Index: stable/12/usr.sbin/bhyve/acpi.c =================================================================== --- stable/12/usr.sbin/bhyve/acpi.c (revision 356499) +++ stable/12/usr.sbin/bhyve/acpi.c (revision 356500) @@ -1,999 +1,999 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * bhyve ACPI table generator. * * Create the minimal set of ACPI tables required to boot FreeBSD (and * hopefully other o/s's) by writing out ASL template files for each of * the tables and the compiling them to AML with the Intel iasl compiler. * The AML files are then read into guest memory. * * The tables are placed in the guest's ROM area just below 1MB physical, * above the MPTable. * * Layout (No longer correct at FADT and beyond due to properly * calculating the size of the MADT to allow for changes to * VM_MAXCPU above 21 which overflows this layout.) * ------ * RSDP -> 0xf2400 (36 bytes fixed) * RSDT -> 0xf2440 (36 bytes + 4*7 table addrs, 4 used) * XSDT -> 0xf2480 (36 bytes + 8*7 table addrs, 4 used) * MADT -> 0xf2500 (depends on #CPUs) * FADT -> 0xf2600 (268 bytes) * HPET -> 0xf2740 (56 bytes) * MCFG -> 0xf2780 (60 bytes) * FACS -> 0xf27C0 (64 bytes) * DSDT -> 0xf2800 (variable - can go up to 0x100000) */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include "bhyverun.h" #include "acpi.h" #include "pci_emul.h" /* * Define the base address of the ACPI tables, the sizes of some tables, * and the offsets to the individual tables, */ #define BHYVE_ACPI_BASE 0xf2400 #define RSDT_OFFSET 0x040 #define XSDT_OFFSET 0x080 #define MADT_OFFSET 0x100 /* * The MADT consists of: * 44 Fixed Header * 8 * maxcpu Processor Local APIC entries * 12 I/O APIC entry * 2 * 10 Interrupt Source Override entires * 6 Local APIC NMI entry */ #define MADT_SIZE (44 + VM_MAXCPU*8 + 12 + 2*10 + 6) #define FADT_OFFSET (MADT_OFFSET + MADT_SIZE) #define FADT_SIZE 0x140 #define HPET_OFFSET (FADT_OFFSET + FADT_SIZE) #define HPET_SIZE 0x40 #define MCFG_OFFSET (HPET_OFFSET + HPET_SIZE) #define MCFG_SIZE 0x40 #define FACS_OFFSET (MCFG_OFFSET + MCFG_SIZE) #define FACS_SIZE 0x40 #define DSDT_OFFSET (FACS_OFFSET + FACS_SIZE) #define BHYVE_ASL_TEMPLATE "bhyve.XXXXXXX" #define BHYVE_ASL_SUFFIX ".aml" #define BHYVE_ASL_COMPILER "/usr/sbin/iasl" static int basl_keep_temps; static int basl_verbose_iasl; static int basl_ncpu; static uint32_t basl_acpi_base = BHYVE_ACPI_BASE; static uint32_t hpet_capabilities; /* * Contains the full pathname of the template to be passed * to mkstemp/mktemps(3) */ static char basl_template[MAXPATHLEN]; static char basl_stemplate[MAXPATHLEN]; /* * State for dsdt_line(), dsdt_indent(), and dsdt_unindent(). */ static FILE *dsdt_fp; static int dsdt_indent_level; static int dsdt_error; struct basl_fio { int fd; FILE *fp; char f_name[MAXPATHLEN]; }; #define EFPRINTF(...) \ if (fprintf(__VA_ARGS__) < 0) goto err_exit; #define EFFLUSH(x) \ if (fflush(x) != 0) goto err_exit; static int basl_fwrite_rsdp(FILE *fp) { EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve RSDP template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0008]\t\tSignature : \"RSD PTR \"\n"); EFPRINTF(fp, "[0001]\t\tChecksum : 43\n"); EFPRINTF(fp, "[0006]\t\tOem ID : \"BHYVE \"\n"); EFPRINTF(fp, "[0001]\t\tRevision : 02\n"); EFPRINTF(fp, "[0004]\t\tRSDT Address : %08X\n", basl_acpi_base + RSDT_OFFSET); EFPRINTF(fp, "[0004]\t\tLength : 00000024\n"); EFPRINTF(fp, "[0008]\t\tXSDT Address : 00000000%08X\n", basl_acpi_base + XSDT_OFFSET); EFPRINTF(fp, "[0001]\t\tExtended Checksum : 00\n"); EFPRINTF(fp, "[0003]\t\tReserved : 000000\n"); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_fwrite_rsdt(FILE *fp) { EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve RSDT template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0004]\t\tSignature : \"RSDT\"\n"); EFPRINTF(fp, "[0004]\t\tTable Length : 00000000\n"); EFPRINTF(fp, "[0001]\t\tRevision : 01\n"); EFPRINTF(fp, "[0001]\t\tChecksum : 00\n"); EFPRINTF(fp, "[0006]\t\tOem ID : \"BHYVE \"\n"); EFPRINTF(fp, "[0008]\t\tOem Table ID : \"BVRSDT \"\n"); EFPRINTF(fp, "[0004]\t\tOem Revision : 00000001\n"); /* iasl will fill in the compiler ID/revision fields */ EFPRINTF(fp, "[0004]\t\tAsl Compiler ID : \"xxxx\"\n"); EFPRINTF(fp, "[0004]\t\tAsl Compiler Revision : 00000000\n"); EFPRINTF(fp, "\n"); /* Add in pointers to the MADT, FADT and HPET */ EFPRINTF(fp, "[0004]\t\tACPI Table Address 0 : %08X\n", basl_acpi_base + MADT_OFFSET); EFPRINTF(fp, "[0004]\t\tACPI Table Address 1 : %08X\n", basl_acpi_base + FADT_OFFSET); EFPRINTF(fp, "[0004]\t\tACPI Table Address 2 : %08X\n", basl_acpi_base + HPET_OFFSET); EFPRINTF(fp, "[0004]\t\tACPI Table Address 3 : %08X\n", basl_acpi_base + MCFG_OFFSET); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_fwrite_xsdt(FILE *fp) { EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve XSDT template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0004]\t\tSignature : \"XSDT\"\n"); EFPRINTF(fp, "[0004]\t\tTable Length : 00000000\n"); EFPRINTF(fp, "[0001]\t\tRevision : 01\n"); EFPRINTF(fp, "[0001]\t\tChecksum : 00\n"); EFPRINTF(fp, "[0006]\t\tOem ID : \"BHYVE \"\n"); EFPRINTF(fp, "[0008]\t\tOem Table ID : \"BVXSDT \"\n"); EFPRINTF(fp, "[0004]\t\tOem Revision : 00000001\n"); /* iasl will fill in the compiler ID/revision fields */ EFPRINTF(fp, "[0004]\t\tAsl Compiler ID : \"xxxx\"\n"); EFPRINTF(fp, "[0004]\t\tAsl Compiler Revision : 00000000\n"); EFPRINTF(fp, "\n"); /* Add in pointers to the MADT, FADT and HPET */ EFPRINTF(fp, "[0004]\t\tACPI Table Address 0 : 00000000%08X\n", basl_acpi_base + MADT_OFFSET); EFPRINTF(fp, "[0004]\t\tACPI Table Address 1 : 00000000%08X\n", basl_acpi_base + FADT_OFFSET); EFPRINTF(fp, "[0004]\t\tACPI Table Address 2 : 00000000%08X\n", basl_acpi_base + HPET_OFFSET); EFPRINTF(fp, "[0004]\t\tACPI Table Address 3 : 00000000%08X\n", basl_acpi_base + MCFG_OFFSET); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_fwrite_madt(FILE *fp) { int i; EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve MADT template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0004]\t\tSignature : \"APIC\"\n"); EFPRINTF(fp, "[0004]\t\tTable Length : 00000000\n"); EFPRINTF(fp, "[0001]\t\tRevision : 01\n"); EFPRINTF(fp, "[0001]\t\tChecksum : 00\n"); EFPRINTF(fp, "[0006]\t\tOem ID : \"BHYVE \"\n"); EFPRINTF(fp, "[0008]\t\tOem Table ID : \"BVMADT \"\n"); EFPRINTF(fp, "[0004]\t\tOem Revision : 00000001\n"); /* iasl will fill in the compiler ID/revision fields */ EFPRINTF(fp, "[0004]\t\tAsl Compiler ID : \"xxxx\"\n"); EFPRINTF(fp, "[0004]\t\tAsl Compiler Revision : 00000000\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0004]\t\tLocal Apic Address : FEE00000\n"); EFPRINTF(fp, "[0004]\t\tFlags (decoded below) : 00000001\n"); EFPRINTF(fp, "\t\t\tPC-AT Compatibility : 1\n"); EFPRINTF(fp, "\n"); /* Add a Processor Local APIC entry for each CPU */ for (i = 0; i < basl_ncpu; i++) { EFPRINTF(fp, "[0001]\t\tSubtable Type : 00\n"); EFPRINTF(fp, "[0001]\t\tLength : 08\n"); /* iasl expects hex values for the proc and apic id's */ EFPRINTF(fp, "[0001]\t\tProcessor ID : %02x\n", i); EFPRINTF(fp, "[0001]\t\tLocal Apic ID : %02x\n", i); EFPRINTF(fp, "[0004]\t\tFlags (decoded below) : 00000001\n"); EFPRINTF(fp, "\t\t\tProcessor Enabled : 1\n"); EFPRINTF(fp, "\t\t\tRuntime Online Capable : 0\n"); EFPRINTF(fp, "\n"); } /* Always a single IOAPIC entry, with ID 0 */ EFPRINTF(fp, "[0001]\t\tSubtable Type : 01\n"); EFPRINTF(fp, "[0001]\t\tLength : 0C\n"); /* iasl expects a hex value for the i/o apic id */ EFPRINTF(fp, "[0001]\t\tI/O Apic ID : %02x\n", 0); EFPRINTF(fp, "[0001]\t\tReserved : 00\n"); EFPRINTF(fp, "[0004]\t\tAddress : fec00000\n"); EFPRINTF(fp, "[0004]\t\tInterrupt : 00000000\n"); EFPRINTF(fp, "\n"); /* Legacy IRQ0 is connected to pin 2 of the IOAPIC */ EFPRINTF(fp, "[0001]\t\tSubtable Type : 02\n"); EFPRINTF(fp, "[0001]\t\tLength : 0A\n"); EFPRINTF(fp, "[0001]\t\tBus : 00\n"); EFPRINTF(fp, "[0001]\t\tSource : 00\n"); EFPRINTF(fp, "[0004]\t\tInterrupt : 00000002\n"); EFPRINTF(fp, "[0002]\t\tFlags (decoded below) : 0005\n"); EFPRINTF(fp, "\t\t\tPolarity : 1\n"); EFPRINTF(fp, "\t\t\tTrigger Mode : 1\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0001]\t\tSubtable Type : 02\n"); EFPRINTF(fp, "[0001]\t\tLength : 0A\n"); EFPRINTF(fp, "[0001]\t\tBus : 00\n"); EFPRINTF(fp, "[0001]\t\tSource : %02X\n", SCI_INT); EFPRINTF(fp, "[0004]\t\tInterrupt : %08X\n", SCI_INT); EFPRINTF(fp, "[0002]\t\tFlags (decoded below) : 0000\n"); EFPRINTF(fp, "\t\t\tPolarity : 3\n"); EFPRINTF(fp, "\t\t\tTrigger Mode : 3\n"); EFPRINTF(fp, "\n"); /* Local APIC NMI is connected to LINT 1 on all CPUs */ EFPRINTF(fp, "[0001]\t\tSubtable Type : 04\n"); EFPRINTF(fp, "[0001]\t\tLength : 06\n"); - EFPRINTF(fp, "[0001]\t\tProcessorId : FF\n"); + EFPRINTF(fp, "[0001]\t\tProcessor ID : FF\n"); EFPRINTF(fp, "[0002]\t\tFlags (decoded below) : 0005\n"); EFPRINTF(fp, "\t\t\tPolarity : 1\n"); EFPRINTF(fp, "\t\t\tTrigger Mode : 1\n"); - EFPRINTF(fp, "[0001]\t\tInterrupt : 01\n"); + EFPRINTF(fp, "[0001]\t\tInterrupt Input LINT : 01\n"); EFPRINTF(fp, "\n"); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_fwrite_fadt(FILE *fp) { EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve FADT template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0004]\t\tSignature : \"FACP\"\n"); EFPRINTF(fp, "[0004]\t\tTable Length : 0000010C\n"); EFPRINTF(fp, "[0001]\t\tRevision : 05\n"); EFPRINTF(fp, "[0001]\t\tChecksum : 00\n"); EFPRINTF(fp, "[0006]\t\tOem ID : \"BHYVE \"\n"); EFPRINTF(fp, "[0008]\t\tOem Table ID : \"BVFACP \"\n"); EFPRINTF(fp, "[0004]\t\tOem Revision : 00000001\n"); /* iasl will fill in the compiler ID/revision fields */ EFPRINTF(fp, "[0004]\t\tAsl Compiler ID : \"xxxx\"\n"); EFPRINTF(fp, "[0004]\t\tAsl Compiler Revision : 00000000\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0004]\t\tFACS Address : %08X\n", basl_acpi_base + FACS_OFFSET); EFPRINTF(fp, "[0004]\t\tDSDT Address : %08X\n", basl_acpi_base + DSDT_OFFSET); EFPRINTF(fp, "[0001]\t\tModel : 01\n"); EFPRINTF(fp, "[0001]\t\tPM Profile : 00 [Unspecified]\n"); EFPRINTF(fp, "[0002]\t\tSCI Interrupt : %04X\n", SCI_INT); EFPRINTF(fp, "[0004]\t\tSMI Command Port : %08X\n", SMI_CMD); EFPRINTF(fp, "[0001]\t\tACPI Enable Value : %02X\n", BHYVE_ACPI_ENABLE); EFPRINTF(fp, "[0001]\t\tACPI Disable Value : %02X\n", BHYVE_ACPI_DISABLE); EFPRINTF(fp, "[0001]\t\tS4BIOS Command : 00\n"); EFPRINTF(fp, "[0001]\t\tP-State Control : 00\n"); EFPRINTF(fp, "[0004]\t\tPM1A Event Block Address : %08X\n", PM1A_EVT_ADDR); EFPRINTF(fp, "[0004]\t\tPM1B Event Block Address : 00000000\n"); EFPRINTF(fp, "[0004]\t\tPM1A Control Block Address : %08X\n", PM1A_CNT_ADDR); EFPRINTF(fp, "[0004]\t\tPM1B Control Block Address : 00000000\n"); EFPRINTF(fp, "[0004]\t\tPM2 Control Block Address : 00000000\n"); EFPRINTF(fp, "[0004]\t\tPM Timer Block Address : %08X\n", IO_PMTMR); EFPRINTF(fp, "[0004]\t\tGPE0 Block Address : 00000000\n"); EFPRINTF(fp, "[0004]\t\tGPE1 Block Address : 00000000\n"); EFPRINTF(fp, "[0001]\t\tPM1 Event Block Length : 04\n"); EFPRINTF(fp, "[0001]\t\tPM1 Control Block Length : 02\n"); EFPRINTF(fp, "[0001]\t\tPM2 Control Block Length : 00\n"); EFPRINTF(fp, "[0001]\t\tPM Timer Block Length : 04\n"); EFPRINTF(fp, "[0001]\t\tGPE0 Block Length : 00\n"); EFPRINTF(fp, "[0001]\t\tGPE1 Block Length : 00\n"); EFPRINTF(fp, "[0001]\t\tGPE1 Base Offset : 00\n"); EFPRINTF(fp, "[0001]\t\t_CST Support : 00\n"); EFPRINTF(fp, "[0002]\t\tC2 Latency : 0000\n"); EFPRINTF(fp, "[0002]\t\tC3 Latency : 0000\n"); EFPRINTF(fp, "[0002]\t\tCPU Cache Size : 0000\n"); EFPRINTF(fp, "[0002]\t\tCache Flush Stride : 0000\n"); EFPRINTF(fp, "[0001]\t\tDuty Cycle Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tDuty Cycle Width : 00\n"); EFPRINTF(fp, "[0001]\t\tRTC Day Alarm Index : 00\n"); EFPRINTF(fp, "[0001]\t\tRTC Month Alarm Index : 00\n"); EFPRINTF(fp, "[0001]\t\tRTC Century Index : 32\n"); EFPRINTF(fp, "[0002]\t\tBoot Flags (decoded below) : 0000\n"); EFPRINTF(fp, "\t\t\tLegacy Devices Supported (V2) : 0\n"); EFPRINTF(fp, "\t\t\t8042 Present on ports 60/64 (V2) : 0\n"); EFPRINTF(fp, "\t\t\tVGA Not Present (V4) : 1\n"); EFPRINTF(fp, "\t\t\tMSI Not Supported (V4) : 0\n"); EFPRINTF(fp, "\t\t\tPCIe ASPM Not Supported (V4) : 1\n"); EFPRINTF(fp, "\t\t\tCMOS RTC Not Present (V5) : 0\n"); EFPRINTF(fp, "[0001]\t\tReserved : 00\n"); EFPRINTF(fp, "[0004]\t\tFlags (decoded below) : 00000000\n"); EFPRINTF(fp, "\t\t\tWBINVD instruction is operational (V1) : 1\n"); EFPRINTF(fp, "\t\t\tWBINVD flushes all caches (V1) : 0\n"); EFPRINTF(fp, "\t\t\tAll CPUs support C1 (V1) : 1\n"); EFPRINTF(fp, "\t\t\tC2 works on MP system (V1) : 0\n"); EFPRINTF(fp, "\t\t\tControl Method Power Button (V1) : 0\n"); EFPRINTF(fp, "\t\t\tControl Method Sleep Button (V1) : 1\n"); EFPRINTF(fp, "\t\t\tRTC wake not in fixed reg space (V1) : 0\n"); EFPRINTF(fp, "\t\t\tRTC can wake system from S4 (V1) : 0\n"); EFPRINTF(fp, "\t\t\t32-bit PM Timer (V1) : 1\n"); EFPRINTF(fp, "\t\t\tDocking Supported (V1) : 0\n"); EFPRINTF(fp, "\t\t\tReset Register Supported (V2) : 1\n"); EFPRINTF(fp, "\t\t\tSealed Case (V3) : 0\n"); EFPRINTF(fp, "\t\t\tHeadless - No Video (V3) : 1\n"); EFPRINTF(fp, "\t\t\tUse native instr after SLP_TYPx (V3) : 0\n"); EFPRINTF(fp, "\t\t\tPCIEXP_WAK Bits Supported (V4) : 0\n"); EFPRINTF(fp, "\t\t\tUse Platform Timer (V4) : 0\n"); EFPRINTF(fp, "\t\t\tRTC_STS valid on S4 wake (V4) : 0\n"); EFPRINTF(fp, "\t\t\tRemote Power-on capable (V4) : 0\n"); EFPRINTF(fp, "\t\t\tUse APIC Cluster Model (V4) : 0\n"); EFPRINTF(fp, "\t\t\tUse APIC Physical Destination Mode (V4) : 1\n"); EFPRINTF(fp, "\t\t\tHardware Reduced (V5) : 0\n"); EFPRINTF(fp, "\t\t\tLow Power S0 Idle (V5) : 0\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tReset Register : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 08\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 01 [Byte Access:8]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000CF9\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0001]\t\tValue to cause reset : 06\n"); EFPRINTF(fp, "[0002]\t\tARM Flags (decoded below): 0000\n"); EFPRINTF(fp, "\t\t\tPSCI Compliant : 0\n"); EFPRINTF(fp, "\t\t\tMust use HVC for PSCI : 0\n"); EFPRINTF(fp, "[0001]\t\tFADT Minor Revision : 01\n"); EFPRINTF(fp, "[0008]\t\tFACS Address : 00000000%08X\n", basl_acpi_base + FACS_OFFSET); EFPRINTF(fp, "[0008]\t\tDSDT Address : 00000000%08X\n", basl_acpi_base + DSDT_OFFSET); EFPRINTF(fp, "[0012]\t\tPM1A Event Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 20\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 02 [Word Access:16]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 00000000%08X\n", PM1A_EVT_ADDR); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tPM1B Event Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 00\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 00 [Undefined/Legacy]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000000\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tPM1A Control Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 10\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 02 [Word Access:16]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 00000000%08X\n", PM1A_CNT_ADDR); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tPM1B Control Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 00\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 00 [Undefined/Legacy]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000000\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tPM2 Control Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 08\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 00 [Undefined/Legacy]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000000\n"); EFPRINTF(fp, "\n"); /* Valid for bhyve */ EFPRINTF(fp, "[0012]\t\tPM Timer Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 20\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 03 [DWord Access:32]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 00000000%08X\n", IO_PMTMR); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tGPE0 Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 00\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 01 [Byte Access:8]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000000\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tGPE1 Block : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 00\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 00 [Undefined/Legacy]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000000\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tSleep Control Register : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 08\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 01 [Byte Access:8]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000000\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0012]\t\tSleep Status Register : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 01 [SystemIO]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 08\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 01 [Byte Access:8]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 0000000000000000\n"); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_fwrite_hpet(FILE *fp) { EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve HPET template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0004]\t\tSignature : \"HPET\"\n"); EFPRINTF(fp, "[0004]\t\tTable Length : 00000000\n"); EFPRINTF(fp, "[0001]\t\tRevision : 01\n"); EFPRINTF(fp, "[0001]\t\tChecksum : 00\n"); EFPRINTF(fp, "[0006]\t\tOem ID : \"BHYVE \"\n"); EFPRINTF(fp, "[0008]\t\tOem Table ID : \"BVHPET \"\n"); EFPRINTF(fp, "[0004]\t\tOem Revision : 00000001\n"); /* iasl will fill in the compiler ID/revision fields */ EFPRINTF(fp, "[0004]\t\tAsl Compiler ID : \"xxxx\"\n"); EFPRINTF(fp, "[0004]\t\tAsl Compiler Revision : 00000000\n"); EFPRINTF(fp, "\n"); - EFPRINTF(fp, "[0004]\t\tTimer Block ID : %08X\n", hpet_capabilities); + EFPRINTF(fp, "[0004]\t\tHardware Block ID : %08X\n", hpet_capabilities); EFPRINTF(fp, "[0012]\t\tTimer Block Register : [Generic Address Structure]\n"); EFPRINTF(fp, "[0001]\t\tSpace ID : 00 [SystemMemory]\n"); EFPRINTF(fp, "[0001]\t\tBit Width : 00\n"); EFPRINTF(fp, "[0001]\t\tBit Offset : 00\n"); EFPRINTF(fp, "[0001]\t\tEncoded Access Width : 00 [Undefined/Legacy]\n"); EFPRINTF(fp, "[0008]\t\tAddress : 00000000FED00000\n"); EFPRINTF(fp, "\n"); - EFPRINTF(fp, "[0001]\t\tHPET Number : 00\n"); + EFPRINTF(fp, "[0001]\t\tSequence Number : 00\n"); EFPRINTF(fp, "[0002]\t\tMinimum Clock Ticks : 0000\n"); EFPRINTF(fp, "[0004]\t\tFlags (decoded below) : 00000001\n"); EFPRINTF(fp, "\t\t\t4K Page Protect : 1\n"); EFPRINTF(fp, "\t\t\t64K Page Protect : 0\n"); EFPRINTF(fp, "\n"); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_fwrite_mcfg(FILE *fp) { EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve MCFG template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0004]\t\tSignature : \"MCFG\"\n"); EFPRINTF(fp, "[0004]\t\tTable Length : 00000000\n"); EFPRINTF(fp, "[0001]\t\tRevision : 01\n"); EFPRINTF(fp, "[0001]\t\tChecksum : 00\n"); EFPRINTF(fp, "[0006]\t\tOem ID : \"BHYVE \"\n"); EFPRINTF(fp, "[0008]\t\tOem Table ID : \"BVMCFG \"\n"); EFPRINTF(fp, "[0004]\t\tOem Revision : 00000001\n"); /* iasl will fill in the compiler ID/revision fields */ EFPRINTF(fp, "[0004]\t\tAsl Compiler ID : \"xxxx\"\n"); EFPRINTF(fp, "[0004]\t\tAsl Compiler Revision : 00000000\n"); EFPRINTF(fp, "[0008]\t\tReserved : 0\n"); EFPRINTF(fp, "\n"); EFPRINTF(fp, "[0008]\t\tBase Address : %016lX\n", pci_ecfg_base()); - EFPRINTF(fp, "[0002]\t\tSegment Group: 0000\n"); - EFPRINTF(fp, "[0001]\t\tStart Bus: 00\n"); - EFPRINTF(fp, "[0001]\t\tEnd Bus: FF\n"); + EFPRINTF(fp, "[0002]\t\tSegment Group Number : 0000\n"); + EFPRINTF(fp, "[0001]\t\tStart Bus Number : 00\n"); + EFPRINTF(fp, "[0001]\t\tEnd Bus Number : FF\n"); EFPRINTF(fp, "[0004]\t\tReserved : 0\n"); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_fwrite_facs(FILE *fp) { EFPRINTF(fp, "/*\n"); EFPRINTF(fp, " * bhyve FACS template\n"); EFPRINTF(fp, " */\n"); EFPRINTF(fp, "[0004]\t\tSignature : \"FACS\"\n"); EFPRINTF(fp, "[0004]\t\tLength : 00000040\n"); EFPRINTF(fp, "[0004]\t\tHardware Signature : 00000000\n"); EFPRINTF(fp, "[0004]\t\t32 Firmware Waking Vector : 00000000\n"); EFPRINTF(fp, "[0004]\t\tGlobal Lock : 00000000\n"); EFPRINTF(fp, "[0004]\t\tFlags (decoded below) : 00000000\n"); EFPRINTF(fp, "\t\t\tS4BIOS Support Present : 0\n"); EFPRINTF(fp, "\t\t\t64-bit Wake Supported (V2) : 0\n"); EFPRINTF(fp, "[0008]\t\t64 Firmware Waking Vector : 0000000000000000\n"); EFPRINTF(fp, "[0001]\t\tVersion : 02\n"); EFPRINTF(fp, "[0003]\t\tReserved : 000000\n"); EFPRINTF(fp, "[0004]\t\tOspmFlags (decoded below) : 00000000\n"); EFPRINTF(fp, "\t\t\t64-bit Wake Env Required (V2) : 0\n"); EFFLUSH(fp); return (0); err_exit: return (errno); } /* * Helper routines for writing to the DSDT from other modules. */ void dsdt_line(const char *fmt, ...) { va_list ap; if (dsdt_error != 0) return; if (strcmp(fmt, "") != 0) { if (dsdt_indent_level != 0) EFPRINTF(dsdt_fp, "%*c", dsdt_indent_level * 2, ' '); va_start(ap, fmt); if (vfprintf(dsdt_fp, fmt, ap) < 0) { va_end(ap); goto err_exit; } va_end(ap); } EFPRINTF(dsdt_fp, "\n"); return; err_exit: dsdt_error = errno; } void dsdt_indent(int levels) { dsdt_indent_level += levels; assert(dsdt_indent_level >= 0); } void dsdt_unindent(int levels) { assert(dsdt_indent_level >= levels); dsdt_indent_level -= levels; } void dsdt_fixed_ioport(uint16_t iobase, uint16_t length) { dsdt_line("IO (Decode16,"); dsdt_line(" 0x%04X, // Range Minimum", iobase); dsdt_line(" 0x%04X, // Range Maximum", iobase); dsdt_line(" 0x01, // Alignment"); dsdt_line(" 0x%02X, // Length", length); dsdt_line(" )"); } void dsdt_fixed_irq(uint8_t irq) { dsdt_line("IRQNoFlags ()"); dsdt_line(" {%d}", irq); } void dsdt_fixed_mem32(uint32_t base, uint32_t length) { dsdt_line("Memory32Fixed (ReadWrite,"); dsdt_line(" 0x%08X, // Address Base", base); dsdt_line(" 0x%08X, // Address Length", length); dsdt_line(" )"); } static int basl_fwrite_dsdt(FILE *fp) { dsdt_fp = fp; dsdt_error = 0; dsdt_indent_level = 0; dsdt_line("/*"); dsdt_line(" * bhyve DSDT template"); dsdt_line(" */"); dsdt_line("DefinitionBlock (\"bhyve_dsdt.aml\", \"DSDT\", 2," "\"BHYVE \", \"BVDSDT \", 0x00000001)"); dsdt_line("{"); dsdt_line(" Name (_S5, Package ()"); dsdt_line(" {"); dsdt_line(" 0x05,"); dsdt_line(" Zero,"); dsdt_line(" })"); pci_write_dsdt(); dsdt_line(""); dsdt_line(" Scope (_SB.PC00)"); dsdt_line(" {"); dsdt_line(" Device (HPET)"); dsdt_line(" {"); dsdt_line(" Name (_HID, EISAID(\"PNP0103\"))"); dsdt_line(" Name (_UID, 0)"); dsdt_line(" Name (_CRS, ResourceTemplate ()"); dsdt_line(" {"); dsdt_indent(4); dsdt_fixed_mem32(0xFED00000, 0x400); dsdt_unindent(4); dsdt_line(" })"); dsdt_line(" }"); dsdt_line(" }"); dsdt_line("}"); if (dsdt_error != 0) return (dsdt_error); EFFLUSH(fp); return (0); err_exit: return (errno); } static int basl_open(struct basl_fio *bf, int suffix) { int err; err = 0; if (suffix) { strlcpy(bf->f_name, basl_stemplate, MAXPATHLEN); bf->fd = mkstemps(bf->f_name, strlen(BHYVE_ASL_SUFFIX)); } else { strlcpy(bf->f_name, basl_template, MAXPATHLEN); bf->fd = mkstemp(bf->f_name); } if (bf->fd > 0) { bf->fp = fdopen(bf->fd, "w+"); if (bf->fp == NULL) { unlink(bf->f_name); close(bf->fd); } } else { err = 1; } return (err); } static void basl_close(struct basl_fio *bf) { if (!basl_keep_temps) unlink(bf->f_name); fclose(bf->fp); } static int basl_start(struct basl_fio *in, struct basl_fio *out) { int err; err = basl_open(in, 0); if (!err) { err = basl_open(out, 1); if (err) { basl_close(in); } } return (err); } static void basl_end(struct basl_fio *in, struct basl_fio *out) { basl_close(in); basl_close(out); } static int basl_load(struct vmctx *ctx, int fd, uint64_t off) { struct stat sb; void *gaddr; if (fstat(fd, &sb) < 0) return (errno); gaddr = paddr_guest2host(ctx, basl_acpi_base + off, sb.st_size); if (gaddr == NULL) return (EFAULT); if (read(fd, gaddr, sb.st_size) < 0) return (errno); return (0); } static int basl_compile(struct vmctx *ctx, int (*fwrite_section)(FILE *), uint64_t offset) { struct basl_fio io[2]; static char iaslbuf[3*MAXPATHLEN + 10]; char *fmt; int err; err = basl_start(&io[0], &io[1]); if (!err) { err = (*fwrite_section)(io[0].fp); if (!err) { /* * iasl sends the results of the compilation to * stdout. Shut this down by using the shell to * redirect stdout to /dev/null, unless the user * has requested verbose output for debugging * purposes */ fmt = basl_verbose_iasl ? "%s -p %s %s" : "/bin/sh -c \"%s -p %s %s\" 1> /dev/null"; snprintf(iaslbuf, sizeof(iaslbuf), fmt, BHYVE_ASL_COMPILER, io[1].f_name, io[0].f_name); err = system(iaslbuf); if (!err) { /* * Copy the aml output file into guest * memory at the specified location */ err = basl_load(ctx, io[1].fd, offset); } } basl_end(&io[0], &io[1]); } return (err); } static int basl_make_templates(void) { const char *tmpdir; int err; int len; err = 0; /* * */ if ((tmpdir = getenv("BHYVE_TMPDIR")) == NULL || *tmpdir == '\0' || (tmpdir = getenv("TMPDIR")) == NULL || *tmpdir == '\0') { tmpdir = _PATH_TMP; } len = strlen(tmpdir); if ((len + sizeof(BHYVE_ASL_TEMPLATE) + 1) < MAXPATHLEN) { strcpy(basl_template, tmpdir); while (len > 0 && basl_template[len - 1] == '/') len--; basl_template[len] = '/'; strcpy(&basl_template[len + 1], BHYVE_ASL_TEMPLATE); } else err = E2BIG; if (!err) { /* * len has been intialized (and maybe adjusted) above */ if ((len + sizeof(BHYVE_ASL_TEMPLATE) + 1 + sizeof(BHYVE_ASL_SUFFIX)) < MAXPATHLEN) { strcpy(basl_stemplate, tmpdir); basl_stemplate[len] = '/'; strcpy(&basl_stemplate[len + 1], BHYVE_ASL_TEMPLATE); len = strlen(basl_stemplate); strcpy(&basl_stemplate[len], BHYVE_ASL_SUFFIX); } else err = E2BIG; } return (err); } static struct { int (*wsect)(FILE *fp); uint64_t offset; } basl_ftables[] = { { basl_fwrite_rsdp, 0}, { basl_fwrite_rsdt, RSDT_OFFSET }, { basl_fwrite_xsdt, XSDT_OFFSET }, { basl_fwrite_madt, MADT_OFFSET }, { basl_fwrite_fadt, FADT_OFFSET }, { basl_fwrite_hpet, HPET_OFFSET }, { basl_fwrite_mcfg, MCFG_OFFSET }, { basl_fwrite_facs, FACS_OFFSET }, { basl_fwrite_dsdt, DSDT_OFFSET }, { NULL } }; int acpi_build(struct vmctx *ctx, int ncpu) { int err; int i; basl_ncpu = ncpu; err = vm_get_hpet_capabilities(ctx, &hpet_capabilities); if (err != 0) return (err); /* * For debug, allow the user to have iasl compiler output sent * to stdout rather than /dev/null */ if (getenv("BHYVE_ACPI_VERBOSE_IASL")) basl_verbose_iasl = 1; /* * Allow the user to keep the generated ASL files for debugging * instead of deleting them following use */ if (getenv("BHYVE_ACPI_KEEPTMPS")) basl_keep_temps = 1; i = 0; err = basl_make_templates(); /* * Run through all the ASL files, compiling them and * copying them into guest memory */ while (!err && basl_ftables[i].wsect != NULL) { err = basl_compile(ctx, basl_ftables[i].wsect, basl_ftables[i].offset); i++; } return (err); } Index: stable/12/usr.sbin/bhyve/pci_emul.c =================================================================== --- stable/12/usr.sbin/bhyve/pci_emul.c (revision 356499) +++ stable/12/usr.sbin/bhyve/pci_emul.c (revision 356500) @@ -1,2142 +1,2141 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpi.h" #include "bhyverun.h" #include "inout.h" #include "ioapic.h" #include "mem.h" #include "pci_emul.h" #include "pci_irq.h" #include "pci_lpc.h" #define CONF1_ADDR_PORT 0x0cf8 #define CONF1_DATA_PORT 0x0cfc #define CONF1_ENABLE 0x80000000ul #define MAXBUSES (PCI_BUSMAX + 1) #define MAXSLOTS (PCI_SLOTMAX + 1) #define MAXFUNCS (PCI_FUNCMAX + 1) struct funcinfo { char *fi_name; char *fi_param; struct pci_devinst *fi_devi; }; struct intxinfo { int ii_count; int ii_pirq_pin; int ii_ioapic_irq; }; struct slotinfo { struct intxinfo si_intpins[4]; struct funcinfo si_funcs[MAXFUNCS]; }; struct businfo { uint16_t iobase, iolimit; /* I/O window */ uint32_t membase32, memlimit32; /* mmio window below 4GB */ uint64_t membase64, memlimit64; /* mmio window above 4GB */ struct slotinfo slotinfo[MAXSLOTS]; }; static struct businfo *pci_businfo[MAXBUSES]; SET_DECLARE(pci_devemu_set, struct pci_devemu); static uint64_t pci_emul_iobase; static uint64_t pci_emul_membase32; static uint64_t pci_emul_membase64; #define PCI_EMUL_IOBASE 0x2000 #define PCI_EMUL_IOLIMIT 0x10000 #define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */ #define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */ SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE); #define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE #define PCI_EMUL_MEMBASE64 0xD000000000UL #define PCI_EMUL_MEMLIMIT64 0xFD00000000UL static struct pci_devemu *pci_emul_finddev(char *name); static void pci_lintr_route(struct pci_devinst *pi); static void pci_lintr_update(struct pci_devinst *pi); static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func, int coff, int bytes, uint32_t *val); static __inline void CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes) { if (bytes == 1) pci_set_cfgdata8(pi, coff, val); else if (bytes == 2) pci_set_cfgdata16(pi, coff, val); else pci_set_cfgdata32(pi, coff, val); } static __inline uint32_t CFGREAD(struct pci_devinst *pi, int coff, int bytes) { if (bytes == 1) return (pci_get_cfgdata8(pi, coff)); else if (bytes == 2) return (pci_get_cfgdata16(pi, coff)); else return (pci_get_cfgdata32(pi, coff)); } /* * I/O access */ /* * Slot options are in the form: * * ::,[,] * [:],[,] * * slot is 0..31 * func is 0..7 * emul is a string describing the type of PCI device e.g. virtio-net * config is an optional string, depending on the device, that can be * used for configuration. * Examples are: * 1,virtio-net,tap0 * 3:0,dummy */ static void pci_parse_slot_usage(char *aopt) { fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt); } int pci_parse_slot(char *opt) { struct businfo *bi; struct slotinfo *si; char *emul, *config, *str, *cp; int error, bnum, snum, fnum; error = -1; str = strdup(opt); emul = config = NULL; if ((cp = strchr(str, ',')) != NULL) { *cp = '\0'; emul = cp + 1; if ((cp = strchr(emul, ',')) != NULL) { *cp = '\0'; config = cp + 1; } } else { pci_parse_slot_usage(opt); goto done; } /* :: */ if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) { bnum = 0; /* : */ if (sscanf(str, "%d:%d", &snum, &fnum) != 2) { fnum = 0; /* */ if (sscanf(str, "%d", &snum) != 1) { snum = -1; } } } if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS || fnum < 0 || fnum >= MAXFUNCS) { pci_parse_slot_usage(opt); goto done; } if (pci_businfo[bnum] == NULL) pci_businfo[bnum] = calloc(1, sizeof(struct businfo)); bi = pci_businfo[bnum]; si = &bi->slotinfo[snum]; if (si->si_funcs[fnum].fi_name != NULL) { fprintf(stderr, "pci slot %d:%d already occupied!\n", snum, fnum); goto done; } if (pci_emul_finddev(emul) == NULL) { fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n", snum, fnum, emul); goto done; } error = 0; si->si_funcs[fnum].fi_name = emul; si->si_funcs[fnum].fi_param = config; done: if (error) free(str); return (error); } void pci_print_supported_devices() { struct pci_devemu **pdpp, *pdp; SET_FOREACH(pdpp, pci_devemu_set) { pdp = *pdpp; printf("%s\n", pdp->pe_emu); } } static int pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset) { if (offset < pi->pi_msix.pba_offset) return (0); if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) { return (0); } return (1); } int pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size, uint64_t value) { int msix_entry_offset; int tab_index; char *dest; /* support only 4 or 8 byte writes */ if (size != 4 && size != 8) return (-1); /* * Return if table index is beyond what device supports */ tab_index = offset / MSIX_TABLE_ENTRY_SIZE; if (tab_index >= pi->pi_msix.table_count) return (-1); msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; /* support only aligned writes */ if ((msix_entry_offset % size) != 0) return (-1); dest = (char *)(pi->pi_msix.table + tab_index); dest += msix_entry_offset; if (size == 4) *((uint32_t *)dest) = value; else *((uint64_t *)dest) = value; return (0); } uint64_t pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size) { char *dest; int msix_entry_offset; int tab_index; uint64_t retval = ~0; /* * The PCI standard only allows 4 and 8 byte accesses to the MSI-X * table but we also allow 1 byte access to accommodate reads from * ddb. */ if (size != 1 && size != 4 && size != 8) return (retval); msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE; /* support only aligned reads */ if ((msix_entry_offset % size) != 0) { return (retval); } tab_index = offset / MSIX_TABLE_ENTRY_SIZE; if (tab_index < pi->pi_msix.table_count) { /* valid MSI-X Table access */ dest = (char *)(pi->pi_msix.table + tab_index); dest += msix_entry_offset; if (size == 1) retval = *((uint8_t *)dest); else if (size == 4) retval = *((uint32_t *)dest); else retval = *((uint64_t *)dest); } else if (pci_valid_pba_offset(pi, offset)) { /* return 0 for PBA access */ retval = 0; } return (retval); } int pci_msix_table_bar(struct pci_devinst *pi) { if (pi->pi_msix.table != NULL) return (pi->pi_msix.table_bar); else return (-1); } int pci_msix_pba_bar(struct pci_devinst *pi) { if (pi->pi_msix.table != NULL) return (pi->pi_msix.pba_bar); else return (-1); } static int pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes, uint32_t *eax, void *arg) { struct pci_devinst *pdi = arg; struct pci_devemu *pe = pdi->pi_d; uint64_t offset; int i; for (i = 0; i <= PCI_BARMAX; i++) { if (pdi->pi_bar[i].type == PCIBAR_IO && port >= pdi->pi_bar[i].addr && port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) { offset = port - pdi->pi_bar[i].addr; if (in) *eax = (*pe->pe_barread)(ctx, vcpu, pdi, i, offset, bytes); else (*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset, bytes, *eax); return (0); } } return (-1); } static int pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, int size, uint64_t *val, void *arg1, long arg2) { struct pci_devinst *pdi = arg1; struct pci_devemu *pe = pdi->pi_d; uint64_t offset; int bidx = (int) arg2; assert(bidx <= PCI_BARMAX); assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 || pdi->pi_bar[bidx].type == PCIBAR_MEM64); assert(addr >= pdi->pi_bar[bidx].addr && addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size); offset = addr - pdi->pi_bar[bidx].addr; if (dir == MEM_F_WRITE) { if (size == 8) { (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, 4, *val & 0xffffffff); (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4, 4, *val >> 32); } else { (*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset, size, *val); } } else { if (size == 8) { *val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset, 4); *val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset + 4, 4) << 32; } else { *val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx, offset, size); } } return (0); } static int pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size, uint64_t *addr) { uint64_t base; assert((size & (size - 1)) == 0); /* must be a power of 2 */ base = roundup2(*baseptr, size); if (base + size <= limit) { *addr = base; *baseptr = base + size; return (0); } else return (-1); } int pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type, uint64_t size) { return (pci_emul_alloc_pbar(pdi, idx, 0, type, size)); } /* * Register (or unregister) the MMIO or I/O region associated with the BAR * register 'idx' of an emulated pci device. */ static void modify_bar_registration(struct pci_devinst *pi, int idx, int registration) { int error; struct inout_port iop; struct mem_range mr; switch (pi->pi_bar[idx].type) { case PCIBAR_IO: bzero(&iop, sizeof(struct inout_port)); iop.name = pi->pi_name; iop.port = pi->pi_bar[idx].addr; iop.size = pi->pi_bar[idx].size; if (registration) { iop.flags = IOPORT_F_INOUT; iop.handler = pci_emul_io_handler; iop.arg = pi; error = register_inout(&iop); } else error = unregister_inout(&iop); break; case PCIBAR_MEM32: case PCIBAR_MEM64: bzero(&mr, sizeof(struct mem_range)); mr.name = pi->pi_name; mr.base = pi->pi_bar[idx].addr; mr.size = pi->pi_bar[idx].size; if (registration) { mr.flags = MEM_F_RW; mr.handler = pci_emul_mem_handler; mr.arg1 = pi; mr.arg2 = idx; error = register_mem(&mr); } else error = unregister_mem(&mr); break; default: error = EINVAL; break; } assert(error == 0); } static void unregister_bar(struct pci_devinst *pi, int idx) { modify_bar_registration(pi, idx, 0); } static void register_bar(struct pci_devinst *pi, int idx) { modify_bar_registration(pi, idx, 1); } /* Are we decoding i/o port accesses for the emulated pci device? */ static int porten(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (cmd & PCIM_CMD_PORTEN); } /* Are we decoding memory accesses for the emulated pci device? */ static int memen(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (cmd & PCIM_CMD_MEMEN); } /* * Update the MMIO or I/O address that is decoded by the BAR register. * * If the pci device has enabled the address space decoding then intercept * the address range decoded by the BAR register. */ static void update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type) { int decode; if (pi->pi_bar[idx].type == PCIBAR_IO) decode = porten(pi); else decode = memen(pi); if (decode) unregister_bar(pi, idx); switch (type) { case PCIBAR_IO: case PCIBAR_MEM32: pi->pi_bar[idx].addr = addr; break; case PCIBAR_MEM64: pi->pi_bar[idx].addr &= ~0xffffffffUL; pi->pi_bar[idx].addr |= addr; break; case PCIBAR_MEMHI64: pi->pi_bar[idx].addr &= 0xffffffff; pi->pi_bar[idx].addr |= addr; break; default: assert(0); } if (decode) register_bar(pi, idx); } int pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase, enum pcibar_type type, uint64_t size) { int error; uint64_t *baseptr, limit, addr, mask, lobits, bar; uint16_t cmd, enbit; assert(idx >= 0 && idx <= PCI_BARMAX); if ((size & (size - 1)) != 0) size = 1UL << flsl(size); /* round up to a power of 2 */ /* Enforce minimum BAR sizes required by the PCI standard */ if (type == PCIBAR_IO) { if (size < 4) size = 4; } else { if (size < 16) size = 16; } switch (type) { case PCIBAR_NONE: baseptr = NULL; addr = mask = lobits = enbit = 0; break; case PCIBAR_IO: baseptr = &pci_emul_iobase; limit = PCI_EMUL_IOLIMIT; mask = PCIM_BAR_IO_BASE; lobits = PCIM_BAR_IO_SPACE; enbit = PCIM_CMD_PORTEN; break; case PCIBAR_MEM64: /* * XXX * Some drivers do not work well if the 64-bit BAR is allocated * above 4GB. Allow for this by allocating small requests under * 4GB unless then allocation size is larger than some arbitrary * number (32MB currently). */ if (size > 32 * 1024 * 1024) { /* * XXX special case for device requiring peer-peer DMA */ if (size == 0x100000000UL) baseptr = &hostbase; else baseptr = &pci_emul_membase64; limit = PCI_EMUL_MEMLIMIT64; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | PCIM_BAR_MEM_PREFETCH; } else { baseptr = &pci_emul_membase32; limit = PCI_EMUL_MEMLIMIT32; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64; } enbit = PCIM_CMD_MEMEN; break; case PCIBAR_MEM32: baseptr = &pci_emul_membase32; limit = PCI_EMUL_MEMLIMIT32; mask = PCIM_BAR_MEM_BASE; lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; enbit = PCIM_CMD_MEMEN; break; default: printf("pci_emul_alloc_base: invalid bar type %d\n", type); assert(0); } if (baseptr != NULL) { error = pci_emul_alloc_resource(baseptr, limit, size, &addr); if (error != 0) return (error); } pdi->pi_bar[idx].type = type; pdi->pi_bar[idx].addr = addr; pdi->pi_bar[idx].size = size; /* Initialize the BAR register in config space */ bar = (addr & mask) | lobits; pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar); if (type == PCIBAR_MEM64) { assert(idx + 1 <= PCI_BARMAX); pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64; pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32); } cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND); if ((cmd & enbit) != enbit) pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit); register_bar(pdi, idx); return (0); } #define CAP_START_OFFSET 0x40 static int pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen) { int i, capoff, reallen; uint16_t sts; assert(caplen > 0); reallen = roundup2(caplen, 4); /* dword aligned */ sts = pci_get_cfgdata16(pi, PCIR_STATUS); if ((sts & PCIM_STATUS_CAPPRESENT) == 0) capoff = CAP_START_OFFSET; else capoff = pi->pi_capend + 1; /* Check if we have enough space */ if (capoff + reallen > PCI_REGMAX + 1) return (-1); /* Set the previous capability pointer */ if ((sts & PCIM_STATUS_CAPPRESENT) == 0) { pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff); pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT); } else pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff); /* Copy the capability */ for (i = 0; i < caplen; i++) pci_set_cfgdata8(pi, capoff + i, capdata[i]); /* Set the next capability pointer */ pci_set_cfgdata8(pi, capoff + 1, 0); pi->pi_prevcap = capoff; pi->pi_capend = capoff + reallen - 1; return (0); } static struct pci_devemu * pci_emul_finddev(char *name) { struct pci_devemu **pdpp, *pdp; SET_FOREACH(pdpp, pci_devemu_set) { pdp = *pdpp; if (!strcmp(pdp->pe_emu, name)) { return (pdp); } } return (NULL); } static int pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot, int func, struct funcinfo *fi) { struct pci_devinst *pdi; int err; pdi = calloc(1, sizeof(struct pci_devinst)); pdi->pi_vmctx = ctx; pdi->pi_bus = bus; pdi->pi_slot = slot; pdi->pi_func = func; pthread_mutex_init(&pdi->pi_lintr.lock, NULL); pdi->pi_lintr.pin = 0; pdi->pi_lintr.state = IDLE; pdi->pi_lintr.pirq_pin = 0; pdi->pi_lintr.ioapic_irq = 0; pdi->pi_d = pde; snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot); /* Disable legacy interrupts */ pci_set_cfgdata8(pdi, PCIR_INTLINE, 255); pci_set_cfgdata8(pdi, PCIR_INTPIN, 0); pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN); err = (*pde->pe_init)(ctx, pdi, fi->fi_param); if (err == 0) fi->fi_devi = pdi; else free(pdi); return (err); } void pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr) { int mmc; /* Number of msi messages must be a power of 2 between 1 and 32 */ assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32); mmc = ffs(msgnum) - 1; bzero(msicap, sizeof(struct msicap)); msicap->capid = PCIY_MSI; msicap->nextptr = nextptr; msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1); } int pci_emul_add_msicap(struct pci_devinst *pi, int msgnum) { struct msicap msicap; pci_populate_msicap(&msicap, msgnum, 0); return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap))); } static void pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum, uint32_t msix_tab_size) { assert(msix_tab_size % 4096 == 0); bzero(msixcap, sizeof(struct msixcap)); msixcap->capid = PCIY_MSIX; /* * Message Control Register, all fields set to * zero except for the Table Size. * Note: Table size N is encoded as N-1 */ msixcap->msgctrl = msgnum - 1; /* * MSI-X BAR setup: * - MSI-X table start at offset 0 * - PBA table starts at a 4K aligned offset after the MSI-X table */ msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK; msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK); } static void pci_msix_table_init(struct pci_devinst *pi, int table_entries) { int i, table_size; assert(table_entries > 0); assert(table_entries <= MAX_MSIX_TABLE_ENTRIES); table_size = table_entries * MSIX_TABLE_ENTRY_SIZE; pi->pi_msix.table = calloc(1, table_size); /* set mask bit of vector control register */ for (i = 0; i < table_entries; i++) pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK; } int pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum) { uint32_t tab_size; struct msixcap msixcap; assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES); assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0); tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE; /* Align table size to nearest 4K */ tab_size = roundup2(tab_size, 4096); pi->pi_msix.table_bar = barnum; pi->pi_msix.pba_bar = barnum; pi->pi_msix.table_offset = 0; pi->pi_msix.table_count = msgnum; pi->pi_msix.pba_offset = tab_size; pi->pi_msix.pba_size = PBA_SIZE(msgnum); pci_msix_table_init(pi, msgnum); pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size); /* allocate memory for MSI-X Table and PBA */ pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32, tab_size + pi->pi_msix.pba_size); return (pci_emul_add_capability(pi, (u_char *)&msixcap, sizeof(msixcap))); } void msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { uint16_t msgctrl, rwmask; int off; off = offset - capoff; /* Message Control Register */ if (off == 2 && bytes == 2) { rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK; msgctrl = pci_get_cfgdata16(pi, offset); msgctrl &= ~rwmask; msgctrl |= val & rwmask; val = msgctrl; pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE; pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK; pci_lintr_update(pi); } CFGWRITE(pi, offset, val, bytes); } void msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { uint16_t msgctrl, rwmask, msgdata, mme; uint32_t addrlo; /* * If guest is writing to the message control register make sure * we do not overwrite read-only fields. */ if ((offset - capoff) == 2 && bytes == 2) { rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE; msgctrl = pci_get_cfgdata16(pi, offset); msgctrl &= ~rwmask; msgctrl |= val & rwmask; val = msgctrl; addrlo = pci_get_cfgdata32(pi, capoff + 4); if (msgctrl & PCIM_MSICTRL_64BIT) msgdata = pci_get_cfgdata16(pi, capoff + 12); else msgdata = pci_get_cfgdata16(pi, capoff + 8); mme = msgctrl & PCIM_MSICTRL_MME_MASK; pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0; if (pi->pi_msi.enabled) { pi->pi_msi.addr = addrlo; pi->pi_msi.msg_data = msgdata; pi->pi_msi.maxmsgnum = 1 << (mme >> 4); } else { pi->pi_msi.maxmsgnum = 0; } pci_lintr_update(pi); } CFGWRITE(pi, offset, val, bytes); } void pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset, int bytes, uint32_t val) { /* XXX don't write to the readonly parts */ CFGWRITE(pi, offset, val, bytes); } #define PCIECAP_VERSION 0x2 int pci_emul_add_pciecap(struct pci_devinst *pi, int type) { int err; struct pciecap pciecap; bzero(&pciecap, sizeof(pciecap)); /* * Use the integrated endpoint type for endpoints on a root complex bus. * * NB: bhyve currently only supports a single PCI bus that is the root * complex bus, so all endpoints are integrated. */ if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0)) type = PCIEM_TYPE_ROOT_INT_EP; pciecap.capid = PCIY_EXPRESS; pciecap.pcie_capabilities = PCIECAP_VERSION | type; if (type != PCIEM_TYPE_ROOT_INT_EP) { pciecap.link_capabilities = 0x411; /* gen1, x1 */ pciecap.link_status = 0x11; /* gen1, x1 */ } err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap)); return (err); } /* * This function assumes that 'coff' is in the capabilities region of the * config space. */ static void pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val) { int capid; uint8_t capoff, nextoff; /* Do not allow un-aligned writes */ if ((offset & (bytes - 1)) != 0) return; /* Find the capability that we want to update */ capoff = CAP_START_OFFSET; while (1) { nextoff = pci_get_cfgdata8(pi, capoff + 1); if (nextoff == 0) break; if (offset >= capoff && offset < nextoff) break; capoff = nextoff; } assert(offset >= capoff); /* * Capability ID and Next Capability Pointer are readonly. * However, some o/s's do 4-byte writes that include these. * For this case, trim the write back to 2 bytes and adjust * the data. */ if (offset == capoff || offset == capoff + 1) { if (offset == capoff && bytes == 4) { bytes = 2; offset += 2; val >>= 16; } else return; } capid = pci_get_cfgdata8(pi, capoff); switch (capid) { case PCIY_MSI: msicap_cfgwrite(pi, capoff, offset, bytes, val); break; case PCIY_MSIX: msixcap_cfgwrite(pi, capoff, offset, bytes, val); break; case PCIY_EXPRESS: pciecap_cfgwrite(pi, capoff, offset, bytes, val); break; default: break; } } static int pci_emul_iscap(struct pci_devinst *pi, int offset) { uint16_t sts; sts = pci_get_cfgdata16(pi, PCIR_STATUS); if ((sts & PCIM_STATUS_CAPPRESENT) != 0) { if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend) return (1); } return (0); } static int pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, int size, uint64_t *val, void *arg1, long arg2) { /* * Ignore writes; return 0xff's for reads. The mem read code * will take care of truncating to the correct size. */ if (dir == MEM_F_READ) { *val = 0xffffffffffffffff; } return (0); } static int pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr, int bytes, uint64_t *val, void *arg1, long arg2) { int bus, slot, func, coff, in; coff = addr & 0xfff; func = (addr >> 12) & 0x7; slot = (addr >> 15) & 0x1f; bus = (addr >> 20) & 0xff; in = (dir == MEM_F_READ); if (in) *val = ~0UL; pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val); return (0); } uint64_t pci_ecfg_base(void) { return (PCI_EMUL_ECFG_BASE); } #define BUSIO_ROUNDUP 32 #define BUSMEM_ROUNDUP (1024 * 1024) int init_pci(struct vmctx *ctx) { struct mem_range mr; struct pci_devemu *pde; struct businfo *bi; struct slotinfo *si; struct funcinfo *fi; size_t lowmem; int bus, slot, func; int error; pci_emul_iobase = PCI_EMUL_IOBASE; pci_emul_membase32 = vm_get_lowmem_limit(ctx); pci_emul_membase64 = PCI_EMUL_MEMBASE64; for (bus = 0; bus < MAXBUSES; bus++) { if ((bi = pci_businfo[bus]) == NULL) continue; /* * Keep track of the i/o and memory resources allocated to * this bus. */ bi->iobase = pci_emul_iobase; bi->membase32 = pci_emul_membase32; bi->membase64 = pci_emul_membase64; for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (func = 0; func < MAXFUNCS; func++) { fi = &si->si_funcs[func]; if (fi->fi_name == NULL) continue; pde = pci_emul_finddev(fi->fi_name); assert(pde != NULL); error = pci_emul_init(ctx, pde, bus, slot, func, fi); if (error) return (error); } } /* * Add some slop to the I/O and memory resources decoded by * this bus to give a guest some flexibility if it wants to * reprogram the BARs. */ pci_emul_iobase += BUSIO_ROUNDUP; pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP); bi->iolimit = pci_emul_iobase; pci_emul_membase32 += BUSMEM_ROUNDUP; pci_emul_membase32 = roundup2(pci_emul_membase32, BUSMEM_ROUNDUP); bi->memlimit32 = pci_emul_membase32; pci_emul_membase64 += BUSMEM_ROUNDUP; pci_emul_membase64 = roundup2(pci_emul_membase64, BUSMEM_ROUNDUP); bi->memlimit64 = pci_emul_membase64; } /* * PCI backends are initialized before routing INTx interrupts * so that LPC devices are able to reserve ISA IRQs before * routing PIRQ pins. */ for (bus = 0; bus < MAXBUSES; bus++) { if ((bi = pci_businfo[bus]) == NULL) continue; for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (func = 0; func < MAXFUNCS; func++) { fi = &si->si_funcs[func]; if (fi->fi_devi == NULL) continue; pci_lintr_route(fi->fi_devi); } } } lpc_pirq_routed(); /* * The guest physical memory map looks like the following: * [0, lowmem) guest system memory * [lowmem, lowmem_limit) memory hole (may be absent) * [lowmem_limit, 0xE0000000) PCI hole (32-bit BAR allocation) * [0xE0000000, 0xF0000000) PCI extended config window * [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware * [4GB, 4GB + highmem) */ /* * Accesses to memory addresses that are not allocated to system * memory or PCI devices return 0xff's. */ lowmem = vm_get_lowmem_size(ctx); bzero(&mr, sizeof(struct mem_range)); mr.name = "PCI hole"; mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; mr.base = lowmem; mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem; mr.handler = pci_emul_fallback_handler; error = register_mem_fallback(&mr); assert(error == 0); /* PCI extended config space */ bzero(&mr, sizeof(struct mem_range)); mr.name = "PCI ECFG"; mr.flags = MEM_F_RW | MEM_F_IMMUTABLE; mr.base = PCI_EMUL_ECFG_BASE; mr.size = PCI_EMUL_ECFG_SIZE; mr.handler = pci_emul_ecfg_handler; error = register_mem(&mr); assert(error == 0); return (0); } static void pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq, void *arg) { dsdt_line(" Package ()"); dsdt_line(" {"); dsdt_line(" 0x%X,", slot << 16 | 0xffff); dsdt_line(" 0x%02X,", pin - 1); dsdt_line(" Zero,"); dsdt_line(" 0x%X", ioapic_irq); dsdt_line(" },"); } static void pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq, void *arg) { char *name; name = lpc_pirq_name(pirq_pin); if (name == NULL) return; dsdt_line(" Package ()"); dsdt_line(" {"); dsdt_line(" 0x%X,", slot << 16 | 0xffff); dsdt_line(" 0x%02X,", pin - 1); dsdt_line(" %s,", name); dsdt_line(" 0x00"); dsdt_line(" },"); free(name); } /* * A bhyve virtual machine has a flat PCI hierarchy with a root port * corresponding to each PCI bus. */ static void pci_bus_write_dsdt(int bus) { struct businfo *bi; struct slotinfo *si; struct pci_devinst *pi; int count, func, slot; /* * If there are no devices on this 'bus' then just return. */ if ((bi = pci_businfo[bus]) == NULL) { /* * Bus 0 is special because it decodes the I/O ports used * for PCI config space access even if there are no devices * on it. */ if (bus != 0) return; } dsdt_line(" Device (PC%02X)", bus); dsdt_line(" {"); dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))"); - dsdt_line(" Name (_ADR, Zero)"); dsdt_line(" Method (_BBN, 0, NotSerialized)"); dsdt_line(" {"); dsdt_line(" Return (0x%08X)", bus); dsdt_line(" }"); dsdt_line(" Name (_CRS, ResourceTemplate ()"); dsdt_line(" {"); dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, " "MaxFixed, PosDecode,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x%04X, // Range Minimum", bus); dsdt_line(" 0x%04X, // Range Maximum", bus); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x0001, // Length"); dsdt_line(" ,, )"); if (bus == 0) { dsdt_indent(3); dsdt_fixed_ioport(0xCF8, 8); dsdt_unindent(3); dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x0000, // Range Minimum"); dsdt_line(" 0x0CF7, // Range Maximum"); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x0CF8, // Length"); dsdt_line(" ,, , TypeStatic)"); dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x0D00, // Range Minimum"); dsdt_line(" 0x%04X, // Range Maximum", PCI_EMUL_IOBASE - 1); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x%04X, // Length", PCI_EMUL_IOBASE - 0x0D00); dsdt_line(" ,, , TypeStatic)"); if (bi == NULL) { dsdt_line(" })"); goto done; } } assert(bi != NULL); /* i/o window */ dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, " "PosDecode, EntireRange,"); dsdt_line(" 0x0000, // Granularity"); dsdt_line(" 0x%04X, // Range Minimum", bi->iobase); dsdt_line(" 0x%04X, // Range Maximum", bi->iolimit - 1); dsdt_line(" 0x0000, // Translation Offset"); dsdt_line(" 0x%04X, // Length", bi->iolimit - bi->iobase); dsdt_line(" ,, , TypeStatic)"); /* mmio window (32-bit) */ dsdt_line(" DWordMemory (ResourceProducer, PosDecode, " "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); dsdt_line(" 0x00000000, // Granularity"); dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32); dsdt_line(" 0x%08X, // Range Maximum\n", bi->memlimit32 - 1); dsdt_line(" 0x00000000, // Translation Offset"); dsdt_line(" 0x%08X, // Length\n", bi->memlimit32 - bi->membase32); dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); /* mmio window (64-bit) */ dsdt_line(" QWordMemory (ResourceProducer, PosDecode, " "MinFixed, MaxFixed, NonCacheable, ReadWrite,"); dsdt_line(" 0x0000000000000000, // Granularity"); dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64); dsdt_line(" 0x%016lX, // Range Maximum\n", bi->memlimit64 - 1); dsdt_line(" 0x0000000000000000, // Translation Offset"); dsdt_line(" 0x%016lX, // Length\n", bi->memlimit64 - bi->membase64); dsdt_line(" ,, , AddressRangeMemory, TypeStatic)"); dsdt_line(" })"); count = pci_count_lintr(bus); if (count != 0) { dsdt_indent(2); dsdt_line("Name (PPRT, Package ()"); dsdt_line("{"); pci_walk_lintr(bus, pci_pirq_prt_entry, NULL); dsdt_line("})"); dsdt_line("Name (APRT, Package ()"); dsdt_line("{"); pci_walk_lintr(bus, pci_apic_prt_entry, NULL); dsdt_line("})"); dsdt_line("Method (_PRT, 0, NotSerialized)"); dsdt_line("{"); dsdt_line(" If (PICM)"); dsdt_line(" {"); dsdt_line(" Return (APRT)"); dsdt_line(" }"); dsdt_line(" Else"); dsdt_line(" {"); dsdt_line(" Return (PPRT)"); dsdt_line(" }"); dsdt_line("}"); dsdt_unindent(2); } dsdt_indent(2); for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (func = 0; func < MAXFUNCS; func++) { pi = si->si_funcs[func].fi_devi; if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL) pi->pi_d->pe_write_dsdt(pi); } } dsdt_unindent(2); done: dsdt_line(" }"); } void pci_write_dsdt(void) { int bus; dsdt_indent(1); dsdt_line("Name (PICM, 0x00)"); dsdt_line("Method (_PIC, 1, NotSerialized)"); dsdt_line("{"); dsdt_line(" Store (Arg0, PICM)"); dsdt_line("}"); dsdt_line(""); dsdt_line("Scope (_SB)"); dsdt_line("{"); for (bus = 0; bus < MAXBUSES; bus++) pci_bus_write_dsdt(bus); dsdt_line("}"); dsdt_unindent(1); } int pci_bus_configured(int bus) { assert(bus >= 0 && bus < MAXBUSES); return (pci_businfo[bus] != NULL); } int pci_msi_enabled(struct pci_devinst *pi) { return (pi->pi_msi.enabled); } int pci_msi_maxmsgnum(struct pci_devinst *pi) { if (pi->pi_msi.enabled) return (pi->pi_msi.maxmsgnum); else return (0); } int pci_msix_enabled(struct pci_devinst *pi) { return (pi->pi_msix.enabled && !pi->pi_msi.enabled); } void pci_generate_msix(struct pci_devinst *pi, int index) { struct msix_table_entry *mte; if (!pci_msix_enabled(pi)) return; if (pi->pi_msix.function_mask) return; if (index >= pi->pi_msix.table_count) return; mte = &pi->pi_msix.table[index]; if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) { /* XXX Set PBA bit if interrupt is disabled */ vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data); } } void pci_generate_msi(struct pci_devinst *pi, int index) { if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) { vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr, pi->pi_msi.msg_data + index); } } static bool pci_lintr_permitted(struct pci_devinst *pi) { uint16_t cmd; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); return (!(pi->pi_msi.enabled || pi->pi_msix.enabled || (cmd & PCIM_CMD_INTxDIS))); } void pci_lintr_request(struct pci_devinst *pi) { struct businfo *bi; struct slotinfo *si; int bestpin, bestcount, pin; bi = pci_businfo[pi->pi_bus]; assert(bi != NULL); /* * Just allocate a pin from our slot. The pin will be * assigned IRQs later when interrupts are routed. */ si = &bi->slotinfo[pi->pi_slot]; bestpin = 0; bestcount = si->si_intpins[0].ii_count; for (pin = 1; pin < 4; pin++) { if (si->si_intpins[pin].ii_count < bestcount) { bestpin = pin; bestcount = si->si_intpins[pin].ii_count; } } si->si_intpins[bestpin].ii_count++; pi->pi_lintr.pin = bestpin + 1; pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1); } static void pci_lintr_route(struct pci_devinst *pi) { struct businfo *bi; struct intxinfo *ii; if (pi->pi_lintr.pin == 0) return; bi = pci_businfo[pi->pi_bus]; assert(bi != NULL); ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1]; /* * Attempt to allocate an I/O APIC pin for this intpin if one * is not yet assigned. */ if (ii->ii_ioapic_irq == 0) ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi); assert(ii->ii_ioapic_irq > 0); /* * Attempt to allocate a PIRQ pin for this intpin if one is * not yet assigned. */ if (ii->ii_pirq_pin == 0) ii->ii_pirq_pin = pirq_alloc_pin(pi); assert(ii->ii_pirq_pin > 0); pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq; pi->pi_lintr.pirq_pin = ii->ii_pirq_pin; pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin)); } void pci_lintr_assert(struct pci_devinst *pi) { assert(pi->pi_lintr.pin > 0); pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == IDLE) { if (pci_lintr_permitted(pi)) { pi->pi_lintr.state = ASSERTED; pci_irq_assert(pi); } else pi->pi_lintr.state = PENDING; } pthread_mutex_unlock(&pi->pi_lintr.lock); } void pci_lintr_deassert(struct pci_devinst *pi) { assert(pi->pi_lintr.pin > 0); pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == ASSERTED) { pi->pi_lintr.state = IDLE; pci_irq_deassert(pi); } else if (pi->pi_lintr.state == PENDING) pi->pi_lintr.state = IDLE; pthread_mutex_unlock(&pi->pi_lintr.lock); } static void pci_lintr_update(struct pci_devinst *pi) { pthread_mutex_lock(&pi->pi_lintr.lock); if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) { pci_irq_deassert(pi); pi->pi_lintr.state = PENDING; } else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) { pi->pi_lintr.state = ASSERTED; pci_irq_assert(pi); } pthread_mutex_unlock(&pi->pi_lintr.lock); } int pci_count_lintr(int bus) { int count, slot, pin; struct slotinfo *slotinfo; count = 0; if (pci_businfo[bus] != NULL) { for (slot = 0; slot < MAXSLOTS; slot++) { slotinfo = &pci_businfo[bus]->slotinfo[slot]; for (pin = 0; pin < 4; pin++) { if (slotinfo->si_intpins[pin].ii_count != 0) count++; } } } return (count); } void pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg) { struct businfo *bi; struct slotinfo *si; struct intxinfo *ii; int slot, pin; if ((bi = pci_businfo[bus]) == NULL) return; for (slot = 0; slot < MAXSLOTS; slot++) { si = &bi->slotinfo[slot]; for (pin = 0; pin < 4; pin++) { ii = &si->si_intpins[pin]; if (ii->ii_count != 0) cb(bus, slot, pin + 1, ii->ii_pirq_pin, ii->ii_ioapic_irq, arg); } } } /* * Return 1 if the emulated device in 'slot' is a multi-function device. * Return 0 otherwise. */ static int pci_emul_is_mfdev(int bus, int slot) { struct businfo *bi; struct slotinfo *si; int f, numfuncs; numfuncs = 0; if ((bi = pci_businfo[bus]) != NULL) { si = &bi->slotinfo[slot]; for (f = 0; f < MAXFUNCS; f++) { if (si->si_funcs[f].fi_devi != NULL) { numfuncs++; } } } return (numfuncs > 1); } /* * Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on * whether or not is a multi-function being emulated in the pci 'slot'. */ static void pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv) { int mfdev; if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) { mfdev = pci_emul_is_mfdev(bus, slot); switch (bytes) { case 1: case 2: *rv &= ~PCIM_MFDEV; if (mfdev) { *rv |= PCIM_MFDEV; } break; case 4: *rv &= ~(PCIM_MFDEV << 16); if (mfdev) { *rv |= (PCIM_MFDEV << 16); } break; } } } /* * Update device state in response to changes to the PCI command * register. */ void pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old) { int i; uint16_t changed, new; new = pci_get_cfgdata16(pi, PCIR_COMMAND); changed = old ^ new; /* * If the MMIO or I/O address space decoding has changed then * register/unregister all BARs that decode that address space. */ for (i = 0; i <= PCI_BARMAX; i++) { switch (pi->pi_bar[i].type) { case PCIBAR_NONE: case PCIBAR_MEMHI64: break; case PCIBAR_IO: /* I/O address space decoding changed? */ if (changed & PCIM_CMD_PORTEN) { if (new & PCIM_CMD_PORTEN) register_bar(pi, i); else unregister_bar(pi, i); } break; case PCIBAR_MEM32: case PCIBAR_MEM64: /* MMIO address space decoding changed? */ if (changed & PCIM_CMD_MEMEN) { if (new & PCIM_CMD_MEMEN) register_bar(pi, i); else unregister_bar(pi, i); } break; default: assert(0); } } /* * If INTx has been unmasked and is pending, assert the * interrupt. */ pci_lintr_update(pi); } static void pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes) { int rshift; uint32_t cmd, old, readonly; cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */ /* * From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3. * * XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are * 'write 1 to clear'. However these bits are not set to '1' by * any device emulation so it is simpler to treat them as readonly. */ rshift = (coff & 0x3) * 8; readonly = 0xFFFFF880 >> rshift; old = CFGREAD(pi, coff, bytes); new &= ~readonly; new |= (old & readonly); CFGWRITE(pi, coff, new, bytes); /* update config */ pci_emul_cmd_changed(pi, cmd); } static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func, int coff, int bytes, uint32_t *eax) { struct businfo *bi; struct slotinfo *si; struct pci_devinst *pi; struct pci_devemu *pe; int idx, needcfg; uint64_t addr, bar, mask; if ((bi = pci_businfo[bus]) != NULL) { si = &bi->slotinfo[slot]; pi = si->si_funcs[func].fi_devi; } else pi = NULL; /* * Just return if there is no device at this slot:func or if the * the guest is doing an un-aligned access. */ if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) || (coff & (bytes - 1)) != 0) { if (in) *eax = 0xffffffff; return; } /* * Ignore all writes beyond the standard config space and return all * ones on reads. */ if (coff >= PCI_REGMAX + 1) { if (in) { *eax = 0xffffffff; /* * Extended capabilities begin at offset 256 in config * space. Absence of extended capabilities is signaled * with all 0s in the extended capability header at * offset 256. */ if (coff <= PCI_REGMAX + 4) *eax = 0x00000000; } return; } pe = pi->pi_d; /* * Config read */ if (in) { /* Let the device emulation override the default handler */ if (pe->pe_cfgread != NULL) { needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes, eax); } else { needcfg = 1; } if (needcfg) *eax = CFGREAD(pi, coff, bytes); pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax); } else { /* Let the device emulation override the default handler */ if (pe->pe_cfgwrite != NULL && (*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0) return; /* * Special handling for write to BAR registers */ if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) { /* * Ignore writes to BAR registers that are not * 4-byte aligned. */ if (bytes != 4 || (coff & 0x3) != 0) return; idx = (coff - PCIR_BAR(0)) / 4; mask = ~(pi->pi_bar[idx].size - 1); switch (pi->pi_bar[idx].type) { case PCIBAR_NONE: pi->pi_bar[idx].addr = bar = 0; break; case PCIBAR_IO: addr = *eax & mask; addr &= 0xffff; bar = addr | PCIM_BAR_IO_SPACE; /* * Register the new BAR value for interception */ if (addr != pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_IO); } break; case PCIBAR_MEM32: addr = bar = *eax & mask; bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32; if (addr != pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_MEM32); } break; case PCIBAR_MEM64: addr = bar = *eax & mask; bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 | PCIM_BAR_MEM_PREFETCH; if (addr != (uint32_t)pi->pi_bar[idx].addr) { update_bar_address(pi, addr, idx, PCIBAR_MEM64); } break; case PCIBAR_MEMHI64: mask = ~(pi->pi_bar[idx - 1].size - 1); addr = ((uint64_t)*eax << 32) & mask; bar = addr >> 32; if (bar != pi->pi_bar[idx - 1].addr >> 32) { update_bar_address(pi, addr, idx - 1, PCIBAR_MEMHI64); } break; default: assert(0); } pci_set_cfgdata32(pi, coff, bar); } else if (pci_emul_iscap(pi, coff)) { pci_emul_capwrite(pi, coff, bytes, *eax); } else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) { pci_emul_cmdsts_write(pi, coff, *eax, bytes); } else { CFGWRITE(pi, coff, *eax, bytes); } } } static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff; static int pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes, uint32_t *eax, void *arg) { uint32_t x; if (bytes != 4) { if (in) *eax = (bytes == 2) ? 0xffff : 0xff; return (0); } if (in) { x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff; if (cfgenable) x |= CONF1_ENABLE; *eax = x; } else { x = *eax; cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE; cfgoff = x & PCI_REGMAX; cfgfunc = (x >> 8) & PCI_FUNCMAX; cfgslot = (x >> 11) & PCI_SLOTMAX; cfgbus = (x >> 16) & PCI_BUSMAX; } return (0); } INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr); static int pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes, uint32_t *eax, void *arg) { int coff; assert(bytes == 1 || bytes == 2 || bytes == 4); coff = cfgoff + (port - CONF1_DATA_PORT); if (cfgenable) { pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax); } else { /* Ignore accesses to cfgdata if not enabled by cfgaddr */ if (in) *eax = 0xffffffff; } return (0); } INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata); INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata); #define PCI_EMUL_TEST #ifdef PCI_EMUL_TEST /* * Define a dummy test device */ #define DIOSZ 8 #define DMEMSZ 4096 struct pci_emul_dsoftc { uint8_t ioregs[DIOSZ]; uint8_t memregs[2][DMEMSZ]; }; #define PCI_EMUL_MSI_MSGS 4 #define PCI_EMUL_MSIX_MSGS 16 static int pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts) { int error; struct pci_emul_dsoftc *sc; sc = calloc(1, sizeof(struct pci_emul_dsoftc)); pi->pi_arg = sc; pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001); pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD); pci_set_cfgdata8(pi, PCIR_CLASS, 0x02); error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS); assert(error == 0); error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ); assert(error == 0); error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ); assert(error == 0); error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ); assert(error == 0); return (0); } static void pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size, uint64_t value) { int i; struct pci_emul_dsoftc *sc = pi->pi_arg; if (baridx == 0) { if (offset + size > DIOSZ) { printf("diow: iow too large, offset %ld size %d\n", offset, size); return; } if (size == 1) { sc->ioregs[offset] = value & 0xff; } else if (size == 2) { *(uint16_t *)&sc->ioregs[offset] = value & 0xffff; } else if (size == 4) { *(uint32_t *)&sc->ioregs[offset] = value; } else { printf("diow: iow unknown size %d\n", size); } /* * Special magic value to generate an interrupt */ if (offset == 4 && size == 4 && pci_msi_enabled(pi)) pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi)); if (value == 0xabcdef) { for (i = 0; i < pci_msi_maxmsgnum(pi); i++) pci_generate_msi(pi, i); } } if (baridx == 1 || baridx == 2) { if (offset + size > DMEMSZ) { printf("diow: memw too large, offset %ld size %d\n", offset, size); return; } i = baridx - 1; /* 'memregs' index */ if (size == 1) { sc->memregs[i][offset] = value; } else if (size == 2) { *(uint16_t *)&sc->memregs[i][offset] = value; } else if (size == 4) { *(uint32_t *)&sc->memregs[i][offset] = value; } else if (size == 8) { *(uint64_t *)&sc->memregs[i][offset] = value; } else { printf("diow: memw unknown size %d\n", size); } /* * magic interrupt ?? */ } if (baridx > 2 || baridx < 0) { printf("diow: unknown bar idx %d\n", baridx); } } static uint64_t pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx, uint64_t offset, int size) { struct pci_emul_dsoftc *sc = pi->pi_arg; uint32_t value; int i; if (baridx == 0) { if (offset + size > DIOSZ) { printf("dior: ior too large, offset %ld size %d\n", offset, size); return (0); } value = 0; if (size == 1) { value = sc->ioregs[offset]; } else if (size == 2) { value = *(uint16_t *) &sc->ioregs[offset]; } else if (size == 4) { value = *(uint32_t *) &sc->ioregs[offset]; } else { printf("dior: ior unknown size %d\n", size); } } if (baridx == 1 || baridx == 2) { if (offset + size > DMEMSZ) { printf("dior: memr too large, offset %ld size %d\n", offset, size); return (0); } i = baridx - 1; /* 'memregs' index */ if (size == 1) { value = sc->memregs[i][offset]; } else if (size == 2) { value = *(uint16_t *) &sc->memregs[i][offset]; } else if (size == 4) { value = *(uint32_t *) &sc->memregs[i][offset]; } else if (size == 8) { value = *(uint64_t *) &sc->memregs[i][offset]; } else { printf("dior: ior unknown size %d\n", size); } } if (baridx > 2 || baridx < 0) { printf("dior: unknown bar idx %d\n", baridx); return (0); } return (value); } struct pci_devemu pci_dummy = { .pe_emu = "dummy", .pe_init = pci_emul_dinit, .pe_barwrite = pci_emul_diow, .pe_barread = pci_emul_dior }; PCI_EMUL_SET(pci_dummy); #endif /* PCI_EMUL_TEST */ Index: stable/12 =================================================================== --- stable/12 (revision 356499) +++ stable/12 (revision 356500) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r354056