Index: head/lib/libmemstat/memstat_uma.c =================================================================== --- head/lib/libmemstat/memstat_uma.c (revision 356079) +++ head/lib/libmemstat/memstat_uma.c (revision 356080) @@ -1,495 +1,476 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005-2006 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "memstat.h" #include "memstat_internal.h" static struct nlist namelist[] = { #define X_UMA_KEGS 0 { .n_name = "_uma_kegs" }, #define X_MP_MAXID 1 { .n_name = "_mp_maxid" }, #define X_ALL_CPUS 2 { .n_name = "_all_cpus" }, #define X_VM_NDOMAINS 3 { .n_name = "_vm_ndomains" }, { .n_name = "" }, }; /* * Extract uma(9) statistics from the running kernel, and store all memory * type information in the passed list. For each type, check the list for an * existing entry with the right name/allocator -- if present, update that * entry. Otherwise, add a new entry. On error, the entire list will be * cleared, as entries will be in an inconsistent state. * * To reduce the level of work for a list that starts empty, we keep around a * hint as to whether it was empty when we began, so we can avoid searching * the list for entries to update. Updates are O(n^2) due to searching for * each entry before adding it. */ int memstat_sysctl_uma(struct memory_type_list *list, int flags) { struct uma_stream_header *ushp; struct uma_type_header *uthp; struct uma_percpu_stat *upsp; struct memory_type *mtp; int count, hint_dontsearch, i, j, maxcpus, maxid; char *buffer, *p; size_t size; hint_dontsearch = LIST_EMPTY(&list->mtl_list); /* * Query the number of CPUs, number of malloc types so that we can * guess an initial buffer size. We loop until we succeed or really * fail. Note that the value of maxcpus we query using sysctl is not * the version we use when processing the real data -- that is read * from the header. */ retry: size = sizeof(maxid); if (sysctlbyname("kern.smp.maxid", &maxid, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } if (size != sizeof(maxid)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(count); if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) { if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; return (-1); } if (size != sizeof(count)) { list->mtl_error = MEMSTAT_ERROR_DATAERROR; return (-1); } size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) * (maxid + 1)); buffer = malloc(size); if (buffer == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) { /* * XXXRW: ENOMEM is an ambiguous return, we should bound the * number of loops, perhaps. */ if (errno == ENOMEM) { free(buffer); goto retry; } if (errno == EACCES || errno == EPERM) list->mtl_error = MEMSTAT_ERROR_PERMISSION; else list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } if (size == 0) { free(buffer); return (0); } if (size < sizeof(*ushp)) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } p = buffer; ushp = (struct uma_stream_header *)p; p += sizeof(*ushp); if (ushp->ush_version != UMA_STREAM_VERSION) { list->mtl_error = MEMSTAT_ERROR_VERSION; free(buffer); return (-1); } /* * For the remainder of this function, we are quite trusting about * the layout of structures and sizes, since we've determined we have * a matching version and acceptable CPU count. */ maxcpus = ushp->ush_maxcpus; count = ushp->ush_count; for (i = 0; i < count; i++) { uthp = (struct uma_type_header *)p; p += sizeof(*uthp); if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_UMA, uthp->uth_name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA, uthp->uth_name, maxid + 1); if (mtp == NULL) { _memstat_mtl_empty(list); free(buffer); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, maxid + 1); mtp->mt_numallocs = uthp->uth_allocs; mtp->mt_numfrees = uthp->uth_frees; mtp->mt_failures = uthp->uth_fails; mtp->mt_sleeps = uthp->uth_sleeps; mtp->mt_xdomain = uthp->uth_xdomain; for (j = 0; j < maxcpus; j++) { upsp = (struct uma_percpu_stat *)p; p += sizeof(*upsp); mtp->mt_percpu_cache[j].mtp_free = upsp->ups_cache_free; mtp->mt_free += upsp->ups_cache_free; mtp->mt_numallocs += upsp->ups_allocs; mtp->mt_numfrees += upsp->ups_frees; } /* * Values for uth_allocs and uth_frees frees are snap. * It may happen that kernel reports that number of frees * is greater than number of allocs. See counter(9) for * details. */ if (mtp->mt_numallocs < mtp->mt_numfrees) mtp->mt_numallocs = mtp->mt_numfrees; mtp->mt_size = uthp->uth_size; mtp->mt_rsize = uthp->uth_rsize; mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size; mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size; mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_countlimit = uthp->uth_limit; mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; mtp->mt_zonefree = uthp->uth_zone_free; /* * UMA secondary zones share a keg with the primary zone. To * avoid double-reporting of free items, report keg free * items only in the primary zone. */ if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) { mtp->mt_kegfree = uthp->uth_keg_free; mtp->mt_free += mtp->mt_kegfree; } mtp->mt_free += mtp->mt_zonefree; } free(buffer); return (0); } static int kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } static int kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen) { ssize_t ret; int i; for (i = 0; i < buflen; i++) { ret = kvm_read(kvm, (unsigned long)kvm_pointer + i, &(buffer[i]), sizeof(char)); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != sizeof(char)) return (MEMSTAT_ERROR_KVM_SHORTREAD); if (buffer[i] == '\0') return (0); } /* Truncate. */ buffer[i-1] = '\0'; return (0); } static int kread_symbol(kvm_t *kvm, int index, void *address, size_t size, size_t offset) { ssize_t ret; ret = kvm_read(kvm, namelist[index].n_value + offset, address, size); if (ret < 0) return (MEMSTAT_ERROR_KVM); if ((size_t)ret != size) return (MEMSTAT_ERROR_KVM_SHORTREAD); return (0); } /* * memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts * UMA(9) statistics from a kernel core/memory file. */ int memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle) { LIST_HEAD(, uma_keg) uma_kegs; struct memory_type *mtp; struct uma_zone_domain uzd; struct uma_bucket *ubp, ub; struct uma_cache *ucp, *ucp_array; struct uma_zone *uzp, uz; struct uma_keg *kzp, kz; int hint_dontsearch, i, mp_maxid, ndomains, ret; char name[MEMTYPE_MAXNAME]; cpuset_t all_cpus; long cpusetsize; kvm_t *kvm; kvm = (kvm_t *)kvm_handle; hint_dontsearch = LIST_EMPTY(&list->mtl_list); if (kvm_nlist(kvm, namelist) != 0) { list->mtl_error = MEMSTAT_ERROR_KVM; return (-1); } if (namelist[X_UMA_KEGS].n_type == 0 || namelist[X_UMA_KEGS].n_value == 0) { list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; return (-1); } ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ret = kread_symbol(kvm, X_VM_NDOMAINS, &ndomains, sizeof(ndomains), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0); if (ret != 0) { list->mtl_error = ret; return (-1); } cpusetsize = sysconf(_SC_CPUSET_SIZE); if (cpusetsize == -1 || (u_long)cpusetsize > sizeof(cpuset_t)) { list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; return (-1); } CPU_ZERO(&all_cpus); ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, cpusetsize, 0); if (ret != 0) { list->mtl_error = ret; return (-1); } ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1)); if (ucp_array == NULL) { list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp = LIST_NEXT(&kz, uk_link)) { ret = kread(kvm, kzp, &kz, sizeof(kz), 0); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp = LIST_NEXT(&uz, uz_link)) { ret = kread(kvm, uzp, &uz, sizeof(uz), 0); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } ret = kread(kvm, uzp, ucp_array, sizeof(struct uma_cache) * (mp_maxid + 1), offsetof(struct uma_zone, uz_cpu[0])); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } ret = kread_string(kvm, uz.uz_name, name, MEMTYPE_MAXNAME); if (ret != 0) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = ret; return (-1); } if (hint_dontsearch == 0) { mtp = memstat_mtl_find(list, ALLOCATOR_UMA, name); } else mtp = NULL; if (mtp == NULL) mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA, name, mp_maxid + 1); if (mtp == NULL) { free(ucp_array); _memstat_mtl_empty(list); list->mtl_error = MEMSTAT_ERROR_NOMEMORY; return (-1); } /* * Reset the statistics on a current node. */ _memstat_mt_reset_stats(mtp, mp_maxid + 1); mtp->mt_numallocs = kvm_counter_u64_fetch(kvm, (unsigned long )uz.uz_allocs); mtp->mt_numfrees = kvm_counter_u64_fetch(kvm, (unsigned long )uz.uz_frees); mtp->mt_failures = kvm_counter_u64_fetch(kvm, (unsigned long )uz.uz_fails); mtp->mt_sleeps = uz.uz_sleeps; /* See comment above in memstat_sysctl_uma(). */ if (mtp->mt_numallocs < mtp->mt_numfrees) mtp->mt_numallocs = mtp->mt_numfrees; mtp->mt_xdomain = uz.uz_xdomain; if (kz.uk_flags & UMA_ZFLAG_INTERNAL) goto skip_percpu; for (i = 0; i < mp_maxid + 1; i++) { if (!CPU_ISSET(i, &all_cpus)) continue; ucp = &ucp_array[i]; mtp->mt_numallocs += ucp->uc_allocs; mtp->mt_numfrees += ucp->uc_frees; - if (ucp->uc_allocbucket != NULL) { - ret = kread(kvm, ucp->uc_allocbucket, - &ub, sizeof(ub), 0); - if (ret != 0) { - free(ucp_array); - _memstat_mtl_empty(list); - list->mtl_error = ret; - return (-1); - } - mtp->mt_free += ub.ub_cnt; - } - if (ucp->uc_freebucket != NULL) { - ret = kread(kvm, ucp->uc_freebucket, - &ub, sizeof(ub), 0); - if (ret != 0) { - free(ucp_array); - _memstat_mtl_empty(list); - list->mtl_error = ret; - return (-1); - } - mtp->mt_free += ub.ub_cnt; - } + mtp->mt_free += ucp->uc_allocbucket.ucb_cnt; + mtp->mt_free += ucp->uc_freebucket.ucb_cnt; + mtp->mt_free += ucp->uc_crossbucket.ucb_cnt; } skip_percpu: mtp->mt_size = kz.uk_size; mtp->mt_rsize = kz.uk_rsize; mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size; mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size; mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; mtp->mt_countlimit = uz.uz_max_items; mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size; mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; for (i = 0; i < ndomains; i++) { ret = kread(kvm, &uz.uz_domain[i], &uzd, sizeof(uzd), 0); for (ubp = TAILQ_FIRST(&uzd.uzd_buckets); ubp != NULL; ubp = TAILQ_NEXT(&ub, ub_link)) { ret = kread(kvm, ubp, &ub, sizeof(ub), 0); mtp->mt_zonefree += ub.ub_cnt; } } if (!((kz.uk_flags & UMA_ZONE_SECONDARY) && LIST_FIRST(&kz.uk_zones) != uzp)) { mtp->mt_kegfree = kz.uk_free; mtp->mt_free += mtp->mt_kegfree; } mtp->mt_free += mtp->mt_zonefree; } } free(ucp_array); return (0); } Index: head/sys/vm/uma_core.c =================================================================== --- head/sys/vm/uma_core.c (revision 356079) +++ head/sys/vm/uma_core.c (revision 356080) @@ -1,4719 +1,4806 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2019 Jeffrey Roberson * Copyright (c) 2004, 2005 Bosko Milekic * Copyright (c) 2004-2006 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * uma_core.c Implementation of the Universal Memory allocator * * This allocator is intended to replace the multitude of similar object caches * in the standard FreeBSD kernel. The intent is to be flexible as well as * efficient. A primary design goal is to return unused memory to the rest of * the system. This will make the system as a whole more flexible due to the * ability to move memory to subsystems which most need it instead of leaving * pools of reserved memory unused. * * The basic ideas stem from similar slab/zone based allocators whose algorithms * are well known. * */ /* * TODO: * - Improve memory usage for large allocations * - Investigate cache size adjustments */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_param.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG_MEMGUARD #include #endif /* * This is the zone and keg from which all zones are spawned. */ static uma_zone_t kegs; static uma_zone_t zones; /* This is the zone from which all offpage uma_slab_ts are allocated. */ static uma_zone_t slabzone; /* * The initial hash tables come out of this zone so they can be allocated * prior to malloc coming up. */ static uma_zone_t hashzone; /* The boot-time adjusted value for cache line alignment. */ int uma_align_cache = 64 - 1; static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); /* * Are we allowed to allocate buckets? */ static int bucketdisable = 1; /* Linked list of all kegs in the system */ static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); /* Linked list of all cache-only zones in the system */ static LIST_HEAD(,uma_zone) uma_cachezones = LIST_HEAD_INITIALIZER(uma_cachezones); /* This RW lock protects the keg list */ static struct rwlock_padalign __exclusive_cache_line uma_rwlock; /* * Pointer and counter to pool of pages, that is preallocated at * startup to bootstrap UMA. */ static char *bootmem; static int boot_pages; static struct sx uma_reclaim_lock; /* * kmem soft limit, initialized by uma_set_limit(). Ensure that early * allocations don't trigger a wakeup of the reclaim thread. */ unsigned long uma_kmem_limit = LONG_MAX; SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, "UMA kernel memory soft limit"); unsigned long uma_kmem_total; SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, "UMA kernel memory usage"); /* Is the VM done starting up? */ static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, BOOT_RUNNING } booted = BOOT_COLD; /* * This is the handle used to schedule events that need to happen * outside of the allocation fast path. */ static struct callout uma_callout; #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ /* * This structure is passed as the zone ctor arg so that I don't have to create * a special allocation function just for zones. */ struct uma_zctor_args { const char *name; size_t size; uma_ctor ctor; uma_dtor dtor; uma_init uminit; uma_fini fini; uma_import import; uma_release release; void *arg; uma_keg_t keg; int align; uint32_t flags; }; struct uma_kctor_args { uma_zone_t zone; size_t size; uma_init uminit; uma_fini fini; int align; uint32_t flags; }; struct uma_bucket_zone { uma_zone_t ubz_zone; char *ubz_name; int ubz_entries; /* Number of items it can hold. */ int ubz_maxsize; /* Maximum allocation size per-item. */ }; /* * Compute the actual number of bucket entries to pack them in power * of two sizes for more efficient space utilization. */ #define BUCKET_SIZE(n) \ (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) #define BUCKET_MAX BUCKET_SIZE(256) #define BUCKET_MIN BUCKET_SIZE(4) struct uma_bucket_zone bucket_zones[] = { { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, { NULL, NULL, 0} }; /* * Flags and enumerations to be passed to internal functions. */ enum zfreeskip { SKIP_NONE = 0, SKIP_CNT = 0x00000001, SKIP_DTOR = 0x00010000, SKIP_FINI = 0x00020000, }; /* Prototypes.. */ int uma_startup_count(int); void uma_startup(void *, int); void uma_startup1(void); void uma_startup2(void); static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); static void page_free(void *, vm_size_t, uint8_t); static void pcpu_page_free(void *, vm_size_t, uint8_t); static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); static void cache_drain(uma_zone_t); static void bucket_drain(uma_zone_t, uma_bucket_t); static void bucket_cache_reclaim(uma_zone_t zone, bool); static int keg_ctor(void *, int, void *, int); static void keg_dtor(void *, int, void *); static int zone_ctor(void *, int, void *, int); static void zone_dtor(void *, int, void *); static int zero_init(void *, int, int); static void keg_small_init(uma_keg_t keg); static void keg_large_init(uma_keg_t keg); static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); static void zone_timeout(uma_zone_t zone, void *); static int hash_alloc(struct uma_hash *, u_int); static int hash_expand(struct uma_hash *, struct uma_hash *); static void hash_free(struct uma_hash *hash); static void uma_timeout(void *); static void uma_startup3(void); static void *zone_alloc_item(uma_zone_t, void *, int, int); static void *zone_alloc_item_locked(uma_zone_t, void *, int, int); static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); static void bucket_enable(void); static void bucket_init(void); static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); static void bucket_zone_drain(void); static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, int align, uint32_t flags); static int zone_import(void *, void **, int, int, int); static void zone_release(void *, void **, int); static void uma_zero_item(void *, uma_zone_t); static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); #ifdef INVARIANTS static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); static bool uma_dbg_kskip(uma_keg_t keg, void *mem); static bool uma_dbg_zskip(uma_zone_t zone, void *mem); static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, "Memory allocation debugging"); static u_int dbg_divisor = 1; SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, "Debug & thrash every this item in memory allocator"); static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; static counter_u64_t uma_skip_cnt = EARLY_COUNTER; SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, &uma_dbg_cnt, "memory items debugged"); SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, &uma_skip_cnt, "memory items skipped, not debugged"); #endif SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW, 0, "Universal Memory Allocator"); SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); static int zone_warnings = 1; SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, "Warn when UMA zones becomes full"); /* * This routine checks to see whether or not it's safe to enable buckets. */ static void bucket_enable(void) { KASSERT(booted >= BOOT_BUCKETS, ("Bucket enable before init")); bucketdisable = vm_page_count_min(); } /* * Initialize bucket_zones, the array of zones of buckets of various sizes. * * For each zone, calculate the memory required for each bucket, consisting * of the header and an array of pointers. */ static void bucket_init(void) { struct uma_bucket_zone *ubz; int size; for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { size = roundup(sizeof(struct uma_bucket), sizeof(void *)); size += sizeof(void *) * ubz->ubz_entries; ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); } } /* * Given a desired number of entries for a bucket, return the zone from which * to allocate the bucket. */ static struct uma_bucket_zone * bucket_zone_lookup(int entries) { struct uma_bucket_zone *ubz; for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) if (ubz->ubz_entries >= entries) return (ubz); ubz--; return (ubz); } static struct uma_bucket_zone * bucket_zone_max(uma_zone_t zone, int nitems) { struct uma_bucket_zone *ubz; int bpcpu; bpcpu = 2; #ifdef UMA_XDOMAIN if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) /* Count the cross-domain bucket. */ bpcpu++; #endif for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) break; if (ubz == &bucket_zones[0]) ubz = NULL; else ubz--; return (ubz); } static int bucket_select(int size) { struct uma_bucket_zone *ubz; ubz = &bucket_zones[0]; if (size > ubz->ubz_maxsize) return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); for (; ubz->ubz_entries != 0; ubz++) if (ubz->ubz_maxsize < size) break; ubz--; return (ubz->ubz_entries); } static uma_bucket_t bucket_alloc(uma_zone_t zone, void *udata, int flags) { struct uma_bucket_zone *ubz; uma_bucket_t bucket; /* * This is to stop us from allocating per cpu buckets while we're * running out of vm.boot_pages. Otherwise, we would exhaust the * boot pages. This also prevents us from allocating buckets in * low memory situations. */ if (bucketdisable) return (NULL); /* * To limit bucket recursion we store the original zone flags * in a cookie passed via zalloc_arg/zfree_arg. This allows the * NOVM flag to persist even through deep recursions. We also * store ZFLAG_BUCKET once we have recursed attempting to allocate * a bucket for a bucket zone so we do not allow infinite bucket * recursion. This cookie will even persist to frees of unused * buckets via the allocation path or bucket allocations in the * free path. */ if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) udata = (void *)(uintptr_t)zone->uz_flags; else { if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) return (NULL); udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); } if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) flags |= M_NOVM; ubz = bucket_zone_lookup(zone->uz_bucket_size); if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) ubz++; bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); if (bucket) { #ifdef INVARIANTS bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); #endif bucket->ub_cnt = 0; bucket->ub_entries = ubz->ubz_entries; } return (bucket); } static void bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) { struct uma_bucket_zone *ubz; KASSERT(bucket->ub_cnt == 0, ("bucket_free: Freeing a non free bucket.")); if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) udata = (void *)(uintptr_t)zone->uz_flags; ubz = bucket_zone_lookup(bucket->ub_entries); uma_zfree_arg(ubz->ubz_zone, bucket, udata); } static void bucket_zone_drain(void) { struct uma_bucket_zone *ubz; for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); } /* * Attempt to satisfy an allocation by retrieving a full bucket from one of the * zone's caches. */ static uma_bucket_t zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom) { uma_bucket_t bucket; ZONE_LOCK_ASSERT(zone); if ((bucket = TAILQ_FIRST(&zdom->uzd_buckets)) != NULL) { MPASS(zdom->uzd_nitems >= bucket->ub_cnt); TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); zdom->uzd_nitems -= bucket->ub_cnt; if (zdom->uzd_imin > zdom->uzd_nitems) zdom->uzd_imin = zdom->uzd_nitems; zone->uz_bkt_count -= bucket->ub_cnt; } return (bucket); } /* * Insert a full bucket into the specified cache. The "ws" parameter indicates * whether the bucket's contents should be counted as part of the zone's working * set. */ static void zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, const bool ws) { ZONE_LOCK_ASSERT(zone); KASSERT(!ws || zone->uz_bkt_count < zone->uz_bkt_max, ("%s: zone %p overflow", __func__, zone)); if (ws) TAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); else TAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); zdom->uzd_nitems += bucket->ub_cnt; if (ws && zdom->uzd_imax < zdom->uzd_nitems) zdom->uzd_imax = zdom->uzd_nitems; zone->uz_bkt_count += bucket->ub_cnt; } +/* Pops an item out of a per-cpu cache bucket. */ +static inline void * +cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) +{ + void *item; + + CRITICAL_ASSERT(curthread); + + bucket->ucb_cnt--; + item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; +#ifdef INVARIANTS + bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; + KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); +#endif + cache->uc_allocs++; + + return (item); +} + +/* Pushes an item into a per-cpu cache bucket. */ +static inline void +cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) +{ + + CRITICAL_ASSERT(curthread); + KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, + ("uma_zfree: Freeing to non free bucket index.")); + + bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; + bucket->ucb_cnt++; + cache->uc_frees++; +} + +/* + * Unload a UMA bucket from a per-cpu cache. + */ +static inline uma_bucket_t +cache_bucket_unload(uma_cache_bucket_t bucket) +{ + uma_bucket_t b; + + b = bucket->ucb_bucket; + if (b != NULL) { + MPASS(b->ub_entries == bucket->ucb_entries); + b->ub_cnt = bucket->ucb_cnt; + bucket->ucb_bucket = NULL; + bucket->ucb_entries = bucket->ucb_cnt = 0; + } + + return (b); +} + +static inline uma_bucket_t +cache_bucket_unload_alloc(uma_cache_t cache) +{ + + return (cache_bucket_unload(&cache->uc_allocbucket)); +} + +static inline uma_bucket_t +cache_bucket_unload_free(uma_cache_t cache) +{ + + return (cache_bucket_unload(&cache->uc_freebucket)); +} + +static inline uma_bucket_t +cache_bucket_unload_cross(uma_cache_t cache) +{ + + return (cache_bucket_unload(&cache->uc_crossbucket)); +} + +/* + * Load a bucket into a per-cpu cache bucket. + */ +static inline void +cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) +{ + + CRITICAL_ASSERT(curthread); + MPASS(bucket->ucb_bucket == NULL); + + bucket->ucb_bucket = b; + bucket->ucb_cnt = b->ub_cnt; + bucket->ucb_entries = b->ub_entries; +} + +static inline void +cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) +{ + + cache_bucket_load(&cache->uc_allocbucket, b); +} + +static inline void +cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) +{ + + cache_bucket_load(&cache->uc_freebucket, b); +} + +#ifdef UMA_XDOMAIN +static inline void +cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) +{ + + cache_bucket_load(&cache->uc_crossbucket, b); +} +#endif + +/* + * Copy and preserve ucb_spare. + */ +static inline void +cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) +{ + + b1->ucb_bucket = b2->ucb_bucket; + b1->ucb_entries = b2->ucb_entries; + b1->ucb_cnt = b2->ucb_cnt; +} + +/* + * Swap two cache buckets. + */ +static inline void +cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) +{ + struct uma_cache_bucket b3; + + CRITICAL_ASSERT(curthread); + + cache_bucket_copy(&b3, b1); + cache_bucket_copy(b1, b2); + cache_bucket_copy(b2, &b3); +} + static void zone_log_warning(uma_zone_t zone) { static const struct timeval warninterval = { 300, 0 }; if (!zone_warnings || zone->uz_warning == NULL) return; if (ratecheck(&zone->uz_ratecheck, &warninterval)) printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); } static inline void zone_maxaction(uma_zone_t zone) { if (zone->uz_maxaction.ta_func != NULL) taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); } /* * Routine called by timeout which is used to fire off some time interval * based calculations. (stats, hash size, etc.) * * Arguments: * arg Unused * * Returns: * Nothing */ static void uma_timeout(void *unused) { bucket_enable(); zone_foreach(zone_timeout, NULL); /* Reschedule this event */ callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); } /* * Update the working set size estimate for the zone's bucket cache. * The constants chosen here are somewhat arbitrary. With an update period of * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the * last 100s. */ static void zone_domain_update_wss(uma_zone_domain_t zdom) { long wss; MPASS(zdom->uzd_imax >= zdom->uzd_imin); wss = zdom->uzd_imax - zdom->uzd_imin; zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; } /* * Routine to perform timeout driven calculations. This expands the * hashes and does per cpu statistics aggregation. * * Returns nothing. */ static void zone_timeout(uma_zone_t zone, void *unused) { uma_keg_t keg; u_int slabs; if ((zone->uz_flags & UMA_ZONE_HASH) == 0) goto update_wss; keg = zone->uz_keg; KEG_LOCK(keg); /* * Expand the keg hash table. * * This is done if the number of slabs is larger than the hash size. * What I'm trying to do here is completely reduce collisions. This * may be a little aggressive. Should I allow for two collisions max? */ if (keg->uk_flags & UMA_ZONE_HASH && (slabs = keg->uk_pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { struct uma_hash newhash; struct uma_hash oldhash; int ret; /* * This is so involved because allocating and freeing * while the keg lock is held will lead to deadlock. * I have to do everything in stages and check for * races. */ KEG_UNLOCK(keg); ret = hash_alloc(&newhash, 1 << fls(slabs)); KEG_LOCK(keg); if (ret) { if (hash_expand(&keg->uk_hash, &newhash)) { oldhash = keg->uk_hash; keg->uk_hash = newhash; } else oldhash = newhash; KEG_UNLOCK(keg); hash_free(&oldhash); return; } } KEG_UNLOCK(keg); update_wss: ZONE_LOCK(zone); for (int i = 0; i < vm_ndomains; i++) zone_domain_update_wss(&zone->uz_domain[i]); ZONE_UNLOCK(zone); } /* * Allocate and zero fill the next sized hash table from the appropriate * backing store. * * Arguments: * hash A new hash structure with the old hash size in uh_hashsize * * Returns: * 1 on success and 0 on failure. */ static int hash_alloc(struct uma_hash *hash, u_int size) { size_t alloc; KASSERT(powerof2(size), ("hash size must be power of 2")); if (size > UMA_HASH_SIZE_INIT) { hash->uh_hashsize = size; alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); } else { alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, UMA_ANYDOMAIN, M_WAITOK); hash->uh_hashsize = UMA_HASH_SIZE_INIT; } if (hash->uh_slab_hash) { bzero(hash->uh_slab_hash, alloc); hash->uh_hashmask = hash->uh_hashsize - 1; return (1); } return (0); } /* * Expands the hash table for HASH zones. This is done from zone_timeout * to reduce collisions. This must not be done in the regular allocation * path, otherwise, we can recurse on the vm while allocating pages. * * Arguments: * oldhash The hash you want to expand * newhash The hash structure for the new table * * Returns: * Nothing * * Discussion: */ static int hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) { uma_hash_slab_t slab; u_int hval; u_int idx; if (!newhash->uh_slab_hash) return (0); if (oldhash->uh_hashsize >= newhash->uh_hashsize) return (0); /* * I need to investigate hash algorithms for resizing without a * full rehash. */ for (idx = 0; idx < oldhash->uh_hashsize; idx++) while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); LIST_REMOVE(slab, uhs_hlink); hval = UMA_HASH(newhash, slab->uhs_data); LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], slab, uhs_hlink); } return (1); } /* * Free the hash bucket to the appropriate backing store. * * Arguments: * slab_hash The hash bucket we're freeing * hashsize The number of entries in that hash bucket * * Returns: * Nothing */ static void hash_free(struct uma_hash *hash) { if (hash->uh_slab_hash == NULL) return; if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); else free(hash->uh_slab_hash, M_UMAHASH); } /* * Frees all outstanding items in a bucket * * Arguments: * zone The zone to free to, must be unlocked. * bucket The free/alloc bucket with items, cpu queue must be locked. * * Returns: * Nothing */ static void bucket_drain(uma_zone_t zone, uma_bucket_t bucket) { int i; if (bucket == NULL) return; if (zone->uz_fini) for (i = 0; i < bucket->ub_cnt; i++) zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); if (zone->uz_max_items > 0) { ZONE_LOCK(zone); zone->uz_items -= bucket->ub_cnt; if (zone->uz_sleepers && zone->uz_items < zone->uz_max_items) wakeup_one(zone); ZONE_UNLOCK(zone); } bucket->ub_cnt = 0; } /* * Drains the per cpu caches for a zone. * * NOTE: This may only be called while the zone is being turn down, and not * during normal operation. This is necessary in order that we do not have * to migrate CPUs to drain the per-CPU caches. * * Arguments: * zone The zone to drain, must be unlocked. * * Returns: * Nothing */ static void cache_drain(uma_zone_t zone) { uma_cache_t cache; + uma_bucket_t bucket; int cpu; /* * XXX: It is safe to not lock the per-CPU caches, because we're * tearing down the zone anyway. I.e., there will be no further use * of the caches at this point. * * XXX: It would good to be able to assert that the zone is being * torn down to prevent improper use of cache_drain(). * * XXX: We lock the zone before passing into bucket_cache_reclaim() as * it is used elsewhere. Should the tear-down path be made special * there in some form? */ CPU_FOREACH(cpu) { cache = &zone->uz_cpu[cpu]; - bucket_drain(zone, cache->uc_allocbucket); - if (cache->uc_allocbucket != NULL) - bucket_free(zone, cache->uc_allocbucket, NULL); - cache->uc_allocbucket = NULL; - bucket_drain(zone, cache->uc_freebucket); - if (cache->uc_freebucket != NULL) - bucket_free(zone, cache->uc_freebucket, NULL); - cache->uc_freebucket = NULL; - bucket_drain(zone, cache->uc_crossbucket); - if (cache->uc_crossbucket != NULL) - bucket_free(zone, cache->uc_crossbucket, NULL); - cache->uc_crossbucket = NULL; + bucket = cache_bucket_unload_alloc(cache); + if (bucket != NULL) { + bucket_drain(zone, bucket); + bucket_free(zone, bucket, NULL); + } + bucket = cache_bucket_unload_free(cache); + if (bucket != NULL) { + bucket_drain(zone, bucket); + bucket_free(zone, bucket, NULL); + } + bucket = cache_bucket_unload_cross(cache); + if (bucket != NULL) { + bucket_drain(zone, bucket); + bucket_free(zone, bucket, NULL); + } } ZONE_LOCK(zone); bucket_cache_reclaim(zone, true); ZONE_UNLOCK(zone); } static void cache_shrink(uma_zone_t zone, void *unused) { if (zone->uz_flags & UMA_ZFLAG_INTERNAL) return; ZONE_LOCK(zone); zone->uz_bucket_size = (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; ZONE_UNLOCK(zone); } static void cache_drain_safe_cpu(uma_zone_t zone, void *unused) { uma_cache_t cache; uma_bucket_t b1, b2, b3; int domain; if (zone->uz_flags & UMA_ZFLAG_INTERNAL) return; b1 = b2 = b3 = NULL; ZONE_LOCK(zone); critical_enter(); if (zone->uz_flags & UMA_ZONE_NUMA) domain = PCPU_GET(domain); else domain = 0; cache = &zone->uz_cpu[curcpu]; - if (cache->uc_allocbucket) { - if (cache->uc_allocbucket->ub_cnt != 0) - zone_put_bucket(zone, &zone->uz_domain[domain], - cache->uc_allocbucket, false); - else - b1 = cache->uc_allocbucket; - cache->uc_allocbucket = NULL; + b1 = cache_bucket_unload_alloc(cache); + if (b1 != NULL && b1->ub_cnt != 0) { + zone_put_bucket(zone, &zone->uz_domain[domain], b1, false); + b1 = NULL; } - if (cache->uc_freebucket) { - if (cache->uc_freebucket->ub_cnt != 0) - zone_put_bucket(zone, &zone->uz_domain[domain], - cache->uc_freebucket, false); - else - b2 = cache->uc_freebucket; - cache->uc_freebucket = NULL; + b2 = cache_bucket_unload_free(cache); + if (b2 != NULL && b2->ub_cnt != 0) { + zone_put_bucket(zone, &zone->uz_domain[domain], b2, false); + b2 = NULL; } - b3 = cache->uc_crossbucket; - cache->uc_crossbucket = NULL; + b3 = cache_bucket_unload_cross(cache); critical_exit(); ZONE_UNLOCK(zone); if (b1) bucket_free(zone, b1, NULL); if (b2) bucket_free(zone, b2, NULL); if (b3) { bucket_drain(zone, b3); bucket_free(zone, b3, NULL); } } /* * Safely drain per-CPU caches of a zone(s) to alloc bucket. * This is an expensive call because it needs to bind to all CPUs * one by one and enter a critical section on each of them in order * to safely access their cache buckets. * Zone lock must not be held on call this function. */ static void pcpu_cache_drain_safe(uma_zone_t zone) { int cpu; /* * Polite bucket sizes shrinking was not enouth, shrink aggressively. */ if (zone) cache_shrink(zone, NULL); else zone_foreach(cache_shrink, NULL); CPU_FOREACH(cpu) { thread_lock(curthread); sched_bind(curthread, cpu); thread_unlock(curthread); if (zone) cache_drain_safe_cpu(zone, NULL); else zone_foreach(cache_drain_safe_cpu, NULL); } thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } /* * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller * requested a drain, otherwise the per-domain caches are trimmed to either * estimated working set size. */ static void bucket_cache_reclaim(uma_zone_t zone, bool drain) { uma_zone_domain_t zdom; uma_bucket_t bucket; long target, tofree; int i; for (i = 0; i < vm_ndomains; i++) { zdom = &zone->uz_domain[i]; /* * If we were asked to drain the zone, we are done only once * this bucket cache is empty. Otherwise, we reclaim items in * excess of the zone's estimated working set size. If the * difference nitems - imin is larger than the WSS estimate, * then the estimate will grow at the end of this interval and * we ignore the historical average. */ target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - zdom->uzd_imin); while (zdom->uzd_nitems > target) { bucket = TAILQ_LAST(&zdom->uzd_buckets, uma_bucketlist); if (bucket == NULL) break; tofree = bucket->ub_cnt; TAILQ_REMOVE(&zdom->uzd_buckets, bucket, ub_link); zdom->uzd_nitems -= tofree; /* * Shift the bounds of the current WSS interval to avoid * perturbing the estimate. */ zdom->uzd_imax -= lmin(zdom->uzd_imax, tofree); zdom->uzd_imin -= lmin(zdom->uzd_imin, tofree); ZONE_UNLOCK(zone); bucket_drain(zone, bucket); bucket_free(zone, bucket, NULL); ZONE_LOCK(zone); } } /* * Shrink the zone bucket size to ensure that the per-CPU caches * don't grow too large. */ if (zone->uz_bucket_size > zone->uz_bucket_size_min) zone->uz_bucket_size--; } static void keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) { uint8_t *mem; int i; uint8_t flags; CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); mem = slab_data(slab, keg); flags = slab->us_flags; i = start; if (keg->uk_fini != NULL) { for (i--; i > -1; i--) #ifdef INVARIANTS /* * trash_fini implies that dtor was trash_dtor. trash_fini * would check that memory hasn't been modified since free, * which executed trash_dtor. * That's why we need to run uma_dbg_kskip() check here, * albeit we don't make skip check for other init/fini * invocations. */ if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || keg->uk_fini != trash_fini) #endif keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); } if (keg->uk_flags & UMA_ZONE_OFFPAGE) zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); uma_total_dec(PAGE_SIZE * keg->uk_ppera); } /* * Frees pages from a keg back to the system. This is done on demand from * the pageout daemon. * * Returns nothing. */ static void keg_drain(uma_keg_t keg) { struct slabhead freeslabs = { 0 }; uma_domain_t dom; uma_slab_t slab, tmp; int i; /* * We don't want to take pages from statically allocated kegs at this * time */ if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) return; CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", keg->uk_name, keg, keg->uk_free); KEG_LOCK(keg); if (keg->uk_free == 0) goto finished; for (i = 0; i < vm_ndomains; i++) { dom = &keg->uk_domain[i]; LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { /* We have nowhere to free these to. */ if (slab->us_flags & UMA_SLAB_BOOT) continue; LIST_REMOVE(slab, us_link); keg->uk_pages -= keg->uk_ppera; keg->uk_free -= keg->uk_ipers; if (keg->uk_flags & UMA_ZONE_HASH) UMA_HASH_REMOVE(&keg->uk_hash, slab); LIST_INSERT_HEAD(&freeslabs, slab, us_link); } } finished: KEG_UNLOCK(keg); while ((slab = LIST_FIRST(&freeslabs)) != NULL) { LIST_REMOVE(slab, us_link); keg_free_slab(keg, slab, keg->uk_ipers); } } static void zone_reclaim(uma_zone_t zone, int waitok, bool drain) { /* * Set draining to interlock with zone_dtor() so we can release our * locks as we go. Only dtor() should do a WAITOK call since it * is the only call that knows the structure will still be available * when it wakes up. */ ZONE_LOCK(zone); while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { if (waitok == M_NOWAIT) goto out; msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); } zone->uz_flags |= UMA_ZFLAG_RECLAIMING; bucket_cache_reclaim(zone, drain); ZONE_UNLOCK(zone); /* * The DRAINING flag protects us from being freed while * we're running. Normally the uma_rwlock would protect us but we * must be able to release and acquire the right lock for each keg. */ if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) keg_drain(zone->uz_keg); ZONE_LOCK(zone); zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; wakeup(zone); out: ZONE_UNLOCK(zone); } static void zone_drain(uma_zone_t zone, void *unused) { zone_reclaim(zone, M_NOWAIT, true); } static void zone_trim(uma_zone_t zone, void *unused) { zone_reclaim(zone, M_NOWAIT, false); } /* * Allocate a new slab for a keg. This does not insert the slab onto a list. * If the allocation was successful, the keg lock will be held upon return, * otherwise the keg will be left unlocked. * * Arguments: * flags Wait flags for the item initialization routine * aflags Wait flags for the slab allocation * * Returns: * The slab that was allocated or NULL if there is no memory and the * caller specified M_NOWAIT. */ static uma_slab_t keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, int aflags) { uma_alloc allocf; uma_slab_t slab; unsigned long size; uint8_t *mem; uint8_t sflags; int i; KASSERT(domain >= 0 && domain < vm_ndomains, ("keg_alloc_slab: domain %d out of range", domain)); KEG_LOCK_ASSERT(keg); MPASS(zone->uz_lockptr == &keg->uk_lock); allocf = keg->uk_allocf; KEG_UNLOCK(keg); slab = NULL; mem = NULL; if (keg->uk_flags & UMA_ZONE_OFFPAGE) { slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, aflags); if (slab == NULL) goto out; } /* * This reproduces the old vm_zone behavior of zero filling pages the * first time they are added to a zone. * * Malloced items are zeroed in uma_zalloc. */ if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) aflags |= M_ZERO; else aflags &= ~M_ZERO; if (keg->uk_flags & UMA_ZONE_NODUMP) aflags |= M_NODUMP; /* zone is passed for legacy reasons. */ size = keg->uk_ppera * PAGE_SIZE; mem = allocf(zone, size, domain, &sflags, aflags); if (mem == NULL) { if (keg->uk_flags & UMA_ZONE_OFFPAGE) zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); slab = NULL; goto out; } uma_total_inc(size); /* Point the slab into the allocated memory */ if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) slab = (uma_slab_t )(mem + keg->uk_pgoff); else ((uma_hash_slab_t)slab)->uhs_data = mem; if (keg->uk_flags & UMA_ZONE_VTOSLAB) for (i = 0; i < keg->uk_ppera; i++) vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), zone, slab); slab->us_freecount = keg->uk_ipers; slab->us_flags = sflags; slab->us_domain = domain; BIT_FILL(keg->uk_ipers, &slab->us_free); #ifdef INVARIANTS BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); #endif if (keg->uk_init != NULL) { for (i = 0; i < keg->uk_ipers; i++) if (keg->uk_init(slab_item(slab, keg, i), keg->uk_size, flags) != 0) break; if (i != keg->uk_ipers) { keg_free_slab(keg, slab, i); slab = NULL; goto out; } } KEG_LOCK(keg); CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", slab, keg->uk_name, keg); if (keg->uk_flags & UMA_ZONE_HASH) UMA_HASH_INSERT(&keg->uk_hash, slab, mem); keg->uk_pages += keg->uk_ppera; keg->uk_free += keg->uk_ipers; out: return (slab); } /* * This function is intended to be used early on in place of page_alloc() so * that we may use the boot time page cache to satisfy allocations before * the VM is ready. */ static void * startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { uma_keg_t keg; void *mem; int pages; keg = zone->uz_keg; /* * If we are in BOOT_BUCKETS or higher, than switch to real * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. */ switch (booted) { case BOOT_COLD: case BOOT_STRAPPED: break; case BOOT_PAGEALLOC: if (keg->uk_ppera > 1) break; case BOOT_BUCKETS: case BOOT_RUNNING: #ifdef UMA_MD_SMALL_ALLOC keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; #else keg->uk_allocf = page_alloc; #endif return keg->uk_allocf(zone, bytes, domain, pflag, wait); } /* * Check our small startup cache to see if it has pages remaining. */ pages = howmany(bytes, PAGE_SIZE); KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); if (pages > boot_pages) panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); #ifdef DIAGNOSTIC printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, boot_pages); #endif mem = bootmem; boot_pages -= pages; bootmem += pages * PAGE_SIZE; *pflag = UMA_SLAB_BOOT; return (mem); } /* * Allocates a number of pages from the system * * Arguments: * bytes The number of bytes requested * wait Shall we wait? * * Returns: * A pointer to the alloced memory or possibly * NULL if M_NOWAIT is set. */ static void * page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { void *p; /* Returned page */ *pflag = UMA_SLAB_KERNEL; p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); return (p); } static void * pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { struct pglist alloctail; vm_offset_t addr, zkva; int cpu, flags; vm_page_t p, p_next; #ifdef NUMA struct pcpu *pc; #endif MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); TAILQ_INIT(&alloctail); flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | malloc2vm_flags(wait); *pflag = UMA_SLAB_KERNEL; for (cpu = 0; cpu <= mp_maxid; cpu++) { if (CPU_ABSENT(cpu)) { p = vm_page_alloc(NULL, 0, flags); } else { #ifndef NUMA p = vm_page_alloc(NULL, 0, flags); #else pc = pcpu_find(cpu); p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); if (__predict_false(p == NULL)) p = vm_page_alloc(NULL, 0, flags); #endif } if (__predict_false(p == NULL)) goto fail; TAILQ_INSERT_TAIL(&alloctail, p, listq); } if ((addr = kva_alloc(bytes)) == 0) goto fail; zkva = addr; TAILQ_FOREACH(p, &alloctail, listq) { pmap_qenter(zkva, &p, 1); zkva += PAGE_SIZE; } return ((void*)addr); fail: TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { vm_page_unwire_noq(p); vm_page_free(p); } return (NULL); } /* * Allocates a number of pages from within an object * * Arguments: * bytes The number of bytes requested * wait Shall we wait? * * Returns: * A pointer to the alloced memory or possibly * NULL if M_NOWAIT is set. */ static void * noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, int wait) { TAILQ_HEAD(, vm_page) alloctail; u_long npages; vm_offset_t retkva, zkva; vm_page_t p, p_next; uma_keg_t keg; TAILQ_INIT(&alloctail); keg = zone->uz_keg; npages = howmany(bytes, PAGE_SIZE); while (npages > 0) { p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : VM_ALLOC_NOWAIT)); if (p != NULL) { /* * Since the page does not belong to an object, its * listq is unused. */ TAILQ_INSERT_TAIL(&alloctail, p, listq); npages--; continue; } /* * Page allocation failed, free intermediate pages and * exit. */ TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { vm_page_unwire_noq(p); vm_page_free(p); } return (NULL); } *flags = UMA_SLAB_PRIV; zkva = keg->uk_kva + atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); retkva = zkva; TAILQ_FOREACH(p, &alloctail, listq) { pmap_qenter(zkva, &p, 1); zkva += PAGE_SIZE; } return ((void *)retkva); } /* * Frees a number of pages to the system * * Arguments: * mem A pointer to the memory to be freed * size The size of the memory being freed * flags The original p->us_flags field * * Returns: * Nothing */ static void page_free(void *mem, vm_size_t size, uint8_t flags) { if ((flags & UMA_SLAB_KERNEL) == 0) panic("UMA: page_free used with invalid flags %x", flags); kmem_free((vm_offset_t)mem, size); } /* * Frees pcpu zone allocations * * Arguments: * mem A pointer to the memory to be freed * size The size of the memory being freed * flags The original p->us_flags field * * Returns: * Nothing */ static void pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) { vm_offset_t sva, curva; vm_paddr_t paddr; vm_page_t m; MPASS(size == (mp_maxid+1)*PAGE_SIZE); sva = (vm_offset_t)mem; for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { paddr = pmap_kextract(curva); m = PHYS_TO_VM_PAGE(paddr); vm_page_unwire_noq(m); vm_page_free(m); } pmap_qremove(sva, size >> PAGE_SHIFT); kva_free(sva, size); } /* * Zero fill initializer * * Arguments/Returns follow uma_init specifications */ static int zero_init(void *mem, int size, int flags) { bzero(mem, size); return (0); } #ifdef INVARIANTS struct noslabbits * slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) { return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); } #endif /* * Actual size of embedded struct slab (!OFFPAGE). */ size_t slab_sizeof(int nitems) { size_t s; s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; return (roundup(s, UMA_ALIGN_PTR + 1)); } /* * Size of memory for embedded slabs (!OFFPAGE). */ size_t slab_space(int nitems) { return (UMA_SLAB_SIZE - slab_sizeof(nitems)); } /* * Compute the number of items that will fit in an embedded (!OFFPAGE) slab * with a given size and alignment. */ int slab_ipers(size_t size, int align) { int rsize; int nitems; /* * Compute the ideal number of items that will fit in a page and * then compute the actual number based on a bitset nitems wide. */ rsize = roundup(size, align + 1); nitems = UMA_SLAB_SIZE / rsize; return (slab_space(nitems) / rsize); } /* * Finish creating a small uma keg. This calculates ipers, and the keg size. * * Arguments * keg The zone we should initialize * * Returns * Nothing */ static void keg_small_init(uma_keg_t keg) { u_int rsize; u_int memused; u_int wastedspace; u_int shsize; u_int slabsize; if (keg->uk_flags & UMA_ZONE_PCPU) { u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; slabsize = UMA_PCPU_ALLOC_SIZE; keg->uk_ppera = ncpus; } else { slabsize = UMA_SLAB_SIZE; keg->uk_ppera = 1; } /* * Calculate the size of each allocation (rsize) according to * alignment. If the requested size is smaller than we have * allocation bits for we round it up. */ rsize = keg->uk_size; if (rsize < slabsize / SLAB_MAX_SETSIZE) rsize = slabsize / SLAB_MAX_SETSIZE; if (rsize & keg->uk_align) rsize = roundup(rsize, keg->uk_align + 1); keg->uk_rsize = rsize; KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, ("%s: size %u too large", __func__, keg->uk_rsize)); /* * Use a pessimistic bit count for shsize. It may be possible to * squeeze one more item in for very particular sizes if we were * to loop and reduce the bitsize if there is waste. */ if (keg->uk_flags & UMA_ZONE_OFFPAGE) shsize = 0; else shsize = slab_sizeof(slabsize / rsize); if (rsize <= slabsize - shsize) keg->uk_ipers = (slabsize - shsize) / rsize; else { /* Handle special case when we have 1 item per slab, so * alignment requirement can be relaxed. */ KASSERT(keg->uk_size <= slabsize - shsize, ("%s: size %u greater than slab", __func__, keg->uk_size)); keg->uk_ipers = 1; } KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); memused = keg->uk_ipers * rsize + shsize; wastedspace = slabsize - memused; /* * We can't do OFFPAGE if we're internal or if we've been * asked to not go to the VM for buckets. If we do this we * may end up going to the VM for slabs which we do not * want to do if we're UMA_ZFLAG_CACHEONLY as a result * of UMA_ZONE_VM, which clearly forbids it. */ if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) return; /* * See if using an OFFPAGE slab will limit our waste. Only do * this if it permits more items per-slab. * * XXX We could try growing slabsize to limit max waste as well. * Historically this was not done because the VM could not * efficiently handle contiguous allocations. */ if ((wastedspace >= slabsize / UMA_MAX_WASTE) && (keg->uk_ipers < (slabsize / keg->uk_rsize))) { keg->uk_ipers = slabsize / keg->uk_rsize; KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " "keg: %s(%p), calculated wastedspace = %d, " "maximum wasted space allowed = %d, " "calculated ipers = %d, " "new wasted space = %d\n", keg->uk_name, keg, wastedspace, slabsize / UMA_MAX_WASTE, keg->uk_ipers, slabsize - keg->uk_ipers * keg->uk_rsize); /* * If we had access to memory to embed a slab header we * also have a page structure to use vtoslab() instead of * hash to find slabs. If the zone was explicitly created * OFFPAGE we can't necessarily touch the memory. */ if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; } if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) keg->uk_flags |= UMA_ZONE_HASH; } /* * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be * more complicated. * * Arguments * keg The keg we should initialize * * Returns * Nothing */ static void keg_large_init(uma_keg_t keg) { KASSERT(keg != NULL, ("Keg is null in keg_large_init")); KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); keg->uk_ipers = 1; keg->uk_rsize = keg->uk_size; /* Check whether we have enough space to not do OFFPAGE. */ if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0 && PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < slab_sizeof(SLAB_MIN_SETSIZE)) { /* * We can't do OFFPAGE if we're internal, in which case * we need an extra page per allocation to contain the * slab header. */ if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; else keg->uk_ppera++; } if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) keg->uk_flags |= UMA_ZONE_HASH; } static void keg_cachespread_init(uma_keg_t keg) { int alignsize; int trailer; int pages; int rsize; KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); alignsize = keg->uk_align + 1; rsize = keg->uk_size; /* * We want one item to start on every align boundary in a page. To * do this we will span pages. We will also extend the item by the * size of align if it is an even multiple of align. Otherwise, it * would fall on the same boundary every time. */ if (rsize & keg->uk_align) rsize = (rsize & ~keg->uk_align) + alignsize; if ((rsize & alignsize) == 0) rsize += alignsize; trailer = rsize - keg->uk_size; pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; pages = MIN(pages, (128 * 1024) / PAGE_SIZE); keg->uk_rsize = rsize; keg->uk_ppera = pages; keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; KASSERT(keg->uk_ipers <= SLAB_MAX_SETSIZE, ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, keg->uk_ipers)); } /* * Keg header ctor. This initializes all fields, locks, etc. And inserts * the keg onto the global keg list. * * Arguments/Returns follow uma_ctor specifications * udata Actually uma_kctor_args */ static int keg_ctor(void *mem, int size, void *udata, int flags) { struct uma_kctor_args *arg = udata; uma_keg_t keg = mem; uma_zone_t zone; bzero(keg, size); keg->uk_size = arg->size; keg->uk_init = arg->uminit; keg->uk_fini = arg->fini; keg->uk_align = arg->align; keg->uk_free = 0; keg->uk_reserve = 0; keg->uk_pages = 0; keg->uk_flags = arg->flags; keg->uk_slabzone = NULL; /* * We use a global round-robin policy by default. Zones with * UMA_ZONE_NUMA set will use first-touch instead, in which case the * iterator is never run. */ keg->uk_dr.dr_policy = DOMAINSET_RR(); keg->uk_dr.dr_iter = 0; /* * The master zone is passed to us at keg-creation time. */ zone = arg->zone; keg->uk_name = zone->uz_name; if (arg->flags & UMA_ZONE_VM) keg->uk_flags |= UMA_ZFLAG_CACHEONLY; if (arg->flags & UMA_ZONE_ZINIT) keg->uk_init = zero_init; if (arg->flags & UMA_ZONE_MALLOC) keg->uk_flags |= UMA_ZONE_VTOSLAB; if (arg->flags & UMA_ZONE_PCPU) #ifdef SMP keg->uk_flags |= UMA_ZONE_OFFPAGE; #else keg->uk_flags &= ~UMA_ZONE_PCPU; #endif if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { keg_cachespread_init(keg); } else { if (keg->uk_size > slab_space(SLAB_MIN_SETSIZE)) keg_large_init(keg); else keg_small_init(keg); } if (keg->uk_flags & UMA_ZONE_OFFPAGE) keg->uk_slabzone = slabzone; /* * If we haven't booted yet we need allocations to go through the * startup cache until the vm is ready. */ if (booted < BOOT_PAGEALLOC) keg->uk_allocf = startup_alloc; #ifdef UMA_MD_SMALL_ALLOC else if (keg->uk_ppera == 1) keg->uk_allocf = uma_small_alloc; #endif else if (keg->uk_flags & UMA_ZONE_PCPU) keg->uk_allocf = pcpu_page_alloc; else keg->uk_allocf = page_alloc; #ifdef UMA_MD_SMALL_ALLOC if (keg->uk_ppera == 1) keg->uk_freef = uma_small_free; else #endif if (keg->uk_flags & UMA_ZONE_PCPU) keg->uk_freef = pcpu_page_free; else keg->uk_freef = page_free; /* * Initialize keg's lock */ KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); /* * If we're putting the slab header in the actual page we need to * figure out where in each page it goes. See slab_sizeof * definition. */ if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { size_t shsize; shsize = slab_sizeof(keg->uk_ipers); keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; /* * The only way the following is possible is if with our * UMA_ALIGN_PTR adjustments we are now bigger than * UMA_SLAB_SIZE. I haven't checked whether this is * mathematically possible for all cases, so we make * sure here anyway. */ KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, ("zone %s ipers %d rsize %d size %d slab won't fit", zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); } if (keg->uk_flags & UMA_ZONE_HASH) hash_alloc(&keg->uk_hash, 0); CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", keg, zone->uz_name, zone, (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, keg->uk_free); LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); rw_wlock(&uma_rwlock); LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); rw_wunlock(&uma_rwlock); return (0); } static void zone_alloc_counters(uma_zone_t zone, void *unused) { zone->uz_allocs = counter_u64_alloc(M_WAITOK); zone->uz_frees = counter_u64_alloc(M_WAITOK); zone->uz_fails = counter_u64_alloc(M_WAITOK); } static void zone_alloc_sysctl(uma_zone_t zone, void *unused) { uma_zone_domain_t zdom; uma_keg_t keg; struct sysctl_oid *oid, *domainoid; int domains, i, cnt; static const char *nokeg = "cache zone"; char *c; /* * Make a sysctl safe copy of the zone name by removing * any special characters and handling dups by appending * an index. */ if (zone->uz_namecnt != 0) { /* Count the number of decimal digits and '_' separator. */ for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) cnt /= 10; zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, M_UMA, M_WAITOK); sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, zone->uz_namecnt); } else zone->uz_ctlname = strdup(zone->uz_name, M_UMA); for (c = zone->uz_ctlname; *c != '\0'; c++) if (strchr("./\\ -", *c) != NULL) *c = '_'; /* * Basic parameters at the root. */ zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), OID_AUTO, zone->uz_ctlname, CTLFLAG_RD, NULL, ""); oid = zone->uz_oid; SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, zone, 0, sysctl_handle_uma_zone_flags, "A", "Allocator configuration flags"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, "Desired per-cpu cache size"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, "Maximum allowed per-cpu cache size"); /* * keg if present. */ oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "keg", CTLFLAG_RD, NULL, ""); keg = zone->uz_keg; if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "name", CTLFLAG_RD, keg->uk_name, "Keg name"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, "Real object size with alignment"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, "pages per-slab allocation"); SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, "items available per-slab"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "align", CTLFLAG_RD, &keg->uk_align, 0, "item alignment mask"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "pages", CTLFLAG_RD, &keg->uk_pages, 0, "Total pages currently allocated from VM"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "free", CTLFLAG_RD, &keg->uk_free, 0, "items free in the slab layer"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, keg, 0, sysctl_handle_uma_slab_efficiency, "I", "Slab utilization (100 - internal fragmentation %)"); } else SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "name", CTLFLAG_RD, nokeg, "Keg name"); /* * Information about zone limits. */ oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "limit", CTLFLAG_RD, NULL, ""); SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "items", CTLFLAG_RD, &zone->uz_items, 0, "current number of cached items"); SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, "Maximum number of cached items"); SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, "Number of threads sleeping at limit"); SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, "Total zone limit sleeps"); /* * Per-domain information. */ if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) domains = vm_ndomains; else domains = 1; domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "domain", CTLFLAG_RD, NULL, ""); for (i = 0; i < domains; i++) { zdom = &zone->uz_domain[i]; oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), OID_AUTO, VM_DOMAIN(i)->vmd_name, CTLFLAG_RD, NULL, ""); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "nitems", CTLFLAG_RD, &zdom->uzd_nitems, "number of items in this domain"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "imax", CTLFLAG_RD, &zdom->uzd_imax, "maximum item count in this period"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "imin", CTLFLAG_RD, &zdom->uzd_imin, "minimum item count in this period"); SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wss", CTLFLAG_RD, &zdom->uzd_wss, "Working set size"); } /* * General statistics. */ oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, "stats", CTLFLAG_RD, NULL, ""); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, zone, 1, sysctl_handle_uma_zone_cur, "I", "Current number of allocated items"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, zone, 0, sysctl_handle_uma_zone_allocs, "QU", "Total allocation calls"); SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, zone, 0, sysctl_handle_uma_zone_frees, "QU", "Total free calls"); SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "fails", CTLFLAG_RD, &zone->uz_fails, "Number of allocation failures"); SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 0, "Free calls from the wrong domain"); } struct uma_zone_count { const char *name; int count; }; static void zone_count(uma_zone_t zone, void *arg) { struct uma_zone_count *cnt; cnt = arg; /* * Some zones are rapidly created with identical names and * destroyed out of order. This can lead to gaps in the count. * Use one greater than the maximum observed for this name. */ if (strcmp(zone->uz_name, cnt->name) == 0) cnt->count = MAX(cnt->count, zone->uz_namecnt + 1); } /* * Zone header ctor. This initializes all fields, locks, etc. * * Arguments/Returns follow uma_ctor specifications * udata Actually uma_zctor_args */ static int zone_ctor(void *mem, int size, void *udata, int flags) { struct uma_zone_count cnt; struct uma_zctor_args *arg = udata; uma_zone_t zone = mem; uma_zone_t z; uma_keg_t keg; int i; bzero(zone, size); zone->uz_name = arg->name; zone->uz_ctor = arg->ctor; zone->uz_dtor = arg->dtor; zone->uz_init = NULL; zone->uz_fini = NULL; zone->uz_sleeps = 0; zone->uz_xdomain = 0; zone->uz_bucket_size = 0; zone->uz_bucket_size_min = 0; zone->uz_bucket_size_max = BUCKET_MAX; zone->uz_flags = 0; zone->uz_warning = NULL; /* The domain structures follow the cpu structures. */ zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; zone->uz_bkt_max = ULONG_MAX; timevalclear(&zone->uz_ratecheck); /* Count the number of duplicate names. */ cnt.name = arg->name; cnt.count = 0; zone_foreach(zone_count, &cnt); zone->uz_namecnt = cnt.count; for (i = 0; i < vm_ndomains; i++) TAILQ_INIT(&zone->uz_domain[i].uzd_buckets); #ifdef INVARIANTS if (arg->uminit == trash_init && arg->fini == trash_fini) zone->uz_flags |= UMA_ZFLAG_TRASH; #endif /* * This is a pure cache zone, no kegs. */ if (arg->import) { if (arg->flags & UMA_ZONE_VM) arg->flags |= UMA_ZFLAG_CACHEONLY; zone->uz_flags = arg->flags; zone->uz_size = arg->size; zone->uz_import = arg->import; zone->uz_release = arg->release; zone->uz_arg = arg->arg; zone->uz_lockptr = &zone->uz_lock; ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); rw_wlock(&uma_rwlock); LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); rw_wunlock(&uma_rwlock); goto out; } /* * Use the regular zone/keg/slab allocator. */ zone->uz_import = zone_import; zone->uz_release = zone_release; zone->uz_arg = zone; keg = arg->keg; if (arg->flags & UMA_ZONE_SECONDARY) { KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, ("Secondary zone requested UMA_ZFLAG_INTERNAL")); KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); zone->uz_init = arg->uminit; zone->uz_fini = arg->fini; zone->uz_lockptr = &keg->uk_lock; zone->uz_flags |= UMA_ZONE_SECONDARY; rw_wlock(&uma_rwlock); ZONE_LOCK(zone); LIST_FOREACH(z, &keg->uk_zones, uz_link) { if (LIST_NEXT(z, uz_link) == NULL) { LIST_INSERT_AFTER(z, zone, uz_link); break; } } ZONE_UNLOCK(zone); rw_wunlock(&uma_rwlock); } else if (keg == NULL) { if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, arg->align, arg->flags)) == NULL) return (ENOMEM); } else { struct uma_kctor_args karg; int error; /* We should only be here from uma_startup() */ karg.size = arg->size; karg.uminit = arg->uminit; karg.fini = arg->fini; karg.align = arg->align; karg.flags = arg->flags; karg.zone = zone; error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, flags); if (error) return (error); } /* Inherit properties from the keg. */ zone->uz_keg = keg; zone->uz_size = keg->uk_size; zone->uz_flags |= (keg->uk_flags & (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); out: if (__predict_true(booted == BOOT_RUNNING)) { zone_alloc_counters(zone, NULL); zone_alloc_sysctl(zone, NULL); } else { zone->uz_allocs = EARLY_COUNTER; zone->uz_frees = EARLY_COUNTER; zone->uz_fails = EARLY_COUNTER; } KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), ("Invalid zone flag combination")); if (arg->flags & UMA_ZFLAG_INTERNAL) zone->uz_bucket_size_max = zone->uz_bucket_size = 0; if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) zone->uz_bucket_size = BUCKET_MAX; else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) zone->uz_bucket_size = 0; else zone->uz_bucket_size = bucket_select(zone->uz_size); zone->uz_bucket_size_min = zone->uz_bucket_size; return (0); } /* * Keg header dtor. This frees all data, destroys locks, frees the hash * table and removes the keg from the global list. * * Arguments/Returns follow uma_dtor specifications * udata unused */ static void keg_dtor(void *arg, int size, void *udata) { uma_keg_t keg; keg = (uma_keg_t)arg; KEG_LOCK(keg); if (keg->uk_free != 0) { printf("Freed UMA keg (%s) was not empty (%d items). " " Lost %d pages of memory.\n", keg->uk_name ? keg->uk_name : "", keg->uk_free, keg->uk_pages); } KEG_UNLOCK(keg); hash_free(&keg->uk_hash); KEG_LOCK_FINI(keg); } /* * Zone header dtor. * * Arguments/Returns follow uma_dtor specifications * udata unused */ static void zone_dtor(void *arg, int size, void *udata) { uma_zone_t zone; uma_keg_t keg; zone = (uma_zone_t)arg; sysctl_remove_oid(zone->uz_oid, 1, 1); if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) cache_drain(zone); rw_wlock(&uma_rwlock); LIST_REMOVE(zone, uz_link); rw_wunlock(&uma_rwlock); /* * XXX there are some races here where * the zone can be drained but zone lock * released and then refilled before we * remove it... we dont care for now */ zone_reclaim(zone, M_WAITOK, true); /* * We only destroy kegs from non secondary/non cache zones. */ if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { keg = zone->uz_keg; rw_wlock(&uma_rwlock); LIST_REMOVE(keg, uk_link); rw_wunlock(&uma_rwlock); zone_free_item(kegs, keg, NULL, SKIP_NONE); } counter_u64_free(zone->uz_allocs); counter_u64_free(zone->uz_frees); counter_u64_free(zone->uz_fails); free(zone->uz_ctlname, M_UMA); if (zone->uz_lockptr == &zone->uz_lock) ZONE_LOCK_FINI(zone); } /* * Traverses every zone in the system and calls a callback * * Arguments: * zfunc A pointer to a function which accepts a zone * as an argument. * * Returns: * Nothing */ static void zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) { uma_keg_t keg; uma_zone_t zone; /* * Before BOOT_RUNNING we are guaranteed to be single * threaded, so locking isn't needed. Startup functions * are allowed to use M_WAITOK. */ if (__predict_true(booted == BOOT_RUNNING)) rw_rlock(&uma_rwlock); LIST_FOREACH(keg, &uma_kegs, uk_link) { LIST_FOREACH(zone, &keg->uk_zones, uz_link) zfunc(zone, arg); } LIST_FOREACH(zone, &uma_cachezones, uz_link) zfunc(zone, arg); if (__predict_true(booted == BOOT_RUNNING)) rw_runlock(&uma_rwlock); } /* * Count how many pages do we need to bootstrap. VM supplies * its need in early zones in the argument, we add up our zones, * which consist of the UMA Slabs, UMA Hash and 9 Bucket zones. The * zone of zones and zone of kegs are accounted separately. */ #define UMA_BOOT_ZONES 11 /* Zone of zones and zone of kegs have arbitrary alignment. */ #define UMA_BOOT_ALIGN 32 static int zsize, ksize; int uma_startup_count(int vm_zones) { int zones, pages; size_t space, size; ksize = sizeof(struct uma_keg) + (sizeof(struct uma_domain) * vm_ndomains); zsize = sizeof(struct uma_zone) + (sizeof(struct uma_cache) * (mp_maxid + 1)) + (sizeof(struct uma_zone_domain) * vm_ndomains); /* * Memory for the zone of kegs and its keg, * and for zone of zones. */ pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); #ifdef UMA_MD_SMALL_ALLOC zones = UMA_BOOT_ZONES; #else zones = UMA_BOOT_ZONES + vm_zones; vm_zones = 0; #endif size = slab_sizeof(SLAB_MAX_SETSIZE); space = slab_space(SLAB_MAX_SETSIZE); /* Memory for the rest of startup zones, UMA and VM, ... */ if (zsize > space) { /* See keg_large_init(). */ u_int ppera; ppera = howmany(roundup2(zsize, UMA_BOOT_ALIGN), PAGE_SIZE); if (PAGE_SIZE * ppera - roundup2(zsize, UMA_BOOT_ALIGN) < size) ppera++; pages += (zones + vm_zones) * ppera; } else if (roundup2(zsize, UMA_BOOT_ALIGN) > space) /* See keg_small_init() special case for uk_ppera = 1. */ pages += zones; else pages += howmany(zones, space / roundup2(zsize, UMA_BOOT_ALIGN)); /* ... and their kegs. Note that zone of zones allocates a keg! */ pages += howmany(zones + 1, space / roundup2(ksize, UMA_BOOT_ALIGN)); return (pages); } void uma_startup(void *mem, int npages) { struct uma_zctor_args args; uma_keg_t masterkeg; uintptr_t m; #ifdef DIAGNOSTIC printf("Entering %s with %d boot pages configured\n", __func__, npages); #endif rw_init(&uma_rwlock, "UMA lock"); /* Use bootpages memory for the zone of zones and zone of kegs. */ m = (uintptr_t)mem; zones = (uma_zone_t)m; m += roundup(zsize, CACHE_LINE_SIZE); kegs = (uma_zone_t)m; m += roundup(zsize, CACHE_LINE_SIZE); masterkeg = (uma_keg_t)m; m += roundup(ksize, CACHE_LINE_SIZE); m = roundup(m, PAGE_SIZE); npages -= (m - (uintptr_t)mem) / PAGE_SIZE; mem = (void *)m; /* "manually" create the initial zone */ memset(&args, 0, sizeof(args)); args.name = "UMA Kegs"; args.size = ksize; args.ctor = keg_ctor; args.dtor = keg_dtor; args.uminit = zero_init; args.fini = NULL; args.keg = masterkeg; args.align = UMA_BOOT_ALIGN - 1; args.flags = UMA_ZFLAG_INTERNAL; zone_ctor(kegs, zsize, &args, M_WAITOK); bootmem = mem; boot_pages = npages; args.name = "UMA Zones"; args.size = zsize; args.ctor = zone_ctor; args.dtor = zone_dtor; args.uminit = zero_init; args.fini = NULL; args.keg = NULL; args.align = UMA_BOOT_ALIGN - 1; args.flags = UMA_ZFLAG_INTERNAL; zone_ctor(zones, zsize, &args, M_WAITOK); /* Now make a zone for slab headers */ slabzone = uma_zcreate("UMA Slabs", sizeof(struct uma_hash_slab), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); hashzone = uma_zcreate("UMA Hash", sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); booted = BOOT_STRAPPED; } void uma_startup1(void) { #ifdef DIAGNOSTIC printf("Entering %s with %d boot pages left\n", __func__, boot_pages); #endif booted = BOOT_PAGEALLOC; } void uma_startup2(void) { #ifdef DIAGNOSTIC printf("Entering %s with %d boot pages left\n", __func__, boot_pages); #endif sx_init(&uma_reclaim_lock, "umareclaim"); bucket_init(); booted = BOOT_BUCKETS; bucket_enable(); } /* * Initialize our callout handle * */ static void uma_startup3(void) { #ifdef INVARIANTS TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); uma_dbg_cnt = counter_u64_alloc(M_WAITOK); uma_skip_cnt = counter_u64_alloc(M_WAITOK); #endif zone_foreach(zone_alloc_counters, NULL); zone_foreach(zone_alloc_sysctl, NULL); callout_init(&uma_callout, 1); callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); booted = BOOT_RUNNING; } static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, int align, uint32_t flags) { struct uma_kctor_args args; args.size = size; args.uminit = uminit; args.fini = fini; args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; args.flags = flags; args.zone = zone; return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); } /* Public functions */ /* See uma.h */ void uma_set_align(int align) { if (align != UMA_ALIGN_CACHE) uma_align_cache = align; } /* See uma.h */ uma_zone_t uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, uma_init uminit, uma_fini fini, int align, uint32_t flags) { struct uma_zctor_args args; uma_zone_t res; bool locked; KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", align, name)); /* Sets all zones to a first-touch domain policy. */ #ifdef UMA_FIRSTTOUCH flags |= UMA_ZONE_NUMA; #endif /* This stuff is essential for the zone ctor */ memset(&args, 0, sizeof(args)); args.name = name; args.size = size; args.ctor = ctor; args.dtor = dtor; args.uminit = uminit; args.fini = fini; #ifdef INVARIANTS /* * Inject procedures which check for memory use after free if we are * allowed to scramble the memory while it is not allocated. This * requires that: UMA is actually able to access the memory, no init * or fini procedures, no dependency on the initial value of the * memory, and no (legitimate) use of the memory after free. Note, * the ctor and dtor do not need to be empty. * * XXX UMA_ZONE_OFFPAGE. */ if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { args.uminit = trash_init; args.fini = trash_fini; } #endif args.align = align; args.flags = flags; args.keg = NULL; if (booted < BOOT_BUCKETS) { locked = false; } else { sx_slock(&uma_reclaim_lock); locked = true; } res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); if (locked) sx_sunlock(&uma_reclaim_lock); return (res); } /* See uma.h */ uma_zone_t uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini, uma_zone_t master) { struct uma_zctor_args args; uma_keg_t keg; uma_zone_t res; bool locked; keg = master->uz_keg; memset(&args, 0, sizeof(args)); args.name = name; args.size = keg->uk_size; args.ctor = ctor; args.dtor = dtor; args.uminit = zinit; args.fini = zfini; args.align = keg->uk_align; args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; args.keg = keg; if (booted < BOOT_BUCKETS) { locked = false; } else { sx_slock(&uma_reclaim_lock); locked = true; } /* XXX Attaches only one keg of potentially many. */ res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); if (locked) sx_sunlock(&uma_reclaim_lock); return (res); } /* See uma.h */ uma_zone_t uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, void *arg, int flags) { struct uma_zctor_args args; memset(&args, 0, sizeof(args)); args.name = name; args.size = size; args.ctor = ctor; args.dtor = dtor; args.uminit = zinit; args.fini = zfini; args.import = zimport; args.release = zrelease; args.arg = arg; args.align = 0; args.flags = flags | UMA_ZFLAG_CACHE; return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); } /* See uma.h */ void uma_zdestroy(uma_zone_t zone) { sx_slock(&uma_reclaim_lock); zone_free_item(zones, zone, NULL, SKIP_NONE); sx_sunlock(&uma_reclaim_lock); } void uma_zwait(uma_zone_t zone) { void *item; item = uma_zalloc_arg(zone, NULL, M_WAITOK); uma_zfree(zone, item); } void * uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) { void *item; #ifdef SMP int i; MPASS(zone->uz_flags & UMA_ZONE_PCPU); #endif item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); if (item != NULL && (flags & M_ZERO)) { #ifdef SMP for (i = 0; i <= mp_maxid; i++) bzero(zpcpu_get_cpu(item, i), zone->uz_size); #else bzero(item, zone->uz_size); #endif } return (item); } /* * A stub while both regular and pcpu cases are identical. */ void uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) { #ifdef SMP MPASS(zone->uz_flags & UMA_ZONE_PCPU); #endif uma_zfree_arg(zone, item, udata); } -static inline void * -bucket_pop(uma_zone_t zone, uma_cache_t cache, uma_bucket_t bucket) -{ - void *item; - - bucket->ub_cnt--; - item = bucket->ub_bucket[bucket->ub_cnt]; -#ifdef INVARIANTS - bucket->ub_bucket[bucket->ub_cnt] = NULL; - KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); -#endif - cache->uc_allocs++; - - return (item); -} - -static inline void -bucket_push(uma_zone_t zone, uma_cache_t cache, uma_bucket_t bucket, - void *item) -{ - KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, - ("uma_zfree: Freeing to non free bucket index.")); - bucket->ub_bucket[bucket->ub_cnt] = item; - bucket->ub_cnt++; - cache->uc_frees++; -} - static void * item_ctor(uma_zone_t zone, void *udata, int flags, void *item) { #ifdef INVARIANTS bool skipdbg; skipdbg = uma_dbg_zskip(zone, item); if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && zone->uz_ctor != trash_ctor) trash_ctor(item, zone->uz_size, udata, flags); #endif if (__predict_false(zone->uz_ctor != NULL) && zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { counter_u64_add(zone->uz_fails, 1); zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); return (NULL); } #ifdef INVARIANTS if (!skipdbg) uma_dbg_alloc(zone, NULL, item); #endif if (flags & M_ZERO) uma_zero_item(item, zone); return (item); } static inline void item_dtor(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) { #ifdef INVARIANTS bool skipdbg; skipdbg = uma_dbg_zskip(zone, item); if (skip == SKIP_NONE && !skipdbg) { if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) uma_dbg_free(zone, udata, item); else uma_dbg_free(zone, NULL, item); } #endif if (skip < SKIP_DTOR) { if (zone->uz_dtor != NULL) zone->uz_dtor(item, zone->uz_size, udata); #ifdef INVARIANTS if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && zone->uz_dtor != trash_dtor) trash_dtor(item, zone->uz_size, udata); #endif } } /* See uma.h */ void * uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) { - uma_bucket_t bucket; + uma_cache_bucket_t bucket; uma_cache_t cache; void *item; int cpu, domain; /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); /* This is the fast path allocation */ CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", curthread, zone->uz_name, zone, flags); if (flags & M_WAITOK) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "uma_zalloc_arg: zone \"%s\"", zone->uz_name); } KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("uma_zalloc_arg: called with spinlock or critical section held")); if (zone->uz_flags & UMA_ZONE_PCPU) KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " "with M_ZERO passed")); #ifdef DEBUG_MEMGUARD if (memguard_cmp_zone(zone)) { item = memguard_alloc(zone->uz_size, flags); if (item != NULL) { if (zone->uz_init != NULL && zone->uz_init(item, zone->uz_size, flags) != 0) return (NULL); if (zone->uz_ctor != NULL && zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { counter_u64_add(zone->uz_fails, 1); zone->uz_fini(item, zone->uz_size); return (NULL); } return (item); } /* This is unfortunate but should not be fatal. */ } #endif /* * If possible, allocate from the per-CPU cache. There are two * requirements for safe access to the per-CPU cache: (1) the thread * accessing the cache must not be preempted or yield during access, * and (2) the thread must not migrate CPUs without switching which * cache it accesses. We rely on a critical section to prevent * preemption and migration. We release the critical section in * order to acquire the zone mutex if we are unable to allocate from * the current cache; when we re-acquire the critical section, we * must detect and handle migration if it has occurred. */ critical_enter(); do { cpu = curcpu; cache = &zone->uz_cpu[cpu]; - bucket = cache->uc_allocbucket; - if (__predict_true(bucket != NULL && bucket->ub_cnt != 0)) { - item = bucket_pop(zone, cache, bucket); + bucket = &cache->uc_allocbucket; + if (__predict_true(bucket->ucb_cnt != 0)) { + item = cache_bucket_pop(cache, bucket); critical_exit(); return (item_ctor(zone, udata, flags, item)); } } while (cache_alloc(zone, cache, udata, flags)); critical_exit(); /* * We can not get a bucket so try to return a single item. */ if (zone->uz_flags & UMA_ZONE_NUMA) domain = PCPU_GET(domain); else domain = UMA_ANYDOMAIN; return (zone_alloc_item_locked(zone, udata, domain, flags)); } /* * Replenish an alloc bucket and possibly restore an old one. Called in * a critical section. Returns in a critical section. * * A false return value indicates failure and returns with the zone lock * held. A true return value indicates success and the caller should retry. */ static __noinline bool cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) { uma_zone_domain_t zdom; uma_bucket_t bucket; int cpu, domain; bool lockfail; CRITICAL_ASSERT(curthread); /* * If we have run out of items in our alloc bucket see * if we can switch with the free bucket. */ - bucket = cache->uc_freebucket; - if (bucket != NULL && bucket->ub_cnt != 0) { - cache->uc_freebucket = cache->uc_allocbucket; - cache->uc_allocbucket = bucket; + if (cache->uc_freebucket.ucb_cnt != 0) { + cache_bucket_swap(&cache->uc_freebucket, &cache->uc_allocbucket); return (true); } /* * Discard any empty allocation bucket while we hold no locks. */ - bucket = cache->uc_allocbucket; - cache->uc_allocbucket = NULL; + bucket = cache_bucket_unload_alloc(cache); critical_exit(); if (bucket != NULL) bucket_free(zone, bucket, udata); /* * Attempt to retrieve the item from the per-CPU cache has failed, so * we must go back to the zone. This requires the zone lock, so we * must drop the critical section, then re-acquire it when we go back * to the cache. Since the critical section is released, we may be * preempted or migrate. As such, make sure not to maintain any * thread-local state specific to the cache from prior to releasing * the critical section. */ lockfail = 0; if (ZONE_TRYLOCK(zone) == 0) { /* Record contention to size the buckets. */ ZONE_LOCK(zone); lockfail = 1; } critical_enter(); /* Short-circuit for zones without buckets and low memory. */ if (zone->uz_bucket_size == 0 || bucketdisable) return (false); cpu = curcpu; cache = &zone->uz_cpu[cpu]; /* See if we lost the race to fill the cache. */ - if (cache->uc_allocbucket != NULL) { + if (cache->uc_allocbucket.ucb_bucket != NULL) { ZONE_UNLOCK(zone); return (true); } /* * Check the zone's cache of buckets. */ if (zone->uz_flags & UMA_ZONE_NUMA) { domain = PCPU_GET(domain); zdom = &zone->uz_domain[domain]; } else { domain = UMA_ANYDOMAIN; zdom = &zone->uz_domain[0]; } if ((bucket = zone_fetch_bucket(zone, zdom)) != NULL) { ZONE_UNLOCK(zone); KASSERT(bucket->ub_cnt != 0, ("uma_zalloc_arg: Returning an empty bucket.")); - cache->uc_allocbucket = bucket; + cache_bucket_load_alloc(cache, bucket); return (true); } /* We are no longer associated with this CPU. */ critical_exit(); /* * We bump the uz count when the cache size is insufficient to * handle the working set. */ if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) zone->uz_bucket_size++; /* * Fill a bucket and attempt to use it as the alloc bucket. */ bucket = zone_alloc_bucket(zone, udata, domain, flags); CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", zone->uz_name, zone, bucket); critical_enter(); if (bucket == NULL) return (false); /* * See if we lost the race or were migrated. Cache the * initialized bucket to make this less likely or claim * the memory directly. */ cpu = curcpu; cache = &zone->uz_cpu[cpu]; - if (cache->uc_allocbucket == NULL && + if (cache->uc_allocbucket.ucb_bucket == NULL && ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || domain == PCPU_GET(domain))) { - cache->uc_allocbucket = bucket; + cache_bucket_load_alloc(cache, bucket); zdom->uzd_imax += bucket->ub_cnt; } else if (zone->uz_bkt_count >= zone->uz_bkt_max) { critical_exit(); ZONE_UNLOCK(zone); bucket_drain(zone, bucket); bucket_free(zone, bucket, udata); critical_enter(); return (true); } else zone_put_bucket(zone, zdom, bucket, false); ZONE_UNLOCK(zone); return (true); } void * uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) { /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); /* This is the fast path allocation */ CTR5(KTR_UMA, "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", curthread, zone->uz_name, zone, domain, flags); if (flags & M_WAITOK) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "uma_zalloc_domain: zone \"%s\"", zone->uz_name); } KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("uma_zalloc_domain: called with spinlock or critical section held")); return (zone_alloc_item(zone, udata, domain, flags)); } /* * Find a slab with some space. Prefer slabs that are partially used over those * that are totally full. This helps to reduce fragmentation. * * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check * only 'domain'. */ static uma_slab_t keg_first_slab(uma_keg_t keg, int domain, bool rr) { uma_domain_t dom; uma_slab_t slab; int start; KASSERT(domain >= 0 && domain < vm_ndomains, ("keg_first_slab: domain %d out of range", domain)); KEG_LOCK_ASSERT(keg); slab = NULL; start = domain; do { dom = &keg->uk_domain[domain]; if (!LIST_EMPTY(&dom->ud_part_slab)) return (LIST_FIRST(&dom->ud_part_slab)); if (!LIST_EMPTY(&dom->ud_free_slab)) { slab = LIST_FIRST(&dom->ud_free_slab); LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); return (slab); } if (rr) domain = (domain + 1) % vm_ndomains; } while (domain != start); return (NULL); } static uma_slab_t keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) { uint32_t reserve; KEG_LOCK_ASSERT(keg); reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; if (keg->uk_free <= reserve) return (NULL); return (keg_first_slab(keg, domain, rr)); } static uma_slab_t keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) { struct vm_domainset_iter di; uma_domain_t dom; uma_slab_t slab; int aflags, domain; bool rr; restart: KEG_LOCK_ASSERT(keg); /* * Use the keg's policy if upper layers haven't already specified a * domain (as happens with first-touch zones). * * To avoid races we run the iterator with the keg lock held, but that * means that we cannot allow the vm_domainset layer to sleep. Thus, * clear M_WAITOK and handle low memory conditions locally. */ rr = rdomain == UMA_ANYDOMAIN; if (rr) { aflags = (flags & ~M_WAITOK) | M_NOWAIT; vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &aflags); } else { aflags = flags; domain = rdomain; } for (;;) { slab = keg_fetch_free_slab(keg, domain, rr, flags); if (slab != NULL) return (slab); /* * M_NOVM means don't ask at all! */ if (flags & M_NOVM) break; KASSERT(zone->uz_max_items == 0 || zone->uz_items <= zone->uz_max_items, ("%s: zone %p overflow", __func__, zone)); slab = keg_alloc_slab(keg, zone, domain, flags, aflags); /* * If we got a slab here it's safe to mark it partially used * and return. We assume that the caller is going to remove * at least one item. */ if (slab) { dom = &keg->uk_domain[slab->us_domain]; LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); return (slab); } KEG_LOCK(keg); if (!rr && (flags & M_WAITOK) == 0) break; if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { if ((flags & M_WAITOK) != 0) { KEG_UNLOCK(keg); vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); KEG_LOCK(keg); goto restart; } break; } } /* * We might not have been able to get a slab but another cpu * could have while we were unlocked. Check again before we * fail. */ if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { return (slab); } return (NULL); } static void * slab_alloc_item(uma_keg_t keg, uma_slab_t slab) { uma_domain_t dom; void *item; uint8_t freei; KEG_LOCK_ASSERT(keg); freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; BIT_CLR(keg->uk_ipers, freei, &slab->us_free); item = slab_item(slab, keg, freei); slab->us_freecount--; keg->uk_free--; /* Move this slab to the full list */ if (slab->us_freecount == 0) { LIST_REMOVE(slab, us_link); dom = &keg->uk_domain[slab->us_domain]; LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); } return (item); } static int zone_import(void *arg, void **bucket, int max, int domain, int flags) { uma_zone_t zone; uma_slab_t slab; uma_keg_t keg; #ifdef NUMA int stripe; #endif int i; zone = arg; slab = NULL; keg = zone->uz_keg; KEG_LOCK(keg); /* Try to keep the buckets totally full */ for (i = 0; i < max; ) { if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) break; #ifdef NUMA stripe = howmany(max, vm_ndomains); #endif while (slab->us_freecount && i < max) { bucket[i++] = slab_alloc_item(keg, slab); if (keg->uk_free <= keg->uk_reserve) break; #ifdef NUMA /* * If the zone is striped we pick a new slab for every * N allocations. Eliminating this conditional will * instead pick a new domain for each bucket rather * than stripe within each bucket. The current option * produces more fragmentation and requires more cpu * time but yields better distribution. */ if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && vm_ndomains > 1 && --stripe == 0) break; #endif } /* Don't block if we allocated any successfully. */ flags &= ~M_WAITOK; flags |= M_NOWAIT; } KEG_UNLOCK(keg); return i; } static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) { uma_bucket_t bucket; int maxbucket, cnt; CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); /* Avoid allocs targeting empty domains. */ if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) domain = UMA_ANYDOMAIN; if (zone->uz_max_items > 0) { if (zone->uz_items >= zone->uz_max_items) return (false); maxbucket = MIN(zone->uz_bucket_size, zone->uz_max_items - zone->uz_items); zone->uz_items += maxbucket; } else maxbucket = zone->uz_bucket_size; ZONE_UNLOCK(zone); /* Don't wait for buckets, preserve caller's NOVM setting. */ bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); if (bucket == NULL) { cnt = 0; goto out; } bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, MIN(maxbucket, bucket->ub_entries), domain, flags); /* * Initialize the memory if necessary. */ if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { int i; for (i = 0; i < bucket->ub_cnt; i++) if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, flags) != 0) break; /* * If we couldn't initialize the whole bucket, put the * rest back onto the freelist. */ if (i != bucket->ub_cnt) { zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], bucket->ub_cnt - i); #ifdef INVARIANTS bzero(&bucket->ub_bucket[i], sizeof(void *) * (bucket->ub_cnt - i)); #endif bucket->ub_cnt = i; } } cnt = bucket->ub_cnt; if (bucket->ub_cnt == 0) { bucket_free(zone, bucket, udata); counter_u64_add(zone->uz_fails, 1); bucket = NULL; } out: ZONE_LOCK(zone); if (zone->uz_max_items > 0 && cnt < maxbucket) { MPASS(zone->uz_items >= maxbucket - cnt); zone->uz_items -= maxbucket - cnt; if (zone->uz_sleepers > 0 && (cnt == 0 ? zone->uz_items + 1 : zone->uz_items) < zone->uz_max_items) wakeup_one(zone); } return (bucket); } /* * Allocates a single item from a zone. * * Arguments * zone The zone to alloc for. * udata The data to be passed to the constructor. * domain The domain to allocate from or UMA_ANYDOMAIN. * flags M_WAITOK, M_NOWAIT, M_ZERO. * * Returns * NULL if there is no memory and M_NOWAIT is set * An item if successful */ static void * zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) { ZONE_LOCK(zone); return (zone_alloc_item_locked(zone, udata, domain, flags)); } /* * Returns with zone unlocked. */ static void * zone_alloc_item_locked(uma_zone_t zone, void *udata, int domain, int flags) { void *item; ZONE_LOCK_ASSERT(zone); if (zone->uz_max_items > 0) { if (zone->uz_items >= zone->uz_max_items) { zone_log_warning(zone); zone_maxaction(zone); if (flags & M_NOWAIT) { ZONE_UNLOCK(zone); return (NULL); } zone->uz_sleeps++; zone->uz_sleepers++; while (zone->uz_items >= zone->uz_max_items) mtx_sleep(zone, zone->uz_lockptr, PVM, "zonelimit", 0); zone->uz_sleepers--; if (zone->uz_sleepers > 0 && zone->uz_items + 1 < zone->uz_max_items) wakeup_one(zone); } zone->uz_items++; } ZONE_UNLOCK(zone); /* Avoid allocs targeting empty domains. */ if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) domain = UMA_ANYDOMAIN; if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) goto fail_cnt; /* * We have to call both the zone's init (not the keg's init) * and the zone's ctor. This is because the item is going from * a keg slab directly to the user, and the user is expecting it * to be both zone-init'd as well as zone-ctor'd. */ if (zone->uz_init != NULL) { if (zone->uz_init(item, zone->uz_size, flags) != 0) { zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); goto fail_cnt; } } item = item_ctor(zone, udata, flags, item); if (item == NULL) goto fail; counter_u64_add(zone->uz_allocs, 1); CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, zone->uz_name, zone); return (item); fail_cnt: counter_u64_add(zone->uz_fails, 1); fail: if (zone->uz_max_items > 0) { ZONE_LOCK(zone); /* XXX Decrement without wakeup */ zone->uz_items--; ZONE_UNLOCK(zone); } CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", zone->uz_name, zone); return (NULL); } /* See uma.h */ void uma_zfree_arg(uma_zone_t zone, void *item, void *udata) { uma_cache_t cache; - uma_bucket_t bucket; + uma_cache_bucket_t bucket; int cpu, domain, itemdomain; /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, zone->uz_name); KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("uma_zfree_arg: called with spinlock or critical section held")); /* uma_zfree(..., NULL) does nothing, to match free(9). */ if (item == NULL) return; #ifdef DEBUG_MEMGUARD if (is_memguard_addr(item)) { if (zone->uz_dtor != NULL) zone->uz_dtor(item, zone->uz_size, udata); if (zone->uz_fini != NULL) zone->uz_fini(item, zone->uz_size); memguard_free(item); return; } #endif item_dtor(zone, item, udata, SKIP_NONE); /* * The race here is acceptable. If we miss it we'll just have to wait * a little longer for the limits to be reset. */ if (zone->uz_sleepers > 0) goto zfree_item; /* * If possible, free to the per-CPU cache. There are two * requirements for safe access to the per-CPU cache: (1) the thread * accessing the cache must not be preempted or yield during access, * and (2) the thread must not migrate CPUs without switching which * cache it accesses. We rely on a critical section to prevent * preemption and migration. We release the critical section in * order to acquire the zone mutex if we are unable to free to the * current cache; when we re-acquire the critical section, we must * detect and handle migration if it has occurred. */ domain = itemdomain = 0; critical_enter(); do { cpu = curcpu; cache = &zone->uz_cpu[cpu]; - bucket = cache->uc_allocbucket; + bucket = &cache->uc_allocbucket; #ifdef UMA_XDOMAIN if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); domain = PCPU_GET(domain); } if ((zone->uz_flags & UMA_ZONE_NUMA) != 0 && domain != itemdomain) { - bucket = cache->uc_crossbucket; + bucket = &cache->uc_crossbucket; } else #endif /* * Try to free into the allocbucket first to give LIFO ordering * for cache-hot datastructures. Spill over into the freebucket * if necessary. Alloc will swap them if one runs dry. */ - if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) - bucket = cache->uc_freebucket; - if (__predict_true(bucket != NULL && - bucket->ub_cnt < bucket->ub_entries)) { - bucket_push(zone, cache, bucket, item); + if (__predict_false(bucket->ucb_cnt >= bucket->ucb_entries)) + bucket = &cache->uc_freebucket; + if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { + cache_bucket_push(cache, bucket, item); critical_exit(); return; } } while (cache_free(zone, cache, udata, item, itemdomain)); critical_exit(); /* * If nothing else caught this, we'll just do an internal free. */ zfree_item: zone_free_item(zone, item, udata, SKIP_DTOR); } static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, int domain, int itemdomain) { uma_zone_domain_t zdom; #ifdef UMA_XDOMAIN /* * Buckets coming from the wrong domain will be entirely for the * only other domain on two domain systems. In this case we can * simply cache them. Otherwise we need to sort them back to * correct domains by freeing the contents to the slab layer. */ if (domain != itemdomain && vm_ndomains > 2) { CTR3(KTR_UMA, "uma_zfree: zone %s(%p) draining cross bucket %p", zone->uz_name, zone, bucket); bucket_drain(zone, bucket); bucket_free(zone, bucket, udata); return; } #endif /* * Attempt to save the bucket in the zone's domain bucket cache. * * We bump the uz count when the cache size is insufficient to * handle the working set. */ if (ZONE_TRYLOCK(zone) == 0) { /* Record contention to size the buckets. */ ZONE_LOCK(zone); if (zone->uz_bucket_size < zone->uz_bucket_size_max) zone->uz_bucket_size++; } CTR3(KTR_UMA, "uma_zfree: zone %s(%p) putting bucket %p on free list", zone->uz_name, zone, bucket); /* ub_cnt is pointing to the last free item */ KASSERT(bucket->ub_cnt == bucket->ub_entries, ("uma_zfree: Attempting to insert partial bucket onto the full list.\n")); if (zone->uz_bkt_count >= zone->uz_bkt_max) { ZONE_UNLOCK(zone); bucket_drain(zone, bucket); bucket_free(zone, bucket, udata); } else { zdom = &zone->uz_domain[itemdomain]; zone_put_bucket(zone, zdom, bucket, true); ZONE_UNLOCK(zone); } } /* * Populate a free or cross bucket for the current cpu cache. Free any * existing full bucket either to the zone cache or back to the slab layer. * * Enters and returns in a critical section. false return indicates that * we can not satisfy this free in the cache layer. true indicates that * the caller should retry. */ static __noinline bool cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, int itemdomain) { uma_bucket_t bucket; int cpu, domain; CRITICAL_ASSERT(curthread); if (zone->uz_bucket_size == 0 || bucketdisable) return false; cpu = curcpu; cache = &zone->uz_cpu[cpu]; /* * NUMA domains need to free to the correct zdom. When XDOMAIN * is enabled this is the zdom of the item and the bucket may be * the cross bucket if they do not match. */ if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) #ifdef UMA_XDOMAIN domain = PCPU_GET(domain); #else itemdomain = domain = PCPU_GET(domain); #endif else itemdomain = domain = 0; #ifdef UMA_XDOMAIN if (domain != itemdomain) { - bucket = cache->uc_crossbucket; - cache->uc_crossbucket = NULL; + bucket = cache_bucket_unload_cross(cache); if (bucket != NULL) atomic_add_64(&zone->uz_xdomain, bucket->ub_cnt); } else #endif - { - bucket = cache->uc_freebucket; - cache->uc_freebucket = NULL; - } + bucket = cache_bucket_unload_free(cache); /* We are no longer associated with this CPU. */ critical_exit(); if (bucket != NULL) zone_free_bucket(zone, bucket, udata, domain, itemdomain); bucket = bucket_alloc(zone, udata, M_NOWAIT); CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", zone->uz_name, zone, bucket); critical_enter(); if (bucket == NULL) return (false); cpu = curcpu; cache = &zone->uz_cpu[cpu]; #ifdef UMA_XDOMAIN /* * Check to see if we should be populating the cross bucket. If it * is already populated we will fall through and attempt to populate * the free bucket. */ if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { domain = PCPU_GET(domain); - if (domain != itemdomain && cache->uc_crossbucket == NULL) { - cache->uc_crossbucket = bucket; + if (domain != itemdomain && + cache->uc_crossbucket.ucb_bucket == NULL) { + cache_bucket_load_cross(cache, bucket); return (true); } } #endif /* * We may have lost the race to fill the bucket or switched CPUs. */ - if (cache->uc_freebucket != NULL) { + if (cache->uc_freebucket.ucb_bucket != NULL) { critical_exit(); bucket_free(zone, bucket, udata); critical_enter(); } else - cache->uc_freebucket = bucket; + cache_bucket_load_free(cache, bucket); return (true); } void uma_zfree_domain(uma_zone_t zone, void *item, void *udata) { /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, zone->uz_name); KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("uma_zfree_domain: called with spinlock or critical section held")); /* uma_zfree(..., NULL) does nothing, to match free(9). */ if (item == NULL) return; zone_free_item(zone, item, udata, SKIP_NONE); } static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) { uma_keg_t keg; uma_domain_t dom; uint8_t freei; keg = zone->uz_keg; MPASS(zone->uz_lockptr == &keg->uk_lock); KEG_LOCK_ASSERT(keg); dom = &keg->uk_domain[slab->us_domain]; /* Do we need to remove from any lists? */ if (slab->us_freecount+1 == keg->uk_ipers) { LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); } else if (slab->us_freecount == 0) { LIST_REMOVE(slab, us_link); LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); } /* Slab management. */ freei = slab_item_index(slab, keg, item); BIT_SET(keg->uk_ipers, freei, &slab->us_free); slab->us_freecount++; /* Keg statistics. */ keg->uk_free++; } static void zone_release(void *arg, void **bucket, int cnt) { uma_zone_t zone; void *item; uma_slab_t slab; uma_keg_t keg; uint8_t *mem; int i; zone = arg; keg = zone->uz_keg; KEG_LOCK(keg); for (i = 0; i < cnt; i++) { item = bucket[i]; if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); if (zone->uz_flags & UMA_ZONE_HASH) { slab = hash_sfind(&keg->uk_hash, mem); } else { mem += keg->uk_pgoff; slab = (uma_slab_t)mem; } } else slab = vtoslab((vm_offset_t)item); slab_free_item(zone, slab, item); } KEG_UNLOCK(keg); } /* * Frees a single item to any zone. * * Arguments: * zone The zone to free to * item The item we're freeing * udata User supplied data for the dtor * skip Skip dtors and finis */ static void zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) { item_dtor(zone, item, udata, skip); if (skip < SKIP_FINI && zone->uz_fini) zone->uz_fini(item, zone->uz_size); zone->uz_release(zone->uz_arg, &item, 1); if (skip & SKIP_CNT) return; counter_u64_add(zone->uz_frees, 1); if (zone->uz_max_items > 0) { ZONE_LOCK(zone); zone->uz_items--; if (zone->uz_sleepers > 0 && zone->uz_items < zone->uz_max_items) wakeup_one(zone); ZONE_UNLOCK(zone); } } /* See uma.h */ int uma_zone_set_max(uma_zone_t zone, int nitems) { struct uma_bucket_zone *ubz; int count; ZONE_LOCK(zone); ubz = bucket_zone_max(zone, nitems); count = ubz != NULL ? ubz->ubz_entries : 0; zone->uz_bucket_size_max = zone->uz_bucket_size = count; if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) zone->uz_bucket_size_min = zone->uz_bucket_size_max; zone->uz_max_items = nitems; ZONE_UNLOCK(zone); return (nitems); } /* See uma.h */ void uma_zone_set_maxcache(uma_zone_t zone, int nitems) { struct uma_bucket_zone *ubz; int bpcpu; ZONE_LOCK(zone); ubz = bucket_zone_max(zone, nitems); if (ubz != NULL) { bpcpu = 2; #ifdef UMA_XDOMAIN if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) /* Count the cross-domain bucket. */ bpcpu++; #endif nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; zone->uz_bucket_size_max = ubz->ubz_entries; } else { zone->uz_bucket_size_max = zone->uz_bucket_size = 0; } if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) zone->uz_bucket_size_min = zone->uz_bucket_size_max; zone->uz_bkt_max = nitems; ZONE_UNLOCK(zone); } /* See uma.h */ int uma_zone_get_max(uma_zone_t zone) { int nitems; ZONE_LOCK(zone); nitems = zone->uz_max_items; ZONE_UNLOCK(zone); return (nitems); } /* See uma.h */ void uma_zone_set_warning(uma_zone_t zone, const char *warning) { ZONE_LOCK(zone); zone->uz_warning = warning; ZONE_UNLOCK(zone); } /* See uma.h */ void uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) { ZONE_LOCK(zone); TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); ZONE_UNLOCK(zone); } /* See uma.h */ int uma_zone_get_cur(uma_zone_t zone) { int64_t nitems; u_int i; ZONE_LOCK(zone); nitems = counter_u64_fetch(zone->uz_allocs) - counter_u64_fetch(zone->uz_frees); if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { CPU_FOREACH(i) { /* * See the comment in uma_vm_zone_stats() regarding * the safety of accessing the per-cpu caches. With * the zone lock held, it is safe, but can potentially * result in stale data. */ nitems += zone->uz_cpu[i].uc_allocs - zone->uz_cpu[i].uc_frees; } } ZONE_UNLOCK(zone); return (nitems < 0 ? 0 : nitems); } static uint64_t uma_zone_get_allocs(uma_zone_t zone) { uint64_t nitems; u_int i; ZONE_LOCK(zone); nitems = counter_u64_fetch(zone->uz_allocs); if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { CPU_FOREACH(i) { /* * See the comment in uma_vm_zone_stats() regarding * the safety of accessing the per-cpu caches. With * the zone lock held, it is safe, but can potentially * result in stale data. */ nitems += zone->uz_cpu[i].uc_allocs; } } ZONE_UNLOCK(zone); return (nitems); } static uint64_t uma_zone_get_frees(uma_zone_t zone) { uint64_t nitems; u_int i; ZONE_LOCK(zone); nitems = counter_u64_fetch(zone->uz_frees); if ((zone->uz_flags & UMA_ZFLAG_INTERNAL) == 0) { CPU_FOREACH(i) { /* * See the comment in uma_vm_zone_stats() regarding * the safety of accessing the per-cpu caches. With * the zone lock held, it is safe, but can potentially * result in stale data. */ nitems += zone->uz_cpu[i].uc_frees; } } ZONE_UNLOCK(zone); return (nitems); } /* See uma.h */ void uma_zone_set_init(uma_zone_t zone, uma_init uminit) { uma_keg_t keg; KEG_GET(zone, keg); KEG_LOCK(keg); KASSERT(keg->uk_pages == 0, ("uma_zone_set_init on non-empty keg")); keg->uk_init = uminit; KEG_UNLOCK(keg); } /* See uma.h */ void uma_zone_set_fini(uma_zone_t zone, uma_fini fini) { uma_keg_t keg; KEG_GET(zone, keg); KEG_LOCK(keg); KASSERT(keg->uk_pages == 0, ("uma_zone_set_fini on non-empty keg")); keg->uk_fini = fini; KEG_UNLOCK(keg); } /* See uma.h */ void uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) { ZONE_LOCK(zone); KASSERT(zone->uz_keg->uk_pages == 0, ("uma_zone_set_zinit on non-empty keg")); zone->uz_init = zinit; ZONE_UNLOCK(zone); } /* See uma.h */ void uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) { ZONE_LOCK(zone); KASSERT(zone->uz_keg->uk_pages == 0, ("uma_zone_set_zfini on non-empty keg")); zone->uz_fini = zfini; ZONE_UNLOCK(zone); } /* See uma.h */ /* XXX uk_freef is not actually used with the zone locked */ void uma_zone_set_freef(uma_zone_t zone, uma_free freef) { uma_keg_t keg; KEG_GET(zone, keg); KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); KEG_LOCK(keg); keg->uk_freef = freef; KEG_UNLOCK(keg); } /* See uma.h */ /* XXX uk_allocf is not actually used with the zone locked */ void uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) { uma_keg_t keg; KEG_GET(zone, keg); KEG_LOCK(keg); keg->uk_allocf = allocf; KEG_UNLOCK(keg); } /* See uma.h */ void uma_zone_reserve(uma_zone_t zone, int items) { uma_keg_t keg; KEG_GET(zone, keg); KEG_LOCK(keg); keg->uk_reserve = items; KEG_UNLOCK(keg); } /* See uma.h */ int uma_zone_reserve_kva(uma_zone_t zone, int count) { uma_keg_t keg; vm_offset_t kva; u_int pages; KEG_GET(zone, keg); pages = count / keg->uk_ipers; if (pages * keg->uk_ipers < count) pages++; pages *= keg->uk_ppera; #ifdef UMA_MD_SMALL_ALLOC if (keg->uk_ppera > 1) { #else if (1) { #endif kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); if (kva == 0) return (0); } else kva = 0; ZONE_LOCK(zone); MPASS(keg->uk_kva == 0); keg->uk_kva = kva; keg->uk_offset = 0; zone->uz_max_items = pages * keg->uk_ipers; #ifdef UMA_MD_SMALL_ALLOC keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; #else keg->uk_allocf = noobj_alloc; #endif keg->uk_flags |= UMA_ZONE_NOFREE; ZONE_UNLOCK(zone); return (1); } /* See uma.h */ void uma_prealloc(uma_zone_t zone, int items) { struct vm_domainset_iter di; uma_domain_t dom; uma_slab_t slab; uma_keg_t keg; int aflags, domain, slabs; KEG_GET(zone, keg); KEG_LOCK(keg); slabs = items / keg->uk_ipers; if (slabs * keg->uk_ipers < items) slabs++; while (slabs-- > 0) { aflags = M_NOWAIT; vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &aflags); for (;;) { slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, aflags); if (slab != NULL) { dom = &keg->uk_domain[slab->us_domain]; LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); break; } KEG_LOCK(keg); if (vm_domainset_iter_policy(&di, &domain) != 0) { KEG_UNLOCK(keg); vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); KEG_LOCK(keg); } } } KEG_UNLOCK(keg); } /* See uma.h */ void uma_reclaim(int req) { CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); sx_xlock(&uma_reclaim_lock); bucket_enable(); switch (req) { case UMA_RECLAIM_TRIM: zone_foreach(zone_trim, NULL); break; case UMA_RECLAIM_DRAIN: case UMA_RECLAIM_DRAIN_CPU: zone_foreach(zone_drain, NULL); if (req == UMA_RECLAIM_DRAIN_CPU) { pcpu_cache_drain_safe(NULL); zone_foreach(zone_drain, NULL); } break; default: panic("unhandled reclamation request %d", req); } /* * Some slabs may have been freed but this zone will be visited early * we visit again so that we can free pages that are empty once other * zones are drained. We have to do the same for buckets. */ zone_drain(slabzone, NULL); bucket_zone_drain(); sx_xunlock(&uma_reclaim_lock); } static volatile int uma_reclaim_needed; void uma_reclaim_wakeup(void) { if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) wakeup(uma_reclaim); } void uma_reclaim_worker(void *arg __unused) { for (;;) { sx_xlock(&uma_reclaim_lock); while (atomic_load_int(&uma_reclaim_needed) == 0) sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", hz); sx_xunlock(&uma_reclaim_lock); EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); uma_reclaim(UMA_RECLAIM_DRAIN_CPU); atomic_store_int(&uma_reclaim_needed, 0); /* Don't fire more than once per-second. */ pause("umarclslp", hz); } } /* See uma.h */ void uma_zone_reclaim(uma_zone_t zone, int req) { switch (req) { case UMA_RECLAIM_TRIM: zone_trim(zone, NULL); break; case UMA_RECLAIM_DRAIN: zone_drain(zone, NULL); break; case UMA_RECLAIM_DRAIN_CPU: pcpu_cache_drain_safe(zone); zone_drain(zone, NULL); break; default: panic("unhandled reclamation request %d", req); } } /* See uma.h */ int uma_zone_exhausted(uma_zone_t zone) { int full; ZONE_LOCK(zone); full = zone->uz_sleepers > 0; ZONE_UNLOCK(zone); return (full); } int uma_zone_exhausted_nolock(uma_zone_t zone) { return (zone->uz_sleepers > 0); } static void uma_zero_item(void *item, uma_zone_t zone) { bzero(item, zone->uz_size); } unsigned long uma_limit(void) { return (uma_kmem_limit); } void uma_set_limit(unsigned long limit) { uma_kmem_limit = limit; } unsigned long uma_size(void) { return (atomic_load_long(&uma_kmem_total)); } long uma_avail(void) { return (uma_kmem_limit - uma_size()); } #ifdef DDB /* * Generate statistics across both the zone and its per-cpu cache's. Return * desired statistics if the pointer is non-NULL for that statistic. * * Note: does not update the zone statistics, as it can't safely clear the * per-CPU cache statistic. * - * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't - * safe from off-CPU; we should modify the caches to track this information - * directly so that we don't have to. */ static void uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) { uma_cache_t cache; uint64_t allocs, frees, sleeps, xdomain; int cachefree, cpu; allocs = frees = sleeps = xdomain = 0; cachefree = 0; CPU_FOREACH(cpu) { cache = &z->uz_cpu[cpu]; - if (cache->uc_allocbucket != NULL) - cachefree += cache->uc_allocbucket->ub_cnt; - if (cache->uc_freebucket != NULL) - cachefree += cache->uc_freebucket->ub_cnt; - if (cache->uc_crossbucket != NULL) { - xdomain += cache->uc_crossbucket->ub_cnt; - cachefree += cache->uc_crossbucket->ub_cnt; - } + cachefree += cache->uc_allocbucket.ucb_cnt; + cachefree += cache->uc_freebucket.ucb_cnt; + xdomain += cache->uc_crossbucket.ucb_cnt; + cachefree += cache->uc_crossbucket.ucb_cnt; allocs += cache->uc_allocs; frees += cache->uc_frees; } allocs += counter_u64_fetch(z->uz_allocs); frees += counter_u64_fetch(z->uz_frees); sleeps += z->uz_sleeps; xdomain += z->uz_xdomain; if (cachefreep != NULL) *cachefreep = cachefree; if (allocsp != NULL) *allocsp = allocs; if (freesp != NULL) *freesp = frees; if (sleepsp != NULL) *sleepsp = sleeps; if (xdomainp != NULL) *xdomainp = xdomain; } #endif /* DDB */ static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) { uma_keg_t kz; uma_zone_t z; int count; count = 0; rw_rlock(&uma_rwlock); LIST_FOREACH(kz, &uma_kegs, uk_link) { LIST_FOREACH(z, &kz->uk_zones, uz_link) count++; } LIST_FOREACH(z, &uma_cachezones, uz_link) count++; rw_runlock(&uma_rwlock); return (sysctl_handle_int(oidp, &count, 0, req)); } static void uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, struct uma_percpu_stat *ups, bool internal) { uma_zone_domain_t zdom; - uma_bucket_t bucket; uma_cache_t cache; int i; for (i = 0; i < vm_ndomains; i++) { zdom = &z->uz_domain[i]; uth->uth_zone_free += zdom->uzd_nitems; } uth->uth_allocs = counter_u64_fetch(z->uz_allocs); uth->uth_frees = counter_u64_fetch(z->uz_frees); uth->uth_fails = counter_u64_fetch(z->uz_fails); uth->uth_sleeps = z->uz_sleeps; uth->uth_xdomain = z->uz_xdomain; /* * While it is not normally safe to access the cache bucket pointers * while not on the CPU that owns the cache, we only allow the pointers * to be exchanged without the zone lock held, not invalidated, so * accept the possible race associated with bucket exchange during * monitoring. Use atomic_load_ptr() to ensure that the bucket pointers * are loaded only once. */ for (i = 0; i < mp_maxid + 1; i++) { bzero(&ups[i], sizeof(*ups)); if (internal || CPU_ABSENT(i)) continue; cache = &z->uz_cpu[i]; - bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_allocbucket); - if (bucket != NULL) - ups[i].ups_cache_free += bucket->ub_cnt; - bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_freebucket); - if (bucket != NULL) - ups[i].ups_cache_free += bucket->ub_cnt; - bucket = (uma_bucket_t)atomic_load_ptr(&cache->uc_crossbucket); - if (bucket != NULL) - ups[i].ups_cache_free += bucket->ub_cnt; + ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; + ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; + ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; ups[i].ups_allocs = cache->uc_allocs; ups[i].ups_frees = cache->uc_frees; } } static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) { struct uma_stream_header ush; struct uma_type_header uth; struct uma_percpu_stat *ups; struct sbuf sbuf; uma_keg_t kz; uma_zone_t z; int count, error, i; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); count = 0; rw_rlock(&uma_rwlock); LIST_FOREACH(kz, &uma_kegs, uk_link) { LIST_FOREACH(z, &kz->uk_zones, uz_link) count++; } LIST_FOREACH(z, &uma_cachezones, uz_link) count++; /* * Insert stream header. */ bzero(&ush, sizeof(ush)); ush.ush_version = UMA_STREAM_VERSION; ush.ush_maxcpus = (mp_maxid + 1); ush.ush_count = count; (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); LIST_FOREACH(kz, &uma_kegs, uk_link) { LIST_FOREACH(z, &kz->uk_zones, uz_link) { bzero(&uth, sizeof(uth)); ZONE_LOCK(z); strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); uth.uth_align = kz->uk_align; uth.uth_size = kz->uk_size; uth.uth_rsize = kz->uk_rsize; if (z->uz_max_items > 0) uth.uth_pages = (z->uz_items / kz->uk_ipers) * kz->uk_ppera; else uth.uth_pages = kz->uk_pages; uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * kz->uk_ppera; uth.uth_limit = z->uz_max_items; uth.uth_keg_free = z->uz_keg->uk_free; /* * A zone is secondary is it is not the first entry * on the keg's zone list. */ if ((z->uz_flags & UMA_ZONE_SECONDARY) && (LIST_FIRST(&kz->uk_zones) != z)) uth.uth_zone_flags = UTH_ZONE_SECONDARY; uma_vm_zone_stats(&uth, z, &sbuf, ups, kz->uk_flags & UMA_ZFLAG_INTERNAL); ZONE_UNLOCK(z); (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); for (i = 0; i < mp_maxid + 1; i++) (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); } } LIST_FOREACH(z, &uma_cachezones, uz_link) { bzero(&uth, sizeof(uth)); ZONE_LOCK(z); strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); uth.uth_size = z->uz_size; uma_vm_zone_stats(&uth, z, &sbuf, ups, false); ZONE_UNLOCK(z); (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); for (i = 0; i < mp_maxid + 1; i++) (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); } rw_runlock(&uma_rwlock); error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); free(ups, M_TEMP); return (error); } int sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) { uma_zone_t zone = *(uma_zone_t *)arg1; int error, max; max = uma_zone_get_max(zone); error = sysctl_handle_int(oidp, &max, 0, req); if (error || !req->newptr) return (error); uma_zone_set_max(zone, max); return (0); } int sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) { uma_zone_t zone; int cur; /* * Some callers want to add sysctls for global zones that * may not yet exist so they pass a pointer to a pointer. */ if (arg2 == 0) zone = *(uma_zone_t *)arg1; else zone = arg1; cur = uma_zone_get_cur(zone); return (sysctl_handle_int(oidp, &cur, 0, req)); } static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) { uma_zone_t zone = arg1; uint64_t cur; cur = uma_zone_get_allocs(zone); return (sysctl_handle_64(oidp, &cur, 0, req)); } static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) { uma_zone_t zone = arg1; uint64_t cur; cur = uma_zone_get_frees(zone); return (sysctl_handle_64(oidp, &cur, 0, req)); } static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) { struct sbuf sbuf; uma_zone_t zone = arg1; int error; sbuf_new_for_sysctl(&sbuf, NULL, 0, req); if (zone->uz_flags != 0) sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); else sbuf_printf(&sbuf, "0"); error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) { uma_keg_t keg = arg1; int avail, effpct, total; total = keg->uk_ppera * PAGE_SIZE; if ((keg->uk_flags & UMA_ZONE_OFFPAGE) != 0) total += slab_sizeof(SLAB_MAX_SETSIZE); /* * We consider the client's requested size and alignment here, not the * real size determination uk_rsize, because we also adjust the real * size for internal implementation reasons (max bitset size). */ avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) avail *= mp_maxid + 1; effpct = 100 * avail / total; return (sysctl_handle_int(oidp, &effpct, 0, req)); } #ifdef INVARIANTS static uma_slab_t uma_dbg_getslab(uma_zone_t zone, void *item) { uma_slab_t slab; uma_keg_t keg; uint8_t *mem; mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); if (zone->uz_flags & UMA_ZONE_VTOSLAB) { slab = vtoslab((vm_offset_t)mem); } else { /* * It is safe to return the slab here even though the * zone is unlocked because the item's allocation state * essentially holds a reference. */ if (zone->uz_lockptr == &zone->uz_lock) return (NULL); ZONE_LOCK(zone); keg = zone->uz_keg; if (keg->uk_flags & UMA_ZONE_HASH) slab = hash_sfind(&keg->uk_hash, mem); else slab = (uma_slab_t)(mem + keg->uk_pgoff); ZONE_UNLOCK(zone); } return (slab); } static bool uma_dbg_zskip(uma_zone_t zone, void *mem) { if (zone->uz_lockptr == &zone->uz_lock) return (true); return (uma_dbg_kskip(zone->uz_keg, mem)); } static bool uma_dbg_kskip(uma_keg_t keg, void *mem) { uintptr_t idx; if (dbg_divisor == 0) return (true); if (dbg_divisor == 1) return (false); idx = (uintptr_t)mem >> PAGE_SHIFT; if (keg->uk_ipers > 1) { idx *= keg->uk_ipers; idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; } if ((idx / dbg_divisor) * dbg_divisor != idx) { counter_u64_add(uma_skip_cnt, 1); return (true); } counter_u64_add(uma_dbg_cnt, 1); return (false); } /* * Set up the slab's freei data such that uma_dbg_free can function. * */ static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) { uma_keg_t keg; int freei; if (slab == NULL) { slab = uma_dbg_getslab(zone, item); if (slab == NULL) panic("uma: item %p did not belong to zone %s\n", item, zone->uz_name); } keg = zone->uz_keg; freei = slab_item_index(slab, keg, item); if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", item, zone, zone->uz_name, slab, freei); BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); } /* * Verifies freed addresses. Checks for alignment, valid slab membership * and duplicate frees. * */ static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) { uma_keg_t keg; int freei; if (slab == NULL) { slab = uma_dbg_getslab(zone, item); if (slab == NULL) panic("uma: Freed item %p did not belong to zone %s\n", item, zone->uz_name); } keg = zone->uz_keg; freei = slab_item_index(slab, keg, item); if (freei >= keg->uk_ipers) panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", item, zone, zone->uz_name, slab, freei); if (slab_item(slab, keg, freei) != item) panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", item, zone, zone->uz_name, slab, freei); if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", item, zone, zone->uz_name, slab, freei); BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); } #endif /* INVARIANTS */ #ifdef DDB static int64_t get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, uint64_t *sleeps, long *cachefree, uint64_t *xdomain) { uint64_t frees; int i; if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { *allocs = counter_u64_fetch(z->uz_allocs); frees = counter_u64_fetch(z->uz_frees); *sleeps = z->uz_sleeps; *cachefree = 0; *xdomain = 0; } else uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, xdomain); if (!((z->uz_flags & UMA_ZONE_SECONDARY) && (LIST_FIRST(&kz->uk_zones) != z))) *cachefree += kz->uk_free; for (i = 0; i < vm_ndomains; i++) *cachefree += z->uz_domain[i].uzd_nitems; *used = *allocs - frees; return (((int64_t)*used + *cachefree) * kz->uk_size); } DB_SHOW_COMMAND(uma, db_show_uma) { const char *fmt_hdr, *fmt_entry; uma_keg_t kz; uma_zone_t z; uint64_t allocs, used, sleeps, xdomain; long cachefree; /* variables for sorting */ uma_keg_t cur_keg; uma_zone_t cur_zone, last_zone; int64_t cur_size, last_size, size; int ties; /* /i option produces machine-parseable CSV output */ if (modif[0] == 'i') { fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; } else { fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; } db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", "Sleeps", "Bucket", "Total Mem", "XFree"); /* Sort the zones with largest size first. */ last_zone = NULL; last_size = INT64_MAX; for (;;) { cur_zone = NULL; cur_size = -1; ties = 0; LIST_FOREACH(kz, &uma_kegs, uk_link) { LIST_FOREACH(z, &kz->uk_zones, uz_link) { /* * In the case of size ties, print out zones * in the order they are encountered. That is, * when we encounter the most recently output * zone, we have already printed all preceding * ties, and we must print all following ties. */ if (z == last_zone) { ties = 1; continue; } size = get_uma_stats(kz, z, &allocs, &used, &sleeps, &cachefree, &xdomain); if (size > cur_size && size < last_size + ties) { cur_size = size; cur_zone = z; cur_keg = kz; } } } if (cur_zone == NULL) break; size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, &sleeps, &cachefree, &xdomain); db_printf(fmt_entry, cur_zone->uz_name, (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, (uintmax_t)allocs, (uintmax_t)sleeps, (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, xdomain); if (db_pager_quit) return; last_zone = cur_zone; last_size = cur_size; } } DB_SHOW_COMMAND(umacache, db_show_umacache) { uma_zone_t z; uint64_t allocs, frees; long cachefree; int i; db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", "Requests", "Bucket"); LIST_FOREACH(z, &uma_cachezones, uz_link) { uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); for (i = 0; i < vm_ndomains; i++) cachefree += z->uz_domain[i].uzd_nitems; db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", z->uz_name, (uintmax_t)z->uz_size, (intmax_t)(allocs - frees), cachefree, (uintmax_t)allocs, z->uz_bucket_size); if (db_pager_quit) return; } } #endif /* DDB */ Index: head/sys/vm/uma_int.h =================================================================== --- head/sys/vm/uma_int.h (revision 356079) +++ head/sys/vm/uma_int.h (revision 356080) @@ -1,595 +1,613 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002-2019 Jeffrey Roberson * Copyright (c) 2004, 2005 Bosko Milekic * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ * */ #include #include #include #include /* * This file includes definitions, structures, prototypes, and inlines that * should not be used outside of the actual implementation of UMA. */ /* * The brief summary; Zones describe unique allocation types. Zones are * organized into per-CPU caches which are filled by buckets. Buckets are * organized according to memory domains. Buckets are filled from kegs which * are also organized according to memory domains. Kegs describe a unique * allocation type, backend memory provider, and layout. Kegs are associated * with one or more zones and zones reference one or more kegs. Kegs provide * slabs which are virtually contiguous collections of pages. Each slab is * broken down int one or more items that will satisfy an individual allocation. * * Allocation is satisfied in the following order: * 1) Per-CPU cache * 2) Per-domain cache of buckets * 3) Slab from any of N kegs * 4) Backend page provider * * More detail on individual objects is contained below: * * Kegs contain lists of slabs which are stored in either the full bin, empty * bin, or partially allocated bin, to reduce fragmentation. They also contain * the user supplied value for size, which is adjusted for alignment purposes * and rsize is the result of that. The Keg also stores information for * managing a hash of page addresses that maps pages to uma_slab_t structures * for pages that don't have embedded uma_slab_t's. * * Keg slab lists are organized by memory domain to support NUMA allocation * policies. By default allocations are spread across domains to reduce the * potential for hotspots. Special keg creation flags may be specified to * prefer location allocation. However there is no strict enforcement as frees * may happen on any CPU and these are returned to the CPU-local cache * regardless of the originating domain. * * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may * be allocated off the page from a special slab zone. The free list within a * slab is managed with a bitmask. For item sizes that would yield more than * 10% memory waste we potentially allocate a separate uma_slab_t if this will * improve the number of items per slab that will fit. * * The only really gross cases, with regards to memory waste, are for those * items that are just over half the page size. You can get nearly 50% waste, * so you fall back to the memory footprint of the power of two allocator. I * have looked at memory allocation sizes on many of the machines available to * me, and there does not seem to be an abundance of allocations at this range * so at this time it may not make sense to optimize for it. This can, of * course, be solved with dynamic slab sizes. * * Kegs may serve multiple Zones but by far most of the time they only serve * one. When a Zone is created, a Keg is allocated and setup for it. While * the backing Keg stores slabs, the Zone caches Buckets of items allocated * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor * pair, as well as with its own set of small per-CPU caches, layered above * the Zone's general Bucket cache. * * The PCPU caches are protected by critical sections, and may be accessed * safely only from their associated CPU, while the Zones backed by the same * Keg all share a common Keg lock (to coalesce contention on the backing * slabs). The backing Keg typically only serves one Zone but in the case of * multiple Zones, one of the Zones is considered the Master Zone and all * Zone-related stats from the Keg are done in the Master Zone. For an * example of a Multi-Zone setup, refer to the Mbuf allocation code. */ /* * This is the representation for normal (Non OFFPAGE slab) * * i == item * s == slab pointer * * <---------------- Page (UMA_SLAB_SIZE) ------------------> * ___________________________________________________________ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| * |___________________________________________________________| * * * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. * * ___________________________________________________________ * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | * |___________________________________________________________| * ___________ ^ * |slab header| | * |___________|---* * */ #ifndef VM_UMA_INT_H #define VM_UMA_INT_H #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ /* Max waste percentage before going to off page slab management */ #define UMA_MAX_WASTE 10 /* * Hash table for freed address -> slab translation. * * Only zones with memory not touchable by the allocator use the * hash table. Otherwise slabs are found with vtoslab(). */ #define UMA_HASH_SIZE_INIT 32 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask) #define UMA_HASH_INSERT(h, s, mem) \ LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ (mem))], (uma_hash_slab_t)(s), uhs_hlink) #define UMA_HASH_REMOVE(h, s) \ LIST_REMOVE((uma_hash_slab_t)(s), uhs_hlink) LIST_HEAD(slabhashhead, uma_hash_slab); struct uma_hash { struct slabhashhead *uh_slab_hash; /* Hash table for slabs */ u_int uh_hashsize; /* Current size of the hash table */ u_int uh_hashmask; /* Mask used during hashing */ }; /* * align field or structure to cache line */ #if defined(__amd64__) || defined(__powerpc64__) #define UMA_ALIGN __aligned(128) #else -#define UMA_ALIGN +#define UMA_ALIGN __aligned(CACHE_LINE_SIZE) #endif /* - * Structures for per cpu queues. + * The uma_bucket structure is used to queue and manage buckets divorced + * from per-cpu caches. They are loaded into uma_cache_bucket structures + * for use. */ - struct uma_bucket { TAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */ int16_t ub_cnt; /* Count of items in bucket. */ int16_t ub_entries; /* Max items. */ void *ub_bucket[]; /* actual allocation storage */ }; typedef struct uma_bucket * uma_bucket_t; +/* + * The uma_cache_bucket structure is statically allocated on each per-cpu + * cache. Its use reduces branches and cache misses in the fast path. + */ +struct uma_cache_bucket { + uma_bucket_t ucb_bucket; + int16_t ucb_cnt; + int16_t ucb_entries; + uint32_t ucb_spare; +}; + +typedef struct uma_cache_bucket * uma_cache_bucket_t; + +/* + * The uma_cache structure is allocated for each cpu for every zone + * type. This optimizes synchronization out of the allocator fast path. + */ struct uma_cache { - uma_bucket_t uc_freebucket; /* Bucket we're freeing to */ - uma_bucket_t uc_allocbucket; /* Bucket to allocate from */ - uma_bucket_t uc_crossbucket; /* cross domain bucket */ - uint64_t uc_allocs; /* Count of allocations */ - uint64_t uc_frees; /* Count of frees */ + struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */ + struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */ + struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */ + uint64_t uc_allocs; /* Count of allocations */ + uint64_t uc_frees; /* Count of frees */ } UMA_ALIGN; typedef struct uma_cache * uma_cache_t; LIST_HEAD(slabhead, uma_slab); /* - * Per-domain memory list. Embedded in the kegs. + * Per-domain slab lists. Embedded in the kegs. */ struct uma_domain { struct slabhead ud_part_slab; /* partially allocated slabs */ struct slabhead ud_free_slab; /* completely unallocated slabs */ struct slabhead ud_full_slab; /* fully allocated slabs */ }; typedef struct uma_domain * uma_domain_t; /* * Keg management structure * * TODO: Optimize for cache line size * */ struct uma_keg { struct mtx uk_lock; /* Lock for the keg must be first. * See shared uz_keg/uz_lockptr * member of struct uma_zone. */ struct uma_hash uk_hash; LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ struct domainset_ref uk_dr; /* Domain selection policy. */ uint32_t uk_align; /* Alignment mask */ uint32_t uk_pages; /* Total page count */ uint32_t uk_free; /* Count of items free in slabs */ uint32_t uk_reserve; /* Number of reserved items. */ uint32_t uk_size; /* Requested size of each item */ uint32_t uk_rsize; /* Real size of each item */ uma_init uk_init; /* Keg's init routine */ uma_fini uk_fini; /* Keg's fini routine */ uma_alloc uk_allocf; /* Allocation function */ uma_free uk_freef; /* Free routine */ u_long uk_offset; /* Next free offset from base KVA */ vm_offset_t uk_kva; /* Zone base KVA */ uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */ uint32_t uk_pgoff; /* Offset to uma_slab struct */ uint16_t uk_ppera; /* pages per allocation from backend */ uint16_t uk_ipers; /* Items per slab */ uint32_t uk_flags; /* Internal flags */ /* Least used fields go to the last cache line. */ const char *uk_name; /* Name of creating zone. */ LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ /* Must be last, variable sized. */ struct uma_domain uk_domain[]; /* Keg's slab lists. */ }; typedef struct uma_keg * uma_keg_t; #ifdef _KERNEL /* * Free bits per-slab. */ #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT) #define SLAB_MIN_SETSIZE _BITSET_BITS BITSET_DEFINE(slabbits, SLAB_MAX_SETSIZE); BITSET_DEFINE(noslabbits, 0); /* * The slab structure manages a single contiguous allocation from backing * store and subdivides it into individually allocatable items. */ struct uma_slab { LIST_ENTRY(uma_slab) us_link; /* slabs in zone */ uint16_t us_freecount; /* How many are free? */ uint8_t us_flags; /* Page flags see uma.h */ uint8_t us_domain; /* Backing NUMA domain. */ struct noslabbits us_free; /* Free bitmask, flexible. */ }; _Static_assert(sizeof(struct uma_slab) == offsetof(struct uma_slab, us_free), "us_free field must be last"); #if MAXMEMDOM >= 255 #error "Slab domain type insufficient" #endif typedef struct uma_slab * uma_slab_t; /* * On INVARIANTS builds, the slab contains a second bitset of the same size, * "dbg_bits", which is laid out immediately after us_free. */ #ifdef INVARIANTS #define SLAB_BITSETS 2 #else #define SLAB_BITSETS 1 #endif /* These three functions are for embedded (!OFFPAGE) use only. */ size_t slab_sizeof(int nitems); size_t slab_space(int nitems); int slab_ipers(size_t size, int align); /* * Slab structure with a full sized bitset and hash link for both * HASH and OFFPAGE zones. */ struct uma_hash_slab { struct uma_slab uhs_slab; /* Must be first. */ struct slabbits uhs_bits1; /* Must be second. */ #ifdef INVARIANTS struct slabbits uhs_bits2; /* Must be third. */ #endif LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */ uint8_t *uhs_data; /* First item */ }; typedef struct uma_hash_slab * uma_hash_slab_t; static inline void * slab_data(uma_slab_t slab, uma_keg_t keg) { if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) return ((void *)((uintptr_t)slab - keg->uk_pgoff)); else return (((uma_hash_slab_t)slab)->uhs_data); } static inline void * slab_item(uma_slab_t slab, uma_keg_t keg, int index) { uintptr_t data; data = (uintptr_t)slab_data(slab, keg); return ((void *)(data + keg->uk_rsize * index)); } static inline int slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item) { uintptr_t data; data = (uintptr_t)slab_data(slab, keg); return (((uintptr_t)item - data) / keg->uk_rsize); } #endif /* _KERNEL */ TAILQ_HEAD(uma_bucketlist, uma_bucket); struct uma_zone_domain { struct uma_bucketlist uzd_buckets; /* full buckets */ long uzd_nitems; /* total item count */ long uzd_imax; /* maximum item count this period */ long uzd_imin; /* minimum item count this period */ long uzd_wss; /* working set size estimate */ }; typedef struct uma_zone_domain * uma_zone_domain_t; /* * Zone management structure * * TODO: Optimize for cache line size * */ struct uma_zone { /* Offset 0, used in alloc/free fast/medium fast path and const. */ union { uma_keg_t uz_keg; /* This zone's keg */ struct mtx *uz_lockptr; /* To keg or to self */ }; struct uma_zone_domain *uz_domain; /* per-domain buckets */ uint32_t uz_flags; /* Flags inherited from kegs */ uint32_t uz_size; /* Size inherited from kegs */ uma_ctor uz_ctor; /* Constructor for each allocation */ uma_dtor uz_dtor; /* Destructor */ uint64_t uz_items; /* Total items count */ uint64_t uz_max_items; /* Maximum number of items to alloc */ uint32_t uz_sleepers; /* Number of sleepers on memory */ uint16_t uz_bucket_size; /* Number of items in full bucket */ uint16_t uz_bucket_size_max; /* Maximum number of bucket items */ /* Offset 64, used in bucket replenish. */ uma_import uz_import; /* Import new memory to cache. */ uma_release uz_release; /* Release memory from cache. */ void *uz_arg; /* Import/release argument. */ uma_init uz_init; /* Initializer for each item */ uma_fini uz_fini; /* Finalizer for each item. */ void *uz_spare; uint64_t uz_bkt_count; /* Items in bucket cache */ uint64_t uz_bkt_max; /* Maximum bucket cache size */ /* Offset 128 Rare. */ /* * The lock is placed here to avoid adjacent line prefetcher * in fast paths and to take up space near infrequently accessed * members to reduce alignment overhead. */ struct mtx uz_lock; /* Lock for the zone */ LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ const char *uz_name; /* Text name of the zone */ /* The next two fields are used to print a rate-limited warnings. */ const char *uz_warning; /* Warning to print on failure */ struct timeval uz_ratecheck; /* Warnings rate-limiting */ struct task uz_maxaction; /* Task to run when at limit */ uint16_t uz_bucket_size_min; /* Min number of items in bucket */ /* Offset 256+, stats and misc. */ counter_u64_t uz_allocs; /* Total number of allocations */ counter_u64_t uz_frees; /* Total number of frees */ counter_u64_t uz_fails; /* Total number of alloc failures */ uint64_t uz_sleeps; /* Total number of alloc sleeps */ uint64_t uz_xdomain; /* Total number of cross-domain frees */ char *uz_ctlname; /* sysctl safe name string. */ struct sysctl_oid *uz_oid; /* sysctl oid pointer. */ int uz_namecnt; /* duplicate name count. */ /* * This HAS to be the last item because we adjust the zone size * based on NCPU and then allocate the space for the zones. */ struct uma_cache uz_cpu[]; /* Per cpu caches */ /* uz_domain follows here. */ }; /* * These flags must not overlap with the UMA_ZONE flags specified in uma.h. */ #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */ #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */ #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */ #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */ #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */ #define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */ #define UMA_ZFLAG_INHERIT \ (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET) #define PRINT_UMA_ZFLAGS "\20" \ "\40CACHEONLY" \ "\37TRASH" \ "\36INTERNAL" \ "\35BUCKET" \ "\34RECLAIMING" \ "\33CACHE" \ "\22MINBUCKET" \ "\21NUMA" \ "\20PCPU" \ "\17NODUMP" \ "\16VTOSLAB" \ "\15CACHESPREAD" \ "\14MAXBUCKET" \ "\13NOBUCKET" \ "\12SECONDARY" \ "\11HASH" \ "\10VM" \ "\7MTXCLASS" \ "\6NOFREE" \ "\5MALLOC" \ "\4OFFPAGE" \ "\3STATIC" \ "\2ZINIT" \ "\1PAGEABLE" #undef UMA_ALIGN #ifdef _KERNEL /* Internal prototypes */ static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data); /* Lock Macros */ #define KEG_LOCK_INIT(k, lc) \ do { \ if ((lc)) \ mtx_init(&(k)->uk_lock, (k)->uk_name, \ (k)->uk_name, MTX_DEF | MTX_DUPOK); \ else \ mtx_init(&(k)->uk_lock, (k)->uk_name, \ "UMA zone", MTX_DEF | MTX_DUPOK); \ } while (0) #define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock) #define KEG_LOCK(k) mtx_lock(&(k)->uk_lock) #define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock) #define KEG_LOCK_ASSERT(k) mtx_assert(&(k)->uk_lock, MA_OWNED) #define KEG_GET(zone, keg) do { \ (keg) = (zone)->uz_keg; \ KASSERT((void *)(keg) != (void *)&(zone)->uz_lock, \ ("%s: Invalid zone %p type", __func__, (zone))); \ } while (0) #define ZONE_LOCK_INIT(z, lc) \ do { \ if ((lc)) \ mtx_init(&(z)->uz_lock, (z)->uz_name, \ (z)->uz_name, MTX_DEF | MTX_DUPOK); \ else \ mtx_init(&(z)->uz_lock, (z)->uz_name, \ "UMA zone", MTX_DEF | MTX_DUPOK); \ } while (0) #define ZONE_LOCK(z) mtx_lock((z)->uz_lockptr) #define ZONE_TRYLOCK(z) mtx_trylock((z)->uz_lockptr) #define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lockptr) #define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock) #define ZONE_LOCK_ASSERT(z) mtx_assert((z)->uz_lockptr, MA_OWNED) /* * Find a slab within a hash table. This is used for OFFPAGE zones to lookup * the slab structure. * * Arguments: * hash The hash table to search. * data The base page of the item. * * Returns: * A pointer to a slab if successful, else NULL. */ static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data) { uma_hash_slab_t slab; u_int hval; hval = UMA_HASH(hash, data); LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) { if ((uint8_t *)slab->uhs_data == data) return (&slab->uhs_slab); } return (NULL); } static __inline uma_slab_t vtoslab(vm_offset_t va) { vm_page_t p; p = PHYS_TO_VM_PAGE(pmap_kextract(va)); return (p->plinks.uma.slab); } static __inline void vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab) { vm_page_t p; p = PHYS_TO_VM_PAGE(pmap_kextract(va)); *slab = p->plinks.uma.slab; *zone = p->plinks.uma.zone; } static __inline void vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab) { vm_page_t p; p = PHYS_TO_VM_PAGE(pmap_kextract(va)); p->plinks.uma.slab = slab; p->plinks.uma.zone = zone; } extern unsigned long uma_kmem_limit; extern unsigned long uma_kmem_total; /* Adjust bytes under management by UMA. */ static inline void uma_total_dec(unsigned long size) { atomic_subtract_long(&uma_kmem_total, size); } static inline void uma_total_inc(unsigned long size) { if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) uma_reclaim_wakeup(); } /* * The following two functions may be defined by architecture specific code * if they can provide more efficient allocation functions. This is useful * for using direct mapped addresses. */ void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait); void uma_small_free(void *mem, vm_size_t size, uint8_t flags); /* Set a global soft limit on UMA managed memory. */ void uma_set_limit(unsigned long limit); #endif /* _KERNEL */ #endif /* VM_UMA_INT_H */