterABI ABI); enum class RetainOwnershipKind {NS, CF, OS}; void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, RetainOwnershipKind K, bool IsTemplateInstantiation); /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size /// attribute to a particular declaration. void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI, Expr *Min, Expr *Max); /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a /// particular declaration. void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, Expr *Min, Expr *Max); bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type); //===--------------------------------------------------------------------===// // C++ Coroutines TS // bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc, StringRef Keyword); ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E); ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E); StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E); ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E, bool IsImplicit = false); ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E, UnresolvedLookupExpr* Lookup); ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E); StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E, bool IsImplicit = false); StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs); bool buildCoroutineParameterMoves(SourceLocation Loc); VarDecl *buildCoroutinePromise(SourceLocation Loc); void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body); ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc, SourceLocation FuncLoc); //===--------------------------------------------------------------------===// // OpenCL extensions. // private: std::string CurrOpenCLExtension; /// Extensions required by an OpenCL type. llvm::DenseMap> OpenCLTypeExtMap; /// Extensions required by an OpenCL declaration. llvm::DenseMap> OpenCLDeclExtMap; public: llvm::StringRef getCurrentOpenCLExtension() const { return CurrOpenCLExtension; } /// Check if a function declaration \p FD associates with any /// extensions present in OpenCLDeclExtMap and if so return the /// extension(s) name(s). std::string getOpenCLExtensionsFromDeclExtMap(FunctionDecl *FD); /// Check if a function type \p FT associates with any /// extensions present in OpenCLTypeExtMap and if so return the /// extension(s) name(s). std::string getOpenCLExtensionsFromTypeExtMap(FunctionType *FT); /// Find an extension in an appropriate extension map and return its name template std::string getOpenCLExtensionsFromExtMap(T* FT, MapT &Map); void setCurrentOpenCLExtension(llvm::StringRef Ext) { CurrOpenCLExtension = Ext; } /// Set OpenCL extensions for a type which can only be used when these /// OpenCL extensions are enabled. If \p Exts is empty, do nothing. /// \param Exts A space separated list of OpenCL extensions. void setOpenCLExtensionForType(QualType T, llvm::StringRef Exts); /// Set OpenCL extensions for a declaration which can only be /// used when these OpenCL extensions are enabled. If \p Exts is empty, do /// nothing. /// \param Exts A space separated list of OpenCL extensions. void setOpenCLExtensionForDecl(Decl *FD, llvm::StringRef Exts); /// Set current OpenCL extensions for a type which can only be used /// when these OpenCL extensions are enabled. If current OpenCL extension is /// empty, do nothing. void setCurrentOpenCLExtensionForType(QualType T); /// Set current OpenCL extensions for a declaration which /// can only be used when these OpenCL extensions are enabled. If current /// OpenCL extension is empty, do nothing. void setCurrentOpenCLExtensionForDecl(Decl *FD); bool isOpenCLDisabledDecl(Decl *FD); /// Check if type \p T corresponding to declaration specifier \p DS /// is disabled due to required OpenCL extensions being disabled. If so, /// emit diagnostics. /// \return true if type is disabled. bool checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType T); /// Check if declaration \p D used by expression \p E /// is disabled due to required OpenCL extensions being disabled. If so, /// emit diagnostics. /// \return true if type is disabled. bool checkOpenCLDisabledDecl(const NamedDecl &D, const Expr &E); //===--------------------------------------------------------------------===// // OpenMP directives and clauses. // private: void *VarDataSharingAttributesStack; /// Number of nested '#pragma omp declare target' directives. unsigned DeclareTargetNestingLevel = 0; /// Initialization of data-sharing attributes stack. void InitDataSharingAttributesStack(); void DestroyDataSharingAttributesStack(); ExprResult VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind, bool StrictlyPositive = true); /// Returns OpenMP nesting level for current directive. unsigned getOpenMPNestingLevel() const; /// Adjusts the function scopes index for the target-based regions. void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex, unsigned Level) const; /// Returns the number of scopes associated with the construct on the given /// OpenMP level. int getNumberOfConstructScopes(unsigned Level) const; /// Push new OpenMP function region for non-capturing function. void pushOpenMPFunctionRegion(); /// Pop OpenMP function region for non-capturing function. void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI); /// Check whether we're allowed to call Callee from the current function. void checkOpenMPDeviceFunction(SourceLocation Loc, FunctionDecl *Callee, bool CheckForDelayedContext = true); /// Check whether we're allowed to call Callee from the current function. void checkOpenMPHostFunction(SourceLocation Loc, FunctionDecl *Callee, bool CheckCaller = true); /// Check if the expression is allowed to be used in expressions for the /// OpenMP devices. void checkOpenMPDeviceExpr(const Expr *E); /// Finishes analysis of the deferred functions calls that may be declared as /// host/nohost during device/host compilation. void finalizeOpenMPDelayedAnalysis(); /// Checks if a type or a declaration is disabled due to the owning extension /// being disabled, and emits diagnostic messages if it is disabled. /// \param D type or declaration to be checked. /// \param DiagLoc source location for the diagnostic message. /// \param DiagInfo information to be emitted for the diagnostic message. /// \param SrcRange source range of the declaration. /// \param Map maps type or declaration to the extensions. /// \param Selector selects diagnostic message: 0 for type and 1 for /// declaration. /// \return true if the type or declaration is disabled. template bool checkOpenCLDisabledTypeOrDecl(T D, DiagLocT DiagLoc, DiagInfoT DiagInfo, MapT &Map, unsigned Selector = 0, SourceRange SrcRange = SourceRange()); /// Marks all the functions that might be required for the currently active /// OpenMP context. void markOpenMPDeclareVariantFuncsReferenced(SourceLocation Loc, FunctionDecl *Func, bool MightBeOdrUse); public: /// Struct to store the context selectors info for declare variant directive. using OMPCtxStringType = SmallString<8>; using OMPCtxSelectorData = OpenMPCtxSelectorData, ExprResult>; /// Checks if the variant/multiversion functions are compatible. bool areMultiversionVariantFunctionsCompatible( const FunctionDecl *OldFD, const FunctionDecl *NewFD, const PartialDiagnostic &NoProtoDiagID, const PartialDiagnosticAt &NoteCausedDiagIDAt, const PartialDiagnosticAt &NoSupportDiagIDAt, const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, bool ConstexprSupported, bool CLinkageMayDiffer); /// Function tries to capture lambda's captured variables in the OpenMP region /// before the original lambda is captured. void tryCaptureOpenMPLambdas(ValueDecl *V); /// Return true if the provided declaration \a VD should be captured by /// reference. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. /// \param OpenMPCaptureLevel Capture level within an OpenMP construct. bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level, unsigned OpenMPCaptureLevel) const; /// Check if the specified variable is used in one of the private /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP /// constructs. VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false, unsigned StopAt = 0); ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK, ExprObjectKind OK, SourceLocation Loc); /// If the current region is a loop-based region, mark the start of the loop /// construct. void startOpenMPLoop(); /// If the current region is a range loop-based region, mark the start of the /// loop construct. void startOpenMPCXXRangeFor(); /// Check if the specified variable is used in 'private' clause. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. bool isOpenMPPrivateDecl(const ValueDecl *D, unsigned Level) const; /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.) /// for \p FD based on DSA for the provided corresponding captured declaration /// \p D. void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level); /// Check if the specified variable is captured by 'target' directive. /// \param Level Relative level of nested OpenMP construct for that the check /// is performed. bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level) const; ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc, Expr *Op); /// Called on start of new data sharing attribute block. void StartOpenMPDSABlock(OpenMPDirectiveKind K, const DeclarationNameInfo &DirName, Scope *CurScope, SourceLocation Loc); /// Start analysis of clauses. void StartOpenMPClause(OpenMPClauseKind K); /// End analysis of clauses. void EndOpenMPClause(); /// Called on end of data sharing attribute block. void EndOpenMPDSABlock(Stmt *CurDirective); /// Check if the current region is an OpenMP loop region and if it is, /// mark loop control variable, used in \p Init for loop initialization, as /// private by default. /// \param Init First part of the for loop. void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init); // OpenMP directives and clauses. /// Called on correct id-expression from the '#pragma omp /// threadprivate'. ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec, const DeclarationNameInfo &Id, OpenMPDirectiveKind Kind); /// Called on well-formed '#pragma omp threadprivate'. DeclGroupPtrTy ActOnOpenMPThreadprivateDirective( SourceLocation Loc, ArrayRef VarList); /// Builds a new OpenMPThreadPrivateDecl and checks its correctness. OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc, ArrayRef VarList); /// Called on well-formed '#pragma omp allocate'. DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc, ArrayRef VarList, ArrayRef Clauses, DeclContext *Owner = nullptr); /// Called on well-formed '#pragma omp requires'. DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc, ArrayRef ClauseList); /// Check restrictions on Requires directive OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc, ArrayRef Clauses); /// Check if the specified type is allowed to be used in 'omp declare /// reduction' construct. QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc, TypeResult ParsedType); /// Called on start of '#pragma omp declare reduction'. DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart( Scope *S, DeclContext *DC, DeclarationName Name, ArrayRef> ReductionTypes, AccessSpecifier AS, Decl *PrevDeclInScope = nullptr); /// Initialize declare reduction construct initializer. void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D); /// Finish current declare reduction construct initializer. void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner); /// Initialize declare reduction construct initializer. /// \return omp_priv variable. VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D); /// Finish current declare reduction construct initializer. void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer, VarDecl *OmpPrivParm); /// Called at the end of '#pragma omp declare reduction'. DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd( Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid); /// Check variable declaration in 'omp declare mapper' construct. TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D); /// Check if the specified type is allowed to be used in 'omp declare /// mapper' construct. QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc, TypeResult ParsedType); /// Called on start of '#pragma omp declare mapper'. OMPDeclareMapperDecl *ActOnOpenMPDeclareMapperDirectiveStart( Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType, SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS, Decl *PrevDeclInScope = nullptr); /// Build the mapper variable of '#pragma omp declare mapper'. void ActOnOpenMPDeclareMapperDirectiveVarDecl(OMPDeclareMapperDecl *DMD, Scope *S, QualType MapperType, SourceLocation StartLoc, DeclarationName VN); /// Called at the end of '#pragma omp declare mapper'. DeclGroupPtrTy ActOnOpenMPDeclareMapperDirectiveEnd(OMPDeclareMapperDecl *D, Scope *S, ArrayRef ClauseList); /// Called on the start of target region i.e. '#pragma omp declare target'. bool ActOnStartOpenMPDeclareTargetDirective(SourceLocation Loc); /// Called at the end of target region i.e. '#pragme omp end declare target'. void ActOnFinishOpenMPDeclareTargetDirective(); /// Searches for the provided declaration name for OpenMP declare target /// directive. NamedDecl * lookupOpenMPDeclareTargetName(Scope *CurScope, CXXScopeSpec &ScopeSpec, const DeclarationNameInfo &Id, NamedDeclSetType &SameDirectiveDecls); /// Called on correct id-expression from the '#pragma omp declare target'. void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc, OMPDeclareTargetDeclAttr::MapTypeTy MT, OMPDeclareTargetDeclAttr::DevTypeTy DT); /// Check declaration inside target region. void checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D, SourceLocation IdLoc = SourceLocation()); /// Return true inside OpenMP declare target region. bool isInOpenMPDeclareTargetContext() const { return DeclareTargetNestingLevel > 0; } /// Return true inside OpenMP target region. bool isInOpenMPTargetExecutionDirective() const; /// Return the number of captured regions created for an OpenMP directive. static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind); /// Initialization of captured region for OpenMP region. void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope); /// End of OpenMP region. /// /// \param S Statement associated with the current OpenMP region. /// \param Clauses List of clauses for the current OpenMP region. /// /// \returns Statement for finished OpenMP region. StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef Clauses); StmtResult ActOnOpenMPExecutableDirective( OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName, OpenMPDirectiveKind CancelRegion, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel' after parsing /// of the associated statement. StmtResult ActOnOpenMPParallelDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); using VarsWithInheritedDSAType = llvm::SmallDenseMap; /// Called on well-formed '\#pragma omp simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp for' after parsing /// of the associated statement. StmtResult ActOnOpenMPForDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp for simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPForSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp sections' after parsing /// of the associated statement. StmtResult ActOnOpenMPSectionsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp section' after parsing of the /// associated statement. StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp single' after parsing of the /// associated statement. StmtResult ActOnOpenMPSingleDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp master' after parsing of the /// associated statement. StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp critical' after parsing of the /// associated statement. StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName, ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel for' after parsing /// of the associated statement. StmtResult ActOnOpenMPParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel for simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel master' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp parallel sections' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp task' after parsing of the /// associated statement. StmtResult ActOnOpenMPTaskDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskyield'. StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp barrier'. StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskwait'. StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp taskgroup'. StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp flush'. StmtResult ActOnOpenMPFlushDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp ordered' after parsing of the /// associated statement. StmtResult ActOnOpenMPOrderedDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp atomic' after parsing of the /// associated statement. StmtResult ActOnOpenMPAtomicDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target' after parsing of the /// associated statement. StmtResult ActOnOpenMPTargetDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target data' after parsing of /// the associated statement. StmtResult ActOnOpenMPTargetDataDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target enter data' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp target exit data' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp target parallel' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target parallel for' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams' after parsing of the /// associated statement. StmtResult ActOnOpenMPTeamsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp cancellation point'. StmtResult ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc, SourceLocation EndLoc, OpenMPDirectiveKind CancelRegion); /// Called on well-formed '\#pragma omp cancel'. StmtResult ActOnOpenMPCancelDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, OpenMPDirectiveKind CancelRegion); /// Called on well-formed '\#pragma omp taskloop' after parsing of the /// associated statement. StmtResult ActOnOpenMPTaskLoopDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp taskloop simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp master taskloop' after parsing of the /// associated statement. StmtResult ActOnOpenMPMasterTaskLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPMasterTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel master taskloop' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMasterTaskLoopDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp parallel master taskloop simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute' after parsing /// of the associated statement. StmtResult ActOnOpenMPDistributeDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target update'. StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef Clauses, SourceLocation StartLoc, SourceLocation EndLoc, Stmt *AStmt); /// Called on well-formed '\#pragma omp distribute parallel for' after /// parsing of the associated statement. StmtResult ActOnOpenMPDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute parallel for simd' /// after parsing of the associated statement. StmtResult ActOnOpenMPDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp distribute simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target parallel for simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target simd' after parsing of /// the associated statement. StmtResult ActOnOpenMPTargetSimdDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute' after parsing of /// the associated statement. StmtResult ActOnOpenMPTeamsDistributeDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute simd' after parsing /// of the associated statement. StmtResult ActOnOpenMPTeamsDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute parallel for simd' /// after parsing of the associated statement. StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp teams distribute parallel for' /// after parsing of the associated statement. StmtResult ActOnOpenMPTeamsDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams' after parsing of the /// associated statement. StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed '\#pragma omp target teams distribute' after parsing /// of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute parallel for' /// after parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute parallel for /// simd' after parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Called on well-formed '\#pragma omp target teams distribute simd' after /// parsing of the associated statement. StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective( ArrayRef Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA); /// Checks correctness of linear modifiers. bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind, SourceLocation LinLoc); /// Checks that the specified declaration matches requirements for the linear /// decls. bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc, OpenMPLinearClauseKind LinKind, QualType Type); /// Called on well-formed '\#pragma omp declare simd' after parsing of /// the associated method/function. DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective( DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, Expr *Simdlen, ArrayRef Uniforms, ArrayRef Aligneds, ArrayRef Alignments, ArrayRef Linears, ArrayRef LinModifiers, ArrayRef Steps, SourceRange SR); /// Checks '\#pragma omp declare variant' variant function and original /// functions after parsing of the associated method/function. /// \param DG Function declaration to which declare variant directive is /// applied to. /// \param VariantRef Expression that references the variant function, which /// must be used instead of the original one, specified in \p DG. /// \returns None, if the function/variant function are not compatible with /// the pragma, pair of original function/variant ref expression otherwise. Optional> checkOpenMPDeclareVariantFunction( DeclGroupPtrTy DG, Expr *VariantRef, SourceRange SR); /// Called on well-formed '\#pragma omp declare variant' after parsing of /// the associated method/function. /// \param FD Function declaration to which declare variant directive is /// applied to. /// \param VariantRef Expression that references the variant function, which /// must be used instead of the original one, specified in \p DG. /// \param Data Set of context-specific data for the specified context /// selector. void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef, SourceRange SR, ArrayRef Data); OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind, Expr *Expr, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'allocator' clause. OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'if' clause. OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier, Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation NameModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'final' clause. OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'num_threads' clause. OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'safelen' clause. OMPClause *ActOnOpenMPSafelenClause(Expr *Length, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'simdlen' clause. OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'collapse' clause. OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'ordered' clause. OMPClause * ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc, SourceLocation LParenLoc = SourceLocation(), Expr *NumForLoops = nullptr); /// Called on well-formed 'grainsize' clause. OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'num_tasks' clause. OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'hint' clause. OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind, unsigned Argument, SourceLocation ArgumentLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'default' clause. OMPClause *ActOnOpenMPDefaultClause(OpenMPDefaultClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'proc_bind' clause. OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPSingleExprWithArgClause( OpenMPClauseKind Kind, ArrayRef Arguments, Expr *Expr, SourceLocation StartLoc, SourceLocation LParenLoc, ArrayRef ArgumentsLoc, SourceLocation DelimLoc, SourceLocation EndLoc); /// Called on well-formed 'schedule' clause. OMPClause *ActOnOpenMPScheduleClause( OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'nowait' clause. OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'untied' clause. OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'mergeable' clause. OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'read' clause. OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'write' clause. OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'update' clause. OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'capture' clause. OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'seq_cst' clause. OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'threads' clause. OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'simd' clause. OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'nogroup' clause. OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'unified_address' clause. OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'unified_address' clause. OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'reverse_offload' clause. OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'dynamic_allocators' clause. OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc, SourceLocation EndLoc); /// Called on well-formed 'atomic_default_mem_order' clause. OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause( OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); OMPClause *ActOnOpenMPVarListClause( OpenMPClauseKind Kind, ArrayRef Vars, Expr *TailExpr, const OMPVarListLocTy &Locs, SourceLocation ColonLoc, CXXScopeSpec &ReductionOrMapperIdScopeSpec, DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier, ArrayRef MapTypeModifiers, ArrayRef MapTypeModifiersLoc, bool IsMapTypeImplicit, SourceLocation DepLinMapLastLoc); /// Called on well-formed 'allocate' clause. OMPClause * ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef VarList, SourceLocation StartLoc, SourceLocation ColonLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'private' clause. OMPClause *ActOnOpenMPPrivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'firstprivate' clause. OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'lastprivate' clause. OMPClause *ActOnOpenMPLastprivateClause( ArrayRef VarList, OpenMPLastprivateModifier LPKind, SourceLocation LPKindLoc, SourceLocation ColonLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'shared' clause. OMPClause *ActOnOpenMPSharedClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'reduction' clause. OMPClause *ActOnOpenMPReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'task_reduction' clause. OMPClause *ActOnOpenMPTaskReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'in_reduction' clause. OMPClause *ActOnOpenMPInReductionClause( ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec, const DeclarationNameInfo &ReductionId, ArrayRef UnresolvedReductions = llvm::None); /// Called on well-formed 'linear' clause. OMPClause * ActOnOpenMPLinearClause(ArrayRef VarList, Expr *Step, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind LinKind, SourceLocation LinLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'aligned' clause. OMPClause *ActOnOpenMPAlignedClause(ArrayRef VarList, Expr *Alignment, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc); /// Called on well-formed 'copyin' clause. OMPClause *ActOnOpenMPCopyinClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'copyprivate' clause. OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'flush' pseudo clause. OMPClause *ActOnOpenMPFlushClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'depend' clause. OMPClause * ActOnOpenMPDependClause(OpenMPDependClauseKind DepKind, SourceLocation DepLoc, SourceLocation ColonLoc, ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'device' clause. OMPClause *ActOnOpenMPDeviceClause(Expr *Device, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'map' clause. OMPClause * ActOnOpenMPMapClause(ArrayRef MapTypeModifiers, ArrayRef MapTypeModifiersLoc, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, OpenMPMapClauseKind MapType, bool IsMapTypeImplicit, SourceLocation MapLoc, SourceLocation ColonLoc, ArrayRef VarList, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'num_teams' clause. OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'thread_limit' clause. OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'priority' clause. OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// Called on well-formed 'dist_schedule' clause. OMPClause *ActOnOpenMPDistScheduleClause( OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc); /// Called on well-formed 'defaultmap' clause. OMPClause *ActOnOpenMPDefaultmapClause( OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc, SourceLocation KindLoc, SourceLocation EndLoc); /// Called on well-formed 'to' clause. OMPClause * ActOnOpenMPToClause(ArrayRef VarList, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'from' clause. OMPClause *ActOnOpenMPFromClause( ArrayRef VarList, CXXScopeSpec &MapperIdScopeSpec, DeclarationNameInfo &MapperId, const OMPVarListLocTy &Locs, ArrayRef UnresolvedMappers = llvm::None); /// Called on well-formed 'use_device_ptr' clause. OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// Called on well-formed 'is_device_ptr' clause. OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef VarList, const OMPVarListLocTy &Locs); /// Called on well-formed 'nontemporal' clause. OMPClause *ActOnOpenMPNontemporalClause(ArrayRef VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc); /// The kind of conversion being performed. enum CheckedConversionKind { /// An implicit conversion. CCK_ImplicitConversion, /// A C-style cast. CCK_CStyleCast, /// A functional-style cast. CCK_FunctionalCast, /// A cast other than a C-style cast. CCK_OtherCast, /// A conversion for an operand of a builtin overloaded operator. CCK_ForBuiltinOverloadedOp }; static bool isCast(CheckedConversionKind CCK) { return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast || CCK == CCK_OtherCast; } /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit /// cast. If there is already an implicit cast, merge into the existing one. /// If isLvalue, the result of the cast is an lvalue. ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK, ExprValueKind VK = VK_RValue, const CXXCastPath *BasePath = nullptr, CheckedConversionKind CCK = CCK_ImplicitConversion); /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding /// to the conversion from scalar type ScalarTy to the Boolean type. static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy); /// IgnoredValueConversions - Given that an expression's result is /// syntactically ignored, perform any conversions that are /// required. ExprResult IgnoredValueConversions(Expr *E); // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts // functions and arrays to their respective pointers (C99 6.3.2.1). ExprResult UsualUnaryConversions(Expr *E); /// CallExprUnaryConversions - a special case of an unary conversion /// performed on a function designator of a call expression. ExprResult CallExprUnaryConversions(Expr *E); // DefaultFunctionArrayConversion - converts functions and arrays // to their respective pointers (C99 6.3.2.1). ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true); // DefaultFunctionArrayLvalueConversion - converts functions and // arrays to their respective pointers and performs the // lvalue-to-rvalue conversion. ExprResult DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose = true); // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on // the operand. This is DefaultFunctionArrayLvalueConversion, // except that it assumes the operand isn't of function or array // type. ExprResult DefaultLvalueConversion(Expr *E); // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that // do not have a prototype. Integer promotions are performed on each // argument, and arguments that have type float are promoted to double. ExprResult DefaultArgumentPromotion(Expr *E); /// If \p E is a prvalue denoting an unmaterialized temporary, materialize /// it as an xvalue. In C++98, the result will still be a prvalue, because /// we don't have xvalues there. ExprResult TemporaryMaterializationConversion(Expr *E); // Used for emitting the right warning by DefaultVariadicArgumentPromotion enum VariadicCallType { VariadicFunction, VariadicBlock, VariadicMethod, VariadicConstructor, VariadicDoesNotApply }; VariadicCallType getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, Expr *Fn); // Used for determining in which context a type is allowed to be passed to a // vararg function. enum VarArgKind { VAK_Valid, VAK_ValidInCXX11, VAK_Undefined, VAK_MSVCUndefined, VAK_Invalid }; // Determines which VarArgKind fits an expression. VarArgKind isValidVarArgType(const QualType &Ty); /// Check to see if the given expression is a valid argument to a variadic /// function, issuing a diagnostic if not. void checkVariadicArgument(const Expr *E, VariadicCallType CT); /// Check to see if a given expression could have '.c_str()' called on it. bool hasCStrMethod(const Expr *E); /// GatherArgumentsForCall - Collector argument expressions for various /// form of call prototypes. bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, const FunctionProtoType *Proto, unsigned FirstParam, ArrayRef Args, SmallVectorImpl &AllArgs, VariadicCallType CallType = VariadicDoesNotApply, bool AllowExplicit = false, bool IsListInitialization = false); // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but // will create a runtime trap if the resulting type is not a POD type. ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, FunctionDecl *FDecl); /// Context in which we're performing a usual arithmetic conversion. enum ArithConvKind { /// An arithmetic operation. ACK_Arithmetic, /// A bitwise operation. ACK_BitwiseOp, /// A comparison. ACK_Comparison, /// A conditional (?:) operator. ACK_Conditional, /// A compound assignment expression. ACK_CompAssign, }; // UsualArithmeticConversions - performs the UsualUnaryConversions on it's // operands and then handles various conversions that are common to binary // operators (C99 6.3.1.8). If both operands aren't arithmetic, this // routine returns the first non-arithmetic type found. The client is // responsible for emitting appropriate error diagnostics. QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, ArithConvKind ACK); /// AssignConvertType - All of the 'assignment' semantic checks return this /// enum to indicate whether the assignment was allowed. These checks are /// done for simple assignments, as well as initialization, return from /// function, argument passing, etc. The query is phrased in terms of a /// source and destination type. enum AssignConvertType { /// Compatible - the types are compatible according to the standard. Compatible, /// PointerToInt - The assignment converts a pointer to an int, which we /// accept as an extension. PointerToInt, /// IntToPointer - The assignment converts an int to a pointer, which we /// accept as an extension. IntToPointer, /// FunctionVoidPointer - The assignment is between a function pointer and /// void*, which the standard doesn't allow, but we accept as an extension. FunctionVoidPointer, /// IncompatiblePointer - The assignment is between two pointers types that /// are not compatible, but we accept them as an extension. IncompatiblePointer, /// IncompatiblePointerSign - The assignment is between two pointers types /// which point to integers which have a different sign, but are otherwise /// identical. This is a subset of the above, but broken out because it's by /// far the most common case of incompatible pointers. IncompatiblePointerSign, /// CompatiblePointerDiscardsQualifiers - The assignment discards /// c/v/r qualifiers, which we accept as an extension. CompatiblePointerDiscardsQualifiers, /// IncompatiblePointerDiscardsQualifiers - The assignment /// discards qualifiers that we don't permit to be discarded, /// like address spaces. IncompatiblePointerDiscardsQualifiers, /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment /// changes address spaces in nested pointer types which is not allowed. /// For instance, converting __private int ** to __generic int ** is /// illegal even though __private could be converted to __generic. IncompatibleNestedPointerAddressSpaceMismatch, /// IncompatibleNestedPointerQualifiers - The assignment is between two /// nested pointer types, and the qualifiers other than the first two /// levels differ e.g. char ** -> const char **, but we accept them as an /// extension. IncompatibleNestedPointerQualifiers, /// IncompatibleVectors - The assignment is between two vector types that /// have the same size, which we accept as an extension. IncompatibleVectors, /// IntToBlockPointer - The assignment converts an int to a block /// pointer. We disallow this. IntToBlockPointer, /// IncompatibleBlockPointer - The assignment is between two block /// pointers types that are not compatible. IncompatibleBlockPointer, /// IncompatibleObjCQualifiedId - The assignment is between a qualified /// id type and something else (that is incompatible with it). For example, /// "id " = "Foo *", where "Foo *" doesn't implement the XXX protocol. IncompatibleObjCQualifiedId, /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an /// object with __weak qualifier. IncompatibleObjCWeakRef, /// Incompatible - We reject this conversion outright, it is invalid to /// represent it in the AST. Incompatible }; /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the /// assignment conversion type specified by ConvTy. This returns true if the /// conversion was invalid or false if the conversion was accepted. bool DiagnoseAssignmentResult(AssignConvertType ConvTy, SourceLocation Loc, QualType DstType, QualType SrcType, Expr *SrcExpr, AssignmentAction Action, bool *Complained = nullptr); /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag /// enum. If AllowMask is true, then we also allow the complement of a valid /// value, to be used as a mask. bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, bool AllowMask) const; /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant /// integer not in the range of enum values. void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType, Expr *SrcExpr); /// CheckAssignmentConstraints - Perform type checking for assignment, /// argument passing, variable initialization, and function return values. /// C99 6.5.16. AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType); /// Check assignment constraints and optionally prepare for a conversion of /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS /// is true. AssignConvertType CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, CastKind &Kind, bool ConvertRHS = true); /// Check assignment constraints for an assignment of RHS to LHSType. /// /// \param LHSType The destination type for the assignment. /// \param RHS The source expression for the assignment. /// \param Diagnose If \c true, diagnostics may be produced when checking /// for assignability. If a diagnostic is produced, \p RHS will be /// set to ExprError(). Note that this function may still return /// without producing a diagnostic, even for an invalid assignment. /// \param DiagnoseCFAudited If \c true, the target is a function parameter /// in an audited Core Foundation API and does not need to be checked /// for ARC retain issues. /// \param ConvertRHS If \c true, \p RHS will be updated to model the /// conversions necessary to perform the assignment. If \c false, /// \p Diagnose must also be \c false. AssignConvertType CheckSingleAssignmentConstraints( QualType LHSType, ExprResult &RHS, bool Diagnose = true, bool DiagnoseCFAudited = false, bool ConvertRHS = true); // If the lhs type is a transparent union, check whether we // can initialize the transparent union with the given expression. AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType, ExprResult &RHS); bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType); bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit = false); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, AssignmentAction Action, bool AllowExplicit, ImplicitConversionSequence& ICS); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const ImplicitConversionSequence& ICS, AssignmentAction Action, CheckedConversionKind CCK = CCK_ImplicitConversion); ExprResult PerformImplicitConversion(Expr *From, QualType ToType, const StandardConversionSequence& SCS, AssignmentAction Action, CheckedConversionKind CCK); ExprResult PerformQualificationConversion( Expr *E, QualType Ty, ExprValueKind VK = VK_RValue, CheckedConversionKind CCK = CCK_ImplicitConversion); /// the following "Check" methods will return a valid/converted QualType /// or a null QualType (indicating an error diagnostic was issued). /// type checking binary operators (subroutines of CreateBuiltinBinOp). QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS); QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, ExprResult &RHS); QualType CheckPointerToMemberOperands( // C++ 5.5 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, SourceLocation OpLoc, bool isIndirect); QualType CheckMultiplyDivideOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool IsDivide); QualType CheckRemainderOperands( // C99 6.5.5 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign = false); QualType CheckAdditionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr); QualType CheckSubtractionOperands( // C99 6.5.6 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy = nullptr); QualType CheckShiftOperands( // C99 6.5.7 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc, bool IsCompAssign = false); void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE); QualType CheckCompareOperands( // C99 6.5.8/9 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckBitwiseOperands( // C99 6.5.[10...12] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckLogicalOperands( // C99 6.5.[13,14] ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); // CheckAssignmentOperands is used for both simple and compound assignment. // For simple assignment, pass both expressions and a null converted type. // For compound assignment, pass both expressions and the converted type. QualType CheckAssignmentOperands( // C99 6.5.16.[1,2] Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType); ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc, UnaryOperatorKind Opcode, Expr *Op); ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opcode, Expr *LHS, Expr *RHS); ExprResult checkPseudoObjectRValue(Expr *E); Expr *recreateSyntacticForm(PseudoObjectExpr *E); QualType CheckConditionalOperands( // C99 6.5.15 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc); QualType CXXCheckConditionalOperands( // C++ 5.16 ExprResult &cond, ExprResult &lhs, ExprResult &rhs, ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc); QualType CheckGNUVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc); QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2, bool ConvertArgs = true); QualType FindCompositePointerType(SourceLocation Loc, ExprResult &E1, ExprResult &E2, bool ConvertArgs = true) { Expr *E1Tmp = E1.get(), *E2Tmp = E2.get(); QualType Composite = FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs); E1 = E1Tmp; E2 = E2Tmp; return Composite; } QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, SourceLocation QuestionLoc); bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, SourceLocation QuestionLoc); void DiagnoseAlwaysNonNullPointer(Expr *E, Expr::NullPointerConstantKind NullType, bool IsEqual, SourceRange Range); /// type checking for vector binary operators. QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign, bool AllowBothBool, bool AllowBoolConversion); QualType GetSignedVectorType(QualType V); QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, BinaryOperatorKind Opc); QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, SourceLocation Loc); bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType); bool isLaxVectorConversion(QualType srcType, QualType destType); /// type checking declaration initializers (C99 6.7.8) bool CheckForConstantInitializer(Expr *e, QualType t); // type checking C++ declaration initializers (C++ [dcl.init]). /// ReferenceCompareResult - Expresses the result of comparing two /// types (cv1 T1 and cv2 T2) to determine their compatibility for the /// purposes of initialization by reference (C++ [dcl.init.ref]p4). enum ReferenceCompareResult { /// Ref_Incompatible - The two types are incompatible, so direct /// reference binding is not possible. Ref_Incompatible = 0, /// Ref_Related - The two types are reference-related, which means /// that their unqualified forms (T1 and T2) are either the same /// or T1 is a base class of T2. Ref_Related, /// Ref_Compatible - The two types are reference-compatible. Ref_Compatible }; // Fake up a scoped enumeration that still contextually converts to bool. struct ReferenceConversionsScope { /// The conversions that would be performed on an lvalue of type T2 when /// binding a reference of type T1 to it, as determined when evaluating /// whether T1 is reference-compatible with T2. enum ReferenceConversions { Qualification = 0x1, NestedQualification = 0x2, Function = 0x4, DerivedToBase = 0x8, ObjC = 0x10, ObjCLifetime = 0x20, LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime) }; }; using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions; ReferenceCompareResult CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2, ReferenceConversions *Conv = nullptr); ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType, Expr *CastExpr, CastKind &CastKind, ExprValueKind &VK, CXXCastPath &Path); /// Force an expression with unknown-type to an expression of the /// given type. ExprResult forceUnknownAnyToType(Expr *E, QualType ToType); /// Type-check an expression that's being passed to an /// __unknown_anytype parameter. ExprResult checkUnknownAnyArg(SourceLocation callLoc, Expr *result, QualType ¶mType); // CheckVectorCast - check type constraints for vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size. // returns true if the cast is invalid bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, CastKind &Kind); /// Prepare `SplattedExpr` for a vector splat operation, adding /// implicit casts if necessary. ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr); // CheckExtVectorCast - check type constraints for extended vectors. // Since vectors are an extension, there are no C standard reference for this. // We allow casting between vectors and integer datatypes of the same size, // or vectors and the element type of that vector. // returns the cast expr ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr, CastKind &Kind); ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type, SourceLocation LParenLoc, Expr *CastExpr, SourceLocation RParenLoc); enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error }; /// Checks for invalid conversions and casts between /// retainable pointers and other pointer kinds for ARC and Weak. ARCConversionResult CheckObjCConversion(SourceRange castRange, QualType castType, Expr *&op, CheckedConversionKind CCK, bool Diagnose = true, bool DiagnoseCFAudited = false, BinaryOperatorKind Opc = BO_PtrMemD ); Expr *stripARCUnbridgedCast(Expr *e); void diagnoseARCUnbridgedCast(Expr *e); bool CheckObjCARCUnavailableWeakConversion(QualType castType, QualType ExprType); /// checkRetainCycles - Check whether an Objective-C message send /// might create an obvious retain cycle. void checkRetainCycles(ObjCMessageExpr *msg); void checkRetainCycles(Expr *receiver, Expr *argument); void checkRetainCycles(VarDecl *Var, Expr *Init); /// checkUnsafeAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained type. bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS); /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned /// to weak/__unsafe_unretained expression. void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS); /// CheckMessageArgumentTypes - Check types in an Obj-C message send. /// \param Method - May be null. /// \param [out] ReturnType - The return type of the send. /// \return true iff there were any incompatible types. bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType, MultiExprArg Args, Selector Sel, ArrayRef SelectorLocs, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage, SourceLocation lbrac, SourceLocation rbrac, SourceRange RecRange, QualType &ReturnType, ExprValueKind &VK); /// Determine the result of a message send expression based on /// the type of the receiver, the method expected to receive the message, /// and the form of the message send. QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType, ObjCMethodDecl *Method, bool isClassMessage, bool isSuperMessage); /// If the given expression involves a message send to a method /// with a related result type, emit a note describing what happened. void EmitRelatedResultTypeNote(const Expr *E); /// Given that we had incompatible pointer types in a return /// statement, check whether we're in a method with a related result /// type, and if so, emit a note describing what happened. void EmitRelatedResultTypeNoteForReturn(QualType destType); class ConditionResult { Decl *ConditionVar; FullExprArg Condition; bool Invalid; bool HasKnownValue; bool KnownValue; friend class Sema; ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition, bool IsConstexpr) : ConditionVar(ConditionVar), Condition(Condition), Invalid(false), HasKnownValue(IsConstexpr && Condition.get() && !Condition.get()->isValueDependent()), KnownValue(HasKnownValue && !!Condition.get()->EvaluateKnownConstInt(S.Context)) {} explicit ConditionResult(bool Invalid) : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid), HasKnownValue(false), KnownValue(false) {} public: ConditionResult() : ConditionResult(false) {} bool isInvalid() const { return Invalid; } std::pair get() const { return std::make_pair(cast_or_null(ConditionVar), Condition.get()); } llvm::Optional getKnownValue() const { if (!HasKnownValue) return None; return KnownValue; } }; static ConditionResult ConditionError() { return ConditionResult(true); } enum class ConditionKind { Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'. ConstexprIf, ///< A constant boolean condition from 'if constexpr'. Switch ///< An integral condition for a 'switch' statement. }; ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr, ConditionKind CK); ConditionResult ActOnConditionVariable(Decl *ConditionVar, SourceLocation StmtLoc, ConditionKind CK); DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D); ExprResult CheckConditionVariable(VarDecl *ConditionVar, SourceLocation StmtLoc, ConditionKind CK); ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond); /// CheckBooleanCondition - Diagnose problems involving the use of /// the given expression as a boolean condition (e.g. in an if /// statement). Also performs the standard function and array /// decays, possibly changing the input variable. /// /// \param Loc - A location associated with the condition, e.g. the /// 'if' keyword. /// \return true iff there were any errors ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E, bool IsConstexpr = false); /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression /// found in an explicit(bool) specifier. ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E); /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier. /// Returns true if the explicit specifier is now resolved. bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec); /// DiagnoseAssignmentAsCondition - Given that an expression is /// being used as a boolean condition, warn if it's an assignment. void DiagnoseAssignmentAsCondition(Expr *E); /// Redundant parentheses over an equality comparison can indicate /// that the user intended an assignment used as condition. void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE); /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid. ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false); /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have /// the specified width and sign. If an overflow occurs, detect it and emit /// the specified diagnostic. void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal, unsigned NewWidth, bool NewSign, SourceLocation Loc, unsigned DiagID); /// Checks that the Objective-C declaration is declared in the global scope. /// Emits an error and marks the declaration as invalid if it's not declared /// in the global scope. bool CheckObjCDeclScope(Decl *D); /// Abstract base class used for diagnosing integer constant /// expression violations. class VerifyICEDiagnoser { public: bool Suppress; VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { } virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) =0; virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR); virtual ~VerifyICEDiagnoser() { } }; /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE, /// and reports the appropriate diagnostics. Returns false on success. /// Can optionally return the value of the expression. ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, bool AllowFold = true); ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, unsigned DiagID, bool AllowFold = true); ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result = nullptr); /// VerifyBitField - verifies that a bit field expression is an ICE and has /// the correct width, and that the field type is valid. /// Returns false on success. /// Can optionally return whether the bit-field is of width 0 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName, QualType FieldTy, bool IsMsStruct, Expr *BitWidth, bool *ZeroWidth = nullptr); private: unsigned ForceCUDAHostDeviceDepth = 0; public: /// Increments our count of the number of times we've seen a pragma forcing /// functions to be __host__ __device__. So long as this count is greater /// than zero, all functions encountered will be __host__ __device__. void PushForceCUDAHostDevice(); /// Decrements our count of the number of times we've seen a pragma forcing /// functions to be __host__ __device__. Returns false if the count is 0 /// before incrementing, so you can emit an error. bool PopForceCUDAHostDevice(); /// Diagnostics that are emitted only if we discover that the given function /// must be codegen'ed. Because handling these correctly adds overhead to /// compilation, this is currently only enabled for CUDA compilations. llvm::DenseMap, std::vector> DeviceDeferredDiags; /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the /// key in a hashtable, both the FD and location are hashed. struct FunctionDeclAndLoc { CanonicalDeclPtr FD; SourceLocation Loc; }; /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the /// same deferred diag twice. llvm::DenseSet LocsWithCUDACallDiags; /// An inverse call graph, mapping known-emitted functions to one of their /// known-emitted callers (plus the location of the call). /// /// Functions that we can tell a priori must be emitted aren't added to this /// map. llvm::DenseMap, /* Caller = */ FunctionDeclAndLoc> DeviceKnownEmittedFns; /// A partial call graph maintained during CUDA/OpenMP device code compilation /// to support deferred diagnostics. /// /// Functions are only added here if, at the time they're considered, they are /// not known-emitted. As soon as we discover that a function is /// known-emitted, we remove it and everything it transitively calls from this /// set and add those functions to DeviceKnownEmittedFns. llvm::DenseMap, /* Callees = */ llvm::MapVector, SourceLocation>> DeviceCallGraph; /// Diagnostic builder for CUDA/OpenMP devices errors which may or may not be /// deferred. /// /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch) /// which are not allowed to appear inside __device__ functions and are /// allowed to appear in __host__ __device__ functions only if the host+device /// function is never codegen'ed. /// /// To handle this, we use the notion of "deferred diagnostics", where we /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed. /// /// This class lets you emit either a regular diagnostic, a deferred /// diagnostic, or no diagnostic at all, according to an argument you pass to /// its constructor, thus simplifying the process of creating these "maybe /// deferred" diagnostics. class DeviceDiagBuilder { public: enum Kind { /// Emit no diagnostics. K_Nop, /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()). K_Immediate, /// Emit the diagnostic immediately, and, if it's a warning or error, also /// emit a call stack showing how this function can be reached by an a /// priori known-emitted function. K_ImmediateWithCallStack, /// Create a deferred diagnostic, which is emitted only if the function /// it's attached to is codegen'ed. Also emit a call stack as with /// K_ImmediateWithCallStack. K_Deferred }; DeviceDiagBuilder(Kind K, SourceLocation Loc, unsigned DiagID, FunctionDecl *Fn, Sema &S); DeviceDiagBuilder(DeviceDiagBuilder &&D); DeviceDiagBuilder(const DeviceDiagBuilder &) = default; ~DeviceDiagBuilder(); /// Convertible to bool: True if we immediately emitted an error, false if /// we didn't emit an error or we created a deferred error. /// /// Example usage: /// /// if (DeviceDiagBuilder(...) << foo << bar) /// return ExprError(); /// /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably /// want to use these instead of creating a DeviceDiagBuilder yourself. operator bool() const { return ImmediateDiag.hasValue(); } template friend const DeviceDiagBuilder &operator<<(const DeviceDiagBuilder &Diag, const T &Value) { if (Diag.ImmediateDiag.hasValue()) *Diag.ImmediateDiag << Value; else if (Diag.PartialDiagId.hasValue()) Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second << Value; return Diag; } private: Sema &S; SourceLocation Loc; unsigned DiagID; FunctionDecl *Fn; bool ShowCallStack; // Invariant: At most one of these Optionals has a value. // FIXME: Switch these to a Variant once that exists. llvm::Optional ImmediateDiag; llvm::Optional PartialDiagId; }; /// Indicate that this function (and thus everything it transtively calls) /// will be codegen'ed, and emit any deferred diagnostics on this function and /// its (transitive) callees. void markKnownEmitted( Sema &S, FunctionDecl *OrigCaller, FunctionDecl *OrigCallee, SourceLocation OrigLoc, const llvm::function_ref IsKnownEmitted); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current context /// is "used as device code". /// /// - If CurContext is a __host__ function, does not emit any diagnostics. /// - If CurContext is a __device__ or __global__ function, emits the /// diagnostics immediately. /// - If CurContext is a __host__ __device__ function and we are compiling for /// the device, creates a diagnostic which is emitted if and when we realize /// that the function will be codegen'ed. /// /// Example usage: /// /// // Variable-length arrays are not allowed in CUDA device code. /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget()) /// return ExprError(); /// // Otherwise, continue parsing as normal. DeviceDiagBuilder CUDADiagIfDeviceCode(SourceLocation Loc, unsigned DiagID); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current context /// is "used as host code". /// /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched. DeviceDiagBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current /// context is "used as device code". /// /// - If CurContext is a `declare target` function or it is known that the /// function is emitted for the device, emits the diagnostics immediately. /// - If CurContext is a non-`declare target` function and we are compiling /// for the device, creates a diagnostic which is emitted if and when we /// realize that the function will be codegen'ed. /// /// Example usage: /// /// // Variable-length arrays are not allowed in NVPTX device code. /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported)) /// return ExprError(); /// // Otherwise, continue parsing as normal. DeviceDiagBuilder diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID); /// Creates a DeviceDiagBuilder that emits the diagnostic if the current /// context is "used as host code". /// /// - If CurContext is a `declare target` function or it is known that the /// function is emitted for the host, emits the diagnostics immediately. /// - If CurContext is a non-host function, just ignore it. /// /// Example usage: /// /// // Variable-length arrays are not allowed in NVPTX device code. /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported)) /// return ExprError(); /// // Otherwise, continue parsing as normal. DeviceDiagBuilder diagIfOpenMPHostCode(SourceLocation Loc, unsigned DiagID); DeviceDiagBuilder targetDiag(SourceLocation Loc, unsigned DiagID); enum CUDAFunctionTarget { CFT_Device, CFT_Global, CFT_Host, CFT_HostDevice, CFT_InvalidTarget }; /// Determines whether the given function is a CUDA device/host/kernel/etc. /// function. /// /// Use this rather than examining the function's attributes yourself -- you /// will get it wrong. Returns CFT_Host if D is null. CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D, bool IgnoreImplicitHDAttr = false); CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs); /// Gets the CUDA target for the current context. CUDAFunctionTarget CurrentCUDATarget() { return IdentifyCUDATarget(dyn_cast(CurContext)); } // CUDA function call preference. Must be ordered numerically from // worst to best. enum CUDAFunctionPreference { CFP_Never, // Invalid caller/callee combination. CFP_WrongSide, // Calls from host-device to host or device // function that do not match current compilation // mode. CFP_HostDevice, // Any calls to host/device functions. CFP_SameSide, // Calls from host-device to host or device // function matching current compilation mode. CFP_Native, // host-to-host or device-to-device calls. }; /// Identifies relative preference of a given Caller/Callee /// combination, based on their host/device attributes. /// \param Caller function which needs address of \p Callee. /// nullptr in case of global context. /// \param Callee target function /// /// \returns preference value for particular Caller/Callee combination. CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller, const FunctionDecl *Callee); /// Determines whether Caller may invoke Callee, based on their CUDA /// host/device attributes. Returns false if the call is not allowed. /// /// Note: Will return true for CFP_WrongSide calls. These may appear in /// semantically correct CUDA programs, but only if they're never codegen'ed. bool IsAllowedCUDACall(const FunctionDecl *Caller, const FunctionDecl *Callee) { return IdentifyCUDAPreference(Caller, Callee) != CFP_Never; } /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD, /// depending on FD and the current compilation settings. void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD, const LookupResult &Previous); public: /// Check whether we're allowed to call Callee from the current context. /// /// - If the call is never allowed in a semantically-correct program /// (CFP_Never), emits an error and returns false. /// /// - If the call is allowed in semantically-correct programs, but only if /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to /// be emitted if and when the caller is codegen'ed, and returns true. /// /// Will only create deferred diagnostics for a given SourceLocation once, /// so you can safely call this multiple times without generating duplicate /// deferred errors. /// /// - Otherwise, returns true without emitting any diagnostics. bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee); /// Set __device__ or __host__ __device__ attributes on the given lambda /// operator() method. /// /// CUDA lambdas declared inside __device__ or __global__ functions inherit /// the __device__ attribute. Similarly, lambdas inside __host__ __device__ /// functions become __host__ __device__ themselves. void CUDASetLambdaAttrs(CXXMethodDecl *Method); /// Finds a function in \p Matches with highest calling priority /// from \p Caller context and erases all functions with lower /// calling priority. void EraseUnwantedCUDAMatches( const FunctionDecl *Caller, SmallVectorImpl> &Matches); /// Given a implicit special member, infer its CUDA target from the /// calls it needs to make to underlying base/field special members. /// \param ClassDecl the class for which the member is being created. /// \param CSM the kind of special member. /// \param MemberDecl the special member itself. /// \param ConstRHS true if this is a copy operation with a const object on /// its RHS. /// \param Diagnose true if this call should emit diagnostics. /// \return true if there was an error inferring. /// The result of this call is implicit CUDA target attribute(s) attached to /// the member declaration. bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl, CXXSpecialMember CSM, CXXMethodDecl *MemberDecl, bool ConstRHS, bool Diagnose); /// \return true if \p CD can be considered empty according to CUDA /// (E.2.3.1 in CUDA 7.5 Programming guide). bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD); bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD); // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In // case of error emits appropriate diagnostic and invalidates \p Var. // // \details CUDA allows only empty constructors as initializers for global // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all // __shared__ variables whether they are local or not (they all are implicitly // static in CUDA). One exception is that CUDA allows constant initializers // for __constant__ and __device__ variables. void checkAllowedCUDAInitializer(VarDecl *VD); /// Check whether NewFD is a valid overload for CUDA. Emits /// diagnostics and invalidates NewFD if not. void checkCUDATargetOverload(FunctionDecl *NewFD, const LookupResult &Previous); /// Copies target attributes from the template TD to the function FD. void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD); /// Returns the name of the launch configuration function. This is the name /// of the function that will be called to configure kernel call, with the /// parameters specified via <<<>>>. std::string getCudaConfigureFuncName() const; /// \name Code completion //@{ /// Describes the context in which code completion occurs. enum ParserCompletionContext { /// Code completion occurs at top-level or namespace context. PCC_Namespace, /// Code completion occurs within a class, struct, or union. PCC_Class, /// Code completion occurs within an Objective-C interface, protocol, /// or category. PCC_ObjCInterface, /// Code completion occurs within an Objective-C implementation or /// category implementation PCC_ObjCImplementation, /// Code completion occurs within the list of instance variables /// in an Objective-C interface, protocol, category, or implementation. PCC_ObjCInstanceVariableList, /// Code completion occurs following one or more template /// headers. PCC_Template, /// Code completion occurs following one or more template /// headers within a class. PCC_MemberTemplate, /// Code completion occurs within an expression. PCC_Expression, /// Code completion occurs within a statement, which may /// also be an expression or a declaration. PCC_Statement, /// Code completion occurs at the beginning of the /// initialization statement (or expression) in a for loop. PCC_ForInit, /// Code completion occurs within the condition of an if, /// while, switch, or for statement. PCC_Condition, /// Code completion occurs within the body of a function on a /// recovery path, where we do not have a specific handle on our position /// in the grammar. PCC_RecoveryInFunction, /// Code completion occurs where only a type is permitted. PCC_Type, /// Code completion occurs in a parenthesized expression, which /// might also be a type cast. PCC_ParenthesizedExpression, /// Code completion occurs within a sequence of declaration /// specifiers within a function, method, or block. PCC_LocalDeclarationSpecifiers }; void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path); void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext); void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS, bool AllowNonIdentifiers, bool AllowNestedNameSpecifiers); struct CodeCompleteExpressionData; void CodeCompleteExpression(Scope *S, const CodeCompleteExpressionData &Data); void CodeCompleteExpression(Scope *S, QualType PreferredType, bool IsParenthesized = false); void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase, SourceLocation OpLoc, bool IsArrow, bool IsBaseExprStatement, QualType PreferredType); void CodeCompletePostfixExpression(Scope *S, ExprResult LHS, QualType PreferredType); void CodeCompleteTag(Scope *S, unsigned TagSpec); void CodeCompleteTypeQualifiers(DeclSpec &DS); void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D, const VirtSpecifiers *VS = nullptr); void CodeCompleteBracketDeclarator(Scope *S); void CodeCompleteCase(Scope *S); /// Reports signatures for a call to CodeCompleteConsumer and returns the /// preferred type for the current argument. Returned type can be null. QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef Args, SourceLocation OpenParLoc); QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type, SourceLocation Loc, ArrayRef Args, SourceLocation OpenParLoc); QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl, CXXScopeSpec SS, ParsedType TemplateTypeTy, ArrayRef ArgExprs, IdentifierInfo *II, SourceLocation OpenParLoc); void CodeCompleteInitializer(Scope *S, Decl *D); void CodeCompleteAfterIf(Scope *S); void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext, bool IsUsingDeclaration, QualType BaseType, QualType PreferredType); void CodeCompleteUsing(Scope *S); void CodeCompleteUsingDirective(Scope *S); void CodeCompleteNamespaceDecl(Scope *S); void CodeCompleteNamespaceAliasDecl(Scope *S); void CodeCompleteOperatorName(Scope *S); void CodeCompleteConstructorInitializer( Decl *Constructor, ArrayRef Initializers); void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro, bool AfterAmpersand); void CodeCompleteObjCAtDirective(Scope *S); void CodeCompleteObjCAtVisibility(Scope *S); void CodeCompleteObjCAtStatement(Scope *S); void CodeCompleteObjCAtExpression(Scope *S); void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS); void CodeCompleteObjCPropertyGetter(Scope *S); void CodeCompleteObjCPropertySetter(Scope *S); void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS, bool IsParameter); void CodeCompleteObjCMessageReceiver(Scope *S); void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc, ArrayRef SelIdents, bool AtArgumentExpression); void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, ArrayRef SelIdents, bool AtArgumentExpression, bool IsSuper = false); void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver, ArrayRef SelIdents, bool AtArgumentExpression, ObjCInterfaceDecl *Super = nullptr); void CodeCompleteObjCForCollection(Scope *S, DeclGroupPtrTy IterationVar); void CodeCompleteObjCSelector(Scope *S, ArrayRef SelIdents); void CodeCompleteObjCProtocolReferences( ArrayRef Protocols); void CodeCompleteObjCProtocolDecl(Scope *S); void CodeCompleteObjCInterfaceDecl(Scope *S); void CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationDecl(Scope *S); void CodeCompleteObjCInterfaceCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCImplementationCategory(Scope *S, IdentifierInfo *ClassName, SourceLocation ClassNameLoc); void CodeCompleteObjCPropertyDefinition(Scope *S); void CodeCompleteObjCPropertySynthesizeIvar(Scope *S, IdentifierInfo *PropertyName); void CodeCompleteObjCMethodDecl(Scope *S, Optional IsInstanceMethod, ParsedType ReturnType); void CodeCompleteObjCMethodDeclSelector(Scope *S, bool IsInstanceMethod, bool AtParameterName, ParsedType ReturnType, ArrayRef SelIdents); void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName, SourceLocation ClassNameLoc, bool IsBaseExprStatement); void CodeCompletePreprocessorDirective(bool InConditional); void CodeCompleteInPreprocessorConditionalExclusion(Scope *S); void CodeCompletePreprocessorMacroName(bool IsDefinition); void CodeCompletePreprocessorExpression(); void CodeCompletePreprocessorMacroArgument(Scope *S, IdentifierInfo *Macro, MacroInfo *MacroInfo, unsigned Argument); void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled); void CodeCompleteNaturalLanguage(); void CodeCompleteAvailabilityPlatformName(); void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator, CodeCompletionTUInfo &CCTUInfo, SmallVectorImpl &Results); //@} //===--------------------------------------------------------------------===// // Extra semantic analysis beyond the C type system public: SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL, unsigned ByteNo) const; private: void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, const ArraySubscriptExpr *ASE=nullptr, bool AllowOnePastEnd=true, bool IndexNegated=false); void CheckArrayAccess(const Expr *E); // Used to grab the relevant information from a FormatAttr and a // FunctionDeclaration. struct FormatStringInfo { unsigned FormatIdx; unsigned FirstDataArg; bool HasVAListArg; }; static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, FormatStringInfo *FSI); bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, const FunctionProtoType *Proto); bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc, ArrayRef Args); bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, const FunctionProtoType *Proto); bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto); void CheckConstructorCall(FunctionDecl *FDecl, ArrayRef Args, const FunctionProtoType *Proto, SourceLocation Loc); void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, const Expr *ThisArg, ArrayRef Args, bool IsMemberFunction, SourceLocation Loc, SourceRange Range, VariadicCallType CallType); bool CheckObjCString(Expr *Arg); ExprResult CheckOSLogFormatStringArg(Expr *Arg); ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, CallExpr *TheCall); void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall); bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, unsigned MaxWidth); bool CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall); bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall); bool CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckMipsBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall); bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall); bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall); bool CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall); bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call); bool SemaBuiltinUnorderedCompare(CallExpr *TheCall); bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs); bool SemaBuiltinVSX(CallExpr *TheCall); bool SemaBuiltinOSLogFormat(CallExpr *TheCall); public: // Used by C++ template instantiation. ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall); ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, SourceLocation BuiltinLoc, SourceLocation RParenLoc); private: bool SemaBuiltinPrefetch(CallExpr *TheCall); bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall); bool SemaBuiltinAssume(CallExpr *TheCall); bool SemaBuiltinAssumeAligned(CallExpr *TheCall); bool SemaBuiltinLongjmp(CallExpr *TheCall); bool SemaBuiltinSetjmp(CallExpr *TheCall); ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult); ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult); ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult, AtomicExpr::AtomicOp Op); ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, bool IsDelete); bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, llvm::APSInt &Result); bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, int High, bool RangeIsError = true); bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, unsigned Multiple); bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum); bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum); bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum); bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, int ArgNum, unsigned ExpectedFieldNum, bool AllowName); bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall); public: enum FormatStringType { FST_Scanf, FST_Printf, FST_NSString, FST_Strftime, FST_Strfmon, FST_Kprintf, FST_FreeBSDKPrintf, FST_OSTrace, FST_OSLog, FST_Unknown }; static FormatStringType GetFormatStringType(const FormatAttr *Format); bool FormatStringHasSArg(const StringLiteral *FExpr); static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx); private: bool CheckFormatArguments(const FormatAttr *Format, ArrayRef Args, bool IsCXXMember, VariadicCallType CallType, SourceLocation Loc, SourceRange Range, llvm::SmallBitVector &CheckedVarArgs); bool CheckFormatArguments(ArrayRef Args, bool HasVAListArg, unsigned format_idx, unsigned firstDataArg, FormatStringType Type, VariadicCallType CallType, SourceLocation Loc, SourceRange range, llvm::SmallBitVector &CheckedVarArgs); void CheckAbsoluteValueFunction(const CallExpr *Call, const FunctionDecl *FDecl); void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl); void CheckMemaccessArguments(const CallExpr *Call, unsigned BId, IdentifierInfo *FnName); void CheckStrlcpycatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckStrncatArguments(const CallExpr *Call, IdentifierInfo *FnName); void CheckReturnValExpr(Expr *RetValExp, QualType lhsType, SourceLocation ReturnLoc, bool isObjCMethod = false, const AttrVec *Attrs = nullptr, const FunctionDecl *FD = nullptr); public: void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS); private: void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation()); void CheckBoolLikeConversion(Expr *E, SourceLocation CC); void CheckForIntOverflow(Expr *E); void CheckUnsequencedOperations(const Expr *E); /// Perform semantic checks on a completed expression. This will either /// be a full-expression or a default argument expression. void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(), bool IsConstexpr = false); void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field, Expr *Init); /// Check if there is a field shadowing. void CheckShadowInheritedFields(const SourceLocation &Loc, DeclarationName FieldName, const CXXRecordDecl *RD, bool DeclIsField = true); /// Check if the given expression contains 'break' or 'continue' /// statement that produces control flow different from GCC. void CheckBreakContinueBinding(Expr *E); /// Check whether receiver is mutable ObjC container which /// attempts to add itself into the container void CheckObjCCircularContainer(ObjCMessageExpr *Message); void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE); void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, bool DeleteWasArrayForm); public: /// Register a magic integral constant to be used as a type tag. void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, uint64_t MagicValue, QualType Type, bool LayoutCompatible, bool MustBeNull); struct TypeTagData { TypeTagData() {} TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) : Type(Type), LayoutCompatible(LayoutCompatible), MustBeNull(MustBeNull) {} QualType Type; /// If true, \c Type should be compared with other expression's types for /// layout-compatibility. unsigned LayoutCompatible : 1; unsigned MustBeNull : 1; }; /// A pair of ArgumentKind identifier and magic value. This uniquely /// identifies the magic value. typedef std::pair TypeTagMagicValue; private: /// A map from magic value to type information. std::unique_ptr> TypeTagForDatatypeMagicValues; /// Peform checks on a call of a function with argument_with_type_tag /// or pointer_with_type_tag attributes. void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, const ArrayRef ExprArgs, SourceLocation CallSiteLoc); /// Check if we are taking the address of a packed field /// as this may be a problem if the pointer value is dereferenced. void CheckAddressOfPackedMember(Expr *rhs); /// The parser's current scope. /// /// The parser maintains this state here. Scope *CurScope; mutable IdentifierInfo *Ident_super; mutable IdentifierInfo *Ident___float128; /// Nullability type specifiers. IdentifierInfo *Ident__Nonnull = nullptr; IdentifierInfo *Ident__Nullable = nullptr; IdentifierInfo *Ident__Null_unspecified = nullptr; IdentifierInfo *Ident_NSError = nullptr; /// The handler for the FileChanged preprocessor events. /// /// Used for diagnostics that implement custom semantic analysis for #include /// directives, like -Wpragma-pack. sema::SemaPPCallbacks *SemaPPCallbackHandler; protected: friend class Parser; friend class InitializationSequence; friend class ASTReader; friend class ASTDeclReader; friend class ASTWriter; public: /// Retrieve the keyword associated IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability); /// The struct behind the CFErrorRef pointer. RecordDecl *CFError = nullptr; /// Retrieve the identifier "NSError". IdentifierInfo *getNSErrorIdent(); /// Retrieve the parser's current scope. /// /// This routine must only be used when it is certain that semantic analysis /// and the parser are in precisely the same context, which is not the case /// when, e.g., we are performing any kind of template instantiation. /// Therefore, the only safe places to use this scope are in the parser /// itself and in routines directly invoked from the parser and *never* from /// template substitution or instantiation. Scope *getCurScope() const { return CurScope; } void incrementMSManglingNumber() const { return CurScope->incrementMSManglingNumber(); } IdentifierInfo *getSuperIdentifier() const; IdentifierInfo *getFloat128Identifier() const; Decl *getObjCDeclContext() const; DeclContext *getCurLexicalContext() const { return OriginalLexicalContext ? OriginalLexicalContext : CurContext; } const DeclContext *getCurObjCLexicalContext() const { const DeclContext *DC = getCurLexicalContext(); // A category implicitly has the attribute of the interface. if (const ObjCCategoryDecl *CatD = dyn_cast(DC)) DC = CatD->getClassInterface(); return DC; } /// Determine the number of levels of enclosing template parameters. This is /// only usable while parsing. Note that this does not include dependent /// contexts in which no template parameters have yet been declared, such as /// in a terse function template or generic lambda before the first 'auto' is /// encountered. unsigned getTemplateDepth(Scope *S) const; /// To be used for checking whether the arguments being passed to /// function exceeds the number of parameters expected for it. static bool TooManyArguments(size_t NumParams, size_t NumArgs, bool PartialOverloading = false) { // We check whether we're just after a comma in code-completion. if (NumArgs > 0 && PartialOverloading) return NumArgs + 1 > NumParams; // If so, we view as an extra argument. return NumArgs > NumParams; } // Emitting members of dllexported classes is delayed until the class // (including field initializers) is fully parsed. SmallVector DelayedDllExportClasses; SmallVector DelayedDllExportMemberFunctions; private: int ParsingClassDepth = 0; class SavePendingParsedClassStateRAII { public: SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); } ~SavePendingParsedClassStateRAII() { assert(S.DelayedOverridingExceptionSpecChecks.empty() && "there shouldn't be any pending delayed exception spec checks"); assert(S.DelayedEquivalentExceptionSpecChecks.empty() && "there shouldn't be any pending delayed exception spec checks"); swapSavedState(); } private: Sema &S; decltype(DelayedOverridingExceptionSpecChecks) SavedOverridingExceptionSpecChecks; decltype(DelayedEquivalentExceptionSpecChecks) SavedEquivalentExceptionSpecChecks; void swapSavedState() { SavedOverridingExceptionSpecChecks.swap( S.DelayedOverridingExceptionSpecChecks); SavedEquivalentExceptionSpecChecks.swap( S.DelayedEquivalentExceptionSpecChecks); } }; /// Helper class that collects misaligned member designations and /// their location info for delayed diagnostics. struct MisalignedMember { Expr *E; RecordDecl *RD; ValueDecl *MD; CharUnits Alignment; MisalignedMember() : E(), RD(), MD(), Alignment() {} MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD, CharUnits Alignment) : E(E), RD(RD), MD(MD), Alignment(Alignment) {} explicit MisalignedMember(Expr *E) : MisalignedMember(E, nullptr, nullptr, CharUnits()) {} bool operator==(const MisalignedMember &m) { return this->E == m.E; } }; /// Small set of gathered accesses to potentially misaligned members /// due to the packed attribute. SmallVector MisalignedMembers; /// Adds an expression to the set of gathered misaligned members. void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, CharUnits Alignment); public: /// Diagnoses the current set of gathered accesses. This typically /// happens at full expression level. The set is cleared after emitting the /// diagnostics. void DiagnoseMisalignedMembers(); /// This function checks if the expression is in the sef of potentially /// misaligned members and it is converted to some pointer type T with lower /// or equal alignment requirements. If so it removes it. This is used when /// we do not want to diagnose such misaligned access (e.g. in conversions to /// void*). void DiscardMisalignedMemberAddress(const Type *T, Expr *E); /// This function calls Action when it determines that E designates a /// misaligned member due to the packed attribute. This is used to emit /// local diagnostics like in reference binding. void RefersToMemberWithReducedAlignment( Expr *E, llvm::function_ref Action); /// Describes the reason a calling convention specification was ignored, used /// for diagnostics. enum class CallingConventionIgnoredReason { ForThisTarget = 0, VariadicFunction, ConstructorDestructor, BuiltinFunction }; }; /// RAII object that enters a new expression evaluation context. class EnterExpressionEvaluationContext { Sema &Actions; bool Entered = true; public: EnterExpressionEvaluationContext( Sema &Actions, Sema::ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr, Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = Sema::ExpressionEvaluationContextRecord::EK_Other, bool ShouldEnter = true) : Actions(Actions), Entered(ShouldEnter) { if (Entered) Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl, ExprContext); } EnterExpressionEvaluationContext( Sema &Actions, Sema::ExpressionEvaluationContext NewContext, Sema::ReuseLambdaContextDecl_t, Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext = Sema::ExpressionEvaluationContextRecord::EK_Other) : Actions(Actions) { Actions.PushExpressionEvaluationContext( NewContext, Sema::ReuseLambdaContextDecl, ExprContext); } enum InitListTag { InitList }; EnterExpressionEvaluationContext(Sema &Actions, InitListTag, bool ShouldEnter = true) : Actions(Actions), Entered(false) { // In C++11 onwards, narrowing checks are performed on the contents of // braced-init-lists, even when they occur within unevaluated operands. // Therefore we still need to instantiate constexpr functions used in such // a context. if (ShouldEnter && Actions.isUnevaluatedContext() && Actions.getLangOpts().CPlusPlus11) { Actions.PushExpressionEvaluationContext( Sema::ExpressionEvaluationContext::UnevaluatedList); Entered = true; } } ~EnterExpressionEvaluationContext() { if (Entered) Actions.PopExpressionEvaluationContext(); } }; DeductionFailureInfo MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK, sema::TemplateDeductionInfo &Info); /// Contains a late templated function. /// Will be parsed at the end of the translation unit, used by Sema & Parser. struct LateParsedTemplate { CachedTokens Toks; /// The template function declaration to be late parsed. Decl *D; }; } // end namespace clang namespace llvm { // Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its // SourceLocation. template <> struct DenseMapInfo { using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc; using FDBaseInfo = DenseMapInfo>; static FunctionDeclAndLoc getEmptyKey() { return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()}; } static FunctionDeclAndLoc getTombstoneKey() { return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()}; } static unsigned getHashValue(const FunctionDeclAndLoc &FDL) { return hash_combine(FDBaseInfo::getHashValue(FDL.FD), FDL.Loc.getRawEncoding()); } static bool isEqual(const FunctionDeclAndLoc &LHS, const FunctionDeclAndLoc &RHS) { return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc; } }; } // namespace llvm #endif Index: head/contrib/llvm-project/clang/lib/Driver/ToolChains/Cuda.cpp =================================================================== --- head/contrib/llvm-project/clang/lib/Driver/ToolChains/Cuda.cpp (revision 359337) +++ head/contrib/llvm-project/clang/lib/Driver/ToolChains/Cuda.cpp (revision 359338) @@ -1,873 +1,879 @@ //===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Cuda.h" #include "CommonArgs.h" #include "InputInfo.h" #include "clang/Basic/Cuda.h" #include "clang/Config/config.h" #include "clang/Driver/Compilation.h" #include "clang/Driver/Distro.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Options.h" #include "llvm/Option/ArgList.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/Process.h" #include "llvm/Support/Program.h" #include "llvm/Support/VirtualFileSystem.h" #include using namespace clang::driver; using namespace clang::driver::toolchains; using namespace clang::driver::tools; using namespace clang; using namespace llvm::opt; // Parses the contents of version.txt in an CUDA installation. It should // contain one line of the from e.g. "CUDA Version 7.5.2". -static CudaVersion ParseCudaVersionFile(const Driver &D, llvm::StringRef V) { +void CudaInstallationDetector::ParseCudaVersionFile(llvm::StringRef V) { + Version = CudaVersion::UNKNOWN; if (!V.startswith("CUDA Version ")) - return CudaVersion::UNKNOWN; + return; V = V.substr(strlen("CUDA Version ")); SmallVector VersionParts; V.split(VersionParts, '.'); if (VersionParts.size() < 2) - return CudaVersion::UNKNOWN; - std::string MajorMinor = join_items(".", VersionParts[0], VersionParts[1]); - CudaVersion Version = CudaStringToVersion(MajorMinor); + return; + DetectedVersion = join_items(".", VersionParts[0], VersionParts[1]); + Version = CudaStringToVersion(DetectedVersion); if (Version != CudaVersion::UNKNOWN) - return Version; + return; - // Issue a warning and assume that the version we've found is compatible with - // the latest version we support. - D.Diag(diag::warn_drv_unknown_cuda_version) - << MajorMinor << CudaVersionToString(CudaVersion::LATEST); - return CudaVersion::LATEST; + Version = CudaVersion::LATEST; + DetectedVersionIsNotSupported = true; } +void CudaInstallationDetector::WarnIfUnsupportedVersion() { + if (DetectedVersionIsNotSupported) + D.Diag(diag::warn_drv_unknown_cuda_version) + << DetectedVersion << CudaVersionToString(Version); +} + CudaInstallationDetector::CudaInstallationDetector( const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args) : D(D) { struct Candidate { std::string Path; bool StrictChecking; Candidate(std::string Path, bool StrictChecking = false) : Path(Path), StrictChecking(StrictChecking) {} }; SmallVector Candidates; // In decreasing order so we prefer newer versions to older versions. std::initializer_list Versions = {"8.0", "7.5", "7.0"}; if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { Candidates.emplace_back( Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str()); } else if (HostTriple.isOSWindows()) { for (const char *Ver : Versions) Candidates.emplace_back( D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + Ver); } else { if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) { // Try to find ptxas binary. If the executable is located in a directory // called 'bin/', its parent directory might be a good guess for a valid // CUDA installation. // However, some distributions might installs 'ptxas' to /usr/bin. In that // case the candidate would be '/usr' which passes the following checks // because '/usr/include' exists as well. To avoid this case, we always // check for the directory potentially containing files for libdevice, // even if the user passes -nocudalib. if (llvm::ErrorOr ptxas = llvm::sys::findProgramByName("ptxas")) { SmallString<256> ptxasAbsolutePath; llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath); StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath); if (llvm::sys::path::filename(ptxasDir) == "bin") Candidates.emplace_back(llvm::sys::path::parent_path(ptxasDir), /*StrictChecking=*/true); } } Candidates.emplace_back(D.SysRoot + "/usr/local/cuda"); for (const char *Ver : Versions) Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver); Distro Dist(D.getVFS(), llvm::Triple(llvm::sys::getProcessTriple())); if (Dist.IsDebian() || Dist.IsUbuntu()) // Special case for Debian to have nvidia-cuda-toolkit work // out of the box. More info on http://bugs.debian.org/882505 Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda"); } bool NoCudaLib = Args.hasArg(options::OPT_nogpulib); for (const auto &Candidate : Candidates) { InstallPath = Candidate.Path; if (InstallPath.empty() || !D.getVFS().exists(InstallPath)) continue; BinPath = InstallPath + "/bin"; IncludePath = InstallPath + "/include"; LibDevicePath = InstallPath + "/nvvm/libdevice"; auto &FS = D.getVFS(); if (!(FS.exists(IncludePath) && FS.exists(BinPath))) continue; bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking); if (CheckLibDevice && !FS.exists(LibDevicePath)) continue; // On Linux, we have both lib and lib64 directories, and we need to choose // based on our triple. On MacOS, we have only a lib directory. // // It's sufficient for our purposes to be flexible: If both lib and lib64 // exist, we choose whichever one matches our triple. Otherwise, if only // lib exists, we use it. if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64")) LibPath = InstallPath + "/lib64"; else if (FS.exists(InstallPath + "/lib")) LibPath = InstallPath + "/lib"; else continue; llvm::ErrorOr> VersionFile = FS.getBufferForFile(InstallPath + "/version.txt"); if (!VersionFile) { // CUDA 7.0 doesn't have a version.txt, so guess that's our version if // version.txt isn't present. Version = CudaVersion::CUDA_70; } else { - Version = ParseCudaVersionFile(D, (*VersionFile)->getBuffer()); + ParseCudaVersionFile((*VersionFile)->getBuffer()); } if (Version >= CudaVersion::CUDA_90) { // CUDA-9+ uses single libdevice file for all GPU variants. std::string FilePath = LibDevicePath + "/libdevice.10.bc"; if (FS.exists(FilePath)) { for (const char *GpuArchName : {"sm_30", "sm_32", "sm_35", "sm_37", "sm_50", "sm_52", "sm_53", "sm_60", "sm_61", "sm_62", "sm_70", "sm_72", "sm_75"}) { const CudaArch GpuArch = StringToCudaArch(GpuArchName); if (Version >= MinVersionForCudaArch(GpuArch) && Version <= MaxVersionForCudaArch(GpuArch)) LibDeviceMap[GpuArchName] = FilePath; } } } else { std::error_code EC; for (llvm::sys::fs::directory_iterator LI(LibDevicePath, EC), LE; !EC && LI != LE; LI = LI.increment(EC)) { StringRef FilePath = LI->path(); StringRef FileName = llvm::sys::path::filename(FilePath); // Process all bitcode filenames that look like // libdevice.compute_XX.YY.bc const StringRef LibDeviceName = "libdevice."; if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc"))) continue; StringRef GpuArch = FileName.slice( LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); LibDeviceMap[GpuArch] = FilePath.str(); // Insert map entries for specific devices with this compute // capability. NVCC's choice of the libdevice library version is // rather peculiar and depends on the CUDA version. if (GpuArch == "compute_20") { LibDeviceMap["sm_20"] = FilePath; LibDeviceMap["sm_21"] = FilePath; LibDeviceMap["sm_32"] = FilePath; } else if (GpuArch == "compute_30") { LibDeviceMap["sm_30"] = FilePath; if (Version < CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } LibDeviceMap["sm_60"] = FilePath; LibDeviceMap["sm_61"] = FilePath; LibDeviceMap["sm_62"] = FilePath; } else if (GpuArch == "compute_35") { LibDeviceMap["sm_35"] = FilePath; LibDeviceMap["sm_37"] = FilePath; } else if (GpuArch == "compute_50") { if (Version >= CudaVersion::CUDA_80) { LibDeviceMap["sm_50"] = FilePath; LibDeviceMap["sm_52"] = FilePath; LibDeviceMap["sm_53"] = FilePath; } } } } // Check that we have found at least one libdevice that we can link in if // -nocudalib hasn't been specified. if (LibDeviceMap.empty() && !NoCudaLib) continue; IsValid = true; break; } } void CudaInstallationDetector::AddCudaIncludeArgs( const ArgList &DriverArgs, ArgStringList &CC1Args) const { if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { // Add cuda_wrappers/* to our system include path. This lets us wrap // standard library headers. SmallString<128> P(D.ResourceDir); llvm::sys::path::append(P, "include"); llvm::sys::path::append(P, "cuda_wrappers"); CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(P)); } if (DriverArgs.hasArg(options::OPT_nocudainc)) return; if (!isValid()) { D.Diag(diag::err_drv_no_cuda_installation); return; } CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath())); CC1Args.push_back("-include"); CC1Args.push_back("__clang_cuda_runtime_wrapper.h"); } void CudaInstallationDetector::CheckCudaVersionSupportsArch( CudaArch Arch) const { if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN || ArchsWithBadVersion.count(Arch) > 0) return; auto MinVersion = MinVersionForCudaArch(Arch); auto MaxVersion = MaxVersionForCudaArch(Arch); if (Version < MinVersion || Version > MaxVersion) { ArchsWithBadVersion.insert(Arch); D.Diag(diag::err_drv_cuda_version_unsupported) << CudaArchToString(Arch) << CudaVersionToString(MinVersion) << CudaVersionToString(MaxVersion) << InstallPath << CudaVersionToString(Version); } } void CudaInstallationDetector::print(raw_ostream &OS) const { if (isValid()) OS << "Found CUDA installation: " << InstallPath << ", version " << CudaVersionToString(Version) << "\n"; } namespace { /// Debug info level for the NVPTX devices. We may need to emit different debug /// info level for the host and for the device itselfi. This type controls /// emission of the debug info for the devices. It either prohibits disable info /// emission completely, or emits debug directives only, or emits same debug /// info as for the host. enum DeviceDebugInfoLevel { DisableDebugInfo, /// Do not emit debug info for the devices. DebugDirectivesOnly, /// Emit only debug directives. EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the /// host. }; } // anonymous namespace /// Define debug info level for the NVPTX devices. If the debug info for both /// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If /// only debug directives are requested for the both host and device /// (-gline-directvies-only), or the debug info only for the device is disabled /// (optimization is on and --cuda-noopt-device-debug was not specified), the /// debug directves only must be emitted for the device. Otherwise, use the same /// debug info level just like for the host (with the limitations of only /// supported DWARF2 standard). static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) { const Arg *A = Args.getLastArg(options::OPT_O_Group); bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0) || Args.hasFlag(options::OPT_cuda_noopt_device_debug, options::OPT_no_cuda_noopt_device_debug, /*Default=*/false); if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) { const Option &Opt = A->getOption(); if (Opt.matches(options::OPT_gN_Group)) { if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0)) return DisableDebugInfo; if (Opt.matches(options::OPT_gline_directives_only)) return DebugDirectivesOnly; } return IsDebugEnabled ? EmitSameDebugInfoAsHost : DebugDirectivesOnly; } return DisableDebugInfo; } void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); assert(TC.getTriple().isNVPTX() && "Wrong platform"); StringRef GPUArchName; // If this is an OpenMP action we need to extract the device architecture // from the -march=arch option. This option may come from -Xopenmp-target // flag or the default value. if (JA.isDeviceOffloading(Action::OFK_OpenMP)) { GPUArchName = Args.getLastArgValue(options::OPT_march_EQ); assert(!GPUArchName.empty() && "Must have an architecture passed in."); } else GPUArchName = JA.getOffloadingArch(); // Obtain architecture from the action. CudaArch gpu_arch = StringToCudaArch(GPUArchName); assert(gpu_arch != CudaArch::UNKNOWN && "Device action expected to have an architecture."); // Check that our installation's ptxas supports gpu_arch. if (!Args.hasArg(options::OPT_no_cuda_version_check)) { TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch); } ArgStringList CmdArgs; CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32"); DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args); if (DIKind == EmitSameDebugInfoAsHost) { // ptxas does not accept -g option if optimization is enabled, so // we ignore the compiler's -O* options if we want debug info. CmdArgs.push_back("-g"); CmdArgs.push_back("--dont-merge-basicblocks"); CmdArgs.push_back("--return-at-end"); } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) { // Map the -O we received to -O{0,1,2,3}. // // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's // default, so it may correspond more closely to the spirit of clang -O2. // -O3 seems like the least-bad option when -Osomething is specified to // clang but it isn't handled below. StringRef OOpt = "3"; if (A->getOption().matches(options::OPT_O4) || A->getOption().matches(options::OPT_Ofast)) OOpt = "3"; else if (A->getOption().matches(options::OPT_O0)) OOpt = "0"; else if (A->getOption().matches(options::OPT_O)) { // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options. OOpt = llvm::StringSwitch(A->getValue()) .Case("1", "1") .Case("2", "2") .Case("3", "3") .Case("s", "2") .Case("z", "2") .Default("2"); } CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt)); } else { // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond // to no optimizations, but ptxas's default is -O3. CmdArgs.push_back("-O0"); } if (DIKind == DebugDirectivesOnly) CmdArgs.push_back("-lineinfo"); // Pass -v to ptxas if it was passed to the driver. if (Args.hasArg(options::OPT_v)) CmdArgs.push_back("-v"); CmdArgs.push_back("--gpu-name"); CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch))); CmdArgs.push_back("--output-file"); CmdArgs.push_back(Args.MakeArgString(TC.getInputFilename(Output))); for (const auto& II : Inputs) CmdArgs.push_back(Args.MakeArgString(II.getFilename())); for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_ptxas)) CmdArgs.push_back(Args.MakeArgString(A)); bool Relocatable = false; if (JA.isOffloading(Action::OFK_OpenMP)) // In OpenMP we need to generate relocatable code. Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target, options::OPT_fnoopenmp_relocatable_target, /*Default=*/true); else if (JA.isOffloading(Action::OFK_Cuda)) Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, /*Default=*/false); if (Relocatable) CmdArgs.push_back("-c"); const char *Exec; if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ)) Exec = A->getValue(); else Exec = Args.MakeArgString(TC.GetProgramPath("ptxas")); C.addCommand(std::make_unique(JA, *this, Exec, CmdArgs, Inputs)); } static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) { bool includePTX = true; for (Arg *A : Args) { if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) || A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ))) continue; A->claim(); const StringRef ArchStr = A->getValue(); if (ArchStr == "all" || ArchStr == gpu_arch) { includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ); continue; } } return includePTX; } // All inputs to this linker must be from CudaDeviceActions, as we need to look // at the Inputs' Actions in order to figure out which GPU architecture they // correspond to. void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); assert(TC.getTriple().isNVPTX() && "Wrong platform"); ArgStringList CmdArgs; if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100) CmdArgs.push_back("--cuda"); CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32"); CmdArgs.push_back(Args.MakeArgString("--create")); CmdArgs.push_back(Args.MakeArgString(Output.getFilename())); if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) CmdArgs.push_back("-g"); for (const auto& II : Inputs) { auto *A = II.getAction(); assert(A->getInputs().size() == 1 && "Device offload action is expected to have a single input"); const char *gpu_arch_str = A->getOffloadingArch(); assert(gpu_arch_str && "Device action expected to have associated a GPU architecture!"); CudaArch gpu_arch = StringToCudaArch(gpu_arch_str); if (II.getType() == types::TY_PP_Asm && !shouldIncludePTX(Args, gpu_arch_str)) continue; // We need to pass an Arch of the form "sm_XX" for cubin files and // "compute_XX" for ptx. const char *Arch = (II.getType() == types::TY_PP_Asm) ? CudaVirtualArchToString(VirtualArchForCudaArch(gpu_arch)) : gpu_arch_str; CmdArgs.push_back(Args.MakeArgString(llvm::Twine("--image=profile=") + Arch + ",file=" + II.getFilename())); } for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary)) CmdArgs.push_back(Args.MakeArgString(A)); const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary")); C.addCommand(std::make_unique(JA, *this, Exec, CmdArgs, Inputs)); } void NVPTX::OpenMPLinker::ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const ArgList &Args, const char *LinkingOutput) const { const auto &TC = static_cast(getToolChain()); assert(TC.getTriple().isNVPTX() && "Wrong platform"); ArgStringList CmdArgs; // OpenMP uses nvlink to link cubin files. The result will be embedded in the // host binary by the host linker. assert(!JA.isHostOffloading(Action::OFK_OpenMP) && "CUDA toolchain not expected for an OpenMP host device."); if (Output.isFilename()) { CmdArgs.push_back("-o"); CmdArgs.push_back(Output.getFilename()); } else assert(Output.isNothing() && "Invalid output."); if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) CmdArgs.push_back("-g"); if (Args.hasArg(options::OPT_v)) CmdArgs.push_back("-v"); StringRef GPUArch = Args.getLastArgValue(options::OPT_march_EQ); assert(!GPUArch.empty() && "At least one GPU Arch required for ptxas."); CmdArgs.push_back("-arch"); CmdArgs.push_back(Args.MakeArgString(GPUArch)); // Assume that the directory specified with --libomptarget_nvptx_path // contains the static library libomptarget-nvptx.a. if (const Arg *A = Args.getLastArg(options::OPT_libomptarget_nvptx_path_EQ)) CmdArgs.push_back(Args.MakeArgString(Twine("-L") + A->getValue())); // Add paths specified in LIBRARY_PATH environment variable as -L options. addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH"); // Add paths for the default clang library path. SmallString<256> DefaultLibPath = llvm::sys::path::parent_path(TC.getDriver().Dir); llvm::sys::path::append(DefaultLibPath, "lib" CLANG_LIBDIR_SUFFIX); CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath)); // Add linking against library implementing OpenMP calls on NVPTX target. CmdArgs.push_back("-lomptarget-nvptx"); for (const auto &II : Inputs) { if (II.getType() == types::TY_LLVM_IR || II.getType() == types::TY_LTO_IR || II.getType() == types::TY_LTO_BC || II.getType() == types::TY_LLVM_BC) { C.getDriver().Diag(diag::err_drv_no_linker_llvm_support) << getToolChain().getTripleString(); continue; } // Currently, we only pass the input files to the linker, we do not pass // any libraries that may be valid only for the host. if (!II.isFilename()) continue; const char *CubinF = C.addTempFile( C.getArgs().MakeArgString(getToolChain().getInputFilename(II))); CmdArgs.push_back(CubinF); } const char *Exec = Args.MakeArgString(getToolChain().GetProgramPath("nvlink")); C.addCommand(std::make_unique(JA, *this, Exec, CmdArgs, Inputs)); } /// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary, /// which isn't properly a linker but nonetheless performs the step of stitching /// together object files from the assembler into a single blob. CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple, const ToolChain &HostTC, const ArgList &Args, const Action::OffloadKind OK) : ToolChain(D, Triple, Args), HostTC(HostTC), CudaInstallation(D, HostTC.getTriple(), Args), OK(OK) { - if (CudaInstallation.isValid()) + if (CudaInstallation.isValid()) { + CudaInstallation.WarnIfUnsupportedVersion(); getProgramPaths().push_back(CudaInstallation.getBinPath()); + } // Lookup binaries into the driver directory, this is used to // discover the clang-offload-bundler executable. getProgramPaths().push_back(getDriver().Dir); } std::string CudaToolChain::getInputFilename(const InputInfo &Input) const { // Only object files are changed, for example assembly files keep their .s // extensions. CUDA also continues to use .o as they don't use nvlink but // fatbinary. if (!(OK == Action::OFK_OpenMP && Input.getType() == types::TY_Object)) return ToolChain::getInputFilename(Input); // Replace extension for object files with cubin because nvlink relies on // these particular file names. SmallString<256> Filename(ToolChain::getInputFilename(Input)); llvm::sys::path::replace_extension(Filename, "cubin"); return Filename.str(); } void CudaToolChain::addClangTargetOptions( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadingKind) const { HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!GpuArch.empty() && "Must have an explicit GPU arch."); assert((DeviceOffloadingKind == Action::OFK_OpenMP || DeviceOffloadingKind == Action::OFK_Cuda) && "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs."); if (DeviceOffloadingKind == Action::OFK_Cuda) { CC1Args.push_back("-fcuda-is-device"); if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero, options::OPT_fno_cuda_flush_denormals_to_zero, false)) CC1Args.push_back("-fcuda-flush-denormals-to-zero"); if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals, options::OPT_fno_cuda_approx_transcendentals, false)) CC1Args.push_back("-fcuda-approx-transcendentals"); if (DriverArgs.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) CC1Args.push_back("-fgpu-rdc"); } if (DriverArgs.hasArg(options::OPT_nogpulib)) return; std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); if (LibDeviceFile.empty()) { if (DeviceOffloadingKind == Action::OFK_OpenMP && DriverArgs.hasArg(options::OPT_S)) return; getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; return; } CC1Args.push_back("-mlink-builtin-bitcode"); CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); // New CUDA versions often introduce new instructions that are only supported // by new PTX version, so we need to raise PTX level to enable them in NVPTX // back-end. const char *PtxFeature = nullptr; switch(CudaInstallation.version()) { case CudaVersion::CUDA_101: PtxFeature = "+ptx64"; break; case CudaVersion::CUDA_100: PtxFeature = "+ptx63"; break; case CudaVersion::CUDA_92: PtxFeature = "+ptx61"; break; case CudaVersion::CUDA_91: PtxFeature = "+ptx61"; break; case CudaVersion::CUDA_90: PtxFeature = "+ptx60"; break; default: PtxFeature = "+ptx42"; } CC1Args.append({"-target-feature", PtxFeature}); if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr, options::OPT_fno_cuda_short_ptr, false)) CC1Args.append({"-mllvm", "--nvptx-short-ptr"}); if (CudaInstallation.version() >= CudaVersion::UNKNOWN) CC1Args.push_back(DriverArgs.MakeArgString( Twine("-target-sdk-version=") + CudaVersionToString(CudaInstallation.version()))); if (DeviceOffloadingKind == Action::OFK_OpenMP) { SmallVector LibraryPaths; if (const Arg *A = DriverArgs.getLastArg(options::OPT_libomptarget_nvptx_path_EQ)) LibraryPaths.push_back(A->getValue()); // Add user defined library paths from LIBRARY_PATH. llvm::Optional LibPath = llvm::sys::Process::GetEnv("LIBRARY_PATH"); if (LibPath) { SmallVector Frags; const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'}; llvm::SplitString(*LibPath, Frags, EnvPathSeparatorStr); for (StringRef Path : Frags) LibraryPaths.emplace_back(Path.trim()); } // Add path to lib / lib64 folder. SmallString<256> DefaultLibPath = llvm::sys::path::parent_path(getDriver().Dir); llvm::sys::path::append(DefaultLibPath, Twine("lib") + CLANG_LIBDIR_SUFFIX); LibraryPaths.emplace_back(DefaultLibPath.c_str()); std::string LibOmpTargetName = "libomptarget-nvptx-" + GpuArch.str() + ".bc"; bool FoundBCLibrary = false; for (StringRef LibraryPath : LibraryPaths) { SmallString<128> LibOmpTargetFile(LibraryPath); llvm::sys::path::append(LibOmpTargetFile, LibOmpTargetName); if (llvm::sys::fs::exists(LibOmpTargetFile)) { CC1Args.push_back("-mlink-builtin-bitcode"); CC1Args.push_back(DriverArgs.MakeArgString(LibOmpTargetFile)); FoundBCLibrary = true; break; } } if (!FoundBCLibrary) getDriver().Diag(diag::warn_drv_omp_offload_target_missingbcruntime) << LibOmpTargetName; } } bool CudaToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const { const Option &O = A->getOption(); return (O.matches(options::OPT_gN_Group) && !O.matches(options::OPT_gmodules)) || O.matches(options::OPT_g_Flag) || O.matches(options::OPT_ggdbN_Group) || O.matches(options::OPT_ggdb) || O.matches(options::OPT_gdwarf) || O.matches(options::OPT_gdwarf_2) || O.matches(options::OPT_gdwarf_3) || O.matches(options::OPT_gdwarf_4) || O.matches(options::OPT_gdwarf_5) || O.matches(options::OPT_gcolumn_info); } void CudaToolChain::adjustDebugInfoKind( codegenoptions::DebugInfoKind &DebugInfoKind, const ArgList &Args) const { switch (mustEmitDebugInfo(Args)) { case DisableDebugInfo: DebugInfoKind = codegenoptions::NoDebugInfo; break; case DebugDirectivesOnly: DebugInfoKind = codegenoptions::DebugDirectivesOnly; break; case EmitSameDebugInfoAsHost: // Use same debug info level as the host. break; } } void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { // Check our CUDA version if we're going to include the CUDA headers. if (!DriverArgs.hasArg(options::OPT_nocudainc) && !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) { StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ); assert(!Arch.empty() && "Must have an explicit GPU arch."); CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch)); } CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); } llvm::opt::DerivedArgList * CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const { DerivedArgList *DAL = HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); if (!DAL) DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); // For OpenMP device offloading, append derived arguments. Make sure // flags are not duplicated. // Also append the compute capability. if (DeviceOffloadKind == Action::OFK_OpenMP) { for (Arg *A : Args) { bool IsDuplicate = false; for (Arg *DALArg : *DAL) { if (A == DALArg) { IsDuplicate = true; break; } } if (!IsDuplicate) DAL->append(A); } StringRef Arch = DAL->getLastArgValue(options::OPT_march_EQ); if (Arch.empty()) DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), CLANG_OPENMP_NVPTX_DEFAULT_ARCH); return DAL; } for (Arg *A : Args) { if (A->getOption().matches(options::OPT_Xarch__)) { // Skip this argument unless the architecture matches BoundArch if (BoundArch.empty() || A->getValue(0) != BoundArch) continue; unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1)); unsigned Prev = Index; std::unique_ptr XarchArg(Opts.ParseOneArg(Args, Index)); // If the argument parsing failed or more than one argument was // consumed, the -Xarch_ argument's parameter tried to consume // extra arguments. Emit an error and ignore. // // We also want to disallow any options which would alter the // driver behavior; that isn't going to work in our model. We // use isDriverOption() as an approximation, although things // like -O4 are going to slip through. if (!XarchArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args) << A->getAsString(Args); continue; } else if (XarchArg->getOption().hasFlag(options::DriverOption)) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver) << A->getAsString(Args); continue; } XarchArg->setBaseArg(A); A = XarchArg.release(); DAL->AddSynthesizedArg(A); } DAL->append(A); } if (!BoundArch.empty()) { DAL->eraseArg(options::OPT_march_EQ); DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch); } return DAL; } Tool *CudaToolChain::buildAssembler() const { return new tools::NVPTX::Assembler(*this); } Tool *CudaToolChain::buildLinker() const { if (OK == Action::OFK_OpenMP) return new tools::NVPTX::OpenMPLinker(*this); return new tools::NVPTX::Linker(*this); } void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { HostTC.addClangWarningOptions(CC1Args); } ToolChain::CXXStdlibType CudaToolChain::GetCXXStdlibType(const ArgList &Args) const { return HostTC.GetCXXStdlibType(Args); } void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args); } void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args); } void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args, ArgStringList &CC1Args) const { HostTC.AddIAMCUIncludeArgs(Args, CC1Args); } SanitizerMask CudaToolChain::getSupportedSanitizers() const { // The CudaToolChain only supports sanitizers in the sense that it allows // sanitizer arguments on the command line if they are supported by the host // toolchain. The CudaToolChain will actually ignore any command line // arguments for any of these "supported" sanitizers. That means that no // sanitization of device code is actually supported at this time. // // This behavior is necessary because the host and device toolchains // invocations often share the command line, so the device toolchain must // tolerate flags meant only for the host toolchain. return HostTC.getSupportedSanitizers(); } VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D, const ArgList &Args) const { return HostTC.computeMSVCVersion(D, Args); } Index: head/contrib/llvm-project/clang/lib/Driver/ToolChains/Cuda.h =================================================================== --- head/contrib/llvm-project/clang/lib/Driver/ToolChains/Cuda.h (revision 359337) +++ head/contrib/llvm-project/clang/lib/Driver/ToolChains/Cuda.h (revision 359338) @@ -1,202 +1,208 @@ //===--- Cuda.h - Cuda ToolChain Implementations ----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_CUDA_H #define LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_CUDA_H #include "clang/Basic/Cuda.h" #include "clang/Driver/Action.h" #include "clang/Driver/Multilib.h" #include "clang/Driver/Tool.h" #include "clang/Driver/ToolChain.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/VersionTuple.h" #include #include namespace clang { namespace driver { /// A class to find a viable CUDA installation class CudaInstallationDetector { private: const Driver &D; bool IsValid = false; CudaVersion Version = CudaVersion::UNKNOWN; + std::string DetectedVersion; + bool DetectedVersionIsNotSupported = false; std::string InstallPath; std::string BinPath; std::string LibPath; std::string LibDevicePath; std::string IncludePath; llvm::StringMap LibDeviceMap; // CUDA architectures for which we have raised an error in // CheckCudaVersionSupportsArch. mutable llvm::SmallSet ArchsWithBadVersion; public: CudaInstallationDetector(const Driver &D, const llvm::Triple &HostTriple, const llvm::opt::ArgList &Args); void AddCudaIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const; /// Emit an error if Version does not support the given Arch. /// /// If either Version or Arch is unknown, does not emit an error. Emits at /// most one error per Arch. void CheckCudaVersionSupportsArch(CudaArch Arch) const; /// Check whether we detected a valid Cuda install. bool isValid() const { return IsValid; } /// Print information about the detected CUDA installation. void print(raw_ostream &OS) const; /// Get the detected Cuda install's version. CudaVersion version() const { return Version; } /// Get the detected Cuda installation path. StringRef getInstallPath() const { return InstallPath; } /// Get the detected path to Cuda's bin directory. StringRef getBinPath() const { return BinPath; } /// Get the detected Cuda Include path. StringRef getIncludePath() const { return IncludePath; } /// Get the detected Cuda library path. StringRef getLibPath() const { return LibPath; } /// Get the detected Cuda device library path. StringRef getLibDevicePath() const { return LibDevicePath; } /// Get libdevice file for given architecture std::string getLibDeviceFile(StringRef Gpu) const { return LibDeviceMap.lookup(Gpu); } + void WarnIfUnsupportedVersion(); + +private: + void ParseCudaVersionFile(llvm::StringRef V); }; namespace tools { namespace NVPTX { // Run ptxas, the NVPTX assembler. class LLVM_LIBRARY_VISIBILITY Assembler : public Tool { public: Assembler(const ToolChain &TC) : Tool("NVPTX::Assembler", "ptxas", TC, RF_Full, llvm::sys::WEM_UTF8, "--options-file") {} bool hasIntegratedCPP() const override { return false; } void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const override; }; // Runs fatbinary, which combines GPU object files ("cubin" files) and/or PTX // assembly into a single output file. class LLVM_LIBRARY_VISIBILITY Linker : public Tool { public: Linker(const ToolChain &TC) : Tool("NVPTX::Linker", "fatbinary", TC, RF_Full, llvm::sys::WEM_UTF8, "--options-file") {} bool hasIntegratedCPP() const override { return false; } void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const override; }; class LLVM_LIBRARY_VISIBILITY OpenMPLinker : public Tool { public: OpenMPLinker(const ToolChain &TC) : Tool("NVPTX::OpenMPLinker", "nvlink", TC, RF_Full, llvm::sys::WEM_UTF8, "--options-file") {} bool hasIntegratedCPP() const override { return false; } void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const override; }; } // end namespace NVPTX } // end namespace tools namespace toolchains { class LLVM_LIBRARY_VISIBILITY CudaToolChain : public ToolChain { public: CudaToolChain(const Driver &D, const llvm::Triple &Triple, const ToolChain &HostTC, const llvm::opt::ArgList &Args, const Action::OffloadKind OK); const llvm::Triple *getAuxTriple() const override { return &HostTC.getTriple(); } std::string getInputFilename(const InputInfo &Input) const override; llvm::opt::DerivedArgList * TranslateArgs(const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind) const override; void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadKind) const override; // Never try to use the integrated assembler with CUDA; always fork out to // ptxas. bool useIntegratedAs() const override { return false; } bool isCrossCompiling() const override { return true; } bool isPICDefault() const override { return false; } bool isPIEDefault() const override { return false; } bool isPICDefaultForced() const override { return false; } bool SupportsProfiling() const override { return false; } bool supportsDebugInfoOption(const llvm::opt::Arg *A) const override; void adjustDebugInfoKind(codegenoptions::DebugInfoKind &DebugInfoKind, const llvm::opt::ArgList &Args) const override; bool IsMathErrnoDefault() const override { return false; } void AddCudaIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void addClangWarningOptions(llvm::opt::ArgStringList &CC1Args) const override; CXXStdlibType GetCXXStdlibType(const llvm::opt::ArgList &Args) const override; void AddClangSystemIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; void AddClangCXXStdlibIncludeArgs( const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CC1Args) const override; void AddIAMCUIncludeArgs(const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const override; SanitizerMask getSupportedSanitizers() const override; VersionTuple computeMSVCVersion(const Driver *D, const llvm::opt::ArgList &Args) const override; unsigned GetDefaultDwarfVersion() const override { return 2; } const ToolChain &HostTC; CudaInstallationDetector CudaInstallation; protected: Tool *buildAssembler() const override; // ptxas Tool *buildLinker() const override; // fatbinary (ok, not really a linker) private: const Action::OffloadKind OK; }; } // end namespace toolchains } // end namespace driver } // end namespace clang #endif // LLVM_CLANG_LIB_DRIVER_TOOLCHAINS_CUDA_H Index: head/contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp =================================================================== --- head/contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp (revision 359337) +++ head/contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp (revision 359338) @@ -1,7268 +1,7274 @@ //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Parse/RAIIObjectsForParser.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/PrettyDeclStackTrace.h" #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/Attributes.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/TargetInfo.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" using namespace clang; //===----------------------------------------------------------------------===// // C99 6.7: Declarations. //===----------------------------------------------------------------------===// /// ParseTypeName /// type-name: [C99 6.7.6] /// specifier-qualifier-list abstract-declarator[opt] /// /// Called type-id in C++. TypeResult Parser::ParseTypeName(SourceRange *Range, DeclaratorContext Context, AccessSpecifier AS, Decl **OwnedType, ParsedAttributes *Attrs) { DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context); if (DSC == DeclSpecContext::DSC_normal) DSC = DeclSpecContext::DSC_type_specifier; // Parse the common declaration-specifiers piece. DeclSpec DS(AttrFactory); if (Attrs) DS.addAttributes(*Attrs); ParseSpecifierQualifierList(DS, AS, DSC); if (OwnedType) *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr; // Parse the abstract-declarator, if present. Declarator DeclaratorInfo(DS, Context); ParseDeclarator(DeclaratorInfo); if (Range) *Range = DeclaratorInfo.getSourceRange(); if (DeclaratorInfo.isInvalidType()) return true; return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); } /// Normalizes an attribute name by dropping prefixed and suffixed __. static StringRef normalizeAttrName(StringRef Name) { if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__")) return Name.drop_front(2).drop_back(2); return Name; } /// isAttributeLateParsed - Return true if the attribute has arguments that /// require late parsing. static bool isAttributeLateParsed(const IdentifierInfo &II) { #define CLANG_ATTR_LATE_PARSED_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_LATE_PARSED_LIST } /// Check if the a start and end source location expand to the same macro. static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc, SourceLocation EndLoc) { if (!StartLoc.isMacroID() || !EndLoc.isMacroID()) return false; SourceManager &SM = PP.getSourceManager(); if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc)) return false; bool AttrStartIsInMacro = Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts()); bool AttrEndIsInMacro = Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts()); return AttrStartIsInMacro && AttrEndIsInMacro; } /// ParseGNUAttributes - Parse a non-empty attributes list. /// /// [GNU] attributes: /// attribute /// attributes attribute /// /// [GNU] attribute: /// '__attribute__' '(' '(' attribute-list ')' ')' /// /// [GNU] attribute-list: /// attrib /// attribute_list ',' attrib /// /// [GNU] attrib: /// empty /// attrib-name /// attrib-name '(' identifier ')' /// attrib-name '(' identifier ',' nonempty-expr-list ')' /// attrib-name '(' argument-expression-list [C99 6.5.2] ')' /// /// [GNU] attrib-name: /// identifier /// typespec /// typequal /// storageclass /// /// Whether an attribute takes an 'identifier' is determined by the /// attrib-name. GCC's behavior here is not worth imitating: /// /// * In C mode, if the attribute argument list starts with an identifier /// followed by a ',' or an ')', and the identifier doesn't resolve to /// a type, it is parsed as an identifier. If the attribute actually /// wanted an expression, it's out of luck (but it turns out that no /// attributes work that way, because C constant expressions are very /// limited). /// * In C++ mode, if the attribute argument list starts with an identifier, /// and the attribute *wants* an identifier, it is parsed as an identifier. /// At block scope, any additional tokens between the identifier and the /// ',' or ')' are ignored, otherwise they produce a parse error. /// /// We follow the C++ model, but don't allow junk after the identifier. void Parser::ParseGNUAttributes(ParsedAttributes &attrs, SourceLocation *endLoc, LateParsedAttrList *LateAttrs, Declarator *D) { assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!"); while (Tok.is(tok::kw___attribute)) { SourceLocation AttrTokLoc = ConsumeToken(); unsigned OldNumAttrs = attrs.size(); unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0; if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "attribute")) { SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; return; } if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) { SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; return; } // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") )) do { // Eat preceeding commas to allow __attribute__((,,,foo)) while (TryConsumeToken(tok::comma)) ; // Expect an identifier or declaration specifier (const, int, etc.) if (Tok.isAnnotation()) break; IdentifierInfo *AttrName = Tok.getIdentifierInfo(); if (!AttrName) break; SourceLocation AttrNameLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) { attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_GNU); continue; } // Handle "parameterized" attributes if (!LateAttrs || !isAttributeLateParsed(*AttrName)) { ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr, SourceLocation(), ParsedAttr::AS_GNU, D); continue; } // Handle attributes with arguments that require late parsing. LateParsedAttribute *LA = new LateParsedAttribute(this, *AttrName, AttrNameLoc); LateAttrs->push_back(LA); // Attributes in a class are parsed at the end of the class, along // with other late-parsed declarations. if (!ClassStack.empty() && !LateAttrs->parseSoon()) getCurrentClass().LateParsedDeclarations.push_back(LA); // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it // recursively consumes balanced parens. LA->Toks.push_back(Tok); ConsumeParen(); // Consume everything up to and including the matching right parens. ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true); Token Eof; Eof.startToken(); Eof.setLocation(Tok.getLocation()); LA->Toks.push_back(Eof); } while (Tok.is(tok::comma)); if (ExpectAndConsume(tok::r_paren)) SkipUntil(tok::r_paren, StopAtSemi); SourceLocation Loc = Tok.getLocation(); if (ExpectAndConsume(tok::r_paren)) SkipUntil(tok::r_paren, StopAtSemi); if (endLoc) *endLoc = Loc; // If this was declared in a macro, attach the macro IdentifierInfo to the // parsed attribute. auto &SM = PP.getSourceManager(); if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) && FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) { CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc); StringRef FoundName = Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts()); IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName); for (unsigned i = OldNumAttrs; i < attrs.size(); ++i) attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin()); if (LateAttrs) { for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i) (*LateAttrs)[i]->MacroII = MacroII; } } } } /// Determine whether the given attribute has an identifier argument. static bool attributeHasIdentifierArg(const IdentifierInfo &II) { #define CLANG_ATTR_IDENTIFIER_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_IDENTIFIER_ARG_LIST } /// Determine whether the given attribute has a variadic identifier argument. static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) { #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST } /// Determine whether the given attribute treats kw_this as an identifier. static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) { #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST } /// Determine whether the given attribute parses a type argument. static bool attributeIsTypeArgAttr(const IdentifierInfo &II) { #define CLANG_ATTR_TYPE_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_TYPE_ARG_LIST } /// Determine whether the given attribute requires parsing its arguments /// in an unevaluated context or not. static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) { #define CLANG_ATTR_ARG_CONTEXT_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_ARG_CONTEXT_LIST } IdentifierLoc *Parser::ParseIdentifierLoc() { assert(Tok.is(tok::identifier) && "expected an identifier"); IdentifierLoc *IL = IdentifierLoc::create(Actions.Context, Tok.getLocation(), Tok.getIdentifierInfo()); ConsumeToken(); return IL; } void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { BalancedDelimiterTracker Parens(*this, tok::l_paren); Parens.consumeOpen(); TypeResult T; if (Tok.isNot(tok::r_paren)) T = ParseTypeName(); if (Parens.consumeClose()) return; if (T.isInvalid()) return; if (T.isUsable()) Attrs.addNewTypeAttr(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), ScopeName, ScopeLoc, T.get(), Syntax); else Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), ScopeName, ScopeLoc, nullptr, 0, Syntax); } unsigned Parser::ParseAttributeArgsCommon( IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { // Ignore the left paren location for now. ConsumeParen(); bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName); bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName); // Interpret "kw_this" as an identifier if the attributed requests it. if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) Tok.setKind(tok::identifier); ArgsVector ArgExprs; if (Tok.is(tok::identifier)) { // If this attribute wants an 'identifier' argument, make it so. bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) || attributeHasVariadicIdentifierArg(*AttrName); ParsedAttr::Kind AttrKind = ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); // If we don't know how to parse this attribute, but this is the only // token in this argument, assume it's meant to be an identifier. if (AttrKind == ParsedAttr::UnknownAttribute || AttrKind == ParsedAttr::IgnoredAttribute) { const Token &Next = NextToken(); IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma); } if (IsIdentifierArg) ArgExprs.push_back(ParseIdentifierLoc()); } ParsedType TheParsedType; if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) { // Eat the comma. if (!ArgExprs.empty()) ConsumeToken(); // Parse the non-empty comma-separated list of expressions. do { // Interpret "kw_this" as an identifier if the attributed requests it. if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) Tok.setKind(tok::identifier); ExprResult ArgExpr; if (AttributeIsTypeArgAttr) { TypeResult T = ParseTypeName(); if (T.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return 0; } if (T.isUsable()) TheParsedType = T.get(); break; // FIXME: Multiple type arguments are not implemented. } else if (Tok.is(tok::identifier) && attributeHasVariadicIdentifierArg(*AttrName)) { ArgExprs.push_back(ParseIdentifierLoc()); } else { bool Uneval = attributeParsedArgsUnevaluated(*AttrName); EnterExpressionEvaluationContext Unevaluated( Actions, Uneval ? Sema::ExpressionEvaluationContext::Unevaluated : Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult ArgExpr( Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); if (ArgExpr.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return 0; } ArgExprs.push_back(ArgExpr.get()); } // Eat the comma, move to the next argument } while (TryConsumeToken(tok::comma)); } SourceLocation RParen = Tok.getLocation(); if (!ExpectAndConsume(tok::r_paren)) { SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc; if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) { Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen), ScopeName, ScopeLoc, TheParsedType, Syntax); } else { Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc, ArgExprs.data(), ArgExprs.size(), Syntax); } } if (EndLoc) *EndLoc = RParen; return static_cast(ArgExprs.size() + !TheParsedType.get().isNull()); } /// Parse the arguments to a parameterized GNU attribute or /// a C++11 attribute in "gnu" namespace. void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax, Declarator *D) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); ParsedAttr::Kind AttrKind = ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); if (AttrKind == ParsedAttr::AT_Availability) { ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) { ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) { ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) { ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } else if (attributeIsTypeArgAttr(*AttrName)) { ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); return; } // These may refer to the function arguments, but need to be parsed early to // participate in determining whether it's a redeclaration. llvm::Optional PrototypeScope; if (normalizeAttrName(AttrName->getName()) == "enable_if" && D && D->isFunctionDeclarator()) { DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo(); PrototypeScope.emplace(this, Scope::FunctionPrototypeScope | Scope::FunctionDeclarationScope | Scope::DeclScope); for (unsigned i = 0; i != FTI.NumParams; ++i) { ParmVarDecl *Param = cast(FTI.Params[i].Param); Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param); } } ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); } unsigned Parser::ParseClangAttributeArgs( IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); ParsedAttr::Kind AttrKind = ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); switch (AttrKind) { default: return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); case ParsedAttr::AT_ExternalSourceSymbol: ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); break; case ParsedAttr::AT_Availability: ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); break; case ParsedAttr::AT_ObjCBridgeRelated: ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); break; case ParsedAttr::AT_TypeTagForDatatype: ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Syntax); break; } return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0; } bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs) { // If the attribute isn't known, we will not attempt to parse any // arguments. if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName, getTargetInfo(), getLangOpts())) { // Eat the left paren, then skip to the ending right paren. ConsumeParen(); SkipUntil(tok::r_paren); return false; } SourceLocation OpenParenLoc = Tok.getLocation(); if (AttrName->getName() == "property") { // The property declspec is more complex in that it can take one or two // assignment expressions as a parameter, but the lhs of the assignment // must be named get or put. BalancedDelimiterTracker T(*this, tok::l_paren); T.expectAndConsume(diag::err_expected_lparen_after, AttrName->getNameStart(), tok::r_paren); enum AccessorKind { AK_Invalid = -1, AK_Put = 0, AK_Get = 1 // indices into AccessorNames }; IdentifierInfo *AccessorNames[] = {nullptr, nullptr}; bool HasInvalidAccessor = false; // Parse the accessor specifications. while (true) { // Stop if this doesn't look like an accessor spec. if (!Tok.is(tok::identifier)) { // If the user wrote a completely empty list, use a special diagnostic. if (Tok.is(tok::r_paren) && !HasInvalidAccessor && AccessorNames[AK_Put] == nullptr && AccessorNames[AK_Get] == nullptr) { Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter); break; } Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor); break; } AccessorKind Kind; SourceLocation KindLoc = Tok.getLocation(); StringRef KindStr = Tok.getIdentifierInfo()->getName(); if (KindStr == "get") { Kind = AK_Get; } else if (KindStr == "put") { Kind = AK_Put; // Recover from the common mistake of using 'set' instead of 'put'. } else if (KindStr == "set") { Diag(KindLoc, diag::err_ms_property_has_set_accessor) << FixItHint::CreateReplacement(KindLoc, "put"); Kind = AK_Put; // Handle the mistake of forgetting the accessor kind by skipping // this accessor. } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) { Diag(KindLoc, diag::err_ms_property_missing_accessor_kind); ConsumeToken(); HasInvalidAccessor = true; goto next_property_accessor; // Otherwise, complain about the unknown accessor kind. } else { Diag(KindLoc, diag::err_ms_property_unknown_accessor); HasInvalidAccessor = true; Kind = AK_Invalid; // Try to keep parsing unless it doesn't look like an accessor spec. if (!NextToken().is(tok::equal)) break; } // Consume the identifier. ConsumeToken(); // Consume the '='. if (!TryConsumeToken(tok::equal)) { Diag(Tok.getLocation(), diag::err_ms_property_expected_equal) << KindStr; break; } // Expect the method name. if (!Tok.is(tok::identifier)) { Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name); break; } if (Kind == AK_Invalid) { // Just drop invalid accessors. } else if (AccessorNames[Kind] != nullptr) { // Complain about the repeated accessor, ignore it, and keep parsing. Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr; } else { AccessorNames[Kind] = Tok.getIdentifierInfo(); } ConsumeToken(); next_property_accessor: // Keep processing accessors until we run out. if (TryConsumeToken(tok::comma)) continue; // If we run into the ')', stop without consuming it. if (Tok.is(tok::r_paren)) break; Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen); break; } // Only add the property attribute if it was well-formed. if (!HasInvalidAccessor) Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(), AccessorNames[AK_Get], AccessorNames[AK_Put], ParsedAttr::AS_Declspec); T.skipToEnd(); return !HasInvalidAccessor; } unsigned NumArgs = ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr, SourceLocation(), ParsedAttr::AS_Declspec); // If this attribute's args were parsed, and it was expected to have // arguments but none were provided, emit a diagnostic. if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) { Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName; return false; } return true; } /// [MS] decl-specifier: /// __declspec ( extended-decl-modifier-seq ) /// /// [MS] extended-decl-modifier-seq: /// extended-decl-modifier[opt] /// extended-decl-modifier extended-decl-modifier-seq void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs, SourceLocation *End) { assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled"); assert(Tok.is(tok::kw___declspec) && "Not a declspec!"); while (Tok.is(tok::kw___declspec)) { ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec", tok::r_paren)) return; // An empty declspec is perfectly legal and should not warn. Additionally, // you can specify multiple attributes per declspec. while (Tok.isNot(tok::r_paren)) { // Attribute not present. if (TryConsumeToken(tok::comma)) continue; // We expect either a well-known identifier or a generic string. Anything // else is a malformed declspec. bool IsString = Tok.getKind() == tok::string_literal; if (!IsString && Tok.getKind() != tok::identifier && Tok.getKind() != tok::kw_restrict) { Diag(Tok, diag::err_ms_declspec_type); T.skipToEnd(); return; } IdentifierInfo *AttrName; SourceLocation AttrNameLoc; if (IsString) { SmallString<8> StrBuffer; bool Invalid = false; StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid); if (Invalid) { T.skipToEnd(); return; } AttrName = PP.getIdentifierInfo(Str); AttrNameLoc = ConsumeStringToken(); } else { AttrName = Tok.getIdentifierInfo(); AttrNameLoc = ConsumeToken(); } bool AttrHandled = false; // Parse attribute arguments. if (Tok.is(tok::l_paren)) AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs); else if (AttrName->getName() == "property") // The property attribute must have an argument list. Diag(Tok.getLocation(), diag::err_expected_lparen_after) << AttrName->getName(); if (!AttrHandled) Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_Declspec); } T.consumeClose(); if (End) *End = T.getCloseLocation(); } } void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (true) { switch (Tok.getKind()) { case tok::kw___fastcall: case tok::kw___stdcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___cdecl: case tok::kw___vectorcall: case tok::kw___ptr64: case tok::kw___w64: case tok::kw___ptr32: case tok::kw___sptr: case tok::kw___uptr: { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_Keyword); break; } default: return; } } } void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() { SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes(); if (EndLoc.isValid()) { SourceRange Range(StartLoc, EndLoc); Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range; } } SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() { SourceLocation EndLoc; while (true) { switch (Tok.getKind()) { case tok::kw_const: case tok::kw_volatile: case tok::kw___fastcall: case tok::kw___stdcall: case tok::kw___thiscall: case tok::kw___cdecl: case tok::kw___vectorcall: case tok::kw___ptr32: case tok::kw___ptr64: case tok::kw___w64: case tok::kw___unaligned: case tok::kw___sptr: case tok::kw___uptr: EndLoc = ConsumeToken(); break; default: return EndLoc; } } } void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___pascal)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_Keyword); } } void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___kernel)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_Keyword); } } void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = Tok.getLocation(); Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_Keyword); } void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) { // Treat these like attributes, even though they're type specifiers. while (true) { switch (Tok.getKind()) { case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); if (!getLangOpts().ObjC) Diag(AttrNameLoc, diag::ext_nullability) << AttrName; attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_Keyword); break; } default: return; } } } static bool VersionNumberSeparator(const char Separator) { return (Separator == '.' || Separator == '_'); } /// Parse a version number. /// /// version: /// simple-integer /// simple-integer '.' simple-integer /// simple-integer '_' simple-integer /// simple-integer '.' simple-integer '.' simple-integer /// simple-integer '_' simple-integer '_' simple-integer VersionTuple Parser::ParseVersionTuple(SourceRange &Range) { Range = SourceRange(Tok.getLocation(), Tok.getEndLoc()); if (!Tok.is(tok::numeric_constant)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Parse the major (and possibly minor and subminor) versions, which // are stored in the numeric constant. We utilize a quirk of the // lexer, which is that it handles something like 1.2.3 as a single // numeric constant, rather than two separate tokens. SmallString<512> Buffer; Buffer.resize(Tok.getLength()+1); const char *ThisTokBegin = &Buffer[0]; // Get the spelling of the token, which eliminates trigraphs, etc. bool Invalid = false; unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); if (Invalid) return VersionTuple(); // Parse the major version. unsigned AfterMajor = 0; unsigned Major = 0; while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) { Major = Major * 10 + ThisTokBegin[AfterMajor] - '0'; ++AfterMajor; } if (AfterMajor == 0) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } if (AfterMajor == ActualLength) { ConsumeToken(); // We only had a single version component. if (Major == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major); } const char AfterMajorSeparator = ThisTokBegin[AfterMajor]; if (!VersionNumberSeparator(AfterMajorSeparator) || (AfterMajor + 1 == ActualLength)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Parse the minor version. unsigned AfterMinor = AfterMajor + 1; unsigned Minor = 0; while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) { Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0'; ++AfterMinor; } if (AfterMinor == ActualLength) { ConsumeToken(); // We had major.minor. if (Major == 0 && Minor == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major, Minor); } const char AfterMinorSeparator = ThisTokBegin[AfterMinor]; // If what follows is not a '.' or '_', we have a problem. if (!VersionNumberSeparator(AfterMinorSeparator)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Warn if separators, be it '.' or '_', do not match. if (AfterMajorSeparator != AfterMinorSeparator) Diag(Tok, diag::warn_expected_consistent_version_separator); // Parse the subminor version. unsigned AfterSubminor = AfterMinor + 1; unsigned Subminor = 0; while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) { Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0'; ++AfterSubminor; } if (AfterSubminor != ActualLength) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } ConsumeToken(); return VersionTuple(Major, Minor, Subminor); } /// Parse the contents of the "availability" attribute. /// /// availability-attribute: /// 'availability' '(' platform ',' opt-strict version-arg-list, /// opt-replacement, opt-message')' /// /// platform: /// identifier /// /// opt-strict: /// 'strict' ',' /// /// version-arg-list: /// version-arg /// version-arg ',' version-arg-list /// /// version-arg: /// 'introduced' '=' version /// 'deprecated' '=' version /// 'obsoleted' = version /// 'unavailable' /// opt-replacement: /// 'replacement' '=' /// opt-message: /// 'message' '=' void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability, SourceLocation AvailabilityLoc, ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { enum { Introduced, Deprecated, Obsoleted, Unknown }; AvailabilityChange Changes[Unknown]; ExprResult MessageExpr, ReplacementExpr; // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_paren; return; } // Parse the platform name. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_platform); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierLoc *Platform = ParseIdentifierLoc(); if (const IdentifierInfo *const Ident = Platform->Ident) { // Canonicalize platform name from "macosx" to "macos". if (Ident->getName() == "macosx") Platform->Ident = PP.getIdentifierInfo("macos"); // Canonicalize platform name from "macosx_app_extension" to // "macos_app_extension". else if (Ident->getName() == "macosx_app_extension") Platform->Ident = PP.getIdentifierInfo("macos_app_extension"); else Platform->Ident = PP.getIdentifierInfo( AvailabilityAttr::canonicalizePlatformName(Ident->getName())); } // Parse the ',' following the platform name. if (ExpectAndConsume(tok::comma)) { SkipUntil(tok::r_paren, StopAtSemi); return; } // If we haven't grabbed the pointers for the identifiers // "introduced", "deprecated", and "obsoleted", do so now. if (!Ident_introduced) { Ident_introduced = PP.getIdentifierInfo("introduced"); Ident_deprecated = PP.getIdentifierInfo("deprecated"); Ident_obsoleted = PP.getIdentifierInfo("obsoleted"); Ident_unavailable = PP.getIdentifierInfo("unavailable"); Ident_message = PP.getIdentifierInfo("message"); Ident_strict = PP.getIdentifierInfo("strict"); Ident_replacement = PP.getIdentifierInfo("replacement"); } // Parse the optional "strict", the optional "replacement" and the set of // introductions/deprecations/removals. SourceLocation UnavailableLoc, StrictLoc; do { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_change); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierInfo *Keyword = Tok.getIdentifierInfo(); SourceLocation KeywordLoc = ConsumeToken(); if (Keyword == Ident_strict) { if (StrictLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(StrictLoc); } StrictLoc = KeywordLoc; continue; } if (Keyword == Ident_unavailable) { if (UnavailableLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(UnavailableLoc); } UnavailableLoc = KeywordLoc; continue; } if (Keyword == Ident_deprecated && Platform->Ident && Platform->Ident->isStr("swift")) { // For swift, we deprecate for all versions. if (Changes[Deprecated].KeywordLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(Changes[Deprecated].KeywordLoc); } Changes[Deprecated].KeywordLoc = KeywordLoc; // Use a fake version here. Changes[Deprecated].Version = VersionTuple(1); continue; } if (Tok.isNot(tok::equal)) { Diag(Tok, diag::err_expected_after) << Keyword << tok::equal; SkipUntil(tok::r_paren, StopAtSemi); return; } ConsumeToken(); if (Keyword == Ident_message || Keyword == Ident_replacement) { if (Tok.isNot(tok::string_literal)) { Diag(Tok, diag::err_expected_string_literal) << /*Source='availability attribute'*/2; SkipUntil(tok::r_paren, StopAtSemi); return; } if (Keyword == Ident_message) MessageExpr = ParseStringLiteralExpression(); else ReplacementExpr = ParseStringLiteralExpression(); // Also reject wide string literals. if (StringLiteral *MessageStringLiteral = cast_or_null(MessageExpr.get())) { if (MessageStringLiteral->getCharByteWidth() != 1) { Diag(MessageStringLiteral->getSourceRange().getBegin(), diag::err_expected_string_literal) << /*Source='availability attribute'*/ 2; SkipUntil(tok::r_paren, StopAtSemi); return; } } if (Keyword == Ident_message) break; else continue; } // Special handling of 'NA' only when applied to introduced or // deprecated. if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) && Tok.is(tok::identifier)) { IdentifierInfo *NA = Tok.getIdentifierInfo(); if (NA->getName() == "NA") { ConsumeToken(); if (Keyword == Ident_introduced) UnavailableLoc = KeywordLoc; continue; } } SourceRange VersionRange; VersionTuple Version = ParseVersionTuple(VersionRange); if (Version.empty()) { SkipUntil(tok::r_paren, StopAtSemi); return; } unsigned Index; if (Keyword == Ident_introduced) Index = Introduced; else if (Keyword == Ident_deprecated) Index = Deprecated; else if (Keyword == Ident_obsoleted) Index = Obsoleted; else Index = Unknown; if (Index < Unknown) { if (!Changes[Index].KeywordLoc.isInvalid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); } Changes[Index].KeywordLoc = KeywordLoc; Changes[Index].Version = Version; Changes[Index].VersionRange = VersionRange; } else { Diag(KeywordLoc, diag::err_availability_unknown_change) << Keyword << VersionRange; } } while (TryConsumeToken(tok::comma)); // Closing ')'. if (T.consumeClose()) return; if (endLoc) *endLoc = T.getCloseLocation(); // The 'unavailable' availability cannot be combined with any other // availability changes. Make sure that hasn't happened. if (UnavailableLoc.isValid()) { bool Complained = false; for (unsigned Index = Introduced; Index != Unknown; ++Index) { if (Changes[Index].KeywordLoc.isValid()) { if (!Complained) { Diag(UnavailableLoc, diag::warn_availability_and_unavailable) << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); Complained = true; } // Clear out the availability. Changes[Index] = AvailabilityChange(); } } } // Record this attribute attrs.addNew(&Availability, SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName, ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated], Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Syntax, StrictLoc, ReplacementExpr.get()); } /// Parse the contents of the "external_source_symbol" attribute. /// /// external-source-symbol-attribute: /// 'external_source_symbol' '(' keyword-arg-list ')' /// /// keyword-arg-list: /// keyword-arg /// keyword-arg ',' keyword-arg-list /// /// keyword-arg: /// 'language' '=' /// 'defined_in' '=' /// 'generated_declaration' void Parser::ParseExternalSourceSymbolAttribute( IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume()) return; // Initialize the pointers for the keyword identifiers when required. if (!Ident_language) { Ident_language = PP.getIdentifierInfo("language"); Ident_defined_in = PP.getIdentifierInfo("defined_in"); Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration"); } ExprResult Language; bool HasLanguage = false; ExprResult DefinedInExpr; bool HasDefinedIn = false; IdentifierLoc *GeneratedDeclaration = nullptr; // Parse the language/defined_in/generated_declaration keywords do { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_external_source_symbol_expected_keyword); SkipUntil(tok::r_paren, StopAtSemi); return; } SourceLocation KeywordLoc = Tok.getLocation(); IdentifierInfo *Keyword = Tok.getIdentifierInfo(); if (Keyword == Ident_generated_declaration) { if (GeneratedDeclaration) { Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword; SkipUntil(tok::r_paren, StopAtSemi); return; } GeneratedDeclaration = ParseIdentifierLoc(); continue; } if (Keyword != Ident_language && Keyword != Ident_defined_in) { Diag(Tok, diag::err_external_source_symbol_expected_keyword); SkipUntil(tok::r_paren, StopAtSemi); return; } ConsumeToken(); if (ExpectAndConsume(tok::equal, diag::err_expected_after, Keyword->getName())) { SkipUntil(tok::r_paren, StopAtSemi); return; } bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn; if (Keyword == Ident_language) HasLanguage = true; else HasDefinedIn = true; if (Tok.isNot(tok::string_literal)) { Diag(Tok, diag::err_expected_string_literal) << /*Source='external_source_symbol attribute'*/ 3 << /*language | source container*/ (Keyword != Ident_language); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); continue; } if (Keyword == Ident_language) { if (HadLanguage) { Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) << Keyword; ParseStringLiteralExpression(); continue; } Language = ParseStringLiteralExpression(); } else { assert(Keyword == Ident_defined_in && "Invalid clause keyword!"); if (HadDefinedIn) { Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) << Keyword; ParseStringLiteralExpression(); continue; } DefinedInExpr = ParseStringLiteralExpression(); } } while (TryConsumeToken(tok::comma)); // Closing ')'. if (T.consumeClose()) return; if (EndLoc) *EndLoc = T.getCloseLocation(); ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), GeneratedDeclaration}; Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()), ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax); } /// Parse the contents of the "objc_bridge_related" attribute. /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')' /// related_class: /// Identifier /// /// opt-class_method: /// Identifier: | /// /// opt-instance_method: /// Identifier | /// void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc, ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_paren; return; } // Parse the related class name. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_objcbridge_related_expected_related_class); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierLoc *RelatedClass = ParseIdentifierLoc(); if (ExpectAndConsume(tok::comma)) { SkipUntil(tok::r_paren, StopAtSemi); return; } // Parse class method name. It's non-optional in the sense that a trailing // comma is required, but it can be the empty string, and then we record a // nullptr. IdentifierLoc *ClassMethod = nullptr; if (Tok.is(tok::identifier)) { ClassMethod = ParseIdentifierLoc(); if (!TryConsumeToken(tok::colon)) { Diag(Tok, diag::err_objcbridge_related_selector_name); SkipUntil(tok::r_paren, StopAtSemi); return; } } if (!TryConsumeToken(tok::comma)) { if (Tok.is(tok::colon)) Diag(Tok, diag::err_objcbridge_related_selector_name); else Diag(Tok, diag::err_expected) << tok::comma; SkipUntil(tok::r_paren, StopAtSemi); return; } // Parse instance method name. Also non-optional but empty string is // permitted. IdentifierLoc *InstanceMethod = nullptr; if (Tok.is(tok::identifier)) InstanceMethod = ParseIdentifierLoc(); else if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_expected) << tok::r_paren; SkipUntil(tok::r_paren, StopAtSemi); return; } // Closing ')'. if (T.consumeClose()) return; if (endLoc) *endLoc = T.getCloseLocation(); // Record this attribute attrs.addNew(&ObjCBridgeRelated, SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()), ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod, Syntax); } // Late Parsed Attributes: // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods void Parser::LateParsedDeclaration::ParseLexedAttributes() {} void Parser::LateParsedClass::ParseLexedAttributes() { Self->ParseLexedAttributes(*Class); } void Parser::LateParsedAttribute::ParseLexedAttributes() { Self->ParseLexedAttribute(*this, true, false); } /// Wrapper class which calls ParseLexedAttribute, after setting up the /// scope appropriately. void Parser::ParseLexedAttributes(ParsingClass &Class) { // Deal with templates // FIXME: Test cases to make sure this does the right thing for templates. bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); // Set or update the scope flags. bool AlreadyHasClassScope = Class.TopLevelClass; unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope; ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope); ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope); // Enter the scope of nested classes if (!AlreadyHasClassScope) Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); if (!Class.LateParsedDeclarations.empty()) { for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){ Class.LateParsedDeclarations[i]->ParseLexedAttributes(); } } if (!AlreadyHasClassScope) Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); } /// Parse all attributes in LAs, and attach them to Decl D. void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D, bool EnterScope, bool OnDefinition) { assert(LAs.parseSoon() && "Attribute list should be marked for immediate parsing."); for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) { if (D) LAs[i]->addDecl(D); ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition); delete LAs[i]; } LAs.clear(); } /// Finish parsing an attribute for which parsing was delayed. /// This will be called at the end of parsing a class declaration /// for each LateParsedAttribute. We consume the saved tokens and /// create an attribute with the arguments filled in. We add this /// to the Attribute list for the decl. void Parser::ParseLexedAttribute(LateParsedAttribute &LA, bool EnterScope, bool OnDefinition) { // Create a fake EOF so that attribute parsing won't go off the end of the // attribute. Token AttrEnd; AttrEnd.startToken(); AttrEnd.setKind(tok::eof); AttrEnd.setLocation(Tok.getLocation()); AttrEnd.setEofData(LA.Toks.data()); LA.Toks.push_back(AttrEnd); // Append the current token at the end of the new token stream so that it // doesn't get lost. LA.Toks.push_back(Tok); PP.EnterTokenStream(LA.Toks, true, /*IsReinject=*/true); // Consume the previously pushed token. ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); ParsedAttributes Attrs(AttrFactory); SourceLocation endLoc; if (LA.Decls.size() > 0) { Decl *D = LA.Decls[0]; NamedDecl *ND = dyn_cast(D); RecordDecl *RD = dyn_cast_or_null(D->getDeclContext()); // Allow 'this' within late-parsed attributes. Sema::CXXThisScopeRAII ThisScope(Actions, RD, Qualifiers(), ND && ND->isCXXInstanceMember()); if (LA.Decls.size() == 1) { // If the Decl is templatized, add template parameters to scope. bool HasTemplateScope = EnterScope && D->isTemplateDecl(); ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(Actions.CurScope, D); // If the Decl is on a function, add function parameters to the scope. bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate(); ParseScope FnScope( this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope, HasFunScope); if (HasFunScope) Actions.ActOnReenterFunctionContext(Actions.CurScope, D); ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, nullptr, SourceLocation(), ParsedAttr::AS_GNU, nullptr); if (HasFunScope) { Actions.ActOnExitFunctionContext(); FnScope.Exit(); // Pop scope, and remove Decls from IdResolver } if (HasTemplateScope) { TempScope.Exit(); } } else { // If there are multiple decls, then the decl cannot be within the // function scope. ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, nullptr, SourceLocation(), ParsedAttr::AS_GNU, nullptr); } } else { Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName(); } if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() && Attrs.begin()->isKnownToGCC()) Diag(Tok, diag::warn_attribute_on_function_definition) << &LA.AttrName; for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs); // Due to a parsing error, we either went over the cached tokens or // there are still cached tokens left, so we skip the leftover tokens. while (Tok.isNot(tok::eof)) ConsumeAnyToken(); if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()) ConsumeAnyToken(); } void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; T.skipToEnd(); return; } IdentifierLoc *ArgumentKind = ParseIdentifierLoc(); if (ExpectAndConsume(tok::comma)) { T.skipToEnd(); return; } SourceRange MatchingCTypeRange; TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange); if (MatchingCType.isInvalid()) { T.skipToEnd(); return; } bool LayoutCompatible = false; bool MustBeNull = false; while (TryConsumeToken(tok::comma)) { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; T.skipToEnd(); return; } IdentifierInfo *Flag = Tok.getIdentifierInfo(); if (Flag->isStr("layout_compatible")) LayoutCompatible = true; else if (Flag->isStr("must_be_null")) MustBeNull = true; else { Diag(Tok, diag::err_type_safety_unknown_flag) << Flag; T.skipToEnd(); return; } ConsumeToken(); // consume flag } if (!T.consumeClose()) { Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc, ArgumentKind, MatchingCType.get(), LayoutCompatible, MustBeNull, Syntax); } if (EndLoc) *EndLoc = T.getCloseLocation(); } /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets /// of a C++11 attribute-specifier in a location where an attribute is not /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this /// situation. /// /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if /// this doesn't appear to actually be an attribute-specifier, and the caller /// should try to parse it. bool Parser::DiagnoseProhibitedCXX11Attribute() { assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)); switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) { case CAK_NotAttributeSpecifier: // No diagnostic: we're in Obj-C++11 and this is not actually an attribute. return false; case CAK_InvalidAttributeSpecifier: Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute); return false; case CAK_AttributeSpecifier: // Parse and discard the attributes. SourceLocation BeginLoc = ConsumeBracket(); ConsumeBracket(); SkipUntil(tok::r_square); assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied"); SourceLocation EndLoc = ConsumeBracket(); Diag(BeginLoc, diag::err_attributes_not_allowed) << SourceRange(BeginLoc, EndLoc); return true; } llvm_unreachable("All cases handled above."); } /// We have found the opening square brackets of a C++11 /// attribute-specifier in a location where an attribute is not permitted, but /// we know where the attributes ought to be written. Parse them anyway, and /// provide a fixit moving them to the right place. void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs, SourceLocation CorrectLocation) { assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) || Tok.is(tok::kw_alignas)); // Consume the attributes. SourceLocation Loc = Tok.getLocation(); ParseCXX11Attributes(Attrs); CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true); // FIXME: use err_attributes_misplaced Diag(Loc, diag::err_attributes_not_allowed) << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) << FixItHint::CreateRemoval(AttrRange); } void Parser::DiagnoseProhibitedAttributes( const SourceRange &Range, const SourceLocation CorrectLocation) { if (CorrectLocation.isValid()) { CharSourceRange AttrRange(Range, true); Diag(CorrectLocation, diag::err_attributes_misplaced) << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) << FixItHint::CreateRemoval(AttrRange); } else Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range; } void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs, unsigned DiagID) { for (const ParsedAttr &AL : Attrs) { if (!AL.isCXX11Attribute() && !AL.isC2xAttribute()) continue; if (AL.getKind() == ParsedAttr::UnknownAttribute) Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL; else { Diag(AL.getLoc(), DiagID) << AL; AL.setInvalid(); } } } // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute // applies to var, not the type Foo. // As an exception to the rule, __declspec(align(...)) before the // class-key affects the type instead of the variable. // Also, Microsoft-style [attributes] seem to affect the type instead of the // variable. // This function moves attributes that should apply to the type off DS to Attrs. void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs, DeclSpec &DS, Sema::TagUseKind TUK) { if (TUK == Sema::TUK_Reference) return; llvm::SmallVector ToBeMoved; for (ParsedAttr &AL : DS.getAttributes()) { if ((AL.getKind() == ParsedAttr::AT_Aligned && AL.isDeclspecAttribute()) || AL.isMicrosoftAttribute()) ToBeMoved.push_back(&AL); } for (ParsedAttr *AL : ToBeMoved) { DS.getAttributes().remove(AL); Attrs.addAtEnd(AL); } } /// ParseDeclaration - Parse a full 'declaration', which consists of /// declaration-specifiers, some number of declarators, and a semicolon. /// 'Context' should be a DeclaratorContext value. This returns the /// location of the semicolon in DeclEnd. /// /// declaration: [C99 6.7] /// block-declaration -> /// simple-declaration /// others [FIXME] /// [C++] template-declaration /// [C++] namespace-definition /// [C++] using-directive /// [C++] using-declaration /// [C++11/C11] static_assert-declaration /// others... [FIXME] /// Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd, ParsedAttributesWithRange &attrs, SourceLocation *DeclSpecStart) { ParenBraceBracketBalancer BalancerRAIIObj(*this); // Must temporarily exit the objective-c container scope for // parsing c none objective-c decls. ObjCDeclContextSwitch ObjCDC(*this); Decl *SingleDecl = nullptr; switch (Tok.getKind()) { case tok::kw_template: case tok::kw_export: ProhibitAttributes(attrs); SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs); break; case tok::kw_inline: // Could be the start of an inline namespace. Allowed as an ext in C++03. if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) { ProhibitAttributes(attrs); SourceLocation InlineLoc = ConsumeToken(); return ParseNamespace(Context, DeclEnd, InlineLoc); } return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr, DeclSpecStart); case tok::kw_namespace: ProhibitAttributes(attrs); return ParseNamespace(Context, DeclEnd); case tok::kw_using: return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(), DeclEnd, attrs); case tok::kw_static_assert: case tok::kw__Static_assert: ProhibitAttributes(attrs); SingleDecl = ParseStaticAssertDeclaration(DeclEnd); break; default: return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr, DeclSpecStart); } // This routine returns a DeclGroup, if the thing we parsed only contains a // single decl, convert it now. return Actions.ConvertDeclToDeclGroup(SingleDecl); } /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl] /// declaration-specifiers init-declarator-list[opt] ';' /// [C++11] attribute-specifier-seq decl-specifier-seq[opt] /// init-declarator-list ';' ///[C90/C++]init-declarator-list ';' [TODO] /// [OMP] threadprivate-directive /// [OMP] allocate-directive [TODO] /// /// for-range-declaration: [C++11 6.5p1: stmt.ranged] /// attribute-specifier-seq[opt] type-specifier-seq declarator /// /// If RequireSemi is false, this does not check for a ';' at the end of the /// declaration. If it is true, it checks for and eats it. /// /// If FRI is non-null, we might be parsing a for-range-declaration instead /// of a simple-declaration. If we find that we are, we also parse the /// for-range-initializer, and place it here. /// /// DeclSpecStart is used when decl-specifiers are parsed before parsing /// the Declaration. The SourceLocation for this Decl is set to /// DeclSpecStart if DeclSpecStart is non-null. Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration( DeclaratorContext Context, SourceLocation &DeclEnd, ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI, SourceLocation *DeclSpecStart) { // Parse the common declaration-specifiers piece. ParsingDeclSpec DS(*this); DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context); ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext); // If we had a free-standing type definition with a missing semicolon, we // may get this far before the problem becomes obvious. if (DS.hasTagDefinition() && DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext)) return nullptr; // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { ProhibitAttributes(Attrs); DeclEnd = Tok.getLocation(); if (RequireSemi) ConsumeToken(); RecordDecl *AnonRecord = nullptr; Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS, AnonRecord); DS.complete(TheDecl); if (AnonRecord) { Decl* decls[] = {AnonRecord, TheDecl}; return Actions.BuildDeclaratorGroup(decls); } return Actions.ConvertDeclToDeclGroup(TheDecl); } if (DeclSpecStart) DS.SetRangeStart(*DeclSpecStart); DS.takeAttributesFrom(Attrs); return ParseDeclGroup(DS, Context, &DeclEnd, FRI); } /// Returns true if this might be the start of a declarator, or a common typo /// for a declarator. bool Parser::MightBeDeclarator(DeclaratorContext Context) { switch (Tok.getKind()) { case tok::annot_cxxscope: case tok::annot_template_id: case tok::caret: case tok::code_completion: case tok::coloncolon: case tok::ellipsis: case tok::kw___attribute: case tok::kw_operator: case tok::l_paren: case tok::star: return true; case tok::amp: case tok::ampamp: return getLangOpts().CPlusPlus; case tok::l_square: // Might be an attribute on an unnamed bit-field. return Context == DeclaratorContext::MemberContext && getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square); case tok::colon: // Might be a typo for '::' or an unnamed bit-field. return Context == DeclaratorContext::MemberContext || getLangOpts().CPlusPlus; case tok::identifier: switch (NextToken().getKind()) { case tok::code_completion: case tok::coloncolon: case tok::comma: case tok::equal: case tok::equalequal: // Might be a typo for '='. case tok::kw_alignas: case tok::kw_asm: case tok::kw___attribute: case tok::l_brace: case tok::l_paren: case tok::l_square: case tok::less: case tok::r_brace: case tok::r_paren: case tok::r_square: case tok::semi: return true; case tok::colon: // At namespace scope, 'identifier:' is probably a typo for 'identifier::' // and in block scope it's probably a label. Inside a class definition, // this is a bit-field. return Context == DeclaratorContext::MemberContext || (getLangOpts().CPlusPlus && Context == DeclaratorContext::FileContext); case tok::identifier: // Possible virt-specifier. return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken()); default: return false; } default: return false; } } /// Skip until we reach something which seems like a sensible place to pick /// up parsing after a malformed declaration. This will sometimes stop sooner /// than SkipUntil(tok::r_brace) would, but will never stop later. void Parser::SkipMalformedDecl() { while (true) { switch (Tok.getKind()) { case tok::l_brace: // Skip until matching }, then stop. We've probably skipped over // a malformed class or function definition or similar. ConsumeBrace(); SkipUntil(tok::r_brace); if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) { // This declaration isn't over yet. Keep skipping. continue; } TryConsumeToken(tok::semi); return; case tok::l_square: ConsumeBracket(); SkipUntil(tok::r_square); continue; case tok::l_paren: ConsumeParen(); SkipUntil(tok::r_paren); continue; case tok::r_brace: return; case tok::semi: ConsumeToken(); return; case tok::kw_inline: // 'inline namespace' at the start of a line is almost certainly // a good place to pick back up parsing, except in an Objective-C // @interface context. if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) && (!ParsingInObjCContainer || CurParsedObjCImpl)) return; break; case tok::kw_namespace: // 'namespace' at the start of a line is almost certainly a good // place to pick back up parsing, except in an Objective-C // @interface context. if (Tok.isAtStartOfLine() && (!ParsingInObjCContainer || CurParsedObjCImpl)) return; break; case tok::at: // @end is very much like } in Objective-C contexts. if (NextToken().isObjCAtKeyword(tok::objc_end) && ParsingInObjCContainer) return; break; case tok::minus: case tok::plus: // - and + probably start new method declarations in Objective-C contexts. if (Tok.isAtStartOfLine() && ParsingInObjCContainer) return; break; case tok::eof: case tok::annot_module_begin: case tok::annot_module_end: case tok::annot_module_include: return; default: break; } ConsumeAnyToken(); } } /// ParseDeclGroup - Having concluded that this is either a function /// definition or a group of object declarations, actually parse the /// result. Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS, DeclaratorContext Context, SourceLocation *DeclEnd, ForRangeInit *FRI) { // Parse the first declarator. ParsingDeclarator D(*this, DS, Context); ParseDeclarator(D); // Bail out if the first declarator didn't seem well-formed. if (!D.hasName() && !D.mayOmitIdentifier()) { SkipMalformedDecl(); return nullptr; } if (Tok.is(tok::kw_requires)) ParseTrailingRequiresClause(D); // Save late-parsed attributes for now; they need to be parsed in the // appropriate function scope after the function Decl has been constructed. // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList. LateParsedAttrList LateParsedAttrs(true); if (D.isFunctionDeclarator()) { MaybeParseGNUAttributes(D, &LateParsedAttrs); // The _Noreturn keyword can't appear here, unlike the GNU noreturn // attribute. If we find the keyword here, tell the user to put it // at the start instead. if (Tok.is(tok::kw__Noreturn)) { SourceLocation Loc = ConsumeToken(); const char *PrevSpec; unsigned DiagID; // We can offer a fixit if it's valid to mark this function as _Noreturn // and we don't have any other declarators in this declaration. bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); MaybeParseGNUAttributes(D, &LateParsedAttrs); Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try); Diag(Loc, diag::err_c11_noreturn_misplaced) << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint()) << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ") : FixItHint()); } } // Check to see if we have a function *definition* which must have a body. if (D.isFunctionDeclarator() && // Look at the next token to make sure that this isn't a function // declaration. We have to check this because __attribute__ might be the // start of a function definition in GCC-extended K&R C. !isDeclarationAfterDeclarator()) { // Function definitions are only allowed at file scope and in C++ classes. // The C++ inline method definition case is handled elsewhere, so we only // need to handle the file scope definition case. if (Context == DeclaratorContext::FileContext) { if (isStartOfFunctionDefinition(D)) { if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { Diag(Tok, diag::err_function_declared_typedef); // Recover by treating the 'typedef' as spurious. DS.ClearStorageClassSpecs(); } Decl *TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs); return Actions.ConvertDeclToDeclGroup(TheDecl); } if (isDeclarationSpecifier()) { // If there is an invalid declaration specifier right after the // function prototype, then we must be in a missing semicolon case // where this isn't actually a body. Just fall through into the code // that handles it as a prototype, and let the top-level code handle // the erroneous declspec where it would otherwise expect a comma or // semicolon. } else { Diag(Tok, diag::err_expected_fn_body); SkipUntil(tok::semi); return nullptr; } } else { if (Tok.is(tok::l_brace)) { Diag(Tok, diag::err_function_definition_not_allowed); SkipMalformedDecl(); return nullptr; } } } if (ParseAsmAttributesAfterDeclarator(D)) return nullptr; // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we // must parse and analyze the for-range-initializer before the declaration is // analyzed. // // Handle the Objective-C for-in loop variable similarly, although we // don't need to parse the container in advance. if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) { bool IsForRangeLoop = false; if (TryConsumeToken(tok::colon, FRI->ColonLoc)) { IsForRangeLoop = true; if (getLangOpts().OpenMP) Actions.startOpenMPCXXRangeFor(); if (Tok.is(tok::l_brace)) FRI->RangeExpr = ParseBraceInitializer(); else FRI->RangeExpr = ParseExpression(); } Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); if (IsForRangeLoop) { Actions.ActOnCXXForRangeDecl(ThisDecl); } else { // Obj-C for loop if (auto *VD = dyn_cast_or_null(ThisDecl)) VD->setObjCForDecl(true); } Actions.FinalizeDeclaration(ThisDecl); D.complete(ThisDecl); return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl); } SmallVector DeclsInGroup; Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes( D, ParsedTemplateInfo(), FRI); if (LateParsedAttrs.size() > 0) ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false); D.complete(FirstDecl); if (FirstDecl) DeclsInGroup.push_back(FirstDecl); bool ExpectSemi = Context != DeclaratorContext::ForContext; // If we don't have a comma, it is either the end of the list (a ';') or an // error, bail out. SourceLocation CommaLoc; while (TryConsumeToken(tok::comma, CommaLoc)) { if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) { // This comma was followed by a line-break and something which can't be // the start of a declarator. The comma was probably a typo for a // semicolon. Diag(CommaLoc, diag::err_expected_semi_declaration) << FixItHint::CreateReplacement(CommaLoc, ";"); ExpectSemi = false; break; } // Parse the next declarator. D.clear(); D.setCommaLoc(CommaLoc); // Accept attributes in an init-declarator. In the first declarator in a // declaration, these would be part of the declspec. In subsequent // declarators, they become part of the declarator itself, so that they // don't apply to declarators after *this* one. Examples: // short __attribute__((common)) var; -> declspec // short var __attribute__((common)); -> declarator // short x, __attribute__((common)) var; -> declarator MaybeParseGNUAttributes(D); // MSVC parses but ignores qualifiers after the comma as an extension. if (getLangOpts().MicrosoftExt) DiagnoseAndSkipExtendedMicrosoftTypeAttributes(); ParseDeclarator(D); if (!D.isInvalidType()) { // C++2a [dcl.decl]p1 // init-declarator: // declarator initializer[opt] // declarator requires-clause if (Tok.is(tok::kw_requires)) ParseTrailingRequiresClause(D); Decl *ThisDecl = ParseDeclarationAfterDeclarator(D); D.complete(ThisDecl); if (ThisDecl) DeclsInGroup.push_back(ThisDecl); } } if (DeclEnd) *DeclEnd = Tok.getLocation(); if (ExpectSemi && ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext ? diag::err_invalid_token_after_toplevel_declarator : diag::err_expected_semi_declaration)) { // Okay, there was no semicolon and one was expected. If we see a // declaration specifier, just assume it was missing and continue parsing. // Otherwise things are very confused and we skip to recover. if (!isDeclarationSpecifier()) { SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); TryConsumeToken(tok::semi); } } return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup); } /// Parse an optional simple-asm-expr and attributes, and attach them to a /// declarator. Returns true on an error. bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) { // If a simple-asm-expr is present, parse it. if (Tok.is(tok::kw_asm)) { SourceLocation Loc; ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc)); if (AsmLabel.isInvalid()) { SkipUntil(tok::semi, StopBeforeMatch); return true; } D.setAsmLabel(AsmLabel.get()); D.SetRangeEnd(Loc); } MaybeParseGNUAttributes(D); return false; } /// Parse 'declaration' after parsing 'declaration-specifiers /// declarator'. This method parses the remainder of the declaration /// (including any attributes or initializer, among other things) and /// finalizes the declaration. /// /// init-declarator: [C99 6.7] /// declarator /// declarator '=' initializer /// [GNU] declarator simple-asm-expr[opt] attributes[opt] /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer /// [C++] declarator initializer[opt] /// /// [C++] initializer: /// [C++] '=' initializer-clause /// [C++] '(' expression-list ')' /// [C++0x] '=' 'default' [TODO] /// [C++0x] '=' 'delete' /// [C++0x] braced-init-list /// /// According to the standard grammar, =default and =delete are function /// definitions, but that definitely doesn't fit with the parser here. /// Decl *Parser::ParseDeclarationAfterDeclarator( Declarator &D, const ParsedTemplateInfo &TemplateInfo) { if (ParseAsmAttributesAfterDeclarator(D)) return nullptr; return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo); } Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes( Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) { // RAII type used to track whether we're inside an initializer. struct InitializerScopeRAII { Parser &P; Declarator &D; Decl *ThisDecl; InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl) : P(P), D(D), ThisDecl(ThisDecl) { if (ThisDecl && P.getLangOpts().CPlusPlus) { Scope *S = nullptr; if (D.getCXXScopeSpec().isSet()) { P.EnterScope(0); S = P.getCurScope(); } P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl); } } ~InitializerScopeRAII() { pop(); } void pop() { if (ThisDecl && P.getLangOpts().CPlusPlus) { Scope *S = nullptr; if (D.getCXXScopeSpec().isSet()) S = P.getCurScope(); P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl); if (S) P.ExitScope(); } ThisDecl = nullptr; } }; // Inform the current actions module that we just parsed this declarator. Decl *ThisDecl = nullptr; switch (TemplateInfo.Kind) { case ParsedTemplateInfo::NonTemplate: ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); break; case ParsedTemplateInfo::Template: case ParsedTemplateInfo::ExplicitSpecialization: { ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), *TemplateInfo.TemplateParams, D); if (VarTemplateDecl *VT = dyn_cast_or_null(ThisDecl)) // Re-direct this decl to refer to the templated decl so that we can // initialize it. ThisDecl = VT->getTemplatedDecl(); break; } case ParsedTemplateInfo::ExplicitInstantiation: { if (Tok.is(tok::semi)) { DeclResult ThisRes = Actions.ActOnExplicitInstantiation( getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D); if (ThisRes.isInvalid()) { SkipUntil(tok::semi, StopBeforeMatch); return nullptr; } ThisDecl = ThisRes.get(); } else { // FIXME: This check should be for a variable template instantiation only. // Check that this is a valid instantiation if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { // If the declarator-id is not a template-id, issue a diagnostic and // recover by ignoring the 'template' keyword. Diag(Tok, diag::err_template_defn_explicit_instantiation) << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc); ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); } else { SourceLocation LAngleLoc = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_with_definition) << SourceRange(TemplateInfo.TemplateLoc) << FixItHint::CreateInsertion(LAngleLoc, "<>"); // Recover as if it were an explicit specialization. TemplateParameterLists FakedParamLists; FakedParamLists.push_back(Actions.ActOnTemplateParameterList( 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None, LAngleLoc, nullptr)); ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D); } } break; } } // Parse declarator '=' initializer. // If a '==' or '+=' is found, suggest a fixit to '='. if (isTokenEqualOrEqualTypo()) { SourceLocation EqualLoc = ConsumeToken(); if (Tok.is(tok::kw_delete)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 1 /* delete */; else Diag(ConsumeToken(), diag::err_deleted_non_function); } else if (Tok.is(tok::kw_default)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 0 /* default */; else Diag(ConsumeToken(), diag::err_default_special_members) << getLangOpts().CPlusPlus2a; } else { InitializerScopeRAII InitScope(*this, D, ThisDecl); if (Tok.is(tok::code_completion)) { Actions.CodeCompleteInitializer(getCurScope(), ThisDecl); Actions.FinalizeDeclaration(ThisDecl); cutOffParsing(); return nullptr; } PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl); ExprResult Init = ParseInitializer(); // If this is the only decl in (possibly) range based for statement, // our best guess is that the user meant ':' instead of '='. if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) { Diag(EqualLoc, diag::err_single_decl_assign_in_for_range) << FixItHint::CreateReplacement(EqualLoc, ":"); // We are trying to stop parser from looking for ';' in this for // statement, therefore preventing spurious errors to be issued. FRI->ColonLoc = EqualLoc; Init = ExprError(); FRI->RangeExpr = Init; } InitScope.pop(); if (Init.isInvalid()) { SmallVector StopTokens; StopTokens.push_back(tok::comma); if (D.getContext() == DeclaratorContext::ForContext || D.getContext() == DeclaratorContext::InitStmtContext) StopTokens.push_back(tok::r_paren); SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch); Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/false); } } else if (Tok.is(tok::l_paren)) { // Parse C++ direct initializer: '(' expression-list ')' BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); ExprVector Exprs; CommaLocsTy CommaLocs; InitializerScopeRAII InitScope(*this, D, ThisDecl); auto ThisVarDecl = dyn_cast_or_null(ThisDecl); auto RunSignatureHelp = [&]() { QualType PreferredType = Actions.ProduceConstructorSignatureHelp( getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(), ThisDecl->getLocation(), Exprs, T.getOpenLocation()); CalledSignatureHelp = true; return PreferredType; }; auto SetPreferredType = [&] { PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp); }; llvm::function_ref ExpressionStarts; if (ThisVarDecl) { // ParseExpressionList can sometimes succeed even when ThisDecl is not // VarDecl. This is an error and it is reported in a call to // Actions.ActOnInitializerError(). However, we call // ProduceConstructorSignatureHelp only on VarDecls. ExpressionStarts = SetPreferredType; } if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) { if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) { Actions.ProduceConstructorSignatureHelp( getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(), ThisDecl->getLocation(), Exprs, T.getOpenLocation()); CalledSignatureHelp = true; } Actions.ActOnInitializerError(ThisDecl); SkipUntil(tok::r_paren, StopAtSemi); } else { // Match the ')'. T.consumeClose(); assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() && "Unexpected number of commas!"); InitScope.pop(); ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(), T.getCloseLocation(), Exprs); Actions.AddInitializerToDecl(ThisDecl, Initializer.get(), /*DirectInit=*/true); } } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) && (!CurParsedObjCImpl || !D.isFunctionDeclarator())) { // Parse C++0x braced-init-list. Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); InitializerScopeRAII InitScope(*this, D, ThisDecl); ExprResult Init(ParseBraceInitializer()); InitScope.pop(); if (Init.isInvalid()) { Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true); } else { Actions.ActOnUninitializedDecl(ThisDecl); } Actions.FinalizeDeclaration(ThisDecl); return ThisDecl; } /// ParseSpecifierQualifierList /// specifier-qualifier-list: /// type-specifier specifier-qualifier-list[opt] /// type-qualifier specifier-qualifier-list[opt] /// [GNU] attributes specifier-qualifier-list[opt] /// void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS, DeclSpecContext DSC) { /// specifier-qualifier-list is a subset of declaration-specifiers. Just /// parse declaration-specifiers and complain about extra stuff. /// TODO: diagnose attribute-specifiers and alignment-specifiers. ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC); // Validate declspec for type-name. unsigned Specs = DS.getParsedSpecifiers(); if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) { Diag(Tok, diag::err_expected_type); DS.SetTypeSpecError(); } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) { Diag(Tok, diag::err_typename_requires_specqual); if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); } // Issue diagnostic and remove storage class if present. if (Specs & DeclSpec::PQ_StorageClassSpecifier) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); else Diag(DS.getThreadStorageClassSpecLoc(), diag::err_typename_invalid_storageclass); DS.ClearStorageClassSpecs(); } // Issue diagnostic and remove function specifier if present. if (Specs & DeclSpec::PQ_FunctionSpecifier) { if (DS.isInlineSpecified()) Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isVirtualSpecified()) Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.hasExplicitSpecifier()) Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec); DS.ClearFunctionSpecs(); } // Issue diagnostic and remove constexpr specifier if present. if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) { Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr) << DS.getConstexprSpecifier(); DS.ClearConstexprSpec(); } } /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the /// specified token is valid after the identifier in a declarator which /// immediately follows the declspec. For example, these things are valid: /// /// int x [ 4]; // direct-declarator /// int x ( int y); // direct-declarator /// int(int x ) // direct-declarator /// int x ; // simple-declaration /// int x = 17; // init-declarator-list /// int x , y; // init-declarator-list /// int x __asm__ ("foo"); // init-declarator-list /// int x : 4; // struct-declarator /// int x { 5}; // C++'0x unified initializers /// /// This is not, because 'x' does not immediately follow the declspec (though /// ')' happens to be valid anyway). /// int (x) /// static bool isValidAfterIdentifierInDeclarator(const Token &T) { return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi, tok::comma, tok::equal, tok::kw_asm, tok::l_brace, tok::colon); } /// ParseImplicitInt - This method is called when we have an non-typename /// identifier in a declspec (which normally terminates the decl spec) when /// the declspec has no type specifier. In this case, the declspec is either /// malformed or is "implicit int" (in K&R and C89). /// /// This method handles diagnosing this prettily and returns false if the /// declspec is done being processed. If it recovers and thinks there may be /// other pieces of declspec after it, it returns true. /// bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC, ParsedAttributesWithRange &Attrs) { assert(Tok.is(tok::identifier) && "should have identifier"); SourceLocation Loc = Tok.getLocation(); // If we see an identifier that is not a type name, we normally would // parse it as the identifier being declared. However, when a typename // is typo'd or the definition is not included, this will incorrectly // parse the typename as the identifier name and fall over misparsing // later parts of the diagnostic. // // As such, we try to do some look-ahead in cases where this would // otherwise be an "implicit-int" case to see if this is invalid. For // example: "static foo_t x = 4;" In this case, if we parsed foo_t as // an identifier with implicit int, we'd get a parse error because the // next token is obviously invalid for a type. Parse these as a case // with an invalid type specifier. assert(!DS.hasTypeSpecifier() && "Type specifier checked above"); // Since we know that this either implicit int (which is rare) or an // error, do lookahead to try to do better recovery. This never applies // within a type specifier. Outside of C++, we allow this even if the // language doesn't "officially" support implicit int -- we support // implicit int as an extension in C99 and C11. if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus && isValidAfterIdentifierInDeclarator(NextToken())) { // If this token is valid for implicit int, e.g. "static x = 4", then // we just avoid eating the identifier, so it will be parsed as the // identifier in the declarator. return false; } // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic // for incomplete declarations such as `pipe p`. if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe()) return false; if (getLangOpts().CPlusPlus && DS.getStorageClassSpec() == DeclSpec::SCS_auto) { // Don't require a type specifier if we have the 'auto' storage class // specifier in C++98 -- we'll promote it to a type specifier. if (SS) AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); return false; } if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) && getLangOpts().MSVCCompat) { // Lookup of an unqualified type name has failed in MSVC compatibility mode. // Give Sema a chance to recover if we are in a template with dependent base // classes. if (ParsedType T = Actions.ActOnMSVCUnknownTypeName( *Tok.getIdentifierInfo(), Tok.getLocation(), DSC == DeclSpecContext::DSC_template_type_arg)) { const char *PrevSpec; unsigned DiagID; DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Actions.getASTContext().getPrintingPolicy()); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); return false; } } // Otherwise, if we don't consume this token, we are going to emit an // error anyway. Try to recover from various common problems. Check // to see if this was a reference to a tag name without a tag specified. // This is a common problem in C (saying 'foo' instead of 'struct foo'). // // C++ doesn't need this, and isTagName doesn't take SS. if (SS == nullptr) { const char *TagName = nullptr, *FixitTagName = nullptr; tok::TokenKind TagKind = tok::unknown; switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) { default: break; case DeclSpec::TST_enum: TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break; case DeclSpec::TST_union: TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break; case DeclSpec::TST_struct: TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break; case DeclSpec::TST_interface: TagName="__interface"; FixitTagName = "__interface "; TagKind=tok::kw___interface;break; case DeclSpec::TST_class: TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break; } if (TagName) { IdentifierInfo *TokenName = Tok.getIdentifierInfo(); LookupResult R(Actions, TokenName, SourceLocation(), Sema::LookupOrdinaryName); Diag(Loc, diag::err_use_of_tag_name_without_tag) << TokenName << TagName << getLangOpts().CPlusPlus << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName); if (Actions.LookupParsedName(R, getCurScope(), SS)) { for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) << TokenName << TagName; } // Parse this as a tag as if the missing tag were present. if (TagKind == tok::kw_enum) ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DeclSpecContext::DSC_normal); else ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS, /*EnteringContext*/ false, DeclSpecContext::DSC_normal, Attrs); return true; } } // Determine whether this identifier could plausibly be the name of something // being declared (with a missing type). if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level || DSC == DeclSpecContext::DSC_class)) { // Look ahead to the next token to try to figure out what this declaration // was supposed to be. switch (NextToken().getKind()) { case tok::l_paren: { // static x(4); // 'x' is not a type // x(int n); // 'x' is not a type // x (*p)[]; // 'x' is a type // // Since we're in an error case, we can afford to perform a tentative // parse to determine which case we're in. TentativeParsingAction PA(*this); ConsumeToken(); TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false); PA.Revert(); if (TPR != TPResult::False) { // The identifier is followed by a parenthesized declarator. // It's supposed to be a type. break; } // If we're in a context where we could be declaring a constructor, // check whether this is a constructor declaration with a bogus name. if (DSC == DeclSpecContext::DSC_class || (DSC == DeclSpecContext::DSC_top_level && SS)) { IdentifierInfo *II = Tok.getIdentifierInfo(); if (Actions.isCurrentClassNameTypo(II, SS)) { Diag(Loc, diag::err_constructor_bad_name) << Tok.getIdentifierInfo() << II << FixItHint::CreateReplacement(Tok.getLocation(), II->getName()); Tok.setIdentifierInfo(II); } } // Fall through. LLVM_FALLTHROUGH; } case tok::comma: case tok::equal: case tok::kw_asm: case tok::l_brace: case tok::l_square: case tok::semi: // This looks like a variable or function declaration. The type is // probably missing. We're done parsing decl-specifiers. // But only if we are not in a function prototype scope. if (getCurScope()->isFunctionPrototypeScope()) break; if (SS) AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); return false; default: // This is probably supposed to be a type. This includes cases like: // int f(itn); // struct S { unsinged : 4; }; break; } } // This is almost certainly an invalid type name. Let Sema emit a diagnostic // and attempt to recover. ParsedType T; IdentifierInfo *II = Tok.getIdentifierInfo(); bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less); Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T, IsTemplateName); if (T) { // The action has suggested that the type T could be used. Set that as // the type in the declaration specifiers, consume the would-be type // name token, and we're done. const char *PrevSpec; unsigned DiagID; DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Actions.getASTContext().getPrintingPolicy()); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // There may be other declaration specifiers after this. return true; } else if (II != Tok.getIdentifierInfo()) { // If no type was suggested, the correction is to a keyword Tok.setKind(II->getTokenID()); // There may be other declaration specifiers after this. return true; } // Otherwise, the action had no suggestion for us. Mark this as an error. DS.SetTypeSpecError(); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // Eat any following template arguments. if (IsTemplateName) { SourceLocation LAngle, RAngle; TemplateArgList Args; ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle); } // TODO: Could inject an invalid typedef decl in an enclosing scope to // avoid rippling error messages on subsequent uses of the same type, // could be useful if #include was forgotten. return true; } /// Determine the declaration specifier context from the declarator /// context. /// /// \param Context the declarator context, which is one of the /// DeclaratorContext enumerator values. Parser::DeclSpecContext Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) { if (Context == DeclaratorContext::MemberContext) return DeclSpecContext::DSC_class; if (Context == DeclaratorContext::FileContext) return DeclSpecContext::DSC_top_level; if (Context == DeclaratorContext::TemplateParamContext) return DeclSpecContext::DSC_template_param; if (Context == DeclaratorContext::TemplateArgContext || Context == DeclaratorContext::TemplateTypeArgContext) return DeclSpecContext::DSC_template_type_arg; if (Context == DeclaratorContext::TrailingReturnContext || Context == DeclaratorContext::TrailingReturnVarContext) return DeclSpecContext::DSC_trailing; if (Context == DeclaratorContext::AliasDeclContext || Context == DeclaratorContext::AliasTemplateContext) return DeclSpecContext::DSC_alias_declaration; return DeclSpecContext::DSC_normal; } /// ParseAlignArgument - Parse the argument to an alignment-specifier. /// /// FIXME: Simply returns an alignof() expression if the argument is a /// type. Ideally, the type should be propagated directly into Sema. /// /// [C11] type-id /// [C11] constant-expression /// [C++0x] type-id ...[opt] /// [C++0x] assignment-expression ...[opt] ExprResult Parser::ParseAlignArgument(SourceLocation Start, SourceLocation &EllipsisLoc) { ExprResult ER; if (isTypeIdInParens()) { SourceLocation TypeLoc = Tok.getLocation(); ParsedType Ty = ParseTypeName().get(); SourceRange TypeRange(Start, Tok.getLocation()); ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true, Ty.getAsOpaquePtr(), TypeRange); } else ER = ParseConstantExpression(); if (getLangOpts().CPlusPlus11) TryConsumeToken(tok::ellipsis, EllipsisLoc); return ER; } /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the /// attribute to Attrs. /// /// alignment-specifier: /// [C11] '_Alignas' '(' type-id ')' /// [C11] '_Alignas' '(' constant-expression ')' /// [C++11] 'alignas' '(' type-id ...[opt] ')' /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')' void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs, SourceLocation *EndLoc) { assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) && "Not an alignment-specifier!"); IdentifierInfo *KWName = Tok.getIdentifierInfo(); SourceLocation KWLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume()) return; SourceLocation EllipsisLoc; ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc); if (ArgExpr.isInvalid()) { T.skipToEnd(); return; } T.consumeClose(); if (EndLoc) *EndLoc = T.getCloseLocation(); ArgsVector ArgExprs; ArgExprs.push_back(ArgExpr.get()); Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, ParsedAttr::AS_Keyword, EllipsisLoc); } /// Determine whether we're looking at something that might be a declarator /// in a simple-declaration. If it can't possibly be a declarator, maybe /// diagnose a missing semicolon after a prior tag definition in the decl /// specifier. /// /// \return \c true if an error occurred and this can't be any kind of /// declaration. bool Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS, DeclSpecContext DSContext, LateParsedAttrList *LateAttrs) { assert(DS.hasTagDefinition() && "shouldn't call this"); bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || DSContext == DeclSpecContext::DSC_top_level); if (getLangOpts().CPlusPlus && Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype, tok::annot_template_id) && TryAnnotateCXXScopeToken(EnteringContext)) { SkipMalformedDecl(); return true; } bool HasScope = Tok.is(tok::annot_cxxscope); // Make a copy in case GetLookAheadToken invalidates the result of NextToken. Token AfterScope = HasScope ? NextToken() : Tok; // Determine whether the following tokens could possibly be a // declarator. bool MightBeDeclarator = true; if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) { // A declarator-id can't start with 'typename'. MightBeDeclarator = false; } else if (AfterScope.is(tok::annot_template_id)) { // If we have a type expressed as a template-id, this cannot be a // declarator-id (such a type cannot be redeclared in a simple-declaration). TemplateIdAnnotation *Annot = static_cast(AfterScope.getAnnotationValue()); if (Annot->Kind == TNK_Type_template) MightBeDeclarator = false; } else if (AfterScope.is(tok::identifier)) { const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken(); // These tokens cannot come after the declarator-id in a // simple-declaration, and are likely to come after a type-specifier. if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier, tok::annot_cxxscope, tok::coloncolon)) { // Missing a semicolon. MightBeDeclarator = false; } else if (HasScope) { // If the declarator-id has a scope specifier, it must redeclare a // previously-declared entity. If that's a type (and this is not a // typedef), that's an error. CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation( Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); IdentifierInfo *Name = AfterScope.getIdentifierInfo(); Sema::NameClassification Classification = Actions.ClassifyName( getCurScope(), SS, Name, AfterScope.getLocation(), Next, /*CCC=*/nullptr); switch (Classification.getKind()) { case Sema::NC_Error: SkipMalformedDecl(); return true; case Sema::NC_Keyword: llvm_unreachable("typo correction is not possible here"); case Sema::NC_Type: case Sema::NC_TypeTemplate: case Sema::NC_UndeclaredNonType: case Sema::NC_UndeclaredTemplate: // Not a previously-declared non-type entity. MightBeDeclarator = false; break; case Sema::NC_Unknown: case Sema::NC_NonType: case Sema::NC_DependentNonType: case Sema::NC_ContextIndependentExpr: case Sema::NC_VarTemplate: case Sema::NC_FunctionTemplate: case Sema::NC_Concept: // Might be a redeclaration of a prior entity. break; } } } if (MightBeDeclarator) return false; const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy(); Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()), diag::err_expected_after) << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi; // Try to recover from the typo, by dropping the tag definition and parsing // the problematic tokens as a type. // // FIXME: Split the DeclSpec into pieces for the standalone // declaration and pieces for the following declaration, instead // of assuming that all the other pieces attach to new declaration, // and call ParsedFreeStandingDeclSpec as appropriate. DS.ClearTypeSpecType(); ParsedTemplateInfo NotATemplate; ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs); return false; } // Choose the apprpriate diagnostic error for why fixed point types are // disabled, set the previous specifier, and mark as invalid. static void SetupFixedPointError(const LangOptions &LangOpts, const char *&PrevSpec, unsigned &DiagID, bool &isInvalid) { assert(!LangOpts.FixedPoint); DiagID = diag::err_fixed_point_not_enabled; PrevSpec = ""; // Not used by diagnostic isInvalid = true; } /// ParseDeclarationSpecifiers /// declaration-specifiers: [C99 6.7] /// storage-class-specifier declaration-specifiers[opt] /// type-specifier declaration-specifiers[opt] /// [C99] function-specifier declaration-specifiers[opt] /// [C11] alignment-specifier declaration-specifiers[opt] /// [GNU] attributes declaration-specifiers[opt] /// [Clang] '__module_private__' declaration-specifiers[opt] /// [ObjC1] '__kindof' declaration-specifiers[opt] /// /// storage-class-specifier: [C99 6.7.1] /// 'typedef' /// 'extern' /// 'static' /// 'auto' /// 'register' /// [C++] 'mutable' /// [C++11] 'thread_local' /// [C11] '_Thread_local' /// [GNU] '__thread' /// function-specifier: [C99 6.7.4] /// [C99] 'inline' /// [C++] 'virtual' /// [C++] 'explicit' /// [OpenCL] '__kernel' /// 'friend': [C++ dcl.friend] /// 'constexpr': [C++0x dcl.constexpr] void Parser::ParseDeclarationSpecifiers(DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSContext, LateParsedAttrList *LateAttrs) { if (DS.getSourceRange().isInvalid()) { // Start the range at the current token but make the end of the range // invalid. This will make the entire range invalid unless we successfully // consume a token. DS.SetRangeStart(Tok.getLocation()); DS.SetRangeEnd(SourceLocation()); } bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || DSContext == DeclSpecContext::DSC_top_level); bool AttrsLastTime = false; ParsedAttributesWithRange attrs(AttrFactory); // We use Sema's policy to get bool macros right. PrintingPolicy Policy = Actions.getPrintingPolicy(); while (1) { bool isInvalid = false; bool isStorageClass = false; const char *PrevSpec = nullptr; unsigned DiagID = 0; // This value needs to be set to the location of the last token if the last // token of the specifier is already consumed. SourceLocation ConsumedEnd; // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL // implementation for VS2013 uses _Atomic as an identifier for one of the // classes in . // // A typedef declaration containing _Atomic<...> is among the places where // the class is used. If we are currently parsing such a declaration, treat // the token as an identifier. if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) && DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef && !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less)) Tok.setKind(tok::identifier); SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { default: DoneWithDeclSpec: if (!AttrsLastTime) ProhibitAttributes(attrs); else { // Reject C++11 attributes that appertain to decl specifiers as // we don't support any C++11 attributes that appertain to decl // specifiers. This also conforms to what g++ 4.8 is doing. ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr); DS.takeAttributesFrom(attrs); } // If this is not a declaration specifier token, we're done reading decl // specifiers. First verify that DeclSpec's are consistent. DS.Finish(Actions, Policy); return; case tok::l_square: case tok::kw_alignas: if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier()) goto DoneWithDeclSpec; ProhibitAttributes(attrs); // FIXME: It would be good to recover by accepting the attributes, // but attempting to do that now would cause serious // madness in terms of diagnostics. attrs.clear(); attrs.Range = SourceRange(); ParseCXX11Attributes(attrs); AttrsLastTime = true; continue; case tok::code_completion: { Sema::ParserCompletionContext CCC = Sema::PCC_Namespace; if (DS.hasTypeSpecifier()) { bool AllowNonIdentifiers = (getCurScope()->getFlags() & (Scope::ControlScope | Scope::BlockScope | Scope::TemplateParamScope | Scope::FunctionPrototypeScope | Scope::AtCatchScope)) == 0; bool AllowNestedNameSpecifiers = DSContext == DeclSpecContext::DSC_top_level || (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified()); Actions.CodeCompleteDeclSpec(getCurScope(), DS, AllowNonIdentifiers, AllowNestedNameSpecifiers); return cutOffParsing(); } if (getCurScope()->getFnParent() || getCurScope()->getBlockParent()) CCC = Sema::PCC_LocalDeclarationSpecifiers; else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate : Sema::PCC_Template; else if (DSContext == DeclSpecContext::DSC_class) CCC = Sema::PCC_Class; else if (CurParsedObjCImpl) CCC = Sema::PCC_ObjCImplementation; Actions.CodeCompleteOrdinaryName(getCurScope(), CCC); return cutOffParsing(); } case tok::coloncolon: // ::foo::bar // C++ scope specifier. Annotate and loop, or bail out on error. if (TryAnnotateCXXScopeToken(EnteringContext)) { if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (Tok.is(tok::coloncolon)) // ::new or ::delete goto DoneWithDeclSpec; continue; case tok::annot_cxxscope: { if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector()) goto DoneWithDeclSpec; CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); // We are looking for a qualified typename. Token Next = NextToken(); if (Next.is(tok::annot_template_id) && static_cast(Next.getAnnotationValue()) ->Kind == TNK_Type_template) { // We have a qualified template-id, e.g., N::A // If this would be a valid constructor declaration with template // arguments, we will reject the attempt to form an invalid type-id // referring to the injected-class-name when we annotate the token, // per C++ [class.qual]p2. // // To improve diagnostics for this case, parse the declaration as a // constructor (and reject the extra template arguments later). TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); if ((DSContext == DeclSpecContext::DSC_top_level || DSContext == DeclSpecContext::DSC_class) && TemplateId->Name && Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) && isConstructorDeclarator(/*Unqualified=*/false)) { // The user meant this to be an out-of-line constructor // definition, but template arguments are not allowed // there. Just allow this as a constructor; we'll // complain about it later. goto DoneWithDeclSpec; } DS.getTypeSpecScope() = SS; ConsumeAnnotationToken(); // The C++ scope. assert(Tok.is(tok::annot_template_id) && "ParseOptionalCXXScopeSpecifier not working"); AnnotateTemplateIdTokenAsType(SS); continue; } if (Next.is(tok::annot_template_id) && static_cast(Next.getAnnotationValue()) ->Kind == TNK_Concept_template && GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype)) { DS.getTypeSpecScope() = SS; // This is a qualified placeholder-specifier, e.g., ::C auto ... // Consume the scope annotation and continue to consume the template-id // as a placeholder-specifier. ConsumeAnnotationToken(); continue; } if (Next.is(tok::annot_typename)) { DS.getTypeSpecScope() = SS; ConsumeAnnotationToken(); // The C++ scope. if (Tok.getAnnotationValue()) { ParsedType T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Tok.getAnnotationEndLoc(), PrevSpec, DiagID, T, Policy); if (isInvalid) break; } else DS.SetTypeSpecError(); DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeAnnotationToken(); // The typename } if (Next.isNot(tok::identifier)) goto DoneWithDeclSpec; // Check whether this is a constructor declaration. If we're in a // context where the identifier could be a class name, and it has the // shape of a constructor declaration, process it as one. if ((DSContext == DeclSpecContext::DSC_top_level || DSContext == DeclSpecContext::DSC_class) && Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(), &SS) && isConstructorDeclarator(/*Unqualified*/ false)) goto DoneWithDeclSpec; ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS, false, false, nullptr, /*IsCtorOrDtorName=*/false, /*WantNontrivialTypeSourceInfo=*/true, isClassTemplateDeductionContext(DSContext)); // If the referenced identifier is not a type, then this declspec is // erroneous: We already checked about that it has no type specifier, and // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the // typename. if (!TypeRep) { if (TryAnnotateTypeConstraint()) goto DoneWithDeclSpec; if (isTypeConstraintAnnotation()) continue; + if (NextToken().is(tok::annot_template_id)) + // Might have been annotated by TryAnnotateTypeConstraint. + continue; // Eat the scope spec so the identifier is current. ConsumeAnnotationToken(); ParsedAttributesWithRange Attrs(AttrFactory); if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) { if (!Attrs.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attrs); } continue; } goto DoneWithDeclSpec; } DS.getTypeSpecScope() = SS; ConsumeAnnotationToken(); // The C++ scope. isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The typename. continue; } case tok::annot_typename: { // If we've previously seen a tag definition, we were almost surely // missing a semicolon after it. if (DS.hasTypeSpecifier() && DS.hasTagDefinition()) goto DoneWithDeclSpec; if (Tok.getAnnotationValue()) { ParsedType T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Policy); } else DS.SetTypeSpecError(); if (isInvalid) break; DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeAnnotationToken(); // The typename continue; } case tok::kw___is_signed: // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang // typically treats it as a trait. If we see __is_signed as it appears // in libstdc++, e.g., // // static const bool __is_signed; // // then treat __is_signed as an identifier rather than as a keyword. if (DS.getTypeSpecType() == TST_bool && DS.getTypeQualifiers() == DeclSpec::TQ_const && DS.getStorageClassSpec() == DeclSpec::SCS_static) TryKeywordIdentFallback(true); // We're done with the declaration-specifiers. goto DoneWithDeclSpec; // typedef-name case tok::kw___super: case tok::kw_decltype: case tok::identifier: { // This identifier can only be a typedef name if we haven't already seen // a type-specifier. Without this check we misparse: // typedef int X; struct Y { short X; }; as 'short int'. if (DS.hasTypeSpecifier()) goto DoneWithDeclSpec; // If the token is an identifier named "__declspec" and Microsoft // extensions are not enabled, it is likely that there will be cascading // parse errors if this really is a __declspec attribute. Attempt to // recognize that scenario and recover gracefully. if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) && Tok.getIdentifierInfo()->getName().equals("__declspec")) { Diag(Loc, diag::err_ms_attributes_not_enabled); // The next token should be an open paren. If it is, eat the entire // attribute declaration and continue. if (NextToken().is(tok::l_paren)) { // Consume the __declspec identifier. ConsumeToken(); // Eat the parens and everything between them. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { assert(false && "Not a left paren?"); return; } T.skipToEnd(); continue; } } // In C++, check to see if this is a scope specifier like foo::bar::, if // so handle it as such. This is important for ctor parsing. if (getLangOpts().CPlusPlus) { if (TryAnnotateCXXScopeToken(EnteringContext)) { DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::identifier)) continue; } // Check for need to substitute AltiVec keyword tokens. if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid)) break; // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not // allow the use of a typedef name as a type specifier. if (DS.isTypeAltiVecVector()) goto DoneWithDeclSpec; if (DSContext == DeclSpecContext::DSC_objc_method_result && isObjCInstancetype()) { ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc); assert(TypeRep); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Loc); ConsumeToken(); continue; } // If we're in a context where the identifier could be a class name, // check whether this is a constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) && isConstructorDeclarator(/*Unqualified*/true)) goto DoneWithDeclSpec; ParsedType TypeRep = Actions.getTypeName( *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr, false, false, nullptr, false, false, isClassTemplateDeductionContext(DSContext)); // If this is not a typedef name, don't parse it as part of the declspec, // it must be an implicit int or an error. if (!TypeRep) { if (TryAnnotateTypeConstraint()) goto DoneWithDeclSpec; if (isTypeConstraintAnnotation()) + continue; + if (Tok.is(tok::annot_template_id)) + // Might have been annotated by TryAnnotateTypeConstraint. continue; ParsedAttributesWithRange Attrs(AttrFactory); if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) { if (!Attrs.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attrs); } continue; } goto DoneWithDeclSpec; } // Likewise, if this is a context where the identifier could be a template // name, check whether this is a deduction guide declaration. if (getLangOpts().CPlusPlus17 && (DSContext == DeclSpecContext::DSC_class || DSContext == DeclSpecContext::DSC_top_level) && Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(), Tok.getLocation()) && isConstructorDeclarator(/*Unqualified*/ true, /*DeductionGuide*/ true)) goto DoneWithDeclSpec; isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The identifier // Objective-C supports type arguments and protocol references // following an Objective-C object or object pointer // type. Handle either one of them. if (Tok.is(tok::less) && getLangOpts().ObjC) { SourceLocation NewEndLoc; TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers( Loc, TypeRep, /*consumeLastToken=*/true, NewEndLoc); if (NewTypeRep.isUsable()) { DS.UpdateTypeRep(NewTypeRep.get()); DS.SetRangeEnd(NewEndLoc); } } // Need to support trailing type qualifiers (e.g. "id

const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } // type-name or placeholder-specifier case tok::annot_template_id: { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->Kind == TNK_Concept_template) { if (NextToken().is(tok::identifier)) { Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto) << FixItHint::CreateInsertion(NextToken().getLocation(), "auto"); // Attempt to continue as if 'auto' was placed here. isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID, TemplateId, Policy); break; } if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype)) goto DoneWithDeclSpec; ConsumeAnnotationToken(); SourceLocation AutoLoc = Tok.getLocation(); if (TryConsumeToken(tok::kw_decltype)) { BalancedDelimiterTracker Tracker(*this, tok::l_paren); if (Tracker.consumeOpen()) { // Something like `void foo(Iterator decltype i)` Diag(Tok, diag::err_expected) << tok::l_paren; } else { if (!TryConsumeToken(tok::kw_auto)) { // Something like `void foo(Iterator decltype(int) i)` Tracker.skipToEnd(); Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto) << FixItHint::CreateReplacement(SourceRange(AutoLoc, Tok.getLocation()), "auto"); } else { Tracker.consumeClose(); } } ConsumedEnd = Tok.getLocation(); // Even if something went wrong above, continue as if we've seen // `decltype(auto)`. isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec, DiagID, TemplateId, Policy); } else { isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID, TemplateId, Policy); } break; } if (TemplateId->Kind != TNK_Type_template && TemplateId->Kind != TNK_Undeclared_template) { // This template-id does not refer to a type name, so we're // done with the type-specifiers. goto DoneWithDeclSpec; } // If we're in a context where the template-id could be a // constructor name or specialization, check whether this is a // constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) && isConstructorDeclarator(/*Unqualified=*/true)) goto DoneWithDeclSpec; // Turn the template-id annotation token into a type annotation // token, then try again to parse it as a type-specifier. CXXScopeSpec SS; AnnotateTemplateIdTokenAsType(SS); continue; } // GNU attributes support. case tok::kw___attribute: ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs); continue; // Microsoft declspec support. case tok::kw___declspec: ParseMicrosoftDeclSpecs(DS.getAttributes()); continue; // Microsoft single token adornments. case tok::kw___forceinline: { isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID); IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = Tok.getLocation(); DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::AS_Keyword); break; } case tok::kw___unaligned: isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw___sptr: case tok::kw___uptr: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___w64: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; // Borland single token adornments. case tok::kw___pascal: ParseBorlandTypeAttributes(DS.getAttributes()); continue; // OpenCL single token adornments. case tok::kw___kernel: ParseOpenCLKernelAttributes(DS.getAttributes()); continue; // Nullability type specifiers. case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: ParseNullabilityTypeSpecifiers(DS.getAttributes()); continue; // Objective-C 'kindof' types. case tok::kw___kindof: DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, nullptr, 0, ParsedAttr::AS_Keyword); (void)ConsumeToken(); continue; // storage-class-specifier case tok::kw_typedef: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_extern: if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) Diag(Tok, diag::ext_thread_before) << "extern"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___private_extern__: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_static: if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) Diag(Tok, diag::ext_thread_before) << "static"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_auto: if (getLangOpts().CPlusPlus11) { if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) { isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID, Policy); if (!isInvalid) Diag(Tok, diag::ext_auto_storage_class) << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); } else isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy); } else isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___auto_type: Diag(Tok, diag::ext_auto_type); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_register: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_mutable: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___thread: isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc, PrevSpec, DiagID); isStorageClass = true; break; case tok::kw_thread_local: isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc, PrevSpec, DiagID); isStorageClass = true; break; case tok::kw__Thread_local: if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_feature) << Tok.getName(); isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local, Loc, PrevSpec, DiagID); isStorageClass = true; break; // function-specifier case tok::kw_inline: isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID); break; case tok::kw_virtual: // C++ for OpenCL does not allow virtual function qualifier, to avoid // function pointers restricted in OpenCL v2.0 s6.9.a. if (getLangOpts().OpenCLCPlusPlus) { DiagID = diag::err_openclcxx_virtual_function; PrevSpec = Tok.getIdentifierInfo()->getNameStart(); isInvalid = true; } else { isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID); } break; case tok::kw_explicit: { SourceLocation ExplicitLoc = Loc; SourceLocation CloseParenLoc; ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue); ConsumedEnd = ExplicitLoc; ConsumeToken(); // kw_explicit if (Tok.is(tok::l_paren)) { if (getLangOpts().CPlusPlus2a || isExplicitBool() == TPResult::True) { Diag(Tok.getLocation(), getLangOpts().CPlusPlus2a ? diag::warn_cxx17_compat_explicit_bool : diag::ext_explicit_bool); ExprResult ExplicitExpr(static_cast(nullptr)); BalancedDelimiterTracker Tracker(*this, tok::l_paren); Tracker.consumeOpen(); ExplicitExpr = ParseConstantExpression(); ConsumedEnd = Tok.getLocation(); if (ExplicitExpr.isUsable()) { CloseParenLoc = Tok.getLocation(); Tracker.consumeClose(); ExplicitSpec = Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get()); } else Tracker.skipToEnd(); } else { Diag(Tok.getLocation(), diag::warn_cxx2a_compat_explicit_bool); } } isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID, ExplicitSpec, CloseParenLoc); break; } case tok::kw__Noreturn: if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_feature) << Tok.getName(); isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); break; // alignment-specifier case tok::kw__Alignas: if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_feature) << Tok.getName(); ParseAlignmentSpecifier(DS.getAttributes()); continue; // friend case tok::kw_friend: if (DSContext == DeclSpecContext::DSC_class) isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID); else { PrevSpec = ""; // not actually used by the diagnostic DiagID = diag::err_friend_invalid_in_context; isInvalid = true; } break; // Modules case tok::kw___module_private__: isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID); break; // constexpr, consteval, constinit specifiers case tok::kw_constexpr: isInvalid = DS.SetConstexprSpec(CSK_constexpr, Loc, PrevSpec, DiagID); break; case tok::kw_consteval: isInvalid = DS.SetConstexprSpec(CSK_consteval, Loc, PrevSpec, DiagID); break; case tok::kw_constinit: isInvalid = DS.SetConstexprSpec(CSK_constinit, Loc, PrevSpec, DiagID); break; // type-specifier case tok::kw_short: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_long: if (DS.getTypeSpecWidth() != DeclSpec::TSW_long) isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy); else isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___int64: isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_signed: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); break; case tok::kw_unsigned: isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); break; case tok::kw__Complex: if (!getLangOpts().C99) Diag(Tok, diag::ext_c99_feature) << Tok.getName(); isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec, DiagID); break; case tok::kw__Imaginary: if (!getLangOpts().C99) Diag(Tok, diag::ext_c99_feature) << Tok.getName(); isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec, DiagID); break; case tok::kw_void: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_int: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___int128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_half: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_float: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_double: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Float16: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Accum: if (!getLangOpts().FixedPoint) { SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); } else { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID, Policy); } break; case tok::kw__Fract: if (!getLangOpts().FixedPoint) { SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); } else { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID, Policy); } break; case tok::kw__Sat: if (!getLangOpts().FixedPoint) { SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); } else { isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID); } break; case tok::kw___float128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_wchar_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char8_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char16_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char32_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_bool: case tok::kw__Bool: if (Tok.is(tok::kw__Bool) && !getLangOpts().C99) Diag(Tok, diag::ext_c99_feature) << Tok.getName(); if (Tok.is(tok::kw_bool) && DS.getTypeSpecType() != DeclSpec::TST_unspecified && DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { PrevSpec = ""; // Not used by the diagnostic. DiagID = diag::err_bool_redeclaration; // For better error recovery. Tok.setKind(tok::identifier); isInvalid = true; } else { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); } break; case tok::kw__Decimal32: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Decimal64: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Decimal128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___vector: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___bool: isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_pipe: if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200 && !getLangOpts().OpenCLCPlusPlus)) { // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should // support the "pipe" word as identifier. Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); goto DoneWithDeclSpec; } isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy); break; #define GENERIC_IMAGE_TYPE(ImgType, Id) \ case tok::kw_##ImgType##_t: \ isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \ DiagID, Policy); \ break; #include "clang/Basic/OpenCLImageTypes.def" case tok::kw___unknown_anytype: isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc, PrevSpec, DiagID, Policy); break; // class-specifier: case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: { tok::TokenKind Kind = Tok.getKind(); ConsumeToken(); // These are attributes following class specifiers. // To produce better diagnostic, we parse them when // parsing class specifier. ParsedAttributesWithRange Attributes(AttrFactory); ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, EnteringContext, DSContext, Attributes); // If there are attributes following class specifier, // take them over and handle them here. if (!Attributes.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attributes); } continue; } // enum-specifier: case tok::kw_enum: ConsumeToken(); ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext); continue; // cv-qualifier: case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; // C++ typename-specifier: case tok::kw_typename: if (TryAnnotateTypeOrScopeToken()) { DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::kw_typename)) continue; break; // GNU typeof support. case tok::kw_typeof: ParseTypeofSpecifier(DS); continue; case tok::annot_decltype: ParseDecltypeSpecifier(DS); continue; case tok::annot_pragma_pack: HandlePragmaPack(); continue; case tok::annot_pragma_ms_pragma: HandlePragmaMSPragma(); continue; case tok::annot_pragma_ms_vtordisp: HandlePragmaMSVtorDisp(); continue; case tok::annot_pragma_ms_pointers_to_members: HandlePragmaMSPointersToMembers(); continue; case tok::kw___underlying_type: ParseUnderlyingTypeSpecifier(DS); continue; case tok::kw__Atomic: // C11 6.7.2.4/4: // If the _Atomic keyword is immediately followed by a left parenthesis, // it is interpreted as a type specifier (with a type name), not as a // type qualifier. if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_feature) << Tok.getName(); if (NextToken().is(tok::l_paren)) { ParseAtomicSpecifier(DS); continue; } isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, getLangOpts()); break; // OpenCL address space qualifiers: case tok::kw___generic: // generic address space is introduced only in OpenCL v2.0 // see OpenCL C Spec v2.0 s6.5.5 if (Actions.getLangOpts().OpenCLVersion < 200 && !Actions.getLangOpts().OpenCLCPlusPlus) { DiagID = diag::err_opencl_unknown_type_specifier; PrevSpec = Tok.getIdentifierInfo()->getNameStart(); isInvalid = true; break; } LLVM_FALLTHROUGH; case tok::kw_private: // It's fine (but redundant) to check this for __generic on the // fallthrough path; we only form the __generic token in OpenCL mode. if (!getLangOpts().OpenCL) goto DoneWithDeclSpec; LLVM_FALLTHROUGH; case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: // OpenCL access qualifiers: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS.getAttributes()); break; case tok::less: // GCC ObjC supports types like "" as a synonym for // "id". This is hopelessly old fashioned and dangerous, // but we support it. if (DS.hasTypeSpecifier() || !getLangOpts().ObjC) goto DoneWithDeclSpec; SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc; TypeResult Type = parseObjCProtocolQualifierType(EndLoc); if (Type.isUsable()) { if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc, PrevSpec, DiagID, Type.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; DS.SetRangeEnd(EndLoc); } else { DS.SetTypeSpecError(); } // Need to support trailing type qualifiers (e.g. "id

const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation()); // If the specifier wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); assert(DiagID); if (DiagID == diag::ext_duplicate_declspec || DiagID == diag::ext_warn_duplicate_declspec || DiagID == diag::err_duplicate_declspec) Diag(Loc, DiagID) << PrevSpec << FixItHint::CreateRemoval( SourceRange(Loc, DS.getEndLoc())); else if (DiagID == diag::err_opencl_unknown_type_specifier) { Diag(Loc, DiagID) << getLangOpts().OpenCLCPlusPlus << getLangOpts().getOpenCLVersionTuple().getAsString() << PrevSpec << isStorageClass; } else Diag(Loc, DiagID) << PrevSpec; } if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid()) // After an error the next token can be an annotation token. ConsumeAnyToken(); AttrsLastTime = false; } } /// ParseStructDeclaration - Parse a struct declaration without the terminating /// semicolon. /// /// Note that a struct declaration refers to a declaration in a struct, /// not to the declaration of a struct. /// /// struct-declaration: /// [C2x] attributes-specifier-seq[opt] /// specifier-qualifier-list struct-declarator-list /// [GNU] __extension__ struct-declaration /// [GNU] specifier-qualifier-list /// struct-declarator-list: /// struct-declarator /// struct-declarator-list ',' struct-declarator /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator /// struct-declarator: /// declarator /// [GNU] declarator attributes[opt] /// declarator[opt] ':' constant-expression /// [GNU] declarator[opt] ':' constant-expression attributes[opt] /// void Parser::ParseStructDeclaration( ParsingDeclSpec &DS, llvm::function_ref FieldsCallback) { if (Tok.is(tok::kw___extension__)) { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseStructDeclaration(DS, FieldsCallback); } // Parse leading attributes. ParsedAttributesWithRange Attrs(AttrFactory); MaybeParseCXX11Attributes(Attrs); DS.takeAttributesFrom(Attrs); // Parse the common specifier-qualifiers-list piece. ParseSpecifierQualifierList(DS); // If there are no declarators, this is a free-standing declaration // specifier. Let the actions module cope with it. if (Tok.is(tok::semi)) { RecordDecl *AnonRecord = nullptr; Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS, AnonRecord); assert(!AnonRecord && "Did not expect anonymous struct or union here"); DS.complete(TheDecl); return; } // Read struct-declarators until we find the semicolon. bool FirstDeclarator = true; SourceLocation CommaLoc; while (1) { ParsingFieldDeclarator DeclaratorInfo(*this, DS); DeclaratorInfo.D.setCommaLoc(CommaLoc); // Attributes are only allowed here on successive declarators. if (!FirstDeclarator) MaybeParseGNUAttributes(DeclaratorInfo.D); /// struct-declarator: declarator /// struct-declarator: declarator[opt] ':' constant-expression if (Tok.isNot(tok::colon)) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR. ColonProtectionRAIIObject X(*this); ParseDeclarator(DeclaratorInfo.D); } else DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation()); if (TryConsumeToken(tok::colon)) { ExprResult Res(ParseConstantExpression()); if (Res.isInvalid()) SkipUntil(tok::semi, StopBeforeMatch); else DeclaratorInfo.BitfieldSize = Res.get(); } // If attributes exist after the declarator, parse them. MaybeParseGNUAttributes(DeclaratorInfo.D); // We're done with this declarator; invoke the callback. FieldsCallback(DeclaratorInfo); // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (!TryConsumeToken(tok::comma, CommaLoc)) return; FirstDeclarator = false; } } /// ParseStructUnionBody /// struct-contents: /// struct-declaration-list /// [EXT] empty /// [GNU] "struct-declaration-list" without terminatoring ';' /// struct-declaration-list: /// struct-declaration /// struct-declaration-list struct-declaration /// [OBC] '@' 'defs' '(' class-name ')' /// void Parser::ParseStructUnionBody(SourceLocation RecordLoc, DeclSpec::TST TagType, Decl *TagDecl) { PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc, "parsing struct/union body"); assert(!getLangOpts().CPlusPlus && "C++ declarations not supported"); BalancedDelimiterTracker T(*this, tok::l_brace); if (T.consumeOpen()) return; ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope); Actions.ActOnTagStartDefinition(getCurScope(), TagDecl); SmallVector FieldDecls; // While we still have something to read, read the declarations in the struct. while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { // Each iteration of this loop reads one struct-declaration. // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { ConsumeExtraSemi(InsideStruct, TagType); continue; } // Parse _Static_assert declaration. if (Tok.is(tok::kw__Static_assert)) { SourceLocation DeclEnd; ParseStaticAssertDeclaration(DeclEnd); continue; } if (Tok.is(tok::annot_pragma_pack)) { HandlePragmaPack(); continue; } if (Tok.is(tok::annot_pragma_align)) { HandlePragmaAlign(); continue; } if (Tok.is(tok::annot_pragma_openmp)) { // Result can be ignored, because it must be always empty. AccessSpecifier AS = AS_none; ParsedAttributesWithRange Attrs(AttrFactory); (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); continue; } if (tok::isPragmaAnnotation(Tok.getKind())) { Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl) << DeclSpec::getSpecifierName( TagType, Actions.getASTContext().getPrintingPolicy()); ConsumeAnnotationToken(); continue; } if (!Tok.is(tok::at)) { auto CFieldCallback = [&](ParsingFieldDeclarator &FD) { // Install the declarator into the current TagDecl. Decl *Field = Actions.ActOnField(getCurScope(), TagDecl, FD.D.getDeclSpec().getSourceRange().getBegin(), FD.D, FD.BitfieldSize); FieldDecls.push_back(Field); FD.complete(Field); }; // Parse all the comma separated declarators. ParsingDeclSpec DS(*this); ParseStructDeclaration(DS, CFieldCallback); } else { // Handle @defs ConsumeToken(); if (!Tok.isObjCAtKeyword(tok::objc_defs)) { Diag(Tok, diag::err_unexpected_at); SkipUntil(tok::semi); continue; } ConsumeToken(); ExpectAndConsume(tok::l_paren); if (!Tok.is(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; SkipUntil(tok::semi); continue; } SmallVector Fields; Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(), Tok.getIdentifierInfo(), Fields); FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end()); ConsumeToken(); ExpectAndConsume(tok::r_paren); } if (TryConsumeToken(tok::semi)) continue; if (Tok.is(tok::r_brace)) { ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list); break; } ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list); // Skip to end of block or statement to avoid ext-warning on extra ';'. SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); // If we stopped at a ';', eat it. TryConsumeToken(tok::semi); } T.consumeClose(); ParsedAttributes attrs(AttrFactory); // If attributes exist after struct contents, parse them. MaybeParseGNUAttributes(attrs); Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls, T.getOpenLocation(), T.getCloseLocation(), attrs); StructScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange()); } /// ParseEnumSpecifier /// enum-specifier: [C99 6.7.2.2] /// 'enum' identifier[opt] '{' enumerator-list '}' ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}' /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' attributes[opt] /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' /// 'enum' identifier /// [GNU] 'enum' attributes[opt] identifier /// /// [C++11] enum-head '{' enumerator-list[opt] '}' /// [C++11] enum-head '{' enumerator-list ',' '}' /// /// enum-head: [C++11] /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt] /// enum-key attribute-specifier-seq[opt] nested-name-specifier /// identifier enum-base[opt] /// /// enum-key: [C++11] /// 'enum' /// 'enum' 'class' /// 'enum' 'struct' /// /// enum-base: [C++11] /// ':' type-specifier-seq /// /// [C++] elaborated-type-specifier: /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier /// void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC) { // Parse the tag portion of this. if (Tok.is(tok::code_completion)) { // Code completion for an enum name. Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum); return cutOffParsing(); } // If attributes exist after tag, parse them. ParsedAttributesWithRange attrs(AttrFactory); MaybeParseGNUAttributes(attrs); MaybeParseCXX11Attributes(attrs); MaybeParseMicrosoftDeclSpecs(attrs); SourceLocation ScopedEnumKWLoc; bool IsScopedUsingClassTag = false; // In C++11, recognize 'enum class' and 'enum struct'. if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum : diag::ext_scoped_enum); IsScopedUsingClassTag = Tok.is(tok::kw_class); ScopedEnumKWLoc = ConsumeToken(); // Attributes are not allowed between these keywords. Diagnose, // but then just treat them like they appeared in the right place. ProhibitAttributes(attrs); // They are allowed afterwards, though. MaybeParseGNUAttributes(attrs); MaybeParseCXX11Attributes(attrs); MaybeParseMicrosoftDeclSpecs(attrs); } // C++11 [temp.explicit]p12: // The usual access controls do not apply to names used to specify // explicit instantiations. // We extend this to also cover explicit specializations. Note that // we don't suppress if this turns out to be an elaborated type // specifier. bool shouldDelayDiagsInTag = (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag); // Enum definitions should not be parsed in a trailing-return-type. bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing; CXXScopeSpec &SS = DS.getTypeSpecScope(); if (getLangOpts().CPlusPlus) { // "enum foo : bar;" is not a potential typo for "enum foo::bar;" // if a fixed underlying type is allowed. ColonProtectionRAIIObject X(*this, AllowDeclaration); CXXScopeSpec Spec; if (ParseOptionalCXXScopeSpecifier(Spec, nullptr, /*EnteringContext=*/true)) return; if (Spec.isSet() && Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; if (Tok.isNot(tok::l_brace)) { // Has no name and is not a definition. // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } } SS = Spec; } // Must have either 'enum name' or 'enum {...}'. if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) && !(AllowDeclaration && Tok.is(tok::colon))) { Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace; // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } // If an identifier is present, consume and remember it. IdentifierInfo *Name = nullptr; SourceLocation NameLoc; if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); } if (!Name && ScopedEnumKWLoc.isValid()) { // C++0x 7.2p2: The optional identifier shall not be omitted in the // declaration of a scoped enumeration. Diag(Tok, diag::err_scoped_enum_missing_identifier); ScopedEnumKWLoc = SourceLocation(); IsScopedUsingClassTag = false; } // Okay, end the suppression area. We'll decide whether to emit the // diagnostics in a second. if (shouldDelayDiagsInTag) diagsFromTag.done(); TypeResult BaseType; // Parse the fixed underlying type. bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; if (AllowDeclaration && Tok.is(tok::colon)) { bool PossibleBitfield = false; if (CanBeBitfield) { // If we're in class scope, this can either be an enum declaration with // an underlying type, or a declaration of a bitfield member. We try to // use a simple disambiguation scheme first to catch the common cases // (integer literal, sizeof); if it's still ambiguous, we then consider // anything that's a simple-type-specifier followed by '(' as an // expression. This suffices because function types are not valid // underlying types anyway. EnterExpressionEvaluationContext Unevaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind()); // If the next token starts an expression, we know we're parsing a // bit-field. This is the common case. if (TPR == TPResult::True) PossibleBitfield = true; // If the next token starts a type-specifier-seq, it may be either a // a fixed underlying type or the start of a function-style cast in C++; // lookahead one more token to see if it's obvious that we have a // fixed underlying type. else if (TPR == TPResult::False && GetLookAheadToken(2).getKind() == tok::semi) { // Consume the ':'. ConsumeToken(); } else { // We have the start of a type-specifier-seq, so we have to perform // tentative parsing to determine whether we have an expression or a // type. TentativeParsingAction TPA(*this); // Consume the ':'. ConsumeToken(); // If we see a type specifier followed by an open-brace, we have an // ambiguity between an underlying type and a C++11 braced // function-style cast. Resolve this by always treating it as an // underlying type. // FIXME: The standard is not entirely clear on how to disambiguate in // this case. if ((getLangOpts().CPlusPlus && isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) || (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) { // We'll parse this as a bitfield later. PossibleBitfield = true; TPA.Revert(); } else { // We have a type-specifier-seq. TPA.Commit(); } } } else { // Consume the ':'. ConsumeToken(); } if (!PossibleBitfield) { SourceRange Range; BaseType = ParseTypeName(&Range); if (!getLangOpts().ObjC) { if (getLangOpts().CPlusPlus11) Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type); else if (getLangOpts().CPlusPlus) Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type); else if (getLangOpts().MicrosoftExt) Diag(StartLoc, diag::ext_ms_c_enum_fixed_underlying_type); else Diag(StartLoc, diag::ext_clang_c_enum_fixed_underlying_type); } } } // There are four options here. If we have 'friend enum foo;' then this is a // friend declaration, and cannot have an accompanying definition. If we have // 'enum foo;', then this is a forward declaration. If we have // 'enum foo {...' then this is a definition. Otherwise we have something // like 'enum foo xyz', a reference. // // This is needed to handle stuff like this right (C99 6.7.2.3p11): // enum foo {..}; void bar() { enum foo; } <- new foo in bar. // enum foo {..}; void bar() { enum foo x; } <- use of old foo. // Sema::TagUseKind TUK; if (!AllowDeclaration) { TUK = Sema::TUK_Reference; } else if (Tok.is(tok::l_brace)) { if (DS.isFriendSpecified()) { Diag(Tok.getLocation(), diag::err_friend_decl_defines_type) << SourceRange(DS.getFriendSpecLoc()); ConsumeBrace(); SkipUntil(tok::r_brace, StopAtSemi); TUK = Sema::TUK_Friend; } else { TUK = Sema::TUK_Definition; } } else if (!isTypeSpecifier(DSC) && (Tok.is(tok::semi) || (Tok.isAtStartOfLine() && !isValidAfterTypeSpecifier(CanBeBitfield)))) { TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration; if (Tok.isNot(tok::semi)) { // A semicolon was missing after this declaration. Diagnose and recover. ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); PP.EnterToken(Tok, /*IsReinject=*/true); Tok.setKind(tok::semi); } } else { TUK = Sema::TUK_Reference; } // If this is an elaborated type specifier, and we delayed // diagnostics before, just merge them into the current pool. if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) { diagsFromTag.redelay(); } MultiTemplateParamsArg TParams; if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && TUK != Sema::TUK_Reference) { if (!getLangOpts().CPlusPlus11 || !SS.isSet()) { // Skip the rest of this declarator, up until the comma or semicolon. Diag(Tok, diag::err_enum_template); SkipUntil(tok::comma, StopAtSemi); return; } if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // Enumerations can't be explicitly instantiated. DS.SetTypeSpecError(); Diag(StartLoc, diag::err_explicit_instantiation_enum); return; } assert(TemplateInfo.TemplateParams && "no template parameters"); TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(), TemplateInfo.TemplateParams->size()); } if (TUK == Sema::TUK_Reference) ProhibitAttributes(attrs); if (!Name && TUK != Sema::TUK_Definition) { Diag(Tok, diag::err_enumerator_unnamed_no_def); // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } stripTypeAttributesOffDeclSpec(attrs, DS, TUK); Sema::SkipBodyInfo SkipBody; if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) && NextToken().is(tok::identifier)) SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(), NextToken().getIdentifierInfo(), NextToken().getLocation()); bool Owned = false; bool IsDependent = false; const char *PrevSpec = nullptr; unsigned DiagID; Decl *TagDecl = Actions.ActOnTag( getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc, attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent, ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType, DSC == DeclSpecContext::DSC_type_specifier, DSC == DeclSpecContext::DSC_template_param || DSC == DeclSpecContext::DSC_template_type_arg, &SkipBody); if (SkipBody.ShouldSkip) { assert(TUK == Sema::TUK_Definition && "can only skip a definition"); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); T.skipToEnd(); if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagDecl, Owned, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } if (IsDependent) { // This enum has a dependent nested-name-specifier. Handle it as a // dependent tag. if (!Name) { DS.SetTypeSpecError(); Diag(Tok, diag::err_expected_type_name_after_typename); return; } TypeResult Type = Actions.ActOnDependentTag( getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc); if (Type.isInvalid()) { DS.SetTypeSpecError(); return; } if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, Type.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } if (!TagDecl) { // The action failed to produce an enumeration tag. If this is a // definition, consume the entire definition. if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { ConsumeBrace(); SkipUntil(tok::r_brace, StopAtSemi); } DS.SetTypeSpecError(); return; } if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl; ParseEnumBody(StartLoc, D); if (SkipBody.CheckSameAsPrevious && !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) { DS.SetTypeSpecError(); return; } } if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagDecl, Owned, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// ParseEnumBody - Parse a {} enclosed enumerator-list. /// enumerator-list: /// enumerator /// enumerator-list ',' enumerator /// enumerator: /// enumeration-constant attributes[opt] /// enumeration-constant attributes[opt] '=' constant-expression /// enumeration-constant: /// identifier /// void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) { // Enter the scope of the enum body and start the definition. ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope); Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); // C does not allow an empty enumerator-list, C++ does [dcl.enum]. if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) Diag(Tok, diag::err_empty_enum); SmallVector EnumConstantDecls; SmallVector EnumAvailabilityDiags; Decl *LastEnumConstDecl = nullptr; // Parse the enumerator-list. while (Tok.isNot(tok::r_brace)) { // Parse enumerator. If failed, try skipping till the start of the next // enumerator definition. if (Tok.isNot(tok::identifier)) { Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) && TryConsumeToken(tok::comma)) continue; break; } IdentifierInfo *Ident = Tok.getIdentifierInfo(); SourceLocation IdentLoc = ConsumeToken(); // If attributes exist after the enumerator, parse them. ParsedAttributesWithRange attrs(AttrFactory); MaybeParseGNUAttributes(attrs); ProhibitAttributes(attrs); // GNU-style attributes are prohibited. if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) { if (getLangOpts().CPlusPlus) Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_ns_enum_attribute : diag::ext_ns_enum_attribute) << 1 /*enumerator*/; ParseCXX11Attributes(attrs); } SourceLocation EqualLoc; ExprResult AssignedVal; EnumAvailabilityDiags.emplace_back(*this); EnterExpressionEvaluationContext ConstantEvaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); if (TryConsumeToken(tok::equal, EqualLoc)) { AssignedVal = ParseConstantExpressionInExprEvalContext(); if (AssignedVal.isInvalid()) SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch); } // Install the enumerator constant into EnumDecl. Decl *EnumConstDecl = Actions.ActOnEnumConstant( getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs, EqualLoc, AssignedVal.get()); EnumAvailabilityDiags.back().done(); EnumConstantDecls.push_back(EnumConstDecl); LastEnumConstDecl = EnumConstDecl; if (Tok.is(tok::identifier)) { // We're missing a comma between enumerators. SourceLocation Loc = getEndOfPreviousToken(); Diag(Loc, diag::err_enumerator_list_missing_comma) << FixItHint::CreateInsertion(Loc, ", "); continue; } // Emumerator definition must be finished, only comma or r_brace are // allowed here. SourceLocation CommaLoc; if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) { if (EqualLoc.isValid()) Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace << tok::comma; else Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator); if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) { if (TryConsumeToken(tok::comma, CommaLoc)) continue; } else { break; } } // If comma is followed by r_brace, emit appropriate warning. if (Tok.is(tok::r_brace) && CommaLoc.isValid()) { if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) Diag(CommaLoc, getLangOpts().CPlusPlus ? diag::ext_enumerator_list_comma_cxx : diag::ext_enumerator_list_comma_c) << FixItHint::CreateRemoval(CommaLoc); else if (getLangOpts().CPlusPlus11) Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma) << FixItHint::CreateRemoval(CommaLoc); break; } } // Eat the }. T.consumeClose(); // If attributes exist after the identifier list, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls, getCurScope(), attrs); // Now handle enum constant availability diagnostics. assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size()); for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) { ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent); EnumAvailabilityDiags[i].redelay(); PD.complete(EnumConstantDecls[i]); } EnumScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange()); // The next token must be valid after an enum definition. If not, a ';' // was probably forgotten. bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; if (!isValidAfterTypeSpecifier(CanBeBitfield)) { ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); // Push this token back into the preprocessor and change our current token // to ';' so that the rest of the code recovers as though there were an // ';' after the definition. PP.EnterToken(Tok, /*IsReinject=*/true); Tok.setKind(tok::semi); } } /// isKnownToBeTypeSpecifier - Return true if we know that the specified token /// is definitely a type-specifier. Return false if it isn't part of a type /// specifier or if we're not sure. bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const { switch (Tok.getKind()) { default: return false; // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Float16: case tok::kw___float128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: // enum-specifier case tok::kw_enum: // typedef-name case tok::annot_typename: return true; } } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a specifier-qualifier-list. bool Parser::isTypeSpecifierQualifier() { switch (Tok.getKind()) { default: return false; case tok::identifier: // foo::bar if (TryAltiVecVectorToken()) return true; LLVM_FALLTHROUGH; case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; if (Tok.is(tok::identifier)) return false; return isTypeSpecifierQualifier(); case tok::coloncolon: // ::foo::bar if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; if (TryAnnotateTypeOrScopeToken()) return true; return isTypeSpecifierQualifier(); // GNU attributes support. case tok::kw___attribute: // GNU typeof support. case tok::kw_typeof: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Float16: case tok::kw___float128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: case tok::kw__Sat: // Debugger support. case tok::kw___unknown_anytype: // typedef-name case tok::annot_typename: return true; // GNU ObjC bizarre protocol extension: with implicit 'id'. case tok::less: return getLangOpts().ObjC; case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: case tok::kw___kindof: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: return true; case tok::kw_private: return getLangOpts().OpenCL; // C11 _Atomic case tok::kw__Atomic: return true; } } /// isDeclarationSpecifier() - Return true if the current token is part of a /// declaration specifier. /// /// \param DisambiguatingWithExpression True to indicate that the purpose of /// this check is to disambiguate between an expression and a declaration. bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) { switch (Tok.getKind()) { default: return false; case tok::kw_pipe: return (getLangOpts().OpenCL && getLangOpts().OpenCLVersion >= 200) || getLangOpts().OpenCLCPlusPlus; case tok::identifier: // foo::bar // Unfortunate hack to support "Class.factoryMethod" notation. if (getLangOpts().ObjC && NextToken().is(tok::period)) return false; if (TryAltiVecVectorToken()) return true; LLVM_FALLTHROUGH; case tok::kw_decltype: // decltype(T())::type case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; if (TryAnnotateTypeConstraint()) return true; if (Tok.is(tok::identifier)) return false; // If we're in Objective-C and we have an Objective-C class type followed // by an identifier and then either ':' or ']', in a place where an // expression is permitted, then this is probably a class message send // missing the initial '['. In this case, we won't consider this to be // the start of a declaration. if (DisambiguatingWithExpression && isStartOfObjCClassMessageMissingOpenBracket()) return false; return isDeclarationSpecifier(); case tok::coloncolon: // ::foo::bar if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; return isDeclarationSpecifier(); // storage-class-specifier case tok::kw_typedef: case tok::kw_extern: case tok::kw___private_extern__: case tok::kw_static: case tok::kw_auto: case tok::kw___auto_type: case tok::kw_register: case tok::kw___thread: case tok::kw_thread_local: case tok::kw__Thread_local: // Modules case tok::kw___module_private__: // Debugger support case tok::kw___unknown_anytype: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Float16: case tok::kw___float128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: case tok::kw___interface: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: case tok::kw__Sat: // function-specifier case tok::kw_inline: case tok::kw_virtual: case tok::kw_explicit: case tok::kw__Noreturn: // alignment-specifier case tok::kw__Alignas: // friend keyword. case tok::kw_friend: // static_assert-declaration case tok::kw__Static_assert: // GNU typeof support. case tok::kw_typeof: // GNU attributes. case tok::kw___attribute: // C++11 decltype and constexpr. case tok::annot_decltype: case tok::kw_constexpr: // C++20 consteval and constinit. case tok::kw_consteval: case tok::kw_constinit: // C11 _Atomic case tok::kw__Atomic: return true; // GNU ObjC bizarre protocol extension: with implicit 'id'. case tok::less: return getLangOpts().ObjC; // typedef-name case tok::annot_typename: return !DisambiguatingWithExpression || !isStartOfObjCClassMessageMissingOpenBracket(); // placeholder-type-specifier case tok::annot_template_id: { return isTypeConstraintAnnotation() && (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype)); } case tok::annot_cxxscope: if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint()) return true; return isTypeConstraintAnnotation() && GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype); case tok::kw___declspec: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: case tok::kw___w64: case tok::kw___sptr: case tok::kw___uptr: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___forceinline: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: case tok::kw___kindof: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" return true; case tok::kw_private: return getLangOpts().OpenCL; } } bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) { TentativeParsingAction TPA(*this); // Parse the C++ scope specifier. CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/true)) { TPA.Revert(); return false; } // Parse the constructor name. if (Tok.is(tok::identifier)) { // We already know that we have a constructor name; just consume // the token. ConsumeToken(); } else if (Tok.is(tok::annot_template_id)) { ConsumeAnnotationToken(); } else { TPA.Revert(); return false; } // There may be attributes here, appertaining to the constructor name or type // we just stepped past. SkipCXX11Attributes(); // Current class name must be followed by a left parenthesis. if (Tok.isNot(tok::l_paren)) { TPA.Revert(); return false; } ConsumeParen(); // A right parenthesis, or ellipsis followed by a right parenthesis signals // that we have a constructor. if (Tok.is(tok::r_paren) || (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) { TPA.Revert(); return true; } // A C++11 attribute here signals that we have a constructor, and is an // attribute on the first constructor parameter. if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier(/*Disambiguate*/ false, /*OuterMightBeMessageSend*/ true)) { TPA.Revert(); return true; } // If we need to, enter the specified scope. DeclaratorScopeObj DeclScopeObj(*this, SS); if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) DeclScopeObj.EnterDeclaratorScope(); // Optionally skip Microsoft attributes. ParsedAttributes Attrs(AttrFactory); MaybeParseMicrosoftAttributes(Attrs); // Check whether the next token(s) are part of a declaration // specifier, in which case we have the start of a parameter and, // therefore, we know that this is a constructor. bool IsConstructor = false; if (isDeclarationSpecifier()) IsConstructor = true; else if (Tok.is(tok::identifier) || (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) { // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type. // This might be a parenthesized member name, but is more likely to // be a constructor declaration with an invalid argument type. Keep // looking. if (Tok.is(tok::annot_cxxscope)) ConsumeAnnotationToken(); ConsumeToken(); // If this is not a constructor, we must be parsing a declarator, // which must have one of the following syntactic forms (see the // grammar extract at the start of ParseDirectDeclarator): switch (Tok.getKind()) { case tok::l_paren: // C(X ( int)); case tok::l_square: // C(X [ 5]); // C(X [ [attribute]]); case tok::coloncolon: // C(X :: Y); // C(X :: *p); // Assume this isn't a constructor, rather than assuming it's a // constructor with an unnamed parameter of an ill-formed type. break; case tok::r_paren: // C(X ) // Skip past the right-paren and any following attributes to get to // the function body or trailing-return-type. ConsumeParen(); SkipCXX11Attributes(); if (DeductionGuide) { // C(X) -> ... is a deduction guide. IsConstructor = Tok.is(tok::arrow); break; } if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) { // Assume these were meant to be constructors: // C(X) : (the name of a bit-field cannot be parenthesized). // C(X) try (this is otherwise ill-formed). IsConstructor = true; } if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) { // If we have a constructor name within the class definition, // assume these were meant to be constructors: // C(X) { // C(X) ; // ... because otherwise we would be declaring a non-static data // member that is ill-formed because it's of the same type as its // surrounding class. // // FIXME: We can actually do this whether or not the name is qualified, // because if it is qualified in this context it must be being used as // a constructor name. // currently, so we're somewhat conservative here. IsConstructor = IsUnqualified; } break; default: IsConstructor = true; break; } } TPA.Revert(); return IsConstructor; } /// ParseTypeQualifierListOpt /// type-qualifier-list: [C99 6.7.5] /// type-qualifier /// [vendor] attributes /// [ only if AttrReqs & AR_VendorAttributesParsed ] /// type-qualifier-list type-qualifier /// [vendor] type-qualifier-list attributes /// [ only if AttrReqs & AR_VendorAttributesParsed ] /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq /// [ only if AttReqs & AR_CXX11AttributesParsed ] /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via /// AttrRequirements bitmask values. void Parser::ParseTypeQualifierListOpt( DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed, bool IdentifierRequired, Optional> CodeCompletionHandler) { if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) && isCXX11AttributeSpecifier()) { ParsedAttributesWithRange attrs(AttrFactory); ParseCXX11Attributes(attrs); DS.takeAttributesFrom(attrs); } SourceLocation EndLoc; while (1) { bool isInvalid = false; const char *PrevSpec = nullptr; unsigned DiagID = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { case tok::code_completion: if (CodeCompletionHandler) (*CodeCompletionHandler)(); else Actions.CodeCompleteTypeQualifiers(DS); return cutOffParsing(); case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw__Atomic: if (!AtomicAllowed) goto DoneWithTypeQuals; if (!getLangOpts().C11) Diag(Tok, diag::ext_c11_feature) << Tok.getName(); isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, getLangOpts()); break; // OpenCL qualifiers: case tok::kw_private: if (!getLangOpts().OpenCL) goto DoneWithTypeQuals; LLVM_FALLTHROUGH; case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS.getAttributes()); break; case tok::kw___unaligned: isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw___uptr: // GNU libc headers in C mode use '__uptr' as an identifier which conflicts // with the MS modifier keyword. if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus && IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) { if (TryKeywordIdentFallback(false)) continue; } LLVM_FALLTHROUGH; case tok::kw___sptr: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: if (AttrReqs & AR_DeclspecAttributesParsed) { ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; case tok::kw___pascal: if (AttrReqs & AR_VendorAttributesParsed) { ParseBorlandTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; // Nullability type specifiers. case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Null_unspecified: ParseNullabilityTypeSpecifiers(DS.getAttributes()); continue; // Objective-C 'kindof' types. case tok::kw___kindof: DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, nullptr, 0, ParsedAttr::AS_Keyword); (void)ConsumeToken(); continue; case tok::kw___attribute: if (AttrReqs & AR_GNUAttributesParsedAndRejected) // When GNU attributes are expressly forbidden, diagnose their usage. Diag(Tok, diag::err_attributes_not_allowed); // Parse the attributes even if they are rejected to ensure that error // recovery is graceful. if (AttrReqs & AR_GNUAttributesParsed || AttrReqs & AR_GNUAttributesParsedAndRejected) { ParseGNUAttributes(DS.getAttributes()); continue; // do *not* consume the next token! } // otherwise, FALL THROUGH! LLVM_FALLTHROUGH; default: DoneWithTypeQuals: // If this is not a type-qualifier token, we're done reading type // qualifiers. First verify that DeclSpec's are consistent. DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); if (EndLoc.isValid()) DS.SetRangeEnd(EndLoc); return; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); Diag(Tok, DiagID) << PrevSpec; } EndLoc = ConsumeToken(); } } /// ParseDeclarator - Parse and verify a newly-initialized declarator. /// void Parser::ParseDeclarator(Declarator &D) { /// This implements the 'declarator' production in the C grammar, then checks /// for well-formedness and issues diagnostics. ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); } static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang, DeclaratorContext TheContext) { if (Kind == tok::star || Kind == tok::caret) return true; if (Kind == tok::kw_pipe && ((Lang.OpenCL && Lang.OpenCLVersion >= 200) || Lang.OpenCLCPlusPlus)) return true; if (!Lang.CPlusPlus) return false; if (Kind == tok::amp) return true; // We parse rvalue refs in C++03, because otherwise the errors are scary. // But we must not parse them in conversion-type-ids and new-type-ids, since // those can be legitimately followed by a && operator. // (The same thing can in theory happen after a trailing-return-type, but // since those are a C++11 feature, there is no rejects-valid issue there.) if (Kind == tok::ampamp) return Lang.CPlusPlus11 || (TheContext != DeclaratorContext::ConversionIdContext && TheContext != DeclaratorContext::CXXNewContext); return false; } // Indicates whether the given declarator is a pipe declarator. static bool isPipeDeclerator(const Declarator &D) { const unsigned NumTypes = D.getNumTypeObjects(); for (unsigned Idx = 0; Idx != NumTypes; ++Idx) if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind) return true; return false; } /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator /// is parsed by the function passed to it. Pass null, and the direct-declarator /// isn't parsed at all, making this function effectively parse the C++ /// ptr-operator production. /// /// If the grammar of this construct is extended, matching changes must also be /// made to TryParseDeclarator and MightBeDeclarator, and possibly to /// isConstructorDeclarator. /// /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl] /// [C] pointer[opt] direct-declarator /// [C++] direct-declarator /// [C++] ptr-operator declarator /// /// pointer: [C99 6.7.5] /// '*' type-qualifier-list[opt] /// '*' type-qualifier-list[opt] pointer /// /// ptr-operator: /// '*' cv-qualifier-seq[opt] /// '&' /// [C++0x] '&&' /// [GNU] '&' restrict[opt] attributes[opt] /// [GNU?] '&&' restrict[opt] attributes[opt] /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] void Parser::ParseDeclaratorInternal(Declarator &D, DirectDeclParseFunction DirectDeclParser) { if (Diags.hasAllExtensionsSilenced()) D.setExtension(); // C++ member pointers start with a '::' or a nested-name. // Member pointers get special handling, since there's no place for the // scope spec in the generic path below. if (getLangOpts().CPlusPlus && (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) || (Tok.is(tok::identifier) && (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) || Tok.is(tok::annot_cxxscope))) { bool EnteringContext = D.getContext() == DeclaratorContext::FileContext || D.getContext() == DeclaratorContext::MemberContext; CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext); if (SS.isNotEmpty()) { if (Tok.isNot(tok::star)) { // The scope spec really belongs to the direct-declarator. if (D.mayHaveIdentifier()) D.getCXXScopeSpec() = SS; else AnnotateScopeToken(SS, true); if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } SourceLocation Loc = ConsumeToken(); D.SetRangeEnd(Loc); DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // Recurse to parse whatever is left. ParseDeclaratorInternal(D, DirectDeclParser); // Sema will have to catch (syntactically invalid) pointers into global // scope. It has to catch pointers into namespace scope anyway. D.AddTypeInfo(DeclaratorChunk::getMemberPointer( SS, DS.getTypeQualifiers(), DS.getEndLoc()), std::move(DS.getAttributes()), /* Don't replace range end. */ SourceLocation()); return; } } tok::TokenKind Kind = Tok.getKind(); if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) { DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS); D.AddTypeInfo( DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()), std::move(DS.getAttributes()), SourceLocation()); } // Not a pointer, C++ reference, or block. if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) { if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference, // '&&' -> rvalue reference SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&. D.SetRangeEnd(Loc); if (Kind == tok::star || Kind == tok::caret) { // Is a pointer. DeclSpec DS(AttrFactory); // GNU attributes are not allowed here in a new-type-id, but Declspec and // C++11 attributes are allowed. unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed | ((D.getContext() != DeclaratorContext::CXXNewContext) ? AR_GNUAttributesParsed : AR_GNUAttributesParsedAndRejected); ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier()); D.ExtendWithDeclSpec(DS); // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (Kind == tok::star) // Remember that we parsed a pointer type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getPointer( DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(), DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(), DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()), std::move(DS.getAttributes()), SourceLocation()); else // Remember that we parsed a Block type, and remember the type-quals. D.AddTypeInfo( DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc), std::move(DS.getAttributes()), SourceLocation()); } else { // Is a reference DeclSpec DS(AttrFactory); // Complain about rvalue references in C++03, but then go on and build // the declarator. if (Kind == tok::ampamp) Diag(Loc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_rvalue_reference : diag::ext_rvalue_reference); // GNU-style and C++11 attributes are allowed here, as is restrict. ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // C++ 8.3.2p1: cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef or of a // template type argument, in which case the cv-qualifiers are ignored. if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) { if (DS.getTypeQualifiers() & DeclSpec::TQ_const) Diag(DS.getConstSpecLoc(), diag::err_invalid_reference_qualifier_application) << "const"; if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) Diag(DS.getVolatileSpecLoc(), diag::err_invalid_reference_qualifier_application) << "volatile"; // 'restrict' is permitted as an extension. if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) Diag(DS.getAtomicSpecLoc(), diag::err_invalid_reference_qualifier_application) << "_Atomic"; } // Recursively parse the declarator. ParseDeclaratorInternal(D, DirectDeclParser); if (D.getNumTypeObjects() > 0) { // C++ [dcl.ref]p4: There shall be no references to references. DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1); if (InnerChunk.Kind == DeclaratorChunk::Reference) { if (const IdentifierInfo *II = D.getIdentifier()) Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << II; else Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << "type name"; // Once we've complained about the reference-to-reference, we // can go ahead and build the (technically ill-formed) // declarator: reference collapsing will take care of it. } } // Remember that we parsed a reference type. D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc, Kind == tok::amp), std::move(DS.getAttributes()), SourceLocation()); } } // When correcting from misplaced brackets before the identifier, the location // is saved inside the declarator so that other diagnostic messages can use // them. This extracts and returns that location, or returns the provided // location if a stored location does not exist. static SourceLocation getMissingDeclaratorIdLoc(Declarator &D, SourceLocation Loc) { if (D.getName().StartLocation.isInvalid() && D.getName().EndLocation.isValid()) return D.getName().EndLocation; return Loc; } /// ParseDirectDeclarator /// direct-declarator: [C99 6.7.5] /// [C99] identifier /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// [C++] direct-declarator '(' parameter-declaration-clause ')' /// cv-qualifier-seq[opt] exception-specification[opt] /// [C++11] direct-declarator '(' parameter-declaration-clause ')' /// attribute-specifier-seq[opt] cv-qualifier-seq[opt] /// ref-qualifier[opt] exception-specification[opt] /// [C++] declarator-id /// [C++11] declarator-id attribute-specifier-seq[opt] /// /// declarator-id: [C++ 8] /// '...'[opt] id-expression /// '::'[opt] nested-name-specifier[opt] type-name /// /// id-expression: [C++ 5.1] /// unqualified-id /// qualified-id /// /// unqualified-id: [C++ 5.1] /// identifier /// operator-function-id /// conversion-function-id /// '~' class-name /// template-id /// /// C++17 adds the following, which we also handle here: /// /// simple-declaration: /// '[' identifier-list ']' brace-or-equal-initializer ';' /// /// Note, any additional constructs added here may need corresponding changes /// in isConstructorDeclarator. void Parser::ParseDirectDeclarator(Declarator &D) { DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec()); if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) { // This might be a C++17 structured binding. if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() && D.getCXXScopeSpec().isEmpty()) return ParseDecompositionDeclarator(D); // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in // this context it is a bitfield. Also in range-based for statement colon // may delimit for-range-declaration. ColonProtectionRAIIObject X( *this, D.getContext() == DeclaratorContext::MemberContext || (D.getContext() == DeclaratorContext::ForContext && getLangOpts().CPlusPlus11)); // ParseDeclaratorInternal might already have parsed the scope. if (D.getCXXScopeSpec().isEmpty()) { bool EnteringContext = D.getContext() == DeclaratorContext::FileContext || D.getContext() == DeclaratorContext::MemberContext; ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr, EnteringContext); } if (D.getCXXScopeSpec().isValid()) { if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); else if (getObjCDeclContext()) { // Ensure that we don't interpret the next token as an identifier when // dealing with declarations in an Objective-C container. D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); ConsumeToken(); goto PastIdentifier; } } // C++0x [dcl.fct]p14: // There is a syntactic ambiguity when an ellipsis occurs at the end of a // parameter-declaration-clause without a preceding comma. In this case, // the ellipsis is parsed as part of the abstract-declarator if the type // of the parameter either names a template parameter pack that has not // been expanded or contains auto; otherwise, it is parsed as part of the // parameter-declaration-clause. if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() && !((D.getContext() == DeclaratorContext::PrototypeContext || D.getContext() == DeclaratorContext::LambdaExprParameterContext || D.getContext() == DeclaratorContext::BlockLiteralContext) && NextToken().is(tok::r_paren) && !D.hasGroupingParens() && !Actions.containsUnexpandedParameterPacks(D) && D.getDeclSpec().getTypeSpecType() != TST_auto)) { SourceLocation EllipsisLoc = ConsumeToken(); if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) { // The ellipsis was put in the wrong place. Recover, and explain to // the user what they should have done. ParseDeclarator(D); if (EllipsisLoc.isValid()) DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); return; } else D.setEllipsisLoc(EllipsisLoc); // The ellipsis can't be followed by a parenthesized declarator. We // check for that in ParseParenDeclarator, after we have disambiguated // the l_paren token. } if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id, tok::tilde)) { // We found something that indicates the start of an unqualified-id. // Parse that unqualified-id. bool AllowConstructorName; bool AllowDeductionGuide; if (D.getDeclSpec().hasTypeSpecifier()) { AllowConstructorName = false; AllowDeductionGuide = false; } else if (D.getCXXScopeSpec().isSet()) { AllowConstructorName = (D.getContext() == DeclaratorContext::FileContext || D.getContext() == DeclaratorContext::MemberContext); AllowDeductionGuide = false; } else { AllowConstructorName = (D.getContext() == DeclaratorContext::MemberContext); AllowDeductionGuide = (D.getContext() == DeclaratorContext::FileContext || D.getContext() == DeclaratorContext::MemberContext); } bool HadScope = D.getCXXScopeSpec().isValid(); if (ParseUnqualifiedId(D.getCXXScopeSpec(), /*EnteringContext=*/true, /*AllowDestructorName=*/true, AllowConstructorName, AllowDeductionGuide, nullptr, nullptr, D.getName()) || // Once we're past the identifier, if the scope was bad, mark the // whole declarator bad. D.getCXXScopeSpec().isInvalid()) { D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); } else { // ParseUnqualifiedId might have parsed a scope specifier during error // recovery. If it did so, enter that scope. if (!HadScope && D.getCXXScopeSpec().isValid() && Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) DeclScopeObj.EnterDeclaratorScope(); // Parsed the unqualified-id; update range information and move along. if (D.getSourceRange().getBegin().isInvalid()) D.SetRangeBegin(D.getName().getSourceRange().getBegin()); D.SetRangeEnd(D.getName().getSourceRange().getEnd()); } goto PastIdentifier; } if (D.getCXXScopeSpec().isNotEmpty()) { // We have a scope specifier but no following unqualified-id. Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()), diag::err_expected_unqualified_id) << /*C++*/1; D.SetIdentifier(nullptr, Tok.getLocation()); goto PastIdentifier; } } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) { assert(!getLangOpts().CPlusPlus && "There's a C++-specific check for tok::identifier above"); assert(Tok.getIdentifierInfo() && "Not an identifier?"); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); D.SetRangeEnd(Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) { // We're not allowed an identifier here, but we got one. Try to figure out // if the user was trying to attach a name to the type, or whether the name // is some unrelated trailing syntax. bool DiagnoseIdentifier = false; if (D.hasGroupingParens()) // An identifier within parens is unlikely to be intended to be anything // other than a name being "declared". DiagnoseIdentifier = true; else if (D.getContext() == DeclaratorContext::TemplateArgContext) // T is an accidental identifier; T'. DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater); else if (D.getContext() == DeclaratorContext::AliasDeclContext || D.getContext() == DeclaratorContext::AliasTemplateContext) // The most likely error is that the ';' was forgotten. DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi); else if ((D.getContext() == DeclaratorContext::TrailingReturnContext || D.getContext() == DeclaratorContext::TrailingReturnVarContext) && !isCXX11VirtSpecifier(Tok)) DiagnoseIdentifier = NextToken().isOneOf( tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try); if (DiagnoseIdentifier) { Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id) << FixItHint::CreateRemoval(Tok.getLocation()); D.SetIdentifier(nullptr, Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } } if (Tok.is(tok::l_paren)) { // If this might be an abstract-declarator followed by a direct-initializer, // check whether this is a valid declarator chunk. If it can't be, assume // that it's an initializer instead. if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) { RevertingTentativeParsingAction PA(*this); if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) == TPResult::False) { D.SetIdentifier(nullptr, Tok.getLocation()); goto PastIdentifier; } } // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' // Example: 'char (*X)' or 'int (*XX)(void)' ParseParenDeclarator(D); // If the declarator was parenthesized, we entered the declarator // scope when parsing the parenthesized declarator, then exited // the scope already. Re-enter the scope, if we need to. if (D.getCXXScopeSpec().isSet()) { // If there was an error parsing parenthesized declarator, declarator // scope may have been entered before. Don't do it again. if (!D.isInvalidType() && Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); } } else if (D.mayOmitIdentifier()) { // This could be something simple like "int" (in which case the declarator // portion is empty), if an abstract-declarator is allowed. D.SetIdentifier(nullptr, Tok.getLocation()); // The grammar for abstract-pack-declarator does not allow grouping parens. // FIXME: Revisit this once core issue 1488 is resolved. if (D.hasEllipsis() && D.hasGroupingParens()) Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()), diag::ext_abstract_pack_declarator_parens); } else { if (Tok.getKind() == tok::annot_pragma_parser_crash) LLVM_BUILTIN_TRAP; if (Tok.is(tok::l_square)) return ParseMisplacedBracketDeclarator(D); if (D.getContext() == DeclaratorContext::MemberContext) { // Objective-C++: Detect C++ keywords and try to prevent further errors by // treating these keyword as valid member names. if (getLangOpts().ObjC && getLangOpts().CPlusPlus && Tok.getIdentifierInfo() && Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) { Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_member_name_or_semi_objcxx_keyword) << Tok.getIdentifierInfo() << (D.getDeclSpec().isEmpty() ? SourceRange() : D.getDeclSpec().getSourceRange()); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); D.SetRangeEnd(Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_member_name_or_semi) << (D.getDeclSpec().isEmpty() ? SourceRange() : D.getDeclSpec().getSourceRange()); } else if (getLangOpts().CPlusPlus) { if (Tok.isOneOf(tok::period, tok::arrow)) Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow); else { SourceLocation Loc = D.getCXXScopeSpec().getEndLoc(); if (Tok.isAtStartOfLine() && Loc.isValid()) Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus; else Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus; } } else { Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_either) << tok::identifier << tok::l_paren; } D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); } PastIdentifier: assert(D.isPastIdentifier() && "Haven't past the location of the identifier yet?"); // Don't parse attributes unless we have parsed an unparenthesized name. if (D.hasName() && !D.getNumTypeObjects()) MaybeParseCXX11Attributes(D); while (1) { if (Tok.is(tok::l_paren)) { bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration(); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope| (IsFunctionDeclaration ? Scope::FunctionDeclarationScope : 0)); // The paren may be part of a C++ direct initializer, eg. "int x(1);". // In such a case, check if we actually have a function declarator; if it // is not, the declarator has been fully parsed. bool IsAmbiguous = false; if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) { // The name of the declarator, if any, is tentatively declared within // a possible direct initializer. TentativelyDeclaredIdentifiers.push_back(D.getIdentifier()); bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous); TentativelyDeclaredIdentifiers.pop_back(); if (!IsFunctionDecl) break; } ParsedAttributes attrs(AttrFactory); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); if (IsFunctionDeclaration) Actions.ActOnStartFunctionDeclarationDeclarator(D, TemplateParameterDepth); ParseFunctionDeclarator(D, attrs, T, IsAmbiguous); if (IsFunctionDeclaration) Actions.ActOnFinishFunctionDeclarationDeclarator(D); PrototypeScope.Exit(); } else if (Tok.is(tok::l_square)) { ParseBracketDeclarator(D); } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) { // This declarator is declaring a function, but the requires clause is // in the wrong place: // void (f() requires true); // instead of // void f() requires true; // or // void (f()) requires true; Diag(Tok, diag::err_requires_clause_inside_parens); ConsumeToken(); ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr( ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true)); if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() && !D.hasTrailingRequiresClause()) // We're already ill-formed if we got here but we'll accept it anyway. D.setTrailingRequiresClause(TrailingRequiresClause.get()); } else { break; } } } void Parser::ParseDecompositionDeclarator(Declarator &D) { assert(Tok.is(tok::l_square)); // If this doesn't look like a structured binding, maybe it's a misplaced // array declarator. // FIXME: Consume the l_square first so we don't need extra lookahead for // this. if (!(NextToken().is(tok::identifier) && GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) && !(NextToken().is(tok::r_square) && GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace))) return ParseMisplacedBracketDeclarator(D); BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); SmallVector Bindings; while (Tok.isNot(tok::r_square)) { if (!Bindings.empty()) { if (Tok.is(tok::comma)) ConsumeToken(); else { if (Tok.is(tok::identifier)) { SourceLocation EndLoc = getEndOfPreviousToken(); Diag(EndLoc, diag::err_expected) << tok::comma << FixItHint::CreateInsertion(EndLoc, ","); } else { Diag(Tok, diag::err_expected_comma_or_rsquare); } SkipUntil(tok::r_square, tok::comma, tok::identifier, StopAtSemi | StopBeforeMatch); if (Tok.is(tok::comma)) ConsumeToken(); else if (Tok.isNot(tok::identifier)) break; } } if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; break; } Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()}); ConsumeToken(); } if (Tok.isNot(tok::r_square)) // We've already diagnosed a problem here. T.skipToEnd(); else { // C++17 does not allow the identifier-list in a structured binding // to be empty. if (Bindings.empty()) Diag(Tok.getLocation(), diag::ext_decomp_decl_empty); T.consumeClose(); } return D.setDecompositionBindings(T.getOpenLocation(), Bindings, T.getCloseLocation()); } /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is /// only called before the identifier, so these are most likely just grouping /// parens for precedence. If we find that these are actually function /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator. /// /// direct-declarator: /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// void Parser::ParseParenDeclarator(Declarator &D) { BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); assert(!D.isPastIdentifier() && "Should be called before passing identifier"); // Eat any attributes before we look at whether this is a grouping or function // declarator paren. If this is a grouping paren, the attribute applies to // the type being built up, for example: // int (__attribute__(()) *x)(long y) // If this ends up not being a grouping paren, the attribute applies to the // first argument, for example: // int (__attribute__(()) int x) // In either case, we need to eat any attributes to be able to determine what // sort of paren this is. // ParsedAttributes attrs(AttrFactory); bool RequiresArg = false; if (Tok.is(tok::kw___attribute)) { ParseGNUAttributes(attrs); // We require that the argument list (if this is a non-grouping paren) be // present even if the attribute list was empty. RequiresArg = true; } // Eat any Microsoft extensions. ParseMicrosoftTypeAttributes(attrs); // Eat any Borland extensions. if (Tok.is(tok::kw___pascal)) ParseBorlandTypeAttributes(attrs); // If we haven't past the identifier yet (or where the identifier would be // stored, if this is an abstract declarator), then this is probably just // grouping parens. However, if this could be an abstract-declarator, then // this could also be the start of function arguments (consider 'void()'). bool isGrouping; if (!D.mayOmitIdentifier()) { // If this can't be an abstract-declarator, this *must* be a grouping // paren, because we haven't seen the identifier yet. isGrouping = true; } else if (Tok.is(tok::r_paren) || // 'int()' is a function. (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren)) || // C++ int(...) isDeclarationSpecifier() || // 'int(int)' is a function. isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function. // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is // considered to be a type, not a K&R identifier-list. isGrouping = false; } else { // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. isGrouping = true; } // If this is a grouping paren, handle: // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' if (isGrouping) { SourceLocation EllipsisLoc = D.getEllipsisLoc(); D.setEllipsisLoc(SourceLocation()); bool hadGroupingParens = D.hasGroupingParens(); D.setGroupingParens(true); ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Match the ')'. T.consumeClose(); D.AddTypeInfo( DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()), std::move(attrs), T.getCloseLocation()); D.setGroupingParens(hadGroupingParens); // An ellipsis cannot be placed outside parentheses. if (EllipsisLoc.isValid()) DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); return; } // Okay, if this wasn't a grouping paren, it must be the start of a function // argument list. Recognize that this declarator will never have an // identifier (and remember where it would have been), then call into // ParseFunctionDeclarator to handle of argument list. D.SetIdentifier(nullptr, Tok.getLocation()); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | Scope::DeclScope | (D.isFunctionDeclaratorAFunctionDeclaration() ? Scope::FunctionDeclarationScope : 0)); ParseFunctionDeclarator(D, attrs, T, false, RequiresArg); PrototypeScope.Exit(); } void Parser::InitCXXThisScopeForDeclaratorIfRelevant( const Declarator &D, const DeclSpec &DS, llvm::Optional &ThisScope) { // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. // FIXME: currently, "static" case isn't handled correctly. bool IsCXX11MemberFunction = getLangOpts().CPlusPlus11 && D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && (D.getContext() == DeclaratorContext::MemberContext ? !D.getDeclSpec().isFriendSpecified() : D.getContext() == DeclaratorContext::FileContext && D.getCXXScopeSpec().isValid() && Actions.CurContext->isRecord()); if (!IsCXX11MemberFunction) return; Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers()); if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14) Q.addConst(); // FIXME: Collect C++ address spaces. // If there are multiple different address spaces, the source is invalid. // Carry on using the first addr space for the qualifiers of 'this'. // The diagnostic will be given later while creating the function // prototype for the method. if (getLangOpts().OpenCLCPlusPlus) { for (ParsedAttr &attr : DS.getAttributes()) { LangAS ASIdx = attr.asOpenCLLangAS(); if (ASIdx != LangAS::Default) { Q.addAddressSpace(ASIdx); break; } } } ThisScope.emplace(Actions, dyn_cast(Actions.CurContext), Q, IsCXX11MemberFunction); } /// ParseFunctionDeclarator - We are after the identifier and have parsed the /// declarator D up to a paren, which indicates that we are parsing function /// arguments. /// /// If FirstArgAttrs is non-null, then the caller parsed those arguments /// immediately after the open paren - they should be considered to be the /// first argument of a parameter. /// /// If RequiresArg is true, then the first argument of the function is required /// to be present and required to not be an identifier list. /// /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt], /// (C++11) ref-qualifier[opt], exception-specification[opt], /// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and /// (C++2a) the trailing requires-clause. /// /// [C++11] exception-specification: /// dynamic-exception-specification /// noexcept-specification /// void Parser::ParseFunctionDeclarator(Declarator &D, ParsedAttributes &FirstArgAttrs, BalancedDelimiterTracker &Tracker, bool IsAmbiguous, bool RequiresArg) { assert(getCurScope()->isFunctionPrototypeScope() && "Should call from a Function scope"); // lparen is already consumed! assert(D.isPastIdentifier() && "Should not call before identifier!"); // This should be true when the function has typed arguments. // Otherwise, it is treated as a K&R-style function. bool HasProto = false; // Build up an array of information about the parsed arguments. SmallVector ParamInfo; // Remember where we see an ellipsis, if any. SourceLocation EllipsisLoc; DeclSpec DS(AttrFactory); bool RefQualifierIsLValueRef = true; SourceLocation RefQualifierLoc; ExceptionSpecificationType ESpecType = EST_None; SourceRange ESpecRange; SmallVector DynamicExceptions; SmallVector DynamicExceptionRanges; ExprResult NoexceptExpr; CachedTokens *ExceptionSpecTokens = nullptr; ParsedAttributesWithRange FnAttrs(AttrFactory); TypeResult TrailingReturnType; /* LocalEndLoc is the end location for the local FunctionTypeLoc. EndLoc is the end location for the function declarator. They differ for trailing return types. */ SourceLocation StartLoc, LocalEndLoc, EndLoc; SourceLocation LParenLoc, RParenLoc; LParenLoc = Tracker.getOpenLocation(); StartLoc = LParenLoc; if (isFunctionDeclaratorIdentifierList()) { if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); ParseFunctionDeclaratorIdentifierList(D, ParamInfo); Tracker.consumeClose(); RParenLoc = Tracker.getCloseLocation(); LocalEndLoc = RParenLoc; EndLoc = RParenLoc; // If there are attributes following the identifier list, parse them and // prohibit them. MaybeParseCXX11Attributes(FnAttrs); ProhibitAttributes(FnAttrs); } else { if (Tok.isNot(tok::r_paren)) ParseParameterDeclarationClause(D.getContext(), FirstArgAttrs, ParamInfo, EllipsisLoc); else if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); HasProto = ParamInfo.size() || getLangOpts().CPlusPlus || getLangOpts().OpenCL; // If we have the closing ')', eat it. Tracker.consumeClose(); RParenLoc = Tracker.getCloseLocation(); LocalEndLoc = RParenLoc; EndLoc = RParenLoc; if (getLangOpts().CPlusPlus) { // FIXME: Accept these components in any order, and produce fixits to // correct the order if the user gets it wrong. Ideally we should deal // with the pure-specifier in the same way. // Parse cv-qualifier-seq[opt]. ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed, /*AtomicAllowed*/ false, /*IdentifierRequired=*/false, llvm::function_ref([&]() { Actions.CodeCompleteFunctionQualifiers(DS, D); })); if (!DS.getSourceRange().getEnd().isInvalid()) { EndLoc = DS.getSourceRange().getEnd(); } // Parse ref-qualifier[opt]. if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc)) EndLoc = RefQualifierLoc; llvm::Optional ThisScope; InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope); // Parse exception-specification[opt]. bool Delayed = D.isFirstDeclarationOfMember() && D.isFunctionDeclaratorAFunctionDeclaration(); if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) && GetLookAheadToken(0).is(tok::kw_noexcept) && GetLookAheadToken(1).is(tok::l_paren) && GetLookAheadToken(2).is(tok::kw_noexcept) && GetLookAheadToken(3).is(tok::l_paren) && GetLookAheadToken(4).is(tok::identifier) && GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) { // HACK: We've got an exception-specification // noexcept(noexcept(swap(...))) // or // noexcept(noexcept(swap(...)) && noexcept(swap(...))) // on a 'swap' member function. This is a libstdc++ bug; the lookup // for 'swap' will only find the function we're currently declaring, // whereas it expects to find a non-member swap through ADL. Turn off // delayed parsing to give it a chance to find what it expects. Delayed = false; } ESpecType = tryParseExceptionSpecification(Delayed, ESpecRange, DynamicExceptions, DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens); if (ESpecType != EST_None) EndLoc = ESpecRange.getEnd(); // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes // after the exception-specification. MaybeParseCXX11Attributes(FnAttrs); // Parse trailing-return-type[opt]. LocalEndLoc = EndLoc; if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) { Diag(Tok, diag::warn_cxx98_compat_trailing_return_type); if (D.getDeclSpec().getTypeSpecType() == TST_auto) StartLoc = D.getDeclSpec().getTypeSpecTypeLoc(); LocalEndLoc = Tok.getLocation(); SourceRange Range; TrailingReturnType = ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit()); EndLoc = Range.getEnd(); } } else if (standardAttributesAllowed()) { MaybeParseCXX11Attributes(FnAttrs); } } // Collect non-parameter declarations from the prototype if this is a function // declaration. They will be moved into the scope of the function. Only do // this in C and not C++, where the decls will continue to live in the // surrounding context. SmallVector DeclsInPrototype; if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope && !getLangOpts().CPlusPlus) { for (Decl *D : getCurScope()->decls()) { NamedDecl *ND = dyn_cast(D); if (!ND || isa(ND)) continue; DeclsInPrototype.push_back(ND); } } // Remember that we parsed a function type, and remember the attributes. D.AddTypeInfo(DeclaratorChunk::getFunction( HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(), ParamInfo.size(), EllipsisLoc, RParenLoc, RefQualifierIsLValueRef, RefQualifierLoc, /*MutableLoc=*/SourceLocation(), ESpecType, ESpecRange, DynamicExceptions.data(), DynamicExceptionRanges.data(), DynamicExceptions.size(), NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr, ExceptionSpecTokens, DeclsInPrototype, StartLoc, LocalEndLoc, D, TrailingReturnType, &DS), std::move(FnAttrs), EndLoc); } /// ParseRefQualifier - Parses a member function ref-qualifier. Returns /// true if a ref-qualifier is found. bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef, SourceLocation &RefQualifierLoc) { if (Tok.isOneOf(tok::amp, tok::ampamp)) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_ref_qualifier : diag::ext_ref_qualifier); RefQualifierIsLValueRef = Tok.is(tok::amp); RefQualifierLoc = ConsumeToken(); return true; } return false; } /// isFunctionDeclaratorIdentifierList - This parameter list may have an /// identifier list form for a K&R-style function: void foo(a,b,c) /// /// Note that identifier-lists are only allowed for normal declarators, not for /// abstract-declarators. bool Parser::isFunctionDeclaratorIdentifierList() { return !getLangOpts().CPlusPlus && Tok.is(tok::identifier) && !TryAltiVecVectorToken() // K&R identifier lists can't have typedefs as identifiers, per C99 // 6.7.5.3p11. && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) // Identifier lists follow a really simple grammar: the identifiers can // be followed *only* by a ", identifier" or ")". However, K&R // identifier lists are really rare in the brave new modern world, and // it is very common for someone to typo a type in a non-K&R style // list. If we are presented with something like: "void foo(intptr x, // float y)", we don't want to start parsing the function declarator as // though it is a K&R style declarator just because intptr is an // invalid type. // // To handle this, we check to see if the token after the first // identifier is a "," or ")". Only then do we parse it as an // identifier list. && (!Tok.is(tok::eof) && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren))); } /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator /// we found a K&R-style identifier list instead of a typed parameter list. /// /// After returning, ParamInfo will hold the parsed parameters. /// /// identifier-list: [C99 6.7.5] /// identifier /// identifier-list ',' identifier /// void Parser::ParseFunctionDeclaratorIdentifierList( Declarator &D, SmallVectorImpl &ParamInfo) { // If there was no identifier specified for the declarator, either we are in // an abstract-declarator, or we are in a parameter declarator which was found // to be abstract. In abstract-declarators, identifier lists are not valid: // diagnose this. if (!D.getIdentifier()) Diag(Tok, diag::ext_ident_list_in_param); // Maintain an efficient lookup of params we have seen so far. llvm::SmallSet ParamsSoFar; do { // If this isn't an identifier, report the error and skip until ')'. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch); // Forget we parsed anything. ParamInfo.clear(); return; } IdentifierInfo *ParmII = Tok.getIdentifierInfo(); // Reject 'typedef int y; int test(x, y)', but continue parsing. if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope())) Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII; // Verify that the argument identifier has not already been mentioned. if (!ParamsSoFar.insert(ParmII).second) { Diag(Tok, diag::err_param_redefinition) << ParmII; } else { // Remember this identifier in ParamInfo. ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, Tok.getLocation(), nullptr)); } // Eat the identifier. ConsumeToken(); // The list continues if we see a comma. } while (TryConsumeToken(tok::comma)); } /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list /// after the opening parenthesis. This function will not parse a K&R-style /// identifier list. /// /// DeclContext is the context of the declarator being parsed. If FirstArgAttrs /// is non-null, then the caller parsed those attributes immediately after the /// open paren - they should be considered to be part of the first parameter. /// /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will /// be the location of the ellipsis, if any was parsed. /// /// parameter-type-list: [C99 6.7.5] /// parameter-list /// parameter-list ',' '...' /// [C++] parameter-list '...' /// /// parameter-list: [C99 6.7.5] /// parameter-declaration /// parameter-list ',' parameter-declaration /// /// parameter-declaration: [C99 6.7.5] /// declaration-specifiers declarator /// [C++] declaration-specifiers declarator '=' assignment-expression /// [C++11] initializer-clause /// [GNU] declaration-specifiers declarator attributes /// declaration-specifiers abstract-declarator[opt] /// [C++] declaration-specifiers abstract-declarator[opt] /// '=' assignment-expression /// [GNU] declaration-specifiers abstract-declarator[opt] attributes /// [C++11] attribute-specifier-seq parameter-declaration /// void Parser::ParseParameterDeclarationClause( DeclaratorContext DeclaratorCtx, ParsedAttributes &FirstArgAttrs, SmallVectorImpl &ParamInfo, SourceLocation &EllipsisLoc) { // Avoid exceeding the maximum function scope depth. // See https://bugs.llvm.org/show_bug.cgi?id=19607 // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with // getFunctionPrototypeDepth() - 1. if (getCurScope()->getFunctionPrototypeDepth() - 1 > ParmVarDecl::getMaxFunctionScopeDepth()) { Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded) << ParmVarDecl::getMaxFunctionScopeDepth(); cutOffParsing(); return; } do { // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq // before deciding this was a parameter-declaration-clause. if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) break; // Parse the declaration-specifiers. // Just use the ParsingDeclaration "scope" of the declarator. DeclSpec DS(AttrFactory); // Parse any C++11 attributes. MaybeParseCXX11Attributes(DS.getAttributes()); // Skip any Microsoft attributes before a param. MaybeParseMicrosoftAttributes(DS.getAttributes()); SourceLocation DSStart = Tok.getLocation(); // If the caller parsed attributes for the first argument, add them now. // Take them so that we only apply the attributes to the first parameter. // FIXME: If we can leave the attributes in the token stream somehow, we can // get rid of a parameter (FirstArgAttrs) and this statement. It might be // too much hassle. DS.takeAttributesFrom(FirstArgAttrs); ParseDeclarationSpecifiers(DS); // Parse the declarator. This is "PrototypeContext" or // "LambdaExprParameterContext", because we must accept either // 'declarator' or 'abstract-declarator' here. Declarator ParmDeclarator( DS, DeclaratorCtx == DeclaratorContext::RequiresExprContext ? DeclaratorContext::RequiresExprContext : DeclaratorCtx == DeclaratorContext::LambdaExprContext ? DeclaratorContext::LambdaExprParameterContext : DeclaratorContext::PrototypeContext); ParseDeclarator(ParmDeclarator); // Parse GNU attributes, if present. MaybeParseGNUAttributes(ParmDeclarator); if (Tok.is(tok::kw_requires)) { // User tried to define a requires clause in a parameter declaration, // which is surely not a function declaration. // void f(int (*g)(int, int) requires true); Diag(Tok, diag::err_requires_clause_on_declarator_not_declaring_a_function); ConsumeToken(); Actions.CorrectDelayedTyposInExpr( ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true)); } // Remember this parsed parameter in ParamInfo. IdentifierInfo *ParmII = ParmDeclarator.getIdentifier(); // DefArgToks is used when the parsing of default arguments needs // to be delayed. std::unique_ptr DefArgToks; // If no parameter was specified, verify that *something* was specified, // otherwise we have a missing type and identifier. if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr && ParmDeclarator.getNumTypeObjects() == 0) { // Completely missing, emit error. Diag(DSStart, diag::err_missing_param); } else { // Otherwise, we have something. Add it and let semantic analysis try // to grok it and add the result to the ParamInfo we are building. // Last chance to recover from a misplaced ellipsis in an attempted // parameter pack declaration. if (Tok.is(tok::ellipsis) && (NextToken().isNot(tok::r_paren) || (!ParmDeclarator.getEllipsisLoc().isValid() && !Actions.isUnexpandedParameterPackPermitted())) && Actions.containsUnexpandedParameterPacks(ParmDeclarator)) DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator); // Inform the actions module about the parameter declarator, so it gets // added to the current scope. Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); // Parse the default argument, if any. We parse the default // arguments in all dialects; the semantic analysis in // ActOnParamDefaultArgument will reject the default argument in // C. if (Tok.is(tok::equal)) { SourceLocation EqualLoc = Tok.getLocation(); // Parse the default argument if (DeclaratorCtx == DeclaratorContext::MemberContext) { // If we're inside a class definition, cache the tokens // corresponding to the default argument. We'll actually parse // them when we see the end of the class definition. DefArgToks.reset(new CachedTokens); SourceLocation ArgStartLoc = NextToken().getLocation(); if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) { DefArgToks.reset(); Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); } else { Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc, ArgStartLoc); } } else { // Consume the '='. ConsumeToken(); // The argument isn't actually potentially evaluated unless it is // used. EnterExpressionEvaluationContext Eval( Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed, Param); ExprResult DefArgResult; if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); DefArgResult = ParseBraceInitializer(); } else DefArgResult = ParseAssignmentExpression(); DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult); if (DefArgResult.isInvalid()) { Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); } else { // Inform the actions module about the default argument Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.get()); } } } ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, ParmDeclarator.getIdentifierLoc(), Param, std::move(DefArgToks))); } if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) { if (!getLangOpts().CPlusPlus) { // We have ellipsis without a preceding ',', which is ill-formed // in C. Complain and provide the fix. Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis) << FixItHint::CreateInsertion(EllipsisLoc, ", "); } else if (ParmDeclarator.getEllipsisLoc().isValid() || Actions.containsUnexpandedParameterPacks(ParmDeclarator)) { // It looks like this was supposed to be a parameter pack. Warn and // point out where the ellipsis should have gone. SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc(); Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg) << ParmEllipsis.isValid() << ParmEllipsis; if (ParmEllipsis.isValid()) { Diag(ParmEllipsis, diag::note_misplaced_ellipsis_vararg_existing_ellipsis); } else { Diag(ParmDeclarator.getIdentifierLoc(), diag::note_misplaced_ellipsis_vararg_add_ellipsis) << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(), "...") << !ParmDeclarator.hasName(); } Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma) << FixItHint::CreateInsertion(EllipsisLoc, ", "); } // We can't have any more parameters after an ellipsis. break; } // If the next token is a comma, consume it and keep reading arguments. } while (TryConsumeToken(tok::comma)); } /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] void Parser::ParseBracketDeclarator(Declarator &D) { if (CheckProhibitedCXX11Attribute()) return; BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); // C array syntax has many features, but by-far the most common is [] and [4]. // This code does a fast path to handle some of the most obvious cases. if (Tok.getKind() == tok::r_square) { T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); // Remember that we parsed the empty array type. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr, T.getOpenLocation(), T.getCloseLocation()), std::move(attrs), T.getCloseLocation()); return; } else if (Tok.getKind() == tok::numeric_constant && GetLookAheadToken(1).is(tok::r_square)) { // [4] is very common. Parse the numeric constant expression. ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope())); ConsumeToken(); T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(), T.getOpenLocation(), T.getCloseLocation()), std::move(attrs), T.getCloseLocation()); return; } else if (Tok.getKind() == tok::code_completion) { Actions.CodeCompleteBracketDeclarator(getCurScope()); return cutOffParsing(); } // If valid, this location is the position where we read the 'static' keyword. SourceLocation StaticLoc; TryConsumeToken(tok::kw_static, StaticLoc); // If there is a type-qualifier-list, read it now. // Type qualifiers in an array subscript are a C99 feature. DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed); // If we haven't already read 'static', check to see if there is one after the // type-qualifier-list. if (!StaticLoc.isValid()) TryConsumeToken(tok::kw_static, StaticLoc); // Handle "direct-declarator [ type-qual-list[opt] * ]". bool isStar = false; ExprResult NumElements; // Handle the case where we have '[*]' as the array size. However, a leading // star could be the start of an expression, for example 'X[*p + 4]'. Verify // the token after the star is a ']'. Since stars in arrays are // infrequent, use of lookahead is not costly here. if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) { ConsumeToken(); // Eat the '*'. if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } isStar = true; } else if (Tok.isNot(tok::r_square)) { // Note, in C89, this production uses the constant-expr production instead // of assignment-expr. The only difference is that assignment-expr allows // things like '=' and '*='. Sema rejects these in C89 mode because they // are not i-c-e's, so we don't need to distinguish between the two here. // Parse the constant-expression or assignment-expression now (depending // on dialect). if (getLangOpts().CPlusPlus) { NumElements = ParseConstantExpression(); } else { EnterExpressionEvaluationContext Unevaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); NumElements = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); } } else { if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } } // If there was an error parsing the assignment-expression, recover. if (NumElements.isInvalid()) { D.setInvalidType(true); // If the expression was invalid, skip it. SkipUntil(tok::r_square, StopAtSemi); return; } T.consumeClose(); MaybeParseCXX11Attributes(DS.getAttributes()); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo( DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), isStar, NumElements.get(), T.getOpenLocation(), T.getCloseLocation()), std::move(DS.getAttributes()), T.getCloseLocation()); } /// Diagnose brackets before an identifier. void Parser::ParseMisplacedBracketDeclarator(Declarator &D) { assert(Tok.is(tok::l_square) && "Missing opening bracket"); assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier"); SourceLocation StartBracketLoc = Tok.getLocation(); Declarator TempDeclarator(D.getDeclSpec(), D.getContext()); while (Tok.is(tok::l_square)) { ParseBracketDeclarator(TempDeclarator); } // Stuff the location of the start of the brackets into the Declarator. // The diagnostics from ParseDirectDeclarator will make more sense if // they use this location instead. if (Tok.is(tok::semi)) D.getName().EndLocation = StartBracketLoc; SourceLocation SuggestParenLoc = Tok.getLocation(); // Now that the brackets are removed, try parsing the declarator again. ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Something went wrong parsing the brackets, in which case, // ParseBracketDeclarator has emitted an error, and we don't need to emit // one here. if (TempDeclarator.getNumTypeObjects() == 0) return; // Determine if parens will need to be suggested in the diagnostic. bool NeedParens = false; if (D.getNumTypeObjects() != 0) { switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) { case DeclaratorChunk::Pointer: case DeclaratorChunk::Reference: case DeclaratorChunk::BlockPointer: case DeclaratorChunk::MemberPointer: case DeclaratorChunk::Pipe: NeedParens = true; break; case DeclaratorChunk::Array: case DeclaratorChunk::Function: case DeclaratorChunk::Paren: break; } } if (NeedParens) { // Create a DeclaratorChunk for the inserted parens. SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), SourceLocation()); } // Adding back the bracket info to the end of the Declarator. for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) { const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i); D.AddTypeInfo(Chunk, SourceLocation()); } // The missing identifier would have been diagnosed in ParseDirectDeclarator. // If parentheses are required, always suggest them. if (!D.getIdentifier() && !NeedParens) return; SourceLocation EndBracketLoc = TempDeclarator.getEndLoc(); // Generate the move bracket error message. SourceRange BracketRange(StartBracketLoc, EndBracketLoc); SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); if (NeedParens) { Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) << getLangOpts().CPlusPlus << FixItHint::CreateInsertion(SuggestParenLoc, "(") << FixItHint::CreateInsertion(EndLoc, ")") << FixItHint::CreateInsertionFromRange( EndLoc, CharSourceRange(BracketRange, true)) << FixItHint::CreateRemoval(BracketRange); } else { Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) << getLangOpts().CPlusPlus << FixItHint::CreateInsertionFromRange( EndLoc, CharSourceRange(BracketRange, true)) << FixItHint::CreateRemoval(BracketRange); } } /// [GNU] typeof-specifier: /// typeof ( expressions ) /// typeof ( type-name ) /// [GNU/C++] typeof unary-expression /// void Parser::ParseTypeofSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier"); Token OpTok = Tok; SourceLocation StartLoc = ConsumeToken(); const bool hasParens = Tok.is(tok::l_paren); EnterExpressionEvaluationContext Unevaluated( Actions, Sema::ExpressionEvaluationContext::Unevaluated, Sema::ReuseLambdaContextDecl); bool isCastExpr; ParsedType CastTy; SourceRange CastRange; ExprResult Operand = Actions.CorrectDelayedTyposInExpr( ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange)); if (hasParens) DS.setTypeofParensRange(CastRange); if (CastRange.getEnd().isInvalid()) // FIXME: Not accurate, the range gets one token more than it should. DS.SetRangeEnd(Tok.getLocation()); else DS.SetRangeEnd(CastRange.getEnd()); if (isCastExpr) { if (!CastTy) { DS.SetTypeSpecError(); return; } const char *PrevSpec = nullptr; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, DiagID, CastTy, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } // If we get here, the operand to the typeof was an expression. if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } // We might need to transform the operand if it is potentially evaluated. Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get()); if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } const char *PrevSpec = nullptr; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, DiagID, Operand.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// [C11] atomic-specifier: /// _Atomic ( type-name ) /// void Parser::ParseAtomicSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) && "Not an atomic specifier"); SourceLocation StartLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) return; TypeResult Result = ParseTypeName(); if (Result.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return; } // Match the ')' T.consumeClose(); if (T.getCloseLocation().isInvalid()) return; DS.setTypeofParensRange(T.getRange()); DS.SetRangeEnd(T.getCloseLocation()); const char *PrevSpec = nullptr; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec, DiagID, Result.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called /// from TryAltiVecVectorToken. bool Parser::TryAltiVecVectorTokenOutOfLine() { Token Next = NextToken(); switch (Next.getKind()) { default: return false; case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw___bool: case tok::kw___pixel: Tok.setKind(tok::kw___vector); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { Tok.setKind(tok::kw___vector); return true; } if (Next.getIdentifierInfo() == Ident_bool) { Tok.setKind(tok::kw___vector); return true; } return false; } } bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, bool &isInvalid) { const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); if (Tok.getIdentifierInfo() == Ident_vector) { Token Next = NextToken(); switch (Next.getKind()) { case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw___bool: case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); return true; } if (Next.getIdentifierInfo() == Ident_bool) { isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); return true; } break; default: break; } } else if ((Tok.getIdentifierInfo() == Ident_pixel) && DS.isTypeAltiVecVector()) { isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); return true; } else if ((Tok.getIdentifierInfo() == Ident_bool) && DS.isTypeAltiVecVector()) { isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); return true; } return false; } Index: head/contrib/llvm-project/clang/lib/Parse/ParseTemplate.cpp =================================================================== --- head/contrib/llvm-project/clang/lib/Parse/ParseTemplate.cpp (revision 359337) +++ head/contrib/llvm-project/clang/lib/Parse/ParseTemplate.cpp (revision 359338) @@ -1,1847 +1,1848 @@ //===--- ParseTemplate.cpp - Template Parsing -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements parsing of C++ templates. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Parse/Parser.h" #include "clang/Parse/RAIIObjectsForParser.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "llvm/Support/TimeProfiler.h" using namespace clang; /// Parse a template declaration, explicit instantiation, or /// explicit specialization. Decl *Parser::ParseDeclarationStartingWithTemplate( DeclaratorContext Context, SourceLocation &DeclEnd, ParsedAttributes &AccessAttrs, AccessSpecifier AS) { ObjCDeclContextSwitch ObjCDC(*this); if (Tok.is(tok::kw_template) && NextToken().isNot(tok::less)) { return ParseExplicitInstantiation(Context, SourceLocation(), ConsumeToken(), DeclEnd, AccessAttrs, AS); } return ParseTemplateDeclarationOrSpecialization(Context, DeclEnd, AccessAttrs, AS); } /// Parse a template declaration or an explicit specialization. /// /// Template declarations include one or more template parameter lists /// and either the function or class template declaration. Explicit /// specializations contain one or more 'template < >' prefixes /// followed by a (possibly templated) declaration. Since the /// syntactic form of both features is nearly identical, we parse all /// of the template headers together and let semantic analysis sort /// the declarations from the explicit specializations. /// /// template-declaration: [C++ temp] /// 'export'[opt] 'template' '<' template-parameter-list '>' declaration /// /// template-declaration: [C++2a] /// template-head declaration /// template-head concept-definition /// /// TODO: requires-clause /// template-head: [C++2a] /// 'template' '<' template-parameter-list '>' /// requires-clause[opt] /// /// explicit-specialization: [ C++ temp.expl.spec] /// 'template' '<' '>' declaration Decl *Parser::ParseTemplateDeclarationOrSpecialization( DeclaratorContext Context, SourceLocation &DeclEnd, ParsedAttributes &AccessAttrs, AccessSpecifier AS) { assert(Tok.isOneOf(tok::kw_export, tok::kw_template) && "Token does not start a template declaration."); // Enter template-parameter scope. ParseScope TemplateParmScope(this, Scope::TemplateParamScope); // Tell the action that names should be checked in the context of // the declaration to come. ParsingDeclRAIIObject ParsingTemplateParams(*this, ParsingDeclRAIIObject::NoParent); // Parse multiple levels of template headers within this template // parameter scope, e.g., // // template // template // class A::B { ... }; // // We parse multiple levels non-recursively so that we can build a // single data structure containing all of the template parameter // lists to easily differentiate between the case above and: // // template // class A { // template class B; // }; // // In the first case, the action for declaring A::B receives // both template parameter lists. In the second case, the action for // defining A::B receives just the inner template parameter list // (and retrieves the outer template parameter list from its // context). bool isSpecialization = true; bool LastParamListWasEmpty = false; TemplateParameterLists ParamLists; TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); do { // Consume the 'export', if any. SourceLocation ExportLoc; TryConsumeToken(tok::kw_export, ExportLoc); // Consume the 'template', which should be here. SourceLocation TemplateLoc; if (!TryConsumeToken(tok::kw_template, TemplateLoc)) { Diag(Tok.getLocation(), diag::err_expected_template); return nullptr; } // Parse the '<' template-parameter-list '>' SourceLocation LAngleLoc, RAngleLoc; SmallVector TemplateParams; if (ParseTemplateParameters(CurTemplateDepthTracker.getDepth(), TemplateParams, LAngleLoc, RAngleLoc)) { // Skip until the semi-colon or a '}'. SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); TryConsumeToken(tok::semi); return nullptr; } ExprResult OptionalRequiresClauseConstraintER; if (!TemplateParams.empty()) { isSpecialization = false; ++CurTemplateDepthTracker; if (TryConsumeToken(tok::kw_requires)) { OptionalRequiresClauseConstraintER = Actions.CorrectDelayedTyposInExpr( ParseConstraintLogicalOrExpression( /*IsTrailingRequiresClause=*/false)); if (!OptionalRequiresClauseConstraintER.isUsable()) { // Skip until the semi-colon or a '}'. SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); TryConsumeToken(tok::semi); return nullptr; } } } else { LastParamListWasEmpty = true; } ParamLists.push_back(Actions.ActOnTemplateParameterList( CurTemplateDepthTracker.getDepth(), ExportLoc, TemplateLoc, LAngleLoc, TemplateParams, RAngleLoc, OptionalRequiresClauseConstraintER.get())); } while (Tok.isOneOf(tok::kw_export, tok::kw_template)); unsigned NewFlags = getCurScope()->getFlags() & ~Scope::TemplateParamScope; ParseScopeFlags TemplateScopeFlags(this, NewFlags, isSpecialization); // Parse the actual template declaration. if (Tok.is(tok::kw_concept)) return ParseConceptDefinition( ParsedTemplateInfo(&ParamLists, isSpecialization, LastParamListWasEmpty), DeclEnd); return ParseSingleDeclarationAfterTemplate( Context, ParsedTemplateInfo(&ParamLists, isSpecialization, LastParamListWasEmpty), ParsingTemplateParams, DeclEnd, AccessAttrs, AS); } /// Parse a single declaration that declares a template, /// template specialization, or explicit instantiation of a template. /// /// \param DeclEnd will receive the source location of the last token /// within this declaration. /// /// \param AS the access specifier associated with this /// declaration. Will be AS_none for namespace-scope declarations. /// /// \returns the new declaration. Decl *Parser::ParseSingleDeclarationAfterTemplate( DeclaratorContext Context, const ParsedTemplateInfo &TemplateInfo, ParsingDeclRAIIObject &DiagsFromTParams, SourceLocation &DeclEnd, ParsedAttributes &AccessAttrs, AccessSpecifier AS) { assert(TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && "Template information required"); if (Tok.is(tok::kw_static_assert)) { // A static_assert declaration may not be templated. Diag(Tok.getLocation(), diag::err_templated_invalid_declaration) << TemplateInfo.getSourceRange(); // Parse the static_assert declaration to improve error recovery. return ParseStaticAssertDeclaration(DeclEnd); } if (Context == DeclaratorContext::MemberContext) { // We are parsing a member template. ParseCXXClassMemberDeclaration(AS, AccessAttrs, TemplateInfo, &DiagsFromTParams); return nullptr; } ParsedAttributesWithRange prefixAttrs(AttrFactory); MaybeParseCXX11Attributes(prefixAttrs); if (Tok.is(tok::kw_using)) { auto usingDeclPtr = ParseUsingDirectiveOrDeclaration(Context, TemplateInfo, DeclEnd, prefixAttrs); if (!usingDeclPtr || !usingDeclPtr.get().isSingleDecl()) return nullptr; return usingDeclPtr.get().getSingleDecl(); } // Parse the declaration specifiers, stealing any diagnostics from // the template parameters. ParsingDeclSpec DS(*this, &DiagsFromTParams); ParseDeclarationSpecifiers(DS, TemplateInfo, AS, getDeclSpecContextFromDeclaratorContext(Context)); if (Tok.is(tok::semi)) { ProhibitAttributes(prefixAttrs); DeclEnd = ConsumeToken(); RecordDecl *AnonRecord = nullptr; Decl *Decl = Actions.ParsedFreeStandingDeclSpec( getCurScope(), AS, DS, TemplateInfo.TemplateParams ? *TemplateInfo.TemplateParams : MultiTemplateParamsArg(), TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation, AnonRecord); assert(!AnonRecord && "Anonymous unions/structs should not be valid with template"); DS.complete(Decl); return Decl; } // Move the attributes from the prefix into the DS. if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) ProhibitAttributes(prefixAttrs); else DS.takeAttributesFrom(prefixAttrs); // Parse the declarator. ParsingDeclarator DeclaratorInfo(*this, DS, (DeclaratorContext)Context); if (TemplateInfo.TemplateParams) DeclaratorInfo.setTemplateParameterLists(*TemplateInfo.TemplateParams); ParseDeclarator(DeclaratorInfo); // Error parsing the declarator? if (!DeclaratorInfo.hasName()) { // If so, skip until the semi-colon or a }. SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); if (Tok.is(tok::semi)) ConsumeToken(); return nullptr; } llvm::TimeTraceScope TimeScope("ParseTemplate", [&]() { return DeclaratorInfo.getIdentifier() != nullptr ? DeclaratorInfo.getIdentifier()->getName() : ""; }); LateParsedAttrList LateParsedAttrs(true); if (DeclaratorInfo.isFunctionDeclarator()) { if (Tok.is(tok::kw_requires)) ParseTrailingRequiresClause(DeclaratorInfo); MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs); } if (DeclaratorInfo.isFunctionDeclarator() && isStartOfFunctionDefinition(DeclaratorInfo)) { // Function definitions are only allowed at file scope and in C++ classes. // The C++ inline method definition case is handled elsewhere, so we only // need to handle the file scope definition case. if (Context != DeclaratorContext::FileContext) { Diag(Tok, diag::err_function_definition_not_allowed); SkipMalformedDecl(); return nullptr; } if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { // Recover by ignoring the 'typedef'. This was probably supposed to be // the 'typename' keyword, which we should have already suggested adding // if it's appropriate. Diag(DS.getStorageClassSpecLoc(), diag::err_function_declared_typedef) << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); DS.ClearStorageClassSpecs(); } if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { if (DeclaratorInfo.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { // If the declarator-id is not a template-id, issue a diagnostic and // recover by ignoring the 'template' keyword. Diag(Tok, diag::err_template_defn_explicit_instantiation) << 0; return ParseFunctionDefinition(DeclaratorInfo, ParsedTemplateInfo(), &LateParsedAttrs); } else { SourceLocation LAngleLoc = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); Diag(DeclaratorInfo.getIdentifierLoc(), diag::err_explicit_instantiation_with_definition) << SourceRange(TemplateInfo.TemplateLoc) << FixItHint::CreateInsertion(LAngleLoc, "<>"); // Recover as if it were an explicit specialization. TemplateParameterLists FakedParamLists; FakedParamLists.push_back(Actions.ActOnTemplateParameterList( 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None, LAngleLoc, nullptr)); return ParseFunctionDefinition( DeclaratorInfo, ParsedTemplateInfo(&FakedParamLists, /*isSpecialization=*/true, /*lastParameterListWasEmpty=*/true), &LateParsedAttrs); } } return ParseFunctionDefinition(DeclaratorInfo, TemplateInfo, &LateParsedAttrs); } // Parse this declaration. Decl *ThisDecl = ParseDeclarationAfterDeclarator(DeclaratorInfo, TemplateInfo); if (Tok.is(tok::comma)) { Diag(Tok, diag::err_multiple_template_declarators) << (int)TemplateInfo.Kind; SkipUntil(tok::semi); return ThisDecl; } // Eat the semi colon after the declaration. ExpectAndConsumeSemi(diag::err_expected_semi_declaration); if (LateParsedAttrs.size() > 0) ParseLexedAttributeList(LateParsedAttrs, ThisDecl, true, false); DeclaratorInfo.complete(ThisDecl); return ThisDecl; } /// \brief Parse a single declaration that declares a concept. /// /// \param DeclEnd will receive the source location of the last token /// within this declaration. /// /// \returns the new declaration. Decl * Parser::ParseConceptDefinition(const ParsedTemplateInfo &TemplateInfo, SourceLocation &DeclEnd) { assert(TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && "Template information required"); assert(Tok.is(tok::kw_concept) && "ParseConceptDefinition must be called when at a 'concept' keyword"); ConsumeToken(); // Consume 'concept' SourceLocation BoolKWLoc; if (TryConsumeToken(tok::kw_bool, BoolKWLoc)) Diag(Tok.getLocation(), diag::ext_concept_legacy_bool_keyword) << FixItHint::CreateRemoval(SourceLocation(BoolKWLoc)); DiagnoseAndSkipCXX11Attributes(); CXXScopeSpec SS; if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false, /*MayBePseudoDestructor=*/nullptr, /*IsTypename=*/false, /*LastII=*/nullptr, /*OnlyNamespace=*/true) || SS.isInvalid()) { SkipUntil(tok::semi); return nullptr; } if (SS.isNotEmpty()) Diag(SS.getBeginLoc(), diag::err_concept_definition_not_identifier); UnqualifiedId Result; if (ParseUnqualifiedId(SS, /*EnteringContext=*/false, /*AllowDestructorName=*/false, /*AllowConstructorName=*/false, /*AllowDeductionGuide=*/false, /*ObjectType=*/ParsedType(), /*TemplateKWLoc=*/nullptr, Result)) { SkipUntil(tok::semi); return nullptr; } if (Result.getKind() != UnqualifiedIdKind::IK_Identifier) { Diag(Result.getBeginLoc(), diag::err_concept_definition_not_identifier); SkipUntil(tok::semi); return nullptr; } IdentifierInfo *Id = Result.Identifier; SourceLocation IdLoc = Result.getBeginLoc(); DiagnoseAndSkipCXX11Attributes(); if (!TryConsumeToken(tok::equal)) { Diag(Tok.getLocation(), diag::err_expected) << tok::equal; SkipUntil(tok::semi); return nullptr; } ExprResult ConstraintExprResult = Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression()); if (ConstraintExprResult.isInvalid()) { SkipUntil(tok::semi); return nullptr; } DeclEnd = Tok.getLocation(); ExpectAndConsumeSemi(diag::err_expected_semi_declaration); Expr *ConstraintExpr = ConstraintExprResult.get(); return Actions.ActOnConceptDefinition(getCurScope(), *TemplateInfo.TemplateParams, Id, IdLoc, ConstraintExpr); } /// ParseTemplateParameters - Parses a template-parameter-list enclosed in /// angle brackets. Depth is the depth of this template-parameter-list, which /// is the number of template headers directly enclosing this template header. /// TemplateParams is the current list of template parameters we're building. /// The template parameter we parse will be added to this list. LAngleLoc and /// RAngleLoc will receive the positions of the '<' and '>', respectively, /// that enclose this template parameter list. /// /// \returns true if an error occurred, false otherwise. bool Parser::ParseTemplateParameters( unsigned Depth, SmallVectorImpl &TemplateParams, SourceLocation &LAngleLoc, SourceLocation &RAngleLoc) { // Get the template parameter list. if (!TryConsumeToken(tok::less, LAngleLoc)) { Diag(Tok.getLocation(), diag::err_expected_less_after) << "template"; return true; } // Try to parse the template parameter list. bool Failed = false; if (!Tok.is(tok::greater) && !Tok.is(tok::greatergreater)) Failed = ParseTemplateParameterList(Depth, TemplateParams); if (Tok.is(tok::greatergreater)) { // No diagnostic required here: a template-parameter-list can only be // followed by a declaration or, for a template template parameter, the // 'class' keyword. Therefore, the second '>' will be diagnosed later. // This matters for elegant diagnosis of: // template> struct S; Tok.setKind(tok::greater); RAngleLoc = Tok.getLocation(); Tok.setLocation(Tok.getLocation().getLocWithOffset(1)); } else if (!TryConsumeToken(tok::greater, RAngleLoc) && Failed) { Diag(Tok.getLocation(), diag::err_expected) << tok::greater; return true; } return false; } /// ParseTemplateParameterList - Parse a template parameter list. If /// the parsing fails badly (i.e., closing bracket was left out), this /// will try to put the token stream in a reasonable position (closing /// a statement, etc.) and return false. /// /// template-parameter-list: [C++ temp] /// template-parameter /// template-parameter-list ',' template-parameter bool Parser::ParseTemplateParameterList(const unsigned Depth, SmallVectorImpl &TemplateParams) { while (1) { if (NamedDecl *TmpParam = ParseTemplateParameter(Depth, TemplateParams.size())) { TemplateParams.push_back(TmpParam); } else { // If we failed to parse a template parameter, skip until we find // a comma or closing brace. SkipUntil(tok::comma, tok::greater, tok::greatergreater, StopAtSemi | StopBeforeMatch); } // Did we find a comma or the end of the template parameter list? if (Tok.is(tok::comma)) { ConsumeToken(); } else if (Tok.isOneOf(tok::greater, tok::greatergreater)) { // Don't consume this... that's done by template parser. break; } else { // Somebody probably forgot to close the template. Skip ahead and // try to get out of the expression. This error is currently // subsumed by whatever goes on in ParseTemplateParameter. Diag(Tok.getLocation(), diag::err_expected_comma_greater); SkipUntil(tok::comma, tok::greater, tok::greatergreater, StopAtSemi | StopBeforeMatch); return false; } } return true; } /// Determine whether the parser is at the start of a template /// type parameter. Parser::TPResult Parser::isStartOfTemplateTypeParameter() { if (Tok.is(tok::kw_class)) { // "class" may be the start of an elaborated-type-specifier or a // type-parameter. Per C++ [temp.param]p3, we prefer the type-parameter. switch (NextToken().getKind()) { case tok::equal: case tok::comma: case tok::greater: case tok::greatergreater: case tok::ellipsis: return TPResult::True; case tok::identifier: // This may be either a type-parameter or an elaborated-type-specifier. // We have to look further. break; default: return TPResult::False; } switch (GetLookAheadToken(2).getKind()) { case tok::equal: case tok::comma: case tok::greater: case tok::greatergreater: return TPResult::True; default: return TPResult::False; } } if (TryAnnotateTypeConstraint()) return TPResult::Error; if (isTypeConstraintAnnotation() && // Next token might be 'auto' or 'decltype', indicating that this // type-constraint is in fact part of a placeholder-type-specifier of a // non-type template parameter. !GetLookAheadToken(Tok.is(tok::annot_cxxscope) ? 2 : 1) .isOneOf(tok::kw_auto, tok::kw_decltype)) return TPResult::True; // 'typedef' is a reasonably-common typo/thinko for 'typename', and is // ill-formed otherwise. if (Tok.isNot(tok::kw_typename) && Tok.isNot(tok::kw_typedef)) return TPResult::False; // C++ [temp.param]p2: // There is no semantic difference between class and typename in a // template-parameter. typename followed by an unqualified-id // names a template type parameter. typename followed by a // qualified-id denotes the type in a non-type // parameter-declaration. Token Next = NextToken(); // If we have an identifier, skip over it. if (Next.getKind() == tok::identifier) Next = GetLookAheadToken(2); switch (Next.getKind()) { case tok::equal: case tok::comma: case tok::greater: case tok::greatergreater: case tok::ellipsis: return TPResult::True; case tok::kw_typename: case tok::kw_typedef: case tok::kw_class: // These indicate that a comma was missed after a type parameter, not that // we have found a non-type parameter. return TPResult::True; default: return TPResult::False; } } /// ParseTemplateParameter - Parse a template-parameter (C++ [temp.param]). /// /// template-parameter: [C++ temp.param] /// type-parameter /// parameter-declaration /// /// type-parameter: (See below) /// type-parameter-key ...[opt] identifier[opt] /// type-parameter-key identifier[opt] = type-id /// (C++2a) type-constraint ...[opt] identifier[opt] /// (C++2a) type-constraint identifier[opt] = type-id /// 'template' '<' template-parameter-list '>' type-parameter-key /// ...[opt] identifier[opt] /// 'template' '<' template-parameter-list '>' type-parameter-key /// identifier[opt] '=' id-expression /// /// type-parameter-key: /// class /// typename /// NamedDecl *Parser::ParseTemplateParameter(unsigned Depth, unsigned Position) { switch (isStartOfTemplateTypeParameter()) { case TPResult::True: // Is there just a typo in the input code? ('typedef' instead of // 'typename') if (Tok.is(tok::kw_typedef)) { Diag(Tok.getLocation(), diag::err_expected_template_parameter); Diag(Tok.getLocation(), diag::note_meant_to_use_typename) << FixItHint::CreateReplacement(CharSourceRange::getCharRange( Tok.getLocation(), Tok.getEndLoc()), "typename"); Tok.setKind(tok::kw_typename); } return ParseTypeParameter(Depth, Position); case TPResult::False: break; case TPResult::Error: { // We return an invalid parameter as opposed to null to avoid having bogus // diagnostics about an empty template parameter list. // FIXME: Fix ParseTemplateParameterList to better handle nullptr results // from here. // Return a NTTP as if there was an error in a scope specifier, the user // probably meant to write the type of a NTTP. DeclSpec DS(getAttrFactory()); DS.SetTypeSpecError(); Declarator D(DS, DeclaratorContext::TemplateParamContext); D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); NamedDecl *ErrorParam = Actions.ActOnNonTypeTemplateParameter( getCurScope(), D, Depth, Position, /*EqualLoc=*/SourceLocation(), /*DefaultArg=*/nullptr); ErrorParam->setInvalidDecl(true); SkipUntil(tok::comma, tok::greater, tok::greatergreater, StopAtSemi | StopBeforeMatch); return ErrorParam; } case TPResult::Ambiguous: llvm_unreachable("template param classification can't be ambiguous"); } if (Tok.is(tok::kw_template)) return ParseTemplateTemplateParameter(Depth, Position); // If it's none of the above, then it must be a parameter declaration. // NOTE: This will pick up errors in the closure of the template parameter // list (e.g., template < ; Check here to implement >> style closures. return ParseNonTypeTemplateParameter(Depth, Position); } /// Check whether the current token is a template-id annotation denoting a /// type-constraint. bool Parser::isTypeConstraintAnnotation() { const Token &T = Tok.is(tok::annot_cxxscope) ? NextToken() : Tok; if (T.isNot(tok::annot_template_id)) return false; const auto *ExistingAnnot = static_cast(T.getAnnotationValue()); return ExistingAnnot->Kind == TNK_Concept_template; } /// Try parsing a type-constraint at the current location. /// /// type-constraint: /// nested-name-specifier[opt] concept-name /// nested-name-specifier[opt] concept-name /// '<' template-argument-list[opt] '>'[opt] /// /// \returns true if an error occurred, and false otherwise. bool Parser::TryAnnotateTypeConstraint() { if (!getLangOpts().CPlusPlus2a) return false; CXXScopeSpec SS; bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); if (ParseOptionalCXXScopeSpecifier( SS, ParsedType(), /*EnteringContext=*/false, /*MayBePseudoDestructor=*/nullptr, // If this is not a type-constraint, then // this scope-spec is part of the typename // of a non-type template parameter /*IsTypename=*/true, /*LastII=*/nullptr, // We won't find concepts in // non-namespaces anyway, so might as well // parse this correctly for possible type // names. /*OnlyNamespace=*/false)) return true; if (Tok.is(tok::identifier)) { UnqualifiedId PossibleConceptName; PossibleConceptName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); TemplateTy PossibleConcept; bool MemberOfUnknownSpecialization = false; auto TNK = Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, PossibleConceptName, /*ObjectType=*/ParsedType(), /*EnteringContext=*/false, PossibleConcept, - MemberOfUnknownSpecialization); + MemberOfUnknownSpecialization, + /*Disambiguation=*/true); if (MemberOfUnknownSpecialization || !PossibleConcept || TNK != TNK_Concept_template) { if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return false; } // At this point we're sure we're dealing with a constrained parameter. It // may or may not have a template parameter list following the concept // name. if (AnnotateTemplateIdToken(PossibleConcept, TNK, SS, /*TemplateKWLoc=*/SourceLocation(), PossibleConceptName, /*AllowTypeAnnotation=*/false, /*TypeConstraint=*/true)) return true; } if (SS.isNotEmpty()) AnnotateScopeToken(SS, !WasScopeAnnotation); return false; } /// ParseTypeParameter - Parse a template type parameter (C++ [temp.param]). /// Other kinds of template parameters are parsed in /// ParseTemplateTemplateParameter and ParseNonTypeTemplateParameter. /// /// type-parameter: [C++ temp.param] /// 'class' ...[opt][C++0x] identifier[opt] /// 'class' identifier[opt] '=' type-id /// 'typename' ...[opt][C++0x] identifier[opt] /// 'typename' identifier[opt] '=' type-id NamedDecl *Parser::ParseTypeParameter(unsigned Depth, unsigned Position) { assert((Tok.isOneOf(tok::kw_class, tok::kw_typename) || isTypeConstraintAnnotation()) && "A type-parameter starts with 'class', 'typename' or a " "type-constraint"); CXXScopeSpec TypeConstraintSS; TemplateIdAnnotation *TypeConstraint = nullptr; bool TypenameKeyword = false; SourceLocation KeyLoc; ParseOptionalCXXScopeSpecifier(TypeConstraintSS, nullptr, /*EnteringContext*/ false); if (Tok.is(tok::annot_template_id)) { // Consume the 'type-constraint'. TypeConstraint = static_cast(Tok.getAnnotationValue()); assert(TypeConstraint->Kind == TNK_Concept_template && "stray non-concept template-id annotation"); KeyLoc = ConsumeAnnotationToken(); } else { assert(TypeConstraintSS.isEmpty() && "expected type constraint after scope specifier"); // Consume the 'class' or 'typename' keyword. TypenameKeyword = Tok.is(tok::kw_typename); KeyLoc = ConsumeToken(); } // Grab the ellipsis (if given). SourceLocation EllipsisLoc; if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) { Diag(EllipsisLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_variadic_templates : diag::ext_variadic_templates); } // Grab the template parameter name (if given) SourceLocation NameLoc = Tok.getLocation(); IdentifierInfo *ParamName = nullptr; if (Tok.is(tok::identifier)) { ParamName = Tok.getIdentifierInfo(); ConsumeToken(); } else if (Tok.isOneOf(tok::equal, tok::comma, tok::greater, tok::greatergreater)) { // Unnamed template parameter. Don't have to do anything here, just // don't consume this token. } else { Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; return nullptr; } // Recover from misplaced ellipsis. bool AlreadyHasEllipsis = EllipsisLoc.isValid(); if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) DiagnoseMisplacedEllipsis(EllipsisLoc, NameLoc, AlreadyHasEllipsis, true); // Grab a default argument (if available). // Per C++0x [basic.scope.pdecl]p9, we parse the default argument before // we introduce the type parameter into the local scope. SourceLocation EqualLoc; ParsedType DefaultArg; if (TryConsumeToken(tok::equal, EqualLoc)) DefaultArg = ParseTypeName(/*Range=*/nullptr, DeclaratorContext::TemplateTypeArgContext) .get(); NamedDecl *NewDecl = Actions.ActOnTypeParameter(getCurScope(), TypenameKeyword, EllipsisLoc, KeyLoc, ParamName, NameLoc, Depth, Position, EqualLoc, DefaultArg, TypeConstraint != nullptr); if (TypeConstraint) { Actions.ActOnTypeConstraint(TypeConstraintSS, TypeConstraint, cast(NewDecl), EllipsisLoc); } return NewDecl; } /// ParseTemplateTemplateParameter - Handle the parsing of template /// template parameters. /// /// type-parameter: [C++ temp.param] /// 'template' '<' template-parameter-list '>' type-parameter-key /// ...[opt] identifier[opt] /// 'template' '<' template-parameter-list '>' type-parameter-key /// identifier[opt] = id-expression /// type-parameter-key: /// 'class' /// 'typename' [C++1z] NamedDecl * Parser::ParseTemplateTemplateParameter(unsigned Depth, unsigned Position) { assert(Tok.is(tok::kw_template) && "Expected 'template' keyword"); // Handle the template <...> part. SourceLocation TemplateLoc = ConsumeToken(); SmallVector TemplateParams; SourceLocation LAngleLoc, RAngleLoc; { ParseScope TemplateParmScope(this, Scope::TemplateParamScope); if (ParseTemplateParameters(Depth + 1, TemplateParams, LAngleLoc, RAngleLoc)) { return nullptr; } } // Provide an ExtWarn if the C++1z feature of using 'typename' here is used. // Generate a meaningful error if the user forgot to put class before the // identifier, comma, or greater. Provide a fixit if the identifier, comma, // or greater appear immediately or after 'struct'. In the latter case, // replace the keyword with 'class'. if (!TryConsumeToken(tok::kw_class)) { bool Replace = Tok.isOneOf(tok::kw_typename, tok::kw_struct); const Token &Next = Tok.is(tok::kw_struct) ? NextToken() : Tok; if (Tok.is(tok::kw_typename)) { Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_template_template_param_typename : diag::ext_template_template_param_typename) << (!getLangOpts().CPlusPlus17 ? FixItHint::CreateReplacement(Tok.getLocation(), "class") : FixItHint()); } else if (Next.isOneOf(tok::identifier, tok::comma, tok::greater, tok::greatergreater, tok::ellipsis)) { Diag(Tok.getLocation(), diag::err_class_on_template_template_param) << (Replace ? FixItHint::CreateReplacement(Tok.getLocation(), "class") : FixItHint::CreateInsertion(Tok.getLocation(), "class ")); } else Diag(Tok.getLocation(), diag::err_class_on_template_template_param); if (Replace) ConsumeToken(); } // Parse the ellipsis, if given. SourceLocation EllipsisLoc; if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) Diag(EllipsisLoc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_variadic_templates : diag::ext_variadic_templates); // Get the identifier, if given. SourceLocation NameLoc = Tok.getLocation(); IdentifierInfo *ParamName = nullptr; if (Tok.is(tok::identifier)) { ParamName = Tok.getIdentifierInfo(); ConsumeToken(); } else if (Tok.isOneOf(tok::equal, tok::comma, tok::greater, tok::greatergreater)) { // Unnamed template parameter. Don't have to do anything here, just // don't consume this token. } else { Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; return nullptr; } // Recover from misplaced ellipsis. bool AlreadyHasEllipsis = EllipsisLoc.isValid(); if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) DiagnoseMisplacedEllipsis(EllipsisLoc, NameLoc, AlreadyHasEllipsis, true); TemplateParameterList *ParamList = Actions.ActOnTemplateParameterList(Depth, SourceLocation(), TemplateLoc, LAngleLoc, TemplateParams, RAngleLoc, nullptr); // Grab a default argument (if available). // Per C++0x [basic.scope.pdecl]p9, we parse the default argument before // we introduce the template parameter into the local scope. SourceLocation EqualLoc; ParsedTemplateArgument DefaultArg; if (TryConsumeToken(tok::equal, EqualLoc)) { DefaultArg = ParseTemplateTemplateArgument(); if (DefaultArg.isInvalid()) { Diag(Tok.getLocation(), diag::err_default_template_template_parameter_not_template); SkipUntil(tok::comma, tok::greater, tok::greatergreater, StopAtSemi | StopBeforeMatch); } } return Actions.ActOnTemplateTemplateParameter(getCurScope(), TemplateLoc, ParamList, EllipsisLoc, ParamName, NameLoc, Depth, Position, EqualLoc, DefaultArg); } /// ParseNonTypeTemplateParameter - Handle the parsing of non-type /// template parameters (e.g., in "template class array;"). /// /// template-parameter: /// ... /// parameter-declaration NamedDecl * Parser::ParseNonTypeTemplateParameter(unsigned Depth, unsigned Position) { // Parse the declaration-specifiers (i.e., the type). // FIXME: The type should probably be restricted in some way... Not all // declarators (parts of declarators?) are accepted for parameters. DeclSpec DS(AttrFactory); ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DeclSpecContext::DSC_template_param); // Parse this as a typename. Declarator ParamDecl(DS, DeclaratorContext::TemplateParamContext); ParseDeclarator(ParamDecl); if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) { Diag(Tok.getLocation(), diag::err_expected_template_parameter); return nullptr; } // Recover from misplaced ellipsis. SourceLocation EllipsisLoc; if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, ParamDecl); // If there is a default value, parse it. // Per C++0x [basic.scope.pdecl]p9, we parse the default argument before // we introduce the template parameter into the local scope. SourceLocation EqualLoc; ExprResult DefaultArg; if (TryConsumeToken(tok::equal, EqualLoc)) { // C++ [temp.param]p15: // When parsing a default template-argument for a non-type // template-parameter, the first non-nested > is taken as the // end of the template-parameter-list rather than a greater-than // operator. GreaterThanIsOperatorScope G(GreaterThanIsOperator, false); EnterExpressionEvaluationContext ConstantEvaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); DefaultArg = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); if (DefaultArg.isInvalid()) SkipUntil(tok::comma, tok::greater, StopAtSemi | StopBeforeMatch); } // Create the parameter. return Actions.ActOnNonTypeTemplateParameter(getCurScope(), ParamDecl, Depth, Position, EqualLoc, DefaultArg.get()); } void Parser::DiagnoseMisplacedEllipsis(SourceLocation EllipsisLoc, SourceLocation CorrectLoc, bool AlreadyHasEllipsis, bool IdentifierHasName) { FixItHint Insertion; if (!AlreadyHasEllipsis) Insertion = FixItHint::CreateInsertion(CorrectLoc, "..."); Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration) << FixItHint::CreateRemoval(EllipsisLoc) << Insertion << !IdentifierHasName; } void Parser::DiagnoseMisplacedEllipsisInDeclarator(SourceLocation EllipsisLoc, Declarator &D) { assert(EllipsisLoc.isValid()); bool AlreadyHasEllipsis = D.getEllipsisLoc().isValid(); if (!AlreadyHasEllipsis) D.setEllipsisLoc(EllipsisLoc); DiagnoseMisplacedEllipsis(EllipsisLoc, D.getIdentifierLoc(), AlreadyHasEllipsis, D.hasName()); } /// Parses a '>' at the end of a template list. /// /// If this function encounters '>>', '>>>', '>=', or '>>=', it tries /// to determine if these tokens were supposed to be a '>' followed by /// '>', '>>', '>=', or '>='. It emits an appropriate diagnostic if necessary. /// /// \param RAngleLoc the location of the consumed '>'. /// /// \param ConsumeLastToken if true, the '>' is consumed. /// /// \param ObjCGenericList if true, this is the '>' closing an Objective-C /// type parameter or type argument list, rather than a C++ template parameter /// or argument list. /// /// \returns true, if current token does not start with '>', false otherwise. bool Parser::ParseGreaterThanInTemplateList(SourceLocation &RAngleLoc, bool ConsumeLastToken, bool ObjCGenericList) { // What will be left once we've consumed the '>'. tok::TokenKind RemainingToken; const char *ReplacementStr = "> >"; bool MergeWithNextToken = false; switch (Tok.getKind()) { default: Diag(Tok.getLocation(), diag::err_expected) << tok::greater; return true; case tok::greater: // Determine the location of the '>' token. Only consume this token // if the caller asked us to. RAngleLoc = Tok.getLocation(); if (ConsumeLastToken) ConsumeToken(); return false; case tok::greatergreater: RemainingToken = tok::greater; break; case tok::greatergreatergreater: RemainingToken = tok::greatergreater; break; case tok::greaterequal: RemainingToken = tok::equal; ReplacementStr = "> ="; // Join two adjacent '=' tokens into one, for cases like: // void (*p)() = f; // return f==p; if (NextToken().is(tok::equal) && areTokensAdjacent(Tok, NextToken())) { RemainingToken = tok::equalequal; MergeWithNextToken = true; } break; case tok::greatergreaterequal: RemainingToken = tok::greaterequal; break; } // This template-id is terminated by a token that starts with a '>'. // Outside C++11 and Objective-C, this is now error recovery. // // C++11 allows this when the token is '>>', and in CUDA + C++11 mode, we // extend that treatment to also apply to the '>>>' token. // // Objective-C allows this in its type parameter / argument lists. SourceLocation TokBeforeGreaterLoc = PrevTokLocation; SourceLocation TokLoc = Tok.getLocation(); Token Next = NextToken(); // Whether splitting the current token after the '>' would undesirably result // in the remaining token pasting with the token after it. This excludes the // MergeWithNextToken cases, which we've already handled. bool PreventMergeWithNextToken = (RemainingToken == tok::greater || RemainingToken == tok::greatergreater) && (Next.isOneOf(tok::greater, tok::greatergreater, tok::greatergreatergreater, tok::equal, tok::greaterequal, tok::greatergreaterequal, tok::equalequal)) && areTokensAdjacent(Tok, Next); // Diagnose this situation as appropriate. if (!ObjCGenericList) { // The source range of the replaced token(s). CharSourceRange ReplacementRange = CharSourceRange::getCharRange( TokLoc, Lexer::AdvanceToTokenCharacter(TokLoc, 2, PP.getSourceManager(), getLangOpts())); // A hint to put a space between the '>>'s. In order to make the hint as // clear as possible, we include the characters either side of the space in // the replacement, rather than just inserting a space at SecondCharLoc. FixItHint Hint1 = FixItHint::CreateReplacement(ReplacementRange, ReplacementStr); // A hint to put another space after the token, if it would otherwise be // lexed differently. FixItHint Hint2; if (PreventMergeWithNextToken) Hint2 = FixItHint::CreateInsertion(Next.getLocation(), " "); unsigned DiagId = diag::err_two_right_angle_brackets_need_space; if (getLangOpts().CPlusPlus11 && (Tok.is(tok::greatergreater) || Tok.is(tok::greatergreatergreater))) DiagId = diag::warn_cxx98_compat_two_right_angle_brackets; else if (Tok.is(tok::greaterequal)) DiagId = diag::err_right_angle_bracket_equal_needs_space; Diag(TokLoc, DiagId) << Hint1 << Hint2; } // Find the "length" of the resulting '>' token. This is not always 1, as it // can contain escaped newlines. unsigned GreaterLength = Lexer::getTokenPrefixLength( TokLoc, 1, PP.getSourceManager(), getLangOpts()); // Annotate the source buffer to indicate that we split the token after the // '>'. This allows us to properly find the end of, and extract the spelling // of, the '>' token later. RAngleLoc = PP.SplitToken(TokLoc, GreaterLength); // Strip the initial '>' from the token. bool CachingTokens = PP.IsPreviousCachedToken(Tok); Token Greater = Tok; Greater.setLocation(RAngleLoc); Greater.setKind(tok::greater); Greater.setLength(GreaterLength); unsigned OldLength = Tok.getLength(); if (MergeWithNextToken) { ConsumeToken(); OldLength += Tok.getLength(); } Tok.setKind(RemainingToken); Tok.setLength(OldLength - GreaterLength); // Split the second token if lexing it normally would lex a different token // (eg, the fifth token in 'A>>' should re-lex as '>', not '>>'). SourceLocation AfterGreaterLoc = TokLoc.getLocWithOffset(GreaterLength); if (PreventMergeWithNextToken) AfterGreaterLoc = PP.SplitToken(AfterGreaterLoc, Tok.getLength()); Tok.setLocation(AfterGreaterLoc); // Update the token cache to match what we just did if necessary. if (CachingTokens) { // If the previous cached token is being merged, delete it. if (MergeWithNextToken) PP.ReplacePreviousCachedToken({}); if (ConsumeLastToken) PP.ReplacePreviousCachedToken({Greater, Tok}); else PP.ReplacePreviousCachedToken({Greater}); } if (ConsumeLastToken) { PrevTokLocation = RAngleLoc; } else { PrevTokLocation = TokBeforeGreaterLoc; PP.EnterToken(Tok, /*IsReinject=*/true); Tok = Greater; } return false; } /// Parses a template-id that after the template name has /// already been parsed. /// /// This routine takes care of parsing the enclosed template argument /// list ('<' template-parameter-list [opt] '>') and placing the /// results into a form that can be transferred to semantic analysis. /// /// \param ConsumeLastToken if true, then we will consume the last /// token that forms the template-id. Otherwise, we will leave the /// last token in the stream (e.g., so that it can be replaced with an /// annotation token). bool Parser::ParseTemplateIdAfterTemplateName(bool ConsumeLastToken, SourceLocation &LAngleLoc, TemplateArgList &TemplateArgs, SourceLocation &RAngleLoc) { assert(Tok.is(tok::less) && "Must have already parsed the template-name"); // Consume the '<'. LAngleLoc = ConsumeToken(); // Parse the optional template-argument-list. bool Invalid = false; { GreaterThanIsOperatorScope G(GreaterThanIsOperator, false); if (!Tok.isOneOf(tok::greater, tok::greatergreater, tok::greatergreatergreater, tok::greaterequal, tok::greatergreaterequal)) Invalid = ParseTemplateArgumentList(TemplateArgs); if (Invalid) { // Try to find the closing '>'. if (ConsumeLastToken) SkipUntil(tok::greater, StopAtSemi); else SkipUntil(tok::greater, StopAtSemi | StopBeforeMatch); return true; } } return ParseGreaterThanInTemplateList(RAngleLoc, ConsumeLastToken, /*ObjCGenericList=*/false); } /// Replace the tokens that form a simple-template-id with an /// annotation token containing the complete template-id. /// /// The first token in the stream must be the name of a template that /// is followed by a '<'. This routine will parse the complete /// simple-template-id and replace the tokens with a single annotation /// token with one of two different kinds: if the template-id names a /// type (and \p AllowTypeAnnotation is true), the annotation token is /// a type annotation that includes the optional nested-name-specifier /// (\p SS). Otherwise, the annotation token is a template-id /// annotation that does not include the optional /// nested-name-specifier. /// /// \param Template the declaration of the template named by the first /// token (an identifier), as returned from \c Action::isTemplateName(). /// /// \param TNK the kind of template that \p Template /// refers to, as returned from \c Action::isTemplateName(). /// /// \param SS if non-NULL, the nested-name-specifier that precedes /// this template name. /// /// \param TemplateKWLoc if valid, specifies that this template-id /// annotation was preceded by the 'template' keyword and gives the /// location of that keyword. If invalid (the default), then this /// template-id was not preceded by a 'template' keyword. /// /// \param AllowTypeAnnotation if true (the default), then a /// simple-template-id that refers to a class template, template /// template parameter, or other template that produces a type will be /// replaced with a type annotation token. Otherwise, the /// simple-template-id is always replaced with a template-id /// annotation token. /// /// \param TypeConstraint if true, then this is actually a type-constraint, /// meaning that the template argument list can be omitted (and the template in /// question must be a concept). /// /// If an unrecoverable parse error occurs and no annotation token can be /// formed, this function returns true. /// bool Parser::AnnotateTemplateIdToken(TemplateTy Template, TemplateNameKind TNK, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &TemplateName, bool AllowTypeAnnotation, bool TypeConstraint) { assert(getLangOpts().CPlusPlus && "Can only annotate template-ids in C++"); assert(Template && (Tok.is(tok::less) || TypeConstraint) && "Parser isn't at the beginning of a template-id"); assert(!(TypeConstraint && AllowTypeAnnotation) && "type-constraint can't be " "a type annotation"); assert((!TypeConstraint || TNK == TNK_Concept_template) && "type-constraint " "must accompany a concept name"); // Consume the template-name. SourceLocation TemplateNameLoc = TemplateName.getSourceRange().getBegin(); // Parse the enclosed template argument list. SourceLocation LAngleLoc, RAngleLoc; TemplateArgList TemplateArgs; if (!TypeConstraint || Tok.is(tok::less)) { bool Invalid = ParseTemplateIdAfterTemplateName(false, LAngleLoc, TemplateArgs, RAngleLoc); if (Invalid) { // If we failed to parse the template ID but skipped ahead to a >, we're not // going to be able to form a token annotation. Eat the '>' if present. TryConsumeToken(tok::greater); // FIXME: Annotate the token stream so we don't produce the same errors // again if we're doing this annotation as part of a tentative parse. return true; } } ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs); // Build the annotation token. if (TNK == TNK_Type_template && AllowTypeAnnotation) { TypeResult Type = Actions.ActOnTemplateIdType( getCurScope(), SS, TemplateKWLoc, Template, TemplateName.Identifier, TemplateNameLoc, LAngleLoc, TemplateArgsPtr, RAngleLoc); if (Type.isInvalid()) { // If we failed to parse the template ID but skipped ahead to a >, we're // not going to be able to form a token annotation. Eat the '>' if // present. TryConsumeToken(tok::greater); // FIXME: Annotate the token stream so we don't produce the same errors // again if we're doing this annotation as part of a tentative parse. return true; } Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Type.get()); if (SS.isNotEmpty()) Tok.setLocation(SS.getBeginLoc()); else if (TemplateKWLoc.isValid()) Tok.setLocation(TemplateKWLoc); else Tok.setLocation(TemplateNameLoc); } else { // Build a template-id annotation token that can be processed // later. Tok.setKind(tok::annot_template_id); IdentifierInfo *TemplateII = TemplateName.getKind() == UnqualifiedIdKind::IK_Identifier ? TemplateName.Identifier : nullptr; OverloadedOperatorKind OpKind = TemplateName.getKind() == UnqualifiedIdKind::IK_Identifier ? OO_None : TemplateName.OperatorFunctionId.Operator; TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create( TemplateKWLoc, TemplateNameLoc, TemplateII, OpKind, Template, TNK, LAngleLoc, RAngleLoc, TemplateArgs, TemplateIds); Tok.setAnnotationValue(TemplateId); if (TemplateKWLoc.isValid()) Tok.setLocation(TemplateKWLoc); else Tok.setLocation(TemplateNameLoc); } // Common fields for the annotation token Tok.setAnnotationEndLoc(RAngleLoc); // In case the tokens were cached, have Preprocessor replace them with the // annotation token. PP.AnnotateCachedTokens(Tok); return false; } /// Replaces a template-id annotation token with a type /// annotation token. /// /// If there was a failure when forming the type from the template-id, /// a type annotation token will still be created, but will have a /// NULL type pointer to signify an error. /// /// \param SS The scope specifier appearing before the template-id, if any. /// /// \param IsClassName Is this template-id appearing in a context where we /// know it names a class, such as in an elaborated-type-specifier or /// base-specifier? ('typename' and 'template' are unneeded and disallowed /// in those contexts.) void Parser::AnnotateTemplateIdTokenAsType(CXXScopeSpec &SS, bool IsClassName) { assert(Tok.is(tok::annot_template_id) && "Requires template-id tokens"); TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); assert((TemplateId->Kind == TNK_Type_template || TemplateId->Kind == TNK_Dependent_template_name || TemplateId->Kind == TNK_Undeclared_template) && "Only works for type and dependent templates"); ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), TemplateId->NumArgs); TypeResult Type = Actions.ActOnTemplateIdType(getCurScope(), SS, TemplateId->TemplateKWLoc, TemplateId->Template, TemplateId->Name, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc, /*IsCtorOrDtorName*/false, IsClassName); // Create the new "type" annotation token. Tok.setKind(tok::annot_typename); setTypeAnnotation(Tok, Type.isInvalid() ? nullptr : Type.get()); if (SS.isNotEmpty()) // it was a C++ qualified type name. Tok.setLocation(SS.getBeginLoc()); // End location stays the same // Replace the template-id annotation token, and possible the scope-specifier // that precedes it, with the typename annotation token. PP.AnnotateCachedTokens(Tok); } /// Determine whether the given token can end a template argument. static bool isEndOfTemplateArgument(Token Tok) { return Tok.isOneOf(tok::comma, tok::greater, tok::greatergreater); } /// Parse a C++ template template argument. ParsedTemplateArgument Parser::ParseTemplateTemplateArgument() { if (!Tok.is(tok::identifier) && !Tok.is(tok::coloncolon) && !Tok.is(tok::annot_cxxscope)) return ParsedTemplateArgument(); // C++0x [temp.arg.template]p1: // A template-argument for a template template-parameter shall be the name // of a class template or an alias template, expressed as id-expression. // // We parse an id-expression that refers to a class template or alias // template. The grammar we parse is: // // nested-name-specifier[opt] template[opt] identifier ...[opt] // // followed by a token that terminates a template argument, such as ',', // '>', or (in some cases) '>>'. CXXScopeSpec SS; // nested-name-specifier, if present ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/false); ParsedTemplateArgument Result; SourceLocation EllipsisLoc; if (SS.isSet() && Tok.is(tok::kw_template)) { // Parse the optional 'template' keyword following the // nested-name-specifier. SourceLocation TemplateKWLoc = ConsumeToken(); if (Tok.is(tok::identifier)) { // We appear to have a dependent template name. UnqualifiedId Name; Name.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); ConsumeToken(); // the identifier TryConsumeToken(tok::ellipsis, EllipsisLoc); // If the next token signals the end of a template argument, // then we have a dependent template name that could be a template // template argument. TemplateTy Template; if (isEndOfTemplateArgument(Tok) && Actions.ActOnDependentTemplateName( getCurScope(), SS, TemplateKWLoc, Name, /*ObjectType=*/nullptr, /*EnteringContext=*/false, Template)) Result = ParsedTemplateArgument(SS, Template, Name.StartLocation); } } else if (Tok.is(tok::identifier)) { // We may have a (non-dependent) template name. TemplateTy Template; UnqualifiedId Name; Name.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); ConsumeToken(); // the identifier TryConsumeToken(tok::ellipsis, EllipsisLoc); if (isEndOfTemplateArgument(Tok)) { bool MemberOfUnknownSpecialization; TemplateNameKind TNK = Actions.isTemplateName( getCurScope(), SS, /*hasTemplateKeyword=*/false, Name, /*ObjectType=*/nullptr, /*EnteringContext=*/false, Template, MemberOfUnknownSpecialization); if (TNK == TNK_Dependent_template_name || TNK == TNK_Type_template) { // We have an id-expression that refers to a class template or // (C++0x) alias template. Result = ParsedTemplateArgument(SS, Template, Name.StartLocation); } } } // If this is a pack expansion, build it as such. if (EllipsisLoc.isValid() && !Result.isInvalid()) Result = Actions.ActOnPackExpansion(Result, EllipsisLoc); return Result; } /// ParseTemplateArgument - Parse a C++ template argument (C++ [temp.names]). /// /// template-argument: [C++ 14.2] /// constant-expression /// type-id /// id-expression ParsedTemplateArgument Parser::ParseTemplateArgument() { // C++ [temp.arg]p2: // In a template-argument, an ambiguity between a type-id and an // expression is resolved to a type-id, regardless of the form of // the corresponding template-parameter. // // Therefore, we initially try to parse a type-id - and isCXXTypeId might look // up and annotate an identifier as an id-expression during disambiguation, // so enter the appropriate context for a constant expression template // argument before trying to disambiguate. EnterExpressionEvaluationContext EnterConstantEvaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated, /*LambdaContextDecl=*/nullptr, /*ExprContext=*/Sema::ExpressionEvaluationContextRecord::EK_TemplateArgument); if (isCXXTypeId(TypeIdAsTemplateArgument)) { TypeResult TypeArg = ParseTypeName( /*Range=*/nullptr, DeclaratorContext::TemplateArgContext); return Actions.ActOnTemplateTypeArgument(TypeArg); } // Try to parse a template template argument. { TentativeParsingAction TPA(*this); ParsedTemplateArgument TemplateTemplateArgument = ParseTemplateTemplateArgument(); if (!TemplateTemplateArgument.isInvalid()) { TPA.Commit(); return TemplateTemplateArgument; } // Revert this tentative parse to parse a non-type template argument. TPA.Revert(); } // Parse a non-type template argument. SourceLocation Loc = Tok.getLocation(); ExprResult ExprArg = ParseConstantExpressionInExprEvalContext(MaybeTypeCast); if (ExprArg.isInvalid() || !ExprArg.get()) { return ParsedTemplateArgument(); } return ParsedTemplateArgument(ParsedTemplateArgument::NonType, ExprArg.get(), Loc); } /// ParseTemplateArgumentList - Parse a C++ template-argument-list /// (C++ [temp.names]). Returns true if there was an error. /// /// template-argument-list: [C++ 14.2] /// template-argument /// template-argument-list ',' template-argument bool Parser::ParseTemplateArgumentList(TemplateArgList &TemplateArgs) { ColonProtectionRAIIObject ColonProtection(*this, false); do { ParsedTemplateArgument Arg = ParseTemplateArgument(); SourceLocation EllipsisLoc; if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) Arg = Actions.ActOnPackExpansion(Arg, EllipsisLoc); if (Arg.isInvalid()) { SkipUntil(tok::comma, tok::greater, StopAtSemi | StopBeforeMatch); return true; } // Save this template argument. TemplateArgs.push_back(Arg); // If the next token is a comma, consume it and keep reading // arguments. } while (TryConsumeToken(tok::comma)); return false; } /// Parse a C++ explicit template instantiation /// (C++ [temp.explicit]). /// /// explicit-instantiation: /// 'extern' [opt] 'template' declaration /// /// Note that the 'extern' is a GNU extension and C++11 feature. Decl *Parser::ParseExplicitInstantiation(DeclaratorContext Context, SourceLocation ExternLoc, SourceLocation TemplateLoc, SourceLocation &DeclEnd, ParsedAttributes &AccessAttrs, AccessSpecifier AS) { // This isn't really required here. ParsingDeclRAIIObject ParsingTemplateParams(*this, ParsingDeclRAIIObject::NoParent); return ParseSingleDeclarationAfterTemplate( Context, ParsedTemplateInfo(ExternLoc, TemplateLoc), ParsingTemplateParams, DeclEnd, AccessAttrs, AS); } SourceRange Parser::ParsedTemplateInfo::getSourceRange() const { if (TemplateParams) return getTemplateParamsRange(TemplateParams->data(), TemplateParams->size()); SourceRange R(TemplateLoc); if (ExternLoc.isValid()) R.setBegin(ExternLoc); return R; } void Parser::LateTemplateParserCallback(void *P, LateParsedTemplate &LPT) { ((Parser *)P)->ParseLateTemplatedFuncDef(LPT); } /// Late parse a C++ function template in Microsoft mode. void Parser::ParseLateTemplatedFuncDef(LateParsedTemplate &LPT) { if (!LPT.D) return; // Get the FunctionDecl. FunctionDecl *FunD = LPT.D->getAsFunction(); // Track template parameter depth. TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); // To restore the context after late parsing. Sema::ContextRAII GlobalSavedContext( Actions, Actions.Context.getTranslationUnitDecl()); SmallVector TemplateParamScopeStack; // Get the list of DeclContexts to reenter. For inline methods, we only want // to push the DeclContext of the outermost class. This matches the way the // parser normally parses bodies of inline methods when the outermost class is // complete. struct ContainingDC { ContainingDC(DeclContext *DC, bool ShouldPush) : Pair(DC, ShouldPush) {} llvm::PointerIntPair Pair; DeclContext *getDC() { return Pair.getPointer(); } bool shouldPushDC() { return Pair.getInt(); } }; SmallVector DeclContextsToReenter; DeclContext *DD = FunD; DeclContext *NextContaining = Actions.getContainingDC(DD); while (DD && !DD->isTranslationUnit()) { bool ShouldPush = DD == NextContaining; DeclContextsToReenter.push_back({DD, ShouldPush}); if (ShouldPush) NextContaining = Actions.getContainingDC(DD); DD = DD->getLexicalParent(); } // Reenter template scopes from outermost to innermost. for (ContainingDC CDC : reverse(DeclContextsToReenter)) { TemplateParamScopeStack.push_back( new ParseScope(this, Scope::TemplateParamScope)); unsigned NumParamLists = Actions.ActOnReenterTemplateScope( getCurScope(), cast(CDC.getDC())); CurTemplateDepthTracker.addDepth(NumParamLists); if (CDC.shouldPushDC()) { TemplateParamScopeStack.push_back(new ParseScope(this, Scope::DeclScope)); Actions.PushDeclContext(Actions.getCurScope(), CDC.getDC()); } } assert(!LPT.Toks.empty() && "Empty body!"); // Append the current token at the end of the new token stream so that it // doesn't get lost. LPT.Toks.push_back(Tok); PP.EnterTokenStream(LPT.Toks, true, /*IsReinject*/true); // Consume the previously pushed token. ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); assert(Tok.isOneOf(tok::l_brace, tok::colon, tok::kw_try) && "Inline method not starting with '{', ':' or 'try'"); // Parse the method body. Function body parsing code is similar enough // to be re-used for method bodies as well. ParseScope FnScope(this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope); // Recreate the containing function DeclContext. Sema::ContextRAII FunctionSavedContext(Actions, Actions.getContainingDC(FunD)); Actions.ActOnStartOfFunctionDef(getCurScope(), FunD); if (Tok.is(tok::kw_try)) { ParseFunctionTryBlock(LPT.D, FnScope); } else { if (Tok.is(tok::colon)) ParseConstructorInitializer(LPT.D); else Actions.ActOnDefaultCtorInitializers(LPT.D); if (Tok.is(tok::l_brace)) { assert((!isa(LPT.D) || cast(LPT.D) ->getTemplateParameters() ->getDepth() == TemplateParameterDepth - 1) && "TemplateParameterDepth should be greater than the depth of " "current template being instantiated!"); ParseFunctionStatementBody(LPT.D, FnScope); Actions.UnmarkAsLateParsedTemplate(FunD); } else Actions.ActOnFinishFunctionBody(LPT.D, nullptr); } // Exit scopes. FnScope.Exit(); SmallVectorImpl::reverse_iterator I = TemplateParamScopeStack.rbegin(); for (; I != TemplateParamScopeStack.rend(); ++I) delete *I; } /// Lex a delayed template function for late parsing. void Parser::LexTemplateFunctionForLateParsing(CachedTokens &Toks) { tok::TokenKind kind = Tok.getKind(); if (!ConsumeAndStoreFunctionPrologue(Toks)) { // Consume everything up to (and including) the matching right brace. ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); } // If we're in a function-try-block, we need to store all the catch blocks. if (kind == tok::kw_try) { while (Tok.is(tok::kw_catch)) { ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false); ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); } } } /// We've parsed something that could plausibly be intended to be a template /// name (\p LHS) followed by a '<' token, and the following code can't possibly /// be an expression. Determine if this is likely to be a template-id and if so, /// diagnose it. bool Parser::diagnoseUnknownTemplateId(ExprResult LHS, SourceLocation Less) { TentativeParsingAction TPA(*this); // FIXME: We could look at the token sequence in a lot more detail here. if (SkipUntil(tok::greater, tok::greatergreater, tok::greatergreatergreater, StopAtSemi | StopBeforeMatch)) { TPA.Commit(); SourceLocation Greater; ParseGreaterThanInTemplateList(Greater, true, false); Actions.diagnoseExprIntendedAsTemplateName(getCurScope(), LHS, Less, Greater); return true; } // There's no matching '>' token, this probably isn't supposed to be // interpreted as a template-id. Parse it as an (ill-formed) comparison. TPA.Revert(); return false; } void Parser::checkPotentialAngleBracket(ExprResult &PotentialTemplateName) { assert(Tok.is(tok::less) && "not at a potential angle bracket"); bool DependentTemplateName = false; if (!Actions.mightBeIntendedToBeTemplateName(PotentialTemplateName, DependentTemplateName)) return; // OK, this might be a name that the user intended to be parsed as a // template-name, followed by a '<' token. Check for some easy cases. // If we have potential_template<>, then it's supposed to be a template-name. if (NextToken().is(tok::greater) || (getLangOpts().CPlusPlus11 && NextToken().isOneOf(tok::greatergreater, tok::greatergreatergreater))) { SourceLocation Less = ConsumeToken(); SourceLocation Greater; ParseGreaterThanInTemplateList(Greater, true, false); Actions.diagnoseExprIntendedAsTemplateName( getCurScope(), PotentialTemplateName, Less, Greater); // FIXME: Perform error recovery. PotentialTemplateName = ExprError(); return; } // If we have 'potential_template' later on. { // FIXME: Avoid the tentative parse when NextToken() can't begin a type. TentativeParsingAction TPA(*this); SourceLocation Less = ConsumeToken(); if (isTypeIdUnambiguously() && diagnoseUnknownTemplateId(PotentialTemplateName, Less)) { TPA.Commit(); // FIXME: Perform error recovery. PotentialTemplateName = ExprError(); return; } TPA.Revert(); } // Otherwise, remember that we saw this in case we see a potentially-matching // '>' token later on. AngleBracketTracker::Priority Priority = (DependentTemplateName ? AngleBracketTracker::DependentName : AngleBracketTracker::PotentialTypo) | (Tok.hasLeadingSpace() ? AngleBracketTracker::SpaceBeforeLess : AngleBracketTracker::NoSpaceBeforeLess); AngleBrackets.add(*this, PotentialTemplateName.get(), Tok.getLocation(), Priority); } bool Parser::checkPotentialAngleBracketDelimiter( const AngleBracketTracker::Loc &LAngle, const Token &OpToken) { // If a comma in an expression context is followed by a type that can be a // template argument and cannot be an expression, then this is ill-formed, // but might be intended to be part of a template-id. if (OpToken.is(tok::comma) && isTypeIdUnambiguously() && diagnoseUnknownTemplateId(LAngle.TemplateName, LAngle.LessLoc)) { AngleBrackets.clear(*this); return true; } // If a context that looks like a template-id is followed by '()', then // this is ill-formed, but might be intended to be a template-id // followed by '()'. if (OpToken.is(tok::greater) && Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { Actions.diagnoseExprIntendedAsTemplateName( getCurScope(), LAngle.TemplateName, LAngle.LessLoc, OpToken.getLocation()); AngleBrackets.clear(*this); return true; } // After a '>' (etc), we're no longer potentially in a construct that's // intended to be treated as a template-id. if (OpToken.is(tok::greater) || (getLangOpts().CPlusPlus11 && OpToken.isOneOf(tok::greatergreater, tok::greatergreatergreater))) AngleBrackets.clear(*this); return false; } Index: head/contrib/llvm-project/clang/lib/Sema/SemaTemplate.cpp =================================================================== --- head/contrib/llvm-project/clang/lib/Sema/SemaTemplate.cpp (revision 359337) +++ head/contrib/llvm-project/clang/lib/Sema/SemaTemplate.cpp (revision 359338) @@ -1,10863 +1,10866 @@ //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ templates. //===----------------------------------------------------------------------===// #include "TreeTransform.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/TypeVisitor.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/Stack.h" #include "clang/Basic/TargetInfo.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Overload.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/Template.h" #include "clang/Sema/TemplateDeduction.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include using namespace clang; using namespace sema; // Exported for use by Parser. SourceRange clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, unsigned N) { if (!N) return SourceRange(); return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); } unsigned Sema::getTemplateDepth(Scope *S) const { unsigned Depth = 0; // Each template parameter scope represents one level of template parameter // depth. for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope && !Depth; TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { ++Depth; } // Note that there are template parameters with the given depth. auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; // Look for parameters of an enclosing generic lambda. We don't create a // template parameter scope for these. for (FunctionScopeInfo *FSI : getFunctionScopes()) { if (auto *LSI = dyn_cast(FSI)) { if (!LSI->TemplateParams.empty()) { ParamsAtDepth(LSI->AutoTemplateParameterDepth); break; } if (LSI->GLTemplateParameterList) { ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); break; } } } // Look for parameters of an enclosing terse function template. We don't // create a template parameter scope for these either. for (const InventedTemplateParameterInfo &Info : getInventedParameterInfos()) { if (!Info.TemplateParams.empty()) { ParamsAtDepth(Info.AutoTemplateParameterDepth); break; } } return Depth; } /// \brief Determine whether the declaration found is acceptable as the name /// of a template and, if so, return that template declaration. Otherwise, /// returns null. /// /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent /// is true. In all other cases it will return a TemplateDecl (or null). NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, bool AllowFunctionTemplates, bool AllowDependent) { D = D->getUnderlyingDecl(); if (isa(D)) { if (!AllowFunctionTemplates && isa(D)) return nullptr; return D; } if (CXXRecordDecl *Record = dyn_cast(D)) { // C++ [temp.local]p1: // Like normal (non-template) classes, class templates have an // injected-class-name (Clause 9). The injected-class-name // can be used with or without a template-argument-list. When // it is used without a template-argument-list, it is // equivalent to the injected-class-name followed by the // template-parameters of the class template enclosed in // <>. When it is used with a template-argument-list, it // refers to the specified class template specialization, // which could be the current specialization or another // specialization. if (Record->isInjectedClassName()) { Record = cast(Record->getDeclContext()); if (Record->getDescribedClassTemplate()) return Record->getDescribedClassTemplate(); if (ClassTemplateSpecializationDecl *Spec = dyn_cast(Record)) return Spec->getSpecializedTemplate(); } return nullptr; } // 'using Dependent::foo;' can resolve to a template name. // 'using typename Dependent::foo;' cannot (not even if 'foo' is an // injected-class-name). if (AllowDependent && isa(D)) return D; return nullptr; } void Sema::FilterAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates, bool AllowDependent) { LookupResult::Filter filter = R.makeFilter(); while (filter.hasNext()) { NamedDecl *Orig = filter.next(); if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) filter.erase(); } filter.done(); } bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, bool AllowFunctionTemplates, bool AllowDependent, bool AllowNonTemplateFunctions) { for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) return true; if (AllowNonTemplateFunctions && isa((*I)->getUnderlyingDecl())) return true; } return false; } TemplateNameKind Sema::isTemplateName(Scope *S, CXXScopeSpec &SS, bool hasTemplateKeyword, const UnqualifiedId &Name, ParsedType ObjectTypePtr, bool EnteringContext, TemplateTy &TemplateResult, - bool &MemberOfUnknownSpecialization) { + bool &MemberOfUnknownSpecialization, + bool Disambiguation) { assert(getLangOpts().CPlusPlus && "No template names in C!"); DeclarationName TName; MemberOfUnknownSpecialization = false; switch (Name.getKind()) { case UnqualifiedIdKind::IK_Identifier: TName = DeclarationName(Name.Identifier); break; case UnqualifiedIdKind::IK_OperatorFunctionId: TName = Context.DeclarationNames.getCXXOperatorName( Name.OperatorFunctionId.Operator); break; case UnqualifiedIdKind::IK_LiteralOperatorId: TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); break; default: return TNK_Non_template; } QualType ObjectType = ObjectTypePtr.get(); AssumedTemplateKind AssumedTemplate; LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, MemberOfUnknownSpecialization, SourceLocation(), - &AssumedTemplate)) + &AssumedTemplate, Disambiguation)) return TNK_Non_template; if (AssumedTemplate != AssumedTemplateKind::None) { TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); // Let the parser know whether we found nothing or found functions; if we // found nothing, we want to more carefully check whether this is actually // a function template name versus some other kind of undeclared identifier. return AssumedTemplate == AssumedTemplateKind::FoundNothing ? TNK_Undeclared_template : TNK_Function_template; } if (R.empty()) return TNK_Non_template; NamedDecl *D = nullptr; if (R.isAmbiguous()) { // If we got an ambiguity involving a non-function template, treat this // as a template name, and pick an arbitrary template for error recovery. bool AnyFunctionTemplates = false; for (NamedDecl *FoundD : R) { if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { if (isa(FoundTemplate)) AnyFunctionTemplates = true; else { D = FoundTemplate; break; } } } // If we didn't find any templates at all, this isn't a template name. // Leave the ambiguity for a later lookup to diagnose. if (!D && !AnyFunctionTemplates) { R.suppressDiagnostics(); return TNK_Non_template; } // If the only templates were function templates, filter out the rest. // We'll diagnose the ambiguity later. if (!D) FilterAcceptableTemplateNames(R); } // At this point, we have either picked a single template name declaration D // or we have a non-empty set of results R containing either one template name // declaration or a set of function templates. TemplateName Template; TemplateNameKind TemplateKind; unsigned ResultCount = R.end() - R.begin(); if (!D && ResultCount > 1) { // We assume that we'll preserve the qualifier from a function // template name in other ways. Template = Context.getOverloadedTemplateName(R.begin(), R.end()); TemplateKind = TNK_Function_template; // We'll do this lookup again later. R.suppressDiagnostics(); } else { if (!D) { D = getAsTemplateNameDecl(*R.begin()); assert(D && "unambiguous result is not a template name"); } if (isa(D)) { // We don't yet know whether this is a template-name or not. MemberOfUnknownSpecialization = true; return TNK_Non_template; } TemplateDecl *TD = cast(D); if (SS.isSet() && !SS.isInvalid()) { NestedNameSpecifier *Qualifier = SS.getScopeRep(); Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword, TD); } else { Template = TemplateName(TD); } if (isa(TD)) { TemplateKind = TNK_Function_template; // We'll do this lookup again later. R.suppressDiagnostics(); } else { assert(isa(TD) || isa(TD) || isa(TD) || isa(TD) || isa(TD) || isa(TD)); TemplateKind = isa(TD) ? TNK_Var_template : isa(TD) ? TNK_Concept_template : TNK_Type_template; } } TemplateResult = TemplateTy::make(Template); return TemplateKind; } bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, SourceLocation NameLoc, ParsedTemplateTy *Template) { CXXScopeSpec SS; bool MemberOfUnknownSpecialization = false; // We could use redeclaration lookup here, but we don't need to: the // syntactic form of a deduction guide is enough to identify it even // if we can't look up the template name at all. LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), /*EnteringContext*/ false, MemberOfUnknownSpecialization)) return false; if (R.empty()) return false; if (R.isAmbiguous()) { // FIXME: Diagnose an ambiguity if we find at least one template. R.suppressDiagnostics(); return false; } // We only treat template-names that name type templates as valid deduction // guide names. TemplateDecl *TD = R.getAsSingle(); if (!TD || !getAsTypeTemplateDecl(TD)) return false; if (Template) *Template = TemplateTy::make(TemplateName(TD)); return true; } bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, SourceLocation IILoc, Scope *S, const CXXScopeSpec *SS, TemplateTy &SuggestedTemplate, TemplateNameKind &SuggestedKind) { // We can't recover unless there's a dependent scope specifier preceding the // template name. // FIXME: Typo correction? if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || computeDeclContext(*SS)) return false; // The code is missing a 'template' keyword prior to the dependent template // name. NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); Diag(IILoc, diag::err_template_kw_missing) << Qualifier << II.getName() << FixItHint::CreateInsertion(IILoc, "template "); SuggestedTemplate = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); SuggestedKind = TNK_Dependent_template_name; return true; } bool Sema::LookupTemplateName(LookupResult &Found, Scope *S, CXXScopeSpec &SS, QualType ObjectType, bool EnteringContext, bool &MemberOfUnknownSpecialization, SourceLocation TemplateKWLoc, - AssumedTemplateKind *ATK) { + AssumedTemplateKind *ATK, + bool Disambiguation) { if (ATK) *ATK = AssumedTemplateKind::None; Found.setTemplateNameLookup(true); // Determine where to perform name lookup MemberOfUnknownSpecialization = false; DeclContext *LookupCtx = nullptr; bool IsDependent = false; if (!ObjectType.isNull()) { // This nested-name-specifier occurs in a member access expression, e.g., // x->B::f, and we are looking into the type of the object. assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); LookupCtx = computeDeclContext(ObjectType); IsDependent = !LookupCtx && ObjectType->isDependentType(); assert((IsDependent || !ObjectType->isIncompleteType() || ObjectType->castAs()->isBeingDefined()) && "Caller should have completed object type"); // Template names cannot appear inside an Objective-C class or object type // or a vector type. // // FIXME: This is wrong. For example: // // template using Vec = T __attribute__((ext_vector_type(4))); // Vec vi; // vi.Vec::~Vec(); // // ... should be accepted but we will not treat 'Vec' as a template name // here. The right thing to do would be to check if the name is a valid // vector component name, and look up a template name if not. And similarly // for lookups into Objective-C class and object types, where the same // problem can arise. if (ObjectType->isObjCObjectOrInterfaceType() || ObjectType->isVectorType()) { Found.clear(); return false; } } else if (SS.isSet()) { // This nested-name-specifier occurs after another nested-name-specifier, // so long into the context associated with the prior nested-name-specifier. LookupCtx = computeDeclContext(SS, EnteringContext); IsDependent = !LookupCtx; // The declaration context must be complete. if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) return true; } bool ObjectTypeSearchedInScope = false; bool AllowFunctionTemplatesInLookup = true; if (LookupCtx) { // Perform "qualified" name lookup into the declaration context we // computed, which is either the type of the base of a member access // expression or the declaration context associated with a prior // nested-name-specifier. LookupQualifiedName(Found, LookupCtx); // FIXME: The C++ standard does not clearly specify what happens in the // case where the object type is dependent, and implementations vary. In // Clang, we treat a name after a . or -> as a template-name if lookup // finds a non-dependent member or member of the current instantiation that // is a type template, or finds no such members and lookup in the context // of the postfix-expression finds a type template. In the latter case, the // name is nonetheless dependent, and we may resolve it to a member of an // unknown specialization when we come to instantiate the template. IsDependent |= Found.wasNotFoundInCurrentInstantiation(); } if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) { // C++ [basic.lookup.classref]p1: // In a class member access expression (5.2.5), if the . or -> token is // immediately followed by an identifier followed by a <, the // identifier must be looked up to determine whether the < is the // beginning of a template argument list (14.2) or a less-than operator. // The identifier is first looked up in the class of the object // expression. If the identifier is not found, it is then looked up in // the context of the entire postfix-expression and shall name a class // template. if (S) LookupName(Found, S); if (!ObjectType.isNull()) { // FIXME: We should filter out all non-type templates here, particularly // variable templates and concepts. But the exclusion of alias templates // and template template parameters is a wording defect. AllowFunctionTemplatesInLookup = false; ObjectTypeSearchedInScope = true; } IsDependent |= Found.wasNotFoundInCurrentInstantiation(); } if (Found.isAmbiguous()) return false; if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) { // C++2a [temp.names]p2: // A name is also considered to refer to a template if it is an // unqualified-id followed by a < and name lookup finds either one or more // functions or finds nothing. // // To keep our behavior consistent, we apply the "finds nothing" part in // all language modes, and diagnose the empty lookup in ActOnCallExpr if we // successfully form a call to an undeclared template-id. bool AllFunctions = getLangOpts().CPlusPlus2a && std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) { return isa(ND->getUnderlyingDecl()); }); if (AllFunctions || (Found.empty() && !IsDependent)) { // If lookup found any functions, or if this is a name that can only be // used for a function, then strongly assume this is a function // template-id. *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) ? AssumedTemplateKind::FoundNothing : AssumedTemplateKind::FoundFunctions; Found.clear(); return false; } } - if (Found.empty() && !IsDependent) { - // If we did not find any names, attempt to correct any typos. + if (Found.empty() && !IsDependent && !Disambiguation) { + // If we did not find any names, and this is not a disambiguation, attempt + // to correct any typos. DeclarationName Name = Found.getLookupName(); Found.clear(); // Simple filter callback that, for keywords, only accepts the C++ *_cast DefaultFilterCCC FilterCCC{}; FilterCCC.WantTypeSpecifiers = false; FilterCCC.WantExpressionKeywords = false; FilterCCC.WantRemainingKeywords = false; FilterCCC.WantCXXNamedCasts = true; if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { if (auto *ND = Corrected.getFoundDecl()) Found.addDecl(ND); FilterAcceptableTemplateNames(Found); if (Found.isAmbiguous()) { Found.clear(); } else if (!Found.empty()) { Found.setLookupName(Corrected.getCorrection()); if (LookupCtx) { std::string CorrectedStr(Corrected.getAsString(getLangOpts())); bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) << Name << LookupCtx << DroppedSpecifier << SS.getRange()); } else { diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); } } } } NamedDecl *ExampleLookupResult = Found.empty() ? nullptr : Found.getRepresentativeDecl(); FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); if (Found.empty()) { if (IsDependent) { MemberOfUnknownSpecialization = true; return false; } // If a 'template' keyword was used, a lookup that finds only non-template // names is an error. if (ExampleLookupResult && TemplateKWLoc.isValid()) { Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) << Found.getLookupName() << SS.getRange(); Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), diag::note_template_kw_refers_to_non_template) << Found.getLookupName(); return true; } return false; } if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && !getLangOpts().CPlusPlus11) { // C++03 [basic.lookup.classref]p1: // [...] If the lookup in the class of the object expression finds a // template, the name is also looked up in the context of the entire // postfix-expression and [...] // // Note: C++11 does not perform this second lookup. LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), LookupOrdinaryName); FoundOuter.setTemplateNameLookup(true); LookupName(FoundOuter, S); // FIXME: We silently accept an ambiguous lookup here, in violation of // [basic.lookup]/1. FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); NamedDecl *OuterTemplate; if (FoundOuter.empty()) { // - if the name is not found, the name found in the class of the // object expression is used, otherwise } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || !(OuterTemplate = getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { // - if the name is found in the context of the entire // postfix-expression and does not name a class template, the name // found in the class of the object expression is used, otherwise FoundOuter.clear(); } else if (!Found.isSuppressingDiagnostics()) { // - if the name found is a class template, it must refer to the same // entity as the one found in the class of the object expression, // otherwise the program is ill-formed. if (!Found.isSingleResult() || getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != OuterTemplate->getCanonicalDecl()) { Diag(Found.getNameLoc(), diag::ext_nested_name_member_ref_lookup_ambiguous) << Found.getLookupName() << ObjectType; Diag(Found.getRepresentativeDecl()->getLocation(), diag::note_ambig_member_ref_object_type) << ObjectType; Diag(FoundOuter.getFoundDecl()->getLocation(), diag::note_ambig_member_ref_scope); // Recover by taking the template that we found in the object // expression's type. } } } return false; } void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, SourceLocation Less, SourceLocation Greater) { if (TemplateName.isInvalid()) return; DeclarationNameInfo NameInfo; CXXScopeSpec SS; LookupNameKind LookupKind; DeclContext *LookupCtx = nullptr; NamedDecl *Found = nullptr; bool MissingTemplateKeyword = false; // Figure out what name we looked up. if (auto *DRE = dyn_cast(TemplateName.get())) { NameInfo = DRE->getNameInfo(); SS.Adopt(DRE->getQualifierLoc()); LookupKind = LookupOrdinaryName; Found = DRE->getFoundDecl(); } else if (auto *ME = dyn_cast(TemplateName.get())) { NameInfo = ME->getMemberNameInfo(); SS.Adopt(ME->getQualifierLoc()); LookupKind = LookupMemberName; LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); Found = ME->getMemberDecl(); } else if (auto *DSDRE = dyn_cast(TemplateName.get())) { NameInfo = DSDRE->getNameInfo(); SS.Adopt(DSDRE->getQualifierLoc()); MissingTemplateKeyword = true; } else if (auto *DSME = dyn_cast(TemplateName.get())) { NameInfo = DSME->getMemberNameInfo(); SS.Adopt(DSME->getQualifierLoc()); MissingTemplateKeyword = true; } else { llvm_unreachable("unexpected kind of potential template name"); } // If this is a dependent-scope lookup, diagnose that the 'template' keyword // was missing. if (MissingTemplateKeyword) { Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); return; } // Try to correct the name by looking for templates and C++ named casts. struct TemplateCandidateFilter : CorrectionCandidateCallback { Sema &S; TemplateCandidateFilter(Sema &S) : S(S) { WantTypeSpecifiers = false; WantExpressionKeywords = false; WantRemainingKeywords = false; WantCXXNamedCasts = true; }; bool ValidateCandidate(const TypoCorrection &Candidate) override { if (auto *ND = Candidate.getCorrectionDecl()) return S.getAsTemplateNameDecl(ND); return Candidate.isKeyword(); } std::unique_ptr clone() override { return std::make_unique(*this); } }; DeclarationName Name = NameInfo.getName(); TemplateCandidateFilter CCC(*this); if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, CTK_ErrorRecovery, LookupCtx)) { auto *ND = Corrected.getFoundDecl(); if (ND) ND = getAsTemplateNameDecl(ND); if (ND || Corrected.isKeyword()) { if (LookupCtx) { std::string CorrectedStr(Corrected.getAsString(getLangOpts())); bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; diagnoseTypo(Corrected, PDiag(diag::err_non_template_in_member_template_id_suggest) << Name << LookupCtx << DroppedSpecifier << SS.getRange(), false); } else { diagnoseTypo(Corrected, PDiag(diag::err_non_template_in_template_id_suggest) << Name, false); } if (Found) Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); return; } } Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) << Name << SourceRange(Less, Greater); if (Found) Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); } /// ActOnDependentIdExpression - Handle a dependent id-expression that /// was just parsed. This is only possible with an explicit scope /// specifier naming a dependent type. ExprResult Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, bool isAddressOfOperand, const TemplateArgumentListInfo *TemplateArgs) { DeclContext *DC = getFunctionLevelDeclContext(); // C++11 [expr.prim.general]p12: // An id-expression that denotes a non-static data member or non-static // member function of a class can only be used: // (...) // - if that id-expression denotes a non-static data member and it // appears in an unevaluated operand. // // If this might be the case, form a DependentScopeDeclRefExpr instead of a // CXXDependentScopeMemberExpr. The former can instantiate to either // DeclRefExpr or MemberExpr depending on lookup results, while the latter is // always a MemberExpr. bool MightBeCxx11UnevalField = getLangOpts().CPlusPlus11 && isUnevaluatedContext(); // Check if the nested name specifier is an enum type. bool IsEnum = false; if (NestedNameSpecifier *NNS = SS.getScopeRep()) IsEnum = dyn_cast_or_null(NNS->getAsType()); if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && isa(DC) && cast(DC)->isInstance()) { QualType ThisType = cast(DC)->getThisType(); // Since the 'this' expression is synthesized, we don't need to // perform the double-lookup check. NamedDecl *FirstQualifierInScope = nullptr; return CXXDependentScopeMemberExpr::Create( Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope, NameInfo, TemplateArgs); } return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); } ExprResult Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs) { // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); if (!QualifierLoc) return ExprError(); return DependentScopeDeclRefExpr::Create( Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); } /// Determine whether we would be unable to instantiate this template (because /// it either has no definition, or is in the process of being instantiated). bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, NamedDecl *Instantiation, bool InstantiatedFromMember, const NamedDecl *Pattern, const NamedDecl *PatternDef, TemplateSpecializationKind TSK, bool Complain /*= true*/) { assert(isa(Instantiation) || isa(Instantiation) || isa(Instantiation)); bool IsEntityBeingDefined = false; if (const TagDecl *TD = dyn_cast_or_null(PatternDef)) IsEntityBeingDefined = TD->isBeingDefined(); if (PatternDef && !IsEntityBeingDefined) { NamedDecl *SuggestedDef = nullptr; if (!hasVisibleDefinition(const_cast(PatternDef), &SuggestedDef, /*OnlyNeedComplete*/false)) { // If we're allowed to diagnose this and recover, do so. bool Recover = Complain && !isSFINAEContext(); if (Complain) diagnoseMissingImport(PointOfInstantiation, SuggestedDef, Sema::MissingImportKind::Definition, Recover); return !Recover; } return false; } if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) return true; llvm::Optional Note; QualType InstantiationTy; if (TagDecl *TD = dyn_cast(Instantiation)) InstantiationTy = Context.getTypeDeclType(TD); if (PatternDef) { Diag(PointOfInstantiation, diag::err_template_instantiate_within_definition) << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) << InstantiationTy; // Not much point in noting the template declaration here, since // we're lexically inside it. Instantiation->setInvalidDecl(); } else if (InstantiatedFromMember) { if (isa(Instantiation)) { Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_member) << /*member function*/ 1 << Instantiation->getDeclName() << Instantiation->getDeclContext(); Note = diag::note_explicit_instantiation_here; } else { assert(isa(Instantiation) && "Must be a TagDecl!"); Diag(PointOfInstantiation, diag::err_implicit_instantiate_member_undefined) << InstantiationTy; Note = diag::note_member_declared_at; } } else { if (isa(Instantiation)) { Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_func_template) << Pattern; Note = diag::note_explicit_instantiation_here; } else if (isa(Instantiation)) { Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) << (TSK != TSK_ImplicitInstantiation) << InstantiationTy; Note = diag::note_template_decl_here; } else { assert(isa(Instantiation) && "Must be a VarDecl!"); if (isa(Instantiation)) { Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_var_template) << Instantiation; Instantiation->setInvalidDecl(); } else Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_member) << /*static data member*/ 2 << Instantiation->getDeclName() << Instantiation->getDeclContext(); Note = diag::note_explicit_instantiation_here; } } if (Note) // Diagnostics were emitted. Diag(Pattern->getLocation(), Note.getValue()); // In general, Instantiation isn't marked invalid to get more than one // error for multiple undefined instantiations. But the code that does // explicit declaration -> explicit definition conversion can't handle // invalid declarations, so mark as invalid in that case. if (TSK == TSK_ExplicitInstantiationDeclaration) Instantiation->setInvalidDecl(); return true; } /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining /// that the template parameter 'PrevDecl' is being shadowed by a new /// declaration at location Loc. Returns true to indicate that this is /// an error, and false otherwise. void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); // C++ [temp.local]p4: // A template-parameter shall not be redeclared within its // scope (including nested scopes). // // Make this a warning when MSVC compatibility is requested. unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow : diag::err_template_param_shadow; Diag(Loc, DiagId) << cast(PrevDecl)->getDeclName(); Diag(PrevDecl->getLocation(), diag::note_template_param_here); } /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset /// the parameter D to reference the templated declaration and return a pointer /// to the template declaration. Otherwise, do nothing to D and return null. TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { if (TemplateDecl *Temp = dyn_cast_or_null(D)) { D = Temp->getTemplatedDecl(); return Temp; } return nullptr; } ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( SourceLocation EllipsisLoc) const { assert(Kind == Template && "Only template template arguments can be pack expansions here"); assert(getAsTemplate().get().containsUnexpandedParameterPack() && "Template template argument pack expansion without packs"); ParsedTemplateArgument Result(*this); Result.EllipsisLoc = EllipsisLoc; return Result; } static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, const ParsedTemplateArgument &Arg) { switch (Arg.getKind()) { case ParsedTemplateArgument::Type: { TypeSourceInfo *DI; QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); if (!DI) DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); return TemplateArgumentLoc(TemplateArgument(T), DI); } case ParsedTemplateArgument::NonType: { Expr *E = static_cast(Arg.getAsExpr()); return TemplateArgumentLoc(TemplateArgument(E), E); } case ParsedTemplateArgument::Template: { TemplateName Template = Arg.getAsTemplate().get(); TemplateArgument TArg; if (Arg.getEllipsisLoc().isValid()) TArg = TemplateArgument(Template, Optional()); else TArg = Template; return TemplateArgumentLoc(TArg, Arg.getScopeSpec().getWithLocInContext( SemaRef.Context), Arg.getLocation(), Arg.getEllipsisLoc()); } } llvm_unreachable("Unhandled parsed template argument"); } /// Translates template arguments as provided by the parser /// into template arguments used by semantic analysis. void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, TemplateArgumentListInfo &TemplateArgs) { for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) TemplateArgs.addArgument(translateTemplateArgument(*this, TemplateArgsIn[I])); } static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, SourceLocation Loc, IdentifierInfo *Name) { NamedDecl *PrevDecl = SemaRef.LookupSingleName( S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); if (PrevDecl && PrevDecl->isTemplateParameter()) SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); } /// Convert a parsed type into a parsed template argument. This is mostly /// trivial, except that we may have parsed a C++17 deduced class template /// specialization type, in which case we should form a template template /// argument instead of a type template argument. ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { TypeSourceInfo *TInfo; QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); if (T.isNull()) return ParsedTemplateArgument(); assert(TInfo && "template argument with no location"); // If we might have formed a deduced template specialization type, convert // it to a template template argument. if (getLangOpts().CPlusPlus17) { TypeLoc TL = TInfo->getTypeLoc(); SourceLocation EllipsisLoc; if (auto PET = TL.getAs()) { EllipsisLoc = PET.getEllipsisLoc(); TL = PET.getPatternLoc(); } CXXScopeSpec SS; if (auto ET = TL.getAs()) { SS.Adopt(ET.getQualifierLoc()); TL = ET.getNamedTypeLoc(); } if (auto DTST = TL.getAs()) { TemplateName Name = DTST.getTypePtr()->getTemplateName(); if (SS.isSet()) Name = Context.getQualifiedTemplateName(SS.getScopeRep(), /*HasTemplateKeyword*/ false, Name.getAsTemplateDecl()); ParsedTemplateArgument Result(SS, TemplateTy::make(Name), DTST.getTemplateNameLoc()); if (EllipsisLoc.isValid()) Result = Result.getTemplatePackExpansion(EllipsisLoc); return Result; } } // This is a normal type template argument. Note, if the type template // argument is an injected-class-name for a template, it has a dual nature // and can be used as either a type or a template. We handle that in // convertTypeTemplateArgumentToTemplate. return ParsedTemplateArgument(ParsedTemplateArgument::Type, ParsedType.get().getAsOpaquePtr(), TInfo->getTypeLoc().getBeginLoc()); } /// ActOnTypeParameter - Called when a C++ template type parameter /// (e.g., "typename T") has been parsed. Typename specifies whether /// the keyword "typename" was used to declare the type parameter /// (otherwise, "class" was used), and KeyLoc is the location of the /// "class" or "typename" keyword. ParamName is the name of the /// parameter (NULL indicates an unnamed template parameter) and /// ParamNameLoc is the location of the parameter name (if any). /// If the type parameter has a default argument, it will be added /// later via ActOnTypeParameterDefault. NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, SourceLocation EllipsisLoc, SourceLocation KeyLoc, IdentifierInfo *ParamName, SourceLocation ParamNameLoc, unsigned Depth, unsigned Position, SourceLocation EqualLoc, ParsedType DefaultArg, bool HasTypeConstraint) { assert(S->isTemplateParamScope() && "Template type parameter not in template parameter scope!"); bool IsParameterPack = EllipsisLoc.isValid(); TemplateTypeParmDecl *Param = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), KeyLoc, ParamNameLoc, Depth, Position, ParamName, Typename, IsParameterPack, HasTypeConstraint); Param->setAccess(AS_public); if (Param->isParameterPack()) if (auto *LSI = getEnclosingLambda()) LSI->LocalPacks.push_back(Param); if (ParamName) { maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); // Add the template parameter into the current scope. S->AddDecl(Param); IdResolver.AddDecl(Param); } // C++0x [temp.param]p9: // A default template-argument may be specified for any kind of // template-parameter that is not a template parameter pack. if (DefaultArg && IsParameterPack) { Diag(EqualLoc, diag::err_template_param_pack_default_arg); DefaultArg = nullptr; } // Handle the default argument, if provided. if (DefaultArg) { TypeSourceInfo *DefaultTInfo; GetTypeFromParser(DefaultArg, &DefaultTInfo); assert(DefaultTInfo && "expected source information for type"); // Check for unexpanded parameter packs. if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, UPPC_DefaultArgument)) return Param; // Check the template argument itself. if (CheckTemplateArgument(Param, DefaultTInfo)) { Param->setInvalidDecl(); return Param; } Param->setDefaultArgument(DefaultTInfo); } return Param; } /// Convert the parser's template argument list representation into our form. static TemplateArgumentListInfo makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, TemplateId.RAngleLoc); ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), TemplateId.NumArgs); S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); return TemplateArgs; } bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, TemplateIdAnnotation *TypeConstr, TemplateTypeParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc) { ConceptDecl *CD = cast(TypeConstr->Template.get().getAsTemplateDecl()); // C++2a [temp.param]p4: // [...] The concept designated by a type-constraint shall be a type // concept ([temp.concept]). if (!CD->isTypeConcept()) { Diag(TypeConstr->TemplateNameLoc, diag::err_type_constraint_non_type_concept); return true; } bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); if (!WereArgsSpecified && CD->getTemplateParameters()->getMinRequiredArguments() > 1) { Diag(TypeConstr->TemplateNameLoc, diag::err_type_constraint_missing_arguments) << CD; return true; } TemplateArgumentListInfo TemplateArgs; if (TypeConstr->LAngleLoc.isValid()) { TemplateArgs = makeTemplateArgumentListInfo(*this, *TypeConstr); } return AttachTypeConstraint( SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), DeclarationNameInfo(DeclarationName(TypeConstr->Name), TypeConstr->TemplateNameLoc), CD, TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, ConstrainedParameter, EllipsisLoc); } template static ExprResult formImmediatelyDeclaredConstraint( Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, ConceptDecl *NamedConcept, SourceLocation LAngleLoc, SourceLocation RAngleLoc, QualType ConstrainedType, SourceLocation ParamNameLoc, ArgumentLocAppender Appender, SourceLocation EllipsisLoc) { TemplateArgumentListInfo ConstraintArgs; ConstraintArgs.addArgument( S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), /*NTTPType=*/QualType(), ParamNameLoc)); ConstraintArgs.setRAngleLoc(RAngleLoc); ConstraintArgs.setLAngleLoc(LAngleLoc); Appender(ConstraintArgs); // C++2a [temp.param]p4: // [...] This constraint-expression E is called the immediately-declared // constraint of T. [...] CXXScopeSpec SS; SS.Adopt(NS); ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) return ImmediatelyDeclaredConstraint; // C++2a [temp.param]p4: // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). // // We have the following case: // // template concept C1 = true; // template struct s1; // // The constraint: (C1 && ...) return S.BuildCXXFoldExpr(/*LParenLoc=*/SourceLocation(), ImmediatelyDeclaredConstraint.get(), BO_LAnd, EllipsisLoc, /*RHS=*/nullptr, /*RParenLoc=*/SourceLocation(), /*NumExpansions=*/None); } /// Attach a type-constraint to a template parameter. /// \returns true if an error occured. This can happen if the /// immediately-declared constraint could not be formed (e.g. incorrect number /// of arguments for the named concept). bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, ConceptDecl *NamedConcept, const TemplateArgumentListInfo *TemplateArgs, TemplateTypeParmDecl *ConstrainedParameter, SourceLocation EllipsisLoc) { // C++2a [temp.param]p4: // [...] If Q is of the form C, then let E' be // C. Otherwise, let E' be C. [...] const ASTTemplateArgumentListInfo *ArgsAsWritten = TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs) : nullptr; QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( *this, NS, NameInfo, NamedConcept, TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), ParamAsArgument, ConstrainedParameter->getLocation(), [&] (TemplateArgumentListInfo &ConstraintArgs) { if (TemplateArgs) for (const auto &ArgLoc : TemplateArgs->arguments()) ConstraintArgs.addArgument(ArgLoc); }, EllipsisLoc); if (ImmediatelyDeclaredConstraint.isInvalid()) return true; ConstrainedParameter->setTypeConstraint(NS, NameInfo, /*FoundDecl=*/NamedConcept, NamedConcept, ArgsAsWritten, ImmediatelyDeclaredConstraint.get()); return false; } bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, SourceLocation EllipsisLoc) { if (NTTP->getType() != TL.getType() || TL.getAutoKeyword() != AutoTypeKeyword::Auto) { Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), diag::err_unsupported_placeholder_constraint) << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); return true; } // FIXME: Concepts: This should be the type of the placeholder, but this is // unclear in the wording right now. DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue, NTTP->getLocation()); if (!Ref) return true; ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(), [&] (TemplateArgumentListInfo &ConstraintArgs) { for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) ConstraintArgs.addArgument(TL.getArgLoc(I)); }, EllipsisLoc); if (ImmediatelyDeclaredConstraint.isInvalid() || !ImmediatelyDeclaredConstraint.isUsable()) return true; NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); return false; } /// Check that the type of a non-type template parameter is /// well-formed. /// /// \returns the (possibly-promoted) parameter type if valid; /// otherwise, produces a diagnostic and returns a NULL type. QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, SourceLocation Loc) { if (TSI->getType()->isUndeducedType()) { // C++17 [temp.dep.expr]p3: // An id-expression is type-dependent if it contains // - an identifier associated by name lookup with a non-type // template-parameter declared with a type that contains a // placeholder type (7.1.7.4), TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); } return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); } QualType Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { // We don't allow variably-modified types as the type of non-type template // parameters. if (T->isVariablyModifiedType()) { Diag(Loc, diag::err_variably_modified_nontype_template_param) << T; return QualType(); } // C++ [temp.param]p4: // // A non-type template-parameter shall have one of the following // (optionally cv-qualified) types: // // -- integral or enumeration type, if (T->isIntegralOrEnumerationType() || // -- pointer to object or pointer to function, T->isPointerType() || // -- reference to object or reference to function, T->isReferenceType() || // -- pointer to member, T->isMemberPointerType() || // -- std::nullptr_t. T->isNullPtrType() || // Allow use of auto in template parameter declarations. T->isUndeducedType()) { // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter // are ignored when determining its type. return T.getUnqualifiedType(); } // C++ [temp.param]p8: // // A non-type template-parameter of type "array of T" or // "function returning T" is adjusted to be of type "pointer to // T" or "pointer to function returning T", respectively. if (T->isArrayType() || T->isFunctionType()) return Context.getDecayedType(T); // If T is a dependent type, we can't do the check now, so we // assume that it is well-formed. Note that stripping off the // qualifiers here is not really correct if T turns out to be // an array type, but we'll recompute the type everywhere it's // used during instantiation, so that should be OK. (Using the // qualified type is equally wrong.) if (T->isDependentType()) return T.getUnqualifiedType(); Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; return QualType(); } NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, unsigned Depth, unsigned Position, SourceLocation EqualLoc, Expr *Default) { TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); // Check that we have valid decl-specifiers specified. auto CheckValidDeclSpecifiers = [this, &D] { // C++ [temp.param] // p1 // template-parameter: // ... // parameter-declaration // p2 // ... A storage class shall not be specified in a template-parameter // declaration. // [dcl.typedef]p1: // The typedef specifier [...] shall not be used in the decl-specifier-seq // of a parameter-declaration const DeclSpec &DS = D.getDeclSpec(); auto EmitDiag = [this](SourceLocation Loc) { Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) << FixItHint::CreateRemoval(Loc); }; if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) EmitDiag(DS.getStorageClassSpecLoc()); if (DS.getThreadStorageClassSpec() != TSCS_unspecified) EmitDiag(DS.getThreadStorageClassSpecLoc()); // [dcl.inline]p1: // The inline specifier can be applied only to the declaration or // definition of a variable or function. if (DS.isInlineSpecified()) EmitDiag(DS.getInlineSpecLoc()); // [dcl.constexpr]p1: // The constexpr specifier shall be applied only to the definition of a // variable or variable template or the declaration of a function or // function template. if (DS.hasConstexprSpecifier()) EmitDiag(DS.getConstexprSpecLoc()); // [dcl.fct.spec]p1: // Function-specifiers can be used only in function declarations. if (DS.isVirtualSpecified()) EmitDiag(DS.getVirtualSpecLoc()); if (DS.hasExplicitSpecifier()) EmitDiag(DS.getExplicitSpecLoc()); if (DS.isNoreturnSpecified()) EmitDiag(DS.getNoreturnSpecLoc()); }; CheckValidDeclSpecifiers(); if (TInfo->getType()->isUndeducedType()) { Diag(D.getIdentifierLoc(), diag::warn_cxx14_compat_template_nontype_parm_auto_type) << QualType(TInfo->getType()->getContainedAutoType(), 0); } assert(S->isTemplateParamScope() && "Non-type template parameter not in template parameter scope!"); bool Invalid = false; QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); if (T.isNull()) { T = Context.IntTy; // Recover with an 'int' type. Invalid = true; } CheckFunctionOrTemplateParamDeclarator(S, D); IdentifierInfo *ParamName = D.getIdentifier(); bool IsParameterPack = D.hasEllipsis(); NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, TInfo); Param->setAccess(AS_public); if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) if (TL.isConstrained()) if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) Invalid = true; if (Invalid) Param->setInvalidDecl(); if (Param->isParameterPack()) if (auto *LSI = getEnclosingLambda()) LSI->LocalPacks.push_back(Param); if (ParamName) { maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), ParamName); // Add the template parameter into the current scope. S->AddDecl(Param); IdResolver.AddDecl(Param); } // C++0x [temp.param]p9: // A default template-argument may be specified for any kind of // template-parameter that is not a template parameter pack. if (Default && IsParameterPack) { Diag(EqualLoc, diag::err_template_param_pack_default_arg); Default = nullptr; } // Check the well-formedness of the default template argument, if provided. if (Default) { // Check for unexpanded parameter packs. if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) return Param; TemplateArgument Converted; ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); if (DefaultRes.isInvalid()) { Param->setInvalidDecl(); return Param; } Default = DefaultRes.get(); Param->setDefaultArgument(Default); } return Param; } /// ActOnTemplateTemplateParameter - Called when a C++ template template /// parameter (e.g. T in template