Index: stable/12/sys/net/if_bridge.c =================================================================== --- stable/12/sys/net/if_bridge.c (revision 357554) +++ stable/12/sys/net/if_bridge.c (revision 357555) @@ -1,3616 +1,3636 @@ /* $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $ */ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp */ /* * Network interface bridge support. * * TODO: * * - Currently only supports Ethernet-like interfaces (Ethernet, * 802.11, VLANs on Ethernet, etc.) Figure out a nice way * to bridge other types of interfaces (maybe consider * heterogeneous bridges). */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include /* for net/if.h */ #include #include /* string functions */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #if defined(INET) || defined(INET6) #include #endif #include #include #include #include #include #include #include +#ifdef INET6 /* + * XXX: declare here to avoid to include many inet6 related files.. + * should be more generalized? + */ +extern void nd6_setmtu(struct ifnet *); +#endif + +/* * Size of the route hash table. Must be a power of two. */ #ifndef BRIDGE_RTHASH_SIZE #define BRIDGE_RTHASH_SIZE 1024 #endif #define BRIDGE_RTHASH_MASK (BRIDGE_RTHASH_SIZE - 1) /* * Default maximum number of addresses to cache. */ #ifndef BRIDGE_RTABLE_MAX #define BRIDGE_RTABLE_MAX 2000 #endif /* * Timeout (in seconds) for entries learned dynamically. */ #ifndef BRIDGE_RTABLE_TIMEOUT #define BRIDGE_RTABLE_TIMEOUT (20 * 60) /* same as ARP */ #endif /* * Number of seconds between walks of the route list. */ #ifndef BRIDGE_RTABLE_PRUNE_PERIOD #define BRIDGE_RTABLE_PRUNE_PERIOD (5 * 60) #endif /* * List of capabilities to possibly mask on the member interface. */ #define BRIDGE_IFCAPS_MASK (IFCAP_TOE|IFCAP_TSO|IFCAP_TXCSUM|\ IFCAP_TXCSUM_IPV6) /* * List of capabilities to strip */ #define BRIDGE_IFCAPS_STRIP IFCAP_LRO /* * Bridge interface list entry. */ struct bridge_iflist { LIST_ENTRY(bridge_iflist) bif_next; struct ifnet *bif_ifp; /* member if */ struct bstp_port bif_stp; /* STP state */ uint32_t bif_flags; /* member if flags */ int bif_savedcaps; /* saved capabilities */ uint32_t bif_addrmax; /* max # of addresses */ uint32_t bif_addrcnt; /* cur. # of addresses */ uint32_t bif_addrexceeded;/* # of address violations */ }; /* * Bridge route node. */ struct bridge_rtnode { LIST_ENTRY(bridge_rtnode) brt_hash; /* hash table linkage */ LIST_ENTRY(bridge_rtnode) brt_list; /* list linkage */ struct bridge_iflist *brt_dst; /* destination if */ unsigned long brt_expire; /* expiration time */ uint8_t brt_flags; /* address flags */ uint8_t brt_addr[ETHER_ADDR_LEN]; uint16_t brt_vlan; /* vlan id */ }; #define brt_ifp brt_dst->bif_ifp /* * Software state for each bridge. */ struct bridge_softc { struct ifnet *sc_ifp; /* make this an interface */ LIST_ENTRY(bridge_softc) sc_list; struct mtx sc_mtx; struct cv sc_cv; uint32_t sc_brtmax; /* max # of addresses */ uint32_t sc_brtcnt; /* cur. # of addresses */ uint32_t sc_brttimeout; /* rt timeout in seconds */ struct callout sc_brcallout; /* bridge callout */ uint32_t sc_iflist_ref; /* refcount for sc_iflist */ uint32_t sc_iflist_xcnt; /* refcount for sc_iflist */ LIST_HEAD(, bridge_iflist) sc_iflist; /* member interface list */ LIST_HEAD(, bridge_rtnode) *sc_rthash; /* our forwarding table */ LIST_HEAD(, bridge_rtnode) sc_rtlist; /* list version of above */ uint32_t sc_rthash_key; /* key for hash */ LIST_HEAD(, bridge_iflist) sc_spanlist; /* span ports list */ struct bstp_state sc_stp; /* STP state */ uint32_t sc_brtexceeded; /* # of cache drops */ struct ifnet *sc_ifaddr; /* member mac copied from */ struct ether_addr sc_defaddr; /* Default MAC address */ }; VNET_DEFINE_STATIC(struct mtx, bridge_list_mtx); #define V_bridge_list_mtx VNET(bridge_list_mtx) static eventhandler_tag bridge_detach_cookie; int bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD; VNET_DEFINE_STATIC(uma_zone_t, bridge_rtnode_zone); #define V_bridge_rtnode_zone VNET(bridge_rtnode_zone) static int bridge_clone_create(struct if_clone *, int, caddr_t); static void bridge_clone_destroy(struct ifnet *); static int bridge_ioctl(struct ifnet *, u_long, caddr_t); static void bridge_mutecaps(struct bridge_softc *); static void bridge_set_ifcap(struct bridge_softc *, struct bridge_iflist *, int); static void bridge_ifdetach(void *arg __unused, struct ifnet *); static void bridge_init(void *); static void bridge_dummynet(struct mbuf *, struct ifnet *); static void bridge_stop(struct ifnet *, int); static int bridge_transmit(struct ifnet *, struct mbuf *); static void bridge_qflush(struct ifnet *); static struct mbuf *bridge_input(struct ifnet *, struct mbuf *); static int bridge_output(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); static int bridge_enqueue(struct bridge_softc *, struct ifnet *, struct mbuf *); static void bridge_rtdelete(struct bridge_softc *, struct ifnet *ifp, int); static void bridge_forward(struct bridge_softc *, struct bridge_iflist *, struct mbuf *m); static void bridge_timer(void *); static void bridge_broadcast(struct bridge_softc *, struct ifnet *, struct mbuf *, int); static void bridge_span(struct bridge_softc *, struct mbuf *); static int bridge_rtupdate(struct bridge_softc *, const uint8_t *, uint16_t, struct bridge_iflist *, int, uint8_t); static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *, uint16_t); static void bridge_rttrim(struct bridge_softc *); static void bridge_rtage(struct bridge_softc *); static void bridge_rtflush(struct bridge_softc *, int); static int bridge_rtdaddr(struct bridge_softc *, const uint8_t *, uint16_t); static void bridge_rtable_init(struct bridge_softc *); static void bridge_rtable_fini(struct bridge_softc *); static int bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *); static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *, const uint8_t *, uint16_t); static int bridge_rtnode_insert(struct bridge_softc *, struct bridge_rtnode *); static void bridge_rtnode_destroy(struct bridge_softc *, struct bridge_rtnode *); static void bridge_rtable_expire(struct ifnet *, int); static void bridge_state_change(struct ifnet *, int); static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *, const char *name); static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *, struct ifnet *ifp); static void bridge_delete_member(struct bridge_softc *, struct bridge_iflist *, int); static void bridge_delete_span(struct bridge_softc *, struct bridge_iflist *); static int bridge_ioctl_add(struct bridge_softc *, void *); static int bridge_ioctl_del(struct bridge_softc *, void *); static int bridge_ioctl_gifflags(struct bridge_softc *, void *); static int bridge_ioctl_sifflags(struct bridge_softc *, void *); static int bridge_ioctl_scache(struct bridge_softc *, void *); static int bridge_ioctl_gcache(struct bridge_softc *, void *); static int bridge_ioctl_gifs(struct bridge_softc *, void *); static int bridge_ioctl_rts(struct bridge_softc *, void *); static int bridge_ioctl_saddr(struct bridge_softc *, void *); static int bridge_ioctl_sto(struct bridge_softc *, void *); static int bridge_ioctl_gto(struct bridge_softc *, void *); static int bridge_ioctl_daddr(struct bridge_softc *, void *); static int bridge_ioctl_flush(struct bridge_softc *, void *); static int bridge_ioctl_gpri(struct bridge_softc *, void *); static int bridge_ioctl_spri(struct bridge_softc *, void *); static int bridge_ioctl_ght(struct bridge_softc *, void *); static int bridge_ioctl_sht(struct bridge_softc *, void *); static int bridge_ioctl_gfd(struct bridge_softc *, void *); static int bridge_ioctl_sfd(struct bridge_softc *, void *); static int bridge_ioctl_gma(struct bridge_softc *, void *); static int bridge_ioctl_sma(struct bridge_softc *, void *); static int bridge_ioctl_sifprio(struct bridge_softc *, void *); static int bridge_ioctl_sifcost(struct bridge_softc *, void *); static int bridge_ioctl_sifmaxaddr(struct bridge_softc *, void *); static int bridge_ioctl_addspan(struct bridge_softc *, void *); static int bridge_ioctl_delspan(struct bridge_softc *, void *); static int bridge_ioctl_gbparam(struct bridge_softc *, void *); static int bridge_ioctl_grte(struct bridge_softc *, void *); static int bridge_ioctl_gifsstp(struct bridge_softc *, void *); static int bridge_ioctl_sproto(struct bridge_softc *, void *); static int bridge_ioctl_stxhc(struct bridge_softc *, void *); static int bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *, int); static int bridge_ip_checkbasic(struct mbuf **mp); #ifdef INET6 static int bridge_ip6_checkbasic(struct mbuf **mp); #endif /* INET6 */ static int bridge_fragment(struct ifnet *, struct mbuf **mp, struct ether_header *, int, struct llc *); static void bridge_linkstate(struct ifnet *ifp); static void bridge_linkcheck(struct bridge_softc *sc); /* The default bridge vlan is 1 (IEEE 802.1Q-2003 Table 9-2) */ #define VLANTAGOF(_m) \ (_m->m_flags & M_VLANTAG) ? EVL_VLANOFTAG(_m->m_pkthdr.ether_vtag) : 1 static struct bstp_cb_ops bridge_ops = { .bcb_state = bridge_state_change, .bcb_rtage = bridge_rtable_expire }; SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge"); /* only pass IP[46] packets when pfil is enabled */ VNET_DEFINE_STATIC(int, pfil_onlyip) = 1; #define V_pfil_onlyip VNET(pfil_onlyip) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_onlyip), 0, "Only pass IP packets when pfil is enabled"); /* run pfil hooks on the bridge interface */ VNET_DEFINE_STATIC(int, pfil_bridge) = 1; #define V_pfil_bridge VNET(pfil_bridge) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_bridge), 0, "Packet filter on the bridge interface"); /* layer2 filter with ipfw */ VNET_DEFINE_STATIC(int, pfil_ipfw); #define V_pfil_ipfw VNET(pfil_ipfw) /* layer2 ARP filter with ipfw */ VNET_DEFINE_STATIC(int, pfil_ipfw_arp); #define V_pfil_ipfw_arp VNET(pfil_ipfw_arp) SYSCTL_INT(_net_link_bridge, OID_AUTO, ipfw_arp, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_ipfw_arp), 0, "Filter ARP packets through IPFW layer2"); /* run pfil hooks on the member interface */ VNET_DEFINE_STATIC(int, pfil_member) = 1; #define V_pfil_member VNET(pfil_member) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_member), 0, "Packet filter on the member interface"); /* run pfil hooks on the physical interface for locally destined packets */ VNET_DEFINE_STATIC(int, pfil_local_phys); #define V_pfil_local_phys VNET(pfil_local_phys) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_local_phys, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_local_phys), 0, "Packet filter on the physical interface for locally destined packets"); /* log STP state changes */ VNET_DEFINE_STATIC(int, log_stp); #define V_log_stp VNET(log_stp) SYSCTL_INT(_net_link_bridge, OID_AUTO, log_stp, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(log_stp), 0, "Log STP state changes"); /* share MAC with first bridge member */ VNET_DEFINE_STATIC(int, bridge_inherit_mac); #define V_bridge_inherit_mac VNET(bridge_inherit_mac) SYSCTL_INT(_net_link_bridge, OID_AUTO, inherit_mac, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(bridge_inherit_mac), 0, "Inherit MAC address from the first bridge member"); VNET_DEFINE_STATIC(int, allow_llz_overlap) = 0; #define V_allow_llz_overlap VNET(allow_llz_overlap) SYSCTL_INT(_net_link_bridge, OID_AUTO, allow_llz_overlap, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(allow_llz_overlap), 0, "Allow overlap of link-local scope " "zones of a bridge interface and the member interfaces"); struct bridge_control { int (*bc_func)(struct bridge_softc *, void *); int bc_argsize; int bc_flags; }; #define BC_F_COPYIN 0x01 /* copy arguments in */ #define BC_F_COPYOUT 0x02 /* copy arguments out */ #define BC_F_SUSER 0x04 /* do super-user check */ const struct bridge_control bridge_control_table[] = { { bridge_ioctl_add, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_del, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gifflags, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sifflags, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_scache, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gcache, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifs, sizeof(struct ifbifconf), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_rts, sizeof(struct ifbaconf), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_saddr, sizeof(struct ifbareq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sto, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gto, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_daddr, sizeof(struct ifbareq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_flush, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gpri, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_spri, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_ght, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sht, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gfd, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sfd, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gma, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sma, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifprio, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifcost, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_addspan, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_delspan, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gbparam, sizeof(struct ifbropreq), BC_F_COPYOUT }, { bridge_ioctl_grte, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifsstp, sizeof(struct ifbpstpconf), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sproto, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_stxhc, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifmaxaddr, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, }; const int bridge_control_table_size = nitems(bridge_control_table); VNET_DEFINE_STATIC(LIST_HEAD(, bridge_softc), bridge_list); #define V_bridge_list VNET(bridge_list) #define BRIDGE_LIST_LOCK_INIT(x) mtx_init(&V_bridge_list_mtx, \ "if_bridge list", NULL, MTX_DEF) #define BRIDGE_LIST_LOCK_DESTROY(x) mtx_destroy(&V_bridge_list_mtx) #define BRIDGE_LIST_LOCK(x) mtx_lock(&V_bridge_list_mtx) #define BRIDGE_LIST_UNLOCK(x) mtx_unlock(&V_bridge_list_mtx) VNET_DEFINE_STATIC(struct if_clone *, bridge_cloner); #define V_bridge_cloner VNET(bridge_cloner) static const char bridge_name[] = "bridge"; static void vnet_bridge_init(const void *unused __unused) { V_bridge_rtnode_zone = uma_zcreate("bridge_rtnode", sizeof(struct bridge_rtnode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); BRIDGE_LIST_LOCK_INIT(); LIST_INIT(&V_bridge_list); V_bridge_cloner = if_clone_simple(bridge_name, bridge_clone_create, bridge_clone_destroy, 0); } VNET_SYSINIT(vnet_bridge_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_bridge_init, NULL); static void vnet_bridge_uninit(const void *unused __unused) { if_clone_detach(V_bridge_cloner); V_bridge_cloner = NULL; BRIDGE_LIST_LOCK_DESTROY(); uma_zdestroy(V_bridge_rtnode_zone); } VNET_SYSUNINIT(vnet_bridge_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_bridge_uninit, NULL); static int bridge_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: bridge_dn_p = bridge_dummynet; bridge_detach_cookie = EVENTHANDLER_REGISTER( ifnet_departure_event, bridge_ifdetach, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_UNLOAD: EVENTHANDLER_DEREGISTER(ifnet_departure_event, bridge_detach_cookie); bridge_dn_p = NULL; break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t bridge_mod = { "if_bridge", bridge_modevent, 0 }; DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_bridge, 1); MODULE_DEPEND(if_bridge, bridgestp, 1, 1, 1); /* * handler for net.link.bridge.ipfw */ static int sysctl_pfil_ipfw(SYSCTL_HANDLER_ARGS) { int enable = V_pfil_ipfw; int error; error = sysctl_handle_int(oidp, &enable, 0, req); enable &= 1; if (enable != V_pfil_ipfw) { V_pfil_ipfw = enable; /* * Disable pfil so that ipfw doesnt run twice, if the user * really wants both then they can re-enable pfil_bridge and/or * pfil_member. Also allow non-ip packets as ipfw can filter by * layer2 type. */ if (V_pfil_ipfw) { V_pfil_onlyip = 0; V_pfil_bridge = 0; V_pfil_member = 0; } } return (error); } SYSCTL_PROC(_net_link_bridge, OID_AUTO, ipfw, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(pfil_ipfw), 0, &sysctl_pfil_ipfw, "I", "Layer2 filter with IPFW"); /* * bridge_clone_create: * * Create a new bridge instance. */ static int bridge_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct bridge_softc *sc, *sc2; struct ifnet *bifp, *ifp; int fb, retry; unsigned long hostid; sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK|M_ZERO); ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { free(sc, M_DEVBUF); return (ENOSPC); } BRIDGE_LOCK_INIT(sc); sc->sc_brtmax = BRIDGE_RTABLE_MAX; sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT; /* Initialize our routing table. */ bridge_rtable_init(sc); callout_init_mtx(&sc->sc_brcallout, &sc->sc_mtx, 0); LIST_INIT(&sc->sc_iflist); LIST_INIT(&sc->sc_spanlist); ifp->if_softc = sc; if_initname(ifp, bridge_name, unit); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bridge_ioctl; ifp->if_transmit = bridge_transmit; ifp->if_qflush = bridge_qflush; ifp->if_init = bridge_init; ifp->if_type = IFT_BRIDGE; /* * Generate an ethernet address with a locally administered address. * * Since we are using random ethernet addresses for the bridge, it is * possible that we might have address collisions, so make sure that * this hardware address isn't already in use on another bridge. * The first try uses the hostid and falls back to arc4rand(). */ fb = 0; getcredhostid(curthread->td_ucred, &hostid); do { if (fb || hostid == 0) { ether_gen_addr(ifp, &sc->sc_defaddr); } else { sc->sc_defaddr.octet[0] = 0x2; sc->sc_defaddr.octet[1] = (hostid >> 24) & 0xff; sc->sc_defaddr.octet[2] = (hostid >> 16) & 0xff; sc->sc_defaddr.octet[3] = (hostid >> 8 ) & 0xff; sc->sc_defaddr.octet[4] = hostid & 0xff; sc->sc_defaddr.octet[5] = ifp->if_dunit & 0xff; } fb = 1; retry = 0; BRIDGE_LIST_LOCK(); LIST_FOREACH(sc2, &V_bridge_list, sc_list) { bifp = sc2->sc_ifp; if (memcmp(sc->sc_defaddr.octet, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) { retry = 1; break; } } BRIDGE_LIST_UNLOCK(); } while (retry == 1); bstp_attach(&sc->sc_stp, &bridge_ops); ether_ifattach(ifp, sc->sc_defaddr.octet); /* Now undo some of the damage... */ ifp->if_baudrate = 0; ifp->if_type = IFT_BRIDGE; BRIDGE_LIST_LOCK(); LIST_INSERT_HEAD(&V_bridge_list, sc, sc_list); BRIDGE_LIST_UNLOCK(); return (0); } /* * bridge_clone_destroy: * * Destroy a bridge instance. */ static void bridge_clone_destroy(struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_softc; struct bridge_iflist *bif; BRIDGE_LOCK(sc); bridge_stop(ifp, 1); ifp->if_flags &= ~IFF_UP; while ((bif = LIST_FIRST(&sc->sc_iflist)) != NULL) bridge_delete_member(sc, bif, 0); while ((bif = LIST_FIRST(&sc->sc_spanlist)) != NULL) { bridge_delete_span(sc, bif); } /* Tear down the routing table. */ bridge_rtable_fini(sc); BRIDGE_UNLOCK(sc); callout_drain(&sc->sc_brcallout); BRIDGE_LIST_LOCK(); LIST_REMOVE(sc, sc_list); BRIDGE_LIST_UNLOCK(); bstp_detach(&sc->sc_stp); ether_ifdetach(ifp); if_free(ifp); BRIDGE_LOCK_DESTROY(sc); free(sc, M_DEVBUF); } /* * bridge_ioctl: * * Handle a control request from the operator. */ static int bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct bridge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct bridge_iflist *bif; struct thread *td = curthread; union { struct ifbreq ifbreq; struct ifbifconf ifbifconf; struct ifbareq ifbareq; struct ifbaconf ifbaconf; struct ifbrparam ifbrparam; struct ifbropreq ifbropreq; } args; struct ifdrv *ifd = (struct ifdrv *) data; const struct bridge_control *bc; - int error = 0; + int error = 0, oldmtu; switch (cmd) { case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCGDRVSPEC: case SIOCSDRVSPEC: if (ifd->ifd_cmd >= bridge_control_table_size) { error = EINVAL; break; } bc = &bridge_control_table[ifd->ifd_cmd]; if (cmd == SIOCGDRVSPEC && (bc->bc_flags & BC_F_COPYOUT) == 0) { error = EINVAL; break; } else if (cmd == SIOCSDRVSPEC && (bc->bc_flags & BC_F_COPYOUT) != 0) { error = EINVAL; break; } if (bc->bc_flags & BC_F_SUSER) { error = priv_check(td, PRIV_NET_BRIDGE); if (error) break; } if (ifd->ifd_len != bc->bc_argsize || ifd->ifd_len > sizeof(args)) { error = EINVAL; break; } bzero(&args, sizeof(args)); if (bc->bc_flags & BC_F_COPYIN) { error = copyin(ifd->ifd_data, &args, ifd->ifd_len); if (error) break; } + oldmtu = ifp->if_mtu; BRIDGE_LOCK(sc); error = (*bc->bc_func)(sc, &args); BRIDGE_UNLOCK(sc); if (error) break; + + /* + * Bridge MTU may change during addition of the first port. + * If it did, do network layer specific procedure. + */ + if (ifp->if_mtu != oldmtu) { +#ifdef INET6 + nd6_setmtu(ifp); +#endif + rt_updatemtu(ifp); + } if (bc->bc_flags & BC_F_COPYOUT) error = copyout(&args, ifd->ifd_data, ifd->ifd_len); break; case SIOCSIFFLAGS: if (!(ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked down and it is running, * then stop and disable it. */ BRIDGE_LOCK(sc); bridge_stop(ifp, 1); BRIDGE_UNLOCK(sc); } else if ((ifp->if_flags & IFF_UP) && !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked up and it is stopped, then * start it. */ (*ifp->if_init)(sc); } break; case SIOCSIFMTU: if (ifr->ifr_mtu < 576) { error = EINVAL; break; } if (LIST_EMPTY(&sc->sc_iflist)) { sc->sc_ifp->if_mtu = ifr->ifr_mtu; break; } BRIDGE_LOCK(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (bif->bif_ifp->if_mtu != ifr->ifr_mtu) { log(LOG_NOTICE, "%s: invalid MTU: %u(%s)" " != %d\n", sc->sc_ifp->if_xname, bif->bif_ifp->if_mtu, bif->bif_ifp->if_xname, ifr->ifr_mtu); error = EINVAL; break; } } if (!error) sc->sc_ifp->if_mtu = ifr->ifr_mtu; BRIDGE_UNLOCK(sc); break; default: /* * drop the lock as ether_ioctl() will call bridge_start() and * cause the lock to be recursed. */ error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* * bridge_mutecaps: * * Clear or restore unwanted capabilities on the member interface */ static void bridge_mutecaps(struct bridge_softc *sc) { struct bridge_iflist *bif; int enabled, mask; /* Initial bitmask of capabilities to test */ mask = BRIDGE_IFCAPS_MASK; LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { /* Every member must support it or its disabled */ mask &= bif->bif_savedcaps; } BRIDGE_XLOCK(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { enabled = bif->bif_ifp->if_capenable; enabled &= ~BRIDGE_IFCAPS_STRIP; /* strip off mask bits and enable them again if allowed */ enabled &= ~BRIDGE_IFCAPS_MASK; enabled |= mask; BRIDGE_UNLOCK(sc); bridge_set_ifcap(sc, bif, enabled); BRIDGE_LOCK(sc); } BRIDGE_XDROP(sc); } static void bridge_set_ifcap(struct bridge_softc *sc, struct bridge_iflist *bif, int set) { struct ifnet *ifp = bif->bif_ifp; struct ifreq ifr; int error, mask, stuck; BRIDGE_UNLOCK_ASSERT(sc); bzero(&ifr, sizeof(ifr)); ifr.ifr_reqcap = set; if (ifp->if_capenable != set) { error = (*ifp->if_ioctl)(ifp, SIOCSIFCAP, (caddr_t)&ifr); if (error) if_printf(sc->sc_ifp, "error setting capabilities on %s: %d\n", ifp->if_xname, error); mask = BRIDGE_IFCAPS_MASK | BRIDGE_IFCAPS_STRIP; stuck = ifp->if_capenable & mask & ~set; if (stuck != 0) if_printf(sc->sc_ifp, "can't disable some capabilities on %s: 0x%x\n", ifp->if_xname, stuck); } } /* * bridge_lookup_member: * * Lookup a bridge member interface. */ static struct bridge_iflist * bridge_lookup_member(struct bridge_softc *sc, const char *name) { struct bridge_iflist *bif; struct ifnet *ifp; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { ifp = bif->bif_ifp; if (strcmp(ifp->if_xname, name) == 0) return (bif); } return (NULL); } /* * bridge_lookup_member_if: * * Lookup a bridge member interface by ifnet*. */ static struct bridge_iflist * bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp) { struct bridge_iflist *bif; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (bif->bif_ifp == member_ifp) return (bif); } return (NULL); } /* * bridge_delete_member: * * Delete the specified member interface. */ static void bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif, int gone) { struct ifnet *ifs = bif->bif_ifp; struct ifnet *fif = NULL; BRIDGE_LOCK_ASSERT(sc); if (bif->bif_flags & IFBIF_STP) bstp_disable(&bif->bif_stp); ifs->if_bridge = NULL; BRIDGE_XLOCK(sc); LIST_REMOVE(bif, bif_next); BRIDGE_XDROP(sc); /* * If removing the interface that gave the bridge its mac address, set * the mac address of the bridge to the address of the next member, or * to its default address if no members are left. */ if (V_bridge_inherit_mac && sc->sc_ifaddr == ifs) { if (LIST_EMPTY(&sc->sc_iflist)) { bcopy(&sc->sc_defaddr, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); sc->sc_ifaddr = NULL; } else { fif = LIST_FIRST(&sc->sc_iflist)->bif_ifp; bcopy(IF_LLADDR(fif), IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); sc->sc_ifaddr = fif; } EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } bridge_linkcheck(sc); bridge_mutecaps(sc); /* recalcuate now this interface is removed */ bridge_rtdelete(sc, ifs, IFBF_FLUSHALL); KASSERT(bif->bif_addrcnt == 0, ("%s: %d bridge routes referenced", __func__, bif->bif_addrcnt)); ifs->if_bridge_output = NULL; ifs->if_bridge_input = NULL; ifs->if_bridge_linkstate = NULL; BRIDGE_UNLOCK(sc); if (!gone) { switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: /* * Take the interface out of promiscuous mode, but only * if it was promiscuous in the first place. It might * not be if we're in the bridge_ioctl_add() error path. */ if (ifs->if_flags & IFF_PROMISC) (void) ifpromisc(ifs, 0); break; case IFT_GIF: break; default: #ifdef DIAGNOSTIC panic("bridge_delete_member: impossible"); #endif break; } /* reneable any interface capabilities */ bridge_set_ifcap(sc, bif, bif->bif_savedcaps); } bstp_destroy(&bif->bif_stp); /* prepare to free */ BRIDGE_LOCK(sc); free(bif, M_DEVBUF); } /* * bridge_delete_span: * * Delete the specified span interface. */ static void bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif) { BRIDGE_LOCK_ASSERT(sc); KASSERT(bif->bif_ifp->if_bridge == NULL, ("%s: not a span interface", __func__)); LIST_REMOVE(bif, bif_next); free(bif, M_DEVBUF); } static int bridge_ioctl_add(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif = NULL; struct ifnet *ifs; int error = 0; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); if (ifs->if_ioctl == NULL) /* must be supported */ return (EINVAL); /* If it's in the span list, it can't be a member. */ LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) return (EBUSY); if (ifs->if_bridge == sc) return (EEXIST); if (ifs->if_bridge != NULL) return (EBUSY); switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: case IFT_GIF: /* permitted interface types */ break; default: return (EINVAL); } #ifdef INET6 /* * Two valid inet6 addresses with link-local scope must not be * on the parent interface and the member interfaces at the * same time. This restriction is needed to prevent violation * of link-local scope zone. Attempts to add a member * interface which has inet6 addresses when the parent has * inet6 triggers removal of all inet6 addresses on the member * interface. */ /* Check if the parent interface has a link-local scope addr. */ if (V_allow_llz_overlap == 0 && in6ifa_llaonifp(sc->sc_ifp) != NULL) { /* * If any, remove all inet6 addresses from the member * interfaces. */ BRIDGE_XLOCK(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (in6ifa_llaonifp(bif->bif_ifp)) { BRIDGE_UNLOCK(sc); in6_ifdetach(bif->bif_ifp); BRIDGE_LOCK(sc); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", bif->bif_ifp->if_xname); } } BRIDGE_XDROP(sc); if (in6ifa_llaonifp(ifs)) { BRIDGE_UNLOCK(sc); in6_ifdetach(ifs); BRIDGE_LOCK(sc); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", ifs->if_xname); } } #endif /* Allow the first Ethernet member to define the MTU */ if (LIST_EMPTY(&sc->sc_iflist)) sc->sc_ifp->if_mtu = ifs->if_mtu; else if (sc->sc_ifp->if_mtu != ifs->if_mtu) { if_printf(sc->sc_ifp, "invalid MTU: %u(%s) != %u\n", ifs->if_mtu, ifs->if_xname, sc->sc_ifp->if_mtu); return (EINVAL); } bif = malloc(sizeof(*bif), M_DEVBUF, M_NOWAIT|M_ZERO); if (bif == NULL) return (ENOMEM); bif->bif_ifp = ifs; bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER; bif->bif_savedcaps = ifs->if_capenable; /* * Assign the interface's MAC address to the bridge if it's the first * member and the MAC address of the bridge has not been changed from * the default randomly generated one. */ if (V_bridge_inherit_mac && LIST_EMPTY(&sc->sc_iflist) && !memcmp(IF_LLADDR(sc->sc_ifp), sc->sc_defaddr.octet, ETHER_ADDR_LEN)) { bcopy(IF_LLADDR(ifs), IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); sc->sc_ifaddr = ifs; EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } ifs->if_bridge = sc; ifs->if_bridge_output = bridge_output; ifs->if_bridge_input = bridge_input; ifs->if_bridge_linkstate = bridge_linkstate; bstp_create(&sc->sc_stp, &bif->bif_stp, bif->bif_ifp); /* * XXX: XLOCK HERE!?! * * NOTE: insert_***HEAD*** should be safe for the traversals. */ LIST_INSERT_HEAD(&sc->sc_iflist, bif, bif_next); /* Set interface capabilities to the intersection set of all members */ bridge_mutecaps(sc); bridge_linkcheck(sc); /* Place the interface into promiscuous mode */ switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: BRIDGE_UNLOCK(sc); error = ifpromisc(ifs, 1); BRIDGE_LOCK(sc); break; } if (error) bridge_delete_member(sc, bif, 0); return (error); } static int bridge_ioctl_del(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bridge_delete_member(sc, bif, 0); return (0); } static int bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct bstp_port *bp; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bp = &bif->bif_stp; req->ifbr_ifsflags = bif->bif_flags; req->ifbr_state = bp->bp_state; req->ifbr_priority = bp->bp_priority; req->ifbr_path_cost = bp->bp_path_cost; req->ifbr_portno = bif->bif_ifp->if_index & 0xfff; req->ifbr_proto = bp->bp_protover; req->ifbr_role = bp->bp_role; req->ifbr_stpflags = bp->bp_flags; req->ifbr_addrcnt = bif->bif_addrcnt; req->ifbr_addrmax = bif->bif_addrmax; req->ifbr_addrexceeded = bif->bif_addrexceeded; /* Copy STP state options as flags */ if (bp->bp_operedge) req->ifbr_ifsflags |= IFBIF_BSTP_EDGE; if (bp->bp_flags & BSTP_PORT_AUTOEDGE) req->ifbr_ifsflags |= IFBIF_BSTP_AUTOEDGE; if (bp->bp_ptp_link) req->ifbr_ifsflags |= IFBIF_BSTP_PTP; if (bp->bp_flags & BSTP_PORT_AUTOPTP) req->ifbr_ifsflags |= IFBIF_BSTP_AUTOPTP; if (bp->bp_flags & BSTP_PORT_ADMEDGE) req->ifbr_ifsflags |= IFBIF_BSTP_ADMEDGE; if (bp->bp_flags & BSTP_PORT_ADMCOST) req->ifbr_ifsflags |= IFBIF_BSTP_ADMCOST; return (0); } static int bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct bstp_port *bp; int error; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bp = &bif->bif_stp; if (req->ifbr_ifsflags & IFBIF_SPAN) /* SPAN is readonly */ return (EINVAL); if (req->ifbr_ifsflags & IFBIF_STP) { if ((bif->bif_flags & IFBIF_STP) == 0) { error = bstp_enable(&bif->bif_stp); if (error) return (error); } } else { if ((bif->bif_flags & IFBIF_STP) != 0) bstp_disable(&bif->bif_stp); } /* Pass on STP flags */ bstp_set_edge(bp, req->ifbr_ifsflags & IFBIF_BSTP_EDGE ? 1 : 0); bstp_set_autoedge(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOEDGE ? 1 : 0); bstp_set_ptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_PTP ? 1 : 0); bstp_set_autoptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOPTP ? 1 : 0); /* Save the bits relating to the bridge */ bif->bif_flags = req->ifbr_ifsflags & IFBIFMASK; return (0); } static int bridge_ioctl_scache(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; sc->sc_brtmax = param->ifbrp_csize; bridge_rttrim(sc); return (0); } static int bridge_ioctl_gcache(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_csize = sc->sc_brtmax; return (0); } static int bridge_ioctl_gifs(struct bridge_softc *sc, void *arg) { struct ifbifconf *bifc = arg; struct bridge_iflist *bif; struct ifbreq breq; char *buf, *outbuf; int count, buflen, len, error = 0; count = 0; LIST_FOREACH(bif, &sc->sc_iflist, bif_next) count++; LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) count++; buflen = sizeof(breq) * count; if (bifc->ifbic_len == 0) { bifc->ifbic_len = buflen; return (0); } BRIDGE_UNLOCK(sc); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); BRIDGE_LOCK(sc); count = 0; buf = outbuf; len = min(bifc->ifbic_len, buflen); bzero(&breq, sizeof(breq)); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (len < sizeof(breq)) break; strlcpy(breq.ifbr_ifsname, bif->bif_ifp->if_xname, sizeof(breq.ifbr_ifsname)); /* Fill in the ifbreq structure */ error = bridge_ioctl_gifflags(sc, &breq); if (error) break; memcpy(buf, &breq, sizeof(breq)); count++; buf += sizeof(breq); len -= sizeof(breq); } LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) { if (len < sizeof(breq)) break; strlcpy(breq.ifbr_ifsname, bif->bif_ifp->if_xname, sizeof(breq.ifbr_ifsname)); breq.ifbr_ifsflags = bif->bif_flags; breq.ifbr_portno = bif->bif_ifp->if_index & 0xfff; memcpy(buf, &breq, sizeof(breq)); count++; buf += sizeof(breq); len -= sizeof(breq); } BRIDGE_UNLOCK(sc); bifc->ifbic_len = sizeof(breq) * count; error = copyout(outbuf, bifc->ifbic_req, bifc->ifbic_len); BRIDGE_LOCK(sc); free(outbuf, M_TEMP); return (error); } static int bridge_ioctl_rts(struct bridge_softc *sc, void *arg) { struct ifbaconf *bac = arg; struct bridge_rtnode *brt; struct ifbareq bareq; char *buf, *outbuf; int count, buflen, len, error = 0; if (bac->ifbac_len == 0) return (0); count = 0; LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) count++; buflen = sizeof(bareq) * count; BRIDGE_UNLOCK(sc); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); BRIDGE_LOCK(sc); count = 0; buf = outbuf; len = min(bac->ifbac_len, buflen); bzero(&bareq, sizeof(bareq)); LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { if (len < sizeof(bareq)) goto out; strlcpy(bareq.ifba_ifsname, brt->brt_ifp->if_xname, sizeof(bareq.ifba_ifsname)); memcpy(bareq.ifba_dst, brt->brt_addr, sizeof(brt->brt_addr)); bareq.ifba_vlan = brt->brt_vlan; if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC && time_uptime < brt->brt_expire) bareq.ifba_expire = brt->brt_expire - time_uptime; else bareq.ifba_expire = 0; bareq.ifba_flags = brt->brt_flags; memcpy(buf, &bareq, sizeof(bareq)); count++; buf += sizeof(bareq); len -= sizeof(bareq); } out: BRIDGE_UNLOCK(sc); bac->ifbac_len = sizeof(bareq) * count; error = copyout(outbuf, bac->ifbac_req, bac->ifbac_len); BRIDGE_LOCK(sc); free(outbuf, M_TEMP); return (error); } static int bridge_ioctl_saddr(struct bridge_softc *sc, void *arg) { struct ifbareq *req = arg; struct bridge_iflist *bif; int error; bif = bridge_lookup_member(sc, req->ifba_ifsname); if (bif == NULL) return (ENOENT); error = bridge_rtupdate(sc, req->ifba_dst, req->ifba_vlan, bif, 1, req->ifba_flags); return (error); } static int bridge_ioctl_sto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; sc->sc_brttimeout = param->ifbrp_ctime; return (0); } static int bridge_ioctl_gto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_ctime = sc->sc_brttimeout; return (0); } static int bridge_ioctl_daddr(struct bridge_softc *sc, void *arg) { struct ifbareq *req = arg; return (bridge_rtdaddr(sc, req->ifba_dst, req->ifba_vlan)); } static int bridge_ioctl_flush(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; bridge_rtflush(sc, req->ifbr_ifsflags); return (0); } static int bridge_ioctl_gpri(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_prio = bs->bs_bridge_priority; return (0); } static int bridge_ioctl_spri(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_priority(&sc->sc_stp, param->ifbrp_prio)); } static int bridge_ioctl_ght(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_hellotime = bs->bs_bridge_htime >> 8; return (0); } static int bridge_ioctl_sht(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_htime(&sc->sc_stp, param->ifbrp_hellotime)); } static int bridge_ioctl_gfd(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_fwddelay = bs->bs_bridge_fdelay >> 8; return (0); } static int bridge_ioctl_sfd(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_fdelay(&sc->sc_stp, param->ifbrp_fwddelay)); } static int bridge_ioctl_gma(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_maxage = bs->bs_bridge_max_age >> 8; return (0); } static int bridge_ioctl_sma(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_maxage(&sc->sc_stp, param->ifbrp_maxage)); } static int bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); return (bstp_set_port_priority(&bif->bif_stp, req->ifbr_priority)); } static int bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); return (bstp_set_path_cost(&bif->bif_stp, req->ifbr_path_cost)); } static int bridge_ioctl_sifmaxaddr(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bif->bif_addrmax = req->ifbr_addrmax; return (0); } static int bridge_ioctl_addspan(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif = NULL; struct ifnet *ifs; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) return (EBUSY); if (ifs->if_bridge != NULL) return (EBUSY); switch (ifs->if_type) { case IFT_ETHER: case IFT_GIF: case IFT_L2VLAN: break; default: return (EINVAL); } bif = malloc(sizeof(*bif), M_DEVBUF, M_NOWAIT|M_ZERO); if (bif == NULL) return (ENOMEM); bif->bif_ifp = ifs; bif->bif_flags = IFBIF_SPAN; LIST_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next); return (0); } static int bridge_ioctl_delspan(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct ifnet *ifs; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) break; if (bif == NULL) return (ENOENT); bridge_delete_span(sc, bif); return (0); } static int bridge_ioctl_gbparam(struct bridge_softc *sc, void *arg) { struct ifbropreq *req = arg; struct bstp_state *bs = &sc->sc_stp; struct bstp_port *root_port; req->ifbop_maxage = bs->bs_bridge_max_age >> 8; req->ifbop_hellotime = bs->bs_bridge_htime >> 8; req->ifbop_fwddelay = bs->bs_bridge_fdelay >> 8; root_port = bs->bs_root_port; if (root_port == NULL) req->ifbop_root_port = 0; else req->ifbop_root_port = root_port->bp_ifp->if_index; req->ifbop_holdcount = bs->bs_txholdcount; req->ifbop_priority = bs->bs_bridge_priority; req->ifbop_protocol = bs->bs_protover; req->ifbop_root_path_cost = bs->bs_root_pv.pv_cost; req->ifbop_bridgeid = bs->bs_bridge_pv.pv_dbridge_id; req->ifbop_designated_root = bs->bs_root_pv.pv_root_id; req->ifbop_designated_bridge = bs->bs_root_pv.pv_dbridge_id; req->ifbop_last_tc_time.tv_sec = bs->bs_last_tc_time.tv_sec; req->ifbop_last_tc_time.tv_usec = bs->bs_last_tc_time.tv_usec; return (0); } static int bridge_ioctl_grte(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_cexceeded = sc->sc_brtexceeded; return (0); } static int bridge_ioctl_gifsstp(struct bridge_softc *sc, void *arg) { struct ifbpstpconf *bifstp = arg; struct bridge_iflist *bif; struct bstp_port *bp; struct ifbpstpreq bpreq; char *buf, *outbuf; int count, buflen, len, error = 0; count = 0; LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if ((bif->bif_flags & IFBIF_STP) != 0) count++; } buflen = sizeof(bpreq) * count; if (bifstp->ifbpstp_len == 0) { bifstp->ifbpstp_len = buflen; return (0); } BRIDGE_UNLOCK(sc); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); BRIDGE_LOCK(sc); count = 0; buf = outbuf; len = min(bifstp->ifbpstp_len, buflen); bzero(&bpreq, sizeof(bpreq)); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (len < sizeof(bpreq)) break; if ((bif->bif_flags & IFBIF_STP) == 0) continue; bp = &bif->bif_stp; bpreq.ifbp_portno = bif->bif_ifp->if_index & 0xfff; bpreq.ifbp_fwd_trans = bp->bp_forward_transitions; bpreq.ifbp_design_cost = bp->bp_desg_pv.pv_cost; bpreq.ifbp_design_port = bp->bp_desg_pv.pv_port_id; bpreq.ifbp_design_bridge = bp->bp_desg_pv.pv_dbridge_id; bpreq.ifbp_design_root = bp->bp_desg_pv.pv_root_id; memcpy(buf, &bpreq, sizeof(bpreq)); count++; buf += sizeof(bpreq); len -= sizeof(bpreq); } BRIDGE_UNLOCK(sc); bifstp->ifbpstp_len = sizeof(bpreq) * count; error = copyout(outbuf, bifstp->ifbpstp_req, bifstp->ifbpstp_len); BRIDGE_LOCK(sc); free(outbuf, M_TEMP); return (error); } static int bridge_ioctl_sproto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_protocol(&sc->sc_stp, param->ifbrp_proto)); } static int bridge_ioctl_stxhc(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_holdcount(&sc->sc_stp, param->ifbrp_txhc)); } /* * bridge_ifdetach: * * Detach an interface from a bridge. Called when a member * interface is detaching. */ static void bridge_ifdetach(void *arg __unused, struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_iflist *bif; if (ifp->if_flags & IFF_RENAMING) return; if (V_bridge_cloner == NULL) { /* * This detach handler can be called after * vnet_bridge_uninit(). Just return in that case. */ return; } /* Check if the interface is a bridge member */ if (sc != NULL) { BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif != NULL) bridge_delete_member(sc, bif, 1); BRIDGE_UNLOCK(sc); return; } /* Check if the interface is a span port */ BRIDGE_LIST_LOCK(); LIST_FOREACH(sc, &V_bridge_list, sc_list) { BRIDGE_LOCK(sc); LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifp == bif->bif_ifp) { bridge_delete_span(sc, bif); break; } BRIDGE_UNLOCK(sc); } BRIDGE_LIST_UNLOCK(); } /* * bridge_init: * * Initialize a bridge interface. */ static void bridge_init(void *xsc) { struct bridge_softc *sc = (struct bridge_softc *)xsc; struct ifnet *ifp = sc->sc_ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; BRIDGE_LOCK(sc); callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz, bridge_timer, sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; bstp_init(&sc->sc_stp); /* Initialize Spanning Tree */ BRIDGE_UNLOCK(sc); } /* * bridge_stop: * * Stop the bridge interface. */ static void bridge_stop(struct ifnet *ifp, int disable) { struct bridge_softc *sc = ifp->if_softc; BRIDGE_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; callout_stop(&sc->sc_brcallout); bstp_stop(&sc->sc_stp); bridge_rtflush(sc, IFBF_FLUSHDYN); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } /* * bridge_enqueue: * * Enqueue a packet on a bridge member interface. * */ static int bridge_enqueue(struct bridge_softc *sc, struct ifnet *dst_ifp, struct mbuf *m) { int len, err = 0; short mflags; struct mbuf *m0; /* We may be sending a fragment so traverse the mbuf */ for (; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = NULL; len = m->m_pkthdr.len; mflags = m->m_flags; /* * If underlying interface can not do VLAN tag insertion itself * then attach a packet tag that holds it. */ if ((m->m_flags & M_VLANTAG) && (dst_ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) { m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); if (m == NULL) { if_printf(dst_ifp, "unable to prepend VLAN header\n"); if_inc_counter(dst_ifp, IFCOUNTER_OERRORS, 1); continue; } m->m_flags &= ~M_VLANTAG; } M_ASSERTPKTHDR(m); /* We shouldn't transmit mbuf without pkthdr */ if ((err = dst_ifp->if_transmit(dst_ifp, m))) { m_freem(m0); if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); break; } if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, len); if (mflags & M_MCAST) if_inc_counter(sc->sc_ifp, IFCOUNTER_OMCASTS, 1); } return (err); } /* * bridge_dummynet: * * Receive a queued packet from dummynet and pass it on to the output * interface. * * The mbuf has the Ethernet header already attached. */ static void bridge_dummynet(struct mbuf *m, struct ifnet *ifp) { struct bridge_softc *sc; sc = ifp->if_bridge; /* * The packet didnt originate from a member interface. This should only * ever happen if a member interface is removed while packets are * queued for it. */ if (sc == NULL) { m_freem(m); return; } if (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif ) { if (bridge_pfil(&m, sc->sc_ifp, ifp, PFIL_OUT) != 0) return; if (m == NULL) return; } bridge_enqueue(sc, ifp, m); } /* * bridge_output: * * Send output from a bridge member interface. This * performs the bridging function for locally originated * packets. * * The mbuf has the Ethernet header already attached. We must * enqueue or free the mbuf before returning. */ static int bridge_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa, struct rtentry *rt) { struct ether_header *eh; struct ifnet *dst_if; struct bridge_softc *sc; uint16_t vlan; if (m->m_len < ETHER_HDR_LEN) { m = m_pullup(m, ETHER_HDR_LEN); if (m == NULL) return (0); } eh = mtod(m, struct ether_header *); sc = ifp->if_bridge; vlan = VLANTAGOF(m); BRIDGE_LOCK(sc); /* * If bridge is down, but the original output interface is up, * go ahead and send out that interface. Otherwise, the packet * is dropped below. */ if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { dst_if = ifp; goto sendunicast; } /* * If the packet is a multicast, or we don't know a better way to * get there, send to all interfaces. */ if (ETHER_IS_MULTICAST(eh->ether_dhost)) dst_if = NULL; else dst_if = bridge_rtlookup(sc, eh->ether_dhost, vlan); if (dst_if == NULL) { struct bridge_iflist *bif; struct mbuf *mc; int error = 0, used = 0; bridge_span(sc, m); BRIDGE_LOCK2REF(sc, error); if (error) { m_freem(m); return (0); } LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { dst_if = bif->bif_ifp; if (dst_if->if_type == IFT_GIF) continue; if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) continue; /* * If this is not the original output interface, * and the interface is participating in spanning * tree, make sure the port is in a state that * allows forwarding. */ if (dst_if != ifp && (bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) continue; if (LIST_NEXT(bif, bif_next) == NULL) { used = 1; mc = m; } else { mc = m_copypacket(m, M_NOWAIT); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } } bridge_enqueue(sc, dst_if, mc); } if (used == 0) m_freem(m); BRIDGE_UNREF(sc); return (0); } sendunicast: /* * XXX Spanning tree consideration here? */ bridge_span(sc, m); if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) { m_freem(m); BRIDGE_UNLOCK(sc); return (0); } BRIDGE_UNLOCK(sc); bridge_enqueue(sc, dst_if, m); return (0); } /* * bridge_transmit: * * Do output on a bridge. * */ static int bridge_transmit(struct ifnet *ifp, struct mbuf *m) { struct bridge_softc *sc; struct ether_header *eh; struct ifnet *dst_if; int error = 0; sc = ifp->if_softc; ETHER_BPF_MTAP(ifp, m); eh = mtod(m, struct ether_header *); BRIDGE_LOCK(sc); if (((m->m_flags & (M_BCAST|M_MCAST)) == 0) && (dst_if = bridge_rtlookup(sc, eh->ether_dhost, 1)) != NULL) { BRIDGE_UNLOCK(sc); error = bridge_enqueue(sc, dst_if, m); } else bridge_broadcast(sc, ifp, m, 0); return (error); } /* * The ifp->if_qflush entry point for if_bridge(4) is no-op. */ static void bridge_qflush(struct ifnet *ifp __unused) { } /* * bridge_forward: * * The forwarding function of the bridge. * * NOTE: Releases the lock on return. */ static void bridge_forward(struct bridge_softc *sc, struct bridge_iflist *sbif, struct mbuf *m) { struct bridge_iflist *dbif; struct ifnet *src_if, *dst_if, *ifp; struct ether_header *eh; uint16_t vlan; uint8_t *dst; int error; src_if = m->m_pkthdr.rcvif; ifp = sc->sc_ifp; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); vlan = VLANTAGOF(m); if ((sbif->bif_flags & IFBIF_STP) && sbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) goto drop; eh = mtod(m, struct ether_header *); dst = eh->ether_dhost; /* If the interface is learning, record the address. */ if (sbif->bif_flags & IFBIF_LEARNING) { error = bridge_rtupdate(sc, eh->ether_shost, vlan, sbif, 0, IFBAF_DYNAMIC); /* * If the interface has addresses limits then deny any source * that is not in the cache. */ if (error && sbif->bif_addrmax) goto drop; } if ((sbif->bif_flags & IFBIF_STP) != 0 && sbif->bif_stp.bp_state == BSTP_IFSTATE_LEARNING) goto drop; /* * At this point, the port either doesn't participate * in spanning tree or it is in the forwarding state. */ /* * If the packet is unicast, destined for someone on * "this" side of the bridge, drop it. */ if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) { dst_if = bridge_rtlookup(sc, dst, vlan); if (src_if == dst_if) goto drop; } else { /* * Check if its a reserved multicast address, any address * listed in 802.1D section 7.12.6 may not be forwarded by the * bridge. * This is currently 01-80-C2-00-00-00 to 01-80-C2-00-00-0F */ if (dst[0] == 0x01 && dst[1] == 0x80 && dst[2] == 0xc2 && dst[3] == 0x00 && dst[4] == 0x00 && dst[5] <= 0x0f) goto drop; /* ...forward it to all interfaces. */ if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); dst_if = NULL; } /* * If we have a destination interface which is a member of our bridge, * OR this is a unicast packet, push it through the bpf(4) machinery. * For broadcast or multicast packets, don't bother because it will * be reinjected into ether_input. We do this before we pass the packets * through the pfil(9) framework, as it is possible that pfil(9) will * drop the packet, or possibly modify it, making it difficult to debug * firewall issues on the bridge. */ if (dst_if != NULL || (m->m_flags & (M_BCAST | M_MCAST)) == 0) ETHER_BPF_MTAP(ifp, m); /* run the packet filter */ if (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif ) { BRIDGE_UNLOCK(sc); if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0) return; if (m == NULL) return; BRIDGE_LOCK(sc); } if (dst_if == NULL) { bridge_broadcast(sc, src_if, m, 1); return; } /* * At this point, we're dealing with a unicast frame * going to a different interface. */ if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) goto drop; dbif = bridge_lookup_member_if(sc, dst_if); if (dbif == NULL) /* Not a member of the bridge (anymore?) */ goto drop; /* Private segments can not talk to each other */ if (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE) goto drop; if ((dbif->bif_flags & IFBIF_STP) && dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) goto drop; BRIDGE_UNLOCK(sc); if (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif ) { if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0) return; if (m == NULL) return; } bridge_enqueue(sc, dst_if, m); return; drop: BRIDGE_UNLOCK(sc); m_freem(m); } /* * bridge_input: * * Receive input from a member interface. Queue the packet for * bridging if it is not for us. */ static struct mbuf * bridge_input(struct ifnet *ifp, struct mbuf *m) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_iflist *bif, *bif2; struct ifnet *bifp; struct ether_header *eh; struct mbuf *mc, *mc2; uint16_t vlan; int error; if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return (m); bifp = sc->sc_ifp; vlan = VLANTAGOF(m); /* * Implement support for bridge monitoring. If this flag has been * set on this interface, discard the packet once we push it through * the bpf(4) machinery, but before we do, increment the byte and * packet counters associated with this interface. */ if ((bifp->if_flags & IFF_MONITOR) != 0) { m->m_pkthdr.rcvif = bifp; ETHER_BPF_MTAP(bifp, m); if_inc_counter(bifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(bifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); m_freem(m); return (NULL); } BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif == NULL) { BRIDGE_UNLOCK(sc); return (m); } eh = mtod(m, struct ether_header *); bridge_span(sc, m); if (m->m_flags & (M_BCAST|M_MCAST)) { /* Tap off 802.1D packets; they do not get forwarded. */ if (memcmp(eh->ether_dhost, bstp_etheraddr, ETHER_ADDR_LEN) == 0) { bstp_input(&bif->bif_stp, ifp, m); /* consumes mbuf */ BRIDGE_UNLOCK(sc); return (NULL); } if ((bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { BRIDGE_UNLOCK(sc); return (m); } /* * Make a deep copy of the packet and enqueue the copy * for bridge processing; return the original packet for * local processing. */ mc = m_dup(m, M_NOWAIT); if (mc == NULL) { BRIDGE_UNLOCK(sc); return (m); } /* Perform the bridge forwarding function with the copy. */ bridge_forward(sc, bif, mc); /* * Reinject the mbuf as arriving on the bridge so we have a * chance at claiming multicast packets. We can not loop back * here from ether_input as a bridge is never a member of a * bridge. */ KASSERT(bifp->if_bridge == NULL, ("loop created in bridge_input")); mc2 = m_dup(m, M_NOWAIT); if (mc2 != NULL) { /* Keep the layer3 header aligned */ int i = min(mc2->m_pkthdr.len, max_protohdr); mc2 = m_copyup(mc2, i, ETHER_ALIGN); } if (mc2 != NULL) { mc2->m_pkthdr.rcvif = bifp; (*bifp->if_input)(bifp, mc2); } /* Return the original packet for local processing. */ return (m); } if ((bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { BRIDGE_UNLOCK(sc); return (m); } #if (defined(INET) || defined(INET6)) # define OR_CARP_CHECK_WE_ARE_DST(iface) \ || ((iface)->if_carp \ && (*carp_forus_p)((iface), eh->ether_dhost)) # define OR_CARP_CHECK_WE_ARE_SRC(iface) \ || ((iface)->if_carp \ && (*carp_forus_p)((iface), eh->ether_shost)) #else # define OR_CARP_CHECK_WE_ARE_DST(iface) # define OR_CARP_CHECK_WE_ARE_SRC(iface) #endif #ifdef INET6 # define OR_PFIL_HOOKED_INET6 \ || PFIL_HOOKED(&V_inet6_pfil_hook) #else # define OR_PFIL_HOOKED_INET6 #endif #define GRAB_OUR_PACKETS(iface) \ if ((iface)->if_type == IFT_GIF) \ continue; \ /* It is destined for us. */ \ if (memcmp(IF_LLADDR((iface)), eh->ether_dhost, ETHER_ADDR_LEN) == 0 \ OR_CARP_CHECK_WE_ARE_DST((iface)) \ ) { \ if ((iface)->if_type == IFT_BRIDGE) { \ ETHER_BPF_MTAP(iface, m); \ if_inc_counter(iface, IFCOUNTER_IPACKETS, 1); \ if_inc_counter(iface, IFCOUNTER_IBYTES, m->m_pkthdr.len); \ /* Filter on the physical interface. */ \ if (V_pfil_local_phys && \ (PFIL_HOOKED(&V_inet_pfil_hook) \ OR_PFIL_HOOKED_INET6)) { \ if (bridge_pfil(&m, NULL, ifp, \ PFIL_IN) != 0 || m == NULL) { \ BRIDGE_UNLOCK(sc); \ return (NULL); \ } \ eh = mtod(m, struct ether_header *); \ } \ } \ if (bif->bif_flags & IFBIF_LEARNING) { \ error = bridge_rtupdate(sc, eh->ether_shost, \ vlan, bif, 0, IFBAF_DYNAMIC); \ if (error && bif->bif_addrmax) { \ BRIDGE_UNLOCK(sc); \ m_freem(m); \ return (NULL); \ } \ } \ m->m_pkthdr.rcvif = iface; \ BRIDGE_UNLOCK(sc); \ return (m); \ } \ \ /* We just received a packet that we sent out. */ \ if (memcmp(IF_LLADDR((iface)), eh->ether_shost, ETHER_ADDR_LEN) == 0 \ OR_CARP_CHECK_WE_ARE_SRC((iface)) \ ) { \ BRIDGE_UNLOCK(sc); \ m_freem(m); \ return (NULL); \ } /* * Unicast. Make sure it's not for the bridge. */ do { GRAB_OUR_PACKETS(bifp) } while (0); /* * Give a chance for ifp at first priority. This will help when the * packet comes through the interface like VLAN's with the same MACs * on several interfaces from the same bridge. This also will save * some CPU cycles in case the destination interface and the input * interface (eq ifp) are the same. */ do { GRAB_OUR_PACKETS(ifp) } while (0); /* Now check the all bridge members. */ LIST_FOREACH(bif2, &sc->sc_iflist, bif_next) { GRAB_OUR_PACKETS(bif2->bif_ifp) } #undef OR_CARP_CHECK_WE_ARE_DST #undef OR_CARP_CHECK_WE_ARE_SRC #undef OR_PFIL_HOOKED_INET6 #undef GRAB_OUR_PACKETS /* Perform the bridge forwarding function. */ bridge_forward(sc, bif, m); return (NULL); } /* * bridge_broadcast: * * Send a frame to all interfaces that are members of * the bridge, except for the one on which the packet * arrived. * * NOTE: Releases the lock on return. */ static void bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if, struct mbuf *m, int runfilt) { struct bridge_iflist *dbif, *sbif; struct mbuf *mc; struct ifnet *dst_if; int error = 0, used = 0, i; sbif = bridge_lookup_member_if(sc, src_if); BRIDGE_LOCK2REF(sc, error); if (error) { m_freem(m); return; } /* Filter on the bridge interface before broadcasting */ if (runfilt && (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif )) { if (bridge_pfil(&m, sc->sc_ifp, NULL, PFIL_OUT) != 0) goto out; if (m == NULL) goto out; } LIST_FOREACH(dbif, &sc->sc_iflist, bif_next) { dst_if = dbif->bif_ifp; if (dst_if == src_if) continue; /* Private segments can not talk to each other */ if (sbif && (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE)) continue; if ((dbif->bif_flags & IFBIF_STP) && dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) continue; if ((dbif->bif_flags & IFBIF_DISCOVER) == 0 && (m->m_flags & (M_BCAST|M_MCAST)) == 0) continue; if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) continue; if (LIST_NEXT(dbif, bif_next) == NULL) { mc = m; used = 1; } else { mc = m_dup(m, M_NOWAIT); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } } /* * Filter on the output interface. Pass a NULL bridge interface * pointer so we do not redundantly filter on the bridge for * each interface we broadcast on. */ if (runfilt && (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif )) { if (used == 0) { /* Keep the layer3 header aligned */ i = min(mc->m_pkthdr.len, max_protohdr); mc = m_copyup(mc, i, ETHER_ALIGN); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } } if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0) continue; if (mc == NULL) continue; } bridge_enqueue(sc, dst_if, mc); } if (used == 0) m_freem(m); out: BRIDGE_UNREF(sc); } /* * bridge_span: * * Duplicate a packet out one or more interfaces that are in span mode, * the original mbuf is unmodified. */ static void bridge_span(struct bridge_softc *sc, struct mbuf *m) { struct bridge_iflist *bif; struct ifnet *dst_if; struct mbuf *mc; if (LIST_EMPTY(&sc->sc_spanlist)) return; LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) { dst_if = bif->bif_ifp; if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) continue; mc = m_copypacket(m, M_NOWAIT); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } bridge_enqueue(sc, dst_if, mc); } } /* * bridge_rtupdate: * * Add a bridge routing entry. */ static int bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst, uint16_t vlan, struct bridge_iflist *bif, int setflags, uint8_t flags) { struct bridge_rtnode *brt; int error; BRIDGE_LOCK_ASSERT(sc); /* Check the source address is valid and not multicast. */ if (ETHER_IS_MULTICAST(dst) || (dst[0] == 0 && dst[1] == 0 && dst[2] == 0 && dst[3] == 0 && dst[4] == 0 && dst[5] == 0) != 0) return (EINVAL); /* 802.1p frames map to vlan 1 */ if (vlan == 0) vlan = 1; /* * A route for this destination might already exist. If so, * update it, otherwise create a new one. */ if ((brt = bridge_rtnode_lookup(sc, dst, vlan)) == NULL) { if (sc->sc_brtcnt >= sc->sc_brtmax) { sc->sc_brtexceeded++; return (ENOSPC); } /* Check per interface address limits (if enabled) */ if (bif->bif_addrmax && bif->bif_addrcnt >= bif->bif_addrmax) { bif->bif_addrexceeded++; return (ENOSPC); } /* * Allocate a new bridge forwarding node, and * initialize the expiration time and Ethernet * address. */ brt = uma_zalloc(V_bridge_rtnode_zone, M_NOWAIT | M_ZERO); if (brt == NULL) return (ENOMEM); if (bif->bif_flags & IFBIF_STICKY) brt->brt_flags = IFBAF_STICKY; else brt->brt_flags = IFBAF_DYNAMIC; memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN); brt->brt_vlan = vlan; if ((error = bridge_rtnode_insert(sc, brt)) != 0) { uma_zfree(V_bridge_rtnode_zone, brt); return (error); } brt->brt_dst = bif; bif->bif_addrcnt++; } if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC && brt->brt_dst != bif) { brt->brt_dst->bif_addrcnt--; brt->brt_dst = bif; brt->brt_dst->bif_addrcnt++; } if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) brt->brt_expire = time_uptime + sc->sc_brttimeout; if (setflags) brt->brt_flags = flags; return (0); } /* * bridge_rtlookup: * * Lookup the destination interface for an address. */ static struct ifnet * bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; BRIDGE_LOCK_ASSERT(sc); if ((brt = bridge_rtnode_lookup(sc, addr, vlan)) == NULL) return (NULL); return (brt->brt_ifp); } /* * bridge_rttrim: * * Trim the routine table so that we have a number * of routing entries less than or equal to the * maximum number. */ static void bridge_rttrim(struct bridge_softc *sc) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); /* Make sure we actually need to do this. */ if (sc->sc_brtcnt <= sc->sc_brtmax) return; /* Force an aging cycle; this might trim enough addresses. */ bridge_rtage(sc); if (sc->sc_brtcnt <= sc->sc_brtmax) return; LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { bridge_rtnode_destroy(sc, brt); if (sc->sc_brtcnt <= sc->sc_brtmax) return; } } } /* * bridge_timer: * * Aging timer for the bridge. */ static void bridge_timer(void *arg) { struct bridge_softc *sc = arg; BRIDGE_LOCK_ASSERT(sc); /* Destruction of rtnodes requires a proper vnet context */ CURVNET_SET(sc->sc_ifp->if_vnet); bridge_rtage(sc); if (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz, bridge_timer, sc); CURVNET_RESTORE(); } /* * bridge_rtage: * * Perform an aging cycle. */ static void bridge_rtage(struct bridge_softc *sc) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { if (time_uptime >= brt->brt_expire) bridge_rtnode_destroy(sc, brt); } } } /* * bridge_rtflush: * * Remove all dynamic addresses from the bridge. */ static void bridge_rtflush(struct bridge_softc *sc, int full) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) bridge_rtnode_destroy(sc, brt); } } /* * bridge_rtdaddr: * * Remove an address from the table. */ static int bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; int found = 0; BRIDGE_LOCK_ASSERT(sc); /* * If vlan is zero then we want to delete for all vlans so the lookup * may return more than one. */ while ((brt = bridge_rtnode_lookup(sc, addr, vlan)) != NULL) { bridge_rtnode_destroy(sc, brt); found = 1; } return (found ? 0 : ENOENT); } /* * bridge_rtdelete: * * Delete routes to a speicifc member interface. */ static void bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int full) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if (brt->brt_ifp == ifp && (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) bridge_rtnode_destroy(sc, brt); } } /* * bridge_rtable_init: * * Initialize the route table for this bridge. */ static void bridge_rtable_init(struct bridge_softc *sc) { int i; sc->sc_rthash = malloc(sizeof(*sc->sc_rthash) * BRIDGE_RTHASH_SIZE, M_DEVBUF, M_WAITOK); for (i = 0; i < BRIDGE_RTHASH_SIZE; i++) LIST_INIT(&sc->sc_rthash[i]); sc->sc_rthash_key = arc4random(); LIST_INIT(&sc->sc_rtlist); } /* * bridge_rtable_fini: * * Deconstruct the route table for this bridge. */ static void bridge_rtable_fini(struct bridge_softc *sc) { KASSERT(sc->sc_brtcnt == 0, ("%s: %d bridge routes referenced", __func__, sc->sc_brtcnt)); free(sc->sc_rthash, M_DEVBUF); } /* * The following hash function is adapted from "Hash Functions" by Bob Jenkins * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). */ #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (/*CONSTCOND*/0) static __inline uint32_t bridge_rthash(struct bridge_softc *sc, const uint8_t *addr) { uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key; b += addr[5] << 8; b += addr[4]; a += addr[3] << 24; a += addr[2] << 16; a += addr[1] << 8; a += addr[0]; mix(a, b, c); return (c & BRIDGE_RTHASH_MASK); } #undef mix static int bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b) { int i, d; for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) { d = ((int)a[i]) - ((int)b[i]); } return (d); } /* * bridge_rtnode_lookup: * * Look up a bridge route node for the specified destination. Compare the * vlan id or if zero then just return the first match. */ static struct bridge_rtnode * bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; uint32_t hash; int dir; BRIDGE_LOCK_ASSERT(sc); hash = bridge_rthash(sc, addr); LIST_FOREACH(brt, &sc->sc_rthash[hash], brt_hash) { dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr); if (dir == 0 && (brt->brt_vlan == vlan || vlan == 0)) return (brt); if (dir > 0) return (NULL); } return (NULL); } /* * bridge_rtnode_insert: * * Insert the specified bridge node into the route table. We * assume the entry is not already in the table. */ static int bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt) { struct bridge_rtnode *lbrt; uint32_t hash; int dir; BRIDGE_LOCK_ASSERT(sc); hash = bridge_rthash(sc, brt->brt_addr); lbrt = LIST_FIRST(&sc->sc_rthash[hash]); if (lbrt == NULL) { LIST_INSERT_HEAD(&sc->sc_rthash[hash], brt, brt_hash); goto out; } do { dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr); if (dir == 0 && brt->brt_vlan == lbrt->brt_vlan) return (EEXIST); if (dir > 0) { LIST_INSERT_BEFORE(lbrt, brt, brt_hash); goto out; } if (LIST_NEXT(lbrt, brt_hash) == NULL) { LIST_INSERT_AFTER(lbrt, brt, brt_hash); goto out; } lbrt = LIST_NEXT(lbrt, brt_hash); } while (lbrt != NULL); #ifdef DIAGNOSTIC panic("bridge_rtnode_insert: impossible"); #endif out: LIST_INSERT_HEAD(&sc->sc_rtlist, brt, brt_list); sc->sc_brtcnt++; return (0); } /* * bridge_rtnode_destroy: * * Destroy a bridge rtnode. */ static void bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt) { BRIDGE_LOCK_ASSERT(sc); LIST_REMOVE(brt, brt_hash); LIST_REMOVE(brt, brt_list); sc->sc_brtcnt--; brt->brt_dst->bif_addrcnt--; uma_zfree(V_bridge_rtnode_zone, brt); } /* * bridge_rtable_expire: * * Set the expiry time for all routes on an interface. */ static void bridge_rtable_expire(struct ifnet *ifp, int age) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_rtnode *brt; CURVNET_SET(ifp->if_vnet); BRIDGE_LOCK(sc); /* * If the age is zero then flush, otherwise set all the expiry times to * age for the interface */ if (age == 0) bridge_rtdelete(sc, ifp, IFBF_FLUSHDYN); else { LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { /* Cap the expiry time to 'age' */ if (brt->brt_ifp == ifp && brt->brt_expire > time_uptime + age && (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) brt->brt_expire = time_uptime + age; } } BRIDGE_UNLOCK(sc); CURVNET_RESTORE(); } /* * bridge_state_change: * * Callback from the bridgestp code when a port changes states. */ static void bridge_state_change(struct ifnet *ifp, int state) { struct bridge_softc *sc = ifp->if_bridge; static const char *stpstates[] = { "disabled", "listening", "learning", "forwarding", "blocking", "discarding" }; CURVNET_SET(ifp->if_vnet); if (V_log_stp) log(LOG_NOTICE, "%s: state changed to %s on %s\n", sc->sc_ifp->if_xname, stpstates[state], ifp->if_xname); CURVNET_RESTORE(); } /* * Send bridge packets through pfil if they are one of the types pfil can deal * with, or if they are ARP or REVARP. (pfil will pass ARP and REVARP without * question.) If *bifp or *ifp are NULL then packet filtering is skipped for * that interface. */ static int bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir) { int snap, error, i, hlen; struct ether_header *eh1, eh2; struct ip *ip; struct llc llc1; u_int16_t ether_type; snap = 0; error = -1; /* Default error if not error == 0 */ #if 0 /* we may return with the IP fields swapped, ensure its not shared */ KASSERT(M_WRITABLE(*mp), ("%s: modifying a shared mbuf", __func__)); #endif if (V_pfil_bridge == 0 && V_pfil_member == 0 && V_pfil_ipfw == 0) return (0); /* filtering is disabled */ i = min((*mp)->m_pkthdr.len, max_protohdr); if ((*mp)->m_len < i) { *mp = m_pullup(*mp, i); if (*mp == NULL) { printf("%s: m_pullup failed\n", __func__); return (-1); } } eh1 = mtod(*mp, struct ether_header *); ether_type = ntohs(eh1->ether_type); /* * Check for SNAP/LLC. */ if (ether_type < ETHERMTU) { struct llc *llc2 = (struct llc *)(eh1 + 1); if ((*mp)->m_len >= ETHER_HDR_LEN + 8 && llc2->llc_dsap == LLC_SNAP_LSAP && llc2->llc_ssap == LLC_SNAP_LSAP && llc2->llc_control == LLC_UI) { ether_type = htons(llc2->llc_un.type_snap.ether_type); snap = 1; } } /* * If we're trying to filter bridge traffic, don't look at anything * other than IP and ARP traffic. If the filter doesn't understand * IPv6, don't allow IPv6 through the bridge either. This is lame * since if we really wanted, say, an AppleTalk filter, we are hosed, * but of course we don't have an AppleTalk filter to begin with. * (Note that since pfil doesn't understand ARP it will pass *ALL* * ARP traffic.) */ switch (ether_type) { case ETHERTYPE_ARP: case ETHERTYPE_REVARP: if (V_pfil_ipfw_arp == 0) return (0); /* Automatically pass */ break; case ETHERTYPE_IP: #ifdef INET6 case ETHERTYPE_IPV6: #endif /* INET6 */ break; default: /* * Check to see if the user wants to pass non-ip * packets, these will not be checked by pfil(9) and * passed unconditionally so the default is to drop. */ if (V_pfil_onlyip) goto bad; } /* Run the packet through pfil before stripping link headers */ if (PFIL_HOOKED(&V_link_pfil_hook) && V_pfil_ipfw != 0 && dir == PFIL_OUT && ifp != NULL) { error = pfil_run_hooks(&V_link_pfil_hook, mp, ifp, dir, 0, NULL); if (*mp == NULL || error != 0) /* packet consumed by filter */ return (error); } /* Strip off the Ethernet header and keep a copy. */ m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t) &eh2); m_adj(*mp, ETHER_HDR_LEN); /* Strip off snap header, if present */ if (snap) { m_copydata(*mp, 0, sizeof(struct llc), (caddr_t) &llc1); m_adj(*mp, sizeof(struct llc)); } /* * Check the IP header for alignment and errors */ if (dir == PFIL_IN) { switch (ether_type) { case ETHERTYPE_IP: error = bridge_ip_checkbasic(mp); break; #ifdef INET6 case ETHERTYPE_IPV6: error = bridge_ip6_checkbasic(mp); break; #endif /* INET6 */ default: error = 0; } if (error) goto bad; } error = 0; /* * Run the packet through pfil */ switch (ether_type) { case ETHERTYPE_IP: /* * Run pfil on the member interface and the bridge, both can * be skipped by clearing pfil_member or pfil_bridge. * * Keep the order: * in_if -> bridge_if -> out_if */ if (V_pfil_bridge && dir == PFIL_OUT && bifp != NULL) error = pfil_run_hooks(&V_inet_pfil_hook, mp, bifp, dir, 0, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_member && ifp != NULL) error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, dir, 0, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_bridge && dir == PFIL_IN && bifp != NULL) error = pfil_run_hooks(&V_inet_pfil_hook, mp, bifp, dir, 0, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; /* check if we need to fragment the packet */ /* bridge_fragment generates a mbuf chain of packets */ /* that already include eth headers */ if (V_pfil_member && ifp != NULL && dir == PFIL_OUT) { i = (*mp)->m_pkthdr.len; if (i > ifp->if_mtu) { error = bridge_fragment(ifp, mp, &eh2, snap, &llc1); return (error); } } /* Recalculate the ip checksum. */ ip = mtod(*mp, struct ip *); hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) goto bad; if (hlen > (*mp)->m_len) { if ((*mp = m_pullup(*mp, hlen)) == NULL) goto bad; ip = mtod(*mp, struct ip *); if (ip == NULL) goto bad; } ip->ip_sum = 0; if (hlen == sizeof(struct ip)) ip->ip_sum = in_cksum_hdr(ip); else ip->ip_sum = in_cksum(*mp, hlen); break; #ifdef INET6 case ETHERTYPE_IPV6: if (V_pfil_bridge && dir == PFIL_OUT && bifp != NULL) error = pfil_run_hooks(&V_inet6_pfil_hook, mp, bifp, dir, 0, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_member && ifp != NULL) error = pfil_run_hooks(&V_inet6_pfil_hook, mp, ifp, dir, 0, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_bridge && dir == PFIL_IN && bifp != NULL) error = pfil_run_hooks(&V_inet6_pfil_hook, mp, bifp, dir, 0, NULL); break; #endif default: error = 0; break; } if (*mp == NULL) return (error); if (error != 0) goto bad; error = -1; /* * Finally, put everything back the way it was and return */ if (snap) { M_PREPEND(*mp, sizeof(struct llc), M_NOWAIT); if (*mp == NULL) return (error); bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc)); } M_PREPEND(*mp, ETHER_HDR_LEN, M_NOWAIT); if (*mp == NULL) return (error); bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN); return (0); bad: m_freem(*mp); *mp = NULL; return (error); } /* * Perform basic checks on header size since * pfil assumes ip_input has already processed * it for it. Cut-and-pasted from ip_input.c. * Given how simple the IPv6 version is, * does the IPv4 version really need to be * this complicated? * * XXX Should we update ipstat here, or not? * XXX Right now we update ipstat but not * XXX csum_counter. */ static int bridge_ip_checkbasic(struct mbuf **mp) { struct mbuf *m = *mp; struct ip *ip; int len, hlen; u_short sum; if (*mp == NULL) return (-1); if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { if ((m = m_copyup(m, sizeof(struct ip), (max_linkhdr + 3) & ~3)) == NULL) { /* XXXJRT new stat, please */ KMOD_IPSTAT_INC(ips_toosmall); goto bad; } } else if (__predict_false(m->m_len < sizeof (struct ip))) { if ((m = m_pullup(m, sizeof (struct ip))) == NULL) { KMOD_IPSTAT_INC(ips_toosmall); goto bad; } } ip = mtod(m, struct ip *); if (ip == NULL) goto bad; if (ip->ip_v != IPVERSION) { KMOD_IPSTAT_INC(ips_badvers); goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ KMOD_IPSTAT_INC(ips_badhlen); goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == NULL) { KMOD_IPSTAT_INC(ips_badhlen); goto bad; } ip = mtod(m, struct ip *); if (ip == NULL) goto bad; } if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); } else { if (hlen == sizeof(struct ip)) { sum = in_cksum_hdr(ip); } else { sum = in_cksum(m, hlen); } } if (sum) { KMOD_IPSTAT_INC(ips_badsum); goto bad; } /* Retrieve the packet length. */ len = ntohs(ip->ip_len); /* * Check for additional length bogosity */ if (len < hlen) { KMOD_IPSTAT_INC(ips_badlen); goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < len) { KMOD_IPSTAT_INC(ips_tooshort); goto bad; } /* Checks out, proceed */ *mp = m; return (0); bad: *mp = m; return (-1); } #ifdef INET6 /* * Same as above, but for IPv6. * Cut-and-pasted from ip6_input.c. * XXX Should we update ip6stat, or not? */ static int bridge_ip6_checkbasic(struct mbuf **mp) { struct mbuf *m = *mp; struct ip6_hdr *ip6; /* * If the IPv6 header is not aligned, slurp it up into a new * mbuf with space for link headers, in the event we forward * it. Otherwise, if it is aligned, make sure the entire base * IPv6 header is in the first mbuf of the chain. */ if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { struct ifnet *inifp = m->m_pkthdr.rcvif; if ((m = m_copyup(m, sizeof(struct ip6_hdr), (max_linkhdr + 3) & ~3)) == NULL) { /* XXXJRT new stat, please */ IP6STAT_INC(ip6s_toosmall); in6_ifstat_inc(inifp, ifs6_in_hdrerr); goto bad; } } else if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) { struct ifnet *inifp = m->m_pkthdr.rcvif; if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) { IP6STAT_INC(ip6s_toosmall); in6_ifstat_inc(inifp, ifs6_in_hdrerr); goto bad; } } ip6 = mtod(m, struct ip6_hdr *); if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { IP6STAT_INC(ip6s_badvers); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr); goto bad; } /* Checks out, proceed */ *mp = m; return (0); bad: *mp = m; return (-1); } #endif /* INET6 */ /* * bridge_fragment: * * Fragment mbuf chain in multiple packets and prepend ethernet header. */ static int bridge_fragment(struct ifnet *ifp, struct mbuf **mp, struct ether_header *eh, int snap, struct llc *llc) { struct mbuf *m = *mp, *nextpkt = NULL, *mprev = NULL, *mcur = NULL; struct ip *ip; int error = -1; if (m->m_len < sizeof(struct ip) && (m = m_pullup(m, sizeof(struct ip))) == NULL) goto dropit; ip = mtod(m, struct ip *); m->m_pkthdr.csum_flags |= CSUM_IP; error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist); if (error) goto dropit; /* * Walk the chain and re-add the Ethernet header for * each mbuf packet. */ for (mcur = m; mcur; mcur = mcur->m_nextpkt) { nextpkt = mcur->m_nextpkt; mcur->m_nextpkt = NULL; if (snap) { M_PREPEND(mcur, sizeof(struct llc), M_NOWAIT); if (mcur == NULL) { error = ENOBUFS; if (mprev != NULL) mprev->m_nextpkt = nextpkt; goto dropit; } bcopy(llc, mtod(mcur, caddr_t),sizeof(struct llc)); } M_PREPEND(mcur, ETHER_HDR_LEN, M_NOWAIT); if (mcur == NULL) { error = ENOBUFS; if (mprev != NULL) mprev->m_nextpkt = nextpkt; goto dropit; } bcopy(eh, mtod(mcur, caddr_t), ETHER_HDR_LEN); /* * The previous two M_PREPEND could have inserted one or two * mbufs in front so we have to update the previous packet's * m_nextpkt. */ mcur->m_nextpkt = nextpkt; if (mprev != NULL) mprev->m_nextpkt = mcur; else { /* The first mbuf in the original chain needs to be * updated. */ *mp = mcur; } mprev = mcur; } KMOD_IPSTAT_INC(ips_fragmented); return (error); dropit: for (mcur = *mp; mcur; mcur = m) { /* droping the full packet chain */ m = mcur->m_nextpkt; m_freem(mcur); } return (error); } static void bridge_linkstate(struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_iflist *bif; BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif == NULL) { BRIDGE_UNLOCK(sc); return; } bridge_linkcheck(sc); BRIDGE_UNLOCK(sc); bstp_linkstate(&bif->bif_stp); } static void bridge_linkcheck(struct bridge_softc *sc) { struct bridge_iflist *bif; int new_link, hasls; BRIDGE_LOCK_ASSERT(sc); new_link = LINK_STATE_DOWN; hasls = 0; /* Our link is considered up if at least one of our ports is active */ LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (bif->bif_ifp->if_capabilities & IFCAP_LINKSTATE) hasls++; if (bif->bif_ifp->if_link_state == LINK_STATE_UP) { new_link = LINK_STATE_UP; break; } } if (!LIST_EMPTY(&sc->sc_iflist) && !hasls) { /* If no interfaces support link-state then we default to up */ new_link = LINK_STATE_UP; } if_link_state_change(sc->sc_ifp, new_link); } Index: stable/12/sys/net/if_lagg.c =================================================================== --- stable/12/sys/net/if_lagg.c (revision 357554) +++ stable/12/sys/net/if_lagg.c (revision 357555) @@ -1,2270 +1,2292 @@ /* $OpenBSD: if_trunk.c,v 1.30 2007/01/31 06:20:19 reyk Exp $ */ /* * Copyright (c) 2005, 2006 Reyk Floeter * Copyright (c) 2007 Andrew Thompson * Copyright (c) 2014, 2016 Marcelo Araujo * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #if defined(INET) || defined(INET6) #include #include #endif #ifdef INET #include #include #endif #ifdef INET6 #include #include #include #endif #include #include #include +#ifdef INET6 +/* + * XXX: declare here to avoid to include many inet6 related files.. + * should be more generalized? + */ +extern void nd6_setmtu(struct ifnet *); +#endif + #define LAGG_RLOCK() struct epoch_tracker lagg_et; epoch_enter_preempt(net_epoch_preempt, &lagg_et) #define LAGG_RUNLOCK() epoch_exit_preempt(net_epoch_preempt, &lagg_et) #define LAGG_RLOCK_ASSERT() MPASS(in_epoch(net_epoch_preempt)) #define LAGG_UNLOCK_ASSERT() MPASS(!in_epoch(net_epoch_preempt)) #define LAGG_SX_INIT(_sc) sx_init(&(_sc)->sc_sx, "if_lagg sx") #define LAGG_SX_DESTROY(_sc) sx_destroy(&(_sc)->sc_sx) #define LAGG_XLOCK(_sc) sx_xlock(&(_sc)->sc_sx) #define LAGG_XUNLOCK(_sc) sx_xunlock(&(_sc)->sc_sx) #define LAGG_SXLOCK_ASSERT(_sc) sx_assert(&(_sc)->sc_sx, SA_LOCKED) #define LAGG_XLOCK_ASSERT(_sc) sx_assert(&(_sc)->sc_sx, SA_XLOCKED) /* Special flags we should propagate to the lagg ports. */ static struct { int flag; int (*func)(struct ifnet *, int); } lagg_pflags[] = { {IFF_PROMISC, ifpromisc}, {IFF_ALLMULTI, if_allmulti}, {0, NULL} }; VNET_DEFINE(SLIST_HEAD(__trhead, lagg_softc), lagg_list); /* list of laggs */ #define V_lagg_list VNET(lagg_list) VNET_DEFINE_STATIC(struct mtx, lagg_list_mtx); #define V_lagg_list_mtx VNET(lagg_list_mtx) #define LAGG_LIST_LOCK_INIT(x) mtx_init(&V_lagg_list_mtx, \ "if_lagg list", NULL, MTX_DEF) #define LAGG_LIST_LOCK_DESTROY(x) mtx_destroy(&V_lagg_list_mtx) #define LAGG_LIST_LOCK(x) mtx_lock(&V_lagg_list_mtx) #define LAGG_LIST_UNLOCK(x) mtx_unlock(&V_lagg_list_mtx) eventhandler_tag lagg_detach_cookie = NULL; static int lagg_clone_create(struct if_clone *, int, caddr_t); static void lagg_clone_destroy(struct ifnet *); VNET_DEFINE_STATIC(struct if_clone *, lagg_cloner); #define V_lagg_cloner VNET(lagg_cloner) static const char laggname[] = "lagg"; static MALLOC_DEFINE(M_LAGG, laggname, "802.3AD Link Aggregation Interface"); static void lagg_capabilities(struct lagg_softc *); static int lagg_port_create(struct lagg_softc *, struct ifnet *); static int lagg_port_destroy(struct lagg_port *, int); static struct mbuf *lagg_input(struct ifnet *, struct mbuf *); static void lagg_linkstate(struct lagg_softc *); static void lagg_port_state(struct ifnet *, int); static int lagg_port_ioctl(struct ifnet *, u_long, caddr_t); static int lagg_port_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static void lagg_port_ifdetach(void *arg __unused, struct ifnet *); #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *); #endif static void lagg_port2req(struct lagg_port *, struct lagg_reqport *); static void lagg_init(void *); static void lagg_stop(struct lagg_softc *); static int lagg_ioctl(struct ifnet *, u_long, caddr_t); #ifdef RATELIMIT static int lagg_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); #endif static int lagg_setmulti(struct lagg_port *); static int lagg_clrmulti(struct lagg_port *); static int lagg_setcaps(struct lagg_port *, int cap); static int lagg_setflag(struct lagg_port *, int, int, int (*func)(struct ifnet *, int)); static int lagg_setflags(struct lagg_port *, int status); static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt); static int lagg_transmit(struct ifnet *, struct mbuf *); static void lagg_qflush(struct ifnet *); static int lagg_media_change(struct ifnet *); static void lagg_media_status(struct ifnet *, struct ifmediareq *); static struct lagg_port *lagg_link_active(struct lagg_softc *, struct lagg_port *); /* Simple round robin */ static void lagg_rr_attach(struct lagg_softc *); static int lagg_rr_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_rr_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* Active failover */ static int lagg_fail_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_fail_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *); static void lagg_lb_detach(struct lagg_softc *); static int lagg_lb_port_create(struct lagg_port *); static void lagg_lb_port_destroy(struct lagg_port *); static int lagg_lb_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_lb_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); static int lagg_lb_porttable(struct lagg_softc *, struct lagg_port *); /* Broadcast */ static int lagg_bcast_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_bcast_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *); static void lagg_lacp_detach(struct lagg_softc *); static int lagg_lacp_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_lacp_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); static void lagg_lacp_lladdr(struct lagg_softc *); /* lagg protocol table */ static const struct lagg_proto { lagg_proto pr_num; void (*pr_attach)(struct lagg_softc *); void (*pr_detach)(struct lagg_softc *); int (*pr_start)(struct lagg_softc *, struct mbuf *); struct mbuf * (*pr_input)(struct lagg_softc *, struct lagg_port *, struct mbuf *); int (*pr_addport)(struct lagg_port *); void (*pr_delport)(struct lagg_port *); void (*pr_linkstate)(struct lagg_port *); void (*pr_init)(struct lagg_softc *); void (*pr_stop)(struct lagg_softc *); void (*pr_lladdr)(struct lagg_softc *); void (*pr_request)(struct lagg_softc *, void *); void (*pr_portreq)(struct lagg_port *, void *); } lagg_protos[] = { { .pr_num = LAGG_PROTO_NONE }, { .pr_num = LAGG_PROTO_ROUNDROBIN, .pr_attach = lagg_rr_attach, .pr_start = lagg_rr_start, .pr_input = lagg_rr_input, }, { .pr_num = LAGG_PROTO_FAILOVER, .pr_start = lagg_fail_start, .pr_input = lagg_fail_input, }, { .pr_num = LAGG_PROTO_LOADBALANCE, .pr_attach = lagg_lb_attach, .pr_detach = lagg_lb_detach, .pr_start = lagg_lb_start, .pr_input = lagg_lb_input, .pr_addport = lagg_lb_port_create, .pr_delport = lagg_lb_port_destroy, }, { .pr_num = LAGG_PROTO_LACP, .pr_attach = lagg_lacp_attach, .pr_detach = lagg_lacp_detach, .pr_start = lagg_lacp_start, .pr_input = lagg_lacp_input, .pr_addport = lacp_port_create, .pr_delport = lacp_port_destroy, .pr_linkstate = lacp_linkstate, .pr_init = lacp_init, .pr_stop = lacp_stop, .pr_lladdr = lagg_lacp_lladdr, .pr_request = lacp_req, .pr_portreq = lacp_portreq, }, { .pr_num = LAGG_PROTO_BROADCAST, .pr_start = lagg_bcast_start, .pr_input = lagg_bcast_input, }, }; SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, OID_AUTO, lagg, CTLFLAG_RW, 0, "Link Aggregation"); /* Allow input on any failover links */ VNET_DEFINE_STATIC(int, lagg_failover_rx_all); #define V_lagg_failover_rx_all VNET(lagg_failover_rx_all) SYSCTL_INT(_net_link_lagg, OID_AUTO, failover_rx_all, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(lagg_failover_rx_all), 0, "Accept input from any interface in a failover lagg"); /* Default value for using flowid */ VNET_DEFINE_STATIC(int, def_use_flowid) = 0; #define V_def_use_flowid VNET(def_use_flowid) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_use_flowid, CTLFLAG_RWTUN, &VNET_NAME(def_use_flowid), 0, "Default setting for using flow id for load sharing"); /* Default value for flowid shift */ VNET_DEFINE_STATIC(int, def_flowid_shift) = 16; #define V_def_flowid_shift VNET(def_flowid_shift) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_flowid_shift, CTLFLAG_RWTUN, &VNET_NAME(def_flowid_shift), 0, "Default setting for flowid shift for load sharing"); static void vnet_lagg_init(const void *unused __unused) { LAGG_LIST_LOCK_INIT(); SLIST_INIT(&V_lagg_list); V_lagg_cloner = if_clone_simple(laggname, lagg_clone_create, lagg_clone_destroy, 0); } VNET_SYSINIT(vnet_lagg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_lagg_init, NULL); static void vnet_lagg_uninit(const void *unused __unused) { if_clone_detach(V_lagg_cloner); LAGG_LIST_LOCK_DESTROY(); } VNET_SYSUNINIT(vnet_lagg_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY, vnet_lagg_uninit, NULL); static int lagg_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: lagg_input_p = lagg_input; lagg_linkstate_p = lagg_port_state; lagg_detach_cookie = EVENTHANDLER_REGISTER( ifnet_departure_event, lagg_port_ifdetach, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_UNLOAD: EVENTHANDLER_DEREGISTER(ifnet_departure_event, lagg_detach_cookie); lagg_input_p = NULL; lagg_linkstate_p = NULL; break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t lagg_mod = { "if_lagg", lagg_modevent, 0 }; DECLARE_MODULE(if_lagg, lagg_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_lagg, 1); static void lagg_proto_attach(struct lagg_softc *sc, lagg_proto pr) { LAGG_XLOCK_ASSERT(sc); KASSERT(sc->sc_proto == LAGG_PROTO_NONE, ("%s: sc %p has proto", __func__, sc)); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "using proto %u\n", pr); if (lagg_protos[pr].pr_attach != NULL) lagg_protos[pr].pr_attach(sc); sc->sc_proto = pr; } static void lagg_proto_detach(struct lagg_softc *sc) { lagg_proto pr; LAGG_XLOCK_ASSERT(sc); pr = sc->sc_proto; sc->sc_proto = LAGG_PROTO_NONE; if (lagg_protos[pr].pr_detach != NULL) lagg_protos[pr].pr_detach(sc); } static int lagg_proto_start(struct lagg_softc *sc, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_start(sc, m)); } static struct mbuf * lagg_proto_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_input(sc, lp, m)); } static int lagg_proto_addport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_addport == NULL) return (0); else return (lagg_protos[sc->sc_proto].pr_addport(lp)); } static void lagg_proto_delport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_delport != NULL) lagg_protos[sc->sc_proto].pr_delport(lp); } static void lagg_proto_linkstate(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_linkstate != NULL) lagg_protos[sc->sc_proto].pr_linkstate(lp); } static void lagg_proto_init(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_init != NULL) lagg_protos[sc->sc_proto].pr_init(sc); } static void lagg_proto_stop(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_stop != NULL) lagg_protos[sc->sc_proto].pr_stop(sc); } static void lagg_proto_lladdr(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_lladdr != NULL) lagg_protos[sc->sc_proto].pr_lladdr(sc); } static void lagg_proto_request(struct lagg_softc *sc, void *v) { if (lagg_protos[sc->sc_proto].pr_request != NULL) lagg_protos[sc->sc_proto].pr_request(sc, v); } static void lagg_proto_portreq(struct lagg_softc *sc, struct lagg_port *lp, void *v) { if (lagg_protos[sc->sc_proto].pr_portreq != NULL) lagg_protos[sc->sc_proto].pr_portreq(lp, v); } /* * This routine is run via an vlan * config EVENT */ static void lagg_register_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_config, lp->lp_ifp, vtag); LAGG_RUNLOCK(); } /* * This routine is run via an vlan * unconfig EVENT */ static void lagg_unregister_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_unconfig, lp->lp_ifp, vtag); LAGG_RUNLOCK(); } static int lagg_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct lagg_softc *sc; struct ifnet *ifp; static const u_char eaddr[6]; /* 00:00:00:00:00:00 */ sc = malloc(sizeof(*sc), M_LAGG, M_WAITOK|M_ZERO); ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { free(sc, M_LAGG); return (ENOSPC); } LAGG_SX_INIT(sc); LAGG_XLOCK(sc); if (V_def_use_flowid) sc->sc_opts |= LAGG_OPT_USE_FLOWID; sc->flowid_shift = V_def_flowid_shift; /* Hash all layers by default */ sc->sc_flags = MBUF_HASHFLAG_L2|MBUF_HASHFLAG_L3|MBUF_HASHFLAG_L4; lagg_proto_attach(sc, LAGG_PROTO_DEFAULT); CK_SLIST_INIT(&sc->sc_ports); /* Initialise pseudo media types */ ifmedia_init(&sc->sc_media, 0, lagg_media_change, lagg_media_status); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); if_initname(ifp, laggname, unit); ifp->if_softc = sc; ifp->if_transmit = lagg_transmit; ifp->if_qflush = lagg_qflush; ifp->if_init = lagg_init; ifp->if_ioctl = lagg_ioctl; ifp->if_get_counter = lagg_get_counter; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; #ifdef RATELIMIT ifp->if_snd_tag_alloc = lagg_snd_tag_alloc; #endif ifp->if_capenable = ifp->if_capabilities = IFCAP_HWSTATS; /* * Attach as an ordinary ethernet device, children will be attached * as special device IFT_IEEE8023ADLAG. */ ether_ifattach(ifp, eaddr); sc->vlan_attach = EVENTHANDLER_REGISTER(vlan_config, lagg_register_vlan, sc, EVENTHANDLER_PRI_FIRST); sc->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, lagg_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); /* Insert into the global list of laggs */ LAGG_LIST_LOCK(); SLIST_INSERT_HEAD(&V_lagg_list, sc, sc_entries); LAGG_LIST_UNLOCK(); LAGG_XUNLOCK(sc); return (0); } static void lagg_clone_destroy(struct ifnet *ifp) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; LAGG_XLOCK(sc); sc->sc_destroying = 1; lagg_stop(sc); ifp->if_flags &= ~IFF_UP; EVENTHANDLER_DEREGISTER(vlan_config, sc->vlan_attach); EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vlan_detach); /* Shutdown and remove lagg ports */ while ((lp = CK_SLIST_FIRST(&sc->sc_ports)) != NULL) lagg_port_destroy(lp, 1); /* Unhook the aggregation protocol */ lagg_proto_detach(sc); LAGG_XUNLOCK(sc); ifmedia_removeall(&sc->sc_media); ether_ifdetach(ifp); if_free(ifp); LAGG_LIST_LOCK(); SLIST_REMOVE(&V_lagg_list, sc, lagg_softc, sc_entries); LAGG_LIST_UNLOCK(); LAGG_SX_DESTROY(sc); free(sc, M_LAGG); } static void lagg_capabilities(struct lagg_softc *sc) { struct lagg_port *lp; int cap, ena, pena; uint64_t hwa; struct ifnet_hw_tsomax hw_tsomax; LAGG_XLOCK_ASSERT(sc); /* Get common enabled capabilities for the lagg ports */ ena = ~0; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) ena &= lp->lp_ifp->if_capenable; ena = (ena == ~0 ? 0 : ena); /* * Apply common enabled capabilities back to the lagg ports. * May require several iterations if they are dependent. */ do { pena = ena; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_setcaps(lp, ena); ena &= lp->lp_ifp->if_capenable; } } while (pena != ena); /* Get other capabilities from the lagg ports */ cap = ~0; hwa = ~(uint64_t)0; memset(&hw_tsomax, 0, sizeof(hw_tsomax)); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { cap &= lp->lp_ifp->if_capabilities; hwa &= lp->lp_ifp->if_hwassist; if_hw_tsomax_common(lp->lp_ifp, &hw_tsomax); } cap = (cap == ~0 ? 0 : cap); hwa = (hwa == ~(uint64_t)0 ? 0 : hwa); if (sc->sc_ifp->if_capabilities != cap || sc->sc_ifp->if_capenable != ena || sc->sc_ifp->if_hwassist != hwa || if_hw_tsomax_update(sc->sc_ifp, &hw_tsomax) != 0) { sc->sc_ifp->if_capabilities = cap; sc->sc_ifp->if_capenable = ena; sc->sc_ifp->if_hwassist = hwa; getmicrotime(&sc->sc_ifp->if_lastchange); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "capabilities 0x%08x enabled 0x%08x\n", cap, ena); } } static int lagg_port_create(struct lagg_softc *sc, struct ifnet *ifp) { struct lagg_softc *sc_ptr; struct lagg_port *lp, *tlp; struct ifreq ifr; int error, i, oldmtu; uint64_t *pval; LAGG_XLOCK_ASSERT(sc); if (sc->sc_ifp == ifp) { if_printf(sc->sc_ifp, "cannot add a lagg to itself as a port\n"); return (EINVAL); } /* Limit the maximal number of lagg ports */ if (sc->sc_count >= LAGG_MAX_PORTS) return (ENOSPC); /* Check if port has already been associated to a lagg */ if (ifp->if_lagg != NULL) { /* Port is already in the current lagg? */ lp = (struct lagg_port *)ifp->if_lagg; if (lp->lp_softc == sc) return (EEXIST); return (EBUSY); } /* XXX Disallow non-ethernet interfaces (this should be any of 802) */ if (ifp->if_type != IFT_ETHER && ifp->if_type != IFT_L2VLAN) return (EPROTONOSUPPORT); /* Allow the first Ethernet member to define the MTU */ oldmtu = -1; if (CK_SLIST_EMPTY(&sc->sc_ports)) { sc->sc_ifp->if_mtu = ifp->if_mtu; } else if (sc->sc_ifp->if_mtu != ifp->if_mtu) { if (ifp->if_ioctl == NULL) { if_printf(sc->sc_ifp, "cannot change MTU for %s\n", ifp->if_xname); return (EINVAL); } oldmtu = ifp->if_mtu; strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)); ifr.ifr_mtu = sc->sc_ifp->if_mtu; error = (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); if (error != 0) { if_printf(sc->sc_ifp, "invalid MTU for %s\n", ifp->if_xname); return (error); } ifr.ifr_mtu = oldmtu; } lp = malloc(sizeof(struct lagg_port), M_LAGG, M_WAITOK|M_ZERO); lp->lp_softc = sc; /* Check if port is a stacked lagg */ LAGG_LIST_LOCK(); SLIST_FOREACH(sc_ptr, &V_lagg_list, sc_entries) { if (ifp == sc_ptr->sc_ifp) { LAGG_LIST_UNLOCK(); free(lp, M_LAGG); if (oldmtu != -1) (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); return (EINVAL); /* XXX disable stacking for the moment, its untested */ #ifdef LAGG_PORT_STACKING lp->lp_flags |= LAGG_PORT_STACK; if (lagg_port_checkstacking(sc_ptr) >= LAGG_MAX_STACKING) { LAGG_LIST_UNLOCK(); free(lp, M_LAGG); if (oldmtu != -1) (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); return (E2BIG); } #endif } } LAGG_LIST_UNLOCK(); if_ref(ifp); lp->lp_ifp = ifp; bcopy(IF_LLADDR(ifp), lp->lp_lladdr, ETHER_ADDR_LEN); lp->lp_ifcapenable = ifp->if_capenable; if (CK_SLIST_EMPTY(&sc->sc_ports)) { bcopy(IF_LLADDR(ifp), IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); lagg_proto_lladdr(sc); EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } else { if_setlladdr(ifp, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); } lagg_setflags(lp, 1); if (CK_SLIST_EMPTY(&sc->sc_ports)) sc->sc_primary = lp; /* Change the interface type */ lp->lp_iftype = ifp->if_type; ifp->if_type = IFT_IEEE8023ADLAG; ifp->if_lagg = lp; lp->lp_ioctl = ifp->if_ioctl; ifp->if_ioctl = lagg_port_ioctl; lp->lp_output = ifp->if_output; ifp->if_output = lagg_port_output; /* Read port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) *pval = ifp->if_get_counter(ifp, i); /* * Insert into the list of ports. * Keep ports sorted by if_index. It is handy, when configuration * is predictable and `ifconfig laggN create ...` command * will lead to the same result each time. */ CK_SLIST_FOREACH(tlp, &sc->sc_ports, lp_entries) { if (tlp->lp_ifp->if_index < ifp->if_index && ( CK_SLIST_NEXT(tlp, lp_entries) == NULL || ((struct lagg_port*)CK_SLIST_NEXT(tlp, lp_entries))->lp_ifp->if_index > ifp->if_index)) break; } if (tlp != NULL) CK_SLIST_INSERT_AFTER(tlp, lp, lp_entries); else CK_SLIST_INSERT_HEAD(&sc->sc_ports, lp, lp_entries); sc->sc_count++; lagg_setmulti(lp); if ((error = lagg_proto_addport(sc, lp)) != 0) { /* Remove the port, without calling pr_delport. */ lagg_port_destroy(lp, 0); if (oldmtu != -1) (*ifp->if_ioctl)(ifp, SIOCSIFMTU, (caddr_t)&ifr); return (error); } /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); return (0); } #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *sc) { struct lagg_softc *sc_ptr; struct lagg_port *lp; int m = 0; LAGG_SXLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_flags & LAGG_PORT_STACK) { sc_ptr = (struct lagg_softc *)lp->lp_ifp->if_softc; m = MAX(m, lagg_port_checkstacking(sc_ptr)); } } return (m + 1); } #endif static void lagg_port_destroy_cb(epoch_context_t ec) { struct lagg_port *lp; struct ifnet *ifp; lp = __containerof(ec, struct lagg_port, lp_epoch_ctx); ifp = lp->lp_ifp; if_rele(ifp); free(lp, M_LAGG); } static int lagg_port_destroy(struct lagg_port *lp, int rundelport) { struct lagg_softc *sc = lp->lp_softc; struct lagg_port *lp_ptr, *lp0; struct ifnet *ifp = lp->lp_ifp; uint64_t *pval, vdiff; int i; LAGG_XLOCK_ASSERT(sc); if (rundelport) lagg_proto_delport(sc, lp); if (lp->lp_detaching == 0) lagg_clrmulti(lp); /* Restore interface */ ifp->if_type = lp->lp_iftype; ifp->if_ioctl = lp->lp_ioctl; ifp->if_output = lp->lp_output; ifp->if_lagg = NULL; /* Update detached port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) { vdiff = ifp->if_get_counter(ifp, i) - *pval; sc->detached_counters.val[i] += vdiff; } /* Finally, remove the port from the lagg */ CK_SLIST_REMOVE(&sc->sc_ports, lp, lagg_port, lp_entries); sc->sc_count--; /* Update the primary interface */ if (lp == sc->sc_primary) { uint8_t lladdr[ETHER_ADDR_LEN]; if ((lp0 = CK_SLIST_FIRST(&sc->sc_ports)) == NULL) bzero(&lladdr, ETHER_ADDR_LEN); else bcopy(lp0->lp_lladdr, lladdr, ETHER_ADDR_LEN); sc->sc_primary = lp0; if (sc->sc_destroying == 0) { bcopy(lladdr, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); lagg_proto_lladdr(sc); EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } /* * Update lladdr for each port (new primary needs update * as well, to switch from old lladdr to its 'real' one) */ CK_SLIST_FOREACH(lp_ptr, &sc->sc_ports, lp_entries) if_setlladdr(lp_ptr->lp_ifp, lladdr, ETHER_ADDR_LEN); } if (lp->lp_ifflags) if_printf(ifp, "%s: lp_ifflags unclean\n", __func__); if (lp->lp_detaching == 0) { lagg_setflags(lp, 0); lagg_setcaps(lp, lp->lp_ifcapenable); if_setlladdr(ifp, lp->lp_lladdr, ETHER_ADDR_LEN); } /* * free port and release it's ifnet reference after a grace period has * elapsed. */ epoch_call(net_epoch_preempt, &lp->lp_epoch_ctx, lagg_port_destroy_cb); /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); return (0); } static int lagg_port_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct lagg_reqport *rp = (struct lagg_reqport *)data; struct lagg_softc *sc; struct lagg_port *lp = NULL; int error = 0; /* Should be checked by the caller */ if (ifp->if_type != IFT_IEEE8023ADLAG || (lp = ifp->if_lagg) == NULL || (sc = lp->lp_softc) == NULL) goto fallback; switch (cmd) { case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || ifunit(rp->rp_portname) != ifp) { error = EINVAL; break; } LAGG_RLOCK(); if ((lp = ifp->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_RUNLOCK(); break; } lagg_port2req(lp, rp); LAGG_RUNLOCK(); break; case SIOCSIFCAP: if (lp->lp_ioctl == NULL) { error = EINVAL; break; } error = (*lp->lp_ioctl)(ifp, cmd, data); if (error) break; /* Update lagg interface capabilities */ LAGG_XLOCK(sc); lagg_capabilities(sc); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(sc->sc_ifp); break; case SIOCSIFMTU: /* Do not allow the MTU to be changed once joined */ error = EINVAL; break; default: goto fallback; } return (error); fallback: if (lp != NULL && lp->lp_ioctl != NULL) return ((*lp->lp_ioctl)(ifp, cmd, data)); return (EINVAL); } /* * Requests counter @cnt data. * * Counter value is calculated the following way: * 1) for each port, sum difference between current and "initial" measurements. * 2) add lagg logical interface counters. * 3) add data from detached_counters array. * * We also do the following things on ports attach/detach: * 1) On port attach we store all counters it has into port_counter array. * 2) On port detach we add the different between "initial" and * current counters data to detached_counters array. */ static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt) { struct lagg_softc *sc; struct lagg_port *lp; struct ifnet *lpifp; uint64_t newval, oldval, vsum; /* Revise this when we've got non-generic counters. */ KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); sc = (struct lagg_softc *)ifp->if_softc; vsum = 0; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { /* Saved attached value */ oldval = lp->port_counters.val[cnt]; /* current value */ lpifp = lp->lp_ifp; newval = lpifp->if_get_counter(lpifp, cnt); /* Calculate diff and save new */ vsum += newval - oldval; } LAGG_RUNLOCK(); /* * Add counter data which might be added by upper * layer protocols operating on logical interface. */ vsum += if_get_counter_default(ifp, cnt); /* * Add counter data from detached ports counters */ vsum += sc->detached_counters.val[cnt]; return (vsum); } /* * For direct output to child ports. */ static int lagg_port_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct lagg_port *lp = ifp->if_lagg; switch (dst->sa_family) { case pseudo_AF_HDRCMPLT: case AF_UNSPEC: return ((*lp->lp_output)(ifp, m, dst, ro)); } /* drop any other frames */ m_freem(m); return (ENETDOWN); } static void lagg_port_ifdetach(void *arg __unused, struct ifnet *ifp) { struct lagg_port *lp; struct lagg_softc *sc; if ((lp = ifp->if_lagg) == NULL) return; /* If the ifnet is just being renamed, don't do anything. */ if (ifp->if_flags & IFF_RENAMING) return; sc = lp->lp_softc; LAGG_XLOCK(sc); lp->lp_detaching = 1; lagg_port_destroy(lp, 1); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(sc->sc_ifp); } static void lagg_port2req(struct lagg_port *lp, struct lagg_reqport *rp) { struct lagg_softc *sc = lp->lp_softc; strlcpy(rp->rp_ifname, sc->sc_ifname, sizeof(rp->rp_ifname)); strlcpy(rp->rp_portname, lp->lp_ifp->if_xname, sizeof(rp->rp_portname)); rp->rp_prio = lp->lp_prio; rp->rp_flags = lp->lp_flags; lagg_proto_portreq(sc, lp, &rp->rp_psc); /* Add protocol specific flags */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: if (lp == sc->sc_primary) rp->rp_flags |= LAGG_PORT_MASTER; if (lp == lagg_link_active(sc, sc->sc_primary)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: if (LAGG_PORTACTIVE(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_LACP: /* LACP has a different definition of active */ if (lacp_isactive(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; if (lacp_iscollecting(lp)) rp->rp_flags |= LAGG_PORT_COLLECTING; if (lacp_isdistributing(lp)) rp->rp_flags |= LAGG_PORT_DISTRIBUTING; break; } } static void lagg_init(void *xsc) { struct lagg_softc *sc = (struct lagg_softc *)xsc; struct ifnet *ifp = sc->sc_ifp; struct lagg_port *lp; LAGG_XLOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { LAGG_XUNLOCK(sc); return; } ifp->if_drv_flags |= IFF_DRV_RUNNING; /* * Update the port lladdrs if needed. * This might be if_setlladdr() notification * that lladdr has been changed. */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (memcmp(IF_LLADDR(ifp), IF_LLADDR(lp->lp_ifp), ETHER_ADDR_LEN) != 0) if_setlladdr(lp->lp_ifp, IF_LLADDR(ifp), ETHER_ADDR_LEN); } lagg_proto_init(sc); LAGG_XUNLOCK(sc); } static void lagg_stop(struct lagg_softc *sc) { struct ifnet *ifp = sc->sc_ifp; LAGG_XLOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; lagg_proto_stop(sc); } static int lagg_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_reqall *ra = (struct lagg_reqall *)data; struct lagg_reqopts *ro = (struct lagg_reqopts *)data; struct lagg_reqport *rp = (struct lagg_reqport *)data, rpbuf; struct lagg_reqflags *rf = (struct lagg_reqflags *)data; struct ifreq *ifr = (struct ifreq *)data; struct lagg_port *lp; struct ifnet *tpif; struct thread *td = curthread; char *buf, *outbuf; - int count, buflen, len, error = 0; + int count, buflen, len, error = 0, oldmtu; bzero(&rpbuf, sizeof(rpbuf)); switch (cmd) { case SIOCGLAGG: LAGG_XLOCK(sc); buflen = sc->sc_count * sizeof(struct lagg_reqport); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); ra->ra_proto = sc->sc_proto; lagg_proto_request(sc, &ra->ra_psc); count = 0; buf = outbuf; len = min(ra->ra_size, buflen); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (len < sizeof(rpbuf)) break; lagg_port2req(lp, &rpbuf); memcpy(buf, &rpbuf, sizeof(rpbuf)); count++; buf += sizeof(rpbuf); len -= sizeof(rpbuf); } LAGG_XUNLOCK(sc); ra->ra_ports = count; ra->ra_size = count * sizeof(rpbuf); error = copyout(outbuf, ra->ra_port, ra->ra_size); free(outbuf, M_TEMP); break; case SIOCSLAGG: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (ra->ra_proto >= LAGG_PROTO_MAX) { error = EPROTONOSUPPORT; break; } LAGG_XLOCK(sc); lagg_proto_detach(sc); LAGG_UNLOCK_ASSERT(); lagg_proto_attach(sc, ra->ra_proto); LAGG_XUNLOCK(sc); break; case SIOCGLAGGOPTS: LAGG_XLOCK(sc); ro->ro_opts = sc->sc_opts; if (sc->sc_proto == LAGG_PROTO_LACP) { struct lacp_softc *lsc; lsc = (struct lacp_softc *)sc->sc_psc; if (lsc->lsc_debug.lsc_tx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_TXTEST; if (lsc->lsc_debug.lsc_rx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_RXTEST; if (lsc->lsc_strict_mode != 0) ro->ro_opts |= LAGG_OPT_LACP_STRICT; if (lsc->lsc_fast_timeout != 0) ro->ro_opts |= LAGG_OPT_LACP_TIMEOUT; ro->ro_active = sc->sc_active; } else { ro->ro_active = 0; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) ro->ro_active += LAGG_PORTACTIVE(lp); } ro->ro_bkt = sc->sc_stride; ro->ro_flapping = sc->sc_flapping; ro->ro_flowid_shift = sc->flowid_shift; LAGG_XUNLOCK(sc); break; case SIOCSLAGGOPTS: error = priv_check(td, PRIV_NET_LAGG); if (error) break; /* * The stride option was added without defining a corresponding * LAGG_OPT flag, so handle a non-zero value before checking * anything else to preserve compatibility. */ LAGG_XLOCK(sc); if (ro->ro_opts == 0 && ro->ro_bkt != 0) { if (sc->sc_proto != LAGG_PROTO_ROUNDROBIN) { LAGG_XUNLOCK(sc); error = EINVAL; break; } sc->sc_stride = ro->ro_bkt; } if (ro->ro_opts == 0) { LAGG_XUNLOCK(sc); break; } /* * Set options. LACP options are stored in sc->sc_psc, * not in sc_opts. */ int valid, lacp; switch (ro->ro_opts) { case LAGG_OPT_USE_FLOWID: case -LAGG_OPT_USE_FLOWID: case LAGG_OPT_FLOWIDSHIFT: case LAGG_OPT_RR_LIMIT: valid = 1; lacp = 0; break; case LAGG_OPT_LACP_TXTEST: case -LAGG_OPT_LACP_TXTEST: case LAGG_OPT_LACP_RXTEST: case -LAGG_OPT_LACP_RXTEST: case LAGG_OPT_LACP_STRICT: case -LAGG_OPT_LACP_STRICT: case LAGG_OPT_LACP_TIMEOUT: case -LAGG_OPT_LACP_TIMEOUT: valid = lacp = 1; break; default: valid = lacp = 0; break; } if (valid == 0 || (lacp == 1 && sc->sc_proto != LAGG_PROTO_LACP)) { /* Invalid combination of options specified. */ error = EINVAL; LAGG_XUNLOCK(sc); break; /* Return from SIOCSLAGGOPTS. */ } /* * Store new options into sc->sc_opts except for * FLOWIDSHIFT, RR and LACP options. */ if (lacp == 0) { if (ro->ro_opts == LAGG_OPT_FLOWIDSHIFT) sc->flowid_shift = ro->ro_flowid_shift; else if (ro->ro_opts == LAGG_OPT_RR_LIMIT) { if (sc->sc_proto != LAGG_PROTO_ROUNDROBIN || ro->ro_bkt == 0) { error = EINVAL; LAGG_XUNLOCK(sc); break; } sc->sc_stride = ro->ro_bkt; } else if (ro->ro_opts > 0) sc->sc_opts |= ro->ro_opts; else sc->sc_opts &= ~ro->ro_opts; } else { struct lacp_softc *lsc; struct lacp_port *lp; lsc = (struct lacp_softc *)sc->sc_psc; switch (ro->ro_opts) { case LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 1; break; case -LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 0; break; case LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 1; break; case -LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 0; break; case LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 1; break; case -LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 0; break; case LAGG_OPT_LACP_TIMEOUT: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state |= LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 1; break; case -LAGG_OPT_LACP_TIMEOUT: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state &= ~LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 0; break; } } LAGG_XUNLOCK(sc); break; case SIOCGLAGGFLAGS: rf->rf_flags = 0; LAGG_XLOCK(sc); if (sc->sc_flags & MBUF_HASHFLAG_L2) rf->rf_flags |= LAGG_F_HASHL2; if (sc->sc_flags & MBUF_HASHFLAG_L3) rf->rf_flags |= LAGG_F_HASHL3; if (sc->sc_flags & MBUF_HASHFLAG_L4) rf->rf_flags |= LAGG_F_HASHL4; LAGG_XUNLOCK(sc); break; case SIOCSLAGGHASH: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if ((rf->rf_flags & LAGG_F_HASHMASK) == 0) { error = EINVAL; break; } LAGG_XLOCK(sc); sc->sc_flags = 0; if (rf->rf_flags & LAGG_F_HASHL2) sc->sc_flags |= MBUF_HASHFLAG_L2; if (rf->rf_flags & LAGG_F_HASHL3) sc->sc_flags |= MBUF_HASHFLAG_L3; if (rf->rf_flags & LAGG_F_HASHL4) sc->sc_flags |= MBUF_HASHFLAG_L4; LAGG_XUNLOCK(sc); break; case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } LAGG_RLOCK(); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_RUNLOCK(); if_rele(tpif); break; } lagg_port2req(lp, rp); LAGG_RUNLOCK(); if_rele(tpif); break; case SIOCSLAGGPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } #ifdef INET6 /* * A laggport interface should not have inet6 address * because two interfaces with a valid link-local * scope zone must not be merged in any form. This * restriction is needed to prevent violation of * link-local scope zone. Attempts to add a laggport * interface which has inet6 addresses triggers * removal of all inet6 addresses on the member * interface. */ if (in6ifa_llaonifp(tpif)) { in6_ifdetach(tpif); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", tpif->if_xname); } #endif + oldmtu = ifp->if_mtu; LAGG_XLOCK(sc); error = lagg_port_create(sc, tpif); LAGG_XUNLOCK(sc); if_rele(tpif); + + /* + * LAGG MTU may change during addition of the first port. + * If it did, do network layer specific procedure. + */ + if (ifp->if_mtu != oldmtu) { +#ifdef INET6 + nd6_setmtu(ifp); +#endif + rt_updatemtu(ifp); + } + VLAN_CAPABILITIES(ifp); break; case SIOCSLAGGDELPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit_ref(rp->rp_portname)) == NULL) { error = EINVAL; break; } LAGG_XLOCK(sc); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_XUNLOCK(sc); if_rele(tpif); break; } error = lagg_port_destroy(lp, 1); LAGG_XUNLOCK(sc); if_rele(tpif); VLAN_CAPABILITIES(ifp); break; case SIOCSIFFLAGS: /* Set flags on ports too */ LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_setflags(lp, 1); } if (!(ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked down and it is running, * then stop and disable it. */ lagg_stop(sc); LAGG_XUNLOCK(sc); } else if ((ifp->if_flags & IFF_UP) && !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked up and it is stopped, then * start it. */ LAGG_XUNLOCK(sc); (*ifp->if_init)(sc); } else LAGG_XUNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_clrmulti(lp); lagg_setmulti(lp); } LAGG_XUNLOCK(sc); error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; case SIOCSIFCAP: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ioctl != NULL) (*lp->lp_ioctl)(lp->lp_ifp, cmd, data); } lagg_capabilities(sc); LAGG_XUNLOCK(sc); VLAN_CAPABILITIES(ifp); error = 0; break; case SIOCSIFMTU: LAGG_XLOCK(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ioctl != NULL) error = (*lp->lp_ioctl)(lp->lp_ifp, cmd, data); else error = EINVAL; if (error != 0) { if_printf(ifp, "failed to change MTU to %d on port %s, " "reverting all ports to original MTU (%d)\n", ifr->ifr_mtu, lp->lp_ifp->if_xname, ifp->if_mtu); break; } } if (error == 0) { ifp->if_mtu = ifr->ifr_mtu; } else { /* set every port back to the original MTU */ ifr->ifr_mtu = ifp->if_mtu; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ioctl != NULL) (*lp->lp_ioctl)(lp->lp_ifp, cmd, data); } } LAGG_XUNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } #ifdef RATELIMIT static int lagg_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **ppmt) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; struct lagg_lb *lb; uint32_t p; LAGG_RLOCK(); switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: lp = lagg_link_active(sc, sc->sc_primary); break; case LAGG_PROTO_LOADBALANCE: if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) == 0 || params->hdr.flowtype == M_HASHTYPE_NONE) { LAGG_RUNLOCK(); return (EOPNOTSUPP); } p = params->hdr.flowid >> sc->flowid_shift; p %= sc->sc_count; lb = (struct lagg_lb *)sc->sc_psc; lp = lb->lb_ports[p]; lp = lagg_link_active(sc, lp); break; case LAGG_PROTO_LACP: if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) == 0 || params->hdr.flowtype == M_HASHTYPE_NONE) { LAGG_RUNLOCK(); return (EOPNOTSUPP); } lp = lacp_select_tx_port_by_hash(sc, params->hdr.flowid); break; default: LAGG_RUNLOCK(); return (EOPNOTSUPP); } if (lp == NULL) { LAGG_RUNLOCK(); return (EOPNOTSUPP); } ifp = lp->lp_ifp; LAGG_RUNLOCK(); if (ifp == NULL || ifp->if_snd_tag_alloc == NULL || (ifp->if_capenable & IFCAP_TXRTLMT) == 0) return (EOPNOTSUPP); /* forward allocation request */ return (ifp->if_snd_tag_alloc(ifp, params, ppmt)); } #endif static int lagg_setmulti(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *ifp = lp->lp_ifp; struct ifnet *scifp = sc->sc_ifp; struct lagg_mc *mc; struct ifmultiaddr *ifma; int error; IF_ADDR_WLOCK(scifp); CK_STAILQ_FOREACH(ifma, &scifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct lagg_mc), M_LAGG, M_NOWAIT); if (mc == NULL) { IF_ADDR_WUNLOCK(scifp); return (ENOMEM); } bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); mc->mc_addr.sdl_index = ifp->if_index; mc->mc_ifma = NULL; SLIST_INSERT_HEAD(&lp->lp_mc_head, mc, mc_entries); } IF_ADDR_WUNLOCK(scifp); SLIST_FOREACH (mc, &lp->lp_mc_head, mc_entries) { error = if_addmulti(ifp, (struct sockaddr *)&mc->mc_addr, &mc->mc_ifma); if (error) return (error); } return (0); } static int lagg_clrmulti(struct lagg_port *lp) { struct lagg_mc *mc; LAGG_XLOCK_ASSERT(lp->lp_softc); while ((mc = SLIST_FIRST(&lp->lp_mc_head)) != NULL) { SLIST_REMOVE(&lp->lp_mc_head, mc, lagg_mc, mc_entries); if (mc->mc_ifma && lp->lp_detaching == 0) if_delmulti_ifma(mc->mc_ifma); free(mc, M_LAGG); } return (0); } static int lagg_setcaps(struct lagg_port *lp, int cap) { struct ifreq ifr; if (lp->lp_ifp->if_capenable == cap) return (0); if (lp->lp_ioctl == NULL) return (ENXIO); ifr.ifr_reqcap = cap; return ((*lp->lp_ioctl)(lp->lp_ifp, SIOCSIFCAP, (caddr_t)&ifr)); } /* Handle a ref counted flag that should be set on the lagg port as well */ static int lagg_setflag(struct lagg_port *lp, int flag, int status, int (*func)(struct ifnet *, int)) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; struct ifnet *ifp = lp->lp_ifp; int error; LAGG_XLOCK_ASSERT(sc); status = status ? (scifp->if_flags & flag) : 0; /* Now "status" contains the flag value or 0 */ /* * See if recorded ports status is different from what * we want it to be. If it is, flip it. We record ports * status in lp_ifflags so that we won't clear ports flag * we haven't set. In fact, we don't clear or set ports * flags directly, but get or release references to them. * That's why we can be sure that recorded flags still are * in accord with actual ports flags. */ if (status != (lp->lp_ifflags & flag)) { error = (*func)(ifp, status); if (error) return (error); lp->lp_ifflags &= ~flag; lp->lp_ifflags |= status; } return (0); } /* * Handle IFF_* flags that require certain changes on the lagg port * if "status" is true, update ports flags respective to the lagg * if "status" is false, forcedly clear the flags set on port. */ static int lagg_setflags(struct lagg_port *lp, int status) { int error, i; for (i = 0; lagg_pflags[i].flag; i++) { error = lagg_setflag(lp, lagg_pflags[i].flag, status, lagg_pflags[i].func); if (error) return (error); } return (0); } static int lagg_transmit(struct ifnet *ifp, struct mbuf *m) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; int error; LAGG_RLOCK(); /* We need a Tx algorithm and at least one port */ if (sc->sc_proto == LAGG_PROTO_NONE || sc->sc_count == 0) { LAGG_RUNLOCK(); m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENXIO); } ETHER_BPF_MTAP(ifp, m); error = lagg_proto_start(sc, m); LAGG_RUNLOCK(); if (error != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (error); } /* * The ifp->if_qflush entry point for lagg(4) is no-op. */ static void lagg_qflush(struct ifnet *ifp __unused) { } static struct mbuf * lagg_input(struct ifnet *ifp, struct mbuf *m) { struct lagg_port *lp = ifp->if_lagg; struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; LAGG_RLOCK(); if ((scifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || lp->lp_detaching != 0 || sc->sc_proto == LAGG_PROTO_NONE) { LAGG_RUNLOCK(); m_freem(m); return (NULL); } ETHER_BPF_MTAP(scifp, m); m = lagg_proto_input(sc, lp, m); if (m != NULL && (scifp->if_flags & IFF_MONITOR) != 0) { m_freem(m); m = NULL; } LAGG_RUNLOCK(); return (m); } static int lagg_media_change(struct ifnet *ifp) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; if (sc->sc_ifflags & IFF_DEBUG) printf("%s\n", __func__); /* Ignore */ return (0); } static void lagg_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_ETHER | IFM_AUTO; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp)) imr->ifm_status |= IFM_ACTIVE; } LAGG_RUNLOCK(); } static void lagg_linkstate(struct lagg_softc *sc) { struct lagg_port *lp; int new_link = LINK_STATE_DOWN; uint64_t speed; LAGG_XLOCK_ASSERT(sc); /* LACP handles link state itself */ if (sc->sc_proto == LAGG_PROTO_LACP) return; /* Our link is considered up if at least one of our ports is active */ LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ifp->if_link_state == LINK_STATE_UP) { new_link = LINK_STATE_UP; break; } } LAGG_RUNLOCK(); if_link_state_change(sc->sc_ifp, new_link); /* Update if_baudrate to reflect the max possible speed */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: sc->sc_ifp->if_baudrate = sc->sc_primary != NULL ? sc->sc_primary->lp_ifp->if_baudrate : 0; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: speed = 0; LAGG_RLOCK(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) speed += lp->lp_ifp->if_baudrate; LAGG_RUNLOCK(); sc->sc_ifp->if_baudrate = speed; break; case LAGG_PROTO_LACP: /* LACP updates if_baudrate itself */ break; } } static void lagg_port_state(struct ifnet *ifp, int state) { struct lagg_port *lp = (struct lagg_port *)ifp->if_lagg; struct lagg_softc *sc = NULL; if (lp != NULL) sc = lp->lp_softc; if (sc == NULL) return; LAGG_XLOCK(sc); lagg_linkstate(sc); lagg_proto_linkstate(sc, lp); LAGG_XUNLOCK(sc); } struct lagg_port * lagg_link_active(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_port *lp_next, *rval = NULL; /* * Search a port which reports an active link state. */ #ifdef INVARIANTS /* * This is called with either LAGG_RLOCK() held or * LAGG_XLOCK(sc) held. */ if (!in_epoch(net_epoch_preempt)) LAGG_XLOCK_ASSERT(sc); #endif if (lp == NULL) goto search; if (LAGG_PORTACTIVE(lp)) { rval = lp; goto found; } if ((lp_next = CK_SLIST_NEXT(lp, lp_entries)) != NULL && LAGG_PORTACTIVE(lp_next)) { rval = lp_next; goto found; } search: CK_SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp_next)) { return (lp_next); } } found: return (rval); } int lagg_enqueue(struct ifnet *ifp, struct mbuf *m) { return (ifp->if_transmit)(ifp, m); } /* * Simple round robin aggregation */ static void lagg_rr_attach(struct lagg_softc *sc) { sc->sc_seq = 0; sc->sc_stride = 1; } static int lagg_rr_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; uint32_t p; p = atomic_fetchadd_32(&sc->sc_seq, 1); p /= sc->sc_stride; p %= sc->sc_count; lp = CK_SLIST_FIRST(&sc->sc_ports); while (p--) lp = CK_SLIST_NEXT(lp, lp_entries); /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_rr_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * Broadcast mode */ static int lagg_bcast_start(struct lagg_softc *sc, struct mbuf *m) { int active_ports = 0; int errors = 0; int ret; struct lagg_port *lp, *last = NULL; struct mbuf *m0; LAGG_RLOCK_ASSERT(); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (!LAGG_PORTACTIVE(lp)) continue; active_ports++; if (last != NULL) { m0 = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (m0 == NULL) { ret = ENOBUFS; errors++; break; } ret = lagg_enqueue(last->lp_ifp, m0); if (ret != 0) errors++; } last = lp; } if (last == NULL) { m_freem(m); return (ENOENT); } if ((last = lagg_link_active(sc, last)) == NULL) { m_freem(m); return (ENETDOWN); } ret = lagg_enqueue(last->lp_ifp, m); if (ret != 0) errors++; if (errors == 0) return (ret); return (0); } static struct mbuf* lagg_bcast_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * Active failover */ static int lagg_fail_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; /* Use the master port if active or the next available port */ if ((lp = lagg_link_active(sc, sc->sc_primary)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_fail_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct lagg_port *tmp_tp; if (lp == sc->sc_primary || V_lagg_failover_rx_all) { m->m_pkthdr.rcvif = ifp; return (m); } if (!LAGG_PORTACTIVE(sc->sc_primary)) { tmp_tp = lagg_link_active(sc, sc->sc_primary); /* * If tmp_tp is null, we've received a packet when all * our links are down. Weird, but process it anyways. */ if ((tmp_tp == NULL || tmp_tp == lp)) { m->m_pkthdr.rcvif = ifp; return (m); } } m_freem(m); return (NULL); } /* * Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *sc) { struct lagg_port *lp; struct lagg_lb *lb; LAGG_XLOCK_ASSERT(sc); lb = malloc(sizeof(struct lagg_lb), M_LAGG, M_WAITOK | M_ZERO); lb->lb_key = m_ether_tcpip_hash_init(); sc->sc_psc = lb; CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lagg_lb_port_create(lp); } static void lagg_lb_detach(struct lagg_softc *sc) { struct lagg_lb *lb; lb = (struct lagg_lb *)sc->sc_psc; if (lb != NULL) free(lb, M_LAGG); } static int lagg_lb_porttable(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp_next; int i = 0, rv; rv = 0; bzero(&lb->lb_ports, sizeof(lb->lb_ports)); LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (lp_next == lp) continue; if (i >= LAGG_MAX_PORTS) { rv = EINVAL; break; } if (sc->sc_ifflags & IFF_DEBUG) printf("%s: port %s at index %d\n", sc->sc_ifname, lp_next->lp_ifp->if_xname, i); lb->lb_ports[i++] = lp_next; } return (rv); } static int lagg_lb_port_create(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; return (lagg_lb_porttable(sc, NULL)); } static void lagg_lb_port_destroy(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; lagg_lb_porttable(sc, lp); } static int lagg_lb_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp = NULL; uint32_t p = 0; if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) p = m->m_pkthdr.flowid >> sc->flowid_shift; else p = m_ether_tcpip_hash(sc->sc_flags, m, lb->lb_key); p %= sc->sc_count; lp = lb->lb_ports[p]; /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_lb_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *sc) { struct lagg_port *lp; lacp_attach(sc); LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static void lagg_lacp_detach(struct lagg_softc *sc) { struct lagg_port *lp; void *psc; LAGG_XLOCK_ASSERT(sc); CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); psc = sc->sc_psc; sc->sc_psc = NULL; lacp_detach(psc); } static void lagg_lacp_lladdr(struct lagg_softc *sc) { struct lagg_port *lp; LAGG_SXLOCK_ASSERT(sc); /* purge all the lacp ports */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); /* add them back in */ CK_SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static int lagg_lacp_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; lp = lacp_select_tx_port(sc, m); if (lp == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_lacp_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct ether_header *eh; u_short etype; eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); /* Tap off LACP control messages */ if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_SLOW) { m = lacp_input(lp, m); if (m == NULL) return (NULL); } /* * If the port is not collecting or not in the active aggregator then * free and return. */ if (lacp_iscollecting(lp) == 0 || lacp_isactive(lp) == 0) { m_freem(m); return (NULL); } m->m_pkthdr.rcvif = ifp; return (m); } Index: stable/12/sys/net/if_vlan.c =================================================================== --- stable/12/sys/net/if_vlan.c (revision 357554) +++ stable/12/sys/net/if_vlan.c (revision 357555) @@ -1,1942 +1,1964 @@ /*- * Copyright 1998 Massachusetts Institute of Technology * Copyright 2012 ADARA Networks, Inc. * Copyright 2017 Dell EMC Isilon * * Portions of this software were developed by Robert N. M. Watson under * contract to ADARA Networks, Inc. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. * This is sort of sneaky in the implementation, since * we need to pretend to be enough of an Ethernet implementation * to make arp work. The way we do this is by telling everyone * that we are an Ethernet, and then catch the packets that * ether_output() sends to us via if_transmit(), rewrite them for * use by the real outgoing interface, and ask it to send them. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" +#include "opt_inet6.h" #include "opt_vlan.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #ifdef INET #include #include #endif +#ifdef INET6 +/* + * XXX: declare here to avoid to include many inet6 related files.. + * should be more generalized? + */ +extern void nd6_setmtu(struct ifnet *); +#endif + #define VLAN_DEF_HWIDTH 4 #define VLAN_IFFLAGS (IFF_BROADCAST | IFF_MULTICAST) #define UP_AND_RUNNING(ifp) \ ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING) CK_SLIST_HEAD(ifvlanhead, ifvlan); struct ifvlantrunk { struct ifnet *parent; /* parent interface of this trunk */ struct mtx lock; #ifdef VLAN_ARRAY #define VLAN_ARRAY_SIZE (EVL_VLID_MASK + 1) struct ifvlan *vlans[VLAN_ARRAY_SIZE]; /* static table */ #else struct ifvlanhead *hash; /* dynamic hash-list table */ uint16_t hmask; uint16_t hwidth; #endif int refcnt; }; /* * This macro provides a facility to iterate over every vlan on a trunk with * the assumption that none will be added/removed during iteration. */ #ifdef VLAN_ARRAY #define VLAN_FOREACH(_ifv, _trunk) \ size_t _i; \ for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \ if (((_ifv) = (_trunk)->vlans[_i]) != NULL) #else /* VLAN_ARRAY */ #define VLAN_FOREACH(_ifv, _trunk) \ struct ifvlan *_next; \ size_t _i; \ for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \ CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next) #endif /* VLAN_ARRAY */ /* * This macro provides a facility to iterate over every vlan on a trunk while * also modifying the number of vlans on the trunk. The iteration continues * until some condition is met or there are no more vlans on the trunk. */ #ifdef VLAN_ARRAY /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */ #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ size_t _i; \ for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \ if (((_ifv) = (_trunk)->vlans[_i])) #else /* VLAN_ARRAY */ /* * The hash table case is more complicated. We allow for the hash table to be * modified (i.e. vlans removed) while we are iterating over it. To allow for * this we must restart the iteration every time we "touch" something during * the iteration, since removal will resize the hash table and invalidate our * current position. If acting on the touched element causes the trunk to be * emptied, then iteration also stops. */ #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \ size_t _i; \ bool _touch = false; \ for (_i = 0; \ !(_cond) && _i < (1 << (_trunk)->hwidth); \ _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \ if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \ (_touch = true)) #endif /* VLAN_ARRAY */ struct vlan_mc_entry { struct sockaddr_dl mc_addr; CK_SLIST_ENTRY(vlan_mc_entry) mc_entries; struct epoch_context mc_epoch_ctx; }; struct ifvlan { struct ifvlantrunk *ifv_trunk; struct ifnet *ifv_ifp; #define TRUNK(ifv) ((ifv)->ifv_trunk) #define PARENT(ifv) ((ifv)->ifv_trunk->parent) void *ifv_cookie; int ifv_pflags; /* special flags we have set on parent */ int ifv_capenable; int ifv_encaplen; /* encapsulation length */ int ifv_mtufudge; /* MTU fudged by this much */ int ifv_mintu; /* min transmission unit */ uint16_t ifv_proto; /* encapsulation ethertype */ uint16_t ifv_tag; /* tag to apply on packets leaving if */ uint16_t ifv_vid; /* VLAN ID */ uint8_t ifv_pcp; /* Priority Code Point (PCP). */ struct task lladdr_task; CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead; #ifndef VLAN_ARRAY CK_SLIST_ENTRY(ifvlan) ifv_list; #endif }; /* Special flags we should propagate to parent. */ static struct { int flag; int (*func)(struct ifnet *, int); } vlan_pflags[] = { {IFF_PROMISC, ifpromisc}, {IFF_ALLMULTI, if_allmulti}, {0, NULL} }; extern int vlan_mtag_pcp; static const char vlanname[] = "vlan"; static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface"); static eventhandler_tag ifdetach_tag; static eventhandler_tag iflladdr_tag; /* * if_vlan uses two module-level synchronizations primitives to allow concurrent * modification of vlan interfaces and (mostly) allow for vlans to be destroyed * while they are being used for tx/rx. To accomplish this in a way that has * acceptable performance and cooperation with other parts of the network stack * there is a non-sleepable epoch(9) and an sx(9). * * The performance-sensitive paths that warrant using the epoch(9) are * vlan_transmit and vlan_input. Both have to check for the vlan interface's * existence using if_vlantrunk, and being in the network tx/rx paths the use * of an epoch(9) gives a measureable improvement in performance. * * The reason for having an sx(9) is mostly because there are still areas that * must be sleepable and also have safe concurrent access to a vlan interface. * Since the sx(9) exists, it is used by default in most paths unless sleeping * is not permitted, or if it is not clear whether sleeping is permitted. * */ #define _VLAN_SX_ID ifv_sx static struct sx _VLAN_SX_ID; #define VLAN_LOCKING_INIT() \ sx_init(&_VLAN_SX_ID, "vlan_sx") #define VLAN_LOCKING_DESTROY() \ sx_destroy(&_VLAN_SX_ID) #define VLAN_RLOCK() NET_EPOCH_ENTER(); #define VLAN_RUNLOCK() NET_EPOCH_EXIT(); #define VLAN_RLOCK_ASSERT() MPASS(in_epoch(net_epoch_preempt)) #define VLAN_SLOCK() sx_slock(&_VLAN_SX_ID) #define VLAN_SUNLOCK() sx_sunlock(&_VLAN_SX_ID) #define VLAN_XLOCK() sx_xlock(&_VLAN_SX_ID) #define VLAN_XUNLOCK() sx_xunlock(&_VLAN_SX_ID) #define VLAN_SLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_SLOCKED) #define VLAN_XLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_XLOCKED) #define VLAN_SXLOCK_ASSERT() sx_assert(&_VLAN_SX_ID, SA_LOCKED) /* * We also have a per-trunk mutex that should be acquired when changing * its state. */ #define TRUNK_LOCK_INIT(trunk) mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF) #define TRUNK_LOCK_DESTROY(trunk) mtx_destroy(&(trunk)->lock) #define TRUNK_RLOCK(trunk) NET_EPOCH_ENTER() #define TRUNK_WLOCK(trunk) mtx_lock(&(trunk)->lock) #define TRUNK_RUNLOCK(trunk) NET_EPOCH_EXIT(); #define TRUNK_WUNLOCK(trunk) mtx_unlock(&(trunk)->lock) #define TRUNK_RLOCK_ASSERT(trunk) MPASS(in_epoch(net_epoch_preempt)) #define TRUNK_LOCK_ASSERT(trunk) MPASS(in_epoch(net_epoch_preempt) || mtx_owned(&(trunk)->lock)) #define TRUNK_WLOCK_ASSERT(trunk) mtx_assert(&(trunk)->lock, MA_OWNED); /* * The VLAN_ARRAY substitutes the dynamic hash with a static array * with 4096 entries. In theory this can give a boost in processing, * however in practice it does not. Probably this is because the array * is too big to fit into CPU cache. */ #ifndef VLAN_ARRAY static void vlan_inithash(struct ifvlantrunk *trunk); static void vlan_freehash(struct ifvlantrunk *trunk); static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv); static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv); static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch); static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid); #endif static void trunk_destroy(struct ifvlantrunk *trunk); static void vlan_init(void *foo); static void vlan_input(struct ifnet *ifp, struct mbuf *m); static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr); #ifdef RATELIMIT static int vlan_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); #endif static void vlan_qflush(struct ifnet *ifp); static int vlan_setflag(struct ifnet *ifp, int flag, int status, int (*func)(struct ifnet *, int)); static int vlan_setflags(struct ifnet *ifp, int status); static int vlan_setmulti(struct ifnet *ifp); static int vlan_transmit(struct ifnet *ifp, struct mbuf *m); static void vlan_unconfig(struct ifnet *ifp); static void vlan_unconfig_locked(struct ifnet *ifp, int departing); static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag); static void vlan_link_state(struct ifnet *ifp); static void vlan_capabilities(struct ifvlan *ifv); static void vlan_trunk_capabilities(struct ifnet *ifp); static struct ifnet *vlan_clone_match_ethervid(const char *, int *); static int vlan_clone_match(struct if_clone *, const char *); static int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t); static int vlan_clone_destroy(struct if_clone *, struct ifnet *); static void vlan_ifdetach(void *arg, struct ifnet *ifp); static void vlan_iflladdr(void *arg, struct ifnet *ifp); static void vlan_lladdr_fn(void *arg, int pending); static struct if_clone *vlan_cloner; #ifdef VIMAGE VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner); #define V_vlan_cloner VNET(vlan_cloner) #endif static void vlan_mc_free(struct epoch_context *ctx) { struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx); free(mc, M_VLAN); } #ifndef VLAN_ARRAY #define HASH(n, m) ((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m)) static void vlan_inithash(struct ifvlantrunk *trunk) { int i, n; /* * The trunk must not be locked here since we call malloc(M_WAITOK). * It is OK in case this function is called before the trunk struct * gets hooked up and becomes visible from other threads. */ KASSERT(trunk->hwidth == 0 && trunk->hash == NULL, ("%s: hash already initialized", __func__)); trunk->hwidth = VLAN_DEF_HWIDTH; n = 1 << trunk->hwidth; trunk->hmask = n - 1; trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK); for (i = 0; i < n; i++) CK_SLIST_INIT(&trunk->hash[i]); } static void vlan_freehash(struct ifvlantrunk *trunk) { #ifdef INVARIANTS int i; KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); for (i = 0; i < (1 << trunk->hwidth); i++) KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]), ("%s: hash table not empty", __func__)); #endif free(trunk->hash, M_VLAN); trunk->hash = NULL; trunk->hwidth = trunk->hmask = 0; } static int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { int i, b; struct ifvlan *ifv2; VLAN_XLOCK_ASSERT(); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); b = 1 << trunk->hwidth; i = HASH(ifv->ifv_vid, trunk->hmask); CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) if (ifv->ifv_vid == ifv2->ifv_vid) return (EEXIST); /* * Grow the hash when the number of vlans exceeds half of the number of * hash buckets squared. This will make the average linked-list length * buckets/2. */ if (trunk->refcnt > (b * b) / 2) { vlan_growhash(trunk, 1); i = HASH(ifv->ifv_vid, trunk->hmask); } CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list); trunk->refcnt++; return (0); } static int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { int i, b; struct ifvlan *ifv2; VLAN_XLOCK_ASSERT(); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); b = 1 << trunk->hwidth; i = HASH(ifv->ifv_vid, trunk->hmask); CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list) if (ifv2 == ifv) { trunk->refcnt--; CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list); if (trunk->refcnt < (b * b) / 2) vlan_growhash(trunk, -1); return (0); } panic("%s: vlan not found\n", __func__); return (ENOENT); /*NOTREACHED*/ } /* * Grow the hash larger or smaller if memory permits. */ static void vlan_growhash(struct ifvlantrunk *trunk, int howmuch) { struct ifvlan *ifv; struct ifvlanhead *hash2; int hwidth2, i, j, n, n2; VLAN_XLOCK_ASSERT(); KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__)); if (howmuch == 0) { /* Harmless yet obvious coding error */ printf("%s: howmuch is 0\n", __func__); return; } hwidth2 = trunk->hwidth + howmuch; n = 1 << trunk->hwidth; n2 = 1 << hwidth2; /* Do not shrink the table below the default */ if (hwidth2 < VLAN_DEF_HWIDTH) return; hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK); if (hash2 == NULL) { printf("%s: out of memory -- hash size not changed\n", __func__); return; /* We can live with the old hash table */ } for (j = 0; j < n2; j++) CK_SLIST_INIT(&hash2[j]); for (i = 0; i < n; i++) while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) { CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list); j = HASH(ifv->ifv_vid, n2 - 1); CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list); } NET_EPOCH_WAIT(); free(trunk->hash, M_VLAN); trunk->hash = hash2; trunk->hwidth = hwidth2; trunk->hmask = n2 - 1; if (bootverbose) if_printf(trunk->parent, "VLAN hash table resized from %d to %d buckets\n", n, n2); } static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) { struct ifvlan *ifv; TRUNK_RLOCK_ASSERT(trunk); CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list) if (ifv->ifv_vid == vid) return (ifv); return (NULL); } #if 0 /* Debugging code to view the hashtables. */ static void vlan_dumphash(struct ifvlantrunk *trunk) { int i; struct ifvlan *ifv; for (i = 0; i < (1 << trunk->hwidth); i++) { printf("%d: ", i); CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list) printf("%s ", ifv->ifv_ifp->if_xname); printf("\n"); } } #endif /* 0 */ #else static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid) { return trunk->vlans[vid]; } static __inline int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { if (trunk->vlans[ifv->ifv_vid] != NULL) return EEXIST; trunk->vlans[ifv->ifv_vid] = ifv; trunk->refcnt++; return (0); } static __inline int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv) { trunk->vlans[ifv->ifv_vid] = NULL; trunk->refcnt--; return (0); } static __inline void vlan_freehash(struct ifvlantrunk *trunk) { } static __inline void vlan_inithash(struct ifvlantrunk *trunk) { } #endif /* !VLAN_ARRAY */ static void trunk_destroy(struct ifvlantrunk *trunk) { VLAN_XLOCK_ASSERT(); vlan_freehash(trunk); trunk->parent->if_vlantrunk = NULL; TRUNK_LOCK_DESTROY(trunk); if_rele(trunk->parent); free(trunk, M_VLAN); } /* * Program our multicast filter. What we're actually doing is * programming the multicast filter of the parent. This has the * side effect of causing the parent interface to receive multicast * traffic that it doesn't really want, which ends up being discarded * later by the upper protocol layers. Unfortunately, there's no way * to avoid this: there really is only one physical interface. */ static int vlan_setmulti(struct ifnet *ifp) { struct ifnet *ifp_p; struct ifmultiaddr *ifma; struct ifvlan *sc; struct vlan_mc_entry *mc; int error; VLAN_XLOCK_ASSERT(); /* Find the parent. */ sc = ifp->if_softc; ifp_p = PARENT(sc); CURVNET_SET_QUIET(ifp_p->if_vnet); /* First, remove any existing filter entries. */ while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) { CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries); (void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr); epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free); } /* Now program new ones. */ IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT); if (mc == NULL) { IF_ADDR_WUNLOCK(ifp); return (ENOMEM); } bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); mc->mc_addr.sdl_index = ifp_p->if_index; CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries); } IF_ADDR_WUNLOCK(ifp); CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) { error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr, NULL); if (error) return (error); } CURVNET_RESTORE(); return (0); } /* * A handler for parent interface link layer address changes. * If the parent interface link layer address is changed we * should also change it on all children vlans. */ static void vlan_iflladdr(void *arg __unused, struct ifnet *ifp) { struct ifvlan *ifv; struct ifnet *ifv_ifp; struct ifvlantrunk *trunk; struct sockaddr_dl *sdl; /* Need the rmlock since this is run on taskqueue_swi. */ VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); return; } /* * OK, it's a trunk. Loop over and change all vlan's lladdrs on it. * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR * ioctl calls on the parent garbling the lladdr of the child vlan. */ TRUNK_WLOCK(trunk); VLAN_FOREACH(ifv, trunk) { /* * Copy new new lladdr into the ifv_ifp, enqueue a task * to actually call if_setlladdr. if_setlladdr needs to * be deferred to a taskqueue because it will call into * the if_vlan ioctl path and try to acquire the global * lock. */ ifv_ifp = ifv->ifv_ifp; bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp), ifp->if_addrlen); sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr; sdl->sdl_alen = ifp->if_addrlen; taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); } TRUNK_WUNLOCK(trunk); VLAN_RUNLOCK(); } /* * A handler for network interface departure events. * Track departure of trunks here so that we don't access invalid * pointers or whatever if a trunk is ripped from under us, e.g., * by ejecting its hot-plug card. However, if an ifnet is simply * being renamed, then there's no need to tear down the state. */ static void vlan_ifdetach(void *arg __unused, struct ifnet *ifp) { struct ifvlan *ifv; struct ifvlantrunk *trunk; /* If the ifnet is just being renamed, don't do anything. */ if (ifp->if_flags & IFF_RENAMING) return; VLAN_XLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_XUNLOCK(); return; } /* * OK, it's a trunk. Loop over and detach all vlan's on it. * Check trunk pointer after each vlan_unconfig() as it will * free it and set to NULL after the last vlan was detached. */ VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk, ifp->if_vlantrunk == NULL) vlan_unconfig_locked(ifv->ifv_ifp, 1); /* Trunk should have been destroyed in vlan_unconfig(). */ KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__)); VLAN_XUNLOCK(); } /* * Return the trunk device for a virtual interface. */ static struct ifnet * vlan_trunkdev(struct ifnet *ifp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (NULL); VLAN_RLOCK(); ifv = ifp->if_softc; ifp = NULL; if (ifv->ifv_trunk) ifp = PARENT(ifv); VLAN_RUNLOCK(); return (ifp); } /* * Return the 12-bit VLAN VID for this interface, for use by external * components such as Infiniband. * * XXXRW: Note that the function name here is historical; it should be named * vlan_vid(). */ static int vlan_tag(struct ifnet *ifp, uint16_t *vidp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; *vidp = ifv->ifv_vid; return (0); } static int vlan_pcp(struct ifnet *ifp, uint16_t *pcpp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; *pcpp = ifv->ifv_pcp; return (0); } /* * Return a driver specific cookie for this interface. Synchronization * with setcookie must be provided by the driver. */ static void * vlan_cookie(struct ifnet *ifp) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (NULL); ifv = ifp->if_softc; return (ifv->ifv_cookie); } /* * Store a cookie in our softc that drivers can use to store driver * private per-instance data in. */ static int vlan_setcookie(struct ifnet *ifp, void *cookie) { struct ifvlan *ifv; if (ifp->if_type != IFT_L2VLAN) return (EINVAL); ifv = ifp->if_softc; ifv->ifv_cookie = cookie; return (0); } /* * Return the vlan device present at the specific VID. */ static struct ifnet * vlan_devat(struct ifnet *ifp, uint16_t vid) { struct ifvlantrunk *trunk; struct ifvlan *ifv; VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); return (NULL); } ifp = NULL; ifv = vlan_gethash(trunk, vid); if (ifv) ifp = ifv->ifv_ifp; VLAN_RUNLOCK(); return (ifp); } /* * Recalculate the cached VLAN tag exposed via the MIB. */ static void vlan_tag_recalculate(struct ifvlan *ifv) { ifv->ifv_tag = EVL_MAKETAG(ifv->ifv_vid, ifv->ifv_pcp, 0); } /* * VLAN support can be loaded as a module. The only place in the * system that's intimately aware of this is ether_input. We hook * into this code through vlan_input_p which is defined there and * set here. No one else in the system should be aware of this so * we use an explicit reference here. */ extern void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* For if_link_state_change() eyes only... */ extern void (*vlan_link_state_p)(struct ifnet *); static int vlan_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY); if (ifdetach_tag == NULL) return (ENOMEM); iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); if (iflladdr_tag == NULL) return (ENOMEM); VLAN_LOCKING_INIT(); vlan_input_p = vlan_input; vlan_link_state_p = vlan_link_state; vlan_trunk_cap_p = vlan_trunk_capabilities; vlan_trunkdev_p = vlan_trunkdev; vlan_cookie_p = vlan_cookie; vlan_setcookie_p = vlan_setcookie; vlan_tag_p = vlan_tag; vlan_pcp_p = vlan_pcp; vlan_devat_p = vlan_devat; #ifndef VIMAGE vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, vlan_clone_create, vlan_clone_destroy); #endif if (bootverbose) printf("vlan: initialized, using " #ifdef VLAN_ARRAY "full-size arrays" #else "hash tables with chaining" #endif "\n"); break; case MOD_UNLOAD: #ifndef VIMAGE if_clone_detach(vlan_cloner); #endif EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag); EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag); vlan_input_p = NULL; vlan_link_state_p = NULL; vlan_trunk_cap_p = NULL; vlan_trunkdev_p = NULL; vlan_tag_p = NULL; vlan_cookie_p = NULL; vlan_setcookie_p = NULL; vlan_devat_p = NULL; VLAN_LOCKING_DESTROY(); if (bootverbose) printf("vlan: unloaded\n"); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t vlan_mod = { "if_vlan", vlan_modevent, 0 }; DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_vlan, 3); #ifdef VIMAGE static void vnet_vlan_init(const void *unused __unused) { vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match, vlan_clone_create, vlan_clone_destroy); V_vlan_cloner = vlan_cloner; } VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_vlan_init, NULL); static void vnet_vlan_uninit(const void *unused __unused) { if_clone_detach(V_vlan_cloner); } VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, vnet_vlan_uninit, NULL); #endif /* * Check for . style interface names. */ static struct ifnet * vlan_clone_match_ethervid(const char *name, int *vidp) { char ifname[IFNAMSIZ]; char *cp; struct ifnet *ifp; int vid; strlcpy(ifname, name, IFNAMSIZ); if ((cp = strchr(ifname, '.')) == NULL) return (NULL); *cp = '\0'; if ((ifp = ifunit_ref(ifname)) == NULL) return (NULL); /* Parse VID. */ if (*++cp == '\0') { if_rele(ifp); return (NULL); } vid = 0; for(; *cp >= '0' && *cp <= '9'; cp++) vid = (vid * 10) + (*cp - '0'); if (*cp != '\0') { if_rele(ifp); return (NULL); } if (vidp != NULL) *vidp = vid; return (ifp); } static int vlan_clone_match(struct if_clone *ifc, const char *name) { const char *cp; if (vlan_clone_match_ethervid(name, NULL) != NULL) return (1); if (strncmp(vlanname, name, strlen(vlanname)) != 0) return (0); for (cp = name + 4; *cp != '\0'; cp++) { if (*cp < '0' || *cp > '9') return (0); } return (1); } static int vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) { char *dp; int wildcard; int unit; int error; int vid; struct ifvlan *ifv; struct ifnet *ifp; struct ifnet *p; struct ifaddr *ifa; struct sockaddr_dl *sdl; struct vlanreq vlr; static const u_char eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ /* * There are 3 (ugh) ways to specify the cloned device: * o pass a parameter block with the clone request. * o specify parameters in the text of the clone device name * o specify no parameters and get an unattached device that * must be configured separately. * The first technique is preferred; the latter two are * supported for backwards compatibility. * * XXXRW: Note historic use of the word "tag" here. New ioctls may be * called for. */ if (params) { error = copyin(params, &vlr, sizeof(vlr)); if (error) return error; p = ifunit_ref(vlr.vlr_parent); if (p == NULL) return (ENXIO); error = ifc_name2unit(name, &unit); if (error != 0) { if_rele(p); return (error); } vid = vlr.vlr_tag; wildcard = (unit < 0); } else if ((p = vlan_clone_match_ethervid(name, &vid)) != NULL) { unit = -1; wildcard = 0; } else { p = NULL; error = ifc_name2unit(name, &unit); if (error != 0) return (error); wildcard = (unit < 0); } error = ifc_alloc_unit(ifc, &unit); if (error != 0) { if (p != NULL) if_rele(p); return (error); } /* In the wildcard case, we need to update the name. */ if (wildcard) { for (dp = name; *dp != '\0'; dp++); if (snprintf(dp, len - (dp-name), "%d", unit) > len - (dp-name) - 1) { panic("%s: interface name too long", __func__); } } ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO); ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { ifc_free_unit(ifc, unit); free(ifv, M_VLAN); if (p != NULL) if_rele(p); return (ENOSPC); } CK_SLIST_INIT(&ifv->vlan_mc_listhead); ifp->if_softc = ifv; /* * Set the name manually rather than using if_initname because * we don't conform to the default naming convention for interfaces. */ strlcpy(ifp->if_xname, name, IFNAMSIZ); ifp->if_dname = vlanname; ifp->if_dunit = unit; ifp->if_init = vlan_init; ifp->if_transmit = vlan_transmit; ifp->if_qflush = vlan_qflush; ifp->if_ioctl = vlan_ioctl; #ifdef RATELIMIT ifp->if_snd_tag_alloc = vlan_snd_tag_alloc; #endif ifp->if_flags = VLAN_IFFLAGS; ether_ifattach(ifp, eaddr); /* Now undo some of the damage... */ ifp->if_baudrate = 0; ifp->if_type = IFT_L2VLAN; ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN; ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_L2VLAN; if (p != NULL) { error = vlan_config(ifv, p, vid); if_rele(p); if (error != 0) { /* * Since we've partially failed, we need to back * out all the way, otherwise userland could get * confused. Thus, we destroy the interface. */ ether_ifdetach(ifp); vlan_unconfig(ifp); if_free(ifp); ifc_free_unit(ifc, unit); free(ifv, M_VLAN); return (error); } } return (0); } static int vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; int unit = ifp->if_dunit; ether_ifdetach(ifp); /* first, remove it from system-wide lists */ vlan_unconfig(ifp); /* now it can be unconfigured and freed */ /* * We should have the only reference to the ifv now, so we can now * drain any remaining lladdr task before freeing the ifnet and the * ifvlan. */ taskqueue_drain(taskqueue_thread, &ifv->lladdr_task); NET_EPOCH_WAIT(); if_free(ifp); free(ifv, M_VLAN); ifc_free_unit(ifc, unit); return (0); } /* * The ifp->if_init entry point for vlan(4) is a no-op. */ static void vlan_init(void *foo __unused) { } /* * The if_transmit method for vlan(4) interface. */ static int vlan_transmit(struct ifnet *ifp, struct mbuf *m) { struct ifvlan *ifv; struct ifnet *p; int error, len, mcast; VLAN_RLOCK(); ifv = ifp->if_softc; if (TRUNK(ifv) == NULL) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); m_freem(m); return (ENETDOWN); } p = PARENT(ifv); len = m->m_pkthdr.len; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; BPF_MTAP(ifp, m); /* * Do not run parent's if_transmit() if the parent is not up, * or parent's driver will cause a system crash. */ if (!UP_AND_RUNNING(p)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); m_freem(m); return (ENETDOWN); } if (!ether_8021q_frame(&m, ifp, p, ifv->ifv_vid, ifv->ifv_pcp)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); return (0); } /* * Send it, precisely as ether_output() would have. */ error = (p->if_transmit)(p, m); if (error == 0) { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, len); if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); } else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); VLAN_RUNLOCK(); return (error); } /* * The ifp->if_qflush entry point for vlan(4) is a no-op. */ static void vlan_qflush(struct ifnet *ifp __unused) { } static void vlan_input(struct ifnet *ifp, struct mbuf *m) { struct ifvlantrunk *trunk; struct ifvlan *ifv; struct m_tag *mtag; uint16_t vid, tag; VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); m_freem(m); return; } if (m->m_flags & M_VLANTAG) { /* * Packet is tagged, but m contains a normal * Ethernet frame; the tag is stored out-of-band. */ tag = m->m_pkthdr.ether_vtag; m->m_flags &= ~M_VLANTAG; } else { struct ether_vlan_header *evl; /* * Packet is tagged in-band as specified by 802.1q. */ switch (ifp->if_type) { case IFT_ETHER: if (m->m_len < sizeof(*evl) && (m = m_pullup(m, sizeof(*evl))) == NULL) { if_printf(ifp, "cannot pullup VLAN header\n"); VLAN_RUNLOCK(); return; } evl = mtod(m, struct ether_vlan_header *); tag = ntohs(evl->evl_tag); /* * Remove the 802.1q header by copying the Ethernet * addresses over it and adjusting the beginning of * the data in the mbuf. The encapsulated Ethernet * type field is already in place. */ bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); break; default: #ifdef INVARIANTS panic("%s: %s has unsupported if_type %u", __func__, ifp->if_xname, ifp->if_type); #endif if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); VLAN_RUNLOCK(); m_freem(m); return; } } vid = EVL_VLANOFTAG(tag); ifv = vlan_gethash(trunk, vid); if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) { VLAN_RUNLOCK(); if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); m_freem(m); return; } if (vlan_mtag_pcp) { /* * While uncommon, it is possible that we will find a 802.1q * packet encapsulated inside another packet that also had an * 802.1q header. For example, ethernet tunneled over IPSEC * arriving over ethernet. In that case, we replace the * existing 802.1q PCP m_tag value. */ mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); if (mtag == NULL) { mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN, sizeof(uint8_t), M_NOWAIT); if (mtag == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); VLAN_RUNLOCK(); m_freem(m); return; } m_tag_prepend(m, mtag); } *(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag); } m->m_pkthdr.rcvif = ifv->ifv_ifp; if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1); VLAN_RUNLOCK(); /* Pass it back through the parent's input routine. */ (*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m); } static void vlan_lladdr_fn(void *arg, int pending __unused) { struct ifvlan *ifv; struct ifnet *ifp; ifv = (struct ifvlan *)arg; ifp = ifv->ifv_ifp; CURVNET_SET(ifp->if_vnet); /* The ifv_ifp already has the lladdr copied in. */ if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen); CURVNET_RESTORE(); } static int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid) { struct ifvlantrunk *trunk; struct ifnet *ifp; int error = 0; /* * We can handle non-ethernet hardware types as long as * they handle the tagging and headers themselves. */ if (p->if_type != IFT_ETHER && (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) return (EPROTONOSUPPORT); if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS) return (EPROTONOSUPPORT); /* * Don't let the caller set up a VLAN VID with * anything except VLID bits. * VID numbers 0x0 and 0xFFF are reserved. */ if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK)) return (EINVAL); if (ifv->ifv_trunk) return (EBUSY); VLAN_XLOCK(); if (p->if_vlantrunk == NULL) { trunk = malloc(sizeof(struct ifvlantrunk), M_VLAN, M_WAITOK | M_ZERO); vlan_inithash(trunk); TRUNK_LOCK_INIT(trunk); TRUNK_WLOCK(trunk); p->if_vlantrunk = trunk; trunk->parent = p; if_ref(trunk->parent); TRUNK_WUNLOCK(trunk); } else { trunk = p->if_vlantrunk; } ifv->ifv_vid = vid; /* must set this before vlan_inshash() */ ifv->ifv_pcp = 0; /* Default: best effort delivery. */ vlan_tag_recalculate(ifv); error = vlan_inshash(trunk, ifv); if (error) goto done; ifv->ifv_proto = ETHERTYPE_VLAN; ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; ifv->ifv_mintu = ETHERMIN; ifv->ifv_pflags = 0; ifv->ifv_capenable = -1; /* * If the parent supports the VLAN_MTU capability, * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, * use it. */ if (p->if_capenable & IFCAP_VLAN_MTU) { /* * No need to fudge the MTU since the parent can * handle extended frames. */ ifv->ifv_mtufudge = 0; } else { /* * Fudge the MTU by the encapsulation size. This * makes us incompatible with strictly compliant * 802.1Q implementations, but allows us to use * the feature with other NetBSD implementations, * which might still be useful. */ ifv->ifv_mtufudge = ifv->ifv_encaplen; } ifv->ifv_trunk = trunk; ifp = ifv->ifv_ifp; /* * Initialize fields from our parent. This duplicates some * work with ether_ifattach() but allows for non-ethernet * interfaces to also work. */ ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge; ifp->if_baudrate = p->if_baudrate; ifp->if_output = p->if_output; ifp->if_input = p->if_input; ifp->if_resolvemulti = p->if_resolvemulti; ifp->if_addrlen = p->if_addrlen; ifp->if_broadcastaddr = p->if_broadcastaddr; ifp->if_pcp = ifv->ifv_pcp; /* * Copy only a selected subset of flags from the parent. * Other flags are none of our business. */ #define VLAN_COPY_FLAGS (IFF_SIMPLEX) ifp->if_flags &= ~VLAN_COPY_FLAGS; ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS; #undef VLAN_COPY_FLAGS ifp->if_link_state = p->if_link_state; TRUNK_RLOCK(TRUNK(ifv)); vlan_capabilities(ifv); TRUNK_RUNLOCK(TRUNK(ifv)); /* * Set up our interface address to reflect the underlying * physical interface's. */ TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv); ((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen = p->if_addrlen; /* * Do not schedule link address update if it was the same * as previous parent's. This helps avoid updating for each * associated llentry. */ if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) { bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen); taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task); } /* We are ready for operation now. */ ifp->if_drv_flags |= IFF_DRV_RUNNING; /* Update flags on the parent, if necessary. */ vlan_setflags(ifp, 1); /* * Configure multicast addresses that may already be * joined on the vlan device. */ (void)vlan_setmulti(ifp); done: if (error == 0) EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid); VLAN_XUNLOCK(); return (error); } static void vlan_unconfig(struct ifnet *ifp) { VLAN_XLOCK(); vlan_unconfig_locked(ifp, 0); VLAN_XUNLOCK(); } static void vlan_unconfig_locked(struct ifnet *ifp, int departing) { struct ifvlantrunk *trunk; struct vlan_mc_entry *mc; struct ifvlan *ifv; struct ifnet *parent; int error; VLAN_XLOCK_ASSERT(); ifv = ifp->if_softc; trunk = ifv->ifv_trunk; parent = NULL; if (trunk != NULL) { parent = trunk->parent; /* * Since the interface is being unconfigured, we need to * empty the list of multicast groups that we may have joined * while we were alive from the parent's list. */ while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { /* * If the parent interface is being detached, * all its multicast addresses have already * been removed. Warn about errors if * if_delmulti() does fail, but don't abort as * all callers expect vlan destruction to * succeed. */ if (!departing) { error = if_delmulti(parent, (struct sockaddr *)&mc->mc_addr); if (error) if_printf(ifp, "Failed to delete multicast address from parent: %d\n", error); } CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries); epoch_call(net_epoch_preempt, &mc->mc_epoch_ctx, vlan_mc_free); } vlan_setflags(ifp, 0); /* clear special flags on parent */ vlan_remhash(trunk, ifv); ifv->ifv_trunk = NULL; /* * Check if we were the last. */ if (trunk->refcnt == 0) { parent->if_vlantrunk = NULL; NET_EPOCH_WAIT(); trunk_destroy(trunk); } } /* Disconnect from parent. */ if (ifv->ifv_pflags) if_printf(ifp, "%s: ifv_pflags unclean\n", __func__); ifp->if_mtu = ETHERMTU; ifp->if_link_state = LINK_STATE_UNKNOWN; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* * Only dispatch an event if vlan was * attached, otherwise there is nothing * to cleanup anyway. */ if (parent != NULL) EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid); } /* Handle a reference counted flag that should be set on the parent as well */ static int vlan_setflag(struct ifnet *ifp, int flag, int status, int (*func)(struct ifnet *, int)) { struct ifvlan *ifv; int error; VLAN_SXLOCK_ASSERT(); ifv = ifp->if_softc; status = status ? (ifp->if_flags & flag) : 0; /* Now "status" contains the flag value or 0 */ /* * See if recorded parent's status is different from what * we want it to be. If it is, flip it. We record parent's * status in ifv_pflags so that we won't clear parent's flag * we haven't set. In fact, we don't clear or set parent's * flags directly, but get or release references to them. * That's why we can be sure that recorded flags still are * in accord with actual parent's flags. */ if (status != (ifv->ifv_pflags & flag)) { error = (*func)(PARENT(ifv), status); if (error) return (error); ifv->ifv_pflags &= ~flag; ifv->ifv_pflags |= status; } return (0); } /* * Handle IFF_* flags that require certain changes on the parent: * if "status" is true, update parent's flags respective to our if_flags; * if "status" is false, forcedly clear the flags set on parent. */ static int vlan_setflags(struct ifnet *ifp, int status) { int error, i; for (i = 0; vlan_pflags[i].flag; i++) { error = vlan_setflag(ifp, vlan_pflags[i].flag, status, vlan_pflags[i].func); if (error) return (error); } return (0); } /* Inform all vlans that their parent has changed link state */ static void vlan_link_state(struct ifnet *ifp) { struct ifvlantrunk *trunk; struct ifvlan *ifv; /* Called from a taskqueue_swi task, so we cannot sleep. */ VLAN_RLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_RUNLOCK(); return; } TRUNK_WLOCK(trunk); VLAN_FOREACH(ifv, trunk) { ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate; if_link_state_change(ifv->ifv_ifp, trunk->parent->if_link_state); } TRUNK_WUNLOCK(trunk); VLAN_RUNLOCK(); } static void vlan_capabilities(struct ifvlan *ifv) { struct ifnet *p; struct ifnet *ifp; struct ifnet_hw_tsomax hw_tsomax; int cap = 0, ena = 0, mena; u_long hwa = 0; VLAN_SXLOCK_ASSERT(); TRUNK_RLOCK_ASSERT(TRUNK(ifv)); p = PARENT(ifv); ifp = ifv->ifv_ifp; /* Mask parent interface enabled capabilities disabled by user. */ mena = p->if_capenable & ifv->ifv_capenable; /* * If the parent interface can do checksum offloading * on VLANs, then propagate its hardware-assisted * checksumming flags. Also assert that checksum * offloading requires hardware VLAN tagging. */ if (p->if_capabilities & IFCAP_VLAN_HWCSUM) cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); if (p->if_capenable & IFCAP_VLAN_HWCSUM && p->if_capenable & IFCAP_VLAN_HWTAGGING) { ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6); if (ena & IFCAP_TXCSUM) hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP); if (ena & IFCAP_TXCSUM_IPV6) hwa |= p->if_hwassist & (CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_SCTP_IPV6); } /* * If the parent interface can do TSO on VLANs then * propagate the hardware-assisted flag. TSO on VLANs * does not necessarily require hardware VLAN tagging. */ memset(&hw_tsomax, 0, sizeof(hw_tsomax)); if_hw_tsomax_common(p, &hw_tsomax); if_hw_tsomax_update(ifp, &hw_tsomax); if (p->if_capabilities & IFCAP_VLAN_HWTSO) cap |= p->if_capabilities & IFCAP_TSO; if (p->if_capenable & IFCAP_VLAN_HWTSO) { ena |= mena & IFCAP_TSO; if (ena & IFCAP_TSO) hwa |= p->if_hwassist & CSUM_TSO; } /* * If the parent interface can do LRO and checksum offloading on * VLANs, then guess it may do LRO on VLANs. False positive here * cost nothing, while false negative may lead to some confusions. */ if (p->if_capabilities & IFCAP_VLAN_HWCSUM) cap |= p->if_capabilities & IFCAP_LRO; if (p->if_capenable & IFCAP_VLAN_HWCSUM) ena |= p->if_capenable & IFCAP_LRO; /* * If the parent interface can offload TCP connections over VLANs then * propagate its TOE capability to the VLAN interface. * * All TOE drivers in the tree today can deal with VLANs. If this * changes then IFCAP_VLAN_TOE should be promoted to a full capability * with its own bit. */ #define IFCAP_VLAN_TOE IFCAP_TOE if (p->if_capabilities & IFCAP_VLAN_TOE) cap |= p->if_capabilities & IFCAP_TOE; if (p->if_capenable & IFCAP_VLAN_TOE) { TOEDEV(ifp) = TOEDEV(p); ena |= mena & IFCAP_TOE; } /* * If the parent interface supports dynamic link state, so does the * VLAN interface. */ cap |= (p->if_capabilities & IFCAP_LINKSTATE); ena |= (mena & IFCAP_LINKSTATE); #ifdef RATELIMIT /* * If the parent interface supports ratelimiting, so does the * VLAN interface. */ cap |= (p->if_capabilities & IFCAP_TXRTLMT); ena |= (mena & IFCAP_TXRTLMT); #endif ifp->if_capabilities = cap; ifp->if_capenable = ena; ifp->if_hwassist = hwa; } static void vlan_trunk_capabilities(struct ifnet *ifp) { struct ifvlantrunk *trunk; struct ifvlan *ifv; VLAN_SLOCK(); trunk = ifp->if_vlantrunk; if (trunk == NULL) { VLAN_SUNLOCK(); return; } TRUNK_RLOCK(trunk); VLAN_FOREACH(ifv, trunk) { vlan_capabilities(ifv); } TRUNK_RUNLOCK(trunk); VLAN_SUNLOCK(); } static int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifnet *p; struct ifreq *ifr; struct ifaddr *ifa; struct ifvlan *ifv; struct ifvlantrunk *trunk; struct vlanreq vlr; - int error = 0; + int error = 0, oldmtu; ifr = (struct ifreq *)data; ifa = (struct ifaddr *) data; ifv = ifp->if_softc; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); #endif break; case SIOCGIFADDR: bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0], ifp->if_addrlen); break; case SIOCGIFMEDIA: VLAN_SLOCK(); if (TRUNK(ifv) != NULL) { p = PARENT(ifv); if_ref(p); error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data); if_rele(p); /* Limit the result to the parent's current config. */ if (error == 0) { struct ifmediareq *ifmr; ifmr = (struct ifmediareq *)data; if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) { ifmr->ifm_count = 1; error = copyout(&ifmr->ifm_current, ifmr->ifm_ulist, sizeof(int)); } } } else { error = EINVAL; } VLAN_SUNLOCK(); break; case SIOCSIFMEDIA: error = EINVAL; break; case SIOCSIFMTU: /* * Set the interface MTU. */ VLAN_SLOCK(); trunk = TRUNK(ifv); if (trunk != NULL) { TRUNK_WLOCK(trunk); if (ifr->ifr_mtu > (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) || ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge)) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; TRUNK_WUNLOCK(trunk); } else error = EINVAL; VLAN_SUNLOCK(); break; case SIOCSETVLAN: #ifdef VIMAGE /* * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN * interface to be delegated to a jail without allowing the * jail to change what underlying interface/VID it is * associated with. We are not entirely convinced that this * is the right way to accomplish that policy goal. */ if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr)); if (error) break; if (vlr.vlr_parent[0] == '\0') { vlan_unconfig(ifp); break; } p = ifunit_ref(vlr.vlr_parent); if (p == NULL) { error = ENOENT; break; } + oldmtu = ifp->if_mtu; error = vlan_config(ifv, p, vlr.vlr_tag); if_rele(p); + + /* + * VLAN MTU may change during addition of the vlandev. + * If it did, do network layer specific procedure. + */ + if (ifp->if_mtu != oldmtu) { +#ifdef INET6 + nd6_setmtu(ifp); +#endif + rt_updatemtu(ifp); + } break; case SIOCGETVLAN: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif bzero(&vlr, sizeof(vlr)); VLAN_SLOCK(); if (TRUNK(ifv) != NULL) { strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname, sizeof(vlr.vlr_parent)); vlr.vlr_tag = ifv->ifv_vid; } VLAN_SUNLOCK(); error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr)); break; case SIOCSIFFLAGS: /* * We should propagate selected flags to the parent, * e.g., promiscuous mode. */ VLAN_XLOCK(); if (TRUNK(ifv) != NULL) error = vlan_setflags(ifp, 1); VLAN_XUNLOCK(); break; case SIOCADDMULTI: case SIOCDELMULTI: /* * If we don't have a parent, just remember the membership for * when we do. * * XXX We need the rmlock here to avoid sleeping while * holding in6_multi_mtx. */ VLAN_XLOCK(); trunk = TRUNK(ifv); if (trunk != NULL) error = vlan_setmulti(ifp); VLAN_XUNLOCK(); break; case SIOCGVLANPCP: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif ifr->ifr_vlan_pcp = ifv->ifv_pcp; break; case SIOCSVLANPCP: #ifdef VIMAGE if (ifp->if_vnet != ifp->if_home_vnet) { error = EPERM; break; } #endif error = priv_check(curthread, PRIV_NET_SETVLANPCP); if (error) break; if (ifr->ifr_vlan_pcp > 7) { error = EINVAL; break; } ifv->ifv_pcp = ifr->ifr_vlan_pcp; ifp->if_pcp = ifv->ifv_pcp; vlan_tag_recalculate(ifv); /* broadcast event about PCP change */ EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP); break; case SIOCSIFCAP: VLAN_SLOCK(); ifv->ifv_capenable = ifr->ifr_reqcap; trunk = TRUNK(ifv); if (trunk != NULL) { TRUNK_RLOCK(trunk); vlan_capabilities(ifv); TRUNK_RUNLOCK(trunk); } VLAN_SUNLOCK(); break; default: error = EINVAL; break; } return (error); } #ifdef RATELIMIT static int vlan_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **ppmt) { /* get trunk device */ ifp = vlan_trunkdev(ifp); if (ifp == NULL || (ifp->if_capenable & IFCAP_TXRTLMT) == 0) return (EOPNOTSUPP); /* forward allocation request */ return (ifp->if_snd_tag_alloc(ifp, params, ppmt)); } #endif Index: stable/12 =================================================================== --- stable/12 (revision 357554) +++ stable/12 (revision 357555) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r356993