Index: head/lib/libvmmapi/vmmapi.c
===================================================================
--- head/lib/libvmmapi/vmmapi.c	(revision 355838)
+++ head/lib/libvmmapi/vmmapi.c	(revision 355839)
@@ -1,1587 +1,1585 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2011 NetApp, Inc.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/sysctl.h>
 #include <sys/ioctl.h>
 #include <sys/linker.h>
 #include <sys/mman.h>
 #include <sys/module.h>
 #include <sys/_iovec.h>
 #include <sys/cpuset.h>
 
 #include <x86/segments.h>
 #include <machine/specialreg.h>
 
 #include <errno.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <assert.h>
 #include <string.h>
 #include <fcntl.h>
 #include <unistd.h>
 
 #include <libutil.h>
 
 #include <machine/vmm.h>
 #include <machine/vmm_dev.h>
 
 #include "vmmapi.h"
 
 #define	MB	(1024 * 1024UL)
 #define	GB	(1024 * 1024 * 1024UL)
 
 /*
  * Size of the guard region before and after the virtual address space
  * mapping the guest physical memory. This must be a multiple of the
  * superpage size for performance reasons.
  */
 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
 
 #define	PROT_RW		(PROT_READ | PROT_WRITE)
 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
 
 struct vmctx {
 	int	fd;
 	uint32_t lowmem_limit;
 	int	memflags;
 	size_t	lowmem;
 	size_t	highmem;
 	char	*baseaddr;
 	char	*name;
 };
 
 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
 
 static int
 vm_device_open(const char *name)
 {
 	int fd, len;
 	char *vmfile;
 
 	len = strlen("/dev/vmm/") + strlen(name) + 1;
 	vmfile = malloc(len);
 	assert(vmfile != NULL);
 	snprintf(vmfile, len, "/dev/vmm/%s", name);
 
 	/* Open the device file */
 	fd = open(vmfile, O_RDWR, 0);
 
 	free(vmfile);
 	return (fd);
 }
 
 int
 vm_create(const char *name)
 {
 	/* Try to load vmm(4) module before creating a guest. */
-	if (modfind("vmm") < 0) {
-		if (modfind("vmm") < 0)
-			kldload("vmm");
-	}
+	if (modfind("vmm") < 0)
+		kldload("vmm");
 	return (CREATE((char *)name));
 }
 
 struct vmctx *
 vm_open(const char *name)
 {
 	struct vmctx *vm;
 
 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
 	assert(vm != NULL);
 
 	vm->fd = -1;
 	vm->memflags = 0;
 	vm->lowmem_limit = 3 * GB;
 	vm->name = (char *)(vm + 1);
 	strcpy(vm->name, name);
 
 	if ((vm->fd = vm_device_open(vm->name)) < 0)
 		goto err;
 
 	return (vm);
 err:
 	vm_destroy(vm);
 	return (NULL);
 }
 
 void
 vm_destroy(struct vmctx *vm)
 {
 	assert(vm != NULL);
 
 	if (vm->fd >= 0)
 		close(vm->fd);
 	DESTROY(vm->name);
 
 	free(vm);
 }
 
 int
 vm_parse_memsize(const char *optarg, size_t *ret_memsize)
 {
 	char *endptr;
 	size_t optval;
 	int error;
 
 	optval = strtoul(optarg, &endptr, 0);
 	if (*optarg != '\0' && *endptr == '\0') {
 		/*
 		 * For the sake of backward compatibility if the memory size
 		 * specified on the command line is less than a megabyte then
 		 * it is interpreted as being in units of MB.
 		 */
 		if (optval < MB)
 			optval *= MB;
 		*ret_memsize = optval;
 		error = 0;
 	} else
 		error = expand_number(optarg, ret_memsize);
 
 	return (error);
 }
 
 uint32_t
 vm_get_lowmem_limit(struct vmctx *ctx)
 {
 
 	return (ctx->lowmem_limit);
 }
 
 void
 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
 {
 
 	ctx->lowmem_limit = limit;
 }
 
 void
 vm_set_memflags(struct vmctx *ctx, int flags)
 {
 
 	ctx->memflags = flags;
 }
 
 int
 vm_get_memflags(struct vmctx *ctx)
 {
 
 	return (ctx->memflags);
 }
 
 /*
  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
  */
 int
 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
     size_t len, int prot)
 {
 	struct vm_memmap memmap;
 	int error, flags;
 
 	memmap.gpa = gpa;
 	memmap.segid = segid;
 	memmap.segoff = off;
 	memmap.len = len;
 	memmap.prot = prot;
 	memmap.flags = 0;
 
 	if (ctx->memflags & VM_MEM_F_WIRED)
 		memmap.flags |= VM_MEMMAP_F_WIRED;
 
 	/*
 	 * If this mapping already exists then don't create it again. This
 	 * is the common case for SYSMEM mappings created by bhyveload(8).
 	 */
 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
 	if (error == 0 && gpa == memmap.gpa) {
 		if (segid != memmap.segid || off != memmap.segoff ||
 		    prot != memmap.prot || flags != memmap.flags) {
 			errno = EEXIST;
 			return (-1);
 		} else {
 			return (0);
 		}
 	}
 
 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
 	return (error);
 }
 
 int
 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
 {
 	struct vm_memmap memmap;
 	int error;
 
 	bzero(&memmap, sizeof(struct vm_memmap));
 	memmap.gpa = *gpa;
 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
 	if (error == 0) {
 		*gpa = memmap.gpa;
 		*segid = memmap.segid;
 		*segoff = memmap.segoff;
 		*len = memmap.len;
 		*prot = memmap.prot;
 		*flags = memmap.flags;
 	}
 	return (error);
 }
 
 /*
  * Return 0 if the segments are identical and non-zero otherwise.
  *
  * This is slightly complicated by the fact that only device memory segments
  * are named.
  */
 static int
 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
 {
 
 	if (len == len2) {
 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
 			return (0);
 	}
 	return (-1);
 }
 
 static int
 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
 {
 	struct vm_memseg memseg;
 	size_t n;
 	int error;
 
 	/*
 	 * If the memory segment has already been created then just return.
 	 * This is the usual case for the SYSMEM segment created by userspace
 	 * loaders like bhyveload(8).
 	 */
 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
 	    sizeof(memseg.name));
 	if (error)
 		return (error);
 
 	if (memseg.len != 0) {
 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
 			errno = EINVAL;
 			return (-1);
 		} else {
 			return (0);
 		}
 	}
 
 	bzero(&memseg, sizeof(struct vm_memseg));
 	memseg.segid = segid;
 	memseg.len = len;
 	if (name != NULL) {
 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
 		if (n >= sizeof(memseg.name)) {
 			errno = ENAMETOOLONG;
 			return (-1);
 		}
 	}
 
 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
 	return (error);
 }
 
 int
 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
     size_t bufsize)
 {
 	struct vm_memseg memseg;
 	size_t n;
 	int error;
 
 	memseg.segid = segid;
 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
 	if (error == 0) {
 		*lenp = memseg.len;
 		n = strlcpy(namebuf, memseg.name, bufsize);
 		if (n >= bufsize) {
 			errno = ENAMETOOLONG;
 			error = -1;
 		}
 	}
 	return (error);
 }
 
 static int
 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
 {
 	char *ptr;
 	int error, flags;
 
 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
 	if (error)
 		return (error);
 
 	flags = MAP_SHARED | MAP_FIXED;
 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
 		flags |= MAP_NOCORE;
 
 	/* mmap into the process address space on the host */
 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
 	if (ptr == MAP_FAILED)
 		return (-1);
 
 	return (0);
 }
 
 int
 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
 {
 	size_t objsize, len;
 	vm_paddr_t gpa;
 	char *baseaddr, *ptr;
 	int error;
 
 	assert(vms == VM_MMAP_ALL);
 
 	/*
 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
 	 * create another 'highmem' segment above 4GB for the remainder.
 	 */
 	if (memsize > ctx->lowmem_limit) {
 		ctx->lowmem = ctx->lowmem_limit;
 		ctx->highmem = memsize - ctx->lowmem_limit;
 		objsize = 4*GB + ctx->highmem;
 	} else {
 		ctx->lowmem = memsize;
 		ctx->highmem = 0;
 		objsize = ctx->lowmem;
 	}
 
 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
 	if (error)
 		return (error);
 
 	/*
 	 * Stake out a contiguous region covering the guest physical memory
 	 * and the adjoining guard regions.
 	 */
 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
 	if (ptr == MAP_FAILED)
 		return (-1);
 
 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
 	if (ctx->highmem > 0) {
 		gpa = 4*GB;
 		len = ctx->highmem;
 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
 		if (error)
 			return (error);
 	}
 
 	if (ctx->lowmem > 0) {
 		gpa = 0;
 		len = ctx->lowmem;
 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
 		if (error)
 			return (error);
 	}
 
 	ctx->baseaddr = baseaddr;
 
 	return (0);
 }
 
 /*
  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
  * the lowmem or highmem regions.
  *
  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
  * The instruction emulation code depends on this behavior.
  */
 void *
 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
 {
 
 	if (ctx->lowmem > 0) {
 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
 		    gaddr + len <= ctx->lowmem)
 			return (ctx->baseaddr + gaddr);
 	}
 
 	if (ctx->highmem > 0) {
                 if (gaddr >= 4*GB) {
 			if (gaddr < 4*GB + ctx->highmem &&
 			    len <= ctx->highmem &&
 			    gaddr + len <= 4*GB + ctx->highmem)
 				return (ctx->baseaddr + gaddr);
 		}
 	}
 
 	return (NULL);
 }
 
 size_t
 vm_get_lowmem_size(struct vmctx *ctx)
 {
 
 	return (ctx->lowmem);
 }
 
 size_t
 vm_get_highmem_size(struct vmctx *ctx)
 {
 
 	return (ctx->highmem);
 }
 
 void *
 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
 {
 	char pathname[MAXPATHLEN];
 	size_t len2;
 	char *base, *ptr;
 	int fd, error, flags;
 
 	fd = -1;
 	ptr = MAP_FAILED;
 	if (name == NULL || strlen(name) == 0) {
 		errno = EINVAL;
 		goto done;
 	}
 
 	error = vm_alloc_memseg(ctx, segid, len, name);
 	if (error)
 		goto done;
 
 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
 	strlcat(pathname, ctx->name, sizeof(pathname));
 	strlcat(pathname, ".", sizeof(pathname));
 	strlcat(pathname, name, sizeof(pathname));
 
 	fd = open(pathname, O_RDWR);
 	if (fd < 0)
 		goto done;
 
 	/*
 	 * Stake out a contiguous region covering the device memory and the
 	 * adjoining guard regions.
 	 */
 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
 	    0);
 	if (base == MAP_FAILED)
 		goto done;
 
 	flags = MAP_SHARED | MAP_FIXED;
 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
 		flags |= MAP_NOCORE;
 
 	/* mmap the devmem region in the host address space */
 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
 done:
 	if (fd >= 0)
 		close(fd);
 	return (ptr);
 }
 
 int
 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
 	    uint64_t base, uint32_t limit, uint32_t access)
 {
 	int error;
 	struct vm_seg_desc vmsegdesc;
 
 	bzero(&vmsegdesc, sizeof(vmsegdesc));
 	vmsegdesc.cpuid = vcpu;
 	vmsegdesc.regnum = reg;
 	vmsegdesc.desc.base = base;
 	vmsegdesc.desc.limit = limit;
 	vmsegdesc.desc.access = access;
 
 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
 	return (error);
 }
 
 int
 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
 	    uint64_t *base, uint32_t *limit, uint32_t *access)
 {
 	int error;
 	struct vm_seg_desc vmsegdesc;
 
 	bzero(&vmsegdesc, sizeof(vmsegdesc));
 	vmsegdesc.cpuid = vcpu;
 	vmsegdesc.regnum = reg;
 
 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
 	if (error == 0) {
 		*base = vmsegdesc.desc.base;
 		*limit = vmsegdesc.desc.limit;
 		*access = vmsegdesc.desc.access;
 	}
 	return (error);
 }
 
 int
 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
 {
 	int error;
 
 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
 	    &seg_desc->access);
 	return (error);
 }
 
 int
 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
 {
 	int error;
 	struct vm_register vmreg;
 
 	bzero(&vmreg, sizeof(vmreg));
 	vmreg.cpuid = vcpu;
 	vmreg.regnum = reg;
 	vmreg.regval = val;
 
 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
 	return (error);
 }
 
 int
 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
 {
 	int error;
 	struct vm_register vmreg;
 
 	bzero(&vmreg, sizeof(vmreg));
 	vmreg.cpuid = vcpu;
 	vmreg.regnum = reg;
 
 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
 	*ret_val = vmreg.regval;
 	return (error);
 }
 
 int
 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
     const int *regnums, uint64_t *regvals)
 {
 	int error;
 	struct vm_register_set vmregset;
 
 	bzero(&vmregset, sizeof(vmregset));
 	vmregset.cpuid = vcpu;
 	vmregset.count = count;
 	vmregset.regnums = regnums;
 	vmregset.regvals = regvals;
 
 	error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
 	return (error);
 }
 
 int
 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
     const int *regnums, uint64_t *regvals)
 {
 	int error;
 	struct vm_register_set vmregset;
 
 	bzero(&vmregset, sizeof(vmregset));
 	vmregset.cpuid = vcpu;
 	vmregset.count = count;
 	vmregset.regnums = regnums;
 	vmregset.regvals = regvals;
 
 	error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
 	return (error);
 }
 
 int
 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit)
 {
 	int error;
 	struct vm_run vmrun;
 
 	bzero(&vmrun, sizeof(vmrun));
 	vmrun.cpuid = vcpu;
 
 	error = ioctl(ctx->fd, VM_RUN, &vmrun);
 	bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
 	return (error);
 }
 
 int
 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
 {
 	struct vm_suspend vmsuspend;
 
 	bzero(&vmsuspend, sizeof(vmsuspend));
 	vmsuspend.how = how;
 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
 }
 
 int
 vm_reinit(struct vmctx *ctx)
 {
 
 	return (ioctl(ctx->fd, VM_REINIT, 0));
 }
 
 int
 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
     uint32_t errcode, int restart_instruction)
 {
 	struct vm_exception exc;
 
 	exc.cpuid = vcpu;
 	exc.vector = vector;
 	exc.error_code = errcode;
 	exc.error_code_valid = errcode_valid;
 	exc.restart_instruction = restart_instruction;
 
 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
 }
 
 int
 vm_apicid2vcpu(struct vmctx *ctx, int apicid)
 {
 	/*
 	 * The apic id associated with the 'vcpu' has the same numerical value
 	 * as the 'vcpu' itself.
 	 */
 	return (apicid);
 }
 
 int
 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
 {
 	struct vm_lapic_irq vmirq;
 
 	bzero(&vmirq, sizeof(vmirq));
 	vmirq.cpuid = vcpu;
 	vmirq.vector = vector;
 
 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
 }
 
 int
 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
 {
 	struct vm_lapic_irq vmirq;
 
 	bzero(&vmirq, sizeof(vmirq));
 	vmirq.cpuid = vcpu;
 	vmirq.vector = vector;
 
 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
 }
 
 int
 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
 {
 	struct vm_lapic_msi vmmsi;
 
 	bzero(&vmmsi, sizeof(vmmsi));
 	vmmsi.addr = addr;
 	vmmsi.msg = msg;
 
 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
 }
 
 int
 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
 {
 	struct vm_ioapic_irq ioapic_irq;
 
 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
 	ioapic_irq.irq = irq;
 
 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
 }
 
 int
 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
 {
 	struct vm_ioapic_irq ioapic_irq;
 
 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
 	ioapic_irq.irq = irq;
 
 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
 }
 
 int
 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
 {
 	struct vm_ioapic_irq ioapic_irq;
 
 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
 	ioapic_irq.irq = irq;
 
 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
 }
 
 int
 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
 {
 
 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
 }
 
 int
 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
 {
 	struct vm_isa_irq isa_irq;
 
 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
 	isa_irq.atpic_irq = atpic_irq;
 	isa_irq.ioapic_irq = ioapic_irq;
 
 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
 }
 
 int
 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
 {
 	struct vm_isa_irq isa_irq;
 
 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
 	isa_irq.atpic_irq = atpic_irq;
 	isa_irq.ioapic_irq = ioapic_irq;
 
 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
 }
 
 int
 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
 {
 	struct vm_isa_irq isa_irq;
 
 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
 	isa_irq.atpic_irq = atpic_irq;
 	isa_irq.ioapic_irq = ioapic_irq;
 
 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
 }
 
 int
 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
     enum vm_intr_trigger trigger)
 {
 	struct vm_isa_irq_trigger isa_irq_trigger;
 
 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
 	isa_irq_trigger.atpic_irq = atpic_irq;
 	isa_irq_trigger.trigger = trigger;
 
 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
 }
 
 int
 vm_inject_nmi(struct vmctx *ctx, int vcpu)
 {
 	struct vm_nmi vmnmi;
 
 	bzero(&vmnmi, sizeof(vmnmi));
 	vmnmi.cpuid = vcpu;
 
 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
 }
 
 static struct {
 	const char	*name;
 	int		type;
 } capstrmap[] = {
 	{ "hlt_exit",		VM_CAP_HALT_EXIT },
 	{ "mtrap_exit",		VM_CAP_MTRAP_EXIT },
 	{ "pause_exit",		VM_CAP_PAUSE_EXIT },
 	{ "unrestricted_guest",	VM_CAP_UNRESTRICTED_GUEST },
 	{ "enable_invpcid",	VM_CAP_ENABLE_INVPCID },
 	{ 0 }
 };
 
 int
 vm_capability_name2type(const char *capname)
 {
 	int i;
 
 	for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) {
 		if (strcmp(capstrmap[i].name, capname) == 0)
 			return (capstrmap[i].type);
 	}
 
 	return (-1);
 }
 
 const char *
 vm_capability_type2name(int type)
 {
 	int i;
 
 	for (i = 0; capstrmap[i].name != NULL; i++) {
 		if (capstrmap[i].type == type)
 			return (capstrmap[i].name);
 	}
 
 	return (NULL);
 }
 
 int
 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
 		  int *retval)
 {
 	int error;
 	struct vm_capability vmcap;
 
 	bzero(&vmcap, sizeof(vmcap));
 	vmcap.cpuid = vcpu;
 	vmcap.captype = cap;
 
 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
 	*retval = vmcap.capval;
 	return (error);
 }
 
 int
 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
 {
 	struct vm_capability vmcap;
 
 	bzero(&vmcap, sizeof(vmcap));
 	vmcap.cpuid = vcpu;
 	vmcap.captype = cap;
 	vmcap.capval = val;
 
 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
 }
 
 int
 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
 {
 	struct vm_pptdev pptdev;
 
 	bzero(&pptdev, sizeof(pptdev));
 	pptdev.bus = bus;
 	pptdev.slot = slot;
 	pptdev.func = func;
 
 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
 }
 
 int
 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
 {
 	struct vm_pptdev pptdev;
 
 	bzero(&pptdev, sizeof(pptdev));
 	pptdev.bus = bus;
 	pptdev.slot = slot;
 	pptdev.func = func;
 
 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
 }
 
 int
 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
 {
 	struct vm_pptdev_mmio pptmmio;
 
 	bzero(&pptmmio, sizeof(pptmmio));
 	pptmmio.bus = bus;
 	pptmmio.slot = slot;
 	pptmmio.func = func;
 	pptmmio.gpa = gpa;
 	pptmmio.len = len;
 	pptmmio.hpa = hpa;
 
 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
 }
 
 int
 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
     uint64_t addr, uint64_t msg, int numvec)
 {
 	struct vm_pptdev_msi pptmsi;
 
 	bzero(&pptmsi, sizeof(pptmsi));
 	pptmsi.vcpu = vcpu;
 	pptmsi.bus = bus;
 	pptmsi.slot = slot;
 	pptmsi.func = func;
 	pptmsi.msg = msg;
 	pptmsi.addr = addr;
 	pptmsi.numvec = numvec;
 
 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
 }
 
 int	
 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
 {
 	struct vm_pptdev_msix pptmsix;
 
 	bzero(&pptmsix, sizeof(pptmsix));
 	pptmsix.vcpu = vcpu;
 	pptmsix.bus = bus;
 	pptmsix.slot = slot;
 	pptmsix.func = func;
 	pptmsix.idx = idx;
 	pptmsix.msg = msg;
 	pptmsix.addr = addr;
 	pptmsix.vector_control = vector_control;
 
 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
 }
 
 uint64_t *
 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
 	     int *ret_entries)
 {
 	int error;
 
 	static struct vm_stats vmstats;
 
 	vmstats.cpuid = vcpu;
 
 	error = ioctl(ctx->fd, VM_STATS, &vmstats);
 	if (error == 0) {
 		if (ret_entries)
 			*ret_entries = vmstats.num_entries;
 		if (ret_tv)
 			*ret_tv = vmstats.tv;
 		return (vmstats.statbuf);
 	} else
 		return (NULL);
 }
 
 const char *
 vm_get_stat_desc(struct vmctx *ctx, int index)
 {
 	static struct vm_stat_desc statdesc;
 
 	statdesc.index = index;
 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
 		return (statdesc.desc);
 	else
 		return (NULL);
 }
 
 int
 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
 {
 	int error;
 	struct vm_x2apic x2apic;
 
 	bzero(&x2apic, sizeof(x2apic));
 	x2apic.cpuid = vcpu;
 
 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
 	*state = x2apic.state;
 	return (error);
 }
 
 int
 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
 {
 	int error;
 	struct vm_x2apic x2apic;
 
 	bzero(&x2apic, sizeof(x2apic));
 	x2apic.cpuid = vcpu;
 	x2apic.state = state;
 
 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
 
 	return (error);
 }
 
 /*
  * From Intel Vol 3a:
  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
  */
 int
 vcpu_reset(struct vmctx *vmctx, int vcpu)
 {
 	int error;
 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
 	uint32_t desc_access, desc_limit;
 	uint16_t sel;
 
 	zero = 0;
 
 	rflags = 0x2;
 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
 	if (error)
 		goto done;
 
 	rip = 0xfff0;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
 		goto done;
 
 	cr0 = CR0_NE;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
 		goto done;
 
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
 		goto done;
 	
 	cr4 = 0;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
 		goto done;
 
 	/*
 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
 	 */
 	desc_base = 0xffff0000;
 	desc_limit = 0xffff;
 	desc_access = 0x0093;
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
 			    desc_base, desc_limit, desc_access);
 	if (error)
 		goto done;
 
 	sel = 0xf000;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
 		goto done;
 
 	/*
 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
 	 */
 	desc_base = 0;
 	desc_limit = 0xffff;
 	desc_access = 0x0093;
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
 			    desc_base, desc_limit, desc_access);
 	if (error)
 		goto done;
 
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
 			    desc_base, desc_limit, desc_access);
 	if (error)
 		goto done;
 
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
 			    desc_base, desc_limit, desc_access);
 	if (error)
 		goto done;
 
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
 			    desc_base, desc_limit, desc_access);
 	if (error)
 		goto done;
 
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
 			    desc_base, desc_limit, desc_access);
 	if (error)
 		goto done;
 
 	sel = 0;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
 		goto done;
 
 	/* General purpose registers */
 	rdx = 0xf00;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
 		goto done;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
 		goto done;
 
 	/* GDTR, IDTR */
 	desc_base = 0;
 	desc_limit = 0xffff;
 	desc_access = 0;
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
 			    desc_base, desc_limit, desc_access);
 	if (error != 0)
 		goto done;
 
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
 			    desc_base, desc_limit, desc_access);
 	if (error != 0)
 		goto done;
 
 	/* TR */
 	desc_base = 0;
 	desc_limit = 0xffff;
 	desc_access = 0x0000008b;
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
 	if (error)
 		goto done;
 
 	sel = 0;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
 		goto done;
 
 	/* LDTR */
 	desc_base = 0;
 	desc_limit = 0xffff;
 	desc_access = 0x00000082;
 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
 			    desc_limit, desc_access);
 	if (error)
 		goto done;
 
 	sel = 0;
 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
 		goto done;
 
 	/* XXX cr2, debug registers */
 
 	error = 0;
 done:
 	return (error);
 }
 
 int
 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
 {
 	int error, i;
 	struct vm_gpa_pte gpapte;
 
 	bzero(&gpapte, sizeof(gpapte));
 	gpapte.gpa = gpa;
 
 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
 
 	if (error == 0) {
 		*num = gpapte.ptenum;
 		for (i = 0; i < gpapte.ptenum; i++)
 			pte[i] = gpapte.pte[i];
 	}
 
 	return (error);
 }
 
 int
 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
 {
 	int error;
 	struct vm_hpet_cap cap;
 
 	bzero(&cap, sizeof(struct vm_hpet_cap));
 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
 	if (capabilities != NULL)
 		*capabilities = cap.capabilities;
 	return (error);
 }
 
 int
 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
     uint64_t gla, int prot, uint64_t *gpa, int *fault)
 {
 	struct vm_gla2gpa gg;
 	int error;
 
 	bzero(&gg, sizeof(struct vm_gla2gpa));
 	gg.vcpuid = vcpu;
 	gg.prot = prot;
 	gg.gla = gla;
 	gg.paging = *paging;
 
 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
 	if (error == 0) {
 		*fault = gg.fault;
 		*gpa = gg.gpa;
 	}
 	return (error);
 }
 
 int
 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
     uint64_t gla, int prot, uint64_t *gpa, int *fault)
 {
 	struct vm_gla2gpa gg;
 	int error;
 
 	bzero(&gg, sizeof(struct vm_gla2gpa));
 	gg.vcpuid = vcpu;
 	gg.prot = prot;
 	gg.gla = gla;
 	gg.paging = *paging;
 
 	error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
 	if (error == 0) {
 		*fault = gg.fault;
 		*gpa = gg.gpa;
 	}
 	return (error);
 }
 
 #ifndef min
 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
 #endif
 
 int
 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
     int *fault)
 {
 	void *va;
 	uint64_t gpa;
 	int error, i, n, off;
 
 	for (i = 0; i < iovcnt; i++) {
 		iov[i].iov_base = 0;
 		iov[i].iov_len = 0;
 	}
 
 	while (len) {
 		assert(iovcnt > 0);
 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
 		if (error || *fault)
 			return (error);
 
 		off = gpa & PAGE_MASK;
 		n = min(len, PAGE_SIZE - off);
 
 		va = vm_map_gpa(ctx, gpa, n);
 		if (va == NULL)
 			return (EFAULT);
 
 		iov->iov_base = va;
 		iov->iov_len = n;
 		iov++;
 		iovcnt--;
 
 		gla += n;
 		len -= n;
 	}
 	return (0);
 }
 
 void
 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
 {
 
 	return;
 }
 
 void
 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
 {
 	const char *src;
 	char *dst;
 	size_t n;
 
 	dst = vp;
 	while (len) {
 		assert(iov->iov_len);
 		n = min(len, iov->iov_len);
 		src = iov->iov_base;
 		bcopy(src, dst, n);
 
 		iov++;
 		dst += n;
 		len -= n;
 	}
 }
 
 void
 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
     size_t len)
 {
 	const char *src;
 	char *dst;
 	size_t n;
 
 	src = vp;
 	while (len) {
 		assert(iov->iov_len);
 		n = min(len, iov->iov_len);
 		dst = iov->iov_base;
 		bcopy(src, dst, n);
 
 		iov++;
 		src += n;
 		len -= n;
 	}
 }
 
 static int
 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
 {
 	struct vm_cpuset vm_cpuset;
 	int error;
 
 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
 	vm_cpuset.which = which;
 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
 	vm_cpuset.cpus = cpus;
 
 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
 	return (error);
 }
 
 int
 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
 {
 
 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
 }
 
 int
 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
 {
 
 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
 }
 
 int
 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
 {
 
 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
 }
 
 int
 vm_activate_cpu(struct vmctx *ctx, int vcpu)
 {
 	struct vm_activate_cpu ac;
 	int error;
 
 	bzero(&ac, sizeof(struct vm_activate_cpu));
 	ac.vcpuid = vcpu;
 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
 	return (error);
 }
 
 int
 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
 {
 	struct vm_activate_cpu ac;
 	int error;
 
 	bzero(&ac, sizeof(struct vm_activate_cpu));
 	ac.vcpuid = vcpu;
 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
 	return (error);
 }
 
 int
 vm_resume_cpu(struct vmctx *ctx, int vcpu)
 {
 	struct vm_activate_cpu ac;
 	int error;
 
 	bzero(&ac, sizeof(struct vm_activate_cpu));
 	ac.vcpuid = vcpu;
 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
 	return (error);
 }
 
 int
 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
 {
 	struct vm_intinfo vmii;
 	int error;
 
 	bzero(&vmii, sizeof(struct vm_intinfo));
 	vmii.vcpuid = vcpu;
 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
 	if (error == 0) {
 		*info1 = vmii.info1;
 		*info2 = vmii.info2;
 	}
 	return (error);
 }
 
 int
 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
 {
 	struct vm_intinfo vmii;
 	int error;
 
 	bzero(&vmii, sizeof(struct vm_intinfo));
 	vmii.vcpuid = vcpu;
 	vmii.info1 = info1;
 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
 	return (error);
 }
 
 int
 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
 {
 	struct vm_rtc_data rtcdata;
 	int error;
 
 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
 	rtcdata.offset = offset;
 	rtcdata.value = value;
 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
 	return (error);
 }
 
 int
 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
 {
 	struct vm_rtc_data rtcdata;
 	int error;
 
 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
 	rtcdata.offset = offset;
 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
 	if (error == 0)
 		*retval = rtcdata.value;
 	return (error);
 }
 
 int
 vm_rtc_settime(struct vmctx *ctx, time_t secs)
 {
 	struct vm_rtc_time rtctime;
 	int error;
 
 	bzero(&rtctime, sizeof(struct vm_rtc_time));
 	rtctime.secs = secs;
 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
 	return (error);
 }
 
 int
 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
 {
 	struct vm_rtc_time rtctime;
 	int error;
 
 	bzero(&rtctime, sizeof(struct vm_rtc_time));
 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
 	if (error == 0)
 		*secs = rtctime.secs;
 	return (error);
 }
 
 int
 vm_restart_instruction(void *arg, int vcpu)
 {
 	struct vmctx *ctx = arg;
 
 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
 }
 
 int
 vm_set_topology(struct vmctx *ctx,
     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
 {
 	struct vm_cpu_topology topology;
 
 	bzero(&topology, sizeof (struct vm_cpu_topology));
 	topology.sockets = sockets;
 	topology.cores = cores;
 	topology.threads = threads;
 	topology.maxcpus = maxcpus;
 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
 }
 
 int
 vm_get_topology(struct vmctx *ctx,
     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
 {
 	struct vm_cpu_topology topology;
 	int error;
 
 	bzero(&topology, sizeof (struct vm_cpu_topology));
 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
 	if (error == 0) {
 		*sockets = topology.sockets;
 		*cores = topology.cores;
 		*threads = topology.threads;
 		*maxcpus = topology.maxcpus;
 	}
 	return (error);
 }
 
 int
 vm_get_device_fd(struct vmctx *ctx)
 {
 
 	return (ctx->fd);
 }
 
 const cap_ioctl_t *
 vm_get_ioctls(size_t *len)
 {
 	cap_ioctl_t *cmds;
 	/* keep in sync with machine/vmm_dev.h */
 	static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
 	    VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
 	    VM_MMAP_GETNEXT, VM_SET_REGISTER, VM_GET_REGISTER,
 	    VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
 	    VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
 	    VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
 	    VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
 	    VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
 	    VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
 	    VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
 	    VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
 	    VM_PPTDEV_MSIX, VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
 	    VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
 	    VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
 	    VM_GLA2GPA_NOFAULT,
 	    VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
 	    VM_SET_INTINFO, VM_GET_INTINFO,
 	    VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
 	    VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
 
 	if (len == NULL) {
 		cmds = malloc(sizeof(vm_ioctl_cmds));
 		if (cmds == NULL)
 			return (NULL);
 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
 		return (cmds);
 	}
 
 	*len = nitems(vm_ioctl_cmds);
 	return (NULL);
 }