Index: head/sys/riscv/riscv/machdep.c
===================================================================
--- head/sys/riscv/riscv/machdep.c (revision 359217)
+++ head/sys/riscv/riscv/machdep.c (revision 359218)
@@ -1,942 +1,940 @@
/*-
* Copyright (c) 2014 Andrew Turner
* Copyright (c) 2015-2017 Ruslan Bukin
* All rights reserved.
*
* Portions of this software were developed by SRI International and the
* University of Cambridge Computer Laboratory under DARPA/AFRL contract
* FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Portions of this software were developed by the University of Cambridge
* Computer Laboratory as part of the CTSRD Project, with support from the
* UK Higher Education Innovation Fund (HEIF).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_platform.h"
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
-#include
#include
+#include
#include
#include
#include
#include
+#include
+#include
#include
#include
-#include
-#include
-
-#include
#ifdef FPE
#include
#endif
#ifdef FDT
#include
#include
#endif
static void get_fpcontext(struct thread *td, mcontext_t *mcp);
static void set_fpcontext(struct thread *td, mcontext_t *mcp);
struct pcpu __pcpu[MAXCPU];
static struct trapframe proc0_tf;
int early_boot = 1;
int cold = 1;
long realmem = 0;
long Maxmem = 0;
#define DTB_SIZE_MAX (1024 * 1024)
vm_paddr_t physmap[PHYS_AVAIL_ENTRIES];
u_int physmap_idx;
struct kva_md_info kmi;
int64_t dcache_line_size; /* The minimum D cache line size */
int64_t icache_line_size; /* The minimum I cache line size */
int64_t idcache_line_size; /* The minimum cache line size */
uint32_t boot_hart; /* The hart we booted on. */
cpuset_t all_harts;
extern int *end;
static void
cpu_startup(void *dummy)
{
sbi_print_version();
identify_cpu();
printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)realmem),
ptoa((uintmax_t)realmem) / (1024 * 1024));
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
vm_paddr_t size;
size = phys_avail[indx + 1] - phys_avail[indx];
printf(
"0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
(uintmax_t)phys_avail[indx],
(uintmax_t)phys_avail[indx + 1] - 1,
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ju (%ju MB)\n",
ptoa((uintmax_t)vm_free_count()),
ptoa((uintmax_t)vm_free_count()) / (1024 * 1024));
if (bootverbose)
devmap_print_table();
bufinit();
vm_pager_bufferinit();
}
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
int
cpu_idle_wakeup(int cpu)
{
return (0);
}
int
fill_regs(struct thread *td, struct reg *regs)
{
struct trapframe *frame;
frame = td->td_frame;
regs->sepc = frame->tf_sepc;
regs->sstatus = frame->tf_sstatus;
regs->ra = frame->tf_ra;
regs->sp = frame->tf_sp;
regs->gp = frame->tf_gp;
regs->tp = frame->tf_tp;
memcpy(regs->t, frame->tf_t, sizeof(regs->t));
memcpy(regs->s, frame->tf_s, sizeof(regs->s));
memcpy(regs->a, frame->tf_a, sizeof(regs->a));
return (0);
}
int
set_regs(struct thread *td, struct reg *regs)
{
struct trapframe *frame;
frame = td->td_frame;
frame->tf_sepc = regs->sepc;
frame->tf_ra = regs->ra;
frame->tf_sp = regs->sp;
frame->tf_gp = regs->gp;
frame->tf_tp = regs->tp;
memcpy(frame->tf_t, regs->t, sizeof(frame->tf_t));
memcpy(frame->tf_s, regs->s, sizeof(frame->tf_s));
memcpy(frame->tf_a, regs->a, sizeof(frame->tf_a));
return (0);
}
int
fill_fpregs(struct thread *td, struct fpreg *regs)
{
#ifdef FPE
struct pcb *pcb;
pcb = td->td_pcb;
if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
/*
* If we have just been running FPE instructions we will
* need to save the state to memcpy it below.
*/
if (td == curthread)
fpe_state_save(td);
memcpy(regs->fp_x, pcb->pcb_x, sizeof(regs->fp_x));
regs->fp_fcsr = pcb->pcb_fcsr;
} else
#endif
memset(regs, 0, sizeof(*regs));
return (0);
}
int
set_fpregs(struct thread *td, struct fpreg *regs)
{
#ifdef FPE
struct trapframe *frame;
struct pcb *pcb;
frame = td->td_frame;
pcb = td->td_pcb;
memcpy(pcb->pcb_x, regs->fp_x, sizeof(regs->fp_x));
pcb->pcb_fcsr = regs->fp_fcsr;
pcb->pcb_fpflags |= PCB_FP_STARTED;
frame->tf_sstatus &= ~SSTATUS_FS_MASK;
frame->tf_sstatus |= SSTATUS_FS_CLEAN;
#endif
return (0);
}
int
fill_dbregs(struct thread *td, struct dbreg *regs)
{
panic("fill_dbregs");
}
int
set_dbregs(struct thread *td, struct dbreg *regs)
{
panic("set_dbregs");
}
int
ptrace_set_pc(struct thread *td, u_long addr)
{
td->td_frame->tf_sepc = addr;
return (0);
}
int
ptrace_single_step(struct thread *td)
{
/* TODO; */
return (EOPNOTSUPP);
}
int
ptrace_clear_single_step(struct thread *td)
{
/* TODO; */
return (EOPNOTSUPP);
}
void
exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack)
{
struct trapframe *tf;
struct pcb *pcb;
tf = td->td_frame;
pcb = td->td_pcb;
memset(tf, 0, sizeof(struct trapframe));
tf->tf_a[0] = stack;
tf->tf_sp = STACKALIGN(stack);
tf->tf_ra = imgp->entry_addr;
tf->tf_sepc = imgp->entry_addr;
pcb->pcb_fpflags &= ~PCB_FP_STARTED;
}
/* Sanity check these are the same size, they will be memcpy'd to and fro */
CTASSERT(sizeof(((struct trapframe *)0)->tf_a) ==
sizeof((struct gpregs *)0)->gp_a);
CTASSERT(sizeof(((struct trapframe *)0)->tf_s) ==
sizeof((struct gpregs *)0)->gp_s);
CTASSERT(sizeof(((struct trapframe *)0)->tf_t) ==
sizeof((struct gpregs *)0)->gp_t);
CTASSERT(sizeof(((struct trapframe *)0)->tf_a) ==
sizeof((struct reg *)0)->a);
CTASSERT(sizeof(((struct trapframe *)0)->tf_s) ==
sizeof((struct reg *)0)->s);
CTASSERT(sizeof(((struct trapframe *)0)->tf_t) ==
sizeof((struct reg *)0)->t);
/* Support for FDT configurations only. */
CTASSERT(FDT);
int
get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
{
struct trapframe *tf = td->td_frame;
memcpy(mcp->mc_gpregs.gp_t, tf->tf_t, sizeof(mcp->mc_gpregs.gp_t));
memcpy(mcp->mc_gpregs.gp_s, tf->tf_s, sizeof(mcp->mc_gpregs.gp_s));
memcpy(mcp->mc_gpregs.gp_a, tf->tf_a, sizeof(mcp->mc_gpregs.gp_a));
if (clear_ret & GET_MC_CLEAR_RET) {
mcp->mc_gpregs.gp_a[0] = 0;
mcp->mc_gpregs.gp_t[0] = 0; /* clear syscall error */
}
mcp->mc_gpregs.gp_ra = tf->tf_ra;
mcp->mc_gpregs.gp_sp = tf->tf_sp;
mcp->mc_gpregs.gp_gp = tf->tf_gp;
mcp->mc_gpregs.gp_tp = tf->tf_tp;
mcp->mc_gpregs.gp_sepc = tf->tf_sepc;
mcp->mc_gpregs.gp_sstatus = tf->tf_sstatus;
get_fpcontext(td, mcp);
return (0);
}
int
set_mcontext(struct thread *td, mcontext_t *mcp)
{
struct trapframe *tf;
tf = td->td_frame;
/*
* Permit changes to the USTATUS bits of SSTATUS.
*
* Ignore writes to read-only bits (SD, XS).
*
* Ignore writes to the FS field as set_fpcontext() will set
* it explicitly.
*/
if (((mcp->mc_gpregs.gp_sstatus ^ tf->tf_sstatus) &
~(SSTATUS_SD | SSTATUS_XS_MASK | SSTATUS_FS_MASK | SSTATUS_UPIE |
SSTATUS_UIE)) != 0)
return (EINVAL);
memcpy(tf->tf_t, mcp->mc_gpregs.gp_t, sizeof(tf->tf_t));
memcpy(tf->tf_s, mcp->mc_gpregs.gp_s, sizeof(tf->tf_s));
memcpy(tf->tf_a, mcp->mc_gpregs.gp_a, sizeof(tf->tf_a));
tf->tf_ra = mcp->mc_gpregs.gp_ra;
tf->tf_sp = mcp->mc_gpregs.gp_sp;
tf->tf_gp = mcp->mc_gpregs.gp_gp;
tf->tf_sepc = mcp->mc_gpregs.gp_sepc;
tf->tf_sstatus = mcp->mc_gpregs.gp_sstatus;
set_fpcontext(td, mcp);
return (0);
}
static void
get_fpcontext(struct thread *td, mcontext_t *mcp)
{
#ifdef FPE
struct pcb *curpcb;
critical_enter();
curpcb = curthread->td_pcb;
KASSERT(td->td_pcb == curpcb, ("Invalid fpe pcb"));
if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
/*
* If we have just been running FPE instructions we will
* need to save the state to memcpy it below.
*/
fpe_state_save(td);
KASSERT((curpcb->pcb_fpflags & ~PCB_FP_USERMASK) == 0,
("Non-userspace FPE flags set in get_fpcontext"));
memcpy(mcp->mc_fpregs.fp_x, curpcb->pcb_x,
sizeof(mcp->mc_fpregs));
mcp->mc_fpregs.fp_fcsr = curpcb->pcb_fcsr;
mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
mcp->mc_flags |= _MC_FP_VALID;
}
critical_exit();
#endif
}
static void
set_fpcontext(struct thread *td, mcontext_t *mcp)
{
#ifdef FPE
struct pcb *curpcb;
#endif
td->td_frame->tf_sstatus &= ~SSTATUS_FS_MASK;
td->td_frame->tf_sstatus |= SSTATUS_FS_OFF;
#ifdef FPE
critical_enter();
if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
curpcb = curthread->td_pcb;
/* FPE usage is enabled, override registers. */
memcpy(curpcb->pcb_x, mcp->mc_fpregs.fp_x,
sizeof(mcp->mc_fpregs));
curpcb->pcb_fcsr = mcp->mc_fpregs.fp_fcsr;
curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags & PCB_FP_USERMASK;
td->td_frame->tf_sstatus |= SSTATUS_FS_CLEAN;
}
critical_exit();
#endif
}
void
cpu_idle(int busy)
{
spinlock_enter();
if (!busy)
cpu_idleclock();
if (!sched_runnable())
__asm __volatile(
"fence \n"
"wfi \n");
if (!busy)
cpu_activeclock();
spinlock_exit();
}
void
cpu_halt(void)
{
intr_disable();
for (;;)
__asm __volatile("wfi");
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* TBD */
}
/* Get current clock frequency for the given CPU ID. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
panic("cpu_est_clockrate");
}
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
}
void
spinlock_enter(void)
{
struct thread *td;
register_t reg;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
reg = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_sstatus_ie = reg;
critical_enter();
} else
td->td_md.md_spinlock_count++;
}
void
spinlock_exit(void)
{
struct thread *td;
register_t sstatus_ie;
td = curthread;
sstatus_ie = td->td_md.md_saved_sstatus_ie;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0) {
critical_exit();
intr_restore(sstatus_ie);
}
}
#ifndef _SYS_SYSPROTO_H_
struct sigreturn_args {
ucontext_t *ucp;
};
#endif
int
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
{
ucontext_t uc;
int error;
if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
return (EFAULT);
error = set_mcontext(td, &uc.uc_mcontext);
if (error != 0)
return (error);
/* Restore signal mask. */
kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
return (EJUSTRETURN);
}
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
memcpy(pcb->pcb_s, tf->tf_s, sizeof(tf->tf_s));
pcb->pcb_ra = tf->tf_sepc;
pcb->pcb_sp = tf->tf_sp;
pcb->pcb_gp = tf->tf_gp;
pcb->pcb_tp = tf->tf_tp;
}
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct sigframe *fp, frame;
struct sysentvec *sysent;
struct trapframe *tf;
struct sigacts *psp;
struct thread *td;
struct proc *p;
int onstack;
int sig;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
tf = td->td_frame;
onstack = sigonstack(tf->tf_sp);
CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
catcher, sig);
/* Allocate and validate space for the signal handler context. */
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
td->td_sigstk.ss_size);
} else {
fp = (struct sigframe *)td->td_frame->tf_sp;
}
/* Make room, keeping the stack aligned */
fp--;
fp = (struct sigframe *)STACKALIGN(fp);
/* Fill in the frame to copy out */
bzero(&frame, sizeof(frame));
get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
frame.sf_si = ksi->ksi_info;
frame.sf_uc.uc_sigmask = *mask;
frame.sf_uc.uc_stack = td->td_sigstk;
frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) != 0 ?
(onstack ? SS_ONSTACK : 0) : SS_DISABLE;
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(td->td_proc);
/* Copy the sigframe out to the user's stack. */
if (copyout(&frame, fp, sizeof(*fp)) != 0) {
/* Process has trashed its stack. Kill it. */
CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
PROC_LOCK(p);
sigexit(td, SIGILL);
}
tf->tf_a[0] = sig;
tf->tf_a[1] = (register_t)&fp->sf_si;
tf->tf_a[2] = (register_t)&fp->sf_uc;
tf->tf_sepc = (register_t)catcher;
tf->tf_sp = (register_t)fp;
sysent = p->p_sysent;
if (sysent->sv_sigcode_base != 0)
tf->tf_ra = (register_t)sysent->sv_sigcode_base;
else
tf->tf_ra = (register_t)(sysent->sv_psstrings -
*(sysent->sv_szsigcode));
CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_sepc,
tf->tf_sp);
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
static void
init_proc0(vm_offset_t kstack)
{
struct pcpu *pcpup;
pcpup = &__pcpu[0];
proc_linkup0(&proc0, &thread0);
thread0.td_kstack = kstack;
thread0.td_kstack_pages = KSTACK_PAGES;
thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
thread0.td_kstack_pages * PAGE_SIZE) - 1;
thread0.td_pcb->pcb_fpflags = 0;
thread0.td_frame = &proc0_tf;
pcpup->pc_curpcb = thread0.td_pcb;
}
static int
add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
u_int *physmap_idxp)
{
u_int i, insert_idx, _physmap_idx;
_physmap_idx = *physmap_idxp;
if (length == 0)
return (1);
/*
* Find insertion point while checking for overlap. Start off by
* assuming the new entry will be added to the end.
*/
insert_idx = _physmap_idx;
for (i = 0; i <= _physmap_idx; i += 2) {
if (base < physmap[i + 1]) {
if (base + length <= physmap[i]) {
insert_idx = i;
break;
}
if (boothowto & RB_VERBOSE)
printf(
"Overlapping memory regions, ignoring second region\n");
return (1);
}
}
/* See if we can prepend to the next entry. */
if (insert_idx <= _physmap_idx &&
base + length == physmap[insert_idx]) {
physmap[insert_idx] = base;
return (1);
}
/* See if we can append to the previous entry. */
if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
physmap[insert_idx - 1] += length;
return (1);
}
_physmap_idx += 2;
*physmap_idxp = _physmap_idx;
if (_physmap_idx == PHYS_AVAIL_ENTRIES) {
printf(
"Too many segments in the physical address map, giving up\n");
return (0);
}
/*
* Move the last 'N' entries down to make room for the new
* entry if needed.
*/
for (i = _physmap_idx; i > insert_idx; i -= 2) {
physmap[i] = physmap[i - 2];
physmap[i + 1] = physmap[i - 1];
}
/* Insert the new entry. */
physmap[insert_idx] = base;
physmap[insert_idx + 1] = base + length;
printf("physmap[%d] = 0x%016lx\n", insert_idx, base);
printf("physmap[%d] = 0x%016lx\n", insert_idx + 1, base + length);
return (1);
}
#ifdef FDT
static void
try_load_dtb(caddr_t kmdp, vm_offset_t dtbp)
{
#if defined(FDT_DTB_STATIC)
dtbp = (vm_offset_t)&fdt_static_dtb;
#endif
if (dtbp == (vm_offset_t)NULL) {
printf("ERROR loading DTB\n");
return;
}
if (OF_install(OFW_FDT, 0) == FALSE)
panic("Cannot install FDT");
if (OF_init((void *)dtbp) != 0)
panic("OF_init failed with the found device tree");
}
#endif
static void
cache_setup(void)
{
/* TODO */
dcache_line_size = 0;
icache_line_size = 0;
idcache_line_size = 0;
}
/*
* Fake up a boot descriptor table.
* RISCVTODO: This needs to be done via loader (when it's available).
*/
vm_offset_t
fake_preload_metadata(struct riscv_bootparams *rvbp __unused)
{
static uint32_t fake_preload[35];
#ifdef DDB
vm_offset_t zstart = 0, zend = 0;
#endif
vm_offset_t lastaddr;
int i;
i = 0;
fake_preload[i++] = MODINFO_NAME;
fake_preload[i++] = strlen("kernel") + 1;
strcpy((char*)&fake_preload[i++], "kernel");
i += 1;
fake_preload[i++] = MODINFO_TYPE;
fake_preload[i++] = strlen("elf64 kernel") + 1;
strcpy((char*)&fake_preload[i++], "elf64 kernel");
i += 3;
fake_preload[i++] = MODINFO_ADDR;
fake_preload[i++] = sizeof(vm_offset_t);
*(vm_offset_t *)&fake_preload[i++] =
(vm_offset_t)(KERNBASE + KERNENTRY);
i += 1;
fake_preload[i++] = MODINFO_SIZE;
fake_preload[i++] = sizeof(vm_offset_t);
fake_preload[i++] = (vm_offset_t)&end -
(vm_offset_t)(KERNBASE + KERNENTRY);
i += 1;
#ifdef DDB
#if 0
/* RISCVTODO */
if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
fake_preload[i++] = sizeof(vm_offset_t);
fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
fake_preload[i++] = sizeof(vm_offset_t);
fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
zend = lastaddr;
zstart = *(uint32_t *)(KERNVIRTADDR + 4);
db_fetch_ksymtab(zstart, zend);
} else
#endif
#endif
lastaddr = (vm_offset_t)&end;
fake_preload[i++] = 0;
fake_preload[i] = 0;
preload_metadata = (void *)fake_preload;
return (lastaddr);
}
void
initriscv(struct riscv_bootparams *rvbp)
{
struct mem_region mem_regions[FDT_MEM_REGIONS];
struct pcpu *pcpup;
vm_offset_t rstart, rend;
vm_offset_t s, e;
int mem_regions_sz;
vm_offset_t lastaddr;
vm_size_t kernlen;
caddr_t kmdp;
int i;
TSRAW(&thread0, TS_ENTER, __func__, NULL);
/* Set the pcpu data, this is needed by pmap_bootstrap */
pcpup = &__pcpu[0];
pcpu_init(pcpup, 0, sizeof(struct pcpu));
pcpup->pc_hart = boot_hart;
/* Set the pcpu pointer */
__asm __volatile("mv tp, %0" :: "r"(pcpup));
PCPU_SET(curthread, &thread0);
/* Initialize SBI interface. */
sbi_init();
/* Set the module data location */
lastaddr = fake_preload_metadata(rvbp);
/* Find the kernel address */
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
boothowto = RB_VERBOSE | RB_SINGLE;
boothowto = RB_VERBOSE;
kern_envp = NULL;
#ifdef FDT
try_load_dtb(kmdp, rvbp->dtbp_virt);
#endif
/* Load the physical memory ranges */
physmap_idx = 0;
#ifdef FDT
/* Grab physical memory regions information from device tree. */
if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, NULL) != 0)
panic("Cannot get physical memory regions");
s = rvbp->dtbp_phys;
e = s + DTB_SIZE_MAX;
for (i = 0; i < mem_regions_sz; i++) {
rstart = mem_regions[i].mr_start;
rend = (mem_regions[i].mr_start + mem_regions[i].mr_size);
if ((rstart < s) && (rend > e)) {
/* Exclude DTB region. */
add_physmap_entry(rstart, (s - rstart), physmap, &physmap_idx);
add_physmap_entry(e, (rend - e), physmap, &physmap_idx);
} else {
add_physmap_entry(mem_regions[i].mr_start,
mem_regions[i].mr_size, physmap, &physmap_idx);
}
}
#endif
/* Do basic tuning, hz etc */
init_param1();
cache_setup();
/* Bootstrap enough of pmap to enter the kernel proper */
kernlen = (lastaddr - KERNBASE);
pmap_bootstrap(rvbp->kern_l1pt, mem_regions[0].mr_start, kernlen);
/* Establish static device mappings */
devmap_bootstrap(0, NULL);
cninit();
init_proc0(rvbp->kern_stack);
msgbufinit(msgbufp, msgbufsize);
mutex_init();
init_param2(physmem);
kdb_init();
early_boot = 0;
TSEXIT();
}
#undef bzero
void
bzero(void *buf, size_t len)
{
uint8_t *p;
p = buf;
while(len-- > 0)
*p++ = 0;
}