Index: head/sys/kern/kern_exec.c =================================================================== --- head/sys/kern/kern_exec.c (revision 357360) +++ head/sys/kern/kern_exec.c (revision 357361) @@ -1,1825 +1,1825 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1993, David Greenman * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_hwpmc_hooks.h" #include "opt_ktrace.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_execexit_func_t dtrace_fasttrap_exec; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE1(proc, , , exec, "char *"); SDT_PROBE_DEFINE1(proc, , , exec__failure, "int"); SDT_PROBE_DEFINE1(proc, , , exec__success, "char *"); MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments"); int coredump_pack_fileinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN, &coredump_pack_fileinfo, 0, "Enable file path packing in 'procstat -f' coredump notes"); int coredump_pack_vmmapinfo = 1; SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN, &coredump_pack_vmmapinfo, 0, "Enable file path packing in 'procstat -v' coredump notes"); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS); static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS); static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS); static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU", ""); /* XXX This should be vm_size_t. */ SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD| CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU", ""); SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_stackprot, "I", ""); u_long ps_arg_cache_limit = PAGE_SIZE / 16; SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, &ps_arg_cache_limit, 0, ""); static int disallow_high_osrel; SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW, &disallow_high_osrel, 0, "Disallow execution of binaries built for higher version of the world"); static int map_at_zero = 0; SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0, "Permit processes to map an object at virtual address 0."); static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_psstrings; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings, sizeof(p->p_sysent->sv_psstrings)); return error; } static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS) { struct proc *p; int error; p = curproc; #ifdef SCTL_MASK32 if (req->flags & SCTL_MASK32) { unsigned int val; val = (unsigned int)p->p_sysent->sv_usrstack; error = SYSCTL_OUT(req, &val, sizeof(val)); } else #endif error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack, sizeof(p->p_sysent->sv_usrstack)); return error; } static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS) { struct proc *p; p = curproc; return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot, sizeof(p->p_sysent->sv_stackprot))); } /* * Each of the items is a pointer to a `const struct execsw', hence the * double pointer here. */ static const struct execsw **execsw; #ifndef _SYS_SYSPROTO_H_ struct execve_args { char *fname; char **argv; char **envv; }; #endif int sys_execve(struct thread *td, struct execve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, NULL); post_execve(td, error, oldvmspace); return (error); } #ifndef _SYS_SYSPROTO_H_ struct fexecve_args { int fd; char **argv; char **envv; } #endif int sys_fexecve(struct thread *td, struct fexecve_args *uap) { struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, NULL, UIO_SYSSPACE, uap->argv, uap->envv); if (error == 0) { args.fd = uap->fd; error = kern_execve(td, &args, NULL); } post_execve(td, error, oldvmspace); return (error); } #ifndef _SYS_SYSPROTO_H_ struct __mac_execve_args { char *fname; char **argv; char **envv; struct mac *mac_p; }; #endif int sys___mac_execve(struct thread *td, struct __mac_execve_args *uap) { #ifdef MAC struct image_args args; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &args, uap->mac_p); post_execve(td, error, oldvmspace); return (error); #else return (ENOSYS); #endif } int pre_execve(struct thread *td, struct vmspace **oldvmspace) { struct proc *p; int error; KASSERT(td == curthread, ("non-current thread %p", td)); error = 0; p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); if (thread_single(p, SINGLE_BOUNDARY) != 0) error = ERESTART; PROC_UNLOCK(p); } KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0, ("nested execve")); *oldvmspace = p->p_vmspace; return (error); } void post_execve(struct thread *td, int error, struct vmspace *oldvmspace) { struct proc *p; KASSERT(td == curthread, ("non-current thread %p", td)); p = td->td_proc; if ((p->p_flag & P_HADTHREADS) != 0) { PROC_LOCK(p); /* * If success, we upgrade to SINGLE_EXIT state to * force other threads to suicide. */ if (error == EJUSTRETURN) thread_single(p, SINGLE_EXIT); else thread_single_end(p, SINGLE_BOUNDARY); PROC_UNLOCK(p); } if ((td->td_pflags & TDP_EXECVMSPC) != 0) { KASSERT(p->p_vmspace != oldvmspace, ("oldvmspace still used")); vmspace_free(oldvmspace); td->td_pflags &= ~TDP_EXECVMSPC; } } /* * XXX: kern_execve has the astonishing property of not always returning to * the caller. If sufficiently bad things happen during the call to * do_execve(), it can end up calling exit1(); as a result, callers must * avoid doing anything which they might need to undo (e.g., allocating * memory). */ int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p) { AUDIT_ARG_ARGV(args->begin_argv, args->argc, exec_args_get_begin_envv(args) - args->begin_argv); AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc, args->endp - exec_args_get_begin_envv(args)); return (do_execve(td, args, mac_p)); } /* * In-kernel implementation of execve(). All arguments are assumed to be * userspace pointers from the passed thread. */ static int do_execve(struct thread *td, struct image_args *args, struct mac *mac_p) { struct proc *p = td->td_proc; struct nameidata nd; struct ucred *oldcred; struct uidinfo *euip = NULL; uintptr_t stack_base; struct image_params image_params, *imgp; struct vattr attr; int (*img_first)(struct image_params *); struct pargs *oldargs = NULL, *newargs = NULL; struct sigacts *oldsigacts = NULL, *newsigacts = NULL; #ifdef KTRACE struct vnode *tracevp = NULL; struct ucred *tracecred = NULL; #endif struct vnode *oldtextvp = NULL, *newtextvp; int credential_changing; #ifdef MAC struct label *interpvplabel = NULL; int will_transition; #endif #ifdef HWPMC_HOOKS struct pmckern_procexec pe; #endif int error, i, orig_osrel; uint32_t orig_fctl0; static const char fexecv_proc_title[] = "(fexecv)"; imgp = &image_params; /* * Lock the process and set the P_INEXEC flag to indicate that * it should be left alone until we're done here. This is * necessary to avoid race conditions - e.g. in ptrace() - * that might allow a local user to illicitly obtain elevated * privileges. */ PROC_LOCK(p); KASSERT((p->p_flag & P_INEXEC) == 0, ("%s(): process already has P_INEXEC flag", __func__)); p->p_flag |= P_INEXEC; PROC_UNLOCK(p); /* * Initialize part of the common data */ bzero(imgp, sizeof(*imgp)); imgp->proc = p; imgp->attr = &attr; imgp->args = args; oldcred = p->p_ucred; orig_osrel = p->p_osrel; orig_fctl0 = p->p_fctl0; #ifdef MAC error = mac_execve_enter(imgp, mac_p); if (error) goto exec_fail; #endif /* * Translate the file name. namei() returns a vnode pointer * in ni_vp among other things. * * XXXAUDIT: It would be desirable to also audit the name of the * interpreter if this is an interpreted binary. */ if (args->fname != NULL) { NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW | SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td); } SDT_PROBE1(proc, , , exec, args->fname); interpret: if (args->fname != NULL) { #ifdef CAPABILITY_MODE /* * While capability mode can't reach this point via direct * path arguments to execve(), we also don't allow * interpreters to be used in capability mode (for now). * Catch indirect lookups and return a permissions error. */ if (IN_CAPABILITY_MODE(td)) { error = ECAPMODE; goto exec_fail; } #endif error = namei(&nd); if (error) goto exec_fail; newtextvp = nd.ni_vp; imgp->vp = newtextvp; } else { AUDIT_ARG_FD(args->fd); /* * Descriptors opened only with O_EXEC or O_RDONLY are allowed. */ error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp); if (error) goto exec_fail; vn_lock(newtextvp, LK_SHARED | LK_RETRY); AUDIT_ARG_VNODE1(newtextvp); imgp->vp = newtextvp; } /* * Check file permissions. Also 'opens' file and sets its vnode to * text mode. */ error = exec_check_permissions(imgp); if (error) goto exec_fail_dealloc; imgp->object = imgp->vp->v_object; if (imgp->object != NULL) vm_object_reference(imgp->object); error = exec_map_first_page(imgp); if (error) goto exec_fail_dealloc; imgp->proc->p_osrel = 0; imgp->proc->p_fctl0 = 0; /* * Implement image setuid/setgid. * * Determine new credentials before attempting image activators * so that it can be used by process_exec handlers to determine * credential/setid changes. * * Don't honor setuid/setgid if the filesystem prohibits it or if * the process is being traced. * * We disable setuid/setgid/etc in capability mode on the basis * that most setugid applications are not written with that * environment in mind, and will therefore almost certainly operate * incorrectly. In principle there's no reason that setugid * applications might not be useful in capability mode, so we may want * to reconsider this conservative design choice in the future. * * XXXMAC: For the time being, use NOSUID to also prohibit * transitions on the file system. */ credential_changing = 0; credential_changing |= (attr.va_mode & S_ISUID) && oldcred->cr_uid != attr.va_uid; credential_changing |= (attr.va_mode & S_ISGID) && oldcred->cr_gid != attr.va_gid; #ifdef MAC will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp, interpvplabel, imgp); credential_changing |= will_transition; #endif /* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */ if (credential_changing) imgp->proc->p_pdeathsig = 0; if (credential_changing && #ifdef CAPABILITY_MODE ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) && #endif (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 && (p->p_flag & P_TRACED) == 0) { imgp->credential_setid = true; VOP_UNLOCK(imgp->vp); imgp->newcred = crdup(oldcred); if (attr.va_mode & S_ISUID) { euip = uifind(attr.va_uid); change_euid(imgp->newcred, euip); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (attr.va_mode & S_ISGID) change_egid(imgp->newcred, attr.va_gid); /* * Implement correct POSIX saved-id behavior. * * XXXMAC: Note that the current logic will save the * uid and gid if a MAC domain transition occurs, even * though maybe it shouldn't. */ change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } else { /* * Implement correct POSIX saved-id behavior. * * XXX: It's not clear that the existing behavior is * POSIX-compliant. A number of sources indicate that the * saved uid/gid should only be updated if the new ruid is * not equal to the old ruid, or the new euid is not equal * to the old euid and the new euid is not equal to the old * ruid. The FreeBSD code always updates the saved uid/gid. * Also, this code uses the new (replaced) euid and egid as * the source, which may or may not be the right ones to use. */ if (oldcred->cr_svuid != oldcred->cr_uid || oldcred->cr_svgid != oldcred->cr_gid) { VOP_UNLOCK(imgp->vp); imgp->newcred = crdup(oldcred); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); change_svuid(imgp->newcred, imgp->newcred->cr_uid); change_svgid(imgp->newcred, imgp->newcred->cr_gid); } } /* The new credentials are installed into the process later. */ /* * Do the best to calculate the full path to the image file. */ if (args->fname != NULL && args->fname[0] == '/') imgp->execpath = args->fname; else { VOP_UNLOCK(imgp->vp); if (vn_fullpath(td, imgp->vp, &imgp->execpath, &imgp->freepath) != 0) imgp->execpath = args->fname; vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } /* * If the current process has a special image activator it * wants to try first, call it. For example, emulating shell * scripts differently. */ error = -1; if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL) error = img_first(imgp); /* * Loop through the list of image activators, calling each one. * An activator returns -1 if there is no match, 0 on success, * and an error otherwise. */ for (i = 0; error == -1 && execsw[i]; ++i) { if (execsw[i]->ex_imgact == NULL || execsw[i]->ex_imgact == img_first) { continue; } error = (*execsw[i]->ex_imgact)(imgp); } if (error) { if (error == -1) error = ENOEXEC; goto exec_fail_dealloc; } /* * Special interpreter operation, cleanup and loop up to try to * activate the interpreter. */ if (imgp->interpreted) { exec_unmap_first_page(imgp); /* * The text reference needs to be removed for scripts. * There is a short period before we determine that * something is a script where text reference is active. * The vnode lock is held over this entire period * so nothing should illegitimately be blocked. */ MPASS(imgp->textset); VOP_UNSET_TEXT_CHECKED(newtextvp); imgp->textset = false; /* free name buffer and old vnode */ if (args->fname != NULL) NDFREE(&nd, NDF_ONLY_PNBUF); #ifdef MAC mac_execve_interpreter_enter(newtextvp, &interpvplabel); #endif if (imgp->opened) { VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td); imgp->opened = 0; } vput(newtextvp); vm_object_deallocate(imgp->object); imgp->object = NULL; imgp->credential_setid = false; if (imgp->newcred != NULL) { crfree(imgp->newcred); imgp->newcred = NULL; } imgp->execpath = NULL; free(imgp->freepath, M_TEMP); imgp->freepath = NULL; /* set new name to that of the interpreter */ NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | FOLLOW | SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td); args->fname = imgp->interpreter_name; goto interpret; } /* * NB: We unlock the vnode here because it is believed that none * of the sv_copyout_strings/sv_fixup operations require the vnode. */ VOP_UNLOCK(imgp->vp); if (disallow_high_osrel && P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) { error = ENOEXEC; uprintf("Osrel %d for image %s too high\n", p->p_osrel, imgp->execpath != NULL ? imgp->execpath : ""); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } /* ABI enforces the use of Capsicum. Switch into capabilities mode. */ if (SV_PROC_FLAG(p, SV_CAPSICUM)) sys_cap_enter(td, NULL); /* * Copy out strings (args and env) and initialize stack base. */ error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base); if (error != 0) { vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } /* * Stack setup. */ error = (*p->p_sysent->sv_fixup)(&stack_base, imgp); if (error != 0) { vn_lock(imgp->vp, LK_SHARED | LK_RETRY); goto exec_fail_dealloc; } if (args->fdp != NULL) { /* Install a brand new file descriptor table. */ fdinstall_remapped(td, args->fdp); args->fdp = NULL; } else { /* * Keep on using the existing file descriptor table. For * security and other reasons, the file descriptor table * cannot be shared after an exec. */ fdunshare(td); /* close files on exec */ fdcloseexec(td); } /* * Malloc things before we need locks. */ i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv; /* Cache arguments if they fit inside our allowance */ if (ps_arg_cache_limit >= i + sizeof(struct pargs)) { newargs = pargs_alloc(i); bcopy(imgp->args->begin_argv, newargs->ar_args, i); } /* * For security and other reasons, signal handlers cannot * be shared after an exec. The new process gets a copy of the old * handlers. In execsigs(), the new process will have its signals * reset. */ if (sigacts_shared(p->p_sigacts)) { oldsigacts = p->p_sigacts; newsigacts = sigacts_alloc(); sigacts_copy(newsigacts, oldsigacts); } vn_lock(imgp->vp, LK_SHARED | LK_RETRY); PROC_LOCK(p); if (oldsigacts) p->p_sigacts = newsigacts; /* Stop profiling */ stopprofclock(p); /* reset caught signals */ execsigs(p); /* name this process - nameiexec(p, ndp) */ bzero(p->p_comm, sizeof(p->p_comm)); if (args->fname) bcopy(nd.ni_cnd.cn_nameptr, p->p_comm, min(nd.ni_cnd.cn_namelen, MAXCOMLEN)); else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0) bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title)); bcopy(p->p_comm, td->td_name, sizeof(td->td_name)); #ifdef KTR sched_clear_tdname(td); #endif /* * mark as execed, wakeup the process that vforked (if any) and tell * it that it now has its own resources back */ p->p_flag |= P_EXEC; if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0) p->p_flag2 &= ~P2_NOTRACE; if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0) p->p_flag2 &= ~P2_STKGAP_DISABLE; if (p->p_flag & P_PPWAIT) { p->p_flag &= ~(P_PPWAIT | P_PPTRACE); cv_broadcast(&p->p_pwait); /* STOPs are no longer ignored, arrange for AST */ signotify(td); } /* * Implement image setuid/setgid installation. */ if (imgp->credential_setid) { /* * Turn off syscall tracing for set-id programs, except for * root. Record any set-id flags first to make sure that * we do not regain any tracing during a possible block. */ setsugid(p); #ifdef KTRACE if (p->p_tracecred != NULL && priv_check_cred(p->p_tracecred, PRIV_DEBUG_DIFFCRED)) ktrprocexec(p, &tracecred, &tracevp); #endif /* * Close any file descriptors 0..2 that reference procfs, * then make sure file descriptors 0..2 are in use. * * Both fdsetugidsafety() and fdcheckstd() may call functions * taking sleepable locks, so temporarily drop our locks. */ PROC_UNLOCK(p); VOP_UNLOCK(imgp->vp); fdsetugidsafety(td); error = fdcheckstd(td); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); if (error != 0) goto exec_fail_dealloc; PROC_LOCK(p); #ifdef MAC if (will_transition) { mac_vnode_execve_transition(oldcred, imgp->newcred, imgp->vp, interpvplabel, imgp); } #endif } else { if (oldcred->cr_uid == oldcred->cr_ruid && oldcred->cr_gid == oldcred->cr_rgid) p->p_flag &= ~P_SUGID; } /* * Set the new credentials. */ if (imgp->newcred != NULL) { proc_set_cred(p, imgp->newcred); crfree(oldcred); oldcred = NULL; } /* * Store the vp for use in procfs. This vnode was referenced by namei * or fgetvp_exec. */ oldtextvp = p->p_textvp; p->p_textvp = newtextvp; #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the exec if it * has declared an interest. */ if (dtrace_fasttrap_exec) dtrace_fasttrap_exec(p); #endif /* * Notify others that we exec'd, and clear the P_INEXEC flag * as we're now a bona fide freshly-execed process. */ KNOTE_LOCKED(p->p_klist, NOTE_EXEC); p->p_flag &= ~P_INEXEC; /* clear "fork but no exec" flag, as we _are_ execing */ p->p_acflag &= ~AFORK; /* * Free any previous argument cache and replace it with * the new argument cache, if any. */ oldargs = p->p_args; p->p_args = newargs; newargs = NULL; PROC_UNLOCK(p); #ifdef HWPMC_HOOKS /* * Check if system-wide sampling is in effect or if the * current process is using PMCs. If so, do exec() time * processing. This processing needs to happen AFTER the * P_INEXEC flag is cleared. */ if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) { VOP_UNLOCK(imgp->vp); pe.pm_credentialschanged = credential_changing; pe.pm_entryaddr = imgp->entry_addr; PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe); vn_lock(imgp->vp, LK_SHARED | LK_RETRY); } #endif /* Set values passed into the program in registers. */ (*p->p_sysent->sv_setregs)(td, imgp, stack_base); - vfs_mark_atime(imgp->vp, td->td_ucred); + VOP_MMAPPED(imgp->vp); SDT_PROBE1(proc, , , exec__success, args->fname); exec_fail_dealloc: if (error != 0) { p->p_osrel = orig_osrel; p->p_fctl0 = orig_fctl0; } if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); if (imgp->vp != NULL) { if (args->fname) NDFREE(&nd, NDF_ONLY_PNBUF); if (imgp->opened) VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td); if (imgp->textset) VOP_UNSET_TEXT_CHECKED(imgp->vp); if (error != 0) vput(imgp->vp); else VOP_UNLOCK(imgp->vp); } if (imgp->object != NULL) vm_object_deallocate(imgp->object); free(imgp->freepath, M_TEMP); if (error == 0) { if (p->p_ptevents & PTRACE_EXEC) { PROC_LOCK(p); if (p->p_ptevents & PTRACE_EXEC) td->td_dbgflags |= TDB_EXEC; PROC_UNLOCK(p); } /* * Stop the process here if its stop event mask has * the S_EXEC bit set. */ STOPEVENT(p, S_EXEC, 0); } else { exec_fail: /* we're done here, clear P_INEXEC */ PROC_LOCK(p); p->p_flag &= ~P_INEXEC; PROC_UNLOCK(p); SDT_PROBE1(proc, , , exec__failure, error); } if (imgp->newcred != NULL && oldcred != NULL) crfree(imgp->newcred); #ifdef MAC mac_execve_exit(imgp); mac_execve_interpreter_exit(interpvplabel); #endif exec_free_args(args); /* * Handle deferred decrement of ref counts. */ if (oldtextvp != NULL) vrele(oldtextvp); #ifdef KTRACE if (tracevp != NULL) vrele(tracevp); if (tracecred != NULL) crfree(tracecred); #endif pargs_drop(oldargs); pargs_drop(newargs); if (oldsigacts != NULL) sigacts_free(oldsigacts); if (euip != NULL) uifree(euip); if (error && imgp->vmspace_destroyed) { /* sorry, no more process anymore. exit gracefully */ exit1(td, 0, SIGABRT); /* NOT REACHED */ } #ifdef KTRACE if (error == 0) ktrprocctor(p); #endif /* * We don't want cpu_set_syscall_retval() to overwrite any of * the register values put in place by exec_setregs(). * Implementations of cpu_set_syscall_retval() will leave * registers unmodified when returning EJUSTRETURN. */ return (error == 0 ? EJUSTRETURN : error); } int exec_map_first_page(struct image_params *imgp) { vm_object_t object; vm_page_t m; int error; if (imgp->firstpage != NULL) exec_unmap_first_page(imgp); object = imgp->vp->v_object; if (object == NULL) return (EACCES); VM_OBJECT_WLOCK(object); #if VM_NRESERVLEVEL > 0 vm_object_color(object, 0); #endif error = vm_page_grab_valid(&m, object, 0, VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) | VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED); VM_OBJECT_WUNLOCK(object); if (error != VM_PAGER_OK) return (EIO); imgp->firstpage = sf_buf_alloc(m, 0); imgp->image_header = (char *)sf_buf_kva(imgp->firstpage); return (0); } void exec_unmap_first_page(struct image_params *imgp) { vm_page_t m; if (imgp->firstpage != NULL) { m = sf_buf_page(imgp->firstpage); sf_buf_free(imgp->firstpage); imgp->firstpage = NULL; vm_page_unwire(m, PQ_ACTIVE); } } /* * Destroy old address space, and allocate a new stack. * The new stack is only sgrowsiz large because it is grown * automatically on a page fault. */ int exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv) { int error; struct proc *p = imgp->proc; struct vmspace *vmspace = p->p_vmspace; vm_object_t obj; struct rlimit rlim_stack; vm_offset_t sv_minuser, stack_addr; vm_map_t map; u_long ssiz; imgp->vmspace_destroyed = 1; imgp->sysent = sv; /* May be called with Giant held */ EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp); /* * Blow away entire process VM, if address space not shared, * otherwise, create a new VM space so that other threads are * not disrupted */ map = &vmspace->vm_map; if (map_at_zero) sv_minuser = sv->sv_minuser; else sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE); if (vmspace->vm_refcnt == 1 && vm_map_min(map) == sv_minuser && vm_map_max(map) == sv->sv_maxuser && cpu_exec_vmspace_reuse(p, map)) { shmexit(vmspace); pmap_remove_pages(vmspace_pmap(vmspace)); vm_map_remove(map, vm_map_min(map), vm_map_max(map)); /* * An exec terminates mlockall(MCL_FUTURE), ASLR state * must be re-evaluated. */ vm_map_lock(map); vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR | MAP_ASLR_IGNSTART); vm_map_unlock(map); } else { error = vmspace_exec(p, sv_minuser, sv->sv_maxuser); if (error) return (error); vmspace = p->p_vmspace; map = &vmspace->vm_map; } map->flags |= imgp->map_flags; /* Map a shared page */ obj = sv->sv_shared_page_obj; if (obj != NULL) { vm_object_reference(obj); error = vm_map_fixed(map, obj, 0, sv->sv_shared_page_base, sv->sv_shared_page_len, VM_PROT_READ | VM_PROT_EXECUTE, VM_PROT_READ | VM_PROT_EXECUTE, MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE); if (error != KERN_SUCCESS) { vm_object_deallocate(obj); return (vm_mmap_to_errno(error)); } } /* Allocate a new stack */ if (imgp->stack_sz != 0) { ssiz = trunc_page(imgp->stack_sz); PROC_LOCK(p); lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack); PROC_UNLOCK(p); if (ssiz > rlim_stack.rlim_max) ssiz = rlim_stack.rlim_max; if (ssiz > rlim_stack.rlim_cur) { rlim_stack.rlim_cur = ssiz; kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack); } } else if (sv->sv_maxssiz != NULL) { ssiz = *sv->sv_maxssiz; } else { ssiz = maxssiz; } imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK); if (ssiz < imgp->eff_stack_sz) imgp->eff_stack_sz = ssiz; stack_addr = sv->sv_usrstack - ssiz; error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, obj != NULL && imgp->stack_prot != 0 ? imgp->stack_prot : sv->sv_stackprot, VM_PROT_ALL, MAP_STACK_GROWS_DOWN); if (error != KERN_SUCCESS) return (vm_mmap_to_errno(error)); /* * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they * are still used to enforce the stack rlimit on the process stack. */ vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT; vmspace->vm_maxsaddr = (char *)stack_addr; return (0); } /* * Copy out argument and environment strings from the old process address * space into the temporary string buffer. */ int exec_copyin_args(struct image_args *args, const char *fname, enum uio_seg segflg, char **argv, char **envv) { u_long arg, env; int error; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ error = exec_args_add_fname(args, fname, segflg); if (error != 0) goto err_exit; /* * extract arguments first */ for (;;) { error = fueword(argv++, &arg); if (error == -1) { error = EFAULT; goto err_exit; } if (arg == 0) break; error = exec_args_add_arg(args, (char *)(uintptr_t)arg, UIO_USERSPACE); if (error != 0) goto err_exit; } /* * extract environment strings */ if (envv) { for (;;) { error = fueword(envv++, &env); if (error == -1) { error = EFAULT; goto err_exit; } if (env == 0) break; error = exec_args_add_env(args, (char *)(uintptr_t)env, UIO_USERSPACE); if (error != 0) goto err_exit; } } return (0); err_exit: exec_free_args(args); return (error); } int exec_copyin_data_fds(struct thread *td, struct image_args *args, const void *data, size_t datalen, const int *fds, size_t fdslen) { struct filedesc *ofdp; const char *p; int *kfds; int error; memset(args, '\0', sizeof(*args)); ofdp = td->td_proc->p_fd; if (datalen >= ARG_MAX || fdslen > ofdp->fd_lastfile + 1) return (E2BIG); error = exec_alloc_args(args); if (error != 0) return (error); args->begin_argv = args->buf; args->stringspace = ARG_MAX; if (datalen > 0) { /* * Argument buffer has been provided. Copy it into the * kernel as a single string and add a terminating null * byte. */ error = copyin(data, args->begin_argv, datalen); if (error != 0) goto err_exit; args->begin_argv[datalen] = '\0'; args->endp = args->begin_argv + datalen + 1; args->stringspace -= datalen + 1; /* * Traditional argument counting. Count the number of * null bytes. */ for (p = args->begin_argv; p < args->endp; ++p) if (*p == '\0') ++args->argc; } else { /* No argument buffer provided. */ args->endp = args->begin_argv; } /* Create new file descriptor table. */ kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK); error = copyin(fds, kfds, fdslen * sizeof(int)); if (error != 0) { free(kfds, M_TEMP); goto err_exit; } error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp); free(kfds, M_TEMP); if (error != 0) goto err_exit; return (0); err_exit: exec_free_args(args); return (error); } struct exec_args_kva { vm_offset_t addr; u_int gen; SLIST_ENTRY(exec_args_kva) next; }; DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva); static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist; static struct mtx exec_args_kva_mtx; static u_int exec_args_gen; static void exec_prealloc_args_kva(void *arg __unused) { struct exec_args_kva *argkva; u_int i; SLIST_INIT(&exec_args_kva_freelist); mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF); for (i = 0; i < exec_map_entries; i++) { argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK); argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size); argkva->gen = exec_args_gen; SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); } } SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL); static vm_offset_t exec_alloc_args_kva(void **cookie) { struct exec_args_kva *argkva; argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_PTR(exec_args_kva)); if (argkva == NULL) { mtx_lock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL) (void)mtx_sleep(&exec_args_kva_freelist, &exec_args_kva_mtx, 0, "execkva", 0); SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next); mtx_unlock(&exec_args_kva_mtx); } *(struct exec_args_kva **)cookie = argkva; return (argkva->addr); } static void exec_release_args_kva(struct exec_args_kva *argkva, u_int gen) { vm_offset_t base; base = argkva->addr; if (argkva->gen != gen) { (void)vm_map_madvise(exec_map, base, base + exec_map_entry_size, MADV_FREE); argkva->gen = gen; } if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva), (uintptr_t)NULL, (uintptr_t)argkva)) { mtx_lock(&exec_args_kva_mtx); SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next); wakeup_one(&exec_args_kva_freelist); mtx_unlock(&exec_args_kva_mtx); } } static void exec_free_args_kva(void *cookie) { exec_release_args_kva(cookie, exec_args_gen); } static void exec_args_kva_lowmem(void *arg __unused) { SLIST_HEAD(, exec_args_kva) head; struct exec_args_kva *argkva; u_int gen; int i; gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1; /* * Force an madvise of each KVA range. Any currently allocated ranges * will have MADV_FREE applied once they are freed. */ SLIST_INIT(&head); mtx_lock(&exec_args_kva_mtx); SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva); mtx_unlock(&exec_args_kva_mtx); while ((argkva = SLIST_FIRST(&head)) != NULL) { SLIST_REMOVE_HEAD(&head, next); exec_release_args_kva(argkva, gen); } CPU_FOREACH(i) { argkva = (void *)atomic_readandclear_ptr( (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva)); if (argkva != NULL) exec_release_args_kva(argkva, gen); } } EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL, EVENTHANDLER_PRI_ANY); /* * Allocate temporary demand-paged, zero-filled memory for the file name, * argument, and environment strings. */ int exec_alloc_args(struct image_args *args) { args->buf = (char *)exec_alloc_args_kva(&args->bufkva); return (0); } void exec_free_args(struct image_args *args) { if (args->buf != NULL) { exec_free_args_kva(args->bufkva); args->buf = NULL; } if (args->fname_buf != NULL) { free(args->fname_buf, M_TEMP); args->fname_buf = NULL; } if (args->fdp != NULL) fdescfree_remapped(args->fdp); } /* * A set to functions to fill struct image args. * * NOTE: exec_args_add_fname() must be called (possibly with a NULL * fname) before the other functions. All exec_args_add_arg() calls must * be made before any exec_args_add_env() calls. exec_args_adjust_args() * may be called any time after exec_args_add_fname(). * * exec_args_add_fname() - install path to be executed * exec_args_add_arg() - append an argument string * exec_args_add_env() - append an env string * exec_args_adjust_args() - adjust location of the argument list to * allow new arguments to be prepended */ int exec_args_add_fname(struct image_args *args, const char *fname, enum uio_seg segflg) { int error; size_t length; KASSERT(args->fname == NULL, ("fname already appended")); KASSERT(args->endp == NULL, ("already appending to args")); if (fname != NULL) { args->fname = args->buf; error = segflg == UIO_SYSSPACE ? copystr(fname, args->fname, PATH_MAX, &length) : copyinstr(fname, args->fname, PATH_MAX, &length); if (error != 0) return (error == ENAMETOOLONG ? E2BIG : error); } else length = 0; /* Set up for _arg_*()/_env_*() */ args->endp = args->buf + length; /* begin_argv must be set and kept updated */ args->begin_argv = args->endp; KASSERT(exec_map_entry_size - length >= ARG_MAX, ("too little space remaining for arguments %zu < %zu", exec_map_entry_size - length, (size_t)ARG_MAX)); args->stringspace = ARG_MAX; return (0); } static int exec_args_add_str(struct image_args *args, const char *str, enum uio_seg segflg, int *countp) { int error; size_t length; KASSERT(args->endp != NULL, ("endp not initialized")); KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); error = (segflg == UIO_SYSSPACE) ? copystr(str, args->endp, args->stringspace, &length) : copyinstr(str, args->endp, args->stringspace, &length); if (error != 0) return (error == ENAMETOOLONG ? E2BIG : error); args->stringspace -= length; args->endp += length; (*countp)++; return (0); } int exec_args_add_arg(struct image_args *args, const char *argp, enum uio_seg segflg) { KASSERT(args->envc == 0, ("appending args after env")); return (exec_args_add_str(args, argp, segflg, &args->argc)); } int exec_args_add_env(struct image_args *args, const char *envp, enum uio_seg segflg) { if (args->envc == 0) args->begin_envv = args->endp; return (exec_args_add_str(args, envp, segflg, &args->envc)); } int exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend) { ssize_t offset; KASSERT(args->endp != NULL, ("endp not initialized")); KASSERT(args->begin_argv != NULL, ("begin_argp not initialized")); offset = extend - consume; if (args->stringspace < offset) return (E2BIG); memmove(args->begin_argv + extend, args->begin_argv + consume, args->endp - args->begin_argv + consume); if (args->envc > 0) args->begin_envv += offset; args->endp += offset; args->stringspace -= offset; return (0); } char * exec_args_get_begin_envv(struct image_args *args) { KASSERT(args->endp != NULL, ("endp not initialized")); if (args->envc > 0) return (args->begin_envv); return (args->endp); } /* * Copy strings out to the new process address space, constructing new arg * and env vector tables. Return a pointer to the base so that it can be used * as the initial stack pointer. */ int exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { int argc, envc; char **vectp; char *stringp; uintptr_t destp, ustringp; struct ps_strings *arginfo; struct proc *p; size_t execpath_len; int error, szsigcode, szps; char canary[sizeof(long) * 8]; szps = sizeof(pagesizes[0]) * MAXPAGESIZES; /* * Calculate string base and vector table pointers. * Also deal with signal trampoline code for this exec type. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) execpath_len = strlen(imgp->execpath) + 1; else execpath_len = 0; p = imgp->proc; szsigcode = 0; arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings; if (p->p_sysent->sv_sigcode_base == 0) { if (p->p_sysent->sv_szsigcode != NULL) szsigcode = *(p->p_sysent->sv_szsigcode); } destp = (uintptr_t)arginfo; /* * install sigcode */ if (szsigcode != 0) { destp -= szsigcode; destp = rounddown2(destp, sizeof(void *)); error = copyout(p->p_sysent->sv_sigcode, (void *)destp, szsigcode); if (error != 0) return (error); } /* * Copy the image path for the rtld. */ if (execpath_len != 0) { destp -= execpath_len; destp = rounddown2(destp, sizeof(void *)); imgp->execpathp = destp; error = copyout(imgp->execpath, (void *)destp, execpath_len); if (error != 0) return (error); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= sizeof(canary); imgp->canary = destp; error = copyout(canary, (void *)destp, sizeof(canary)); if (error != 0) return (error); imgp->canarylen = sizeof(canary); /* * Prepare the pagesizes array. */ destp -= szps; destp = rounddown2(destp, sizeof(void *)); imgp->pagesizes = destp; error = copyout(pagesizes, (void *)destp, szps); if (error != 0) return (error); imgp->pagesizeslen = szps; /* * Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(void *)); ustringp = destp; if (imgp->sysent->sv_stackgap != NULL) imgp->sysent->sv_stackgap(imgp, &destp); if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has up to AT_COUNT entries. */ destp -= AT_COUNT * sizeof(Elf_Auxinfo); destp = rounddown2(destp, sizeof(void *)); } vectp = (char **)destp; /* * Allocate room for the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; /* * vectp also becomes our initial stack base */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* * Fill in "ps_strings" struct for ps, w, etc. */ if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* a null vector table pointer separates the argp's from the envp's */ if (suword(vectp++, 0) != 0) return (EFAULT); if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* end of vector table is a null pointer */ if (suword(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } /* * Check permissions of file to execute. * Called with imgp->vp locked. * Return 0 for success or error code on failure. */ int exec_check_permissions(struct image_params *imgp) { struct vnode *vp = imgp->vp; struct vattr *attr = imgp->attr; struct thread *td; int error; td = curthread; /* Get file attributes */ error = VOP_GETATTR(vp, attr, td->td_ucred); if (error) return (error); #ifdef MAC error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp); if (error) return (error); #endif /* * 1) Check if file execution is disabled for the filesystem that * this file resides on. * 2) Ensure that at least one execute bit is on. Otherwise, a * privileged user will always succeed, and we don't want this * to happen unless the file really is executable. * 3) Ensure that the file is a regular file. */ if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 || (attr->va_type != VREG)) return (EACCES); /* * Zero length files can't be exec'd */ if (attr->va_size == 0) return (ENOEXEC); /* * Check for execute permission to file based on current credentials. */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) return (error); /* * Check number of open-for-writes on the file and deny execution * if there are any. * * Add a text reference now so no one can write to the * executable while we're activating it. * * Remember if this was set before and unset it in case this is not * actually an executable image. */ error = VOP_SET_TEXT(vp); if (error != 0) return (error); imgp->textset = true; /* * Call filesystem specific open routine (which does nothing in the * general case). */ error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error == 0) imgp->opened = 1; return (error); } /* * Exec handler registration */ int exec_register(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; u_int count = 2; /* New slot and trailing NULL */ if (execsw) for (es = execsw; *es; es++) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; if (execsw) for (es = execsw; *es; es++) *xs++ = *es; *xs++ = execsw_arg; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } int exec_unregister(const struct execsw *execsw_arg) { const struct execsw **es, **xs, **newexecsw; int count = 1; if (execsw == NULL) panic("unregister with no handlers left?\n"); for (es = execsw; *es; es++) { if (*es == execsw_arg) break; } if (*es == NULL) return (ENOENT); for (es = execsw; *es; es++) if (*es != execsw_arg) count++; newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK); xs = newexecsw; for (es = execsw; *es; es++) if (*es != execsw_arg) *xs++ = *es; *xs = NULL; if (execsw) free(execsw, M_TEMP); execsw = newexecsw; return (0); } Index: head/sys/kern/vfs_subr.c =================================================================== --- head/sys/kern/vfs_subr.c (revision 357360) +++ head/sys/kern/vfs_subr.c (revision 357361) @@ -1,6402 +1,6385 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 */ /* * External virtual filesystem routines */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_watchdog.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif static void delmntque(struct vnode *vp); static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, int slptimeo); static void syncer_shutdown(void *arg, int howto); static int vtryrecycle(struct vnode *vp); static void v_init_counters(struct vnode *); static void v_incr_devcount(struct vnode *); static void v_decr_devcount(struct vnode *); static void vgonel(struct vnode *); static void vfs_knllock(void *arg); static void vfs_knlunlock(void *arg); static void vfs_knl_assert_locked(void *arg); static void vfs_knl_assert_unlocked(void *arg); static void destroy_vpollinfo(struct vpollinfo *vi); static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, daddr_t startlbn, daddr_t endlbn); static void vnlru_recalc(void); /* * These fences are intended for cases where some synchronization is * needed between access of v_iflags and lockless vnode refcount (v_holdcnt * and v_usecount) updates. Access to v_iflags is generally synchronized * by the interlock, but we have some internal assertions that check vnode * flags without acquiring the lock. Thus, these fences are INVARIANTS-only * for now. */ #ifdef INVARIANTS #define VNODE_REFCOUNT_FENCE_ACQ() atomic_thread_fence_acq() #define VNODE_REFCOUNT_FENCE_REL() atomic_thread_fence_rel() #else #define VNODE_REFCOUNT_FENCE_ACQ() #define VNODE_REFCOUNT_FENCE_REL() #endif /* * Number of vnodes in existence. Increased whenever getnewvnode() * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. */ static u_long __exclusive_cache_line numvnodes; SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "Number of vnodes in existence"); static counter_u64_t vnodes_created; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, "Number of vnodes created by getnewvnode"); /* * Conversion tables for conversion from vnode types to inode formats * and back. */ enum vtype iftovt_tab[16] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON }; int vttoif_tab[10] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT }; /* * List of allocates vnodes in the system. */ static TAILQ_HEAD(freelst, vnode) vnode_list; static struct vnode *vnode_list_free_marker; static struct vnode *vnode_list_reclaim_marker; /* * "Free" vnode target. Free vnodes are rarely completely free, but are * just ones that are cheap to recycle. Usually they are for files which * have been stat'd but not read; these usually have inode and namecache * data attached to them. This target is the preferred minimum size of a * sub-cache consisting mostly of such files. The system balances the size * of this sub-cache with its complement to try to prevent either from * thrashing while the other is relatively inactive. The targets express * a preference for the best balance. * * "Above" this target there are 2 further targets (watermarks) related * to recyling of free vnodes. In the best-operating case, the cache is * exactly full, the free list has size between vlowat and vhiwat above the * free target, and recycling from it and normal use maintains this state. * Sometimes the free list is below vlowat or even empty, but this state * is even better for immediate use provided the cache is not full. * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free * ones) to reach one of these states. The watermarks are currently hard- * coded as 4% and 9% of the available space higher. These and the default * of 25% for wantfreevnodes are too large if the memory size is large. * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim * whenever vnlru_proc() becomes active. */ static long wantfreevnodes; static long __exclusive_cache_line freevnodes; SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "Number of \"free\" vnodes"); static long freevnodes_old; static counter_u64_t recycles_count; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, "Number of vnodes recycled to meet vnode cache targets"); static counter_u64_t recycles_free_count; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count, "Number of free vnodes recycled to meet vnode cache targets"); /* * Various variables used for debugging the new implementation of * reassignbuf(). * XXX these are probably of (very) limited utility now. */ static int reassignbufcalls; SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW | CTLFLAG_STATS, &reassignbufcalls, 0, "Number of calls to reassignbuf"); static counter_u64_t deferred_inact; SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact, "Number of times inactive processing was deferred"); /* To keep more than one thread at a time from running vfs_getnewfsid */ static struct mtx mntid_mtx; /* * Lock for any access to the following: * vnode_list * numvnodes * freevnodes */ static struct mtx __exclusive_cache_line vnode_list_mtx; /* Publicly exported FS */ struct nfs_public nfs_pub; static uma_zone_t buf_trie_zone; /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ static uma_zone_t vnode_zone; static uma_zone_t vnodepoll_zone; /* * The workitem queue. * * It is useful to delay writes of file data and filesystem metadata * for tens of seconds so that quickly created and deleted files need * not waste disk bandwidth being created and removed. To realize this, * we append vnodes to a "workitem" queue. When running with a soft * updates implementation, most pending metadata dependencies should * not wait for more than a few seconds. Thus, mounted on block devices * are delayed only about a half the time that file data is delayed. * Similarly, directory updates are more critical, so are only delayed * about a third the time that file data is delayed. Thus, there are * SYNCER_MAXDELAY queues that are processed round-robin at a rate of * one each second (driven off the filesystem syncer process). The * syncer_delayno variable indicates the next queue that is to be processed. * Items that need to be processed soon are placed in this queue: * * syncer_workitem_pending[syncer_delayno] * * A delay of fifteen seconds is done by placing the request fifteen * entries later in the queue: * * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] * */ static int syncer_delayno; static long syncer_mask; LIST_HEAD(synclist, bufobj); static struct synclist *syncer_workitem_pending; /* * The sync_mtx protects: * bo->bo_synclist * sync_vnode_count * syncer_delayno * syncer_state * syncer_workitem_pending * syncer_worklist_len * rushjob */ static struct mtx sync_mtx; static struct cv sync_wakeup; #define SYNCER_MAXDELAY 32 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ static int syncdelay = 30; /* max time to delay syncing data */ static int filedelay = 30; /* time to delay syncing files */ SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "Time to delay syncing files (in seconds)"); static int dirdelay = 29; /* time to delay syncing directories */ SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "Time to delay syncing directories (in seconds)"); static int metadelay = 28; /* time to delay syncing metadata */ SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "Time to delay syncing metadata (in seconds)"); static int rushjob; /* number of slots to run ASAP */ static int stat_rush_requests; /* number of times I/O speeded up */ SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "Number of times I/O speeded up (rush requests)"); #define VDBATCH_SIZE 8 struct vdbatch { u_int index; long freevnodes; struct mtx lock; struct vnode *tab[VDBATCH_SIZE]; }; DPCPU_DEFINE_STATIC(struct vdbatch, vd); static void vdbatch_dequeue(struct vnode *vp); /* * When shutting down the syncer, run it at four times normal speed. */ #define SYNCER_SHUTDOWN_SPEEDUP 4 static int sync_vnode_count; static int syncer_worklist_len; static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } syncer_state; /* Target for maximum number of vnodes. */ u_long desiredvnodes; static u_long gapvnodes; /* gap between wanted and desired */ static u_long vhiwat; /* enough extras after expansion */ static u_long vlowat; /* minimal extras before expansion */ static u_long vstir; /* nonzero to stir non-free vnodes */ static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ static u_long vnlru_read_freevnodes(void); /* * Note that no attempt is made to sanitize these parameters. */ static int sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) { u_long val; int error; val = desiredvnodes; error = sysctl_handle_long(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val == desiredvnodes) return (0); mtx_lock(&vnode_list_mtx); desiredvnodes = val; wantfreevnodes = desiredvnodes / 4; vnlru_recalc(); mtx_unlock(&vnode_list_mtx); /* * XXX There is no protection against multiple threads changing * desiredvnodes at the same time. Locking above only helps vnlru and * getnewvnode. */ vfs_hash_changesize(desiredvnodes); cache_changesize(desiredvnodes); return (0); } SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, "LU", "Target for maximum number of vnodes"); static int sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) { u_long val; int error; val = wantfreevnodes; error = sysctl_handle_long(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val == wantfreevnodes) return (0); mtx_lock(&vnode_list_mtx); wantfreevnodes = val; vnlru_recalc(); mtx_unlock(&vnode_list_mtx); return (0); } SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, "LU", "Target for minimum number of \"free\" vnodes"); SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)"); static int vnlru_nowhere; SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); static int sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) { struct vnode *vp; struct nameidata nd; char *buf; unsigned long ndflags; int error; if (req->newptr == NULL) return (EINVAL); if (req->newlen >= PATH_MAX) return (E2BIG); buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); error = SYSCTL_IN(req, buf, req->newlen); if (error != 0) goto out; buf[req->newlen] = '\0'; ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | NOCACHE | SAVENAME; NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread); if ((error = namei(&nd)) != 0) goto out; vp = nd.ni_vp; if (VN_IS_DOOMED(vp)) { /* * This vnode is being recycled. Return != 0 to let the caller * know that the sysctl had no effect. Return EAGAIN because a * subsequent call will likely succeed (since namei will create * a new vnode if necessary) */ error = EAGAIN; goto putvnode; } counter_u64_add(recycles_count, 1); vgone(vp); putvnode: NDFREE(&nd, 0); out: free(buf, M_TEMP); return (error); } static int sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) { struct thread *td = curthread; struct vnode *vp; struct file *fp; int error; int fd; if (req->newptr == NULL) return (EBADF); error = sysctl_handle_int(oidp, &fd, 0, req); if (error != 0) return (error); error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); if (error != 0) return (error); vp = fp->f_vnode; error = vn_lock(vp, LK_EXCLUSIVE); if (error != 0) goto drop; counter_u64_add(recycles_count, 1); vgone(vp); VOP_UNLOCK(vp); drop: fdrop(fp, td); return (error); } SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, sysctl_ftry_reclaim_vnode, "I", "Try to reclaim a vnode by its file descriptor"); /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ static int vnsz2log; /* * Support for the bufobj clean & dirty pctrie. */ static void * buf_trie_alloc(struct pctrie *ptree) { return uma_zalloc(buf_trie_zone, M_NOWAIT); } static void buf_trie_free(struct pctrie *ptree, void *node) { uma_zfree(buf_trie_zone, node); } PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free); /* * Initialize the vnode management data structures. * * Reevaluate the following cap on the number of vnodes after the physical * memory size exceeds 512GB. In the limit, as the physical memory size * grows, the ratio of the memory size in KB to vnodes approaches 64:1. */ #ifndef MAXVNODES_MAX #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ #endif static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); static struct vnode * vn_alloc_marker(struct mount *mp) { struct vnode *vp; vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); vp->v_type = VMARKER; vp->v_mount = mp; return (vp); } static void vn_free_marker(struct vnode *vp) { MPASS(vp->v_type == VMARKER); free(vp, M_VNODE_MARKER); } /* * Initialize a vnode as it first enters the zone. */ static int vnode_init(void *mem, int size, int flags) { struct vnode *vp; vp = mem; bzero(vp, size); /* * Setup locks. */ vp->v_vnlock = &vp->v_lock; mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); /* * By default, don't allow shared locks unless filesystems opt-in. */ lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, LK_NOSHARE | LK_IS_VNODE); /* * Initialize bufobj. */ bufobj_init(&vp->v_bufobj, vp); /* * Initialize namecache. */ LIST_INIT(&vp->v_cache_src); TAILQ_INIT(&vp->v_cache_dst); /* * Initialize rangelocks. */ rangelock_init(&vp->v_rl); vp->v_dbatchcpu = NOCPU; mtx_lock(&vnode_list_mtx); TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); mtx_unlock(&vnode_list_mtx); return (0); } /* * Free a vnode when it is cleared from the zone. */ static void vnode_fini(void *mem, int size) { struct vnode *vp; struct bufobj *bo; vp = mem; vdbatch_dequeue(vp); mtx_lock(&vnode_list_mtx); TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); mtx_unlock(&vnode_list_mtx); rangelock_destroy(&vp->v_rl); lockdestroy(vp->v_vnlock); mtx_destroy(&vp->v_interlock); bo = &vp->v_bufobj; rw_destroy(BO_LOCKPTR(bo)); } /* * Provide the size of NFS nclnode and NFS fh for calculation of the * vnode memory consumption. The size is specified directly to * eliminate dependency on NFS-private header. * * Other filesystems may use bigger or smaller (like UFS and ZFS) * private inode data, but the NFS-based estimation is ample enough. * Still, we care about differences in the size between 64- and 32-bit * platforms. * * Namecache structure size is heuristically * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. */ #ifdef _LP64 #define NFS_NCLNODE_SZ (528 + 64) #define NC_SZ 148 #else #define NFS_NCLNODE_SZ (360 + 32) #define NC_SZ 92 #endif static void vntblinit(void *dummy __unused) { struct vdbatch *vd; int cpu, physvnodes, virtvnodes; u_int i; /* * Desiredvnodes is a function of the physical memory size and the * kernel's heap size. Generally speaking, it scales with the * physical memory size. The ratio of desiredvnodes to the physical * memory size is 1:16 until desiredvnodes exceeds 98,304. * Thereafter, the * marginal ratio of desiredvnodes to the physical memory size is * 1:64. However, desiredvnodes is limited by the kernel's heap * size. The memory required by desiredvnodes vnodes and vm objects * must not exceed 1/10th of the kernel's heap size. */ physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); desiredvnodes = min(physvnodes, virtvnodes); if (desiredvnodes > MAXVNODES_MAX) { if (bootverbose) printf("Reducing kern.maxvnodes %lu -> %lu\n", desiredvnodes, MAXVNODES_MAX); desiredvnodes = MAXVNODES_MAX; } wantfreevnodes = desiredvnodes / 4; mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); TAILQ_INIT(&vnode_list); mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); /* * The lock is taken to appease WITNESS. */ mtx_lock(&vnode_list_mtx); vnlru_recalc(); mtx_unlock(&vnode_list_mtx); vnode_list_free_marker = vn_alloc_marker(NULL); TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); vnode_list_reclaim_marker = vn_alloc_marker(NULL); TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, vnode_init, vnode_fini, UMA_ALIGN_PTR, 0); vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); /* * Preallocate enough nodes to support one-per buf so that * we can not fail an insert. reassignbuf() callers can not * tolerate the insertion failure. */ buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); uma_prealloc(buf_trie_zone, nbuf); vnodes_created = counter_u64_alloc(M_WAITOK); recycles_count = counter_u64_alloc(M_WAITOK); recycles_free_count = counter_u64_alloc(M_WAITOK); deferred_inact = counter_u64_alloc(M_WAITOK); /* * Initialize the filesystem syncer. */ syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, &syncer_mask); syncer_maxdelay = syncer_mask + 1; mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); cv_init(&sync_wakeup, "syncer"); for (i = 1; i <= sizeof(struct vnode); i <<= 1) vnsz2log++; vnsz2log--; CPU_FOREACH(cpu) { vd = DPCPU_ID_PTR((cpu), vd); bzero(vd, sizeof(*vd)); mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); } } SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); /* * Mark a mount point as busy. Used to synchronize access and to delay * unmounting. Eventually, mountlist_mtx is not released on failure. * * vfs_busy() is a custom lock, it can block the caller. * vfs_busy() only sleeps if the unmount is active on the mount point. * For a mountpoint mp, vfs_busy-enforced lock is before lock of any * vnode belonging to mp. * * Lookup uses vfs_busy() to traverse mount points. * root fs var fs * / vnode lock A / vnode lock (/var) D * /var vnode lock B /log vnode lock(/var/log) E * vfs_busy lock C vfs_busy lock F * * Within each file system, the lock order is C->A->B and F->D->E. * * When traversing across mounts, the system follows that lock order: * * C->A->B * | * +->F->D->E * * The lookup() process for namei("/var") illustrates the process: * VOP_LOOKUP() obtains B while A is held * vfs_busy() obtains a shared lock on F while A and B are held * vput() releases lock on B * vput() releases lock on A * VFS_ROOT() obtains lock on D while shared lock on F is held * vfs_unbusy() releases shared lock on F * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. * Attempt to lock A (instead of vp_crossmp) while D is held would * violate the global order, causing deadlocks. * * dounmount() locks B while F is drained. */ int vfs_busy(struct mount *mp, int flags) { MPASS((flags & ~MBF_MASK) == 0); CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); if (vfs_op_thread_enter(mp)) { MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); vfs_mp_count_add_pcpu(mp, ref, 1); vfs_mp_count_add_pcpu(mp, lockref, 1); vfs_op_thread_exit(mp); if (flags & MBF_MNTLSTLOCK) mtx_unlock(&mountlist_mtx); return (0); } MNT_ILOCK(mp); vfs_assert_mount_counters(mp); MNT_REF(mp); /* * If mount point is currently being unmounted, sleep until the * mount point fate is decided. If thread doing the unmounting fails, * it will clear MNTK_UNMOUNT flag before waking us up, indicating * that this mount point has survived the unmount attempt and vfs_busy * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE * flag in addition to MNTK_UNMOUNT, indicating that mount point is * about to be really destroyed. vfs_busy needs to release its * reference on the mount point in this case and return with ENOENT, * telling the caller that mount mount it tried to busy is no longer * valid. */ while (mp->mnt_kern_flag & MNTK_UNMOUNT) { if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { MNT_REL(mp); MNT_IUNLOCK(mp); CTR1(KTR_VFS, "%s: failed busying before sleeping", __func__); return (ENOENT); } if (flags & MBF_MNTLSTLOCK) mtx_unlock(&mountlist_mtx); mp->mnt_kern_flag |= MNTK_MWAIT; msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); if (flags & MBF_MNTLSTLOCK) mtx_lock(&mountlist_mtx); MNT_ILOCK(mp); } if (flags & MBF_MNTLSTLOCK) mtx_unlock(&mountlist_mtx); mp->mnt_lockref++; MNT_IUNLOCK(mp); return (0); } /* * Free a busy filesystem. */ void vfs_unbusy(struct mount *mp) { int c; CTR2(KTR_VFS, "%s: mp %p", __func__, mp); if (vfs_op_thread_enter(mp)) { MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); vfs_mp_count_sub_pcpu(mp, lockref, 1); vfs_mp_count_sub_pcpu(mp, ref, 1); vfs_op_thread_exit(mp); return; } MNT_ILOCK(mp); vfs_assert_mount_counters(mp); MNT_REL(mp); c = --mp->mnt_lockref; if (mp->mnt_vfs_ops == 0) { MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); MNT_IUNLOCK(mp); return; } if (c < 0) vfs_dump_mount_counters(mp); if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); CTR1(KTR_VFS, "%s: waking up waiters", __func__); mp->mnt_kern_flag &= ~MNTK_DRAINING; wakeup(&mp->mnt_lockref); } MNT_IUNLOCK(mp); } /* * Lookup a mount point by filesystem identifier. */ struct mount * vfs_getvfs(fsid_t *fsid) { struct mount *mp; CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); mtx_lock(&mountlist_mtx); TAILQ_FOREACH(mp, &mountlist, mnt_list) { if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { vfs_ref(mp); mtx_unlock(&mountlist_mtx); return (mp); } } mtx_unlock(&mountlist_mtx); CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); return ((struct mount *) 0); } /* * Lookup a mount point by filesystem identifier, busying it before * returning. * * To avoid congestion on mountlist_mtx, implement simple direct-mapped * cache for popular filesystem identifiers. The cache is lockess, using * the fact that struct mount's are never freed. In worst case we may * get pointer to unmounted or even different filesystem, so we have to * check what we got, and go slow way if so. */ struct mount * vfs_busyfs(fsid_t *fsid) { #define FSID_CACHE_SIZE 256 typedef struct mount * volatile vmp_t; static vmp_t cache[FSID_CACHE_SIZE]; struct mount *mp; int error; uint32_t hash; CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); hash = fsid->val[0] ^ fsid->val[1]; hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); mp = cache[hash]; if (mp == NULL || mp->mnt_stat.f_fsid.val[0] != fsid->val[0] || mp->mnt_stat.f_fsid.val[1] != fsid->val[1]) goto slow; if (vfs_busy(mp, 0) != 0) { cache[hash] = NULL; goto slow; } if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) return (mp); else vfs_unbusy(mp); slow: mtx_lock(&mountlist_mtx); TAILQ_FOREACH(mp, &mountlist, mnt_list) { if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { error = vfs_busy(mp, MBF_MNTLSTLOCK); if (error) { cache[hash] = NULL; mtx_unlock(&mountlist_mtx); return (NULL); } cache[hash] = mp; return (mp); } } CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); mtx_unlock(&mountlist_mtx); return ((struct mount *) 0); } /* * Check if a user can access privileged mount options. */ int vfs_suser(struct mount *mp, struct thread *td) { int error; if (jailed(td->td_ucred)) { /* * If the jail of the calling thread lacks permission for * this type of file system, deny immediately. */ if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) return (EPERM); /* * If the file system was mounted outside the jail of the * calling thread, deny immediately. */ if (prison_check(td->td_ucred, mp->mnt_cred) != 0) return (EPERM); } /* * If file system supports delegated administration, we don't check * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified * by the file system itself. * If this is not the user that did original mount, we check for * the PRIV_VFS_MOUNT_OWNER privilege. */ if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) return (error); } return (0); } /* * Get a new unique fsid. Try to make its val[0] unique, since this value * will be used to create fake device numbers for stat(). Also try (but * not so hard) make its val[0] unique mod 2^16, since some emulators only * support 16-bit device numbers. We end up with unique val[0]'s for the * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. * * Keep in mind that several mounts may be running in parallel. Starting * the search one past where the previous search terminated is both a * micro-optimization and a defense against returning the same fsid to * different mounts. */ void vfs_getnewfsid(struct mount *mp) { static uint16_t mntid_base; struct mount *nmp; fsid_t tfsid; int mtype; CTR2(KTR_VFS, "%s: mp %p", __func__, mp); mtx_lock(&mntid_mtx); mtype = mp->mnt_vfc->vfc_typenum; tfsid.val[1] = mtype; mtype = (mtype & 0xFF) << 24; for (;;) { tfsid.val[0] = makedev(255, mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); mntid_base++; if ((nmp = vfs_getvfs(&tfsid)) == NULL) break; vfs_rel(nmp); } mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; mtx_unlock(&mntid_mtx); } /* * Knob to control the precision of file timestamps: * * 0 = seconds only; nanoseconds zeroed. * 1 = seconds and nanoseconds, accurate within 1/HZ. * 2 = seconds and nanoseconds, truncated to microseconds. * >=3 = seconds and nanoseconds, maximum precision. */ enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; static int timestamp_precision = TSP_USEC; SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, ×tamp_precision, 0, "File timestamp precision (0: seconds, " "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " "3+: sec + ns (max. precision))"); /* * Get a current timestamp. */ void vfs_timestamp(struct timespec *tsp) { struct timeval tv; switch (timestamp_precision) { case TSP_SEC: tsp->tv_sec = time_second; tsp->tv_nsec = 0; break; case TSP_HZ: getnanotime(tsp); break; case TSP_USEC: microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, tsp); break; case TSP_NSEC: default: nanotime(tsp); break; } } /* * Set vnode attributes to VNOVAL */ void vattr_null(struct vattr *vap) { vap->va_type = VNON; vap->va_size = VNOVAL; vap->va_bytes = VNOVAL; vap->va_mode = VNOVAL; vap->va_nlink = VNOVAL; vap->va_uid = VNOVAL; vap->va_gid = VNOVAL; vap->va_fsid = VNOVAL; vap->va_fileid = VNOVAL; vap->va_blocksize = VNOVAL; vap->va_rdev = VNOVAL; vap->va_atime.tv_sec = VNOVAL; vap->va_atime.tv_nsec = VNOVAL; vap->va_mtime.tv_sec = VNOVAL; vap->va_mtime.tv_nsec = VNOVAL; vap->va_ctime.tv_sec = VNOVAL; vap->va_ctime.tv_nsec = VNOVAL; vap->va_birthtime.tv_sec = VNOVAL; vap->va_birthtime.tv_nsec = VNOVAL; vap->va_flags = VNOVAL; vap->va_gen = VNOVAL; vap->va_vaflags = 0; } /* * Try to reduce the total number of vnodes. * * This routine (and its user) are buggy in at least the following ways: * - all parameters were picked years ago when RAM sizes were significantly * smaller * - it can pick vnodes based on pages used by the vm object, but filesystems * like ZFS don't use it making the pick broken * - since ZFS has its own aging policy it gets partially combated by this one * - a dedicated method should be provided for filesystems to let them decide * whether the vnode should be recycled * * This routine is called when we have too many vnodes. It attempts * to free vnodes and will potentially free vnodes that still * have VM backing store (VM backing store is typically the cause * of a vnode blowout so we want to do this). Therefore, this operation * is not considered cheap. * * A number of conditions may prevent a vnode from being reclaimed. * the buffer cache may have references on the vnode, a directory * vnode may still have references due to the namei cache representing * underlying files, or the vnode may be in active use. It is not * desirable to reuse such vnodes. These conditions may cause the * number of vnodes to reach some minimum value regardless of what * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. * * @param reclaim_nc_src Only reclaim directories with outgoing namecache * entries if this argument is strue * @param trigger Only reclaim vnodes with fewer than this many resident * pages. * @param target How many vnodes to reclaim. * @return The number of vnodes that were reclaimed. */ static int vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) { struct vnode *vp, *mvp; struct mount *mp; u_long done; bool retried; mtx_assert(&vnode_list_mtx, MA_OWNED); retried = false; done = 0; mvp = vnode_list_reclaim_marker; restart: vp = mvp; while (done < target) { vp = TAILQ_NEXT(vp, v_vnodelist); if (__predict_false(vp == NULL)) break; if (__predict_false(vp->v_type == VMARKER)) continue; /* * If it's been deconstructed already, it's still * referenced, or it exceeds the trigger, skip it. * Also skip free vnodes. We are trying to make space * to expand the free list, not reduce it. */ if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) goto next_iter; if (vp->v_type == VBAD || vp->v_type == VNON) goto next_iter; if (!VI_TRYLOCK(vp)) goto next_iter; if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || vp->v_type == VBAD || vp->v_type == VNON || (vp->v_object != NULL && vp->v_object->resident_page_count > trigger)) { VI_UNLOCK(vp); goto next_iter; } vholdl(vp); VI_UNLOCK(vp); TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); mtx_unlock(&vnode_list_mtx); if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { vdrop(vp); goto next_iter_unlocked; } if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { vdrop(vp); vn_finished_write(mp); goto next_iter_unlocked; } VI_LOCK(vp); if (vp->v_usecount > 0 || (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || (vp->v_object != NULL && vp->v_object->resident_page_count > trigger)) { VOP_UNLOCK(vp); vdropl(vp); vn_finished_write(mp); goto next_iter_unlocked; } counter_u64_add(recycles_count, 1); vgonel(vp); VOP_UNLOCK(vp); vdropl(vp); vn_finished_write(mp); done++; next_iter_unlocked: if (should_yield()) kern_yield(PRI_USER); mtx_lock(&vnode_list_mtx); goto restart; next_iter: MPASS(vp->v_type != VMARKER); if (!should_yield()) continue; TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); mtx_unlock(&vnode_list_mtx); kern_yield(PRI_USER); mtx_lock(&vnode_list_mtx); goto restart; } if (done == 0 && !retried) { TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); retried = true; goto restart; } return (done); } static int max_vnlru_free = 10000; /* limit on vnode free requests per call */ SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free, 0, "limit on vnode free requests per call to the vnlru_free routine"); /* * Attempt to reduce the free list by the requested amount. */ static int vnlru_free_locked(int count, struct vfsops *mnt_op) { struct vnode *vp, *mvp; struct mount *mp; int ocount; mtx_assert(&vnode_list_mtx, MA_OWNED); if (count > max_vnlru_free) count = max_vnlru_free; ocount = count; mvp = vnode_list_free_marker; restart: vp = mvp; while (count > 0) { vp = TAILQ_NEXT(vp, v_vnodelist); if (__predict_false(vp == NULL)) { TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); break; } if (__predict_false(vp->v_type == VMARKER)) continue; /* * Don't recycle if our vnode is from different type * of mount point. Note that mp is type-safe, the * check does not reach unmapped address even if * vnode is reclaimed. * Don't recycle if we can't get the interlock without * blocking. */ if (vp->v_holdcnt > 0 || (mnt_op != NULL && (mp = vp->v_mount) != NULL && mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) { continue; } TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { VI_UNLOCK(vp); continue; } vholdl(vp); count--; mtx_unlock(&vnode_list_mtx); VI_UNLOCK(vp); vtryrecycle(vp); vdrop(vp); mtx_lock(&vnode_list_mtx); goto restart; } return (ocount - count); } void vnlru_free(int count, struct vfsops *mnt_op) { mtx_lock(&vnode_list_mtx); vnlru_free_locked(count, mnt_op); mtx_unlock(&vnode_list_mtx); } static void vnlru_recalc(void) { mtx_assert(&vnode_list_mtx, MA_OWNED); gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ vlowat = vhiwat / 2; } /* * Attempt to recycle vnodes in a context that is always safe to block. * Calling vlrurecycle() from the bowels of filesystem code has some * interesting deadlock problems. */ static struct proc *vnlruproc; static int vnlruproc_sig; /* * The main freevnodes counter is only updated when threads requeue their vnode * batches. CPUs are conditionally walked to compute a more accurate total. * * Limit how much of a slop are we willing to tolerate. Note: the actual value * at any given moment can still exceed slop, but it should not be by significant * margin in practice. */ #define VNLRU_FREEVNODES_SLOP 128 static u_long vnlru_read_freevnodes(void) { struct vdbatch *vd; long slop; int cpu; mtx_assert(&vnode_list_mtx, MA_OWNED); if (freevnodes > freevnodes_old) slop = freevnodes - freevnodes_old; else slop = freevnodes_old - freevnodes; if (slop < VNLRU_FREEVNODES_SLOP) return (freevnodes >= 0 ? freevnodes : 0); freevnodes_old = freevnodes; CPU_FOREACH(cpu) { vd = DPCPU_ID_PTR((cpu), vd); freevnodes_old += vd->freevnodes; } return (freevnodes_old >= 0 ? freevnodes_old : 0); } static bool vnlru_under(u_long rnumvnodes, u_long limit) { u_long rfreevnodes, space; if (__predict_false(rnumvnodes > desiredvnodes)) return (true); space = desiredvnodes - rnumvnodes; if (space < limit) { rfreevnodes = vnlru_read_freevnodes(); if (rfreevnodes > wantfreevnodes) space += rfreevnodes - wantfreevnodes; } return (space < limit); } static bool vnlru_under_unlocked(u_long rnumvnodes, u_long limit) { long rfreevnodes, space; if (__predict_false(rnumvnodes > desiredvnodes)) return (true); space = desiredvnodes - rnumvnodes; if (space < limit) { rfreevnodes = atomic_load_long(&freevnodes); if (rfreevnodes > wantfreevnodes) space += rfreevnodes - wantfreevnodes; } return (space < limit); } static void vnlru_kick(void) { mtx_assert(&vnode_list_mtx, MA_OWNED); if (vnlruproc_sig == 0) { vnlruproc_sig = 1; wakeup(vnlruproc); } } static void vnlru_proc(void) { u_long rnumvnodes, rfreevnodes, target; unsigned long onumvnodes; int done, force, trigger, usevnodes; bool reclaim_nc_src, want_reread; EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, SHUTDOWN_PRI_FIRST); force = 0; want_reread = false; for (;;) { kproc_suspend_check(vnlruproc); mtx_lock(&vnode_list_mtx); rnumvnodes = atomic_load_long(&numvnodes); if (want_reread) { force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; want_reread = false; } /* * If numvnodes is too large (due to desiredvnodes being * adjusted using its sysctl, or emergency growth), first * try to reduce it by discarding from the free list. */ if (rnumvnodes > desiredvnodes) { vnlru_free_locked(rnumvnodes - desiredvnodes, NULL); rnumvnodes = atomic_load_long(&numvnodes); } /* * Sleep if the vnode cache is in a good state. This is * when it is not over-full and has space for about a 4% * or 9% expansion (by growing its size or inexcessively * reducing its free list). Otherwise, try to reclaim * space for a 10% expansion. */ if (vstir && force == 0) { force = 1; vstir = 0; } if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { vnlruproc_sig = 0; wakeup(&vnlruproc_sig); msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz); continue; } rfreevnodes = vnlru_read_freevnodes(); onumvnodes = rnumvnodes; /* * Calculate parameters for recycling. These are the same * throughout the loop to give some semblance of fairness. * The trigger point is to avoid recycling vnodes with lots * of resident pages. We aren't trying to free memory; we * are trying to recycle or at least free vnodes. */ if (rnumvnodes <= desiredvnodes) usevnodes = rnumvnodes - rfreevnodes; else usevnodes = rnumvnodes; if (usevnodes <= 0) usevnodes = 1; /* * The trigger value is is chosen to give a conservatively * large value to ensure that it alone doesn't prevent * making progress. The value can easily be so large that * it is effectively infinite in some congested and * misconfigured cases, and this is necessary. Normally * it is about 8 to 100 (pages), which is quite large. */ trigger = vm_cnt.v_page_count * 2 / usevnodes; if (force < 2) trigger = vsmalltrigger; reclaim_nc_src = force >= 3; target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); target = target / 10 + 1; done = vlrureclaim(reclaim_nc_src, trigger, target); mtx_unlock(&vnode_list_mtx); if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes) uma_reclaim(UMA_RECLAIM_DRAIN); if (done == 0) { if (force == 0 || force == 1) { force = 2; continue; } if (force == 2) { force = 3; continue; } want_reread = true; force = 0; vnlru_nowhere++; tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); } else { want_reread = true; kern_yield(PRI_USER); } } } static struct kproc_desc vnlru_kp = { "vnlru", vnlru_proc, &vnlruproc }; SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp); /* * Routines having to do with the management of the vnode table. */ /* * Try to recycle a freed vnode. We abort if anyone picks up a reference * before we actually vgone(). This function must be called with the vnode * held to prevent the vnode from being returned to the free list midway * through vgone(). */ static int vtryrecycle(struct vnode *vp) { struct mount *vnmp; CTR2(KTR_VFS, "%s: vp %p", __func__, vp); VNASSERT(vp->v_holdcnt, vp, ("vtryrecycle: Recycling vp %p without a reference.", vp)); /* * This vnode may found and locked via some other list, if so we * can't recycle it yet. */ if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { CTR2(KTR_VFS, "%s: impossible to recycle, vp %p lock is already held", __func__, vp); return (EWOULDBLOCK); } /* * Don't recycle if its filesystem is being suspended. */ if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { VOP_UNLOCK(vp); CTR2(KTR_VFS, "%s: impossible to recycle, cannot start the write for %p", __func__, vp); return (EBUSY); } /* * If we got this far, we need to acquire the interlock and see if * anyone picked up this vnode from another list. If not, we will * mark it with DOOMED via vgonel() so that anyone who does find it * will skip over it. */ VI_LOCK(vp); if (vp->v_usecount) { VOP_UNLOCK(vp); VI_UNLOCK(vp); vn_finished_write(vnmp); CTR2(KTR_VFS, "%s: impossible to recycle, %p is already referenced", __func__, vp); return (EBUSY); } if (!VN_IS_DOOMED(vp)) { counter_u64_add(recycles_free_count, 1); vgonel(vp); } VOP_UNLOCK(vp); VI_UNLOCK(vp); vn_finished_write(vnmp); return (0); } /* * Allocate a new vnode. * * The operation never returns an error. Returning an error was disabled * in r145385 (dated 2005) with the following comment: * * XXX Not all VFS_VGET/ffs_vget callers check returns. * * Given the age of this commit (almost 15 years at the time of writing this * comment) restoring the ability to fail requires a significant audit of * all codepaths. * * The routine can try to free a vnode or stall for up to 1 second waiting for * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. */ static u_long vn_alloc_cyclecount; static struct vnode * __noinline vn_alloc_hard(struct mount *mp) { u_long rnumvnodes, rfreevnodes; mtx_lock(&vnode_list_mtx); rnumvnodes = atomic_load_long(&numvnodes); if (rnumvnodes + 1 < desiredvnodes) { vn_alloc_cyclecount = 0; goto alloc; } rfreevnodes = vnlru_read_freevnodes(); if (vn_alloc_cyclecount++ >= rfreevnodes) { vn_alloc_cyclecount = 0; vstir = 1; } /* * Grow the vnode cache if it will not be above its target max * after growing. Otherwise, if the free list is nonempty, try * to reclaim 1 item from it before growing the cache (possibly * above its target max if the reclamation failed or is delayed). * Otherwise, wait for some space. In all cases, schedule * vnlru_proc() if we are getting short of space. The watermarks * should be chosen so that we never wait or even reclaim from * the free list to below its target minimum. */ if (vnlru_free_locked(1, NULL) > 0) goto alloc; if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { /* * Wait for space for a new vnode. */ vnlru_kick(); msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && vnlru_read_freevnodes() > 1) vnlru_free_locked(1, NULL); } alloc: rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; if (vnlru_under(rnumvnodes, vlowat)) vnlru_kick(); mtx_unlock(&vnode_list_mtx); return (uma_zalloc(vnode_zone, M_WAITOK)); } static struct vnode * vn_alloc(struct mount *mp) { u_long rnumvnodes; if (__predict_false(vn_alloc_cyclecount != 0)) return (vn_alloc_hard(mp)); rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) { atomic_subtract_long(&numvnodes, 1); return (vn_alloc_hard(mp)); } return (uma_zalloc(vnode_zone, M_WAITOK)); } static void vn_free(struct vnode *vp) { atomic_subtract_long(&numvnodes, 1); uma_zfree(vnode_zone, vp); } /* * Return the next vnode from the free list. */ int getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, struct vnode **vpp) { struct vnode *vp; struct thread *td; struct lock_object *lo; CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); KASSERT(vops->registered, ("%s: not registered vector op %p\n", __func__, vops)); td = curthread; if (td->td_vp_reserved != NULL) { vp = td->td_vp_reserved; td->td_vp_reserved = NULL; } else { vp = vn_alloc(mp); } counter_u64_add(vnodes_created, 1); /* * Locks are given the generic name "vnode" when created. * Follow the historic practice of using the filesystem * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. * * Locks live in a witness group keyed on their name. Thus, * when a lock is renamed, it must also move from the witness * group of its old name to the witness group of its new name. * * The change only needs to be made when the vnode moves * from one filesystem type to another. We ensure that each * filesystem use a single static name pointer for its tag so * that we can compare pointers rather than doing a strcmp(). */ lo = &vp->v_vnlock->lock_object; #ifdef WITNESS if (lo->lo_name != tag) { #endif lo->lo_name = tag; #ifdef WITNESS WITNESS_DESTROY(lo); WITNESS_INIT(lo, tag); } #endif /* * By default, don't allow shared locks unless filesystems opt-in. */ vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; /* * Finalize various vnode identity bits. */ KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); vp->v_type = VNON; vp->v_op = vops; v_init_counters(vp); vp->v_bufobj.bo_ops = &buf_ops_bio; #ifdef DIAGNOSTIC if (mp == NULL && vops != &dead_vnodeops) printf("NULL mp in getnewvnode(9), tag %s\n", tag); #endif #ifdef MAC mac_vnode_init(vp); if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) mac_vnode_associate_singlelabel(mp, vp); #endif if (mp != NULL) { vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) vp->v_vflag |= VV_NOKNOTE; } /* * For the filesystems which do not use vfs_hash_insert(), * still initialize v_hash to have vfs_hash_index() useful. * E.g., nullfs uses vfs_hash_index() on the lower vnode for * its own hashing. */ vp->v_hash = (uintptr_t)vp >> vnsz2log; *vpp = vp; return (0); } void getnewvnode_reserve(void) { struct thread *td; td = curthread; MPASS(td->td_vp_reserved == NULL); td->td_vp_reserved = vn_alloc(NULL); } void getnewvnode_drop_reserve(void) { struct thread *td; td = curthread; if (td->td_vp_reserved != NULL) { vn_free(td->td_vp_reserved); td->td_vp_reserved = NULL; } } static void freevnode(struct vnode *vp) { struct bufobj *bo; /* * The vnode has been marked for destruction, so free it. * * The vnode will be returned to the zone where it will * normally remain until it is needed for another vnode. We * need to cleanup (or verify that the cleanup has already * been done) any residual data left from its current use * so as not to contaminate the freshly allocated vnode. */ CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); bo = &vp->v_bufobj; VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count")); VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, ("clean blk trie not empty")); VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, ("dirty blk trie not empty")); VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp, ("Dangling rangelock waiters")); VI_UNLOCK(vp); #ifdef MAC mac_vnode_destroy(vp); #endif if (vp->v_pollinfo != NULL) { destroy_vpollinfo(vp->v_pollinfo); vp->v_pollinfo = NULL; } #ifdef INVARIANTS /* XXX Elsewhere we detect an already freed vnode via NULL v_op. */ vp->v_op = NULL; #endif vp->v_mountedhere = NULL; vp->v_unpcb = NULL; vp->v_rdev = NULL; vp->v_fifoinfo = NULL; vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; vp->v_irflag = 0; vp->v_iflag = 0; vp->v_vflag = 0; bo->bo_flag = 0; vn_free(vp); } /* * Delete from old mount point vnode list, if on one. */ static void delmntque(struct vnode *vp) { struct mount *mp; VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); mp = vp->v_mount; if (mp == NULL) return; MNT_ILOCK(mp); VI_LOCK(vp); vp->v_mount = NULL; VI_UNLOCK(vp); VNASSERT(mp->mnt_nvnodelistsize > 0, vp, ("bad mount point vnode list size")); TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); mp->mnt_nvnodelistsize--; MNT_REL(mp); MNT_IUNLOCK(mp); } static void insmntque_stddtr(struct vnode *vp, void *dtr_arg) { vp->v_data = NULL; vp->v_op = &dead_vnodeops; vgone(vp); vput(vp); } /* * Insert into list of vnodes for the new mount point, if available. */ int insmntque1(struct vnode *vp, struct mount *mp, void (*dtr)(struct vnode *, void *), void *dtr_arg) { KASSERT(vp->v_mount == NULL, ("insmntque: vnode already on per mount vnode list")); VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); /* * We acquire the vnode interlock early to ensure that the * vnode cannot be recycled by another process releasing a * holdcnt on it before we get it on both the vnode list * and the active vnode list. The mount mutex protects only * manipulation of the vnode list and the vnode freelist * mutex protects only manipulation of the active vnode list. * Hence the need to hold the vnode interlock throughout. */ MNT_ILOCK(mp); VI_LOCK(vp); if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || mp->mnt_nvnodelistsize == 0)) && (vp->v_vflag & VV_FORCEINSMQ) == 0) { VI_UNLOCK(vp); MNT_IUNLOCK(mp); if (dtr != NULL) dtr(vp, dtr_arg); return (EBUSY); } vp->v_mount = mp; MNT_REF(mp); TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, ("neg mount point vnode list size")); mp->mnt_nvnodelistsize++; VI_UNLOCK(vp); MNT_IUNLOCK(mp); return (0); } int insmntque(struct vnode *vp, struct mount *mp) { return (insmntque1(vp, mp, insmntque_stddtr, NULL)); } /* * Flush out and invalidate all buffers associated with a bufobj * Called with the underlying object locked. */ int bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) { int error; BO_LOCK(bo); if (flags & V_SAVE) { error = bufobj_wwait(bo, slpflag, slptimeo); if (error) { BO_UNLOCK(bo); return (error); } if (bo->bo_dirty.bv_cnt > 0) { BO_UNLOCK(bo); if ((error = BO_SYNC(bo, MNT_WAIT)) != 0) return (error); /* * XXX We could save a lock/unlock if this was only * enabled under INVARIANTS */ BO_LOCK(bo); if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) panic("vinvalbuf: dirty bufs"); } } /* * If you alter this loop please notice that interlock is dropped and * reacquired in flushbuflist. Special care is needed to ensure that * no race conditions occur from this. */ do { error = flushbuflist(&bo->bo_clean, flags, bo, slpflag, slptimeo); if (error == 0 && !(flags & V_CLEANONLY)) error = flushbuflist(&bo->bo_dirty, flags, bo, slpflag, slptimeo); if (error != 0 && error != EAGAIN) { BO_UNLOCK(bo); return (error); } } while (error != 0); /* * Wait for I/O to complete. XXX needs cleaning up. The vnode can * have write I/O in-progress but if there is a VM object then the * VM object can also have read-I/O in-progress. */ do { bufobj_wwait(bo, 0, 0); if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { BO_UNLOCK(bo); vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); BO_LOCK(bo); } } while (bo->bo_numoutput > 0); BO_UNLOCK(bo); /* * Destroy the copy in the VM cache, too. */ if (bo->bo_object != NULL && (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { VM_OBJECT_WLOCK(bo->bo_object); vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? OBJPR_CLEANONLY : 0); VM_OBJECT_WUNLOCK(bo->bo_object); } #ifdef INVARIANTS BO_LOCK(bo); if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) panic("vinvalbuf: flush failed"); if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && bo->bo_dirty.bv_cnt > 0) panic("vinvalbuf: flush dirty failed"); BO_UNLOCK(bo); #endif return (0); } /* * Flush out and invalidate all buffers associated with a vnode. * Called with the underlying object locked. */ int vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) { CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); ASSERT_VOP_LOCKED(vp, "vinvalbuf"); if (vp->v_object != NULL && vp->v_object->handle != vp) return (0); return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); } /* * Flush out buffers on the specified list. * */ static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, int slptimeo) { struct buf *bp, *nbp; int retval, error; daddr_t lblkno; b_xflags_t xflags; ASSERT_BO_WLOCKED(bo); retval = 0; TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { /* * If we are flushing both V_NORMAL and V_ALT buffers then * do not skip any buffers. If we are flushing only V_NORMAL * buffers then skip buffers marked as BX_ALTDATA. If we are * flushing only V_ALT buffers then skip buffers not marked * as BX_ALTDATA. */ if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { continue; } if (nbp != NULL) { lblkno = nbp->b_lblkno; xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); } retval = EAGAIN; error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), "flushbuf", slpflag, slptimeo); if (error) { BO_LOCK(bo); return (error != ENOLCK ? error : EAGAIN); } KASSERT(bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); /* * XXX Since there are no node locks for NFS, I * believe there is a slight chance that a delayed * write will occur while sleeping just above, so * check for it. */ if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && (flags & V_SAVE)) { bremfree(bp); bp->b_flags |= B_ASYNC; bwrite(bp); BO_LOCK(bo); return (EAGAIN); /* XXX: why not loop ? */ } bremfree(bp); bp->b_flags |= (B_INVAL | B_RELBUF); bp->b_flags &= ~B_ASYNC; brelse(bp); BO_LOCK(bo); if (nbp == NULL) break; nbp = gbincore(bo, lblkno); if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) != xflags) break; /* nbp invalid */ } return (retval); } int bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) { struct buf *bp; int error; daddr_t lblkno; ASSERT_BO_LOCKED(bo); for (lblkno = startn;;) { again: bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno); if (bp == NULL || bp->b_lblkno >= endn || bp->b_lblkno < startn) break; error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); if (error != 0) { BO_RLOCK(bo); if (error == ENOLCK) goto again; return (error); } KASSERT(bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); lblkno = bp->b_lblkno + 1; if ((bp->b_flags & B_MANAGED) == 0) bremfree(bp); bp->b_flags |= B_RELBUF; /* * In the VMIO case, use the B_NOREUSE flag to hint that the * pages backing each buffer in the range are unlikely to be * reused. Dirty buffers will have the hint applied once * they've been written. */ if ((bp->b_flags & B_VMIO) != 0) bp->b_flags |= B_NOREUSE; brelse(bp); BO_RLOCK(bo); } return (0); } /* * Truncate a file's buffer and pages to a specified length. This * is in lieu of the old vinvalbuf mechanism, which performed unneeded * sync activity. */ int vtruncbuf(struct vnode *vp, off_t length, int blksize) { struct buf *bp, *nbp; struct bufobj *bo; daddr_t startlbn; CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, vp, blksize, (uintmax_t)length); /* * Round up to the *next* lbn. */ startlbn = howmany(length, blksize); ASSERT_VOP_LOCKED(vp, "vtruncbuf"); bo = &vp->v_bufobj; restart_unlocked: BO_LOCK(bo); while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) ; if (length > 0) { restartsync: TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (bp->b_lblkno > 0) continue; /* * Since we hold the vnode lock this should only * fail if we're racing with the buf daemon. */ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)) == ENOLCK) goto restart_unlocked; VNASSERT((bp->b_flags & B_DELWRI), vp, ("buf(%p) on dirty queue without DELWRI", bp)); bremfree(bp); bawrite(bp); BO_LOCK(bo); goto restartsync; } } bufobj_wwait(bo, 0, 0); BO_UNLOCK(bo); vnode_pager_setsize(vp, length); return (0); } /* * Invalidate the cached pages of a file's buffer within the range of block * numbers [startlbn, endlbn). */ void v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, int blksize) { struct bufobj *bo; off_t start, end; ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); start = blksize * startlbn; end = blksize * endlbn; bo = &vp->v_bufobj; BO_LOCK(bo); MPASS(blksize == bo->bo_bsize); while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) ; BO_UNLOCK(bo); vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); } static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, daddr_t startlbn, daddr_t endlbn) { struct buf *bp, *nbp; bool anyfreed; ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); ASSERT_BO_LOCKED(bo); do { anyfreed = false; TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) continue; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)) == ENOLCK) { BO_LOCK(bo); return (EAGAIN); } bremfree(bp); bp->b_flags |= B_INVAL | B_RELBUF; bp->b_flags &= ~B_ASYNC; brelse(bp); anyfreed = true; BO_LOCK(bo); if (nbp != NULL && (((nbp->b_xflags & BX_VNCLEAN) == 0) || nbp->b_vp != vp || (nbp->b_flags & B_DELWRI) != 0)) return (EAGAIN); } TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) continue; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)) == ENOLCK) { BO_LOCK(bo); return (EAGAIN); } bremfree(bp); bp->b_flags |= B_INVAL | B_RELBUF; bp->b_flags &= ~B_ASYNC; brelse(bp); anyfreed = true; BO_LOCK(bo); if (nbp != NULL && (((nbp->b_xflags & BX_VNDIRTY) == 0) || (nbp->b_vp != vp) || (nbp->b_flags & B_DELWRI) == 0)) return (EAGAIN); } } while (anyfreed); return (0); } static void buf_vlist_remove(struct buf *bp) { struct bufv *bv; KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); ASSERT_BO_WLOCKED(bp->b_bufobj); KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) != (BX_VNDIRTY|BX_VNCLEAN), ("buf_vlist_remove: Buf %p is on two lists", bp)); if (bp->b_xflags & BX_VNDIRTY) bv = &bp->b_bufobj->bo_dirty; else bv = &bp->b_bufobj->bo_clean; BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); bv->bv_cnt--; bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); } /* * Add the buffer to the sorted clean or dirty block list. * * NOTE: xflags is passed as a constant, optimizing this inline function! */ static void buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) { struct bufv *bv; struct buf *n; int error; ASSERT_BO_WLOCKED(bo); KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, ("dead bo %p", bo)); KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); bp->b_xflags |= xflags; if (xflags & BX_VNDIRTY) bv = &bo->bo_dirty; else bv = &bo->bo_clean; /* * Keep the list ordered. Optimize empty list insertion. Assume * we tend to grow at the tail so lookup_le should usually be cheaper * than _ge. */ if (bv->bv_cnt == 0 || bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); else TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); if (error) panic("buf_vlist_add: Preallocated nodes insufficient."); bv->bv_cnt++; } /* * Look up a buffer using the buffer tries. */ struct buf * gbincore(struct bufobj *bo, daddr_t lblkno) { struct buf *bp; ASSERT_BO_LOCKED(bo); bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); if (bp != NULL) return (bp); return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno); } /* * Associate a buffer with a vnode. */ void bgetvp(struct vnode *vp, struct buf *bp) { struct bufobj *bo; bo = &vp->v_bufobj; ASSERT_BO_WLOCKED(bo); VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, ("bgetvp: bp already attached! %p", bp)); vhold(vp); bp->b_vp = vp; bp->b_bufobj = bo; /* * Insert onto list for new vnode. */ buf_vlist_add(bp, bo, BX_VNCLEAN); } /* * Disassociate a buffer from a vnode. */ void brelvp(struct buf *bp) { struct bufobj *bo; struct vnode *vp; CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); /* * Delete from old vnode list, if on one. */ vp = bp->b_vp; /* XXX */ bo = bp->b_bufobj; BO_LOCK(bo); if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) buf_vlist_remove(bp); else panic("brelvp: Buffer %p not on queue.", bp); if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { bo->bo_flag &= ~BO_ONWORKLST; mtx_lock(&sync_mtx); LIST_REMOVE(bo, bo_synclist); syncer_worklist_len--; mtx_unlock(&sync_mtx); } bp->b_vp = NULL; bp->b_bufobj = NULL; BO_UNLOCK(bo); vdrop(vp); } /* * Add an item to the syncer work queue. */ static void vn_syncer_add_to_worklist(struct bufobj *bo, int delay) { int slot; ASSERT_BO_WLOCKED(bo); mtx_lock(&sync_mtx); if (bo->bo_flag & BO_ONWORKLST) LIST_REMOVE(bo, bo_synclist); else { bo->bo_flag |= BO_ONWORKLST; syncer_worklist_len++; } if (delay > syncer_maxdelay - 2) delay = syncer_maxdelay - 2; slot = (syncer_delayno + delay) & syncer_mask; LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); mtx_unlock(&sync_mtx); } static int sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) { int error, len; mtx_lock(&sync_mtx); len = syncer_worklist_len - sync_vnode_count; mtx_unlock(&sync_mtx); error = SYSCTL_OUT(req, &len, sizeof(len)); return (error); } SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); static struct proc *updateproc; static void sched_sync(void); static struct kproc_desc up_kp = { "syncer", sched_sync, &updateproc }; SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); static int sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) { struct vnode *vp; struct mount *mp; *bo = LIST_FIRST(slp); if (*bo == NULL) return (0); vp = bo2vnode(*bo); if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) return (1); /* * We use vhold in case the vnode does not * successfully sync. vhold prevents the vnode from * going away when we unlock the sync_mtx so that * we can acquire the vnode interlock. */ vholdl(vp); mtx_unlock(&sync_mtx); VI_UNLOCK(vp); if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { vdrop(vp); mtx_lock(&sync_mtx); return (*bo == LIST_FIRST(slp)); } vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); (void) VOP_FSYNC(vp, MNT_LAZY, td); VOP_UNLOCK(vp); vn_finished_write(mp); BO_LOCK(*bo); if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { /* * Put us back on the worklist. The worklist * routine will remove us from our current * position and then add us back in at a later * position. */ vn_syncer_add_to_worklist(*bo, syncdelay); } BO_UNLOCK(*bo); vdrop(vp); mtx_lock(&sync_mtx); return (0); } static int first_printf = 1; /* * System filesystem synchronizer daemon. */ static void sched_sync(void) { struct synclist *next, *slp; struct bufobj *bo; long starttime; struct thread *td = curthread; int last_work_seen; int net_worklist_len; int syncer_final_iter; int error; last_work_seen = 0; syncer_final_iter = 0; syncer_state = SYNCER_RUNNING; starttime = time_uptime; td->td_pflags |= TDP_NORUNNINGBUF; EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, SHUTDOWN_PRI_LAST); mtx_lock(&sync_mtx); for (;;) { if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter == 0) { mtx_unlock(&sync_mtx); kproc_suspend_check(td->td_proc); mtx_lock(&sync_mtx); } net_worklist_len = syncer_worklist_len - sync_vnode_count; if (syncer_state != SYNCER_RUNNING && starttime != time_uptime) { if (first_printf) { printf("\nSyncing disks, vnodes remaining... "); first_printf = 0; } printf("%d ", net_worklist_len); } starttime = time_uptime; /* * Push files whose dirty time has expired. Be careful * of interrupt race on slp queue. * * Skip over empty worklist slots when shutting down. */ do { slp = &syncer_workitem_pending[syncer_delayno]; syncer_delayno += 1; if (syncer_delayno == syncer_maxdelay) syncer_delayno = 0; next = &syncer_workitem_pending[syncer_delayno]; /* * If the worklist has wrapped since the * it was emptied of all but syncer vnodes, * switch to the FINAL_DELAY state and run * for one more second. */ if (syncer_state == SYNCER_SHUTTING_DOWN && net_worklist_len == 0 && last_work_seen == syncer_delayno) { syncer_state = SYNCER_FINAL_DELAY; syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; } } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && syncer_worklist_len > 0); /* * Keep track of the last time there was anything * on the worklist other than syncer vnodes. * Return to the SHUTTING_DOWN state if any * new work appears. */ if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) last_work_seen = syncer_delayno; if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) syncer_state = SYNCER_SHUTTING_DOWN; while (!LIST_EMPTY(slp)) { error = sync_vnode(slp, &bo, td); if (error == 1) { LIST_REMOVE(bo, bo_synclist); LIST_INSERT_HEAD(next, bo, bo_synclist); continue; } if (first_printf == 0) { /* * Drop the sync mutex, because some watchdog * drivers need to sleep while patting */ mtx_unlock(&sync_mtx); wdog_kern_pat(WD_LASTVAL); mtx_lock(&sync_mtx); } } if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) syncer_final_iter--; /* * The variable rushjob allows the kernel to speed up the * processing of the filesystem syncer process. A rushjob * value of N tells the filesystem syncer to process the next * N seconds worth of work on its queue ASAP. Currently rushjob * is used by the soft update code to speed up the filesystem * syncer process when the incore state is getting so far * ahead of the disk that the kernel memory pool is being * threatened with exhaustion. */ if (rushjob > 0) { rushjob -= 1; continue; } /* * Just sleep for a short period of time between * iterations when shutting down to allow some I/O * to happen. * * If it has taken us less than a second to process the * current work, then wait. Otherwise start right over * again. We can still lose time if any single round * takes more than two seconds, but it does not really * matter as we are just trying to generally pace the * filesystem activity. */ if (syncer_state != SYNCER_RUNNING || time_uptime == starttime) { thread_lock(td); sched_prio(td, PPAUSE); thread_unlock(td); } if (syncer_state != SYNCER_RUNNING) cv_timedwait(&sync_wakeup, &sync_mtx, hz / SYNCER_SHUTDOWN_SPEEDUP); else if (time_uptime == starttime) cv_timedwait(&sync_wakeup, &sync_mtx, hz); } } /* * Request the syncer daemon to speed up its work. * We never push it to speed up more than half of its * normal turn time, otherwise it could take over the cpu. */ int speedup_syncer(void) { int ret = 0; mtx_lock(&sync_mtx); if (rushjob < syncdelay / 2) { rushjob += 1; stat_rush_requests += 1; ret = 1; } mtx_unlock(&sync_mtx); cv_broadcast(&sync_wakeup); return (ret); } /* * Tell the syncer to speed up its work and run though its work * list several times, then tell it to shut down. */ static void syncer_shutdown(void *arg, int howto) { if (howto & RB_NOSYNC) return; mtx_lock(&sync_mtx); syncer_state = SYNCER_SHUTTING_DOWN; rushjob = 0; mtx_unlock(&sync_mtx); cv_broadcast(&sync_wakeup); kproc_shutdown(arg, howto); } void syncer_suspend(void) { syncer_shutdown(updateproc, 0); } void syncer_resume(void) { mtx_lock(&sync_mtx); first_printf = 1; syncer_state = SYNCER_RUNNING; mtx_unlock(&sync_mtx); cv_broadcast(&sync_wakeup); kproc_resume(updateproc); } /* * Reassign a buffer from one vnode to another. * Used to assign file specific control information * (indirect blocks) to the vnode to which they belong. */ void reassignbuf(struct buf *bp) { struct vnode *vp; struct bufobj *bo; int delay; #ifdef INVARIANTS struct bufv *bv; #endif vp = bp->b_vp; bo = bp->b_bufobj; ++reassignbufcalls; CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); /* * B_PAGING flagged buffers cannot be reassigned because their vp * is not fully linked in. */ if (bp->b_flags & B_PAGING) panic("cannot reassign paging buffer"); /* * Delete from old vnode list, if on one. */ BO_LOCK(bo); if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) buf_vlist_remove(bp); else panic("reassignbuf: Buffer %p not on queue.", bp); /* * If dirty, put on list of dirty buffers; otherwise insert onto list * of clean buffers. */ if (bp->b_flags & B_DELWRI) { if ((bo->bo_flag & BO_ONWORKLST) == 0) { switch (vp->v_type) { case VDIR: delay = dirdelay; break; case VCHR: delay = metadelay; break; default: delay = filedelay; } vn_syncer_add_to_worklist(bo, delay); } buf_vlist_add(bp, bo, BX_VNDIRTY); } else { buf_vlist_add(bp, bo, BX_VNCLEAN); if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { mtx_lock(&sync_mtx); LIST_REMOVE(bo, bo_synclist); syncer_worklist_len--; mtx_unlock(&sync_mtx); bo->bo_flag &= ~BO_ONWORKLST; } } #ifdef INVARIANTS bv = &bo->bo_clean; bp = TAILQ_FIRST(&bv->bv_hd); KASSERT(bp == NULL || bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); bp = TAILQ_LAST(&bv->bv_hd, buflists); KASSERT(bp == NULL || bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); bv = &bo->bo_dirty; bp = TAILQ_FIRST(&bv->bv_hd); KASSERT(bp == NULL || bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); bp = TAILQ_LAST(&bv->bv_hd, buflists); KASSERT(bp == NULL || bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); #endif BO_UNLOCK(bo); } static void v_init_counters(struct vnode *vp) { VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, vp, ("%s called for an initialized vnode", __FUNCTION__)); ASSERT_VI_UNLOCKED(vp, __FUNCTION__); refcount_init(&vp->v_holdcnt, 1); refcount_init(&vp->v_usecount, 1); } /* * Increment si_usecount of the associated device, if any. */ static void v_incr_devcount(struct vnode *vp) { ASSERT_VI_LOCKED(vp, __FUNCTION__); if (vp->v_type == VCHR && vp->v_rdev != NULL) { dev_lock(); vp->v_rdev->si_usecount++; dev_unlock(); } } /* * Decrement si_usecount of the associated device, if any. */ static void v_decr_devcount(struct vnode *vp) { ASSERT_VI_LOCKED(vp, __FUNCTION__); if (vp->v_type == VCHR && vp->v_rdev != NULL) { dev_lock(); vp->v_rdev->si_usecount--; dev_unlock(); } } /* * Grab a particular vnode from the free list, increment its * reference count and lock it. VIRF_DOOMED is set if the vnode * is being destroyed. Only callers who specify LK_RETRY will * see doomed vnodes. If inactive processing was delayed in * vput try to do it here. * * usecount is manipulated using atomics without holding any locks. * * holdcnt can be manipulated using atomics without holding any locks, * except when transitioning 1<->0, in which case the interlock is held. */ enum vgetstate vget_prep(struct vnode *vp) { enum vgetstate vs; if (refcount_acquire_if_not_zero(&vp->v_usecount)) { vs = VGET_USECOUNT; } else { vhold(vp); vs = VGET_HOLDCNT; } return (vs); } int vget(struct vnode *vp, int flags, struct thread *td) { enum vgetstate vs; MPASS(td == curthread); vs = vget_prep(vp); return (vget_finish(vp, flags, vs)); } static int __noinline vget_finish_vchr(struct vnode *vp) { VNASSERT(vp->v_type == VCHR, vp, ("type != VCHR)")); /* * See the comment in vget_finish before usecount bump. */ if (refcount_acquire_if_not_zero(&vp->v_usecount)) { #ifdef INVARIANTS int old = atomic_fetchadd_int(&vp->v_holdcnt, -1); VNASSERT(old > 0, vp, ("%s: wrong hold count %d", __func__, old)); #else refcount_release(&vp->v_holdcnt); #endif return (0); } VI_LOCK(vp); if (refcount_acquire_if_not_zero(&vp->v_usecount)) { #ifdef INVARIANTS int old = atomic_fetchadd_int(&vp->v_holdcnt, -1); VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); #else refcount_release(&vp->v_holdcnt); #endif VI_UNLOCK(vp); return (0); } v_incr_devcount(vp); refcount_acquire(&vp->v_usecount); VI_UNLOCK(vp); return (0); } int vget_finish(struct vnode *vp, int flags, enum vgetstate vs) { int error, old; VNASSERT((flags & LK_TYPE_MASK) != 0, vp, ("%s: invalid lock operation", __func__)); if ((flags & LK_INTERLOCK) != 0) ASSERT_VI_LOCKED(vp, __func__); else ASSERT_VI_UNLOCKED(vp, __func__); VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); if (vs == VGET_USECOUNT) { VNASSERT(vp->v_usecount > 0, vp, ("%s: vnode without usecount when VGET_USECOUNT was passed", __func__)); } error = vn_lock(vp, flags); if (__predict_false(error != 0)) { if (vs == VGET_USECOUNT) vrele(vp); else vdrop(vp); CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, vp); return (error); } if (vs == VGET_USECOUNT) { return (0); } if (__predict_false(vp->v_type == VCHR)) return (vget_finish_vchr(vp)); /* * We hold the vnode. If the usecount is 0 it will be utilized to keep * the vnode around. Otherwise someone else lended their hold count and * we have to drop ours. */ old = atomic_fetchadd_int(&vp->v_usecount, 1); VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); if (old != 0) { #ifdef INVARIANTS old = atomic_fetchadd_int(&vp->v_holdcnt, -1); VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); #else refcount_release(&vp->v_holdcnt); #endif } return (0); } /* * Increase the reference (use) and hold count of a vnode. * This will also remove the vnode from the free list if it is presently free. */ static void __noinline vref_vchr(struct vnode *vp, bool interlock) { /* * See the comment in vget_finish before usecount bump. */ if (!interlock) { if (refcount_acquire_if_not_zero(&vp->v_usecount)) { VNODE_REFCOUNT_FENCE_ACQ(); VNASSERT(vp->v_holdcnt > 0, vp, ("%s: active vnode not held", __func__)); return; } VI_LOCK(vp); /* * By the time we get here the vnode might have been doomed, at * which point the 0->1 use count transition is no longer * protected by the interlock. Since it can't bounce back to * VCHR and requires vref semantics, punt it back */ if (__predict_false(vp->v_type == VBAD)) { VI_UNLOCK(vp); vref(vp); return; } } VNASSERT(vp->v_type == VCHR, vp, ("type != VCHR)")); if (refcount_acquire_if_not_zero(&vp->v_usecount)) { VNODE_REFCOUNT_FENCE_ACQ(); VNASSERT(vp->v_holdcnt > 0, vp, ("%s: active vnode not held", __func__)); if (!interlock) VI_UNLOCK(vp); return; } vhold(vp); v_incr_devcount(vp); refcount_acquire(&vp->v_usecount); if (!interlock) VI_UNLOCK(vp); return; } void vref(struct vnode *vp) { int old; CTR2(KTR_VFS, "%s: vp %p", __func__, vp); if (__predict_false(vp->v_type == VCHR)) { vref_vchr(vp, false); return; } if (refcount_acquire_if_not_zero(&vp->v_usecount)) { VNODE_REFCOUNT_FENCE_ACQ(); VNASSERT(vp->v_holdcnt > 0, vp, ("%s: active vnode not held", __func__)); return; } vhold(vp); /* * See the comment in vget_finish. */ old = atomic_fetchadd_int(&vp->v_usecount, 1); VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); if (old != 0) { #ifdef INVARIANTS old = atomic_fetchadd_int(&vp->v_holdcnt, -1); VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); #else refcount_release(&vp->v_holdcnt); #endif } } void vrefl(struct vnode *vp) { ASSERT_VI_LOCKED(vp, __func__); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); if (__predict_false(vp->v_type == VCHR)) { vref_vchr(vp, true); return; } vref(vp); } void vrefact(struct vnode *vp) { CTR2(KTR_VFS, "%s: vp %p", __func__, vp); #ifdef INVARIANTS int old = atomic_fetchadd_int(&vp->v_usecount, 1); VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); #else refcount_acquire(&vp->v_usecount); #endif } void vrefactn(struct vnode *vp, u_int n) { CTR2(KTR_VFS, "%s: vp %p", __func__, vp); #ifdef INVARIANTS int old = atomic_fetchadd_int(&vp->v_usecount, n); VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); #else atomic_add_int(&vp->v_usecount, n); #endif } /* * Return reference count of a vnode. * * The results of this call are only guaranteed when some mechanism is used to * stop other processes from gaining references to the vnode. This may be the * case if the caller holds the only reference. This is also useful when stale * data is acceptable as race conditions may be accounted for by some other * means. */ int vrefcnt(struct vnode *vp) { return (vp->v_usecount); } void vlazy(struct vnode *vp) { struct mount *mp; VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); if ((vp->v_mflag & VMP_LAZYLIST) != 0) return; /* * We may get here for inactive routines after the vnode got doomed. */ if (VN_IS_DOOMED(vp)) return; mp = vp->v_mount; mtx_lock(&mp->mnt_listmtx); if ((vp->v_mflag & VMP_LAZYLIST) == 0) { vp->v_mflag |= VMP_LAZYLIST; TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); mp->mnt_lazyvnodelistsize++; } mtx_unlock(&mp->mnt_listmtx); } /* * This routine is only meant to be called from vgonel prior to dooming * the vnode. */ static void vunlazy_gone(struct vnode *vp) { struct mount *mp; ASSERT_VOP_ELOCKED(vp, __func__); ASSERT_VI_LOCKED(vp, __func__); VNPASS(!VN_IS_DOOMED(vp), vp); if (vp->v_mflag & VMP_LAZYLIST) { mp = vp->v_mount; mtx_lock(&mp->mnt_listmtx); VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); vp->v_mflag &= ~VMP_LAZYLIST; TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); mp->mnt_lazyvnodelistsize--; mtx_unlock(&mp->mnt_listmtx); } } static void vdefer_inactive(struct vnode *vp) { ASSERT_VI_LOCKED(vp, __func__); VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode without hold count", __func__)); if (VN_IS_DOOMED(vp)) { vdropl(vp); return; } if (vp->v_iflag & VI_DEFINACT) { VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); vdropl(vp); return; } if (vp->v_usecount > 0) { vp->v_iflag &= ~VI_OWEINACT; vdropl(vp); return; } vlazy(vp); vp->v_iflag |= VI_DEFINACT; VI_UNLOCK(vp); counter_u64_add(deferred_inact, 1); } static void vdefer_inactive_unlocked(struct vnode *vp) { VI_LOCK(vp); if ((vp->v_iflag & VI_OWEINACT) == 0) { vdropl(vp); return; } vdefer_inactive(vp); } enum vputx_op { VPUTX_VRELE, VPUTX_VPUT, VPUTX_VUNREF }; /* * Decrement the use and hold counts for a vnode. * * See an explanation near vget() as to why atomic operation is safe. * * XXX Some filesystems pass in an exclusively locked vnode and strongly depend * on the lock being held all the way until VOP_INACTIVE. This in particular * happens with UFS which adds half-constructed vnodes to the hash, where they * can be found by other code. */ static void vputx(struct vnode *vp, enum vputx_op func) { int error; KASSERT(vp != NULL, ("vputx: null vp")); if (func == VPUTX_VUNREF) ASSERT_VOP_LOCKED(vp, "vunref"); else if (func == VPUTX_VPUT) ASSERT_VOP_LOCKED(vp, "vput"); ASSERT_VI_UNLOCKED(vp, __func__); VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp, ("%s: wrong ref counts", __func__)); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); /* * We want to hold the vnode until the inactive finishes to * prevent vgone() races. We drop the use count here and the * hold count below when we're done. * * If we release the last usecount we take ownership of the hold * count which provides liveness of the vnode, in which case we * have to vdrop. */ if (!refcount_release(&vp->v_usecount)) { if (func == VPUTX_VPUT) VOP_UNLOCK(vp); return; } VI_LOCK(vp); v_decr_devcount(vp); /* * By the time we got here someone else might have transitioned * the count back to > 0. */ if (vp->v_usecount > 0 || vp->v_iflag & VI_DOINGINACT) goto out; /* * Check if the fs wants to perform inactive processing. Note we * may be only holding the interlock, in which case it is possible * someone else called vgone on the vnode and ->v_data is now NULL. * Since vgone performs inactive on its own there is nothing to do * here but to drop our hold count. */ if (__predict_false(VN_IS_DOOMED(vp)) || VOP_NEED_INACTIVE(vp) == 0) goto out; /* * We must call VOP_INACTIVE with the node locked. Mark * as VI_DOINGINACT to avoid recursion. */ vp->v_iflag |= VI_OWEINACT; switch (func) { case VPUTX_VRELE: error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); VI_LOCK(vp); break; case VPUTX_VPUT: error = 0; if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | LK_NOWAIT); VI_LOCK(vp); } break; case VPUTX_VUNREF: error = 0; if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); VI_LOCK(vp); } break; } if (error == 0) { vinactive(vp); if (func != VPUTX_VUNREF) VOP_UNLOCK(vp); vdropl(vp); } else { vdefer_inactive(vp); } return; out: if (func == VPUTX_VPUT) VOP_UNLOCK(vp); vdropl(vp); } /* * Vnode put/release. * If count drops to zero, call inactive routine and return to freelist. */ void vrele(struct vnode *vp) { vputx(vp, VPUTX_VRELE); } /* * Release an already locked vnode. This give the same effects as * unlock+vrele(), but takes less time and avoids releasing and * re-aquiring the lock (as vrele() acquires the lock internally.) */ void vput(struct vnode *vp) { vputx(vp, VPUTX_VPUT); } /* * Release an exclusively locked vnode. Do not unlock the vnode lock. */ void vunref(struct vnode *vp) { vputx(vp, VPUTX_VUNREF); } void vhold(struct vnode *vp) { struct vdbatch *vd; int old; CTR2(KTR_VFS, "%s: vp %p", __func__, vp); old = atomic_fetchadd_int(&vp->v_holdcnt, 1); VNASSERT(old >= 0, vp, ("%s: wrong hold count %d", __func__, old)); if (old != 0) return; critical_enter(); vd = DPCPU_PTR(vd); vd->freevnodes--; critical_exit(); } void vholdl(struct vnode *vp) { ASSERT_VI_LOCKED(vp, __func__); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); vhold(vp); } void vholdnz(struct vnode *vp) { CTR2(KTR_VFS, "%s: vp %p", __func__, vp); #ifdef INVARIANTS int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); VNASSERT(old > 0, vp, ("%s: wrong hold count %d", __func__, old)); #else atomic_add_int(&vp->v_holdcnt, 1); #endif } static void __noinline vdbatch_process(struct vdbatch *vd) { struct vnode *vp; int i; mtx_assert(&vd->lock, MA_OWNED); MPASS(curthread->td_pinned > 0); MPASS(vd->index == VDBATCH_SIZE); mtx_lock(&vnode_list_mtx); critical_enter(); freevnodes += vd->freevnodes; for (i = 0; i < VDBATCH_SIZE; i++) { vp = vd->tab[i]; TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); MPASS(vp->v_dbatchcpu != NOCPU); vp->v_dbatchcpu = NOCPU; } mtx_unlock(&vnode_list_mtx); vd->freevnodes = 0; bzero(vd->tab, sizeof(vd->tab)); vd->index = 0; critical_exit(); } static void vdbatch_enqueue(struct vnode *vp) { struct vdbatch *vd; ASSERT_VI_LOCKED(vp, __func__); VNASSERT(!VN_IS_DOOMED(vp), vp, ("%s: deferring requeue of a doomed vnode", __func__)); critical_enter(); vd = DPCPU_PTR(vd); vd->freevnodes++; if (vp->v_dbatchcpu != NOCPU) { VI_UNLOCK(vp); critical_exit(); return; } sched_pin(); critical_exit(); mtx_lock(&vd->lock); MPASS(vd->index < VDBATCH_SIZE); MPASS(vd->tab[vd->index] == NULL); /* * A hack: we depend on being pinned so that we know what to put in * ->v_dbatchcpu. */ vp->v_dbatchcpu = curcpu; vd->tab[vd->index] = vp; vd->index++; VI_UNLOCK(vp); if (vd->index == VDBATCH_SIZE) vdbatch_process(vd); mtx_unlock(&vd->lock); sched_unpin(); } /* * This routine must only be called for vnodes which are about to be * deallocated. Supporting dequeue for arbitrary vndoes would require * validating that the locked batch matches. */ static void vdbatch_dequeue(struct vnode *vp) { struct vdbatch *vd; int i; short cpu; VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp, ("%s: called for a used vnode\n", __func__)); cpu = vp->v_dbatchcpu; if (cpu == NOCPU) return; vd = DPCPU_ID_PTR(cpu, vd); mtx_lock(&vd->lock); for (i = 0; i < vd->index; i++) { if (vd->tab[i] != vp) continue; vp->v_dbatchcpu = NOCPU; vd->index--; vd->tab[i] = vd->tab[vd->index]; vd->tab[vd->index] = NULL; break; } mtx_unlock(&vd->lock); /* * Either we dequeued the vnode above or the target CPU beat us to it. */ MPASS(vp->v_dbatchcpu == NOCPU); } /* * Drop the hold count of the vnode. If this is the last reference to * the vnode we place it on the free list unless it has been vgone'd * (marked VIRF_DOOMED) in which case we will free it. * * Because the vnode vm object keeps a hold reference on the vnode if * there is at least one resident non-cached page, the vnode cannot * leave the active list without the page cleanup done. */ static void vdrop_deactivate(struct vnode *vp) { struct mount *mp; ASSERT_VI_LOCKED(vp, __func__); /* * Mark a vnode as free: remove it from its active list * and put it up for recycling on the freelist. */ VNASSERT(!VN_IS_DOOMED(vp), vp, ("vdrop: returning doomed vnode")); VNASSERT(vp->v_op != NULL, vp, ("vdrop: vnode already reclaimed.")); VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp, ("vnode with VI_OWEINACT set")); VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("vnode with VI_DEFINACT set")); if (vp->v_mflag & VMP_LAZYLIST) { mp = vp->v_mount; mtx_lock(&mp->mnt_listmtx); VNASSERT(vp->v_mflag & VMP_LAZYLIST, vp, ("lost VMP_LAZYLIST")); /* * Don't remove the vnode from the lazy list if another thread * has increased the hold count. It may have re-enqueued the * vnode to the lazy list and is now responsible for its * removal. */ if (vp->v_holdcnt == 0) { vp->v_mflag &= ~VMP_LAZYLIST; TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); mp->mnt_lazyvnodelistsize--; } mtx_unlock(&mp->mnt_listmtx); } vdbatch_enqueue(vp); } void vdrop(struct vnode *vp) { ASSERT_VI_UNLOCKED(vp, __func__); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); if (refcount_release_if_not_last(&vp->v_holdcnt)) return; VI_LOCK(vp); vdropl(vp); } void vdropl(struct vnode *vp) { ASSERT_VI_LOCKED(vp, __func__); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); if (!refcount_release(&vp->v_holdcnt)) { VI_UNLOCK(vp); return; } if (VN_IS_DOOMED(vp)) { freevnode(vp); return; } vdrop_deactivate(vp); } /* * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT * flags. DOINGINACT prevents us from recursing in calls to vinactive. */ static void vinactivef(struct vnode *vp) { struct vm_object *obj; ASSERT_VOP_ELOCKED(vp, "vinactive"); ASSERT_VI_LOCKED(vp, "vinactive"); VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, ("vinactive: recursed on VI_DOINGINACT")); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); vp->v_iflag |= VI_DOINGINACT; vp->v_iflag &= ~VI_OWEINACT; VI_UNLOCK(vp); /* * Before moving off the active list, we must be sure that any * modified pages are converted into the vnode's dirty * buffers, since these will no longer be checked once the * vnode is on the inactive list. * * The write-out of the dirty pages is asynchronous. At the * point that VOP_INACTIVE() is called, there could still be * pending I/O and dirty pages in the object. */ if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && vm_object_mightbedirty(obj)) { VM_OBJECT_WLOCK(obj); vm_object_page_clean(obj, 0, 0, 0); VM_OBJECT_WUNLOCK(obj); } VOP_INACTIVE(vp, curthread); VI_LOCK(vp); VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, ("vinactive: lost VI_DOINGINACT")); vp->v_iflag &= ~VI_DOINGINACT; } void vinactive(struct vnode *vp) { ASSERT_VOP_ELOCKED(vp, "vinactive"); ASSERT_VI_LOCKED(vp, "vinactive"); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); if ((vp->v_iflag & VI_OWEINACT) == 0) return; if (vp->v_iflag & VI_DOINGINACT) return; if (vp->v_usecount > 0) { vp->v_iflag &= ~VI_OWEINACT; return; } vinactivef(vp); } /* * Remove any vnodes in the vnode table belonging to mount point mp. * * If FORCECLOSE is not specified, there should not be any active ones, * return error if any are found (nb: this is a user error, not a * system error). If FORCECLOSE is specified, detach any active vnodes * that are found. * * If WRITECLOSE is set, only flush out regular file vnodes open for * writing. * * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. * * `rootrefs' specifies the base reference count for the root vnode * of this filesystem. The root vnode is considered busy if its * v_usecount exceeds this value. On a successful return, vflush(, td) * will call vrele() on the root vnode exactly rootrefs times. * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must * be zero. */ #ifdef DIAGNOSTIC static int busyprt = 0; /* print out busy vnodes */ SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); #endif int vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) { struct vnode *vp, *mvp, *rootvp = NULL; struct vattr vattr; int busy = 0, error; CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, rootrefs, flags); if (rootrefs > 0) { KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, ("vflush: bad args")); /* * Get the filesystem root vnode. We can vput() it * immediately, since with rootrefs > 0, it won't go away. */ if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", __func__, error); return (error); } vput(rootvp); } loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { vholdl(vp); error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); if (error) { vdrop(vp); MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } /* * Skip over a vnodes marked VV_SYSTEM. */ if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { VOP_UNLOCK(vp); vdrop(vp); continue; } /* * If WRITECLOSE is set, flush out unlinked but still open * files (even if open only for reading) and regular file * vnodes open for writing. */ if (flags & WRITECLOSE) { if (vp->v_object != NULL) { VM_OBJECT_WLOCK(vp->v_object); vm_object_page_clean(vp->v_object, 0, 0, 0); VM_OBJECT_WUNLOCK(vp->v_object); } error = VOP_FSYNC(vp, MNT_WAIT, td); if (error != 0) { VOP_UNLOCK(vp); vdrop(vp); MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); return (error); } error = VOP_GETATTR(vp, &vattr, td->td_ucred); VI_LOCK(vp); if ((vp->v_type == VNON || (error == 0 && vattr.va_nlink > 0)) && (vp->v_writecount <= 0 || vp->v_type != VREG)) { VOP_UNLOCK(vp); vdropl(vp); continue; } } else VI_LOCK(vp); /* * With v_usecount == 0, all we need to do is clear out the * vnode data structures and we are done. * * If FORCECLOSE is set, forcibly close the vnode. */ if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { vgonel(vp); } else { busy++; #ifdef DIAGNOSTIC if (busyprt) vn_printf(vp, "vflush: busy vnode "); #endif } VOP_UNLOCK(vp); vdropl(vp); } if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { /* * If just the root vnode is busy, and if its refcount * is equal to `rootrefs', then go ahead and kill it. */ VI_LOCK(rootvp); KASSERT(busy > 0, ("vflush: not busy")); VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, ("vflush: usecount %d < rootrefs %d", rootvp->v_usecount, rootrefs)); if (busy == 1 && rootvp->v_usecount == rootrefs) { VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); vgone(rootvp); VOP_UNLOCK(rootvp); busy = 0; } else VI_UNLOCK(rootvp); } if (busy) { CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, busy); return (EBUSY); } for (; rootrefs > 0; rootrefs--) vrele(rootvp); return (0); } /* * Recycle an unused vnode to the front of the free list. */ int vrecycle(struct vnode *vp) { int recycled; VI_LOCK(vp); recycled = vrecyclel(vp); VI_UNLOCK(vp); return (recycled); } /* * vrecycle, with the vp interlock held. */ int vrecyclel(struct vnode *vp) { int recycled; ASSERT_VOP_ELOCKED(vp, __func__); ASSERT_VI_LOCKED(vp, __func__); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); recycled = 0; if (vp->v_usecount == 0) { recycled = 1; vgonel(vp); } return (recycled); } /* * Eliminate all activity associated with a vnode * in preparation for reuse. */ void vgone(struct vnode *vp) { VI_LOCK(vp); vgonel(vp); VI_UNLOCK(vp); } static void notify_lowervp_vfs_dummy(struct mount *mp __unused, struct vnode *lowervp __unused) { } /* * Notify upper mounts about reclaimed or unlinked vnode. */ void vfs_notify_upper(struct vnode *vp, int event) { static struct vfsops vgonel_vfsops = { .vfs_reclaim_lowervp = notify_lowervp_vfs_dummy, .vfs_unlink_lowervp = notify_lowervp_vfs_dummy, }; struct mount *mp, *ump, *mmp; mp = vp->v_mount; if (mp == NULL) return; if (TAILQ_EMPTY(&mp->mnt_uppers)) return; mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO); mmp->mnt_op = &vgonel_vfsops; mmp->mnt_kern_flag |= MNTK_MARKER; MNT_ILOCK(mp); mp->mnt_kern_flag |= MNTK_VGONE_UPPER; for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) { if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) { ump = TAILQ_NEXT(ump, mnt_upper_link); continue; } TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link); MNT_IUNLOCK(mp); switch (event) { case VFS_NOTIFY_UPPER_RECLAIM: VFS_RECLAIM_LOWERVP(ump, vp); break; case VFS_NOTIFY_UPPER_UNLINK: VFS_UNLINK_LOWERVP(ump, vp); break; default: KASSERT(0, ("invalid event %d", event)); break; } MNT_ILOCK(mp); ump = TAILQ_NEXT(mmp, mnt_upper_link); TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link); } free(mmp, M_TEMP); mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER; if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) { mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER; wakeup(&mp->mnt_uppers); } MNT_IUNLOCK(mp); } /* * vgone, with the vp interlock held. */ static void vgonel(struct vnode *vp) { struct thread *td; struct mount *mp; vm_object_t object; bool active, oweinact; ASSERT_VOP_ELOCKED(vp, "vgonel"); ASSERT_VI_LOCKED(vp, "vgonel"); VNASSERT(vp->v_holdcnt, vp, ("vgonel: vp %p has no reference.", vp)); CTR2(KTR_VFS, "%s: vp %p", __func__, vp); td = curthread; /* * Don't vgonel if we're already doomed. */ if (vp->v_irflag & VIRF_DOOMED) return; vunlazy_gone(vp); vp->v_irflag |= VIRF_DOOMED; /* * Check to see if the vnode is in use. If so, we have to call * VOP_CLOSE() and VOP_INACTIVE(). */ active = vp->v_usecount > 0; oweinact = (vp->v_iflag & VI_OWEINACT) != 0; /* * If we need to do inactive VI_OWEINACT will be set. */ if (vp->v_iflag & VI_DEFINACT) { VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); vp->v_iflag &= ~VI_DEFINACT; vdropl(vp); } else { VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); VI_UNLOCK(vp); } vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); /* * If purging an active vnode, it must be closed and * deactivated before being reclaimed. */ if (active) VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); if (oweinact || active) { VI_LOCK(vp); vinactivef(vp); VI_UNLOCK(vp); } if (vp->v_type == VSOCK) vfs_unp_reclaim(vp); /* * Clean out any buffers associated with the vnode. * If the flush fails, just toss the buffers. */ mp = NULL; if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) (void) vn_start_secondary_write(vp, &mp, V_WAIT); if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { while (vinvalbuf(vp, 0, 0, 0) != 0) ; } BO_LOCK(&vp->v_bufobj); KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && vp->v_bufobj.bo_dirty.bv_cnt == 0 && TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && vp->v_bufobj.bo_clean.bv_cnt == 0, ("vp %p bufobj not invalidated", vp)); /* * For VMIO bufobj, BO_DEAD is set later, or in * vm_object_terminate() after the object's page queue is * flushed. */ object = vp->v_bufobj.bo_object; if (object == NULL) vp->v_bufobj.bo_flag |= BO_DEAD; BO_UNLOCK(&vp->v_bufobj); /* * Handle the VM part. Tmpfs handles v_object on its own (the * OBJT_VNODE check). Nullfs or other bypassing filesystems * should not touch the object borrowed from the lower vnode * (the handle check). */ if (object != NULL && object->type == OBJT_VNODE && object->handle == vp) vnode_destroy_vobject(vp); /* * Reclaim the vnode. */ if (VOP_RECLAIM(vp, td)) panic("vgone: cannot reclaim"); if (mp != NULL) vn_finished_secondary_write(mp); VNASSERT(vp->v_object == NULL, vp, ("vop_reclaim left v_object vp=%p", vp)); /* * Clear the advisory locks and wake up waiting threads. */ (void)VOP_ADVLOCKPURGE(vp); vp->v_lockf = NULL; /* * Delete from old mount point vnode list. */ delmntque(vp); cache_purge(vp); /* * Done with purge, reset to the standard lock and invalidate * the vnode. */ VI_LOCK(vp); vp->v_vnlock = &vp->v_lock; vp->v_op = &dead_vnodeops; vp->v_type = VBAD; } /* * Calculate the total number of references to a special device. */ int vcount(struct vnode *vp) { int count; dev_lock(); count = vp->v_rdev->si_usecount; dev_unlock(); return (count); } /* * Print out a description of a vnode. */ static char *typename[] = {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", "VMARKER"}; void vn_printf(struct vnode *vp, const char *fmt, ...) { va_list ap; char buf[256], buf2[16]; u_long flags; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf("%p: ", (void *)vp); printf("type %s\n", typename[vp->v_type]); printf(" usecount %d, writecount %d, refcount %d", vp->v_usecount, vp->v_writecount, vp->v_holdcnt); switch (vp->v_type) { case VDIR: printf(" mountedhere %p\n", vp->v_mountedhere); break; case VCHR: printf(" rdev %p\n", vp->v_rdev); break; case VSOCK: printf(" socket %p\n", vp->v_unpcb); break; case VFIFO: printf(" fifoinfo %p\n", vp->v_fifoinfo); break; default: printf("\n"); break; } buf[0] = '\0'; buf[1] = '\0'; if (vp->v_irflag & VIRF_DOOMED) strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); flags = vp->v_irflag & ~(VIRF_DOOMED); if (flags != 0) { snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); strlcat(buf, buf2, sizeof(buf)); } if (vp->v_vflag & VV_ROOT) strlcat(buf, "|VV_ROOT", sizeof(buf)); if (vp->v_vflag & VV_ISTTY) strlcat(buf, "|VV_ISTTY", sizeof(buf)); if (vp->v_vflag & VV_NOSYNC) strlcat(buf, "|VV_NOSYNC", sizeof(buf)); if (vp->v_vflag & VV_ETERNALDEV) strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); if (vp->v_vflag & VV_CACHEDLABEL) strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); if (vp->v_vflag & VV_VMSIZEVNLOCK) strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); if (vp->v_vflag & VV_COPYONWRITE) strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); if (vp->v_vflag & VV_SYSTEM) strlcat(buf, "|VV_SYSTEM", sizeof(buf)); if (vp->v_vflag & VV_PROCDEP) strlcat(buf, "|VV_PROCDEP", sizeof(buf)); if (vp->v_vflag & VV_NOKNOTE) strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); if (vp->v_vflag & VV_DELETED) strlcat(buf, "|VV_DELETED", sizeof(buf)); if (vp->v_vflag & VV_MD) strlcat(buf, "|VV_MD", sizeof(buf)); if (vp->v_vflag & VV_FORCEINSMQ) strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); if (vp->v_vflag & VV_READLINK) strlcat(buf, "|VV_READLINK", sizeof(buf)); flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ); if (flags != 0) { snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); strlcat(buf, buf2, sizeof(buf)); } if (vp->v_iflag & VI_TEXT_REF) strlcat(buf, "|VI_TEXT_REF", sizeof(buf)); if (vp->v_iflag & VI_MOUNT) strlcat(buf, "|VI_MOUNT", sizeof(buf)); if (vp->v_iflag & VI_DOINGINACT) strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); if (vp->v_iflag & VI_OWEINACT) strlcat(buf, "|VI_OWEINACT", sizeof(buf)); if (vp->v_iflag & VI_DEFINACT) strlcat(buf, "|VI_DEFINACT", sizeof(buf)); flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT | VI_OWEINACT | VI_DEFINACT); if (flags != 0) { snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); strlcat(buf, buf2, sizeof(buf)); } if (vp->v_mflag & VMP_LAZYLIST) strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); flags = vp->v_mflag & ~(VMP_LAZYLIST); if (flags != 0) { snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); strlcat(buf, buf2, sizeof(buf)); } printf(" flags (%s)\n", buf + 1); if (mtx_owned(VI_MTX(vp))) printf(" VI_LOCKed"); if (vp->v_object != NULL) printf(" v_object %p ref %d pages %d " "cleanbuf %d dirtybuf %d\n", vp->v_object, vp->v_object->ref_count, vp->v_object->resident_page_count, vp->v_bufobj.bo_clean.bv_cnt, vp->v_bufobj.bo_dirty.bv_cnt); printf(" "); lockmgr_printinfo(vp->v_vnlock); if (vp->v_data != NULL) VOP_PRINT(vp); } #ifdef DDB /* * List all of the locked vnodes in the system. * Called when debugging the kernel. */ DB_SHOW_COMMAND(lockedvnods, lockedvnodes) { struct mount *mp; struct vnode *vp; /* * Note: because this is DDB, we can't obey the locking semantics * for these structures, which means we could catch an inconsistent * state and dereference a nasty pointer. Not much to be done * about that. */ db_printf("Locked vnodes\n"); TAILQ_FOREACH(mp, &mountlist, mnt_list) { TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) vn_printf(vp, "vnode "); } } } /* * Show details about the given vnode. */ DB_SHOW_COMMAND(vnode, db_show_vnode) { struct vnode *vp; if (!have_addr) return; vp = (struct vnode *)addr; vn_printf(vp, "vnode "); } /* * Show details about the given mount point. */ DB_SHOW_COMMAND(mount, db_show_mount) { struct mount *mp; struct vfsopt *opt; struct statfs *sp; struct vnode *vp; char buf[512]; uint64_t mflags; u_int flags; if (!have_addr) { /* No address given, print short info about all mount points. */ TAILQ_FOREACH(mp, &mountlist, mnt_list) { db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); if (db_pager_quit) break; } db_printf("\nMore info: show mount \n"); return; } mp = (struct mount *)addr; db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); buf[0] = '\0'; mflags = mp->mnt_flag; #define MNT_FLAG(flag) do { \ if (mflags & (flag)) { \ if (buf[0] != '\0') \ strlcat(buf, ", ", sizeof(buf)); \ strlcat(buf, (#flag) + 4, sizeof(buf)); \ mflags &= ~(flag); \ } \ } while (0) MNT_FLAG(MNT_RDONLY); MNT_FLAG(MNT_SYNCHRONOUS); MNT_FLAG(MNT_NOEXEC); MNT_FLAG(MNT_NOSUID); MNT_FLAG(MNT_NFS4ACLS); MNT_FLAG(MNT_UNION); MNT_FLAG(MNT_ASYNC); MNT_FLAG(MNT_SUIDDIR); MNT_FLAG(MNT_SOFTDEP); MNT_FLAG(MNT_NOSYMFOLLOW); MNT_FLAG(MNT_GJOURNAL); MNT_FLAG(MNT_MULTILABEL); MNT_FLAG(MNT_ACLS); MNT_FLAG(MNT_NOATIME); MNT_FLAG(MNT_NOCLUSTERR); MNT_FLAG(MNT_NOCLUSTERW); MNT_FLAG(MNT_SUJ); MNT_FLAG(MNT_EXRDONLY); MNT_FLAG(MNT_EXPORTED); MNT_FLAG(MNT_DEFEXPORTED); MNT_FLAG(MNT_EXPORTANON); MNT_FLAG(MNT_EXKERB); MNT_FLAG(MNT_EXPUBLIC); MNT_FLAG(MNT_LOCAL); MNT_FLAG(MNT_QUOTA); MNT_FLAG(MNT_ROOTFS); MNT_FLAG(MNT_USER); MNT_FLAG(MNT_IGNORE); MNT_FLAG(MNT_UPDATE); MNT_FLAG(MNT_DELEXPORT); MNT_FLAG(MNT_RELOAD); MNT_FLAG(MNT_FORCE); MNT_FLAG(MNT_SNAPSHOT); MNT_FLAG(MNT_BYFSID); #undef MNT_FLAG if (mflags != 0) { if (buf[0] != '\0') strlcat(buf, ", ", sizeof(buf)); snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "0x%016jx", mflags); } db_printf(" mnt_flag = %s\n", buf); buf[0] = '\0'; flags = mp->mnt_kern_flag; #define MNT_KERN_FLAG(flag) do { \ if (flags & (flag)) { \ if (buf[0] != '\0') \ strlcat(buf, ", ", sizeof(buf)); \ strlcat(buf, (#flag) + 5, sizeof(buf)); \ flags &= ~(flag); \ } \ } while (0) MNT_KERN_FLAG(MNTK_UNMOUNTF); MNT_KERN_FLAG(MNTK_ASYNC); MNT_KERN_FLAG(MNTK_SOFTDEP); MNT_KERN_FLAG(MNTK_DRAINING); MNT_KERN_FLAG(MNTK_REFEXPIRE); MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); MNT_KERN_FLAG(MNTK_SHARED_WRITES); MNT_KERN_FLAG(MNTK_NO_IOPF); MNT_KERN_FLAG(MNTK_VGONE_UPPER); MNT_KERN_FLAG(MNTK_VGONE_WAITER); MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT); MNT_KERN_FLAG(MNTK_MARKER); MNT_KERN_FLAG(MNTK_USES_BCACHE); MNT_KERN_FLAG(MNTK_NOASYNC); MNT_KERN_FLAG(MNTK_UNMOUNT); MNT_KERN_FLAG(MNTK_MWAIT); MNT_KERN_FLAG(MNTK_SUSPEND); MNT_KERN_FLAG(MNTK_SUSPEND2); MNT_KERN_FLAG(MNTK_SUSPENDED); MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); MNT_KERN_FLAG(MNTK_NOKNOTE); #undef MNT_KERN_FLAG if (flags != 0) { if (buf[0] != '\0') strlcat(buf, ", ", sizeof(buf)); snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "0x%08x", flags); } db_printf(" mnt_kern_flag = %s\n", buf); db_printf(" mnt_opt = "); opt = TAILQ_FIRST(mp->mnt_opt); if (opt != NULL) { db_printf("%s", opt->name); opt = TAILQ_NEXT(opt, link); while (opt != NULL) { db_printf(", %s", opt->name); opt = TAILQ_NEXT(opt, link); } } db_printf("\n"); sp = &mp->mnt_stat; db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); db_printf(" mnt_cred = { uid=%u ruid=%u", (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); if (jailed(mp->mnt_cred)) db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); db_printf(" }\n"); db_printf(" mnt_ref = %d (with %d in the struct)\n", vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); db_printf(" mnt_gen = %d\n", mp->mnt_gen); db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); db_printf(" mnt_lazyvnodelistsize = %d\n", mp->mnt_lazyvnodelistsize); db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen); db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); db_printf(" mnt_lockref = %d (with %d in the struct)\n", vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); db_printf(" mnt_secondary_accwrites = %d\n", mp->mnt_secondary_accwrites); db_printf(" mnt_gjprovider = %s\n", mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); db_printf("\n\nList of active vnodes\n"); TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { vn_printf(vp, "vnode "); if (db_pager_quit) break; } } db_printf("\n\nList of inactive vnodes\n"); TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { vn_printf(vp, "vnode "); if (db_pager_quit) break; } } } #endif /* DDB */ /* * Fill in a struct xvfsconf based on a struct vfsconf. */ static int vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) { struct xvfsconf xvfsp; bzero(&xvfsp, sizeof(xvfsp)); strcpy(xvfsp.vfc_name, vfsp->vfc_name); xvfsp.vfc_typenum = vfsp->vfc_typenum; xvfsp.vfc_refcount = vfsp->vfc_refcount; xvfsp.vfc_flags = vfsp->vfc_flags; /* * These are unused in userland, we keep them * to not break binary compatibility. */ xvfsp.vfc_vfsops = NULL; xvfsp.vfc_next = NULL; return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); } #ifdef COMPAT_FREEBSD32 struct xvfsconf32 { uint32_t vfc_vfsops; char vfc_name[MFSNAMELEN]; int32_t vfc_typenum; int32_t vfc_refcount; int32_t vfc_flags; uint32_t vfc_next; }; static int vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) { struct xvfsconf32 xvfsp; bzero(&xvfsp, sizeof(xvfsp)); strcpy(xvfsp.vfc_name, vfsp->vfc_name); xvfsp.vfc_typenum = vfsp->vfc_typenum; xvfsp.vfc_refcount = vfsp->vfc_refcount; xvfsp.vfc_flags = vfsp->vfc_flags; return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); } #endif /* * Top level filesystem related information gathering. */ static int sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) { struct vfsconf *vfsp; int error; error = 0; vfsconf_slock(); TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { #ifdef COMPAT_FREEBSD32 if (req->flags & SCTL_MASK32) error = vfsconf2x32(req, vfsp); else #endif error = vfsconf2x(req, vfsp); if (error) break; } vfsconf_sunlock(); return (error); } SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, "S,xvfsconf", "List of all configured filesystems"); #ifndef BURN_BRIDGES static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); static int vfs_sysctl(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1 - 1; /* XXX */ u_int namelen = arg2 + 1; /* XXX */ struct vfsconf *vfsp; log(LOG_WARNING, "userland calling deprecated sysctl, " "please rebuild world\n"); #if 1 || defined(COMPAT_PRELITE2) /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ if (namelen == 1) return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); #endif switch (name[1]) { case VFS_MAXTYPENUM: if (namelen != 2) return (ENOTDIR); return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); case VFS_CONF: if (namelen != 3) return (ENOTDIR); /* overloaded */ vfsconf_slock(); TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { if (vfsp->vfc_typenum == name[2]) break; } vfsconf_sunlock(); if (vfsp == NULL) return (EOPNOTSUPP); #ifdef COMPAT_FREEBSD32 if (req->flags & SCTL_MASK32) return (vfsconf2x32(req, vfsp)); else #endif return (vfsconf2x(req, vfsp)); } return (EOPNOTSUPP); } static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, vfs_sysctl, "Generic filesystem"); #if 1 || defined(COMPAT_PRELITE2) static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) { int error; struct vfsconf *vfsp; struct ovfsconf ovfs; vfsconf_slock(); TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { bzero(&ovfs, sizeof(ovfs)); ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ strcpy(ovfs.vfc_name, vfsp->vfc_name); ovfs.vfc_index = vfsp->vfc_typenum; ovfs.vfc_refcount = vfsp->vfc_refcount; ovfs.vfc_flags = vfsp->vfc_flags; error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); if (error != 0) { vfsconf_sunlock(); return (error); } } vfsconf_sunlock(); return (0); } #endif /* 1 || COMPAT_PRELITE2 */ #endif /* !BURN_BRIDGES */ #define KINFO_VNODESLOP 10 #ifdef notyet /* * Dump vnode list (via sysctl). */ /* ARGSUSED */ static int sysctl_vnode(SYSCTL_HANDLER_ARGS) { struct xvnode *xvn; struct mount *mp; struct vnode *vp; int error, len, n; /* * Stale numvnodes access is not fatal here. */ req->lock = 0; len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; if (!req->oldptr) /* Make an estimate */ return (SYSCTL_OUT(req, 0, len)); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); n = 0; mtx_lock(&mountlist_mtx); TAILQ_FOREACH(mp, &mountlist, mnt_list) { if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) continue; MNT_ILOCK(mp); TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { if (n == len) break; vref(vp); xvn[n].xv_size = sizeof *xvn; xvn[n].xv_vnode = vp; xvn[n].xv_id = 0; /* XXX compat */ #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field XV_COPY(usecount); XV_COPY(writecount); XV_COPY(holdcnt); XV_COPY(mount); XV_COPY(numoutput); XV_COPY(type); #undef XV_COPY xvn[n].xv_flag = vp->v_vflag; switch (vp->v_type) { case VREG: case VDIR: case VLNK: break; case VBLK: case VCHR: if (vp->v_rdev == NULL) { vrele(vp); continue; } xvn[n].xv_dev = dev2udev(vp->v_rdev); break; case VSOCK: xvn[n].xv_socket = vp->v_socket; break; case VFIFO: xvn[n].xv_fifo = vp->v_fifoinfo; break; case VNON: case VBAD: default: /* shouldn't happen? */ vrele(vp); continue; } vrele(vp); ++n; } MNT_IUNLOCK(mp); mtx_lock(&mountlist_mtx); vfs_unbusy(mp); if (n == len) break; } mtx_unlock(&mountlist_mtx); error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); free(xvn, M_TEMP); return (error); } SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode", ""); #endif static void unmount_or_warn(struct mount *mp) { int error; error = dounmount(mp, MNT_FORCE, curthread); if (error != 0) { printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); if (error == EBUSY) printf("BUSY)\n"); else printf("%d)\n", error); } } /* * Unmount all filesystems. The list is traversed in reverse order * of mounting to avoid dependencies. */ void vfs_unmountall(void) { struct mount *mp, *tmp; CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); /* * Since this only runs when rebooting, it is not interlocked. */ TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { vfs_ref(mp); /* * Forcibly unmounting "/dev" before "/" would prevent clean * unmount of the latter. */ if (mp == rootdevmp) continue; unmount_or_warn(mp); } if (rootdevmp != NULL) unmount_or_warn(rootdevmp); } static void vfs_deferred_inactive(struct vnode *vp, int lkflags) { ASSERT_VI_LOCKED(vp, __func__); VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set")); if ((vp->v_iflag & VI_OWEINACT) == 0) { vdropl(vp); return; } if (vn_lock(vp, lkflags) == 0) { VI_LOCK(vp); vinactive(vp); VOP_UNLOCK(vp); vdropl(vp); return; } vdefer_inactive_unlocked(vp); } static int vfs_periodic_inactive_filter(struct vnode *vp, void *arg) { return (vp->v_iflag & VI_DEFINACT); } static void __noinline vfs_periodic_inactive(struct mount *mp, int flags) { struct vnode *vp, *mvp; int lkflags; lkflags = LK_EXCLUSIVE | LK_INTERLOCK; if (flags != MNT_WAIT) lkflags |= LK_NOWAIT; MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { if ((vp->v_iflag & VI_DEFINACT) == 0) { VI_UNLOCK(vp); continue; } vp->v_iflag &= ~VI_DEFINACT; vfs_deferred_inactive(vp, lkflags); } } static inline bool vfs_want_msync(struct vnode *vp) { struct vm_object *obj; /* * This test may be performed without any locks held. * We rely on vm_object's type stability. */ if (vp->v_vflag & VV_NOSYNC) return (false); obj = vp->v_object; return (obj != NULL && vm_object_mightbedirty(obj)); } static int vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) { if (vp->v_vflag & VV_NOSYNC) return (false); if (vp->v_iflag & VI_DEFINACT) return (true); return (vfs_want_msync(vp)); } static void __noinline vfs_periodic_msync_inactive(struct mount *mp, int flags) { struct vnode *vp, *mvp; struct vm_object *obj; struct thread *td; int lkflags, objflags; bool seen_defer; td = curthread; lkflags = LK_EXCLUSIVE | LK_INTERLOCK; if (flags != MNT_WAIT) { lkflags |= LK_NOWAIT; objflags = OBJPC_NOSYNC; } else { objflags = OBJPC_SYNC; } MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { seen_defer = false; if (vp->v_iflag & VI_DEFINACT) { vp->v_iflag &= ~VI_DEFINACT; seen_defer = true; } if (!vfs_want_msync(vp)) { if (seen_defer) vfs_deferred_inactive(vp, lkflags); else VI_UNLOCK(vp); continue; } if (vget(vp, lkflags, td) == 0) { obj = vp->v_object; if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) { VM_OBJECT_WLOCK(obj); vm_object_page_clean(obj, 0, 0, objflags); VM_OBJECT_WUNLOCK(obj); } vput(vp); if (seen_defer) vdrop(vp); } else { if (seen_defer) vdefer_inactive_unlocked(vp); } } } void vfs_periodic(struct mount *mp, int flags) { CTR2(KTR_VFS, "%s: mp %p", __func__, mp); if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) vfs_periodic_inactive(mp, flags); else vfs_periodic_msync_inactive(mp, flags); } static void destroy_vpollinfo_free(struct vpollinfo *vi) { knlist_destroy(&vi->vpi_selinfo.si_note); mtx_destroy(&vi->vpi_lock); uma_zfree(vnodepoll_zone, vi); } static void destroy_vpollinfo(struct vpollinfo *vi) { knlist_clear(&vi->vpi_selinfo.si_note, 1); seldrain(&vi->vpi_selinfo); destroy_vpollinfo_free(vi); } /* * Initialize per-vnode helper structure to hold poll-related state. */ void v_addpollinfo(struct vnode *vp) { struct vpollinfo *vi; if (vp->v_pollinfo != NULL) return; vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO); mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked); VI_LOCK(vp); if (vp->v_pollinfo != NULL) { VI_UNLOCK(vp); destroy_vpollinfo_free(vi); return; } vp->v_pollinfo = vi; VI_UNLOCK(vp); } /* * Record a process's interest in events which might happen to * a vnode. Because poll uses the historic select-style interface * internally, this routine serves as both the ``check for any * pending events'' and the ``record my interest in future events'' * functions. (These are done together, while the lock is held, * to avoid race conditions.) */ int vn_pollrecord(struct vnode *vp, struct thread *td, int events) { v_addpollinfo(vp); mtx_lock(&vp->v_pollinfo->vpi_lock); if (vp->v_pollinfo->vpi_revents & events) { /* * This leaves events we are not interested * in available for the other process which * which presumably had requested them * (otherwise they would never have been * recorded). */ events &= vp->v_pollinfo->vpi_revents; vp->v_pollinfo->vpi_revents &= ~events; mtx_unlock(&vp->v_pollinfo->vpi_lock); return (events); } vp->v_pollinfo->vpi_events |= events; selrecord(td, &vp->v_pollinfo->vpi_selinfo); mtx_unlock(&vp->v_pollinfo->vpi_lock); return (0); } /* * Routine to create and manage a filesystem syncer vnode. */ #define sync_close ((int (*)(struct vop_close_args *))nullop) static int sync_fsync(struct vop_fsync_args *); static int sync_inactive(struct vop_inactive_args *); static int sync_reclaim(struct vop_reclaim_args *); static struct vop_vector sync_vnodeops = { .vop_bypass = VOP_EOPNOTSUPP, .vop_close = sync_close, /* close */ .vop_fsync = sync_fsync, /* fsync */ .vop_inactive = sync_inactive, /* inactive */ .vop_need_inactive = vop_stdneed_inactive, /* need_inactive */ .vop_reclaim = sync_reclaim, /* reclaim */ .vop_lock1 = vop_stdlock, /* lock */ .vop_unlock = vop_stdunlock, /* unlock */ .vop_islocked = vop_stdislocked, /* islocked */ }; VFS_VOP_VECTOR_REGISTER(sync_vnodeops); /* * Create a new filesystem syncer vnode for the specified mount point. */ void vfs_allocate_syncvnode(struct mount *mp) { struct vnode *vp; struct bufobj *bo; static long start, incr, next; int error; /* Allocate a new vnode */ error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); if (error != 0) panic("vfs_allocate_syncvnode: getnewvnode() failed"); vp->v_type = VNON; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); vp->v_vflag |= VV_FORCEINSMQ; error = insmntque(vp, mp); if (error != 0) panic("vfs_allocate_syncvnode: insmntque() failed"); vp->v_vflag &= ~VV_FORCEINSMQ; VOP_UNLOCK(vp); /* * Place the vnode onto the syncer worklist. We attempt to * scatter them about on the list so that they will go off * at evenly distributed times even if all the filesystems * are mounted at once. */ next += incr; if (next == 0 || next > syncer_maxdelay) { start /= 2; incr /= 2; if (start == 0) { start = syncer_maxdelay / 2; incr = syncer_maxdelay; } next = start; } bo = &vp->v_bufobj; BO_LOCK(bo); vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ mtx_lock(&sync_mtx); sync_vnode_count++; if (mp->mnt_syncer == NULL) { mp->mnt_syncer = vp; vp = NULL; } mtx_unlock(&sync_mtx); BO_UNLOCK(bo); if (vp != NULL) { vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); vgone(vp); vput(vp); } } void vfs_deallocate_syncvnode(struct mount *mp) { struct vnode *vp; mtx_lock(&sync_mtx); vp = mp->mnt_syncer; if (vp != NULL) mp->mnt_syncer = NULL; mtx_unlock(&sync_mtx); if (vp != NULL) vrele(vp); } /* * Do a lazy sync of the filesystem. */ static int sync_fsync(struct vop_fsync_args *ap) { struct vnode *syncvp = ap->a_vp; struct mount *mp = syncvp->v_mount; int error, save; struct bufobj *bo; /* * We only need to do something if this is a lazy evaluation. */ if (ap->a_waitfor != MNT_LAZY) return (0); /* * Move ourselves to the back of the sync list. */ bo = &syncvp->v_bufobj; BO_LOCK(bo); vn_syncer_add_to_worklist(bo, syncdelay); BO_UNLOCK(bo); /* * Walk the list of vnodes pushing all that are dirty and * not already on the sync list. */ if (vfs_busy(mp, MBF_NOWAIT) != 0) return (0); if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { vfs_unbusy(mp); return (0); } save = curthread_pflags_set(TDP_SYNCIO); /* * The filesystem at hand may be idle with free vnodes stored in the * batch. Return them instead of letting them stay there indefinitely. */ vfs_periodic(mp, MNT_NOWAIT); error = VFS_SYNC(mp, MNT_LAZY); curthread_pflags_restore(save); vn_finished_write(mp); vfs_unbusy(mp); return (error); } /* * The syncer vnode is no referenced. */ static int sync_inactive(struct vop_inactive_args *ap) { vgone(ap->a_vp); return (0); } /* * The syncer vnode is no longer needed and is being decommissioned. * * Modifications to the worklist must be protected by sync_mtx. */ static int sync_reclaim(struct vop_reclaim_args *ap) { struct vnode *vp = ap->a_vp; struct bufobj *bo; bo = &vp->v_bufobj; BO_LOCK(bo); mtx_lock(&sync_mtx); if (vp->v_mount->mnt_syncer == vp) vp->v_mount->mnt_syncer = NULL; if (bo->bo_flag & BO_ONWORKLST) { LIST_REMOVE(bo, bo_synclist); syncer_worklist_len--; sync_vnode_count--; bo->bo_flag &= ~BO_ONWORKLST; } mtx_unlock(&sync_mtx); BO_UNLOCK(bo); return (0); } int vn_need_pageq_flush(struct vnode *vp) { struct vm_object *obj; int need; MPASS(mtx_owned(VI_MTX(vp))); need = 0; if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && vm_object_mightbedirty(obj)) need = 1; return (need); } /* * Check if vnode represents a disk device */ int vn_isdisk(struct vnode *vp, int *errp) { int error; if (vp->v_type != VCHR) { error = ENOTBLK; goto out; } error = 0; dev_lock(); if (vp->v_rdev == NULL) error = ENXIO; else if (vp->v_rdev->si_devsw == NULL) error = ENXIO; else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) error = ENOTBLK; dev_unlock(); out: if (errp != NULL) *errp = error; return (error == 0); } /* * Common filesystem object access control check routine. Accepts a * vnode's type, "mode", uid and gid, requested access mode, credentials, * and optional call-by-reference privused argument allowing vaccess() * to indicate to the caller whether privilege was used to satisfy the * request (obsoleted). Returns 0 on success, or an errno on failure. */ int vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, accmode_t accmode, struct ucred *cred, int *privused) { accmode_t dac_granted; accmode_t priv_granted; KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, ("invalid bit in accmode")); KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), ("VAPPEND without VWRITE")); /* * Look for a normal, non-privileged way to access the file/directory * as requested. If it exists, go with that. */ if (privused != NULL) *privused = 0; dac_granted = 0; /* Check the owner. */ if (cred->cr_uid == file_uid) { dac_granted |= VADMIN; if (file_mode & S_IXUSR) dac_granted |= VEXEC; if (file_mode & S_IRUSR) dac_granted |= VREAD; if (file_mode & S_IWUSR) dac_granted |= (VWRITE | VAPPEND); if ((accmode & dac_granted) == accmode) return (0); goto privcheck; } /* Otherwise, check the groups (first match) */ if (groupmember(file_gid, cred)) { if (file_mode & S_IXGRP) dac_granted |= VEXEC; if (file_mode & S_IRGRP) dac_granted |= VREAD; if (file_mode & S_IWGRP) dac_granted |= (VWRITE | VAPPEND); if ((accmode & dac_granted) == accmode) return (0); goto privcheck; } /* Otherwise, check everyone else. */ if (file_mode & S_IXOTH) dac_granted |= VEXEC; if (file_mode & S_IROTH) dac_granted |= VREAD; if (file_mode & S_IWOTH) dac_granted |= (VWRITE | VAPPEND); if ((accmode & dac_granted) == accmode) return (0); privcheck: /* * Build a privilege mask to determine if the set of privileges * satisfies the requirements when combined with the granted mask * from above. For each privilege, if the privilege is required, * bitwise or the request type onto the priv_granted mask. */ priv_granted = 0; if (type == VDIR) { /* * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC * requests, instead of PRIV_VFS_EXEC. */ if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && !priv_check_cred(cred, PRIV_VFS_LOOKUP)) priv_granted |= VEXEC; } else { /* * Ensure that at least one execute bit is on. Otherwise, * a privileged user will always succeed, and we don't want * this to happen unless the file really is executable. */ if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && !priv_check_cred(cred, PRIV_VFS_EXEC)) priv_granted |= VEXEC; } if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && !priv_check_cred(cred, PRIV_VFS_READ)) priv_granted |= VREAD; if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && !priv_check_cred(cred, PRIV_VFS_WRITE)) priv_granted |= (VWRITE | VAPPEND); if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && !priv_check_cred(cred, PRIV_VFS_ADMIN)) priv_granted |= VADMIN; if ((accmode & (priv_granted | dac_granted)) == accmode) { /* XXX audit: privilege used */ if (privused != NULL) *privused = 1; return (0); } return ((accmode & VADMIN) ? EPERM : EACCES); } /* * Credential check based on process requesting service, and per-attribute * permissions. */ int extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, struct thread *td, accmode_t accmode) { /* * Kernel-invoked always succeeds. */ if (cred == NOCRED) return (0); /* * Do not allow privileged processes in jail to directly manipulate * system attributes. */ switch (attrnamespace) { case EXTATTR_NAMESPACE_SYSTEM: /* Potentially should be: return (EPERM); */ return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); case EXTATTR_NAMESPACE_USER: return (VOP_ACCESS(vp, accmode, cred, td)); default: return (EPERM); } } #ifdef DEBUG_VFS_LOCKS /* * This only exists to suppress warnings from unlocked specfs accesses. It is * no longer ok to have an unlocked VFS. */ #define IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL || \ (vp)->v_type == VCHR || (vp)->v_type == VBAD) int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "Drop into debugger on lock violation"); int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "Check for interlock across VOPs"); int vfs_badlock_print = 1; /* Print lock violations. */ SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "Print lock violations"); int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 0, "Print vnode details on lock violations"); #ifdef KDB int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); #endif static void vfs_badlock(const char *msg, const char *str, struct vnode *vp) { #ifdef KDB if (vfs_badlock_backtrace) kdb_backtrace(); #endif if (vfs_badlock_vnode) vn_printf(vp, "vnode "); if (vfs_badlock_print) printf("%s: %p %s\n", str, (void *)vp, msg); if (vfs_badlock_ddb) kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); } void assert_vi_locked(struct vnode *vp, const char *str) { if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) vfs_badlock("interlock is not locked but should be", str, vp); } void assert_vi_unlocked(struct vnode *vp, const char *str) { if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) vfs_badlock("interlock is locked but should not be", str, vp); } void assert_vop_locked(struct vnode *vp, const char *str) { int locked; if (!IGNORE_LOCK(vp)) { locked = VOP_ISLOCKED(vp); if (locked == 0 || locked == LK_EXCLOTHER) vfs_badlock("is not locked but should be", str, vp); } } void assert_vop_unlocked(struct vnode *vp, const char *str) { if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) vfs_badlock("is locked but should not be", str, vp); } void assert_vop_elocked(struct vnode *vp, const char *str) { if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) vfs_badlock("is not exclusive locked but should be", str, vp); } #endif /* DEBUG_VFS_LOCKS */ void vop_rename_fail(struct vop_rename_args *ap) { if (ap->a_tvp != NULL) vput(ap->a_tvp); if (ap->a_tdvp == ap->a_tvp) vrele(ap->a_tdvp); else vput(ap->a_tdvp); vrele(ap->a_fdvp); vrele(ap->a_fvp); } void vop_rename_pre(void *ap) { struct vop_rename_args *a = ap; #ifdef DEBUG_VFS_LOCKS if (a->a_tvp) ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); /* Check the source (from). */ if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); /* Check the target. */ if (a->a_tvp) ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); #endif if (a->a_tdvp != a->a_fdvp) vhold(a->a_fdvp); if (a->a_tvp != a->a_fvp) vhold(a->a_fvp); vhold(a->a_tdvp); if (a->a_tvp) vhold(a->a_tvp); } #ifdef DEBUG_VFS_LOCKS void vop_strategy_pre(void *ap) { struct vop_strategy_args *a; struct buf *bp; a = ap; bp = a->a_bp; /* * Cluster ops lock their component buffers but not the IO container. */ if ((bp->b_flags & B_CLUSTER) != 0) return; if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { if (vfs_badlock_print) printf( "VOP_STRATEGY: bp is not locked but should be\n"); if (vfs_badlock_ddb) kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); } } void vop_lock_pre(void *ap) { struct vop_lock1_args *a = ap; if ((a->a_flags & LK_INTERLOCK) == 0) ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); else ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); } void vop_lock_post(void *ap, int rc) { struct vop_lock1_args *a = ap; ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); } void vop_unlock_pre(void *ap) { struct vop_unlock_args *a = ap; ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); } void vop_unlock_post(void *ap, int rc) { return; } void vop_need_inactive_pre(void *ap) { struct vop_need_inactive_args *a = ap; ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); } void vop_need_inactive_post(void *ap, int rc) { struct vop_need_inactive_args *a = ap; ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); } #endif void vop_create_post(void *ap, int rc) { struct vop_create_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); } void vop_deleteextattr_post(void *ap, int rc) { struct vop_deleteextattr_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); } void vop_link_post(void *ap, int rc) { struct vop_link_args *a = ap; if (!rc) { VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE); } } void vop_mkdir_post(void *ap, int rc) { struct vop_mkdir_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); } void vop_mknod_post(void *ap, int rc) { struct vop_mknod_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); } void vop_reclaim_post(void *ap, int rc) { struct vop_reclaim_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE); } void vop_remove_post(void *ap, int rc) { struct vop_remove_args *a = ap; if (!rc) { VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); } } void vop_rename_post(void *ap, int rc) { struct vop_rename_args *a = ap; long hint; if (!rc) { hint = NOTE_WRITE; if (a->a_fdvp == a->a_tdvp) { if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) hint |= NOTE_LINK; VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); } else { hint |= NOTE_EXTEND; if (a->a_fvp->v_type == VDIR) hint |= NOTE_LINK; VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && a->a_tvp->v_type == VDIR) hint &= ~NOTE_LINK; VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); } VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); if (a->a_tvp) VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); } if (a->a_tdvp != a->a_fdvp) vdrop(a->a_fdvp); if (a->a_tvp != a->a_fvp) vdrop(a->a_fvp); vdrop(a->a_tdvp); if (a->a_tvp) vdrop(a->a_tvp); } void vop_rmdir_post(void *ap, int rc) { struct vop_rmdir_args *a = ap; if (!rc) { VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK); VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE); } } void vop_setattr_post(void *ap, int rc) { struct vop_setattr_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); } void vop_setextattr_post(void *ap, int rc) { struct vop_setextattr_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); } void vop_symlink_post(void *ap, int rc) { struct vop_symlink_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); } void vop_open_post(void *ap, int rc) { struct vop_open_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); } void vop_close_post(void *ap, int rc) { struct vop_close_args *a = ap; if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ !VN_IS_DOOMED(a->a_vp))) { VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? NOTE_CLOSE_WRITE : NOTE_CLOSE); } } void vop_read_post(void *ap, int rc) { struct vop_read_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); } void vop_readdir_post(void *ap, int rc) { struct vop_readdir_args *a = ap; if (!rc) VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); } static struct knlist fs_knlist; static void vfs_event_init(void *arg) { knlist_init_mtx(&fs_knlist, NULL); } /* XXX - correct order? */ SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); void vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) { KNOTE_UNLOCKED(&fs_knlist, event); } static int filt_fsattach(struct knote *kn); static void filt_fsdetach(struct knote *kn); static int filt_fsevent(struct knote *kn, long hint); struct filterops fs_filtops = { .f_isfd = 0, .f_attach = filt_fsattach, .f_detach = filt_fsdetach, .f_event = filt_fsevent }; static int filt_fsattach(struct knote *kn) { kn->kn_flags |= EV_CLEAR; knlist_add(&fs_knlist, kn, 0); return (0); } static void filt_fsdetach(struct knote *kn) { knlist_remove(&fs_knlist, kn, 0); } static int filt_fsevent(struct knote *kn, long hint) { kn->kn_fflags |= hint; return (kn->kn_fflags != 0); } static int sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) { struct vfsidctl vc; int error; struct mount *mp; error = SYSCTL_IN(req, &vc, sizeof(vc)); if (error) return (error); if (vc.vc_vers != VFS_CTL_VERS1) return (EINVAL); mp = vfs_getvfs(&vc.vc_fsid); if (mp == NULL) return (ENOENT); /* ensure that a specific sysctl goes to the right filesystem. */ if (strcmp(vc.vc_fstypename, "*") != 0 && strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { vfs_rel(mp); return (EINVAL); } VCTLTOREQ(&vc, req); error = VFS_SYSCTL(mp, vc.vc_op, req); vfs_rel(mp); return (error); } SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid"); /* * Function to initialize a va_filerev field sensibly. * XXX: Wouldn't a random number make a lot more sense ?? */ u_quad_t init_va_filerev(void) { struct bintime bt; getbinuptime(&bt); return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); } static int filt_vfsread(struct knote *kn, long hint); static int filt_vfswrite(struct knote *kn, long hint); static int filt_vfsvnode(struct knote *kn, long hint); static void filt_vfsdetach(struct knote *kn); static struct filterops vfsread_filtops = { .f_isfd = 1, .f_detach = filt_vfsdetach, .f_event = filt_vfsread }; static struct filterops vfswrite_filtops = { .f_isfd = 1, .f_detach = filt_vfsdetach, .f_event = filt_vfswrite }; static struct filterops vfsvnode_filtops = { .f_isfd = 1, .f_detach = filt_vfsdetach, .f_event = filt_vfsvnode }; static void vfs_knllock(void *arg) { struct vnode *vp = arg; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } static void vfs_knlunlock(void *arg) { struct vnode *vp = arg; VOP_UNLOCK(vp); } static void vfs_knl_assert_locked(void *arg) { #ifdef DEBUG_VFS_LOCKS struct vnode *vp = arg; ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); #endif } static void vfs_knl_assert_unlocked(void *arg) { #ifdef DEBUG_VFS_LOCKS struct vnode *vp = arg; ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); #endif } int vfs_kqfilter(struct vop_kqfilter_args *ap) { struct vnode *vp = ap->a_vp; struct knote *kn = ap->a_kn; struct knlist *knl; switch (kn->kn_filter) { case EVFILT_READ: kn->kn_fop = &vfsread_filtops; break; case EVFILT_WRITE: kn->kn_fop = &vfswrite_filtops; break; case EVFILT_VNODE: kn->kn_fop = &vfsvnode_filtops; break; default: return (EINVAL); } kn->kn_hook = (caddr_t)vp; v_addpollinfo(vp); if (vp->v_pollinfo == NULL) return (ENOMEM); knl = &vp->v_pollinfo->vpi_selinfo.si_note; vhold(vp); knlist_add(knl, kn, 0); return (0); } /* * Detach knote from vnode */ static void filt_vfsdetach(struct knote *kn) { struct vnode *vp = (struct vnode *)kn->kn_hook; KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); vdrop(vp); } /*ARGSUSED*/ static int filt_vfsread(struct knote *kn, long hint) { struct vnode *vp = (struct vnode *)kn->kn_hook; struct vattr va; int res; /* * filesystem is gone, so set the EOF flag and schedule * the knote for deletion. */ if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { VI_LOCK(vp); kn->kn_flags |= (EV_EOF | EV_ONESHOT); VI_UNLOCK(vp); return (1); } if (VOP_GETATTR(vp, &va, curthread->td_ucred)) return (0); VI_LOCK(vp); kn->kn_data = va.va_size - kn->kn_fp->f_offset; res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; VI_UNLOCK(vp); return (res); } /*ARGSUSED*/ static int filt_vfswrite(struct knote *kn, long hint) { struct vnode *vp = (struct vnode *)kn->kn_hook; VI_LOCK(vp); /* * filesystem is gone, so set the EOF flag and schedule * the knote for deletion. */ if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) kn->kn_flags |= (EV_EOF | EV_ONESHOT); kn->kn_data = 0; VI_UNLOCK(vp); return (1); } static int filt_vfsvnode(struct knote *kn, long hint) { struct vnode *vp = (struct vnode *)kn->kn_hook; int res; VI_LOCK(vp); if (kn->kn_sfflags & hint) kn->kn_fflags |= hint; if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { kn->kn_flags |= EV_EOF; VI_UNLOCK(vp); return (1); } res = (kn->kn_fflags != 0); VI_UNLOCK(vp); return (res); } /* * Returns whether the directory is empty or not. * If it is empty, the return value is 0; otherwise * the return value is an error value (which may * be ENOTEMPTY). */ int vfs_emptydir(struct vnode *vp) { struct uio uio; struct iovec iov; struct dirent *dirent, *dp, *endp; int error, eof; error = 0; eof = 0; ASSERT_VOP_LOCKED(vp, "vfs_emptydir"); dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK); iov.iov_base = dirent; iov.iov_len = sizeof(struct dirent); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = sizeof(struct dirent); uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = curthread; while (eof == 0 && error == 0) { error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof, NULL, NULL); if (error != 0) break; endp = (void *)((uint8_t *)dirent + sizeof(struct dirent) - uio.uio_resid); for (dp = dirent; dp < endp; dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) { if (dp->d_type == DT_WHT) continue; if (dp->d_namlen == 0) continue; if (dp->d_type != DT_DIR && dp->d_type != DT_UNKNOWN) { error = ENOTEMPTY; break; } if (dp->d_namlen > 2) { error = ENOTEMPTY; break; } if (dp->d_namlen == 1 && dp->d_name[0] != '.') { error = ENOTEMPTY; break; } if (dp->d_namlen == 2 && dp->d_name[1] != '.') { error = ENOTEMPTY; break; } uio.uio_resid = sizeof(struct dirent); } } free(dirent, M_TEMP); return (error); } int vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) { int error; if (dp->d_reclen > ap->a_uio->uio_resid) return (ENAMETOOLONG); error = uiomove(dp, dp->d_reclen, ap->a_uio); if (error) { if (ap->a_ncookies != NULL) { if (ap->a_cookies != NULL) free(ap->a_cookies, M_TEMP); ap->a_cookies = NULL; *ap->a_ncookies = 0; } return (error); } if (ap->a_ncookies == NULL) return (0); KASSERT(ap->a_cookies, ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); *ap->a_cookies = realloc(*ap->a_cookies, (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); (*ap->a_cookies)[*ap->a_ncookies] = off; *ap->a_ncookies += 1; return (0); } /* - * Mark for update the access time of the file if the filesystem - * supports VOP_MARKATIME. This functionality is used by execve and - * mmap, so we want to avoid the I/O implied by directly setting - * va_atime for the sake of efficiency. - */ -void -vfs_mark_atime(struct vnode *vp, struct ucred *cred) -{ - struct mount *mp; - - mp = vp->v_mount; - ASSERT_VOP_LOCKED(vp, "vfs_mark_atime"); - if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) - (void)VOP_MARKATIME(vp); -} - -/* * The purpose of this routine is to remove granularity from accmode_t, * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, * VADMIN and VAPPEND. * * If it returns 0, the caller is supposed to continue with the usual * access checks using 'accmode' as modified by this routine. If it * returns nonzero value, the caller is supposed to return that value * as errno. * * Note that after this routine runs, accmode may be zero. */ int vfs_unixify_accmode(accmode_t *accmode) { /* * There is no way to specify explicit "deny" rule using * file mode or POSIX.1e ACLs. */ if (*accmode & VEXPLICIT_DENY) { *accmode = 0; return (0); } /* * None of these can be translated into usual access bits. * Also, the common case for NFSv4 ACLs is to not contain * either of these bits. Caller should check for VWRITE * on the containing directory instead. */ if (*accmode & (VDELETE_CHILD | VDELETE)) return (EPERM); if (*accmode & VADMIN_PERMS) { *accmode &= ~VADMIN_PERMS; *accmode |= VADMIN; } /* * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL * or VSYNCHRONIZE using file mode or POSIX.1e ACL. */ *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); return (0); } /* * Clear out a doomed vnode (if any) and replace it with a new one as long * as the fs is not being unmounted. Return the root vnode to the caller. */ static int __noinline vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) { struct vnode *vp; int error; restart: if (mp->mnt_rootvnode != NULL) { MNT_ILOCK(mp); vp = mp->mnt_rootvnode; if (vp != NULL) { if (!VN_IS_DOOMED(vp)) { vrefact(vp); MNT_IUNLOCK(mp); error = vn_lock(vp, flags); if (error == 0) { *vpp = vp; return (0); } vrele(vp); goto restart; } /* * Clear the old one. */ mp->mnt_rootvnode = NULL; } MNT_IUNLOCK(mp); if (vp != NULL) { /* * Paired with a fence in vfs_op_thread_exit(). */ atomic_thread_fence_acq(); vfs_op_barrier_wait(mp); vrele(vp); } } error = VFS_CACHEDROOT(mp, flags, vpp); if (error != 0) return (error); if (mp->mnt_vfs_ops == 0) { MNT_ILOCK(mp); if (mp->mnt_vfs_ops != 0) { MNT_IUNLOCK(mp); return (0); } if (mp->mnt_rootvnode == NULL) { vrefact(*vpp); mp->mnt_rootvnode = *vpp; } else { if (mp->mnt_rootvnode != *vpp) { if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { panic("%s: mismatch between vnode returned " " by VFS_CACHEDROOT and the one cached " " (%p != %p)", __func__, *vpp, mp->mnt_rootvnode); } } } MNT_IUNLOCK(mp); } return (0); } int vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) { struct vnode *vp; int error; if (!vfs_op_thread_enter(mp)) return (vfs_cache_root_fallback(mp, flags, vpp)); vp = (struct vnode *)atomic_load_ptr(&mp->mnt_rootvnode); if (vp == NULL || VN_IS_DOOMED(vp)) { vfs_op_thread_exit(mp); return (vfs_cache_root_fallback(mp, flags, vpp)); } vrefact(vp); vfs_op_thread_exit(mp); error = vn_lock(vp, flags); if (error != 0) { vrele(vp); return (vfs_cache_root_fallback(mp, flags, vpp)); } *vpp = vp; return (0); } struct vnode * vfs_cache_root_clear(struct mount *mp) { struct vnode *vp; /* * ops > 0 guarantees there is nobody who can see this vnode */ MPASS(mp->mnt_vfs_ops > 0); vp = mp->mnt_rootvnode; mp->mnt_rootvnode = NULL; return (vp); } void vfs_cache_root_set(struct mount *mp, struct vnode *vp) { MPASS(mp->mnt_vfs_ops > 0); vrefact(vp); mp->mnt_rootvnode = vp; } /* * These are helper functions for filesystems to traverse all * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. * * This interface replaces MNT_VNODE_FOREACH. */ struct vnode * __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) { struct vnode *vp; if (should_yield()) kern_yield(PRI_USER); MNT_ILOCK(mp); KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; vp = TAILQ_NEXT(vp, v_nmntvnodes)) { /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) continue; VI_LOCK(vp); if (VN_IS_DOOMED(vp)) { VI_UNLOCK(vp); continue; } break; } if (vp == NULL) { __mnt_vnode_markerfree_all(mvp, mp); /* MNT_IUNLOCK(mp); -- done in above function */ mtx_assert(MNT_MTX(mp), MA_NOTOWNED); return (NULL); } TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); MNT_IUNLOCK(mp); return (vp); } struct vnode * __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) { struct vnode *vp; *mvp = vn_alloc_marker(mp); MNT_ILOCK(mp); MNT_REF(mp); TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) continue; VI_LOCK(vp); if (VN_IS_DOOMED(vp)) { VI_UNLOCK(vp); continue; } break; } if (vp == NULL) { MNT_REL(mp); MNT_IUNLOCK(mp); vn_free_marker(*mvp); *mvp = NULL; return (NULL); } TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); MNT_IUNLOCK(mp); return (vp); } void __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) { if (*mvp == NULL) { MNT_IUNLOCK(mp); return; } mtx_assert(MNT_MTX(mp), MA_OWNED); KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); MNT_REL(mp); MNT_IUNLOCK(mp); vn_free_marker(*mvp); *mvp = NULL; } /* * These are helper functions for filesystems to traverse their * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h */ static void mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) { KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); MNT_ILOCK(mp); MNT_REL(mp); MNT_IUNLOCK(mp); vn_free_marker(*mvp); *mvp = NULL; } /* * Relock the mp mount vnode list lock with the vp vnode interlock in the * conventional lock order during mnt_vnode_next_lazy iteration. * * On entry, the mount vnode list lock is held and the vnode interlock is not. * The list lock is dropped and reacquired. On success, both locks are held. * On failure, the mount vnode list lock is held but the vnode interlock is * not, and the procedure may have yielded. */ static bool mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, struct vnode *vp) { VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, ("%s: bad marker", __func__)); VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, ("%s: inappropriate vnode", __func__)); ASSERT_VI_UNLOCKED(vp, __func__); mtx_assert(&mp->mnt_listmtx, MA_OWNED); TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); vholdnz(vp); mtx_unlock(&mp->mnt_listmtx); VI_LOCK(vp); if (VN_IS_DOOMED(vp)) { VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); goto out_lost; } VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); /* * Since we had a period with no locks held we may be the last * remaining user, in which case there is nothing to do. */ if (!refcount_release_if_not_last(&vp->v_holdcnt)) goto out_lost; mtx_lock(&mp->mnt_listmtx); return (true); out_lost: vdropl(vp); maybe_yield(); mtx_lock(&mp->mnt_listmtx); return (false); } static struct vnode * mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, void *cbarg) { struct vnode *vp; mtx_assert(&mp->mnt_listmtx, MA_OWNED); KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); restart: vp = TAILQ_NEXT(*mvp, v_lazylist); while (vp != NULL) { if (vp->v_type == VMARKER) { vp = TAILQ_NEXT(vp, v_lazylist); continue; } /* * See if we want to process the vnode. Note we may encounter a * long string of vnodes we don't care about and hog the list * as a result. Check for it and requeue the marker. */ VNPASS(!VN_IS_DOOMED(vp), vp); if (!cb(vp, cbarg)) { if (!should_yield()) { vp = TAILQ_NEXT(vp, v_lazylist); continue; } TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); mtx_unlock(&mp->mnt_listmtx); kern_yield(PRI_USER); mtx_lock(&mp->mnt_listmtx); goto restart; } /* * Try-lock because this is the wrong lock order. */ if (!VI_TRYLOCK(vp) && !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) goto restart; KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); KASSERT(vp->v_mount == mp || vp->v_mount == NULL, ("alien vnode on the lazy list %p %p", vp, mp)); VNPASS(vp->v_mount == mp, vp); VNPASS(!VN_IS_DOOMED(vp), vp); break; } TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); /* Check if we are done */ if (vp == NULL) { mtx_unlock(&mp->mnt_listmtx); mnt_vnode_markerfree_lazy(mvp, mp); return (NULL); } TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); mtx_unlock(&mp->mnt_listmtx); ASSERT_VI_LOCKED(vp, "lazy iter"); return (vp); } struct vnode * __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, void *cbarg) { if (should_yield()) kern_yield(PRI_USER); mtx_lock(&mp->mnt_listmtx); return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); } struct vnode * __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, void *cbarg) { struct vnode *vp; if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) return (NULL); *mvp = vn_alloc_marker(mp); MNT_ILOCK(mp); MNT_REF(mp); MNT_IUNLOCK(mp); mtx_lock(&mp->mnt_listmtx); vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); if (vp == NULL) { mtx_unlock(&mp->mnt_listmtx); mnt_vnode_markerfree_lazy(mvp, mp); return (NULL); } TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); } void __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) { if (*mvp == NULL) return; mtx_lock(&mp->mnt_listmtx); TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); mtx_unlock(&mp->mnt_listmtx); mnt_vnode_markerfree_lazy(mvp, mp); } Index: head/sys/kern/vnode_if.src =================================================================== --- head/sys/kern/vnode_if.src (revision 357360) +++ head/sys/kern/vnode_if.src (revision 357361) @@ -1,765 +1,765 @@ #- # Copyright (c) 1992, 1993 # The Regents of the University of California. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the University nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # # @(#)vnode_if.src 8.12 (Berkeley) 5/14/95 # $FreeBSD$ # # # Above each of the vop descriptors in lines starting with %% # is a specification of the locking protocol used by each vop call. # The first column is the name of the variable, the remaining three # columns are in, out and error respectively. The "in" column defines # the lock state on input, the "out" column defines the state on successful # return, and the "error" column defines the locking state on error exit. # # The locking value can take the following values: # L: locked; not converted to type of lock. # E: locked with exclusive lock for this process. # U: unlocked. # -: not applicable. vnode does not yet (or no longer) exists. # =: the same on input and output, may be either L or U. # # The paramater named "vpp" is assumed to be always used with double # indirection (**vpp) and that name is hard-coded in vnode_if.awk ! # # Lines starting with %! specify a pre or post-condition function # to call before/after the vop call. # # If other such parameters are introduced, they have to be added to # the AWK script at the head of the definition of "add_debug_code()". # vop_islocked { IN struct vnode *vp; }; %% lookup dvp L L L %% lookup vpp - L - # XXX - the lookup locking protocol defies simple description and depends # on the flags and operation fields in the (cnp) structure. Note # especially that *vpp may equal dvp and both may be locked. vop_lookup { IN struct vnode *dvp; INOUT struct vnode **vpp; IN struct componentname *cnp; }; %% cachedlookup dvp L L L %% cachedlookup vpp - L - # This must be an exact copy of lookup. See kern/vfs_cache.c for details. vop_cachedlookup { IN struct vnode *dvp; INOUT struct vnode **vpp; IN struct componentname *cnp; }; %% create dvp E E E %% create vpp - L - %! create post vop_create_post vop_create { IN struct vnode *dvp; OUT struct vnode **vpp; IN struct componentname *cnp; IN struct vattr *vap; }; %% whiteout dvp E E E vop_whiteout { IN struct vnode *dvp; IN struct componentname *cnp; IN int flags; }; %% mknod dvp E E E %% mknod vpp - L - %! mknod post vop_mknod_post vop_mknod { IN struct vnode *dvp; OUT struct vnode **vpp; IN struct componentname *cnp; IN struct vattr *vap; }; %% open vp L L L %! open post vop_open_post vop_open { IN struct vnode *vp; IN int mode; IN struct ucred *cred; IN struct thread *td; IN struct file *fp; }; %% close vp L L L %! close post vop_close_post vop_close { IN struct vnode *vp; IN int fflag; IN struct ucred *cred; IN struct thread *td; }; %% access vp L L L vop_access { IN struct vnode *vp; IN accmode_t accmode; IN struct ucred *cred; IN struct thread *td; }; %% accessx vp L L L vop_accessx { IN struct vnode *vp; IN accmode_t accmode; IN struct ucred *cred; IN struct thread *td; }; %% getattr vp L L L vop_getattr { IN struct vnode *vp; OUT struct vattr *vap; IN struct ucred *cred; }; %% setattr vp E E E %! setattr post vop_setattr_post vop_setattr { IN struct vnode *vp; IN struct vattr *vap; IN struct ucred *cred; }; -%% markatime vp L L L +%% mmapped vp L L L -vop_markatime { +vop_mmapped { IN struct vnode *vp; }; %% read vp L L L %! read post vop_read_post vop_read { IN struct vnode *vp; INOUT struct uio *uio; IN int ioflag; IN struct ucred *cred; }; %% write vp L L L %! write pre VOP_WRITE_PRE %! write post VOP_WRITE_POST vop_write { IN struct vnode *vp; INOUT struct uio *uio; IN int ioflag; IN struct ucred *cred; }; %% ioctl vp U U U vop_ioctl { IN struct vnode *vp; IN u_long command; IN void *data; IN int fflag; IN struct ucred *cred; IN struct thread *td; }; %% poll vp U U U vop_poll { IN struct vnode *vp; IN int events; IN struct ucred *cred; IN struct thread *td; }; %% kqfilter vp U U U vop_kqfilter { IN struct vnode *vp; IN struct knote *kn; }; %% revoke vp L L L vop_revoke { IN struct vnode *vp; IN int flags; }; %% fsync vp L L L vop_fsync { IN struct vnode *vp; IN int waitfor; IN struct thread *td; }; %% remove dvp E E E %% remove vp E E E %! remove post vop_remove_post vop_remove { IN struct vnode *dvp; IN struct vnode *vp; IN struct componentname *cnp; }; %% link tdvp E E E %% link vp E E E %! link post vop_link_post vop_link { IN struct vnode *tdvp; IN struct vnode *vp; IN struct componentname *cnp; }; %! rename pre vop_rename_pre %! rename post vop_rename_post vop_rename { IN WILLRELE struct vnode *fdvp; IN WILLRELE struct vnode *fvp; IN struct componentname *fcnp; IN WILLRELE struct vnode *tdvp; IN WILLRELE struct vnode *tvp; IN struct componentname *tcnp; }; %% mkdir dvp E E E %% mkdir vpp - E - %! mkdir post vop_mkdir_post vop_mkdir { IN struct vnode *dvp; OUT struct vnode **vpp; IN struct componentname *cnp; IN struct vattr *vap; }; %% rmdir dvp E E E %% rmdir vp E E E %! rmdir post vop_rmdir_post vop_rmdir { IN struct vnode *dvp; IN struct vnode *vp; IN struct componentname *cnp; }; %% symlink dvp E E E %% symlink vpp - E - %! symlink post vop_symlink_post vop_symlink { IN struct vnode *dvp; OUT struct vnode **vpp; IN struct componentname *cnp; IN struct vattr *vap; IN const char *target; }; %% readdir vp L L L %! readdir post vop_readdir_post vop_readdir { IN struct vnode *vp; INOUT struct uio *uio; IN struct ucred *cred; INOUT int *eofflag; OUT int *ncookies; INOUT u_long **cookies; }; %% readlink vp L L L vop_readlink { IN struct vnode *vp; INOUT struct uio *uio; IN struct ucred *cred; }; %% inactive vp E E E vop_inactive { IN struct vnode *vp; IN struct thread *td; }; %! need_inactive pre vop_need_inactive_pre %! need_inactive post vop_need_inactive_post vop_need_inactive { IN struct vnode *vp; }; %% reclaim vp E E E %! reclaim post vop_reclaim_post vop_reclaim { IN struct vnode *vp; IN struct thread *td; }; %! lock1 pre vop_lock_pre %! lock1 post vop_lock_post vop_lock1 { IN struct vnode *vp; IN int flags; IN char *file; IN int line; }; %! unlock pre vop_unlock_pre %! unlock post vop_unlock_post vop_unlock { IN struct vnode *vp; }; %% bmap vp L L L vop_bmap { IN struct vnode *vp; IN daddr_t bn; OUT struct bufobj **bop; IN daddr_t *bnp; OUT int *runp; OUT int *runb; }; %% strategy vp L L L %! strategy pre vop_strategy_pre vop_strategy { IN struct vnode *vp; IN struct buf *bp; }; %% getwritemount vp = = = vop_getwritemount { IN struct vnode *vp; OUT struct mount **mpp; }; %% print vp - - - vop_print { IN struct vnode *vp; }; %% pathconf vp L L L vop_pathconf { IN struct vnode *vp; IN int name; OUT long *retval; }; %% advlock vp U U U vop_advlock { IN struct vnode *vp; IN void *id; IN int op; IN struct flock *fl; IN int flags; }; %% advlockasync vp U U U vop_advlockasync { IN struct vnode *vp; IN void *id; IN int op; IN struct flock *fl; IN int flags; IN struct task *task; INOUT void **cookiep; }; %% advlockpurge vp E E E vop_advlockpurge { IN struct vnode *vp; }; %% reallocblks vp E E E vop_reallocblks { IN struct vnode *vp; IN struct cluster_save *buflist; }; %% getpages vp L L L vop_getpages { IN struct vnode *vp; IN vm_page_t *m; IN int count; IN int *rbehind; IN int *rahead; }; %% getpages_async vp L L L vop_getpages_async { IN struct vnode *vp; IN vm_page_t *m; IN int count; IN int *rbehind; IN int *rahead; IN vop_getpages_iodone_t *iodone; IN void *arg; }; %% putpages vp L L L vop_putpages { IN struct vnode *vp; IN vm_page_t *m; IN int count; IN int sync; IN int *rtvals; }; %% getacl vp L L L vop_getacl { IN struct vnode *vp; IN acl_type_t type; OUT struct acl *aclp; IN struct ucred *cred; IN struct thread *td; }; %% setacl vp E E E vop_setacl { IN struct vnode *vp; IN acl_type_t type; IN struct acl *aclp; IN struct ucred *cred; IN struct thread *td; }; %% aclcheck vp = = = vop_aclcheck { IN struct vnode *vp; IN acl_type_t type; IN struct acl *aclp; IN struct ucred *cred; IN struct thread *td; }; %% closeextattr vp L L L vop_closeextattr { IN struct vnode *vp; IN int commit; IN struct ucred *cred; IN struct thread *td; }; %% getextattr vp L L L vop_getextattr { IN struct vnode *vp; IN int attrnamespace; IN const char *name; INOUT struct uio *uio; OUT size_t *size; IN struct ucred *cred; IN struct thread *td; }; %% listextattr vp L L L vop_listextattr { IN struct vnode *vp; IN int attrnamespace; INOUT struct uio *uio; OUT size_t *size; IN struct ucred *cred; IN struct thread *td; }; %% openextattr vp L L L vop_openextattr { IN struct vnode *vp; IN struct ucred *cred; IN struct thread *td; }; %% deleteextattr vp E E E %! deleteextattr post vop_deleteextattr_post vop_deleteextattr { IN struct vnode *vp; IN int attrnamespace; IN const char *name; IN struct ucred *cred; IN struct thread *td; }; %% setextattr vp E E E %! setextattr post vop_setextattr_post vop_setextattr { IN struct vnode *vp; IN int attrnamespace; IN const char *name; INOUT struct uio *uio; IN struct ucred *cred; IN struct thread *td; }; %% setlabel vp E E E vop_setlabel { IN struct vnode *vp; IN struct label *label; IN struct ucred *cred; IN struct thread *td; }; %% vptofh vp = = = vop_vptofh { IN struct vnode *vp; IN struct fid *fhp; }; %% vptocnp vp L L L %% vptocnp vpp - U - vop_vptocnp { IN struct vnode *vp; OUT struct vnode **vpp; IN struct ucred *cred; INOUT char *buf; INOUT int *buflen; }; %% allocate vp E E E vop_allocate { IN struct vnode *vp; INOUT off_t *offset; INOUT off_t *len; }; %% advise vp U U U vop_advise { IN struct vnode *vp; IN off_t start; IN off_t end; IN int advice; }; %% unp_bind vp E E E vop_unp_bind { IN struct vnode *vp; IN struct unpcb *unpcb; }; %% unp_connect vp L L L vop_unp_connect { IN struct vnode *vp; OUT struct unpcb **unpcb; }; %% unp_detach vp = = = vop_unp_detach { IN struct vnode *vp; }; %% is_text vp L L L vop_is_text { IN struct vnode *vp; }; %% set_text vp = = = vop_set_text { IN struct vnode *vp; }; %% vop_unset_text vp L L L vop_unset_text { IN struct vnode *vp; }; %% add_writecount vp L L L vop_add_writecount { IN struct vnode *vp; IN int inc; }; %% fdatasync vp L L L vop_fdatasync { IN struct vnode *vp; IN struct thread *td; }; %% copy_file_range invp U U U %% copy_file_range outvp U U U vop_copy_file_range { IN struct vnode *invp; INOUT off_t *inoffp; IN struct vnode *outvp; INOUT off_t *outoffp; INOUT size_t *lenp; IN unsigned int flags; IN struct ucred *incred; IN struct ucred *outcred; IN struct thread *fsizetd; }; # The VOPs below are spares at the end of the table to allow new VOPs to be # added in stable branches without breaking the KBI. New VOPs in HEAD should # be added above these spares. When merging a new VOP to a stable branch, # the new VOP should replace one of the spares. vop_spare1 { IN struct vnode *vp; }; vop_spare2 { IN struct vnode *vp; }; vop_spare3 { IN struct vnode *vp; }; vop_spare4 { IN struct vnode *vp; }; vop_spare5 { IN struct vnode *vp; }; Index: head/sys/sys/vnode.h =================================================================== --- head/sys/sys/vnode.h (revision 357360) +++ head/sys/sys/vnode.h (revision 357361) @@ -1,980 +1,979 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vnode.h 8.7 (Berkeley) 2/4/94 * $FreeBSD$ */ #ifndef _SYS_VNODE_H_ #define _SYS_VNODE_H_ #include #include #include #include #include #include #include #include #include #include /* * The vnode is the focus of all file activity in UNIX. There is a * unique vnode allocated for each active file, each current directory, * each mounted-on file, text file, and the root. */ /* * Vnode types. VNON means no type. */ enum vtype { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO, VBAD, VMARKER }; enum vgetstate { VGET_HOLDCNT, VGET_USECOUNT }; /* * Each underlying filesystem allocates its own private area and hangs * it from v_data. If non-null, this area is freed in getnewvnode(). */ struct namecache; struct vpollinfo { struct mtx vpi_lock; /* lock to protect below */ struct selinfo vpi_selinfo; /* identity of poller(s) */ short vpi_events; /* what they are looking for */ short vpi_revents; /* what has happened */ }; /* * Reading or writing any of these items requires holding the appropriate lock. * * Lock reference: * c - namecache mutex * i - interlock * l - mp mnt_listmtx or freelist mutex * I - updated with atomics, 0->1 and 1->0 transitions with interlock held * m - mount point interlock * p - pollinfo lock * u - Only a reference to the vnode is needed to read. * v - vnode lock * * Vnodes may be found on many lists. The general way to deal with operating * on a vnode that is on a list is: * 1) Lock the list and find the vnode. * 2) Lock interlock so that the vnode does not go away. * 3) Unlock the list to avoid lock order reversals. * 4) vget with LK_INTERLOCK and check for ENOENT, or * 5) Check for DOOMED if the vnode lock is not required. * 6) Perform your operation, then vput(). */ #if defined(_KERNEL) || defined(_KVM_VNODE) struct vnode { /* * Fields which define the identity of the vnode. These fields are * owned by the filesystem (XXX: and vgone() ?) */ enum vtype v_type:8; /* u vnode type */ short v_irflag; /* i frequently read flags */ struct vop_vector *v_op; /* u vnode operations vector */ void *v_data; /* u private data for fs */ /* * Filesystem instance stuff */ struct mount *v_mount; /* u ptr to vfs we are in */ TAILQ_ENTRY(vnode) v_nmntvnodes; /* m vnodes for mount point */ /* * Type specific fields, only one applies to any given vnode. */ union { struct mount *v_mountedhere; /* v ptr to mountpoint (VDIR) */ struct unpcb *v_unpcb; /* v unix domain net (VSOCK) */ struct cdev *v_rdev; /* v device (VCHR, VBLK) */ struct fifoinfo *v_fifoinfo; /* v fifo (VFIFO) */ }; /* * vfs_hash: (mount + inode) -> vnode hash. The hash value * itself is grouped with other int fields, to avoid padding. */ LIST_ENTRY(vnode) v_hashlist; /* * VFS_namecache stuff */ LIST_HEAD(, namecache) v_cache_src; /* c Cache entries from us */ TAILQ_HEAD(, namecache) v_cache_dst; /* c Cache entries to us */ struct namecache *v_cache_dd; /* c Cache entry for .. vnode */ /* * Locking */ struct lock v_lock; /* u (if fs don't have one) */ struct mtx v_interlock; /* lock for "i" things */ struct lock *v_vnlock; /* u pointer to vnode lock */ /* * The machinery of being a vnode */ TAILQ_ENTRY(vnode) v_vnodelist; /* l vnode lists */ TAILQ_ENTRY(vnode) v_lazylist; /* l vnode lazy list */ struct bufobj v_bufobj; /* * Buffer cache object */ /* * Hooks for various subsystems and features. */ struct vpollinfo *v_pollinfo; /* i Poll events, p for *v_pi */ struct label *v_label; /* MAC label for vnode */ struct lockf *v_lockf; /* Byte-level advisory lock list */ struct rangelock v_rl; /* Byte-range lock */ /* * clustering stuff */ daddr_t v_cstart; /* v start block of cluster */ daddr_t v_lasta; /* v last allocation */ daddr_t v_lastw; /* v last write */ int v_clen; /* v length of cur. cluster */ u_int v_holdcnt; /* I prevents recycling. */ u_int v_usecount; /* I ref count of users */ u_int v_iflag; /* i vnode flags (see below) */ u_int v_vflag; /* v vnode flags */ u_short v_mflag; /* l mnt-specific vnode flags */ short v_dbatchcpu; /* i LRU requeue deferral batch */ int v_writecount; /* I ref count of writers or (negative) text users */ u_int v_hash; }; #endif /* defined(_KERNEL) || defined(_KVM_VNODE) */ #define bo2vnode(bo) __containerof((bo), struct vnode, v_bufobj) /* XXX: These are temporary to avoid a source sweep at this time */ #define v_object v_bufobj.bo_object /* * Userland version of struct vnode, for sysctl. */ struct xvnode { size_t xv_size; /* sizeof(struct xvnode) */ void *xv_vnode; /* address of real vnode */ u_long xv_flag; /* vnode vflags */ int xv_usecount; /* reference count of users */ int xv_writecount; /* reference count of writers */ int xv_holdcnt; /* page & buffer references */ u_long xv_id; /* capability identifier */ void *xv_mount; /* address of parent mount */ long xv_numoutput; /* num of writes in progress */ enum vtype xv_type; /* vnode type */ union { void *xvu_socket; /* unpcb, if VSOCK */ void *xvu_fifo; /* fifo, if VFIFO */ dev_t xvu_rdev; /* maj/min, if VBLK/VCHR */ struct { dev_t xvu_dev; /* device, if VDIR/VREG/VLNK */ ino_t xvu_ino; /* id, if VDIR/VREG/VLNK */ } xv_uns; } xv_un; }; #define xv_socket xv_un.xvu_socket #define xv_fifo xv_un.xvu_fifo #define xv_rdev xv_un.xvu_rdev #define xv_dev xv_un.xv_uns.xvu_dev #define xv_ino xv_un.xv_uns.xvu_ino /* We don't need to lock the knlist */ #define VN_KNLIST_EMPTY(vp) ((vp)->v_pollinfo == NULL || \ KNLIST_EMPTY(&(vp)->v_pollinfo->vpi_selinfo.si_note)) #define VN_KNOTE(vp, b, a) \ do { \ if (!VN_KNLIST_EMPTY(vp)) \ KNOTE(&vp->v_pollinfo->vpi_selinfo.si_note, (b), \ (a) | KNF_NOKQLOCK); \ } while (0) #define VN_KNOTE_LOCKED(vp, b) VN_KNOTE(vp, b, KNF_LISTLOCKED) #define VN_KNOTE_UNLOCKED(vp, b) VN_KNOTE(vp, b, 0) /* * Vnode flags. * VI flags are protected by interlock and live in v_iflag * VV flags are protected by the vnode lock and live in v_vflag * * VIRF_DOOMED is doubly protected by the interlock and vnode lock. Both * are required for writing but the status may be checked with either. */ #define VIRF_DOOMED 0x0001 /* This vnode is being recycled */ #define VI_TEXT_REF 0x0001 /* Text ref grabbed use ref */ #define VI_MOUNT 0x0020 /* Mount in progress */ #define VI_DOINGINACT 0x0800 /* VOP_INACTIVE is in progress */ #define VI_OWEINACT 0x1000 /* Need to call inactive */ #define VI_DEFINACT 0x2000 /* deferred inactive */ #define VV_ROOT 0x0001 /* root of its filesystem */ #define VV_ISTTY 0x0002 /* vnode represents a tty */ #define VV_NOSYNC 0x0004 /* unlinked, stop syncing */ #define VV_ETERNALDEV 0x0008 /* device that is never destroyed */ #define VV_CACHEDLABEL 0x0010 /* Vnode has valid cached MAC label */ #define VV_VMSIZEVNLOCK 0x0020 /* object size check requires vnode lock */ #define VV_COPYONWRITE 0x0040 /* vnode is doing copy-on-write */ #define VV_SYSTEM 0x0080 /* vnode being used by kernel */ #define VV_PROCDEP 0x0100 /* vnode is process dependent */ #define VV_NOKNOTE 0x0200 /* don't activate knotes on this vnode */ #define VV_DELETED 0x0400 /* should be removed */ #define VV_MD 0x0800 /* vnode backs the md device */ #define VV_FORCEINSMQ 0x1000 /* force the insmntque to succeed */ #define VV_READLINK 0x2000 /* fdescfs linux vnode */ #define VMP_LAZYLIST 0x0001 /* Vnode is on mnt's lazy list */ /* * Vnode attributes. A field value of VNOVAL represents a field whose value * is unavailable (getattr) or which is not to be changed (setattr). */ struct vattr { enum vtype va_type; /* vnode type (for create) */ u_short va_mode; /* files access mode and type */ u_short va_padding0; uid_t va_uid; /* owner user id */ gid_t va_gid; /* owner group id */ nlink_t va_nlink; /* number of references to file */ dev_t va_fsid; /* filesystem id */ ino_t va_fileid; /* file id */ u_quad_t va_size; /* file size in bytes */ long va_blocksize; /* blocksize preferred for i/o */ struct timespec va_atime; /* time of last access */ struct timespec va_mtime; /* time of last modification */ struct timespec va_ctime; /* time file changed */ struct timespec va_birthtime; /* time file created */ u_long va_gen; /* generation number of file */ u_long va_flags; /* flags defined for file */ dev_t va_rdev; /* device the special file represents */ u_quad_t va_bytes; /* bytes of disk space held by file */ u_quad_t va_filerev; /* file modification number */ u_int va_vaflags; /* operations flags, see below */ long va_spare; /* remain quad aligned */ }; /* * Flags for va_vaflags. */ #define VA_UTIMES_NULL 0x01 /* utimes argument was NULL */ #define VA_EXCLUSIVE 0x02 /* exclusive create request */ #define VA_SYNC 0x04 /* O_SYNC truncation */ /* * Flags for ioflag. (high 16 bits used to ask for read-ahead and * help with write clustering) * NB: IO_NDELAY and IO_DIRECT are linked to fcntl.h */ #define IO_UNIT 0x0001 /* do I/O as atomic unit */ #define IO_APPEND 0x0002 /* append write to end */ #define IO_NDELAY 0x0004 /* FNDELAY flag set in file table */ #define IO_NODELOCKED 0x0008 /* underlying node already locked */ #define IO_ASYNC 0x0010 /* bawrite rather then bdwrite */ #define IO_VMIO 0x0020 /* data already in VMIO space */ #define IO_INVAL 0x0040 /* invalidate after I/O */ #define IO_SYNC 0x0080 /* do I/O synchronously */ #define IO_DIRECT 0x0100 /* attempt to bypass buffer cache */ #define IO_NOREUSE 0x0200 /* VMIO data won't be reused */ #define IO_EXT 0x0400 /* operate on external attributes */ #define IO_NORMAL 0x0800 /* operate on regular data */ #define IO_NOMACCHECK 0x1000 /* MAC checks unnecessary */ #define IO_BUFLOCKED 0x2000 /* ffs flag; indir buf is locked */ #define IO_RANGELOCKED 0x4000 /* range locked */ #define IO_SEQMAX 0x7F /* seq heuristic max value */ #define IO_SEQSHIFT 16 /* seq heuristic in upper 16 bits */ /* * Flags for accmode_t. */ #define VEXEC 000000000100 /* execute/search permission */ #define VWRITE 000000000200 /* write permission */ #define VREAD 000000000400 /* read permission */ #define VADMIN 000000010000 /* being the file owner */ #define VAPPEND 000000040000 /* permission to write/append */ /* * VEXPLICIT_DENY makes VOP_ACCESSX(9) return EPERM or EACCES only * if permission was denied explicitly, by a "deny" rule in NFSv4 ACL, * and 0 otherwise. This never happens with ordinary unix access rights * or POSIX.1e ACLs. Obviously, VEXPLICIT_DENY must be OR-ed with * some other V* constant. */ #define VEXPLICIT_DENY 000000100000 #define VREAD_NAMED_ATTRS 000000200000 /* not used */ #define VWRITE_NAMED_ATTRS 000000400000 /* not used */ #define VDELETE_CHILD 000001000000 #define VREAD_ATTRIBUTES 000002000000 /* permission to stat(2) */ #define VWRITE_ATTRIBUTES 000004000000 /* change {m,c,a}time */ #define VDELETE 000010000000 #define VREAD_ACL 000020000000 /* read ACL and file mode */ #define VWRITE_ACL 000040000000 /* change ACL and/or file mode */ #define VWRITE_OWNER 000100000000 /* change file owner */ #define VSYNCHRONIZE 000200000000 /* not used */ #define VCREAT 000400000000 /* creating new file */ #define VVERIFY 001000000000 /* verification required */ /* * Permissions that were traditionally granted only to the file owner. */ #define VADMIN_PERMS (VADMIN | VWRITE_ATTRIBUTES | VWRITE_ACL | \ VWRITE_OWNER) /* * Permissions that were traditionally granted to everyone. */ #define VSTAT_PERMS (VREAD_ATTRIBUTES | VREAD_ACL) /* * Permissions that allow to change the state of the file in any way. */ #define VMODIFY_PERMS (VWRITE | VAPPEND | VADMIN_PERMS | VDELETE_CHILD | \ VDELETE) /* * Token indicating no attribute value yet assigned. */ #define VNOVAL (-1) /* * LK_TIMELOCK timeout for vnode locks (used mainly by the pageout daemon) */ #define VLKTIMEOUT (hz / 20 + 1) #ifdef _KERNEL #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_VNODE); #endif extern u_int ncsizefactor; /* * Convert between vnode types and inode formats (since POSIX.1 * defines mode word of stat structure in terms of inode formats). */ extern enum vtype iftovt_tab[]; extern int vttoif_tab[]; #define IFTOVT(mode) (iftovt_tab[((mode) & S_IFMT) >> 12]) #define VTTOIF(indx) (vttoif_tab[(int)(indx)]) #define MAKEIMODE(indx, mode) (int)(VTTOIF(indx) | (mode)) /* * Flags to various vnode functions. */ #define SKIPSYSTEM 0x0001 /* vflush: skip vnodes marked VSYSTEM */ #define FORCECLOSE 0x0002 /* vflush: force file closure */ #define WRITECLOSE 0x0004 /* vflush: only close writable files */ #define EARLYFLUSH 0x0008 /* vflush: early call for ffs_flushfiles */ #define V_SAVE 0x0001 /* vinvalbuf: sync file first */ #define V_ALT 0x0002 /* vinvalbuf: invalidate only alternate bufs */ #define V_NORMAL 0x0004 /* vinvalbuf: invalidate only regular bufs */ #define V_CLEANONLY 0x0008 /* vinvalbuf: invalidate only clean bufs */ #define V_VMIO 0x0010 /* vinvalbuf: called during pageout */ #define V_ALLOWCLEAN 0x0020 /* vinvalbuf: allow clean buffers after flush */ #define REVOKEALL 0x0001 /* vop_revoke: revoke all aliases */ #define V_WAIT 0x0001 /* vn_start_write: sleep for suspend */ #define V_NOWAIT 0x0002 /* vn_start_write: don't sleep for suspend */ #define V_XSLEEP 0x0004 /* vn_start_write: just return after sleep */ #define V_MNTREF 0x0010 /* vn_start_write: mp is already ref-ed */ #define VR_START_WRITE 0x0001 /* vfs_write_resume: start write atomically */ #define VR_NO_SUSPCLR 0x0002 /* vfs_write_resume: do not clear suspension */ #define VS_SKIP_UNMOUNT 0x0001 /* vfs_write_suspend: fail if the filesystem is being unmounted */ #define VREF(vp) vref(vp) #ifdef DIAGNOSTIC #define VATTR_NULL(vap) vattr_null(vap) #else #define VATTR_NULL(vap) (*(vap) = va_null) /* initialize a vattr */ #endif /* DIAGNOSTIC */ #define NULLVP ((struct vnode *)NULL) /* * Global vnode data. */ extern struct vnode *rootvnode; /* root (i.e. "/") vnode */ extern struct mount *rootdevmp; /* "/dev" mount */ extern u_long desiredvnodes; /* number of vnodes desired */ extern struct uma_zone *namei_zone; extern struct vattr va_null; /* predefined null vattr structure */ #define VI_LOCK(vp) mtx_lock(&(vp)->v_interlock) #define VI_LOCK_FLAGS(vp, flags) mtx_lock_flags(&(vp)->v_interlock, (flags)) #define VI_TRYLOCK(vp) mtx_trylock(&(vp)->v_interlock) #define VI_UNLOCK(vp) mtx_unlock(&(vp)->v_interlock) #define VI_MTX(vp) (&(vp)->v_interlock) #define VN_LOCK_AREC(vp) lockallowrecurse((vp)->v_vnlock) #define VN_LOCK_ASHARE(vp) lockallowshare((vp)->v_vnlock) #define VN_LOCK_DSHARE(vp) lockdisableshare((vp)->v_vnlock) #endif /* _KERNEL */ /* * Mods for extensibility. */ /* * Flags for vdesc_flags: */ #define VDESC_MAX_VPS 16 /* Low order 16 flag bits are reserved for willrele flags for vp arguments. */ #define VDESC_VP0_WILLRELE 0x0001 #define VDESC_VP1_WILLRELE 0x0002 #define VDESC_VP2_WILLRELE 0x0004 #define VDESC_VP3_WILLRELE 0x0008 #define VDESC_VPP_WILLRELE 0x0200 /* * A generic structure. * This can be used by bypass routines to identify generic arguments. */ struct vop_generic_args { struct vnodeop_desc *a_desc; /* other random data follows, presumably */ }; typedef int vop_bypass_t(struct vop_generic_args *); /* * VDESC_NO_OFFSET is used to identify the end of the offset list * and in places where no such field exists. */ #define VDESC_NO_OFFSET -1 /* * This structure describes the vnode operation taking place. */ struct vnodeop_desc { char *vdesc_name; /* a readable name for debugging */ int vdesc_flags; /* VDESC_* flags */ int vdesc_vop_offset; vop_bypass_t *vdesc_call; /* Function to call */ /* * These ops are used by bypass routines to map and locate arguments. * Creds and procs are not needed in bypass routines, but sometimes * they are useful to (for example) transport layers. * Nameidata is useful because it has a cred in it. */ int *vdesc_vp_offsets; /* list ended by VDESC_NO_OFFSET */ int vdesc_vpp_offset; /* return vpp location */ int vdesc_cred_offset; /* cred location, if any */ int vdesc_thread_offset; /* thread location, if any */ int vdesc_componentname_offset; /* if any */ }; #ifdef _KERNEL /* * A list of all the operation descs. */ extern struct vnodeop_desc *vnodeop_descs[]; #define VOPARG_OFFSETOF(s_type, field) __offsetof(s_type, field) #define VOPARG_OFFSETTO(s_type, s_offset, struct_p) \ ((s_type)(((char*)(struct_p)) + (s_offset))) #ifdef DEBUG_VFS_LOCKS /* * Support code to aid in debugging VFS locking problems. Not totally * reliable since if the thread sleeps between changing the lock * state and checking it with the assert, some other thread could * change the state. They are good enough for debugging a single * filesystem using a single-threaded test. Note that the unreliability is * limited to false negatives; efforts were made to ensure that false * positives cannot occur. */ void assert_vi_locked(struct vnode *vp, const char *str); void assert_vi_unlocked(struct vnode *vp, const char *str); void assert_vop_elocked(struct vnode *vp, const char *str); void assert_vop_locked(struct vnode *vp, const char *str); void assert_vop_unlocked(struct vnode *vp, const char *str); #define ASSERT_VI_LOCKED(vp, str) assert_vi_locked((vp), (str)) #define ASSERT_VI_UNLOCKED(vp, str) assert_vi_unlocked((vp), (str)) #define ASSERT_VOP_ELOCKED(vp, str) assert_vop_elocked((vp), (str)) #define ASSERT_VOP_LOCKED(vp, str) assert_vop_locked((vp), (str)) #define ASSERT_VOP_UNLOCKED(vp, str) assert_vop_unlocked((vp), (str)) #else /* !DEBUG_VFS_LOCKS */ #define ASSERT_VI_LOCKED(vp, str) ((void)0) #define ASSERT_VI_UNLOCKED(vp, str) ((void)0) #define ASSERT_VOP_ELOCKED(vp, str) ((void)0) #define ASSERT_VOP_LOCKED(vp, str) ((void)0) #define ASSERT_VOP_UNLOCKED(vp, str) ((void)0) #endif /* DEBUG_VFS_LOCKS */ /* * This call works for vnodes in the kernel. */ #define VCALL(c) ((c)->a_desc->vdesc_call(c)) #define DOINGASYNC(vp) \ (((vp)->v_mount->mnt_kern_flag & MNTK_ASYNC) != 0 && \ ((curthread->td_pflags & TDP_SYNCIO) == 0)) /* * VMIO support inline */ extern int vmiodirenable; static __inline int vn_canvmio(struct vnode *vp) { if (vp && (vp->v_type == VREG || (vmiodirenable && vp->v_type == VDIR))) return(TRUE); return(FALSE); } /* * Finally, include the default set of vnode operations. */ typedef void vop_getpages_iodone_t(void *, vm_page_t *, int, int); #include "vnode_if.h" /* vn_open_flags */ #define VN_OPEN_NOAUDIT 0x00000001 #define VN_OPEN_NOCAPCHECK 0x00000002 #define VN_OPEN_NAMECACHE 0x00000004 #define VN_OPEN_INVFS 0x00000008 /* * Public vnode manipulation functions. */ struct componentname; struct file; struct mount; struct nameidata; struct ostat; struct freebsd11_stat; struct thread; struct proc; struct stat; struct nstat; struct ucred; struct uio; struct vattr; struct vfsops; struct vnode; typedef int (*vn_get_ino_t)(struct mount *, void *, int, struct vnode **); int bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn); /* cache_* may belong in namei.h. */ void cache_changesize(u_long newhashsize); #define cache_enter(dvp, vp, cnp) \ cache_enter_time(dvp, vp, cnp, NULL, NULL) void cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, struct timespec *tsp, struct timespec *dtsp); int cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, struct timespec *tsp, int *ticksp); void cache_purge(struct vnode *vp); void cache_purge_negative(struct vnode *vp); void cache_purgevfs(struct mount *mp, bool force); int change_dir(struct vnode *vp, struct thread *td); void cvtstat(struct stat *st, struct ostat *ost); void freebsd11_cvtnstat(struct stat *sb, struct nstat *nsb); int freebsd11_cvtstat(struct stat *st, struct freebsd11_stat *ost); int getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, struct vnode **vpp); void getnewvnode_reserve(void); void getnewvnode_drop_reserve(void); int insmntque1(struct vnode *vp, struct mount *mp, void (*dtr)(struct vnode *, void *), void *dtr_arg); int insmntque(struct vnode *vp, struct mount *mp); u_quad_t init_va_filerev(void); int speedup_syncer(void); int vn_vptocnp(struct vnode **vp, struct ucred *cred, char *buf, u_int *buflen); int vn_fullpath(struct thread *td, struct vnode *vn, char **retbuf, char **freebuf); int vn_fullpath_global(struct thread *td, struct vnode *vn, char **retbuf, char **freebuf); struct vnode * vn_dir_dd_ino(struct vnode *vp); int vn_commname(struct vnode *vn, char *buf, u_int buflen); int vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path, u_int pathlen); int vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, accmode_t accmode, struct ucred *cred, int *privused); int vaccess_acl_nfs4(enum vtype type, uid_t file_uid, gid_t file_gid, struct acl *aclp, accmode_t accmode, struct ucred *cred, int *privused); int vaccess_acl_posix1e(enum vtype type, uid_t file_uid, gid_t file_gid, struct acl *acl, accmode_t accmode, struct ucred *cred, int *privused); void vattr_null(struct vattr *vap); int vcount(struct vnode *vp); void vlazy(struct vnode *); void vdrop(struct vnode *); void vdropl(struct vnode *); int vflush(struct mount *mp, int rootrefs, int flags, struct thread *td); int vget(struct vnode *vp, int flags, struct thread *td); enum vgetstate vget_prep(struct vnode *vp); int vget_finish(struct vnode *vp, int flags, enum vgetstate vs); void vgone(struct vnode *vp); void vhold(struct vnode *); void vholdl(struct vnode *); void vholdnz(struct vnode *); void vinactive(struct vnode *vp); int vinvalbuf(struct vnode *vp, int save, int slpflag, int slptimeo); int vtruncbuf(struct vnode *vp, off_t length, int blksize); void v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, int blksize); void vunref(struct vnode *); void vn_printf(struct vnode *vp, const char *fmt, ...) __printflike(2,3); int vrecycle(struct vnode *vp); int vrecyclel(struct vnode *vp); int vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred); int vn_close(struct vnode *vp, int flags, struct ucred *file_cred, struct thread *td); int vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred, struct ucred *outcred, struct thread *fsize_td); void vn_finished_write(struct mount *mp); void vn_finished_secondary_write(struct mount *mp); int vn_fsync_buf(struct vnode *vp, int waitfor); int vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred, struct ucred *outcred, struct thread *fsize_td); int vn_need_pageq_flush(struct vnode *vp); int vn_isdisk(struct vnode *vp, int *errp); int _vn_lock(struct vnode *vp, int flags, char *file, int line); #define vn_lock(vp, flags) _vn_lock(vp, flags, __FILE__, __LINE__) int vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp); int vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, struct ucred *cred, struct file *fp); int vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, struct thread *td, struct file *fp); void vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end); int vn_pollrecord(struct vnode *vp, struct thread *p, int events); int vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, ssize_t *aresid, struct thread *td); int vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, size_t *aresid, struct thread *td); int vn_rlimit_fsize(const struct vnode *vn, const struct uio *uio, struct thread *td); int vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred, struct ucred *file_cred, struct thread *td); int vn_start_write(struct vnode *vp, struct mount **mpp, int flags); int vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags); int vn_truncate_locked(struct vnode *vp, off_t length, bool sync, struct ucred *cred); int vn_writechk(struct vnode *vp); int vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int *buflen, char *buf, struct thread *td); int vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int buflen, char *buf, struct thread *td); int vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, struct thread *td); int vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp); int vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, int lkflags, struct vnode **rvp); int vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *td); int vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio); int vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, struct uio *uio); #define vn_rangelock_unlock(vp, cookie) \ rangelock_unlock(&(vp)->v_rl, (cookie), VI_MTX(vp)) #define vn_rangelock_unlock_range(vp, cookie, start, end) \ rangelock_unlock_range(&(vp)->v_rl, (cookie), (start), (end), \ VI_MTX(vp)) #define vn_rangelock_rlock(vp, start, end) \ rangelock_rlock(&(vp)->v_rl, (start), (end), VI_MTX(vp)) #define vn_rangelock_tryrlock(vp, start, end) \ rangelock_tryrlock(&(vp)->v_rl, (start), (end), VI_MTX(vp)) #define vn_rangelock_wlock(vp, start, end) \ rangelock_wlock(&(vp)->v_rl, (start), (end), VI_MTX(vp)) #define vn_rangelock_trywlock(vp, start, end) \ rangelock_trywlock(&(vp)->v_rl, (start), (end), VI_MTX(vp)) int vfs_cache_lookup(struct vop_lookup_args *ap); int vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp); void vfs_timestamp(struct timespec *); void vfs_write_resume(struct mount *mp, int flags); int vfs_write_suspend(struct mount *mp, int flags); int vfs_write_suspend_umnt(struct mount *mp); void vnlru_free(int, struct vfsops *); int vop_stdbmap(struct vop_bmap_args *); int vop_stdfdatasync_buf(struct vop_fdatasync_args *); int vop_stdfsync(struct vop_fsync_args *); int vop_stdgetwritemount(struct vop_getwritemount_args *); int vop_stdgetpages(struct vop_getpages_args *); int vop_stdinactive(struct vop_inactive_args *); int vop_stdioctl(struct vop_ioctl_args *); int vop_stdneed_inactive(struct vop_need_inactive_args *); int vop_stdkqfilter(struct vop_kqfilter_args *); int vop_stdlock(struct vop_lock1_args *); int vop_stdunlock(struct vop_unlock_args *); int vop_stdislocked(struct vop_islocked_args *); int vop_lock(struct vop_lock1_args *); int vop_unlock(struct vop_unlock_args *); int vop_islocked(struct vop_islocked_args *); int vop_stdputpages(struct vop_putpages_args *); int vop_nopoll(struct vop_poll_args *); int vop_stdaccess(struct vop_access_args *ap); int vop_stdaccessx(struct vop_accessx_args *ap); int vop_stdadvise(struct vop_advise_args *ap); int vop_stdadvlock(struct vop_advlock_args *ap); int vop_stdadvlockasync(struct vop_advlockasync_args *ap); int vop_stdadvlockpurge(struct vop_advlockpurge_args *ap); int vop_stdallocate(struct vop_allocate_args *ap); int vop_stdset_text(struct vop_set_text_args *ap); int vop_stdpathconf(struct vop_pathconf_args *); int vop_stdpoll(struct vop_poll_args *); int vop_stdvptocnp(struct vop_vptocnp_args *ap); int vop_stdvptofh(struct vop_vptofh_args *ap); int vop_stdunp_bind(struct vop_unp_bind_args *ap); int vop_stdunp_connect(struct vop_unp_connect_args *ap); int vop_stdunp_detach(struct vop_unp_detach_args *ap); int vop_eopnotsupp(struct vop_generic_args *ap); int vop_ebadf(struct vop_generic_args *ap); int vop_einval(struct vop_generic_args *ap); int vop_enoent(struct vop_generic_args *ap); int vop_enotty(struct vop_generic_args *ap); int vop_null(struct vop_generic_args *ap); int vop_panic(struct vop_generic_args *ap); int dead_poll(struct vop_poll_args *ap); int dead_read(struct vop_read_args *ap); int dead_write(struct vop_write_args *ap); /* These are called from within the actual VOPS. */ void vop_close_post(void *a, int rc); void vop_create_post(void *a, int rc); void vop_deleteextattr_post(void *a, int rc); void vop_link_post(void *a, int rc); void vop_lookup_post(void *a, int rc); void vop_lookup_pre(void *a); void vop_mkdir_post(void *a, int rc); void vop_mknod_post(void *a, int rc); void vop_open_post(void *a, int rc); void vop_read_post(void *a, int rc); void vop_readdir_post(void *a, int rc); void vop_reclaim_post(void *a, int rc); void vop_remove_post(void *a, int rc); void vop_rename_post(void *a, int rc); void vop_rename_pre(void *a); void vop_rmdir_post(void *a, int rc); void vop_setattr_post(void *a, int rc); void vop_setextattr_post(void *a, int rc); void vop_symlink_post(void *a, int rc); int vop_sigdefer(struct vop_vector *vop, struct vop_generic_args *a); #ifdef DEBUG_VFS_LOCKS void vop_strategy_pre(void *a); void vop_lock_pre(void *a); void vop_lock_post(void *a, int rc); void vop_unlock_pre(void *a); void vop_unlock_post(void *a, int rc); void vop_need_inactive_pre(void *a); void vop_need_inactive_post(void *a, int rc); #else #define vop_strategy_pre(x) do { } while (0) #define vop_lock_pre(x) do { } while (0) #define vop_lock_post(x, y) do { } while (0) #define vop_unlock_pre(x) do { } while (0) #define vop_unlock_post(x, y) do { } while (0) #define vop_need_inactive_pre(x) do { } while (0) #define vop_need_inactive_post(x, y) do { } while (0) #endif void vop_rename_fail(struct vop_rename_args *ap); #define VOP_WRITE_PRE(ap) \ struct vattr va; \ int error; \ off_t osize, ooffset, noffset; \ \ osize = ooffset = noffset = 0; \ if (!VN_KNLIST_EMPTY((ap)->a_vp)) { \ error = VOP_GETATTR((ap)->a_vp, &va, (ap)->a_cred); \ if (error) \ return (error); \ ooffset = (ap)->a_uio->uio_offset; \ osize = (off_t)va.va_size; \ } #define VOP_WRITE_POST(ap, ret) \ noffset = (ap)->a_uio->uio_offset; \ if (noffset > ooffset && !VN_KNLIST_EMPTY((ap)->a_vp)) { \ VFS_KNOTE_LOCKED((ap)->a_vp, NOTE_WRITE \ | (noffset > osize ? NOTE_EXTEND : 0)); \ } #define VOP_LOCK(vp, flags) VOP_LOCK1(vp, flags, __FILE__, __LINE__) #ifdef INVARIANTS #define VOP_ADD_WRITECOUNT_CHECKED(vp, cnt) \ do { \ int error_; \ \ error_ = VOP_ADD_WRITECOUNT((vp), (cnt)); \ VNASSERT(error_ == 0, (vp), ("VOP_ADD_WRITECOUNT returned %d", \ error_)); \ } while (0) #define VOP_SET_TEXT_CHECKED(vp) \ do { \ int error_; \ \ error_ = VOP_SET_TEXT((vp)); \ VNASSERT(error_ == 0, (vp), ("VOP_SET_TEXT returned %d", \ error_)); \ } while (0) #define VOP_UNSET_TEXT_CHECKED(vp) \ do { \ int error_; \ \ error_ = VOP_UNSET_TEXT((vp)); \ VNASSERT(error_ == 0, (vp), ("VOP_UNSET_TEXT returned %d", \ error_)); \ } while (0) #else #define VOP_ADD_WRITECOUNT_CHECKED(vp, cnt) VOP_ADD_WRITECOUNT((vp), (cnt)) #define VOP_SET_TEXT_CHECKED(vp) VOP_SET_TEXT((vp)) #define VOP_UNSET_TEXT_CHECKED(vp) VOP_UNSET_TEXT((vp)) #endif #define VN_IS_DOOMED(vp) __predict_false((vp)->v_irflag & VIRF_DOOMED) void vput(struct vnode *vp); void vrele(struct vnode *vp); void vref(struct vnode *vp); void vrefl(struct vnode *vp); void vrefact(struct vnode *vp); void vrefactn(struct vnode *vp, u_int n); int vrefcnt(struct vnode *vp); void v_addpollinfo(struct vnode *vp); int vnode_create_vobject(struct vnode *vp, off_t size, struct thread *td); void vnode_destroy_vobject(struct vnode *vp); extern struct vop_vector fifo_specops; extern struct vop_vector dead_vnodeops; extern struct vop_vector default_vnodeops; #define VOP_PANIC ((void*)(uintptr_t)vop_panic) #define VOP_NULL ((void*)(uintptr_t)vop_null) #define VOP_EBADF ((void*)(uintptr_t)vop_ebadf) #define VOP_ENOTTY ((void*)(uintptr_t)vop_enotty) #define VOP_EINVAL ((void*)(uintptr_t)vop_einval) #define VOP_ENOENT ((void*)(uintptr_t)vop_enoent) #define VOP_EOPNOTSUPP ((void*)(uintptr_t)vop_eopnotsupp) /* fifo_vnops.c */ int fifo_printinfo(struct vnode *); /* vfs_hash.c */ typedef int vfs_hash_cmp_t(struct vnode *vp, void *arg); void vfs_hash_changesize(u_long newhashsize); int vfs_hash_get(const struct mount *mp, u_int hash, int flags, struct thread *td, struct vnode **vpp, vfs_hash_cmp_t *fn, void *arg); u_int vfs_hash_index(struct vnode *vp); int vfs_hash_insert(struct vnode *vp, u_int hash, int flags, struct thread *td, struct vnode **vpp, vfs_hash_cmp_t *fn, void *arg); void vfs_hash_ref(const struct mount *mp, u_int hash, struct thread *td, struct vnode **vpp, vfs_hash_cmp_t *fn, void *arg); void vfs_hash_rehash(struct vnode *vp, u_int hash); void vfs_hash_remove(struct vnode *vp); int vfs_kqfilter(struct vop_kqfilter_args *); -void vfs_mark_atime(struct vnode *vp, struct ucred *cred); struct dirent; int vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off); int vfs_emptydir(struct vnode *vp); int vfs_unixify_accmode(accmode_t *accmode); void vfs_unp_reclaim(struct vnode *vp); int setfmode(struct thread *td, struct ucred *cred, struct vnode *vp, int mode); int setfown(struct thread *td, struct ucred *cred, struct vnode *vp, uid_t uid, gid_t gid); int vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td); int vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td); void vn_fsid(struct vnode *vp, struct vattr *va); #define VOP_UNLOCK_FLAGS(vp, flags) ({ \ struct vnode *_vp = (vp); \ int _flags = (flags); \ int _error; \ \ if ((_flags & ~(LK_INTERLOCK | LK_RELEASE)) != 0) \ panic("%s: unsupported flags %x\n", __func__, flags); \ _error = VOP_UNLOCK(_vp); \ if (_flags & LK_INTERLOCK) \ VI_UNLOCK(_vp); \ _error; \ }) #include #define VFS_VOP_VECTOR_REGISTER(vnodeops) \ SYSINIT(vfs_vector_##vnodeops##_f, SI_SUB_VFS, SI_ORDER_ANY, \ vfs_vector_op_register, &vnodeops) #endif /* _KERNEL */ #endif /* !_SYS_VNODE_H_ */ Index: head/sys/ufs/ufs/ufs_vnops.c =================================================================== --- head/sys/ufs/ufs/ufs_vnops.c (revision 357360) +++ head/sys/ufs/ufs/ufs_vnops.c (revision 357361) @@ -1,2806 +1,2809 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993, 1995 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_vnops.c 8.27 (Berkeley) 5/27/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_quota.h" #include "opt_suiddir.h" #include "opt_ufs.h" #include "opt_ffs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX */ #include #include #include #include #include #include #include #include #include #ifdef UFS_DIRHASH #include #endif #ifdef UFS_GJOURNAL #include FEATURE(ufs_gjournal, "Journaling support through GEOM for UFS"); #endif #ifdef QUOTA FEATURE(ufs_quota, "UFS disk quotas support"); FEATURE(ufs_quota64, "64bit UFS disk quotas support"); #endif #ifdef SUIDDIR FEATURE(suiddir, "Give all new files in directory the same ownership as the directory"); #endif #include static vop_accessx_t ufs_accessx; static int ufs_chmod(struct vnode *, int, struct ucred *, struct thread *); static int ufs_chown(struct vnode *, uid_t, gid_t, struct ucred *, struct thread *); static vop_close_t ufs_close; static vop_create_t ufs_create; static vop_getattr_t ufs_getattr; static vop_ioctl_t ufs_ioctl; static vop_link_t ufs_link; static int ufs_makeinode(int mode, struct vnode *, struct vnode **, struct componentname *, const char *); -static vop_markatime_t ufs_markatime; +static vop_mmapped_t ufs_mmapped; static vop_mkdir_t ufs_mkdir; static vop_mknod_t ufs_mknod; static vop_open_t ufs_open; static vop_pathconf_t ufs_pathconf; static vop_print_t ufs_print; static vop_readlink_t ufs_readlink; static vop_remove_t ufs_remove; static vop_rename_t ufs_rename; static vop_rmdir_t ufs_rmdir; static vop_setattr_t ufs_setattr; static vop_strategy_t ufs_strategy; static vop_symlink_t ufs_symlink; static vop_whiteout_t ufs_whiteout; static vop_close_t ufsfifo_close; static vop_kqfilter_t ufsfifo_kqfilter; SYSCTL_NODE(_vfs, OID_AUTO, ufs, CTLFLAG_RD, 0, "UFS filesystem"); /* * A virgin directory (no blushing please). */ static struct dirtemplate mastertemplate = { 0, 12, DT_DIR, 1, ".", 0, DIRBLKSIZ - 12, DT_DIR, 2, ".." }; static struct odirtemplate omastertemplate = { 0, 12, 1, ".", 0, DIRBLKSIZ - 12, 2, ".." }; static void ufs_itimes_locked(struct vnode *vp) { struct inode *ip; struct timespec ts; ASSERT_VI_LOCKED(vp, __func__); ip = VTOI(vp); if (UFS_RDONLY(ip)) goto out; if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE)) == 0) return; if ((vp->v_type == VBLK || vp->v_type == VCHR) && !DOINGSOFTDEP(vp)) UFS_INODE_SET_FLAG(ip, IN_LAZYMOD); else if (((vp->v_mount->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND)) == 0) || (ip->i_flag & (IN_CHANGE | IN_UPDATE))) UFS_INODE_SET_FLAG(ip, IN_MODIFIED); else if (ip->i_flag & IN_ACCESS) UFS_INODE_SET_FLAG(ip, IN_LAZYACCESS); vfs_timestamp(&ts); if (ip->i_flag & IN_ACCESS) { DIP_SET(ip, i_atime, ts.tv_sec); DIP_SET(ip, i_atimensec, ts.tv_nsec); } if (ip->i_flag & IN_UPDATE) { DIP_SET(ip, i_mtime, ts.tv_sec); DIP_SET(ip, i_mtimensec, ts.tv_nsec); } if (ip->i_flag & IN_CHANGE) { DIP_SET(ip, i_ctime, ts.tv_sec); DIP_SET(ip, i_ctimensec, ts.tv_nsec); DIP_SET(ip, i_modrev, DIP(ip, i_modrev) + 1); } out: ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE); } void ufs_itimes(struct vnode *vp) { VI_LOCK(vp); ufs_itimes_locked(vp); VI_UNLOCK(vp); } /* * Create a regular file */ static int ufs_create(ap) struct vop_create_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { int error; error = ufs_makeinode(MAKEIMODE(ap->a_vap->va_type, ap->a_vap->va_mode), ap->a_dvp, ap->a_vpp, ap->a_cnp, "ufs_create"); if (error != 0) return (error); if ((ap->a_cnp->cn_flags & MAKEENTRY) != 0) cache_enter(ap->a_dvp, *ap->a_vpp, ap->a_cnp); return (0); } /* * Mknod vnode call */ /* ARGSUSED */ static int ufs_mknod(ap) struct vop_mknod_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { struct vattr *vap = ap->a_vap; struct vnode **vpp = ap->a_vpp; struct inode *ip; ino_t ino; int error; error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode), ap->a_dvp, vpp, ap->a_cnp, "ufs_mknod"); if (error) return (error); ip = VTOI(*vpp); UFS_INODE_SET_FLAG(ip, IN_ACCESS | IN_CHANGE | IN_UPDATE); if (vap->va_rdev != VNOVAL) { /* * Want to be able to use this to make badblock * inodes, so don't truncate the dev number. */ DIP_SET(ip, i_rdev, vap->va_rdev); } /* * Remove inode, then reload it through VFS_VGET so it is * checked to see if it is an alias of an existing entry in * the inode cache. XXX I don't believe this is necessary now. */ (*vpp)->v_type = VNON; ino = ip->i_number; /* Save this before vgone() invalidates ip. */ vgone(*vpp); vput(*vpp); error = VFS_VGET(ap->a_dvp->v_mount, ino, LK_EXCLUSIVE, vpp); if (error) { *vpp = NULL; return (error); } return (0); } /* * Open called. */ /* ARGSUSED */ static int ufs_open(struct vop_open_args *ap) { struct vnode *vp = ap->a_vp; struct inode *ip; if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); ip = VTOI(vp); /* * Files marked append-only must be opened for appending. */ if ((ip->i_flags & APPEND) && (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE) return (EPERM); vnode_create_vobject(vp, DIP(ip, i_size), ap->a_td); return (0); } /* * Close called. * * Update the times on the inode. */ /* ARGSUSED */ static int ufs_close(ap) struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; int usecount; VI_LOCK(vp); usecount = vp->v_usecount; if (usecount > 1) ufs_itimes_locked(vp); VI_UNLOCK(vp); return (0); } static int ufs_accessx(ap) struct vop_accessx_args /* { struct vnode *a_vp; accmode_t a_accmode; struct ucred *a_cred; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); accmode_t accmode = ap->a_accmode; int error; #ifdef UFS_ACL struct acl *acl; acl_type_t type; #endif /* * Disallow write attempts on read-only filesystems; * unless the file is a socket, fifo, or a block or * character device resident on the filesystem. */ if (accmode & VMODIFY_PERMS) { switch (vp->v_type) { case VDIR: case VLNK: case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); #ifdef QUOTA /* * Inode is accounted in the quotas only if struct * dquot is attached to it. VOP_ACCESS() is called * from vn_open_cred() and provides a convenient * point to call getinoquota(). The lock mode is * exclusive when the file is opening for write. */ if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE) { error = getinoquota(ip); if (error != 0) return (error); } #endif break; default: break; } } /* * If immutable bit set, nobody gets to write it. "& ~VADMIN_PERMS" * permits the owner of the file to remove the IMMUTABLE flag. */ if ((accmode & (VMODIFY_PERMS & ~VADMIN_PERMS)) && (ip->i_flags & (IMMUTABLE | SF_SNAPSHOT))) return (EPERM); #ifdef UFS_ACL if ((vp->v_mount->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS)) != 0) { if (vp->v_mount->mnt_flag & MNT_NFS4ACLS) type = ACL_TYPE_NFS4; else type = ACL_TYPE_ACCESS; acl = acl_alloc(M_WAITOK); if (type == ACL_TYPE_NFS4) error = ufs_getacl_nfs4_internal(vp, acl, ap->a_td); else error = VOP_GETACL(vp, type, acl, ap->a_cred, ap->a_td); switch (error) { case 0: if (type == ACL_TYPE_NFS4) { error = vaccess_acl_nfs4(vp->v_type, ip->i_uid, ip->i_gid, acl, accmode, ap->a_cred, NULL); } else { error = vfs_unixify_accmode(&accmode); if (error == 0) error = vaccess_acl_posix1e(vp->v_type, ip->i_uid, ip->i_gid, acl, accmode, ap->a_cred, NULL); } break; default: if (error != EOPNOTSUPP) printf( "ufs_accessx(): Error retrieving ACL on object (%d).\n", error); /* * XXX: Fall back until debugged. Should * eventually possibly log an error, and return * EPERM for safety. */ error = vfs_unixify_accmode(&accmode); if (error == 0) error = vaccess(vp->v_type, ip->i_mode, ip->i_uid, ip->i_gid, accmode, ap->a_cred, NULL); } acl_free(acl); return (error); } #endif /* !UFS_ACL */ error = vfs_unixify_accmode(&accmode); if (error == 0) error = vaccess(vp->v_type, ip->i_mode, ip->i_uid, ip->i_gid, accmode, ap->a_cred, NULL); return (error); } /* ARGSUSED */ static int ufs_getattr(ap) struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct vattr *vap = ap->a_vap; VI_LOCK(vp); ufs_itimes_locked(vp); if (I_IS_UFS1(ip)) { vap->va_atime.tv_sec = ip->i_din1->di_atime; vap->va_atime.tv_nsec = ip->i_din1->di_atimensec; } else { vap->va_atime.tv_sec = ip->i_din2->di_atime; vap->va_atime.tv_nsec = ip->i_din2->di_atimensec; } VI_UNLOCK(vp); /* * Copy from inode table */ vap->va_fsid = dev2udev(ITOUMP(ip)->um_dev); vap->va_fileid = ip->i_number; vap->va_mode = ip->i_mode & ~IFMT; vap->va_nlink = ip->i_effnlink; vap->va_uid = ip->i_uid; vap->va_gid = ip->i_gid; if (I_IS_UFS1(ip)) { vap->va_rdev = ip->i_din1->di_rdev; vap->va_size = ip->i_din1->di_size; vap->va_mtime.tv_sec = ip->i_din1->di_mtime; vap->va_mtime.tv_nsec = ip->i_din1->di_mtimensec; vap->va_ctime.tv_sec = ip->i_din1->di_ctime; vap->va_ctime.tv_nsec = ip->i_din1->di_ctimensec; vap->va_bytes = dbtob((u_quad_t)ip->i_din1->di_blocks); vap->va_filerev = ip->i_din1->di_modrev; } else { vap->va_rdev = ip->i_din2->di_rdev; vap->va_size = ip->i_din2->di_size; vap->va_mtime.tv_sec = ip->i_din2->di_mtime; vap->va_mtime.tv_nsec = ip->i_din2->di_mtimensec; vap->va_ctime.tv_sec = ip->i_din2->di_ctime; vap->va_ctime.tv_nsec = ip->i_din2->di_ctimensec; vap->va_birthtime.tv_sec = ip->i_din2->di_birthtime; vap->va_birthtime.tv_nsec = ip->i_din2->di_birthnsec; vap->va_bytes = dbtob((u_quad_t)ip->i_din2->di_blocks); vap->va_filerev = ip->i_din2->di_modrev; } vap->va_flags = ip->i_flags; vap->va_gen = ip->i_gen; vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize; vap->va_type = IFTOVT(ip->i_mode); return (0); } /* * Set attribute vnode op. called from several syscalls */ static int ufs_setattr(ap) struct vop_setattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; } */ *ap; { struct vattr *vap = ap->a_vap; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct ucred *cred = ap->a_cred; struct thread *td = curthread; int error; /* * Check for unsettable attributes. */ if ((vap->va_type != VNON) || (vap->va_nlink != VNOVAL) || (vap->va_fsid != VNOVAL) || (vap->va_fileid != VNOVAL) || (vap->va_blocksize != VNOVAL) || (vap->va_rdev != VNOVAL) || ((int)vap->va_bytes != VNOVAL) || (vap->va_gen != VNOVAL)) { return (EINVAL); } if (vap->va_flags != VNOVAL) { if ((vap->va_flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | SF_SNAPSHOT | UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | UF_SPARSE | UF_SYSTEM)) != 0) return (EOPNOTSUPP); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, td))) return (error); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. * Privileged non-jail processes may not modify system flags * if securelevel > 0 and any existing system flags are set. * Privileged jail processes behave like privileged non-jail * processes if the PR_ALLOW_CHFLAGS permission bit is set; * otherwise, they behave like unprivileged processes. */ if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS)) { if (ip->i_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { error = securelevel_gt(cred, 0); if (error) return (error); } /* The snapshot flag cannot be toggled. */ if ((vap->va_flags ^ ip->i_flags) & SF_SNAPSHOT) return (EPERM); } else { if (ip->i_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || ((vap->va_flags ^ ip->i_flags) & SF_SETTABLE)) return (EPERM); } ip->i_flags = vap->va_flags; DIP_SET(ip, i_flags, vap->va_flags); UFS_INODE_SET_FLAG(ip, IN_CHANGE); error = UFS_UPDATE(vp, 0); if (ip->i_flags & (IMMUTABLE | APPEND)) return (error); } /* * If immutable or append, no one can change any of its attributes * except the ones already handled (in some cases, file flags * including the immutability flags themselves for the superuser). */ if (ip->i_flags & (IMMUTABLE | APPEND)) return (EPERM); /* * Go through the fields and update iff not VNOVAL. */ if (vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((error = ufs_chown(vp, vap->va_uid, vap->va_gid, cred, td)) != 0) return (error); } if (vap->va_size != VNOVAL) { /* * XXX most of the following special cases should be in * callers instead of in N filesystems. The VDIR check * mostly already is. */ switch (vp->v_type) { case VDIR: return (EISDIR); case VLNK: case VREG: /* * Truncation should have an effect in these cases. * Disallow it if the filesystem is read-only or * the file is being snapshotted. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((ip->i_flags & SF_SNAPSHOT) != 0) return (EPERM); break; default: /* * According to POSIX, the result is unspecified * for file types other than regular files, * directories and shared memory objects. We * don't support shared memory objects in the file * system, and have dubious support for truncating * symlinks. Just ignore the request in other cases. */ return (0); } if ((error = UFS_TRUNCATE(vp, vap->va_size, IO_NORMAL | ((vap->va_vaflags & VA_SYNC) != 0 ? IO_SYNC : 0), cred)) != 0) return (error); } if (vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_birthtime.tv_sec != VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((ip->i_flags & SF_SNAPSHOT) != 0) return (EPERM); error = vn_utimes_perm(vp, vap, cred, td); if (error != 0) return (error); UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); if (vap->va_atime.tv_sec != VNOVAL) { ip->i_flag &= ~IN_ACCESS; DIP_SET(ip, i_atime, vap->va_atime.tv_sec); DIP_SET(ip, i_atimensec, vap->va_atime.tv_nsec); } if (vap->va_mtime.tv_sec != VNOVAL) { ip->i_flag &= ~IN_UPDATE; DIP_SET(ip, i_mtime, vap->va_mtime.tv_sec); DIP_SET(ip, i_mtimensec, vap->va_mtime.tv_nsec); } if (vap->va_birthtime.tv_sec != VNOVAL && I_IS_UFS2(ip)) { ip->i_din2->di_birthtime = vap->va_birthtime.tv_sec; ip->i_din2->di_birthnsec = vap->va_birthtime.tv_nsec; } error = UFS_UPDATE(vp, 0); if (error) return (error); } error = 0; if (vap->va_mode != (mode_t)VNOVAL) { if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if ((ip->i_flags & SF_SNAPSHOT) != 0 && (vap->va_mode & (S_IXUSR | S_IWUSR | S_IXGRP | S_IWGRP | S_IXOTH | S_IWOTH))) return (EPERM); error = ufs_chmod(vp, (int)vap->va_mode, cred, td); } return (error); } #ifdef UFS_ACL static int ufs_update_nfs4_acl_after_mode_change(struct vnode *vp, int mode, int file_owner_id, struct ucred *cred, struct thread *td) { int error; struct acl *aclp; aclp = acl_alloc(M_WAITOK); error = ufs_getacl_nfs4_internal(vp, aclp, td); /* * We don't have to handle EOPNOTSUPP here, as the filesystem claims * it supports ACLs. */ if (error) goto out; acl_nfs4_sync_acl_from_mode(aclp, mode, file_owner_id); error = ufs_setacl_nfs4_internal(vp, aclp, td); out: acl_free(aclp); return (error); } #endif /* UFS_ACL */ -/* - * Mark this file's access time for update for vfs_mark_atime(). This - * is called from execve() and mmap(). - */ static int -ufs_markatime(ap) - struct vop_markatime_args /* { +ufs_mmapped(ap) + struct vop_mmapped_args /* { struct vnode *a_vp; } */ *ap; { - struct inode *ip = VTOI(ap->a_vp); + struct vnode *vp; + struct inode *ip; + struct mount *mp; - UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); + vp = ap->a_vp; + ip = VTOI(vp); + mp = vp->v_mount; + + if ((mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) + UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); /* * XXXKIB No UFS_UPDATE(ap->a_vp, 0) there. */ return (0); } /* * Change the mode on a file. * Inode must be locked before calling. */ static int ufs_chmod(vp, mode, cred, td) struct vnode *vp; int mode; struct ucred *cred; struct thread *td; { struct inode *ip = VTOI(vp); int error; /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESSX(vp, VWRITE_ACL, cred, td))) return (error); /* * Privileged processes may set the sticky bit on non-directories, * as well as set the setgid bit on a file with a group that the * process is not a member of. Both of these are allowed in * jail(8). */ if (vp->v_type != VDIR && (mode & S_ISTXT)) { if (priv_check_cred(cred, PRIV_VFS_STICKYFILE)) return (EFTYPE); } if (!groupmember(ip->i_gid, cred) && (mode & ISGID)) { error = priv_check_cred(cred, PRIV_VFS_SETGID); if (error) return (error); } /* * Deny setting setuid if we are not the file owner. */ if ((mode & ISUID) && ip->i_uid != cred->cr_uid) { error = priv_check_cred(cred, PRIV_VFS_ADMIN); if (error) return (error); } ip->i_mode &= ~ALLPERMS; ip->i_mode |= (mode & ALLPERMS); DIP_SET(ip, i_mode, ip->i_mode); UFS_INODE_SET_FLAG(ip, IN_CHANGE); #ifdef UFS_ACL if ((vp->v_mount->mnt_flag & MNT_NFS4ACLS) != 0) error = ufs_update_nfs4_acl_after_mode_change(vp, mode, ip->i_uid, cred, td); #endif if (error == 0 && (ip->i_flag & IN_CHANGE) != 0) error = UFS_UPDATE(vp, 0); return (error); } /* * Perform chown operation on inode ip; * inode must be locked prior to call. */ static int ufs_chown(vp, uid, gid, cred, td) struct vnode *vp; uid_t uid; gid_t gid; struct ucred *cred; struct thread *td; { struct inode *ip = VTOI(vp); uid_t ouid; gid_t ogid; int error = 0; #ifdef QUOTA int i; ufs2_daddr_t change; #endif if (uid == (uid_t)VNOVAL) uid = ip->i_uid; if (gid == (gid_t)VNOVAL) gid = ip->i_gid; /* * To modify the ownership of a file, must possess VADMIN for that * file. */ if ((error = VOP_ACCESSX(vp, VWRITE_OWNER, cred, td))) return (error); /* * To change the owner of a file, or change the group of a file to a * group of which we are not a member, the caller must have * privilege. */ if (((uid != ip->i_uid && uid != cred->cr_uid) || (gid != ip->i_gid && !groupmember(gid, cred))) && (error = priv_check_cred(cred, PRIV_VFS_CHOWN))) return (error); ogid = ip->i_gid; ouid = ip->i_uid; #ifdef QUOTA if ((error = getinoquota(ip)) != 0) return (error); if (ouid == uid) { dqrele(vp, ip->i_dquot[USRQUOTA]); ip->i_dquot[USRQUOTA] = NODQUOT; } if (ogid == gid) { dqrele(vp, ip->i_dquot[GRPQUOTA]); ip->i_dquot[GRPQUOTA] = NODQUOT; } change = DIP(ip, i_blocks); (void) chkdq(ip, -change, cred, CHOWN|FORCE); (void) chkiq(ip, -1, cred, CHOWN|FORCE); for (i = 0; i < MAXQUOTAS; i++) { dqrele(vp, ip->i_dquot[i]); ip->i_dquot[i] = NODQUOT; } #endif ip->i_gid = gid; DIP_SET(ip, i_gid, gid); ip->i_uid = uid; DIP_SET(ip, i_uid, uid); #ifdef QUOTA if ((error = getinoquota(ip)) == 0) { if (ouid == uid) { dqrele(vp, ip->i_dquot[USRQUOTA]); ip->i_dquot[USRQUOTA] = NODQUOT; } if (ogid == gid) { dqrele(vp, ip->i_dquot[GRPQUOTA]); ip->i_dquot[GRPQUOTA] = NODQUOT; } if ((error = chkdq(ip, change, cred, CHOWN)) == 0) { if ((error = chkiq(ip, 1, cred, CHOWN)) == 0) goto good; else (void) chkdq(ip, -change, cred, CHOWN|FORCE); } for (i = 0; i < MAXQUOTAS; i++) { dqrele(vp, ip->i_dquot[i]); ip->i_dquot[i] = NODQUOT; } } ip->i_gid = ogid; DIP_SET(ip, i_gid, ogid); ip->i_uid = ouid; DIP_SET(ip, i_uid, ouid); if (getinoquota(ip) == 0) { if (ouid == uid) { dqrele(vp, ip->i_dquot[USRQUOTA]); ip->i_dquot[USRQUOTA] = NODQUOT; } if (ogid == gid) { dqrele(vp, ip->i_dquot[GRPQUOTA]); ip->i_dquot[GRPQUOTA] = NODQUOT; } (void) chkdq(ip, change, cred, FORCE|CHOWN); (void) chkiq(ip, 1, cred, FORCE|CHOWN); (void) getinoquota(ip); } return (error); good: if (getinoquota(ip)) panic("ufs_chown: lost quota"); #endif /* QUOTA */ UFS_INODE_SET_FLAG(ip, IN_CHANGE); if ((ip->i_mode & (ISUID | ISGID)) && (ouid != uid || ogid != gid)) { if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID)) { ip->i_mode &= ~(ISUID | ISGID); DIP_SET(ip, i_mode, ip->i_mode); } } error = UFS_UPDATE(vp, 0); return (error); } static int ufs_remove(ap) struct vop_remove_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct inode *ip; struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; int error; struct thread *td; td = curthread; ip = VTOI(vp); if ((ip->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (VTOI(dvp)->i_flags & APPEND)) { error = EPERM; goto out; } #ifdef UFS_GJOURNAL ufs_gjournal_orphan(vp); #endif error = ufs_dirremove(dvp, ip, ap->a_cnp->cn_flags, 0); if (ip->i_nlink <= 0) vp->v_vflag |= VV_NOSYNC; if ((ip->i_flags & SF_SNAPSHOT) != 0) { /* * Avoid deadlock where another thread is trying to * update the inodeblock for dvp and is waiting on * snaplk. Temporary unlock the vnode lock for the * unlinked file and sync the directory. This should * allow vput() of the directory to not block later on * while holding the snapshot vnode locked, assuming * that the directory hasn't been unlinked too. */ VOP_UNLOCK(vp); (void) VOP_FSYNC(dvp, MNT_WAIT, td); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } out: return (error); } static void print_bad_link_count(const char *funcname, struct vnode *dvp) { struct inode *dip; dip = VTOI(dvp); uprintf("%s: Bad link count %d on parent inode %jd in file system %s\n", funcname, dip->i_effnlink, (intmax_t)dip->i_number, dvp->v_mount->mnt_stat.f_mntonname); } /* * link vnode call */ static int ufs_link(ap) struct vop_link_args /* { struct vnode *a_tdvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct vnode *vp = ap->a_vp; struct vnode *tdvp = ap->a_tdvp; struct componentname *cnp = ap->a_cnp; struct inode *ip; struct direct newdir; int error; #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("ufs_link: no name"); #endif if (VTOI(tdvp)->i_effnlink < 2) { print_bad_link_count("ufs_link", tdvp); error = EINVAL; goto out; } ip = VTOI(vp); if (ip->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto out; } /* * The file may have been removed after namei droped the original * lock. */ if (ip->i_effnlink == 0) { error = ENOENT; goto out; } if (ip->i_flags & (IMMUTABLE | APPEND)) { error = EPERM; goto out; } ip->i_effnlink++; ip->i_nlink++; DIP_SET(ip, i_nlink, ip->i_nlink); UFS_INODE_SET_FLAG(ip, IN_CHANGE); if (DOINGSOFTDEP(vp)) softdep_setup_link(VTOI(tdvp), ip); error = UFS_UPDATE(vp, !DOINGSOFTDEP(vp) && !DOINGASYNC(vp)); if (!error) { ufs_makedirentry(ip, cnp, &newdir); error = ufs_direnter(tdvp, vp, &newdir, cnp, NULL, 0); } if (error) { ip->i_effnlink--; ip->i_nlink--; DIP_SET(ip, i_nlink, ip->i_nlink); UFS_INODE_SET_FLAG(ip, IN_CHANGE); if (DOINGSOFTDEP(vp)) softdep_revert_link(VTOI(tdvp), ip); } out: return (error); } /* * whiteout vnode call */ static int ufs_whiteout(ap) struct vop_whiteout_args /* { struct vnode *a_dvp; struct componentname *a_cnp; int a_flags; } */ *ap; { struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct direct newdir; int error = 0; switch (ap->a_flags) { case LOOKUP: /* 4.4 format directories support whiteout operations */ if (dvp->v_mount->mnt_maxsymlinklen > 0) return (0); return (EOPNOTSUPP); case CREATE: /* create a new directory whiteout */ #ifdef INVARIANTS if ((cnp->cn_flags & SAVENAME) == 0) panic("ufs_whiteout: missing name"); if (dvp->v_mount->mnt_maxsymlinklen <= 0) panic("ufs_whiteout: old format filesystem"); #endif newdir.d_ino = UFS_WINO; newdir.d_namlen = cnp->cn_namelen; bcopy(cnp->cn_nameptr, newdir.d_name, (unsigned)cnp->cn_namelen + 1); newdir.d_type = DT_WHT; error = ufs_direnter(dvp, NULL, &newdir, cnp, NULL, 0); break; case DELETE: /* remove an existing directory whiteout */ #ifdef INVARIANTS if (dvp->v_mount->mnt_maxsymlinklen <= 0) panic("ufs_whiteout: old format filesystem"); #endif cnp->cn_flags &= ~DOWHITEOUT; error = ufs_dirremove(dvp, NULL, cnp->cn_flags, 0); break; default: panic("ufs_whiteout: unknown op"); } return (error); } static volatile int rename_restarts; SYSCTL_INT(_vfs_ufs, OID_AUTO, rename_restarts, CTLFLAG_RD, __DEVOLATILE(int *, &rename_restarts), 0, "Times rename had to restart due to lock contention"); /* * Rename system call. * rename("foo", "bar"); * is essentially * unlink("bar"); * link("foo", "bar"); * unlink("foo"); * but ``atomically''. Can't do full commit without saving state in the * inode on disk which isn't feasible at this time. Best we can do is * always guarantee the target exists. * * Basic algorithm is: * * 1) Bump link count on source while we're linking it to the * target. This also ensure the inode won't be deleted out * from underneath us while we work (it may be truncated by * a concurrent `trunc' or `open' for creation). * 2) Link source to destination. If destination already exists, * delete it first. * 3) Unlink source reference to inode if still around. If a * directory was moved and the parent of the destination * is different from the source, patch the ".." entry in the * directory. */ static int ufs_rename(ap) struct vop_rename_args /* { struct vnode *a_fdvp; struct vnode *a_fvp; struct componentname *a_fcnp; struct vnode *a_tdvp; struct vnode *a_tvp; struct componentname *a_tcnp; } */ *ap; { struct vnode *tvp = ap->a_tvp; struct vnode *tdvp = ap->a_tdvp; struct vnode *fvp = ap->a_fvp; struct vnode *fdvp = ap->a_fdvp; struct vnode *nvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; struct thread *td = fcnp->cn_thread; struct inode *fip, *tip, *tdp, *fdp; struct direct newdir; off_t endoff; int doingdirectory, newparent; int error = 0; struct mount *mp; ino_t ino; #ifdef INVARIANTS if ((tcnp->cn_flags & HASBUF) == 0 || (fcnp->cn_flags & HASBUF) == 0) panic("ufs_rename: no name"); #endif endoff = 0; mp = tdvp->v_mount; VOP_UNLOCK(tdvp); if (tvp && tvp != tdvp) VOP_UNLOCK(tvp); /* * Check for cross-device rename. */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; mp = NULL; goto releout; } relock: /* * We need to acquire 2 to 4 locks depending on whether tvp is NULL * and fdvp and tdvp are the same directory. Subsequently we need * to double-check all paths and in the directory rename case we * need to verify that we are not creating a directory loop. To * handle this we acquire all but fdvp using non-blocking * acquisitions. If we fail to acquire any lock in the path we will * drop all held locks, acquire the new lock in a blocking fashion, * and then release it and restart the rename. This acquire/release * step ensures that we do not spin on a lock waiting for release. */ error = vn_lock(fdvp, LK_EXCLUSIVE); if (error) goto releout; if (vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { VOP_UNLOCK(fdvp); error = vn_lock(tdvp, LK_EXCLUSIVE); if (error) goto releout; VOP_UNLOCK(tdvp); atomic_add_int(&rename_restarts, 1); goto relock; } /* * Re-resolve fvp to be certain it still exists and fetch the * correct vnode. */ error = ufs_lookup_ino(fdvp, NULL, fcnp, &ino); if (error) { VOP_UNLOCK(fdvp); VOP_UNLOCK(tdvp); goto releout; } error = VFS_VGET(mp, ino, LK_EXCLUSIVE | LK_NOWAIT, &nvp); if (error) { VOP_UNLOCK(fdvp); VOP_UNLOCK(tdvp); if (error != EBUSY) goto releout; error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &nvp); if (error != 0) goto releout; VOP_UNLOCK(nvp); vrele(fvp); fvp = nvp; atomic_add_int(&rename_restarts, 1); goto relock; } vrele(fvp); fvp = nvp; /* * Re-resolve tvp and acquire the vnode lock if present. */ error = ufs_lookup_ino(tdvp, NULL, tcnp, &ino); if (error != 0 && error != EJUSTRETURN) { VOP_UNLOCK(fdvp); VOP_UNLOCK(tdvp); VOP_UNLOCK(fvp); goto releout; } /* * If tvp disappeared we just carry on. */ if (error == EJUSTRETURN && tvp != NULL) { vrele(tvp); tvp = NULL; } /* * Get the tvp ino if the lookup succeeded. We may have to restart * if the non-blocking acquire fails. */ if (error == 0) { nvp = NULL; error = VFS_VGET(mp, ino, LK_EXCLUSIVE | LK_NOWAIT, &nvp); if (tvp) vrele(tvp); tvp = nvp; if (error) { VOP_UNLOCK(fdvp); VOP_UNLOCK(tdvp); VOP_UNLOCK(fvp); if (error != EBUSY) goto releout; error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &nvp); if (error != 0) goto releout; vput(nvp); atomic_add_int(&rename_restarts, 1); goto relock; } } fdp = VTOI(fdvp); fip = VTOI(fvp); tdp = VTOI(tdvp); tip = NULL; if (tvp) tip = VTOI(tvp); if (tvp && ((VTOI(tvp)->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (VTOI(tdvp)->i_flags & APPEND))) { error = EPERM; goto unlockout; } /* * Renaming a file to itself has no effect. The upper layers should * not call us in that case. However, things could change after * we drop the locks above. */ if (fvp == tvp) { error = 0; goto unlockout; } doingdirectory = 0; newparent = 0; ino = fip->i_number; if (fip->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto unlockout; } if ((fip->i_flags & (NOUNLINK | IMMUTABLE | APPEND)) || (fdp->i_flags & APPEND)) { error = EPERM; goto unlockout; } if ((fip->i_mode & IFMT) == IFDIR) { /* * Avoid ".", "..", and aliases of "." for obvious reasons. */ if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') || fdp == fip || (fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) { error = EINVAL; goto unlockout; } if (fdp->i_number != tdp->i_number) newparent = tdp->i_number; doingdirectory = 1; } if ((fvp->v_type == VDIR && fvp->v_mountedhere != NULL) || (tvp != NULL && tvp->v_type == VDIR && tvp->v_mountedhere != NULL)) { error = EXDEV; goto unlockout; } /* * If ".." must be changed (ie the directory gets a new * parent) then the source directory must not be in the * directory hierarchy above the target, as this would * orphan everything below the source directory. Also * the user must have write permission in the source so * as to be able to change "..". */ if (doingdirectory && newparent) { error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred, tcnp->cn_thread); if (error) goto unlockout; error = ufs_checkpath(ino, fdp->i_number, tdp, tcnp->cn_cred, &ino); /* * We encountered a lock that we have to wait for. Unlock * everything else and VGET before restarting. */ if (ino) { VOP_UNLOCK(fdvp); VOP_UNLOCK(fvp); VOP_UNLOCK(tdvp); if (tvp) VOP_UNLOCK(tvp); error = VFS_VGET(mp, ino, LK_SHARED, &nvp); if (error == 0) vput(nvp); atomic_add_int(&rename_restarts, 1); goto relock; } if (error) goto unlockout; if ((tcnp->cn_flags & SAVESTART) == 0) panic("ufs_rename: lost to startdir"); } if (fip->i_effnlink == 0 || fdp->i_effnlink == 0 || tdp->i_effnlink == 0) panic("Bad effnlink fip %p, fdp %p, tdp %p", fip, fdp, tdp); /* * 1) Bump link count while we're moving stuff * around. If we crash somewhere before * completing our work, the link count * may be wrong, but correctable. */ fip->i_effnlink++; fip->i_nlink++; DIP_SET(fip, i_nlink, fip->i_nlink); UFS_INODE_SET_FLAG(fip, IN_CHANGE); if (DOINGSOFTDEP(fvp)) softdep_setup_link(tdp, fip); error = UFS_UPDATE(fvp, !DOINGSOFTDEP(fvp) && !DOINGASYNC(fvp)); if (error) goto bad; /* * 2) If target doesn't exist, link the target * to the source and unlink the source. * Otherwise, rewrite the target directory * entry to reference the source inode and * expunge the original entry's existence. */ if (tip == NULL) { if (ITODEV(tdp) != ITODEV(fip)) panic("ufs_rename: EXDEV"); if (doingdirectory && newparent) { /* * Account for ".." in new directory. * When source and destination have the same * parent we don't adjust the link count. The * actual link modification is completed when * .. is rewritten below. */ if (tdp->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto bad; } } ufs_makedirentry(fip, tcnp, &newdir); error = ufs_direnter(tdvp, NULL, &newdir, tcnp, NULL, 1); if (error) goto bad; /* Setup tdvp for directory compaction if needed. */ if (tdp->i_count && tdp->i_endoff && tdp->i_endoff < tdp->i_size) endoff = tdp->i_endoff; } else { if (ITODEV(tip) != ITODEV(tdp) || ITODEV(tip) != ITODEV(fip)) panic("ufs_rename: EXDEV"); /* * Short circuit rename(foo, foo). */ if (tip->i_number == fip->i_number) panic("ufs_rename: same file"); /* * If the parent directory is "sticky", then the caller * must possess VADMIN for the parent directory, or the * destination of the rename. This implements append-only * directories. */ if ((tdp->i_mode & S_ISTXT) && VOP_ACCESS(tdvp, VADMIN, tcnp->cn_cred, td) && VOP_ACCESS(tvp, VADMIN, tcnp->cn_cred, td)) { error = EPERM; goto bad; } /* * Target must be empty if a directory and have no links * to it. Also, ensure source and target are compatible * (both directories, or both not directories). */ if ((tip->i_mode & IFMT) == IFDIR) { if ((tip->i_effnlink > 2) || !ufs_dirempty(tip, tdp->i_number, tcnp->cn_cred)) { error = ENOTEMPTY; goto bad; } if (!doingdirectory) { error = ENOTDIR; goto bad; } cache_purge(tdvp); } else if (doingdirectory) { error = EISDIR; goto bad; } if (doingdirectory) { if (!newparent) { tdp->i_effnlink--; if (DOINGSOFTDEP(tdvp)) softdep_change_linkcnt(tdp); } tip->i_effnlink--; if (DOINGSOFTDEP(tvp)) softdep_change_linkcnt(tip); } error = ufs_dirrewrite(tdp, tip, fip->i_number, IFTODT(fip->i_mode), (doingdirectory && newparent) ? newparent : doingdirectory); if (error) { if (doingdirectory) { if (!newparent) { tdp->i_effnlink++; if (DOINGSOFTDEP(tdvp)) softdep_change_linkcnt(tdp); } tip->i_effnlink++; if (DOINGSOFTDEP(tvp)) softdep_change_linkcnt(tip); } } if (doingdirectory && !DOINGSOFTDEP(tvp)) { /* * The only stuff left in the directory is "." * and "..". The "." reference is inconsequential * since we are quashing it. We have removed the "." * reference and the reference in the parent directory, * but there may be other hard links. The soft * dependency code will arrange to do these operations * after the parent directory entry has been deleted on * disk, so when running with that code we avoid doing * them now. */ if (!newparent) { tdp->i_nlink--; DIP_SET(tdp, i_nlink, tdp->i_nlink); UFS_INODE_SET_FLAG(tdp, IN_CHANGE); } tip->i_nlink--; DIP_SET(tip, i_nlink, tip->i_nlink); UFS_INODE_SET_FLAG(tip, IN_CHANGE); } } /* * 3) Unlink the source. We have to resolve the path again to * fixup the directory offset and count for ufs_dirremove. */ if (fdvp == tdvp) { error = ufs_lookup_ino(fdvp, NULL, fcnp, &ino); if (error) panic("ufs_rename: from entry went away!"); if (ino != fip->i_number) panic("ufs_rename: ino mismatch %ju != %ju\n", (uintmax_t)ino, (uintmax_t)fip->i_number); } /* * If the source is a directory with a * new parent, the link count of the old * parent directory must be decremented * and ".." set to point to the new parent. */ if (doingdirectory && newparent) { /* * If tip exists we simply use its link, otherwise we must * add a new one. */ if (tip == NULL) { tdp->i_effnlink++; tdp->i_nlink++; DIP_SET(tdp, i_nlink, tdp->i_nlink); UFS_INODE_SET_FLAG(tdp, IN_CHANGE); if (DOINGSOFTDEP(tdvp)) softdep_setup_dotdot_link(tdp, fip); error = UFS_UPDATE(tdvp, !DOINGSOFTDEP(tdvp) && !DOINGASYNC(tdvp)); /* Don't go to bad here as the new link exists. */ if (error) goto unlockout; } else if (DOINGSUJ(tdvp)) /* Journal must account for each new link. */ softdep_setup_dotdot_link(tdp, fip); fip->i_offset = mastertemplate.dot_reclen; ufs_dirrewrite(fip, fdp, newparent, DT_DIR, 0); cache_purge(fdvp); } error = ufs_dirremove(fdvp, fip, fcnp->cn_flags, 0); /* * The kern_renameat() looks up the fvp using the DELETE flag, which * causes the removal of the name cache entry for fvp. * As the relookup of the fvp is done in two steps: * ufs_lookup_ino() and then VFS_VGET(), another thread might do a * normal lookup of the from name just before the VFS_VGET() call, * causing the cache entry to be re-instantiated. * * The same issue also applies to tvp if it exists as * otherwise we may have a stale name cache entry for the new * name that references the old i-node if it has other links * or open file descriptors. */ cache_purge(fvp); if (tvp) cache_purge(tvp); cache_purge_negative(tdvp); unlockout: vput(fdvp); vput(fvp); if (tvp) vput(tvp); /* * If compaction or fsync was requested do it now that other locks * are no longer needed. */ if (error == 0 && endoff != 0) { error = UFS_TRUNCATE(tdvp, endoff, IO_NORMAL | (DOINGASYNC(tdvp) ? 0 : IO_SYNC), tcnp->cn_cred); if (error != 0) vn_printf(tdvp, "ufs_rename: failed to truncate, error %d\n", error); #ifdef UFS_DIRHASH else if (tdp->i_dirhash != NULL) ufsdirhash_dirtrunc(tdp, endoff); #endif /* * Even if the directory compaction failed, rename was * succesful. Do not propagate a UFS_TRUNCATE() error * to the caller. */ error = 0; } if (error == 0 && tdp->i_flag & IN_NEEDSYNC) error = VOP_FSYNC(tdvp, MNT_WAIT, td); vput(tdvp); return (error); bad: fip->i_effnlink--; fip->i_nlink--; DIP_SET(fip, i_nlink, fip->i_nlink); UFS_INODE_SET_FLAG(fip, IN_CHANGE); if (DOINGSOFTDEP(fvp)) softdep_revert_link(tdp, fip); goto unlockout; releout: vrele(fdvp); vrele(fvp); vrele(tdvp); if (tvp) vrele(tvp); return (error); } #ifdef UFS_ACL static int ufs_do_posix1e_acl_inheritance_dir(struct vnode *dvp, struct vnode *tvp, mode_t dmode, struct ucred *cred, struct thread *td) { int error; struct inode *ip = VTOI(tvp); struct acl *dacl, *acl; acl = acl_alloc(M_WAITOK); dacl = acl_alloc(M_WAITOK); /* * Retrieve default ACL from parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred, td); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. If the ACL is empty, fall through to * the "not defined or available" case. */ if (acl->acl_cnt != 0) { dmode = acl_posix1e_newfilemode(dmode, acl); ip->i_mode = dmode; DIP_SET(ip, i_mode, dmode); *dacl = *acl; ufs_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = dmode; DIP_SET(ip, i_mode, dmode); error = 0; goto out; default: goto out; } /* * XXX: If we abort now, will Soft Updates notify the extattr * code that the EAs for the file need to be released? */ error = VOP_SETACL(tvp, ACL_TYPE_ACCESS, acl, cred, td); if (error == 0) error = VOP_SETACL(tvp, ACL_TYPE_DEFAULT, dacl, cred, td); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above * was supposed to free acl. */ printf("ufs_mkdir: VOP_GETACL() but no VOP_SETACL()\n"); /* panic("ufs_mkdir: VOP_GETACL() but no VOP_SETACL()"); */ break; default: goto out; } out: acl_free(acl); acl_free(dacl); return (error); } static int ufs_do_posix1e_acl_inheritance_file(struct vnode *dvp, struct vnode *tvp, mode_t mode, struct ucred *cred, struct thread *td) { int error; struct inode *ip = VTOI(tvp); struct acl *acl; acl = acl_alloc(M_WAITOK); /* * Retrieve default ACL for parent, if any. */ error = VOP_GETACL(dvp, ACL_TYPE_DEFAULT, acl, cred, td); switch (error) { case 0: /* * Retrieved a default ACL, so merge mode and ACL if * necessary. */ if (acl->acl_cnt != 0) { /* * Two possible ways for default ACL to not * be present. First, the EA can be * undefined, or second, the default ACL can * be blank. If it's blank, fall through to * the it's not defined case. */ mode = acl_posix1e_newfilemode(mode, acl); ip->i_mode = mode; DIP_SET(ip, i_mode, mode); ufs_sync_acl_from_inode(ip, acl); break; } /* FALLTHROUGH */ case EOPNOTSUPP: /* * Just use the mode as-is. */ ip->i_mode = mode; DIP_SET(ip, i_mode, mode); error = 0; goto out; default: goto out; } /* * XXX: If we abort now, will Soft Updates notify the extattr * code that the EAs for the file need to be released? */ error = VOP_SETACL(tvp, ACL_TYPE_ACCESS, acl, cred, td); switch (error) { case 0: break; case EOPNOTSUPP: /* * XXX: This should not happen, as EOPNOTSUPP above was * supposed to free acl. */ printf("ufs_do_posix1e_acl_inheritance_file: VOP_GETACL() " "but no VOP_SETACL()\n"); /* panic("ufs_do_posix1e_acl_inheritance_file: VOP_GETACL() " "but no VOP_SETACL()"); */ break; default: goto out; } out: acl_free(acl); return (error); } static int ufs_do_nfs4_acl_inheritance(struct vnode *dvp, struct vnode *tvp, mode_t child_mode, struct ucred *cred, struct thread *td) { int error; struct acl *parent_aclp, *child_aclp; parent_aclp = acl_alloc(M_WAITOK); child_aclp = acl_alloc(M_WAITOK | M_ZERO); error = ufs_getacl_nfs4_internal(dvp, parent_aclp, td); if (error) goto out; acl_nfs4_compute_inherited_acl(parent_aclp, child_aclp, child_mode, VTOI(tvp)->i_uid, tvp->v_type == VDIR); error = ufs_setacl_nfs4_internal(tvp, child_aclp, td); if (error) goto out; out: acl_free(parent_aclp); acl_free(child_aclp); return (error); } #endif /* * Mkdir system call */ static int ufs_mkdir(ap) struct vop_mkdir_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap; { struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct inode *ip, *dp; struct vnode *tvp; struct buf *bp; struct dirtemplate dirtemplate, *dtp; struct direct newdir; int error, dmode; long blkoff; #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("ufs_mkdir: no name"); #endif dp = VTOI(dvp); if (dp->i_nlink >= UFS_LINK_MAX) { error = EMLINK; goto out; } dmode = vap->va_mode & 0777; dmode |= IFDIR; /* * Must simulate part of ufs_makeinode here to acquire the inode, * but not have it entered in the parent directory. The entry is * made later after writing "." and ".." entries. */ if (dp->i_effnlink < 2) { print_bad_link_count("ufs_mkdir", dvp); error = EINVAL; goto out; } error = UFS_VALLOC(dvp, dmode, cnp->cn_cred, &tvp); if (error) goto out; ip = VTOI(tvp); ip->i_gid = dp->i_gid; DIP_SET(ip, i_gid, dp->i_gid); #ifdef SUIDDIR { #ifdef QUOTA struct ucred ucred, *ucp; gid_t ucred_group; ucp = cnp->cn_cred; #endif /* * If we are hacking owners here, (only do this where told to) * and we are not giving it TO root, (would subvert quotas) * then go ahead and give it to the other user. * The new directory also inherits the SUID bit. * If user's UID and dir UID are the same, * 'give it away' so that the SUID is still forced on. */ if ((dvp->v_mount->mnt_flag & MNT_SUIDDIR) && (dp->i_mode & ISUID) && dp->i_uid) { dmode |= ISUID; ip->i_uid = dp->i_uid; DIP_SET(ip, i_uid, dp->i_uid); #ifdef QUOTA if (dp->i_uid != cnp->cn_cred->cr_uid) { /* * Make sure the correct user gets charged * for the space. * Make a dummy credential for the victim. * XXX This seems to never be accessed out of * our context so a stack variable is ok. */ refcount_init(&ucred.cr_ref, 1); ucred.cr_uid = ip->i_uid; ucred.cr_ngroups = 1; ucred.cr_groups = &ucred_group; ucred.cr_groups[0] = dp->i_gid; ucp = &ucred; } #endif } else { ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); } #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, ucp, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(dp, ip); UFS_VFREE(tvp, ip->i_number, dmode); vgone(tvp); vput(tvp); return (error); } #endif } #else /* !SUIDDIR */ ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, cnp->cn_cred, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(dp, ip); UFS_VFREE(tvp, ip->i_number, dmode); vgone(tvp); vput(tvp); return (error); } #endif #endif /* !SUIDDIR */ UFS_INODE_SET_FLAG(ip, IN_ACCESS | IN_CHANGE | IN_UPDATE); ip->i_mode = dmode; DIP_SET(ip, i_mode, dmode); tvp->v_type = VDIR; /* Rest init'd in getnewvnode(). */ ip->i_effnlink = 2; ip->i_nlink = 2; DIP_SET(ip, i_nlink, 2); if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_SET(ip, i_flags, ip->i_flags); } /* * Bump link count in parent directory to reflect work done below. * Should be done before reference is created so cleanup is * possible if we crash. */ dp->i_effnlink++; dp->i_nlink++; DIP_SET(dp, i_nlink, dp->i_nlink); UFS_INODE_SET_FLAG(dp, IN_CHANGE); if (DOINGSOFTDEP(dvp)) softdep_setup_mkdir(dp, ip); error = UFS_UPDATE(dvp, !DOINGSOFTDEP(dvp) && !DOINGASYNC(dvp)); if (error) goto bad; #ifdef MAC if (dvp->v_mount->mnt_flag & MNT_MULTILABEL) { error = mac_vnode_create_extattr(cnp->cn_cred, dvp->v_mount, dvp, tvp, cnp); if (error) goto bad; } #endif #ifdef UFS_ACL if (dvp->v_mount->mnt_flag & MNT_ACLS) { error = ufs_do_posix1e_acl_inheritance_dir(dvp, tvp, dmode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } else if (dvp->v_mount->mnt_flag & MNT_NFS4ACLS) { error = ufs_do_nfs4_acl_inheritance(dvp, tvp, dmode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } #endif /* !UFS_ACL */ /* * Initialize directory with "." and ".." from static template. */ if (dvp->v_mount->mnt_maxsymlinklen > 0) dtp = &mastertemplate; else dtp = (struct dirtemplate *)&omastertemplate; dirtemplate = *dtp; dirtemplate.dot_ino = ip->i_number; dirtemplate.dotdot_ino = dp->i_number; vnode_pager_setsize(tvp, DIRBLKSIZ); if ((error = UFS_BALLOC(tvp, (off_t)0, DIRBLKSIZ, cnp->cn_cred, BA_CLRBUF, &bp)) != 0) goto bad; ip->i_size = DIRBLKSIZ; DIP_SET(ip, i_size, DIRBLKSIZ); UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); bcopy((caddr_t)&dirtemplate, (caddr_t)bp->b_data, sizeof dirtemplate); if (DOINGSOFTDEP(tvp)) { /* * Ensure that the entire newly allocated block is a * valid directory so that future growth within the * block does not have to ensure that the block is * written before the inode. */ blkoff = DIRBLKSIZ; while (blkoff < bp->b_bcount) { ((struct direct *) (bp->b_data + blkoff))->d_reclen = DIRBLKSIZ; blkoff += DIRBLKSIZ; } } if ((error = UFS_UPDATE(tvp, !DOINGSOFTDEP(tvp) && !DOINGASYNC(tvp))) != 0) { (void)bwrite(bp); goto bad; } /* * Directory set up, now install its entry in the parent directory. * * If we are not doing soft dependencies, then we must write out the * buffer containing the new directory body before entering the new * name in the parent. If we are doing soft dependencies, then the * buffer containing the new directory body will be passed to and * released in the soft dependency code after the code has attached * an appropriate ordering dependency to the buffer which ensures that * the buffer is written before the new name is written in the parent. */ if (DOINGASYNC(dvp)) bdwrite(bp); else if (!DOINGSOFTDEP(dvp) && ((error = bwrite(bp)))) goto bad; ufs_makedirentry(ip, cnp, &newdir); error = ufs_direnter(dvp, tvp, &newdir, cnp, bp, 0); bad: if (error == 0) { *ap->a_vpp = tvp; } else { dp->i_effnlink--; dp->i_nlink--; DIP_SET(dp, i_nlink, dp->i_nlink); UFS_INODE_SET_FLAG(dp, IN_CHANGE); /* * No need to do an explicit VOP_TRUNCATE here, vrele will * do this for us because we set the link count to 0. */ ip->i_effnlink = 0; ip->i_nlink = 0; DIP_SET(ip, i_nlink, 0); UFS_INODE_SET_FLAG(ip, IN_CHANGE); if (DOINGSOFTDEP(tvp)) softdep_revert_mkdir(dp, ip); vgone(tvp); vput(tvp); } out: return (error); } /* * Rmdir system call. */ static int ufs_rmdir(ap) struct vop_rmdir_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap; { struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct inode *ip, *dp; int error; ip = VTOI(vp); dp = VTOI(dvp); /* * Do not remove a directory that is in the process of being renamed. * Verify the directory is empty (and valid). Rmdir ".." will not be * valid since ".." will contain a reference to the current directory * and thus be non-empty. Do not allow the removal of mounted on * directories (this can happen when an NFS exported filesystem * tries to remove a locally mounted on directory). */ error = 0; if (dp->i_effnlink <= 2) { if (dp->i_effnlink == 2) print_bad_link_count("ufs_rmdir", dvp); error = EINVAL; goto out; } if (!ufs_dirempty(ip, dp->i_number, cnp->cn_cred)) { error = ENOTEMPTY; goto out; } if ((dp->i_flags & APPEND) || (ip->i_flags & (NOUNLINK | IMMUTABLE | APPEND))) { error = EPERM; goto out; } if (vp->v_mountedhere != 0) { error = EINVAL; goto out; } #ifdef UFS_GJOURNAL ufs_gjournal_orphan(vp); #endif /* * Delete reference to directory before purging * inode. If we crash in between, the directory * will be reattached to lost+found, */ dp->i_effnlink--; ip->i_effnlink--; if (DOINGSOFTDEP(vp)) softdep_setup_rmdir(dp, ip); error = ufs_dirremove(dvp, ip, cnp->cn_flags, 1); if (error) { dp->i_effnlink++; ip->i_effnlink++; if (DOINGSOFTDEP(vp)) softdep_revert_rmdir(dp, ip); goto out; } cache_purge(dvp); /* * The only stuff left in the directory is "." and "..". The "." * reference is inconsequential since we are quashing it. The soft * dependency code will arrange to do these operations after * the parent directory entry has been deleted on disk, so * when running with that code we avoid doing them now. */ if (!DOINGSOFTDEP(vp)) { dp->i_nlink--; DIP_SET(dp, i_nlink, dp->i_nlink); UFS_INODE_SET_FLAG(dp, IN_CHANGE); error = UFS_UPDATE(dvp, 0); ip->i_nlink--; DIP_SET(ip, i_nlink, ip->i_nlink); UFS_INODE_SET_FLAG(ip, IN_CHANGE); } cache_purge(vp); #ifdef UFS_DIRHASH /* Kill any active hash; i_effnlink == 0, so it will not come back. */ if (ip->i_dirhash != NULL) ufsdirhash_free(ip); #endif out: return (error); } /* * symlink -- make a symbolic link */ static int ufs_symlink(ap) struct vop_symlink_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; const char *a_target; } */ *ap; { struct vnode *vp, **vpp = ap->a_vpp; struct inode *ip; int len, error; error = ufs_makeinode(IFLNK | ap->a_vap->va_mode, ap->a_dvp, vpp, ap->a_cnp, "ufs_symlink"); if (error) return (error); vp = *vpp; len = strlen(ap->a_target); if (len < vp->v_mount->mnt_maxsymlinklen) { ip = VTOI(vp); bcopy(ap->a_target, SHORTLINK(ip), len); ip->i_size = len; DIP_SET(ip, i_size, len); UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); error = UFS_UPDATE(vp, 0); } else error = vn_rdwr(UIO_WRITE, vp, __DECONST(void *, ap->a_target), len, (off_t)0, UIO_SYSSPACE, IO_NODELOCKED | IO_NOMACCHECK, ap->a_cnp->cn_cred, NOCRED, NULL, NULL); if (error) vput(vp); return (error); } /* * Vnode op for reading directories. */ int ufs_readdir(ap) struct vop_readdir_args /* { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; int *a_eofflag; int *a_ncookies; u_long **a_cookies; } */ *ap; { struct vnode *vp = ap->a_vp; struct uio *uio = ap->a_uio; struct buf *bp; struct inode *ip; struct direct *dp, *edp; u_long *cookies; struct dirent dstdp; off_t offset, startoffset; size_t readcnt, skipcnt; ssize_t startresid; u_int ncookies; int error; if (uio->uio_offset < 0) return (EINVAL); ip = VTOI(vp); if (ip->i_effnlink == 0) return (0); if (ap->a_ncookies != NULL) { if (uio->uio_resid < 0) ncookies = 0; else ncookies = uio->uio_resid; if (uio->uio_offset >= ip->i_size) ncookies = 0; else if (ip->i_size - uio->uio_offset < ncookies) ncookies = ip->i_size - uio->uio_offset; ncookies = ncookies / (offsetof(struct direct, d_name) + 4) + 1; cookies = malloc(ncookies * sizeof(*cookies), M_TEMP, M_WAITOK); *ap->a_ncookies = ncookies; *ap->a_cookies = cookies; } else { ncookies = 0; cookies = NULL; } offset = startoffset = uio->uio_offset; startresid = uio->uio_resid; error = 0; while (error == 0 && uio->uio_resid > 0 && uio->uio_offset < ip->i_size) { error = ffs_blkatoff(vp, uio->uio_offset, NULL, &bp); if (error) break; if (bp->b_offset + bp->b_bcount > ip->i_size) readcnt = ip->i_size - bp->b_offset; else readcnt = bp->b_bcount; skipcnt = (size_t)(uio->uio_offset - bp->b_offset) & ~(size_t)(DIRBLKSIZ - 1); offset = bp->b_offset + skipcnt; dp = (struct direct *)&bp->b_data[skipcnt]; edp = (struct direct *)&bp->b_data[readcnt]; while (error == 0 && uio->uio_resid > 0 && dp < edp) { if (dp->d_reclen <= offsetof(struct direct, d_name) || (caddr_t)dp + dp->d_reclen > (caddr_t)edp) { error = EIO; break; } #if BYTE_ORDER == LITTLE_ENDIAN /* Old filesystem format. */ if (vp->v_mount->mnt_maxsymlinklen <= 0) { dstdp.d_namlen = dp->d_type; dstdp.d_type = dp->d_namlen; } else #endif { dstdp.d_namlen = dp->d_namlen; dstdp.d_type = dp->d_type; } if (offsetof(struct direct, d_name) + dstdp.d_namlen > dp->d_reclen) { error = EIO; break; } if (offset < startoffset || dp->d_ino == 0) goto nextentry; dstdp.d_fileno = dp->d_ino; dstdp.d_reclen = GENERIC_DIRSIZ(&dstdp); bcopy(dp->d_name, dstdp.d_name, dstdp.d_namlen); /* NOTE: d_off is the offset of the *next* entry. */ dstdp.d_off = offset + dp->d_reclen; dirent_terminate(&dstdp); if (dstdp.d_reclen > uio->uio_resid) { if (uio->uio_resid == startresid) error = EINVAL; else error = EJUSTRETURN; break; } /* Advance dp. */ error = uiomove((caddr_t)&dstdp, dstdp.d_reclen, uio); if (error) break; if (cookies != NULL) { KASSERT(ncookies > 0, ("ufs_readdir: cookies buffer too small")); *cookies = offset + dp->d_reclen; cookies++; ncookies--; } nextentry: offset += dp->d_reclen; dp = (struct direct *)((caddr_t)dp + dp->d_reclen); } bqrelse(bp); uio->uio_offset = offset; } /* We need to correct uio_offset. */ uio->uio_offset = offset; if (error == EJUSTRETURN) error = 0; if (ap->a_ncookies != NULL) { if (error == 0) { ap->a_ncookies -= ncookies; } else { free(*ap->a_cookies, M_TEMP); *ap->a_ncookies = 0; *ap->a_cookies = NULL; } } if (error == 0 && ap->a_eofflag) *ap->a_eofflag = ip->i_size <= uio->uio_offset; return (error); } /* * Return target name of a symbolic link */ static int ufs_readlink(ap) struct vop_readlink_args /* { struct vnode *a_vp; struct uio *a_uio; struct ucred *a_cred; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); doff_t isize; isize = ip->i_size; if ((isize < vp->v_mount->mnt_maxsymlinklen) || DIP(ip, i_blocks) == 0) { /* XXX - for old fastlink support */ return (uiomove(SHORTLINK(ip), isize, ap->a_uio)); } return (VOP_READ(vp, ap->a_uio, 0, ap->a_cred)); } /* * Calculate the logical to physical mapping if not done already, * then call the device strategy routine. * * In order to be able to swap to a file, the ufs_bmaparray() operation may not * deadlock on memory. See ufs_bmap() for details. */ static int ufs_strategy(ap) struct vop_strategy_args /* { struct vnode *a_vp; struct buf *a_bp; } */ *ap; { struct buf *bp = ap->a_bp; struct vnode *vp = ap->a_vp; ufs2_daddr_t blkno; int error; if (bp->b_blkno == bp->b_lblkno) { error = ufs_bmaparray(vp, bp->b_lblkno, &blkno, bp, NULL, NULL); bp->b_blkno = blkno; if (error) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return (0); } if ((long)bp->b_blkno == -1) vfs_bio_clrbuf(bp); } if ((long)bp->b_blkno == -1) { bufdone(bp); return (0); } bp->b_iooffset = dbtob(bp->b_blkno); BO_STRATEGY(VFSTOUFS(vp->v_mount)->um_bo, bp); return (0); } /* * Print out the contents of an inode. */ static int ufs_print(ap) struct vop_print_args /* { struct vnode *a_vp; } */ *ap; { struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); printf("\tnlink=%d, effnlink=%d, size=%jd", ip->i_nlink, ip->i_effnlink, (intmax_t)ip->i_size); if (I_IS_UFS2(ip)) printf(", extsize %d", ip->i_din2->di_extsize); printf("\n\tgeneration=%jx, uid=%d, gid=%d, flags=0x%b\n", (uintmax_t)ip->i_gen, ip->i_uid, ip->i_gid, (u_int)ip->i_flags, PRINT_INODE_FLAGS); printf("\tino %lu, on dev %s", (u_long)ip->i_number, devtoname(ITODEV(ip))); if (vp->v_type == VFIFO) fifo_printinfo(vp); printf("\n"); return (0); } /* * Close wrapper for fifos. * * Update the times on the inode then do device close. */ static int ufsfifo_close(ap) struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct thread *a_td; } */ *ap; { struct vnode *vp = ap->a_vp; int usecount; VI_LOCK(vp); usecount = vp->v_usecount; if (usecount > 1) ufs_itimes_locked(vp); VI_UNLOCK(vp); return (fifo_specops.vop_close(ap)); } /* * Kqfilter wrapper for fifos. * * Fall through to ufs kqfilter routines if needed */ static int ufsfifo_kqfilter(ap) struct vop_kqfilter_args *ap; { int error; error = fifo_specops.vop_kqfilter(ap); if (error) error = vfs_kqfilter(ap); return (error); } /* * Return POSIX pathconf information applicable to ufs filesystems. */ static int ufs_pathconf(ap) struct vop_pathconf_args /* { struct vnode *a_vp; int a_name; int *a_retval; } */ *ap; { int error; error = 0; switch (ap->a_name) { case _PC_LINK_MAX: *ap->a_retval = UFS_LINK_MAX; break; case _PC_NAME_MAX: *ap->a_retval = UFS_MAXNAMLEN; break; case _PC_PIPE_BUF: if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) *ap->a_retval = PIPE_BUF; else error = EINVAL; break; case _PC_CHOWN_RESTRICTED: *ap->a_retval = 1; break; case _PC_NO_TRUNC: *ap->a_retval = 1; break; #ifdef UFS_ACL case _PC_ACL_EXTENDED: if (ap->a_vp->v_mount->mnt_flag & MNT_ACLS) *ap->a_retval = 1; else *ap->a_retval = 0; break; case _PC_ACL_NFS4: if (ap->a_vp->v_mount->mnt_flag & MNT_NFS4ACLS) *ap->a_retval = 1; else *ap->a_retval = 0; break; #endif case _PC_ACL_PATH_MAX: #ifdef UFS_ACL if (ap->a_vp->v_mount->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS)) *ap->a_retval = ACL_MAX_ENTRIES; else *ap->a_retval = 3; #else *ap->a_retval = 3; #endif break; #ifdef MAC case _PC_MAC_PRESENT: if (ap->a_vp->v_mount->mnt_flag & MNT_MULTILABEL) *ap->a_retval = 1; else *ap->a_retval = 0; break; #endif case _PC_MIN_HOLE_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_PRIO_IO: *ap->a_retval = 0; break; case _PC_SYNC_IO: *ap->a_retval = 0; break; case _PC_ALLOC_SIZE_MIN: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_bsize; break; case _PC_FILESIZEBITS: *ap->a_retval = 64; break; case _PC_REC_INCR_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_MAX_XFER_SIZE: *ap->a_retval = -1; /* means ``unlimited'' */ break; case _PC_REC_MIN_XFER_SIZE: *ap->a_retval = ap->a_vp->v_mount->mnt_stat.f_iosize; break; case _PC_REC_XFER_ALIGN: *ap->a_retval = PAGE_SIZE; break; case _PC_SYMLINK_MAX: *ap->a_retval = MAXPATHLEN; break; default: error = vop_stdpathconf(ap); break; } return (error); } /* * Initialize the vnode associated with a new inode, handle aliased * vnodes. */ int ufs_vinit(mntp, fifoops, vpp) struct mount *mntp; struct vop_vector *fifoops; struct vnode **vpp; { struct inode *ip; struct vnode *vp; vp = *vpp; ASSERT_VOP_LOCKED(vp, "ufs_vinit"); ip = VTOI(vp); vp->v_type = IFTOVT(ip->i_mode); /* * Only unallocated inodes should be of type VNON. */ if (ip->i_mode != 0 && vp->v_type == VNON) return (EINVAL); if (vp->v_type == VFIFO) vp->v_op = fifoops; if (ip->i_number == UFS_ROOTINO) vp->v_vflag |= VV_ROOT; *vpp = vp; return (0); } /* * Allocate a new inode. * Vnode dvp must be locked. */ static int ufs_makeinode(mode, dvp, vpp, cnp, callfunc) int mode; struct vnode *dvp; struct vnode **vpp; struct componentname *cnp; const char *callfunc; { struct inode *ip, *pdir; struct direct newdir; struct vnode *tvp; int error; pdir = VTOI(dvp); #ifdef INVARIANTS if ((cnp->cn_flags & HASBUF) == 0) panic("%s: no name", callfunc); #endif *vpp = NULL; if ((mode & IFMT) == 0) mode |= IFREG; if (pdir->i_effnlink < 2) { print_bad_link_count(callfunc, dvp); return (EINVAL); } error = UFS_VALLOC(dvp, mode, cnp->cn_cred, &tvp); if (error) return (error); ip = VTOI(tvp); ip->i_gid = pdir->i_gid; DIP_SET(ip, i_gid, pdir->i_gid); #ifdef SUIDDIR { #ifdef QUOTA struct ucred ucred, *ucp; gid_t ucred_group; ucp = cnp->cn_cred; #endif /* * If we are not the owner of the directory, * and we are hacking owners here, (only do this where told to) * and we are not giving it TO root, (would subvert quotas) * then go ahead and give it to the other user. * Note that this drops off the execute bits for security. */ if ((dvp->v_mount->mnt_flag & MNT_SUIDDIR) && (pdir->i_mode & ISUID) && (pdir->i_uid != cnp->cn_cred->cr_uid) && pdir->i_uid) { ip->i_uid = pdir->i_uid; DIP_SET(ip, i_uid, ip->i_uid); mode &= ~07111; #ifdef QUOTA /* * Make sure the correct user gets charged * for the space. * Quickly knock up a dummy credential for the victim. * XXX This seems to never be accessed out of our * context so a stack variable is ok. */ refcount_init(&ucred.cr_ref, 1); ucred.cr_uid = ip->i_uid; ucred.cr_ngroups = 1; ucred.cr_groups = &ucred_group; ucred.cr_groups[0] = pdir->i_gid; ucp = &ucred; #endif } else { ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); } #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, ucp, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(pdir, ip); UFS_VFREE(tvp, ip->i_number, mode); vgone(tvp); vput(tvp); return (error); } #endif } #else /* !SUIDDIR */ ip->i_uid = cnp->cn_cred->cr_uid; DIP_SET(ip, i_uid, ip->i_uid); #ifdef QUOTA if ((error = getinoquota(ip)) || (error = chkiq(ip, 1, cnp->cn_cred, 0))) { if (DOINGSOFTDEP(tvp)) softdep_revert_link(pdir, ip); UFS_VFREE(tvp, ip->i_number, mode); vgone(tvp); vput(tvp); return (error); } #endif #endif /* !SUIDDIR */ UFS_INODE_SET_FLAG(ip, IN_ACCESS | IN_CHANGE | IN_UPDATE); ip->i_mode = mode; DIP_SET(ip, i_mode, mode); tvp->v_type = IFTOVT(mode); /* Rest init'd in getnewvnode(). */ ip->i_effnlink = 1; ip->i_nlink = 1; DIP_SET(ip, i_nlink, 1); if (DOINGSOFTDEP(tvp)) softdep_setup_create(VTOI(dvp), ip); if ((ip->i_mode & ISGID) && !groupmember(ip->i_gid, cnp->cn_cred) && priv_check_cred(cnp->cn_cred, PRIV_VFS_SETGID)) { ip->i_mode &= ~ISGID; DIP_SET(ip, i_mode, ip->i_mode); } if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_SET(ip, i_flags, ip->i_flags); } /* * Make sure inode goes to disk before directory entry. */ error = UFS_UPDATE(tvp, !DOINGSOFTDEP(tvp) && !DOINGASYNC(tvp)); if (error) goto bad; #ifdef MAC if (dvp->v_mount->mnt_flag & MNT_MULTILABEL) { error = mac_vnode_create_extattr(cnp->cn_cred, dvp->v_mount, dvp, tvp, cnp); if (error) goto bad; } #endif #ifdef UFS_ACL if (dvp->v_mount->mnt_flag & MNT_ACLS) { error = ufs_do_posix1e_acl_inheritance_file(dvp, tvp, mode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } else if (dvp->v_mount->mnt_flag & MNT_NFS4ACLS) { error = ufs_do_nfs4_acl_inheritance(dvp, tvp, mode, cnp->cn_cred, cnp->cn_thread); if (error) goto bad; } #endif /* !UFS_ACL */ ufs_makedirentry(ip, cnp, &newdir); error = ufs_direnter(dvp, tvp, &newdir, cnp, NULL, 0); if (error) goto bad; *vpp = tvp; return (0); bad: /* * Write error occurred trying to update the inode * or the directory so must deallocate the inode. */ ip->i_effnlink = 0; ip->i_nlink = 0; DIP_SET(ip, i_nlink, 0); UFS_INODE_SET_FLAG(ip, IN_CHANGE); if (DOINGSOFTDEP(tvp)) softdep_revert_create(VTOI(dvp), ip); vgone(tvp); vput(tvp); return (error); } static int ufs_ioctl(struct vop_ioctl_args *ap) { struct vnode *vp; int error; vp = ap->a_vp; switch (ap->a_command) { case FIOSEEKDATA: error = vn_lock(vp, LK_SHARED); if (error == 0) { error = ufs_bmap_seekdata(vp, (off_t *)ap->a_data); VOP_UNLOCK(vp); } else error = EBADF; return (error); case FIOSEEKHOLE: return (vn_bmap_seekhole(vp, ap->a_command, (off_t *)ap->a_data, ap->a_cred)); default: return (ENOTTY); } } /* Global vfs data structures for ufs. */ struct vop_vector ufs_vnodeops = { .vop_default = &default_vnodeops, .vop_fsync = VOP_PANIC, .vop_read = VOP_PANIC, .vop_reallocblks = VOP_PANIC, .vop_write = VOP_PANIC, .vop_accessx = ufs_accessx, .vop_bmap = ufs_bmap, .vop_cachedlookup = ufs_lookup, .vop_close = ufs_close, .vop_create = ufs_create, .vop_getattr = ufs_getattr, .vop_inactive = ufs_inactive, .vop_ioctl = ufs_ioctl, .vop_link = ufs_link, .vop_lookup = vfs_cache_lookup, - .vop_markatime = ufs_markatime, + .vop_mmapped = ufs_mmapped, .vop_mkdir = ufs_mkdir, .vop_mknod = ufs_mknod, .vop_need_inactive = ufs_need_inactive, .vop_open = ufs_open, .vop_pathconf = ufs_pathconf, .vop_poll = vop_stdpoll, .vop_print = ufs_print, .vop_readdir = ufs_readdir, .vop_readlink = ufs_readlink, .vop_reclaim = ufs_reclaim, .vop_remove = ufs_remove, .vop_rename = ufs_rename, .vop_rmdir = ufs_rmdir, .vop_setattr = ufs_setattr, #ifdef MAC .vop_setlabel = vop_stdsetlabel_ea, #endif .vop_strategy = ufs_strategy, .vop_symlink = ufs_symlink, .vop_whiteout = ufs_whiteout, #ifdef UFS_EXTATTR .vop_getextattr = ufs_getextattr, .vop_deleteextattr = ufs_deleteextattr, .vop_setextattr = ufs_setextattr, #endif #ifdef UFS_ACL .vop_getacl = ufs_getacl, .vop_setacl = ufs_setacl, .vop_aclcheck = ufs_aclcheck, #endif }; VFS_VOP_VECTOR_REGISTER(ufs_vnodeops); struct vop_vector ufs_fifoops = { .vop_default = &fifo_specops, .vop_fsync = VOP_PANIC, .vop_accessx = ufs_accessx, .vop_close = ufsfifo_close, .vop_getattr = ufs_getattr, .vop_inactive = ufs_inactive, .vop_kqfilter = ufsfifo_kqfilter, .vop_pathconf = ufs_pathconf, .vop_print = ufs_print, .vop_read = VOP_PANIC, .vop_reclaim = ufs_reclaim, .vop_setattr = ufs_setattr, #ifdef MAC .vop_setlabel = vop_stdsetlabel_ea, #endif .vop_write = VOP_PANIC, #ifdef UFS_EXTATTR .vop_getextattr = ufs_getextattr, .vop_deleteextattr = ufs_deleteextattr, .vop_setextattr = ufs_setextattr, #endif #ifdef UFS_ACL .vop_getacl = ufs_getacl, .vop_setacl = ufs_setacl, .vop_aclcheck = ufs_aclcheck, #endif }; VFS_VOP_VECTOR_REGISTER(ufs_fifoops); Index: head/sys/vm/vm_mmap.c =================================================================== --- head/sys/vm/vm_mmap.c (revision 357360) +++ head/sys/vm/vm_mmap.c (revision 357361) @@ -1,1661 +1,1661 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1988 University of Utah. * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: vm_mmap.c 1.6 91/10/21$ * * @(#)vm_mmap.c 8.4 (Berkeley) 1/12/94 */ /* * Mapped file (mmap) interface to VM */ #include __FBSDID("$FreeBSD$"); #include "opt_hwpmc_hooks.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__amd64__) || defined(__i386__) /* for i386_read_exec */ #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif int old_mlock = 0; SYSCTL_INT(_vm, OID_AUTO, old_mlock, CTLFLAG_RWTUN, &old_mlock, 0, "Do not apply RLIMIT_MEMLOCK on mlockall"); static int mincore_mapped = 1; SYSCTL_INT(_vm, OID_AUTO, mincore_mapped, CTLFLAG_RWTUN, &mincore_mapped, 0, "mincore reports mappings, not residency"); static int imply_prot_max = 0; SYSCTL_INT(_vm, OID_AUTO, imply_prot_max, CTLFLAG_RWTUN, &imply_prot_max, 0, "Imply maximum page permissions in mmap() when none are specified"); #ifdef MAP_32BIT #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) #endif #ifndef _SYS_SYSPROTO_H_ struct sbrk_args { int incr; }; #endif int sys_sbrk(struct thread *td, struct sbrk_args *uap) { /* Not yet implemented */ return (EOPNOTSUPP); } #ifndef _SYS_SYSPROTO_H_ struct sstk_args { int incr; }; #endif int sys_sstk(struct thread *td, struct sstk_args *uap) { /* Not yet implemented */ return (EOPNOTSUPP); } #if defined(COMPAT_43) int ogetpagesize(struct thread *td, struct ogetpagesize_args *uap) { td->td_retval[0] = PAGE_SIZE; return (0); } #endif /* COMPAT_43 */ /* * Memory Map (mmap) system call. Note that the file offset * and address are allowed to be NOT page aligned, though if * the MAP_FIXED flag it set, both must have the same remainder * modulo the PAGE_SIZE (POSIX 1003.1b). If the address is not * page-aligned, the actual mapping starts at trunc_page(addr) * and the return value is adjusted up by the page offset. * * Generally speaking, only character devices which are themselves * memory-based, such as a video framebuffer, can be mmap'd. Otherwise * there would be no cache coherency between a descriptor and a VM mapping * both to the same character device. */ #ifndef _SYS_SYSPROTO_H_ struct mmap_args { void *addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; }; #endif int sys_mmap(struct thread *td, struct mmap_args *uap) { return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, uap->prot, uap->flags, uap->fd, uap->pos)); } int kern_mmap_maxprot(struct proc *p, int prot) { if ((p->p_flag2 & P2_PROTMAX_DISABLE) != 0 || (p->p_fctl0 & NT_FREEBSD_FCTL_PROTMAX_DISABLE) != 0) return (_PROT_ALL); if (((p->p_flag2 & P2_PROTMAX_ENABLE) != 0 || imply_prot_max) && prot != PROT_NONE) return (prot); return (_PROT_ALL); } int kern_mmap(struct thread *td, uintptr_t addr0, size_t len, int prot, int flags, int fd, off_t pos) { return (kern_mmap_fpcheck(td, addr0, len, prot, flags, fd, pos, NULL)); } /* * When mmap'ing a file, check_fp_fn may be used for the caller to do any * last-minute validation based on the referenced file in a non-racy way. */ int kern_mmap_fpcheck(struct thread *td, uintptr_t addr0, size_t len, int prot, int flags, int fd, off_t pos, mmap_check_fp_fn check_fp_fn) { struct vmspace *vms; struct file *fp; struct proc *p; vm_offset_t addr; vm_size_t pageoff, size; vm_prot_t cap_maxprot; int align, error, max_prot; cap_rights_t rights; if ((prot & ~(_PROT_ALL | PROT_MAX(_PROT_ALL))) != 0) return (EINVAL); max_prot = PROT_MAX_EXTRACT(prot); prot = PROT_EXTRACT(prot); if (max_prot != 0 && (max_prot & prot) != prot) return (EINVAL); p = td->td_proc; /* * Always honor PROT_MAX if set. If not, default to all * permissions unless we're implying maximum permissions. */ if (max_prot == 0) max_prot = kern_mmap_maxprot(p, prot); vms = p->p_vmspace; fp = NULL; AUDIT_ARG_FD(fd); addr = addr0; /* * Ignore old flags that used to be defined but did not do anything. */ flags &= ~(MAP_RESERVED0020 | MAP_RESERVED0040); /* * Enforce the constraints. * Mapping of length 0 is only allowed for old binaries. * Anonymous mapping shall specify -1 as filedescriptor and * zero position for new code. Be nice to ancient a.out * binaries and correct pos for anonymous mapping, since old * ld.so sometimes issues anonymous map requests with non-zero * pos. */ if (!SV_CURPROC_FLAG(SV_AOUT)) { if ((len == 0 && p->p_osrel >= P_OSREL_MAP_ANON) || ((flags & MAP_ANON) != 0 && (fd != -1 || pos != 0))) return (EINVAL); } else { if ((flags & MAP_ANON) != 0) pos = 0; } if (flags & MAP_STACK) { if ((fd != -1) || ((prot & (PROT_READ | PROT_WRITE)) != (PROT_READ | PROT_WRITE))) return (EINVAL); flags |= MAP_ANON; pos = 0; } if ((flags & ~(MAP_SHARED | MAP_PRIVATE | MAP_FIXED | MAP_HASSEMAPHORE | MAP_STACK | MAP_NOSYNC | MAP_ANON | MAP_EXCL | MAP_NOCORE | MAP_PREFAULT_READ | MAP_GUARD | #ifdef MAP_32BIT MAP_32BIT | #endif MAP_ALIGNMENT_MASK)) != 0) return (EINVAL); if ((flags & (MAP_EXCL | MAP_FIXED)) == MAP_EXCL) return (EINVAL); if ((flags & (MAP_SHARED | MAP_PRIVATE)) == (MAP_SHARED | MAP_PRIVATE)) return (EINVAL); if (prot != PROT_NONE && (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) != 0) return (EINVAL); if ((flags & MAP_GUARD) != 0 && (prot != PROT_NONE || fd != -1 || pos != 0 || (flags & ~(MAP_FIXED | MAP_GUARD | MAP_EXCL | #ifdef MAP_32BIT MAP_32BIT | #endif MAP_ALIGNMENT_MASK)) != 0)) return (EINVAL); /* * Align the file position to a page boundary, * and save its page offset component. */ pageoff = (pos & PAGE_MASK); pos -= pageoff; /* Compute size from len by rounding (on both ends). */ size = len + pageoff; /* low end... */ size = round_page(size); /* hi end */ /* Check for rounding up to zero. */ if (len > size) return (ENOMEM); /* Ensure alignment is at least a page and fits in a pointer. */ align = flags & MAP_ALIGNMENT_MASK; if (align != 0 && align != MAP_ALIGNED_SUPER && (align >> MAP_ALIGNMENT_SHIFT >= sizeof(void *) * NBBY || align >> MAP_ALIGNMENT_SHIFT < PAGE_SHIFT)) return (EINVAL); /* * Check for illegal addresses. Watch out for address wrap... Note * that VM_*_ADDRESS are not constants due to casts (argh). */ if (flags & MAP_FIXED) { /* * The specified address must have the same remainder * as the file offset taken modulo PAGE_SIZE, so it * should be aligned after adjustment by pageoff. */ addr -= pageoff; if (addr & PAGE_MASK) return (EINVAL); /* Address range must be all in user VM space. */ if (addr < vm_map_min(&vms->vm_map) || addr + size > vm_map_max(&vms->vm_map)) return (EINVAL); if (addr + size < addr) return (EINVAL); #ifdef MAP_32BIT if (flags & MAP_32BIT && addr + size > MAP_32BIT_MAX_ADDR) return (EINVAL); } else if (flags & MAP_32BIT) { /* * For MAP_32BIT, override the hint if it is too high and * do not bother moving the mapping past the heap (since * the heap is usually above 2GB). */ if (addr + size > MAP_32BIT_MAX_ADDR) addr = 0; #endif } else { /* * XXX for non-fixed mappings where no hint is provided or * the hint would fall in the potential heap space, * place it after the end of the largest possible heap. * * There should really be a pmap call to determine a reasonable * location. */ if (addr == 0 || (addr >= round_page((vm_offset_t)vms->vm_taddr) && addr < round_page((vm_offset_t)vms->vm_daddr + lim_max(td, RLIMIT_DATA)))) addr = round_page((vm_offset_t)vms->vm_daddr + lim_max(td, RLIMIT_DATA)); } if (len == 0) { /* * Return success without mapping anything for old * binaries that request a page-aligned mapping of * length 0. For modern binaries, this function * returns an error earlier. */ error = 0; } else if ((flags & MAP_GUARD) != 0) { error = vm_mmap_object(&vms->vm_map, &addr, size, VM_PROT_NONE, VM_PROT_NONE, flags, NULL, pos, FALSE, td); } else if ((flags & MAP_ANON) != 0) { /* * Mapping blank space is trivial. * * This relies on VM_PROT_* matching PROT_*. */ error = vm_mmap_object(&vms->vm_map, &addr, size, prot, max_prot, flags, NULL, pos, FALSE, td); } else { /* * Mapping file, get fp for validation and don't let the * descriptor disappear on us if we block. Check capability * rights, but also return the maximum rights to be combined * with maxprot later. */ cap_rights_init(&rights, CAP_MMAP); if (prot & PROT_READ) cap_rights_set(&rights, CAP_MMAP_R); if ((flags & MAP_SHARED) != 0) { if (prot & PROT_WRITE) cap_rights_set(&rights, CAP_MMAP_W); } if (prot & PROT_EXEC) cap_rights_set(&rights, CAP_MMAP_X); error = fget_mmap(td, fd, &rights, &cap_maxprot, &fp); if (error != 0) goto done; if ((flags & (MAP_SHARED | MAP_PRIVATE)) == 0 && p->p_osrel >= P_OSREL_MAP_FSTRICT) { error = EINVAL; goto done; } if (check_fp_fn != NULL) { error = check_fp_fn(fp, prot, max_prot & cap_maxprot, flags); if (error != 0) goto done; } /* This relies on VM_PROT_* matching PROT_*. */ error = fo_mmap(fp, &vms->vm_map, &addr, size, prot, max_prot & cap_maxprot, flags, pos, td); } if (error == 0) td->td_retval[0] = (register_t) (addr + pageoff); done: if (fp) fdrop(fp, td); return (error); } #if defined(COMPAT_FREEBSD6) int freebsd6_mmap(struct thread *td, struct freebsd6_mmap_args *uap) { return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, uap->prot, uap->flags, uap->fd, uap->pos)); } #endif #ifdef COMPAT_43 #ifndef _SYS_SYSPROTO_H_ struct ommap_args { caddr_t addr; int len; int prot; int flags; int fd; long pos; }; #endif int ommap(struct thread *td, struct ommap_args *uap) { static const char cvtbsdprot[8] = { 0, PROT_EXEC, PROT_WRITE, PROT_EXEC | PROT_WRITE, PROT_READ, PROT_EXEC | PROT_READ, PROT_WRITE | PROT_READ, PROT_EXEC | PROT_WRITE | PROT_READ, }; int flags, prot; #define OMAP_ANON 0x0002 #define OMAP_COPY 0x0020 #define OMAP_SHARED 0x0010 #define OMAP_FIXED 0x0100 prot = cvtbsdprot[uap->prot & 0x7]; #if (defined(COMPAT_FREEBSD32) && defined(__amd64__)) || defined(__i386__) if (i386_read_exec && SV_PROC_FLAG(td->td_proc, SV_ILP32) && prot != 0) prot |= PROT_EXEC; #endif flags = 0; if (uap->flags & OMAP_ANON) flags |= MAP_ANON; if (uap->flags & OMAP_COPY) flags |= MAP_COPY; if (uap->flags & OMAP_SHARED) flags |= MAP_SHARED; else flags |= MAP_PRIVATE; if (uap->flags & OMAP_FIXED) flags |= MAP_FIXED; return (kern_mmap(td, (uintptr_t)uap->addr, uap->len, prot, flags, uap->fd, uap->pos)); } #endif /* COMPAT_43 */ #ifndef _SYS_SYSPROTO_H_ struct msync_args { void *addr; size_t len; int flags; }; #endif int sys_msync(struct thread *td, struct msync_args *uap) { return (kern_msync(td, (uintptr_t)uap->addr, uap->len, uap->flags)); } int kern_msync(struct thread *td, uintptr_t addr0, size_t size, int flags) { vm_offset_t addr; vm_size_t pageoff; vm_map_t map; int rv; addr = addr0; pageoff = (addr & PAGE_MASK); addr -= pageoff; size += pageoff; size = (vm_size_t) round_page(size); if (addr + size < addr) return (EINVAL); if ((flags & (MS_ASYNC|MS_INVALIDATE)) == (MS_ASYNC|MS_INVALIDATE)) return (EINVAL); map = &td->td_proc->p_vmspace->vm_map; /* * Clean the pages and interpret the return value. */ rv = vm_map_sync(map, addr, addr + size, (flags & MS_ASYNC) == 0, (flags & MS_INVALIDATE) != 0); switch (rv) { case KERN_SUCCESS: return (0); case KERN_INVALID_ADDRESS: return (ENOMEM); case KERN_INVALID_ARGUMENT: return (EBUSY); case KERN_FAILURE: return (EIO); default: return (EINVAL); } } #ifndef _SYS_SYSPROTO_H_ struct munmap_args { void *addr; size_t len; }; #endif int sys_munmap(struct thread *td, struct munmap_args *uap) { return (kern_munmap(td, (uintptr_t)uap->addr, uap->len)); } int kern_munmap(struct thread *td, uintptr_t addr0, size_t size) { #ifdef HWPMC_HOOKS struct pmckern_map_out pkm; vm_map_entry_t entry; bool pmc_handled; #endif vm_offset_t addr; vm_size_t pageoff; vm_map_t map; if (size == 0) return (EINVAL); addr = addr0; pageoff = (addr & PAGE_MASK); addr -= pageoff; size += pageoff; size = (vm_size_t) round_page(size); if (addr + size < addr) return (EINVAL); /* * Check for illegal addresses. Watch out for address wrap... */ map = &td->td_proc->p_vmspace->vm_map; if (addr < vm_map_min(map) || addr + size > vm_map_max(map)) return (EINVAL); vm_map_lock(map); #ifdef HWPMC_HOOKS pmc_handled = false; if (PMC_HOOK_INSTALLED(PMC_FN_MUNMAP)) { pmc_handled = true; /* * Inform hwpmc if the address range being unmapped contains * an executable region. */ pkm.pm_address = (uintptr_t) NULL; if (vm_map_lookup_entry(map, addr, &entry)) { for (; entry->start < addr + size; entry = vm_map_entry_succ(entry)) { if (vm_map_check_protection(map, entry->start, entry->end, VM_PROT_EXECUTE) == TRUE) { pkm.pm_address = (uintptr_t) addr; pkm.pm_size = (size_t) size; break; } } } } #endif vm_map_delete(map, addr, addr + size); #ifdef HWPMC_HOOKS if (__predict_false(pmc_handled)) { /* downgrade the lock to prevent a LOR with the pmc-sx lock */ vm_map_lock_downgrade(map); if (pkm.pm_address != (uintptr_t) NULL) PMC_CALL_HOOK(td, PMC_FN_MUNMAP, (void *) &pkm); vm_map_unlock_read(map); } else #endif vm_map_unlock(map); /* vm_map_delete returns nothing but KERN_SUCCESS anyway */ return (0); } #ifndef _SYS_SYSPROTO_H_ struct mprotect_args { const void *addr; size_t len; int prot; }; #endif int sys_mprotect(struct thread *td, struct mprotect_args *uap) { return (kern_mprotect(td, (uintptr_t)uap->addr, uap->len, uap->prot)); } int kern_mprotect(struct thread *td, uintptr_t addr0, size_t size, int prot) { vm_offset_t addr; vm_size_t pageoff; int vm_error, max_prot; addr = addr0; if ((prot & ~(_PROT_ALL | PROT_MAX(_PROT_ALL))) != 0) return (EINVAL); max_prot = PROT_MAX_EXTRACT(prot); prot = PROT_EXTRACT(prot); pageoff = (addr & PAGE_MASK); addr -= pageoff; size += pageoff; size = (vm_size_t) round_page(size); #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { if (((addr + size) & 0xffffffff) < addr) return (EINVAL); } else #endif if (addr + size < addr) return (EINVAL); vm_error = KERN_SUCCESS; if (max_prot != 0) { if ((max_prot & prot) != prot) return (EINVAL); vm_error = vm_map_protect(&td->td_proc->p_vmspace->vm_map, addr, addr + size, max_prot, TRUE); } if (vm_error == KERN_SUCCESS) vm_error = vm_map_protect(&td->td_proc->p_vmspace->vm_map, addr, addr + size, prot, FALSE); switch (vm_error) { case KERN_SUCCESS: return (0); case KERN_PROTECTION_FAILURE: return (EACCES); case KERN_RESOURCE_SHORTAGE: return (ENOMEM); } return (EINVAL); } #ifndef _SYS_SYSPROTO_H_ struct minherit_args { void *addr; size_t len; int inherit; }; #endif int sys_minherit(struct thread *td, struct minherit_args *uap) { vm_offset_t addr; vm_size_t size, pageoff; vm_inherit_t inherit; addr = (vm_offset_t)uap->addr; size = uap->len; inherit = uap->inherit; pageoff = (addr & PAGE_MASK); addr -= pageoff; size += pageoff; size = (vm_size_t) round_page(size); if (addr + size < addr) return (EINVAL); switch (vm_map_inherit(&td->td_proc->p_vmspace->vm_map, addr, addr + size, inherit)) { case KERN_SUCCESS: return (0); case KERN_PROTECTION_FAILURE: return (EACCES); } return (EINVAL); } #ifndef _SYS_SYSPROTO_H_ struct madvise_args { void *addr; size_t len; int behav; }; #endif int sys_madvise(struct thread *td, struct madvise_args *uap) { return (kern_madvise(td, (uintptr_t)uap->addr, uap->len, uap->behav)); } int kern_madvise(struct thread *td, uintptr_t addr0, size_t len, int behav) { vm_map_t map; vm_offset_t addr, end, start; int flags; /* * Check for our special case, advising the swap pager we are * "immortal." */ if (behav == MADV_PROTECT) { flags = PPROT_SET; return (kern_procctl(td, P_PID, td->td_proc->p_pid, PROC_SPROTECT, &flags)); } /* * Check for illegal addresses. Watch out for address wrap... Note * that VM_*_ADDRESS are not constants due to casts (argh). */ map = &td->td_proc->p_vmspace->vm_map; addr = addr0; if (addr < vm_map_min(map) || addr + len > vm_map_max(map)) return (EINVAL); if ((addr + len) < addr) return (EINVAL); /* * Since this routine is only advisory, we default to conservative * behavior. */ start = trunc_page(addr); end = round_page(addr + len); /* * vm_map_madvise() checks for illegal values of behav. */ return (vm_map_madvise(map, start, end, behav)); } #ifndef _SYS_SYSPROTO_H_ struct mincore_args { const void *addr; size_t len; char *vec; }; #endif int sys_mincore(struct thread *td, struct mincore_args *uap) { return (kern_mincore(td, (uintptr_t)uap->addr, uap->len, uap->vec)); } int kern_mincore(struct thread *td, uintptr_t addr0, size_t len, char *vec) { pmap_t pmap; vm_map_t map; vm_map_entry_t current, entry; vm_object_t object; vm_offset_t addr, cend, end, first_addr; vm_paddr_t pa; vm_page_t m; vm_pindex_t pindex; int error, lastvecindex, mincoreinfo, vecindex; unsigned int timestamp; /* * Make sure that the addresses presented are valid for user * mode. */ first_addr = addr = trunc_page(addr0); end = round_page(addr0 + len); map = &td->td_proc->p_vmspace->vm_map; if (end > vm_map_max(map) || end < addr) return (ENOMEM); pmap = vmspace_pmap(td->td_proc->p_vmspace); vm_map_lock_read(map); RestartScan: timestamp = map->timestamp; if (!vm_map_lookup_entry(map, addr, &entry)) { vm_map_unlock_read(map); return (ENOMEM); } /* * Do this on a map entry basis so that if the pages are not * in the current processes address space, we can easily look * up the pages elsewhere. */ lastvecindex = -1; while (entry->start < end) { /* * check for contiguity */ current = entry; entry = vm_map_entry_succ(current); if (current->end < end && entry->start > current->end) { vm_map_unlock_read(map); return (ENOMEM); } /* * ignore submaps (for now) or null objects */ if ((current->eflags & MAP_ENTRY_IS_SUB_MAP) || current->object.vm_object == NULL) continue; /* * limit this scan to the current map entry and the * limits for the mincore call */ if (addr < current->start) addr = current->start; cend = current->end; if (cend > end) cend = end; for (; addr < cend; addr += PAGE_SIZE) { /* * Check pmap first, it is likely faster, also * it can provide info as to whether we are the * one referencing or modifying the page. */ m = NULL; object = NULL; retry: pa = 0; mincoreinfo = pmap_mincore(pmap, addr, &pa); if (mincore_mapped) { /* * We only care about this pmap's * mapping of the page, if any. */ ; } else if (pa != 0) { /* * The page is mapped by this process but not * both accessed and modified. It is also * managed. Acquire the object lock so that * other mappings might be examined. The page's * identity may change at any point before its * object lock is acquired, so re-validate if * necessary. */ m = PHYS_TO_VM_PAGE(pa); while (object == NULL || m->object != object) { if (object != NULL) VM_OBJECT_WUNLOCK(object); object = (vm_object_t)atomic_load_ptr( &m->object); if (object == NULL) goto retry; VM_OBJECT_WLOCK(object); } if (pa != pmap_extract(pmap, addr)) goto retry; KASSERT(vm_page_all_valid(m), ("mincore: page %p is mapped but invalid", m)); } else if (mincoreinfo == 0) { /* * The page is not mapped by this process. If * the object implements managed pages, then * determine if the page is resident so that * the mappings might be examined. */ if (current->object.vm_object != object) { if (object != NULL) VM_OBJECT_WUNLOCK(object); object = current->object.vm_object; VM_OBJECT_WLOCK(object); } if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP || object->type == OBJT_VNODE) { pindex = OFF_TO_IDX(current->offset + (addr - current->start)); m = vm_page_lookup(object, pindex); if (m != NULL && vm_page_none_valid(m)) m = NULL; if (m != NULL) mincoreinfo = MINCORE_INCORE; } } if (m != NULL) { VM_OBJECT_ASSERT_WLOCKED(m->object); /* Examine other mappings of the page. */ if (m->dirty == 0 && pmap_is_modified(m)) vm_page_dirty(m); if (m->dirty != 0) mincoreinfo |= MINCORE_MODIFIED_OTHER; /* * The first test for PGA_REFERENCED is an * optimization. The second test is * required because a concurrent pmap * operation could clear the last reference * and set PGA_REFERENCED before the call to * pmap_is_referenced(). */ if ((m->a.flags & PGA_REFERENCED) != 0 || pmap_is_referenced(m) || (m->a.flags & PGA_REFERENCED) != 0) mincoreinfo |= MINCORE_REFERENCED_OTHER; } if (object != NULL) VM_OBJECT_WUNLOCK(object); /* * subyte may page fault. In case it needs to modify * the map, we release the lock. */ vm_map_unlock_read(map); /* * calculate index into user supplied byte vector */ vecindex = atop(addr - first_addr); /* * If we have skipped map entries, we need to make sure that * the byte vector is zeroed for those skipped entries. */ while ((lastvecindex + 1) < vecindex) { ++lastvecindex; error = subyte(vec + lastvecindex, 0); if (error) { error = EFAULT; goto done2; } } /* * Pass the page information to the user */ error = subyte(vec + vecindex, mincoreinfo); if (error) { error = EFAULT; goto done2; } /* * If the map has changed, due to the subyte, the previous * output may be invalid. */ vm_map_lock_read(map); if (timestamp != map->timestamp) goto RestartScan; lastvecindex = vecindex; } } /* * subyte may page fault. In case it needs to modify * the map, we release the lock. */ vm_map_unlock_read(map); /* * Zero the last entries in the byte vector. */ vecindex = atop(end - first_addr); while ((lastvecindex + 1) < vecindex) { ++lastvecindex; error = subyte(vec + lastvecindex, 0); if (error) { error = EFAULT; goto done2; } } /* * If the map has changed, due to the subyte, the previous * output may be invalid. */ vm_map_lock_read(map); if (timestamp != map->timestamp) goto RestartScan; vm_map_unlock_read(map); done2: return (error); } #ifndef _SYS_SYSPROTO_H_ struct mlock_args { const void *addr; size_t len; }; #endif int sys_mlock(struct thread *td, struct mlock_args *uap) { return (kern_mlock(td->td_proc, td->td_ucred, __DECONST(uintptr_t, uap->addr), uap->len)); } int kern_mlock(struct proc *proc, struct ucred *cred, uintptr_t addr0, size_t len) { vm_offset_t addr, end, last, start; vm_size_t npages, size; vm_map_t map; unsigned long nsize; int error; error = priv_check_cred(cred, PRIV_VM_MLOCK); if (error) return (error); addr = addr0; size = len; last = addr + size; start = trunc_page(addr); end = round_page(last); if (last < addr || end < addr) return (EINVAL); npages = atop(end - start); if (npages > vm_page_max_user_wired) return (ENOMEM); map = &proc->p_vmspace->vm_map; PROC_LOCK(proc); nsize = ptoa(npages + pmap_wired_count(map->pmap)); if (nsize > lim_cur_proc(proc, RLIMIT_MEMLOCK)) { PROC_UNLOCK(proc); return (ENOMEM); } PROC_UNLOCK(proc); #ifdef RACCT if (racct_enable) { PROC_LOCK(proc); error = racct_set(proc, RACCT_MEMLOCK, nsize); PROC_UNLOCK(proc); if (error != 0) return (ENOMEM); } #endif error = vm_map_wire(map, start, end, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); #ifdef RACCT if (racct_enable && error != KERN_SUCCESS) { PROC_LOCK(proc); racct_set(proc, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap))); PROC_UNLOCK(proc); } #endif return (error == KERN_SUCCESS ? 0 : ENOMEM); } #ifndef _SYS_SYSPROTO_H_ struct mlockall_args { int how; }; #endif int sys_mlockall(struct thread *td, struct mlockall_args *uap) { vm_map_t map; int error; map = &td->td_proc->p_vmspace->vm_map; error = priv_check(td, PRIV_VM_MLOCK); if (error) return (error); if ((uap->how == 0) || ((uap->how & ~(MCL_CURRENT|MCL_FUTURE)) != 0)) return (EINVAL); /* * If wiring all pages in the process would cause it to exceed * a hard resource limit, return ENOMEM. */ if (!old_mlock && uap->how & MCL_CURRENT) { if (map->size > lim_cur(td, RLIMIT_MEMLOCK)) return (ENOMEM); } #ifdef RACCT if (racct_enable) { PROC_LOCK(td->td_proc); error = racct_set(td->td_proc, RACCT_MEMLOCK, map->size); PROC_UNLOCK(td->td_proc); if (error != 0) return (ENOMEM); } #endif if (uap->how & MCL_FUTURE) { vm_map_lock(map); vm_map_modflags(map, MAP_WIREFUTURE, 0); vm_map_unlock(map); error = 0; } if (uap->how & MCL_CURRENT) { /* * P1003.1-2001 mandates that all currently mapped pages * will be memory resident and locked (wired) upon return * from mlockall(). vm_map_wire() will wire pages, by * calling vm_fault_wire() for each page in the region. */ error = vm_map_wire(map, vm_map_min(map), vm_map_max(map), VM_MAP_WIRE_USER|VM_MAP_WIRE_HOLESOK); if (error == KERN_SUCCESS) error = 0; else if (error == KERN_RESOURCE_SHORTAGE) error = ENOMEM; else error = EAGAIN; } #ifdef RACCT if (racct_enable && error != KERN_SUCCESS) { PROC_LOCK(td->td_proc); racct_set(td->td_proc, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap))); PROC_UNLOCK(td->td_proc); } #endif return (error); } #ifndef _SYS_SYSPROTO_H_ struct munlockall_args { register_t dummy; }; #endif int sys_munlockall(struct thread *td, struct munlockall_args *uap) { vm_map_t map; int error; map = &td->td_proc->p_vmspace->vm_map; error = priv_check(td, PRIV_VM_MUNLOCK); if (error) return (error); /* Clear the MAP_WIREFUTURE flag from this vm_map. */ vm_map_lock(map); vm_map_modflags(map, 0, MAP_WIREFUTURE); vm_map_unlock(map); /* Forcibly unwire all pages. */ error = vm_map_unwire(map, vm_map_min(map), vm_map_max(map), VM_MAP_WIRE_USER|VM_MAP_WIRE_HOLESOK); #ifdef RACCT if (racct_enable && error == KERN_SUCCESS) { PROC_LOCK(td->td_proc); racct_set(td->td_proc, RACCT_MEMLOCK, 0); PROC_UNLOCK(td->td_proc); } #endif return (error); } #ifndef _SYS_SYSPROTO_H_ struct munlock_args { const void *addr; size_t len; }; #endif int sys_munlock(struct thread *td, struct munlock_args *uap) { return (kern_munlock(td, (uintptr_t)uap->addr, uap->len)); } int kern_munlock(struct thread *td, uintptr_t addr0, size_t size) { vm_offset_t addr, end, last, start; #ifdef RACCT vm_map_t map; #endif int error; error = priv_check(td, PRIV_VM_MUNLOCK); if (error) return (error); addr = addr0; last = addr + size; start = trunc_page(addr); end = round_page(last); if (last < addr || end < addr) return (EINVAL); error = vm_map_unwire(&td->td_proc->p_vmspace->vm_map, start, end, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); #ifdef RACCT if (racct_enable && error == KERN_SUCCESS) { PROC_LOCK(td->td_proc); map = &td->td_proc->p_vmspace->vm_map; racct_set(td->td_proc, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap))); PROC_UNLOCK(td->td_proc); } #endif return (error == KERN_SUCCESS ? 0 : ENOMEM); } /* * vm_mmap_vnode() * * Helper function for vm_mmap. Perform sanity check specific for mmap * operations on vnodes. */ int vm_mmap_vnode(struct thread *td, vm_size_t objsize, vm_prot_t prot, vm_prot_t *maxprotp, int *flagsp, struct vnode *vp, vm_ooffset_t *foffp, vm_object_t *objp, boolean_t *writecounted) { struct vattr va; vm_object_t obj; vm_ooffset_t foff; struct ucred *cred; int error, flags; bool writex; cred = td->td_ucred; writex = (*maxprotp & VM_PROT_WRITE) != 0 && (*flagsp & MAP_SHARED) != 0; if ((error = vget(vp, LK_SHARED, td)) != 0) return (error); AUDIT_ARG_VNODE1(vp); foff = *foffp; flags = *flagsp; obj = vp->v_object; if (vp->v_type == VREG) { /* * Get the proper underlying object */ if (obj == NULL) { error = EINVAL; goto done; } if (obj->type == OBJT_VNODE && obj->handle != vp) { vput(vp); vp = (struct vnode *)obj->handle; /* * Bypass filesystems obey the mpsafety of the * underlying fs. Tmpfs never bypasses. */ error = vget(vp, LK_SHARED, td); if (error != 0) return (error); } if (writex) { *writecounted = TRUE; vm_pager_update_writecount(obj, 0, objsize); } } else { error = EINVAL; goto done; } if ((error = VOP_GETATTR(vp, &va, cred))) goto done; #ifdef MAC /* This relies on VM_PROT_* matching PROT_*. */ error = mac_vnode_check_mmap(cred, vp, (int)prot, flags); if (error != 0) goto done; #endif if ((flags & MAP_SHARED) != 0) { if ((va.va_flags & (SF_SNAPSHOT|IMMUTABLE|APPEND)) != 0) { if (prot & VM_PROT_WRITE) { error = EPERM; goto done; } *maxprotp &= ~VM_PROT_WRITE; } } /* * If it is a regular file without any references * we do not need to sync it. * Adjust object size to be the size of actual file. */ objsize = round_page(va.va_size); if (va.va_nlink == 0) flags |= MAP_NOSYNC; if (obj->type == OBJT_VNODE) { obj = vm_pager_allocate(OBJT_VNODE, vp, objsize, prot, foff, cred); if (obj == NULL) { error = ENOMEM; goto done; } } else { KASSERT(obj->type == OBJT_DEFAULT || obj->type == OBJT_SWAP, ("wrong object type")); vm_object_reference(obj); #if VM_NRESERVLEVEL > 0 if ((obj->flags & OBJ_COLORED) == 0) { VM_OBJECT_WLOCK(obj); vm_object_color(obj, 0); VM_OBJECT_WUNLOCK(obj); } #endif } *objp = obj; *flagsp = flags; - vfs_mark_atime(vp, cred); + VOP_MMAPPED(vp); done: if (error != 0 && *writecounted) { *writecounted = FALSE; vm_pager_update_writecount(obj, objsize, 0); } vput(vp); return (error); } /* * vm_mmap_cdev() * * Helper function for vm_mmap. Perform sanity check specific for mmap * operations on cdevs. */ int vm_mmap_cdev(struct thread *td, vm_size_t objsize, vm_prot_t prot, vm_prot_t *maxprotp, int *flagsp, struct cdev *cdev, struct cdevsw *dsw, vm_ooffset_t *foff, vm_object_t *objp) { vm_object_t obj; int error, flags; flags = *flagsp; if (dsw->d_flags & D_MMAP_ANON) { *objp = NULL; *foff = 0; *maxprotp = VM_PROT_ALL; *flagsp |= MAP_ANON; return (0); } /* * cdevs do not provide private mappings of any kind. */ if ((*maxprotp & VM_PROT_WRITE) == 0 && (prot & VM_PROT_WRITE) != 0) return (EACCES); if (flags & (MAP_PRIVATE|MAP_COPY)) return (EINVAL); /* * Force device mappings to be shared. */ flags |= MAP_SHARED; #ifdef MAC_XXX error = mac_cdev_check_mmap(td->td_ucred, cdev, (int)prot); if (error != 0) return (error); #endif /* * First, try d_mmap_single(). If that is not implemented * (returns ENODEV), fall back to using the device pager. * Note that d_mmap_single() must return a reference to the * object (it needs to bump the reference count of the object * it returns somehow). * * XXX assumes VM_PROT_* == PROT_* */ error = dsw->d_mmap_single(cdev, foff, objsize, objp, (int)prot); if (error != ENODEV) return (error); obj = vm_pager_allocate(OBJT_DEVICE, cdev, objsize, prot, *foff, td->td_ucred); if (obj == NULL) return (EINVAL); *objp = obj; *flagsp = flags; return (0); } /* * vm_mmap() * * Internal version of mmap used by exec, sys5 shared memory, and * various device drivers. Handle is either a vnode pointer, a * character device, or NULL for MAP_ANON. */ int vm_mmap(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot, vm_prot_t maxprot, int flags, objtype_t handle_type, void *handle, vm_ooffset_t foff) { vm_object_t object; struct thread *td = curthread; int error; boolean_t writecounted; if (size == 0) return (EINVAL); size = round_page(size); object = NULL; writecounted = FALSE; /* * Lookup/allocate object. */ switch (handle_type) { case OBJT_DEVICE: { struct cdevsw *dsw; struct cdev *cdev; int ref; cdev = handle; dsw = dev_refthread(cdev, &ref); if (dsw == NULL) return (ENXIO); error = vm_mmap_cdev(td, size, prot, &maxprot, &flags, cdev, dsw, &foff, &object); dev_relthread(cdev, ref); break; } case OBJT_VNODE: error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, handle, &foff, &object, &writecounted); break; case OBJT_DEFAULT: if (handle == NULL) { error = 0; break; } /* FALLTHROUGH */ default: error = EINVAL; break; } if (error) return (error); error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, foff, writecounted, td); if (error != 0 && object != NULL) { /* * If this mapping was accounted for in the vnode's * writecount, then undo that now. */ if (writecounted) vm_pager_release_writecount(object, 0, size); vm_object_deallocate(object); } return (error); } /* * Internal version of mmap that maps a specific VM object into an * map. Called by mmap for MAP_ANON, vm_mmap, shm_mmap, and vn_mmap. */ int vm_mmap_object(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot, vm_prot_t maxprot, int flags, vm_object_t object, vm_ooffset_t foff, boolean_t writecounted, struct thread *td) { boolean_t curmap, fitit; vm_offset_t max_addr; int docow, error, findspace, rv; curmap = map == &td->td_proc->p_vmspace->vm_map; if (curmap) { RACCT_PROC_LOCK(td->td_proc); if (map->size + size > lim_cur(td, RLIMIT_VMEM)) { RACCT_PROC_UNLOCK(td->td_proc); return (ENOMEM); } if (racct_set(td->td_proc, RACCT_VMEM, map->size + size)) { RACCT_PROC_UNLOCK(td->td_proc); return (ENOMEM); } if (!old_mlock && map->flags & MAP_WIREFUTURE) { if (ptoa(pmap_wired_count(map->pmap)) + size > lim_cur(td, RLIMIT_MEMLOCK)) { racct_set_force(td->td_proc, RACCT_VMEM, map->size); RACCT_PROC_UNLOCK(td->td_proc); return (ENOMEM); } error = racct_set(td->td_proc, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap)) + size); if (error != 0) { racct_set_force(td->td_proc, RACCT_VMEM, map->size); RACCT_PROC_UNLOCK(td->td_proc); return (error); } } RACCT_PROC_UNLOCK(td->td_proc); } /* * We currently can only deal with page aligned file offsets. * The mmap() system call already enforces this by subtracting * the page offset from the file offset, but checking here * catches errors in device drivers (e.g. d_single_mmap() * callbacks) and other internal mapping requests (such as in * exec). */ if (foff & PAGE_MASK) return (EINVAL); if ((flags & MAP_FIXED) == 0) { fitit = TRUE; *addr = round_page(*addr); } else { if (*addr != trunc_page(*addr)) return (EINVAL); fitit = FALSE; } if (flags & MAP_ANON) { if (object != NULL || foff != 0) return (EINVAL); docow = 0; } else if (flags & MAP_PREFAULT_READ) docow = MAP_PREFAULT; else docow = MAP_PREFAULT_PARTIAL; if ((flags & (MAP_ANON|MAP_SHARED)) == 0) docow |= MAP_COPY_ON_WRITE; if (flags & MAP_NOSYNC) docow |= MAP_DISABLE_SYNCER; if (flags & MAP_NOCORE) docow |= MAP_DISABLE_COREDUMP; /* Shared memory is also shared with children. */ if (flags & MAP_SHARED) docow |= MAP_INHERIT_SHARE; if (writecounted) docow |= MAP_WRITECOUNT; if (flags & MAP_STACK) { if (object != NULL) return (EINVAL); docow |= MAP_STACK_GROWS_DOWN; } if ((flags & MAP_EXCL) != 0) docow |= MAP_CHECK_EXCL; if ((flags & MAP_GUARD) != 0) docow |= MAP_CREATE_GUARD; if (fitit) { if ((flags & MAP_ALIGNMENT_MASK) == MAP_ALIGNED_SUPER) findspace = VMFS_SUPER_SPACE; else if ((flags & MAP_ALIGNMENT_MASK) != 0) findspace = VMFS_ALIGNED_SPACE(flags >> MAP_ALIGNMENT_SHIFT); else findspace = VMFS_OPTIMAL_SPACE; max_addr = 0; #ifdef MAP_32BIT if ((flags & MAP_32BIT) != 0) max_addr = MAP_32BIT_MAX_ADDR; #endif if (curmap) { rv = vm_map_find_min(map, object, foff, addr, size, round_page((vm_offset_t)td->td_proc->p_vmspace-> vm_daddr + lim_max(td, RLIMIT_DATA)), max_addr, findspace, prot, maxprot, docow); } else { rv = vm_map_find(map, object, foff, addr, size, max_addr, findspace, prot, maxprot, docow); } } else { rv = vm_map_fixed(map, object, foff, *addr, size, prot, maxprot, docow); } if (rv == KERN_SUCCESS) { /* * If the process has requested that all future mappings * be wired, then heed this. */ if ((map->flags & MAP_WIREFUTURE) != 0) { vm_map_lock(map); if ((map->flags & MAP_WIREFUTURE) != 0) (void)vm_map_wire_locked(map, *addr, *addr + size, VM_MAP_WIRE_USER | ((flags & MAP_STACK) ? VM_MAP_WIRE_HOLESOK : VM_MAP_WIRE_NOHOLES)); vm_map_unlock(map); } } return (vm_mmap_to_errno(rv)); } /* * Translate a Mach VM return code to zero on success or the appropriate errno * on failure. */ int vm_mmap_to_errno(int rv) { switch (rv) { case KERN_SUCCESS: return (0); case KERN_INVALID_ADDRESS: case KERN_NO_SPACE: return (ENOMEM); case KERN_PROTECTION_FAILURE: return (EACCES); default: return (EINVAL); } }