Index: head/cddl/contrib/opensolaris/cmd/ztest/ztest.c =================================================================== --- head/cddl/contrib/opensolaris/cmd/ztest/ztest.c (revision 359111) +++ head/cddl/contrib/opensolaris/cmd/ztest/ztest.c (revision 359112) @@ -1,7135 +1,7135 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012 Martin Matuska . All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. * Copyright 2017 RackTop Systems. */ /* * The objective of this program is to provide a DMU/ZAP/SPA stress test * that runs entirely in userland, is easy to use, and easy to extend. * * The overall design of the ztest program is as follows: * * (1) For each major functional area (e.g. adding vdevs to a pool, * creating and destroying datasets, reading and writing objects, etc) * we have a simple routine to test that functionality. These * individual routines do not have to do anything "stressful". * * (2) We turn these simple functionality tests into a stress test by * running them all in parallel, with as many threads as desired, * and spread across as many datasets, objects, and vdevs as desired. * * (3) While all this is happening, we inject faults into the pool to * verify that self-healing data really works. * * (4) Every time we open a dataset, we change its checksum and compression * functions. Thus even individual objects vary from block to block * in which checksum they use and whether they're compressed. * * (5) To verify that we never lose on-disk consistency after a crash, * we run the entire test in a child of the main process. * At random times, the child self-immolates with a SIGKILL. * This is the software equivalent of pulling the power cord. * The parent then runs the test again, using the existing * storage pool, as many times as desired. If backwards compatibility * testing is enabled ztest will sometimes run the "older" version * of ztest after a SIGKILL. * * (6) To verify that we don't have future leaks or temporal incursions, * many of the functional tests record the transaction group number * as part of their data. When reading old data, they verify that * the transaction group number is less than the current, open txg. * If you add a new test, please do this if applicable. * * When run with no arguments, ztest runs for about five minutes and * produces no output if successful. To get a little bit of information, * specify -V. To get more information, specify -VV, and so on. * * To turn this into an overnight stress test, use -T to specify run time. * * You can ask more more vdevs [-v], datasets [-d], or threads [-t] * to increase the pool capacity, fanout, and overall stress level. * * Use the -k option to set the desired frequency of kills. * * When ztest invokes itself it passes all relevant information through a * temporary file which is mmap-ed in the child process. This allows shared * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always * stored at offset 0 of this file and contains information on the size and * number of shared structures in the file. The information stored in this file * must remain backwards compatible with older versions of ztest so that * ztest can invoke them during backwards compatibility testing (-B). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ztest_fd_data = -1; static int ztest_fd_rand = -1; typedef struct ztest_shared_hdr { uint64_t zh_hdr_size; uint64_t zh_opts_size; uint64_t zh_size; uint64_t zh_stats_size; uint64_t zh_stats_count; uint64_t zh_ds_size; uint64_t zh_ds_count; } ztest_shared_hdr_t; static ztest_shared_hdr_t *ztest_shared_hdr; enum ztest_class_state { ZTEST_VDEV_CLASS_OFF, ZTEST_VDEV_CLASS_ON, ZTEST_VDEV_CLASS_RND }; typedef struct ztest_shared_opts { char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; char zo_alt_ztest[MAXNAMELEN]; char zo_alt_libpath[MAXNAMELEN]; uint64_t zo_vdevs; uint64_t zo_vdevtime; size_t zo_vdev_size; int zo_ashift; int zo_mirrors; int zo_raidz; int zo_raidz_parity; int zo_datasets; int zo_threads; uint64_t zo_passtime; uint64_t zo_killrate; int zo_verbose; int zo_init; uint64_t zo_time; uint64_t zo_maxloops; uint64_t zo_metaslab_force_ganging; int zo_mmp_test; int zo_special_vdevs; } ztest_shared_opts_t; static const ztest_shared_opts_t ztest_opts_defaults = { .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, .zo_dir = { '/', 't', 'm', 'p', '\0' }, .zo_alt_ztest = { '\0' }, .zo_alt_libpath = { '\0' }, .zo_vdevs = 5, .zo_ashift = SPA_MINBLOCKSHIFT, .zo_mirrors = 2, .zo_raidz = 4, .zo_raidz_parity = 1, .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ .zo_datasets = 7, .zo_threads = 23, .zo_passtime = 60, /* 60 seconds */ .zo_killrate = 70, /* 70% kill rate */ .zo_verbose = 0, .zo_mmp_test = 0, .zo_init = 1, .zo_time = 300, /* 5 minutes */ .zo_maxloops = 50, /* max loops during spa_freeze() */ .zo_metaslab_force_ganging = 32 << 10, .zo_special_vdevs = ZTEST_VDEV_CLASS_RND, }; extern uint64_t metaslab_force_ganging; extern uint64_t metaslab_df_alloc_threshold; extern uint64_t zfs_deadman_synctime_ms; extern int metaslab_preload_limit; extern boolean_t zfs_compressed_arc_enabled; extern boolean_t zfs_abd_scatter_enabled; extern int dmu_object_alloc_chunk_shift; extern boolean_t zfs_force_some_double_word_sm_entries; extern unsigned long zfs_reconstruct_indirect_damage_fraction; static ztest_shared_opts_t *ztest_shared_opts; static ztest_shared_opts_t ztest_opts; typedef struct ztest_shared_ds { uint64_t zd_seq; } ztest_shared_ds_t; static ztest_shared_ds_t *ztest_shared_ds; #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) #define BT_MAGIC 0x123456789abcdefULL #define MAXFAULTS() \ (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) enum ztest_io_type { ZTEST_IO_WRITE_TAG, ZTEST_IO_WRITE_PATTERN, ZTEST_IO_WRITE_ZEROES, ZTEST_IO_TRUNCATE, ZTEST_IO_SETATTR, ZTEST_IO_REWRITE, ZTEST_IO_TYPES }; typedef struct ztest_block_tag { uint64_t bt_magic; uint64_t bt_objset; uint64_t bt_object; uint64_t bt_dnodesize; uint64_t bt_offset; uint64_t bt_gen; uint64_t bt_txg; uint64_t bt_crtxg; } ztest_block_tag_t; typedef struct bufwad { uint64_t bw_index; uint64_t bw_txg; uint64_t bw_data; } bufwad_t; /* * It would be better to use a rangelock_t per object. Unfortunately * the rangelock_t is not a drop-in replacement for rl_t, because we * still need to map from object ID to rangelock_t. */ typedef enum { RL_READER, RL_WRITER, RL_APPEND } rl_type_t; typedef struct rll { void *rll_writer; int rll_readers; kmutex_t rll_lock; kcondvar_t rll_cv; } rll_t; typedef struct rl { uint64_t rl_object; uint64_t rl_offset; uint64_t rl_size; rll_t *rl_lock; } rl_t; #define ZTEST_RANGE_LOCKS 64 #define ZTEST_OBJECT_LOCKS 64 /* * Object descriptor. Used as a template for object lookup/create/remove. */ typedef struct ztest_od { uint64_t od_dir; uint64_t od_object; dmu_object_type_t od_type; dmu_object_type_t od_crtype; uint64_t od_blocksize; uint64_t od_crblocksize; uint64_t od_crdnodesize; uint64_t od_gen; uint64_t od_crgen; char od_name[ZFS_MAX_DATASET_NAME_LEN]; } ztest_od_t; /* * Per-dataset state. */ typedef struct ztest_ds { ztest_shared_ds_t *zd_shared; objset_t *zd_os; krwlock_t zd_zilog_lock; zilog_t *zd_zilog; ztest_od_t *zd_od; /* debugging aid */ char zd_name[ZFS_MAX_DATASET_NAME_LEN]; kmutex_t zd_dirobj_lock; rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; } ztest_ds_t; /* * Per-iteration state. */ typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); typedef struct ztest_info { ztest_func_t *zi_func; /* test function */ uint64_t zi_iters; /* iterations per execution */ uint64_t *zi_interval; /* execute every seconds */ } ztest_info_t; typedef struct ztest_shared_callstate { uint64_t zc_count; /* per-pass count */ uint64_t zc_time; /* per-pass time */ uint64_t zc_next; /* next time to call this function */ } ztest_shared_callstate_t; static ztest_shared_callstate_t *ztest_shared_callstate; #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) /* * Note: these aren't static because we want dladdr() to work. */ ztest_func_t ztest_dmu_read_write; ztest_func_t ztest_dmu_write_parallel; ztest_func_t ztest_dmu_object_alloc_free; ztest_func_t ztest_dmu_object_next_chunk; ztest_func_t ztest_dmu_commit_callbacks; ztest_func_t ztest_zap; ztest_func_t ztest_zap_parallel; ztest_func_t ztest_zil_commit; ztest_func_t ztest_zil_remount; ztest_func_t ztest_dmu_read_write_zcopy; ztest_func_t ztest_dmu_objset_create_destroy; ztest_func_t ztest_dmu_prealloc; ztest_func_t ztest_fzap; ztest_func_t ztest_dmu_snapshot_create_destroy; ztest_func_t ztest_dsl_prop_get_set; ztest_func_t ztest_spa_prop_get_set; ztest_func_t ztest_spa_create_destroy; ztest_func_t ztest_fault_inject; ztest_func_t ztest_ddt_repair; ztest_func_t ztest_dmu_snapshot_hold; ztest_func_t ztest_mmp_enable_disable; ztest_func_t ztest_scrub; ztest_func_t ztest_dsl_dataset_promote_busy; ztest_func_t ztest_vdev_attach_detach; ztest_func_t ztest_vdev_LUN_growth; ztest_func_t ztest_vdev_add_remove; ztest_func_t ztest_vdev_class_add; ztest_func_t ztest_vdev_aux_add_remove; ztest_func_t ztest_split_pool; ztest_func_t ztest_reguid; ztest_func_t ztest_spa_upgrade; ztest_func_t ztest_device_removal; ztest_func_t ztest_remap_blocks; ztest_func_t ztest_spa_checkpoint_create_discard; ztest_func_t ztest_initialize; ztest_func_t ztest_verify_dnode_bt; uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ ztest_info_t ztest_info[] = { { ztest_dmu_read_write, 1, &zopt_always }, { ztest_dmu_write_parallel, 10, &zopt_always }, { ztest_dmu_object_alloc_free, 1, &zopt_always }, { ztest_dmu_object_next_chunk, 1, &zopt_sometimes }, { ztest_dmu_commit_callbacks, 1, &zopt_always }, { ztest_zap, 30, &zopt_always }, { ztest_zap_parallel, 100, &zopt_always }, { ztest_split_pool, 1, &zopt_always }, { ztest_zil_commit, 1, &zopt_incessant }, { ztest_zil_remount, 1, &zopt_sometimes }, { ztest_dmu_read_write_zcopy, 1, &zopt_often }, { ztest_dmu_objset_create_destroy, 1, &zopt_often }, { ztest_dsl_prop_get_set, 1, &zopt_often }, { ztest_spa_prop_get_set, 1, &zopt_sometimes }, #if 0 { ztest_dmu_prealloc, 1, &zopt_sometimes }, #endif { ztest_fzap, 1, &zopt_sometimes }, { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, { ztest_spa_create_destroy, 1, &zopt_sometimes }, { ztest_fault_inject, 1, &zopt_incessant }, { ztest_ddt_repair, 1, &zopt_sometimes }, { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, { ztest_mmp_enable_disable, 1, &zopt_sometimes }, { ztest_reguid, 1, &zopt_rarely }, { ztest_scrub, 1, &zopt_often }, { ztest_spa_upgrade, 1, &zopt_rarely }, { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, { ztest_vdev_attach_detach, 1, &zopt_incessant }, { ztest_vdev_LUN_growth, 1, &zopt_rarely }, { ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime }, { ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime }, { ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime }, { ztest_device_removal, 1, &zopt_sometimes }, { ztest_remap_blocks, 1, &zopt_sometimes }, { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely }, { ztest_initialize, 1, &zopt_sometimes }, { ztest_verify_dnode_bt, 1, &zopt_sometimes } }; #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) /* * The following struct is used to hold a list of uncalled commit callbacks. * The callbacks are ordered by txg number. */ typedef struct ztest_cb_list { kmutex_t zcl_callbacks_lock; list_t zcl_callbacks; } ztest_cb_list_t; /* * Stuff we need to share writably between parent and child. */ typedef struct ztest_shared { boolean_t zs_do_init; hrtime_t zs_proc_start; hrtime_t zs_proc_stop; hrtime_t zs_thread_start; hrtime_t zs_thread_stop; hrtime_t zs_thread_kill; uint64_t zs_enospc_count; uint64_t zs_vdev_next_leaf; uint64_t zs_vdev_aux; uint64_t zs_alloc; uint64_t zs_space; uint64_t zs_splits; uint64_t zs_mirrors; uint64_t zs_metaslab_sz; uint64_t zs_metaslab_df_alloc_threshold; uint64_t zs_guid; } ztest_shared_t; #define ID_PARALLEL -1ULL static char ztest_dev_template[] = "%s/%s.%llua"; static char ztest_aux_template[] = "%s/%s.%s.%llu"; ztest_shared_t *ztest_shared; static spa_t *ztest_spa = NULL; static ztest_ds_t *ztest_ds; static kmutex_t ztest_vdev_lock; static boolean_t ztest_device_removal_active = B_FALSE; static kmutex_t ztest_checkpoint_lock; /* * The ztest_name_lock protects the pool and dataset namespace used by * the individual tests. To modify the namespace, consumers must grab * this lock as writer. Grabbing the lock as reader will ensure that the * namespace does not change while the lock is held. */ static krwlock_t ztest_name_lock; static boolean_t ztest_dump_core = B_TRUE; static boolean_t ztest_exiting; /* Global commit callback list */ static ztest_cb_list_t zcl; enum ztest_object { ZTEST_META_DNODE = 0, ZTEST_DIROBJ, ZTEST_OBJECTS }; static void usage(boolean_t) __NORETURN; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #define FATAL_MSG_SZ 1024 char *fatal_msg; static void fatal(int do_perror, char *message, ...) { va_list args; int save_errno = errno; char buf[FATAL_MSG_SZ]; (void) fflush(stdout); va_start(args, message); (void) sprintf(buf, "ztest: "); /* LINTED */ (void) vsprintf(buf + strlen(buf), message, args); va_end(args); if (do_perror) { (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), ": %s", strerror(save_errno)); } (void) fprintf(stderr, "%s\n", buf); fatal_msg = buf; /* to ease debugging */ if (ztest_dump_core) abort(); exit(3); } static int str2shift(const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { return (10*i); } (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); /* NOTREACHED */ } static uint64_t nicenumtoull(const char *buf) { char *end; uint64_t val; val = strtoull(buf, &end, 0); if (end == buf) { (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); usage(B_FALSE); } else if (end[0] == '.') { double fval = strtod(buf, &end); fval *= pow(2, str2shift(end)); if (fval > UINT64_MAX) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val = (uint64_t)fval; } else { int shift = str2shift(end); if (shift >= 64 || (val << shift) >> shift != val) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val <<= shift; } return (val); } static void usage(boolean_t requested) { const ztest_shared_opts_t *zo = &ztest_opts_defaults; char nice_vdev_size[NN_NUMBUF_SZ]; char nice_force_ganging[NN_NUMBUF_SZ]; FILE *fp = requested ? stdout : stderr; nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging, sizeof (nice_force_ganging)); (void) fprintf(fp, "Usage: %s\n" "\t[-v vdevs (default: %llu)]\n" "\t[-s size_of_each_vdev (default: %s)]\n" "\t[-a alignment_shift (default: %d)] use 0 for random\n" "\t[-m mirror_copies (default: %d)]\n" "\t[-r raidz_disks (default: %d)]\n" "\t[-R raidz_parity (default: %d)]\n" "\t[-d datasets (default: %d)]\n" "\t[-t threads (default: %d)]\n" "\t[-g gang_block_threshold (default: %s)]\n" "\t[-i init_count (default: %d)] initialize pool i times\n" "\t[-k kill_percentage (default: %llu%%)]\n" "\t[-p pool_name (default: %s)]\n" "\t[-f dir (default: %s)] file directory for vdev files\n" "\t[-M] Multi-host simulate pool imported on remote host\n" "\t[-V] verbose (use multiple times for ever more blather)\n" "\t[-E] use existing pool instead of creating new one\n" "\t[-T time (default: %llu sec)] total run time\n" "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" "\t[-P passtime (default: %llu sec)] time per pass\n" "\t[-B alt_ztest (default: )] alternate ztest path\n" "\t[-C vdev class state (default: random)] special=on|off|random\n" "\t[-o variable=value] ... set global variable to an unsigned\n" "\t 32-bit integer value\n" "\t[-h] (print help)\n" "", zo->zo_pool, (u_longlong_t)zo->zo_vdevs, /* -v */ nice_vdev_size, /* -s */ zo->zo_ashift, /* -a */ zo->zo_mirrors, /* -m */ zo->zo_raidz, /* -r */ zo->zo_raidz_parity, /* -R */ zo->zo_datasets, /* -d */ zo->zo_threads, /* -t */ nice_force_ganging, /* -g */ zo->zo_init, /* -i */ (u_longlong_t)zo->zo_killrate, /* -k */ zo->zo_pool, /* -p */ zo->zo_dir, /* -f */ (u_longlong_t)zo->zo_time, /* -T */ (u_longlong_t)zo->zo_maxloops, /* -F */ (u_longlong_t)zo->zo_passtime); exit(requested ? 0 : 1); } static void ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo) { char name[32]; char *value; int state = ZTEST_VDEV_CLASS_RND; (void) strlcpy(name, input, sizeof (name)); value = strchr(name, '='); if (value == NULL) { (void) fprintf(stderr, "missing value in property=value " "'-C' argument (%s)\n", input); usage(B_FALSE); } *(value) = '\0'; value++; if (strcmp(value, "on") == 0) { state = ZTEST_VDEV_CLASS_ON; } else if (strcmp(value, "off") == 0) { state = ZTEST_VDEV_CLASS_OFF; } else if (strcmp(value, "random") == 0) { state = ZTEST_VDEV_CLASS_RND; } else { (void) fprintf(stderr, "invalid property value '%s'\n", value); usage(B_FALSE); } if (strcmp(name, "special") == 0) { zo->zo_special_vdevs = state; } else { (void) fprintf(stderr, "invalid property name '%s'\n", name); usage(B_FALSE); } if (zo->zo_verbose >= 3) (void) printf("%s vdev state is '%s'\n", name, value); } static void process_options(int argc, char **argv) { char *path; ztest_shared_opts_t *zo = &ztest_opts; int opt; uint64_t value; char altdir[MAXNAMELEN] = { 0 }; bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); while ((opt = getopt(argc, argv, "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:")) != EOF) { value = 0; switch (opt) { case 'v': case 's': case 'a': case 'm': case 'r': case 'R': case 'd': case 't': case 'g': case 'i': case 'k': case 'T': case 'P': case 'F': value = nicenumtoull(optarg); } switch (opt) { case 'v': zo->zo_vdevs = value; break; case 's': zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); break; case 'a': zo->zo_ashift = value; break; case 'm': zo->zo_mirrors = value; break; case 'r': zo->zo_raidz = MAX(1, value); break; case 'R': zo->zo_raidz_parity = MIN(MAX(value, 1), 3); break; case 'd': zo->zo_datasets = MAX(1, value); break; case 't': zo->zo_threads = MAX(1, value); break; case 'g': zo->zo_metaslab_force_ganging = MAX(SPA_MINBLOCKSIZE << 1, value); break; case 'i': zo->zo_init = value; break; case 'k': zo->zo_killrate = value; break; case 'p': (void) strlcpy(zo->zo_pool, optarg, sizeof (zo->zo_pool)); break; case 'f': path = realpath(optarg, NULL); if (path == NULL) { (void) fprintf(stderr, "error: %s: %s\n", optarg, strerror(errno)); usage(B_FALSE); } else { (void) strlcpy(zo->zo_dir, path, sizeof (zo->zo_dir)); } break; case 'M': zo->zo_mmp_test = 1; break; case 'V': zo->zo_verbose++; break; case 'E': zo->zo_init = 0; break; case 'T': zo->zo_time = value; break; case 'P': zo->zo_passtime = MAX(1, value); break; case 'F': zo->zo_maxloops = MAX(1, value); break; case 'B': (void) strlcpy(altdir, optarg, sizeof (altdir)); break; case 'C': ztest_parse_name_value(optarg, zo); break; case 'o': if (set_global_var(optarg) != 0) usage(B_FALSE); break; case 'h': usage(B_TRUE); break; case '?': default: usage(B_FALSE); break; } } zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); zo->zo_vdevtime = (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : UINT64_MAX >> 2); if (strlen(altdir) > 0) { char *cmd; char *realaltdir; char *bin; char *ztest; char *isa; int isalen; cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); VERIFY(NULL != realpath(getexecname(), cmd)); if (0 != access(altdir, F_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate ztest path: %s", altdir); } VERIFY(NULL != realpath(altdir, realaltdir)); /* * 'cmd' should be of the form "/usr/bin//ztest". * We want to extract to determine if we should use * 32 or 64 bit binaries. */ bin = strstr(cmd, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 9; isalen = ztest - isa; (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), "%s/usr/lib/%.*s", realaltdir, isalen, isa); if (0 != access(zo->zo_alt_ztest, X_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate ztest: %s", zo->zo_alt_ztest); } else if (0 != access(zo->zo_alt_libpath, X_OK)) { ztest_dump_core = B_FALSE; fatal(B_TRUE, "invalid alternate lib directory %s", zo->zo_alt_libpath); } umem_free(cmd, MAXPATHLEN); umem_free(realaltdir, MAXPATHLEN); } } static void ztest_kill(ztest_shared_t *zs) { zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); /* * Before we kill off ztest, make sure that the config is updated. * See comment above spa_write_cachefile(). */ mutex_enter(&spa_namespace_lock); spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); mutex_exit(&spa_namespace_lock); zfs_dbgmsg_print(FTAG); (void) kill(getpid(), SIGKILL); } static uint64_t ztest_random(uint64_t range) { uint64_t r; ASSERT3S(ztest_fd_rand, >=, 0); if (range == 0) return (0); if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) fatal(1, "short read from /dev/urandom"); return (r % range); } /* ARGSUSED */ static void ztest_record_enospc(const char *s) { ztest_shared->zs_enospc_count++; } static uint64_t ztest_get_ashift(void) { if (ztest_opts.zo_ashift == 0) return (SPA_MINBLOCKSHIFT + ztest_random(5)); return (ztest_opts.zo_ashift); } static nvlist_t * make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) { char pathbuf[MAXPATHLEN]; uint64_t vdev; nvlist_t *file; if (ashift == 0) ashift = ztest_get_ashift(); if (path == NULL) { path = pathbuf; if (aux != NULL) { vdev = ztest_shared->zs_vdev_aux; (void) snprintf(path, sizeof (pathbuf), ztest_aux_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, aux, vdev); } else { vdev = ztest_shared->zs_vdev_next_leaf++; (void) snprintf(path, sizeof (pathbuf), ztest_dev_template, ztest_opts.zo_dir, pool == NULL ? ztest_opts.zo_pool : pool, vdev); } } if (size != 0) { int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd == -1) fatal(1, "can't open %s", path); if (ftruncate(fd, size) != 0) fatal(1, "can't ftruncate %s", path); (void) close(fd); } VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); return (file); } static nvlist_t * make_vdev_raidz(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int r) { nvlist_t *raidz, **child; int c; if (r < 2) return (make_vdev_file(path, aux, pool, size, ashift)); child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < r; c++) child[c] = make_vdev_file(path, aux, pool, size, ashift); VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, VDEV_TYPE_RAIDZ) == 0); VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, ztest_opts.zo_raidz_parity) == 0); VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, child, r) == 0); for (c = 0; c < r; c++) nvlist_free(child[c]); umem_free(child, r * sizeof (nvlist_t *)); return (raidz); } static nvlist_t * make_vdev_mirror(char *path, char *aux, char *pool, size_t size, uint64_t ashift, int r, int m) { nvlist_t *mirror, **child; int c; if (m < 1) return (make_vdev_raidz(path, aux, pool, size, ashift, r)); child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < m; c++) child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR) == 0); VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m) == 0); for (c = 0; c < m; c++) nvlist_free(child[c]); umem_free(child, m * sizeof (nvlist_t *)); return (mirror); } static nvlist_t * make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, const char *class, int r, int m, int t) { nvlist_t *root, **child; int c; boolean_t log; ASSERT(t > 0); log = (class != NULL && strcmp(class, "log") == 0); child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < t; c++) { child[c] = make_vdev_mirror(path, aux, pool, size, ashift, r, m); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log) == 0); if (class != NULL && class[0] != '\0') { ASSERT(m > 1 || log); /* expecting a mirror */ VERIFY(nvlist_add_string(child[c], ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0); } } VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, child, t) == 0); for (c = 0; c < t; c++) nvlist_free(child[c]); umem_free(child, t * sizeof (nvlist_t *)); return (root); } /* * Find a random spa version. Returns back a random spa version in the * range [initial_version, SPA_VERSION_FEATURES]. */ static uint64_t ztest_random_spa_version(uint64_t initial_version) { uint64_t version = initial_version; if (version <= SPA_VERSION_BEFORE_FEATURES) { version = version + ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); } if (version > SPA_VERSION_BEFORE_FEATURES) version = SPA_VERSION_FEATURES; ASSERT(SPA_VERSION_IS_SUPPORTED(version)); return (version); } static int ztest_random_blocksize(void) { uint64_t block_shift; ASSERT(ztest_spa->spa_max_ashift != 0); /* * Choose a block size >= the ashift. * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. */ int maxbs = SPA_OLD_MAXBLOCKSHIFT; if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) maxbs = 20; block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); return (1 << (SPA_MINBLOCKSHIFT + block_shift)); } static int ztest_random_dnodesize(void) { int slots; int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; if (max_slots == DNODE_MIN_SLOTS) return (DNODE_MIN_SIZE); /* * Weight the random distribution more heavily toward smaller * dnode sizes since that is more likely to reflect real-world * usage. */ ASSERT3U(max_slots, >, 4); switch (ztest_random(10)) { case 0: slots = 5 + ztest_random(max_slots - 4); break; case 1 ... 4: slots = 2 + ztest_random(3); break; default: slots = 1; break; } return (slots << DNODE_SHIFT); } static int ztest_random_ibshift(void) { return (DN_MIN_INDBLKSHIFT + ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); } static uint64_t ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) { uint64_t top; vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); do { top = ztest_random(rvd->vdev_children); tvd = rvd->vdev_child[top]; } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); return (top); } static uint64_t ztest_random_dsl_prop(zfs_prop_t prop) { uint64_t value; do { value = zfs_prop_random_value(prop, ztest_random(-1ULL)); } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); return (value); } static int ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, boolean_t inherit) { const char *propname = zfs_prop_to_name(prop); const char *valname; char setpoint[MAXPATHLEN]; uint64_t curval; int error; error = dsl_prop_set_int(osname, propname, (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); if (ztest_opts.zo_verbose >= 6) { VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); (void) printf("%s %s = %s at '%s'\n", osname, propname, valname, setpoint); } return (error); } static int ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) { spa_t *spa = ztest_spa; nvlist_t *props = NULL; int error; VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); error = spa_prop_set(spa, props); nvlist_free(props); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT0(error); return (error); } static void ztest_rll_init(rll_t *rll) { rll->rll_writer = NULL; rll->rll_readers = 0; mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); } static void ztest_rll_destroy(rll_t *rll) { ASSERT(rll->rll_writer == NULL); ASSERT(rll->rll_readers == 0); mutex_destroy(&rll->rll_lock); cv_destroy(&rll->rll_cv); } static void ztest_rll_lock(rll_t *rll, rl_type_t type) { mutex_enter(&rll->rll_lock); if (type == RL_READER) { while (rll->rll_writer != NULL) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_readers++; } else { while (rll->rll_writer != NULL || rll->rll_readers) cv_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_writer = curthread; } mutex_exit(&rll->rll_lock); } static void ztest_rll_unlock(rll_t *rll) { mutex_enter(&rll->rll_lock); if (rll->rll_writer) { ASSERT(rll->rll_readers == 0); rll->rll_writer = NULL; } else { ASSERT(rll->rll_readers != 0); ASSERT(rll->rll_writer == NULL); rll->rll_readers--; } if (rll->rll_writer == NULL && rll->rll_readers == 0) cv_broadcast(&rll->rll_cv); mutex_exit(&rll->rll_lock); } static void ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_lock(rll, type); } static void ztest_object_unlock(ztest_ds_t *zd, uint64_t object) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_unlock(rll); } static rl_t * ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, rl_type_t type) { uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; rl_t *rl; rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); rl->rl_object = object; rl->rl_offset = offset; rl->rl_size = size; rl->rl_lock = rll; ztest_rll_lock(rll, type); return (rl); } static void ztest_range_unlock(rl_t *rl) { rll_t *rll = rl->rl_lock; ztest_rll_unlock(rll); umem_free(rl, sizeof (*rl)); } static void ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) { zd->zd_os = os; zd->zd_zilog = dmu_objset_zil(os); zd->zd_shared = szd; dmu_objset_name(os, zd->zd_name); if (zd->zd_shared != NULL) zd->zd_shared->zd_seq = 0; rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_init(&zd->zd_object_lock[l]); for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_init(&zd->zd_range_lock[l]); } static void ztest_zd_fini(ztest_ds_t *zd) { mutex_destroy(&zd->zd_dirobj_lock); for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_destroy(&zd->zd_object_lock[l]); for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_destroy(&zd->zd_range_lock[l]); } #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) static uint64_t ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) { uint64_t txg; int error; /* * Attempt to assign tx to some transaction group. */ error = dmu_tx_assign(tx, txg_how); if (error) { if (error == ERESTART) { ASSERT(txg_how == TXG_NOWAIT); dmu_tx_wait(tx); } else { ASSERT3U(error, ==, ENOSPC); ztest_record_enospc(tag); } dmu_tx_abort(tx); return (0); } txg = dmu_tx_get_txg(tx); ASSERT(txg != 0); return (txg); } static void ztest_pattern_set(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); while (ip < ip_end) *ip++ = value; } static boolean_t ztest_pattern_match(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); uint64_t diff = 0; while (ip < ip_end) diff |= (value - *ip++); return (diff == 0); } static void ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { bt->bt_magic = BT_MAGIC; bt->bt_objset = dmu_objset_id(os); bt->bt_object = object; bt->bt_dnodesize = dnodesize; bt->bt_offset = offset; bt->bt_gen = gen; bt->bt_txg = txg; bt->bt_crtxg = crtxg; } static void ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { ASSERT3U(bt->bt_magic, ==, BT_MAGIC); ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); ASSERT3U(bt->bt_object, ==, object); ASSERT3U(bt->bt_dnodesize, ==, dnodesize); ASSERT3U(bt->bt_offset, ==, offset); ASSERT3U(bt->bt_gen, <=, gen); ASSERT3U(bt->bt_txg, <=, txg); ASSERT3U(bt->bt_crtxg, ==, crtxg); } static ztest_block_tag_t * ztest_bt_bonus(dmu_buf_t *db) { dmu_object_info_t doi; ztest_block_tag_t *bt; dmu_object_info_from_db(db, &doi); ASSERT3U(doi.doi_bonus_size, <=, db->db_size); ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); return (bt); } /* * Generate a token to fill up unused bonus buffer space. Try to make * it unique to the object, generation, and offset to verify that data * is not getting overwritten by data from other dnodes. */ #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) /* * Fill up the unused bonus buffer region before the block tag with a * verifiable pattern. Filling the whole bonus area with non-zero data * helps ensure that all dnode traversal code properly skips the * interior regions of large dnodes. */ void ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, objset_t *os, uint64_t gen) { uint64_t *bonusp; ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), gen, bonusp - (uint64_t *)db->db_data); *bonusp = token; } } /* * Verify that the unused area of a bonus buffer is filled with the * expected tokens. */ void ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, objset_t *os, uint64_t gen) { uint64_t *bonusp; for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), gen, bonusp - (uint64_t *)db->db_data); VERIFY3U(*bonusp, ==, token); } } /* * ZIL logging ops */ #define lrz_type lr_mode #define lrz_blocksize lr_uid #define lrz_ibshift lr_gid #define lrz_bonustype lr_rdev #define lrz_dnodesize lr_crtime[1] static void ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); itx->itx_oid = object; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) { itx_t *itx; itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); if (zil_replaying(zd->zd_zilog, tx)) return; - if (lr->lr_length > ZIL_MAX_LOG_DATA) + if (lr->lr_length > zil_max_log_data(zd->zd_zilog)) write_state = WR_INDIRECT; itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); if (write_state == WR_COPIED && dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); write_state = WR_NEED_COPY; } itx->itx_private = zd; itx->itx_wr_state = write_state; itx->itx_sync = (ztest_random(8) == 0); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } /* * ZIL replay ops */ static int ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_create_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; ztest_block_tag_t *bbt; dmu_buf_t *db; dmu_tx_t *tx; uint64_t txg; int error = 0; int bonuslen; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } else { dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); } txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) return (ENOSPC); ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { if (lr->lr_foid == 0) { lr->lr_foid = zap_create_dnsize(os, lr->lrz_type, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } else { error = zap_create_claim_dnsize(os, lr->lr_foid, lr->lrz_type, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } } else { if (lr->lr_foid == 0) { lr->lr_foid = dmu_object_alloc_dnsize(os, lr->lrz_type, 0, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } else { error = dmu_object_claim_dnsize(os, lr->lr_foid, lr->lrz_type, 0, lr->lrz_bonustype, bonuslen, lr->lrz_dnodesize, tx); } } if (error) { ASSERT3U(error, ==, EEXIST); ASSERT(zd->zd_zilog->zl_replay); dmu_tx_commit(tx); return (error); } ASSERT(lr->lr_foid != 0); if (lr->lrz_type != DMU_OT_ZAP_OTHER) VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, lr->lrz_blocksize, lr->lrz_ibshift, tx)); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); bbt = ztest_bt_bonus(db); dmu_buf_will_dirty(db, tx); ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, lr->lr_gen, txg, txg); ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); dmu_buf_rele(db, FTAG); VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, &lr->lr_foid, tx)); (void) ztest_log_create(zd, tx, lr); dmu_tx_commit(tx); return (0); } static int ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_remove_t *lr = arg2; char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object, txg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); VERIFY3U(0, ==, zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); ASSERT(object != 0); ztest_object_lock(zd, object, RL_WRITER); VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_object_unlock(zd, object); return (ENOSPC); } if (doi.doi_type == DMU_OT_ZAP_OTHER) { VERIFY3U(0, ==, zap_destroy(os, object, tx)); } else { VERIFY3U(0, ==, dmu_object_free(os, object, tx)); } VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); (void) ztest_log_remove(zd, tx, lr, object); dmu_tx_commit(tx); ztest_object_unlock(zd, object); return (0); } static int ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_write_t *lr = arg2; objset_t *os = zd->zd_os; void *data = lr + 1; /* data follows lr */ uint64_t offset, length; ztest_block_tag_t *bt = data; ztest_block_tag_t *bbt; uint64_t gen, txg, lrtxg, crtxg; dmu_object_info_t doi; dmu_tx_t *tx; dmu_buf_t *db; arc_buf_t *abuf = NULL; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } if (bt->bt_magic == BSWAP_64(BT_MAGIC)) byteswap_uint64_array(bt, sizeof (*bt)); if (bt->bt_magic != BT_MAGIC) bt = NULL; ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); gen = bbt->bt_gen; crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, lr->lr_foid, offset, length); if (ztest_random(8) == 0 && length == doi.doi_data_block_size && P2PHASE(offset, length) == 0) abuf = dmu_request_arcbuf(db, length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { if (abuf != NULL) dmu_return_arcbuf(abuf); dmu_buf_rele(db, FTAG); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } if (bt != NULL) { /* * Usually, verify the old data before writing new data -- * but not always, because we also want to verify correct * behavior when the data was not recently read into cache. */ ASSERT(offset % doi.doi_data_block_size == 0); if (ztest_random(4) != 0) { int prefetch = ztest_random(2) ? DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; ztest_block_tag_t rbt; VERIFY(dmu_read(os, lr->lr_foid, offset, sizeof (rbt), &rbt, prefetch) == 0); if (rbt.bt_magic == BT_MAGIC) { ztest_bt_verify(&rbt, os, lr->lr_foid, 0, offset, gen, txg, crtxg); } } /* * Writes can appear to be newer than the bonus buffer because * the ztest_get_data() callback does a dmu_read() of the * open-context data, which may be different than the data * as it was when the write was generated. */ if (zd->zd_zilog->zl_replay) { ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, MAX(gen, bt->bt_gen), MAX(txg, lrtxg), bt->bt_crtxg); } /* * Set the bt's gen/txg to the bonus buffer's gen/txg * so that all of the usual ASSERTs will work. */ ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, crtxg); } if (abuf == NULL) { dmu_write(os, lr->lr_foid, offset, length, data, tx); } else { bcopy(data, abuf->b_data, length); dmu_assign_arcbuf(db, offset, abuf, tx); } (void) ztest_log_write(zd, tx, lr); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_truncate_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, lr->lr_length, tx) == 0); (void) ztest_log_truncate(zd, tx, lr); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) { ztest_ds_t *zd = arg1; lr_setattr_t *lr = arg2; objset_t *os = zd->zd_os; dmu_tx_t *tx; dmu_buf_t *db; ztest_block_tag_t *bbt; uint64_t txg, lrtxg, crtxg, dnodesize; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, lr->lr_foid); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; dnodesize = bbt->bt_dnodesize; if (zd->zd_zilog->zl_replay) { ASSERT(lr->lr_size != 0); ASSERT(lr->lr_mode != 0); ASSERT(lrtxg != 0); } else { /* * Randomly change the size and increment the generation. */ lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * sizeof (*bbt); lr->lr_mode = bbt->bt_gen + 1; ASSERT(lrtxg == 0); } /* * Verify that the current bonus buffer is not newer than our txg. */ ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, MAX(txg, lrtxg), crtxg); dmu_buf_will_dirty(db, tx); ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); ASSERT3U(lr->lr_size, <=, db->db_size); VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); bbt = ztest_bt_bonus(db); ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, txg, crtxg); ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); dmu_buf_rele(db, FTAG); (void) ztest_log_setattr(zd, tx, lr); dmu_tx_commit(tx); ztest_object_unlock(zd, lr->lr_foid); return (0); } zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { NULL, /* 0 no such transaction type */ ztest_replay_create, /* TX_CREATE */ NULL, /* TX_MKDIR */ NULL, /* TX_MKXATTR */ NULL, /* TX_SYMLINK */ ztest_replay_remove, /* TX_REMOVE */ NULL, /* TX_RMDIR */ NULL, /* TX_LINK */ NULL, /* TX_RENAME */ ztest_replay_write, /* TX_WRITE */ ztest_replay_truncate, /* TX_TRUNCATE */ ztest_replay_setattr, /* TX_SETATTR */ NULL, /* TX_ACL */ NULL, /* TX_CREATE_ACL */ NULL, /* TX_CREATE_ATTR */ NULL, /* TX_CREATE_ACL_ATTR */ NULL, /* TX_MKDIR_ACL */ NULL, /* TX_MKDIR_ATTR */ NULL, /* TX_MKDIR_ACL_ATTR */ NULL, /* TX_WRITE2 */ }; /* * ZIL get_data callbacks */ /* ARGSUSED */ static void ztest_get_done(zgd_t *zgd, int error) { ztest_ds_t *zd = zgd->zgd_private; uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); ztest_range_unlock((rl_t *)zgd->zgd_lr); ztest_object_unlock(zd, object); umem_free(zgd, sizeof (*zgd)); } static int ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { ztest_ds_t *zd = arg; objset_t *os = zd->zd_os; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; uint64_t txg = lr->lr_common.lrc_txg; uint64_t crtxg; dmu_object_info_t doi; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); ztest_object_lock(zd, object, RL_READER); error = dmu_bonus_hold(os, object, FTAG, &db); if (error) { ztest_object_unlock(zd, object); return (error); } crtxg = ztest_bt_bonus(db)->bt_crtxg; if (crtxg == 0 || crtxg > txg) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, object); return (ENOENT); } dmu_object_info_from_db(db, &doi); dmu_buf_rele(db, FTAG); db = NULL; zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); zgd->zgd_lwb = lwb; zgd->zgd_private = zd; if (buf != NULL) { /* immediate write */ zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); ASSERT(error == 0); } else { size = doi.doi_data_block_size; if (ISP2(size)) { offset = P2ALIGN(offset, size); } else { ASSERT(offset < size); offset = 0; } zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, ztest_get_done, zgd); if (error == 0) return (0); } } ztest_get_done(zgd, error); return (error); } static void * ztest_lr_alloc(size_t lrsize, char *name) { char *lr; size_t namesize = name ? strlen(name) + 1 : 0; lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); if (name) bcopy(name, lr + lrsize, namesize); return (lr); } void ztest_lr_free(void *lr, size_t lrsize, char *name) { size_t namesize = name ? strlen(name) + 1 : 0; umem_free(lr, lrsize + namesize); } /* * Lookup a bunch of objects. Returns the number of objects not found. */ static int ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (int i = 0; i < count; i++, od++) { od->od_object = 0; error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, sizeof (uint64_t), 1, &od->od_object); if (error) { ASSERT(error == ENOENT); ASSERT(od->od_object == 0); missing++; } else { dmu_buf_t *db; ztest_block_tag_t *bbt; dmu_object_info_t doi; ASSERT(od->od_object != 0); ASSERT(missing == 0); /* there should be no gaps */ ztest_object_lock(zd, od->od_object, RL_READER); VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, od->od_object, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); od->od_type = doi.doi_type; od->od_blocksize = doi.doi_data_block_size; od->od_gen = bbt->bt_gen; dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, od->od_object); } } return (missing); } static int ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); for (int i = 0; i < count; i++, od++) { if (missing) { od->od_object = 0; missing++; continue; } lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ lr->lrz_type = od->od_crtype; lr->lrz_blocksize = od->od_crblocksize; lr->lrz_ibshift = ztest_random_ibshift(); lr->lrz_bonustype = DMU_OT_UINT64_OTHER; lr->lrz_dnodesize = od->od_crdnodesize; lr->lr_gen = od->od_crgen; lr->lr_crtime[0] = time(NULL); if (ztest_replay_create(zd, lr, B_FALSE) != 0) { ASSERT(missing == 0); od->od_object = 0; missing++; } else { od->od_object = lr->lr_foid; od->od_type = od->od_crtype; od->od_blocksize = od->od_crblocksize; od->od_gen = od->od_crgen; ASSERT(od->od_object != 0); } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); od += count - 1; for (int i = count - 1; i >= 0; i--, od--) { if (missing) { missing++; continue; } /* * No object was found. */ if (od->od_object == 0) continue; lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { ASSERT3U(error, ==, ENOSPC); missing++; } else { od->od_object = 0; } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, void *data) { lr_write_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); bcopy(data, lr + 1, size); error = ztest_replay_write(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr) + size, NULL); return (error); } static int ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { lr_truncate_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; error = ztest_replay_truncate(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static int ztest_setattr(ztest_ds_t *zd, uint64_t object) { lr_setattr_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_size = 0; lr->lr_mode = 0; error = ztest_replay_setattr(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static void ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; txg_wait_synced(dmu_objset_pool(os), 0); ztest_object_lock(zd, object, RL_READER); rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, offset, size); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg != 0) { dmu_prealloc(os, object, offset, size, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); } else { (void) dmu_free_long_range(os, object, offset, size); } ztest_range_unlock(rl); ztest_object_unlock(zd, object); } static void ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) { int err; ztest_block_tag_t wbt; dmu_object_info_t doi; enum ztest_io_type io_type; uint64_t blocksize; void *data; VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); blocksize = doi.doi_data_block_size; data = umem_alloc(blocksize, UMEM_NOFAIL); /* * Pick an i/o type at random, biased toward writing block tags. */ io_type = ztest_random(ZTEST_IO_TYPES); if (ztest_random(2) == 0) io_type = ZTEST_IO_WRITE_TAG; rw_enter(&zd->zd_zilog_lock, RW_READER); switch (io_type) { case ZTEST_IO_WRITE_TAG: ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, offset, 0, 0, 0); (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); break; case ZTEST_IO_WRITE_PATTERN: (void) memset(data, 'a' + (object + offset) % 5, blocksize); if (ztest_random(2) == 0) { /* * Induce fletcher2 collisions to ensure that * zio_ddt_collision() detects and resolves them * when using fletcher2-verify for deduplication. */ ((uint64_t *)data)[0] ^= 1ULL << 63; ((uint64_t *)data)[4] ^= 1ULL << 63; } (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_WRITE_ZEROES: bzero(data, blocksize); (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_TRUNCATE: (void) ztest_truncate(zd, object, offset, blocksize); break; case ZTEST_IO_SETATTR: (void) ztest_setattr(zd, object); break; case ZTEST_IO_REWRITE: rw_enter(&ztest_name_lock, RW_READER); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), B_FALSE); VERIFY(err == 0 || err == ENOSPC); err = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COMPRESSION, ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), B_FALSE); VERIFY(err == 0 || err == ENOSPC); rw_exit(&ztest_name_lock); VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, DMU_READ_NO_PREFETCH)); (void) ztest_write(zd, object, offset, blocksize, data); break; } rw_exit(&zd->zd_zilog_lock); umem_free(data, blocksize); } /* * Initialize an object description template. */ static void ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, uint64_t gen) { od->od_dir = ZTEST_DIROBJ; od->od_object = 0; od->od_crtype = type; od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); od->od_crgen = gen; od->od_type = DMU_OT_NONE; od->od_blocksize = 0; od->od_gen = 0; (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", tag, (int64_t)id, index); } /* * Lookup or create the objects for a test using the od template. * If the objects do not all exist, or if 'remove' is specified, * remove any existing objects and create new ones. Otherwise, * use the existing objects. */ static int ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) { int count = size / sizeof (*od); int rv = 0; mutex_enter(&zd->zd_dirobj_lock); if ((ztest_lookup(zd, od, count) != 0 || remove) && (ztest_remove(zd, od, count) != 0 || ztest_create(zd, od, count) != 0)) rv = -1; zd->zd_od = od; mutex_exit(&zd->zd_dirobj_lock); return (rv); } /* ARGSUSED */ void ztest_zil_commit(ztest_ds_t *zd, uint64_t id) { zilog_t *zilog = zd->zd_zilog; rw_enter(&zd->zd_zilog_lock, RW_READER); zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); /* * Remember the committed values in zd, which is in parent/child * shared memory. If we die, the next iteration of ztest_run() * will verify that the log really does contain this record. */ mutex_enter(&zilog->zl_lock); ASSERT(zd->zd_shared != NULL); ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; mutex_exit(&zilog->zl_lock); rw_exit(&zd->zd_zilog_lock); } /* * This function is designed to simulate the operations that occur during a * mount/unmount operation. We hold the dataset across these operations in an * attempt to expose any implicit assumptions about ZIL management. */ /* ARGSUSED */ void ztest_zil_remount(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; /* * We grab the zd_dirobj_lock to ensure that no other thread is * updating the zil (i.e. adding in-memory log records) and the * zd_zilog_lock to block any I/O. */ mutex_enter(&zd->zd_dirobj_lock); rw_enter(&zd->zd_zilog_lock, RW_WRITER); /* zfsvfs_teardown() */ zil_close(zd->zd_zilog); /* zfsvfs_setup() */ VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); zil_replay(os, zd, ztest_replay_vector); rw_exit(&zd->zd_zilog_lock); mutex_exit(&zd->zd_dirobj_lock); } /* * Verify that we can't destroy an active pool, create an existing pool, * or create a pool with a bad vdev spec. */ /* ARGSUSED */ void ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa; nvlist_t *nvroot; if (zo->zo_mmp_test) return; /* * Attempt to create using a bad file. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_file", nvroot, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create using a bad mirror. */ nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create an existing pool. It shouldn't matter * what's in the nvroot; we should fail with EEXIST. */ rw_enter(&ztest_name_lock, RW_READER); nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); nvlist_free(nvroot); VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); spa_close(spa, FTAG); rw_exit(&ztest_name_lock); } /* * Start and then stop the MMP threads to ensure the startup and shutdown code * works properly. Actual protection and property-related code tested via ZTS. */ /* ARGSUSED */ void ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id) { ztest_shared_opts_t *zo = &ztest_opts; spa_t *spa = ztest_spa; if (zo->zo_mmp_test) return; /* * Since enabling MMP involves setting a property, it could not be done * while the pool is suspended. */ if (spa_suspended(spa)) return; spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); mutex_enter(&spa->spa_props_lock); zfs_multihost_fail_intervals = 0; if (!spa_multihost(spa)) { spa->spa_multihost = B_TRUE; mmp_thread_start(spa); } mutex_exit(&spa->spa_props_lock); spa_config_exit(spa, SCL_CONFIG, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); mmp_signal_all_threads(); txg_wait_synced(spa_get_dsl(spa), 0); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); mutex_enter(&spa->spa_props_lock); if (spa_multihost(spa)) { mmp_thread_stop(spa); spa->spa_multihost = B_FALSE; } mutex_exit(&spa->spa_props_lock); spa_config_exit(spa, SCL_CONFIG, FTAG); } /* ARGSUSED */ void ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) { spa_t *spa; uint64_t initial_version = SPA_VERSION_INITIAL; uint64_t version, newversion; nvlist_t *nvroot, *props; char *name; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); /* * Clean up from previous runs. */ (void) spa_destroy(name); nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); /* * If we're configuring a RAIDZ device then make sure that the * the initial version is capable of supporting that feature. */ switch (ztest_opts.zo_raidz_parity) { case 0: case 1: initial_version = SPA_VERSION_INITIAL; break; case 2: initial_version = SPA_VERSION_RAIDZ2; break; case 3: initial_version = SPA_VERSION_RAIDZ3; break; } /* * Create a pool with a spa version that can be upgraded. Pick * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. */ do { version = ztest_random_spa_version(initial_version); } while (version > SPA_VERSION_BEFORE_FEATURES); props = fnvlist_alloc(); fnvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), version); VERIFY0(spa_create(name, nvroot, props, NULL)); fnvlist_free(nvroot); fnvlist_free(props); VERIFY0(spa_open(name, &spa, FTAG)); VERIFY3U(spa_version(spa), ==, version); newversion = ztest_random_spa_version(version + 1); if (ztest_opts.zo_verbose >= 4) { (void) printf("upgrading spa version from %llu to %llu\n", (u_longlong_t)version, (u_longlong_t)newversion); } spa_upgrade(spa, newversion); VERIFY3U(spa_version(spa), >, version); VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, zpool_prop_to_name(ZPOOL_PROP_VERSION))); spa_close(spa, FTAG); strfree(name); mutex_exit(&ztest_vdev_lock); } static void ztest_spa_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DEVRM_IN_PROGRESS: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_CHECKPOINT_EXISTS: break; case ENOSPC: ztest_record_enospc(FTAG); break; default: fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error); } } static void ztest_spa_discard_checkpoint(spa_t *spa) { ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); int error = spa_checkpoint_discard(spa->spa_name); switch (error) { case 0: case ZFS_ERR_DISCARDING_CHECKPOINT: case ZFS_ERR_NO_CHECKPOINT: break; default: fatal(0, "spa_discard_checkpoint(%s) = %d", spa->spa_name, error); } } /* ARGSUSED */ void ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; mutex_enter(&ztest_checkpoint_lock); if (ztest_random(2) == 0) { ztest_spa_checkpoint(spa); } else { ztest_spa_discard_checkpoint(spa); } mutex_exit(&ztest_checkpoint_lock); } static vdev_t * vdev_lookup_by_path(vdev_t *vd, const char *path) { vdev_t *mvd; if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) return (vd); for (int c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != NULL) return (mvd); return (NULL); } /* * Find the first available hole which can be used as a top-level. */ int find_vdev_hole(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); for (c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; if (cvd->vdev_ishole) break; } return (c); } /* * Verify that vdev_add() works as expected. */ /* ARGSUSED */ void ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; uint64_t guid; nvlist_t *nvroot; int error; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; /* * If we have slogs then remove them 1/4 of the time. */ if (spa_has_slogs(spa) && ztest_random(4) == 0) { metaslab_group_t *mg; /* * find the first real slog in log allocation class */ mg = spa_log_class(spa)->mc_rotor; while (!mg->mg_vd->vdev_islog) mg = mg->mg_next; guid = mg->mg_vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); /* * We have to grab the zs_name_lock as writer to * prevent a race between removing a slog (dmu_objset_find) * and destroying a dataset. Removing the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ rw_enter(&ztest_name_lock, RW_WRITER); error = spa_vdev_remove(spa, guid, B_FALSE); rw_exit(&ztest_name_lock); switch (error) { case 0: case EEXIST: case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: fatal(0, "spa_vdev_remove() = %d", error); } } else { spa_config_exit(spa, SCL_VDEV, FTAG); /* * Make 1/4 of the devices be log devices */ nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ? "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); nvlist_free(nvroot); switch (error) { case 0: break; case ENOSPC: ztest_record_enospc("spa_vdev_add"); break; default: fatal(0, "spa_vdev_add() = %d", error); } } mutex_exit(&ztest_vdev_lock); } /* ARGSUSED */ void ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; uint64_t leaves; nvlist_t *nvroot; const char *class = (ztest_random(2) == 0) ? VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP; int error; /* * By default add a special vdev 50% of the time */ if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) || (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND && ztest_random(2) == 0)) { return; } mutex_enter(&ztest_vdev_lock); /* Only test with mirrors */ if (zs->zs_mirrors < 2) { mutex_exit(&ztest_vdev_lock); return; } /* requires feature@allocation_classes */ if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { mutex_exit(&ztest_vdev_lock); return; } leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; spa_config_exit(spa, SCL_VDEV, FTAG); nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, class, ztest_opts.zo_raidz, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); nvlist_free(nvroot); if (error == ENOSPC) ztest_record_enospc("spa_vdev_add"); else if (error != 0) fatal(0, "spa_vdev_add() = %d", error); /* * 50% of the time allow small blocks in the special class */ if (error == 0 && spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) { if (ztest_opts.zo_verbose >= 3) (void) printf("Enabling special VDEV small blocks\n"); (void) ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE); } mutex_exit(&ztest_vdev_lock); if (ztest_opts.zo_verbose >= 3) { metaslab_class_t *mc; if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0) mc = spa_special_class(spa); else mc = spa_dedup_class(spa); (void) printf("Added a %s mirrored vdev (of %d)\n", class, (int)mc->mc_groups); } } /* * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. */ /* ARGSUSED */ void ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; spa_aux_vdev_t *sav; char *aux; uint64_t guid = 0; int error; if (ztest_opts.zo_mmp_test) return; if (ztest_random(2) == 0) { sav = &spa->spa_spares; aux = ZPOOL_CONFIG_SPARES; } else { sav = &spa->spa_l2cache; aux = ZPOOL_CONFIG_L2CACHE; } mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if (sav->sav_count != 0 && ztest_random(4) == 0) { /* * Pick a random device to remove. */ guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; } else { /* * Find an unused device we can add. */ zs->zs_vdev_aux = 0; for (;;) { char path[MAXPATHLEN]; int c; (void) snprintf(path, sizeof (path), ztest_aux_template, ztest_opts.zo_dir, ztest_opts.zo_pool, aux, zs->zs_vdev_aux); for (c = 0; c < sav->sav_count; c++) if (strcmp(sav->sav_vdevs[c]->vdev_path, path) == 0) break; if (c == sav->sav_count && vdev_lookup_by_path(rvd, path) == NULL) break; zs->zs_vdev_aux++; } } spa_config_exit(spa, SCL_VDEV, FTAG); if (guid == 0) { /* * Add a new device. */ nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1); error = spa_vdev_add(spa, nvroot); switch (error) { case 0: break; default: fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); } nvlist_free(nvroot); } else { /* * Remove an existing device. Sometimes, dirty its * vdev state first to make sure we handle removal * of devices that have pending state changes. */ if (ztest_random(2) == 0) (void) vdev_online(spa, guid, 0, NULL); error = spa_vdev_remove(spa, guid, B_FALSE); switch (error) { case 0: case EBUSY: case ZFS_ERR_CHECKPOINT_EXISTS: case ZFS_ERR_DISCARDING_CHECKPOINT: break; default: fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); } } mutex_exit(&ztest_vdev_lock); } /* * split a pool if it has mirror tlvdevs */ /* ARGSUSED */ void ztest_split_pool(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; vdev_t *rvd = spa->spa_root_vdev; nvlist_t *tree, **child, *config, *split, **schild; uint_t c, children, schildren = 0, lastlogid = 0; int error = 0; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); /* ensure we have a useable config; mirrors of raidz aren't supported */ if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { mutex_exit(&ztest_vdev_lock); return; } /* clean up the old pool, if any */ (void) spa_destroy("splitp"); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* generate a config from the existing config */ mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, &tree) == 0); mutex_exit(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); for (c = 0; c < children; c++) { vdev_t *tvd = rvd->vdev_child[c]; nvlist_t **mchild; uint_t mchildren; if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(schild[schildren], ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); VERIFY(nvlist_add_uint64(schild[schildren], ZPOOL_CONFIG_IS_HOLE, 1) == 0); if (lastlogid == 0) lastlogid = schildren; ++schildren; continue; } lastlogid = 0; VERIFY(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); } /* OK, create a config that can be used to split */ VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, lastlogid != 0 ? lastlogid : schildren) == 0); VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); for (c = 0; c < schildren; c++) nvlist_free(schild[c]); free(schild); nvlist_free(split); spa_config_exit(spa, SCL_VDEV, FTAG); rw_enter(&ztest_name_lock, RW_WRITER); error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); rw_exit(&ztest_name_lock); nvlist_free(config); if (error == 0) { (void) printf("successful split - results:\n"); mutex_enter(&spa_namespace_lock); show_pool_stats(spa); show_pool_stats(spa_lookup("splitp")); mutex_exit(&spa_namespace_lock); ++zs->zs_splits; --zs->zs_mirrors; } mutex_exit(&ztest_vdev_lock); } /* * Verify that we can attach and detach devices. */ /* ARGSUSED */ void ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; spa_aux_vdev_t *sav = &spa->spa_spares; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *pvd; nvlist_t *root; uint64_t leaves; uint64_t leaf, top; uint64_t ashift = ztest_get_ashift(); uint64_t oldguid, pguid; uint64_t oldsize, newsize; char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; int replacing; int oldvd_has_siblings = B_FALSE; int newvd_is_spare = B_FALSE; int oldvd_is_log; int error, expected_error; if (ztest_opts.zo_mmp_test) return; mutex_enter(&ztest_vdev_lock); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * If a vdev is in the process of being removed, its removal may * finish while we are in progress, leading to an unexpected error * value. Don't bother trying to attach while we are in the middle * of removal. */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_ALL, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * Decide whether to do an attach or a replace. */ replacing = ztest_random(2); /* * Pick a random top-level vdev. */ top = ztest_random_vdev_top(spa, B_TRUE); /* * Pick a random leaf within it. */ leaf = ztest_random(leaves); /* * Locate this vdev. */ oldvd = rvd->vdev_child[top]; /* pick a child from the mirror */ if (zs->zs_mirrors >= 1) { ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); ASSERT(oldvd->vdev_children >= zs->zs_mirrors); oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; } /* pick a child out of the raidz group */ if (ztest_opts.zo_raidz > 1) { ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; } /* * If we're already doing an attach or replace, oldvd may be a * mirror vdev -- in which case, pick a random child. */ while (oldvd->vdev_children != 0) { oldvd_has_siblings = B_TRUE; ASSERT(oldvd->vdev_children >= 2); oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; } oldguid = oldvd->vdev_guid; oldsize = vdev_get_min_asize(oldvd); oldvd_is_log = oldvd->vdev_top->vdev_islog; (void) strcpy(oldpath, oldvd->vdev_path); pvd = oldvd->vdev_parent; pguid = pvd->vdev_guid; /* * If oldvd has siblings, then half of the time, detach it. */ if (oldvd_has_siblings && ztest_random(2) == 0) { spa_config_exit(spa, SCL_ALL, FTAG); error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); if (error != 0 && error != ENODEV && error != EBUSY && error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && error != ZFS_ERR_DISCARDING_CHECKPOINT) fatal(0, "detach (%s) returned %d", oldpath, error); mutex_exit(&ztest_vdev_lock); return; } /* * For the new vdev, choose with equal probability between the two * standard paths (ending in either 'a' or 'b') or a random hot spare. */ if (sav->sav_count != 0 && ztest_random(3) == 0) { newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; newvd_is_spare = B_TRUE; (void) strcpy(newpath, newvd->vdev_path); } else { (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); if (ztest_random(2) == 0) newpath[strlen(newpath) - 1] = 'b'; newvd = vdev_lookup_by_path(rvd, newpath); } if (newvd) { /* * Reopen to ensure the vdev's asize field isn't stale. */ vdev_reopen(newvd); newsize = vdev_get_min_asize(newvd); } else { /* * Make newsize a little bigger or smaller than oldsize. * If it's smaller, the attach should fail. * If it's larger, and we're doing a replace, * we should get dynamic LUN growth when we're done. */ newsize = 10 * oldsize / (9 + ztest_random(3)); } /* * If pvd is not a mirror or root, the attach should fail with ENOTSUP, * unless it's a replace; in that case any non-replacing parent is OK. * * If newvd is already part of the pool, it should fail with EBUSY. * * If newvd is too small, it should fail with EOVERFLOW. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops || pvd->vdev_ops == &vdev_spare_ops)) expected_error = ENOTSUP; else if (newvd_is_spare && (!replacing || oldvd_is_log)) expected_error = ENOTSUP; else if (newvd == oldvd) expected_error = replacing ? 0 : EBUSY; else if (vdev_lookup_by_path(rvd, newpath) != NULL) expected_error = EBUSY; else if (newsize < oldsize) expected_error = EOVERFLOW; else if (ashift > oldvd->vdev_top->vdev_ashift) expected_error = EDOM; else expected_error = 0; spa_config_exit(spa, SCL_ALL, FTAG); /* * Build the nvlist describing newpath. */ root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, ashift, NULL, 0, 0, 1); error = spa_vdev_attach(spa, oldguid, root, replacing); nvlist_free(root); /* * If our parent was the replacing vdev, but the replace completed, * then instead of failing with ENOTSUP we may either succeed, * fail with ENODEV, or fail with EOVERFLOW. */ if (expected_error == ENOTSUP && (error == 0 || error == ENODEV || error == EOVERFLOW)) expected_error = error; /* * If someone grew the LUN, the replacement may be too small. */ if (error == EOVERFLOW || error == EBUSY) expected_error = error; if (error == ZFS_ERR_CHECKPOINT_EXISTS || error == ZFS_ERR_DISCARDING_CHECKPOINT) expected_error = error; /* XXX workaround 6690467 */ if (error != expected_error && expected_error != EBUSY) { fatal(0, "attach (%s %llu, %s %llu, %d) " "returned %d, expected %d", oldpath, oldsize, newpath, newsize, replacing, error, expected_error); } mutex_exit(&ztest_vdev_lock); } /* ARGSUSED */ void ztest_device_removal(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; vdev_t *vd; uint64_t guid; int error; mutex_enter(&ztest_vdev_lock); if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); return; } /* * Remove a random top-level vdev and wait for removal to finish. */ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); guid = vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_remove(spa, guid, B_FALSE); if (error == 0) { ztest_device_removal_active = B_TRUE; mutex_exit(&ztest_vdev_lock); while (spa->spa_vdev_removal != NULL) txg_wait_synced(spa_get_dsl(spa), 0); } else { mutex_exit(&ztest_vdev_lock); return; } /* * The pool needs to be scrubbed after completing device removal. * Failure to do so may result in checksum errors due to the * strategy employed by ztest_fault_inject() when selecting which * offset are redundant and can be damaged. */ error = spa_scan(spa, POOL_SCAN_SCRUB); if (error == 0) { while (dsl_scan_scrubbing(spa_get_dsl(spa))) txg_wait_synced(spa_get_dsl(spa), 0); } mutex_enter(&ztest_vdev_lock); ztest_device_removal_active = B_FALSE; mutex_exit(&ztest_vdev_lock); } /* * Callback function which expands the physical size of the vdev. */ vdev_t * grow_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; size_t *newsize = arg; size_t fsize; int fd; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); if ((fd = open(vd->vdev_path, O_RDWR)) == -1) return (vd); fsize = lseek(fd, 0, SEEK_END); (void) ftruncate(fd, *newsize); if (ztest_opts.zo_verbose >= 6) { (void) printf("%s grew from %lu to %lu bytes\n", vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); } (void) close(fd); return (NULL); } /* * Callback function which expands a given vdev by calling vdev_online(). */ /* ARGSUSED */ vdev_t * online_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint64_t guid = vd->vdev_guid; uint64_t generation = spa->spa_config_generation + 1; vdev_state_t newstate = VDEV_STATE_UNKNOWN; int error; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); /* Calling vdev_online will initialize the new metaslabs */ spa_config_exit(spa, SCL_STATE, spa); error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If vdev_online returned an error or the underlying vdev_open * failed then we abort the expand. The only way to know that * vdev_open fails is by checking the returned newstate. */ if (error || newstate != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Unable to expand vdev, state %llu, " "error %d\n", (u_longlong_t)newstate, error); } return (vd); } ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); /* * Since we dropped the lock we need to ensure that we're * still talking to the original vdev. It's possible this * vdev may have been detached/replaced while we were * trying to online it. */ if (generation != spa->spa_config_generation) { if (ztest_opts.zo_verbose >= 5) { (void) printf("vdev configuration has changed, " "guid %llu, state %llu, expected gen %llu, " "got gen %llu\n", (u_longlong_t)guid, (u_longlong_t)tvd->vdev_state, (u_longlong_t)generation, (u_longlong_t)spa->spa_config_generation); } return (vd); } return (NULL); } /* * Traverse the vdev tree calling the supplied function. * We continue to walk the tree until we either have walked all * children or we receive a non-NULL return from the callback. * If a NULL callback is passed, then we just return back the first * leaf vdev we encounter. */ vdev_t * vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) { if (vd->vdev_ops->vdev_op_leaf) { if (func == NULL) return (vd); else return (func(vd, arg)); } for (uint_t c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) return (cvd); } return (NULL); } /* * Verify that dynamic LUN growth works as expected. */ /* ARGSUSED */ void ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; vdev_t *vd, *tvd; metaslab_class_t *mc; metaslab_group_t *mg; size_t psize, newsize; uint64_t top; uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; mutex_enter(&ztest_checkpoint_lock); mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If there is a vdev removal in progress, it could complete while * we are running, in which case we would not be able to verify * that the metaslab_class space increased (because it decreases * when the device removal completes). */ if (ztest_device_removal_active) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } top = ztest_random_vdev_top(spa, B_TRUE); tvd = spa->spa_root_vdev->vdev_child[top]; mg = tvd->vdev_mg; mc = mg->mg_class; old_ms_count = tvd->vdev_ms_count; old_class_space = metaslab_class_get_space(mc); /* * Determine the size of the first leaf vdev associated with * our top-level device. */ vd = vdev_walk_tree(tvd, NULL, NULL); ASSERT3P(vd, !=, NULL); ASSERT(vd->vdev_ops->vdev_op_leaf); psize = vd->vdev_psize; /* * We only try to expand the vdev if it's healthy, less than 4x its * original size, and it has a valid psize. */ if (tvd->vdev_state != VDEV_STATE_HEALTHY || psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } ASSERT(psize > 0); newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE); ASSERT3U(newsize, >, psize); if (ztest_opts.zo_verbose >= 6) { (void) printf("Expanding LUN %s from %lu to %lu\n", vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); } /* * Growing the vdev is a two step process: * 1). expand the physical size (i.e. relabel) * 2). online the vdev to create the new metaslabs */ if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || vdev_walk_tree(tvd, online_vdev, NULL) != NULL || tvd->vdev_state != VDEV_STATE_HEALTHY) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not expand LUN because " "the vdev configuration changed.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } spa_config_exit(spa, SCL_STATE, spa); /* * Expanding the LUN will update the config asynchronously, * thus we must wait for the async thread to complete any * pending tasks before proceeding. */ for (;;) { boolean_t done; mutex_enter(&spa->spa_async_lock); done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); mutex_exit(&spa->spa_async_lock); if (done) break; txg_wait_synced(spa_get_dsl(spa), 0); (void) poll(NULL, 0, 100); } spa_config_enter(spa, SCL_STATE, spa, RW_READER); tvd = spa->spa_root_vdev->vdev_child[top]; new_ms_count = tvd->vdev_ms_count; new_class_space = metaslab_class_get_space(mc); if (tvd->vdev_mg != mg || mg->mg_class != mc) { if (ztest_opts.zo_verbose >= 5) { (void) printf("Could not verify LUN expansion due to " "intervening vdev offline or remove.\n"); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); return; } /* * Make sure we were able to grow the vdev. */ if (new_ms_count <= old_ms_count) { fatal(0, "LUN expansion failed: ms_count %llu < %llu\n", old_ms_count, new_ms_count); } /* * Make sure we were able to grow the pool. */ if (new_class_space <= old_class_space) { fatal(0, "LUN expansion failed: class_space %llu < %llu\n", old_class_space, new_class_space); } if (ztest_opts.zo_verbose >= 5) { char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); (void) printf("%s grew from %s to %s\n", spa->spa_name, oldnumbuf, newnumbuf); } spa_config_exit(spa, SCL_STATE, spa); mutex_exit(&ztest_vdev_lock); mutex_exit(&ztest_checkpoint_lock); } /* * Verify that dmu_objset_{create,destroy,open,close} work as expected. */ /* ARGSUSED */ static void ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { /* * Create the objects common to all ztest datasets. */ VERIFY(zap_create_claim(os, ZTEST_DIROBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); } static int ztest_dataset_create(char *dsname) { uint64_t zilset = ztest_random(100); int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, ztest_objset_create_cb, NULL); if (err || zilset < 80) return (err); if (ztest_opts.zo_verbose >= 6) (void) printf("Setting dataset %s to sync always\n", dsname); return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, ZFS_SYNC_ALWAYS, B_FALSE)); } /* ARGSUSED */ static int ztest_objset_destroy_cb(const char *name, void *arg) { objset_t *os; dmu_object_info_t doi; int error; /* * Verify that the dataset contains a directory object. */ VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); error = dmu_object_info(os, ZTEST_DIROBJ, &doi); if (error != ENOENT) { /* We could have crashed in the middle of destroying it */ ASSERT0(error); ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); ASSERT3S(doi.doi_physical_blocks_512, >=, 0); } dmu_objset_disown(os, FTAG); /* * Destroy the dataset. */ if (strchr(name, '@') != NULL) { VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); } else { VERIFY0(dsl_destroy_head(name)); } return (0); } static boolean_t ztest_snapshot_create(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); error = dmu_objset_snapshot_one(osname, snapname); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (B_FALSE); } if (error != 0 && error != EEXIST) { fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, snapname, error); } return (B_TRUE); } static boolean_t ztest_snapshot_destroy(char *osname, uint64_t id) { char snapname[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, (u_longlong_t)id); error = dsl_destroy_snapshot(snapname, B_FALSE); if (error != 0 && error != ENOENT) fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); return (B_TRUE); } /* ARGSUSED */ void ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_ds_t zdtmp; int iters; int error; objset_t *os, *os2; char name[ZFS_MAX_DATASET_NAME_LEN]; zilog_t *zilog; rw_enter(&ztest_name_lock, RW_READER); (void) snprintf(name, sizeof (name), "%s/temp_%llu", ztest_opts.zo_pool, (u_longlong_t)id); /* * If this dataset exists from a previous run, process its replay log * half of the time. If we don't replay it, then dmu_objset_destroy() * (invoked from ztest_objset_destroy_cb()) should just throw it away. */ if (ztest_random(2) == 0 && dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { ztest_zd_init(&zdtmp, NULL, os); zil_replay(os, &zdtmp, ztest_replay_vector); ztest_zd_fini(&zdtmp); dmu_objset_disown(os, FTAG); } /* * There may be an old instance of the dataset we're about to * create lying around from a previous run. If so, destroy it * and all of its snapshots. */ (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); /* * Verify that the destroyed dataset is no longer in the namespace. */ VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); /* * Verify that we can create a new dataset. */ error = ztest_dataset_create(name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); rw_exit(&ztest_name_lock); return; } fatal(0, "dmu_objset_create(%s) = %d", name, error); } VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); ztest_zd_init(&zdtmp, NULL, os); /* * Open the intent log for it. */ zilog = zil_open(os, ztest_get_data); /* * Put some objects in there, do a little I/O to them, * and randomly take a couple of snapshots along the way. */ iters = ztest_random(5); for (int i = 0; i < iters; i++) { ztest_dmu_object_alloc_free(&zdtmp, id); if (ztest_random(iters) == 0) (void) ztest_snapshot_create(name, i); } /* * Verify that we cannot create an existing dataset. */ VERIFY3U(EEXIST, ==, dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); /* * Verify that we can hold an objset that is also owned. */ VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); dmu_objset_rele(os2, FTAG); /* * Verify that we cannot own an objset that is already owned. */ VERIFY3U(EBUSY, ==, dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); zil_close(zilog); dmu_objset_disown(os, FTAG); ztest_zd_fini(&zdtmp); rw_exit(&ztest_name_lock); } /* * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. */ void ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) { rw_enter(&ztest_name_lock, RW_READER); (void) ztest_snapshot_destroy(zd->zd_name, id); (void) ztest_snapshot_create(zd->zd_name, id); rw_exit(&ztest_name_lock); } /* * Cleanup non-standard snapshots and clones. */ void ztest_dsl_dataset_cleanup(char *osname, uint64_t id) { char snap1name[ZFS_MAX_DATASET_NAME_LEN]; char clone1name[ZFS_MAX_DATASET_NAME_LEN]; char snap2name[ZFS_MAX_DATASET_NAME_LEN]; char clone2name[ZFS_MAX_DATASET_NAME_LEN]; char snap3name[ZFS_MAX_DATASET_NAME_LEN]; int error; (void) snprintf(snap1name, sizeof (snap1name), "%s@s1_%llu", osname, id); (void) snprintf(clone1name, sizeof (clone1name), "%s/c1_%llu", osname, id); (void) snprintf(snap2name, sizeof (snap2name), "%s@s2_%llu", clone1name, id); (void) snprintf(clone2name, sizeof (clone2name), "%s/c2_%llu", osname, id); (void) snprintf(snap3name, sizeof (snap3name), "%s@s3_%llu", clone1name, id); error = dsl_destroy_head(clone2name); if (error && error != ENOENT) fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); error = dsl_destroy_snapshot(snap3name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); error = dsl_destroy_snapshot(snap2name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); error = dsl_destroy_head(clone1name); if (error && error != ENOENT) fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); error = dsl_destroy_snapshot(snap1name, B_FALSE); if (error && error != ENOENT) fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); } /* * Verify dsl_dataset_promote handles EBUSY */ void ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) { objset_t *os; char snap1name[ZFS_MAX_DATASET_NAME_LEN]; char clone1name[ZFS_MAX_DATASET_NAME_LEN]; char snap2name[ZFS_MAX_DATASET_NAME_LEN]; char clone2name[ZFS_MAX_DATASET_NAME_LEN]; char snap3name[ZFS_MAX_DATASET_NAME_LEN]; char *osname = zd->zd_name; int error; rw_enter(&ztest_name_lock, RW_READER); ztest_dsl_dataset_cleanup(osname, id); (void) snprintf(snap1name, sizeof (snap1name), "%s@s1_%llu", osname, id); (void) snprintf(clone1name, sizeof (clone1name), "%s/c1_%llu", osname, id); (void) snprintf(snap2name, sizeof (snap2name), "%s@s2_%llu", clone1name, id); (void) snprintf(clone2name, sizeof (clone2name), "%s/c2_%llu", osname, id); (void) snprintf(snap3name, sizeof (snap3name), "%s@s3_%llu", clone1name, id); error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); } error = dmu_objset_clone(clone1name, snap1name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); } error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); } error = dmu_objset_clone(clone2name, snap3name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); } error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); if (error) fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); error = dsl_dataset_promote(clone2name, NULL); if (error == ENOSPC) { dmu_objset_disown(os, FTAG); ztest_record_enospc(FTAG); goto out; } if (error != EBUSY) fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, error); dmu_objset_disown(os, FTAG); out: ztest_dsl_dataset_cleanup(osname, id); rw_exit(&ztest_name_lock); } /* * Verify that dmu_object_{alloc,free} work as expected. */ void ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[4]; int batchsize = sizeof (od) / sizeof (od[0]); for (int b = 0; b < batchsize; b++) { ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0, 0); } /* * Destroy the previous batch of objects, create a new batch, * and do some I/O on the new objects. */ if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) return; while (ztest_random(4 * batchsize) != 0) ztest_io(zd, od[ztest_random(batchsize)].od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); } /* * Rewind the global allocator to verify object allocation backfilling. */ void ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; uint64_t object; /* * Rewind the global allocator randomly back to a lower object number * to force backfilling and reclamation of recently freed dnodes. */ mutex_enter(&os->os_obj_lock); object = ztest_random(os->os_obj_next_chunk); os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); mutex_exit(&os->os_obj_lock); } /* * Verify that dmu_{read,write} work as expected. */ void ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; int i, freeit, error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 40; int free_percent = 5; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is arbitrary. It doesn't have to be a power of two, * and it doesn't have any relation to the object blocksize. * The only requirement is that it can hold at least two bufwads. * * Normally, we write the bufwad to each of these locations. * However, free_percent of the time we instead write zeroes to * packobj and perform a dmu_free_range() on bigobj. By comparing * bigobj to packobj, we can verify that the DMU is correctly * tracking which parts of an object are allocated and free, * and that the contents of the allocated blocks are correct. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize); ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; chunksize = od[0].od_gen; ASSERT(chunksize == od[1].od_gen); /* * Prefetch a random chunk of the big object. * Our aim here is to get some async reads in flight * for blocks that we may free below; the DMU should * handle this race correctly. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(2 * width - 1); dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, ZIO_PRIORITY_SYNC_READ); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_alloc(packsize, UMEM_NOFAIL); bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); /* * free_percent of the time, free a range of bigobj rather than * overwriting it. */ freeit = (ztest_random(100) < free_percent); /* * Read the current contents of our objects. */ error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); if (freeit) dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); else dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); /* This accounts for setting the checksum/compression. */ dmu_tx_hold_bonus(tx, bigobj); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); return; } enum zio_checksum cksum; do { cksum = (enum zio_checksum) ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); dmu_object_set_checksum(os, bigobj, cksum, tx); enum zio_compress comp; do { comp = (enum zio_compress) ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); dmu_object_set_compress(os, bigobj, comp, tx); /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); if (freeit) { bzero(pack, sizeof (bufwad_t)); } else { pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); } *bigH = *pack; *bigT = *pack; } /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (freeit) { if (ztest_opts.zo_verbose >= 7) { (void) printf("freeing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); } else { if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); } void compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) { uint64_t i; bufwad_t *pack; bufwad_t *bigH; bufwad_t *bigT; /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); *bigH = *pack; *bigT = *pack; } } void ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; uint64_t i; int error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t blocksize = ztest_random_blocksize(); uint64_t chunksize = blocksize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 9; dmu_buf_t *bonus_db; arc_buf_t **bigbuf_arcbufs; dmu_object_info_t doi; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is set equal to bigobj block size so that * dmu_assign_arcbuf() can be tested for object updates. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; blocksize = od[0].od_blocksize; chunksize = blocksize; ASSERT(chunksize == od[1].od_gen); VERIFY(dmu_object_info(os, bigobj, &doi) == 0); VERIFY(ISP2(doi.doi_data_block_size)); VERIFY(chunksize == doi.doi_data_block_size); VERIFY(chunksize >= 2 * sizeof (bufwad_t)); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_zalloc(packsize, UMEM_NOFAIL); bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); /* * Iteration 0 test zcopy for DB_UNCACHED dbufs. * Iteration 1 test zcopy to already referenced dbufs. * Iteration 2 test zcopy to dirty dbuf in the same txg. * Iteration 3 test zcopy to dbuf dirty in previous txg. * Iteration 4 test zcopy when dbuf is no longer dirty. * Iteration 5 test zcopy when it can't be done. * Iteration 6 one more zcopy write. */ for (i = 0; i < 7; i++) { uint64_t j; uint64_t off; /* * In iteration 5 (i == 5) use arcbufs * that don't match bigobj blksz to test * dmu_assign_arcbuf() when it can't directly * assign an arcbuf to a dbuf. */ for (j = 0; j < s; j++) { if (i != 5) { bigbuf_arcbufs[j] = dmu_request_arcbuf(bonus_db, chunksize); } else { bigbuf_arcbufs[2 * j] = dmu_request_arcbuf(bonus_db, chunksize / 2); bigbuf_arcbufs[2 * j + 1] = dmu_request_arcbuf(bonus_db, chunksize / 2); } } /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); for (j = 0; j < s; j++) { if (i != 5) { dmu_return_arcbuf(bigbuf_arcbufs[j]); } else { dmu_return_arcbuf( bigbuf_arcbufs[2 * j]); dmu_return_arcbuf( bigbuf_arcbufs[2 * j + 1]); } } umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); dmu_buf_rele(bonus_db, FTAG); return; } /* * 50% of the time don't read objects in the 1st iteration to * test dmu_assign_arcbuf() for the case when there're no * existing dbufs for the specified offsets. */ if (i != 0 || ztest_random(2) != 0) { error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT0(error); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT0(error); } compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, n, chunksize, txg); /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (ztest_opts.zo_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } for (off = bigoff, j = 0; j < s; j++, off += chunksize) { dmu_buf_t *dbt; if (i != 5) { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[j]->b_data, chunksize); } else { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[2 * j]->b_data, chunksize / 2); bcopy((caddr_t)bigbuf + (off - bigoff) + chunksize / 2, bigbuf_arcbufs[2 * j + 1]->b_data, chunksize / 2); } if (i == 1) { VERIFY(dmu_buf_hold(os, bigobj, off, FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); } if (i != 5) { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[j], tx); } else { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[2 * j], tx); dmu_assign_arcbuf(bonus_db, off + chunksize / 2, bigbuf_arcbufs[2 * j + 1], tx); } if (i == 1) { dmu_buf_rele(dbt, FTAG); } } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } if (i == 2) { txg_wait_open(dmu_objset_pool(os), 0); } else if (i == 3) { txg_wait_synced(dmu_objset_pool(os), 0); } } dmu_buf_rele(bonus_db, FTAG); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); } /* ARGSUSED */ void ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(20) + 43)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); /* * Have multiple threads write to large offsets in an object * to verify that parallel writes to an object -- even to the * same blocks within the object -- doesn't cause any trouble. */ ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; while (ztest_random(10) != 0) ztest_io(zd, od[0].od_object, offset); } void ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); uint64_t count = ztest_random(20) + 1; uint64_t blocksize = ztest_random_blocksize(); void *data; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) return; ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); data = umem_zalloc(blocksize, UMEM_NOFAIL); while (ztest_random(count) != 0) { uint64_t randoff = offset + (ztest_random(count) * blocksize); if (ztest_write(zd, od[0].od_object, randoff, blocksize, data) != 0) break; while (ztest_random(4) != 0) ztest_io(zd, od[0].od_object, randoff); } umem_free(data, blocksize); } /* * Verify that zap_{create,destroy,add,remove,update} work as expected. */ #define ZTEST_ZAP_MIN_INTS 1 #define ZTEST_ZAP_MAX_INTS 4 #define ZTEST_ZAP_MAX_PROPS 1000 void ztest_zap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object; uint64_t txg, last_txg; uint64_t value[ZTEST_ZAP_MAX_INTS]; uint64_t zl_ints, zl_intsize, prop; int i, ints; dmu_tx_t *tx; char propname[100], txgname[100]; int error; char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Generate a known hash collision, and verify that * we can lookup and remove both entries. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; for (i = 0; i < 2; i++) { value[i] = i; VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); } for (i = 0; i < 2; i++) { VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); VERIFY3U(0, ==, zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); } for (i = 0; i < 2; i++) { VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); } dmu_tx_commit(tx); /* * Generate a buch of random entries. */ ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); bzero(value, sizeof (value)); last_txg = 0; /* * If these zap entries already exist, validate their contents. */ error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == 0) { ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); VERIFY(zap_lookup(os, object, txgname, zl_intsize, zl_ints, &last_txg) == 0); VERIFY(zap_length(os, object, propname, &zl_intsize, &zl_ints) == 0); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, ints); VERIFY(zap_lookup(os, object, propname, zl_intsize, zl_ints, value) == 0); for (i = 0; i < ints; i++) { ASSERT3U(value[i], ==, last_txg + object + i); } } else { ASSERT3U(error, ==, ENOENT); } /* * Atomically update two entries in our zap object. * The first is named txg_%llu, and contains the txg * in which the property was last updated. The second * is named prop_%llu, and the nth element of its value * should be txg + object + n. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; if (last_txg > txg) fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); for (i = 0; i < ints; i++) value[i] = txg + object + i; VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx)); VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), ints, value, tx)); dmu_tx_commit(tx); /* * Remove a random pair of entries. */ prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == ENOENT) return; ASSERT0(error); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); dmu_tx_commit(tx); } /* * Testcase to test the upgrading of a microzap to fatzap. */ void ztest_fzap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, txg; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Add entries to this ZAP and make sure it spills over * and gets upgraded to a fatzap. Also, since we are adding * 2050 entries we should see ptrtbl growth and leaf-block split. */ for (int i = 0; i < 2050; i++) { char name[ZFS_MAX_DATASET_NAME_LEN]; uint64_t value = i; dmu_tx_t *tx; int error; (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", id, value); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, name); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; error = zap_add(os, object, name, sizeof (uint64_t), 1, &value, tx); ASSERT(error == 0 || error == EEXIST); dmu_tx_commit(tx); } } /* ARGSUSED */ void ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; dmu_tx_t *tx; int i, namelen, error; int micro = ztest_random(2); char name[20], string_value[20]; void *data; ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; object = od[0].od_object; /* * Generate a random name of the form 'xxx.....' where each * x is a random printable character and the dots are dots. * There are 94 such characters, and the name length goes from * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. */ namelen = ztest_random(sizeof (name) - 5) + 5 + 1; for (i = 0; i < 3; i++) name[i] = '!' + ztest_random('~' - '!' + 1); for (; i < namelen - 1; i++) name[i] = '.'; name[i] = '\0'; if ((namelen & 1) || micro) { wsize = sizeof (txg); wc = 1; data = &txg; } else { wsize = 1; wc = namelen; data = string_value; } count = -1ULL; VERIFY0(zap_count(os, object, &count)); ASSERT(count != -1ULL); /* * Select an operation: length, lookup, add, update, remove. */ i = ztest_random(5); if (i >= 2) { tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; bcopy(name, string_value, namelen); } else { tx = NULL; txg = 0; bzero(string_value, namelen); } switch (i) { case 0: error = zap_length(os, object, name, &zl_wsize, &zl_wc); if (error == 0) { ASSERT3U(wsize, ==, zl_wsize); ASSERT3U(wc, ==, zl_wc); } else { ASSERT3U(error, ==, ENOENT); } break; case 1: error = zap_lookup(os, object, name, wsize, wc, data); if (error == 0) { if (data == string_value && bcmp(name, data, namelen) != 0) fatal(0, "name '%s' != val '%s' len %d", name, data, namelen); } else { ASSERT3U(error, ==, ENOENT); } break; case 2: error = zap_add(os, object, name, wsize, wc, data, tx); ASSERT(error == 0 || error == EEXIST); break; case 3: VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); break; case 4: error = zap_remove(os, object, name, tx); ASSERT(error == 0 || error == ENOENT); break; } if (tx != NULL) dmu_tx_commit(tx); } /* * Commit callback data. */ typedef struct ztest_cb_data { list_node_t zcd_node; uint64_t zcd_txg; int zcd_expected_err; boolean_t zcd_added; boolean_t zcd_called; spa_t *zcd_spa; } ztest_cb_data_t; /* This is the actual commit callback function */ static void ztest_commit_callback(void *arg, int error) { ztest_cb_data_t *data = arg; uint64_t synced_txg; VERIFY(data != NULL); VERIFY3S(data->zcd_expected_err, ==, error); VERIFY(!data->zcd_called); synced_txg = spa_last_synced_txg(data->zcd_spa); if (data->zcd_txg > synced_txg) fatal(0, "commit callback of txg %" PRIu64 " called prematurely" ", last synced txg = %" PRIu64 "\n", data->zcd_txg, synced_txg); data->zcd_called = B_TRUE; if (error == ECANCELED) { ASSERT0(data->zcd_txg); ASSERT(!data->zcd_added); /* * The private callback data should be destroyed here, but * since we are going to check the zcd_called field after * dmu_tx_abort(), we will destroy it there. */ return; } /* Was this callback added to the global callback list? */ if (!data->zcd_added) goto out; ASSERT3U(data->zcd_txg, !=, 0); /* Remove our callback from the list */ mutex_enter(&zcl.zcl_callbacks_lock); list_remove(&zcl.zcl_callbacks, data); mutex_exit(&zcl.zcl_callbacks_lock); out: umem_free(data, sizeof (ztest_cb_data_t)); } /* Allocate and initialize callback data structure */ static ztest_cb_data_t * ztest_create_cb_data(objset_t *os, uint64_t txg) { ztest_cb_data_t *cb_data; cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); cb_data->zcd_txg = txg; cb_data->zcd_spa = dmu_objset_spa(os); return (cb_data); } /* * If a number of txgs equal to this threshold have been created after a commit * callback has been registered but not called, then we assume there is an * implementation bug. */ #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) /* * Commit callback test. */ void ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; dmu_tx_t *tx; ztest_cb_data_t *cb_data[3], *tmp_cb; uint64_t old_txg, txg; int i, error; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; tx = dmu_tx_create(os); cb_data[0] = ztest_create_cb_data(os, 0); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); /* Every once in a while, abort the transaction on purpose */ if (ztest_random(100) == 0) error = -1; if (!error) error = dmu_tx_assign(tx, TXG_NOWAIT); txg = error ? 0 : dmu_tx_get_txg(tx); cb_data[0]->zcd_txg = txg; cb_data[1] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); if (error) { /* * It's not a strict requirement to call the registered * callbacks from inside dmu_tx_abort(), but that's what * it's supposed to happen in the current implementation * so we will check for that. */ for (i = 0; i < 2; i++) { cb_data[i]->zcd_expected_err = ECANCELED; VERIFY(!cb_data[i]->zcd_called); } dmu_tx_abort(tx); for (i = 0; i < 2; i++) { VERIFY(cb_data[i]->zcd_called); umem_free(cb_data[i], sizeof (ztest_cb_data_t)); } return; } cb_data[2] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); /* * Read existing data to make sure there isn't a future leak. */ VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), &old_txg, DMU_READ_PREFETCH)); if (old_txg > txg) fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, old_txg, txg); dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); mutex_enter(&zcl.zcl_callbacks_lock); /* * Since commit callbacks don't have any ordering requirement and since * it is theoretically possible for a commit callback to be called * after an arbitrary amount of time has elapsed since its txg has been * synced, it is difficult to reliably determine whether a commit * callback hasn't been called due to high load or due to a flawed * implementation. * * In practice, we will assume that if after a certain number of txgs a * commit callback hasn't been called, then most likely there's an * implementation bug.. */ tmp_cb = list_head(&zcl.zcl_callbacks); if (tmp_cb != NULL && (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { fatal(0, "Commit callback threshold exceeded, oldest txg: %" PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); } /* * Let's find the place to insert our callbacks. * * Even though the list is ordered by txg, it is possible for the * insertion point to not be the end because our txg may already be * quiescing at this point and other callbacks in the open txg * (from other objsets) may have sneaked in. */ tmp_cb = list_tail(&zcl.zcl_callbacks); while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); /* Add the 3 callbacks to the list */ for (i = 0; i < 3; i++) { if (tmp_cb == NULL) list_insert_head(&zcl.zcl_callbacks, cb_data[i]); else list_insert_after(&zcl.zcl_callbacks, tmp_cb, cb_data[i]); cb_data[i]->zcd_added = B_TRUE; VERIFY(!cb_data[i]->zcd_called); tmp_cb = cb_data[i]; } mutex_exit(&zcl.zcl_callbacks_lock); dmu_tx_commit(tx); } /* * Visit each object in the dataset. Verify that its properties * are consistent what was stored in the block tag when it was created, * and that its unused bonus buffer space has not been overwritten. */ void ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; uint64_t obj; int err = 0; for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { ztest_block_tag_t *bt = NULL; dmu_object_info_t doi; dmu_buf_t *db; if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) continue; dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_size >= sizeof (*bt)) bt = ztest_bt_bonus(db); if (bt && bt->bt_magic == BT_MAGIC) { ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, bt->bt_offset, bt->bt_gen, bt->bt_txg, bt->bt_crtxg); ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); } dmu_buf_rele(db, FTAG); } } /* ARGSUSED */ void ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) { zfs_prop_t proplist[] = { ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_COPIES, ZFS_PROP_DEDUP }; rw_enter(&ztest_name_lock, RW_READER); for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); rw_exit(&ztest_name_lock); } /* ARGSUSED */ void ztest_remap_blocks(ztest_ds_t *zd, uint64_t id) { rw_enter(&ztest_name_lock, RW_READER); int error = dmu_objset_remap_indirects(zd->zd_name); if (error == ENOSPC) error = 0; ASSERT0(error); rw_exit(&ztest_name_lock); } /* ARGSUSED */ void ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) { nvlist_t *props = NULL; rw_enter(&ztest_name_lock, RW_READER); (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); VERIFY0(spa_prop_get(ztest_spa, &props)); if (ztest_opts.zo_verbose >= 6) dump_nvlist(props, 4); nvlist_free(props); rw_exit(&ztest_name_lock); } static int user_release_one(const char *snapname, const char *holdname) { nvlist_t *snaps, *holds; int error; snaps = fnvlist_alloc(); holds = fnvlist_alloc(); fnvlist_add_boolean(holds, holdname); fnvlist_add_nvlist(snaps, snapname, holds); fnvlist_free(holds); error = dsl_dataset_user_release(snaps, NULL); fnvlist_free(snaps); return (error); } /* * Test snapshot hold/release and deferred destroy. */ void ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) { int error; objset_t *os = zd->zd_os; objset_t *origin; char snapname[100]; char fullname[100]; char clonename[100]; char tag[100]; char osname[ZFS_MAX_DATASET_NAME_LEN]; nvlist_t *holds; rw_enter(&ztest_name_lock, RW_READER); dmu_objset_name(os, osname); (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%llu", osname, id); (void) snprintf(tag, sizeof (tag), "tag_%llu", id); /* * Clean up from any previous run. */ error = dsl_destroy_head(clonename); if (error != ENOENT) ASSERT0(error); error = user_release_one(fullname, tag); if (error != ESRCH && error != ENOENT) ASSERT0(error); error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != ENOENT) ASSERT0(error); /* * Create snapshot, clone it, mark snap for deferred destroy, * destroy clone, verify snap was also destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dmu_objset_clone(clonename, fullname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_clone"); goto out; } fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = dsl_destroy_head(clonename); if (error) fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); error = dmu_objset_hold(fullname, FTAG, &origin); if (error != ENOENT) fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); /* * Create snapshot, add temporary hold, verify that we can't * destroy a held snapshot, mark for deferred destroy, * release hold, verify snapshot was destroyed. */ error = dmu_objset_snapshot_one(osname, snapname); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } holds = fnvlist_alloc(); fnvlist_add_string(holds, fullname, tag); error = dsl_dataset_user_hold(holds, 0, NULL); fnvlist_free(holds); if (error == ENOSPC) { ztest_record_enospc("dsl_dataset_user_hold"); goto out; } else if (error) { fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", fullname, tag, error); } error = dsl_destroy_snapshot(fullname, B_FALSE); if (error != EBUSY) { fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", fullname, error); } error = dsl_destroy_snapshot(fullname, B_TRUE); if (error) { fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", fullname, error); } error = user_release_one(fullname, tag); if (error) fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); out: rw_exit(&ztest_name_lock); } /* * Inject random faults into the on-disk data. */ /* ARGSUSED */ void ztest_fault_inject(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; int fd; uint64_t offset; uint64_t leaves; uint64_t bad = 0x1990c0ffeedecadeULL; uint64_t top, leaf; char path0[MAXPATHLEN]; char pathrand[MAXPATHLEN]; size_t fsize; int bshift = SPA_MAXBLOCKSHIFT + 2; int iters = 1000; int maxfaults; int mirror_save; vdev_t *vd0 = NULL; uint64_t guid0 = 0; boolean_t islog = B_FALSE; mutex_enter(&ztest_vdev_lock); /* * Device removal is in progress, fault injection must be disabled * until it completes and the pool is scrubbed. The fault injection * strategy for damaging blocks does not take in to account evacuated * blocks which may have already been damaged. */ if (ztest_device_removal_active) { mutex_exit(&ztest_vdev_lock); return; } maxfaults = MAXFAULTS(); leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; mirror_save = zs->zs_mirrors; mutex_exit(&ztest_vdev_lock); ASSERT(leaves >= 1); /* * Grab the name lock as reader. There are some operations * which don't like to have their vdevs changed while * they are in progress (i.e. spa_change_guid). Those * operations will have grabbed the name lock as writer. */ rw_enter(&ztest_name_lock, RW_READER); /* * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (ztest_random(2) == 0) { /* * Inject errors on a normal data device or slog device. */ top = ztest_random_vdev_top(spa, B_TRUE); leaf = ztest_random(leaves) + zs->zs_splits; /* * Generate paths to the first leaf in this top-level vdev, * and to the random leaf we selected. We'll induce transient * write failures and random online/offline activity on leaf 0, * and we'll write random garbage to the randomly chosen leaf. */ (void) snprintf(path0, sizeof (path0), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + zs->zs_splits); (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, ztest_opts.zo_dir, ztest_opts.zo_pool, top * leaves + leaf); vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); if (vd0 != NULL && vd0->vdev_top->vdev_islog) islog = B_TRUE; /* * If the top-level vdev needs to be resilvered * then we only allow faults on the device that is * resilvering. */ if (vd0 != NULL && maxfaults != 1 && (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || vd0->vdev_resilver_txg != 0)) { /* * Make vd0 explicitly claim to be unreadable, * or unwriteable, or reach behind its back * and close the underlying fd. We can do this if * maxfaults == 0 because we'll fail and reexecute, * and we can do it if maxfaults >= 2 because we'll * have enough redundancy. If maxfaults == 1, the * combination of this with injection of random data * corruption below exceeds the pool's fault tolerance. */ vdev_file_t *vf = vd0->vdev_tsd; zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", (long long)vd0->vdev_id, (int)maxfaults); if (vf != NULL && ztest_random(3) == 0) { (void) close(vf->vf_vnode->v_fd); vf->vf_vnode->v_fd = -1; } else if (ztest_random(2) == 0) { vd0->vdev_cant_read = B_TRUE; } else { vd0->vdev_cant_write = B_TRUE; } guid0 = vd0->vdev_guid; } } else { /* * Inject errors on an l2cache device. */ spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_count == 0) { spa_config_exit(spa, SCL_STATE, FTAG); rw_exit(&ztest_name_lock); return; } vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; guid0 = vd0->vdev_guid; (void) strcpy(path0, vd0->vdev_path); (void) strcpy(pathrand, vd0->vdev_path); leaf = 0; leaves = 1; maxfaults = INT_MAX; /* no limit on cache devices */ } spa_config_exit(spa, SCL_STATE, FTAG); rw_exit(&ztest_name_lock); /* * If we can tolerate two or more faults, or we're dealing * with a slog, randomly online/offline vd0. */ if ((maxfaults >= 2 || islog) && guid0 != 0) { if (ztest_random(10) < 6) { int flags = (ztest_random(2) == 0 ? ZFS_OFFLINE_TEMPORARY : 0); /* * We have to grab the zs_name_lock as writer to * prevent a race between offlining a slog and * destroying a dataset. Offlining the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ if (islog) rw_enter(&ztest_name_lock, RW_WRITER); VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); if (islog) rw_exit(&ztest_name_lock); } else { /* * Ideally we would like to be able to randomly * call vdev_[on|off]line without holding locks * to force unpredictable failures but the side * effects of vdev_[on|off]line prevent us from * doing so. We grab the ztest_vdev_lock here to * prevent a race between injection testing and * aux_vdev removal. */ mutex_enter(&ztest_vdev_lock); (void) vdev_online(spa, guid0, 0, NULL); mutex_exit(&ztest_vdev_lock); } } if (maxfaults == 0) return; /* * We have at least single-fault tolerance, so inject data corruption. */ fd = open(pathrand, O_RDWR); if (fd == -1) /* we hit a gap in the device namespace */ return; fsize = lseek(fd, 0, SEEK_END); while (--iters != 0) { /* * The offset must be chosen carefully to ensure that * we do not inject a given logical block with errors * on two different leaf devices, because ZFS can not * tolerate that (if maxfaults==1). * * We divide each leaf into chunks of size * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk * there is a series of ranges to which we can inject errors. * Each range can accept errors on only a single leaf vdev. * The error injection ranges are separated by ranges * which we will not inject errors on any device (DMZs). * Each DMZ must be large enough such that a single block * can not straddle it, so that a single block can not be * a target in two different injection ranges (on different * leaf vdevs). * * For example, with 3 leaves, each chunk looks like: * 0 to 32M: injection range for leaf 0 * 32M to 64M: DMZ - no injection allowed * 64M to 96M: injection range for leaf 1 * 96M to 128M: DMZ - no injection allowed * 128M to 160M: injection range for leaf 2 * 160M to 192M: DMZ - no injection allowed */ offset = ztest_random(fsize / (leaves << bshift)) * (leaves << bshift) + (leaf << bshift) + (ztest_random(1ULL << (bshift - 1)) & -8ULL); /* * Only allow damage to the labels at one end of the vdev. * * If all labels are damaged, the device will be totally * inaccessible, which will result in loss of data, * because we also damage (parts of) the other side of * the mirror/raidz. * * Additionally, we will always have both an even and an * odd label, so that we can handle crashes in the * middle of vdev_config_sync(). */ if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) continue; /* * The two end labels are stored at the "end" of the disk, but * the end of the disk (vdev_psize) is aligned to * sizeof (vdev_label_t). */ uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); if ((leaf & 1) == 1 && offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) continue; mutex_enter(&ztest_vdev_lock); if (mirror_save != zs->zs_mirrors) { mutex_exit(&ztest_vdev_lock); (void) close(fd); return; } if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) fatal(1, "can't inject bad word at 0x%llx in %s", offset, pathrand); mutex_exit(&ztest_vdev_lock); if (ztest_opts.zo_verbose >= 7) (void) printf("injected bad word into %s," " offset 0x%llx\n", pathrand, (u_longlong_t)offset); } (void) close(fd); } /* * Verify that DDT repair works as expected. */ void ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = ztest_spa; objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, blocksize, txg, pattern, psize; enum zio_checksum checksum = spa_dedup_checksum(spa); dmu_buf_t *db; dmu_tx_t *tx; abd_t *abd; blkptr_t blk; int copies = 2 * ZIO_DEDUPDITTO_MIN; blocksize = ztest_random_blocksize(); blocksize = MIN(blocksize, 2048); /* because we write so many */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; /* * Take the name lock as writer to prevent anyone else from changing * the pool and dataset properies we need to maintain during this test. */ rw_enter(&ztest_name_lock, RW_WRITER); if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, B_FALSE) != 0 || ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, B_FALSE) != 0) { rw_exit(&ztest_name_lock); return; } dmu_objset_stats_t dds; dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); object = od[0].od_object; blocksize = od[0].od_blocksize; pattern = zs->zs_guid ^ dds.dds_guid; ASSERT(object != 0); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, 0, copies * blocksize); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { rw_exit(&ztest_name_lock); return; } /* * Write all the copies of our block. */ for (int i = 0; i < copies; i++) { uint64_t offset = i * blocksize; int error = dmu_buf_hold(os, object, offset, FTAG, &db, DMU_READ_NO_PREFETCH); if (error != 0) { fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", os, (long long)object, (long long) offset, error); } ASSERT(db->db_offset == offset); ASSERT(db->db_size == blocksize); ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || ztest_pattern_match(db->db_data, db->db_size, 0ULL)); dmu_buf_will_fill(db, tx); ztest_pattern_set(db->db_data, db->db_size, pattern); dmu_buf_rele(db, FTAG); } dmu_tx_commit(tx); txg_wait_synced(spa_get_dsl(spa), txg); /* * Find out what block we got. */ VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); blk = *((dmu_buf_impl_t *)db)->db_blkptr; dmu_buf_rele(db, FTAG); /* * Damage the block. Dedup-ditto will save us when we read it later. */ psize = BP_GET_PSIZE(&blk); abd = abd_alloc_linear(psize, B_TRUE); ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); abd_free(abd); rw_exit(&ztest_name_lock); } /* * Scrub the pool. */ /* ARGSUSED */ void ztest_scrub(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; /* * Scrub in progress by device removal. */ if (ztest_device_removal_active) return; (void) spa_scan(spa, POOL_SCAN_SCRUB); (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ (void) spa_scan(spa, POOL_SCAN_SCRUB); } /* * Change the guid for the pool. */ /* ARGSUSED */ void ztest_reguid(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; uint64_t orig, load; int error; if (ztest_opts.zo_mmp_test) return; orig = spa_guid(spa); load = spa_load_guid(spa); rw_enter(&ztest_name_lock, RW_WRITER); error = spa_change_guid(spa); rw_exit(&ztest_name_lock); if (error != 0) return; if (ztest_opts.zo_verbose >= 4) { (void) printf("Changed guid old %llu -> %llu\n", (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); } VERIFY3U(orig, !=, spa_guid(spa)); VERIFY3U(load, ==, spa_load_guid(spa)); } static vdev_t * ztest_random_concrete_vdev_leaf(vdev_t *vd) { if (vd == NULL) return (NULL); if (vd->vdev_children == 0) return (vd); vdev_t *eligible[vd->vdev_children]; int eligible_idx = 0, i; for (i = 0; i < vd->vdev_children; i++) { vdev_t *cvd = vd->vdev_child[i]; if (cvd->vdev_top->vdev_removing) continue; if (cvd->vdev_children > 0 || (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { eligible[eligible_idx++] = cvd; } } VERIFY(eligible_idx > 0); uint64_t child_no = ztest_random(eligible_idx); return (ztest_random_concrete_vdev_leaf(eligible[child_no])); } /* ARGSUSED */ void ztest_initialize(ztest_ds_t *zd, uint64_t id) { spa_t *spa = ztest_spa; int error = 0; mutex_enter(&ztest_vdev_lock); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* Random leaf vdev */ vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); if (rand_vd == NULL) { spa_config_exit(spa, SCL_VDEV, FTAG); mutex_exit(&ztest_vdev_lock); return; } /* * The random vdev we've selected may change as soon as we * drop the spa_config_lock. We create local copies of things * we're interested in. */ uint64_t guid = rand_vd->vdev_guid; char *path = strdup(rand_vd->vdev_path); boolean_t active = rand_vd->vdev_initialize_thread != NULL; zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid); spa_config_exit(spa, SCL_VDEV, FTAG); uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); error = spa_vdev_initialize(spa, guid, cmd); switch (cmd) { case POOL_INITIALIZE_CANCEL: if (ztest_opts.zo_verbose >= 4) { (void) printf("Cancel initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; case POOL_INITIALIZE_DO: if (ztest_opts.zo_verbose >= 4) { (void) printf("Start initialize %s", path); if (active && error == 0) (void) printf(" failed (already active)"); else if (error != 0) (void) printf(" failed (error %d)", error); (void) printf("\n"); } break; case POOL_INITIALIZE_SUSPEND: if (ztest_opts.zo_verbose >= 4) { (void) printf("Suspend initialize %s", path); if (!active) (void) printf(" failed (no initialize active)"); (void) printf("\n"); } break; } free(path); mutex_exit(&ztest_vdev_lock); } /* * Verify pool integrity by running zdb. */ static void ztest_run_zdb(char *pool) { int status; char zdb[MAXPATHLEN + MAXNAMELEN + 20]; char zbuf[1024]; char *bin; char *ztest; char *isa; int isalen; FILE *fp; strlcpy(zdb, "/usr/bin/ztest", sizeof(zdb)); /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ bin = strstr(zdb, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 8; isalen = ztest - isa; isa = strdup(isa); /* LINTED */ (void) sprintf(bin, "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s " "-o zfs_reconstruct_indirect_combinations_max=65536 %s", isalen, isa, ztest_opts.zo_verbose >= 3 ? "s" : "", ztest_opts.zo_verbose >= 4 ? "v" : "", spa_config_path, pool); free(isa); if (ztest_opts.zo_verbose >= 5) (void) printf("Executing %s\n", strstr(zdb, "zdb ")); fp = popen(zdb, "r"); assert(fp != NULL); while (fgets(zbuf, sizeof (zbuf), fp) != NULL) if (ztest_opts.zo_verbose >= 3) (void) printf("%s", zbuf); status = pclose(fp); if (status == 0) return; ztest_dump_core = 0; if (WIFEXITED(status)) fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); else fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); } static void ztest_walk_pool_directory(char *header) { spa_t *spa = NULL; if (ztest_opts.zo_verbose >= 6) (void) printf("%s\n", header); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) if (ztest_opts.zo_verbose >= 6) (void) printf("\t%s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); } static void ztest_spa_import_export(char *oldname, char *newname) { nvlist_t *config, *newconfig; uint64_t pool_guid; spa_t *spa; int error; if (ztest_opts.zo_verbose >= 4) { (void) printf("import/export: old = %s, new = %s\n", oldname, newname); } /* * Clean up from previous runs. */ (void) spa_destroy(newname); /* * Get the pool's configuration and guid. */ VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); /* * Kick off a scrub to tickle scrub/export races. */ if (ztest_random(2) == 0) (void) spa_scan(spa, POOL_SCAN_SCRUB); pool_guid = spa_guid(spa); spa_close(spa, FTAG); ztest_walk_pool_directory("pools before export"); /* * Export it. */ VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); ztest_walk_pool_directory("pools after export"); /* * Try to import it. */ newconfig = spa_tryimport(config); ASSERT(newconfig != NULL); nvlist_free(newconfig); /* * Import it under the new name. */ error = spa_import(newname, config, NULL, 0); if (error != 0) { dump_nvlist(config, 0); fatal(B_FALSE, "couldn't import pool %s as %s: error %u", oldname, newname, error); } ztest_walk_pool_directory("pools after import"); /* * Try to import it again -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); /* * Try to import it under a different name -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); /* * Verify that the pool is no longer visible under the old name. */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Verify that we can open and close the pool using the new name. */ VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); ASSERT(pool_guid == spa_guid(spa)); spa_close(spa, FTAG); nvlist_free(config); } static void ztest_resume(spa_t *spa) { if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) (void) printf("resuming from suspended state\n"); spa_vdev_state_enter(spa, SCL_NONE); vdev_clear(spa, NULL); (void) spa_vdev_state_exit(spa, NULL, 0); (void) zio_resume(spa); } static void * ztest_resume_thread(void *arg) { spa_t *spa = arg; while (!ztest_exiting) { if (spa_suspended(spa)) ztest_resume(spa); (void) poll(NULL, 0, 100); /* * Periodically change the zfs_compressed_arc_enabled setting. */ if (ztest_random(10) == 0) zfs_compressed_arc_enabled = ztest_random(2); /* * Periodically change the zfs_abd_scatter_enabled setting. */ if (ztest_random(10) == 0) zfs_abd_scatter_enabled = ztest_random(2); } return (NULL); } static void * ztest_deadman_thread(void *arg) { ztest_shared_t *zs = arg; spa_t *spa = ztest_spa; hrtime_t delta, total = 0; for (;;) { delta = zs->zs_thread_stop - zs->zs_thread_start + MSEC2NSEC(zfs_deadman_synctime_ms); (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); /* * If the pool is suspended then fail immediately. Otherwise, * check to see if the pool is making any progress. If * vdev_deadman() discovers that there hasn't been any recent * I/Os then it will end up aborting the tests. */ if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { fatal(0, "aborting test after %llu seconds because " "pool has transitioned to a suspended state.", zfs_deadman_synctime_ms / 1000); return (NULL); } vdev_deadman(spa->spa_root_vdev); total += zfs_deadman_synctime_ms/1000; (void) printf("ztest has been running for %lld seconds\n", total); } } static void ztest_execute(int test, ztest_info_t *zi, uint64_t id) { ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); hrtime_t functime = gethrtime(); for (int i = 0; i < zi->zi_iters; i++) zi->zi_func(zd, id); functime = gethrtime() - functime; atomic_add_64(&zc->zc_count, 1); atomic_add_64(&zc->zc_time, functime); if (ztest_opts.zo_verbose >= 4) { Dl_info dli; (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%6.2f sec in %s\n", (double)functime / NANOSEC, dli.dli_sname); } } static void * ztest_thread(void *arg) { int rand; uint64_t id = (uintptr_t)arg; ztest_shared_t *zs = ztest_shared; uint64_t call_next; hrtime_t now; ztest_info_t *zi; ztest_shared_callstate_t *zc; while ((now = gethrtime()) < zs->zs_thread_stop) { /* * See if it's time to force a crash. */ if (now > zs->zs_thread_kill) ztest_kill(zs); /* * If we're getting ENOSPC with some regularity, stop. */ if (zs->zs_enospc_count > 10) break; /* * Pick a random function to execute. */ rand = ztest_random(ZTEST_FUNCS); zi = &ztest_info[rand]; zc = ZTEST_GET_SHARED_CALLSTATE(rand); call_next = zc->zc_next; if (now >= call_next && atomic_cas_64(&zc->zc_next, call_next, call_next + ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { ztest_execute(rand, zi, id); } } return (NULL); } static void ztest_dataset_name(char *dsname, char *pool, int d) { (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); } static void ztest_dataset_destroy(int d) { char name[ZFS_MAX_DATASET_NAME_LEN]; ztest_dataset_name(name, ztest_opts.zo_pool, d); if (ztest_opts.zo_verbose >= 3) (void) printf("Destroying %s to free up space\n", name); /* * Cleanup any non-standard clones and snapshots. In general, * ztest thread t operates on dataset (t % zopt_datasets), * so there may be more than one thing to clean up. */ for (int t = d; t < ztest_opts.zo_threads; t += ztest_opts.zo_datasets) { ztest_dsl_dataset_cleanup(name, t); } (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } static void ztest_dataset_dirobj_verify(ztest_ds_t *zd) { uint64_t usedobjs, dirobjs, scratch; /* * ZTEST_DIROBJ is the object directory for the entire dataset. * Therefore, the number of objects in use should equal the * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. * If not, we have an object leak. * * Note that we can only check this in ztest_dataset_open(), * when the open-context and syncing-context values agree. * That's because zap_count() returns the open-context value, * while dmu_objset_space() returns the rootbp fill count. */ VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); ASSERT3U(dirobjs + 1, ==, usedobjs); } static int ztest_dataset_open(int d) { ztest_ds_t *zd = &ztest_ds[d]; uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; objset_t *os; zilog_t *zilog; char name[ZFS_MAX_DATASET_NAME_LEN]; int error; ztest_dataset_name(name, ztest_opts.zo_pool, d); rw_enter(&ztest_name_lock, RW_READER); error = ztest_dataset_create(name); if (error == ENOSPC) { rw_exit(&ztest_name_lock); ztest_record_enospc(FTAG); return (error); } ASSERT(error == 0 || error == EEXIST); VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); rw_exit(&ztest_name_lock); ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); zilog = zd->zd_zilog; if (zilog->zl_header->zh_claim_lr_seq != 0 && zilog->zl_header->zh_claim_lr_seq < committed_seq) fatal(0, "missing log records: claimed %llu < committed %llu", zilog->zl_header->zh_claim_lr_seq, committed_seq); ztest_dataset_dirobj_verify(zd); zil_replay(os, zd, ztest_replay_vector); ztest_dataset_dirobj_verify(zd); if (ztest_opts.zo_verbose >= 6) (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", zd->zd_name, (u_longlong_t)zilog->zl_parse_blk_count, (u_longlong_t)zilog->zl_parse_lr_count, (u_longlong_t)zilog->zl_replaying_seq); zilog = zil_open(os, ztest_get_data); if (zilog->zl_replaying_seq != 0 && zilog->zl_replaying_seq < committed_seq) fatal(0, "missing log records: replayed %llu < committed %llu", zilog->zl_replaying_seq, committed_seq); return (0); } static void ztest_dataset_close(int d) { ztest_ds_t *zd = &ztest_ds[d]; zil_close(zd->zd_zilog); dmu_objset_disown(zd->zd_os, zd); ztest_zd_fini(zd); } /* * Kick off threads to run tests on all datasets in parallel. */ static void ztest_run(ztest_shared_t *zs) { thread_t *tid; spa_t *spa; objset_t *os; thread_t resume_tid; int error; ztest_exiting = B_FALSE; /* * Initialize parent/child shared state. */ mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); zs->zs_thread_start = gethrtime(); zs->zs_thread_stop = zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); zs->zs_thread_kill = zs->zs_thread_stop; if (ztest_random(100) < ztest_opts.zo_killrate) { zs->zs_thread_kill -= ztest_random(ztest_opts.zo_passtime * NANOSEC); } mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), offsetof(ztest_cb_data_t, zcd_node)); /* * Open our pool. */ kernel_init(FREAD | FWRITE); VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); metaslab_preload_limit = ztest_random(20) + 1; ztest_spa = spa; dmu_objset_stats_t dds; VERIFY0(dmu_objset_own(ztest_opts.zo_pool, DMU_OST_ANY, B_TRUE, FTAG, &os)); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); zs->zs_guid = dds.dds_guid; dmu_objset_disown(os, FTAG); spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; /* * We don't expect the pool to suspend unless maxfaults == 0, * in which case ztest_fault_inject() temporarily takes away * the only valid replica. */ if (MAXFAULTS() == 0) spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; else spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; /* * Create a thread to periodically resume suspended I/O. */ VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, &resume_tid) == 0); /* * Create a deadman thread to abort() if we hang. */ VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, NULL) == 0); /* * Verify that we can safely inquire about any object, * whether it's allocated or not. To make it interesting, * we probe a 5-wide window around each power of two. * This hits all edge cases, including zero and the max. */ for (int t = 0; t < 64; t++) { for (int d = -5; d <= 5; d++) { error = dmu_object_info(spa->spa_meta_objset, (1ULL << t) + d, NULL); ASSERT(error == 0 || error == ENOENT || error == EINVAL); } } /* * If we got any ENOSPC errors on the previous run, destroy something. */ if (zs->zs_enospc_count != 0) { int d = ztest_random(ztest_opts.zo_datasets); ztest_dataset_destroy(d); } zs->zs_enospc_count = 0; tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), UMEM_NOFAIL); if (ztest_opts.zo_verbose >= 4) (void) printf("starting main threads...\n"); /* * Kick off all the tests that run in parallel. */ for (int t = 0; t < ztest_opts.zo_threads; t++) { if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) return; VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, THR_BOUND, &tid[t]) == 0); } /* * Wait for all of the tests to complete. We go in reverse order * so we don't close datasets while threads are still using them. */ for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { VERIFY(thr_join(tid[t], NULL, NULL) == 0); if (t < ztest_opts.zo_datasets) ztest_dataset_close(t); } txg_wait_synced(spa_get_dsl(spa), 0); zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); zfs_dbgmsg_print(FTAG); umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); /* Kill the resume thread */ ztest_exiting = B_TRUE; VERIFY(thr_join(resume_tid, NULL, NULL) == 0); ztest_resume(spa); /* * Right before closing the pool, kick off a bunch of async I/O; * spa_close() should wait for it to complete. */ for (uint64_t object = 1; object < 50; object++) { dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, ZIO_PRIORITY_SYNC_READ); } spa_close(spa, FTAG); /* * Verify that we can loop over all pools. */ mutex_enter(&spa_namespace_lock); for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) if (ztest_opts.zo_verbose > 3) (void) printf("spa_next: found %s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); /* * Verify that we can export the pool and reimport it under a * different name. */ if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) { char name[ZFS_MAX_DATASET_NAME_LEN]; (void) snprintf(name, sizeof (name), "%s_import", ztest_opts.zo_pool); ztest_spa_import_export(ztest_opts.zo_pool, name); ztest_spa_import_export(name, ztest_opts.zo_pool); } kernel_fini(); list_destroy(&zcl.zcl_callbacks); mutex_destroy(&zcl.zcl_callbacks_lock); rw_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void ztest_freeze(void) { ztest_ds_t *zd = &ztest_ds[0]; spa_t *spa; int numloops = 0; if (ztest_opts.zo_verbose >= 3) (void) printf("testing spa_freeze()...\n"); kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); VERIFY3U(0, ==, ztest_dataset_open(0)); ztest_spa = spa; /* * Force the first log block to be transactionally allocated. * We have to do this before we freeze the pool -- otherwise * the log chain won't be anchored. */ while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { ztest_dmu_object_alloc_free(zd, 0); zil_commit(zd->zd_zilog, 0); } txg_wait_synced(spa_get_dsl(spa), 0); /* * Freeze the pool. This stops spa_sync() from doing anything, * so that the only way to record changes from now on is the ZIL. */ spa_freeze(spa); /* * Because it is hard to predict how much space a write will actually * require beforehand, we leave ourselves some fudge space to write over * capacity. */ uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; /* * Run tests that generate log records but don't alter the pool config * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). * We do a txg_wait_synced() after each iteration to force the txg * to increase well beyond the last synced value in the uberblock. * The ZIL should be OK with that. * * Run a random number of times less than zo_maxloops and ensure we do * not run out of space on the pool. */ while (ztest_random(10) != 0 && numloops++ < ztest_opts.zo_maxloops && metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { ztest_od_t od; ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); ztest_io(zd, od.od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); txg_wait_synced(spa_get_dsl(spa), 0); } /* * Commit all of the changes we just generated. */ zil_commit(zd->zd_zilog, 0); txg_wait_synced(spa_get_dsl(spa), 0); /* * Close our dataset and close the pool. */ ztest_dataset_close(0); spa_close(spa, FTAG); kernel_fini(); /* * Open and close the pool and dataset to induce log replay. */ kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); ASSERT(spa_freeze_txg(spa) == UINT64_MAX); VERIFY3U(0, ==, ztest_dataset_open(0)); ztest_dataset_close(0); ztest_spa = spa; txg_wait_synced(spa_get_dsl(spa), 0); ztest_reguid(NULL, 0); spa_close(spa, FTAG); kernel_fini(); } void print_time(hrtime_t t, char *timebuf) { hrtime_t s = t / NANOSEC; hrtime_t m = s / 60; hrtime_t h = m / 60; hrtime_t d = h / 24; s -= m * 60; m -= h * 60; h -= d * 24; timebuf[0] = '\0'; if (d) (void) sprintf(timebuf, "%llud%02lluh%02llum%02llus", d, h, m, s); else if (h) (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); else if (m) (void) sprintf(timebuf, "%llum%02llus", m, s); else (void) sprintf(timebuf, "%llus", s); } static nvlist_t * make_random_props() { nvlist_t *props; VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); if (ztest_random(2) == 0) return (props); VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); return (props); } /* * Import a storage pool with the given name. */ static void ztest_import(ztest_shared_t *zs) { libzfs_handle_t *hdl; importargs_t args = { 0 }; spa_t *spa; nvlist_t *cfg = NULL; int nsearch = 1; char *searchdirs[nsearch]; char *name = ztest_opts.zo_pool; int flags = ZFS_IMPORT_MISSING_LOG; int error; mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); kernel_init(FREAD | FWRITE); hdl = libzfs_init(); searchdirs[0] = ztest_opts.zo_dir; args.paths = nsearch; args.path = searchdirs; args.can_be_active = B_FALSE; error = zpool_tryimport(hdl, name, &cfg, &args); if (error) (void) fatal(0, "No pools found\n"); VERIFY0(spa_import(name, cfg, NULL, flags)); VERIFY0(spa_open(name, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); libzfs_fini(hdl); kernel_fini(); if (!ztest_opts.zo_mmp_test) { ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); } rw_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); } /* * Create a storage pool with the given name and initial vdev size. * Then test spa_freeze() functionality. */ static void ztest_init(ztest_shared_t *zs) { spa_t *spa; nvlist_t *nvroot, *props; mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); kernel_init(FREAD | FWRITE); /* * Create the storage pool. */ (void) spa_destroy(ztest_opts.zo_pool); ztest_shared->zs_vdev_next_leaf = 0; zs->zs_splits = 0; zs->zs_mirrors = ztest_opts.zo_mirrors; nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1); props = make_random_props(); for (int i = 0; i < SPA_FEATURES; i++) { char buf[1024]; (void) snprintf(buf, sizeof (buf), "feature@%s", spa_feature_table[i].fi_uname); VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); } VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); nvlist_free(nvroot); nvlist_free(props); VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); zs->zs_metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); if (!ztest_opts.zo_mmp_test) { ztest_run_zdb(ztest_opts.zo_pool); ztest_freeze(); ztest_run_zdb(ztest_opts.zo_pool); } rw_destroy(&ztest_name_lock); mutex_destroy(&ztest_vdev_lock); mutex_destroy(&ztest_checkpoint_lock); } static void setup_data_fd(void) { static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; ztest_fd_data = mkstemp(ztest_name_data); ASSERT3S(ztest_fd_data, >=, 0); (void) unlink(ztest_name_data); } static int shared_data_size(ztest_shared_hdr_t *hdr) { int size; size = hdr->zh_hdr_size; size += hdr->zh_opts_size; size += hdr->zh_size; size += hdr->zh_stats_size * hdr->zh_stats_count; size += hdr->zh_ds_size * hdr->zh_ds_count; return (size); } static void setup_hdr(void) { int size; ztest_shared_hdr_t *hdr; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); hdr->zh_opts_size = sizeof (ztest_shared_opts_t); hdr->zh_size = sizeof (ztest_shared_t); hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); hdr->zh_stats_count = ZTEST_FUNCS; hdr->zh_ds_size = sizeof (ztest_shared_ds_t); hdr->zh_ds_count = ztest_opts.zo_datasets; size = shared_data_size(hdr); VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); } static void setup_data(void) { int size, offset; ztest_shared_hdr_t *hdr; uint8_t *buf; hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), PROT_READ, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); size = shared_data_size(hdr); (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); ASSERT(hdr != MAP_FAILED); buf = (uint8_t *)hdr; offset = hdr->zh_hdr_size; ztest_shared_opts = (void *)&buf[offset]; offset += hdr->zh_opts_size; ztest_shared = (void *)&buf[offset]; offset += hdr->zh_size; ztest_shared_callstate = (void *)&buf[offset]; offset += hdr->zh_stats_size * hdr->zh_stats_count; ztest_shared_ds = (void *)&buf[offset]; } static boolean_t exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) { pid_t pid; int status; char *cmdbuf = NULL; pid = fork(); if (cmd == NULL) { cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); cmd = cmdbuf; } if (pid == -1) fatal(1, "fork failed"); if (pid == 0) { /* child */ char *emptyargv[2] = { cmd, NULL }; char fd_data_str[12]; struct rlimit rl = { 1024, 1024 }; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) close(ztest_fd_rand); VERIFY3U(11, >=, snprintf(fd_data_str, 12, "%d", ztest_fd_data)); VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); (void) enable_extended_FILE_stdio(-1, -1); if (libpath != NULL) VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); #ifdef illumos (void) execv(cmd, emptyargv); #else (void) execvp(cmd, emptyargv); #endif ztest_dump_core = B_FALSE; fatal(B_TRUE, "exec failed: %s", cmd); } if (cmdbuf != NULL) { umem_free(cmdbuf, MAXPATHLEN); cmd = NULL; } while (waitpid(pid, &status, 0) != pid) continue; if (statusp != NULL) *statusp = status; if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { (void) fprintf(stderr, "child exited with code %d\n", WEXITSTATUS(status)); exit(2); } return (B_FALSE); } else if (WIFSIGNALED(status)) { if (!ignorekill || WTERMSIG(status) != SIGKILL) { (void) fprintf(stderr, "child died with signal %d\n", WTERMSIG(status)); exit(3); } return (B_TRUE); } else { (void) fprintf(stderr, "something strange happened to child\n"); exit(4); /* NOTREACHED */ } } static void ztest_run_init(void) { ztest_shared_t *zs = ztest_shared; /* * Blow away any existing copy of zpool.cache */ (void) remove(spa_config_path); if (ztest_opts.zo_init == 0) { if (ztest_opts.zo_verbose >= 1) (void) printf("Importing pool %s\n", ztest_opts.zo_pool); ztest_import(zs); return; } /* * Create and initialize our storage pool. */ for (int i = 1; i <= ztest_opts.zo_init; i++) { bzero(zs, sizeof (ztest_shared_t)); if (ztest_opts.zo_verbose >= 3 && ztest_opts.zo_init != 1) { (void) printf("ztest_init(), pass %d\n", i); } ztest_init(zs); } } int main(int argc, char **argv) { int kills = 0; int iters = 0; int older = 0; int newer = 0; ztest_shared_t *zs; ztest_info_t *zi; ztest_shared_callstate_t *zc; char timebuf[100]; char numbuf[NN_NUMBUF_SZ]; char *cmd; boolean_t hasalt; char *fd_data_str = getenv("ZTEST_FD_DATA"); (void) setvbuf(stdout, NULL, _IOLBF, 0); dprintf_setup(&argc, argv); zfs_deadman_synctime_ms = 300000; /* * As two-word space map entries may not come up often (especially * if pool and vdev sizes are small) we want to force at least some * of them so the feature get tested. */ zfs_force_some_double_word_sm_entries = B_TRUE; /* * Verify that even extensively damaged split blocks with many * segments can be reconstructed in a reasonable amount of time * when reconstruction is known to be possible. */ zfs_reconstruct_indirect_damage_fraction = 4; ztest_fd_rand = open("/dev/urandom", O_RDONLY); ASSERT3S(ztest_fd_rand, >=, 0); if (!fd_data_str) { process_options(argc, argv); setup_data_fd(); setup_hdr(); setup_data(); bcopy(&ztest_opts, ztest_shared_opts, sizeof (*ztest_shared_opts)); } else { ztest_fd_data = atoi(fd_data_str); setup_data(); bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); } ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); /* Override location of zpool.cache */ VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", ztest_opts.zo_dir), !=, -1); ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), UMEM_NOFAIL); zs = ztest_shared; if (fd_data_str) { metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; metaslab_df_alloc_threshold = zs->zs_metaslab_df_alloc_threshold; if (zs->zs_do_init) ztest_run_init(); else ztest_run(zs); exit(0); } hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); if (ztest_opts.zo_verbose >= 1) { (void) printf("%llu vdevs, %d datasets, %d threads," " %llu seconds...\n", (u_longlong_t)ztest_opts.zo_vdevs, ztest_opts.zo_datasets, ztest_opts.zo_threads, (u_longlong_t)ztest_opts.zo_time); } cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); (void) strlcpy(cmd, getexecname(), MAXNAMELEN); zs->zs_do_init = B_TRUE; if (strlen(ztest_opts.zo_alt_ztest) != 0) { if (ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest for " "initialization: %s\n", ztest_opts.zo_alt_ztest); } VERIFY(!exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_FALSE, NULL)); } else { VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); } zs->zs_do_init = B_FALSE; zs->zs_proc_start = gethrtime(); zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; for (int f = 0; f < ZTEST_FUNCS; f++) { zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) zc->zc_next = UINT64_MAX; else zc->zc_next = zs->zs_proc_start + ztest_random(2 * zi->zi_interval[0] + 1); } /* * Run the tests in a loop. These tests include fault injection * to verify that self-healing data works, and forced crashes * to verify that we never lose on-disk consistency. */ while (gethrtime() < zs->zs_proc_stop) { int status; boolean_t killed; /* * Initialize the workload counters for each function. */ for (int f = 0; f < ZTEST_FUNCS; f++) { zc = ZTEST_GET_SHARED_CALLSTATE(f); zc->zc_count = 0; zc->zc_time = 0; } /* Set the allocation switch size */ zs->zs_metaslab_df_alloc_threshold = ztest_random(zs->zs_metaslab_sz / 4) + 1; if (!hasalt || ztest_random(2) == 0) { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing newer ztest: %s\n", cmd); } newer++; killed = exec_child(cmd, NULL, B_TRUE, &status); } else { if (hasalt && ztest_opts.zo_verbose >= 1) { (void) printf("Executing older ztest: %s\n", ztest_opts.zo_alt_ztest); } older++; killed = exec_child(ztest_opts.zo_alt_ztest, ztest_opts.zo_alt_libpath, B_TRUE, &status); } if (killed) kills++; iters++; if (ztest_opts.zo_verbose >= 1) { hrtime_t now = gethrtime(); now = MIN(now, zs->zs_proc_stop); print_time(zs->zs_proc_stop - now, timebuf); nicenum(zs->zs_space, numbuf, sizeof (numbuf)); (void) printf("Pass %3d, %8s, %3llu ENOSPC, " "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", iters, WIFEXITED(status) ? "Complete" : "SIGKILL", (u_longlong_t)zs->zs_enospc_count, 100.0 * zs->zs_alloc / zs->zs_space, numbuf, 100.0 * (now - zs->zs_proc_start) / (ztest_opts.zo_time * NANOSEC), timebuf); } if (ztest_opts.zo_verbose >= 2) { (void) printf("\nWorkload summary:\n\n"); (void) printf("%7s %9s %s\n", "Calls", "Time", "Function"); (void) printf("%7s %9s %s\n", "-----", "----", "--------"); for (int f = 0; f < ZTEST_FUNCS; f++) { Dl_info dli; zi = &ztest_info[f]; zc = ZTEST_GET_SHARED_CALLSTATE(f); print_time(zc->zc_time, timebuf); (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%7llu %9s %s\n", (u_longlong_t)zc->zc_count, timebuf, dli.dli_sname); } (void) printf("\n"); } if (!ztest_opts.zo_mmp_test) ztest_run_zdb(ztest_opts.zo_pool); } if (ztest_opts.zo_verbose >= 1) { if (hasalt) { (void) printf("%d runs of older ztest: %s\n", older, ztest_opts.zo_alt_ztest); (void) printf("%d runs of newer ztest: %s\n", newer, cmd); } (void) printf("%d killed, %d completed, %.0f%% kill rate\n", kills, iters - kills, (100.0 * kills) / MAX(1, iters)); } umem_free(cmd, MAXNAMELEN); return (0); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/zil.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/zil.h (revision 359111) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/zil.h (revision 359112) @@ -1,461 +1,464 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright (c) 2012, 2017 by Delphix. All rights reserved. + * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_ZIL_H #define _SYS_ZIL_H #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct dsl_pool; struct dsl_dataset; struct lwb; /* * Intent log format: * * Each objset has its own intent log. The log header (zil_header_t) * for objset N's intent log is kept in the Nth object of the SPA's * intent_log objset. The log header points to a chain of log blocks, * each of which contains log records (i.e., transactions) followed by * a log block trailer (zil_trailer_t). The format of a log record * depends on the record (or transaction) type, but all records begin * with a common structure that defines the type, length, and txg. */ /* * Intent log header - this on disk structure holds fields to manage * the log. All fields are 64 bit to easily handle cross architectures. */ typedef struct zil_header { uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ uint64_t zh_replay_seq; /* highest replayed sequence number */ blkptr_t zh_log; /* log chain */ uint64_t zh_claim_blk_seq; /* highest claimed block sequence number */ uint64_t zh_flags; /* header flags */ uint64_t zh_claim_lr_seq; /* highest claimed lr sequence number */ uint64_t zh_pad[3]; } zil_header_t; /* * zh_flags bit settings */ #define ZIL_REPLAY_NEEDED 0x1 /* replay needed - internal only */ #define ZIL_CLAIM_LR_SEQ_VALID 0x2 /* zh_claim_lr_seq field is valid */ /* * Log block chaining. * * Log blocks are chained together. Originally they were chained at the * end of the block. For performance reasons the chain was moved to the * beginning of the block which allows writes for only the data being used. * The older position is supported for backwards compatability. * * The zio_eck_t contains a zec_cksum which for the intent log is * the sequence number of this log block. A seq of 0 is invalid. * The zec_cksum is checked by the SPA against the sequence * number passed in the blk_cksum field of the blkptr_t */ typedef struct zil_chain { uint64_t zc_pad; blkptr_t zc_next_blk; /* next block in chain */ uint64_t zc_nused; /* bytes in log block used */ zio_eck_t zc_eck; /* block trailer */ } zil_chain_t; #define ZIL_MIN_BLKSZ 4096ULL /* * ziltest is by and large an ugly hack, but very useful in * checking replay without tedious work. * When running ziltest we want to keep all itx's and so maintain * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG * We subtract TXG_CONCURRENT_STATES to allow for common code. */ #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) /* * The words of a log block checksum. */ #define ZIL_ZC_GUID_0 0 #define ZIL_ZC_GUID_1 1 #define ZIL_ZC_OBJSET 2 #define ZIL_ZC_SEQ 3 typedef enum zil_create { Z_FILE, Z_DIR, Z_XATTRDIR, } zil_create_t; /* * size of xvattr log section. * its composed of lr_attr_t + xvattr bitmap + 2 64 bit timestamps * for create time and a single 64 bit integer for all of the attributes, * and 4 64 bit integers (32 bytes) for the scanstamp. * */ #define ZIL_XVAT_SIZE(mapsize) \ sizeof (lr_attr_t) + (sizeof (uint32_t) * (mapsize - 1)) + \ (sizeof (uint64_t) * 7) /* * Size of ACL in log. The ACE data is padded out to properly align * on 8 byte boundary. */ #define ZIL_ACE_LENGTH(x) (roundup(x, sizeof (uint64_t))) /* * Intent log transaction types and record structures */ #define TX_COMMIT 0 /* Commit marker (no on-disk state) */ #define TX_CREATE 1 /* Create file */ #define TX_MKDIR 2 /* Make directory */ #define TX_MKXATTR 3 /* Make XATTR directory */ #define TX_SYMLINK 4 /* Create symbolic link to a file */ #define TX_REMOVE 5 /* Remove file */ #define TX_RMDIR 6 /* Remove directory */ #define TX_LINK 7 /* Create hard link to a file */ #define TX_RENAME 8 /* Rename a file */ #define TX_WRITE 9 /* File write */ #define TX_TRUNCATE 10 /* Truncate a file */ #define TX_SETATTR 11 /* Set file attributes */ #define TX_ACL_V0 12 /* Set old formatted ACL */ #define TX_ACL 13 /* Set ACL */ #define TX_CREATE_ACL 14 /* create with ACL */ #define TX_CREATE_ATTR 15 /* create + attrs */ #define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */ #define TX_MKDIR_ACL 17 /* mkdir with ACL */ #define TX_MKDIR_ATTR 18 /* mkdir with attr */ #define TX_MKDIR_ACL_ATTR 19 /* mkdir with ACL + attrs */ #define TX_WRITE2 20 /* dmu_sync EALREADY write */ #define TX_MAX_TYPE 21 /* Max transaction type */ /* * The transactions for mkdir, symlink, remove, rmdir, link, and rename * may have the following bit set, indicating the original request * specified case-insensitive handling of names. */ #define TX_CI ((uint64_t)0x1 << 63) /* case-insensitive behavior requested */ /* * Transactions for write, truncate, setattr, acl_v0, and acl can be logged * out of order. For convenience in the code, all such records must have * lr_foid at the same offset. */ #define TX_OOO(txtype) \ ((txtype) == TX_WRITE || \ (txtype) == TX_TRUNCATE || \ (txtype) == TX_SETATTR || \ (txtype) == TX_ACL_V0 || \ (txtype) == TX_ACL || \ (txtype) == TX_WRITE2) /* * The number of dnode slots consumed by the object is stored in the 8 * unused upper bits of the object ID. We subtract 1 from the value * stored on disk for compatibility with implementations that don't * support large dnodes. The slot count for a single-slot dnode will * contain 0 for those bits to preserve the log record format for * "small" dnodes. */ #define LR_FOID_GET_SLOTS(oid) (BF64_GET((oid), 56, 8) + 1) #define LR_FOID_SET_SLOTS(oid, x) BF64_SET((oid), 56, 8, (x) - 1) #define LR_FOID_GET_OBJ(oid) BF64_GET((oid), 0, DN_MAX_OBJECT_SHIFT) #define LR_FOID_SET_OBJ(oid, x) BF64_SET((oid), 0, DN_MAX_OBJECT_SHIFT, (x)) /* * Format of log records. * The fields are carefully defined to allow them to be aligned * and sized the same on sparc & intel architectures. * Each log record has a common structure at the beginning. * * The log record on disk (lrc_seq) holds the sequence number of all log * records which is used to ensure we don't replay the same record. */ typedef struct { /* common log record header */ uint64_t lrc_txtype; /* intent log transaction type */ uint64_t lrc_reclen; /* transaction record length */ uint64_t lrc_txg; /* dmu transaction group number */ uint64_t lrc_seq; /* see comment above */ } lr_t; /* * Common start of all out-of-order record types (TX_OOO() above). */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id */ } lr_ooo_t; /* * Handle option extended vattr attributes. * * Whenever new attributes are added the version number * will need to be updated as will code in * zfs_log.c and zfs_replay.c */ typedef struct { uint32_t lr_attr_masksize; /* number of elements in array */ uint32_t lr_attr_bitmap; /* First entry of array */ /* remainder of array and any additional fields */ } lr_attr_t; /* * log record for creates without optional ACL. * This log record does support optional xvattr_t attributes. */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* object id of directory */ uint64_t lr_foid; /* object id of created file object */ uint64_t lr_mode; /* mode of object */ uint64_t lr_uid; /* uid of object */ uint64_t lr_gid; /* gid of object */ uint64_t lr_gen; /* generation (txg of creation) */ uint64_t lr_crtime[2]; /* creation time */ uint64_t lr_rdev; /* rdev of object to create */ /* name of object to create follows this */ /* for symlinks, link content follows name */ /* for creates with xvattr data, the name follows the xvattr info */ } lr_create_t; /* * FUID ACL record will be an array of ACEs from the original ACL. * If this array includes ephemeral IDs, the record will also include * an array of log-specific FUIDs to replace the ephemeral IDs. * Only one copy of each unique domain will be present, so the log-specific * FUIDs will use an index into a compressed domain table. On replay this * information will be used to construct real FUIDs (and bypass idmap, * since it may not be available). */ /* * Log record for creates with optional ACL * This log record is also used for recording any FUID * information needed for replaying the create. If the * file doesn't have any actual ACEs then the lr_aclcnt * would be zero. * * After lr_acl_flags, there are a lr_acl_bytes number of variable sized ace's. * If create is also setting xvattr's, then acl data follows xvattr. * If ACE FUIDs are needed then they will follow the xvattr_t. Following * the FUIDs will be the domain table information. The FUIDs for the owner * and group will be in lr_create. Name follows ACL data. */ typedef struct { lr_create_t lr_create; /* common create portion */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ } lr_acl_create_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ /* name of object to remove follows this */ } lr_remove_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ uint64_t lr_link_obj; /* obj id of link */ /* name of object to link follows this */ } lr_link_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_sdoid; /* obj id of source directory */ uint64_t lr_tdoid; /* obj id of target directory */ /* 2 strings: names of source and destination follow this */ } lr_rename_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to write */ uint64_t lr_offset; /* offset to write to */ uint64_t lr_length; /* user data length to write */ uint64_t lr_blkoff; /* no longer used */ blkptr_t lr_blkptr; /* spa block pointer for replay */ /* write data will follow for small writes */ } lr_write_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id of file to truncate */ uint64_t lr_offset; /* offset to truncate from */ uint64_t lr_length; /* length to truncate */ } lr_truncate_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to change attributes */ uint64_t lr_mask; /* mask of attributes to set */ uint64_t lr_mode; /* mode to set */ uint64_t lr_uid; /* uid to set */ uint64_t lr_gid; /* gid to set */ uint64_t lr_size; /* size to set */ uint64_t lr_atime[2]; /* access time */ uint64_t lr_mtime[2]; /* modification time */ /* optional attribute lr_attr_t may be here */ } lr_setattr_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of acl entries */ /* lr_aclcnt number of ace_t entries follow this */ } lr_acl_v0_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ /* lr_acl_bytes number of variable sized ace's follows */ } lr_acl_t; /* * ZIL structure definitions, interface function prototype and globals. */ /* * Writes are handled in three different ways: * * WR_INDIRECT: * In this mode, if we need to commit the write later, then the block * is immediately written into the file system (using dmu_sync), * and a pointer to the block is put into the log record. * When the txg commits the block is linked in. * This saves additionally writing the data into the log record. * There are a few requirements for this to occur: * - write is greater than zfs/zvol_immediate_write_sz * - not using slogs (as slogs are assumed to always be faster * than writing into the main pool) * - the write occupies only one block * WR_COPIED: * If we know we'll immediately be committing the * transaction (FSYNC or FDSYNC), the we allocate a larger * log record here for the data and copy the data in. * WR_NEED_COPY: * Otherwise we don't allocate a buffer, and *if* we need to * flush the write later then a buffer is allocated and * we retrieve the data using the dmu. */ typedef enum { WR_INDIRECT, /* indirect - a large write (dmu_sync() data */ /* and put blkptr in log, rather than actual data) */ WR_COPIED, /* immediate - data is copied into lr_write_t */ WR_NEED_COPY, /* immediate - data needs to be copied if pushed */ WR_NUM_STATES /* number of states */ } itx_wr_state_t; typedef struct itx { list_node_t itx_node; /* linkage on zl_itx_list */ void *itx_private; /* type-specific opaque data */ itx_wr_state_t itx_wr_state; /* write state */ uint8_t itx_sync; /* synchronous transaction */ uint64_t itx_oid; /* object id */ lr_t itx_lr; /* common part of log record */ /* followed by type-specific part of lr_xx_t and its immediate data */ } itx_t; typedef int zil_parse_blk_func_t(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t txg); typedef int zil_parse_lr_func_t(zilog_t *zilog, lr_t *lr, void *arg, uint64_t txg); typedef int zil_replay_func_t(void *arg1, void *arg2, boolean_t byteswap); typedef int zil_get_data_t(void *arg, lr_write_t *lr, char *dbuf, struct lwb *lwb, zio_t *zio); extern int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg); extern void zil_init(void); extern void zil_fini(void); extern zilog_t *zil_alloc(objset_t *os, zil_header_t *zh_phys); extern void zil_free(zilog_t *zilog); extern zilog_t *zil_open(objset_t *os, zil_get_data_t *get_data); extern void zil_close(zilog_t *zilog); extern void zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]); extern boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx); extern void zil_destroy(zilog_t *zilog, boolean_t keep_first); extern void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx); extern itx_t *zil_itx_create(uint64_t txtype, size_t lrsize); extern void zil_itx_destroy(itx_t *itx); extern void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx); extern void zil_async_to_sync(zilog_t *zilog, uint64_t oid); extern void zil_commit(zilog_t *zilog, uint64_t oid); extern void zil_commit_impl(zilog_t *zilog, uint64_t oid); extern int zil_reset(const char *osname, void *txarg); extern int zil_claim(struct dsl_pool *dp, struct dsl_dataset *ds, void *txarg); extern int zil_check_log_chain(struct dsl_pool *dp, struct dsl_dataset *ds, void *tx); extern void zil_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_clean(zilog_t *zilog, uint64_t synced_txg); extern int zil_suspend(const char *osname, void **cookiep); extern void zil_resume(void *cookie); extern void zil_lwb_add_block(struct lwb *lwb, const blkptr_t *bp); extern void zil_lwb_add_txg(struct lwb *lwb, uint64_t txg); extern int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp); extern void zil_set_sync(zilog_t *zilog, uint64_t syncval); extern void zil_set_logbias(zilog_t *zilog, uint64_t slogval); + +extern uint64_t zil_max_copied_data(zilog_t *zilog); +extern uint64_t zil_max_log_data(zilog_t *zilog); extern int zil_replay_disable; #ifdef __cplusplus } #endif #endif /* _SYS_ZIL_H */ Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/zil_impl.h =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/zil_impl.h (revision 359111) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/sys/zil_impl.h (revision 359112) @@ -1,244 +1,229 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright (c) 2012, 2017 by Delphix. All rights reserved. + * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_ZIL_IMPL_H #define _SYS_ZIL_IMPL_H #include #include #ifdef __cplusplus extern "C" { #endif /* * Possbile states for a given lwb structure. * * An lwb will start out in the "closed" state, and then transition to * the "opened" state via a call to zil_lwb_write_open(). When * transitioning from "closed" to "opened" the zilog's "zl_issuer_lock" * must be held. * * After the lwb is "opened", it can transition into the "issued" state * via zil_lwb_write_issue(). Again, the zilog's "zl_issuer_lock" must * be held when making this transition. * * After the lwb's write zio completes, it transitions into the "write * done" state via zil_lwb_write_done(); and then into the "flush done" * state via zil_lwb_flush_vdevs_done(). When transitioning from * "issued" to "write done", and then from "write done" to "flush done", * the zilog's "zl_lock" must be held, *not* the "zl_issuer_lock". * * The zilog's "zl_issuer_lock" can become heavily contended in certain * workloads, so we specifically avoid acquiring that lock when * transitioning an lwb from "issued" to "done". This allows us to avoid * having to acquire the "zl_issuer_lock" for each lwb ZIO completion, * which would have added more lock contention on an already heavily * contended lock. * * Additionally, correctness when reading an lwb's state is often * acheived by exploiting the fact that these state transitions occur in * this specific order; i.e. "closed" to "opened" to "issued" to "done". * * Thus, if an lwb is in the "closed" or "opened" state, holding the * "zl_issuer_lock" will prevent a concurrent thread from transitioning * that lwb to the "issued" state. Likewise, if an lwb is already in the * "issued" state, holding the "zl_lock" will prevent a concurrent * thread from transitioning that lwb to the "write done" state. */ typedef enum { LWB_STATE_CLOSED, LWB_STATE_OPENED, LWB_STATE_ISSUED, LWB_STATE_WRITE_DONE, LWB_STATE_FLUSH_DONE, LWB_NUM_STATES } lwb_state_t; /* * Log write block (lwb) * * Prior to an lwb being issued to disk via zil_lwb_write_issue(), it * will be protected by the zilog's "zl_issuer_lock". Basically, prior * to it being issued, it will only be accessed by the thread that's * holding the "zl_issuer_lock". After the lwb is issued, the zilog's * "zl_lock" is used to protect the lwb against concurrent access. */ typedef struct lwb { zilog_t *lwb_zilog; /* back pointer to log struct */ blkptr_t lwb_blk; /* on disk address of this log blk */ boolean_t lwb_slog; /* lwb_blk is on SLOG device */ int lwb_nused; /* # used bytes in buffer */ int lwb_sz; /* size of block and buffer */ lwb_state_t lwb_state; /* the state of this lwb */ char *lwb_buf; /* log write buffer */ zio_t *lwb_write_zio; /* zio for the lwb buffer */ zio_t *lwb_root_zio; /* root zio for lwb write and flushes */ dmu_tx_t *lwb_tx; /* tx for log block allocation */ uint64_t lwb_max_txg; /* highest txg in this lwb */ list_node_t lwb_node; /* zilog->zl_lwb_list linkage */ list_t lwb_waiters; /* list of zil_commit_waiter's */ avl_tree_t lwb_vdev_tree; /* vdevs to flush after lwb write */ kmutex_t lwb_vdev_lock; /* protects lwb_vdev_tree */ hrtime_t lwb_issued_timestamp; /* when was the lwb issued? */ } lwb_t; /* * ZIL commit waiter. * * This structure is allocated each time zil_commit() is called, and is * used by zil_commit() to communicate with other parts of the ZIL, such * that zil_commit() can know when it safe for it return. For more * details, see the comment above zil_commit(). * * The "zcw_lock" field is used to protect the commit waiter against * concurrent access. This lock is often acquired while already holding * the zilog's "zl_issuer_lock" or "zl_lock"; see the functions * zil_process_commit_list() and zil_lwb_flush_vdevs_done() as examples * of this. Thus, one must be careful not to acquire the * "zl_issuer_lock" or "zl_lock" when already holding the "zcw_lock"; * e.g. see the zil_commit_waiter_timeout() function. */ typedef struct zil_commit_waiter { kcondvar_t zcw_cv; /* signalled when "done" */ kmutex_t zcw_lock; /* protects fields of this struct */ list_node_t zcw_node; /* linkage in lwb_t:lwb_waiter list */ lwb_t *zcw_lwb; /* back pointer to lwb when linked */ boolean_t zcw_done; /* B_TRUE when "done", else B_FALSE */ int zcw_zio_error; /* contains the zio io_error value */ } zil_commit_waiter_t; /* * Intent log transaction lists */ typedef struct itxs { list_t i_sync_list; /* list of synchronous itxs */ avl_tree_t i_async_tree; /* tree of foids for async itxs */ } itxs_t; typedef struct itxg { kmutex_t itxg_lock; /* lock for this structure */ uint64_t itxg_txg; /* txg for this chain */ itxs_t *itxg_itxs; /* sync and async itxs */ } itxg_t; /* for async nodes we build up an AVL tree of lists of async itxs per file */ typedef struct itx_async_node { uint64_t ia_foid; /* file object id */ list_t ia_list; /* list of async itxs for this foid */ avl_node_t ia_node; /* AVL tree linkage */ } itx_async_node_t; /* * Vdev flushing: during a zil_commit(), we build up an AVL tree of the vdevs * we've touched so we know which ones need a write cache flush at the end. */ typedef struct zil_vdev_node { uint64_t zv_vdev; /* vdev to be flushed */ avl_node_t zv_node; /* AVL tree linkage */ } zil_vdev_node_t; #define ZIL_PREV_BLKS 16 /* * Stable storage intent log management structure. One per dataset. */ struct zilog { kmutex_t zl_lock; /* protects most zilog_t fields */ struct dsl_pool *zl_dmu_pool; /* DSL pool */ spa_t *zl_spa; /* handle for read/write log */ const zil_header_t *zl_header; /* log header buffer */ objset_t *zl_os; /* object set we're logging */ zil_get_data_t *zl_get_data; /* callback to get object content */ lwb_t *zl_last_lwb_opened; /* most recent lwb opened */ hrtime_t zl_last_lwb_latency; /* zio latency of last lwb done */ uint64_t zl_lr_seq; /* on-disk log record sequence number */ uint64_t zl_commit_lr_seq; /* last committed on-disk lr seq */ uint64_t zl_destroy_txg; /* txg of last zil_destroy() */ uint64_t zl_replayed_seq[TXG_SIZE]; /* last replayed rec seq */ uint64_t zl_replaying_seq; /* current replay seq number */ uint32_t zl_suspend; /* log suspend count */ kcondvar_t zl_cv_suspend; /* log suspend completion */ uint8_t zl_suspending; /* log is currently suspending */ uint8_t zl_keep_first; /* keep first log block in destroy */ uint8_t zl_replay; /* replaying records while set */ uint8_t zl_stop_sync; /* for debugging */ kmutex_t zl_issuer_lock; /* single writer, per ZIL, at a time */ uint8_t zl_logbias; /* latency or throughput */ uint8_t zl_sync; /* synchronous or asynchronous */ int zl_parse_error; /* last zil_parse() error */ uint64_t zl_parse_blk_seq; /* highest blk seq on last parse */ uint64_t zl_parse_lr_seq; /* highest lr seq on last parse */ uint64_t zl_parse_blk_count; /* number of blocks parsed */ uint64_t zl_parse_lr_count; /* number of log records parsed */ itxg_t zl_itxg[TXG_SIZE]; /* intent log txg chains */ list_t zl_itx_commit_list; /* itx list to be committed */ uint64_t zl_cur_used; /* current commit log size used */ list_t zl_lwb_list; /* in-flight log write list */ avl_tree_t zl_bp_tree; /* track bps during log parse */ clock_t zl_replay_time; /* lbolt of when replay started */ uint64_t zl_replay_blks; /* number of log blocks replayed */ zil_header_t zl_old_header; /* debugging aid */ uint_t zl_prev_blks[ZIL_PREV_BLKS]; /* size - sector rounded */ uint_t zl_prev_rotor; /* rotor for zl_prev[] */ txg_node_t zl_dirty_link; /* protected by dp_dirty_zilogs list */ uint64_t zl_dirty_max_txg; /* highest txg used to dirty zilog */ + /* + * Max block size for this ZIL. Note that this can not be changed + * while the ZIL is in use because consumers (ZPL/zvol) need to take + * this into account when deciding between WR_COPIED and WR_NEED_COPY + * (see zil_max_copied_data()). + */ + uint64_t zl_max_block_size; }; typedef struct zil_bp_node { dva_t zn_dva; avl_node_t zn_node; } zil_bp_node_t; - -/* - * Maximum amount of write data that can be put into single log block. - */ -#define ZIL_MAX_LOG_DATA (SPA_OLD_MAXBLOCKSIZE - sizeof (zil_chain_t) - \ - sizeof (lr_write_t)) -#define ZIL_MAX_COPIED_DATA \ - ((SPA_OLD_MAXBLOCKSIZE - sizeof (zil_chain_t)) / 2 - sizeof (lr_write_t)) - -/* - * Maximum amount of log space we agree to waste to reduce number of - * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). - */ -#define ZIL_MAX_WASTE_SPACE (ZIL_MAX_LOG_DATA / 8) - -/* - * Maximum amount of write data for WR_COPIED. Fall back to WR_NEED_COPY - * as more space efficient if we can't fit at least two log records into - * maximum sized log block. - */ -#define ZIL_MAX_COPIED_DATA ((SPA_OLD_MAXBLOCKSIZE - \ - sizeof (zil_chain_t)) / 2 - sizeof (lr_write_t)) #ifdef __cplusplus } #endif #endif /* _SYS_ZIL_IMPL_H */ Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zfs_log.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zfs_log.c (revision 359111) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zfs_log.c (revision 359112) @@ -1,681 +1,688 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright (c) 2015 by Delphix. All rights reserved. + * Copyright (c) 2015, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * These zfs_log_* functions must be called within a dmu tx, in one * of 2 contexts depending on zilog->z_replay: * * Non replay mode * --------------- * We need to record the transaction so that if it is committed to * the Intent Log then it can be replayed. An intent log transaction * structure (itx_t) is allocated and all the information necessary to * possibly replay the transaction is saved in it. The itx is then assigned * a sequence number and inserted in the in-memory list anchored in the zilog. * * Replay mode * ----------- * We need to mark the intent log record as replayed in the log header. * This is done in the same transaction as the replay so that they * commit atomically. */ int zfs_log_create_txtype(zil_create_t type, vsecattr_t *vsecp, vattr_t *vap) { int isxvattr = (vap->va_mask & AT_XVATTR); switch (type) { case Z_FILE: if (vsecp == NULL && !isxvattr) return (TX_CREATE); if (vsecp && isxvattr) #ifdef TODO return (TX_CREATE_ACL_ATTR); #else panic("%s:%u: unsupported condition", __func__, __LINE__); #endif if (vsecp) return (TX_CREATE_ACL); else return (TX_CREATE_ATTR); /*NOTREACHED*/ case Z_DIR: if (vsecp == NULL && !isxvattr) return (TX_MKDIR); if (vsecp && isxvattr) #ifdef TODO return (TX_MKDIR_ACL_ATTR); #else panic("%s:%u: unsupported condition", __func__, __LINE__); #endif if (vsecp) return (TX_MKDIR_ACL); else return (TX_MKDIR_ATTR); case Z_XATTRDIR: return (TX_MKXATTR); } ASSERT(0); return (TX_MAX_TYPE); } /* * build up the log data necessary for logging xvattr_t * First lr_attr_t is initialized. following the lr_attr_t * is the mapsize and attribute bitmap copied from the xvattr_t. * Following the bitmap and bitmapsize two 64 bit words are reserved * for the create time which may be set. Following the create time * records a single 64 bit integer which has the bits to set on * replay for the xvattr. */ static void zfs_log_xvattr(lr_attr_t *lrattr, xvattr_t *xvap) { uint32_t *bitmap; uint64_t *attrs; uint64_t *crtime; xoptattr_t *xoap; void *scanstamp; int i; xoap = xva_getxoptattr(xvap); ASSERT(xoap); lrattr->lr_attr_masksize = xvap->xva_mapsize; bitmap = &lrattr->lr_attr_bitmap; for (i = 0; i != xvap->xva_mapsize; i++, bitmap++) { *bitmap = xvap->xva_reqattrmap[i]; } /* Now pack the attributes up in a single uint64_t */ attrs = (uint64_t *)bitmap; crtime = attrs + 1; scanstamp = (caddr_t)(crtime + 2); *attrs = 0; if (XVA_ISSET_REQ(xvap, XAT_READONLY)) *attrs |= (xoap->xoa_readonly == 0) ? 0 : XAT0_READONLY; if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) *attrs |= (xoap->xoa_hidden == 0) ? 0 : XAT0_HIDDEN; if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) *attrs |= (xoap->xoa_system == 0) ? 0 : XAT0_SYSTEM; if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) *attrs |= (xoap->xoa_archive == 0) ? 0 : XAT0_ARCHIVE; if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) *attrs |= (xoap->xoa_immutable == 0) ? 0 : XAT0_IMMUTABLE; if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) *attrs |= (xoap->xoa_nounlink == 0) ? 0 : XAT0_NOUNLINK; if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) *attrs |= (xoap->xoa_appendonly == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) *attrs |= (xoap->xoa_opaque == 0) ? 0 : XAT0_APPENDONLY; if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) *attrs |= (xoap->xoa_nodump == 0) ? 0 : XAT0_NODUMP; if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) *attrs |= (xoap->xoa_av_quarantined == 0) ? 0 : XAT0_AV_QUARANTINED; if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) *attrs |= (xoap->xoa_av_modified == 0) ? 0 : XAT0_AV_MODIFIED; if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) ZFS_TIME_ENCODE(&xoap->xoa_createtime, crtime); if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) bcopy(xoap->xoa_av_scanstamp, scanstamp, AV_SCANSTAMP_SZ); if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) *attrs |= (xoap->xoa_reparse == 0) ? 0 : XAT0_REPARSE; if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) *attrs |= (xoap->xoa_offline == 0) ? 0 : XAT0_OFFLINE; if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) *attrs |= (xoap->xoa_sparse == 0) ? 0 : XAT0_SPARSE; } static void * zfs_log_fuid_ids(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_t *zfuid; uint64_t *fuidloc = start; /* First copy in the ACE FUIDs */ for (zfuid = list_head(&fuidp->z_fuids); zfuid; zfuid = list_next(&fuidp->z_fuids, zfuid)) { *fuidloc++ = zfuid->z_logfuid; } return (fuidloc); } static void * zfs_log_fuid_domains(zfs_fuid_info_t *fuidp, void *start) { zfs_fuid_domain_t *zdomain; /* now copy in the domain info, if any */ if (fuidp->z_domain_str_sz != 0) { for (zdomain = list_head(&fuidp->z_domains); zdomain; zdomain = list_next(&fuidp->z_domains, zdomain)) { bcopy((void *)zdomain->z_domain, start, strlen(zdomain->z_domain) + 1); start = (caddr_t)start + strlen(zdomain->z_domain) + 1; } } return (start); } /* * Handles TX_CREATE, TX_CREATE_ATTR, TX_MKDIR, TX_MKDIR_ATTR and * TK_MKXATTR transactions. * * TX_CREATE and TX_MKDIR are standard creates, but they may have FUID * domain information appended prior to the name. In this case the * uid/gid in the log record will be a log centric FUID. * * TX_CREATE_ACL_ATTR and TX_MKDIR_ACL_ATTR handle special creates that * may contain attributes, ACL and optional fuid information. * * TX_CREATE_ACL and TX_MKDIR_ACL handle special creates that specify * and ACL and normal users/groups in the ACEs. * * There may be an optional xvattr attribute information similar * to zfs_log_setattr. * * Also, after the file name "domain" strings may be appended. */ void zfs_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp, vattr_t *vap) { itx_t *itx; lr_create_t *lr; lr_acl_create_t *lracl; size_t aclsize = (vsecp != NULL) ? vsecp->vsa_aclentsz : 0; size_t xvatsize = 0; size_t txsize; xvattr_t *xvap = (xvattr_t *)vap; void *end; size_t lrsize; size_t namesize = strlen(name) + 1; size_t fuidsz = 0; if (zil_replaying(zilog, tx)) return; /* * If we have FUIDs present then add in space for * domains and ACE fuid's if any. */ if (fuidp) { fuidsz += fuidp->z_domain_str_sz; fuidsz += fuidp->z_fuid_cnt * sizeof (uint64_t); } if (vap->va_mask & AT_XVATTR) xvatsize = ZIL_XVAT_SIZE(xvap->xva_mapsize); if ((int)txtype == TX_CREATE_ATTR || (int)txtype == TX_MKDIR_ATTR || (int)txtype == TX_CREATE || (int)txtype == TX_MKDIR || (int)txtype == TX_MKXATTR) { txsize = sizeof (*lr) + namesize + fuidsz + xvatsize; lrsize = sizeof (*lr); } else { txsize = sizeof (lr_acl_create_t) + namesize + fuidsz + ZIL_ACE_LENGTH(aclsize) + xvatsize; lrsize = sizeof (lr_acl_create_t); } itx = zil_itx_create(txtype, txsize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; /* Store dnode slot count in 8 bits above object id. */ LR_FOID_SET_SLOTS(lr->lr_foid, zp->z_dnodesize >> DNODE_SHIFT); lr->lr_mode = zp->z_mode; if (!IS_EPHEMERAL(zp->z_uid)) { lr->lr_uid = (uint64_t)zp->z_uid; } else { lr->lr_uid = fuidp->z_fuid_owner; } if (!IS_EPHEMERAL(zp->z_gid)) { lr->lr_gid = (uint64_t)zp->z_gid; } else { lr->lr_gid = fuidp->z_fuid_group; } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), lr->lr_crtime, sizeof (uint64_t) * 2); if (sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zp->z_zfsvfs), &lr->lr_rdev, sizeof (lr->lr_rdev)) != 0) lr->lr_rdev = 0; /* * Fill in xvattr info if any */ if (vap->va_mask & AT_XVATTR) { zfs_log_xvattr((lr_attr_t *)((caddr_t)lr + lrsize), xvap); end = (caddr_t)lr + lrsize + xvatsize; } else { end = (caddr_t)lr + lrsize; } /* Now fill in any ACL info */ if (vsecp) { lracl = (lr_acl_create_t *)&itx->itx_lr; lracl->lr_aclcnt = vsecp->vsa_aclcnt; lracl->lr_acl_bytes = aclsize; lracl->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lracl->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_aclflags & VSA_ACE_ACLFLAGS) lracl->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lracl->lr_acl_flags = 0; bcopy(vsecp->vsa_aclentp, end, aclsize); end = (caddr_t)end + ZIL_ACE_LENGTH(aclsize); } /* drop in FUID info */ if (fuidp) { end = zfs_log_fuid_ids(fuidp, end); end = zfs_log_fuid_domains(fuidp, end); } /* * Now place file name in log record */ bcopy(name, end, namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles both TX_REMOVE and TX_RMDIR transactions. */ void zfs_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, char *name, uint64_t foid) { itx_t *itx; lr_remove_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_remove_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; bcopy(name, (char *)(lr + 1), namesize); itx->itx_oid = foid; zil_itx_assign(zilog, itx, tx); } /* * Handles TX_LINK transactions. */ void zfs_log_link(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name) { itx_t *itx; lr_link_t *lr; size_t namesize = strlen(name) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize); lr = (lr_link_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_link_obj = zp->z_id; bcopy(name, (char *)(lr + 1), namesize); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SYMLINK transactions. */ void zfs_log_symlink(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *dzp, znode_t *zp, char *name, char *link) { itx_t *itx; lr_create_t *lr; size_t namesize = strlen(name) + 1; size_t linksize = strlen(link) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + namesize + linksize); lr = (lr_create_t *)&itx->itx_lr; lr->lr_doid = dzp->z_id; lr->lr_foid = zp->z_id; lr->lr_uid = zp->z_uid; lr->lr_gid = zp->z_gid; lr->lr_mode = zp->z_mode; (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zp->z_zfsvfs), &lr->lr_gen, sizeof (uint64_t)); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), lr->lr_crtime, sizeof (uint64_t) * 2); bcopy(name, (char *)(lr + 1), namesize); bcopy(link, (char *)(lr + 1) + namesize, linksize); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_RENAME transactions. */ void zfs_log_rename(zilog_t *zilog, dmu_tx_t *tx, uint64_t txtype, znode_t *sdzp, char *sname, znode_t *tdzp, char *dname, znode_t *szp) { itx_t *itx; lr_rename_t *lr; size_t snamesize = strlen(sname) + 1; size_t dnamesize = strlen(dname) + 1; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(txtype, sizeof (*lr) + snamesize + dnamesize); lr = (lr_rename_t *)&itx->itx_lr; lr->lr_sdoid = sdzp->z_id; lr->lr_tdoid = tdzp->z_id; bcopy(sname, (char *)(lr + 1), snamesize); bcopy(dname, (char *)(lr + 1) + snamesize, dnamesize); itx->itx_oid = szp->z_id; zil_itx_assign(zilog, itx, tx); } /* * Handles TX_WRITE transactions. */ ssize_t zfs_immediate_write_sz = 32768; #ifdef _KERNEL SYSCTL_DECL(_vfs_zfs); SYSCTL_LONG(_vfs_zfs, OID_AUTO, immediate_write_sz, CTLFLAG_RWTUN, &zfs_immediate_write_sz, 0, "Minimal size for indirect log write"); #endif void zfs_log_write(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, offset_t off, ssize_t resid, int ioflag) { uint32_t blocksize = zp->z_blksz; itx_wr_state_t write_state; uintptr_t fsync_cnt; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) write_state = WR_INDIRECT; else if (!spa_has_slogs(zilog->zl_spa) && resid >= zfs_immediate_write_sz) write_state = WR_INDIRECT; else if (ioflag & (FSYNC | FDSYNC)) write_state = WR_COPIED; else write_state = WR_NEED_COPY; if ((fsync_cnt = (uintptr_t)tsd_get(zfs_fsyncer_key)) != 0) { (void) tsd_set(zfs_fsyncer_key, (void *)(fsync_cnt - 1)); } while (resid) { itx_t *itx; lr_write_t *lr; itx_wr_state_t wr_state = write_state; ssize_t len = resid; - if (wr_state == WR_COPIED && resid > ZIL_MAX_COPIED_DATA) + /* + * A WR_COPIED record must fit entirely in one log block. + * Large writes can use WR_NEED_COPY, which the ZIL will + * split into multiple records across several log blocks + * if necessary. + */ + if (wr_state == WR_COPIED && + resid > zil_max_copied_data(zilog)) wr_state = WR_NEED_COPY; else if (wr_state == WR_INDIRECT) len = MIN(blocksize - P2PHASE(off, blocksize), resid); itx = zil_itx_create(txtype, sizeof (*lr) + (wr_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (wr_state == WR_COPIED && dmu_read(zp->z_zfsvfs->z_os, zp->z_id, off, len, lr + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; wr_state = WR_NEED_COPY; } itx->itx_wr_state = wr_state; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zp->z_zfsvfs; if (!(ioflag & (FSYNC | FDSYNC)) && (zp->z_sync_cnt == 0) && (fsync_cnt == 0)) itx->itx_sync = B_FALSE; zil_itx_assign(zilog, itx, tx); off += len; resid -= len; } } /* * Handles TX_TRUNCATE transactions. */ void zfs_log_truncate(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, uint64_t off, uint64_t len) { itx_t *itx; lr_truncate_t *lr; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; itx = zil_itx_create(txtype, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_SETATTR transactions. */ void zfs_log_setattr(zilog_t *zilog, dmu_tx_t *tx, int txtype, znode_t *zp, vattr_t *vap, uint_t mask_applied, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_setattr_t *lr; xvattr_t *xvap = (xvattr_t *)vap; size_t recsize = sizeof (lr_setattr_t); void *start; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; /* * If XVATTR set, then log record size needs to allow * for lr_attr_t + xvattr mask, mapsize and create time * plus actual attribute values */ if (vap->va_mask & AT_XVATTR) recsize = sizeof (*lr) + ZIL_XVAT_SIZE(xvap->xva_mapsize); if (fuidp) recsize += fuidp->z_domain_str_sz; itx = zil_itx_create(txtype, recsize); lr = (lr_setattr_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; lr->lr_mask = (uint64_t)mask_applied; lr->lr_mode = (uint64_t)vap->va_mode; if ((mask_applied & AT_UID) && IS_EPHEMERAL(vap->va_uid)) lr->lr_uid = fuidp->z_fuid_owner; else lr->lr_uid = (uint64_t)vap->va_uid; if ((mask_applied & AT_GID) && IS_EPHEMERAL(vap->va_gid)) lr->lr_gid = fuidp->z_fuid_group; else lr->lr_gid = (uint64_t)vap->va_gid; lr->lr_size = (uint64_t)vap->va_size; ZFS_TIME_ENCODE(&vap->va_atime, lr->lr_atime); ZFS_TIME_ENCODE(&vap->va_mtime, lr->lr_mtime); start = (lr_setattr_t *)(lr + 1); if (vap->va_mask & AT_XVATTR) { zfs_log_xvattr((lr_attr_t *)start, xvap); start = (caddr_t)start + ZIL_XVAT_SIZE(xvap->xva_mapsize); } /* * Now stick on domain information if any on end */ if (fuidp) (void) zfs_log_fuid_domains(fuidp, start); itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } /* * Handles TX_ACL transactions. */ void zfs_log_acl(zilog_t *zilog, dmu_tx_t *tx, znode_t *zp, vsecattr_t *vsecp, zfs_fuid_info_t *fuidp) { itx_t *itx; lr_acl_v0_t *lrv0; lr_acl_t *lr; int txtype; int lrsize; size_t txsize; size_t aclbytes = vsecp->vsa_aclentsz; if (zil_replaying(zilog, tx) || zp->z_unlinked) return; txtype = (zp->z_zfsvfs->z_version < ZPL_VERSION_FUID) ? TX_ACL_V0 : TX_ACL; if (txtype == TX_ACL) lrsize = sizeof (*lr); else lrsize = sizeof (*lrv0); txsize = lrsize + ((txtype == TX_ACL) ? ZIL_ACE_LENGTH(aclbytes) : aclbytes) + (fuidp ? fuidp->z_domain_str_sz : 0) + sizeof (uint64_t) * (fuidp ? fuidp->z_fuid_cnt : 0); itx = zil_itx_create(txtype, txsize); lr = (lr_acl_t *)&itx->itx_lr; lr->lr_foid = zp->z_id; if (txtype == TX_ACL) { lr->lr_acl_bytes = aclbytes; lr->lr_domcnt = fuidp ? fuidp->z_domain_cnt : 0; lr->lr_fuidcnt = fuidp ? fuidp->z_fuid_cnt : 0; if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) lr->lr_acl_flags = (uint64_t)vsecp->vsa_aclflags; else lr->lr_acl_flags = 0; } lr->lr_aclcnt = (uint64_t)vsecp->vsa_aclcnt; if (txtype == TX_ACL_V0) { lrv0 = (lr_acl_v0_t *)lr; bcopy(vsecp->vsa_aclentp, (ace_t *)(lrv0 + 1), aclbytes); } else { void *start = (ace_t *)(lr + 1); bcopy(vsecp->vsa_aclentp, start, aclbytes); start = (caddr_t)start + ZIL_ACE_LENGTH(aclbytes); if (fuidp) { start = zfs_log_fuid_ids(fuidp, start); (void) zfs_log_fuid_domains(fuidp, start); } } itx->itx_sync = (zp->z_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zil.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zil.c (revision 359111) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zil.c (revision 359112) @@ -1,3443 +1,3499 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system * calls that change the file system. Each itx has enough information to * be able to replay them after a system crash, power loss, or * equivalent failure mode. These are stored in memory until either: * * 1. they are committed to the pool by the DMU transaction group * (txg), at which point they can be discarded; or * 2. they are committed to the on-disk ZIL for the dataset being * modified (e.g. due to an fsync, O_DSYNC, or other synchronous * requirement). * * In the event of a crash or power loss, the itxs contained by each * dataset's on-disk ZIL will be replayed when that dataset is first * instantianted (e.g. if the dataset is a normal fileystem, when it is * first mounted). * * As hinted at above, there is one ZIL per dataset (both the in-memory * representation, and the on-disk representation). The on-disk format * consists of 3 parts: * * - a single, per-dataset, ZIL header; which points to a chain of * - zero or more ZIL blocks; each of which contains * - zero or more ZIL records * * A ZIL record holds the information necessary to replay a single * system call transaction. A ZIL block can hold many ZIL records, and * the blocks are chained together, similarly to a singly linked list. * * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL * block in the chain, and the ZIL header points to the first block in * the chain. * * Note, there is not a fixed place in the pool to hold these ZIL * blocks; they are dynamically allocated and freed as needed from the * blocks available on the pool, though they can be preferentially * allocated from a dedicated "log" vdev. */ /* * This controls the amount of time that a ZIL block (lwb) will remain * "open" when it isn't "full", and it has a thread waiting for it to be * committed to stable storage. Please refer to the zil_commit_waiter() * function (and the comments within it) for more details. */ int zfs_commit_timeout_pct = 5; /* * Disable intent logging replay. This global ZIL switch affects all pools. */ int zil_replay_disable = 0; SYSCTL_DECL(_vfs_zfs); SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN, &zil_replay_disable, 0, "Disable intent logging replay"); /* * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to * the disk(s) by the ZIL after an LWB write has completed. Setting this * will cause ZIL corruption on power loss if a volatile out-of-order * write cache is enabled. */ boolean_t zil_nocacheflush = B_FALSE; SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_nocacheflush, CTLFLAG_RWTUN, &zil_nocacheflush, 0, "Disable ZIL cache flush"); boolean_t zfs_trim_enabled = B_TRUE; SYSCTL_DECL(_vfs_zfs_trim); SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0, "Enable ZFS TRIM"); /* * Limit SLOG write size per commit executed with synchronous priority. * Any writes above that will be executed with lower (asynchronous) priority * to limit potential SLOG device abuse by single active ZIL writer. */ uint64_t zil_slog_bulk = 768 * 1024; SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN, &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority"); static kmem_cache_t *zil_lwb_cache; static kmem_cache_t *zil_zcw_cache; #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) static int zil_bp_compare(const void *x1, const void *x2) { const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); if (likely(cmp)) return (cmp); return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); } static void zil_bp_tree_init(zilog_t *zilog) { avl_create(&zilog->zl_bp_tree, zil_bp_compare, sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); } static void zil_bp_tree_fini(zilog_t *zilog) { avl_tree_t *t = &zilog->zl_bp_tree; zil_bp_node_t *zn; void *cookie = NULL; while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zn, sizeof (zil_bp_node_t)); avl_destroy(t); } int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_bp_tree; const dva_t *dva; zil_bp_node_t *zn; avl_index_t where; if (BP_IS_EMBEDDED(bp)) return (0); dva = BP_IDENTITY(bp); if (avl_find(t, dva, &where) != NULL) return (SET_ERROR(EEXIST)); zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); zn->zn_dva = *dva; avl_insert(t, zn, where); return (0); } static zil_header_t * zil_header_in_syncing_context(zilog_t *zilog) { return ((zil_header_t *)zilog->zl_header); } static void zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) { zio_cksum_t *zc = &bp->blk_cksum; zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); zc->zc_word[ZIL_ZC_SEQ] = 1ULL; } /* * Read a log block and make sure it's valid. */ static int zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, char **end) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) zio_flags |= ZIO_FLAG_SPECULATIVE; SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { zio_cksum_t cksum = bp->blk_cksum; /* * Validate the checksummed log block. * * Sequence numbers should be... sequential. The checksum * verifier for the next block should be bp's checksum plus 1. * * Also check the log chain linkage and size used. */ cksum.zc_word[ZIL_ZC_SEQ]++; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { zil_chain_t *zilc = abuf->b_data; char *lr = (char *)(zilc + 1); uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); bcopy(lr, dst, len); *end = (char *)dst + len; *nbp = zilc->zc_next_blk; } } else { char *lr = abuf->b_data; uint64_t size = BP_GET_LSIZE(bp); zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || (zilc->zc_nused > (size - sizeof (*zilc)))) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(zilc->zc_nused, <=, SPA_OLD_MAXBLOCKSIZE); bcopy(lr, dst, zilc->zc_nused); *end = (char *)dst + zilc->zc_nused; *nbp = zilc->zc_next_blk; } } arc_buf_destroy(abuf, &abuf); } return (error); } /* * Read a TX_WRITE log data block. */ static int zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; const blkptr_t *bp = &lr->lr_blkptr; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (BP_IS_HOLE(bp)) { if (wbuf != NULL) bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); return (0); } if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { if (wbuf != NULL) bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); arc_buf_destroy(abuf, &abuf); } return (error); } /* * Parse the intent log, and call parse_func for each valid record within. */ int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) { const zil_header_t *zh = zilog->zl_header; boolean_t claimed = !!zh->zh_claim_txg; uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; uint64_t max_blk_seq = 0; uint64_t max_lr_seq = 0; uint64_t blk_count = 0; uint64_t lr_count = 0; blkptr_t blk, next_blk; char *lrbuf, *lrp; int error = 0; /* * Old logs didn't record the maximum zh_claim_lr_seq. */ if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) claim_lr_seq = UINT64_MAX; /* * Starting at the block pointed to by zh_log we read the log chain. * For each block in the chain we strongly check that block to * ensure its validity. We stop when an invalid block is found. * For each block pointer in the chain we call parse_blk_func(). * For each record in each valid block we call parse_lr_func(). * If the log has been claimed, stop if we encounter a sequence * number greater than the highest claimed sequence number. */ lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); zil_bp_tree_init(zilog); for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; int reclen; char *end; if (blk_seq > claim_blk_seq) break; if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) break; ASSERT3U(max_blk_seq, <, blk_seq); max_blk_seq = blk_seq; blk_count++; if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) break; error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); if (error != 0) break; for (lrp = lrbuf; lrp < end; lrp += reclen) { lr_t *lr = (lr_t *)lrp; reclen = lr->lrc_reclen; ASSERT3U(reclen, >=, sizeof (lr_t)); if (lr->lrc_seq > claim_lr_seq) goto done; if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) goto done; ASSERT3U(max_lr_seq, <, lr->lrc_seq); max_lr_seq = lr->lrc_seq; lr_count++; } } done: zilog->zl_parse_error = error; zilog->zl_parse_blk_seq = max_blk_seq; zilog->zl_parse_lr_seq = max_lr_seq; zilog->zl_parse_blk_count = blk_count; zilog->zl_parse_lr_count = lr_count; ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); zil_bp_tree_fini(zilog); zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); return (error); } /* ARGSUSED */ static int zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) { ASSERT(!BP_IS_HOLE(bp)); /* * As we call this function from the context of a rewind to a * checkpoint, each ZIL block whose txg is later than the txg * that we rewind to is invalid. Thus, we return -1 so * zil_parse() doesn't attempt to read it. */ if (bp->blk_birth >= first_txg) return (-1); if (zil_bp_tree_add(zilog, bp) != 0) return (0); zio_free(zilog->zl_spa, first_txg, bp); return (0); } /* ARGSUSED */ static int zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) { return (0); } static int zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) { /* * Claim log block if not already committed and not already claimed. * If tx == NULL, just verify that the block is claimable. */ if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) return (0); return (zio_wait(zio_claim(NULL, zilog->zl_spa, tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); } static int zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) { lr_write_t *lr = (lr_write_t *)lrc; int error; if (lrc->lrc_txtype != TX_WRITE) return (0); /* * If the block is not readable, don't claim it. This can happen * in normal operation when a log block is written to disk before * some of the dmu_sync() blocks it points to. In this case, the * transaction cannot have been committed to anyone (we would have * waited for all writes to be stable first), so it is semantically * correct to declare this the end of the log. */ if (lr->lr_blkptr.blk_birth >= first_txg && (error = zil_read_log_data(zilog, lr, NULL)) != 0) return (error); return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); } /* ARGSUSED */ static int zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) { zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; /* * If we previously claimed it, we need to free it. */ if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int zil_lwb_vdev_compare(const void *x1, const void *x2) { const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; return (AVL_CMP(v1, v2)); } static lwb_t * zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg) { lwb_t *lwb; lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); lwb->lwb_zilog = zilog; lwb->lwb_blk = *bp; lwb->lwb_slog = slog; lwb->lwb_state = LWB_STATE_CLOSED; lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); lwb->lwb_max_txg = txg; lwb->lwb_write_zio = NULL; lwb->lwb_root_zio = NULL; lwb->lwb_tx = NULL; lwb->lwb_issued_timestamp = 0; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { lwb->lwb_nused = sizeof (zil_chain_t); lwb->lwb_sz = BP_GET_LSIZE(bp); } else { lwb->lwb_nused = 0; lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); } mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); VERIFY(list_is_empty(&lwb->lwb_waiters)); return (lwb); } static void zil_free_lwb(zilog_t *zilog, lwb_t *lwb) { ASSERT(MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); VERIFY(list_is_empty(&lwb->lwb_waiters)); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); ASSERT3P(lwb->lwb_write_zio, ==, NULL); ASSERT3P(lwb->lwb_root_zio, ==, NULL); ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || lwb->lwb_state == LWB_STATE_FLUSH_DONE); /* * Clear the zilog's field to indicate this lwb is no longer * valid, and prevent use-after-free errors. */ if (zilog->zl_last_lwb_opened == lwb) zilog->zl_last_lwb_opened = NULL; kmem_cache_free(zil_lwb_cache, lwb); } /* * Called when we create in-memory log transactions so that we know * to cleanup the itxs at the end of spa_sync(). */ void zilog_dirty(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); ASSERT(spa_writeable(zilog->zl_spa)); if (ds->ds_is_snapshot) panic("dirtying snapshot!"); if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, zilog); zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); } } /* * Determine if the zil is dirty in the specified txg. Callers wanting to * ensure that the dirty state does not change must hold the itxg_lock for * the specified txg. Holding the lock will ensure that the zil cannot be * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current * state. */ boolean_t zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) return (B_TRUE); return (B_FALSE); } /* * Determine if the zil is dirty. The zil is considered dirty if it has * any pending itx records that have not been cleaned by zil_clean(). */ boolean_t zilog_is_dirty(zilog_t *zilog) { dsl_pool_t *dp = zilog->zl_dmu_pool; for (int t = 0; t < TXG_SIZE; t++) { if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) return (B_TRUE); } return (B_FALSE); } /* * Create an on-disk intent log. */ static lwb_t * zil_create(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb = NULL; uint64_t txg = 0; dmu_tx_t *tx = NULL; blkptr_t blk; int error = 0; boolean_t slog = FALSE; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); ASSERT(zh->zh_claim_txg == 0); ASSERT(zh->zh_replay_seq == 0); blk = zh->zh_log; /* * Allocate an initial log block if: * - there isn't one already * - the existing block is the wrong endianess */ if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); if (!BP_IS_HOLE(&blk)) { zio_free(zilog->zl_spa, txg, &blk); BP_ZERO(&blk); } error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL, ZIL_MIN_BLKSZ, &slog); if (error == 0) zil_init_log_chain(zilog, &blk); } /* * Allocate a log write block (lwb) for the first log block. */ if (error == 0) lwb = zil_alloc_lwb(zilog, &blk, slog, txg); /* * If we just allocated the first log block, commit our transaction * and wait for zil_sync() to stuff the block poiner into zh_log. * (zh is part of the MOS, so we cannot modify it in open context.) */ if (tx != NULL) { dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); return (lwb); } /* * In one tx, free all log blocks and clear the log header. If keep_first * is set, then we're replaying a log with no content. We want to keep the * first block, however, so that the first synchronous transaction doesn't * require a txg_wait_synced() in zil_create(). We don't need to * txg_wait_synced() here either when keep_first is set, because both * zil_create() and zil_destroy() will wait for any in-progress destroys * to complete. */ void zil_destroy(zilog_t *zilog, boolean_t keep_first) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; dmu_tx_t *tx; uint64_t txg; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_old_header = *zh; /* debugging aid */ if (BP_IS_HOLE(&zh->zh_log)) return; tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lock); ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = keep_first; if (!list_is_empty(&zilog->zl_lwb_list)) { ASSERT(zh->zh_claim_txg == 0); VERIFY(!keep_first); while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { list_remove(&zilog->zl_lwb_list, lwb); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); } } else if (!keep_first) { zil_destroy_sync(zilog, tx); } mutex_exit(&zilog->zl_lock); dmu_tx_commit(tx); } void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) { ASSERT(list_is_empty(&zilog->zl_lwb_list)); (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); } int zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) { dmu_tx_t *tx = txarg; zilog_t *zilog; uint64_t first_txg; zil_header_t *zh; objset_t *os; int error; error = dmu_objset_own_obj(dp, ds->ds_object, DMU_OST_ANY, B_FALSE, FTAG, &os); if (error != 0) { /* * EBUSY indicates that the objset is inconsistent, in which * case it can not have a ZIL. */ if (error != EBUSY) { cmn_err(CE_WARN, "can't open objset for %llu, error %u", (unsigned long long)ds->ds_object, error); } return (0); } zilog = dmu_objset_zil(os); zh = zil_header_in_syncing_context(zilog); ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); first_txg = spa_min_claim_txg(zilog->zl_spa); /* * If the spa_log_state is not set to be cleared, check whether * the current uberblock is a checkpoint one and if the current * header has been claimed before moving on. * * If the current uberblock is a checkpointed uberblock then * one of the following scenarios took place: * * 1] We are currently rewinding to the checkpoint of the pool. * 2] We crashed in the middle of a checkpoint rewind but we * did manage to write the checkpointed uberblock to the * vdev labels, so when we tried to import the pool again * the checkpointed uberblock was selected from the import * procedure. * * In both cases we want to zero out all the ZIL blocks, except * the ones that have been claimed at the time of the checkpoint * (their zh_claim_txg != 0). The reason is that these blocks * may be corrupted since we may have reused their locations on * disk after we took the checkpoint. * * We could try to set spa_log_state to SPA_LOG_CLEAR earlier * when we first figure out whether the current uberblock is * checkpointed or not. Unfortunately, that would discard all * the logs, including the ones that are claimed, and we would * leak space. */ if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0)) { if (!BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_clear_log_block, zil_noop_log_record, tx, first_txg); } BP_ZERO(&zh->zh_log); dsl_dataset_dirty(dmu_objset_ds(os), tx); dmu_objset_disown(os, FTAG); return (0); } /* * If we are not rewinding and opening the pool normally, then * the min_claim_txg should be equal to the first txg of the pool. */ ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); /* * Claim all log blocks if we haven't already done so, and remember * the highest claimed sequence number. This ensures that if we can * read only part of the log now (e.g. due to a missing device), * but we can read the entire log later, we will not try to replay * or destroy beyond the last block we successfully claimed. */ ASSERT3U(zh->zh_claim_txg, <=, first_txg); if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, first_txg); zh->zh_claim_txg = first_txg; zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) zh->zh_flags |= ZIL_REPLAY_NEEDED; zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; dsl_dataset_dirty(dmu_objset_ds(os), tx); } ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); dmu_objset_disown(os, FTAG); return (0); } /* * Check the log by walking the log chain. * Checksum errors are ok as they indicate the end of the chain. * Any other error (no device or read failure) returns an error. */ /* ARGSUSED */ int zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) { zilog_t *zilog; objset_t *os; blkptr_t *bp; int error; ASSERT(tx == NULL); error = dmu_objset_from_ds(ds, &os); if (error != 0) { cmn_err(CE_WARN, "can't open objset %llu, error %d", (unsigned long long)ds->ds_object, error); return (0); } zilog = dmu_objset_zil(os); bp = (blkptr_t *)&zilog->zl_header->zh_log; if (!BP_IS_HOLE(bp)) { vdev_t *vd; boolean_t valid = B_TRUE; /* * Check the first block and determine if it's on a log device * which may have been removed or faulted prior to loading this * pool. If so, there's no point in checking the rest of the * log as its content should have already been synced to the * pool. */ spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (vd->vdev_islog && vdev_is_dead(vd)) valid = vdev_log_state_valid(vd); spa_config_exit(os->os_spa, SCL_STATE, FTAG); if (!valid) return (0); /* * Check whether the current uberblock is checkpointed (e.g. * we are rewinding) and whether the current header has been * claimed or not. If it hasn't then skip verifying it. We * do this because its ZIL blocks may be part of the pool's * state before the rewind, which is no longer valid. */ zil_header_t *zh = zil_header_in_syncing_context(zilog); if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0) return (0); } /* * Because tx == NULL, zil_claim_log_block() will not actually claim * any blocks, but just determine whether it is possible to do so. * In addition to checking the log chain, zil_claim_log_block() * will invoke zio_claim() with a done func of spa_claim_notify(), * which will update spa_max_claim_txg. See spa_load() for details. */ error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, zilog->zl_header->zh_claim_txg ? -1ULL : spa_min_claim_txg(os->os_spa)); return ((error == ECKSUM || error == ENOENT) ? 0 : error); } /* * When an itx is "skipped", this function is used to properly mark the * waiter as "done, and signal any thread(s) waiting on it. An itx can * be skipped (and not committed to an lwb) for a variety of reasons, * one of them being that the itx was committed via spa_sync(), prior to * it being committed to an lwb; this can happen if a thread calling * zil_commit() is racing with spa_sync(). */ static void zil_commit_waiter_skip(zil_commit_waiter_t *zcw) { mutex_enter(&zcw->zcw_lock); ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } /* * This function is used when the given waiter is to be linked into an * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. * At this point, the waiter will no longer be referenced by the itx, * and instead, will be referenced by the lwb. */ static void zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) { /* * The lwb_waiters field of the lwb is protected by the zilog's * zl_lock, thus it must be held when calling this function. */ ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3P(lwb, !=, NULL); ASSERT(lwb->lwb_state == LWB_STATE_OPENED || lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE); list_insert_tail(&lwb->lwb_waiters, zcw); zcw->zcw_lwb = lwb; mutex_exit(&zcw->zcw_lock); } /* * This function is used when zio_alloc_zil() fails to allocate a ZIL * block, and the given waiter must be linked to the "nolwb waiters" * list inside of zil_process_commit_list(). */ static void zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) { mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); list_insert_tail(nolwb, zcw); mutex_exit(&zcw->zcw_lock); } void zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) { avl_tree_t *t = &lwb->lwb_vdev_tree; avl_index_t where; zil_vdev_node_t *zv, zvsearch; int ndvas = BP_GET_NDVAS(bp); int i; if (zil_nocacheflush) return; mutex_enter(&lwb->lwb_vdev_lock); for (i = 0; i < ndvas; i++) { zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); if (avl_find(t, &zvsearch, &where) == NULL) { zv = kmem_alloc(sizeof (*zv), KM_SLEEP); zv->zv_vdev = zvsearch.zv_vdev; avl_insert(t, zv, where); } } mutex_exit(&lwb->lwb_vdev_lock); } static void zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) { avl_tree_t *src = &lwb->lwb_vdev_tree; avl_tree_t *dst = &nlwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does * not need the protection of lwb_vdev_lock (it will only be modified * while holding zilog->zl_lock) as its writes and those of its * children have all completed. The younger 'nlwb' may be waiting on * future writes to additional vdevs. */ mutex_enter(&nlwb->lwb_vdev_lock); /* * Tear down the 'lwb' vdev tree, ensuring that entries which do not * exist in 'nlwb' are moved to it, freeing any would-be duplicates. */ while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { avl_index_t where; if (avl_find(dst, zv, &where) == NULL) { avl_insert(dst, zv, where); } else { kmem_free(zv, sizeof (*zv)); } } mutex_exit(&nlwb->lwb_vdev_lock); } void zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) { lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); } /* * This function is a called after all vdevs associated with a given lwb * write have completed their DKIOCFLUSHWRITECACHE command; or as soon * as the lwb write completes, if "zil_nocacheflush" is set. Further, * all "previous" lwb's will have completed before this function is * called; i.e. this function is called for all previous lwbs before * it's called for "this" lwb (enforced via zio the dependencies * configured in zil_lwb_set_zio_dependency()). * * The intention is for this function to be called as soon as the * contents of an lwb are considered "stable" on disk, and will survive * any sudden loss of power. At this point, any threads waiting for the * lwb to reach this state are signalled, and the "waiter" structures * are marked "done". */ static void zil_lwb_flush_vdevs_done(zio_t *zio) { lwb_t *lwb = zio->io_private; zilog_t *zilog = lwb->lwb_zilog; dmu_tx_t *tx = lwb->lwb_tx; zil_commit_waiter_t *zcw; spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); mutex_enter(&zilog->zl_lock); /* * Ensure the lwb buffer pointer is cleared before releasing the * txg. If we have had an allocation failure and the txg is * waiting to sync then we want zil_sync() to remove the lwb so * that it's not picked up as the next new one in * zil_process_commit_list(). zil_sync() will only remove the * lwb if lwb_buf is null. */ lwb->lwb_buf = NULL; lwb->lwb_tx = NULL; ASSERT3U(lwb->lwb_issued_timestamp, >, 0); zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp; lwb->lwb_root_zio = NULL; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); lwb->lwb_state = LWB_STATE_FLUSH_DONE; if (zilog->zl_last_lwb_opened == lwb) { /* * Remember the highest committed log sequence number * for ztest. We only update this value when all the log * writes succeeded, because ztest wants to ASSERT that * it got the whole log chain. */ zilog->zl_commit_lr_seq = zilog->zl_lr_seq; } while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) { mutex_enter(&zcw->zcw_lock); ASSERT(list_link_active(&zcw->zcw_node)); list_remove(&lwb->lwb_waiters, zcw); ASSERT3P(zcw->zcw_lwb, ==, lwb); zcw->zcw_lwb = NULL; zcw->zcw_zio_error = zio->io_error; ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } mutex_exit(&zilog->zl_lock); /* * Now that we've written this log block, we have a stable pointer * to the next block in the chain, so it's OK to let the txg in * which we allocated the next block sync. */ dmu_tx_commit(tx); } /* * This is called when an lwb's write zio completes. The callback's * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved * in writing out this specific lwb's data, and in the case that cache * flushes have been deferred, vdevs involved in writing the data for * previous lwbs. The writes corresponding to all the vdevs in the * lwb_vdev_tree will have completed by the time this is called, due to * the zio dependencies configured in zil_lwb_set_zio_dependency(), * which takes deferred flushes into account. The lwb will be "done" * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio * completion callback for the lwb's root zio. */ static void zil_lwb_write_done(zio_t *zio) { lwb_t *lwb = zio->io_private; spa_t *spa = zio->io_spa; zilog_t *zilog = lwb->lwb_zilog; avl_tree_t *t = &lwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; lwb_t *nlwb; ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); ASSERT(!BP_IS_GANG(zio->io_bp)); ASSERT(!BP_IS_HOLE(zio->io_bp)); ASSERT(BP_GET_FILL(zio->io_bp) == 0); abd_put(zio->io_abd); mutex_enter(&zilog->zl_lock); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); lwb->lwb_state = LWB_STATE_WRITE_DONE; lwb->lwb_write_zio = NULL; nlwb = list_next(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); if (avl_numnodes(t) == 0) return; /* * If there was an IO error, we're not going to call zio_flush() * on these vdevs, so we simply empty the tree and free the * nodes. We avoid calling zio_flush() since there isn't any * good reason for doing so, after the lwb block failed to be * written out. */ if (zio->io_error != 0) { while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zv, sizeof (*zv)); return; } /* * If this lwb does not have any threads waiting for it to * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE * command to the vdevs written to by "this" lwb, and instead * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE * command for those vdevs. Thus, we merge the vdev tree of * "this" lwb with the vdev tree of the "next" lwb in the list, * and assume the "next" lwb will handle flushing the vdevs (or * deferring the flush(s) again). * * This is a useful performance optimization, especially for * workloads with lots of async write activity and few sync * write and/or fsync activity, as it has the potential to * coalesce multiple flush commands to a vdev into one. */ if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) { zil_lwb_flush_defer(lwb, nlwb); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); return; } while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); if (vd != NULL) zio_flush(lwb->lwb_root_zio, vd); kmem_free(zv, sizeof (*zv)); } } static void zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) { lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zilog->zl_lock)); /* * The zilog's "zl_last_lwb_opened" field is used to build the * lwb/zio dependency chain, which is used to preserve the * ordering of lwb completions that is required by the semantics * of the ZIL. Each new lwb zio becomes a parent of the * "previous" lwb zio, such that the new lwb's zio cannot * complete until the "previous" lwb's zio completes. * * This is required by the semantics of zil_commit(); the commit * waiters attached to the lwbs will be woken in the lwb zio's * completion callback, so this zio dependency graph ensures the * waiters are woken in the correct order (the same order the * lwbs were created). */ if (last_lwb_opened != NULL && last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED || last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); zio_add_child(lwb->lwb_root_zio, last_lwb_opened->lwb_root_zio); /* * If the previous lwb's write hasn't already completed, * we also want to order the completion of the lwb write * zios (above, we only order the completion of the lwb * root zios). This is required because of how we can * defer the DKIOCFLUSHWRITECACHE commands for each lwb. * * When the DKIOCFLUSHWRITECACHE commands are defered, * the previous lwb will rely on this lwb to flush the * vdevs written to by that previous lwb. Thus, we need * to ensure this lwb doesn't issue the flush until * after the previous lwb's write completes. We ensure * this ordering by setting the zio parent/child * relationship here. * * Without this relationship on the lwb's write zio, * it's possible for this lwb's write to complete prior * to the previous lwb's write completing; and thus, the * vdevs for the previous lwb would be flushed prior to * that lwb's data being written to those vdevs (the * vdevs are flushed in the lwb write zio's completion * handler, zil_lwb_write_done()). */ if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED); ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); zio_add_child(lwb->lwb_write_zio, last_lwb_opened->lwb_write_zio); } } } /* * This function's purpose is to "open" an lwb such that it is ready to * accept new itxs being committed to it. To do this, the lwb's zio * structures are created, and linked to the lwb. This function is * idempotent; if the passed in lwb has already been opened, this * function is essentially a no-op. */ static void zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) { zbookmark_phys_t zb; zio_priority_t prio; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); if (lwb->lwb_root_zio == NULL) { abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk)); if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) prio = ZIO_PRIORITY_SYNC_WRITE; else prio = ZIO_PRIORITY_ASYNC_WRITE; lwb->lwb_root_zio = zio_root(zilog->zl_spa, zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); ASSERT3P(lwb->lwb_root_zio, !=, NULL); lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); ASSERT3P(lwb->lwb_write_zio, !=, NULL); lwb->lwb_state = LWB_STATE_OPENED; mutex_enter(&zilog->zl_lock); zil_lwb_set_zio_dependency(zilog, lwb); zilog->zl_last_lwb_opened = lwb; mutex_exit(&zilog->zl_lock); } ASSERT3P(lwb->lwb_root_zio, !=, NULL); ASSERT3P(lwb->lwb_write_zio, !=, NULL); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); } /* * Define a limited set of intent log block sizes. * * These must be a multiple of 4KB. Note only the amount used (again * aligned to 4KB) actually gets written. However, we can't always just * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. */ struct { uint64_t limit; uint64_t blksz; } zil_block_buckets[] = { { 4096, 4096 }, /* non TX_WRITE */ { 8192 + 4096, 8192 + 4096 }, /* database */ { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ { 131072, 131072 }, /* < 128KB writes */ { 131072 + 4096, 65536 + 4096 }, /* 128KB writes */ { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ }; /* + * Maximum block size used by the ZIL. This is picked up when the ZIL is + * initialized. Otherwise this should not be used directly; see + * zl_max_block_size instead. + */ +int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; +SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_maxblocksize, CTLFLAG_RWTUN, + &zil_maxblocksize, 0, "Limit in bytes of ZIL log block size"); + +/* * Start a log block write and advance to the next log block. * Calls are serialized. */ static lwb_t * zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) { lwb_t *nlwb = NULL; zil_chain_t *zilc; spa_t *spa = zilog->zl_spa; blkptr_t *bp; dmu_tx_t *tx; uint64_t txg; uint64_t zil_blksz, wsz; int i, error; boolean_t slog; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb->lwb_root_zio, !=, NULL); ASSERT3P(lwb->lwb_write_zio, !=, NULL); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { zilc = (zil_chain_t *)lwb->lwb_buf; bp = &zilc->zc_next_blk; } else { zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); bp = &zilc->zc_next_blk; } ASSERT(lwb->lwb_nused <= lwb->lwb_sz); /* * Allocate the next block and save its address in this block * before writing it in order to establish the log chain. * Note that if the allocation of nlwb synced before we wrote * the block that points at it (lwb), we'd leak it if we crashed. * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). * We dirty the dataset to ensure that zil_sync() will be called * to clean up in the event of allocation failure or I/O failure. */ tx = dmu_tx_create(zilog->zl_os); /* * Since we are not going to create any new dirty data, and we * can even help with clearing the existing dirty data, we * should not be subject to the dirty data based delays. We * use TXG_NOTHROTTLE to bypass the delay mechanism. */ VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); lwb->lwb_tx = tx; /* * Log blocks are pre-allocated. Here we select the size of the next * block, based on size used in the last block. * - first find the smallest bucket that will fit the block from a * limited set of block sizes. This is because it's faster to write * blocks allocated from the same metaslab as they are adjacent or * close. * - next find the maximum from the new suggested size and an array of * previous sizes. This lessens a picket fence effect of wrongly * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k * requests. * * Note we only write what is used, but we can't just allocate * the maximum block size because we can exhaust the available * pool log space. */ zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) continue; - zil_blksz = zil_block_buckets[i].blksz; + zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; for (i = 0; i < ZIL_PREV_BLKS; i++) zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); BP_ZERO(bp); /* pass the old blkptr in order to spread log blocks across devs */ error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object, txg, bp, &lwb->lwb_blk, zil_blksz, &slog); if (error == 0) { ASSERT3U(bp->blk_birth, ==, txg); bp->blk_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; /* * Allocate a new log write block (lwb). */ nlwb = zil_alloc_lwb(zilog, bp, slog, txg); } if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { /* For Slim ZIL only write what is used. */ wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); ASSERT3U(wsz, <=, lwb->lwb_sz); zio_shrink(lwb->lwb_write_zio, wsz); } else { wsz = lwb->lwb_sz; } zilc->zc_pad = 0; zilc->zc_nused = lwb->lwb_nused; zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; /* * clear unused data for security */ bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); zil_lwb_add_block(lwb, &lwb->lwb_blk); lwb->lwb_issued_timestamp = gethrtime(); lwb->lwb_state = LWB_STATE_ISSUED; zio_nowait(lwb->lwb_root_zio); zio_nowait(lwb->lwb_write_zio); /* * If there was an allocation failure then nlwb will be null which * forces a txg_wait_synced(). */ return (nlwb); } +/* + * Maximum amount of write data that can be put into single log block. + */ +uint64_t +zil_max_log_data(zilog_t *zilog) +{ + return (zilog->zl_max_block_size - + sizeof (zil_chain_t) - sizeof (lr_write_t)); +} + +/* + * Maximum amount of log space we agree to waste to reduce number of + * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). + */ +static inline uint64_t +zil_max_waste_space(zilog_t *zilog) +{ + return (zil_max_log_data(zilog) / 8); +} + +/* + * Maximum amount of write data for WR_COPIED. For correctness, consumers + * must fall back to WR_NEED_COPY if we can't fit the entire record into one + * maximum sized log block, because each WR_COPIED record must fit in a + * single log block. For space efficiency, we want to fit two records into a + * max-sized log block. + */ +uint64_t +zil_max_copied_data(zilog_t *zilog) +{ + return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - + sizeof (lr_write_t)); +} + static lwb_t * zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) { lr_t *lrcb, *lrc; lr_write_t *lrwb, *lrw; char *lr_buf; - uint64_t dlen, dnow, lwb_sp, reclen, txg; + uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); ASSERT3P(lwb->lwb_buf, !=, NULL); zil_lwb_write_open(zilog, lwb); lrc = &itx->itx_lr; lrw = (lr_write_t *)lrc; /* * A commit itx doesn't represent any on-disk state; instead * it's simply used as a place holder on the commit list, and * provides a mechanism for attaching a "commit waiter" onto the * correct lwb (such that the waiter can be signalled upon * completion of that lwb). Thus, we don't process this itx's * log record if it's a commit itx (these itx's don't have log * records), and instead link the itx's waiter onto the lwb's * list of waiters. * * For more details, see the comment above zil_commit(). */ if (lrc->lrc_txtype == TX_COMMIT) { mutex_enter(&zilog->zl_lock); zil_commit_waiter_link_lwb(itx->itx_private, lwb); itx->itx_private = NULL; mutex_exit(&zilog->zl_lock); return (lwb); } if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { dlen = P2ROUNDUP_TYPED( lrw->lr_length, sizeof (uint64_t), uint64_t); } else { dlen = 0; } reclen = lrc->lrc_reclen; zilog->zl_cur_used += (reclen + dlen); txg = lrc->lrc_txg; ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen)); cont: /* * If this record won't fit in the current log block, start a new one. * For WR_NEED_COPY optimize layout for minimal number of chunks. */ lwb_sp = lwb->lwb_sz - lwb->lwb_nused; + max_log_data = zil_max_log_data(zilog); if (reclen > lwb_sp || (reclen + dlen > lwb_sp && - lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 || - lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) { + lwb_sp < zil_max_waste_space(zilog) && + (dlen % max_log_data == 0 || + lwb_sp < reclen + dlen % max_log_data))) { lwb = zil_lwb_write_issue(zilog, lwb); if (lwb == NULL) return (NULL); zil_lwb_write_open(zilog, lwb); ASSERT(LWB_EMPTY(lwb)); lwb_sp = lwb->lwb_sz - lwb->lwb_nused; + + /* + * There must be enough space in the new, empty log block to + * hold reclen. For WR_COPIED, we need to fit the whole + * record in one block, and reclen is the header size + the + * data size. For WR_NEED_COPY, we can create multiple + * records, splitting the data into multiple blocks, so we + * only need to fit one word of data per block; in this case + * reclen is just the header size (no data). + */ ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); } dnow = MIN(dlen, lwb_sp - reclen); lr_buf = lwb->lwb_buf + lwb->lwb_nused; bcopy(lrc, lr_buf, reclen); lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */ lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */ /* * If it's a write, fetch the data or get its blkptr as appropriate. */ if (lrc->lrc_txtype == TX_WRITE) { if (txg > spa_freeze_txg(zilog->zl_spa)) txg_wait_synced(zilog->zl_dmu_pool, txg); if (itx->itx_wr_state != WR_COPIED) { char *dbuf; int error; if (itx->itx_wr_state == WR_NEED_COPY) { dbuf = lr_buf + reclen; lrcb->lrc_reclen += dnow; if (lrwb->lr_length > dnow) lrwb->lr_length = dnow; lrw->lr_offset += dnow; lrw->lr_length -= dnow; } else { ASSERT(itx->itx_wr_state == WR_INDIRECT); dbuf = NULL; } /* * We pass in the "lwb_write_zio" rather than * "lwb_root_zio" so that the "lwb_write_zio" * becomes the parent of any zio's created by * the "zl_get_data" callback. The vdevs are * flushed after the "lwb_write_zio" completes, * so we want to make sure that completion * callback waits for these additional zio's, * such that the vdevs used by those zio's will * be included in the lwb's vdev tree, and those * vdevs will be properly flushed. If we passed * in "lwb_root_zio" here, then these additional * vdevs may not be flushed; e.g. if these zio's * completed after "lwb_write_zio" completed. */ error = zilog->zl_get_data(itx->itx_private, lrwb, dbuf, lwb, lwb->lwb_write_zio); if (error == EIO) { txg_wait_synced(zilog->zl_dmu_pool, txg); return (lwb); } if (error != 0) { ASSERT(error == ENOENT || error == EEXIST || error == EALREADY); return (lwb); } } } /* * We're actually making an entry, so update lrc_seq to be the * log record sequence number. Note that this is generally not * equal to the itx sequence number because not all transactions * are synchronous, and sometimes spa_sync() gets there first. */ lrcb->lrc_seq = ++zilog->zl_lr_seq; lwb->lwb_nused += reclen + dnow; zil_lwb_add_txg(lwb, txg); ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); dlen -= dnow; if (dlen > 0) { zilog->zl_cur_used += reclen; goto cont; } return (lwb); } itx_t * zil_itx_create(uint64_t txtype, size_t lrsize) { itx_t *itx; lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); itx->itx_lr.lrc_txtype = txtype; itx->itx_lr.lrc_reclen = lrsize; itx->itx_lr.lrc_seq = 0; /* defensive */ itx->itx_sync = B_TRUE; /* default is synchronous */ return (itx); } void zil_itx_destroy(itx_t *itx) { kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } /* * Free up the sync and async itxs. The itxs_t has already been detached * so no locks are needed. */ static void zil_itxg_clean(itxs_t *itxs) { itx_t *itx; list_t *list; avl_tree_t *t; void *cookie; itx_async_node_t *ian; list = &itxs->i_sync_list; while ((itx = list_head(list)) != NULL) { /* * In the general case, commit itxs will not be found * here, as they'll be committed to an lwb via * zil_lwb_commit(), and free'd in that function. Having * said that, it is still possible for commit itxs to be * found here, due to the following race: * * - a thread calls zil_commit() which assigns the * commit itx to a per-txg i_sync_list * - zil_itxg_clean() is called (e.g. via spa_sync()) * while the waiter is still on the i_sync_list * * There's nothing to prevent syncing the txg while the * waiter is on the i_sync_list. This normally doesn't * happen because spa_sync() is slower than zil_commit(), * but if zil_commit() calls txg_wait_synced() (e.g. * because zil_create() or zil_commit_writer_stall() is * called) we will hit this case. */ if (itx->itx_lr.lrc_txtype == TX_COMMIT) zil_commit_waiter_skip(itx->itx_private); list_remove(list, itx); zil_itx_destroy(itx); } cookie = NULL; t = &itxs->i_async_tree; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list = &ian->ia_list; while ((itx = list_head(list)) != NULL) { list_remove(list, itx); /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(list); kmem_free(ian, sizeof (itx_async_node_t)); } avl_destroy(t); kmem_free(itxs, sizeof (itxs_t)); } static int zil_aitx_compare(const void *x1, const void *x2) { const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; return (AVL_CMP(o1, o2)); } /* * Remove all async itx with the given oid. */ static void zil_remove_async(zilog_t *zilog, uint64_t oid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; list_t clean_list; itx_t *itx; ASSERT(oid != 0); list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * Locate the object node and append its list. */ t = &itxg->itxg_itxs->i_async_tree; ian = avl_find(t, &oid, &where); if (ian != NULL) list_move_tail(&clean_list, &ian->ia_list); mutex_exit(&itxg->itxg_lock); } while ((itx = list_head(&clean_list)) != NULL) { list_remove(&clean_list, itx); /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(&clean_list); } void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) { uint64_t txg; itxg_t *itxg; itxs_t *itxs, *clean = NULL; /* * Object ids can be re-instantiated in the next txg so * remove any async transactions to avoid future leaks. * This can happen if a fsync occurs on the re-instantiated * object for a WR_INDIRECT or WR_NEED_COPY write, which gets * the new file data and flushes a write record for the old object. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) zil_remove_async(zilog, itx->itx_oid); /* * Ensure the data of a renamed file is committed before the rename. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) zil_async_to_sync(zilog, itx->itx_oid); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) txg = ZILTEST_TXG; else txg = dmu_tx_get_txg(tx); itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); itxs = itxg->itxg_itxs; if (itxg->itxg_txg != txg) { if (itxs != NULL) { /* * The zil_clean callback hasn't got around to cleaning * this itxg. Save the itxs for release below. * This should be rare. */ zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " "txg %llu", itxg->itxg_txg); clean = itxg->itxg_itxs; } itxg->itxg_txg = txg; itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); list_create(&itxs->i_sync_list, sizeof (itx_t), offsetof(itx_t, itx_node)); avl_create(&itxs->i_async_tree, zil_aitx_compare, sizeof (itx_async_node_t), offsetof(itx_async_node_t, ia_node)); } if (itx->itx_sync) { list_insert_tail(&itxs->i_sync_list, itx); } else { avl_tree_t *t = &itxs->i_async_tree; uint64_t foid = LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); itx_async_node_t *ian; avl_index_t where; ian = avl_find(t, &foid, &where); if (ian == NULL) { ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); list_create(&ian->ia_list, sizeof (itx_t), offsetof(itx_t, itx_node)); ian->ia_foid = foid; avl_insert(t, ian, where); } list_insert_tail(&ian->ia_list, itx); } itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); /* * We don't want to dirty the ZIL using ZILTEST_TXG, because * zil_clean() will never be called using ZILTEST_TXG. Thus, we * need to be careful to always dirty the ZIL using the "real" * TXG (not itxg_txg) even when the SPA is frozen. */ zilog_dirty(zilog, dmu_tx_get_txg(tx)); mutex_exit(&itxg->itxg_lock); /* Release the old itxs now we've dropped the lock */ if (clean != NULL) zil_itxg_clean(clean); } /* * If there are any in-memory intent log transactions which have now been * synced then start up a taskq to free them. We should only do this after we * have written out the uberblocks (i.e. txg has been comitted) so that * don't inadvertently clean out in-memory log records that would be required * by zil_commit(). */ void zil_clean(zilog_t *zilog, uint64_t synced_txg) { itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; itxs_t *clean_me; ASSERT3U(synced_txg, <, ZILTEST_TXG); mutex_enter(&itxg->itxg_lock); if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { mutex_exit(&itxg->itxg_lock); return; } ASSERT3U(itxg->itxg_txg, <=, synced_txg); ASSERT3U(itxg->itxg_txg, !=, 0); clean_me = itxg->itxg_itxs; itxg->itxg_itxs = NULL; itxg->itxg_txg = 0; mutex_exit(&itxg->itxg_lock); /* * Preferably start a task queue to free up the old itxs but * if taskq_dispatch can't allocate resources to do that then * free it in-line. This should be rare. Note, using TQ_SLEEP * created a bad performance problem. */ ASSERT3P(zilog->zl_dmu_pool, !=, NULL); ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0) zil_itxg_clean(clean_me); } /* * This function will traverse the queue of itxs that need to be * committed, and move them onto the ZIL's zl_itx_commit_list. */ static void zil_get_commit_list(zilog_t *zilog) { uint64_t otxg, txg; list_t *commit_list = &zilog->zl_itx_commit_list; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. That's okay since we'll * only commit things in the future. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If we're adding itx records to the zl_itx_commit_list, * then the zil better be dirty in this "txg". We can assert * that here since we're holding the itxg_lock which will * prevent spa_sync from cleaning it. Once we add the itxs * to the zl_itx_commit_list we must commit it to disk even * if it's unnecessary (i.e. the txg was synced). */ ASSERT(zilog_is_dirty_in_txg(zilog, txg) || spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); mutex_exit(&itxg->itxg_lock); } } /* * Move the async itxs for a specified object to commit into sync lists. */ void zil_async_to_sync(zilog_t *zilog, uint64_t foid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If a foid is specified then find that node and append its * list. Otherwise walk the tree appending all the lists * to the sync list. We add to the end rather than the * beginning to ensure the create has happened. */ t = &itxg->itxg_itxs->i_async_tree; if (foid != 0) { ian = avl_find(t, &foid, &where); if (ian != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); } } else { void *cookie = NULL; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); list_destroy(&ian->ia_list); kmem_free(ian, sizeof (itx_async_node_t)); } } mutex_exit(&itxg->itxg_lock); } } /* * This function will prune commit itxs that are at the head of the * commit list (it won't prune past the first non-commit itx), and * either: a) attach them to the last lwb that's still pending * completion, or b) skip them altogether. * * This is used as a performance optimization to prevent commit itxs * from generating new lwbs when it's unnecessary to do so. */ static void zil_prune_commit_list(zilog_t *zilog) { itx_t *itx; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); while (itx = list_head(&zilog->zl_itx_commit_list)) { lr_t *lrc = &itx->itx_lr; if (lrc->lrc_txtype != TX_COMMIT) break; mutex_enter(&zilog->zl_lock); lwb_t *last_lwb = zilog->zl_last_lwb_opened; if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { /* * All of the itxs this waiter was waiting on * must have already completed (or there were * never any itx's for it to wait on), so it's * safe to skip this waiter and mark it done. */ zil_commit_waiter_skip(itx->itx_private); } else { zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); itx->itx_private = NULL; } mutex_exit(&zilog->zl_lock); list_remove(&zilog->zl_itx_commit_list, itx); zil_itx_destroy(itx); } IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); } static void zil_commit_writer_stall(zilog_t *zilog) { /* * When zio_alloc_zil() fails to allocate the next lwb block on * disk, we must call txg_wait_synced() to ensure all of the * lwbs in the zilog's zl_lwb_list are synced and then freed (in * zil_sync()), such that any subsequent ZIL writer (i.e. a call * to zil_process_commit_list()) will have to call zil_create(), * and start a new ZIL chain. * * Since zil_alloc_zil() failed, the lwb that was previously * issued does not have a pointer to the "next" lwb on disk. * Thus, if another ZIL writer thread was to allocate the "next" * on-disk lwb, that block could be leaked in the event of a * crash (because the previous lwb on-disk would not point to * it). * * We must hold the zilog's zl_issuer_lock while we do this, to * ensure no new threads enter zil_process_commit_list() until * all lwb's in the zl_lwb_list have been synced and freed * (which is achieved via the txg_wait_synced() call). */ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); txg_wait_synced(zilog->zl_dmu_pool, 0); ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); } /* * This function will traverse the commit list, creating new lwbs as * needed, and committing the itxs from the commit list to these newly * created lwbs. Additionally, as a new lwb is created, the previous * lwb will be issued to the zio layer to be written to disk. */ static void zil_process_commit_list(zilog_t *zilog) { spa_t *spa = zilog->zl_spa; list_t nolwb_waiters; lwb_t *lwb; itx_t *itx; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); /* * Return if there's nothing to commit before we dirty the fs by * calling zil_create(). */ if (list_head(&zilog->zl_itx_commit_list) == NULL) return; list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) { lwb = zil_create(zilog); } else { ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); } while (itx = list_head(&zilog->zl_itx_commit_list)) { lr_t *lrc = &itx->itx_lr; uint64_t txg = lrc->lrc_txg; ASSERT3U(txg, !=, 0); if (lrc->lrc_txtype == TX_COMMIT) { DTRACE_PROBE2(zil__process__commit__itx, zilog_t *, zilog, itx_t *, itx); } else { DTRACE_PROBE2(zil__process__normal__itx, zilog_t *, zilog, itx_t *, itx); } boolean_t synced = txg <= spa_last_synced_txg(spa); boolean_t frozen = txg > spa_freeze_txg(spa); /* * If the txg of this itx has already been synced out, then * we don't need to commit this itx to an lwb. This is * because the data of this itx will have already been * written to the main pool. This is inherently racy, and * it's still ok to commit an itx whose txg has already * been synced; this will result in a write that's * unnecessary, but will do no harm. * * With that said, we always want to commit TX_COMMIT itxs * to an lwb, regardless of whether or not that itx's txg * has been synced out. We do this to ensure any OPENED lwb * will always have at least one zil_commit_waiter_t linked * to the lwb. * * As a counter-example, if we skipped TX_COMMIT itx's * whose txg had already been synced, the following * situation could occur if we happened to be racing with * spa_sync: * * 1. we commit a non-TX_COMMIT itx to an lwb, where the * itx's txg is 10 and the last synced txg is 9. * 2. spa_sync finishes syncing out txg 10. * 3. we move to the next itx in the list, it's a TX_COMMIT * whose txg is 10, so we skip it rather than committing * it to the lwb used in (1). * * If the itx that is skipped in (3) is the last TX_COMMIT * itx in the commit list, than it's possible for the lwb * used in (1) to remain in the OPENED state indefinitely. * * To prevent the above scenario from occuring, ensuring * that once an lwb is OPENED it will transition to ISSUED * and eventually DONE, we always commit TX_COMMIT itx's to * an lwb here, even if that itx's txg has already been * synced. * * Finally, if the pool is frozen, we _always_ commit the * itx. The point of freezing the pool is to prevent data * from being written to the main pool via spa_sync, and * instead rely solely on the ZIL to persistently store the * data; i.e. when the pool is frozen, the last synced txg * value can't be trusted. */ if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { if (lwb != NULL) { lwb = zil_lwb_commit(zilog, itx, lwb); } else if (lrc->lrc_txtype == TX_COMMIT) { ASSERT3P(lwb, ==, NULL); zil_commit_waiter_link_nolwb( itx->itx_private, &nolwb_waiters); } } list_remove(&zilog->zl_itx_commit_list, itx); zil_itx_destroy(itx); } if (lwb == NULL) { /* * This indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this happens, we must stall * the ZIL write pipeline; see the comment within * zil_commit_writer_stall() for more details. */ zil_commit_writer_stall(zilog); /* * Additionally, we have to signal and mark the "nolwb" * waiters as "done" here, since without an lwb, we * can't do this via zil_lwb_flush_vdevs_done() like * normal. */ zil_commit_waiter_t *zcw; while (zcw = list_head(&nolwb_waiters)) { zil_commit_waiter_skip(zcw); list_remove(&nolwb_waiters, zcw); } } else { ASSERT(list_is_empty(&nolwb_waiters)); ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * At this point, the ZIL block pointed at by the "lwb" * variable is in one of the following states: "closed" * or "open". * * If its "closed", then no itxs have been committed to * it, so there's no point in issuing its zio (i.e. * it's "empty"). * * If its "open" state, then it contains one or more * itxs that eventually need to be committed to stable * storage. In this case we intentionally do not issue * the lwb's zio to disk yet, and instead rely on one of * the following two mechanisms for issuing the zio: * * 1. Ideally, there will be more ZIL activity occuring * on the system, such that this function will be * immediately called again (not necessarily by the same * thread) and this lwb's zio will be issued via * zil_lwb_commit(). This way, the lwb is guaranteed to * be "full" when it is issued to disk, and we'll make * use of the lwb's size the best we can. * * 2. If there isn't sufficient ZIL activity occuring on * the system, such that this lwb's zio isn't issued via * zil_lwb_commit(), zil_commit_waiter() will issue the * lwb's zio. If this occurs, the lwb is not guaranteed * to be "full" by the time its zio is issued, and means * the size of the lwb was "too large" given the amount * of ZIL activity occuring on the system at that time. * * We do this for a couple of reasons: * * 1. To try and reduce the number of IOPs needed to * write the same number of itxs. If an lwb has space * available in it's buffer for more itxs, and more itxs * will be committed relatively soon (relative to the * latency of performing a write), then it's beneficial * to wait for these "next" itxs. This way, more itxs * can be committed to stable storage with fewer writes. * * 2. To try and use the largest lwb block size that the * incoming rate of itxs can support. Again, this is to * try and pack as many itxs into as few lwbs as * possible, without significantly impacting the latency * of each individual itx. */ } } /* * This function is responsible for ensuring the passed in commit waiter * (and associated commit itx) is committed to an lwb. If the waiter is * not already committed to an lwb, all itxs in the zilog's queue of * itxs will be processed. The assumption is the passed in waiter's * commit itx will found in the queue just like the other non-commit * itxs, such that when the entire queue is processed, the waiter will * have been commited to an lwb. * * The lwb associated with the passed in waiter is not guaranteed to * have been issued by the time this function completes. If the lwb is * not issued, we rely on future calls to zil_commit_writer() to issue * the lwb, or the timeout mechanism found in zil_commit_waiter(). */ static void zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(spa_writeable(zilog->zl_spa)); mutex_enter(&zilog->zl_issuer_lock); if (zcw->zcw_lwb != NULL || zcw->zcw_done) { /* * It's possible that, while we were waiting to acquire * the "zl_issuer_lock", another thread committed this * waiter to an lwb. If that occurs, we bail out early, * without processing any of the zilog's queue of itxs. * * On certain workloads and system configurations, the * "zl_issuer_lock" can become highly contended. In an * attempt to reduce this contention, we immediately drop * the lock if the waiter has already been processed. * * We've measured this optimization to reduce CPU spent * contending on this lock by up to 5%, using a system * with 32 CPUs, low latency storage (~50 usec writes), * and 1024 threads performing sync writes. */ goto out; } zil_get_commit_list(zilog); zil_prune_commit_list(zilog); zil_process_commit_list(zilog); out: mutex_exit(&zilog->zl_issuer_lock); } static void zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); ASSERT3B(zcw->zcw_done, ==, B_FALSE); lwb_t *lwb = zcw->zcw_lwb; ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); /* * If the lwb has already been issued by another thread, we can * immediately return since there's no work to be done (the * point of this function is to issue the lwb). Additionally, we * do this prior to acquiring the zl_issuer_lock, to avoid * acquiring it when it's not necessary to do so. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) return; /* * In order to call zil_lwb_write_issue() we must hold the * zilog's "zl_issuer_lock". We can't simply acquire that lock, * since we're already holding the commit waiter's "zcw_lock", * and those two locks are aquired in the opposite order * elsewhere. */ mutex_exit(&zcw->zcw_lock); mutex_enter(&zilog->zl_issuer_lock); mutex_enter(&zcw->zcw_lock); /* * Since we just dropped and re-acquired the commit waiter's * lock, we have to re-check to see if the waiter was marked * "done" during that process. If the waiter was marked "done", * the "lwb" pointer is no longer valid (it can be free'd after * the waiter is marked "done"), so without this check we could * wind up with a use-after-free error below. */ if (zcw->zcw_done) goto out; ASSERT3P(lwb, ==, zcw->zcw_lwb); /* * We've already checked this above, but since we hadn't acquired * the zilog's zl_issuer_lock, we have to perform this check a * second time while holding the lock. * * We don't need to hold the zl_lock since the lwb cannot transition * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb * _can_ transition from ISSUED to DONE, but it's OK to race with * that transition since we treat the lwb the same, whether it's in * the ISSUED or DONE states. * * The important thing, is we treat the lwb differently depending on * if it's ISSUED or OPENED, and block any other threads that might * attempt to issue this lwb. For that reason we hold the * zl_issuer_lock when checking the lwb_state; we must not call * zil_lwb_write_issue() if the lwb had already been issued. * * See the comment above the lwb_state_t structure definition for * more details on the lwb states, and locking requirements. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) goto out; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); /* * As described in the comments above zil_commit_waiter() and * zil_process_commit_list(), we need to issue this lwb's zio * since we've reached the commit waiter's timeout and it still * hasn't been issued. */ lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb); IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED); /* * Since the lwb's zio hadn't been issued by the time this thread * reached its timeout, we reset the zilog's "zl_cur_used" field * to influence the zil block size selection algorithm. * * By having to issue the lwb's zio here, it means the size of the * lwb was too large, given the incoming throughput of itxs. By * setting "zl_cur_used" to zero, we communicate this fact to the * block size selection algorithm, so it can take this informaiton * into account, and potentially select a smaller size for the * next lwb block that is allocated. */ zilog->zl_cur_used = 0; if (nlwb == NULL) { /* * When zil_lwb_write_issue() returns NULL, this * indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this occurs, the ZIL write * pipeline must be stalled; see the comment within the * zil_commit_writer_stall() function for more details. * * We must drop the commit waiter's lock prior to * calling zil_commit_writer_stall() or else we can wind * up with the following deadlock: * * - This thread is waiting for the txg to sync while * holding the waiter's lock; txg_wait_synced() is * used within txg_commit_writer_stall(). * * - The txg can't sync because it is waiting for this * lwb's zio callback to call dmu_tx_commit(). * * - The lwb's zio callback can't call dmu_tx_commit() * because it's blocked trying to acquire the waiter's * lock, which occurs prior to calling dmu_tx_commit() */ mutex_exit(&zcw->zcw_lock); zil_commit_writer_stall(zilog); mutex_enter(&zcw->zcw_lock); } out: mutex_exit(&zilog->zl_issuer_lock); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); } /* * This function is responsible for performing the following two tasks: * * 1. its primary responsibility is to block until the given "commit * waiter" is considered "done". * * 2. its secondary responsibility is to issue the zio for the lwb that * the given "commit waiter" is waiting on, if this function has * waited "long enough" and the lwb is still in the "open" state. * * Given a sufficient amount of itxs being generated and written using * the ZIL, the lwb's zio will be issued via the zil_lwb_commit() * function. If this does not occur, this secondary responsibility will * ensure the lwb is issued even if there is not other synchronous * activity on the system. * * For more details, see zil_process_commit_list(); more specifically, * the comment at the bottom of that function. */ static void zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(spa_writeable(zilog->zl_spa)); mutex_enter(&zcw->zcw_lock); /* * The timeout is scaled based on the lwb latency to avoid * significantly impacting the latency of each individual itx. * For more details, see the comment at the bottom of the * zil_process_commit_list() function. */ int pct = MAX(zfs_commit_timeout_pct, 1); #if defined(illumos) || !defined(_KERNEL) hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; hrtime_t wakeup = gethrtime() + sleep; #else sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100); sbintime_t wakeup = getsbinuptime() + sleep; #endif boolean_t timedout = B_FALSE; while (!zcw->zcw_done) { ASSERT(MUTEX_HELD(&zcw->zcw_lock)); lwb_t *lwb = zcw->zcw_lwb; /* * Usually, the waiter will have a non-NULL lwb field here, * but it's possible for it to be NULL as a result of * zil_commit() racing with spa_sync(). * * When zil_clean() is called, it's possible for the itxg * list (which may be cleaned via a taskq) to contain * commit itxs. When this occurs, the commit waiters linked * off of these commit itxs will not be committed to an * lwb. Additionally, these commit waiters will not be * marked done until zil_commit_waiter_skip() is called via * zil_itxg_clean(). * * Thus, it's possible for this commit waiter (i.e. the * "zcw" variable) to be found in this "in between" state; * where it's "zcw_lwb" field is NULL, and it hasn't yet * been skipped, so it's "zcw_done" field is still B_FALSE. */ IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { ASSERT3B(timedout, ==, B_FALSE); /* * If the lwb hasn't been issued yet, then we * need to wait with a timeout, in case this * function needs to issue the lwb after the * timeout is reached; responsibility (2) from * the comment above this function. */ #if defined(illumos) || !defined(_KERNEL) clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv, &zcw->zcw_lock, wakeup, USEC2NSEC(1), CALLOUT_FLAG_ABSOLUTE); if (timeleft >= 0 || zcw->zcw_done) continue; #else int wait_err = cv_timedwait_sbt(&zcw->zcw_cv, &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE); if (wait_err != EWOULDBLOCK || zcw->zcw_done) continue; #endif timedout = B_TRUE; zil_commit_waiter_timeout(zilog, zcw); if (!zcw->zcw_done) { /* * If the commit waiter has already been * marked "done", it's possible for the * waiter's lwb structure to have already * been freed. Thus, we can only reliably * make these assertions if the waiter * isn't done. */ ASSERT3P(lwb, ==, zcw->zcw_lwb); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); } } else { /* * If the lwb isn't open, then it must have already * been issued. In that case, there's no need to * use a timeout when waiting for the lwb to * complete. * * Additionally, if the lwb is NULL, the waiter * will soon be signalled and marked done via * zil_clean() and zil_itxg_clean(), so no timeout * is required. */ IMPLY(lwb != NULL, lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE); cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); } } mutex_exit(&zcw->zcw_lock); } static zil_commit_waiter_t * zil_alloc_commit_waiter() { zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); list_link_init(&zcw->zcw_node); zcw->zcw_lwb = NULL; zcw->zcw_done = B_FALSE; zcw->zcw_zio_error = 0; return (zcw); } static void zil_free_commit_waiter(zil_commit_waiter_t *zcw) { ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3B(zcw->zcw_done, ==, B_TRUE); mutex_destroy(&zcw->zcw_lock); cv_destroy(&zcw->zcw_cv); kmem_cache_free(zil_zcw_cache, zcw); } /* * This function is used to create a TX_COMMIT itx and assign it. This * way, it will be linked into the ZIL's list of synchronous itxs, and * then later committed to an lwb (or skipped) when * zil_process_commit_list() is called. */ static void zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) { dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); itx->itx_sync = B_TRUE; itx->itx_private = zcw; zil_itx_assign(zilog, itx, tx); dmu_tx_commit(tx); } /* * Commit ZFS Intent Log transactions (itxs) to stable storage. * * When writing ZIL transactions to the on-disk representation of the * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple * itxs can be committed to a single lwb. Once a lwb is written and * committed to stable storage (i.e. the lwb is written, and vdevs have * been flushed), each itx that was committed to that lwb is also * considered to be committed to stable storage. * * When an itx is committed to an lwb, the log record (lr_t) contained * by the itx is copied into the lwb's zio buffer, and once this buffer * is written to disk, it becomes an on-disk ZIL block. * * As itxs are generated, they're inserted into the ZIL's queue of * uncommitted itxs. The semantics of zil_commit() are such that it will * block until all itxs that were in the queue when it was called, are * committed to stable storage. * * If "foid" is zero, this means all "synchronous" and "asynchronous" * itxs, for all objects in the dataset, will be committed to stable * storage prior to zil_commit() returning. If "foid" is non-zero, all * "synchronous" itxs for all objects, but only "asynchronous" itxs * that correspond to the foid passed in, will be committed to stable * storage prior to zil_commit() returning. * * Generally speaking, when zil_commit() is called, the consumer doesn't * actually care about _all_ of the uncommitted itxs. Instead, they're * simply trying to waiting for a specific itx to be committed to disk, * but the interface(s) for interacting with the ZIL don't allow such * fine-grained communication. A better interface would allow a consumer * to create and assign an itx, and then pass a reference to this itx to * zil_commit(); such that zil_commit() would return as soon as that * specific itx was committed to disk (instead of waiting for _all_ * itxs to be committed). * * When a thread calls zil_commit() a special "commit itx" will be * generated, along with a corresponding "waiter" for this commit itx. * zil_commit() will wait on this waiter's CV, such that when the waiter * is marked done, and signalled, zil_commit() will return. * * This commit itx is inserted into the queue of uncommitted itxs. This * provides an easy mechanism for determining which itxs were in the * queue prior to zil_commit() having been called, and which itxs were * added after zil_commit() was called. * * The commit it is special; it doesn't have any on-disk representation. * When a commit itx is "committed" to an lwb, the waiter associated * with it is linked onto the lwb's list of waiters. Then, when that lwb * completes, each waiter on the lwb's list is marked done and signalled * -- allowing the thread waiting on the waiter to return from zil_commit(). * * It's important to point out a few critical factors that allow us * to make use of the commit itxs, commit waiters, per-lwb lists of * commit waiters, and zio completion callbacks like we're doing: * * 1. The list of waiters for each lwb is traversed, and each commit * waiter is marked "done" and signalled, in the zio completion * callback of the lwb's zio[*]. * * * Actually, the waiters are signalled in the zio completion * callback of the root zio for the DKIOCFLUSHWRITECACHE commands * that are sent to the vdevs upon completion of the lwb zio. * * 2. When the itxs are inserted into the ZIL's queue of uncommitted * itxs, the order in which they are inserted is preserved[*]; as * itxs are added to the queue, they are added to the tail of * in-memory linked lists. * * When committing the itxs to lwbs (to be written to disk), they * are committed in the same order in which the itxs were added to * the uncommitted queue's linked list(s); i.e. the linked list of * itxs to commit is traversed from head to tail, and each itx is * committed to an lwb in that order. * * * To clarify: * * - the order of "sync" itxs is preserved w.r.t. other * "sync" itxs, regardless of the corresponding objects. * - the order of "async" itxs is preserved w.r.t. other * "async" itxs corresponding to the same object. * - the order of "async" itxs is *not* preserved w.r.t. other * "async" itxs corresponding to different objects. * - the order of "sync" itxs w.r.t. "async" itxs (or vice * versa) is *not* preserved, even for itxs that correspond * to the same object. * * For more details, see: zil_itx_assign(), zil_async_to_sync(), * zil_get_commit_list(), and zil_process_commit_list(). * * 3. The lwbs represent a linked list of blocks on disk. Thus, any * lwb cannot be considered committed to stable storage, until its * "previous" lwb is also committed to stable storage. This fact, * coupled with the fact described above, means that itxs are * committed in (roughly) the order in which they were generated. * This is essential because itxs are dependent on prior itxs. * Thus, we *must not* deem an itx as being committed to stable * storage, until *all* prior itxs have also been committed to * stable storage. * * To enforce this ordering of lwb zio's, while still leveraging as * much of the underlying storage performance as possible, we rely * on two fundamental concepts: * * 1. The creation and issuance of lwb zio's is protected by * the zilog's "zl_issuer_lock", which ensures only a single * thread is creating and/or issuing lwb's at a time * 2. The "previous" lwb is a child of the "current" lwb * (leveraging the zio parent-child depenency graph) * * By relying on this parent-child zio relationship, we can have * many lwb zio's concurrently issued to the underlying storage, * but the order in which they complete will be the same order in * which they were created. */ void zil_commit(zilog_t *zilog, uint64_t foid) { /* * We should never attempt to call zil_commit on a snapshot for * a couple of reasons: * * 1. A snapshot may never be modified, thus it cannot have any * in-flight itxs that would have modified the dataset. * * 2. By design, when zil_commit() is called, a commit itx will * be assigned to this zilog; as a result, the zilog will be * dirtied. We must not dirty the zilog of a snapshot; there's * checks in the code that enforce this invariant, and will * cause a panic if it's not upheld. */ ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); if (zilog->zl_sync == ZFS_SYNC_DISABLED) return; if (!spa_writeable(zilog->zl_spa)) { /* * If the SPA is not writable, there should never be any * pending itxs waiting to be committed to disk. If that * weren't true, we'd skip writing those itxs out, and * would break the sematics of zil_commit(); thus, we're * verifying that truth before we return to the caller. */ ASSERT(list_is_empty(&zilog->zl_lwb_list)); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); for (int i = 0; i < TXG_SIZE; i++) ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); return; } /* * If the ZIL is suspended, we don't want to dirty it by calling * zil_commit_itx_assign() below, nor can we write out * lwbs like would be done in zil_commit_write(). Thus, we * simply rely on txg_wait_synced() to maintain the necessary * semantics, and avoid calling those functions altogether. */ if (zilog->zl_suspend > 0) { txg_wait_synced(zilog->zl_dmu_pool, 0); return; } zil_commit_impl(zilog, foid); } void zil_commit_impl(zilog_t *zilog, uint64_t foid) { /* * Move the "async" itxs for the specified foid to the "sync" * queues, such that they will be later committed (or skipped) * to an lwb when zil_process_commit_list() is called. * * Since these "async" itxs must be committed prior to this * call to zil_commit returning, we must perform this operation * before we call zil_commit_itx_assign(). */ zil_async_to_sync(zilog, foid); /* * We allocate a new "waiter" structure which will initially be * linked to the commit itx using the itx's "itx_private" field. * Since the commit itx doesn't represent any on-disk state, * when it's committed to an lwb, rather than copying the its * lr_t into the lwb's buffer, the commit itx's "waiter" will be * added to the lwb's list of waiters. Then, when the lwb is * committed to stable storage, each waiter in the lwb's list of * waiters will be marked "done", and signalled. * * We must create the waiter and assign the commit itx prior to * calling zil_commit_writer(), or else our specific commit itx * is not guaranteed to be committed to an lwb prior to calling * zil_commit_waiter(). */ zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); zil_commit_itx_assign(zilog, zcw); zil_commit_writer(zilog, zcw); zil_commit_waiter(zilog, zcw); if (zcw->zcw_zio_error != 0) { /* * If there was an error writing out the ZIL blocks that * this thread is waiting on, then we fallback to * relying on spa_sync() to write out the data this * thread is waiting on. Obviously this has performance * implications, but the expectation is for this to be * an exceptional case, and shouldn't occur often. */ DTRACE_PROBE2(zil__commit__io__error, zilog_t *, zilog, zil_commit_waiter_t *, zcw); txg_wait_synced(zilog->zl_dmu_pool, 0); } zil_free_commit_waiter(zcw); } /* * Called in syncing context to free committed log blocks and update log header. */ void zil_sync(zilog_t *zilog, dmu_tx_t *tx) { zil_header_t *zh = zil_header_in_syncing_context(zilog); uint64_t txg = dmu_tx_get_txg(tx); spa_t *spa = zilog->zl_spa; uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; lwb_t *lwb; /* * We don't zero out zl_destroy_txg, so make sure we don't try * to destroy it twice. */ if (spa_sync_pass(spa) != 1) return; mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_stop_sync == 0); if (*replayed_seq != 0) { ASSERT(zh->zh_replay_seq < *replayed_seq); zh->zh_replay_seq = *replayed_seq; *replayed_seq = 0; } if (zilog->zl_destroy_txg == txg) { blkptr_t blk = zh->zh_log; ASSERT(list_head(&zilog->zl_lwb_list) == NULL); bzero(zh, sizeof (zil_header_t)); bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); if (zilog->zl_keep_first) { /* * If this block was part of log chain that couldn't * be claimed because a device was missing during * zil_claim(), but that device later returns, * then this block could erroneously appear valid. * To guard against this, assign a new GUID to the new * log chain so it doesn't matter what blk points to. */ zil_init_log_chain(zilog, &blk); zh->zh_log = blk; } } while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { zh->zh_log = lwb->lwb_blk; if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) break; list_remove(&zilog->zl_lwb_list, lwb); zio_free(spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); /* * If we don't have anything left in the lwb list then * we've had an allocation failure and we need to zero * out the zil_header blkptr so that we don't end * up freeing the same block twice. */ if (list_head(&zilog->zl_lwb_list) == NULL) BP_ZERO(&zh->zh_log); } mutex_exit(&zilog->zl_lock); } /* ARGSUSED */ static int zil_lwb_cons(void *vbuf, void *unused, int kmflag) { lwb_t *lwb = vbuf; list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } /* ARGSUSED */ static void zil_lwb_dest(void *vbuf, void *unused) { lwb_t *lwb = vbuf; mutex_destroy(&lwb->lwb_vdev_lock); avl_destroy(&lwb->lwb_vdev_tree); list_destroy(&lwb->lwb_waiters); } void zil_init(void) { zil_lwb_cache = kmem_cache_create("zil_lwb_cache", sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); zil_zcw_cache = kmem_cache_create("zil_zcw_cache", sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void zil_fini(void) { kmem_cache_destroy(zil_zcw_cache); kmem_cache_destroy(zil_lwb_cache); } void zil_set_sync(zilog_t *zilog, uint64_t sync) { zilog->zl_sync = sync; } void zil_set_logbias(zilog_t *zilog, uint64_t logbias) { zilog->zl_logbias = logbias; } zilog_t * zil_alloc(objset_t *os, zil_header_t *zh_phys) { zilog_t *zilog; zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); zilog->zl_header = zh_phys; zilog->zl_os = os; zilog->zl_spa = dmu_objset_spa(os); zilog->zl_dmu_pool = dmu_objset_pool(os); zilog->zl_destroy_txg = TXG_INITIAL - 1; zilog->zl_logbias = dmu_objset_logbias(os); zilog->zl_sync = dmu_objset_syncprop(os); zilog->zl_dirty_max_txg = 0; zilog->zl_last_lwb_opened = NULL; zilog->zl_last_lwb_latency = 0; + zilog->zl_max_block_size = zil_maxblocksize; mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); for (int i = 0; i < TXG_SIZE; i++) { mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, MUTEX_DEFAULT, NULL); } list_create(&zilog->zl_lwb_list, sizeof (lwb_t), offsetof(lwb_t, lwb_node)); list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), offsetof(itx_t, itx_node)); cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); return (zilog); } void zil_free(zilog_t *zilog) { zilog->zl_stop_sync = 1; ASSERT0(zilog->zl_suspend); ASSERT0(zilog->zl_suspending); ASSERT(list_is_empty(&zilog->zl_lwb_list)); list_destroy(&zilog->zl_lwb_list); ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); list_destroy(&zilog->zl_itx_commit_list); for (int i = 0; i < TXG_SIZE; i++) { /* * It's possible for an itx to be generated that doesn't dirty * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() * callback to remove the entry. We remove those here. * * Also free up the ziltest itxs. */ if (zilog->zl_itxg[i].itxg_itxs) zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); mutex_destroy(&zilog->zl_itxg[i].itxg_lock); } mutex_destroy(&zilog->zl_issuer_lock); mutex_destroy(&zilog->zl_lock); cv_destroy(&zilog->zl_cv_suspend); kmem_free(zilog, sizeof (zilog_t)); } /* * Open an intent log. */ zilog_t * zil_open(objset_t *os, zil_get_data_t *get_data) { zilog_t *zilog = dmu_objset_zil(os); ASSERT3P(zilog->zl_get_data, ==, NULL); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); ASSERT(list_is_empty(&zilog->zl_lwb_list)); zilog->zl_get_data = get_data; return (zilog); } /* * Close an intent log. */ void zil_close(zilog_t *zilog) { lwb_t *lwb; uint64_t txg; if (!dmu_objset_is_snapshot(zilog->zl_os)) { zil_commit(zilog, 0); } else { ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL); ASSERT0(zilog->zl_dirty_max_txg); ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); } mutex_enter(&zilog->zl_lock); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) txg = zilog->zl_dirty_max_txg; else txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); mutex_exit(&zilog->zl_lock); /* * We need to use txg_wait_synced() to wait long enough for the * ZIL to be clean, and to wait for all pending lwbs to be * written out. */ if (txg) txg_wait_synced(zilog->zl_dmu_pool, txg); if (zilog_is_dirty(zilog)) zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg); if (txg < spa_freeze_txg(zilog->zl_spa)) VERIFY(!zilog_is_dirty(zilog)); zilog->zl_get_data = NULL; /* * We should have only one lwb left on the list; remove it now. */ mutex_enter(&zilog->zl_lock); lwb = list_head(&zilog->zl_lwb_list); if (lwb != NULL) { ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list)); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); list_remove(&zilog->zl_lwb_list, lwb); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zil_free_lwb(zilog, lwb); } mutex_exit(&zilog->zl_lock); } static char *suspend_tag = "zil suspending"; /* * Suspend an intent log. While in suspended mode, we still honor * synchronous semantics, but we rely on txg_wait_synced() to do it. * On old version pools, we suspend the log briefly when taking a * snapshot so that it will have an empty intent log. * * Long holds are not really intended to be used the way we do here -- * held for such a short time. A concurrent caller of dsl_dataset_long_held() * could fail. Therefore we take pains to only put a long hold if it is * actually necessary. Fortunately, it will only be necessary if the * objset is currently mounted (or the ZVOL equivalent). In that case it * will already have a long hold, so we are not really making things any worse. * * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or * zvol_state_t), and use their mechanism to prevent their hold from being * dropped (e.g. VFS_HOLD()). However, that would be even more pain for * very little gain. * * if cookiep == NULL, this does both the suspend & resume. * Otherwise, it returns with the dataset "long held", and the cookie * should be passed into zil_resume(). */ int zil_suspend(const char *osname, void **cookiep) { objset_t *os; zilog_t *zilog; const zil_header_t *zh; int error; error = dmu_objset_hold(osname, suspend_tag, &os); if (error != 0) return (error); zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); zh = zilog->zl_header; if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (SET_ERROR(EBUSY)); } /* * Don't put a long hold in the cases where we can avoid it. This * is when there is no cookie so we are doing a suspend & resume * (i.e. called from zil_vdev_offline()), and there's nothing to do * for the suspend because it's already suspended, or there's no ZIL. */ if (cookiep == NULL && !zilog->zl_suspending && (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (0); } dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); dsl_pool_rele(dmu_objset_pool(os), suspend_tag); zilog->zl_suspend++; if (zilog->zl_suspend > 1) { /* * Someone else is already suspending it. * Just wait for them to finish. */ while (zilog->zl_suspending) cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } /* * If there is no pointer to an on-disk block, this ZIL must not * be active (e.g. filesystem not mounted), so there's nothing * to clean up. */ if (BP_IS_HOLE(&zh->zh_log)) { ASSERT(cookiep != NULL); /* fast path already handled */ *cookiep = os; mutex_exit(&zilog->zl_lock); return (0); } zilog->zl_suspending = B_TRUE; mutex_exit(&zilog->zl_lock); /* * We need to use zil_commit_impl to ensure we wait for all * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed * to disk before proceeding. If we used zil_commit instead, it * would just call txg_wait_synced(), because zl_suspend is set. * txg_wait_synced() doesn't wait for these lwb's to be * LWB_STATE_FLUSH_DONE before returning. */ zil_commit_impl(zilog, 0); /* * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we * use txg_wait_synced() to ensure the data from the zilog has * migrated to the main pool before calling zil_destroy(). */ txg_wait_synced(zilog->zl_dmu_pool, 0); zil_destroy(zilog, B_FALSE); mutex_enter(&zilog->zl_lock); zilog->zl_suspending = B_FALSE; cv_broadcast(&zilog->zl_cv_suspend); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } void zil_resume(void *cookie) { objset_t *os = cookie; zilog_t *zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_suspend != 0); zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); } typedef struct zil_replay_arg { zil_replay_func_t **zr_replay; void *zr_arg; boolean_t zr_byteswap; char *zr_lr; } zil_replay_arg_t; static int zil_replay_error(zilog_t *zilog, lr_t *lr, int error) { char name[ZFS_MAX_DATASET_NAME_LEN]; zilog->zl_replaying_seq--; /* didn't actually replay this one */ dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS replay transaction error %d, " "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)(lr->lrc_txtype & ~TX_CI), (lr->lrc_txtype & TX_CI) ? "CI" : ""); return (error); } static int zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) { zil_replay_arg_t *zr = zra; const zil_header_t *zh = zilog->zl_header; uint64_t reclen = lr->lrc_reclen; uint64_t txtype = lr->lrc_txtype; int error = 0; zilog->zl_replaying_seq = lr->lrc_seq; if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ return (0); if (lr->lrc_txg < claim_txg) /* already committed */ return (0); /* Strip case-insensitive bit, still present in log record */ txtype &= ~TX_CI; if (txtype == 0 || txtype >= TX_MAX_TYPE) return (zil_replay_error(zilog, lr, EINVAL)); /* * If this record type can be logged out of order, the object * (lr_foid) may no longer exist. That's legitimate, not an error. */ if (TX_OOO(txtype)) { error = dmu_object_info(zilog->zl_os, LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); if (error == ENOENT || error == EEXIST) return (0); } /* * Make a copy of the data so we can revise and extend it. */ bcopy(lr, zr->zr_lr, reclen); /* * If this is a TX_WRITE with a blkptr, suck in the data. */ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { error = zil_read_log_data(zilog, (lr_write_t *)lr, zr->zr_lr + reclen); if (error != 0) return (zil_replay_error(zilog, lr, error)); } /* * The log block containing this lr may have been byteswapped * so that we can easily examine common fields like lrc_txtype. * However, the log is a mix of different record types, and only the * replay vectors know how to byteswap their records. Therefore, if * the lr was byteswapped, undo it before invoking the replay vector. */ if (zr->zr_byteswap) byteswap_uint64_array(zr->zr_lr, reclen); /* * We must now do two things atomically: replay this log record, * and update the log header sequence number to reflect the fact that * we did so. At the end of each replay function the sequence number * is updated if we are in replay mode. */ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); if (error != 0) { /* * The DMU's dnode layer doesn't see removes until the txg * commits, so a subsequent claim can spuriously fail with * EEXIST. So if we receive any error we try syncing out * any removes then retry the transaction. Note that we * specify B_FALSE for byteswap now, so we don't do it twice. */ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); if (error != 0) return (zil_replay_error(zilog, lr, error)); } return (0); } /* ARGSUSED */ static int zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zilog->zl_replay_blks++; return (0); } /* * If this dataset has a non-empty intent log, replay it and destroy it. */ void zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) { zilog_t *zilog = dmu_objset_zil(os); const zil_header_t *zh = zilog->zl_header; zil_replay_arg_t zr; if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { zil_destroy(zilog, B_TRUE); return; } zr.zr_replay = replay_func; zr.zr_arg = arg; zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); /* * Wait for in-progress removes to sync before starting replay. */ txg_wait_synced(zilog->zl_dmu_pool, 0); zilog->zl_replay = B_TRUE; zilog->zl_replay_time = ddi_get_lbolt(); ASSERT(zilog->zl_replay_blks == 0); (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, zh->zh_claim_txg); kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); zil_destroy(zilog, B_FALSE); txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_replay = B_FALSE; } boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx) { if (zilog->zl_sync == ZFS_SYNC_DISABLED) return (B_TRUE); if (zilog->zl_replay) { dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = zilog->zl_replaying_seq; return (B_TRUE); } return (B_FALSE); } /* ARGSUSED */ int zil_reset(const char *osname, void *arg) { int error; error = zil_suspend(osname, NULL); if (error != 0) return (SET_ERROR(EEXIST)); return (0); } Index: head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zvol.c =================================================================== --- head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zvol.c (revision 359111) +++ head/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/zvol.c (revision 359112) @@ -1,3272 +1,3272 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * * Copyright (c) 2006-2010 Pawel Jakub Dawidek * All rights reserved. * * Portions Copyright 2010 Robert Milkowski * * Copyright 2017 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* Portions Copyright 2011 Martin Matuska */ /* * ZFS volume emulation driver. * * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. * Volumes are accessed through the symbolic links named: * * /dev/zvol/dsk// * /dev/zvol/rdsk// * * These links are created by the /dev filesystem (sdev_zvolops.c). * Volumes are persistent through reboot. No user command needs to be * run before opening and using a device. * * FreeBSD notes. * On FreeBSD ZVOLs are simply GEOM providers like any other storage device * in the system. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #ifndef illumos struct g_class zfs_zvol_class = { .name = "ZFS::ZVOL", .version = G_VERSION, }; DECLARE_GEOM_CLASS(zfs_zvol_class, zfs_zvol); #endif void *zfsdev_state; static char *zvol_tag = "zvol_tag"; #define ZVOL_DUMPSIZE "dumpsize" /* * This lock protects the zfsdev_state structure from being modified * while it's being used, e.g. an open that comes in before a create * finishes. It also protects temporary opens of the dataset so that, * e.g., an open doesn't get a spurious EBUSY. */ #ifdef illumos kmutex_t zfsdev_state_lock; #else /* * In FreeBSD we've replaced the upstream zfsdev_state_lock with the * spa_namespace_lock in the ZVOL code. */ #define zfsdev_state_lock spa_namespace_lock #endif static uint32_t zvol_minors; #ifndef illumos SYSCTL_DECL(_vfs_zfs); SYSCTL_NODE(_vfs_zfs, OID_AUTO, vol, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "ZFS VOLUME"); static int volmode = ZFS_VOLMODE_GEOM; SYSCTL_INT(_vfs_zfs_vol, OID_AUTO, mode, CTLFLAG_RWTUN, &volmode, 0, "Expose as GEOM providers (1), device files (2) or neither"); static boolean_t zpool_on_zvol = B_FALSE; SYSCTL_INT(_vfs_zfs_vol, OID_AUTO, recursive, CTLFLAG_RWTUN, &zpool_on_zvol, 0, "Allow zpools to use zvols as vdevs (DANGEROUS)"); #endif typedef struct zvol_extent { list_node_t ze_node; dva_t ze_dva; /* dva associated with this extent */ uint64_t ze_nblks; /* number of blocks in extent */ } zvol_extent_t; /* * The in-core state of each volume. */ typedef struct zvol_state { #ifndef illumos LIST_ENTRY(zvol_state) zv_links; #endif char zv_name[MAXPATHLEN]; /* pool/dd name */ uint64_t zv_volsize; /* amount of space we advertise */ uint64_t zv_volblocksize; /* volume block size */ #ifdef illumos minor_t zv_minor; /* minor number */ #else struct cdev *zv_dev; /* non-GEOM device */ struct g_provider *zv_provider; /* GEOM provider */ #endif uint8_t zv_min_bs; /* minimum addressable block shift */ uint8_t zv_flags; /* readonly, dumpified, etc. */ objset_t *zv_objset; /* objset handle */ #ifdef illumos uint32_t zv_open_count[OTYPCNT]; /* open counts */ #endif uint32_t zv_total_opens; /* total open count */ uint32_t zv_sync_cnt; /* synchronous open count */ zilog_t *zv_zilog; /* ZIL handle */ list_t zv_extents; /* List of extents for dump */ rangelock_t zv_rangelock; dnode_t *zv_dn; /* dnode hold */ #ifndef illumos int zv_state; int zv_volmode; /* Provide GEOM or cdev */ struct bio_queue_head zv_queue; struct mtx zv_queue_mtx; /* zv_queue mutex */ #endif } zvol_state_t; #ifndef illumos static LIST_HEAD(, zvol_state) all_zvols; #endif /* * zvol specific flags */ #define ZVOL_RDONLY 0x1 #define ZVOL_DUMPIFIED 0x2 #define ZVOL_EXCL 0x4 #define ZVOL_WCE 0x8 /* * zvol maximum transfer in one DMU tx. */ int zvol_maxphys = DMU_MAX_ACCESS/2; /* * Toggle unmap functionality. */ boolean_t zvol_unmap_enabled = B_TRUE; /* * If true, unmaps requested as synchronous are executed synchronously, * otherwise all unmaps are asynchronous. */ boolean_t zvol_unmap_sync_enabled = B_FALSE; #ifndef illumos SYSCTL_INT(_vfs_zfs_vol, OID_AUTO, unmap_enabled, CTLFLAG_RWTUN, &zvol_unmap_enabled, 0, "Enable UNMAP functionality"); SYSCTL_INT(_vfs_zfs_vol, OID_AUTO, unmap_sync_enabled, CTLFLAG_RWTUN, &zvol_unmap_sync_enabled, 0, "UNMAPs requested as sync are executed synchronously"); static d_open_t zvol_d_open; static d_close_t zvol_d_close; static d_read_t zvol_read; static d_write_t zvol_write; static d_ioctl_t zvol_d_ioctl; static d_strategy_t zvol_strategy; static struct cdevsw zvol_cdevsw = { .d_version = D_VERSION, .d_open = zvol_d_open, .d_close = zvol_d_close, .d_read = zvol_read, .d_write = zvol_write, .d_ioctl = zvol_d_ioctl, .d_strategy = zvol_strategy, .d_name = "zvol", .d_flags = D_DISK | D_TRACKCLOSE, }; static void zvol_geom_run(zvol_state_t *zv); static void zvol_geom_destroy(zvol_state_t *zv); static int zvol_geom_access(struct g_provider *pp, int acr, int acw, int ace); static void zvol_geom_start(struct bio *bp); static void zvol_geom_worker(void *arg); static void zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, boolean_t sync); #endif /* !illumos */ extern int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); static int zvol_remove_zv(zvol_state_t *); static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio); static int zvol_dumpify(zvol_state_t *zv); static int zvol_dump_fini(zvol_state_t *zv); static int zvol_dump_init(zvol_state_t *zv, boolean_t resize); static void zvol_size_changed(zvol_state_t *zv, uint64_t volsize) { #ifdef illumos dev_t dev = makedevice(ddi_driver_major(zfs_dip), zv->zv_minor); zv->zv_volsize = volsize; VERIFY(ddi_prop_update_int64(dev, zfs_dip, "Size", volsize) == DDI_SUCCESS); VERIFY(ddi_prop_update_int64(dev, zfs_dip, "Nblocks", lbtodb(volsize)) == DDI_SUCCESS); /* Notify specfs to invalidate the cached size */ spec_size_invalidate(dev, VBLK); spec_size_invalidate(dev, VCHR); #else /* !illumos */ zv->zv_volsize = volsize; if (zv->zv_volmode == ZFS_VOLMODE_GEOM) { struct g_provider *pp; pp = zv->zv_provider; if (pp == NULL) return; g_topology_lock(); /* * Do not invoke resize event when initial size was zero. * ZVOL initializes the size on first open, this is not * real resizing. */ if (pp->mediasize == 0) pp->mediasize = zv->zv_volsize; else g_resize_provider(pp, zv->zv_volsize); g_topology_unlock(); } #endif /* illumos */ } int zvol_check_volsize(uint64_t volsize, uint64_t blocksize) { if (volsize == 0) return (SET_ERROR(EINVAL)); if (volsize % blocksize != 0) return (SET_ERROR(EINVAL)); #ifdef _ILP32 if (volsize - 1 > SPEC_MAXOFFSET_T) return (SET_ERROR(EOVERFLOW)); #endif return (0); } int zvol_check_volblocksize(uint64_t volblocksize) { if (volblocksize < SPA_MINBLOCKSIZE || volblocksize > SPA_OLD_MAXBLOCKSIZE || !ISP2(volblocksize)) return (SET_ERROR(EDOM)); return (0); } int zvol_get_stats(objset_t *os, nvlist_t *nv) { int error; dmu_object_info_t doi; uint64_t val; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); if (error) return (error); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); error = dmu_object_info(os, ZVOL_OBJ, &doi); if (error == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, doi.doi_data_block_size); } return (error); } static zvol_state_t * zvol_minor_lookup(const char *name) { #ifdef illumos minor_t minor; #endif zvol_state_t *zv; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); #ifdef illumos for (minor = 1; minor <= ZFSDEV_MAX_MINOR; minor++) { zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) continue; #else LIST_FOREACH(zv, &all_zvols, zv_links) { #endif if (strcmp(zv->zv_name, name) == 0) return (zv); } return (NULL); } /* extent mapping arg */ struct maparg { zvol_state_t *ma_zv; uint64_t ma_blks; }; /*ARGSUSED*/ static int zvol_map_block(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { struct maparg *ma = arg; zvol_extent_t *ze; int bs = ma->ma_zv->zv_volblocksize; if (bp == NULL || BP_IS_HOLE(bp) || zb->zb_object != ZVOL_OBJ || zb->zb_level != 0) return (0); VERIFY(!BP_IS_EMBEDDED(bp)); VERIFY3U(ma->ma_blks, ==, zb->zb_blkid); ma->ma_blks++; /* Abort immediately if we have encountered gang blocks */ if (BP_IS_GANG(bp)) return (SET_ERROR(EFRAGS)); /* * See if the block is at the end of the previous extent. */ ze = list_tail(&ma->ma_zv->zv_extents); if (ze && DVA_GET_VDEV(BP_IDENTITY(bp)) == DVA_GET_VDEV(&ze->ze_dva) && DVA_GET_OFFSET(BP_IDENTITY(bp)) == DVA_GET_OFFSET(&ze->ze_dva) + ze->ze_nblks * bs) { ze->ze_nblks++; return (0); } dprintf_bp(bp, "%s", "next blkptr:"); /* start a new extent */ ze = kmem_zalloc(sizeof (zvol_extent_t), KM_SLEEP); ze->ze_dva = bp->blk_dva[0]; /* structure assignment */ ze->ze_nblks = 1; list_insert_tail(&ma->ma_zv->zv_extents, ze); return (0); } static void zvol_free_extents(zvol_state_t *zv) { zvol_extent_t *ze; while (ze = list_head(&zv->zv_extents)) { list_remove(&zv->zv_extents, ze); kmem_free(ze, sizeof (zvol_extent_t)); } } static int zvol_get_lbas(zvol_state_t *zv) { objset_t *os = zv->zv_objset; struct maparg ma; int err; ma.ma_zv = zv; ma.ma_blks = 0; zvol_free_extents(zv); /* commit any in-flight changes before traversing the dataset */ txg_wait_synced(dmu_objset_pool(os), 0); err = traverse_dataset(dmu_objset_ds(os), 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zvol_map_block, &ma); if (err || ma.ma_blks != (zv->zv_volsize / zv->zv_volblocksize)) { zvol_free_extents(zv); return (err ? err : EIO); } return (0); } /* ARGSUSED */ void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; nvlist_t *nvprops = zct->zct_props; int error; uint64_t volblocksize, volsize; VERIFY(nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* * These properties must be removed from the list so the generic * property setting step won't apply to them. */ VERIFY(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); (void) nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); ASSERT(error == 0); } /* * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we * implement DKIOCFREE/free-long-range. */ static int zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) { zvol_state_t *zv = arg1; lr_truncate_t *lr = arg2; uint64_t offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length)); } /* * Replay a TX_WRITE ZIL transaction that didn't get committed * after a system failure */ static int zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) { zvol_state_t *zv = arg1; lr_write_t *lr = arg2; objset_t *os = zv->zv_objset; char *data = (char *)(lr + 1); /* data follows lr_write_t */ uint64_t offset, length; dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, offset, length, data, tx); dmu_tx_commit(tx); } return (error); } /* ARGSUSED */ static int zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) { return (SET_ERROR(ENOTSUP)); } /* * Callback vectors for replaying records. * Only TX_WRITE and TX_TRUNCATE are needed for zvol. */ zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = { zvol_replay_err, /* 0 no such transaction type */ zvol_replay_err, /* TX_CREATE */ zvol_replay_err, /* TX_MKDIR */ zvol_replay_err, /* TX_MKXATTR */ zvol_replay_err, /* TX_SYMLINK */ zvol_replay_err, /* TX_REMOVE */ zvol_replay_err, /* TX_RMDIR */ zvol_replay_err, /* TX_LINK */ zvol_replay_err, /* TX_RENAME */ zvol_replay_write, /* TX_WRITE */ zvol_replay_truncate, /* TX_TRUNCATE */ zvol_replay_err, /* TX_SETATTR */ zvol_replay_err, /* TX_ACL */ zvol_replay_err, /* TX_CREATE_ACL */ zvol_replay_err, /* TX_CREATE_ATTR */ zvol_replay_err, /* TX_CREATE_ACL_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL */ zvol_replay_err, /* TX_MKDIR_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ zvol_replay_err, /* TX_WRITE2 */ }; #ifdef illumos int zvol_name2minor(const char *name, minor_t *minor) { zvol_state_t *zv; mutex_enter(&zfsdev_state_lock); zv = zvol_minor_lookup(name); if (minor && zv) *minor = zv->zv_minor; mutex_exit(&zfsdev_state_lock); return (zv ? 0 : -1); } #endif /* illumos */ /* * Create a minor node (plus a whole lot more) for the specified volume. */ int zvol_create_minor(const char *name) { zfs_soft_state_t *zs; zvol_state_t *zv; objset_t *os; #ifdef illumos dmu_object_info_t doi; minor_t minor = 0; char chrbuf[30], blkbuf[30]; #else struct g_provider *pp; struct g_geom *gp; uint64_t mode; #endif int error; #ifndef illumos ZFS_LOG(1, "Creating ZVOL %s...", name); #endif mutex_enter(&zfsdev_state_lock); if (zvol_minor_lookup(name) != NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EEXIST)); } /* lie and say we're read-only */ error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, FTAG, &os); if (error) { mutex_exit(&zfsdev_state_lock); return (error); } #ifdef illumos if ((minor = zfsdev_minor_alloc()) == 0) { dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } if (ddi_soft_state_zalloc(zfsdev_state, minor) != DDI_SUCCESS) { dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EAGAIN)); } (void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME, (char *)name); (void) snprintf(chrbuf, sizeof (chrbuf), "%u,raw", minor); if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR, minor, DDI_PSEUDO, 0) == DDI_FAILURE) { ddi_soft_state_free(zfsdev_state, minor); dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EAGAIN)); } (void) snprintf(blkbuf, sizeof (blkbuf), "%u", minor); if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK, minor, DDI_PSEUDO, 0) == DDI_FAILURE) { ddi_remove_minor_node(zfs_dip, chrbuf); ddi_soft_state_free(zfsdev_state, minor); dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EAGAIN)); } zs = ddi_get_soft_state(zfsdev_state, minor); zs->zss_type = ZSST_ZVOL; zv = zs->zss_data = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); #else /* !illumos */ zv = kmem_zalloc(sizeof(*zv), KM_SLEEP); zv->zv_state = 0; error = dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_VOLMODE), &mode, NULL); if (error != 0 || mode == ZFS_VOLMODE_DEFAULT) mode = volmode; DROP_GIANT(); zv->zv_volmode = mode; if (zv->zv_volmode == ZFS_VOLMODE_GEOM) { g_topology_lock(); gp = g_new_geomf(&zfs_zvol_class, "zfs::zvol::%s", name); gp->start = zvol_geom_start; gp->access = zvol_geom_access; pp = g_new_providerf(gp, "%s/%s", ZVOL_DRIVER, name); pp->flags |= G_PF_DIRECT_RECEIVE | G_PF_DIRECT_SEND; pp->sectorsize = DEV_BSIZE; pp->mediasize = 0; pp->private = zv; zv->zv_provider = pp; bioq_init(&zv->zv_queue); mtx_init(&zv->zv_queue_mtx, "zvol", NULL, MTX_DEF); } else if (zv->zv_volmode == ZFS_VOLMODE_DEV) { struct make_dev_args args; make_dev_args_init(&args); args.mda_flags = MAKEDEV_CHECKNAME | MAKEDEV_WAITOK; args.mda_devsw = &zvol_cdevsw; args.mda_cr = NULL; args.mda_uid = UID_ROOT; args.mda_gid = GID_OPERATOR; args.mda_mode = 0640; args.mda_si_drv2 = zv; error = make_dev_s(&args, &zv->zv_dev, "%s/%s", ZVOL_DRIVER, name); if (error != 0) { kmem_free(zv, sizeof(*zv)); dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (error); } zv->zv_dev->si_iosize_max = MAXPHYS; } LIST_INSERT_HEAD(&all_zvols, zv, zv_links); #endif /* illumos */ (void) strlcpy(zv->zv_name, name, MAXPATHLEN); zv->zv_min_bs = DEV_BSHIFT; #ifdef illumos zv->zv_minor = minor; #endif zv->zv_objset = os; if (dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) zv->zv_flags |= ZVOL_RDONLY; rangelock_init(&zv->zv_rangelock, NULL, NULL); list_create(&zv->zv_extents, sizeof (zvol_extent_t), offsetof(zvol_extent_t, ze_node)); #ifdef illumos /* get and cache the blocksize */ error = dmu_object_info(os, ZVOL_OBJ, &doi); ASSERT(error == 0); zv->zv_volblocksize = doi.doi_data_block_size; #endif if (spa_writeable(dmu_objset_spa(os))) { if (zil_replay_disable) zil_destroy(dmu_objset_zil(os), B_FALSE); else zil_replay(os, zv, zvol_replay_vector); } dmu_objset_disown(os, FTAG); zv->zv_objset = NULL; zvol_minors++; mutex_exit(&zfsdev_state_lock); #ifndef illumos if (zv->zv_volmode == ZFS_VOLMODE_GEOM) { zvol_geom_run(zv); g_topology_unlock(); } PICKUP_GIANT(); ZFS_LOG(1, "ZVOL %s created.", name); #endif return (0); } /* * Remove minor node for the specified volume. */ static int zvol_remove_zv(zvol_state_t *zv) { #ifdef illumos char nmbuf[20]; minor_t minor = zv->zv_minor; #endif ASSERT(MUTEX_HELD(&zfsdev_state_lock)); if (zv->zv_total_opens != 0) return (SET_ERROR(EBUSY)); #ifdef illumos (void) snprintf(nmbuf, sizeof (nmbuf), "%u,raw", minor); ddi_remove_minor_node(zfs_dip, nmbuf); (void) snprintf(nmbuf, sizeof (nmbuf), "%u", minor); ddi_remove_minor_node(zfs_dip, nmbuf); #else ZFS_LOG(1, "ZVOL %s destroyed.", zv->zv_name); LIST_REMOVE(zv, zv_links); if (zv->zv_volmode == ZFS_VOLMODE_GEOM) { g_topology_lock(); zvol_geom_destroy(zv); g_topology_unlock(); } else if (zv->zv_volmode == ZFS_VOLMODE_DEV) { if (zv->zv_dev != NULL) destroy_dev(zv->zv_dev); } #endif rangelock_fini(&zv->zv_rangelock); kmem_free(zv, sizeof (zvol_state_t)); #ifdef illumos ddi_soft_state_free(zfsdev_state, minor); #endif zvol_minors--; return (0); } int zvol_remove_minor(const char *name) { zvol_state_t *zv; int rc; mutex_enter(&zfsdev_state_lock); if ((zv = zvol_minor_lookup(name)) == NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } rc = zvol_remove_zv(zv); mutex_exit(&zfsdev_state_lock); return (rc); } int zvol_first_open(zvol_state_t *zv) { dmu_object_info_t doi; objset_t *os; uint64_t volsize; int error; uint64_t readonly; /* lie and say we're read-only */ error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os); if (error) return (error); zv->zv_objset = os; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) { ASSERT(error == 0); dmu_objset_disown(os, zvol_tag); return (error); } /* get and cache the blocksize */ error = dmu_object_info(os, ZVOL_OBJ, &doi); if (error) { ASSERT(error == 0); dmu_objset_disown(os, zvol_tag); return (error); } zv->zv_volblocksize = doi.doi_data_block_size; error = dnode_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dn); if (error) { dmu_objset_disown(os, zvol_tag); return (error); } zvol_size_changed(zv, volsize); zv->zv_zilog = zil_open(os, zvol_get_data); VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &readonly, NULL) == 0); if (readonly || dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) zv->zv_flags |= ZVOL_RDONLY; else zv->zv_flags &= ~ZVOL_RDONLY; return (error); } void zvol_last_close(zvol_state_t *zv) { zil_close(zv->zv_zilog); zv->zv_zilog = NULL; dnode_rele(zv->zv_dn, zvol_tag); zv->zv_dn = NULL; /* * Evict cached data */ if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) && !(zv->zv_flags & ZVOL_RDONLY)) txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); dmu_objset_evict_dbufs(zv->zv_objset); dmu_objset_disown(zv->zv_objset, zvol_tag); zv->zv_objset = NULL; } #ifdef illumos int zvol_prealloc(zvol_state_t *zv) { objset_t *os = zv->zv_objset; dmu_tx_t *tx; uint64_t refd, avail, usedobjs, availobjs; uint64_t resid = zv->zv_volsize; uint64_t off = 0; /* Check the space usage before attempting to allocate the space */ dmu_objset_space(os, &refd, &avail, &usedobjs, &availobjs); if (avail < zv->zv_volsize) return (SET_ERROR(ENOSPC)); /* Free old extents if they exist */ zvol_free_extents(zv); while (resid != 0) { int error; uint64_t bytes = MIN(resid, SPA_OLD_MAXBLOCKSIZE); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); (void) dmu_free_long_range(os, ZVOL_OBJ, 0, off); return (error); } dmu_prealloc(os, ZVOL_OBJ, off, bytes, tx); dmu_tx_commit(tx); off += bytes; resid -= bytes; } txg_wait_synced(dmu_objset_pool(os), 0); return (0); } #endif /* illumos */ static int zvol_update_volsize(objset_t *os, uint64_t volsize) { dmu_tx_t *tx; int error; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); dmu_tx_commit(tx); if (error == 0) error = dmu_free_long_range(os, ZVOL_OBJ, volsize, DMU_OBJECT_END); return (error); } void zvol_remove_minors(const char *name) { #ifdef illumos zvol_state_t *zv; char *namebuf; minor_t minor; namebuf = kmem_zalloc(strlen(name) + 2, KM_SLEEP); (void) strncpy(namebuf, name, strlen(name)); (void) strcat(namebuf, "/"); mutex_enter(&zfsdev_state_lock); for (minor = 1; minor <= ZFSDEV_MAX_MINOR; minor++) { zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) continue; if (strncmp(namebuf, zv->zv_name, strlen(namebuf)) == 0) (void) zvol_remove_zv(zv); } kmem_free(namebuf, strlen(name) + 2); mutex_exit(&zfsdev_state_lock); #else /* !illumos */ zvol_state_t *zv, *tzv; size_t namelen; namelen = strlen(name); DROP_GIANT(); mutex_enter(&zfsdev_state_lock); LIST_FOREACH_SAFE(zv, &all_zvols, zv_links, tzv) { if (strcmp(zv->zv_name, name) == 0 || (strncmp(zv->zv_name, name, namelen) == 0 && strlen(zv->zv_name) > namelen && (zv->zv_name[namelen] == '/' || zv->zv_name[namelen] == '@'))) { (void) zvol_remove_zv(zv); } } mutex_exit(&zfsdev_state_lock); PICKUP_GIANT(); #endif /* illumos */ } static int zvol_update_live_volsize(zvol_state_t *zv, uint64_t volsize) { uint64_t old_volsize = 0ULL; int error = 0; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); /* * Reinitialize the dump area to the new size. If we * failed to resize the dump area then restore it back to * its original size. We must set the new volsize prior * to calling dumpvp_resize() to ensure that the devices' * size(9P) is not visible by the dump subsystem. */ old_volsize = zv->zv_volsize; zvol_size_changed(zv, volsize); #ifdef ZVOL_DUMP if (zv->zv_flags & ZVOL_DUMPIFIED) { if ((error = zvol_dumpify(zv)) != 0 || (error = dumpvp_resize()) != 0) { int dumpify_error; (void) zvol_update_volsize(zv->zv_objset, old_volsize); zvol_size_changed(zv, old_volsize); dumpify_error = zvol_dumpify(zv); error = dumpify_error ? dumpify_error : error; } } #endif /* ZVOL_DUMP */ #ifdef illumos /* * Generate a LUN expansion event. */ if (error == 0) { sysevent_id_t eid; nvlist_t *attr; char *physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); (void) snprintf(physpath, MAXPATHLEN, "%s%u", ZVOL_PSEUDO_DEV, zv->zv_minor); VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, ESC_DEV_DLE, attr, &eid, DDI_SLEEP); nvlist_free(attr); kmem_free(physpath, MAXPATHLEN); } #endif /* illumos */ return (error); } int zvol_set_volsize(const char *name, uint64_t volsize) { zvol_state_t *zv = NULL; objset_t *os; int error; dmu_object_info_t doi; uint64_t readonly; boolean_t owned = B_FALSE; error = dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); if (error != 0) return (error); if (readonly) return (SET_ERROR(EROFS)); mutex_enter(&zfsdev_state_lock); zv = zvol_minor_lookup(name); if (zv == NULL || zv->zv_objset == NULL) { if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, FTAG, &os)) != 0) { mutex_exit(&zfsdev_state_lock); return (error); } owned = B_TRUE; if (zv != NULL) zv->zv_objset = os; } else { os = zv->zv_objset; } if ((error = dmu_object_info(os, ZVOL_OBJ, &doi)) != 0 || (error = zvol_check_volsize(volsize, doi.doi_data_block_size)) != 0) goto out; error = zvol_update_volsize(os, volsize); if (error == 0 && zv != NULL) error = zvol_update_live_volsize(zv, volsize); out: if (owned) { dmu_objset_disown(os, FTAG); if (zv != NULL) zv->zv_objset = NULL; } mutex_exit(&zfsdev_state_lock); return (error); } /*ARGSUSED*/ #ifdef illumos int zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr) #else static int zvol_open(struct g_provider *pp, int flag, int count) #endif { zvol_state_t *zv; int err = 0; #ifdef illumos mutex_enter(&zfsdev_state_lock); zv = zfsdev_get_soft_state(getminor(*devp), ZSST_ZVOL); if (zv == NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } if (zv->zv_total_opens == 0) err = zvol_first_open(zv); if (err) { mutex_exit(&zfsdev_state_lock); return (err); } #else /* !illumos */ boolean_t locked = B_FALSE; if (!zpool_on_zvol && tsd_get(zfs_geom_probe_vdev_key) != NULL) { /* * if zfs_geom_probe_vdev_key is set, that means that zfs is * attempting to probe geom providers while looking for a * replacement for a missing VDEV. In this case, the * spa_namespace_lock will not be held, but it is still illegal * to use a zvol as a vdev. Deadlocks can result if another * thread has spa_namespace_lock */ return (EOPNOTSUPP); } /* * Protect against recursively entering spa_namespace_lock * when spa_open() is used for a pool on a (local) ZVOL(s). * This is needed since we replaced upstream zfsdev_state_lock * with spa_namespace_lock in the ZVOL code. * We are using the same trick as spa_open(). * Note that calls in zvol_first_open which need to resolve * pool name to a spa object will enter spa_open() * recursively, but that function already has all the * necessary protection. */ if (!MUTEX_HELD(&zfsdev_state_lock)) { mutex_enter(&zfsdev_state_lock); locked = B_TRUE; } zv = pp->private; if (zv == NULL) { if (locked) mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } if (zv->zv_total_opens == 0) { err = zvol_first_open(zv); if (err) { if (locked) mutex_exit(&zfsdev_state_lock); return (err); } pp->mediasize = zv->zv_volsize; pp->stripeoffset = 0; pp->stripesize = zv->zv_volblocksize; } #endif /* illumos */ if ((flag & FWRITE) && (zv->zv_flags & ZVOL_RDONLY)) { err = SET_ERROR(EROFS); goto out; } if (zv->zv_flags & ZVOL_EXCL) { err = SET_ERROR(EBUSY); goto out; } #ifdef FEXCL if (flag & FEXCL) { if (zv->zv_total_opens != 0) { err = SET_ERROR(EBUSY); goto out; } zv->zv_flags |= ZVOL_EXCL; } #endif #ifdef illumos if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) { zv->zv_open_count[otyp]++; zv->zv_total_opens++; } mutex_exit(&zfsdev_state_lock); #else zv->zv_total_opens += count; if (locked) mutex_exit(&zfsdev_state_lock); #endif return (err); out: if (zv->zv_total_opens == 0) zvol_last_close(zv); #ifdef illumos mutex_exit(&zfsdev_state_lock); #else if (locked) mutex_exit(&zfsdev_state_lock); #endif return (err); } /*ARGSUSED*/ #ifdef illumos int zvol_close(dev_t dev, int flag, int otyp, cred_t *cr) { minor_t minor = getminor(dev); zvol_state_t *zv; int error = 0; mutex_enter(&zfsdev_state_lock); zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) { mutex_exit(&zfsdev_state_lock); #else /* !illumos */ static int zvol_close(struct g_provider *pp, int flag, int count) { zvol_state_t *zv; int error = 0; boolean_t locked = B_FALSE; /* See comment in zvol_open(). */ if (!MUTEX_HELD(&zfsdev_state_lock)) { mutex_enter(&zfsdev_state_lock); locked = B_TRUE; } zv = pp->private; if (zv == NULL) { if (locked) mutex_exit(&zfsdev_state_lock); #endif /* illumos */ return (SET_ERROR(ENXIO)); } if (zv->zv_flags & ZVOL_EXCL) { ASSERT(zv->zv_total_opens == 1); zv->zv_flags &= ~ZVOL_EXCL; } /* * If the open count is zero, this is a spurious close. * That indicates a bug in the kernel / DDI framework. */ #ifdef illumos ASSERT(zv->zv_open_count[otyp] != 0); #endif ASSERT(zv->zv_total_opens != 0); /* * You may get multiple opens, but only one close. */ #ifdef illumos zv->zv_open_count[otyp]--; zv->zv_total_opens--; #else zv->zv_total_opens -= count; #endif if (zv->zv_total_opens == 0) zvol_last_close(zv); #ifdef illumos mutex_exit(&zfsdev_state_lock); #else if (locked) mutex_exit(&zfsdev_state_lock); #endif return (error); } /* ARGSUSED */ static void zvol_get_done(zgd_t *zgd, int error) { if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); rangelock_exit(zgd->zgd_lr); kmem_free(zgd, sizeof (zgd_t)); } /* * Get data to generate a TX_WRITE intent log record. */ static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio) { zvol_state_t *zv = arg; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; /* length of user data */ dmu_buf_t *db; zgd_t *zgd; int error; ASSERT3P(lwb, !=, NULL); ASSERT3P(zio, !=, NULL); ASSERT3U(size, !=, 0); zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_lwb = lwb; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size, RL_READER); error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, DMU_READ_NO_PREFETCH); } else { /* indirect write */ /* * Have to lock the whole block to ensure when it's written out * and its checksum is being calculated that no one can change * the data. Contrarily to zfs_get_data we need not re-check * blocksize after we get the lock because it cannot be changed. */ size = zv->zv_volblocksize; offset = P2ALIGN(offset, size); zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size, RL_READER); error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *bp = &lr->lr_blkptr; zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zvol_get_done, zgd); if (error == 0) return (0); } } zvol_get_done(zgd, error); return (error); } /* * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. * * We store data in the log buffers if it's small enough. * Otherwise we will later flush the data out via dmu_sync(). */ ssize_t zvol_immediate_write_sz = 32768; #ifdef _KERNEL SYSCTL_LONG(_vfs_zfs_vol, OID_AUTO, immediate_write_sz, CTLFLAG_RWTUN, &zvol_immediate_write_sz, 0, "Minimal size for indirect log write"); #endif static void zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t resid, boolean_t sync) { uint32_t blocksize = zv->zv_volblocksize; zilog_t *zilog = zv->zv_zilog; itx_wr_state_t write_state; if (zil_replaying(zilog, tx)) return; if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) write_state = WR_INDIRECT; else if (!spa_has_slogs(zilog->zl_spa) && resid >= blocksize && blocksize > zvol_immediate_write_sz) write_state = WR_INDIRECT; else if (sync) write_state = WR_COPIED; else write_state = WR_NEED_COPY; while (resid) { itx_t *itx; lr_write_t *lr; itx_wr_state_t wr_state = write_state; ssize_t len = resid; - if (wr_state == WR_COPIED && resid > ZIL_MAX_COPIED_DATA) + if (wr_state == WR_COPIED && resid > zil_max_copied_data(zilog)) wr_state = WR_NEED_COPY; else if (wr_state == WR_INDIRECT) len = MIN(blocksize - P2PHASE(off, blocksize), resid); itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (wr_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, off, len, lr + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; wr_state = WR_NEED_COPY; } itx->itx_wr_state = wr_state; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zv; if (!sync && (zv->zv_sync_cnt == 0)) itx->itx_sync = B_FALSE; zil_itx_assign(zilog, itx, tx); off += len; resid -= len; } } #ifdef illumos static int zvol_dumpio_vdev(vdev_t *vd, void *addr, uint64_t offset, uint64_t origoffset, uint64_t size, boolean_t doread, boolean_t isdump) { vdev_disk_t *dvd; int c; int numerrors = 0; if (vd->vdev_ops == &vdev_mirror_ops || vd->vdev_ops == &vdev_replacing_ops || vd->vdev_ops == &vdev_spare_ops) { for (c = 0; c < vd->vdev_children; c++) { int err = zvol_dumpio_vdev(vd->vdev_child[c], addr, offset, origoffset, size, doread, isdump); if (err != 0) { numerrors++; } else if (doread) { break; } } } if (!vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_raidz_ops) return (numerrors < vd->vdev_children ? 0 : EIO); if (doread && !vdev_readable(vd)) return (SET_ERROR(EIO)); else if (!doread && !vdev_writeable(vd)) return (SET_ERROR(EIO)); if (vd->vdev_ops == &vdev_raidz_ops) { return (vdev_raidz_physio(vd, addr, size, offset, origoffset, doread, isdump)); } offset += VDEV_LABEL_START_SIZE; if (ddi_in_panic() || isdump) { ASSERT(!doread); if (doread) return (SET_ERROR(EIO)); dvd = vd->vdev_tsd; ASSERT3P(dvd, !=, NULL); return (ldi_dump(dvd->vd_lh, addr, lbtodb(offset), lbtodb(size))); } else { dvd = vd->vdev_tsd; ASSERT3P(dvd, !=, NULL); return (vdev_disk_ldi_physio(dvd->vd_lh, addr, size, offset, doread ? B_READ : B_WRITE)); } } static int zvol_dumpio(zvol_state_t *zv, void *addr, uint64_t offset, uint64_t size, boolean_t doread, boolean_t isdump) { vdev_t *vd; int error; zvol_extent_t *ze; spa_t *spa = dmu_objset_spa(zv->zv_objset); /* Must be sector aligned, and not stradle a block boundary. */ if (P2PHASE(offset, DEV_BSIZE) || P2PHASE(size, DEV_BSIZE) || P2BOUNDARY(offset, size, zv->zv_volblocksize)) { return (SET_ERROR(EINVAL)); } ASSERT(size <= zv->zv_volblocksize); /* Locate the extent this belongs to */ ze = list_head(&zv->zv_extents); while (offset >= ze->ze_nblks * zv->zv_volblocksize) { offset -= ze->ze_nblks * zv->zv_volblocksize; ze = list_next(&zv->zv_extents, ze); } if (ze == NULL) return (SET_ERROR(EINVAL)); if (!ddi_in_panic()) spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(spa, DVA_GET_VDEV(&ze->ze_dva)); offset += DVA_GET_OFFSET(&ze->ze_dva); error = zvol_dumpio_vdev(vd, addr, offset, DVA_GET_OFFSET(&ze->ze_dva), size, doread, isdump); if (!ddi_in_panic()) spa_config_exit(spa, SCL_STATE, FTAG); return (error); } int zvol_strategy(buf_t *bp) { zfs_soft_state_t *zs = NULL; #else /* !illumos */ void zvol_strategy(struct bio *bp) { #endif /* illumos */ zvol_state_t *zv; uint64_t off, volsize; size_t resid; char *addr; objset_t *os; int error = 0; #ifdef illumos boolean_t doread = bp->b_flags & B_READ; #else boolean_t doread = 0; #endif boolean_t is_dumpified; boolean_t sync; #ifdef illumos if (getminor(bp->b_edev) == 0) { error = SET_ERROR(EINVAL); } else { zs = ddi_get_soft_state(zfsdev_state, getminor(bp->b_edev)); if (zs == NULL) error = SET_ERROR(ENXIO); else if (zs->zss_type != ZSST_ZVOL) error = SET_ERROR(EINVAL); } if (error) { bioerror(bp, error); biodone(bp); return (0); } zv = zs->zss_data; if (!(bp->b_flags & B_READ) && (zv->zv_flags & ZVOL_RDONLY)) { bioerror(bp, EROFS); biodone(bp); return (0); } off = ldbtob(bp->b_blkno); #else /* !illumos */ if (bp->bio_to) zv = bp->bio_to->private; else zv = bp->bio_dev->si_drv2; if (zv == NULL) { error = SET_ERROR(ENXIO); goto out; } if (bp->bio_cmd != BIO_READ && (zv->zv_flags & ZVOL_RDONLY)) { error = SET_ERROR(EROFS); goto out; } switch (bp->bio_cmd) { case BIO_FLUSH: goto sync; case BIO_READ: doread = 1; case BIO_WRITE: case BIO_DELETE: break; default: error = EOPNOTSUPP; goto out; } off = bp->bio_offset; #endif /* illumos */ volsize = zv->zv_volsize; os = zv->zv_objset; ASSERT(os != NULL); #ifdef illumos bp_mapin(bp); addr = bp->b_un.b_addr; resid = bp->b_bcount; if (resid > 0 && (off < 0 || off >= volsize)) { bioerror(bp, EIO); biodone(bp); return (0); } is_dumpified = zv->zv_flags & ZVOL_DUMPIFIED; sync = ((!(bp->b_flags & B_ASYNC) && !(zv->zv_flags & ZVOL_WCE)) || (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)) && !doread && !is_dumpified; #else /* !illumos */ addr = bp->bio_data; resid = bp->bio_length; if (resid > 0 && (off < 0 || off >= volsize)) { error = SET_ERROR(EIO); goto out; } is_dumpified = B_FALSE; sync = !doread && !is_dumpified && zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; #endif /* illumos */ /* * There must be no buffer changes when doing a dmu_sync() because * we can't change the data whilst calculating the checksum. */ locked_range_t *lr = rangelock_enter(&zv->zv_rangelock, off, resid, doread ? RL_READER : RL_WRITER); #ifndef illumos if (bp->bio_cmd == BIO_DELETE) { dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { zvol_log_truncate(zv, tx, off, resid, sync); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, off, resid); resid = 0; } goto unlock; } #endif while (resid != 0 && off < volsize) { size_t size = MIN(resid, zvol_maxphys); #ifdef illumos if (is_dumpified) { size = MIN(size, P2END(off, zv->zv_volblocksize) - off); error = zvol_dumpio(zv, addr, off, size, doread, B_FALSE); } else if (doread) { #else if (doread) { #endif error = dmu_read(os, ZVOL_OBJ, off, size, addr, DMU_READ_PREFETCH); } else { dmu_tx_t *tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, size); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, off, size, addr, tx); zvol_log_write(zv, tx, off, size, sync); dmu_tx_commit(tx); } } if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } off += size; addr += size; resid -= size; } #ifndef illumos unlock: #endif rangelock_exit(lr); #ifdef illumos if ((bp->b_resid = resid) == bp->b_bcount) bioerror(bp, off > volsize ? EINVAL : error); if (sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); biodone(bp); return (0); #else /* !illumos */ bp->bio_completed = bp->bio_length - resid; if (bp->bio_completed < bp->bio_length && off > volsize) error = EINVAL; if (sync) { sync: zil_commit(zv->zv_zilog, ZVOL_OBJ); } out: if (bp->bio_to) g_io_deliver(bp, error); else biofinish(bp, NULL, error); #endif /* illumos */ } #ifdef illumos /* * Set the buffer count to the zvol maximum transfer. * Using our own routine instead of the default minphys() * means that for larger writes we write bigger buffers on X86 * (128K instead of 56K) and flush the disk write cache less often * (every zvol_maxphys - currently 1MB) instead of minphys (currently * 56K on X86 and 128K on sparc). */ void zvol_minphys(struct buf *bp) { if (bp->b_bcount > zvol_maxphys) bp->b_bcount = zvol_maxphys; } int zvol_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblocks) { minor_t minor = getminor(dev); zvol_state_t *zv; int error = 0; uint64_t size; uint64_t boff; uint64_t resid; zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); if ((zv->zv_flags & ZVOL_DUMPIFIED) == 0) return (SET_ERROR(EINVAL)); boff = ldbtob(blkno); resid = ldbtob(nblocks); VERIFY3U(boff + resid, <=, zv->zv_volsize); while (resid) { size = MIN(resid, P2END(boff, zv->zv_volblocksize) - boff); error = zvol_dumpio(zv, addr, boff, size, B_FALSE, B_TRUE); if (error) break; boff += size; addr += size; resid -= size; } return (error); } /*ARGSUSED*/ int zvol_read(dev_t dev, uio_t *uio, cred_t *cr) { minor_t minor = getminor(dev); #else /* !illumos */ int zvol_read(struct cdev *dev, struct uio *uio, int ioflag) { #endif /* illumos */ zvol_state_t *zv; uint64_t volsize; int error = 0; #ifdef illumos zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); #else zv = dev->si_drv2; #endif volsize = zv->zv_volsize; /* uio_loffset == volsize isn't an error as its required for EOF processing. */ if (uio->uio_resid > 0 && (uio->uio_loffset < 0 || uio->uio_loffset > volsize)) return (SET_ERROR(EIO)); #ifdef illumos if (zv->zv_flags & ZVOL_DUMPIFIED) { error = physio(zvol_strategy, NULL, dev, B_READ, zvol_minphys, uio); return (error); } #endif locked_range_t *lr = rangelock_enter(&zv->zv_rangelock, uio->uio_loffset, uio->uio_resid, RL_READER); while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); /* don't read past the end */ if (bytes > volsize - uio->uio_loffset) bytes = volsize - uio->uio_loffset; error = dmu_read_uio_dnode(zv->zv_dn, uio, bytes); if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } } rangelock_exit(lr); return (error); } #ifdef illumos /*ARGSUSED*/ int zvol_write(dev_t dev, uio_t *uio, cred_t *cr) { minor_t minor = getminor(dev); #else /* !illumos */ int zvol_write(struct cdev *dev, struct uio *uio, int ioflag) { #endif /* illumos */ zvol_state_t *zv; uint64_t volsize; int error = 0; boolean_t sync; #ifdef illumos zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); #else zv = dev->si_drv2; #endif volsize = zv->zv_volsize; /* uio_loffset == volsize isn't an error as its required for EOF processing. */ if (uio->uio_resid > 0 && (uio->uio_loffset < 0 || uio->uio_loffset > volsize)) return (SET_ERROR(EIO)); #ifdef illumos if (zv->zv_flags & ZVOL_DUMPIFIED) { error = physio(zvol_strategy, NULL, dev, B_WRITE, zvol_minphys, uio); return (error); } sync = !(zv->zv_flags & ZVOL_WCE) || #else sync = (ioflag & IO_SYNC) || #endif (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS); locked_range_t *lr = rangelock_enter(&zv->zv_rangelock, uio->uio_loffset, uio->uio_resid, RL_WRITER); while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); uint64_t off = uio->uio_loffset; dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); if (bytes > volsize - off) /* don't write past the end */ bytes = volsize - off; dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); break; } error = dmu_write_uio_dnode(zv->zv_dn, uio, bytes, tx); if (error == 0) zvol_log_write(zv, tx, off, bytes, sync); dmu_tx_commit(tx); if (error) break; } rangelock_exit(lr); if (sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); return (error); } #ifdef illumos int zvol_getefi(void *arg, int flag, uint64_t vs, uint8_t bs) { struct uuid uuid = EFI_RESERVED; efi_gpe_t gpe = { 0 }; uint32_t crc; dk_efi_t efi; int length; char *ptr; if (ddi_copyin(arg, &efi, sizeof (dk_efi_t), flag)) return (SET_ERROR(EFAULT)); ptr = (char *)(uintptr_t)efi.dki_data_64; length = efi.dki_length; /* * Some clients may attempt to request a PMBR for the * zvol. Currently this interface will return EINVAL to * such requests. These requests could be supported by * adding a check for lba == 0 and consing up an appropriate * PMBR. */ if (efi.dki_lba < 1 || efi.dki_lba > 2 || length <= 0) return (SET_ERROR(EINVAL)); gpe.efi_gpe_StartingLBA = LE_64(34ULL); gpe.efi_gpe_EndingLBA = LE_64((vs >> bs) - 1); UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); if (efi.dki_lba == 1) { efi_gpt_t gpt = { 0 }; gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE); gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt)); gpt.efi_gpt_MyLBA = LE_64(1ULL); gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL); gpt.efi_gpt_LastUsableLBA = LE_64((vs >> bs) - 1); gpt.efi_gpt_PartitionEntryLBA = LE_64(2ULL); gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1); gpt.efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table); gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table); gpt.efi_gpt_HeaderCRC32 = LE_32(~crc); if (ddi_copyout(&gpt, ptr, MIN(sizeof (gpt), length), flag)) return (SET_ERROR(EFAULT)); ptr += sizeof (gpt); length -= sizeof (gpt); } if (length > 0 && ddi_copyout(&gpe, ptr, MIN(sizeof (gpe), length), flag)) return (SET_ERROR(EFAULT)); return (0); } /* * BEGIN entry points to allow external callers access to the volume. */ /* * Return the volume parameters needed for access from an external caller. * These values are invariant as long as the volume is held open. */ int zvol_get_volume_params(minor_t minor, uint64_t *blksize, uint64_t *max_xfer_len, void **minor_hdl, void **objset_hdl, void **zil_hdl, void **rl_hdl, void **dnode_hdl) { zvol_state_t *zv; zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); if (zv->zv_flags & ZVOL_DUMPIFIED) return (SET_ERROR(ENXIO)); ASSERT(blksize && max_xfer_len && minor_hdl && objset_hdl && zil_hdl && rl_hdl && dnode_hdl); *blksize = zv->zv_volblocksize; *max_xfer_len = (uint64_t)zvol_maxphys; *minor_hdl = zv; *objset_hdl = zv->zv_objset; *zil_hdl = zv->zv_zilog; *rl_hdl = &zv->zv_rangelock; *dnode_hdl = zv->zv_dn; return (0); } /* * Return the current volume size to an external caller. * The size can change while the volume is open. */ uint64_t zvol_get_volume_size(void *minor_hdl) { zvol_state_t *zv = minor_hdl; return (zv->zv_volsize); } /* * Return the current WCE setting to an external caller. * The WCE setting can change while the volume is open. */ int zvol_get_volume_wce(void *minor_hdl) { zvol_state_t *zv = minor_hdl; return ((zv->zv_flags & ZVOL_WCE) ? 1 : 0); } /* * Entry point for external callers to zvol_log_write */ void zvol_log_write_minor(void *minor_hdl, dmu_tx_t *tx, offset_t off, ssize_t resid, boolean_t sync) { zvol_state_t *zv = minor_hdl; zvol_log_write(zv, tx, off, resid, sync); } /* * END entry points to allow external callers access to the volume. */ #endif /* illumos */ /* * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. */ static void zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, boolean_t sync) { itx_t *itx; lr_truncate_t *lr; zilog_t *zilog = zv->zv_zilog; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = (sync || zv->zv_sync_cnt != 0); zil_itx_assign(zilog, itx, tx); } #ifdef illumos /* * Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I). * Also a dirtbag dkio ioctl for unmap/free-block functionality. */ /*ARGSUSED*/ int zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zvol_state_t *zv; struct dk_callback *dkc; int error = 0; locked_range_t *lr; mutex_enter(&zfsdev_state_lock); zv = zfsdev_get_soft_state(getminor(dev), ZSST_ZVOL); if (zv == NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } ASSERT(zv->zv_total_opens > 0); switch (cmd) { case DKIOCINFO: { struct dk_cinfo dki; bzero(&dki, sizeof (dki)); (void) strcpy(dki.dki_cname, "zvol"); (void) strcpy(dki.dki_dname, "zvol"); dki.dki_ctype = DKC_UNKNOWN; dki.dki_unit = getminor(dev); dki.dki_maxtransfer = 1 << (SPA_OLD_MAXBLOCKSHIFT - zv->zv_min_bs); mutex_exit(&zfsdev_state_lock); if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag)) error = SET_ERROR(EFAULT); return (error); } case DKIOCGMEDIAINFO: { struct dk_minfo dkm; bzero(&dkm, sizeof (dkm)); dkm.dki_lbsize = 1U << zv->zv_min_bs; dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; dkm.dki_media_type = DK_UNKNOWN; mutex_exit(&zfsdev_state_lock); if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag)) error = SET_ERROR(EFAULT); return (error); } case DKIOCGMEDIAINFOEXT: { struct dk_minfo_ext dkmext; bzero(&dkmext, sizeof (dkmext)); dkmext.dki_lbsize = 1U << zv->zv_min_bs; dkmext.dki_pbsize = zv->zv_volblocksize; dkmext.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; dkmext.dki_media_type = DK_UNKNOWN; mutex_exit(&zfsdev_state_lock); if (ddi_copyout(&dkmext, (void *)arg, sizeof (dkmext), flag)) error = SET_ERROR(EFAULT); return (error); } case DKIOCGETEFI: { uint64_t vs = zv->zv_volsize; uint8_t bs = zv->zv_min_bs; mutex_exit(&zfsdev_state_lock); error = zvol_getefi((void *)arg, flag, vs, bs); return (error); } case DKIOCFLUSHWRITECACHE: dkc = (struct dk_callback *)arg; mutex_exit(&zfsdev_state_lock); zil_commit(zv->zv_zilog, ZVOL_OBJ); if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) { (*dkc->dkc_callback)(dkc->dkc_cookie, error); error = 0; } return (error); case DKIOCGETWCE: { int wce = (zv->zv_flags & ZVOL_WCE) ? 1 : 0; if (ddi_copyout(&wce, (void *)arg, sizeof (int), flag)) error = SET_ERROR(EFAULT); break; } case DKIOCSETWCE: { int wce; if (ddi_copyin((void *)arg, &wce, sizeof (int), flag)) { error = SET_ERROR(EFAULT); break; } if (wce) { zv->zv_flags |= ZVOL_WCE; mutex_exit(&zfsdev_state_lock); } else { zv->zv_flags &= ~ZVOL_WCE; mutex_exit(&zfsdev_state_lock); zil_commit(zv->zv_zilog, ZVOL_OBJ); } return (0); } case DKIOCGGEOM: case DKIOCGVTOC: /* * commands using these (like prtvtoc) expect ENOTSUP * since we're emulating an EFI label */ error = SET_ERROR(ENOTSUP); break; case DKIOCDUMPINIT: lr = rangelock_enter(&zv->zv_rangelock, 0, zv->zv_volsize, RL_WRITER); error = zvol_dumpify(zv); rangelock_exit(lr); break; case DKIOCDUMPFINI: if (!(zv->zv_flags & ZVOL_DUMPIFIED)) break; lr = rangelock_enter(&zv->zv_rangelock, 0, zv->zv_volsize, RL_WRITER); error = zvol_dump_fini(zv); rangelock_exit(lr); break; case DKIOCFREE: { dkioc_free_list_t *dfl; dmu_tx_t *tx; if (!zvol_unmap_enabled) break; if (!(flag & FKIOCTL)) { error = dfl_copyin((void *)arg, &dfl, flag, KM_SLEEP); if (error != 0) break; } else { dfl = (dkioc_free_list_t *)arg; ASSERT3U(dfl->dfl_num_exts, <=, DFL_COPYIN_MAX_EXTS); if (dfl->dfl_num_exts > DFL_COPYIN_MAX_EXTS) { error = SET_ERROR(EINVAL); break; } } mutex_exit(&zfsdev_state_lock); for (int i = 0; i < dfl->dfl_num_exts; i++) { uint64_t start = dfl->dfl_exts[i].dfle_start, length = dfl->dfl_exts[i].dfle_length, end = start + length; /* * Apply Postel's Law to length-checking. If they * overshoot, just blank out until the end, if there's * a need to blank out anything. */ if (start >= zv->zv_volsize) continue; /* No need to do anything... */ if (end > zv->zv_volsize) { end = DMU_OBJECT_END; length = end - start; } lr = rangelock_enter(&zv->zv_rangelock, start, length, RL_WRITER); tx = dmu_tx_create(zv->zv_objset); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { zvol_log_truncate(zv, tx, start, length, B_TRUE); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, start, length); } rangelock_exit(lr); if (error != 0) break; } /* * If the write-cache is disabled, 'sync' property * is set to 'always', or if the caller is asking for * a synchronous free, commit this operation to the zil. * This will sync any previous uncommitted writes to the * zvol object. * Can be overridden by the zvol_unmap_sync_enabled tunable. */ if ((error == 0) && zvol_unmap_sync_enabled && (!(zv->zv_flags & ZVOL_WCE) || (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS) || (dfl->dfl_flags & DF_WAIT_SYNC))) { zil_commit(zv->zv_zilog, ZVOL_OBJ); } if (!(flag & FKIOCTL)) dfl_free(dfl); return (error); } default: error = SET_ERROR(ENOTTY); break; } mutex_exit(&zfsdev_state_lock); return (error); } #endif /* illumos */ int zvol_busy(void) { return (zvol_minors != 0); } void zvol_init(void) { VERIFY(ddi_soft_state_init(&zfsdev_state, sizeof (zfs_soft_state_t), 1) == 0); #ifdef illumos mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); #else ZFS_LOG(1, "ZVOL Initialized."); #endif } void zvol_fini(void) { #ifdef illumos mutex_destroy(&zfsdev_state_lock); #endif ddi_soft_state_fini(&zfsdev_state); ZFS_LOG(1, "ZVOL Deinitialized."); } #ifdef illumos /*ARGSUSED*/ static int zfs_mvdev_dump_feature_check(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; if (spa_feature_is_active(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP)) return (1); return (0); } /*ARGSUSED*/ static void zfs_mvdev_dump_activate_feature_sync(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; spa_feature_incr(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, tx); } static int zvol_dump_init(zvol_state_t *zv, boolean_t resize) { dmu_tx_t *tx; int error; objset_t *os = zv->zv_objset; spa_t *spa = dmu_objset_spa(os); vdev_t *vd = spa->spa_root_vdev; nvlist_t *nv = NULL; uint64_t version = spa_version(spa); uint64_t checksum, compress, refresrv, vbs, dedup; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); ASSERT(vd->vdev_ops == &vdev_root_ops); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, 0, DMU_OBJECT_END); if (error != 0) return (error); /* wait for dmu_free_long_range to actually free the blocks */ txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); /* * If the pool on which the dump device is being initialized has more * than one child vdev, check that the MULTI_VDEV_CRASH_DUMP feature is * enabled. If so, bump that feature's counter to indicate that the * feature is active. We also check the vdev type to handle the * following case: * # zpool create test raidz disk1 disk2 disk3 * Now have spa_root_vdev->vdev_children == 1 (the raidz vdev), * the raidz vdev itself has 3 children. */ if (vd->vdev_children > 1 || vd->vdev_ops == &vdev_raidz_ops) { if (!spa_feature_is_enabled(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP)) return (SET_ERROR(ENOTSUP)); (void) dsl_sync_task(spa_name(spa), zfs_mvdev_dump_feature_check, zfs_mvdev_dump_activate_feature_sync, NULL, 2, ZFS_SPACE_CHECK_RESERVED); } if (!resize) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_COMPRESSION), &compress, NULL); if (error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_CHECKSUM), &checksum, NULL); } if (error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &refresrv, NULL); } if (error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &vbs, NULL); } if (version >= SPA_VERSION_DEDUP && error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_DEDUP), &dedup, NULL); } } if (error != 0) return (error); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_hold_bonus(tx, ZVOL_OBJ); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); return (error); } /* * If we are resizing the dump device then we only need to * update the refreservation to match the newly updated * zvolsize. Otherwise, we save off the original state of the * zvol so that we can restore them if the zvol is ever undumpified. */ if (resize) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &zv->zv_volsize, tx); } else { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress, tx); if (error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum, tx); } if (error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv, tx); } if (error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, &vbs, tx); } if (error == 0) { error = dmu_object_set_blocksize( os, ZVOL_OBJ, SPA_OLD_MAXBLOCKSIZE, 0, tx); } if (version >= SPA_VERSION_DEDUP && error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_DEDUP), 8, 1, &dedup, tx); } if (error == 0) zv->zv_volblocksize = SPA_OLD_MAXBLOCKSIZE; } dmu_tx_commit(tx); /* * We only need update the zvol's property if we are initializing * the dump area for the first time. */ if (error == 0 && !resize) { /* * If MULTI_VDEV_CRASH_DUMP is active, use the NOPARITY checksum * function. Otherwise, use the old default -- OFF. */ checksum = spa_feature_is_active(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP) ? ZIO_CHECKSUM_NOPARITY : ZIO_CHECKSUM_OFF; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 0) == 0); VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_COMPRESSION), ZIO_COMPRESS_OFF) == 0); VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum) == 0); if (version >= SPA_VERSION_DEDUP) { VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_DEDUP), ZIO_CHECKSUM_OFF) == 0); } error = zfs_set_prop_nvlist(zv->zv_name, ZPROP_SRC_LOCAL, nv, NULL); nvlist_free(nv); } /* Allocate the space for the dump */ if (error == 0) error = zvol_prealloc(zv); return (error); } static int zvol_dumpify(zvol_state_t *zv) { int error = 0; uint64_t dumpsize = 0; dmu_tx_t *tx; objset_t *os = zv->zv_objset; if (zv->zv_flags & ZVOL_RDONLY) return (SET_ERROR(EROFS)); if (zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1, &dumpsize) != 0 || dumpsize != zv->zv_volsize) { boolean_t resize = (dumpsize > 0); if ((error = zvol_dump_init(zv, resize)) != 0) { (void) zvol_dump_fini(zv); return (error); } } /* * Build up our lba mapping. */ error = zvol_get_lbas(zv); if (error) { (void) zvol_dump_fini(zv); return (error); } tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); (void) zvol_dump_fini(zv); return (error); } zv->zv_flags |= ZVOL_DUMPIFIED; error = zap_update(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1, &zv->zv_volsize, tx); dmu_tx_commit(tx); if (error) { (void) zvol_dump_fini(zv); return (error); } txg_wait_synced(dmu_objset_pool(os), 0); return (0); } static int zvol_dump_fini(zvol_state_t *zv) { dmu_tx_t *tx; objset_t *os = zv->zv_objset; nvlist_t *nv; int error = 0; uint64_t checksum, compress, refresrv, vbs, dedup; uint64_t version = spa_version(dmu_objset_spa(zv->zv_objset)); /* * Attempt to restore the zvol back to its pre-dumpified state. * This is a best-effort attempt as it's possible that not all * of these properties were initialized during the dumpify process * (i.e. error during zvol_dump_init). */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } (void) zap_remove(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, tx); dmu_tx_commit(tx); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, &vbs); VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum); (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_COMPRESSION), compress); (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), refresrv); if (version >= SPA_VERSION_DEDUP && zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_DEDUP), 8, 1, &dedup) == 0) { (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_DEDUP), dedup); } (void) zfs_set_prop_nvlist(zv->zv_name, ZPROP_SRC_LOCAL, nv, NULL); nvlist_free(nv); zvol_free_extents(zv); zv->zv_flags &= ~ZVOL_DUMPIFIED; (void) dmu_free_long_range(os, ZVOL_OBJ, 0, DMU_OBJECT_END); /* wait for dmu_free_long_range to actually free the blocks */ txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, ZVOL_OBJ); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } if (dmu_object_set_blocksize(os, ZVOL_OBJ, vbs, 0, tx) == 0) zv->zv_volblocksize = vbs; dmu_tx_commit(tx); return (0); } #else /* !illumos */ static void zvol_geom_run(zvol_state_t *zv) { struct g_provider *pp; pp = zv->zv_provider; g_error_provider(pp, 0); kproc_kthread_add(zvol_geom_worker, zv, &system_proc, NULL, 0, 0, "zfskern", "zvol %s", pp->name + sizeof(ZVOL_DRIVER)); } static void zvol_geom_destroy(zvol_state_t *zv) { struct g_provider *pp; g_topology_assert(); mtx_lock(&zv->zv_queue_mtx); zv->zv_state = 1; wakeup_one(&zv->zv_queue); while (zv->zv_state != 2) msleep(&zv->zv_state, &zv->zv_queue_mtx, 0, "zvol:w", 0); mtx_destroy(&zv->zv_queue_mtx); pp = zv->zv_provider; zv->zv_provider = NULL; pp->private = NULL; g_wither_geom(pp->geom, ENXIO); } static int zvol_geom_access(struct g_provider *pp, int acr, int acw, int ace) { int count, error, flags; g_topology_assert(); /* * To make it easier we expect either open or close, but not both * at the same time. */ KASSERT((acr >= 0 && acw >= 0 && ace >= 0) || (acr <= 0 && acw <= 0 && ace <= 0), ("Unsupported access request to %s (acr=%d, acw=%d, ace=%d).", pp->name, acr, acw, ace)); if (pp->private == NULL) { if (acr <= 0 && acw <= 0 && ace <= 0) return (0); return (pp->error); } /* * We don't pass FEXCL flag to zvol_open()/zvol_close() if ace != 0, * because GEOM already handles that and handles it a bit differently. * GEOM allows for multiple read/exclusive consumers and ZFS allows * only one exclusive consumer, no matter if it is reader or writer. * I like better the way GEOM works so I'll leave it for GEOM to * decide what to do. */ count = acr + acw + ace; if (count == 0) return (0); flags = 0; if (acr != 0 || ace != 0) flags |= FREAD; if (acw != 0) flags |= FWRITE; g_topology_unlock(); if (count > 0) error = zvol_open(pp, flags, count); else error = zvol_close(pp, flags, -count); g_topology_lock(); return (error); } static void zvol_geom_start(struct bio *bp) { zvol_state_t *zv; boolean_t first; zv = bp->bio_to->private; ASSERT(zv != NULL); switch (bp->bio_cmd) { case BIO_FLUSH: if (!THREAD_CAN_SLEEP()) goto enqueue; zil_commit(zv->zv_zilog, ZVOL_OBJ); g_io_deliver(bp, 0); break; case BIO_READ: case BIO_WRITE: case BIO_DELETE: if (!THREAD_CAN_SLEEP()) goto enqueue; zvol_strategy(bp); break; case BIO_GETATTR: { spa_t *spa = dmu_objset_spa(zv->zv_objset); uint64_t refd, avail, usedobjs, availobjs, val; if (g_handleattr_int(bp, "GEOM::candelete", 1)) return; if (strcmp(bp->bio_attribute, "blocksavail") == 0) { dmu_objset_space(zv->zv_objset, &refd, &avail, &usedobjs, &availobjs); if (g_handleattr_off_t(bp, "blocksavail", avail / DEV_BSIZE)) return; } else if (strcmp(bp->bio_attribute, "blocksused") == 0) { dmu_objset_space(zv->zv_objset, &refd, &avail, &usedobjs, &availobjs); if (g_handleattr_off_t(bp, "blocksused", refd / DEV_BSIZE)) return; } else if (strcmp(bp->bio_attribute, "poolblocksavail") == 0) { avail = metaslab_class_get_space(spa_normal_class(spa)); avail -= metaslab_class_get_alloc(spa_normal_class(spa)); if (g_handleattr_off_t(bp, "poolblocksavail", avail / DEV_BSIZE)) return; } else if (strcmp(bp->bio_attribute, "poolblocksused") == 0) { refd = metaslab_class_get_alloc(spa_normal_class(spa)); if (g_handleattr_off_t(bp, "poolblocksused", refd / DEV_BSIZE)) return; } /* FALLTHROUGH */ } default: g_io_deliver(bp, EOPNOTSUPP); break; } return; enqueue: mtx_lock(&zv->zv_queue_mtx); first = (bioq_first(&zv->zv_queue) == NULL); bioq_insert_tail(&zv->zv_queue, bp); mtx_unlock(&zv->zv_queue_mtx); if (first) wakeup_one(&zv->zv_queue); } static void zvol_geom_worker(void *arg) { zvol_state_t *zv; struct bio *bp; thread_lock(curthread); sched_prio(curthread, PRIBIO); thread_unlock(curthread); zv = arg; for (;;) { mtx_lock(&zv->zv_queue_mtx); bp = bioq_takefirst(&zv->zv_queue); if (bp == NULL) { if (zv->zv_state == 1) { zv->zv_state = 2; wakeup(&zv->zv_state); mtx_unlock(&zv->zv_queue_mtx); kthread_exit(); } msleep(&zv->zv_queue, &zv->zv_queue_mtx, PRIBIO | PDROP, "zvol:io", 0); continue; } mtx_unlock(&zv->zv_queue_mtx); switch (bp->bio_cmd) { case BIO_FLUSH: zil_commit(zv->zv_zilog, ZVOL_OBJ); g_io_deliver(bp, 0); break; case BIO_READ: case BIO_WRITE: case BIO_DELETE: zvol_strategy(bp); break; default: g_io_deliver(bp, EOPNOTSUPP); break; } } } extern boolean_t dataset_name_hidden(const char *name); static int zvol_create_snapshots(objset_t *os, const char *name) { uint64_t cookie, obj; char *sname; int error, len; cookie = obj = 0; sname = kmem_alloc(MAXPATHLEN, KM_SLEEP); #if 0 (void) dmu_objset_find(name, dmu_objset_prefetch, NULL, DS_FIND_SNAPSHOTS); #endif for (;;) { len = snprintf(sname, MAXPATHLEN, "%s@", name); if (len >= MAXPATHLEN) { dmu_objset_rele(os, FTAG); error = ENAMETOOLONG; break; } dsl_pool_config_enter(dmu_objset_pool(os), FTAG); error = dmu_snapshot_list_next(os, MAXPATHLEN - len, sname + len, &obj, &cookie, NULL); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (error != 0) { if (error == ENOENT) error = 0; break; } error = zvol_create_minor(sname); if (error != 0 && error != EEXIST) { printf("ZFS WARNING: Unable to create ZVOL %s (error=%d).\n", sname, error); break; } } kmem_free(sname, MAXPATHLEN); return (error); } int zvol_create_minors(const char *name) { uint64_t cookie; objset_t *os; char *osname, *p; int error, len; if (dataset_name_hidden(name)) return (0); if ((error = dmu_objset_hold(name, FTAG, &os)) != 0) { printf("ZFS WARNING: Unable to put hold on %s (error=%d).\n", name, error); return (error); } if (dmu_objset_type(os) == DMU_OST_ZVOL) { dsl_dataset_long_hold(os->os_dsl_dataset, FTAG); dsl_pool_rele(dmu_objset_pool(os), FTAG); error = zvol_create_minor(name); if (error == 0 || error == EEXIST) { error = zvol_create_snapshots(os, name); } else { printf("ZFS WARNING: Unable to create ZVOL %s (error=%d).\n", name, error); } dsl_dataset_long_rele(os->os_dsl_dataset, FTAG); dsl_dataset_rele(os->os_dsl_dataset, FTAG); return (error); } if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (0); } osname = kmem_alloc(MAXPATHLEN, KM_SLEEP); if (snprintf(osname, MAXPATHLEN, "%s/", name) >= MAXPATHLEN) { dmu_objset_rele(os, FTAG); kmem_free(osname, MAXPATHLEN); return (ENOENT); } p = osname + strlen(osname); len = MAXPATHLEN - (p - osname); #if 0 /* Prefetch the datasets. */ cookie = 0; while (dmu_dir_list_next(os, len, p, NULL, &cookie) == 0) { if (!dataset_name_hidden(osname)) (void) dmu_objset_prefetch(osname, NULL); } #endif cookie = 0; while (dmu_dir_list_next(os, MAXPATHLEN - (p - osname), p, NULL, &cookie) == 0) { dmu_objset_rele(os, FTAG); (void)zvol_create_minors(osname); if ((error = dmu_objset_hold(name, FTAG, &os)) != 0) { printf("ZFS WARNING: Unable to put hold on %s (error=%d).\n", name, error); return (error); } } dmu_objset_rele(os, FTAG); kmem_free(osname, MAXPATHLEN); return (0); } static void zvol_rename_minor(zvol_state_t *zv, const char *newname) { struct g_geom *gp; struct g_provider *pp; struct cdev *dev; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); if (zv->zv_volmode == ZFS_VOLMODE_GEOM) { g_topology_lock(); pp = zv->zv_provider; ASSERT(pp != NULL); gp = pp->geom; ASSERT(gp != NULL); zv->zv_provider = NULL; g_wither_provider(pp, ENXIO); pp = g_new_providerf(gp, "%s/%s", ZVOL_DRIVER, newname); pp->flags |= G_PF_DIRECT_RECEIVE | G_PF_DIRECT_SEND; pp->sectorsize = DEV_BSIZE; pp->mediasize = zv->zv_volsize; pp->private = zv; zv->zv_provider = pp; g_error_provider(pp, 0); g_topology_unlock(); } else if (zv->zv_volmode == ZFS_VOLMODE_DEV) { struct make_dev_args args; if ((dev = zv->zv_dev) != NULL) { zv->zv_dev = NULL; destroy_dev(dev); if (zv->zv_total_opens > 0) { zv->zv_flags &= ~ZVOL_EXCL; zv->zv_total_opens = 0; zvol_last_close(zv); } } make_dev_args_init(&args); args.mda_flags = MAKEDEV_CHECKNAME | MAKEDEV_WAITOK; args.mda_devsw = &zvol_cdevsw; args.mda_cr = NULL; args.mda_uid = UID_ROOT; args.mda_gid = GID_OPERATOR; args.mda_mode = 0640; args.mda_si_drv2 = zv; if (make_dev_s(&args, &zv->zv_dev, "%s/%s", ZVOL_DRIVER, newname) == 0) zv->zv_dev->si_iosize_max = MAXPHYS; } strlcpy(zv->zv_name, newname, sizeof(zv->zv_name)); } void zvol_rename_minors(const char *oldname, const char *newname) { char name[MAXPATHLEN]; struct g_provider *pp; struct g_geom *gp; size_t oldnamelen, newnamelen; zvol_state_t *zv; char *namebuf; boolean_t locked = B_FALSE; oldnamelen = strlen(oldname); newnamelen = strlen(newname); DROP_GIANT(); /* See comment in zvol_open(). */ if (!MUTEX_HELD(&zfsdev_state_lock)) { mutex_enter(&zfsdev_state_lock); locked = B_TRUE; } LIST_FOREACH(zv, &all_zvols, zv_links) { if (strcmp(zv->zv_name, oldname) == 0) { zvol_rename_minor(zv, newname); } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && (zv->zv_name[oldnamelen] == '/' || zv->zv_name[oldnamelen] == '@')) { snprintf(name, sizeof(name), "%s%c%s", newname, zv->zv_name[oldnamelen], zv->zv_name + oldnamelen + 1); zvol_rename_minor(zv, name); } } if (locked) mutex_exit(&zfsdev_state_lock); PICKUP_GIANT(); } static int zvol_d_open(struct cdev *dev, int flags, int fmt, struct thread *td) { zvol_state_t *zv = dev->si_drv2; int err = 0; mutex_enter(&zfsdev_state_lock); if (zv->zv_total_opens == 0) err = zvol_first_open(zv); if (err) { mutex_exit(&zfsdev_state_lock); return (err); } if ((flags & FWRITE) && (zv->zv_flags & ZVOL_RDONLY)) { err = SET_ERROR(EROFS); goto out; } if (zv->zv_flags & ZVOL_EXCL) { err = SET_ERROR(EBUSY); goto out; } #ifdef FEXCL if (flags & FEXCL) { if (zv->zv_total_opens != 0) { err = SET_ERROR(EBUSY); goto out; } zv->zv_flags |= ZVOL_EXCL; } #endif zv->zv_total_opens++; if (flags & (FSYNC | FDSYNC)) { zv->zv_sync_cnt++; if (zv->zv_sync_cnt == 1) zil_async_to_sync(zv->zv_zilog, ZVOL_OBJ); } mutex_exit(&zfsdev_state_lock); return (err); out: if (zv->zv_total_opens == 0) zvol_last_close(zv); mutex_exit(&zfsdev_state_lock); return (err); } static int zvol_d_close(struct cdev *dev, int flags, int fmt, struct thread *td) { zvol_state_t *zv = dev->si_drv2; mutex_enter(&zfsdev_state_lock); if (zv->zv_flags & ZVOL_EXCL) { ASSERT(zv->zv_total_opens == 1); zv->zv_flags &= ~ZVOL_EXCL; } /* * If the open count is zero, this is a spurious close. * That indicates a bug in the kernel / DDI framework. */ ASSERT(zv->zv_total_opens != 0); /* * You may get multiple opens, but only one close. */ zv->zv_total_opens--; if (flags & (FSYNC | FDSYNC)) zv->zv_sync_cnt--; if (zv->zv_total_opens == 0) zvol_last_close(zv); mutex_exit(&zfsdev_state_lock); return (0); } static int zvol_d_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) { zvol_state_t *zv; locked_range_t *lr; off_t offset, length; int i, error; boolean_t sync; zv = dev->si_drv2; error = 0; KASSERT(zv->zv_total_opens > 0, ("Device with zero access count in zvol_d_ioctl")); i = IOCPARM_LEN(cmd); switch (cmd) { case DIOCGSECTORSIZE: *(u_int *)data = DEV_BSIZE; break; case DIOCGMEDIASIZE: *(off_t *)data = zv->zv_volsize; break; case DIOCGFLUSH: zil_commit(zv->zv_zilog, ZVOL_OBJ); break; case DIOCGDELETE: if (!zvol_unmap_enabled) break; offset = ((off_t *)data)[0]; length = ((off_t *)data)[1]; if ((offset % DEV_BSIZE) != 0 || (length % DEV_BSIZE) != 0 || offset < 0 || offset >= zv->zv_volsize || length <= 0) { printf("%s: offset=%jd length=%jd\n", __func__, offset, length); error = EINVAL; break; } lr = rangelock_enter(&zv->zv_rangelock, offset, length, RL_WRITER); dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { sync = FALSE; dmu_tx_abort(tx); } else { sync = (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS); zvol_log_truncate(zv, tx, offset, length, sync); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length); } rangelock_exit(lr); if (sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); break; case DIOCGSTRIPESIZE: *(off_t *)data = zv->zv_volblocksize; break; case DIOCGSTRIPEOFFSET: *(off_t *)data = 0; break; case DIOCGATTR: { spa_t *spa = dmu_objset_spa(zv->zv_objset); struct diocgattr_arg *arg = (struct diocgattr_arg *)data; uint64_t refd, avail, usedobjs, availobjs; if (strcmp(arg->name, "GEOM::candelete") == 0) arg->value.i = 1; else if (strcmp(arg->name, "blocksavail") == 0) { dmu_objset_space(zv->zv_objset, &refd, &avail, &usedobjs, &availobjs); arg->value.off = avail / DEV_BSIZE; } else if (strcmp(arg->name, "blocksused") == 0) { dmu_objset_space(zv->zv_objset, &refd, &avail, &usedobjs, &availobjs); arg->value.off = refd / DEV_BSIZE; } else if (strcmp(arg->name, "poolblocksavail") == 0) { avail = metaslab_class_get_space(spa_normal_class(spa)); avail -= metaslab_class_get_alloc(spa_normal_class(spa)); arg->value.off = avail / DEV_BSIZE; } else if (strcmp(arg->name, "poolblocksused") == 0) { refd = metaslab_class_get_alloc(spa_normal_class(spa)); arg->value.off = refd / DEV_BSIZE; } else error = ENOIOCTL; break; } case FIOSEEKHOLE: case FIOSEEKDATA: { off_t *off = (off_t *)data; uint64_t noff; boolean_t hole; hole = (cmd == FIOSEEKHOLE); noff = *off; error = dmu_offset_next(zv->zv_objset, ZVOL_OBJ, hole, &noff); *off = noff; break; } default: error = ENOIOCTL; } return (error); } #endif /* illumos */