Index: head/sys/dev/adb/adb_kbd.c =================================================================== --- head/sys/dev/adb/adb_kbd.c (revision 355805) +++ head/sys/dev/adb/adb_kbd.c (revision 355806) @@ -1,892 +1,896 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2008 Nathan Whitehorn * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_kbd.h" #include #include #include #include #include #include #include "adb.h" #define KBD_DRIVER_NAME "akbd" #define AKBD_EMULATE_ATKBD 1 static int adb_kbd_probe(device_t dev); static int adb_kbd_attach(device_t dev); static int adb_kbd_detach(device_t dev); static void akbd_repeat(void *xsc); static int adb_fn_keys(SYSCTL_HANDLER_ARGS); static u_int adb_kbd_receive_packet(device_t dev, u_char status, u_char command, u_char reg, int len, u_char *data); struct adb_kbd_softc { keyboard_t sc_kbd; device_t sc_dev; struct mtx sc_mutex; struct cv sc_cv; int sc_mode; int sc_state; int have_led_control; uint8_t buffer[8]; #ifdef AKBD_EMULATE_ATKBD uint8_t at_buffered_char[2]; #endif volatile int buffers; struct callout sc_repeater; int sc_repeatstart; int sc_repeatcontinue; uint8_t last_press; }; static device_method_t adb_kbd_methods[] = { /* Device interface */ DEVMETHOD(device_probe, adb_kbd_probe), DEVMETHOD(device_attach, adb_kbd_attach), DEVMETHOD(device_detach, adb_kbd_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, bus_generic_resume), /* ADB interface */ DEVMETHOD(adb_receive_packet, adb_kbd_receive_packet), { 0, 0 } }; static driver_t adb_kbd_driver = { "akbd", adb_kbd_methods, sizeof(struct adb_kbd_softc), }; static devclass_t adb_kbd_devclass; DRIVER_MODULE(akbd, adb, adb_kbd_driver, adb_kbd_devclass, 0, 0); #ifdef AKBD_EMULATE_ATKBD #define SCAN_PRESS 0x000 #define SCAN_RELEASE 0x080 #define SCAN_PREFIX_E0 0x100 #define SCAN_PREFIX_E1 0x200 #define SCAN_PREFIX_CTL 0x400 #define SCAN_PREFIX_SHIFT 0x800 #define SCAN_PREFIX (SCAN_PREFIX_E0 | SCAN_PREFIX_E1 | \ SCAN_PREFIX_CTL | SCAN_PREFIX_SHIFT) static const uint8_t adb_to_at_scancode_map[128] = { 30, 31, 32, 33, 35, 34, 44, 45, 46, 47, 0, 48, 16, 17, 18, 19, 21, 20, 2, 3, 4, 5, 7, 6, 13, 10, 8, 12, 9, 11, 27, 24, 22, 26, 23, 25, 28, 38, 36, 40, 37, 39, 43, 51, 53, 49, 50, 52, 15, 57, 41, 14, 0, 1, 29, 0, 42, 58, 56, 97, 98, 100, 95, 0, 0, 83, 0, 55, 0, 78, 0, 69, 0, 0, 0, 91, 89, 0, 74, 13, 0, 0, 82, 79, 80, 81, 75, 76, 77, 71, 0, 72, 73, 0, 0, 0, 63, 64, 65, 61, 66, 67, 0, 87, 0, 105, 0, 70, 0, 68, 0, 88, 0, 107, 102, 94, 96, 103, 62, 99, 60, 101, 59, 54, 93, 90, 0, 0 }; static int keycode2scancode(int keycode, int shift, int up) { static const int scan[] = { /* KP enter, right ctrl, KP divide */ 0x1c , 0x1d , 0x35 , /* print screen */ 0x37 | SCAN_PREFIX_SHIFT, /* right alt, home, up, page up, left, right, end */ 0x38, 0x47, 0x48, 0x49, 0x4b, 0x4d, 0x4f, /* down, page down, insert, delete */ 0x50, 0x51, 0x52, 0x53, /* pause/break (see also below) */ 0x46, /* * MS: left window, right window, menu * also Sun: left meta, right meta, compose */ 0x5b, 0x5c, 0x5d, /* Sun type 6 USB */ /* help, stop, again, props, undo, front, copy */ 0x68, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, /* open, paste, find, cut, audiomute, audiolower, audioraise */ 0x64, 0x65, 0x66, 0x67, 0x25, 0x1f, 0x1e, /* power */ 0x20 }; int scancode; scancode = keycode; if ((keycode >= 89) && (keycode < 89 + nitems(scan))) scancode = scan[keycode - 89] | SCAN_PREFIX_E0; /* pause/break */ if ((keycode == 104) && !(shift & CTLS)) scancode = 0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL; if (shift & SHIFTS) scancode &= ~SCAN_PREFIX_SHIFT; return (scancode | (up ? SCAN_RELEASE : SCAN_PRESS)); } #endif /* keyboard driver declaration */ static int akbd_configure(int flags); static kbd_probe_t akbd_probe; static kbd_init_t akbd_init; static kbd_term_t akbd_term; static kbd_intr_t akbd_interrupt; static kbd_test_if_t akbd_test_if; static kbd_enable_t akbd_enable; static kbd_disable_t akbd_disable; static kbd_read_t akbd_read; static kbd_check_t akbd_check; static kbd_read_char_t akbd_read_char; static kbd_check_char_t akbd_check_char; static kbd_ioctl_t akbd_ioctl; static kbd_lock_t akbd_lock; static kbd_clear_state_t akbd_clear_state; static kbd_get_state_t akbd_get_state; static kbd_set_state_t akbd_set_state; static kbd_poll_mode_t akbd_poll; keyboard_switch_t akbdsw = { .probe = akbd_probe, .init = akbd_init, .term = akbd_term, .intr = akbd_interrupt, .test_if = akbd_test_if, .enable = akbd_enable, .disable = akbd_disable, .read = akbd_read, .check = akbd_check, .read_char = akbd_read_char, .check_char = akbd_check_char, .ioctl = akbd_ioctl, .lock = akbd_lock, .clear_state = akbd_clear_state, .get_state = akbd_get_state, .set_state = akbd_set_state, .poll = akbd_poll, }; KEYBOARD_DRIVER(akbd, akbdsw, akbd_configure); static int adb_kbd_probe(device_t dev) { uint8_t type; type = adb_get_device_type(dev); if (type != ADB_DEVICE_KEYBOARD) return (ENXIO); switch(adb_get_device_handler(dev)) { case 1: device_set_desc(dev,"Apple Standard Keyboard"); break; case 2: device_set_desc(dev,"Apple Extended Keyboard"); break; case 4: device_set_desc(dev,"Apple ISO Keyboard"); break; case 5: device_set_desc(dev,"Apple Extended ISO Keyboard"); break; case 8: device_set_desc(dev,"Apple Keyboard II"); break; case 9: device_set_desc(dev,"Apple ISO Keyboard II"); break; case 12: device_set_desc(dev,"PowerBook Keyboard"); break; case 13: device_set_desc(dev,"PowerBook ISO Keyboard"); break; case 24: device_set_desc(dev,"PowerBook Extended Keyboard"); break; case 27: device_set_desc(dev,"Apple Design Keyboard"); break; case 195: device_set_desc(dev,"PowerBook G3 Keyboard"); break; case 196: device_set_desc(dev,"iBook Keyboard"); break; default: device_set_desc(dev,"ADB Keyboard"); break; } return (0); } static int ms_to_ticks(int ms) { if (hz > 1000) return ms*(hz/1000); return ms/(1000/hz); } static int adb_kbd_attach(device_t dev) { struct adb_kbd_softc *sc; keyboard_switch_t *sw; uint32_t fkeys; phandle_t handle; sw = kbd_get_switch(KBD_DRIVER_NAME); if (sw == NULL) { return ENXIO; } sc = device_get_softc(dev); sc->sc_dev = dev; sc->sc_mode = K_RAW; sc->sc_state = 0; sc->have_led_control = 0; sc->buffers = 0; /* Try stepping forward to the extended keyboard protocol */ adb_set_device_handler(dev,3); mtx_init(&sc->sc_mutex, KBD_DRIVER_NAME, NULL, MTX_DEF); cv_init(&sc->sc_cv,KBD_DRIVER_NAME); callout_init(&sc->sc_repeater, 0); #ifdef AKBD_EMULATE_ATKBD kbd_init_struct(&sc->sc_kbd, KBD_DRIVER_NAME, KB_101, 0, 0, 0, 0); kbd_set_maps(&sc->sc_kbd, &key_map, &accent_map, fkey_tab, sizeof(fkey_tab) / sizeof(fkey_tab[0])); #else #error ADB raw mode not implemented #endif KBD_FOUND_DEVICE(&sc->sc_kbd); KBD_PROBE_DONE(&sc->sc_kbd); KBD_INIT_DONE(&sc->sc_kbd); KBD_CONFIG_DONE(&sc->sc_kbd); (*sw->enable)(&sc->sc_kbd); kbd_register(&sc->sc_kbd); #ifdef KBD_INSTALL_CDEV if (kbd_attach(&sc->sc_kbd)) { adb_kbd_detach(dev); return ENXIO; } #endif /* Check if we can read out the LED state from this keyboard by reading the key state register */ if (adb_read_register(dev, 2, NULL) == 2) sc->have_led_control = 1; adb_set_autopoll(dev,1); handle = OF_finddevice("mac-io/via-pmu/adb/keyboard"); if (handle != -1 && OF_getprop(handle, "AAPL,has-embedded-fn-keys", &fkeys, sizeof(fkeys)) != -1) { static const char *key_names[] = {"F1", "F2", "F3", "F4", "F5", "F6", "F7", "F8", "F9", "F10", "F11", "F12"}; struct sysctl_ctx_list *ctx; struct sysctl_oid *tree; int i; if (bootverbose) device_printf(dev, "Keyboard has embedded Fn keys\n"); for (i = 0; i < 12; i++) { uint32_t keyval; char buf[3]; if (OF_getprop(handle, key_names[i], &keyval, sizeof(keyval)) < 0) continue; buf[0] = 1; buf[1] = i+1; buf[2] = keyval; adb_write_register(dev, 0, 3, buf); } adb_write_register(dev, 1, 2, &(uint16_t){0}); ctx = device_get_sysctl_ctx(dev); tree = device_get_sysctl_tree(dev); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "fn_keys_function_as_primary", CTLTYPE_INT | CTLFLAG_RW, sc, 0, adb_fn_keys, "I", "Set the Fn keys to be their F-key type as default"); } return (0); } static int adb_kbd_detach(device_t dev) { struct adb_kbd_softc *sc; keyboard_t *kbd; sc = device_get_softc(dev); adb_set_autopoll(dev,0); callout_stop(&sc->sc_repeater); mtx_lock(&sc->sc_mutex); kbd = kbd_get_keyboard(kbd_find_keyboard(KBD_DRIVER_NAME, device_get_unit(dev))); kbdd_disable(kbd); #ifdef KBD_INSTALL_CDEV kbd_detach(kbd); #endif kbdd_term(kbd); mtx_unlock(&sc->sc_mutex); mtx_destroy(&sc->sc_mutex); cv_destroy(&sc->sc_cv); return (0); } static u_int adb_kbd_receive_packet(device_t dev, u_char status, u_char command, u_char reg, int len, u_char *data) { struct adb_kbd_softc *sc; sc = device_get_softc(dev); if (command != ADB_COMMAND_TALK) return 0; if (reg != 0 || len != 2) return (0); mtx_lock(&sc->sc_mutex); /* 0x7f is always the power button */ if (data[0] == 0x7f) { devctl_notify("PMU", "Button", "pressed", NULL); mtx_unlock(&sc->sc_mutex); return (0); } else if (data[0] == 0xff) { mtx_unlock(&sc->sc_mutex); return (0); /* Ignore power button release. */ } if ((data[0] & 0x7f) == 57 && sc->buffers < 7) { /* Fake the down/up cycle for caps lock */ sc->buffer[sc->buffers++] = data[0] & 0x7f; sc->buffer[sc->buffers++] = (data[0] & 0x7f) | (1 << 7); } else { sc->buffer[sc->buffers++] = data[0]; } if (sc->buffer[sc->buffers-1] < 0xff) sc->last_press = sc->buffer[sc->buffers-1]; if ((data[1] & 0x7f) == 57 && sc->buffers < 7) { /* Fake the down/up cycle for caps lock */ sc->buffer[sc->buffers++] = data[1] & 0x7f; sc->buffer[sc->buffers++] = (data[1] & 0x7f) | (1 << 7); } else { sc->buffer[sc->buffers++] = data[1]; } if (sc->buffer[sc->buffers-1] < 0xff) sc->last_press = sc->buffer[sc->buffers-1]; /* Stop any existing key repeating */ callout_stop(&sc->sc_repeater); /* Schedule a repeat callback on keydown */ if (!(sc->last_press & (1 << 7))) { callout_reset(&sc->sc_repeater, ms_to_ticks(sc->sc_kbd.kb_delay1), akbd_repeat, sc); } mtx_unlock(&sc->sc_mutex); cv_broadcast(&sc->sc_cv); if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { sc->sc_kbd.kb_callback.kc_func(&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } return (0); } static void akbd_repeat(void *xsc) { struct adb_kbd_softc *sc = xsc; int notify_kbd = 0; /* Fake an up/down key repeat so long as we have the free buffers */ mtx_lock(&sc->sc_mutex); if (sc->buffers < 7) { sc->buffer[sc->buffers++] = sc->last_press | (1 << 7); sc->buffer[sc->buffers++] = sc->last_press; notify_kbd = 1; } mtx_unlock(&sc->sc_mutex); if (notify_kbd && KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { sc->sc_kbd.kb_callback.kc_func(&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } /* Reschedule the callout */ callout_reset(&sc->sc_repeater, ms_to_ticks(sc->sc_kbd.kb_delay2), akbd_repeat, sc); } static int akbd_configure(int flags) { return 0; } static int akbd_probe(int unit, void *arg, int flags) { return 0; } static int akbd_init(int unit, keyboard_t **kbdp, void *arg, int flags) { return 0; } static int akbd_term(keyboard_t *kbd) { return 0; } static int akbd_interrupt(keyboard_t *kbd, void *arg) { return 0; } static int akbd_test_if(keyboard_t *kbd) { return 0; } static int akbd_enable(keyboard_t *kbd) { KBD_ACTIVATE(kbd); return (0); } static int akbd_disable(keyboard_t *kbd) { struct adb_kbd_softc *sc; sc = (struct adb_kbd_softc *)(kbd); callout_stop(&sc->sc_repeater); KBD_DEACTIVATE(kbd); return (0); } static int akbd_read(keyboard_t *kbd, int wait) { return (0); } static int akbd_check(keyboard_t *kbd) { struct adb_kbd_softc *sc; if (!KBD_IS_ACTIVE(kbd)) return (FALSE); sc = (struct adb_kbd_softc *)(kbd); mtx_lock(&sc->sc_mutex); #ifdef AKBD_EMULATE_ATKBD if (sc->at_buffered_char[0]) { mtx_unlock(&sc->sc_mutex); return (TRUE); } #endif if (sc->buffers > 0) { mtx_unlock(&sc->sc_mutex); return (TRUE); } mtx_unlock(&sc->sc_mutex); return (FALSE); } static u_int akbd_read_char(keyboard_t *kbd, int wait) { struct adb_kbd_softc *sc; uint16_t key; uint8_t adb_code; int i; sc = (struct adb_kbd_softc *)(kbd); mtx_lock(&sc->sc_mutex); #if defined(AKBD_EMULATE_ATKBD) if (sc->sc_mode == K_RAW && sc->at_buffered_char[0]) { key = sc->at_buffered_char[0]; if (key & SCAN_PREFIX) { sc->at_buffered_char[0] = key & ~SCAN_PREFIX; key = (key & SCAN_PREFIX_E0) ? 0xe0 : 0xe1; } else { sc->at_buffered_char[0] = sc->at_buffered_char[1]; sc->at_buffered_char[1] = 0; } mtx_unlock(&sc->sc_mutex); return (key); } #endif if (!sc->buffers && wait) cv_wait(&sc->sc_cv,&sc->sc_mutex); if (!sc->buffers) { mtx_unlock(&sc->sc_mutex); return (NOKEY); } adb_code = sc->buffer[0]; for (i = 1; i < sc->buffers; i++) sc->buffer[i-1] = sc->buffer[i]; sc->buffers--; #ifdef AKBD_EMULATE_ATKBD key = adb_to_at_scancode_map[adb_code & 0x7f]; if (sc->sc_mode == K_CODE) { /* Add the key-release bit */ key |= adb_code & 0x80; } else if (sc->sc_mode == K_RAW) { /* * In the raw case, we have to emulate the gross * variable-length AT keyboard thing. Since this code * is copied from sunkbd, which is the same code * as ukbd, it might be nice to have this centralized. */ key = keycode2scancode(key, 0, adb_code & 0x80); if (key & SCAN_PREFIX) { if (key & SCAN_PREFIX_CTL) { sc->at_buffered_char[0] = 0x1d | (key & SCAN_RELEASE); sc->at_buffered_char[1] = key & ~SCAN_PREFIX; } else if (key & SCAN_PREFIX_SHIFT) { sc->at_buffered_char[0] = 0x2a | (key & SCAN_RELEASE); sc->at_buffered_char[1] = key & ~SCAN_PREFIX_SHIFT; } else { sc->at_buffered_char[0] = key & ~SCAN_PREFIX; sc->at_buffered_char[1] = 0; } key = (key & SCAN_PREFIX_E0) ? 0xe0 : 0xe1; } } #else key = adb_code; #endif mtx_unlock(&sc->sc_mutex); return (key); } static int akbd_check_char(keyboard_t *kbd) { if (!KBD_IS_ACTIVE(kbd)) return (FALSE); return (akbd_check(kbd)); } static int set_typematic(keyboard_t *kbd, int code) { /* These numbers are in microseconds, so convert to ticks */ static int delays[] = { 250, 500, 750, 1000 }; static int rates[] = { 34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504 }; if (code & ~0x7f) return EINVAL; kbd->kb_delay1 = delays[(code >> 5) & 3]; kbd->kb_delay2 = rates[code & 0x1f]; return 0; } static int akbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t data) { struct adb_kbd_softc *sc; uint16_t r2; int error; sc = (struct adb_kbd_softc *)(kbd); error = 0; switch (cmd) { case KDGKBMODE: *(int *)data = sc->sc_mode; break; case KDSKBMODE: switch (*(int *)data) { case K_XLATE: if (sc->sc_mode != K_XLATE) { /* make lock key state and LED state match */ sc->sc_state &= ~LOCK_MASK; sc->sc_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (sc->sc_mode != *(int *)data) sc->sc_mode = *(int *)data; break; default: error = EINVAL; break; } break; case KDGETLED: *(int *)data = KBD_LED_VAL(kbd); break; case KDSKBSTATE: if (*(int *)data & ~LOCK_MASK) { error = EINVAL; break; } sc->sc_state &= ~LOCK_MASK; sc->sc_state |= *(int *)data; /* FALLTHROUGH */ case KDSETLED: KBD_LED_VAL(kbd) = *(int *)data; if (!sc->have_led_control) break; r2 = (~0 & 0x04) | 3; if (*(int *)data & NLKED) r2 &= ~1; if (*(int *)data & CLKED) r2 &= ~2; if (*(int *)data & SLKED) r2 &= ~4; adb_send_packet(sc->sc_dev,ADB_COMMAND_LISTEN,2, sizeof(uint16_t),(u_char *)&r2); break; case KDGKBSTATE: *(int *)data = sc->sc_state & LOCK_MASK; break; case KDSETREPEAT: if (!KBD_HAS_DEVICE(kbd)) return 0; if (((int *)data)[1] < 0) return EINVAL; if (((int *)data)[0] < 0) return EINVAL; else if (((int *)data)[0] == 0) /* fastest possible value */ kbd->kb_delay1 = 200; else kbd->kb_delay1 = ((int *)data)[0]; kbd->kb_delay2 = ((int *)data)[1]; break; case KDSETRAD: error = set_typematic(kbd, *(int *)data); break; case PIO_KEYMAP: case OPIO_KEYMAP: case PIO_KEYMAPENT: case PIO_DEADKEYMAP: default: return (genkbd_commonioctl(kbd, cmd, data)); } return (error); } static int akbd_lock(keyboard_t *kbd, int lock) { return (0); } static void akbd_clear_state(keyboard_t *kbd) { struct adb_kbd_softc *sc; sc = (struct adb_kbd_softc *)(kbd); mtx_lock(&sc->sc_mutex); sc->buffers = 0; callout_stop(&sc->sc_repeater); #if defined(AKBD_EMULATE_ATKBD) sc->at_buffered_char[0] = 0; sc->at_buffered_char[1] = 0; #endif mtx_unlock(&sc->sc_mutex); } static int akbd_get_state(keyboard_t *kbd, void *buf, size_t len) { return (0); } static int akbd_set_state(keyboard_t *kbd, void *buf, size_t len) { return (0); } static int akbd_poll(keyboard_t *kbd, int on) { return (0); } static int akbd_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: +#ifdef KLD_MODULE kbd_add_driver(&akbd_kbd_driver); +#endif break; case MOD_UNLOAD: +#ifdef KLD_MODULE kbd_delete_driver(&akbd_kbd_driver); +#endif break; default: return (EOPNOTSUPP); } return (0); } static int adb_fn_keys(SYSCTL_HANDLER_ARGS) { struct adb_kbd_softc *sc = arg1; int error; uint16_t is_fn_enabled; unsigned int is_fn_enabled_sysctl; adb_read_register(sc->sc_dev, 1, &is_fn_enabled); is_fn_enabled &= 1; is_fn_enabled_sysctl = is_fn_enabled; error = sysctl_handle_int(oidp, &is_fn_enabled_sysctl, 0, req); if (error || !req->newptr) return (error); is_fn_enabled = is_fn_enabled_sysctl; if (is_fn_enabled != 1 && is_fn_enabled != 0) return (EINVAL); adb_write_register(sc->sc_dev, 1, 2, &is_fn_enabled); return (0); } DEV_MODULE(akbd, akbd_modevent, NULL); Index: head/sys/dev/gpio/gpiokeys.c =================================================================== --- head/sys/dev/gpio/gpiokeys.c (revision 355805) +++ head/sys/dev/gpio/gpiokeys.c (revision 355806) @@ -1,1014 +1,1017 @@ /*- * Copyright (c) 2015-2016 Oleksandr Tymoshenko * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_platform.h" #include "opt_kbd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KBD_DRIVER_NAME "gpiokeys" #define GPIOKEYS_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define GPIOKEYS_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define GPIOKEYS_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit((_sc)->sc_dev), \ "gpiokeys", MTX_DEF) #define GPIOKEYS_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->sc_mtx); #define GPIOKEYS_ASSERT_LOCKED(_sc) mtx_assert(&(_sc)->sc_mtx, MA_OWNED) #define GPIOKEY_LOCK(_key) mtx_lock(&(_key)->mtx) #define GPIOKEY_UNLOCK(_key) mtx_unlock(&(_key)->mtx) #define GPIOKEY_LOCK_INIT(_key) \ mtx_init(&(_key)->mtx, "gpiokey", "gpiokey", MTX_DEF) #define GPIOKEY_LOCK_DESTROY(_key) mtx_destroy(&(_key)->mtx); #define KEY_PRESS 0 #define KEY_RELEASE 0x80 #define SCAN_PRESS 0 #define SCAN_RELEASE 0x80 #define SCAN_CHAR(c) ((c) & 0x7f) #define GPIOKEYS_GLOBAL_NMOD 8 /* units */ #define GPIOKEYS_GLOBAL_NKEYCODE 6 /* units */ #define GPIOKEYS_GLOBAL_IN_BUF_SIZE (2*(GPIOKEYS_GLOBAL_NMOD + (2*GPIOKEYS_GLOBAL_NKEYCODE))) /* bytes */ #define GPIOKEYS_GLOBAL_IN_BUF_FULL (GPIOKEYS_GLOBAL_IN_BUF_SIZE / 2) /* bytes */ #define GPIOKEYS_GLOBAL_NFKEY (sizeof(fkey_tab)/sizeof(fkey_tab[0])) /* units */ #define GPIOKEYS_GLOBAL_BUFFER_SIZE 64 /* bytes */ #define AUTOREPEAT_DELAY 250 #define AUTOREPEAT_REPEAT 34 struct gpiokeys_softc; struct gpiokey { struct gpiokeys_softc *parent_sc; gpio_pin_t pin; int irq_rid; struct resource *irq_res; void *intr_hl; struct mtx mtx; uint32_t keycode; int autorepeat; struct callout debounce_callout; struct callout repeat_callout; int repeat_delay; int repeat; int debounce_interval; }; struct gpiokeys_softc { device_t sc_dev; struct mtx sc_mtx; struct gpiokey *sc_keys; int sc_total_keys; keyboard_t sc_kbd; keymap_t sc_keymap; accentmap_t sc_accmap; fkeytab_t sc_fkeymap[GPIOKEYS_GLOBAL_NFKEY]; uint32_t sc_input[GPIOKEYS_GLOBAL_IN_BUF_SIZE]; /* input buffer */ uint32_t sc_time_ms; #define GPIOKEYS_GLOBAL_FLAG_POLLING 0x00000002 uint32_t sc_flags; /* flags */ int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */ int sc_state; /* shift/lock key state */ int sc_accents; /* accent key index (> 0) */ int sc_kbd_size; uint16_t sc_inputs; uint16_t sc_inputhead; uint16_t sc_inputtail; uint8_t sc_kbd_id; }; /* gpio-keys device */ static int gpiokeys_probe(device_t); static int gpiokeys_attach(device_t); static int gpiokeys_detach(device_t); /* kbd methods prototypes */ static int gpiokeys_set_typematic(keyboard_t *, int); static uint32_t gpiokeys_read_char(keyboard_t *, int); static void gpiokeys_clear_state(keyboard_t *); static int gpiokeys_ioctl(keyboard_t *, u_long, caddr_t); static int gpiokeys_enable(keyboard_t *); static int gpiokeys_disable(keyboard_t *); static void gpiokeys_event_keyinput(struct gpiokeys_softc *); static void gpiokeys_put_key(struct gpiokeys_softc *sc, uint32_t key) { GPIOKEYS_ASSERT_LOCKED(sc); if (sc->sc_inputs < GPIOKEYS_GLOBAL_IN_BUF_SIZE) { sc->sc_input[sc->sc_inputtail] = key; ++(sc->sc_inputs); ++(sc->sc_inputtail); if (sc->sc_inputtail >= GPIOKEYS_GLOBAL_IN_BUF_SIZE) { sc->sc_inputtail = 0; } } else { device_printf(sc->sc_dev, "input buffer is full\n"); } } static void gpiokeys_key_event(struct gpiokeys_softc *sc, uint16_t keycode, int pressed) { uint32_t key; key = keycode & SCAN_KEYCODE_MASK; if (!pressed) key |= KEY_RELEASE; GPIOKEYS_LOCK(sc); if (keycode & SCAN_PREFIX_E0) gpiokeys_put_key(sc, 0xe0); else if (keycode & SCAN_PREFIX_E1) gpiokeys_put_key(sc, 0xe1); gpiokeys_put_key(sc, key); GPIOKEYS_UNLOCK(sc); gpiokeys_event_keyinput(sc); } static void gpiokey_autorepeat(void *arg) { struct gpiokey *key; key = arg; if (key->keycode == GPIOKEY_NONE) return; gpiokeys_key_event(key->parent_sc, key->keycode, 1); callout_reset(&key->repeat_callout, key->repeat, gpiokey_autorepeat, key); } static void gpiokey_debounced_intr(void *arg) { struct gpiokey *key; bool active; key = arg; if (key->keycode == GPIOKEY_NONE) return; gpio_pin_is_active(key->pin, &active); if (active) { gpiokeys_key_event(key->parent_sc, key->keycode, 1); if (key->autorepeat) { callout_reset(&key->repeat_callout, key->repeat_delay, gpiokey_autorepeat, key); } } else { if (key->autorepeat && callout_pending(&key->repeat_callout)) callout_stop(&key->repeat_callout); gpiokeys_key_event(key->parent_sc, key->keycode, 0); } } static void gpiokey_intr(void *arg) { struct gpiokey *key; int debounce_ticks; key = arg; GPIOKEY_LOCK(key); debounce_ticks = (hz * key->debounce_interval) / 1000; if (debounce_ticks == 0) debounce_ticks = 1; if (!callout_pending(&key->debounce_callout)) callout_reset(&key->debounce_callout, debounce_ticks, gpiokey_debounced_intr, key); GPIOKEY_UNLOCK(key); } static void gpiokeys_attach_key(struct gpiokeys_softc *sc, phandle_t node, struct gpiokey *key) { pcell_t prop; char *name; uint32_t code; int err; const char *key_name; GPIOKEY_LOCK_INIT(key); key->parent_sc = sc; callout_init_mtx(&key->debounce_callout, &key->mtx, 0); callout_init_mtx(&key->repeat_callout, &key->mtx, 0); name = NULL; if (OF_getprop_alloc(node, "label", (void **)&name) == -1) OF_getprop_alloc(node, "name", (void **)&name); if (name != NULL) key_name = name; else key_name = "unknown"; key->autorepeat = OF_hasprop(node, "autorepeat"); key->repeat_delay = (hz * AUTOREPEAT_DELAY) / 1000; if (key->repeat_delay == 0) key->repeat_delay = 1; key->repeat = (hz * AUTOREPEAT_REPEAT) / 1000; if (key->repeat == 0) key->repeat = 1; if ((OF_getprop(node, "debounce-interval", &prop, sizeof(prop))) > 0) key->debounce_interval = fdt32_to_cpu(prop); else key->debounce_interval = 5; if ((OF_getprop(node, "freebsd,code", &prop, sizeof(prop))) > 0) key->keycode = fdt32_to_cpu(prop); else if ((OF_getprop(node, "linux,code", &prop, sizeof(prop))) > 0) { code = fdt32_to_cpu(prop); key->keycode = gpiokey_map_linux_code(code); if (key->keycode == GPIOKEY_NONE) device_printf(sc->sc_dev, "<%s> failed to map linux,code value 0x%x\n", key_name, code); } else device_printf(sc->sc_dev, "<%s> no linux,code or freebsd,code property\n", key_name); err = gpio_pin_get_by_ofw_idx(sc->sc_dev, node, 0, &key->pin); if (err) { device_printf(sc->sc_dev, "<%s> failed to map pin\n", key_name); if (name) OF_prop_free(name); return; } key->irq_res = gpio_alloc_intr_resource(sc->sc_dev, &key->irq_rid, RF_ACTIVE, key->pin, GPIO_INTR_EDGE_BOTH); if (!key->irq_res) { device_printf(sc->sc_dev, "<%s> cannot allocate interrupt\n", key_name); gpio_pin_release(key->pin); key->pin = NULL; if (name) OF_prop_free(name); return; } if (bus_setup_intr(sc->sc_dev, key->irq_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, gpiokey_intr, key, &key->intr_hl) != 0) { device_printf(sc->sc_dev, "<%s> unable to setup the irq handler\n", key_name); bus_release_resource(sc->sc_dev, SYS_RES_IRQ, key->irq_rid, key->irq_res); gpio_pin_release(key->pin); key->pin = NULL; key->irq_res = NULL; if (name) OF_prop_free(name); return; } if (bootverbose) device_printf(sc->sc_dev, "<%s> code=%08x, autorepeat=%d, "\ "repeat=%d, repeat_delay=%d\n", key_name, key->keycode, key->autorepeat, key->repeat, key->repeat_delay); if (name) OF_prop_free(name); } static void gpiokeys_detach_key(struct gpiokeys_softc *sc, struct gpiokey *key) { GPIOKEY_LOCK(key); if (key->intr_hl) bus_teardown_intr(sc->sc_dev, key->irq_res, key->intr_hl); if (key->irq_res) bus_release_resource(sc->sc_dev, SYS_RES_IRQ, key->irq_rid, key->irq_res); if (callout_pending(&key->repeat_callout)) callout_drain(&key->repeat_callout); if (callout_pending(&key->debounce_callout)) callout_drain(&key->debounce_callout); if (key->pin) gpio_pin_release(key->pin); GPIOKEY_UNLOCK(key); GPIOKEY_LOCK_DESTROY(key); } static int gpiokeys_probe(device_t dev) { if (!ofw_bus_is_compatible(dev, "gpio-keys")) return (ENXIO); device_set_desc(dev, "GPIO keyboard"); return (0); } static int gpiokeys_attach(device_t dev) { int unit; struct gpiokeys_softc *sc; keyboard_t *kbd; phandle_t keys, child; int total_keys; if ((keys = ofw_bus_get_node(dev)) == -1) return (ENXIO); sc = device_get_softc(dev); sc->sc_dev = dev; kbd = &sc->sc_kbd; GPIOKEYS_LOCK_INIT(sc); unit = device_get_unit(dev); kbd_init_struct(kbd, KBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0); kbd->kb_data = (void *)sc; sc->sc_mode = K_XLATE; sc->sc_keymap = key_map; sc->sc_accmap = accent_map; kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap, sc->sc_fkeymap, GPIOKEYS_GLOBAL_NFKEY); KBD_FOUND_DEVICE(kbd); gpiokeys_clear_state(kbd); KBD_PROBE_DONE(kbd); KBD_INIT_DONE(kbd); if (kbd_register(kbd) < 0) { goto detach; } KBD_CONFIG_DONE(kbd); gpiokeys_enable(kbd); #ifdef KBD_INSTALL_CDEV if (kbd_attach(kbd)) { goto detach; } #endif if (bootverbose) { kbdd_diag(kbd, 1); } total_keys = 0; /* Traverse the 'gpio-keys' node and count keys */ for (child = OF_child(keys); child != 0; child = OF_peer(child)) { if (!OF_hasprop(child, "gpios")) continue; total_keys++; } if (total_keys) { sc->sc_keys = malloc(sizeof(struct gpiokey) * total_keys, M_DEVBUF, M_WAITOK | M_ZERO); sc->sc_total_keys = 0; /* Traverse the 'gpio-keys' node and count keys */ for (child = OF_child(keys); child != 0; child = OF_peer(child)) { if (!OF_hasprop(child, "gpios")) continue; gpiokeys_attach_key(sc, child ,&sc->sc_keys[sc->sc_total_keys]); sc->sc_total_keys++; } } return (0); detach: gpiokeys_detach(dev); return (ENXIO); } static int gpiokeys_detach(device_t dev) { struct gpiokeys_softc *sc; keyboard_t *kbd; int i; sc = device_get_softc(dev); for (i = 0; i < sc->sc_total_keys; i++) gpiokeys_detach_key(sc, &sc->sc_keys[i]); kbd = kbd_get_keyboard(kbd_find_keyboard(KBD_DRIVER_NAME, device_get_unit(dev))); #ifdef KBD_INSTALL_CDEV kbd_detach(kbd); #endif kbd_unregister(kbd); GPIOKEYS_LOCK_DESTROY(sc); if (sc->sc_keys) free(sc->sc_keys, M_DEVBUF); return (0); } /* early keyboard probe, not supported */ static int gpiokeys_configure(int flags) { return (0); } /* detect a keyboard, not used */ static int gpiokeys__probe(int unit, void *arg, int flags) { return (ENXIO); } /* reset and initialize the device, not used */ static int gpiokeys_init(int unit, keyboard_t **kbdp, void *arg, int flags) { return (ENXIO); } /* test the interface to the device, not used */ static int gpiokeys_test_if(keyboard_t *kbd) { return (0); } /* finish using this keyboard, not used */ static int gpiokeys_term(keyboard_t *kbd) { return (ENXIO); } /* keyboard interrupt routine, not used */ static int gpiokeys_intr(keyboard_t *kbd, void *arg) { return (0); } /* lock the access to the keyboard, not used */ static int gpiokeys_lock(keyboard_t *kbd, int lock) { return (1); } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int gpiokeys_enable(keyboard_t *kbd) { struct gpiokeys_softc *sc; sc = kbd->kb_data; GPIOKEYS_LOCK(sc); KBD_ACTIVATE(kbd); GPIOKEYS_UNLOCK(sc); return (0); } /* disallow the access to the device */ static int gpiokeys_disable(keyboard_t *kbd) { struct gpiokeys_softc *sc; sc = kbd->kb_data; GPIOKEYS_LOCK(sc); KBD_DEACTIVATE(kbd); GPIOKEYS_UNLOCK(sc); return (0); } static void gpiokeys_do_poll(struct gpiokeys_softc *sc, uint8_t wait) { KASSERT((sc->sc_flags & GPIOKEYS_GLOBAL_FLAG_POLLING) != 0, ("gpiokeys_do_poll called when not polling\n")); GPIOKEYS_ASSERT_LOCKED(sc); if (!kdb_active && !SCHEDULER_STOPPED()) { while (sc->sc_inputs == 0) { kern_yield(PRI_UNCHANGED); if (!wait) break; } return; } while ((sc->sc_inputs == 0) && wait) { printf("POLL!\n"); } } /* check if data is waiting */ static int gpiokeys_check(keyboard_t *kbd) { struct gpiokeys_softc *sc = kbd->kb_data; GPIOKEYS_ASSERT_LOCKED(sc); if (!KBD_IS_ACTIVE(kbd)) return (0); if (sc->sc_flags & GPIOKEYS_GLOBAL_FLAG_POLLING) gpiokeys_do_poll(sc, 0); if (sc->sc_inputs > 0) { return (1); } return (0); } /* check if char is waiting */ static int gpiokeys_check_char_locked(keyboard_t *kbd) { if (!KBD_IS_ACTIVE(kbd)) return (0); return (gpiokeys_check(kbd)); } static int gpiokeys_check_char(keyboard_t *kbd) { int result; struct gpiokeys_softc *sc = kbd->kb_data; GPIOKEYS_LOCK(sc); result = gpiokeys_check_char_locked(kbd); GPIOKEYS_UNLOCK(sc); return (result); } static int32_t gpiokeys_get_key(struct gpiokeys_softc *sc, uint8_t wait) { int32_t c; KASSERT((!kdb_active && !SCHEDULER_STOPPED()) || (sc->sc_flags & GPIOKEYS_GLOBAL_FLAG_POLLING) != 0, ("not polling in kdb or panic\n")); GPIOKEYS_ASSERT_LOCKED(sc); if (sc->sc_flags & GPIOKEYS_GLOBAL_FLAG_POLLING) gpiokeys_do_poll(sc, wait); if (sc->sc_inputs == 0) { c = -1; } else { c = sc->sc_input[sc->sc_inputhead]; --(sc->sc_inputs); ++(sc->sc_inputhead); if (sc->sc_inputhead >= GPIOKEYS_GLOBAL_IN_BUF_SIZE) { sc->sc_inputhead = 0; } } return (c); } /* read one byte from the keyboard if it's allowed */ static int gpiokeys_read(keyboard_t *kbd, int wait) { struct gpiokeys_softc *sc = kbd->kb_data; int32_t keycode; if (!KBD_IS_ACTIVE(kbd)) return (-1); /* XXX */ keycode = gpiokeys_get_key(sc, (wait == FALSE) ? 0 : 1); if (!KBD_IS_ACTIVE(kbd) || (keycode == -1)) return (-1); ++(kbd->kb_count); return (keycode); } /* read char from the keyboard */ static uint32_t gpiokeys_read_char_locked(keyboard_t *kbd, int wait) { struct gpiokeys_softc *sc = kbd->kb_data; uint32_t action; uint32_t keycode; if (!KBD_IS_ACTIVE(kbd)) return (NOKEY); next_code: /* see if there is something in the keyboard port */ /* XXX */ keycode = gpiokeys_get_key(sc, (wait == FALSE) ? 0 : 1); ++kbd->kb_count; /* return the byte as is for the K_RAW mode */ if (sc->sc_mode == K_RAW) { return (keycode); } /* return the key code in the K_CODE mode */ /* XXX: keycode |= SCAN_RELEASE; */ if (sc->sc_mode == K_CODE) { return (keycode); } /* keycode to key action */ action = genkbd_keyaction(kbd, SCAN_CHAR(keycode), (keycode & SCAN_RELEASE), &sc->sc_state, &sc->sc_accents); if (action == NOKEY) { goto next_code; } return (action); } /* Currently wait is always false. */ static uint32_t gpiokeys_read_char(keyboard_t *kbd, int wait) { uint32_t keycode; struct gpiokeys_softc *sc = kbd->kb_data; GPIOKEYS_LOCK(sc); keycode = gpiokeys_read_char_locked(kbd, wait); GPIOKEYS_UNLOCK(sc); return (keycode); } /* some useful control functions */ static int gpiokeys_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg) { struct gpiokeys_softc *sc = kbd->kb_data; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) int ival; #endif switch (cmd) { case KDGKBMODE: /* get keyboard mode */ *(int *)arg = sc->sc_mode; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 7): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBMODE: /* set keyboard mode */ switch (*(int *)arg) { case K_XLATE: if (sc->sc_mode != K_XLATE) { /* make lock key state and LED state match */ sc->sc_state &= ~LOCK_MASK; sc->sc_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (sc->sc_mode != *(int *)arg) { if ((sc->sc_flags & GPIOKEYS_GLOBAL_FLAG_POLLING) == 0) gpiokeys_clear_state(kbd); sc->sc_mode = *(int *)arg; } break; default: return (EINVAL); } break; case KDGETLED: /* get keyboard LED */ *(int *)arg = KBD_LED_VAL(kbd); break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 66): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETLED: /* set keyboard LED */ KBD_LED_VAL(kbd) = *(int *)arg; break; case KDGKBSTATE: /* get lock key state */ *(int *)arg = sc->sc_state & LOCK_MASK; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 20): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBSTATE: /* set lock key state */ if (*(int *)arg & ~LOCK_MASK) { return (EINVAL); } sc->sc_state &= ~LOCK_MASK; sc->sc_state |= *(int *)arg; return (0); case KDSETREPEAT: /* set keyboard repeat rate (new * interface) */ if (!KBD_HAS_DEVICE(kbd)) { return (0); } if (((int *)arg)[1] < 0) { return (EINVAL); } if (((int *)arg)[0] < 0) { return (EINVAL); } if (((int *)arg)[0] < 200) /* fastest possible value */ kbd->kb_delay1 = 200; else kbd->kb_delay1 = ((int *)arg)[0]; kbd->kb_delay2 = ((int *)arg)[1]; return (0); #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 67): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETRAD: /* set keyboard repeat rate (old * interface) */ return (gpiokeys_set_typematic(kbd, *(int *)arg)); case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table * (compat) */ case PIO_KEYMAPENT: /* set keyboard translation table * entry */ case PIO_DEADKEYMAP: /* set accent key translation table */ sc->sc_accents = 0; /* FALLTHROUGH */ default: return (genkbd_commonioctl(kbd, cmd, arg)); } return (0); } static int gpiokeys_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { int result; struct gpiokeys_softc *sc; sc = kbd->kb_data; /* * XXX Check if someone is calling us from a critical section: */ if (curthread->td_critnest != 0) return (EDEADLK); GPIOKEYS_LOCK(sc); result = gpiokeys_ioctl_locked(kbd, cmd, arg); GPIOKEYS_UNLOCK(sc); return (result); } /* clear the internal state of the keyboard */ static void gpiokeys_clear_state(keyboard_t *kbd) { struct gpiokeys_softc *sc = kbd->kb_data; sc->sc_flags &= ~(GPIOKEYS_GLOBAL_FLAG_POLLING); sc->sc_state &= LOCK_MASK; /* preserve locking key state */ sc->sc_accents = 0; } /* get the internal state, not used */ static int gpiokeys_get_state(keyboard_t *kbd, void *buf, size_t len) { return (len == 0) ? 1 : -1; } /* set the internal state, not used */ static int gpiokeys_set_state(keyboard_t *kbd, void *buf, size_t len) { return (EINVAL); } static int gpiokeys_poll(keyboard_t *kbd, int on) { struct gpiokeys_softc *sc = kbd->kb_data; GPIOKEYS_LOCK(sc); if (on) sc->sc_flags |= GPIOKEYS_GLOBAL_FLAG_POLLING; else sc->sc_flags &= ~GPIOKEYS_GLOBAL_FLAG_POLLING; GPIOKEYS_UNLOCK(sc); return (0); } static int gpiokeys_set_typematic(keyboard_t *kbd, int code) { static const int delays[] = {250, 500, 750, 1000}; static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504}; if (code & ~0x7f) { return (EINVAL); } kbd->kb_delay1 = delays[(code >> 5) & 3]; kbd->kb_delay2 = rates[code & 0x1f]; return (0); } static void gpiokeys_event_keyinput(struct gpiokeys_softc *sc) { int c; if ((sc->sc_flags & GPIOKEYS_GLOBAL_FLAG_POLLING) != 0) return; if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { /* let the callback function process the input */ (sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } else { /* read and discard the input, no one is waiting for it */ do { c = gpiokeys_read_char(&sc->sc_kbd, 0); } while (c != NOKEY); } } static keyboard_switch_t gpiokeyssw = { .probe = &gpiokeys__probe, .init = &gpiokeys_init, .term = &gpiokeys_term, .intr = &gpiokeys_intr, .test_if = &gpiokeys_test_if, .enable = &gpiokeys_enable, .disable = &gpiokeys_disable, .read = &gpiokeys_read, .check = &gpiokeys_check, .read_char = &gpiokeys_read_char, .check_char = &gpiokeys_check_char, .ioctl = &gpiokeys_ioctl, .lock = &gpiokeys_lock, .clear_state = &gpiokeys_clear_state, .get_state = &gpiokeys_get_state, .set_state = &gpiokeys_set_state, .poll = &gpiokeys_poll, }; KEYBOARD_DRIVER(gpiokeys, gpiokeyssw, gpiokeys_configure); static int gpiokeys_driver_load(module_t mod, int what, void *arg) { + +#ifdef KLD_MODULE switch (what) { case MOD_LOAD: kbd_add_driver(&gpiokeys_kbd_driver); break; case MOD_UNLOAD: kbd_delete_driver(&gpiokeys_kbd_driver); break; } +#endif return (0); } static devclass_t gpiokeys_devclass; static device_method_t gpiokeys_methods[] = { DEVMETHOD(device_probe, gpiokeys_probe), DEVMETHOD(device_attach, gpiokeys_attach), DEVMETHOD(device_detach, gpiokeys_detach), DEVMETHOD_END }; static driver_t gpiokeys_driver = { "gpiokeys", gpiokeys_methods, sizeof(struct gpiokeys_softc), }; DRIVER_MODULE(gpiokeys, simplebus, gpiokeys_driver, gpiokeys_devclass, gpiokeys_driver_load, 0); MODULE_VERSION(gpiokeys, 1); Index: head/sys/dev/hyperv/input/hv_kbd.c =================================================================== --- head/sys/dev/hyperv/input/hv_kbd.c (revision 355805) +++ head/sys/dev/hyperv/input/hv_kbd.c (revision 355806) @@ -1,562 +1,565 @@ /*- * Copyright (c) 2017 Microsoft Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dev/hyperv/input/hv_kbdc.h" #define HVKBD_MTX_LOCK(_m) do { \ mtx_lock(_m); \ } while (0) #define HVKBD_MTX_UNLOCK(_m) do { \ mtx_unlock(_m); \ } while (0) #define HVKBD_MTX_ASSERT(_m, _t) do { \ mtx_assert(_m, _t); \ } while (0) #define HVKBD_LOCK() HVKBD_MTX_LOCK(&Giant) #define HVKBD_UNLOCK() HVKBD_MTX_UNLOCK(&Giant) #define HVKBD_LOCK_ASSERT() HVKBD_MTX_ASSERT(&Giant, MA_OWNED) #define HVKBD_FLAG_POLLING 0x00000002 /* early keyboard probe, not supported */ static int hvkbd_configure(int flags) { return (0); } /* detect a keyboard, not used */ static int hvkbd_probe(int unit, void *arg, int flags) { return (ENXIO); } /* reset and initialize the device, not used */ static int hvkbd_init(int unit, keyboard_t **kbdp, void *arg, int flags) { DEBUG_HVKBD(*kbdp, "%s\n", __func__); return (ENXIO); } /* test the interface to the device, not used */ static int hvkbd_test_if(keyboard_t *kbd) { DEBUG_HVKBD(kbd, "%s\n", __func__); return (0); } /* finish using this keyboard, not used */ static int hvkbd_term(keyboard_t *kbd) { DEBUG_HVKBD(kbd, "%s\n", __func__); return (ENXIO); } /* keyboard interrupt routine, not used */ static int hvkbd_intr(keyboard_t *kbd, void *arg) { DEBUG_HVKBD(kbd, "%s\n", __func__); return (0); } /* lock the access to the keyboard, not used */ static int hvkbd_lock(keyboard_t *kbd, int lock) { DEBUG_HVKBD(kbd, "%s\n", __func__); return (1); } /* save the internal state, not used */ static int hvkbd_get_state(keyboard_t *kbd, void *buf, size_t len) { DEBUG_HVKBD(kbd,"%s\n", __func__); return (len == 0) ? 1 : -1; } /* set the internal state, not used */ static int hvkbd_set_state(keyboard_t *kbd, void *buf, size_t len) { DEBUG_HVKBD(kbd, "%s\n", __func__); return (EINVAL); } static int hvkbd_poll(keyboard_t *kbd, int on) { hv_kbd_sc *sc = kbd->kb_data; HVKBD_LOCK(); /* * Keep a reference count on polling to allow recursive * cngrab() during a panic for example. */ if (on) sc->sc_polling++; else if (sc->sc_polling > 0) sc->sc_polling--; if (sc->sc_polling != 0) { sc->sc_flags |= HVKBD_FLAG_POLLING; } else { sc->sc_flags &= ~HVKBD_FLAG_POLLING; } HVKBD_UNLOCK(); return (0); } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int hvkbd_enable(keyboard_t *kbd) { HVKBD_LOCK(); KBD_ACTIVATE(kbd); HVKBD_UNLOCK(); return (0); } /* disallow the access to the device */ static int hvkbd_disable(keyboard_t *kbd) { DEBUG_HVKBD(kbd, "%s\n", __func__); HVKBD_LOCK(); KBD_DEACTIVATE(kbd); HVKBD_UNLOCK(); return (0); } static void hvkbd_do_poll(hv_kbd_sc *sc, uint8_t wait) { while (!hv_kbd_prod_is_ready(sc)) { hv_kbd_read_channel(sc->hs_chan, sc); if (!wait) break; } } /* check if data is waiting */ /* Currently unused. */ static int hvkbd_check(keyboard_t *kbd) { DEBUG_HVKBD(kbd, "%s\n", __func__); return (0); } /* check if char is waiting */ static int hvkbd_check_char_locked(keyboard_t *kbd) { HVKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (FALSE); hv_kbd_sc *sc = kbd->kb_data; if (sc->sc_flags & HVKBD_FLAG_POLLING) hvkbd_do_poll(sc, 0); if (hv_kbd_prod_is_ready(sc)) { return (TRUE); } return (FALSE); } static int hvkbd_check_char(keyboard_t *kbd) { int result; HVKBD_LOCK(); result = hvkbd_check_char_locked(kbd); HVKBD_UNLOCK(); return (result); } /* read char from the keyboard */ static uint32_t hvkbd_read_char_locked(keyboard_t *kbd, int wait) { uint32_t scancode = NOKEY; keystroke ks; hv_kbd_sc *sc = kbd->kb_data; HVKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd) || !hv_kbd_prod_is_ready(sc)) return (NOKEY); if (sc->sc_mode == K_RAW) { if (hv_kbd_fetch_top(sc, &ks)) { return (NOKEY); } if ((ks.info & IS_E0) || (ks.info & IS_E1)) { /** * Emulate the generation of E0 or E1 scancode, * the real scancode will be consumed next time. */ if (ks.info & IS_E0) { scancode = XTKBD_EMUL0; ks.info &= ~IS_E0; } else if (ks.info & IS_E1) { scancode = XTKBD_EMUL1; ks.info &= ~IS_E1; } /** * Change the top item to avoid encountering * E0 or E1 twice. */ hv_kbd_modify_top(sc, &ks); } else if (ks.info & IS_UNICODE) { /** * XXX: Hyperv host send unicode to VM through * 'Type clipboard text', the mapping from * unicode to scancode depends on the keymap. * It is so complicated that we do not plan to * support it yet. */ if (bootverbose) device_printf(sc->dev, "Unsupported unicode\n"); hv_kbd_remove_top(sc); return (NOKEY); } else { scancode = ks.makecode; if (ks.info & IS_BREAK) { scancode |= XTKBD_RELEASE; } hv_kbd_remove_top(sc); } } else { if (bootverbose) device_printf(sc->dev, "Unsupported mode: %d\n", sc->sc_mode); } ++kbd->kb_count; DEBUG_HVKBD(kbd, "read scan: 0x%x\n", scancode); return scancode; } /* Currently wait is always false. */ static uint32_t hvkbd_read_char(keyboard_t *kbd, int wait) { uint32_t keycode; HVKBD_LOCK(); keycode = hvkbd_read_char_locked(kbd, wait); HVKBD_UNLOCK(); return (keycode); } /* clear the internal state of the keyboard */ static void hvkbd_clear_state(keyboard_t *kbd) { hv_kbd_sc *sc = kbd->kb_data; sc->sc_state &= LOCK_MASK; /* preserve locking key state */ sc->sc_flags &= ~HVKBD_FLAG_POLLING; } static int hvkbd_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg) { int i; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) int ival; #endif hv_kbd_sc *sc = kbd->kb_data; switch (cmd) { case KDGKBMODE: *(int *)arg = sc->sc_mode; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 7): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBMODE: /* set keyboard mode */ DEBUG_HVKBD(kbd, "expected mode: %x\n", *(int *)arg); switch (*(int *)arg) { case K_XLATE: if (sc->sc_mode != K_XLATE) { /* make lock key state and LED state match */ sc->sc_state &= ~LOCK_MASK; sc->sc_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (sc->sc_mode != *(int *)arg) { DEBUG_HVKBD(kbd, "mod changed to %x\n", *(int *)arg); if ((sc->sc_flags & HVKBD_FLAG_POLLING) == 0) hvkbd_clear_state(kbd); sc->sc_mode = *(int *)arg; } break; default: return (EINVAL); } break; case KDGKBSTATE: /* get lock key state */ *(int *)arg = sc->sc_state & LOCK_MASK; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 20): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBSTATE: /* set lock key state */ if (*(int *)arg & ~LOCK_MASK) { return (EINVAL); } sc->sc_state &= ~LOCK_MASK; sc->sc_state |= *(int *)arg; return hvkbd_ioctl_locked(kbd, KDSETLED, arg); case KDGETLED: /* get keyboard LED */ *(int *)arg = KBD_LED_VAL(kbd); break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 66): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETLED: /* set keyboard LED */ /* NOTE: lock key state in "sc_state" won't be changed */ if (*(int *)arg & ~LOCK_MASK) return (EINVAL); i = *(int *)arg; /* replace CAPS LED with ALTGR LED for ALTGR keyboards */ if (sc->sc_mode == K_XLATE && kbd->kb_keymap->n_keys > ALTGR_OFFSET) { if (i & ALKED) i |= CLKED; else i &= ~CLKED; } if (KBD_HAS_DEVICE(kbd)) { DEBUG_HVSC(sc, "setled 0x%x\n", *(int *)arg); } KBD_LED_VAL(kbd) = *(int *)arg; break; default: return (genkbd_commonioctl(kbd, cmd, arg)); } return (0); } /* some useful control functions */ static int hvkbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { DEBUG_HVKBD(kbd, "%s: %lx start\n", __func__, cmd); HVKBD_LOCK(); int ret = hvkbd_ioctl_locked(kbd, cmd, arg); HVKBD_UNLOCK(); DEBUG_HVKBD(kbd, "%s: %lx end %d\n", __func__, cmd, ret); return (ret); } /* read one byte from the keyboard if it's allowed */ /* Currently unused. */ static int hvkbd_read(keyboard_t *kbd, int wait) { DEBUG_HVKBD(kbd, "%s\n", __func__); HVKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (-1); return hvkbd_read_char_locked(kbd, wait); } static keyboard_switch_t hvkbdsw = { .probe = hvkbd_probe, /* not used */ .init = hvkbd_init, .term = hvkbd_term, /* not used */ .intr = hvkbd_intr, /* not used */ .test_if = hvkbd_test_if, /* not used */ .enable = hvkbd_enable, .disable = hvkbd_disable, .read = hvkbd_read, .check = hvkbd_check, .read_char = hvkbd_read_char, .check_char = hvkbd_check_char, .ioctl = hvkbd_ioctl, .lock = hvkbd_lock, /* not used */ .clear_state = hvkbd_clear_state, .get_state = hvkbd_get_state, /* not used */ .set_state = hvkbd_set_state, /* not used */ .poll = hvkbd_poll, }; KEYBOARD_DRIVER(hvkbd, hvkbdsw, hvkbd_configure); void hv_kbd_intr(hv_kbd_sc *sc) { uint32_t c; if ((sc->sc_flags & HVKBD_FLAG_POLLING) != 0) return; if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { /* let the callback function process the input */ (sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } else { /* read and discard the input, no one is waiting for it */ do { c = hvkbd_read_char(&sc->sc_kbd, 0); } while (c != NOKEY); } } int hvkbd_driver_load(module_t mod, int what, void *arg) { + +#ifdef KLD_MODULE switch (what) { case MOD_LOAD: kbd_add_driver(&hvkbd_kbd_driver); break; case MOD_UNLOAD: kbd_delete_driver(&hvkbd_kbd_driver); break; } +#endif return (0); } int hv_kbd_drv_attach(device_t dev) { hv_kbd_sc *sc = device_get_softc(dev); int unit = device_get_unit(dev); keyboard_t *kbd = &sc->sc_kbd; keyboard_switch_t *sw; sw = kbd_get_switch(HVKBD_DRIVER_NAME); if (sw == NULL) { return (ENXIO); } kbd_init_struct(kbd, HVKBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0); kbd->kb_data = (void *)sc; kbd_set_maps(kbd, &key_map, &accent_map, fkey_tab, nitems(fkey_tab)); KBD_FOUND_DEVICE(kbd); hvkbd_clear_state(kbd); KBD_PROBE_DONE(kbd); KBD_INIT_DONE(kbd); sc->sc_mode = K_RAW; (*sw->enable)(kbd); if (kbd_register(kbd) < 0) { goto detach; } KBD_CONFIG_DONE(kbd); #ifdef KBD_INSTALL_CDEV if (kbd_attach(kbd)) { goto detach; } #endif if (bootverbose) { kbdd_diag(kbd, bootverbose); } return (0); detach: hv_kbd_drv_detach(dev); return (ENXIO); } int hv_kbd_drv_detach(device_t dev) { int error = 0; hv_kbd_sc *sc = device_get_softc(dev); hvkbd_disable(&sc->sc_kbd); if (KBD_IS_CONFIGURED(&sc->sc_kbd)) { error = kbd_unregister(&sc->sc_kbd); if (error) { device_printf(dev, "WARNING: kbd_unregister() " "returned non-zero! (ignored)\n"); } } #ifdef KBD_INSTALL_CDEV error = kbd_detach(&sc->sc_kbd); #endif return (error); } Index: head/sys/dev/kbdmux/kbdmux.c =================================================================== --- head/sys/dev/kbdmux/kbdmux.c (revision 355805) +++ head/sys/dev/kbdmux/kbdmux.c (revision 355806) @@ -1,1489 +1,1501 @@ /* * kbdmux.c */ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005 Maksim Yevmenkin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: kbdmux.c,v 1.4 2005/07/14 17:38:35 max Exp $ * $FreeBSD$ */ #include "opt_evdev.h" #include "opt_kbd.h" #include "opt_kbdmux.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* the initial key map, accent map and fkey strings */ #ifdef KBDMUX_DFLT_KEYMAP #define KBD_DFLT_KEYMAP #include "kbdmuxmap.h" #endif #include #ifdef EVDEV_SUPPORT #include #include #endif #define KEYBOARD_NAME "kbdmux" MALLOC_DECLARE(M_KBDMUX); MALLOC_DEFINE(M_KBDMUX, KEYBOARD_NAME, "Keyboard multiplexor"); /***************************************************************************** ***************************************************************************** ** Keyboard state ***************************************************************************** *****************************************************************************/ #define KBDMUX_Q_SIZE 512 /* input queue size */ /* * XXX * For now rely on Giant mutex to protect our data structures. * Just like the rest of keyboard drivers and syscons(4) do. * Note that callout is initialized as not MP-safe to make sure * Giant is held. */ #if 0 /* not yet */ #define KBDMUX_LOCK_DECL_GLOBAL \ struct mtx ks_lock #define KBDMUX_LOCK_INIT(s) \ mtx_init(&(s)->ks_lock, "kbdmux", NULL, MTX_DEF|MTX_RECURSE) #define KBDMUX_LOCK_DESTROY(s) \ mtx_destroy(&(s)->ks_lock) #define KBDMUX_LOCK(s) \ mtx_lock(&(s)->ks_lock) #define KBDMUX_UNLOCK(s) \ mtx_unlock(&(s)->ks_lock) #define KBDMUX_LOCK_ASSERT(s, w) \ mtx_assert(&(s)->ks_lock, (w)) #define KBDMUX_SLEEP(s, f, d, t) \ msleep(&(s)->f, &(s)->ks_lock, PCATCH | (PZERO + 1), (d), (t)) #define KBDMUX_CALLOUT_INIT(s) \ callout_init_mtx(&(s)->ks_timo, &(s)->ks_lock, 0) #define KBDMUX_QUEUE_INTR(s) \ taskqueue_enqueue(taskqueue_swi_giant, &(s)->ks_task) #else #define KBDMUX_LOCK_DECL_GLOBAL #define KBDMUX_LOCK_INIT(s) #define KBDMUX_LOCK_DESTROY(s) #define KBDMUX_LOCK(s) #define KBDMUX_UNLOCK(s) #define KBDMUX_LOCK_ASSERT(s, w) #define KBDMUX_SLEEP(s, f, d, t) \ tsleep(&(s)->f, PCATCH | (PZERO + 1), (d), (t)) #define KBDMUX_CALLOUT_INIT(s) \ callout_init(&(s)->ks_timo, 0) #define KBDMUX_QUEUE_INTR(s) \ taskqueue_enqueue(taskqueue_swi_giant, &(s)->ks_task) #endif /* not yet */ /* * kbdmux keyboard */ struct kbdmux_kbd { keyboard_t *kbd; /* keyboard */ SLIST_ENTRY(kbdmux_kbd) next; /* link to next */ }; typedef struct kbdmux_kbd kbdmux_kbd_t; /* * kbdmux state */ struct kbdmux_state { char ks_inq[KBDMUX_Q_SIZE]; /* input chars queue */ unsigned int ks_inq_start; unsigned int ks_inq_length; struct task ks_task; /* interrupt task */ struct callout ks_timo; /* timeout handler */ #define TICKS (hz) /* rate */ int ks_flags; /* flags */ #define COMPOSE (1 << 0) /* compose char flag */ #define TASK (1 << 2) /* interrupt task queued */ int ks_polling; /* poll nesting count */ int ks_mode; /* K_XLATE, K_RAW, K_CODE */ int ks_state; /* state */ int ks_accents; /* accent key index (> 0) */ u_int ks_composed_char; /* composed char code */ u_char ks_prefix; /* AT scan code prefix */ #ifdef EVDEV_SUPPORT struct evdev_dev * ks_evdev; int ks_evdev_state; #endif SLIST_HEAD(, kbdmux_kbd) ks_kbds; /* keyboards */ KBDMUX_LOCK_DECL_GLOBAL; }; typedef struct kbdmux_state kbdmux_state_t; /***************************************************************************** ***************************************************************************** ** Helper functions ***************************************************************************** *****************************************************************************/ static task_fn_t kbdmux_kbd_intr; static callout_func_t kbdmux_kbd_intr_timo; static kbd_callback_func_t kbdmux_kbd_event; static void kbdmux_kbd_putc(kbdmux_state_t *state, char c) { unsigned int p; if (state->ks_inq_length == KBDMUX_Q_SIZE) return; p = (state->ks_inq_start + state->ks_inq_length) % KBDMUX_Q_SIZE; state->ks_inq[p] = c; state->ks_inq_length++; } static int kbdmux_kbd_getc(kbdmux_state_t *state) { unsigned char c; if (state->ks_inq_length == 0) return (-1); c = state->ks_inq[state->ks_inq_start]; state->ks_inq_start = (state->ks_inq_start + 1) % KBDMUX_Q_SIZE; state->ks_inq_length--; return (c); } /* * Interrupt handler task */ void kbdmux_kbd_intr(void *xkbd, int pending) { keyboard_t *kbd = (keyboard_t *) xkbd; kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; kbdd_intr(kbd, NULL); KBDMUX_LOCK(state); state->ks_flags &= ~TASK; wakeup(&state->ks_task); KBDMUX_UNLOCK(state); } /* * Schedule interrupt handler on timeout. Called with locked state. */ void kbdmux_kbd_intr_timo(void *xstate) { kbdmux_state_t *state = (kbdmux_state_t *) xstate; KBDMUX_LOCK_ASSERT(state, MA_OWNED); if (callout_pending(&state->ks_timo)) return; /* callout was reset */ if (!callout_active(&state->ks_timo)) return; /* callout was stopped */ callout_deactivate(&state->ks_timo); /* queue interrupt task if needed */ if (state->ks_inq_length > 0 && !(state->ks_flags & TASK) && KBDMUX_QUEUE_INTR(state) == 0) state->ks_flags |= TASK; /* re-schedule timeout */ callout_reset(&state->ks_timo, TICKS, kbdmux_kbd_intr_timo, state); } /* * Process event from one of our keyboards */ static int kbdmux_kbd_event(keyboard_t *kbd, int event, void *arg) { kbdmux_state_t *state = (kbdmux_state_t *) arg; switch (event) { case KBDIO_KEYINPUT: { int c; KBDMUX_LOCK(state); /* * Read all chars from the keyboard * * Turns out that atkbd(4) check_char() method may return * "true" while read_char() method returns NOKEY. If this * happens we could stuck in the loop below. Avoid this * by breaking out of the loop if read_char() method returns * NOKEY. */ while (kbdd_check_char(kbd)) { c = kbdd_read_char(kbd, 0); if (c == NOKEY) break; if (c == ERRKEY) continue; /* XXX ring bell */ if (!KBD_IS_BUSY(kbd)) continue; /* not open - discard the input */ kbdmux_kbd_putc(state, c); } /* queue interrupt task if needed */ if (state->ks_inq_length > 0 && !(state->ks_flags & TASK) && KBDMUX_QUEUE_INTR(state) == 0) state->ks_flags |= TASK; KBDMUX_UNLOCK(state); } break; case KBDIO_UNLOADING: { kbdmux_kbd_t *k; KBDMUX_LOCK(state); SLIST_FOREACH(k, &state->ks_kbds, next) if (k->kbd == kbd) break; if (k != NULL) { kbd_release(k->kbd, &k->kbd); SLIST_REMOVE(&state->ks_kbds, k, kbdmux_kbd, next); k->kbd = NULL; free(k, M_KBDMUX); } KBDMUX_UNLOCK(state); } break; default: return (EINVAL); /* NOT REACHED */ } return (0); } /**************************************************************************** **************************************************************************** ** Keyboard driver **************************************************************************** ****************************************************************************/ static int kbdmux_configure(int flags); static kbd_probe_t kbdmux_probe; static kbd_init_t kbdmux_init; static kbd_term_t kbdmux_term; static kbd_intr_t kbdmux_intr; static kbd_test_if_t kbdmux_test_if; static kbd_enable_t kbdmux_enable; static kbd_disable_t kbdmux_disable; static kbd_read_t kbdmux_read; static kbd_check_t kbdmux_check; static kbd_read_char_t kbdmux_read_char; static kbd_check_char_t kbdmux_check_char; static kbd_ioctl_t kbdmux_ioctl; static kbd_lock_t kbdmux_lock; static void kbdmux_clear_state_locked(kbdmux_state_t *state); static kbd_clear_state_t kbdmux_clear_state; static kbd_get_state_t kbdmux_get_state; static kbd_set_state_t kbdmux_set_state; static kbd_poll_mode_t kbdmux_poll; static keyboard_switch_t kbdmuxsw = { .probe = kbdmux_probe, .init = kbdmux_init, .term = kbdmux_term, .intr = kbdmux_intr, .test_if = kbdmux_test_if, .enable = kbdmux_enable, .disable = kbdmux_disable, .read = kbdmux_read, .check = kbdmux_check, .read_char = kbdmux_read_char, .check_char = kbdmux_check_char, .ioctl = kbdmux_ioctl, .lock = kbdmux_lock, .clear_state = kbdmux_clear_state, .get_state = kbdmux_get_state, .set_state = kbdmux_set_state, .poll = kbdmux_poll, }; #ifdef EVDEV_SUPPORT static evdev_event_t kbdmux_ev_event; static const struct evdev_methods kbdmux_evdev_methods = { .ev_event = kbdmux_ev_event, }; #endif /* * Return the number of found keyboards */ static int kbdmux_configure(int flags) { return (1); } /* * Detect a keyboard */ static int kbdmux_probe(int unit, void *arg, int flags) { if (resource_disabled(KEYBOARD_NAME, unit)) return (ENXIO); return (0); } /* * Reset and initialize the keyboard (stolen from atkbd.c) */ static int kbdmux_init(int unit, keyboard_t **kbdp, void *arg, int flags) { keyboard_t *kbd = NULL; kbdmux_state_t *state = NULL; keymap_t *keymap = NULL; accentmap_t *accmap = NULL; fkeytab_t *fkeymap = NULL; int error, needfree, fkeymap_size, delay[2]; #ifdef EVDEV_SUPPORT struct evdev_dev *evdev; char phys_loc[NAMELEN]; #endif if (*kbdp == NULL) { *kbdp = kbd = malloc(sizeof(*kbd), M_KBDMUX, M_NOWAIT | M_ZERO); state = malloc(sizeof(*state), M_KBDMUX, M_NOWAIT | M_ZERO); keymap = malloc(sizeof(key_map), M_KBDMUX, M_NOWAIT); accmap = malloc(sizeof(accent_map), M_KBDMUX, M_NOWAIT); fkeymap = malloc(sizeof(fkey_tab), M_KBDMUX, M_NOWAIT); fkeymap_size = sizeof(fkey_tab)/sizeof(fkey_tab[0]); needfree = 1; if ((kbd == NULL) || (state == NULL) || (keymap == NULL) || (accmap == NULL) || (fkeymap == NULL)) { error = ENOMEM; goto bad; } KBDMUX_LOCK_INIT(state); TASK_INIT(&state->ks_task, 0, kbdmux_kbd_intr, (void *) kbd); KBDMUX_CALLOUT_INIT(state); SLIST_INIT(&state->ks_kbds); } else if (KBD_IS_INITIALIZED(*kbdp) && KBD_IS_CONFIGURED(*kbdp)) { return (0); } else { kbd = *kbdp; state = (kbdmux_state_t *) kbd->kb_data; keymap = kbd->kb_keymap; accmap = kbd->kb_accentmap; fkeymap = kbd->kb_fkeytab; fkeymap_size = kbd->kb_fkeytab_size; needfree = 0; } if (!KBD_IS_PROBED(kbd)) { /* XXX assume 101/102 keys keyboard */ kbd_init_struct(kbd, KEYBOARD_NAME, KB_101, unit, flags, 0, 0); bcopy(&key_map, keymap, sizeof(key_map)); bcopy(&accent_map, accmap, sizeof(accent_map)); bcopy(fkey_tab, fkeymap, imin(fkeymap_size*sizeof(fkeymap[0]), sizeof(fkey_tab))); kbd_set_maps(kbd, keymap, accmap, fkeymap, fkeymap_size); kbd->kb_data = (void *)state; KBD_FOUND_DEVICE(kbd); KBD_PROBE_DONE(kbd); KBDMUX_LOCK(state); kbdmux_clear_state_locked(state); state->ks_mode = K_XLATE; KBDMUX_UNLOCK(state); } if (!KBD_IS_INITIALIZED(kbd) && !(flags & KB_CONF_PROBE_ONLY)) { kbd->kb_config = flags & ~KB_CONF_PROBE_ONLY; kbdmux_ioctl(kbd, KDSETLED, (caddr_t)&state->ks_state); delay[0] = kbd->kb_delay1; delay[1] = kbd->kb_delay2; kbdmux_ioctl(kbd, KDSETREPEAT, (caddr_t)delay); #ifdef EVDEV_SUPPORT /* register as evdev provider */ evdev = evdev_alloc(); evdev_set_name(evdev, "System keyboard multiplexer"); snprintf(phys_loc, NAMELEN, KEYBOARD_NAME"%d", unit); evdev_set_phys(evdev, phys_loc); evdev_set_id(evdev, BUS_VIRTUAL, 0, 0, 0); evdev_set_methods(evdev, kbd, &kbdmux_evdev_methods); evdev_support_event(evdev, EV_SYN); evdev_support_event(evdev, EV_KEY); evdev_support_event(evdev, EV_LED); evdev_support_event(evdev, EV_REP); evdev_support_all_known_keys(evdev); evdev_support_led(evdev, LED_NUML); evdev_support_led(evdev, LED_CAPSL); evdev_support_led(evdev, LED_SCROLLL); if (evdev_register_mtx(evdev, &Giant)) evdev_free(evdev); else state->ks_evdev = evdev; state->ks_evdev_state = 0; #endif KBD_INIT_DONE(kbd); } if (!KBD_IS_CONFIGURED(kbd)) { if (kbd_register(kbd) < 0) { error = ENXIO; goto bad; } KBD_CONFIG_DONE(kbd); KBDMUX_LOCK(state); callout_reset(&state->ks_timo, TICKS, kbdmux_kbd_intr_timo, state); KBDMUX_UNLOCK(state); } return (0); bad: if (needfree) { if (state != NULL) free(state, M_KBDMUX); if (keymap != NULL) free(keymap, M_KBDMUX); if (accmap != NULL) free(accmap, M_KBDMUX); if (fkeymap != NULL) free(fkeymap, M_KBDMUX); if (kbd != NULL) { free(kbd, M_KBDMUX); *kbdp = NULL; /* insure ref doesn't leak to caller */ } } return (error); } /* * Finish using this keyboard */ static int kbdmux_term(keyboard_t *kbd) { kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; kbdmux_kbd_t *k; KBDMUX_LOCK(state); /* kill callout */ callout_stop(&state->ks_timo); /* wait for interrupt task */ while (state->ks_flags & TASK) KBDMUX_SLEEP(state, ks_task, "kbdmuxc", 0); /* release all keyboards from the mux */ while ((k = SLIST_FIRST(&state->ks_kbds)) != NULL) { kbd_release(k->kbd, &k->kbd); SLIST_REMOVE_HEAD(&state->ks_kbds, next); k->kbd = NULL; free(k, M_KBDMUX); } KBDMUX_UNLOCK(state); kbd_unregister(kbd); #ifdef EVDEV_SUPPORT evdev_free(state->ks_evdev); #endif KBDMUX_LOCK_DESTROY(state); bzero(state, sizeof(*state)); free(state, M_KBDMUX); free(kbd->kb_keymap, M_KBDMUX); free(kbd->kb_accentmap, M_KBDMUX); free(kbd->kb_fkeytab, M_KBDMUX); free(kbd, M_KBDMUX); return (0); } /* * Keyboard interrupt routine */ static int kbdmux_intr(keyboard_t *kbd, void *arg) { int c; if (KBD_IS_ACTIVE(kbd) && KBD_IS_BUSY(kbd)) { /* let the callback function to process the input */ (*kbd->kb_callback.kc_func)(kbd, KBDIO_KEYINPUT, kbd->kb_callback.kc_arg); } else { /* read and discard the input; no one is waiting for input */ do { c = kbdmux_read_char(kbd, FALSE); } while (c != NOKEY); } return (0); } /* * Test the interface to the device */ static int kbdmux_test_if(keyboard_t *kbd) { return (0); } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int kbdmux_enable(keyboard_t *kbd) { KBD_ACTIVATE(kbd); return (0); } /* * Disallow the access to the device */ static int kbdmux_disable(keyboard_t *kbd) { KBD_DEACTIVATE(kbd); return (0); } /* * Read one byte from the keyboard if it's allowed */ static int kbdmux_read(keyboard_t *kbd, int wait) { kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; int c; KBDMUX_LOCK(state); c = kbdmux_kbd_getc(state); KBDMUX_UNLOCK(state); if (c != -1) kbd->kb_count ++; return (KBD_IS_ACTIVE(kbd)? c : -1); } /* * Check if data is waiting */ static int kbdmux_check(keyboard_t *kbd) { kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; int ready; if (!KBD_IS_ACTIVE(kbd)) return (FALSE); KBDMUX_LOCK(state); ready = (state->ks_inq_length > 0) ? TRUE : FALSE; KBDMUX_UNLOCK(state); return (ready); } /* * Read char from the keyboard (stolen from atkbd.c) */ static u_int kbdmux_read_char(keyboard_t *kbd, int wait) { kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; u_int action; int scancode, keycode; KBDMUX_LOCK(state); next_code: /* do we have a composed char to return? */ if (!(state->ks_flags & COMPOSE) && (state->ks_composed_char > 0)) { action = state->ks_composed_char; state->ks_composed_char = 0; if (action > UCHAR_MAX) { KBDMUX_UNLOCK(state); return (ERRKEY); } KBDMUX_UNLOCK(state); return (action); } /* see if there is something in the keyboard queue */ scancode = kbdmux_kbd_getc(state); if (scancode == -1) { if (state->ks_polling != 0) { kbdmux_kbd_t *k; SLIST_FOREACH(k, &state->ks_kbds, next) { while (kbdd_check_char(k->kbd)) { scancode = kbdd_read_char(k->kbd, 0); if (scancode == NOKEY) break; if (scancode == ERRKEY) continue; if (!KBD_IS_BUSY(k->kbd)) continue; kbdmux_kbd_putc(state, scancode); } } if (state->ks_inq_length > 0) goto next_code; } KBDMUX_UNLOCK(state); return (NOKEY); } /* XXX FIXME: check for -1 if wait == 1! */ kbd->kb_count ++; #ifdef EVDEV_SUPPORT /* push evdev event */ if (evdev_rcpt_mask & EVDEV_RCPT_KBDMUX && state->ks_evdev != NULL) { uint16_t key = evdev_scancode2key(&state->ks_evdev_state, scancode); if (key != KEY_RESERVED) { evdev_push_event(state->ks_evdev, EV_KEY, key, scancode & 0x80 ? 0 : 1); evdev_sync(state->ks_evdev); } } #endif /* return the byte as is for the K_RAW mode */ if (state->ks_mode == K_RAW) { KBDMUX_UNLOCK(state); return (scancode); } /* translate the scan code into a keycode */ keycode = scancode & 0x7F; switch (state->ks_prefix) { case 0x00: /* normal scancode */ switch(scancode) { case 0xB8: /* left alt (compose key) released */ if (state->ks_flags & COMPOSE) { state->ks_flags &= ~COMPOSE; if (state->ks_composed_char > UCHAR_MAX) state->ks_composed_char = 0; } break; case 0x38: /* left alt (compose key) pressed */ if (!(state->ks_flags & COMPOSE)) { state->ks_flags |= COMPOSE; state->ks_composed_char = 0; } break; case 0xE0: case 0xE1: state->ks_prefix = scancode; goto next_code; } break; case 0xE0: /* 0xE0 prefix */ state->ks_prefix = 0; switch (keycode) { case 0x1C: /* right enter key */ keycode = 0x59; break; case 0x1D: /* right ctrl key */ keycode = 0x5A; break; case 0x35: /* keypad divide key */ keycode = 0x5B; break; case 0x37: /* print scrn key */ keycode = 0x5C; break; case 0x38: /* right alt key (alt gr) */ keycode = 0x5D; break; case 0x46: /* ctrl-pause/break on AT 101 (see below) */ keycode = 0x68; break; case 0x47: /* grey home key */ keycode = 0x5E; break; case 0x48: /* grey up arrow key */ keycode = 0x5F; break; case 0x49: /* grey page up key */ keycode = 0x60; break; case 0x4B: /* grey left arrow key */ keycode = 0x61; break; case 0x4D: /* grey right arrow key */ keycode = 0x62; break; case 0x4F: /* grey end key */ keycode = 0x63; break; case 0x50: /* grey down arrow key */ keycode = 0x64; break; case 0x51: /* grey page down key */ keycode = 0x65; break; case 0x52: /* grey insert key */ keycode = 0x66; break; case 0x53: /* grey delete key */ keycode = 0x67; break; /* the following 3 are only used on the MS "Natural" keyboard */ case 0x5b: /* left Window key */ keycode = 0x69; break; case 0x5c: /* right Window key */ keycode = 0x6a; break; case 0x5d: /* menu key */ keycode = 0x6b; break; case 0x5e: /* power key */ keycode = 0x6d; break; case 0x5f: /* sleep key */ keycode = 0x6e; break; case 0x63: /* wake key */ keycode = 0x6f; break; case 0x64: /* [JP106USB] backslash, underscore */ keycode = 0x73; break; default: /* ignore everything else */ goto next_code; } break; case 0xE1: /* 0xE1 prefix */ /* * The pause/break key on the 101 keyboard produces: * E1-1D-45 E1-9D-C5 * Ctrl-pause/break produces: * E0-46 E0-C6 (See above.) */ state->ks_prefix = 0; if (keycode == 0x1D) state->ks_prefix = 0x1D; goto next_code; /* NOT REACHED */ case 0x1D: /* pause / break */ state->ks_prefix = 0; if (keycode != 0x45) goto next_code; keycode = 0x68; break; } /* XXX assume 101/102 keys AT keyboard */ switch (keycode) { case 0x5c: /* print screen */ if (state->ks_flags & ALTS) keycode = 0x54; /* sysrq */ break; case 0x68: /* pause/break */ if (state->ks_flags & CTLS) keycode = 0x6c; /* break */ break; } /* return the key code in the K_CODE mode */ if (state->ks_mode == K_CODE) { KBDMUX_UNLOCK(state); return (keycode | (scancode & 0x80)); } /* compose a character code */ if (state->ks_flags & COMPOSE) { switch (keycode | (scancode & 0x80)) { /* key pressed, process it */ case 0x47: case 0x48: case 0x49: /* keypad 7,8,9 */ state->ks_composed_char *= 10; state->ks_composed_char += keycode - 0x40; if (state->ks_composed_char > UCHAR_MAX) { KBDMUX_UNLOCK(state); return (ERRKEY); } goto next_code; case 0x4B: case 0x4C: case 0x4D: /* keypad 4,5,6 */ state->ks_composed_char *= 10; state->ks_composed_char += keycode - 0x47; if (state->ks_composed_char > UCHAR_MAX) { KBDMUX_UNLOCK(state); return (ERRKEY); } goto next_code; case 0x4F: case 0x50: case 0x51: /* keypad 1,2,3 */ state->ks_composed_char *= 10; state->ks_composed_char += keycode - 0x4E; if (state->ks_composed_char > UCHAR_MAX) { KBDMUX_UNLOCK(state); return (ERRKEY); } goto next_code; case 0x52: /* keypad 0 */ state->ks_composed_char *= 10; if (state->ks_composed_char > UCHAR_MAX) { KBDMUX_UNLOCK(state); return (ERRKEY); } goto next_code; /* key released, no interest here */ case 0xC7: case 0xC8: case 0xC9: /* keypad 7,8,9 */ case 0xCB: case 0xCC: case 0xCD: /* keypad 4,5,6 */ case 0xCF: case 0xD0: case 0xD1: /* keypad 1,2,3 */ case 0xD2: /* keypad 0 */ goto next_code; case 0x38: /* left alt key */ break; default: if (state->ks_composed_char > 0) { state->ks_flags &= ~COMPOSE; state->ks_composed_char = 0; KBDMUX_UNLOCK(state); return (ERRKEY); } break; } } /* keycode to key action */ action = genkbd_keyaction(kbd, keycode, scancode & 0x80, &state->ks_state, &state->ks_accents); if (action == NOKEY) goto next_code; KBDMUX_UNLOCK(state); return (action); } /* * Check if char is waiting */ static int kbdmux_check_char(keyboard_t *kbd) { kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; int ready; if (!KBD_IS_ACTIVE(kbd)) return (FALSE); KBDMUX_LOCK(state); if (!(state->ks_flags & COMPOSE) && (state->ks_composed_char != 0)) ready = TRUE; else ready = (state->ks_inq_length > 0) ? TRUE : FALSE; KBDMUX_UNLOCK(state); return (ready); } /* * Keyboard ioctl's */ static int kbdmux_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { static int delays[] = { 250, 500, 750, 1000 }; static int rates[] = { 34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504 }; kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; kbdmux_kbd_t *k; keyboard_info_t *ki; int error = 0, mode; #ifdef COMPAT_FREEBSD6 int ival; #endif if (state == NULL) return (ENXIO); switch (cmd) { case KBADDKBD: /* add keyboard to the mux */ ki = (keyboard_info_t *) arg; if (ki == NULL || ki->kb_unit < 0 || ki->kb_name[0] == '\0' || strcmp(ki->kb_name, "*") == 0) return (EINVAL); /* bad input */ KBDMUX_LOCK(state); SLIST_FOREACH(k, &state->ks_kbds, next) if (k->kbd->kb_unit == ki->kb_unit && strcmp(k->kbd->kb_name, ki->kb_name) == 0) break; if (k != NULL) { KBDMUX_UNLOCK(state); return (0); /* keyboard already in the mux */ } k = malloc(sizeof(*k), M_KBDMUX, M_NOWAIT | M_ZERO); if (k == NULL) { KBDMUX_UNLOCK(state); return (ENOMEM); /* out of memory */ } k->kbd = kbd_get_keyboard( kbd_allocate( ki->kb_name, ki->kb_unit, (void *) &k->kbd, kbdmux_kbd_event, (void *) state)); if (k->kbd == NULL) { KBDMUX_UNLOCK(state); free(k, M_KBDMUX); return (EINVAL); /* bad keyboard */ } kbdd_enable(k->kbd); kbdd_clear_state(k->kbd); /* set K_RAW mode on slave keyboard */ mode = K_RAW; error = kbdd_ioctl(k->kbd, KDSKBMODE, (caddr_t)&mode); if (error == 0) { /* set lock keys state on slave keyboard */ mode = state->ks_state & LOCK_MASK; error = kbdd_ioctl(k->kbd, KDSKBSTATE, (caddr_t)&mode); } if (error != 0) { KBDMUX_UNLOCK(state); kbd_release(k->kbd, &k->kbd); k->kbd = NULL; free(k, M_KBDMUX); return (error); /* could not set mode */ } SLIST_INSERT_HEAD(&state->ks_kbds, k, next); KBDMUX_UNLOCK(state); break; case KBRELKBD: /* release keyboard from the mux */ ki = (keyboard_info_t *) arg; if (ki == NULL || ki->kb_unit < 0 || ki->kb_name[0] == '\0' || strcmp(ki->kb_name, "*") == 0) return (EINVAL); /* bad input */ KBDMUX_LOCK(state); SLIST_FOREACH(k, &state->ks_kbds, next) if (k->kbd->kb_unit == ki->kb_unit && strcmp(k->kbd->kb_name, ki->kb_name) == 0) break; if (k != NULL) { error = kbd_release(k->kbd, &k->kbd); if (error == 0) { SLIST_REMOVE(&state->ks_kbds, k, kbdmux_kbd, next); k->kbd = NULL; free(k, M_KBDMUX); } } else error = ENXIO; /* keyboard is not in the mux */ KBDMUX_UNLOCK(state); break; case KDGKBMODE: /* get kyboard mode */ KBDMUX_LOCK(state); *(int *)arg = state->ks_mode; KBDMUX_UNLOCK(state); break; #ifdef COMPAT_FREEBSD6 case _IO('K', 7): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBMODE: /* set keyboard mode */ KBDMUX_LOCK(state); switch (*(int *)arg) { case K_XLATE: if (state->ks_mode != K_XLATE) { /* make lock key state and LED state match */ state->ks_state &= ~LOCK_MASK; state->ks_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (state->ks_mode != *(int *)arg) { kbdmux_clear_state_locked(state); state->ks_mode = *(int *)arg; } break; default: error = EINVAL; break; } KBDMUX_UNLOCK(state); break; case KDGETLED: /* get keyboard LED */ KBDMUX_LOCK(state); *(int *)arg = KBD_LED_VAL(kbd); KBDMUX_UNLOCK(state); break; #ifdef COMPAT_FREEBSD6 case _IO('K', 66): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETLED: /* set keyboard LED */ KBDMUX_LOCK(state); /* NOTE: lock key state in ks_state won't be changed */ if (*(int *)arg & ~LOCK_MASK) { KBDMUX_UNLOCK(state); return (EINVAL); } KBD_LED_VAL(kbd) = *(int *)arg; #ifdef EVDEV_SUPPORT if (state->ks_evdev != NULL && evdev_rcpt_mask & EVDEV_RCPT_KBDMUX) evdev_push_leds(state->ks_evdev, *(int *)arg); #endif /* KDSETLED on all slave keyboards */ SLIST_FOREACH(k, &state->ks_kbds, next) (void)kbdd_ioctl(k->kbd, KDSETLED, arg); KBDMUX_UNLOCK(state); break; case KDGKBSTATE: /* get lock key state */ KBDMUX_LOCK(state); *(int *)arg = state->ks_state & LOCK_MASK; KBDMUX_UNLOCK(state); break; #ifdef COMPAT_FREEBSD6 case _IO('K', 20): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBSTATE: /* set lock key state */ KBDMUX_LOCK(state); if (*(int *)arg & ~LOCK_MASK) { KBDMUX_UNLOCK(state); return (EINVAL); } state->ks_state &= ~LOCK_MASK; state->ks_state |= *(int *)arg; /* KDSKBSTATE on all slave keyboards */ SLIST_FOREACH(k, &state->ks_kbds, next) (void)kbdd_ioctl(k->kbd, KDSKBSTATE, arg); KBDMUX_UNLOCK(state); return (kbdmux_ioctl(kbd, KDSETLED, arg)); /* NOT REACHED */ #ifdef COMPAT_FREEBSD6 case _IO('K', 67): cmd = KDSETRAD; ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETREPEAT: /* set keyboard repeat rate (new interface) */ case KDSETRAD: /* set keyboard repeat rate (old interface) */ KBDMUX_LOCK(state); if (cmd == KDSETREPEAT) { int i; /* lookup delay */ for (i = sizeof(delays)/sizeof(delays[0]) - 1; i > 0; i --) if (((int *)arg)[0] >= delays[i]) break; mode = i << 5; /* lookup rate */ for (i = sizeof(rates)/sizeof(rates[0]) - 1; i > 0; i --) if (((int *)arg)[1] >= rates[i]) break; mode |= i; } else mode = *(int *)arg; if (mode & ~0x7f) { KBDMUX_UNLOCK(state); return (EINVAL); } kbd->kb_delay1 = delays[(mode >> 5) & 3]; kbd->kb_delay2 = rates[mode & 0x1f]; #ifdef EVDEV_SUPPORT if (state->ks_evdev != NULL && evdev_rcpt_mask & EVDEV_RCPT_KBDMUX) evdev_push_repeats(state->ks_evdev, kbd); #endif /* perform command on all slave keyboards */ SLIST_FOREACH(k, &state->ks_kbds, next) (void)kbdd_ioctl(k->kbd, cmd, arg); KBDMUX_UNLOCK(state); break; case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table (compat) */ case PIO_KEYMAPENT: /* set keyboard translation table entry */ case PIO_DEADKEYMAP: /* set accent key translation table */ KBDMUX_LOCK(state); state->ks_accents = 0; /* perform command on all slave keyboards */ SLIST_FOREACH(k, &state->ks_kbds, next) (void)kbdd_ioctl(k->kbd, cmd, arg); KBDMUX_UNLOCK(state); /* FALLTHROUGH */ default: error = genkbd_commonioctl(kbd, cmd, arg); break; } return (error); } /* * Lock the access to the keyboard */ static int kbdmux_lock(keyboard_t *kbd, int lock) { return (1); /* XXX */ } /* * Clear the internal state of the keyboard */ static void kbdmux_clear_state_locked(kbdmux_state_t *state) { KBDMUX_LOCK_ASSERT(state, MA_OWNED); state->ks_flags &= ~COMPOSE; state->ks_polling = 0; state->ks_state &= LOCK_MASK; /* preserve locking key state */ state->ks_accents = 0; state->ks_composed_char = 0; /* state->ks_prefix = 0; XXX */ state->ks_inq_length = 0; } static void kbdmux_clear_state(keyboard_t *kbd) { kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; KBDMUX_LOCK(state); kbdmux_clear_state_locked(state); KBDMUX_UNLOCK(state); } /* * Save the internal state */ static int kbdmux_get_state(keyboard_t *kbd, void *buf, size_t len) { if (len == 0) return (sizeof(kbdmux_state_t)); if (len < sizeof(kbdmux_state_t)) return (-1); bcopy(kbd->kb_data, buf, sizeof(kbdmux_state_t)); /* XXX locking? */ return (0); } /* * Set the internal state */ static int kbdmux_set_state(keyboard_t *kbd, void *buf, size_t len) { if (len < sizeof(kbdmux_state_t)) return (ENOMEM); bcopy(buf, kbd->kb_data, sizeof(kbdmux_state_t)); /* XXX locking? */ return (0); } /* * Set polling */ static int kbdmux_poll(keyboard_t *kbd, int on) { kbdmux_state_t *state = (kbdmux_state_t *) kbd->kb_data; kbdmux_kbd_t *k; KBDMUX_LOCK(state); if (on) state->ks_polling++; else state->ks_polling--; /* set poll on slave keyboards */ SLIST_FOREACH(k, &state->ks_kbds, next) kbdd_poll(k->kbd, on); KBDMUX_UNLOCK(state); return (0); } #ifdef EVDEV_SUPPORT static void kbdmux_ev_event(struct evdev_dev *evdev, uint16_t type, uint16_t code, int32_t value) { keyboard_t *kbd = evdev_get_softc(evdev); if (evdev_rcpt_mask & EVDEV_RCPT_KBDMUX && (type == EV_LED || type == EV_REP)) { mtx_lock(&Giant); kbd_ev_event(kbd, type, code, value); mtx_unlock(&Giant); } } #endif /***************************************************************************** ***************************************************************************** ** Module ***************************************************************************** *****************************************************************************/ KEYBOARD_DRIVER(kbdmux, kbdmuxsw, kbdmux_configure); static int kbdmux_modevent(module_t mod, int type, void *data) { keyboard_switch_t *sw; keyboard_t *kbd; int error; switch (type) { case MOD_LOAD: +#ifdef KLD_MODULE if ((error = kbd_add_driver(&kbdmux_kbd_driver)) != 0) break; +#endif if ((sw = kbd_get_switch(KEYBOARD_NAME)) == NULL) { +#ifdef KLD_MODULE kbd_delete_driver(&kbdmux_kbd_driver); +#endif error = ENXIO; break; } kbd = NULL; if ((error = (*sw->probe)(0, NULL, 0)) != 0 || (error = (*sw->init)(0, &kbd, NULL, 0)) != 0) { +#ifdef KLD_MODULE kbd_delete_driver(&kbdmux_kbd_driver); +#endif break; } #ifdef KBD_INSTALL_CDEV if ((error = kbd_attach(kbd)) != 0) { (*sw->term)(kbd); +#ifdef KLD_MODULE kbd_delete_driver(&kbdmux_kbd_driver); +#endif break; } #endif if ((error = (*sw->enable)(kbd)) != 0) { (*sw->disable)(kbd); #ifdef KBD_INSTALL_CDEV kbd_detach(kbd); #endif (*sw->term)(kbd); +#ifdef KLD_MODULE kbd_delete_driver(&kbdmux_kbd_driver); +#endif break; } break; case MOD_UNLOAD: if ((sw = kbd_get_switch(KEYBOARD_NAME)) == NULL) panic("kbd_get_switch(" KEYBOARD_NAME ") == NULL"); kbd = kbd_get_keyboard(kbd_find_keyboard(KEYBOARD_NAME, 0)); if (kbd != NULL) { (*sw->disable)(kbd); #ifdef KBD_INSTALL_CDEV kbd_detach(kbd); #endif (*sw->term)(kbd); +#ifdef KLD_MODULE kbd_delete_driver(&kbdmux_kbd_driver); +#endif } error = 0; break; default: error = EOPNOTSUPP; break; } return (error); } DEV_MODULE(kbdmux, kbdmux_modevent, NULL); #ifdef EVDEV_SUPPORT MODULE_DEPEND(kbdmux, evdev, 1, 1, 1); #endif Index: head/sys/dev/usb/input/ukbd.c =================================================================== --- head/sys/dev/usb/input/ukbd.c (revision 355805) +++ head/sys/dev/usb/input/ukbd.c (revision 355806) @@ -1,2327 +1,2329 @@ #include __FBSDID("$FreeBSD$"); /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ /* * HID spec: http://www.usb.org/developers/devclass_docs/HID1_11.pdf */ #include "opt_kbd.h" #include "opt_ukbd.h" #include "opt_evdev.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define USB_DEBUG_VAR ukbd_debug #include #include #ifdef EVDEV_SUPPORT #include #include #endif #include #include #include #include /* the initial key map, accent map and fkey strings */ #if defined(UKBD_DFLT_KEYMAP) && !defined(KLD_MODULE) #define KBD_DFLT_KEYMAP #include "ukbdmap.h" #endif /* the following file must be included after "ukbdmap.h" */ #include #ifdef USB_DEBUG static int ukbd_debug = 0; static int ukbd_no_leds = 0; static int ukbd_pollrate = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, ukbd, CTLFLAG_RW, 0, "USB keyboard"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, debug, CTLFLAG_RWTUN, &ukbd_debug, 0, "Debug level"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, no_leds, CTLFLAG_RWTUN, &ukbd_no_leds, 0, "Disables setting of keyboard leds"); SYSCTL_INT(_hw_usb_ukbd, OID_AUTO, pollrate, CTLFLAG_RWTUN, &ukbd_pollrate, 0, "Force this polling rate, 1-1000Hz"); #endif #define UKBD_EMULATE_ATSCANCODE 1 #define UKBD_DRIVER_NAME "ukbd" #define UKBD_NMOD 8 /* units */ #define UKBD_NKEYCODE 6 /* units */ #define UKBD_IN_BUF_SIZE (2*(UKBD_NMOD + (2*UKBD_NKEYCODE))) /* bytes */ #define UKBD_IN_BUF_FULL ((UKBD_IN_BUF_SIZE / 2) - 1) /* bytes */ #define UKBD_NFKEY (sizeof(fkey_tab)/sizeof(fkey_tab[0])) /* units */ #define UKBD_BUFFER_SIZE 64 /* bytes */ struct ukbd_data { uint16_t modifiers; #define MOD_CONTROL_L 0x01 #define MOD_CONTROL_R 0x10 #define MOD_SHIFT_L 0x02 #define MOD_SHIFT_R 0x20 #define MOD_ALT_L 0x04 #define MOD_ALT_R 0x40 #define MOD_WIN_L 0x08 #define MOD_WIN_R 0x80 /* internal */ #define MOD_EJECT 0x0100 #define MOD_FN 0x0200 uint8_t keycode[UKBD_NKEYCODE]; }; enum { UKBD_INTR_DT_0, UKBD_INTR_DT_1, UKBD_CTRL_LED, UKBD_N_TRANSFER, }; struct ukbd_softc { keyboard_t sc_kbd; keymap_t sc_keymap; accentmap_t sc_accmap; fkeytab_t sc_fkeymap[UKBD_NFKEY]; struct hid_location sc_loc_apple_eject; struct hid_location sc_loc_apple_fn; struct hid_location sc_loc_ctrl_l; struct hid_location sc_loc_ctrl_r; struct hid_location sc_loc_shift_l; struct hid_location sc_loc_shift_r; struct hid_location sc_loc_alt_l; struct hid_location sc_loc_alt_r; struct hid_location sc_loc_win_l; struct hid_location sc_loc_win_r; struct hid_location sc_loc_events; struct hid_location sc_loc_numlock; struct hid_location sc_loc_capslock; struct hid_location sc_loc_scrolllock; struct usb_callout sc_callout; struct ukbd_data sc_ndata; struct ukbd_data sc_odata; struct thread *sc_poll_thread; struct usb_device *sc_udev; struct usb_interface *sc_iface; struct usb_xfer *sc_xfer[UKBD_N_TRANSFER]; #ifdef EVDEV_SUPPORT struct evdev_dev *sc_evdev; #endif sbintime_t sc_co_basetime; int sc_delay; uint32_t sc_ntime[UKBD_NKEYCODE]; uint32_t sc_otime[UKBD_NKEYCODE]; uint32_t sc_input[UKBD_IN_BUF_SIZE]; /* input buffer */ uint32_t sc_time_ms; uint32_t sc_composed_char; /* composed char code, if non-zero */ #ifdef UKBD_EMULATE_ATSCANCODE uint32_t sc_buffered_char[2]; #endif uint32_t sc_flags; /* flags */ #define UKBD_FLAG_COMPOSE 0x00000001 #define UKBD_FLAG_POLLING 0x00000002 #define UKBD_FLAG_SET_LEDS 0x00000004 #define UKBD_FLAG_ATTACHED 0x00000010 #define UKBD_FLAG_GONE 0x00000020 #define UKBD_FLAG_HID_MASK 0x003fffc0 #define UKBD_FLAG_APPLE_EJECT 0x00000040 #define UKBD_FLAG_APPLE_FN 0x00000080 #define UKBD_FLAG_APPLE_SWAP 0x00000100 #define UKBD_FLAG_CTRL_L 0x00000400 #define UKBD_FLAG_CTRL_R 0x00000800 #define UKBD_FLAG_SHIFT_L 0x00001000 #define UKBD_FLAG_SHIFT_R 0x00002000 #define UKBD_FLAG_ALT_L 0x00004000 #define UKBD_FLAG_ALT_R 0x00008000 #define UKBD_FLAG_WIN_L 0x00010000 #define UKBD_FLAG_WIN_R 0x00020000 #define UKBD_FLAG_EVENTS 0x00040000 #define UKBD_FLAG_NUMLOCK 0x00080000 #define UKBD_FLAG_CAPSLOCK 0x00100000 #define UKBD_FLAG_SCROLLLOCK 0x00200000 int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */ int sc_state; /* shift/lock key state */ int sc_accents; /* accent key index (> 0) */ int sc_polling; /* polling recursion count */ int sc_led_size; int sc_kbd_size; uint16_t sc_inputs; uint16_t sc_inputhead; uint16_t sc_inputtail; uint16_t sc_modifiers; uint8_t sc_leds; /* store for async led requests */ uint8_t sc_iface_index; uint8_t sc_iface_no; uint8_t sc_id_apple_eject; uint8_t sc_id_apple_fn; uint8_t sc_id_ctrl_l; uint8_t sc_id_ctrl_r; uint8_t sc_id_shift_l; uint8_t sc_id_shift_r; uint8_t sc_id_alt_l; uint8_t sc_id_alt_r; uint8_t sc_id_win_l; uint8_t sc_id_win_r; uint8_t sc_id_event; uint8_t sc_id_numlock; uint8_t sc_id_capslock; uint8_t sc_id_scrolllock; uint8_t sc_id_events; uint8_t sc_kbd_id; uint8_t sc_buffer[UKBD_BUFFER_SIZE]; }; #define KEY_ERROR 0x01 #define KEY_PRESS 0 #define KEY_RELEASE 0x400 #define KEY_INDEX(c) ((c) & 0xFF) #define SCAN_PRESS 0 #define SCAN_RELEASE 0x80 #define SCAN_PREFIX_E0 0x100 #define SCAN_PREFIX_E1 0x200 #define SCAN_PREFIX_CTL 0x400 #define SCAN_PREFIX_SHIFT 0x800 #define SCAN_PREFIX (SCAN_PREFIX_E0 | SCAN_PREFIX_E1 | \ SCAN_PREFIX_CTL | SCAN_PREFIX_SHIFT) #define SCAN_CHAR(c) ((c) & 0x7f) #define UKBD_LOCK() USB_MTX_LOCK(&Giant) #define UKBD_UNLOCK() USB_MTX_UNLOCK(&Giant) #define UKBD_LOCK_ASSERT() USB_MTX_ASSERT(&Giant, MA_OWNED) struct ukbd_mods { uint32_t mask, key; }; static const struct ukbd_mods ukbd_mods[UKBD_NMOD] = { {MOD_CONTROL_L, 0xe0}, {MOD_CONTROL_R, 0xe4}, {MOD_SHIFT_L, 0xe1}, {MOD_SHIFT_R, 0xe5}, {MOD_ALT_L, 0xe2}, {MOD_ALT_R, 0xe6}, {MOD_WIN_L, 0xe3}, {MOD_WIN_R, 0xe7}, }; #define NN 0 /* no translation */ /* * Translate USB keycodes to AT keyboard scancodes. */ /* * FIXME: Mac USB keyboard generates: * 0x53: keypad NumLock/Clear * 0x66: Power * 0x67: keypad = * 0x68: F13 * 0x69: F14 * 0x6a: F15 * * USB Apple Keyboard JIS generates: * 0x90: Kana * 0x91: Eisu */ static const uint8_t ukbd_trtab[256] = { 0, 0, 0, 0, 30, 48, 46, 32, /* 00 - 07 */ 18, 33, 34, 35, 23, 36, 37, 38, /* 08 - 0F */ 50, 49, 24, 25, 16, 19, 31, 20, /* 10 - 17 */ 22, 47, 17, 45, 21, 44, 2, 3, /* 18 - 1F */ 4, 5, 6, 7, 8, 9, 10, 11, /* 20 - 27 */ 28, 1, 14, 15, 57, 12, 13, 26, /* 28 - 2F */ 27, 43, 43, 39, 40, 41, 51, 52, /* 30 - 37 */ 53, 58, 59, 60, 61, 62, 63, 64, /* 38 - 3F */ 65, 66, 67, 68, 87, 88, 92, 70, /* 40 - 47 */ 104, 102, 94, 96, 103, 99, 101, 98, /* 48 - 4F */ 97, 100, 95, 69, 91, 55, 74, 78,/* 50 - 57 */ 89, 79, 80, 81, 75, 76, 77, 71, /* 58 - 5F */ 72, 73, 82, 83, 86, 107, 122, NN, /* 60 - 67 */ NN, NN, NN, NN, NN, NN, NN, NN, /* 68 - 6F */ NN, NN, NN, NN, 115, 108, 111, 113, /* 70 - 77 */ 109, 110, 112, 118, 114, 116, 117, 119, /* 78 - 7F */ 121, 120, NN, NN, NN, NN, NN, 123, /* 80 - 87 */ 124, 125, 126, 127, 128, NN, NN, NN, /* 88 - 8F */ 129, 130, NN, NN, NN, NN, NN, NN, /* 90 - 97 */ NN, NN, NN, NN, NN, NN, NN, NN, /* 98 - 9F */ NN, NN, NN, NN, NN, NN, NN, NN, /* A0 - A7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* A8 - AF */ NN, NN, NN, NN, NN, NN, NN, NN, /* B0 - B7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* B8 - BF */ NN, NN, NN, NN, NN, NN, NN, NN, /* C0 - C7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* C8 - CF */ NN, NN, NN, NN, NN, NN, NN, NN, /* D0 - D7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* D8 - DF */ 29, 42, 56, 105, 90, 54, 93, 106, /* E0 - E7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* E8 - EF */ NN, NN, NN, NN, NN, NN, NN, NN, /* F0 - F7 */ NN, NN, NN, NN, NN, NN, NN, NN, /* F8 - FF */ }; static const uint8_t ukbd_boot_desc[] = { 0x05, 0x01, 0x09, 0x06, 0xa1, 0x01, 0x05, 0x07, 0x19, 0xe0, 0x29, 0xe7, 0x15, 0x00, 0x25, 0x01, 0x75, 0x01, 0x95, 0x08, 0x81, 0x02, 0x95, 0x01, 0x75, 0x08, 0x81, 0x01, 0x95, 0x03, 0x75, 0x01, 0x05, 0x08, 0x19, 0x01, 0x29, 0x03, 0x91, 0x02, 0x95, 0x05, 0x75, 0x01, 0x91, 0x01, 0x95, 0x06, 0x75, 0x08, 0x15, 0x00, 0x26, 0xff, 0x00, 0x05, 0x07, 0x19, 0x00, 0x2a, 0xff, 0x00, 0x81, 0x00, 0xc0 }; /* prototypes */ static void ukbd_timeout(void *); static void ukbd_set_leds(struct ukbd_softc *, uint8_t); static int ukbd_set_typematic(keyboard_t *, int); #ifdef UKBD_EMULATE_ATSCANCODE static uint32_t ukbd_atkeycode(int, int); static int ukbd_key2scan(struct ukbd_softc *, int, int, int); #endif static uint32_t ukbd_read_char(keyboard_t *, int); static void ukbd_clear_state(keyboard_t *); static int ukbd_ioctl(keyboard_t *, u_long, caddr_t); static int ukbd_enable(keyboard_t *); static int ukbd_disable(keyboard_t *); static void ukbd_interrupt(struct ukbd_softc *); static void ukbd_event_keyinput(struct ukbd_softc *); static device_probe_t ukbd_probe; static device_attach_t ukbd_attach; static device_detach_t ukbd_detach; static device_resume_t ukbd_resume; #ifdef EVDEV_SUPPORT static evdev_event_t ukbd_ev_event; static const struct evdev_methods ukbd_evdev_methods = { .ev_event = ukbd_ev_event, }; #endif static uint8_t ukbd_any_key_pressed(struct ukbd_softc *sc) { uint8_t i; uint8_t j; for (j = i = 0; i < UKBD_NKEYCODE; i++) j |= sc->sc_odata.keycode[i]; return (j ? 1 : 0); } static void ukbd_start_timer(struct ukbd_softc *sc) { sbintime_t delay, now, prec; now = sbinuptime(); /* check if initial delay passed and fallback to key repeat delay */ if (sc->sc_delay == 0) sc->sc_delay = sc->sc_kbd.kb_delay2; /* compute timeout */ delay = SBT_1MS * sc->sc_delay; sc->sc_co_basetime += delay; /* check if we are running behind */ if (sc->sc_co_basetime < now) sc->sc_co_basetime = now; /* This is rarely called, so prefer precision to efficiency. */ prec = qmin(delay >> 7, SBT_1MS * 10); usb_callout_reset_sbt(&sc->sc_callout, sc->sc_co_basetime, prec, ukbd_timeout, sc, C_ABSOLUTE); } static void ukbd_put_key(struct ukbd_softc *sc, uint32_t key) { UKBD_LOCK_ASSERT(); DPRINTF("0x%02x (%d) %s\n", key, key, (key & KEY_RELEASE) ? "released" : "pressed"); #ifdef EVDEV_SUPPORT if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL) { evdev_push_event(sc->sc_evdev, EV_KEY, evdev_hid2key(KEY_INDEX(key)), !(key & KEY_RELEASE)); evdev_sync(sc->sc_evdev); } #endif if (sc->sc_inputs < UKBD_IN_BUF_SIZE) { sc->sc_input[sc->sc_inputtail] = key; ++(sc->sc_inputs); ++(sc->sc_inputtail); if (sc->sc_inputtail >= UKBD_IN_BUF_SIZE) { sc->sc_inputtail = 0; } } else { DPRINTF("input buffer is full\n"); } } static void ukbd_do_poll(struct ukbd_softc *sc, uint8_t wait) { UKBD_LOCK_ASSERT(); KASSERT((sc->sc_flags & UKBD_FLAG_POLLING) != 0, ("ukbd_do_poll called when not polling\n")); DPRINTFN(2, "polling\n"); if (USB_IN_POLLING_MODE_FUNC() == 0) { /* * In this context the kernel is polling for input, * but the USB subsystem works in normal interrupt-driven * mode, so we just wait on the USB threads to do the job. * Note that we currently hold the Giant, but it's also used * as the transfer mtx, so we must release it while waiting. */ while (sc->sc_inputs == 0) { /* * Give USB threads a chance to run. Note that * kern_yield performs DROP_GIANT + PICKUP_GIANT. */ kern_yield(PRI_UNCHANGED); if (!wait) break; } return; } while (sc->sc_inputs == 0) { usbd_transfer_poll(sc->sc_xfer, UKBD_N_TRANSFER); /* Delay-optimised support for repetition of keys */ if (ukbd_any_key_pressed(sc)) { /* a key is pressed - need timekeeping */ DELAY(1000); /* 1 millisecond has passed */ sc->sc_time_ms += 1; } ukbd_interrupt(sc); if (!wait) break; } } static int32_t ukbd_get_key(struct ukbd_softc *sc, uint8_t wait) { int32_t c; UKBD_LOCK_ASSERT(); KASSERT((USB_IN_POLLING_MODE_FUNC() == 0) || (sc->sc_flags & UKBD_FLAG_POLLING) != 0, ("not polling in kdb or panic\n")); if (sc->sc_inputs == 0 && (sc->sc_flags & UKBD_FLAG_GONE) == 0) { /* start transfer, if not already started */ usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]); usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]); } if (sc->sc_flags & UKBD_FLAG_POLLING) ukbd_do_poll(sc, wait); if (sc->sc_inputs == 0) { c = -1; } else { c = sc->sc_input[sc->sc_inputhead]; --(sc->sc_inputs); ++(sc->sc_inputhead); if (sc->sc_inputhead >= UKBD_IN_BUF_SIZE) { sc->sc_inputhead = 0; } } return (c); } static void ukbd_interrupt(struct ukbd_softc *sc) { uint32_t n_mod; uint32_t o_mod; uint32_t now = sc->sc_time_ms; int32_t dtime; uint8_t key; uint8_t i; uint8_t j; UKBD_LOCK_ASSERT(); if (sc->sc_ndata.keycode[0] == KEY_ERROR) return; n_mod = sc->sc_ndata.modifiers; o_mod = sc->sc_odata.modifiers; if (n_mod != o_mod) { for (i = 0; i < UKBD_NMOD; i++) { if ((n_mod & ukbd_mods[i].mask) != (o_mod & ukbd_mods[i].mask)) { ukbd_put_key(sc, ukbd_mods[i].key | ((n_mod & ukbd_mods[i].mask) ? KEY_PRESS : KEY_RELEASE)); } } } /* Check for released keys. */ for (i = 0; i < UKBD_NKEYCODE; i++) { key = sc->sc_odata.keycode[i]; if (key == 0) { continue; } for (j = 0; j < UKBD_NKEYCODE; j++) { if (sc->sc_ndata.keycode[j] == 0) { continue; } if (key == sc->sc_ndata.keycode[j]) { goto rfound; } } ukbd_put_key(sc, key | KEY_RELEASE); rfound: ; } /* Check for pressed keys. */ for (i = 0; i < UKBD_NKEYCODE; i++) { key = sc->sc_ndata.keycode[i]; if (key == 0) { continue; } sc->sc_ntime[i] = now + sc->sc_kbd.kb_delay1; for (j = 0; j < UKBD_NKEYCODE; j++) { if (sc->sc_odata.keycode[j] == 0) { continue; } if (key == sc->sc_odata.keycode[j]) { /* key is still pressed */ sc->sc_ntime[i] = sc->sc_otime[j]; dtime = (sc->sc_otime[j] - now); if (dtime > 0) { /* time has not elapsed */ goto pfound; } sc->sc_ntime[i] = now + sc->sc_kbd.kb_delay2; break; } } if (j == UKBD_NKEYCODE) { /* New key - set initial delay and [re]start timer */ sc->sc_co_basetime = sbinuptime(); sc->sc_delay = sc->sc_kbd.kb_delay1; ukbd_start_timer(sc); } ukbd_put_key(sc, key | KEY_PRESS); /* * If any other key is presently down, force its repeat to be * well in the future (100s). This makes the last key to be * pressed do the autorepeat. */ for (j = 0; j != UKBD_NKEYCODE; j++) { if (j != i) sc->sc_ntime[j] = now + (100 * 1000); } pfound: ; } sc->sc_odata = sc->sc_ndata; memcpy(sc->sc_otime, sc->sc_ntime, sizeof(sc->sc_otime)); ukbd_event_keyinput(sc); } static void ukbd_event_keyinput(struct ukbd_softc *sc) { int c; UKBD_LOCK_ASSERT(); if ((sc->sc_flags & UKBD_FLAG_POLLING) != 0) return; if (sc->sc_inputs == 0) return; if (KBD_IS_ACTIVE(&sc->sc_kbd) && KBD_IS_BUSY(&sc->sc_kbd)) { /* let the callback function process the input */ (sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT, sc->sc_kbd.kb_callback.kc_arg); } else { /* read and discard the input, no one is waiting for it */ do { c = ukbd_read_char(&sc->sc_kbd, 0); } while (c != NOKEY); } } static void ukbd_timeout(void *arg) { struct ukbd_softc *sc = arg; UKBD_LOCK_ASSERT(); sc->sc_time_ms += sc->sc_delay; sc->sc_delay = 0; ukbd_interrupt(sc); /* Make sure any leftover key events gets read out */ ukbd_event_keyinput(sc); if (ukbd_any_key_pressed(sc) || (sc->sc_inputs != 0)) { ukbd_start_timer(sc); } } static uint8_t ukbd_apple_fn(uint8_t keycode) { switch (keycode) { case 0x28: return 0x49; /* RETURN -> INSERT */ case 0x2a: return 0x4c; /* BACKSPACE -> DEL */ case 0x50: return 0x4a; /* LEFT ARROW -> HOME */ case 0x4f: return 0x4d; /* RIGHT ARROW -> END */ case 0x52: return 0x4b; /* UP ARROW -> PGUP */ case 0x51: return 0x4e; /* DOWN ARROW -> PGDN */ default: return keycode; } } static uint8_t ukbd_apple_swap(uint8_t keycode) { switch (keycode) { case 0x35: return 0x64; case 0x64: return 0x35; default: return keycode; } } static void ukbd_intr_callback(struct usb_xfer *xfer, usb_error_t error) { struct ukbd_softc *sc = usbd_xfer_softc(xfer); struct usb_page_cache *pc; uint8_t i; uint8_t offset; uint8_t id; int len; UKBD_LOCK_ASSERT(); usbd_xfer_status(xfer, &len, NULL, NULL, NULL); pc = usbd_xfer_get_frame(xfer, 0); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTF("actlen=%d bytes\n", len); if (len == 0) { DPRINTF("zero length data\n"); goto tr_setup; } if (sc->sc_kbd_id != 0) { /* check and remove HID ID byte */ usbd_copy_out(pc, 0, &id, 1); offset = 1; len--; if (len == 0) { DPRINTF("zero length data\n"); goto tr_setup; } } else { offset = 0; id = 0; } if (len > UKBD_BUFFER_SIZE) len = UKBD_BUFFER_SIZE; /* get data */ usbd_copy_out(pc, offset, sc->sc_buffer, len); /* clear temporary storage */ memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); /* scan through HID data */ if ((sc->sc_flags & UKBD_FLAG_APPLE_EJECT) && (id == sc->sc_id_apple_eject)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_eject)) sc->sc_modifiers |= MOD_EJECT; else sc->sc_modifiers &= ~MOD_EJECT; } if ((sc->sc_flags & UKBD_FLAG_APPLE_FN) && (id == sc->sc_id_apple_fn)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_apple_fn)) sc->sc_modifiers |= MOD_FN; else sc->sc_modifiers &= ~MOD_FN; } if ((sc->sc_flags & UKBD_FLAG_CTRL_L) && (id == sc->sc_id_ctrl_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_ctrl_l)) sc-> sc_modifiers |= MOD_CONTROL_L; else sc-> sc_modifiers &= ~MOD_CONTROL_L; } if ((sc->sc_flags & UKBD_FLAG_CTRL_R) && (id == sc->sc_id_ctrl_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_ctrl_r)) sc->sc_modifiers |= MOD_CONTROL_R; else sc->sc_modifiers &= ~MOD_CONTROL_R; } if ((sc->sc_flags & UKBD_FLAG_SHIFT_L) && (id == sc->sc_id_shift_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_shift_l)) sc->sc_modifiers |= MOD_SHIFT_L; else sc->sc_modifiers &= ~MOD_SHIFT_L; } if ((sc->sc_flags & UKBD_FLAG_SHIFT_R) && (id == sc->sc_id_shift_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_shift_r)) sc->sc_modifiers |= MOD_SHIFT_R; else sc->sc_modifiers &= ~MOD_SHIFT_R; } if ((sc->sc_flags & UKBD_FLAG_ALT_L) && (id == sc->sc_id_alt_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_alt_l)) sc->sc_modifiers |= MOD_ALT_L; else sc->sc_modifiers &= ~MOD_ALT_L; } if ((sc->sc_flags & UKBD_FLAG_ALT_R) && (id == sc->sc_id_alt_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_alt_r)) sc->sc_modifiers |= MOD_ALT_R; else sc->sc_modifiers &= ~MOD_ALT_R; } if ((sc->sc_flags & UKBD_FLAG_WIN_L) && (id == sc->sc_id_win_l)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_win_l)) sc->sc_modifiers |= MOD_WIN_L; else sc->sc_modifiers &= ~MOD_WIN_L; } if ((sc->sc_flags & UKBD_FLAG_WIN_R) && (id == sc->sc_id_win_r)) { if (hid_get_data(sc->sc_buffer, len, &sc->sc_loc_win_r)) sc->sc_modifiers |= MOD_WIN_R; else sc->sc_modifiers &= ~MOD_WIN_R; } sc->sc_ndata.modifiers = sc->sc_modifiers; if ((sc->sc_flags & UKBD_FLAG_EVENTS) && (id == sc->sc_id_events)) { i = sc->sc_loc_events.count; if (i > UKBD_NKEYCODE) i = UKBD_NKEYCODE; if (i > len) i = len; while (i--) { sc->sc_ndata.keycode[i] = hid_get_data(sc->sc_buffer + i, len - i, &sc->sc_loc_events); } } #ifdef USB_DEBUG DPRINTF("modifiers = 0x%04x\n", (int)sc->sc_modifiers); for (i = 0; i < UKBD_NKEYCODE; i++) { if (sc->sc_ndata.keycode[i]) { DPRINTF("[%d] = 0x%02x\n", (int)i, (int)sc->sc_ndata.keycode[i]); } } #endif if (sc->sc_modifiers & MOD_FN) { for (i = 0; i < UKBD_NKEYCODE; i++) { sc->sc_ndata.keycode[i] = ukbd_apple_fn(sc->sc_ndata.keycode[i]); } } if (sc->sc_flags & UKBD_FLAG_APPLE_SWAP) { for (i = 0; i < UKBD_NKEYCODE; i++) { sc->sc_ndata.keycode[i] = ukbd_apple_swap(sc->sc_ndata.keycode[i]); } } ukbd_interrupt(sc); case USB_ST_SETUP: tr_setup: if (sc->sc_inputs < UKBD_IN_BUF_FULL) { usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); } else { DPRINTF("input queue is full!\n"); } break; default: /* Error */ DPRINTF("error=%s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void ukbd_set_leds_callback(struct usb_xfer *xfer, usb_error_t error) { struct ukbd_softc *sc = usbd_xfer_softc(xfer); struct usb_device_request req; struct usb_page_cache *pc; uint8_t id; uint8_t any; int len; UKBD_LOCK_ASSERT(); #ifdef USB_DEBUG if (ukbd_no_leds) return; #endif switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: case USB_ST_SETUP: if (!(sc->sc_flags & UKBD_FLAG_SET_LEDS)) break; sc->sc_flags &= ~UKBD_FLAG_SET_LEDS; req.bmRequestType = UT_WRITE_CLASS_INTERFACE; req.bRequest = UR_SET_REPORT; USETW2(req.wValue, UHID_OUTPUT_REPORT, 0); req.wIndex[0] = sc->sc_iface_no; req.wIndex[1] = 0; req.wLength[1] = 0; memset(sc->sc_buffer, 0, UKBD_BUFFER_SIZE); id = 0; any = 0; /* Assumption: All led bits must be in the same ID. */ if (sc->sc_flags & UKBD_FLAG_NUMLOCK) { if (sc->sc_leds & NLKED) { hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_numlock, 1); } id = sc->sc_id_numlock; any = 1; } if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK) { if (sc->sc_leds & SLKED) { hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_scrolllock, 1); } id = sc->sc_id_scrolllock; any = 1; } if (sc->sc_flags & UKBD_FLAG_CAPSLOCK) { if (sc->sc_leds & CLKED) { hid_put_data_unsigned(sc->sc_buffer + 1, UKBD_BUFFER_SIZE - 1, &sc->sc_loc_capslock, 1); } id = sc->sc_id_capslock; any = 1; } /* if no leds, nothing to do */ if (!any) break; #ifdef EVDEV_SUPPORT if (sc->sc_evdev != NULL) evdev_push_leds(sc->sc_evdev, sc->sc_leds); #endif /* range check output report length */ len = sc->sc_led_size; if (len > (UKBD_BUFFER_SIZE - 1)) len = (UKBD_BUFFER_SIZE - 1); /* check if we need to prefix an ID byte */ sc->sc_buffer[0] = id; pc = usbd_xfer_get_frame(xfer, 1); if (id != 0) { len++; usbd_copy_in(pc, 0, sc->sc_buffer, len); } else { usbd_copy_in(pc, 0, sc->sc_buffer + 1, len); } req.wLength[0] = len; usbd_xfer_set_frame_len(xfer, 1, len); DPRINTF("len=%d, id=%d\n", len, id); /* setup control request last */ pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &req, sizeof(req)); usbd_xfer_set_frame_len(xfer, 0, sizeof(req)); /* start data transfer */ usbd_xfer_set_frames(xfer, 2); usbd_transfer_submit(xfer); break; default: /* Error */ DPRINTFN(1, "error=%s\n", usbd_errstr(error)); break; } } static const struct usb_config ukbd_config[UKBD_N_TRANSFER] = { [UKBD_INTR_DT_0] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .bufsize = 0, /* use wMaxPacketSize */ .callback = &ukbd_intr_callback, }, [UKBD_INTR_DT_1] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .bufsize = 0, /* use wMaxPacketSize */ .callback = &ukbd_intr_callback, }, [UKBD_CTRL_LED] = { .type = UE_CONTROL, .endpoint = 0x00, /* Control pipe */ .direction = UE_DIR_ANY, .bufsize = sizeof(struct usb_device_request) + UKBD_BUFFER_SIZE, .callback = &ukbd_set_leds_callback, .timeout = 1000, /* 1 second */ }, }; /* A match on these entries will load ukbd */ static const STRUCT_USB_HOST_ID __used ukbd_devs[] = { {USB_IFACE_CLASS(UICLASS_HID), USB_IFACE_SUBCLASS(UISUBCLASS_BOOT), USB_IFACE_PROTOCOL(UIPROTO_BOOT_KEYBOARD),}, }; static int ukbd_probe(device_t dev) { keyboard_switch_t *sw = kbd_get_switch(UKBD_DRIVER_NAME); struct usb_attach_arg *uaa = device_get_ivars(dev); void *d_ptr; int error; uint16_t d_len; UKBD_LOCK_ASSERT(); DPRINTFN(11, "\n"); if (sw == NULL) { return (ENXIO); } if (uaa->usb_mode != USB_MODE_HOST) { return (ENXIO); } if (uaa->info.bInterfaceClass != UICLASS_HID) return (ENXIO); if (usb_test_quirk(uaa, UQ_KBD_IGNORE)) return (ENXIO); if ((uaa->info.bInterfaceSubClass == UISUBCLASS_BOOT) && (uaa->info.bInterfaceProtocol == UIPROTO_BOOT_KEYBOARD)) return (BUS_PROBE_DEFAULT); error = usbd_req_get_hid_desc(uaa->device, NULL, &d_ptr, &d_len, M_TEMP, uaa->info.bIfaceIndex); if (error) return (ENXIO); if (hid_is_keyboard(d_ptr, d_len)) { if (hid_is_mouse(d_ptr, d_len)) { /* * NOTE: We currently don't support USB mouse * and USB keyboard on the same USB endpoint. * Let "ums" driver win. */ error = ENXIO; } else { error = BUS_PROBE_DEFAULT; } } else { error = ENXIO; } free(d_ptr, M_TEMP); return (error); } static void ukbd_parse_hid(struct ukbd_softc *sc, const uint8_t *ptr, uint32_t len) { uint32_t flags; /* reset detected bits */ sc->sc_flags &= ~UKBD_FLAG_HID_MASK; /* check if there is an ID byte */ sc->sc_kbd_size = hid_report_size(ptr, len, hid_input, &sc->sc_kbd_id); /* investigate if this is an Apple Keyboard */ if (hid_locate(ptr, len, HID_USAGE2(HUP_CONSUMER, HUG_APPLE_EJECT), hid_input, 0, &sc->sc_loc_apple_eject, &flags, &sc->sc_id_apple_eject)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_APPLE_EJECT | UKBD_FLAG_APPLE_SWAP; DPRINTFN(1, "Found Apple eject-key\n"); } if (hid_locate(ptr, len, HID_USAGE2(0xFFFF, 0x0003), hid_input, 0, &sc->sc_loc_apple_fn, &flags, &sc->sc_id_apple_fn)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_APPLE_FN; DPRINTFN(1, "Found Apple FN-key\n"); } /* figure out some keys */ if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE0), hid_input, 0, &sc->sc_loc_ctrl_l, &flags, &sc->sc_id_ctrl_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_CTRL_L; DPRINTFN(1, "Found left control\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE4), hid_input, 0, &sc->sc_loc_ctrl_r, &flags, &sc->sc_id_ctrl_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_CTRL_R; DPRINTFN(1, "Found right control\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE1), hid_input, 0, &sc->sc_loc_shift_l, &flags, &sc->sc_id_shift_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_SHIFT_L; DPRINTFN(1, "Found left shift\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE5), hid_input, 0, &sc->sc_loc_shift_r, &flags, &sc->sc_id_shift_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_SHIFT_R; DPRINTFN(1, "Found right shift\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE2), hid_input, 0, &sc->sc_loc_alt_l, &flags, &sc->sc_id_alt_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_ALT_L; DPRINTFN(1, "Found left alt\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE6), hid_input, 0, &sc->sc_loc_alt_r, &flags, &sc->sc_id_alt_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_ALT_R; DPRINTFN(1, "Found right alt\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE3), hid_input, 0, &sc->sc_loc_win_l, &flags, &sc->sc_id_win_l)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_WIN_L; DPRINTFN(1, "Found left GUI\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0xE7), hid_input, 0, &sc->sc_loc_win_r, &flags, &sc->sc_id_win_r)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_WIN_R; DPRINTFN(1, "Found right GUI\n"); } /* figure out event buffer */ if (hid_locate(ptr, len, HID_USAGE2(HUP_KEYBOARD, 0x00), hid_input, 0, &sc->sc_loc_events, &flags, &sc->sc_id_events)) { if (flags & HIO_VARIABLE) { DPRINTFN(1, "Ignoring keyboard event control\n"); } else { sc->sc_flags |= UKBD_FLAG_EVENTS; DPRINTFN(1, "Found keyboard event array\n"); } } /* figure out leds on keyboard */ sc->sc_led_size = hid_report_size(ptr, len, hid_output, NULL); if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x01), hid_output, 0, &sc->sc_loc_numlock, &flags, &sc->sc_id_numlock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_NUMLOCK; DPRINTFN(1, "Found keyboard numlock\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x02), hid_output, 0, &sc->sc_loc_capslock, &flags, &sc->sc_id_capslock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_CAPSLOCK; DPRINTFN(1, "Found keyboard capslock\n"); } if (hid_locate(ptr, len, HID_USAGE2(HUP_LEDS, 0x03), hid_output, 0, &sc->sc_loc_scrolllock, &flags, &sc->sc_id_scrolllock)) { if (flags & HIO_VARIABLE) sc->sc_flags |= UKBD_FLAG_SCROLLLOCK; DPRINTFN(1, "Found keyboard scrolllock\n"); } } static int ukbd_attach(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); int unit = device_get_unit(dev); keyboard_t *kbd = &sc->sc_kbd; void *hid_ptr = NULL; usb_error_t err; uint16_t n; uint16_t hid_len; #ifdef EVDEV_SUPPORT struct evdev_dev *evdev; int i; #endif #ifdef USB_DEBUG int rate; #endif UKBD_LOCK_ASSERT(); kbd_init_struct(kbd, UKBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0); kbd->kb_data = (void *)sc; device_set_usb_desc(dev); sc->sc_udev = uaa->device; sc->sc_iface = uaa->iface; sc->sc_iface_index = uaa->info.bIfaceIndex; sc->sc_iface_no = uaa->info.bIfaceNum; sc->sc_mode = K_XLATE; usb_callout_init_mtx(&sc->sc_callout, &Giant, 0); #ifdef UKBD_NO_POLLING err = usbd_transfer_setup(uaa->device, &uaa->info.bIfaceIndex, sc->sc_xfer, ukbd_config, UKBD_N_TRANSFER, sc, &Giant); #else /* * Setup the UKBD USB transfers one by one, so they are memory * independent which allows for handling panics triggered by * the keyboard driver itself, typically via CTRL+ALT+ESC * sequences. Or if the USB keyboard driver was processing a * key at the moment of panic. */ for (n = 0; n != UKBD_N_TRANSFER; n++) { err = usbd_transfer_setup(uaa->device, &uaa->info.bIfaceIndex, sc->sc_xfer + n, ukbd_config + n, 1, sc, &Giant); if (err) break; } #endif if (err) { DPRINTF("error=%s\n", usbd_errstr(err)); goto detach; } /* setup default keyboard maps */ sc->sc_keymap = key_map; sc->sc_accmap = accent_map; for (n = 0; n < UKBD_NFKEY; n++) { sc->sc_fkeymap[n] = fkey_tab[n]; } kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap, sc->sc_fkeymap, UKBD_NFKEY); KBD_FOUND_DEVICE(kbd); ukbd_clear_state(kbd); /* * FIXME: set the initial value for lock keys in "sc_state" * according to the BIOS data? */ KBD_PROBE_DONE(kbd); /* get HID descriptor */ err = usbd_req_get_hid_desc(uaa->device, NULL, &hid_ptr, &hid_len, M_TEMP, uaa->info.bIfaceIndex); if (err == 0) { DPRINTF("Parsing HID descriptor of %d bytes\n", (int)hid_len); ukbd_parse_hid(sc, hid_ptr, hid_len); free(hid_ptr, M_TEMP); } /* check if we should use the boot protocol */ if (usb_test_quirk(uaa, UQ_KBD_BOOTPROTO) || (err != 0) || (!(sc->sc_flags & UKBD_FLAG_EVENTS))) { DPRINTF("Forcing boot protocol\n"); err = usbd_req_set_protocol(sc->sc_udev, NULL, sc->sc_iface_index, 0); if (err != 0) { DPRINTF("Set protocol error=%s (ignored)\n", usbd_errstr(err)); } ukbd_parse_hid(sc, ukbd_boot_desc, sizeof(ukbd_boot_desc)); } /* ignore if SETIDLE fails, hence it is not crucial */ usbd_req_set_idle(sc->sc_udev, NULL, sc->sc_iface_index, 0, 0); ukbd_ioctl(kbd, KDSETLED, (caddr_t)&sc->sc_state); KBD_INIT_DONE(kbd); if (kbd_register(kbd) < 0) { goto detach; } KBD_CONFIG_DONE(kbd); ukbd_enable(kbd); #ifdef KBD_INSTALL_CDEV if (kbd_attach(kbd)) { goto detach; } #endif #ifdef EVDEV_SUPPORT evdev = evdev_alloc(); evdev_set_name(evdev, device_get_desc(dev)); evdev_set_phys(evdev, device_get_nameunit(dev)); evdev_set_id(evdev, BUS_USB, uaa->info.idVendor, uaa->info.idProduct, 0); evdev_set_serial(evdev, usb_get_serial(uaa->device)); evdev_set_methods(evdev, kbd, &ukbd_evdev_methods); evdev_support_event(evdev, EV_SYN); evdev_support_event(evdev, EV_KEY); if (sc->sc_flags & (UKBD_FLAG_NUMLOCK | UKBD_FLAG_CAPSLOCK | UKBD_FLAG_SCROLLLOCK)) evdev_support_event(evdev, EV_LED); evdev_support_event(evdev, EV_REP); for (i = 0x00; i <= 0xFF; i++) evdev_support_key(evdev, evdev_hid2key(i)); if (sc->sc_flags & UKBD_FLAG_NUMLOCK) evdev_support_led(evdev, LED_NUML); if (sc->sc_flags & UKBD_FLAG_CAPSLOCK) evdev_support_led(evdev, LED_CAPSL); if (sc->sc_flags & UKBD_FLAG_SCROLLLOCK) evdev_support_led(evdev, LED_SCROLLL); if (evdev_register_mtx(evdev, &Giant)) evdev_free(evdev); else sc->sc_evdev = evdev; #endif sc->sc_flags |= UKBD_FLAG_ATTACHED; if (bootverbose) { kbdd_diag(kbd, bootverbose); } #ifdef USB_DEBUG /* check for polling rate override */ rate = ukbd_pollrate; if (rate > 0) { if (rate > 1000) rate = 1; else rate = 1000 / rate; /* set new polling interval in ms */ usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_0], rate); usbd_xfer_set_interval(sc->sc_xfer[UKBD_INTR_DT_1], rate); } #endif /* start the keyboard */ usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_0]); usbd_transfer_start(sc->sc_xfer[UKBD_INTR_DT_1]); return (0); /* success */ detach: ukbd_detach(dev); return (ENXIO); /* error */ } static int ukbd_detach(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); int error; UKBD_LOCK_ASSERT(); DPRINTF("\n"); sc->sc_flags |= UKBD_FLAG_GONE; usb_callout_stop(&sc->sc_callout); /* kill any stuck keys */ if (sc->sc_flags & UKBD_FLAG_ATTACHED) { /* stop receiving events from the USB keyboard */ usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_0]); usbd_transfer_stop(sc->sc_xfer[UKBD_INTR_DT_1]); /* release all leftover keys, if any */ memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); /* process releasing of all keys */ ukbd_interrupt(sc); } ukbd_disable(&sc->sc_kbd); #ifdef KBD_INSTALL_CDEV if (sc->sc_flags & UKBD_FLAG_ATTACHED) { error = kbd_detach(&sc->sc_kbd); if (error) { /* usb attach cannot return an error */ device_printf(dev, "WARNING: kbd_detach() " "returned non-zero! (ignored)\n"); } } #endif #ifdef EVDEV_SUPPORT evdev_free(sc->sc_evdev); #endif if (KBD_IS_CONFIGURED(&sc->sc_kbd)) { error = kbd_unregister(&sc->sc_kbd); if (error) { /* usb attach cannot return an error */ device_printf(dev, "WARNING: kbd_unregister() " "returned non-zero! (ignored)\n"); } } sc->sc_kbd.kb_flags = 0; usbd_transfer_unsetup(sc->sc_xfer, UKBD_N_TRANSFER); usb_callout_drain(&sc->sc_callout); DPRINTF("%s: disconnected\n", device_get_nameunit(dev)); return (0); } static int ukbd_resume(device_t dev) { struct ukbd_softc *sc = device_get_softc(dev); UKBD_LOCK_ASSERT(); ukbd_clear_state(&sc->sc_kbd); return (0); } #ifdef EVDEV_SUPPORT static void ukbd_ev_event(struct evdev_dev *evdev, uint16_t type, uint16_t code, int32_t value) { keyboard_t *kbd = evdev_get_softc(evdev); if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && (type == EV_LED || type == EV_REP)) { mtx_lock(&Giant); kbd_ev_event(kbd, type, code, value); mtx_unlock(&Giant); } } #endif /* early keyboard probe, not supported */ static int ukbd_configure(int flags) { return (0); } /* detect a keyboard, not used */ static int ukbd__probe(int unit, void *arg, int flags) { return (ENXIO); } /* reset and initialize the device, not used */ static int ukbd_init(int unit, keyboard_t **kbdp, void *arg, int flags) { return (ENXIO); } /* test the interface to the device, not used */ static int ukbd_test_if(keyboard_t *kbd) { return (0); } /* finish using this keyboard, not used */ static int ukbd_term(keyboard_t *kbd) { return (ENXIO); } /* keyboard interrupt routine, not used */ static int ukbd_intr(keyboard_t *kbd, void *arg) { return (0); } /* lock the access to the keyboard, not used */ static int ukbd_lock(keyboard_t *kbd, int lock) { return (1); } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int ukbd_enable(keyboard_t *kbd) { UKBD_LOCK(); KBD_ACTIVATE(kbd); UKBD_UNLOCK(); return (0); } /* disallow the access to the device */ static int ukbd_disable(keyboard_t *kbd) { UKBD_LOCK(); KBD_DEACTIVATE(kbd); UKBD_UNLOCK(); return (0); } /* check if data is waiting */ /* Currently unused. */ static int ukbd_check(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); if (sc->sc_flags & UKBD_FLAG_POLLING) ukbd_do_poll(sc, 0); #ifdef UKBD_EMULATE_ATSCANCODE if (sc->sc_buffered_char[0]) { return (1); } #endif if (sc->sc_inputs > 0) { return (1); } return (0); } /* check if char is waiting */ static int ukbd_check_char_locked(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (0); if ((sc->sc_composed_char > 0) && (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) { return (1); } return (ukbd_check(kbd)); } static int ukbd_check_char(keyboard_t *kbd) { int result; UKBD_LOCK(); result = ukbd_check_char_locked(kbd); UKBD_UNLOCK(); return (result); } /* read one byte from the keyboard if it's allowed */ /* Currently unused. */ static int ukbd_read(keyboard_t *kbd, int wait) { struct ukbd_softc *sc = kbd->kb_data; int32_t usbcode; #ifdef UKBD_EMULATE_ATSCANCODE uint32_t keycode; uint32_t scancode; #endif UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (-1); #ifdef UKBD_EMULATE_ATSCANCODE if (sc->sc_buffered_char[0]) { scancode = sc->sc_buffered_char[0]; if (scancode & SCAN_PREFIX) { sc->sc_buffered_char[0] &= ~SCAN_PREFIX; return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } sc->sc_buffered_char[0] = sc->sc_buffered_char[1]; sc->sc_buffered_char[1] = 0; return (scancode); } #endif /* UKBD_EMULATE_ATSCANCODE */ /* XXX */ usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1); if (!KBD_IS_ACTIVE(kbd) || (usbcode == -1)) return (-1); ++(kbd->kb_count); #ifdef UKBD_EMULATE_ATSCANCODE keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.modifiers); if (keycode == NN) { return -1; } return (ukbd_key2scan(sc, keycode, sc->sc_ndata.modifiers, (usbcode & KEY_RELEASE))); #else /* !UKBD_EMULATE_ATSCANCODE */ return (usbcode); #endif /* UKBD_EMULATE_ATSCANCODE */ } /* read char from the keyboard */ static uint32_t ukbd_read_char_locked(keyboard_t *kbd, int wait) { struct ukbd_softc *sc = kbd->kb_data; uint32_t action; uint32_t keycode; int32_t usbcode; #ifdef UKBD_EMULATE_ATSCANCODE uint32_t scancode; #endif UKBD_LOCK_ASSERT(); if (!KBD_IS_ACTIVE(kbd)) return (NOKEY); next_code: /* do we have a composed char to return ? */ if ((sc->sc_composed_char > 0) && (!(sc->sc_flags & UKBD_FLAG_COMPOSE))) { action = sc->sc_composed_char; sc->sc_composed_char = 0; if (action > 0xFF) { goto errkey; } goto done; } #ifdef UKBD_EMULATE_ATSCANCODE /* do we have a pending raw scan code? */ if (sc->sc_mode == K_RAW) { scancode = sc->sc_buffered_char[0]; if (scancode) { if (scancode & SCAN_PREFIX) { sc->sc_buffered_char[0] = (scancode & ~SCAN_PREFIX); return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } sc->sc_buffered_char[0] = sc->sc_buffered_char[1]; sc->sc_buffered_char[1] = 0; return (scancode); } } #endif /* UKBD_EMULATE_ATSCANCODE */ /* see if there is something in the keyboard port */ /* XXX */ usbcode = ukbd_get_key(sc, (wait == FALSE) ? 0 : 1); if (usbcode == -1) { return (NOKEY); } ++kbd->kb_count; #ifdef UKBD_EMULATE_ATSCANCODE /* USB key index -> key code -> AT scan code */ keycode = ukbd_atkeycode(usbcode, sc->sc_ndata.modifiers); if (keycode == NN) { return (NOKEY); } /* return an AT scan code for the K_RAW mode */ if (sc->sc_mode == K_RAW) { return (ukbd_key2scan(sc, keycode, sc->sc_ndata.modifiers, (usbcode & KEY_RELEASE))); } #else /* !UKBD_EMULATE_ATSCANCODE */ /* return the byte as is for the K_RAW mode */ if (sc->sc_mode == K_RAW) { return (usbcode); } /* USB key index -> key code */ keycode = ukbd_trtab[KEY_INDEX(usbcode)]; if (keycode == NN) { return (NOKEY); } #endif /* UKBD_EMULATE_ATSCANCODE */ switch (keycode) { case 0x38: /* left alt (compose key) */ if (usbcode & KEY_RELEASE) { if (sc->sc_flags & UKBD_FLAG_COMPOSE) { sc->sc_flags &= ~UKBD_FLAG_COMPOSE; if (sc->sc_composed_char > 0xFF) { sc->sc_composed_char = 0; } } } else { if (!(sc->sc_flags & UKBD_FLAG_COMPOSE)) { sc->sc_flags |= UKBD_FLAG_COMPOSE; sc->sc_composed_char = 0; } } break; } /* return the key code in the K_CODE mode */ if (usbcode & KEY_RELEASE) { keycode |= SCAN_RELEASE; } if (sc->sc_mode == K_CODE) { return (keycode); } /* compose a character code */ if (sc->sc_flags & UKBD_FLAG_COMPOSE) { switch (keycode) { /* key pressed, process it */ case 0x47: case 0x48: case 0x49: /* keypad 7,8,9 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x40; goto check_composed; case 0x4B: case 0x4C: case 0x4D: /* keypad 4,5,6 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x47; goto check_composed; case 0x4F: case 0x50: case 0x51: /* keypad 1,2,3 */ sc->sc_composed_char *= 10; sc->sc_composed_char += keycode - 0x4E; goto check_composed; case 0x52: /* keypad 0 */ sc->sc_composed_char *= 10; goto check_composed; /* key released, no interest here */ case SCAN_RELEASE | 0x47: case SCAN_RELEASE | 0x48: case SCAN_RELEASE | 0x49: /* keypad 7,8,9 */ case SCAN_RELEASE | 0x4B: case SCAN_RELEASE | 0x4C: case SCAN_RELEASE | 0x4D: /* keypad 4,5,6 */ case SCAN_RELEASE | 0x4F: case SCAN_RELEASE | 0x50: case SCAN_RELEASE | 0x51: /* keypad 1,2,3 */ case SCAN_RELEASE | 0x52: /* keypad 0 */ goto next_code; case 0x38: /* left alt key */ break; default: if (sc->sc_composed_char > 0) { sc->sc_flags &= ~UKBD_FLAG_COMPOSE; sc->sc_composed_char = 0; goto errkey; } break; } } /* keycode to key action */ action = genkbd_keyaction(kbd, SCAN_CHAR(keycode), (keycode & SCAN_RELEASE), &sc->sc_state, &sc->sc_accents); if (action == NOKEY) { goto next_code; } done: return (action); check_composed: if (sc->sc_composed_char <= 0xFF) { goto next_code; } errkey: return (ERRKEY); } /* Currently wait is always false. */ static uint32_t ukbd_read_char(keyboard_t *kbd, int wait) { uint32_t keycode; UKBD_LOCK(); keycode = ukbd_read_char_locked(kbd, wait); UKBD_UNLOCK(); return (keycode); } /* some useful control functions */ static int ukbd_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg) { struct ukbd_softc *sc = kbd->kb_data; int i; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) int ival; #endif UKBD_LOCK_ASSERT(); switch (cmd) { case KDGKBMODE: /* get keyboard mode */ *(int *)arg = sc->sc_mode; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 7): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBMODE: /* set keyboard mode */ switch (*(int *)arg) { case K_XLATE: if (sc->sc_mode != K_XLATE) { /* make lock key state and LED state match */ sc->sc_state &= ~LOCK_MASK; sc->sc_state |= KBD_LED_VAL(kbd); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (sc->sc_mode != *(int *)arg) { if ((sc->sc_flags & UKBD_FLAG_POLLING) == 0) ukbd_clear_state(kbd); sc->sc_mode = *(int *)arg; } break; default: return (EINVAL); } break; case KDGETLED: /* get keyboard LED */ *(int *)arg = KBD_LED_VAL(kbd); break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 66): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETLED: /* set keyboard LED */ /* NOTE: lock key state in "sc_state" won't be changed */ if (*(int *)arg & ~LOCK_MASK) return (EINVAL); i = *(int *)arg; /* replace CAPS LED with ALTGR LED for ALTGR keyboards */ if (sc->sc_mode == K_XLATE && kbd->kb_keymap->n_keys > ALTGR_OFFSET) { if (i & ALKED) i |= CLKED; else i &= ~CLKED; } if (KBD_HAS_DEVICE(kbd)) ukbd_set_leds(sc, i); KBD_LED_VAL(kbd) = *(int *)arg; break; case KDGKBSTATE: /* get lock key state */ *(int *)arg = sc->sc_state & LOCK_MASK; break; #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 20): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBSTATE: /* set lock key state */ if (*(int *)arg & ~LOCK_MASK) { return (EINVAL); } sc->sc_state &= ~LOCK_MASK; sc->sc_state |= *(int *)arg; /* set LEDs and quit */ return (ukbd_ioctl(kbd, KDSETLED, arg)); case KDSETREPEAT: /* set keyboard repeat rate (new * interface) */ if (!KBD_HAS_DEVICE(kbd)) { return (0); } /* * Convert negative, zero and tiny args to the same limits * as atkbd. We could support delays of 1 msec, but * anything much shorter than the shortest atkbd value * of 250.34 is almost unusable as well as incompatible. */ kbd->kb_delay1 = imax(((int *)arg)[0], 250); kbd->kb_delay2 = imax(((int *)arg)[1], 34); #ifdef EVDEV_SUPPORT if (sc->sc_evdev != NULL) evdev_push_repeats(sc->sc_evdev, kbd); #endif return (0); #if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \ defined(COMPAT_FREEBSD4) || defined(COMPAT_43) case _IO('K', 67): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETRAD: /* set keyboard repeat rate (old * interface) */ return (ukbd_set_typematic(kbd, *(int *)arg)); case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table * (compat) */ case PIO_KEYMAPENT: /* set keyboard translation table * entry */ case PIO_DEADKEYMAP: /* set accent key translation table */ sc->sc_accents = 0; /* FALLTHROUGH */ default: return (genkbd_commonioctl(kbd, cmd, arg)); } return (0); } static int ukbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { int result; /* * XXX Check if someone is calling us from a critical section: */ if (curthread->td_critnest != 0) return (EDEADLK); /* * XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any * context where printf(9) can be called, which among other things * includes interrupt filters and threads with any kinds of locks * already held. For this reason it would be dangerous to acquire * the Giant here unconditionally. On the other hand we have to * have it to handle the ioctl. * So we make our best effort to auto-detect whether we can grab * the Giant or not. Blame syscons(4) for this. */ switch (cmd) { case KDGKBSTATE: case KDSKBSTATE: case KDSETLED: if (!mtx_owned(&Giant) && !USB_IN_POLLING_MODE_FUNC()) return (EDEADLK); /* best I could come up with */ /* FALLTHROUGH */ default: UKBD_LOCK(); result = ukbd_ioctl_locked(kbd, cmd, arg); UKBD_UNLOCK(); return (result); } } /* clear the internal state of the keyboard */ static void ukbd_clear_state(keyboard_t *kbd) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK_ASSERT(); sc->sc_flags &= ~(UKBD_FLAG_COMPOSE | UKBD_FLAG_POLLING); sc->sc_state &= LOCK_MASK; /* preserve locking key state */ sc->sc_accents = 0; sc->sc_composed_char = 0; #ifdef UKBD_EMULATE_ATSCANCODE sc->sc_buffered_char[0] = 0; sc->sc_buffered_char[1] = 0; #endif memset(&sc->sc_ndata, 0, sizeof(sc->sc_ndata)); memset(&sc->sc_odata, 0, sizeof(sc->sc_odata)); memset(&sc->sc_ntime, 0, sizeof(sc->sc_ntime)); memset(&sc->sc_otime, 0, sizeof(sc->sc_otime)); } /* save the internal state, not used */ static int ukbd_get_state(keyboard_t *kbd, void *buf, size_t len) { return (len == 0) ? 1 : -1; } /* set the internal state, not used */ static int ukbd_set_state(keyboard_t *kbd, void *buf, size_t len) { return (EINVAL); } static int ukbd_poll(keyboard_t *kbd, int on) { struct ukbd_softc *sc = kbd->kb_data; UKBD_LOCK(); /* * Keep a reference count on polling to allow recursive * cngrab() during a panic for example. */ if (on) sc->sc_polling++; else if (sc->sc_polling > 0) sc->sc_polling--; if (sc->sc_polling != 0) { sc->sc_flags |= UKBD_FLAG_POLLING; sc->sc_poll_thread = curthread; } else { sc->sc_flags &= ~UKBD_FLAG_POLLING; sc->sc_delay = 0; } UKBD_UNLOCK(); return (0); } /* local functions */ static void ukbd_set_leds(struct ukbd_softc *sc, uint8_t leds) { UKBD_LOCK_ASSERT(); DPRINTF("leds=0x%02x\n", leds); sc->sc_leds = leds; sc->sc_flags |= UKBD_FLAG_SET_LEDS; /* start transfer, if not already started */ usbd_transfer_start(sc->sc_xfer[UKBD_CTRL_LED]); } static int ukbd_set_typematic(keyboard_t *kbd, int code) { #ifdef EVDEV_SUPPORT struct ukbd_softc *sc = kbd->kb_data; #endif static const int delays[] = {250, 500, 750, 1000}; static const int rates[] = {34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504}; if (code & ~0x7f) { return (EINVAL); } kbd->kb_delay1 = delays[(code >> 5) & 3]; kbd->kb_delay2 = rates[code & 0x1f]; #ifdef EVDEV_SUPPORT if (sc->sc_evdev != NULL) evdev_push_repeats(sc->sc_evdev, kbd); #endif return (0); } #ifdef UKBD_EMULATE_ATSCANCODE static uint32_t ukbd_atkeycode(int usbcode, int shift) { uint32_t keycode; keycode = ukbd_trtab[KEY_INDEX(usbcode)]; /* * Translate Alt-PrintScreen to SysRq. * * Some or all AT keyboards connected through USB have already * mapped Alted PrintScreens to an unusual usbcode (0x8a). * ukbd_trtab translates this to 0x7e, and key2scan() would * translate that to 0x79 (Intl' 4). Assume that if we have * an Alted 0x7e here then it actually is an Alted PrintScreen. * * The usual usbcode for all PrintScreens is 0x46. ukbd_trtab * translates this to 0x5c, so the Alt check to classify 0x5c * is routine. */ if ((keycode == 0x5c || keycode == 0x7e) && shift & (MOD_ALT_L | MOD_ALT_R)) return (0x54); return (keycode); } static int ukbd_key2scan(struct ukbd_softc *sc, int code, int shift, int up) { static const int scan[] = { /* 89 */ 0x11c, /* Enter */ /* 90-99 */ 0x11d, /* Ctrl-R */ 0x135, /* Divide */ 0x137, /* PrintScreen */ 0x138, /* Alt-R */ 0x147, /* Home */ 0x148, /* Up */ 0x149, /* PageUp */ 0x14b, /* Left */ 0x14d, /* Right */ 0x14f, /* End */ /* 100-109 */ 0x150, /* Down */ 0x151, /* PageDown */ 0x152, /* Insert */ 0x153, /* Delete */ 0x146, /* Pause/Break */ 0x15b, /* Win_L(Super_L) */ 0x15c, /* Win_R(Super_R) */ 0x15d, /* Application(Menu) */ /* SUN TYPE 6 USB KEYBOARD */ 0x168, /* Sun Type 6 Help */ 0x15e, /* Sun Type 6 Stop */ /* 110 - 119 */ 0x15f, /* Sun Type 6 Again */ 0x160, /* Sun Type 6 Props */ 0x161, /* Sun Type 6 Undo */ 0x162, /* Sun Type 6 Front */ 0x163, /* Sun Type 6 Copy */ 0x164, /* Sun Type 6 Open */ 0x165, /* Sun Type 6 Paste */ 0x166, /* Sun Type 6 Find */ 0x167, /* Sun Type 6 Cut */ 0x125, /* Sun Type 6 Mute */ /* 120 - 130 */ 0x11f, /* Sun Type 6 VolumeDown */ 0x11e, /* Sun Type 6 VolumeUp */ 0x120, /* Sun Type 6 PowerDown */ /* Japanese 106/109 keyboard */ 0x73, /* Keyboard Intl' 1 (backslash / underscore) */ 0x70, /* Keyboard Intl' 2 (Katakana / Hiragana) */ 0x7d, /* Keyboard Intl' 3 (Yen sign) (Not using in jp106/109) */ 0x79, /* Keyboard Intl' 4 (Henkan) */ 0x7b, /* Keyboard Intl' 5 (Muhenkan) */ 0x5c, /* Keyboard Intl' 6 (Keypad ,) (For PC-9821 layout) */ 0x71, /* Apple Keyboard JIS (Kana) */ 0x72, /* Apple Keyboard JIS (Eisu) */ }; if ((code >= 89) && (code < (int)(89 + nitems(scan)))) { code = scan[code - 89]; } /* PrintScreen */ if (code == 0x137 && (!(shift & (MOD_CONTROL_L | MOD_CONTROL_R | MOD_SHIFT_L | MOD_SHIFT_R)))) { code |= SCAN_PREFIX_SHIFT; } /* Pause/Break */ if ((code == 0x146) && (!(shift & (MOD_CONTROL_L | MOD_CONTROL_R)))) { code = (0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL); } code |= (up ? SCAN_RELEASE : SCAN_PRESS); if (code & SCAN_PREFIX) { if (code & SCAN_PREFIX_CTL) { /* Ctrl */ sc->sc_buffered_char[0] = (0x1d | (code & SCAN_RELEASE)); sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX); } else if (code & SCAN_PREFIX_SHIFT) { /* Shift */ sc->sc_buffered_char[0] = (0x2a | (code & SCAN_RELEASE)); sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX_SHIFT); } else { sc->sc_buffered_char[0] = (code & ~SCAN_PREFIX); sc->sc_buffered_char[1] = 0; } return ((code & SCAN_PREFIX_E0) ? 0xe0 : 0xe1); } return (code); } #endif /* UKBD_EMULATE_ATSCANCODE */ static keyboard_switch_t ukbdsw = { .probe = &ukbd__probe, .init = &ukbd_init, .term = &ukbd_term, .intr = &ukbd_intr, .test_if = &ukbd_test_if, .enable = &ukbd_enable, .disable = &ukbd_disable, .read = &ukbd_read, .check = &ukbd_check, .read_char = &ukbd_read_char, .check_char = &ukbd_check_char, .ioctl = &ukbd_ioctl, .lock = &ukbd_lock, .clear_state = &ukbd_clear_state, .get_state = &ukbd_get_state, .set_state = &ukbd_set_state, .poll = &ukbd_poll, }; KEYBOARD_DRIVER(ukbd, ukbdsw, ukbd_configure); static int ukbd_driver_load(module_t mod, int what, void *arg) { +#ifdef KLD_MODULE switch (what) { case MOD_LOAD: kbd_add_driver(&ukbd_kbd_driver); break; case MOD_UNLOAD: kbd_delete_driver(&ukbd_kbd_driver); break; } +#endif return (0); } static devclass_t ukbd_devclass; static device_method_t ukbd_methods[] = { DEVMETHOD(device_probe, ukbd_probe), DEVMETHOD(device_attach, ukbd_attach), DEVMETHOD(device_detach, ukbd_detach), DEVMETHOD(device_resume, ukbd_resume), DEVMETHOD_END }; static driver_t ukbd_driver = { .name = "ukbd", .methods = ukbd_methods, .size = sizeof(struct ukbd_softc), }; DRIVER_MODULE(ukbd, uhub, ukbd_driver, ukbd_devclass, ukbd_driver_load, 0); MODULE_DEPEND(ukbd, usb, 1, 1, 1); #ifdef EVDEV_SUPPORT MODULE_DEPEND(ukbd, evdev, 1, 1, 1); #endif MODULE_VERSION(ukbd, 1); USB_PNP_HOST_INFO(ukbd_devs); Index: head/sys/dev/vkbd/vkbd.c =================================================================== --- head/sys/dev/vkbd/vkbd.c (revision 355805) +++ head/sys/dev/vkbd/vkbd.c (revision 355806) @@ -1,1380 +1,1384 @@ /* * vkbd.c */ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004 Maksim Yevmenkin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: vkbd.c,v 1.20 2004/11/15 23:53:30 max Exp $ * $FreeBSD$ */ #include "opt_kbd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEVICE_NAME "vkbdctl" #define KEYBOARD_NAME "vkbd" MALLOC_DECLARE(M_VKBD); MALLOC_DEFINE(M_VKBD, KEYBOARD_NAME, "Virtual AT keyboard"); /***************************************************************************** ***************************************************************************** ** Keyboard state ***************************************************************************** *****************************************************************************/ /* * XXX * For now rely on Giant mutex to protect our data structures. * Just like the rest of keyboard drivers and syscons(4) do. */ #if 0 /* not yet */ #define VKBD_LOCK_DECL struct mtx ks_lock #define VKBD_LOCK_INIT(s) mtx_init(&(s)->ks_lock, "vkbd_lock", NULL, MTX_DEF|MTX_RECURSE) #define VKBD_LOCK_DESTROY(s) mtx_destroy(&(s)->ks_lock) #define VKBD_LOCK(s) mtx_lock(&(s)->ks_lock) #define VKBD_UNLOCK(s) mtx_unlock(&(s)->ks_lock) #define VKBD_LOCK_ASSERT(s, w) mtx_assert(&(s)->ks_lock, w) #define VKBD_SLEEP(s, f, d, t) \ msleep(&(s)->f, &(s)->ks_lock, PCATCH | (PZERO + 1), d, t) #else #define VKBD_LOCK_DECL #define VKBD_LOCK_INIT(s) #define VKBD_LOCK_DESTROY(s) #define VKBD_LOCK(s) #define VKBD_UNLOCK(s) #define VKBD_LOCK_ASSERT(s, w) #define VKBD_SLEEP(s, f, d, t) tsleep(&(s)->f, PCATCH | (PZERO + 1), d, t) #endif #define VKBD_KEYBOARD(d) \ kbd_get_keyboard(kbd_find_keyboard(KEYBOARD_NAME, dev2unit(d))) /* vkbd queue */ struct vkbd_queue { int q[VKBD_Q_SIZE]; /* queue */ int head; /* index of the first code */ int tail; /* index of the last code */ int cc; /* number of codes in queue */ }; typedef struct vkbd_queue vkbd_queue_t; /* vkbd state */ struct vkbd_state { struct cdev *ks_dev; /* control device */ struct selinfo ks_rsel; /* select(2) */ struct selinfo ks_wsel; vkbd_queue_t ks_inq; /* input key codes queue */ struct task ks_task; /* interrupt task */ int ks_flags; /* flags */ #define OPEN (1 << 0) /* control device is open */ #define COMPOSE (1 << 1) /* compose flag */ #define STATUS (1 << 2) /* status has changed */ #define TASK (1 << 3) /* interrupt task queued */ #define READ (1 << 4) /* read pending */ #define WRITE (1 << 5) /* write pending */ int ks_mode; /* K_XLATE, K_RAW, K_CODE */ int ks_polling; /* polling flag */ int ks_state; /* shift/lock key state */ int ks_accents; /* accent key index (> 0) */ u_int ks_composed_char; /* composed char code */ u_char ks_prefix; /* AT scan code prefix */ VKBD_LOCK_DECL; }; typedef struct vkbd_state vkbd_state_t; /***************************************************************************** ***************************************************************************** ** Character device ***************************************************************************** *****************************************************************************/ static void vkbd_dev_clone(void *, struct ucred *, char *, int, struct cdev **); static d_open_t vkbd_dev_open; static d_close_t vkbd_dev_close; static d_read_t vkbd_dev_read; static d_write_t vkbd_dev_write; static d_ioctl_t vkbd_dev_ioctl; static d_poll_t vkbd_dev_poll; static void vkbd_dev_intr(void *, int); static void vkbd_status_changed(vkbd_state_t *); static int vkbd_data_ready(vkbd_state_t *); static int vkbd_data_read(vkbd_state_t *, int); static struct cdevsw vkbd_dev_cdevsw = { .d_version = D_VERSION, .d_flags = D_NEEDGIANT | D_NEEDMINOR, .d_open = vkbd_dev_open, .d_close = vkbd_dev_close, .d_read = vkbd_dev_read, .d_write = vkbd_dev_write, .d_ioctl = vkbd_dev_ioctl, .d_poll = vkbd_dev_poll, .d_name = DEVICE_NAME, }; static struct clonedevs *vkbd_dev_clones = NULL; /* Clone device */ static void vkbd_dev_clone(void *arg, struct ucred *cred, char *name, int namelen, struct cdev **dev) { int unit; if (*dev != NULL) return; if (strcmp(name, DEVICE_NAME) == 0) unit = -1; else if (dev_stdclone(name, NULL, DEVICE_NAME, &unit) != 1) return; /* don't recognize the name */ /* find any existing device, or allocate new unit number */ if (clone_create(&vkbd_dev_clones, &vkbd_dev_cdevsw, &unit, dev, 0)) *dev = make_dev_credf(MAKEDEV_REF, &vkbd_dev_cdevsw, unit, cred, UID_ROOT, GID_WHEEL, 0600, DEVICE_NAME "%d", unit); } /* Open device */ static int vkbd_dev_open(struct cdev *dev, int flag, int mode, struct thread *td) { int unit = dev2unit(dev), error; keyboard_switch_t *sw = NULL; keyboard_t *kbd = NULL; vkbd_state_t *state = (vkbd_state_t *) dev->si_drv1; /* XXX FIXME: dev->si_drv1 locking */ if (state == NULL) { if ((sw = kbd_get_switch(KEYBOARD_NAME)) == NULL) return (ENXIO); if ((error = (*sw->probe)(unit, NULL, 0)) != 0 || (error = (*sw->init)(unit, &kbd, NULL, 0)) != 0) return (error); state = (vkbd_state_t *) kbd->kb_data; if ((error = (*sw->enable)(kbd)) != 0) { (*sw->term)(kbd); return (error); } #ifdef KBD_INSTALL_CDEV if ((error = kbd_attach(kbd)) != 0) { (*sw->disable)(kbd); (*sw->term)(kbd); return (error); } #endif /* def KBD_INSTALL_CDEV */ dev->si_drv1 = kbd->kb_data; } VKBD_LOCK(state); if (state->ks_flags & OPEN) { VKBD_UNLOCK(state); return (EBUSY); } state->ks_flags |= OPEN; state->ks_dev = dev; VKBD_UNLOCK(state); return (0); } /* Close device */ static int vkbd_dev_close(struct cdev *dev, int foo, int bar, struct thread *td) { keyboard_t *kbd = VKBD_KEYBOARD(dev); vkbd_state_t *state = NULL; if (kbd == NULL) return (ENXIO); if (kbd->kb_data == NULL || kbd->kb_data != dev->si_drv1) panic("%s: kbd->kb_data != dev->si_drv1\n", __func__); state = (vkbd_state_t *) kbd->kb_data; VKBD_LOCK(state); /* wait for interrupt task */ while (state->ks_flags & TASK) VKBD_SLEEP(state, ks_task, "vkbdc", 0); /* wakeup poll()ers */ selwakeuppri(&state->ks_rsel, PZERO + 1); selwakeuppri(&state->ks_wsel, PZERO + 1); state->ks_flags &= ~OPEN; state->ks_dev = NULL; state->ks_inq.head = state->ks_inq.tail = state->ks_inq.cc = 0; VKBD_UNLOCK(state); kbdd_disable(kbd); #ifdef KBD_INSTALL_CDEV kbd_detach(kbd); #endif /* def KBD_INSTALL_CDEV */ kbdd_term(kbd); /* XXX FIXME: dev->si_drv1 locking */ dev->si_drv1 = NULL; return (0); } /* Read status */ static int vkbd_dev_read(struct cdev *dev, struct uio *uio, int flag) { keyboard_t *kbd = VKBD_KEYBOARD(dev); vkbd_state_t *state = NULL; vkbd_status_t status; int error; if (kbd == NULL) return (ENXIO); if (uio->uio_resid != sizeof(status)) return (EINVAL); if (kbd->kb_data == NULL || kbd->kb_data != dev->si_drv1) panic("%s: kbd->kb_data != dev->si_drv1\n", __func__); state = (vkbd_state_t *) kbd->kb_data; VKBD_LOCK(state); if (state->ks_flags & READ) { VKBD_UNLOCK(state); return (EALREADY); } state->ks_flags |= READ; again: if (state->ks_flags & STATUS) { state->ks_flags &= ~STATUS; status.mode = state->ks_mode; status.leds = KBD_LED_VAL(kbd); status.lock = state->ks_state & LOCK_MASK; status.delay = kbd->kb_delay1; status.rate = kbd->kb_delay2; bzero(status.reserved, sizeof(status.reserved)); error = uiomove(&status, sizeof(status), uio); } else { if (flag & O_NONBLOCK) { error = EWOULDBLOCK; goto done; } error = VKBD_SLEEP(state, ks_flags, "vkbdr", 0); if (error != 0) goto done; goto again; } done: state->ks_flags &= ~READ; VKBD_UNLOCK(state); return (error); } /* Write scancodes */ static int vkbd_dev_write(struct cdev *dev, struct uio *uio, int flag) { keyboard_t *kbd = VKBD_KEYBOARD(dev); vkbd_state_t *state = NULL; vkbd_queue_t *q = NULL; int error, avail, bytes; if (kbd == NULL) return (ENXIO); if (uio->uio_resid <= 0) return (EINVAL); if (kbd->kb_data == NULL || kbd->kb_data != dev->si_drv1) panic("%s: kbd->kb_data != dev->si_drv1\n", __func__); state = (vkbd_state_t *) kbd->kb_data; VKBD_LOCK(state); if (state->ks_flags & WRITE) { VKBD_UNLOCK(state); return (EALREADY); } state->ks_flags |= WRITE; error = 0; q = &state->ks_inq; while (uio->uio_resid >= sizeof(q->q[0])) { if (q->head == q->tail) { if (q->cc == 0) avail = nitems(q->q) - q->head; else avail = 0; /* queue must be full */ } else if (q->head < q->tail) avail = nitems(q->q) - q->tail; else avail = q->head - q->tail; if (avail == 0) { if (flag & O_NONBLOCK) { error = EWOULDBLOCK; break; } error = VKBD_SLEEP(state, ks_inq, "vkbdw", 0); if (error != 0) break; } else { bytes = avail * sizeof(q->q[0]); if (bytes > uio->uio_resid) { avail = uio->uio_resid / sizeof(q->q[0]); bytes = avail * sizeof(q->q[0]); } error = uiomove((void *) &q->q[q->tail], bytes, uio); if (error != 0) break; q->cc += avail; q->tail += avail; if (q->tail == nitems(q->q)) q->tail = 0; /* queue interrupt task if needed */ if (!(state->ks_flags & TASK) && taskqueue_enqueue(taskqueue_swi_giant, &state->ks_task) == 0) state->ks_flags |= TASK; } } state->ks_flags &= ~WRITE; VKBD_UNLOCK(state); return (error); } /* Process ioctl */ static int vkbd_dev_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag, struct thread *td) { keyboard_t *kbd = VKBD_KEYBOARD(dev); return ((kbd == NULL)? ENXIO : kbdd_ioctl(kbd, cmd, data)); } /* Poll device */ static int vkbd_dev_poll(struct cdev *dev, int events, struct thread *td) { vkbd_state_t *state = (vkbd_state_t *) dev->si_drv1; vkbd_queue_t *q = NULL; int revents = 0; if (state == NULL) return (ENXIO); VKBD_LOCK(state); q = &state->ks_inq; if (events & (POLLIN | POLLRDNORM)) { if (state->ks_flags & STATUS) revents |= events & (POLLIN | POLLRDNORM); else selrecord(td, &state->ks_rsel); } if (events & (POLLOUT | POLLWRNORM)) { if (q->cc < nitems(q->q)) revents |= events & (POLLOUT | POLLWRNORM); else selrecord(td, &state->ks_wsel); } VKBD_UNLOCK(state); return (revents); } /* Interrupt handler */ void vkbd_dev_intr(void *xkbd, int pending) { keyboard_t *kbd = (keyboard_t *) xkbd; vkbd_state_t *state = (vkbd_state_t *) kbd->kb_data; kbdd_intr(kbd, NULL); VKBD_LOCK(state); state->ks_flags &= ~TASK; wakeup(&state->ks_task); VKBD_UNLOCK(state); } /* Set status change flags */ static void vkbd_status_changed(vkbd_state_t *state) { VKBD_LOCK_ASSERT(state, MA_OWNED); if (!(state->ks_flags & STATUS)) { state->ks_flags |= STATUS; selwakeuppri(&state->ks_rsel, PZERO + 1); wakeup(&state->ks_flags); } } /* Check if we have data in the input queue */ static int vkbd_data_ready(vkbd_state_t *state) { VKBD_LOCK_ASSERT(state, MA_OWNED); return (state->ks_inq.cc > 0); } /* Read one code from the input queue */ static int vkbd_data_read(vkbd_state_t *state, int wait) { vkbd_queue_t *q = &state->ks_inq; int c; VKBD_LOCK_ASSERT(state, MA_OWNED); if (q->cc == 0) return (-1); /* get first code from the queue */ q->cc --; c = q->q[q->head ++]; if (q->head == nitems(q->q)) q->head = 0; /* wakeup ks_inq writers/poll()ers */ selwakeuppri(&state->ks_wsel, PZERO + 1); wakeup(q); return (c); } /**************************************************************************** **************************************************************************** ** Keyboard driver **************************************************************************** ****************************************************************************/ static int vkbd_configure(int flags); static kbd_probe_t vkbd_probe; static kbd_init_t vkbd_init; static kbd_term_t vkbd_term; static kbd_intr_t vkbd_intr; static kbd_test_if_t vkbd_test_if; static kbd_enable_t vkbd_enable; static kbd_disable_t vkbd_disable; static kbd_read_t vkbd_read; static kbd_check_t vkbd_check; static kbd_read_char_t vkbd_read_char; static kbd_check_char_t vkbd_check_char; static kbd_ioctl_t vkbd_ioctl; static kbd_lock_t vkbd_lock; static void vkbd_clear_state_locked(vkbd_state_t *state); static kbd_clear_state_t vkbd_clear_state; static kbd_get_state_t vkbd_get_state; static kbd_set_state_t vkbd_set_state; static kbd_poll_mode_t vkbd_poll; static keyboard_switch_t vkbdsw = { .probe = vkbd_probe, .init = vkbd_init, .term = vkbd_term, .intr = vkbd_intr, .test_if = vkbd_test_if, .enable = vkbd_enable, .disable = vkbd_disable, .read = vkbd_read, .check = vkbd_check, .read_char = vkbd_read_char, .check_char = vkbd_check_char, .ioctl = vkbd_ioctl, .lock = vkbd_lock, .clear_state = vkbd_clear_state, .get_state = vkbd_get_state, .set_state = vkbd_set_state, .poll = vkbd_poll, }; static int typematic(int delay, int rate); static int typematic_delay(int delay); static int typematic_rate(int rate); /* Return the number of found keyboards */ static int vkbd_configure(int flags) { return (1); } /* Detect a keyboard */ static int vkbd_probe(int unit, void *arg, int flags) { return (0); } /* Reset and initialize the keyboard (stolen from atkbd.c) */ static int vkbd_init(int unit, keyboard_t **kbdp, void *arg, int flags) { keyboard_t *kbd = NULL; vkbd_state_t *state = NULL; keymap_t *keymap = NULL; accentmap_t *accmap = NULL; fkeytab_t *fkeymap = NULL; int fkeymap_size, delay[2]; int error, needfree; if (*kbdp == NULL) { *kbdp = kbd = malloc(sizeof(*kbd), M_VKBD, M_NOWAIT | M_ZERO); state = malloc(sizeof(*state), M_VKBD, M_NOWAIT | M_ZERO); keymap = malloc(sizeof(key_map), M_VKBD, M_NOWAIT); accmap = malloc(sizeof(accent_map), M_VKBD, M_NOWAIT); fkeymap = malloc(sizeof(fkey_tab), M_VKBD, M_NOWAIT); fkeymap_size = sizeof(fkey_tab)/sizeof(fkey_tab[0]); needfree = 1; if ((kbd == NULL) || (state == NULL) || (keymap == NULL) || (accmap == NULL) || (fkeymap == NULL)) { error = ENOMEM; goto bad; } VKBD_LOCK_INIT(state); state->ks_inq.head = state->ks_inq.tail = state->ks_inq.cc = 0; TASK_INIT(&state->ks_task, 0, vkbd_dev_intr, (void *) kbd); } else if (KBD_IS_INITIALIZED(*kbdp) && KBD_IS_CONFIGURED(*kbdp)) { return (0); } else { kbd = *kbdp; state = (vkbd_state_t *) kbd->kb_data; keymap = kbd->kb_keymap; accmap = kbd->kb_accentmap; fkeymap = kbd->kb_fkeytab; fkeymap_size = kbd->kb_fkeytab_size; needfree = 0; } if (!KBD_IS_PROBED(kbd)) { kbd_init_struct(kbd, KEYBOARD_NAME, KB_OTHER, unit, flags, 0, 0); bcopy(&key_map, keymap, sizeof(key_map)); bcopy(&accent_map, accmap, sizeof(accent_map)); bcopy(fkey_tab, fkeymap, imin(fkeymap_size*sizeof(fkeymap[0]), sizeof(fkey_tab))); kbd_set_maps(kbd, keymap, accmap, fkeymap, fkeymap_size); kbd->kb_data = (void *)state; KBD_FOUND_DEVICE(kbd); KBD_PROBE_DONE(kbd); VKBD_LOCK(state); vkbd_clear_state_locked(state); state->ks_mode = K_XLATE; /* FIXME: set the initial value for lock keys in ks_state */ VKBD_UNLOCK(state); } if (!KBD_IS_INITIALIZED(kbd) && !(flags & KB_CONF_PROBE_ONLY)) { kbd->kb_config = flags & ~KB_CONF_PROBE_ONLY; vkbd_ioctl(kbd, KDSETLED, (caddr_t)&state->ks_state); delay[0] = kbd->kb_delay1; delay[1] = kbd->kb_delay2; vkbd_ioctl(kbd, KDSETREPEAT, (caddr_t)delay); KBD_INIT_DONE(kbd); } if (!KBD_IS_CONFIGURED(kbd)) { if (kbd_register(kbd) < 0) { error = ENXIO; goto bad; } KBD_CONFIG_DONE(kbd); } return (0); bad: if (needfree) { if (state != NULL) free(state, M_VKBD); if (keymap != NULL) free(keymap, M_VKBD); if (accmap != NULL) free(accmap, M_VKBD); if (fkeymap != NULL) free(fkeymap, M_VKBD); if (kbd != NULL) { free(kbd, M_VKBD); *kbdp = NULL; /* insure ref doesn't leak to caller */ } } return (error); } /* Finish using this keyboard */ static int vkbd_term(keyboard_t *kbd) { vkbd_state_t *state = (vkbd_state_t *) kbd->kb_data; kbd_unregister(kbd); VKBD_LOCK_DESTROY(state); bzero(state, sizeof(*state)); free(state, M_VKBD); free(kbd->kb_keymap, M_VKBD); free(kbd->kb_accentmap, M_VKBD); free(kbd->kb_fkeytab, M_VKBD); free(kbd, M_VKBD); return (0); } /* Keyboard interrupt routine */ static int vkbd_intr(keyboard_t *kbd, void *arg) { int c; if (KBD_IS_ACTIVE(kbd) && KBD_IS_BUSY(kbd)) { /* let the callback function to process the input */ (*kbd->kb_callback.kc_func)(kbd, KBDIO_KEYINPUT, kbd->kb_callback.kc_arg); } else { /* read and discard the input; no one is waiting for input */ do { c = vkbd_read_char(kbd, FALSE); } while (c != NOKEY); } return (0); } /* Test the interface to the device */ static int vkbd_test_if(keyboard_t *kbd) { return (0); } /* * Enable the access to the device; until this function is called, * the client cannot read from the keyboard. */ static int vkbd_enable(keyboard_t *kbd) { KBD_ACTIVATE(kbd); return (0); } /* Disallow the access to the device */ static int vkbd_disable(keyboard_t *kbd) { KBD_DEACTIVATE(kbd); return (0); } /* Read one byte from the keyboard if it's allowed */ static int vkbd_read(keyboard_t *kbd, int wait) { vkbd_state_t *state = (vkbd_state_t *) kbd->kb_data; int c; VKBD_LOCK(state); c = vkbd_data_read(state, wait); VKBD_UNLOCK(state); if (c != -1) kbd->kb_count ++; return (KBD_IS_ACTIVE(kbd)? c : -1); } /* Check if data is waiting */ static int vkbd_check(keyboard_t *kbd) { vkbd_state_t *state = NULL; int ready; if (!KBD_IS_ACTIVE(kbd)) return (FALSE); state = (vkbd_state_t *) kbd->kb_data; VKBD_LOCK(state); ready = vkbd_data_ready(state); VKBD_UNLOCK(state); return (ready); } /* Read char from the keyboard (stolen from atkbd.c) */ static u_int vkbd_read_char(keyboard_t *kbd, int wait) { vkbd_state_t *state = (vkbd_state_t *) kbd->kb_data; u_int action; int scancode, keycode; VKBD_LOCK(state); next_code: /* do we have a composed char to return? */ if (!(state->ks_flags & COMPOSE) && (state->ks_composed_char > 0)) { action = state->ks_composed_char; state->ks_composed_char = 0; if (action > UCHAR_MAX) { VKBD_UNLOCK(state); return (ERRKEY); } VKBD_UNLOCK(state); return (action); } /* see if there is something in the keyboard port */ scancode = vkbd_data_read(state, wait); if (scancode == -1) { VKBD_UNLOCK(state); return (NOKEY); } /* XXX FIXME: check for -1 if wait == 1! */ kbd->kb_count ++; /* return the byte as is for the K_RAW mode */ if (state->ks_mode == K_RAW) { VKBD_UNLOCK(state); return (scancode); } /* translate the scan code into a keycode */ keycode = scancode & 0x7F; switch (state->ks_prefix) { case 0x00: /* normal scancode */ switch(scancode) { case 0xB8: /* left alt (compose key) released */ if (state->ks_flags & COMPOSE) { state->ks_flags &= ~COMPOSE; if (state->ks_composed_char > UCHAR_MAX) state->ks_composed_char = 0; } break; case 0x38: /* left alt (compose key) pressed */ if (!(state->ks_flags & COMPOSE)) { state->ks_flags |= COMPOSE; state->ks_composed_char = 0; } break; case 0xE0: case 0xE1: state->ks_prefix = scancode; goto next_code; } break; case 0xE0: /* 0xE0 prefix */ state->ks_prefix = 0; switch (keycode) { case 0x1C: /* right enter key */ keycode = 0x59; break; case 0x1D: /* right ctrl key */ keycode = 0x5A; break; case 0x35: /* keypad divide key */ keycode = 0x5B; break; case 0x37: /* print scrn key */ keycode = 0x5C; break; case 0x38: /* right alt key (alt gr) */ keycode = 0x5D; break; case 0x46: /* ctrl-pause/break on AT 101 (see below) */ keycode = 0x68; break; case 0x47: /* grey home key */ keycode = 0x5E; break; case 0x48: /* grey up arrow key */ keycode = 0x5F; break; case 0x49: /* grey page up key */ keycode = 0x60; break; case 0x4B: /* grey left arrow key */ keycode = 0x61; break; case 0x4D: /* grey right arrow key */ keycode = 0x62; break; case 0x4F: /* grey end key */ keycode = 0x63; break; case 0x50: /* grey down arrow key */ keycode = 0x64; break; case 0x51: /* grey page down key */ keycode = 0x65; break; case 0x52: /* grey insert key */ keycode = 0x66; break; case 0x53: /* grey delete key */ keycode = 0x67; break; /* the following 3 are only used on the MS "Natural" keyboard */ case 0x5b: /* left Window key */ keycode = 0x69; break; case 0x5c: /* right Window key */ keycode = 0x6a; break; case 0x5d: /* menu key */ keycode = 0x6b; break; case 0x5e: /* power key */ keycode = 0x6d; break; case 0x5f: /* sleep key */ keycode = 0x6e; break; case 0x63: /* wake key */ keycode = 0x6f; break; default: /* ignore everything else */ goto next_code; } break; case 0xE1: /* 0xE1 prefix */ /* * The pause/break key on the 101 keyboard produces: * E1-1D-45 E1-9D-C5 * Ctrl-pause/break produces: * E0-46 E0-C6 (See above.) */ state->ks_prefix = 0; if (keycode == 0x1D) state->ks_prefix = 0x1D; goto next_code; /* NOT REACHED */ case 0x1D: /* pause / break */ state->ks_prefix = 0; if (keycode != 0x45) goto next_code; keycode = 0x68; break; } if (kbd->kb_type == KB_84) { switch (keycode) { case 0x37: /* *(numpad)/print screen */ if (state->ks_flags & SHIFTS) keycode = 0x5c; /* print screen */ break; case 0x45: /* num lock/pause */ if (state->ks_flags & CTLS) keycode = 0x68; /* pause */ break; case 0x46: /* scroll lock/break */ if (state->ks_flags & CTLS) keycode = 0x6c; /* break */ break; } } else if (kbd->kb_type == KB_101) { switch (keycode) { case 0x5c: /* print screen */ if (state->ks_flags & ALTS) keycode = 0x54; /* sysrq */ break; case 0x68: /* pause/break */ if (state->ks_flags & CTLS) keycode = 0x6c; /* break */ break; } } /* return the key code in the K_CODE mode */ if (state->ks_mode == K_CODE) { VKBD_UNLOCK(state); return (keycode | (scancode & 0x80)); } /* compose a character code */ if (state->ks_flags & COMPOSE) { switch (keycode | (scancode & 0x80)) { /* key pressed, process it */ case 0x47: case 0x48: case 0x49: /* keypad 7,8,9 */ state->ks_composed_char *= 10; state->ks_composed_char += keycode - 0x40; if (state->ks_composed_char > UCHAR_MAX) { VKBD_UNLOCK(state); return (ERRKEY); } goto next_code; case 0x4B: case 0x4C: case 0x4D: /* keypad 4,5,6 */ state->ks_composed_char *= 10; state->ks_composed_char += keycode - 0x47; if (state->ks_composed_char > UCHAR_MAX) { VKBD_UNLOCK(state); return (ERRKEY); } goto next_code; case 0x4F: case 0x50: case 0x51: /* keypad 1,2,3 */ state->ks_composed_char *= 10; state->ks_composed_char += keycode - 0x4E; if (state->ks_composed_char > UCHAR_MAX) { VKBD_UNLOCK(state); return (ERRKEY); } goto next_code; case 0x52: /* keypad 0 */ state->ks_composed_char *= 10; if (state->ks_composed_char > UCHAR_MAX) { VKBD_UNLOCK(state); return (ERRKEY); } goto next_code; /* key released, no interest here */ case 0xC7: case 0xC8: case 0xC9: /* keypad 7,8,9 */ case 0xCB: case 0xCC: case 0xCD: /* keypad 4,5,6 */ case 0xCF: case 0xD0: case 0xD1: /* keypad 1,2,3 */ case 0xD2: /* keypad 0 */ goto next_code; case 0x38: /* left alt key */ break; default: if (state->ks_composed_char > 0) { state->ks_flags &= ~COMPOSE; state->ks_composed_char = 0; VKBD_UNLOCK(state); return (ERRKEY); } break; } } /* keycode to key action */ action = genkbd_keyaction(kbd, keycode, scancode & 0x80, &state->ks_state, &state->ks_accents); if (action == NOKEY) goto next_code; VKBD_UNLOCK(state); return (action); } /* Check if char is waiting */ static int vkbd_check_char(keyboard_t *kbd) { vkbd_state_t *state = NULL; int ready; if (!KBD_IS_ACTIVE(kbd)) return (FALSE); state = (vkbd_state_t *) kbd->kb_data; VKBD_LOCK(state); if (!(state->ks_flags & COMPOSE) && (state->ks_composed_char > 0)) ready = TRUE; else ready = vkbd_data_ready(state); VKBD_UNLOCK(state); return (ready); } /* Some useful control functions (stolen from atkbd.c) */ static int vkbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg) { vkbd_state_t *state = (vkbd_state_t *) kbd->kb_data; int i; #ifdef COMPAT_FREEBSD6 int ival; #endif VKBD_LOCK(state); switch (cmd) { case KDGKBMODE: /* get keyboard mode */ *(int *)arg = state->ks_mode; break; #ifdef COMPAT_FREEBSD6 case _IO('K', 7): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBMODE: /* set keyboard mode */ switch (*(int *)arg) { case K_XLATE: if (state->ks_mode != K_XLATE) { /* make lock key state and LED state match */ state->ks_state &= ~LOCK_MASK; state->ks_state |= KBD_LED_VAL(kbd); vkbd_status_changed(state); } /* FALLTHROUGH */ case K_RAW: case K_CODE: if (state->ks_mode != *(int *)arg) { vkbd_clear_state_locked(state); state->ks_mode = *(int *)arg; vkbd_status_changed(state); } break; default: VKBD_UNLOCK(state); return (EINVAL); } break; case KDGETLED: /* get keyboard LED */ *(int *)arg = KBD_LED_VAL(kbd); break; #ifdef COMPAT_FREEBSD6 case _IO('K', 66): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETLED: /* set keyboard LED */ /* NOTE: lock key state in ks_state won't be changed */ if (*(int *)arg & ~LOCK_MASK) { VKBD_UNLOCK(state); return (EINVAL); } i = *(int *)arg; /* replace CAPS LED with ALTGR LED for ALTGR keyboards */ if (state->ks_mode == K_XLATE && kbd->kb_keymap->n_keys > ALTGR_OFFSET) { if (i & ALKED) i |= CLKED; else i &= ~CLKED; } KBD_LED_VAL(kbd) = *(int *)arg; vkbd_status_changed(state); break; case KDGKBSTATE: /* get lock key state */ *(int *)arg = state->ks_state & LOCK_MASK; break; #ifdef COMPAT_FREEBSD6 case _IO('K', 20): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSKBSTATE: /* set lock key state */ if (*(int *)arg & ~LOCK_MASK) { VKBD_UNLOCK(state); return (EINVAL); } state->ks_state &= ~LOCK_MASK; state->ks_state |= *(int *)arg; vkbd_status_changed(state); VKBD_UNLOCK(state); /* set LEDs and quit */ return (vkbd_ioctl(kbd, KDSETLED, arg)); case KDSETREPEAT: /* set keyboard repeat rate (new interface) */ i = typematic(((int *)arg)[0], ((int *)arg)[1]); kbd->kb_delay1 = typematic_delay(i); kbd->kb_delay2 = typematic_rate(i); vkbd_status_changed(state); break; #ifdef COMPAT_FREEBSD6 case _IO('K', 67): ival = IOCPARM_IVAL(arg); arg = (caddr_t)&ival; /* FALLTHROUGH */ #endif case KDSETRAD: /* set keyboard repeat rate (old interface) */ kbd->kb_delay1 = typematic_delay(*(int *)arg); kbd->kb_delay2 = typematic_rate(*(int *)arg); vkbd_status_changed(state); break; case PIO_KEYMAP: /* set keyboard translation table */ case OPIO_KEYMAP: /* set keyboard translation table (compat) */ case PIO_KEYMAPENT: /* set keyboard translation table entry */ case PIO_DEADKEYMAP: /* set accent key translation table */ state->ks_accents = 0; /* FALLTHROUGH */ default: VKBD_UNLOCK(state); return (genkbd_commonioctl(kbd, cmd, arg)); } VKBD_UNLOCK(state); return (0); } /* Lock the access to the keyboard */ static int vkbd_lock(keyboard_t *kbd, int lock) { return (1); /* XXX */ } /* Clear the internal state of the keyboard */ static void vkbd_clear_state_locked(vkbd_state_t *state) { VKBD_LOCK_ASSERT(state, MA_OWNED); state->ks_flags &= ~COMPOSE; state->ks_polling = 0; state->ks_state &= LOCK_MASK; /* preserve locking key state */ state->ks_accents = 0; state->ks_composed_char = 0; /* state->ks_prefix = 0; XXX */ /* flush ks_inq and wakeup writers/poll()ers */ state->ks_inq.head = state->ks_inq.tail = state->ks_inq.cc = 0; selwakeuppri(&state->ks_wsel, PZERO + 1); wakeup(&state->ks_inq); } static void vkbd_clear_state(keyboard_t *kbd) { vkbd_state_t *state = (vkbd_state_t *) kbd->kb_data; VKBD_LOCK(state); vkbd_clear_state_locked(state); VKBD_UNLOCK(state); } /* Save the internal state */ static int vkbd_get_state(keyboard_t *kbd, void *buf, size_t len) { if (len == 0) return (sizeof(vkbd_state_t)); if (len < sizeof(vkbd_state_t)) return (-1); bcopy(kbd->kb_data, buf, sizeof(vkbd_state_t)); /* XXX locking? */ return (0); } /* Set the internal state */ static int vkbd_set_state(keyboard_t *kbd, void *buf, size_t len) { if (len < sizeof(vkbd_state_t)) return (ENOMEM); bcopy(buf, kbd->kb_data, sizeof(vkbd_state_t)); /* XXX locking? */ return (0); } /* Set polling */ static int vkbd_poll(keyboard_t *kbd, int on) { vkbd_state_t *state = NULL; state = (vkbd_state_t *) kbd->kb_data; VKBD_LOCK(state); if (on) state->ks_polling ++; else state->ks_polling --; VKBD_UNLOCK(state); return (0); } /* * Local functions */ static int delays[] = { 250, 500, 750, 1000 }; static int rates[] = { 34, 38, 42, 46, 50, 55, 59, 63, 68, 76, 84, 92, 100, 110, 118, 126, 136, 152, 168, 184, 200, 220, 236, 252, 272, 304, 336, 368, 400, 440, 472, 504 }; static int typematic_delay(int i) { return (delays[(i >> 5) & 3]); } static int typematic_rate(int i) { return (rates[i & 0x1f]); } static int typematic(int delay, int rate) { int value; int i; for (i = nitems(delays) - 1; i > 0; i --) { if (delay >= delays[i]) break; } value = i << 5; for (i = nitems(rates) - 1; i > 0; i --) { if (rate >= rates[i]) break; } value |= i; return (value); } /***************************************************************************** ***************************************************************************** ** Module ***************************************************************************** *****************************************************************************/ KEYBOARD_DRIVER(vkbd, vkbdsw, vkbd_configure); static int vkbd_modevent(module_t mod, int type, void *data) { static eventhandler_tag tag; switch (type) { case MOD_LOAD: clone_setup(&vkbd_dev_clones); tag = EVENTHANDLER_REGISTER(dev_clone, vkbd_dev_clone, 0, 1000); if (tag == NULL) { clone_cleanup(&vkbd_dev_clones); return (ENOMEM); } +#ifdef KLD_MODULE kbd_add_driver(&vkbd_kbd_driver); +#endif break; case MOD_UNLOAD: +#ifdef KLD_MODULE kbd_delete_driver(&vkbd_kbd_driver); +#endif EVENTHANDLER_DEREGISTER(dev_clone, tag); clone_cleanup(&vkbd_dev_clones); break; default: return (EOPNOTSUPP); } return (0); } DEV_MODULE(vkbd, vkbd_modevent, NULL);