Index: head/sys/vm/vm_fault.c =================================================================== --- head/sys/vm/vm_fault.c (revision 356935) +++ head/sys/vm/vm_fault.c (revision 356936) @@ -1,1913 +1,1931 @@ /*- * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * Copyright (c) 1994 John S. Dyson * All rights reserved. * Copyright (c) 1994 David Greenman * All rights reserved. * * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Page fault handling module. */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #include #include #define PFBAK 4 #define PFFOR 4 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) #define VM_FAULT_DONTNEED_MIN 1048576 struct faultstate { + vm_offset_t vaddr; vm_page_t m; vm_page_t m_cow; vm_object_t object; vm_pindex_t pindex; vm_page_t first_m; vm_object_t first_object; vm_pindex_t first_pindex; vm_map_t map; vm_map_entry_t entry; int map_generation; bool lookup_still_valid; struct vnode *vp; }; static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead); static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, int backward, int forward, bool obj_locked); static int vm_pfault_oom_attempts = 3; SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, &vm_pfault_oom_attempts, 0, "Number of page allocation attempts in page fault handler before it " "triggers OOM handling"); static int vm_pfault_oom_wait = 10; SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, &vm_pfault_oom_wait, 0, "Number of seconds to wait for free pages before retrying " "the page fault handler"); static inline void fault_page_release(vm_page_t *mp) { vm_page_t m; m = *mp; if (m != NULL) { /* * We are likely to loop around again and attempt to busy * this page. Deactivating it leaves it available for * pageout while optimizing fault restarts. */ vm_page_deactivate(m); vm_page_xunbusy(m); *mp = NULL; } } static inline void fault_page_free(vm_page_t *mp) { vm_page_t m; m = *mp; if (m != NULL) { VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_wired(m)) vm_page_free(m); else vm_page_xunbusy(m); *mp = NULL; } } static inline void unlock_map(struct faultstate *fs) { if (fs->lookup_still_valid) { vm_map_lookup_done(fs->map, fs->entry); fs->lookup_still_valid = false; } } static void unlock_vp(struct faultstate *fs) { if (fs->vp != NULL) { vput(fs->vp); fs->vp = NULL; } } static void fault_deallocate(struct faultstate *fs) { fault_page_release(&fs->m_cow); fault_page_release(&fs->m); vm_object_pip_wakeup(fs->object); if (fs->object != fs->first_object) { VM_OBJECT_WLOCK(fs->first_object); fault_page_free(&fs->first_m); VM_OBJECT_WUNLOCK(fs->first_object); vm_object_pip_wakeup(fs->first_object); } vm_object_deallocate(fs->first_object); unlock_map(fs); unlock_vp(fs); } static void unlock_and_deallocate(struct faultstate *fs) { VM_OBJECT_WUNLOCK(fs->object); fault_deallocate(fs); } static void vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, vm_prot_t fault_type, int fault_flags) { bool need_dirty; if (((prot & VM_PROT_WRITE) == 0 && (fault_flags & VM_FAULT_DIRTY) == 0) || (m->oflags & VPO_UNMANAGED) != 0) return; VM_PAGE_OBJECT_BUSY_ASSERT(m); need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && (fault_flags & VM_FAULT_WIRE) == 0) || (fault_flags & VM_FAULT_DIRTY) != 0; vm_object_set_writeable_dirty(m->object); /* * If the fault is a write, we know that this page is being * written NOW so dirty it explicitly to save on * pmap_is_modified() calls later. * * Also, since the page is now dirty, we can possibly tell * the pager to release any swap backing the page. */ if (need_dirty && vm_page_set_dirty(m) == 0) { /* * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC * if the page is already dirty to prevent data written with * the expectation of being synced from not being synced. * Likewise if this entry does not request NOSYNC then make * sure the page isn't marked NOSYNC. Applications sharing * data should use the same flags to avoid ping ponging. */ if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) vm_page_aflag_set(m, PGA_NOSYNC); else vm_page_aflag_clear(m, PGA_NOSYNC); } } /* * Unlocks fs.first_object and fs.map on success. */ static int vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) { vm_page_t m, m_map; #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ VM_NRESERVLEVEL > 0 vm_page_t m_super; int flags; #endif int psind, rv; MPASS(fs->vp == NULL); vm_object_busy(fs->first_object); m = vm_page_lookup(fs->first_object, fs->first_pindex); /* A busy page can be mapped for read|execute access. */ if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)) || !vm_page_all_valid(m)) { rv = KERN_FAILURE; goto out; } m_map = m; psind = 0; #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ VM_NRESERVLEVEL > 0 if ((m->flags & PG_FICTITIOUS) == 0 && (m_super = vm_reserv_to_superpage(m)) != NULL && rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & (pagesizes[m_super->psind] - 1)) && !wired && pmap_ps_enabled(fs->map->pmap)) { flags = PS_ALL_VALID; if ((prot & VM_PROT_WRITE) != 0) { /* * Create a superpage mapping allowing write access * only if none of the constituent pages are busy and * all of them are already dirty (except possibly for * the page that was faulted on). */ flags |= PS_NONE_BUSY; if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) flags |= PS_ALL_DIRTY; } if (vm_page_ps_test(m_super, flags, m)) { m_map = m_super; psind = m_super->psind; vaddr = rounddown2(vaddr, pagesizes[psind]); /* Preset the modified bit for dirty superpages. */ if ((flags & PS_ALL_DIRTY) != 0) fault_type |= VM_PROT_WRITE; } } #endif rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); if (rv != KERN_SUCCESS) goto out; if (m_hold != NULL) { *m_hold = m; vm_page_wire(m); } if (psind == 0 && !wired) vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); VM_OBJECT_RUNLOCK(fs->first_object); vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags); vm_map_lookup_done(fs->map, fs->entry); curthread->td_ru.ru_minflt++; out: vm_object_unbusy(fs->first_object); return (rv); } static void vm_fault_restore_map_lock(struct faultstate *fs) { VM_OBJECT_ASSERT_WLOCKED(fs->first_object); MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); if (!vm_map_trylock_read(fs->map)) { VM_OBJECT_WUNLOCK(fs->first_object); vm_map_lock_read(fs->map); VM_OBJECT_WLOCK(fs->first_object); } fs->lookup_still_valid = true; } static void vm_fault_populate_check_page(vm_page_t m) { /* * Check each page to ensure that the pager is obeying the * interface: the page must be installed in the object, fully * valid, and exclusively busied. */ MPASS(m != NULL); MPASS(vm_page_all_valid(m)); MPASS(vm_page_xbusied(m)); } static void vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, vm_pindex_t last) { vm_page_t m; vm_pindex_t pidx; VM_OBJECT_ASSERT_WLOCKED(object); MPASS(first <= last); for (pidx = first, m = vm_page_lookup(object, pidx); pidx <= last; pidx++, m = vm_page_next(m)) { vm_fault_populate_check_page(m); vm_page_deactivate(m); vm_page_xunbusy(m); } } static int vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) { vm_offset_t vaddr; vm_page_t m; vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; int i, npages, psind, rv; MPASS(fs->object == fs->first_object); VM_OBJECT_ASSERT_WLOCKED(fs->first_object); MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); MPASS(fs->first_object->backing_object == NULL); MPASS(fs->lookup_still_valid); pager_first = OFF_TO_IDX(fs->entry->offset); pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; unlock_map(fs); unlock_vp(fs); /* * Call the pager (driver) populate() method. * * There is no guarantee that the method will be called again * if the current fault is for read, and a future fault is * for write. Report the entry's maximum allowed protection * to the driver. */ rv = vm_pager_populate(fs->first_object, fs->first_pindex, fault_type, fs->entry->max_protection, &pager_first, &pager_last); VM_OBJECT_ASSERT_WLOCKED(fs->first_object); if (rv == VM_PAGER_BAD) { /* * VM_PAGER_BAD is the backdoor for a pager to request * normal fault handling. */ vm_fault_restore_map_lock(fs); if (fs->map->timestamp != fs->map_generation) return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ return (KERN_NOT_RECEIVER); } if (rv != VM_PAGER_OK) return (KERN_FAILURE); /* AKA SIGSEGV */ /* Ensure that the driver is obeying the interface. */ MPASS(pager_first <= pager_last); MPASS(fs->first_pindex <= pager_last); MPASS(fs->first_pindex >= pager_first); MPASS(pager_last < fs->first_object->size); vm_fault_restore_map_lock(fs); if (fs->map->timestamp != fs->map_generation) { vm_fault_populate_cleanup(fs->first_object, pager_first, pager_last); return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ } /* * The map is unchanged after our last unlock. Process the fault. * * The range [pager_first, pager_last] that is given to the * pager is only a hint. The pager may populate any range * within the object that includes the requested page index. * In case the pager expanded the range, clip it to fit into * the map entry. */ map_first = OFF_TO_IDX(fs->entry->offset); if (map_first > pager_first) { vm_fault_populate_cleanup(fs->first_object, pager_first, map_first - 1); pager_first = map_first; } map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; if (map_last < pager_last) { vm_fault_populate_cleanup(fs->first_object, map_last + 1, pager_last); pager_last = map_last; } for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); pidx <= pager_last; pidx += npages, m = vm_page_next(&m[npages - 1])) { vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) psind = m->psind; if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || !pmap_ps_enabled(fs->map->pmap) || wired)) psind = 0; #else psind = 0; #endif npages = atop(pagesizes[psind]); for (i = 0; i < npages; i++) { vm_fault_populate_check_page(&m[i]); vm_fault_dirty(fs->entry, &m[i], prot, fault_type, fault_flags); } VM_OBJECT_WUNLOCK(fs->first_object); rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | (wired ? PMAP_ENTER_WIRED : 0), psind); #if defined(__amd64__) if (psind > 0 && rv == KERN_FAILURE) { for (i = 0; i < npages; i++) { rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), &m[i], prot, fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); MPASS(rv == KERN_SUCCESS); } } #else MPASS(rv == KERN_SUCCESS); #endif VM_OBJECT_WLOCK(fs->first_object); for (i = 0; i < npages; i++) { if ((fault_flags & VM_FAULT_WIRE) != 0) vm_page_wire(&m[i]); else vm_page_activate(&m[i]); if (m_hold != NULL && m[i].pindex == fs->first_pindex) { *m_hold = &m[i]; vm_page_wire(&m[i]); } vm_page_xunbusy(&m[i]); } } curthread->td_ru.ru_majflt++; return (KERN_SUCCESS); } static int prot_fault_translation; SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, &prot_fault_translation, 0, "Control signal to deliver on protection fault"); /* compat definition to keep common code for signal translation */ #define UCODE_PAGEFLT 12 #ifdef T_PAGEFLT _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); #endif /* * vm_fault_trap: * * Handle a page fault occurring at the given address, * requiring the given permissions, in the map specified. * If successful, the page is inserted into the * associated physical map. * * NOTE: the given address should be truncated to the * proper page address. * * KERN_SUCCESS is returned if the page fault is handled; otherwise, * a standard error specifying why the fault is fatal is returned. * * The map in question must be referenced, and remains so. * Caller may hold no locks. */ int vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags, int *signo, int *ucode) { int result; MPASS(signo == NULL || ucode != NULL); #ifdef KTRACE if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) ktrfault(vaddr, fault_type); #endif result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, NULL); KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || result == KERN_INVALID_ADDRESS || result == KERN_RESOURCE_SHORTAGE || result == KERN_PROTECTION_FAILURE || result == KERN_OUT_OF_BOUNDS, ("Unexpected Mach error %d from vm_fault()", result)); #ifdef KTRACE if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) ktrfaultend(result); #endif if (result != KERN_SUCCESS && signo != NULL) { switch (result) { case KERN_FAILURE: case KERN_INVALID_ADDRESS: *signo = SIGSEGV; *ucode = SEGV_MAPERR; break; case KERN_RESOURCE_SHORTAGE: *signo = SIGBUS; *ucode = BUS_OOMERR; break; case KERN_OUT_OF_BOUNDS: *signo = SIGBUS; *ucode = BUS_OBJERR; break; case KERN_PROTECTION_FAILURE: if (prot_fault_translation == 0) { /* * Autodetect. This check also covers * the images without the ABI-tag ELF * note. */ if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && curproc->p_osrel >= P_OSREL_SIGSEGV) { *signo = SIGSEGV; *ucode = SEGV_ACCERR; } else { *signo = SIGBUS; *ucode = UCODE_PAGEFLT; } } else if (prot_fault_translation == 1) { /* Always compat mode. */ *signo = SIGBUS; *ucode = UCODE_PAGEFLT; } else { /* Always SIGSEGV mode. */ *signo = SIGSEGV; *ucode = SEGV_ACCERR; } break; default: KASSERT(0, ("Unexpected Mach error %d from vm_fault()", result)); break; } } return (result); } static int vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) { struct vnode *vp; int error, locked; if (fs->object->type != OBJT_VNODE) return (KERN_SUCCESS); vp = fs->object->handle; if (vp == fs->vp) { ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); return (KERN_SUCCESS); } /* * Perform an unlock in case the desired vnode changed while * the map was unlocked during a retry. */ unlock_vp(fs); locked = VOP_ISLOCKED(vp); if (locked != LK_EXCLUSIVE) locked = LK_SHARED; /* * We must not sleep acquiring the vnode lock while we have * the page exclusive busied or the object's * paging-in-progress count incremented. Otherwise, we could * deadlock. */ error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT, curthread); if (error == 0) { fs->vp = vp; return (KERN_SUCCESS); } vhold(vp); if (objlocked) unlock_and_deallocate(fs); else fault_deallocate(fs); error = vget(vp, locked | LK_RETRY | LK_CANRECURSE, curthread); vdrop(vp); fs->vp = vp; KASSERT(error == 0, ("vm_fault: vget failed %d", error)); return (KERN_RESOURCE_SHORTAGE); } /* + * Calculate the desired readahead. Handle drop-behind. + * + * Returns the number of readahead blocks to pass to the pager. + */ +static int +vm_fault_readahead(struct faultstate *fs) +{ + int era, nera; + u_char behavior; + + KASSERT(fs->lookup_still_valid, ("map unlocked")); + era = fs->entry->read_ahead; + behavior = vm_map_entry_behavior(fs->entry); + if (behavior == MAP_ENTRY_BEHAV_RANDOM) { + nera = 0; + } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { + nera = VM_FAULT_READ_AHEAD_MAX; + if (fs->vaddr == fs->entry->next_read) + vm_fault_dontneed(fs, fs->vaddr, nera); + } else if (fs->vaddr == fs->entry->next_read) { + /* + * This is a sequential fault. Arithmetically + * increase the requested number of pages in + * the read-ahead window. The requested + * number of pages is "# of sequential faults + * x (read ahead min + 1) + read ahead min" + */ + nera = VM_FAULT_READ_AHEAD_MIN; + if (era > 0) { + nera += era + 1; + if (nera > VM_FAULT_READ_AHEAD_MAX) + nera = VM_FAULT_READ_AHEAD_MAX; + } + if (era == VM_FAULT_READ_AHEAD_MAX) + vm_fault_dontneed(fs, fs->vaddr, nera); + } else { + /* + * This is a non-sequential fault. + */ + nera = 0; + } + if (era != nera) { + /* + * A read lock on the map suffices to update + * the read ahead count safely. + */ + fs->entry->read_ahead = nera; + } + + return (nera); +} + +/* * Wait/Retry if the page is busy. We have to do this if the page is * either exclusive or shared busy because the vm_pager may be using * read busy for pageouts (and even pageins if it is the vnode pager), * and we could end up trying to pagein and pageout the same page * simultaneously. * * We can theoretically allow the busy case on a read fault if the page * is marked valid, but since such pages are typically already pmap'd, * putting that special case in might be more effort then it is worth. * We cannot under any circumstances mess around with a shared busied * page except, perhaps, to pmap it. */ static void vm_fault_busy_sleep(struct faultstate *fs) { /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_aflag_set(fs->m, PGA_REFERENCED); if (fs->object != fs->first_object) { fault_page_release(&fs->first_m); vm_object_pip_wakeup(fs->first_object); } vm_object_pip_wakeup(fs->object); unlock_map(fs); if (fs->m == vm_page_lookup(fs->object, fs->pindex)) vm_page_busy_sleep(fs->m, "vmpfw", false); else VM_OBJECT_WUNLOCK(fs->object); VM_CNT_INC(v_intrans); vm_object_deallocate(fs->first_object); } int vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags, vm_page_t *m_hold) { struct faultstate fs; struct domainset *dset; vm_object_t next_object, retry_object; vm_offset_t e_end, e_start; vm_pindex_t retry_pindex; vm_prot_t prot, retry_prot; - int ahead, alloc_req, behind, cluster_offset, era, faultcount; + int ahead, alloc_req, behind, cluster_offset, faultcount; int nera, oom, result, rv; u_char behavior; boolean_t wired; /* Passed by reference. */ bool dead, hardfault, is_first_object_locked; VM_CNT_INC(v_vm_faults); if ((curthread->td_pflags & TDP_NOFAULTING) != 0) return (KERN_PROTECTION_FAILURE); fs.vp = NULL; + fs.vaddr = vaddr; faultcount = 0; nera = -1; hardfault = false; RetryFault: oom = 0; RetryFault_oom: /* * Find the backing store object and offset into it to begin the * search. */ fs.map = map; result = vm_map_lookup(&fs.map, vaddr, fault_type | VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired); if (result != KERN_SUCCESS) { unlock_vp(&fs); return (result); } fs.map_generation = fs.map->timestamp; if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { panic("%s: fault on nofault entry, addr: %#lx", __func__, (u_long)vaddr); } if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && fs.entry->wiring_thread != curthread) { vm_map_unlock_read(fs.map); vm_map_lock(fs.map); if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { unlock_vp(&fs); fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; vm_map_unlock_and_wait(fs.map, 0); } else vm_map_unlock(fs.map); goto RetryFault; } MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); if (wired) fault_type = prot | (fault_type & VM_PROT_COPY); else KASSERT((fault_flags & VM_FAULT_WIRE) == 0, ("!wired && VM_FAULT_WIRE")); /* * Try to avoid lock contention on the top-level object through * special-case handling of some types of page faults, specifically, * those that are mapping an existing page from the top-level object. * Under this condition, a read lock on the object suffices, allowing * multiple page faults of a similar type to run in parallel. */ if (fs.vp == NULL /* avoid locked vnode leak */ && (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { VM_OBJECT_RLOCK(fs.first_object); rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, fault_flags, wired, m_hold); if (rv == KERN_SUCCESS) return (rv); if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { VM_OBJECT_RUNLOCK(fs.first_object); VM_OBJECT_WLOCK(fs.first_object); } } else { VM_OBJECT_WLOCK(fs.first_object); } /* * Make a reference to this object to prevent its disposal while we * are messing with it. Once we have the reference, the map is free * to be diddled. Since objects reference their shadows (and copies), * they will stay around as well. * * Bump the paging-in-progress count to prevent size changes (e.g. * truncation operations) during I/O. */ vm_object_reference_locked(fs.first_object); vm_object_pip_add(fs.first_object, 1); fs.lookup_still_valid = true; fs.m_cow = fs.m = fs.first_m = NULL; /* * Search for the page at object/offset. */ fs.object = fs.first_object; fs.pindex = fs.first_pindex; while (TRUE) { KASSERT(fs.m == NULL, ("page still set %p at loop start", fs.m)); /* * If the object is marked for imminent termination, * we retry here, since the collapse pass has raced * with us. Otherwise, if we see terminally dead * object, return fail. */ if ((fs.object->flags & OBJ_DEAD) != 0) { dead = fs.object->type == OBJT_DEAD; unlock_and_deallocate(&fs); if (dead) return (KERN_PROTECTION_FAILURE); pause("vmf_de", 1); goto RetryFault; } /* * See if page is resident */ fs.m = vm_page_lookup(fs.object, fs.pindex); if (fs.m != NULL) { if (vm_page_tryxbusy(fs.m) == 0) { vm_fault_busy_sleep(&fs); goto RetryFault; } /* * The page is marked busy for other processes and the * pagedaemon. If it still isn't completely valid * (readable), jump to readrest, else break-out ( we * found the page ). */ if (!vm_page_all_valid(fs.m)) goto readrest; VM_OBJECT_WUNLOCK(fs.object); break; /* break to PAGE HAS BEEN FOUND. */ } KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); VM_OBJECT_ASSERT_WLOCKED(fs.object); /* * Page is not resident. If the pager might contain the page * or this is the beginning of the search, allocate a new * page. (Default objects are zero-fill, so there is no real * pager for them.) */ if (fs.object->type != OBJT_DEFAULT || fs.object == fs.first_object) { if ((fs.object->flags & OBJ_SIZEVNLOCK) != 0) { rv = vm_fault_lock_vnode(&fs, true); MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE); if (rv == KERN_RESOURCE_SHORTAGE) goto RetryFault; } if (fs.pindex >= fs.object->size) { unlock_and_deallocate(&fs); return (KERN_OUT_OF_BOUNDS); } if (fs.object == fs.first_object && (fs.first_object->flags & OBJ_POPULATE) != 0 && fs.first_object->shadow_count == 0) { rv = vm_fault_populate(&fs, prot, fault_type, fault_flags, wired, m_hold); switch (rv) { case KERN_SUCCESS: case KERN_FAILURE: unlock_and_deallocate(&fs); return (rv); case KERN_RESOURCE_SHORTAGE: unlock_and_deallocate(&fs); goto RetryFault; case KERN_NOT_RECEIVER: /* * Pager's populate() method * returned VM_PAGER_BAD. */ break; default: panic("inconsistent return codes"); } } /* * Allocate a new page for this object/offset pair. * * Unlocked read of the p_flag is harmless. At * worst, the P_KILLED might be not observed * there, and allocation can fail, causing * restart and new reading of the p_flag. */ dset = fs.object->domain.dr_policy; if (dset == NULL) dset = curthread->td_domain.dr_policy; if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { #if VM_NRESERVLEVEL > 0 vm_object_color(fs.object, atop(vaddr) - fs.pindex); #endif alloc_req = P_KILLED(curproc) ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; if (fs.object->type != OBJT_VNODE && fs.object->backing_object == NULL) alloc_req |= VM_ALLOC_ZERO; fs.m = vm_page_alloc(fs.object, fs.pindex, alloc_req); } if (fs.m == NULL) { unlock_and_deallocate(&fs); if (vm_pfault_oom_attempts < 0 || oom < vm_pfault_oom_attempts) { oom++; vm_waitpfault(dset, vm_pfault_oom_wait * hz); goto RetryFault_oom; } if (bootverbose) printf( "proc %d (%s) failed to alloc page on fault, starting OOM\n", curproc->p_pid, curproc->p_comm); vm_pageout_oom(VM_OOM_MEM_PF); goto RetryFault; } } readrest: /* * Default objects have no pager so no exclusive busy exists * to protect this page in the chain. Skip to the next * object without dropping the lock to preserve atomicity of * shadow faults. */ if (fs.object->type == OBJT_DEFAULT) goto next; /* * At this point, we have either allocated a new page or found * an existing page that is only partially valid. * * We hold a reference on the current object and the page is * exclusive busied. The exclusive busy prevents simultaneous * faults and collapses while the object lock is dropped. */ VM_OBJECT_WUNLOCK(fs.object); /* * If the pager for the current object might have the page, * then determine the number of additional pages to read and * potentially reprioritize previously read pages for earlier * reclamation. These operations should only be performed * once per page fault. Even if the current pager doesn't * have the page, the number of additional pages to read will * apply to subsequent objects in the shadow chain. */ if (nera == -1 && !P_KILLED(curproc)) { - KASSERT(fs.lookup_still_valid, ("map unlocked")); - era = fs.entry->read_ahead; - behavior = vm_map_entry_behavior(fs.entry); - if (behavior == MAP_ENTRY_BEHAV_RANDOM) { - nera = 0; - } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { - nera = VM_FAULT_READ_AHEAD_MAX; - if (vaddr == fs.entry->next_read) - vm_fault_dontneed(&fs, vaddr, nera); - } else if (vaddr == fs.entry->next_read) { - /* - * This is a sequential fault. Arithmetically - * increase the requested number of pages in - * the read-ahead window. The requested - * number of pages is "# of sequential faults - * x (read ahead min + 1) + read ahead min" - */ - nera = VM_FAULT_READ_AHEAD_MIN; - if (era > 0) { - nera += era + 1; - if (nera > VM_FAULT_READ_AHEAD_MAX) - nera = VM_FAULT_READ_AHEAD_MAX; - } - if (era == VM_FAULT_READ_AHEAD_MAX) - vm_fault_dontneed(&fs, vaddr, nera); - } else { - /* - * This is a non-sequential fault. - */ - nera = 0; - } - if (era != nera) { - /* - * A read lock on the map suffices to update - * the read ahead count safely. - */ - fs.entry->read_ahead = nera; - } - + nera = vm_fault_readahead(&fs); /* * Prepare for unlocking the map. Save the map * entry's start and end addresses, which are used to * optimize the size of the pager operation below. * Even if the map entry's addresses change after * unlocking the map, using the saved addresses is * safe. */ e_start = fs.entry->start; e_end = fs.entry->end; + behavior = vm_map_entry_behavior(fs.entry); } /* * Call the pager to retrieve the page if there is a chance * that the pager has it, and potentially retrieve additional * pages at the same time. */ if (fs.object->type != OBJT_DEFAULT) { /* * Release the map lock before locking the vnode or * sleeping in the pager. (If the current object has * a shadow, then an earlier iteration of this loop * may have already unlocked the map.) */ unlock_map(&fs); rv = vm_fault_lock_vnode(&fs, false); MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE); if (rv == KERN_RESOURCE_SHORTAGE) goto RetryFault; KASSERT(fs.vp == NULL || !fs.map->system_map, ("vm_fault: vnode-backed object mapped by system map")); /* * Page in the requested page and hint the pager, * that it may bring up surrounding pages. */ if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || P_KILLED(curproc)) { behind = 0; ahead = 0; } else { /* Is this a sequential fault? */ if (nera > 0) { behind = 0; ahead = nera; } else { /* * Request a cluster of pages that is * aligned to a VM_FAULT_READ_DEFAULT * page offset boundary within the * object. Alignment to a page offset * boundary is more likely to coincide * with the underlying file system * block than alignment to a virtual * address boundary. */ cluster_offset = fs.pindex % VM_FAULT_READ_DEFAULT; behind = ulmin(cluster_offset, atop(vaddr - e_start)); ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; } ahead = ulmin(ahead, atop(e_end - vaddr) - 1); } rv = vm_pager_get_pages(fs.object, &fs.m, 1, &behind, &ahead); if (rv == VM_PAGER_OK) { faultcount = behind + 1 + ahead; hardfault = true; break; /* break to PAGE HAS BEEN FOUND. */ } VM_OBJECT_WLOCK(fs.object); if (rv == VM_PAGER_ERROR) printf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm); /* * If an I/O error occurred or the requested page was * outside the range of the pager, clean up and return * an error. */ if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { fault_page_free(&fs.m); unlock_and_deallocate(&fs); return (KERN_OUT_OF_BOUNDS); } } next: /* * The requested page does not exist at this object/ * offset. Remove the invalid page from the object, * waking up anyone waiting for it, and continue on to * the next object. However, if this is the top-level * object, we must leave the busy page in place to * prevent another process from rushing past us, and * inserting the page in that object at the same time * that we are. */ if (fs.object == fs.first_object) { fs.first_m = fs.m; fs.m = NULL; } else fault_page_free(&fs.m); /* * Move on to the next object. Lock the next object before * unlocking the current one. */ VM_OBJECT_ASSERT_WLOCKED(fs.object); next_object = fs.object->backing_object; if (next_object == NULL) { /* * If there's no object left, fill the page in the top * object with zeros. */ VM_OBJECT_WUNLOCK(fs.object); if (fs.object != fs.first_object) { vm_object_pip_wakeup(fs.object); fs.object = fs.first_object; fs.pindex = fs.first_pindex; } MPASS(fs.first_m != NULL); MPASS(fs.m == NULL); fs.m = fs.first_m; fs.first_m = NULL; /* * Zero the page if necessary and mark it valid. */ if ((fs.m->flags & PG_ZERO) == 0) { pmap_zero_page(fs.m); } else { VM_CNT_INC(v_ozfod); } VM_CNT_INC(v_zfod); vm_page_valid(fs.m); /* Don't try to prefault neighboring pages. */ faultcount = 1; break; /* break to PAGE HAS BEEN FOUND. */ } else { MPASS(fs.first_m != NULL); KASSERT(fs.object != next_object, ("object loop %p", next_object)); VM_OBJECT_WLOCK(next_object); vm_object_pip_add(next_object, 1); if (fs.object != fs.first_object) vm_object_pip_wakeup(fs.object); fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); VM_OBJECT_WUNLOCK(fs.object); fs.object = next_object; } } /* * PAGE HAS BEEN FOUND. A valid page has been found and exclusively * busied. The object lock must no longer be held. */ vm_page_assert_xbusied(fs.m); VM_OBJECT_ASSERT_UNLOCKED(fs.object); /* * If the page is being written, but isn't already owned by the * top-level object, we have to copy it into a new page owned by the * top-level object. */ if (fs.object != fs.first_object) { /* * We only really need to copy if we want to write it. */ if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { /* * This allows pages to be virtually copied from a * backing_object into the first_object, where the * backing object has no other refs to it, and cannot * gain any more refs. Instead of a bcopy, we just * move the page from the backing object to the * first object. Note that we must mark the page * dirty in the first object so that it will go out * to swap when needed. */ is_first_object_locked = false; if ( /* * Only one shadow object */ fs.object->shadow_count == 1 && /* * No COW refs, except us */ fs.object->ref_count == 1 && /* * No one else can look this object up */ fs.object->handle == NULL && /* * No other ways to look the object up */ (fs.object->flags & OBJ_ANON) != 0 && (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && /* * We don't chase down the shadow chain */ fs.object == fs.first_object->backing_object && VM_OBJECT_TRYWLOCK(fs.object)) { /* * Remove but keep xbusy for replace. fs.m is * moved into fs.first_object and left busy * while fs.first_m is conditionally freed. */ vm_page_remove_xbusy(fs.m); vm_page_replace(fs.m, fs.first_object, fs.first_pindex, fs.first_m); vm_page_dirty(fs.m); #if VM_NRESERVLEVEL > 0 /* * Rename the reservation. */ vm_reserv_rename(fs.m, fs.first_object, fs.object, OFF_TO_IDX( fs.first_object->backing_object_offset)); #endif VM_OBJECT_WUNLOCK(fs.object); VM_OBJECT_WUNLOCK(fs.first_object); fs.first_m = fs.m; fs.m = NULL; VM_CNT_INC(v_cow_optim); } else { if (is_first_object_locked) VM_OBJECT_WUNLOCK(fs.first_object); /* * Oh, well, lets copy it. */ pmap_copy_page(fs.m, fs.first_m); vm_page_valid(fs.first_m); if (wired && (fault_flags & VM_FAULT_WIRE) == 0) { vm_page_wire(fs.first_m); vm_page_unwire(fs.m, PQ_INACTIVE); } /* * Save the cow page to be released after * pmap_enter is complete. */ fs.m_cow = fs.m; fs.m = NULL; } /* * fs.object != fs.first_object due to above * conditional */ vm_object_pip_wakeup(fs.object); /* * We only try to prefault read-only mappings to the * neighboring pages when this copy-on-write fault is * a hard fault. In other cases, trying to prefault * is typically wasted effort. */ if (faultcount == 0) faultcount = 1; /* * Only use the new page below... */ fs.object = fs.first_object; fs.pindex = fs.first_pindex; fs.m = fs.first_m; VM_CNT_INC(v_cow_faults); curthread->td_cow++; } else { prot &= ~VM_PROT_WRITE; } } /* * We must verify that the maps have not changed since our last * lookup. */ if (!fs.lookup_still_valid) { if (!vm_map_trylock_read(fs.map)) { fault_deallocate(&fs); goto RetryFault; } fs.lookup_still_valid = true; if (fs.map->timestamp != fs.map_generation) { result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); /* * If we don't need the page any longer, put it on the inactive * list (the easiest thing to do here). If no one needs it, * pageout will grab it eventually. */ if (result != KERN_SUCCESS) { fault_deallocate(&fs); /* * If retry of map lookup would have blocked then * retry fault from start. */ if (result == KERN_FAILURE) goto RetryFault; return (result); } if ((retry_object != fs.first_object) || (retry_pindex != fs.first_pindex)) { fault_deallocate(&fs); goto RetryFault; } /* * Check whether the protection has changed or the object has * been copied while we left the map unlocked. Changing from * read to write permission is OK - we leave the page * write-protected, and catch the write fault. Changing from * write to read permission means that we can't mark the page * write-enabled after all. */ prot &= retry_prot; fault_type &= retry_prot; if (prot == 0) { fault_deallocate(&fs); goto RetryFault; } /* Reassert because wired may have changed. */ KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0, ("!wired && VM_FAULT_WIRE")); } } VM_OBJECT_ASSERT_UNLOCKED(fs.object); /* * If the page was filled by a pager, save the virtual address that * should be faulted on next under a sequential access pattern to the * map entry. A read lock on the map suffices to update this address * safely. */ if (hardfault) fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; /* * Page must be completely valid or it is not fit to * map into user space. vm_pager_get_pages() ensures this. */ vm_page_assert_xbusied(fs.m); KASSERT(vm_page_all_valid(fs.m), ("vm_fault: page %p partially invalid", fs.m)); vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags); /* * Put this page into the physical map. We had to do the unlock above * because pmap_enter() may sleep. We don't put the page * back on the active queue until later so that the pageout daemon * won't find it (yet). */ pmap_enter(fs.map->pmap, vaddr, fs.m, prot, fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && wired == 0) vm_fault_prefault(&fs, vaddr, faultcount > 0 ? behind : PFBAK, faultcount > 0 ? ahead : PFFOR, false); /* * If the page is not wired down, then put it where the pageout daemon * can find it. */ if ((fault_flags & VM_FAULT_WIRE) != 0) vm_page_wire(fs.m); else vm_page_activate(fs.m); if (m_hold != NULL) { *m_hold = fs.m; vm_page_wire(fs.m); } vm_page_xunbusy(fs.m); fs.m = NULL; /* * Unlock everything, and return */ fault_deallocate(&fs); if (hardfault) { VM_CNT_INC(v_io_faults); curthread->td_ru.ru_majflt++; #ifdef RACCT if (racct_enable && fs.object->type == OBJT_VNODE) { PROC_LOCK(curproc); if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { racct_add_force(curproc, RACCT_WRITEBPS, PAGE_SIZE + behind * PAGE_SIZE); racct_add_force(curproc, RACCT_WRITEIOPS, 1); } else { racct_add_force(curproc, RACCT_READBPS, PAGE_SIZE + ahead * PAGE_SIZE); racct_add_force(curproc, RACCT_READIOPS, 1); } PROC_UNLOCK(curproc); } #endif } else curthread->td_ru.ru_minflt++; return (KERN_SUCCESS); } /* * Speed up the reclamation of pages that precede the faulting pindex within * the first object of the shadow chain. Essentially, perform the equivalent * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes * the faulting pindex by the cluster size when the pages read by vm_fault() * cross a cluster-size boundary. The cluster size is the greater of the * smallest superpage size and VM_FAULT_DONTNEED_MIN. * * When "fs->first_object" is a shadow object, the pages in the backing object * that precede the faulting pindex are deactivated by vm_fault(). So, this * function must only be concerned with pages in the first object. */ static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) { vm_map_entry_t entry; vm_object_t first_object, object; vm_offset_t end, start; vm_page_t m, m_next; vm_pindex_t pend, pstart; vm_size_t size; object = fs->object; VM_OBJECT_ASSERT_UNLOCKED(object); first_object = fs->first_object; /* Neither fictitious nor unmanaged pages can be reclaimed. */ if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { VM_OBJECT_RLOCK(first_object); size = VM_FAULT_DONTNEED_MIN; if (MAXPAGESIZES > 1 && size < pagesizes[1]) size = pagesizes[1]; end = rounddown2(vaddr, size); if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && (entry = fs->entry)->start < end) { if (end - entry->start < size) start = entry->start; else start = end - size; pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); pstart = OFF_TO_IDX(entry->offset) + atop(start - entry->start); m_next = vm_page_find_least(first_object, pstart); pend = OFF_TO_IDX(entry->offset) + atop(end - entry->start); while ((m = m_next) != NULL && m->pindex < pend) { m_next = TAILQ_NEXT(m, listq); if (!vm_page_all_valid(m) || vm_page_busied(m)) continue; /* * Don't clear PGA_REFERENCED, since it would * likely represent a reference by a different * process. * * Typically, at this point, prefetched pages * are still in the inactive queue. Only * pages that triggered page faults are in the * active queue. The test for whether the page * is in the inactive queue is racy; in the * worst case we will requeue the page * unnecessarily. */ if (!vm_page_inactive(m)) vm_page_deactivate(m); } } VM_OBJECT_RUNLOCK(first_object); } } /* * vm_fault_prefault provides a quick way of clustering * pagefaults into a processes address space. It is a "cousin" * of vm_map_pmap_enter, except it runs at page fault time instead * of mmap time. */ static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, int backward, int forward, bool obj_locked) { pmap_t pmap; vm_map_entry_t entry; vm_object_t backing_object, lobject; vm_offset_t addr, starta; vm_pindex_t pindex; vm_page_t m; int i; pmap = fs->map->pmap; if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) return; entry = fs->entry; if (addra < backward * PAGE_SIZE) { starta = entry->start; } else { starta = addra - backward * PAGE_SIZE; if (starta < entry->start) starta = entry->start; } /* * Generate the sequence of virtual addresses that are candidates for * prefaulting in an outward spiral from the faulting virtual address, * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... * If the candidate address doesn't have a backing physical page, then * the loop immediately terminates. */ for (i = 0; i < 2 * imax(backward, forward); i++) { addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : PAGE_SIZE); if (addr > addra + forward * PAGE_SIZE) addr = 0; if (addr < starta || addr >= entry->end) continue; if (!pmap_is_prefaultable(pmap, addr)) continue; pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; lobject = entry->object.vm_object; if (!obj_locked) VM_OBJECT_RLOCK(lobject); while ((m = vm_page_lookup(lobject, pindex)) == NULL && lobject->type == OBJT_DEFAULT && (backing_object = lobject->backing_object) != NULL) { KASSERT((lobject->backing_object_offset & PAGE_MASK) == 0, ("vm_fault_prefault: unaligned object offset")); pindex += lobject->backing_object_offset >> PAGE_SHIFT; VM_OBJECT_RLOCK(backing_object); if (!obj_locked || lobject != entry->object.vm_object) VM_OBJECT_RUNLOCK(lobject); lobject = backing_object; } if (m == NULL) { if (!obj_locked || lobject != entry->object.vm_object) VM_OBJECT_RUNLOCK(lobject); break; } if (vm_page_all_valid(m) && (m->flags & PG_FICTITIOUS) == 0) pmap_enter_quick(pmap, addr, m, entry->protection); if (!obj_locked || lobject != entry->object.vm_object) VM_OBJECT_RUNLOCK(lobject); } } /* * Hold each of the physical pages that are mapped by the specified range of * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid * and allow the specified types of access, "prot". If all of the implied * pages are successfully held, then the number of held pages is returned * together with pointers to those pages in the array "ma". However, if any * of the pages cannot be held, -1 is returned. */ int vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, vm_prot_t prot, vm_page_t *ma, int max_count) { vm_offset_t end, va; vm_page_t *mp; int count; boolean_t pmap_failed; if (len == 0) return (0); end = round_page(addr + len); addr = trunc_page(addr); /* * Check for illegal addresses. */ if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) return (-1); if (atop(end - addr) > max_count) panic("vm_fault_quick_hold_pages: count > max_count"); count = atop(end - addr); /* * Most likely, the physical pages are resident in the pmap, so it is * faster to try pmap_extract_and_hold() first. */ pmap_failed = FALSE; for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { *mp = pmap_extract_and_hold(map->pmap, va, prot); if (*mp == NULL) pmap_failed = TRUE; else if ((prot & VM_PROT_WRITE) != 0 && (*mp)->dirty != VM_PAGE_BITS_ALL) { /* * Explicitly dirty the physical page. Otherwise, the * caller's changes may go unnoticed because they are * performed through an unmanaged mapping or by a DMA * operation. * * The object lock is not held here. * See vm_page_clear_dirty_mask(). */ vm_page_dirty(*mp); } } if (pmap_failed) { /* * One or more pages could not be held by the pmap. Either no * page was mapped at the specified virtual address or that * mapping had insufficient permissions. Attempt to fault in * and hold these pages. * * If vm_fault_disable_pagefaults() was called, * i.e., TDP_NOFAULTING is set, we must not sleep nor * acquire MD VM locks, which means we must not call * vm_fault(). Some (out of tree) callers mark * too wide a code area with vm_fault_disable_pagefaults() * already, use the VM_PROT_QUICK_NOFAULT flag to request * the proper behaviour explicitly. */ if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && (curthread->td_pflags & TDP_NOFAULTING) != 0) goto error; for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) if (*mp == NULL && vm_fault(map, va, prot, VM_FAULT_NORMAL, mp) != KERN_SUCCESS) goto error; } return (count); error: for (mp = ma; mp < ma + count; mp++) if (*mp != NULL) vm_page_unwire(*mp, PQ_INACTIVE); return (-1); } /* * Routine: * vm_fault_copy_entry * Function: * Create new shadow object backing dst_entry with private copy of * all underlying pages. When src_entry is equal to dst_entry, * function implements COW for wired-down map entry. Otherwise, * it forks wired entry into dst_map. * * In/out conditions: * The source and destination maps must be locked for write. * The source map entry must be wired down (or be a sharing map * entry corresponding to a main map entry that is wired down). */ void vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, vm_map_entry_t dst_entry, vm_map_entry_t src_entry, vm_ooffset_t *fork_charge) { vm_object_t backing_object, dst_object, object, src_object; vm_pindex_t dst_pindex, pindex, src_pindex; vm_prot_t access, prot; vm_offset_t vaddr; vm_page_t dst_m; vm_page_t src_m; boolean_t upgrade; #ifdef lint src_map++; #endif /* lint */ upgrade = src_entry == dst_entry; access = prot = dst_entry->protection; src_object = src_entry->object.vm_object; src_pindex = OFF_TO_IDX(src_entry->offset); if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { dst_object = src_object; vm_object_reference(dst_object); } else { /* * Create the top-level object for the destination entry. * Doesn't actually shadow anything - we copy the pages * directly. */ dst_object = vm_object_allocate_anon(atop(dst_entry->end - dst_entry->start), NULL, NULL, 0); #if VM_NRESERVLEVEL > 0 dst_object->flags |= OBJ_COLORED; dst_object->pg_color = atop(dst_entry->start); #endif dst_object->domain = src_object->domain; dst_object->charge = dst_entry->end - dst_entry->start; } VM_OBJECT_WLOCK(dst_object); KASSERT(upgrade || dst_entry->object.vm_object == NULL, ("vm_fault_copy_entry: vm_object not NULL")); if (src_object != dst_object) { dst_entry->object.vm_object = dst_object; dst_entry->offset = 0; dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; } if (fork_charge != NULL) { KASSERT(dst_entry->cred == NULL, ("vm_fault_copy_entry: leaked swp charge")); dst_object->cred = curthread->td_ucred; crhold(dst_object->cred); *fork_charge += dst_object->charge; } else if ((dst_object->type == OBJT_DEFAULT || dst_object->type == OBJT_SWAP) && dst_object->cred == NULL) { KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", dst_entry)); dst_object->cred = dst_entry->cred; dst_entry->cred = NULL; } /* * If not an upgrade, then enter the mappings in the pmap as * read and/or execute accesses. Otherwise, enter them as * write accesses. * * A writeable large page mapping is only created if all of * the constituent small page mappings are modified. Marking * PTEs as modified on inception allows promotion to happen * without taking potentially large number of soft faults. */ if (!upgrade) access &= ~VM_PROT_WRITE; /* * Loop through all of the virtual pages within the entry's * range, copying each page from the source object to the * destination object. Since the source is wired, those pages * must exist. In contrast, the destination is pageable. * Since the destination object doesn't share any backing storage * with the source object, all of its pages must be dirtied, * regardless of whether they can be written. */ for (vaddr = dst_entry->start, dst_pindex = 0; vaddr < dst_entry->end; vaddr += PAGE_SIZE, dst_pindex++) { again: /* * Find the page in the source object, and copy it in. * Because the source is wired down, the page will be * in memory. */ if (src_object != dst_object) VM_OBJECT_RLOCK(src_object); object = src_object; pindex = src_pindex + dst_pindex; while ((src_m = vm_page_lookup(object, pindex)) == NULL && (backing_object = object->backing_object) != NULL) { /* * Unless the source mapping is read-only or * it is presently being upgraded from * read-only, the first object in the shadow * chain should provide all of the pages. In * other words, this loop body should never be * executed when the source mapping is already * read/write. */ KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || upgrade, ("vm_fault_copy_entry: main object missing page")); VM_OBJECT_RLOCK(backing_object); pindex += OFF_TO_IDX(object->backing_object_offset); if (object != dst_object) VM_OBJECT_RUNLOCK(object); object = backing_object; } KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); if (object != dst_object) { /* * Allocate a page in the destination object. */ dst_m = vm_page_alloc(dst_object, (src_object == dst_object ? src_pindex : 0) + dst_pindex, VM_ALLOC_NORMAL); if (dst_m == NULL) { VM_OBJECT_WUNLOCK(dst_object); VM_OBJECT_RUNLOCK(object); vm_wait(dst_object); VM_OBJECT_WLOCK(dst_object); goto again; } pmap_copy_page(src_m, dst_m); VM_OBJECT_RUNLOCK(object); dst_m->dirty = dst_m->valid = src_m->valid; } else { dst_m = src_m; if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) goto again; if (dst_m->pindex >= dst_object->size) { /* * We are upgrading. Index can occur * out of bounds if the object type is * vnode and the file was truncated. */ vm_page_xunbusy(dst_m); break; } } VM_OBJECT_WUNLOCK(dst_object); /* * Enter it in the pmap. If a wired, copy-on-write * mapping is being replaced by a write-enabled * mapping, then wire that new mapping. * * The page can be invalid if the user called * msync(MS_INVALIDATE) or truncated the backing vnode * or shared memory object. In this case, do not * insert it into pmap, but still do the copy so that * all copies of the wired map entry have similar * backing pages. */ if (vm_page_all_valid(dst_m)) { pmap_enter(dst_map->pmap, vaddr, dst_m, prot, access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); } /* * Mark it no longer busy, and put it on the active list. */ VM_OBJECT_WLOCK(dst_object); if (upgrade) { if (src_m != dst_m) { vm_page_unwire(src_m, PQ_INACTIVE); vm_page_wire(dst_m); } else { KASSERT(vm_page_wired(dst_m), ("dst_m %p is not wired", dst_m)); } } else { vm_page_activate(dst_m); } vm_page_xunbusy(dst_m); } VM_OBJECT_WUNLOCK(dst_object); if (upgrade) { dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); vm_object_deallocate(src_object); } } /* * Block entry into the machine-independent layer's page fault handler by * the calling thread. Subsequent calls to vm_fault() by that thread will * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of * spurious page faults. */ int vm_fault_disable_pagefaults(void) { return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); } void vm_fault_enable_pagefaults(int save) { curthread_pflags_restore(save); }