Index: head/sys/cam/cam.h =================================================================== --- head/sys/cam/cam.h (revision 358889) +++ head/sys/cam/cam.h (revision 358890) @@ -1,415 +1,413 @@ /*- * Data structures and definitions for the CAM system. * * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _CAM_CAM_H #define _CAM_CAM_H 1 #ifdef _KERNEL #include "opt_cam.h" #endif #include typedef u_int path_id_t; typedef u_int target_id_t; typedef u_int64_t lun_id_t; #define CAM_XPT_PATH_ID ((path_id_t)~0) #define CAM_BUS_WILDCARD ((path_id_t)~0) #define CAM_TARGET_WILDCARD ((target_id_t)~0) #define CAM_LUN_WILDCARD (~(u_int)0) #define CAM_EXTLUN_BYTE_SWIZZLE(lun) ( \ ((((u_int64_t)lun) & 0xffff000000000000L) >> 48) | \ ((((u_int64_t)lun) & 0x0000ffff00000000L) >> 16) | \ ((((u_int64_t)lun) & 0x00000000ffff0000L) << 16) | \ ((((u_int64_t)lun) & 0x000000000000ffffL) << 48)) /* * Maximum length for a CAM CDB. */ #define CAM_MAX_CDBLEN 16 /* * Definition of a CAM peripheral driver entry. Peripheral drivers instantiate * one of these for each device they wish to communicate with and pass it into * the xpt layer when they wish to schedule work on that device via the * xpt_schedule API. */ struct cam_periph; /* * Priority information for a CAM structure. */ typedef enum { CAM_RL_HOST, CAM_RL_BUS, CAM_RL_XPT, CAM_RL_DEV, CAM_RL_NORMAL, CAM_RL_VALUES } cam_rl; /* * The generation number is incremented every time a new entry is entered into * the queue giving round robin per priority level scheduling. */ typedef struct { u_int32_t priority; #define CAM_PRIORITY_HOST ((CAM_RL_HOST << 8) + 0x80) #define CAM_PRIORITY_BUS ((CAM_RL_BUS << 8) + 0x80) #define CAM_PRIORITY_XPT ((CAM_RL_XPT << 8) + 0x80) #define CAM_PRIORITY_DEV ((CAM_RL_DEV << 8) + 0x80) #define CAM_PRIORITY_OOB (CAM_RL_DEV << 8) #define CAM_PRIORITY_NORMAL ((CAM_RL_NORMAL << 8) + 0x80) #define CAM_PRIORITY_NONE (u_int32_t)-1 u_int32_t generation; int index; #define CAM_UNQUEUED_INDEX -1 #define CAM_ACTIVE_INDEX -2 #define CAM_DONEQ_INDEX -3 #define CAM_EXTRAQ_INDEX INT_MAX } cam_pinfo; /* * Macro to compare two generation numbers. It is used like this: * * if (GENERATIONCMP(a, >=, b)) * ...; * * GERERATIONCMP uses modular arithmetic to guard against wraps * wraps in the generation number. */ #define GENERATIONCMP(x, op, y) ((int32_t)((x) - (y)) op 0) /* CAM flags XXX Move to cam_periph.h ??? */ typedef enum { CAM_FLAG_NONE = 0x00, CAM_EXPECT_INQ_CHANGE = 0x01, CAM_RETRY_SELTO = 0x02 /* Retry Selection Timeouts */ } cam_flags; enum { SF_RETRY_UA = 0x01, /* Retry UNIT ATTENTION conditions. */ SF_NO_PRINT = 0x02, /* Never print error status. */ SF_QUIET_IR = 0x04, /* Be quiet about Illegal Request responses */ SF_PRINT_ALWAYS = 0x08, /* Always print error status. */ SF_NO_RECOVERY = 0x10, /* Don't do active error recovery. */ SF_NO_RETRY = 0x20, /* Don't do any retries. */ SF_RETRY_BUSY = 0x40 /* Retry BUSY status. */ }; /* CAM Status field values */ typedef enum { /* CCB request is in progress */ CAM_REQ_INPROG = 0x00, /* CCB request completed without error */ CAM_REQ_CMP = 0x01, /* CCB request aborted by the host */ CAM_REQ_ABORTED = 0x02, /* Unable to abort CCB request */ CAM_UA_ABORT = 0x03, /* CCB request completed with an error */ CAM_REQ_CMP_ERR = 0x04, /* CAM subsystem is busy */ CAM_BUSY = 0x05, /* CCB request was invalid */ CAM_REQ_INVALID = 0x06, /* Supplied Path ID is invalid */ CAM_PATH_INVALID = 0x07, /* SCSI Device Not Installed/there */ CAM_DEV_NOT_THERE = 0x08, /* Unable to terminate I/O CCB request */ CAM_UA_TERMIO = 0x09, /* Target Selection Timeout */ CAM_SEL_TIMEOUT = 0x0a, /* Command timeout */ CAM_CMD_TIMEOUT = 0x0b, /* SCSI error, look at error code in CCB */ CAM_SCSI_STATUS_ERROR = 0x0c, /* Message Reject Received */ CAM_MSG_REJECT_REC = 0x0d, /* SCSI Bus Reset Sent/Received */ CAM_SCSI_BUS_RESET = 0x0e, /* Uncorrectable parity error occurred */ CAM_UNCOR_PARITY = 0x0f, /* Autosense: request sense cmd fail */ CAM_AUTOSENSE_FAIL = 0x10, /* No HBA Detected error */ CAM_NO_HBA = 0x11, /* Data Overrun error */ CAM_DATA_RUN_ERR = 0x12, /* Unexpected Bus Free */ CAM_UNEXP_BUSFREE = 0x13, /* Target Bus Phase Sequence Failure */ CAM_SEQUENCE_FAIL = 0x14, /* CCB length supplied is inadequate */ CAM_CCB_LEN_ERR = 0x15, /* Unable to provide requested capability*/ CAM_PROVIDE_FAIL = 0x16, /* A SCSI BDR msg was sent to target */ CAM_BDR_SENT = 0x17, /* CCB request terminated by the host */ CAM_REQ_TERMIO = 0x18, /* Unrecoverable Host Bus Adapter Error */ CAM_UNREC_HBA_ERROR = 0x19, /* Request was too large for this host */ CAM_REQ_TOO_BIG = 0x1a, /* * This request should be requeued to preserve * transaction ordering. This typically occurs * when the SIM recognizes an error that should * freeze the queue and must place additional * requests for the target at the sim level * back into the XPT queue. */ CAM_REQUEUE_REQ = 0x1b, /* ATA error, look at error code in CCB */ CAM_ATA_STATUS_ERROR = 0x1c, /* Initiator/Target Nexus lost. */ CAM_SCSI_IT_NEXUS_LOST = 0x1d, /* SMP error, look at error code in CCB */ CAM_SMP_STATUS_ERROR = 0x1e, /* * Command completed without error but exceeded the soft * timeout threshold. */ CAM_REQ_SOFTTIMEOUT = 0x1f, /* * 0x20 - 0x32 are unassigned */ /* Initiator Detected Error */ CAM_IDE = 0x33, /* Resource Unavailable */ CAM_RESRC_UNAVAIL = 0x34, /* Unacknowledged Event by Host */ CAM_UNACKED_EVENT = 0x35, /* Message Received in Host Target Mode */ CAM_MESSAGE_RECV = 0x36, /* Invalid CDB received in Host Target Mode */ CAM_INVALID_CDB = 0x37, /* Lun supplied is invalid */ CAM_LUN_INVALID = 0x38, /* Target ID supplied is invalid */ CAM_TID_INVALID = 0x39, /* The requested function is not available */ CAM_FUNC_NOTAVAIL = 0x3a, /* Nexus is not established */ CAM_NO_NEXUS = 0x3b, /* The initiator ID is invalid */ CAM_IID_INVALID = 0x3c, /* The SCSI CDB has been received */ CAM_CDB_RECVD = 0x3d, /* The LUN is already enabled for target mode */ CAM_LUN_ALRDY_ENA = 0x3e, /* SCSI Bus Busy */ CAM_SCSI_BUSY = 0x3f, /* * Flags */ /* The DEV queue is frozen w/this err */ CAM_DEV_QFRZN = 0x40, /* Autosense data valid for target */ CAM_AUTOSNS_VALID = 0x80, /* SIM ready to take more commands */ CAM_RELEASE_SIMQ = 0x100, /* SIM has this command in its queue */ CAM_SIM_QUEUED = 0x200, /* Quality of service data is valid */ CAM_QOS_VALID = 0x400, /* Mask bits for just the status # */ CAM_STATUS_MASK = 0x3F, /* * Target Specific Adjunct Status */ /* sent sense with status */ CAM_SENT_SENSE = 0x40000000 } cam_status; typedef enum { CAM_ESF_NONE = 0x00, CAM_ESF_COMMAND = 0x01, CAM_ESF_CAM_STATUS = 0x02, CAM_ESF_PROTO_STATUS = 0x04, CAM_ESF_ALL = 0xff } cam_error_string_flags; typedef enum { CAM_EPF_NONE = 0x00, CAM_EPF_MINIMAL = 0x01, CAM_EPF_NORMAL = 0x02, CAM_EPF_ALL = 0x03, CAM_EPF_LEVEL_MASK = 0x0f /* All bits above bit 3 are protocol-specific */ } cam_error_proto_flags; typedef enum { CAM_ESF_PRINT_NONE = 0x00, CAM_ESF_PRINT_STATUS = 0x10, CAM_ESF_PRINT_SENSE = 0x20 } cam_error_scsi_flags; typedef enum { CAM_ESMF_PRINT_NONE = 0x00, CAM_ESMF_PRINT_STATUS = 0x10, CAM_ESMF_PRINT_FULL_CMD = 0x20, } cam_error_smp_flags; typedef enum { CAM_EAF_PRINT_NONE = 0x00, CAM_EAF_PRINT_STATUS = 0x10, CAM_EAF_PRINT_RESULT = 0x20 } cam_error_ata_flags; typedef enum { CAM_STRVIS_FLAG_NONE = 0x00, CAM_STRVIS_FLAG_NONASCII_MASK = 0x03, CAM_STRVIS_FLAG_NONASCII_TRIM = 0x00, CAM_STRVIS_FLAG_NONASCII_RAW = 0x01, CAM_STRVIS_FLAG_NONASCII_SPC = 0x02, CAM_STRVIS_FLAG_NONASCII_ESC = 0x03 } cam_strvis_flags; struct cam_status_entry { cam_status status_code; const char *status_text; }; extern const struct cam_status_entry cam_status_table[]; extern const int num_cam_status_entries; #ifdef _KERNEL extern int cam_sort_io_queues; #endif union ccb; struct sbuf; #ifdef SYSCTL_DECL /* from sysctl.h */ SYSCTL_DECL(_kern_cam); #endif __BEGIN_DECLS typedef int (cam_quirkmatch_t)(caddr_t, caddr_t); caddr_t cam_quirkmatch(caddr_t target, caddr_t quirk_table, int num_entries, int entry_size, cam_quirkmatch_t *comp_func); void cam_strvis(u_int8_t *dst, const u_int8_t *src, int srclen, int dstlen); void cam_strvis_sbuf(struct sbuf *sb, const u_int8_t *src, int srclen, uint32_t flags); int cam_strmatch(const u_int8_t *str, const u_int8_t *pattern, int str_len); const struct cam_status_entry* cam_fetch_status_entry(cam_status status); #ifdef _KERNEL char * cam_error_string(union ccb *ccb, char *str, int str_len, cam_error_string_flags flags, cam_error_proto_flags proto_flags); void cam_error_print(union ccb *ccb, cam_error_string_flags flags, cam_error_proto_flags proto_flags); #else /* _KERNEL */ struct cam_device; char * cam_error_string(struct cam_device *device, union ccb *ccb, char *str, int str_len, cam_error_string_flags flags, cam_error_proto_flags proto_flags); void cam_error_print(struct cam_device *device, union ccb *ccb, cam_error_string_flags flags, cam_error_proto_flags proto_flags, FILE *ofile); #endif /* _KERNEL */ __END_DECLS #ifdef _KERNEL -static __inline void cam_init_pinfo(cam_pinfo *pinfo); - static __inline void cam_init_pinfo(cam_pinfo *pinfo) { - pinfo->priority = CAM_PRIORITY_NONE; + pinfo->priority = CAM_PRIORITY_NONE; pinfo->index = CAM_UNQUEUED_INDEX; } #endif #endif /* _CAM_CAM_H */ Index: head/sys/cam/cam_sim.h =================================================================== --- head/sys/cam/cam_sim.h (revision 358889) +++ head/sys/cam/cam_sim.h (revision 358890) @@ -1,158 +1,148 @@ /*- * Data structures and definitions for SCSI Interface Modules (SIMs). * * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _CAM_CAM_SIM_H #define _CAM_CAM_SIM_H 1 #ifdef _KERNEL /* * The sim driver creates a sim for each controller. The sim device * queue is separately created in order to allow resource sharing between * sims. For instance, a driver may create one sim for each channel of * a multi-channel controller and use the same queue for each channel. * In this way, the queue resources are shared across all the channels * of the multi-channel controller. */ struct cam_sim; struct cam_devq; typedef void (*sim_action_func)(struct cam_sim *sim, union ccb *ccb); typedef void (*sim_poll_func)(struct cam_sim *sim); struct cam_devq * cam_simq_alloc(u_int32_t max_sim_transactions); void cam_simq_free(struct cam_devq *devq); struct cam_sim * cam_sim_alloc(sim_action_func sim_action, sim_poll_func sim_poll, const char *sim_name, void *softc, u_int32_t unit, struct mtx *mtx, int max_dev_transactions, int max_tagged_dev_transactions, struct cam_devq *queue); struct cam_sim * cam_sim_alloc_dev(sim_action_func sim_action, sim_poll_func sim_poll, const char *sim_name, void *softc, device_t dev, struct mtx *mtx, int max_dev_transactions, int max_tagged_dev_transactions, struct cam_devq *queue); void cam_sim_free(struct cam_sim *sim, int free_devq); void cam_sim_hold(struct cam_sim *sim); void cam_sim_release(struct cam_sim *sim); /* Optional sim attributes may be set with these. */ void cam_sim_set_path(struct cam_sim *sim, u_int32_t path_id); - -/* Convenience routines for accessing sim attributes. */ -static __inline u_int32_t cam_sim_path(const struct cam_sim *sim); -static __inline const char * cam_sim_name(const struct cam_sim *sim); -static __inline void * cam_sim_softc(const struct cam_sim *sim); -static __inline u_int32_t cam_sim_unit(const struct cam_sim *sim); -static __inline u_int32_t cam_sim_bus(const struct cam_sim *sim); - - - /* Generically useful offsets into the sim private area */ #define spriv_ptr0 sim_priv.entries[0].ptr #define spriv_ptr1 sim_priv.entries[1].ptr #define spriv_field0 sim_priv.entries[0].field #define spriv_field1 sim_priv.entries[1].field /* * The sim driver should not access anything directly from this * structure. */ struct cam_sim { sim_action_func sim_action; sim_poll_func sim_poll; const char *sim_name; void *softc; struct mtx *mtx; TAILQ_HEAD(, ccb_hdr) sim_doneq; TAILQ_ENTRY(cam_sim) links; u_int32_t path_id;/* The Boot device may set this to 0? */ u_int32_t unit_number; u_int32_t bus_id; int max_tagged_dev_openings; int max_dev_openings; u_int32_t flags; #define CAM_SIM_REL_TIMEOUT_PENDING 0x01 #define CAM_SIM_MPSAFE 0x02 struct callout callout; struct cam_devq *devq; /* Device Queue to use for this SIM */ int refcount; /* References to the SIM. */ device_t sim_dev; /* For attached peripherals. */ }; #define CAM_SIM_LOCK(sim) mtx_lock((sim)->mtx) #define CAM_SIM_UNLOCK(sim) mtx_unlock((sim)->mtx) static __inline u_int32_t cam_sim_path(const struct cam_sim *sim) { return (sim->path_id); } static __inline const char * cam_sim_name(const struct cam_sim *sim) { return (sim->sim_name); } static __inline void * cam_sim_softc(const struct cam_sim *sim) { return (sim->softc); } static __inline u_int32_t cam_sim_unit(const struct cam_sim *sim) { return (sim->unit_number); } static __inline u_int32_t cam_sim_bus(const struct cam_sim *sim) { return (sim->bus_id); } #endif /* _KERNEL */ #endif /* _CAM_CAM_SIM_H */ Index: head/sys/cam/cam_xpt.c =================================================================== --- head/sys/cam/cam_xpt.c (revision 358889) +++ head/sys/cam/cam_xpt.c (revision 358890) @@ -1,5610 +1,5609 @@ /*- * Implementation of the Common Access Method Transport (XPT) layer. * * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_printf.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* geometry translation */ #include /* for xpt_print below */ #include "opt_cam.h" /* Wild guess based on not wanting to grow the stack too much */ #define XPT_PRINT_MAXLEN 512 #ifdef PRINTF_BUFR_SIZE #define XPT_PRINT_LEN PRINTF_BUFR_SIZE #else #define XPT_PRINT_LEN 128 #endif _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); /* * This is the maximum number of high powered commands (e.g. start unit) * that can be outstanding at a particular time. */ #ifndef CAM_MAX_HIGHPOWER #define CAM_MAX_HIGHPOWER 4 #endif /* Datastructures internal to the xpt layer */ MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); struct xpt_softc { uint32_t xpt_generation; /* number of high powered commands that can go through right now */ struct mtx xpt_highpower_lock; STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; int num_highpower; /* queue for handling async rescan requests. */ TAILQ_HEAD(, ccb_hdr) ccb_scanq; int buses_to_config; int buses_config_done; int announce_nosbuf; /* * Registered buses * * N.B., "busses" is an archaic spelling of "buses". In new code * "buses" is preferred. */ TAILQ_HEAD(,cam_eb) xpt_busses; u_int bus_generation; int boot_delay; struct callout boot_callout; struct task boot_task; struct root_hold_token xpt_rootmount; struct mtx xpt_topo_lock; struct taskqueue *xpt_taskq; }; typedef enum { DM_RET_COPY = 0x01, DM_RET_FLAG_MASK = 0x0f, DM_RET_NONE = 0x00, DM_RET_STOP = 0x10, DM_RET_DESCEND = 0x20, DM_RET_ERROR = 0x30, DM_RET_ACTION_MASK = 0xf0 } dev_match_ret; typedef enum { XPT_DEPTH_BUS, XPT_DEPTH_TARGET, XPT_DEPTH_DEVICE, XPT_DEPTH_PERIPH } xpt_traverse_depth; struct xpt_traverse_config { xpt_traverse_depth depth; void *tr_func; void *tr_arg; }; typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); /* Transport layer configuration information */ static struct xpt_softc xsoftc; MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, &xsoftc.boot_delay, 0, "Bus registration wait time"); SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); struct cam_doneq { struct mtx_padalign cam_doneq_mtx; STAILQ_HEAD(, ccb_hdr) cam_doneq; int cam_doneq_sleep; }; static struct cam_doneq cam_doneqs[MAXCPU]; static int cam_num_doneqs; static struct proc *cam_proc; SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, &cam_num_doneqs, 0, "Number of completion queues/threads"); struct cam_periph *xpt_periph; static periph_init_t xpt_periph_init; static struct periph_driver xpt_driver = { xpt_periph_init, "xpt", TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, CAM_PERIPH_DRV_EARLY }; PERIPHDRIVER_DECLARE(xpt, xpt_driver); static d_open_t xptopen; static d_close_t xptclose; static d_ioctl_t xptioctl; static d_ioctl_t xptdoioctl; static struct cdevsw xpt_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = xptopen, .d_close = xptclose, .d_ioctl = xptioctl, .d_name = "xpt", }; /* Storage for debugging datastructures */ struct cam_path *cam_dpath; u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS; SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, &cam_dflags, 0, "Enabled debug flags"); u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, &cam_debug_delay, 0, "Delay in us after each debug message"); /* Our boot-time initialization hook */ static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); static moduledata_t cam_moduledata = { "cam", cam_module_event_handler, NULL }; static int xpt_init(void *); DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); MODULE_VERSION(cam, 1); static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg); static path_id_t xptnextfreepathid(void); static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); static union ccb *xpt_get_ccb(struct cam_periph *periph); static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); static void xpt_run_allocq(struct cam_periph *periph, int sleep); static void xpt_run_allocq_task(void *context, int pending); static void xpt_run_devq(struct cam_devq *devq); static callout_func_t xpt_release_devq_timeout; static void xpt_acquire_bus(struct cam_eb *bus); static void xpt_release_bus(struct cam_eb *bus); static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue); static struct cam_et* xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); static void xpt_acquire_target(struct cam_et *target); static void xpt_release_target(struct cam_et *target); static struct cam_eb* xpt_find_bus(path_id_t path_id); static struct cam_et* xpt_find_target(struct cam_eb *bus, target_id_t target_id); static struct cam_ed* xpt_find_device(struct cam_et *target, lun_id_t lun_id); static void xpt_config(void *arg); static void xpt_hold_boot_locked(void); static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, u_int32_t new_priority); static xpt_devicefunc_t xptpassannouncefunc; static void xptaction(struct cam_sim *sim, union ccb *work_ccb); static void xptpoll(struct cam_sim *sim); static void camisr_runqueue(void); static void xpt_done_process(struct ccb_hdr *ccb_h); static void xpt_done_td(void *); static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus); static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device); static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph); static xpt_busfunc_t xptedtbusfunc; static xpt_targetfunc_t xptedttargetfunc; static xpt_devicefunc_t xptedtdevicefunc; static xpt_periphfunc_t xptedtperiphfunc; static xpt_pdrvfunc_t xptplistpdrvfunc; static xpt_periphfunc_t xptplistperiphfunc; static int xptedtmatch(struct ccb_dev_match *cdm); static int xptperiphlistmatch(struct ccb_dev_match *cdm); static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg); static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg); static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg); static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg); static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static xpt_busfunc_t xptdefbusfunc; static xpt_targetfunc_t xptdeftargetfunc; static xpt_devicefunc_t xptdefdevicefunc; static xpt_periphfunc_t xptdefperiphfunc; static void xpt_finishconfig_task(void *context, int pending); static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg); static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id); static xpt_devicefunc_t xptsetasyncfunc; static xpt_busfunc_t xptsetasyncbusfunc; static cam_status xptregister(struct cam_periph *periph, void *arg); -static __inline int device_is_queued(struct cam_ed *device); static __inline int xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) { int retval; mtx_assert(&devq->send_mtx, MA_OWNED); if ((dev->ccbq.queue.entries > 0) && (dev->ccbq.dev_openings > 0) && (dev->ccbq.queue.qfrozen_cnt == 0)) { /* * The priority of a device waiting for controller * resources is that of the highest priority CCB * enqueued. */ retval = xpt_schedule_dev(&devq->send_queue, &dev->devq_entry, CAMQ_GET_PRIO(&dev->ccbq.queue)); } else { retval = 0; } return (retval); } static __inline int device_is_queued(struct cam_ed *device) { return (device->devq_entry.index != CAM_UNQUEUED_INDEX); } static void xpt_periph_init() { make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); } static int xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) { /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) return(EPERM); /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { printf("%s: can't do nonblocking access\n", devtoname(dev)); return(ENODEV); } return(0); } static int xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) { return(0); } /* * Don't automatically grab the xpt softc lock here even though this is going * through the xpt device. The xpt device is really just a back door for * accessing other devices and SIMs, so the right thing to do is to grab * the appropriate SIM lock once the bus/SIM is located. */ static int xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); } return (error); } static int xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; error = 0; switch(cmd) { /* * For the transport layer CAMIOCOMMAND ioctl, we really only want * to accept CCB types that don't quite make sense to send through a * passthrough driver. XPT_PATH_INQ is an exception to this, as stated * in the CAM spec. */ case CAMIOCOMMAND: { union ccb *ccb; union ccb *inccb; struct cam_eb *bus; inccb = (union ccb *)addr; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (inccb->ccb_h.func_code == XPT_SCSI_IO) inccb->csio.bio = NULL; #endif if (inccb->ccb_h.flags & CAM_UNLOCKED) return (EINVAL); bus = xpt_find_bus(inccb->ccb_h.path_id); if (bus == NULL) return (EINVAL); switch (inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; case XPT_SCAN_TGT: if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; default: break; } switch(inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: case XPT_PATH_INQ: case XPT_ENG_INQ: case XPT_SCAN_LUN: case XPT_SCAN_TGT: ccb = xpt_alloc_ccb(); /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb->ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; xpt_free_ccb(ccb); break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(ccb, inccb); xpt_path_lock(ccb->ccb_h.path); cam_periph_runccb(ccb, NULL, 0, 0, NULL); xpt_path_unlock(ccb->ccb_h.path); bcopy(ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); break; case XPT_DEBUG: { union ccb ccb; /* * This is an immediate CCB, so it's okay to * allocate it on the stack. */ /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb.ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(&ccb, inccb); xpt_action(&ccb); bcopy(&ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb.ccb_h.path); break; } case XPT_DEV_MATCH: { struct cam_periph_map_info mapinfo; struct cam_path *old_path; /* * We can't deal with physical addresses for this * type of transaction. */ if ((inccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) { error = EINVAL; break; } /* * Save this in case the caller had it set to * something in particular. */ old_path = inccb->ccb_h.path; /* * We really don't need a path for the matching * code. The path is needed because of the * debugging statements in xpt_action(). They * assume that the CCB has a valid path. */ inccb->ccb_h.path = xpt_periph->path; bzero(&mapinfo, sizeof(mapinfo)); /* * Map the pattern and match buffers into kernel * virtual address space. */ error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); if (error) { inccb->ccb_h.path = old_path; break; } /* * This is an immediate CCB, we can send it on directly. */ xpt_action(inccb); /* * Map the buffers back into user space. */ cam_periph_unmapmem(inccb, &mapinfo); inccb->ccb_h.path = old_path; error = 0; break; } default: error = ENOTSUP; break; } xpt_release_bus(bus); break; } /* * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, * with the periphal driver name and unit name filled in. The other * fields don't really matter as input. The passthrough driver name * ("pass"), and unit number are passed back in the ccb. The current * device generation number, and the index into the device peripheral * driver list, and the status are also passed back. Note that * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is * (or rather should be) impossible for the device peripheral driver * list to change since we look at the whole thing in one pass, and * we do it with lock protection. * */ case CAMGETPASSTHRU: { union ccb *ccb; struct cam_periph *periph; struct periph_driver **p_drv; char *name; u_int unit; int base_periph_found; ccb = (union ccb *)addr; unit = ccb->cgdl.unit_number; name = ccb->cgdl.periph_name; base_periph_found = 0; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (ccb->ccb_h.func_code == XPT_SCSI_IO) ccb->csio.bio = NULL; #endif /* * Sanity check -- make sure we don't get a null peripheral * driver name. */ if (*ccb->cgdl.periph_name == '\0') { error = EINVAL; break; } /* Keep the list from changing while we traverse it */ xpt_lock_buses(); /* first find our driver in the list of drivers */ for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) if (strcmp((*p_drv)->driver_name, name) == 0) break; if (*p_drv == NULL) { xpt_unlock_buses(); ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; break; } /* * Run through every peripheral instance of this driver * and check to see whether it matches the unit passed * in by the user. If it does, get out of the loops and * find the passthrough driver associated with that * peripheral driver. */ for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; periph = TAILQ_NEXT(periph, unit_links)) { if (periph->unit_number == unit) break; } /* * If we found the peripheral driver that the user passed * in, go through all of the peripheral drivers for that * particular device and look for a passthrough driver. */ if (periph != NULL) { struct cam_ed *device; int i; base_periph_found = 1; device = periph->path->device; for (i = 0, periph = SLIST_FIRST(&device->periphs); periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++) { /* * Check to see whether we have a * passthrough device or not. */ if (strcmp(periph->periph_name, "pass") == 0) { /* * Fill in the getdevlist fields. */ strlcpy(ccb->cgdl.periph_name, periph->periph_name, sizeof(ccb->cgdl.periph_name)); ccb->cgdl.unit_number = periph->unit_number; if (SLIST_NEXT(periph, periph_links)) ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; else ccb->cgdl.status = CAM_GDEVLIST_LAST_DEVICE; ccb->cgdl.generation = device->generation; ccb->cgdl.index = i; /* * Fill in some CCB header fields * that the user may want. */ ccb->ccb_h.path_id = periph->path->bus->path_id; ccb->ccb_h.target_id = periph->path->target->target_id; ccb->ccb_h.target_lun = periph->path->device->lun_id; ccb->ccb_h.status = CAM_REQ_CMP; break; } } } /* * If the periph is null here, one of two things has * happened. The first possibility is that we couldn't * find the unit number of the particular peripheral driver * that the user is asking about. e.g. the user asks for * the passthrough driver for "da11". We find the list of * "da" peripherals all right, but there is no unit 11. * The other possibility is that we went through the list * of peripheral drivers attached to the device structure, * but didn't find one with the name "pass". Either way, * we return ENOENT, since we couldn't find something. */ if (periph == NULL) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; /* * It is unfortunate that this is even necessary, * but there are many, many clueless users out there. * If this is true, the user is looking for the * passthrough driver, but doesn't have one in his * kernel. */ if (base_periph_found == 1) { printf("xptioctl: pass driver is not in the " "kernel\n"); printf("xptioctl: put \"device pass\" in " "your kernel config file\n"); } } xpt_unlock_buses(); break; } default: error = ENOTTY; break; } return(error); } static int cam_module_event_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: if ((error = xpt_init(NULL)) != 0) return (error); break; case MOD_UNLOAD: return EBUSY; default: return EOPNOTSUPP; } return 0; } static struct xpt_proto * xpt_proto_find(cam_proto proto) { struct xpt_proto **pp; SET_FOREACH(pp, cam_xpt_proto_set) { if ((*pp)->proto == proto) return *pp; } return NULL; } static void xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) { if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { xpt_free_path(done_ccb->ccb_h.path); xpt_free_ccb(done_ccb); } else { done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); } xpt_release_boot(); } /* thread to handle bus rescans */ static void xpt_scanner_thread(void *dummy) { union ccb *ccb; struct mtx *mtx; struct cam_ed *device; xpt_lock_buses(); for (;;) { if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, "-", 0); if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xpt_unlock_buses(); /* * We need to lock the device's mutex which we use as * the path mutex. We can't do it directly because the * cam_path in the ccb may wind up going away because * the path lock may be dropped and the path retired in * the completion callback. We do this directly to keep * the reference counts in cam_path sane. We also have * to copy the device pointer because ccb_h.path may * be freed in the callback. */ mtx = xpt_path_mtx(ccb->ccb_h.path); device = ccb->ccb_h.path->device; xpt_acquire_device(device); mtx_lock(mtx); xpt_action(ccb); mtx_unlock(mtx); xpt_release_device(device); xpt_lock_buses(); } } } void xpt_rescan(union ccb *ccb) { struct ccb_hdr *hdr; /* Prepare request */ if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_BUS; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_TGT; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_LUN; else { xpt_print(ccb->ccb_h.path, "illegal scan path\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, xpt_action_name(ccb->ccb_h.func_code))); ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; ccb->ccb_h.cbfcnp = xpt_rescan_done; xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); /* Don't make duplicate entries for the same paths. */ xpt_lock_buses(); if (ccb->ccb_h.ppriv_ptr1 == NULL) { TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); xpt_print(ccb->ccb_h.path, "rescan already queued\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } } } TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xpt_hold_boot_locked(); wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); } /* Functions accessed by the peripheral drivers */ static int xpt_init(void *dummy) { struct cam_sim *xpt_sim; struct cam_path *path; struct cam_devq *devq; cam_status status; int error, i; TAILQ_INIT(&xsoftc.xpt_busses); TAILQ_INIT(&xsoftc.ccb_scanq); STAILQ_INIT(&xsoftc.highpowerq); xsoftc.num_highpower = CAM_MAX_HIGHPOWER; mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); #ifdef CAM_BOOT_DELAY /* * Override this value at compile time to assist our users * who don't use loader to boot a kernel. */ xsoftc.boot_delay = CAM_BOOT_DELAY; #endif /* * The xpt layer is, itself, the equivalent of a SIM. * Allow 16 ccbs in the ccb pool for it. This should * give decent parallelism when we probe buses and * perform other XPT functions. */ devq = cam_simq_alloc(16); xpt_sim = cam_sim_alloc(xptaction, xptpoll, "xpt", /*softc*/NULL, /*unit*/0, /*mtx*/NULL, /*max_dev_transactions*/0, /*max_tagged_dev_transactions*/0, devq); if (xpt_sim == NULL) return (ENOMEM); if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { printf("xpt_init: xpt_bus_register failed with status %#x," " failing attach\n", status); return (EINVAL); } /* * Looking at the XPT from the SIM layer, the XPT is * the equivalent of a peripheral driver. Allocate * a peripheral driver entry for us. */ if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { printf("xpt_init: xpt_create_path failed with status %#x," " failing attach\n", status); return (EINVAL); } xpt_path_lock(path); cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, path, NULL, 0, xpt_sim); xpt_path_unlock(path); xpt_free_path(path); if (cam_num_doneqs < 1) cam_num_doneqs = 1 + mp_ncpus / 6; else if (cam_num_doneqs > MAXCPU) cam_num_doneqs = MAXCPU; for (i = 0; i < cam_num_doneqs; i++) { mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, MTX_DEF); STAILQ_INIT(&cam_doneqs[i].cam_doneq); error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); if (error != 0) { cam_num_doneqs = i; break; } } if (cam_num_doneqs < 1) { printf("xpt_init: Cannot init completion queues " "- failing attach\n"); return (ENOMEM); } /* * Register a callback for when interrupts are enabled. */ config_intrhook_oneshot(xpt_config, NULL); return (0); } static cam_status xptregister(struct cam_periph *periph, void *arg) { struct cam_sim *xpt_sim; if (periph == NULL) { printf("xptregister: periph was NULL!!\n"); return(CAM_REQ_CMP_ERR); } xpt_sim = (struct cam_sim *)arg; xpt_sim->softc = periph; xpt_periph = periph; periph->softc = NULL; return(CAM_REQ_CMP); } int32_t xpt_add_periph(struct cam_periph *periph) { struct cam_ed *device; int32_t status; TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); device = periph->path->device; status = CAM_REQ_CMP; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } return (status); } void xpt_remove_periph(struct cam_periph *periph) { struct cam_ed *device; device = periph->path->device; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } } void xpt_announce_periph(struct cam_periph *periph, char *announce_string) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); periph->flags |= CAM_PERIPH_ANNOUNCED; printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); printf("%s%d: ", periph->periph_name, periph->unit_number); proto = xpt_proto_find(path->device->protocol); if (proto) proto->ops->announce(path->device); else printf("%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) { /* Don't wrap the screen - print only the first 60 chars */ printf("%s%d: Serial Number %.60s\n", periph->periph_name, periph->unit_number, path->device->serial_num); } /* Announce transport details. */ path->bus->xport->ops->announce(periph); /* Announce command queueing. */ if (path->device->inq_flags & SID_CmdQue || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { printf("%s%d: Command Queueing enabled\n", periph->periph_name, periph->unit_number); } /* Announce caller's details if they've passed in. */ if (announce_string != NULL) printf("%s%d: %s\n", periph->periph_name, periph->unit_number, announce_string); } void xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, char *announce_string) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); periph->flags |= CAM_PERIPH_ANNOUNCED; /* Fall back to the non-sbuf method if necessary */ if (xsoftc.announce_nosbuf != 0) { xpt_announce_periph(periph, announce_string); return; } proto = xpt_proto_find(path->device->protocol); if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || (path->bus->xport->ops->announce_sbuf == NULL)) { xpt_announce_periph(periph, announce_string); return; } sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); if (proto) proto->ops->announce_sbuf(path->device, sb); else sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) { /* Don't wrap the screen - print only the first 60 chars */ sbuf_printf(sb, "%s%d: Serial Number %.60s\n", periph->periph_name, periph->unit_number, path->device->serial_num); } /* Announce transport details. */ path->bus->xport->ops->announce_sbuf(periph, sb); /* Announce command queueing. */ if (path->device->inq_flags & SID_CmdQue || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { sbuf_printf(sb, "%s%d: Command Queueing enabled\n", periph->periph_name, periph->unit_number); } /* Announce caller's details if they've passed in. */ if (announce_string != NULL) sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, periph->unit_number, announce_string); } void xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) { if (quirks != 0) { printf("%s%d: quirks=0x%b\n", periph->periph_name, periph->unit_number, quirks, bit_string); } } void xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, int quirks, char *bit_string) { if (xsoftc.announce_nosbuf != 0) { xpt_announce_quirks(periph, quirks, bit_string); return; } if (quirks != 0) { sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, periph->unit_number, quirks, bit_string); } } void xpt_denounce_periph(struct cam_periph *periph) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); printf("%s%d: ", periph->periph_name, periph->unit_number); proto = xpt_proto_find(path->device->protocol); if (proto) proto->ops->denounce(path->device); else printf("%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) printf(" s/n %.60s", path->device->serial_num); printf(" detached\n"); } void xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) { struct cam_path *path = periph->path; struct xpt_proto *proto; cam_periph_assert(periph, MA_OWNED); /* Fall back to the non-sbuf method if necessary */ if (xsoftc.announce_nosbuf != 0) { xpt_denounce_periph(periph); return; } proto = xpt_proto_find(path->device->protocol); if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { xpt_denounce_periph(periph); return; } sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); if (proto) proto->ops->denounce_sbuf(path->device, sb); else sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", periph->periph_name, periph->unit_number, path->device->protocol); if (path->device->serial_num_len > 0) sbuf_printf(sb, " s/n %.60s", path->device->serial_num); sbuf_printf(sb, " detached\n"); } int xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) { int ret = -1, l, o; struct ccb_dev_advinfo cdai; struct scsi_vpd_device_id *did; struct scsi_vpd_id_descriptor *idd; xpt_path_assert(path, MA_OWNED); memset(&cdai, 0, sizeof(cdai)); xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.flags = CDAI_FLAG_NONE; cdai.bufsiz = len; cdai.buf = buf; if (!strcmp(attr, "GEOM::ident")) cdai.buftype = CDAI_TYPE_SERIAL_NUM; else if (!strcmp(attr, "GEOM::physpath")) cdai.buftype = CDAI_TYPE_PHYS_PATH; else if (strcmp(attr, "GEOM::lunid") == 0 || strcmp(attr, "GEOM::lunname") == 0) { cdai.buftype = CDAI_TYPE_SCSI_DEVID; cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT); if (cdai.buf == NULL) { ret = ENOMEM; goto out; } } else goto out; xpt_action((union ccb *)&cdai); /* can only be synchronous */ if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if (cdai.provsiz == 0) goto out; switch(cdai.buftype) { case CDAI_TYPE_SCSI_DEVID: did = (struct scsi_vpd_device_id *)cdai.buf; if (strcmp(attr, "GEOM::lunid") == 0) { idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_naa); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_eui64); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_uuid); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_md5); } else idd = NULL; if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_t10); if (idd == NULL) idd = scsi_get_devid(did, cdai.provsiz, scsi_devid_is_lun_name); if (idd == NULL) break; ret = 0; if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { if (idd->length < len) { for (l = 0; l < idd->length; l++) buf[l] = idd->identifier[l] ? idd->identifier[l] : ' '; buf[l] = 0; } else ret = EFAULT; break; } if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { l = strnlen(idd->identifier, idd->length); if (l < len) { bcopy(idd->identifier, buf, l); buf[l] = 0; } else ret = EFAULT; break; } if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { if ((idd->length - 2) * 2 + 4 >= len) { ret = EFAULT; break; } for (l = 2, o = 0; l < idd->length; l++) { if (l == 6 || l == 8 || l == 10 || l == 12) o += sprintf(buf + o, "-"); o += sprintf(buf + o, "%02x", idd->identifier[l]); } break; } if (idd->length * 2 < len) { for (l = 0; l < idd->length; l++) sprintf(buf + l * 2, "%02x", idd->identifier[l]); } else ret = EFAULT; break; default: if (cdai.provsiz < len) { cdai.buf[cdai.provsiz] = 0; ret = 0; } else ret = EFAULT; break; } out: if ((char *)cdai.buf != buf) free(cdai.buf, M_CAMXPT); return ret; } static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus) { dev_match_ret retval; u_int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (bus == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this bus matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct bus_match_pattern *cur_pattern; /* * If the pattern in question isn't for a bus node, we * aren't interested. However, we do indicate to the * calling routine that we should continue descending the * tree, since the user wants to match against lower-level * EDT elements. */ if (patterns[i].type != DEV_MATCH_BUS) { if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.bus_pattern; /* * If they want to match any bus node, we give them any * device node. */ if (cur_pattern->flags == BUS_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * If we've already decided on an action, go ahead * and return. */ if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == BUS_MATCH_NONE) continue; if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) && (cur_pattern->path_id != bus->path_id)) continue; if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) && (cur_pattern->bus_id != bus->sim->bus_id)) continue; if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) && (cur_pattern->unit_number != bus->sim->unit_number)) continue; if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this bus. So tell the caller to copy the * data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a non-bus matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a non-bus * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen anything other than bus matching patterns. So * tell the caller to stop descending the tree -- the user doesn't * want to match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device) { dev_match_ret retval; u_int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (device == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this device matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct device_match_pattern *cur_pattern; struct scsi_vpd_device_id *device_id_page; /* * If the pattern in question isn't for a device node, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_DEVICE) { if ((patterns[i].type == DEV_MATCH_PERIPH) && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.device_pattern; /* Error out if mutually exclusive options are specified. */ if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) return(DM_RET_ERROR); /* * If they want to match any device node, we give them any * device node. */ if (cur_pattern->flags == DEV_MATCH_ANY) goto copy_dev_node; /* * Not sure why someone would do this... */ if (cur_pattern->flags == DEV_MATCH_NONE) continue; if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) && (cur_pattern->path_id != device->target->bus->path_id)) continue; if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) && (cur_pattern->target_id != device->target->target_id)) continue; if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) && (cur_pattern->target_lun != device->lun_id)) continue; if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) && (cam_quirkmatch((caddr_t)&device->inq_data, (caddr_t)&cur_pattern->data.inq_pat, 1, sizeof(cur_pattern->data.inq_pat), scsi_static_inquiry_match) == NULL)) continue; device_id_page = (struct scsi_vpd_device_id *)device->device_id; if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN || scsi_devid_match((uint8_t *)device_id_page->desc_list, device->device_id_len - SVPD_DEVICE_ID_HDR_LEN, cur_pattern->data.devid_pat.id, cur_pattern->data.devid_pat.id_len) != 0)) continue; copy_dev_node: /* * If we get to this point, the user definitely wants * information on this device. So tell the caller to copy * the data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a peripheral matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a peripheral * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen any peripheral matching patterns. So tell the * caller to stop descending the tree -- the user doesn't want to * match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } /* * Match a single peripheral against any number of match patterns. */ static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph) { dev_match_ret retval; u_int i; /* * If we aren't given something to match against, that's an error. */ if (periph == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this peripheral matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_STOP | DM_RET_COPY); /* * There aren't any nodes below a peripheral node, so there's no * reason to descend the tree any further. */ retval = DM_RET_STOP; for (i = 0; i < num_patterns; i++) { struct periph_match_pattern *cur_pattern; /* * If the pattern in question isn't for a peripheral, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_PERIPH) continue; cur_pattern = &patterns[i].pattern.periph_pattern; /* * If they want to match on anything, then we will do so. */ if (cur_pattern->flags == PERIPH_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * We've already set the return action to stop, * since there are no nodes below peripherals in * the tree. */ return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == PERIPH_MATCH_NONE) continue; if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) && (cur_pattern->path_id != periph->path->bus->path_id)) continue; /* * For the target and lun id's, we have to make sure the * target and lun pointers aren't NULL. The xpt peripheral * has a wildcard target and device. */ if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) && ((periph->path->target == NULL) ||(cur_pattern->target_id != periph->path->target->target_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) && ((periph->path->device == NULL) || (cur_pattern->target_lun != periph->path->device->lun_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) && (cur_pattern->unit_number != periph->unit_number)) continue; if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) && (strncmp(cur_pattern->periph_name, periph->periph_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this peripheral. So tell the caller to * copy the data out. */ retval |= DM_RET_COPY; /* * The return action has already been set to stop, since * peripherals don't have any nodes below them in the EDT. */ return(retval); } /* * If we get to this point, the peripheral that was passed in * doesn't match any of the patterns. */ return(retval); } static int xptedtbusfunc(struct cam_eb *bus, void *arg) { struct ccb_dev_match *cdm; struct cam_et *target; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) retval = DM_RET_DESCEND; else retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); /* * If we got an error, bail out of the search. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this bus out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; cdm->pos.cookie.bus = bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_BUS; cdm->matches[j].result.bus_result.path_id = bus->path_id; cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; cdm->matches[j].result.bus_result.unit_number = bus->sim->unit_number; strlcpy(cdm->matches[j].result.bus_result.dev_name, bus->sim->sim_name, sizeof(cdm->matches[j].result.bus_result.dev_name)); } /* * If the user is only interested in buses, there's no * reason to descend to the next level in the tree. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a target generation recorded, check it to * make sure the target list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) { if ((cdm->pos.generations[CAM_TARGET_GENERATION] != bus->generation)) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return (0); } target = (struct cam_et *)cdm->pos.cookie.target; target->refcount++; } else target = NULL; mtx_unlock(&bus->eb_mtx); return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); } static int xptedttargetfunc(struct cam_et *target, void *arg) { struct ccb_dev_match *cdm; struct cam_eb *bus; struct cam_ed *device; cdm = (struct ccb_dev_match *)arg; bus = target->bus; /* * If there is a device list generation recorded, check it to * make sure the device list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device != NULL)) { if (cdm->pos.generations[CAM_DEV_GENERATION] != target->generation) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } device = (struct cam_ed *)cdm->pos.cookie.device; device->refcount++; } else device = NULL; mtx_unlock(&bus->eb_mtx); return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); } static int xptedtdevicefunc(struct cam_ed *device, void *arg) { struct cam_eb *bus; struct cam_periph *periph; struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; bus = device->target->bus; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) retval = DM_RET_DESCEND; else retval = xptdevicematch(cdm->patterns, cdm->num_patterns, device); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this device out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; cdm->pos.cookie.bus = device->target->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = device->target; cdm->pos.generations[CAM_TARGET_GENERATION] = device->target->bus->generation; cdm->pos.cookie.device = device; cdm->pos.generations[CAM_DEV_GENERATION] = device->target->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_DEVICE; cdm->matches[j].result.device_result.path_id = device->target->bus->path_id; cdm->matches[j].result.device_result.target_id = device->target->target_id; cdm->matches[j].result.device_result.target_lun = device->lun_id; cdm->matches[j].result.device_result.protocol = device->protocol; bcopy(&device->inq_data, &cdm->matches[j].result.device_result.inq_data, sizeof(struct scsi_inquiry_data)); bcopy(&device->ident_data, &cdm->matches[j].result.device_result.ident_data, sizeof(struct ata_params)); /* Let the user know whether this device is unconfigured */ if (device->flags & CAM_DEV_UNCONFIGURED) cdm->matches[j].result.device_result.flags = DEV_RESULT_UNCONFIGURED; else cdm->matches[j].result.device_result.flags = DEV_RESULT_NOFLAG; } /* * If the user isn't interested in peripherals, don't descend * the tree any further. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a peripheral list generation recorded, make sure * it hasn't changed. */ xpt_lock_buses(); mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == device->target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != device->generation) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); } static int xptedtperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; size_t l; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | CAM_DEV_POS_PERIPH; cdm->pos.cookie.bus = periph->path->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = periph->path->target; cdm->pos.generations[CAM_TARGET_GENERATION] = periph->path->bus->generation; cdm->pos.cookie.device = periph->path->device; cdm->pos.generations[CAM_DEV_GENERATION] = periph->path->target->generation; cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = periph->path->device->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; l = sizeof(cdm->matches[j].result.periph_result.periph_name); strlcpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, l); } return(1); } static int xptedtmatch(struct ccb_dev_match *cdm) { struct cam_eb *bus; int ret; cdm->num_matches = 0; /* * Check the bus list generation. If it has changed, the user * needs to reset everything and start over. */ xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus != NULL)) { if (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } bus = (struct cam_eb *)cdm->pos.cookie.bus; bus->refcount++; } else bus = NULL; xpt_unlock_buses(); ret = xptbustraverse(bus, xptedtbusfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the EDT. It also means that one of the subroutines * has set the status field to the proper value. If we get back 1, * we've fully traversed the EDT and copied out any matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) { struct cam_periph *periph; struct ccb_dev_match *cdm; cdm = (struct ccb_dev_match *)arg; xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv == pdrv) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != (*pdrv)->generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; xpt_unlock_buses(); return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); } static int xptplistperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; size_t l; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { struct periph_driver **pdrv; pdrv = NULL; bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | CAM_DEV_POS_PERIPH; /* * This may look a bit non-sensical, but it is * actually quite logical. There are very few * peripheral drivers, and bloating every peripheral * structure with a pointer back to its parent * peripheral driver linker set entry would cost * more in the long run than doing this quick lookup. */ for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { if (strcmp((*pdrv)->driver_name, periph->periph_name) == 0) break; } if (*pdrv == NULL) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } cdm->pos.cookie.pdrv = pdrv; /* * The periph generation slot does double duty, as * does the periph pointer slot. They are used for * both edt and pdrv lookups and positioning. */ cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = (*pdrv)->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; /* * The transport layer peripheral doesn't have a target or * lun. */ if (periph->path->target) cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; else cdm->matches[j].result.periph_result.target_id = CAM_TARGET_WILDCARD; if (periph->path->device) cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; else cdm->matches[j].result.periph_result.target_lun = CAM_LUN_WILDCARD; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; l = sizeof(cdm->matches[j].result.periph_result.periph_name); strlcpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, l); } return(1); } static int xptperiphlistmatch(struct ccb_dev_match *cdm) { int ret; cdm->num_matches = 0; /* * At this point in the edt traversal function, we check the bus * list generation to make sure that no buses have been added or * removed since the user last sent a XPT_DEV_MATCH ccb through. * For the peripheral driver list traversal function, however, we * don't have to worry about new peripheral driver types coming or * going; they're in a linker set, and therefore can't change * without a recompile. */ if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv != NULL)) ret = xptpdrvtraverse( (struct periph_driver **)cdm->pos.cookie.pdrv, xptplistpdrvfunc, cdm); else ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the peripheral driver tree. It also means that one of * the subroutines has set the status field to the proper value. If * we get back 1, we've fully traversed the EDT and copied out any * matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) { struct cam_eb *bus, *next_bus; int retval; retval = 1; if (start_bus) bus = start_bus; else { xpt_lock_buses(); bus = TAILQ_FIRST(&xsoftc.xpt_busses); if (bus == NULL) { xpt_unlock_buses(); return (retval); } bus->refcount++; xpt_unlock_buses(); } for (; bus != NULL; bus = next_bus) { retval = tr_func(bus, arg); if (retval == 0) { xpt_release_bus(bus); break; } xpt_lock_buses(); next_bus = TAILQ_NEXT(bus, links); if (next_bus) next_bus->refcount++; xpt_unlock_buses(); xpt_release_bus(bus); } return(retval); } static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg) { struct cam_et *target, *next_target; int retval; retval = 1; if (start_target) target = start_target; else { mtx_lock(&bus->eb_mtx); target = TAILQ_FIRST(&bus->et_entries); if (target == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } target->refcount++; mtx_unlock(&bus->eb_mtx); } for (; target != NULL; target = next_target) { retval = tr_func(target, arg); if (retval == 0) { xpt_release_target(target); break; } mtx_lock(&bus->eb_mtx); next_target = TAILQ_NEXT(target, links); if (next_target) next_target->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_target(target); } return(retval); } static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_ed *device, *next_device; int retval; retval = 1; bus = target->bus; if (start_device) device = start_device; else { mtx_lock(&bus->eb_mtx); device = TAILQ_FIRST(&target->ed_entries); if (device == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } device->refcount++; mtx_unlock(&bus->eb_mtx); } for (; device != NULL; device = next_device) { mtx_lock(&device->device_mtx); retval = tr_func(device, arg); mtx_unlock(&device->device_mtx); if (retval == 0) { xpt_release_device(device); break; } mtx_lock(&bus->eb_mtx); next_device = TAILQ_NEXT(device, links); if (next_device) next_device->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_device(device); } return(retval); } static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_periph *periph, *next_periph; int retval; retval = 1; bus = device->target->bus; if (start_periph) periph = start_periph; else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); periph = SLIST_FIRST(&device->periphs); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = SLIST_NEXT(periph, periph_links); if (periph == NULL) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (retval); } periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { retval = tr_func(periph, arg); if (retval == 0) { cam_periph_release_locked(periph); break; } xpt_lock_buses(); mtx_lock(&bus->eb_mtx); next_periph = SLIST_NEXT(periph, periph_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = SLIST_NEXT(next_periph, periph_links); if (next_periph) next_periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cam_periph_release_locked(periph); } return(retval); } static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg) { struct periph_driver **pdrv; int retval; retval = 1; /* * We don't traverse the peripheral driver list like we do the * other lists, because it is a linker set, and therefore cannot be * changed during runtime. If the peripheral driver list is ever * re-done to be something other than a linker set (i.e. it can * change while the system is running), the list traversal should * be modified to work like the other traversal functions. */ for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); *pdrv != NULL; pdrv++) { retval = tr_func(pdrv, arg); if (retval == 0) return(retval); } return(retval); } static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_periph *periph, *next_periph; int retval; retval = 1; if (start_periph) periph = start_periph; else { xpt_lock_buses(); periph = TAILQ_FIRST(&(*pdrv)->units); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = TAILQ_NEXT(periph, unit_links); if (periph == NULL) { xpt_unlock_buses(); return (retval); } periph->refcount++; xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { cam_periph_lock(periph); retval = tr_func(periph, arg); cam_periph_unlock(periph); if (retval == 0) { cam_periph_release(periph); break; } xpt_lock_buses(); next_periph = TAILQ_NEXT(periph, unit_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = TAILQ_NEXT(next_periph, unit_links); if (next_periph) next_periph->refcount++; xpt_unlock_buses(); cam_periph_release(periph); } return(retval); } static int xptdefbusfunc(struct cam_eb *bus, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_BUS) { xpt_busfunc_t *tr_func; tr_func = (xpt_busfunc_t *)tr_config->tr_func; return(tr_func(bus, tr_config->tr_arg)); } else return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); } static int xptdeftargetfunc(struct cam_et *target, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_TARGET) { xpt_targetfunc_t *tr_func; tr_func = (xpt_targetfunc_t *)tr_config->tr_func; return(tr_func(target, tr_config->tr_arg)); } else return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); } static int xptdefdevicefunc(struct cam_ed *device, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_DEVICE) { xpt_devicefunc_t *tr_func; tr_func = (xpt_devicefunc_t *)tr_config->tr_func; return(tr_func(device, tr_config->tr_arg)); } else return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); } static int xptdefperiphfunc(struct cam_periph *periph, void *arg) { struct xpt_traverse_config *tr_config; xpt_periphfunc_t *tr_func; tr_config = (struct xpt_traverse_config *)arg; tr_func = (xpt_periphfunc_t *)tr_config->tr_func; /* * Unlike the other default functions, we don't check for depth * here. The peripheral driver level is the last level in the EDT, * so if we're here, we should execute the function in question. */ return(tr_func(periph, tr_config->tr_arg)); } /* * Execute the given function for every bus in the EDT. */ static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_BUS; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } /* * Execute the given function for every device in the EDT. */ static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_DEVICE; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } static int xptsetasyncfunc(struct cam_ed *device, void *arg) { struct cam_path path; struct ccb_getdev cgd; struct ccb_setasync *csa = (struct ccb_setasync *)arg; /* * Don't report unconfigured devices (Wildcard devs, * devices only for target mode, device instances * that have been invalidated but are waiting for * their last reference count to be released). */ if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) return (1); xpt_compile_path(&path, NULL, device->target->bus->path_id, device->target->target_id, device->lun_id); xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); csa->callback(csa->callback_arg, AC_FOUND_DEVICE, &path, &cgd); xpt_release_path(&path); return(1); } static int xptsetasyncbusfunc(struct cam_eb *bus, void *arg) { struct cam_path path; struct ccb_pathinq cpi; struct ccb_setasync *csa = (struct ccb_setasync *)arg; xpt_compile_path(&path, /*periph*/NULL, bus->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); xpt_path_lock(&path); xpt_path_inq(&cpi, &path); csa->callback(csa->callback_arg, AC_PATH_REGISTERED, &path, &cpi); xpt_path_unlock(&path); xpt_release_path(&path); return(1); } void xpt_action(union ccb *start_ccb) { CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code))); start_ccb->ccb_h.status = CAM_REQ_INPROG; (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); } void xpt_action_default(union ccb *start_ccb) { struct cam_path *path; struct cam_sim *sim; struct mtx *mtx; path = start_ccb->ccb_h.path; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code))); switch (start_ccb->ccb_h.func_code) { case XPT_SCSI_IO: { struct cam_ed *device; /* * For the sake of compatibility with SCSI-1 * devices that may not understand the identify * message, we include lun information in the * second byte of all commands. SCSI-1 specifies * that luns are a 3 bit value and reserves only 3 * bits for lun information in the CDB. Later * revisions of the SCSI spec allow for more than 8 * luns, but have deprecated lun information in the * CDB. So, if the lun won't fit, we must omit. * * Also be aware that during initial probing for devices, * the inquiry information is unknown but initialized to 0. * This means that this code will be exercised while probing * devices with an ANSI revision greater than 2. */ device = path->device; if (device->protocol_version <= SCSI_REV_2 && start_ccb->ccb_h.target_lun < 8 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { start_ccb->csio.cdb_io.cdb_bytes[1] |= start_ccb->ccb_h.target_lun << 5; } start_ccb->csio.scsi_status = SCSI_STATUS_OK; } /* FALLTHROUGH */ case XPT_TARGET_IO: case XPT_CONT_TARGET_IO: start_ccb->csio.sense_resid = 0; start_ccb->csio.resid = 0; /* FALLTHROUGH */ case XPT_ATA_IO: if (start_ccb->ccb_h.func_code == XPT_ATA_IO) start_ccb->ataio.resid = 0; /* FALLTHROUGH */ case XPT_NVME_IO: case XPT_NVME_ADMIN: case XPT_MMC_IO: case XPT_RESET_DEV: case XPT_ENG_EXEC: case XPT_SMP_IO: { struct cam_devq *devq; devq = path->bus->sim->devq; mtx_lock(&devq->send_mtx); cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); if (xpt_schedule_devq(devq, path->device) != 0) xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); break; } case XPT_CALC_GEOMETRY: /* Filter out garbage */ if (start_ccb->ccg.block_size == 0 || start_ccb->ccg.volume_size == 0) { start_ccb->ccg.cylinders = 0; start_ccb->ccg.heads = 0; start_ccb->ccg.secs_per_track = 0; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } goto call_sim; case XPT_ABORT: { union ccb* abort_ccb; abort_ccb = start_ccb->cab.abort_ccb; if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { struct cam_ed *device; struct cam_devq *devq; device = abort_ccb->ccb_h.path->device; devq = device->sim->devq; mtx_lock(&devq->send_mtx); if (abort_ccb->ccb_h.pinfo.index > 0) { cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq_device(device, 1); mtx_unlock(&devq->send_mtx); xpt_done(abort_ccb); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } mtx_unlock(&devq->send_mtx); if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { /* * We've caught this ccb en route to * the SIM. Flag it for abort and the * SIM will do so just before starting * real work on the CCB. */ abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq(abort_ccb->ccb_h.path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } } if (XPT_FC_IS_QUEUED(abort_ccb) && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { /* * It's already completed but waiting * for our SWI to get to it. */ start_ccb->ccb_h.status = CAM_UA_ABORT; break; } /* * If we weren't able to take care of the abort request * in the XPT, pass the request down to the SIM for processing. */ } /* FALLTHROUGH */ case XPT_ACCEPT_TARGET_IO: case XPT_EN_LUN: case XPT_IMMED_NOTIFY: case XPT_NOTIFY_ACK: case XPT_RESET_BUS: case XPT_IMMEDIATE_NOTIFY: case XPT_NOTIFY_ACKNOWLEDGE: case XPT_GET_SIM_KNOB_OLD: case XPT_GET_SIM_KNOB: case XPT_SET_SIM_KNOB: case XPT_GET_TRAN_SETTINGS: case XPT_SET_TRAN_SETTINGS: case XPT_PATH_INQ: call_sim: sim = path->bus->sim; mtx = sim->mtx; if (mtx && !mtx_owned(mtx)) mtx_lock(mtx); else mtx = NULL; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); (*(sim->sim_action))(sim, start_ccb); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); if (mtx) mtx_unlock(mtx); break; case XPT_PATH_STATS: start_ccb->cpis.last_reset = path->bus->last_reset; start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_GDEV_TYPE: { struct cam_ed *dev; dev = path->device; if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; } else { struct ccb_getdev *cgd; cgd = &start_ccb->cgd; cgd->protocol = dev->protocol; cgd->inq_data = dev->inq_data; cgd->ident_data = dev->ident_data; cgd->inq_flags = dev->inq_flags; cgd->ccb_h.status = CAM_REQ_CMP; cgd->serial_num_len = dev->serial_num_len; if ((dev->serial_num_len > 0) && (dev->serial_num != NULL)) bcopy(dev->serial_num, cgd->serial_num, dev->serial_num_len); } break; } case XPT_GDEV_STATS: { struct ccb_getdevstats *cgds = &start_ccb->cgds; struct cam_ed *dev = path->device; struct cam_eb *bus = path->bus; struct cam_et *tar = path->target; struct cam_devq *devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cgds->dev_openings = dev->ccbq.dev_openings; cgds->dev_active = dev->ccbq.dev_active; cgds->allocated = dev->ccbq.allocated; cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; cgds->last_reset = tar->last_reset; cgds->maxtags = dev->maxtags; cgds->mintags = dev->mintags; if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) cgds->last_reset = bus->last_reset; mtx_unlock(&devq->send_mtx); cgds->ccb_h.status = CAM_REQ_CMP; break; } case XPT_GDEVLIST: { struct cam_periph *nperiph; struct periph_list *periph_head; struct ccb_getdevlist *cgdl; u_int i; struct cam_ed *device; int found; found = 0; /* * Don't want anyone mucking with our data. */ device = path->device; periph_head = &device->periphs; cgdl = &start_ccb->cgdl; /* * Check and see if the list has changed since the user * last requested a list member. If so, tell them that the * list has changed, and therefore they need to start over * from the beginning. */ if ((cgdl->index != 0) && (cgdl->generation != device->generation)) { cgdl->status = CAM_GDEVLIST_LIST_CHANGED; break; } /* * Traverse the list of peripherals and attempt to find * the requested peripheral. */ for (nperiph = SLIST_FIRST(periph_head), i = 0; (nperiph != NULL) && (i <= cgdl->index); nperiph = SLIST_NEXT(nperiph, periph_links), i++) { if (i == cgdl->index) { strlcpy(cgdl->periph_name, nperiph->periph_name, sizeof(cgdl->periph_name)); cgdl->unit_number = nperiph->unit_number; found = 1; } } if (found == 0) { cgdl->status = CAM_GDEVLIST_ERROR; break; } if (nperiph == NULL) cgdl->status = CAM_GDEVLIST_LAST_DEVICE; else cgdl->status = CAM_GDEVLIST_MORE_DEVS; cgdl->index++; cgdl->generation = device->generation; cgdl->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEV_MATCH: { dev_pos_type position_type; struct ccb_dev_match *cdm; cdm = &start_ccb->cdm; /* * There are two ways of getting at information in the EDT. * The first way is via the primary EDT tree. It starts * with a list of buses, then a list of targets on a bus, * then devices/luns on a target, and then peripherals on a * device/lun. The "other" way is by the peripheral driver * lists. The peripheral driver lists are organized by * peripheral driver. (obviously) So it makes sense to * use the peripheral driver list if the user is looking * for something like "da1", or all "da" devices. If the * user is looking for something on a particular bus/target * or lun, it's generally better to go through the EDT tree. */ if (cdm->pos.position_type != CAM_DEV_POS_NONE) position_type = cdm->pos.position_type; else { u_int i; position_type = CAM_DEV_POS_NONE; for (i = 0; i < cdm->num_patterns; i++) { if ((cdm->patterns[i].type == DEV_MATCH_BUS) ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ position_type = CAM_DEV_POS_EDT; break; } } if (cdm->num_patterns == 0) position_type = CAM_DEV_POS_EDT; else if (position_type == CAM_DEV_POS_NONE) position_type = CAM_DEV_POS_PDRV; } switch(position_type & CAM_DEV_POS_TYPEMASK) { case CAM_DEV_POS_EDT: xptedtmatch(cdm); break; case CAM_DEV_POS_PDRV: xptperiphlistmatch(cdm); break; default: cdm->status = CAM_DEV_MATCH_ERROR; break; } if (cdm->status == CAM_DEV_MATCH_ERROR) start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_SASYNC_CB: { struct ccb_setasync *csa; struct async_node *cur_entry; struct async_list *async_head; u_int32_t added; csa = &start_ccb->csa; added = csa->event_enable; async_head = &path->device->asyncs; /* * If there is already an entry for us, simply * update it. */ cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { if ((cur_entry->callback_arg == csa->callback_arg) && (cur_entry->callback == csa->callback)) break; cur_entry = SLIST_NEXT(cur_entry, links); } if (cur_entry != NULL) { /* * If the request has no flags set, * remove the entry. */ added &= ~cur_entry->event_enable; if (csa->event_enable == 0) { SLIST_REMOVE(async_head, cur_entry, async_node, links); xpt_release_device(path->device); free(cur_entry, M_CAMXPT); } else { cur_entry->event_enable = csa->event_enable; } csa->event_enable = added; } else { cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, M_NOWAIT); if (cur_entry == NULL) { csa->ccb_h.status = CAM_RESRC_UNAVAIL; break; } cur_entry->event_enable = csa->event_enable; cur_entry->event_lock = (path->bus->sim->mtx && mtx_owned(path->bus->sim->mtx)) ? 1 : 0; cur_entry->callback_arg = csa->callback_arg; cur_entry->callback = csa->callback; SLIST_INSERT_HEAD(async_head, cur_entry, links); xpt_acquire_device(path->device); } start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_REL_SIMQ: { struct ccb_relsim *crs; struct cam_ed *dev; crs = &start_ccb->crs; dev = path->device; if (dev == NULL) { crs->ccb_h.status = CAM_DEV_NOT_THERE; break; } if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { /* Don't ever go below one opening */ if (crs->openings > 0) { xpt_dev_ccbq_resize(path, crs->openings); if (bootverbose) { xpt_print(path, "number of openings is now %d\n", crs->openings); } } } mtx_lock(&dev->sim->devq->send_mtx); if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { /* * Just extend the old timeout and decrement * the freeze count so that a single timeout * is sufficient for releasing the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; callout_stop(&dev->callout); } else { start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } callout_reset_sbt(&dev->callout, SBT_1MS * crs->release_timeout, 0, xpt_release_devq_timeout, dev, 0); dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; } if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { /* * Decrement the freeze count so that a single * completion is still sufficient to unfreeze * the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_COMPLETE; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 || (dev->ccbq.dev_active == 0)) { start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } mtx_unlock(&dev->sim->devq->send_mtx); if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEBUG: { struct cam_path *oldpath; /* Check that all request bits are supported. */ if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; break; } cam_dflags = CAM_DEBUG_NONE; if (cam_dpath != NULL) { oldpath = cam_dpath; cam_dpath = NULL; xpt_free_path(oldpath); } if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, start_ccb->ccb_h.path_id, start_ccb->ccb_h.target_id, start_ccb->ccb_h.target_lun) != CAM_REQ_CMP) { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } else { cam_dflags = start_ccb->cdbg.flags; start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_print(cam_dpath, "debugging flags now %x\n", cam_dflags); } } else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_NOOP: if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) xpt_freeze_devq(path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_REPROBE_LUN: xpt_async(AC_INQ_CHANGED, path, NULL); start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(start_ccb); break; case XPT_ASYNC: start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(start_ccb); break; default: case XPT_SDEV_TYPE: case XPT_TERM_IO: case XPT_ENG_INQ: /* XXX Implement */ xpt_print(start_ccb->ccb_h.path, "%s: CCB type %#x %s not supported\n", __func__, start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code)); start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { xpt_done(start_ccb); } break; } CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default: func= %#x %s status %#x\n", start_ccb->ccb_h.func_code, xpt_action_name(start_ccb->ccb_h.func_code), start_ccb->ccb_h.status)); } /* * Call the sim poll routine to allow the sim to complete * any inflight requests, then call camisr_runqueue to * complete any CCB that the polling completed. */ void xpt_sim_poll(struct cam_sim *sim) { struct mtx *mtx; mtx = sim->mtx; if (mtx) mtx_lock(mtx); (*(sim->sim_poll))(sim); if (mtx) mtx_unlock(mtx); camisr_runqueue(); } uint32_t xpt_poll_setup(union ccb *start_ccb) { u_int32_t timeout; struct cam_sim *sim; struct cam_devq *devq; struct cam_ed *dev; timeout = start_ccb->ccb_h.timeout * 10; sim = start_ccb->ccb_h.path->bus->sim; devq = sim->devq; dev = start_ccb->ccb_h.path->device; /* * Steal an opening so that no other queued requests * can get it before us while we simulate interrupts. */ mtx_lock(&devq->send_mtx); dev->ccbq.dev_openings--; while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && (--timeout > 0)) { mtx_unlock(&devq->send_mtx); DELAY(100); xpt_sim_poll(sim); mtx_lock(&devq->send_mtx); } dev->ccbq.dev_openings++; mtx_unlock(&devq->send_mtx); return (timeout); } void xpt_pollwait(union ccb *start_ccb, uint32_t timeout) { while (--timeout > 0) { xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) break; DELAY(100); } if (timeout == 0) { /* * XXX Is it worth adding a sim_timeout entry * point so we can attempt recovery? If * this is only used for dumps, I don't think * it is. */ start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; } } void xpt_polled_action(union ccb *start_ccb) { uint32_t timeout; struct cam_ed *dev; timeout = start_ccb->ccb_h.timeout * 10; dev = start_ccb->ccb_h.path->device; mtx_unlock(&dev->device_mtx); timeout = xpt_poll_setup(start_ccb); if (timeout > 0) { xpt_action(start_ccb); xpt_pollwait(start_ccb, timeout); } else { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } mtx_lock(&dev->device_mtx); } /* * Schedule a peripheral driver to receive a ccb when its * target device has space for more transactions. */ void xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) { CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); cam_periph_assert(periph, MA_OWNED); if (new_priority < periph->scheduled_priority) { periph->scheduled_priority = new_priority; xpt_run_allocq(periph, 0); } } /* * Schedule a device to run on a given queue. * If the device was inserted as a new entry on the queue, * return 1 meaning the device queue should be run. If we * were already queued, implying someone else has already * started the queue, return 0 so the caller doesn't attempt * to run the queue. */ static int xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, u_int32_t new_priority) { int retval; u_int32_t old_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); old_priority = pinfo->priority; /* * Are we already queued? */ if (pinfo->index != CAM_UNQUEUED_INDEX) { /* Simply reorder based on new priority */ if (new_priority < old_priority) { camq_change_priority(queue, pinfo->index, new_priority); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("changed priority to %d\n", new_priority)); retval = 1; } else retval = 0; } else { /* New entry on the queue */ if (new_priority < old_priority) pinfo->priority = new_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("Inserting onto queue\n")); pinfo->generation = ++queue->generation; camq_insert(queue, pinfo); retval = 1; } return (retval); } static void xpt_run_allocq_task(void *context, int pending) { struct cam_periph *periph = context; cam_periph_lock(periph); periph->flags &= ~CAM_PERIPH_RUN_TASK; xpt_run_allocq(periph, 1); cam_periph_unlock(periph); cam_periph_release(periph); } static void xpt_run_allocq(struct cam_periph *periph, int sleep) { struct cam_ed *device; union ccb *ccb; uint32_t prio; cam_periph_assert(periph, MA_OWNED); if (periph->periph_allocating) return; cam_periph_doacquire(periph); periph->periph_allocating = 1; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); device = periph->path->device; ccb = NULL; restart: while ((prio = min(periph->scheduled_priority, periph->immediate_priority)) != CAM_PRIORITY_NONE && (periph->periph_allocated - (ccb != NULL ? 1 : 0) < device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { if (ccb == NULL && (ccb = xpt_get_ccb_nowait(periph)) == NULL) { if (sleep) { ccb = xpt_get_ccb(periph); goto restart; } if (periph->flags & CAM_PERIPH_RUN_TASK) break; cam_periph_doacquire(periph); periph->flags |= CAM_PERIPH_RUN_TASK; taskqueue_enqueue(xsoftc.xpt_taskq, &periph->periph_run_task); break; } xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); if (prio == periph->immediate_priority) { periph->immediate_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("waking cam_periph_getccb()\n")); SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, periph_links.sle); wakeup(&periph->ccb_list); } else { periph->scheduled_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("calling periph_start()\n")); periph->periph_start(periph, ccb); } ccb = NULL; } if (ccb != NULL) xpt_release_ccb(ccb); periph->periph_allocating = 0; cam_periph_release_locked(periph); } static void xpt_run_devq(struct cam_devq *devq) { struct mtx *mtx; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); devq->send_queue.qfrozen_cnt++; while ((devq->send_queue.entries > 0) && (devq->send_openings > 0) && (devq->send_queue.qfrozen_cnt <= 1)) { struct cam_ed *device; union ccb *work_ccb; struct cam_sim *sim; struct xpt_proto *proto; device = (struct cam_ed *)camq_remove(&devq->send_queue, CAMQ_HEAD); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("running device %p\n", device)); work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); if (work_ccb == NULL) { printf("device on run queue with no ccbs???\n"); continue; } if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { mtx_lock(&xsoftc.xpt_highpower_lock); if (xsoftc.num_highpower <= 0) { /* * We got a high power command, but we * don't have any available slots. Freeze * the device queue until we have a slot * available. */ xpt_freeze_devq_device(device, 1); STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); continue; } else { /* * Consume a high power slot while * this ccb runs. */ xsoftc.num_highpower--; } mtx_unlock(&xsoftc.xpt_highpower_lock); } cam_ccbq_remove_ccb(&device->ccbq, work_ccb); cam_ccbq_send_ccb(&device->ccbq, work_ccb); devq->send_openings--; devq->send_active++; xpt_schedule_devq(devq, device); mtx_unlock(&devq->send_mtx); if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { /* * The client wants to freeze the queue * after this CCB is sent. */ xpt_freeze_devq(work_ccb->ccb_h.path, 1); } /* In Target mode, the peripheral driver knows best... */ if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { if ((device->inq_flags & SID_CmdQue) != 0 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; else /* * Clear this in case of a retried CCB that * failed due to a rejected tag. */ work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; } KASSERT(device == work_ccb->ccb_h.path->device, ("device (%p) / path->device (%p) mismatch", device, work_ccb->ccb_h.path->device)); proto = xpt_proto_find(device->protocol); if (proto && proto->ops->debug_out) proto->ops->debug_out(work_ccb); /* * Device queues can be shared among multiple SIM instances * that reside on different buses. Use the SIM from the * queued device, rather than the one from the calling bus. */ sim = device->sim; mtx = sim->mtx; if (mtx && !mtx_owned(mtx)) mtx_lock(mtx); else mtx = NULL; work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); (*(sim->sim_action))(sim, work_ccb); if (mtx) mtx_unlock(mtx); mtx_lock(&devq->send_mtx); } devq->send_queue.qfrozen_cnt--; } /* * This function merges stuff from the slave ccb into the master ccb, while * keeping important fields in the master ccb constant. */ void xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) { /* * Pull fields that are valid for peripheral drivers to set * into the master CCB along with the CCB "payload". */ master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], sizeof(union ccb) - sizeof(struct ccb_hdr)); } void xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority, u_int32_t flags) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); ccb_h->pinfo.priority = priority; ccb_h->path = path; ccb_h->path_id = path->bus->path_id; if (path->target) ccb_h->target_id = path->target->target_id; else ccb_h->target_id = CAM_TARGET_WILDCARD; if (path->device) { ccb_h->target_lun = path->device->lun_id; ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; } else { ccb_h->target_lun = CAM_TARGET_WILDCARD; } ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; ccb_h->flags = flags; ccb_h->xflags = 0; } void xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) { xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); } /* Path manipulation functions */ cam_status xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_path *path; cam_status status; path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (path == NULL) { status = CAM_RESRC_UNAVAIL; return(status); } status = xpt_compile_path(path, perph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) { free(path, M_CAMPATH); path = NULL; } *new_path_ptr = path; return (status); } cam_status xpt_create_path_unlocked(struct cam_path **new_path_ptr, struct cam_periph *periph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { return (xpt_create_path(new_path_ptr, periph, path_id, target_id, lun_id)); } cam_status xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_eb *bus; struct cam_et *target; struct cam_ed *device; cam_status status; status = CAM_REQ_CMP; /* Completed without error */ target = NULL; /* Wildcarded */ device = NULL; /* Wildcarded */ /* * We will potentially modify the EDT, so block interrupts * that may attempt to create cam paths. */ bus = xpt_find_bus(path_id); if (bus == NULL) { status = CAM_PATH_INVALID; } else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); target = xpt_find_target(bus, target_id); if (target == NULL) { /* Create one */ struct cam_et *new_target; new_target = xpt_alloc_target(bus, target_id); if (new_target == NULL) { status = CAM_RESRC_UNAVAIL; } else { target = new_target; } } xpt_unlock_buses(); if (target != NULL) { device = xpt_find_device(target, lun_id); if (device == NULL) { /* Create one */ struct cam_ed *new_device; new_device = (*(bus->xport->ops->alloc_device))(bus, target, lun_id); if (new_device == NULL) { status = CAM_RESRC_UNAVAIL; } else { device = new_device; } } } mtx_unlock(&bus->eb_mtx); } /* * Only touch the user's data if we are successful. */ if (status == CAM_REQ_CMP) { new_path->periph = perph; new_path->bus = bus; new_path->target = target; new_path->device = device; CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); } else { if (device != NULL) xpt_release_device(device); if (target != NULL) xpt_release_target(target); if (bus != NULL) xpt_release_bus(bus); } return (status); } cam_status xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) { struct cam_path *new_path; new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (new_path == NULL) return(CAM_RESRC_UNAVAIL); *new_path = *path; if (path->bus != NULL) xpt_acquire_bus(path->bus); if (path->target != NULL) xpt_acquire_target(path->target); if (path->device != NULL) xpt_acquire_device(path->device); *new_path_ptr = new_path; return (CAM_REQ_CMP); } void xpt_release_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); if (path->device != NULL) { xpt_release_device(path->device); path->device = NULL; } if (path->target != NULL) { xpt_release_target(path->target); path->target = NULL; } if (path->bus != NULL) { xpt_release_bus(path->bus); path->bus = NULL; } } void xpt_free_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); xpt_release_path(path); free(path, M_CAMPATH); } void xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) { xpt_lock_buses(); if (bus_ref) { if (path->bus) *bus_ref = path->bus->refcount; else *bus_ref = 0; } if (periph_ref) { if (path->periph) *periph_ref = path->periph->refcount; else *periph_ref = 0; } xpt_unlock_buses(); if (target_ref) { if (path->target) *target_ref = path->target->refcount; else *target_ref = 0; } if (device_ref) { if (path->device) *device_ref = path->device->refcount; else *device_ref = 0; } } /* * Return -1 for failure, 0 for exact match, 1 for match with wildcards * in path1, 2 for match with wildcards in path2. */ int xpt_path_comp(struct cam_path *path1, struct cam_path *path2) { int retval = 0; if (path1->bus != path2->bus) { if (path1->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (path2->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path1->target != path2->target) { if (path1->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path1->device != path2->device) { if (path1->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->device->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } int xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) { int retval = 0; if (path->bus != dev->target->bus) { if (path->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path->target != dev->target) { if (path->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path->device != dev) { if (path->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } void xpt_print_path(struct cam_path *path) { struct sbuf sb; char buffer[XPT_PRINT_LEN]; sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); xpt_path_sbuf(path, &sb); sbuf_finish(&sb); printf("%s", sbuf_data(&sb)); sbuf_delete(&sb); } void xpt_print_device(struct cam_ed *device) { if (device == NULL) printf("(nopath): "); else { printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, device->sim->unit_number, device->sim->bus_id, device->target->target_id, (uintmax_t)device->lun_id); } } void xpt_print(struct cam_path *path, const char *fmt, ...) { va_list ap; struct sbuf sb; char buffer[XPT_PRINT_LEN]; sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); xpt_path_sbuf(path, &sb); va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); va_end(ap); sbuf_finish(&sb); printf("%s", sbuf_data(&sb)); sbuf_delete(&sb); } int xpt_path_string(struct cam_path *path, char *str, size_t str_len) { struct sbuf sb; int len; sbuf_new(&sb, str, str_len, 0); len = xpt_path_sbuf(path, &sb); sbuf_finish(&sb); return (len); } int xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) { if (path == NULL) sbuf_printf(sb, "(nopath): "); else { if (path->periph != NULL) sbuf_printf(sb, "(%s%d:", path->periph->periph_name, path->periph->unit_number); else sbuf_printf(sb, "(noperiph:"); if (path->bus != NULL) sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id); else sbuf_printf(sb, "nobus:"); if (path->target != NULL) sbuf_printf(sb, "%d:", path->target->target_id); else sbuf_printf(sb, "X:"); if (path->device != NULL) sbuf_printf(sb, "%jx): ", (uintmax_t)path->device->lun_id); else sbuf_printf(sb, "X): "); } return(sbuf_len(sb)); } path_id_t xpt_path_path_id(struct cam_path *path) { return(path->bus->path_id); } target_id_t xpt_path_target_id(struct cam_path *path) { if (path->target != NULL) return (path->target->target_id); else return (CAM_TARGET_WILDCARD); } lun_id_t xpt_path_lun_id(struct cam_path *path) { if (path->device != NULL) return (path->device->lun_id); else return (CAM_LUN_WILDCARD); } struct cam_sim * xpt_path_sim(struct cam_path *path) { return (path->bus->sim); } struct cam_periph* xpt_path_periph(struct cam_path *path) { return (path->periph); } /* * Release a CAM control block for the caller. Remit the cost of the structure * to the device referenced by the path. If the this device had no 'credits' * and peripheral drivers have registered async callbacks for this notification * call them now. */ void xpt_release_ccb(union ccb *free_ccb) { struct cam_ed *device; struct cam_periph *periph; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); device = free_ccb->ccb_h.path->device; periph = free_ccb->ccb_h.path->periph; xpt_free_ccb(free_ccb); periph->periph_allocated--; cam_ccbq_release_opening(&device->ccbq); xpt_run_allocq(periph, 0); } /* Functions accessed by SIM drivers */ static struct xpt_xport_ops xport_default_ops = { .alloc_device = xpt_alloc_device_default, .action = xpt_action_default, .async = xpt_dev_async_default, }; static struct xpt_xport xport_default = { .xport = XPORT_UNKNOWN, .name = "unknown", .ops = &xport_default_ops, }; CAM_XPT_XPORT(xport_default); /* * A sim structure, listing the SIM entry points and instance * identification info is passed to xpt_bus_register to hook the SIM * into the CAM framework. xpt_bus_register creates a cam_eb entry * for this new bus and places it in the array of buses and assigns * it a path_id. The path_id may be influenced by "hard wiring" * information specified by the user. Once interrupt services are * available, the bus will be probed. */ int32_t xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) { struct cam_eb *new_bus; struct cam_eb *old_bus; struct ccb_pathinq cpi; struct cam_path *path; cam_status status; sim->bus_id = bus; new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), M_CAMXPT, M_NOWAIT|M_ZERO); if (new_bus == NULL) { /* Couldn't satisfy request */ return (CAM_RESRC_UNAVAIL); } mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); TAILQ_INIT(&new_bus->et_entries); cam_sim_hold(sim); new_bus->sim = sim; timevalclear(&new_bus->last_reset); new_bus->flags = 0; new_bus->refcount = 1; /* Held until a bus_deregister event */ new_bus->generation = 0; xpt_lock_buses(); sim->path_id = new_bus->path_id = xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); while (old_bus != NULL && old_bus->path_id < new_bus->path_id) old_bus = TAILQ_NEXT(old_bus, links); if (old_bus != NULL) TAILQ_INSERT_BEFORE(old_bus, new_bus, links); else TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); /* * Set a default transport so that a PATH_INQ can be issued to * the SIM. This will then allow for probing and attaching of * a more appropriate transport. */ new_bus->xport = &xport_default; status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { xpt_release_bus(new_bus); return (CAM_RESRC_UNAVAIL); } xpt_path_inq(&cpi, path); if (cpi.ccb_h.status == CAM_REQ_CMP) { struct xpt_xport **xpt; SET_FOREACH(xpt, cam_xpt_xport_set) { if ((*xpt)->xport == cpi.transport) { new_bus->xport = *xpt; break; } } if (new_bus->xport == NULL) { xpt_print(path, "No transport found for %d\n", cpi.transport); xpt_release_bus(new_bus); free(path, M_CAMXPT); return (CAM_RESRC_UNAVAIL); } } /* Notify interested parties */ if (sim->path_id != CAM_XPT_PATH_ID) { xpt_async(AC_PATH_REGISTERED, path, &cpi); if ((cpi.hba_misc & PIM_NOSCAN) == 0) { union ccb *scan_ccb; /* Initiate bus rescan. */ scan_ccb = xpt_alloc_ccb_nowait(); if (scan_ccb != NULL) { scan_ccb->ccb_h.path = path; scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; scan_ccb->crcn.flags = 0; xpt_rescan(scan_ccb); } else { xpt_print(path, "Can't allocate CCB to scan bus\n"); xpt_free_path(path); } } else xpt_free_path(path); } else xpt_free_path(path); return (CAM_SUCCESS); } int32_t xpt_bus_deregister(path_id_t pathid) { struct cam_path bus_path; cam_status status; status = xpt_compile_path(&bus_path, NULL, pathid, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_async(AC_LOST_DEVICE, &bus_path, NULL); xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); /* Release the reference count held while registered. */ xpt_release_bus(bus_path.bus); xpt_release_path(&bus_path); return (CAM_REQ_CMP); } static path_id_t xptnextfreepathid(void) { struct cam_eb *bus; path_id_t pathid; const char *strval; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); pathid = 0; bus = TAILQ_FIRST(&xsoftc.xpt_busses); retry: /* Find an unoccupied pathid */ while (bus != NULL && bus->path_id <= pathid) { if (bus->path_id == pathid) pathid++; bus = TAILQ_NEXT(bus, links); } /* * Ensure that this pathid is not reserved for * a bus that may be registered in the future. */ if (resource_string_value("scbus", pathid, "at", &strval) == 0) { ++pathid; /* Start the search over */ goto retry; } return (pathid); } static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus) { path_id_t pathid; int i, dunit, val; char buf[32]; const char *dname; pathid = CAM_XPT_PATH_ID; snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) return (pathid); i = 0; while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { if (strcmp(dname, "scbus")) { /* Avoid a bit of foot shooting. */ continue; } if (dunit < 0) /* unwired?! */ continue; if (resource_int_value("scbus", dunit, "bus", &val) == 0) { if (sim_bus == val) { pathid = dunit; break; } } else if (sim_bus == 0) { /* Unspecified matches bus 0 */ pathid = dunit; break; } else { printf("Ambiguous scbus configuration for %s%d " "bus %d, cannot wire down. The kernel " "config entry for scbus%d should " "specify a controller bus.\n" "Scbus will be assigned dynamically.\n", sim_name, sim_unit, sim_bus, dunit); break; } } if (pathid == CAM_XPT_PATH_ID) pathid = xptnextfreepathid(); return (pathid); } static const char * xpt_async_string(u_int32_t async_code) { switch (async_code) { case AC_BUS_RESET: return ("AC_BUS_RESET"); case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); case AC_SCSI_AEN: return ("AC_SCSI_AEN"); case AC_SENT_BDR: return ("AC_SENT_BDR"); case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); case AC_CONTRACT: return ("AC_CONTRACT"); case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); } return ("AC_UNKNOWN"); } static int xpt_async_size(u_int32_t async_code) { switch (async_code) { case AC_BUS_RESET: return (0); case AC_UNSOL_RESEL: return (0); case AC_SCSI_AEN: return (0); case AC_SENT_BDR: return (0); case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); case AC_PATH_DEREGISTERED: return (0); case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); case AC_LOST_DEVICE: return (0); case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); case AC_INQ_CHANGED: return (0); case AC_GETDEV_CHANGED: return (0); case AC_CONTRACT: return (sizeof(struct ac_contract)); case AC_ADVINFO_CHANGED: return (-1); case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); } return (0); } static int xpt_async_process_dev(struct cam_ed *device, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; void *async_arg = ccb->casync.async_arg_ptr; u_int32_t async_code = ccb->casync.async_code; int relock; if (path->device != device && path->device->lun_id != CAM_LUN_WILDCARD && device->lun_id != CAM_LUN_WILDCARD) return (1); /* * The async callback could free the device. * If it is a broadcast async, it doesn't hold * device reference, so take our own reference. */ xpt_acquire_device(device); /* * If async for specific device is to be delivered to * the wildcard client, take the specific device lock. * XXX: We may need a way for client to specify it. */ if ((device->lun_id == CAM_LUN_WILDCARD && path->device->lun_id != CAM_LUN_WILDCARD) || (device->target->target_id == CAM_TARGET_WILDCARD && path->target->target_id != CAM_TARGET_WILDCARD) || (device->target->bus->path_id == CAM_BUS_WILDCARD && path->target->bus->path_id != CAM_BUS_WILDCARD)) { mtx_unlock(&device->device_mtx); xpt_path_lock(path); relock = 1; } else relock = 0; (*(device->target->bus->xport->ops->async))(async_code, device->target->bus, device->target, device, async_arg); xpt_async_bcast(&device->asyncs, async_code, path, async_arg); if (relock) { xpt_path_unlock(path); mtx_lock(&device->device_mtx); } xpt_release_device(device); return (1); } static int xpt_async_process_tgt(struct cam_et *target, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; if (path->target != target && path->target->target_id != CAM_TARGET_WILDCARD && target->target_id != CAM_TARGET_WILDCARD) return (1); if (ccb->casync.async_code == AC_SENT_BDR) { /* Update our notion of when the last reset occurred */ microtime(&target->last_reset); } return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); } static void xpt_async_process(struct cam_periph *periph, union ccb *ccb) { struct cam_eb *bus; struct cam_path *path; void *async_arg; u_int32_t async_code; path = ccb->ccb_h.path; async_code = ccb->casync.async_code; async_arg = ccb->casync.async_arg_ptr; CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, ("xpt_async(%s)\n", xpt_async_string(async_code))); bus = path->bus; if (async_code == AC_BUS_RESET) { /* Update our notion of when the last reset occurred */ microtime(&bus->last_reset); } xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); /* * If this wasn't a fully wildcarded async, tell all * clients that want all async events. */ if (bus != xpt_periph->path->bus) { xpt_path_lock(xpt_periph->path); xpt_async_process_dev(xpt_periph->path->device, ccb); xpt_path_unlock(xpt_periph->path); } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_release_devq(path, 1, TRUE); else xpt_release_simq(path->bus->sim, TRUE); if (ccb->casync.async_arg_size > 0) free(async_arg, M_CAMXPT); xpt_free_path(path); xpt_free_ccb(ccb); } static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg) { struct async_node *cur_entry; struct mtx *mtx; cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { struct async_node *next_entry; /* * Grab the next list entry before we call the current * entry's callback. This is because the callback function * can delete its async callback entry. */ next_entry = SLIST_NEXT(cur_entry, links); if ((cur_entry->event_enable & async_code) != 0) { mtx = cur_entry->event_lock ? path->device->sim->mtx : NULL; if (mtx) mtx_lock(mtx); cur_entry->callback(cur_entry->callback_arg, async_code, path, async_arg); if (mtx) mtx_unlock(mtx); } cur_entry = next_entry; } } void xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) { union ccb *ccb; int size; ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { xpt_print(path, "Can't allocate CCB to send %s\n", xpt_async_string(async_code)); return; } if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { xpt_print(path, "Can't allocate path to send %s\n", xpt_async_string(async_code)); xpt_free_ccb(ccb); return; } ccb->ccb_h.path->periph = NULL; ccb->ccb_h.func_code = XPT_ASYNC; ccb->ccb_h.cbfcnp = xpt_async_process; ccb->ccb_h.flags |= CAM_UNLOCKED; ccb->casync.async_code = async_code; ccb->casync.async_arg_size = 0; size = xpt_async_size(async_code); CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_async: func %#x %s aync_code %d %s\n", ccb->ccb_h.func_code, xpt_action_name(ccb->ccb_h.func_code), async_code, xpt_async_string(async_code))); if (size > 0 && async_arg != NULL) { ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); if (ccb->casync.async_arg_ptr == NULL) { xpt_print(path, "Can't allocate argument to send %s\n", xpt_async_string(async_code)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } memcpy(ccb->casync.async_arg_ptr, async_arg, size); ccb->casync.async_arg_size = size; } else if (size < 0) { ccb->casync.async_arg_ptr = async_arg; ccb->casync.async_arg_size = size; } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_freeze_devq(path, 1); else xpt_freeze_simq(path->bus->sim, 1); xpt_action(ccb); } static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg) { /* * We only need to handle events for real devices. */ if (target->target_id == CAM_TARGET_WILDCARD || device->lun_id == CAM_LUN_WILDCARD) return; printf("%s called\n", __func__); } static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_freeze_devq_device(%d) %u->%u\n", count, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); freeze = (dev->ccbq.queue.qfrozen_cnt += count); /* Remove frozen device from sendq. */ if (device_is_queued(dev)) camq_remove(&devq->send_queue, dev->devq_entry.index); return (freeze); } u_int32_t xpt_freeze_devq(struct cam_path *path, u_int count) { struct cam_ed *dev = path->device; struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); freeze = xpt_freeze_devq_device(dev, count); mtx_unlock(&devq->send_mtx); return (freeze); } u_int32_t xpt_freeze_simq(struct cam_sim *sim, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = sim->devq; mtx_lock(&devq->send_mtx); freeze = (devq->send_queue.qfrozen_cnt += count); mtx_unlock(&devq->send_mtx); return (freeze); } static void xpt_release_devq_timeout(void *arg) { struct cam_ed *dev; struct cam_devq *devq; dev = (struct cam_ed *)arg; CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) xpt_run_devq(devq); } void xpt_release_devq(struct cam_path *path, u_int count, int run_queue) { struct cam_ed *dev; struct cam_devq *devq; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", count, run_queue)); dev = path->device; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); if (xpt_release_devq_device(dev, count, run_queue)) xpt_run_devq(dev->sim->devq); mtx_unlock(&devq->send_mtx); } static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) { mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); if (count > dev->ccbq.queue.qfrozen_cnt) { #ifdef INVARIANTS printf("xpt_release_devq(): requested %u > present %u\n", count, dev->ccbq.queue.qfrozen_cnt); #endif count = dev->ccbq.queue.qfrozen_cnt; } dev->ccbq.queue.qfrozen_cnt -= count; if (dev->ccbq.queue.qfrozen_cnt == 0) { /* * No longer need to wait for a successful * command completion. */ dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; /* * Remove any timeouts that might be scheduled * to release this queue. */ if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { callout_stop(&dev->callout); dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; } /* * Now that we are unfrozen schedule the * device so any pending transactions are * run. */ xpt_schedule_devq(dev->sim->devq, dev); } else run_queue = 0; return (run_queue); } void xpt_release_simq(struct cam_sim *sim, int run_queue) { struct cam_devq *devq; devq = sim->devq; mtx_lock(&devq->send_mtx); if (devq->send_queue.qfrozen_cnt <= 0) { #ifdef INVARIANTS printf("xpt_release_simq: requested 1 > present %u\n", devq->send_queue.qfrozen_cnt); #endif } else devq->send_queue.qfrozen_cnt--; if (devq->send_queue.qfrozen_cnt == 0) { /* * If there is a timeout scheduled to release this * sim queue, remove it. The queue frozen count is * already at 0. */ if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ callout_stop(&sim->callout); sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; } if (run_queue) { /* * Now that we are unfrozen run the send queue. */ xpt_run_devq(sim->devq); } } mtx_unlock(&devq->send_mtx); } void xpt_done(union ccb *done_ccb) { struct cam_doneq *queue; int run, hash; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && done_ccb->csio.bio != NULL) biotrack(done_ccb->csio.bio, __func__); #endif CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done: func= %#x %s status %#x\n", done_ccb->ccb_h.func_code, xpt_action_name(done_ccb->ccb_h.func_code), done_ccb->ccb_h.status)); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; /* Store the time the ccb was in the sim */ done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + done_ccb->ccb_h.target_lun) % cam_num_doneqs; queue = &cam_doneqs[hash]; mtx_lock(&queue->cam_doneq_mtx); run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; mtx_unlock(&queue->cam_doneq_mtx); if (run) wakeup(&queue->cam_doneq); } void xpt_done_direct(union ccb *done_ccb) { CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; /* Store the time the ccb was in the sim */ done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); xpt_done_process(&done_ccb->ccb_h); } union ccb * xpt_alloc_ccb() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); return (new_ccb); } union ccb * xpt_alloc_ccb_nowait() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); return (new_ccb); } void xpt_free_ccb(union ccb *free_ccb) { free(free_ccb, M_CAMCCB); } /* Private XPT functions */ /* * Get a CAM control block for the caller. Charge the structure to the device * referenced by the path. If we don't have sufficient resources to allocate * more ccbs, we return NULL. */ static union ccb * xpt_get_ccb_nowait(struct cam_periph *periph) { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); if (new_ccb == NULL) return (NULL); periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } static union ccb * xpt_get_ccb(struct cam_periph *periph) { union ccb *new_ccb; cam_periph_unlock(periph); new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); cam_periph_lock(periph); periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } union ccb * cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) { struct ccb_hdr *ccb_h; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); cam_periph_assert(periph, MA_OWNED); while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || ccb_h->pinfo.priority != priority) { if (priority < periph->immediate_priority) { periph->immediate_priority = priority; xpt_run_allocq(periph, 0); } else cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, "cgticb", 0); } SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); return ((union ccb *)ccb_h); } static void xpt_acquire_bus(struct cam_eb *bus) { xpt_lock_buses(); bus->refcount++; xpt_unlock_buses(); } static void xpt_release_bus(struct cam_eb *bus) { xpt_lock_buses(); KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); if (--bus->refcount > 0) { xpt_unlock_buses(); return; } TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); KASSERT(TAILQ_EMPTY(&bus->et_entries), ("destroying bus, but target list is not empty")); cam_sim_release(bus->sim); mtx_destroy(&bus->eb_mtx); free(bus, M_CAMXPT); } static struct cam_et * xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *cur_target, *target; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); mtx_assert(&bus->eb_mtx, MA_OWNED); target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT|M_ZERO); if (target == NULL) return (NULL); TAILQ_INIT(&target->ed_entries); target->bus = bus; target->target_id = target_id; target->refcount = 1; target->generation = 0; target->luns = NULL; mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); timevalclear(&target->last_reset); /* * Hold a reference to our parent bus so it * will not go away before we do. */ bus->refcount++; /* Insertion sort into our bus's target list */ cur_target = TAILQ_FIRST(&bus->et_entries); while (cur_target != NULL && cur_target->target_id < target_id) cur_target = TAILQ_NEXT(cur_target, links); if (cur_target != NULL) { TAILQ_INSERT_BEFORE(cur_target, target, links); } else { TAILQ_INSERT_TAIL(&bus->et_entries, target, links); } bus->generation++; return (target); } static void xpt_acquire_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); target->refcount++; mtx_unlock(&bus->eb_mtx); } static void xpt_release_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); if (--target->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&bus->et_entries, target, links); bus->generation++; mtx_unlock(&bus->eb_mtx); KASSERT(TAILQ_EMPTY(&target->ed_entries), ("destroying target, but device list is not empty")); xpt_release_bus(bus); mtx_destroy(&target->luns_mtx); if (target->luns) free(target->luns, M_CAMXPT); free(target, M_CAMXPT); } static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; device = xpt_alloc_device(bus, target, lun_id); if (device == NULL) return (NULL); device->mintags = 1; device->maxtags = 1; return (device); } static void xpt_destroy_device(void *context, int pending) { struct cam_ed *device = context; mtx_lock(&device->device_mtx); mtx_destroy(&device->device_mtx); free(device, M_CAMDEV); } struct cam_ed * xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *cur_device, *device; struct cam_devq *devq; cam_status status; mtx_assert(&bus->eb_mtx, MA_OWNED); /* Make space for us in the device queue on our bus */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); status = cam_devq_resize(devq, devq->send_queue.array_size + 1); mtx_unlock(&devq->send_mtx); if (status != CAM_REQ_CMP) return (NULL); device = (struct cam_ed *)malloc(sizeof(*device), M_CAMDEV, M_NOWAIT|M_ZERO); if (device == NULL) return (NULL); cam_init_pinfo(&device->devq_entry); device->target = target; device->lun_id = lun_id; device->sim = bus->sim; if (cam_ccbq_init(&device->ccbq, bus->sim->max_dev_openings) != 0) { free(device, M_CAMDEV); return (NULL); } SLIST_INIT(&device->asyncs); SLIST_INIT(&device->periphs); device->generation = 0; device->flags = CAM_DEV_UNCONFIGURED; device->tag_delay_count = 0; device->tag_saved_openings = 0; device->refcount = 1; mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); callout_init_mtx(&device->callout, &devq->send_mtx, 0); TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); /* * Hold a reference to our parent bus so it * will not go away before we do. */ target->refcount++; cur_device = TAILQ_FIRST(&target->ed_entries); while (cur_device != NULL && cur_device->lun_id < lun_id) cur_device = TAILQ_NEXT(cur_device, links); if (cur_device != NULL) TAILQ_INSERT_BEFORE(cur_device, device, links); else TAILQ_INSERT_TAIL(&target->ed_entries, device, links); target->generation++; return (device); } void xpt_acquire_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; mtx_lock(&bus->eb_mtx); device->refcount++; mtx_unlock(&bus->eb_mtx); } void xpt_release_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; struct cam_devq *devq; mtx_lock(&bus->eb_mtx); if (--device->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&device->target->ed_entries, device,links); device->target->generation++; mtx_unlock(&bus->eb_mtx); /* Release our slot in the devq */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cam_devq_resize(devq, devq->send_queue.array_size - 1); mtx_unlock(&devq->send_mtx); KASSERT(SLIST_EMPTY(&device->periphs), ("destroying device, but periphs list is not empty")); KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, ("destroying device while still queued for ccbs")); if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) callout_stop(&device->callout); xpt_release_target(device->target); cam_ccbq_fini(&device->ccbq); /* * Free allocated memory. free(9) does nothing if the * supplied pointer is NULL, so it is safe to call without * checking. */ free(device->supported_vpds, M_CAMXPT); free(device->device_id, M_CAMXPT); free(device->ext_inq, M_CAMXPT); free(device->physpath, M_CAMXPT); free(device->rcap_buf, M_CAMXPT); free(device->serial_num, M_CAMXPT); free(device->nvme_data, M_CAMXPT); free(device->nvme_cdata, M_CAMXPT); taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); } u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) { int result; struct cam_ed *dev; dev = path->device; mtx_lock(&dev->sim->devq->send_mtx); result = cam_ccbq_resize(&dev->ccbq, newopenings); mtx_unlock(&dev->sim->devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 || (dev->inq_flags & SID_CmdQue) != 0) dev->tag_saved_openings = newopenings; return (result); } static struct cam_eb * xpt_find_bus(path_id_t path_id) { struct cam_eb *bus; xpt_lock_buses(); for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); bus != NULL; bus = TAILQ_NEXT(bus, links)) { if (bus->path_id == path_id) { bus->refcount++; break; } } xpt_unlock_buses(); return (bus); } static struct cam_et * xpt_find_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *target; mtx_assert(&bus->eb_mtx, MA_OWNED); for (target = TAILQ_FIRST(&bus->et_entries); target != NULL; target = TAILQ_NEXT(target, links)) { if (target->target_id == target_id) { target->refcount++; break; } } return (target); } static struct cam_ed * xpt_find_device(struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; mtx_assert(&target->bus->eb_mtx, MA_OWNED); for (device = TAILQ_FIRST(&target->ed_entries); device != NULL; device = TAILQ_NEXT(device, links)) { if (device->lun_id == lun_id) { device->refcount++; break; } } return (device); } void xpt_start_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; int newopenings; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; xpt_freeze_devq(path, /*count*/1); device->inq_flags |= SID_CmdQue; if (device->tag_saved_openings != 0) newopenings = device->tag_saved_openings; else newopenings = min(device->maxtags, sim->max_tagged_dev_openings); xpt_dev_ccbq_resize(path, newopenings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } void xpt_stop_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; device->tag_delay_count = 0; xpt_freeze_devq(path, /*count*/1); device->inq_flags &= ~SID_CmdQue; xpt_dev_ccbq_resize(path, sim->max_dev_openings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } /* * Assume all possible buses are detected by this time, so allow boot * as soon as they all are scanned. */ static void xpt_boot_delay(void *arg) { xpt_release_boot(); } /* * Now that all config hooks have completed, start boot_delay timer, * waiting for possibly still undetected buses (USB) to appear. */ static void xpt_ch_done(void *arg) { callout_init(&xsoftc.boot_callout, 1); callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, xpt_boot_delay, NULL, 0); } SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL); /* * Now that interrupts are enabled, go find our devices */ static void xpt_config(void *arg) { if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) printf("xpt_config: failed to create taskqueue thread.\n"); /* Setup debugging path */ if (cam_dflags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN) != CAM_REQ_CMP) { printf("xpt_config: xpt_create_path() failed for debug" " target %d:%d:%d, debugging disabled\n", CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); cam_dflags = CAM_DEBUG_NONE; } } else cam_dpath = NULL; periphdriver_init(1); xpt_hold_boot(); /* Fire up rescan thread. */ if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, "cam", "scanner")) { printf("xpt_config: failed to create rescan thread.\n"); } } void xpt_hold_boot_locked(void) { if (xsoftc.buses_to_config++ == 0) root_mount_hold_token("CAM", &xsoftc.xpt_rootmount); } void xpt_hold_boot(void) { xpt_lock_buses(); xpt_hold_boot_locked(); xpt_unlock_buses(); } void xpt_release_boot(void) { xpt_lock_buses(); if (--xsoftc.buses_to_config == 0) { if (xsoftc.buses_config_done == 0) { xsoftc.buses_config_done = 1; xsoftc.buses_to_config++; TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task, NULL); taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task); } else root_mount_rel(&xsoftc.xpt_rootmount); } xpt_unlock_buses(); } /* * If the given device only has one peripheral attached to it, and if that * peripheral is the passthrough driver, announce it. This insures that the * user sees some sort of announcement for every peripheral in their system. */ static int xptpassannouncefunc(struct cam_ed *device, void *arg) { struct cam_periph *periph; int i; for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++); periph = SLIST_FIRST(&device->periphs); if ((i == 1) && (strncmp(periph->periph_name, "pass", 4) == 0)) xpt_announce_periph(periph, NULL); return(1); } static void xpt_finishconfig_task(void *context, int pending) { periphdriver_init(2); /* * Check for devices with no "standard" peripheral driver * attached. For any devices like that, announce the * passthrough driver so the user will see something. */ if (!bootverbose) xpt_for_all_devices(xptpassannouncefunc, NULL); xpt_release_boot(); } cam_status xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, struct cam_path *path) { struct ccb_setasync csa; cam_status status; int xptpath = 0; if (path == NULL) { status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_path_lock(path); xptpath = 1; } xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = event; csa.callback = cbfunc; csa.callback_arg = cbarg; xpt_action((union ccb *)&csa); status = csa.ccb_h.status; CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, ("xpt_register_async: func %p\n", cbfunc)); if (xptpath) { xpt_path_unlock(path); xpt_free_path(path); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_FOUND_DEVICE)) { /* * Get this peripheral up to date with all * the currently existing devices. */ xpt_for_all_devices(xptsetasyncfunc, &csa); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_PATH_REGISTERED)) { /* * Get this peripheral up to date with all * the currently existing buses. */ xpt_for_all_busses(xptsetasyncbusfunc, &csa); } return (status); } static void xptaction(struct cam_sim *sim, union ccb *work_ccb) { CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); switch (work_ccb->ccb_h.func_code) { /* Common cases first */ case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi; cpi = &work_ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = 0; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = 0; cpi->max_lun = 0; cpi->initiator_id = 0; strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strlcpy(cpi->hba_vid, "", HBA_IDLEN); strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); cpi->unit_number = sim->unit_number; cpi->bus_id = sim->bus_id; cpi->base_transfer_speed = 0; cpi->protocol = PROTO_UNSPECIFIED; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->transport = XPORT_UNSPECIFIED; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->ccb_h.status = CAM_REQ_CMP; break; } default: work_ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(work_ccb); } /* * The xpt as a "controller" has no interrupt sources, so polling * is a no-op. */ static void xptpoll(struct cam_sim *sim) { } void xpt_lock_buses(void) { mtx_lock(&xsoftc.xpt_topo_lock); } void xpt_unlock_buses(void) { mtx_unlock(&xsoftc.xpt_topo_lock); } struct mtx * xpt_path_mtx(struct cam_path *path) { return (&path->device->device_mtx); } static void xpt_done_process(struct ccb_hdr *ccb_h) { struct cam_sim *sim = NULL; struct cam_devq *devq = NULL; struct mtx *mtx = NULL; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) struct ccb_scsiio *csio; if (ccb_h->func_code == XPT_SCSI_IO) { csio = &((union ccb *)ccb_h)->csio; if (csio->bio != NULL) biotrack(csio->bio, __func__); } #endif if (ccb_h->flags & CAM_HIGH_POWER) { struct highpowerlist *hphead; struct cam_ed *device; mtx_lock(&xsoftc.xpt_highpower_lock); hphead = &xsoftc.highpowerq; device = STAILQ_FIRST(hphead); /* * Increment the count since this command is done. */ xsoftc.num_highpower++; /* * Any high powered commands queued up? */ if (device != NULL) { STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); mtx_lock(&device->sim->devq->send_mtx); xpt_release_devq_device(device, /*count*/1, /*runqueue*/TRUE); mtx_unlock(&device->sim->devq->send_mtx); } else mtx_unlock(&xsoftc.xpt_highpower_lock); } /* * Insulate against a race where the periph is destroyed but CCBs are * still not all processed. This shouldn't happen, but allows us better * bug diagnostic when it does. */ if (ccb_h->path->bus) sim = ccb_h->path->bus->sim; if (ccb_h->status & CAM_RELEASE_SIMQ) { KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); xpt_release_simq(sim, /*run_queue*/FALSE); ccb_h->status &= ~CAM_RELEASE_SIMQ; } if ((ccb_h->flags & CAM_DEV_QFRZDIS) && (ccb_h->status & CAM_DEV_QFRZN)) { xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); ccb_h->status &= ~CAM_DEV_QFRZN; } if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { struct cam_ed *dev = ccb_h->path->device; if (sim) devq = sim->devq; KASSERT(devq, ("Periph disappeared with request pending.")); mtx_lock(&devq->send_mtx); devq->send_active--; devq->send_openings++; cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 && (dev->ccbq.dev_active == 0))) { dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (!device_is_queued(dev)) (void)xpt_schedule_devq(devq, dev); xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 && (--dev->tag_delay_count == 0)) xpt_start_tags(ccb_h->path); } } if ((ccb_h->flags & CAM_UNLOCKED) == 0) { if (mtx == NULL) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); } } else { if (mtx != NULL) { mtx_unlock(mtx); mtx = NULL; } } /* Call the peripheral driver's callback */ ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); if (mtx != NULL) mtx_unlock(mtx); } void xpt_done_td(void *arg) { struct cam_doneq *queue = arg; struct ccb_hdr *ccb_h; STAILQ_HEAD(, ccb_hdr) doneq; STAILQ_INIT(&doneq); mtx_lock(&queue->cam_doneq_mtx); while (1) { while (STAILQ_EMPTY(&queue->cam_doneq)) { queue->cam_doneq_sleep = 1; msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, PRIBIO, "-", 0); queue->cam_doneq_sleep = 0; } STAILQ_CONCAT(&doneq, &queue->cam_doneq); mtx_unlock(&queue->cam_doneq_mtx); THREAD_NO_SLEEPING(); while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); xpt_done_process(ccb_h); } THREAD_SLEEPING_OK(); mtx_lock(&queue->cam_doneq_mtx); } } static void camisr_runqueue(void) { struct ccb_hdr *ccb_h; struct cam_doneq *queue; int i; /* Process global queues. */ for (i = 0; i < cam_num_doneqs; i++) { queue = &cam_doneqs[i]; mtx_lock(&queue->cam_doneq_mtx); while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); mtx_unlock(&queue->cam_doneq_mtx); xpt_done_process(ccb_h); mtx_lock(&queue->cam_doneq_mtx); } mtx_unlock(&queue->cam_doneq_mtx); } } struct kv { uint32_t v; const char *name; }; static struct kv map[] = { { XPT_NOOP, "XPT_NOOP" }, { XPT_SCSI_IO, "XPT_SCSI_IO" }, { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, { XPT_GDEVLIST, "XPT_GDEVLIST" }, { XPT_PATH_INQ, "XPT_PATH_INQ" }, { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, { XPT_DEBUG, "XPT_DEBUG" }, { XPT_PATH_STATS, "XPT_PATH_STATS" }, { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, { XPT_ASYNC, "XPT_ASYNC" }, { XPT_ABORT, "XPT_ABORT" }, { XPT_RESET_BUS, "XPT_RESET_BUS" }, { XPT_RESET_DEV, "XPT_RESET_DEV" }, { XPT_TERM_IO, "XPT_TERM_IO" }, { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, { XPT_ATA_IO, "XPT_ATA_IO" }, { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, { XPT_NVME_IO, "XPT_NVME_IO" }, { XPT_MMC_IO, "XPT_MMC_IO" }, { XPT_SMP_IO, "XPT_SMP_IO" }, { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, { XPT_ENG_INQ, "XPT_ENG_INQ" }, { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, { XPT_EN_LUN, "XPT_EN_LUN" }, { XPT_TARGET_IO, "XPT_TARGET_IO" }, { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, { 0, 0 } }; const char * xpt_action_name(uint32_t action) { static char buffer[32]; /* Only for unknown messages -- racy */ struct kv *walker = map; while (walker->name != NULL) { if (walker->v == action) return (walker->name); walker++; } snprintf(buffer, sizeof(buffer), "%#x", action); return (buffer); } Index: head/sys/cam/scsi/scsi_all.h =================================================================== --- head/sys/cam/scsi/scsi_all.h (revision 358889) +++ head/sys/cam/scsi/scsi_all.h (revision 358890) @@ -1,4468 +1,4457 @@ /*- * Largely written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992 * * $FreeBSD$ */ /* * SCSI general interface description */ #ifndef _SCSI_SCSI_ALL_H #define _SCSI_SCSI_ALL_H 1 #include #ifdef _KERNEL #include #else #include #endif #ifdef _KERNEL /* * This is the number of seconds we wait for devices to settle after a SCSI * bus reset. */ extern int scsi_delay; #endif /* _KERNEL */ /* * SCSI command format */ /* * Define dome bits that are in ALL (or a lot of) scsi commands */ #define SCSI_CTL_LINK 0x01 #define SCSI_CTL_FLAG 0x02 #define SCSI_CTL_VENDOR 0xC0 #define SCSI_CMD_LUN 0xA0 /* these two should not be needed */ #define SCSI_CMD_LUN_SHIFT 5 /* LUN in the cmd is no longer SCSI */ #define SCSI_MAX_CDBLEN 16 /* * 16 byte commands are in the * SCSI-3 spec */ #if defined(CAM_MAX_CDBLEN) && (CAM_MAX_CDBLEN < SCSI_MAX_CDBLEN) #error "CAM_MAX_CDBLEN cannot be less than SCSI_MAX_CDBLEN" #endif /* 6byte CDBs special case 0 length to be 256 */ #define SCSI_CDB6_LEN(len) ((len) == 0 ? 256 : len) /* * This type defines actions to be taken when a particular sense code is * received. Right now, these flags are only defined to take up 16 bits, * but can be expanded in the future if necessary. */ typedef enum { SS_NOP = 0x000000, /* Do nothing */ SS_RETRY = 0x010000, /* Retry the command */ SS_FAIL = 0x020000, /* Bail out */ SS_START = 0x030000, /* Send a Start Unit command to the device, * then retry the original command. */ SS_TUR = 0x040000, /* Send a Test Unit Ready command to the * device, then retry the original command. */ SS_MASK = 0xff0000 } scsi_sense_action; typedef enum { SSQ_NONE = 0x0000, SSQ_DECREMENT_COUNT = 0x0100, /* Decrement the retry count */ SSQ_MANY = 0x0200, /* send lots of recovery commands */ SSQ_RANGE = 0x0400, /* * This table entry represents the * end of a range of ASCQs that * have identical error actions * and text. */ SSQ_PRINT_SENSE = 0x0800, SSQ_UA = 0x1000, /* Broadcast UA. */ SSQ_RESCAN = 0x2000, /* Rescan target for LUNs. */ SSQ_LOST = 0x4000, /* Destroy the LUNs. */ SSQ_MASK = 0xff00 } scsi_sense_action_qualifier; /* Mask for error status values */ #define SS_ERRMASK 0xff /* The default, retyable, error action */ #define SS_RDEF SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE|EIO /* The retyable, error action, with table specified error code */ #define SS_RET SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE /* Wait for transient error status to change */ #define SS_WAIT SS_TUR|SSQ_MANY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE /* Fatal error action, with table specified error code */ #define SS_FATAL SS_FAIL|SSQ_PRINT_SENSE struct scsi_generic { u_int8_t opcode; u_int8_t bytes[11]; }; struct scsi_request_sense { u_int8_t opcode; u_int8_t byte2; #define SRS_DESC 0x01 u_int8_t unused[2]; u_int8_t length; u_int8_t control; }; struct scsi_test_unit_ready { u_int8_t opcode; u_int8_t byte2; u_int8_t unused[3]; u_int8_t control; }; struct scsi_receive_diag { uint8_t opcode; uint8_t byte2; #define SRD_PCV 0x01 uint8_t page_code; uint8_t length[2]; uint8_t control; }; struct scsi_send_diag { uint8_t opcode; uint8_t byte2; #define SSD_UNITOFFL 0x01 #define SSD_DEVOFFL 0x02 #define SSD_SELFTEST 0x04 #define SSD_PF 0x10 #define SSD_SELF_TEST_CODE_MASK 0xE0 #define SSD_SELF_TEST_CODE_SHIFT 5 #define SSD_SELF_TEST_CODE_NONE 0x00 #define SSD_SELF_TEST_CODE_BG_SHORT 0x01 #define SSD_SELF_TEST_CODE_BG_EXTENDED 0x02 #define SSD_SELF_TEST_CODE_BG_ABORT 0x04 #define SSD_SELF_TEST_CODE_FG_SHORT 0x05 #define SSD_SELF_TEST_CODE_FG_EXTENDED 0x06 uint8_t reserved; uint8_t length[2]; uint8_t control; }; struct scsi_sense { u_int8_t opcode; u_int8_t byte2; u_int8_t unused[2]; u_int8_t length; u_int8_t control; }; struct scsi_inquiry { u_int8_t opcode; u_int8_t byte2; #define SI_EVPD 0x01 #define SI_CMDDT 0x02 u_int8_t page_code; u_int8_t length[2]; u_int8_t control; }; struct scsi_mode_sense_6 { u_int8_t opcode; u_int8_t byte2; #define SMS_DBD 0x08 u_int8_t page; #define SMS_PAGE_CODE 0x3F #define SMS_VENDOR_SPECIFIC_PAGE 0x00 #define SMS_DISCONNECT_RECONNECT_PAGE 0x02 #define SMS_FORMAT_DEVICE_PAGE 0x03 #define SMS_GEOMETRY_PAGE 0x04 #define SMS_CACHE_PAGE 0x08 #define SMS_PERIPHERAL_DEVICE_PAGE 0x09 #define SMS_CONTROL_MODE_PAGE 0x0A #define SMS_PROTO_SPECIFIC_PAGE 0x19 #define SMS_INFO_EXCEPTIONS_PAGE 0x1C #define SMS_ALL_PAGES_PAGE 0x3F #define SMS_PAGE_CTRL_MASK 0xC0 #define SMS_PAGE_CTRL_CURRENT 0x00 #define SMS_PAGE_CTRL_CHANGEABLE 0x40 #define SMS_PAGE_CTRL_DEFAULT 0x80 #define SMS_PAGE_CTRL_SAVED 0xC0 u_int8_t subpage; #define SMS_SUBPAGE_PAGE_0 0x00 #define SMS_SUBPAGE_ALL 0xff u_int8_t length; u_int8_t control; }; struct scsi_mode_sense_10 { u_int8_t opcode; u_int8_t byte2; /* same bits as small version */ #define SMS10_LLBAA 0x10 u_int8_t page; /* same bits as small version */ u_int8_t subpage; u_int8_t unused[3]; u_int8_t length[2]; u_int8_t control; }; struct scsi_mode_select_6 { u_int8_t opcode; u_int8_t byte2; #define SMS_SP 0x01 #define SMS_RTD 0x02 #define SMS_PF 0x10 u_int8_t unused[2]; u_int8_t length; u_int8_t control; }; struct scsi_mode_select_10 { u_int8_t opcode; u_int8_t byte2; /* same bits as small version */ u_int8_t unused[5]; u_int8_t length[2]; u_int8_t control; }; /* * When sending a mode select to a tape drive, the medium type must be 0. */ struct scsi_mode_hdr_6 { u_int8_t datalen; u_int8_t medium_type; u_int8_t dev_specific; u_int8_t block_descr_len; }; struct scsi_mode_hdr_10 { u_int8_t datalen[2]; u_int8_t medium_type; u_int8_t dev_specific; u_int8_t flags; #define SMH_LONGLBA 0x01 u_int8_t reserved; u_int8_t block_descr_len[2]; }; struct scsi_mode_block_descr { u_int8_t density_code; u_int8_t num_blocks[3]; u_int8_t reserved; u_int8_t block_len[3]; }; struct scsi_mode_block_descr_dshort { u_int8_t num_blocks[4]; u_int8_t reserved; u_int8_t block_len[3]; }; struct scsi_mode_block_descr_dlong { u_int8_t num_blocks[8]; u_int8_t reserved[4]; u_int8_t block_len[4]; }; struct scsi_per_res_in { u_int8_t opcode; u_int8_t action; #define SPRI_RK 0x00 #define SPRI_RR 0x01 #define SPRI_RC 0x02 #define SPRI_RS 0x03 u_int8_t reserved[5]; u_int8_t length[2]; #define SPRI_MAX_LEN 0xffff u_int8_t control; }; struct scsi_per_res_in_header { u_int8_t generation[4]; u_int8_t length[4]; }; struct scsi_per_res_key { u_int8_t key[8]; }; struct scsi_per_res_in_keys { struct scsi_per_res_in_header header; struct scsi_per_res_key keys[0]; }; struct scsi_per_res_cap { uint8_t length[2]; uint8_t flags1; #define SPRI_RLR_C 0x80 #define SPRI_CRH 0x10 #define SPRI_SIP_C 0x08 #define SPRI_ATP_C 0x04 #define SPRI_PTPL_C 0x01 uint8_t flags2; #define SPRI_TMV 0x80 #define SPRI_ALLOW_CMD_MASK 0x70 #define SPRI_ALLOW_CMD_SHIFT 4 #define SPRI_ALLOW_NA 0x00 #define SPRI_ALLOW_1 0x10 #define SPRI_ALLOW_2 0x20 #define SPRI_ALLOW_3 0x30 #define SPRI_ALLOW_4 0x40 #define SPRI_ALLOW_5 0x50 #define SPRI_PTPL_A 0x01 uint8_t type_mask[2]; #define SPRI_TM_WR_EX_AR 0x8000 #define SPRI_TM_EX_AC_RO 0x4000 #define SPRI_TM_WR_EX_RO 0x2000 #define SPRI_TM_EX_AC 0x0800 #define SPRI_TM_WR_EX 0x0200 #define SPRI_TM_EX_AC_AR 0x0001 uint8_t reserved[2]; }; struct scsi_per_res_in_rsrv_data { uint8_t reservation[8]; uint8_t scope_addr[4]; uint8_t reserved; uint8_t scopetype; #define SPRT_WE 0x01 #define SPRT_EA 0x03 #define SPRT_WERO 0x05 #define SPRT_EARO 0x06 #define SPRT_WEAR 0x07 #define SPRT_EAAR 0x08 uint8_t extent_length[2]; }; struct scsi_per_res_in_rsrv { struct scsi_per_res_in_header header; struct scsi_per_res_in_rsrv_data data; }; struct scsi_per_res_in_full_desc { struct scsi_per_res_key res_key; uint8_t reserved1[4]; uint8_t flags; #define SPRI_FULL_ALL_TG_PT 0x02 #define SPRI_FULL_R_HOLDER 0x01 uint8_t scopetype; uint8_t reserved2[4]; uint8_t rel_trgt_port_id[2]; uint8_t additional_length[4]; uint8_t transport_id[]; }; struct scsi_per_res_in_full { struct scsi_per_res_in_header header; struct scsi_per_res_in_full_desc desc[]; }; struct scsi_per_res_out { u_int8_t opcode; u_int8_t action; #define SPRO_REGISTER 0x00 #define SPRO_RESERVE 0x01 #define SPRO_RELEASE 0x02 #define SPRO_CLEAR 0x03 #define SPRO_PREEMPT 0x04 #define SPRO_PRE_ABO 0x05 #define SPRO_REG_IGNO 0x06 #define SPRO_REG_MOVE 0x07 #define SPRO_REPL_LOST_RES 0x08 #define SPRO_ACTION_MASK 0x1f u_int8_t scope_type; #define SPR_SCOPE_MASK 0xf0 #define SPR_SCOPE_SHIFT 4 #define SPR_LU_SCOPE 0x00 #define SPR_EXTENT_SCOPE 0x10 #define SPR_ELEMENT_SCOPE 0x20 #define SPR_TYPE_MASK 0x0f #define SPR_TYPE_RD_SHARED 0x00 #define SPR_TYPE_WR_EX 0x01 #define SPR_TYPE_RD_EX 0x02 #define SPR_TYPE_EX_AC 0x03 #define SPR_TYPE_SHARED 0x04 #define SPR_TYPE_WR_EX_RO 0x05 #define SPR_TYPE_EX_AC_RO 0x06 #define SPR_TYPE_WR_EX_AR 0x07 #define SPR_TYPE_EX_AC_AR 0x08 u_int8_t reserved[2]; u_int8_t length[4]; u_int8_t control; }; struct scsi_per_res_out_parms { struct scsi_per_res_key res_key; u_int8_t serv_act_res_key[8]; u_int8_t scope_spec_address[4]; u_int8_t flags; #define SPR_SPEC_I_PT 0x08 #define SPR_ALL_TG_PT 0x04 #define SPR_APTPL 0x01 u_int8_t reserved1; u_int8_t extent_length[2]; u_int8_t transport_id_list[]; }; struct scsi_per_res_out_trans_ids { u_int8_t additional_length[4]; u_int8_t transport_ids[]; }; /* * Used with REGISTER AND MOVE serivce action of the PERSISTENT RESERVE OUT * command. */ struct scsi_per_res_reg_move { struct scsi_per_res_key res_key; u_int8_t serv_act_res_key[8]; u_int8_t reserved; u_int8_t flags; #define SPR_REG_MOVE_UNREG 0x02 #define SPR_REG_MOVE_APTPL 0x01 u_int8_t rel_trgt_port_id[2]; u_int8_t transport_id_length[4]; u_int8_t transport_id[]; }; struct scsi_transportid_header { uint8_t format_protocol; #define SCSI_TRN_FORMAT_MASK 0xc0 #define SCSI_TRN_FORMAT_SHIFT 6 #define SCSI_TRN_PROTO_MASK 0x0f }; struct scsi_transportid_fcp { uint8_t format_protocol; #define SCSI_TRN_FCP_FORMAT_DEFAULT 0x00 uint8_t reserved1[7]; uint8_t n_port_name[8]; uint8_t reserved2[8]; }; struct scsi_transportid_spi { uint8_t format_protocol; #define SCSI_TRN_SPI_FORMAT_DEFAULT 0x00 uint8_t reserved1; uint8_t scsi_addr[2]; uint8_t obsolete[2]; uint8_t rel_trgt_port_id[2]; uint8_t reserved2[16]; }; struct scsi_transportid_1394 { uint8_t format_protocol; #define SCSI_TRN_1394_FORMAT_DEFAULT 0x00 uint8_t reserved1[7]; uint8_t eui64[8]; uint8_t reserved2[8]; }; struct scsi_transportid_rdma { uint8_t format_protocol; #define SCSI_TRN_RDMA_FORMAT_DEFAULT 0x00 uint8_t reserved[7]; #define SCSI_TRN_RDMA_PORT_LEN 16 uint8_t initiator_port_id[SCSI_TRN_RDMA_PORT_LEN]; }; struct scsi_transportid_iscsi_device { uint8_t format_protocol; #define SCSI_TRN_ISCSI_FORMAT_DEVICE 0x00 uint8_t reserved; uint8_t additional_length[2]; uint8_t iscsi_name[]; }; struct scsi_transportid_iscsi_port { uint8_t format_protocol; #define SCSI_TRN_ISCSI_FORMAT_PORT 0x40 uint8_t reserved; uint8_t additional_length[2]; uint8_t iscsi_name[]; /* * Followed by a separator and iSCSI initiator session ID */ }; struct scsi_transportid_sas { uint8_t format_protocol; #define SCSI_TRN_SAS_FORMAT_DEFAULT 0x00 uint8_t reserved1[3]; uint8_t sas_address[8]; uint8_t reserved2[12]; }; struct scsi_sop_routing_id_norm { uint8_t bus; uint8_t devfunc; #define SCSI_TRN_SOP_BUS_MAX 0xff #define SCSI_TRN_SOP_DEV_MAX 0x1f #define SCSI_TRN_SOP_DEV_MASK 0xf8 #define SCSI_TRN_SOP_DEV_SHIFT 3 #define SCSI_TRN_SOP_FUNC_NORM_MASK 0x07 #define SCSI_TRN_SOP_FUNC_NORM_MAX 0x07 }; struct scsi_sop_routing_id_alt { uint8_t bus; uint8_t function; #define SCSI_TRN_SOP_FUNC_ALT_MAX 0xff }; struct scsi_transportid_sop { uint8_t format_protocol; #define SCSI_TRN_SOP_FORMAT_DEFAULT 0x00 uint8_t reserved1; uint8_t routing_id[2]; uint8_t reserved2[20]; }; struct scsi_log_sense { u_int8_t opcode; u_int8_t byte2; #define SLS_SP 0x01 #define SLS_PPC 0x02 u_int8_t page; #define SLS_PAGE_CODE 0x3F #define SLS_SUPPORTED_PAGES_PAGE 0x00 #define SLS_OVERRUN_PAGE 0x01 #define SLS_ERROR_WRITE_PAGE 0x02 #define SLS_ERROR_READ_PAGE 0x03 #define SLS_ERROR_READREVERSE_PAGE 0x04 #define SLS_ERROR_VERIFY_PAGE 0x05 #define SLS_ERROR_NONMEDIUM_PAGE 0x06 #define SLS_ERROR_LASTN_PAGE 0x07 #define SLS_LOGICAL_BLOCK_PROVISIONING 0x0c #define SLS_TEMPERATURE 0x0d #define SLS_SELF_TEST_PAGE 0x10 #define SLS_SOLID_STATE_MEDIA 0x11 #define SLS_STAT_AND_PERF 0x19 #define SLS_IE_PAGE 0x2f #define SLS_PAGE_CTRL_MASK 0xC0 #define SLS_PAGE_CTRL_THRESHOLD 0x00 #define SLS_PAGE_CTRL_CUMULATIVE 0x40 #define SLS_PAGE_CTRL_THRESH_DEFAULT 0x80 #define SLS_PAGE_CTRL_CUMUL_DEFAULT 0xC0 u_int8_t subpage; #define SLS_SUPPORTED_SUBPAGES_SUBPAGE 0xff u_int8_t reserved; u_int8_t paramptr[2]; u_int8_t length[2]; u_int8_t control; }; struct scsi_log_select { u_int8_t opcode; u_int8_t byte2; /* SLS_SP 0x01 */ #define SLS_PCR 0x02 u_int8_t page; /* SLS_PAGE_CTRL_MASK 0xC0 */ /* SLS_PAGE_CTRL_THRESHOLD 0x00 */ /* SLS_PAGE_CTRL_CUMULATIVE 0x40 */ /* SLS_PAGE_CTRL_THRESH_DEFAULT 0x80 */ /* SLS_PAGE_CTRL_CUMUL_DEFAULT 0xC0 */ u_int8_t reserved[4]; u_int8_t length[2]; u_int8_t control; }; struct scsi_log_header { u_int8_t page; #define SL_PAGE_CODE 0x3F #define SL_SPF 0x40 #define SL_DS 0x80 u_int8_t subpage; u_int8_t datalen[2]; }; struct scsi_log_param_header { u_int8_t param_code[2]; u_int8_t param_control; #define SLP_LP 0x01 #define SLP_LBIN 0x02 #define SLP_TMC_MASK 0x0C #define SLP_TMC_ALWAYS 0x00 #define SLP_TMC_EQUAL 0x04 #define SLP_TMC_NOTEQUAL 0x08 #define SLP_TMC_GREATER 0x0C #define SLP_ETC 0x10 #define SLP_TSD 0x20 #define SLP_DS 0x40 #define SLP_DU 0x80 u_int8_t param_len; }; struct scsi_log_media_pct_used { struct scsi_log_param_header hdr; #define SLP_SS_MEDIA_PCT_USED 0x0001 uint8_t reserved[3]; uint8_t pct_used; }; struct scsi_log_stat_and_perf { struct scsi_log_param_header hdr; #define SLP_SAP 0x0001 uint8_t read_num[8]; uint8_t write_num[8]; uint8_t recvieved_lba[8]; uint8_t transmitted_lba[8]; uint8_t read_int[8]; uint8_t write_int[8]; uint8_t weighted_num[8]; uint8_t weighted_int[8]; }; struct scsi_log_idle_time { struct scsi_log_param_header hdr; #define SLP_IT 0x0002 uint8_t idle_int[8]; }; struct scsi_log_time_interval { struct scsi_log_param_header hdr; #define SLP_TI 0x0003 uint8_t exponent[4]; uint8_t integer[4]; }; struct scsi_log_fua_stat_and_perf { struct scsi_log_param_header hdr; #define SLP_FUA_SAP 0x0004 uint8_t fua_read_num[8]; uint8_t fua_write_num[8]; uint8_t fuanv_read_num[8]; uint8_t fuanv_write_num[8]; uint8_t fua_read_int[8]; uint8_t fua_write_int[8]; uint8_t fuanv_read_int[8]; uint8_t fuanv_write_int[8]; }; struct scsi_log_informational_exceptions { struct scsi_log_param_header hdr; #define SLP_IE_GEN 0x0000 uint8_t ie_asc; uint8_t ie_ascq; uint8_t temperature; }; struct scsi_log_temperature { struct scsi_log_param_header hdr; #define SLP_TEMPERATURE 0x0000 #define SLP_REFTEMPERATURE 0x0001 uint8_t reserved; uint8_t temperature; }; struct scsi_control_page { u_int8_t page_code; u_int8_t page_length; u_int8_t rlec; #define SCP_RLEC 0x01 /*Report Log Exception Cond*/ #define SCP_GLTSD 0x02 /*Global Logging target save disable */ #define SCP_DSENSE 0x04 /*Descriptor Sense */ #define SCP_DPICZ 0x08 /*Disable Prot. Info Check if Prot. Field is Zero */ #define SCP_TMF_ONLY 0x10 /*TM Functions Only*/ #define SCP_TST_MASK 0xE0 /*Task Set Type Mask*/ #define SCP_TST_ONE 0x00 /*One Task Set*/ #define SCP_TST_SEPARATE 0x20 /*Separate Task Sets*/ u_int8_t queue_flags; #define SCP_QUEUE_ALG_MASK 0xF0 #define SCP_QUEUE_ALG_RESTRICTED 0x00 #define SCP_QUEUE_ALG_UNRESTRICTED 0x10 #define SCP_NUAR 0x08 /*No UA on release*/ #define SCP_QUEUE_ERR 0x02 /*Queued I/O aborted for CACs*/ #define SCP_QUEUE_DQUE 0x01 /*Queued I/O disabled*/ u_int8_t eca_and_aen; #define SCP_EECA 0x80 /*Enable Extended CA*/ #define SCP_RAC 0x40 /*Report a check*/ #define SCP_SWP 0x08 /*Software Write Protect*/ #define SCP_RAENP 0x04 /*Ready AEN Permission*/ #define SCP_UAAENP 0x02 /*UA AEN Permission*/ #define SCP_EAENP 0x01 /*Error AEN Permission*/ u_int8_t flags4; #define SCP_ATO 0x80 /*Application tag owner*/ #define SCP_TAS 0x40 /*Task aborted status*/ #define SCP_ATMPE 0x20 /*Application tag mode page*/ #define SCP_RWWP 0x10 /*Reject write without prot*/ u_int8_t aen_holdoff_period[2]; u_int8_t busy_timeout_period[2]; u_int8_t extended_selftest_completion_time[2]; }; struct scsi_control_ext_page { uint8_t page_code; #define SCEP_PAGE_CODE 0x0a uint8_t subpage_code; #define SCEP_SUBPAGE_CODE 0x01 uint8_t page_length[2]; uint8_t flags; #define SCEP_TCMOS 0x04 /* Timestamp Changeable by */ #define SCEP_SCSIP 0x02 /* SCSI Precedence (clock) */ #define SCEP_IALUAE 0x01 /* Implicit ALUA Enabled */ uint8_t prio; uint8_t max_sense; uint8_t reserve[25]; }; struct scsi_cache_page { u_int8_t page_code; #define SCHP_PAGE_SAVABLE 0x80 /* Page is savable */ u_int8_t page_length; u_int8_t cache_flags; #define SCHP_FLAGS_WCE 0x04 /* Write Cache Enable */ #define SCHP_FLAGS_MF 0x02 /* Multiplication factor */ #define SCHP_FLAGS_RCD 0x01 /* Read Cache Disable */ u_int8_t rw_cache_policy; u_int8_t dis_prefetch[2]; u_int8_t min_prefetch[2]; u_int8_t max_prefetch[2]; u_int8_t max_prefetch_ceil[2]; }; /* * XXX KDM * Updated version of the cache page, as of SBC. Update this to SBC-3 and * rationalize the two. */ struct scsi_caching_page { uint8_t page_code; #define SMS_CACHING_PAGE 0x08 uint8_t page_length; uint8_t flags1; #define SCP_IC 0x80 #define SCP_ABPF 0x40 #define SCP_CAP 0x20 #define SCP_DISC 0x10 #define SCP_SIZE 0x08 #define SCP_WCE 0x04 #define SCP_MF 0x02 #define SCP_RCD 0x01 uint8_t ret_priority; uint8_t disable_pf_transfer_len[2]; uint8_t min_prefetch[2]; uint8_t max_prefetch[2]; uint8_t max_pf_ceiling[2]; uint8_t flags2; #define SCP_FSW 0x80 #define SCP_LBCSS 0x40 #define SCP_DRA 0x20 #define SCP_VS1 0x10 #define SCP_VS2 0x08 uint8_t cache_segments; uint8_t cache_seg_size[2]; uint8_t reserved; uint8_t non_cache_seg_size[3]; }; struct scsi_info_exceptions_page { u_int8_t page_code; #define SIEP_PAGE_SAVABLE 0x80 /* Page is savable */ u_int8_t page_length; u_int8_t info_flags; #define SIEP_FLAGS_PERF 0x80 #define SIEP_FLAGS_EBF 0x20 #define SIEP_FLAGS_EWASC 0x10 #define SIEP_FLAGS_DEXCPT 0x08 #define SIEP_FLAGS_TEST 0x04 #define SIEP_FLAGS_EBACKERR 0x02 #define SIEP_FLAGS_LOGERR 0x01 u_int8_t mrie; #define SIEP_MRIE_NO 0x00 #define SIEP_MRIE_UA 0x02 #define SIEP_MRIE_REC_COND 0x03 #define SIEP_MRIE_REC_UNCOND 0x04 #define SIEP_MRIE_NO_SENSE 0x05 #define SIEP_MRIE_ON_REQ 0x06 u_int8_t interval_timer[4]; u_int8_t report_count[4]; }; struct scsi_logical_block_provisioning_page_descr { uint8_t flags; #define SLBPPD_ENABLED 0x80 #define SLBPPD_TYPE_MASK 0x38 #define SLBPPD_ARMING_MASK 0x07 #define SLBPPD_ARMING_DEC 0x02 #define SLBPPD_ARMING_INC 0x01 uint8_t resource; uint8_t reserved[2]; uint8_t count[4]; }; struct scsi_logical_block_provisioning_page { uint8_t page_code; uint8_t subpage_code; uint8_t page_length[2]; uint8_t flags; #define SLBPP_SITUA 0x01 uint8_t reserved[11]; struct scsi_logical_block_provisioning_page_descr descr[0]; }; /* * SCSI protocol identifier values, current as of SPC4r36l. */ #define SCSI_PROTO_FC 0x00 /* Fibre Channel */ #define SCSI_PROTO_SPI 0x01 /* Parallel SCSI */ #define SCSI_PROTO_SSA 0x02 /* Serial Storage Arch. */ #define SCSI_PROTO_1394 0x03 /* IEEE 1394 (Firewire) */ #define SCSI_PROTO_RDMA 0x04 /* SCSI RDMA Protocol */ #define SCSI_PROTO_ISCSI 0x05 /* Internet SCSI */ #define SCSI_PROTO_iSCSI 0x05 /* Internet SCSI */ #define SCSI_PROTO_SAS 0x06 /* SAS Serial SCSI Protocol */ #define SCSI_PROTO_ADT 0x07 /* Automation/Drive Int. Trans. Prot.*/ #define SCSI_PROTO_ADITP 0x07 /* Automation/Drive Int. Trans. Prot.*/ #define SCSI_PROTO_ATA 0x08 /* AT Attachment Interface */ #define SCSI_PROTO_UAS 0x09 /* USB Atached SCSI */ #define SCSI_PROTO_SOP 0x0a /* SCSI over PCI Express */ #define SCSI_PROTO_NONE 0x0f /* No specific protocol */ struct scsi_proto_specific_page { u_int8_t page_code; #define SPSP_PAGE_SAVABLE 0x80 /* Page is savable */ u_int8_t page_length; u_int8_t protocol; #define SPSP_PROTO_FC SCSI_PROTO_FC #define SPSP_PROTO_SPI SCSI_PROTO_SPI #define SPSP_PROTO_SSA SCSI_PROTO_SSA #define SPSP_PROTO_1394 SCSI_PROTO_1394 #define SPSP_PROTO_RDMA SCSI_PROTO_RDMA #define SPSP_PROTO_ISCSI SCSI_PROTO_ISCSI #define SPSP_PROTO_SAS SCSI_PROTO_SAS #define SPSP_PROTO_ADT SCSI_PROTO_ADITP #define SPSP_PROTO_ATA SCSI_PROTO_ATA #define SPSP_PROTO_UAS SCSI_PROTO_UAS #define SPSP_PROTO_SOP SCSI_PROTO_SOP #define SPSP_PROTO_NONE SCSI_PROTO_NONE }; struct scsi_reserve { u_int8_t opcode; u_int8_t byte2; #define SR_EXTENT 0x01 #define SR_ID_MASK 0x0e #define SR_3RDPTY 0x10 #define SR_LUN_MASK 0xe0 u_int8_t resv_id; u_int8_t length[2]; u_int8_t control; }; struct scsi_reserve_10 { uint8_t opcode; uint8_t byte2; #define SR10_3RDPTY 0x10 #define SR10_LONGID 0x02 #define SR10_EXTENT 0x01 uint8_t resv_id; uint8_t thirdparty_id; uint8_t reserved[3]; uint8_t length[2]; uint8_t control; }; struct scsi_release { u_int8_t opcode; u_int8_t byte2; u_int8_t resv_id; u_int8_t unused[1]; u_int8_t length; u_int8_t control; }; struct scsi_release_10 { uint8_t opcode; uint8_t byte2; uint8_t resv_id; uint8_t thirdparty_id; uint8_t reserved[3]; uint8_t length[2]; uint8_t control; }; struct scsi_prevent { u_int8_t opcode; u_int8_t byte2; u_int8_t unused[2]; u_int8_t how; u_int8_t control; }; #define PR_PREVENT 0x01 #define PR_ALLOW 0x00 struct scsi_sync_cache { u_int8_t opcode; u_int8_t byte2; #define SSC_IMMED 0x02 #define SSC_RELADR 0x01 u_int8_t begin_lba[4]; u_int8_t reserved; u_int8_t lb_count[2]; u_int8_t control; }; struct scsi_sync_cache_16 { uint8_t opcode; uint8_t byte2; uint8_t begin_lba[8]; uint8_t lb_count[4]; uint8_t reserved; uint8_t control; }; struct scsi_format { uint8_t opcode; uint8_t byte2; #define SF_LONGLIST 0x20 #define SF_FMTDATA 0x10 #define SF_CMPLIST 0x08 #define SF_FORMAT_MASK 0x07 #define SF_FORMAT_BLOCK 0x00 #define SF_FORMAT_LONG_BLOCK 0x03 #define SF_FORMAT_BFI 0x04 #define SF_FORMAT_PHYS 0x05 uint8_t vendor; uint8_t interleave[2]; uint8_t control; }; struct scsi_format_header_short { uint8_t reserved; #define SF_DATA_FOV 0x80 #define SF_DATA_DPRY 0x40 #define SF_DATA_DCRT 0x20 #define SF_DATA_STPF 0x10 #define SF_DATA_IP 0x08 #define SF_DATA_DSP 0x04 #define SF_DATA_IMMED 0x02 #define SF_DATA_VS 0x01 uint8_t byte2; uint8_t defect_list_len[2]; }; struct scsi_format_header_long { uint8_t reserved; uint8_t byte2; uint8_t reserved2[2]; uint8_t defect_list_len[4]; }; struct scsi_changedef { u_int8_t opcode; u_int8_t byte2; u_int8_t unused1; u_int8_t how; u_int8_t unused[4]; u_int8_t datalen; u_int8_t control; }; struct scsi_read_buffer { u_int8_t opcode; u_int8_t byte2; #define RWB_MODE 0x1F #define RWB_MODE_HDR_DATA 0x00 #define RWB_MODE_VENDOR 0x01 #define RWB_MODE_DATA 0x02 #define RWB_MODE_DESCR 0x03 #define RWB_MODE_DOWNLOAD 0x04 #define RWB_MODE_DOWNLOAD_SAVE 0x05 #define RWB_MODE_ECHO 0x0A #define RWB_MODE_ECHO_DESCR 0x0B #define RWB_MODE_ERROR_HISTORY 0x1C u_int8_t buffer_id; u_int8_t offset[3]; u_int8_t length[3]; u_int8_t control; }; struct scsi_read_buffer_16 { uint8_t opcode; uint8_t byte2; uint8_t offset[8]; uint8_t length[4]; uint8_t buffer_id; uint8_t control; }; struct scsi_write_buffer { u_int8_t opcode; u_int8_t byte2; u_int8_t buffer_id; u_int8_t offset[3]; u_int8_t length[3]; u_int8_t control; }; struct scsi_read_attribute { u_int8_t opcode; u_int8_t service_action; #define SRA_SA_ATTR_VALUES 0x00 #define SRA_SA_ATTR_LIST 0x01 #define SRA_SA_LOG_VOL_LIST 0x02 #define SRA_SA_PART_LIST 0x03 #define SRA_SA_RESTRICTED 0x04 #define SRA_SA_SUPPORTED_ATTRS 0x05 #define SRA_SA_MASK 0x1f u_int8_t element[2]; u_int8_t elem_type; u_int8_t logical_volume; u_int8_t reserved1; u_int8_t partition; u_int8_t first_attribute[2]; u_int8_t length[4]; u_int8_t cache; #define SRA_CACHE 0x01 u_int8_t control; }; struct scsi_write_attribute { u_int8_t opcode; u_int8_t byte2; #define SWA_WTC 0x01 u_int8_t element[3]; u_int8_t logical_volume; u_int8_t reserved1; u_int8_t partition; u_int8_t reserved2[2]; u_int8_t length[4]; u_int8_t reserved3; u_int8_t control; }; struct scsi_read_attribute_values { u_int8_t length[4]; u_int8_t attribute_0[0]; }; struct scsi_mam_attribute_header { u_int8_t id[2]; /* * Attributes obtained from SPC-4r36g (section 7.4.2.2) and * SSC-4r03 (section 4.2.21). */ #define SMA_ATTR_ID_DEVICE_MIN 0x0000 #define SMA_ATTR_REM_CAP_PARTITION 0x0000 #define SMA_ATTR_MAX_CAP_PARTITION 0x0001 #define SMA_ATTR_TAPEALERT_FLAGS 0x0002 #define SMA_ATTR_LOAD_COUNT 0x0003 #define SMA_ATTR_MAM_SPACE_REMAINING 0x0004 #define SMA_ATTR_DEV_ASSIGNING_ORG 0x0005 #define SMA_ATTR_FORMAT_DENSITY_CODE 0x0006 #define SMA_ATTR_INITIALIZATION_COUNT 0x0007 #define SMA_ATTR_VOLUME_ID 0x0008 #define SMA_ATTR_VOLUME_CHANGE_REF 0x0009 #define SMA_ATTR_DEV_SERIAL_LAST_LOAD 0x020a #define SMA_ATTR_DEV_SERIAL_LAST_LOAD_1 0x020b #define SMA_ATTR_DEV_SERIAL_LAST_LOAD_2 0x020c #define SMA_ATTR_DEV_SERIAL_LAST_LOAD_3 0x020d #define SMA_ATTR_TOTAL_MB_WRITTEN_LT 0x0220 #define SMA_ATTR_TOTAL_MB_READ_LT 0x0221 #define SMA_ATTR_TOTAL_MB_WRITTEN_CUR 0x0222 #define SMA_ATTR_TOTAL_MB_READ_CUR 0x0223 #define SMA_ATTR_FIRST_ENC_BLOCK 0x0224 #define SMA_ATTR_NEXT_UNENC_BLOCK 0x0225 #define SMA_ATTR_MEDIUM_USAGE_HIST 0x0340 #define SMA_ATTR_PART_USAGE_HIST 0x0341 #define SMA_ATTR_ID_DEVICE_MAX 0x03ff #define SMA_ATTR_ID_MEDIUM_MIN 0x0400 #define SMA_ATTR_MED_MANUF 0x0400 #define SMA_ATTR_MED_SERIAL 0x0401 #define SMA_ATTR_MED_LENGTH 0x0402 #define SMA_ATTR_MED_WIDTH 0x0403 #define SMA_ATTR_MED_ASSIGNING_ORG 0x0404 #define SMA_ATTR_MED_DENSITY_CODE 0x0405 #define SMA_ATTR_MED_MANUF_DATE 0x0406 #define SMA_ATTR_MAM_CAPACITY 0x0407 #define SMA_ATTR_MED_TYPE 0x0408 #define SMA_ATTR_MED_TYPE_INFO 0x0409 #define SMA_ATTR_MED_SERIAL_NUM 0x040a #define SMA_ATTR_ID_MEDIUM_MAX 0x07ff #define SMA_ATTR_ID_HOST_MIN 0x0800 #define SMA_ATTR_APP_VENDOR 0x0800 #define SMA_ATTR_APP_NAME 0x0801 #define SMA_ATTR_APP_VERSION 0x0802 #define SMA_ATTR_USER_MED_TEXT_LABEL 0x0803 #define SMA_ATTR_LAST_WRITTEN_TIME 0x0804 #define SMA_ATTR_TEXT_LOCAL_ID 0x0805 #define SMA_ATTR_BARCODE 0x0806 #define SMA_ATTR_HOST_OWNER_NAME 0x0807 #define SMA_ATTR_MEDIA_POOL 0x0808 #define SMA_ATTR_PART_USER_LABEL 0x0809 #define SMA_ATTR_LOAD_UNLOAD_AT_PART 0x080a #define SMA_ATTR_APP_FORMAT_VERSION 0x080b #define SMA_ATTR_VOL_COHERENCY_INFO 0x080c #define SMA_ATTR_ID_HOST_MAX 0x0bff #define SMA_ATTR_VENDOR_DEVICE_MIN 0x0c00 #define SMA_ATTR_VENDOR_DEVICE_MAX 0x0fff #define SMA_ATTR_VENDOR_MEDIUM_MIN 0x1000 #define SMA_ATTR_VENDOR_MEDIUM_MAX 0x13ff #define SMA_ATTR_VENDOR_HOST_MIN 0x1400 #define SMA_ATTR_VENDOR_HOST_MAX 0x17ff u_int8_t byte2; #define SMA_FORMAT_BINARY 0x00 #define SMA_FORMAT_ASCII 0x01 #define SMA_FORMAT_TEXT 0x02 #define SMA_FORMAT_MASK 0x03 #define SMA_READ_ONLY 0x80 u_int8_t length[2]; u_int8_t attribute[0]; }; struct scsi_attrib_list_header { u_int8_t length[4]; u_int8_t first_attr_0[0]; }; struct scsi_attrib_lv_list { u_int8_t length[2]; u_int8_t first_lv_number; u_int8_t num_logical_volumes; }; struct scsi_attrib_vendser { uint8_t vendor[8]; uint8_t serial_num[32]; }; /* * These values are used to decode the Volume Coherency Information * Attribute (0x080c) for LTFS-format coherency information. * Although the Application Client Specific lengths are different for * Version 0 and Version 1, the data is in fact the same. The length * difference was due to a code bug. */ #define SCSI_LTFS_VER0_LEN 42 #define SCSI_LTFS_VER1_LEN 43 #define SCSI_LTFS_UUID_LEN 36 #define SCSI_LTFS_STR_NAME "LTFS" #define SCSI_LTFS_STR_LEN 4 typedef enum { SCSI_ATTR_FLAG_NONE = 0x00, SCSI_ATTR_FLAG_HEX = 0x01, SCSI_ATTR_FLAG_FP = 0x02, SCSI_ATTR_FLAG_DIV_10 = 0x04, SCSI_ATTR_FLAG_FP_1DIGIT = 0x08 } scsi_attrib_flags; typedef enum { SCSI_ATTR_OUTPUT_NONE = 0x00, SCSI_ATTR_OUTPUT_TEXT_MASK = 0x03, SCSI_ATTR_OUTPUT_TEXT_RAW = 0x00, SCSI_ATTR_OUTPUT_TEXT_ESC = 0x01, SCSI_ATTR_OUTPUT_TEXT_RSV1 = 0x02, SCSI_ATTR_OUTPUT_TEXT_RSV2 = 0x03, SCSI_ATTR_OUTPUT_NONASCII_MASK = 0x0c, SCSI_ATTR_OUTPUT_NONASCII_TRIM = 0x00, SCSI_ATTR_OUTPUT_NONASCII_ESC = 0x04, SCSI_ATTR_OUTPUT_NONASCII_RAW = 0x08, SCSI_ATTR_OUTPUT_NONASCII_RSV1 = 0x0c, SCSI_ATTR_OUTPUT_FIELD_MASK = 0xf0, SCSI_ATTR_OUTPUT_FIELD_ALL = 0xf0, SCSI_ATTR_OUTPUT_FIELD_NONE = 0x00, SCSI_ATTR_OUTPUT_FIELD_DESC = 0x10, SCSI_ATTR_OUTPUT_FIELD_NUM = 0x20, SCSI_ATTR_OUTPUT_FIELD_SIZE = 0x40, SCSI_ATTR_OUTPUT_FIELD_RW = 0x80 } scsi_attrib_output_flags; struct sbuf; struct scsi_attrib_table_entry { u_int32_t id; u_int32_t flags; const char *desc; const char *suffix; int (*to_str)(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int (*parse_str)(char *str, struct scsi_mam_attribute_header *hdr, uint32_t alloc_len, uint32_t flags, char *error_str, int error_str_len); }; struct scsi_rw_6 { u_int8_t opcode; u_int8_t addr[3]; /* only 5 bits are valid in the MSB address byte */ #define SRW_TOPADDR 0x1F u_int8_t length; u_int8_t control; }; struct scsi_rw_10 { u_int8_t opcode; #define SRW10_RELADDR 0x01 /* EBP defined for WRITE(10) only */ #define SRW10_EBP 0x04 #define SRW10_FUA 0x08 #define SRW10_DPO 0x10 u_int8_t byte2; u_int8_t addr[4]; u_int8_t reserved; u_int8_t length[2]; u_int8_t control; }; struct scsi_rw_12 { u_int8_t opcode; #define SRW12_RELADDR 0x01 #define SRW12_FUA 0x08 #define SRW12_DPO 0x10 u_int8_t byte2; u_int8_t addr[4]; u_int8_t length[4]; u_int8_t reserved; u_int8_t control; }; struct scsi_rw_16 { u_int8_t opcode; #define SRW16_RELADDR 0x01 #define SRW16_FUA 0x08 #define SRW16_DPO 0x10 u_int8_t byte2; u_int8_t addr[8]; u_int8_t length[4]; u_int8_t reserved; u_int8_t control; }; struct scsi_write_atomic_16 { uint8_t opcode; uint8_t byte2; uint8_t addr[8]; uint8_t boundary[2]; uint8_t length[2]; uint8_t group; uint8_t control; }; struct scsi_write_same_10 { uint8_t opcode; uint8_t byte2; #define SWS_LBDATA 0x02 #define SWS_PBDATA 0x04 #define SWS_UNMAP 0x08 #define SWS_ANCHOR 0x10 uint8_t addr[4]; uint8_t group; uint8_t length[2]; uint8_t control; }; struct scsi_write_same_16 { uint8_t opcode; uint8_t byte2; #define SWS_NDOB 0x01 uint8_t addr[8]; uint8_t length[4]; uint8_t group; uint8_t control; }; struct scsi_unmap { uint8_t opcode; uint8_t byte2; #define SU_ANCHOR 0x01 uint8_t reserved[4]; uint8_t group; uint8_t length[2]; uint8_t control; }; struct scsi_unmap_header { uint8_t length[2]; uint8_t desc_length[2]; uint8_t reserved[4]; }; struct scsi_unmap_desc { uint8_t lba[8]; uint8_t length[4]; uint8_t reserved[4]; }; struct scsi_write_verify_10 { uint8_t opcode; uint8_t byte2; #define SWV_BYTCHK 0x02 #define SWV_DPO 0x10 #define SWV_WRPROECT_MASK 0xe0 uint8_t addr[4]; uint8_t group; uint8_t length[2]; uint8_t control; }; struct scsi_write_verify_12 { uint8_t opcode; uint8_t byte2; uint8_t addr[4]; uint8_t length[4]; uint8_t group; uint8_t control; }; struct scsi_write_verify_16 { uint8_t opcode; uint8_t byte2; uint8_t addr[8]; uint8_t length[4]; uint8_t group; uint8_t control; }; struct scsi_start_stop_unit { u_int8_t opcode; u_int8_t byte2; #define SSS_IMMED 0x01 u_int8_t reserved[2]; u_int8_t how; #define SSS_START 0x01 #define SSS_LOEJ 0x02 #define SSS_PC_MASK 0xf0 #define SSS_PC_START_VALID 0x00 #define SSS_PC_ACTIVE 0x10 #define SSS_PC_IDLE 0x20 #define SSS_PC_STANDBY 0x30 #define SSS_PC_LU_CONTROL 0x70 #define SSS_PC_FORCE_IDLE_0 0xa0 #define SSS_PC_FORCE_STANDBY_0 0xb0 u_int8_t control; }; struct ata_pass_12 { u_int8_t opcode; u_int8_t protocol; #define AP_PROTO_HARD_RESET (0x00 << 1) #define AP_PROTO_SRST (0x01 << 1) #define AP_PROTO_NON_DATA (0x03 << 1) #define AP_PROTO_PIO_IN (0x04 << 1) #define AP_PROTO_PIO_OUT (0x05 << 1) #define AP_PROTO_DMA (0x06 << 1) #define AP_PROTO_DMA_QUEUED (0x07 << 1) #define AP_PROTO_DEVICE_DIAG (0x08 << 1) #define AP_PROTO_DEVICE_RESET (0x09 << 1) #define AP_PROTO_UDMA_IN (0x0a << 1) #define AP_PROTO_UDMA_OUT (0x0b << 1) #define AP_PROTO_FPDMA (0x0c << 1) #define AP_PROTO_RESP_INFO (0x0f << 1) #define AP_PROTO_MASK 0x1e #define AP_MULTI 0xe0 u_int8_t flags; #define AP_T_LEN 0x03 #define AP_BB 0x04 #define AP_T_DIR 0x08 #define AP_CK_COND 0x20 #define AP_OFFLINE 0x60 u_int8_t features; u_int8_t sector_count; u_int8_t lba_low; u_int8_t lba_mid; u_int8_t lba_high; u_int8_t device; u_int8_t command; u_int8_t reserved; u_int8_t control; }; struct scsi_maintenance_in { uint8_t opcode; uint8_t byte2; #define SERVICE_ACTION_MASK 0x1f #define SA_RPRT_TRGT_GRP 0x0a uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_supported_opcodes { uint8_t opcode; uint8_t service_action; uint8_t options; #define RSO_RCTD 0x80 #define RSO_OPTIONS_MASK 0x07 #define RSO_OPTIONS_ALL 0x00 #define RSO_OPTIONS_OC 0x01 #define RSO_OPTIONS_OC_SA 0x02 #define RSO_OPTIONS_OC_ASA 0x03 uint8_t requested_opcode; uint8_t requested_service_action[2]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_supported_opcodes_timeout { uint8_t length[2]; uint8_t reserved; uint8_t cmd_specific; uint8_t nominal_time[4]; uint8_t recommended_time[4]; }; struct scsi_report_supported_opcodes_descr { uint8_t opcode; uint8_t reserved; uint8_t service_action[2]; uint8_t reserved2; uint8_t flags; #define RSO_SERVACTV 0x01 #define RSO_CTDP 0x02 #define RSO_CDLP_MASK 0x0c #define RSO_CDLP_NO 0x00 #define RSO_CDLP_A 0x04 #define RSO_CDLP_B 0x08 uint8_t cdb_length[2]; struct scsi_report_supported_opcodes_timeout timeout[0]; }; struct scsi_report_supported_opcodes_all { uint8_t length[4]; struct scsi_report_supported_opcodes_descr descr[0]; }; struct scsi_report_supported_opcodes_one { uint8_t reserved; uint8_t support; #define RSO_ONE_CTDP 0x80 #define RSO_ONE_CDLP_MASK 0x18 #define RSO_ONE_CDLP_NO 0x00 #define RSO_ONE_CDLP_A 0x08 #define RSO_ONE_CDLP_B 0x10 #define RSO_ONE_SUP_MASK 0x07 #define RSO_ONE_SUP_UNAVAIL 0x00 #define RSO_ONE_SUP_NOT_SUP 0x01 #define RSO_ONE_SUP_AVAIL 0x03 #define RSO_ONE_SUP_VENDOR 0x05 uint8_t cdb_length[2]; uint8_t cdb_usage[]; }; struct scsi_report_supported_tmf { uint8_t opcode; uint8_t service_action; uint8_t options; #define RST_REPD 0x80 uint8_t reserved[3]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_supported_tmf_data { uint8_t byte1; #define RST_WAKES 0x01 #define RST_TRS 0x02 #define RST_QTS 0x04 #define RST_LURS 0x08 #define RST_CTSS 0x10 #define RST_CACAS 0x20 #define RST_ATSS 0x40 #define RST_ATS 0x80 uint8_t byte2; #define RST_ITNRS 0x01 #define RST_QTSS 0x02 #define RST_QAES 0x04 uint8_t reserved; uint8_t length; }; struct scsi_report_supported_tmf_ext_data { uint8_t byte1; uint8_t byte2; uint8_t reserved; uint8_t length; uint8_t byte5; #define RST_TMFTMOV 0x01 uint8_t reserved2; uint8_t byte7; #define RST_WAKETS 0x01 #define RST_TRTS 0x02 #define RST_QTTS 0x04 #define RST_LURTS 0x08 #define RST_CTSTS 0x10 #define RST_CACATS 0x20 #define RST_ATSTS 0x40 #define RST_ATTS 0x80 uint8_t byte8; #define RST_ITNRTS 0x01 #define RST_QTSTS 0x02 #define RST_QAETS 0x04 uint8_t long_timeout[4]; uint8_t short_timeout[4]; }; struct scsi_report_timestamp { uint8_t opcode; uint8_t service_action; uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_report_timestamp_data { uint8_t length[2]; uint8_t origin; #define RTS_ORIG_MASK 0x00 #define RTS_ORIG_ZERO 0x00 #define RTS_ORIG_SET 0x02 #define RTS_ORIG_OUTSIDE 0x03 uint8_t reserved; uint8_t timestamp[6]; uint8_t reserve2[2]; }; struct scsi_receive_copy_status_lid1 { uint8_t opcode; uint8_t service_action; #define RCS_RCS_LID1 0x00 uint8_t list_identifier; uint8_t reserved[7]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_status_lid1_data { uint8_t available_data[4]; uint8_t copy_command_status; #define RCS_CCS_INPROG 0x00 #define RCS_CCS_COMPLETED 0x01 #define RCS_CCS_ERROR 0x02 uint8_t segments_processed[2]; uint8_t transfer_count_units; #define RCS_TC_BYTES 0x00 #define RCS_TC_KBYTES 0x01 #define RCS_TC_MBYTES 0x02 #define RCS_TC_GBYTES 0x03 #define RCS_TC_TBYTES 0x04 #define RCS_TC_PBYTES 0x05 #define RCS_TC_EBYTES 0x06 #define RCS_TC_LBAS 0xf1 uint8_t transfer_count[4]; }; struct scsi_receive_copy_failure_details { uint8_t opcode; uint8_t service_action; #define RCS_RCFD 0x04 uint8_t list_identifier; uint8_t reserved[7]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_failure_details_data { uint8_t available_data[4]; uint8_t reserved[52]; uint8_t copy_command_status; uint8_t reserved2; uint8_t sense_data_length[2]; uint8_t sense_data[]; }; struct scsi_receive_copy_status_lid4 { uint8_t opcode; uint8_t service_action; #define RCS_RCS_LID4 0x05 uint8_t list_identifier[4]; uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_status_lid4_data { uint8_t available_data[4]; uint8_t response_to_service_action; uint8_t copy_command_status; #define RCS_CCS_COMPLETED_PROD 0x03 #define RCS_CCS_COMPLETED_RESID 0x04 #define RCS_CCS_INPROG_FGBG 0x10 #define RCS_CCS_INPROG_FG 0x11 #define RCS_CCS_INPROG_BG 0x12 #define RCS_CCS_ABORTED 0x60 uint8_t operation_counter[2]; uint8_t estimated_status_update_delay[4]; uint8_t extended_copy_completion_status; uint8_t length_of_the_sense_data_field; uint8_t sense_data_length; uint8_t transfer_count_units; uint8_t transfer_count[8]; uint8_t segments_processed[2]; uint8_t reserved[6]; uint8_t sense_data[]; }; struct scsi_receive_copy_operating_parameters { uint8_t opcode; uint8_t service_action; #define RCS_RCOP 0x03 uint8_t reserved[8]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_receive_copy_operating_parameters_data { uint8_t length[4]; uint8_t snlid; #define RCOP_SNLID 0x01 uint8_t reserved[3]; uint8_t maximum_cscd_descriptor_count[2]; uint8_t maximum_segment_descriptor_count[2]; uint8_t maximum_descriptor_list_length[4]; uint8_t maximum_segment_length[4]; uint8_t maximum_inline_data_length[4]; uint8_t held_data_limit[4]; uint8_t maximum_stream_device_transfer_size[4]; uint8_t reserved2[2]; uint8_t total_concurrent_copies[2]; uint8_t maximum_concurrent_copies; uint8_t data_segment_granularity; uint8_t inline_data_granularity; uint8_t held_data_granularity; uint8_t reserved3[3]; uint8_t implemented_descriptor_list_length; uint8_t list_of_implemented_descriptor_type_codes[0]; }; struct scsi_extended_copy { uint8_t opcode; uint8_t service_action; #define EC_EC_LID1 0x00 #define EC_EC_LID4 0x01 uint8_t reserved[8]; uint8_t length[4]; uint8_t reserved1; uint8_t control; }; struct scsi_ec_cscd_dtsp { uint8_t flags; #define EC_CSCD_FIXED 0x01 #define EC_CSCD_PAD 0x04 uint8_t block_length[3]; }; struct scsi_ec_cscd { uint8_t type_code; #define EC_CSCD_EXT 0xff uint8_t luidt_pdt; #define EC_NUL 0x20 #define EC_LUIDT_MASK 0xc0 #define EC_LUIDT_LUN 0x00 #define EC_LUIDT_PROXY_TOKEN 0x40 uint8_t relative_initiator_port[2]; uint8_t cscd_params[24]; struct scsi_ec_cscd_dtsp dtsp; }; struct scsi_ec_cscd_id { uint8_t type_code; #define EC_CSCD_ID 0xe4 uint8_t luidt_pdt; uint8_t relative_initiator_port[2]; uint8_t codeset; uint8_t id_type; uint8_t reserved; uint8_t length; uint8_t designator[20]; struct scsi_ec_cscd_dtsp dtsp; }; struct scsi_ec_segment { uint8_t type_code; uint8_t flags; #define EC_SEG_DC 0x02 #define EC_SEG_CAT 0x01 uint8_t descr_length[2]; uint8_t params[]; }; struct scsi_ec_segment_b2b { uint8_t type_code; #define EC_SEG_B2B 0x02 uint8_t flags; uint8_t descr_length[2]; uint8_t src_cscd[2]; uint8_t dst_cscd[2]; uint8_t reserved[2]; uint8_t number_of_blocks[2]; uint8_t src_lba[8]; uint8_t dst_lba[8]; }; struct scsi_ec_segment_verify { uint8_t type_code; #define EC_SEG_VERIFY 0x07 uint8_t reserved; uint8_t descr_length[2]; uint8_t src_cscd[2]; uint8_t reserved2[2]; uint8_t tur; uint8_t reserved3[3]; }; struct scsi_ec_segment_register_key { uint8_t type_code; #define EC_SEG_REGISTER_KEY 0x14 uint8_t reserved; uint8_t descr_length[2]; uint8_t reserved2[2]; uint8_t dst_cscd[2]; uint8_t res_key[8]; uint8_t sa_res_key[8]; uint8_t reserved3[4]; }; struct scsi_extended_copy_lid1_data { uint8_t list_identifier; uint8_t flags; #define EC_PRIORITY 0x07 #define EC_LIST_ID_USAGE_MASK 0x18 #define EC_LIST_ID_USAGE_FULL 0x08 #define EC_LIST_ID_USAGE_NOHOLD 0x10 #define EC_LIST_ID_USAGE_NONE 0x18 #define EC_STR 0x20 uint8_t cscd_list_length[2]; uint8_t reserved[4]; uint8_t segment_list_length[4]; uint8_t inline_data_length[4]; uint8_t data[]; }; struct scsi_extended_copy_lid4_data { uint8_t list_format; #define EC_LIST_FORMAT 0x01 uint8_t flags; uint8_t header_cscd_list_length[2]; uint8_t reserved[11]; uint8_t flags2; #define EC_IMMED 0x01 #define EC_G_SENSE 0x02 uint8_t header_cscd_type_code; uint8_t reserved2[3]; uint8_t list_identifier[4]; uint8_t reserved3[18]; uint8_t cscd_list_length[2]; uint8_t segment_list_length[2]; uint8_t inline_data_length[2]; uint8_t data[]; }; struct scsi_copy_operation_abort { uint8_t opcode; uint8_t service_action; #define EC_COA 0x1c uint8_t list_identifier[4]; uint8_t reserved[9]; uint8_t control; }; struct scsi_populate_token { uint8_t opcode; uint8_t service_action; #define EC_PT 0x10 uint8_t reserved[4]; uint8_t list_identifier[4]; uint8_t length[4]; uint8_t group_number; uint8_t control; }; struct scsi_range_desc { uint8_t lba[8]; uint8_t length[4]; uint8_t reserved[4]; }; struct scsi_populate_token_data { uint8_t length[2]; uint8_t flags; #define EC_PT_IMMED 0x01 #define EC_PT_RTV 0x02 uint8_t reserved; uint8_t inactivity_timeout[4]; uint8_t rod_type[4]; uint8_t reserved2[2]; uint8_t range_descriptor_length[2]; struct scsi_range_desc desc[]; }; struct scsi_write_using_token { uint8_t opcode; uint8_t service_action; #define EC_WUT 0x11 uint8_t reserved[4]; uint8_t list_identifier[4]; uint8_t length[4]; uint8_t group_number; uint8_t control; }; struct scsi_write_using_token_data { uint8_t length[2]; uint8_t flags; #define EC_WUT_IMMED 0x01 #define EC_WUT_DEL_TKN 0x02 uint8_t reserved[5]; uint8_t offset_into_rod[8]; uint8_t rod_token[512]; uint8_t reserved2[6]; uint8_t range_descriptor_length[2]; struct scsi_range_desc desc[]; }; struct scsi_receive_rod_token_information { uint8_t opcode; uint8_t service_action; #define RCS_RRTI 0x07 uint8_t list_identifier[4]; uint8_t reserved[4]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_token { uint8_t type[4]; #define ROD_TYPE_INTERNAL 0x00000000 #define ROD_TYPE_AUR 0x00010000 #define ROD_TYPE_PIT_DEF 0x00800000 #define ROD_TYPE_PIT_VULN 0x00800001 #define ROD_TYPE_PIT_PERS 0x00800002 #define ROD_TYPE_PIT_ANY 0x0080FFFF #define ROD_TYPE_BLOCK_ZERO 0xFFFF0001 uint8_t reserved[2]; uint8_t length[2]; uint8_t body[0]; }; struct scsi_report_all_rod_tokens { uint8_t opcode; uint8_t service_action; #define RCS_RART 0x08 uint8_t reserved[8]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_report_all_rod_tokens_data { uint8_t available_data[4]; uint8_t reserved[4]; uint8_t rod_management_token_list[]; }; struct ata_pass_16 { u_int8_t opcode; u_int8_t protocol; #define AP_EXTEND 0x01 u_int8_t flags; #define AP_FLAG_TLEN_NO_DATA (0 << 0) #define AP_FLAG_TLEN_FEAT (1 << 0) #define AP_FLAG_TLEN_SECT_CNT (2 << 0) #define AP_FLAG_TLEN_STPSIU (3 << 0) #define AP_FLAG_BYT_BLOK_BYTES (0 << 2) #define AP_FLAG_BYT_BLOK_BLOCKS (1 << 2) #define AP_FLAG_TDIR_TO_DEV (0 << 3) #define AP_FLAG_TDIR_FROM_DEV (1 << 3) #define AP_FLAG_CHK_COND (1 << 5) u_int8_t features_ext; u_int8_t features; u_int8_t sector_count_ext; u_int8_t sector_count; u_int8_t lba_low_ext; u_int8_t lba_low; u_int8_t lba_mid_ext; u_int8_t lba_mid; u_int8_t lba_high_ext; u_int8_t lba_high; u_int8_t device; u_int8_t command; u_int8_t control; }; struct ata_pass_32 { uint8_t opcode; uint8_t control; uint8_t reserved1[5]; uint8_t length; uint8_t service_action[2]; #define ATA_PASS_32_SA 0x1ff0 uint8_t protocol; uint8_t flags; uint8_t reserved2[2]; uint8_t lba[6]; uint8_t features[2]; uint8_t count[2]; uint8_t device; uint8_t command; uint8_t reserved3; uint8_t icc; uint8_t auxiliary[4]; }; #define SC_SCSI_1 0x01 #define SC_SCSI_2 0x03 /* * Opcodes */ #define TEST_UNIT_READY 0x00 #define REQUEST_SENSE 0x03 #define READ_6 0x08 #define WRITE_6 0x0A #define INQUIRY 0x12 #define MODE_SELECT_6 0x15 #define MODE_SENSE_6 0x1A #define START_STOP_UNIT 0x1B #define START_STOP 0x1B #define RESERVE 0x16 #define RELEASE 0x17 #define RECEIVE_DIAGNOSTIC 0x1C #define SEND_DIAGNOSTIC 0x1D #define PREVENT_ALLOW 0x1E #define READ_CAPACITY 0x25 #define READ_10 0x28 #define WRITE_10 0x2A #define POSITION_TO_ELEMENT 0x2B #define WRITE_VERIFY_10 0x2E #define VERIFY_10 0x2F #define SYNCHRONIZE_CACHE 0x35 #define READ_DEFECT_DATA_10 0x37 #define WRITE_BUFFER 0x3B #define READ_BUFFER 0x3C #define CHANGE_DEFINITION 0x40 #define WRITE_SAME_10 0x41 #define UNMAP 0x42 #define LOG_SELECT 0x4C #define LOG_SENSE 0x4D #define MODE_SELECT_10 0x55 #define RESERVE_10 0x56 #define RELEASE_10 0x57 #define MODE_SENSE_10 0x5A #define PERSISTENT_RES_IN 0x5E #define PERSISTENT_RES_OUT 0x5F #define EXTENDED_CDB 0x7E #define VARIABLE_LEN_CDB 0x7F #define EXTENDED_COPY 0x83 #define RECEIVE_COPY_STATUS 0x84 #define ATA_PASS_16 0x85 #define READ_16 0x88 #define COMPARE_AND_WRITE 0x89 #define WRITE_16 0x8A #define READ_ATTRIBUTE 0x8C #define WRITE_ATTRIBUTE 0x8D #define WRITE_VERIFY_16 0x8E #define VERIFY_16 0x8F #define SYNCHRONIZE_CACHE_16 0x91 #define WRITE_SAME_16 0x93 #define READ_BUFFER_16 0x9B #define WRITE_ATOMIC_16 0x9C #define SERVICE_ACTION_IN 0x9E #define REPORT_LUNS 0xA0 #define ATA_PASS_12 0xA1 #define SECURITY_PROTOCOL_IN 0xA2 #define MAINTENANCE_IN 0xA3 #define MAINTENANCE_OUT 0xA4 #define MOVE_MEDIUM 0xA5 #define READ_12 0xA8 #define WRITE_12 0xAA #define WRITE_VERIFY_12 0xAE #define VERIFY_12 0xAF #define SECURITY_PROTOCOL_OUT 0xB5 #define READ_ELEMENT_STATUS 0xB8 #define READ_CD 0xBE /* Maintenance In Service Action Codes */ #define REPORT_IDENTIFYING_INFRMATION 0x05 #define REPORT_TARGET_PORT_GROUPS 0x0A #define REPORT_ALIASES 0x0B #define REPORT_SUPPORTED_OPERATION_CODES 0x0C #define REPORT_SUPPORTED_TASK_MANAGEMENT_FUNCTIONS 0x0D #define REPORT_PRIORITY 0x0E #define REPORT_TIMESTAMP 0x0F #define MANAGEMENT_PROTOCOL_IN 0x10 /* Maintenance Out Service Action Codes */ #define SET_IDENTIFY_INFORMATION 0x06 #define SET_TARGET_PORT_GROUPS 0x0A #define CHANGE_ALIASES 0x0B #define SET_PRIORITY 0x0E #define SET_TIMESTAMP 0x0F #define MANAGEMENT_PROTOCOL_OUT 0x10 /* * Device Types */ #define T_DIRECT 0x00 #define T_SEQUENTIAL 0x01 #define T_PRINTER 0x02 #define T_PROCESSOR 0x03 #define T_WORM 0x04 #define T_CDROM 0x05 #define T_SCANNER 0x06 #define T_OPTICAL 0x07 #define T_CHANGER 0x08 #define T_COMM 0x09 #define T_ASC0 0x0a #define T_ASC1 0x0b #define T_STORARRAY 0x0c #define T_ENCLOSURE 0x0d #define T_RBC 0x0e #define T_OCRW 0x0f #define T_OSD 0x11 #define T_ADC 0x12 #define T_ZBC_HM 0x14 #define T_NODEVICE 0x1f #define T_ANY 0xff /* Used in Quirk table matches */ #define T_REMOV 1 #define T_FIXED 0 /* * This length is the initial inquiry length used by the probe code, as * well as the length necessary for scsi_print_inquiry() to function * correctly. If either use requires a different length in the future, * the two values should be de-coupled. */ #define SHORT_INQUIRY_LENGTH 36 struct scsi_inquiry_data { u_int8_t device; #define SID_TYPE(inq_data) ((inq_data)->device & 0x1f) #define SID_QUAL(inq_data) (((inq_data)->device & 0xE0) >> 5) #define SID_QUAL_LU_CONNECTED 0x00 /* * The specified peripheral device * type is currently connected to * logical unit. If the target cannot * determine whether or not a physical * device is currently connected, it * shall also use this peripheral * qualifier when returning the INQUIRY * data. This peripheral qualifier * does not mean that the device is * ready for access by the initiator. */ #define SID_QUAL_LU_OFFLINE 0x01 /* * The target is capable of supporting * the specified peripheral device type * on this logical unit; however, the * physical device is not currently * connected to this logical unit. */ #define SID_QUAL_RSVD 0x02 #define SID_QUAL_BAD_LU 0x03 /* * The target is not capable of * supporting a physical device on * this logical unit. For this * peripheral qualifier the peripheral * device type shall be set to 1Fh to * provide compatibility with previous * versions of SCSI. All other * peripheral device type values are * reserved for this peripheral * qualifier. */ #define SID_QUAL_IS_VENDOR_UNIQUE(inq_data) ((SID_QUAL(inq_data) & 0x04) != 0) u_int8_t dev_qual2; #define SID_QUAL2 0x7F #define SID_LU_CONG 0x40 #define SID_RMB 0x80 #define SID_IS_REMOVABLE(inq_data) (((inq_data)->dev_qual2 & SID_RMB) != 0) u_int8_t version; #define SID_ANSI_REV(inq_data) ((inq_data)->version & 0x07) #define SCSI_REV_0 0 #define SCSI_REV_CCS 1 #define SCSI_REV_2 2 #define SCSI_REV_SPC 3 #define SCSI_REV_SPC2 4 #define SCSI_REV_SPC3 5 #define SCSI_REV_SPC4 6 #define SCSI_REV_SPC5 7 #define SID_ECMA 0x38 #define SID_ISO 0xC0 u_int8_t response_format; #define SID_AENC 0x80 #define SID_TrmIOP 0x40 #define SID_NormACA 0x20 #define SID_HiSup 0x10 u_int8_t additional_length; #define SID_ADDITIONAL_LENGTH(iqd) \ ((iqd)->additional_length + \ __offsetof(struct scsi_inquiry_data, additional_length) + 1) u_int8_t spc3_flags; #define SPC3_SID_PROTECT 0x01 #define SPC3_SID_3PC 0x08 #define SPC3_SID_TPGS_MASK 0x30 #define SPC3_SID_TPGS_IMPLICIT 0x10 #define SPC3_SID_TPGS_EXPLICIT 0x20 #define SPC3_SID_ACC 0x40 #define SPC3_SID_SCCS 0x80 u_int8_t spc2_flags; #define SPC2_SID_ADDR16 0x01 #define SPC2_SID_MChngr 0x08 #define SPC2_SID_MultiP 0x10 #define SPC2_SID_EncServ 0x40 #define SPC2_SID_BQueue 0x80 #define INQ_DATA_TQ_ENABLED(iqd) \ ((SID_ANSI_REV(iqd) < SCSI_REV_SPC2)? ((iqd)->flags & SID_CmdQue) : \ (((iqd)->flags & SID_CmdQue) && !((iqd)->spc2_flags & SPC2_SID_BQueue)) || \ (!((iqd)->flags & SID_CmdQue) && ((iqd)->spc2_flags & SPC2_SID_BQueue))) u_int8_t flags; #define SID_SftRe 0x01 #define SID_CmdQue 0x02 #define SID_Linked 0x08 #define SID_Sync 0x10 #define SID_WBus16 0x20 #define SID_WBus32 0x40 #define SID_RelAdr 0x80 #define SID_VENDOR_SIZE 8 char vendor[SID_VENDOR_SIZE]; #define SID_PRODUCT_SIZE 16 char product[SID_PRODUCT_SIZE]; #define SID_REVISION_SIZE 4 char revision[SID_REVISION_SIZE]; /* * The following fields were taken from SCSI Primary Commands - 2 * (SPC-2) Revision 14, Dated 11 November 1999 */ #define SID_VENDOR_SPECIFIC_0_SIZE 20 u_int8_t vendor_specific0[SID_VENDOR_SPECIFIC_0_SIZE]; /* * An extension of SCSI Parallel Specific Values */ #define SID_SPI_IUS 0x01 #define SID_SPI_QAS 0x02 #define SID_SPI_CLOCK_ST 0x00 #define SID_SPI_CLOCK_DT 0x04 #define SID_SPI_CLOCK_DT_ST 0x0C #define SID_SPI_MASK 0x0F u_int8_t spi3data; u_int8_t reserved2; /* * Version Descriptors, stored 2 byte values. */ u_int8_t version1[2]; u_int8_t version2[2]; u_int8_t version3[2]; u_int8_t version4[2]; u_int8_t version5[2]; u_int8_t version6[2]; u_int8_t version7[2]; u_int8_t version8[2]; u_int8_t reserved3[22]; #define SID_VENDOR_SPECIFIC_1_SIZE 160 u_int8_t vendor_specific1[SID_VENDOR_SPECIFIC_1_SIZE]; }; /* * This structure is more suited to initiator operation, because the * maximum number of supported pages is already allocated. */ struct scsi_vpd_supported_page_list { u_int8_t device; u_int8_t page_code; #define SVPD_SUPPORTED_PAGE_LIST 0x00 #define SVPD_SUPPORTED_PAGES_HDR_LEN 4 u_int8_t reserved; u_int8_t length; /* number of VPD entries */ #define SVPD_SUPPORTED_PAGES_SIZE 251 u_int8_t list[SVPD_SUPPORTED_PAGES_SIZE]; }; /* * This structure is more suited to target operation, because the * number of supported pages is left to the user to allocate. */ struct scsi_vpd_supported_pages { u_int8_t device; u_int8_t page_code; u_int8_t reserved; #define SVPD_SUPPORTED_PAGES 0x00 u_int8_t length; u_int8_t page_list[0]; }; struct scsi_vpd_unit_serial_number { u_int8_t device; u_int8_t page_code; #define SVPD_UNIT_SERIAL_NUMBER 0x80 u_int8_t reserved; u_int8_t length; /* serial number length */ #define SVPD_SERIAL_NUM_SIZE 251 u_int8_t serial_num[SVPD_SERIAL_NUM_SIZE]; }; struct scsi_vpd_device_id { u_int8_t device; u_int8_t page_code; #define SVPD_DEVICE_ID 0x83 #define SVPD_DEVICE_ID_MAX_SIZE 252 #define SVPD_DEVICE_ID_HDR_LEN \ __offsetof(struct scsi_vpd_device_id, desc_list) u_int8_t length[2]; u_int8_t desc_list[]; }; struct scsi_vpd_id_descriptor { u_int8_t proto_codeset; /* * See the SCSI_PROTO definitions above for the protocols. */ #define SVPD_ID_PROTO_SHIFT 4 #define SVPD_ID_CODESET_BINARY 0x01 #define SVPD_ID_CODESET_ASCII 0x02 #define SVPD_ID_CODESET_UTF8 0x03 #define SVPD_ID_CODESET_MASK 0x0f u_int8_t id_type; #define SVPD_ID_PIV 0x80 #define SVPD_ID_ASSOC_LUN 0x00 #define SVPD_ID_ASSOC_PORT 0x10 #define SVPD_ID_ASSOC_TARGET 0x20 #define SVPD_ID_ASSOC_MASK 0x30 #define SVPD_ID_TYPE_VENDOR 0x00 #define SVPD_ID_TYPE_T10 0x01 #define SVPD_ID_TYPE_EUI64 0x02 #define SVPD_ID_TYPE_NAA 0x03 #define SVPD_ID_TYPE_RELTARG 0x04 #define SVPD_ID_TYPE_TPORTGRP 0x05 #define SVPD_ID_TYPE_LUNGRP 0x06 #define SVPD_ID_TYPE_MD5_LUN_ID 0x07 #define SVPD_ID_TYPE_SCSI_NAME 0x08 #define SVPD_ID_TYPE_PROTO 0x09 #define SVPD_ID_TYPE_UUID 0x0a #define SVPD_ID_TYPE_MASK 0x0f u_int8_t reserved; u_int8_t length; #define SVPD_DEVICE_ID_DESC_HDR_LEN \ __offsetof(struct scsi_vpd_id_descriptor, identifier) u_int8_t identifier[]; }; struct scsi_vpd_id_t10 { u_int8_t vendor[8]; u_int8_t vendor_spec_id[0]; }; struct scsi_vpd_id_eui64 { u_int8_t ieee_company_id[3]; u_int8_t extension_id[5]; }; struct scsi_vpd_id_naa_basic { uint8_t naa; /* big endian, packed: uint8_t naa : 4; uint8_t naa_desig : 4; */ #define SVPD_ID_NAA_NAA_SHIFT 4 #define SVPD_ID_NAA_IEEE_EXT 0x02 #define SVPD_ID_NAA_LOCAL_REG 0x03 #define SVPD_ID_NAA_IEEE_REG 0x05 #define SVPD_ID_NAA_IEEE_REG_EXT 0x06 uint8_t naa_data[]; }; struct scsi_vpd_id_naa_ieee_extended_id { uint8_t naa; uint8_t vendor_specific_id_a; uint8_t ieee_company_id[3]; uint8_t vendor_specific_id_b[4]; }; struct scsi_vpd_id_naa_local_reg { uint8_t naa; uint8_t local_value[7]; }; struct scsi_vpd_id_naa_ieee_reg { uint8_t naa; uint8_t reg_value[7]; /* big endian, packed: uint8_t naa_basic : 4; uint8_t ieee_company_id_0 : 4; uint8_t ieee_company_id_1[2]; uint8_t ieee_company_id_2 : 4; uint8_t vendor_specific_id_0 : 4; uint8_t vendor_specific_id_1[4]; */ }; struct scsi_vpd_id_naa_ieee_reg_extended { uint8_t naa; uint8_t reg_value[15]; /* big endian, packed: uint8_t naa_basic : 4; uint8_t ieee_company_id_0 : 4; uint8_t ieee_company_id_1[2]; uint8_t ieee_company_id_2 : 4; uint8_t vendor_specific_id_0 : 4; uint8_t vendor_specific_id_1[4]; uint8_t vendor_specific_id_ext[8]; */ }; struct scsi_vpd_id_rel_trgt_port_id { uint8_t obsolete[2]; uint8_t rel_trgt_port_id[2]; }; struct scsi_vpd_id_trgt_port_grp_id { uint8_t reserved[2]; uint8_t trgt_port_grp[2]; }; struct scsi_vpd_id_lun_grp_id { uint8_t reserved[2]; uint8_t log_unit_grp[2]; }; struct scsi_vpd_id_md5_lun_id { uint8_t lun_id[16]; }; struct scsi_vpd_id_scsi_name { uint8_t name_string[256]; }; struct scsi_service_action_in { uint8_t opcode; uint8_t service_action; uint8_t action_dependent[13]; uint8_t control; }; struct scsi_vpd_extended_inquiry_data { uint8_t device; uint8_t page_code; #define SVPD_EXTENDED_INQUIRY_DATA 0x86 uint8_t page_length[2]; uint8_t flags1; /* These values are for direct access devices */ #define SVPD_EID_AM_MASK 0xC0 #define SVPD_EID_AM_DEFER 0x80 #define SVPD_EID_AM_IMMED 0x40 #define SVPD_EID_AM_UNDEFINED 0x00 #define SVPD_EID_AM_RESERVED 0xc0 #define SVPD_EID_SPT 0x38 #define SVPD_EID_SPT_1 0x00 #define SVPD_EID_SPT_12 0x08 #define SVPD_EID_SPT_2 0x10 #define SVPD_EID_SPT_13 0x18 #define SVPD_EID_SPT_3 0x20 #define SVPD_EID_SPT_23 0x28 #define SVPD_EID_SPT_123 0x38 /* These values are for sequential access devices */ #define SVPD_EID_SA_SPT_LBP 0x08 #define SVPD_EID_GRD_CHK 0x04 #define SVPD_EID_APP_CHK 0x02 #define SVPD_EID_REF_CHK 0x01 uint8_t flags2; #define SVPD_EID_UASK_SUP 0x20 #define SVPD_EID_GROUP_SUP 0x10 #define SVPD_EID_PRIOR_SUP 0x08 #define SVPD_EID_HEADSUP 0x04 #define SVPD_EID_ORDSUP 0x02 #define SVPD_EID_SIMPSUP 0x01 uint8_t flags3; #define SVPD_EID_WU_SUP 0x08 #define SVPD_EID_CRD_SUP 0x04 #define SVPD_EID_NV_SUP 0x02 #define SVPD_EID_V_SUP 0x01 uint8_t flags4; #define SVPD_EID_NO_PI_CHK 0x20 #define SVPD_EID_P_I_I_SUP 0x10 #define SVPD_EID_LUICLR 0x01 uint8_t flags5; #define SVPD_EID_LUCT_MASK 0xe0 #define SVPD_EID_LUCT_NOT_REP 0x00 #define SVPD_EID_LUCT_CONGL 0x20 #define SVPD_EID_LUCT_GROUP 0x40 #define SVPD_EID_R_SUP 0x10 #define SVPD_EID_RTD_SUP 0x08 #define SVPD_EID_HSSRELEF 0x02 #define SVPD_EID_CBCS 0x01 uint8_t flags6; #define SVPD_EID_MULTI_I_T_FW 0x0F #define SVPD_EID_MC_VENDOR_SPEC 0x00 #define SVPD_EID_MC_MODE_1 0x01 #define SVPD_EID_MC_MODE_2 0x02 #define SVPD_EID_MC_MODE_3 0x03 uint8_t est[2]; uint8_t flags7; #define SVPD_EID_POA_SUP 0x80 #define SVPD_EID_HRA_SUP 0x40 #define SVPD_EID_VSA_SUP 0x20 uint8_t max_sense_length; uint8_t bind_flags; #define SVPD_EID_IBS 0x80 #define SVPD_EID_IAS 0x40 #define SVPD_EID_SAC 0x04 #define SVPD_EID_NRD1 0x02 #define SVPD_EID_NRD0 0x01 uint8_t reserved2[49]; }; struct scsi_vpd_mode_page_policy_descr { uint8_t page_code; uint8_t subpage_code; uint8_t policy; #define SVPD_MPP_SHARED 0x00 #define SVPD_MPP_PORT 0x01 #define SVPD_MPP_I_T 0x03 #define SVPD_MPP_MLUS 0x80 uint8_t reserved; }; struct scsi_vpd_mode_page_policy { uint8_t device; uint8_t page_code; #define SVPD_MODE_PAGE_POLICY 0x87 uint8_t page_length[2]; struct scsi_vpd_mode_page_policy_descr descr[0]; }; struct scsi_diag_page { uint8_t page_code; uint8_t page_specific_flags; uint8_t length[2]; uint8_t params[0]; }; struct scsi_vpd_port_designation { uint8_t reserved[2]; uint8_t relative_port_id[2]; uint8_t reserved2[2]; uint8_t initiator_transportid_length[2]; uint8_t initiator_transportid[0]; }; struct scsi_vpd_port_designation_cont { uint8_t reserved[2]; uint8_t target_port_descriptors_length[2]; struct scsi_vpd_id_descriptor target_port_descriptors[0]; }; struct scsi_vpd_scsi_ports { u_int8_t device; u_int8_t page_code; #define SVPD_SCSI_PORTS 0x88 u_int8_t page_length[2]; struct scsi_vpd_port_designation design[]; }; /* * ATA Information VPD Page based on * T10/2126-D Revision 04 */ #define SVPD_ATA_INFORMATION 0x89 struct scsi_vpd_tpc_descriptor { uint8_t desc_type[2]; uint8_t desc_length[2]; uint8_t parameters[]; }; struct scsi_vpd_tpc_descriptor_bdrl { uint8_t desc_type[2]; #define SVPD_TPC_BDRL 0x0000 uint8_t desc_length[2]; uint8_t vendor_specific[6]; uint8_t maximum_ranges[2]; uint8_t maximum_inactivity_timeout[4]; uint8_t default_inactivity_timeout[4]; uint8_t maximum_token_transfer_size[8]; uint8_t optimal_transfer_count[8]; }; struct scsi_vpd_tpc_descriptor_sc_descr { uint8_t opcode; uint8_t sa_length; uint8_t supported_service_actions[0]; }; struct scsi_vpd_tpc_descriptor_sc { uint8_t desc_type[2]; #define SVPD_TPC_SC 0x0001 uint8_t desc_length[2]; uint8_t list_length; struct scsi_vpd_tpc_descriptor_sc_descr descr[]; }; struct scsi_vpd_tpc_descriptor_pd { uint8_t desc_type[2]; #define SVPD_TPC_PD 0x0004 uint8_t desc_length[2]; uint8_t reserved[4]; uint8_t maximum_cscd_descriptor_count[2]; uint8_t maximum_segment_descriptor_count[2]; uint8_t maximum_descriptor_list_length[4]; uint8_t maximum_inline_data_length[4]; uint8_t reserved2[12]; }; struct scsi_vpd_tpc_descriptor_sd { uint8_t desc_type[2]; #define SVPD_TPC_SD 0x0008 uint8_t desc_length[2]; uint8_t list_length; uint8_t supported_descriptor_codes[]; }; struct scsi_vpd_tpc_descriptor_sdid { uint8_t desc_type[2]; #define SVPD_TPC_SDID 0x000C uint8_t desc_length[2]; uint8_t list_length[2]; uint8_t supported_descriptor_ids[]; }; struct scsi_vpd_tpc_descriptor_rtf_block { uint8_t type_format; #define SVPD_TPC_RTF_BLOCK 0x00 uint8_t reserved; uint8_t desc_length[2]; uint8_t reserved2[2]; uint8_t optimal_length_granularity[2]; uint8_t maximum_bytes[8]; uint8_t optimal_bytes[8]; uint8_t optimal_bytes_to_token_per_segment[8]; uint8_t optimal_bytes_from_token_per_segment[8]; uint8_t reserved3[8]; }; struct scsi_vpd_tpc_descriptor_rtf { uint8_t desc_type[2]; #define SVPD_TPC_RTF 0x0106 uint8_t desc_length[2]; uint8_t remote_tokens; uint8_t reserved[11]; uint8_t minimum_token_lifetime[4]; uint8_t maximum_token_lifetime[4]; uint8_t maximum_token_inactivity_timeout[4]; uint8_t reserved2[18]; uint8_t type_specific_features_length[2]; uint8_t type_specific_features[0]; }; struct scsi_vpd_tpc_descriptor_srtd { uint8_t rod_type[4]; uint8_t flags; #define SVPD_TPC_SRTD_TOUT 0x01 #define SVPD_TPC_SRTD_TIN 0x02 #define SVPD_TPC_SRTD_ECPY 0x80 uint8_t reserved; uint8_t preference_indicator[2]; uint8_t reserved2[56]; }; struct scsi_vpd_tpc_descriptor_srt { uint8_t desc_type[2]; #define SVPD_TPC_SRT 0x0108 uint8_t desc_length[2]; uint8_t reserved[2]; uint8_t rod_type_descriptors_length[2]; uint8_t rod_type_descriptors[0]; }; struct scsi_vpd_tpc_descriptor_gco { uint8_t desc_type[2]; #define SVPD_TPC_GCO 0x8001 uint8_t desc_length[2]; uint8_t total_concurrent_copies[4]; uint8_t maximum_identified_concurrent_copies[4]; uint8_t maximum_segment_length[4]; uint8_t data_segment_granularity; uint8_t inline_data_granularity; uint8_t reserved[18]; }; struct scsi_vpd_tpc { uint8_t device; uint8_t page_code; #define SVPD_SCSI_TPC 0x8F uint8_t page_length[2]; struct scsi_vpd_tpc_descriptor descr[]; }; /* * SCSI Feature Sets VPD Page */ struct scsi_vpd_sfs { uint8_t device; uint8_t page_code; #define SVPD_SCSI_SFS 0x92 uint8_t page_length[2]; uint8_t reserved[4]; uint8_t codes[]; }; /* * Block Device Characteristics VPD Page based on * T10/1799-D Revision 31 */ struct scsi_vpd_block_characteristics { u_int8_t device; u_int8_t page_code; #define SVPD_BDC 0xB1 u_int8_t page_length[2]; u_int8_t medium_rotation_rate[2]; #define SVPD_BDC_RATE_NOT_REPORTED 0x00 #define SVPD_BDC_RATE_NON_ROTATING 0x01 u_int8_t reserved1; u_int8_t nominal_form_factor; #define SVPD_BDC_FORM_NOT_REPORTED 0x00 #define SVPD_BDC_FORM_5_25INCH 0x01 #define SVPD_BDC_FORM_3_5INCH 0x02 #define SVPD_BDC_FORM_2_5INCH 0x03 #define SVPD_BDC_FORM_1_5INCH 0x04 #define SVPD_BDC_FORM_LESSTHAN_1_5INCH 0x05 u_int8_t reserved2[56]; }; /* * Block Device Characteristics VPD Page */ struct scsi_vpd_block_device_characteristics { uint8_t device; uint8_t page_code; #define SVPD_BDC 0xB1 uint8_t page_length[2]; uint8_t medium_rotation_rate[2]; #define SVPD_NOT_REPORTED 0x0000 #define SVPD_NON_ROTATING 0x0001 uint8_t product_type; uint8_t wab_wac_ff; uint8_t flags; #define SVPD_VBULS 0x01 #define SVPD_FUAB 0x02 #define SVPD_BOCS 0x04 #define SVPD_RBWZ 0x08 #define SVPD_ZBC_NR 0x00 /* Not Reported */ #define SVPD_HAW_ZBC 0x10 /* Host Aware */ #define SVPD_DM_ZBC 0x20 /* Drive Managed */ #define SVPD_ZBC_MASK 0x30 /* Zoned mask */ uint8_t reserved[3]; uint8_t depopulation_time[4]; uint8_t reserved2[48]; }; #define SBDC_IS_PRESENT(bdc, length, field) \ ((length >= offsetof(struct scsi_vpd_block_device_characteristics, \ field) + sizeof(bdc->field)) ? 1 : 0) /* * Logical Block Provisioning VPD Page based on * T10/1799-D Revision 31 */ struct scsi_vpd_logical_block_prov { u_int8_t device; u_int8_t page_code; #define SVPD_LBP 0xB2 u_int8_t page_length[2]; #define SVPD_LBP_PL_BASIC 0x04 u_int8_t threshold_exponent; u_int8_t flags; #define SVPD_LBP_UNMAP 0x80 #define SVPD_LBP_WS16 0x40 #define SVPD_LBP_WS10 0x20 #define SVPD_LBP_RZ 0x04 #define SVPD_LBP_ANC_SUP 0x02 #define SVPD_LBP_DP 0x01 u_int8_t prov_type; #define SVPD_LBP_RESOURCE 0x01 #define SVPD_LBP_THIN 0x02 u_int8_t reserved; /* * Provisioning Group Descriptor can be here if SVPD_LBP_DP is set * Its size can be determined from page_length - 4 */ }; /* * Block Limits VDP Page based on SBC-4 Revision 17 */ struct scsi_vpd_block_limits { u_int8_t device; u_int8_t page_code; #define SVPD_BLOCK_LIMITS 0xB0 u_int8_t page_length[2]; #define SVPD_BL_PL_BASIC 0x10 #define SVPD_BL_PL_TP 0x3C u_int8_t flags; #define SVPD_BL_WSNZ 0x01 u_int8_t max_cmp_write_len; u_int8_t opt_txfer_len_grain[2]; u_int8_t max_txfer_len[4]; u_int8_t opt_txfer_len[4]; u_int8_t max_prefetch[4]; u_int8_t max_unmap_lba_cnt[4]; u_int8_t max_unmap_blk_cnt[4]; u_int8_t opt_unmap_grain[4]; u_int8_t unmap_grain_align[4]; u_int8_t max_write_same_length[8]; u_int8_t max_atomic_transfer_length[4]; u_int8_t atomic_alignment[4]; u_int8_t atomic_transfer_length_granularity[4]; u_int8_t max_atomic_transfer_length_with_atomic_boundary[4]; u_int8_t max_atomic_boundary_size[4]; }; /* * Zoned Block Device Characacteristics VPD page. * From ZBC-r04, dated August 12, 2015. */ struct scsi_vpd_zoned_bdc { uint8_t device; uint8_t page_code; #define SVPD_ZONED_BDC 0xB6 uint8_t page_length[2]; #define SVPD_ZBDC_PL 0x3C uint8_t flags; #define SVPD_ZBDC_URSWRZ 0x01 uint8_t reserved1[3]; uint8_t optimal_seq_zones[4]; #define SVPD_ZBDC_OPT_SEQ_NR 0xffffffff uint8_t optimal_nonseq_zones[4]; #define SVPD_ZBDC_OPT_NONSEQ_NR 0xffffffff uint8_t max_seq_req_zones[4]; #define SVPD_ZBDC_MAX_SEQ_UNLIMITED 0xffffffff uint8_t reserved2[44]; }; struct scsi_read_capacity { u_int8_t opcode; u_int8_t byte2; #define SRC_RELADR 0x01 u_int8_t addr[4]; u_int8_t unused[2]; u_int8_t pmi; #define SRC_PMI 0x01 u_int8_t control; }; struct scsi_read_capacity_16 { uint8_t opcode; #define SRC16_SERVICE_ACTION 0x10 uint8_t service_action; uint8_t addr[8]; uint8_t alloc_len[4]; #define SRC16_PMI 0x01 #define SRC16_RELADR 0x02 uint8_t reladr; uint8_t control; }; struct scsi_read_capacity_data { u_int8_t addr[4]; u_int8_t length[4]; }; struct scsi_read_capacity_data_long { uint8_t addr[8]; uint8_t length[4]; #define SRC16_PROT_EN 0x01 #define SRC16_P_TYPE 0x0e #define SRC16_P_TYPE_SHIFT 1 #define SRC16_PTYPE_1 0x00 #define SRC16_PTYPE_2 0x02 #define SRC16_PTYPE_3 0x04 uint8_t prot; #define SRC16_LBPPBE 0x0f #define SRC16_PI_EXPONENT 0xf0 #define SRC16_PI_EXPONENT_SHIFT 4 uint8_t prot_lbppbe; #define SRC16_LALBA 0x3f #define SRC16_LBPRZ 0x40 #define SRC16_LBPME 0x80 /* * Alternate versions of these macros that are intended for use on a 16-bit * version of the lalba_lbp field instead of the array of 2 8 bit numbers. */ #define SRC16_LALBA_A 0x3fff #define SRC16_LBPRZ_A 0x4000 #define SRC16_LBPME_A 0x8000 uint8_t lalba_lbp[2]; uint8_t reserved[16]; }; struct scsi_get_lba_status { uint8_t opcode; #define SGLS_SERVICE_ACTION 0x12 uint8_t service_action; uint8_t addr[8]; uint8_t alloc_len[4]; uint8_t reserved; uint8_t control; }; struct scsi_get_lba_status_data_descr { uint8_t addr[8]; uint8_t length[4]; uint8_t status; uint8_t reserved[3]; }; struct scsi_get_lba_status_data { uint8_t length[4]; uint8_t reserved[4]; struct scsi_get_lba_status_data_descr descr[]; }; struct scsi_report_luns { uint8_t opcode; uint8_t reserved1; #define RPL_REPORT_DEFAULT 0x00 #define RPL_REPORT_WELLKNOWN 0x01 #define RPL_REPORT_ALL 0x02 #define RPL_REPORT_ADMIN 0x10 #define RPL_REPORT_NONSUBSID 0x11 #define RPL_REPORT_CONGLOM 0x12 uint8_t select_report; uint8_t reserved2[3]; uint8_t length[4]; uint8_t reserved3; uint8_t control; }; struct scsi_report_luns_lundata { uint8_t lundata[8]; #define RPL_LUNDATA_PERIPH_BUS_MASK 0x3f #define RPL_LUNDATA_FLAT_LUN_MASK 0x3f #define RPL_LUNDATA_FLAT_LUN_BITS 0x06 #define RPL_LUNDATA_LUN_TARG_MASK 0x3f #define RPL_LUNDATA_LUN_BUS_MASK 0xe0 #define RPL_LUNDATA_LUN_LUN_MASK 0x1f #define RPL_LUNDATA_EXT_LEN_MASK 0x30 #define RPL_LUNDATA_EXT_EAM_MASK 0x0f #define RPL_LUNDATA_EXT_EAM_WK 0x01 #define RPL_LUNDATA_EXT_EAM_NOT_SPEC 0x0f #define RPL_LUNDATA_ATYP_MASK 0xc0 /* MBZ for type 0 lun */ #define RPL_LUNDATA_ATYP_PERIPH 0x00 #define RPL_LUNDATA_ATYP_FLAT 0x40 #define RPL_LUNDATA_ATYP_LUN 0x80 #define RPL_LUNDATA_ATYP_EXTLUN 0xc0 }; struct scsi_report_luns_data { u_int8_t length[4]; /* length of LUN inventory, in bytes */ u_int8_t reserved[4]; /* unused */ /* * LUN inventory- we only support the type zero form for now. */ struct scsi_report_luns_lundata luns[0]; }; struct scsi_target_group { uint8_t opcode; uint8_t service_action; #define STG_PDF_MASK 0xe0 #define STG_PDF_LENGTH 0x00 #define STG_PDF_EXTENDED 0x20 uint8_t reserved1[4]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_timestamp { uint8_t opcode; uint8_t service_action; uint8_t reserved1[4]; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_set_timestamp_parameters { uint8_t reserved1[4]; uint8_t timestamp[6]; uint8_t reserved2[2]; }; struct scsi_report_timestamp_parameter_data { uint8_t length[2]; uint8_t reserved1[2]; uint8_t timestamp[6]; uint8_t reserved2[2]; }; struct scsi_target_port_descriptor { uint8_t reserved[2]; uint8_t relative_target_port_identifier[2]; uint8_t desc_list[]; }; struct scsi_target_port_group_descriptor { uint8_t pref_state; #define TPG_PRIMARY 0x80 #define TPG_ASYMMETRIC_ACCESS_STATE_MASK 0xf #define TPG_ASYMMETRIC_ACCESS_OPTIMIZED 0x0 #define TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED 0x1 #define TPG_ASYMMETRIC_ACCESS_STANDBY 0x2 #define TPG_ASYMMETRIC_ACCESS_UNAVAILABLE 0x3 #define TPG_ASYMMETRIC_ACCESS_LBA_DEPENDENT 0x4 #define TPG_ASYMMETRIC_ACCESS_OFFLINE 0xE #define TPG_ASYMMETRIC_ACCESS_TRANSITIONING 0xF uint8_t support; #define TPG_AO_SUP 0x01 #define TPG_AN_SUP 0x02 #define TPG_S_SUP 0x04 #define TPG_U_SUP 0x08 #define TPG_LBD_SUP 0x10 #define TPG_O_SUP 0x40 #define TPG_T_SUP 0x80 uint8_t target_port_group[2]; uint8_t reserved; uint8_t status; #define TPG_UNAVLBL 0 #define TPG_SET_BY_STPG 0x01 #define TPG_IMPLICIT 0x02 uint8_t vendor_specific; uint8_t target_port_count; struct scsi_target_port_descriptor descriptors[]; }; struct scsi_target_group_data { uint8_t length[4]; /* length of returned data, in bytes */ struct scsi_target_port_group_descriptor groups[]; }; struct scsi_target_group_data_extended { uint8_t length[4]; /* length of returned data, in bytes */ uint8_t format_type; /* STG_PDF_LENGTH or STG_PDF_EXTENDED */ uint8_t implicit_transition_time; uint8_t reserved[2]; struct scsi_target_port_group_descriptor groups[]; }; struct scsi_security_protocol_in { uint8_t opcode; uint8_t security_protocol; #define SPI_PROT_INFORMATION 0x00 #define SPI_PROT_CBCS 0x07 #define SPI_PROT_TAPE_DATA_ENC 0x20 #define SPI_PROT_DATA_ENC_CONFIG 0x21 #define SPI_PROT_SA_CREATE_CAP 0x40 #define SPI_PROT_IKEV2_SCSI 0x41 #define SPI_PROT_JEDEC_UFS 0xEC #define SPI_PROT_SDCARD_TFSSS 0xED #define SPI_PROT_AUTH_HOST_TRANSIENT 0xEE #define SPI_PROT_ATA_DEVICE_PASSWORD 0xEF uint8_t security_protocol_specific[2]; uint8_t byte4; #define SPI_INC_512 0x80 uint8_t reserved1; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; struct scsi_security_protocol_out { uint8_t opcode; uint8_t security_protocol; uint8_t security_protocol_specific[2]; uint8_t byte4; #define SPO_INC_512 0x80 uint8_t reserved1; uint8_t length[4]; uint8_t reserved2; uint8_t control; }; typedef enum { SSD_TYPE_NONE, SSD_TYPE_FIXED, SSD_TYPE_DESC } scsi_sense_data_type; typedef enum { SSD_ELEM_NONE, SSD_ELEM_SKIP, SSD_ELEM_DESC, SSD_ELEM_SKS, SSD_ELEM_COMMAND, SSD_ELEM_INFO, SSD_ELEM_FRU, SSD_ELEM_STREAM, SSD_ELEM_MAX } scsi_sense_elem_type; struct scsi_sense_data { uint8_t error_code; /* * SPC-4 says that the maximum length of sense data is 252 bytes. * So this structure is exactly 252 bytes log. */ #define SSD_FULL_SIZE 252 uint8_t sense_buf[SSD_FULL_SIZE - 1]; /* * XXX KDM is this still a reasonable minimum size? */ #define SSD_MIN_SIZE 18 /* * Maximum value for the extra_len field in the sense data. */ #define SSD_EXTRA_MAX 244 }; /* * Fixed format sense data. */ struct scsi_sense_data_fixed { u_int8_t error_code; #define SSD_ERRCODE 0x7F #define SSD_CURRENT_ERROR 0x70 #define SSD_DEFERRED_ERROR 0x71 #define SSD_ERRCODE_VALID 0x80 u_int8_t segment; u_int8_t flags; #define SSD_KEY 0x0F #define SSD_KEY_NO_SENSE 0x00 #define SSD_KEY_RECOVERED_ERROR 0x01 #define SSD_KEY_NOT_READY 0x02 #define SSD_KEY_MEDIUM_ERROR 0x03 #define SSD_KEY_HARDWARE_ERROR 0x04 #define SSD_KEY_ILLEGAL_REQUEST 0x05 #define SSD_KEY_UNIT_ATTENTION 0x06 #define SSD_KEY_DATA_PROTECT 0x07 #define SSD_KEY_BLANK_CHECK 0x08 #define SSD_KEY_Vendor_Specific 0x09 #define SSD_KEY_COPY_ABORTED 0x0a #define SSD_KEY_ABORTED_COMMAND 0x0b #define SSD_KEY_EQUAL 0x0c #define SSD_KEY_VOLUME_OVERFLOW 0x0d #define SSD_KEY_MISCOMPARE 0x0e #define SSD_KEY_COMPLETED 0x0f #define SSD_SDAT_OVFL 0x10 #define SSD_ILI 0x20 #define SSD_EOM 0x40 #define SSD_FILEMARK 0x80 u_int8_t info[4]; u_int8_t extra_len; u_int8_t cmd_spec_info[4]; u_int8_t add_sense_code; u_int8_t add_sense_code_qual; u_int8_t fru; u_int8_t sense_key_spec[3]; #define SSD_SCS_VALID 0x80 #define SSD_FIELDPTR_CMD 0x40 #define SSD_BITPTR_VALID 0x08 #define SSD_BITPTR_VALUE 0x07 u_int8_t extra_bytes[14]; #define SSD_FIXED_IS_PRESENT(sense, length, field) \ ((length >= (offsetof(struct scsi_sense_data_fixed, field) + \ sizeof(sense->field))) ? 1 :0) #define SSD_FIXED_IS_FILLED(sense, field) \ ((((offsetof(struct scsi_sense_data_fixed, field) + \ sizeof(sense->field)) - \ (offsetof(struct scsi_sense_data_fixed, extra_len) + \ sizeof(sense->extra_len))) <= sense->extra_len) ? 1 : 0) }; /* * Descriptor format sense data definitions. * Introduced in SPC-3. */ struct scsi_sense_data_desc { uint8_t error_code; #define SSD_DESC_CURRENT_ERROR 0x72 #define SSD_DESC_DEFERRED_ERROR 0x73 uint8_t sense_key; uint8_t add_sense_code; uint8_t add_sense_code_qual; uint8_t flags; #define SSDD_SDAT_OVFL 0x80 uint8_t reserved[2]; /* * Note that SPC-4, section 4.5.2.1 says that the extra_len field * must be less than or equal to 244. */ uint8_t extra_len; uint8_t sense_desc[0]; #define SSD_DESC_IS_PRESENT(sense, length, field) \ ((length >= (offsetof(struct scsi_sense_data_desc, field) + \ sizeof(sense->field))) ? 1 :0) }; struct scsi_sense_desc_header { uint8_t desc_type; uint8_t length; }; /* * The information provide in the Information descriptor is device type or * command specific information, and defined in a command standard. * * Note that any changes to the field names or positions in this structure, * even reserved fields, should be accompanied by an examination of the * code in ctl_set_sense() that uses them. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_info { uint8_t desc_type; #define SSD_DESC_INFO 0x00 uint8_t length; uint8_t byte2; #define SSD_INFO_VALID 0x80 uint8_t reserved; uint8_t info[8]; }; /* * Command-specific information depends on the command for which the * reported condition occurred. * * Note that any changes to the field names or positions in this structure, * even reserved fields, should be accompanied by an examination of the * code in ctl_set_sense() that uses them. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_command { uint8_t desc_type; #define SSD_DESC_COMMAND 0x01 uint8_t length; uint8_t reserved[2]; uint8_t command_info[8]; }; /* * Sense key specific descriptor. The sense key specific data format * depends on the sense key in question. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_sks { uint8_t desc_type; #define SSD_DESC_SKS 0x02 uint8_t length; uint8_t reserved1[2]; uint8_t sense_key_spec[3]; #define SSD_SKS_VALID 0x80 uint8_t reserved2; }; /* * This is used for the Illegal Request sense key (0x05) only. */ struct scsi_sense_sks_field { uint8_t byte0; #define SSD_SKS_FIELD_VALID 0x80 #define SSD_SKS_FIELD_CMD 0x40 #define SSD_SKS_BPV 0x08 #define SSD_SKS_BIT_VALUE 0x07 uint8_t field[2]; }; /* * This is used for the Hardware Error (0x04), Medium Error (0x03) and * Recovered Error (0x01) sense keys. */ struct scsi_sense_sks_retry { uint8_t byte0; #define SSD_SKS_RETRY_VALID 0x80 uint8_t actual_retry_count[2]; }; /* * Used with the NO Sense (0x00) or Not Ready (0x02) sense keys. */ struct scsi_sense_sks_progress { uint8_t byte0; #define SSD_SKS_PROGRESS_VALID 0x80 uint8_t progress[2]; #define SSD_SKS_PROGRESS_DENOM 0x10000 }; /* * Used with the Copy Aborted (0x0a) sense key. */ struct scsi_sense_sks_segment { uint8_t byte0; #define SSD_SKS_SEGMENT_VALID 0x80 #define SSD_SKS_SEGMENT_SD 0x20 #define SSD_SKS_SEGMENT_BPV 0x08 #define SSD_SKS_SEGMENT_BITPTR 0x07 uint8_t field[2]; }; /* * Used with the Unit Attention (0x06) sense key. * * This is currently used to indicate that the unit attention condition * queue has overflowed (when the overflow bit is set). */ struct scsi_sense_sks_overflow { uint8_t byte0; #define SSD_SKS_OVERFLOW_VALID 0x80 #define SSD_SKS_OVERFLOW_SET 0x01 uint8_t reserved[2]; }; /* * This specifies which component is associated with the sense data. There * is no standard meaning for the fru value. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_fru { uint8_t desc_type; #define SSD_DESC_FRU 0x03 uint8_t length; uint8_t reserved; uint8_t fru; }; /* * Used for Stream commands, defined in SSC-4. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_stream { uint8_t desc_type; #define SSD_DESC_STREAM 0x04 uint8_t length; uint8_t reserved; uint8_t byte3; #define SSD_DESC_STREAM_FM 0x80 #define SSD_DESC_STREAM_EOM 0x40 #define SSD_DESC_STREAM_ILI 0x20 }; /* * Used for Block commands, defined in SBC-3. * * This is currently (as of SBC-3) only used for the Incorrect Length * Indication (ILI) bit, which says that the data length requested in the * READ LONG or WRITE LONG command did not match the length of the logical * block. * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_block { uint8_t desc_type; #define SSD_DESC_BLOCK 0x05 uint8_t length; uint8_t reserved; uint8_t byte3; #define SSD_DESC_BLOCK_ILI 0x20 }; /* * Used for Object-Based Storage Devices (OSD-3). * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_osd_objid { uint8_t desc_type; #define SSD_DESC_OSD_OBJID 0x06 uint8_t length; uint8_t reserved[6]; /* * XXX KDM provide the bit definitions here? There are a lot of * them, and we don't have an OSD driver yet. */ uint8_t not_init_cmds[4]; uint8_t completed_cmds[4]; uint8_t partition_id[8]; uint8_t object_id[8]; }; /* * Used for Object-Based Storage Devices (OSD-3). * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_osd_integrity { uint8_t desc_type; #define SSD_DESC_OSD_INTEGRITY 0x07 uint8_t length; uint8_t integ_check_val[32]; }; /* * Used for Object-Based Storage Devices (OSD-3). * * Maximum descriptors allowed: 1 (as of SPC-4) */ struct scsi_sense_osd_attr_id { uint8_t desc_type; #define SSD_DESC_OSD_ATTR_ID 0x08 uint8_t length; uint8_t reserved[2]; uint8_t attr_desc[0]; }; /* * ATA Return descriptor, used for the SCSI ATA PASS-THROUGH(12), (16) and * (32) commands. Described in SAT-4r05. */ struct scsi_sense_ata_ret_desc { uint8_t desc_type; #define SSD_DESC_ATA 0x09 uint8_t length; uint8_t flags; #define SSD_DESC_ATA_FLAG_EXTEND 0x01 uint8_t error; uint8_t count_15_8; uint8_t count_7_0; uint8_t lba_31_24; uint8_t lba_7_0; uint8_t lba_39_32; uint8_t lba_15_8; uint8_t lba_47_40; uint8_t lba_23_16; uint8_t device; uint8_t status; }; /* * Used with Sense keys No Sense (0x00) and Not Ready (0x02). * * Maximum descriptors allowed: 32 (as of SPC-4) */ struct scsi_sense_progress { uint8_t desc_type; #define SSD_DESC_PROGRESS 0x0a uint8_t length; uint8_t sense_key; uint8_t add_sense_code; uint8_t add_sense_code_qual; uint8_t reserved; uint8_t progress[2]; }; /* * This is typically forwarded as the result of an EXTENDED COPY command. * * Maximum descriptors allowed: 2 (as of SPC-4) */ struct scsi_sense_forwarded { uint8_t desc_type; #define SSD_DESC_FORWARDED 0x0c uint8_t length; uint8_t byte2; #define SSD_FORWARDED_FSDT 0x80 #define SSD_FORWARDED_SDS_MASK 0x0f #define SSD_FORWARDED_SDS_UNK 0x00 #define SSD_FORWARDED_SDS_EXSRC 0x01 #define SSD_FORWARDED_SDS_EXDST 0x02 uint8_t status; uint8_t sense_data[]; }; /* * Vendor-specific sense descriptor. The desc_type field will be in the * range between MIN and MAX inclusive. */ struct scsi_sense_vendor { uint8_t desc_type; #define SSD_DESC_VENDOR_MIN 0x80 #define SSD_DESC_VENDOR_MAX 0xff uint8_t length; uint8_t data[0]; }; struct scsi_mode_header_6 { u_int8_t data_length; /* Sense data length */ u_int8_t medium_type; u_int8_t dev_spec; u_int8_t blk_desc_len; }; struct scsi_mode_header_10 { u_int8_t data_length[2];/* Sense data length */ u_int8_t medium_type; u_int8_t dev_spec; u_int8_t flags; #define SMH_LONGLBA 0x01 u_int8_t unused; u_int8_t blk_desc_len[2]; }; struct scsi_mode_page_header { u_int8_t page_code; #define SMPH_PS 0x80 #define SMPH_SPF 0x40 #define SMPH_PC_MASK 0x3f u_int8_t page_length; }; struct scsi_mode_page_header_sp { uint8_t page_code; uint8_t subpage; uint8_t page_length[2]; }; struct scsi_mode_blk_desc { u_int8_t density; u_int8_t nblocks[3]; u_int8_t reserved; u_int8_t blklen[3]; }; #define SCSI_DEFAULT_DENSITY 0x00 /* use 'default' density */ #define SCSI_SAME_DENSITY 0x7f /* use 'same' density- >= SCSI-2 only */ /* * Status Byte */ #define SCSI_STATUS_OK 0x00 #define SCSI_STATUS_CHECK_COND 0x02 #define SCSI_STATUS_COND_MET 0x04 #define SCSI_STATUS_BUSY 0x08 #define SCSI_STATUS_INTERMED 0x10 #define SCSI_STATUS_INTERMED_COND_MET 0x14 #define SCSI_STATUS_RESERV_CONFLICT 0x18 #define SCSI_STATUS_CMD_TERMINATED 0x22 /* Obsolete in SAM-2 */ #define SCSI_STATUS_QUEUE_FULL 0x28 #define SCSI_STATUS_ACA_ACTIVE 0x30 #define SCSI_STATUS_TASK_ABORTED 0x40 struct scsi_inquiry_pattern { u_int8_t type; u_int8_t media_type; #define SIP_MEDIA_REMOVABLE 0x01 #define SIP_MEDIA_FIXED 0x02 const char *vendor; const char *product; const char *revision; }; struct scsi_static_inquiry_pattern { u_int8_t type; u_int8_t media_type; char vendor[SID_VENDOR_SIZE+1]; char product[SID_PRODUCT_SIZE+1]; char revision[SID_REVISION_SIZE+1]; }; struct scsi_sense_quirk_entry { struct scsi_inquiry_pattern inq_pat; int num_sense_keys; int num_ascs; struct sense_key_table_entry *sense_key_info; struct asc_table_entry *asc_info; }; struct sense_key_table_entry { u_int8_t sense_key; u_int32_t action; const char *desc; }; struct asc_table_entry { u_int8_t asc; u_int8_t ascq; u_int32_t action; const char *desc; }; struct op_table_entry { u_int8_t opcode; u_int32_t opmask; const char *desc; }; struct scsi_op_quirk_entry { struct scsi_inquiry_pattern inq_pat; int num_ops; struct op_table_entry *op_table; }; typedef enum { SSS_FLAG_NONE = 0x00, SSS_FLAG_PRINT_COMMAND = 0x01 } scsi_sense_string_flags; struct scsi_nv { const char *name; uint64_t value; }; typedef enum { SCSI_NV_FOUND, SCSI_NV_AMBIGUOUS, SCSI_NV_NOT_FOUND } scsi_nv_status; typedef enum { SCSI_NV_FLAG_NONE = 0x00, SCSI_NV_FLAG_IG_CASE = 0x01 /* Case insensitive comparison */ } scsi_nv_flags; struct ccb_scsiio; struct cam_periph; union ccb; #ifndef _KERNEL struct cam_device; #endif extern const char *scsi_sense_key_text[]; __BEGIN_DECLS void scsi_sense_desc(int sense_key, int asc, int ascq, struct scsi_inquiry_data *inq_data, const char **sense_key_desc, const char **asc_desc); scsi_sense_action scsi_error_action(struct ccb_scsiio* csio, struct scsi_inquiry_data *inq_data, u_int32_t sense_flags); const char * scsi_status_string(struct ccb_scsiio *csio); void scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len, int (*iter_func)(struct scsi_sense_data_desc *sense, u_int, struct scsi_sense_desc_header *, void *), void *arg); uint8_t *scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len, uint8_t desc_type); void scsi_set_sense_data(struct scsi_sense_data *sense_data, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, ...) ; void scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, ...) ; void scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, va_list ap); int scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t info_type, uint64_t *info, int64_t *signed_info); int scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks); int scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len, struct scsi_inquiry_data *inq_data, uint8_t *block_bits); int scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len, struct scsi_inquiry_data *inq_data, uint8_t *stream_bits); void scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, uint64_t info); void scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, uint64_t csi); void scsi_progress_sbuf(struct sbuf *sb, uint16_t progress); int scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks); void scsi_fru_sbuf(struct sbuf *sb, uint64_t fru); void scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits); void scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits); void scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); void scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense, u_int sense_len, uint8_t *cdb, int cdb_len, struct scsi_inquiry_data *inq_data, struct scsi_sense_desc_header *header); scsi_sense_data_type scsi_sense_type(struct scsi_sense_data *sense_data); void scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len, struct sbuf *sb, char *path_str, struct scsi_inquiry_data *inq_data, uint8_t *cdb, int cdb_len); #ifdef _KERNEL int scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb); int scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb, scsi_sense_string_flags flags); char * scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len); void scsi_sense_print(struct ccb_scsiio *csio); int scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id); #else /* _KERNEL */ int scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio, struct sbuf *sb); int scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio, struct sbuf *sb, scsi_sense_string_flags flags); char * scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio, char *str, int str_len); void scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio, FILE *ofile); #endif /* _KERNEL */ const char * scsi_op_desc(u_int16_t opcode, struct scsi_inquiry_data *inq_data); char * scsi_cdb_string(u_int8_t *cdb_ptr, char *cdb_string, size_t len); void scsi_cdb_sbuf(u_int8_t *cdb_ptr, struct sbuf *sb); void scsi_print_inquiry(struct scsi_inquiry_data *inq_data); void scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data); void scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data); void scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data); u_int scsi_calc_syncsrate(u_int period_factor); u_int scsi_calc_syncparam(u_int period); typedef int (*scsi_devid_checkfn_t)(uint8_t *); int scsi_devid_is_naa_ieee_reg(uint8_t *bufp); int scsi_devid_is_sas_target(uint8_t *bufp); int scsi_devid_is_lun_eui64(uint8_t *bufp); int scsi_devid_is_lun_naa(uint8_t *bufp); int scsi_devid_is_lun_name(uint8_t *bufp); int scsi_devid_is_lun_t10(uint8_t *bufp); int scsi_devid_is_lun_md5(uint8_t *bufp); int scsi_devid_is_lun_uuid(uint8_t *bufp); int scsi_devid_is_port_naa(uint8_t *bufp); struct scsi_vpd_id_descriptor * scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t len, scsi_devid_checkfn_t ck_fn); struct scsi_vpd_id_descriptor * scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len, scsi_devid_checkfn_t ck_fn); int scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr, uint32_t valid_len); const char * scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value); scsi_nv_status scsi_get_nv(struct scsi_nv *table, int num_table_entries, char *name, int *table_entry, scsi_nv_flags flags); int scsi_parse_transportid_64bit(int proto_id, char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str,int error_str_len); int scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str,int error_str_len); int scsi_parse_transportid(char *transportid_str, struct scsi_transportid_header **hdr, unsigned int *alloc_len, #ifdef _KERNEL struct malloc_type *type, int flags, #endif char *error_str, int error_str_len); int scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); int scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, uint32_t flags, uint32_t output_flags, char *error_str, int error_str_len); struct scsi_attrib_table_entry *scsi_find_attrib_entry( struct scsi_attrib_table_entry *table, size_t num_table_entries, uint32_t id); struct scsi_attrib_table_entry *scsi_get_attrib_entry(uint32_t id); int scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len, struct scsi_mam_attribute_header *hdr, uint32_t output_flags, char *error_str, size_t error_str_len); void scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, const char *desc); int scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr, uint32_t valid_len, struct scsi_attrib_table_entry *user_table, size_t num_user_entries, int prefer_user_table, uint32_t output_flags, char *error_str, int error_str_len); void scsi_test_unit_ready(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout); void scsi_request_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), void *data_ptr, u_int8_t dxfer_len, u_int8_t tag_action, u_int8_t sense_len, u_int32_t timeout); void scsi_inquiry(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t *inq_buf, u_int32_t inq_len, int evpd, u_int8_t page_code, u_int8_t sense_len, u_int32_t timeout); void scsi_mode_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, uint8_t sense_len, uint32_t timeout); void scsi_mode_sense_len(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, uint32_t timeout); void scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf, uint32_t param_len, int minimum_cmd_size, uint8_t sense_len, uint32_t timeout); void scsi_mode_select(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int scsi_page_fmt, int save_pages, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout); void scsi_mode_select_len(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int scsi_page_fmt, int save_pages, u_int8_t *param_buf, u_int32_t param_len, int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout); void scsi_log_sense(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t page_code, u_int8_t page, int save_pages, int ppc, u_int32_t paramptr, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout); void scsi_log_select(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t page_code, int save_pages, int pc_reset, u_int8_t *param_buf, u_int32_t param_len, u_int8_t sense_len, u_int32_t timeout); void scsi_prevent(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t action, u_int8_t sense_len, u_int32_t timeout); void scsi_read_capacity(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, struct scsi_read_capacity_data *, u_int8_t sense_len, u_int32_t timeout); void scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint64_t lba, int reladr, int pmi, uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len, uint32_t timeout); void scsi_report_luns(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t select_report, struct scsi_report_luns_data *rpl_buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_report_target_group(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t pdf, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_report_timestamp(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t pdf, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_set_target_group(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_create_timestamp(uint8_t *timestamp_6b_buf, uint64_t timestamp); void scsi_set_timestamp(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, void *buf, u_int32_t alloc_len, u_int8_t sense_len, u_int32_t timeout); void scsi_synchronize_cache(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int32_t begin_lba, u_int16_t lb_count, u_int8_t sense_len, u_int32_t timeout); void scsi_receive_diagnostic_results(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int pcv, uint8_t page_code, uint8_t *data_ptr, uint16_t allocation_length, uint8_t sense_len, uint32_t timeout); void scsi_send_diagnostic(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int unit_offline, int device_offline, int self_test, int page_format, int self_test_code, uint8_t *data_ptr, uint16_t param_list_length, uint8_t sense_len, uint32_t timeout); void scsi_read_buffer(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int mode, uint8_t buffer_id, u_int32_t offset, uint8_t *data_ptr, uint32_t allocation_length, uint8_t sense_len, uint32_t timeout); void scsi_write_buffer(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int mode, uint8_t buffer_id, u_int32_t offset, uint8_t *data_ptr, uint32_t param_list_length, uint8_t sense_len, uint32_t timeout); #define SCSI_RW_READ 0x0001 #define SCSI_RW_WRITE 0x0002 #define SCSI_RW_DIRMASK 0x0003 #define SCSI_RW_BIO 0x1000 void scsi_read_write(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int readop, u_int8_t byte2, int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_write_same(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, int minimum_cmd_size, u_int64_t lba, u_int32_t block_count, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_ata_identify(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_ata_trim(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int16_t block_count, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); int scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint32_t log_address, uint32_t page_number, uint16_t block_count, uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len, uint32_t timeout); int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t feature, uint64_t lba, uint32_t count, uint8_t sense_len, uint32_t timeout); int scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint8_t tag_action, uint8_t protocol, uint8_t ata_flags, uint16_t features, uint16_t sector_count, uint64_t lba, uint8_t command, uint8_t device, uint8_t icc, uint32_t auxiliary, uint8_t control, u_int8_t *data_ptr, uint32_t dxfer_len, uint8_t *cdb_storage, size_t cdb_storage_len, int minimum_cmd_size, u_int8_t sense_len, u_int32_t timeout); void scsi_ata_pass_16(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t tag_action, u_int8_t protocol, u_int8_t ata_flags, u_int16_t features, u_int16_t sector_count, uint64_t lba, u_int8_t command, u_int8_t control, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_unmap(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t byte2, u_int8_t *data_ptr, u_int16_t dxfer_len, u_int8_t sense_len, u_int32_t timeout); void scsi_start_stop(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, int start, int load_eject, int immediate, u_int8_t sense_len, u_int32_t timeout); void scsi_read_attribute(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, u_int8_t service_action, uint32_t element, u_int8_t elem_type, int logical_volume, int partition, u_int32_t first_attribute, int cache, u_int8_t *data_ptr, u_int32_t length, int sense_len, u_int32_t timeout); void scsi_write_attribute(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int8_t tag_action, uint32_t element, int logical_volume, int partition, int wtc, u_int8_t *data_ptr, u_int32_t length, int sense_len, u_int32_t timeout); void scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint32_t security_protocol, uint32_t security_protocol_specific, int byte4, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *,union ccb *), uint8_t tag_action, uint32_t security_protocol, uint32_t security_protocol_specific, int byte4, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *,union ccb *), uint8_t tag_action, int service_action, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int service_action, int scope, int res_type, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); void scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, int options, int req_opcode, int req_service_action, uint8_t *data_ptr, uint32_t dxfer_len, int sense_len, int timeout); int scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry); int scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry); int scsi_devid_match(uint8_t *rhs, size_t rhs_len, uint8_t *lhs, size_t lhs_len); void scsi_extract_sense(struct scsi_sense_data *sense, int *error_code, int *sense_key, int *asc, int *ascq); int scsi_extract_sense_ccb(union ccb *ccb, int *error_code, int *sense_key, int *asc, int *ascq); void scsi_extract_sense_len(struct scsi_sense_data *sense, u_int sense_len, int *error_code, int *sense_key, int *asc, int *ascq, int show_errors); int scsi_get_sense_key(struct scsi_sense_data *sense, u_int sense_len, int show_errors); int scsi_get_asc(struct scsi_sense_data *sense, u_int sense_len, int show_errors); int scsi_get_ascq(struct scsi_sense_data *sense, u_int sense_len, int show_errors); -static __inline void scsi_ulto2b(u_int32_t val, u_int8_t *bytes); -static __inline void scsi_ulto3b(u_int32_t val, u_int8_t *bytes); -static __inline void scsi_ulto4b(u_int32_t val, u_int8_t *bytes); -static __inline void scsi_u64to8b(u_int64_t val, u_int8_t *bytes); -static __inline uint32_t scsi_2btoul(const uint8_t *bytes); -static __inline uint32_t scsi_3btoul(const uint8_t *bytes); -static __inline int32_t scsi_3btol(const uint8_t *bytes); -static __inline uint32_t scsi_4btoul(const uint8_t *bytes); -static __inline uint64_t scsi_8btou64(const uint8_t *bytes); -static __inline void *find_mode_page_6(struct scsi_mode_header_6 *mode_header); -static __inline void *find_mode_page_10(struct scsi_mode_header_10 *mode_header); static __inline void scsi_ulto2b(u_int32_t val, u_int8_t *bytes) { bytes[0] = (val >> 8) & 0xff; bytes[1] = val & 0xff; } static __inline void scsi_ulto3b(u_int32_t val, u_int8_t *bytes) { bytes[0] = (val >> 16) & 0xff; bytes[1] = (val >> 8) & 0xff; bytes[2] = val & 0xff; } static __inline void scsi_ulto4b(u_int32_t val, u_int8_t *bytes) { bytes[0] = (val >> 24) & 0xff; bytes[1] = (val >> 16) & 0xff; bytes[2] = (val >> 8) & 0xff; bytes[3] = val & 0xff; } static __inline void scsi_u64to8b(u_int64_t val, u_int8_t *bytes) { bytes[0] = (val >> 56) & 0xff; bytes[1] = (val >> 48) & 0xff; bytes[2] = (val >> 40) & 0xff; bytes[3] = (val >> 32) & 0xff; bytes[4] = (val >> 24) & 0xff; bytes[5] = (val >> 16) & 0xff; bytes[6] = (val >> 8) & 0xff; bytes[7] = val & 0xff; } static __inline uint32_t scsi_2btoul(const uint8_t *bytes) { uint32_t rv; rv = (bytes[0] << 8) | bytes[1]; return (rv); } static __inline uint32_t scsi_3btoul(const uint8_t *bytes) { uint32_t rv; rv = (bytes[0] << 16) | (bytes[1] << 8) | bytes[2]; return (rv); } static __inline int32_t scsi_3btol(const uint8_t *bytes) { uint32_t rc = scsi_3btoul(bytes); if (rc & 0x00800000) rc |= 0xff000000; return (int32_t) rc; } static __inline uint32_t scsi_4btoul(const uint8_t *bytes) { uint32_t rv; rv = (bytes[0] << 24) | (bytes[1] << 16) | (bytes[2] << 8) | bytes[3]; return (rv); } static __inline uint64_t scsi_8btou64(const uint8_t *bytes) { uint64_t rv; rv = (((uint64_t)bytes[0]) << 56) | (((uint64_t)bytes[1]) << 48) | (((uint64_t)bytes[2]) << 40) | (((uint64_t)bytes[3]) << 32) | (((uint64_t)bytes[4]) << 24) | (((uint64_t)bytes[5]) << 16) | (((uint64_t)bytes[6]) << 8) | bytes[7]; return (rv); } /* * Given the pointer to a returned mode sense buffer, return a pointer to * the start of the first mode page. */ static __inline void * find_mode_page_6(struct scsi_mode_header_6 *mode_header) { void *page_start; page_start = (void *)((u_int8_t *)&mode_header[1] + mode_header->blk_desc_len); return(page_start); } static __inline void * find_mode_page_10(struct scsi_mode_header_10 *mode_header) { void *page_start; page_start = (void *)((u_int8_t *)&mode_header[1] + scsi_2btoul(mode_header->blk_desc_len)); return(page_start); } __END_DECLS #endif /*_SCSI_SCSI_ALL_H*/