Index: head/contrib/libarchive/libarchive/archive_cryptor.c =================================================================== --- head/contrib/libarchive/libarchive/archive_cryptor.c (revision 356415) +++ head/contrib/libarchive/libarchive/archive_cryptor.c (revision 356416) @@ -1,518 +1,519 @@ /*- * Copyright (c) 2014 Michihiro NAKAJIMA * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "archive_platform.h" #ifdef HAVE_STRING_H #include #endif #include "archive.h" #include "archive_cryptor_private.h" /* * On systems that do not support any recognized crypto libraries, * this file will normally define no usable symbols. * * But some compilers and linkers choke on empty object files, so * define a public symbol that will always exist. This could * be removed someday if this file gains another always-present * symbol definition. */ int __libarchive_cryptor_build_hack(void) { return 0; } #ifdef ARCHIVE_CRYPTOR_USE_Apple_CommonCrypto static int pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt, size_t salt_len, unsigned rounds, uint8_t *derived_key, size_t derived_key_len) { CCKeyDerivationPBKDF(kCCPBKDF2, (const char *)pw, pw_len, salt, salt_len, kCCPRFHmacAlgSHA1, rounds, derived_key, derived_key_len); return 0; } #elif defined(_WIN32) && !defined(__CYGWIN__) && defined(HAVE_BCRYPT_H) #ifdef _MSC_VER #pragma comment(lib, "Bcrypt.lib") #endif static int pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt, size_t salt_len, unsigned rounds, uint8_t *derived_key, size_t derived_key_len) { NTSTATUS status; BCRYPT_ALG_HANDLE hAlg; status = BCryptOpenAlgorithmProvider(&hAlg, BCRYPT_SHA1_ALGORITHM, MS_PRIMITIVE_PROVIDER, BCRYPT_ALG_HANDLE_HMAC_FLAG); if (!BCRYPT_SUCCESS(status)) return -1; status = BCryptDeriveKeyPBKDF2(hAlg, (PUCHAR)(uintptr_t)pw, (ULONG)pw_len, (PUCHAR)(uintptr_t)salt, (ULONG)salt_len, rounds, (PUCHAR)derived_key, (ULONG)derived_key_len, 0); BCryptCloseAlgorithmProvider(hAlg, 0); return (BCRYPT_SUCCESS(status)) ? 0: -1; } #elif defined(HAVE_LIBMBEDCRYPTO) && defined(HAVE_MBEDTLS_PKCS5_H) static int pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt, size_t salt_len, unsigned rounds, uint8_t *derived_key, size_t derived_key_len) { mbedtls_md_context_t ctx; const mbedtls_md_info_t *info; int ret; mbedtls_md_init(&ctx); info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1); if (info == NULL) { mbedtls_md_free(&ctx); return (-1); } ret = mbedtls_md_setup(&ctx, info, 1); if (ret != 0) { mbedtls_md_free(&ctx); return (-1); } ret = mbedtls_pkcs5_pbkdf2_hmac(&ctx, (const unsigned char *)pw, pw_len, salt, salt_len, rounds, derived_key_len, derived_key); mbedtls_md_free(&ctx); return (ret); } #elif defined(HAVE_LIBNETTLE) && defined(HAVE_NETTLE_PBKDF2_H) static int pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt, size_t salt_len, unsigned rounds, uint8_t *derived_key, size_t derived_key_len) { pbkdf2_hmac_sha1((unsigned)pw_len, (const uint8_t *)pw, rounds, salt_len, salt, derived_key_len, derived_key); return 0; } #elif defined(HAVE_LIBCRYPTO) && defined(HAVE_PKCS5_PBKDF2_HMAC_SHA1) static int pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt, size_t salt_len, unsigned rounds, uint8_t *derived_key, size_t derived_key_len) { PKCS5_PBKDF2_HMAC_SHA1(pw, pw_len, salt, salt_len, rounds, derived_key_len, derived_key); return 0; } #else /* Stub */ static int pbkdf2_sha1(const char *pw, size_t pw_len, const uint8_t *salt, size_t salt_len, unsigned rounds, uint8_t *derived_key, size_t derived_key_len) { (void)pw; /* UNUSED */ (void)pw_len; /* UNUSED */ (void)salt; /* UNUSED */ (void)salt_len; /* UNUSED */ (void)rounds; /* UNUSED */ (void)derived_key; /* UNUSED */ (void)derived_key_len; /* UNUSED */ return -1; /* UNSUPPORTED */ } #endif #ifdef ARCHIVE_CRYPTOR_USE_Apple_CommonCrypto # if MAC_OS_X_VERSION_MAX_ALLOWED < 1090 # define kCCAlgorithmAES kCCAlgorithmAES128 # endif static int aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len) { CCCryptorStatus r; ctx->key_len = key_len; memcpy(ctx->key, key, key_len); memset(ctx->nonce, 0, sizeof(ctx->nonce)); ctx->encr_pos = AES_BLOCK_SIZE; r = CCCryptorCreateWithMode(kCCEncrypt, kCCModeECB, kCCAlgorithmAES, ccNoPadding, NULL, key, key_len, NULL, 0, 0, 0, &ctx->ctx); return (r == kCCSuccess)? 0: -1; } static int aes_ctr_encrypt_counter(archive_crypto_ctx *ctx) { CCCryptorRef ref = ctx->ctx; CCCryptorStatus r; r = CCCryptorReset(ref, NULL); if (r != kCCSuccess && r != kCCUnimplemented) return -1; r = CCCryptorUpdate(ref, ctx->nonce, AES_BLOCK_SIZE, ctx->encr_buf, AES_BLOCK_SIZE, NULL); return (r == kCCSuccess)? 0: -1; } static int aes_ctr_release(archive_crypto_ctx *ctx) { memset(ctx->key, 0, ctx->key_len); memset(ctx->nonce, 0, sizeof(ctx->nonce)); return 0; } #elif defined(_WIN32) && !defined(__CYGWIN__) && defined(HAVE_BCRYPT_H) static int aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len) { BCRYPT_ALG_HANDLE hAlg; BCRYPT_KEY_HANDLE hKey; DWORD keyObj_len, aes_key_len; PBYTE keyObj; ULONG result; NTSTATUS status; BCRYPT_KEY_LENGTHS_STRUCT key_lengths; ctx->hAlg = NULL; ctx->hKey = NULL; ctx->keyObj = NULL; switch (key_len) { case 16: aes_key_len = 128; break; case 24: aes_key_len = 192; break; case 32: aes_key_len = 256; break; default: return -1; } status = BCryptOpenAlgorithmProvider(&hAlg, BCRYPT_AES_ALGORITHM, MS_PRIMITIVE_PROVIDER, 0); if (!BCRYPT_SUCCESS(status)) return -1; status = BCryptGetProperty(hAlg, BCRYPT_KEY_LENGTHS, (PUCHAR)&key_lengths, sizeof(key_lengths), &result, 0); if (!BCRYPT_SUCCESS(status)) { BCryptCloseAlgorithmProvider(hAlg, 0); return -1; } if (key_lengths.dwMinLength > aes_key_len || key_lengths.dwMaxLength < aes_key_len) { BCryptCloseAlgorithmProvider(hAlg, 0); return -1; } status = BCryptGetProperty(hAlg, BCRYPT_OBJECT_LENGTH, (PUCHAR)&keyObj_len, sizeof(keyObj_len), &result, 0); if (!BCRYPT_SUCCESS(status)) { BCryptCloseAlgorithmProvider(hAlg, 0); return -1; } keyObj = (PBYTE)HeapAlloc(GetProcessHeap(), 0, keyObj_len); if (keyObj == NULL) { BCryptCloseAlgorithmProvider(hAlg, 0); return -1; } status = BCryptSetProperty(hAlg, BCRYPT_CHAINING_MODE, (PUCHAR)BCRYPT_CHAIN_MODE_ECB, sizeof(BCRYPT_CHAIN_MODE_ECB), 0); if (!BCRYPT_SUCCESS(status)) { BCryptCloseAlgorithmProvider(hAlg, 0); HeapFree(GetProcessHeap(), 0, keyObj); return -1; } status = BCryptGenerateSymmetricKey(hAlg, &hKey, keyObj, keyObj_len, (PUCHAR)(uintptr_t)key, (ULONG)key_len, 0); if (!BCRYPT_SUCCESS(status)) { BCryptCloseAlgorithmProvider(hAlg, 0); HeapFree(GetProcessHeap(), 0, keyObj); return -1; } ctx->hAlg = hAlg; ctx->hKey = hKey; ctx->keyObj = keyObj; ctx->keyObj_len = keyObj_len; ctx->encr_pos = AES_BLOCK_SIZE; return 0; } static int aes_ctr_encrypt_counter(archive_crypto_ctx *ctx) { NTSTATUS status; ULONG result; status = BCryptEncrypt(ctx->hKey, (PUCHAR)ctx->nonce, AES_BLOCK_SIZE, NULL, NULL, 0, (PUCHAR)ctx->encr_buf, AES_BLOCK_SIZE, &result, 0); return BCRYPT_SUCCESS(status) ? 0 : -1; } static int aes_ctr_release(archive_crypto_ctx *ctx) { if (ctx->hAlg != NULL) { BCryptCloseAlgorithmProvider(ctx->hAlg, 0); ctx->hAlg = NULL; BCryptDestroyKey(ctx->hKey); ctx->hKey = NULL; HeapFree(GetProcessHeap(), 0, ctx->keyObj); ctx->keyObj = NULL; } memset(ctx, 0, sizeof(*ctx)); return 0; } #elif defined(HAVE_LIBMBEDCRYPTO) && defined(HAVE_MBEDTLS_AES_H) + static int aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len) { mbedtls_aes_init(&ctx->ctx); ctx->key_len = key_len; memcpy(ctx->key, key, key_len); memset(ctx->nonce, 0, sizeof(ctx->nonce)); ctx->encr_pos = AES_BLOCK_SIZE; return 0; } static int aes_ctr_encrypt_counter(archive_crypto_ctx *ctx) { if (mbedtls_aes_setkey_enc(&ctx->ctx, ctx->key, ctx->key_len * 8) != 0) return (-1); if (mbedtls_aes_crypt_ecb(&ctx->ctx, MBEDTLS_AES_ENCRYPT, ctx->nonce, ctx->encr_buf) != 0) return (-1); return 0; } static int aes_ctr_release(archive_crypto_ctx *ctx) { mbedtls_aes_free(&ctx->ctx); memset(ctx, 0, sizeof(*ctx)); return 0; } #elif defined(HAVE_LIBNETTLE) && defined(HAVE_NETTLE_AES_H) static int aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len) { ctx->key_len = key_len; memcpy(ctx->key, key, key_len); memset(ctx->nonce, 0, sizeof(ctx->nonce)); ctx->encr_pos = AES_BLOCK_SIZE; memset(&ctx->ctx, 0, sizeof(ctx->ctx)); return 0; } static int aes_ctr_encrypt_counter(archive_crypto_ctx *ctx) { aes_set_encrypt_key(&ctx->ctx, ctx->key_len, ctx->key); aes_encrypt(&ctx->ctx, AES_BLOCK_SIZE, ctx->encr_buf, ctx->nonce); return 0; } static int aes_ctr_release(archive_crypto_ctx *ctx) { memset(ctx, 0, sizeof(*ctx)); return 0; } #elif defined(HAVE_LIBCRYPTO) static int aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len) { if ((ctx->ctx = EVP_CIPHER_CTX_new()) == NULL) return -1; switch (key_len) { case 16: ctx->type = EVP_aes_128_ecb(); break; case 24: ctx->type = EVP_aes_192_ecb(); break; case 32: ctx->type = EVP_aes_256_ecb(); break; default: ctx->type = NULL; return -1; } ctx->key_len = key_len; memcpy(ctx->key, key, key_len); memset(ctx->nonce, 0, sizeof(ctx->nonce)); ctx->encr_pos = AES_BLOCK_SIZE; #if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER) if (!EVP_CIPHER_CTX_reset(ctx->ctx)) { EVP_CIPHER_CTX_free(ctx->ctx); ctx->ctx = NULL; } #else EVP_CIPHER_CTX_init(ctx->ctx); #endif return 0; } static int aes_ctr_encrypt_counter(archive_crypto_ctx *ctx) { int outl = 0; int r; r = EVP_EncryptInit_ex(ctx->ctx, ctx->type, NULL, ctx->key, NULL); if (r == 0) return -1; r = EVP_EncryptUpdate(ctx->ctx, ctx->encr_buf, &outl, ctx->nonce, AES_BLOCK_SIZE); if (r == 0 || outl != AES_BLOCK_SIZE) return -1; return 0; } static int aes_ctr_release(archive_crypto_ctx *ctx) { EVP_CIPHER_CTX_free(ctx->ctx); memset(ctx->key, 0, ctx->key_len); memset(ctx->nonce, 0, sizeof(ctx->nonce)); return 0; } #else #define ARCHIVE_CRYPTOR_STUB /* Stub */ static int aes_ctr_init(archive_crypto_ctx *ctx, const uint8_t *key, size_t key_len) { (void)ctx; /* UNUSED */ (void)key; /* UNUSED */ (void)key_len; /* UNUSED */ return -1; } static int aes_ctr_encrypt_counter(archive_crypto_ctx *ctx) { (void)ctx; /* UNUSED */ return -1; } static int aes_ctr_release(archive_crypto_ctx *ctx) { (void)ctx; /* UNUSED */ return 0; } #endif #ifdef ARCHIVE_CRYPTOR_STUB static int aes_ctr_update(archive_crypto_ctx *ctx, const uint8_t * const in, size_t in_len, uint8_t * const out, size_t *out_len) { (void)ctx; /* UNUSED */ (void)in; /* UNUSED */ (void)in_len; /* UNUSED */ (void)out; /* UNUSED */ (void)out_len; /* UNUSED */ aes_ctr_encrypt_counter(ctx); /* UNUSED */ /* Fix unused function warning */ return -1; } #else static void aes_ctr_increase_counter(archive_crypto_ctx *ctx) { uint8_t *const nonce = ctx->nonce; int j; for (j = 0; j < 8; j++) { if (++nonce[j]) break; } } static int aes_ctr_update(archive_crypto_ctx *ctx, const uint8_t * const in, size_t in_len, uint8_t * const out, size_t *out_len) { uint8_t *const ebuf = ctx->encr_buf; unsigned pos = ctx->encr_pos; unsigned max = (unsigned)((in_len < *out_len)? in_len: *out_len); unsigned i; for (i = 0; i < max; ) { if (pos == AES_BLOCK_SIZE) { aes_ctr_increase_counter(ctx); if (aes_ctr_encrypt_counter(ctx) != 0) return -1; while (max -i >= AES_BLOCK_SIZE) { for (pos = 0; pos < AES_BLOCK_SIZE; pos++) out[i+pos] = in[i+pos] ^ ebuf[pos]; i += AES_BLOCK_SIZE; aes_ctr_increase_counter(ctx); if (aes_ctr_encrypt_counter(ctx) != 0) return -1; } pos = 0; if (i >= max) break; } out[i] = in[i] ^ ebuf[pos++]; i++; } ctx->encr_pos = pos; *out_len = i; return 0; } #endif /* ARCHIVE_CRYPTOR_STUB */ const struct archive_cryptor __archive_cryptor = { &pbkdf2_sha1, &aes_ctr_init, &aes_ctr_update, &aes_ctr_release, &aes_ctr_init, &aes_ctr_update, &aes_ctr_release, }; Index: head/contrib/libarchive/libarchive/archive_hmac.c =================================================================== --- head/contrib/libarchive/libarchive/archive_hmac.c (revision 356415) +++ head/contrib/libarchive/libarchive/archive_hmac.c (revision 356416) @@ -1,304 +1,305 @@ /*- * Copyright (c) 2014 Michihiro NAKAJIMA * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "archive_platform.h" #ifdef HAVE_STRING_H #include #endif #include "archive.h" #include "archive_hmac_private.h" /* * On systems that do not support any recognized crypto libraries, * the archive_hmac.c file is expected to define no usable symbols. * * But some compilers and linkers choke on empty object files, so * define a public symbol that will always exist. This could * be removed someday if this file gains another always-present * symbol definition. */ int __libarchive_hmac_build_hack(void) { return 0; } #ifdef ARCHIVE_HMAC_USE_Apple_CommonCrypto static int __hmac_sha1_init(archive_hmac_sha1_ctx *ctx, const uint8_t *key, size_t key_len) { CCHmacInit(ctx, kCCHmacAlgSHA1, key, key_len); return 0; } static void __hmac_sha1_update(archive_hmac_sha1_ctx *ctx, const uint8_t *data, size_t data_len) { CCHmacUpdate(ctx, data, data_len); } static void __hmac_sha1_final(archive_hmac_sha1_ctx *ctx, uint8_t *out, size_t *out_len) { CCHmacFinal(ctx, out); *out_len = 20; } static void __hmac_sha1_cleanup(archive_hmac_sha1_ctx *ctx) { memset(ctx, 0, sizeof(*ctx)); } #elif defined(_WIN32) && !defined(__CYGWIN__) && defined(HAVE_BCRYPT_H) #ifndef BCRYPT_HASH_REUSABLE_FLAG # define BCRYPT_HASH_REUSABLE_FLAG 0x00000020 #endif static int __hmac_sha1_init(archive_hmac_sha1_ctx *ctx, const uint8_t *key, size_t key_len) { #ifdef __GNUC__ #pragma GCC diagnostic ignored "-Wcast-qual" #endif BCRYPT_ALG_HANDLE hAlg; BCRYPT_HASH_HANDLE hHash; DWORD hash_len; PBYTE hash; ULONG result; NTSTATUS status; ctx->hAlg = NULL; status = BCryptOpenAlgorithmProvider(&hAlg, BCRYPT_SHA1_ALGORITHM, MS_PRIMITIVE_PROVIDER, BCRYPT_ALG_HANDLE_HMAC_FLAG); if (!BCRYPT_SUCCESS(status)) return -1; status = BCryptGetProperty(hAlg, BCRYPT_HASH_LENGTH, (PUCHAR)&hash_len, sizeof(hash_len), &result, 0); if (!BCRYPT_SUCCESS(status)) { BCryptCloseAlgorithmProvider(hAlg, 0); return -1; } hash = (PBYTE)HeapAlloc(GetProcessHeap(), 0, hash_len); if (hash == NULL) { BCryptCloseAlgorithmProvider(hAlg, 0); return -1; } status = BCryptCreateHash(hAlg, &hHash, NULL, 0, (PUCHAR)key, (ULONG)key_len, BCRYPT_HASH_REUSABLE_FLAG); if (!BCRYPT_SUCCESS(status)) { BCryptCloseAlgorithmProvider(hAlg, 0); HeapFree(GetProcessHeap(), 0, hash); return -1; } ctx->hAlg = hAlg; ctx->hHash = hHash; ctx->hash_len = hash_len; ctx->hash = hash; return 0; } static void __hmac_sha1_update(archive_hmac_sha1_ctx *ctx, const uint8_t *data, size_t data_len) { BCryptHashData(ctx->hHash, (PUCHAR)(uintptr_t)data, (ULONG)data_len, 0); } static void __hmac_sha1_final(archive_hmac_sha1_ctx *ctx, uint8_t *out, size_t *out_len) { BCryptFinishHash(ctx->hHash, ctx->hash, ctx->hash_len, 0); if (ctx->hash_len == *out_len) memcpy(out, ctx->hash, *out_len); } static void __hmac_sha1_cleanup(archive_hmac_sha1_ctx *ctx) { if (ctx->hAlg != NULL) { BCryptCloseAlgorithmProvider(ctx->hAlg, 0); HeapFree(GetProcessHeap(), 0, ctx->hash); ctx->hAlg = NULL; } } #elif defined(HAVE_LIBMBEDCRYPTO) && defined(HAVE_MBEDTLS_MD_H) + static int __hmac_sha1_init(archive_hmac_sha1_ctx *ctx, const uint8_t *key, size_t key_len) { const mbedtls_md_info_t *info; int ret; mbedtls_md_init(ctx); info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1); if (info == NULL) { mbedtls_md_free(ctx); return (-1); } ret = mbedtls_md_setup(ctx, info, 1); if (ret != 0) { mbedtls_md_free(ctx); return (-1); } ret = mbedtls_md_hmac_starts(ctx, key, key_len); if (ret != 0) { mbedtls_md_free(ctx); return (-1); } return 0; } static void __hmac_sha1_update(archive_hmac_sha1_ctx *ctx, const uint8_t *data, size_t data_len) { mbedtls_md_hmac_update(ctx, data, data_len); } static void __hmac_sha1_final(archive_hmac_sha1_ctx *ctx, uint8_t *out, size_t *out_len) { (void)out_len; /* UNUSED */ mbedtls_md_hmac_finish(ctx, out); } static void __hmac_sha1_cleanup(archive_hmac_sha1_ctx *ctx) { mbedtls_md_free(ctx); memset(ctx, 0, sizeof(*ctx)); } #elif defined(HAVE_LIBNETTLE) && defined(HAVE_NETTLE_HMAC_H) static int __hmac_sha1_init(archive_hmac_sha1_ctx *ctx, const uint8_t *key, size_t key_len) { hmac_sha1_set_key(ctx, key_len, key); return 0; } static void __hmac_sha1_update(archive_hmac_sha1_ctx *ctx, const uint8_t *data, size_t data_len) { hmac_sha1_update(ctx, data_len, data); } static void __hmac_sha1_final(archive_hmac_sha1_ctx *ctx, uint8_t *out, size_t *out_len) { hmac_sha1_digest(ctx, (unsigned)*out_len, out); } static void __hmac_sha1_cleanup(archive_hmac_sha1_ctx *ctx) { memset(ctx, 0, sizeof(*ctx)); } #elif defined(HAVE_LIBCRYPTO) static int __hmac_sha1_init(archive_hmac_sha1_ctx *ctx, const uint8_t *key, size_t key_len) { *ctx = HMAC_CTX_new(); if (*ctx == NULL) return -1; HMAC_Init_ex(*ctx, key, key_len, EVP_sha1(), NULL); return 0; } static void __hmac_sha1_update(archive_hmac_sha1_ctx *ctx, const uint8_t *data, size_t data_len) { HMAC_Update(*ctx, data, data_len); } static void __hmac_sha1_final(archive_hmac_sha1_ctx *ctx, uint8_t *out, size_t *out_len) { unsigned int len = (unsigned int)*out_len; HMAC_Final(*ctx, out, &len); *out_len = len; } static void __hmac_sha1_cleanup(archive_hmac_sha1_ctx *ctx) { HMAC_CTX_free(*ctx); *ctx = NULL; } #else /* Stub */ static int __hmac_sha1_init(archive_hmac_sha1_ctx *ctx, const uint8_t *key, size_t key_len) { (void)ctx;/* UNUSED */ (void)key;/* UNUSED */ (void)key_len;/* UNUSED */ return -1; } static void __hmac_sha1_update(archive_hmac_sha1_ctx *ctx, const uint8_t *data, size_t data_len) { (void)ctx;/* UNUSED */ (void)data;/* UNUSED */ (void)data_len;/* UNUSED */ } static void __hmac_sha1_final(archive_hmac_sha1_ctx *ctx, uint8_t *out, size_t *out_len) { (void)ctx;/* UNUSED */ (void)out;/* UNUSED */ (void)out_len;/* UNUSED */ } static void __hmac_sha1_cleanup(archive_hmac_sha1_ctx *ctx) { (void)ctx;/* UNUSED */ } #endif const struct archive_hmac __archive_hmac = { &__hmac_sha1_init, &__hmac_sha1_update, &__hmac_sha1_final, &__hmac_sha1_cleanup, }; Index: head/contrib/libarchive/libarchive/archive_write.c =================================================================== --- head/contrib/libarchive/libarchive/archive_write.c (revision 356415) +++ head/contrib/libarchive/libarchive/archive_write.c (revision 356416) @@ -1,799 +1,789 @@ /*- * Copyright (c) 2003-2010 Tim Kientzle * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "archive_platform.h" __FBSDID("$FreeBSD$"); /* * This file contains the "essential" portions of the write API, that * is, stuff that will essentially always be used by any client that * actually needs to write an archive. Optional pieces have been, as * far as possible, separated out into separate files to reduce * needlessly bloating statically-linked clients. */ #ifdef HAVE_SYS_WAIT_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_LIMITS_H #include #endif #include #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STRING_H #include #endif #include #ifdef HAVE_UNISTD_H #include #endif #include "archive.h" #include "archive_entry.h" #include "archive_private.h" #include "archive_write_private.h" static struct archive_vtable *archive_write_vtable(void); static int _archive_filter_code(struct archive *, int); static const char *_archive_filter_name(struct archive *, int); static int64_t _archive_filter_bytes(struct archive *, int); static int _archive_write_filter_count(struct archive *); static int _archive_write_close(struct archive *); static int _archive_write_free(struct archive *); static int _archive_write_header(struct archive *, struct archive_entry *); static int _archive_write_finish_entry(struct archive *); static ssize_t _archive_write_data(struct archive *, const void *, size_t); struct archive_none { size_t buffer_size; size_t avail; char *buffer; char *next; }; static struct archive_vtable * archive_write_vtable(void) { static struct archive_vtable av; static int inited = 0; if (!inited) { av.archive_close = _archive_write_close; av.archive_filter_bytes = _archive_filter_bytes; av.archive_filter_code = _archive_filter_code; av.archive_filter_name = _archive_filter_name; av.archive_filter_count = _archive_write_filter_count; av.archive_free = _archive_write_free; av.archive_write_header = _archive_write_header; av.archive_write_finish_entry = _archive_write_finish_entry; av.archive_write_data = _archive_write_data; inited = 1; } return (&av); } /* * Allocate, initialize and return an archive object. */ struct archive * archive_write_new(void) { struct archive_write *a; unsigned char *nulls; a = (struct archive_write *)calloc(1, sizeof(*a)); if (a == NULL) return (NULL); a->archive.magic = ARCHIVE_WRITE_MAGIC; a->archive.state = ARCHIVE_STATE_NEW; a->archive.vtable = archive_write_vtable(); /* * The value 10240 here matches the traditional tar default, * but is otherwise arbitrary. * TODO: Set the default block size from the format selected. */ a->bytes_per_block = 10240; a->bytes_in_last_block = -1; /* Default */ /* Initialize a block of nulls for padding purposes. */ a->null_length = 1024; nulls = (unsigned char *)calloc(1, a->null_length); if (nulls == NULL) { free(a); return (NULL); } a->nulls = nulls; return (&a->archive); } /* * Set the block size. Returns 0 if successful. */ int archive_write_set_bytes_per_block(struct archive *_a, int bytes_per_block) { struct archive_write *a = (struct archive_write *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_NEW, "archive_write_set_bytes_per_block"); a->bytes_per_block = bytes_per_block; return (ARCHIVE_OK); } /* * Get the current block size. -1 if it has never been set. */ int archive_write_get_bytes_per_block(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_ANY, "archive_write_get_bytes_per_block"); return (a->bytes_per_block); } /* * Set the size for the last block. * Returns 0 if successful. */ int archive_write_set_bytes_in_last_block(struct archive *_a, int bytes) { struct archive_write *a = (struct archive_write *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_ANY, "archive_write_set_bytes_in_last_block"); a->bytes_in_last_block = bytes; return (ARCHIVE_OK); } /* * Return the value set above. -1 indicates it has not been set. */ int archive_write_get_bytes_in_last_block(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_ANY, "archive_write_get_bytes_in_last_block"); return (a->bytes_in_last_block); } /* * dev/ino of a file to be rejected. Used to prevent adding * an archive to itself recursively. */ int archive_write_set_skip_file(struct archive *_a, la_int64_t d, la_int64_t i) { struct archive_write *a = (struct archive_write *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_ANY, "archive_write_set_skip_file"); a->skip_file_set = 1; a->skip_file_dev = d; a->skip_file_ino = i; return (ARCHIVE_OK); } /* * Allocate and return the next filter structure. */ struct archive_write_filter * __archive_write_allocate_filter(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; struct archive_write_filter *f; f = calloc(1, sizeof(*f)); f->archive = _a; f->state = ARCHIVE_WRITE_FILTER_STATE_NEW; if (a->filter_first == NULL) a->filter_first = f; else a->filter_last->next_filter = f; a->filter_last = f; return f; } /* * Write data to a particular filter. */ int __archive_write_filter(struct archive_write_filter *f, const void *buff, size_t length) { int r; /* Never write to non-open filters */ if (f->state != ARCHIVE_WRITE_FILTER_STATE_OPEN) return(ARCHIVE_FATAL); if (length == 0) return(ARCHIVE_OK); if (f->write == NULL) /* If unset, a fatal error has already occurred, so this filter * didn't open. We cannot write anything. */ return(ARCHIVE_FATAL); r = (f->write)(f, buff, length); f->bytes_written += length; return (r); } /* * Recursive function for opening the filter chain * Last filter is opened first */ static int __archive_write_open_filter(struct archive_write_filter *f) { int ret; ret = ARCHIVE_OK; if (f->next_filter != NULL) ret = __archive_write_open_filter(f->next_filter); if (ret != ARCHIVE_OK) return (ret); if (f->state != ARCHIVE_WRITE_FILTER_STATE_NEW) return (ARCHIVE_FATAL); if (f->open == NULL) { f->state = ARCHIVE_WRITE_FILTER_STATE_OPEN; return (ARCHIVE_OK); } ret = (f->open)(f); if (ret == ARCHIVE_OK) f->state = ARCHIVE_WRITE_FILTER_STATE_OPEN; else f->state = ARCHIVE_WRITE_FILTER_STATE_FATAL; return (ret); } /* * Open all filters */ static int __archive_write_filters_open(struct archive_write *a) { return (__archive_write_open_filter(a->filter_first)); } /* * Close all filtes */ static int __archive_write_filters_close(struct archive_write *a) { struct archive_write_filter *f; int ret, ret1; ret = ARCHIVE_OK; for (f = a->filter_first; f != NULL; f = f->next_filter) { /* Do not close filters that are not open */ if (f->state == ARCHIVE_WRITE_FILTER_STATE_OPEN) { if (f->close != NULL) { ret1 = (f->close)(f); if (ret1 < ret) ret = ret1; if (ret1 == ARCHIVE_OK) { f->state = ARCHIVE_WRITE_FILTER_STATE_CLOSED; } else { f->state = ARCHIVE_WRITE_FILTER_STATE_FATAL; } } else f->state = ARCHIVE_WRITE_FILTER_STATE_CLOSED; } } return (ret); } int __archive_write_output(struct archive_write *a, const void *buff, size_t length) { return (__archive_write_filter(a->filter_first, buff, length)); } int __archive_write_nulls(struct archive_write *a, size_t length) { if (length == 0) return (ARCHIVE_OK); while (length > 0) { size_t to_write = length < a->null_length ? length : a->null_length; int r = __archive_write_output(a, a->nulls, to_write); if (r < ARCHIVE_OK) return (r); length -= to_write; } return (ARCHIVE_OK); } static int archive_write_client_open(struct archive_write_filter *f) { struct archive_write *a = (struct archive_write *)f->archive; struct archive_none *state; void *buffer; size_t buffer_size; + int ret; f->bytes_per_block = archive_write_get_bytes_per_block(f->archive); f->bytes_in_last_block = archive_write_get_bytes_in_last_block(f->archive); buffer_size = f->bytes_per_block; state = (struct archive_none *)calloc(1, sizeof(*state)); buffer = (char *)malloc(buffer_size); if (state == NULL || buffer == NULL) { free(state); free(buffer); archive_set_error(f->archive, ENOMEM, "Can't allocate data for output buffering"); return (ARCHIVE_FATAL); } state->buffer_size = buffer_size; state->buffer = buffer; state->next = state->buffer; state->avail = state->buffer_size; f->data = state; if (a->client_opener == NULL) return (ARCHIVE_OK); - return (a->client_opener(f->archive, a->client_data)); + ret = a->client_opener(f->archive, a->client_data); + if (ret != ARCHIVE_OK) { + free(state->buffer); + free(state); + f->data = NULL; + } + return (ret); } static int archive_write_client_write(struct archive_write_filter *f, const void *_buff, size_t length) { struct archive_write *a = (struct archive_write *)f->archive; struct archive_none *state = (struct archive_none *)f->data; const char *buff = (const char *)_buff; ssize_t remaining, to_copy; ssize_t bytes_written; remaining = length; /* * If there is no buffer for blocking, just pass the data * straight through to the client write callback. In * particular, this supports "no write delay" operation for * special applications. Just set the block size to zero. */ if (state->buffer_size == 0) { while (remaining > 0) { bytes_written = (a->client_writer)(&a->archive, a->client_data, buff, remaining); if (bytes_written <= 0) return (ARCHIVE_FATAL); remaining -= bytes_written; buff += bytes_written; } return (ARCHIVE_OK); } /* If the copy buffer isn't empty, try to fill it. */ if (state->avail < state->buffer_size) { /* If buffer is not empty... */ /* ... copy data into buffer ... */ to_copy = ((size_t)remaining > state->avail) ? state->avail : (size_t)remaining; memcpy(state->next, buff, to_copy); state->next += to_copy; state->avail -= to_copy; buff += to_copy; remaining -= to_copy; /* ... if it's full, write it out. */ if (state->avail == 0) { char *p = state->buffer; size_t to_write = state->buffer_size; while (to_write > 0) { bytes_written = (a->client_writer)(&a->archive, a->client_data, p, to_write); if (bytes_written <= 0) return (ARCHIVE_FATAL); if ((size_t)bytes_written > to_write) { archive_set_error(&(a->archive), -1, "write overrun"); return (ARCHIVE_FATAL); } p += bytes_written; to_write -= bytes_written; } state->next = state->buffer; state->avail = state->buffer_size; } } while ((size_t)remaining >= state->buffer_size) { /* Write out full blocks directly to client. */ bytes_written = (a->client_writer)(&a->archive, a->client_data, buff, state->buffer_size); if (bytes_written <= 0) return (ARCHIVE_FATAL); buff += bytes_written; remaining -= bytes_written; } if (remaining > 0) { /* Copy last bit into copy buffer. */ memcpy(state->next, buff, remaining); state->next += remaining; state->avail -= remaining; } return (ARCHIVE_OK); } static int -archive_write_client_free(struct archive_write_filter *f) -{ - struct archive_write *a = (struct archive_write *)f->archive; - struct archive_none *state = (struct archive_none *)f->data; - - if (state != NULL) { - free(state->buffer); - free(state); - state = NULL; - } - - a->client_data = NULL; - /* Clear passphrase. */ - if (a->passphrase != NULL) { - memset(a->passphrase, 0, strlen(a->passphrase)); - free(a->passphrase); - a->passphrase = NULL; - } - - return (ARCHIVE_OK); -} - - -static int archive_write_client_close(struct archive_write_filter *f) { struct archive_write *a = (struct archive_write *)f->archive; struct archive_none *state = (struct archive_none *)f->data; ssize_t block_length; ssize_t target_block_length; ssize_t bytes_written; int ret = ARCHIVE_OK; /* If there's pending data, pad and write the last block */ if (state->next != state->buffer) { block_length = state->buffer_size - state->avail; /* Tricky calculation to determine size of last block */ if (a->bytes_in_last_block <= 0) /* Default or Zero: pad to full block */ target_block_length = a->bytes_per_block; else /* Round to next multiple of bytes_in_last_block. */ target_block_length = a->bytes_in_last_block * ( (block_length + a->bytes_in_last_block - 1) / a->bytes_in_last_block); if (target_block_length > a->bytes_per_block) target_block_length = a->bytes_per_block; if (block_length < target_block_length) { memset(state->next, 0, target_block_length - block_length); block_length = target_block_length; } bytes_written = (a->client_writer)(&a->archive, a->client_data, state->buffer, block_length); ret = bytes_written <= 0 ? ARCHIVE_FATAL : ARCHIVE_OK; } if (a->client_closer) (*a->client_closer)(&a->archive, a->client_data); - + free(state->buffer); + free(state); + a->client_data = NULL; + /* Clear passphrase. */ + if (a->passphrase != NULL) { + memset(a->passphrase, 0, strlen(a->passphrase)); + free(a->passphrase); + a->passphrase = NULL; + } /* Clear the close handler myself not to be called again. */ f->state = ARCHIVE_WRITE_FILTER_STATE_CLOSED; return (ret); } /* * Open the archive using the current settings. */ int archive_write_open(struct archive *_a, void *client_data, archive_open_callback *opener, archive_write_callback *writer, archive_close_callback *closer) { struct archive_write *a = (struct archive_write *)_a; struct archive_write_filter *client_filter; int ret, r1; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_NEW, "archive_write_open"); archive_clear_error(&a->archive); a->client_writer = writer; a->client_opener = opener; a->client_closer = closer; a->client_data = client_data; client_filter = __archive_write_allocate_filter(_a); client_filter->open = archive_write_client_open; client_filter->write = archive_write_client_write; client_filter->close = archive_write_client_close; - client_filter->free = archive_write_client_free; ret = __archive_write_filters_open(a); if (ret < ARCHIVE_WARN) { r1 = __archive_write_filters_close(a); __archive_write_filters_free(_a); return (r1 < ret ? r1 : ret); } a->archive.state = ARCHIVE_STATE_HEADER; if (a->format_init) ret = (a->format_init)(a); return (ret); } /* * Close out the archive. */ static int _archive_write_close(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; int r = ARCHIVE_OK, r1 = ARCHIVE_OK; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_write_close"); if (a->archive.state == ARCHIVE_STATE_NEW || a->archive.state == ARCHIVE_STATE_CLOSED) return (ARCHIVE_OK); /* Okay to close() when not open. */ archive_clear_error(&a->archive); /* Finish the last entry if a finish callback is specified */ if (a->archive.state == ARCHIVE_STATE_DATA && a->format_finish_entry != NULL) r = ((a->format_finish_entry)(a)); /* Finish off the archive. */ /* TODO: have format closers invoke compression close. */ if (a->format_close != NULL) { r1 = (a->format_close)(a); if (r1 < r) r = r1; } /* Finish the compression and close the stream. */ r1 = __archive_write_filters_close(a); if (r1 < r) r = r1; if (a->archive.state != ARCHIVE_STATE_FATAL) a->archive.state = ARCHIVE_STATE_CLOSED; return (r); } static int _archive_write_filter_count(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; struct archive_write_filter *p = a->filter_first; int count = 0; while(p) { count++; p = p->next_filter; } return count; } void __archive_write_filters_free(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; int r = ARCHIVE_OK, r1; while (a->filter_first != NULL) { struct archive_write_filter *next = a->filter_first->next_filter; if (a->filter_first->free != NULL) { r1 = (*a->filter_first->free)(a->filter_first); if (r > r1) r = r1; } free(a->filter_first); a->filter_first = next; } a->filter_last = NULL; } /* * Destroy the archive structure. * * Be careful: user might just call write_new and then write_free. * Don't assume we actually wrote anything or performed any non-trivial * initialization. */ static int _archive_write_free(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; int r = ARCHIVE_OK, r1; if (_a == NULL) return (ARCHIVE_OK); /* It is okay to call free() in state FATAL. */ archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_write_free"); if (a->archive.state != ARCHIVE_STATE_FATAL) r = archive_write_close(&a->archive); /* Release format resources. */ if (a->format_free != NULL) { r1 = (a->format_free)(a); if (r1 < r) r = r1; } __archive_write_filters_free(_a); /* Release various dynamic buffers. */ free((void *)(uintptr_t)(const void *)a->nulls); archive_string_free(&a->archive.error_string); if (a->passphrase != NULL) { /* A passphrase should be cleaned. */ memset(a->passphrase, 0, strlen(a->passphrase)); free(a->passphrase); } a->archive.magic = 0; __archive_clean(&a->archive); free(a); return (r); } /* * Write the appropriate header. */ static int _archive_write_header(struct archive *_a, struct archive_entry *entry) { struct archive_write *a = (struct archive_write *)_a; int ret, r2; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_DATA | ARCHIVE_STATE_HEADER, "archive_write_header"); archive_clear_error(&a->archive); if (a->format_write_header == NULL) { archive_set_error(&(a->archive), -1, "Format must be set before you can write to an archive."); a->archive.state = ARCHIVE_STATE_FATAL; return (ARCHIVE_FATAL); } /* In particular, "retry" and "fatal" get returned immediately. */ ret = archive_write_finish_entry(&a->archive); if (ret == ARCHIVE_FATAL) { a->archive.state = ARCHIVE_STATE_FATAL; return (ARCHIVE_FATAL); } if (ret < ARCHIVE_OK && ret != ARCHIVE_WARN) return (ret); if (a->skip_file_set && archive_entry_dev_is_set(entry) && archive_entry_ino_is_set(entry) && archive_entry_dev(entry) == (dev_t)a->skip_file_dev && archive_entry_ino64(entry) == a->skip_file_ino) { archive_set_error(&a->archive, 0, "Can't add archive to itself"); return (ARCHIVE_FAILED); } /* Format and write header. */ r2 = ((a->format_write_header)(a, entry)); if (r2 == ARCHIVE_FAILED) { return (ARCHIVE_FAILED); } if (r2 == ARCHIVE_FATAL) { a->archive.state = ARCHIVE_STATE_FATAL; return (ARCHIVE_FATAL); } if (r2 < ret) ret = r2; a->archive.state = ARCHIVE_STATE_DATA; return (ret); } static int _archive_write_finish_entry(struct archive *_a) { struct archive_write *a = (struct archive_write *)_a; int ret = ARCHIVE_OK; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA, "archive_write_finish_entry"); if (a->archive.state & ARCHIVE_STATE_DATA && a->format_finish_entry != NULL) ret = (a->format_finish_entry)(a); a->archive.state = ARCHIVE_STATE_HEADER; return (ret); } /* * Note that the compressor is responsible for blocking. */ static ssize_t _archive_write_data(struct archive *_a, const void *buff, size_t s) { struct archive_write *a = (struct archive_write *)_a; const size_t max_write = INT_MAX; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_DATA, "archive_write_data"); /* In particular, this catches attempts to pass negative values. */ if (s > max_write) s = max_write; archive_clear_error(&a->archive); return ((a->format_write_data)(a, buff, s)); } static struct archive_write_filter * filter_lookup(struct archive *_a, int n) { struct archive_write *a = (struct archive_write *)_a; struct archive_write_filter *f = a->filter_first; if (n == -1) return a->filter_last; if (n < 0) return NULL; while (n > 0 && f != NULL) { f = f->next_filter; --n; } return f; } static int _archive_filter_code(struct archive *_a, int n) { struct archive_write_filter *f = filter_lookup(_a, n); return f == NULL ? -1 : f->code; } static const char * _archive_filter_name(struct archive *_a, int n) { struct archive_write_filter *f = filter_lookup(_a, n); return f != NULL ? f->name : NULL; } static int64_t _archive_filter_bytes(struct archive *_a, int n) { struct archive_write_filter *f = filter_lookup(_a, n); return f == NULL ? -1 : f->bytes_written; } Index: head/contrib/libarchive =================================================================== --- head/contrib/libarchive (revision 356415) +++ head/contrib/libarchive (revision 356416) Property changes on: head/contrib/libarchive ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /vendor/libarchive/dist:r356415