Index: stable/12/sys/amd64/vmm/io/iommu.c =================================================================== --- stable/12/sys/amd64/vmm/io/iommu.c (revision 358145) +++ stable/12/sys/amd64/vmm/io/iommu.c (revision 358146) @@ -1,341 +1,341 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include "vmm_util.h" #include "vmm_mem.h" #include "iommu.h" SYSCTL_DECL(_hw_vmm); SYSCTL_NODE(_hw_vmm, OID_AUTO, iommu, CTLFLAG_RW, 0, "bhyve iommu parameters"); static int iommu_avail; SYSCTL_INT(_hw_vmm_iommu, OID_AUTO, initialized, CTLFLAG_RD, &iommu_avail, 0, "bhyve iommu initialized?"); static int iommu_enable = 1; SYSCTL_INT(_hw_vmm_iommu, OID_AUTO, enable, CTLFLAG_RDTUN, &iommu_enable, 0, "Enable use of I/O MMU (required for PCI passthrough)."); static struct iommu_ops *ops; static void *host_domain; static eventhandler_tag add_tag, delete_tag; static __inline int IOMMU_INIT(void) { if (ops != NULL) return ((*ops->init)()); else return (ENXIO); } static __inline void IOMMU_CLEANUP(void) { if (ops != NULL && iommu_avail) (*ops->cleanup)(); } static __inline void * IOMMU_CREATE_DOMAIN(vm_paddr_t maxaddr) { if (ops != NULL && iommu_avail) return ((*ops->create_domain)(maxaddr)); else return (NULL); } static __inline void IOMMU_DESTROY_DOMAIN(void *dom) { if (ops != NULL && iommu_avail) (*ops->destroy_domain)(dom); } static __inline uint64_t IOMMU_CREATE_MAPPING(void *domain, vm_paddr_t gpa, vm_paddr_t hpa, uint64_t len) { if (ops != NULL && iommu_avail) return ((*ops->create_mapping)(domain, gpa, hpa, len)); else return (len); /* XXX */ } static __inline uint64_t IOMMU_REMOVE_MAPPING(void *domain, vm_paddr_t gpa, uint64_t len) { if (ops != NULL && iommu_avail) return ((*ops->remove_mapping)(domain, gpa, len)); else return (len); /* XXX */ } static __inline void IOMMU_ADD_DEVICE(void *domain, uint16_t rid) { if (ops != NULL && iommu_avail) (*ops->add_device)(domain, rid); } static __inline void IOMMU_REMOVE_DEVICE(void *domain, uint16_t rid) { if (ops != NULL && iommu_avail) (*ops->remove_device)(domain, rid); } static __inline void IOMMU_INVALIDATE_TLB(void *domain) { if (ops != NULL && iommu_avail) (*ops->invalidate_tlb)(domain); } static __inline void IOMMU_ENABLE(void) { if (ops != NULL && iommu_avail) (*ops->enable)(); } static __inline void IOMMU_DISABLE(void) { if (ops != NULL && iommu_avail) (*ops->disable)(); } static void iommu_pci_add(void *arg, device_t dev) { /* Add new devices to the host domain. */ iommu_add_device(host_domain, pci_get_rid(dev)); } static void iommu_pci_delete(void *arg, device_t dev) { iommu_remove_device(host_domain, pci_get_rid(dev)); } static void iommu_init(void) { int error, bus, slot, func; vm_paddr_t maxaddr; devclass_t dc; device_t dev; if (!iommu_enable) return; if (vmm_is_intel()) ops = &iommu_ops_intel; - else if (vmm_is_amd()) + else if (vmm_is_svm()) ops = &iommu_ops_amd; else ops = NULL; error = IOMMU_INIT(); if (error) return; iommu_avail = 1; /* * Create a domain for the devices owned by the host */ maxaddr = vmm_mem_maxaddr(); host_domain = IOMMU_CREATE_DOMAIN(maxaddr); if (host_domain == NULL) { printf("iommu_init: unable to create a host domain"); IOMMU_CLEANUP(); ops = NULL; iommu_avail = 0; return; } /* * Create 1:1 mappings from '0' to 'maxaddr' for devices assigned to * the host */ iommu_create_mapping(host_domain, 0, 0, maxaddr); add_tag = EVENTHANDLER_REGISTER(pci_add_device, iommu_pci_add, NULL, 0); delete_tag = EVENTHANDLER_REGISTER(pci_delete_device, iommu_pci_delete, NULL, 0); dc = devclass_find("ppt"); for (bus = 0; bus <= PCI_BUSMAX; bus++) { for (slot = 0; slot <= PCI_SLOTMAX; slot++) { for (func = 0; func <= PCI_FUNCMAX; func++) { dev = pci_find_dbsf(0, bus, slot, func); if (dev == NULL) continue; /* Skip passthrough devices. */ if (dc != NULL && device_get_devclass(dev) == dc) continue; /* * Everything else belongs to the host * domain. */ iommu_add_device(host_domain, pci_get_rid(dev)); } } } IOMMU_ENABLE(); } void iommu_cleanup(void) { if (add_tag != NULL) { EVENTHANDLER_DEREGISTER(pci_add_device, add_tag); add_tag = NULL; } if (delete_tag != NULL) { EVENTHANDLER_DEREGISTER(pci_delete_device, delete_tag); delete_tag = NULL; } IOMMU_DISABLE(); IOMMU_DESTROY_DOMAIN(host_domain); IOMMU_CLEANUP(); } void * iommu_create_domain(vm_paddr_t maxaddr) { static volatile int iommu_initted; if (iommu_initted < 2) { if (atomic_cmpset_int(&iommu_initted, 0, 1)) { iommu_init(); atomic_store_rel_int(&iommu_initted, 2); } else while (iommu_initted == 1) cpu_spinwait(); } return (IOMMU_CREATE_DOMAIN(maxaddr)); } void iommu_destroy_domain(void *dom) { IOMMU_DESTROY_DOMAIN(dom); } void iommu_create_mapping(void *dom, vm_paddr_t gpa, vm_paddr_t hpa, size_t len) { uint64_t mapped, remaining; remaining = len; while (remaining > 0) { mapped = IOMMU_CREATE_MAPPING(dom, gpa, hpa, remaining); gpa += mapped; hpa += mapped; remaining -= mapped; } } void iommu_remove_mapping(void *dom, vm_paddr_t gpa, size_t len) { uint64_t unmapped, remaining; remaining = len; while (remaining > 0) { unmapped = IOMMU_REMOVE_MAPPING(dom, gpa, remaining); gpa += unmapped; remaining -= unmapped; } } void * iommu_host_domain(void) { return (host_domain); } void iommu_add_device(void *dom, uint16_t rid) { IOMMU_ADD_DEVICE(dom, rid); } void iommu_remove_device(void *dom, uint16_t rid) { IOMMU_REMOVE_DEVICE(dom, rid); } void iommu_invalidate_tlb(void *domain) { IOMMU_INVALIDATE_TLB(domain); } Index: stable/12/sys/amd64/vmm/vmm.c =================================================================== --- stable/12/sys/amd64/vmm/vmm.c (revision 358145) +++ stable/12/sys/amd64/vmm/vmm.c (revision 358146) @@ -1,2732 +1,2732 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_ioport.h" #include "vmm_ktr.h" #include "vmm_host.h" #include "vmm_mem.h" #include "vmm_util.h" #include "vatpic.h" #include "vatpit.h" #include "vhpet.h" #include "vioapic.h" #include "vlapic.h" #include "vpmtmr.h" #include "vrtc.h" #include "vmm_stat.h" #include "vmm_lapic.h" #include "io/ppt.h" #include "io/iommu.h" struct vlapic; /* * Initialization: * (a) allocated when vcpu is created * (i) initialized when vcpu is created and when it is reinitialized * (o) initialized the first time the vcpu is created * (x) initialized before use */ struct vcpu { struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ enum vcpu_state state; /* (o) vcpu state */ int hostcpu; /* (o) vcpu's host cpu */ int reqidle; /* (i) request vcpu to idle */ struct vlapic *vlapic; /* (i) APIC device model */ enum x2apic_state x2apic_state; /* (i) APIC mode */ uint64_t exitintinfo; /* (i) events pending at VM exit */ int nmi_pending; /* (i) NMI pending */ int extint_pending; /* (i) INTR pending */ int exception_pending; /* (i) exception pending */ int exc_vector; /* (x) exception collateral */ int exc_errcode_valid; uint32_t exc_errcode; struct savefpu *guestfpu; /* (a,i) guest fpu state */ uint64_t guest_xcr0; /* (i) guest %xcr0 register */ void *stats; /* (a,i) statistics */ struct vm_exit exitinfo; /* (x) exit reason and collateral */ uint64_t nextrip; /* (x) next instruction to execute */ }; #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) struct mem_seg { size_t len; bool sysmem; struct vm_object *object; }; #define VM_MAX_MEMSEGS 3 struct mem_map { vm_paddr_t gpa; size_t len; vm_ooffset_t segoff; int segid; int prot; int flags; }; #define VM_MAX_MEMMAPS 4 /* * Initialization: * (o) initialized the first time the VM is created * (i) initialized when VM is created and when it is reinitialized * (x) initialized before use */ struct vm { void *cookie; /* (i) cpu-specific data */ void *iommu; /* (x) iommu-specific data */ struct vhpet *vhpet; /* (i) virtual HPET */ struct vioapic *vioapic; /* (i) virtual ioapic */ struct vatpic *vatpic; /* (i) virtual atpic */ struct vatpit *vatpit; /* (i) virtual atpit */ struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ struct vrtc *vrtc; /* (o) virtual RTC */ volatile cpuset_t active_cpus; /* (i) active vcpus */ volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ int suspend; /* (i) stop VM execution */ volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ void *rendezvous_arg; /* (x) rendezvous func/arg */ vm_rendezvous_func_t rendezvous_func; struct mtx rendezvous_mtx; /* (o) rendezvous lock */ struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ struct vmspace *vmspace; /* (o) guest's address space */ char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ /* The following describe the vm cpu topology */ uint16_t sockets; /* (o) num of sockets */ uint16_t cores; /* (o) num of cores/socket */ uint16_t threads; /* (o) num of threads/core */ uint16_t maxcpus; /* (o) max pluggable cpus */ }; static int vmm_initialized; static struct vmm_ops *ops; #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) #define VMSPACE_ALLOC(min, max) \ (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) #define VMSPACE_FREE(vmspace) \ (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) #define VMGETREG(vmi, vcpu, num, retval) \ (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) #define VMSETREG(vmi, vcpu, num, val) \ (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) #define VMGETDESC(vmi, vcpu, num, desc) \ (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) #define VMSETDESC(vmi, vcpu, num, desc) \ (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) #define VMGETCAP(vmi, vcpu, num, retval) \ (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) #define VMSETCAP(vmi, vcpu, num, val) \ (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) #define VLAPIC_INIT(vmi, vcpu) \ (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) #define VLAPIC_CLEANUP(vmi, vlapic) \ (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) #define fpu_stop_emulating() clts() SDT_PROVIDER_DEFINE(vmm); static MALLOC_DEFINE(M_VM, "vm", "vm"); /* statistics */ static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); /* * Halt the guest if all vcpus are executing a HLT instruction with * interrupts disabled. */ static int halt_detection_enabled = 1; SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, &halt_detection_enabled, 0, "Halt VM if all vcpus execute HLT with interrupts disabled"); static int vmm_ipinum; SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, "IPI vector used for vcpu notifications"); static int trace_guest_exceptions; SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, &trace_guest_exceptions, 0, "Trap into hypervisor on all guest exceptions and reflect them back"); static void vm_free_memmap(struct vm *vm, int ident); static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); #ifdef KTR static const char * vcpu_state2str(enum vcpu_state state) { switch (state) { case VCPU_IDLE: return ("idle"); case VCPU_FROZEN: return ("frozen"); case VCPU_RUNNING: return ("running"); case VCPU_SLEEPING: return ("sleeping"); default: return ("unknown"); } } #endif static void vcpu_cleanup(struct vm *vm, int i, bool destroy) { struct vcpu *vcpu = &vm->vcpu[i]; VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); if (destroy) { vmm_stat_free(vcpu->stats); fpu_save_area_free(vcpu->guestfpu); } } static void vcpu_init(struct vm *vm, int vcpu_id, bool create) { struct vcpu *vcpu; KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, ("vcpu_init: invalid vcpu %d", vcpu_id)); vcpu = &vm->vcpu[vcpu_id]; if (create) { KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " "initialized", vcpu_id)); vcpu_lock_init(vcpu); vcpu->state = VCPU_IDLE; vcpu->hostcpu = NOCPU; vcpu->guestfpu = fpu_save_area_alloc(); vcpu->stats = vmm_stat_alloc(); } vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); vcpu->reqidle = 0; vcpu->exitintinfo = 0; vcpu->nmi_pending = 0; vcpu->extint_pending = 0; vcpu->exception_pending = 0; vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; fpu_save_area_reset(vcpu->guestfpu); vmm_stat_init(vcpu->stats); } int vcpu_trace_exceptions(struct vm *vm, int vcpuid) { return (trace_guest_exceptions); } struct vm_exit * vm_exitinfo(struct vm *vm, int cpuid) { struct vcpu *vcpu; if (cpuid < 0 || cpuid >= vm->maxcpus) panic("vm_exitinfo: invalid cpuid %d", cpuid); vcpu = &vm->vcpu[cpuid]; return (&vcpu->exitinfo); } static void vmm_resume(void) { VMM_RESUME(); } static int vmm_init(void) { int error; vmm_host_state_init(); vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : &IDTVEC(justreturn)); if (vmm_ipinum < 0) vmm_ipinum = IPI_AST; error = vmm_mem_init(); if (error) return (error); if (vmm_is_intel()) ops = &vmm_ops_intel; - else if (vmm_is_amd()) + else if (vmm_is_svm()) ops = &vmm_ops_amd; else return (ENXIO); vmm_resume_p = vmm_resume; return (VMM_INIT(vmm_ipinum)); } static int vmm_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: vmmdev_init(); error = vmm_init(); if (error == 0) vmm_initialized = 1; break; case MOD_UNLOAD: error = vmmdev_cleanup(); if (error == 0) { vmm_resume_p = NULL; iommu_cleanup(); if (vmm_ipinum != IPI_AST) lapic_ipi_free(vmm_ipinum); error = VMM_CLEANUP(); /* * Something bad happened - prevent new * VMs from being created */ if (error) vmm_initialized = 0; } break; default: error = 0; break; } return (error); } static moduledata_t vmm_kmod = { "vmm", vmm_handler, NULL }; /* * vmm initialization has the following dependencies: * * - VT-x initialization requires smp_rendezvous() and therefore must happen * after SMP is fully functional (after SI_SUB_SMP). */ DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); MODULE_VERSION(vmm, 1); static void vm_init(struct vm *vm, bool create) { int i; vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); vm->iommu = NULL; vm->vioapic = vioapic_init(vm); vm->vhpet = vhpet_init(vm); vm->vatpic = vatpic_init(vm); vm->vatpit = vatpit_init(vm); vm->vpmtmr = vpmtmr_init(vm); if (create) vm->vrtc = vrtc_init(vm); CPU_ZERO(&vm->active_cpus); CPU_ZERO(&vm->debug_cpus); vm->suspend = 0; CPU_ZERO(&vm->suspended_cpus); for (i = 0; i < vm->maxcpus; i++) vcpu_init(vm, i, create); } /* * The default CPU topology is a single thread per package. */ u_int cores_per_package = 1; u_int threads_per_core = 1; int vm_create(const char *name, struct vm **retvm) { struct vm *vm; struct vmspace *vmspace; /* * If vmm.ko could not be successfully initialized then don't attempt * to create the virtual machine. */ if (!vmm_initialized) return (ENXIO); if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) return (EINVAL); vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); if (vmspace == NULL) return (ENOMEM); vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); strcpy(vm->name, name); vm->vmspace = vmspace; mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); vm->sockets = 1; vm->cores = cores_per_package; /* XXX backwards compatibility */ vm->threads = threads_per_core; /* XXX backwards compatibility */ vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ vm_init(vm, true); *retvm = vm; return (0); } void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) { *sockets = vm->sockets; *cores = vm->cores; *threads = vm->threads; *maxcpus = vm->maxcpus; } uint16_t vm_get_maxcpus(struct vm *vm) { return (vm->maxcpus); } int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) { if (maxcpus != 0) return (EINVAL); /* XXX remove when supported */ if ((sockets * cores * threads) > vm->maxcpus) return (EINVAL); /* XXX need to check sockets * cores * threads == vCPU, how? */ vm->sockets = sockets; vm->cores = cores; vm->threads = threads; vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ return(0); } static void vm_cleanup(struct vm *vm, bool destroy) { struct mem_map *mm; int i; ppt_unassign_all(vm); if (vm->iommu != NULL) iommu_destroy_domain(vm->iommu); if (destroy) vrtc_cleanup(vm->vrtc); else vrtc_reset(vm->vrtc); vpmtmr_cleanup(vm->vpmtmr); vatpit_cleanup(vm->vatpit); vhpet_cleanup(vm->vhpet); vatpic_cleanup(vm->vatpic); vioapic_cleanup(vm->vioapic); for (i = 0; i < vm->maxcpus; i++) vcpu_cleanup(vm, i, destroy); VMCLEANUP(vm->cookie); /* * System memory is removed from the guest address space only when * the VM is destroyed. This is because the mapping remains the same * across VM reset. * * Device memory can be relocated by the guest (e.g. using PCI BARs) * so those mappings are removed on a VM reset. */ for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (destroy || !sysmem_mapping(vm, mm)) vm_free_memmap(vm, i); } if (destroy) { for (i = 0; i < VM_MAX_MEMSEGS; i++) vm_free_memseg(vm, i); VMSPACE_FREE(vm->vmspace); vm->vmspace = NULL; } } void vm_destroy(struct vm *vm) { vm_cleanup(vm, true); free(vm, M_VM); } int vm_reinit(struct vm *vm) { int error; /* * A virtual machine can be reset only if all vcpus are suspended. */ if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { vm_cleanup(vm, false); vm_init(vm, false); error = 0; } else { error = EBUSY; } return (error); } const char * vm_name(struct vm *vm) { return (vm->name); } int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) { vm_object_t obj; if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) return (ENOMEM); else return (0); } int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) { vmm_mmio_free(vm->vmspace, gpa, len); return (0); } /* * Return 'true' if 'gpa' is allocated in the guest address space. * * This function is called in the context of a running vcpu which acts as * an implicit lock on 'vm->mem_maps[]'. */ bool vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) { struct mem_map *mm; int i; #ifdef INVARIANTS int hostcpu, state; state = vcpu_get_state(vm, vcpuid, &hostcpu); KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); #endif for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) return (true); /* 'gpa' is sysmem or devmem */ } if (ppt_is_mmio(vm, gpa)) return (true); /* 'gpa' is pci passthru mmio */ return (false); } int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) { struct mem_seg *seg; vm_object_t obj; if (ident < 0 || ident >= VM_MAX_MEMSEGS) return (EINVAL); if (len == 0 || (len & PAGE_MASK)) return (EINVAL); seg = &vm->mem_segs[ident]; if (seg->object != NULL) { if (seg->len == len && seg->sysmem == sysmem) return (EEXIST); else return (EINVAL); } obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); if (obj == NULL) return (ENOMEM); seg->len = len; seg->object = obj; seg->sysmem = sysmem; return (0); } int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, vm_object_t *objptr) { struct mem_seg *seg; if (ident < 0 || ident >= VM_MAX_MEMSEGS) return (EINVAL); seg = &vm->mem_segs[ident]; if (len) *len = seg->len; if (sysmem) *sysmem = seg->sysmem; if (objptr) *objptr = seg->object; return (0); } void vm_free_memseg(struct vm *vm, int ident) { struct mem_seg *seg; KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, ("%s: invalid memseg ident %d", __func__, ident)); seg = &vm->mem_segs[ident]; if (seg->object != NULL) { vm_object_deallocate(seg->object); bzero(seg, sizeof(struct mem_seg)); } } int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, size_t len, int prot, int flags) { struct mem_seg *seg; struct mem_map *m, *map; vm_ooffset_t last; int i, error; if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) return (EINVAL); if (flags & ~VM_MEMMAP_F_WIRED) return (EINVAL); if (segid < 0 || segid >= VM_MAX_MEMSEGS) return (EINVAL); seg = &vm->mem_segs[segid]; if (seg->object == NULL) return (EINVAL); last = first + len; if (first < 0 || first >= last || last > seg->len) return (EINVAL); if ((gpa | first | last) & PAGE_MASK) return (EINVAL); map = NULL; for (i = 0; i < VM_MAX_MEMMAPS; i++) { m = &vm->mem_maps[i]; if (m->len == 0) { map = m; break; } } if (map == NULL) return (ENOSPC); error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, len, 0, VMFS_NO_SPACE, prot, prot, 0); if (error != KERN_SUCCESS) return (EFAULT); vm_object_reference(seg->object); if (flags & VM_MEMMAP_F_WIRED) { error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); if (error != KERN_SUCCESS) { vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); return (EFAULT); } } map->gpa = gpa; map->len = len; map->segoff = first; map->segid = segid; map->prot = prot; map->flags = flags; return (0); } int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) { struct mem_map *mm, *mmnext; int i; mmnext = NULL; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (mm->len == 0 || mm->gpa < *gpa) continue; if (mmnext == NULL || mm->gpa < mmnext->gpa) mmnext = mm; } if (mmnext != NULL) { *gpa = mmnext->gpa; if (segid) *segid = mmnext->segid; if (segoff) *segoff = mmnext->segoff; if (len) *len = mmnext->len; if (prot) *prot = mmnext->prot; if (flags) *flags = mmnext->flags; return (0); } else { return (ENOENT); } } static void vm_free_memmap(struct vm *vm, int ident) { struct mem_map *mm; int error; mm = &vm->mem_maps[ident]; if (mm->len) { error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, mm->gpa + mm->len); KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", __func__, error)); bzero(mm, sizeof(struct mem_map)); } } static __inline bool sysmem_mapping(struct vm *vm, struct mem_map *mm) { if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) return (true); else return (false); } vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm) { struct mem_map *mm; vm_paddr_t maxaddr; int i; maxaddr = 0; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (sysmem_mapping(vm, mm)) { if (maxaddr < mm->gpa + mm->len) maxaddr = mm->gpa + mm->len; } } return (maxaddr); } static void vm_iommu_modify(struct vm *vm, bool map) { int i, sz; vm_paddr_t gpa, hpa; struct mem_map *mm; void *vp, *cookie, *host_domain; sz = PAGE_SIZE; host_domain = iommu_host_domain(); for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (!sysmem_mapping(vm, mm)) continue; if (map) { KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, ("iommu map found invalid memmap %#lx/%#lx/%#x", mm->gpa, mm->len, mm->flags)); if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) continue; mm->flags |= VM_MEMMAP_F_IOMMU; } else { if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) continue; mm->flags &= ~VM_MEMMAP_F_IOMMU; KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, ("iommu unmap found invalid memmap %#lx/%#lx/%#x", mm->gpa, mm->len, mm->flags)); } gpa = mm->gpa; while (gpa < mm->gpa + mm->len) { vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, &cookie); KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", vm_name(vm), gpa)); vm_gpa_release(cookie); hpa = DMAP_TO_PHYS((uintptr_t)vp); if (map) { iommu_create_mapping(vm->iommu, gpa, hpa, sz); iommu_remove_mapping(host_domain, hpa, sz); } else { iommu_remove_mapping(vm->iommu, gpa, sz); iommu_create_mapping(host_domain, hpa, hpa, sz); } gpa += PAGE_SIZE; } } /* * Invalidate the cached translations associated with the domain * from which pages were removed. */ if (map) iommu_invalidate_tlb(host_domain); else iommu_invalidate_tlb(vm->iommu); } #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) #define vm_iommu_map(vm) vm_iommu_modify((vm), true) int vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) { int error; error = ppt_unassign_device(vm, bus, slot, func); if (error) return (error); if (ppt_assigned_devices(vm) == 0) vm_iommu_unmap(vm); return (0); } int vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) { int error; vm_paddr_t maxaddr; /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ if (ppt_assigned_devices(vm) == 0) { KASSERT(vm->iommu == NULL, ("vm_assign_pptdev: iommu must be NULL")); maxaddr = vmm_sysmem_maxaddr(vm); vm->iommu = iommu_create_domain(maxaddr); if (vm->iommu == NULL) return (ENXIO); vm_iommu_map(vm); } error = ppt_assign_device(vm, bus, slot, func); return (error); } void * vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, void **cookie) { int i, count, pageoff; struct mem_map *mm; vm_page_t m; #ifdef INVARIANTS /* * All vcpus are frozen by ioctls that modify the memory map * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is * guaranteed if at least one vcpu is in the VCPU_FROZEN state. */ int state; KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", __func__, vcpuid)); for (i = 0; i < vm->maxcpus; i++) { if (vcpuid != -1 && vcpuid != i) continue; state = vcpu_get_state(vm, i, NULL); KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", __func__, state)); } #endif pageoff = gpa & PAGE_MASK; if (len > PAGE_SIZE - pageoff) panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); count = 0; for (i = 0; i < VM_MAX_MEMMAPS; i++) { mm = &vm->mem_maps[i]; if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && gpa < mm->gpa + mm->len) { count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); break; } } if (count == 1) { *cookie = m; return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); } else { *cookie = NULL; return (NULL); } } void vm_gpa_release(void *cookie) { vm_page_t m = cookie; vm_page_lock(m); vm_page_unhold(m); vm_page_unlock(m); } int vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (reg >= VM_REG_LAST) return (EINVAL); return (VMGETREG(vm->cookie, vcpu, reg, retval)); } int vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) { struct vcpu *vcpu; int error; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (reg >= VM_REG_LAST) return (EINVAL); error = VMSETREG(vm->cookie, vcpuid, reg, val); if (error || reg != VM_REG_GUEST_RIP) return (error); /* Set 'nextrip' to match the value of %rip */ VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); vcpu = &vm->vcpu[vcpuid]; vcpu->nextrip = val; return (0); } static bool is_descriptor_table(int reg) { switch (reg) { case VM_REG_GUEST_IDTR: case VM_REG_GUEST_GDTR: return (true); default: return (false); } } static bool is_segment_register(int reg) { switch (reg) { case VM_REG_GUEST_ES: case VM_REG_GUEST_CS: case VM_REG_GUEST_SS: case VM_REG_GUEST_DS: case VM_REG_GUEST_FS: case VM_REG_GUEST_GS: case VM_REG_GUEST_TR: case VM_REG_GUEST_LDTR: return (true); default: return (false); } } int vm_get_seg_desc(struct vm *vm, int vcpu, int reg, struct seg_desc *desc) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (!is_segment_register(reg) && !is_descriptor_table(reg)) return (EINVAL); return (VMGETDESC(vm->cookie, vcpu, reg, desc)); } int vm_set_seg_desc(struct vm *vm, int vcpu, int reg, struct seg_desc *desc) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (!is_segment_register(reg) && !is_descriptor_table(reg)) return (EINVAL); return (VMSETDESC(vm->cookie, vcpu, reg, desc)); } static void restore_guest_fpustate(struct vcpu *vcpu) { /* flush host state to the pcb */ fpuexit(curthread); /* restore guest FPU state */ fpu_stop_emulating(); fpurestore(vcpu->guestfpu); /* restore guest XCR0 if XSAVE is enabled in the host */ if (rcr4() & CR4_XSAVE) load_xcr(0, vcpu->guest_xcr0); /* * The FPU is now "dirty" with the guest's state so turn on emulation * to trap any access to the FPU by the host. */ fpu_start_emulating(); } static void save_guest_fpustate(struct vcpu *vcpu) { if ((rcr0() & CR0_TS) == 0) panic("fpu emulation not enabled in host!"); /* save guest XCR0 and restore host XCR0 */ if (rcr4() & CR4_XSAVE) { vcpu->guest_xcr0 = rxcr(0); load_xcr(0, vmm_get_host_xcr0()); } /* save guest FPU state */ fpu_stop_emulating(); fpusave(vcpu->guestfpu); fpu_start_emulating(); } static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); static int vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, bool from_idle) { struct vcpu *vcpu; int error; vcpu = &vm->vcpu[vcpuid]; vcpu_assert_locked(vcpu); /* * State transitions from the vmmdev_ioctl() must always begin from * the VCPU_IDLE state. This guarantees that there is only a single * ioctl() operating on a vcpu at any point. */ if (from_idle) { while (vcpu->state != VCPU_IDLE) { vcpu->reqidle = 1; vcpu_notify_event_locked(vcpu, false); VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " "idle requested", vcpu_state2str(vcpu->state)); msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); } } else { KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " "vcpu idle state")); } if (vcpu->state == VCPU_RUNNING) { KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " "mismatch for running vcpu", curcpu, vcpu->hostcpu)); } else { KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " "vcpu that is not running", vcpu->hostcpu)); } /* * The following state transitions are allowed: * IDLE -> FROZEN -> IDLE * FROZEN -> RUNNING -> FROZEN * FROZEN -> SLEEPING -> FROZEN */ switch (vcpu->state) { case VCPU_IDLE: case VCPU_RUNNING: case VCPU_SLEEPING: error = (newstate != VCPU_FROZEN); break; case VCPU_FROZEN: error = (newstate == VCPU_FROZEN); break; default: error = 1; break; } if (error) return (EBUSY); VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); vcpu->state = newstate; if (newstate == VCPU_RUNNING) vcpu->hostcpu = curcpu; else vcpu->hostcpu = NOCPU; if (newstate == VCPU_IDLE) wakeup(&vcpu->state); return (0); } static void vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) { int error; if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) panic("Error %d setting state to %d\n", error, newstate); } static void vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) { int error; if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) panic("Error %d setting state to %d", error, newstate); } #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ do { \ if (vcpuid >= 0) \ VCPU_CTR0(vm, vcpuid, fmt); \ else \ VM_CTR0(vm, fmt); \ } while (0) static int vm_handle_rendezvous(struct vm *vm, int vcpuid) { struct thread *td; int error; KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); error = 0; td = curthread; mtx_lock(&vm->rendezvous_mtx); while (vm->rendezvous_func != NULL) { /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); if (vcpuid != -1 && CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); CPU_SET(vcpuid, &vm->rendezvous_done_cpus); } if (CPU_CMP(&vm->rendezvous_req_cpus, &vm->rendezvous_done_cpus) == 0) { VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); vm->rendezvous_func = NULL; wakeup(&vm->rendezvous_func); break; } RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, "vmrndv", hz); if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { mtx_unlock(&vm->rendezvous_mtx); error = thread_check_susp(td, true); if (error != 0) return (error); mtx_lock(&vm->rendezvous_mtx); } } mtx_unlock(&vm->rendezvous_mtx); return (0); } /* * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. */ static int vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) { struct vcpu *vcpu; const char *wmesg; struct thread *td; int error, t, vcpu_halted, vm_halted; KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); vcpu = &vm->vcpu[vcpuid]; vcpu_halted = 0; vm_halted = 0; error = 0; td = curthread; vcpu_lock(vcpu); while (1) { /* * Do a final check for pending NMI or interrupts before * really putting this thread to sleep. Also check for * software events that would cause this vcpu to wakeup. * * These interrupts/events could have happened after the * vcpu returned from VMRUN() and before it acquired the * vcpu lock above. */ if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) break; if (vm_nmi_pending(vm, vcpuid)) break; if (!intr_disabled) { if (vm_extint_pending(vm, vcpuid) || vlapic_pending_intr(vcpu->vlapic, NULL)) { break; } } /* Don't go to sleep if the vcpu thread needs to yield */ if (vcpu_should_yield(vm, vcpuid)) break; if (vcpu_debugged(vm, vcpuid)) break; /* * Some Linux guests implement "halt" by having all vcpus * execute HLT with interrupts disabled. 'halted_cpus' keeps * track of the vcpus that have entered this state. When all * vcpus enter the halted state the virtual machine is halted. */ if (intr_disabled) { wmesg = "vmhalt"; VCPU_CTR0(vm, vcpuid, "Halted"); if (!vcpu_halted && halt_detection_enabled) { vcpu_halted = 1; CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); } if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { vm_halted = 1; break; } } else { wmesg = "vmidle"; } t = ticks; vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); /* * XXX msleep_spin() cannot be interrupted by signals so * wake up periodically to check pending signals. */ msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { vcpu_unlock(vcpu); error = thread_check_susp(td, false); if (error != 0) return (error); vcpu_lock(vcpu); } } if (vcpu_halted) CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); vcpu_unlock(vcpu); if (vm_halted) vm_suspend(vm, VM_SUSPEND_HALT); return (0); } static int vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) { int rv, ftype; struct vm_map *map; struct vcpu *vcpu; struct vm_exit *vme; vcpu = &vm->vcpu[vcpuid]; vme = &vcpu->exitinfo; KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", __func__, vme->inst_length)); ftype = vme->u.paging.fault_type; KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, ("vm_handle_paging: invalid fault_type %d", ftype)); if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), vme->u.paging.gpa, ftype); if (rv == 0) { VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", ftype == VM_PROT_READ ? "accessed" : "dirty", vme->u.paging.gpa); goto done; } } map = &vm->vmspace->vm_map; rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " "ftype = %d", rv, vme->u.paging.gpa, ftype); if (rv != KERN_SUCCESS) return (EFAULT); done: return (0); } static int vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) { struct vie *vie; struct vcpu *vcpu; struct vm_exit *vme; uint64_t gla, gpa, cs_base; struct vm_guest_paging *paging; mem_region_read_t mread; mem_region_write_t mwrite; enum vm_cpu_mode cpu_mode; int cs_d, error, fault; vcpu = &vm->vcpu[vcpuid]; vme = &vcpu->exitinfo; KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", __func__, vme->inst_length)); gla = vme->u.inst_emul.gla; gpa = vme->u.inst_emul.gpa; cs_base = vme->u.inst_emul.cs_base; cs_d = vme->u.inst_emul.cs_d; vie = &vme->u.inst_emul.vie; paging = &vme->u.inst_emul.paging; cpu_mode = paging->cpu_mode; VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); /* Fetch, decode and emulate the faulting instruction */ if (vie->num_valid == 0) { error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + cs_base, VIE_INST_SIZE, vie, &fault); } else { /* * The instruction bytes have already been copied into 'vie' */ error = fault = 0; } if (error || fault) return (error); if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", vme->rip + cs_base); *retu = true; /* dump instruction bytes in userspace */ return (0); } /* * Update 'nextrip' based on the length of the emulated instruction. */ vme->inst_length = vie->num_processed; vcpu->nextrip += vie->num_processed; VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " "decoding", vcpu->nextrip); /* return to userland unless this is an in-kernel emulated device */ if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { mread = lapic_mmio_read; mwrite = lapic_mmio_write; } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { mread = vioapic_mmio_read; mwrite = vioapic_mmio_write; } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { mread = vhpet_mmio_read; mwrite = vhpet_mmio_write; } else { *retu = true; return (0); } error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, mread, mwrite, retu); return (error); } static int vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) { int error, i; struct vcpu *vcpu; struct thread *td; error = 0; vcpu = &vm->vcpu[vcpuid]; td = curthread; CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); /* * Wait until all 'active_cpus' have suspended themselves. * * Since a VM may be suspended at any time including when one or * more vcpus are doing a rendezvous we need to call the rendezvous * handler while we are waiting to prevent a deadlock. */ vcpu_lock(vcpu); while (error == 0) { if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); break; } if (vm->rendezvous_func == NULL) { VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { vcpu_unlock(vcpu); error = thread_check_susp(td, false); vcpu_lock(vcpu); } } else { VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); vcpu_unlock(vcpu); error = vm_handle_rendezvous(vm, vcpuid); vcpu_lock(vcpu); } } vcpu_unlock(vcpu); /* * Wakeup the other sleeping vcpus and return to userspace. */ for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &vm->suspended_cpus)) { vcpu_notify_event(vm, i, false); } } *retu = true; return (error); } static int vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); vcpu->reqidle = 0; vcpu_unlock(vcpu); *retu = true; return (0); } int vm_suspend(struct vm *vm, enum vm_suspend_how how) { int i; if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) return (EINVAL); if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { VM_CTR2(vm, "virtual machine already suspended %d/%d", vm->suspend, how); return (EALREADY); } VM_CTR1(vm, "virtual machine successfully suspended %d", how); /* * Notify all active vcpus that they are now suspended. */ for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &vm->active_cpus)) vcpu_notify_event(vm, i, false); } return (0); } void vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) { struct vm_exit *vmexit; KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); vmexit = vm_exitinfo(vm, vcpuid); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_SUSPENDED; vmexit->u.suspended.how = vm->suspend; } void vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vm, vcpuid); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_DEBUG; } void vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) { struct vm_exit *vmexit; KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); vmexit = vm_exitinfo(vm, vcpuid); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); } void vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vm, vcpuid); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_REQIDLE; vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); } void vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) { struct vm_exit *vmexit; vmexit = vm_exitinfo(vm, vcpuid); vmexit->rip = rip; vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_BOGUS; vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); } int vm_run(struct vm *vm, struct vm_run *vmrun) { struct vm_eventinfo evinfo; int error, vcpuid; struct vcpu *vcpu; struct pcb *pcb; uint64_t tscval; struct vm_exit *vme; bool retu, intr_disabled; pmap_t pmap; vcpuid = vmrun->cpuid; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (!CPU_ISSET(vcpuid, &vm->active_cpus)) return (EINVAL); if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) return (EINVAL); pmap = vmspace_pmap(vm->vmspace); vcpu = &vm->vcpu[vcpuid]; vme = &vcpu->exitinfo; evinfo.rptr = &vm->rendezvous_func; evinfo.sptr = &vm->suspend; evinfo.iptr = &vcpu->reqidle; restart: critical_enter(); KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), ("vm_run: absurd pm_active")); tscval = rdtsc(); pcb = PCPU_GET(curpcb); set_pcb_flags(pcb, PCB_FULL_IRET); restore_guest_fpustate(vcpu); vcpu_require_state(vm, vcpuid, VCPU_RUNNING); error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); vcpu_require_state(vm, vcpuid, VCPU_FROZEN); save_guest_fpustate(vcpu); vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); critical_exit(); if (error == 0) { retu = false; vcpu->nextrip = vme->rip + vme->inst_length; switch (vme->exitcode) { case VM_EXITCODE_REQIDLE: error = vm_handle_reqidle(vm, vcpuid, &retu); break; case VM_EXITCODE_SUSPENDED: error = vm_handle_suspend(vm, vcpuid, &retu); break; case VM_EXITCODE_IOAPIC_EOI: vioapic_process_eoi(vm, vcpuid, vme->u.ioapic_eoi.vector); break; case VM_EXITCODE_RENDEZVOUS: error = vm_handle_rendezvous(vm, vcpuid); break; case VM_EXITCODE_HLT: intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); break; case VM_EXITCODE_PAGING: error = vm_handle_paging(vm, vcpuid, &retu); break; case VM_EXITCODE_INST_EMUL: error = vm_handle_inst_emul(vm, vcpuid, &retu); break; case VM_EXITCODE_INOUT: case VM_EXITCODE_INOUT_STR: error = vm_handle_inout(vm, vcpuid, vme, &retu); break; case VM_EXITCODE_MONITOR: case VM_EXITCODE_MWAIT: case VM_EXITCODE_VMINSN: vm_inject_ud(vm, vcpuid); break; default: retu = true; /* handled in userland */ break; } } if (error == 0 && retu == false) goto restart; VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); /* copy the exit information */ bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); return (error); } int vm_restart_instruction(void *arg, int vcpuid) { struct vm *vm; struct vcpu *vcpu; enum vcpu_state state; uint64_t rip; int error; vm = arg; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; state = vcpu_get_state(vm, vcpuid, NULL); if (state == VCPU_RUNNING) { /* * When a vcpu is "running" the next instruction is determined * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. * Thus setting 'inst_length' to zero will cause the current * instruction to be restarted. */ vcpu->exitinfo.inst_length = 0; VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " "setting inst_length to zero", vcpu->exitinfo.rip); } else if (state == VCPU_FROZEN) { /* * When a vcpu is "frozen" it is outside the critical section * around VMRUN() and 'nextrip' points to the next instruction. * Thus instruction restart is achieved by setting 'nextrip' * to the vcpu's %rip. */ error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); KASSERT(!error, ("%s: error %d getting rip", __func__, error)); VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " "nextrip from %#lx to %#lx", vcpu->nextrip, rip); vcpu->nextrip = rip; } else { panic("%s: invalid state %d", __func__, state); } return (0); } int vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) { struct vcpu *vcpu; int type, vector; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; if (info & VM_INTINFO_VALID) { type = info & VM_INTINFO_TYPE; vector = info & 0xff; if (type == VM_INTINFO_NMI && vector != IDT_NMI) return (EINVAL); if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) return (EINVAL); if (info & VM_INTINFO_RSVD) return (EINVAL); } else { info = 0; } VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); vcpu->exitintinfo = info; return (0); } enum exc_class { EXC_BENIGN, EXC_CONTRIBUTORY, EXC_PAGEFAULT }; #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ static enum exc_class exception_class(uint64_t info) { int type, vector; KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); type = info & VM_INTINFO_TYPE; vector = info & 0xff; /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ switch (type) { case VM_INTINFO_HWINTR: case VM_INTINFO_SWINTR: case VM_INTINFO_NMI: return (EXC_BENIGN); default: /* * Hardware exception. * * SVM and VT-x use identical type values to represent NMI, * hardware interrupt and software interrupt. * * SVM uses type '3' for all exceptions. VT-x uses type '3' * for exceptions except #BP and #OF. #BP and #OF use a type * value of '5' or '6'. Therefore we don't check for explicit * values of 'type' to classify 'intinfo' into a hardware * exception. */ break; } switch (vector) { case IDT_PF: case IDT_VE: return (EXC_PAGEFAULT); case IDT_DE: case IDT_TS: case IDT_NP: case IDT_SS: case IDT_GP: return (EXC_CONTRIBUTORY); default: return (EXC_BENIGN); } } static int nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, uint64_t *retinfo) { enum exc_class exc1, exc2; int type1, vector1; KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); /* * If an exception occurs while attempting to call the double-fault * handler the processor enters shutdown mode (aka triple fault). */ type1 = info1 & VM_INTINFO_TYPE; vector1 = info1 & 0xff; if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", info1, info2); vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); *retinfo = 0; return (0); } /* * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 */ exc1 = exception_class(info1); exc2 = exception_class(info2); if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { /* Convert nested fault into a double fault. */ *retinfo = IDT_DF; *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; *retinfo |= VM_INTINFO_DEL_ERRCODE; } else { /* Handle exceptions serially */ *retinfo = info2; } return (1); } static uint64_t vcpu_exception_intinfo(struct vcpu *vcpu) { uint64_t info = 0; if (vcpu->exception_pending) { info = vcpu->exc_vector & 0xff; info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; if (vcpu->exc_errcode_valid) { info |= VM_INTINFO_DEL_ERRCODE; info |= (uint64_t)vcpu->exc_errcode << 32; } } return (info); } int vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) { struct vcpu *vcpu; uint64_t info1, info2; int valid; KASSERT(vcpuid >= 0 && vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); vcpu = &vm->vcpu[vcpuid]; info1 = vcpu->exitintinfo; vcpu->exitintinfo = 0; info2 = 0; if (vcpu->exception_pending) { info2 = vcpu_exception_intinfo(vcpu); vcpu->exception_pending = 0; VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", vcpu->exc_vector, info2); } if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { valid = nested_fault(vm, vcpuid, info1, info2, retinfo); } else if (info1 & VM_INTINFO_VALID) { *retinfo = info1; valid = 1; } else if (info2 & VM_INTINFO_VALID) { *retinfo = info2; valid = 1; } else { valid = 0; } if (valid) { VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " "retinfo(%#lx)", __func__, info1, info2, *retinfo); } return (valid); } int vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; *info1 = vcpu->exitintinfo; *info2 = vcpu_exception_intinfo(vcpu); return (0); } int vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, uint32_t errcode, int restart_instruction) { struct vcpu *vcpu; uint64_t regval; int error; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (vector < 0 || vector >= 32) return (EINVAL); /* * A double fault exception should never be injected directly into * the guest. It is a derived exception that results from specific * combinations of nested faults. */ if (vector == IDT_DF) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; if (vcpu->exception_pending) { VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " "pending exception %d", vector, vcpu->exc_vector); return (EBUSY); } if (errcode_valid) { /* * Exceptions don't deliver an error code in real mode. */ error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); if (!(regval & CR0_PE)) errcode_valid = 0; } /* * From section 26.6.1 "Interruptibility State" in Intel SDM: * * Event blocking by "STI" or "MOV SS" is cleared after guest executes * one instruction or incurs an exception. */ error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", __func__, error)); if (restart_instruction) vm_restart_instruction(vm, vcpuid); vcpu->exception_pending = 1; vcpu->exc_vector = vector; vcpu->exc_errcode = errcode; vcpu->exc_errcode_valid = errcode_valid; VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); return (0); } void vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, int errcode) { struct vm *vm; int error, restart_instruction; vm = vmarg; restart_instruction = 1; error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, errcode, restart_instruction); KASSERT(error == 0, ("vm_inject_exception error %d", error)); } void vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) { struct vm *vm; int error; vm = vmarg; VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", error_code, cr2); error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); } static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); int vm_inject_nmi(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; vcpu->nmi_pending = 1; vcpu_notify_event(vm, vcpuid, false); return (0); } int vm_nmi_pending(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; return (vcpu->nmi_pending); } void vm_nmi_clear(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; if (vcpu->nmi_pending == 0) panic("vm_nmi_clear: inconsistent nmi_pending state"); vcpu->nmi_pending = 0; vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); } static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); int vm_inject_extint(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); vcpu = &vm->vcpu[vcpuid]; vcpu->extint_pending = 1; vcpu_notify_event(vm, vcpuid, false); return (0); } int vm_extint_pending(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vm_extint_pending: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; return (vcpu->extint_pending); } void vm_extint_clear(struct vm *vm, int vcpuid) { struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vm_extint_pending: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; if (vcpu->extint_pending == 0) panic("vm_extint_clear: inconsistent extint_pending state"); vcpu->extint_pending = 0; vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); } int vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (type < 0 || type >= VM_CAP_MAX) return (EINVAL); return (VMGETCAP(vm->cookie, vcpu, type, retval)); } int vm_set_capability(struct vm *vm, int vcpu, int type, int val) { if (vcpu < 0 || vcpu >= vm->maxcpus) return (EINVAL); if (type < 0 || type >= VM_CAP_MAX) return (EINVAL); return (VMSETCAP(vm->cookie, vcpu, type, val)); } struct vlapic * vm_lapic(struct vm *vm, int cpu) { return (vm->vcpu[cpu].vlapic); } struct vioapic * vm_ioapic(struct vm *vm) { return (vm->vioapic); } struct vhpet * vm_hpet(struct vm *vm) { return (vm->vhpet); } bool vmm_is_pptdev(int bus, int slot, int func) { int b, f, i, n, s; char *val, *cp, *cp2; bool found; /* * XXX * The length of an environment variable is limited to 128 bytes which * puts an upper limit on the number of passthru devices that may be * specified using a single environment variable. * * Work around this by scanning multiple environment variable * names instead of a single one - yuck! */ const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ found = false; for (i = 0; names[i] != NULL && !found; i++) { cp = val = kern_getenv(names[i]); while (cp != NULL && *cp != '\0') { if ((cp2 = strchr(cp, ' ')) != NULL) *cp2 = '\0'; n = sscanf(cp, "%d/%d/%d", &b, &s, &f); if (n == 3 && bus == b && slot == s && func == f) { found = true; break; } if (cp2 != NULL) *cp2++ = ' '; cp = cp2; } freeenv(val); } return (found); } void * vm_iommu_domain(struct vm *vm) { return (vm->iommu); } int vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, bool from_idle) { int error; struct vcpu *vcpu; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vm_set_run_state: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); vcpu_unlock(vcpu); return (error); } enum vcpu_state vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) { struct vcpu *vcpu; enum vcpu_state state; if (vcpuid < 0 || vcpuid >= vm->maxcpus) panic("vm_get_run_state: invalid vcpuid %d", vcpuid); vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); state = vcpu->state; if (hostcpu != NULL) *hostcpu = vcpu->hostcpu; vcpu_unlock(vcpu); return (state); } int vm_activate_cpu(struct vm *vm, int vcpuid) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (CPU_ISSET(vcpuid, &vm->active_cpus)) return (EBUSY); VCPU_CTR0(vm, vcpuid, "activated"); CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); return (0); } int vm_suspend_cpu(struct vm *vm, int vcpuid) { int i; if (vcpuid < -1 || vcpuid >= vm->maxcpus) return (EINVAL); if (vcpuid == -1) { vm->debug_cpus = vm->active_cpus; for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &vm->active_cpus)) vcpu_notify_event(vm, i, false); } } else { if (!CPU_ISSET(vcpuid, &vm->active_cpus)) return (EINVAL); CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); vcpu_notify_event(vm, vcpuid, false); } return (0); } int vm_resume_cpu(struct vm *vm, int vcpuid) { if (vcpuid < -1 || vcpuid >= vm->maxcpus) return (EINVAL); if (vcpuid == -1) { CPU_ZERO(&vm->debug_cpus); } else { if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) return (EINVAL); CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); } return (0); } int vcpu_debugged(struct vm *vm, int vcpuid) { return (CPU_ISSET(vcpuid, &vm->debug_cpus)); } cpuset_t vm_active_cpus(struct vm *vm) { return (vm->active_cpus); } cpuset_t vm_debug_cpus(struct vm *vm) { return (vm->debug_cpus); } cpuset_t vm_suspended_cpus(struct vm *vm) { return (vm->suspended_cpus); } void * vcpu_stats(struct vm *vm, int vcpuid) { return (vm->vcpu[vcpuid].stats); } int vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); *state = vm->vcpu[vcpuid].x2apic_state; return (0); } int vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) { if (vcpuid < 0 || vcpuid >= vm->maxcpus) return (EINVAL); if (state >= X2APIC_STATE_LAST) return (EINVAL); vm->vcpu[vcpuid].x2apic_state = state; vlapic_set_x2apic_state(vm, vcpuid, state); return (0); } /* * This function is called to ensure that a vcpu "sees" a pending event * as soon as possible: * - If the vcpu thread is sleeping then it is woken up. * - If the vcpu is running on a different host_cpu then an IPI will be directed * to the host_cpu to cause the vcpu to trap into the hypervisor. */ static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) { int hostcpu; hostcpu = vcpu->hostcpu; if (vcpu->state == VCPU_RUNNING) { KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); if (hostcpu != curcpu) { if (lapic_intr) { vlapic_post_intr(vcpu->vlapic, hostcpu, vmm_ipinum); } else { ipi_cpu(hostcpu, vmm_ipinum); } } else { /* * If the 'vcpu' is running on 'curcpu' then it must * be sending a notification to itself (e.g. SELF_IPI). * The pending event will be picked up when the vcpu * transitions back to guest context. */ } } else { KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " "with hostcpu %d", vcpu->state, hostcpu)); if (vcpu->state == VCPU_SLEEPING) wakeup_one(vcpu); } } void vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) { struct vcpu *vcpu = &vm->vcpu[vcpuid]; vcpu_lock(vcpu); vcpu_notify_event_locked(vcpu, lapic_intr); vcpu_unlock(vcpu); } struct vmspace * vm_get_vmspace(struct vm *vm) { return (vm->vmspace); } int vm_apicid2vcpuid(struct vm *vm, int apicid) { /* * XXX apic id is assumed to be numerically identical to vcpu id */ return (apicid); } int vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, vm_rendezvous_func_t func, void *arg) { int error, i; /* * Enforce that this function is called without any locks */ WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); restart: mtx_lock(&vm->rendezvous_mtx); if (vm->rendezvous_func != NULL) { /* * If a rendezvous is already in progress then we need to * call the rendezvous handler in case this 'vcpuid' is one * of the targets of the rendezvous. */ RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); mtx_unlock(&vm->rendezvous_mtx); error = vm_handle_rendezvous(vm, vcpuid); if (error != 0) return (error); goto restart; } KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " "rendezvous is still in progress")); RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); vm->rendezvous_req_cpus = dest; CPU_ZERO(&vm->rendezvous_done_cpus); vm->rendezvous_arg = arg; vm->rendezvous_func = func; mtx_unlock(&vm->rendezvous_mtx); /* * Wake up any sleeping vcpus and trigger a VM-exit in any running * vcpus so they handle the rendezvous as soon as possible. */ for (i = 0; i < vm->maxcpus; i++) { if (CPU_ISSET(i, &dest)) vcpu_notify_event(vm, i, false); } return (vm_handle_rendezvous(vm, vcpuid)); } struct vatpic * vm_atpic(struct vm *vm) { return (vm->vatpic); } struct vatpit * vm_atpit(struct vm *vm) { return (vm->vatpit); } struct vpmtmr * vm_pmtmr(struct vm *vm) { return (vm->vpmtmr); } struct vrtc * vm_rtc(struct vm *vm) { return (vm->vrtc); } enum vm_reg_name vm_segment_name(int seg) { static enum vm_reg_name seg_names[] = { VM_REG_GUEST_ES, VM_REG_GUEST_CS, VM_REG_GUEST_SS, VM_REG_GUEST_DS, VM_REG_GUEST_FS, VM_REG_GUEST_GS }; KASSERT(seg >= 0 && seg < nitems(seg_names), ("%s: invalid segment encoding %d", __func__, seg)); return (seg_names[seg]); } void vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, int num_copyinfo) { int idx; for (idx = 0; idx < num_copyinfo; idx++) { if (copyinfo[idx].cookie != NULL) vm_gpa_release(copyinfo[idx].cookie); } bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); } int vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, int num_copyinfo, int *fault) { int error, idx, nused; size_t n, off, remaining; void *hva, *cookie; uint64_t gpa; bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); nused = 0; remaining = len; while (remaining > 0) { KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); if (error || *fault) return (error); off = gpa & PAGE_MASK; n = min(remaining, PAGE_SIZE - off); copyinfo[nused].gpa = gpa; copyinfo[nused].len = n; remaining -= n; gla += n; nused++; } for (idx = 0; idx < nused; idx++) { hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, copyinfo[idx].len, prot, &cookie); if (hva == NULL) break; copyinfo[idx].hva = hva; copyinfo[idx].cookie = cookie; } if (idx != nused) { vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); return (EFAULT); } else { *fault = 0; return (0); } } void vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, size_t len) { char *dst; int idx; dst = kaddr; idx = 0; while (len > 0) { bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); len -= copyinfo[idx].len; dst += copyinfo[idx].len; idx++; } } void vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) { const char *src; int idx; src = kaddr; idx = 0; while (len > 0) { bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); len -= copyinfo[idx].len; src += copyinfo[idx].len; idx++; } } /* * Return the amount of in-use and wired memory for the VM. Since * these are global stats, only return the values with for vCPU 0 */ VMM_STAT_DECLARE(VMM_MEM_RESIDENT); VMM_STAT_DECLARE(VMM_MEM_WIRED); static void vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) { if (vcpu == 0) { vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * vmspace_resident_count(vm->vmspace)); } } static void vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) { if (vcpu == 0) { vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); } } VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); Index: stable/12/sys/amd64/vmm/vmm_stat.c =================================================================== --- stable/12/sys/amd64/vmm/vmm_stat.c (revision 358145) +++ stable/12/sys/amd64/vmm/vmm_stat.c (revision 358146) @@ -1,172 +1,172 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include "vmm_util.h" #include "vmm_stat.h" /* * 'vst_num_elems' is the total number of addressable statistic elements * 'vst_num_types' is the number of unique statistic types * * It is always true that 'vst_num_elems' is greater than or equal to * 'vst_num_types'. This is because a stat type may represent more than * one element (for e.g. VMM_STAT_ARRAY). */ static int vst_num_elems, vst_num_types; static struct vmm_stat_type *vsttab[MAX_VMM_STAT_ELEMS]; static MALLOC_DEFINE(M_VMM_STAT, "vmm stat", "vmm stat"); #define vst_size ((size_t)vst_num_elems * sizeof(uint64_t)) void vmm_stat_register(void *arg) { struct vmm_stat_type *vst = arg; /* We require all stats to identify themselves with a description */ if (vst->desc == NULL) return; if (vst->scope == VMM_STAT_SCOPE_INTEL && !vmm_is_intel()) return; - if (vst->scope == VMM_STAT_SCOPE_AMD && !vmm_is_amd()) + if (vst->scope == VMM_STAT_SCOPE_AMD && !vmm_is_svm()) return; if (vst_num_elems + vst->nelems >= MAX_VMM_STAT_ELEMS) { printf("Cannot accommodate vmm stat type \"%s\"!\n", vst->desc); return; } vst->index = vst_num_elems; vst_num_elems += vst->nelems; vsttab[vst_num_types++] = vst; } int vmm_stat_copy(struct vm *vm, int vcpu, int *num_stats, uint64_t *buf) { struct vmm_stat_type *vst; uint64_t *stats; int i; if (vcpu < 0 || vcpu >= vm_get_maxcpus(vm)) return (EINVAL); /* Let stats functions update their counters */ for (i = 0; i < vst_num_types; i++) { vst = vsttab[i]; if (vst->func != NULL) (*vst->func)(vm, vcpu, vst); } /* Copy over the stats */ stats = vcpu_stats(vm, vcpu); for (i = 0; i < vst_num_elems; i++) buf[i] = stats[i]; *num_stats = vst_num_elems; return (0); } void * vmm_stat_alloc(void) { return (malloc(vst_size, M_VMM_STAT, M_WAITOK)); } void vmm_stat_init(void *vp) { bzero(vp, vst_size); } void vmm_stat_free(void *vp) { free(vp, M_VMM_STAT); } int vmm_stat_desc_copy(int index, char *buf, int bufsize) { int i; struct vmm_stat_type *vst; for (i = 0; i < vst_num_types; i++) { vst = vsttab[i]; if (index >= vst->index && index < vst->index + vst->nelems) { if (vst->nelems > 1) { snprintf(buf, bufsize, "%s[%d]", vst->desc, index - vst->index); } else { strlcpy(buf, vst->desc, bufsize); } return (0); /* found it */ } } return (EINVAL); } /* global statistics */ VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus"); VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt"); VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted"); VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted"); VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted"); VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted"); VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits"); VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted"); VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening"); VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening"); VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted"); VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted"); VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault"); VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation"); VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason"); VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit"); VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit"); VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace"); VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit"); VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions"); Index: stable/12/sys/amd64/vmm/vmm_util.c =================================================================== --- stable/12/sys/amd64/vmm/vmm_util.c (revision 358145) +++ stable/12/sys/amd64/vmm/vmm_util.c (revision 358146) @@ -1,107 +1,108 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include "vmm_util.h" bool vmm_is_intel(void) { return (strcmp(cpu_vendor, "GenuineIntel") == 0); } bool -vmm_is_amd(void) +vmm_is_svm(void) { - return (strcmp(cpu_vendor, "AuthenticAMD") == 0); + return (strcmp(cpu_vendor, "AuthenticAMD") == 0 || + strcmp(cpu_vendor, "HygonGenuine") == 0); } bool vmm_supports_1G_pages(void) { unsigned int regs[4]; /* * CPUID.80000001:EDX[bit 26] = 1 indicates support for 1GB pages * * Both Intel and AMD support this bit. */ if (cpu_exthigh >= 0x80000001) { do_cpuid(0x80000001, regs); if (regs[3] & (1 << 26)) return (true); } return (false); } #include #include #define DUMP_REG(x) printf(#x "\t\t0x%016lx\n", (long)(tf->tf_ ## x)) #define DUMP_SEG(x) printf(#x "\t\t0x%04x\n", (unsigned)(tf->tf_ ## x)) void dump_trapframe(struct trapframe *tf) { DUMP_REG(rdi); DUMP_REG(rsi); DUMP_REG(rdx); DUMP_REG(rcx); DUMP_REG(r8); DUMP_REG(r9); DUMP_REG(rax); DUMP_REG(rbx); DUMP_REG(rbp); DUMP_REG(r10); DUMP_REG(r11); DUMP_REG(r12); DUMP_REG(r13); DUMP_REG(r14); DUMP_REG(r15); DUMP_REG(trapno); DUMP_REG(addr); DUMP_REG(flags); DUMP_REG(err); DUMP_REG(rip); DUMP_REG(rflags); DUMP_REG(rsp); DUMP_SEG(cs); DUMP_SEG(ss); DUMP_SEG(fs); DUMP_SEG(gs); DUMP_SEG(es); DUMP_SEG(ds); } Index: stable/12/sys/amd64/vmm/vmm_util.h =================================================================== --- stable/12/sys/amd64/vmm/vmm_util.h (revision 358145) +++ stable/12/sys/amd64/vmm/vmm_util.h (revision 358146) @@ -1,42 +1,42 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _VMM_UTIL_H_ #define _VMM_UTIL_H_ struct trapframe; bool vmm_is_intel(void); -bool vmm_is_amd(void); +bool vmm_is_svm(void); bool vmm_supports_1G_pages(void); void dump_trapframe(struct trapframe *tf); #endif Index: stable/12/sys/amd64/vmm/x86.c =================================================================== --- stable/12/sys/amd64/vmm/x86.c (revision 358145) +++ stable/12/sys/amd64/vmm/x86.c (revision 358146) @@ -1,615 +1,618 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include "vmm_host.h" #include "vmm_ktr.h" #include "vmm_util.h" #include "x86.h" SYSCTL_DECL(_hw_vmm); static SYSCTL_NODE(_hw_vmm, OID_AUTO, topology, CTLFLAG_RD, 0, NULL); #define CPUID_VM_HIGH 0x40000000 static const char bhyve_id[12] = "bhyve bhyve "; static uint64_t bhyve_xcpuids; SYSCTL_ULONG(_hw_vmm, OID_AUTO, bhyve_xcpuids, CTLFLAG_RW, &bhyve_xcpuids, 0, "Number of times an unknown cpuid leaf was accessed"); #if __FreeBSD_version < 1200060 /* Remove after 11 EOL helps MFCing */ extern u_int threads_per_core; SYSCTL_UINT(_hw_vmm_topology, OID_AUTO, threads_per_core, CTLFLAG_RDTUN, &threads_per_core, 0, NULL); extern u_int cores_per_package; SYSCTL_UINT(_hw_vmm_topology, OID_AUTO, cores_per_package, CTLFLAG_RDTUN, &cores_per_package, 0, NULL); #endif static int cpuid_leaf_b = 1; SYSCTL_INT(_hw_vmm_topology, OID_AUTO, cpuid_leaf_b, CTLFLAG_RDTUN, &cpuid_leaf_b, 0, NULL); /* * Round up to the next power of two, if necessary, and then take log2. * Returns -1 if argument is zero. */ static __inline int log2(u_int x) { return (fls(x << (1 - powerof2(x))) - 1); } int x86_emulate_cpuid(struct vm *vm, int vcpu_id, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { const struct xsave_limits *limits; uint64_t cr4; int error, enable_invpcid, level, width, x2apic_id; unsigned int func, regs[4], logical_cpus; enum x2apic_state x2apic_state; uint16_t cores, maxcpus, sockets, threads; VCPU_CTR2(vm, vcpu_id, "cpuid %#x,%#x", *eax, *ecx); /* * Requests for invalid CPUID levels should map to the highest * available level instead. */ if (cpu_exthigh != 0 && *eax >= 0x80000000) { if (*eax > cpu_exthigh) *eax = cpu_exthigh; } else if (*eax >= 0x40000000) { if (*eax > CPUID_VM_HIGH) *eax = CPUID_VM_HIGH; } else if (*eax > cpu_high) { *eax = cpu_high; } func = *eax; /* * In general the approach used for CPU topology is to * advertise a flat topology where all CPUs are packages with * no multi-core or SMT. */ switch (func) { /* * Pass these through to the guest */ case CPUID_0000_0000: case CPUID_0000_0002: case CPUID_0000_0003: case CPUID_8000_0000: case CPUID_8000_0002: case CPUID_8000_0003: case CPUID_8000_0004: case CPUID_8000_0006: cpuid_count(*eax, *ecx, regs); break; case CPUID_8000_0008: cpuid_count(*eax, *ecx, regs); - if (vmm_is_amd()) { + if (vmm_is_svm()) { /* * As on Intel (0000_0007:0, EDX), mask out * unsupported or unsafe AMD extended features * (8000_0008 EBX). */ regs[1] &= (AMDFEID_CLZERO | AMDFEID_IRPERF | AMDFEID_XSAVEERPTR); vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); /* * Here, width is ApicIdCoreIdSize, present on * at least Family 15h and newer. It * represents the "number of bits in the * initial apicid that indicate thread id * within a package." * * Our topo_probe_amd() uses it for * pkg_id_shift and other OSes may rely on it. */ width = MIN(0xF, log2(threads * cores)); if (width < 0x4) width = 0; logical_cpus = MIN(0xFF, threads * cores - 1); regs[2] = (width << AMDID_COREID_SIZE_SHIFT) | logical_cpus; } break; case CPUID_8000_0001: cpuid_count(*eax, *ecx, regs); /* * Hide SVM from guest. */ regs[2] &= ~AMDID2_SVM; /* * Don't advertise extended performance counter MSRs * to the guest. */ regs[2] &= ~AMDID2_PCXC; regs[2] &= ~AMDID2_PNXC; regs[2] &= ~AMDID2_PTSCEL2I; /* * Don't advertise Instruction Based Sampling feature. */ regs[2] &= ~AMDID2_IBS; /* NodeID MSR not available */ regs[2] &= ~AMDID2_NODE_ID; /* Don't advertise the OS visible workaround feature */ regs[2] &= ~AMDID2_OSVW; /* Hide mwaitx/monitorx capability from the guest */ regs[2] &= ~AMDID2_MWAITX; /* * Hide rdtscp/ia32_tsc_aux until we know how * to deal with them. */ regs[3] &= ~AMDID_RDTSCP; break; case CPUID_8000_0007: /* * AMD uses this leaf to advertise the processor's * power monitoring and RAS capabilities. These * features are hardware-specific and exposing * them to a guest doesn't make a lot of sense. * * Intel uses this leaf only to advertise the * "Invariant TSC" feature with all other bits * being reserved (set to zero). */ regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; /* * "Invariant TSC" can be advertised to the guest if: * - host TSC frequency is invariant * - host TSCs are synchronized across physical cpus * * XXX This still falls short because the vcpu * can observe the TSC moving backwards as it * migrates across physical cpus. But at least * it should discourage the guest from using the * TSC to keep track of time. */ if (tsc_is_invariant && smp_tsc) regs[3] |= AMDPM_TSC_INVARIANT; break; case CPUID_8000_001D: /* AMD Cache topology, like 0000_0004 for Intel. */ - if (!vmm_is_amd()) + if (!vmm_is_svm()) goto default_leaf; /* * Similar to Intel, generate a ficticious cache * topology for the guest with L3 shared by the * package, and L1 and L2 local to a core. */ vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); switch (*ecx) { case 0: logical_cpus = threads; level = 1; func = 1; /* data cache */ break; case 1: logical_cpus = threads; level = 2; func = 3; /* unified cache */ break; case 2: logical_cpus = threads * cores; level = 3; func = 3; /* unified cache */ break; default: logical_cpus = 0; level = 0; func = 0; break; } logical_cpus = MIN(0xfff, logical_cpus - 1); regs[0] = (logical_cpus << 14) | (1 << 8) | (level << 5) | func; regs[1] = (func > 0) ? (CACHE_LINE_SIZE - 1) : 0; regs[2] = 0; regs[3] = 0; break; case CPUID_8000_001E: - /* AMD Family 16h+ additional identifiers */ - if (!vmm_is_amd() || CPUID_TO_FAMILY(cpu_id) < 0x16) + /* + * AMD Family 16h+ and Hygon Family 18h additional + * identifiers. + */ + if (!vmm_is_svm() || CPUID_TO_FAMILY(cpu_id) < 0x16) goto default_leaf; vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); regs[0] = vcpu_id; threads = MIN(0xFF, threads - 1); regs[1] = (threads << 8) | (vcpu_id >> log2(threads + 1)); /* * XXX Bhyve topology cannot yet represent >1 node per * processor. */ regs[2] = 0; regs[3] = 0; break; case CPUID_0000_0001: do_cpuid(1, regs); error = vm_get_x2apic_state(vm, vcpu_id, &x2apic_state); if (error) { panic("x86_emulate_cpuid: error %d " "fetching x2apic state", error); } /* * Override the APIC ID only in ebx */ regs[1] &= ~(CPUID_LOCAL_APIC_ID); regs[1] |= (vcpu_id << CPUID_0000_0001_APICID_SHIFT); /* * Don't expose VMX, SpeedStep, TME or SMX capability. * Advertise x2APIC capability and Hypervisor guest. */ regs[2] &= ~(CPUID2_VMX | CPUID2_EST | CPUID2_TM2); regs[2] &= ~(CPUID2_SMX); regs[2] |= CPUID2_HV; if (x2apic_state != X2APIC_DISABLED) regs[2] |= CPUID2_X2APIC; else regs[2] &= ~CPUID2_X2APIC; /* * Only advertise CPUID2_XSAVE in the guest if * the host is using XSAVE. */ if (!(regs[2] & CPUID2_OSXSAVE)) regs[2] &= ~CPUID2_XSAVE; /* * If CPUID2_XSAVE is being advertised and the * guest has set CR4_XSAVE, set * CPUID2_OSXSAVE. */ regs[2] &= ~CPUID2_OSXSAVE; if (regs[2] & CPUID2_XSAVE) { error = vm_get_register(vm, vcpu_id, VM_REG_GUEST_CR4, &cr4); if (error) panic("x86_emulate_cpuid: error %d " "fetching %%cr4", error); if (cr4 & CR4_XSAVE) regs[2] |= CPUID2_OSXSAVE; } /* * Hide monitor/mwait until we know how to deal with * these instructions. */ regs[2] &= ~CPUID2_MON; /* * Hide the performance and debug features. */ regs[2] &= ~CPUID2_PDCM; /* * No TSC deadline support in the APIC yet */ regs[2] &= ~CPUID2_TSCDLT; /* * Hide thermal monitoring */ regs[3] &= ~(CPUID_ACPI | CPUID_TM); /* * Hide the debug store capability. */ regs[3] &= ~CPUID_DS; /* * Advertise the Machine Check and MTRR capability. * * Some guest OSes (e.g. Windows) will not boot if * these features are absent. */ regs[3] |= (CPUID_MCA | CPUID_MCE | CPUID_MTRR); vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); logical_cpus = threads * cores; regs[1] &= ~CPUID_HTT_CORES; regs[1] |= (logical_cpus & 0xff) << 16; regs[3] |= CPUID_HTT; break; case CPUID_0000_0004: cpuid_count(*eax, *ecx, regs); if (regs[0] || regs[1] || regs[2] || regs[3]) { vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); regs[0] &= 0x3ff; regs[0] |= (cores - 1) << 26; /* * Cache topology: * - L1 and L2 are shared only by the logical * processors in a single core. * - L3 and above are shared by all logical * processors in the package. */ logical_cpus = threads; level = (regs[0] >> 5) & 0x7; if (level >= 3) logical_cpus *= cores; regs[0] |= (logical_cpus - 1) << 14; } break; case CPUID_0000_0007: regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; /* leaf 0 */ if (*ecx == 0) { cpuid_count(*eax, *ecx, regs); /* Only leaf 0 is supported */ regs[0] = 0; /* * Expose known-safe features. */ regs[1] &= (CPUID_STDEXT_FSGSBASE | CPUID_STDEXT_BMI1 | CPUID_STDEXT_HLE | CPUID_STDEXT_AVX2 | CPUID_STDEXT_BMI2 | CPUID_STDEXT_ERMS | CPUID_STDEXT_RTM | CPUID_STDEXT_AVX512F | CPUID_STDEXT_RDSEED | CPUID_STDEXT_AVX512PF | CPUID_STDEXT_AVX512ER | CPUID_STDEXT_AVX512CD | CPUID_STDEXT_SHA); regs[2] = 0; regs[3] &= CPUID_STDEXT3_MD_CLEAR; /* Advertise INVPCID if it is enabled. */ error = vm_get_capability(vm, vcpu_id, VM_CAP_ENABLE_INVPCID, &enable_invpcid); if (error == 0 && enable_invpcid) regs[1] |= CPUID_STDEXT_INVPCID; } break; case CPUID_0000_0006: regs[0] = CPUTPM1_ARAT; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; case CPUID_0000_000A: /* * Handle the access, but report 0 for * all options */ regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; case CPUID_0000_000B: /* * Intel processor topology enumeration */ if (vmm_is_intel()) { vm_get_topology(vm, &sockets, &cores, &threads, &maxcpus); if (*ecx == 0) { logical_cpus = threads; width = log2(logical_cpus); level = CPUID_TYPE_SMT; x2apic_id = vcpu_id; } if (*ecx == 1) { logical_cpus = threads * cores; width = log2(logical_cpus); level = CPUID_TYPE_CORE; x2apic_id = vcpu_id; } if (!cpuid_leaf_b || *ecx >= 2) { width = 0; logical_cpus = 0; level = 0; x2apic_id = 0; } regs[0] = width & 0x1f; regs[1] = logical_cpus & 0xffff; regs[2] = (level << 8) | (*ecx & 0xff); regs[3] = x2apic_id; } else { regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; } break; case CPUID_0000_000D: limits = vmm_get_xsave_limits(); if (!limits->xsave_enabled) { regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; } cpuid_count(*eax, *ecx, regs); switch (*ecx) { case 0: /* * Only permit the guest to use bits * that are active in the host in * %xcr0. Also, claim that the * maximum save area size is * equivalent to the host's current * save area size. Since this runs * "inside" of vmrun(), it runs with * the guest's xcr0, so the current * save area size is correct as-is. */ regs[0] &= limits->xcr0_allowed; regs[2] = limits->xsave_max_size; regs[3] &= (limits->xcr0_allowed >> 32); break; case 1: /* Only permit XSAVEOPT. */ regs[0] &= CPUID_EXTSTATE_XSAVEOPT; regs[1] = 0; regs[2] = 0; regs[3] = 0; break; default: /* * If the leaf is for a permitted feature, * pass through as-is, otherwise return * all zeroes. */ if (!(limits->xcr0_allowed & (1ul << *ecx))) { regs[0] = 0; regs[1] = 0; regs[2] = 0; regs[3] = 0; } break; } break; case 0x40000000: regs[0] = CPUID_VM_HIGH; bcopy(bhyve_id, ®s[1], 4); bcopy(bhyve_id + 4, ®s[2], 4); bcopy(bhyve_id + 8, ®s[3], 4); break; default: default_leaf: /* * The leaf value has already been clamped so * simply pass this through, keeping count of * how many unhandled leaf values have been seen. */ atomic_add_long(&bhyve_xcpuids, 1); cpuid_count(*eax, *ecx, regs); break; } *eax = regs[0]; *ebx = regs[1]; *ecx = regs[2]; *edx = regs[3]; return (1); } bool vm_cpuid_capability(struct vm *vm, int vcpuid, enum vm_cpuid_capability cap) { bool rv; KASSERT(cap > 0 && cap < VCC_LAST, ("%s: invalid vm_cpu_capability %d", __func__, cap)); /* * Simply passthrough the capabilities of the host cpu for now. */ rv = false; switch (cap) { case VCC_NO_EXECUTE: if (amd_feature & AMDID_NX) rv = true; break; case VCC_FFXSR: if (amd_feature & AMDID_FFXSR) rv = true; break; case VCC_TCE: if (amd_feature2 & AMDID2_TCE) rv = true; break; default: panic("%s: unknown vm_cpu_capability %d", __func__, cap); } return (rv); } Index: stable/12 =================================================================== --- stable/12 (revision 358145) +++ stable/12 (revision 358146) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r357865