Index: head/sys/amd64/linux32/linux32_machdep.c =================================================================== --- head/sys/amd64/linux32/linux32_machdep.c (revision 356944) +++ head/sys/amd64/linux32/linux32_machdep.c (revision 356945) @@ -1,783 +1,776 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2004 Tim J. Robbins * Copyright (c) 2002 Doug Rabson * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru); struct l_old_select_argv { l_int nfds; l_uintptr_t readfds; l_uintptr_t writefds; l_uintptr_t exceptfds; l_uintptr_t timeout; } __packed; static void bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru) { lru->ru_utime.tv_sec = ru->ru_utime.tv_sec; lru->ru_utime.tv_usec = ru->ru_utime.tv_usec; lru->ru_stime.tv_sec = ru->ru_stime.tv_sec; lru->ru_stime.tv_usec = ru->ru_stime.tv_usec; lru->ru_maxrss = ru->ru_maxrss; lru->ru_ixrss = ru->ru_ixrss; lru->ru_idrss = ru->ru_idrss; lru->ru_isrss = ru->ru_isrss; lru->ru_minflt = ru->ru_minflt; lru->ru_majflt = ru->ru_majflt; lru->ru_nswap = ru->ru_nswap; lru->ru_inblock = ru->ru_inblock; lru->ru_oublock = ru->ru_oublock; lru->ru_msgsnd = ru->ru_msgsnd; lru->ru_msgrcv = ru->ru_msgrcv; lru->ru_nsignals = ru->ru_nsignals; lru->ru_nvcsw = ru->ru_nvcsw; lru->ru_nivcsw = ru->ru_nivcsw; } int linux_copyout_rusage(struct rusage *ru, void *uaddr) { struct l_rusage lru; bsd_to_linux_rusage(ru, &lru); return (copyout(&lru, uaddr, sizeof(struct l_rusage))); } int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; char *path; int error; LCONVPATHEXIST(td, args->path, &path); error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp, args->envp); free(path, M_TEMP); if (error == 0) error = linux_common_execve(td, &eargs); return (error); } CTASSERT(sizeof(struct l_iovec32) == 8); int linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop) { struct l_iovec32 iov32; struct iovec *iov; struct uio *uio; uint32_t iovlen; int error, i; *uiop = NULL; if (iovcnt > UIO_MAXIOV) return (EINVAL); iovlen = iovcnt * sizeof(struct iovec); uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK); iov = (struct iovec *)(uio + 1); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32)); if (error) { free(uio, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } uio->uio_iov = iov; uio->uio_iovcnt = iovcnt; uio->uio_segflg = UIO_USERSPACE; uio->uio_offset = -1; uio->uio_resid = 0; for (i = 0; i < iovcnt; i++) { if (iov->iov_len > INT_MAX - uio->uio_resid) { free(uio, M_IOV); return (EINVAL); } uio->uio_resid += iov->iov_len; iov++; } *uiop = uio; return (0); } int linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp, int error) { struct l_iovec32 iov32; struct iovec *iov; uint32_t iovlen; int i; *iovp = NULL; if (iovcnt > UIO_MAXIOV) return (error); iovlen = iovcnt * sizeof(struct iovec); iov = malloc(iovlen, M_IOV, M_WAITOK); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32)); if (error) { free(iov, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } *iovp = iov; return(0); } int linux_readv(struct thread *td, struct linux_readv_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_readv(td, uap->fd, auio); free(auio, M_IOV); return (error); } int linux_writev(struct thread *td, struct linux_writev_args *uap) { struct uio *auio; int error; error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_writev(td, uap->fd, auio); free(auio, M_IOV); return (error); } struct l_ipc_kludge { l_uintptr_t msgp; l_long msgtyp; } __packed; int linux_ipc(struct thread *td, struct linux_ipc_args *args) { switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = PTRIN(args->ptr); a.nsops = args->arg2; return (linux_semop(td, &a)); } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; return (linux_semget(td, &a)); } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg)); if (error) return (error); return (linux_semctl(td, &a)); } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = PTRIN(args->ptr); a.msgsz = args->arg2; a.msgflg = args->arg3; return (linux_msgsnd(td, &a)); } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == 0) return (EINVAL); error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp)); if (error) return (error); a.msgp = PTRIN(tmp.msgp); a.msgtyp = tmp.msgtyp; } else { a.msgp = PTRIN(args->ptr); a.msgtyp = args->arg5; } return (linux_msgrcv(td, &a)); } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; return (linux_msgget(td, &a)); } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = PTRIN(args->ptr); return (linux_msgctl(td, &a)); } case LINUX_SHMAT: { struct linux_shmat_args a; l_uintptr_t addr; int error; a.shmid = args->arg1; a.shmaddr = PTRIN(args->ptr); a.shmflg = args->arg2; error = linux_shmat(td, &a); if (error != 0) return (error); addr = td->td_retval[0]; error = copyout(&addr, PTRIN(args->arg3), sizeof(addr)); td->td_retval[0] = 0; return (error); } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = PTRIN(args->ptr); return (linux_shmdt(td, &a)); } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; return (linux_shmget(td, &a)); } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = PTRIN(args->ptr); return (linux_shmctl(td, &a)); } default: break; } return (EINVAL); } int linux_old_select(struct thread *td, struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = PTRIN(linux_args.readfds); newsel.writefds = PTRIN(linux_args.writefds); newsel.exceptfds = PTRIN(linux_args.exceptfds); newsel.timeout = PTRIN(linux_args.timeout); return (linux_select(td, &newsel)); } int linux_set_cloned_tls(struct thread *td, void *desc) { struct user_segment_descriptor sd; struct l_user_desc info; struct pcb *pcb; int error; int a[2]; error = copyin(desc, &info, sizeof(struct l_user_desc)); if (error) { linux_msg(td, "set_cloned_tls copyin info failed!"); } else { /* We might copy out the entry_number as GUGS32_SEL. */ info.entry_number = GUGS32_SEL; error = copyout(&info, desc, sizeof(struct l_user_desc)); if (error) linux_msg(td, "set_cloned_tls copyout info failed!"); a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); memcpy(&sd, &a, sizeof(a)); pcb = td->td_pcb; pcb->pcb_gsbase = (register_t)info.base_addr; td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL); set_pcb_flags(pcb, PCB_32BIT); } return (error); } int linux_set_upcall_kse(struct thread *td, register_t stack) { if (stack) td->td_frame->tf_rsp = stack; /* * The newly created Linux thread returns * to the user space by the same path that a parent do. */ td->td_frame->tf_rax = 0; return (0); } int linux_mmap2(struct thread *td, struct linux_mmap2_args *args) { return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot, args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * PAGE_SIZE)); } int linux_mmap(struct thread *td, struct linux_mmap_args *args) { int error; struct l_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); return (linux_mmap_common(td, linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, (uint32_t)linux_args.pgoff)); } int linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) { return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot)); } int linux_iopl(struct thread *td, struct linux_iopl_args *args) { int error; if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = priv_check(td, PRIV_IO)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int linux_sigaction(struct thread *td, struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t act, oact; int error; if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__mask = osa.lsa_mask; } error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__mask; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We don't use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) { sigset_t sigmask; l_sigset_t mask; LINUX_SIGEMPTYSET(mask); mask.__mask = args->mask; linux_to_bsd_sigset(&mask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) { l_sigset_t lmask; sigset_t sigmask; int error; if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_pause(struct thread *td, struct linux_pause_args *args) { struct proc *p = td->td_proc; sigset_t sigmask; PROC_LOCK(p); sigmask = td->td_sigmask; PROC_UNLOCK(p); return (kern_sigsuspend(td, sigmask)); } int linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t lss; int error; if (uap->uss != NULL) { error = copyin(uap->uss, &lss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = PTRIN(lss.ss_sp); ss.ss_size = lss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, (uap->uoss != NULL) ? &oss : NULL); if (!error && uap->uoss != NULL) { lss.ss_sp = PTROUT(oss.ss_sp); lss.ss_size = oss.ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); } return (error); } int -linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) -{ - - return (kern_ftruncate(td, args->fd, args->length)); -} - -int linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap) { struct timeval atv; l_timeval atv32; struct timezone rtz; int error = 0; if (uap->tp) { microtime(&atv); atv32.tv_sec = atv.tv_sec; atv32.tv_usec = atv.tv_usec; error = copyout(&atv32, uap->tp, sizeof(atv32)); } if (error == 0 && uap->tzp != NULL) { rtz.tz_minuteswest = 0; rtz.tz_dsttime = 0; error = copyout(&rtz, uap->tzp, sizeof(rtz)); } return (error); } int linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap) { l_timeval atv32; struct timeval atv, *tvp; struct timezone atz, *tzp; int error; if (uap->tp) { error = copyin(uap->tp, &atv32, sizeof(atv32)); if (error) return (error); atv.tv_sec = atv32.tv_sec; atv.tv_usec = atv32.tv_usec; tvp = &atv; } else tvp = NULL; if (uap->tzp) { error = copyin(uap->tzp, &atz, sizeof(atz)); if (error) return (error); tzp = &atz; } else tzp = NULL; return (kern_settimeofday(td, tvp, tzp)); } int linux_getrusage(struct thread *td, struct linux_getrusage_args *uap) { struct rusage s; int error; error = kern_getrusage(td, uap->who, &s); if (error != 0) return (error); if (uap->rusage != NULL) error = linux_copyout_rusage(&s, uap->rusage); return (error); } int linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) { struct l_user_desc info; struct user_segment_descriptor sd; struct pcb *pcb; int a[2]; int error; error = copyin(args->desc, &info, sizeof(struct l_user_desc)); if (error) return (error); /* * Semantics of Linux version: every thread in the system has array * of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. * This syscall loads one of the selected TLS decriptors with a value * and also loads GDT descriptors 6, 7 and 8 with the content of * the per-thread descriptors. * * Semantics of FreeBSD version: I think we can ignore that Linux has * three per-thread descriptors and use just the first one. * The tls_array[] is used only in [gs]et_thread_area() syscalls and * for loading the GDT descriptors. We use just one GDT descriptor * for TLS, so we will load just one. * * XXX: This doesn't work when a user space process tries to use more * than one TLS segment. Comment in the Linux source says wine might * do this. */ /* * GLIBC reads current %gs and call set_thread_area() with it. * We should let GUDATA_SEL and GUGS32_SEL proceed as well because * we use these segments. */ switch (info.entry_number) { case GUGS32_SEL: case GUDATA_SEL: case 6: case -1: info.entry_number = GUGS32_SEL; break; default: return (EINVAL); } /* * We have to copy out the GDT entry we use. * * XXX: What if a user space program does not check the return value * and tries to use 6, 7 or 8? */ error = copyout(&info, args->desc, sizeof(struct l_user_desc)); if (error) return (error); if (LINUX_LDT_empty(&info)) { a[0] = 0; a[1] = 0; } else { a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); } memcpy(&sd, &a, sizeof(a)); pcb = td->td_pcb; pcb->pcb_gsbase = (register_t)info.base_addr; set_pcb_flags(pcb, PCB_32BIT); update_gdt_gsbase(td, info.base_addr); return (0); } int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval); int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval); DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *)) { return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? futex_xchgl_smap : futex_xchgl_nosmap); } int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval); int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval); DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *)) { return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? futex_addl_smap : futex_addl_nosmap); } int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval); int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval); DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *)) { return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? futex_orl_smap : futex_orl_nosmap); } int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval); int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval); DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *)) { return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? futex_andl_smap : futex_andl_nosmap); } int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval); int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval); DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *)) { return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ? futex_xorl_smap : futex_xorl_nosmap); } Index: head/sys/amd64/linux32/syscalls.master =================================================================== --- head/sys/amd64/linux32/syscalls.master (revision 356944) +++ head/sys/amd64/linux32/syscalls.master (revision 356945) @@ -1,751 +1,754 @@ $FreeBSD$ ; @(#)syscalls.master 8.1 (Berkeley) 7/19/93 ; System call name/number master file (or rather, slave, from LINUX). ; Processed to create linux32_sysent.c, linux32_proto.h and linux32_syscall.h. ; Columns: number audit type nargs name alt{name,tag,rtyp}/comments ; number system call number, must be in order ; audit the audit event associated with the system call ; A value of AUE_NULL means no auditing, but it also means that ; there is no audit event for the call at this time. For the ; case where the event exists, but we don't want auditing, the ; event should be #defined to AUE_NULL in audit_kevents.h. ; type one of STD, NOPROTO, UNIMPL ; name pseudo-prototype of syscall routine ; If one of the following alts is different, then all appear: ; altname name of system call if different ; alttag name of args struct tag if different from [o]`name'"_args" ; altrtyp return type if not int (bogus - syscalls always return int) ; for UNIMPL, name continues with comments ; types: ; STD always included ; UNIMPL not implemented, placeholder only ; NOPROTO same as STD except do not create structure or ; function prototype in sys/sysproto.h. Does add a ; definition to syscall.h besides adding a sysent. #include #include #include #include #include #include ; Isn't pretty, but there seems to be no other way to trap nosys #define nosys linux_nosys ; #ifdef's, etc. may be included, and are copied to the output files. 0 AUE_NULL UNIMPL setup 1 AUE_EXIT STD { void linux_exit(int rval); } 2 AUE_FORK STD { int linux_fork(void); } 3 AUE_NULL NOPROTO { int read(int fd, char *buf, \ u_int nbyte); } 4 AUE_NULL NOPROTO { int write(int fd, char *buf, \ u_int nbyte); } 5 AUE_OPEN_RWTC STD { int linux_open(char *path, l_int flags, \ l_int mode); } 6 AUE_CLOSE NOPROTO { int close(int fd); } 7 AUE_WAIT4 STD { int linux_waitpid(l_pid_t pid, \ l_int *status, l_int options); } 8 AUE_CREAT STD { int linux_creat(char *path, \ l_int mode); } 9 AUE_LINK STD { int linux_link(char *path, char *to); } 10 AUE_UNLINK STD { int linux_unlink(char *path); } 11 AUE_EXECVE STD { int linux_execve(char *path, uint32_t *argp, \ uint32_t *envp); } 12 AUE_CHDIR STD { int linux_chdir(char *path); } 13 AUE_NULL STD { int linux_time(l_time_t *tm); } 14 AUE_MKNOD STD { int linux_mknod(char *path, l_int mode, \ l_dev_t dev); } 15 AUE_CHMOD STD { int linux_chmod(char *path, \ l_mode_t mode); } 16 AUE_LCHOWN STD { int linux_lchown16(char *path, \ l_uid16_t uid, l_gid16_t gid); } 17 AUE_NULL UNIMPL break 18 AUE_STAT STD { int linux_stat(char *path, \ struct linux_stat *up); } 19 AUE_LSEEK STD { int linux_lseek(l_uint fdes, l_off_t off, \ l_int whence); } 20 AUE_GETPID STD { int linux_getpid(void); } 21 AUE_MOUNT STD { int linux_mount(char *specialfile, \ char *dir, char *filesystemtype, \ l_ulong rwflag, void *data); } 22 AUE_UMOUNT STD { int linux_oldumount(char *path); } 23 AUE_SETUID STD { int linux_setuid16(l_uid16_t uid); } 24 AUE_GETUID STD { int linux_getuid16(void); } 25 AUE_SETTIMEOFDAY STD { int linux_stime(void); } 26 AUE_PTRACE STD { int linux_ptrace(l_long req, l_long pid, \ l_long addr, l_long data); } 27 AUE_NULL STD { int linux_alarm(l_uint secs); } 28 AUE_FSTAT UNIMPL fstat 29 AUE_NULL STD { int linux_pause(void); } 30 AUE_UTIME STD { int linux_utime(char *fname, \ struct l_utimbuf *times); } 31 AUE_NULL UNIMPL stty 32 AUE_NULL UNIMPL gtty 33 AUE_ACCESS STD { int linux_access(char *path, l_int amode); } 34 AUE_NICE STD { int linux_nice(l_int inc); } 35 AUE_NULL UNIMPL ftime 36 AUE_SYNC NOPROTO { int sync(void); } 37 AUE_KILL STD { int linux_kill(l_int pid, l_int signum); } 38 AUE_RENAME STD { int linux_rename(char *from, char *to); } 39 AUE_MKDIR STD { int linux_mkdir(char *path, l_int mode); } 40 AUE_RMDIR STD { int linux_rmdir(char *path); } 41 AUE_DUP NOPROTO { int dup(u_int fd); } 42 AUE_PIPE STD { int linux_pipe(l_int *pipefds); } 43 AUE_NULL STD { int linux_times(struct l_times_argv *buf); } 44 AUE_NULL UNIMPL prof 45 AUE_NULL STD { int linux_brk(l_ulong dsend); } 46 AUE_SETGID STD { int linux_setgid16(l_gid16_t gid); } 47 AUE_GETGID STD { int linux_getgid16(void); } 48 AUE_NULL STD { int linux_signal(l_int sig, \ l_handler_t handler); } 49 AUE_GETEUID STD { int linux_geteuid16(void); } 50 AUE_GETEGID STD { int linux_getegid16(void); } 51 AUE_ACCT NOPROTO { int acct(char *path); } 52 AUE_UMOUNT STD { int linux_umount(char *path, l_int flags); } 53 AUE_NULL UNIMPL lock 54 AUE_IOCTL STD { int linux_ioctl(l_uint fd, l_uint cmd, \ uintptr_t arg); } 55 AUE_FCNTL STD { int linux_fcntl(l_uint fd, l_uint cmd, \ uintptr_t arg); } 56 AUE_NULL UNIMPL mpx 57 AUE_SETPGRP NOPROTO { int setpgid(int pid, int pgid); } 58 AUE_NULL UNIMPL ulimit 59 AUE_NULL STD { int linux_olduname(void); } 60 AUE_UMASK NOPROTO { int umask(int newmask); } 61 AUE_CHROOT NOPROTO { int chroot(char *path); } 62 AUE_NULL STD { int linux_ustat(l_dev_t dev, \ struct l_ustat *ubuf); } 63 AUE_DUP2 NOPROTO { int dup2(u_int from, u_int to); } 64 AUE_GETPPID STD { int linux_getppid(void); } 65 AUE_GETPGRP NOPROTO { int getpgrp(void); } 66 AUE_SETSID NOPROTO { int setsid(void); } 67 AUE_NULL STD { int linux_sigaction(l_int sig, \ l_osigaction_t *nsa, \ l_osigaction_t *osa); } 68 AUE_NULL STD { int linux_sgetmask(void); } 69 AUE_NULL STD { int linux_ssetmask(l_osigset_t mask); } 70 AUE_SETREUID STD { int linux_setreuid16(l_uid16_t ruid, \ l_uid16_t euid); } 71 AUE_SETREGID STD { int linux_setregid16(l_gid16_t rgid, \ l_gid16_t egid); } 72 AUE_NULL STD { int linux_sigsuspend(l_int hist0, \ l_int hist1, l_osigset_t mask); } 73 AUE_NULL STD { int linux_sigpending(l_osigset_t *mask); } 74 AUE_SYSCTL STD { int linux_sethostname(char *hostname, \ u_int len); } 75 AUE_SETRLIMIT STD { int linux_setrlimit(l_uint resource, \ struct l_rlimit *rlim); } 76 AUE_GETRLIMIT STD { int linux_old_getrlimit(l_uint resource, \ struct l_rlimit *rlim); } 77 AUE_GETRUSAGE STD { int linux_getrusage(int who, \ struct l_rusage *rusage); } 78 AUE_NULL STD { int linux_gettimeofday( \ struct l_timeval *tp, \ struct timezone *tzp); } 79 AUE_SETTIMEOFDAY STD { int linux_settimeofday( \ struct l_timeval *tp, \ struct timezone *tzp); } 80 AUE_GETGROUPS STD { int linux_getgroups16(l_uint gidsetsize, \ l_gid16_t *gidset); } 81 AUE_SETGROUPS STD { int linux_setgroups16(l_uint gidsetsize, \ l_gid16_t *gidset); } 82 AUE_SELECT STD { int linux_old_select( \ struct l_old_select_argv *ptr); } 83 AUE_SYMLINK STD { int linux_symlink(char *path, char *to); } ; 84: oldlstat 84 AUE_LSTAT STD { int linux_lstat(char *path, struct linux_lstat *up); } 85 AUE_READLINK STD { int linux_readlink(char *name, char *buf, \ l_int count); } 86 AUE_USELIB UNIMPL linux_uselib 87 AUE_SWAPON NOPROTO { int swapon(char *name); } 88 AUE_REBOOT STD { int linux_reboot(l_int magic1, \ l_int magic2, l_uint cmd, void *arg); } ; 89: old_readdir 89 AUE_GETDIRENTRIES STD { int linux_readdir(l_uint fd, \ struct l_dirent *dent, l_uint count); } ; 90: old_mmap 90 AUE_MMAP STD { int linux_mmap(struct l_mmap_argv *ptr); } 91 AUE_MUNMAP NOPROTO { int munmap(caddr_t addr, int len); } 92 AUE_TRUNCATE STD { int linux_truncate(char *path, \ l_ulong length); } 93 AUE_FTRUNCATE STD { int linux_ftruncate(int fd, long length); } 94 AUE_FCHMOD NOPROTO { int fchmod(int fd, int mode); } 95 AUE_FCHOWN NOPROTO { int fchown(int fd, int uid, int gid); } 96 AUE_GETPRIORITY STD { int linux_getpriority(int which, int who); } 97 AUE_SETPRIORITY NOPROTO { int setpriority(int which, int who, \ int prio); } 98 AUE_PROFILE UNIMPL profil 99 AUE_STATFS STD { int linux_statfs(char *path, \ struct l_statfs_buf *buf); } 100 AUE_FSTATFS STD { int linux_fstatfs(l_uint fd, \ struct l_statfs_buf *buf); } 101 AUE_NULL UNIMPL ioperm 102 AUE_NULL STD { int linux_socketcall(l_int what, \ l_ulong args); } 103 AUE_NULL STD { int linux_syslog(l_int type, char *buf, \ l_int len); } 104 AUE_SETITIMER STD { int linux_setitimer(l_int which, \ struct l_itimerval *itv, \ struct l_itimerval *oitv); } 105 AUE_GETITIMER STD { int linux_getitimer(l_int which, \ struct l_itimerval *itv); } 106 AUE_STAT STD { int linux_newstat(char *path, \ struct l_newstat *buf); } 107 AUE_LSTAT STD { int linux_newlstat(char *path, \ struct l_newstat *buf); } 108 AUE_FSTAT STD { int linux_newfstat(l_uint fd, \ struct l_newstat *buf); } ; 109: olduname 109 AUE_NULL STD { int linux_uname(void); } 110 AUE_NULL STD { int linux_iopl(l_int level); } 111 AUE_NULL STD { int linux_vhangup(void); } 112 AUE_NULL UNIMPL idle 113 AUE_NULL UNIMPL vm86old 114 AUE_WAIT4 STD { int linux_wait4(l_pid_t pid, \ l_int *status, l_int options, \ struct l_rusage *rusage); } 115 AUE_SWAPOFF STD { int linux_swapoff(void); } 116 AUE_NULL STD { int linux_sysinfo(struct l_sysinfo *info); } 117 AUE_NULL STD { int linux_ipc(l_uint what, l_int arg1, \ l_int arg2, l_uint arg3, l_uintptr_t ptr, \ l_uint arg5); } 118 AUE_FSYNC NOPROTO { int fsync(int fd); } 119 AUE_SIGRETURN STD { int linux_sigreturn( \ struct l_sigframe *sfp); } 120 AUE_RFORK STD { int linux_clone(l_int flags, void *stack, \ void *parent_tidptr, void *tls, void * child_tidptr); } 121 AUE_SYSCTL STD { int linux_setdomainname(char *name, \ int len); } 122 AUE_NULL STD { int linux_newuname( \ struct l_new_utsname *buf); } 123 AUE_NULL UNIMPL modify_ldt 124 AUE_ADJTIME STD { int linux_adjtimex(void); } 125 AUE_MPROTECT STD { int linux_mprotect(caddr_t addr, int len, \ int prot); } 126 AUE_SIGPROCMASK STD { int linux_sigprocmask(l_int how, \ l_osigset_t *mask, l_osigset_t *omask); } 127 AUE_NULL UNIMPL create_module 128 AUE_NULL STD { int linux_init_module(void); } 129 AUE_NULL STD { int linux_delete_module(void); } 130 AUE_NULL UNIMPL get_kernel_syms 131 AUE_QUOTACTL STD { int linux_quotactl(void); } 132 AUE_GETPGID NOPROTO { int getpgid(int pid); } 133 AUE_FCHDIR NOPROTO { int fchdir(int fd); } 134 AUE_BDFLUSH STD { int linux_bdflush(void); } 135 AUE_NULL STD { int linux_sysfs(l_int option, \ l_ulong arg1, l_ulong arg2); } 136 AUE_PERSONALITY STD { int linux_personality(l_uint per); } 137 AUE_NULL UNIMPL afs_syscall 138 AUE_SETFSUID STD { int linux_setfsuid16(l_uid16_t uid); } 139 AUE_SETFSGID STD { int linux_setfsgid16(l_gid16_t gid); } 140 AUE_LSEEK STD { int linux_llseek(l_int fd, l_ulong ohigh, \ l_ulong olow, l_loff_t *res, \ l_uint whence); } 141 AUE_GETDIRENTRIES STD { int linux_getdents(l_uint fd, void *dent, \ l_uint count); } ; 142: newselect 142 AUE_SELECT STD { int linux_select(l_int nfds, \ l_fd_set *readfds, l_fd_set *writefds, \ l_fd_set *exceptfds, \ struct l_timeval *timeout); } 143 AUE_FLOCK NOPROTO { int flock(int fd, int how); } 144 AUE_MSYNC STD { int linux_msync(l_ulong addr, \ l_size_t len, l_int fl); } 145 AUE_READV STD { int linux_readv(l_ulong fd, struct l_iovec32 *iovp, \ l_ulong iovcnt); } 146 AUE_WRITEV STD { int linux_writev(l_ulong fd, struct l_iovec32 *iovp, \ l_ulong iovcnt); } 147 AUE_GETSID STD { int linux_getsid(l_pid_t pid); } 148 AUE_NULL STD { int linux_fdatasync(l_uint fd); } 149 AUE_SYSCTL STD { int linux_sysctl( \ struct l___sysctl_args *args); } 150 AUE_MLOCK NOPROTO { int mlock(const void *addr, size_t len); } 151 AUE_MUNLOCK NOPROTO { int munlock(const void *addr, size_t len); } 152 AUE_MLOCKALL NOPROTO { int mlockall(int how); } 153 AUE_MUNLOCKALL NOPROTO { int munlockall(void); } 154 AUE_SCHED_SETPARAM STD { int linux_sched_setparam(l_pid_t pid, \ struct sched_param *param); } 155 AUE_SCHED_GETPARAM STD { int linux_sched_getparam(l_pid_t pid, \ struct sched_param *param); } 156 AUE_SCHED_SETSCHEDULER STD { int linux_sched_setscheduler( \ l_pid_t pid, l_int policy, \ struct sched_param *param); } 157 AUE_SCHED_GETSCHEDULER STD { int linux_sched_getscheduler( \ l_pid_t pid); } 158 AUE_NULL NOPROTO { int sched_yield(void); } 159 AUE_SCHED_GET_PRIORITY_MAX STD { int linux_sched_get_priority_max( \ l_int policy); } 160 AUE_SCHED_GET_PRIORITY_MIN STD { int linux_sched_get_priority_min( \ l_int policy); } 161 AUE_SCHED_RR_GET_INTERVAL STD { int linux_sched_rr_get_interval(l_pid_t pid, \ struct l_timespec *interval); } 162 AUE_NULL STD { int linux_nanosleep( \ const struct l_timespec *rqtp, \ struct l_timespec *rmtp); } 163 AUE_NULL STD { int linux_mremap(l_ulong addr, \ l_ulong old_len, l_ulong new_len, \ l_ulong flags, l_ulong new_addr); } 164 AUE_SETRESUID STD { int linux_setresuid16(l_uid16_t ruid, \ l_uid16_t euid, l_uid16_t suid); } 165 AUE_GETRESUID STD { int linux_getresuid16(l_uid16_t *ruid, \ l_uid16_t *euid, l_uid16_t *suid); } 166 AUE_NULL UNIMPL vm86 167 AUE_NULL UNIMPL query_module 168 AUE_POLL NOPROTO { int poll(struct pollfd *fds, \ unsigned int nfds, int timeout); } 169 AUE_NULL UNIMPL nfsservctl 170 AUE_SETRESGID STD { int linux_setresgid16(l_gid16_t rgid, \ l_gid16_t egid, l_gid16_t sgid); } 171 AUE_GETRESGID STD { int linux_getresgid16(l_gid16_t *rgid, \ l_gid16_t *egid, l_gid16_t *sgid); } 172 AUE_PRCTL STD { int linux_prctl(l_int option, l_int arg2, l_int arg3, \ l_int arg4, l_int arg5); } 173 AUE_NULL STD { int linux_rt_sigreturn( \ struct l_ucontext *ucp); } 174 AUE_NULL STD { int linux_rt_sigaction(l_int sig, \ l_sigaction_t *act, l_sigaction_t *oact, \ l_size_t sigsetsize); } 175 AUE_NULL STD { int linux_rt_sigprocmask(l_int how, \ l_sigset_t *mask, l_sigset_t *omask, \ l_size_t sigsetsize); } 176 AUE_NULL STD { int linux_rt_sigpending(l_sigset_t *set, \ l_size_t sigsetsize); } 177 AUE_NULL STD { int linux_rt_sigtimedwait(l_sigset_t *mask, \ l_siginfo_t *ptr, \ struct l_timeval *timeout, \ l_size_t sigsetsize); } 178 AUE_NULL STD { int linux_rt_sigqueueinfo(l_pid_t pid, l_int sig, \ l_siginfo_t *info); } 179 AUE_NULL STD { int linux_rt_sigsuspend( \ l_sigset_t *newset, \ l_size_t sigsetsize); } 180 AUE_PREAD STD { int linux_pread(l_uint fd, char *buf, \ - l_size_t nbyte, l_loff_t offset); } + l_size_t nbyte, uint32_t offset1, uint32_t offset2); } 181 AUE_PWRITE STD { int linux_pwrite(l_uint fd, char *buf, \ - l_size_t nbyte, l_loff_t offset); } + l_size_t nbyte, uint32_t offset1, uint32_t offset2); } 182 AUE_CHOWN STD { int linux_chown16(char *path, \ l_uid16_t uid, l_gid16_t gid); } 183 AUE_GETCWD STD { int linux_getcwd(char *buf, \ l_ulong bufsize); } 184 AUE_CAPGET STD { int linux_capget(struct l_user_cap_header *hdrp, \ struct l_user_cap_data *datap); } 185 AUE_CAPSET STD { int linux_capset(struct l_user_cap_header *hdrp, \ struct l_user_cap_data *datap); } 186 AUE_NULL STD { int linux_sigaltstack(l_stack_t *uss, \ l_stack_t *uoss); } 187 AUE_SENDFILE STD { int linux_sendfile(void); } 188 AUE_GETPMSG UNIMPL getpmsg 189 AUE_PUTPMSG UNIMPL putpmsg 190 AUE_VFORK STD { int linux_vfork(void); } ; 191: ugetrlimit 191 AUE_GETRLIMIT STD { int linux_getrlimit(l_uint resource, \ struct l_rlimit *rlim); } 192 AUE_MMAP STD { int linux_mmap2(l_ulong addr, l_ulong len, \ l_ulong prot, l_ulong flags, l_ulong fd, \ l_ulong pgoff); } 193 AUE_TRUNCATE STD { int linux_truncate64(char *path, \ - l_loff_t length); } + uint32_t length1, uint32_t length2); } 194 AUE_FTRUNCATE STD { int linux_ftruncate64(l_uint fd, \ - l_loff_t length); } + uint32_t length1, uint32_t length2); } 195 AUE_STAT STD { int linux_stat64(const char *filename, \ struct l_stat64 *statbuf); } 196 AUE_LSTAT STD { int linux_lstat64(const char *filename, \ struct l_stat64 *statbuf); } 197 AUE_FSTAT STD { int linux_fstat64(l_int fd, \ struct l_stat64 *statbuf); } 198 AUE_LCHOWN STD { int linux_lchown(char *path, l_uid_t uid, \ l_gid_t gid); } 199 AUE_GETUID STD { int linux_getuid(void); } 200 AUE_GETGID STD { int linux_getgid(void); } 201 AUE_GETEUID NOPROTO { int geteuid(void); } 202 AUE_GETEGID NOPROTO { int getegid(void); } 203 AUE_SETREUID NOPROTO { int setreuid(uid_t ruid, uid_t euid); } 204 AUE_SETREGID NOPROTO { int setregid(gid_t rgid, gid_t egid); } 205 AUE_GETGROUPS STD { int linux_getgroups(l_int gidsetsize, \ l_gid_t *grouplist); } 206 AUE_SETGROUPS STD { int linux_setgroups(l_int gidsetsize, \ l_gid_t *grouplist); } 207 AUE_FCHOWN NODEF fchown fchown fchown_args int 208 AUE_SETRESUID NOPROTO { int setresuid(uid_t ruid, uid_t euid, \ uid_t suid); } 209 AUE_GETRESUID NOPROTO { int getresuid(uid_t *ruid, uid_t *euid, \ uid_t *suid); } 210 AUE_SETRESGID NOPROTO { int setresgid(gid_t rgid, gid_t egid, \ gid_t sgid); } 211 AUE_GETRESGID NOPROTO { int getresgid(gid_t *rgid, gid_t *egid, \ gid_t *sgid); } 212 AUE_CHOWN STD { int linux_chown(char *path, l_uid_t uid, \ l_gid_t gid); } 213 AUE_SETUID NOPROTO { int setuid(uid_t uid); } 214 AUE_SETGID NOPROTO { int setgid(gid_t gid); } 215 AUE_SETFSUID STD { int linux_setfsuid(l_uid_t uid); } 216 AUE_SETFSGID STD { int linux_setfsgid(l_gid_t gid); } 217 AUE_PIVOT_ROOT STD { int linux_pivot_root(char *new_root, \ char *put_old); } 218 AUE_MINCORE STD { int linux_mincore(l_ulong start, \ l_size_t len, u_char *vec); } 219 AUE_MADVISE NOPROTO { int madvise(void *addr, size_t len, \ int behav); } 220 AUE_GETDIRENTRIES STD { int linux_getdents64(l_uint fd, \ void *dirent, l_uint count); } 221 AUE_FCNTL STD { int linux_fcntl64(l_uint fd, l_uint cmd, \ uintptr_t arg); } 222 AUE_NULL UNIMPL 223 AUE_NULL UNIMPL 224 AUE_NULL STD { long linux_gettid(void); } 225 AUE_NULL UNIMPL linux_readahead 226 AUE_NULL STD { int linux_setxattr(void); } 227 AUE_NULL STD { int linux_lsetxattr(void); } 228 AUE_NULL STD { int linux_fsetxattr(void); } 229 AUE_NULL STD { int linux_getxattr(void); } 230 AUE_NULL STD { int linux_lgetxattr(void); } 231 AUE_NULL STD { int linux_fgetxattr(void); } 232 AUE_NULL STD { int linux_listxattr(void); } 233 AUE_NULL STD { int linux_llistxattr(void); } 234 AUE_NULL STD { int linux_flistxattr(void); } 235 AUE_NULL STD { int linux_removexattr(void); } 236 AUE_NULL STD { int linux_lremovexattr(void); } 237 AUE_NULL STD { int linux_fremovexattr(void); } 238 AUE_NULL STD { int linux_tkill(int tid, int sig); } 239 AUE_SENDFILE UNIMPL linux_sendfile64 240 AUE_NULL STD { int linux_sys_futex(void *uaddr, int op, uint32_t val, \ struct l_timespec *timeout, uint32_t *uaddr2, uint32_t val3); } 241 AUE_NULL STD { int linux_sched_setaffinity(l_pid_t pid, l_uint len, \ l_ulong *user_mask_ptr); } 242 AUE_NULL STD { int linux_sched_getaffinity(l_pid_t pid, l_uint len, \ l_ulong *user_mask_ptr); } 243 AUE_NULL STD { int linux_set_thread_area(struct l_user_desc *desc); } 244 AUE_NULL UNIMPL linux_get_thread_area 245 AUE_NULL UNIMPL linux_io_setup 246 AUE_NULL UNIMPL linux_io_destroy 247 AUE_NULL UNIMPL linux_io_getevents 248 AUE_NULL UNIMPL linux_io_submit 249 AUE_NULL UNIMPL linux_io_cancel -250 AUE_NULL STD { int linux_fadvise64(int fd, l_loff_t offset, \ +250 AUE_NULL STD { int linux_fadvise64(int fd, uint32_t offset1, uint32_t offset2, \ l_size_t len, int advice); } 251 AUE_NULL UNIMPL 252 AUE_EXIT STD { int linux_exit_group(int error_code); } 253 AUE_NULL STD { int linux_lookup_dcookie(void); } 254 AUE_NULL STD { int linux_epoll_create(l_int size); } 255 AUE_NULL STD { int linux_epoll_ctl(l_int epfd, l_int op, l_int fd, \ struct epoll_event *event); } 256 AUE_NULL STD { int linux_epoll_wait(l_int epfd, struct epoll_event *events, \ l_int maxevents, l_int timeout); } 257 AUE_NULL STD { int linux_remap_file_pages(void); } 258 AUE_NULL STD { int linux_set_tid_address(int *tidptr); } 259 AUE_NULL STD { int linux_timer_create(clockid_t clock_id, \ struct sigevent *evp, l_timer_t *timerid); } 260 AUE_NULL STD { int linux_timer_settime(l_timer_t timerid, l_int flags, \ const struct itimerspec *new, struct itimerspec *old); } 261 AUE_NULL STD { int linux_timer_gettime(l_timer_t timerid, struct itimerspec *setting); } 262 AUE_NULL STD { int linux_timer_getoverrun(l_timer_t timerid); } 263 AUE_NULL STD { int linux_timer_delete(l_timer_t timerid); } 264 AUE_CLOCK_SETTIME STD { int linux_clock_settime(clockid_t which, struct l_timespec *tp); } 265 AUE_NULL STD { int linux_clock_gettime(clockid_t which, struct l_timespec *tp); } 266 AUE_NULL STD { int linux_clock_getres(clockid_t which, struct l_timespec *tp); } 267 AUE_NULL STD { int linux_clock_nanosleep(clockid_t which, int flags, \ struct l_timespec *rqtp, struct l_timespec *rmtp); } 268 AUE_STATFS STD { int linux_statfs64(char *path, size_t bufsize, struct l_statfs64_buf *buf); } 269 AUE_FSTATFS STD { int linux_fstatfs64(l_uint fd, size_t bufsize, struct l_statfs64_buf *buf); } 270 AUE_NULL STD { int linux_tgkill(int tgid, int pid, int sig); } 271 AUE_UTIMES STD { int linux_utimes(char *fname, \ struct l_timeval *tptr); } 272 AUE_NULL STD { int linux_fadvise64_64(int fd, \ - l_loff_t offset, l_loff_t len, \ + uint32_t offset1, uint32_t offset2, \ + uint32_t len1, uint32_t len2, \ int advice); } 273 AUE_NULL UNIMPL vserver 274 AUE_NULL STD { int linux_mbind(void); } 275 AUE_NULL STD { int linux_get_mempolicy(void); } 276 AUE_NULL STD { int linux_set_mempolicy(void); } ; Linux 2.6.6: 277 AUE_NULL STD { int linux_mq_open(void); } 278 AUE_NULL STD { int linux_mq_unlink(void); } 279 AUE_NULL STD { int linux_mq_timedsend(void); } 280 AUE_NULL STD { int linux_mq_timedreceive(void); } 281 AUE_NULL STD { int linux_mq_notify(void); } 282 AUE_NULL STD { int linux_mq_getsetattr(void); } 283 AUE_NULL STD { int linux_kexec_load(void); } 284 AUE_WAIT6 STD { int linux_waitid(int idtype, l_pid_t id, \ l_siginfo_t *info, int options, \ struct l_rusage *rusage); } 285 AUE_NULL UNIMPL ; Linux 2.6.11: 286 AUE_NULL STD { int linux_add_key(void); } 287 AUE_NULL STD { int linux_request_key(void); } 288 AUE_NULL STD { int linux_keyctl(void); } ; Linux 2.6.13: 289 AUE_NULL STD { int linux_ioprio_set(void); } 290 AUE_NULL STD { int linux_ioprio_get(void); } 291 AUE_NULL STD { int linux_inotify_init(void); } 292 AUE_NULL STD { int linux_inotify_add_watch(void); } 293 AUE_NULL STD { int linux_inotify_rm_watch(void); } ; Linux 2.6.16: 294 AUE_NULL STD { int linux_migrate_pages(void); } 295 AUE_OPEN_RWTC STD { int linux_openat(l_int dfd, const char *filename, \ l_int flags, l_int mode); } 296 AUE_MKDIRAT STD { int linux_mkdirat(l_int dfd, const char *pathname, \ l_int mode); } 297 AUE_MKNODAT STD { int linux_mknodat(l_int dfd, const char *filename, \ l_int mode, l_uint dev); } 298 AUE_FCHOWNAT STD { int linux_fchownat(l_int dfd, const char *filename, \ l_uid16_t uid, l_gid16_t gid, l_int flag); } 299 AUE_FUTIMESAT STD { int linux_futimesat(l_int dfd, char *filename, \ struct l_timeval *utimes); } 300 AUE_FSTATAT STD { int linux_fstatat64(l_int dfd, char *pathname, \ struct l_stat64 *statbuf, l_int flag); } 301 AUE_UNLINKAT STD { int linux_unlinkat(l_int dfd, const char *pathname, \ l_int flag); } 302 AUE_RENAMEAT STD { int linux_renameat(l_int olddfd, const char *oldname, \ l_int newdfd, const char *newname); } 303 AUE_LINKAT STD { int linux_linkat(l_int olddfd, const char *oldname, \ l_int newdfd, const char *newname, l_int flag); } 304 AUE_SYMLINKAT STD { int linux_symlinkat(const char *oldname, l_int newdfd, \ const char *newname); } 305 AUE_READLINKAT STD { int linux_readlinkat(l_int dfd, const char *path, \ char *buf, l_int bufsiz); } 306 AUE_FCHMODAT STD { int linux_fchmodat(l_int dfd, const char *filename, \ l_mode_t mode); } 307 AUE_FACCESSAT STD { int linux_faccessat(l_int dfd, const char *filename, \ l_int amode); } 308 AUE_SELECT STD { int linux_pselect6(l_int nfds, l_fd_set *readfds, \ l_fd_set *writefds, l_fd_set *exceptfds, \ struct l_timespec *tsp, l_uintptr_t *sig); } 309 AUE_POLL STD { int linux_ppoll(struct pollfd *fds, uint32_t nfds, \ struct l_timespec *tsp, l_sigset_t *sset, l_size_t ssize); } 310 AUE_NULL STD { int linux_unshare(void); } ; Linux 2.6.17: 311 AUE_NULL STD { int linux_set_robust_list(struct linux_robust_list_head *head, \ l_size_t len); } 312 AUE_NULL STD { int linux_get_robust_list(l_int pid, \ struct linux_robust_list_head **head, l_size_t *len); } 313 AUE_NULL STD { int linux_splice(void); } -314 AUE_NULL STD { int linux_sync_file_range(l_int fd, l_loff_t offset, - l_loff_t nbytes, unsigned int flags); } +314 AUE_NULL STD { int linux_sync_file_range(l_int fd, uint32_t offset1, + uint32_t offset2, uint32_t nbytes1, uint32_t nbytes2, + unsigned int flags); } 315 AUE_NULL STD { int linux_tee(void); } 316 AUE_NULL STD { int linux_vmsplice(void); } ; Linux 2.6.18: 317 AUE_NULL STD { int linux_move_pages(void); } ; Linux 2.6.19: 318 AUE_NULL STD { int linux_getcpu(l_uint *cpu, l_uint *node, \ void *cache); } 319 AUE_NULL STD { int linux_epoll_pwait(l_int epfd, struct epoll_event *events, \ l_int maxevents, l_int timeout, l_sigset_t *mask, \ l_size_t sigsetsize); } ; Linux 2.6.22: 320 AUE_FUTIMESAT STD { int linux_utimensat(l_int dfd, const char *pathname, \ const struct l_timespec *times, l_int flags); } 321 AUE_NULL STD { int linux_signalfd(void); } 322 AUE_NULL STD { int linux_timerfd_create(l_int clockid, l_int flags); } 323 AUE_NULL STD { int linux_eventfd(l_uint initval); } ; Linux 2.6.23: 324 AUE_NULL STD { int linux_fallocate(l_int fd, l_int mode, \ - l_loff_t offset, l_loff_t len); } + uint32_t offset1, uint32_t offset2, uint32_t len1, + uint32_t len2); } ; Linux 2.6.25: 325 AUE_NULL STD { int linux_timerfd_settime(l_int fd, l_int flags, \ const struct l_itimerspec *new_value, \ struct l_itimerspec *old_value); } 326 AUE_NULL STD { int linux_timerfd_gettime(l_int fd, \ struct l_itimerspec *old_value); } ; Linux 2.6.27: 327 AUE_NULL STD { int linux_signalfd4(void); } 328 AUE_NULL STD { int linux_eventfd2(l_uint initval, l_int flags); } 329 AUE_NULL STD { int linux_epoll_create1(l_int flags); } 330 AUE_NULL STD { int linux_dup3(l_int oldfd, \ l_int newfd, l_int flags); } 331 AUE_NULL STD { int linux_pipe2(l_int *pipefds, l_int flags); } 332 AUE_NULL STD { int linux_inotify_init1(void); } ; Linux 2.6.30: 333 AUE_NULL STD { int linux_preadv(l_ulong fd, \ struct iovec *vec, l_ulong vlen, \ l_ulong pos_l, l_ulong pos_h); } 334 AUE_NULL STD { int linux_pwritev(l_ulong fd, \ struct iovec *vec, l_ulong vlen, \ l_ulong pos_l, l_ulong pos_h); } ; Linux 2.6.31: 335 AUE_NULL STD { int linux_rt_tgsigqueueinfo(l_pid_t tgid, \ l_pid_t tid, l_int sig, l_siginfo_t *uinfo); } 336 AUE_NULL STD { int linux_perf_event_open(void); } ; Linux 2.6.33: 337 AUE_NULL STD { int linux_recvmmsg(l_int s, \ struct l_mmsghdr *msg, l_uint vlen, \ l_uint flags, struct l_timespec *timeout); } 338 AUE_NULL STD { int linux_fanotify_init(void); } 339 AUE_NULL STD { int linux_fanotify_mark(void); } ; Linux 2.6.36: 340 AUE_NULL STD { int linux_prlimit64(l_pid_t pid, \ l_uint resource, \ struct rlimit *new, \ struct rlimit *old); } ; Linux 2.6.39: 341 AUE_NULL STD { int linux_name_to_handle_at(void); } 342 AUE_NULL STD { int linux_open_by_handle_at(void); } 343 AUE_NULL STD { int linux_clock_adjtime(void); } 344 AUE_SYNC STD { int linux_syncfs(l_int fd); } ; Linux 3.0: 345 AUE_NULL STD { int linux_sendmmsg(l_int s, \ struct l_mmsghdr *msg, l_uint vlen, \ l_uint flags); } 346 AUE_NULL STD { int linux_setns(void); } ; Linux 3.2 (glibc 2.15): 347 AUE_NULL STD { int linux_process_vm_readv(l_pid_t pid, \ const struct iovec *lvec, l_ulong liovcnt, \ const struct iovec *rvec, l_ulong riovcnt, \ l_ulong flags); } 348 AUE_NULL STD { int linux_process_vm_writev(l_pid_t pid, \ const struct iovec *lvec, l_ulong liovcnt, \ const struct iovec *rvec, l_ulong riovcnt, \ l_ulong flags); } ; Linux 3.5 (no glibc wrapper): 349 AUE_NULL STD { int linux_kcmp(l_pid_t pid1, l_pid_t pid2, \ l_int type, l_ulong idx1, l_ulong idx); } ; Linux 3.8 (no glibc wrapper): 350 AUE_NULL STD { int linux_finit_module(l_int fd, \ const char *uargs, l_int flags); } ; Linux 3.14: 351 AUE_NULL STD { int linux_sched_setattr(l_pid_t pid, \ void *attr, l_uint flags); } 352 AUE_NULL STD { int linux_sched_getattr(l_pid_t pid, \ void *attr, l_uint size, l_uint flags); } ; Linux 3.15: 353 AUE_NULL STD { int linux_renameat2(l_int olddfd, \ const char *oldname, l_int newdfd, \ const char *newname, unsigned int flags); } ; Linux 3.17: 354 AUE_NULL STD { int linux_seccomp(l_uint op, l_uint flags, \ const char *uargs); } 355 AUE_NULL STD { int linux_getrandom(char *buf, \ l_size_t count, l_uint flags); } 356 AUE_NULL STD { int linux_memfd_create(const char *uname_ptr, \ l_uint flags); } ; Linux 3.18: 357 AUE_NULL STD { int linux_bpf(l_int cmd, void *attr, \ l_uint size); } ; Linux 3.19: 358 AUE_NULL STD { int linux_execveat(l_int dfd, \ const char *filename, const char **argv, \ const char **envp, l_int flags); } ; Linux 4.3: sockets now direct system calls: 359 AUE_SOCKET STD { int linux_socket(l_int domain, l_int type, \ l_int protocol); } 360 AUE_SOCKETPAIR STD { int linux_socketpair(l_int domain, \ l_int type, l_int protocol, l_uintptr_t rsv); } 361 AUE_BIND STD { int linux_bind(l_int s, l_uintptr_t name, \ l_int namelen); } 362 AUE_CONNECT STD { int linux_connect(l_int s, l_uintptr_t name, \ l_int namelen); } 363 AUE_LISTEN STD { int linux_listen(l_int s, l_int backlog); } 364 AUE_ACCEPT STD { int linux_accept4(l_int s, l_uintptr_t addr, \ l_uintptr_t namelen, l_int flags); } 365 AUE_GETSOCKOPT STD { int linux_getsockopt(l_int s, l_int level, \ l_int optname, l_uintptr_t optval, \ l_uintptr_t optlen); } 366 AUE_SETSOCKOPT STD { int linux_setsockopt(l_int s, l_int level, \ l_int optname, l_uintptr_t optval, \ l_int optlen); } 367 AUE_GETSOCKNAME STD { int linux_getsockname(l_int s, \ l_uintptr_t addr, l_uintptr_t namelen); } 368 AUE_GETPEERNAME STD { int linux_getpeername(l_int s, \ l_uintptr_t addr, l_uintptr_t namelen); } 369 AUE_SENDTO STD { int linux_sendto(l_int s, l_uintptr_t msg, \ l_int len, l_int flags, l_uintptr_t to, \ l_int tolen); } 370 AUE_SENDMSG STD { int linux_sendmsg(l_int s, l_uintptr_t msg, \ l_int flags); } 371 AUE_RECVFROM STD { int linux_recvfrom(l_int s, l_uintptr_t buf, \ l_size_t len, l_int flags, l_uintptr_t from, \ l_uintptr_t fromlen); } 372 AUE_RECVMSG STD { int linux_recvmsg(l_int s, l_uintptr_t msg, \ l_int flags); } 373 AUE_NULL STD { int linux_shutdown(l_int s, l_int how); } ; ; Linux 4.2: 374 AUE_NULL STD { int linux_userfaultfd(l_int flags); } ; Linux 4.3: 375 AUE_NULL STD { int linux_membarrier(l_int cmd, l_int flags); } ; Linux 4.4: 376 AUE_NULL STD { int linux_mlock2(l_ulong start, l_size_t len, \ l_int flags); } ; Linux 4.5: 377 AUE_NULL STD { int linux_copy_file_range(l_int fd_in, \ l_loff_t *off_in, l_int fd_out, \ l_loff_t *off_out, l_size_t len, \ l_uint flags); } ; Linux 4.6: 378 AUE_NULL STD { int linux_preadv2(l_ulong fd, \ const struct iovec *vec, l_ulong vlen, \ l_ulong pos_l, l_ulong pos_h, l_int flags); } 379 AUE_NULL STD { int linux_pwritev2(l_ulong fd, \ const struct iovec *vec, l_ulong vlen, \ l_ulong pos_l, l_ulong pos_h, l_int flags); } ; Linux 4.8: 380 AUE_NULL STD { int linux_pkey_mprotect(l_ulong start, \ l_size_t len, l_ulong prot, l_int pkey); } 381 AUE_NULL STD { int linux_pkey_alloc(l_ulong flags, \ l_ulong init_val); } 382 AUE_NULL STD { int linux_pkey_free(l_int pkey); } ; Linux 4.11: 383 AUE_NULL STD { int linux_statx(l_int dirfd, \ const char *pathname, l_uint flags, \ l_uint mask, void *statxbuf); } 384 AUE_NULL STD { int linux_arch_prctl(l_int option, \ l_ulong arg2); } ; Linux 4.18: 385 AUE_NULL STD { int linux_io_pgetevents(void); } 386 AUE_NULL STD { int linux_rseq(void); } 387-392 AUE_NULL UNIMPL nosys 393 AUE_NULL STD { int linux_semget(l_key_t key, l_int nsems, \ l_int semflg); } 394 AUE_NULL STD { int linux_semctl(l_int semid, l_int semnum, \ l_int cmd, union l_semun arg); } 395 AUE_NULL STD { int linux_shmget(l_key_t key, l_size_t size, \ l_int shmflg); } 396 AUE_NULL STD { int linux_shmctl(l_int shmid, l_int cmd, \ struct l_shmid_ds *buf); } 397 AUE_NULL STD { int linux_shmat(l_int shmid, char *shmaddr, \ l_int shmflg); } 398 AUE_NULL STD { int linux_shmdt(char *shmaddr); } 399 AUE_NULL STD { int linux_msgget(l_key_t key, l_int msgflg); } 400 AUE_NULL STD { int linux_msgsnd(l_int msqid, \ struct l_msgbuf *msgp, l_size_t msgsz, \ l_int msgflg); } 401 AUE_NULL STD { int linux_msgrcv(l_int msqid, \ struct l_msgbuf *msgp, l_size_t msgsz, \ l_long msgtyp, l_int msgflg); } 402 AUE_NULL STD { int linux_msgctl(l_int msqid, l_int cmd, \ struct l_msqid_ds *buf); } ; Linux 5.0: 403 AUE_NULL STD { int linux_clock_gettime64(void); } 404 AUE_NULL STD { int linux_clock_settime64(void); } 405 AUE_NULL STD { int linux_clock_adjtime64(void); } 406 AUE_NULL STD { int linux_clock_getres_time64(void); } 407 AUE_NULL STD { int linux_clock_nanosleep_time64(void); } 408 AUE_NULL STD { int linux_timer_gettime64(void); } 409 AUE_NULL STD { int linux_timer_settime64(void); } 410 AUE_NULL STD { int linux_timerfd_gettime64(void); } 411 AUE_NULL STD { int linux_timerfd_settime64(void); } 412 AUE_NULL STD { int linux_utimensat_time64(void); } 413 AUE_NULL STD { int linux_pselect6_time64(void); } 414 AUE_NULL STD { int linux_ppoll_time64(void); } 415 AUE_NULL UNIMPL nosys 416 AUE_NULL STD { int linux_io_pgetevents_time64(void); } 417 AUE_NULL STD { int linux_recvmmsg_time64(void); } 418 AUE_NULL STD { int linux_mq_timedsend_time64(void); } 419 AUE_NULL STD { int linux_mq_timedreceive_time64(void); } 420 AUE_NULL STD { int linux_semtimedop_time64(void); } 421 AUE_NULL STD { int linux_rt_sigtimedwait_time64(void); } 422 AUE_NULL STD { int linux_futex_time64(void); } 423 AUE_NULL STD { int linux_sched_rr_get_interval_time64(void); } 424 AUE_NULL STD { int linux_pidfd_send_signal(l_int pidfd, \ l_int sig, l_siginfo_t *info, l_uint flags); } 425 AUE_NULL STD { int linux_io_uring_setup(void); } 426 AUE_NULL STD { int linux_io_uring_enter(void); } 427 AUE_NULL STD { int linux_io_uring_register(void); } ; please, keep this line at the end. 428 AUE_NULL UNIMPL nosys ; vim: syntax=off Index: head/sys/compat/linux/linux_file.c =================================================================== --- head/sys/compat/linux/linux_file.c (revision 356944) +++ head/sys/compat/linux/linux_file.c (revision 356945) @@ -1,1613 +1,1677 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 +#include #include #include #else #include #include #endif #include #include #include static int linux_common_open(struct thread *, int, char *, int, int); static int linux_getdents_error(struct thread *, int, int); - #ifdef LINUX_LEGACY_SYSCALLS int linux_creat(struct thread *td, struct linux_creat_args *args) { char *path; int error; LCONVPATHEXIST(td, args->path, &path); error = kern_openat(td, AT_FDCWD, path, UIO_SYSSPACE, O_WRONLY | O_CREAT | O_TRUNC, args->mode); LFREEPATH(path); return (error); } #endif static int linux_common_open(struct thread *td, int dirfd, char *path, int l_flags, int mode) { struct proc *p = td->td_proc; struct file *fp; int fd; int bsd_flags, error; bsd_flags = 0; switch (l_flags & LINUX_O_ACCMODE) { case LINUX_O_WRONLY: bsd_flags |= O_WRONLY; break; case LINUX_O_RDWR: bsd_flags |= O_RDWR; break; default: bsd_flags |= O_RDONLY; } if (l_flags & LINUX_O_NDELAY) bsd_flags |= O_NONBLOCK; if (l_flags & LINUX_O_APPEND) bsd_flags |= O_APPEND; if (l_flags & LINUX_O_SYNC) bsd_flags |= O_FSYNC; if (l_flags & LINUX_O_CLOEXEC) bsd_flags |= O_CLOEXEC; if (l_flags & LINUX_O_NONBLOCK) bsd_flags |= O_NONBLOCK; if (l_flags & LINUX_FASYNC) bsd_flags |= O_ASYNC; if (l_flags & LINUX_O_CREAT) bsd_flags |= O_CREAT; if (l_flags & LINUX_O_TRUNC) bsd_flags |= O_TRUNC; if (l_flags & LINUX_O_EXCL) bsd_flags |= O_EXCL; if (l_flags & LINUX_O_NOCTTY) bsd_flags |= O_NOCTTY; if (l_flags & LINUX_O_DIRECT) bsd_flags |= O_DIRECT; if (l_flags & LINUX_O_NOFOLLOW) bsd_flags |= O_NOFOLLOW; if (l_flags & LINUX_O_DIRECTORY) bsd_flags |= O_DIRECTORY; /* XXX LINUX_O_NOATIME: unable to be easily implemented. */ error = kern_openat(td, dirfd, path, UIO_SYSSPACE, bsd_flags, mode); if (error != 0) { if (error == EMLINK) error = ELOOP; goto done; } if (p->p_flag & P_CONTROLT) goto done; if (bsd_flags & O_NOCTTY) goto done; /* * XXX In between kern_openat() and fget(), another process * having the same filedesc could use that fd without * checking below. */ fd = td->td_retval[0]; if (fget(td, fd, &cap_ioctl_rights, &fp) == 0) { if (fp->f_type != DTYPE_VNODE) { fdrop(fp, td); goto done; } sx_slock(&proctree_lock); PROC_LOCK(p); if (SESS_LEADER(p) && !(p->p_flag & P_CONTROLT)) { PROC_UNLOCK(p); sx_sunlock(&proctree_lock); /* XXXPJD: Verify if TIOCSCTTY is allowed. */ (void) fo_ioctl(fp, TIOCSCTTY, (caddr_t) 0, td->td_ucred, td); } else { PROC_UNLOCK(p); sx_sunlock(&proctree_lock); } fdrop(fp, td); } done: LFREEPATH(path); return (error); } int linux_openat(struct thread *td, struct linux_openat_args *args) { char *path; int dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; if (args->flags & LINUX_O_CREAT) LCONVPATH_AT(td, args->filename, &path, 1, dfd); else LCONVPATH_AT(td, args->filename, &path, 0, dfd); return (linux_common_open(td, dfd, path, args->flags, args->mode)); } #ifdef LINUX_LEGACY_SYSCALLS int linux_open(struct thread *td, struct linux_open_args *args) { char *path; if (args->flags & LINUX_O_CREAT) LCONVPATHCREAT(td, args->path, &path); else LCONVPATHEXIST(td, args->path, &path); return (linux_common_open(td, AT_FDCWD, path, args->flags, args->mode)); } #endif int linux_lseek(struct thread *td, struct linux_lseek_args *args) { return (kern_lseek(td, args->fdes, args->off, args->whence)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_llseek(struct thread *td, struct linux_llseek_args *args) { int error; off_t off; off = (args->olow) | (((off_t) args->ohigh) << 32); error = kern_lseek(td, args->fd, off, args->whence); if (error != 0) return (error); error = copyout(td->td_retval, args->res, sizeof(off_t)); if (error != 0) return (error); td->td_retval[0] = 0; return (0); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ /* * Note that linux_getdents(2) and linux_getdents64(2) have the same * arguments. They only differ in the definition of struct dirent they * operate on. * Note that linux_readdir(2) is a special case of linux_getdents(2) * where count is always equals 1, meaning that the buffer is one * dirent-structure in size and that the code can't handle more anyway. * Note that linux_readdir(2) can't be implemented by means of linux_getdents(2) * as in case when the *dent buffer size is equal to 1 linux_getdents(2) will * trash user stack. */ static int linux_getdents_error(struct thread *td, int fd, int err) { struct vnode *vp; struct file *fp; int error; /* Linux return ENOTDIR in case when fd is not a directory. */ error = getvnode(td, fd, &cap_read_rights, &fp); if (error != 0) return (error); vp = fp->f_vnode; if (vp->v_type != VDIR) { fdrop(fp, td); return (ENOTDIR); } fdrop(fp, td); return (err); } struct l_dirent { l_ulong d_ino; l_off_t d_off; l_ushort d_reclen; char d_name[LINUX_NAME_MAX + 1]; }; struct l_dirent64 { uint64_t d_ino; int64_t d_off; l_ushort d_reclen; u_char d_type; char d_name[LINUX_NAME_MAX + 1]; }; /* * Linux uses the last byte in the dirent buffer to store d_type, * at least glibc-2.7 requires it. That is why l_dirent is padded with 2 bytes. */ #define LINUX_RECLEN(namlen) \ roundup(offsetof(struct l_dirent, d_name) + (namlen) + 2, sizeof(l_ulong)) #define LINUX_RECLEN64(namlen) \ roundup(offsetof(struct l_dirent64, d_name) + (namlen) + 1, \ sizeof(uint64_t)) #ifdef LINUX_LEGACY_SYSCALLS int linux_getdents(struct thread *td, struct linux_getdents_args *args) { struct dirent *bdp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* Linux-format */ int resid, linuxreclen; /* Linux-format */ caddr_t lbuf; /* Linux-format */ off_t base; struct l_dirent *linux_dirent; int buflen, error; size_t retval; buflen = min(args->count, MAXBSIZE); buf = malloc(buflen, M_TEMP, M_WAITOK); error = kern_getdirentries(td, args->fd, buf, buflen, &base, NULL, UIO_SYSSPACE); if (error != 0) { error = linux_getdents_error(td, args->fd, error); goto out1; } lbuf = malloc(LINUX_RECLEN(LINUX_NAME_MAX), M_TEMP, M_WAITOK | M_ZERO); len = td->td_retval[0]; inp = buf; outp = (caddr_t)args->dent; resid = args->count; retval = 0; while (len > 0) { bdp = (struct dirent *) inp; reclen = bdp->d_reclen; linuxreclen = LINUX_RECLEN(bdp->d_namlen); /* * No more space in the user supplied dirent buffer. * Return EINVAL. */ if (resid < linuxreclen) { error = EINVAL; goto out; } linux_dirent = (struct l_dirent*)lbuf; linux_dirent->d_ino = bdp->d_fileno; linux_dirent->d_off = base + reclen; linux_dirent->d_reclen = linuxreclen; /* * Copy d_type to last byte of l_dirent buffer */ lbuf[linuxreclen - 1] = bdp->d_type; strlcpy(linux_dirent->d_name, bdp->d_name, linuxreclen - offsetof(struct l_dirent, d_name)-1); error = copyout(linux_dirent, outp, linuxreclen); if (error != 0) goto out; inp += reclen; base += reclen; len -= reclen; retval += linuxreclen; outp += linuxreclen; resid -= linuxreclen; } td->td_retval[0] = retval; out: free(lbuf, M_TEMP); out1: free(buf, M_TEMP); return (error); } #endif int linux_getdents64(struct thread *td, struct linux_getdents64_args *args) { struct dirent *bdp; caddr_t inp, buf; /* BSD-format */ int len, reclen; /* BSD-format */ caddr_t outp; /* Linux-format */ int resid, linuxreclen; /* Linux-format */ caddr_t lbuf; /* Linux-format */ off_t base; struct l_dirent64 *linux_dirent64; int buflen, error; size_t retval; buflen = min(args->count, MAXBSIZE); buf = malloc(buflen, M_TEMP, M_WAITOK); error = kern_getdirentries(td, args->fd, buf, buflen, &base, NULL, UIO_SYSSPACE); if (error != 0) { error = linux_getdents_error(td, args->fd, error); goto out1; } lbuf = malloc(LINUX_RECLEN64(LINUX_NAME_MAX), M_TEMP, M_WAITOK | M_ZERO); len = td->td_retval[0]; inp = buf; outp = (caddr_t)args->dirent; resid = args->count; retval = 0; while (len > 0) { bdp = (struct dirent *) inp; reclen = bdp->d_reclen; linuxreclen = LINUX_RECLEN64(bdp->d_namlen); /* * No more space in the user supplied dirent buffer. * Return EINVAL. */ if (resid < linuxreclen) { error = EINVAL; goto out; } linux_dirent64 = (struct l_dirent64*)lbuf; linux_dirent64->d_ino = bdp->d_fileno; linux_dirent64->d_off = base + reclen; linux_dirent64->d_reclen = linuxreclen; linux_dirent64->d_type = bdp->d_type; strlcpy(linux_dirent64->d_name, bdp->d_name, linuxreclen - offsetof(struct l_dirent64, d_name)); error = copyout(linux_dirent64, outp, linuxreclen); if (error != 0) goto out; inp += reclen; base += reclen; len -= reclen; retval += linuxreclen; outp += linuxreclen; resid -= linuxreclen; } td->td_retval[0] = retval; out: free(lbuf, M_TEMP); out1: free(buf, M_TEMP); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_readdir(struct thread *td, struct linux_readdir_args *args) { struct dirent *bdp; caddr_t buf; /* BSD-format */ int linuxreclen; /* Linux-format */ caddr_t lbuf; /* Linux-format */ off_t base; struct l_dirent *linux_dirent; int buflen, error; buflen = LINUX_RECLEN(LINUX_NAME_MAX); buf = malloc(buflen, M_TEMP, M_WAITOK); error = kern_getdirentries(td, args->fd, buf, buflen, &base, NULL, UIO_SYSSPACE); if (error != 0) { error = linux_getdents_error(td, args->fd, error); goto out; } if (td->td_retval[0] == 0) goto out; lbuf = malloc(LINUX_RECLEN(LINUX_NAME_MAX), M_TEMP, M_WAITOK | M_ZERO); bdp = (struct dirent *) buf; linuxreclen = LINUX_RECLEN(bdp->d_namlen); linux_dirent = (struct l_dirent*)lbuf; linux_dirent->d_ino = bdp->d_fileno; linux_dirent->d_off = linuxreclen; linux_dirent->d_reclen = bdp->d_namlen; strlcpy(linux_dirent->d_name, bdp->d_name, linuxreclen - offsetof(struct l_dirent, d_name)); error = copyout(linux_dirent, args->dent, linuxreclen); if (error == 0) td->td_retval[0] = linuxreclen; free(lbuf, M_TEMP); out: free(buf, M_TEMP); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ /* * These exist mainly for hooks for doing /compat/linux translation. */ #ifdef LINUX_LEGACY_SYSCALLS int linux_access(struct thread *td, struct linux_access_args *args) { char *path; int error; /* Linux convention. */ if (args->amode & ~(F_OK | X_OK | W_OK | R_OK)) return (EINVAL); LCONVPATHEXIST(td, args->path, &path); error = kern_accessat(td, AT_FDCWD, path, UIO_SYSSPACE, 0, args->amode); LFREEPATH(path); return (error); } #endif int linux_faccessat(struct thread *td, struct linux_faccessat_args *args) { char *path; int error, dfd; /* Linux convention. */ if (args->amode & ~(F_OK | X_OK | W_OK | R_OK)) return (EINVAL); dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->filename, &path, dfd); error = kern_accessat(td, dfd, path, UIO_SYSSPACE, 0, args->amode); LFREEPATH(path); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_unlink(struct thread *td, struct linux_unlink_args *args) { char *path; int error; struct stat st; LCONVPATHEXIST(td, args->path, &path); error = kern_funlinkat(td, AT_FDCWD, path, FD_NONE, UIO_SYSSPACE, 0, 0); if (error == EPERM) { /* Introduce POSIX noncompliant behaviour of Linux */ if (kern_statat(td, 0, AT_FDCWD, path, UIO_SYSSPACE, &st, NULL) == 0) { if (S_ISDIR(st.st_mode)) error = EISDIR; } } LFREEPATH(path); return (error); } #endif int linux_unlinkat(struct thread *td, struct linux_unlinkat_args *args) { char *path; int error, dfd; struct stat st; if (args->flag & ~LINUX_AT_REMOVEDIR) return (EINVAL); dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->pathname, &path, dfd); if (args->flag & LINUX_AT_REMOVEDIR) error = kern_frmdirat(td, dfd, path, FD_NONE, UIO_SYSSPACE, 0); else error = kern_funlinkat(td, dfd, path, FD_NONE, UIO_SYSSPACE, 0, 0); if (error == EPERM && !(args->flag & LINUX_AT_REMOVEDIR)) { /* Introduce POSIX noncompliant behaviour of Linux */ if (kern_statat(td, AT_SYMLINK_NOFOLLOW, dfd, path, UIO_SYSSPACE, &st, NULL) == 0 && S_ISDIR(st.st_mode)) error = EISDIR; } LFREEPATH(path); return (error); } int linux_chdir(struct thread *td, struct linux_chdir_args *args) { char *path; int error; LCONVPATHEXIST(td, args->path, &path); error = kern_chdir(td, path, UIO_SYSSPACE); LFREEPATH(path); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_chmod(struct thread *td, struct linux_chmod_args *args) { char *path; int error; LCONVPATHEXIST(td, args->path, &path); error = kern_fchmodat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode, 0); LFREEPATH(path); return (error); } #endif int linux_fchmodat(struct thread *td, struct linux_fchmodat_args *args) { char *path; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->filename, &path, dfd); error = kern_fchmodat(td, dfd, path, UIO_SYSSPACE, args->mode, 0); LFREEPATH(path); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_mkdir(struct thread *td, struct linux_mkdir_args *args) { char *path; int error; LCONVPATHCREAT(td, args->path, &path); error = kern_mkdirat(td, AT_FDCWD, path, UIO_SYSSPACE, args->mode); LFREEPATH(path); return (error); } #endif int linux_mkdirat(struct thread *td, struct linux_mkdirat_args *args) { char *path; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHCREAT_AT(td, args->pathname, &path, dfd); error = kern_mkdirat(td, dfd, path, UIO_SYSSPACE, args->mode); LFREEPATH(path); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_rmdir(struct thread *td, struct linux_rmdir_args *args) { char *path; int error; LCONVPATHEXIST(td, args->path, &path); error = kern_frmdirat(td, AT_FDCWD, path, FD_NONE, UIO_SYSSPACE, 0); LFREEPATH(path); return (error); } int linux_rename(struct thread *td, struct linux_rename_args *args) { char *from, *to; int error; LCONVPATHEXIST(td, args->from, &from); /* Expand LCONVPATHCREATE so that `from' can be freed on errors */ error = linux_emul_convpath(td, args->to, UIO_USERSPACE, &to, 1, AT_FDCWD); if (to == NULL) { LFREEPATH(from); return (error); } error = kern_renameat(td, AT_FDCWD, from, AT_FDCWD, to, UIO_SYSSPACE); LFREEPATH(from); LFREEPATH(to); return (error); } #endif int linux_renameat(struct thread *td, struct linux_renameat_args *args) { struct linux_renameat2_args renameat2_args = { .olddfd = args->olddfd, .oldname = args->oldname, .newdfd = args->newdfd, .newname = args->newname, .flags = 0 }; return (linux_renameat2(td, &renameat2_args)); } int linux_renameat2(struct thread *td, struct linux_renameat2_args *args) { char *from, *to; int error, olddfd, newdfd; if (args->flags != 0) { if (args->flags & ~(LINUX_RENAME_EXCHANGE | LINUX_RENAME_NOREPLACE | LINUX_RENAME_WHITEOUT)) return (EINVAL); if (args->flags & LINUX_RENAME_EXCHANGE && args->flags & (LINUX_RENAME_NOREPLACE | LINUX_RENAME_WHITEOUT)) return (EINVAL); linux_msg(td, "renameat2 unsupported flags 0x%x", args->flags); return (EINVAL); } olddfd = (args->olddfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->olddfd; newdfd = (args->newdfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->newdfd; LCONVPATHEXIST_AT(td, args->oldname, &from, olddfd); /* Expand LCONVPATHCREATE so that `from' can be freed on errors */ error = linux_emul_convpath(td, args->newname, UIO_USERSPACE, &to, 1, newdfd); if (to == NULL) { LFREEPATH(from); return (error); } error = kern_renameat(td, olddfd, from, newdfd, to, UIO_SYSSPACE); LFREEPATH(from); LFREEPATH(to); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_symlink(struct thread *td, struct linux_symlink_args *args) { char *path, *to; int error; LCONVPATHEXIST(td, args->path, &path); /* Expand LCONVPATHCREATE so that `path' can be freed on errors */ error = linux_emul_convpath(td, args->to, UIO_USERSPACE, &to, 1, AT_FDCWD); if (to == NULL) { LFREEPATH(path); return (error); } error = kern_symlinkat(td, path, AT_FDCWD, to, UIO_SYSSPACE); LFREEPATH(path); LFREEPATH(to); return (error); } #endif int linux_symlinkat(struct thread *td, struct linux_symlinkat_args *args) { char *path, *to; int error, dfd; dfd = (args->newdfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->newdfd; LCONVPATHEXIST(td, args->oldname, &path); /* Expand LCONVPATHCREATE so that `path' can be freed on errors */ error = linux_emul_convpath(td, args->newname, UIO_USERSPACE, &to, 1, dfd); if (to == NULL) { LFREEPATH(path); return (error); } error = kern_symlinkat(td, path, dfd, to, UIO_SYSSPACE); LFREEPATH(path); LFREEPATH(to); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_readlink(struct thread *td, struct linux_readlink_args *args) { char *name; int error; LCONVPATHEXIST(td, args->name, &name); error = kern_readlinkat(td, AT_FDCWD, name, UIO_SYSSPACE, args->buf, UIO_USERSPACE, args->count); LFREEPATH(name); return (error); } #endif int linux_readlinkat(struct thread *td, struct linux_readlinkat_args *args) { char *name; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->path, &name, dfd); error = kern_readlinkat(td, dfd, name, UIO_SYSSPACE, args->buf, UIO_USERSPACE, args->bufsiz); LFREEPATH(name); return (error); } int linux_truncate(struct thread *td, struct linux_truncate_args *args) { char *path; int error; LCONVPATHEXIST(td, args->path, &path); - error = kern_truncate(td, path, UIO_SYSSPACE, args->length); LFREEPATH(path); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_truncate64(struct thread *td, struct linux_truncate64_args *args) { char *path; + off_t length; int error; - LCONVPATHEXIST(td, args->path, &path); +#if defined(__amd64__) && defined(COMPAT_LINUX32) + length = PAIR32TO64(off_t, args->length); +#else + length = args->length; +#endif - error = kern_truncate(td, path, UIO_SYSSPACE, args->length); + LCONVPATHEXIST(td, args->path, &path); + error = kern_truncate(td, path, UIO_SYSSPACE, length); LFREEPATH(path); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_ftruncate(struct thread *td, struct linux_ftruncate_args *args) { return (kern_ftruncate(td, args->fd, args->length)); } +#if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) +int +linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) +{ + off_t length; + +#if defined(__amd64__) && defined(COMPAT_LINUX32) + length = PAIR32TO64(off_t, args->length); +#else + length = args->length; +#endif + + return (kern_ftruncate(td, args->fd, length)); +} +#endif + #ifdef LINUX_LEGACY_SYSCALLS int linux_link(struct thread *td, struct linux_link_args *args) { char *path, *to; int error; LCONVPATHEXIST(td, args->path, &path); /* Expand LCONVPATHCREATE so that `path' can be freed on errors */ error = linux_emul_convpath(td, args->to, UIO_USERSPACE, &to, 1, AT_FDCWD); if (to == NULL) { LFREEPATH(path); return (error); } error = kern_linkat(td, AT_FDCWD, AT_FDCWD, path, to, UIO_SYSSPACE, FOLLOW); LFREEPATH(path); LFREEPATH(to); return (error); } #endif int linux_linkat(struct thread *td, struct linux_linkat_args *args) { char *path, *to; int error, olddfd, newdfd, follow; if (args->flag & ~LINUX_AT_SYMLINK_FOLLOW) return (EINVAL); olddfd = (args->olddfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->olddfd; newdfd = (args->newdfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->newdfd; LCONVPATHEXIST_AT(td, args->oldname, &path, olddfd); /* Expand LCONVPATHCREATE so that `path' can be freed on errors */ error = linux_emul_convpath(td, args->newname, UIO_USERSPACE, &to, 1, newdfd); if (to == NULL) { LFREEPATH(path); return (error); } follow = (args->flag & LINUX_AT_SYMLINK_FOLLOW) == 0 ? NOFOLLOW : FOLLOW; error = kern_linkat(td, olddfd, newdfd, path, to, UIO_SYSSPACE, follow); LFREEPATH(path); LFREEPATH(to); return (error); } int linux_fdatasync(struct thread *td, struct linux_fdatasync_args *uap) { return (kern_fsync(td, uap->fd, false)); } int linux_sync_file_range(struct thread *td, struct linux_sync_file_range_args *uap) { + off_t nbytes, offset; - if (uap->offset < 0 || uap->nbytes < 0 || +#if defined(__amd64__) && defined(COMPAT_LINUX32) + nbytes = PAIR32TO64(off_t, uap->nbytes); + offset = PAIR32TO64(off_t, uap->offset); +#else + nbytes = uap->nbytes; + offset = uap->offset; +#endif + + if (offset < 0 || nbytes < 0 || (uap->flags & ~(LINUX_SYNC_FILE_RANGE_WAIT_BEFORE | LINUX_SYNC_FILE_RANGE_WRITE | LINUX_SYNC_FILE_RANGE_WAIT_AFTER)) != 0) { return (EINVAL); } return (kern_fsync(td, uap->fd, false)); } int linux_pread(struct thread *td, struct linux_pread_args *uap) { struct vnode *vp; + off_t offset; int error; - error = kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset); +#if defined(__amd64__) && defined(COMPAT_LINUX32) + offset = PAIR32TO64(off_t, uap->offset); +#else + offset = uap->offset; +#endif + + error = kern_pread(td, uap->fd, uap->buf, uap->nbyte, offset); if (error == 0) { /* This seems to violate POSIX but Linux does it. */ error = fgetvp(td, uap->fd, &cap_pread_rights, &vp); if (error != 0) return (error); - if (vp->v_type == VDIR) { - vrele(vp); - return (EISDIR); - } + if (vp->v_type == VDIR) + error = EISDIR; vrele(vp); } return (error); } int linux_pwrite(struct thread *td, struct linux_pwrite_args *uap) { + off_t offset; - return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset)); +#if defined(__amd64__) && defined(COMPAT_LINUX32) + offset = PAIR32TO64(off_t, uap->offset); +#else + offset = uap->offset; +#endif + + return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, offset)); } int linux_preadv(struct thread *td, struct linux_preadv_args *uap) { struct uio *auio; int error; off_t offset; /* * According http://man7.org/linux/man-pages/man2/preadv.2.html#NOTES * pos_l and pos_h, respectively, contain the * low order and high order 32 bits of offset. */ offset = (((off_t)uap->pos_h << (sizeof(offset) * 4)) << (sizeof(offset) * 4)) | uap->pos_l; if (offset < 0) return (EINVAL); #ifdef COMPAT_LINUX32 error = linux32_copyinuio(PTRIN(uap->vec), uap->vlen, &auio); #else error = copyinuio(uap->vec, uap->vlen, &auio); #endif if (error != 0) return (error); error = kern_preadv(td, uap->fd, auio, offset); free(auio, M_IOV); return (error); } int linux_pwritev(struct thread *td, struct linux_pwritev_args *uap) { struct uio *auio; int error; off_t offset; /* * According http://man7.org/linux/man-pages/man2/pwritev.2.html#NOTES * pos_l and pos_h, respectively, contain the * low order and high order 32 bits of offset. */ offset = (((off_t)uap->pos_h << (sizeof(offset) * 4)) << (sizeof(offset) * 4)) | uap->pos_l; if (offset < 0) return (EINVAL); #ifdef COMPAT_LINUX32 error = linux32_copyinuio(PTRIN(uap->vec), uap->vlen, &auio); #else error = copyinuio(uap->vec, uap->vlen, &auio); #endif if (error != 0) return (error); error = kern_pwritev(td, uap->fd, auio, offset); free(auio, M_IOV); return (error); } int linux_mount(struct thread *td, struct linux_mount_args *args) { char fstypename[MFSNAMELEN]; char *mntonname, *mntfromname; int error, fsflags; mntonname = malloc(MNAMELEN, M_TEMP, M_WAITOK); mntfromname = malloc(MNAMELEN, M_TEMP, M_WAITOK); error = copyinstr(args->filesystemtype, fstypename, MFSNAMELEN - 1, NULL); if (error != 0) goto out; if (args->specialfile != NULL) { error = copyinstr(args->specialfile, mntfromname, MNAMELEN - 1, NULL); if (error != 0) goto out; } else { mntfromname[0] = '\0'; } error = copyinstr(args->dir, mntonname, MNAMELEN - 1, NULL); if (error != 0) goto out; if (strcmp(fstypename, "ext2") == 0) { strcpy(fstypename, "ext2fs"); } else if (strcmp(fstypename, "proc") == 0) { strcpy(fstypename, "linprocfs"); } else if (strcmp(fstypename, "vfat") == 0) { strcpy(fstypename, "msdosfs"); } fsflags = 0; /* * Linux SYNC flag is not included; the closest equivalent * FreeBSD has is !ASYNC, which is our default. */ if (args->rwflag & LINUX_MS_RDONLY) fsflags |= MNT_RDONLY; if (args->rwflag & LINUX_MS_NOSUID) fsflags |= MNT_NOSUID; if (args->rwflag & LINUX_MS_NOEXEC) fsflags |= MNT_NOEXEC; if (args->rwflag & LINUX_MS_REMOUNT) fsflags |= MNT_UPDATE; error = kernel_vmount(fsflags, "fstype", fstypename, "fspath", mntonname, "from", mntfromname, NULL); out: free(mntonname, M_TEMP); free(mntfromname, M_TEMP); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_oldumount(struct thread *td, struct linux_oldumount_args *args) { struct linux_umount_args args2; args2.path = args->path; args2.flags = 0; return (linux_umount(td, &args2)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ #ifdef LINUX_LEGACY_SYSCALLS int linux_umount(struct thread *td, struct linux_umount_args *args) { struct unmount_args bsd; int flags; flags = 0; if ((args->flags & LINUX_MNT_FORCE) != 0) flags |= MNT_FORCE; bsd.path = args->path; bsd.flags = flags; return (sys_unmount(td, &bsd)); } #endif /* * fcntl family of syscalls */ struct l_flock { l_short l_type; l_short l_whence; l_off_t l_start; l_off_t l_len; l_pid_t l_pid; } #if defined(__amd64__) && defined(COMPAT_LINUX32) __packed #endif ; static void linux_to_bsd_flock(struct l_flock *linux_flock, struct flock *bsd_flock) { switch (linux_flock->l_type) { case LINUX_F_RDLCK: bsd_flock->l_type = F_RDLCK; break; case LINUX_F_WRLCK: bsd_flock->l_type = F_WRLCK; break; case LINUX_F_UNLCK: bsd_flock->l_type = F_UNLCK; break; default: bsd_flock->l_type = -1; break; } bsd_flock->l_whence = linux_flock->l_whence; bsd_flock->l_start = (off_t)linux_flock->l_start; bsd_flock->l_len = (off_t)linux_flock->l_len; bsd_flock->l_pid = (pid_t)linux_flock->l_pid; bsd_flock->l_sysid = 0; } static void bsd_to_linux_flock(struct flock *bsd_flock, struct l_flock *linux_flock) { switch (bsd_flock->l_type) { case F_RDLCK: linux_flock->l_type = LINUX_F_RDLCK; break; case F_WRLCK: linux_flock->l_type = LINUX_F_WRLCK; break; case F_UNLCK: linux_flock->l_type = LINUX_F_UNLCK; break; } linux_flock->l_whence = bsd_flock->l_whence; linux_flock->l_start = (l_off_t)bsd_flock->l_start; linux_flock->l_len = (l_off_t)bsd_flock->l_len; linux_flock->l_pid = (l_pid_t)bsd_flock->l_pid; } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) struct l_flock64 { l_short l_type; l_short l_whence; l_loff_t l_start; l_loff_t l_len; l_pid_t l_pid; } #if defined(__amd64__) && defined(COMPAT_LINUX32) __packed #endif ; static void linux_to_bsd_flock64(struct l_flock64 *linux_flock, struct flock *bsd_flock) { switch (linux_flock->l_type) { case LINUX_F_RDLCK: bsd_flock->l_type = F_RDLCK; break; case LINUX_F_WRLCK: bsd_flock->l_type = F_WRLCK; break; case LINUX_F_UNLCK: bsd_flock->l_type = F_UNLCK; break; default: bsd_flock->l_type = -1; break; } bsd_flock->l_whence = linux_flock->l_whence; bsd_flock->l_start = (off_t)linux_flock->l_start; bsd_flock->l_len = (off_t)linux_flock->l_len; bsd_flock->l_pid = (pid_t)linux_flock->l_pid; bsd_flock->l_sysid = 0; } static void bsd_to_linux_flock64(struct flock *bsd_flock, struct l_flock64 *linux_flock) { switch (bsd_flock->l_type) { case F_RDLCK: linux_flock->l_type = LINUX_F_RDLCK; break; case F_WRLCK: linux_flock->l_type = LINUX_F_WRLCK; break; case F_UNLCK: linux_flock->l_type = LINUX_F_UNLCK; break; } linux_flock->l_whence = bsd_flock->l_whence; linux_flock->l_start = (l_loff_t)bsd_flock->l_start; linux_flock->l_len = (l_loff_t)bsd_flock->l_len; linux_flock->l_pid = (l_pid_t)bsd_flock->l_pid; } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ static int fcntl_common(struct thread *td, struct linux_fcntl_args *args) { struct l_flock linux_flock; struct flock bsd_flock; struct file *fp; long arg; int error, result; switch (args->cmd) { case LINUX_F_DUPFD: return (kern_fcntl(td, args->fd, F_DUPFD, args->arg)); case LINUX_F_GETFD: return (kern_fcntl(td, args->fd, F_GETFD, 0)); case LINUX_F_SETFD: return (kern_fcntl(td, args->fd, F_SETFD, args->arg)); case LINUX_F_GETFL: error = kern_fcntl(td, args->fd, F_GETFL, 0); result = td->td_retval[0]; td->td_retval[0] = 0; if (result & O_RDONLY) td->td_retval[0] |= LINUX_O_RDONLY; if (result & O_WRONLY) td->td_retval[0] |= LINUX_O_WRONLY; if (result & O_RDWR) td->td_retval[0] |= LINUX_O_RDWR; if (result & O_NDELAY) td->td_retval[0] |= LINUX_O_NONBLOCK; if (result & O_APPEND) td->td_retval[0] |= LINUX_O_APPEND; if (result & O_FSYNC) td->td_retval[0] |= LINUX_O_SYNC; if (result & O_ASYNC) td->td_retval[0] |= LINUX_FASYNC; #ifdef LINUX_O_NOFOLLOW if (result & O_NOFOLLOW) td->td_retval[0] |= LINUX_O_NOFOLLOW; #endif #ifdef LINUX_O_DIRECT if (result & O_DIRECT) td->td_retval[0] |= LINUX_O_DIRECT; #endif return (error); case LINUX_F_SETFL: arg = 0; if (args->arg & LINUX_O_NDELAY) arg |= O_NONBLOCK; if (args->arg & LINUX_O_APPEND) arg |= O_APPEND; if (args->arg & LINUX_O_SYNC) arg |= O_FSYNC; if (args->arg & LINUX_FASYNC) arg |= O_ASYNC; #ifdef LINUX_O_NOFOLLOW if (args->arg & LINUX_O_NOFOLLOW) arg |= O_NOFOLLOW; #endif #ifdef LINUX_O_DIRECT if (args->arg & LINUX_O_DIRECT) arg |= O_DIRECT; #endif return (kern_fcntl(td, args->fd, F_SETFL, arg)); case LINUX_F_GETLK: error = copyin((void *)args->arg, &linux_flock, sizeof(linux_flock)); if (error) return (error); linux_to_bsd_flock(&linux_flock, &bsd_flock); error = kern_fcntl(td, args->fd, F_GETLK, (intptr_t)&bsd_flock); if (error) return (error); bsd_to_linux_flock(&bsd_flock, &linux_flock); return (copyout(&linux_flock, (void *)args->arg, sizeof(linux_flock))); case LINUX_F_SETLK: error = copyin((void *)args->arg, &linux_flock, sizeof(linux_flock)); if (error) return (error); linux_to_bsd_flock(&linux_flock, &bsd_flock); return (kern_fcntl(td, args->fd, F_SETLK, (intptr_t)&bsd_flock)); case LINUX_F_SETLKW: error = copyin((void *)args->arg, &linux_flock, sizeof(linux_flock)); if (error) return (error); linux_to_bsd_flock(&linux_flock, &bsd_flock); return (kern_fcntl(td, args->fd, F_SETLKW, (intptr_t)&bsd_flock)); case LINUX_F_GETOWN: return (kern_fcntl(td, args->fd, F_GETOWN, 0)); case LINUX_F_SETOWN: /* * XXX some Linux applications depend on F_SETOWN having no * significant effect for pipes (SIGIO is not delivered for * pipes under Linux-2.2.35 at least). */ error = fget(td, args->fd, &cap_fcntl_rights, &fp); if (error) return (error); if (fp->f_type == DTYPE_PIPE) { fdrop(fp, td); return (EINVAL); } fdrop(fp, td); return (kern_fcntl(td, args->fd, F_SETOWN, args->arg)); case LINUX_F_DUPFD_CLOEXEC: return (kern_fcntl(td, args->fd, F_DUPFD_CLOEXEC, args->arg)); } return (EINVAL); } int linux_fcntl(struct thread *td, struct linux_fcntl_args *args) { return (fcntl_common(td, args)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_fcntl64(struct thread *td, struct linux_fcntl64_args *args) { struct l_flock64 linux_flock; struct flock bsd_flock; struct linux_fcntl_args fcntl_args; int error; switch (args->cmd) { case LINUX_F_GETLK64: error = copyin((void *)args->arg, &linux_flock, sizeof(linux_flock)); if (error) return (error); linux_to_bsd_flock64(&linux_flock, &bsd_flock); error = kern_fcntl(td, args->fd, F_GETLK, (intptr_t)&bsd_flock); if (error) return (error); bsd_to_linux_flock64(&bsd_flock, &linux_flock); return (copyout(&linux_flock, (void *)args->arg, sizeof(linux_flock))); case LINUX_F_SETLK64: error = copyin((void *)args->arg, &linux_flock, sizeof(linux_flock)); if (error) return (error); linux_to_bsd_flock64(&linux_flock, &bsd_flock); return (kern_fcntl(td, args->fd, F_SETLK, (intptr_t)&bsd_flock)); case LINUX_F_SETLKW64: error = copyin((void *)args->arg, &linux_flock, sizeof(linux_flock)); if (error) return (error); linux_to_bsd_flock64(&linux_flock, &bsd_flock); return (kern_fcntl(td, args->fd, F_SETLKW, (intptr_t)&bsd_flock)); } fcntl_args.fd = args->fd; fcntl_args.cmd = args->cmd; fcntl_args.arg = args->arg; return (fcntl_common(td, &fcntl_args)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ #ifdef LINUX_LEGACY_SYSCALLS int linux_chown(struct thread *td, struct linux_chown_args *args) { char *path; int error; LCONVPATHEXIST(td, args->path, &path); error = kern_fchownat(td, AT_FDCWD, path, UIO_SYSSPACE, args->uid, args->gid, 0); LFREEPATH(path); return (error); } #endif int linux_fchownat(struct thread *td, struct linux_fchownat_args *args) { char *path; int error, dfd, flag; if (args->flag & ~LINUX_AT_SYMLINK_NOFOLLOW) return (EINVAL); dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; LCONVPATHEXIST_AT(td, args->filename, &path, dfd); flag = (args->flag & LINUX_AT_SYMLINK_NOFOLLOW) == 0 ? 0 : AT_SYMLINK_NOFOLLOW; error = kern_fchownat(td, dfd, path, UIO_SYSSPACE, args->uid, args->gid, flag); LFREEPATH(path); return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_lchown(struct thread *td, struct linux_lchown_args *args) { char *path; int error; LCONVPATHEXIST(td, args->path, &path); error = kern_fchownat(td, AT_FDCWD, path, UIO_SYSSPACE, args->uid, args->gid, AT_SYMLINK_NOFOLLOW); LFREEPATH(path); return (error); } #endif static int convert_fadvice(int advice) { switch (advice) { case LINUX_POSIX_FADV_NORMAL: return (POSIX_FADV_NORMAL); case LINUX_POSIX_FADV_RANDOM: return (POSIX_FADV_RANDOM); case LINUX_POSIX_FADV_SEQUENTIAL: return (POSIX_FADV_SEQUENTIAL); case LINUX_POSIX_FADV_WILLNEED: return (POSIX_FADV_WILLNEED); case LINUX_POSIX_FADV_DONTNEED: return (POSIX_FADV_DONTNEED); case LINUX_POSIX_FADV_NOREUSE: return (POSIX_FADV_NOREUSE); default: return (-1); } } int linux_fadvise64(struct thread *td, struct linux_fadvise64_args *args) { + off_t offset; int advice; +#if defined(__amd64__) && defined(COMPAT_LINUX32) + offset = PAIR32TO64(off_t, args->offset); +#else + offset = args->offset; +#endif + advice = convert_fadvice(args->advice); if (advice == -1) return (EINVAL); - return (kern_posix_fadvise(td, args->fd, args->offset, args->len, - advice)); + return (kern_posix_fadvise(td, args->fd, offset, args->len, advice)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_fadvise64_64(struct thread *td, struct linux_fadvise64_64_args *args) { + off_t len, offset; int advice; +#if defined(__amd64__) && defined(COMPAT_LINUX32) + len = PAIR32TO64(off_t, args->len); + offset = PAIR32TO64(off_t, args->offset); +#else + len = args->len; + offset = args->offset; +#endif + advice = convert_fadvice(args->advice); if (advice == -1) return (EINVAL); - return (kern_posix_fadvise(td, args->fd, args->offset, args->len, - advice)); + return (kern_posix_fadvise(td, args->fd, offset, len, advice)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ #ifdef LINUX_LEGACY_SYSCALLS int linux_pipe(struct thread *td, struct linux_pipe_args *args) { int fildes[2]; int error; error = kern_pipe(td, fildes, 0, NULL, NULL); if (error != 0) return (error); error = copyout(fildes, args->pipefds, sizeof(fildes)); if (error != 0) { (void)kern_close(td, fildes[0]); (void)kern_close(td, fildes[1]); } return (error); } #endif int linux_pipe2(struct thread *td, struct linux_pipe2_args *args) { int fildes[2]; int error, flags; if ((args->flags & ~(LINUX_O_NONBLOCK | LINUX_O_CLOEXEC)) != 0) return (EINVAL); flags = 0; if ((args->flags & LINUX_O_NONBLOCK) != 0) flags |= O_NONBLOCK; if ((args->flags & LINUX_O_CLOEXEC) != 0) flags |= O_CLOEXEC; error = kern_pipe(td, fildes, flags, NULL, NULL); if (error != 0) return (error); error = copyout(fildes, args->pipefds, sizeof(fildes)); if (error != 0) { (void)kern_close(td, fildes[0]); (void)kern_close(td, fildes[1]); } return (error); } int linux_dup3(struct thread *td, struct linux_dup3_args *args) { int cmd; intptr_t newfd; if (args->oldfd == args->newfd) return (EINVAL); if ((args->flags & ~LINUX_O_CLOEXEC) != 0) return (EINVAL); if (args->flags & LINUX_O_CLOEXEC) cmd = F_DUP2FD_CLOEXEC; else cmd = F_DUP2FD; newfd = args->newfd; return (kern_fcntl(td, args->oldfd, cmd, newfd)); } int linux_fallocate(struct thread *td, struct linux_fallocate_args *args) { + off_t len, offset; /* * We emulate only posix_fallocate system call for which * mode should be 0. */ if (args->mode != 0) return (ENOSYS); - return (kern_posix_fallocate(td, args->fd, args->offset, - args->len)); +#if defined(__amd64__) && defined(COMPAT_LINUX32) + len = PAIR32TO64(off_t, args->len); + offset = PAIR32TO64(off_t, args->offset); +#else + len = args->len; + offset = args->offset; +#endif + + return (kern_posix_fallocate(td, args->fd, offset, len)); } int linux_copy_file_range(struct thread *td, struct linux_copy_file_range_args *args) { l_loff_t inoff, outoff, *inoffp, *outoffp; int error, flags; /* * copy_file_range(2) on Linux doesn't define any flags (yet), so is * the native implementation. Enforce it. */ if (args->flags != 0) { linux_msg(td, "copy_file_range unsupported flags 0x%x", args->flags); return (EINVAL); } flags = 0; inoffp = outoffp = NULL; if (args->off_in != NULL) { error = copyin(args->off_in, &inoff, sizeof(l_loff_t)); if (error != 0) return (error); inoffp = &inoff; } if (args->off_out != NULL) { error = copyin(args->off_out, &outoff, sizeof(l_loff_t)); if (error != 0) return (error); outoffp = &outoff; } error = kern_copy_file_range(td, args->fd_in, inoffp, args->fd_out, outoffp, args->len, flags); if (error == 0 && args->off_in != NULL) error = copyout(inoffp, args->off_in, sizeof(l_loff_t)); if (error == 0 && args->off_out != NULL) error = copyout(outoffp, args->off_out, sizeof(l_loff_t)); return (error); } Index: head/sys/i386/linux/linux_machdep.c =================================================================== --- head/sys/i386/linux/linux_machdep.c (revision 356944) +++ head/sys/i386/linux/linux_machdep.c (revision 356945) @@ -1,737 +1,730 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* needed for pcb definition in linux_set_thread_area */ #include "opt_posix.h" extern struct sysentvec elf32_freebsd_sysvec; /* defined in i386/i386/elf_machdep.c */ struct l_descriptor { l_uint entry_number; l_ulong base_addr; l_uint limit; l_uint seg_32bit:1; l_uint contents:2; l_uint read_exec_only:1; l_uint limit_in_pages:1; l_uint seg_not_present:1; l_uint useable:1; }; struct l_old_select_argv { l_int nfds; l_fd_set *readfds; l_fd_set *writefds; l_fd_set *exceptfds; struct l_timeval *timeout; }; int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; char *newpath; int error; LCONVPATHEXIST(td, args->path, &newpath); error = exec_copyin_args(&eargs, newpath, UIO_SYSSPACE, args->argp, args->envp); free(newpath, M_TEMP); if (error == 0) error = linux_common_execve(td, &eargs); return (error); } struct l_ipc_kludge { struct l_msgbuf *msgp; l_long msgtyp; }; int linux_ipc(struct thread *td, struct linux_ipc_args *args) { switch (args->what & 0xFFFF) { case LINUX_SEMOP: { struct linux_semop_args a; a.semid = args->arg1; a.tsops = PTRIN(args->ptr); a.nsops = args->arg2; return (linux_semop(td, &a)); } case LINUX_SEMGET: { struct linux_semget_args a; a.key = args->arg1; a.nsems = args->arg2; a.semflg = args->arg3; return (linux_semget(td, &a)); } case LINUX_SEMCTL: { struct linux_semctl_args a; int error; a.semid = args->arg1; a.semnum = args->arg2; a.cmd = args->arg3; error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg)); if (error) return (error); return (linux_semctl(td, &a)); } case LINUX_MSGSND: { struct linux_msgsnd_args a; a.msqid = args->arg1; a.msgp = PTRIN(args->ptr); a.msgsz = args->arg2; a.msgflg = args->arg3; return (linux_msgsnd(td, &a)); } case LINUX_MSGRCV: { struct linux_msgrcv_args a; a.msqid = args->arg1; a.msgsz = args->arg2; a.msgflg = args->arg3; if ((args->what >> 16) == 0) { struct l_ipc_kludge tmp; int error; if (args->ptr == 0) return (EINVAL); error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp)); if (error) return (error); a.msgp = PTRIN(tmp.msgp); a.msgtyp = tmp.msgtyp; } else { a.msgp = PTRIN(args->ptr); a.msgtyp = args->arg5; } return (linux_msgrcv(td, &a)); } case LINUX_MSGGET: { struct linux_msgget_args a; a.key = args->arg1; a.msgflg = args->arg2; return (linux_msgget(td, &a)); } case LINUX_MSGCTL: { struct linux_msgctl_args a; a.msqid = args->arg1; a.cmd = args->arg2; a.buf = PTRIN(args->ptr); return (linux_msgctl(td, &a)); } case LINUX_SHMAT: { struct linux_shmat_args a; l_uintptr_t addr; int error; a.shmid = args->arg1; a.shmaddr = PTRIN(args->ptr); a.shmflg = args->arg2; error = linux_shmat(td, &a); if (error != 0) return (error); addr = td->td_retval[0]; error = copyout(&addr, PTRIN(args->arg3), sizeof(addr)); td->td_retval[0] = 0; return (error); } case LINUX_SHMDT: { struct linux_shmdt_args a; a.shmaddr = PTRIN(args->ptr); return (linux_shmdt(td, &a)); } case LINUX_SHMGET: { struct linux_shmget_args a; a.key = args->arg1; a.size = args->arg2; a.shmflg = args->arg3; return (linux_shmget(td, &a)); } case LINUX_SHMCTL: { struct linux_shmctl_args a; a.shmid = args->arg1; a.cmd = args->arg2; a.buf = PTRIN(args->ptr); return (linux_shmctl(td, &a)); } default: break; } return (EINVAL); } int linux_old_select(struct thread *td, struct linux_old_select_args *args) { struct l_old_select_argv linux_args; struct linux_select_args newsel; int error; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = linux_args.readfds; newsel.writefds = linux_args.writefds; newsel.exceptfds = linux_args.exceptfds; newsel.timeout = linux_args.timeout; return (linux_select(td, &newsel)); } int linux_set_cloned_tls(struct thread *td, void *desc) { struct segment_descriptor sd; struct l_user_desc info; int idx, error; int a[2]; error = copyin(desc, &info, sizeof(struct l_user_desc)); if (error) { linux_msg(td, "set_cloned_tls copyin failed!"); } else { idx = info.entry_number; /* * looks like we're getting the idx we returned * in the set_thread_area() syscall */ if (idx != 6 && idx != 3) { linux_msg(td, "set_cloned_tls resetting idx!"); idx = 3; } /* this doesnt happen in practice */ if (idx == 6) { /* we might copy out the entry_number as 3 */ info.entry_number = 3; error = copyout(&info, desc, sizeof(struct l_user_desc)); if (error) linux_msg(td, "set_cloned_tls copyout failed!"); } a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); memcpy(&sd, &a, sizeof(a)); /* set %gs */ td->td_pcb->pcb_gsd = sd; td->td_pcb->pcb_gs = GSEL(GUGS_SEL, SEL_UPL); } return (error); } int linux_set_upcall_kse(struct thread *td, register_t stack) { if (stack) td->td_frame->tf_esp = stack; /* * The newly created Linux thread returns * to the user space by the same path that a parent do. */ td->td_frame->tf_eax = 0; return (0); } int linux_mmap2(struct thread *td, struct linux_mmap2_args *args) { return (linux_mmap_common(td, args->addr, args->len, args->prot, args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff * PAGE_SIZE)); } int linux_mmap(struct thread *td, struct linux_mmap_args *args) { int error; struct l_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); return (linux_mmap_common(td, linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, (uint32_t)linux_args.pgoff)); } int linux_mprotect(struct thread *td, struct linux_mprotect_args *uap) { return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot)); } int linux_ioperm(struct thread *td, struct linux_ioperm_args *args) { int error; struct i386_ioperm_args iia; iia.start = args->start; iia.length = args->length; iia.enable = args->enable; error = i386_set_ioperm(td, &iia); return (error); } int linux_iopl(struct thread *td, struct linux_iopl_args *args) { int error; if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = priv_check(td, PRIV_IO)) != 0) return (error); if ((error = securelevel_gt(td->td_ucred, 0)) != 0) return (error); td->td_frame->tf_eflags = (td->td_frame->tf_eflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int linux_modify_ldt(struct thread *td, struct linux_modify_ldt_args *uap) { int error; struct i386_ldt_args ldt; struct l_descriptor ld; union descriptor desc; int size, written; switch (uap->func) { case 0x00: /* read_ldt */ ldt.start = 0; ldt.descs = uap->ptr; ldt.num = uap->bytecount / sizeof(union descriptor); error = i386_get_ldt(td, &ldt); td->td_retval[0] *= sizeof(union descriptor); break; case 0x02: /* read_default_ldt = 0 */ size = 5*sizeof(struct l_desc_struct); if (size > uap->bytecount) size = uap->bytecount; for (written = error = 0; written < size && error == 0; written++) error = subyte((char *)uap->ptr + written, 0); td->td_retval[0] = written; break; case 0x01: /* write_ldt */ case 0x11: /* write_ldt */ if (uap->bytecount != sizeof(ld)) return (EINVAL); error = copyin(uap->ptr, &ld, sizeof(ld)); if (error) return (error); ldt.start = ld.entry_number; ldt.descs = &desc; ldt.num = 1; desc.sd.sd_lolimit = (ld.limit & 0x0000ffff); desc.sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; desc.sd.sd_lobase = (ld.base_addr & 0x00ffffff); desc.sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; desc.sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | (ld.contents << 2); desc.sd.sd_dpl = 3; desc.sd.sd_p = (ld.seg_not_present ^ 1); desc.sd.sd_xx = 0; desc.sd.sd_def32 = ld.seg_32bit; desc.sd.sd_gran = ld.limit_in_pages; error = i386_set_ldt(td, &ldt, &desc); break; default: error = ENOSYS; break; } if (error == EOPNOTSUPP) { linux_msg(td, "modify_ldt needs kernel option USER_LDT"); error = ENOSYS; } return (error); } int linux_sigaction(struct thread *td, struct linux_sigaction_args *args) { l_osigaction_t osa; l_sigaction_t act, oact; int error; if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(l_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__mask = osa.lsa_mask; } error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__mask; error = copyout(&osa, args->osa, sizeof(l_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We dont use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args) { sigset_t sigmask; l_sigset_t mask; LINUX_SIGEMPTYSET(mask); mask.__mask = args->mask; linux_to_bsd_sigset(&mask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap) { l_sigset_t lmask; sigset_t sigmask; int error; if (uap->sigsetsize != sizeof(l_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(l_sigset_t)); if (error) return (error); linux_to_bsd_sigset(&lmask, &sigmask); return (kern_sigsuspend(td, sigmask)); } int linux_pause(struct thread *td, struct linux_pause_args *args) { struct proc *p = td->td_proc; sigset_t sigmask; PROC_LOCK(p); sigmask = td->td_sigmask; PROC_UNLOCK(p); return (kern_sigsuspend(td, sigmask)); } int linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap) { stack_t ss, oss; l_stack_t lss; int error; if (uap->uss != NULL) { error = copyin(uap->uss, &lss, sizeof(l_stack_t)); if (error) return (error); ss.ss_sp = lss.ss_sp; ss.ss_size = lss.ss_size; ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL, (uap->uoss != NULL) ? &oss : NULL); if (!error && uap->uoss != NULL) { lss.ss_sp = oss.ss_sp; lss.ss_size = oss.ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags); error = copyout(&lss, uap->uoss, sizeof(l_stack_t)); } return (error); } int -linux_ftruncate64(struct thread *td, struct linux_ftruncate64_args *args) -{ - - return (kern_ftruncate(td, args->fd, args->length)); -} - -int linux_set_thread_area(struct thread *td, struct linux_set_thread_area_args *args) { struct l_user_desc info; int error; int idx; int a[2]; struct segment_descriptor sd; error = copyin(args->desc, &info, sizeof(struct l_user_desc)); if (error) return (error); idx = info.entry_number; /* * Semantics of Linux version: every thread in the system has array of * 3 tls descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown. This * syscall loads one of the selected tls decriptors with a value and * also loads GDT descriptors 6, 7 and 8 with the content of the * per-thread descriptors. * * Semantics of FreeBSD version: I think we can ignore that Linux has 3 * per-thread descriptors and use just the 1st one. The tls_array[] * is used only in set/get-thread_area() syscalls and for loading the * GDT descriptors. In FreeBSD we use just one GDT descriptor for TLS * so we will load just one. * * XXX: this doesn't work when a user space process tries to use more * than 1 TLS segment. Comment in the Linux sources says wine might do * this. */ /* * we support just GLIBC TLS now * we should let 3 proceed as well because we use this segment so * if code does two subsequent calls it should succeed */ if (idx != 6 && idx != -1 && idx != 3) return (EINVAL); /* * we have to copy out the GDT entry we use * FreeBSD uses GDT entry #3 for storing %gs so load that * * XXX: what if a user space program doesn't check this value and tries * to use 6, 7 or 8? */ idx = info.entry_number = 3; error = copyout(&info, args->desc, sizeof(struct l_user_desc)); if (error) return (error); if (LINUX_LDT_empty(&info)) { a[0] = 0; a[1] = 0; } else { a[0] = LINUX_LDT_entry_a(&info); a[1] = LINUX_LDT_entry_b(&info); } memcpy(&sd, &a, sizeof(a)); /* this is taken from i386 version of cpu_set_user_tls() */ critical_enter(); /* set %gs */ td->td_pcb->pcb_gsd = sd; PCPU_GET(fsgs_gdt)[1] = sd; load_gs(GSEL(GUGS_SEL, SEL_UPL)); critical_exit(); return (0); } int linux_get_thread_area(struct thread *td, struct linux_get_thread_area_args *args) { struct l_user_desc info; int error; int idx; struct l_desc_struct desc; struct segment_descriptor sd; error = copyin(args->desc, &info, sizeof(struct l_user_desc)); if (error) return (error); idx = info.entry_number; /* XXX: I am not sure if we want 3 to be allowed too. */ if (idx != 6 && idx != 3) return (EINVAL); idx = 3; memset(&info, 0, sizeof(info)); sd = PCPU_GET(fsgs_gdt)[1]; memcpy(&desc, &sd, sizeof(desc)); info.entry_number = idx; info.base_addr = LINUX_GET_BASE(&desc); info.limit = LINUX_GET_LIMIT(&desc); info.seg_32bit = LINUX_GET_32BIT(&desc); info.contents = LINUX_GET_CONTENTS(&desc); info.read_exec_only = !LINUX_GET_WRITABLE(&desc); info.limit_in_pages = LINUX_GET_LIMIT_PAGES(&desc); info.seg_not_present = !LINUX_GET_PRESENT(&desc); info.useable = LINUX_GET_USEABLE(&desc); error = copyout(&info, args->desc, sizeof(struct l_user_desc)); if (error) return (EFAULT); return (0); } /* XXX: this wont work with module - convert it */ int linux_mq_open(struct thread *td, struct linux_mq_open_args *args) { #ifdef P1003_1B_MQUEUE return (sys_kmq_open(td, (struct kmq_open_args *)args)); #else return (ENOSYS); #endif } int linux_mq_unlink(struct thread *td, struct linux_mq_unlink_args *args) { #ifdef P1003_1B_MQUEUE return (sys_kmq_unlink(td, (struct kmq_unlink_args *)args)); #else return (ENOSYS); #endif } int linux_mq_timedsend(struct thread *td, struct linux_mq_timedsend_args *args) { #ifdef P1003_1B_MQUEUE return (sys_kmq_timedsend(td, (struct kmq_timedsend_args *)args)); #else return (ENOSYS); #endif } int linux_mq_timedreceive(struct thread *td, struct linux_mq_timedreceive_args *args) { #ifdef P1003_1B_MQUEUE return (sys_kmq_timedreceive(td, (struct kmq_timedreceive_args *)args)); #else return (ENOSYS); #endif } int linux_mq_notify(struct thread *td, struct linux_mq_notify_args *args) { #ifdef P1003_1B_MQUEUE return (sys_kmq_notify(td, (struct kmq_notify_args *)args)); #else return (ENOSYS); #endif } int linux_mq_getsetattr(struct thread *td, struct linux_mq_getsetattr_args *args) { #ifdef P1003_1B_MQUEUE return (sys_kmq_setattr(td, (struct kmq_setattr_args *)args)); #else return (ENOSYS); #endif }