Index: stable/11/sbin/fsck_ffs/setup.c =================================================================== --- stable/11/sbin/fsck_ffs/setup.c (revision 356904) +++ stable/11/sbin/fsck_ffs/setup.c (revision 356905) @@ -1,528 +1,568 @@ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static const char sccsid[] = "@(#)setup.c 8.10 (Berkeley) 5/9/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include +#include #include #define FSTYPENAMES #include #include #include #include #include #include #include #include #include #include #include #include "fsck.h" struct bufarea asblk; #define altsblock (*asblk.b_un.b_fs) #define POWEROF2(num) (((num) & ((num) - 1)) == 0) static int calcsb(char *dev, int devfd, struct fs *fs); static void saverecovery(int readfd, int writefd); static int chkrecovery(int devfd); /* * Read in a superblock finding an alternate if necessary. * Return 1 if successful, 0 if unsuccessful, -1 if file system * is already clean (ckclean and preen mode only). */ int setup(char *dev) { long cg, asked, i, j; long bmapsize; struct stat statb; struct fs proto; size_t size; havesb = 0; fswritefd = -1; cursnapshot = 0; if (stat(dev, &statb) < 0) { printf("Can't stat %s: %s\n", dev, strerror(errno)); if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } return (0); } if ((statb.st_mode & S_IFMT) != S_IFCHR && (statb.st_mode & S_IFMT) != S_IFBLK) { if (bkgrdflag != 0 && (statb.st_flags & SF_SNAPSHOT) == 0) { unlink(snapname); printf("background fsck lacks a snapshot\n"); exit(EEXIT); } if ((statb.st_flags & SF_SNAPSHOT) != 0 && cvtlevel == 0) { cursnapshot = statb.st_ino; } else { if (cvtlevel == 0 || (statb.st_flags & SF_SNAPSHOT) == 0) { if (preen && bkgrdflag) { unlink(snapname); bkgrdflag = 0; } pfatal("%s is not a disk device", dev); if (reply("CONTINUE") == 0) { if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } return (0); } } else { if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } pfatal("cannot convert a snapshot"); exit(EEXIT); } } } if ((fsreadfd = open(dev, O_RDONLY)) < 0) { if (bkgrdflag) { unlink(snapname); bkgrdflag = 0; } printf("Can't open %s: %s\n", dev, strerror(errno)); return (0); } if (bkgrdflag) { unlink(snapname); size = MIBSIZE; if (sysctlnametomib("vfs.ffs.adjrefcnt", adjrefcnt, &size) < 0|| sysctlnametomib("vfs.ffs.adjblkcnt", adjblkcnt, &size) < 0|| sysctlnametomib("vfs.ffs.setsize", setsize, &size) < 0 || sysctlnametomib("vfs.ffs.freefiles", freefiles, &size) < 0|| sysctlnametomib("vfs.ffs.freedirs", freedirs, &size) < 0 || sysctlnametomib("vfs.ffs.freeblks", freeblks, &size) < 0) { pfatal("kernel lacks background fsck support\n"); exit(EEXIT); } /* * When kernel is lack of runtime bgfsck superblock summary * adjustment functionality, it does not mean we can not * continue, as old kernels will recompute the summary at * mount time. However, it will be an unexpected softupdates * inconsistency if it turns out that the summary is still * incorrect. Set a flag so subsequent operation can know * this. */ bkgrdsumadj = 1; if (sysctlnametomib("vfs.ffs.adjndir", adjndir, &size) < 0 || sysctlnametomib("vfs.ffs.adjnbfree", adjnbfree, &size) < 0 || sysctlnametomib("vfs.ffs.adjnifree", adjnifree, &size) < 0 || sysctlnametomib("vfs.ffs.adjnffree", adjnffree, &size) < 0 || sysctlnametomib("vfs.ffs.adjnumclusters", adjnumclusters, &size) < 0) { bkgrdsumadj = 0; pwarn("kernel lacks runtime superblock summary adjustment support"); } cmd.version = FFS_CMD_VERSION; cmd.handle = fsreadfd; fswritefd = -1; } if (preen == 0) printf("** %s", dev); if (bkgrdflag == 0 && (nflag || (fswritefd = open(dev, O_WRONLY)) < 0)) { fswritefd = -1; if (preen) pfatal("NO WRITE ACCESS"); printf(" (NO WRITE)"); } if (preen == 0) printf("\n"); /* * Read in the superblock, looking for alternates if necessary */ if (readsb(1) == 0) { skipclean = 0; if (bflag || preen || calcsb(dev, fsreadfd, &proto) == 0) return(0); if (reply("LOOK FOR ALTERNATE SUPERBLOCKS") == 0) return (0); for (cg = 0; cg < proto.fs_ncg; cg++) { bflag = fsbtodb(&proto, cgsblock(&proto, cg)); if (readsb(0) != 0) break; } if (cg >= proto.fs_ncg) { printf("%s %s\n%s %s\n%s %s\n", "SEARCH FOR ALTERNATE SUPER-BLOCK", "FAILED. YOU MUST USE THE", "-b OPTION TO FSCK TO SPECIFY THE", "LOCATION OF AN ALTERNATE", "SUPER-BLOCK TO SUPPLY NEEDED", "INFORMATION; SEE fsck_ffs(8)."); bflag = 0; return(0); } pwarn("USING ALTERNATE SUPERBLOCK AT %jd\n", bflag); bflag = 0; } if (skipclean && ckclean && sblock.fs_clean) { pwarn("FILE SYSTEM CLEAN; SKIPPING CHECKS\n"); return (-1); } maxfsblock = sblock.fs_size; maxino = sblock.fs_ncg * sblock.fs_ipg; /* * Check and potentially fix certain fields in the super block. */ if (sblock.fs_optim != FS_OPTTIME && sblock.fs_optim != FS_OPTSPACE) { pfatal("UNDEFINED OPTIMIZATION IN SUPERBLOCK"); if (reply("SET TO DEFAULT") == 1) { sblock.fs_optim = FS_OPTTIME; sbdirty(); } } if ((sblock.fs_minfree < 0 || sblock.fs_minfree > 99)) { pfatal("IMPOSSIBLE MINFREE=%d IN SUPERBLOCK", sblock.fs_minfree); if (reply("SET TO DEFAULT") == 1) { sblock.fs_minfree = 10; sbdirty(); } } if (sblock.fs_magic == FS_UFS1_MAGIC && sblock.fs_old_inodefmt < FS_44INODEFMT) { pwarn("Format of file system is too old.\n"); pwarn("Must update to modern format using a version of fsck\n"); pfatal("from before 2002 with the command ``fsck -c 2''\n"); exit(EEXIT); } if (asblk.b_dirty && !bflag) { memmove(&altsblock, &sblock, (size_t)sblock.fs_sbsize); flush(fswritefd, &asblk); } if (preen == 0 && yflag == 0 && sblock.fs_magic == FS_UFS2_MAGIC && fswritefd != -1 && chkrecovery(fsreadfd) == 0 && reply("SAVE DATA TO FIND ALTERNATE SUPERBLOCKS") != 0) saverecovery(fsreadfd, fswritefd); /* * read in the summary info. */ asked = 0; sblock.fs_csp = Calloc(1, sblock.fs_cssize); if (sblock.fs_csp == NULL) { printf("cannot alloc %u bytes for cg summary info\n", (unsigned)sblock.fs_cssize); goto badsb; } for (i = 0, j = 0; i < sblock.fs_cssize; i += sblock.fs_bsize, j++) { size = MIN(sblock.fs_cssize - i, sblock.fs_bsize); readcnt[sblk.b_type]++; if (blread(fsreadfd, (char *)sblock.fs_csp + i, fsbtodb(&sblock, sblock.fs_csaddr + j * sblock.fs_frag), size) != 0 && !asked) { pfatal("BAD SUMMARY INFORMATION"); if (reply("CONTINUE") == 0) { ckfini(0); exit(EEXIT); } asked++; } } /* * allocate and initialize the necessary maps */ bmapsize = roundup(howmany(maxfsblock, CHAR_BIT), sizeof(short)); blockmap = Calloc((unsigned)bmapsize, sizeof (char)); if (blockmap == NULL) { printf("cannot alloc %u bytes for blockmap\n", (unsigned)bmapsize); goto badsb; } inostathead = Calloc(sblock.fs_ncg, sizeof(struct inostatlist)); if (inostathead == NULL) { printf("cannot alloc %u bytes for inostathead\n", (unsigned)(sizeof(struct inostatlist) * (sblock.fs_ncg))); goto badsb; } numdirs = MAX(sblock.fs_cstotal.cs_ndir, 128); dirhash = numdirs; inplast = 0; listmax = numdirs + 10; inpsort = (struct inoinfo **)Calloc(listmax, sizeof(struct inoinfo *)); inphead = (struct inoinfo **)Calloc(numdirs, sizeof(struct inoinfo *)); if (inpsort == NULL || inphead == NULL) { printf("cannot alloc %ju bytes for inphead\n", (uintmax_t)numdirs * sizeof(struct inoinfo *)); goto badsb; } bufinit(); if (sblock.fs_flags & FS_DOSOFTDEP) usedsoftdep = 1; else usedsoftdep = 0; return (1); badsb: ckfini(0); return (0); } /* * Possible superblock locations ordered from most to least likely. */ static int sblock_try[] = SBLOCKSEARCH; #define BAD_MAGIC_MSG \ "The previous newfs operation on this volume did not complete.\n" \ "You must complete newfs before mounting this volume.\n" /* * Read in the super block and its summary info. */ int readsb(int listerr) { ufs2_daddr_t super; int i, bad; if (bflag) { super = bflag; readcnt[sblk.b_type]++; if ((blread(fsreadfd, (char *)&sblock, super, (long)SBLOCKSIZE))) return (0); if (sblock.fs_magic == FS_BAD_MAGIC) { fprintf(stderr, BAD_MAGIC_MSG); exit(11); } if (sblock.fs_magic != FS_UFS1_MAGIC && sblock.fs_magic != FS_UFS2_MAGIC) { fprintf(stderr, "%jd is not a file system superblock\n", bflag); return (0); } } else { for (i = 0; sblock_try[i] != -1; i++) { super = sblock_try[i] / dev_bsize; readcnt[sblk.b_type]++; if ((blread(fsreadfd, (char *)&sblock, super, (long)SBLOCKSIZE))) return (0); if (sblock.fs_magic == FS_BAD_MAGIC) { fprintf(stderr, BAD_MAGIC_MSG); exit(11); } if ((sblock.fs_magic == FS_UFS1_MAGIC || (sblock.fs_magic == FS_UFS2_MAGIC && sblock.fs_sblockloc == sblock_try[i])) && sblock.fs_ncg >= 1 && sblock.fs_bsize >= MINBSIZE && sblock.fs_sbsize >= roundup(sizeof(struct fs), dev_bsize)) break; } if (sblock_try[i] == -1) { fprintf(stderr, "Cannot find file system superblock\n"); return (0); } } /* * Compute block size that the file system is based on, * according to fsbtodb, and adjust superblock block number * so we can tell if this is an alternate later. */ super *= dev_bsize; dev_bsize = sblock.fs_fsize / fsbtodb(&sblock, 1); sblk.b_bno = super / dev_bsize; sblk.b_size = SBLOCKSIZE; /* * Compare all fields that should not differ in alternate super block. * When an alternate super-block is specified this check is skipped. */ if (bflag) goto out; getblk(&asblk, cgsblock(&sblock, sblock.fs_ncg - 1), sblock.fs_sbsize); if (asblk.b_errs) return (0); bad = 0; #define CHK(x, y) \ if (altsblock.x != sblock.x) { \ bad++; \ if (listerr && debug) \ printf("SUPER BLOCK VS ALTERNATE MISMATCH %s: " y " vs " y "\n", \ #x, (intmax_t)sblock.x, (intmax_t)altsblock.x); \ } CHK(fs_sblkno, "%jd"); CHK(fs_cblkno, "%jd"); CHK(fs_iblkno, "%jd"); CHK(fs_dblkno, "%jd"); CHK(fs_ncg, "%jd"); CHK(fs_bsize, "%jd"); CHK(fs_fsize, "%jd"); CHK(fs_frag, "%jd"); CHK(fs_bmask, "%#jx"); CHK(fs_fmask, "%#jx"); CHK(fs_bshift, "%jd"); CHK(fs_fshift, "%jd"); CHK(fs_fragshift, "%jd"); CHK(fs_fsbtodb, "%jd"); CHK(fs_sbsize, "%jd"); CHK(fs_nindir, "%jd"); CHK(fs_inopb, "%jd"); CHK(fs_cssize, "%jd"); CHK(fs_ipg, "%jd"); CHK(fs_fpg, "%jd"); CHK(fs_magic, "%#jx"); #undef CHK if (bad) { if (listerr == 0) return (0); if (preen) printf("%s: ", cdevname); printf( "VALUES IN SUPER BLOCK LSB=%jd DISAGREE WITH THOSE IN\n" "LAST ALTERNATE LSB=%jd\n", sblk.b_bno, asblk.b_bno); if (reply("IGNORE ALTERNATE SUPER BLOCK") == 0) return (0); } out: /* * If not yet done, update UFS1 superblock with new wider fields. */ if (sblock.fs_magic == FS_UFS1_MAGIC && sblock.fs_maxbsize != sblock.fs_bsize) { sblock.fs_maxbsize = sblock.fs_bsize; sblock.fs_time = sblock.fs_old_time; sblock.fs_size = sblock.fs_old_size; sblock.fs_dsize = sblock.fs_old_dsize; sblock.fs_csaddr = sblock.fs_old_csaddr; sblock.fs_cstotal.cs_ndir = sblock.fs_old_cstotal.cs_ndir; sblock.fs_cstotal.cs_nbfree = sblock.fs_old_cstotal.cs_nbfree; sblock.fs_cstotal.cs_nifree = sblock.fs_old_cstotal.cs_nifree; sblock.fs_cstotal.cs_nffree = sblock.fs_old_cstotal.cs_nffree; } havesb = 1; return (1); } void sblock_init(void) { fswritefd = -1; fsmodified = 0; lfdir = 0; initbarea(&sblk, BT_SUPERBLK); initbarea(&asblk, BT_SUPERBLK); sblk.b_un.b_buf = Malloc(SBLOCKSIZE); asblk.b_un.b_buf = Malloc(SBLOCKSIZE); if (sblk.b_un.b_buf == NULL || asblk.b_un.b_buf == NULL) errx(EEXIT, "cannot allocate space for superblock"); dev_bsize = secsize = DEV_BSIZE; } /* * Calculate a prototype superblock based on information in the boot area. * When done the cgsblock macro can be calculated and the fs_ncg field * can be used. Do NOT attempt to use other macros without verifying that * their needed information is available! */ static int calcsb(char *dev, int devfd, struct fs *fs) { - struct fsrecovery fsr; + struct fsrecovery *fsr; + char *fsrbuf; + u_int secsize; /* * We need fragments-per-group and the partition-size. * * Newfs stores these details at the end of the boot block area * at the start of the filesystem partition. If they have been * overwritten by a boot block, we fail. But usually they are * there and we can use them. */ - if (blread(devfd, (char *)&fsr, - (SBLOCK_UFS2 - sizeof(fsr)) / dev_bsize, sizeof(fsr)) || - fsr.fsr_magic != FS_UFS2_MAGIC) + if (ioctl(devfd, DIOCGSECTORSIZE, &secsize) == -1) return (0); + fsrbuf = Malloc(secsize); + if (fsrbuf == NULL) + errx(EEXIT, "calcsb: cannot allocate recovery buffer"); + if (blread(devfd, fsrbuf, + (SBLOCK_UFS2 - secsize) / dev_bsize, secsize) != 0) + return (0); + fsr = (struct fsrecovery *)&fsrbuf[secsize - sizeof *fsr]; + if (fsr->fsr_magic != FS_UFS2_MAGIC) + return (0); memset(fs, 0, sizeof(struct fs)); - fs->fs_fpg = fsr.fsr_fpg; - fs->fs_fsbtodb = fsr.fsr_fsbtodb; - fs->fs_sblkno = fsr.fsr_sblkno; - fs->fs_magic = fsr.fsr_magic; - fs->fs_ncg = fsr.fsr_ncg; + fs->fs_fpg = fsr->fsr_fpg; + fs->fs_fsbtodb = fsr->fsr_fsbtodb; + fs->fs_sblkno = fsr->fsr_sblkno; + fs->fs_magic = fsr->fsr_magic; + fs->fs_ncg = fsr->fsr_ncg; + free(fsrbuf); return (1); } /* * Check to see if recovery information exists. + * Return 1 if it exists or cannot be created. + * Return 0 if it does not exist and can be created. */ static int chkrecovery(int devfd) { - struct fsrecovery fsr; + struct fsrecovery *fsr; + char *fsrbuf; + u_int secsize; - if (blread(devfd, (char *)&fsr, - (SBLOCK_UFS2 - sizeof(fsr)) / dev_bsize, sizeof(fsr)) || - fsr.fsr_magic != FS_UFS2_MAGIC) - return (0); - return (1); + /* + * Could not determine if backup material exists, so do not + * offer to create it. + */ + if (ioctl(devfd, DIOCGSECTORSIZE, &secsize) == -1 || + (fsrbuf = Malloc(secsize)) == NULL || + blread(devfd, fsrbuf, (SBLOCK_UFS2 - secsize) / dev_bsize, + secsize) != 0) + return (1); + /* + * Recovery material has already been created, so do not + * need to create it again. + */ + fsr = (struct fsrecovery *)&fsrbuf[secsize - sizeof *fsr]; + if (fsr->fsr_magic == FS_UFS2_MAGIC) { + free(fsrbuf); + return (1); + } + /* + * Recovery material has not been created and can be if desired. + */ + free(fsrbuf); + return (0); } /* * Read the last sector of the boot block, replace the last * 20 bytes with the recovery information, then write it back. * The recovery information only works for UFS2 filesystems. */ static void saverecovery(int readfd, int writefd) { - struct fsrecovery fsr; + struct fsrecovery *fsr; + char *fsrbuf; + u_int secsize; if (sblock.fs_magic != FS_UFS2_MAGIC || - blread(readfd, (char *)&fsr, - (SBLOCK_UFS2 - sizeof(fsr)) / dev_bsize, sizeof(fsr))) + ioctl(readfd, DIOCGSECTORSIZE, &secsize) == -1 || + (fsrbuf = Malloc(secsize)) == NULL || + blread(readfd, fsrbuf, (SBLOCK_UFS2 - secsize) / dev_bsize, + secsize) != 0) { + printf("RECOVERY DATA COULD NOT BE CREATED\n"); return; - fsr.fsr_magic = sblock.fs_magic; - fsr.fsr_fpg = sblock.fs_fpg; - fsr.fsr_fsbtodb = sblock.fs_fsbtodb; - fsr.fsr_sblkno = sblock.fs_sblkno; - fsr.fsr_ncg = sblock.fs_ncg; - blwrite(writefd, (char *)&fsr, (SBLOCK_UFS2 - sizeof(fsr)) / dev_bsize, - sizeof(fsr)); + } + fsr = (struct fsrecovery *)&fsrbuf[secsize - sizeof *fsr]; + fsr->fsr_magic = sblock.fs_magic; + fsr->fsr_fpg = sblock.fs_fpg; + fsr->fsr_fsbtodb = sblock.fs_fsbtodb; + fsr->fsr_sblkno = sblock.fs_sblkno; + fsr->fsr_ncg = sblock.fs_ncg; + blwrite(writefd, fsrbuf, (SBLOCK_UFS2 - secsize) / secsize, secsize); + free(fsrbuf); } Index: stable/11/sbin/newfs/mkfs.c =================================================================== --- stable/11/sbin/newfs/mkfs.c (revision 356904) +++ stable/11/sbin/newfs/mkfs.c (revision 356905) @@ -1,1177 +1,1182 @@ /* * Copyright (c) 2002 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program. * * Copyright (c) 1980, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "newfs.h" /* * make file system for cylinder-group style file systems */ #define UMASK 0755 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) static struct csum *fscs; #define sblock disk.d_fs #define acg disk.d_cg union dinode { struct ufs1_dinode dp1; struct ufs2_dinode dp2; }; #define DIP(dp, field) \ ((sblock.fs_magic == FS_UFS1_MAGIC) ? \ (dp)->dp1.field : (dp)->dp2.field) static caddr_t iobuf; static long iobufsize; static ufs2_daddr_t alloc(int size, int mode); static int charsperline(void); static void clrblock(struct fs *, unsigned char *, int); static void fsinit(time_t); static int ilog2(int); static void initcg(int, time_t); static int isblock(struct fs *, unsigned char *, int); static void iput(union dinode *, ino_t); static int makedir(struct direct *, int); static void setblock(struct fs *, unsigned char *, int); static void wtfs(ufs2_daddr_t, int, char *); static u_int32_t newfs_random(void); static int do_sbwrite(struct uufsd *disk) { if (!disk->d_sblock) disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize; return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs + disk->d_sblock) * disk->d_bsize))); } void mkfs(struct partition *pp, char *fsys) { int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; long i, j, csfrags; uint cg; time_t utime; quad_t sizepb; int width; ino_t maxinum; int minfragsperinode; /* minimum ratio of frags to inodes */ char tmpbuf[100]; /* XXX this will break in about 2,500 years */ - struct fsrecovery fsr; + struct fsrecovery *fsr; + char *fsrbuf; union { struct fs fdummy; char cdummy[SBLOCKSIZE]; } dummy; #define fsdummy dummy.fdummy #define chdummy dummy.cdummy /* * Our blocks == sector size, and the version of UFS we are using is * specified by Oflag. */ disk.d_bsize = sectorsize; disk.d_ufs = Oflag; if (Rflag) utime = 1000000000; else time(&utime); sblock.fs_old_flags = FS_FLAGS_UPDATED; sblock.fs_flags = 0; if (Uflag) sblock.fs_flags |= FS_DOSOFTDEP; if (Lflag) strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); if (Jflag) sblock.fs_flags |= FS_GJOURNAL; if (lflag) sblock.fs_flags |= FS_MULTILABEL; if (tflag) sblock.fs_flags |= FS_TRIM; /* * Validate the given file system size. * Verify that its last block can actually be accessed. * Convert to file system fragment sized units. */ if (fssize <= 0) { printf("preposterous size %jd\n", (intmax_t)fssize); exit(13); } wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, (char *)&sblock); /* * collect and verify the file system density info */ sblock.fs_avgfilesize = avgfilesize; sblock.fs_avgfpdir = avgfilesperdir; if (sblock.fs_avgfilesize <= 0) printf("illegal expected average file size %d\n", sblock.fs_avgfilesize), exit(14); if (sblock.fs_avgfpdir <= 0) printf("illegal expected number of files per directory %d\n", sblock.fs_avgfpdir), exit(15); restart: /* * collect and verify the block and fragment sizes */ sblock.fs_bsize = bsize; sblock.fs_fsize = fsize; if (!POWEROF2(sblock.fs_bsize)) { printf("block size must be a power of 2, not %d\n", sblock.fs_bsize); exit(16); } if (!POWEROF2(sblock.fs_fsize)) { printf("fragment size must be a power of 2, not %d\n", sblock.fs_fsize); exit(17); } if (sblock.fs_fsize < sectorsize) { printf("increasing fragment size from %d to sector size (%d)\n", sblock.fs_fsize, sectorsize); sblock.fs_fsize = sectorsize; } if (sblock.fs_bsize > MAXBSIZE) { printf("decreasing block size from %d to maximum (%d)\n", sblock.fs_bsize, MAXBSIZE); sblock.fs_bsize = MAXBSIZE; } if (sblock.fs_bsize < MINBSIZE) { printf("increasing block size from %d to minimum (%d)\n", sblock.fs_bsize, MINBSIZE); sblock.fs_bsize = MINBSIZE; } if (sblock.fs_fsize > MAXBSIZE) { printf("decreasing fragment size from %d to maximum (%d)\n", sblock.fs_fsize, MAXBSIZE); sblock.fs_fsize = MAXBSIZE; } if (sblock.fs_bsize < sblock.fs_fsize) { printf("increasing block size from %d to fragment size (%d)\n", sblock.fs_bsize, sblock.fs_fsize); sblock.fs_bsize = sblock.fs_fsize; } if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) { printf( "increasing fragment size from %d to block size / %d (%d)\n", sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG); sblock.fs_fsize = sblock.fs_bsize / MAXFRAG; } if (maxbsize == 0) maxbsize = bsize; if (maxbsize < bsize || !POWEROF2(maxbsize)) { sblock.fs_maxbsize = sblock.fs_bsize; printf("Extent size set to %d\n", sblock.fs_maxbsize); } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; printf("Extent size reduced to %d\n", sblock.fs_maxbsize); } else { sblock.fs_maxbsize = maxbsize; } /* * Maxcontig sets the default for the maximum number of blocks * that may be allocated sequentially. With file system clustering * it is possible to allocate contiguous blocks up to the maximum * transfer size permitted by the controller or buffering. */ if (maxcontig == 0) maxcontig = MAX(1, MAXPHYS / bsize); sblock.fs_maxcontig = maxcontig; if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); } if (sblock.fs_maxcontig > 1) sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); sblock.fs_bmask = ~(sblock.fs_bsize - 1); sblock.fs_fmask = ~(sblock.fs_fsize - 1); sblock.fs_qbmask = ~sblock.fs_bmask; sblock.fs_qfmask = ~sblock.fs_fmask; sblock.fs_bshift = ilog2(sblock.fs_bsize); sblock.fs_fshift = ilog2(sblock.fs_fsize); sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); sblock.fs_fragshift = ilog2(sblock.fs_frag); if (sblock.fs_frag > MAXFRAG) { printf("fragment size %d is still too small (can't happen)\n", sblock.fs_bsize / MAXFRAG); exit(21); } sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); sblock.fs_size = fssize = dbtofsb(&sblock, fssize); sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize); /* * Before the filesystem is finally initialized, mark it * as incompletely initialized. */ sblock.fs_magic = FS_BAD_MAGIC; if (Oflag == 1) { sblock.fs_sblockloc = SBLOCK_UFS1; sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t); sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * sizeof(ufs1_daddr_t)); sblock.fs_old_inodefmt = FS_44INODEFMT; sblock.fs_old_cgoffset = 0; sblock.fs_old_cgmask = 0xffffffff; sblock.fs_old_size = sblock.fs_size; sblock.fs_old_rotdelay = 0; sblock.fs_old_rps = 60; sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; sblock.fs_old_cpg = 1; sblock.fs_old_interleave = 1; sblock.fs_old_trackskew = 0; sblock.fs_old_cpc = 0; sblock.fs_old_postblformat = 1; sblock.fs_old_nrpos = 1; } else { sblock.fs_sblockloc = SBLOCK_UFS2; sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t); sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) * sizeof(ufs2_daddr_t)); } sblock.fs_sblkno = roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); sblock.fs_cblkno = sblock.fs_sblkno + roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag); sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { sizepb *= NINDIR(&sblock); sblock.fs_maxfilesize += sizepb; } /* * It's impossible to create a snapshot in case that fs_maxfilesize * is smaller than the fssize. */ if (sblock.fs_maxfilesize < (u_quad_t)fssize) { warnx("WARNING: You will be unable to create snapshots on this " "file system. Correct by using a larger blocksize."); } /* * Calculate the number of blocks to put into each cylinder group. * * This algorithm selects the number of blocks per cylinder * group. The first goal is to have at least enough data blocks * in each cylinder group to meet the density requirement. Once * this goal is achieved we try to expand to have at least * MINCYLGRPS cylinder groups. Once this goal is achieved, we * pack as many blocks into each cylinder group map as will fit. * * We start by calculating the smallest number of blocks that we * can put into each cylinder group. If this is too big, we reduce * the density until it fits. */ maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock); minfragsperinode = 1 + fssize / maxinum; if (density == 0) { density = MAX(NFPI, minfragsperinode) * fsize; } else if (density < minfragsperinode * fsize) { origdensity = density; density = minfragsperinode * fsize; fprintf(stderr, "density increased from %d to %d\n", origdensity, density); } origdensity = density; for (;;) { fragsperinode = MAX(numfrags(&sblock, density), 1); if (fragsperinode < minfragsperinode) { bsize <<= 1; fsize <<= 1; printf("Block size too small for a file system %s %d\n", "of this size. Increasing blocksize to", bsize); goto restart; } minfpg = fragsperinode * INOPB(&sblock); if (minfpg > sblock.fs_size) minfpg = sblock.fs_size; sblock.fs_ipg = INOPB(&sblock); sblock.fs_fpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_fpg < minfpg) sblock.fs_fpg = minfpg; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); sblock.fs_fpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_fpg < minfpg) sblock.fs_fpg = minfpg; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) break; density -= sblock.fs_fsize; } if (density != origdensity) printf("density reduced from %d to %d\n", origdensity, density); /* * Start packing more blocks into the cylinder group until * it cannot grow any larger, the number of cylinder groups * drops below MINCYLGRPS, or we reach the size requested. * For UFS1 inodes per cylinder group are stored in an int16_t * so fs_ipg is limited to 2^15 - 1. */ for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) { if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS) break; if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) continue; if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) break; } sblock.fs_fpg -= sblock.fs_frag; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); break; } /* * Check to be sure that the last cylinder group has enough blocks * to be viable. If it is too small, reduce the number of blocks * per cylinder group which will have the effect of moving more * blocks into the last cylinder group. */ optimalfpg = sblock.fs_fpg; for (;;) { sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); lastminfpg = roundup(sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag); if (sblock.fs_size < lastminfpg) { printf("Filesystem size %jd < minimum size of %d\n", (intmax_t)sblock.fs_size, lastminfpg); exit(28); } if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || sblock.fs_size % sblock.fs_fpg == 0) break; sblock.fs_fpg -= sblock.fs_frag; sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), INOPB(&sblock)); } if (optimalfpg != sblock.fs_fpg) printf("Reduced frags per cylinder group from %d to %d %s\n", optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); if (Oflag == 1) { sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; sblock.fs_old_nsect = sblock.fs_old_spc; sblock.fs_old_npsect = sblock.fs_old_spc; sblock.fs_old_ncyl = sblock.fs_ncg; } /* * fill in remaining fields of the super block */ sblock.fs_csaddr = cgdmin(&sblock, 0); sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); fscs = (struct csum *)calloc(1, sblock.fs_cssize); if (fscs == NULL) errx(31, "calloc failed"); sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); if (sblock.fs_sbsize > SBLOCKSIZE) sblock.fs_sbsize = SBLOCKSIZE; + if (sblock.fs_sbsize < realsectorsize) + sblock.fs_sbsize = realsectorsize; sblock.fs_minfree = minfree; if (metaspace > 0 && metaspace < sblock.fs_fpg / 2) sblock.fs_metaspace = blknum(&sblock, metaspace); else if (metaspace != -1) /* reserve half of minfree for metadata blocks */ sblock.fs_metaspace = blknum(&sblock, (sblock.fs_fpg * minfree) / 200); if (maxbpg == 0) sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize); else sblock.fs_maxbpg = maxbpg; sblock.fs_optim = opt; sblock.fs_cgrotor = 0; sblock.fs_pendingblocks = 0; sblock.fs_pendinginodes = 0; sblock.fs_fmod = 0; sblock.fs_ronly = 0; sblock.fs_state = 0; sblock.fs_clean = 1; sblock.fs_id[0] = (long)utime; sblock.fs_id[1] = newfs_random(); sblock.fs_fsmnt[0] = '\0'; csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); sblock.fs_cstotal.cs_nbfree = fragstoblks(&sblock, sblock.fs_dsize) - howmany(csfrags, sblock.fs_frag); sblock.fs_cstotal.cs_nffree = fragnum(&sblock, sblock.fs_size) + (fragnum(&sblock, csfrags) > 0 ? sblock.fs_frag - fragnum(&sblock, csfrags) : 0); sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO; sblock.fs_cstotal.cs_ndir = 0; sblock.fs_dsize -= csfrags; sblock.fs_time = utime; if (Oflag == 1) { sblock.fs_old_time = utime; sblock.fs_old_dsize = sblock.fs_dsize; sblock.fs_old_csaddr = sblock.fs_csaddr; sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; } /* * Dump out summary information about file system. */ # define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n", fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize); printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); if (sblock.fs_flags & FS_DOSOFTDEP) printf("\twith soft updates\n"); # undef B2MBFACTOR if (Eflag && !Nflag) { printf("Erasing sectors [%jd...%jd]\n", sblock.fs_sblockloc / disk.d_bsize, fsbtodb(&sblock, sblock.fs_size) - 1); berase(&disk, sblock.fs_sblockloc / disk.d_bsize, sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc); } /* * Wipe out old UFS1 superblock(s) if necessary. */ - if (!Nflag && Oflag != 1) { + if (!Nflag && Oflag != 1 && realsectorsize <= SBLOCK_UFS1) { i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); if (i == -1) err(1, "can't read old UFS1 superblock: %s", disk.d_error); if (fsdummy.fs_magic == FS_UFS1_MAGIC) { fsdummy.fs_magic = 0; bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE); for (cg = 0; cg < fsdummy.fs_ncg; cg++) { if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize) break; bwrite(&disk, part_ofs + fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE); } } } if (!Nflag) do_sbwrite(&disk); if (Xflag == 1) { printf("** Exiting on Xflag 1\n"); exit(0); } if (Xflag == 2) printf("** Leaving BAD MAGIC on Xflag 2\n"); else sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC; /* * Now build the cylinders group blocks and * then print out indices of cylinder groups. */ printf("super-block backups (for fsck_ffs -b #) at:\n"); i = 0; width = charsperline(); /* * allocate space for superblock, cylinder group map, and * two sets of inode blocks. */ if (sblock.fs_bsize < SBLOCKSIZE) iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; else iobufsize = 4 * sblock.fs_bsize; if ((iobuf = calloc(1, iobufsize)) == 0) { printf("Cannot allocate I/O buffer\n"); exit(38); } /* * Make a copy of the superblock into the buffer that we will be * writing out in each cylinder group. */ bcopy((char *)&sblock, iobuf, SBLOCKSIZE); for (cg = 0; cg < sblock.fs_ncg; cg++) { initcg(cg, utime); j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s", (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)), cg < (sblock.fs_ncg-1) ? "," : ""); if (j < 0) tmpbuf[j = 0] = '\0'; if (i + j >= width) { printf("\n"); i = 0; } i += j; printf("%s", tmpbuf); fflush(stdout); } printf("\n"); if (Nflag) exit(0); /* * Now construct the initial file system, * then write out the super-block. */ fsinit(utime); if (Oflag == 1) { sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; } if (Xflag == 3) { printf("** Exiting on Xflag 3\n"); exit(0); } if (!Nflag) { do_sbwrite(&disk); /* * For UFS1 filesystems with a blocksize of 64K, the first * alternate superblock resides at the location used for * the default UFS2 superblock. As there is a valid * superblock at this location, the boot code will use * it as its first choice. Thus we have to ensure that * all of its statistcs on usage are correct. */ if (Oflag == 1 && sblock.fs_bsize == 65536) wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)), sblock.fs_bsize, (char *)&sblock); } for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), MIN(sblock.fs_cssize - i, sblock.fs_bsize), ((char *)fscs) + i); /* * Read the last sector of the boot block, replace the last * 20 bytes with the recovery information, then write it back. * The recovery information only works for UFS2 filesystems. */ if (sblock.fs_magic == FS_UFS2_MAGIC) { - i = bread(&disk, - part_ofs + (SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize, - (char *)&fsr, sizeof(fsr)); - if (i == -1) + if ((fsrbuf = malloc(realsectorsize)) == NULL || bread(&disk, + part_ofs + (SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, + fsrbuf, realsectorsize) == -1) err(1, "can't read recovery area: %s", disk.d_error); - fsr.fsr_magic = sblock.fs_magic; - fsr.fsr_fpg = sblock.fs_fpg; - fsr.fsr_fsbtodb = sblock.fs_fsbtodb; - fsr.fsr_sblkno = sblock.fs_sblkno; - fsr.fsr_ncg = sblock.fs_ncg; - wtfs((SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize, sizeof(fsr), - (char *)&fsr); + fsr = + (struct fsrecovery *)&fsrbuf[realsectorsize - sizeof *fsr]; + fsr->fsr_magic = sblock.fs_magic; + fsr->fsr_fpg = sblock.fs_fpg; + fsr->fsr_fsbtodb = sblock.fs_fsbtodb; + fsr->fsr_sblkno = sblock.fs_sblkno; + fsr->fsr_ncg = sblock.fs_ncg; + wtfs((SBLOCK_UFS2 - realsectorsize) / disk.d_bsize, + realsectorsize, fsrbuf); + free(fsrbuf); } /* * Update information about this partition in pack * label, to that it may be updated on disk. */ if (pp != NULL) { pp->p_fstype = FS_BSDFFS; pp->p_fsize = sblock.fs_fsize; pp->p_frag = sblock.fs_frag; pp->p_cpg = sblock.fs_fpg; } } /* * Initialize a cylinder group. */ void initcg(int cylno, time_t utime) { long blkno, start; uint i, j, d, dlower, dupper; ufs2_daddr_t cbase, dmax; struct ufs1_dinode *dp1; struct ufs2_dinode *dp2; struct csum *cs; /* * Determine block bounds for cylinder group. * Allow space for super block summary information in first * cylinder group. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); cs = &fscs[cylno]; memset(&acg, 0, sblock.fs_cgsize); acg.cg_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; acg.cg_niblk = sblock.fs_ipg; acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); if (Oflag == 2) { acg.cg_iusedoff = start; } else { acg.cg_old_ncyl = sblock.fs_old_cpg; acg.cg_old_time = acg.cg_time; acg.cg_time = 0; acg.cg_old_niblk = acg.cg_niblk; acg.cg_niblk = 0; acg.cg_initediblk = 0; acg.cg_old_btotoff = start; acg.cg_old_boff = acg.cg_old_btotoff + sblock.fs_old_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_old_boff + sblock.fs_old_cpg * sizeof(u_int16_t); } acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); if (sblock.fs_contigsumsize > 0) { acg.cg_clustersumoff = roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); acg.cg_clustersumoff -= sizeof(u_int32_t); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); } if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { printf("Panic: cylinder group too big\n"); exit(37); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) for (i = 0; i < (long)ROOTINO; i++) { setbit(cg_inosused(&acg), i); acg.cg_cs.cs_nifree--; } if (cylno > 0) { /* * In cylno 0, beginning space is reserved * for boot and super blocks. */ for (d = 0; d < dlower; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; } } if ((i = dupper % sblock.fs_frag)) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; } if (d < acg.cg_ndblk) { acg.cg_frsum[acg.cg_ndblk - d]++; for (; d < acg.cg_ndblk; d++) { setbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum(&acg); u_char *mapp = cg_clustersfree(&acg); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) run++; else if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; run = 0; } if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) bit <<= 1; else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; } } *cs = acg.cg_cs; /* * Write out the duplicate super block, the cylinder group map * and two blocks worth of inodes in a single write. */ start = MAX(sblock.fs_bsize, SBLOCKSIZE); bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize); start += sblock.fs_bsize; dp1 = (struct ufs1_dinode *)(&iobuf[start]); dp2 = (struct ufs2_dinode *)(&iobuf[start]); for (i = 0; i < acg.cg_initediblk; i++) { if (sblock.fs_magic == FS_UFS1_MAGIC) { dp1->di_gen = newfs_random(); dp1++; } else { dp2->di_gen = newfs_random(); dp2++; } } wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf); /* * For the old file system, we have to initialize all the inodes. */ if (Oflag == 1) { for (i = 2 * sblock.fs_frag; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { dp1 = (struct ufs1_dinode *)(&iobuf[start]); for (j = 0; j < INOPB(&sblock); j++) { dp1->di_gen = newfs_random(); dp1++; } wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), sblock.fs_bsize, &iobuf[start]); } } } /* * initialize the file system */ #define ROOTLINKCNT 3 static struct direct root_dir[] = { { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" }, }; #define SNAPLINKCNT 2 static struct direct snap_dir[] = { { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." }, { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, }; void fsinit(time_t utime) { union dinode node; struct group *grp; gid_t gid; int entries; memset(&node, 0, sizeof node); if ((grp = getgrnam("operator")) != NULL) { gid = grp->gr_gid; } else { warnx("Cannot retrieve operator gid, using gid 0."); gid = 0; } entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT; if (sblock.fs_magic == FS_UFS1_MAGIC) { /* * initialize the node */ node.dp1.di_atime = utime; node.dp1.di_mtime = utime; node.dp1.di_ctime = utime; /* * create the root directory */ node.dp1.di_mode = IFDIR | UMASK; node.dp1.di_nlink = entries; node.dp1.di_size = makedir(root_dir, entries); node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size)); wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO); if (!nflag) { /* * create the .snap directory */ node.dp1.di_mode |= 020; node.dp1.di_gid = gid; node.dp1.di_nlink = SNAPLINKCNT; node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT); node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode); node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size)); wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO + 1); } } else { /* * initialize the node */ node.dp2.di_atime = utime; node.dp2.di_mtime = utime; node.dp2.di_ctime = utime; node.dp2.di_birthtime = utime; /* * create the root directory */ node.dp2.di_mode = IFDIR | UMASK; node.dp2.di_nlink = entries; node.dp2.di_size = makedir(root_dir, entries); node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size)); wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO); if (!nflag) { /* * create the .snap directory */ node.dp2.di_mode |= 020; node.dp2.di_gid = gid; node.dp2.di_nlink = SNAPLINKCNT; node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT); node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode); node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size)); wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf); iput(&node, ROOTINO + 1); } } } /* * construct a set of directory entries in "iobuf". * return size of directory. */ int makedir(struct direct *protodir, int entries) { char *cp; int i, spcleft; spcleft = DIRBLKSIZ; memset(iobuf, 0, DIRBLKSIZ); for (cp = iobuf, i = 0; i < entries - 1; i++) { protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); memmove(cp, &protodir[i], protodir[i].d_reclen); cp += protodir[i].d_reclen; spcleft -= protodir[i].d_reclen; } protodir[i].d_reclen = spcleft; memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); return (DIRBLKSIZ); } /* * allocate a block or frag */ ufs2_daddr_t alloc(int size, int mode) { int i, blkno, frag; uint d; bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, sblock.fs_cgsize); if (acg.cg_magic != CG_MAGIC) { printf("cg 0: bad magic number\n"); exit(38); } if (acg.cg_cs.cs_nbfree == 0) { printf("first cylinder group ran out of space\n"); exit(39); } for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) goto goth; printf("internal error: can't find block in cyl 0\n"); exit(40); goth: blkno = fragstoblks(&sblock, d); clrblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) clrbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; fscs[0].cs_nbfree--; if (mode & IFDIR) { acg.cg_cs.cs_ndir++; sblock.fs_cstotal.cs_ndir++; fscs[0].cs_ndir++; } if (size != sblock.fs_bsize) { frag = howmany(size, sblock.fs_fsize); fscs[0].cs_nffree += sblock.fs_frag - frag; sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; acg.cg_cs.cs_nffree += sblock.fs_frag - frag; acg.cg_frsum[sblock.fs_frag - frag]++; for (i = frag; i < sblock.fs_frag; i++) setbit(cg_blksfree(&acg), d + i); } /* XXX cgwrite(&disk, 0)??? */ wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); return ((ufs2_daddr_t)d); } /* * Allocate an inode on the disk */ void iput(union dinode *ip, ino_t ino) { ufs2_daddr_t d; bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg, sblock.fs_cgsize); if (acg.cg_magic != CG_MAGIC) { printf("cg 0: bad magic number\n"); exit(31); } acg.cg_cs.cs_nifree--; setbit(cg_inosused(&acg), ino); wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, (char *)&acg); sblock.fs_cstotal.cs_nifree--; fscs[0].cs_nifree--; if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) { printf("fsinit: inode value out of range (%ju).\n", (uintmax_t)ino); exit(32); } d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize); if (sblock.fs_magic == FS_UFS1_MAGIC) ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = ip->dp1; else ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] = ip->dp2; wtfs(d, sblock.fs_bsize, (char *)iobuf); } /* * possibly write to disk */ static void wtfs(ufs2_daddr_t bno, int size, char *bf) { if (Nflag) return; if (bwrite(&disk, part_ofs + bno, bf, size) < 0) err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno); } /* * check if a block is available */ static int isblock(struct fs *fs, unsigned char *cp, int h) { unsigned char mask; switch (fs->fs_frag) { case 8: return (cp[h] == 0xff); case 4: mask = 0x0f << ((h & 0x1) << 2); return ((cp[h >> 1] & mask) == mask); case 2: mask = 0x03 << ((h & 0x3) << 1); return ((cp[h >> 2] & mask) == mask); case 1: mask = 0x01 << (h & 0x7); return ((cp[h >> 3] & mask) == mask); default: fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); return (0); } } /* * take a block out of the map */ static void clrblock(struct fs *fs, unsigned char *cp, int h) { switch ((fs)->fs_frag) { case 8: cp[h] = 0; return; case 4: cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); return; case 2: cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); return; case 1: cp[h >> 3] &= ~(0x01 << (h & 0x7)); return; default: fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); return; } } /* * put a block into the map */ static void setblock(struct fs *fs, unsigned char *cp, int h) { switch (fs->fs_frag) { case 8: cp[h] = 0xff; return; case 4: cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); return; case 2: cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); return; case 1: cp[h >> 3] |= (0x01 << (h & 0x7)); return; default: fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); return; } } /* * Determine the number of characters in a * single line. */ static int charsperline(void) { int columns; char *cp; struct winsize ws; columns = 0; if (ioctl(0, TIOCGWINSZ, &ws) != -1) columns = ws.ws_col; if (columns == 0 && (cp = getenv("COLUMNS"))) columns = atoi(cp); if (columns == 0) columns = 80; /* last resort */ return (columns); } static int ilog2(int val) { u_int n; for (n = 0; n < sizeof(n) * CHAR_BIT; n++) if (1 << n == val) return (n); errx(1, "ilog2: %d is not a power of 2\n", val); } /* * For the regression test, return predictable random values. * Otherwise use a true random number generator. */ static u_int32_t newfs_random(void) { static int nextnum = 1; if (Rflag) return (nextnum++); return (arc4random()); } Index: stable/11/sys/ufs/ffs/fs.h =================================================================== --- stable/11/sys/ufs/ffs/fs.h (revision 356904) +++ stable/11/sys/ufs/ffs/fs.h (revision 356905) @@ -1,793 +1,791 @@ /*- * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fs.h 8.13 (Berkeley) 3/21/95 * $FreeBSD$ */ #ifndef _UFS_FFS_FS_H_ #define _UFS_FFS_FS_H_ #include #include /* * Each disk drive contains some number of filesystems. * A filesystem consists of a number of cylinder groups. * Each cylinder group has inodes and data. * * A filesystem is described by its super-block, which in turn * describes the cylinder groups. The super-block is critical * data and is replicated in each cylinder group to protect against * catastrophic loss. This is done at `newfs' time and the critical * super-block data does not change, so the copies need not be * referenced further unless disaster strikes. * * For filesystem fs, the offsets of the various blocks of interest * are given in the super block as: * [fs->fs_sblkno] Super-block * [fs->fs_cblkno] Cylinder group block * [fs->fs_iblkno] Inode blocks * [fs->fs_dblkno] Data blocks * The beginning of cylinder group cg in fs, is given by * the ``cgbase(fs, cg)'' macro. * * Depending on the architecture and the media, the superblock may * reside in any one of four places. For tiny media where every block * counts, it is placed at the very front of the partition. Historically, * UFS1 placed it 8K from the front to leave room for the disk label and * a small bootstrap. For UFS2 it got moved to 64K from the front to leave * room for the disk label and a bigger bootstrap, and for really piggy * systems we check at 256K from the front if the first three fail. In * all cases the size of the superblock will be SBLOCKSIZE. All values are * given in byte-offset form, so they do not imply a sector size. The * SBLOCKSEARCH specifies the order in which the locations should be searched. */ #define SBLOCK_FLOPPY 0 #define SBLOCK_UFS1 8192 #define SBLOCK_UFS2 65536 #define SBLOCK_PIGGY 262144 #define SBLOCKSIZE 8192 #define SBLOCKSEARCH \ { SBLOCK_UFS2, SBLOCK_UFS1, SBLOCK_FLOPPY, SBLOCK_PIGGY, -1 } /* * Max number of fragments per block. This value is NOT tweakable. */ #define MAXFRAG 8 /* * Addresses stored in inodes are capable of addressing fragments * of `blocks'. File system blocks of at most size MAXBSIZE can * be optionally broken into 2, 4, or 8 pieces, each of which is * addressable; these pieces may be DEV_BSIZE, or some multiple of * a DEV_BSIZE unit. * * Large files consist of exclusively large data blocks. To avoid * undue wasted disk space, the last data block of a small file may be * allocated as only as many fragments of a large block as are * necessary. The filesystem format retains only a single pointer * to such a fragment, which is a piece of a single large block that * has been divided. The size of such a fragment is determinable from * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. * * The filesystem records space availability at the fragment level; * to determine block availability, aligned fragments are examined. */ /* * MINBSIZE is the smallest allowable block size. * In order to insure that it is possible to create files of size * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. * MINBSIZE must be big enough to hold a cylinder group block, * thus changes to (struct cg) must keep its size within MINBSIZE. * Note that super blocks are always of size SBLOCKSIZE, * and that both SBLOCKSIZE and MAXBSIZE must be >= MINBSIZE. */ #define MINBSIZE 4096 /* * The path name on which the filesystem is mounted is maintained * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in * the super block for this name. */ #define MAXMNTLEN 468 /* * The volume name for this filesystem is maintained in fs_volname. * MAXVOLLEN defines the length of the buffer allocated. */ #define MAXVOLLEN 32 /* * There is a 128-byte region in the superblock reserved for in-core * pointers to summary information. Originally this included an array * of pointers to blocks of struct csum; now there are just a few * pointers and the remaining space is padded with fs_ocsp[]. * * NOCSPTRS determines the size of this padding. One pointer (fs_csp) * is taken away to point to a contiguous array of struct csum for * all cylinder groups; a second (fs_maxcluster) points to an array * of cluster sizes that is computed as cylinder groups are inspected, * and the third points to an array that tracks the creation of new * directories. A fourth pointer, fs_active, is used when creating * snapshots; it points to a bitmap of cylinder groups for which the * free-block bitmap has changed since the snapshot operation began. */ #define NOCSPTRS ((128 / sizeof(void *)) - 4) /* * A summary of contiguous blocks of various sizes is maintained * in each cylinder group. Normally this is set by the initial * value of fs_maxcontig. To conserve space, a maximum summary size * is set by FS_MAXCONTIG. */ #define FS_MAXCONTIG 16 /* * MINFREE gives the minimum acceptable percentage of filesystem * blocks which may be free. If the freelist drops below this level * only the superuser may continue to allocate blocks. This may * be set to 0 if no reserve of free blocks is deemed necessary, * however throughput drops by fifty percent if the filesystem * is run at between 95% and 100% full; thus the minimum default * value of fs_minfree is 5%. However, to get good clustering * performance, 10% is a better choice. hence we use 10% as our * default value. With 10% free space, fragmentation is not a * problem, so we choose to optimize for time. */ #define MINFREE 8 #define DEFAULTOPT FS_OPTTIME /* * Grigoriy Orlov has done some extensive work to fine * tune the layout preferences for directories within a filesystem. * His algorithm can be tuned by adjusting the following parameters * which tell the system the average file size and the average number * of files per directory. These defaults are well selected for typical * filesystems, but may need to be tuned for odd cases like filesystems * being used for squid caches or news spools. */ #define AVFILESIZ 16384 /* expected average file size */ #define AFPDIR 64 /* expected number of files per directory */ /* * The maximum number of snapshot nodes that can be associated * with each filesystem. This limit affects only the number of * snapshot files that can be recorded within the superblock so * that they can be found when the filesystem is mounted. However, * maintaining too many will slow the filesystem performance, so * having this limit is a good idea. */ #define FSMAXSNAP 20 /* * Used to identify special blocks in snapshots: * * BLK_NOCOPY - A block that was unallocated at the time the snapshot * was taken, hence does not need to be copied when written. * BLK_SNAP - A block held by another snapshot that is not needed by this * snapshot. When the other snapshot is freed, the BLK_SNAP entries * are converted to BLK_NOCOPY. These are needed to allow fsck to * identify blocks that are in use by other snapshots (which are * expunged from this snapshot). */ #define BLK_NOCOPY ((ufs2_daddr_t)(1)) #define BLK_SNAP ((ufs2_daddr_t)(2)) /* * Sysctl values for the fast filesystem. */ #define FFS_ADJ_REFCNT 1 /* adjust inode reference count */ #define FFS_ADJ_BLKCNT 2 /* adjust inode used block count */ #define FFS_BLK_FREE 3 /* free range of blocks in map */ #define FFS_DIR_FREE 4 /* free specified dir inodes in map */ #define FFS_FILE_FREE 5 /* free specified file inodes in map */ #define FFS_SET_FLAGS 6 /* set filesystem flags */ #define FFS_ADJ_NDIR 7 /* adjust number of directories */ #define FFS_ADJ_NBFREE 8 /* adjust number of free blocks */ #define FFS_ADJ_NIFREE 9 /* adjust number of free inodes */ #define FFS_ADJ_NFFREE 10 /* adjust number of free frags */ #define FFS_ADJ_NUMCLUSTERS 11 /* adjust number of free clusters */ #define FFS_SET_CWD 12 /* set current directory */ #define FFS_SET_DOTDOT 13 /* set inode number for ".." */ #define FFS_UNLINK 14 /* remove a name in the filesystem */ #define FFS_SET_INODE 15 /* update an on-disk inode */ #define FFS_SET_BUFOUTPUT 16 /* set buffered writing on descriptor */ #define FFS_SET_SIZE 17 /* set inode size */ #define FFS_MAXID 17 /* number of valid ffs ids */ /* * Command structure passed in to the filesystem to adjust filesystem values. */ #define FFS_CMD_VERSION 0x19790518 /* version ID */ struct fsck_cmd { int32_t version; /* version of command structure */ int32_t handle; /* reference to filesystem to be changed */ int64_t value; /* inode or block number to be affected */ int64_t size; /* amount or range to be adjusted */ int64_t spare; /* reserved for future use */ }; /* * A recovery structure placed at the end of the boot block area by newfs * that can be used by fsck to search for alternate superblocks. */ -#define RESID (4096 - 20) /* disk sector size minus recovery area size */ struct fsrecovery { - char block[RESID]; /* unused part of sector */ int32_t fsr_magic; /* magic number */ int32_t fsr_fsbtodb; /* fsbtodb and dbtofsb shift constant */ int32_t fsr_sblkno; /* offset of super-block in filesys */ int32_t fsr_fpg; /* blocks per group * fs_frag */ u_int32_t fsr_ncg; /* number of cylinder groups */ }; /* * Per cylinder group information; summarized in blocks allocated * from first cylinder group data blocks. These blocks have to be * read in from fs_csaddr (size fs_cssize) in addition to the * super block. */ struct csum { int32_t cs_ndir; /* number of directories */ int32_t cs_nbfree; /* number of free blocks */ int32_t cs_nifree; /* number of free inodes */ int32_t cs_nffree; /* number of free frags */ }; struct csum_total { int64_t cs_ndir; /* number of directories */ int64_t cs_nbfree; /* number of free blocks */ int64_t cs_nifree; /* number of free inodes */ int64_t cs_nffree; /* number of free frags */ int64_t cs_numclusters; /* number of free clusters */ int64_t cs_spare[3]; /* future expansion */ }; /* * Super block for an FFS filesystem. */ struct fs { int32_t fs_firstfield; /* historic filesystem linked list, */ int32_t fs_unused_1; /* used for incore super blocks */ int32_t fs_sblkno; /* offset of super-block in filesys */ int32_t fs_cblkno; /* offset of cyl-block in filesys */ int32_t fs_iblkno; /* offset of inode-blocks in filesys */ int32_t fs_dblkno; /* offset of first data after cg */ int32_t fs_old_cgoffset; /* cylinder group offset in cylinder */ int32_t fs_old_cgmask; /* used to calc mod fs_ntrak */ int32_t fs_old_time; /* last time written */ int32_t fs_old_size; /* number of blocks in fs */ int32_t fs_old_dsize; /* number of data blocks in fs */ u_int32_t fs_ncg; /* number of cylinder groups */ int32_t fs_bsize; /* size of basic blocks in fs */ int32_t fs_fsize; /* size of frag blocks in fs */ int32_t fs_frag; /* number of frags in a block in fs */ /* these are configuration parameters */ int32_t fs_minfree; /* minimum percentage of free blocks */ int32_t fs_old_rotdelay; /* num of ms for optimal next block */ int32_t fs_old_rps; /* disk revolutions per second */ /* these fields can be computed from the others */ int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */ int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */ int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */ int32_t fs_fshift; /* ``numfrags'' calc number of frags */ /* these are configuration parameters */ int32_t fs_maxcontig; /* max number of contiguous blks */ int32_t fs_maxbpg; /* max number of blks per cyl group */ /* these fields can be computed from the others */ int32_t fs_fragshift; /* block to frag shift */ int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ int32_t fs_sbsize; /* actual size of super block */ int32_t fs_spare1[2]; /* old fs_csmask */ /* old fs_csshift */ int32_t fs_nindir; /* value of NINDIR */ u_int32_t fs_inopb; /* value of INOPB */ int32_t fs_old_nspf; /* value of NSPF */ /* yet another configuration parameter */ int32_t fs_optim; /* optimization preference, see below */ int32_t fs_old_npsect; /* # sectors/track including spares */ int32_t fs_old_interleave; /* hardware sector interleave */ int32_t fs_old_trackskew; /* sector 0 skew, per track */ int32_t fs_id[2]; /* unique filesystem id */ /* sizes determined by number of cylinder groups and their sizes */ int32_t fs_old_csaddr; /* blk addr of cyl grp summary area */ int32_t fs_cssize; /* size of cyl grp summary area */ int32_t fs_cgsize; /* cylinder group size */ int32_t fs_spare2; /* old fs_ntrak */ int32_t fs_old_nsect; /* sectors per track */ int32_t fs_old_spc; /* sectors per cylinder */ int32_t fs_old_ncyl; /* cylinders in filesystem */ int32_t fs_old_cpg; /* cylinders per group */ u_int32_t fs_ipg; /* inodes per group */ int32_t fs_fpg; /* blocks per group * fs_frag */ /* this data must be re-computed after crashes */ struct csum fs_old_cstotal; /* cylinder summary information */ /* these fields are cleared at mount time */ int8_t fs_fmod; /* super block modified flag */ int8_t fs_clean; /* filesystem is clean flag */ int8_t fs_ronly; /* mounted read-only flag */ int8_t fs_old_flags; /* old FS_ flags */ u_char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ u_char fs_volname[MAXVOLLEN]; /* volume name */ u_int64_t fs_swuid; /* system-wide uid */ int32_t fs_pad; /* due to alignment of fs_swuid */ /* these fields retain the current block allocation info */ int32_t fs_cgrotor; /* last cg searched */ void *fs_ocsp[NOCSPTRS]; /* padding; was list of fs_cs buffers */ u_int8_t *fs_contigdirs; /* (u) # of contig. allocated dirs */ struct csum *fs_csp; /* (u) cg summary info buffer */ int32_t *fs_maxcluster; /* (u) max cluster in each cyl group */ u_int *fs_active; /* (u) used by snapshots to track fs */ int32_t fs_old_cpc; /* cyl per cycle in postbl */ int32_t fs_maxbsize; /* maximum blocking factor permitted */ int64_t fs_unrefs; /* number of unreferenced inodes */ int64_t fs_providersize; /* size of underlying GEOM provider */ int64_t fs_metaspace; /* size of area reserved for metadata */ int64_t fs_sparecon64[14]; /* old rotation block list head */ int64_t fs_sblockloc; /* byte offset of standard superblock */ struct csum_total fs_cstotal; /* (u) cylinder summary information */ ufs_time_t fs_time; /* last time written */ int64_t fs_size; /* number of blocks in fs */ int64_t fs_dsize; /* number of data blocks in fs */ ufs2_daddr_t fs_csaddr; /* blk addr of cyl grp summary area */ int64_t fs_pendingblocks; /* (u) blocks being freed */ u_int32_t fs_pendinginodes; /* (u) inodes being freed */ uint32_t fs_snapinum[FSMAXSNAP];/* list of snapshot inode numbers */ u_int32_t fs_avgfilesize; /* expected average file size */ u_int32_t fs_avgfpdir; /* expected # of files per directory */ int32_t fs_save_cgsize; /* save real cg size to use fs_bsize */ ufs_time_t fs_mtime; /* Last mount or fsck time. */ int32_t fs_sujfree; /* SUJ free list */ int32_t fs_sparecon32[23]; /* reserved for future constants */ int32_t fs_flags; /* see FS_ flags below */ int32_t fs_contigsumsize; /* size of cluster summary array */ int32_t fs_maxsymlinklen; /* max length of an internal symlink */ int32_t fs_old_inodefmt; /* format of on-disk inodes */ u_int64_t fs_maxfilesize; /* maximum representable file size */ int64_t fs_qbmask; /* ~fs_bmask for use with 64-bit size */ int64_t fs_qfmask; /* ~fs_fmask for use with 64-bit size */ int32_t fs_state; /* validate fs_clean field */ int32_t fs_old_postblformat; /* format of positional layout tables */ int32_t fs_old_nrpos; /* number of rotational positions */ int32_t fs_spare5[2]; /* old fs_postbloff */ /* old fs_rotbloff */ int32_t fs_magic; /* magic number */ }; /* Sanity checking. */ #ifdef CTASSERT CTASSERT(sizeof(struct fs) == 1376); #endif /* * Filesystem identification */ #define FS_UFS1_MAGIC 0x011954 /* UFS1 fast filesystem magic number */ #define FS_UFS2_MAGIC 0x19540119 /* UFS2 fast filesystem magic number */ #define FS_BAD_MAGIC 0x19960408 /* UFS incomplete newfs magic number */ #define FS_OKAY 0x7c269d38 /* superblock checksum */ #define FS_42INODEFMT -1 /* 4.2BSD inode format */ #define FS_44INODEFMT 2 /* 4.4BSD inode format */ /* * Preference for optimization. */ #define FS_OPTTIME 0 /* minimize allocation time */ #define FS_OPTSPACE 1 /* minimize disk fragmentation */ /* * Filesystem flags. * * The FS_UNCLEAN flag is set by the kernel when the filesystem was * mounted with fs_clean set to zero. The FS_DOSOFTDEP flag indicates * that the filesystem should be managed by the soft updates code. * Note that the FS_NEEDSFSCK flag is set and cleared only by the * fsck utility. It is set when background fsck finds an unexpected * inconsistency which requires a traditional foreground fsck to be * run. Such inconsistencies should only be found after an uncorrectable * disk error. A foreground fsck will clear the FS_NEEDSFSCK flag when * it has successfully cleaned up the filesystem. The kernel uses this * flag to enforce that inconsistent filesystems be mounted read-only. * The FS_INDEXDIRS flag when set indicates that the kernel maintains * on-disk auxiliary indexes (such as B-trees) for speeding directory * accesses. Kernels that do not support auxiliary indices clear the * flag to indicate that the indices need to be rebuilt (by fsck) before * they can be used. * * FS_ACLS indicates that POSIX.1e ACLs are administratively enabled * for the file system, so they should be loaded from extended attributes, * observed for access control purposes, and be administered by object * owners. FS_NFS4ACLS indicates that NFSv4 ACLs are administratively * enabled. This flag is mutually exclusive with FS_ACLS. FS_MULTILABEL * indicates that the TrustedBSD MAC Framework should attempt to back MAC * labels into extended attributes on the file system rather than maintain * a single mount label for all objects. */ #define FS_UNCLEAN 0x0001 /* filesystem not clean at mount */ #define FS_DOSOFTDEP 0x0002 /* filesystem using soft dependencies */ #define FS_NEEDSFSCK 0x0004 /* filesystem needs sync fsck before mount */ #define FS_SUJ 0x0008 /* Filesystem using softupdate journal */ #define FS_ACLS 0x0010 /* file system has POSIX.1e ACLs enabled */ #define FS_MULTILABEL 0x0020 /* file system is MAC multi-label */ #define FS_GJOURNAL 0x0040 /* gjournaled file system */ #define FS_FLAGS_UPDATED 0x0080 /* flags have been moved to new location */ #define FS_NFS4ACLS 0x0100 /* file system has NFSv4 ACLs enabled */ #define FS_INDEXDIRS 0x0200 /* kernel supports indexed directories */ #define FS_TRIM 0x0400 /* issue BIO_DELETE for deleted blocks */ /* * Macros to access bits in the fs_active array. */ #define ACTIVECGNUM(fs, cg) ((fs)->fs_active[(cg) / (NBBY * sizeof(int))]) #define ACTIVECGOFF(cg) (1 << ((cg) % (NBBY * sizeof(int)))) #define ACTIVESET(fs, cg) do { \ if ((fs)->fs_active) \ ACTIVECGNUM((fs), (cg)) |= ACTIVECGOFF((cg)); \ } while (0) #define ACTIVECLEAR(fs, cg) do { \ if ((fs)->fs_active) \ ACTIVECGNUM((fs), (cg)) &= ~ACTIVECGOFF((cg)); \ } while (0) /* * The size of a cylinder group is calculated by CGSIZE. The maximum size * is limited by the fact that cylinder groups are at most one block. * Its size is derived from the size of the maps maintained in the * cylinder group and the (struct cg) size. */ #define CGSIZE(fs) \ /* base cg */ (sizeof(struct cg) + sizeof(int32_t) + \ /* old btotoff */ (fs)->fs_old_cpg * sizeof(int32_t) + \ /* old boff */ (fs)->fs_old_cpg * sizeof(u_int16_t) + \ /* inode map */ howmany((fs)->fs_ipg, NBBY) + \ /* block map */ howmany((fs)->fs_fpg, NBBY) +\ /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \ /* cluster sum */ (fs)->fs_contigsumsize * sizeof(int32_t) + \ /* cluster map */ howmany(fragstoblks(fs, (fs)->fs_fpg), NBBY))) /* * The minimal number of cylinder groups that should be created. */ #define MINCYLGRPS 4 /* * Convert cylinder group to base address of its global summary info. */ #define fs_cs(fs, indx) fs_csp[indx] /* * Cylinder group block for a filesystem. */ #define CG_MAGIC 0x090255 struct cg { int32_t cg_firstfield; /* historic cyl groups linked list */ int32_t cg_magic; /* magic number */ int32_t cg_old_time; /* time last written */ u_int32_t cg_cgx; /* we are the cgx'th cylinder group */ int16_t cg_old_ncyl; /* number of cyl's this cg */ int16_t cg_old_niblk; /* number of inode blocks this cg */ u_int32_t cg_ndblk; /* number of data blocks this cg */ struct csum cg_cs; /* cylinder summary information */ u_int32_t cg_rotor; /* position of last used block */ u_int32_t cg_frotor; /* position of last used frag */ u_int32_t cg_irotor; /* position of last used inode */ u_int32_t cg_frsum[MAXFRAG]; /* counts of available frags */ int32_t cg_old_btotoff; /* (int32) block totals per cylinder */ int32_t cg_old_boff; /* (u_int16) free block positions */ u_int32_t cg_iusedoff; /* (u_int8) used inode map */ u_int32_t cg_freeoff; /* (u_int8) free block map */ u_int32_t cg_nextfreeoff; /* (u_int8) next available space */ u_int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */ u_int32_t cg_clusteroff; /* (u_int8) free cluster map */ u_int32_t cg_nclusterblks; /* number of clusters this cg */ u_int32_t cg_niblk; /* number of inode blocks this cg */ u_int32_t cg_initediblk; /* last initialized inode */ u_int32_t cg_unrefs; /* number of unreferenced inodes */ int32_t cg_sparecon32[2]; /* reserved for future use */ ufs_time_t cg_time; /* time last written */ int64_t cg_sparecon64[3]; /* reserved for future use */ u_int8_t cg_space[1]; /* space for cylinder group maps */ /* actually longer */ }; /* * Macros for access to cylinder group array structures */ #define cg_chkmagic(cgp) ((cgp)->cg_magic == CG_MAGIC) #define cg_inosused(cgp) \ ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff)) #define cg_blksfree(cgp) \ ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff)) #define cg_clustersfree(cgp) \ ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_clusteroff)) #define cg_clustersum(cgp) \ ((int32_t *)((uintptr_t)(cgp) + (cgp)->cg_clustersumoff)) /* * Turn filesystem block numbers into disk block addresses. * This maps filesystem blocks to device size blocks. */ #define fsbtodb(fs, b) ((daddr_t)(b) << (fs)->fs_fsbtodb) #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) /* * Cylinder group macros to locate things in cylinder groups. * They calc filesystem addresses of cylinder group data structures. */ #define cgbase(fs, c) (((ufs2_daddr_t)(fs)->fs_fpg) * (c)) #define cgdata(fs, c) (cgdmin(fs, c) + (fs)->fs_metaspace) /* data zone */ #define cgmeta(fs, c) (cgdmin(fs, c)) /* meta data */ #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ #define cgstart(fs, c) \ ((fs)->fs_magic == FS_UFS2_MAGIC ? cgbase(fs, c) : \ (cgbase(fs, c) + (fs)->fs_old_cgoffset * ((c) & ~((fs)->fs_old_cgmask)))) /* * Macros for handling inode numbers: * inode number to filesystem block offset. * inode number to cylinder group number. * inode number to filesystem block address. */ #define ino_to_cg(fs, x) (((ino_t)(x)) / (fs)->fs_ipg) #define ino_to_fsba(fs, x) \ ((ufs2_daddr_t)(cgimin(fs, ino_to_cg(fs, (ino_t)(x))) + \ (blkstofrags((fs), ((((ino_t)(x)) % (fs)->fs_ipg) / INOPB(fs)))))) #define ino_to_fsbo(fs, x) (((ino_t)(x)) % INOPB(fs)) /* * Give cylinder group number for a filesystem block. * Give cylinder group block number for a filesystem block. */ #define dtog(fs, d) ((d) / (fs)->fs_fpg) #define dtogd(fs, d) ((d) % (fs)->fs_fpg) /* * Extract the bits for a block from a map. * Compute the cylinder and rotational position of a cyl block addr. */ #define blkmap(fs, map, loc) \ (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag))) /* * The following macros optimize certain frequently calculated * quantities by using shifts and masks in place of divisions * modulos and multiplications. */ #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ ((loc) & (fs)->fs_qbmask) #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ ((loc) & (fs)->fs_qfmask) #define lfragtosize(fs, frag) /* calculates ((off_t)frag * fs->fs_fsize) */ \ (((off_t)(frag)) << (fs)->fs_fshift) #define lblktosize(fs, blk) /* calculates ((off_t)blk * fs->fs_bsize) */ \ (((off_t)(blk)) << (fs)->fs_bshift) /* Use this only when `blk' is known to be small, e.g., < NDADDR. */ #define smalllblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \ ((blk) << (fs)->fs_bshift) #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ ((loc) >> (fs)->fs_bshift) #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ ((loc) >> (fs)->fs_fshift) #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask) #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask) #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ ((frags) >> (fs)->fs_fragshift) #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ ((blks) << (fs)->fs_fragshift) #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ ((fsb) & ((fs)->fs_frag - 1)) #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ ((fsb) &~ ((fs)->fs_frag - 1)) /* * Determine the number of available frags given a * percentage to hold in reserve. */ #define freespace(fs, percentreserved) \ (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ (fs)->fs_cstotal.cs_nffree - \ (((off_t)((fs)->fs_dsize)) * (percentreserved) / 100)) /* * Determining the size of a file block in the filesystem. */ #define blksize(fs, ip, lbn) \ (((lbn) >= NDADDR || (ip)->i_size >= smalllblktosize(fs, (lbn) + 1)) \ ? (fs)->fs_bsize \ : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) #define sblksize(fs, size, lbn) \ (((lbn) >= NDADDR || (size) >= ((lbn) + 1) << (fs)->fs_bshift) \ ? (fs)->fs_bsize \ : (fragroundup(fs, blkoff(fs, (size))))) /* * Number of indirects in a filesystem block. */ #define NINDIR(fs) ((fs)->fs_nindir) /* * Indirect lbns are aligned on NDADDR addresses where single indirects * are the negated address of the lowest lbn reachable, double indirects * are this lbn - 1 and triple indirects are this lbn - 2. This yields * an unusual bit order to determine level. */ static inline int lbn_level(ufs_lbn_t lbn) { if (lbn >= 0) return 0; switch (lbn & 0x3) { case 0: return (0); case 1: break; case 2: return (2); case 3: return (1); default: break; } return (-1); } static inline ufs_lbn_t lbn_offset(struct fs *fs, int level) { ufs_lbn_t res; for (res = 1; level > 0; level--) res *= NINDIR(fs); return (res); } /* * Number of inodes in a secondary storage block/fragment. */ #define INOPB(fs) ((fs)->fs_inopb) #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) /* * Softdep journal record format. */ #define JOP_ADDREF 1 /* Add a reference to an inode. */ #define JOP_REMREF 2 /* Remove a reference from an inode. */ #define JOP_NEWBLK 3 /* Allocate a block. */ #define JOP_FREEBLK 4 /* Free a block or a tree of blocks. */ #define JOP_MVREF 5 /* Move a reference from one off to another. */ #define JOP_TRUNC 6 /* Partial truncation record. */ #define JOP_SYNC 7 /* fsync() complete record. */ #define JREC_SIZE 32 /* Record and segment header size. */ #define SUJ_MIN (4 * 1024 * 1024) /* Minimum journal size */ #define SUJ_MAX (32 * 1024 * 1024) /* Maximum journal size */ #define SUJ_FILE ".sujournal" /* Journal file name */ /* * Size of the segment record header. There is at most one for each disk * block in the journal. The segment header is followed by an array of * records. fsck depends on the first element in each record being 'op' * and the second being 'ino'. Segments may span multiple disk blocks but * the header is present on each. */ struct jsegrec { uint64_t jsr_seq; /* Our sequence number */ uint64_t jsr_oldest; /* Oldest valid sequence number */ uint16_t jsr_cnt; /* Count of valid records */ uint16_t jsr_blocks; /* Count of device bsize blocks. */ uint32_t jsr_crc; /* 32bit crc of the valid space */ ufs_time_t jsr_time; /* timestamp for mount instance */ }; /* * Reference record. Records a single link count modification. */ struct jrefrec { uint32_t jr_op; uint32_t jr_ino; uint32_t jr_parent; uint16_t jr_nlink; uint16_t jr_mode; int64_t jr_diroff; uint64_t jr_unused; }; /* * Move record. Records a reference moving within a directory block. The * nlink is unchanged but we must search both locations. */ struct jmvrec { uint32_t jm_op; uint32_t jm_ino; uint32_t jm_parent; uint16_t jm_unused; int64_t jm_oldoff; int64_t jm_newoff; }; /* * Block record. A set of frags or tree of blocks starting at an indirect are * freed or a set of frags are allocated. */ struct jblkrec { uint32_t jb_op; uint32_t jb_ino; ufs2_daddr_t jb_blkno; ufs_lbn_t jb_lbn; uint16_t jb_frags; uint16_t jb_oldfrags; uint32_t jb_unused; }; /* * Truncation record. Records a partial truncation so that it may be * completed at check time. Also used for sync records. */ struct jtrncrec { uint32_t jt_op; uint32_t jt_ino; int64_t jt_size; uint32_t jt_extsize; uint32_t jt_pad[3]; }; union jrec { struct jsegrec rec_jsegrec; struct jrefrec rec_jrefrec; struct jmvrec rec_jmvrec; struct jblkrec rec_jblkrec; struct jtrncrec rec_jtrncrec; }; #ifdef CTASSERT CTASSERT(sizeof(struct jsegrec) == JREC_SIZE); CTASSERT(sizeof(struct jrefrec) == JREC_SIZE); CTASSERT(sizeof(struct jmvrec) == JREC_SIZE); CTASSERT(sizeof(struct jblkrec) == JREC_SIZE); CTASSERT(sizeof(struct jtrncrec) == JREC_SIZE); CTASSERT(sizeof(union jrec) == JREC_SIZE); #endif extern int inside[], around[]; extern u_char *fragtbl[]; /* * IOCTLs used for filesystem write suspension. */ #define UFSSUSPEND _IOW('U', 1, fsid_t) #define UFSRESUME _IO('U', 2) #endif Index: stable/11 =================================================================== --- stable/11 (revision 356904) +++ stable/11 (revision 356905) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r323157