Index: head/sys/net/ieee8023ad_lacp.c =================================================================== --- head/sys/net/ieee8023ad_lacp.c (revision 357764) +++ head/sys/net/ieee8023ad_lacp.c (revision 357765) @@ -1,2219 +1,2220 @@ /* $NetBSD: ieee8023ad_lacp.c,v 1.3 2005/12/11 12:24:54 christos Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c)2005 YAMAMOTO Takashi, * Copyright (c)2008 Andrew Thompson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_kern_tls.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include /* hz */ #include /* for net/if.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * actor system priority and port priority. * XXX should be configurable. */ #define LACP_SYSTEM_PRIO 0x8000 #define LACP_PORT_PRIO 0x8000 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] = { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 }; static const struct tlv_template lacp_info_tlv_template[] = { { LACP_TYPE_ACTORINFO, sizeof(struct tlvhdr) + sizeof(struct lacp_peerinfo) }, { LACP_TYPE_PARTNERINFO, sizeof(struct tlvhdr) + sizeof(struct lacp_peerinfo) }, { LACP_TYPE_COLLECTORINFO, sizeof(struct tlvhdr) + sizeof(struct lacp_collectorinfo) }, { 0, 0 }, }; static const struct tlv_template marker_info_tlv_template[] = { { MARKER_TYPE_INFO, sizeof(struct tlvhdr) + sizeof(struct lacp_markerinfo) }, { 0, 0 }, }; static const struct tlv_template marker_response_tlv_template[] = { { MARKER_TYPE_RESPONSE, sizeof(struct tlvhdr) + sizeof(struct lacp_markerinfo) }, { 0, 0 }, }; typedef void (*lacp_timer_func_t)(struct lacp_port *); static void lacp_fill_actorinfo(struct lacp_port *, struct lacp_peerinfo *); static void lacp_fill_markerinfo(struct lacp_port *, struct lacp_markerinfo *); static uint64_t lacp_aggregator_bandwidth(struct lacp_aggregator *); static void lacp_suppress_distributing(struct lacp_softc *, struct lacp_aggregator *); static void lacp_transit_expire(void *); static void lacp_update_portmap(struct lacp_softc *); static void lacp_select_active_aggregator(struct lacp_softc *); static uint16_t lacp_compose_key(struct lacp_port *); static int tlv_check(const void *, size_t, const struct tlvhdr *, const struct tlv_template *, boolean_t); static void lacp_tick(void *); static void lacp_fill_aggregator_id(struct lacp_aggregator *, const struct lacp_port *); static void lacp_fill_aggregator_id_peer(struct lacp_peerinfo *, const struct lacp_peerinfo *); static int lacp_aggregator_is_compatible(const struct lacp_aggregator *, const struct lacp_port *); static int lacp_peerinfo_is_compatible(const struct lacp_peerinfo *, const struct lacp_peerinfo *); static struct lacp_aggregator *lacp_aggregator_get(struct lacp_softc *, struct lacp_port *); static void lacp_aggregator_addref(struct lacp_softc *, struct lacp_aggregator *); static void lacp_aggregator_delref(struct lacp_softc *, struct lacp_aggregator *); /* receive machine */ static int lacp_pdu_input(struct lacp_port *, struct mbuf *); static int lacp_marker_input(struct lacp_port *, struct mbuf *); static void lacp_sm_rx(struct lacp_port *, const struct lacpdu *); static void lacp_sm_rx_timer(struct lacp_port *); static void lacp_sm_rx_set_expired(struct lacp_port *); static void lacp_sm_rx_update_ntt(struct lacp_port *, const struct lacpdu *); static void lacp_sm_rx_record_pdu(struct lacp_port *, const struct lacpdu *); static void lacp_sm_rx_update_selected(struct lacp_port *, const struct lacpdu *); static void lacp_sm_rx_record_default(struct lacp_port *); static void lacp_sm_rx_update_default_selected(struct lacp_port *); static void lacp_sm_rx_update_selected_from_peerinfo(struct lacp_port *, const struct lacp_peerinfo *); /* mux machine */ static void lacp_sm_mux(struct lacp_port *); static void lacp_set_mux(struct lacp_port *, enum lacp_mux_state); static void lacp_sm_mux_timer(struct lacp_port *); /* periodic transmit machine */ static void lacp_sm_ptx_update_timeout(struct lacp_port *, uint8_t); static void lacp_sm_ptx_tx_schedule(struct lacp_port *); static void lacp_sm_ptx_timer(struct lacp_port *); /* transmit machine */ static void lacp_sm_tx(struct lacp_port *); static void lacp_sm_assert_ntt(struct lacp_port *); static void lacp_run_timers(struct lacp_port *); static int lacp_compare_peerinfo(const struct lacp_peerinfo *, const struct lacp_peerinfo *); static int lacp_compare_systemid(const struct lacp_systemid *, const struct lacp_systemid *); static void lacp_port_enable(struct lacp_port *); static void lacp_port_disable(struct lacp_port *); static void lacp_select(struct lacp_port *); static void lacp_unselect(struct lacp_port *); static void lacp_disable_collecting(struct lacp_port *); static void lacp_enable_collecting(struct lacp_port *); static void lacp_disable_distributing(struct lacp_port *); static void lacp_enable_distributing(struct lacp_port *); static int lacp_xmit_lacpdu(struct lacp_port *); static int lacp_xmit_marker(struct lacp_port *); /* Debugging */ static void lacp_dump_lacpdu(const struct lacpdu *); static const char *lacp_format_partner(const struct lacp_peerinfo *, char *, size_t); static const char *lacp_format_lagid(const struct lacp_peerinfo *, const struct lacp_peerinfo *, char *, size_t); static const char *lacp_format_lagid_aggregator(const struct lacp_aggregator *, char *, size_t); static const char *lacp_format_state(uint8_t, char *, size_t); static const char *lacp_format_mac(const uint8_t *, char *, size_t); static const char *lacp_format_systemid(const struct lacp_systemid *, char *, size_t); static const char *lacp_format_portid(const struct lacp_portid *, char *, size_t); static void lacp_dprintf(const struct lacp_port *, const char *, ...) __attribute__((__format__(__printf__, 2, 3))); VNET_DEFINE_STATIC(int, lacp_debug); #define V_lacp_debug VNET(lacp_debug) SYSCTL_NODE(_net_link_lagg, OID_AUTO, lacp, CTLFLAG_RD, 0, "ieee802.3ad"); SYSCTL_INT(_net_link_lagg_lacp, OID_AUTO, debug, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(lacp_debug), 0, "Enable LACP debug logging (1=debug, 2=trace)"); VNET_DEFINE_STATIC(int, lacp_default_strict_mode) = 1; SYSCTL_INT(_net_link_lagg_lacp, OID_AUTO, default_strict_mode, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(lacp_default_strict_mode), 0, "LACP strict protocol compliance default"); #define LACP_DPRINTF(a) if (V_lacp_debug & 0x01) { lacp_dprintf a ; } #define LACP_TRACE(a) if (V_lacp_debug & 0x02) { lacp_dprintf(a,"%s\n",__func__); } #define LACP_TPRINTF(a) if (V_lacp_debug & 0x04) { lacp_dprintf a ; } /* * partner administration variables. * XXX should be configurable. */ static const struct lacp_peerinfo lacp_partner_admin_optimistic = { .lip_systemid = { .lsi_prio = 0xffff }, .lip_portid = { .lpi_prio = 0xffff }, .lip_state = LACP_STATE_SYNC | LACP_STATE_AGGREGATION | LACP_STATE_COLLECTING | LACP_STATE_DISTRIBUTING, }; static const struct lacp_peerinfo lacp_partner_admin_strict = { .lip_systemid = { .lsi_prio = 0xffff }, .lip_portid = { .lpi_prio = 0xffff }, .lip_state = 0, }; static const lacp_timer_func_t lacp_timer_funcs[LACP_NTIMER] = { [LACP_TIMER_CURRENT_WHILE] = lacp_sm_rx_timer, [LACP_TIMER_PERIODIC] = lacp_sm_ptx_timer, [LACP_TIMER_WAIT_WHILE] = lacp_sm_mux_timer, }; struct mbuf * lacp_input(struct lagg_port *lgp, struct mbuf *m) { struct lacp_port *lp = LACP_PORT(lgp); uint8_t subtype; if (m->m_pkthdr.len < sizeof(struct ether_header) + sizeof(subtype)) { m_freem(m); return (NULL); } m_copydata(m, sizeof(struct ether_header), sizeof(subtype), &subtype); switch (subtype) { case SLOWPROTOCOLS_SUBTYPE_LACP: lacp_pdu_input(lp, m); return (NULL); case SLOWPROTOCOLS_SUBTYPE_MARKER: lacp_marker_input(lp, m); return (NULL); } /* Not a subtype we are interested in */ return (m); } /* * lacp_pdu_input: process lacpdu */ static int lacp_pdu_input(struct lacp_port *lp, struct mbuf *m) { struct lacp_softc *lsc = lp->lp_lsc; struct lacpdu *du; int error = 0; if (m->m_pkthdr.len != sizeof(*du)) { goto bad; } if ((m->m_flags & M_MCAST) == 0) { goto bad; } if (m->m_len < sizeof(*du)) { m = m_pullup(m, sizeof(*du)); if (m == NULL) { return (ENOMEM); } } du = mtod(m, struct lacpdu *); if (memcmp(&du->ldu_eh.ether_dhost, ðermulticastaddr_slowprotocols, ETHER_ADDR_LEN)) { goto bad; } /* * ignore the version for compatibility with * the future protocol revisions. */ #if 0 if (du->ldu_sph.sph_version != 1) { goto bad; } #endif /* * ignore tlv types for compatibility with * the future protocol revisions. */ if (tlv_check(du, sizeof(*du), &du->ldu_tlv_actor, lacp_info_tlv_template, FALSE)) { goto bad; } if (V_lacp_debug > 0) { lacp_dprintf(lp, "lacpdu receive\n"); lacp_dump_lacpdu(du); } if ((1 << lp->lp_ifp->if_dunit) & lp->lp_lsc->lsc_debug.lsc_rx_test) { LACP_TPRINTF((lp, "Dropping RX PDU\n")); goto bad; } LACP_LOCK(lsc); lacp_sm_rx(lp, du); LACP_UNLOCK(lsc); m_freem(m); return (error); bad: m_freem(m); return (EINVAL); } static void lacp_fill_actorinfo(struct lacp_port *lp, struct lacp_peerinfo *info) { struct lagg_port *lgp = lp->lp_lagg; struct lagg_softc *sc = lgp->lp_softc; info->lip_systemid.lsi_prio = htons(LACP_SYSTEM_PRIO); memcpy(&info->lip_systemid.lsi_mac, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); info->lip_portid.lpi_prio = htons(LACP_PORT_PRIO); info->lip_portid.lpi_portno = htons(lp->lp_ifp->if_index); info->lip_state = lp->lp_state; } static void lacp_fill_markerinfo(struct lacp_port *lp, struct lacp_markerinfo *info) { struct ifnet *ifp = lp->lp_ifp; /* Fill in the port index and system id (encoded as the MAC) */ info->mi_rq_port = htons(ifp->if_index); memcpy(&info->mi_rq_system, lp->lp_systemid.lsi_mac, ETHER_ADDR_LEN); info->mi_rq_xid = htonl(0); } static int lacp_xmit_lacpdu(struct lacp_port *lp) { struct lagg_port *lgp = lp->lp_lagg; struct mbuf *m; struct lacpdu *du; int error; LACP_LOCK_ASSERT(lp->lp_lsc); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { return (ENOMEM); } m->m_len = m->m_pkthdr.len = sizeof(*du); du = mtod(m, struct lacpdu *); memset(du, 0, sizeof(*du)); memcpy(&du->ldu_eh.ether_dhost, ethermulticastaddr_slowprotocols, ETHER_ADDR_LEN); memcpy(&du->ldu_eh.ether_shost, lgp->lp_lladdr, ETHER_ADDR_LEN); du->ldu_eh.ether_type = htons(ETHERTYPE_SLOW); du->ldu_sph.sph_subtype = SLOWPROTOCOLS_SUBTYPE_LACP; du->ldu_sph.sph_version = 1; TLV_SET(&du->ldu_tlv_actor, LACP_TYPE_ACTORINFO, sizeof(du->ldu_actor)); du->ldu_actor = lp->lp_actor; TLV_SET(&du->ldu_tlv_partner, LACP_TYPE_PARTNERINFO, sizeof(du->ldu_partner)); du->ldu_partner = lp->lp_partner; TLV_SET(&du->ldu_tlv_collector, LACP_TYPE_COLLECTORINFO, sizeof(du->ldu_collector)); du->ldu_collector.lci_maxdelay = 0; if (V_lacp_debug > 0) { lacp_dprintf(lp, "lacpdu transmit\n"); lacp_dump_lacpdu(du); } m->m_flags |= M_MCAST; /* * XXX should use higher priority queue. * otherwise network congestion can break aggregation. */ error = lagg_enqueue(lp->lp_ifp, m); return (error); } static int lacp_xmit_marker(struct lacp_port *lp) { struct lagg_port *lgp = lp->lp_lagg; struct mbuf *m; struct markerdu *mdu; int error; LACP_LOCK_ASSERT(lp->lp_lsc); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { return (ENOMEM); } m->m_len = m->m_pkthdr.len = sizeof(*mdu); mdu = mtod(m, struct markerdu *); memset(mdu, 0, sizeof(*mdu)); memcpy(&mdu->mdu_eh.ether_dhost, ethermulticastaddr_slowprotocols, ETHER_ADDR_LEN); memcpy(&mdu->mdu_eh.ether_shost, lgp->lp_lladdr, ETHER_ADDR_LEN); mdu->mdu_eh.ether_type = htons(ETHERTYPE_SLOW); mdu->mdu_sph.sph_subtype = SLOWPROTOCOLS_SUBTYPE_MARKER; mdu->mdu_sph.sph_version = 1; /* Bump the transaction id and copy over the marker info */ lp->lp_marker.mi_rq_xid = htonl(ntohl(lp->lp_marker.mi_rq_xid) + 1); TLV_SET(&mdu->mdu_tlv, MARKER_TYPE_INFO, sizeof(mdu->mdu_info)); mdu->mdu_info = lp->lp_marker; LACP_DPRINTF((lp, "marker transmit, port=%u, sys=%6D, id=%u\n", ntohs(mdu->mdu_info.mi_rq_port), mdu->mdu_info.mi_rq_system, ":", ntohl(mdu->mdu_info.mi_rq_xid))); m->m_flags |= M_MCAST; error = lagg_enqueue(lp->lp_ifp, m); return (error); } void lacp_linkstate(struct lagg_port *lgp) { struct lacp_port *lp = LACP_PORT(lgp); struct lacp_softc *lsc = lp->lp_lsc; struct ifnet *ifp = lgp->lp_ifp; struct ifmediareq ifmr; int error = 0; u_int media; uint8_t old_state; uint16_t old_key; bzero((char *)&ifmr, sizeof(ifmr)); error = (*ifp->if_ioctl)(ifp, SIOCGIFXMEDIA, (caddr_t)&ifmr); if (error != 0) { bzero((char *)&ifmr, sizeof(ifmr)); error = (*ifp->if_ioctl)(ifp, SIOCGIFMEDIA, (caddr_t)&ifmr); } if (error != 0) return; LACP_LOCK(lsc); media = ifmr.ifm_active; LACP_DPRINTF((lp, "media changed 0x%x -> 0x%x, ether = %d, fdx = %d, " "link = %d\n", lp->lp_media, media, IFM_TYPE(media) == IFM_ETHER, (media & IFM_FDX) != 0, ifp->if_link_state == LINK_STATE_UP)); old_state = lp->lp_state; old_key = lp->lp_key; lp->lp_media = media; /* * If the port is not an active full duplex Ethernet link then it can * not be aggregated. */ if (IFM_TYPE(media) != IFM_ETHER || (media & IFM_FDX) == 0 || ifp->if_link_state != LINK_STATE_UP) { lacp_port_disable(lp); } else { lacp_port_enable(lp); } lp->lp_key = lacp_compose_key(lp); if (old_state != lp->lp_state || old_key != lp->lp_key) { LACP_DPRINTF((lp, "-> UNSELECTED\n")); lp->lp_selected = LACP_UNSELECTED; } LACP_UNLOCK(lsc); } static void lacp_tick(void *arg) { struct lacp_softc *lsc = arg; struct lacp_port *lp; LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) { if ((lp->lp_state & LACP_STATE_AGGREGATION) == 0) continue; CURVNET_SET(lp->lp_ifp->if_vnet); lacp_run_timers(lp); lacp_select(lp); lacp_sm_mux(lp); lacp_sm_tx(lp); lacp_sm_ptx_tx_schedule(lp); CURVNET_RESTORE(); } callout_reset(&lsc->lsc_callout, hz, lacp_tick, lsc); } int lacp_port_create(struct lagg_port *lgp) { struct lagg_softc *sc = lgp->lp_softc; struct lacp_softc *lsc = LACP_SOFTC(sc); struct lacp_port *lp; struct ifnet *ifp = lgp->lp_ifp; struct sockaddr_dl sdl; struct ifmultiaddr *rifma = NULL; int error; link_init_sdl(ifp, (struct sockaddr *)&sdl, IFT_ETHER); sdl.sdl_alen = ETHER_ADDR_LEN; bcopy(ðermulticastaddr_slowprotocols, LLADDR(&sdl), ETHER_ADDR_LEN); error = if_addmulti(ifp, (struct sockaddr *)&sdl, &rifma); if (error) { printf("%s: ADDMULTI failed on %s\n", __func__, lgp->lp_ifp->if_xname); return (error); } lp = malloc(sizeof(struct lacp_port), M_DEVBUF, M_NOWAIT|M_ZERO); if (lp == NULL) return (ENOMEM); LACP_LOCK(lsc); lgp->lp_psc = lp; lp->lp_ifp = ifp; lp->lp_lagg = lgp; lp->lp_lsc = lsc; lp->lp_ifma = rifma; LIST_INSERT_HEAD(&lsc->lsc_ports, lp, lp_next); lacp_fill_actorinfo(lp, &lp->lp_actor); lacp_fill_markerinfo(lp, &lp->lp_marker); lp->lp_state = LACP_STATE_ACTIVITY; lp->lp_aggregator = NULL; lacp_sm_rx_set_expired(lp); LACP_UNLOCK(lsc); lacp_linkstate(lgp); return (0); } void lacp_port_destroy(struct lagg_port *lgp) { struct lacp_port *lp = LACP_PORT(lgp); struct lacp_softc *lsc = lp->lp_lsc; int i; LACP_LOCK(lsc); for (i = 0; i < LACP_NTIMER; i++) { LACP_TIMER_DISARM(lp, i); } lacp_disable_collecting(lp); lacp_disable_distributing(lp); lacp_unselect(lp); LIST_REMOVE(lp, lp_next); LACP_UNLOCK(lsc); /* The address may have already been removed by if_purgemaddrs() */ if (!lgp->lp_detaching) if_delmulti_ifma(lp->lp_ifma); free(lp, M_DEVBUF); } void lacp_req(struct lagg_softc *sc, void *data) { struct lacp_opreq *req = (struct lacp_opreq *)data; struct lacp_softc *lsc = LACP_SOFTC(sc); struct lacp_aggregator *la; bzero(req, sizeof(struct lacp_opreq)); /* * If the LACP softc is NULL, return with the opreq structure full of * zeros. It is normal for the softc to be NULL while the lagg is * being destroyed. */ if (NULL == lsc) return; la = lsc->lsc_active_aggregator; LACP_LOCK(lsc); if (la != NULL) { req->actor_prio = ntohs(la->la_actor.lip_systemid.lsi_prio); memcpy(&req->actor_mac, &la->la_actor.lip_systemid.lsi_mac, ETHER_ADDR_LEN); req->actor_key = ntohs(la->la_actor.lip_key); req->actor_portprio = ntohs(la->la_actor.lip_portid.lpi_prio); req->actor_portno = ntohs(la->la_actor.lip_portid.lpi_portno); req->actor_state = la->la_actor.lip_state; req->partner_prio = ntohs(la->la_partner.lip_systemid.lsi_prio); memcpy(&req->partner_mac, &la->la_partner.lip_systemid.lsi_mac, ETHER_ADDR_LEN); req->partner_key = ntohs(la->la_partner.lip_key); req->partner_portprio = ntohs(la->la_partner.lip_portid.lpi_prio); req->partner_portno = ntohs(la->la_partner.lip_portid.lpi_portno); req->partner_state = la->la_partner.lip_state; } LACP_UNLOCK(lsc); } void lacp_portreq(struct lagg_port *lgp, void *data) { struct lacp_opreq *req = (struct lacp_opreq *)data; struct lacp_port *lp = LACP_PORT(lgp); struct lacp_softc *lsc = lp->lp_lsc; LACP_LOCK(lsc); req->actor_prio = ntohs(lp->lp_actor.lip_systemid.lsi_prio); memcpy(&req->actor_mac, &lp->lp_actor.lip_systemid.lsi_mac, ETHER_ADDR_LEN); req->actor_key = ntohs(lp->lp_actor.lip_key); req->actor_portprio = ntohs(lp->lp_actor.lip_portid.lpi_prio); req->actor_portno = ntohs(lp->lp_actor.lip_portid.lpi_portno); req->actor_state = lp->lp_actor.lip_state; req->partner_prio = ntohs(lp->lp_partner.lip_systemid.lsi_prio); memcpy(&req->partner_mac, &lp->lp_partner.lip_systemid.lsi_mac, ETHER_ADDR_LEN); req->partner_key = ntohs(lp->lp_partner.lip_key); req->partner_portprio = ntohs(lp->lp_partner.lip_portid.lpi_prio); req->partner_portno = ntohs(lp->lp_partner.lip_portid.lpi_portno); req->partner_state = lp->lp_partner.lip_state; LACP_UNLOCK(lsc); } static void lacp_disable_collecting(struct lacp_port *lp) { LACP_DPRINTF((lp, "collecting disabled\n")); lp->lp_state &= ~LACP_STATE_COLLECTING; } static void lacp_enable_collecting(struct lacp_port *lp) { LACP_DPRINTF((lp, "collecting enabled\n")); lp->lp_state |= LACP_STATE_COLLECTING; } static void lacp_disable_distributing(struct lacp_port *lp) { struct lacp_aggregator *la = lp->lp_aggregator; struct lacp_softc *lsc = lp->lp_lsc; struct lagg_softc *sc = lsc->lsc_softc; char buf[LACP_LAGIDSTR_MAX+1]; LACP_LOCK_ASSERT(lsc); if (la == NULL || (lp->lp_state & LACP_STATE_DISTRIBUTING) == 0) { return; } KASSERT(!TAILQ_EMPTY(&la->la_ports), ("no aggregator ports")); KASSERT(la->la_nports > 0, ("nports invalid (%d)", la->la_nports)); KASSERT(la->la_refcnt >= la->la_nports, ("aggregator refcnt invalid")); LACP_DPRINTF((lp, "disable distributing on aggregator %s, " "nports %d -> %d\n", lacp_format_lagid_aggregator(la, buf, sizeof(buf)), la->la_nports, la->la_nports - 1)); TAILQ_REMOVE(&la->la_ports, lp, lp_dist_q); la->la_nports--; sc->sc_active = la->la_nports; if (lsc->lsc_active_aggregator == la) { lacp_suppress_distributing(lsc, la); lacp_select_active_aggregator(lsc); /* regenerate the port map, the active aggregator has changed */ lacp_update_portmap(lsc); } lp->lp_state &= ~LACP_STATE_DISTRIBUTING; if_link_state_change(sc->sc_ifp, sc->sc_active ? LINK_STATE_UP : LINK_STATE_DOWN); } static void lacp_enable_distributing(struct lacp_port *lp) { struct lacp_aggregator *la = lp->lp_aggregator; struct lacp_softc *lsc = lp->lp_lsc; struct lagg_softc *sc = lsc->lsc_softc; char buf[LACP_LAGIDSTR_MAX+1]; LACP_LOCK_ASSERT(lsc); if ((lp->lp_state & LACP_STATE_DISTRIBUTING) != 0) { return; } LACP_DPRINTF((lp, "enable distributing on aggregator %s, " "nports %d -> %d\n", lacp_format_lagid_aggregator(la, buf, sizeof(buf)), la->la_nports, la->la_nports + 1)); KASSERT(la->la_refcnt > la->la_nports, ("aggregator refcnt invalid")); TAILQ_INSERT_HEAD(&la->la_ports, lp, lp_dist_q); la->la_nports++; sc->sc_active = la->la_nports; lp->lp_state |= LACP_STATE_DISTRIBUTING; if (lsc->lsc_active_aggregator == la) { lacp_suppress_distributing(lsc, la); lacp_update_portmap(lsc); } else /* try to become the active aggregator */ lacp_select_active_aggregator(lsc); if_link_state_change(sc->sc_ifp, sc->sc_active ? LINK_STATE_UP : LINK_STATE_DOWN); } static void lacp_transit_expire(void *vp) { struct lacp_softc *lsc = vp; LACP_LOCK_ASSERT(lsc); CURVNET_SET(lsc->lsc_softc->sc_ifp->if_vnet); LACP_TRACE(NULL); CURVNET_RESTORE(); lsc->lsc_suppress_distributing = FALSE; } void lacp_attach(struct lagg_softc *sc) { struct lacp_softc *lsc; lsc = malloc(sizeof(struct lacp_softc), M_DEVBUF, M_WAITOK | M_ZERO); sc->sc_psc = lsc; lsc->lsc_softc = sc; lsc->lsc_hashkey = m_ether_tcpip_hash_init(); lsc->lsc_active_aggregator = NULL; lsc->lsc_strict_mode = VNET(lacp_default_strict_mode); LACP_LOCK_INIT(lsc); TAILQ_INIT(&lsc->lsc_aggregators); LIST_INIT(&lsc->lsc_ports); callout_init_mtx(&lsc->lsc_transit_callout, &lsc->lsc_mtx, 0); callout_init_mtx(&lsc->lsc_callout, &lsc->lsc_mtx, 0); /* if the lagg is already up then do the same */ if (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) lacp_init(sc); } void lacp_detach(void *psc) { struct lacp_softc *lsc = (struct lacp_softc *)psc; KASSERT(TAILQ_EMPTY(&lsc->lsc_aggregators), ("aggregators still active")); KASSERT(lsc->lsc_active_aggregator == NULL, ("aggregator still attached")); callout_drain(&lsc->lsc_transit_callout); callout_drain(&lsc->lsc_callout); LACP_LOCK_DESTROY(lsc); free(lsc, M_DEVBUF); } void lacp_init(struct lagg_softc *sc) { struct lacp_softc *lsc = LACP_SOFTC(sc); LACP_LOCK(lsc); callout_reset(&lsc->lsc_callout, hz, lacp_tick, lsc); LACP_UNLOCK(lsc); } void lacp_stop(struct lagg_softc *sc) { struct lacp_softc *lsc = LACP_SOFTC(sc); LACP_LOCK(lsc); callout_stop(&lsc->lsc_transit_callout); callout_stop(&lsc->lsc_callout); LACP_UNLOCK(lsc); } struct lagg_port * lacp_select_tx_port(struct lagg_softc *sc, struct mbuf *m) { struct lacp_softc *lsc = LACP_SOFTC(sc); struct lacp_portmap *pm; struct lacp_port *lp; struct lacp_port **map; uint32_t hash; int count; if (__predict_false(lsc->lsc_suppress_distributing)) { LACP_DPRINTF((NULL, "%s: waiting transit\n", __func__)); return (NULL); } pm = &lsc->lsc_pmap[lsc->lsc_activemap]; if (pm->pm_count == 0) { LACP_DPRINTF((NULL, "%s: no active aggregator\n", __func__)); return (NULL); } #ifdef NUMA if ((sc->sc_opts & LAGG_OPT_USE_NUMA) && pm->pm_num_dom > 1 && m->m_pkthdr.numa_domain < MAXMEMDOM) { count = pm->pm_numa[m->m_pkthdr.numa_domain].count; if (count > 0) { map = pm->pm_numa[m->m_pkthdr.numa_domain].map; } else { /* No ports on this domain; use global hash. */ map = pm->pm_map; count = pm->pm_count; } } else #endif { map = pm->pm_map; count = pm->pm_count; } if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) hash = m->m_pkthdr.flowid >> sc->flowid_shift; else hash = m_ether_tcpip_hash(sc->sc_flags, m, lsc->lsc_hashkey); hash %= count; lp = map[hash]; KASSERT((lp->lp_state & LACP_STATE_DISTRIBUTING) != 0, ("aggregated port is not distributing")); return (lp->lp_lagg); } #if defined(RATELIMIT) || defined(KERN_TLS) struct lagg_port * lacp_select_tx_port_by_hash(struct lagg_softc *sc, uint32_t flowid) { struct lacp_softc *lsc = LACP_SOFTC(sc); struct lacp_portmap *pm; struct lacp_port *lp; uint32_t hash; if (__predict_false(lsc->lsc_suppress_distributing)) { LACP_DPRINTF((NULL, "%s: waiting transit\n", __func__)); return (NULL); } pm = &lsc->lsc_pmap[lsc->lsc_activemap]; if (pm->pm_count == 0) { LACP_DPRINTF((NULL, "%s: no active aggregator\n", __func__)); return (NULL); } hash = flowid >> sc->flowid_shift; hash %= pm->pm_count; lp = pm->pm_map[hash]; return (lp->lp_lagg); } #endif /* * lacp_suppress_distributing: drop transmit packets for a while * to preserve packet ordering. */ static void lacp_suppress_distributing(struct lacp_softc *lsc, struct lacp_aggregator *la) { struct lacp_port *lp; if (lsc->lsc_active_aggregator != la) { return; } LACP_TRACE(NULL); lsc->lsc_suppress_distributing = TRUE; /* send a marker frame down each port to verify the queues are empty */ LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) { lp->lp_flags |= LACP_PORT_MARK; lacp_xmit_marker(lp); } /* set a timeout for the marker frames */ callout_reset(&lsc->lsc_transit_callout, LACP_TRANSIT_DELAY * hz / 1000, lacp_transit_expire, lsc); } static int lacp_compare_peerinfo(const struct lacp_peerinfo *a, const struct lacp_peerinfo *b) { return (memcmp(a, b, offsetof(struct lacp_peerinfo, lip_state))); } static int lacp_compare_systemid(const struct lacp_systemid *a, const struct lacp_systemid *b) { return (memcmp(a, b, sizeof(*a))); } #if 0 /* unused */ static int lacp_compare_portid(const struct lacp_portid *a, const struct lacp_portid *b) { return (memcmp(a, b, sizeof(*a))); } #endif static uint64_t lacp_aggregator_bandwidth(struct lacp_aggregator *la) { struct lacp_port *lp; uint64_t speed; lp = TAILQ_FIRST(&la->la_ports); if (lp == NULL) { return (0); } speed = ifmedia_baudrate(lp->lp_media); speed *= la->la_nports; if (speed == 0) { LACP_DPRINTF((lp, "speed 0? media=0x%x nports=%d\n", lp->lp_media, la->la_nports)); } return (speed); } /* * lacp_select_active_aggregator: select an aggregator to be used to transmit * packets from lagg(4) interface. */ static void lacp_select_active_aggregator(struct lacp_softc *lsc) { struct lacp_aggregator *la; struct lacp_aggregator *best_la = NULL; uint64_t best_speed = 0; char buf[LACP_LAGIDSTR_MAX+1]; LACP_TRACE(NULL); TAILQ_FOREACH(la, &lsc->lsc_aggregators, la_q) { uint64_t speed; if (la->la_nports == 0) { continue; } speed = lacp_aggregator_bandwidth(la); LACP_DPRINTF((NULL, "%s, speed=%jd, nports=%d\n", lacp_format_lagid_aggregator(la, buf, sizeof(buf)), speed, la->la_nports)); /* * This aggregator is chosen if the partner has a better * system priority or, the total aggregated speed is higher * or, it is already the chosen aggregator */ if ((best_la != NULL && LACP_SYS_PRI(la->la_partner) < LACP_SYS_PRI(best_la->la_partner)) || speed > best_speed || (speed == best_speed && la == lsc->lsc_active_aggregator)) { best_la = la; best_speed = speed; } } KASSERT(best_la == NULL || best_la->la_nports > 0, ("invalid aggregator refcnt")); KASSERT(best_la == NULL || !TAILQ_EMPTY(&best_la->la_ports), ("invalid aggregator list")); if (lsc->lsc_active_aggregator != best_la) { LACP_DPRINTF((NULL, "active aggregator changed\n")); LACP_DPRINTF((NULL, "old %s\n", lacp_format_lagid_aggregator(lsc->lsc_active_aggregator, buf, sizeof(buf)))); } else { LACP_DPRINTF((NULL, "active aggregator not changed\n")); } LACP_DPRINTF((NULL, "new %s\n", lacp_format_lagid_aggregator(best_la, buf, sizeof(buf)))); if (lsc->lsc_active_aggregator != best_la) { lsc->lsc_active_aggregator = best_la; lacp_update_portmap(lsc); if (best_la) { lacp_suppress_distributing(lsc, best_la); } } } /* * Updated the inactive portmap array with the new list of ports and * make it live. */ static void lacp_update_portmap(struct lacp_softc *lsc) { struct lagg_softc *sc = lsc->lsc_softc; struct lacp_aggregator *la; struct lacp_portmap *p; struct lacp_port *lp; uint64_t speed; u_int newmap; int i; #ifdef NUMA int count; uint8_t domain; #endif newmap = lsc->lsc_activemap == 0 ? 1 : 0; p = &lsc->lsc_pmap[newmap]; la = lsc->lsc_active_aggregator; speed = 0; bzero(p, sizeof(struct lacp_portmap)); if (la != NULL && la->la_nports > 0) { p->pm_count = la->la_nports; i = 0; TAILQ_FOREACH(lp, &la->la_ports, lp_dist_q) { p->pm_map[i++] = lp; #ifdef NUMA domain = lp->lp_ifp->if_numa_domain; if (domain >= MAXMEMDOM) continue; count = p->pm_numa[domain].count; p->pm_numa[domain].map[count] = lp; p->pm_numa[domain].count++; #endif } KASSERT(i == p->pm_count, ("Invalid port count")); #ifdef NUMA for (i = 0; i < MAXMEMDOM; i++) { if (p->pm_numa[i].count != 0) p->pm_num_dom++; } #endif speed = lacp_aggregator_bandwidth(la); } sc->sc_ifp->if_baudrate = speed; /* switch the active portmap over */ atomic_store_rel_int(&lsc->lsc_activemap, newmap); LACP_DPRINTF((NULL, "Set table %d with %d ports\n", lsc->lsc_activemap, lsc->lsc_pmap[lsc->lsc_activemap].pm_count)); } static uint16_t lacp_compose_key(struct lacp_port *lp) { struct lagg_port *lgp = lp->lp_lagg; struct lagg_softc *sc = lgp->lp_softc; u_int media = lp->lp_media; uint16_t key; if ((lp->lp_state & LACP_STATE_AGGREGATION) == 0) { /* * non-aggregatable links should have unique keys. * * XXX this isn't really unique as if_index is 16 bit. */ /* bit 0..14: (some bits of) if_index of this port */ key = lp->lp_ifp->if_index; /* bit 15: 1 */ key |= 0x8000; } else { u_int subtype = IFM_SUBTYPE(media); KASSERT(IFM_TYPE(media) == IFM_ETHER, ("invalid media type")); KASSERT((media & IFM_FDX) != 0, ("aggregating HDX interface")); /* bit 0..4: IFM_SUBTYPE modulo speed */ switch (subtype) { case IFM_10_T: case IFM_10_2: case IFM_10_5: case IFM_10_STP: case IFM_10_FL: key = IFM_10_T; break; case IFM_100_TX: case IFM_100_FX: case IFM_100_T4: case IFM_100_VG: case IFM_100_T2: case IFM_100_T: case IFM_100_SGMII: key = IFM_100_TX; break; case IFM_1000_SX: case IFM_1000_LX: case IFM_1000_CX: case IFM_1000_T: case IFM_1000_KX: case IFM_1000_SGMII: case IFM_1000_CX_SGMII: key = IFM_1000_SX; break; case IFM_10G_LR: case IFM_10G_SR: case IFM_10G_CX4: case IFM_10G_TWINAX: case IFM_10G_TWINAX_LONG: case IFM_10G_LRM: case IFM_10G_T: case IFM_10G_KX4: case IFM_10G_KR: case IFM_10G_CR1: case IFM_10G_ER: case IFM_10G_SFI: case IFM_10G_AOC: key = IFM_10G_LR; break; case IFM_20G_KR2: key = IFM_20G_KR2; break; case IFM_2500_KX: case IFM_2500_T: case IFM_2500_X: key = IFM_2500_KX; break; case IFM_5000_T: case IFM_5000_KR: case IFM_5000_KR_S: case IFM_5000_KR1: key = IFM_5000_T; break; case IFM_50G_PCIE: case IFM_50G_CR2: case IFM_50G_KR2: + case IFM_50G_KR4: case IFM_50G_SR2: case IFM_50G_LR2: case IFM_50G_LAUI2_AC: case IFM_50G_LAUI2: case IFM_50G_AUI2_AC: case IFM_50G_AUI2: case IFM_50G_CP: case IFM_50G_SR: case IFM_50G_LR: case IFM_50G_FR: case IFM_50G_KR_PAM4: case IFM_50G_AUI1_AC: case IFM_50G_AUI1: key = IFM_50G_PCIE; break; case IFM_56G_R4: key = IFM_56G_R4; break; case IFM_25G_PCIE: case IFM_25G_CR: case IFM_25G_KR: case IFM_25G_SR: case IFM_25G_LR: case IFM_25G_ACC: case IFM_25G_AOC: case IFM_25G_T: case IFM_25G_CR_S: case IFM_25G_CR1: case IFM_25G_KR_S: case IFM_25G_AUI: case IFM_25G_KR1: key = IFM_25G_PCIE; break; case IFM_40G_CR4: case IFM_40G_SR4: case IFM_40G_LR4: case IFM_40G_XLPPI: case IFM_40G_KR4: case IFM_40G_XLAUI: case IFM_40G_XLAUI_AC: case IFM_40G_ER4: key = IFM_40G_CR4; break; case IFM_100G_CR4: case IFM_100G_SR4: case IFM_100G_KR4: case IFM_100G_LR4: case IFM_100G_CAUI4_AC: case IFM_100G_CAUI4: case IFM_100G_AUI4_AC: case IFM_100G_AUI4: case IFM_100G_CR_PAM4: case IFM_100G_KR_PAM4: case IFM_100G_CP2: case IFM_100G_SR2: case IFM_100G_DR: case IFM_100G_KR2_PAM4: case IFM_100G_CAUI2_AC: case IFM_100G_CAUI2: case IFM_100G_AUI2_AC: case IFM_100G_AUI2: key = IFM_100G_CR4; break; case IFM_200G_CR4_PAM4: case IFM_200G_SR4: case IFM_200G_FR4: case IFM_200G_LR4: case IFM_200G_DR4: case IFM_200G_KR4_PAM4: case IFM_200G_AUI4_AC: case IFM_200G_AUI4: case IFM_200G_AUI8_AC: case IFM_200G_AUI8: key = IFM_200G_CR4_PAM4; break; case IFM_400G_FR8: case IFM_400G_LR8: case IFM_400G_DR4: case IFM_400G_AUI8_AC: case IFM_400G_AUI8: key = IFM_400G_FR8; break; default: key = subtype; break; } /* bit 5..14: (some bits of) if_index of lagg device */ key |= 0x7fe0 & ((sc->sc_ifp->if_index) << 5); /* bit 15: 0 */ } return (htons(key)); } static void lacp_aggregator_addref(struct lacp_softc *lsc, struct lacp_aggregator *la) { char buf[LACP_LAGIDSTR_MAX+1]; LACP_DPRINTF((NULL, "%s: lagid=%s, refcnt %d -> %d\n", __func__, lacp_format_lagid(&la->la_actor, &la->la_partner, buf, sizeof(buf)), la->la_refcnt, la->la_refcnt + 1)); KASSERT(la->la_refcnt > 0, ("refcount <= 0")); la->la_refcnt++; KASSERT(la->la_refcnt > la->la_nports, ("invalid refcount")); } static void lacp_aggregator_delref(struct lacp_softc *lsc, struct lacp_aggregator *la) { char buf[LACP_LAGIDSTR_MAX+1]; LACP_DPRINTF((NULL, "%s: lagid=%s, refcnt %d -> %d\n", __func__, lacp_format_lagid(&la->la_actor, &la->la_partner, buf, sizeof(buf)), la->la_refcnt, la->la_refcnt - 1)); KASSERT(la->la_refcnt > la->la_nports, ("invalid refcnt")); la->la_refcnt--; if (la->la_refcnt > 0) { return; } KASSERT(la->la_refcnt == 0, ("refcount not zero")); KASSERT(lsc->lsc_active_aggregator != la, ("aggregator active")); TAILQ_REMOVE(&lsc->lsc_aggregators, la, la_q); free(la, M_DEVBUF); } /* * lacp_aggregator_get: allocate an aggregator. */ static struct lacp_aggregator * lacp_aggregator_get(struct lacp_softc *lsc, struct lacp_port *lp) { struct lacp_aggregator *la; la = malloc(sizeof(*la), M_DEVBUF, M_NOWAIT); if (la) { la->la_refcnt = 1; la->la_nports = 0; TAILQ_INIT(&la->la_ports); la->la_pending = 0; TAILQ_INSERT_TAIL(&lsc->lsc_aggregators, la, la_q); } return (la); } /* * lacp_fill_aggregator_id: setup a newly allocated aggregator from a port. */ static void lacp_fill_aggregator_id(struct lacp_aggregator *la, const struct lacp_port *lp) { lacp_fill_aggregator_id_peer(&la->la_partner, &lp->lp_partner); lacp_fill_aggregator_id_peer(&la->la_actor, &lp->lp_actor); la->la_actor.lip_state = lp->lp_state & LACP_STATE_AGGREGATION; } static void lacp_fill_aggregator_id_peer(struct lacp_peerinfo *lpi_aggr, const struct lacp_peerinfo *lpi_port) { memset(lpi_aggr, 0, sizeof(*lpi_aggr)); lpi_aggr->lip_systemid = lpi_port->lip_systemid; lpi_aggr->lip_key = lpi_port->lip_key; } /* * lacp_aggregator_is_compatible: check if a port can join to an aggregator. */ static int lacp_aggregator_is_compatible(const struct lacp_aggregator *la, const struct lacp_port *lp) { if (!(lp->lp_state & LACP_STATE_AGGREGATION) || !(lp->lp_partner.lip_state & LACP_STATE_AGGREGATION)) { return (0); } if (!(la->la_actor.lip_state & LACP_STATE_AGGREGATION)) { return (0); } if (!lacp_peerinfo_is_compatible(&la->la_partner, &lp->lp_partner)) { return (0); } if (!lacp_peerinfo_is_compatible(&la->la_actor, &lp->lp_actor)) { return (0); } return (1); } static int lacp_peerinfo_is_compatible(const struct lacp_peerinfo *a, const struct lacp_peerinfo *b) { if (memcmp(&a->lip_systemid, &b->lip_systemid, sizeof(a->lip_systemid))) { return (0); } if (memcmp(&a->lip_key, &b->lip_key, sizeof(a->lip_key))) { return (0); } return (1); } static void lacp_port_enable(struct lacp_port *lp) { lp->lp_state |= LACP_STATE_AGGREGATION; } static void lacp_port_disable(struct lacp_port *lp) { lacp_set_mux(lp, LACP_MUX_DETACHED); lp->lp_state &= ~LACP_STATE_AGGREGATION; lp->lp_selected = LACP_UNSELECTED; lacp_sm_rx_record_default(lp); lp->lp_partner.lip_state &= ~LACP_STATE_AGGREGATION; lp->lp_state &= ~LACP_STATE_EXPIRED; } /* * lacp_select: select an aggregator. create one if necessary. */ static void lacp_select(struct lacp_port *lp) { struct lacp_softc *lsc = lp->lp_lsc; struct lacp_aggregator *la; char buf[LACP_LAGIDSTR_MAX+1]; if (lp->lp_aggregator) { return; } /* If we haven't heard from our peer, skip this step. */ if (lp->lp_state & LACP_STATE_DEFAULTED) return; KASSERT(!LACP_TIMER_ISARMED(lp, LACP_TIMER_WAIT_WHILE), ("timer_wait_while still active")); LACP_DPRINTF((lp, "port lagid=%s\n", lacp_format_lagid(&lp->lp_actor, &lp->lp_partner, buf, sizeof(buf)))); TAILQ_FOREACH(la, &lsc->lsc_aggregators, la_q) { if (lacp_aggregator_is_compatible(la, lp)) { break; } } if (la == NULL) { la = lacp_aggregator_get(lsc, lp); if (la == NULL) { LACP_DPRINTF((lp, "aggregator creation failed\n")); /* * will retry on the next tick. */ return; } lacp_fill_aggregator_id(la, lp); LACP_DPRINTF((lp, "aggregator created\n")); } else { LACP_DPRINTF((lp, "compatible aggregator found\n")); if (la->la_refcnt == LACP_MAX_PORTS) return; lacp_aggregator_addref(lsc, la); } LACP_DPRINTF((lp, "aggregator lagid=%s\n", lacp_format_lagid(&la->la_actor, &la->la_partner, buf, sizeof(buf)))); lp->lp_aggregator = la; lp->lp_selected = LACP_SELECTED; } /* * lacp_unselect: finish unselect/detach process. */ static void lacp_unselect(struct lacp_port *lp) { struct lacp_softc *lsc = lp->lp_lsc; struct lacp_aggregator *la = lp->lp_aggregator; KASSERT(!LACP_TIMER_ISARMED(lp, LACP_TIMER_WAIT_WHILE), ("timer_wait_while still active")); if (la == NULL) { return; } lp->lp_aggregator = NULL; lacp_aggregator_delref(lsc, la); } /* mux machine */ static void lacp_sm_mux(struct lacp_port *lp) { struct lagg_port *lgp = lp->lp_lagg; struct lagg_softc *sc = lgp->lp_softc; enum lacp_mux_state new_state; boolean_t p_sync = (lp->lp_partner.lip_state & LACP_STATE_SYNC) != 0; boolean_t p_collecting = (lp->lp_partner.lip_state & LACP_STATE_COLLECTING) != 0; enum lacp_selected selected = lp->lp_selected; struct lacp_aggregator *la; if (V_lacp_debug > 1) lacp_dprintf(lp, "%s: state= 0x%x, selected= 0x%x, " "p_sync= 0x%x, p_collecting= 0x%x\n", __func__, lp->lp_mux_state, selected, p_sync, p_collecting); re_eval: la = lp->lp_aggregator; KASSERT(lp->lp_mux_state == LACP_MUX_DETACHED || la != NULL, ("MUX not detached")); new_state = lp->lp_mux_state; switch (lp->lp_mux_state) { case LACP_MUX_DETACHED: if (selected != LACP_UNSELECTED) { new_state = LACP_MUX_WAITING; } break; case LACP_MUX_WAITING: KASSERT(la->la_pending > 0 || !LACP_TIMER_ISARMED(lp, LACP_TIMER_WAIT_WHILE), ("timer_wait_while still active")); if (selected == LACP_SELECTED && la->la_pending == 0) { new_state = LACP_MUX_ATTACHED; } else if (selected == LACP_UNSELECTED) { new_state = LACP_MUX_DETACHED; } break; case LACP_MUX_ATTACHED: if (selected == LACP_SELECTED && p_sync) { new_state = LACP_MUX_COLLECTING; } else if (selected != LACP_SELECTED) { new_state = LACP_MUX_DETACHED; } break; case LACP_MUX_COLLECTING: if (selected == LACP_SELECTED && p_sync && p_collecting) { new_state = LACP_MUX_DISTRIBUTING; } else if (selected != LACP_SELECTED || !p_sync) { new_state = LACP_MUX_ATTACHED; } break; case LACP_MUX_DISTRIBUTING: if (selected != LACP_SELECTED || !p_sync || !p_collecting) { new_state = LACP_MUX_COLLECTING; lacp_dprintf(lp, "Interface stopped DISTRIBUTING, possible flapping\n"); sc->sc_flapping++; } break; default: panic("%s: unknown state", __func__); } if (lp->lp_mux_state == new_state) { return; } lacp_set_mux(lp, new_state); goto re_eval; } static void lacp_set_mux(struct lacp_port *lp, enum lacp_mux_state new_state) { struct lacp_aggregator *la = lp->lp_aggregator; if (lp->lp_mux_state == new_state) { return; } switch (new_state) { case LACP_MUX_DETACHED: lp->lp_state &= ~LACP_STATE_SYNC; lacp_disable_distributing(lp); lacp_disable_collecting(lp); lacp_sm_assert_ntt(lp); /* cancel timer */ if (LACP_TIMER_ISARMED(lp, LACP_TIMER_WAIT_WHILE)) { KASSERT(la->la_pending > 0, ("timer_wait_while not active")); la->la_pending--; } LACP_TIMER_DISARM(lp, LACP_TIMER_WAIT_WHILE); lacp_unselect(lp); break; case LACP_MUX_WAITING: LACP_TIMER_ARM(lp, LACP_TIMER_WAIT_WHILE, LACP_AGGREGATE_WAIT_TIME); la->la_pending++; break; case LACP_MUX_ATTACHED: lp->lp_state |= LACP_STATE_SYNC; lacp_disable_collecting(lp); lacp_sm_assert_ntt(lp); break; case LACP_MUX_COLLECTING: lacp_enable_collecting(lp); lacp_disable_distributing(lp); lacp_sm_assert_ntt(lp); break; case LACP_MUX_DISTRIBUTING: lacp_enable_distributing(lp); break; default: panic("%s: unknown state", __func__); } LACP_DPRINTF((lp, "mux_state %d -> %d\n", lp->lp_mux_state, new_state)); lp->lp_mux_state = new_state; } static void lacp_sm_mux_timer(struct lacp_port *lp) { struct lacp_aggregator *la = lp->lp_aggregator; char buf[LACP_LAGIDSTR_MAX+1]; KASSERT(la->la_pending > 0, ("no pending event")); LACP_DPRINTF((lp, "%s: aggregator %s, pending %d -> %d\n", __func__, lacp_format_lagid(&la->la_actor, &la->la_partner, buf, sizeof(buf)), la->la_pending, la->la_pending - 1)); la->la_pending--; } /* periodic transmit machine */ static void lacp_sm_ptx_update_timeout(struct lacp_port *lp, uint8_t oldpstate) { if (LACP_STATE_EQ(oldpstate, lp->lp_partner.lip_state, LACP_STATE_TIMEOUT)) { return; } LACP_DPRINTF((lp, "partner timeout changed\n")); /* * FAST_PERIODIC -> SLOW_PERIODIC * or * SLOW_PERIODIC (-> PERIODIC_TX) -> FAST_PERIODIC * * let lacp_sm_ptx_tx_schedule to update timeout. */ LACP_TIMER_DISARM(lp, LACP_TIMER_PERIODIC); /* * if timeout has been shortened, assert NTT. */ if ((lp->lp_partner.lip_state & LACP_STATE_TIMEOUT)) { lacp_sm_assert_ntt(lp); } } static void lacp_sm_ptx_tx_schedule(struct lacp_port *lp) { int timeout; if (!(lp->lp_state & LACP_STATE_ACTIVITY) && !(lp->lp_partner.lip_state & LACP_STATE_ACTIVITY)) { /* * NO_PERIODIC */ LACP_TIMER_DISARM(lp, LACP_TIMER_PERIODIC); return; } if (LACP_TIMER_ISARMED(lp, LACP_TIMER_PERIODIC)) { return; } timeout = (lp->lp_partner.lip_state & LACP_STATE_TIMEOUT) ? LACP_FAST_PERIODIC_TIME : LACP_SLOW_PERIODIC_TIME; LACP_TIMER_ARM(lp, LACP_TIMER_PERIODIC, timeout); } static void lacp_sm_ptx_timer(struct lacp_port *lp) { lacp_sm_assert_ntt(lp); } static void lacp_sm_rx(struct lacp_port *lp, const struct lacpdu *du) { int timeout; /* * check LACP_DISABLED first */ if (!(lp->lp_state & LACP_STATE_AGGREGATION)) { return; } /* * check loopback condition. */ if (!lacp_compare_systemid(&du->ldu_actor.lip_systemid, &lp->lp_actor.lip_systemid)) { return; } /* * EXPIRED, DEFAULTED, CURRENT -> CURRENT */ lacp_sm_rx_update_selected(lp, du); lacp_sm_rx_update_ntt(lp, du); lacp_sm_rx_record_pdu(lp, du); timeout = (lp->lp_state & LACP_STATE_TIMEOUT) ? LACP_SHORT_TIMEOUT_TIME : LACP_LONG_TIMEOUT_TIME; LACP_TIMER_ARM(lp, LACP_TIMER_CURRENT_WHILE, timeout); lp->lp_state &= ~LACP_STATE_EXPIRED; /* * kick transmit machine without waiting the next tick. */ lacp_sm_tx(lp); } static void lacp_sm_rx_set_expired(struct lacp_port *lp) { lp->lp_partner.lip_state &= ~LACP_STATE_SYNC; lp->lp_partner.lip_state |= LACP_STATE_TIMEOUT; LACP_TIMER_ARM(lp, LACP_TIMER_CURRENT_WHILE, LACP_SHORT_TIMEOUT_TIME); lp->lp_state |= LACP_STATE_EXPIRED; } static void lacp_sm_rx_timer(struct lacp_port *lp) { if ((lp->lp_state & LACP_STATE_EXPIRED) == 0) { /* CURRENT -> EXPIRED */ LACP_DPRINTF((lp, "%s: CURRENT -> EXPIRED\n", __func__)); lacp_sm_rx_set_expired(lp); } else { /* EXPIRED -> DEFAULTED */ LACP_DPRINTF((lp, "%s: EXPIRED -> DEFAULTED\n", __func__)); lacp_sm_rx_update_default_selected(lp); lacp_sm_rx_record_default(lp); lp->lp_state &= ~LACP_STATE_EXPIRED; } } static void lacp_sm_rx_record_pdu(struct lacp_port *lp, const struct lacpdu *du) { boolean_t active; uint8_t oldpstate; char buf[LACP_STATESTR_MAX+1]; LACP_TRACE(lp); oldpstate = lp->lp_partner.lip_state; active = (du->ldu_actor.lip_state & LACP_STATE_ACTIVITY) || ((lp->lp_state & LACP_STATE_ACTIVITY) && (du->ldu_partner.lip_state & LACP_STATE_ACTIVITY)); lp->lp_partner = du->ldu_actor; if (active && ((LACP_STATE_EQ(lp->lp_state, du->ldu_partner.lip_state, LACP_STATE_AGGREGATION) && !lacp_compare_peerinfo(&lp->lp_actor, &du->ldu_partner)) || (du->ldu_partner.lip_state & LACP_STATE_AGGREGATION) == 0)) { /* * XXX Maintain legacy behavior of leaving the * LACP_STATE_SYNC bit unchanged from the partner's * advertisement if lsc_strict_mode is false. * TODO: We should re-examine the concept of the "strict mode" * to ensure it makes sense to maintain a non-strict mode. */ if (lp->lp_lsc->lsc_strict_mode) lp->lp_partner.lip_state |= LACP_STATE_SYNC; } else { lp->lp_partner.lip_state &= ~LACP_STATE_SYNC; } lp->lp_state &= ~LACP_STATE_DEFAULTED; if (oldpstate != lp->lp_partner.lip_state) { LACP_DPRINTF((lp, "old pstate %s\n", lacp_format_state(oldpstate, buf, sizeof(buf)))); LACP_DPRINTF((lp, "new pstate %s\n", lacp_format_state(lp->lp_partner.lip_state, buf, sizeof(buf)))); } lacp_sm_ptx_update_timeout(lp, oldpstate); } static void lacp_sm_rx_update_ntt(struct lacp_port *lp, const struct lacpdu *du) { LACP_TRACE(lp); if (lacp_compare_peerinfo(&lp->lp_actor, &du->ldu_partner) || !LACP_STATE_EQ(lp->lp_state, du->ldu_partner.lip_state, LACP_STATE_ACTIVITY | LACP_STATE_SYNC | LACP_STATE_AGGREGATION)) { LACP_DPRINTF((lp, "%s: assert ntt\n", __func__)); lacp_sm_assert_ntt(lp); } } static void lacp_sm_rx_record_default(struct lacp_port *lp) { uint8_t oldpstate; LACP_TRACE(lp); oldpstate = lp->lp_partner.lip_state; if (lp->lp_lsc->lsc_strict_mode) lp->lp_partner = lacp_partner_admin_strict; else lp->lp_partner = lacp_partner_admin_optimistic; lp->lp_state |= LACP_STATE_DEFAULTED; lacp_sm_ptx_update_timeout(lp, oldpstate); } static void lacp_sm_rx_update_selected_from_peerinfo(struct lacp_port *lp, const struct lacp_peerinfo *info) { LACP_TRACE(lp); if (lacp_compare_peerinfo(&lp->lp_partner, info) || !LACP_STATE_EQ(lp->lp_partner.lip_state, info->lip_state, LACP_STATE_AGGREGATION)) { lp->lp_selected = LACP_UNSELECTED; /* mux machine will clean up lp->lp_aggregator */ } } static void lacp_sm_rx_update_selected(struct lacp_port *lp, const struct lacpdu *du) { LACP_TRACE(lp); lacp_sm_rx_update_selected_from_peerinfo(lp, &du->ldu_actor); } static void lacp_sm_rx_update_default_selected(struct lacp_port *lp) { LACP_TRACE(lp); if (lp->lp_lsc->lsc_strict_mode) lacp_sm_rx_update_selected_from_peerinfo(lp, &lacp_partner_admin_strict); else lacp_sm_rx_update_selected_from_peerinfo(lp, &lacp_partner_admin_optimistic); } /* transmit machine */ static void lacp_sm_tx(struct lacp_port *lp) { int error = 0; if (!(lp->lp_state & LACP_STATE_AGGREGATION) #if 1 || (!(lp->lp_state & LACP_STATE_ACTIVITY) && !(lp->lp_partner.lip_state & LACP_STATE_ACTIVITY)) #endif ) { lp->lp_flags &= ~LACP_PORT_NTT; } if (!(lp->lp_flags & LACP_PORT_NTT)) { return; } /* Rate limit to 3 PDUs per LACP_FAST_PERIODIC_TIME */ if (ppsratecheck(&lp->lp_last_lacpdu, &lp->lp_lacpdu_sent, (3 / LACP_FAST_PERIODIC_TIME)) == 0) { LACP_DPRINTF((lp, "rate limited pdu\n")); return; } if (((1 << lp->lp_ifp->if_dunit) & lp->lp_lsc->lsc_debug.lsc_tx_test) == 0) { error = lacp_xmit_lacpdu(lp); } else { LACP_TPRINTF((lp, "Dropping TX PDU\n")); } if (error == 0) { lp->lp_flags &= ~LACP_PORT_NTT; } else { LACP_DPRINTF((lp, "lacpdu transmit failure, error %d\n", error)); } } static void lacp_sm_assert_ntt(struct lacp_port *lp) { lp->lp_flags |= LACP_PORT_NTT; } static void lacp_run_timers(struct lacp_port *lp) { int i; for (i = 0; i < LACP_NTIMER; i++) { KASSERT(lp->lp_timer[i] >= 0, ("invalid timer value %d", lp->lp_timer[i])); if (lp->lp_timer[i] == 0) { continue; } else if (--lp->lp_timer[i] <= 0) { if (lacp_timer_funcs[i]) { (*lacp_timer_funcs[i])(lp); } } } } int lacp_marker_input(struct lacp_port *lp, struct mbuf *m) { struct lacp_softc *lsc = lp->lp_lsc; struct lagg_port *lgp = lp->lp_lagg; struct lacp_port *lp2; struct markerdu *mdu; int error = 0; int pending = 0; if (m->m_pkthdr.len != sizeof(*mdu)) { goto bad; } if ((m->m_flags & M_MCAST) == 0) { goto bad; } if (m->m_len < sizeof(*mdu)) { m = m_pullup(m, sizeof(*mdu)); if (m == NULL) { return (ENOMEM); } } mdu = mtod(m, struct markerdu *); if (memcmp(&mdu->mdu_eh.ether_dhost, ðermulticastaddr_slowprotocols, ETHER_ADDR_LEN)) { goto bad; } if (mdu->mdu_sph.sph_version != 1) { goto bad; } switch (mdu->mdu_tlv.tlv_type) { case MARKER_TYPE_INFO: if (tlv_check(mdu, sizeof(*mdu), &mdu->mdu_tlv, marker_info_tlv_template, TRUE)) { goto bad; } mdu->mdu_tlv.tlv_type = MARKER_TYPE_RESPONSE; memcpy(&mdu->mdu_eh.ether_dhost, ðermulticastaddr_slowprotocols, ETHER_ADDR_LEN); memcpy(&mdu->mdu_eh.ether_shost, lgp->lp_lladdr, ETHER_ADDR_LEN); error = lagg_enqueue(lp->lp_ifp, m); break; case MARKER_TYPE_RESPONSE: if (tlv_check(mdu, sizeof(*mdu), &mdu->mdu_tlv, marker_response_tlv_template, TRUE)) { goto bad; } LACP_DPRINTF((lp, "marker response, port=%u, sys=%6D, id=%u\n", ntohs(mdu->mdu_info.mi_rq_port), mdu->mdu_info.mi_rq_system, ":", ntohl(mdu->mdu_info.mi_rq_xid))); /* Verify that it is the last marker we sent out */ if (memcmp(&mdu->mdu_info, &lp->lp_marker, sizeof(struct lacp_markerinfo))) goto bad; LACP_LOCK(lsc); lp->lp_flags &= ~LACP_PORT_MARK; if (lsc->lsc_suppress_distributing) { /* Check if any ports are waiting for a response */ LIST_FOREACH(lp2, &lsc->lsc_ports, lp_next) { if (lp2->lp_flags & LACP_PORT_MARK) { pending = 1; break; } } if (pending == 0) { /* All interface queues are clear */ LACP_DPRINTF((NULL, "queue flush complete\n")); lsc->lsc_suppress_distributing = FALSE; } } LACP_UNLOCK(lsc); m_freem(m); break; default: goto bad; } return (error); bad: LACP_DPRINTF((lp, "bad marker frame\n")); m_freem(m); return (EINVAL); } static int tlv_check(const void *p, size_t size, const struct tlvhdr *tlv, const struct tlv_template *tmpl, boolean_t check_type) { while (/* CONSTCOND */ 1) { if ((const char *)tlv - (const char *)p + sizeof(*tlv) > size) { return (EINVAL); } if ((check_type && tlv->tlv_type != tmpl->tmpl_type) || tlv->tlv_length != tmpl->tmpl_length) { return (EINVAL); } if (tmpl->tmpl_type == 0) { break; } tlv = (const struct tlvhdr *) ((const char *)tlv + tlv->tlv_length); tmpl++; } return (0); } /* Debugging */ const char * lacp_format_mac(const uint8_t *mac, char *buf, size_t buflen) { snprintf(buf, buflen, "%02X-%02X-%02X-%02X-%02X-%02X", (int)mac[0], (int)mac[1], (int)mac[2], (int)mac[3], (int)mac[4], (int)mac[5]); return (buf); } const char * lacp_format_systemid(const struct lacp_systemid *sysid, char *buf, size_t buflen) { char macbuf[LACP_MACSTR_MAX+1]; snprintf(buf, buflen, "%04X,%s", ntohs(sysid->lsi_prio), lacp_format_mac(sysid->lsi_mac, macbuf, sizeof(macbuf))); return (buf); } const char * lacp_format_portid(const struct lacp_portid *portid, char *buf, size_t buflen) { snprintf(buf, buflen, "%04X,%04X", ntohs(portid->lpi_prio), ntohs(portid->lpi_portno)); return (buf); } const char * lacp_format_partner(const struct lacp_peerinfo *peer, char *buf, size_t buflen) { char sysid[LACP_SYSTEMIDSTR_MAX+1]; char portid[LACP_PORTIDSTR_MAX+1]; snprintf(buf, buflen, "(%s,%04X,%s)", lacp_format_systemid(&peer->lip_systemid, sysid, sizeof(sysid)), ntohs(peer->lip_key), lacp_format_portid(&peer->lip_portid, portid, sizeof(portid))); return (buf); } const char * lacp_format_lagid(const struct lacp_peerinfo *a, const struct lacp_peerinfo *b, char *buf, size_t buflen) { char astr[LACP_PARTNERSTR_MAX+1]; char bstr[LACP_PARTNERSTR_MAX+1]; #if 0 /* * there's a convention to display small numbered peer * in the left. */ if (lacp_compare_peerinfo(a, b) > 0) { const struct lacp_peerinfo *t; t = a; a = b; b = t; } #endif snprintf(buf, buflen, "[%s,%s]", lacp_format_partner(a, astr, sizeof(astr)), lacp_format_partner(b, bstr, sizeof(bstr))); return (buf); } const char * lacp_format_lagid_aggregator(const struct lacp_aggregator *la, char *buf, size_t buflen) { if (la == NULL) { return ("(none)"); } return (lacp_format_lagid(&la->la_actor, &la->la_partner, buf, buflen)); } const char * lacp_format_state(uint8_t state, char *buf, size_t buflen) { snprintf(buf, buflen, "%b", state, LACP_STATE_BITS); return (buf); } static void lacp_dump_lacpdu(const struct lacpdu *du) { char buf[LACP_PARTNERSTR_MAX+1]; char buf2[LACP_STATESTR_MAX+1]; printf("actor=%s\n", lacp_format_partner(&du->ldu_actor, buf, sizeof(buf))); printf("actor.state=%s\n", lacp_format_state(du->ldu_actor.lip_state, buf2, sizeof(buf2))); printf("partner=%s\n", lacp_format_partner(&du->ldu_partner, buf, sizeof(buf))); printf("partner.state=%s\n", lacp_format_state(du->ldu_partner.lip_state, buf2, sizeof(buf2))); printf("maxdelay=%d\n", ntohs(du->ldu_collector.lci_maxdelay)); } static void lacp_dprintf(const struct lacp_port *lp, const char *fmt, ...) { va_list va; if (lp) { printf("%s: ", lp->lp_ifp->if_xname); } va_start(va, fmt); vprintf(fmt, va); va_end(va); } Index: head/sys/net/if_media.h =================================================================== --- head/sys/net/if_media.h (revision 357764) +++ head/sys/net/if_media.h (revision 357765) @@ -1,934 +1,937 @@ /* $NetBSD: if_media.h,v 1.3 1997/03/26 01:19:27 thorpej Exp $ */ /* $FreeBSD$ */ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1997 * Jonathan Stone and Jason R. Thorpe. All rights reserved. * * This software is derived from information provided by Matt Thomas. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Jonathan Stone * and Jason R. Thorpe for the NetBSD Project. * 4. The names of the authors may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _NET_IF_MEDIA_H_ #define _NET_IF_MEDIA_H_ /* * Prototypes and definitions for BSD/OS-compatible network interface * media selection. * * Where it is safe to do so, this code strays slightly from the BSD/OS * design. Software which uses the API (device drivers, basically) * shouldn't notice any difference. * * Many thanks to Matt Thomas for providing the information necessary * to implement this interface. */ #ifdef _KERNEL #include struct ifnet; /* * Driver callbacks for media status and change requests. */ typedef int (*ifm_change_cb_t)(struct ifnet *); typedef void (*ifm_stat_cb_t)(struct ifnet *, struct ifmediareq *req); /* * In-kernel representation of a single supported media type. */ struct ifmedia_entry { LIST_ENTRY(ifmedia_entry) ifm_list; int ifm_media; /* description of this media attachment */ int ifm_data; /* for driver-specific use */ void *ifm_aux; /* for driver-specific use */ }; /* * One of these goes into a network interface's softc structure. * It is used to keep general media state. */ struct ifmedia { int ifm_mask; /* mask of changes we don't care about */ int ifm_media; /* current user-set media word */ struct ifmedia_entry *ifm_cur; /* currently selected media */ LIST_HEAD(, ifmedia_entry) ifm_list; /* list of all supported media */ ifm_change_cb_t ifm_change; /* media change driver callback */ ifm_stat_cb_t ifm_status; /* media status driver callback */ }; /* Initialize an interface's struct if_media field. */ void ifmedia_init(struct ifmedia *ifm, int dontcare_mask, ifm_change_cb_t change_callback, ifm_stat_cb_t status_callback); /* Remove all mediums from a struct ifmedia. */ void ifmedia_removeall( struct ifmedia *ifm); /* Add one supported medium to a struct ifmedia. */ void ifmedia_add(struct ifmedia *ifm, int mword, int data, void *aux); /* Add an array (of ifmedia_entry) media to a struct ifmedia. */ void ifmedia_list_add(struct ifmedia *mp, struct ifmedia_entry *lp, int count); /* Set default media type on initialization. */ void ifmedia_set(struct ifmedia *ifm, int mword); /* Common ioctl function for getting/setting media, called by driver. */ int ifmedia_ioctl(struct ifnet *ifp, struct ifreq *ifr, struct ifmedia *ifm, u_long cmd); /* Compute baudrate for a given media. */ uint64_t ifmedia_baudrate(int); #endif /*_KERNEL */ /* * if_media Options word: * Bits Use * ---- ------- * 0-4 Media variant * 5-7 Media type * 8-15 Type specific options (includes added variant bits on Ethernet) * 16-18 Mode (for multi-mode devices) * 19 RFU * 20-27 Shared (global) options * 28-31 Instance */ /* * Ethernet * In order to use more than 31 subtypes, Ethernet uses some of the option * bits as part of the subtype field. See the options section below for * relevant definitions */ #define IFM_ETHER 0x00000020 #define IFM_ETHER_SUBTYPE(x) (((x) & IFM_TMASK) | \ (((x) & (IFM_ETH_XTYPE >> IFM_ETH_XSHIFT)) << IFM_ETH_XSHIFT)) #define IFM_X(x) IFM_ETHER_SUBTYPE(x) /* internal shorthand */ #define IFM_ETHER_SUBTYPE_SET(x) (IFM_ETHER_SUBTYPE(x) | IFM_ETHER) #define IFM_ETHER_SUBTYPE_GET(x) ((x) & (IFM_TMASK|IFM_ETH_XTYPE)) #define IFM_ETHER_IS_EXTENDED(x) ((x) & IFM_ETH_XTYPE) #define IFM_10_T 3 /* 10BaseT - RJ45 */ #define IFM_10_2 4 /* 10Base2 - Thinnet */ #define IFM_10_5 5 /* 10Base5 - AUI */ #define IFM_100_TX 6 /* 100BaseTX - RJ45 */ #define IFM_100_FX 7 /* 100BaseFX - Fiber */ #define IFM_100_T4 8 /* 100BaseT4 - 4 pair cat 3 */ #define IFM_100_VG 9 /* 100VG-AnyLAN */ #define IFM_100_T2 10 /* 100BaseT2 */ #define IFM_1000_SX 11 /* 1000BaseSX - multi-mode fiber */ #define IFM_10_STP 12 /* 10BaseT over shielded TP */ #define IFM_10_FL 13 /* 10BaseFL - Fiber */ #define IFM_1000_LX 14 /* 1000baseLX - single-mode fiber */ #define IFM_1000_CX 15 /* 1000baseCX - 150ohm STP */ #define IFM_1000_T 16 /* 1000baseT - 4 pair cat 5 */ #define IFM_HPNA_1 17 /* HomePNA 1.0 (1Mb/s) */ #define IFM_10G_LR 18 /* 10GBase-LR 1310nm Single-mode */ #define IFM_10G_SR 19 /* 10GBase-SR 850nm Multi-mode */ #define IFM_10G_CX4 20 /* 10GBase CX4 copper */ #define IFM_2500_SX 21 /* 2500BaseSX - multi-mode fiber */ #define IFM_10G_TWINAX 22 /* 10GBase Twinax copper */ #define IFM_10G_TWINAX_LONG 23 /* 10GBase Twinax Long copper */ #define IFM_10G_LRM 24 /* 10GBase-LRM 850nm Multi-mode */ #define IFM_UNKNOWN 25 /* media types not defined yet */ #define IFM_10G_T 26 /* 10GBase-T - RJ45 */ #define IFM_40G_CR4 27 /* 40GBase-CR4 */ #define IFM_40G_SR4 28 /* 40GBase-SR4 */ #define IFM_40G_LR4 29 /* 40GBase-LR4 */ #define IFM_1000_KX 30 /* 1000Base-KX backplane */ #define IFM_OTHER 31 /* Other: one of the following */ /* following types are not visible to old binaries using only IFM_TMASK */ #define IFM_10G_KX4 IFM_X(32) /* 10GBase-KX4 backplane */ #define IFM_10G_KR IFM_X(33) /* 10GBase-KR backplane */ #define IFM_10G_CR1 IFM_X(34) /* 10GBase-CR1 Twinax splitter */ #define IFM_20G_KR2 IFM_X(35) /* 20GBase-KR2 backplane */ #define IFM_2500_KX IFM_X(36) /* 2500Base-KX backplane */ #define IFM_2500_T IFM_X(37) /* 2500Base-T - RJ45 (NBaseT) */ #define IFM_5000_T IFM_X(38) /* 5000Base-T - RJ45 (NBaseT) */ #define IFM_50G_PCIE IFM_X(39) /* 50G Ethernet over PCIE */ #define IFM_25G_PCIE IFM_X(40) /* 25G Ethernet over PCIE */ #define IFM_1000_SGMII IFM_X(41) /* 1G media interface */ #define IFM_10G_SFI IFM_X(42) /* 10G media interface */ #define IFM_40G_XLPPI IFM_X(43) /* 40G media interface */ #define IFM_1000_CX_SGMII IFM_X(44) /* 1000Base-CX-SGMII */ #define IFM_40G_KR4 IFM_X(45) /* 40GBase-KR4 */ #define IFM_10G_ER IFM_X(46) /* 10GBase-ER */ #define IFM_100G_CR4 IFM_X(47) /* 100GBase-CR4 */ #define IFM_100G_SR4 IFM_X(48) /* 100GBase-SR4 */ #define IFM_100G_KR4 IFM_X(49) /* 100GBase-KR4 */ #define IFM_100G_LR4 IFM_X(50) /* 100GBase-LR4 */ #define IFM_56G_R4 IFM_X(51) /* 56GBase-R4 */ #define IFM_100_T IFM_X(52) /* 100BaseT - RJ45 */ #define IFM_25G_CR IFM_X(53) /* 25GBase-CR */ #define IFM_25G_KR IFM_X(54) /* 25GBase-KR */ #define IFM_25G_SR IFM_X(55) /* 25GBase-SR */ #define IFM_50G_CR2 IFM_X(56) /* 50GBase-CR2 */ #define IFM_50G_KR2 IFM_X(57) /* 50GBase-KR2 */ #define IFM_25G_LR IFM_X(58) /* 25GBase-LR */ #define IFM_10G_AOC IFM_X(59) /* 10G active optical cable */ #define IFM_25G_ACC IFM_X(60) /* 25G active copper cable */ #define IFM_25G_AOC IFM_X(61) /* 25G active optical cable */ #define IFM_100_SGMII IFM_X(62) /* 100M media interface */ #define IFM_2500_X IFM_X(63) /* 2500BaseX */ #define IFM_5000_KR IFM_X(64) /* 5GBase-KR backplane */ #define IFM_25G_T IFM_X(65) /* 25GBase-T - RJ45 */ #define IFM_25G_CR_S IFM_X(66) /* 25GBase-CR (short) */ #define IFM_25G_CR1 IFM_X(67) /* 25GBase-CR1 DA cable */ #define IFM_25G_KR_S IFM_X(68) /* 25GBase-KR (short) */ #define IFM_5000_KR_S IFM_X(69) /* 5GBase-KR backplane (short) */ #define IFM_5000_KR1 IFM_X(70) /* 5GBase-KR backplane */ #define IFM_25G_AUI IFM_X(71) /* 25G-AUI-C2C (chip to chip) */ #define IFM_40G_XLAUI IFM_X(72) /* 40G-XLAUI */ #define IFM_40G_XLAUI_AC IFM_X(73) /* 40G active copper/optical */ #define IFM_40G_ER4 IFM_X(74) /* 40GBase-ER4 */ #define IFM_50G_SR2 IFM_X(75) /* 50GBase-SR2 */ #define IFM_50G_LR2 IFM_X(76) /* 50GBase-LR2 */ #define IFM_50G_LAUI2_AC IFM_X(77) /* 50G active copper/optical */ #define IFM_50G_LAUI2 IFM_X(78) /* 50G-LAUI2 */ #define IFM_50G_AUI2_AC IFM_X(79) /* 50G active copper/optical */ #define IFM_50G_AUI2 IFM_X(80) /* 50G-AUI2 */ #define IFM_50G_CP IFM_X(81) /* 50GBase-CP */ #define IFM_50G_SR IFM_X(82) /* 50GBase-SR */ #define IFM_50G_LR IFM_X(83) /* 50GBase-LR */ #define IFM_50G_FR IFM_X(84) /* 50GBase-FR */ #define IFM_50G_KR_PAM4 IFM_X(85) /* 50GBase-KR PAM4 */ #define IFM_25G_KR1 IFM_X(86) /* 25GBase-KR1 */ #define IFM_50G_AUI1_AC IFM_X(87) /* 50G active copper/optical */ #define IFM_50G_AUI1 IFM_X(88) /* 50G-AUI1 */ #define IFM_100G_CAUI4_AC IFM_X(89) /* 100G-CAUI4 active copper/optical */ #define IFM_100G_CAUI4 IFM_X(90) /* 100G-CAUI4 */ #define IFM_100G_AUI4_AC IFM_X(91) /* 100G-AUI4 active copper/optical */ #define IFM_100G_AUI4 IFM_X(92) /* 100G-AUI4 */ #define IFM_100G_CR_PAM4 IFM_X(93) /* 100GBase-CR PAM4 */ #define IFM_100G_KR_PAM4 IFM_X(94) /* 100GBase-CR PAM4 */ #define IFM_100G_CP2 IFM_X(95) /* 100GBase-CP2 */ #define IFM_100G_SR2 IFM_X(96) /* 100GBase-SR2 */ #define IFM_100G_DR IFM_X(97) /* 100GBase-DR */ #define IFM_100G_KR2_PAM4 IFM_X(98) /* 100GBase-KR2 PAM4 */ #define IFM_100G_CAUI2_AC IFM_X(99) /* 100G-CAUI2 active copper/optical */ #define IFM_100G_CAUI2 IFM_X(100) /* 100G-CAUI2 */ #define IFM_100G_AUI2_AC IFM_X(101) /* 100G-AUI2 active copper/optical */ #define IFM_100G_AUI2 IFM_X(102) /* 100G-AUI2 */ #define IFM_200G_CR4_PAM4 IFM_X(103) /* 200GBase-CR4 PAM4 */ #define IFM_200G_SR4 IFM_X(104) /* 200GBase-SR4 */ #define IFM_200G_FR4 IFM_X(105) /* 200GBase-FR4 */ #define IFM_200G_LR4 IFM_X(106) /* 200GBase-LR4 */ #define IFM_200G_DR4 IFM_X(107) /* 200GBase-DR4 */ #define IFM_200G_KR4_PAM4 IFM_X(108) /* 200GBase-KR4 PAM4 */ #define IFM_200G_AUI4_AC IFM_X(109) /* 200G-AUI4 active copper/optical */ #define IFM_200G_AUI4 IFM_X(110) /* 200G-AUI4 */ #define IFM_200G_AUI8_AC IFM_X(111) /* 200G-AUI8 active copper/optical */ #define IFM_200G_AUI8 IFM_X(112) /* 200G-AUI8 */ #define IFM_400G_FR8 IFM_X(113) /* 400GBase-FR8 */ #define IFM_400G_LR8 IFM_X(114) /* 400GBase-LR8 */ #define IFM_400G_DR4 IFM_X(115) /* 400GBase-DR4 */ #define IFM_400G_AUI8_AC IFM_X(116) /* 400G-AUI8 active copper/optical */ #define IFM_400G_AUI8 IFM_X(117) /* 400G-AUI8 */ +#define IFM_50G_KR4 IFM_X(118) /* 50GBase-KR4 */ /* * Please update ieee8023ad_lacp.c:lacp_compose_key() * after adding new Ethernet media types. */ /* Note IFM_X(511) is the max! */ /* Ethernet option values; includes bits used for extended variant field */ #define IFM_ETH_MASTER 0x00000100 /* master mode (1000baseT) */ #define IFM_ETH_RXPAUSE 0x00000200 /* receive PAUSE frames */ #define IFM_ETH_TXPAUSE 0x00000400 /* transmit PAUSE frames */ #define IFM_ETH_XTYPE 0x00007800 /* extended media variants */ #define IFM_ETH_XSHIFT 6 /* shift XTYPE next to TMASK */ /* * IEEE 802.11 Wireless */ #define IFM_IEEE80211 0x00000080 /* NB: 0,1,2 are auto, manual, none defined below */ #define IFM_IEEE80211_FH1 3 /* Frequency Hopping 1Mbps */ #define IFM_IEEE80211_FH2 4 /* Frequency Hopping 2Mbps */ #define IFM_IEEE80211_DS1 5 /* Direct Sequence 1Mbps */ #define IFM_IEEE80211_DS2 6 /* Direct Sequence 2Mbps */ #define IFM_IEEE80211_DS5 7 /* Direct Sequence 5.5Mbps */ #define IFM_IEEE80211_DS11 8 /* Direct Sequence 11Mbps */ #define IFM_IEEE80211_DS22 9 /* Direct Sequence 22Mbps */ #define IFM_IEEE80211_OFDM6 10 /* OFDM 6Mbps */ #define IFM_IEEE80211_OFDM9 11 /* OFDM 9Mbps */ #define IFM_IEEE80211_OFDM12 12 /* OFDM 12Mbps */ #define IFM_IEEE80211_OFDM18 13 /* OFDM 18Mbps */ #define IFM_IEEE80211_OFDM24 14 /* OFDM 24Mbps */ #define IFM_IEEE80211_OFDM36 15 /* OFDM 36Mbps */ #define IFM_IEEE80211_OFDM48 16 /* OFDM 48Mbps */ #define IFM_IEEE80211_OFDM54 17 /* OFDM 54Mbps */ #define IFM_IEEE80211_OFDM72 18 /* OFDM 72Mbps */ #define IFM_IEEE80211_DS354k 19 /* Direct Sequence 354Kbps */ #define IFM_IEEE80211_DS512k 20 /* Direct Sequence 512Kbps */ #define IFM_IEEE80211_OFDM3 21 /* OFDM 3Mbps */ #define IFM_IEEE80211_OFDM4 22 /* OFDM 4.5Mbps */ #define IFM_IEEE80211_OFDM27 23 /* OFDM 27Mbps */ /* NB: not enough bits to express MCS fully */ #define IFM_IEEE80211_MCS 24 /* HT MCS rate */ #define IFM_IEEE80211_VHT 25 /* VHT MCS rate */ #define IFM_IEEE80211_ADHOC 0x00000100 /* Operate in Adhoc mode */ #define IFM_IEEE80211_HOSTAP 0x00000200 /* Operate in Host AP mode */ #define IFM_IEEE80211_IBSS 0x00000400 /* Operate in IBSS mode */ #define IFM_IEEE80211_WDS 0x00000800 /* Operate in WDS mode */ #define IFM_IEEE80211_TURBO 0x00001000 /* Operate in turbo mode */ #define IFM_IEEE80211_MONITOR 0x00002000 /* Operate in monitor mode */ #define IFM_IEEE80211_MBSS 0x00004000 /* Operate in MBSS mode */ /* operating mode for multi-mode devices */ #define IFM_IEEE80211_11A 0x00010000 /* 5Ghz, OFDM mode */ #define IFM_IEEE80211_11B 0x00020000 /* Direct Sequence mode */ #define IFM_IEEE80211_11G 0x00030000 /* 2Ghz, CCK mode */ #define IFM_IEEE80211_FH 0x00040000 /* 2Ghz, GFSK mode */ #define IFM_IEEE80211_11NA 0x00050000 /* 5Ghz, HT mode */ #define IFM_IEEE80211_11NG 0x00060000 /* 2Ghz, HT mode */ #define IFM_IEEE80211_VHT5G 0x00070000 /* 5Ghz, VHT mode */ #define IFM_IEEE80211_VHT2G 0x00080000 /* 2Ghz, VHT mode */ /* * ATM */ #define IFM_ATM 0x000000a0 #define IFM_ATM_UNKNOWN 3 #define IFM_ATM_UTP_25 4 #define IFM_ATM_TAXI_100 5 #define IFM_ATM_TAXI_140 6 #define IFM_ATM_MM_155 7 #define IFM_ATM_SM_155 8 #define IFM_ATM_UTP_155 9 #define IFM_ATM_MM_622 10 #define IFM_ATM_SM_622 11 #define IFM_ATM_VIRTUAL 12 #define IFM_ATM_SDH 0x00000100 /* SDH instead of SONET */ #define IFM_ATM_NOSCRAMB 0x00000200 /* no scrambling */ #define IFM_ATM_UNASSIGNED 0x00000400 /* unassigned cells */ /* * Shared media sub-types */ #define IFM_AUTO 0 /* Autoselect best media */ #define IFM_MANUAL 1 /* Jumper/dipswitch selects media */ #define IFM_NONE 2 /* Deselect all media */ /* * Shared options */ #define IFM_FDX 0x00100000 /* Force full duplex */ #define IFM_HDX 0x00200000 /* Force half duplex */ #define IFM_FLOW 0x00400000 /* enable hardware flow control */ #define IFM_FLAG0 0x01000000 /* Driver defined flag */ #define IFM_FLAG1 0x02000000 /* Driver defined flag */ #define IFM_FLAG2 0x04000000 /* Driver defined flag */ #define IFM_LOOP 0x08000000 /* Put hardware in loopback */ /* * Masks */ #define IFM_NMASK 0x000000e0 /* Network type */ #define IFM_TMASK 0x0000001f /* Media sub-type */ #define IFM_IMASK 0xf0000000 /* Instance */ #define IFM_ISHIFT 28 /* Instance shift */ #define IFM_OMASK 0x0000ff00 /* Type specific options */ #define IFM_MMASK 0x00070000 /* Mode */ #define IFM_MSHIFT 16 /* Mode shift */ #define IFM_GMASK 0x0ff00000 /* Global options */ /* Ethernet flow control mask */ #define IFM_ETH_FMASK (IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE) /* * Status bits */ #define IFM_AVALID 0x00000001 /* Active bit valid */ #define IFM_ACTIVE 0x00000002 /* Interface attached to working net */ /* Mask of "status valid" bits, for ifconfig(8). */ #define IFM_STATUS_VALID IFM_AVALID /* List of "status valid" bits, for ifconfig(8). */ #define IFM_STATUS_VALID_LIST { \ IFM_AVALID, \ 0 \ } /* * Macros to extract various bits of information from the media word. */ #define IFM_TYPE(x) ((x) & IFM_NMASK) #define IFM_SUBTYPE(x) \ (IFM_TYPE(x) == IFM_ETHER ? IFM_ETHER_SUBTYPE_GET(x) : ((x) & IFM_TMASK)) #define IFM_TYPE_MATCH(x,y) \ (IFM_TYPE(x) == IFM_TYPE(y) && IFM_SUBTYPE(x) == IFM_SUBTYPE(y)) #define IFM_TYPE_OPTIONS(x) ((x) & IFM_OMASK) #define IFM_INST(x) (((x) & IFM_IMASK) >> IFM_ISHIFT) #define IFM_OPTIONS(x) ((x) & (IFM_OMASK | IFM_GMASK)) #define IFM_MODE(x) ((x) & IFM_MMASK) #define IFM_INST_MAX IFM_INST(IFM_IMASK) /* * Macro to create a media word. */ #define IFM_MAKEWORD(type, subtype, options, instance) \ ((type) | (subtype) | (options) | ((instance) << IFM_ISHIFT)) #define IFM_MAKEMODE(mode) \ (((mode) << IFM_MSHIFT) & IFM_MMASK) /* * NetBSD extension not defined in the BSDI API. This is used in various * places to get the canonical description for a given type/subtype. * * NOTE: all but the top-level type descriptions must contain NO whitespace! * Otherwise, parsing these in ifconfig(8) would be a nightmare. */ struct ifmedia_description { int ifmt_word; /* word value; may be masked */ const char *ifmt_string; /* description */ }; #define IFM_TYPE_DESCRIPTIONS { \ { IFM_ETHER, "Ethernet" }, \ { IFM_IEEE80211, "IEEE 802.11 Wireless Ethernet" }, \ { IFM_ATM, "ATM" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_ETHERNET_DESCRIPTIONS { \ { IFM_10_T, "10baseT/UTP" }, \ { IFM_10_2, "10base2/BNC" }, \ { IFM_10_5, "10base5/AUI" }, \ { IFM_100_TX, "100baseTX" }, \ { IFM_100_FX, "100baseFX" }, \ { IFM_100_T4, "100baseT4" }, \ { IFM_100_VG, "100baseVG" }, \ { IFM_100_T2, "100baseT2" }, \ { IFM_10_STP, "10baseSTP" }, \ { IFM_10_FL, "10baseFL" }, \ { IFM_1000_SX, "1000baseSX" }, \ { IFM_1000_LX, "1000baseLX" }, \ { IFM_1000_CX, "1000baseCX" }, \ { IFM_1000_T, "1000baseT" }, \ { IFM_HPNA_1, "homePNA" }, \ { IFM_10G_LR, "10Gbase-LR" }, \ { IFM_10G_SR, "10Gbase-SR" }, \ { IFM_10G_CX4, "10Gbase-CX4" }, \ { IFM_2500_SX, "2500BaseSX" }, \ { IFM_10G_LRM, "10Gbase-LRM" }, \ { IFM_10G_TWINAX, "10Gbase-Twinax" }, \ { IFM_10G_TWINAX_LONG, "10Gbase-Twinax-Long" }, \ { IFM_UNKNOWN, "Unknown" }, \ { IFM_10G_T, "10Gbase-T" }, \ { IFM_40G_CR4, "40Gbase-CR4" }, \ { IFM_40G_SR4, "40Gbase-SR4" }, \ { IFM_40G_LR4, "40Gbase-LR4" }, \ { IFM_1000_KX, "1000Base-KX" }, \ { IFM_OTHER, "Other" }, \ { IFM_10G_KX4, "10GBase-KX4" }, \ { IFM_10G_KR, "10GBase-KR" }, \ { IFM_10G_CR1, "10GBase-CR1" }, \ { IFM_20G_KR2, "20GBase-KR2" }, \ { IFM_2500_KX, "2500Base-KX" }, \ { IFM_2500_T, "2500Base-T" }, \ { IFM_5000_T, "5000Base-T" }, \ { IFM_50G_PCIE, "PCIExpress-50G" }, \ { IFM_25G_PCIE, "PCIExpress-25G" }, \ { IFM_1000_SGMII, "1000Base-SGMII" }, \ { IFM_10G_SFI, "10GBase-SFI" }, \ { IFM_40G_XLPPI, "40GBase-XLPPI" }, \ { IFM_1000_CX_SGMII, "1000Base-CX-SGMII" }, \ { IFM_40G_KR4, "40GBase-KR4" }, \ { IFM_10G_ER, "10GBase-ER" }, \ { IFM_100G_CR4, "100GBase-CR4" }, \ { IFM_100G_SR4, "100GBase-SR4" }, \ { IFM_100G_KR4, "100GBase-KR4" }, \ { IFM_100G_LR4, "100GBase-LR4" }, \ { IFM_56G_R4, "56GBase-R4" }, \ { IFM_100_T, "100BaseT" }, \ { IFM_25G_CR, "25GBase-CR" }, \ { IFM_25G_KR, "25GBase-KR" }, \ { IFM_25G_SR, "25GBase-SR" }, \ { IFM_50G_CR2, "50GBase-CR2" }, \ { IFM_50G_KR2, "50GBase-KR2" }, \ + { IFM_50G_KR4, "50GBase-KR4" }, \ { IFM_25G_LR, "25GBase-LR" }, \ { IFM_10G_AOC, "10GBase-AOC" }, \ { IFM_25G_ACC, "25GBase-ACC" }, \ { IFM_25G_AOC, "25GBase-AOC" }, \ { IFM_100_SGMII, "100M-SGMII" }, \ { IFM_2500_X, "2500Base-X" }, \ { IFM_5000_KR, "5000Base-KR" }, \ { IFM_25G_T, "25GBase-T" }, \ { IFM_25G_CR_S, "25GBase-CR-S" }, \ { IFM_25G_CR1, "25GBase-CR1" }, \ { IFM_25G_KR_S, "25GBase-KR-S" }, \ { IFM_5000_KR_S, "5000Base-KR-S" }, \ { IFM_5000_KR1, "5000Base-KR1" }, \ { IFM_25G_AUI, "25G-AUI" }, \ { IFM_40G_XLAUI, "40G-XLAUI" }, \ { IFM_40G_XLAUI_AC, "40G-XLAUI-AC" }, \ { IFM_40G_ER4, "40GBase-ER4" }, \ { IFM_50G_SR2, "50GBase-SR2" }, \ { IFM_50G_LR2, "50GBase-LR2" }, \ { IFM_50G_LAUI2_AC, "50G-LAUI2-AC" }, \ { IFM_50G_LAUI2, "50G-LAUI2" }, \ { IFM_50G_AUI2_AC, "50G-AUI2-AC" }, \ { IFM_50G_AUI2, "50G-AUI2" }, \ { IFM_50G_CP, "50GBase-CP" }, \ { IFM_50G_SR, "50GBase-SR" }, \ { IFM_50G_LR, "50GBase-LR" }, \ { IFM_50G_FR, "50GBase-FR" }, \ { IFM_50G_KR_PAM4, "50GBase-KR-PAM4" }, \ { IFM_25G_KR1, "25GBase-KR1" }, \ { IFM_50G_AUI1_AC, "50G-AUI1-AC" }, \ { IFM_50G_AUI1, "50G-AUI1" }, \ { IFM_100G_CAUI4_AC, "100G-CAUI4-AC" }, \ { IFM_100G_CAUI4, "100G-CAUI4" }, \ { IFM_100G_AUI4_AC, "100G-AUI4-AC" }, \ { IFM_100G_AUI4, "100G-AUI4" }, \ { IFM_100G_CR_PAM4, "100GBase-CR-PAM4" }, \ { IFM_100G_KR_PAM4, "100GBase-KR-PAM4" }, \ { IFM_100G_CP2, "100GBase-CP2" }, \ { IFM_100G_SR2, "100GBase-SR2" }, \ { IFM_100G_DR, "100GBase-DR" }, \ { IFM_100G_KR2_PAM4, "100GBase-KR2-PAM4" }, \ { IFM_100G_CAUI2_AC, "100G-CAUI2-AC" }, \ { IFM_100G_CAUI2, "100G-CAUI2" }, \ { IFM_100G_AUI2_AC, "100G-AUI2-AC" }, \ { IFM_100G_AUI2, "100G-AUI2" }, \ { IFM_200G_CR4_PAM4, "200GBase-CR4-PAM4" }, \ { IFM_200G_SR4, "200GBase-SR4" }, \ { IFM_200G_FR4, "200GBase-FR4" }, \ { IFM_200G_LR4, "200GBase-LR4" }, \ { IFM_200G_DR4, "200GBase-DR4" }, \ { IFM_200G_KR4_PAM4, "200GBase-KR4-PAM4" }, \ { IFM_200G_AUI4_AC, "200G-AUI4-AC" }, \ { IFM_200G_AUI4, "200G-AUI4" }, \ { IFM_200G_AUI8_AC, "200G-AUI8-AC" }, \ { IFM_200G_AUI8, "200G-AUI8" }, \ { IFM_400G_FR8, "400GBase-FR8" }, \ { IFM_400G_LR8, "400GBase-LR8" }, \ { IFM_400G_DR4, "400GBase-DR4" }, \ { IFM_400G_AUI8_AC, "400G-AUI8-AC" }, \ { IFM_400G_AUI8, "400G-AUI8" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_ETHERNET_ALIASES { \ { IFM_10_T, "10baseT" }, \ { IFM_10_T, "UTP" }, \ { IFM_10_T, "10UTP" }, \ { IFM_10_2, "BNC" }, \ { IFM_10_2, "10BNC" }, \ { IFM_10_5, "AUI" }, \ { IFM_10_5, "10AUI" }, \ { IFM_100_TX, "100TX" }, \ { IFM_100_T4, "100T4" }, \ { IFM_100_VG, "100VG" }, \ { IFM_100_T2, "100T2" }, \ { IFM_10_STP, "10STP" }, \ { IFM_10_FL, "10FL" }, \ { IFM_1000_SX, "1000SX" }, \ { IFM_1000_LX, "1000LX" }, \ { IFM_1000_CX, "1000CX" }, \ { IFM_1000_T, "1000baseTX" }, \ { IFM_1000_T, "1000TX" }, \ { IFM_1000_T, "1000T" }, \ { IFM_2500_SX, "2500SX" }, \ \ /* \ * Shorthands for common media+option combinations as announced \ * by miibus(4) \ */ \ { IFM_10_T | IFM_FDX, "10baseT-FDX" }, \ { IFM_10_T | IFM_FDX | IFM_FLOW, "10baseT-FDX-flow" }, \ { IFM_100_TX | IFM_FDX, "100baseTX-FDX" }, \ { IFM_100_TX | IFM_FDX | IFM_FLOW, "100baseTX-FDX-flow" }, \ { IFM_1000_T | IFM_FDX, "1000baseT-FDX" }, \ { IFM_1000_T | IFM_FDX | IFM_FLOW, "1000baseT-FDX-flow" }, \ { IFM_1000_T | IFM_FDX | IFM_FLOW | IFM_ETH_MASTER, \ "1000baseT-FDX-flow-master" }, \ { IFM_1000_T | IFM_FDX | IFM_ETH_MASTER, \ "1000baseT-FDX-master" }, \ { IFM_1000_T | IFM_ETH_MASTER, "1000baseT-master" }, \ \ { 0, NULL }, \ } #define IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS { \ { IFM_ETH_MASTER, "master" }, \ { IFM_ETH_RXPAUSE, "rxpause" }, \ { IFM_ETH_TXPAUSE, "txpause" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_IEEE80211_DESCRIPTIONS { \ { IFM_IEEE80211_FH1, "FH/1Mbps" }, \ { IFM_IEEE80211_FH2, "FH/2Mbps" }, \ { IFM_IEEE80211_DS1, "DS/1Mbps" }, \ { IFM_IEEE80211_DS2, "DS/2Mbps" }, \ { IFM_IEEE80211_DS5, "DS/5.5Mbps" }, \ { IFM_IEEE80211_DS11, "DS/11Mbps" }, \ { IFM_IEEE80211_DS22, "DS/22Mbps" }, \ { IFM_IEEE80211_OFDM6, "OFDM/6Mbps" }, \ { IFM_IEEE80211_OFDM9, "OFDM/9Mbps" }, \ { IFM_IEEE80211_OFDM12, "OFDM/12Mbps" }, \ { IFM_IEEE80211_OFDM18, "OFDM/18Mbps" }, \ { IFM_IEEE80211_OFDM24, "OFDM/24Mbps" }, \ { IFM_IEEE80211_OFDM36, "OFDM/36Mbps" }, \ { IFM_IEEE80211_OFDM48, "OFDM/48Mbps" }, \ { IFM_IEEE80211_OFDM54, "OFDM/54Mbps" }, \ { IFM_IEEE80211_OFDM72, "OFDM/72Mbps" }, \ { IFM_IEEE80211_DS354k, "DS/354Kbps" }, \ { IFM_IEEE80211_DS512k, "DS/512Kbps" }, \ { IFM_IEEE80211_OFDM3, "OFDM/3Mbps" }, \ { IFM_IEEE80211_OFDM4, "OFDM/4.5Mbps" }, \ { IFM_IEEE80211_OFDM27, "OFDM/27Mbps" }, \ { IFM_IEEE80211_MCS, "MCS" }, \ { IFM_IEEE80211_VHT, "VHT" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_IEEE80211_ALIASES { \ { IFM_IEEE80211_FH1, "FH1" }, \ { IFM_IEEE80211_FH2, "FH2" }, \ { IFM_IEEE80211_FH1, "FrequencyHopping/1Mbps" }, \ { IFM_IEEE80211_FH2, "FrequencyHopping/2Mbps" }, \ { IFM_IEEE80211_DS1, "DS1" }, \ { IFM_IEEE80211_DS2, "DS2" }, \ { IFM_IEEE80211_DS5, "DS5.5" }, \ { IFM_IEEE80211_DS11, "DS11" }, \ { IFM_IEEE80211_DS22, "DS22" }, \ { IFM_IEEE80211_DS1, "DirectSequence/1Mbps" }, \ { IFM_IEEE80211_DS2, "DirectSequence/2Mbps" }, \ { IFM_IEEE80211_DS5, "DirectSequence/5.5Mbps" }, \ { IFM_IEEE80211_DS11, "DirectSequence/11Mbps" }, \ { IFM_IEEE80211_DS22, "DirectSequence/22Mbps" }, \ { IFM_IEEE80211_OFDM6, "OFDM6" }, \ { IFM_IEEE80211_OFDM9, "OFDM9" }, \ { IFM_IEEE80211_OFDM12, "OFDM12" }, \ { IFM_IEEE80211_OFDM18, "OFDM18" }, \ { IFM_IEEE80211_OFDM24, "OFDM24" }, \ { IFM_IEEE80211_OFDM36, "OFDM36" }, \ { IFM_IEEE80211_OFDM48, "OFDM48" }, \ { IFM_IEEE80211_OFDM54, "OFDM54" }, \ { IFM_IEEE80211_OFDM72, "OFDM72" }, \ { IFM_IEEE80211_DS1, "CCK1" }, \ { IFM_IEEE80211_DS2, "CCK2" }, \ { IFM_IEEE80211_DS5, "CCK5.5" }, \ { IFM_IEEE80211_DS11, "CCK11" }, \ { IFM_IEEE80211_DS354k, "DS354K" }, \ { IFM_IEEE80211_DS354k, "DirectSequence/354Kbps" }, \ { IFM_IEEE80211_DS512k, "DS512K" }, \ { IFM_IEEE80211_DS512k, "DirectSequence/512Kbps" }, \ { IFM_IEEE80211_OFDM3, "OFDM3" }, \ { IFM_IEEE80211_OFDM4, "OFDM4.5" }, \ { IFM_IEEE80211_OFDM27, "OFDM27" }, \ { IFM_IEEE80211_MCS, "MCS" }, \ { IFM_IEEE80211_VHT, "VHT" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_IEEE80211_OPTION_DESCRIPTIONS { \ { IFM_IEEE80211_ADHOC, "adhoc" }, \ { IFM_IEEE80211_HOSTAP, "hostap" }, \ { IFM_IEEE80211_IBSS, "ibss" }, \ { IFM_IEEE80211_WDS, "wds" }, \ { IFM_IEEE80211_TURBO, "turbo" }, \ { IFM_IEEE80211_MONITOR, "monitor" }, \ { IFM_IEEE80211_MBSS, "mesh" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_IEEE80211_MODE_DESCRIPTIONS { \ { IFM_AUTO, "autoselect" }, \ { IFM_IEEE80211_11A, "11a" }, \ { IFM_IEEE80211_11B, "11b" }, \ { IFM_IEEE80211_11G, "11g" }, \ { IFM_IEEE80211_FH, "fh" }, \ { IFM_IEEE80211_11NA, "11na" }, \ { IFM_IEEE80211_11NG, "11ng" }, \ { IFM_IEEE80211_VHT5G, "11ac" }, \ { IFM_IEEE80211_VHT2G, "11ac2" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_IEEE80211_MODE_ALIASES { \ { IFM_AUTO, "auto" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_ATM_DESCRIPTIONS { \ { IFM_ATM_UNKNOWN, "Unknown" }, \ { IFM_ATM_UTP_25, "UTP/25.6MBit" }, \ { IFM_ATM_TAXI_100, "Taxi/100MBit" }, \ { IFM_ATM_TAXI_140, "Taxi/140MBit" }, \ { IFM_ATM_MM_155, "Multi-mode/155MBit" }, \ { IFM_ATM_SM_155, "Single-mode/155MBit" }, \ { IFM_ATM_UTP_155, "UTP/155MBit" }, \ { IFM_ATM_MM_622, "Multi-mode/622MBit" }, \ { IFM_ATM_SM_622, "Single-mode/622MBit" }, \ { IFM_ATM_VIRTUAL, "Virtual" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_ATM_ALIASES { \ { IFM_ATM_UNKNOWN, "UNKNOWN" }, \ { IFM_ATM_UTP_25, "UTP-25" }, \ { IFM_ATM_TAXI_100, "TAXI-100" }, \ { IFM_ATM_TAXI_140, "TAXI-140" }, \ { IFM_ATM_MM_155, "MM-155" }, \ { IFM_ATM_SM_155, "SM-155" }, \ { IFM_ATM_UTP_155, "UTP-155" }, \ { IFM_ATM_MM_622, "MM-622" }, \ { IFM_ATM_SM_622, "SM-622" }, \ { IFM_ATM_VIRTUAL, "VIRTUAL" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_ATM_OPTION_DESCRIPTIONS { \ { IFM_ATM_SDH, "SDH" }, \ { IFM_ATM_NOSCRAMB, "Noscramb" }, \ { IFM_ATM_UNASSIGNED, "Unassigned" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_SHARED_DESCRIPTIONS { \ { IFM_AUTO, "autoselect" }, \ { IFM_MANUAL, "manual" }, \ { IFM_NONE, "none" }, \ { 0, NULL }, \ } #define IFM_SUBTYPE_SHARED_ALIASES { \ { IFM_AUTO, "auto" }, \ \ /* \ * Shorthands for common media+option combinations as announced \ * by miibus(4) \ */ \ { IFM_AUTO | IFM_FLOW, "auto-flow" }, \ \ { 0, NULL }, \ } #define IFM_SHARED_OPTION_DESCRIPTIONS { \ { IFM_FDX, "full-duplex" }, \ { IFM_HDX, "half-duplex" }, \ { IFM_FLOW, "flowcontrol" }, \ { IFM_FLAG0, "flag0" }, \ { IFM_FLAG1, "flag1" }, \ { IFM_FLAG2, "flag2" }, \ { IFM_LOOP, "hw-loopback" }, \ { 0, NULL }, \ } #define IFM_SHARED_OPTION_ALIASES { \ { IFM_FDX, "fdx" }, \ { IFM_HDX, "hdx" }, \ { IFM_FLOW, "flow" }, \ { IFM_LOOP, "loop" }, \ { IFM_LOOP, "loopback" }, \ { 0, NULL }, \ } /* * Baudrate descriptions for the various media types. */ struct ifmedia_baudrate { int ifmb_word; /* media word */ uint64_t ifmb_baudrate; /* corresponding baudrate */ }; #define IFM_BAUDRATE_DESCRIPTIONS { \ { IFM_ETHER | IFM_10_T, IF_Mbps(10) }, \ { IFM_ETHER | IFM_10_2, IF_Mbps(10) }, \ { IFM_ETHER | IFM_10_5, IF_Mbps(10) }, \ { IFM_ETHER | IFM_100_TX, IF_Mbps(100) }, \ { IFM_ETHER | IFM_100_FX, IF_Mbps(100) }, \ { IFM_ETHER | IFM_100_T4, IF_Mbps(100) }, \ { IFM_ETHER | IFM_100_VG, IF_Mbps(100) }, \ { IFM_ETHER | IFM_100_T2, IF_Mbps(100) }, \ { IFM_ETHER | IFM_1000_SX, IF_Mbps(1000) }, \ { IFM_ETHER | IFM_10_STP, IF_Mbps(10) }, \ { IFM_ETHER | IFM_10_FL, IF_Mbps(10) }, \ { IFM_ETHER | IFM_1000_LX, IF_Mbps(1000) }, \ { IFM_ETHER | IFM_1000_CX, IF_Mbps(1000) }, \ { IFM_ETHER | IFM_1000_T, IF_Mbps(1000) }, \ { IFM_ETHER | IFM_HPNA_1, IF_Mbps(1) }, \ { IFM_ETHER | IFM_10G_LR, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_10G_SR, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_10G_CX4, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_2500_SX, IF_Mbps(2500ULL) }, \ { IFM_ETHER | IFM_10G_TWINAX, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_10G_TWINAX_LONG, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_10G_LRM, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_10G_T, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_40G_CR4, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_40G_SR4, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_40G_LR4, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_1000_KX, IF_Mbps(1000) }, \ { IFM_ETHER | IFM_10G_KX4, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_10G_KR, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_10G_CR1, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_20G_KR2, IF_Gbps(20ULL) }, \ { IFM_ETHER | IFM_2500_KX, IF_Mbps(2500) }, \ { IFM_ETHER | IFM_2500_T, IF_Mbps(2500) }, \ { IFM_ETHER | IFM_5000_T, IF_Mbps(5000) }, \ { IFM_ETHER | IFM_50G_PCIE, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_25G_PCIE, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_1000_SGMII, IF_Mbps(1000) }, \ { IFM_ETHER | IFM_10G_SFI, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_40G_XLPPI, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_1000_CX_SGMII, IF_Mbps(1000) }, \ { IFM_ETHER | IFM_40G_KR4, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_10G_ER, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_100G_CR4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_SR4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_KR4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_LR4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_56G_R4, IF_Gbps(56ULL) }, \ { IFM_ETHER | IFM_100_T, IF_Mbps(100ULL) }, \ { IFM_ETHER | IFM_25G_CR, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_25G_KR, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_25G_SR, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_50G_CR2, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_KR2, IF_Gbps(50ULL) }, \ + { IFM_ETHER | IFM_50G_KR4, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_25G_LR, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_10G_AOC, IF_Gbps(10ULL) }, \ { IFM_ETHER | IFM_25G_ACC, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_25G_AOC, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_100_SGMII, IF_Mbps(100) }, \ { IFM_ETHER | IFM_2500_X, IF_Mbps(2500ULL) }, \ { IFM_ETHER | IFM_5000_KR, IF_Mbps(5000ULL) }, \ { IFM_ETHER | IFM_25G_T, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_25G_CR_S, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_25G_CR1, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_25G_KR_S, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_5000_KR_S, IF_Mbps(5000ULL) }, \ { IFM_ETHER | IFM_5000_KR1, IF_Mbps(5000ULL) }, \ { IFM_ETHER | IFM_25G_AUI, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_40G_XLAUI, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_40G_XLAUI_AC, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_40G_ER4, IF_Gbps(40ULL) }, \ { IFM_ETHER | IFM_50G_SR2, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_LR2, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_LAUI2_AC, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_LAUI2, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_AUI2_AC, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_AUI2, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_CP, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_SR, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_LR, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_FR, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_KR_PAM4, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_25G_KR1, IF_Gbps(25ULL) }, \ { IFM_ETHER | IFM_50G_AUI1_AC, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_50G_AUI1, IF_Gbps(50ULL) }, \ { IFM_ETHER | IFM_100G_CAUI4_AC, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_CAUI4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_AUI4_AC, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_AUI4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_CR_PAM4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_KR_PAM4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_CP2, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_SR2, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_DR, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_KR2_PAM4, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_CAUI2_AC, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_CAUI2, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_AUI2_AC, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_100G_AUI2, IF_Gbps(100ULL) }, \ { IFM_ETHER | IFM_200G_CR4_PAM4, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_SR4, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_FR4, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_LR4, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_DR4, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_KR4_PAM4, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_AUI4_AC, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_AUI4, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_AUI8_AC, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_200G_AUI8, IF_Gbps(200ULL) }, \ { IFM_ETHER | IFM_400G_FR8, IF_Gbps(400ULL) }, \ { IFM_ETHER | IFM_400G_LR8, IF_Gbps(400ULL) }, \ { IFM_ETHER | IFM_400G_DR4, IF_Gbps(400ULL) }, \ { IFM_ETHER | IFM_400G_AUI8_AC, IF_Gbps(400ULL) }, \ { IFM_ETHER | IFM_400G_AUI8, IF_Gbps(400ULL) }, \ \ { IFM_IEEE80211 | IFM_IEEE80211_FH1, IF_Mbps(1) }, \ { IFM_IEEE80211 | IFM_IEEE80211_FH2, IF_Mbps(2) }, \ { IFM_IEEE80211 | IFM_IEEE80211_DS2, IF_Mbps(2) }, \ { IFM_IEEE80211 | IFM_IEEE80211_DS5, IF_Kbps(5500) }, \ { IFM_IEEE80211 | IFM_IEEE80211_DS11, IF_Mbps(11) }, \ { IFM_IEEE80211 | IFM_IEEE80211_DS1, IF_Mbps(1) }, \ { IFM_IEEE80211 | IFM_IEEE80211_DS22, IF_Mbps(22) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM6, IF_Mbps(6) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM9, IF_Mbps(9) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM12, IF_Mbps(12) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM18, IF_Mbps(18) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM24, IF_Mbps(24) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM36, IF_Mbps(36) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM48, IF_Mbps(48) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM54, IF_Mbps(54) }, \ { IFM_IEEE80211 | IFM_IEEE80211_OFDM72, IF_Mbps(72) }, \ \ { 0, 0 }, \ } /* * Status descriptions for the various media types. */ struct ifmedia_status_description { int ifms_type; int ifms_valid; int ifms_bit; const char *ifms_string[2]; }; #define IFM_STATUS_DESC(ifms, bit) \ (ifms)->ifms_string[((ifms)->ifms_bit & (bit)) ? 1 : 0] #define IFM_STATUS_DESCRIPTIONS { \ { IFM_ETHER, IFM_AVALID, IFM_ACTIVE, \ { "no carrier", "active" } }, \ { IFM_IEEE80211, IFM_AVALID, IFM_ACTIVE, \ { "no network", "active" } }, \ { IFM_ATM, IFM_AVALID, IFM_ACTIVE, \ { "no network", "active" } }, \ { 0, 0, 0, \ { NULL, NULL } } \ } #endif /* _NET_IF_MEDIA_H_ */